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Preface 

The rise of Artificial Intelligence (AI) and its tight interactions with humans and our 
society leads to the emergence of a new field called Social Intelligence (SI). The SI 
is motivated by the complementary strengths of AI and humans. For example, AI is 
observed to excel at tasks that require high speed, run at a large scale, and generate 
accurate quantitative results. In contrast, humans often outperform machines at tasks 
that require critical thinking, creative works, and excellent social skills. Different 
from many existing works that take AI and humans as competitors in a zero-sum 
game, this book presents an exciting vision of SI that allows humans and AI to 
collaborate with each other and build a novel paradigm of collective and hybrid 
intelligence by fully exploring their complementary strengths and interactions in 
the social space. The SI will empower human-centered AI solutions in many 
critical application domains by fully unleashing the power of integrating human 
intelligence with AI. Examples of such application domains include truth discovery 
and explanation, healthcare analytics, disaster response, online education, face 
recognition, intelligent transportation, urban sensing, and smart cities. 

The SI paradigm introduces a set of critical challenges for research. Examples 
include human-centered data heterogeneity and sparsity, model generality and 
adaptability, explainability, fairness and bias, privacy, and hybrid intelligence 
integration. This book addresses these challenges by presenting a series of prin-
cipled analytical frameworks and real-world system designs that fully explore the 
collective strengths of AI and human intelligence, while explicitly addressing the 
unique concerns and constraints of humans. The book first presents a set of novel 
human-centered AI solutions (e.g., multimodal approaches, robust and generalizable 
models, socially empowered explainable AI designs) to address the aforementioned 
SI challenges. The book then presents several human-AI collaborative learning 
frameworks that jointly integrate the strengths of collective human intelligence 
from people and AI to address the limitations of human-only or AI-only solutions. 
Finally, the book discusses the pressing societal and human-centered issues in SI 
such as fairness, bias, and privacy. The book also offers extensive evaluation of the 
discussed SI systems in real-world applications and case studies to demonstrate the 
effectiveness and performance gains of the presented solutions in comparison to
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state-of-the-art baselines in different aspects such as model accuracy, generalizabil-
ity, explainability, algorithmic fairness, and system robustness. 

Leveraging the models, techniques, and systems presented in this book, the 
reader is offered with analytical foundations, optimized frameworks, and system 
prototypes needed to explore the power of social intelligence. The SI paradigm 
generalizes the current trends of human-AI interactions, human-assisted AI, and AI 
for social good into a holistic human-AI ecosystem with social context. The book 
takes the reader on a journey of discovery through the analytical and systematic 
underpinning of developing novel theories, models, and systems in the domain 
of social intelligence. The uniqueness of human-centered nature and integration 
of human intelligence and AI makes this journey more exciting and challenging. 
The authors hope that techniques developed in this book will become part of the 
solution space in dealing with challenges in future social intelligence systems. These 
techniques can help fully unleash the power of both AI and humans in the next 
generation of computing, intelligence, and information systems. 

Champaign, IL, USA Dong Wang 
Los Angeles, CA, USA Lanyu Shang 
Oxford, OH, USA Yang Zhang 
January, 2025 
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Chapter 1 
Introduction 

Abstract In this chapter, we introduce the new paradigm of Social Intelligence 
(SI) where the goal is to explore the collective intelligence of both humans and 
machines by understanding their complementary strengths and interactions in the 
social space. We highlight the uniqueness of the social intelligence paradigm in 
the context of related literature. We further discuss the motivation of SI from both 
the challenge and application perspectives. Examples of some key challenges in 
SI include data heterogeneity, model generality, explainability, fairness and bias, 
privacy, and hybrid intelligence integration. Finally, we conclude the chapter by 
summarizing the contributions of this book and presenting the structure for the rest 
of the book. 

Keywords Social intelligence · Human-centered AI · Human-AI collaboration · 
AI for social good 

1.1 Overview 

Given the rise of artificial intelligence (AI) and the advent of online social 
collaboration opportunities (e.g., social media, crowdsourcing), emerging research 
has started investigating the integration of AI and human intelligence, especially 
in a collaborative social context. This opens up unprecedented challenges and 
opportunities in the field of Social Intelligence (SI), where the goal is to explore 
the collective intelligence of both humans and machines by understanding their 
complementary strengths and interactions in the social space. Social intelligence 
can be applied to a wide range of human-centered applications in the real world, 
such as truth discovery, disaster response, explainable AI, online education, and 
smart cities, to enhance human well-being and promote social good. For example, 
in an online truth discovery application, SI-based solutions address the limitations 
of existing AI approaches by not only detecting the false information accurately 
but also presenting convincing explanation of the detected false information with 
expert-validated evidence and justification [18]. With real-world case studies, this 
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book systematically presents the concepts, fundamental research challenges, state-
of-the-art techniques, and open-ended research questions in this emerging domain. 
The book highlights several critical challenges in social intelligence applications, 
such as data heterogeneity, data sparsity, model generalizability, explainability, 
human-AI collaboration, fairness, and privacy. The book addresses these challenges 
by presenting a series of principled models and real-world systems that jointly 
explore the collective intelligence of humans and AI, while explicitly addressing 
their respective limitations and constraints. 

This book offers a comprehensive guide to understand the nature of human 
intelligence and AI. Novel human-centered AI techniques are presented to address 
the challenges of social intelligence applications, including multimodal approaches, 
robust and generalizable frameworks, and socially empowered explainable AI 
designs. The book then presents several human-AI collaborative learning frame-
works that jointly integrate the strengths of crowd wisdom and AI to address the 
limitations inherent in standalone solutions. The book also emphasizes pressing 
societal issues in social intelligence, such as fairness, bias, and privacy. Real-
world case studies from different application domains in social intelligence are 
presented to demonstrate the effectiveness of the proposed solutions in achieving 
substantial performance gains in various aspects, such as prediction accuracy, model 
generalizability and explainability, algorithmic fairness, and system robustness. 

Compared to existing literature in related fields (e.g., social computing, human-
centered AI, crowdsourcing, AI for social good), the vision of this book is unique: 
we focus on social intelligence, an emerging direction at the intersection of human 
intelligence and AI in the context of social space, aiming to jointly integrate 
the complementary strengths of human intelligence and AI with novel human-
AI collaborative designs and systems. It highlights the unique role of humans in 
enabling socially intelligent applications that prioritize human needs and values 
in the core design of such human-AI collaborative systems. To our knowledge, 
the collaborative integration of human intelligence and AI for social good has 
not been systematically reviewed and studied in an existing book. The social 
intelligence vision generalizes current works in human-centered AI (e.g., Human-
Computer Interaction (HCI) and AI for social good literature) and collective human 
intelligence (e.g., social media and crowdsourcing literature) into a comprehensive 
human-AI collaboration paradigm in the social space. Such a paradigm integrates 
emerging human-centered applications (e.g., healthcare, disaster response, smart 
cities, online education), state-of-the-art AI challenges (e.g., heterogeneity, sparsity, 
generalizability, explainability), and related societal concerns (e.g., fairness, privacy, 
robustness) into a holistic human-AI ecosystem, as shown in Fig. 1.1.
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Fig. 1.1 An overview of the social intelligence paradigm 

1.2 Motivation and Challenges 

1.2.1 Motivation 

This book introduces a new paradigm called Social Intelligence (SI). This paradigm 
is motivated by the observation that human intelligence (HI) and artificial intelli-
gence (AI) have complementary strengths in addressing complex real-world issues 
in the social space. In particular, HI refers to the cognitive abilities of humans, such 
as reasoning, planning, problem-solving, abstract thinking, complex idea compre-
hension, and learning from experience [15]. In contrast, AI refers to the simulation 
of human intelligence processes by machines that may include computation-based 
learning, reasoning, problem-solving, perception, and language understanding [16]. 
It is observed that HI and AI excel at tasks that are complementary to each other. 
For example, HI is often good at providing specific context, domain expertise, 
creative and abstract thinking, and human-centered insights, which are essential 
for understanding the complex social and physical factors in social intelligence 
applications [1, 12, 27]. In contrast, AI excels at tasks such as processing large 
amounts of data, complex calculations, and simulations, identifying latent patterns, 
and quantitative analysis with high accuracy, which can help address the scalability
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and complexity of computational problems in human society [25, 35, 39]. Such 
complementary capabilities of HI and AI form the foundation of the Social 
Intelligence paradigm where their integration can lead to more effective solutions 
to address the complex real-world challenges that cannot be fully tackled by HI or 
AI alone. 

Consider a truth discovery application, AI-based solutions often can efficiently 
process and analyze a massive amount of input data samples (e.g., online social 
media posts). However, they often fail to identify the new false information about 
emerging events when there is a lack of timely training data (e.g., false information 
spread during the early stage of the COVID-19 pandemic) [47]. In contrast, HI-
based solutions could better capture such new false information in an “unseen” 
domain by exploring the domain knowledge from human experts that is often gener-
alizable across different knowledge domains [34]. However, obtaining HI is known 
to be both costly and time-consuming [52]. Therefore, it makes sense to create 
new HI-AI integrated solutions that can fully explore the collective strengths of 
both humans and AI. As another example, consider an environmental sustainability 
application where the goal is to estimate the contamination of groundwater in a 
well-dependent community and understand its social impact on the community. 
HI-based solutions could help collect on-the-ground information about the water 
quality (e.g., assessing household groundwater contamination using crowdsourcing 
approaches) and localized context knowledge about the potential pollution sources 
(e.g., identifying the nearby farms and patterns of fertilizer applications that 
may affect the groundwater contamination) [36]. However, individual inputs from 
unvetted human users often suffer from uncertainty and noise due to the inherent 
subjectivity and variability in human observations. In contrast, AI-based solutions 
could help mitigate these limitations of HI by effectively quantifying the uncertainty 
of individual observations from the collective yet noisy human inputs and capturing 
the hidden patterns between these observations [32]. Therefore, an integrated HI-AI 
paradigm could better address the above problem by providing a more reliable and 
trustworthy social intelligence solution. While the SI paradigm is promising, there 
exist a few fundamental challenges in integrating HI and AI, which we elaborate on 
below. 

1.2.2 The Heterogeneity Challenge 

Data heterogeneity is one of the fundamental challenges in social intelligence, where 
many of its applications are characterized by the heterogeneous nature of human 
and AI-generated contents that encompass diverse data modalities such as text, 
images, videos, and user interactions [4]. Many existing multimodal solutions have 
been developed to address the data heterogeneity in different application contexts 
(e.g., online social media, healthcare, disaster response) [13, 45, 52]. However, 
these solutions often struggle to effectively capture the intricate interplay among 
different data modalities and sources due to the implicit nature of such interplays
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and interactions. The fauxtography generation tools have taken advantage of such 
limitations and leveraged the multimodal data and the interaction between different 
data modalities to present a incorrect narrative [54]. For example, a multimodal 
social media post shows a photo of a wild forest fire that is accompanied by a 
brief text statement that reports the forest fire in the image as a severe one in 
Tennessee [51]. While both the image and texts are real (i.e., the image is not edited 
and there is indeed a forest fire in Tennessee), the narrative from the multimodal 
post is incorrect in the sense that the image was borrowed from an earlier event (i.e., 
wildfires in the Bitterroot National Forest in west-central Montana and eastern Idaho 
of United States) and used to exaggerate the severity of the forest fire in Tennessee. 
While AI-based solutions can be leveraged to verify the truthfulness of the claim 
from individual modality (e.g., text or image), it is still challenging for AI solutions 
to detect such fauxtography posts that hide incorrect information in the connection 
and interaction between different modalities. In contrast, HI can be helpful in 
addressing such a problem if it is integrated with AI in an appropriate way. For 
example, people living in Tennessee may be able to note that these tree species in the 
wildfire image are not those commonly found in their state. If the crowd intelligence 
(HI from a group of people) is utilized, some individuals may also be able to identify 
these trees in the image are species commonly found in the northwestern United 
States. More recently, multimodal large foundation models (e.g., GPT-4, PaLM-E, 
Flamingo, CLIP) have also been developed and shown promise in processing and 
analyzing data of different modalities. However, they still face significant challenges 
in fully capturing, integrating, and interpreting the complex and context-dependent 
association and interplay between different modalities, especially when dealing 
with the dynamic and potentially contradictory nature of human-generated contents 
in the social intelligence context [24]. Therefore, it remains a critical challenge 
to fully understand, model, and evaluate data heterogeneity in social intelligence 
applications. 

1.2.3 The Generality Challenge 

In social intelligence applications, the developed systems are often applied across 
different domains (e.g., topics, events, locations) and the generality of the human-AI 
integration model is critical for the social intelligence system to achieve reliable and 
robust performance across domains [3]. The current AI solutions are often trained 
and fine-tuned on labeled data samples from a given domain to achieve optimized 
performance [10]. However, the annotation process to obtain the labeled data in 
a specific domain is often known to be both time-consuming and expensive [53]. 
This usually results in the limited generality of the AI models and their suboptimal 
performance when they are applied to new or different target domains other than the 
original source domain they were trained in [23]. For example, consider an AI model 
that has been trained to assess the severity of damage based on social media posts 
in the aftermath of an earthquake in California. The model may excel at assessing
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the severity of damage caused by the earthquake through the training process by 
leveraging the annotated data samples in the source domain (earthquake). However, 
the model is likely to achieve suboptimal performance when it is applied to assess 
the damage severity in different types of natural disasters such as hurricanes in North 
Carolina and Florida and flash floods in the Midwest [53]. One major reason for such 
performance degradation is the domain discrepancy between the source domain 
where the model is trained and the target domain where the model is applied. For 
example, the model may not be able to correctly understand hurricane-related terms 
like “storm surge” or “eye of the storm” and misclassify them as irrelevant or non-
critical in the damage severity assessment process as the model has never seen such 
terms in the earthquake contexts. It is not a trivial task to develop generalizable 
social intelligence models that can overcome the domain discrepancy given the 
potential different data distributions and label shifts across domains as well as the 
unique characteristics, languages, and patterns of the data samples in each domain. 

1.2.4 The Explainability Challenge 

Explainability is another interesting challenge in social intelligence applications 
where AI and humans closely interact with each other. Ideally, people often prefer 
a clear, understandable, justifiable, and evidence-based explanation in addition to 
the AI-generated outcomes from the social intelligence systems [11]. For example, 
consider an AI-based metacognitive calibration system in education where the goal 
is to predict students’ performance (e.g., final grade) at an early stage of a class and 
help students better calibrate their self-assessments of the class performance and 
improve their time management and final education outcome. In such an application, 
it will not be sufficient to only provide students with an AI-based prediction of 
their final grades without any explanations. Instead, students will find the prediction 
results more informative and become motivated to calibrate their self-assessments 
of class performance if the AI predictions come with a well-designed explanation. 
For example, such an explanation could include details on (1) what data does the AI 
system use to generate the prediction result? (2) What is the confidence of the AI-
generated prediction? (3) What chapters/sections of the course play a more critical 
role in the prediction? However, it is not a trivial task to generate such an explanation 
due to several challenges in integrating AI and HI in social intelligence. First, the 
“black-box” nature of the AI models contributes to the lack of explainability of 
the generated results [50]. For example, when an AI model gives an inaccurate 
prediction on the student performance, what is the reason—is it due to the lack 
of training data or the AI model itself? Such questions make it difficult for human 
intelligence to effectively improve the black-box AI model. Second, many current 
explainable AI (XAI) solutions mainly focus on extracting the relevant content (e.g., 
specific words or image regions) from the input data as explanations, which often
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lack appropriate contexts to clearly articulate the reasons behind the prediction 
results in natural human language [19]. In the above meta-cognitive calibration 
example, students often prefer an understandable human language-based explana-
tion to their performance prediction over some scattered terms extracted from the 
course materials or their assignments. More recently, the progress on generative 
large language models (e.g., GPT-4, Llama) also shows promising performance on 
general natural language tasks, such as summarizing, translating, and generating 
natural language text [29]. However, such large language models often require a 
significant amount of training data and computational resources which limit their 
application to emerging or new tasks in social intelligence applications such as truth 
discovery and explanations in emerging domains [21, 37]. 

1.2.5 The Fairness and Bias Challenge 

In social intelligence applications, it is important to ensure fairness and mitigate 
potential bias when AI and HI are integrated [20]. One challenge in addressing 
the bias of AI models lies in the fundamental trade-off between the fairness and 
accuracy of the AI models. It is well observed that mitigating the bias (i.e., 
improving fairness) of AI models often leads to model accuracy degradation [2, 41]. 
The fairness and accuracy trade-offs become much more complicated when the 
fairness across multiple demographic groups is considered simultaneously. Consider 
the metacognitive calibration application we discussed above where there exists 
more training data from males than females in the collected dataset. To achieve 
fairness for the “female” demographic group, the model should be trained on more 
balanced data by reducing the number of male data samples in the training process. 
However, if it happens that the male data samples are mostly from a minority 
group (e.g., African American students), the data samples for them will decrease 
as well, leading to lower prediction accuracy and potential unfairness for the 
minority students (e.g., African American male students) [49]. It remains an open 
challenge to achieve a good balance between fairness and accuracy among different 
demographic groups in social intelligence applications. Another challenge lies in 
the fact humans also have their own biases when HI is leveraged to improve the AI 
model fairness in social intelligence. For example, humans have the confirmation 
bias of selecting the option that aligns with their preexisting beliefs or hypotheses 
about the outcome that is expected [17]. Similarly, humans also have the effect of 
heuristic bias, where humans are prone to selecting options based on their immediate 
positive or negative reactions [6]. These human-based biases could also negatively 
affect the overall fairness of the social intelligence system if they are not addressed 
carefully. An open question in this direction is: how to leverage the collective 
strengths of AI and HI in social intelligence to improve system fairness by jointly 
mitigating their individual bias and investigating their potential interactions?
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1.2.6 The Privacy Challenge 

Privacy is a non-negligible challenge in human-centered paradigms like social 
intelligence where data are collected from humans or devices on their behalf [14]. 
The collected human data often contain sensitive information about the individuals 
and the contexts they are involved and such information is at substantial risk to 
individual privacy if it is not protected appropriately [5, 33]. For example, consider 
a social intelligence application where the goal is to study public health trends 
using human-centered data from social media and location services (e.g., online 
check-ins). While the outcomes of this application can contribute to the prediction 
of epidemic and disease spread, it also raises serious privacy concerns [31]. 
For instance, attackers could identify sensitive health information (e.g., medical 
conditions, lifestyles, health history) of users by mining their online posts and 
estimating their home locations by leveraging their check-in traces online. In 
another example of AI for education, students’ study behavior data, quiz, and exam 
scores, and demographic information are often collected to train AI models for 
accurate prediction of the student’s performance in a certain class [55]. However, 
students may not feel comfortable sharing such sensitive information with AI 
models or anyone they do not trust. It remains a critical challenge in education 
to build reliable AI models without posing additional risks to student’s private 
data. Several solutions have been proposed to address the privacy challenge. 
Examples include data anonymization [44] and federated learning [42]. However, 
these techniques have their own limitations. For example, the data anonymization 
scheme is vulnerable to re-identification attacks when the attacker can get access 
to additional publicly available information (e.g., rich contextual information from 
social media) [9]. Additionally, federated learning requires the training data to 
be stored locally and only accessible to the clients (individual users) to protect 
their privacy [7]. However, the data at each client could be sparse and the data 
distributions across different clients could be different [49]. Such data sparsity 
and data heterogeneity often significantly affect the performance of AI models 
in federated learning settings [48]. With recent advancements in conversational 
AI and large language models, users are increasingly sharing their data during 
interactions with these systems. The privacy issue becomes a potential concern 
due to the conversational nature of such AI systems and the lack of awareness of 
how the data exchanged during the conversation is stored or used [46]. Similar 
challenges also exist in human-AI collaborative decision-making systems that can 
effectively learn from human feedback, which can include sensitive information 
being unintentionally shared during the collaboration process [22]. Therefore, it 
remains an open challenge in social intelligence to ensure the privacy of users and 
protect their data while maintaining desirable system performance.
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1.2.7 The Hybrid Intelligence Integration Challenge 

The integration of AI and HI showcases both the opportunities and the challenges 
of leveraging the strengths of HI and AI to address complex technical and 
social challenges. HI has the ability to contextualize data, bring domain-specific 
knowledge to bear, and make moral judgments, all of which are crucial for 
better understanding the dynamics of complex real-world applications in the social 
context [28]. However, human judgments can be influenced by biases, and HI scales 
only up to human cognitive, time, and cost constraints [40]. AI, on the other hand, 
has powerful data-processing and analysis capacities, and is usually consistent, 
objective, and scalable [26]. However, AI often suffers from a lack of contextual 
awareness, is often task/domain-specific, and its decisions can be opaque, leading 
to moral and ethical concerns. Motivated by the above observations, collaborative 
decision-making frameworks can be developed where AI focuses on data processing 
and preliminary analysis while humans provide contextual interpretation and ethical 
oversight [38]. However, several challenges exist in integrating AI and HI in social 
intelligence applications. The challenges are rooted in the complex interdependence 
between AI and HI. A “chicken-and-egg” dilemma arises when one form of 
intelligence relies on the reliable outputs of the other [30]. Specifically, AI models 
often require accurate human inputs to identify and correct biases and errors of the 
models. For example, when detecting false claims about vaccine efficacy, expert-
annotated unbiased data—grounded in verified scientific evidence, covering diverse 
viewpoints, and adhering to consistent annotation criteria—helps AI models identify 
fine-grained false information patterns, facilitating bias correction during training. 
On the other hand, human workers can also rely on AI-generated feedback to 
highlight patterns they may have missed, such as recurring incorrect phrases or 
fabricated statistics, thereby reducing annotation errors [43]. However, the lack of 
systematic study and modeling of this mutual dependency between HI and AI makes 
it challenging to ensure accurate and reliable outputs from human-AI collaborative 
systems. The integrated intelligence can better tackle complex challenges in ways 
that are more reliable and aligned better with societal needs. The synergy between 
HI and AI can also facilitate the adaptive learning paradigm where AI systems 
are improved continually with human feedback, and humans also improve their 
decisions with AI-driven insights, leading to a more robust and effective co-learning 
framework [8]. 

1.3 Contributions 

This book introduces a new paradigm in the era of human-centered AI: Social Intel-
ligence (SI). The SI paradigm unleashes the collective power of human intelligence 
(HI) and AI by exploring their complementary strengths and interactions in the 
social space. The main contributions of the book can be summarized as follows.
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First, this book presents a set of novel SI frameworks to address several fundamental 
technical challenges in integrating HI with AI. Examples of these challenges include 
data heterogeneity, data sparsity, model generality, and model explainability. The 
presented solutions are interdisciplinary in nature and include techniques from 
AI, machine learning, social computing, human-computer interaction, estimation 
theory, and statistical learning. Second, this book also offers a comprehensive 
exploration of critical human-centered issues in social intelligence. Examples of 
such issues include fairness, bias, and privacy. The book presents several human-AI 
integrated systems that are designed specifically to address these pressing issues of 
social concerns and provide a holistic approach to designing robust and ethical SI 
systems that can be deployed responsibly in our society. Third, this book provides 
real-world case studies from different application domains to thoroughly evaluate 
the presented frameworks and solutions and demonstrate their effectiveness in real-
world settings. Examples of the application domains include (but are not limited to) 
truth discovery and explanation, disaster damage assessment, smart cities, human 
face recognition, and AI for online education. These case studies provide valuable 
insights for the readers to understand the practical applicability and limitations 
of social intelligence solutions in a real-world context. Overall, to the best of our 
knowledge, this book presents the first comprehensive SI paradigm for harnessing 
the collective intelligence from both HI and AI towards addressing emerging 
problems in our society for the common good. 

The remaining chapters of the book are structured as follows. In Chap. 2, 
we discuss the background, interdisciplinary nature, and emerging applications 
of the SI paradigm. In Chap. 3, we review a series of mathematical foundations 
that are essential to understand the principles of the presented SI techniques. 
Examples of such foundations include estimation theory, deep learning, and AI 
optimizations. In Chap. 4, we present two examples of SI frameworks (i.e., DualGen 
and ContrastFaux) to address the data heterogeneity challenge in social intelligence. 
In Chap. 5, we introduce CrowdAdapt and CollabGeneral, two representative SI 
solutions to address the data sparsity and model generality challenges in social 
intelligence. In Chap. 6, we investigate the critical aspect of explainable AI (XAI) 
in social intelligence and present two XAI frameworks (i.e., HC-COVID and 
DExFC) to demonstrate the concept of collaborative explanations that integrate 
the strengths of both HI and AI. Chapter 7 studies the problem of integrating 
AI and HI from crowdsourcing systems and presents two human-AI collaboration 
frameworks (i.e., CrowdNAS and CrowdOptim) to address several fundamental 
problems in AI design and optimization (e.g., neural network architecture search 
and hyperparameter optimization). In Chap. 8, we discuss the critical challenge of 
fairness and bias mitigation in social intelligence systems and present two fairness-
aware SI systems (i.e., FairCrowd and DebiasEdu) that specifically address the 
fairness issue of SI systems by exploring the collective power of HI and AI. 
Chapter 9 studies the topic of privacy in social intelligence and presents two privacy-
preserving solutions (i.e., CoviDKG and FaceCrowd) that particularly target at 
addressing the privacy issue in SI by leveraging the integrated intelligence from 
both humans and AI. In Chap. 10, we provide further readings on several important
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directions that are closely related to SI (e.g., human-AI systems, AI for social good, 
fairness and privacy in SI, ethics of AI, generative AI in SI). The book concludes 
with Chap. 11 which summarizes the key findings of the book and discusses the 
remaining challenges for future research in this exciting field of social intelligence. 
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Chapter 2 
Social Intelligence Backgrounds 
and Applications 

Abstract In this chapter, we discuss the root of social intelligence from the per-
spective of human intelligence (HI), artificial intelligence (AI), and their integration. 
The interdisciplinary nature of social intelligence is also highlighted with a detailed 
discussion on closely related domains, such as natural language processing and 
text mining, computer vision and image processing, social computing and human-
computer interaction, estimation theory, and statistical learning. Additionally, we 
present a few emerging social intelligence applications in real-world scenarios to 
further demonstrate the necessity of this new intelligence paradigm. Examples of 
these applications include social media misbehavior identification and mitigation, 
multimodal truth discovery, explainable AI and machine learning, disaster response 
and damage assessment, AI and crowdsourcing for education, and social sensing in 
smart city applications. 

Keywords Social intelligence · Human intelligence · Artificial intelligence · 
Interdisciplinary · Applications 

2.1 Social Intelligence: Integrating Human Intelligence 
and AI 

2.1.1 Human Intelligence 

Human intelligence (HI) often refers to the intellectual or cognitive capabilities 
of human beings. Examples of such capabilities include problem solving, abstract 
thinking, reasoning, creativity, adapting to new situations, emotions, and social 
understanding [18]. More recently, with the ubiquity of network connections and 
the proliferation of collective intelligence platforms (e.g., online crowdsourcing), 
HI could be obtained at an unprecedented speed and scale [23]. Collective HI 
from a large cohort of individuals has been leveraged to address critical real-
world problems. One example of using HI in the healthcare domain is a platform 
called PatientsLikeMe where people with chronic conditions, rare diseases, and 
other health issues can share their experiences, track their symptoms, and exchange 
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health-related insights with others [71]. The goal of this platform is to improve the 
health outcomes of its users by harnessing the collective intelligence of patients and 
providing an opportunity for peer-to-peer support and research. The patients’ self-
reported outcomes and personalized experiences help build a broader understanding 
of their medical conditions and how they manifest in real life. This HI-centered 
approach provides a much richer set of human-derived knowledge that greatly 
supplements the traditional clinical datasets that are often sparse and incomplete. 
Another example of using HI in the information space is called “Community Notes” 
from X (previously known as “Birdwatch” from Twitter) where users on X are 
empowered to review tweets and identify incorrect claims on the platform [46]. 
X users can also provide additional contexts and explanations to justify why they 
believe a certain claim is false. The platform then takes into account the inputs 
from a large crowd of participating users by considering their report consistency and 
individual reputations to decide the veracity of the relevant claims. The “Community 
Notes” represents a new paradigm of decentralized fact-checking that gets rid of 
the reliance on centralized authorities or external organizations by leveraging the 
power of collective intelligence from humans. HI has also been leveraged to address 
complex and widespread challenges in other application domains (e.g., astronomy, 
biology, environmental sustainability, history) by fully harnessing the collective 
wisdom of diverse individuals [72], which will essentially complement the power 
of AI in the social intelligence paradigm. 

2.1.2 Artificial Intelligence 

AI is one of the major technology revolutions that is believed to significantly 
improve productivity in this new century. Compared to HI, AI has its unique strength 
in domains that process large volumes of data, perform precise computational tasks, 
and identify trends and patterns from complex data patterns [14]. One example is 
in the domain of AI for health where AI systems have shown increased accuracy 
in disease diagnoses (e.g., breast cancer, eye diseases) by analyzing a massive 
amount of medical imaging data. In a recent study, a collaboration team of Google 
Health researchers and physician scientists have developed a deep learning based 
AI prediction model that can outperform radiologists in detecting breast cancer 
from mammograms by achieving reduced rates of both false positives and false 
negatives [24]. Moreover, AI also shows a clear advantage in areas like financial 
trading where AI models process a tremendous amount of transaction data samples 
in real-time to make critical decisions at speeds and scales beyond human’s capa-
bilities. For example, Robo-advisors are AI-powered automated financial advisors 
that offer financial planning and advice to clients [6]. Such systems have the 
advantage of avoiding conflict of interest and providing significantly lower and more 
transparent cost structures than human financial advisors. They can also provide 
24/7 continuous monitoring of market conditions and automatically adjust clients’ 
portfolios based on their investment preferences and risk tolerance. Additionally,
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AI has also been successfully applied to autonomous driving. For example, AI 
systems in autonomous cars make real-time decisions by leveraging data inputs from 
cameras, radar, and LiDAR (Light Detection And Ranging) and improve the safety 
of driving compared to human drivers, who are often limited by slower reflexes and 
attention spans [59]. Thus, AI can effectively augment human capabilities to build 
a more accurate, scalable, and efficient social intelligence system. 

2.1.3 Social Intelligence 

In the above discussion, we note that HI and AI have unique advantages in their 
specific application domains. However, we also observe that these two types of 
intelligence suffer from their intrinsic limitations. For example, human intelligence, 
while adaptable and creative, is often constrained by human cognitive capacity and 
biases [18]. Similarly, artificial intelligence, while computationally scalable and 
efficient, often lacks an in-depth understanding of correct contexts and the ability 
to generalize knowledge across diverse domains. Motivated by the complementary 
strengths of HI and AI, social intelligence emerges as a new paradigm that integrates 
human expertise and AI capabilities to address complex societal challenges more 
effectively. For example, social intelligence has been applied to detect false health 
information during health crises by jointly incorporating the crowdsourced domain 
knowledge from expert workers and the inference capabilities of deep learning algo-
rithms to accurately identify incorrect information on social and news media [25]. 
Additionally, social intelligence has been applied to improve disaster damage 
assessment accuracy across different types of disasters by collectively exploring the 
generalizable knowledge from common individuals and the precision and specificity 
of AI models in correctly assessing the severity of disaster damage situations [86]. 
Such hybrid social intelligence solutions effectively harness the joint power of 
HI and AI while addressing their individual limitations, ultimately enhancing the 
decision-making processes and problem-solving capabilities of humans in complex 
real-world SI applications. 

2.2 Interdisciplinary Nature of Social Intelligence 

The interdisciplinary nature of social intelligence requires an integration of knowl-
edge and methodology from a diverse set of research disciplines to fully address the 
technical challenges within social intelligence applications. For example, the data 
heterogeneity in SI requires techniques from natural language processing and com-
puter vision to extract information from multimodal SI data. To provide better model 
explainability and systems accessibility, methods from human-computer interaction 
and social computing can be leveraged to facilitate the human-AI interactions in 
SI. Additionally, principles from estimation theory and statistical learning lay out a
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solid foundation for SI to integrate the hybrid intelligence from both HI and AI. 
In this section, we highlight several key research fields and disciplines that are 
closely related to the development and understanding of social intelligence systems, 
including: (1) Natural Language Processing and Text Mining that enables the 
understanding and generation of natural language for social intelligence applications 
in human society; (2) Computer Vision and Image Processing that support the 
analysis and interpretation of visual content and non-verbal communications in 
the social contexts; (3) Social Computing and Human-Computer Interaction that 
facilitates the modeling of social dynamics and the designing of effective human-
AI interfaces; and (4) Estimation Theory and Statistical Learning that ensures the 
rigorous development of analytical social intelligence models that can effectively 
integrate HI with AI. We elaborate on each of these related fields below. 

2.2.1 Natural Language Processing and Text Mining 

Social intelligence data encompasses a variety of textual information, ranging from 
social media posts and online discussions to digital messages and news articles. 
Recent advancements in natural language processing (NLP) and text mining play 
a crucial role in encoding, analyzing, and understanding rich and informative 
textual data in social intelligence applications [12]. For example, sentiment analysis 
techniques can be used to explore public opinion on pressing issues on social media 
(e.g., health crises, natural disasters, social unrest) [51], topic modeling can identify 
emerging trends in online discussions [52], and named entity recognition can track 
the mention and influence of specific entities (e.g., individuals, organizations) 
across various data sources [74]. These techniques greatly enhance the capability 
of machines to extract meaningful insights from large volumes of unstructured 
textual data. More recently, with the advent of deep learning-based language 
models and transformer architectures, large language models (e.g., GPTs, LLaMA) 
have demonstrated unparalleled performance in natural language understanding 
and generation [3]. Despite these models offering significant improvements in 
language processing capabilities, their application in social intelligence presents 
unique challenges and opportunities. For example, human-centric data in social 
intelligence applications often includes multimodal content beyond text, such as 
images, videos, and audio. Such multimodal data requires the development of 
integrated social intelligence systems that are capable of analyzing information 
across different data modalities. For instance, to accurately detect multimodal 
incorrect information that is intentionally crafted by sophisticated malicious content 
creators, it is often required to not only analyze content in individual data modalities 
(e.g., text, image) but also explicitly examine their cross-modal associations to 
identify the incorrect content that is implicitly conveyed by the multimodal content 
[55]. Therefore, while NLP and text mining techniques build a solid foundation for 
analyzing textual content in social intelligence applications, these techniques still 
need to be integrated with advancements in other disciplines (e.g., computer vision,
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multimedia) to fully capture and understand the complex multimodal human-centric 
content in social intelligence. 

2.2.2 Computer Vision and Image Processing 

Social intelligence also closely relates to computer vision (CV) and image pro-
cessing given the observation that images and videos are increasingly prevalent 
in social media, news outlets, and online communications [62]. CV and image 
processing techniques are essential in extracting and learning from the diverse 
visual content in social intelligence applications. For example, convolutional neu-
ral networks (CNNs) and other deep learning architectures in CV have shown 
remarkable performance in image-driven tasks. Examples of such tasks include 
image classification, object detection, and facial recognition [5]. These advanced 
techniques empower social intelligence systems to automatically categorize visual 
content, capture salient objects, identify individuals in images, and infer emotions 
from facial expressions. Additionally, image processing methods, such as style 
transfer and super-resolution, also expand the visual analysis capability of social 
intelligence. For example, a social intelligence application for public policy adher-
ence may leverage super-resolution techniques to enhance low-quality images or 
videos captured in public spaces, revealing critical details such as face masks and 
social distancing compliance [85]. However, the integration of these advanced CV 
and image processing techniques in social intelligence systems also presents new 
challenges. In particular, bias and fairness issues in CV models pose significant 
concerns for social intelligence applications [27]. These models may exhibit biased 
performance across different demographic groups due to imbalanced training data or 
inherent algorithmic biases [76]. For instance, facial recognition systems have been 
shown to have higher error rates for certain racial and gender groups, which can 
lead to unfair results for individuals or groups from vulnerable populations in social 
intelligence applications [75]. These challenges lie not only in developing more 
equitable CV models but also in ensuring transparency and accountability in their 
deployment in social intelligence applications, which is especially true when the 
outcome of these models may negatively affect certain individuals and communities. 

2.2.3 Social Computing and Human-Computer Interaction 

Social computing and human-computer interaction (HCI) are two other fields that 
are in a close connection to social intelligence. Social Computing examines how 
people interact with each other through computing technologies, while HCI studies 
the design and use of computer interfaces for human users [32, 36]. In the context 
of social intelligence, these disciplines contribute to the development of human-AI 
integrated systems that can effectively interpret, respond to, and influence human
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behaviors in the social space. For example, social computing techniques, such as 
AI-driven social network analysis [13] and social dynamic modeling [60], could 
be leveraged to identify influential users or detect community structures in online 
platforms. HCI principles could guide the design of interactive user interfaces with 
AI systems to engage users for effective information sharing and collaborative 
problem-solving. However, the integration of social computing and HCI with 
social intelligence also faces several critical challenges. One significant issue is the 
ethical consideration of user privacy and data protection when integrating human 
intelligence with AI. As social intelligence increasingly collects and adopts user 
information (e.g., social media activities, profile information) to analyze and model 
social behaviors, there is a growing concern about the potential incorrect use of 
this information and the erosion of individual privacy [20]. For example, while 
community-contributed medical knowledge is helpful for assessing the integrity of 
health information, the incorrect personal health information could be abused by 
potential employers to discriminate against job candidates [53]. Thus, it remains an 
important challenge how to balance the needs of social data and the responsibility 
of protecting user data privacy in computational social intelligence applications. 
Moreover, another challenge lies in the development of HCI interfaces in social 
intelligence applications that could effectively transform abstract prediction results 
generated by AI algorithms into contextualized and actionable insights that could 
be easily understood by end users with varying levels of expertise. For example, 
explainable AI (XAI) could identify key features or model decision paths that lead 
to a particular prediction. However, such technical explanations often lack natural 
language context that could be adopted by non-expert end users for critical decision-
making (e.g., health decisions, financial investments). Thus, it is also crucial for 
HCI designs in social intelligence applications to effectively bridge the gap between 
complex AI-generated insights and practical, actionable information for humans 
with diverse backgrounds and expertise levels. 

2.2.4 Estimation Theory and Statistical Learning 

Estimation theoretical approaches form a basis for many machine learning and 
statistical models and offer ways to infer parameters of a model given a set of data 
samples [29]. These approaches also provide the foundation for developing rigorous 
analytical models that support integration of HI and AI with uncertainty quantifi-
cation in social intelligence applications. Maximum Likelihood Estimation (MLE) 
is a statistical method for estimating the parameters of a model by maximizing the 
likelihood of the observed data being least surprising to the model [43]. MLE can be 
used in truth discovery where it identifies probabilistic parameters for detecting false 
narratives from the true ones by analyzing patterns in target datasets to optimize 
model accuracy and adaptability. The Expectation-Maximization (EM) algorithm is 
an iterative method for finding the maximum likelihood estimates of parameters in 
models with latent variables. The EM algorithm alternates between two steps: the
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Expectation (E) step and the Maximization (M) step [15]. For example, in a hateful 
meme detection application, it leverages latent sentiment clusters to iteratively 
improve the accuracy of classifier predictions by incorporating unobserved data 
dimensions. Hidden Markov Models (HMMs) are another set of statistical models 
that are often used to represent dynamic systems whose states follow a Markov 
process. Such models are commonly used in temporal pattern recognition tasks 
(e.g., speech, handwriting, and gesture recognition) [48]. For example, in smart 
city applications, the HMM-based models can predict and optimize traffic flow by 
modeling sequential vehicle movement patterns and detecting anomalies in urban 
transit systems. Subjective Logic is a probabilistic logic framework that leverages 
logic and probability theory to handle subjective opinions, explicitly accounting 
for uncertainty and belief ownership [22]. For instance, in health truth discovery, it 
evaluates the credibility of sources by combining probabilistic opinions and user-
generated trust scores to assess information integrity under uncertainty. Therefore, 
estimation theory and statistical learning provide the key to creating analytically 
sound social intelligence systems with rigorous mathematical foundations. 

2.3 Emerging Social Intelligence Applications 

While being an interdisciplinary field, the social intelligence paradigm is also 
motivated by several emerging issues and applications in real world that are 
elaborated below. These issues span the information, social, health, education, and 
environmental dimensions, and highlight the need for innovative, adaptive, and 
integrated solutions that prioritize the collective intelligence from both humans and 
AI. 

2.3.1 Social Media Misbehavior Identification and Mitigation 

Social media misbehavior has become a severe issue on online platforms [67–69]. 
Examples of social media misbehaviors include cyberbullying [17, 63], trolling [42], 
hate speech [37, 50], rumors [10], and offensive memes [61]. For example, Yao et 
al. proposed an online approach with sequential hypothesis testing to detect 
cyberbullying events in a timely manner [73]. Cheng et al. developed a machine 
learning based scheme to detect troll posts by exploring users’ mood and context 
information on online news discussion communities [9]. Relia et al. developed 
a multi-level classifier to automatically identify targeted and self-narration of 
discrimination on social media [49]. Kumar et al. designed a multi-task learning 
scheme that exploits the reply stance of social media posts to identify rumors [31]. 
Mathew et al. developed a user behavior based solution to classify hateful users 
on social media by characterizing social connections of hateful users and the 
diffusion patterns of content posted by these users [38]. Zhu designed a visual-
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linguistic transformer framework to integrate the pre-trained visual and linguistic 
features for detecting the abuse of memes [87]. While the above solutions identify 
or mitigate certain social media misbehaviors to some extent, the potential of 
human intelligence remains largely under-explored (e.g., human inputs are mainly 
used for data annotations, which suffer from the cost and scalability challenges). 
The social intelligence paradigm provides a new perspective to address the social 
media misbehavior identification and mitigation problem by fully exploring the 
strength of human intelligence (e.g., rich prior knowledge, social context awareness, 
ethical judgment) and integrating human intelligence with AI solutions to provide 
a more comprehensive and reliable solution. For example, Shang et al. designed a 
human-AI collaborative hatred-vulnerable video detector by jointly modeling the 
topological patterns and semantic features in user comment networks on online 
video-sharing platforms [56]. In particular, the crowd wisdom embedded in the 
user comment network has been effectively extracted and integrated with a deep 
learning model to accurately identify hatred-vulnerable videos that are difficult to 
be detected with AI-only solutions. We believe that SI can be explored to address 
other emerging social media misbehavior problems in future by fully harnessing the 
power of HI and AI. 

2.3.2 Multimodal Truth Discovery 

Faulty and ungrounded information have raised many concerns in recent years, 
especially for the multimodal news and user-generated content on social platforms 
and the Web [2]. Researchers have made significant efforts to detect online false 
information [25, 54, 79]. Specifically, Popat et al. proposed the CredEye system 
that assesses the credibility of social media claims by exploiting the language style 
and stance characteristics of the textual content [44]. Chen et al. developed a cross-
model ambiguity learning approach to learn multimodal feature representation from 
image and text for truth discovery [8]. Choi et al. proposed a context-aware multi-
modal data fusion approach that utilizes user comments to assess the information 
integrity of YouTube videos [11]. Min et al. designed a graph-based health truth 
discovery solution that explores the social context information from social media 
users to detect false health information [39]. Weinzierl et al. utilized a domain-
specific language model to detect COVID-19 vaccine false information on social 
media [70]. Gonzalez et al. proposed a machine learning based detection system 
that incorporates health experts’ perceptions to detect false information on health-
related websites [19]. While the above AI or machine learning driven approaches 
can identify false information in textual or visual content, they often fall short of 
capturing the misalignment between the multimodal news content or are unreliable 
in detecting the deliberately manipulated content targeting audiences who often lack 
professional knowledge to make reliable decisions [64]. Social intelligence provides 
an alternative paradigm to address the multimodal truth discovery problem by
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exploring the collective strengths of both human intelligence (e.g., both specialized 
and generalized domain knowledge) and AI (e.g., the capability to process and 
analyze a tremendous amount of data). For example, Kou et al. developed a human-
centered AI framework exploring the collective intelligence from both humans and 
AI to detect multimodal fauxtography (a type of multimodal false information) with 
structured explanations [26, 28]. Their approach effectively captures the implicit 
relations and attributes of different subjects in a multimodal post by creating 
a multimodal knowledge graph that integrates human intelligence and AI. We 
expect social intelligence to play an increasingly important role in addressing such 
multimodal truth discovery and explanation problems in future research. 

2.3.3 Disaster Response and Damage Assessment 

Previous efforts have been made to address the disaster response and damage 
assessment in AI and deep learning [30, 34, 40, 41]. As an example, Nguyen et al. 
developed a convolutional neural network approach to quantify the damage severity 
of affected areas from social media imagery data for disaster response [41]. Li et 
al. proposed a deep transfer learning approach for disaster damage assessment of 
an unfolding disaster event using a domain adaptation approach [34]. Mouzannar 
et al. developed a deep neural network framework that utilizes both text and image 
data from social media posts for damage identification via multimodal convolutional 
neural networks [40]. Kumar et al. developed an end-to-end deep learning based 
image processing system to detect disaster-affected cultural heritage sites using 
online social media images [30]. Current disaster response and damage assessment 
solutions rely on neural network architectures designed by AI experts, which 
often introduce non-negligible costs and errors into the design process [16]. There 
also exist several crowd-AI integrated approaches (e.g., CrowdLearn [77], Hybrid 
Para [21]) that leverage human intelligence to troubleshoot and retrain a single 
neural network architecture in disaster damage assessment applications [21, 78]. 
Those approaches, however, rely heavily on the pre-defined neural network archi-
tecture and are subject to the suboptimal performance caused by the manual neural 
network selection process [66]. In contrast, social intelligence creates the possibility 
of leveraging the human intelligence of common individuals to improve the design 
and configuration of AI systems. For example, Zhang et al. developed a novel social 
intelligence system by exploring the integrated intelligence from both humans (i.e., 
crowd workers from Amazon Mechanical Turk) and AI to automatically identify 
the optimal neural network architecture in the design space without the inputs 
from the AI experts [81]. We expect SI to be further applied to optimize other 
components (e.g., data collection, information processing, and decision-making) in 
future disaster response and damage assessment systems.
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2.3.4 AI and Crowdsourcing for Education 

Researchers have made significant progress to improve learning experiences and 
outcomes in education with the recent advances in AI and crowdsourcing. For 
example, Abdi et al. designed a crowdsourcing-based learning system to assess 
students’ knowledge state by tracing their performance on crowdsourcing knowl-
edge assessment tasks [1]. Prihar et al. utilized crowdsourced tutoring to increase 
students’ next-problem accuracy in online learning and developed a method to 
rank the tutoring effectiveness of different crowd workers [45]. Wambsganss et al. 
developed a deep-learning-based student argumentation self-evaluation system that 
leverages nudging theory techniques to help students write convincing texts [65]. 
Qadir et al. analyzed how to use large language models to benefit students 
(e.g., customized explanations) while minimizing negative impacts (e.g., false 
information) [47]. A comprehensive survey of using AI and crowdsourcing in 
education can be found in [4]. This survey discusses several challenges of current 
solutions that are solely based on AI or crowdsourcing and highlighted a hybrid 
solution that combines both AI and crowdsourcing is promising to address these 
challenges. Among the challenges discussed, a prominent one is the fairness issue 
in education where bias from both AI (e.g., demographic bias, model bias) and 
humans (e.g., confirmation bias, affect heuristic bias) can negatively affect the AI 
model performance in the education context and potentially has a negative impact on 
the learning outcomes of students who use such AI-assisted learning tools. In social 
intelligence, the collective intelligence from both humans and AI can provide a new 
paradigm to address the complex bias in education context effectively. For example, 
Zong et al. has recently developed a crowd-AI collaborative debias framework 
that integrates AI and crowd intelligence to achieve accurate and fair student 
performance prediction in online education [88]. In their framework, they designed 
a novel bias-aware crowdsourcing interface and a crowd-AI fusion mechanism to 
address the demographic bias of AI and the cognitive bias of the crowd, respectively. 
Future research opportunities include further investigate the potential interactions 
between different types of bias from both AI and HI and create a comprehensive SI 
solution for AI in Education applications. 

2.3.5 Social Sensing in Smart City Applications 

Social (human-centric) sensing presents a new sensing paradigm, where timely 
observations of the physical world are collected from human sensors (e.g., people 
or devices on their behalf) [67, 69]. With the pervasive network connections, the 
prevalence of digital devices, and the mass data dissemination opportunities, social 
sensing has been increasingly applied in smart city applications [57, 82, 84]. For 
example, Liang et al. leveraged social sensing data from crowdsourced PurpleAir 
sensor networks to assess the wildfire smoke impact on indoor air quality in



References 25

California [35]. Silva et al. designed a crowd-driven vehicle pollution monitoring 
system that couples social sensing with an onboard diagnostic carbon dioxide reader 
to estimate vehicle emission in smart cities [58]. Zhang et al. proposed a multi-
view learning framework to identify risky traffic locations in smart transportation 
systems [80]. Breuer et al. developed HydroCrowd, a social sensing based water 
sampling strategy that recruited crowd participants to collect surface water samples 
for a hydrological study that assesses the spatial distribution of stream solutes 
and demonstrated the effectiveness of social sensing as a sampling method in 
hydrology [7]. Lee et al. proposed a social sensing noise mapping framework to 
monitor urban environmental noise in smart cities by utilizing crowdsourced noise 
data from calibrated smartphones [33]. The above social sensing solutions, however, 
mainly focus on humans’ roles as sensors for data generation or collection purposes. 
Social intelligence provides a more comprehensive paradigm that also unleashes 
the full power of human intelligence that complements AI well in many smart city 
applications. For example, Zhang et al. developed a social intelligence system that 
leverages human contributions in two separate roles (i.e., sensing and intelligence) 
in a smart urban sensing application [83]. In their framework, they first collected 
and analyzed the image data contributed by human users on social media (i.e., 
human sensing ability) and built a human-AI collaboration system to optimize 
the hyperparameter configuration of the AI model via a novel fusion scheme that 
integrates AI and HI to generate desirable predictions for the smart urban sensing 
application. In future research, it will be an exciting direction to develop a human-
AI integrated SI system for smart city applications where human roles (e.g., data 
contributor, AI optimizer, decision makers) are fully explored and optimized. 
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Chapter 3 
Mathematical Foundations of Social 
Intelligence 

Abstract The chapter outlines the mathematical aspects of social intelligence and 
covers major estimation theory techniques such as Maximum Likelihood Estima-
tion (MLE), Expectation-Maximization (EM), Hidden Markov Models (HMM), 
Bayesian Estimation, and Subjective Logic. With our understanding of their mathe-
matics and application, we seek to shed light on their utility in parameter inference 
and uncertainty-based decision-making in social intelligence settings. Furthermore, 
the chapter transitions into an analysis of deep learning models such as Multilayer 
Perceptrons (MLP), Convolutional Neural Networks (CNN), Graph Neural Net-
works (GNN), and Transformers, emphasizing their architectural innovations and 
application-specific optimizations. This comprehensive synthesis provides a unified 
framework for understanding and leveraging advanced computational methods in 
Social Intelligence, setting the stage for future research and applications in this 
interdisciplinary domain. 

Keywords Mathematical foundation · Estimation theory · Deep learning · 
AI optimization 

3.1 Basics of Estimation Theoretical Approaches 

Estimation theoretical approaches form a basis for many machine learning and 
statistical models, and offer ways to infer parameters of models given a set of data 
samples. In this chapter, we will review some foundational estimation techniques 
that are related to social intelligence (SI): Maximum Likelihood Estimation (MLE), 
the Expectation-Maximisation (EM) algorithm, Hidden Markov Models (HMM), 
Bayesian Estimation, and Subjective Logic. We will present both mathematical 
formulations and technical details of these reviewed methods. 
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3.1.1 Maximum Likelihood Estimation (MLE) 

Maximum Likelihood Estimation (MLE) is a method for estimating the parameters 
of a statistical model by maximizing the likelihood function that measures how well 
the model explains the observed data [86]. 

Given a datasetD = {x1, x2, . . . , xn}. and a parameterized model with parameter 
vector θ ., the likelihood function L(θ). is defined as: 

. L(θ) = P(D | θ) =
n∏

i=1

P(xi | θ)

The log-likelihood function, which is often more convenient to work with, is: 

. �(θ) = logL(θ) =
n∑

i=1

log P(xi | θ)

The MLE for the parameter θ . is obtained by maximizing the log-likelihood 
function: 

. θ̂MLE = arg max
θ

�(θ)

This involves taking the derivative of the log-likelihood with respect to θ ., setting 
it to zero, and solving for θ .: 

. 
∂�(θ)

∂θ
= 0

Consider the example of a Gaussian distribution with observations D =
{x1, x2, . . . , xn}., mean μ., and variance σ 2

.. The likelihood function is: 

. L(μ, σ 2) =
n∏

i=1

1√
2πσ 2

exp

(
− (xi − μ)2

2σ 2

)

The log-likelihood function is: 

.�(μ, σ 2) = −n

2
log(2πσ 2) − 1

2σ 2

n∑

i=1

(xi − μ)2
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To find the MLEs, we take the partial derivatives of �(μ, σ 2). with respect to μ. 

and σ 2
. and set them to zero: 

. 
∂�

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0 �⇒ μ̂ = 1

n

n∑

i=1

xi

. 
∂�

∂σ 2
= − n

2σ 2
+ 1

2(σ 2)2

n∑

i=1

(xi − μ)2 = 0 �⇒ σ̂ 2 = 1

n

n∑

i=1

(xi − μ̂)2

MLE enjoys a set of advantages compared to other estimation methods, such 
as the method of moments (MoM), least squares (LS), and regularized estimation 
methods like ridge regression and LASSO. One is its simplicity and generality [61]: 
MLE provides a unified approach to parameter estimation that works across a 
broad class of statistical models. Under certain regularity conditions, MLEs are 
also asymptotically efficient [115]—meaning that they are the estimator with 
the lowest possible variance among all unbiased estimators—and they are often 
reparameterisation invariant: a good estimator that will maintain its desirable 
properties even when a model is reparameterised [17]. 

Yet MLE has its own issues as well. One important problem is that the likelihood 
function is often hard to maximize [77], especially for complex models with 
large model parameter search space, such as slow convergence and local optima, 
necessitating the use of advanced optimization methods [14]. Another downside is 
that MLE can be very sensitive to outliers; the likelihood function gives unusually 
large weights to extreme values [52]. This can be a problem when the sample 
size is small, where MLEs might be biased and perform poorly, and often require 
correction or alternative methods to validate results and ensure robustness [71]. 

MLE is well-suited to being applied in contexts where the model for the data is 
well-specified, and adequate data are available so that the estimates produced are 
likely to be reliable. Examples include inference about parameters of distributions, 
fitting models in regression problems, and machine learning algorithms such as 
logistic regression and hidden Markov models [11]. In practice, MLE is usually 
applied as a step in conjunction with other methods to check robustness of 
results [44]. 

MLE can be applied to several social intelligence applications as it facilitates 
strong probabilistic decision modeling. For example, in truth discovery, MLE 
generates parameter estimates of models to evaluate the accuracy of information by 
making the best use of the data the model see (e.g., trends in the spread of incorrect 
information or interactions among users) [87]. MLE also plays a significant role in 
training NLP models to detect hateful speech, by optimizing patterns and feature 
weights of words to identify toxic messages accurately [98]. Furthermore, in smart 
city applications, MLE helps parameterize models of urban data analysis, including 
traffic forecasting, environmental monitoring, and social behavior prediction, so that 
probabilistic predictions are close to real observations [105]. By offering a principle-
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based approach to parameter estimation, MLE is highly reliable and versatile in 
multiple social intelligence contexts. 

3.1.2 Expectation-Maximization (EM) Algorithm 

The Expectation-Maximization (EM) algorithm is an iterative method for finding 
the maximum likelihood estimates of parameters in models with latent variables. 
The EM algorithm alternates between two steps: the expectation (E) step and the 
maximization (M) step [21]. 

Given observed data D. and latent variables Z ., the goal is to maximize the 
marginal likelihood P(D | θ).. The EM algorithm proceeds as follows: 

In the E-step, we compute the expected value of the log-likelihood function with 
respect to the current estimate of the distribution of the latent variables: 

. Q(θ | θ(t)) = EZ|D,θ(t)

[
log P(D, Z | θ)

]

In the M-step, we maximize Q(θ | θ(t)). to update the parameter estimates: 

. θ(t+1) = arg max
θ

Q(θ | θ(t))

The process is repeated until convergence, where the parameter estimates do not 
change significantly between iterations [77]. 

Consider the example of a Gaussian Mixture Model (GMM) with K . components. 
The likelihood function for this model is: 

. L(θ; x) =
n∏

i=1

K∑

k=1

πkN(xi | μk, σ
2
k )

In the context of the EM algorithm for GMMs, the steps are as follows: 
During the E-step, we calculate the responsibility γ (zik).: 

. γ (zik) = πkN(xi | μk, σ
2
k )

∑K
j=1 πjN(xi | μj , σ

2
j )

During the M-step, we update the parameters πk, μk,. and σ 2
k . based on the 

calculated responsibilities: 

.πk = 1

n

n∑

i=1

γ (zik)
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. μk =
∑n

i=1 γ (zik)xi∑n
i=1 γ (zik)

. σ 2
k =

∑n
i=1 γ (zik)(xi − μk)

2
∑n

i=1 γ (zik)

EM algorithm has several advantages compared to other optimization techniques 
such as variational inference, stochastic expectation-maximization, and reinforce-
ment learning [81]. For example, the EM provides a solution for incomplete or 
missing data, and is useful in a wide range of latent variable models, (e.g., Gaussian 
Mixture Models (GMMs), Hidden Markov Models (HMMs), and Factor Analysis). 
The EM solution is particularly useful when it is difficult to directly maximize the 
likelihood function. While the EM algorithm aims to achieve a local maximum of 
the likelihood function, its performance depends on the initial parameter estimates, 
and it may converge to suboptimal solutions or local optima in certain cases [121]. 
The EM algorithm works well with latent variables, in which the likelihood can 
not be calculated directly. EM algorithm gives a reliable and iterative parameter 
estimation for these models by exploring the latent variables structure, which helps 
refine the model’s fit to the observed data [78]. 

However, the EM algorithm comes with its own limitations. For example, it 
could settle in to a local rather than a global maximum, when the first estimates 
of parameters are not close to the true values [95]. This may lead to unsatisfactory 
parameter estimations. Additionally, the convergence of the EM algorithm can be 
slow, especially when the data is multidimensional or the parameter space of the 
model is complex [10]. 

EM algorithm offers an efficient solution to handle incomplete or noisy data in 
social intelligence applications. For example, in social media sentiment analysis, 
EM can be employed to find unlabeled sentiment distributions in incomplete or 
poorly labeled datasets and optimize model performance to capture emotional 
patterns [101]. EM gleans preferences from partial-interactions—such as clicks, 
views, or time spent on an item—that do not fully capture a user’s final decision 
to generate precise, adaptive recommendations for recommendation engines such 
as e-commerce or personalized content engines [82]. Similarly, in community 
detection applications in social intelligence, EM can locate individuals or groups 
based on partially-available interaction data (such as incomplete records of public 
transport usage or electricity consumption), which arise due to privacy constraints 
or data collection limitations, to optimize infrastructure development and resource 
allocation. As the EM algorithm iteratively updates the probabilistic models, it helps 
ensure that predictions remain effective and reliable, even when social intelligence 
applications face uncertainty due to incomplete, noisy, or conflicting data.
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3.1.3 Hidden Markov Models (HMMs) 

Hidden Markov Models (HMMs) are statistical models used to represent systems 
that follow a Markov process with hidden states [27]. HMMs are widely used 
in temporal pattern recognition tasks such as speech, handwriting, and gesture 
recognition[88]. An HMM consists of a set of hidden states S = {S1, S2, . . . , SN }., 
an initial state distribution π = {πi}., state transition probabilities A = {aij }., and 
observation probabilities B = {bi(ot )}.. These components define the probabilistic 
structure of the model [11]. 

The Forward-Backward algorithm is used to compute the posterior probabilities 
of the hidden states. This algorithm consists of two main procedures: the forward 
procedure and the backward procedure [5]. 

In the forward procedure, we compute the probability of the partial observation 
sequence up to time t . and state Si .: 

. αt (i) = P(O1,O2, . . . , Ot , St = Si | λ)

The forward probabilities are recursively calculated as: 

. αt+1(j) =
[

N∑

i=1

αt (i)aij

]
bj (Ot+1)

In the backward procedure, we compute the probability of the partial observation 
sequence from time t + 1. to the end, given state Si . at time t .: 

. βt (i) = P(Ot+1,Ot+2, . . . , OT | St = Si, λ)

The backward probabilities are recursively calculated as: 

. βt (i) =
N∑

j=1

aij bj (Ot+1)βt+1(j)

This is done using the Baum-Welch algorithm (one variation of the EM algo-
rithm) to compute an HMM’s unknown parameters. It iteratively changes the model 
parameters to maximize the likelihood that the observed data is generated by the 
model[119]. 

One key advantage of HMM is that they can be used to describe temporal depen-
dence in continuous data, which makes them ideal for problems where the sequence 
of observations is of interest [60]. HMMs can also handle missing/incomplete values 
by using the hidden state model to extrapolate missing values [89]. Furthermore, 
HMMs present a probabilistic way of modelling data sequences where prior 
information and uncertainty are implicitly considered [34].
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However, the HMMs have their own drawbacks. One key limitation lies in the 
computational complexity of algorithms for training and inference, especially when 
it involves big data or more complex models , where the exponential growth of 
computational complexity can hinder scalability and real-time applicability [9]. 
Another drawback is that HMMs assume a first-order Markov property where the 
future state depends solely on the current state, which is not necessarily realistic in 
many real-world scenarios [89]. Furthermore, HMMs is also sensitive to the initial 
parameters selection, which can influence the final model convergence [66]. 

HMMs are particularly appropriate for sequence data where the aim is to simulate 
the process that produces the observations. Common use cases are speech recogni-
tion (using HMMs to emulate phonemes and words), handwriting recognition (using 
HMMs to simulate stroke progression), and gesture recognition (using HMMs to 
emulate motions of the hand) [88]. HMMs are also employed in bio-informatics 
to model biological DNA, RNA, and protein sequences to detect genes, regulatory 
features, and structural patterns [34]. 

In social intelligence, HMMs are commonly used to describe sequential and 
time-dependent processes by modeling the interplay between observations and 
hidden states [35]. For example, in truth discovery, HMMs can observe the history 
of narratives and determine trends in the propagation of false information through 
social networks by modeling user behavior and content consumption [80]. In 
damage assessment, HMMs can simulate the temporal progression of damage 
patterns—including the transitions between different severity levels—which leads 
to more accurate assessments [79]. Furthermore, in human-face applications, 
HMMs allow predictive modeling of facial expressions and identity recognition by 
learning the hidden patterns behind facial movements or changes [13]. Additionally, 
by synchronizing observed and latent variables in the inference process, HMMs 
is capable of revealing knowledge and predicting trends in complicated social 
intelligence situations. 

3.1.4 Subjective Logic 

Subjective Logic is a probabilistic logic framework that extends traditional logic 
and probability theory to handle subjective opinions, explicitly accounting for 
uncertainty and belief ownership [55]. In Subjective Logic, an opinion is defined 
by a belief mass b., disbelief mass d ., and uncertainty mass u., constrained by the 
relationship: 

. b + d + u = 1

Each opinion also includes a base rate a ., which represents the prior probability 
of the proposition [59]. 

Subjective opinions can be modeled using Dirichlet distributions. A Dirichlet 
distribution is parameterized by a concentration parameter vector α =
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(α1,  α2,  .  .  .  ,  α  K).. The probability density function for the Dirichlet distribution 
is given by: 

. f (p | α) =
�

(∑K
i=1 αi

)

∏K
i=1 �(αi)

K∏

i=1

p
αi−1
i

where p. is a probability vector and �(·). is the Gamma function [7]. 
Subjective Logic provides various operators for combining opinions, such as 

the consensus operator for combining independent opinions and the discounting 
operator for combining dependent opinions [59]. 

The consensus operator combines two independent opinions ωA =
(bA, dA, uA, a). and ωB = (bB, dB, uB, a). as follows: 

. ωA∧B =
(

bAuB + uAbB

uA + uB − uAuB

,
dAuB + uAdB

uA + uB − uAuB

,
uAuB

uA + uB − uAuB

)

The discounting operator combines an opinion ωB = (bB, dB, uB, a). with a trust 
discount ωA = (bA, dA, uA, a).: 

. ωA◦B = (bAbB, dA + bAdB, uA + bAuB, a)

An important feature of subjective logic is that it can implicitly express and con-
trol ownership of uncertainty and belief, and therefore can be used for applications 
where such factors are relevant [58]. Subjective logic combines autonomous and 
dependent viewpoints in a mathematically rigorous manner, which enables robust 
decision-making under uncertainty [76]. Additionally, subjective logic goes a step 
further than standard probability theory by capturing beliefs in a more complex 
way by incorporating the qualitative measurement of uncertainty through the use of 
opinions that express degrees of belief, disbelief, and uncertainty [103]. 

However, subjective logic comes with its own limitations. First, combination 
operators in subjective logic requires extensive computing resources and are 
notoriously hard for modeling large-scale dataset [84]. Second, another limitation 
of subjective logic is its requirement of specialized knowledge to set base rates 
and translate the opinions (e.g., determining initial trust levels often relies on 
subjective or domain-specific criteria). In addition, the assumption that underlies 
the Dirichlet distribution is not always accurate, as it assumes fixed positive 
correlations and proportional relationships, which may not hold in real-world 
scenarios with independent, negatively correlated, or heterogeneous data, limiting 
its generalizability[56]. 

Subjective logic is ideal for scenarios in which uncertainty and ownership of 
beliefs must be ruled out , as it accounts for uncertainty and attributes beliefs 
to specific sources[57]. One common application of subjective logic is the truth 
discovery problem in social intelligence, for which subjective logic is used to model 
and merge multiple opinions of trust by leveraging opinion tuples (belief, disbelief,
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and uncertainty) to effectively aggregate conflicting information and identify the 
reliable consensus. When used in decision making for online education, subjective 
logic offers an approach to assessing the reliability of different learning resources 
and student feedback, helping educators manage uncertainty and conflicting per-
spectives to design more effective and personalized learning experiences [69]. 
Additionally, for disaster response, subjective logic can evaluate the trustworthiness 
of incoming reports from various sources, such as eyewitness accounts, sensor 
data, and social media, allowing response teams to make rational decisions under 
uncertainty, prioritize actions, and allocate resources more effectively [128]. 

3.2 Basics of Deep Learning Models 

3.2.1 Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is a basic type of deep learning model, where it has 
multiple layers of neurons, with each neuron mapping to all neurons in the next 
layer. The elementary component of an MLP is the artificial neuron that performs a 
weighted sum of its inputs and a non-linear activation function [11]. In particular, 
the output y . of a single neuron can be described mathematically as: 

.y = σ

(
n∑

i=1

wixi + b

)
(3.1) 

where wi . are the weights, xi . are the inputs, b. is the bias, and σ . is the activation 
function, commonly a ReLU (Rectified Linear Unit), sigmoid, or tanh function [38]. 

For a network with L. layers, the output of layer l . is given by: 

.a(l) = σ
(
W(l)a(l−1) + b(l)

)
(3.2) 

where a(l−1)
. is the activation from the previous layer, W(l)

. is the weight matrix, and 
b(l)

. is the bias vector for layer l . [46]. 
The primary advantage of MLP is that they are easy to implement and are 

considered as the basis of deep learning and can be adopted as a reference archi-
tecture [45]. MLPs also have the universal approximation potential—theoretically, 
they can approximate any continuous function if sufficient neurons are included 
in the hidden layer[50]. Furthermore, MLPs are usable for different tasks such 
as classification and regression, where the input-output correlation is not always 
linear or sequential [96]. However, MLPs have their own limitations. Their biggest 
weakness is that they are not effective in the context of large-dimensional data 
that contain spatially complex representations, like images, as every neuron in one 
layer is connected to every neuron in the next layer [70]. As a result, the network
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will encounter a large number of parameters, leading to increased computational 
complexity and a higher risk of overfitting [49]. Additionally, MLPs are often 
incapable of exploiting local correlation in unstructured data, such as the sequential 
dependencies in natural language (where words are contextually related to each 
other) [125]. Finally, MLPs typically need hyperparameter fine-tuning and can be 
opportunistic about activation functions and initialization schemes, as the choices 
of hyperparameters directly influence their ability to mitigate vanishing/exploding 
gradients and achieve optimal convergence during training[37]. 

MLPs are particularly appropriate for applications where input data are not 
ordered spatially or temporally, and input-output relations can be encoded via dense 
connections [1]. MLP can be used for tabular data analysis, where each feature does 
not depend on one another spatially or temporally. MLPs are also used when the 
dataset is relatively small and features interactions are simple enough to capture 
without having to use any more complex architectures. Multilayer Perceptrons 
(MLPs) continue to be fundamental models in machine learning, serving as the 
backbone for various applications such as image and speech recognition, natural 
language processing, and financial forecasting [109]. 

3.2.2 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are deep learning models which are 
designed to process the grid-based data, such as images, time-series data, and 
video frames. They have significantly advanced computer vision by leveraging their 
unique structure to identify spatial hierarchies. CNNs use convolutional layers that 
perform a convolutional filter of the data to extract fundamental visual features, 
such as edges, textures, and simple shapes [38]. The core idea of a convolutional 
layer is to use filters (or kernels) that slide over the input data and perform element-
wise multiplications, followed by a summation, to produce a feature map. This 
operation allows CNNs to be translation invariant, meaning that the learned features 
can be recognized regardless of their position in the image. The mathematical 
representation of the output of a convolutional layer is given by [65]: 

.yi,j,k = σ

(
M−1∑

m=0

N−1∑

n=0

C−1∑

c=0

Wm,n,c,kxi+m,j+n,c + bk

)
(3.3) 

where Wm,n,c,k . represents the filter weights. Here, m and n are indices spanning the 
height and width of the filter, c is the index over the input channels, and k denotes 
the k-th output filter. xi+m,j+n,c . is the input data, and bk . is the bias term for the k .-th 
filter. 

In addition to convolutional layers, CNNs typically incorporate pooling layers 
to reduce the spatial dimensions of the feature maps, which helps in reducing the 
computational load and controlling overfitting. The most common type of pooling is
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max pooling, which selects the maximum value within a defined window, as shown 
in the equation below[126]: 

.yi,j,k = max
m,n

xi+m,j+n,k (3.4) 

One of the major advantages of CNNs is their learning of spatial hierarchy, i.e., 
being able to perceive complicated patterns by joining simpler patterns learned at 
lower levels. This kind of sequential learning method is especially suitable for data 
analysis using pictures and videos [8]. Furthermore, CNNs simplify the number 
of parameters over full-connectivity networks using convolutional filters where 
weights are allocated among various segments of the input [48]. This parameter 
sharing scheme not only makes CNNs more effective but also helps reduce the 
overfitting issue. The other important feature of CNNs is translation invariance— 
CNNs will recognize features independent of their original locations in the input 
data, making them remarkably strong for visual tasks [38]. However, CNNs have 
their own limitations. First, CNNs can be very expensive to train, requiring 
fast hardware accelerators such as GPUs to train and infer. The requirement of 
computations may also be an obstacle to those without such hardware. Second, 
CNNs generally require a good amount of labeled data for training purpose. If 
training data are in short supply or too costly to obtain, this constraint might inhibit 
their applications[97]. Moreover, CNN architecture design and tuning is not trivial 
and typically require extensive deep learning experience, which can be problematic 
for less experienced users [107]. 

CNNs are especially good for image/video data driven applications since they 
can explicitly model spatial correlations in image data [94]. CNNs are commonly 
used in AI and machine learning tasks such as image classification (identifying the 
class of an object in an image), object detection (locating and recognizing objects 
in a picture), and image segmentation (splitting an image into portions or regions 
according to features)[18, 53, 74]. Additionally, CNNs are also widely used in 
medical imaging applications such as detecting tumors and segmenting organs [67], 
and autonomous driving applications by processing camera data to detect objects 
like vehicles and pedestrians and enable actions such as lane changing and obstacle 
avoidance[12]. 

3.2.3 Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) are popular neural network architectures that 
operate on graph-structured data, utilizing nodes and edges to model and capture 
the dependencies and relationships between entities [123]. GNNs have been widely 
applied for modeling relational data in applications such as social network analysis,
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recommendation, and molecular biology [63]. In GNNs, the node representation 
h(k)

v . at layer k . is updated based on the representations of its neighbors: 

.h(k)
v = σ

⎛

⎝W(k)
∑

u∈N(v)

h(k−1)
u + b(k)

⎞

⎠ (3.5) 

where N(v). denotes the set of neighbors of node v ., W(k)
. is the weight matrix, and 

b(k)
. is the bias at layer k . [42]. 

A common variation of GNN is the Graph Convolutional Network (GCN), where 
the update rule is normalized: 

.h(k)
v = σ

⎛

⎝W(k)
∑

u∈N(v)∪{v}

1√
deg(v) deg(u)

h(k−1)
u

⎞

⎠ (3.6) 

where deg(v). is the degree of node v . [63]. 
GNNs have their pros and cons. Their most obvious asset is their capability to 

directly approximate deep relationships and dependencies in graph-based data. This 
feature makes GNNs appropriate for applications where the data itself is a network 
(such as social networks, biological networks, and knowledge graphs) [122]. 
Furthermore, GNNs are adaptable to different types of graphs, such as directed, 
undirected, weighted, and dynamic graphs [4]. However, GNNs have their own 
drawbacks. For example, one of the notable problems is that the computational 
demands of GNNs increase significantly as the number of nodes and edges in the 
graph increases [124]. Such computation demand can make training and inference 
of GNNs on big graphs expensive. Another drawback of GNNs is over-smoothing, 
which happens if the GNNs are stacked with too many graph convolutional layers. 
The consequence of over-smoothing is a loss of structural information of the input 
graph data [72]. Moreover, designing effective GNN architectures often requires 
careful consideration of the specific properties of the graph and task at hand, which 
can also be complex and time-consuming [123]. 

GNNs are well-suited for data processing on graphs—where entity relation-
ships matter as much as entities themselves [122]. GNNs are commonly used 
for social network analysis, in which GNNs are used to predict connections, 
detect communities, and recommend friends [42]. GNNs can also provide accurate 
recommendations in recommendation systems by explicitly modeling the user-item 
relationships [124]. GNNs have been used in molecular biology to predict the 
activity of proteins, simulate chemical reactions, and design novel molecules [36]. 
In natural language processing (NLP), GNNs have also been used in semantic role 
labeling and machine translation, where the data can be represented as a dependency 
or constituency parse tree [4].
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3.2.4 Transformers 

Transformers are models of deep learning which have rewritten the game for 
natural language processing and a few other fields as they successfully process 
the sequential data without the need for recurrence or convolutions [43]. The 
transformers exploit an architecture known as self-attention to store dependencies 
among successive positions in a sequence and therefore perform training and 
inference in parallel. Transformers are the core to state-of-the-art models, such as 
BERT, GPT, T5 LNet, and RoBERTa [113]. 

The key innovation in transformers is the self-attention mechanism, which 
computes the importance of each element in a sequence relative to others. This is 
achieved using three main components: queries (Q), keys (K), and values (V ). The 
self-attention operation is defined as:

.Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.7) 

where dk . is the dimension of the key vectors. The scaled dot-product attention [26] 
allows the model to weigh the relevance of different words in a sentence, providing 
a more comprehensive understanding of the context [113]. 

Transformers are typically composed of an encoder and a decoder. The encoder 
consists of multiple layers of self-attention and feed-forward neural networks, while 
the decoder has a similar structure but includes additional mechanisms to handle 
sequential generation of outputs. The architecture can be represented as: 

.Zl = LayerNorm(Hl + SelfAttention(Hl )) (3.8) 

.Hl+1 = LayerNorm(Zl + FeedForward(Zl )) (3.9) 

where Hl . represents the input to layer l, and Zl . is the intermediate representation 
after the self-attention layer [113]. LayerNorm refers to the layer normalization, 
which is a technique that normalizes the inputs across all features in a layer, 
stabilizing the training process and improving convergence by reducing internal 
covariate shift. 

Transformers have several advantages. The primary one is that they support 
long-range dependencies which is not a strength of RNNs and LSTMs [22]. Its 
self-attention allows transformers to extract context from the entire sequence at 
once, and thus excels at machine translation, text summarization, and question-
answering [91]. In addition, since transformers are parallelizable, we can train and 
infer them much faster than with recurrent models [15]. However, there exist some 
limitations of transformers as well. For example, the transformers often require 
significant computational resources, especially to train large models on a massive 
amount of data. This self-attention mechanism becomes four times as complicated
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as the input data, as its complexity scales quadratically with the sequence length, 
leading to low efficiency for very long sequences [6]. Furthermore, transformers 
require a massive amount of labeled data to train, which can be a challenge in low-
resource scenarios (e.g., medical image analysis, low-resource language translation, 
and rare disease diagnosis) where labeled datasets are often scarce [73]. 

Transformers do particularly well with tasks that require natural language pro-
cessing since they can interpret temporal correspondences. They have been widely 
used for large language models (LLMs) to produce well-formed, context-dependent 
texts [92]. In machine translation, BERT’s bidirectional transformer architecture 
pre-trains deep contextual embeddings, enabling accurate language translation by 
effectively capturing cross-lingual syntactic and semantic relationships [22]. Trans-
formers are utilized in speech recognition to analyze audio files for transcribing 
spoken words [23]. In computer vision, models like Vision Transformers (ViTs) 
apply self-attention to image patches to capture global dependencies in visual 
information [24]. 

3.3 Basics of Optimization Techniques 

Deep learning has transformed many tasks from image and speech recognition 
to natural language analysis and autonomous driving, which greatly improves the 
efficiency and effectiveness in processing the massive multimodal data in social 
intelligence applications. However, deep learning models are difficult to train 
effectively. In this section, we review some of the advanced optimization strategies 
that have been adopted for optimizing the training process and model performance 
of deep learning models. 

3.3.1 Contrastive Learning 

Contrastive learning is a self-supervised learning technique designed to learn effec-
tive representations of input data by distinguishing between similar and dissimilar 
pairs of data points. The primary objective is to bring similar pairs closer together 
in the feature space while pushing dissimilar pairs apart. This method has proven to 
be highly effective in learning rich and meaningful representations without the need 
for labeled data [19]. 

The core idea of contrastive learning is captured by the contrastive loss function. 
In its simplest form, the contrastive loss is defined as follows: 

. Lcontrastive =
N∑

i=1

(
yi · d(f (xi), f (x+

i )) + (1 − yi)

· max(0,m − d(f (xi), f (x−
i )))

)
(3.10)
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where yi . is 1 if xi . and x+
i . are similar and 0 otherwise. The value of yi . is determined 

based on predefined criteria for similarity, such as shared class labels in supervised 
settings or similarity through data augmentation in unsupervised settings [54]. The 
term f (x). represents the feature representation of input x ., while d(·, ·). is a distance 
metric, such as the Euclidean distance. The parameter m. is a margin that defines 
how far apart dissimilar pairs should be [41]. 

In frameworks like SimCLR [19], the contrastive loss is defined as the normal-
ized temperature-scaled cross-entropy loss (NT-Xent): 

.LNT −Xent = − log
exp(sim(zi , zj )/τ )

∑2N
k=1 1[k 	=i] exp(sim(zi , zk)/τ )

(3.11) 

where sim(zi , zj ) = zi ·zj
‖zi‖‖zj ‖ . is the cosine similarity between vectors zi . and zj .. The  

parameter τ . is a temperature parameter, and 1[k 	=i] . is an indicator function which 
equals 1 if k 	= i ., and 0 otherwise [19]. 

Contrastive learning offers several advantages. One of its key advantages is that it 
can learn useful representations of input features from the unlabeled data (especially 
when labeled data is different or costly to obtain) [112]. Taking advantage of the 
natural hierarchy of the data, contrastive learning can create representations that are 
suitable for many downstream tasks such as image classification, object detection, 
natural language understanding, and bioinformatics, where robust and semantically 
meaningful embeddings are crucial for performance and generalization [51]. More-
over, the portability of contrastive learning to other fields and data sets makes it a 
versatile method for AI model generalization [47]. However, contrastive learning 
has its own limitations. One of the key limitations is that contrastive learning 
requires many negative samples (e.g., e.g., a pair of data samples that do not share 
the same class label in a classification problem) to learn how to discriminate between 
dissimilar pairs [20]. Moreover, the performance of contrastive learning models can 
be sensitive to the choice of augmentations and hyperparameters, requiring careful 
tuning and experimentation [62]. 

Contrastive learning is well suited for representation learning tasks in both 
computer vision and natural language processing [127]. In image representation 
learning, models like SimCLR and MoCo leverage contrastive learning to learn 
sufficient image representations without labeled data for desirable application 
performance[19, 47]. Contrastive learning is also employed in mutlimodal learning 
field in approaches such as CLIP (Contrastive Language-Image Pre-training), 
which aligns visual and textual representations that enables models to effectively 
comprehend images and generate corresponding textual descriptions [90].
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3.3.2 Domain Adaptation 

Domain adaptation seeks to transfer knowledge from a source domain (from which 
labeled data are abundant) to a target domain (which carries little or no labeled 
data). This is essential for applying machine learning and AI models to real-world 
scenarios where labeled data is scarce in new and unseen domains [83]. Domain 
adaptation has different variants depending on the amount of labeled data in the 
target domain. For example, in the unsupervised domain adaptation, no labeled 
data is available in the target domain. In semi-supervised domain adaptation, a few 
labeled data samples exist in the target domain. In supervised domain adaptation, 
by contrast, labeled samples exist in both source and target domains, although with 
different distributions [85]. One of the key steps in domain adaptation is to measure 
the discrepancy between two domains. Maximum Mean Discrepancy (MMD) is a 
widely used approach to measure the difference between two domains. It is defined 
as: 

.MMD2(Ds ,Dt ) =
∥∥∥∥∥∥

1
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ns∑

i=1
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i ) − 1
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nt∑
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2

H

(3.12) 

where Ds . and Dt . are the source and target domain distributions, ns . and nt . are the 
number of samples in the source and target domains, and φ(x). is a feature mapping 
function to map the input features into the kernel Hilbert space H. [40]. 

The squared MMD can be further expanded as: 
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where k(x, y) = 〈φ(x), φ(y)〉. is the kernel function [40]. 
Domain-Adversarial Neural Networks (DANN) use an adversarial loss to make 

the features indistinguishable between the source and target domains: 

.LDANN = Ltask − λLdomain (3.14) 

where Ltask . is the loss for the main task (e.g., classification), Ldomain . is the domain 
classification loss, and λ. is a trade-off parameter [33]. 

The domain classification loss Ldomain . can be expressed as: 

. Ldomain = − 1

ns + nt

ns+nt∑

i=1

(di log D(f (xi)) + (1 − di) log(1 − D(f (xi))))

(3.15)
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where di . is 1 if xi . is from the source domain and 0 if from the target domain, and 
D(·). is the domain discriminator [33]. 

Domain adaptation offers several advantages. One of the key advantages is 
its ability to leverage existing labeled data from a source domain to enhance 
performance of the model in a target domain with limited or weakly labeled 
data [29]. The domain adaptation reduces the need of expensive and time-intensive 
data labeling in the target domain. Moreover, domain adaptation has been shown to 
be effective in strengthening and generalizing models for real-world applications, 
where the test data distributions are often different from training data [117]. 
However, domain adaptation has its own limitations. For example, one major 
challenge in domain adaptation is that it could be difficult to align the source and 
target domains if domain distributions are highly divergent [102]. This might lead 
to poor performance of the adapted models if the features learned in the source 
domain do not transfer well to the target domain. Additionally, domain adaptation 
techniques can be computationally intensive and may require heavy hyperparameter 
tuning for results optimization [111]. 

Domain adaptation is particularly useful for applications where labeled data is 
either difficult or costly to obtain in the target domain. A typical use case is cross-
domain sentiment analysis where a model trained on labeled reviews in one domain 
(e.g., electronics) is adapted to a model in another domain (e.g., books). As another 
example, in medical image analysis, domain adaptation allows models trained on 
annotated images of one type of medical scans to generalize to another type, e.g., 
from CT scans to MRI scan [25]. Additionally, domain adaptation has also been 
applied in speech recognition where models trained on one accent or dialect are 
adapted to work well on another [106]. 

3.3.3 Few-Shot Learning 

Few-shot learning is a learning approach that can create models for generalizing 
from very few examples. This is especially effective when data collection is 
prohibitively expensive, time-consuming, or otherwise unattainable [30]. Few-shot 
learning uses various methods to accomplish the above goals. One popular approach 
is meta-learning (or “learning to learn”), where the model is trained across many 
tasks to quickly adopt to a new task with a finite amount of data samples [32]. 
Another well-known technique is Siamese networks, which rely on twin networks 
with shared weights to compare input pairs, such as images or text sequences, and 
discover their similarity in terms of features or semantics [64]. 

In Model-Agnostic Meta-Learning (MAML), the objective is to find a good 
initialization of the model parameters that can quickly adapt to new tasks with just 
a few gradient steps [32]. This process is formalized as: 

.θ = arg min
θ

∑

Ti∼p(T )

LTi

(
θ − α∇θLTi

(θ)
)

(3.16)



48 3 Mathematical Foundations of Social Intelligence

where θ . represents the model parameters, Ti . is a task sampled from the task 
distribution p(T )., and α . is the learning rate for the inner loop. The goal is 
to minimize the loss across tasks, ensuring that the model parameters are well-
initialized for rapid adaptation to new and unseen tasks. 

The adaptation process in MAML involves two steps: inner-loop adaptation and 
outer-loop optimization. The inner-loop adaptation updates the model parameters 
for each task Ti .: 

.θ ′
i = θ − α∇θLTi

(θ) (3.17) 

where θ ′
i . are the task-specific parameters after the inner-loop adaptation. The outer-

loop optimization then updates the initial parameters θ . based on the performance of 
the adapted parameters θ ′

i .: 

.θ ← θ − β∇θ

∑

Ti∼p(T )

LTi
(θ ′

i ) (3.18) 

where β . is the learning rate for the outer loop [32]. 
Siamese networks are another effective approach for few-shot learning. These 

networks use a pair of identical sub-networks with shared weights to process input 
pairs of data samples. The network learns to determine the similarity between the 
inputs by minimizing a few-shot loss: 

. Lf ew−shot = 1

2N

N∑

i=1

[
yi · d(h1

i ,h
2
i )

2 + (1 − yi) · max(0,m − d(h1
i ,h

2
i ))

2
]

(3.19) 

where h1
i . and h2

i . are the embeddings of the input pair, yi . is 1 if the inputs are similar 
and 0 otherwise, d(·, ·). is a distance metric (e.g., Euclidean distance), and m. is a 
margin that defines how far apart dissimilar pairs should be [64]. 

Few-shot learning offers several advantages. One major advantage is that it 
works extremely well with minimal training data and therefore can be a viable 
choice for applications with small or costly data to access. This feature can save 
considerable time and resources for data collection and annotation. Aside from 
that, few-shot learning methods are also generalizable to multiple tasks such as 
multi-class classification, sequence labeling, and anomaly detection, demonstrating 
its adaptability [104]. Yet few-shot learning does not work without constraints. 
One issue is that it is challenging to select or design appropriate meta-tasks to 
train the model because the performance of the model often depends heavily on 
the variety and usefulness of tasks [118]. Also, few-shot learning models are 
hyperparameter dependent and might require extensive fine-tuning to achieve a 
desirable performance [93]. 

Few-shot learning works particularly well when it comes to situations where it 
is necessary to classify new, unseen classes using only a  few  labeled examples.
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For example, few-shot learning can be applied in the image classification where 
the goal is to discover an unknown class by looking at a small number of labeled 
images [114]. Few-shot learning can also be used in natural language processing 
to train models for tasks such as text classification and sentiment analysis, thereby 
facilitating adaptation to new domains with minimal labeled data from unknown 
classes [15]. Additionally, few-shot learning has also been applied in areas such as 
medical diagnosis where labels for rare disorders are not always available [118]. 

3.3.4 Adversarial Training 

Adversarial training is developed to enhance the model robustness by training it on 
adversarial examples, which are input examples specifically designed to deceive 
the model into making incorrect predictions [3]. This method aims to improve 
the model’s ability to handle such deceptive inputs, thereby increasing the overall 
robustness and reliability of the model [108]. In particular, adversarial examples 
are generated by adding small perturbations to the original input data that cause 
the model to produce incorrect predictions. The perturbation can be computed as 
follows: 

.xadv = x + ε · sign(∇xL(x, y)) (3.20) 

In this equation, x. represents the original input, ε . denotes the perturbation magni-
tude, L. is the loss function, and y is the true label. The perturbation is calculated by 
taking the sign of the gradient of the loss function with respect to the input, scaled 
by ε . [39]. 

The adversarial training process involves generating adversarial examples during 
training and including these adversarial examples in the training set. This process 
ensures that the model is exposed to adversarial inputs and learns to correctly clas-
sify them, thereby improving the model robustness. By addressing these challenging 
cases during training, the model becomes better equipped to handle unexpected or 
malicious inputs in real-world scenarios [2]. The objective function for adversarial 
training is given by: 

.Ladv = E(x,y)∼D
[

max‖δ‖≤ε
L(f (x + δ), y)

]
(3.21) 

where δ . represents the perturbation constrained by ‖δ‖ ≤ ε ., ensuring that the 
perturbation remains within a specified magnitude [75]. This constraint is essential 
because it ensures the adversarial examples are both realistic and imperceptible, 
thereby simulating practical adversarial attacks that could occur in real-world 
settings [100]. 

Adversarial training offers several advantages. A major advantage is that the 
model is better protected from adversarial attacks, making it more robust and
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trustworthy in real-world situations where malicious inputs can occur [3]. The 
training of the model with adversarial examples teaches it to recognize and 
correctly categorize such adversarial inputs and avoid being misled by subtle 
perturbations [68]. Additionally, adversarial training can boost generalization of 
the model because it learns to handle a wider variety of inputs, including those 
that are deliberately designed to be challenging [110]. However, challenges exist 
in adversarial training. A major drawback is that it is computationally expensive 
to build adversarial examples and train against them [99]. In addition, adversarial 
training demands careful configurations of hyperparameters (e.g., perturbation 
magnitude, learning rate, and norm constraints) to ensure robustness as well as 
model performance [120]. 

Adversarial training is best suited for situations where model robustness is 
of primary concern like security-based applications and systems vulnerable to 
adversarial attacks [116]. For example, in cyber security, adversarial training can 
be used to boost the resilience of intrusion detection systems against adversarial 
retaliation [16]. Similarly, adversarial training has been proven to be effective in 
healthcare applications, such as medical image analysis, where it helps enhance the 
robustness of diagnostic models against adversarial perturbations that could mislead 
disease detection systems [31]. When applied to autonomous driving, it can increase 
the stability of models employed for object recognition and navigation so that the 
car has the correct information to interpret the physical world even when adversarial 
inputs are present [28]. 
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Chapter 4 
Data Heterogeneity 

Abstract Data heterogeneity is a fundamental issue in social intelligence, where 
the data is often obtained from diverse sources, modalities, and contexts, due 
to the varying nature of human interactions and behaviors. Addressing the data 
heterogeneity problem in social intelligence encounters several unique challenges, 
such as cross-modal information inconsistency, sparse multimodal data annotation, 
and heterogeneous feature fusion. To overcome these challenges, this chapter 
reviews state-of-the-art multimodal solutions that address the data heterogeneity 
challenge in social intelligence applications. In particular, we present two case 
studies: one on generative learning based multimodal truth discovery and another on 
contrastive learning based fauxtography detection. These case studies demonstrate 
the superiority and potential of advanced deep learning techniques in addressing 
data heterogeneity issues in social intelligence tasks, paving the way for more 
accurate and reliable analysis of diverse data modalities. 

Keywords Multimodal · Data modality · Heterogeneous data · Multi-view 
learning · Contrastive learning · Truth Discovery 

4.1 The Data Heterogeneity Problem in Social Intelligence 

In social intelligence, the data heterogeneity problem arises when the data is 
obtained from diverse sources (e.g., social media, human behavioral data, sensor 
data), consists of various data modalities (e.g., text, image, video), and originates 
from different contexts (e.g., locations, events, time). While the heterogeneous 
data in social intelligence offers a comprehensive view of human intelligence, 
it also poses unique challenges in integrating and mining data from diverse 
sources, modalities, and contexts. Existing solutions to address the data hetero-
geneity challenge can be mainly classified into three categories: content-based, 
content-independent, and hybrid solutions [1]. First, content-based approaches have 
primarily focused on fusing multimodal content (e.g., combining the latent features 
of textual and visual features) to capture the complementary information across 
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different modalities [13]. However, these approaches often struggle to effectively 
handle the semantic gap and association between different modalities. Moreover, 
content-independent solutions often rely on a set of auxiliary features (e.g., user 
attitude/comments [43], user profiles [37], propagation patterns [20]) to characterize 
the aggregated information of heterogeneous data without considering the actual 
content. However, these methods may not fully capture the semantics and dynamics 
of the heterogeneous data, leading to suboptimal performance in downstream tasks. 
Additionally, hybrid methods aim to address the limitations of content-based and 
content-independent solutions by leveraging both content and auxiliary features 
to learn more comprehensive representations of heterogeneous data. However, 
the effectiveness of hybrid methods depends on the careful design of fusion 
strategies and the availability of high-quality auxiliary information, which may not 
always be readily available in real-world scenarios. More recently, the advancement 
of large foundation models (LFM) has also shown promising performance in 
understanding multimedia content [47]. However, these pre-trained large models 
primarily focus on fusing the multimodal content but often fall short in capturing 
and reasoning about the complex relationships and inter-dependencies between 
different modalities in heterogeneous social intelligence data. Specifically, three 
unique challenges exist in the data heterogeneity of social intelligence, including 
cross-modal information inconsistency, sparse multimodal data annotation, and 
heterogeneous feature fusion [28, 51]. We elaborate on them below. 

Cross-Modal Information Inconsistency 

The first challenge lies in the inconsistency across the varied data modalities of 
social intelligence data. Let us consider a multimodal truth discovery problem where 
incorrect information may be embedded not only in the textual or visual component 
of the multimodal news articles but also in their associations. For example, Fig. 4.1 
shows four examples of incorrect multimodal COVID-19 news where the cross-
modal information is inconsistent. A straightforward solution to assess the cross-
modal information consistency is to directly compare the latent features extracted 
from each modality using deep learning models (e.g., convolutional neural network 
models for visual features [7] and natural language processing models for textual 
features [5]). However, such a solution ignores the intrinsic difference between the 
visual and textual content (e.g., a composition of pixels vs. a sequence of words). 
Thus, it is impractical to directly compare the extracted visual and textual features 
that belong to different latent feature spaces. In addition, we observe that the visual 
content (i.e., image) in multimodal news articles often contains multiple salient 
objects. It is challenging to accurately extract representative information from the 
visual content without knowing the explicit intention of the news creator [44]. For 
example, the syringe and vial in Fig. 4.1c show an important visual hint (e.g., 
vaccine) for the COVID-19 vaccination described in the news. However, such 
important visual information will likely be under-represented in the extracted visual 
features due to the large and colorful caption on the left of the image.
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Fig. 4.1 Multimodal truth discovery examples. (a) was titled “Side effects of COVID-19 vaccine.” 
It abuses an image of shingles (a painful rash caused by the chickenpox virus) to exaggerate the 
side effects (e.g., itchy rash) of COVID-19 vaccines. (b) was titled “Sterilization of most US girls 
and women is the next phase for mRNA vaccine technology.” It shows a true image of a pregnant 
woman but a false text that indicates mRNA vaccines will cause sterilization. (c) was titled “White 
people are denied shots under COVID-19 vaccine regime.” It utilizes a manipulated image (i.e., 
the name of AARTH with a hand holding a vial) to support incorrect news text. (d) was titled 
“Ivermectin has been FDA approved for human use since 1996.” It aims to mislead the audience to 
believe that Ivermectin, a treatment for tropical skin disease, is authorized to treat COVID-19 

Sparse Multimodal Data Annotation 

The second challenge lies in the lack of multimodal data annotations in social intelli-
gence applications due to the high cost of obtaining reliable annotations which often 
require domain expertise and significant human effort [29]. Several semi-supervised 
learning approaches have been studied to address the annotation sparsity challenge 
in social intelligence applications, such as truth discovery [2, 9], hate speech 
recognition [40], and social disparity identification [22]. A representative category 
of solutions is leveraging the weak labels (e.g., pseudo labels from pre-trained image 
or text classification models, crowdsourcing annotations) [17, 21] to complement 
the lack of high-quality annotations in the training of social intelligence models 
(e.g., truth discovery, disaster damage assessments). However, such approaches 
often highly depend on the quality of the pseudo labels and are insufficient to 
address the multimodal social intelligence problem. This is because the truthfulness 
of the multimodal social media post is not only dependent on the truthfulness of 
individual modalities (i.e., image and text) but also determined by the association 
between them (e.g., Fig. 4.2d). More importantly, existing semi-supervised truth 
discovery solutions often require a non-trivial amount of well-annotated ground-
truth annotations of the social media posts and cannot be directly adapted to the 
multimodal detection problem where the multimodal data annotations are quite 
sparse (i.e., only 10% of the data is annotated [43]). Additionally, few-shot and zero-
shot learning approaches leverage pre-trained models’ transferability to new tasks
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Fig. 4.2 Examples of 
multimodal false information 
on social media. (a) Fake  
image and text. (b) Fake  
image. (c) Fake text. (d) 
Unmatched image and text 

with a few or no task-specific annotations [35]. However, these approaches often 
struggle with complex multimodal social intelligence tasks due to the significant 
domain discrepancy between pre-training and target tasks, as well as their limited 
reasoning ability to capture cross-modal relationships. 

Heterogeneous Feature Fusion 

The third challenge lies in the heterogeneous feature fusion where different 
modalities such as text and images must be effectively combined and integrated to 
capture the heterogeneous patterns relevant to the specific task in social intelligence. 
Existing methods [6, 32, 33] apply state-of-the-art image and text feature extraction 
neural networks (e.g., EfficientNet [36], BERT [5], and RoBERTa [19]) to learn 
feature representations for social intelligence tasks (e.g., multimodal misinforma-
tion detection, hate speech recognition). However, such image and text feature 
extraction models are often trained on conventional tasks (e.g., object detection 
and text classification) and are insufficient to capture task-specific multimodal 
semantic features. For example, in multimodal emotion recognition, while pre-
trained vision models can detect basic facial expressions and language models can 
process textual sentiment, they often fail to capture the implicit relations between 
different modalities. A social media post with a smiling selfie and a sarcastic 
or distressed caption requires understanding both cross-modal patterns and social 
context to accurately interpret the user’s true emotional state. Such heterogeneous 
and complicated multimodal features in the multimodal posts make this problem 
more challenging.
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4.2 Two Multimodal Approaches: DualGen 
and ContrastFaux 

In this section, we present two novel multimodal learning approaches, namely 
DualGen (Dual-Modal Generation) [28] and ContrastFaux (Contrastive Fauxtog-
raphy Detector) [51], to address the above data heterogeneity challenges in social 
intelligence. We will start with two more AI-focused solutions with human inputs 
(e.g., user comments) in this chapter and present more human-AI integrated SI 
solutions in the following chapters. In particular, DualGen designs a dual-generative 
learning strategy to examine the cross-modal relation in multimodal social intelli-
gence data. ContrastFaux develops a multi-view contrastive learning method that 
aims to effectively capture the multimodal features with sparse multimodal data 
annotations. 

4.2.1 DualGen: A Dual-Generative Approach 

An overview of DualGen is shown in Fig. 4.3. DualGen consists of four modules: (1) 
an object-aware multimodal feature encoder (OMFE) that extracts key information 
from the news content and news comments, (2) a text-guided visual feature 
generator (TVFG) that aims to effectively generate comprehensive visual features 
from the news text, (3) an image-guided textual feature decoder (ITFD) that is 
designed to generate the corresponding textual features from the news image, 
and (4) a comment-driven explanation generator (CDEG) that is developed to 
exploit the original and generated multimodal features and user comments to detect 
incorrect multimodal COVID-19 news articles and obtain the content and comment 
explanation. We elaborate on each module below. 

Fig. 4.3 An overview of the DualGen framework
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4.2.1.1 Object-Aware Multimodal Feature Encoder (OMFE) 

The object-aware multimodal feature encoder (OMFE) encodes the content (e.g., 
images, texts) and user comments of input news articles to extract useful information 
as effective evidence for explainable multimodal COVID-19 truth discovery. First, 
we design an object-aware visual feature encoder that effectively learns abstract 
visual information from news images. The encoder contains a deep learning 
based image embedding component that embeds the entire news image to high-
dimensional visual features. The intuition is that the encoded features are extracted 
from image pixels and can be leveraged to effectively validate the pixel-level 
inconsistency of news images (e.g., human forgery of adding incorrect visual 
patterns) [12]. Moreover, we observe that objects in news images often contain 
informative clues about the news event/topic in the articles. Therefore, we also 
extract the fine-grained object-level visual features from the news images. Formally, 
given a COVID-19 news article Pi ., we first extract a set of potential object 
regions Ri = {r1, . . . , rK }. from the image Ii . by applying the deep learning 
based object detection neural networks [27]. We then develop a deep image 
embedding component F. to encode both Ri . and Ii .. The process is denoted as 
˜Ii = Avgf eat (F(Ii ),

∑K
k=1 F(Ri,k)). where ˜Ii ∈ R2d

. is the encoded visual feature, 
F. is the image embedding component and Avgf eat . is the average operation in the 
feature dimension. 

Second, we design a bi-directional gated recurrent unit (bi-GRU) network to 
encode textual features and learn the semantic representation from the news texts. 
Given the news text Ti = {wi,1, · · · , wi,L}. of Pi . with L words, we expect the bi-
GRU network to retrieve both forward and backward semantic information from 
the word sequence, which strengthens the semantic connection between different 
words. In particular, the forward bi-GRU reads from the first word embedding to 
the last one while the backward bi-GRU reads them reversely. We aggregate the 
updated forward and backward word embeddings as ˜Ti = {w̃i,1, . . . , w̃i,L}. where 

w̃i,l = [−→̃w i,l,
←−̃
w i,l] ∈ R2d

.. We apply the max-pooling operation to obtain the claim-
level feature hi ∈ R1×2d

. that denotes the overall semantic representation of Ti .. 
Similarly, we apply the bi-GRU network to encode each user comment in Ci . to 
generate the features of the comments with the same dimension as the news texts. 

The set of encoded user comments is formally denoted as ˜Ci = {˜C1
i , . . . ,

˜CK
i }. where 

˜Ck
i ∈ R1×2d

. represents kth encoded user comment. 

4.2.1.2 Text-Guided Visual Feature Generator (TVFG) 

Given the multimodal features extracted from the news articles in Sect. 4.2.1.1, we  
design a text-guided visual feature generator (TVFG) to effectively generate visual 
features based on the understanding of the news text. Intuitively, the news image in 
a credible news article is often closely related to the content described in the news 
text. For example, a news article about the COVID-19 outbreak is often published
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with a real picture taken from a health facility. One possible solution is to aggregate 
the embedded text words of the input news article and directly transform the word 
embeddings back to the raw news image using text-to-image synthesis tools [23]. 
However, the news text usually only contains a limited number of words that are 
not efficient in accurately generating a news image that contains various COVID-
19-related objects. Moreover, the news images may contain a non-trivial amount 
of pixel-level noise that prevents the generation algorithm from generating high-
quality raw images. To address the problem, TVFG leverages the image objects as 
input features and learns to generate the latent visual features of the raw images. 
The intuition is that the latent visual features contain less pixel-level noise while 
the image objects provide effective visual information to complement the semantic 
information in the news texts. 

In particular, we design an object-guided long short-term memory (OG-LSTM) 
network in TVFG that encodes each word and each image object in the news to 
recurrently generate visual features of the entire news image. Given the embedded 
words ˜Ti . and the encoded image objects ˜Ri . of a COVID-19 news article Pi ., we  
first equalize the number of features with different modalities by duplicating the 
features of either text words or image objects. We then concatenate each pair of 
embedded word and image object to jointly encode the multimodal information, 
which is denoted as (˜TR)i = {w̃ri,1, . . . , w̃ri,L}.. OG-LSTM recurrently encodes 
each element in (˜TR)i . and decodes visual features of the entire image. The process 
is denoted as õi,l = OB-LSTM(w̃ri,1, φ). and ˜Oi = {̃oi,l, . . . , õi,L}., where φ . is the 
hidden state vector of OG-LSTM. We aggregate the features in ˜Oi . to generate a 
single feature denoted as the generated visual feature of the entire news image Ôi .. 
The loss function between the generated visual feature and the feature of the original 
image Ii . is denoted as L(Ôi,F(Ii)) = ∑2d

j=1 |Ôi,j − F(Ii)j |.. If the news text and 
image are less consistent with each other, we expect a lower similarity between the 
encoded image and the generated visual feature. 

4.2.1.3 Image-Guided Textual Feature Decoder (ITFD) 

Given the fact that the textual content of the news articles can convey the visual 
information in Sect. 4.2.1.2, we reverse the relation between the textual and visual 
content and develop an image-guided textual feature decoder (ITFD) to learn the 
corresponding textual information from the news images. We observe that, in a 
incorrect news article, the visual information expressed in the news images often 
deviates from the news texts. In particular, given a COVID-19 news article Pi ., ITFD  
first designs an object-based self-attention encoder to encode pairwise relationships 
of all extracted visual objects in Sect. 4.2.1.1, which are denoted as A(Ri ) =
Uσ(Attention(WqRi ,WkRi ,WvRi )).. Attention(Q,K,V) = Softmax(

QKT√
d

)V . is the 
scaled dot-product attention function and U is a linear transformation matrix. We 
create a stack of N encoders to recurrently consume the previously encoded outputs 
and produce a multi-level output Ri = {R1

i , . . . ,R
N
i }..
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After encoding the visual objects and their internal relations, the ITFD then 
develops a cross-modal self-attention decoder to decode the image-associated 
textual features based on the news text Ti .. Formally, the process is denoted below. 

.T̂i = Uσ(

N
∑

n=1

Attention(WqMask(Ti ),WkRn
i ,WvRn

i )) (4.1) 

where Mask(·). denotes the mask operation on Ti . to hide the one-step ground-
truth sequential words from the input text. The loss function between the decoded 
words and the corresponding ground-truth words is denoted as L(Ti , T̂i ) =
∑L

l=1 CrossEntropy(wi,l, T̂i,l).. If the news texts and news images are less consistent 
with each other, we expect a lower similarity between the encoded news texts and 
the generated textual features. 

4.2.1.4 Comment-Driven Explanation Generator (CDEG) 

After generating the cross-modal features Ôi . and T̂i . based on the original text and 
image of the news article Pi ., the comment-driven explanation generator (CDEG) 
aims to leverage both the original and generated features of Pi . to provide content 
and comment explanations on the truth discovery results of Pi .. In particular, CDEG 
jointly exploits the information embedded in multimodal content and user comments 
of Pi . to provide accurate explanations. One possible solution is to apply the co-
attention mechanism [30] to aggregate the encoded features of the content and 
comment from Pi .. However, such a solution can not solve the problem because 
it ignores the generated features from TVFG and ITFD that are useful to explain the 
complex association between multimodal content of Pi .. Moreover, the co-attention 
mechanism considers each user comment in Ci . as independent and ignores the 
close relations between them to accurately retrieve the comment explanation. For 
example, comment A “Agree!” replying to another comment B “These shingles are 
not caused by the vaccine” will be incorrectly used as an endorsing comment to 
the news article instead of comment B if the hierarchical relationship between the 
comments is ignored. To address the above limitations, we design the dual content-
comment graphs to explicitly model the relationship between the multimodal 
content and the user comments to detect and explain the multimodal COVID-19 
false information. We first define the content-comment graph below. 

Definition 4.1 (Content-Comment Graph ( G.)) We define the content-comment 
graph G. as G = (V,E). whereV = {Vn,Vm}. is a set of graph entities that include 
the content-level entity subset Vn . and the comment-level entity subset Vm .. E =
{En,Em}. is a set of graph edges that connect content and comment features. In 
particular, the edges in En . connect the content features (i.e., source features) to the 
comment features (i.e., target features). Edges in Em . connect different comment 
features based on their “reply relations”.
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Based on Definition 4.1, we develop two content-comment graphs that focus on 
the original and generated multimodal contents of the news article, respectively. We 
formally define the two graphs as Gp = {Vp,Ep}. and Gq = {Vq,Eq}. where Vp =
{hi, ˜Ii,˜Ci}. contains the encoded text feature hi ., the encoded visual feature ˜Ii . and 
the encoded user comments ˜Ci .. Similarly,Vq = {T̂i , Ôi ,˜Ci}. contains the generated 
text feature T̂i ., the generated visual feature Ôi . and the encoded user comments ˜Ci .. 
We then design a graph-based information aggregation strategy that fully aggregates 
the multimodal information in each graph based on the graph edges. The process is 
formally defined below. 

.
v

(l)
i = σ(W1v

(l−1)
i +

∑

j∈Vk

αk,jW2�
(l−1)
k,j ) (4.2) 

where vi . represents ith graph entity from the content-comment graph. l − 1. and l 
denote the (l − 1).th and lth graph aggregation layers. Vk . denotes the set of graph 
entities that are connected with vi .based on the graph edges. �(l−1)

i,j = v
(l−1)
i −v

(l−1)
j . 

is the embedding difference between the ith and j th graph node embeddings. αi,j . 

is the normalized attention score between ith and j th graph node embeddings. 
After the aggregation, we develop learnable parameters Un ∈ R2d×1

. to learn the 
possibility of each content feature (i.e., text or image feature) to be incorrect. 
Similarly, we develop Um ∈ R2d×1

. to learn the possibility of each comment feature 
that can explain the reasons for the content features being incorrect. The process is 
formally denoted as: 

.

ωn,p = Softmax([hi‖˜Ii]Un); ωn,q = Softmax([T̂i‖Ôi]Un)

ωm = Softmax(˜CiUm)
(4.3) 

where ωn,p ∈ R2
., ωn,q ∈ R2

. and ωm ∈ RK
. are generated possibility scores 

for the original content, generated content and user comments, respectively. To 
accurately estimate the truthfulness of each modality in the news content, we 
average ωn,p . and ωn,q . in the feature dimension to compute the possibility of textual 
and visual modalities being incorrect (denoted as ϕt . and ϕv .), respectively. We 
average the similarity score from TVFG and ITFD to compute the possibility ϕa . 

of the multimodal association being false. 
Given the aggregated multimodal features and the corresponding possibility 

scores, we summarize all the features based on their scores to generate a single 
article-level feature zn ∈ R2d

.. Let ŷi ∈ {0, 1}. be the estimated label of a multimodal 
news article being incorrect ( ̂yi . = 0) or not (  ̂yi . = 1). We obtain ŷi . by applying the 
linear transformation matrix Wf ∈ R2d×2

. to zn . as ŷi = Softmax(Wf zn + bn)..
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We optimize the DualGen framework based on the cross-entropy loss [46] as  
follows. 

.L =
N

∑

i=1

(−yi log(ŷi)1 − (1 − yi) log(1 − (ŷi)0)
)

(4.4) 

where yi . and ŷi . are the ground-truth and estimated labels of each multimodal 
COVID-19 news article Pi .. The final output of DualGen includes: (1) the estimated 
label ŷi ∈ {0, 1}. that Pi . is incorrect or not, (2) the possibility scores ϕt , ϕv, ϕa . that 
identify if the textual content, visual content, and their association are incorrect, 
respectively and (3) the set of comments that achieve the highest possibility scores 
ωm . in explaining why the specific content is incorrect. 

4.2.2 ContrastFaux: A Multi-View Contrastive Learning 
Method 

An overview of the ContrastFaux framework is shown in Fig. 4.4. In particular, the 
framework consists of two core modules:

• Multi-view Contrastive Fauxtography-aware Network (MCFN): it introduces a 
novel multi-view contrastive deep network architecture to capture the deeply 
embedded fauxtography features from multi-view social media posts. The 
identified fauxtography features are then used to detect the fauxtography using 
sparse annotations of the social media posts. 

Fig. 4.4 Overview of the ContrastFaux framework
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• Sparse Annotation and Similarity-driven Optimization (SASO): it explicitly lever-
ages the sparse annotations and the cross-modal fauxtography feature similarity 
between the image and text of a social media post to derive the optimal instance 
of the multi-view contrastive deep neural network from MCFN for accurate 
fauxtography detection. 

4.2.2.1 Multi-View Contrastive Fauxtography-aware Network (MCFN) 

We first present the MCFN module that designs a principled multi-view contrastive 
deep network to address the sparse fauxtography annotation challenge. The design 
of MCFN module is motivated by the limitations of current truth discovery 
approaches that can not effectively identify the fauxtography features from the 
multi-view text and image post when the training data is sparse. We first introduce 
a few key definitions that will be used in the MCFN module as follows: 

Definition 4.2 (Fauxtography Features ( F .)) We define FI = {FI
1 , F I

2 , . . . , F I
N }. 

and FT = {FT
1 , F T

2 , . . . , F T
N }. to be the visual features in the image and the 

semantic features in the text, respectively. The fauxtography features can capture 
the key fauxtography-related characteristics for identifying incorrect content or 
incorrect cross-modal association in multi-view social media posts. FI

k . and FT
k . 

represent the visual and textual fauxtography features of social media post Xk . 

for k ∈ {1, 2, . . . , N}.. An effective fauxtography feature extraction network 
architecture will provide the module with key fauxtography features to accurately 
identify different types of fauxtography. 

Definition 4.3 (Paired Image and Text Entity {ZI ,ZT }+ .) we define {ZI ,ZT }+ . 

to be the paired social media image and text entities for all studied social media 
posts, where {ZI

k , ZT
k }. includes the pair of image ZI

k . and text ZT
k . posted in the 

same social media post Xk .. Formally, we have X = {ZI ,ZT }+ .. An example of 
paired image and text entities is shown in Fig. 4.5a. Given the fact that the paired 
image and text entities essentially come with the same fauxtography annotation, the 

Fig. 4.5 Examples of paired 
and unpaired image and text 
entities. (a) Paired image and 
text entity. (b) Unpaired 
image and text entity
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paired image and text entities supervise the multi-view contrastive deep network to 
learn the multi-view fauxtography features from the image and text of the post for 
accurate fauxtography detection. 

Definition 4.4 (Unpaired Image and Text Entity {ZI ,ZT }− .) We define 
{ZI ,ZT }− . to be the image and text entities selected from different social media 
posts, where ZI

k1
. is the image in a social media post Xk1 . and ZT

k2
. is the text in 

another social media post Xk2 .. Given the notations, we have {ZI
k1

, ZT
k2

∣

∣

∣ k1 �= k2}. 
for k1, k2 ∈ {1, 2, . . . , N}. to represent all unpaired image and text entities selected 
from different social media posts. An example of the unpaired image and text 
entities is shown in Fig. 4.5b. The unpaired text and image entities are used to 
train the multi-view contrastive deep network by preventing it from learning the 
fauxtography-irrelevant visual and textual features from the image and text of the 
unpaired entities. 

Given the above definitions, we further define the pair indicator P . as a binary 
variable to indicate the paired and unpaired entities as follows: 

.Pk1,k2 =
⎧

⎨

⎩

1 for {ZI
k1

, ZT
k2

∣

∣

∣ k1 = k2}
0 for {ZI

k1
, ZT

k2

∣

∣

∣ k1 �= k2}
(4.5) 

To effectively perform fauxtography detection with sparse annotations, the 
MCFN module leverages the paired and unpaired image and text entities to super-
vise the contrastive multi-view network to learn the discriminative fauxtography 
features from the multi-view social media posts. We observe that the image and text 
from the paired entities often share the discriminative fauxtography features that are 
essential for the fauxtography detection task. On the other hand, the shared semantic 
features between the text and image from the unpaired entities often appear to be 
irrelevant to fauxtography detection, which should be clearly distinguished by the 
deep network from the discriminative fauxtography features learned from the paired 
entities. The MCFN module leverages such a unique characteristic to supervise the 
deep network to identify the discriminative fauxtography features from both the 
image and text of a social media post. The MCFN module then utilizes the identified 
discriminative fauxtography features to estimate the fauxtography annotation of 
each unlabeled post. 

The multi-view contrastive network consists of the following core networks: 
feature extraction networks f I (·). for the image and f T (·). for the text, a feature 
matching network m(·, ·)., and a classification network c(·, ·).. We show an illustra-
tion of the multi-view contrastive network design in Fig. 4.6. The feature extraction 
networks f I (·). and f T (·). first extract fauxtography features FI

. and FT
. for the 

image ZI
. and text ZT

., respectively. The feature matching network m(·, ·). then 
guides the feature extraction networks f I (·). and f T (·). to learn discriminative 
fauxtography features from both the text ZI

. and image ZT
. of a pair of image 

and text entities. Finally, the classification network c(·, ·). classifies unlabeled social
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Fig. 4.6 Overview of the 
multi-view contrastive 
fauxtography-aware network 
(MCFN) module 

media post into fauxtography or non-fauxtography using the fauxtography features 
FI

. and FT
. extracted by the feature extraction networks f I (·). and f T (·). and the 

sparse fauxtography labels. We elaborate each core network in the MCFN module 
as follows. In particular, we first define feature extraction networks as follows. 

Definition 4.5 (Feature Extraction Networks (f I (·). and f T (·).)) We define 
f I (·).and f T (·).as feature extraction networks that focus on extracting fauxtography 
features from image ZI

. and text ZT
. of a social media post as: 

.

FI = f I (ZI )

FT = f T (ZT )
(4.6) 

In particular, we utilize representative ResNet [11] as the image feature extraction 
networks f I (·). and leverage the widely used BERT [5] as the text feature extraction 
network f T (·).. The objective of this design is to provide the feature extraction 
networks with deep network architecture to effectively learn the complicated multi-
view fauxtography features. 

Given the extracted features FI
. and FT

., the feature matching network m(·, ·). 
then supervises the feature extraction networks f I (·). and f T (·). to learn the similar 
fauxtography features between ZI

. and ZT
.. In particular, the feature matching 

network is defined as follows. 

Definition 4.6 (Feature Matching Network (m(·, ·).)) We define m(·, ·). as a fea-
ture matching network that aims to identify the discriminative fauxtography features 
from paired image and text entities by computing the feature similarity S . as follows: 

.S = m(FI ,FT ) (4.7) 

The feature matching network m(·, ·). includes a set of fully connected layers, which 
compute the feature similarity between the image and text features. In particular, the 
feature matching network m(·, ·). guides the feature extraction networks f I (·). and 
f T (·). to extract fauxtography features effectively by capturing the discriminative 
fauxtography features from the social media posts of the same fauxtography 
annotation. We will introduce a feature matching loss to learn the feature similarity 
in the next subsection.
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Finally, the classification network c(·, ·). categorizes each social media post 
into fauxtography or non-fauxtography by leveraging the multi-view fauxtography 
features FI

. and FT
. extracted by the feature extraction networks. The learned faux-

tography feature extraction networks f I (·). and f T (·). and classification network 
c(·, ·). will be leveraged to predict fauxtography annotations for unlabeled social 
media posts. We define the classification network as follows. 

Definition 4.7 (Classification Network (c(·, ·).)) We define c(·, ·). to be a classifi-
cation network that utilizes the extracted features FI

. and FT
. for the text and image 

ZI
. and ZT

. to identify the fauxtography annotation ̂L. as follows: 

.̂L = c(FI ,FT ) (4.8) 

In particular, the c(·, ·). consists of a concatenation layer followed by several 
fully connected layers to predict the fauxtography annotation by examining the 
fauxtography features extracted by f I (·). and f T (·).. 

To conclude, the core feature extraction networks f I (·). and f T (·)., feature 
matching network m(·, ·)., and classification network c(·, ·). in the MCFN module 
collaboratively learn an effective fauxtography detection model given the sparse 
fauxtography annotations by designing a multi-view contrastive neural network 
architecture. 

4.2.2.2 Sparse Annotation and Similarity-Driven Optimization (SASO) 

Given the multi-view contrastive network designed in the MCFN module, the SASO 
module aims to utilize the sparse fauxtography annotations to learn the optimal 
instance of the multi-view contrastive deep network from the MCFN module. To 
that end, we design two sets of novel loss functions (i.e., fauxtography-aware feature 
matching loss function and sparse data-driven classification loss) to guide the multi-
view contrastive deep network to effectively identify the fauxtography features from 
both text and image for fauxtography detection using the sparse training data. We 
elaborate on the two loss functions below. 

We first define the fauxtography-aware feature matching loss for f I (·)., f T (·)., 
and m(·, ·). as: 

.

Lm = Lcontrastive

(

Pk1,k2 ,m
(

f I (ZI
k1

), f T (ZT
k2

)
))

,

∀k1, k2 ∈ {1, 2, . . . , N}
(4.9) 

where Lm . represents the fauxtography-aware feature matching loss. Lcontrastive . is a 
contrastive learning loss function that calculates the cross-entropy between feature 
similarity predicted by the feature matching network m(·). and the pair indicator 
Pk1,k2 .. The objective of the feature matching loss function is to supervise the MCFN 
module to learn accurate fauxtography features for fauxtography detection.
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The second loss function focuses on supervising the MCFN module to effectively 
predict the fauxtography labels L. from the fauxtography features extracted by f I (·). 
and f T (·).. To that end, we define the sparse data-driven classification loss function 
for f I (·)., f T (·)., and c(·, ·). as: 

.

Lc = Lcross-entropy

(

LA
i , c

(

f I (ZI
i ), f T (ZT

i )
))

,

∀{ZI
i , ZT

i } ∈ XA

(4.10) 

where Lc . is the sparse data-driven classification loss function. Lcross-entropy . is the 
cross entropy loss [18] that computes the difference between ground truth and 
predicted fauxtography annotations generated by the classification network c(·, ·).. 
The objective of the sparse data-driven classification loss Lc . is to supervise the 
classification network c(·, ·). to effectively quantify the identified fauxtography 
features and generate accurate fauxtography annotations accordingly. 

Given the two loss functions defined above, we then combine them to generate 
the overall loss function Loverall . for all the networks f I (·)., f T (·)., m(·, ·)., and 
c(·, ·). in the MCFN module to collaboratively optimize the sparse semi-supervised 
fauxtography detection performance as follows: 

.Loverall = Lm +Lc (4.11) 

Using the overall loss function in the SASO module, we can optimize all the 
networks to generate the optimal network instances (i.e., f I∗ ., f T∗ ., m∗ ., and c∗ .) using  
the Adam optimizer [14]. We then apply f I∗ ., f T∗ ., and c∗ . to obtain the predicted 

fauxtography label ̂LU
. for unlabeled social media posts XU

. as follows: 

.
̂LU

j = c∗
(

f I∗ (ZI
j ), f T∗ (ZT

j )
)

, ∀{ZI
j , ZT

j } ∈ XU (4.12) 

The final output of the ContrastFaux includes predicted fauxtography annotations 
̂LU

. for unlabeled social media posts XU
.. 

4.3 Real-World Case Studies 

We evaluate the effectiveness of the DualGen and ContrastFaux using two real-
world case studies with multiple datasets. Specifically, we evaluate DualGen 
under the application scenario of multimodal truth discovery where the goal is to 
assess the truthfulness of news articles that combine text and images. To evaluate 
ContrastFaux, we adopt the application scenario of fauxtography detection that aims 
to detect multimodal social media posts where the image and associated text jointly 
convey a questionable or false sense.
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4.3.1 Multimodal Truth Discovery 

We evaluate the performance of DualGen using two real-world datasets of online 
news articles that are related to COVID-19 and its vaccines. Evaluation results show 
that DualGen achieves significant performance gains compared to state-of-the-art 
baselines for multimodal truth discovery. 

4.3.1.1 Data 

First, we describe the datasets to be used in the case study. We collect the 
multimodal COVID-19 news datasets from two publicly available COVID-19 news 
repositories—ReCOVery [48] and MMCoVaR [4]. ReCOVery contains the multi-
modal COVID-19 news articles collected from Jan. 2020 to May. 2020. MMCoVaR 
contains the multimodal COVID-19 vaccine-related news articles collected from 
Feb. 2020 to May. 2021. We adopt the ground-truth labels provided in the original 
data repositories.After removing invalid news articles (i.e., the ones where the 
original news articles are no longer available), we obtain 1868 and 2534 multimodal 
COVID-19 news articles in the ReCOVery and MMCoVaR datasets, respectively. A 
summary of the datasets is reported in Table 4.1. 

4.3.1.2 Baseline Methods and Experimental Setting 

We compare DualGen with several state-of-the-art multimodal truth discovery 
solutions, described below.

• MVAE [13]: MVAE is a bimodal variational autoencoder approach that utilizes 
the encoded representation of multimodal news data to assess its integrity.

• SpotFake [34]: SpotFake is a multimodal truth discovery scheme that utilizes 
a pre-trained natural language model (i.e., BERT) and visual feature extraction 
model (i.e., VGG-19) to encode multimodal news articles for truth discovery. 

Table 4.1 Dataset summary 

ReCOVery MMCoVaR 

Data trace Correct Incorrect Correct Incorrect 

# of articles 1311 557 1626 908 

# of unique publishers 21 31 52 39 

Avg. # of comments per article 29 12 13 12 

News topic COVID-19 Pandemic COVID-19 Vaccine 

Collection period Jan. 2020–May. 2020 Feb. 2020–May. 2021
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• EANN [39]: EANN is an event adversarial neural network approach that 
leverages the text and image features in social media news posts to train an event-
based discriminator for multimodal truth discovery.

• SAFE [49]: SAFE is a similarity-aware method that jointly learns the news 
representation from textual and visual information to detect false posts on social 
media.

• BTIC [45]: BTIC is a BERT-based learning framework that extracts the latent 
visual and textual features for unreliable multimodal news article detection.

• dEFEND [30]: dEFEND is an explainable truth discovery method that leverages 
the association between the news text and user comments to classify credible 
news and identify user comments to explain the classification results.

• ExFaux [15]: ExFaux is a graph-based explainable fauxtography detection 
solution that provides content explanations for fauxtography detection results.

• HSA [10]: HSA is a hierarchical social attention network solution that incorpo-
rates social media user comments to detect rumors. 

In the experiments, we use 80 and 20% of the dataset as the training and 
testing set, respectively. To ensure a fair comparison, we use the same input (i.e., 
text, image, and user comments) to all the content-based baselines (i.e., MVAE, 
SpotFake, EANN, SAFE, BTIC, dEFEND, and ExFaux). In particular, for the 
baselines that only use text content (e.g., dEFEND), we add the visual features as 
new features in addition to the textual features of the models. In addition, we use 
comment-only baseline HSA to evaluate the comment explainability and keep the 
input the same as that in their paper (i.e., user comments). We strictly follow the 
model configuration of all schemes as documented in their paper and carefully tune 
the hyperparameters for the best results. 

4.3.1.3 Truth Discovery Performance 

In the first set of experiments, we evaluate the classification performance on detect-
ing false information in multimodal COVID-19 news. We use the following metrics 
to evaluate the performance of all compared methods: Accuracy, Precision, Recall, 
and F1 Score. The evaluation results are summarized in Table 4.2. We observe that 
DualGen consistently outperforms all compared baseline methods on all evaluation 
metrics. In particular, we observe that DualGen achieves a performance gain of 4.9 
and 4.3% compared to the best-performing baselines (i.e., EANN and dEFEND) 
in terms of F1 score on the ReCOVery and MMCoVaR datasets, respectively. The 
performance gains are attributed to the accurate cross-modal feature generation 
and the effective consistency measurement and validation between the generated 
and original multimodal features in DualGen. Moreover, the design of the content-
comment graph in DualGen also greatly enhances the aggregation of generated 
and original multimodal features and the user comments for identifying incorrect 
information. We also observe that the performance of feature fusion based methods 
(i.e., MVAE, SpotFake, EANN, dEFEND, and ExFaux) is less desirable in detecting
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Table 4.2 Truth discovery performance 

ReCOVery MMCoVaR 

Method Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score 

DualGen 0.897 0.890 0.861 0.873 0.895 0.896 0.871 0.881 
MVAE 0.825 0.813 0.755 0.774 0.815 0.805 0.834 0.808 

SpotFake 0.681 0.637 0.650 0.641 0.699 0.670 0.620 0.623 

EANN 0.847 0.816 0.834 0.824 0.833 0.819 0.810 0.814 

SAFE 0.831 0.803 0.789 0.795 0.788 0.773 0.749 0.757 

BTIC 0.763 0.719 0.695 0.704 0.829 0.823 0.791 0.803 

dEFEND 0.856 0.826 0.813 0.823 0.856 0.847 0.831 0.838 

ExFaux 0.763 0.719 0.695 0.704 0.769 0.784 0.694 0.707 

HSA 0.779 0.737 0.736 0.736 0.803 0.782 0.785 0.784 

The bold values indicate the best performing results in each evaluation metric

Table 4.3 Ablation study results 

ReCOVery MMCoVaR 

Method Accuracy Precision Recall F1 Accuracy Precision Recall F1 

DualGen 0.897 0.890 0.861 0.873 0.895 0.896 0.871 0.881 
DualGen w/o text 0.850 0.820 0.841 0.829 0.856 0.839 0.851 0.844 

DualGen w/o image 0.852 0.835 0.803 0.816 0.869 0.857 0.852 0.855 

DualGen w/o graph 0.886 0.870 0.857 0.863 0.871 0.866 0.846 0.854 

The bold values indicate the best performing results in each evaluation metric

false information in multimodal COVID-19 news articles. The reason is that these 
methods directly infer the truthfulness of the news article from the fused multimodal 
news content but ignore the interdependence between the visual and textual content 
in the news articles. 

4.3.1.4 Ablation Study 

We also conduct an ablation study to investigate the contribution of generated 
visual and textual features, and the dual content-comment graphs in the DualGen 
framework. In particular, we consider three types of ablations of DualGen in the 
experiments: (1) DualGen w/o Text that does not generate textual features, (2) 
DualGen w/o Image that does not generate visual features, (3) DualGen w/o Graph 
that directly concatenates user comments with the multimodal content features 
rather than propagating the user comments information via the dual content-
comment graphs. The results are shown in Table 4.3. We observe that DualGen 
achieves the best performance when it incorporates all components. The results 
demonstrate the necessity of the generated visual and textual features as well as 
the graph-based comment information propagation in detecting false information in 
multimodal COVID-19 news articles.
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4.3.2 Fauxtography Detection 

In this section, we study the performance of the ContrastFaux framework with 
two real-world social media fauxtography datasets. Evaluation results show that 
ContrastFaux consistently outperforms state-of-the-art deep learning and semi-
supervised learning baselines by accurately detecting fauxtography posts on social 
media with sparse annotations. 

4.3.2.1 Data 

We collected two real-world datasets from widely used social media platforms 
Twitter and Reddit. Given the fact that a huge amount of posts are generated 
on Twitter and Reddit in real-time, it is challenging to collect and annotate 
fauxtography data directly from these social media platforms. Therefore, we utilize 
three online fact-checking platforms (i.e., snopes.com, factcheck.org, and truthor-
fiction.com) to obtain fauxtography annotations. In particular, we collect images 
of social media posts and their fauxtography annotations from these fact-checking 
platforms following the standard procedure [16]. The collected fauxtography and 
non-fauxtography images were posted between 2010 and 2019. To ensure the 
quality of the fauxtography annotations, the ground-truth annotations are generated 
using the majority voting results of the three fact-checking platforms. Using the 
collected images and fauxtography annotations, we then utilize the Google Vision 
API [8] to reversely search for social media post URLs. Using the obtained URLs, 
we crawl the texts of the posts from the Twitter API [38] and Reddit API [26]. 
We summarize the statistics of the two real-world datasets in Table 4.4. In the  
experiments, we set the sparsely annotated social media post ratio α . to be 10% 
for all compared schemes. We also vary the value of α . to evaluate the robustness of 
the framework in Sect. 4.3.2.4. 

4.3.2.2 Baseline Methods and Experimental Setting 

Baseline Methods 

In the evaluation, we compare the proposed ContrastFaux with a rich set of 
representative deep learning and semi-supervised learning fauxtography detection 
baselines. 

Table 4.4 Statistics of 
fauxtography detection 
datasets 

Datasets Twitter Reddit 

Total number of posts 883 958 

Percent of fauxtography 20.8% 42.4% 

Percent of non-fauxtography 79.2% 57.5%

https://www.snopes.com
https://www.factcheck.org
https://www.truthorfiction.com
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• FCMF [50]: FCMF is a multi-view classification approach that integrates various 
image features (e.g., Google tags, URL categories) and text features (e.g., 
text contents, text embedding similarities) to achieve sizable improvements in 
fauxtography detection.

• dEFEND [30]: dEFEND is a co-attention deep neural network that jointly cap-
tures check-worthy social media sentences and user comments for explainable 
fauxtography detection.

• MMFND [6]: MMFND is a multimodal deep neural network model that utilizes 
an image branch and a text branch to combine textual and visual modalities using 
representative feature representation networks BERT [5] and VGG-16 [31] to  
detect online fauxtography.

• SpotFake [33]: SpotFake is a multimodal deep learning approach that leverages 
textual and visual features to detect fauxtography using pre-trained transformer-
based language networks and deep convolutional image networks, respectively.

• PredictCredibility [32]: PredictCredibility is a efficient multimodal deep neural 
network that leverages a sentence transformer for the text and a convolutional 
neural network for the image and then fuses the two modalities for fauxtography 
detection.

• Gen. to Adapt [41]: Gen. to Adapt is a semi-supervised learning approach that 
induces a symbolic relationship and a generative adversarial network to achieve 
generalization among different data domains in fauxtography detection.

• VAT [24]: VAT is a semi-supervised learning method that proposes a virtual 
adversarial loss to measure the robustness of the conditional label distribution 
for the generalizable fauxtography detection.

• Billion-scale [42]: Billion-scale is a semi-supervised learning convolutional 
neural network that leverages a large collection of unlabeled data using a training 
and fine-tuning pipeline to improve the fauxtography detection performance.

• CL [3]: CL is a resilient semi-supervised learning method that utilizes pseudo-
labeling and curriculum learning to improve the generalizability of fauxtography 
detection model. 

Experimental Setting 

For a fair comparison, we keep the input data to all compared approaches to be 
the same: (1) all studied social media posts, and (2) fauxtography labels for the 
sparsely annotated social media post subset. Social media posts in the sparsely 
annotated subset are randomly sampled from all posts in the dataset. ContrastFaux 
is implemented using PyTorch 1.1.0 libraries [25] on NVIDIA Quadro RTX 6000 
GPUs. The network is optimized by the Adam optimizer [14] with the learning rate 
of 1 × 10−5

.. The batch size is set to 60 and the number of epochs is set to 100. To 
evaluate the performance of all compared schemes, we utilize four different metrics 
that are widely used in binary classification tasks: Accuracy, F1-Score, Precision, 
and Recall. Higher values of these metrics indicate better detection performance.
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Table 4.5 Fauxtography detection performance 

Twitter dataset Reddit dataset 
Method Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

ContrastFaux 0.936 0.850 0.828 0.873 0.822 0.798 0.777 0.821 
FCMF 0.886 0.688 0.805 0.600 0.728 0.629 0.759 0.537 
dEFEND 0.913 0.793 0.786 0.800 0.788 0.763 0.731 0.797 
MMFND 0.890 0.701 0.810 0.618 0.794 0.770 0.739 0.805 
SpotFake 0.890 0.713 0.783 0.655 0.732 0.639 0.756 0.553 
PredictCredibility 0.867 0.607 0.794 0.491 0.767 0.712 0.755 0.675 
Gen. to adapt 0.852 0.519 0.808 0.382 0.655 0.508 0.654 0.415 
VAT 0.788 0.442 0.773 0.309 0.665 0.719 0.731 0.707 
Billion-scale 0.856 0.568 0.758 0.455 0.673 0.565 0.656 0.496 
CL 0.887 0.694 0.791 0.618 0.784 0.763 0.719 0.813 

The bold values indicate the best performing results in each evaluation metric

4.3.2.3 Fauxtography Detection Performance 

We first compare the detection accuracy of ContrastFaux with all baselines on the 
two real-world fauxtography detection datasets collected from Twitter and Reddit. 
The sparsely annotated social media post ratio α . is set to 10%. The comparison 
results are shown in Table 4.5. We observe that ContrastFaux clearly outperforms 
all baselines on all metrics. For example, on the Twitter dataset, the ContrastFaux 
outperforms the best-performing baseline (i.e., dEFEND) by 2.49, 7.16, 5.33, and 
9.09% in terms of Accuracy, F1-Score, Precision, and Recall, respectively. Similar 
results are observed on the Reddit dataset. The consistent performance gains across 
the two datasets demonstrate that ContrastFaux successfully improves the sparse 
semi-supervised fauxtography detection performance. Such performance gains are 
attributed to the explicit design and optimization of the multi-view contrastive 
network architecture using the sparse fauxtography annotations and the cross-modal 
fauxtography feature similarity between the image and text. 

4.3.2.4 Robustness Study 

We conduct a robustness study to evaluate the performance of ContrastFaux on 
both Twitter and Reddit datasets under different annotated social media post ratios 
(i.e., α .). In particular, we vary α . from 1 to 15% for ContrastFaux and the top 
two best-performing baselines. The comparison results are presented in Fig. 4.7. 
ContrastFaux consistently and stably outperforms best-performing baselines on 
both datasets under different annotated social media post ratios. The evaluation 
results demonstrate the robustness of ContrastFaux in learning heterogeneous and 
complicated fauxtography features to detect fauxtography given different amounts 
of annotations.
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Fig. 4.7 Robustness study of the ContrastFaux framework and the top two best-performing 
baselines. (a) Twitter dataset. (b) Reddit dataset 

Fig. 4.8 Ablation study of the ContrastFaux framework. (a) Twitter dataset. (b) Reddit dataset 

4.3.2.5 Ablation Study 

We further conduct an ablation study to learn the contribution of the two loss 
functions to the overall ContrastFaux framework on both the Twitter and Reddit 
datasets. In particular, we present the fauxtography detection performance by 
removing each of the key loss function terms (i.e., the feature matching loss Lm . 

and the classification loss Lc .). To remove the feature matching loss Lm ., we train  
the model by only using the classification loss Lc . given the sparse fauxtography 
annotations. For the model without the classification loss Lc ., we utilize the K-means 
clustering algorithm to detect fauxtography based on multi-view features learned by 
the feature matching loss Lm .. The ablation study results are presented in Fig. 4.8. 
The comparison results demonstrate that both of the loss functions make non-trivial 
contributions to the performance gain of the overall ContrastFaux framework.
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4.4 Discussion 

In this chapter, we discussed the data heterogeneity problem and introduced two 
novel frameworks, DualGen and ContrastFaux, for handling heterogeneous data 
in social intelligence applications. In particular, DualGen explicitly explores the 
cross-modal association between the news content in different modalities to examine 
the cross-model information consistency. Unlike DualGen which relies on ground-
truth annotations to supervise the learning process, ContrastFaux alleviates such a 
requirement and adopts a multi-view contrastive learning approach to effectively 
capture discriminative features from paired and unpaired image-text entities under 
sparse annotation settings. 

While these solutions have demonstrated the effectiveness of integrating hetero-
geneous features and examining their relations, they also exhibit certain limitations. 
First, these solutions rely on a non-trivial amount of training data, with supervised 
and unsupervised learning objectives, to capture the multimodal features from 
the heterogeneous multimodal social intelligence data. Such approaches may not 
be optimal or generalizable across different domains or datasets, limiting their 
applicability in scenarios where the data distribution shifts over time. In Chap. 5, we  
will discuss the domain discrepancy issue and review state-of-the-art solutions that 
further improve the model generality in social intelligence. Furthermore, another 
limitation of these multimodal approaches lies in the lack of explainability in the 
sense that the latent multimodal feature representations and decision-making pro-
cesses of these complex models are often opaque and difficult to interpret, making 
it challenging to understand the rationale behind the model predictions and support 
critical decision-making processes or interventions in high-stake applications (e.g., 
healthcare, criminal justice). In Chap. 6, we introduce explainable social intelligence 
solutions that are dedicated to tackling the interpretability challenge and enhancing 
the model’s transparency and trustworthiness. 

Additionally, a few open research questions and ethical considerations remain 
in handling data heterogeneity for social intelligence. For example, multimodal 
social intelligence solutions that process and analyze heterogeneous data might 
be prone to bias in the source datasets and amplify societal inequities, especially 
in sensitive domains such as healthcare and criminal justice. We will discuss 
ethical challenges and review responsible social intelligence designs in Chap. 8. 
Furthermore, the integration of multiple data modalities raises privacy concerns as 
the joint analysis of text, images, or other multimedia data could reveal sensitive 
personal information (e.g., face images, location traces, social relationships) from 
online users. In Chap. 9, we will review the issue of privacy concerns in social 
intelligence and present privacy-preserving techniques and mitigation strategies.
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Chapter 5 
Data Sparsity and Model Generality 

Abstract Social intelligence systems often face two fundamental limitations, data 
sparsity and model generality, when the systems need to adapt to new domains or 
scenarios where training data is limited or unavailable. This is particularly important 
in critical social intelligence applications such as health truth discovery and disaster 
damage assessment. This chapter introduces two human-AI hybrid approaches, 
CrowdAdapt and CollabGeneral, that explore human intelligence and domain 
expertise to effectively bridge the knowledge gap between data-rich source domains 
and emergent target domains. Two fundamental challenges exist in developing such 
hybrid approaches, including: (1) the domain discrepancy where knowledge transfer 
is degraded by irrelevant or inapplicable information from source domains, and 
(2) the optimal trade-off between model generality and domain specificity that 
ensures a social intelligence model can perform well across different domains 
while maintaining high accuracy for domain-specific characteristics and patterns. 
Two real-world case studies demonstrate the superiority and great potential of 
CrowdAdapt and CollabGeneral in addressing these challenges and advancing the 
development of adaptive social intelligence systems. 

Keywords Data sparsity · Model generality · Robustness · Crowdsourcing · 
Knowledge graph · Human-AI collaboration · Hybrid learning 

5.1 Data Sparsity and Model Generality Problems in Social 
Intelligence 

The advancement of artificial intelligence and machine learning has brought 
unprecedented opportunities to social intelligence, where data from the social 
space (e.g., social media, online forums) is leveraged to address critical societal 
challenges, such as public health surveillance [14] and disaster management [25]. 
However, such data-driven social intelligence systems are often data-intensive 
and face two fundamental problems: data sparsity and model generality. These 
problems arise when the systems need to adapt to new domains or scenarios where 
training data is limited or unavailable. For instance, when a new disease outbreak 
occurs (e.g., the 2022–2023 Mpox outbreak [31]), social intelligence systems 
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trained on previous health crises (e.g., COVID-19) must quickly adapt to detect 
false information about the new disease, despite having limited domain-specific 
training data. Similarly, disaster management systems trained to assess damage from 
hurricane images must generalize their capabilities to different types of disasters, 
even when the visual characteristics and impact patterns differ significantly. 

Current AI and machine learning solutions to address these problems often rely 
on transfer learning [2] and knowledge adaptation techniques [38]. In particular, 
transfer learning approaches aim to transfer models from data-rich source domains 
to data-sparse target domains. For example, pre-trained text representation on 
general text data (e.g., BERT embeddings [8]) has been utilized to classify false 
information on social media by fine-tuning the language model with a small 
set of domain-specific examples [16]. However, such a solution is often prone 
to overfitting to the limited domain-specific examples and fails to capture the 
rapidly evolving patterns and domain-specific characteristics of social media data, 
especially in the emergent target domain. More recently, researchers have explored 
self-supervised and few-shot learning methods that can learn from limited labeled 
data by exploiting the inherent structure and patterns in large amounts of unlabeled 
social media posts. For example, contrastive learning approaches have been used 
to learn discriminative features from social media posts by treating posts from the 
same domain as similar examples, while treating topically distant posts as dissimilar 
examples [43]. While these methods show promise in learning from limited labeled 
data, they still face significant challenges in capturing domain-specific knowledge, 
such as the scientifically grounded medical facts for health truth discovery or 
damage assessment criteria for disaster response, and adapting to rapidly evolving 
events/topics in social intelligence. In particular, there exist several key challenges 
in developing generalizable social intelligence systems where the training data is 
sparse [30, 41]. We elaborate on these challenges below. 

Domain Discrepancy in Social Intelligence 

Domain discrepancy refers to the fundamental differences in data distribution, 
contextual features, and domain-specific characteristics between a source domain 
(e.g., data-rich domains with abundant labeled examples and knowledge resources) 
and a target domain (e.g., emerging scenarios with limited data and resources). Such 
domain discrepancy often poses significant challenges for transferring and adapting 
knowledge in social intelligence systems. Let us consider an example of health truth 
discovery across different disease outbreaks. A source domain (e.g., COVID-19) 
often contains a large number of literature resources (e.g., research publications, 
fact-checking articles) from which the knowledge facts can be extracted for truth 
discovery [7]. A straightforward solution is to directly use the knowledge facts from 
the source domain to detect false information in the target domain. However, such a 
solution often ignores the complex nature of knowledge facts in the source domain, 
which often contains many knowledge facts that are irrelevant to the target domain. 
For example, the knowledge facts extracted from fact-checking articles often contain 
many non-medical entities, such as “5G network” and “RFID chip” in Fig. 5.1a,
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Fig. 5.1 Domain discrepancy in emergent healthcare truth discovery. It shows a crowdsourcing-
based strategy in social intelligence to explore the medical knowledge of expert workers (i.e., 
crowd workers with medical expertise) to adapt the abundant resources from a source domain (i.e., 
the healthcare domain with sufficient annotated data and medical knowledge) to detect incorrect 
posts in an emergent target domain (i.e., the healthcare domain that is short of annotated data and 
medical knowledge). (a) Knowledge facts in source domain. (b) Adapted knowledge facts in target 
domain. (c) Annotated posts in source domain. (d) Post in target domain 

which are often irrelevant to medical science and are rarely seen in false information 
from the domains other than COVID-19. Such irrelevant knowledge facts can be 
of little help in detecting false information in the target domain. Thus, it remains 
a challenge to effectively leverage complex and noisy knowledge facts from the 
source domain to facilitate the social intelligence task in the target domain. 

Moreover, while some knowledge facts from the source domain can be general-
ized to identify false information in the target domain, there often exists a non-trivial 
amount of knowledge facts in the source domain that are relevant but inapplicable to 

the target domain. For example, “vaccine”
not contain−−−−−−→. “live DNA virus” (Fig. 5.1a) 

is a widely accepted knowledge fact in the source domain of COVID-19. However, 
the knowledge fact is inapplicable to the target domain of Mpox, where the vaccine 
does contain live vaccinia virus (a DNA virus) that can cause serious vaccine adverse 
events among people with immunocompromising conditions. Such inapplicable 
knowledge facts have to be identified and corrected to detect false information in 
the target domain. However, it often requires expertise from medical experts to fully 
examine the inconsistency of knowledge facts between different domains, which 
is both labor-intensive and time-consuming [18]. Therefore, it is challenging to 
efficiently utilize the limited amount of domain experts to adapt and validate the 
necessary knowledge facts from the source to the target domain.
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Trade-Off Between Model Generality and Specificity 

Model generality defines a model’s ability to perform well across different domains, 
while model specificity refers to a model’s capability to capture and accurately 
assess the unique characteristics and damage patterns specific to a particular domain. 
A possible solution to tackle the model generality problem in social intelligence is 
to train a model using the training data from all studied domains so that the model 
instance can learn the key features from all trained events. However, such a one-
size-fits-all solution can lose the sensitivity to domain-specific features and lead 
to undesirable performance loss on specific domains of interest [11]. On the other 
hand, recent efforts have been made to tackle the model generality problem [27, 42]. 
Those solutions often leverage the divergence-based or adversarial-based neural 
network designs to transfer or adapt the model learned from a source domain that 
shares similar characteristics with the target domain. However, the actual model 
performance largely depends on the level of similarity between the source and target 
domain, and an appropriate source domain is not guaranteed to exist [40]. Therefore, 
finding the optimal trade-off between model generality and specificity remains a 
fundamental challenge in social intelligence systems. 

5.2 Robust and General Social Intelligence: CrowdAdapt 
and CollabGeneral 

This section presents two novel social intelligence frameworks, CrowdAdapt 
(Crowdsourcing-based Domain Adaptation) [30] and CollabGeneral (Collaborative 
Generality) [41], to address the data sparsity and model generality challenge 
in social intelligence. In particular, CrowdAdapt develops a crowd-AI integrated 
framework that effectively identifies and adapts relevant knowledge facts from the 
source knowledge domain to accurately detect false information in the emergent 
target domain. CollabGeneral designs a subjective logic-driven human-AI collabo-
rative learning framework that exploits AI and HI to address the AI model generality 
problem in social intelligence. 

5.2.1 CrowdAdapt: A Crowdsourcing-Based Domain 
Adaptation Solution 

An overview of the CrowdAdapt framework is shown in Fig. 5.2. In particular, 
CrowdAdapt consists of three main modules: (1) a Graph-based Knowledge 
Encoder (GKE) module that constructs a graph-based medical knowledge informa-
tion network to explicitly model the medical knowledge facts and extract the useful 
knowledge facts related to the posts from different domains; (2) a Domain-invariant 
Representation Learning (DRL) module that aims to jointly learn the domain-
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Fig. 5.2 Overview of the CrowdAdapt framework 

invariant representation of the posts and their relevant knowledge facts extracted 
by the GKE module; and (3) a Crowdsourcing-based Knowledge Updater (CKU) 
module that incorporates the medical expertise from expert workers to verify and 
correct the uncertain medical knowledge facts extracted from GKE and accurately 
detect incorrect posts in the target domain. 

5.2.1.1 Graph-Based Knowledge Encoder 

The graph-based knowledge encoder module designs a graph-based knowledge 
information network to explicitly explore the relationship between different 
healthcare-related entities and extract useful healthcare knowledge facts that are 
relevant to the posts from a given domain. We observe that existing domain adaptive 
truth discovery solutions mainly focus on leveraging the data annotations (i.e., 
labeled posts) in the source domain to reduce the model’s reliance on the data 
annotations in the target domain [21, 39]. However, such solutions largely ignore 
the healthcare knowledge facts associated with the posts, which is particularly 
important for identifying incorrect posts in emergent healthcare domains. Therefore, 
to mitigate such a limitation, a graph-based medical knowledge information network 
is developed to explicitly extract the medical knowledge information from the 
widely available articles in the source domain (i.e., source articles) to facilitate 
the detection of false information in the target domain. We first define the medical 
knowledge information network (MKIN) as follows.
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Definition 5.1 (Medical Knowledge Information Network) We define the medi-
cal knowledge information network as a direct graph G = {V,E}., where V. and E. 
refer to the nodes and edges that are defined below, respectively. 

Definition 5.2 (Node) A node v is defined as a semantic entity (e.g., “vaccine” in 
Fig. 5.2) that is extracted from a source article. In particular, we denote a set of N 
nodes asV = {v1, v2, · · · , vN }.. 
Definition 5.3 (Edge) An edge e is the semantic relation between a pair of relevant 
nodes in MKIN. Specifically, we consider two types of edges in this study, i.e.,
e ∈ {e+, e−}., where e+

. represent the “positive” relation between a pair of entities 
(e.g., the “contain” relation between “vaccine” and “mRNA” in Fig. 5.2) and e−

. 

represent the “negative” relation between a pair of entities (e.g., the “not spread” 
relation between “5G network” and “COVID-19” in Fig. 5.2). We denote a set of M 
edges in MKIN as E = {e1, e2, · · · , eM }.. In addition, we also define two binary 
adjacency matrices A+

. and A−
. to explicitly indicate the pairwise positive and 

negative relations of all nodes in G., respectively. In particular,A+
i,j = 1.andA−

i,j = 1. 
indicates the positive and negative relation between node vi . and vj ., respectively. 
Otherwise, A+

i,j . and A−
i,j . are 0, indicating no relation between node vi . and vj .. 

Definition 5.4 (Knowledge Triple) We also define a knowledge triple t =
(v, e, v′). as a pair of relevant nodes v and v′

. that are connected via an edge e 
in G.. 

With the medical knowledge information network G. constructed as above, the 
next objective is to learn the context-aware semantic representation of each node in 
MKIN by exploring its semantic dependency on other relevant nodes in MKIN. In 
particular, we first develop a BERT-based semantic encoder to extract the semantic 
representation of each node in MKIN. Formally, let vi = [w1, w2, · · · , wni

]. be the 
semantic entity of node vi ∈ V., where wk . for 1 ≤ k ≤ ni . is the kth. word in node 
vi .. We first adopt a pre-trained BERT model [8] to retrieve the word embedding uk . 

of each word wk ., where uk ∈ Rd
. and d is the dimension of the word embedding. 

We then apply the mean-pooling and max-pooling to the word embeddings of each 
node and concatenate the pooled embeddings to obtain the final node embedding
vi ∈ R2d

. that aggregates the semantic representation of each node vi ∈ V..  We  also  
define a node embedding matrix V ∈ RN×2d

. as the matrix that contains the node 
embeddings of all nodes in MKIN. 

While the node embeddings can capture the semantic meaning of each node in 
MKIN, it remains a challenge to effectively extract the key knowledge triples from 
MKIN to identify the false information in the target domain. This is because MKIN 
is constructed from a number of articles in the source domain and often contains 
many knowledge triples that are irrelevant to the topics discussed in the posts from 
a target domain. For example, the knowledge triple (“vaccine”, – , “RFID chip”) 
in Fig. 5.2 is of little help for identifying the incorrect post “Mpox vaccine contains 
live virus and causes infectious blister” in the target domain of Mpox. To address 
such a challenge, we design a post-based knowledge triple refinement strategy to 
explicitly capture the critical knowledge triples that are relevant to the given post.



5.2 Robust and General Social Intelligence: CrowdAdapt and CollabGeneral 89

For example, the knowledge triples related to the “live DNA virus” can be captured 
in MKIN to facilitate the detection of the incorrect post that the live DNA virus 
in the Mpox vaccine causes an infectious blister. Thus, we explicitly measure the 
semantic relevance between a post and each node in V. to obtain the knowledge 
triples that are more relevant to a given post. In particular, we adopt the same 
BERT-based encoding strategy to encode each post p ∈ {Ps, Pt }. and denote the 
encoded vector representation of p as p ∈ R1×2d

.. Finally, the post-based knowledge 
triple refinement strategy to obtain the refined adjacency matrices Â+

. and Â−
. are 

as follows. 

.Â+
p = f

(
(V p�W+

a ) � A+)
;Â−

p = f
(
(V p�W−

a ) � A−)
(5.1) 

where V ∈ RN×2d
. is node embedding matrix. f (·). is the softmax function, and W+

a . 

and W−
a . are learnable weights. 

5.2.1.2 Domain-Invariant Representation Learning 

Given the fact that there are often no ground-truth labels for the post in an emergent 
target domain to supervise the learning, the next objective is to learn the domain-
invariant representations of the posts and their relevant medical knowledge triples 
in the refined MKIN from the GKE module by only using the available ground-
truth labels of the posts from the source domain. Existing domain adaptive learning 
frameworks mainly focus on the domain discrepancy of the post content between 
the source and target domains and target to map the post content from different 
domains to a domain-invariant feature space. However, such solutions ignore the 
domain discrepancy of medical knowledge information in MKIN, which is critical 
to identify incorrect posts in different healthcare domains. To overcome such a 
limitation, we present a joint representation learning framework to jointly learn the 
domain-invariant representations of the posts from different domains as well as their 
relevant knowledge triples. In particular, we first aggregate the medical knowledge 
information from the refined MKIN by propagating the node information based on 
their relations captured in the refined adjacency matrices Â+

. and Â−
. (Eq. (5.1)). 

Formally, the knowledge aggregation process is defined as 

.v̂i = σ

⎛
⎜⎝

∑

vj ∈N+
i

1

ω+
i

W+vj +
∑

vj ∈N+
i

1

ω−
i

W−vj + vi

⎞
⎟⎠ (5.2) 

where v̂i . is the learned node representation of vi ∈ V. with the knowledge 
information propagated from neighborhood nodes of vi .. σ(·). is the non-linear 
ReLU activation function. vi . and vj . are the node embeddings of vi . and vj . in 
V., respectively. N+

i . and N−
i . refer to the set of neighborhood nodes of vi ∈ V. 

under the edge e+
. and e−

., respectively. W+
., W−

., and W are the learnable
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weight parameters. ω+
i . and ω−

i . are the normalization factors of W+
. and W−

., 
respectively. We further aggregate the node representation for vi ∈ V. to obtain the 
representation of knowledge triples that are relevant to a post p ∈ {Ps, Pt }. based on 
the score measured in Â+

p . and Â−
p . (Eq. (5.1)), followed by an average operation. 

The aggregated knowledge triple representation is defined as tp = [t+p ||t−p ]., 
where ||. denotes the concatenation operation. t+p . and t−p . are the knowledge triple 
representations computed based on the learned node representation v̂i . of all vi ∈ V. 

and the refined adjacency matrices Â+
p . and Â−

p ., respectively. 
Using the aggregated representations of the knowledge triples, we design 

a discriminative encoder network with an adversarial loss to jointly learn the 
knowledge-enriched representation of the posts from the source and target domains 
while minimizing the domain divergence of the learned features. In particular, 
the discriminative encoder network consists of two main components: (1) a two-
layer encoder network that aims to learn the key information from the input posts 
and relevant knowledge triples in MKIN; (2) a two-layer discriminator network 
that targets at accurately distinguishing the domain of the encoded posts and 
their relevant knowledge triples. Formally, the encoder network and discriminator 
network are defined as follows. 

.qp = encoder([p||tp]) and d̂p = discriminator(qp) (5.3) 

where p. and tp . are the encoded vector representation and the aggregated knowledge 
triple representation of posts p, respectively. qp . is the knowledge-enriched repre-
sentation of a post p and d̂p . is the estimated domain of qp .. 

With the discriminative encoder network defined above, we adopt the adversarial 
loss to effectively regulate the encoder network (Eq. (5.3)) to learn the domain-
invariant representation from the posts and their relevant knowledge triples that 
cannot be distinguished by the discriminator network (Eq. (5.3)). Formally, the 
adversarial loss is defined as follows: 

.Ladv =
∑

p∈{Ps,Pt }
−dp log(d̂p)1 − (1 − dp) log(1 − (d̂p)0) (5.4) 

where dp . and d̂p . are the true and estimated domain of post p ∈ {Ps, Pt }., 
respectively. 

The latent representation learned from the discriminative encoder network 
effectively captures the domain-invariant knowledge-enriched features of the posts 
from the source and target domains. Such domain-invariant features with minimized 
domain discrepancy can be leveraged to detect incorrect posts regardless of the 
domain of the posts. In particular, we employ a two-layer classification network to 
accurately predict the truthfulness of each post. Formally, the classification network
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is defined as ŷp = MLP(qp).. We optimize the classification network with cross-
entropy loss: 

.Lcla = −
∑
p∈Ps

(1 − yp) log(1 − (ŷp)) + yi log(ŷp) (5.5) 

where yp . is the ground-truth label of the source post p ∈ Ps .. 
The overall learning objective L. is to jointly optimize the discriminative encoder 

network and the classification network by maximizing the adversarial loss Ladv . 

and minimizing the classification loss Lcla . as L = Lcla − λLadv ., where λ. is a 
hyperparameter to be tuned for optimizing the trade-off between Ladv . and Lcla .. 

5.2.1.3 Crowdsourcing-Based Knowledge Updater 

The crowdsourcing-based knowledge updater (CKU)module is designed to leverage 
the medical expertise of the domain experts to verify and correct any uncertain 
knowledge triples in MKIN from the GKE module that may only be applicable 
in the source domain but cannot be directly adapted to detect false information in 
the target domain. We observe that the MKIN constructed from the articles in the 
source domain also contains knowledge triples that are not applicable to examining 
the truthfulness of posts in the target domain. For example, the knowledge triple 
(“vaccine”, – , “live DNA virus”) in MKIN from the source domain of COVID-19 
(Fig. 5.2) could lead to the incorrect prediction result on the true claim that “Mpox 
vaccine contains live virus that causes infectious blister,” due to the conflicting fact 
that the Mpox vaccine is made with attenuated live DNA virus while the COVID-
19 vaccine is not. Therefore, it is critical to identify and correct such inapplicable 
knowledge triples in MKIN to ensure that the medical knowledge obtained from the 
source domain can be applied to accurately detect false information in the target 
domain. 

To address the above problem, we design a crowdsourcing-based knowledge 
updating strategy that incorporates the efforts of expert workers (i.e., domain experts 
from the crowdsourcing platform) to effectively identify and correct the knowledge 
triples in MKIN to accurately detect false information in the target domain. 
However, verifying the correctness of knowledge triples in a specific domain often 
requires background knowledge from domain experts who are often expensive and 
may not always be available [18]. Therefore, it is impractical to ask expert workers 
to annotate all knowledge triples in MKIN. To this end, we design a post-driven 
knowledge triple retrieval process to identify a set of uncertain knowledge triples 
in MKIN that can be sent to the expert workers to verify their applicability in the 
target domain. Intuitively, the knowledge-enriched domain-invariant representation 
of a post learned in the DRL module contains the semantic features of relevant 
knowledge triples in MKIN for examining the truthfulness of the post, which 
can also be leveraged to estimate the relationship between a pair of nodes in 
MKIN. For example, the knowledge-enriched representation of the post “COVID-19
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vaccine alters DNA” can capture the critical knowledge features extracted from the 
knowledge triple (“vaccine”, – , “live DNA virus”) for examining the truthfulness 
of the post. Such knowledge-enriched representation is expected to confidently infer 
the relationship (i.e., edge label) between the corresponding nodes in the knowledge 
triple. Therefore, we train an MLP-based edge classifier to classify the edge label 
e
p
i,j . between a pair of nodes (vi, vj ). in MKIN based on the context of a post p. 

In particular, we consider three categories of e
p
i,j ., including “positive”, “negative”, 

and “no relation” as the edges identified in MKIN, and define the edge classifier as 
Pr(êp

i,j ) = MLP([qp||vi ||vj ]). where ê
p
i,j . is the estimated edge label of e

p
i,j .. qp . is 

the domain-invariant representation of a post p ∈ Ps . and vi . and vj . are the BERT-
encoded representation of nodes vi, vj ∈ V., respectively. We optimize the edge 
classifier with cross-entropy loss between ep

i,j . and êp
i,j .. 

We then measure the overall uncertainty of each knowledge triple in MKIN in the 
target domain based on the entropy of the estimated edge labels obtained from the 
edge classifier. Formally, let ti,j = (vi, ei,j , vj ). be the knowledge triple containing 
nodes vi . and vj ., and the uncertainty of each knowledge triple ti,j . is computed as 

.ui,j = −
∑
p∈Pt

Pr(êp
i,j ) × log Pr(êp

i,j ) (5.6) 

We further retrieve the top K knowledge triples with the highest uncertainty 
scores and K is a tunable hyperparameter to be determined based on the model 
performance and budget. The retrieved knowledge triples are then sent to the expert 
workers for applicability verification. We show the details of the crowdsourcing 
task in the Evaluation section. Finally, we update MKIN with the expert-verified 
knowledge triples (i.e., the knowledge triples verified by the crowd experts) and 
further optimize the discriminative encoder network and classification network in 
DRL to accurately detect false information in the tar get domain.

5.2.2 CollabGeneral: A Crowd-AI Hybrid Learning 
Framework 

CollabGeneral is a crowd-AI hybrid learning framework that integrates AI and 
crowd intelligence to optimize model generality in AI-based Damage Assessment 
(ADA) applications. 

1. Generality-aware Deep Optimization (GDO): It designs a novel deep model 
optimization scheme that effectively learns a set of ADA model instances to 
achieve a good trade-off between AI model generality and specificity through 
a novel generality-aware network optimization design. The learned ADA model 
instances are then used to identify the subset of image samples for crowd 
intelligence query.
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2. Subjective Logic-driven Crowd-AI Fusion (SCF): It develops a principled sub-
jective logic-driven crowd-AI fusion framework to effectively integrate the class 
labels generated by the ADA model instances from GDO module and the crowd 
labels returned by crowd intelligence query to derive accurate ADA results for 
each studied disaster event. 

5.2.2.1 Generality-Aware Deep Optimization 

We first present the generality-aware deep network optimization design to learn a 
set of ADA model instances that have a high likelihood of achieving an optimized 
trade-off between the model generality and specificity in ADA applications. We first 
introduce a key definition for the module. 

Definition 5.5 (Deep Estimation Network ( �.)) We define �. to be the deep 
estimation network (i.e., AI model) in the GDO module that estimates the class 
labels from the input image samples. Rather than reinventing the wheel, we set �. 

to be a representative convolutional neural network (e.g., ResNet, VGG, DenseNet) 
that is designed to perform the image-based multi-class classification tasks. 

Given the deep estimation network �., the next step is to learn the optimal 
network instance of �. for accurate event-wise ADA performance. To that end, 
the GDO module introduces two sets of loss functions to explicitly supervise the 
network optimization process and derive the optimal network instance that can 
achieve a good trade-off between ADA model generality and specificity. We first 
define the accuracy-aware loss function for �. as: 

.L1 =
∑

∀Dt∈D

K∑
k=1

||Pr(Ŷ �
Dt

	= k|YDt = k)||2 (5.7) 

where L1 .denotes the accuracy-aware loss function for �.. Dt . is a disaster event from 
the set of studied events D .. K denotes the number of unique classes in the ADA 
application of interest. Ŷ �

Dt
. and YDt . indicate the estimated class labels from �. and 

ground-truth class labels for all imagery data from disaster event Dt ., respectively. 
|| · ||2 . is the L2-norm of a matrix. The objective of the accuracy-aware loss is to 
supervise �. to accurately estimate the class labels from all input imagery data. 
However, a limitation of L1 . loss function is that L1 . only focuses on the overall 
ADA performance but may not supervise �. to achieve optimized ADA performance 
on each individual disaster event. Therefore, we further define the generality-aware 
loss function for �. to address such a limitation as: 

.

L2 =
∑

∀Dt1 ,Dt2∈D,Dt1 	=Dt2

K∑
k=1

||Pr(Ŷ �
Dt1

= k|Dt1, YDt1
= k)

−Pr(Ŷ �
Dt2

= k|Dt2, YDt2
= k)||2

(5.8)
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where L2 . is the generality-aware loss function for �.. Dt1,Dt2 . represent any two 

different disaster events from the set of studied disaster events D .. Ŷ �
Dt1

. and Ŷ �
Dt2

. 

indicate the estimated class labels for all imagery data from event Dt1 . and Dt2 ., 
respectively. YDt1

. and YDt2
. indicate the ground-truth class labels for all imagery 

data from event Dt1 . and Dt2 ., respectively. We then combine the two loss functions 
to derive the overall loss function for �. to learn the optimal network instance of �. 

as: 

.LOverall = L1 +L2 (5.9) 

Using the overall loss function above, the optimal network instances of �. can 
be learned by investigating the trade-off between the exploitation and exploration 
during the network optimization process through a budget-constrained multi-armed 
bandit learning process [10]. On the one hand, we keep tuning the same network 
instance that achieves the low value for LOverall .. On the other hand, we take action 
to attempt new network instances to prevent the model from being trapped in a local 
optimum. Such an optimization strategy could jointly explore the large network 
instance space while finding the optimal network instance for �.. 

After performing the budget-constrained multi-armed bandit learning process, 
one possible solution to obtain the optimal network instance is to use the network 
instance with the lowest value ofLOverall . as the optimal network instance. However, 
the optimized network instance could be overfitted to the training/validation data 
and lead to non-negligible performance degradation when it is applied to the testing 
data due to the potential feature discrepancy between the training/validation and 
testing sets [28]. To address such an issue, the GDO module not only exploits 
the network instances with the lowest value of LOverall . but also explores other 
candidate network instances with low values of LOverall .. We formally define the 
network instances generated by the GDO module as follows. 

Definition 5.6 (Optimized Network Instance Set ( M).) We define the set of 
network instances learned by the GDO module as M = {M1,M2, · · · ,MJ }., which 
includes network instances with top J lowest values in LOverall .. In addition, Mj . 

indicates the j th . learned network instance. 

Note that all network instances in M . are the instances of the deep estimation 
network �.. To generate different network instances in M ., the GDO module keeps 
tracking the LOverall . of different network instances generated during one budget-
constrained multi-armed bandit learning process. The GDO module then adds the 
network instances with top J lowest values in LOverall . to M .. The above design 
avoids the low computational efficiency of performing the budget-constrained multi-
armed bandit learning process J times to generate different network instances in M .. 

CollabGeneral then jointly leverages the identified network instances and crowd 
intelligence to derive accurate ADA results for all studied disaster events, which 
will be discussed in the next subsection.
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5.2.2.2 Subjective Logic-Driven Crowd-AI Fusion 

In this module, we design a novel subjective logic-driven crowd-AI fusion frame-
work to fuse the AI and crowd intelligence to derive the accurate ADA results for 
all studied disaster events to address the ADA model generality problem. 

We first discuss how to perform crowd intelligence query Q to collect crowd 
intelligence for the SCF module. We observe that it is impractical to query the crowd 
intelligence for all studied image samples due to the budget and resource constraints, 
which is especially challenging in ADA applications with massive social media 
data inputs [19]. Therefore, the SCF module samples a subset of image samples 
for Q in which different network instances in M . (Definition 5.6) cannot reach a 
consensus on. We first measure the divergence of the class labels estimated by all 
network instances in M . for each image sample Xi . using Shannon entropy [22]. 
The divergence indicates the degree of disagreement between different network 
instances in M .on the estimated class label for Xi .. We then select the image samples 
with top δ × I . highest divergence for Q. Here, δ . indicates the percentage of studied 
disaster-related imagery data that are sampled for Q. δ . is determined by the trade-
off between the ADA model performance and the crowdsourcing cost in the ADA 
application of interest. I is the total number of studied images.

The next step is to effectively fuse the crowd labels returned by Q with the 
estimated labels generated by different network instances in M .. In particular, we 
define: 

Definition 5.7 (Crowd-AI Fusion Committee ( S).) We define S = {S1, S2, . . . ,
SC}. as a crowd-AI fusion committee, which contains all J different optimized 
network instances M . learned by the GDO module and all B different crowd worke rs
W . in an ADA application. In particular, we have S = M ∪ W , where C = J + B .. 
C is the size of committee S ., and Sc . is a committee member in S . (i.e., either an AI 
network instance or a crowd worker. 

The goal of the SCF module is to effectively fuse the inputs from all members 
in S . to derive the accurate ADA labels for the studied disaster events. To that end, 
we first define the “opinion” of each committee member towards the class label of 
each image sample through subjective logic, a probabilistic logic that models the 
epistemic uncertainty and source trust when combining the opinions from different 
sources [15]. The subjective logic was leveraged to explicitly model each committee 
member’s uncertainty and reliability in estimating the ADA labels for all disaster 
events. 

Definition 5.8 (Committee Member Opinion Entity ( E .)) For a member Sc .,  we  
define Ek

Sc
= {T k

Sc
, F k

Sc
, Uk

Sc
}. as the member’s opinion on whether an image sample 

belongs to a particular class k or not. In particular, we hav e:

. T k
Sc

, F k
Sc

, Uk
Sc

∈ [0, 1], T k
Sc

+ Fk
Sc

+ Uk
Sc

= 1 (5.10)
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where T k
Sc

. and Fk
Sc

. indicates Sc .’s belief and disbelief in the class label of an image 

sample to be k, respectively. Uk
Sc

. indicates Sc .’s uncertainty in determining if the 
class label of an image sample is k or not.

Given the opinion entity of each committee member, we can utilize the consensus 
operation from subjective logic to combine the opinions of different committee 
members. Consensus operation is a key operation in subjective logic that is used 
to determine the shared belief and uncertainty of two sources by considering the 
individual belief and uncertainty of each source. In particular, we can use the 
consensus operation ⊕. to combine the opinions from any two committee member 
Sp . and Sq . as follows: 

. E
K
Sp,Sq

= {T k
Sp,Sq

,F k
Sp,Sq

, Uk
Sp,Sq

} = Ek
Sp

⊕ Ek
Sq

(5.11) 

where EK
Sp,Sq

. indicates the opinion entity after combining the opinions from both 
Sp . and Sq ., which indicates their collective opinions on whether an image sample 
belongs to a particular class k or not. 

Then, we can recursively adopt the consensus operation ⊕. to combine the 
opinions from all committee members in the crowd-AI fusion committee as follows: 

. Ek
S = {T k

S , F k
S , Uk

S } = Ek
S1

⊕ Ek
S2

⊕, . . . ,⊕Ek
SC

(5.12) 

Given the combined opinion Ek
S . from all committee members in the crowd-AI 

fusion committee S ., we can leverage it to derive the accurate class label for each 
image sample. In particular, we set the class label estimated by the CollabGeneral 
framework to be the one that has the highest belief value T k

Si,k . among all possible 
class labels k for each studied image sample Xi . as follows: 

. argmax
k∗

T k

Si,k , where k ∈ {1, 2, . . . , K}, set k∗ as Ŷi (5.13) 

where Si,k
. indicates the set of committee members who estimate the class label for 

Xi . as k. 
However, Ek

Sc
. for each committee member Sc . in S . is unknown a  priori  and we 

need to infer the value for each Ek
Sc

. before estimating the accurate class label for 
each image sample. To that end, we further design an iterative learning framework 
in the SCF module to obtain the accurate value for each Ek

Sc
.. In particular, we first 

introduce two important concepts in the iterative learning framework. 

Definition 5.9 (Committee Member Reliability ( R).) We define Rk
c . to be the 

probability of a committee member Sc . in correctly estimating the class label of 
an image from class k.
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Definition 5.10 (Image Sample Discriminative Score ( Z).) We define Zk
i . as the 

discriminative score of an image sample Xi . in terms of identifying the reliable 
committee member that can correctly estimate the label for image samples of class k. 

Given the above two definitions, we note that the values of both committee 
member reliability R . and the image sample discriminative score Z . are unknown 
and depend on each other. Therefore, we optimize R . and Z . alternately as follows. 

First, we optimize the image sample discriminative score Z . given the committee 
member reliability R . as follows: 

.Zk
i =

∑
Sp,Sq∈Si,k Rk

p × Rk
q × Nk

Sp,Sq

Nk
Sq∑

Sp,Sq∈Si,k Rk
p × Rk

q

(5.14) 

where Si,k
. is the set of crowd-AI committee members who estimate the class label 

of Xi . to be k. Sp . and Sq . are any two committee members in Si,k
.. Rk

p . and Rk
q . are 

the reliability of Sp . and Sq ., respectively. Nk
Sp,Sq

. is the number of image samples 

where both Sp . and Sq . estimate the class label to be k. Nk
Sq

. is the number of image 

samples where Sq . estimates the class label to be k. In addition, Zk
i . is set to be 0 if 

there is only 1 or no committee member label Xi . to be k. Intuitively, a high value 
of Zk

i . indicates a high likelihood that the estimated class label for Xi . is to be k, and 
vice versa. 

Then, we compute the committee member reliability R . using the updated image 
sample discriminative score Z . as: 

.Rk
c =

∑
∀i∈�

Sc
k

(
Zk

i × ∑
Sp∈Si,k

Nk
Sp,Sc

Nk
Sc

)
∑

∀i∈�
Sc
k

Zk
i

(5.15) 

where �
Sc

k
. indicates the set of all image samples where Sc . estimates the class label 

to be k. Intuitively, a high value of Rk
c . indicates that the class labels estimated by Sc . 

are more likely to be correct. 
Given the above two definitions, we can obtain the optimal value for all Zk

i

∗
. 

and Rk
c
∗
. by iteratively updating all Zk

i . and Rk
c . until their values convergence (e.g., 

the values of Zk
i . and Rk

c . remains unchanged between two consecutive iterations). 
We then leverage Zk

i

∗
. and Rk

c
∗
. to derive the optimal opinion entity Ek

Sc

∗
. for each 

committee member as follows: 

. Uk
Sc

∗ = 1 − �(Z), T k
Sc

∗ = �(Z) × Rk
c

∗
, F k

Sc

∗ = 1 − T k
Sc

∗ − Uk
Sc

∗
(5.16)
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where �(·). is a normalization function to normalize the input between 0 and 1. 
Z = ∑

∀i∈�
Sc
k

Zk
i

∗
. indicates the likelihood that Sc . is certain about estimated labels 

for images of class k. 
The learned opinion entity Ek

Sc

∗
. is then plugged in Eq. (5.12) to derive the 

accurate class labels for all imagery data in each studied disaster event. 

5.3 Real-World Case Studies 

5.3.1 Emergent Healthcare Truth Discovery 

In this section, we evaluate the healthcare truth discovery performance of Crow-
dAdapt in various domain adaptation scenarios. In particular, we adopt COVID-19 
as the source domain, and choose Mpox and Polio as the target domains to 
evaluate the domain adaptation effectiveness of CrowdAdapt. COVID-19 has been 
a popular healthcare domain of false information since the beginning of the global 
pandemic, and many efforts have been made to combat the spread of COVID-19 
false information. The recent outbreaks of Mpox (in May 2022) and Polio (in July 
2022) are trending healthcare domains that have attracted a non-trivial amount of 
false information but lack sufficient timely resources for truth discovery. Therefore, 
we consider Mpox and Polio as the target healthcare domains in the study. 
Evaluation results from extensive experiments show that CrowdAdapt achieves 
significant performance gains compared to state-of-the-art baselines in terms of 
early healthcare truth discovery accuracy. 

5.3.1.1 Data 

Source Articles 

We focus on two types of source articles, including the medical news articles 
and fact-checking articles. The medical news articles are online articles from 
reliable medical news publishers (e.g., CDC, Mayo Clinic) discussing the up-to-date 
medical information (e.g., official guidance, treatments, precautions) related to the 
source domain. The fact-checking articles are the reports published by professional 
journalists and scholars on mainstream fact-checking websites (e.g., FactCheck.org, 
Politifact) concerning the false information related to the source domain. We finally 
collected 259 source articles in the study.
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Posts 

We collect social media posts from both the source and target domains to study the 
domain adaptation performance of CrowdAdapt. 

Source Posts 

The goal of CrowdAdapt is to leverage existing annotated datasets in the source 
domain (i.e., source posts) to detect false information in an emergent healthcare 
domain that has limited or no annotated data (i.e., target posts). Therefore, we use 
five widely adopted public COVID-19 false information datasets with ground-truth 
labels as the source post datasets, including Constraint [26], COVIDRumor [5], 
MMCoVar [4], ANTiVax [12], and CMU-MisCov19 [23]. We use the ground-truth 
labels provided in each dataset and remove invalid posts that are duplicates or 
cannot be retrieved. We note that existing COVID-19 false information datasets (i.e., 
Constraint, COVIDRumor, MMCoVar, ANTiVax) primarily annotate the source 
posts into binary classes (i.e., correct or incorrect). Following such a conventional 
practice, we adopt the original binary labels in each dataset for the experiments. For 
the dataset with non-binary ground-truth labels, such as CMU-MisCov19 which 
also categorizes COVID-19 posts into topic-based classes (e.g., “True Prevision”, 
“False Fact or Prevention”), we further group these non-binary labels into binary 
classes in terms of their veracity meaning. A summary of the source post datasets is 
presented in Table 5.1. While we focus on binary classification in the experiments, 
we also acknowledge that healthcare truth discovery is a complex problem where 
certain posts may not be sufficiently classified into binary classes. We believe the 
designed framework of CrowdAdapt can be further extended to address the multi-
class healthcare truth discovery problem. The details about the generalization of 
CrowdAdapt will be discussed in the Discussion section. 

Target Posts 

We collect the target posts from Twitter based on the relevant keywords in the Mpox 
and Polio domains. For each dataset, we randomly select 500 posts as the test set 
to evaluate the early truth discovery performance and use the remaining data for 
the unsupervised training in CrowdAdapt. We invite three independent healthcare 

Table 5.1 Summary of source post datasets 

Dataset #  Posts # Incorrect # Correct 

Constraint 10,700 5600 5100 

COVIDRumor 5505 3661 1844 

MMCoVaR 2791 1315 1476 

ANTiVax 12,326 4156 8170 

CMU-MisCov19 3114 1269 1845
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Table 5.2 Summary of 
target post datasets 

Mpox Polio 

#  Posts 9156 12,893 

# Annotated posts 500 500 

# Incorrect 168 141 

# Correct 332 359 

Date range 5/1–5/31, 2022 7/1–7/31, 2022 

experts to annotate the target posts in the test sets and obtain the ground-truth labels 
based on their majority votes to ensure the label quality. We summarize the target 
post datasets in Table 5.2. 

5.3.1.2 Baseline Methods and Experimental Setting 

Baselines and Implementation Details 

We compare CrowdAdapt with state-of-the-art baselines in domain adaptive and 
knowledge graph based truth discovery. 

• BDANN [39]: BDANN is a BERT-based domain adaptation solution for multi-
modal truth discovery. We exclude the visual features in BDANN and leverage 
the BERT-based feature extraction model trained on the source posts to classify 
target posts. 

• MDA-WS [21]: MDA-WS is a weakly supervised domain adaptive truth discov-
ery framework that leverages labeled source domain news articles and the word 
frequency based weak labels of target domain news articles to distinguish truthful 
news from the false ones in the target domain. 

• EANN [35]: EANN is an event adversarial network framework that learns 
transferable features from source news events for truth discovery on emerging 
news events. 

• DETERRENT [7]: DETERRENT is a graph attention network solution that 
utilizes relational medical knowledge to detect incorrect healthcare news. 

• CompGCN [34]: CompGCN is an advanced multi-relational knowledge graph 
solution that exploits the entity and their relations to extract key information from 
graph data. 

To ensure a fair comparison, we keep the source and target posts to all compared 
methods the same in the evaluation. In addition, for the knowledge graph based 
methods (i.e., DETERRENT, CompGCN, CrowdAdapt), we use the same MKIN 
constructed in CrowdAdapt as the medical knowledge graph for classifying mislead-
ing posts. We strictly follow the model configurations of all baselines as documented 
in the original papers and carefully tune the hyperparameters to obtain the best 
results. In the experiments, we utilize all the source posts and unlabeled target posts 
for the unsupervised training of the encoder network and the domain discriminator
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network. Additionally, we use the labeled source posts for the supervised training of 
the classification network. We adopt the commonly used metrics for classification 
evaluation, including Accuracy (Acc.), Precision (Prec.), Recall, and F1 Score (F1). 

In the model implementation, we set the dimensions of the node embeddings and 
post embeddings as 768. The total number of epochs is set to 80 with a batch size of 
32. We adopt an initial learning rate of 0.0001 with a decay of 0.95. We set the total 
number of retrieved uncertain knowledge triples K as 100. We run the experiments 
on Ubuntu 20.04 with four NVIDIA A40 GPUs. 

Crowdsourcing Platform

We choose Amazon Mechanical Turk (AMT) as the crowdsourcing platform to 
acquire expert knowledge in the target domain from healthcare professionals. AMT 
is one of the largest crowdsourcing platforms that provides 24/7 crowdsourcing 
services from a large number of crowd workers with diversified expertise. In 
particular, we recruit the expert workers who have been verified by AMT as 
“healthcare experts” to participate in the study [33]. In addition, we also developed 
a domain screening test for each studied target domain to ensure the qualification of 
the expert workers. The qualified expert workers will be assigned to the knowledge 
triple verification tasks (Fig. 5.3). To ensure the quality of the response, we only 
select qualified expert workers with 95% or higher Human Intelligence Task (HIT) 
rate. To reduce the potential bias in the crowdsourcing responses, we recruited 5 
expert workers for each knowledge triple verification task and applied the majority 
voting to resolve any conflicts between the responses. The inter-rater agreement of 
the responses for the Mpox and Polio datasets are 0.74 and 0.71 in terms of the 
kappa score, and 0.87 and 0.85 in terms of intraclass correlation coefficient (ICC), 
respectively. A kappa score above 0.60 and an ICC above 0.75 indicate substantial 
agreement among the annotators [3]. We pay $0.47 per knowledge triple in the 
experiment, including the payment to both the expert worker and AMT. 

Fig. 5.3 Example of 
knowledge triple verification 
task



102 5 Data Sparsity and Model Generality

5.3.1.3 Truth Discovery Performance 

We first compare the truth discovery performance of CrowdAdapt with all baseline 
schemes for detecting incorrect posts in the Mpox and Polio target domains. The 
evaluation results on the Mpox and Polio datasets are shown in Tables 5.3 and 5.4, 
respectively. We observe that CrowdAdapt consistently outperforms all compared 
baselines on all source datasets for detecting false information in both Mpox and 
Polio datasets. For example, on the Mpox dataset, CrowdAdapt achieves a 1.2, 7.1, 
9.1, 6.5, and 5.2% performance improvements against the best-performing baseline 
(i.e., DETERRENT) in terms of the F1 score on the Constraint, COVIDRumor, 
MMCoVar, ANTiVax, and CMU-MisCov19, respectively. We also observe similar 
performance gains on the Polio dataset. The performance gains can be attributed to 
the crowdsourcing-based domain adaptive knowledge verification strategy in Crow-
dAdapt that leverages the medical knowledge of expert workers to examine and 

Table 5.3 Detection performance in target domain—Mpox 

BDANN MDA-WA EANN DETERRENT CompGCN CrowdAdapt 

Constraint 

Accuracy 0.554 0.624 0.576 0.636 0.622 0.640 
Precision 0.443 0.667 0.596 0.682 0.651 0.688 
Recall 0.587 0.614 0.606 0.643 0.609 0.652 
F1 0.505 0.639 0.601 0.662 0.630 0.670 
COVIDRumor 

Accuracy 0.658 0.628 0.534 0.672 0.648 0.682 
Precision 0.638 0.626 0.558 0.668 0.659 0.702 
Recall 0.733 0.748 0.563 0.727 0.677 0.793 
F1 0.683 0.682 0.560 0.696 0.668 0.745 
MMCoVaR 

Accuracy 0.532 0.604 0.548 0.628 0.588 0.642 
Precision 0.483 0.627 0.471 0.617 0.625 0.699 
Recall 0.467 0.619 0.474 0.649 0.603 0.682 
F1 0.475 0.623 0.472 0.633 0.614 0.691 
ANTiVax 

Accuracy 0.606 0.592 0.584 0.638 0.618 0.648 
Precision 0.593 0.590 0.558 0.676 0.637 0.693 
Recall 0.612 0.601 0.564 0.618 0.607 0.681 
F1 0.602 0.596 0.557 0.645 0.621 0.687 
CMU-MisCov19 

Accuracy 0.634 0.681 0.592 0.697 0.676 0.727 
Precision 0.658 0.661 0.613 0.683 0.669 0.708 
Recall 0.641 0.692 0.596 0.689 0.702 0.736 
F1 0.649 0.676 0.604 0.686 0.685 0.722

The bold values indicate the best performing results in each evaluation metric
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Table 5.4 Detection performance in target domain—Polio 

BDANN MDA-WA EANN DETERRENT CompGCN CrowdAdapt 

Constraint 

Accuracy 0.642 0.636 0.644 0.674 0.652 0.692 
Precision 0.681 0.673 0.618 0.687 0.635 0.706 
Recall 0.613 0.625 0.652 0.667 0.661 0.687 
F1 0.645 0.649 0.634 0.677 0.648 0.697 
COVIDRumor 

Accuracy 0.702 0.658 0.664 0.688 0.660 0.722 
Precision 0.688 0.678 0.681 0.671 0.657 0.709 
Recall 0.701 0.646 0.629 0.693 0.673 0.744 
F1 0.694 0.661 0.654 0.682 0.665 0.726 
MMCoVaR 

Accuracy 0.616 0.602 0.626 0.664 0.642 0.712 
Precision 0.602 0.635 0.617 0.641 0.639 0.703 
Recall 0.617 0.591 0.631 0.677 0.655 0.726 
F1 0.609 0.612 0.624 0.659 0.647 0.714 
ANTiVax 

Accuracy 0.634 0.652 0.676 0.672 0.668 0.706 
Precision 0.619 0.643 0.651 0.674 0.683 0.693 
Recall 0.657 0.659 0.685 0.698 0.659 0.716 
F1 0.638 0.651 0.667 0.686 0.671 0.704 
CMU-MisCov19 

Accuracy 0.669 0.681 0.676 0.708 0.692 0.731 
Precision 0.675 0.696 0.663 0.689 0.661 0.728 
Recall 0.684 0.672 0.680 0.703 0.686 0.719 
F1 0.679 0.684 0.671 0.696 0.673 0.723 

The bold values indicate the best performing results in each evaluation metric

correct the knowledge triples in MKIN for the accurate detection of incorrect posts 
in the target domain. In addition, the significant performance improvements over 
knowledge-agnostic domain adaption solutions also highlight the importance of 
medical knowledge in detecting false information in emergent healthcare domains. 

5.3.1.4 Ablation Study 

We study the importance of the key components in the CrowdAdapt framework. 
In particular, we consider three variants of CrowdAdapt, including: (1) Crow-
dAdapt\G that excludes the MKIN and only extracts the domain-invariant repre-
sentation from the post content to detect false information, (2) CrowdAdapt\P that 
removes the post-based knowledge refinement and only applies the mean-pooling 
layer to obtain the knowledge representation from MKIN, (3) CrowdAdapt\U that
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Table 5.5 Results of ablation study 

Target Constraint COVIDRumor MMCoVaR ANTiVax 

domain Method Acc. F1 Accuracy F1 Accuracy F1 Accuracy F1 

MPox CrowdAdapt 0.640 0.670 0.682 0.745 0.642 0.691 0.648 0.687 
CrowdAdapt\G 0.602 0.647 0.644 0.713 0.612 0.653 0.616 0.659 

CrowdAdapt\P 0.616 0.655 0.658 0.726 0.620 0.664 0.628 0.663 

CrowdAdapt\U 0.624 0.661 0.662 0.721 0.632 0.676 0.634 0.671 

Polio CrowdAdapt 0.692 0.706 0.722 0.726 0.712 0.714 0.706 0.704 
CrowdAdapt\G 0.668 0.677 0.684 0.691 0.688 0.697 0.678 0.687 

CrowdAdapt\P 0.672 0.683 0.688 0.679 0.696 0.701 0.684 0.688 

CrowdAdapt\U 0.676 0.681 0.692 0.681 0.702 0.709 0.692 0.698 

The bold values indicate the best performing results in each evaluation metric

excludes knowledge triples verified and corrected by expert workers, and only uses 
the original knowledge triples in MKIN to guide the truth discovery. 

The results of the ablation study on the Mpox and Polio datasets are summarized 
in Table 5.5. We observe that CrowdAdapt achieves its best truth discovery perfor-
mance when it incorporates all key components in the framework. In particular, 
we observe that the incorporation of the expert-verified knowledge triples in 
MKIN greatly enhances the domain adaptive truth discovery on the target domain 
which further validates the effectiveness of crowdsourced expert knowledge in 
CrowdAdapt. 

5.3.1.5 Effect of Expert-Verified Knowledge Triples 

We further investigate the effect of expert-verified knowledge triples on the detec-
tion performance of CrowdAdapt in the target domain. In particular, we vary the 
number of expert-verified knowledge facts to be annotated by the expert workers 
from 0 to 100% of the K retrieved knowledge triples in the CKU module. The results 
are reported in Fig. 5.4. We use the COVIDRumor dataset as the dataset in the source 

Fig. 5.4 Effect of expert-verified knowledge triples. (a) Mpox. (b) Polio
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domain of COVID-19 and evaluate the domain adaptive truth discovery performance 
in the target domains of both Mpox and Polio. We observed similar performance 
gains on other COVID-19 datasets and omitted the evaluation results due to the page 
limit. In particular, we observe the overall performance of CrowdAdapt improves as 
the number of expert-verified knowledge triples increases and gradually plateaus 
after the number of expert-verified knowledge triples reaches 75% of the retrieved 
knowledge triples. A possible reason is that, as we retrieve additional knowledge 
triples from MKIN to be verified by the domain experts, the newly retrieved 
knowledge triples have lower uncertainty scores (i.e., the entropy of the prediction 
results of edge classifier), which are less likely to be corrected by domain experts 
and contribute less to CrowdAdapt for identifying incorrect posts in the target 
domain. 

5.3.2 Disaster Damage Assessment 

5.3.2.1 Data 

In the experiments, we use four publicly available real-world ADA datasets.1 The 
datasets consist of social media images collected from four different disaster events: 
Hurricane Irma (2017), Ecuador Earthquake (2016), Nepal Earthquake (2015), and 
Sri Lanka Flooding (2017). Images in each dataset reflect disaster-specific visual 
characteristics of a disaster (e.g., structure damage vs. flooding damage, urban 
layout vs. rural layout, plateau landscape vs. coastal landscape). Following the 
standard practice in ADA applications [24], we classify the disaster damages into 
three classes including severe damage, medium damage, and no/minor damage. 
Each image is annotated by three independent annotators, with the majority voting 
as the aggregated label. We invited domain experts to cross-validate the aggregated 
label to obtain the final ground-truth annotation. A summary of all datasets is 
presented in Table 5.6. Additionally, we split the training and test sets with a ratio 
of 7:3 and used the training sets to train all compared schemes for ADA tasks and 
evaluate their performance on the testing sets. 

Table 5.6 Statistics of four ADA datasets 

Event Images No/Minor damage Medium damage Severe damage 

Hurricane Irma 893 34.6% 39.6% 25.8% 

Ecuador earthquake 670 41.0% 5.7% 53.3% 

Nepal earthquake 666 41.9% 13.5% 44.6% 

Sri Lanka flooding 144 40.4% 40.3% 19.3%

1 https://crisisnlp.qcri.org/. 

https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
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5.3.2.2 Baseline Methods and Experimental Setting 

In the evaluation, we compare CollabGeneral with a set of state-of-the-art baselines, 
including: (1) Deep Neural Network (DNN): ResNet [32], DenseNet [13], and 
VGG [20]; (2) AI Model Generalization: GTA [27], VS [17], SL [36]; (3) Crowd-
AI Collaboration: Deep Active [29], CrowdLearn [37], SL [36]. 

In the experiments, to ensure the fairness of comparison, we use the same inputs 
for all compared methods. In particular, the inputs to each scheme include: (1) 
the social media images for all studied disaster events in both training and testing 
datasets; (2) the ground-truth labels for social media images in the training dataset, 
where the number of training images from each disaster event is proportional to 
the total number of images from that event as shown in Table 5.6; and (3) the 
labeled social media images returned by the crowd workers. In particular, we use 
the crowd labels to retrain the DNN and AI model generalization baselines to ensure 
all baselines have the same inputs and the performance of compared baselines is 
optimized. For the DNN baselines, we consider two different training settings: (1) 
training a single DNN model for all studied disaster events, which is referred as 
DNN-A (e.g., ResNet-A for ResNet); (2) training four DNN models, one for each 
specific disaster event, which is referred as DNN-S (e.g., ResNet-S for ResNet). 

We use three evaluation metrics that are commonly used to quantify the 
performance of multi-class text classification: (1) F1-score, and (2) Matthews 
Correlation Coefficient (MCC),  (3)  kappa score (Kappa). We use MCC and Kappa 
in the evaluation because the datasets are imbalanced, and these two metrics are 
known to be reliable on imbalanced data [6]. The higher values of the above metrics 
demonstrate better ADA performance. 

We leverage the widely used AMT to acquire crowd intelligence in the exper-
iments. AMT is one of the largest crowdsourcing platforms offering 24/7 crowd-
sourcing services from a massive amount of crowd workers around the world. For 
each task on AMT, we recruit crowd workers who have finished at least 1000 
approved tasks with an overall task approval rate of 95% or above to ensure the 
crowdsourcing label quality. We pay $0.05. per image to the crowd workers and 
follow the IRB protocol approved for this project. 

5.3.2.3 Model Generality on Different Types of Disaster Events 

First we study the ADA model generality with a challenging evaluation setting, 
where the studied disaster events are of completely different types: Ecuador Earth-
quake and Sri Lanka Flooding. We summarize the evaluation results in Table 5.7. 
We observe that CollabGeneral consistently outperforms all compared baselines 
in terms of the ADA performance on each individual event and the overall 
performance across two different types of events. For example, the performance 
gains of CollabGeneral compared to the best-performing baseline (i.e., VS) on the 
Sri Lanka Flooding event on F1-Score, MCC, and Kappa are 5.22, 6.52, and 8.41%, 
respectively.
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Table 5.7 Evaluation results (different types of events) 

Ecuador earthquake Sri Lanka flooding Overall 

Algorithm F1 MCC Kappa F1 MCC Kappa F1 MCC Kappa 

ResNet-A 0.8032 0.6658 0.6513 0.5214 0.4582 0.3732 0.7326 0.6138 0.5851 

DenseNet-A 0.7999 0.6529 0.6444 0.5519 0.4607 0.3942 0.7384 0.6098 0.5904 

VGG-A 0.8023 0.6469 0.6319 0.7105 0.5647 0.5323 0.7785 0.6505 0.6330 

ResNet-S 0.8315 0.6849 0.6833 0.6434 0.5507 0.4850 0.7779 0.6518 0.6426 

DenseNet-S 0.7975 0.6527 0.6399 0.6913 0.5796 0.5372 0.7758 0.6539 0.6363 

VGG-S 0.8132 0.6569 0.6493 0.4837 0.4232 0.3264 0.7270 0.5875 0.5639 

GTA 0.7117 0.4523 0.4516 0.5545 0.4106 0.3733 0.6666 0.4498 0.4488 

VS 0.7724 0.5457 0.5334 0.7502 0.6212 0.5950 0.7561 0.5940 0.5820 

SL 0.8309 0.7058 0.7034 0.6406 0.4897 0.4622 0.7870 0.6668 0.6607 

Deep Active 0.7986 0.6524 0.6452 0.4347 0.4184 0.3329 0.7112 0.5912 0.5695 

CrowdLearn 0.8145 0.6574 0.6552 0.5263 0.4796 0.3955 0.7425 0.6074 0.5938 

LL4AL 0.7886 0.6133 0.6123 0.4177 0.3830 0.3110 0.7018 0.5565 0.5459 

CollabGeneral 0.8574 0.7267 0.7266 0.8024 0.6864 0.6791 0.8436 0.7388 0.7384 

The bold values indicate the best performing results in each evaluation metric

Fig. 5.5 Performance comparisons on different number of events 

5.3.2.4 Model Generality on Different Number of Events 

Second we evaluate the ADA performance of CollabGeneral when there exist 
more than two disaster events. In particular, we evaluate CollabGeneral up to four 
different disaster events by leveraging all possible disaster events available in the 
datasets. In the experiments, we evaluate the ADA performance by comparing 
CollabGeneral with the best-performing baselines in each category. The results are 
presented in Fig. 5.5. Note that we only show the evaluation results on the F1-
Score due to the page limit. The evaluation results on other metrics are similar.
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We observe that CollabGeneral continuously outperforms all compared baselines on 
both individual events and overall performance when the number of studied disaster 
events increases. This is because the subjective logic-based crowd-AI framework 
design effectively improves the ADA model generality without sacrificing the 
model’s specificity on each studied disaster event. 

5.4 Discussion 

This chapter has examined the critical challenges of data sparsity and model general-
ity in social intelligence applications. We reviewed two representative frameworks, 
CrowdAdapt and CollabGeneral, to demonstrate the great potential of leveraging 
collective human intelligence to address the data sparsity and model generality 
problems in social intelligence. Two real-world case studies on emergent health truth 
discovery and disaster damage assessment demonstrated the effectiveness of inte-
grating the domain expertise of expert workers with advanced AI techniques through 
knowledge adaptation strategies and principled crowdsourcing mechanisms. In par-
ticular, the experimental results show that incorporating human knowledge through 
carefully designed crowdsourcing mechanisms can significantly improve model 
performance in low-resource domains while maintaining strong model generality. 
However, there exist a few limitations in such human-AI collaborative approaches, 
such as the scalability and quality control in crowdsourcing. 

The first limitation lies in the scalability of the proposed frameworks. Scalability 
is an important factor for social intelligence solutions, especially given the explosive 
amount of social intelligence data (e.g., social media posts, online news, web 
content) and emerging domains (e.g., disease outbreaks, disaster events). The 
efficiency of analyzing social intelligence data is critical for providing timely 
prediction results in the early stages of emerging events. In particular, the time 
complexity of CrowdAdapt and CollabGeneral in the inference phase only grows 
linearly with respect to the number of social media posts to be classified in the 
target domain/event. To address the scalability challenge of classifying a number of 
posts in an emergent domain/event, a possible solution is to implement CrowdAdapt 
and CollabGeneral on distributed GPU clusters or cloud computing platforms to 
improve computing efficiency. For example, the knowledge graph construction 
and neural network inference can be parallelized across multiple GPUs, while the 
crowdsourcing tasks can be distributed through cloud-based task scheduling [1]  to  
enable real-time processing of large-scale social media data s treams.

The second limitation lies in the unknown expertise of the crowd workers. 
The case studies recruit expert workers with premium qualifications or high task 
approval rates to finish the human intelligence tasks. While majority voting and 
interrater agreement are considered to reduce the uncertainty in the crowdsourcing 
responses, it is still possible that some expert workers have less relevant experience 
or knowledge to provide accurate responses to the crowdsensing tasks (e.g., knowl-
edge triple verification, damage assessment annotation). To lift the assumption that
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the crowdsourcing responses are equally valid and accurate, a potential solution is 
to explicitly quantify the confidence and certainty of each crowdsourcing response, 
such as asking expert workers to provide their confidence level in each response. 
Such confidence-aware responses can be further integrated into the knowledge adap-
tation framework via the uncertainty-aware information aggregation strategy [9]  to  
reduce the overall uncertainty of crowdsourcing responses.

We envision that future research in human-AI collaborative systems will continue 
to grow and advance in social intelligence. First, more sophisticated knowledge 
adaptation mechanisms can be developed to automatically transfer and update 
domain knowledge with minimal and efficient human interventions. For exam-
ple, meta-learning approaches could be developed to learn generalizable patterns 
across different domains and reduce the number of human-labeled data in the 
target domain/event. Second, large language models (LLMs) can be integrated 
into these social intelligence frameworks to assist with knowledge extraction, 
domain adaptation, and human-AI interaction. For example, LLMs may help with 
validating crowd responses, generating preliminary knowledge graphs for emerging 
domains/events, or facilitating more natural interactions between crowd workers 
and AI systems. These advances will help realize the full potential of human-AI 
collaboration in addressing emerging societal challenges across diverse domains in 
social intelligence. 
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Chapter 6 
Explainable AI (XAI) in Social 
Intelligence 

Abstract Explainability has been a critical aspect in social intelligence applications 
that analyze human-centered data and can directly impact human decision-making 
and well-being. This chapter presents two graph-based AI-driven explanation 
approaches, HC-COVID and DExFC, that address several fundamental challenges 
in developing explainable social intelligence systems. These challenges include 
the varying knowledge fact quality contributed by humans with diverse expertise, 
lack of modality-level annotations, and diverse cross-modal explanations. Through 
extensive experiments on real-world social intelligence case studies, including 
COVID-19 news truth discovery and fauxtography detection, both frameworks 
demonstrate significant performance gains in both prediction accuracy and expla-
nation quality compared to state-of-the-art baselines. 

Keywords Explainable AI · XAI · Black box · Interpretability · Hybrid 
knowledge graph · Multimodal explanation · Fauxtography 

6.1 Collaborative Explanation for AI 

The explainability of AI is the capability of intelligent systems to provide clear 
and understandable explanations about the rationale behind their decisions and 
predictions [4]. Such capability is particularly important in social intelligence 
applications that analyze human-centered data and can directly impact human 
decision-making and well-being. For example, a health truth discovery model has 
to provide accurate and well-justified explanations to common social media users 
who often do not have sufficient medical knowledge to accurately identify false 
claims about health issues. Such explanations help users understand why certain 
health claims are identified as true or false and support their better-informed health 
decisions. More importantly, with the proliferation of multimodal content (e.g., text, 
image, video) on online and social media, the explainability of social intelligence 
solutions becomes more and more critical. For example, when analyzing multimodal 
social media posts that combine text and images, a social intelligence system 
needs to explain how the textual claims and/or the visual elements contribute to 
the prediction results (e.g., false information, hate speech). Such an explanation is 
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essential not only for building user trust in AI-driven social intelligence systems but 
also for identifying potential biases and failure cases in these complex multimodal 
social intelligence models. 

Recent efforts have made significant progress in developing explainable AI 
solutions for social intelligence applications. Existing solutions have focused on 
content-based features (e.g., textual content [30], visual information [21]), context-
based factors (e.g., user comments [49], social interaction [38]), and auxiliary 
information (e.g., news cascade patterns [37]). Recently, a few initial efforts 
have been made to leverage knowledge graphs to enhance the explainability of 
social intelligence systems by exploring the implicit relationship between diverse 
entities and/or data modalities [11, 27, 39]. However, current knowledge graph-
based solutions often fall short in handling emerging phenomena and novel content 
patterns in social intelligence. This is because these solutions mainly rely on 
static knowledge facts extracted from existing documents (e.g., literature, archives), 
which often fail to capture rapidly evolving events or topics in social intelligence 
applications (e.g., disaster response, emerging truth discovery). We elaborate on a 
few fundamental challenges in developing effective explainable social intelligence 
systems. 

Varied Knowledge Fact Quality 

The extraction of knowledge facts (i.e., a pair of entities and their relation as 
shown in Fig. 6.1) in social intelligence systems often requires human efforts due 
to high-quality standards and the complexity and ambiguity of social intelligence 
data. Crowdsourcing has been a widely adopted approach for acquiring such human 
annotations. However, the expertise of human crowd workers often varies due to 

Fig. 6.1 Explainable truth discovery problem
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their diverse backgrounds, domain knowledge, and familiarity with specific social 
intelligence tasks. In particular, expert workers (e.g., workers with professional 
domain knowledge or extensive task experience) typically provide high-quality but 
costly annotations, while non-expert workers offer more affordable but potentially 
noisy inputs due to their unvetted nature [34]. Therefore, it remains a challenging 
problem how to effectively coordinate and integrate the efforts from both expert 
and non-expert workers to extract useful knowledge facts to generate accurate 
explanations for social intelligence solutions. 

Lack of Modality-Level Annotations 

As discussed in Chap. 4, social intelligence systems often handle input from 
different data modalities, and so do their explanations. A possible way to solve the 
explainability problem in social intelligence is to annotate each component of the 
input, such as true or false for a truth discovery problem, and then train a fully 
supervised learning model to identify the false component. However, it is extremely 
time-consuming and expensive to obtain such a large fine-grained training set with 
modality-level labels, even with crowdsourcing [31]. For example, the annotators 
need to annotate all components of a post by considering the text, image, and the 
association between the text and image in addition to the binary ground-truth label 
of the entire post. Moreover, a fully supervised training pipeline with modality-
level annotations will add a non-trivial amount of overheads to the training process 
(e.g., a longer training time and a more complex parameter adjustment procedure). 
Therefore, it is more desirable to develop an explainable social intelligence scheme 
under constrained supervision (e.g., by utilizing a very limited amount of modality-
level annotations in the training), which is not a trivial task. 

Diverse Cross-Modal Explanations 

Another possible solution to solve the explainable problem in multimodal social 
intelligence systems is to apply modality-specific models that generate explanations 
tailored to each modality’s unique characteristics. For instance, when analyzing a 
social media post containing both text and images, the system can employ separate 
explanation mechanisms where the text-based model identifies the key phrases and 
the image-based scheme captures the salient visual components. However, such a 
modality-specific approach largely ignores the association between text and images. 
For example, Fig. 6.2d shows an example of fauxtography where the image itself 
is authentic but is used out of context with a piece of true text to convey incorrect 
information. Therefore, the problem of generating diverse cross-modal explanations 
and identifying the exact modality component in multimodal social intelligence 
remains a challenge to be addressed [24, 25].
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Fig. 6.2 Examples of fauxtography. Example (a) includes both a fake picture and a incorrect text 
description. In example (b), the description tries to fool people by a real photo with a camera close 
to a normal rat. In example (c), though there is such a kind of creature in the world, the color of 
the picture is manipulated by computer software. For example (d), both the text description and 
the image are true. However, the woman mentioned in the text is not the one in the image 

6.2 Social XAI: HC-COVID and DExFC 

This section presents two novel social explainable AI frameworks, HC-
COVID (Hierarchical Crowdsourced Knowledge Graph for COVID-19 Truth 
Discovery) [24] and DExFC (Dual Explainable Fauxtography Detection under 
Constrained Supervision) [25], to tackle the explainability challenge in social 
intelligence. In particular, HC-COVID develops a hierarchical crowdsourced 
knowledge graph-based framework that explicitly models the varied knowledge fact 
quality to accurately explain the prediction results in social intelligence applications. 
DExFC designs a weakly supervised modality-aware explanation mechanism that 
aims to generate cross-modal explanations in multimodal social intelligence with 
constrained modality-level annotation. 

6.2.1 HC-COVID: A Crowdsourced Knowledge Graph 
Approach 

The overview of the HC-COVID scheme is shown in Fig. 6.3. HC-COVID consists 
of four modules: (1) a Crowdsourced Knowledge Graph Constructor (CKGC), 
(2) a Claim-guided Specific Knowledge Propagator (CSKP), (3) a Topic-based 
Generalized Knowledge Integrator (TGKI), and (4) a Joint Claim-Graph-based 
Multi-relational Detector (CGMD). First, CKGC constructs the crowdsourced 
hierarchical knowledge graph (CHKG) by leveraging a group of expert and non-
expert crowd workers to collaboratively identify specific and generalized knowledge 
facts from domain-specific news articles (e.g., COVID-19). Second, the CSKP 
module develops a multi-relational graph neural network to encode input social
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Fig. 6.3 Overview of HC-COVID 

media claims and integrate the claim information with the specific knowledge 
facts in CHKG. Third, the TGKI module explores the generalized knowledge 
facts in CHKG that are strongly correlated with input claims by designing a 
dual hierarchical attention-based neural network. The attention outputs are used 
to retrieve informative graph triples from CHKG as explanations for the social 
intelligence prediction results (e.g., truth discovery). Finally, the CGMD module 
classifies an input claim (e.g., true or false for truth discovery) by jointly exploring 
the encoded claims and CHKG. 

6.2.1.1 Crowdsourced Knowledge Graph Constructor (CKGC) 

The CKGC module aims to construct a crowdsourced hierarchical knowledge graph 
(CHKG) that contains both specific and generalized knowledge facts from domain-
specific news articles. In particular, two novel crowdsourcing tasks for a group of 
expert workers and non-expert workers to analyze a set of domain-specific news 
articles. Unlike traditional crowdsourcing tasks that only assign workers simple 
annotation tasks (e.g., image annotation [8, 48], text classification [15, 41]), CKGC 
designs a novel crowdsourcing task that expects crowd workers to understand 
and summarize the content of domain-specific news articles by leveraging their 
background knowledge. In particular, HC-COVID designs two crowdsourcing task 
interfaces (i.e., the article-level interface and the topic-level interface) for the crowd 
workers. Examples of the two interfaces are shown in Fig. 6.4.  The  article-level 
interface helps workers explore specific knowledge facts in relevant news articles. 
The topic-level interface lets crowd workers focus on the summarized topics from 
the article-level interface and propose generalized knowledge facts that can help 
identify incorrect claims with similar topics. The responses from crowd workers are 
defined as article-level responses and topic-level responses, respectively.
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Fig. 6.4 Crowdsourcing interface and example result. (a) Article level interface. (b) Topic level 
interface. (c) Example CHKG 

Article-Level Response 

The article-level interface requires the non-expert crowd workers to provide specific 
knowledge facts based on a single news article. To integrate the crowd responses into 
CHKG, we specify the following requirements for the crowd worker’s responses. 

• A worker needs to provide a 3-tuple statement as shown in Fig. 6.4a (e.g., “Entity 

1”
relation−−−−→. “Entity 2”). 

• The input entities should match existing terms in the news article. The reason is 
that non-expert workers usually do not have enough domain-specific background 
knowledge to propose novel concepts. However, they can extract key terms from 
the news article to summarize the specific knowledge facts [32]. 

• The input relation should be selected from the pre-defined relation pool that 
includes a set of frequently used relations (e.g., “is”, “close relation to”, “no 
effect on”) identified by crowd workers in the pilot study. 

For example, an article-level response from a non-expert worker could be 

“Pfizer”
no effect on−−−−−−→. “human DNA”, which is a specific knowledge fact for the Pfizer 

vaccine. However, such the COVID-19 knowledge fact summarized from a single 
news article is insufficient to cover the information from other COVID-19 vaccine-
related articles (e.g., articles discussing Moderna or J&J vaccine). To address this 
problem, the non-expert workers are then asked to submit the potential topics of the 
news article they read.
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Topic-Level Response 

While the article-level responses only focus on the specific knowledge within a 
single news article, the topic-level response serves as a complementary measure 
to assign expert workers to propose generalized knowledge. There are two key 
advantages of the topic-level interface: (1) it is both cost- and time-efficient for 
expert workers to focus on abstract topics and propose generalized knowledge that 
can cover the information of different news articles; (2) it significantly improves the 
robustness of the constructed hierarchical knowledge graph because the generalized 
knowledge can cover unseen concepts that are embedded in news articles with 
similar topics. For example, the generalized knowledge fact for Fig. 6.4b could 

be “Vaccine”
no effect on−−−−−−→. “DNA” that covers not only the current major COVID-

19 vaccines (e.g., Pfizer, Moderna) but also the unseen and emerging ones (e.g., 
BNT162b2 in Fig. 6.1b). In particular, the topic-level interface first collects the top-
ics from responses of the article-level interface. Then the topic-level interface shows 
the topics to the expert workers and expects the workers to propose generalized 
knowledge facts related to the given topics. To ensure the quality of both article-
level and topic-level responses from crowd workers, we leverage a set of crowd 
quality control mechanisms (e.g., HITs worker filtering, entity matching) [5, 40]  to  
obtain high-quality responses.

After collecting all responses from both interfaces, the next step is to construct 
CHKG. The responses from both article-level and topic-level interfaces serve as 
triples in the knowledge graph. In particular, the entities in the 3-tuple responses 
are used to construct graph entities, and the relations are used to construct the 
graph edges. We show an example constructed crowdsourcing knowledge graph in 
Fig. 6.4c. Formally, CHKG and its two sub-graphs are defined as below. 

Definition 6.1 (Crowdsourced Article-Level Knowledge Graph ( GS
.)) the 

crowdsourced article-level knowledge graph GS = {VS,ES,T S}. (e.g., the 
blue subgraph in Fig. 6.4c) contains specific knowledge constructed only by 
the triples from the article-level responses where VS

., ES
. and T S

. represent the 
graph entities, graph edges and graph triples, respectively. We further split ES

. as 
ES = {ES,r1 , · · · ,ES,rQ}. where R = {r1, · · · , rQ}. represents all relations in the 
relation pool and ES,rq . denotes the graph edges belonging to the relation of rq .. 

Definition 6.2 (Crowdsourced Topic-Level Knowledge Graph ( GO
.)) the crowd-

sourced topic-level knowledge graph GO = {VO,EO,TO}. (e.g., the green 
subgraph in Fig. 6.4c) contains generalized knowledge constructed only by the 
triples from the topic-level responses. Similarly, EO = {EO,r1 , · · · ,EO,rQ}. and 
EO,rq . represents the graph edges belonging to the relation of rq .. 

Definition 6.3 (Hierarchical Knowledge Graph ( G.)) the hierarchical knowledge 
graph G = {V,E,T,P}. is constructed by all the triples from both the article-
level and topic-level responses where V = {VS,VO}., E = {ER,EO}. and 
T = {T S,TO}. represents the graph entities, graph relations and graph triples, 
respectively. P. denotes a binary bipartite adjacent matrix that contains topics to
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connect triples in GS
. with the triples in GO

.. If an expert worker proposes a 
generalized knowledge fact TO

i ∈ TO
. that is related to the topic “Vaccine”, 

then we set Pij = 1. for all T S
j . from the COVID-19 news articles that belong 

to the topic “Vaccine” in article-level responses. For example, the binary bipartite 
adjacent matrix P ∈ R2×3

. for Fig. 6.4c  is Pi,j = 1, 1 ≤ i ≤ 2, 2 ≤ j ≤ 3. and 
Pi,j = 0, 1 ≤ i ≤ 2, j = 1.. 

6.2.1.2 Claim-Guided Specific Knowledge Propagator (CSKP) 

In this subsection, we present CSKP in HC-COVID that propagates the encoded 
information of input claim to GS

. for retrieving claim-related specific knowledge. 
CSKP consists of two specific components: (1) an input claim feature encoder, and 
(2) a multi-relational specific knowledge propagator. We define the two network 
architectures below. 

Claim Feature Encoder 

The input claim feature encoder aims to encode the input claim and extract high-
level semantic features from the claim to propagate the feature of the claim into 
GS

..  We  first  design  a  word-level feature encoder that converts words in an input 
claim to high-dimensional vectors in order to integrate the semantic information 
from different words. Given an input claim cn = {wn,1, · · · , wn,L}., we convert all 
words in the claim to one-hot vectors and apply an embedding matrix to transform 
the vectors to a high-dimensional embedding. The embedding can be denoted as 
c̃n = {w̃n,1, · · · , w̃n,L}.where each word denotes as w̃n,l ∈ Rd

.. 
Using the word embeddings from the word-level feature encoder, we design a bi-

directional gated recurrent unit (biGRU) to encode the entire content of the claim. 
The biGRU strengthens the semantic connection between different words in a claim. 
In particular, given an embedded claim c̃n . with L word embeddings, the biGRU 
processes the embeddings from both directions of the claim. The forward biGR U−→
f gru . reads from the first word embedding to the last one while the backward 

biGRU
←−
f gru . reads them reversely. The process can be formally denoted as: 

.

−→
h n,l = −→

f gru(w̃n,l), l ∈ {1, . . . , L}
←−
h n,l = ←−

f gru(w̃n,l), l ∈ {1, . . . , L}
(6.1) 

where
−→
h n,l ∈ Rd

. and
←−
h n,l ∈ Rd

. are hidden states for the lth. word of cn .. We then 
obtain the feature of each word by concatenating its forward and backward hidden 

states, i.e., hn,l = [−→h n,l,
←−
h n,l] ∈ R2d

.. The aggregated feature of cn . can be denoted 
as hn ∈ RL×2d

.. We perform the word-level average pooling operation to integrate
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hn . into a single claim-level feature Hn ∈ R1×2d
. that denotes the overall semantic 

representation of cn .. 

Multi-Relational Specific Knowledge Propagator 

Given the embedded claim-level feature Hn . from Sect. 6.2.1.2, the multi-relational 
specific knowledge propagator aims to propagate the feature into GS

. for retrieving 
claim-related knowledge facts from GS

.. In particular, we represent GS
. as a multi-

relational graph neural network (RGCN) for the aggregation of specific knowledge. 
RGCN is a specific type of graph convolutional network that contains multiple types 
of relations between different graph entities [33]. Wemodel GS

.as an RGCN because 
it can effectively represent different relations in GS

. (e.g., a close relation to, no 
relation with) and aggregate specific knowledge with the information of the input 
claim. In particular, the entities ES

. in GS
. are represented as high-dimension entity 

embeddings ˜ES ∈ RES×2d
. in RGCN where ES

. is the number of unique entities in 
GS

.. Similarly, the relations R. in GS
. are represented as relation embeddings ˜R ∈

RQ×2d
.. To learn the latent representations of the entities in GS

., we develop a multi-
relation information aggregation strategy defined as: 

. ẽi = σ(
∑

r∈R

∑

(j,r,i)∈T∗

1

zi,r

Wr
i,j ẽjA

r
i,j ) (6.2) 

where ẽi ∈ ˜ES
. and ẽj ∈ ˜ES

. are ith. and j th. graph entity embeddings in GS
.. σ . stands 

for the non-linear activation ReLU function. R. contains all available relations in GS
. 

and T ∗ ∈ T S
. denotes the set of graph triples consisting of ẽi .. zi,r . is a normalization 

factor for ẽi . and Wr
i,j . is the learnable parameter. Ar

. is the adjacent matrix for the 
relation r and Ar

i,j . represents the scalar value for ẽi . and ẽj .. 
Unlike traditional graph neural network approaches that simply merge different 

features together to indicate the relation between the features (e.g., concatenating 
Hi . with entity embeddings in GS

.), the CSKP encodes Hn . as an additional adjacent 
matrix for GS

. inRGCN to perform the claim guided graph convolution. The intuition 
is that the instance-specific knowledge propagation in the RGCN should match the 
semantic content in the input claim to detect incorrect information. For example, a 
claim that discusses the relation between the Pfizer vaccine and the human DNA can 
guide the RGCN to retrieve more Pfizer-related knowledge facts from GS

. to check 
the truthfulness of the claim. Formally, given an embedded claim feature Hn ∈
R1×2d

., the process for generating the adjacent matrix with relation r in RGCN can 
be denoted as:

. Ar = ˜ES · (Hn)
T + Hn · (˜ES

)T (6.3)



122 6 Explainable AI (XAI) in Social Intelligence

where Ar ∈ RES×ES
. is the result adjacent matrix corresponding to the relation 

r ∈ R.. The final output of the multi-relation information aggregation is the updated 
entity embeddings ẽi ∈ R2d

. given the input graph entity ei ∈ GS
.. 

6.2.1.3 Topic-Based Generalized Knowledge Integrator (TGKI) 

Previous knowledge graph-based methods for truth discovery mainly extract knowl-
edge from general health-related documents that are not specific to COVID-19. 
More importantly, the direct knowledge extraction from the documents cannot 
identify unseen false information because the knowledge is limited to the content 
of the documents and not fully generalized. To address the above limitations, the 
TGKI designs a novel hierarchical co-attention mechanism to retrieve both specific 
knowledge facts and generalized knowledge facts from CHKG as explanations 
for the truth discovery results. We observe that retrieving accurate explanations 
from CHKG is determined by two correlation factors: (1) the correlation between 
the input claim and the specific knowledge from GS

. and (2) the correlation 
between the specific knowledge from GS

. and the generalized knowledge from 
GO

.. The first correlation determines whether the content of the input claim can 
be matched to any specific knowledge fact extracted from the news articles. For 
example, an incorrect input claim that makes up an unrealistic side effect (e.g., 
COVID-19 infection) caused by the Pfizer vaccine can be detected by Pfizer-

specific knowledge (e.g., “Pfizer”
not cause−−−−−→. “COVID-19”) from GS

.. The second 
correlation determines whether there exist generalized knowledge facts from GO

. 

that can provide explanations for the input claim based on its topic connections 
with specific knowledge facts from GS

.. For example, if there is no matched Pfizer-
specific knowledge fact from GS

. for the input claim, TGKI detects the related 
specific knowledge facts (e.g., Moderna vaccine) and then retrieves their topic-

wise connected generalized knowledge facts as explanations (“Vaccine”
not cause−−−−−→. 

“COVID-19”). 
To retrieve accurate and complementary explanations that explicitly consider 

the above correlation factors, we propose a novel dual hierarchical attention-based 
neural network for TGKI. The dual hierarchical attention-based neural network 
estimates the possibility of each knowledge fact from both GS

. and GO
. as the 

explanation for the truth discovery results. We first define the triple-level embedding 
below for the graph triples from both GS

. and GO
.. 

Definition 6.4 (Triple-Level Embedding) Triple-level embedding represents the 
semantic features of triples as the joint representations of graph entities and graph 
edges. Given an embedded triple ˜Tk = {̃ei, r̃q , ẽj }. from CHKG, the triple-level 
embedding is denoted as ψk = ẽi � r̃q � ẽj ∈ R2d

.. For the embedded triples 
in GS

. that are integrated with the input claims in the CSKP module, the triple-
level embeddings are denoted as ψS ∈ RNS×2d

. where NS
. is the number of triples.
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Similarly, for the embedded triples in GO
., the triple-level embeddings are denoted 

as ψO ∈ RNO×2d
.where NO

. is the number of triples. 

Given the triple-level embeddings ψS
., the goal is to estimate the possibility of 

each triple in ψS
. being the explanation for the input claim. In particular, the dual 

hierarchical attention-based neural network generates the attention scores for ψS
. 

as US = Softmax(ψSWS). where US ∈ RNS×1
. are generated attention scores for 

all NS
. triples from GS

.. The higher the score is, the more likely the corresponding 
triple is correlated with the input claim. In order to explore the complex correlation 
between ψS

. and ψO
., the dual hierarchical attention-based neural network designs 

a co-attention mechanism to generate attention scores as: 

. M = SoftmaxO(tanh(ψSWM(ψO)T ) � P) (6.4) 

where M ∈ RNS×NO
. is the generated attention matrix and Mi,j . is the correlation 

score for ith. triple from GS
. with j th. triple from GO

.. SoftmaxO . is the Softmax 
operation in the NO

. dimension. To estimate the possibility for each triple from ψO
. 

of being the explanation for the input claim, the dual hierarchical attention-based 
network integrates US

. into M , which can be denoted as UO = Softmax(MT US) ∈
RNO×1

.. We concatenate US
. and UO

. as U = [US,UO ]. as the comprehensive 
explanations for the input claim. The higher the score is, the more likely the 
corresponding graph triple can reasonably explain the detection results of HC-
COVID. 

6.2.1.4 Joint Claim-Graph-Based Multi-relational Detector (CGMD) 

Given the feature of the input claim from CSKP and triple-level embeddings from 
TGKI, the CGMD module aims to determine if the input claim is true or false by 
designing a binary neural network classifier. In particular, given an input claim cn ., 
we output the final prediction as: 

. ŷn = [Hn,

NS
∑

i=1

ψS
i × US

i ,

NO
∑

j=1

ψO
j × UO

j ]Wb (6.5) 

where [·, ·, ·]. denotes the concatenation operation to merge the features of the input 
claim with all triple-level embeddings from CHKG. Wb ∈ R5d×2

. is the learnable 
parameter and ŷn ∈ R2

. is the final prediction. Our loss function is the binary cross-
entropy function that minimizes the loss between ŷn . and the ground-truth label yn . 

for each input claim cn .. The process is denoted as: 

.L =
N

∑

n=1

−ynlog(ŷn,2) − (1 − yn)log(1 − ŷn,1) (6.6)
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where ŷn,1 .and ŷn,2 .are 1th.and 2th. scalar value in ŷn .. The loss function measures the 
difference between two probability distributions (i.e., ŷn . and yn .) that is minimized 
by HC-COVID. 

6.2.2 DExFC: A Weakly Supervised Multimodal Approach 

The overview of the DExFC is shown in Fig. 6.5. It consists of four modules: (1) 
a Dual Graph Convolutional Feature Encoder (DGFE), (2) a Modality-Level Graph 
Refinement module (MGR) (3) a Multimodal Co-Attention module (MCA), and 
(4) a Modality-Level Discriminator (MLD). First, the DGFE module develops a 
set of feature encoding networks to encode the image, text, and comments of the 
post to high-dimensional features by aggregating them into a dual graph neural 
network structure. Second, the MGR module refines the adjacent matrix of the 
dual graph neural networks in the DGFE module by exploring the modality-level 
representations from the fauxtography posts in the constraint set. Third, the MCA 
module designs a multimodal co-attention network to integrate the encoded features 
and generate the attention scores that can be used for explainability. Finally, the 
MLD module determines whether a post is a fauxtography or not based on integrated 
features from the MCA module. For the detected fauxtography posts, MCA and 
MLD jointly output the content and comment explainability of the post. 

Fig. 6.5 The overview of the DExFC framework. Pn . represents nth input multimodal social media 
post. The overview of each module in DExFC and their interactions are illustrated in Sect. 6.2.2. 
The orange node, blue node, and green nodes represent the visual feature, the text description 
feature, and the comment features, respectively. The yellow and red rectangles in the MGR module 
represent the contents of the posts in the constraint set with true and false labels, respectively
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6.2.2.1 Dual Graph Convolutional Feature Encoder (DGFE) 

In this subsection, we present the DGFE module in DExFC. The DGFE module 
consists of four deep learning architectures: a word feature encoder (WFE), a 
text feature encoder (TFE), an image feature encoder (IFE), and a dual graph 
convolutional network (DGCN). WFE linearly transforms all words into high-
dimensional embeddings. The TFE encodes the text component of the post based 
on word embeddings to semantic features. The IFE encodes the image component 
of the post as the visual features with the same dimension. The DGCN connects and 
refines content and comment features by constructing a novel two-level multimodal 
graph structure. We first define the four network architectures below. 

WFE is a word transformation network that transforms the text description 
and comments of a post to high-dimensional embeddings. In particular, we define 
Ln = {Tn, C

1
n, . . . , CM

n }. as a text list that contains both the text description and 
user comment components of a post Pn ..  The L0

n . denotes Tn . (i.e., text description 
component of the post) and M is the total number of comments. We convert all 
words in each element of Ln . to one-hot vectors and build an embedding matrix WD . 

to transform the one-hot vectors to high-dimensional features as: 

.
˜

L
i,j
n = L

i,j
n WD, i ∈ {0, . . . ,M}, j ∈ {1, . . . , X} (6.7) 

where i denotes the ith. element in the text list and j represents the j th. word in the 

ith. element.
˜

L
i,j
n ∈ Rd

. is the transformed word embeddings of d dimension. 
We build the TFE as an attention bi-directional Gated Recurrent Unit (GRU) 

network [13, 20] to recurrently process word embeddings in each element of the 
text list and adaptively merge them to element-level features based on attention 
scores. In particular, we first construct a bi-directional GRU network to process word 

embedding sequences from both directions. The forward GRU
−→
f gru . reads from the 

first word embedding to the last one while the backward GRU
←−
f gru . reads them 

reversely. The bi-directional modeling process for the word embedding sequences 
of the post Pn . can be denoted as: 

.

−→
h i

n,x = −→
f gru(

˜Li
n,x), i ∈ {0, . . . ,M}, x ∈ {1, . . . , X}

←−
h i

n,x = ←−
f gru(

˜Li
n,x), i ∈ {0, . . . ,M}, x ∈ {1, . . . , X}

(6.8) 

where
−→
h i

n,x ∈ Rd
. and

←−
h i

n,x ∈ Rd
. are hidden states for the xth. word in the ith. 

element of the text list, X is the total number of words in an element. For each 
word, we obtain its final feature by concatenating the forward and backward hidden 

states, i.e., hi
n,x = [−→h i

n,x,
←−
h i

n,x] ∈ R2d
.. Therefore, the aggregated feature of an 

element in the text list is hi
n ∈ RX×2d

.. 
Given the aggregated features, we propose a word-level attention module to 

integrate word-level features into element-level features for each element in the text
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list. While the integration can be achieved by simply averaging or max-pooling 
the word features at the word level, those operations do not consider the semantic 
relations between adjacent words. Therefore, we leverage the attention scores from 
the attention module of the TFE to estimate the importance of each word in terms 
of their contributions to a higher-level semantic feature [17]. For the ith. element in 
the text list of the post Pn ., the above process can be characterized as: 

. ui
n = Softmax(tanh(Wuh

i
n + bu)) (6.9) 

where Wu ∈ R2d×1
. and bu ∈ R. are learnable parameters in the attention module 

and ui
n ∈ RX×1

. are attention scores for all words in hi
n .. The element-level feature is 

generated by the multiplication of ui
n . and hi

n . as follows: 

. Si
n =

X
∑

x=1

ui
n,x ∗ hi

n,x (6.10) 

where X is the total number of word features. We denote the element-level feature 
of the text description Tn . as STn ∈ R2d

. and SCi
n ∈ R2d

.where i ∈ {1, . . .M}.. 
We build IFE by constructing a deep convolutional neural network to extract 

visual features from the images of posts. The visual features provide abstract visual 
information for the framework to determine if the image part of a post contains 
incorrect content. We utilize the pre-trained ResNet [18] deep neural network as 
the encoder because it contains multiple residual convolutional blocks that can 
effectively extract visual features from the image. For the image In . of the post Pn ., 
the encoding process is: 

. EIn = fres(In) (6.11) 

where fres . is the encoder and EIn ∈ R2d
. is the generated visual feature. 

Definition 6.5 (Dual Graph Neural Network (DGCN)) We define DGCN as a 
pair of graph convolution neural networks to explicitly connect the content and 
comment components of a post with a novel two-level content-comment graph 
structure. The output of DGCN will be utilized to generate the content and comment 
explanation of the fauxtography post, which we will elaborate in the following 
subsections. 

Current fauxtography detection methods often encode the user comments of a 
post without explicitly considering the connection between comments [36, 47]. 
However, we observe that the “reply” connections between the user’s comments can 
usually reflect the hidden relations between the user comments and the connection 
between the content and comments of a post. For example, if a user’s comment 
on a post reports the post as incorrect and the comment is replied to by other 
comments with support, the post is likely to be fauxtography. Therefore, we model 
the comments and their interactions as a graph neural network structure to fully



6.2 Social XAI: HC-COVID and DExFC 127

aggregate the useful information that helps to identify the fauxtography posts. In 
particular, the comments are modeled as graph nodes, and the “reply” relations are 
modeled as graph edges in the network. However, in many cases, only considering 
direct “reply” between user comments (e.g., ExFaux[26], FauxWard [35]) is 
insufficient because such direct “reply” is often either sparse (e.g., few discussions 
under the post) or long-chain (e.g., a long debate between two users) in reality [7]. 
One possible solution is to connect each comment with all other comments in the 
same thread of the given post as an indirect “reply”. However, the solution ignores 
the dynamic correlation between different comments in a “reply-chain” that are of 
different depths from the head comment. For example, consider a “reply-chain” of 
comments C = {Ci}, i ∈ [1, N].where comment Ci . replies to its previous comment 
Ci−1 .. We define the correlation between the contents of Ci . and Cj . in the chain 
as Corr(Ci, Cj ), i, j ∈ N .. We empirically observe that the Corr(Ci, Cj ). decreases 
exponentially as the distance between the two comments (i.e., |i − j |.) increases [9]. 
We observe that focusing on the highly correlated comments while ignoring the 
ones with low correlations in the comment graph network greatly facilitates the 
DExFC in accurately detecting and explaining fauxtography posts when the dataset 
is noisy. Therefore, we decide to only keep the connections between the pair of 
comments whose distance is less than or equal to 2. We propose a two-level graph 
neural network to fully explore both the direct and indirect interactions between 
user’s comments. 

We first formally define the two-level graph structure for the comments of the 
post Pn .. In particular, we define the graph as Gn = (Vn,En). where Vn . is the 
set of user comments and En . is the set of direct (i.e., first-level) replies between 
user comments. For example, an edge es,s′ ∈ En . denotes that comment s′

. replies 
to comment s. We further extend the graph by adding more edges that connect 
comments with indirect (i.e., second-level) relations. For example, if there are three 
nodes s1 ., s2 ., s3 . in the comment graph and s2 . replies to s1 . while s3 . replies to s2 .,  we  
not only create edges es1,s2 . and es2,s3 ., but also connect s1 . and s3 . with es1,s3 ..  Two  
examples of the two-level comment relations are shown in Fig. 6.6. We define the 
set of second-level indirect replies between user comments as E∗

n .. 

Fig. 6.6 Two-level graph based comment network. The nodes with different colors represent 
users’ comments, the black solid arrows represent direct replies and the red dashed arrows represent 
second-level indirect connections. (a) Example 1. (b) Example 2
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Based on the two-level graph comment network, we further develop a novel 
multimodal dual graph structure to integrate the text, image, and comment com-
ponents of a post into a holistic structure. Unlike previous fauxtography detection 
methods that usually process the content and comments of the posts separately, the 
dual graph structure embeds the content as additional graph nodes for the graph 
comment network and connects all comments to the content nodes. Therefore, 
the dual graph structure is able to fully explore the hidden relations between the 
content and comments and identify the incorrect points in the post by aggregating 
the information between content and comments. Given the text feature STn . from 
the text feature encoder and the image feature EIn . from the image feature encoder 
above, the process of building the new multimodal graphs is denoted as: 

.

GT
n = ({Vn, STn}, {En,E

∗
n, ei,STn}), i ∈ {1, . . . ,M}

GI
n = ({Vn,EIn}, {En,E

∗
n, ei,EIn}), i ∈ {1, . . . ,M}

(6.12) 

where M is the total number of comments. {Vn, STn}. represents the union of 
features between the comment features and the text feature. Similarly, {Vn,EIn}. 
represents the union of features between comment features and the image feature. 
ei,STn . denotes the edges between a comment feature and the text feature. ei,EIn . 

denotes the edges between a comment feature and the image feature. GT
n . is the 

generated graph structure that contains the text and comments and GI
n . contains the 

image and comments. The edges in both GT
n . and GI

n . are further represented as 
adjacent matrices as below. 

.

AT
n = symmetric({En,E

∗
n, ei,STn}) + In

AI
n = symmetric({En,E

∗
n, ei,EIn}) + In

(8) 

where symmetric(·). represents adding edges to convert asymmetric directed graphs 
to symmetric undirected graphs and In . denotes the identity matrix. Additionally, 
AT

n ∈ R(M+1)×(M+1)
. and AI

n ∈ R(M+1)×(M+1)
. are binary adjacent matrices 

where the value “1” denotes the connection between two features while “0” 
denotes no connection between the two features. For example, the values of AT

n ∈
R(M+1)×(M+1)

. between all comment features and the text feature are “1”. 
Given the constructed graph structures, the multiple graph convolutional layers 

in the DGCN convolve the corresponding content and comment features with graph 
layer weights. For the post Pn ., the process can be denoted as: 

.

[STn, SCn]
(l+1) = σ(˜AT

n [STn, SCn](l)Wl)

[EIn, SCn]
(l+1) = σ(˜AI

n[EIn, SCn](l)Wl)
(6.13) 

where l is the layer index for DGCN (l = 0. for original [∗, SCn].), ˜A∗
n =

D
1
2 A∗

nD
1
2 . is the normalized symmetric weight matrix with D as the degree of
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the matrix (Dii = ∑

j Aij .), and Wl ∈ R2d×2d
. denotes the learnable parameters, 

σ . represents the non-linear functions ReLU. The comment features SCn
(l+1)

. are 
processed by max-pooling the comment features from the outputs [STn, SCn](l+1)

. 

and [EIn, SCn](l+1)
. in the feature dimension. 

6.2.2.2 Modality-Level Graph Refinement Module (MGR) 

The MGR module aims to leverage the K fully annotated fauxtography posts in 
the constraint set PG

. to improve both the detection and explanation performance 
of the DExFC. Given the non-trivial cost of obtaining modality-level labels of 
fauxtography posts, we limit the number of posts in PG

. to be small. In particular, 
we divide the set into 4 subsets with equal size where each subset contains K/4. 
fauxtography posts with the same modality-level labels (e.g., the posts with true 
text and false images go to the same subset). However, it is difficult to leverage these 
subsets in a traditional gradient descent training process to optimize the DExFC due 
to the limited number of posts in the subsets. Therefore, the MGR module treats PG

. 

as an internal constraint to the DExFC to further optimize the performance of the 
DGCN by adjusting its internal graph structure. 

While various fauxtography posts contain totally different contents in both text 
and image components, the embedded incorrect information could be similar. For 
example, the texts of different fauxtography posts may include different terms (e.g., 
gigantic birds, finger elephants). However, they often deliver the same incorrect 
concept (e.g., exaggeration). Similarly, the visual contents in multiple photoshopped 
images are different but share the same type of pixel-level discrepancy (e.g., the 
inconsistency between the altered human face and its surrounding pixels [28]). 
Therefore, the goal of the MGR module is to retrieve the meta-representations 
of the fauxtography posts in PG

. by performing a metric-based learning strategy. 
Metric learning is a machine learning task that learns a distance function to generate 
high-quality representations of input data samples [19]. In PG

., for each modality 
of the posts in the constraint set (i.e., text or image), the modality-level contents 
annotated as true or false are expected to share the same true or false meta-
representations. Moreover, we observe that the meta-representations related to true 
or false samples are often easier to distinguish from each other than the original 
contents of the post because they transfer low-level modality-specific descriptions 
into high-level representation concepts. With the above intuition, we design a novel 
metric-based loss function to generate meta-representations and utilize them as 
additional guidance to optimize the structure of the graph neural network in the 
DGCN. 

In particular, the content of posts in PG
. are first encoded as high-dimensional 

features by WFE, TFE and IFE described in Sect. 6.2.2.1. The encoded features are 
denoted as FGT ∈ RK×2d

. and FGI ∈ RK×2d
. for text and image part, respectively. 

Moreover, we define FGT,T ∈ RK/2×2d
. and FGT,F ∈ RK/2×2d

. as text related 
features of the posts with true and false labels in PG

., respectively. Similarly, we
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define FGI,T ∈ RK/2×2d
. and FGI,F ∈ RK/2×2d

. as image related features of the 
posts with true and false labels in PG

., respectively. With the above definitions, we 
derive the generation process for all meta-representations using the encoded features 
as follows: 

. F̂GT,T = 1

K/2

K/2
∑

i=0

FGT,T ,i , F̂GT,F = 1

K/2

K/2
∑

i=0

FGT,F,i

F̂GI,T = 1

K/2

K/2
∑

i=0

FGI,T ,i , F̂GI,F = 1

K/2

K/2
∑

i=0

FGI,F,i (6.14) 

where F̂GT,T ∈ R2d
. and F̂GT,F ∈ R2d

. are averaged text features with true and false 
labels, respectively. Similarly, F̂GI,T . and F̂GI,F . are averaged image features with 
true and false labels, respectively. The four generated representations (i.e., F̂GT,T ., 
F̂GT,F ., F̂GI,T ., F̂GI,F .) are the meta-representations for text/image component with 
true and false labels, respectively. We then design the metric-based loss function LG . 

to optimize all the concept representations, which can be denoted as: 

.

LGT =
∑K/2

i=0 ‖F̂GT,F − FGT,F,i‖ + ‖F̂GT,T − FGT,T ,i‖
‖F̂GT,F − F̂GT,T ‖ + ε

LGI =
∑K/2

i=0 ‖F̂GI,F − FGT,F,i‖ + ‖F̂GI,T − FGT,T ,i‖
‖F̂GI,F − F̂GI,T ‖ + ε

LG = LGT + LGI

(6.15) 

where the sub-functions LGT . and LGI . denote the metric-based losses for the text 
and image modalities of the posts in PG

., respectively. 
Given an input multimodal post, the graph neural network in the DGCN connects 

content and comment features of the post via the graph structure. The generated 
meta-representations adjust the relations of the graph nodes (i.e., content and 
comment nodes) in the structure by updating the corresponding adjacent matrix. 
In particular, we first average the true and false meta-representations for both text 
and image to obtain the overall modality-level meta-representations, which are 
denoted as F̄GT ∈ R2d

. and F̄GI ∈ R2d
., respectively. For a given input post Pn . 

with C comments, we first group the text and image representations with comment 
representations separately to construct joint features as J T

n = [STn, SCn] ∈
R(C+1)×2d

. and J I
n = [EIn, SCn] ∈ R(C+1)×2d

.. Then we calculate the correlation 
between the joint features of Pn . and the meta-representations to estimate their 
correlations, which can be denoted as: 

.A
G,T
n,i = J T

n,i · F̄GT , A
G,I
n,i = J I

n,i · F̄GI (6.16)



6.2 Social XAI: HC-COVID and DExFC 131

where A
G,T
n,i . represents the ith. correlation factor between the ith. element in the 

text-related joint features (i.e., J T
n,i .) and the corresponding text meta-representation 

(i.e., F̄GT .). Similarly, A
G,I
n,i . represents the ith. correlation factor between the ith. 

element in the image-related joint features (i.e., J I
n,i .) and the corresponding image 

meta-representation (i.e., F̄GI .). We perform the matrix multiplication on A
G,T
n . and 

A
G,I
n . to construct a global adjacent matrix AG

n ∈ R(C+1)×(C+1)
. that illustrates a 

new relation between content and comments from meta-representations. Finally, the 
adjacent matrices AT

n . and AI
n . in the DGCN are replaced with AT

n +AG
n . and AI

n+AG
n . 

as new adjacent matrices to perform graph convolution. 

6.2.2.3 Multimodal Co-Attention Module (MCA) 

In this subsection, we present the MCA module that integrates the encoded features 
from the DGFE and generates the attention scores that can be used for the 
explainability tasks. We observe that text and image components of a post may 
weigh differently in the user’s judgment on a fauxtography post. For example, the 
post in Fig. 6.2a contains both false text and false image. However, people are more 
likely to determine the post as fauxtography based on the content of the image 
rather than the text. Similarly, we also observe that not all comments are equally 
important in determining and explaining a fauxtography post. For example, the first 
comment of the post in Fig. 6.2b is more convincing than others to explain that the 
text description of the post is incorrect. To accommodate the above observations, 
we develop the MCA module to estimate the relative importance of each content 
modality and each comment by generating corresponding attention scores. Using 
the features from the DGFE, we first concatenate STn . and EIn . (i.e., text and image 
features from the DGCN) to create a content feature list Fcon

n = [STn,EIn] ∈
R2×2d

.. Then we compute the affinity matrix MC
n ∈ R2×M

. for the post Pn . to obtain 
the joint representations for content and comments as follows: 

. MC
n = tanh(F con

n WM(Cn)
T ) (6.17) 

where T represents the transpose of a matrix, tanh. is the activation function for 
the non-linear feature transformation, and WM ∈ R2d×2d

. represents the learnable 
parameters. Then we add the joint representations back to content and comment 
features and generate attention scores as follows: 

.

aCN
n = (F con

n + MC
n Cn)W

CN

aCM
n = (Cn + (MC

n )T F con
n )WCM

(6.18) 

where WCN ∈ R2d×1
. and WCM ∈ R2d×1

. are learnable parameters for transfor-
mation, aCN

n ∈ R2×1
. and aCM

n ∈ RM×1
. are generated attention scores that are 

further normalized to 1 by the Softmax operation. If the post Pn . is determined as
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fauxtography, the two scores in aCN
n . estimate what component (i.e., text or image) 

is more likely to be false in post Pn .. Furthermore, each score in aCM
n . indicates how 

likely a comment can explain the reason why a specific component is false in the 
fauxtography post. 

Our next goal is to generate an integrated content-level feature and an integrated 
comment-level feature based on the attention scores to classify the fauxtography 
posts. The generation process is denoted as: 

.

˜FCN
n = (aCN

n )0 ∗ STn + (aCN
n )1 ∗ EIn

˜FCM
n =

M
∑

i=1

Cn,i ∗ aCM
n,i

(6.19) 

where (aCN
n )0 . and (aCN

n )1 . represent the first and second element in aCN
n .. ˜FCN

n ∈
R2d

. and ˜FCM
n ∈ R2d

. are the integrated content-level and comment-level features of 
Pn ., respectively. 

6.2.2.4 Modality-Level Discriminator (MLD) 

In this subsection, we present the MLD module in DExFC. The module consists 
of two network architectures: (1) a dual modality-level false content discriminator 
(DMD) for the content explainability, and (2) a final fauxtography discriminator 
(FFD) based on the DMD and the generated text, image and comment features 
from the MCA module. First, the dual modality-level false content discriminators 
discriminate the text and image components of a post to provide content explain-
ability. Second, the fauxtography discriminator concatenates all features and the 
modality-level predictions to determine if the post is fauxtography. We illustrate the 
two network architectures below. 

While the scores in aCN
n . from the MCA module are able to indicate the 

importance of the text and image components of the post Pn ., they are restricted 
by the Softmax operation that normalizes the sum of scores in aCN

n . to 1, which 
ignores the possibility that both text and image components can be true (i.e., both 
with low scores). To address this issue, we define the Dual Modality-Level False 
Content Discriminator (DMD) as a pair of binary neural network classifiers that 
discriminate the text and image features of a post. The results of DMD provide 
the content explainability to identify what component(s) (text or image or both) 
contain the incorrect information. We first concatenate the integrated content-level 
feature with the original text and image feature. The updated features are ̂STn =
[STn, ˜FCN

n ] ∈ R4d
. and ̂EIn = [EIn, ˜FCN

n ] ∈ R4d
. for text and image components,
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respectively. After that, we derive the modality-level predictions from the refined 
features of the post Pn . as: 

.

ŷT
n = (̂STn)WT + bT

ŷI
n = (̂EIn)WI + bI

(6.20) 

where ŷT
n ∈ R2

. and ŷI
n ∈ R2

. are predicted results for text and image components of 
a post, respectively. 

We define the Final Fauxtography Discriminator (FFD) as a binary neural 
network classifier that considers the updated text and image features from the DMD 
and the integrated comment-level feature from the MCA module and makes the 
final decision to determine if a post is fauxtography. For a post Pn ., we concatenate 
modality-level and comment-level features as: 

. F
f inal
n = [([̂STn,̂EIn])Wp,˜F

CM
n ] (6.21) 

where Wp ∈ R8d×2d
. are the learnable parameters and F

f inal
n ∈ R4d

. is the overall 

feature vector. We apply the transformation on F
f inal
n . to obtain the final prediction 

as: 

. ŷ
f
n = F

f inal
n Wf + bf (6.22) 

where Wf ∈ R4d×2
. are the learnable parameters. We fuse ŷf

n . with ŷT
n . and ŷI

n . for 
the computation of the final loss function as follows: 

. ŷn = α × ŷ
f
n + ŷT

n + ŷI
n

(6.23) 

where ŷn . denotes the final prediction of the post and α . is an adjustable factor to 
balance the optimization weights between the overall and modality-level predic-
tions. The goal of the loss function is to minimize the cross-entropy loss. The above 
optimization process is denoted as follows: 

.

LW =
N

∑

n=1

−ynlog((ŷn)1) − (1 − yn)log(1 − (ŷn)0)

L = LW +LG

(6.24)
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6.3 Real-World Case Studies 

We evaluate HC-COVID and DExFC using two real-world social intelligence 
case studies with multiple datasets. Specifically, we evaluate HC-COVID with 
a representative social intelligence application of explainable COVID-19 truth 
discovery and the goal is to jointly assess the truthfulness of COVID-19 news 
articles and explain the assessment results. We then evaluate DExFC through a case 
study of multimodal truth discovery that targets assessing multimodal social media 
information integrity, such as fauxtography, that contains both text and images. 

6.3.1 Explainable COVID-19 News Truth Discovery 

Explainable COVID-19 truth discovery aims to assess the truthfulness of news arti-
cles related to COVID-19 while simultaneously providing interpretable explanations 
for why each article is classified as true or false. Evaluation results on two real-world 
COVID-19 truth discovery datasets demonstrate that HC-COVID achieves superior 
performance in both truth discovery accuracy and explanation quality compared to 
state-of-the-art baselines. 

6.3.1.1 Data 

We use two public COVID-19 truth discovery datasets for the experiments. The first 
dataset is CoAID [10], a COVID-19 health truth discovery dataset that consists of 
COVID-19 articles and COVID-19 claims. The COVID-19 articles contain reliable 
COVID-19 medical news and fact-checking articles including both medical and 
non-medical concepts. The COVID-19 claims contain 1000 true COVID-19-related 
tweets and 1000 false COVID-19-related tweets as the dataset for evaluating the 
HC-COVID and state-of-the-art baselines. The second dataset CONSTRAINT [29] 
is a large-scale COVID-19 truth discovery dataset that consists of 10, 700. COVID-
19 related tweets. In particular, the CONSTRAINT dataset is utilized for evaluating 
the truth discovery performance of HC-COVID where its hierarchical crowdsource 
knowledge graph is constructed from the COVID-19 articles in CoAID. For both 
datasets, we split the COVID-19 claims with 50% as training set, 20% as validation 
set, and 30% as testing set. The summary of the two datasets is shown in Table 6.1. 

6.3.1.2 Crowdsourcing Platform 

For each COVID-19 article in the article-level interface, we invite five independent 
Amazon Mechanical Turk (AMT) workers to participate in the construction of the 
article-level knowledge graph. For the topic-level interface, we select crowd workers
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Table 6.1 Dataset summary Dataset Type Count 

CoAID [10] COVID-19 articles 600 

True tweets 1632 

False tweets 544 

CONSTRAINT [29] True tweets 5600 

False tweets 5100 

who are verified by AMT as “healthcare workers” and then develop a set of COVID-
19 screening questions to select COVID-19 expert workers [3]. There are two types 
of potential biases in conducting both crowdsourcing tasks: (1) the demographic 
bias of various crowd workers and (2) the opinion bias of crowdsourcing responses. 
To mitigate the demographic bias of crowd workers, we follow the recruiting policy 
of AMT and provide an equal opportunity for each crowd worker. In particular, we 
design the crowdsourcing interfaces and upload the interfaces to the AMT website. 
The AMT displays the interfaces publicly and accepts the interested crowd workers 
regardless of their demographic attributes (e.g., race, gender, age). To mitigate the 
opinion bias, we adopt the majority voting mechanism to collect crowdsourcing 
responses from both article-level and topic-level interfaces. In particular, we accept 
a submitted article-level or topic-level response only if a submitted 3-tuple statement 
is the same in two or more responses. To ensure the quality of responses from 
workers, the workers are selected only if they have a 98%. or higher Human 
Intelligence Task (HIT) rate. 

We perform a COVID-19 relation selection pilot study to identify 11 relations 
as the relation pool. In particular, we randomly select 150 COVID-19 articles from 
the CoAID dataset [10] and assign 4 non-expert crowd workers and 1 expert worker 
for each article to summarize the knowledge triples. We allow crowd workers to use 
free texts to indicate the relations between entities when they accomplish the two 
crowdsourcing tasks developed in Section 4.1. We then identify the 11 most frequent 
relations that are used by 15 or more crowd responses. The relation-count summary 
is as follows: {is: 96, cause: 81, close relation with: 65, no relation with: 62, have: 
49, is good for: 39, no effect on: 31, is not: 27, is bad for: 20, not have: 17, prevent: 
15}. Similarly, we carried out a COVID-19 topic selection pilot study to identify 
8 unique COVID-19 topics in the article-level interface for non-expert workers to 
select. In particular, we randomly select 100 COVID-19 articles from the CoAID 
dataset and asks three COVID-19 expert workers to propose possible COVID-19 
topics for each article. We randomly select expert workers from AMT to reduce 
potential opinion bias from the workers. For each COVID-19 article, the selected 
expert worker needs to create three different COVID-19 topics that can cover the 
entire or most content of the article. After the study, we collect all proposed COVID-
19 topics and select the 8 most frequent topics that are proposed more than 20 times 
by COVID-19 expert workers. The topic-count summary is: {Prevention: 71, Virus 
Itself : 52, Cure: 45, Vaccine: 44, Spread: 37, Politics: 32, Influence: 25, Origin: 21}. 

We set the payment to all crowd workers well above the minimum requirement 
from AMT [2]. The average time to complete an article-level and a topic-level task
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by a crowd worker is 76 and 194 seconds, respectively. Finally, we collect 640 
valid triples for the article-level knowledge graph (i.e., nearly 1 knowledge triple 
for each COVID-19 article) and 80 valid triples for the topic-level graph (nearly 10 
knowledge triples for each COVID-19 topic). 

6.3.1.3 Baseline Methods and Experimental Setting 

Baseline Methods 

We conduct experiments with state-of-the-art truth discovery models to evaluate the 
performance of HC-COVID. 

• HAN [45]: HAN is a hierarchical attention network approach that applies both 
word-level and sentence-level mechanisms for document classification. We use 
COVID-19 claims in CoAID or CONSTRAINT as the input documents and train 
the model to classify incorrect claims from truthful claims. 

• PLAN [23]: PLAN is a multi-head attention network approach to detect rumors 
in social media by constructing a conversation tree that models the various 
interactions between the original rumor and the corresponding user replies. In 
particular, we replace the false and true rumors in PLAN as true and false claims 
for the classification task, respectively. 

• MVAE [21]: MVAE is a variational autoencoder neural network approach for 
truth discovery by learning a hidden representation from the content of social 
media posts. 

• dEFEND [36]: dEFEND is a truth discovery model that applies a co-attention 
strategy to retrieve important sentences from both the textual news content and 
the user comments by analyzing the interaction between them. 

• DETERRENT [11]: DETERRENT is a knowledge-guided graph attention net-
work solution to detect false information in health-related articles by incorporat-
ing a medical knowledge graph and an article-entity bipartite graph. Specifically, 
we replace health-related articles in DETERRENT with COVID-19 claims and 
train the framework for the classification task. 

• COVID19-KG [14]: COVID19-KG is a cause-and-effect knowledge model of 
COVID-19 pathophysiology. In particular, we replace the crowd knowledge 
graph in HC-COVID with the knowledge graph constructed by COVID19-KG 
to implement this baseline. 

• KMGCN [43]: KMGCN is a knowledge-driven and graph-based model to assess 
the truthfulness of news in social media posts by exploring the background 
knowledge hidden in the text content of the posts. In particular, we retrieve 
the specific graph triples from the hierarchical knowledge graph as background 
knowledge if the graph triples contain the same word as the one used in the input 
COVID-19 claim.
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Experimental Setting 

In the experiments, we pre-select the COVID-19 claims as the independent testing 
set and perform 10-fold cross-validation on the train-validation set  to  estimate  a  
more general performance of all schemes. For the implementation details of HC-
COVID, the CIKP module holds 2 graph convolutional layers with each layer 
followed by the ReLU activation. We set the hidden state dimensions of the biGRU 
networks from CIKP as 128. We set the vocabulary size for the COVID-19 claims 
in the CoAID and CONSTRAINT datasets as 4500 and 6000, respectively. We set 
the total number of epochs as 40 and train HC-COVID with an initial l earning rate
of 0.001. and decay of 0.95. in each epoch. The optimizer is Adam with 5 × 10−4

. 

weight decay. We run the experiments on Ubuntu 16.04.with two NVIDIA 1080Ti. 

6.3.1.4 Detection Performance 

First, we evaluate the truth discovery performance of HC-COVID and all the base-
lines on both the CoAID and CONSTRAINT datasets. The evaluation results are 
shown in Tables 6.2 and 6.3, respectively. We observe that HC-COVID consistently 
outperforms all the baseline methods on all evaluation metrics on both the CoAID 

Table 6.2 Overall detection 
performance on CoAID 

Methods F1 score Accuracy Precision Recall 

HAN 0.653 0.807 0.664 0.642 

PLAN 0.731 0.846 0.722 0.740 

MVAE 0.688 0.823 0.685 0.691 

dEFEND 0.745 0.855 0.742 0.748 

DETERRENT 0.798 0.885 0.792 0.805 

COVID19-KG 0.761 0.871 0.802 0.724 

KMGCN 0.797 0.887 0.814 0.780 

HC-COVID 0.820 0.899 0.826 0.813 

The bold values indicate the best performing results in each
evaluation metric

Table 6.3 Overall detection 
performance on 
CONSTRAINT 

Methods F1 score Accuracy Precision Recall 

HAN 0.750 0.769 0.788 0.716 

PLAN 0.895 0.898 0.892 0.897 

MVAE 0.827 0.830 0.817 0.838 

dEFEND 0.868 0.875 0.887 0.851 

DETERRENT 0.911 0.915 0.923 0.899 

COVID19-KG 0.883 0.886 0.880 0.887 

KMGCN 0.910 0.913 0.912 0.907 

HC-COVID 0.938 0.939 0.925 0.951

The bold values indicate the best performing results in each
evaluation metric
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Fig. 6.7 Case study of COVID-19 truth discovery. (a) Successful truth discovery by HC-COVID 
over other baselines. (b) Failure case 

and CONSTRAINT datasets. In particular, HC-COVID achieves performance gains 
of 2.2 and 2.7% in terms of F1 score compared to the best-performing baseline 
(i.e., DETERRENT) on the CoAID and CONSTRAINT datasets, respectively. 
Such a performance gain can be attributed to the incorporation of the COVID-
19 generalized knowledge facts in the hierarchical knowledge graph that can 
effectively infer the truthfulness of an unseen COVID-19 claim. Moreover, we 
observe that the medical knowledge graph based baselines (i.e., DETERRENT, 
COVID19-KG, KMGCN) perform better than other baselines that do not utilize 
professional medical knowledge. Such an observation further verifies the effective-
ness of leveraging medical knowledge facts for the detection of COVID-19 false 
information. However, HC-COVID outperforms these medical knowledge graph 
based baselines because it develops a crowdsourcing approach to abstract both 
specific and generalized knowledge facts from COVID-19 articles. 

We further visualize several testing cases in Fig. 6.7 to evaluate the detection 
performance of HC-COVID. The score in each case is the prediction probability 
that represents the confidence level of HC-COVID. Figure 6.7a shows two testing 
cases that are correctly identified as false by HC-COVID but misclassified by other 
baselines. The explanations from the hierarchical knowledge graph demonstrate 
that HC-COVID can accurately detect and explain the COVID-19 false information 

based on both specific (e.g., “Bill Gates”
is good for−−−−−→. “COVID-19”) and generalized 

knowledge facts (e.g., “Mask”
no effect on−−−−−−→. “illness”). Moreover, we show one 

testing case in Fig. 6.7b that all methods fail to detect the false information in it. 
The reason for the post being false is the actual IFR of COVID-19 is more than 
0.65% which cannot be classified as any common influenza. However, the detection 
of manipulation on real numbers is difficult because it requires the algorithms to 
understand the definition of the numbers (e.g., the definition of IFR) and have the 
ability to infer the truthfulness of the number associated with the specific concepts 
(e.g., the possible IFR of COVID-19). We will further explore it in future works.
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6.3.1.5 Explainability Performance 

We study the explainability performance of the proposed HC-COVID through 
multiple real-world user studies. In particular, we compare the explainability 
performance of HC-COVID with the COVID19-KG and DETERRENT baselines 
which are the only baselines that involve knowledge graphs that can output attention 
weights to explain the detection results. In the user study, we carry out two sets 
of experiments using AMT. In particular, we randomly select 25 COVID-19 false 
claims and 25 COVID-19 true claims from the testing set to perform explainability 
evaluation. 

In the first subset of experiments, we study the explainability performance by 
comparing the quality of the explanations generated from HC-COVID with other 
schemes. In particular, we define explainability ranked list as a list of graph triples 
retrieved from the knowledge graph based on their attention scores in descending 
order. For each compared scheme and each COVID-19 claim, we create Top-
1, Top-3, and Top-5 explainability ranked list to fully evaluate the explainability 
performance of each scheme. For each type of explainability ranked list (e.g., Top-
1, Top-3, Top-5), we recruit 5 AMT workers and ask them to select one scheme 
from all the three compared schemes that can best explain the detection results 
of each input COVID-19 claim. The explainability performance is evaluated using 
the following two metrics that are commonly used for quantifying the quality of 
explanation [36]. 

• Percentage of Posts (% of Posts): the percentage of posts whose explanation 
is picked by the majority of workers as their preferred ones belonging to each 
scheme. For example, given an input COVID-19 claims, if three or more crowd 
workers believe that the claim is best explained by the knowledge triples from the 
COVID19-KG scheme. Then we assign COVID19-KG as the best explainable 
scheme to the claim. If there are totally 10 claims with COVID19-KG, the % of 
Posts for COVID19-KG is 10

50 × 100% = 20%.. 
• Percentage of Workers (% of Workers): the percentage of workers who select 

their preferred explanation from the explainability ranked list predicted by each 
scheme. For example, given an input COVID-19 claim, if there are 3 crowd 
workers choosing HC-COVID as the best explainable scheme for the claim and 2 
crowd workers choosing DETERRENT, we record the number of crowd workers 
for each scheme. If HC-COVID is finally chosen by 100 crowd works from all 
50 claims, the % of Workers for HC-COVID is 100

50×5 = 40%.. 

The above two metrics evaluate the explainability performance of compared 
schemes from claim-level and worker-level, respectively (Fig. 6.8). The results are 
summarized in Fig. 6.9. We observe that HC-COVID significantly outperforms the 
compared baseline schemes in terms of both metrics. The performance gains demon-
strate HC-COVID’s capability of generating relevant and accurate explanations by 
the TGKI module. 

In the second subset of experiments, we evaluate the explainability performance 
by investigating the efficiency of the explanations generated by each compared
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Fig. 6.8 Explainability evaluation on CoAID. (a) Claim level. (b)  Worker  lev  el

Fig. 6.9 Explainability evaluation on CONSTRAINT. (a) Claim level. (b)  Worker  lev  el

scheme. In particular, we ask 5 AMT workers to first read through Top-5 explain-
ability ranked list from the first one with the highest attention weights, and stop 
when a worker thinks the cumulative explanation triples are sufficient to convince 
the worker about the detection result. The number of explanation triples a worker 
has read for each post is recorded and is denoted as the minimum reading index 
(MRI). We then measure the explanation efficiency using the following metrics with 
respect to MRI: 

• Average Minimum Reading Index (AvgMRI): The average value of MRI for 
each compared scheme. 

• Percentage of Posts (% of Posts): The percentage of posts on which each 
compared scheme achieves the lowest MRI. 

We present the results in Table 6.4. We observe that HC-COVID achieves the lowest 
average MRI on both the CoAID and CONSTRAINT datasets compared to the 
COVID19-KG and DETERRENT schemes. In addition, HC-COVID also explains 
most of the detection results (i.e., 58% on the CoAID dataset and 52% on the 
DETERRENT dataset) with the lowest number of explanation triples.
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Table 6.4 Evaluation for minimum reading index 

Dataset Metric COVID19-KG DETERRENT HC-COVID 

CoAID AvgMRI 3.32 2.93 2.25 
%  of  Posts 10.0 32.0 58.0 

CONSTRAINT AvgMRI 2.94 2.99 2.48 
%  of  Posts 26.0 22.0 52.0 

The bold values indicate the best performing results in each evaluation metric

Table 6.5 Ablation study for 
variants of HC-COVID on 
CONSTRAINT 

F1 score Accuracy Precision Recall 

HC-COVID 0.938 0.939 0.925 0.951 
HC-COVID\C 0.920 0.921 0.903 0.938 

HC-COVID\T 0.916 0.918 0.905 0.928 

HC-COVID\G 0.896 0.895 0.862 0.933 

The bold values indicate the best performing results in each
evaluation metric

6.3.1.6 Ablation Study 

We carry out an ablation study to further investigate the importance of each compo-
nent in the HC-COVID framework. In particular, we consider three ablations of the 
HC-COVID framework: (1) HC-COVID\C that excludes the encoding of claim-level 
feature into CHKG by replacing the claim guided adjacency matrix in Eq. (6.3) with 
binary adjacency matrix; (2) HC-COVID\T that excludes the TGKI module from 
HC-COVID by considering COVID-19 specific and COVID-19 generalized knowl-
edge facts as a homogeneous set of knowledge facts; (3) HC-COVID\G that excludes 
the COVID-19 generalized knowledge facts from the hierarchical knowledge graph. 
We reported the results of the ablation study in Table 6.5. We note that HC-COVID 
achieves the best performance when incorporating all components. In particular, we 
observe that the COVID-19 generalized knowledge facts significantly contribute to 
the detection performance of HC-COVID. The reason is that COVID-19 generalized 
knowledge facts not only contain the summarized knowledge facts about COVID-
19 from COVID-19 articles but also allow HC-COVID to identify incorrect content 
that has not appeared in existing COVID-19 articles. 

6.3.2 Explainable Fauxtography Detection 

We conduct extensive experiments on a real-world dataset to study the performance 
of DExFC and compare it with state-of-the-art solutions. Evaluation results show 
that DExFC not only achieves significant performance gains in the accuracy 
of fauxtography detection but also generates more relevant and coherent cross-
modal explanations, demonstrating the effectiveness of its modality-aware dual 
explanation mechanism with constrained supervision.
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Table 6.6 Dataset summary Type Claim Image Post Comment 

Non-fauxtography True True 150 27,125 

Fauxtography False False 32 3395 

True False 38 4835 

False True 62 7045 

True True 21 1826 

ALL ALL 153 17,101 

6.3.2.1 Data 

We create a real-world dataset by collecting social media posts from Twitter and 
Reddit, both of which are widely used online social platforms that contain a 
good amount of fauxtography posts [47]. In particular, we first collect a set of 
social media posts from three independent fact-checking websites (i.e., snopes.com, 
factcheck.org, truthorfiction.com). We then assign three different annotators to 
manually verify the labels from the fact-checking websites. We also utilize Google 
Vision API1 for reverse search on the image of the post to obtain the corresponding 
URLs of the images. If a URL points to a post on Twitter or Reddit, we crawl the text 
description, image, and comments of the post using a crawler script we developed. 
For each post in the collected dataset, we ask the annotators to further check if the 
text description and the image components are false and record their decisions (1 for 
false and 0 for true). We use majority voting on the annotations to decide the final 
labels of all components of the post [46]. The social media posts in the new dataset 
are crawled from different social media platforms (e.g., Twitter, Reddit). It covers 
all types of fauxtography posts in Fig. 6.2 to ensure the trained model is capable 
of identifying various incorrect information embedded in the fauxtography posts 
across different social media platforms. Moreover, the newly added social media 
posts are all recent ones posted in 2020, which demonstrates the capability of the 
model in terms of identifying the recent fauxtography posts. The summary of the 
dataset is shown in Table 6.6. 

6.3.2.2 Baseline Methods and Experimental Setting 

Baseline Methods 

We compare the performance of DExFC with the following state-of-the-art base-
lines. 

• FxBuster [47]: FxBuster is a fauxtography detection tool that detects the 
fauxtography posts by exploring the comments from readers of the posts.

1 https://cloud.google.com/vision. 

https://cloud.google.com/vision
https://cloud.google.com/vision
https://cloud.google.com/vision
https://cloud.google.com/vision
https://cloud.google.com/vision
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• FCMF [50]: FCMF is a fauxtography detector that identifies fauxtography posts 
by exploring the image URLs and hand-crafted text features of the posts. 

• ExFaux [26]: ExFaux is an explainable fauxtography detection method. Com-
pared to DExFC with an adjustable constraint set to perform both content and 
comment explainability, the ExFaux can only work with an empty constraint set 
(i.e., weakly supervised) and provide only the content explainability. 

• AIFN [44]: AIFN develops a gated neural network for truth discovery by fusing 
text and comments based on a multi-head attention mechanism. 

• EANN [42]: EANN is a recent truth discovery scheme that handles multi-modal 
content with convolution filters and applies an adversarial loss function to make 
the model event-invariant. 

• DEAN [16]: DEAN leverages both text content and comments to distinguish 
truthful news from the false ones by employing two independent recurrent neural 
networks and a fully connected layer for the truth discovery task. 

• HAN [45]: HAN constructs a hierarchical attention neural network from word 
level to sentence level to assess the truthfulness of news. It can not only 
accomplish the truth assessment of news but also explain why a news post is 
fake by pointing out relevant sentences in the news. 

• MVAE [22]: MVAE develops a variational autoencoder neural network for truth 
discovery by learning a shared representation of multimodal content of posts. 

• HPA [17]: HPA segments user engagements (e.g., user comments) in social 
media to different levels and constructs an attention neural network to detect 
rumors. The generated attention scores can help to explain why a post is a rumor 
by indicating rumor-related comments. 

• dEFEND [36]: dEFEND assesses the truthfulness of news by applying a co-
attention strategy to retrieve relevant sentences from both text content and 
comments that offer the potential reasons for the detection. 

We adapt the above baselines to solve the problem in a way that ensures all schemes 
take the same inputs for a fair comparison. For the methods that utilize only text 
content, such as HAN, DEAN, DEFEND, and AIFN, we let them treat the image in 
the dataset as a new feature in addition to the text in their models. For EANN, we 
remove the adversarial loss function because it needs additional annotations that the 
dataset does not contain. We strictly follow the parameters and configurations of all 
schemes as documented in their papers. 

Experimental Setting 

In the experiments, the dataset is split into a train-val set and a test set.  The  train-
val set contains 80%. data samples and the test set contains the other 20%..  We  
perform 10-fold cross-validation on train-val set to tune the network parameters 
of all schemes and evaluate them on the test set. For the implementation details of 
DExFC, the GCN network in the DGCN holds 2 layers with each layer followed by 
ReLU activation. We empirically set the size (i.e., K) of the constraint set PG

. as 8
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and tune K in the evaluation. We resize the input images to 256×256. and randomly 
crop them to 224 × 224. to prevent the overfitting issue for training. For testing, 
we directly resize images to 224 × 224.. We set the total number of epochs as 40 
and train the model with an initial learning rate of 0.001. and decay of 0.95. in each 
epoch. The optimizer is Adam with 5× 10−4

.weight decay. We run the experiments 
on Ubuntu 16.04.with two NVIDIA 1080Ti. 

To evaluate DExFC and the state-of-the-art schemes, we conduct several exper-
iment tasks with different evaluation metrics. We first evaluate the fauxtography 
detection performance of all compared schemes by leveraging four classic eval-
uation metrics: F1-Score, Accuracy, Precision and Recall. Then, we evaluate the 
explainability performance of the compared schemes in terms of explaining which 
component of a detected fauxtography post is false by using Accuracy metric. 
Additionally, we evaluate the compared schemes by explaining why the detected 
post is fauxtography by using the list-wise comparison [36] and minimum read 
index. Finally, we carry out ablation studies to investigate the contribution of 
different modules in DExFC by applying F1-Score and Accuracy as evaluation 
metrics. We elaborate on the above experiments in detail below. 

6.3.2.3 Fauxtography Detection 

In the first set of experiments, we focus on the overall performance of all schemes 
in terms of fauxtography detection. We use the classic evaluation metrics for 
binary-class classification: F1-Score, Accuracy, Precision, and Recall. The results 
are reported in Table 6.7. We observe that DExFC significantly outperforms all 
baselines. For example, DExFC is able to achieve an 11.1%. higher F-1 score 
than dEDEND, one of the state-of-the-art explainable truth discovery approaches. 
The reason is that the dual graph convolutional network design in the DGCN 
effectively refines the representations of both content and comments of the input 

Table 6.7 Fauxtography 
detection performance 

Methods F1 score Accuracy Precision Recall 

FxBuster 0.739 0.721 0.686 0.800 

FCMF 0.667 0.705 0.750 0.600 

HAN 0.714 0.738 0.769 0.667 

HPA 0.737 0.754 0.778 0.700 

EANN 0.767 0.721 0.651 0.933 

DEAN 0.789 0.754 0.683 0.933 

dEFEND 0.781 0.771 0.735 0.833 

AIFN 0.772 0.787 0.815 0.733 

MVAE 0.708 0.689 0.657 0.767 

ExFaux 0.794 0.771 0.711 0.900 

DExFC 0.892 0.885 0.829 0.967

The bold values indicate the best performing results in
each evaluation metric
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Table 6.8 Content 
explainability of 
fauxtography detection 

Methods Overall Text only Image only 

HAN 0.600 0.367 0.400 

dEFEND 0.567 0.500 0.200 

ExFaux 0.633 0.333 0.500 

DExFC 0.767 0.500 0.533 

The bold values indicate the best performing
results in each evaluation metric

post by connecting all of them with a novel tow-level multimodal graph structure. 
More importantly, we also observe that DExFC is superior to ExFaux.For example, 
DExFC outperforms ExFaux on F1-score and Accuracy by 9.8. and 11.4%., respec-
tively. This is because the DExFC scheme develops a metric-based optimization 
strategy in the MGR module to generate meta-representations from posts in the 
constrained set, which improves the effectiveness of fauxtography identification. 
Moreover, unlike the traditional attention mechanism used in ExFaux that only 
considers the content component of the input post, we develop a multimodal co-
attention module in DExFC to fully explore the internal relations between content 
and comments of a post, which also improves its performance of fauxtography 
detection. 

6.3.2.4 Content Explainability 

In the second experiment, we study the performance of DExFC in terms of 
identifying false component(s) in the detected fauxtography posts (i.e., content 
explainability). In this experiment, we select HAN, dEFEND, and ExFaux for 
comparison because they are the only baselines that can generate attention scores 
for the content of posts, which can be used for explanations. The evaluation results 
are presented in Table 6.8. In Table 6.8,  the  Overall metric evaluates if a scheme 
can at least determine the truthfulness of either the text or image component of 
the fauxtography posts correctly. The Text Only metric evaluates if a scheme can 
correctly determine the truthfulness of the text component. Similarly, the Image 
Only metric evaluates if a scheme can correctly determine the truthfulness of the 
image component. We observe that DExFC outperforms all baselines in identifying 
the false component(s) of a fauxtography post. For example, DExFC achieves 13.4., 
16.7., and 20.0%. higher overall accuracy than ExFaux, HAN, and dEFEND on the 
overall metric, respectively. The above results validate the hypothesis that the MCA 
module of the design can provide better representations for content features, which 
significantly improves the content explainability accuracy of the DExFC framework. 
The visualization of explainable results of DExFC is shown in Fig. 6.10.
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Fig. 6.10 Visualization of explanation results of DExFC. For content explainability, the DExFC 
identifies the false component(s): the cross mark indicates the corresponding component is false 
and the check mark indicates it is true. For comment explainability, the DExFC ranks the users’ 
comments based on their likelihood to explain the false component(s) of a post. We show the top 
three comments identified by DExFC in each post in this example. (a) False Text and False Image 
(b) False Text and True Image (c) True Text and False Image (d) True Text and True Image 

6.3.2.5 Comment Explainability 

In the third experiment, we study how effectively the DExFC can retrieve the 
relevant user comments to explain why the identified component(s) of a post is false 
(i.e., comment explainability). In particular, we carry out a real-world user study 
using AMT. In the experiment, we recruited AMT workers with an approval rate 
> 0.95.. We set the payment to workers well above the minimum requirement 

from AMT [2]. We select a test set that contains the fauxtography posts with 
different fauxtography types for the experiment. For each testing post, we compare 
the results of DExFC with two other baselines (i.e., DEFEND and HPA) because 
they are the only baselines that are capable of providing comment explanations on 
their results. We collect the attention scores from all compared schemes and then 
rank the user comments on the post based on the scores in descending order. For 
example, the comments in the posts of Fig. 6.10 are ranked by the attention scores 
from DExFC. The higher a comment ranks, the more likely it can explain why the 
post is fauxtography. 

We design several AMT tasks to evaluate the comment explainability of all 
compared schemes. In particular, we first perform a list-wise comparison [36]  to  
evaluate the explainability quality of the comment lists ranked by different schemes. 
For each testing post, each compared scheme generates three types of comment lists 
that contain Top-1, Top-3, and Top-5 comments from all the comments sorted by the 
corresponding attention scores. Given each type of the generated comment lists by 
all compared schemes, we ask four AMT crowd workers to pick the best comment 
list that they believe can explain why the post is identified as fauxtography. If there 
exists more than one highest vote, we ask more workers to vote on it until only 
one comment list receives the highest votes. We adopt two evaluation metrics from 
dEFEND [36] to study the performance of DExFC and the baselines as below.
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Fig. 6.11 Listwise comment explainability evaluation. (a) Worker level listwise evaluation. (b) 
Post level listwise evaluation 

• Worker Level Evaluation: the worker level evaluation denotes the percentage 
of workers who select their preferred comment list generated by each scheme. 
For example, given 10 fauxtography posts, if there are totally 25 crowd workers 
choosing DExFC as the best explainable scheme for the post, the percentage of 
Workers for DExFC is 25

10×4 = 62.5%.. 
• Post Level Evaluation: the post level evaluation denotes the percentage of posts 

whose comment list is picked by the majority of workers as their preferred 
ones belonging to each scheme. For example, given an input fauxtography 
post, if three or more crowd workers believe that the post is best explained by 
the comment list from the DEFEND scheme, we assign DEFEND as the best 
explainable scheme to the post.” 

The results are shown in Fig. 6.11. We observe that DExFC outperforms the 
compared baselines on both evaluation metrics. We attribute the significant perfor-
mance gains of the DExFC framework to its dual multimodal graph convolutional 
networks and co-attention module design that explicitly explores both direct and 
indirect relations hidden in the user’s comments. 

To further investigate the efficiency of the comment explainability of DExFC, we 
did an additional experiment to study how many top comments in the ranked list a 
user has to read before she/he decides the post is fauxtography. In particular, we ask 
each AMT worker to read the user comment list of a post ranked by a scheme from 
the top to end and stop reading if the worker feels comfortable to make a decision on 
whether the post is fauxtography. We then ask the worker to document the number 
of comments she/he reads in order to make the decision. We define this recorded 
number as the minimum read index (MRI). We focus on two evaluation metrics as 
below. 

• Average Minimum Reading Index (AvgMRI): The average value of MRI for 
each compared scheme.
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Table 6.9 Evaluation for 
minimum read index 

Methods AvgMRI % of posts 

HPA 3.46 13.0 

dEFEND 3.13 26.1 

DExFC 2.54 60.9 

The bold values indicate the best
performing results in each evalua-
tion metric

Fig. 6.12 Ablation study of 
DExFC on the size of the 
constraint set 

• Percentage of Posts (% of Posts): The percentage of posts on which each 
compared scheme achieves the lowest MRI. 

The results are reported in Table 6.9. We observe that DExFC outperforms the 
compared baselines on both evaluation metrics. In particular, the users of DExFC 
only have to read less than 3 comments on average to detect a fauxtography post and 
more than 60%. of the posts can be detected by DExFC with the smallest AvgMRI. 

6.3.2.6 Ablation Study 

Finally, we perform a comprehensive ablation study to study the contribution of 
each important component of DExFC. In particular, we first investigate the effect of 
the size of the constraint set on the performance of DExFC. The results are shown in 
Fig. 6.12. We observe that the non-empty constraint set can clearly help to improve 
the performance of the DExFC framework and the performance gain stabilizes when 
the size of the constrained set reaches 8, which indicates a very affordable labeling 
cost of the solution (i.e., only 8 posts with modality-level labels are needed for 
DExFC to reach its optimized performance). 

We then create different variants of the DExFC framework by removing its 
key components: (1) DEx-base: we remove the dual graph neural networks and 
modality-level discriminators; (2) DEx-graph-1v: we remove the modality-level 
discriminators and also change the dual graph to one-level (i.e., only use the direct 
replies in comments), and (3) DEx-graph-2v: we only remove the modality-level
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Table 6.10 Ablation study 
of DExFC on overall 
detection 

Methods F1 score Accuracy Precision Recall 

DEx-base 0.746 0.721 0.676 0.833 

DEx-graph-1v 0.806 0.787 0.730 0.900 

DEx-graph-2v 0.844 0.836 0.794 0.900 

DExFC 0.892 0.885 0.829 0.967 

The bold values indicate the best performing results in each
evaluation metric

discriminators. The fauxtography detection results are shown in Table 6.10.  We  
observe that, by adding the one-level graph neural networks, DExFC is able to 
increase its F-1 score and Accuracy score by 6.0. and 6.6%., respectively. This 
result illustrates the importance of connecting content and comments with the dual 
graph structures. The two-level design that involves indirect comment connections 
also contributes to 3.8. and 4.9%. in F-1 score and accuracy score, respectively. 
Furthermore, we also found the modality-level discriminators are helpful, which 
yield 4.8. and 4.9%. higher F-1 score and Accuracy score improvement, respectively. 

6.4 Discussion 

This chapter presented two novel frameworks for explainable AI in social intelli-
gence applications: HC-COVID and DExFC. These frameworks address fundamen-
tal challenges in developing explainable social intelligence systems, including the 
varied knowledge fact quality for explanation, lack of modality-level annotation, 
and diverse cross-modal explanation. Extensive experiments on principle social 
intelligence case studies, such as uni-modal truth discovery classification and multi-
modal fauxtography detection, demonstrate how combining structured knowledge, 
crowdsourced human intelligence, and advanced neural network architectures can 
advance both the accuracy and explainability of AI systems in social intelligence. 

While the case studies primarily focus on the detection and explanation of 
uni-modal and multimodal false information, we envision the generalizability 
of the proposed frameworks to broader social intelligence applications where 
explainability is crucial. For example, various COVID-19-related applications 
can leverage the knowledge facts in the hierarchical knowledge graph of HC-
COVID to improve their application-specific performance. In particular, the 
machine learning-based COVID-19 diagnosis approaches [1, 12, 51] can utilize 
hierarchical knowledge graphs to boost their diagnosis accuracy. The COVID-19 
diagnosis approaches usually consider the COVID-19 symptoms (e.g., “fever”, 
“cough”) as important features to determine COVID-19 infection of participants. 
However, it is difficult for the approaches to estimate the complex relations between 
various COVID-19 symptoms and the COVID-19 infection, especially when the 
data samples are insufficient. HC-COVID can address the problem by explicitly 
retrieving COVID-19 knowledge facts from the hierarchical knowledge graph that
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are relevant to COVID-19 symptoms (e.g., “fever”
close relation to−−−−−−−−→. “COVID-19”, 

“cough”
cause−−−→. “COVID-19”). The COVID-19 symptoms and the corresponding 

COVID-19 knowledge facts can be integrated into more informative features for 
more accurate COVID-19 diagnosis. 

Moreover, the overall framework of HC-COVID can be generalized to address 
different classification problems that require professional knowledge to perform 
classification and explanation tasks. For example, William et al. [6] designed 
a human-machine system to classify human heart records by assigning expert 
crowd workers and non-expert workers together to perform the classification task. 
However, assigning expert workers the same classification task as the non-expert 
workers is not always effective due to either the lack of available expert workers 
or the lack of professional medical knowledge of non-expert workers. HC-COVID 
can address such a problem by tasking the expert workers to propose generalized 
medical knowledge facts that are specific to this application (e.g., the characteristics 
of abnormal heart records) and tasking non-expert workers to identify the abnormal 
heart records that satisfy the proposed characteristics by the expert workers. A 
human heart-related knowledge graph constructed using input from expert workers 
can effectively guide non-expert workers in identifying abnormal heart records and 
provide explicit explanations for the classification results. 

Similarly, DExFC’s modality-aware explanation mechanism can be extended to 
various multimodal social intelligence applications beyond fauxtography detection. 
For instance, in a disaster response system that analyzes both satellite imagery 
data and social media feeds, DExFC’s dual graph structure can effectively model 
the relationship between visual evidence of damage and textual descriptions from 
affected communities. The framework’s ability to work with limited modality-
level annotations is particularly valuable in time-sensitive disaster scenarios where 
obtaining detailed annotations is impractical. Furthermore, DExFC’s approach to 
generating cross-modal explanations could enhance social recommendation systems 
that leverage both user-generated content and visual information. For example, 
in e-commerce recommendation systems, the framework could explain product 
recommendations by highlighting relevant visual features and connecting them to 
user reviews and comments, while requiring minimal supervised modality-level 
training data. 

With the recent advancement of large language and vision models, we highlight 
several opportunities to further enhance XAI in social intelligence. For example, 
large language models could be helpful in the initial construction and maintenance 
of knowledge graphs by suggesting potential entities and their relations that could 
be further validated by expert workers. Similarly, the advanced visual and textual 
understanding capabilities of large language vision models could be integrated 
with DExFC or other multimodal explainable social intelligence frameworks to 
improve the multimodal feature extraction process which often requires extensive 
pre-training on domain-specific datasets. We envision that the integration of large 
language and vision models with explainable social intelligence frameworks could 
lead to more robust and adaptable solutions while maintaining interpretability.
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Chapter 7 
Fusing Crowd Wisdom and AI 

Abstract Human-AI collaboration is a transformative approach in advancing 
AI-driven applications, combining artificial intelligence and human expertise to 
address complex problems. This chapter presents collaborative frameworks that 
enable the integration of human intelligence from crowdsourcing systems into 
the AI process, overcoming critical challenges such as large design search spaces 
and managing imperfect crowd-sourced data. Specifically, we present two case 
studies: (1) CrowdNAS, a crowd-guided neural architecture search framework for 
disaster damage assessment, which uses crowd inputs to identify optimal network 
architectures for accurate damage severity estimation, and (2) CrowdOptim,  a  
crowd-driven hyperparameter optimization framework for AI-based smart urban 
sensing applications, which leverages crowdsourced feedback to enhance model 
performance in assessing urban environments. These frameworks and case studies 
demonstrate the power of collaborative frameworks in guiding AI optimization and 
neural architecture discovery, showing how crowd-AI systems can achieve high 
accuracy while reducing computational demands, paving the way for robust human-
centered AI applications across dynamic and data-intensive environments. 

Keywords Crowd-AI · Human-AI collaboration · Neural architecture search · 
Hyperparameter optimization · Crowdsourcing · Disaster response · Urban 
sensing 

7.1 Challenges in Human-AI Collaboration for Architecture 
Search and Model Optimization

AI systems are primarily designed and optimized through two primary approaches: 
neural architecture search (NAS) and hyperparameter optimization (HPO). NAS 
automates the selection of efficient neural network (NN) structures and HPO 
optimizes parameters such as learning rates or epoch numbers to boost the model 
performance. Such methods are essential for the development of AI models but 
are computationally intensive and limited by manual effort and expertise [31]. The 
challenges in balancing computational costs, scalability, and optimal performance 
have led to increasing interest in combining human intuition and expertise with 
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machine-driven processes. Human-AI synergy opens novel avenues for overcoming 
these problems in NAS and HPO. In particular, human inputs can help refine search 
spaces, incorporate domain-specific knowledge, and guide the prioritization of 
promising architectures or parameter configurations, which may not be immediately 
evident to automated methods. By leveraging human insights, NAS and HPO 
processes can become more efficient, adaptive, and better aligned with real-world 
constraints. The choice of an effective neural network (NN) architecture, along 
with the tuning of hyperparameters such as learning rate or epoch count, can 
significantly impact model performance. Despite the importance of NAS and HPO, 
many current methods still depend on manual tuning by AI specialists, which is 
a time-intensive and error-prone process [16]. This chapter presents human-AI 
collaborative frameworks that automate the configurations of neural architecture 
and hyperparameters, minimizing the need for expert intervention while achieving 
optimized performance across diverse applications. By integrating crowd-sourced 
human intelligence with AI-driven NAS and HPO approaches, this chapter focuses 
on presenting SI collaborative frameworks in guiding AI optimization and neural 
architecture discovery [47, 48]. This chapter addresses three core challenges in 
fusing crowd intelligence with AI to enable scalable and efficient model design 
and optimization across varied application domains. We discuss these challenges 
in detail below. 

Crowd-manageable Design Space 

The first challenge lies in effectively translating the highly complex tasks of both 
NAS and HPO in AI into simplified problems that can be managed by crowd 
workers without extensive AI expertise. Unlike AI specialists, who can provide 
insights into setting optimal values for each hyperparameter and architecture 
component in an AI model, crowd workers are typically limited to simpler anno-
tation tasks (e.g., assessing the physical status of urban environments in assigned 
images)[27]. A straightforward approach to address the combined NAS and HPO 
problem might involve exhaustively seeking feedback from crowd workers on 
every possible configuration of both the architecture and hyperparameters for the 
AI model on each image to identify the optimal setup. However, this method is 
costly and time-intensive due to the massive search space, which could potentially 
exceed 100million configurations for hyperparameters alone in deep convolutional 
networks applied to social intelligence applications[8]. Current solutions in both 
NAS and HPO often rely on heuristic search strategies to explore this vast space 
efficiently [20]. While effective, these strategies are computationally intensive [11], 
and the learned configurations risk overfitting to the validation set, resulting in non-
negligible performance loss when applied to new test data [26]. Therefore, a key 
question remains: how can we design a search space that is manageable for crowd 
workers but still likely to contain the optimal configurations for both NAS and HPO 
in social intelligence applications?
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Black-box NAS and HPO 

The second challenge lies in how to effectively identify the optimal combination 
of neural network architecture and hyperparameter configuration within a crowd-
manageable search space, given the black-box nature of AI models. Specifically, the 
limited interpretability of outputs generated by different architectures and hyper-
parameter configurations in social intelligence applications makes it challenging 
to accurately pinpoint the best setup in the absence of ground-truth labels [10]. 
This challenge arises because, without ground-truth labels, it is very challenging 
to objectively evaluate and compare the performance of different configurations, 
making it difficult to determine whether variations in performance are caused by 
differences in model effectiveness, noise in the data, or stochastic variability. Recent 
advancements in crowd-AI collaborative systems have attempted to address this 
black-box issue by focusing on selecting complex imagery data (e.g., images with 
intricate color distributions or densely packed objects) for crowd labeling, based 
on the assumption that AI models are more prone to errors with such challenging 
data [33, 45]. By analyzing the discrepancies between AI predictions and human-
generated labels on these challenging samples, the current approaches identify 
specific failure modes and enhance interpretability by linking errors to particular 
model behaviors or data characteristics [13]. Crowd-sourced labels on features like 
the physical condition of urban environments (e.g., levels of infrastructure damage) 
are then used to retrain AI models or to replace their outputs, thereby optimizing the 
overall model performance. Therefore, the black-box nature of AI models presents 
a critical challenge to crowd-driven optimization of both NAS and HPO in social 
intelligence applications. 

Crowd-guided NAS and HPO 

The third challenge lies in leveraging potentially imperfect crowd intelligence 
to address both crowd-guided NAS and HPO in social intelligence applications. 
Unlike AI experts, who can directly offer guidance on designing effective neural 
network architectures (e.g., by suggesting layer modifications) and fine-tuning 
hyperparameters, crowd workers are often limited to providing simpler annotations, 
such as damage severity assessment labels for disaster-related images. A key 
question in the system design is how to translate these crowd-sourced labels into 
meaningful decisions for both optimizing neural network architecture and setting 
hyperparameters within a social intelligence application. Furthermore, unlike labels 
annotated by domain specialists, crowd-generated labels are often imperfect-subject 
to bias, noise, and even internal conflict [15]. These imperfections can significantly 
hinder the optimization for both NAS and HPO, as noisy crowd inputs may 
be recursively amplified during the optimization process, potentially resulting in 
suboptimal architecture and parameter choices [51]. Therefore, a critical challenge 
remains: how can we effectively leverage imperfect crowd intelligence to reliably 
identify the optimal neural network architecture and hyperparameter configuration 
in social intelligence applications?
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To address the above challenges, this chapter introduces two SI frameworks: 
CrowdNAS, a crowd-guided NAS approach, and CrowdOptim, a crowd-driven 
HPO system. Both frameworks leverage crowd wisdom to enhance AI systems’ 
scalability (e.g., handling large-scale false information across platforms) and adapt-
ability (e.g., adjusting to dynamic conditions in disaster damage assessment). 
By combining design space transformations, robust learning frameworks, and 
crowd-driven knowledge transfer, these systems illustrate the potential for human-
AI collaboration to optimize models and architectures in real-world, high-stakes 
human-centered AI applications. In the rest of this chapter, we will review the 
design of the crowd-AI solutions and the real-world case studies to evaluate the 
performance of these solutions. We will conclude this chapter with a discussion on 
the implications of the reviewed crowd-AI solutions and future work to address their 
limitations. 

7.2 A Crowd-AI Co-Design: CrowdNAS and CrowdOptim 

In this section, we present two novel crowd-AI collaborative frameworks, Crowd-
NAS (Crowd-guided Neural Network Architecture Search) [47] and CrowdOptim 
(Crowd-driven Neural Network Hyperparameter Optimization) [48], designed to 
address the challenges of integrating human intelligence into AI model optimization 
and architecture search. Specifically, CrowdNAS employs a crowd-guided neural 
architecture search approach that harnesses crowd input to identify optimal neural 
network architectures for effective disaster damage assessment. CrowdOptim intro-
duces a crowd-driven hyperparameter optimization strategy that leverages crowd 
feedback to refine neural network configurations in smart urban sensing appli-
cations. Together, these frameworks exemplify innovative approaches to utilizing 
crowd intelligence for enhancing model performance across diverse real-world 
scenarios. 

7.2.1 CrowdNAS: A Crowd-Guided Neural Architecture 
Searching Approach 

CrowdNAS is a crowd-guided NAS framework that carefully explores crowd 
intelligence to identify the optimal neural network architecture in social intelli-
gence applications. Our principled design of CrowdNAS integrates interdisciplinary 
techniques from NAS, crowdsourcing, and estimation theory into an end-to-end 
novel crowd-AI collaborative learning framework to address the crowd-guided NAS 
problem. The key novelty of CrowdNAS is twofold: (1) it designs a principled 
crowd-manageable neural network search space that significantly reduces the search 
space of the NAS problem while maximizing the likelihood of including the optimal
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Fig. 7.1 Overview of CrowdNAS framework 

neural network architecture in the reduced search space; and (2) it develops a 
novel crowd-AI integration model that leverages the imperfect crowd intelligence 
to effectively identify the optimal neural network architecture in the crowd-
manageable search space. The overview of the CrowdNAS is shown in Fig. 7.1. 
The CrowdNAS consists of two core modules, (1) Crowd-manageable Search Space 
Design (CSSD) and (2) Crowd-guided Optimal Architecture Search (COAS).  The  
two modules work collaboratively to transfer the imperfect crowd intelligence to 
the optimal neural network architecture selection for desirable social intelligence 
performance. In particular, we hav e:

• Crowd-manageable Search Space Design (CSSD): The CSSD module designs a 
set of sequential neural network search sub-spaces on top of a pre-trained damage 
assessment network to effectively reduce the search space for the crowd-guided 
NAS problem. Our design allows the CrowdNAS framework to effectively search 
for an optimal damage assessment network architecture by focusing the search 
on the essential network layers (e.g., pre-trained CNN layers, convolutional 
layers, dense layers) that are required as the key network components of a social 
intelligence solution. The search space design contains two key advantages. First, 
the sequential search space is significantly smaller than a regular NAS search 
space so that it is more manageable to the crowd intelligence. Second, the search 
space is explicitly generalized from a pre-trained damage assessment network 
so that the search space has a high likelihood of including the optimal neural 
network architecture for social intelligence applications. Our design addresses 
the key limitation of existing NAS solutions that work on a large search space 
and depend on a large-scale high-quality training dataset to fully explore the 
large NAS search space. 

• Crowd-guided Optimal Architecture Search (COAS): The COAS module devel-
ops a principled crowd-AI integration model to incorporate the imperfect crowd 
response to guide the selection of the optimal neural network architecture from
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the search space identified by CSSD. In particular, we design a principled estima-
tion framework that carefully models different neural network architectures and 
participating crowd workers as data sources with unknown reliability that make 
their estimation on the unknown damage severity levels of collected social media 
images. We then propose a novel maximum likelihood estimation framework 
to judiciously estimate the reliability of each neural network architecture and 
select the one that produces the most accurate damage assessment results as the 
optimal neural network architecture. The COAS design effectively overcomes the 
limitation of current NAS solutions that are incapable of handling the imperfect 
crowd labels, which often mislead the current NAS solutions to select a poorly 
performed neural network architecture as the optimal one. 

7.2.1.1 Crowd-Manageable Search Space Design (CSSD) 

In this subsection, we present the crowd-manageable neural network search space 
design that effectively reduces the search space for the Crowd-guided NAS problem. 
In particular, current NAS solutions often work on a large search space [25]. For 
example, the search space of a standard NAS solution in an image classification 
application often includes more than 423,000 candidate convolutional architectures 
in its search space [6]. To fully explore such a large search space, the current NAS 
solutions also need a massive amount of high-quality training data (e.g., 100,000 
well-labeled image data in the image classification application) to train their NAS 
models in order to identify the optimal neural network architecture. However, such 
a large training dataset is not always available in the social intelligence applications 
due to the high labeling cost and unpredictability of many disaster events. Therefore, 
the current social intelligence solutions often invite AI experts to hand-pick a neural 
network architecture to be used in their solutions. However, such a manual process 
is known to be both costly and suboptimal. 

To address the above problems, we design a CSSD module that identifies a 
reduced search space which (1) is orders of magnitude smaller than a regular 
NAS search space and (2) has a high likelihood to include the optimal neural 
network architecture for the application. In particular, the CSSD module focuses 
on designing a set of sequential sub-search spaces that aim to search for the 
optimal neural network architecture for the key network components of a social 
intelligence solution. The overall architecture of the CSSD design is shown in 
Fig. 7.2.  The  feature extraction sub-search space (FS) contains a set of candidate 
pre-trained CNN layers to provide a sub-search space to discover the optimal pre-
trained CNN layers required to extract deep visual features from the input image. 
The convolutional operation sub-search space (CS) contains a set of candidate 
convolutional layers to provide a sub-search space to identify the optimal number 
of required convolutional layers to further process the extracted deep visual features 
from FS. Finally, the dense layer sub-search space (DS) contains a set of candidate 
dense layers to provide a sub-search space to discover the optimal number of 
required dense layers to estimate the damage severity level of the input image using
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Fig. 7.2 Overall of 
crowd-manageable search 
space design 

the processed deep visual features from CS. In addition, the CSSD design includes 
an option that allows the solution to skip CS if the system decides convolutional 
operations are not needed in the identified optimal neural network architecture. Such 
a design provides a flexible option for the CrowdNAS framework to establish a 
damage assessment network architecture where the deep visual features extracted 
from the FS are sufficient for DS to infer the damage severity level for each input 
image without requiring any additional convolutional operation by CS. In such a 
case, the skip connection design could keep the extracted disaster-related deep visual 
features from being mistakenly filtered out by the non-necessary convolutional 
process in CS. As a result, the design could prevent DS from generating inaccurate 
social intelligence results using incomplete deep visual features. In particular, the 
COAS module will decide whether the damage assessment network architecture 
using the skip connection is the optimal neural network architecture or not via a 
principled estimation framework, which will be discussed in the next subsection. 
We formally define FS, CS, and DS as follows: 

Definition 7.1 (Feature Extraction Sub-search Space (FS)) We define FS as the 
first network search sub-search space for the framework to discover the optimal 
pre-trained CNN layers for deep visual feature extraction as: 

.V FX = FS(X) (7.1) 

where V FX
. represents the extracted deep visual features. We show the design 

of FS  in (A) of F ig. 7.3. Instead of exhaustively searching all possible network 
architectures for deep feature extraction, the FS focuses on examining the deep 
features extracted by different layers of a pre-trained CNN (e.g., VGG) to identify 
the best layer for the given social intelligence task in order to effectively reduce the 
search space. 

Definition 7.2 (Convolutional Operation Sub-search Space (CS)) We define CS 
as the second network sub-search space for the framework to decide the optimal 
number of convolutional layers needed in social intelligence solutions as: 

.DFX = CS(V FX) (7.2) 

where DFX
. represents the damage-related visual features extracted from V FX

.. 
We show the design of CS in (B) of F ig. 7.3. In CS, we focus on searching for 
the number of convolutional layers to achieve the optimal network depth for the
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Fig. 7.3 Illustrations of design for crowd-manageable search space 

given social intelligence task. In particular, the CS transfers the layer-wise parameter 
settings (e.g., kernel size) from convolutional layers in the pre-trained CNN to the 
candidate convolutional layers in CS to effectively reduce the search space. 

Definition 7.3 (Dense Layer Sub-search Space (DS)) We define DS as the last 
network search sub-search space for the framework to identify the optimal number 
of dense layers required for damage assessment as: 

.̂YS = DS(DFX) (7.3) 

where ̂YS . is the estimated damage severity level for all studied social media images. 
We show the design of DS in (C) of F ig. 7.3. Similar to FS and CS, to reduce the 
search space, the DS focuses on identifying the optimal number of dense layers to 
accurately estimate the damage severity level instead of exploring different types of 
dense layer combinations. 

Given the network search sub-search space defined above, we can construct a 
neural network architecture Sb . in S for social intelligence applications by selecting 
a specific number of layers from each of FS, CS, and DS. In addition, each neural 
network architecture Sb . in S is further supervised by a damage assessment loss 
function to maximize its disaster damage assessment performance so that the COAS 
module discussed next can identify the optimal neural network architecture S∗

.with 
the best social intelligence performance accordingly: 

.LSb
: LCross−Entropy(Sb(X), Y ) (7.4) 

where LSb
. represents the damage assessment loss function for Sb .. LCross−Entropy . 

represents the cross-entropy loss that measures the difference between the actual 
and estimated disaster damage severity levels reported in the images. 

7.2.1.2 Crowd-Guided Optimal Architecture Search (COAS) 

In this subsection, we develop a principled crowd-AI integration model to transfer 
the imperfect crowd intelligence to discover the optimal neural network architecture
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from the crowd-manageable search space defined in the CSSD module. In particular, 
a straightforward approach to leverage the crowd intelligence for NAS is to directly 
ask the crowd workers to label all image samples and use annotated labels as ground 
truth to evaluate the performance of all candidate network architectures and identify 
the optimal one. However, two critical problems exist in such a solution: (1) it is 
not practical to send all data samples for the crowd to label due to budget and 
time constraints, which is especially challenging in the context of social intelligence 
applications with massive social media data inputs; (2) unlike labels annotated by 
domain experts in disaster damage management, the labels from crowd workers are 
often imperfect (e.g., biased, noisy, and even conflicting with each other) [15]. 

To address the above problems, the COAS module first designs an entropy-driven 
query set selection mechanism to identify the subset of images for crowd query. 
In particular, we choose the images in the query set to be the ones that different 
candidate neural network architectures are less likely to reach a consensus on. The 
collected crowd labels for queried images are then used to identify the optimal 
neural network architecture in the search space. 

Definition 7.4 (Estimation Entropy (E)) We define the estimation entropy E 
given a set of different deep architectures as follo ws:

.Ea = −
I

∑

i=1

Pi × log(Pi) (7.5) 

where Ea . indicates the estimation entropy for the image Xa .. I indicates the number 
of different damage severity levels in a disaster damage assessment application. Pi . 

indicates the percentage of neural network architectures in the search space S that 
estimate the damage severity level in Xa . to be i. 

Intuitively, a higher Ea .value indicates that different neural network architectures 
in S have a higher degree of disagreement with each other about the damage severity 
level in Xa .. We then sort the estimation entropy of all images X and select the t op
α ·A. ranked images into the crowd query Q, where α . refers to the crowd query ratio 
and A is the total number of studied images. 

To address the imperfect crowd label challenge, the COAS module designs 
a crowd-AI integration model to accurately identify the optimal neural network 
architecture. The design integrates the estimations of different neural network 
architectures and the imperfect crowd responses into a principled estimation 
framework to estimate the performance of each neural network architecture Sb . in 
S. In particular, we observe that every neural network architecture Sb . in S and every 
participated crowd worker Cm . in a crowd query Q generate their own assessments 
on damage severity levels for the images in Q. Therefore, we can treat both Sb . and 
Cm . as data sources with unknown reliability that makes their estimations on the 
variables of unknown labels (i.e., images of unknown damage severity levels). We 
first formulate a crowd-AI committee as follows:
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Definition 7.5 (Crowd-AI Committee (CA)) We define CA as a committee that 
includes both different neural network architectures in S and the crowd workers who 
participate in the crowd query Q in the social intelligence application as follows:

.CA = {S1, S2, . . . , SB, C1, C2, . . . , CM} (7.6) 

where Sb . is the bth.neural network architecture in S and Cm . is themth. crowd worker 
in Q. In particular, we define CAn . to be the nth. member in CA, and a total of N 
(i.e., N = B + M .) members are included in the crowd-AI committee. 

Definition 7.6 (Crowd-AI Reliability (R)) We define RCAn . to represent the reli-
ability of a member CAn . in CA, which is used to indicate the probability that the 
estimation from CAn . is correct (i.e., the estimation of CAn . matches the ground-
truth damage severity level of an image). 

Given the above definitions, the goal of the COAS module is to select the neural 
network architecture in CA with the highest reliability as the optimal neural network 
architecture for the problem. To that end, we further define P T

CAn,i . and P F
CAn,i . 

to represent the unknown probability that a member CAn . estimates the damage 
severity level of a given image to be the ith. level correctly and the level other 
than ith. level incorrectly when the actual damage severity of image Xa . is ith. level, 
respectively. Formally, we define P T

CAn,i . and P F
CAn,i . as follows: 

.

P T
CAn,i = Pr(̂YCAn

a = i|Ya = i)

P F
CAn,i =

I
∑

i �=i

Pr(̂YCAn
a = i|Ya = i)

(7.7) 

where ̂

Y
CAn
a . indicates the damage severity level of an image Xa . estimated by a 

member CAn .. Ya . is the ground-truth damage severity level for Xa .. We can further 
apply the Bayesian theorem to establish the connection between P T

CAn,i ., P
F
CAn,i . and 

RCAn . as follows: 

.

P T
CAn,i = QCAn,i × RCAn

Di

P F
CAn,i = QCAn,i × (1 − RCAn)

Di

(7.8) 

where QCAn,i . and QCAn,i . represent the probability that a member CAn . reports the 
damage severity level of the image Xa . to be the ith. level and the value other than 
ith. level, respectively. Di . indicates the prior probability that an arbitrary image is of 
damage severity level i. We observe that we can learn the reliability RCAn . for CAn . 

if we can learn the accurate values for other parameters in the above equations.
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To that end, the problem of learning the reliability RCAn .of each member in CA 
can be nicely formulated as a maximum likelihood estimation (MLE) problem as 
follo ws:

. Pr
(

(̂YS1, ̂YS2 , . . . , ̂YSB , ̂YC1 , ̂YC2 , . . . , ̂YCM )|�)

(7.9) 

where (̂YS1, ̂YS2 , . . . , ̂YSB , ̂YC1 , ̂YC2 , . . . , ̂YCM ). indicates the observed variable of 
the MLE problem. ̂YSb . represents the damage severity level estimated by a deep 
architecture Sb .. ̂YCm . represents the damage severity level labeled by a crowd 
worker Cm . in the crowd query Q. �. indicates the estimation parameter of the 
above MLE problem, where � = {P T

CA1,i
, P T

CA2,i
, . . . , P T

CAN ,i;P F
CA1,i

, P F
CA2,i

,. 

. . . , P F
CAN ,i ,D} f or i = 1, 2 . . . , I .. The goal is to learn the source reliability RCAn . 

for each member CAn . in CA from the estimation parameter �. using Eq. (7.8).  To  
that end, we define a likelihood function L(�;�,Z). of the problem as follows: 

.

L(�;�,Z)

= L(�; (̂YS1 , ̂YS2 , . . . , ̂YSB , ̂YC1 , ̂YC2 , . . . , ̂YCM ), Y )

=
A

∏

a=1

( I
∑

i=1

(

B+M
∏

n=1

P T
Sb,i

Ui
n,a × P F

Sb,i

Ui
n,a

× (1 − P T
Sb,i

− P F
Sb,i

)(1−Ui
n,a−Ui

n,a) × Di × Za,i

)

)

(7.10) 

The above likelihood function represents the likelihood of the observed data �. (i.e., 
damage severity levels estimated by different deep architectures and crowd workers) 
and the values of hidden variables Z (i.e., the actual damage severity level of an 
image) given the estimated parameter �.. The detailed explanations of the above 
parameters of the likelihood function are summarized in Table 7.1. 

In particular, the formulated problem can be solved using a constrained expecta-
tion maximization (EM) algorithm [40, 41]. Finally, we can derive RCAn . for each 
CAn . by plugging �. to Eq. (7.8). After obtaining the reliability score for each neural 
network architecture (i.e., each neural network architecture comes with different 
layers from the designed crowd-manageable search space and with or without the 
skip connection option), we select the neural network architecture CAn . with the 
highest reliability score RCAn . as the optimal neural network architecture S∗

. for the 
disaster damage assessment as follows: 

.

argmax
CAn

RCAn , where CAn ∈ {S1, S2, . . . , SB}

set CAn as S∗
(7.11)
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Table 7.1 Notations in crowd-guided architecture searching 

Notations Definitions/Explanations 

A Number of collected social media images 

I Number of damage severity levels 

B Number of neural network architectures 

M Number of crowd workers in a crowd query 

Ui
n,a . Indicator variable that is set to be 1 when a member CAn . estimates the damage 

severity of a given image xa . to be the ith. level and is set to be 0 otherwise. 

Ui
n,a . Indicator variable that is set to be 1 when a member CAn . estimates the damage 

severity of a given image xa . to be the value other than ith. level and is set to be 0 

Za,i . Probability that the damage severity of a given image xa . to be ith. level. 

�. Observed variable of the model, where � = (
̂

YS1 ,
̂

YS2 , . . . ,
̂

YSB ,
̂

YC1 ,
̂

YC2 , . . . ,
̂

YCM ). 

Z Latent variable of the model, which indicates the damage severity Y for each image

Finally, the estimated damage severity ̂YS∗
. from the optimal neural network 

architecture S∗
. is taken as the final output of the CrowdNAS framework. 

7.2.2 CrowdOptim: A Crowd-Driven Neural Network 
Hyperparameter Optimization Approach 

CrowdOptim is a crowd-driven NN hyperparameter optimization approach that 
explicitly utilizes crowd intelligence to guide the search for the optimal hyper-
parameter configuration in social intelligence applications. The overview of the 
CrowdOptim is shown in Fig. 7.4. In particular, it consists of two main modules: 

• Crowd-Manageable Hyperparameter Space Transformation (CHST): the CHST 
module designs a crowd-manageable hyperparameter space transformation 
model that effectively reduces the hyperparameter search space to a crowd-
manageable one through a novel resource constraint multi-armed bandit learning 
model design. 

• Crowd-driven Optimal Hyperparameter Identification (COHI): the COHI mod-
ule develops a principled crowd-AI collaborative estimation model to leverage 
the imperfect crowd intelligence to guide the selection of the optimal hyper-
parameter configuration from the crowd-manageable search space identified by 
CHST. The identified hyperparameter configuration is then used to generate class 
label estimation for the studied social intelligence application.
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Fig. 7.4 Overview of CrowdOptim framework 

7.2.2.1 Crowd-Manageable Hyperparameter Space Transformation 
(CHST) 

In the first subsection, we study the crowd-manageable hyperparameter space 
transformation problem where the goal is to (1) effectively reduce the large 
hyperparameter search space of an AI model to be crowd-manageable, and (2) 
ensure that the identified crowd-manageable search space has a high likelihood to 
include the optimal hyperparameter configuration. We observe that the heuristic 
search strategies used in current hyperparameter optimization solutions can be 
computationally expensive and the learned hyperparameters could be overfitting to 
the images in the validation set and cause non-negligible performance loss when 
applied to the images in the testing set [20]. The CHST module is designed to 
effectively generate the crowd-manageable hyperparameter space to address the 
above problem. 

In particular, we first formally define the crowd-manageable hyperparameter 
space in the CrowdOptim framework as follows: 

Definition 7.7 (Crowd-manageable Hyperparameter Search Space (HR).) We 
define HR

. to be a crowd-manageable hyperparameter search space that is signif-
icantly smaller than the original hyperparameter search space H . and has a high 
likelihood to include the optimal hyperparameter configuration H ∗

. as follows: 

.HR ⊂ H , where D << A and argmax
HR

Pr(H ∗ ∈ HR) (7.12)
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where D is the number of different hyperparameter configurations in HR
. and A is 

the size of the hyperparameter search space H .. We will discuss how to learn such a 
crowd-manageable hyperparameter search space in the rest of this subsection. 

In the CHST module, we explicitly formulate the CHST problem as a budget-
constrained multi-armed bandit problem (budget-constrained MBP) [50] to derive 
the crowd-manageable hyperparameter search space. In particular, we observe 
an interesting one-to-one mapping between the CHST problem and the budget-
constrained MBP problem. In the budget-constrained MBP problem, an agent 
aims to identify a subset of bandit machines with the highest winning probability 
from a large set of candidate bandit machines given a budget constraint. On 
one hand, the agent would like to spend money on trying new bandit machines 
(i.e., exploration). On the other hand, the agent would also like to keep playing 
the bandit machines that return a high reward in order to maximize the overall 
profit (i.e., exploitation). Similarly, in the CHST problem, the goal is to select 
HR

. from H . given a finite amount of computation time. We have to balance the 
exploration of new hyperparameter configurations and the exploitation of tuning the 
selected hyperparameter configuration with the best social intelligence application 
performance. We first start with a few key definitions in the CHST problem 
formulation (Fig. 7.5). 

Definition 7.8 (Budget ( γ .)) We define the budget in the CHST problem to be 
the amount of computational time that is needed to train different hyperparameter 
configurations to find the optimal one. In particular, a straightforward solution to 
find the optimal hyperparameter configuration is to train and test the performance of 
all possible hyperparameter configurations if computational time is unlimited. How-
ever, in real-world applications, there is always a finite amount of computational 
time for the hyperparameter optimization task. Hence, we take the computational 

Fig. 7.5 One-to-one mapping between CHST and budget-constrained MBP
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time available for the hyperparameter optimization task as the budget in the CHST 
problem. 

Definition 7.9 (Action ( α .)) Similar to the budget-constrained MBP problem where 
we can take actions to try different bandit machines under a given budget, we 
define the action in the CHST problem to be training different hyperparameter 
configurations given a certain amount of computational time. 

Definition 7.10 (Reward ( φ .)) In the budget-constrained MBP problem, we expect 
to receive a reward after trying a bandit machine. The reward on each trial could help 
us find the machines that are more likely to return the high rewards. In the CHST 
problem, we leverage a validation dataset that is randomly sampled from the training 
dataset to evaluate the performance of a hyperparameter configuration after taking 
an action. We define the reward in the CHST problem as the estimation accuracy of 
a hyperparameter configuration in the validation dataset, which indicates whether 
the configuration is likely to perform well or not on the testing dataset. 

Given the above definitions, we can solve the CHST problem by exploring the 
trade-off between the exploitation and exploration in the budget-constrained MBP 
problem [10]. On one hand, similar to the budget-constrained MBP problem where 
we keep exploiting bandit machines that return a high reward, the CHST module 
keeps allocating the computational time to keep tuning the same hyperparameter 
configuration with the high estimation accuracy on the validation set. On the other 
hand, like the budget-constrained MBP problem also explores new bandit machines 
to avoid missing other high-reward machines, the CHST module takes actions to 
try new hyperparameter configurations to prevent itself from being trapped into 
a local optimal hyperparameter configuration. Such a learning process could help 
effectively explore the large hyperparameter search space and identify the optimal 
hyperparameter configuration. 

After performing the budget-constrained MBP learning process, one straightfor-
ward solution is to use the hyperparameter with the highest reward as the optimal 
hyperparameter configuration. However, the learned hyperparameter could be over-
fitting to the images in the validation set and cause non-negligible performance 
loss when applied to the studied images in the testing set [28]. In particular, the 
application-specific visual features (e.g., color distributions and object layouts and 
patterns) in the validation set might not exactly match the features in the testing 
set. As a result, the hyperparameter configuration with the highest reward is not 
always guaranteed to be the optimal configuration for the testing set. To address this 
issue, the CHST module not only exploits the hyperparameter configurations with 
the highest reward but also explores other candidate hyperparameter configurations 
as a part of the crowd-manageable search space to regularize the CHST from being 
overfitted to the validation set by leveraging the trade-off between the exploitation 
and exploration in the budget-constrained MBP problem. Such a design achieves a 
reasonable trade-off between the size of the crowd-manageable search space and the 
likelihood of including the optimal hyperparameter configuration in the identified 
search space. The CrowdOptim then leverages crowd intelligence to effectively
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identify the hyperparameter configuration that achieves the best social intelligence 
application performance on the studied images from the crowd-manageable search 
space, which will be discussed next. 

7.2.2.2 Crowd-Driven Optimal Hyperparameter Identification (COHI) 

In this subsection, we propose a novel crowd-driven hyperparameter optimization 
model to effectively leverage the imperfect crowd intelligence to identify the optimal 
hyperparameter configuration from the crowd-manageable hyperparameter search 
space generated by the CHST module. The COHI module focuses on addressing 
two key challenges in leveraging crowd intelligence to guide the hyperparameter 
optimization task. First, it is not practical to send all imagery data for crowd query 
due to resource and time constraints. Second, the collected labels from crowd 
workers can be noisy, biased, and inconsistent due to the lack of domain knowledge 
of the studied social intelligence applications [12]. 

To address the above challenges, the COHI module first introduces a crowd query 
set identification mechanism to select the subset of images that will be sent to the 
crowd workers for their annotations on the class label. In particular, the design 
focuses on selecting the images where the different hyperparameter configurations 
generate inconsistent results on the estimated class labels. The collected crowd 
labels can then be used to effectively guide the identification of the optimal 
hyperparameter configuration to ensure desirable social intelligence application 
performance. 

Definition 7.11 (Assessment Entropy ( ω .)) We define the assessment entropy ω . 

for a set of different hyperparameter configurations as ωi = −∑J
j=1 dj × log(dj )., 

where ωi . represents the assessment entropy of the image Xi .. J is the number 
of different classes in a studied social intelligence application. dj . represents the 
percentage of hyperparameter configurations in the crowd-manageable search space 
that estimate the class label for Xi . to be j . Intuitively, a higher ωi . represents the fact 
that different hyperparameter configurations are less likely to reach a consensus on 
the class label in Xi .. 

Using the assessment entropy, the top I · σ . ranked images are added to the 
crowd query to collect the crowd labels where I is the number of studied images 
and σ . is the crowd query ratio. We observe that the labels returned by the crowd 
query are often imperfect (e.g., noisy, biased, and even conflicting with each 
other). To address such a challenge, the COHI module introduces a principled CI 
& AI collaboration framework to accurately identify the optimal hyperparameter 
configuration using imperfect crowd intelligence. In the model, we consider both 
hyperparameter configurations and crowd workers as data sources with unknown 
optimality that make their estimations on the images of unknown class labels. We 
first define the concept of CI&AI Collaboration Group as follows:
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Definition 7.12 (CI&AI Collaboration Group ( G).) we define G = {G1, . . . ,

GB}. as a CI&AI Collaboration Group that includes all D different hyperparameter 
configurations in HR

. and all K different crowd workers C . in an social intelligence 
application as follows: 

.G = HR ∪ C, and B = D + K (7.13) 

where B is the number of members i n G.. We further define RGb
. to represent the 

unknown likelihood of each member Gb . in making accurate class label estimations. 
Such likelihood of Gb . in HR

. indicates the optimality of the corresponding 
hyperparameter configuration. 

The goal of the COHI module is to identify the optimal hyperparameter 
configuration from the crowd-manageable search space. Hence, we select the 
hyperparameter configuration in HR

.with the highest optimality RGb
. as the optimal 

hyperparameter configuration. In particular, we can obtain the optimality of each 
member in G. using the Bayesian theorem as follows: 

.

RGb
= Pr(Yi = j |̂YGb

i = j) = UGb,j,+ × Vj

WGb,j

1−RGb
= Pr(Yi = j |̂YGb

i = j) = UGb,j,− × Vj

WGb,j

(7.14) 

where Yi . and
̂

Y
Gb

i . are the ground-truth label and estimated label by Gb . for an image 
Xi ., respectively. UGb,j,+ . and UGb,j,− . indicate the probability that Gb . estimates 
the class label to be j and the label other than j given the ground-truth label is j , 
respectively. WGb,j . and WGb,j

. represent the probability Gb . that estimates the label 
for a given image to be j and the label other than j , respectively . Vj . is the probability 
that the label of a random given image is j . Given the above equation, the next step 
is to derive the accurate value for each unknown variable in the equation in order to 
derive theRGb

. for each hyperparameter configuration inHR
.. To that end, we design 

a maximum likelihood estimation (MLE) framework to solve the above problem as 
follows: 

.

Pr
(

(̂YG1, ̂YG2 , . . . , ̂YGB )|(UG1,1,+/−, UG2,1,+/−, . . . , UGB,1,+/−),

(UG1,2,+/−, UG2,2,+/−, . . . , UGB,2,+/−),

(UG1,J,+/−, UG2,J,+/−, . . . , UGB,J,+/−), (V1, V2, . . . , VJ )
)

(7.15) 

where (̂YG1 , ̂YG2 , . . . , ̂YGB ). are the observed data of the MLE problem. 
(UG1,j,+/−, UG2,j,+/−, . . . , UGB,j,+/−). for all j in {1, 2, .., J }. and (V1, V2, . . . ,

VJ ). are the estimation parameters of the model. In the MLE problem, we define the
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likelihood function to learn the estimation parameter in order to learn the optimality 
of each hyperparameter configuration as follows: 

.

L(	;�,Z) =
I

∏

i=1

( J
∑

j=1

(
D
∏

d=1

(

UHR
d ,j,+

δi,j,d × UHR
d ,j,−

δi,j,d

× (1 − UHR
d ,j,+ − UHR

d ,j,−)
(1−δi,j,d−δi,j,d ) × Vj × zi,j

)

× β ×
K
∏

k=1

(

UCk,j,+δi,j,k × UCk,j,−
δi,j,k

× (1 − UCk,j,+ − UCk,j,−)
(1−δi,j,k−δi,j,k) × Vj × zi,j

)

)

)

(7.16) 

where the detailed explanations of the notations in the above equation are sum-
marized in Table 7.2. In particular, such a likelihood function design indicates 
the likelihood of the observed data �. (the class label estimated by different 
hyperparameter configurations and annotated by different crowd workers) and the 
value of the hidden variables Z given the estimation parameter 	.. 

Our formulated MLE problem can be solved using the expectation maximization 
algorithm [42]. Given the learned estimation parameter 	., we can obtain the 
RGb

. for each Gb . by plugging the learned 	. into Eq. (7.14). We then use the 

Table 7.2 Notations in crowd-driven Hyperparameter optimization 

Notations Explanations 

UHR
d /Ck,j,+ .& UHR

d /Ck,j,− . Probability that HR
d . or Ck . estimates the class label to be j and the 

label other than j given the ground-truth label is j , respecti vely
δi,j,d .& δi,j,k . Binary variable that is set to be 1 when a member HR

d . or Ck . 
estimates the class label of a given image xi . to be the j and is set 
to be 0 o therwise.

δi,j,d .& δi,j,k . Binary variable that is set to be 1 when a member HR
d . or Ck . 

estimates the class label of a given image xi . to be the value other 
than j and is set to be 0 o therwise.

β . Weighting factor that balances the trade-off between the inputs of 
crowd workers and hyperparameter configurations 

zi,j . Probability for the class label of a image xi . to be j. 

	. Estimation parameter of the MLE model with 
(UG1,j,+/−, . . . , UGB,j,+/−). for all j in {1, 2, .., J }. and 
(V1, V2, . . . , VJ ). 

�. Observed variable of the MLE model with 

� = (̂YG1 , ̂YG2 , . . . , ̂YGB ). 

Z Latent variable of the MLE model that includes all zi,j . for all 
possible i and j
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learned optimality RGb
. to select the hyperparameter configuration with the highest 

optimality value as the optimal hyperparameter configuration H ∗
. for the studied 

social intelligence application. Finally, the class labels estimated by the optimal 
hyperparameter configuration are used as the output of the CrowdOptim framework. 

Our COHI module can effectively leverage imperfect crowd intelligence to guide 
the discovery of the optimal hyperparameter configuration for two reasons. First, 
a straightforward solution to solve the hyperparameter optimization problem is to 
exhaustively collect crowd labels on all studied images to evaluate the performance 
of each hyperparameter configuration in order to identify the optimal one. However, 
it is not practical to send all imagery data for crowd query due to the resource 
and time constraints [46]. Therefore, the COHI module introduces a principled 
assessment entropy design that effectively identifies a subset of studied images 
for crowd query, where different hyperparameter configurations are less likely to 
reach a consensus on the class labels. The collected labels are then used by the 
COHI module to identify the optimal hyperparameter configuration. Second, the 
labels returned by the crowd query are often imperfect (e.g., noisy, biased, and even 
conflicting with each other), which could mislead us to select the poorly performed 
hyperparameter configuration as the optimal one. To address this challenge, the 
COHI module explicitly considers both hyperparameter configurations and crowd 
workers as data sources with unknown optimality that make their estimations on 
the images of unknown class labels. The COHI module then introduces a principled 
MLE framework (Eqs. (7.15) and (7.16)) to derive the unknown optimality score of 
each hyperparameter configuration to identify the optimal hyperparameter configu-
ration. 

In addition, we note that there exist several limitations of the COHI design. First, 
the assessment entropy design could identify the wrong image for crowd query when 
all hyperparameter configurations in the crowd-manageable search space happen 
to make similar mistakes on the same image. To address such a problem, one 
possible solution is to leverage the epsilon-greedy algorithm from reinforcement 
learning [37] to occasionally include the images with low assessment entropy for 
crowd query by exploring the trade-off between exploitation and exploration in 
crowd query data selection. Second, while the COHI module can effectively identify 
the optimal hyperparameter configuration that achieves the overall optimal social 
intelligence application performance across all classes, it does not guarantee that the 
identified optimal hyperparameter optimization can achieve the best performance 
across every single class in the studied application [36]. To address this challenge, 
instead of focusing on identifying a single optimal hyperparameter configuration 
that achieves the best overall performance, we can further extend the crowd-AI 
collaborative MLE framework to learn the class-wise optimality score for each class. 
The learned optimality scores are then used to determine a vector of class-wise 
optimal hyperparameter configurations, where the hyperparameter configuration 
with the highest class-wise optimality score for a specific class is used to estimate 
the class label for that class.
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Fig. 7.6 A walkthrough of CrowdOptim framework for practical users 

7.2.2.3 Summary of CrowdOptim Framework 

In this subsection, we first present an overview on how practical users without 
extensive AI backgrounds can use CrowdOptim in a real-world social intelligence 
application (e.g., urban environment cleanliness assessment (UECA)) in Fig. 7.6. 
In particular, a practical user can use CrowdOptim to perform social intelligence 
tasks in four steps. First, the user can choose to upload urban sensing images of 
interest to CrowdOptim. Second, the user can start the crowd query to acquire crowd 
intelligence to guide the search for the optimal hyperparameter configuration. Third, 
the user can then start the hyperparameter optimization process, where CrowdOptim 
leverages the acquired crowd labels to identify the optimal hyperparameter config-
uration for social intelligence tasks. Finally, CrowdOptim generates the estimated 
class label for each uploaded image using the identified optimal hyperparameter 
configuration. 

In addition, we also present a detailed elaboration for more advanced users (e.g., 
AI researchers) to better understand the insights of how CrowdOptim works in four 
main phases and discuss how such advanced users can interact with (e.g., tuning) 
CrowdOptim at each phase in Fig. 7.7 as follows: 

• Phase (a): Generating Crowd-Manageable Hyperparameter Space. The objec-
tive of phase (a) is to use the CHST module to generate a crowd-manageable 
hyperparameter space that has a high likelihood of including the optimal 
hyperparameter configuration for social intelligence tasks. The inputs to this 
phase are the state-of-the-art deep convolutional network architecture N selected
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Fig. 7.7 Elaboration of CrowdOptim framework for advanced users 

for a given social intelligence task and the associated hyperparameter search 
space H . for N . The output is the crowd-manageable hyperparameter search 
space HR

.. We note that CrowdOptim is capable of performing hyperparameter 
optimization for different neural network architectures for social intelligence 
tasks. In this phase, the users can choose the convolutional network architecture 
N (e.g., VGG, ResNet, DenseNet) for the studied social intelligence application 
of interests by leveraging existing neural architecture search solutions [23]. 

• Phase (b): Configuring Crowd Query Settings. The objective of phase (b) is to 
apply the assessment entropy estimation in COHI module to identify a subset 
of I · σ . studied images (I is the number of studied images and σ . is the crowd 
query ratio) where different hyperparameter configurations in HR

. are less likely 
to reach a consensus on the class labels. The COHI module then forwards the 
identified subset of images to the crowd workers to collect their labels, which 
are used to help determine the optimal hyperparameter configuration H ∗

. from 
HR

.. The inputs to this phase are the crowd-manageable hyperparameter search 
spaceHR

. and application-specific crowd query ratio σ .. The outputs of this phase
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are the class labels ̂YC .marked by the crowd workers for the images in the crowd 
query. In this phase, the users can tune the crowd query ratio σ . and the number of 
crowd workers K by exploring the trade-off between the application performance 
and the crowdsourcing costs in the studied social intelligence application.

• Phase (c): Deriving Optimality Scores. We note that the labels returned by 
the crowd query are often imperfect (e.g., noisy, biased, and even conflicting 
with each other). Therefore, the objective of phase (c) is to use the principled 
CI & AI collaboration MLE framework in the COHI module to accurately 
identify H ∗

. from HR
. by leveraging the imperfect crowd intelligence. The inputs 

to this phase are the collected crowd labels ̂YC . and the crowd-manageable 
hyperparameter search space HR

.. The output of this phase is the identified 
optimal hyperparameter configuration H ∗

.. The users can vary the initialization 
values for the estimation parameter 	. before the EM optimization process starts 
to explore the trade-off between model convergence rate and accuracy of the 
derived optimality score for each hyperparameter configuration [3]. 

• Phase (d): Generating Class Labels. The objective of phase (d) is to use the 
optimal hyperparameter configuration H ∗

. obtained from phase (c) to estimate 
class labels for all images in the studied social intelligence application. The 
inputs to this phase are the identified optimal hyperparameter configuration H ∗

. 

and all studied images X .. The outputs of this phase are the estimated labels ̂YH ∗
. 

for all studied images X . generated by H ∗
.. The users can choose to output class 

labels for all studied images or only output image labels of the class of interests 
(e.g., the image of “not clean” in a UECA application). 

7.3 Real-World Case Studies 

We evaluate the effectiveness of CrowdNAS and CrowdOptim through two real-
world case studies across multiple datasets. Specifically, we evaluate CrowdNAS in 
the context of disaster damage assessment, where the objective is to identify the 
severity of damage in affected areas by leveraging crowd input to guide neural 
architecture selection. To assess CrowdOptim, we use the application scenario 
of smart urban sensing, aiming to optimize neural network hyperparameters with 
crowd feedback to enhance model performance in monitoring urban environments. 
These case studies demonstrate the potential of crowd-AI collaborative frameworks 
to improve accuracy and efficiency in diverse, high-impact applications.
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7.3.1 Disaster Damage Assessment (DDA) 

In this subsection, we conduct extensive experiments on two real-world DDA appli-
cations from Typhoon Hagupit and California Wildfires to answer the following 
research questions: 

• Q1: Can CrowdNAS achieve a better DDA accuracy by selecting the optimal 
network architecture than state-of-the-art baselines? 

• Q2: Is the performance gain achieved by CrowdNAS robust across different 
crowdsourcing settings? 

• Q3: How does each module of CrowdNAS contribute to its overall performance? 

7.3.1.1 Dataset and Crowdsourcing Platform 

Disaster Damage Assessment Datasets In the evaluation, we use two real-world 
datasets on disaster damage assessment collected by [29].1 In particular, the datasets 
consist of social media images collected from two different disaster events: Typhoon 
Hagupit in the Philippines (2014) and the California wildfires in the US (2017). 
The two datasets have different damage characteristics (e.g., damage types, object 
layouts, and color distributions) as shown in Fig. 7.8. In the datasets, the ground-
truth damage severity level of each social media image is manually classified by 
domain experts in disaster damage management into three categories (i.e., severe 
damage, mild damage, and no damage). The statistics of the two datasets are 
summarized in Table 7.3. In addition, we keep the ratio of training to testing data as 
3:1, the same as [29]. The training dataset is used to train all compared AI models 
for disaster damage assessment. 

Fig. 7.8 Examples of studied disaster events

1 https://crisisnlp.qcri.org/. 

https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
https://crisisnlp.qcri.org/
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Table 7.3 Statistics of disaster damage assessment datasets 

Typhoon Hagupit California Wildfires 

Number of images 661 592 

Percentage of severe damage 11.2% 41.2% 

Percentage of mild damage 42.2% 8.1% 

Percentage of no damage 46.6% 50.7% 

Amazon Mechanical Turk Platform To obtain the crowd intelligence, we utilize 
the Amazon Mechanical Turk (AMT) [1]. In each crowdsourcing task, we ask the 
crowd workers to label the damage severity level of the image in the query. To 
ensure the crowd label quality, we select the crowd workers who have an overall 
task approval rate greater than 95% and have completed at least 1000 approved 
tasks to participate in the crowdsourcing tasks. We pay $0.20. to each worker per 
image in the experiment. In the evaluation, we study a diversified set of crowd query 
settings to create a challenging evaluation scenario for the CrowdNAS framework. 
In particular, we vary the crowd query ratio from 10 to 20% in the experiments. 
We also vary the number of crowd workers who respond to each queried image 
from 3, 5 to 7. In particular, we observe that an average of 72.7% of the images 
are correctly labeled by the crowd workers, which matches the observation that the 
crowd intelligence is imperfect. 

7.3.1.2 Baselines and Experiment Settings 

We compare CrowdNAS with a set of representative AI, crowd-AI, and NAS 
baselines from the literature in the DDA applications. 

• AI-Only Baselines: 

1. InceptionNet [39]: InceptionNet is a widely used deep neural network 
approach that utilizes convolution factorization to accelerate the learning 
process of the damage severity assessment. 

2. DenseNet [14]: DenseNet is a popular deep learning model that leverages 
the feed-forwarding mechanism to achieve dense connections among different 
network layers for desirable damage assessment accuracy. 

3. VGG [22]: VGG is a state-of-the-art deep learning framework that is widely 
adopted in disaster damage assessment, which leverages a stack of deep 
convolutional operations to boost the classification accuracy. 

• Crowd-AI Hybrid Baselines: 

1. CrowdLearn [45]: CrowdLearn is a recent crowd-AI framework that explores 
the crowd intelligence and AI by combining crowd labels with AI outputs to 
improve the accuracy of the estimated damage severity level.
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2. Deep Active [33]: Deep Active is a state-of-the-art deep active learning-based 
crowd-AI system that proposed a core-set selection mechanism to select the 
representative images for crowd labeling and the crowd labels are used for 
model retraining to optimize the DDA performance. 

3. Hybrid Para [17]: Hybrid Para is an elastic crowd-AI learning architecture 
that forwards the images with complex image property (e.g., color distri-
butions) to seek crowd labels to improve the assessment accuracy in DDA 
applications. 

• NAS Baselines: 

1. NASNetLarge [51]: NASNetLarge is a state-of-the-art NAS approach that 
proposes a scheduled drop path mechanism to effectively refine the neural 
network architecture during the NAS process. 

2. NASNetMobile [32]: NASNetMobile is a lightweight NAS framework that 
conducts network searching on cell-based architectural building blocks to 
ensure the desirable NAS performance. 

3. Darts [25]: Darts is a representative NAS framework that leverages a differen-
tiable architecture representation to achieve an effective NAS process through 
a gradient descent. 

4. ProxylessNAS [4]: ProxylessNAS is a lightweight NAS framework that 
conducts network searching on cell-based architectural building blocks to 
ensure the desirable NAS performance. 

5. UnNAS [24]: UnNAS is a representative NAS framework that leverages a 
differentiable architecture representation to achieve an effective NAS process 
through a gradient descent. 

To ensure a fair comparison, the inputs to all compared schemes are set to be the 
same, which include: (1) the input social media images, (2) the ground-truth labels 
of images in the training dataset, and (3) the labeled images from crowd workers. 
In particular, we retrain the AI only and NAS baselines using the labels returned by 
the crowd for a fair comparison. In addition, we also consider the random baseline, 
which estimates the damage severity for each image by randomly selecting a damage 
severity level from the possible categories. In the experiments, we implement the 
CrowdNAS model using Tensorflow 2.0 libraries2 and train the model using the 
NVIDIA Quadro RTX 6000 GPUs. In the experiments, all hyper-parameters are 
optimized using the Adam optimizer [19]. In particular, we set the learning rate 
to be 10−6

.. We also set the batch size to be 20 and the model is trained over 300 
epochs. In addition, we directly use layers from ImageNet pre-trained VGG19 [35] 
as the pre-trained CNN layers in the model. 

To evaluate the performance of all compared schemes, we adopt three represen-
tative metrics that are widely used to evaluate the performance of multi-class image 
classification tasks in image processing: (1) F1-score,  (2)  Cohen’s kappa Score

2 https://www.tensorflow.org/. 

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
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( K.-Score) [2], and Matthews Correlation Coefficient (MCC) [18]. In particular, we 
use K.-Score and MCC in the evaluation because we have an imbalance evaluation 
dataset, where K.-Score and MCC have been proven to be reliable evaluation metrics 
for imbalanced data [5]. Intuitively, higher F1-score, K.-Score, and MCC indicate a 
better disaster damage assessment performance. 

7.3.1.3 Evaluation Results 

Q1: Performance Comparison between CrowdNAS and Baselines. 

We first evaluate the accuracy of all compared schemes in terms of classification 
accuracy in the studied DDA application. In this experiment, we select three 
representative values of crowd query ratio α . (the percentage of images sent to the 
AMT crowd workers) as 10, 15, and 20%.. We will also study the robustness of 
the CrowdNAS over a wider range of α . in the robustness study of Q2 below. In 
addition, we set the number of crowd workers for each queried image (M)  to  5.  
The results are presented in Tables 7.4 and 7.5. We observe that the CrowdNAS 
scheme consistently outperforms all compared baselines when the crowd query ratio 
changes. In particular, the performance gains of CrowdNAS over the AI-only and 
crowd-AI baselines mainly come from the fact that we developed a crowd-guided 
NAS system to effectively identify the optimal neural network architecture in the 
design space to reduce the bias and errors compared to the baselines designed by 
AI-experts. In addition, we observe that NAS baselines perform worse compared to 
the crowd-AI baselines. This is because the current NAS baselines are often noise-
sensitive [9]. In particular, the noises introduced by crowd inputs are recursively 
amplified during the NAS process and eventually lead to inaccurate neural network 
architecture selections. 

Additionally, we further evaluate the performance of all compared schemes by 
varying the number of crowd workers (M) to label each image from 3 to 7. We set 
the crowd query ratio α . to be 20% in this experiment. The evaluation results are 
shown in Tables 7.6 and 7.7. We observe that CrowdNAS continuously outperforms 
all compared baselines when the number of crowd workers changes. For example, 
the performance gains of CrowdNAS compared to the best-performing baseline (i.e., 
Deep Active) for the Typhoon Hagupit dataset when the crowd query numberM = 5. 
on F1-Score, K.-Score, and MCC are 5.59., 7.68., and 8.31%., respectively. In this 
case, the optimal network architecture identified by CrowdNAS includes 19 PCNN 
layers, 1 Conv layer, and 3 dense layers. In general, the consistent performance 
gains over various crowd query settings demonstrate the effectiveness of the COAS 
design. We also observe that the performance of CrowdNAS remains the same 
when M increases from 5 to 7. This is because CrowdNAS is able to identify the 
optimal network architecture (i.e., 19 PCNN layers, 1 Conv layer, and 3 dense 
layers) with the responses from 5 crowd workers. When we further increase the 
number of crowd workers to 7, CrowdNAS also consistently identifies the same 
optimal network architecture that achieves the same optimal DDA performance.
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Fig. 7.9 Robustness study of CrowdNAS with different crowd query ratios (Typhoon Hagupit 
Dataset). (a) F1-score. (b) K.-score. (c)  MC  C

Such a performance indicates the capability of CrowdNAS to identify the optimal 
neural network architecture from a small number of crowd workers. 

Q2: Robustness Study of CrowdNAS Scheme 

In the second set of experiments, we study the robustness of the CrowdNAS 
scheme by evaluating its performance over the settings of two key crowdsourcing 
parameters (i.e., crowd query ratio α . and crowd worker number M).3 We compare 
the performance of the CrowdNAS with the best-performing baselines from all three 
different categories (i.e., DenseNet from the AI Only baselines, Hybrid Para from 
the crowd-AI baselines, and NASNetLarge from the NAS baselines). The results 
are shown in Figs. 7.9, 7.10, 7.11, and 7.12. We observe that the performance of 
the CrowdNAS scheme is relatively stable as both the crowd query ratio α . and the 
crowd worker number M change. We also observe that CrowdNAS consistently 
outperforms the best-performing baselines on different evaluation metrics. The 
above results further demonstrate the robustness and effectiveness of the scheme 
to leverage the imperfect crowd knowledge to identify the optimal neural network 
architecture in accurately assessing the damage severity in DDA applications.

Q3: Ablation Study of CrowdNAS Scheme 

In the third set of experiments, we perform an ablation study to understand the 
contribution of each module of CrowdNAS to its overall performance. In particular,

3 Note that we stop at α = 30%. because it is not feasible to send a large number of images for 
crowd query due to the budget constraints. 
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Fig. 7.10 Robustness study of CrowdNAS with different crowd query ratios (California Wildfires 
Dataset). (a) F1-score. (b) K.-score. (c)  MC  C

Fig. 7.11 Robustness study of CrowdNAS with different crowd worker numbers (Typhoon 
Hagupit Dataset). (a) F1-score. (b) K.-score. (c)  MC  C

we present the DDA classification results by removing each of the key modules in 
CrowdNAS (i.e., CSSD module in Sect. 7.2.1.1 and COAS module in Sect. 7.2.1.2). 
The results are shown in Figs. 7.13, 7.14, 7.15, and 7.16. We observe that both 
the CSSD and COAS modules make non-trivial contributions in improving the 
performance of the CrowdNAS framework. For example, the performance gains 
of CrowdNAS compared to w/o CSSD for the Typhoon Hagupit dataset when 
α = 20%. and M = 5. (Fig. 7.13c) on F1-Score, K.-Score, and MCC are 13.04., 
24.01., and 18.3%., respectively. Such performance gains validate the effectiveness 
of the CSSD module in designing a crowd-manageable searching space that has a 
high likelihood of incorporating the optimal neural network architecture for DDA 
applications. Similarly, the performance gains of CrowdNAS compared to w/o 
COAS for the Typhoon Hagupit dataset when α = 20%. and M = 5. on F1-
Score, K.-Score, and MCC are 5.60., 8.79., and 9.39%., respectively. The results
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Fig. 7.12 Robustness study of CrowdNAS with different crowd worker numbers (California 
Wildfires Dataset). (a) F1-score. (b) K.-score. (c)  MC  C

Fig. 7.13 Ablation study of CrowdNAS with different crowd query ratios (Typhoon Hagupit 
Dataset). (a) α . = 10%. (b) α . = 15%. (c) α . = 20% 

Fig. 7.14 Ablation study of CrowdNAS with different crowd query ratios (California Wildfires 
Dataset). (a) α . = 10%. (b) α . = 15%. (c) α . = 20% 

demonstrate the effectiveness of the COAS module in transferring the imperfect 
crowd intelligence to identify the optimal neural network architecture from the 
search space identified by CSSD.
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Fig. 7.15 Ablation study of CrowdNAS with different crowd worker numbers (Typhoon Hagupit 
Dataset). (a)  M=3.  (b)  M=5.  (  c) M=7

Fig. 7.16 Ablation study of CrowdNAS with different crowd worker numbers (California Wild-
fires Dataset). (a)  M=3.  (b)  M=5.  (  c) M=7

7.3.2 Smart Urban Sensing 

In this subsection, we evaluate the performance of the CrowdOptim framework 
through two real-world AI-based Smart Urban Sensing (ASUS) applications. The 
evaluation results demonstrate that CrowdOptim consistently outperforms state-of-
the-art deep convolutional networks, crowd-AI, and hyperparameter optimization 
baselines in accurately identifying abnormal infrastructure conditions and assessing 
urban environment cleanliness under various evaluation scenarios. 

7.3.2.1 Dataset and Crowdsourcing Platform 

Smart Urban Sensing Datasets 

In the experiments, we evaluate the performance of the CrowdOptim framework 
through two real-world ASUS datasets collected from online social media (i.e., 
Twitter) using Twitter API v2:4 (1) smart city infrastructure monitoring (SCIM)

4 https://developer.twitter.com/en/docs/twitter-api. 

https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
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Fig. 7.17 Examples of studied ASUS datasets. (a) Smart city infrastructure monitoring (SCIM). 
(b) Urban environment cleanliness assessment (UECA) 

Table 7.8 Statistics of two ASUS datasets 

SCIM UECA 

Number of images 1153 665 

Percentage of class 1 Severe damage: 13.9% Not clean: 33.1% 

Percentage of class 2 Moderate damage: 39.7% Less clean: 27.1% 

Percentage of class 3 No or minor damage: 46.4% Very clean: 39.8% 

and (2) urban environment cleanliness assessment (UECA). Following a standard 
practice in SCIM applications [29], the ground-truth labels (i.e., the infrastructure 
damage severity label for each image) are annotated by trained annotators into 
three categories (i.e., severe damage, moderate damage, no or minor damage as 
shown in Fig. 7.17a). Similarly, the street cleanliness level of the urban environment 
reported in each image is manually classified by trained annotators into three 
different classes (i.e., very clean, less clean, and not clean as shown in Fig. 7.17b). 
Moreover, to ensure the quality of the ground-truth labels, each image is labeled 
by three independent annotators for both datasets. In particular, we observe that 
three annotators have the consensus of their labels of an image in 79.8% of the 
studied images, and two of the three annotators share the same labels of an image 
on the remaining 20.2% of the studied images. We apply majority voting on the 
collected labels to generate the ground-truth labels for each image in the evaluation. 
The statistics of the two datasets are summarized in Table 7.8. In addition, we set 
the ratio of training to testing data to be 7:3. In particular, we use the training sets to 
train all compared baselines for both the SCIM and UECA tasks.
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Crowdsourcing Platform 

We use Amazon Mechanical Turk (AMT) to obtain crowd intelligence. AMT is one 
of the largest crowdsourcing platforms that provides 24/7 crowdsourcing service 
with a large amount of crowd workers worldwide. In the crowdsourcing task, we 
recruit the crowd workers with an overall task approval rate above 95% and have 
finished at least 1000 approved tasks to ensure the crowd label quality. We pay $0.05. 
to each worker per image in the experiment. We follow the IRB protocol approved 
for this project. In the experiment, we study a diversified set of crowd query settings, 
where we vary the crowd query ratio from 5 to 20% and vary the number of crowd 
workers per task from 3 to 7. 

7.3.2.2 Baseline and Evaluation Settings 

In the evaluation, we compare CrowdOptim with a set of representative deep 
convolutional networks, crowd-AI, and hyperparameter optimization schemes for 
ASUS tasks. We elaborate on the baselines below. 

Deep Convolutional Networks: 

• ResNet [38]: ResNet is a widely used convolutional neural network architecture 
that leverages residual block design to extract the application-specific visual 
features for ASUS tasks. 

• DenseNet [14]: DenseNet is a convolutional neural network based model where 
the network layers are connected via dense connections to perform ASUS tasks 
with strengthened visual feature propagation. 

• VGG [22]: VGG is a very deep convolutional network architecture that can 
effectively learn the visual representations from images for ASUS tasks. 

Crowd-AI: 

• Hybrid Para [17]: Hybrid Para is a crowdsourcing-based elasticity framework 
that adaptively optimizes the hybrid utilization of crowd and machine intelligence 
to boost the performance of the ASUS model. 

• Deep Active [33]: Deep Active is a deep active learning approach that jointly 
models crowd and AI efforts to efficiently select a core set of images to be 
labeled by crowd workers and the labeled images are utilized to improve the 
ASUS performance. 

• CrowdLearn [45]: CrowdLearn is a crowd-AI hybrid approach that incorporates 
crowdsourcing intelligence to troubleshoot deep learning algorithms for improv-
ing the performance of deep learning-based ASUS models. 

Hyperparameter Optimization: 

• HyperBand [20]: HyperBand is a representative hyperparameter optimization 
approach that utilizes a non-stochastic infinite-armed bandit-based mechanism 
to ensure an effective neural network optimization process.
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• BOHB [8]: BOHB is a popular hyperparameter optimization framework that 
introduces Bayesian and bandit-based hybrid optimization design to ensure 
desirable hyperparameter optimization performance at scale. 

• ASHA [21]: ASHA is a recent hyperparameter optimization scheme with an 
aggressive early-stopping design to effectively explore additional hyperparam-
eter spaces given the limited computational resource. 

In the experiments, we keep the same inputs to all compared schemes for a fair 
comparison. In particular, the inputs to a scheme include: (1) the studied smart 
urban sensing images, (2) the infrastructure damage severity labels for images in the 
training data set, and (3) the labeled images returned by the crowd workers. In par-
ticular, we retrain the deep convolutional network and hyperparameter optimization 
baselines using the crowd labels to make sure all baselines have the same inputs. 
We also include a random baseline that performs the ASUS tasks by randomly 
selecting an infrastructure damage severity label from all possible candidates. In the 
experiment, the CrowdOptim model is implemented using PyTorch 1.1.0 libraries 5 

and is trained on the NVIDIA Quadro RTX 6000 GPUs. Following a standard 
hyperparameter search space design [20], we set the hyperparameter search space 
in the experiments as follows: we set the learning rate to be between 10−6

. and 10−3
. 

and set the weight decay to be between 0 and 10−3
.. We also consider three optimizer 

candidates in the experiments: SGD, RMSprop, and ADAM. We further set the SGD 
momentum to be between 0.8 and 1.0, and the RMSprop alpha to be between 0.8 
and 1.0. We also set the beta1 for ADAM optimizer to be between 0.8 and 1.0 and 
the beta2 for ADAM optimizer to be between 0.9 and 1.0. In addition, we set the 
epochs in the experiments to be between 30 and 150 in the experiments. 

To evaluate the performance of all compared schemes, we use three metrics that 
are widely adopted to evaluate the performance of multi-class image classification 
tasks in image processing: (1) F1-score,  (2)  Cohen’s kappa Score (K.-Score) [2], 
and (3) Matthews Correlation Coefficient (MCC) [18]. We use K.-Score and MCC 
in the evaluation since the datasets are imbalanced and those two metrics have been 
proven to be reliable for imbalanced data [5]. The higher values of these metrics 
indicate better SCIM and UECA performance. 

7.3.2.3 Evaluation Results 

Performance Comparisons on Different Crowd Query Ratio 

We first compare the performance of all schemes in terms of classification accuracy 
in the studied SCIM and UECA applications. In this experiment, we vary the crowd 
query ratio σ . from 5 to 20%., which provides a good balance between the amount 
of crowd responses and the crowdsourcing cost. In addition, we set the number

5 https://pytorch.org. 

https://pytorch.org
https://pytorch.org
https://pytorch.org


192 7 Fusing Crowd Wisdom and AI

of crowd workers to be 5 in this experiment. The evaluation results are shown 
in Tables 7.9 and 7.10. We observe that the CrowdOptim clearly outperforms all 
compared baselines in all evaluation settings for both applications. For example, 
the performance gains of CrowdOptim compared to the best-performing baseline 
(i.e., BOHB) when σ . = 5% in the SCIM dataset on F1-Score, K.-Score, and MCC 
are 5.79, 6.43, and 4.62%, respectively. The performance gains of CrowdOptim 
are mainly achieved by the effective crowd-driven hyperparameter optimization 
design that addresses the bias and inefficiency of the manual NN hyperparameter 
configuration process by exploring the collective wisdom of the crowd and AI. 
In particular, the performance gains of CrowdOptim over the deep convolutional 
network baselines mainly come from the fact that CrowdOptim develops a crowd-
driven hyperparameter configuration framework to automatically identify the opti-
mal hyperparameter configuration from the large hyperparameter search space. In 
contrast, the hyperparameter configurations of current deep convolutional network 
solutions are often manually configured by the AI specialists, which is known to be 
error-prone and suboptimal due to the lack of interpretability of the hyperparameter 
optimization in the absence of the ground-truth labels [16]. In addition, CrowdOptim 
outperforms the crowd-AI baselines because it designs an effective crowd-driven 
hyperparameter optimization scheme, which models different NN hyperparameter 
configurations and crowd inputs under a collaborative estimation framework to 
accurately estimate the optimality of each hyperparameter configuration. In contrast, 
current crowd-AI approaches often leverage the collected crowd labels to retrain 
AI models or replace their outputs to optimize the overall model performance. 
However, those solutions primarily focus on optimizing the performance of AI 
models with manually pre-selected hyperparameter configurations and imperfect 
crowd labels. As a result, their performance could still be undesirable due to the 
bias and constraints of the manual hyperparameter selection process and potential 
model collapse during the AI model training process [10]. Finally, CrowdOptim out-
performs the hyperparameter optimization baselines because CrowdOptim designs a 
principled maximum likelihood estimation framework that can effectively leverage 
imperfect crowd intelligence to guide the selection of the optimal hyperparameter 
configuration. In contrast, current hyperparameter optimization solutions do not 
work well with the imperfect crowd labels, where the noises introduced by 
crowd inputs could mislead the current hyperparameter optimization solutions to 
select the poorly performed hyperparameter configuration as the optimal one. In 
addition, CrowdOptim achieves consistent performance gains in both SCIM and 
UECA datasets, which demonstrate the effectiveness of the principled estimation 
framework design in CrowdOptim that carefully estimates the optimality of each 
hyperparameter configuration to identify the optimal one in different ASUS tasks 
with diversified and excessive visual features.
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The Effect of Number of Crowd Workers 

In the second set of experiments, we evaluate the performance of the Crow-
dOptim scheme on SCIM and UECA datasets over different numbers of crowd 
workers. In the experiment, we vary the number of crowd workers from 3 to 7 
and set the crowd query ratio to be 15%. In the experiments, we compare the 
performance of CrowdOptim with the best-performing baselines in each category 
(i.e., RestNet for deep convolutional network baselines in both SCIM and UECA 
dataset, CrowdLearn and Hybrid Para for crowd-AI baselines in SCIM and UECA 
datasets, respectively, and BOHB and ASHA for hyperparameter optimization 
baselines in SCIM and UECA datasets, respectively). The evaluation results are 
shown in Figs. 7.18 and 7.19. We observe that the performance of CrowdOptim 
is relatively stable and consistently outperforms the best-performing baselines as 
the number of crowd workers changes in both SCIM and UECA datasets. The 
above results demonstrate the robustness and effectiveness of the CrowdOptim 
scheme in effectively leveraging the imperfect crowd intelligence from different 
numbers of crowd workers to guide the identification of the optimal hyperparameter 
configuration. We also observe that the performance of compared baselines drop 
when we increase the number of crowd workers from 5 to 7 in the SCIM dataset. 

Fig. 7.18 The effect of number of crowd workers (SCIM). (a) F1-score. (b) K.-Score. (c)  MC  C

Fig. 7.19 The effect of number of crowd workers (UECA). (a) F1-score. (b) K.-Score. (c)  MCC
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This is because the training labels returned by crowd workers can be biased and 
inconsistent, which could lead to the model collapse during the training process for 
the compared baselines and a decrease in their ASUS performance. 

Ablation Study of CrowdOptim Scheme 

In the last set of experiments, we conduct an ablation study to learn the contribution 
of each core module design in CrowdOptim to its overall performance. In the 
experiments, we present the SCIM and UECA classification results by removing 
each of the core modules in CrowdOptim (i.e., CHST and COHI). In particular, 
we uniformly sample the hyperparameter configurations from the search space 
to replace the CHST model to generate the crowd-manageable search space. We 
randomly select one hyperparameter in the crowd-manageable hyperparameter 
search space as the optimal hyperparameter configuration to replace the COHI 
module. The evaluation results are shown in Figs. 7.20 and 7.21. We observe that 
both core modules in the CrowdOptim framework make important contributions to 
the performance of the CrowdOptim framework over the two ASUS applications. 

Fig. 7.20 Ablation study of CrowdOptim scheme (SCIM). (a) F1-score. (b) K.-Score. (c)  MC  C

Fig. 7.21 Ablation study of CrowdOptim scheme (UECA). (a) F1-score. (b) K.-Score. (c)  MCC
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7.4 Discussion 

This section provides further discussions on the impact and limitations of the 
presented human-AI collaboration frameworks to address the challenging NAS 
and HPO problem in social intelligence applications. First, the results show 
that CrowdNAS consistently surpasses all baseline models, achieving the highest 
DDA accuracy and the lowest computational cost. This performance improvement 
stems from the unique approach of leveraging human intelligence from public 
crowdsourcing platforms rather than relying on input from AI experts. CrowdNAS 
addresses the primary limitations of existing DDA and NAS solutions, which often 
depend on large volumes of high-quality training data or extensive expert input. 
Additionally, CrowdNAS demonstrates consistent performance gains across two 
distinct disaster scenarios—Typhoon Hagupit and California wildfires– highlighting 
its robustness and adaptability to various disaster contexts (e.g., flooding vs. fire 
damage, urban vs. rural damage). Similarly, the CrowdOptim model outperforms 
state-of-the-art baselines, achieving the highest accuracy in both SCIM and UECA 
applications. This suggests that CrowdOptim can effectively support local and 
federal agencies in implementing timely actions and countermeasures to enhance 
public safety and health in urban areas, such as preventing incidents like the 2021 
Florida condominium collapse or reducing mosquito breeding to curb malaria. Fur-
thermore, CrowdOptim consistently performs well across diverse social intelligence 
applications, specifically SCIM and UECA. These applications both involve using 
social media images to monitor urban environments, yet have distinct objectives— 
detecting abnormal infrastructure conditions vs. assessing urban cleanliness—and 
utilize images with varied visual characteristics (e.g., color distributions, object 
layouts, and patterns). The strong performance of CrowdOptim across these applica-
tions suggests its potential for broader use in other image-driven social intelligence 
applications with varied goals. 

The integration of crowdsource human intelligence with AI, as shown by the 
examples of CrowdNAS and CrowdOptim, represents a new intelligence paradigm 
in addressing complex social intelligence challenges. By leveraging the diversity 
and flexibility of crowdsourcing, the collaborative systems eliminate dependence on 
massive labeled data and inputs from domain experts, which enables AI solutions 
to be more flexible and accessible. The crowdsource human intelligence introduces 
diverse, context-specific insights (e.g., local knowledge of disaster-affected areas), 
enabling robust performance across varied domains, such as disaster response [47], 
urban monitoring [48], and public safety [7]. In contrast, AI models deliver com-
putational efficiency, scalability, and reasonable precision but rely on pre-defined 
data quality and may be incapable of contextual understanding and nuances without 
human inputs [30]. Combining the best of both—the flexibility of crowdsourced 
human intelligence and the scalability of AI—these frameworks address limitations 
inherent in each approach. This synergy positions crowd-AI systems as powerful 
tools for social intelligence applications, from truth discovery [34], to recommender 
systems [44] and public health monitoring [49].
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There are also a few limitations of the introduced human-AI collaboration frame-
works, which can potentially be addressed in future work. First, the CrowdNAS and 
CrowdOptim frameworks are currently designed to work with social intelligence 
applications where the studied physical status of disaster damage or urban environ-
ments can be categorized. However, it is noted that there exist also social intelligence 
applications where the physical status is represented by a numerical variable (e.g., 
air quality index, population density, traffic volume). To address this limitation, 
the CrowdNAS and CrowdOptim framework can be extended by focusing on 
optimizing neural network architectures and hyperparameter configurations for deep 
regression models, which are commonly used to estimate numerical variables. 
Specifically, one potential solution is to introduce a principled hidden Markov model 
that effectively models the numerical physical status as a hidden variable. Then, the 
next step is to derive a closed-form expectation-maximization solution to estimate 
the optimality of each neural network architecture and hyperparameter configuration 
for the deep regression model, identifying the optimal configuration for the desired 
social intelligence application performance. 

Second, the neural architecture search and hyperparameter optimization process 
in CrowdNAS and CrowdOptim is currently performed in a batch manner, where 
the discussed models identify an optimal network architecture and hyperparameter 
configuration for all studied imagery data within a social intelligence application. 
However, this design may not perform well in streaming social intelligence applica-
tions (e.g., real-time disaster damage assessment, dynamic traffic flow monitoring), 
which aim to provide on-the-fly social intelligence services using real-time social 
intelligence data. In these cases, the optimal network architecture and hyperparam-
eter configuration may change over time. To address this challenge, the CrowdNAS 
and CrowdOptim frameworks can be extended to streaming, crowd-driven neural 
architecture and hyperparameter optimization approaches that recursively update 
the estimation of the optimal neural architecture and hyperparameter configuration 
on-the-fly, using a novel recursive maximum likelihood estimation model. 

Third, the incentive mechanism for crowd query tasks could be further optimized. 
Currently, the crowd query design in CrowdNAS and CrowdOptim assigns a 
uniform incentive for all images in the query, but it is noted that images with 
complex visual features often require additional incentives to recruit more crowd 
workers to cross-validate the collected labels, ensuring high-quality results. To 
address this challenge, one possible solution is to develop a quality-aware incentive 
policy that balances crowd label quality and crowdsourcing cost. Specifically, the 
first step is to quantify the complexity of each labeling task by leveraging a 
recent crowdsourcing task complexity prediction algorithm [43], which estimates 
complexity by quantifying the divergence in visual features (e.g., color distributions 
and object layouts) extracted from each image. The next step is to dynamically 
adjust incentives to recruit crowd workers based on the quantified complexity of the 
input image. The objective of this design is to ensure that the crowd-AI collaborative 
framework achieves a high likelihood of collecting accurate labels from the crowd 
while maintaining costs within the application’s budget.
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Chapter 8 
Fairness and Bias Issues 

Abstract Fairness and bias are critical concerns in modern AI and social intel-
ligence systems. This chapter first introduces the fundamental issues of demo-
graphic bias in data-driven social intelligence applications, such as facial analysis 
and educational assessment. We present two novel frameworks, FairCrowd and 
DebiasEdu to address these critical concerns. In particular, FairCrowd is a fair 
crowdsourcing-based data sampling framework that leverages crowd intelligence 
to infer demographic labels and achieve balanced dataset representation without 
requiring extensive manual annotations. DebiasEdu is a crowd-AI collaborative 
framework that combines gradient-based bias identification with crowd-guided bias 
calibration to achieve fair and accurate student performance prediction. Through 
comprehensive case studies on human face data sampling and student performance 
prediction, we demonstrate the effectiveness of these approaches to address fairness 
and bias issues in social intelligence and show the potential of integrating human 
intelligence with AI systems to create more equitable and effective social intelli-
gence applications. 

Keywords Fairness · Bias · Crowdsourcing · AI for education · Face 
recognition 

8.1 Fairness and Bias in Social Intelligence 

With the proliferation of big data and the collective power of crowdsourced 
human intelligence, social intelligence has become a paradigm for addressing 
complex societal challenges and improving decision-making processes in human 
communities. However, it also presents critical issues that may lead to undesirable 
discrimination and amplify societal disparities. In particular, fairness and bias 
emerge as fundamental concerns that require careful consideration in both data 
curation and algorithm design. For example, human face images have been widely 
adopted by various social intelligence applications, such as face recognition, face 
generation, and face attribute prediction [42]. However, these applications usually 
suffer from a non-trivial performance bias toward certain demographic groups 
caused by the well-known data imbalance issue. A recent study from IBM has found 
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that current commercial facial recognition services have much higher error rates 
for images that involve dark-skinned women than for light-skinned men [5]. More 
importantly, data-driven social intelligence solutions trained on such imbalanced 
datasets could also encode the underlying data biases into the automated decision-
making process and lead to discriminatory outcomes in critical applications such as 
face recognition and student performance assessment. 

Several initial efforts have been made to address the fairness issue in social 
intelligence [1, 4, 6, 23, 24, 46]. Those solutions often require pre-annotated 
demographic labels of data samples to identify fairer sub-datasets by balancing 
the number of samples from different demographic groups. However, many large-
scale human-centered datasets do not contain such demographic labels due to 
the high cost of data annotations [11]. While some demographic label predic-
tion methods (e.g., gender recognition, age classification) can be leveraged to 
predict demographic labels, the prediction accuracy is affected by many factors 
(e.g., face angle, face covering, facial expression) and the incorrect demographic 
labels will significantly degrade the fairness of the sampled dataset [18]. From 
the algorithm perspective, existing solutions primarily address the bias issue by 
increasing the weights of underrepresented samples during training (e.g., sample re-
weighting) [24] or integrating fairness regularization into the training objective (e.g., 
fairness constraints and adversarial learning) [23, 49]. However, these solutions 
often achieve results with improved fairness at the cost of reduced overall accuracy 
due to the trade-off between fairness and accuracy of data-driven models [7]. 
Therefore, to comprehensively tackle the problem of bias and ensure fairness in 
social intelligence, it is essential to holistically address the bias issue at both data 
and algorithm levels to maintain high accuracy while promoting fairness across all 
demographic groups [25, 56]. However, several challenges remain to be addressed. 

Crowdsourcing-Based Demographic Label Inference 

Crowdsourcing is an effective solution to address demographic bias by incorporat-
ing the common sense knowledge and experience of crowd workers. For example, a 
possible crowdsourcing strategy for obtaining demographic labels of face images in 
the dataset pool is to assign crowd workers to annotate demographic labels for all 
images in the pool. However, such a strategy is both time-consuming and expensive 
when the scale of the dataset pool is large [11]. An alternative approach is to select a 
reasonably sized set of face images from the dataset pool and assign crowd workers 
to annotate them with demographic labels. The fair dataset is then constructed by 
taking the same number of annotated images from different demographic groups. 
However, the limitation of this approach is that it only considers the images with 
annotated labels from the crowd but ignores a large number of informative images 
that are not selected for annotations. Moreover, the crowd workers will have to 
annotate each selected image with multiple demographic labels in case the bias of 
the dataset is associated with more than one demographic attribute (e.g., both age 
and gender in Fig. 8.1). Thus, it is challenging to sample a fair sub-dataset from 
the dataset pool by using crowdsourcing effectively without prior knowledge of 
demographic labels of images.
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Fig. 8.1 Fair dataset sampling problem 

Trade-Off between Fairness and Accuracy 

It is not sufficient to achieve a desirable dataset if only the fairness aspect is 
considered. For example, a data service that generates equally poor prediction 
results for all demographic groups is perfectly fair but of little practical value [51]. 
It is observed that training the human face data models on a fair sub-dataset could 
sometimes cause a significant performance drop on accuracy compared to the case 
where the models are trained on a randomly sampled sub-dataset [30]. The main 
reason is that there exists an inherent trade-off between fairness and accuracy 
objectives in the data sampling process: some images in the dataset pool may 
contribute more to the fairness objective (e.g., images from a minority group), while 
other images may contribute more to the accuracy objective (e.g., images from 
majority group). This challenge is particularly important when selecting a subset of 
samples where social intelligence models are likely to make inaccurate predictions 
due to the lack of training data and different behavioral patterns in underrepresented 
groups. 

Potential Bias of Crowd Intelligence 

While crowdsourced human intelligence could be incorporated to reduce demo-
graphic bias in social intelligence data, the inherent biases in human judgment 
may potentially pose significant challenges to achieving fair outcomes in social 
intelligence algorithms. Recent efforts in crowd–AI collaboration [38, 48, 54] 
have been made to address this challenge. These approaches often utilize crowd
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intelligence to improve prediction accuracy and fairness by troubleshooting failure 
cases of AI models under the assumption that the crowd can provide accurate 
and fair responses. However, cognitive bias of crowd workers [17] may negatively 
impact their annotation performance [22]. For example, crowd workers may have 
the confirmation bias of being conservative in predicting a Distinction result due to 
their preexisting beliefs that Distinction is assigned to a really small percentage of 
students. Another example of cognitive bias is the anchoring effect, where crowd 
workers can be overly influenced by the first few examples they see. Hence, the 
generated crowd feedback can possibly mislead the social intelligence models to 
learn inaccurate information in their predictions. 

8.2 Fair Social AI Solutions: FairCrowd and DebiasEdu 

This section reviews two representative social intelligence solutions, FairCrowd 
(Fair Crowdsourcing-based Data Sampling) [25] and DebiasEdu (Debias AI for 
Online Education) [56] to address the fairness and bias issues. FairCrowd is a fair 
crowdsourcing-based data sampling framework that designs an efficient batch-level 
demographic label inference model and a joint fair-accuracy-aware data shuffling 
method to ensure fairness in sampled social intelligence data. DebiasEdu is a crowd-
AI collaborative debias framework that melds AI and crowd intelligence through a 
novel gradient-based bias identification mechanism and a bias calibration crowd-
sourcing design to achieve an optimal trade-off between accuracy and fairness. 

8.2.1 FairCrowd: A Bias Inference Approach to Fair Data 
Sampling 

The overview of FairCrowd is shown in Fig. 8.2. FairCrowd consists of four 
modules: (1) a Service-Specific Batch Data Sampler (SBDS), (2) a Crowdsourcing 
Batch Bias Estimator (CBBE), (3) a Similarity-Based Demographic Label Predictor 
(SDLP), and (4) an Accuracy-Fairness-Aware Dataset Balancer (AFDB). First, 
the SBDS module trains an application-specific model (e.g., a face attractiveness 
prediction (FAP) model) on the randomly sampled dataset X. from the dataset pool 
D. and generates data batches from X. for the crowdsourcing tasks. Second, the 
CBBE module designs a crowdsourcing scheme that tasks crowd workers to infer 
the demographic bias of X.by estimating the bias of data batches output by the SBDS 
module. Third, the SDLP predicts the demographic labels of all face images in X. 

and D. by leveraging the demographic bias inferred by CBBE. Finally, the AFDB 
shuffles the images between X. and D. to generate FairCrowd sampled dataset ˜X. to 
improve both accuracy and fairness of the FAP service trained on ˜X.. We discuss the 
above modules in detail below.
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Fig. 8.2 Overview of FairCrowd 

8.2.1.1 Service Specific Batch Data Sampler (SBDS) 

The SBDS module consists of two components: (1) a FAP model and (2) a 
random batch image sampler. The FAP model is designed to perform face attribute 
prediction on a given dataset. Given the FAP model as M. and the ith. input face 
image Xi . from X., the attribute prediction result ŷi . (e.g., predicted face attribute) of 
Xi . can be represented as ŷi =M(Xi).. 

We train the FAP model on X. with the ground-truth labels Y = {y1, . . . , yM }. 
and generate the prediction results of all images in X. as Ŷ = {ŷ1, . . . , ŷM }..  By  
comparing Y. and ˜Y., we can identify face images in X. that are correctly and 
incorrectly predicted by M. respectively, which is critical to generate data batches 
from X.. Due to the imbalanced data distribution of X. across different demographic 
attributes, the accuracy performance of the FAP model could be biased towards 
some specific demographic groups (e.g., young females in Fig. 8.1). It is difficult 
to detect such performance bias because the images in X. contain no demographic 
labels. We design the random batch image sampler component to address this issue. 
We first define data batch below. 

Definition 8.1 (Data Batch) We define a data batch as a set of items randomly 
sampled from a combination list T = {X,Y, ˜Y}. where the mth. combination item 
is denoted as Tm = {Xm, ym, ŷm}.. We further denote a set of data batches as � =
{�1, . . . , �K }. where �k = {Tk,1, . . . , Tk,P }. is kth. data batch in �., K is the total 
number of batches in the set and P is the number of images in a batch.

We choose random sampling in generating the data batches to ensure the 
demographic distribution of images in a batch can reasonably approximate that in X.. 
Therefore, we can infer the bias of X. by estimating the performance bias of the FAP 
model on the data batches. For a data batch �k ., we further split it into two groups 
�k = {�+

k ,�−
k }. where �+

k = {Tk,1, . . . , Tk,P +}. denotes the positive data batch of
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images that are correctly predicted by the FAP model while�−
k = {Tk,1, . . . , Tk,P −}. 

denote the negative data batch of images that are incorrectly predicted. Such split of 
the data batch is motivated by the fact that a fair FAP model is expected to achieve 
similar performance with different demographic groups on both prediction rate and 
mis-prediction rate across demographic groups [19]. 

8.2.1.2 Crowdsourcing Batch Bias Estimator (CBBE) 

The CBBE module aims to infer the demographic bias of images in the data batches 
from SBDS using a crowdsourcing approach. While the size of a data batch is often 
smaller than the size of X., it might still be time-consuming and tedious for crowd 
workers to annotate the demographic attributes of all images in each batch. The 
CBBE module designs a novel batch-level bias estimation scheme that only asks 
crowd workers to estimate the overall bias of each data batch (e.g., more female than 
male in the batch) instead of providing the demographic attribute annotation for each 
image in the batch. An example of the crowdsourcing task for a data batch is shown 
in Fig. 8.3. In the task, we ask crowd workers to answer a set of questions about 
the demographic attributes of images in the batch. For example, a crowd worker 
can often quickly determine the bias of the data batch towards young people and 
estimate the degree of bias in the task shown in Fig. 8.3. 

After receiving the responses from all the crowd workers, we estimate the bias 
of the data batch by applying the majority voting scheme on the crowd response 
to overcome the potential noise from the crowd. We denote the bias of all data 

Fig. 8.3 Crowdsourcing interface
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batches as a bias list B = {B1, . . . , BK }. where Bk = {Bk,1, . . . , Bk,C}. represents 
the bias of kth. data batch with C demographic attributes of interests. For example, 
the answer to the gender bias of the data batch in Fig. 8.3 should be “female”. 
Similarly, we define the bias degree list for all data batches as S = {S1, . . . , SK }. 
where Sk = {Sk,1, . . . , Sk,C}. represents the bias degree for all demographic bias in 
Bk .. For example, the degree of gender bias in the data batch in Fig. 8.3 could be 
“much”. 

8.2.1.3 Similarity-Based Batch Label Propagator (SDLP) 

Given the estimated batch-level bias B. and S. from CBBE, SDLP aims to predict 
demographic labels for all images in D.. The predicted labels are critical to the 
FairCrowd scheme in order to shuffle images between X. and D. to improve the 
data fairness of the sampled dataset. The SDLP module consists of two different 
components: a face similarity calculator and a demographic label predictor. For each 
face image in D., the face similarity calculator computes the face similarity scores 
between the image of interest and the images in the data batch from SBDS. The 
demographic label predictor then leverages the computed face similarity scores and 
the bias of data batches from CBBE to infer the demographic label of the image. We 
describe these components in detail below. 

Face similarity indicates the overall relevance of two human faces based on the 
facial characteristics including various demographic attributes (e.g., age, gender, 
race). The face similarity calculator aims to measure the similarity between the face 
images in D. and the images in data batches �.. We first define the image-batch face 
similarity as below. 

Definition 8.2 (Image-Batch Face Similarity) Given an image Dn . from D. and 
a data batch �k . from CBBE, the image-batch face similarity is computed by 
averaging the face similarity between Dn . with each face image in �k ..  The  
calculation process can be denoted as Mi,k = 1

P

∑P
i=1 cos(F(Dn),F(Tk,i))., 

where cos(·). denotes the cosine similarity function, F. is the face representation 
extractor that is usually a pre-trained deep face representation learning model (e.g., 
FaceNet [37]), Mi,k . is the image-batch face similarity. We further denote the image-
batch face similarity between Dn . and all data batches in �. as a similarity list 
M(Dn) = {Mi,1, . . . , Mi,K }.where K is the total number of data batches.

Leveraging the image-batch face similarity and the estimated bias of data batches 
from CBBE, the demographic label predictor infers demographic labels of all face 
images in D.. The intuition of the solution is: if a face image has a high image-batch 
face similarity with a data batch and the data batch has a high bias degree score, the 
face image has a high likelihood of belonging to the majority demographic group 
of the data batch. In particular, given a face image Dn . from D., the bias list B.,  the  
bias degree list S., and the demographic attribute of interest ac ., the demographic 
label predictor infers the demographic label for Dn . on attribute ac . as ˜A(Dn, ac) =
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∑K 
i=1 B∗

i,ac 
× Mn,i × Si,ac . where Bi,ac . is the bias of data batch �i . towards the 

demographic attribute ac ., Mn,i . is the face-batch similarity between Dn . and �i ., Si,ac . 

is the bias degree for Bi,ac .. B∗
i,ac

. is a binary variable whose value is decided by 
Bi,ac .. In particular, B∗

i,ac
= 1. if Bi,ac . is a

+
c . (e.g., male) or B∗

i,ac
= −1. otherwise. 

The higher ˜A(Dn, ac). is, the more likely Dn . belongs to a+
c .. We segment ˜A(Dn, ac). 

for all Dn . in D across all demographic ac . via pre-defined thresholds and convert 
segmented ˜A(Dn, ac). to the estimated demographic label of Dn .. The demographic 
labels are leveraged to shuffle face images between X. and D. to improve the fairness 
of X. in the next subsection. 

8.2.1.4 Accuracy-Fairness-Aware Dataset Balancer (AFDB) 

After estimating the demographic labels of all face images in D., the AFDB aims to 
shuffle the images between X. and D.. The shuffling process iteratively converts X. 

to the FairCrowd sampled dataset ˜X. with improved dataset fairness. The shuffling 
operations include removing existing images from X. and adding additional images 
from D. to X.. However, there exists an inherent trade-off between fairness and 
accuracy in the image shuffling process. In particular, some images contribute more 
to the fairness of the sampled dataset while other images contribute more to the 
accuracy of the FAP model. It is not a trivial task to decide which images to remove 
and add during the image shuffling process to achieve a desirable trade-off between 
fairness and accuracy. Therefore, the AFDB designs two components to solve the 
problem: the image contribution estimator and the balanced image shuffler. The 
image contribution estimator estimates the contribution of an image to the FAP 
model accuracy on both X. and D.. The balanced image shuffler considers both the 
fairness of the sampled dataset and the accuracy of the FAP model when performing 
data shuffling operations. We describe these components in detail below. 

We choose the Max Entropy [40] score as the metric to measure the contribution 
of an image to the FAP model accuracy. A high Max Entropy score of an image 
indicates the FAP model trained with the image is likely to achieve better accuracy 
performance [40]. The image contribution estimator computes Max Entropy scores 
for all images in both X. and D. to estimate their contributions to improve the FAP 
model accuracy. Given the Max Entropy scores, the balanced image shuffler aims 
to shuffle the face images between X. and D. to generate a less biased dataset ˜X. (the 
FairCrowd sampled dataset). We first define the demographic combination set. 

Definition 8.3 (Demographic Combination) We define the demographic combi-
nation as a set of combinations with different demographic attributes. For example, 
the combination set of two demographic attributes a1 . and a2 . (e.g., age, gender) 
is denoted as O(a1, a2) = {a+

1 a+
2 , a+

1 a−
2 , a−

1 a+
2 , a−

1 a−
2 }. (e.g., young male, young 

female, old male, old female). 

The number of combinations is 2C
. where C is the number of demographic 

attributes of interest. We further define the combination score of a face image as the
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summation of the absolute value of estimated demographic label scores from SDLP 
over the demographic combinations in A.. For example, given a face image Dn . from 
D. with estimated demographic label scores {˜A(Dn, a1), ˜A(Dn, a2)}. from SDLP, 
its combination score is A(Dn) = |˜A(Dn, a1)| + |˜A(Dn, a2)}|.. The combination 
score of an image indicates the likelihood that the demographic attribute label of the 
image is correct. 

We divide the images from X. into 2C
.groups based on the estimated demographic 

labels from SDLP to estimate the number of images in each demographic combi-
nation of a fair sampled dataset. If X. is perfectly balanced across all demographic 
combinations, the number of face images belonging to each combination should be 
exactly MC = M/2C

.. Therefore, the balanced image shuffler removes the images 
from a demographic combination in X.whose size is larger thanMC .and adds images 
from D. to a demographic combination whose size is smaller than MC .. To decide the 
exact set of images that should be removed or added, the balanced image shuffler 
leverages the Max Entropy scores and the combination scores of all images in X. 

and D.. In particular, a face image in X. is removed if it has a low Max Entropy 
score and a high combination score. Alternately, a face image in D. is added to 
X. if it has a high Max Entropy score and a high combination score. With such a 
data shuffling strategy, the AFDB transforms X. to ˜X. by achieving a more desirable 
trade-off between the fairness and accuracy in ˜X.. 

The FairCrowd repeats the process of the above four modules iteratively to 
predict more accurate demographic labels for face images and improve the fairness 
of the sampled dataset. To define the termination condition of the iterative process, 
we derive the overall demographic bias score ˜� = ∑K

i=1
∑C

j=1 Sk,c ..  We  stop  the  

iteration if ˜�. reaches a threshold ˜�∗
. pre-defined by the application, which indicates 

the bias of the sampled dataset has met the requirement from the application. 

8.2.2 DebiasEdu: A Bias-Aware Crowd-AI Collaborative 
Approach 

DebiasEdu is a bias-aware crowd-AI collaborative approach that integrates AI and 
crowd intelligence to achieve accurate and fair student performance prediction. The 
overview of DebiasEdu is presented in Fig. 8.4. In particular, the DebiasEdu consists 
of two key modules: (1) a Gradient-based Bias Identification (GBI) module that 
analyzes the variation in gradients of training samples to identify biased AI results 
from different demographic groups, and (2) a Crowd-Guided Bias Calibration 
(CBC) module that creates a bias-aware crowdsourcing interface design and a 
crowd-guided calibration model to address the demographic bias of AI and the 
cognitive bias of the crowd.
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Fig. 8.4 Overview of the DebiasEdu framework 

8.2.2.1 Gradient-Based Bias Identification (GBI) 

To effectively predict student final performance L. using inputs of behavioral data 
XB

. and demographic attributes XD
., we first design two key networks as follows. 

To extract useful information from the behavioral data XB
. for student perfor-

mance prediction (e.g., consistent hard work, extra hard work before the final), we 
design a behavioral data embedding network f (·). as follows: 

. EB
k = f (XB

k ), ∀1 ≤ k ≤ K (8.1) 

where EB
k . represents the generated embedding of the behavioral data XB

k . for the 
kth. student. K is the total number of students in the training set. In particular, we 
utilize the long short-termmemory (LSTM)model as the behavioral data embedding 
network f (·). in the setting, which has been shown to be effective in extracting 
information from sequential data [21, 27]. 

After feature embedding, we build a student performance prediction network 
g(·, ·). that leverages the generated behavioral embedding and the demographic 
information to predict a student’s final result as: 

. ̂LAI
k = g(EB

k ,XD
k ), ∀1 ≤ k ≤ K (8.2) 

where ̂LAI
k . is the AI prediction for the kth. student’s final performance. In particular, 

the performance prediction network g(·, ·). is a multilayer perceptron consisting of a 
sequence of fully connected feedforward neural network layers to predict a student’s 
performance by comprehensively examining the embedded behavioral data. 

To guide the behavioral data embedding network f (·). to effectively capture 
useful behavior pattern information (e.g., consistent work throughout the semester) 
and train the performance prediction network g(·, ·). to accurately predict a student’s
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final performance result, we define the objective function LAI . for the AI model as 
follows: 

.LAI = LCE

(

g
(

f (XB
k ),XD

k

)

, Lk

)

, ∀1 ≤ k ≤ K (8.3) 

where LCE . is the cross entropy loss to measure classification accuracy. Lk . is the 
ground-truth label of the kth. student’s final performance on the training set. 

Given the designed AI model, the key focus of the GBI module is identifying 
biased AI results from the testing set for crowd intelligence to improve framework 
prediction fairness. We first define the set of these AI results as follows: 

Definition 8.4 (Crowdsourcing Subset ( S .)) We select a subset of students on the 
testing set where the AI model is likely to generate inaccurate predictions for crowd 
workers to improve. We focus particularly on selecting from underrepresented 
groups U . since these students are more likely to receive incorrect predictions 
due to the lack of training data and differences in behavioral patterns (e.g., 
older students often need to complete more activities to achieve the same result 
compared to younger students). We formally define the crowdsourcing subset to 
include the behavioral and demographic data for the selected J students a s S =
{{XB

1 , XD
1 }, . . . , {XB

J ,XD
J }}., where J = αI .. 

We refer to the demographic data and behavioral data of students as samples in 
the rest of the solution. It is observed that the AI prediction network is more likely 
to predict incorrectly for the samples with gradients varying significantly during 
the training process [35]. These samples exhibiting more variant gradients are 
more likely to belong to underrepresented groups. This is because underrepresented 
samples, with different input data characteristics (e.g., behavioral patterns) com-
pared to the non-underrepresented samples, pose greater challenges for deep neural 
networks to learn to predict accurately [35]. Therefore, we define these samples 
whose gradients vary significantly during training as the biased training samples. 
The objective is to identify biased training samples from different demographic 
groups inversely proportional to the number of students in each group (e.g., more 
samples from worse-performing underrepresented groups). 

To identify biased training samples using gradient variation, we first define the 
training sample gradient ∇ = {∇1,∇2, . . . ,∇K }. to be the gradients of training 
samples with respect to the objective function LAI . as follows: 

. ∇k = E

[

∂LAI

∂{XB
k ,XD

k }

]

, ∀1 ≤ k ≤ K (8.4) 

where E[·]. denotes the expectation and ∂ . denotes the partial derivative. The training 
sample gradient can be computed by the chain rule using derivatives of each neural 
network layer.
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Definition 8.5 (Gradient Variance ( V .)) We define V = {V1, V2, . . . , VK }. to be 
the variance of sample gradient ∇ .: 

. Vk = Var

[

∂LAI

∂{XB
k ,XD

k }

]

, ∀1 ≤ k ≤ K (8.5) 

where Var[·]. denotes the variance. In particular, the variance of sample gradient 
can be approximated by the average gradient in different epochs [12], where the 
first several epochs are eliminated due to unstable performance at the beginning of 
training. 

We select a subset of training samples with the top α . largest gradient variances in 
the training set (i.e., variant gradient subset), where α . is selected empirically based 
on the trade-off between the algorithmic fairness and the crowdsourcing budget. 
However, it remains challenging to identify a subset of samples with gradients 
varying significantly from the testing set since there are no ground-truth annotations 
available to even train a model and compute gradients. Therefore, we select the 
testing samples that share a similar behavioral pattern as the training samples in 
the selected variant gradient subset. This idea is motivated by the fact that an AI 
model generates similar predictions and gradients for input samples with similar 
characteristics (e.g., behavioral patterns) [13]. We introduce the measurement to 
identify the crowdsourcing subset S . of demographically biased testing samples as 
follows: 

Definition 8.6 (Bias Measurement ( B .)) We define B = {B1, B2, . . . , BI }. to 
be the bias measurements of all studied testing samples. In particular, the bias 
measurement Bi . for the ith. student is formally defined as follows: 

. Bi =
K

∑

k=1

(∥

∥

∥XB
k − XB

i

∥

∥

∥

2
+

∥

∥

∥XD
k − XD

i

∥

∥

∥

2

)

,∀1 ≤ i ≤ I (8.6) 

where ‖ · ‖2 . denotes the L2-norm of a vector. In particular, a lower value of the 
bias measurement Bi . indicates a larger bias (i.e., a higher similarity with the variant 
gradient subset) for the ith. student in the testing set. 

Based on the bias measurement for all testing samples, we then select the samples 
with top α . lowest Bi . from the testing set to generate the crowdsourcing subset S . that 
primarily contains underrepresented students who are likely to receive inaccurate 
AI predictions. In the next subsection, we discuss how to use crowd intelligence to 
address the identified bias.



8.2 Fair Social AI Solutions: FairCrowd and DebiasEdu 215

8.2.2.2 Crowd-Guided Bias Calibration (CBC) 

Given the selected crowdsourcing subset S . from the GBI module discussed above, 
we then design a crowdsourcing interface and a model calibration mechanism to 
address the identified demographic bias while mitigating the negative impact of 
cognitive bias from crowd workers. In particular, we leverage crowd intelligence 
to work on the student performance prediction task and mitigate demographic bias. 
For an in-depth effectiveness analysis of using the crowd in student performance 
prediction. 

We first design the visualization of behavioral data since student performance 
prediction based on behavioral data is not a trivial task for crowd workers. In 
particular, humans are often not good at analyzing the raw data (e.g., dozens or 
hundreds of numbers) compared to AI models, which motivates the design of a 
clear visualization of the high-level behavioral patterns (e.g., the general trend of 
activities and consistent hard work) to the crowd workers. The behavioral data 
XB

i . for the ith. student are their activities on the online learning platform per day 
during the semester, which is shown in Fig. 8.5a. However, crowd workers often 
do not need such detailed information to predict student performance accurately. 
In particular, we observe that even those students who achieve Distinction results 
in many classes do not spend time on every course every day, highlighting the fact 
that accumulative activities within a certain time period can be more informative to 
help crowd workers to predict accurately. Therefore, we present the accumulative 
activities on a bi-weekly basis of a student to crowd workers using the blue bars 
shown in Fig. 8.5b. In addition to the bar plot of the behavioral data, we also add 
the average activities of all students in a course to help crowd workers make their 
predictions. 

However, crowd workers are observed to have cognitive bias [17], which can lead 
to inaccurate crowd prediction in student performance prediction [22]. Therefore, 
the next question is how to design a crowdsourcing interface to address the cognitive 

Fig. 8.5 Examples of the original behavioral data and the behavioral data visualization design. (a) 
Visualization of the original per-day behavioral data. (b) Behavioral data visualization design for 
the crowd
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bias of the crowd. In particular, confirmation bias is a key cognitive bias of humans 
observed in prediction tasks [2, 17]. We define it as follows: 

Definition 8.7 (Confirmation Bias) Confirmation bias of the crowd refers to the 
fact that crowd workers can be overly influenced by their preexisting beliefs. For 
example, crowd workers can be conservative in predicting a Distinction result if 
they believe Distinction is assigned to a really small percentage of students. The 
confirmation bias is more obvious when a crowd worker is only presented with 
the behavioral data visualization of a specific student since they need to predict 
completely based on their preexisting beliefs if no additional information (e.g., 
annotation examples provided by the task administrator as reference) is provided 
to the crowd workers regarding the labeling tasks. 

We design an approach to address the confirmation bias of the crowd by 
leveraging the anchoring effect of human cognition. We first define the anchoring 
effect as follows: 

Definition 8.8 (Anchoring Effect) Anchoring effect refers to the fact that crowd 
workers can be influenced by the first few examples they see and then use these 
examples as the anchor for the subsequent prediction. 

We can leverage this cognitive characteristic of the crowd to train the crowd 
workers to calibrate their preexisting prediction criteria with only a few anchoring 
examples for each student performance category (e.g., Fail, Pass, and Distinction). 
For instance, anchoring examples selected from the training set of a STEM course 
are shown in Fig. 8.6a, c, and e. Note that we cannot simply train the AI model 
with such anchoring examples since AI models often rely on a large number of data 
samples for effective predictions. Even the few-shot learning methods still depend 
on large-scale datasets to pre-train data representations, which are not available in 
the problem setting. 

In addition, while crowd workers achieve better overall accuracy and fairness 
compared to the AI model on the selected crowdsourcing subset S . (Definition 8.4), 
the crowd prediction accuracy of underrepresented groups can still be worse than 
the accuracy of non-underrepresented groups. Given the difference in behavioral 
patterns among different demographic groups, the demographic bias can be further 
addressed by showing anchoring examples of each demographic group to crowd 
workers. For instance, anchoring examples for students in the underrepresented age 
group (i.e., age ≥. 35) of the STEM course are shown in Fig. 8.6b, d, and f. We can 
clearly observe the behavioral difference between these underrepresented examples 
and the anchoring examples selected from the non-underrepresented group shown in 
Fig. 8.6a, c, and e: underrepresented students need to complete much more activities 
to achieve the same result compared to non-underrepresented students. Observed 
behavioral difference demonstrates that the crowd prediction accuracy and fairness 
can be further enhanced by presenting accurate anchoring examples from each 
demographic group to help crowd workers form accurate performance criteria. The 
pilot studies show an 18.9% performance improvement when using the anchoring
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Fig. 8.6 Anchoring examples for students in the non-underrepresented and underrepresented 
age group. (a) Fail (non-underrepresented). (b) Fail (underrepresented). (c) Pass (non-
underrepresented). (d) Pass (underrepresented). (e) Distinct (non-underrepresented). (f) Distinct 
(underrepresented) 

examples from each demographic group compared to not using such anchoring 
examples. 

We present the crowdsourcing interface design for student performance predic-
tion in Fig. 8.7. For the prediction task of each student, we present the anchoring 
examples and corresponding descriptions of the demographic group this student 
belongs to. For instance, in Fig. 8.7, since the sample student in the prediction 
task belongs to the underrepresented age group, the interface also presents the 
anchoring examples for this group (Fig. 8.6b, d, and f) in the instructions. The 
objective of this interface design is to (1) address the confirmation bias by presenting
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Fig. 8.7 Crowdsourcing interface instruction and task design to address the demographic and 
confirmation bias. For the task of each student, we present the anchoring examples of the 
demographic group to which this student belongs in the instructions 

anchoring examples of each performance category and (2) reduce the bias caused 
by the difference in behavior patterns among demographic groups by showing 
demographic group-wise anchoring examples. 

We collect crowd predictions from the crowdsourcing platform using the bias-
aware interface design shown in Fig. 8.7. Only samples in the crowdsourcing subset 
S ., which are likely to be underrepresented samples receiving inaccurate predictions 
from AI models, are predicted by the crowd to explore the trade-off between 
improving algorithmic fairness and limiting crowdsourcing budget. We observe 
that crowd workers might have different levels of accuracy in terms of providing 
accurate responses. Hence, instead of directly applying the majority voting strategy 
to obtain the aggregated crowd labels that are known to be suboptimal when crowd 
workers have different reliability [52], we leverage an estimation theory-based truth 
discovery model [45] to jointly derive the truthful crowd labels of the queries as well 

as the reliability of the workers. Let ̂LC
j . for all j ∈ [1, J ]. represent the aggregated 

crowd prediction of students in the crowdsourcing subset S .. We then design a crowd 
offloading strategy to effectively address the biased AI results using the aggregated 

crowd labels. In the strategy, for all J students, the truthful labels ̂LC
j . derived from 

the crowd are used to replace the AI predictions ̂LAI
j . of the testing samples in the 

crowdsourcing subset S . to generate the final framework prediction ̂L.. 

8.3 Real-World Case Studies 

We evaluate the performance of the FairCrowd and DebiasEdu using two real-world 
case studies. Specifically, we evaluate the effectiveness of FairCrowd in sampling 
a fair human face dataset which is often prone to demographic bias. To evaluate 
DebiasEdu, we show a case study of online student performance prediction that 
demonstrates its ability to mitigate demographic bias while maintaining prediction 
accuracy.
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8.3.1 Fair Human Face Data Sampling 

Fair human face data sampling is a fundamental application in social intelligence, 
which is essential for the training and evaluation of many downstream tasks, such 
as face recognition, face attribute prediction, and facial expression analysis. 

8.3.1.1 Data 

We use a large-scale human face dataset CelebA [28] as the dataset pool for the 
experiments. The selected dataset contains hundreds of thousands of human face 
images that are biased toward certain demographic groups. Moreover, CelebA 
consists of several demographic labels (e.g., gender, age, race) of the face images, 
which can be used to thoroughly evaluate the performance of FairCrowd. We 
perform the face attractiveness prediction as the FAP task on the dataset, which 
comes with ground-truth binary face attractiveness labels (i.e., 1 for attractive and 0 
for non-attractive). We also note that the face attractiveness prediction is related to 
various demographic attributes (e.g., age, gender), and the prediction performance 
can be biased towards a majority demographic group if the training dataset is 
imbalanced. The summary of the dataset pool is shown in Table 8.1. 

8.3.1.2 Baseline Methods 

We conduct experiments with the state-of-the-art FAP models to evaluate the 
performance of FairCrowd. 

• VGGFace2 [11]: VGGFace2 is a face recognition framework trained on a large-
scale face dataset with millions of face images that do not contain demographic 
labels. 

• LightCNN [47]: LightCNN is a face recognition framework that consists of a 
light convolutional neural network to learn compact embeddings of human faces. 

• FMTNet [55]: FMTNet is a FAP framework that learns from labeled facial 
attributes and transfers the knowledge to predict unlabeled attributes. 

• Slim-CNN [41]: Slim-CNN is a light-weighted FAP scheme that designs a 
computationally-efficient CNN module to tackle the large variations of face 
images in pose, background, and illumination. 

Table 8.1 Dataset summary Dataset Demo. attributes Sample 

CelebA Male & Young 53,447 

Female & Young 103,287 

Male & Old 30,987 

Female & Old 14,878
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• CascadeCNN [16]: CascadeCNN is a FAP scheme that automatically detects 
face regions specific to different demographic attributes to classify the face 
attributes. 

• PSMC [10]: PSMC is a face attribute representation learning framework that 
considers face similarity between people to generate feature representations for 
specific face attributes (e.g., attractiveness). 

For VGGFace2 and LightCNN, we first extract high-dimensional face image 
features from the pre-trained networks and then construct a deep neural network 
classifier for attractiveness prediction. For FMTNet, we remove the knowledge 
transfer module because we have face attractiveness labels in the training data of 
the problem and do not need to transfer the learned knowledge from other face 
attributes. We strictly follow the parameters and configurations of all schemes as 
documented in their papers. 

8.3.1.3 Experimental Setting 

In the experiments, the randomly sampled dataset and the FairCrowd sampled 
dataset are both training sets that are used to train the FAP models. For the testing 
set, we randomly select a subset from the dataset pool D.. The size of the training set 
and testing set are both 10%. of the dataset pool. We set the number of data batches 
as K = 50. and the number of images in each batch as 32. We select the gender 
(i.e., male or female) and age (i.e., young or old) as two demographic attributes of 
interest in FairCrowd as the dataset pool is heavily biased on both attributes (i.e., 
more young than old, more female than male as shown in Table 8.1). For each 
data batch, we assign five crowd workers to perform the batch-level bias estimation 
task from the CBBE module. We set the payment to crowd workers well above the 
requirement from Amazon Mechanical Turk (AMT) [3]. We set the size of input 
face images as 218 × 178. and align all face images using similarity transformation 
according to the eye locations in order to unify the angles of faces. We set the total 
number of training epochs as 40 and train the model with an initial learning rate 
of 0.001. and decay of 0.95. in each epoch. The optimizer is Adam with 5 × 10−4

. 

weight decay. We run the experiments on Ubuntu 16.04.with two NVIDIA 1080Ti. 

8.3.1.4 Performance of FairCrowd Sampled Dataset 

In the first set of experiments, we focus on the overall performance of all schemes 
trained on the FairCrowd sampled dataset in terms of fairness, prediction accuracy, 
and overall training time. For fairness, we use four widely used metrics to evaluate 
the performance discrimination of a scheme between different demographic groups: 
Demographic Parity [20], True Positive Parity [29], False Positive Parity [29], 
and Equalized Odds [19]. The lower values of the above metrics indicate a better 
fairness performance of a model. The results are reported in Table 8.2. We observe
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Table 8.2 Overall fairness performance 

Model Demographic parity T.P. parity F.P. parity Equalized odds 

Randomly sampled dataset 

VGGFace2 0.264 0.175 0.105 0.280 

LightCNN 0.446 0.282 0.217 0.499 

FMTNet 0.426 0.253 0.191 0.444 

SlimCNN 0.501 0.276 0.275 0.552 

CascadeCNN 0.481 0.239 0.265 0.505 

PSMC 0.462 0.235 0.236 0.475 

FairCrowd sampled dataset 

VGGFace2 0.242 0.042 0.099 0.141 
LightCNN 0.344 0.055 0.152 0.207 
FMTNet 0.326 0.081 0.160 0.242 
SlimCNN 0.390 0.087 0.213 0.300 
CascadeCNN 0.400 0.129 0.197 0.327 
PSMC 0.345 0.085 0.165 0.250 

The bold values indicate the best performing results in each evaluation metric

all compared FAP schemes achieve significantly better fairness performance on 
the FairCrowd sampled dataset than the randomly sampled dataset. For example, 
LightCNN, one of the state-of-the-art face recognition approaches, is able to achieve 
0.102. lower Demographic Parity and 0.292. lower Equalized Odds on the FairCrowd 
sampled dataset than the randomly sampled dataset. The performance gains are 
mainly due to the fact that the FairCrowd scheme estimates demographic attribute 
labels of images in the dataset pool and shuffles face images between the sampled 
dataset and the dataset pool to make the sampled dataset more balanced across 
different demographic groups. 

To evaluate the performance of the attractiveness prediction task, we use the 
classic metrics for binary-class classification: F1-Score, Accuracy, Precision, and 
Recall. The results are shown in Table 8.3. We observe that the compared schemes 
achieve accuracy improvements on most of the evaluation metrics on the FairCrowd 
sampled dataset compared to the randomly sampled dataset. For example, the face 
attribute prediction model FMTNet is able to achieve 1.3%. higher F1-score and 
2.2%.higher accuracy on the FairCrowd sampled dataset than the randomly sampled 
dataset. The reason is that the AFDB module in FairCrowd shuffles the images 
between the randomly sampled dataset and the dataset pool by explicitly considering 
both the fairness and prediction accuracy of the FAP model trained on the sampled 
dataset. 

Finally, we compare the training time of all FAP schemes on the FairCrowd 
sampled dataset with that on the randomly sampled dataset. The results are shown 
in Table 8.4. We observe that the total training time for all compared schemes on 
the FairCrowd sampled dataset is significantly shorter than that on the randomly 
sampled dataset. The reason is that the randomly sampled dataset is heavily biased 
towards a majority demographic group and the AFDB module in FairCrowd tends to
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Table 8.3 Overall detection 
performance 

Method F1 score Accuracy Precision Recall 

Randomly sampled dataset 

VGGFace2 0.662 0.670 0.757 0.513 

LightCNN 0.774 0.774 0.792 0.751 

FMTNet 0.780 0.781 0.798 0.759 

SlimCNN 0.801 0.802 0.783 0.841 

CascadeCNN 0.798 0.798 0.777 0.844 
PSMC 0.793 0.794 0.784 0.818 
FairCrowd sampled dataset 

VGGFace2 0.692 0.738 0.818 0.600 
LightCNN 0.794 0.787 0.758 0.833 
FMTNet 0.793 0.803 0.821 0.767 
SlimCNN 0.824 0.803 0.737 0.933 
CascadeCNN 0.807 0.803 0.781 0.833 

PSMC 0.807 0.820 0.852 0.767 

The bold values indicate the best performing results in each
evaluation metric

Table 8.4 Overall training time (minute:second) 

Methods Randomly sampled dataset FairCrowd sampled dataset 

VGGFace2 5 : 37 4:18 
LightCNN 7 : 20 5:49 
FMTNet 52 : 20 46:10 
SlimCNN 30 : 09 24:25 
CascadeCNN 75 : 03 61:48 
PSMC 154 : 39 128:20 

The bold values indicate the best performing results in each evaluation metric

remove more images in the majority demographic group from the randomly sampled 
dataset than adding images in alternative demographic groups from the dataset pool. 
This often results in a smaller data size of the FairCrowd sampled dataset compared 
to the randomly sampled dataset. 

8.3.1.5 Convergence of Bias on FairCrowd Sampled Dataset 
and Demographic Label Prediction Accuracy 

In the second set of experiments, we study the convergence of the bias on the 
FairCrowd sampled dataset and the accuracy of the demographic label prediction 
with respect to the image shuffling iterations of FairCrowd. We first study the data 
distribution of the FairCrowd sampled dataset across different demographic groups. 
The results are shown in Fig. 8.8. We observe that the FairCrowd sampled dataset 
becomes more balanced across different demographic groups as the number of data 
shuffling iterations increases. The reason is that FairCrowd continually adds new 
images in minority demographic groups from the dataset pool to the FairCrowd 
sampled dataset and removes images in the majority demographic group from the
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Fig. 8.8 FairCrowd sampled 
dataset distribution 
convergence 

Fig. 8.9 Demographic label prediction accuracy. (a) Data shuffling iteration. (b) Batch size 

FairCrowd sampled dataset based on predicted demographic labels from the AFDB 
module in FairCrowd. 

We conduct further experiments to study the demographic label prediction 
accuracy of FairCrowd. The results are shown in Fig. 8.9.  In  Fi  g. 8.9a, we observe 
that the prediction accuracy of demographic labels (i.e., gender, age) of the images 
increases as the number of data shuffling iterations increases. The reason is that the 
predicted demographic labels become more accurate and stable as the combination 
scores in the SDLP module are estimated and improved iteratively. In Fig. 8.9b, 
we observe that the prediction accuracy of FairCrowd improves as the batch size 
increases. The reason is the data distribution of images in a data batch becomes 
closer to the data distribution of the FairCrowd sampled dataset as the batch size 
increases, which helps crowd workers to better estimate the bias of the sampled 
dataset. However, we also observe the prediction accuracy drops a bit when the 
batch size further increases. The reason could be that too many images displayed in 
the crowdsourcing interface may overwhelm the crowd workers and prevent them 
from working effectively. 

8.3.1.6 Ablation Study 

Finally, we perform a comprehensive ablation study to understand the contributions 
of important components of FairCrowd. We create different variants of FairCrowd 
by changing its key components: (1) FairBatch: we directly assign crowd workers
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Table 8.5 Ablation study on fairness performance 

Method Demographic parity T.P. parity F.P. parity Equalized odds 

FairBatch 0.354 0.071 0.158 0.229 

FairImage 0.401 0.125 0.179 0.304 

FairOnly 0.366 0.066 0.191 0.257 

FairCrowd 0.344 0.055 0.152 0.207 

The bold values indicate the best performing results in each evaluation metric

Table 8.6 Ablation study on 
attractiveness prediction 

Method F1 score Accuracy Precision Recall 

FairBatch 0.767 0.774 0.742 0.793 

FairImage 0.765 0.765 0.707 0.833 

FairOnly 0.748 0.711 0.744 0.753 

FairCrowd 0.794 0.787 0.758 0.833 

The bold values indicate the best performing results in
each evaluation metric

to estimate the bias of the entire data batch in the CBBE module instead of splitting 
the batch based on the correctness of prediction results; (2) FairImage: we replace 
the deep face recognition model in the SBLP module that computes the similarity 
between deep face representations with a function to directly compare pixel-
level similarity between raw face images; and (3) FairOnly: we only consider the 
predicted demographic labels in the AFDB module and do not apply the estimation 
of Max Entropy scores on the images. We select LightCNN as the underlying FAP 
scheme for the ablation study because it is a widely adopted deep learning scheme 
for FAP applications. The results are shown in Tables 8.5 and 8.6. In Table 8.5. 
We observe that, by splitting the data batches based on the FAP prediction results, 
FairCrowd achieves better fairness and accuracy performance on all evaluation 
metrics, indicating the importance of data batch splitting in the CBBE module. 
Moreover, FairCrowd also outperforms FairImage and FairOnly on both fairness 
and accuracy, which demonstrates the necessity of the deep face recognition model 
for computing face similarity and the image shuffling design in FairCrowd. 

8.3.2 Student Performance Prediction 

Social intelligence can be applied to address fairness and bias in student per-
formance prediction for online education which aims to predict a student’s final 
performance result in a course (e.g., Fail, Pass, and Distinction) based on the 
behavioral data of students. The prediction results can provide feedback to improve 
a student’s metacognitive ability [8] and assist educational institutions in designing 
effective mechanisms to improve academic outcomes and avoid dropout [34].
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8.3.2.1 Data 

To evaluate the accuracy and fairness of the DebiasEdu framework, we leverage the 
demographic, behavioral, and performance data collected from the online learning 
platform Open University [26]. In particular, we take the age of students as the 
demographic attribute in the evaluation since potential disadvantages have been 
observed for underrepresented older students in online education [26]. Following 
the common practice in fairness applications [19], we categorize the age attribute 
into two demographic groups (i.e., age less than 35 and age greater than or equal 
to 35). The behavioral data is measured by the activities (i.e., clickstream data) 
on different web pages (e.g., course material, course quizzes, topic forums, and 
collaborative activities) on the online learning platform per day for each student. 
The ground-truth label of a student’s final performance is assigned by the course 
instructors into three different levels (i.e., Fail, Pass, and Distinction). We use two 
datasets for different types of courses to comprehensively evaluate the DebiasEdu 
framework. In particular, the first dataset is collected from a STEM course, and 
the second dataset is collected from a Social Science course. Statistics of the two 
datasets are shown in Table 8.7. 

8.3.2.2 Crowdsourcing Setting and Pilot Study 

We deploy the interface design shown in Fig. 8.7 to collect the crowd prediction 
from Amazon Mechanical Turk (AMT), one of the largest crowdsourcing platforms 
that provides access to a massive number of online crowd workers worldwide with 
reasonable costs. To ensure the crowdsourcing quality, we set the qualification 
requirement as follows: the crowd workers must have completed over 10,000 
approved tasks with an overall approval rate greater than 95% before starting to 
work on the task. The inter-worker agreements of different crowd workers are 0.664 
and 0.637 in terms of Cohen’s Kappa score (Kappa) on the STEM course dataset 
and the Social Science course dataset, respectively. A Kappa score greater than 0.6 
typically indicates good agreement [15]. We pay $0.05 to a crowd worker for each 
prediction task. We follow the Institutional Review Board protocol approved for this 
project. In the evaluation, we set the percentage α .of crowdsourcing samples as 15% 
and the number of crowd workers as 5. 

Table 8.7 Student 
performance prediction 
dataset statistics 

STEM Social science 

Total number of students 1938 1767 

Percent of fail 34.0% 36.4% 

Percent of pass 58.2% 51.3% 

Percent of distinction 7.8% 12.3% 

Percent of age <. 35 75.6% 67.6% 

Percent of age ≥. 35 24.4% 32.4%
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We first demonstrate the effectiveness of utilizing general crowd workers without 
educational domain knowledge in the student performance prediction task using 
both quantitative and qualitative analysis. In particular, we conduct a pilot study 
using the crowdsourcing subset (Definition 8.4) on the STEM course that includes 
50 sample students, which are predicted by crowd workers in the experiments. 
We recruit both general crowd workers and educational practitioners (i.e., crowd 
workers who engage in educational activities as job responsibilities) to predict the 
final grades of these students using the same crowdsourcing task design (Fig. 8.7). 
The objective is to study if educational domain knowledge is required to conduct 
this task by comparing the crowdsourcing performance of general crowd workers 
and educational workers. The educational workers are selected on AMT using the 
premium qualification of job function [3]. We set the number of crowd workers 
per student to be 5. The crowdsourcing experiments involved the participation of 
69 educational workers and 113 general workers. The difference in the number 
of crowd workers is related to the fact that there are more general crowd workers 
available on AMT compared to educational workers. The collected predictions from 
educational workers are aggregated by the estimation theory-based truth discovery 
model for each student. We utilize the same estimation theory-based aggregation 
model for general crowd workers in this study to ensure a fair comparison. By 
comparing the aggregated prediction results, we observe that general crowd workers 
and educational workers achieve an agreement of 0.746 in terms of the Kappa 
score. The notable consensus demonstrates that the student performance prediction 
task can be completed by general crowd workers without educational domain 
knowledge. In addition, for the recruited educational practitioners, we further ask 
them the following question: “Based on your work experience in education, do you 
think completing this task requires educational domain knowledge? If you think it 
is required, please provide explanations of what domain knowledge is required.” 
Collected results indicate that 95.7% of educational workers involved in the study 
believe that no educational domain knowledge is required to effectively conduct the 
student performance prediction task. Specifically, some educational workers justify 
their conclusions by acknowledging the clarity of the prediction task, such as “I 
don’t think it is required as the graphical representation makes it easy to predict”. 
To conclude, the quantitative prediction comparison and qualitative inquiry results 
consistently demonstrate the effectiveness of recruiting general crowd workers to 
work on the student performance prediction task. 

To further verify the effectiveness of the crowdsourcing task design, we for-
mulate the following question to ask the recruited educational workers after they 
finish the prediction tasks: “Based on your work experience in education, do you 
feel comfortable predicting a student’s final grade in an online course based on 
online activities (e.g., measured by clickstream data)?” A noteworthy 87.0% of 
educational practitioners felt comfortable conducting this task. This substantial 
percentage serves as evidence of the effectiveness of the task design since it is 
important to note that no measurements can 100% effectively predict a student’s 
final grade except for the final grade itself. Particularly, we receive responses from 
educational workers who endorse the task design based on their professional domain
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experience, such as “I feel comfortable to predict a student’s final grade because I 
do this work in my current job.” The inquiry results confirm the effectiveness of the 
crowdsourcing task design in predicting a student’s performance. 

8.3.2.3 Baseline Methods and Experimental Setting 

In the evaluation, we compare the DebiasEdu with a rich set of state-of-the-art AI, 
fair AI, and crowd-AI baselines. 

AI Baselines: 

• ANN [44] utilizes a deep neural network to predict a student’s performance based 
on a set of handcrafted features (e.g., clicks in a course, clicks on the assignment 
web page). 

• BCEP [33] classifies and fuses different types of online behavior (e.g., consistent 
hard work) to predict a student’s performance. 

• SPDN [27] utilizes an LSTM-based feature extraction network and a convo-
lutional feature fusion network to predict a student’s performance from online 
learning records. 

Fair AI Baselines: 

• JMLR19 [49] integrates fairness measurements (e.g., false positive parity) as 
constraints during training to achieve fair performance prediction. 

• NeurIPS21 [6] utilizes data re-weighting and fairness constraints (e.g., equal 
opportunity) to achieve robust fairness in student performance prediction. 

• VS [24] is a vector-scaling-based optimization approach that utilizes multiplica-
tive and logit adjustments for fair group-sensitive classification. 

Crowd-AI Baselines: 

• StreamCollab [53] is a crowd-AI system that leverages uncertainty quantifica-
tion and crowd knowledge fusion for effective student performance prediction. 

• DeepActive [38] is a deep active learning framework that identifies a core set 
of samples and integrates the crowd on them to improve prediction accuracy. 
LearningLoss [43] is a crowd-AI framework that leverages a task-agnostic loss 
design to efficiently integrate AI and the crowd for accurate student performance 
prediction. 

For a fair comparison, we use the same inputs for all compared schemes: (1) 
the demographic attribute of age for all students, (2) the behavioral data of online 
activities per day for all students, and (3) the crowd prediction collected from the 
crowdsourcing platform for students in the crowdsourcing subset. The DebiasEdu 
and all baselines are implemented using PyTorch libraries and trained on NVIDIA 
RTX 6000 GPUs. We use the Adam optimizer with a learning rate of 1 × 10−3

. to
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train all compared models. We set the batch size to 20 and trained the models for 
over 200 epochs. 

To evaluate the model accuracy, we leverage four representative metrics for 
multi-class classification [32]: (1) Accuracy, (2) F1-Score, (3) Cohen’s Kappa Score 
(Kappa), and (4) Matthews Correlation Coefficient (MCC). We include Kappa and 
MCC since the datasets are imbalanced as shown in Table 8.7 and these metrics have 
been demonstrated to be reliable in evaluating prediction accuracy given imbalanced 
data [14]. Higher values of these accuracy metrics indicate better performance. To 
evaluate the model fairness, we utilize four commonly used fairness metrics [19, 50]: 
(1) True Positive Parity (T.P. Parity) (i.e., Equal Opportunity), (2) False Positive 
Parity (F.P. Parity), (3) Equalized Odds (Eq. Odds), and (4) Accuracy Parity (Acc. 
Parity). Lower values of the fairness metrics indicate less bias and better fairness. 

8.3.2.4 Accuracy 

First, we evaluate the accuracy of all compared approaches in student performance 
prediction on the STEM course and Social Science course datasets. Evaluation 
results are shown in Table 8.8. We observe that the DebiasEdu consistently 
outperforms all baselines on all accuracy metrics. For example, on the STEM course 
dataset, the performance gains of the DebiasEdu compared to the best-performing 
baseline DeepActive on Accuracy, F1-Score, Kappa, and MCC are 12.3, 14.6, 35.2, 
and 34.6%, respectively. Such performance gains can be attributed to the fact that 
the DebiasEdu framework develops a novel gradient-based module to identify the 
demographic bias of AI and designs a bias-driven crowd-AI collaboration module to 
address the identified bias and improve the overall student performance prediction 
accuracy. 

8.3.2.5 Fairness 

Second, we compare the fairness of DebiasEdu and the compared baselines on 
the two datasets. The evaluation results are presented in Table 8.9. We note that 
the DebiasEdu achieves consistent performance gains compared to all baselines on 
both datasets by reaching the lowest prediction bias. For instance, on the Social 
Science course dataset, the decreases in T.P. Parity, F.P. Parity, Eq. Odds, and 
Acc. The parity of DebiasEdu compared to the best-performing baseline BCEP are 
55.2, 75.3, 68.3, and 50.8%, respectively. The significant improvements in fairness 
demonstrate that the DebiaEdu approach successfully identifies and addresses the 
demographic bias in student performance prediction by carefully modeling the AI 
bias by gradient variation and designing a novel crowdsourcing interface to reduce 
the crowd cognitive bias.
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Fig. 8.10 Ablation study on the two datasets. (a) Accuracy on STEM. (b) Accuracy on social 
science. (c) Fairness on STEM. (d) Fairness on social science 

8.3.2.6 Ablation Study 

Next, we conduct an ablation study to evaluate the contribution of the two key mod-
ules (i.e., GBI and CBC) of the DebiasEdu framework. We present the accuracy and 
fairness evaluation results when removing each of the two modules in DebiasEdu. 
In particular, to remove the GBI module, we randomly select 15% of samples from 
the testing set for crowd prediction and model calibration. The sampling rate is the 
same as the one used in the framework to ensure a fair comparison in terms of 
crowdsourcing budget. To remove the CBC module, we utilize the crowd prediction 
on the crowdsourcing subset to retrain the AI model. The accuracy and fairness 
evaluation results on two datasets are shown in Fig. 8.10. The evaluation results 
demonstrate that both the GBI and CBC modules make critical contributions to the 
DebiasEdu framework in terms of both prediction accuracy and fairness. 

8.3.2.7 Discussion of Benefits for Students 

The accurate and fair student performance prediction results can be utilized to 
provide feedback to students, thereby enhancing their metacognitive abilities [8]. 
Figure 8.11 shows the sample feedback design for students in the pilot testing. First, 
we incorporate a self-estimation page where students are prompted to estimate their 
final grades and specify their desired grades. Second, we design a model prediction 
and suggestion page that offers (1) predicted final grades from the framework 
and (2) suggestions to help students refine their self-estimation and achieve the 
desired final grades given current completed activities. Qualitative results from 
initial pilot testing suggest that self-estimation of learning performance relative 
to an accurate AI prediction leads to students thinking critically about their own 
knowledge. Specifically, the results involve participants trying to decipher why their 
self-estimation differs from AI predictions by assessing their own knowledge.
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Fig. 8.11 Sample feedback design for students in an online course based on the prediction results 

8.4 Discussion 

This chapter has examined the critical challenges of fairness and bias in social intel-
ligence systems. We present two novel social intelligence approaches, FairCrowd 
and DebiasEdu, that leverage crowd-AI collaboration to address these challenges. 
In particular, FairCrowd tackles the fairness and bias issues from the data curation 
perspective by sampling a balanced dataset. Additionally, DebiasEdu attempts to 
enhance fairness and reduce bias from algorithm design that incorporates human 
judgment to calibrate bias in model predictions. Both solutions demonstrate how 
carefully designed human-AI interaction can help mitigate demographic biases 
while maintaining or improving system performance across different social intel-
ligence application domains. 

Despite the promising results, a few limitations and challenges remain as 
ongoing research topics that need to be further explored. First, these frameworks 
face challenges in handling demographic complexity. The current implementa-
tions primarily focus on binary demographic attributes such as young/old and 
male/female classifications. However, real-world applications often involve inter-
sectional demographic factors that create more complex fairness considerations. The 
frameworks would need substantial adaptation to handle continuous demographic 
attributes or multiple overlapping demographic categories that better reflect the 
complexity of real-world demographic variations. A potential solution is to develop 
a hierarchical crowdsourcing design that can capture both demographic categories 
and their intersections. This could be combined with adaptive sampling strate-
gies [9] that progressively refine demographic representations based on discovered 
subgroups and their interactions. Additionally, incorporating techniques from multi-
class classification [39] could also help extend these frameworks beyond binary 
categorizations. 

Cognitive bias mitigation presents another significant challenge. While the bias 
calibration strategy in DebiasEdu shows promise in reducing human cognitive bias, 
other forms of cognitive bias may still influence crowd workers’ judgments. The
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effectiveness of bias mitigation strategies may vary significantly across different 
cultural contexts and worker populations. For example, availability bias [36]  may  
cause workers to overemphasize recent examples they have seen, and stereotype 
bias [31] could affect their judgments when assessing students from different 
backgrounds. There is also concern that long-term exposure to certain patterns in 
the data might create new forms of bias in crowd workers, which may potentially 
affect the quality and reliability of their annotations over time. To address such 
limitations, several approaches could be explored. For example, dynamic worker 
rotation strategies could be adopted to prevent stereotype bias. Designing adaptive 
interface elements could help detect and mitigate emerging biases. As the bias varies 
from application to application, application- or domain-specific bias mitigation 
strategies need to be carefully designed and evaluated to ensure the effectiveness 
of bias mitigation. 
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Chapter 9 
Privacy Issue 

Abstract This chapter discusses critical privacy challenges in social intelligence 
systems when the collective social intelligence data meets privacy constraints. We 
examine how the collection and integration of sensitive personal information across 
platforms raise significant privacy concerns which potentially limit the effectiveness 
of social intelligence solutions. To address these challenges, we present two 
novel solutions: CoviDKG and FaceCrowd. CoviDKG is a distributed knowledge 
graph framework that constructs a set of knowledge graphs from individual 
sources/platforms and exchanges the privacy-aware information across different 
sources/platforms to effectively detect online false information. FaceCrowd is a web 
crowdsourcing-based face partition approach that aims to improve the performance 
of current face recognition models in social intelligence by designing a novel 
crowdsourced partial face graph generated from privacy-preserved social media 
face images. Through extensive experiments on real-world datasets and user studies, 
we demonstrate that both frameworks successfully balance privacy protection with 
superior performance. 

Keywords Privacy · Crowd-AI · Distributed knowledge graph · Social media · 
Crowdsourcing · Face recognition 

9.1 Understanding Privacy in Social Intelligence 

Social intelligence is built upon the collective intelligence of individuals who 
share and contribute their observations, knowledge, and experiences. However, such 
a valuable resource of human insights raises critical privacy concerns since the 
data that makes social intelligence meaningful often contains sensitive personal 
information, such as face recognition, social relationships, and location data. For 
example, a study shows 80% of social media users are concerned about businesses 
and advertisers accessing and using their social media posts [39]. Major social 
media and online platforms often enforce strict policies and access controls that 
prohibit unauthorized data collection and analysis beyond the individual platform 
that owns the data. Such privacy constraints prevent cross-platform information 
integration and comprehensive data analysis, which greatly reduce the applicability 
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and benefits of social intelligence. For example, important health advice/clues 
shared on Facebook may not be accessible by a truth discovery solution to 
identify related false claims on other platforms. Therefore, to alleviate the privacy 
concern, the design of social intelligence systems also requires privacy-preserving 
mechanisms that enable collaborative analysis while protecting individual user data. 

Many efforts have been made to address the privacy issue in machine learning 
and cryptography, such as federated learning [42], differential privacy [15], and 
multi-party computation [20]. However, these solutions primarily focus on collab-
oratively developing a shared global model or analyzing a shared database. They 
are insufficient for social intelligence applications which often require user- or 
domain-specific analysis while preserving privacy. For example, in face recognition, 
a typical pipeline is to collect public face images of celebrities, manually annotate 
them via crowdsourcing, and train face recognition models on this public dataset 
(Fig. 9.1 with black arrows). In particular, the crowd workers annotate the identity 
of the public celebrity face images with blue frames and provide the annotations to 
ML/AI researchers to train face recognition models. However, the face recognition 
models trained on public images usually do not perform well on personal face 
images (e.g., the images shared within an individual’s network) due to the significant 
image domain discrepancy (e.g., facial expression, shooting environment) between 
the public and personal face images [26]. Similarly, certain unified truth discovery 
models often focus on utilizing social media data from multiple platforms to train 
a uniform truth discovery classifier [41]. While these solutions explore the social 
media posts on different platforms, they directly aggregate the posts from different 
platforms to construct a centralized dataset. Thus, they largely ignore the growing 

Fig. 9.1 The problem of privacy-aware face recognition
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Fig. 9.2 Truth discovery with CCF 

concerns of privacy and fail to capture platform-specific characteristics and user 
behaviors that are crucial for effective truth discovery in social intelligence. How-
ever, it is a non-trivial task to collaboratively leverage the rich social intelligence 
from diverse sources while preserving privacy [21, 34]. We elaborate on the key 
challenges below. 

Privacy-Aware Representation Learning 

The first challenge lies in learning privacy-aware representation from the content 
obtained from diverse sources/platforms. Let us consider an example of leveraging 
community-contributed facts (CCF) to detect false information (Fig. 9.2). CCF 
refers to the fact-checking reports submitted to different social media platforms 
by their users and partnered professionals. For example, Twitter’s Birdwatch 
is a community-based fact-checking portal for authorized Twitter users to sub-
mit fact-checking reports of incorrect Tweets [31]. Similarly, Facebook partners 
with independent professionals to review and submit fact-checking articles about 
COVID-19 false information [46]. A possible strategy to incorporate CCF from 
diverse sources/platforms is to construct a centralized knowledge graph by aggre-
gating the available CCF from all platforms [14]. However, such a strategy largely 
ignores the privacy constraints of CCF. For example, some Twitter users may not 
want the reported information to be publicly shared with other Twitter users or other 
platforms (e.g., Facebook, Reddit) due to privacy concerns [47]. Moreover, social 
media platforms are also unwilling to share CCF with the public or other platforms 
since CCF usually contains reports that debunk the incorrect posts on their platform 
which may raise sensitive public criticism or legal issues about content censorship 
against free speech [1]. Therefore, it remains challenging to learn privacy-aware 
representation from the platform-specific social intelligence data (e.g., CCF) while 
avoiding the privacy leakage of sharing the raw data.
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Cross-Platform Information Integration 

The second challenge lies in effectively integrating the individual-contributed 
information from different sources/platforms toward the specific task in social 
intelligence. While each platform contributes valuable fact-checking information 
through their respective CCF systems, integrating this information presents unique 
challenges. CCF exchanged from different platforms are subject to domain dis-
crepancy due to the diversified topics in platform-specific CCF. For example, 
“Ivermectin” appears in Facebook’s CCF “Ivermectin cannot prevent COVID-19”. 
However, it may only be reported in Twitter’s CCF as “Ivermectin is an FDA-
approved medicine for worm-caused skin disease” due to the difference in users’ 
interests on the two platforms [36]. As a result, the fact of “Ivermectin” learned 
from Facebook’s CCF (e.g., “false treatment of COVID-19”) is different from the 
one learned from Twitter’s CCF (e.g., “skin disease medicine”). Thus, the fact 
of “Ivermectin” learned from Facebook cannot be directly transferred to detect 
false information on Twitter due to the domain discrepancy. This phenomenon 
poses significant challenges in leveraging cross-platform CCF for social intelligence 
tasks, as the contextual differences and platform-specific characteristics can lead 
to misaligned or incomplete information integration. Therefore, developing robust 
methods to bridge these domain gaps and integrate cross-platform information 
while preserving platform-specific information integrity remains a critical research 
challenge in social intelligence applications. 

Partial Information Utilization 

The third challenge lies in incorporating privacy-preserved information from dif-
ferent sources. In the problem of privacy-aware face recognition, to protect the 
privacy of individuals who contributed their personal face images, only partial 
information (e.g., face image partitions as shown in the dotted circle in Fig. 9.1) 
is typically shared instead of raw images. Since the partial face images often have 
no ground-truth identity labels, it is not feasible to use the partial face images 
as the same training data as the public face images for face recognition. Recent 
facial applications improve their face recognition performance by reconstructing 
the unlabeled face images in an encoder-decoder manner to pre-train the model 
before training with public face images [26, 32]. However, such approaches require 
the labeled and unlabeled images to be in the same feature space (e.g., images 
with full faces), which is not applicable to the privacy-preserved face recognition 
problem with partial face images. This mismatch in feature representations between 
complete and partial faces poses fundamental challenges for leveraging existing pre-
training and reconstruction techniques. It is necessary to develop an effective social 
intelligence solution that can bridge the gap between partial and complete facial 
information while maintaining privacy guarantees.
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9.2 Privacy-Aware Crowd-AI Approach: CoviDKG 
and FaceCrowd 

In this section, we present two novel privacy-aware social intelligence solutions, 
CoviDKG (COVID-19 Distributed Knowledge Graph) [34] and FaceCrowd (Face 
Partition based on Crowdsourcing) [21], that effectively address privacy con-
straints in modeling privacy-sensitive social intelligence data. First, the CoviDKG 
framework introduces a privacy-aware distributed knowledge graph approach that 
effectively integrates CCF from various platforms to jointly detect false information 
across different platforms while preserving the privacy of both individual users 
and platform-specific fact-checking content. Second, the FaceCrowd scheme is a 
privacy-aware face recognition framework that constructs a crowdsourcing-based 
partial face graph that contains privacy-preserved partial face images from online 
social media users to effectively optimize the performance of face recognition 
models in social intelligence. 

9.2.1 CoviDKG: A Distributed Crowd-AI Approach 

Figure 9.3 shows an overview of the CoviDKG framework. In particular, CoviDKG 
consists of three modules: (1) a Distributed Knowledge Graph Constructor (DKGC) 
that constructs a set of distributed knowledge graphs to effectively extract the 
knowledge facts from the platform-specific CCF data, (2) a Privacy-aware Knowl-
edge Generator (PAKG) that is designed to accurately learn the privacy-aware 
latent COVID-19 knowledge representations from the distributed knowledge graphs 
constructed by DKGC, (3) a Domain-aware Knowledge Integrator (DAKI) that aims 

Fig. 9.3 An overview of the CoviDKG framework
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at efficiently integrating the distributed knowledge graph with the latent COVID-19 
knowledge facts obtained from other social media platforms. We discuss the details 
of each module below. 

9.2.1.1 Distributed Knowledge Graph Constructor (DKGC) 

The distributed knowledge graph constructor is designed to construct a knowledge 
graph to explicitly model the relational information of COVID-19 knowledge from 
the unstructured platform-specific CCF of each platform. We observe that CCF 
contains meaningful COVID-19 knowledge facts (i.e., COVID-19 entities and their 
relations) for detecting incorrect COVID-19 posts. In particular, noun-based entities 
often serve as the key vehicles to carry the incorrect information related to COVID-

19. For example, the COVID-19 fact “Ivermectin”
not prevent−−−−−−→. “COVID-19” in the 

CCF shown in Fig. 9.3 can help identify the incorrect posts that claim “Ivermectin 
can prevent or treat COVID-19.” Therefore, we focus on the noun-based entities 
(i.e., a single-word noun or multiple-word noun phrase) and their relations to obtain 
COVID-19 knowledge in the CCF. Formally, we define the COVID-19 entity and 
relation as follows. 

Definition 9.1 (Entity (e)) We define an entity e as the single-word noun (“Iver-
mectin”) or multiple-word noun phrase (“mRNA vaccine”) in CCF. In particular, 
we extract all entities from the CCF on each platform si ∈ S. using the advanced 
part-of-speech tagging tool [9]. The set of Mi . entities extracted from the CCF on 
platform si . is denoted as Ei = {ei,1, . . . , ei,Mi

}.. 
Definition 9.2 (Relation (r)) We define the semantic relation between a pair of 
entities in CCF. In particular, we focus on the binary relations between a pair of 
entities: i) positive relation r+

. (e.g., the “prevent” relation between “COVID-19 
vaccine” and “COVID-19 pneumonia”); and ii) negative relation r−

. (e.g., the “not 
cure” relation between “Ivermectin” and “COVID-19”). 

With the above definitions, we construct the community-driven distributed 
knowledge graph (CD-KG) on each platform using the platform’s CCF. Formally, 
we define the community-driven distributed knowledge graph below. 

Definition 9.3 (Community-driven Distributed Knowledge Graph (CD-KG)) 
We define a community-driven distributed knowledge graph (CD-KG) on a social 
media platform si ∈ S. as a directed graph Gi = (Ei ,R,Ti ,Ai )., where Ei . is the 
set of entities extracted from the CCF on platform si ., and R = {r+, r−}. is the 
set of relations between a pair of entities in Ei .. For the two connected entities e 
and e′

. with the relation r ∈ R., we define a knowledge triple as T = {e, r, e′}. 
that represents the relational information between the entities. Therefore, we further 
defineTi = {(e, r, e′) ∈ Ei×R×Ei}.as all knowledge triples in Gi ..Ai = {A+

i ,A−
i }. 

represents the two adjacent matrices corresponding to the positive and negative 
relations from R.. Each adjacent matrix from Ai . denotes an Mi × Mi . matrix that
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contains binary values to denote whether two entities from Gi . are connected (i.e., 
value is 1) or not (i.e., value is 0). 

In addition, DKGC also aims to extract the high-level semantic information from 
the text-based entities (i.e., nouns or noun phrases) to effectively propagate COVID-
19 knowledge information between entities in each distributed knowledge graph. To 
this end, DKGC designs a BERT-based entity encoder to accurately transform the 
text-based entities with different numbers of words to the high-dimensional latent 
embeddings in the same vector space. In particular, let e = [w1, w2, · · · , wn]. be an 
entity in Ei . where wi for 1 ≤ i ≤ n. represents the ith. word in entity e. We then 
convert wi . to the pre-trained BERT word embedding [13]  as w̃i ∈ Rd

. where d is 
the dimension of the embedding. Given all the word embeddings from e, we apply 
the max-pooling and average-pooling operations on the embeddings to effectively 
extract the representative semantic information of e and concatenate the generated 
embedding as ẽ ∈ R2d

.. We apply the BERT-based entity encoder to encode all 
entities Ei . in each platform si . and denote the encoded knowledge graph as ˜Gi =
(˜Ei ,R,˜Ti ,Ai ).. 

9.2.1.2 Privacy-Aware Knowledge Generator (PAKG) 

Given the CD-KG of each platform si ., the privacy-aware knowledge generator 
(PAKG) generates the privacy-aware knowledge facts from Gi . by retrieving dis-
criminative knowledge triples and protecting the semantic information of the triples 
from being attacked by malicious users from other platforms. In particular, PAKG 
consists of two components: (1) the variational knowledge autoencoder and (2) the 
post-guided knowledge triple extractor. We illustrate the details of each component 
below. 

While the graph entities from Gi . are transformed to high-dimensional embed-
dings in DKGC, the direct exchange of such entity embeddings is still subject to 
high privacy risk because the target platform (i.e., the platform that receives the 
entity embeddings) can recover the semantic words of the exchanged embeddings 
by applying the BERT-based entity encoder to encode all English words and discov-
ering the words with the same embedding values as the exchanged embeddings [13]. 
One possible solution for protecting the privacy of the entity embeddings from each 
platform is to design a platform-specific encoder network that encodes the entity 
embeddings into the latent entity features that are unknown to other platforms. 
However, a major limitation of such an encoding method is that the encoded entity 
features cannot be effectively integrated because the learnable parameters of the 
encoder networks from different platforms are independent of each other. Therefore, 
the entity embeddings from different platforms are encoded to different vector 
spaces. 

To address the above limitation, we develop the variational knowledge autoen-
coder (VKAE) for each platform si . to explicitly encode the entity embeddings 
into privacy-preserved entity embeddings. In particular, VKAE consists of an
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encoder and a decoder network that take the entity embeddings from Gi . as inputs 
and generate new entity embeddings with the same dimensions as the original 
embeddings. The generated entity embeddings contain similar semantic information 
as the original entity embeddings. However, they also contain variations (i.e., noisy 
values) that are generated from VKAE by sampling the hidden distribution of the 
original entity embeddings. Therefore, the entity embeddings generated from one 
platform cannot be attacked by other platforms because of the variations that are 
specific to the original platform. Formally, given an entity embedding ẽ ., we define 
the encoding and decoding processes as follows. 

.˜h = Fencoder ( ẽ ) and ṽ = Fdecoder (Z(μ(˜h), σ (˜h)) (9.1) 

where Fencoder . represents the sequential linear parameter matrix that encodes ẽ . to 
the latent entity feature˜h ∈ Rd ′

, d ′ < 2d .. Z. is the sampling distribution with the μ ∈
Rd ′

. and σ ∈ Rd ′
.parameters transformed from ˜h.. ṽ ∈ R2d

.denotes the decoded entity 
embedding with variations sampled from Z.. We further define the set of encoded 
entities from ˜Ei . as ˜Hi . and the decoded embeddings as ˜Vi .. 

Given the encoded latent entity features ˜Hi . from the platform si ., the post-guided 
knowledge triple extractor aims to identify the discriminative knowledge triples 
from Gi .. We first formally define the discriminative knowledge triple below. 

Definition 9.4 (Discriminative Knowledge Triple ( T ∗
.)) Given the platform si . 

and the constructed knowledge graph Gi ., we define a knowledge triple T
∗
. from 

Gi . as discriminative if it is used to correctly classify more than δ . COVID-19 posts 
where δ . is pre-defined as a hyper-parameter. Similarly, a knowledge triple is defined 
as non-discriminative if it fails to correctly classify more than δ .COVID-19 posts. 

Each platform is expected to exchange its discriminative knowledge triples with 
other platforms because such knowledge triples are more likely to improve the 
detection performance of the knowledge graphs from other platforms compared 
to non-discriminative knowledge triples. In order to identify the discriminative 
knowledge triples from Gi . of the platform si ., we leverage the attention mechanism 
to explore the importance degree of each knowledge triple in identifying incorrect 
COVID-19 posts. In particular, we design an attention-based knowledge graph 
convolutional network that leverages the knowledge triples from Gi . to classify 
the COVID-19 posts and extracts specific knowledge triples with high attention 
scores as discriminative knowledge triples. In particular, we represent Gi . as a multi-
relational graph convolutional network (RGCN). RGCN is a specific type of graph 
convolutional network that contains multiple types of relations between different 
graph entities [33]. The multi-relation knowledge aggregation strategy is formally 
defined as: 

.
˜hm = σ(

∑

r∈R

∑

(m,r,n)∈T+

1

zn,r

Wr
i,m,n

˜hn
˜Ar

i,m,n) (9.2)
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where ˜hm . and ˜hn . are mth. and nth. encoded entities from ˜Gi .. σ . represents the non-
linear activation ReLU function. R. contains both positive and negative relations 
in Gi . and T+ ∈ T. denotes the set of graph triples consisting of ṽm .. zn,r . is a 
normalization factor for ṽn . with relation r and Wr

i,m,n . is the learnable parameter. 
˜Ar

i . is the matrix that is transformed from the adjacent matrix Ar
i ∈ Ai . for the 

relation r by applying the softmax operation on the last dimension. In particular, 
the adjacent matrix ˜Ar

i . is derived by jointly aggregating the semantic information 
from the input COVID-19 posts pi,n . and Ar

i .. The intuition of such aggregation is 
that the knowledge aggregation in the RGCN should match the semantic content in 
the input COVID-19 post to determine if the post contains incorrect information. 
For example, a COVID-19 post that discusses the relation between the COVID-19 
vaccine and human DNA can guide the RGCN to retrieve more COVID-19 vaccine-
related knowledge facts from the knowledge graph to check the truthfulness of the 
post. Formally, given the feature of a COVID post pi,n . that is embedded by the 
BERT-based entity encoder as p̃i,n ∈ R1×2d

., the process for generating the adjacent 
matrix ˜Ar

i .with relation r ∈ R. can be denoted as: 

. ˜Ar
i = Softmax((˜Ei · (p̃i,n)

T + p̃i,n · (˜Ei )
T ) �Ar

i ) (9.3) 

where ˜Ar
i ∈ RMi×Mi . is the result adjacent matrix. We define ˜Ai = {˜A+

i , ˜A−
i }. as the 

two adjacent matrices to represent the positive and negative relations from R..  After  
the knowledge aggregation process in E q. (9.2), we aggregate all encoded entities 
˜Hi . for each knowledge graph ˜Gi . by concatenation and classify the concatenated 
feature with the cross entropy loss. After optimizing the knowledge graph with all 
COVID-19 posts in each platform si ., we aggregate the attention scores from ˜Ai . for 
the knowledge triples and extract the top �. triples with highest attention scores as 
discriminative knowledge triples T ∗

i = {T ∗
1 , . . . , T ∗

�}. of si .. Similarly, we denote 
the embedded discriminative knowledge triples as ˜T∗

i = {˜T ∗
1 , . . . , ˜T ∗

�}.. We denote 
the decoded entities of the discriminative knowledge triples by VKAE as ˜V ∗

i =
{̃v∗

1 , . . . , ṽ
∗
ω}.where ω . is the total number of entities. 

9.2.1.3 Domain-Aware Knowledge Integrator (DAKI) 

After each platform generates the platform-specific discriminative knowledge 
triples, the domain-aware knowledge integrator (DAKI) models the platforms 
S. as a fully connected graph and exchanges the knowledge triples between 
each two platforms. In particular, given a total of I platforms from S., DAKI 
assigns each platform si . to exchange the decoded discriminative knowledge 
triples ˜T∗

i . generated by the PAKG with all other platforms sj ∈ {S|si �= sj }. 
simultaneously. After the exchange process, each platform si . receives the decoded 
discriminative knowledge triples from all other platforms with the entities denoted 
as ˜Vi = {˜V1, . . . , ˜VI�˜Vi} ∈ R(I−1)ω×2d

..
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For each platform si ., DAKI is then expected to integrate the exchanged knowl-
edge triples ˜Vi .with the original knowledge graph Gi . to generate a new knowledge 
graph that contains more diversified COVID-19 knowledge facts to accurately detect 
COVID-19 false information. A possible strategy for the knowledge integration is 
to directly connect the entities from ˜Vi . with all entities from Gi . with uniform 
relation values (i.e., value 1 for both positive and negative relations). However, 
such a one-size-fits-all integration method largely ignores the knowledge domain 
discrepancy between different platforms. The topics of CCF vary on different social 
media platforms due to the different demographic distributions of those platforms 
with varied interests in COVID-19 topics (e.g., Facebook users are more interested 
in COVID-19 cures than Twitter users). 

To solve the above problem, we design a distribution-weighted knowledge 
integration strategy that explicitly considers the domain discrepancy between the 
COVID-19 knowledge facts from Gi . and the exchanged knowledge triples from ˜T∗

i .. 
In particular, we denote the new adjacent matrix sets for the integrated knowledge 
as Ai = {A+

i ,A−
i }.where A+

i . and A−
i . are both (Mi + (I − 1)ω) × (Mi + (I − 1)ω). 

matrices. For each adjacent matrix, the Mi × Mi . sub-matrix is the same as the 
original adjacent matrix with total Mi . entities. For the entities of the exchanged 
discriminative knowledge triples ˜Vi . from the platform si ., the relations between the 
entities in ˜Vi . are recorded in the sub-matrix Ai .with the value equaling to 1. For the 
entities that are not from the same platform (e.g., ṽi,m . from ˜Vi . and ṽj,n . from the 
original platform sj .), we measure the positive relation between them by applying 
the Bhattacharyya distance [7] as follows. 

. A+
i,m,n =

√

(μm − μn)T (
σm + σn

2
)−1(μm − μn) (9.4) 

The reason of choosing Bhattacharyya distance is to quantitatively estimate the 
distance between the exchanged entities from ˜Vi . and the original entities from sj .. 
If the embedding space of ṽi,m . is far from the embedding space of ṽj,n . based on 
the positive relation (i.e., low A+

i,m,n .), the domain discrepancy of topics of CCF 
between the two platforms is large. Therefore, the exchanged knowledge facts from 
the platform si . is less discriminative on detecting COVID-19 false information on 
the platform sj .. Similarly, we apply the Bhattacharyya distance to measure the 
negative relations between entities from different platforms. 

After generating the new adjacent matrices for each platform, we perform the 
multi-relation knowledge aggregation strategy from the PAKG again to classify the 
COVID-19 false information on each individual platform. In particular, we denote 
the new COVID-19 knowledge graph from each platform si . as Gi = (Ei ,R,Ti ,Ai ). 

and the embedded knowledge graph as ˜Gi = (˜Ei ,R,˜Ti ,Ai ).. The PAKG on each 
platform si . then generates new attention scores for the embedded graph entities 
˜Ei . and leverages the scores to retrieve new discriminative knowledge triples. In 
particular, if the attention score of an entity is lower than ϕ .where ϕ . is a predefined 
hyper-parameter, we remove the entity and the connected relations from Ai . in order 
to reduce the ineffective exchanged knowledge. We repeat the optimization process
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Fig. 9.4 The pipeline of FaceCrowd 

of the PAKG and the DAKI until the accuracy performance of COVID-19 truth 
discovery does not increase anymore. 

9.2.2 FaceCrowd: A Crowdsourcing-Based Partition Approach 

The FaceCrowd consists of three different modules: (1) a crowdsource partial graph 
constructor (CPGC), (2) a partial graph denoising generator (PGDG), and (3) a 
metric-based partial identity discriminator (MPID). The overview of FaceCrowd 
is shown in Fig. 9.4. We elaborate on each module below. 

9.2.2.1 Crowdsource Partial Graph Constructor 

The crowdsource partial graph constructor (CPGC) aims to construct a bi-relational 
partial face graph (bPFG) that contains partial face images shared by social 
media users from the user-end devices (e.g., phones, smart cameras). In particular, 
bPFG considers partial face images as graph nodes, and crowdsourced binary face 
similarity annotation (i.e., low or high) as edges. The CPGC module consists of two 
components: (1) a user-end partial face generator, and (2) a server-end crowdsource 
face matching estimator. 

The user-end partial face generator can be deployed on the local devices of 
social media users to generate and share their partial face images. The design of 
sharing on user-end devices effectively protects the identity information of the users 
by preventing access from other people (e.g., crowd workers, ML/AI researchers) 
to users’ personal face images. We show the generation process and generated 
partial face examples in Fig. 9.5. In particular, the generator firstly detects the facial 
landmarks [4] of the personal face images as a set of 2-dimensional points (e.g., the



248 9 Privacy Issue

Fig. 9.5 User-end partial face generator. (a) Face landmarks. (b) Face Partition. (c) Partial faces 

blue points in Fig. 9.5a) in order to specify key facial positions for creating partial 
face images [48]. If the generator cannot detect facial landmarks of an image, it 
skips the image and does not use it in the following process of FaceCrowd. Given 
the facial landmarks of a face image, we formally define landmark-based partial 
face as follows. 

Definition 9.5 (Landmark-based Partial Face (r)) A rectangular face image 
region (e.g., a piece of face region in Fig. 9.5c) that is partitioned from the full 
human face image according to a set of selected facial landmarks. 

The generator allows social media users to select different facial landmarks to 
generate and share partial face images of their interest. We observe that partial face 
images significantly protect the identity information in the original face images 
as each partial face contains only a small part of the facial components (e.g., 
the nose) that is not enough for other people (e.g., the crowd workers or ML/AI 
researchers) to accurately determine the unique identity of the social media users. 
The generator in each user-end device shares partial face images to the center server 
of FaceCrowd and aggregates them into a joint set of partial face images, denoted 
as partial face pool. The images in the partial face pool cannot be tracked back to 
the corresponding user-end devices because we do not record ID information of the 
devices on the backend server, which further protects the identity of social media 
users [30] 

Given the partial face pool, the server-end crowdsource face-matching estimator 
asks crowd workers from online crowdsourcing websites [2] to identify the partial 
face pairs from the pool based on potential face similarity defined as follows. 

Definition 9.6 (Potential Face Similarity (PFS)) A binary value (i.e., 0 or 1) that 
indicates if two partial face images belong to the same identity or not. We expect 
online crowd workers to estimate PFS based on the similarity of three different 
factors in partial face images: (1) demographic information (e.g., wrinkle, beard); 
(2) facial expression (e.g., surprised, calm) and (3) shot environment (e.g., profile, 
frontal). Therefore, the more similar the two partial face images are, the more likely 
a crowd worker pairs them with the same identity (i.e., PFS=1).
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Fig. 9.6 The partial face matching interface 

We define a novel partial face-matching interface in Fig. 9.6. In each crowd-
sourcing task, we randomly select a set of face images from the partial face 
pool as a candidate partial face group (e.g., the images in Fig. 9.6) and instruct 
a crowd worker to estimate PFS of image pairs. Unlike traditional face-related 
crowdsourcing tasks that grant the crowd workers access to full face images and 
assign them simple annotation tasks (e.g., face identity annotation [8]), our task 
limits the crowd workers’ access to only the partial face images to protect the 
identities of users and leverage the intelligence of the crowd workers to infer the 
PFS of partial faces. For example, a crowd worker may select the partial face pair 
with the green arrow in Fig. 9.6 with PFS equal to 1 because the selected partial 
faces both look like old male faces with similar eye shapes. Similarly, the crowd 
worker may select the partial face images with the red arrow with PFS equal to 0 
because the two partial faces have potentially different face shapes based on facial 
color and texture. 

After collecting the responses from all crowd workers, we construct the bi-
relational partial face graph (bPFG) based on the responses. In particular, we denote 
bPFG as a graph structure G = {V,E}.whereV = {v1, . . . , vK }. denotes the total K 
partial face images P−

. as graph nodes. E = {E0,E1}. represents the set of negative 
and positive PFS relations of V. as graph edges. 

9.2.2.2 Partial Graph Denoising Generator 

Given the constructed partial face graph bPFG from the CPGC module, the partial 
graph denoising generator (PGDG) is designed to denoise the unreliable PFS
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relations estimated by the crowd workers who may mistakenly select wrong answers 
or contain individual judgment bias on partial face images. 

To address the above limitation, we first model the constructed bPFG as a multi-
relational graph neural network (MRGN) to effectively represent the binary PFS 
relations between partial face images (i.e., the high PFS as a positive relation and 
low PFS as a negative relation). Then we leverage the MRGN to estimate the 
reliability of the estimated PFS relations by generating graph attention scores for 
the relations based on the reconstruction of the public face images in an encoder-
decoder manner. In this way, the common human facial characteristics from the 
public face images are transferred as general face component information to refine 
the relations of partial face images in MRGN. We show the structure of PGDG in 
Fig. 9.7 below. 

Given a full public face image x+
n ∈ X+

., we first design a deep convolutional 
neural network F+

. to encode x+
n . to high dimensional feature x̃+

n ∈ R2d
. that is used 

as the encoded input feature for bPFG and also the label for the decoded feature 
from bPFG. The reason for using x̃+

n . is that x̃+
n . is extracted from x+

n . with higher-
level identity information and less pixel-level noise, which identifies more reliable 
PFS relations in bPFG compared to the raw face image x+

n .. Similarly, we encode the 
partial face images in bPFG by another network F−

. to the same feature dimension 
as x̃+

n . in order to aggregate the facial information across different features. We 
denote the encoded partial face images as ˜V = {̃v1, . . . , ṽK }.. After the encoding 
process, the PGDG aggregates the information in both x̃+

n . and ˜V. by concatenating 
the corresponding features of x̃+

n . and each ṽk ∈ ˜V.. To estimate the reliability of PFS 
relations between different partial face images, we generate the attention score for 
each PFS relation edge in the partial face graph by developing a partial graph-based 
reliability propagation strategy to decode x̃+

n . based on ˜V. as follows. 

Fig. 9.7 Partial graph denoising generator
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. is kth. encoded partial face image in (l − 1)th. MRGN graph 
layer and x̃+
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. is nth. encoded public face image. Vpos

k . and Vneg
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set of encoded partial face images that have positive and negative relations with 
ṽ

(l−1)
k .. �

(l−1)
k,j = ṽ
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face embeddings based on positive and negative relations of G.. Wpos

2 ∈ R2d×2d
. and 

W
pos
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. are learnable parameter matrices that learn discriminative features 

to represent positive and negative relations. LG . is the reconstruction loss of the 
encoded public face images based on the aggregated embeddings from all partial 
face images in MRGN. αk,j ∈ [0, 1]. is the normalized attention score between kth. 
and j th. partial face embeddings. The normalization process of αk,j . is defined as 

αk,j = exp(σ (aT W
pos/neg
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∑

j∈Vk
exp(σ (aT W

pos/neg
2 �

(l−1)
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. where a ∈ R2d
. is the attention vector that 

estimates the importance of each neighbor partial face ṽj . to ṽk .. After the training 
of PGDG, we remove the positive and negative relations of partial face pairs if the 
absolute value of the corresponding attention score is lower than the predefined 
threshold in order to reduce the potential annotation noise from crowd workers. 

9.2.2.3 Metric-Based Partial Discriminator (MPID) 

Given a denoised partial face graph from the PGDG module, the metric-based 
partial discriminator (MPID) aims to leverage the partial face images in G. to 
optimize face recognition models that generate more discriminative face features 
across different identities for full input face images. Current face recognition 
models usually contain a backbone neural network module [17, 35] to embed input 
training images to high-dimensional features for classifying their identity labels. 
However, it is insufficient for the models trained only on the public celebrity 
face images to generate discriminative face features for personal face images from 
social media users due to the image domain discrepancy (e.g., face expression, 
shooting environment) [26]. Therefore, we model the denoised partial face graph 
from PGDG as a feature-level regularization that adapts the face features from the 
face recognition models to be more discriminative on both public and personal face 
images.
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Given an embedded public face image x̃+
.as input, we first define a representative 

partial face retrieval strategy to retrieve the partial face image that contains similar 
identity information as x̃+

. from the MRGN module. The process is formally 
denoted as ˜V ∗ = argmaxṽ1,...,̃vK∗ max((̃x+

n � ṽk)Wc),∀vk ∈ V.. where �. 

represents the circular convolution operation [28] that periodically convolves x̃+
. 

by ṽk . to estimate the similarity of two features based on each possible feature 
aggregation position. Wc . transforms the convolved features to single values and 
max(·). calculates the maximal value. We denote the retrieved partial face images as 
˜V ∗ = {̃v1, . . . , ṽK∗}. 

Since each encoded partial face image ṽk∗ ∈ ˜V ∗
.only contains a small component 

of a personal human face and cannot be directly aggregated with the full public face 
image x̃+

., we design a graph-based partial face assembling method that retrieves 
vk ∈ V. that are connected to ṽk∗ . with positive PFS from CPGC module and high 
attention scores from the PGDGmodule. The retrieved partial faces contain different 
facial components (e.g., the facial components in Fig. 9.5c) that an assembled full 
personal face image shares similar identity information. The MPID encodes all 
retrieved partial face images by F−

. and aggregates the encoded face features with 
x̃+

. to generate more discriminative face features for both the public and potential 
personal face images. The process is denoted as x̃+ := x̃+ + ∑K∗

k=1(̃vk + ∑K
j=1 ṽj ·

1[(PFSk,j = 1)&(αk,j > η])). 

. x̃
+ := x̃+ +

K∗
∑

k=1

(̃vk +
K

∑

j=1

ṽj · 1[(PFSk,j = 1)&(αk,j > η])) (9.5) 

where PFSk,j . represents the PFS relation between the partial face image vk . and 
vj .. η . is the predefined threshold value for αk,j .. After the adaptation of x̂+

., the face 
recognition model continues to utilize x̂+

. to classify face identity labels. Therefore, 
FaceCrowd is generalized enough as a plug-in regularization module to optimize a 
broad set of data-driven face recognition models. We evaluate the performance of 
FaceCrowd in the next section. 

9.3 Real-World Case Studies 

9.3.1 Truth Discovery with Distributed Knowledge Graph 

We evaluate the detection performance of CoviDKG using two real-world social 
media post datasets collected from Twitter and Facebook. Evaluation results show 
that CoviDKG achieves significant performance gains compared to state-of-the-art 
baselines by accurately detecting incorrect COVID-19 posts on social media.
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Table 9.1 Data summary of 
CCF 

Data trace Statistics 

Average number of documents 163 

Average number of entities 474 

Average number of triples 1979 

9.3.1.1 Data 

First, we describe the platforms-specific CCF and COVID-19 posts datasets we used 
in the experiments. 

Platform-specific CCF 

In light of the privacy concern of CCF, we focus on the platform-specific CCF 
whose source is publicly available for research purposes. In particular, we consider 
two types of CCF: (1) professional fact-checking articles that are published by 
fact-checking journalists and health professionals on major fact-checking websites 
(e.g., politifact.com, factcheck.org), and (2) fact-checking community reports that 
are posted by volunteer online users on online fact-checking communities (e.g., 
Birdwatch1 ). In the study, we collect CCF from 5 major social media platforms 
(i.e., Twitter, Facebook, Instagram, Reddit, Snapchat) to construct the community-
driven distributed knowledge graph (CD-KG) in CoviDKG. A summary of the CCF 
in the study is presented in Table 9.1. 

COVID-19 Posts 

To evaluate the detection performance of classifying incorrect COVID-19 posts, 
we collect two real-world datasets of COVID-19 posts from the mainstream social 
media platforms: Twitter and Facebook. In particular, we leverage the public 
COVID-19 false information dataset, CoAID [10] to collect the social media posts 
from Twitter and Facebook. In particular, we retrieved the COVID-19 posts from 
each social media platform based on the post id identified in CoAID. To preserve 
the user privacy, we only crawl the post content (i.e., the text of each post) using 
the official Twitter API and Facebook’s CrowdTangle tool [38]. In this study, we 
primarily focus on social media posts in English and remove any non-English posts. 
We use the ground-truth labels provided in the original datasets, which are validated 
by medical experts and professional journalists. We finally obtain 684 incorrect and 
2510 correct posts from Twitter, and 581 incorrect and 2218 correct posts from 
Facebook (Table 9.2).

1 https://twitter.com/i/birdwatch. 

https://twitter.com/i/birdwatch
https://twitter.com/i/birdwatch
https://twitter.com/i/birdwatch
https://twitter.com/i/birdwatch
https://twitter.com/i/birdwatch
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Table 9.2 Data summary of 
COVID-19 posts 

Data trace Statistics 

Twitter Number of incorrect posts 684 

Number of correct posts 2510 

Facebook Number of incorrect posts 581 

Number of correct posts 2218 

9.3.1.2 Baseline Methods and Experimental Setting 

We compare the model with several state-of-the-art baseline methods that leverage 
knowledge graphs to detect false information on social media. 

• GUpdater [37]: GUpdater is a graph neural network framework that leverages 
a text-based attention mechanism to guide the information propagation in 
knowledge graph. In particular, we replace the decoder module of GUpdater with 
a fully connected layer to classify incorrect social media posts. 

• DETERRENT [11]: DETERRENT is a knowledge-driven healthcare misin-
formation detection framework that utilizes a graph attention network to learn 
useful knowledge information from the biomedical and health knowledge base 
in life sciences to detect incorrect healthcare news. In particular, we replace 
the healthcare news in DETERRENT with social media posts to perform the 
classification task. 

• COVID-BKM [14]: COVID-BKM is a COVID-19 biomedical knowledge miner 
that incorporates the cause-and-effect information network learned from scien-
tific literature of COVID-19 pathophysiology. We adapt COVID-BKM to detect 
incorrect COVID-19 social media posts by replacing the distributed knowledge 
graph nodes in CoviDKG with the information network constructed in COVID-
BKM. 

• FedE [6]: FedE is a federated learning based framework that jointly learns the 
entity embeddings in different knowledge graphs for classification tasks (e.g., 
truth discovery). In particular, we adapt FedE to learn the entity embeddings in 
CD-KG of different social media platforms and the learned entity embeddings 
are input to PAKG to classify incorrect COVID-19 posts. 

For the implementation details of CoviDKG, the PAKG module holds 2 graph 
convolutional layers with each layer followed by the ReLU activation. We set the 
embedding dimensions of the BERT-based entity encoder as 768. We set the total 
number of epochs as 40 and train CoviDKG with an initial learning rate of 0.001. 
and decay of 0.95. in each epoch. The optimizer is Adam with 5 × 10−4

. weight 
decay. We run the experiments on Ubuntu 20.04.with four NVIDIA A40. 

To ensure a fair comparison, we use the same input of social media posts to 
all the baseline methods for training and testing the classification models. In the 
experiments, we use 80% of each dataset as the training set, and the remaining 
20% of each dataset as the testing set. For GUpdater, DETERRENT, and FedE, we 
use the same CCF to construct the knowledge graph. For COVID-BKM, since it is
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a pathophysiology-based cause-and-effect knowledge graph of COVID-19, we use 
the knowledge graph constructed in COVID-BKM to learn COVID-19 knowledge 
for detecting incorrect COVID-19 posts. We strictly follow the configurations 
of all baselines as documented in the original papers, and carefully tune the 
hyperparameters for the best results. 

9.3.1.3 Detection Performance 

In the first set of experiments, we evaluate the classification performance of all com-
pared methods in detecting incorrect COVID-19 social media posts. We adopt the 
evaluation metrics that are commonly used to evaluate classification performance, 
including Accuracy, Precision, Recall, and F1 Score. We summarize the evaluation 
results on the Twitter and Facebook datasets in Tables 9.3 and 9.4, respectively. We 
observe that CoviDKG consistently outperforms all the baselines on both the Twitter 
and Facebook datasets in terms of all evaluation metrics. For example, we observe 
that CoviDKG outperforms the best-performing baseline (i.e., GUpdater) by 4.56% 
in terms of the F1 Score on the Facebook dataset. The performance gains can be 
mainly attributed to the distributed design of CoviDKG that explores the diversified 
COVID-19 knowledge facts in the community-contributed CCF across different 
social media platforms to effectively identify the incorrect COVID-19 social media 
posts. 

Moreover, the performance improvements of CoviDKG over the knowledge 
graph based truth discovery baselines (i.e., GUpdater and DETERRENT) suggest 
the effectiveness of domain-aware knowledge integrator in CoviDKG that can 
efficiently integrate CD-KG with privacy-aware COVID-19 knowledge facts from 

Table 9.3 Detection 
performance (Twitter dataset) 

Accuracy Precision Recall F1 score 

CoviDKG 0.9089 0.9195 0.8065 0.8115 
GUpdater 0.7151 0.8991 0.6947 0.7838 

DETERRENT 0.6948 0.8317 0.7389 0.7826 

COVID-BKM 0.8802 0.8089 0.7183 0.7362 

FedE 0.9020 0.8552 0.7455 0.7956 

The bold values indicate the best performing results in each
evaluation metric

Table 9.4 Detection 
performance (Facebook 
dataset) 

Accuracy Precision Recall F1 score 

CoviDKG 0.9461 0.9074 0.8007 0.8498 
GUpdater 0.6983 0.8288 0.7811 0.8042 

DETERRENT 0.7586 0.8429 0.7419 0.7892 

COVID-BKM 0.9104 0.6961 0.7198 0.7066 

FedE 0.9202 0.9027 0.6930 0.7816

The bold values indicate the best performing results in each
evaluation metric
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other social media platforms to enrich the COVID-19 knowledge facts in CD-KG. In 
addition, CoviDKG investigates the COVID-19 knowledge facts from CCF which 
includes both medical and non-medical COVID-19 knowledge facts that can greatly 
enhance the performance of identifying incorrect COVID-19 posts. 

9.3.1.4 Robustness Study 

In the second set of experiments, we investigate the robustness of CoviDKG by 
tuning two hyperparameters in CoviDKG, including: (1) the number of exchanged 
knowledge triples ( �.), and (2) the number of rounds for knowledge exchange (t). 
These two hyperparameters are key factors in CoviDKG to optimize the truth 
discovery performance. In particular, we vary �. from 1 to 5, and t from 0 to 
4. We evaluate the detection performance in terms of Accuracy and F1 Score. 
We present the results with respect to �. and t in Figs. 9.8 and 9.9, respectively. 
We observe that the detection performance of CoviDKG gradually plateaus as �. 

increases, especially after �. reaches 4. This is because that increasing the number 
of exchanged knowledge triples may introduce additional knowledge triples that are 
less relevant to identifying incorrect COVID-19 posts. In addition, we also note that 

Fig. 9.8 Robustness study: Knowledge triples ( �.). (a) Twitter dataset. (b) Facebook dataset 

Fig. 9.9 Robustness study: Knowledge exchange rounds (t). (a) Twitter dataset. (b) Facebook 
dataset
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CoviDKG’s performance increases as t increases from 1 to 3 and starts to plateaus 
afterwards. A possible reason is that there are not enough COVID-19 posts on each 
social media platform to optimize the knowledge graph as the size of the graph 
increases with more exchanged knowledge triples.

9.3.1.5 Ablation Study 

In the third set of experiments, we conduct an ablation study to analyze the 
contribution of the main components in the CoviDKG framework. In particular, we 
consider three ablations of CoviDKG in the study: 

• CoviDKG\Z: the variant of CoviDKG that excludes the Bhattacharyya distance 
measurement on domain discrepancy between the knowledge from different 
social media platforms in the DAKI module. 

• CoviDKG\A: the variant of CoviDKG that excludes the binary adjacent matrix 
Ar

s . as the additional mask in Eq. (9.3). 
• CoviDKG\U: the variant of CoviDKG that does not update the relations between 

the exchanged knowledge triples and CD-KG by removing the knowledge graph 
updating process from the DAKI module. 

We summarize the evaluation results of the ablation study on the Twitter and 
Facebook datasets in Tables 9.5 and 9.6, respectively. We observe that CoviDKG 
reaches the best performance when CoviDKG integrates all the components. The 
results demonstrate the effectiveness and necessity of key components in CoviDKG. 

Table 9.5 Ablation study 
(Twitter dataset) 

Accuracy Precision Recall F1 score 

CoviDKG 0.9089 0.9195 0.8065 0.8115 
CoviDKG\Z 0.9020 0.8552 0.7455 0.7956 

CoviDKG\A 0.8837 0.7878 0.7647 0.7711 

CoviDKG\U 0.8839 0.7762 0.7622 0.7635 

The bold values indicate the best performing results in each
evaluation metric

Table 9.6 Ablation study 
(Facebook dataset) 

Accuracy Precision Recall F1 score 

CoviDKG 0.9461 0.9074 0.8007 0.8498 
CoviDKG\Z 0.9354 0.8846 0.7737 0.8153 

CoviDKG\A 0.8339 0.8822 0.7956 0.8284 

CoviDKG\U 0.9245 0.8977 0.7072 0.7850

The bold values indicate the best performing results in each
evaluation metric
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9.3.2 Privacy-Aware Face Recognition 

We conduct extensive experiments on two real-world human-face datasets to 
evaluate the effectiveness of FaceCrowd in optimizing different face recognition 
models and protecting the identities of shared partial face images. 

9.3.2.1 Data 

We use CelebA [25] and LFW [19] as two large-scale public human face datasets 
in the experiments. CelebA [25] is a large-scale celebrity face dataset with 202,599 
celebrity face images that belong to 10,177 unique identities. LFW [19] is a large-
scale human face dataset that contains 38,581 public face images collected from 
the Internet with 5749 identities. Since there is no public human face dataset 
that contains personal human face images with identity labels from social media 
users, we randomly select 81,473 face images with 6000 identities from CelebA 
as public face dataset and 10,337 face images with 1720 identities from LFW as 
private face dataset. The reason for creating the public face dataset from CelebA 
is that celebrity images in CelebA are usually public and used for training the face 
recognition models [45]. In contrast, the LFW contains non-celebrity face images 
that are similar to the face images from common social media users in terms of 
face appearance and photo style. The identity labels of LFW are only used for 
evaluation purposes in the experiments. To simulate the action of social media 
users who select partial faces of their personal face images for sharing, we generate 
partial face images from LFW by randomly generating landmark-based partial faces 
(Definition 9.5) from the full face images. 

9.3.2.2 Crowdsource Platform 

Based on the collected partial face images, we generate 1500 crowdsourcing tasks 
with each task containing 16 different partial face images as shown in Fig. 9.6 
from the CPGC module. For each crowdsourcing task, we assign five independent 
Amazon Mechanical Turk (AMT) crowd workers to perform the crowdsource face 
matching estimation. We define a set of screening pipelines to ensure the quality 
of the answers from crowd workers. In particular, the crowd workers are selected 
only if they have a 95%. or higher Human Intelligence Task (HIT) rate. The crowd 
worker can choose to skip the task if they do not want to work on the assigned task 
for any reason. We set the payment to all crowd workers well above the minimum 
requirement from AMT [2]. After collecting the answers from crowd workers, we 
further filter out invalid answers from malicious crowd workers who complete each 
crowdsourcing task in an extremely short time (e.g., less than 3 seconds). We finally 
collected 5412 partial face image pairs with positive PFS and 5991 image pairs with 
negative PFS.
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9.3.2.3 Baseline Methods and Experimental Setting 

We choose a set of state-of-the-art face recognition models to evaluate the perfor-
mance of FaceCrowd. 

• LightCNN [44]: a face recognition framework that contains a lightweight 
convolutional module to learn compact human face features. 

• MobiFace [16]: a face recognition framework designed for face recognition on 
edge devices that require efficient computing resources of the devices. 

• VGGFace [29]: a face recognition framework that designs a VGG convolutional 
neural network [35] based model and trains the model by collecting a large-scale 
human face dataset. 

• SphereFace [24]: a face recognition framework that builds a deep neural network 
architecture to learn discriminative face features by mapping the face features 
into an angular space. 

• VGGFace2 [5]: a face recognition framework trained on a large-scale face 
dataset that contains millions of face images with variations in pose, age and 
illumination. 

• CenterLoss [43]: a face recognition framework that designs a new loss function 
to learn an identity-specific center representation for face images that belong to 
the same identity. 

• ArcFace [12]: a face recognition framework that proposes a margin-based loss 
function that maximizes the inter-variance of embedded face image features that 
belong to different face identities. 

In the experiments, we split the face images with 4000 identities from the public 
face dataset as a training set and randomly select 30%. face images from the training 
set as the validation set. We further equally split the validation set into two subsets 
where the first subset is used to tune the parameters of each face recognition model 
and the second subset is used to test each model’s face recognition performance. 
We create two types of testing sets that contain face images with exclusive identities 
from the training/validation set to extensively evaluate the performance of various 
face recognition models. The first type is N -shot face recognition testing set. In 
particular, we select 500 unique identities that contain at least N + 1. face images 
from the public and private face datasets respectively. For each identity, we define 1 
face image as probe and the rest N face image with the same identity as gallery.  The  
second type is the face verification testing set. We randomly select 500 face image 
pairs from both the public face dataset and the private face dataset, respectively. 

9.3.2.4 Face Recognition P erformance

In the first experiment, we evaluate the overall face recognition performance of all 
schemes on both validation and testing sets. We adopt Prec@K as the evaluation 
metric for the face recognition performance on the validation set to represent 
the number of face images whose ground-truth identity labels are among the top
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Table 9.7 Face recognition 
performance on validation set 

Data Public dataset FaceCrowd 

Metric Prec@1 Prec@5 Prec@1 Prec@5 

LightCNN 74.40 85.80 77.97 87.22 
MobiFace 72.70 83.95 80.88 88.90 
VGGFace 79.80 88.22 84.38 91.90 
SphereFace 79.45 90.95 88.93 94.25 
VGGFace2 78.88 89.50 85.83 93.38 
CenterLoss 80.85 87.22 90.55 93.48 
ArcFace 83.58 91.90 88.00 95.78 

The bold values indicate the best performing results in
each evaluation metric

K predicted identity labels by a face recognition scheme. The evaluation results 
are shown in Table 9.7. We observe that FaceCrowd significantly improves the 
recognition performance of all compared schemes. The performance gains are 
mainly due to the fact that the FaceCrowd scheme creates a partial face graph to 
regulate the face image representations generated in the face recognition models 
by aggregating the representation of input full public face images with assembled 
partial face embeddings in the graph based on their estimated face similarities. 

We further investigate the effectiveness of FaceCrowd on improving the face 
recognition performance of compared schemes on the testing sets with unseen 
face identities (i.e., N -shot recognition testing sets and the face verification 
testing set). We adopt two widely used evaluation metrics, rank-r [18] and 
TMR@FMR=1.0% [27], to evaluate the performance of compared schemes on. 
Given a probe image, the rank-r evaluates if a face recognition scheme can 
retrieve at least one of N face images with the same identity from the gallery 
and rank their similarity scores in Top-r .  The  TMR@FMR=1.0% calculates the 
True Match Rate (TMR) of the predicted results on the face verification set by 
a face recognition model at False Match Rate (FMR) of 1.0%. The evaluation 
results are shown in Table 9.8. We observe that the compared schemes achieve 
face recognition accuracy improvements on most of the evaluation metrics if they 
are optimized by FaceCrowd compared to the optimization on the public face 
dataset. The reason is that FaceCrowd optimizes the robustness of face recognition 
schemes on unseen face identities by developing a crowdsourcing-based partial face 
generator to explicitly consider the unique facial characteristics embedded in the 
personal face images from the private face dataset. 

We visualize the face representations of a set of testing face images in Fig. 9.10 to 
demonstrate the effectiveness of FaceCrowd on generating more discriminative face 
representations (Fig. 9.10b) compared to the representations optimized on public 
face dataset (Fig. 9.10a). In particular, we randomly select 400 face images with 
20 unseen face identities and embed them to 2D features by ArcFace model and 
t-SNE [40] since ArcFace is one of the representative models in the face recognition 
research. We observe that, compared to Fig. 9.10a, the face representations in 
Fig. 9.10b contains lower intra-identity variance and higher inter-identity variance.
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Fig. 9.10 Distribution of face representations. (a) Public dataset optimization. (b) FaceCrowd 
optimization 

9.3.2.5 Identity Protection Performance 

To answer question RQ2, we study the identity protection performance of Face-
Crowd through a comprehensive real-world user study. In particular, we compare the 
partial face generation strategy of FaceCrowd with two different identity protection 
baselines: (1) AdversialNoise [23] adds random pixel-noise to manipulate the 
appearance of face images; (2) The GAN method [22] edits the specific components 
(e.g., mouth, nose) of original face images. We also added RawImage which makes 
no manipulation on the face images for a fair comparison. We first select 200 testing 
face images and process each image by the four compared schemes. For each testing 
face image, we randomly select N face images as candidate images from both 
public and private face datasets. We recruit three crowd workers for each testing 
face image to decide if there exists a candidate face image with the same identity as 
the testing face image. We define face identification accuracy as the fraction of the 
responses from the crowd workers that makes correct justifications. We then conduct 
an independent crowdsourcing user study by creating 32, 64, and 128 candidate face 
images for each testing face image. The results are summarized in Fig. 9.11. 

We observe that the face recognition accuracy of FaceCrowd is significantly 
lower than all compared schemes with different number of candidate face images. 
The observation demonstrates that FaceCrowd can effectively protect the identity of 
human faces by generating partial face images with limited face regions. Moreover, 
as the number of candidate images increases, the face identification accuracy 
of FaceCrowd decreases more significantly than other schemes. The observation 
further verifies the effectiveness of the identity protection of FaceCrowd in more 
realistic scenarios where many social media users may view more than 128 face 
images on social media platforms [3].
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Fig. 9.11 Privacy protection 
evaluation on FaceCrowd 

Table 9.9 Ablation study 
results with ArcFace 

Gallery(N) N=1 N=3 TMR@FMR=1.0% 

Rank(r) r=1 r=3 r=1 r=3 – 

Partial-G 60.1 71.7 73.2 84.5 84.6 

Partial-D 64.2 75.3 78.8 88.0 85.0 

Partial-N 65.1 76.9 79.5 88.8 87.2 

FaceCrowd 68.6 80.9 83.9 91.2 90.6 

The bold values indicate the best performing results in each
evaluation metric

9.3.2.6 Ablation Study 

Finally, we perform a comprehensive ablation study to understand the contributions 
of important components in FaceCrowd. We create different variants of FaceCrowd 
by changing its key components: (1) Partial-G: we remove the PGDG module; (2) 
FaceCrowd-D: we remove the feature aggregation in MPID; and (3) FaceCrowd-N: 
we remove the negative relations in bPFG. The results are shown in Table 9.9.  We  
observe FaceCrowd outperform other variants in terms of all evaluation metrics. The 
results demonstrate the importance and necessity of key components of FaceCro wd.

9.4 Discussion 

This chapter presents novel approaches to addressing critical privacy challenges 
in social intelligence systems through two comprehensive case studies: CoviDKG 
for privacy-aware truth discovery and FaceCrowd for privacy-preserving face 
recognition. In particular, CoviDKG introduces a novel distributed knowledge graph 
approach that enables cross-platform collaboration for truth discovery while protect-
ing both individual user privacy and platform-specific content. FaceCrowd presents 
a novel crowdsourcing-based partial face approach that leverages the collective 
intelligence of crowd workers to optimize face recognition models while preserving 
user privacy through the selective sharing of partial facial features. Through
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extensive experiments on real-world datasets, the evaluation results demonstrate 
that both CoviDKG and FaceCrowd achieve significant performance improvements 
while maintaining strong privacy preservation. 

Looking forward, several promising directions emerge for advancing privacy-
aware social intelligence systems. One critical direction is the development of 
more granular and adaptive privacy protection mechanisms. In this chapter, we 
show that CoviDKG demonstrates effective privacy preservation at the platform 
level and FaceCrowd shows promise in protecting individual facial features. Future 
work could explore more fine-grained privacy controls that can dynamically adjust 
to different types of sensitive information and varying privacy requirements. For 
example, in the domain of truth discovery, one may want to protect not only the 
content of fact-checking reports but also the contextual metadata, user interaction 
patterns, and temporal information that might also contain sensitive details about 
users or platforms. Similarly, in facial recognition applications, future research 
could investigate methods for selective feature sharing that adapt to different privacy 
preferences and cultural sensitivities regarding facial features, such as religious 
coverings, cultural markings, or age-related features that users may wish to keep 
private for personal or cultural reasons. 

We envision that the advancement of social intelligence, combined with the 
growing awareness of privacy concerns, creates a rich landscape for novel solutions 
that can balance the competing demands of social intelligence data and privacy 
protection. Future work might explore the application of these approaches to other 
domains of social intelligence, such as mental health monitoring, online harassment 
detection, and recommendation systems, while preserving the privacy of individ-
ual users and platforms. For example, in mental health monitoring applications, 
distributed knowledge graphs could be developed to securely share patterns of 
concerning behavior across platforms while protecting individual user identities 
and specific post content. Such a system could help mental health professionals 
identify individuals at risk while maintaining the protection of sensitive personal 
information that may be unintentionally disclosed by individuals. Similarly, for 
recommendation systems, a privacy-aware approach could exchange user prefer-
ence patterns through privacy-preserved feature representations which ensure the 
privacy of individual users while enhancing the recommendation quality with the 
collective knowledge/experience from multiple platforms and user communities. 
These applications would require careful consideration of privacy requirements and 
the development of sophisticated mechanisms to protect sensitive information while 
maintaining the effectiveness of social intelligence systems. 
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Chapter 10 
Further Readings 

Abstract This chapter provides further readings related to the work presented in 
this book. The readers are recommended to take the content of this chapter as a 
reference if they would like to explore future problems from a broader perspective in 
Social Intelligence. Examples of the reviewed areas in this chapter include: human-
AI systems, AI for social good, fairness and bias in social intelligence, privacy in 
social intelligence, AI ethics in social intelligence, and generative AI and LLM in 
social intelligence. 

Keywords Human-AI systems · AI for social good · Fairness and bias · 
Privacy · AI ethics · Generative AI · LLM 

10.1 Human-AI Systems 

Humans have traditionally been an integral part of artificial intelligence systems 
as a means of generating labeled training data [5, 26, 42, 48, 54, 64, 73]. Such 
a paradigm has been proven to be effective in supervised learning tasks such as 
image classification [13], speech recognition [20], autonomous driving [65], social 
media mining [83], and virtual reality [61]. However, it also suffers from two key 
limitations. First, some applications (e.g., disaster response and damage assessment, 
online truth discovery) may require a large amount of training data to achieve 
reasonable performance, which could be impractical due to the labor cost [22, 37]. 
Second, the AI models are often black-box systems and it is difficult to diagnose 
in the event of failure or unsatisfactory performance. To address these limitations, 
a few human-AI hybrid frameworks have been developed in recent years. For 
example, Holzinger et al. proposed the notion of interactive human machine learning 
(“iML”), where humans directly interact with AI by identifying useful features 
that could be incorporated into the AI algorithms [23]. Branson et al. invented 
a human-in-the-loop visual recognition system to accurately classify the objects 
in the picture based on the descriptions of the picture from humans [7]. More 
recently, researchers have been interested in diagnosing the black-box AI algorithms 
to provide accountability. For example, Nushi et al. developed an accountable 
human-AI system that leverages workers on Amazon Mechanical Turk (AMT) to 
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identify the limitations of the AI algorithms [49] and provide suggestions to improve 
them. However, the above solutions largely ignored the innate limitations of the AI 
algorithms that cannot be simply improved by retraining the model with more data. 
Human-AI interaction is a trending research area that aims at harnessing the power 
of human intelligence and AI to optimize the human-AI systems and improve human 
experience with AI [11, 40, 52, 56, 71]. Such a paradigm has been applied in many 
domains, including image classification [50, 60], natural language translation [6, 
86], medical diagnosis [14, 39], and autonomous driving [74, 84]. More recently, 
a few human-AI interaction systems have been developed to explore the human 
intelligence of crowd workers through interactive crowdsourcing tasks [41, 46]. For 
example, Nguyen et al. designed a human-AI interactive news article fact-checking 
algorithm that checks the truthfulness of textual news and claims by assigning 
crowd workers to correct identification errors by AI models [46]. Mandel et al. 
developed a game-based crowdsourcing interface to incorporate a crowd of non-
AI experts to reason the dynamics of AI misbehavior and improve AI performance 
in online advertisement recommendations [41]. However, these solutions either 
assume the human workers have sufficient domain knowledge or require them to 
be well-trained on domain-specific crowdsourcing tasks. Such approaches often 
suffer from noisy crowdsourcing results since the ordinary crowd workers usually 
do not have the essential domain knowledge for the domain-specific tasks or are not 
interested in those training tasks [29, 76]. Future works in the direction of human-AI 
collaboration systems are expected to address some of these limitations. 

10.2 AI for Social Good 

AI for social good has become an emerging area of research that focuses on studying 
the impact of AI technologies on humans and society. A recent comprehensive 
overview of AI for social good can be found in [63]. This trend has also been 
evidenced by several new multi-year special tracks on AI for (social) good in top AI 
and Web conferences such as AAAI,1 IJCAI,2 and the Web Conference.3 Several 
examples of commonly discussed AI for social good application domains include AI 
for disaster response, AI for healthcare, AI for truth discovery, and AI for education. 
These application domains provide excellent opportunities to develop, analyze, 
and evaluate the new SI-based solutions in a human-AI immersive environment. 
We will review recent examples in some of these domains below. First, previous 
efforts have been made to address the disaster response and damage assessment 
in AI and deep learning [35, 36, 45, 47]. For example, Nguyen et al. developed a 
convolutional neural network approach to quantify the damage severity of affected

1 https://aaai.org/conference/aaai/. 
2 https://www.ijcai.org/. 
3 https://thewebconf.org/. 
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areas from social media imagery data for disaster response [47]. Li et al. proposed 
a deep transfer learning approach for disaster damage assessment of an unfolding 
disaster event using a domain adaptation approach [36]. Mouzannar et al. developed 
a deep neural network framework that utilizes both text and image data from 
social media posts for damage identification via multimodal convolutional neural 
networks [45]. Kumar et al. developed an end-to-end deep learning based image pro-
cessing system to detect disaster-affected cultural heritage sites using online social 
media images [35]. However, the deep neural network architectures in current AI 
solutions are mainly designed by AI experts, which often introduce non-negligible 
costs and errors into the design process [16]. There also exist several crowd-AI 
integrated approaches that leverage human intelligence to troubleshoot and retrain 
a single neural network architecture in disaster response and damage assessment 
applications [24, 81]. However, those approaches mainly rely on the existing neural 
network architecture and may not achieve optimal performance due to the manual 
neural network selection process [69]. Second, a significant amount of efforts have 
been made to combat the spread of false health information online [12, 32, 33, 67]. 
For example, Ghenai et al. proposed a user-centric model that identifies users who 
are prone to spreading incorrect health-related information by extracting features 
based on users’ attitudes, writing styles, and sentiments from their posts on social 
media [18]. Zhao et al. designed a machine learning based detection framework 
to detect incorrect posts in online health communities by integrating a set of 
linguistic, topic, sentiment, and behavioral features extracted from the post content 
(e.g., XGBoost) [85]. Safarnejad et al. analyzed the propagation patterns of false 
health information on social media by reconstructing the dissemination networks of 
social media posts to identify incorrect health-related posts [55]. However, existing 
health truth discovery solutions primarily rely on user behaviors/activities (e.g., post 
content, user comments, and attitudes) to detect incorrect health information on 
social media. These solutions cannot fully address the problem of detecting false 
health information related to outbreaking diseases (e.g., COVID-19) since common 
social media users often lack disease-specific knowledge and can easily be misled 
by such false health information. The above limitations of existing solutions provide 
exciting directions for future work in the area of AI for social good. 

10.3 Fairness and Bias in Social Intelligence 

Fairness and bias are human-centered issues in social intelligence, where AI models 
often generate results with disparate qualities for groups of different demographic 
or sensitive attributes. An overview of AI bias and fairness and its impact is 
provided by a recent survey [17]. The bias of AI has a direct impact on several 
real-world social intelligence application domains such as online education, face 
recognition, healthcare, employment, and criminal justice. We review examples of 
recent works in two of these domains below. First, several efforts have been made 
to improve learning experiences and outcomes in online education with the recent
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advances in AI [91]. For example, Abdi et al. designs an AI-based learning system 
to assess students’ knowledge state by tracing their performance on crowdsourcing 
knowledge assessment tasks [1]. Wambsganss et al. develops a deep-learning-
based student argumentation self-evaluation system that leverages nudging theory 
techniques to help students write convincing texts [68]. Qadir et al. analyzes how 
to use large language models to benefit students (e.g., customized explanations) 
while minimizing negative impacts (e.g., false information) [51]. However, current 
AI approaches often ignore the algorithmic demographic bias in online education 
to ensure fairness. Additionally, there lacks systematic studies of the interactions 
between AI bias and human cognitive bias in the AI for education context. Second, 
several efforts have been made to address fairness issues for problems with human 
face images [4, 34, 72, 80]. For example, Alvi et al. [4] developed a face attribute 
classification framework that aims to remove demographic bias (e.g., age, gender) 
from the feature representations of face images. Zhang et al. [80] proposed an 
adversarial learning framework to improve the fairness performance of classification 
neural networks by removing demographic information embedded in input data 
representations. Wang et al. [72] designed a reinforcement learning based fair AI 
algorithm that achieves racial equality in face recognition by creating large margin 
losses of data samples with different races to reduce the skewness of input data 
representations. However, the above methods mainly focus on developing fairness 
AI algorithms to mitigate performance bias caused by the imbalanced training 
datasets with respect to different demographic attributes. More future work could 
be done to develop alternative solutions that explore the collective intelligence of 
both humans and AI to transform the biased dataset into a fairer one, which can 
potentially improve the fairness of a large category of existing solutions without 
making changes to the model/algorithm of the solutions. 

10.4 Privacy in Social Intelligence 

Privacy is another human-centered issue in social intelligence where sensitive 
data and information from humans need to be carefully protected during their 
engagement and interaction with social intelligence systems. An overview of 
privacy and AI can be found in a recent survey paper [15]. Privacy has a non-trivial 
implication in many real-world social intelligence applications [53]. Examples of 
research questions related to privacy in social intelligence include (1) how to protect 
the private data of patients in AI for healthcare applications where patients’ medical 
records together with their demographic attributes are used to build accurate AI 
prediction/diagnosis models for diseases [28]? (2) How to protect student’s privacy 
in AI for education applications where customized AI models are developed to help 
students better assess their academic performance by leveraging data from their 
individual learning activities [91]? (3) How to ensure the privacy perseverance of 
users’ data from different online platforms (e.g., social media sites) where cross-
platform models are built to detect and explain false information by constructing
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a comprehensive knowledge graph using online posts from those platforms [58]? 
(4) How to protect human face privacy in AI-based facial applications (e.g., face 
detection [2, 31, 38], face recognition [57, 90], face attribute prediction [30, 34]) 
where users’ personal images are used to train and optimize the AI models? Recent 
techniques have been developed to address the above questions. Examples of such 
techniques include differential privacy [89], federated learning [82], homomorphic 
encryption [75] and synthetic data generation [19]. However, new research questions 
emerge. For example, when federated learning is adopted to protect user privacy 
in social intelligence applications, two issues often arise: data sparsity and data 
heterogeneity [77]. Both issues can be attributed to the distributed model learning 
paradigm in federated learning where the user’s data is kept at the local clients 
instead of being shared at the global server to protect the user’s privacy. In such a 
setting, each client (user) will only have access to its own limited data for the AI 
model training (data sparsity) and the data distributions are often different across 
clients (data heterogeneity) [78]. An interesting question in this context would be: 
how to optimize the performance of AI models by addressing the data sparsity 
and heterogeneity issues in federated learning while protecting user privacy in the 
federated learning framework? More future works are expected in this direction to 
further advance the research of privacy-aware AI in social intelligence contexts. 

10.5 Ethics of AI in Social Intelligence 

Ethics of AI is a set of principles that guide the development of AI techniques to 
optimize their beneficial impacts while reducing the risks and adversarial outcomes 
[21]. An overview of AI ethics can be found in a recent review [62]. Examples of 
AI ethics in social intelligence applications include fairness and bias mitigation, 
transparency and explainability, data responsibility and privacy, accountability and 
governance, human-AI collaboration, environmental sustainability, and global and 
cultural considerations [27]. We already discussed some of these issues (e.g., 
fairness, bias, and privacy) in the previous sections. We further elaborate on some of 
the examples of AI ethics in the social intelligence contexts below. As an example 
of AI transparency and explainability, IBM’s Watson for Oncology is designed 
to assist in cancer treatment decisions by leveraging patients’ data and medical 
literature. However, the system faced critiques for its lack of clear explanations 
that impose challenges for clinicians to fully understand the rationale of the 
recommendations from the system [10]. Efforts (e.g., employing SHARP or LIME 
for feature attribution) have been made to improve the system’s interpretability and 
are highlighted in studies on healthcare AI transparency. As another example of 
AI accountability and governance, AI-driven autonomous driving imposes some 
challenging ethical questions [43]. For example, who will be legally responsible for 
accidents that involve AI-driven autonomous vehicles when the control decisions 
are made by AI or AI-human collaboration? Discussions on questions like this 
emphasize the critical need for shared responsibility among developers, companies,
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end users, and regulators. This example also underlines the need for clearer 
governance structures and policies, including performance standards and liability 
protocols [66]. Finally, as an example of global and cultural considerations, Large 
Language Models (LLMs) like GPT have faced challenges in addressing diverse 
linguistic and cultural nuances that are particularly evident in social intelligence 
tasks that need to capture regional idioms, cultural references, or social norms. 
For example, conversational AI agents trained on global datasets may inadvertently 
generate culturally insensitive responses because the training data may underrep-
resent specific cultural norms. A recent study highlighted such issues, noting that 
GPT models, while capable of producing coherent and grammatically correct text, 
often lack the depth of cultural understanding required for nuanced applications, 
particularly in multilingual settings [3]. More future works are needed to address 
the ethical issues of AI when it is integrated together with human intelligence in 
social intelligence domains. 

10.6 Generative AI and LLM in Social Intelligence 

With the recent advancement of Large Language Models (LLMs), there has been 
a trend toward exploring the context and generational capabilities of such models 
for social intelligence applications [79]. Generative models such as GPT, Llama, 
and Claude demonstrate great potential in-context learning and humanoid text 
generation, which can be applied to critical social intelligence tasks such as 
truth discovery, hate speech recognition, social media meme analysis, and smart 
cities [9, 59]. For example, in social media based truth discovery, Zhou et al. pro-
posed a multimodal truth discovery system, MUSE, which uses LLMs for retrieving 
evidence and providing contextualized explanations to debunk false claims on 
social media [88]. In addition, Wan et al. introduced the DELL framework that 
provides accurate identification and explanation of false information by leveraging 
LLMs to synthesize user feedback and integrate domain-specific knowledge [70]. 
Caselli et al. introduced HateBERT, a retrained BERT model fine-tuned on data 
from banned Reddit communities to enhance the detection of nuanced hate speech 
and abusive language [8]. LLMs have also been applied to social media meme 
analysis. For example, Joshi et al. proposed a framework for contextualizing 
Internet memes across platforms by utilizing a vision transformer-based similarity 
approach to map memes to the Internet Meme Knowledge Graph [25]. Zhou et 
al. introduced the SemanticMemes dataset that leveraged computational clustering 
to analyze linguistic and semantic variations in meme usage on social media 
platforms [87]. Last but not least, in smart city applications, Meiling et al. presented 
the MONICA project in Hamburg, which incorporated LLMs to analyze IoT-
generated data streams in real time that enables intelligent decision-making for 
public event management and urban safety enhancements [44]. All these advances 
make LLMs a promising solution to address critical challenges in social intelligence 
applications. However, several limitations remain to be addressed in future work.
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Examples of such limitations include the potential for bias in LLM-generated 
outputs, lack of domain-specific knowledge, challenges in interpretability, and high 
computational costs [78]. Addressing these issues will require innovations in model 
architecture, fine-tuning approaches, and collaborative frameworks that integrate 
human expertise with AI in the social context to maximize the societal benefits of 
LLMs while mitigating their risks. 
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Chapter 11 
Conclusions and Remaining Challenges 

Abstract In this chapter, we summarize the techniques, theories, models, and 
solutions reviewed in previous chapters. We also discuss a few remaining challenges 
and exciting directions for future research in the field of social intelligence. We 
expect interest in social intelligence from different research communities (e.g., 
AI, machine learning, NLP, computer vision, social computing, human-computer 
interaction, estimation theory and statistical learning, fairness, and privacy) will 
keep on increasing and more fundamental and interesting research work will be 
carried out in the future. 

Keywords Conclusion · Summary · Remaining challenges · Future directions 

11.1 Conclusion and Summary 

This book presented a new paradigm, namely social intelligence, that explores the 
complementary power of human intelligence (HI) and artificial intelligence (AI) to 
address complex real-world challenges in the social space. The contributions of the 
book can be summarized as: (1) the book first presented a set of novel frameworks, 
such as DualGen, ContrastFaux, CrowdAdapt, and CollabGeneral, to overcome 
fundamental challenges in social intelligence, including data heterogeneity, sparsity, 
and model generalizability; (2) the book then discussed a series of human-AI hybrid 
approaches to enhance explainability and collaboration, such as HC-COVID and 
DExFC for explainable AI, and CrowdNAS and CrowdOptim for integrating crowd 
wisdom with AI design and optimization; (3) the book also presented pressing 
ethical concerns in the context of social intelligence by introducing FairCrowd and 
DebiasEdu to address fairness and bias, and CoviDKG and FaceCrowd to ensure 
privacy in social intelligence applications; (4) the book reviewed a rich set of 
literature related to social intelligence and outlined a few open research directions 
in this field. Through extensive real-world case studies across various domains, the 
book demonstrated the practical applicability and effectiveness of these proposed 
solutions in achieving substantial performance gains in prediction accuracy, model 
generalizability, explainability, algorithmic fairness, and system robustness. We 
briefly summarize the content and key ideas of each chapter in the book. 
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In Chap. 1, we started the book with an introduction to an emerging intelligence 
paradigm called social intelligence (SI). In SI, human intelligence and AI are inte-
grated to explore their complementary strengths in the social space. We identified 
a few unique characteristics that help define SI and discussed several fundamental 
research challenges that are centered around the idea of exploring the collective 
intelligence from humans and AI. We also outlined the organization of the book at 
the end of the chapter. 

In Chap. 2, we discussed the root of SI and its interdisciplinary nature in the 
context of related research fields. To demonstrate the real-world implications of 
SI, we also presented a set of real-world SI applications such as social media 
misbehavior identification and mitigation, multimodal truth discovery, explainable 
AI and machine learning, disaster response and damage assessment, AI and 
crowdsourcing for education, social sensing in smart city applications. 

In Chap. 3, we summarized the mathematic foundations that are used in this 
book. These foundations include concepts and basic principles in estimation theory 
and statistics (e.g., MLE, EM, HMM, Bayesian Estimation, Subjective Logic), deep 
learning methods (e.g., MLP, CNN, GNN, Transformers), AI optimization tech-
niques (e.g., contrastive learning, domain adaptation, few-shot learning, adversarial 
training). We reviewed the above math foundations with some simple examples to 
help readers understand and digest the underlying principles. We also discussed the 
pros and cons as well as application scenarios of the reviewed techniques. 

In Chap. 4, we considered an important challenge in SI: the data heterogeneity 
where the data is obtained from diverse sources, modalities, and contexts. Several 
unique challenges related to data heterogeneity (e.g., cross-modal information 
inconsistency, sparse multimodal annotations, heterogeneous feature fusion) are 
identified. In this chapter, we reviewed two SI solutions (i.e., DualGen and 
ContrastFaux) to address the data heterogeneity in the context of multimodal truth 
discovery applications. Real-world case studies of the above solutions were also 
presented with a discussion on their limitations. 

In Chap. 5, we investigated two fundamental challenges in SI: data sparsity and 
model generality where SI systems need to adapt to new domains or situations 
with limited or no training data. We introduced two human-AI hybrid SI solutions 
(i.e., CrowdAdapt and CollabGeneral) to address these two challenges. In particular, 
these two solutions address the domain discrepancy between the source and target 
domains and the optimal trade-off between model generality and domain specificity 
in the context of real case studies on health truth discovery and disaster damage 
assessment. The chapter concludes with a discussion on the limitations of the 
presented SI solutions and directions for future work for further improvements. 

In Chap. 6, we explored the explainable AI (XAI) aspect of SI where collective 
intelligence from both humans and AI is explored to generate understandable, 
evidence-based, and well justified explanations for the results of SI systems. In 
this chapter, we reviewed two graph-based human-AI collaborative explanation 
approaches (i.e., HC-COVID and DExFC) to address the XAI problem in SI. In 
particular, the two reviewed SI approaches addressed several non-trivial technical 
challenges such as varied knowledge fact quality, lack of modality-level annotations,
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diverse cross-modal explanations. Two real-world case studies with real-world XAI 
applications have also been presented to study the effectiveness of the reviewed XAI 
approaches. 

In Chap. 7, we studied one of the core challenges in SI: how to fuse human 
intelligence from crowd with AI to address complex problems that cannot be 
fully addressed by a HI only or AI only solution? We presented two crowd-AI 
collaborative SI frameworks (i.e., CrowdNAS and CrowdOptim) to address two 
fundamental problems in AI design and optimization: neural network architecture 
search and hyperparameter optimization. The presented frameworks were studied in 
the context of two real-world case studies and the results showed that the SI based 
solutions achieve improved application performance while reducing computational 
demands by fully exploring the collective intelligence of both HI and AI. 

In Chap. 8, we explored one of the challenges of SI systems in the social dimen-
sion: fairness and bias. We reviewed two fairness-aware SI systems (i.e., FairCrowd 
and DebiasEdu) that explore the collective strengths of crowd intelligence and AI to 
address fairness issues in social intelligence applications. FairCrowd and DebiasEdu 
were evaluated in two different SI applications: face attribute prediction and student 
performance prediction. We demonstrated the combination of HI and AI is able to 
significantly improve the fairness of the SI systems. The chapter concludes with a 
discussion on the limitations of the reviewed SI frameworks and the direction to 
further study the potential interactions between human and AI biases. 

In Chap. 9, we studied a critical challenge in social intelligence—privacy— 
where the goal is to protect sensitive and private information from humans in the 
social intelligence applications. We presented two privacy-preserving SI solutions 
(i.e., CoviDKG and FaceCrowd) to explicitly address the privacy challenge in 
social intelligence. CoviDKG designed a distributed knowledge graph framework 
to protect people privacy on multi-platform social networks while FaceCrowd 
developed a crowdsourcing based face participation approach to protect individual’s 
privacy in face recognition and attribute prediction applications. Two case studies 
were presented to demonstrate the effectiveness of the presented solutions to protect 
people’s privacy in social intelligence context. 

In Chap. 10, we recommended a few directions of related work for further 
readings and future work in social intelligence. These directions include human-
AI systems, AI for social good, fairness and bias, privacy, ethics of AI, generative 
AI and LLM in social intelligence. 

11.2 Remaining Challenges 

We highlight a few promising remaining challenges for future work directions in 
Social Intelligence.
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11.2.1 Scalability in Social Intelligence 

Scalability is a crucial factor in social intelligence given the tremendous amount 
of social intelligence data (e.g., social media feeds, crowdsourcing inputs) and the 
new emerging events (e.g., public health crisis, social unrest) in SI domains. First, 
the efficiency of analyzing social intelligence data is critical for providing timely 
outputs to ensure informative decision-making in mission-critical social intelligence 
applications such as early detection of false information and rapid response to 
disasters and emergencies. To achieve this goal, future work should focus on 
computationally efficient AI models and distributed computing systems capable 
of processing massive amounts of diverse SI data in real time. Examples of these 
efforts could include applying incremental learning [19], parallel computing [6], 
and edge computing techniques [11] to maximize the use of resources and reduce the 
latency in social intelligence applications. In addition to computational efficiency, 
the scaling of social intelligence solutions also depends on the efficient scaling 
of human intelligence. While this book has explored crowdsourcing techniques 
as a scalable solution to harness human intelligence for tasks such as knowledge 
fact verification, face attribution prediction, and online education, future work 
should investigate more scalable human-AI collaboration frameworks that can 
seamlessly integrate human insights into the AI pipeline in social intelligence. 
Such efforts can involve developing interactive interfaces and feedback mechanisms 
that allow both domain experts and general users to provide real-time guidance, 
feedback, and corrections to AI models [22]. Moreover, to ensure the fairness of 
human-AI collaboration, it is important to design incentive mechanisms and task 
allocation strategies that can motivate and reward human participants based on their 
contributions and expertise [20]. The integration of complementary competencies 
from both humans and AI will enable us to build more scalable and efficient social 
intelligence systems in the future. 

With the rapid progress of large foundation models in recent years [25], the 
scalability issue of these models needs to be addressed for them to be effec-
tively integrated with HI in social intelligence applications. It is noted that these 
foundation models often require a non-trivial amount of computational resources, 
limiting their applicability in resource-constrained social intelligence applications 
(e.g., disaster response scenarios with low accessibility to computing resources). 
To address such limitations, we could further optimize the trade-off between 
computational costs and the performance of these large foundation models in 
future research. For example, various methods (e.g., model compression, knowledge 
distillation, and pruning) can be explored to create more lightweight versions of 
foundation models that can run in low-resource settings. Similarly, new adaptive 
inference techniques can also be developed to dynamically adjust the complexity of 
large foundation models based on the inputs from HI in SI systems and available 
resources in the system. Last but not least, more modular architectures in SI 
architectures can also improve customization and fine-tuning of large foundation
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models for specific SI tasks, which reduces the need for training entire models from 
scratch. 

11.2.2 Adaptation in Low-Resource Domains 

The book has discussed the model generality and domain adaptation challenges in 
social intelligence applications (e.g., truth discovery, disaster damage assessment). 
The work in this direction can be further expanded into other social intelligence 
application domains with low resources. For instance, a significant portion of the 
world’s population speaks languages of scarcity that lack labeled data and linguistic 
resources. False information in these languages can be particularly harmful as 
it impacts more vulnerable populations with lower media literacy. One future 
direction could be to create cross-linguistic social intelligence systems that can 
effectively adapt an SI system learned from the high-resource language domain 
to the low-resource language domain. Such a domain adaptation process may 
involve developing new cross-lingual representation learning [10] and leveraging 
multilingual knowledge bases [5] to reduce the domain discrepancy between high-
resource and low-resource languages. Moreover, human intelligence from native 
speakers could also be effectively harnessed to obtain high-quality annotations and 
capture the cultural characteristics in low-resource languages. A potential direction 
is to create a cross-lingual crowdsourcing platform that can effectively recruit and 
train native speakers in low-resource languages to provide informative annotations 
and contexts for understanding the cultural appropriateness [1]. These annotations 
could then be used to tailor the cross-lingual AI models and adjust them to the 
linguistic and cultural contexts of specific low-resource language domains. 

The robustness of the SI solutions in low-resource language domains can be fur-
ther improved by exploring unsupervised or semi-supervised learning approaches. 
For instance, one can leverage cross-lingual data augmentation [9], adversarial 
learning [14], and contrastive learning [13] to take advantage of the large amount of 
unlabeled data in the low-resource languages and transfer the knowledge learned 
from the labeled data in the high-resource language domains. Additionally, the 
transparency of SI solutions in low-resource languages is also an important issue. It 
would be helpful to develop SI solutions that can provide contextually and culturally 
relevant explanations for the target language domains. These XAI solutions often 
involve integrating linguistic and cultural knowledge into the explanation generation 
process and working with communities in the low-resource language domains to co-
design and validate the explanations [7]. By developing adaptive and explainable 
SI solutions for low-resource languages, we can empower underrepresented groups 
with low-resource languages to better assess information integrity and build trust 
and credibility of information in their native languages. 

Rare diseases are another low-resource domain where adaptive social intelligence 
systems can be helpful. Rare conditions (e.g., Huntington’s disease, progeria) do 
not normally have extensive research and clinical data, which could make them
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particularly vulnerable to false information and delayed diagnoses. The future of 
social intelligence research could focus on developing an adaptable SI model that 
can leverage the rich set of information from common diseases (e.g., cardiovascular 
disease and hypertension) to help researchers, healthcare providers, and patients 
better understand and manage rare diseases. In particular, these SI systems could use 
transfer learning and domain adaptation methods to transfer and adapt knowledge 
from well-known diseases to rare or new diseases and potentially uncover novel 
biological pathways or therapies for those diseases. For example, AI models that 
have been calibrated on massive sets of cardiovascular disease data can be adapted to 
identify the relevant patterns from the limited data on progeria, which often involves 
premature cardiovascular aging. 

These SI systems can be further extended to be multimodal to accommodate 
various types of data sources (e.g., clinical evidence, doctors’ diagnoses, and 
patient-reported symptoms). These systems could help identify subtle connections 
between rare and common diseases that might not be apparent through traditional 
research methods. For example, an adaptive multimodal SI system could analyze 
genetic data from patients with a rare neurodegenerative disorder alongside clinical 
observations and patient-reported symptoms. By analyzing such information in light 
of data on more general neurodegenerative disorders (e.g., Alzheimer’s disease or 
Parkinson’s disease), the AI could detect shared genetic pathways or symptomatic 
patterns. This line of research might provide new insights into the mechanisms of 
rare diseases, novel treatment options, or the discovery of new diseases. 

11.2.3 Knowledge-Grounded Reasoning and Explanation 

Health crisis response is a cornerstone of public health management in social 
intelligence applications, which involves the strategies and actions to deal with 
large-scale health emergencies, such as disease outbreaks, pandemics, and natural 
or man-made disasters. A future direction along this line of work is to empower AI-
driven health crisis response solutions with the capability of providing interpretable 
and trustworthy explanations to ensure that healthcare stakeholders and common 
citizens can understand the rationale behind the predictions and recommendations 
of AI algorithms. This will require integrating causal inference methods (e.g., causal 
discovery and causal effect estimation) into the knowledge graph reasoning process 
to infer the causal structure and quantify the causal effects among different entities 
and their relationships. The integration of causal mechanisms into AI models can 
generate more robust and unbiased explanations that can identify the root causes of 
the observed outcomes and suggest effective interventions to mitigate the negative 
impacts of health crises. 

Future work could also leverage recent language techniques (e.g., natural 
language inference [17] and large language models [12]) to generate human-
understandable explanations. These techniques can translate the knowledge-
grounded reasoning process into natural language explanations that are coherent,
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logical, and persuasive. For example, given a predicted intervention policy 
for controlling a disease outbreak, an explainable knowledge-grounded social 
intelligence model can use natural language inference and relevant knowledge 
triples retrieved from knowledge graphs to generate an explanation that highlights 
the key factors considered in the decision-making process, such as the disease 
transmission dynamics, population mobility patterns, resource constraints, and how 
these factors logically lead to the recommended policy. Moreover, it is possible to 
leverage large language models pre-trained on vast amounts of text data to generate 
explanations that are fluent, diverse, and tailored to the linguistic preferences of 
users with different backgrounds. 

Another desirable feature of future SI systems is to develop adaptive and 
context-aware explanation models that can adjust the level of detail, complexity, 
and format of explanations based on the background, role, and information needs 
of its end users. Such explanations are particularly helpful in social intelligence 
applications, where different stakeholders and end users may require different types 
of explanations. For instance, a clinician might need detailed, technical explanations 
of treatment recommendations, while a policymaker might require high-level 
summaries of population-level trends and intervention impacts. To develop such 
customizable XAI capabilities, we can integrate AI models with human intelligence 
from both domain experts and stakeholders who can help infer the user’s knowledge 
level, preferences, and context from their interactions and queries without the need 
for massive training data. Additionally, the XAI capabilities of future SI systems 
should also explore multimodal data from different sources to provide multimodal, 
engaging, and informative explanations. For example, complex epidemiological 
concepts could be illustrated through interactive simulations, while statistical trends 
could be visualized through dynamic charts and graphs. By providing tailored, 
multimodal explanations, we can enhance the accessibility and effectiveness of 
AI-driven health crisis response solutions that promote a more informed decision-
making process across diverse stakeholder groups in human society. 

11.2.4 Adoption of Large Foundation Models 

One of the next frontiers for social intelligence is the large foundation models 
(LFMs)—trained on large and varied data sets [3]. LFMs are capable of generalizing 
across a wide variety of downstream applications and offering promising application 
performance in the realm of social intelligence. Their use in social intelligence 
applications, ranging from truth discovery, online education, disaster damage 
assessment, to public health monitoring, opens up unprecedented opportunities 
as well as a new set of non-trivial challenges that future research will need to 
carefully tackle. For example, one challenge is that the use of LFMs in social 
intelligence necessitates the invention of methodologies with special ethical and 
responsibility considerations. This is because LFMs trained on large amounts of data 
can sometimes generate outputs that either reflect inherent biases or contain inap-
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propriate contents [26]. Fairness-aware training algorithms and post-hoc corrective 
techniques such as debiasing, adversarial training, and fairness constraints can be 
leveraged to address this issue. Efforts to enhance transparency and accountability 
by developing explainability tools and providing audit trails for LFMs should also 
be undertaken. Second, LFMs may also require strategies to enable their efficient 
deployment in different social intelligence scenarios. Given their computational 
requirements, LFMs could generate computational bottlenecks that prohibit their 
implementation in resource-constrained environments (e.g., embedded systems, 
IoT devices). To address this, future research should explore efficient LLM and 
neural network optimizing techniques such as quantization and distillation [23, 24], 
enabling efficient on-device processing and making LFM implementation feasible 
even in settings with limited Internet connectivity or computational resources [27]. 

Additionally, developing new techniques for adapting LFMs to social intelli-
gence applications for different domains is an emerging research area. While LFMs 
can generalize well across multiple downstream tasks, their performance can be 
constrained by domain-specific discrepancies, such as distribution shifts or the 
absence of domain-relevant priors [15]. Recent advances in domain adaptation and 
transfer learning techniques can be used to address the above challenge, where 
LFMs can be fine-tuned on domain-specific social intelligence tasks [2]. Few-shot 
or zero-shot learning techniques can also be used for finetuning LFMs to achieve 
performance gains. Lastly, it is also important to explore human-AI collaboration 
in facilitating the adaptation of LFMs in social intelligence applications. LFMs can 
analyze vast amounts of data from large datasets, but their analysis can be better 
augmented by human knowledge, to provide context and corrective feedback and 
input [8]. However, integrating LFMs and HI in social intelligence applications 
faces challenges rooted in their complex interdependence [21]. For instance, in 
social media recommender systems, AI models optimize their recommendation 
contents based on user engagements, often reinforcing user biases and creating 
echo chambers [18]. These AI-driven recommendations influence user interactions, 
which in turn feed back into model training. This feedback loop could amplify biases 
in both AI and human behavior, leading to polarized content ecosystems [4]. One 
possible solution to address this problem is to design collaborative debiasing sys-
tems, where AI models are trained with diversity constraints such as fairness-based 
ranking (e.g., demographic parity or exposure fairness) and content diversification 
(e.g., minimizing topical redundancy). Meanwhile, human input is systematically 
diversified across a wide spectrum of viewpoints (e.g., using stratified sampling to 
ensure demographic representation and active learning to engage underrepresented 
groups) to enable mutual correction of biases in AI recommendations and human 
interactions [16].
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