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Series Editor’s Foreword
Dr. Andre V. Kleyner

The Wiley Series in Quality & Reliability Engineering aims to provide a solid educational 
foundation for researchers and practitioners in the field of quality and reliability engi-
neering and to expand the knowledge base by including the latest developments in these 
disciplines.

The importance of quality and reliability to a system can hardly be disputed. Product 
failures in the field inevitably lead to losses in the form of repair cost, warranty claims, 
customer dissatisfaction, product recalls, loss of sale, and in extreme cases, loss of life.

Engineering systems are becoming increasingly complex with added functions and 
capabilities; however, the reliability requirements remain the same or even growing 
more stringent. Modeling and simulation methods, such as Monte Carlo simulation, 
uncertainty analysis, system optimization, Markov analysis and others, have always 
been important instruments in the toolbox of design, reliability and quality engineers. 
However, the growing complexity of the engineering systems, with the increasing inte-
gration of hardware and software, is making these tools indispensable in today’s product 
development process.

The recent acceleration of the development of new technologies including digitaliza-
tion, forces the reliability professionals to look for more efficient ways to deliver the 
products to market quicker while meeting or exceeding the customer expectations of 
high product reliability. It is important to comprehensively measure the ability of a prod-
uct to survive in the field. Therefore, modeling and simulation is vital to the assessment 
of product reliability, including the effect of variance on the expected product life, even 
before the hardware is built. Variance is present in the design parameters, material prop-
erties, use conditions, system interconnects, manufacturing conditions, lot-to-lot varia-
tion and many other product inputs, making it difficult to assess. Thus, modeling and 
simulation may be the only tools to fully evaluate the effect of variance in the early prod-
uct development phases and to eventually optimize the design.

The book you are about to read has been written by leading experts in the field of reli-
ability modeling, analysis, simulation and optimization. The book covers important top-
ics, such as system reliability assessment, modeling and simulation, multi-state systems, 
optimization methods and their applications, which are highly critical to meeting the 
high demands for quality and reliability. Achieving the optimal feasible performance of 
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Series Editor’s Forewordxvi

the system is eventually the final objective in modern product design and manufactur-
ing, and this book rightfully puts a lot of emphasis on the process of optimization.

Paradoxically, despite its evident importance, quality and reliability disciplines are 
somewhat lacking in today’s engineering educational curricula. Only few engineering 
schools offer degree programs, or even a sufficient set of courses, in quality and reliabil-
ity methods. The topics of reliability analysis, accelerated testing, reliability modeling 
and simulation, warranty data analysis, reliability growth programs, reliability design 
optimization and other aspects of reliability engineering receive very little coverage in 
today’s engineering students curricula. As a result, the majority of the quality and relia-
bility practitioners receive their professional training from colleagues, professional semi-
nars and professional publications. In this respect, this book is intended to contribute to 
closing this gap and provide additional educational material as a learning opportunity 
for a wide range of readers from graduate level students to seasoned reliability 
professionals.

We are confident that this book, as well as this entire book series, will continue Wiley’s 
tradition of excellence in technical publishing and provide a lasting and positive contri-
bution to the teaching and practice of reliability and quality engineering.
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xvii

Preface

Engineering systems, like process and energy systems, transportation systems, struc-
tures like bridges, pipelines, etc., are designed to ensure successful operation throughout 
the anticipated service lifetime in compliance with given all-around sustainability 
requirements. This calls for design, operation, and maintenance solutions to achieve the 
sustainability targets with maximum benefit from system operation. Reliability, availa-
bility, maintainability and Safety criteria (RAMS) are among the indicators for measur-
ing system functionality with respect to these intended targets.

Today, modern engineering systems are becoming increasingly complex to meet the 
high expectations by the public for high functionality, performance, and reliability, and 
with this, RAMS properties have become further key issues in design, maintenance, and 
successful commercialization.

With high levels of RAMS being demanded on increasingly complex systems, the reli-
ability assessment and optimization methods and techniques need to be continuously 
improved and advanced. As a result, many efforts are being made to address various 
challenges in complex engineering system lifecycle management under the global trend 
of systems integration. Mathematically and computationally, the reliability assessment 
and optimization are challenged by various issues related to the uncertain, dynamic, 
multi-state, non-linear interdependent characteristics of the modern engineering sys-
tems and the problem of finding optimal solutions in irregular search spaces character-
ized by non-linearity, non-convexity, time-dependence and uncertainty.

In the evolving and challenging RAMS engineering context depicted above, this book 
provides a precise technical view on system reliability methods and their application to 
engineering systems. The methods are described in detail with respect to their mathe-
matical formulation and their application is illustrated through numerical examples and 
is discussed with respect to advantages and limitations. Applications to real world cases 
are given as a contribution to bridging the gap between theory and practice.

The book can serve as a solid theoretical and practical basis for solving reliability 
assessment and optimization problems regarding systems of different engineering disci-
plines and for further developing and advancing the methods to address the newly aris-
ing challenges as technology evolves.

Reliability engineering is founded on scientific principles and deployed by mathemati-
cal tools for analyzing components and systems to guarantee they provide their func-
tions as intended by design.
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Prefacexviii

On the other hand, technological advances continuously bring changes of perspec-
tives, in response to the needs, interests, and priorities of the practical engineering world. 
As technology advances at a fast pace, the complexity of modern engineered systems 
increases and so do, at the same time, the requirements for performance, efficiency, and 
reliability. This brings new challenges that demand continuous developments and 
advancements in complex system reliability assessment and optimization.

Therefore, system reliability assessment and optimization is inevitably a living field, 
with solution methodologies continuously evolving through the advancements of math-
ematics and simulation to follow up the development of new engineering technology 
and the changes in management perspectives. For this, advancements in the fields of 
operations research, reliability, and optimization theory and computation continuously 
improve the methods and techniques for system reliability assessment and optimization 
and for their application to very large and increasingly complex systems made of a large 
number of heterogeneous components with many interdependencies under various 
physical and economic constraints.

Within the ongoing efforts of development and advancement, this book presents an 
overview of methods for assessing and optimizing system reliability. We address differ-
ent types of system reliability assessment and optimization problems and the different 
approaches for their solutions. We consider the development and advancement in the 
fields of operations research, reliability, and optimization theory to tackle the reliability 
assessment and optimization of complex systems in different technological domains.

The book is directed to graduate students, researchers and practitioners in the areas of 
system reliability, availability, maintainability and Safety (RAMS), and it is intended to 
provide an overview of the state of knowledge of and tools for reliability assessment and 
system optimization. It is organized in three parts to introduce fundamentals, and illus-
trate methods and applications.

The first part reviews the concepts, definitions and metrics of reliability assessment 
and the formulations of different types of reliability optimization problems depending on 
the nature of the decision variables and considering redundancy allocation and mainte-
nance and testing policies. Plenty of numerical examples are provided to accompany the 
understanding of the theoretical concepts and methods.

The second part covers multi-state system (MSS) modeling and reliability evaluation, 
Markov processes, Monte Carlo simulation (MCS), and uncertainty treatment under 
poor knowledge. The reviewed methods range from piecewise-deterministic Markov 
processes (PDMPs) to belief functions.

The third part of the book is devoted to system reliability optimization. In general terms, 
system reliability optimization involves defining the decision variables, the constraints 
and the single or multiple objective functions that describe the system reliability perfor-
mance and involves searching for the combination of values of the decision variables that 
realize the target values the objective functions. Different formulations and methods are 
described with precise mathematical details and illustrative numerical examples, cover-
ing mathematical programming, evolutionary algorithms, multi-objective optimization 
(MOO) and optimization under uncertainty, including robust optimization (RO).

Applications of the assessment and optimization methods to real-world cases are also 
given, concerning for example the reliability of renewable energy systems. From this point of 
view, the book bridges the gap between theoretical development and engineering practice.
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u zi ( )	 universal generating function of component i

p X jij i= =( )Pr 	 probability of component i being at state j

p t( ) 	 state probability vector

λij t( )	 transition rate from state i to state j  at time t  in Markov process

ΛΛ 	 transition rate matrix

Π ⋅( )	 possibility function

N ⋅( )	 necessity function
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1

Reliability Assessment

Reliability is a critical attribute for the modern technological components and systems. 
Uncertainty exists on the failure occurrence of a component or system, and proper 
mathematical methods are developed and applied to quantify such uncertainty. The 
ultimate goal of reliability engineering is to quantitatively assess the probability of fail-
ure of the target component or system [1]. In general, reliability assessment can be car-
ried out by both parametric or nonparametric techniques. This chapter offers a basic 
introduction to the related definitions, models and computation methods for reliability 
assessments.

1.1  Definitions of Reliability

According to the standard ISO 8402, reliability is the ability of an item to perform a 
required function, under given environmental and operational conditions and for 
a stated period of time without failure. The term “item” refers to either a component or 
a system. Under different circumstances, the definition of reliability can be interpreted 
in two different ways:

1.1.1  Probability of Survival

Reliability of an item can be defined as the complement to its probability of failure, 
which can be estimated statistically on the basis of the number of failed items in a sam-
ple. Suppose that the sample size of the item being tested or monitored is n0. All items in 
the sample are identical, and subjected to the same environmental and operational con-
ditions. The number of failed items is nf  and the number of the survived ones is ns , 
which satisfies

	n n nf s+ = 0 	 (1.1)
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1  Reliability Assessment4

The percentage of the failed items in the tested sample is taken as an estimate of the 
unreliability, Q ,

	Q
n
n

f
 =

0
	 (1.2)

Complementarily, the estimate of the reliability, R , of the item is given by the percent-
age of survived components in the sample:

	R
n
n Qs



= = −
0

1 	 (1.3)

Example 1.1

A valve fabrication plant has an average output of 2,000 parts per day. Five hundred 
valves are tested during a reliability test. The reliability test is held monthly. During the 
past three years, 3,000 valves have failed during the reliability test. What is the reliability 
of the valve produced in this plant according to the test conducted?

Solution

The total number of valves tested in the past three years is

n0 500 12 3 18000= × × =

The number of failed components is

nf = 3000

According to Equation 1.3, an estimate of the valve reliability is

R n
n

n n
n

s f
 = =

−
=

−
≈

0

0

0

18000 3000
18000

0 833.

1.1.2  Probability of Time to Failure

Let random variable T  denote the time to failure. Then, the reliability function at time t  
can be expressed as the probability that the component does not fail at time t , that is,

	R t P T t( )= >( )	 (1.4)

Denote the cumulative distribution function (cdf) of  T  as F t( ). The relationship between 
the cdf and the reliability is

	R t F t( )= − ( )1 	 (1.5)
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1.1  Definitions of Reliability 5

Further, denote the probability density function (pdf) of failure time T  as f t( ). Then, 
equation (1.5) can be rewritten as

	R t f d
t

( )= − ( )∫1
0

ξ ξ 	 (1.6)

Example 1.2

The failure time of a valve follows the exponential distribution with parameter λ= 0 025.  
(in arbitrary units of time-1). The value is new and functioning at time t= 0 . Calculate 
the reliability of the valve at time t= 30 (in arbitrary units of time).

Solution

The pdf of the failure time of the valve is

f t e e tt t( )= = ≥− −λ λ 0 025 00 025. ,.

The reliability function of the valve is given by

R t e d
t

( )= −∫ −1 0 025
0

0 025. . ξ ξ

At time t= 30, the value of the reliability is

R e d30 1 0 025 0 472
0

30
0 025( )= − ≈∫ −. .. ξ ξ

In all generality, the expected value or mean of the time to failure T  is called the mean 
time to failure (MTTF), which is defined as

	MTTF E T tf t dt=   = ( )
∞

∫
0

	 (1.7)

It is equivalent to

	MTTF R t dt= ( )
∞

∫
0

	 (1.8)

Another related concept is the mean time between failures (MTBF). MTBF is the average 
working time between two consecutive failures. The difference between MTBF and 
MTTF is that the former is used only in reference to a repairable item, while the latter is 
used for non-repairable items. However, MTBF is commonly used for both repairable 
and non-repairable items in practice. 
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1  Reliability Assessment6

The failure rate function or hazard rate function, denoted by h t( ), is defined as the 
conditional probability of failure in the time interval t t t,  + ∆  given that it has been 
working properly up to time t , which is given by

	h t P T t t T t
f t
R tt

( )= ≤ + >( )= ( )
( )→

lim |
∆

∆
0

	 (1.9)

Furthermore, the cumulative failure rate function, or cumulative hazard function, 
denoted by H t( ), is given by

	H t h t dt
t

( )= ( )∫
0

	 (1.10)

1.2  Component Reliability Modeling

As mentioned in the previous section, in reliability engineering, the time to failure of an 
item is a random variable. In this section, we briefly introduce several commonly used 
discrete and continuous distributions for component reliability modeling.

1.2.1  Discrete Probability Distributions

If random variable X  can take only a finite number k  of different values x x xk1 2, , ,…  or 
an infinite sequence of different values x x1 2, ,…, the random variable X  has a discrete 
probability distribution. The probability mass function (pmf) of X  is defined as the func-
tion f  such that for every real number x ,

	f x P X x( )= =( )	 (1.11)

If x  is not one of the possible values of X , then f x( )= 0. If the sequence x x1 2, ,… 

includes all the possible values of X , then ∑ ( )=
i

if x 1. The cdf is given by

	F x P X xi i( )= ≤( )	 (1.12)

1.2.1.1  Binomial Distribution
Consider a machine that produces a defective item with probability p p ( )0 1< <  and 
produces a non-defective item with probability 1−p . Assume the events of defects in 
different items are mutually independent. Suppose the experiment consists of examining 
a sample of n  of these items. Let X  denote the number of defective items in the sample. 
Then, the random variable X  follows a binomial distribution with parameters n  and p  
and has the discrete distribution represented by the pmf in (1.14), shown in Figure 1.1. 
The random variable with this distribution is said to be a binomial random variable, with 
parameters n  and p ,
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1.2  Component Reliability Modeling 7

	 f x
n
x

p p for x n

otherwise

x n x

( )=










−( ) = …
−1 0 1

0

,    , , , ,

,  ..










	 (1.13)

The pmf of the binomial distribution is

	F x
n
i

p p
i

x
i n i( )=











−( )
=

−
∑

0

1 	 (1.14)

For a binomial distribution, the mean, µ , is given by

	µ =np	 (1.15)

and the variance, σ2 , is given by

	σ2 1= −( )np p 	 (1.16)

1.2.1.2  Poisson Distribution
Poisson distribution is widely used in quality and reliability engineering. A random vari-
able X  has the Poisson distribution with parameter λ λ,  ,> 0  the pmf (shown in 
Figure 1.2) of X  is as follows:

	 f x
e

x
for x

otherwise

x

( )= = …








−λλ
!

,     , , ,

,  .

0 1

0
	 (1.17)

The mean and variance of the Poisson distribution are

	µ σ λ= =2 	 (1.18)

Figure 1.1  The pmf of the binomial distribution with n p= =5 0 4, .  .
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1  Reliability Assessment8

1.2.2  Continuous Probability Distributions

We say that a random variable X  has a continuous distribution or that X  is a con-
tinuous random variable if there exists a nonnegative function f , defined on the real 
line, such that for every interval of real numbers (bounded or unbounded), the prob-
ability that X  takes a value in an interval a b,    is the integral of f  over that interval, 
that is,

	P a X b f x dx
a

b

≤ ≤( )= ( )∫ .	 (1.19)

If X  has a continuous distribution, the function f  will be the probability density func-
tion (pdf) of X. The pdf must satisfy the following requirements:

	f x x( )≥ 0, . for all  	 (1.20)

The cdf of a continuous distribution is given by

	
−∞

∞

∫ ( ) =f x dx 1. 	 (1.21)

Figure 1.2  The pmf of the Poisson distribution with λ= 0 6. .
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1.2  Component Reliability Modeling 9

The mean, µ, and variance, σ2, of the continuous random variable are calculated by

	µ

σ µ

= ( )

= −( ) ( )

−∞

∞

−∞

∞

∫

∫

xf x dx

x f x dx2 2 .

	 (1.22)

1.2.2.1  Exponential Distribution
A random variable T  follows the exponential distribution if and only if the pdf (shown in 
Figure 1.3) of T  is

	f t e tt( )= ≥−λ λ ,  ,0 	 (1.23)

where  λ> 0 is the parameter of the distribution. The cdf of the exponential distribution is

	F t e tt( )= − ≥−1 0λ ,  . 	 (1.24)

If T  denotes the failure time of an item with exponential distribution, the reliability func-
tion will be

	R t e tt( )= ≥−λ ,  .0 	 (1.25)

The hazard rate function is

	h t( )=λ. 	 (1.26)

The mean, µ , and variance, σ2  are

	µ
λ

λ
σ

=

=

1

12
2 .

	 (1.27)

Figure 1.3  The pdf of the exponential distribution with λ=1.
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1  Reliability Assessment10

1.2.2.2  Weibull Distribution
A random variable T  follows the Weibull distribution if and only if the pdf (shown in 
Figure 1.4) of T  is

	f t t e t
t

( )= ≥
− −








β

η

β

β
η

β

1
0,  , 	 (1.28)

where  β> 0 is the shape parameter and η> 0 is the scale parameter of the distribution. 
The cdf of the Weibull distribution is

	F t e t
t

( )= − ≥
−







1 0η

β

,  . 	 (1.29)

If T  denotes the time to failure of an item with Weibull distribution, the reliability func-
tion will be

	R t e t
t

( )= ≥
−







η

β

,  .0 	 (1.30)

The hazard rate function is

	h t t t( )=







 ≥
−

β
η η

β 1

0,  .	 (1.31)

The mean, µ , and variance, σ2 , are

	µ η
β
β

σ η
β
β

β
β

=
+









=
+







−

+









Γ

Γ Γ

1

2 12 2

,




























2

.

	 (1.32)

Figure 1.4  The pdf of the Weibull distribution with β η= =1 79 1. ,   .
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1.2  Component Reliability Modeling 11

1.2.2.3  Gamma Distribution
A random variable T  follows the gamma distribution if and only if the pdf (shown in 
Figure 1.5) of T  is

	 f t t e tt( )= ( )
≥− −λ

β

β
β λ

Γ
1 0,  , 	 (1.33)

where  β> 0 is the shape parameter and η> 0 is the scale parameter of the distribution. 
The cdf of the gamma distribution is

	F t x e dx t
t

x( )= ( )
≥∫ − −λ

β

β
β λ

Γ
0

1 0,  . 	 (1.34)

If T  denotes the failure time of an item with gamma distribution, the reliability function 
will be

	R t x e dx t
t

x( )= ( )
≥

∞
− −∫

λ
β

β
β λ

Γ
1 0,  . 	 (1.35)

The hazard rate function is

	h t t e

x e dx
t

t

t
x

( )= ≥
− −

∞ − −∫

β λ

β λ

1

1
0,  . 	 (1.36)

The mean, µ , and variance, σ2 , are

	µ β
λ

σ
β
λ

=

=2
2 .

	 (1.37)

Figure 1.5  The pdf of the gamma distribution with β λ= =1 99 1. , .
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1  Reliability Assessment12

1.2.2.4  Lognormal Distribution
A random variable T  follows the lognormal distribution if and only if the pdf (shown in 
Figure 1.6) of T  is

	f t
t

t t( )= − −( )










 >

1
2

1
2

02
2

σ π σ
µexp ln ,  ,	 (1.38)

where σ> 0  is the shape parameter and µ> 0 is the scale parameter of the distribution. 
Note that the lognormal variable is developed from the normal distribution. The random 
variable X T= ln  is a normal random variable with parameters µ  and σ . The cdf of the 
lognormal distribution is

	F t t t( )= −







 >Φ

ln ,  ,µ
σ

0 	 (1.39)

where Φ x( ) is the cdf of a standard normal random variable. If T  denotes the failure time 
of an item with lognormal distribution, the reliability function of T  will be

	R t t t( )= − −







 >1 0Φ

ln ,  .µ
σ

	 (1.40)

The hazard rate function is

	h t
f t

t
t( )= ( )

−
−









>
1

0
Φ

ln
,  .

µ
σ

	 (1.41)

The mean, µ , and variance, σ 2, are

	µ

σ

µ σ

µ σ σ

=

= −( )

+

+

e

e e

2

2 2

2

2 2 1

/ ,

.

	 (1.42)

Figure 1.6  The pdf of the lognormal distribution with µ σ= =0 0 954,  . .
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1.2  Component Reliability Modeling 13

1.2.3  Physics-of-Failure Equations

Different from the traditional reliability assessment approach, the Physics-of-Failure 
(P-o-F) represents an approach to reliability assessment based on modeling and simula-
tion of the physical processes leading to the occurrence of failures in an item [2]. The 
P-o-F approach begins within the first stages of the design of the item. A model is con-
structed based on the customer’s requirements, service environment, and stress analysis 
[1]. Once the models are established, a reliability assessment can be conducted on the 
item.

1.2.3.1  Paris’ Law for Crack Propagation
Paris’ law is a crack growth equation that gives the rate of growth of a fatigue crack [3]. The 
stress intensity factor K  characterizes the load around a crack tip and the rate of crack 
growth is experimentally shown to be a function of the range of the stress intensity ∆K  
experienced in a loading cycle (shown in Figure 1.7). The Paris’ equation describing this is

Example 1.3

The random variable of the time to failure of an item, T , follows the following pdf:

f t
t

otherwise
( )= ≤ ≤









1
6000

0 6000

0

, ,

,  .

where t  is in days and t≥ 0.

a)	 What is the probability of failure of the item in the first 100 days?
b)	 Find the MTTF of the item.

Solution

a)	 The cdf of the random variable is

F t
t t

otherwise
( )= ≤ ≤









6000
0 6000

0

, ,

,  .

The probability of failure in the first 100 days is

P T F≤( )= ( )= ≈100 100 100
6000

0 017. .

b)	 The MTTF of the item is

MTTF E  days=   =
−

=∫T t dt
0

6000 6000
6000

3000 .
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1  Reliability Assessment14

	 d
d

a
N

C K m
= ( )∆ ,	 (1.43)

where a  is the crack length and d
d

a
N

 is the fatigue crack growth for a load cycle N . The 

material coefficients C  and m are obtained experimentally and their values depend on 
environment, temperature, and stress ratio. The stress intensity factor range has been 
found to correlate with the rate of crack growth in a variety of different conditions, which 
is the difference between the maximum and minimum stress intensity factors in a load 
cycle, defined as

	∆K K Kmax min= − . 	 (1.44)

1.2.3.2  Archard’s Law for Wear
The Archard’s wear equation is a simple model used to describe sliding wear, which is 
based on the theory of asperity contact [4]. The volume of the removed debris due to 
wear is proportional to the work done by friction forces. The Archard’s wear equation is 
given by

	Q KWL
H

= ,	 (1.45)

Figure 1.7  Illustration of Paris Law.
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1.3  System Reliability Modeling 15

where Q is the total volume of the wear debris produced, K  is a dimensionless constant, 
W  is the total normal load, L  is the sliding distance, and H  is the hardness of the softest 
contacting surfaces. It is noted that WL  is proportional to the friction forces. K is obtained 
from experimental results and it depends on several parameters, among which are sur-
face quality, chemical affinity between the material of two surfaces, surface hardness 
process, etc.

1.3  System Reliability Modeling

The methods to model and estimate the reliability of a single component were intro-
duced in Section 1.2. Compared with the single component case, the system reliability 
modeling and assessment is more complicated. The term ‘system’ is used to indicate a 
collection of components working together to perform a specific function. The reliability 
of a system depends not only on the reliability of each component but also on the struc-
ture of the system, the interdependence of its components, and the role of each compo-
nent within the system, etc. To compute the reliability of the system, it is essential to 
construct the model of the system, representing the above characteristics.

The conventional approaches typically assume that the components and the system 
have two states: perfect working and complete failure [5]. Below, we introduce the reli-
ability models of a binary state system with specific structures. Details about the multi-
state system can be found in Chapter 3.

1.3.1  Series System

In a series system, all components must operate successfully for the system to function or 
operate successfully. It implies that the failure of any component will cause the entire 
system to fail. The reliability block diagram of a series system is shown in Figure 1.8.

Let Ri  be the reliability of the ith component, i n= …1 2, , , , , and Rs be the reliability of 
the system. Let xi  be the event that the ith component is operational and let x  be the 
event that indicates system is operational. The reliability of the series system can be cal-
culated by

	R P x P x x xs n= ( )= …( )1 2, , , . 	 (1.46)

Assume all the components in the series system are independent; if so, the reliability of 
the system can be expressed as

	R Rs
i

n

i=
=
∏

1

. 	 (1.47)

Figure 1.8  Reliability block diagram of a series system.
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1  Reliability Assessment16

Considering that the component reliability is a number between 0 and 1, we have the 
following relationship

	R min R R Rs n<= …{ }1 2, , , . 	 (1.48)

1.3.2  Parallel System

In a parallel system, the system functions or operates successfully when at least one compo-
nent function is working. It implies that the failure of all components will cause the entire 
system to fail. The reliability block diagram of a parallel system is shown in Figure 1.9.

Denote Fs as the probability of failure of the system. Denote Fi  as the probability of 
failure of component i. The system reliability can be expressed as

	 R F F Rs s
i

n

i
i

n

i= − = − = − − 
= =
∏ ∏1 1 1 1

1 1

. 	 (1.49)

It follows that

	 R max R R Rs n≥ …{ }1 2, , , . 	 (1.50)

1.3.3  Series-parallel System

A series-parallel system consists of m subsystems that are connected in series, with ni  
units connected in parallel in each subsystem, i m= …1, , . The reliability block diagram 
of a series-parallel system is shown in Figure 1.10.

R3

n

Rn

R2

R1

2

1

3

...

Figure 1.9  Reliability block diagram of a parallel system.
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1.3  System Reliability Modeling 17

Denote Rij  as the reliability of component j  in subsystem i, 1 1≤ ≤ ≤ ≤i m j ni,   . Let Ri 
be the reliability of the subsystem i, 1≤ ≤i m . First, the reliability of each subsystem is 
derived as for the parallel system, that is,

	R R i mi
j

n

ij

i

= − −( ) = …
=
∏1 1 1 2

1

,  , , , . 	 (1.51)

The reliability of the series-parallel system is, then,

	R R Rs
i

m

i
i

m

j

n

ij

i

= = − −( )










= = =
∏ ∏ ∏

1 1 1

1 1 . 	 (1.52)

1.3.4  K-out-of-n System

For a system composed of n  components, the system is operational if and only if at least 
k  of the n  components are operational. We call this type of system as k -out-of-n : G sys-
tem, where G is short for Good. For a system composed of n  components, the system fails 
if and only if at least k  of the n  components are failed. We call this type of system a k
-out-of-n : F system. According to the definition, the series system is a 1-out-of-n : F sys-
tem, where F is short for Failed. The parallel system is a 1-out-of-n : G system. We will 
mainly present the reliability of the k -out-of-n : G system here.

Assume that the n  components are identical and independent. Denote R as the relia-
bility of each component, F as the unreliability of each component, F R= −1 . Let Pi  be 
the probability so that exactly i components are functional. In a k -out-of-n : G system, 
the number of functional components follows the binomial distribution with parameter 
n  and R. The probability that exactly i components are functional, Pi , is

	P
n
i

R F i ni
i n i=











= …− ,  , , , , .0 1 2 	 (1.53)

nmn2n1

m

33 3

2

2

2 2

1

1

1 1

Figure 1.10  Reliability block diagram of a series-parallel system.
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1  Reliability Assessment18

The reliability of the system is the probability that the number of functional components 
is greater than or equal to k . Thus, the system reliability, Rs , is calculated by

	R P
n
i

R Fs
i k

n

i
i k

n
i n i= =











= =

−∑ ∑ . 	 (1.54)

If the components are not identical, the system reliability should be calculated by enu-
merating all combinations of working components.

1.3.5  Network System

There are systems that can be represented by network diagrams, for example, gas net-
works, telecommunications networks, and power networks. A network system consists 
of a set of nodes and links. All the nodes and links have a probability of failure.

1.4  System Reliability Assessment Methods

There are many reliability assessment approaches developed to compute the reliability of 
complex systems, e.g. networks. Path-set and cut-set methods, decomposition and fac-
torization methods, and binary decision diagram (BDD) are four commonly used meth-
ods, and we will introduce them in this section.

1.4.1  Path-set and Cut-set Method

A path set P  is a set of components, which by functioning ensures that the system is 
functioning. A path set is said to be minimal if it cannot be reduced without losing its 
status as a path set. A cut set K  is a set of components, which by failing causes the system 
to fail. A cut set is said to be minimal if it cannot be reduced without losing its status as 
a cut set. We refer to these minimal sets as minimal path and cut sets or vectors (MPSs, 
MPVs and MCSs, MCVs).

Consider the minimal path sets of the system, P P Pp1 2, , ,   … , and the minimal cut sets of 
the system, K K Kk1 2, , ,   … . The reliability of the system is given by the union of all mini-
mal path sets. The unreliability is given by the probability that at least one minimal cut 
set occurs.

Example 1.4

Consider a bridge structure with five edges, E E1 5, ,…   , as shown in Figure 1.11:

a)	 Find the minimal path sets and the minimal cut sets of the system.
b)	 Calculate the reliability of the system if the reliability of each component is R.
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1.4  System Reliability Assessment Methods 19

1.4.2  Decomposition and Factorization

The decomposition method begins by selecting a critical component, denoted by x , 
which is an important component of the complex system structure. The reliability of the 
system can be calculated by the conditional probability:

	R P x R x P x R xs = ( ) ( )+ − ( )system functional| system functional( | ) 1(( ).	 (1.55)

The factorization method is developed based on the decomposition method, which is 
used in a network system. Denote e  as a critical edge in the network G. The reliability of 
the network is

	R P G e R P G e Rs e e= ( ) + −( ) functional|  functional( | ) .1 	 (1.56)

1.4.3  Binary Decision Diagram

Binary decision diagram (BDD) is used to represent a Boolean function. A Boolean func-
tion can be represented as a rooted, directed, acyclic graph, which consists of several 
nodes and two terminal nodes. The two terminal nodes are labeled 0 (FALSE) and 1 
(TRUE). Each node u  is labeled by a Boolean variable xi   and has two child nodes called 
low child and high child. The edge from a node to a child represents an assignment of the 
value FALSE (or TRUE, respectively) to variable xi . The advantage of BDD in reliability 
assessment is that its accuracy and efficiency are high [6]. The algorithm to compute the 
probability of a gate from a BDD is based on the Shannon Decomposition, which is 
defined by recursive equations.

Solution

a)	 The minimal path sets are

P P P P1 2 3 41 3 2 5 1 4 5 2 3 4={ } ={ } ={ } ={ }, , , , , , , , , .

The minimal cut sets are

K K K K1 2 3 41 2 3 5 1 4 5 2 3 4={ } ={ } ={ } ={ }, , , , , , , , , .     

b)	 The reliability of the system is calculated by the union of the path sets:

= + − +2 2 5 22 3 4 5R R R R .

E1

E2

E3

E4

E5

Figure 1.11  Bridge system.
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1  Reliability Assessment20

1.5  Exercises

1	 Consider an electrical generating system with two engines, E E1 2,   , and three genera-
tors, G G G1 2 3, ,    , each one with rate equal to 30 kVA. The system fails when the gen-
erators fail to supply at least 60 kVA. The structure of the system is shown in Figure 
1.13.
a.	 Find the minimal cut sets of the system.
b.	 Estimate the unreliability of the system for one-month operation, given that the 

failure rate for each engine is 5 10 6 1× − −h  and that for each generator is 10 5 1− −h .
2	 Consider the reliability of the following system consisting of five components in 

Figure 1.14. All the components are identical and independent from each other. The 
reliability of components i is Ri . Let Rs  be the reliability of the system. Give the reli-
ability formulation of the system.

Example 1.5

Calculate the reliability of the bridge system in Figure 1.11, if the reliability of each com-
ponent is R.

Solution

The block decision diagram of the bridge system is shown in Figure 1.12.
The reliability of the system is

R R R R R R R R R R R R

R R

s = + −( )+ −( )+ −( ) + −( )+ −( )
+ −( ) +

3 3 4 3 2 2 3 2

3 2

1 1 2 1 1 1

1 RR R R R R R2 3 2 3 4 51 2 2 5 2−( ) = + − + .

0

0

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

55

2222 22

333 3

4

55 55

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

Figure 1.12  Block decision diagram of the bridge system.
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1.5  Exercises 21

3	 The system has N  = 4 components. Each component has three states: (M ∈{ }0 1 2, , ). 
Let xi  denote the state of component i: then, we have the probability P xi ≥( )=1 0 7. ,  
P xi =( )=2 0 5. , for i =1 2 3 4, , , . Give the following system structure function,
a.	 φ x x x x x( )= +( )( )min , , .1 2 3 4
b.	 Find all minimal path and cut vectors (MPVs and MCVs) of the system.
c.	 Calculate system reliability R x= ( )≥( )Pr φ 1 .

4	 The power grid structure is shown in Figure 1.15 below. There are three substations: 
A is the power supplier that generates electric power to be transmitted to the substa-
tions B and C, which are the power consumers. Assume that the substations are 
always working but the power transmission lines may fail. The overall power grid 
works only if all the following conditions are satisfied:

E2

G3G2G1

E1

Figure 1.13  Electrical generating system.

54

1

3

2

Figure 1.14  Reliability block diagram of the system.

B

5

4

2

1

3

CA

Figure 1.15  Diagram of the power grid structure.
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1  Reliability Assessment22

i.	 Both substations B and C have power input.

ii.	 At least two outgoing transmission lines of A are working.

Then
a.	 Build a BDD for the power grid system.
b.	 Estimate the unreliability of the system for one-month operation by BDD, 

given that the failure rate for lines 1, 2, 3 is λ1
6510= −  h-1 and for lines 4, 5 is 

λ2
510= −  h-1.

5	 Consider the series-parallel system in Figure 1.16. The components 1, 2, 3, and 4 are 
independent from each other and have exponential reliabilities with failure rates λ1 , 
λ2, λ3  and λ4 , respectively. Assuming that λ λ1 32= and λ λ4 2 2= /, calculate the system mean 
time to failure (MTTF) expression in terms of λ2  and λ3.

6	 A manufacturer performs a test on a ceramic capacitor and finds that it experiences 
failures exponentially distributed in time, with rate λ= −510 4  failures per hour. To 
retain operation performance of the ceramic capacitor, an instantaneous and imper-
fect maintenance activity is performed at an interval of 103  hours. The reliability after 
maintenance is 0.98. Calculate the average availability and the instantaneous availa-
bility at time 1 2103.  hours.
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Figure 1.16  Reliability block diagram of the system.
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2

Optimization

Reliability optimization aims at maximizing system reliability and related metrics 
(e.g. weight and volume) while minimizing the cost required for the improvements of 
them. Reliability optimization has been an active research domain since the 1960s, 
with various formulations and solution schemes proposed. In general, the decision 
variables of the optimization problems are the parameters, which can be used for sys-
tem reliability improvement. For instances, the parameters that define the system reli-
ability allocation (e.g. component failure probability, failure rate), the parameters that 
describe system logic configuration (e.g. number of redundant components, compo-
nent assignments), and those relevant to testing and maintenance activities (e.g. test 
intervals, maintenance periodicities).

In Section 2.1, four different types of reliability optimization problems are reviewed. 
The types are distinguished according to the nature of the decision variables. On the 
other hand, system reliability can be optimized through either single objective or 
multi-objective approach. The solution techniques to single-objective reliability opti-
mization problems have been well documented in the surveys by Kuo and Prasad [1] 
and by Kuo and Wan [2]. We also reviewed the details of multi-objective reliability 
optimization problems in Chapter 10.

2.1  Optimization Problems

2.1.1  Component Reliability Enhancement

The objective of component reliability enhancement problems is to optimize system reli-
ability via improving reliability metrics of individual components. In 1973, Kulshrestha 
and Gupta [3] first formulated one such problem to maximize the reliability of a series 
system, as follows

	max R r
i

N

i=
=
∏

1

	 (2.1a)
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2  Optimization24

	s.t.
i

N

ji i jh r b j m
=
∑ ( )≤ = …

1

1 2, , , , 	 (2.1b)

where N  is the number of subsystems, ri is the reliability of subsystem i (i.e., component 
i, because each subsystem i is composed of only one component), h rji i( ) is the j-th 
resource consumed at subsystem i, and bj  is the total amount of resource j available. This 
problem is also referred to as the reliability allocation problem, which is among the earli-
est attempts to system reliability optimization. Tillman et al. record the related publica-
tions during 1960s and 1970s in [4].

In literature, the objective of various research works are to optimize time-related relia-
bility metrics, such as the mean time between failure (MTBF), the and mean time between 
repair (MTBR), and other lifetime distribution parameters of the components [5–6]. 
To achieve superior optimization results, component reliability enhancement is increas-
ingly combined with other reliability improvement approaches, such as redundancy allo-
cation. For example, in [7], the component reliability metrics, i.e. the component failure 
rates, repair rates, and component reliability, are regarded as the decision variables 
together with the number of redundancies in each subsystem. This type of problem is 
referred to as reliability-redundancy allocation problem [2].

2.1.2  Redundancy Allocation

The redundancy allocation, first formulated by Ghare and Taylor [8] in 1969 and Beraha 
and Misra [9] in 1974, is a well-established approach for reliability optimization. It aims 
to improve system reliability via installing additional redundant components into the 
system. A classical formulation of the redundancy allocation problem (RAP) is presented 
as follows, which aims to minimize the total system cost while keeping the system reli-
ability R  equal to or above a predefined acceptable level R0 .

	minC c y
i

N

j

v

ij ij

i

=
= =
∑∑

1 1

	 (2.2a)

	s.t.R y r R
i

N

j

v

ij
yi

ij( )= − −( )











≥

= =
∏ ∏

1 1
01 1 	 (2.2b)

	u y l yij ij ij ij≥ ≥ ∈ ≥;  0 	 (2.2c)

The formulation is for a representative binary-state series-parallel system (BSSPS), where 
vi  is the number of component versions available to the i-th subsystem, rij  is the reliability 
of the j-th component version in the i-th subsystem, y y y y yv N NvN

= … … …( )11 1 11
, , ; ; , ,   is the 

decision vector, yij is the number of components of the j-th version in the i-th subsystem, 
and uij  and lij  are the upper and lower limits of the number of j-th component versions at 
the i-th subsystem, respectively.
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2.1  Optimization Problems 25

An other classical formulation of RAP is to maximizes system reliability while keeping 
the cost below a certain budget.

RAP is an NP-hard [10] problem with non-linear and combinatorial nature. Most 
of the existing RAP works are based on a binary-state system (BSS) model. In litera-
ture, numerous methods have been proposed to solve it, including the exact methods 
[11,12] and the heuristic methods [13,14]. Comprehensive reviews on BSS RAP and 
its optimization solution methods can be found in Kuo and Prasad [1] and Kuo and 
Wan [2]. The MSS model has recently gained increasing popularity for system relia-
bility assessment, because it realistically considers more than one intermediate state 
for the system and its elements between the two extremes of perfect functioning and 
complete failure. The MSS RAP was first investigated by Ushakov in 1987 [15] where 
the Universal Generating Function (UGF) approach [16] was used for reliability 
computation. Complex MSS RAP is typically solved by meta-heuristics, including 
genetic algorithm (GA) [17], tabu search (TS) [14], ant colony optimization (ACO) 
[18], particle swarm optimization (PSO) [19] and artificial bee colony (ABC) algo-
rithm [20].

Similar to the case of component enhancement, redundancy allocation is also used 
in combination with other reliability improvement methods, such as maintenance 
and testing. In [21], joint redundancy and imperfect maintenance strategy optimiza-
tion are considered. In [22], redundancy and number of maintenance teams are opti-
mized together. In [23], redundancy and the component test intervals are optimized 
together.

To ensure high system reliability, redundancy allocation has been implemented on 
various industrial systems. For example, it has been recently applied on the renewable 
energy system design: in 2011, Xie and Billinton [24] proposed to minimize the total 
system cost (which are reliability-related, including the capital cost, maintenance and 
operation cost, and the customer interruption cost), through optimizing the number and 
types of wind turbine units installed at the multiple wind sites.

2.1.3  Component Assignment

In an industrial system, there are often interchangeable components, of differing quality 
and reliability, that can be allocated in the different positions of its functional logic and 
physical structure. For example, components with multiple functions can be inter-
changeable; identical components at different ages can be interchangeable. The overall 
system reliability can be improved by a proper assembly of such components into the 
required positions. In 1972 and 1974, Derman et al. [25] first formulated this problem in 
a parallel system and solved it with a method extended from the sum of products. Later 
on, the problem has been extended to series-parallel (and parallel-series) systems, con-
secutive k-out-of-n systems and general coherent systems. An overview on these research 
works can be found in [1].
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2  Optimization26

Consider a representative BSSPS with m components to be assigned to k  positions in the 

system. At each subsystem i, there are a set Si  of available positions. We have k S
i

N

i=
=
∑

1

. 

Let yhj =1 denote the component j that is assigned to position h and 0 otherwise. The assign
ment of the components can be represented by the vector y= … … …( )y y y ym k km11 1 1, , , , ,  . 
Then the optimal assignment problem is formulated as follows:

	max R r
i

N

h S j

m

hj
y

i

hj= − −( )










= ∈ =
∏ ∏∏

1 1

1 1 	 (2.3a)

	s.t.
j

m

hjy h k
=
∑ = = …

1

1 1 2, , , , 	 (2.3b)

	
h

k

hj hjy y j m
=
∑ ≤ ∈ = …

1

1 0 1 1 2; , , , , 	 (2.3c)

where rhj  is the reliability of component j assigned to position h .
In recent studies by Lin and Yeh [26,27], the component assignment problem is 

extended to computer, communication, and power networks. The generic network reli-
ability is defined as the probability that the network can transmit d  units of commodities 
from an origin to a specific destination. The power network expansion problem studied 
by Cadini, et al., [28] is similar to a component assignment problem in the sense that the 
optimal expansion solution seeks to add (i.e., allocate) transmission lines in proper loca-
tions so as to maximize the network reliability.

2.1.4  Maintenance and Testing

The engineered safety systems, e.g., the high-pressure injection system (HPIS) in a 
nuclear power plant (NPP), are usually under periodical tests and maintenances to reveal 
and repair the failures that may have occurred since the previous inspection. In such 
systems, a period of downtime can be caused by either failure or testing and mainte-
nance, which makes the system unavailable. To ensure system safety, the system loss or 
cost due to the downtime has to be minimized. In the late 1960s and early 1970s, Jacobs 
[29] and Hirsch [30] attempted to find the best test intervals that minimize the time-
average unavailability. In 1995, Vaurio [31] considered a more general formulation, 
which includes the cost minimization together with an unavailability constraint to 
search for the optimal test and maintenance intervals. A trade-off between the cost of 
system testing and unavailability is considered, because frequent testing usually increases 
the cost whereas infrequent testing usually leads to high unavailability. In the works by 
Munõz, et al. [32], Martorell, et al. [33], and Busacca, et al. [34], different methods were 
developed to find the optimal test or maintenance intervals so as to minimize system cost 
and unavailability.
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2.1  Optimization Problems 27

The system unavailability is often defined on the basis of the minimal cut sets, which 
was found as a result of the fault tree analysis of the system. To give an example, the 
system unavailability has the following approximate expression, as reported in [35]:

	U u
j

N

i

n

i
j

m j

y y( )≈ ( )
= =
∑∏

1 1

, 	 (2.4)

where y is the vector of decision variables that governs the system availability character-
istics and maintainability activities, Nm  is the total number of minimal cut sets, nj  is the 
number of basic events (i.e. the number of components in binary state setting) relevant 
to the j-th minimal cut set, and ui

j y( ) is the unavailability associated with the i-th com-
ponent belonging to the j-th minimal cut.

As to the unavailability of the i-th generic component, several models are available in 
the literature to account for different contributions from failure on demand, mainte-
nance, etc. Below is the original model presented in [31]:

	u T t
Ti i i i i

i

i
y( )= + +ρ λ

1
2

, 	 (2.5)

where ρi  is the probability of failure on demand, λi  is the failure rate, Ti  is the test inter-
val and ti  is the mean downtime due to a test or maintenance carried out within Ti . In 
this case, yi i i i iT t=( )ρ λ, , , . Each of these parameters can, in turn, be a function of other 
parameters related to the causes of unavailability. This formulation implies that any una-
vailability contribution can be represented as a term being (1) independent of Ti , (2) 
proportional to Ti , or (3) inversely proportional to Ti  [31]. Later on, this model was 
extended in various studies [34,36].

The cost function of the system is a sum of the cost of the individual components that 
constitute the system

	C c
i

N

i

c

y y( )= ( )
=
∑

1

, 	 (2.6)

where Nc  is the total number of components in the system and ci y( ) is the cost allocated 
to each component. Typically, the component cost is made up of two major contributors: 
the costs of test and maintenance and the costs of the consequences of the failures [34]. 
Besides unavailability and cost, other objectives are considered by different researchers. 
For examples, Čepin and Mavko [37] consider the time-dependent failure probability of 
the system. Martorell, et al. [38] consider risk, reliability, and maintainability. The prob-
lem is essentially multi-objective. The formulation and solution approaches to multi-
objective optimization will be presented in Chapter 10.

In more recent studies, a number of maintenance and test parameters, different from 
the previous elements of y, were used as the decision variables. In [39], Wang and Pham 
considered the number of imperfect maintenance actions and the length of the initial 
imperfect maintenance interval. Yang and Chang [40] regarded the type of maintenance 
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2  Optimization28

actions (e.g. no maintenance, minor and major maintenance) as the decision variables. 
Liu, et al. [41] introduced a maintenance threshold level. Khatab, et al. [42] considered 
the reliability threshold together with the number of preventive maintenance actions as 
decision variables.

In the following subsections, we will introduce three commonly used policies for com-
ponent maintenance and replacements [43].

2.1.4.1  Age Replacement Policy
Under an age replacement policy [44], a component is replaced after a constant time T  since 
its installation, or, at its failure, whichever occurs first. In general, we take the age replace-
ment policy under the following assumptions: 1) the failures are instantly detected; 2) each 
failed component should be replaced with a new one; and, 3) the replacement time is negli-
gible; 4) the failure time X kk   = …( )1 2, ,  of each component is independent and has an iden-
tical distribution F t X tk( )= ≤( )Pr , with mean µ .

Now, assume a new component is installed at time t= 0 , an age replacement proce-
dure generates a renewal process, and, let Xk k{ } =

∞

1
 be the failure times of successive 

operating components, with Z X Tk k= { }min , . Then, Zk k{ } =
∞

1
 represents the length of 

the intervals between each replacements k, which may caused by either failures or 
planned replacements, and we have

Pr
,  

,
.Z t

F t t T
t Tk ≤{ }= ( ) <
≥







for
for 1

We consider the problem of minimizing the expected cost per unit of time for an infinite 
time span. We introduce the following costs: c1  the failure cost, and c c2 1( )<  the replace-
ment cost. Let N t1( ) denote the number of failures during 0,t(   and N t2( ) denote the 
number of replacements with a working component during =( 0,t . Then, the expected 
cost during 0,t(   is given by

C t c E N t c E N t( )= ( )( )+ ( )( )1 1 2 2 .

We call the time interval from one replacement to the next replacement as one cycle. 
Thus, the expected cost per unit of time for an infinite time span is

C T
C t

tt
( )= ( )

=
→∞
lim

 expected cost of one cycle
mean time of onne cycle

.

We call C T( ) the expected cost rate, and, generally adopt it as the objective function of 
an optimization problem. When we set a planned replacement at time T  with failure 
time X , the expected cost of one cycle is

c X T c X T c F T c F T1 2 1 2Pr Pr .≤( )+ >( )= ( )+ ( )

The mean time of one cycle is

0 0 0

T T T

tdPr X t TPr X T tdF t TF T F t dt∫ ∫ ∫≤( )+ >( )= ( )+ ( )= ( ) .
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Thus, the expected cost rate is

C T
c F T c F T

F t dt
T( )= ( )+ ( )

( )∫
1 2

0

.

If T =∞, then the policy corresponds to the replacement only at failure, and the 
expected cost rate is

C C T c
t

∞( )= ( )=
→∞
lim .1

µ

2.1.4.2  Periodic Replacement Policy
When a reliability system is very complex and large-scale, one should allow for only 
minimal repair at each failure, and only performs the replacement actions periodically. 
We call such policy as the periodic replacement with minimal repair at failures [45], 
which is introduced as follows: Suppose the failure times of a component have a density 
function f t( ) and a cumulative distribution F t( ) with finite mean µ  and failure rate  
h t f t F t( )= ( ) ( )/ , where F t F t( )= − ( )1 . Consider one cycle with constant time T  from 
the planned replacement to the next one. Let c1  be the cost of minimal repair and c2  be 
the cost of the planned replacement. Then, the expected cost of one cycle is

c E N t c E N t c H T c1 1 2 2 1 2( )( )+ ( )( )= ( )+
which is because the expected number of failures during one cycle is E N t h t dt

T

1
0

( )( )= ( )∫  
= H(T), as proven by Theorem 4.1 in [46]. Therefore, the expected cost rate is

C T
T

c H T c( )= ( )+





1
1 2 .

2.1.4.3  Block Replacement Policy
Under the block replacement policy [47], two types of actions are considered: the preven-
tive replacement that occurs at fixed intervals of time regardless of the state of the com-
ponent and the failure replacement when the component fails. The objective is to 
determine the optimal time interval to replace and optimize the expected cost rate. 
Suppose the replacement is conducted at time kT k  , ,= …( )1 2  and each component has an 
identical time to failure cdf F t( ) with mean µ . F t nn( )( ) = …( )  1 2, ,  is the n-fold convolu-
tion of F t( ). Consider one cycle with constant time T  from the planned replacement to 
the next one. Let c1  be the cost of replacement of a failed component and c2  be the cost of 
the planned replacement. Then, because the expected number of failed components dur-

ing one cycle is M T F T
n

n( )= ( )
=

∞
( )∑

1

 from (1.19) in [46], the expected cost in one cycle is

c E N t c E N t c M T c1 1 2 2 1 2( )( )+ ( )( )= ( )+ .

Therefore, the expected cost rate is

C T
T

c M T c( )= ( )+





1
1 2 .
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If a component is replaced only at failure, i.e. T =∞, then, we have lim / /
T

M T T
→∞

( ) =1 µ 
and the expected cost rate is

C C T c
T

∞( )= ( )=
→∞

lim .1

µ

2.2  Optimization Methods

In this section, we provide basics of commonly-used modelling and solution schemes for 
reliability optimization problems.

2.2.1  Mathematical Programming

Dantzig and Thapa [48] define mathematical programming (MP) as “…the branch of 
mathematics dealing with techniques for maximizing or minimizing an objective func-
tion subject to linear, non-linear, and integer constraints on the variables.” MP utilizes 
mathematical theory and computational solutions to assist in decision making, usually 
regarding the best use of (scarce) resources. MP can be written as

	max  or min( ) ( )f x 	 (2.7a)

	s.t. g j mj x( )≥ = …0 1 2,  , , , 	 (2.7b)

	h j m m pj x( )= = + + …0 1 2,  ,  , ,  	 (2.7c)

where x is the decision variable with n  dimensions. g x x x x( )= ( ) ( )… ( )( )g g gm1 2, , ,  are 
the inequality constraints and h x x x x( )= ( ) ( )… ( )( )+h h hm p1 2, , ,  are the equality con-
straints. The set of the elements of the definition space that satisfy all the constraints is 
called the feasible region. The decision makers assess the quality of the possible alterna-
tive solutions with respect to a given criterion function f x( ), which is called objective 
function.

MP can be classified in several ways, such as based on the nature of problem or equa-
tions, the type of decision variables, etc. Based on the structure of a problem, MP involves

	● models with linear functions, i.e. linear programming (LP)
	● models with only integer variables, i.e. integer programming (IP)
	● models with more general functions, i.e. non-linear programming (NLP)
	● models with continuous and discrete variables, i.e. mixed integer programming (MIP)
	● models with random parameters, i.e. stochastic programming (SP)

Classical MP problems include set coverage problem, knapsack problem, and traveling 
salesman problem, etc. Along with the development of MP research, many numerical 
solution methods, such as dynamic programming (DP), branch and bound (B&B), and 
column generation (CG) has been proposed for solve MP problems, each take advantage 
of specific problem structures. We introduce these methods in the following subsections.
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2.2.1.1  Branch-and-Bound (B&B)
The B&B method [50] is a divide-and-conquer method based on an efficient enumera-
tion of the possible feasible solutions. The principle of B&B is to divide the solution space 
into disjoint subsets, which are denoted by the nodes of the branching tree. Then, the 
algorithm explores the other nodes of the branching tree under a given strategy. To avoid 
exploring the entire branching tree, the algorithm assesses the node before branching a 
new node. The best solution which might be found in the associated subtree is compared 
with the best solution that has currently been obtained. If the best solution under the 
node is worse than the current best solution, the subtree is discarded. Otherwise, the 
node is branched and the above operations are repeated. The application of B&B is 
widely used in IP or MIP with binary variables. The illustration of B&B used for binary 
variables is shown in Figure 2.1.

2.2.1.2  Dynamic Programming (DP)
DP has a rich and diverse history in the field of mathematics [51]. It is an optimization 
method based on the principle defined by Bellman: “An optimal policy has the property 
that whatever the initial state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the first decision.” It can 
be summarized as follows: A multi-stage problem can be decomposed into a sequence of 
interrelated one-stage problems. The optimal solution for the multistage problem must 
consist of optimal policies for its substage problem.

To introduce DP to solve the multi-stage problems in a general framework, we conduct a 
simple example of a shortest path problem shown in Figure 2.2. We consider a directed graph 
D V A=( ),   with the arc distance ce  for arc e A∈ . The problem is to find the shortest path from 
the source node s  to the sink node t . We observe that if the shortest path from s  to t  passes 
through the node w , then the subpaths s w, ( ) and w t, ( ) must be the shortest paths from s  to 
w  and w  to t , respectively. Let d v( ) denote the length of the shortest path from s  to v. Then

d v d w c
w V v

wv( )= ( )+{ }
∈ ( )−
min ,

 

00x3

x2

x1

x= (0, 0, 0) x= (0, 0, 1) x= (0, 1, 0)

0

00

0

0111 1

11

1

Figure 2.1  Example for the search tree in B&B.
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where V v−( ) denotes the processor set in G V A, ( ) of node v. That is, the shortest path 
from s  to v is the shortest path from s  to the neighbor of v and then to v.

2.2.1.3  Column Generation (CG)
CG [52] refers to an algorithm to solve LP problems when there are a huge number of 
variables compared to the number of constraints. Instead of enumeration, the simplex 
algorithm is used in CG to decide whether the current best solution is optimal.

To illustrate CG solving a LP problem, we consider a simple example, which refers to 
the following problem:

	 LP max  ( ) = = ∈ = …











=
∑ ∑z c x A x b x X k K
k

K
k k

k

K
k k k k

1

1: , ,  , ,



	 (2.8)

where X x R D x dk k n k k
k

k= ∈ ≤{ }+ :  for k K= …1, , . Assuming that all sets X k  consist of a 

huge but finite set of points xk t
t

Tk,{ }
=1

, we have

X x R x x tk k n k

t

T

k t
k t

t

T

k t k t
k

k k

= ∈ = = ≥ ∀ = …
= =
∑ ∑{ : , , , , ,,

,
, ,

1 1

1 0 1λ λ λ    TTk .

Now, we replace xk  with 
t

T

k t
k t

k

x
=
∑

1

λ ,
, , leading to an equivalent LP master problem (LPM):

	z c xLPM

k

K

t

T
k k t

k t

k

= ( )
= =
∑∑max

1 1

,
,λ 	 (2.9a)

	 LPM( ) ( ) =
= =
∑∑
k

K

t

T
k k t

k t

k

A x b
1 1

,
,λ 	 (2.9b)

	
t

T

k t

k

k K
=
∑ = ∀ = …

1

1 1λ , , , ,  	 (2.9c)

	λk t kt T k K, , , , , , ,≥ ∀ = … = …0 1 1    	 (2.9d)

t

w

s

Figure 2.2  Shortest s t−  path.
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In the following, we present the CG procedure to solve the above LPM.

Initialization. c x A x ek T k T
k
T

T

( ) ( )





, ,     is a column (vector) for LPM and for each x X k∈ .  

We assume a subset of columns is known as the initialization (at least one for each X k ), 
providing a feasible restricted LPM (RLPM):

	  

z cLPM =max λ 	 (2.10a)

	 RLPM( ) = λ b 	 (2.10b)

	 λ≥ 0 	 (2.10c)

where c  and A are the sub-matrices of the original parameter matrix with the initialized 
columns. Solving RLPM provides an optimal primal solution λ* and an optimal dual 
solution π µ,( )∈ ×R Rm K  where π  represents the dual variables associated with the joint 
constraints (2.9b), and µ  represents the dual variables for the constraints (2.9c).

Primal Feasibility. Any feasible solution of RLPM is feasible for LPM. Because λ* is a 
feasible solution for LPM,  cλ*  will give a lower bound for LPM, meaning -

 

z c b zLPM

i

m

i i
k

K

k
LPM= = + ≤

= =
∑ ∑λ π µ*

1 1

.

Optimality Check for LPM. We need to check whether π µ,( ) is dual-feasible for LPM. 

This means to check whether the reduced price c x A xk k
k− −π µ  of each col-

umn c x A x ek T k T
k
T

T

( ) ( )





,  ,   for each k  and for each x X k∈  is no more than zero. Rather 

than checking all possible points in X k  enumeration, we treat all points implicitly by 
solving the following subproblem:

ς π µk
k k

k
kc A x x X= −( ) − ∈{ }max :

Generating a New Column. If ςk > 0 is for some k , the column corresponding to the opti-
mal solution xk  of the subproblem will have a positive reduced price. We introduce the 

column c x A x ek k T k k T
k
T

T

 ( ) ( )





,  ,   into RLPM and re-optimize it until the stopping crite-

rion is reached.

Stopping Criterion. If ςk ≤ 0 is for k K= …1, , , the solution π µ,( ) will be dual-feasible for 

LPM; therefore, 
i

m

i i
k

K

kb
= =
∑ ∑+

1 1

π µ  is an upper bound of LPM, meaning z bLPM

i

m

i i
k

K

k≤ +
= =
∑ ∑

1 1

π µ , 

and λ  is optimal for LPM.
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2.2.2  Meta-heuristics

Meta-heuristic is a general search method used to solve complex combinatorial optimi-
zation problems. These problems are computationally challenging because solving 
them involves examining a huge number (usually exponential) of solutions made by the 
combination of values of the decision variables, and, evaluating the objective function 
in correspondence, to identify the optimal solution. For example, let us consider for the 
case that there are n  jobs waiting to be completed by m machines. The processing time 
of the jobs and the processing power of machines are given. The goal is to schedule n  
jobs to m machines so as to minimize the makespan, which is the total length of the 
schedule that all jobs have finished processing. When the numbers of n  and m are 
small, the problem is easily solved by enumerating all possible combinations; however, 
when the number of jobs and machines are large, the number of combinations increases 
exponentially, which makes the problem intractable by enumeration. These combinato-
rial problems suffering from the solutions explosion phenomenon are common in prac-
tical engineering where many parameters are involved, such as for planning a production 
process and designing a system. Therefore, it is important to devise intelligent algo-
rithms to solve them in reasonable computational time. Moreover, the use of exact 
methods for the solution of these problems generally requires the problems be convex 
and linear, the objective of the optimization be differentiable and so on, which is often 
not the case in practice. There is, then, a great need for intelligent algorithms capable of 
solving these kinds of problems without having to pose restrictions on the mathemati-
cal properties.

Instead of enumerating all possible combinations of solutions, meta-heuristic 
methods construct the candidate solutions following certain policies. They gradually 
learn about the structure of the problem from the objective function values evaluated 
at the candidate solutions identified in the successive steps of the iterative search. 
The knowledge gained is used to construct new candidate solutions of improved 
quality, i.e. improved values of the objective function. Although these methods may 
miss the global optimal solution but, as a counterpart, they can often provide sub 
optimal results with good qualities, within an acceptable computational time. 
Moreover, meta-heuristic methods are derivative-free procedures, which do not 
require particular restrictions on the mathematical properties of the problems, such 
as convexity and differentiability. Therefore, the meta-heuristic methods can deal 
with a wide range of practical optimization problems including those non-convex, 
non-linear, and discrete ones.

In recent years, advanced meta heuristic methods which mimic behavioral policies in 
populations, have been widely proposed and studied. To name a few, it includes the 
cooperative behaviour of bees in the ABC algorithm, the social-spider behavior in the 
social spider optimization (SSO) algorithm, the social behavior of birds in the PSO algo-
rithm, and the emulation of differential and conventional evolution of species in the 
differential evolution (DE) and genetic algorithm policies, etc.
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2.2.2.1  Genetic Algorithm (GA)
GA is one of the most classic population-based meta-heuristic algorithms. Every solution 
provided by GA is coded into a chromosome where each decision variable is represented 
by a gene. GA first randomly generates an initial population; then, the ‘selection’, ‘crosso-
ver’, and ‘mutation’ operators are applied to modify the individuals of the population 
until the maximum number of generations is reached. GA utilizes the fitness function to 
evaluate the fitness of each individual in the population. To improve the quality of solu-
tions, the crossover operator is used to generate new solutions whereby the solutions 
candidates are selected probabilistically, with a given selection mechanism, to generate 
the offsprings that enter the next population. The selection mechanism will more prob-
ably choose the solutions with better values of the objective function (called fitness in 
GA terminology). To avoid trapping into the local optimal solutions, the mutation opera-
tor is applied to pull out the population from the local region by randomly changing the 
genes of its individuals. The important steps of GA are described as follows:

	● Selection. The selection of parents to generate successive populations in GA aims to 
select the fittest individuals (i.e. those with best values of the objective function) with 
highest probabilities. A number of selection mechanisms are available in literature 
[53]: roulette wheel, Boltzmann selection, tournament selection, rank selection, and 
steady-state selection.

	● Crossover. After selecting the individuals, the crossover operator proceeds to generate 
individuals of the new population. The main task of the crossover operator is to com-
bine two different individuals to generate a new one. There are different techniques for 
crossover operator in literature [54], such as single-point and double-point crossover, 
three parents crossover, cycle crossover, order crossover, masked crossover.

	● Mutation. The last main operator is mutation, the application in which certain genes 
of individuals are altered with a small mutation rate. The mutation operator prevents 
the population from remaining trapped in local optima. Some of the popular mutation 
operators [55] are the following: power mutation, shrink, Gaussian, uniform.

2.2.2.2  Differential Evolution (DE)
DE [56] is also a population-based algorithm. Unlike GA, DE perturbs the current indi-
viduals with the scaled differences of randomly selected and distinct individuals. This 
property allows DE to perform fewer mathematical operations than GA and other algo-
rithms, hence requiring reduced execution time compared to other algorithms. In DE, 
the individual solutions are called parameter vectors or genomes, like in GA. A parent 
vector from the current generation is called a target vector, a mutant vector obtained 
after the mutation operation is called a donor vector, and an offspring individual con-
structed by recombining the donor vector with the target vector is called a trial vector. 
The important steps of DE are described as follows.

	● Mutation. Unlike GA, the mutation operator in DE is performed on all target vectors 
(parameter vectors, individuals) at every iteration.
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	● Crossover. The crossover operator is applied after generating the donor vector by 
means of the mutation operator. This operator is utilized to enhance the diversity of 
the population by exchanging the components of the donor vector with the target vec-
tor, to generate the trial vector. Exponential and binomial crossover methods are typi-
cally used in DE.

	● Selection. The selection operator decides whether the trial vector or target vector is 
selected to enter the successive generation. The vector with best fitness value is selected 
to ensure the population never deteriorates.

2.2.2.3  Particle Swam Optimization (PSO)
PSO [57] is inspired by the social behavior of organisms within large groups, such as 
birds, fish, and even humans. This algorithm emulates the interaction between members 
to share information. Its main advantage is its fast convergence compared with many 
other global optimization algorithms. PSO consists of a swarm of particles, whose trajec-
tories are adjusted by a stochastic term and a deterministic term. Each particle is influ-
enced by its best reached position and the best position reached by a particle member of 
the group but tends to move randomly. A particle i is denoted by its velocity vector vi  and 
its position vector xi . In every iteration, each particle adjusts its position according to its 
new velocity:

v wv c r xBest x c r gBest xi
t

i
t

i
t

i
t

i
t

i
t+ = + −( )+ −( )1

1 1 2 2

	x x v ti
t

i
t

i
t+ = + ⋅1

where xBest  and gBest  are the best positions of the particle and group, respectively. The 
parameter w c c r r, , , ,       1 2 1 2 denotes the weight with two positive constants and two ran-
dom parameters, respectively.

2.3  Exercises

1	 A unit wears out according to a normal distribution with a mean of 1,000,000 cycles 
and standard deviation of 100,000 cycles. The cost of preventive replacement is $50 
and that of the corrective replacement is $100. Assume the preventive replacements 
can be performed at discrete time intervals equivalent to 100,000 cycles per interval. 
Please determine the optimal preventive replacement interval by using block replace-
ment policy.

2	 Solve the Problem 1 by using the age replacement policy. Determine the optimal pre-
ventive replacement interval.

3	 A system is found to exhibit a constant failure rate of 5 10 5× −  failures per hour. The 
system is repaired upon failure and then, returned to its original condition. What is 
the expected number of failures after two years of operation?
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4	 Use any exact method to solve the following redundancy allocation problem, and, 
then, solve it by a heuristic algorithm. Compare the results of them.

min
i

i ic x
=
∑

1

5

	s.t.
i

i
xr i

=
∏ − −( )





 ≥

1

5
1 1 0 9.

	x N ii ∈ ∀ = …+, , ,1 5

where the parameters are set as

Subsystem i 1 2 3 4 5

ri 0.93 0.89 0.91 0.88 0.92

ci 1.3 2.2 3.1 2.5 2.9

(Solution: DP method for redundancy allocation problem proposed in [12]).
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3

Multi-State Systems (MSSs)

Conventional approaches typically assume that the components and the system have 
two states: perfect working and complete failure [1]. However, many engineering sys-
tems can carry on their intended tasks with various levels of performance, with the com-
ponents being partially functioning. Let us take an offshore gas pipeline network as an 
example. The network has a compressor subsystem composed of multiple compressors, 
and, the state of the subsystem is defined as its capacity for gas transportation. Thus, the 
subsystem state is a function of the capacities of the functioning compressors. Thus, once 
certain compressors fail or under maintenance actions, the subsystem state shall change, 
and it could take multiple values in long run [2]. Another example is a wind turbine 
system. The generator component can produce power less efficiently due to the failure of 
the anemometer, which can lead to inaccurate readings of the wind speed on which to 
base the blades adjustments [3]. For such cases, the multi-state models (MSMs) offer 
higher flexibility and a more precise approximation than the binary state models in the 
modelling of the system state distribution and its real-world dynamics.

The first attempts to investigate MSMs appeared as theoretical studies by Barlow and 
Wu [4], El-Neweihi, et al. [5] and Ross [6] in the late 1970s, followed by the independent 
works by Griffith [7], Block and Savits [8], Butler [9], Natvig [10] and Ebrahimi [11] in the 
early 1980s. These works extended the theory of binary coherent structures to multi-state 
components and lay the foundation of multi-state theory by properly defining the concepts 
of multi-state monotone system (MSMS), multi-state coherent system (MSCS) (a special 
case of the former), minimal path vectors (MPVs), and minimal cut vectors (MCVs).

3.1  Classical Multi-state Models

In classical model, the component and system have the same set of possible working 
states. For a multi-state system (MSS) of n components, let i n∈ …{ }1, ,  denote the com-
ponent index and S M= …{ }0, ,   denote the state set of each component and the system, 
where M  represents the state of perfect functioning, 0 represents the state of complete 
failure, and the other intermediate numbers represent the partially functioning states. 
Let x Si ∈  denote the state of component i; then, x = …( )x xn1, ,  denotes the component 
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3  Multi-State Systems (MSSs)44

state vector and S x= = ≤ ≤ = …S x M i nn
i{ | , , , }0 1   for   denotes the component state 

space. For any two state vectors x and y, x y< implies that  x yi i≤  for all i n∈ …{ }1, ,  and 
x yi i<  for at least one i n∈ …{ }1, , . The system state φ taking values from S  is essentially 
a deterministic function of x , i.e. φ φ= ( )x . The function φ ⋅( ) is called the structure func-
tion of the system. The following assumptions concerning φ characterize different types 
of MSS:

i  φ is non-decreasing, i.e. if x y≤ , then φ φx y( )≤ ( );
ii  φ 0 0( )=  and φ M( )=M where 0 0 0= …( ), ,  and M = …( )M M, , ;

iii  for all j M∈ …{ }0, , , φ j j( )=  where j j j= …( ), , ; and
iv  for all  i n∈ …{ }1, ,  and all j M∈ …{ }0, , , there exists a vector ⋅( )= … ⋅ …( )− +, , , , , , ,x x x x xi i n1 1 1  

such that for k j≠ , we have φ j x ji ,( )=  and φ k x ji ,( )≠ .That is, the system contains 
no irrelevant components.

The system with φ satisfying assumptions i and ii is called an MSMS, whereas the system 
with φ satisfying all the above assumptions is called an MSCS.

The definitions of MPV and MCV are key concepts in classical MSS theory:

	● MPV:A vectorx  is an MPV to level j  if φ x j( )≥ ; and for any y x< , itimplies φ y j( )<
	● MCV:A vectorx  is an MCV to level j  ifφ x j( )< ; for any y x> , itimplies φ y j( )≥

For a system under random setting, let a random variable Xi  denote the state of compo-
nent i; then, p X jij i= =( )Pr  is the probability of component i being at state j . Clearly, 

we have 
j

M

ijp
=
∑ =

0

1 for any i. Let random vector X X Xn= …( )1, ,  denote the state of all 

components where X Xn1, ,…  are assumed to be statistically mutually independent. Then, 
φ X( ) is the random variable representing the system state, with p X jj = ( )=( )Pr φ .

The system reliability with respect to state j is defined as R X jj
φ φ= ( )≥( )Pr , i.e. the 

probability of occupying a state higher than j  assuming j  as lower threshold. 

Let y y yk
j

k
j

nk
j= …( )1 , ,  for k n j∈ …{ }1, , φ  (where n j

φ  is the total number of MPVs to state j) 

denote the k -th MPV to state j . Let z z zl
j

l
j

nl
j= …( )1 , ,  for l m j∈ …{ }1, , φ  (where m j

φ  is the 

total number of MCVs to state j) denote the l-th MCV to state j . Let Ak
j denote the event 

that X yk
j≥  and Bl

j  denote the event that X zl
j≤ . Then

	R A Bj

k

n

k
j

l

m

l
j

j j

φ

φ φ

=











= −












= =
∪ ∪Pr Pr

1 1
1 

. 	 (3.1)

We have Pr Pr , , PrA X y X y X yk
j

k
j

n nk
j

i

n

i ik
j( )= ≥ … ≥( )= ≥( )

=
∏1 1

1

 and

Pr Pr , , PrB X z X z X zl
j

l
j

n nl
j

i

n

i il
j( )= ≤ … ≤( )= ≤( )

=
∏1 1

1

.
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The computational complexity to arrive at the exact system reliability grows exponen-
tially with the number of components. Due to this difficulty, many researchers aim at 
searching for bounds of the system reliability [5]. A comprehensive summary of the the-
oretical studies on classical MSMs is presented in [12].

3.2  Generalized Multi-state Models

After the establishment of classical MSM, subsequent efforts have been made to extend 
its modelling. In 1982 and 1983, Hudson and Kapur [13,14] defined an MSM allowing 
different numbers of states for each component and the system: x S Mi i i∈ = …{ }0, ,  and 
φ∈ S . In 1993, Aven [15] gave a more general definition, which allowed the states being 
any non-negative real number: x x xi i iMi

∈ …{ }0, , , xi0 0=  and x xij ik< for all j k<  and 
φ φ φ∈ …{ }0, , M , and φ0 0=  and φ φj k<  for all j k< . This definition is closer to reality 
than the calssical MSM in section 3.1, because the states reflect their values to the cus-
tomer [16]. Based on this MSM, the definitions of MPVs, MCVs, and performance meas-
ures (including reliability) are also presented in [15].

In a series of studies [17–19] from 1996 to 1998, Lisnianski and Levitin have defined a 
MSM abstracted from the reliability models of power system components [20]. Their 
modelling is close to Aven’s MSM. In this definition, one multi-state component i is char-
acterized by the performance level (or rate), g L g gi i i iMi

∈ = …{ }0, ,  where gij  is a non-
negative real number and gi0, and giMi

 are the performance levels at complete failure 
and perfect functioning states, respectively. The elements in the performance set are 
assumed to be in ascending order. Let the vector g= …( )g gn1, ,  denote the performances 
of all components. The system performance ϕ∈ is a deterministic function of g , i.e. 
ϕ ϕ= ( )g . The function ϕ ⋅( ) is also called the system structure function and it has the 
following assumptions:

i  ϕ  is non-decreasing in each argument;
ii  argmax , ,

g M nMg g g
n

ϕ( )= …{ }1 1
 and argmin , ,

g ng gϕ g( )= …{ }10 0 ; and

iii  for all i n∈ …{ }1, ,  and all g Lij i∈ , there exists a vector ⋅( )= … ⋅ …( )− +, , , , , , ,g g g g gi i n1 1 1   
such that for j k≠ , we have φ φg gij ik, ,g g( )≠ ( ).That is, the system contains no irrel-
evant components.

The properties above are analogous to the assumptions i, ii, and iv of the classical MSS model. 
Under a random setting, the performance Gi  of component i is a random variable taking val-
ues from Li, and the system demand W  is a random variable taking values from 
D w w wM j= … ∈{ }≥0 0, , |  , a set of non-negative real-valued  demand  levels.  Then,  

p G gij i ij= =( )Pr  is the probability of component i being at state j and
j

M

ij

i

p
=
∑ =

0

1 for any i. For 

the system demand, q W wj j= =( )Pr  and 
j

M

jq
=
∑ =

0

1. Let random vector G G Gn= …( )1, ,  

denote the state of all components; then, ϕ ϕ= ( )G  is a random variable representing the sys-
tem performance. The system reliability with respect to W  is defined as
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	R W q w W wW

j

M

j j jϕ ϕ ϕ= ≥( )= ≥ =
=
∑Pr ( | ).

0

Pr 	 (3.2)

Lisnianski and Levitin’s MSM have become the most frequently applied and studied in 
recent literature because they give a representation closer to the reality compared to 
previous MSMs. More details about this modelare presented in their book [21].

3.3  Time-dependent Multi-state Models

In practice, multi-state components or MSSs may be requested to work at different per-
formance levels at different times to satisfy the customer’s changing demand. In addi-
tion, they may be subject to maintenance actions, which require them to be off-line for a 
period of time. For examples, the power plant production varies according to the daily or 
seasonal load demands, and the plant needs to be regularly shut down for inspections 
and repairs. This stimulates the efforts to consider the time dimension in MSMs and to 
develop different reliability measures for the dynamic MSMs.

In 1984, Funnemark and Natvig [22] considered the time-dependent MSM (TDMSM). 
The state of component i is a stochastic process X ti ( ). At any fixed time t ∈ ≥ 0 , X ti ( ) is 
a random variable taking values from Si . The joint state of all compo-
nents X t X t X tn( )= ( )… ( )( )1 , ,  follows a vector stochastic process. The state of an MSS 
with the structure function φis a stochastic process φ X t( )( ). At any fixed time t , φ X t( )( )
is a random variable taking values from S . The MPVs and MCVs are defined at the fixed 
time t , similar to those in the time-independent MSMs (TIMSMs). The generalized 
TDMSMs [15,21] basically reuse the definitions made by Funnemark and Natvig. The 
only difference of Aven’s TDMSM [15] is that the elements of the sets where X ti ( ) and 
φ X t( )( )aretaking values from can be non-negative real numbers. In Lisnianski and 
Levitin’s TDMSM [21], G ti ( ), ϕ G t( )( )and W t( ) are used to denote the stochastic compo-
nent performance, system performance, and system demand, respectively. They all can 
take non-negative real values.

In reliability engineering, various types of stochastic processes, e.g. point processes, 
renewal processes, and Markov processes [21,23,24] are applied to model component 
dynamics among which Markov processes are mostly used [21]. In the family of Markov 
Processes, continuous time Markov chain (CTMC) is the most applied one. In the case of 
discrete time, e.g. t t tn n= +−1 ∆ , the discrete time Markov chain (DTMC) is used. For 
simpilicity, we will only discuss the about the continuous case, in this section. Let G ti ( ) 
be a CTMC on the set Li ; the quantity of primary interest is the state probability vec-

tor p t p t p ti i iMi
( )= ( )… ( )( )0 , ,  at any time t . By the law of probability, we have 

j

M

ij

i

p t
=
∑ ( )=

0

1 

at any time t . In the case of homogeneous CTMC (HCTMC), p ti ( ) can be found by solv-
ing the following system of differential equations:

c03.indd   46c03.indd   46 10-06-2022   14:57:0910-06-2022   14:57:09



3.3  Time-dependent Multi-state Models 47

	 d
dt

p t p t p tj
i

k
k j

M

k
i

kj
i

j
i

k
k j

M

jk
i

i i

( )= ( ) − ( )
=
≠

=
≠

∑ ∑
0 0

λ λ ,	 (3.3)

where p tj
i ( ), the same as p tij ( ), is the probability of state j  of component i at time t  (for 

ease of notation, we move the index of the component to the superscript), and λkj
i  is the 

rate which characterizes the stochastic transition of component i from state k  to state j . 
The transition rate λkj

i  is defined as

	λkj
i

t

i ij i ikG t t g G t g
t

=
+( )= ( )=

→
lim

( | )
.

∆

∆

∆0

Pr
	 (3.4)

HCTMC is applicable only when the transition time between any two states, i.e. the state 
holding time, follows an exponential distribution. In many real-world cases, this restric-
tion needs to be removed. Semi-Markov process (SMP) is an alternative because it allows 
arbitrary state holding time distributions [21]. The key concept of SMP is the kernel 
Q tkj

i ( ), analogous to λkj
i  of the CTMC:

	
Q t G g T T t G G T T

G

kj
i

n
i

ij n
i

n
i i

n
i i

n
i

n

( )= = − ≤ … …( )
=

+ +Pr , | , , ; , ,

Pr

1 1 0 0

++ += − ≤ =( )1 1
i

ij n
i

n
i

n
i

ikg T T t G g, | ,
	 (3.5)

where Tn
i  is the time of the n-th transition of component i, and Gn

i  is the performance of 
component i at the n-th transition. Similar to CTMC, the SMP is mainly used to find the 
component state probabilities. Let θ jk

i t( ) denote the probability that the process of com-
ponent i starts from state j  at time 0 and will reach state k  at time t . By solving the fol-
lowing system of integral equations, it can be found that

	θ δ τ θ τ τjk
i

jk
i

j
i

m

M t

jm
i

mk
it F t q t d

i

( )= − ( )




+ ( ) −( )

=
∑∫1

0 0

,	 (3.6)

where δ jk
i =1 if j k=  and δ jk

i = 0  if j k≠ , F t Q tj
i

m

M

jm
i

i

( )= ( )
=
∑

0

, and q
dQ

djm
i jm

i

τ
τ

τ
( )= ( )

. 

Given the initial state and the kernel matrix Q tkj
i ( )




, p tj

i ( ) can be found. The CTMC and 
SMP can also be used to solve for the system state probability when the transition rates 
and kernel matrixes for the system transitions are defined.

As to the system reliability-related measure, availability is the most frequently used 
metric in TDMSMs. It quantifies the ability of the system to satisfy the customer demand 
at any specific moment during the system life time. In generalized TDMSMs [15,21], the 
availability is defined assuming a minimum on total performance of ϕ  as

	A t G t w W t w W t wW

j

M

j j jϕ ϕ( )= ( )( )≥ ( )= × ( )=( )
=
∑

0

Pr   Pr( | ) . 	 (3.7)
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By extending the time-dependent instantaneous availability in Equation (3.7), other 
time-independent measures, such as average and limiting availability [15,25], can be 
introduced to quantify the integral and asymptotic measure of the system reliability 
characteristics (i.e., the probability that the system is in the desired state or above during 
a time interval or after the initial transient, asymptotically in time).

3.4  Methods to Evaluate Multi-state System Reliability

Based on MSMs, a number of reliability assessment methods have been proposed. In this 
section, they are classified into four groups. They are mainly developed for the TIMSMs. 
Some of them, e.g. the methods based on MPVs or MCVs and the universal generating 
function (UGF) approach are extended to TDMSMs by Natvig [12] and Lisnianski and 
Levitin [21], respectively. The Monte Carlo simulation (MCS) method is naturally 
adapted to the time-dependent case as proposed by Zio, et al. [26].

3.4.1  Methods Based on MPVs or MCVs

As mentioned in Section 3.1, in classical multi-state theory, the system reliability is 
expressed in terms of the probability of the union of all MPVs or all MCVs. Based on this 
formulation, two ways exist to evaluate system reliability. The first is to mathematically 
derive the lower and upper bounds [5,8,9,27]. The second computes the exact reliability 
using special principles or algorithms, such as inclusion-exclusion method [5,10,14,28], 
state-space decomposition [29], and recursive method [30]. A common prerequisite of 
these methods is that all MPVs or MCVs of an MSS are given. However, finding all of 
them is, in general, computationally difficult despite some algorithms are proposed for 
special classes of MSS [31,32].

3.4.2  Methods Derived from Binary State Reliability Assessment

Representing the multi-state component by a set of binary variables, the MSS reliability 
can be eventually calculated using the well-established binary algorithms. In 1980, 
Caldarola [33] proposed the Boolean algebra with restrictions on variables for this con-
version. The binary variable bij  takes the value of 1 if component i is at state j  and the 
value of 0 if it is at one state other than j . There are two restrictions on each bij :  1)  
∨ ==j

M
ij

i b0 1 and 2) b b j kij ik∧ = ∀ ≠0,   . With these restrictions, the basic rules of tradi-
tional Boolean algebra operations are applied to derive the system state expression. bij s 
are not pairwise mutually independent and the number of binary variables is 
m mn1 1 1+( )×…× +( ) for representing the system state. In [34], this method is adopted 

to analyze MSS, and the inclusion-exclusion method is, then, used to obtain system prob-
ability expressions.

In 1994, Wood [35] proposed a slightly different conversion. The state of component i 

is represented by the sum of bij  and i.e. x bi
j

M

ij

i

=
=
∑

0

, and the state of the system is 
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represented by the sum of binary variables φ j b( ) and i.e. φ φb b
j

M
j( )= ( )

=
∑

0

. The restrictions 

are that bij =1 implies bik =1 for all k j≤  and φ j b( )=1implies φk b( )=1 for all k j≤ . 
This conversion has the same drawbacks as Caldarola’s approach. To compute system 
reliability, the conditional probability expansion (i.e. factoring approach) is used in [35] 
to handle the following situations: the components are dependent and the same variable 
appears in multiple places in the system expression.

Fault trees are often used to find the state probability distributions of binary systems. 
In 1990, Kai [36] applied the recursive pivotal decomposition algorithm of binary fault 
trees to the multi-state case. This method does not require the MPVs or MCVs.

Binary decision diagrams (BDDs), proposed by Bryant [37], are an efficient tool of 
Boolean expressions manipulation because they require less memory to represent large 
Boolean expressions compared to other methods. In 2003, Zhang, et al. [38] applied 
BDDs for MSS reliability assessment. The basis for BDD implementation is the Shannon 
decomposition:

Let f  be a Boolean logic function on the set of binary variables b bm1, ,…{ } . Then

	f b f b f ii b i bi i
= =( ) + =( )= =0 10 1 for any ,	 (3.8)

where fb vi=
 is f  evaluated with b vi = . Its idea is similar to the factoring approach. In 

[38], a BDD operation is proposed to realize the Boolean algebra with restrictions on 
variables, and the final system BDD is efficiently evaluated to obtain the system reliabil-
ity. However, this approach still involves a large number of possibly dependent binary 
variables. To remedy this problem, the multi-valued decision diagram (MDD) [39] is 
applied. This approach directly uses the multi-valued xi  and implements a multi-valued 
logic function. In a more recent work [40], MDD is used to evaluate multi-state k-out-of-
n system reliability in comparison with the recursive method proposed in [30].

3.4.3  Universal Generating Function Approach

The UGF approach, originated by Ushakov in 1987 [41], is adopted for system reliability 
assessment by Lisnianski, Levitin, and their colleagues in [17], based on their MSS 
model. It is an analytical tool to describe multi-state components and to construct the 
overall model of complex MSSs. The UGF of component i is expressed as

	u z p zi
j

M

ij
g

i
ij( )=

=
∑

0

,	 (3.9)

where z  is the base of the z-transform. It is essentially an equivalent representation of 
the probability mass function (pmf) of the performance of component i . Based on the 
component UGF, the composition operator ⊗ϕ  is proposed to derive the UGF of an 
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arbitrary MSS with the structure function ϕ G G Gn1 2, ,…( )  [42]. It has the following 
general expression

	⊗ ( )… ( )( )= …
= = =

…(∑ ∑ ∏ϕ
ϕu z u z p zn

j

M

j

M

j

M

ij
g g

n

n

i

i

i

j njn
1

0 0 01

1
1 1, , , , ))










. 	 (3.10)

To derive the system UGF, the iterative approach [42] is often used:

u z u z u z′ ( )=⊗ ( ) ( )( )2 1 21 2ϕ &
, , u z u z u z′ ′( )=⊗ ( ) ( )( )

′3 2 32 3ϕ &
, ,…, 

u z u z u z u zn n n
n n

′ −( )( )= ( )=⊗ ( ) ( )







−( )
ϕ ϕ

1 1'&
' ,

where 2', 3', …, n' are the virtual components, essentially the combinations of 2, 3, …, n  
components, respectively. The like-term collection technique [43] is implemented dur-
ing each iteration to enhance computation efficiency. The sequence of components in 
the iterations also affects computational speed.

In 2008, Li and Zuo [44] proposed a recursive algorithm with the following formula:

	R w n p R w g nk k
j

M

nj k k nj

n

, , ,( )= − −( )
=
∑

0

1 	 (3.11)

where k  denotes the k -th system demand state to compete with the UGF composition 
approach for the reliability evaluation of multi-state weighted k-out-of-n systems. The 
results show that the recursive algorithm is generally more efficient than UGF composi-
tion though the time complexities of the two approaches are both exponential to n  in the 
worst cases.

3.4.4  Monte Carlo Simulation

The application of the above evaluation methods generally have certain prerequisites, 
e.g. independence of components. However, many real-world systems often possess 
complex characteristics, e.g. operational dependencies. For example, in a production line 
of a nodal series structure, if one of the nodes throughput changes (e.g. switches from 
100% to 50%), the other nodes will have to be reconfigured (i.e. they must deterministi-
cally change their states) so as to provide the same throughput [45]. The MCS appears to 
be the only feasible approach to quantitatively capture the realistic aspects of the MSS 
complex dynamic behavior [46]. In 2003, Zio et al. [45] proposed an MCS technique 
which allows modeling multi-state components subject to operational dependencies. 
Later, MCS is used to estimate the reliability of a multi-state network by Ramirez-
Marquez and Coit [47]. The major disadvantage of MCS is the uncertainty in its conver-
gence to a stable estimate within reasonable computational time. The successful 
implementation of MCS depends on the proper representation and modeling of the 
multi-state dynamics of the components and the systems, e.g. by Petri Nets [48], and on 
the efficient evaluation methods, e.g. by biasing techniques [49].
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3.5  Exercises

1	 Find all minimal path and cut sets and compute the reliability of the following sys-
tem: number of components, N = 3; highest state, M = 2 ; P  xi ≥( )=1 0 9. , 
P xi =( )=2 0 7. , for i=1, 2, 3; φ x x x x( )= +( )( )min 1 2 3, ; R x= ( )≥( )Pr φ 1 .

2	 Derive the following integral equation for semi-Markov state probability

θ δ τ θ τ τjk
i

jk
i

j
i

m

M t

jm
i

mk
it F t q t d

i

( )= − ( )




+ ( ) −( )

=
∑∫1

0 0

.

3	 Consider a multi-state parallel system with three components. Every component has 
three possible states: 0, 1, 2. The system function is φ g g g g( )= + +1 2 3. The compo-
nent state performance and probability distributions are shown in the following 
tables. Compute the system reliability R x= ( )≥( )Pr φ 5  using MCS and UGF 
methods.

State probability distribution of each component

j= 0 j=1 j= 2

i=1 0.1 0.2 0.7

i= 2 0.4 0.2 0.4

i= 3 0.3 0.5 0.2

State performance of each component

j= 0 j=1 j= 2

i=1 1 2 3

i= 2 1 3 4

i= 3 1 3 5
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4

Markov Processes

As discussed in Chapter 3, a multi-state system (MSM) is often applied for system degra-
dation process modeling because it offers the possibility of describing the degradation 
state of the components and system by a number of consecutive levels from perfect work-
ing to complete failure. To model the dynamics and transitions of such a multi-state 
degradation process, Markov models have often been used [1-3]. In doing this, the rates 
of transition among the degradation states are typically assumed to be constant, which 
implies that the degradation process is memoryless. The resulting stochastic process is 
called a homogeneous continuous time Markov chain (HCTMC). In many realistic situ-
ations, (e.g. cracking of nuclear component [4], battery aging [5], and cancer patients’ 
life quality [6]) with varying external factors influencing the degradation processes, the 
transition rates can no longer be considered as time-independent. Under these circum-
stances, the inhomogeneous continuous time Markov chain (ICTMC) is more suited 
than HCTMC for modeling the degradation process. In addition, the semi-Markov pro-
cess (SMP) is a more general model than the ICTMC that can deal with arbitrary transi-
tion rates: given this property, it is well-suited to model the degradation influenced by 
the environmental factors that change with time and other features. Piecewise-
deterministic Markov process (PDMP) can be regarded as a special class of the SMP that 
explicitly describe the system dynamics and the degradation dependence.

In all, the theoretical foundations of Markov processes presented in this chapter are 
kept to the minimum, meaning brief and limited. Interested readers can refer to any 
textbook on stochastic processes for more details.

4.1  Continuous Time Markov Chain (CMTC)

Markov chain is a special type of Markov process. Let X t t( ) ≥{ }, 0  denote a stochastic 
process defined on a state space S M= …{ }0 1, , , , which is finite or infinite. Assume the 
state of the process at time t is X t i( )= ; the conditional probability that the process will 
be in state j at time t t+∆  is

c04.indd   55c04.indd   55 11-06-2022   16:25:4311-06-2022   16:25:43



4  Markov Processes56

	Pr | ,  , ,X t t j X t i X u h u u t+( )= ( )= ( )= ( ) ≤ <( )∆  0 	 (4.1)

where h u( ) is the historical trajectory of the process till time t. In real-life situations, 
keeping the complete history of the process is often difficult; thus, it is reasonable to 
assume that the future evolution of the process is only dependent on the present situa-
tion and independent of anything that has happened in the past. In mathematical words, 
we have the following equation

Pr | ,  , Pr |X t t j X t i X u h u u t X t t j X t i+( )= ( )= ( )= ( ) ≤ <( )= +( )= ( )=(∆ ∆ 0 )).� (4.2)

This is called the Markov property. A stochastic process that satisfies the Markov prop-
erty, i.e. Equation (4.2), is called a Markov process (or a CTMC). When the time t is dis-
crete, it is called a discrete time Markov chain (DTMC). In DTMC, the time is often 
denoted by a step indicator k  and the chain by X k Lk , , , ,= …{ }0 1  where L  is the index of 
the last time step. Because CTMC is more frequently used in reliability engineering and 
DTMC has several similarities to CTMC, we will focus on CTMC in this book.

The conditional probability Pr |X t t j X t i+( )= ( )=( )∆  in Equation (4.2) represents the 
probability that the process will, when in state i at time t, make a transition into state j at 
time t t+∆ . This value is called a one-step transition probability, denoted as p t t tij , +( )∆ . If 
p t t tij , +( )∆  is independent of t, then the CTMC is said to have stationary or homogeneous 
transition probabilities. In a mathematical expression, we have the following equation:

	Pr | Pr | , ,  .X t t j X t i X t j X i t t+( )= ( )=( )= ( )= ( )=( ) ∀ ≥∆ ∆ ∆0 0 	 (4.3)

It is called the stationary property of the Markov process. CTMC with the stationary 
property is called HCTMC. The transition probability p s s tij , +( ) in HCTMC is briefly 
denoted as p tij ( ). The matrix P t p t i j S tij( )= ( ) ∈ ≥( ), , ,  0  is called the transition probabil-
ity matrix of the HCTMC.

For p tij ( ) of an HCTMC, the following limits exist:

	 lim ,
∆

∆

∆t

ii
i ii

p t
t

v
→

− ( )
= =

0

1
λ 	 (4.4)

	 lim ,  ,
∆

∆

∆t

ij
ij

p t
t

i j
→

( )
= ≠

0
λ 	 (4.5)

where λij is called the transition rate from state i to state j, and vi  is called the transition rate 
associated with state i. Let τi  denote the sojourn time of X  in state i before making a transi-
tion to a different state; τi  follows the exponential distribution with parameter vi . State i is 
named as absorbing if vi = 0, named as stable if 0< <∞vi , and instantaneous if vi =∞.

The transition rates of the HCTMC form a matrix Λ=( )λij :
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Example 4.1 [7]

Consider a system with one component and one repairman. Assume the failure times 
and repair times of the system follow exponential distributions. The component has a 
discrete state space S={ }0 1,  where state 0 represents the working state and state 1 rep-
resents the failure state. The rate of failure (i.e. the transition rate from state 0 to state 1) 
of the system is λ , and the rate of repair (i.e. the transition rate from state 1 to state 0) of 
the system is µ. The Markov diagram of this system is sketched in Figure 4.1.

Because we have ΛI = 0, the transition rate matrix of the one component/one repair-
man system is given as follows:

Λ=
−

−













λ λ
µ µ

.

The primary quantity of interest in many applications of CTMC is the state probability 

vector at any time instant t, p t p t i S ti( )= ( ) ∈ ≥( ), , 0 . By the definition of probability, we 

have ∑
∈

( )= ∀ ≥
i S

ip t t1 0, . Obviously, p t p p ti
j S

j ji( )= ( ) ( )∑
∈

0 . In the case of HCTMC, p t( ) 

is typically found by solving the following system of differential equations (i.e. Chapman-
Kolmogorov equations)

Figure 4.1  The Markov Diagram of the One Component/one Repairman System.
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Clearly, we have ΛI = 0 where I  denotes the identity matrix, which indicates that the 
row-sums of Λ are equal to zero. From Equations (4.4) and (4.5), it yields that Λ= ( )′P 0 . 
The transition rate matrix Λ and the initial state probability vector p 0 0( )= ( ) ∈( )p i Si , , 
then, completely characterize a CTMC.
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Example 4.2

Reference [7] considers a system with M  identical components and M  repairmen avail-
able. Assume that each component can be in two states: working or failure. The rate of 
failure and rate of repair are λ  and µ, respectively. The state space of the M  components 
and M  repairmen system is S i i M= ∈ ≤ ≤{ | }N 0  where N  denotes the set of non-nega-
tive integer numbers. State i shows there are i components are currently failed in the 
system and the others are functioning. Thus, state 0 represents the case that all compo-
nents are functioning and state M  represents that all components have failed. Besides, 
we propose the following hypotheses: No more than one event (i.e. the failure or repair 
of a component) can simultaneously occur in a sufficiently small time interval ∆t , such 
that all events are mutually exclusive.

From the Chapman-Kolmogorov equations [8], it is clear that the transition rate matrix 
could be constructed as long as one derives the transition probability between state i and 
its successive state i+1. Let us consider the transition probability in the sufficiently-
small time  interval ∆t ,

p t M i ti i,  (       |+ ( )= −1 ∆ ∆Pr anyone of the components fails in
theere are already components failed

the  st working co
    )

Pr
i

= 1 mmponent fails in
the  nd working component fails i

 
Pr

∆t( )
+ 2 nn

the  th working component fails in

 

Pr  

∆

∆

∆

t

M i t
( )+…

+ −( )( )
=λ tt t t

M i t
+ +…+

= −( )
λ λ

λ

∆ ∆

∆

	 d
dt

p t p t p ti
j S
j i

j ji i
j S
j i

ij( )= ( ) − ( )∑ ∑
∈
≠

∈
≠

λ λ , � (4.7)

where i j,  are the state indexes ranging from 0 to M , and λij  is the transition rate of 
HCTMC.

To obtain Equation (4.7), we first decompose the state probability as

	p t t p t p t p t p ti
j S
j i

ji j ii i+( )= ( ) ( )+ ( ) ( )∑
∈
≠

∆ ∆ ∆ .� (4.8)

Subtracting p ti ( ) from both sides yields

	p t t p t p t p t p t p ti i
j S
j i

ji j ii i+( )− ( )= ( ) ( )− − ( )( ) ( )∑
∈
≠

∆ ∆ ∆1 .� (4.9)

Dividing Equation (4.9) by ∆t  and letting ∆t→ 0  yields Equation (4.7).
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4.1  Continuous Time Markov Chain (CMTC) 59

Similarly,

p t i ti i+ ( )= +( )1 1,  ∆ ∆µ

Hence, one gets the following transition rates:

λ λi i M i, + = −( )1

	λ µi i i,  − =1

	λ λ λ λ µii i i i i M i i= + = −( ) ++ −, ,1 1

The transition rate matrix of the M components and M repairmen system is

Λ=

−

− − −( ) −( )
− − −( ) −( )

M M
M M

M M

λ λ

µ µ λ λ

µ µ λ λ

       
     

     
     
 

1 1
2 2 2 2

� � �

    
       

M M
M M

−( ) − −( ) −
−

































1 1µ µ λ λ
µ µ

The Markov diagram of the M components and M repairmen system is sketched 
in Figure 4.2.

For the finite state space, Equation (4.7) can be solved by several different 
approaches. In this chapter, we introduce the classical Laplace transform method 
[9]. Let us define the Laplace transform of the state probability p ti ( ) as

	p s e p t dti
e st

i( )= ( )
∞
−∫

0

� (4.10)

and the matrix function pe
i
es p s i S( )= ( ) ∈( ), . We take the Laplace transform of 

Equation (4.7) and derive

Figure 4.2  The Markov Diagram of the M Components and M Repairmen System.

c04.indd   59c04.indd   59 11-06-2022   16:26:0011-06-2022   16:26:00



4  Markov Processes60

	s s se ep p p( )− ( )= ( )0 Λ ,� (4.11a)

	 s seI p p−  ( )= ( )Λ 0 .� (4.11b)

Hence, p p Ie s s( )= ( ) − 
−0 1

Λ  where ⋅ 
−1  denotes the inverse matrix. By inverting the 

Laplace transform pe s( ) back to the time domain, we could obtain the state probability 
vector p t( ).

When t→∞, the state probabilities pi t( ) of CTMC may reach steady values πi, which 
are named steady-state probabilities. To compute the steady-state probabilities, we want 
the left-hand side of Equation (4.7) to equal zero. Then, the following relation holds

	 ∑
∈
≠

− =
j S
j i

j ji i iiπ λ πλ 0� (4.12)

Denote the row vector ππ = ∈( )πi i S, . From Equation (4.12), we obtain

	����= 0, � (4.13)

	ππeT =1,� (4.14)

where e= …( )1 1, , is the unit vector. Equation (4.14) is the normalizing equation of ππ. By 
solving Equations (4.13) and (4.14), we obtain

	π= ∀ ∈
∑ ∈

D
D

i Si

j S j
, , � (4.15)

where Di represents the determinant of the square matrix obtained from Λ, by deleting 
the i-th row and column.
Example 4.3

We consider again the one component and one repairman system. Assume the compo-
nent is working at t= 0 , so the initial state probability vector is p 0 1 0( )=( ), . According 
to Equation (4.11b), we have

p p Ie s s

s
s

s s

( )= ( ) − 

= 


+ −
− +













=
+

−

−

0

1 0

1

1

1

2

Λ

λ λ
µ µ

 
λλ µ

µ λ
µ λ

µ
λ µ

λ
λ µ

+





+

+













=
+
+ +( ) + +( )










s

s
s

s
s s s s

1 0







We invert the Laplace transform and derive
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4.2  In homogeneous Continuous Time Markov Chain 61

4.2  In homogeneous Continuous Time Markov Chain

In a HCTMC, the transition rates are constant. However, in many realistic situations 
(e.g. cracking of nuclear component and battery aging), the external factors influencing 
the degradation processes are changing, so the transition rates can no longer be regarded 
as time-independent. Under these circumstances, the ICTMC is more suited than 
HCTMC for modeling the degradation process.

Let X t t( ) ≥{ }, 0  be an ICTMC on a state space S M= …{ }0 1, , , , which is finite or infi-
nite. As in the previous section, we define the transition rate as

	 lim
,

,
∆

∆

∆t

ii
ii

p t t
t

t
→

− ( )
= ( )

0

1
λ 	 (4.16)

	 lim
,

,  ,
∆

∆

∆t

ij
ij

p t t
t

t i j
→

( )
= ( ) ≠

0
λ 	 (4.17)

where λij t( ) is called the transition rate from state i to state j  at time t, and p t tij ,∆( ) is 
the transition probability of the ICTMC from state i to state j  at time t. Due to the time 
dependency, to obtain the closed-form solutions to the ICTMC differential equations 
(4.18) is difficult:

	 d
dt

p t p t t p t ti
j S
j i

j ji i
j S
j i

ij( )= ( ) ( )− ( ) ( )∑ ∑
∈
≠

∈
≠

λ λ . 	 (4.18)

p t e et t( )=
+
+
+ +

−
+













− +( ) − +( )µ
λ µ

λ
λ µ

λ
λ µ

λ
λ µ

λ µ λ µ

The first vector element is the system instantaneous availability (i.e. the probabil-
ity of being in operational state 0 at time t), which can be given as

p t e t
0 ( )= +

+
+

− +( )µ
λ µ

λ
λ µ

λ µ .

and the second vector element is the system instantaneous unavailability (i.e. the 
probability of being in failed state 1 at time t)

p t e t
1( )= +

−
+

− +( )λ
λ µ

λ
λ µ

λ µ .
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4  Markov Processes62

To obtain the state probability vector p t p t i S ti( )= ( ) ∈ ≥( ), , 0 , Equation (4.18) has to be 
solved by numerical methods. In this chapter, we introduce two kinds of numerical 
methods: the Runge-Kutta methods and the Monte Carlo simulation (MCS) method.

The Runge-Kutta Methods compose an important family of iterative approximation 
methods used to solve the differential equations of ICTMC. Let Λ t t tij( )= ( ) ≥( )λ , 0  
denote the transition matrix of ICTMC. Equation (4.18) can be rewritten as

	 d
dt

t t t t tp p f p( )= ( ) ( )= ( )( )Λ , .	 (4.19)

The main idea of Runge-Kutta methods is to compute p t t+( )∆  by adding to p t( ) the 
product of the weighted sum of s , which derivatives at different locations within the time 
interval t t t, +( )∆ . Mathematically, p t t+( )∆  can be expressed as

	p pt t t t b
i

s

i i+( )= ( )+ ⋅ ⋅
=
∑∆ ∆

1

γγ ,	 (4.20)

	γγ γγi i
j

s

ij jt c t t t a= + ⋅ ( )+ ⋅ ⋅










∑
=

f p∆ ∆, ,
1

	 (4.21)

where f  is the first-order derivative of p t( ) at ( , )t c t t t ai
j

s

ij j+ ⋅ ( )+ ⋅ ⋅
=
∑∆ ∆p

1

γγ , and a bij i,    

and ci  are the coefficients which are usually arranged in a Butcher Table:

	

c a
c

c

a

a
b

a
a

a
b

s s

s

s

ss

s

1 11

2 21

1

1

1

2

…
…

…
…

� � � �

 

. 	 (4.22)

A Runge-Kutta method is consistent if  
j

s

ij ia c
=
∑ =

1

. The Runge-Kutta method is explicit if 

the Butcher Table in Equation (4.22) is a lower triangular matrix; if it is not necessarily a 
lower triangular, then the Runge-Kutta method will be implicit, which is more general 
than the explicit case.

The elements in the Butcher Table are coefficients chosen to match as many of the 
terms in the Taylor series

	
p p p p pt t t t t t t t t

t
s

s

+( )= ( )+ ⋅ ( )+ ⋅ ( )+ ⋅ ( )

+…+

( ) ( ) ( )∆ ∆
∆ ∆

∆

1
2

2
3

3

2 3! !

!!
,⋅ ( )+ ( )( ) +p s st O t∆ 1

	 (4.23)

c04.indd   62c04.indd   62 11-06-2022   16:26:1411-06-2022   16:26:14



4.2  In homogeneous Continuous Time Markov Chain 63

so as to minimize the approximation error. The vector quantity p i( ) can be expressed by 

f p= ( )1  and its derivatives, for example

 p f f f
p

2( ) =
∂
∂
+ ⋅

∂
∂t

 and p f f f
p

f f
p

f
p

f f f
p

3
2

2

2
2

2

22( ) =
∂

∂
+ ⋅ ⋅

∂
∂ ∂

+ ⋅
∂

∂
+
∂
∂
⋅
∂
∂
+ ⋅

∂
∂








t t t
.

On the other hand, γγ i  can also be expressed by f  and its derivatives, by using the 
Taylor series

	  , , ,γγ γγi i
j

s

ij jt t c t
t

t t a t t t= ( )( )+ ⋅ ⋅
∂
∂

( )( )+ ⋅ ⋅ ⋅
∂
∂

( )∑
=

f p f p f
p

p∆ ∆
1

(( )+ ( )O t∆ 3 . 	 (4.24)

The coefficients in the Butcher Table (4.22) can, thus, be obtained by setting the right-
hand side of Equation (4.20) equal to the Taylor series of p t t+( )∆  in Equation (4.23). 
For example, a general form of an explicit 2-stage Runge-Kutta Method is

	p pt t t t b
i

i i+( )= ( )+ ⋅ ⋅
=
∑∆ ∆

1

2

γγ ,	 (4.25)

where γγ1 = ( )( )f pt t, , γγ γγ2 2 21 1= + ⋅ ( )+ ⋅ ⋅( )f pt c t t t a∆ ∆,  and the coefficients are in a 
lower triangular Butcher Table. By Taylor expansion, we obtain

	γγ 2 2 21 1= ( )( )+ ⋅ ⋅
∂
∂

( )( )+ ⋅ ⋅ ⋅
∂
∂

( )( )f p f p k f
p

pt t c t
t

t t a t t t, , , ,∆ ∆ 	 (4.26)

	
p p f p

f p

t t t b b t t t

c b
t

t t a

+( )= ( )+ + ⋅ ⋅ ( )( )
+ ⋅ ⋅

∂
∂

( )( )+

∆ ∆  ( ) ,

,

1 2

2 2 21  ⋅⋅ ⋅ ( )( )⋅ ∂
∂

( )( )










 ⋅ + ( )b t t f

p
t p t t O t2

2 3f p, , .∆ ∆
	 (4.27)

Therefore, b b1 2 1+ = , c a2 21=  and c b a b2 2 21 2 1 2⋅ = ⋅ = / .
In the MCS approach, Equation (4.18) is rewritten as

	 d
dt

p t p t t t p t ti
M

j
j i

j ji j i i( )= ( ) ( ) ( )− ( ) ( )∑

=
≠

0

ρ λ λ ,	 (4.28)

where λ λi
j
j i

M

ijt t( )= ( )
=
≠

∑
0

 and ρ λ λji ji jt t t( )= ( ) ( )/ . The quantity ρ ji t( ) is regarded as the 

conditional probability that given the transition out of state j at time t, with the transition 
arrival state i. To rewrite Equation (4.28) in an integral form, we use an integrating 

factor B t t dti
t

i( )= ( )














∫exp

0

λ ' '  is used. Multiplying both sides of Equation (4.28) by the 

integrating factor, one obtains
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	 d
dt

p t B t B t p t t ti i i
j
j i

M

j ji j( ) ( )



 = ( ) ( ) ( ) ( )

=
≠

∑
0

ρ λ .	 (4.29)

Taking the integral of both sides, we have

	

p t B t p B t p t t ti i i

t

i
j
j i

M

j ji j( ) ( )= ( )+ ( ) ( ) ( ) ( )







 ′ ′ ′∫ ∑

=
≠

0
0 0

' ρ λ














≡ ( )= ( ) − ( )















+′ ′∫

∫

dt

p t p t dti i

t

i

t

'

exp0
0

0

λ

exxp − ( )
















( ) ( ) ( )′ ′ ′
′ =

≠

∫ ∑
t

t

i
j
j i

M

j ji jt dt p t t t dtλ ρ λ'' ''
0

''.

	 (4.30)

In the MCS of the Markov process, the probability distribution function p ti ( ) is not sam-
pled directly. Instead, the holding time at each given state i is sampled, and, then, the 
transition from state j to another state j  is determined. This procedure is repeated until 
the accumulated holding time reaches the predefined time horizon. The resulting time 
sequence consists of the holding times at different states. To sample the holding time, the 
probability density (or total frequency) of departing state i, ψi t( ), can be obtained by 
multiplying λi t( ) to both sides of Equation (4.30)

	

ψ λ

λ λ

i t i t pi t

pi i t
t

t dt

t

i

( )= ( ) ( )

= ( ) ( ) − ( )
















+

′ ′∫0
0

0

exp

∫∫ ∫( ) − ( )














 =
≠

∑ ( ) (
′

′ ′λ ψ ρλi t
t

t dt
j
j i

M
j t ji t

t

iexp '' ''
0

))

= ( ) ( )+
=
≠

∑ ( ) ( ) ( )′ ′ ′∫

dt

pi i t
j
j i

M t

j t ji t i t t dt

'

| | ',0 0
0 0

φ ψ ρ φ

	 (4.31)

where

	φ λ λi i
t

t

it t t t dt t t| exp   ,′ ′′ ′′ ′( )= ( ) − ( )















≥

′
∫ 	 (4.32)

c04.indd   64c04.indd   64 11-06-2022   16:26:2411-06-2022   16:26:24



4.2  In homogeneous Continuous Time Markov Chain 65

is defined as the conditional probability density function (pdf) that the process will 
depart state i at time t given that the process is at state i at time ′t . Equation (4.31) indi-
cates that the pdf ψi t( ) consists of the sum of contributions from the random walks with 
transitions passing through all the states (including state i) from time 0 to t. From 
Equation (4.31), the MCS procedure mentioned above can be derived: the cumulative 
distribution function (cdf) of the holding time, as shown in Equation (4.33), is obtained 
by integrating Equation (4.32)

	Φi
t

t

it t t dt| exp′ ′′ ′′( )= − − ( )














′

∫1 λ 	 (4.33)

Now, given the current time ′t  at state i, the holding time t can be sampled through 
direct inversion sampling, acceptance-rejection sampling, and other sampling tech-
niques. Following the departure from state i, the sampling of the arrived state j*  can be 
done by choosing a uniformly distributed random number U0  and selecting the state 
which satisfies the following condition

	
l

j

il
l

j

ilt U t
=

−

=
∑ ∑( )< < ( )

0

1

0
0

* *

.ρ ρ 	 (4.34)

Example 4.4

We consider a non-repairable system with two pumps. Both pumps have a time-depend-
ent failure rate λ t t( )= 0 3.  where t is the system time of evolution. The failure of each 
pump can lead to a system crash or a safe shutdown of the other pump. The transition 
diagram is shown in Figure 4.3.

The corresponding transition rate matrix is

ΛΛ t

t t
t t

t
t

( )=

−
−




















0 6
0
0
0

0 36
0 3
0
0

0
0 18

0
0

0 24
0 12

0
0

. .
. .

.

. 





The numerical solution techniques are applied to this problem. Table 4.1 summarizes 
the probabilities of the safe and unsafe failure states at the time steps from 1 to 5.

As to the computational efficiencies, the Runge-Kutta method (time interval size = 0.1) 
takes 0.2899 seconds, and MCS (50,000 runs) takes 36.24 seconds to obtain the state 
probabilities presented in Table 4.1.
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4.3  Semi-Markov Process (SMP)

In reliability engineering, Markov chains are frequently used for modeling multi-state 
systems (MSSs). The sojourn time in a Markov process usually refers to the time it takes 
for an MSS to degrade from one state to another. In CTMCs, the sojourn time is assumed 
to follow an exponential distribution. However, in practical industrial systems, the deg-
radation time typically shows a non-exponential distribution, e.g. Weibull distribution, 
gamma distribution, and Birnbaum-Saunders distribution, etc. Therefore, we need a 
more flexible model to describe such systems.

An SMP is one that changes states in accordance with a Markov chain but takes arbi-
trary amounts of time between changes. Let X t t( ) ≥{ }, 0  denote an SMP defined on a 
state space S M= …{ }0 1, , , , which is finite or infinite. We decompose the SMP into sev-
eral parts: denote T T kk= ∈{ }, N  as the successive time points when state changes 
in X t t( ) ≥{ }, 0  occur J J kk= ∈{ }, N  as the process visited states at the corresponding 
time points Tk . Let Y Y kk= ∈{ }, N  be the successive sojourn times on the visited state, 
and obviously, it is Y T T kk k k= − ∀ ∈+1 , N . The relationship between the pro-
cess X t t( ) ≥{ }, 0  and the process J J kk= ∈{ }, N  is given by

Table 4.1  Results for the degradation model obtained by the two solution techniques.

Time Runge-Kutta method MCS

Prob
(safe failure)

Prob
(unsafe failure)

Prob
(safe failure)

Prob
(unsafe failure)

1 0.0099 0.1284 0.1015 0.1221

2 0.0843 0.3497 0.0857 0.3530

3 0.2098 0.5175 0.2124 0.5142

4 0.3045 0.6004 0.3012 0.5977

5 0.3456 0.6302 0.3551 0.6331

1 pump2 pumps

Unsafe failure

Safe failure
0.18t0.36t

0.12t0.24t

Figure 4.3  Degradation Process of a Two-pump System.
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4.3  Semi-Markov Process (SMP) 67

	X t X J T t T t kt k k k( )= = ≤ < ≥ ∈+, , , ,  1 0 N 	 (4.35)

or equivalently,

	X J J Xt N t k Zk
= =( ), ,or 	 (4.36)

where N t k T tk( )= ∈ ≤max{ | }N  is the counting process of the number of jumps in 0,t  ,  
Z t T X Xk k k k= > ≠− −min{ | }1 1  for all k ∈N*and Z0 0=  where N*denotes the set of posi-
tive integers. The sample path of an SMP is demonstrated in Figure 4.4.

Thus, the following conditional independence relation holds:

	

Pr | ,  ,

( ,

X t t j X t i X u h u u t

J j T Tk k k

+( )= ( )= ( )= ( ) ≤ <( )
= = − ≤+ +

∆

∆

 

Pr

0

1 1 tt J T J T J i T
J j T T t J i

k k

k k k k

| , , , , , ,
( , | ).

0 0 1 1

1 1

( ) ( )… =( )
= = − ≤ =+ +Pr ∆

	 (4.37)

If the sojourn time at any state (T T kk k+ − ∀ ∈1 , N) follows the exponential distribution 
with parameter λ , the SMP reduces to the HCTMC:

	

Pr | ,  ,

( ,

X t t j X t i X u h u u t

J j T Tk k k

+( )= ( )= ( )= ( ) ≤ <( )
= = − ≤+ +

∆

∆

 

Pr

0

1 1 tt J T J T J i T
J j T T t J i

k k

k k k k

| , , , , , , )
( , | )

0 0 1 1

1 1

( ) ( )… =( )
= = − ≤ =+ +Pr ∆

== = = −( )+
−Pr( | ) .J j J i ek k

t
1 1 λ∆

	 (4.38)

For the sojourn process, Y Y kk= ∈{ }, N , we define the cumulative distribution of the 
sojourn time as

	H t Y t J i i S ki k k( )= ≤ =( ) ∀ ∈ ∈Pr | , , N 	 (4.39)

and, the probability density distribution of the sojourn time

	h t d
dt

H t i S ki i( )= ( ) ∀ ∈ ∈, , NN	 (4.40)

Figure 4.4  Sample Path of an SMP.
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the conditional cumulative distribution of the sojourn time

	F t Y t J i J j i j S kij k k k( )= ≤ = =( ) ∀ ∈ ∈+Pr | , , , ,1 N	 (4.41)

and the conditional probability density distribution of the sojourn time

	f t d
dt

F t i j S kij ij( )= ( ) ∀ ∈ ∈, , , N 	 (4.42)

Note that the process J J kk= ∈{ }, N  is the embedded Markov chain of the SMP. The 

transition probability matrix P ' , ,'= ∈( )p i j Sij  of J J kk= ∈{ }, N  is constructed by

	 ′ = = =( ) ∀ ∈ ∈+p J j J i i j S kij k kPr | , , , .1 N 	 (4.43)

We define the matrix Q t Q t i j S tij( )= ( ) ∈ ≥( ), , , 0 , with the cumulative semi-Markov 
kernel

	Q t J j Y t J i i j S kij k k k( )= = ≤ = ∀ ∈ ∈+Pr( , | ), , ,1 N 	 (4.44)

and the semi-Markov kernel

	q Qt d
dt

t( )= ( )	 (4.45)

Now, any matrix-valued function q t q t i j S tij( )= ( ) ∈ ≥( ), , , 0 , which satisfies the follow-

ing properties, could be the semi-Markov kernel: (1)  q t i j S tij ( )≥ ∀ ∈ ≥0 0, , , ; (2) 

q i j Sij 0 0( )= ∀ ∈, , ; (3) 
0

1
∞

∈
∫ ∑ ( ) = ∀ ∈

j S
ijq t dt i S, .

Therefore, we obtain

	p Q t i j S tij t ij
' lim , , ,= ( ) ∀ ∈ ≥

→∞
0 	 (4.46)

and

	 f t

q t

p
p

p
i j S tij

ij

ij
ij

t ij

( )=
( )

>

=

∀ ∈ ≥










=∞{ }

'
'

'

,

,
, , ,

0

1 0
0



	 (4.47)

	h t q t i S ti
j S

ij( )= ( ) ∀ ∈ ≥∑
∈

, , 0 	 (4.48)
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4.3  Semi-Markov Process (SMP) 69

Example 4.5

Consider the three-state semi-Markov system given in Figure 4.5. The distribution of the holding 
times between the states are F12 1= ( )exp λ , F21 1 1= ( )Weibull α β, , F23 2 2= ( )Weibull α β, , and 
F31 2= ( )exp λ , respectively.

The transition probability matrix of the embedded Markov chain is

′ =





















P

0 1 0

0
1 0 0
21 23p p' ' ,

where

p p F t dF t t
21 23

0
23 21

0

1

1 1
1 1' '= − = − ( )



 ( )=











∞ ∞

∫ ∫
β
α α 

−









−





















−β β β

α α

1 1 21

1 2
exp t t


dt.

Hence, we have the semi-Markov kernel of the three-state system as

q t
q t

q t q t
q t

( )=
( )

( ) ( )
( )





















0 0
0
0 0

12

21 23

31

,

where

q t t

q t p t t

12 1 1

21 21
1

1 1

11

( )= −( )

( )=










−
−

λ λ

β
α α

β

exp ,

exp'

αα

β
α α

β

1

23 23
2

2 2

1





















( )=





,

'q t p t 




−






















( )=

−β β

α

λ

2 21

2

31 2

exp ,t

q t eexp .−( )λ2t

21

3

Q21

Q23Q31

Q12

Figure 4.5  A Three-state semi-Markov System.
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4  Markov Processes70

4.3.1  Markov Renewal Process

The process J T J T kk k, , ,( )= ( ) ∈{ }N  is a Markov renewal chain (MRC) associated with 
the semi-Markov kernel q t( ), if it satisfies the following condition:

	
Pr

= Pr
( , | , , , , , , )

(
J j T T t J T J T J i T

J j
k k k k k

k

+ +

+

= − ≤ ( ) ( )… =( )
=

1 1 0 0 1 1

1 ,, | )T T t J ik k k+ − ≤ =1
	 (4.49)

From Equation (4.36), we can see that the SMP is a stochastic process generated on the 
basis of an MRC.

We define an integral linear equation of the form

	ϕ ϕi t g i t q s j t s ds
y S

t

ij, , ,( )= ( )+ ( ) −( )
∈
∑∫

0

	 (4.50)

as a Markov renewal equation where q t q t i j S tij( )= ( ) ∈ ≥( ), , , 0  is the semi-Markov 

kernel, g i t,( ) is a given function defined on S× ≥R 0 , where R≥0 denotes the set of 

positive real numbers, and ϕ  is the unknown function. Let us denote ϕϕ t i t i S( )= ( ) ∈( )ϕ , ,  

and g t g i t i S( )= ( ) ∈( ), , ; then

	ϕϕ ϕϕt t t t( )= ( )+ ( ) ( )g q * , 	 (4.51)

where * denotes the convolution product. And Equation (4.51) is equivalent to

	 �� ��I q− ( )( ) ( )= ( )t t g t* , 	 (4.52)

where δ is the Kronecker delta.
We define the transition probability matrix of the SMP as the matrix-valued func-

tion P t p t i j S tij( )= ( ) ∈ ≥( ), , , 0 , with

	
 p t X s t j X s i

X t j X i i j S t
ij ( )= +( )= ( )=( )
= ( )= ( )=( ) ∀ ∈ ≥

Pr |

Pr | , , , .0 0
	 (4.53)

and we write

	

p t X t j X i

X t j T t X J i

X t

ij ( )= ( )= ( )=( )
= ( )= > ( )= =( )
+ ( )=

Pr

Pr ,

|

|

Pr

0

01 0

jj T t X J i

Y t E T t X t j Jij J T

,

Pr {( ) ( | ,,

1 0

1 1 1

0

1 1

≤ ( )= =( )
= >( )+ < ( )=

|

Prδ TT

H t dQ s p t sij i
l S

t

il lj

1

0

1

( )

= − ( )( )+ ( ) −( )
∈
∑∫

)}

,δ

	 (4.54)
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4.3  Semi-Markov Process (SMP) 71

Example 4.6

We consider a system with state space S i i s= ∈ ≤ ≤{ | }N 0 , and consider a partition of S  
into two non-empty sets, S0 and S1 , where S0 contains all the functioning states and S1  

contains all the failure states. Set S r0 =  and S s r1 = −  where ⋅  denotes the cardinal 

number of the set. Let q t q t i j S tij( )= ( ) ∈ ≥( , , , )0  denote the semi-Markov kernel of the 
system and the initial state probability vector αα = ( )= ( ) ∈( )p 0 0p i Si , . Now, consider the 
following partition of the semi-Markov kernel:

q
q q
q q

t
t t
t t

( )= ( ) ( )
( ) ( )

















00 01

10 11
,

and the partition of the initial state probability vector:

αα αα αα= 

0 1 .

The reliability of the system at time t, R t( ), can, then, be expressed by the probability of 
the event ∀ ∈   ( )∈{ }u t X u S0 0, , , i.e.

R t u t X u S

W t S

W t
j S i S

( )= ∀ ∈   ( )∈( )
= ( )∈( )
= ( )=∑∑
∈ ∈

Pr , ,

Pr

(

0 0

0

0 0

Pr jj W i W i

i p t
j S i S

ij

| )

,

0 0

0 0

( )= ( )=( )

= ( ) ( )∑∑
∈ ∈

Pr

α

where δij is the Kronecker delta, and E ⋅{} denotes the expectation. Equation (4.54) can 
be then, equivalently written in matrix form:

	P I H q Pt t t t( )= − ( )+ ( ) ( )* .	 (4.55)

Similarly, we can obtain

	F Q q Ft t t t( )= ( )+ ( ) ( )* ,	 (4.56)

where F t F t i j S tij( )= ( ) ∈ ≥( ), , , 0  denotes the matrix of the conditional cumulative dis-
tribution of sojourn time of the SMP. The problem of deriving the transition probability 
matrix or the conditional cumulative distribution of sojourn time of the SMP is equiva-
lent to solve the corresponding Markov renewal Equations (4.55) and (4.56).
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4  Markov Processes72

where W t t( ) ≥{ }, 0  is an SMP with state space S0∪{ }∆ , ∆ is an absorbing state. To 
state it more clearly, let TS1

 be the hitting time of S1  by the process X t t( ) ≥{ }, 0 ,  
then W t( ) shall satisfy

W t
X t t T

t T
S

S
( )= ( ) <

≥







, 
, 

,1

1
∆

and the semi-Markov kernel of W t t( ) ≥{ }, 0  is

q q00
0

0
t t( ) ( )













0
,

where q q I0
01t t s r( )= ( ) −  and where Is r−  denotes an s r−( )-order identity matrix. Thus, 

we have

 R t t t t tr r r( )= ( ) = − ( )( ) + ( ) ( )( )αα αα αα0 00 0 0 0 00 001 1 1P I H q P* ,

where 1r  denotes a r -dimensional unit column vector, and P00 t( ) denotes the 
corresponding partition of the transition probability matrix. Similarly, the maintainability 
of the system , which indicates the probability that the system will be restored to the state 
of functioning within a time period t, if it fails, satisfies

 M t t t t ts r s r s r( )= − ( ) = − ( )( ) + ( ) ( )( )− − −1 11 11 1 1 1 11 11αα αα ααP I H q P1 1 * ..

We consider the partition of the mean sojourn time as m m m=( )0 1, T  where ⋅( )T  denotes 
the transpose matrix. The stationary distribution of the SMP is

  ,��
��
= ( )1

m
v mdiag

and the steady-state availability of the system is

 A diagT
s= ( )1

υυm
m v 1 ,

where υυ  denotes the stationary distribution of the embedded Markov chain J J kk= ∈{ }, N  
and diag ⋅( ) denotes the diagonal matrix. The mean time to failure (MTTF) and mean 
time to repair (MTTR) of the system are, respectively,

 MTTF = −( )−αα0 00
1

0I P m ,

	MTTR= −( )−αα1 11
1

1I P m .

To obtain the aforementioned functions, in this chapter, we have introduced the Laplace 
transform of the Markov renewal equations. Take Equation (4.51) as an example, let us 
define G t g t i S ti( )= ( ) ∈ ≥( ), , 0 , where g t H ti i( )= − ( )1 . Because

	 g s e Q t dt
s

Q si
st

l s
il

l s
il
e( )( )= − ( )











= − (

∞
−

∈ ∈
∫ ∑ ∑
0

1 1 1 ))










,� (4.57)
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4.3  Semi-Markov Process (SMP) 73

Example 4.7

We continue with the three-state semi-Markov system given in Figure 4.5. Suppose that 
states 1 and 2 are the working states, and state 3 represents the failure state, which means 
we have the partition S0 1 2={ },  and S1 3={ }. By solving the Markov renewal equations, 
we obtain

 R t t t r( )= − ( )( ) − ( )( )−
αα0 00

1
0 1I Q I H* ,

	M t t t s r( )= − − ( )( ) − ( )( )−
−1 11 11

1
1αα I Q I H* .

Therefore, we obtain

 R t Q Q Q Q t Q Q Q( )= ( ) −( ) −( )( )+ ( ) −( ) −
− −

α α1 1 1 2 1 121 12
1

12 23 21 12
1* * * 223( )( )t ,

M t Q t( )= − ( ) − ( )( )1 3 1 31α .

Assume we have the stationary distribution of the embedded Markov chain as 

υ=
+
( )1

2
1 1

p
p, ,  and the mean sojourn time of the SMP as m=( )m m m T

1 2 3, , ; then, we 

obtain

m Q t dt1
0

211= − ( )( )
∞

∫ ,

	m Q t Q t dt2
0

21 231= − ( )− ( )( )
∞

∫ ,

we can take the Laplace transform of Equation (4.51) and derive

	1 1
s

s s
s

s se e e eP G Q P( )= ( )+ ( ) ( ).� (4.58)

Hence,

	1
1

s
s s s s se e e e eP I Q G U G( )= − ( )



 ( )= ( ) ( )
−

, � (4.59a)

	P U Gt d u t u
t

( )= ( ) −( )∫
0

. � (4.59b)

where U Qt U t i j S t tij
n

n( )= ( ) ∈ ≥( )= ( )
=

∞
( )∑, , , 0

0

 and ⋅ 
( )n  denotes the nth power  of the 

matrix. Then, U tij ( ) denotes the expected number of visits to state j in the time interval 
0,t  , given that the process starts from state i. We call U(t) the Markov renewal 

functions.

c04.indd   73c04.indd   73 11-06-2022   16:27:0811-06-2022   16:27:08



4  Markov Processes74

4.4  Piecewise Deterministic Markov Process (PDMP)
PDMP is adopted to treat the system dynamics and the degradation dependence in multi-
state physics systems. For this, the degradation processes are classified into two groups: 
(1) L= {L1, L2, …, LM }  modeled by M physics-based models and (2) K = {K1, K2 , …, KN } 
modeled by N multi-state models (MSMs) where L m Mm ,  , , , = …1 2   and K n Nn,  , , , = …1 2   

are the indexes of the degradation processes. Let X tLm

� ����
( ) denote the time-dependent con-

tinuous variables of the degradation process Lm  and Y tKn
( ) denote the state variable of 

the degradation process Kn.
Dependence between degradation processes may exist within each group and between 

the two groups, for example, the evolution of X tLm

� ����
( ) may be influenced by the degrada-

tion states of X t m mm′ ( ) ≠ ′
� ����

,   and Y tKn
( );the transition rates of Y tKn

( ) may be influenced 

by the degradation states of Y t n nKn′
( ) ≠ ′,   and X tLm

� ����
( ). An illustration of a system with 

two dependent degradation processes is shown in Figure 4.6 where the further degraded 
states of K1(L1) lead to higher degradation rates of L1 (higher transition rates of K1  to 
step to further degraded states). In this particular case, the degradation rate of X tL1

� ���
( ) 

changes at the same time when Y tK1
( ) changes. However, this does not necessarily occur 

in all cases because the degradation rate of X tL1

� ���
( ) may also depend on other influencing 

factors and the related coefficients in the physics equations.

	m Q t dt3
0

311= − ( )( )
∞

∫ ,

and the stationary distribution

ππ =( )=
+ +

( )π π π1 2 3
1 2 3

1 2 3
1, , , , .

m m pm
m m pm

Thus, the steady-state availability is obtained as

A m m
m m pm

=
+

+ +
1 2

1 2 3
.

The MTTF and MTTR are, respectively,

MTTF
p

m m

MTTR m

=
−

+( )

=
′

1
1 21

1 2

3.
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Let

	
�

� ���

� ����

���
�

Z t

X t

X t

X t
L

LM( )=

( )

( )













=
1

 (( )

( )

( )












= ( )






Y t

Y t
Y t

K

KN

1

�
���

 









∈ = ×E SRdL � (4.60)

denote the overall degradation processes of the system where E  is the space combining 

RdL  (d dL
m

M

Lm
=

=
∑

1

) and S . The evolution of 
�
Z t( ) involves two parts:

1)	 The stochastic behavior of 
�

Y t( ), which is governed by the transition rates depending 
on the degradation states of all the degradation processes in the system:

Figure 4.6  An illustrative example of a system with two dependent degradation processes. (Top 
Figure: degradation process of L1; Bottom Figure: degradation process of K1).
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lim P Y t t j X t Y t i
t n

N

Kn∆
∆

   
     ,  , 

→ =

+( )= ( ) ( )= =





0 1

� � ��� � �
�� ��K U






= ( )( ) ∀ ≥ ∈ ≠

/

 |    ,  ,    ,  , , 

∆t

j X t t i j iiλ�
� ��� � � � �

�� ��K 0 jj.
� (4.61)

2)	 The deterministic behavior of X t 
���
( ) between two consecutive jumps of 

�
Y t( ), which is 

described by the deterministic physics equations depending on the degradation states 
of all the degradation processes in the system

	

�
���

� ���

� ����
�X t

X t

X t

L

LM

( )=
( )

( )












1

Ù

Ù


=

( )( )

( )

f X t t

f X

L
Y t

L

L
Y t

M

1 1

�

�

� ����� ���

� �����
�

(   ,   | )

(

 θθ

   ,   | )
���

� ���

t t

f

L

L
Y t

M
( )













= ( )

 θθ
���� ���

(   ,   | ).X t t
m

M

Lm
( ) =

=

   Uθθ θθL
1

� (4.62)

Let Tk  denote the k -th transition time of the process 
�

Y t( ). The set Z Tk k k

� ��
,  { }

≥0
 is, then, a 

Markov renewal process [10] defined on the space E× +R . The probability that the 

whole system will step to state 
�
j  from state 

�
i , 
� � � �
i j i j, ,∈ ≠E    in the time inter-

val T T tn n,   + ∆ , given Z Tk k k n

� ��
,  { }

≤
, is:

	
P Z j T T T t Z T Zn n n n k k k n n+ +

≤ −
= ∈ +  { }1 1 1

� ����� � � �� � ��
, , | , ,       ∆ =={ }










= = ∈ + + +

�

� ����� � � �
i T

P Z j T T T t Z

n

n n n n n

,

, , |

 

   1 1 ∆
�� � � � � �
=




∀ ≥ ∈ ≠i n i j i j,   , , , .0    E

	 (4.63)

Let F  denote the predefined space of the failure states of 
�
Z t( ); then, the system reliabil-

ity at time t is defined as

	R t P Z s s t( )= ( )∉ ∀ ≤





�
F , . 	 (4.64)

To consider a general setting, F  is dependent on system topology, which is problem-
specific and can be determined by using reliability analysis tools, such as fault tree 
analysis.

For reliability assessment, MCS and the finite-volume (FV) method are two widely 
used numerical approaches to solve PDMP. First, we illustrate a detailed description of 
the procedures of the MCS method. We rewrite Equation (4.63) as
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P Z B T T T t Z in n n n n

B

+ +∈ ∈ +  =





= ∫∫
1 1

0

� ����� � �� �
, , | ,

*

     ∆ θθK

,, 

, ,  | , ,  ,   ,  ,
∆

∆
t

N i dz ds n t i B
 

( ) ∀ ≥ ≥ ∈ ∈
� � �� �

   θθK E0 0 ε  � (4.65)

where B is a measurable set on E, ε is a σ -algebra of E  [10], and N i dz ds
� � ��
, ,  |  θθK( ) is a 

semi-Markov kernel on E , which verifies that ∫∫ ≤ ∀ ≥ ∈
 E t

N i dz ds t i
* ,  

( , ,  | ) , ,  
0

1 0
∆

∆
� � �� �

   θθK E. 

It can be further developed as

	N i dz ds dF s i s dzK i K
� � �� � � ��

�, ,  | | ,  , |  θθ θθ θθ( )= ( ) ( )β K 	
(4.66a)

where

	NdF si
� |θθK( )	

(4.66b)

is the pdf of T Tn n+ −1  given Z in

� �� �
=  and

	β
� � ��
i s dz,  , | ¸ K( )	

(4.66c)

is the conditional probability of state Zn+1

� �����
 given T T sn n+ − =1 .

Then, the MCS method can be used to estimate the reliability of the system within a 
certain mission time Tmiss , given the initial system state Z0

� ��
 at time T0 0= . The method to 

simulate the behavior of the system consists of sampling the transition time from 
Equation (4.66b) and the arrival state from Equation (4.66c) for the components in the 
second group and, then, using the physics Equation (4.62) to calculate the evolution of 
the components in the first group within the transition times. Each simulation trial con-
tinues until the time of system evolution reaches Tmiss  or until the system enters the fail-
ure space F , Afterwards, the occurrence of the simulation trial is recorded for the 
statistical estimation of the system reliability.
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Set Nmax  (the maximum number of replications) and k= 0  (index of MCS trials)
Set k'= 0  (number of MCS trials that end in failure state)
While k Nmax<

Initialize the system by setting Z
X

Y
'
��� �

�=
( )









0

 (initial system state) and the time 

T = 0  (initial system time)

Set ′ =t 0 (state holding time)
While T Tmiss<
Sample a random value of ′t  from the pdf Equation (4.66b)
Sample an arrival state Y '

���
 for stochastic process 

�
Y t( ) from all possible states, 

by using the conditional probability function Equation (4.66c)
Set T T t= + '
Calculate X t 

���
( ) in the interval T t T− ′,   by using the physics equations 

Equation (4.62)

Set Z
X T

Y
'

 

'

���
���

���=
( )











If T Tmiss≤

If ∃ ∈ −  ( )= ( )










∈′t T t T Z t

X t
Y

,  ,
 

  
�

���

� F

Set ′ ′= +k k 1
Break
End if

Else (when T Tmiss> )

If ∃ ∈ −  ( )=
( )










∈′t T t T Z t

X t
Ymiss, ,
 

  
�

���

� F

Set ′ ′= +k k 1
Break
End if

End if
Set Y Y
�� ���
= ′

End While
Set k k= +1

End While

The procedure of the MCS method [11] is as follows:
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The estimated component reliability at time Tmiss  can be obtained as

	R T k
Nmiss

max

�( )= − ′1 � (4.67)

where k’ represents the number of trials that end in the failure state of the system, and 
the sample variance is [12]

	var
R T R T

NR T

miss miss

maxmiss
�

� �

( ) =
( ) − ( )( )

−

1

1
. � (4.68)

A FV scheme discretizing the state space of the continuous variables and the time space 
of PDMP is an alternative that can, in certain cases, lead to results comparable to the 
MCS method but in significantly shorter computing times. Here, we illustrate an explicit 
FV scheme for system reliability estimation [13].

The FV method can be applied under the following assumptions:

	● The transition rates λ�
� � �

i j i j| , , ,⋅( ) ∀ ∈   θθK S are continuous and bounded functions from 
RdL  to R+.

	● The physic equations f iL
i

L

�� �� �   |   ⋅ ⋅( ) ∀ ∈, ,θθ S are continuous functions from R RdL× + to 
RdL  and locally Lipschitz continuous.

	● The physics equations f t iL
i

L

�� �� �     |   ⋅( ) ∀ ∈, ,θθ S  are sub-linear, i.e. there are some V1 0>  
and V2 0>  such that

∀ ∈ ∈ ≤ +( )++� � �� � ��
x t f x t V x t Vd

L
i

L
LR R,  ( ,   | ) .   θθ 1 2

	● The functions div f iL
i

L

�� �� �   |   ⋅ ⋅( )





 ∀ ∈, ,θθ S are almost everywhere bounded in absolute 

value by some real value D> 0 (independent of i).

Let g
�� ��
i d dL L⋅ ⋅( ) × →, :  R R R  denote the solution of

∂
∂

( )= ( ) ∀
t

x t f x t t ii
L L

i i
L Lg g

� � �� �� � � �� � �� � �
,  | ( ,  | ,   | ),θθ θθ θθ    ∈∈ ∈ ∈S, ,  �x tdLR R

with

g S
�� �� � � �i

Lx x i, | , , ,    dL0 θθ( )= ∀ ∈ →∈R

where g x ti
L

�� �� �,  |θθ( ) represents the deterministic evolution of X t 
���
( ) at time t, starting from 

the condition �x  and while the processes X t 
���
( ) are holding in state 

�
i .

The state space RdL  of continuous variables X t 
���
( ) is divided into an admissible mesh M ,  

which is a family of measurable subsets of RdL  (M  is a partition of RdL ), such that
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	●

A

dA L

∈
∪ =
M

R ;

	● ∀ ∈A B,  M , A B A B≠ ⇒ =∅∩ ;

	● m dx AA
A

= > ∀ ∈∫
� ��

0, M  where mA is the volume of grid A; and

	● sup diam AA∈ ( )<+∞M  where diam A sup x yx y A( )= −∀ ∈
� �

� �
,  .

Additionally,   the   time    space R+   is    divided into small    intervals   R+
= …

= +( )



∪

n
n t n t

0 1 2
1

, , ,
,

 
 ∆ ∆  

by setting the time step ∆t> 0 (the length of each interval).

Let p dzt L K
� |θθ θθ θθ=( )∪  denote the probability distribution of 

�
Z t( ). The numerical 

scheme aims at constructing an approximate value ρt x dx   
�� ��

, | ⋅( )θθ  for p dxt  
��

,·| θθ( ) so 

ρt x  
��

, | ⋅( )θθ  is constant in each n t n t A y A ii∆ ∆, , ,   +( )



× ×{ } ∀ ∈ ∈1 M

�
S :

	ρt nx i P A i i x A t n t n t           
�� � � � �, | , | , , ,  ,θθ θθ( )= ( ) ∀ ∈ ∈ ∈ +( )

S ∆ ∆1 
 . 	 (4.69)

P A i i A0 , | , ,  
� �
θθ( ) ∀ ∈ ∈S M  is defined as follows:

	P A i
p dx i

m
A

A
0

0
, |

, |
. 

     �
�� �

θθ
θθ

( )=
( )∫

	 (4.70)

Then, P A i i A nn+ ( ) ∀ ∈ ∈ ∈1 , | , ,  ,  
� �
θθ S M N  can be calculated considering the determinis-

tic evaluation of X t 
���
( ) and the stochastic evolution of Y t 

���
( ) based on P in M , | 

�
¸( ) by the 

Chapman-Kolmogorov forward equation as follows:

	

P A i

tb
P A i t a

tb

n

A
i n

j S

A
ji

A

+

+
∈

( )

=
+

( )+
+

∑

1

1
1

1 1

, |

, |

 

 

�

� �
�

�

��

�

θθ

θθ
∆

∆
∆ jj nP A j+ ( )1

� �
, | ,  θθ

	 (4.71)

where

a i x dx m i AA
ji

A
j K A

��
�
� � � �� �

= ( ) ∀ ∈ ∈∫λ , | / , ,   θθ S M

is the average transition rate from state 
�
j  to state 

�
i  for grid A,

b a i AA
i

j i
A
ij

�

� �

�� �
= ∀ ∈ ∈∑

≠

, , S M

is the average transition rate out of state 
�
i  for grid A,
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Figure 4.7  The Evolution of Degradation Processes during n t n t∆ ∆, +( )



1  [14].

P A i m P B i m i An
B

BA
i

n A+
∈

( )= ( ) ∀ ∈ ∈∑1
� � � ��

, | , | / , ,    θθ θθ
M

MS

is the approximate value of the pdf on 
�
i n t n t A{ }× +( ) +( )



×1 2∆ ∆,    according to the 

deterministic evolution of X t 
���
( ), and

m dy i A BBA
i

y B g y t Ai
L

�

� ��� �

� �� �
�= ∀ ∈ ∈

∈ ( )∈∫ , ,  , 
{ | , | }

S M
∆ θ

is the volume of the part of grid B , which will enter grid A after time ∆t  according to the 
deterministic evolution of X t 

���
( ).

Figure 4.7 shows an illustrative example in R2 to explain the procedure of FV mode-
ling scheme.

The FV scheme solves the PDMP by considering two different situations to calculate 
the probabilities that 

� � �
Z t i i S A( )∈( ) ∀ ∈ ∈A      where, , ,  M  at time n t+( )1 ∆ , according to 

Equation (4.71). The first one (denoted by “1” in Figure 4.7) is that 
�
X t( ) evolves but 

�
Y t( ) 

does not change, which is quantified by the first term of the right-hand part of Equation 

(4.71), where 1
1+∆tbA

i
�  is the approximated probability that no transition occurs from 

state 
�
i  for grid A, and, B B1 2,    are the grids of which some parts will enter grid A, due to 

the deterministic evolution of X t 
���
( ) at time n t+( )1 ∆ , given 

� �
Y t i( )= . The second one 

(denoted by “2” in Figure 4.7), is that 
�

Y t( ) steps to state 
�
i  from another state 

�
j S∈ , which 

is quantified by the second term of the right-hand part of Equation (4.71), where a tA
ji
��
∆  is 

the transition probability from state 
�
j  to state 

�
i  for grid A, and, B B3 4,    are the grids of 

which some parts will enter grid A, due to the deterministic evolution of X t 
���
( ) at 

time n t+( )1 ∆ , given 
� �

Y t j( )= .
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The approximate solution ρt x dx   
�� ��

,·| θθ( )  weakly converges toward p dxt
�,·| θθ( ) when 

∆t→ 0  and M /∆t→ 0 where M M= ( )∈sup diam AA .
The reliability of the system can, then, be calculated as

	R t p dz
z

t( )= ( )
∉
∫
�

�

F

| .¸ � (4.72)

4.5  Exercises

1	 Consider a job shop consisting of M  machines and a single repairman. Suppose the 
amount of time a machine runs before breaking down is exponentially distributed 
with rate λ , and the amount of time it takes the repairman to fix any broken machine 
is exponentially distributed with rate µ . If we say the state is i whenever there are i 
machines down, then
a.	 Calculate the steady state probability distribution of the job shop.
b.	 Calculate the average number of machines not in use.
c.	 Compute the long-run proportion of time that a given machine is working.

2	 Consider a system with a total of n+1 pumps, one of which is in use and n  of which 
are spare pumps. When the pump in use fails and spare pumps are available, the 
failed pump is replaced by a spare pump immediately. The spare pumps will not fail 
when not in use. The failed pump will be repaired successfully. Only one pump is 
repaired at a time. Therefore, the state space of the system is expressed as 
S n n= + …{ }1 1 0, , , , , representing the total number of pumps not failed. The transi-
tion rate in this Markov chain model is composed of the pump failure rate function 
and repair rate function. The failure rate function is λ α β βt t( )= −

0 0
10 , and the repair 

rate function is µ α β βt t( )= −
1 1

11 . Derive the reliability function of the system. If the 
mean number of failures during the time interval 0,t   with initial state i is N t V ti i( )= ( ),  
derive the reward matrix r.

3	 Consider a series-parallel system as shown in Figure 4.8. In this system, the three 
components are mutually stochastic independent. Components 1 and 2 have two dif-
ferent states, respectively, and Component 3 has three different states.

The performance of the ith component at state j is denoted as gij . The probability 
that the ith component is at state j at time t is denoted as p tij ( ). The transition rate of 
the ith component from state j  to state k  at time t is denoted as λ jk

i t( ). The values of 
gij , pij 0( ), and λ jk

i t( ) are listed in the table below.
If the system demand is 1.8 ton/min, calculate the system reliability function and 

the mean lifetime of the system.
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2

2

Component 3

Component 2

Component 1

23

1

1

1

3
32

λ 3
21

λ

1
21λ

2
21λ

Figure 4.8  The Diagram of the Series-parallel System.

4	 Consider a two-component cold standby system with a single repair facility which 
appears and disappears from the system randomly. The state transition diagram is 
given in Figure 4.9. In this diagram, States 4, 5, and 6 are down states, where state 6 is 
a nonregenerative one. The letters a , b , and c  denote constant transition rates (expo-
nential distributions of the transition times) for transitions between states, and G t( ) is 
the distribution function of the repair time. Write the cumulative semi-Markov kernel 
of the system.

Component State Performance gij  
(ton/min)

Initial state probability 
pij 0( )

Transition rate λ jk
i t( )  

(year) (-1)

1 1 0 0
λ21

1 0 8 0 2t t( )= +. .
2 1.5 1

2 1 0 0 λ21
2 21 5 0 2t t( )= +. .

2 2.0 1

3 1 0 0 λ32
3 1 2 0 15t t( )= +. .

λ21
3 2 0 0 2t t( )= +. .

2 1.8 0

3 4.0 1

G (t)

G (t) G (t)

610

2 4 5

3

a

a

b

ac

c

cc

Figure 4.9  State Transition Diagram for a Two–component Cold Standby System with a Single 
Repair Facility
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4  Markov Processes84

5	 Consider a M -component series system. The random variables Jn, n M= …1 2, , ,  
denote the type (number) of the component that has failed at the nth-failure. The life-
times of the components are mutually stochastic independent and exponentially dis-
tributed, with parameters λk  and k M= …1 2, , , . The time X T Tn n n= − −1 is the sum of 

the lifetime and repair time. The repair times have distribution functions Fk, k M= …1 2, , , ,  

with finite expectations µk k M,  , , ,= …1 2 . The process J Tn n n
,( ) ≥0

 is a Markov renewal 

process with cumulative semi-Markov kernel Q t( ). Let φ t( ) be the indicator function 
of the state of the system, i.e. φ t( )=1 means the system is functioning at time  t  
and φ t( )= 0 means the system is under repair at time  t. Define also the pro-
cess Z tt , ≥( )0 , which indicates the number of the last failed components before t and 
put L t Z j tij t( )= = ( )=Pr{ | }φ 0 .

a.	 Write the Markov renewal equation of L tij ( ).
b.	 If S t( ) denotes the number of the hitting times in a renewal process, then the fol-

lowing relationship will exist:

lim .
t

t

t x dS x y dy
→∞

∞

∫ ∫−( ) ( )= ( )
0 0

1
ϕ

ρ
ϕ

The abovementioned equation is called the renewal theorem.
Calculate limt ijL t→∞ ( ).
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5

Monte Carlo Simulation (MCS) for Reliability 
and Availability Assessment

5.1  Introduction

The Monte Carlo simulation (MCS) may be the only method that can yield solutions to 
complex multi-dimensional stochastic modeling problems, such as those typically 
involved in the reliability and availability analysis of real systems.

MCS performs a type of random experiment on a computer, and its development and 
implementation require domain knowledge in different fields, such as probability and 
statistics. Its key principle is the repeated random sampling to obtain numerical results. 
MCS is typically used in three kinds of problems [1]: numerical integration, optimiza-
tion, and sample generation from a probability distribution, e.g. for uncertainty 
propagation.

5.2  Random Variable Generation

The foundation of MCS is random variable generation. The foundation of random vari-
able generation is random number generation.

Generally, there are two steps to generate a random variable V from any distribution. 
The first step is to draw random numbers, U U Un1 2, , ,… , from a uniform distribution in 
the unit hypercube 0 1,( )n , and the second step is to return V f U U Un= …( )1 2, , ,  where f 
is a function from 0 1,( )n  to d . The first step will be discussed in Section 5.2.1; the sec-
ond step will be discussed in Section 5.2.2.

5.2.1  Random Number Generation

Random number generation is a method to create an infinite set of random numbers, 
which are independent and identically distributed (iid). The uniform distribution on the 
interval (0,1) is called a uniform random number generator. On a computer, when a user 
inputs an initial number, which is called seed, the uniform random number generator 
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5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment88

produces a series of independent uniform random numbers in the interval (0,1). It is the 
basis of all other random number generators.

Note that the concept of an infinite set of random numbers is only a mathematical 
abstraction, which is impossible for the contemporary computers to implement. The 
best one can hope is to generate a sequence of random numbers with statistical proper-
ties that are indistinguishable from a sequence of truly random values. In fact, some 
physical generators based on universal radiation or quantum mechanics might offer 
such a stable randomness. Nevertheless, most generation methods are based on 
numerical algorithms implemented in computers. Such algorithms can be described as 
a tuple S f U g, , , ,µ( ) where

	● S is a finite set of states;
	● f is a function from S to S;
	● µ  is a probability distribution on S;
	● U is the output space; 
	● g is a function from S to U.

The algorithm is made up of four steps:

1)	 Initialize: Choose the seed S0 from the distribution µ  on S. Set t = 1;
2)	 Transition: Set S St t= ( )−f 1 ;
3)	 Output: Set U g St t= ( );
4)	 Repeat: Set t = t + 1 and go back to step 2.

Below are some of the properties of a good random number generator.

	● Passing statistical tests: The goal of the random number generator is to generate ran-
dom numbers, which are indistinguishable from genuine uniform random numbers. 
So, it is necessary for the random numbers to pass specific statistical tests verifying 
respective properties.

	● Theoretical support: A good generator should be based on a sound mathematical prin-
ciple and should allow for the analysis of its properties.

	● Reproducible: An important property of the generator is to be reproducible, such that 
it is unnecessary to store the entire sequence of numbers to repeat the outcome. This 
is important for testing and for comparison to other techniques. Normally, physical 
generation methods are not reproducible unless the generation progress is recorded.

	● Fast and efficient: A good generator should be able to produce numbers in a fast and 
efficient way and not require much storage in computer memory. Some Monte Carlo 
methods for optimization or estimation require plenty of random numbers, which 
cannot be produced by current physical generation methods.

	● Large period: The period of a good random number generator (the number of itera-
tions before the sequence of random values returns repeatedly) should be very large, 
normally of the order of 1050 . This is to avoid the repetition of the same sequence, 
which would introduce dependence in the outcomes.

	● Multiple streams: For many applications, running multiple independent random 
number sequences in parallel is essential.
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5.2  Random Variable Generation 89

	● Cheap and easy: A good random number generator should be easy to install, imple-
ment, and run. Generally, such a random number generator should be portable and 
used universally.

	● Not produce 0 or 1 values: An ideal property of a random number generator is to 
exclude 0 and 1 from the number sequence, so as to avoid numerical complications in 
their use for calculation.

5.2.1.1  Linear Recurrences
Linear recurrences are the most common methods to generate pseudorandom numbers. 
A linear congruential generator generates numbers with the algorithm

X Xt t c mod m t= +( ) = …−α 1 1 2, , , ,

with the state S Xt t m= ∈ … −{ }0 1, ,  and where α  (multiplier) and c (increment) are 

integers. Normally, the outcomes are of the form U X
mt

t= , which gives values in (0,1).

Example 5.1  Lewis, Goodman, and Miller [2] chose α = = =7 16807 05 ,  c , and  
m= − =2 1 214748364731 . This setting passed lots of the standard statistical tests and 
has been used successfully in different applications. The method is called minimal stand-
ard linear congruential generator (LCG) and used for comparison with other 
generators.

Though it has some good properties, its period 2 131−( ) is not long enough to meet the 
requirements of Quasi Monte Carlo methods.

Quasi Monte Carlo methods are MCS methods where the ordinary uniform random 
points are replaced by quasirandom points. Quasirandom numbers are like random 
numbers but are present with more regularity, which makes them more suited for 
numerical evaluation of multi-dimensional integrals. The main types of quasirandom 
sequences include Halton, Faure, Sobol, and Korobov sequences [3].

5.2.2  Random Variable Generation

The generation of uniform random numbers was introduced in the previous section. 
This section illustrates how to implement the second step of transforming the random 
numbers into the values of random variables. Typical methods for generating random 
variables involve the inverse-transform method, the composition method, the accept-
ance-rejection method, etc. This section mainly considers the inverse-transform method 
and the acceptance-rejection method.

5.2.2.1  Inverse-transform Method
Assume X to be a random variable with cumulative distribution function (cdf) F. The 
inverse function F−1  can be defined as

F y x F x y y− ( )= ( )≥{ } ≤ ≤1 0 1inf : ,  
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Take the uniform random number u ~ U(0,1). The cdf of the inverse transform F u− ( )1  is 
given by

 F u x u F x F x− ( )≤( )= ≤ ( )( )= ( )1

Therefore, to generate a random variable X  with cdf F , one can generate u U~ ,0 1( ) and 
set X F u= ( )−1 .

Generally, the inverse-transform method requires that the cdf F can be presented in a 
form for which the inverse function F−1  can be derived analytically or algorithmically. 
Thus, the common applicable distributions are exponential distributions, uniform distri-
butions, Cauchy distributions, etc. However, for certain distributions, it is hard to find 
the inverse transform, which is required to solve

F f t dt u
x

(x)= ( ) =
−∞
∫

with respect to x. Even in the situation where F−1  exists in an analytical form, the inverse-
transform may not be the most efficient method to generate random variables. 

Example 5.2  Assume we want to obtain a sample from an exponential probability dis-
tribution f x e x( )= −λ λ . We should first generate uniform random numbers u ~ ,U 0 1( ). 
Then, we can derive the cdf:

F x e x( )= − −1 λ

Then, we invert to get

F x
x− ( )=−
−( )1 1ln

.
λ

From this, we can obtain the realization of the exponential random variable X as 
X ~ F u− ( )1 . The histograms in Figure 5.1 show the results and a comparison with the 

true exponential distribution.

5.2.2.2  Acceptance-rejection Method
Let f x( ) and g x( ) be two probability density functions (pdfs), which satisfy that for 

some C≥1, Cg x f x( )≥ ( ) for all x. Let X ~g x( ) and u ~ U(0,1) be independent. Then, the 

conditional pdf of X given u
f X

Cg X
≤
( )
( )

 is f x( ). This theorem can be proved [4]. g x( ) is 

the proposal pdf, which is chosen easy to generate random variables from it. The algo-
rithm of the acceptance-rejection method is as follows [4]:

1)	 Draw X from g x( ).
2)	 Draw U from U(0,1), which is independent of X.
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3)	 If  U ≤
( )
( )

f X
Cg X

, output X; otherwise, return to step 1.

The efficiency of the acceptance-rejection method depends on the probability of accept-
ance, which is

 U ≤
( )
( )












= ( )∫ ∫

≤
( )
( )











f X
Cg X

g x I
u

f x
Cg x0

1






=
( )

=∫dudx
f x

C
dx

C
1

Example 5.3  Consider the random variable x with probability distribution (see 
Figure 5.2)

f x
x x

x x
( )=

+ ≤ <

− ≤ ≤( )






3 0 4 0 0 4
2 4 2 0 4 1

. ( . )
. .

 

We can first generate U0 0 1~ ,U( ) where g(x) is the pdf of U0 . As

3g x f x( )≥ ( )

We can generate U1 0 1~ ,U( ), which is independent of U0 . Draw x from the distribu-

tion g x( ); if U
f X
g X1 3

≤
( )
( )

  , we will accept x as a sample from the distribution f x( ). If not, 

we will reject x.
From Figure 5.2, we see that the distribution obtained from the samples derived by the 

acceptance-rejection method is similar to the real distribution.
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Figure 5.1  comparison between inverse sampling of exponential distribution and 
exponential distribution.
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5.2.2.3  Multivariate Random Variable Generation
In this section, we address the problem of generating a vector of values of random varia-
bles X= …( )X Xn

T
1, ,   with a given joint pdf f x( ). When the components X Xn1, ,…    are 

independent, it is easy to solve the problem. Assume the Xi  component’s marginal pdf 
is f i ni , , , ;= …1   then, f f fnx( )= …( )Π 1, , . To generate the vector X, we can repeatedly draw 
X Xn1, ,…  from their marginal pdfs f fn1, ,…  with the methods referred in the last section:

1)	 Draw X Xn1, ,…  from pdfs f fn1, ,…  independently.

2)	 Return X= …( )X Xn1, , T.

If the components of X are dependent, we can draw the joint pdf f x( ) by exploiting the 
product rule: of conditional pdfs:

f x f x x f x f x x f x x xn n n n( )= …( )= ( ) ( )… …( )−1 1 1 2 2 1 1 1, , | | , , ,

where f x1 1( ) is the marginal pdf of X1 and f x x xk k k( | , , )1 1… −  is the conditional pdf of Xk  
given X x1 1= ,…, X xk k− −=1 1 . The common procedure is as follows:

1)	 Generate X1 with the pdf f1.

2)	 For t = 1:n-1, given X x X xt t1 1= … =, ., , generate Xt+1  with the pdf f xt t x xt+ + …( )1 1 1| , .

3)	 Return X= …( )X Xn
T

1, .

Figure 5.2  Distribution obtained by acceptance-rejection method.
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We can also adapt the multi-dimensional acceptance-rejection method to generate 
random vector X .

5.3  Random Process Generation

5.3.1  Markov Chains

As seen in Chapter 4, a Markov chain is a stochastic process X t Tt ,   ∈{ } with a countable 
index set T ⊂ , which has the Markov property

X X X X Xt s t t s t+ +…( )=( )| , , | .1

An important property of the Markov chains is that they can be generated sequentially 
as follows:

1)	 Generate X0  from its distribution. Set t = 0.
2)	 Generate Xt+1  from the conditional distribution of Xt+1  given Xt .
3)	 Set t = t + 1 and return to step 2.

Normally, the conditional distribution of Xt+1  given Xt  can be specified as 
follows. X g t X U tt t t+ = ( ) = …1 0 1 2, , , , , ,   where g is an easily evaluated function, and Ut  is 
a random variable, which can be easily generated and may depend on Xt  and t.

When the Markov chain X X0 1, ,…{ } has a discrete state space S  and is time-homoge-
neous, its distribution is completely defined by the distribution of X0  and the matrix of 
one-step transition probabilities =( )pij  where

p X j X i i j Sij t t= = =( ) ∈+ 1 | , ,

The conditional distribution of Xt+1  given Xt = i  is then the i-th row of  . The genera-
tion of a time-homogeneous Markov chain with finite discrete states follows three steps:

1)	 Generate X0  from the initial distribution. Set t = 0.
2)	 Generate Xt+1  from the discrete distribution depending on the Xt -th row of  .
3)	 Set t = t + 1 and return to step 2.

Example 5.4  Thomas has four doors A, B, C, and D in his house. One day, he finds a 
mouse in his house. The mouse runs around the house from one door to another door. 
After a period of observation, Thomas finds that the moves of the mouse follow a prob-
ability distribution. The probability of the mouse moving from one door to another only 
depends on the door where the mouse is. Assume the probability distribution can be 
described by the following transition matrix P. Let Xt  be the position of the mouse at 
time t. Then, { Xt } is a time-homogeneous Markov chain with the matrix P:
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Realization of the Markov chain can be obtained as explained before and the state distri-
bution is plotted in the Figure 5.3.

5.3.2  Markov Jump Processes

Different from the Markov chain, the Markov jump process is a stochastic process 
X t Tt , ∈{ } with a continuous index set T⊆  and a discrete state space S , which has the 

Markov property

X X X X Xt s t t s t+ +…( )=( )| , , | .1

Assume the index set is T  = ∞ 0, , and the state space is S= …{ }1 2, , .

Figure 5.3  State distribution of Markov chain.
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A time-homogeneous Markov jump process is usually described by its Q-matrix,

Q

q q q
q q q
q q q

=

− …
− …

− …

























1 12 13

21 2 23

31 32 3

� � � �

,

where qij  is the transition rate from state i to state j:

q
X j X i

t
Sij t

k t k=
= =

∈
→

+lim
( | )

, ,
0


 i

and qi is the holding rate in i:

q
X i X i

t
Si t

k t k=
− = =

∈
→

+lim
( | )

,
0

1 
 i

Usually, we assume that 0≤ <∞qij  and that q qi
j i

ij=∑
≠

, so the sum of each row is 0. An 

important behavior of such a Markov jump process is as follows. If the process is in a 
certain state i at time t, it will remain in the same state for an additional Exp q( )-distrib-
uted amount of time. Once the process leaves the state i, it will jump to another state j 

with a probability of p
q
qij

ij

i
= , no matter the history of the process. In particular, the 

process can be analyzed as a Markov chain. The jump states S S0 1, ,  … form a Markov 
chain with the transition matrix P=( )Pij . We can define the holding time as H H1 2, ,  … 
and the jump times as J J1 2, ,  …, and the generation procedures are as follows:

1)	 Set J0 0= . Generate S0 from its distribution. Set X S0 0=  and n = 0.

2)	 Generate H Exp qn Sn+ ( )1 ~ .

3)	 Set J J Hn n n+ += +1 1.

4)	 Set X St n=  for J t Jn n≤ < +1 .
5)	 Generate Sn+1  from the distribution related to the Sn -th row of P. Set n = n + 1 and 

return to step 2.

Example 5.5  Assume there are two babies and one babysitter. Both babies have 
exponentially distributed waking times and times for babysitter to make them sleep. 
The waking and babysitting rates are respectively a b a b1 1 2 2, , ,      . The babysitter can 
only babysit one baby at a time. If two babies are awake, the babysitter will keep 
babysitting the baby who is first awake. The system can be seen as a Markov jump 
process with five states: 1 (both babies are asleep); 2 (baby 1 wakes and baby 2 is 
asleep); 3 (baby 2 wakes and baby 1 is asleep); 4 (both babies wake and baby 1 wakes 
first); 5 (both babies wake and baby 2 wakes first). The transition matrix is as follows. 
Assume a a b b1 2 1 21 2 3 4= = = =, , ,      .
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Q

a a a a
b b a a
b b a a

b b
b

=

− +( )
− +( )

− +( )
−

−

1 2 1 2

1 1 2 2

2 2 1 1

1 1

2

0 0
0 0

0 0
0 0 0
0 0 0 bb2













We can see the Markov jump process from Figure 5.4.
When it comes to the nonhomogeneous case, the algorithm is similar, but the rates 

appearing in matrix Q depend on time T. Replace qij  with qij t( ) and let q t q ti
j i

ij( )= ( )∑
≠

. 

The process jumps from a state to another depending on a time-nonhomogeneous 
Markov chain and stays some time in each state. Assume at a certain time, Tn , the pro-
cess jumps to state Sn = i. Let Hn+1  denote the holding time in state i. Then,

q t
t T H t h T H t T

h
F t h T

i h

n n n n n

h

n

( )=
− + − −

=
+ −( )−

< < >
→

+ +

→

lim

lim

0

1 1

0

( )

FF t T

F t T h

T
F t T

F t T

n

n

n

n

n

−( )
− −( )( )

=
−( )

− −( )

=− − −( )( )

1 1

1

f t

d
dt

ln ,

where F t( ) is the cdf of Hn+1 , and f t( ) its pdf. We can get F t( ) by using

Figure 5.4  Markov jump process.
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F t H t e tn

q s ds
Tn

Tn t

i

( )= ≤( )= −
∫

≥+

− ( )
+

 1 1 0,

At time T T Hn n n+ += +1 1 , the process jumps to state j with probability 
q T
q T

j Sij n

i n

+

+

( )
( )

∈1

1
, . 

So, we get the following algorithm:

1)	 Set T0 0= . Generate S0 according to its distribution. Set X Y0 0=  and n = 0.
2)	 Generate Hn+1  from the cdf given above.
3)	 Set T T Hn n n+ += +1 1 .
4)	 Set X St n=  for T t Tn n≤ < +1.

5)	 Generate Sn+1  from the distribution 
q T
q T

y SS S n

S n

n

n

, ,+

+

( )
( )

∈














1

1
. Set n = n + 1 and return to 

step 2.

5.4  Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a key method for sampling from a given distribution. 
By means of generating a Markov chain which has the desired distribution as its limiting 
distribution, we can get a sample of the desired distribution by observing the chain after a few 
steps. In this section, we will describe three most prominent MCMC algorithms:

1)	 The Metropolis-Hastings (M-H)algorithm, i.e. the independence sampler and ran-
dom walk sampler [5];

2)	 The Gibbs sampler, which is very useful in Bayesian analysis [5];
3)	 Multiple-try Metropolis-Hastings method where different algorithms are combined [5].

5.4.1  Metropolis-Hastings (M-H) Algorithm

The M-H algorithm is similar to the acceptance-rejection algorithm to some degree. Let 
f x( ) be a function, which is proportional to the desired probability distribution p x( ):

1)	 Initialize with some X0  as the first sample, and select an arbitrary probability q y x( | ) as 
a proposal or instrumental density, which is used to generate the next sample y given x .

2)	 Generate y with the distribution q y x( | )  given X0 .

3)	 Calculate the acceptance ratio α x y
f y q x y
f x q y x

, min
|
|

,( )= ( ) ( )
( ) ( )















1 .

4)	 Generate a uniform random number u ~ ,U 0 1( ). If u X yt≤ ( )α , , then set Xt+ =1 y . If 
not, then set X Xt t+ =1 .

The probability α x, y( )  is called the acceptance probability. The algorithm proceeds by 
randomly accepting the moves or remaining in place. We can see that α  can represent 
how probable the new sample is, given the current one. So, when α  is large enough 
(α≥1), one accepts the new sample; otherwise, there is some possibility that it remains 
in place. Therefore, there is a tendency to stay in high-density regions of p x( ).
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We, thus, get the so-called M-H Markov chain, X X XT0 1, ,  … , with XT  approximately 
distributed as f x( ) for large T .

Example 5.6  Assume we want to sample from a distribution p x( ).  We only know 

function f x( ) where f x
p x

Z
( )= ( )

 and f x x e x( )= −2 .

We can sample from p x( ) as just explained.
We can see from Figure 5.5 above that the result obtained is close to the real 

distribution.

5.4.2  Gibbs Sampler

A Gibbs sampler can be seen as a special case of the M-H algorithm for generating n-dimen-
sional random vectors [6]. One of the most distinguishing features of the Gibbs sampler is 
that the corresponding Markov chain is constructed from a set of conditional distributions 
in either a deterministic or random form. Gibbs sampling is useful when the joint distribu-
tion is unknown or difficult to sample from directly, but the conditional distribution of each 
variable is known and easy to sample from.

Assume that we want to sample a random vector X= …( )X Xn1, ,    according to a target 
pdf f x( ). Suppose that f x x x x xi i i n( | , , , , , )1 1 1… …− +       represents the conditional pdf of 
the ith component of the vector X. The Gibbs sampler algorithm is as follows:

1)	 Initialize with a state X0 . Set t = 0.
2)	 For a given Xt , draw Y= …( )Y Yn1, ,  as follows:

	● Generate Y1  from the conditional distribution f x x xt t n( | , , ), ,1 2… .
	● Generate Yi  from f x Y Y x xi i t i t n( | , , , , , ), ,1 1 1… …− +  .
	● Generate Yn  from f x Y Yn n( | , , )1 1… − .

3)	 Set Xt+ =1 Y.
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Figure 5.5  M-H sampling.
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Example 5.7  Assume that X i( ) ( ) ( )=( )x yi i,  is a vector whose components follow a 

bivariate normal distribution X N~ 0,∑( ), the standard deviations of x and y are 1, and 

the correlation coefficient between x and y is r = 0.98. We can sample X with Gibbs sam-
pler, with the results shown in Figure 5.6.

5.4.3  Multiple-try Metropolis-Hastings (M-H) Method

The multiple-try M-H algorithm is an extension of the M-H algorithm, which can acceler-
ate the sampling by making the sampling step size larger and the acceptance rate higher.

In M-H method, we often use the normal distribution as the proposal distribution 

i.e. Q ′( )= ( )x x N x It t, ,σ2 . However, it is difficult to determine the value of σ2  in N xt ,σ2( ). 
Although the method is fundamental to converge to the limiting distribution, with a finite 
sample size in practice, the progress can be slow. If σ2  is very large, most steps of the sam-
pling will be rejected; if σ2  is very small, most steps will be accepted, and the Markov chain 
will be close to a random walk through the probability space.

Figure 5.6  Sampling with Gibbs sampler.
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Especially when the dimensionality of x is high, it is difficult to get the appropriate 
acceptance rate and step size at the same time.

Multiple-try Metropolis algorithm can resolve this issue. Its procedures are shown as 
follows. Assume q y x( | ) is an arbitrary symmetric proposal function. Initialize the 
sequence with some X0  which satisfies f X0 0( )> . Let M  be the dimension parameter.

1)	 Set t= 0 .

2)	 Draw proposals Y Y
iid

q y XM t1, ,
~

( | )… .

3)	 Draw a random index J  from the set 1, ,…{ }M , such that

 J j
f Y

f Y f Y
j Mj

M
=( )=

( )
( )+…+ ( )

= …
1

1, , , .

4)	 Draw proposals Z Z q z YM J1 1, , ~ |… ( )−  and set Z XM t=  given J .

5)	 Set α X Y
f Y f Y
f Z f Zt J

M

M
, min ,( )= ( )+…+ ( )

( )+…+ ( )














1

1
1 .

Draw u ~ ,U 0 1( ). If u X Yt J≤ ( )α , , X Yt J+ =1 ; if not, then X Xt t+ =1 .
6)	 Set t t= +1, return to step 2.

Example 5.8  Assume we want to obtain a sample from a distribution p(x). We only 

know function f x( ) where f x
p x

Z
( )= ( )

.

f x x e x( )= −2

We can sample from p x( ) and the results are shown in Figure 5.7. Compared with 
Example 5.6 where M-H is applied, it converges faster with multiple-try M-H algorithm.
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Figure 5.7  Sampling with Multiple-try Metropolis-Hastings (M-H) Method.

c05.indd   100c05.indd   100 10-06-2022   15:57:4910-06-2022   15:57:49



5.5  Rare-Event Simulation 101

5.5  Rare-Event Simulation

Components and systems failure events are typically rare. Let us refer to failure event A 
of a generic component, whose probability α = ( )P A  1. The normal, crude Monte 
Carlo method estimates α  by the proportion b of times in which the event A occurs over 
n  repeated independent trials.

b
n

B
j

n

j=
=
∑

1

1

,

where B B Bn1 2, , ,…  are binary numbers that indicate the realizations of event A, i.e.  
Bi = 1 means occurrence and Bi = 0 overwise. According to the Central Limit Theorem 
(CLT) for binomial distributions [7], we have

lim ,
n

N
→∞

−( )
−( )

= ( )
n b α

α α1
0 1

and

b≈ +
−( ) ( )α

α α1
0 1

n
N ,

for n 1
α

. The absolute error is

b
n

N− ≈
−( ) ( )α

α α1
0 1,

and the relative error is

b
n

N
α

α
α

− ≈
− ( )1 1 0 1,

Therefore, crude Monte Carlo requires that

n 1
α

for the relative error to be small. This makes rare-event simulation expensive in many 
cases.

5.5.1  Importance Sampling

One of the most widely used methods for rare-event sampling is importance sampling. 
Let us consider the problem of evaluating E f x( )



 , x ~ p, which is

E f x f x p x dx
x

( )



 = ( ) ( )∫
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To estimate this quantity using MCS, we would need to generate samples from the prob-
ability distribution p(x). To do so more efficiently, we can introduce another distribution 
q(x), from which we can simply draw samples:

∫ ∫

∫

( ) ( ) = ( ) ( )( ) ( )

= ( ) ( )
x x

f x p x dx f x
p x
q x

q x dx

g x q x dx 
x

where g x f x
p x
q x

f x w x( )= ( ) ( )( )
= ( ) ( ).

The original problem has become equivalent to evaluating E g x( )( ) with the probabil-

ity distribution q x( ) and where w x
p x
q x

( )= ( )
( )

 is called importance weight. When we 

adopt the importance sampling for rare-event sampling, we can choose q x( ) to control 
the variance of the sampling.

Example 5.9  Consider a function f x exp x( )= − −( )2 6 . Assume we want to get 
E f X( )( ) where X U~ ,1 11( ) . That is, we want to calculate the integral

1

11

2 6∫ − −( )exp x dx

The normal way to solve the problem is to first generate samples X ~ ,U 1 11( ) and 
then calculate the mean of 10 ⋅ ( )f X . The true mean is about 1. In one run, we get 

0.9930885.
The function f x( ) in this case is peaked at 6 and decreases quickly elsewhere; there-

fore, by using the uniform distribution, many of the samples contribute little to the 
expectation. If we use a Gaussian function with a peak at 6 and a small variance, we get 
greater precision:

1

11

6
2

6
22 6 1

1
2

1
22

2

∫ − −( )
−
−( )

−
−( )

exp x

e

e dx
x

x

π

π

The result is 0.9996468, which is closer to the true value.

5.5.2  Repetitive Simulation Trials after Reaching Thresholds (RESTART)

The Repetitive Simulation Trials After Reaching Thresholds (RESTART) method is an 
alternative to the crude Monte Carlo computation of rare-event probabilities. The core 
concept of the RESTART method is that, given a rare event A whose probability must be 
estimated, an event C is defined so that C A⊃  and 1 P C P A( ) ( ) . The probability of 
occurrence of event A can be written as [8]
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P A P C P A C( )= ( )⋅ ( )| .

In a simulation, P C( ) is usually easier to estimate than P A C|( ) , since P(C) is estimated 
from the whole simulation and P(A|C) is estimated from the small portion of simulations 
in which C occurs.

The RESTART can be enhanced by defining multiple thresholds Ci  that satisfy 
C C C AM1 2⊃ ⊃…⊃ ⊃ . The efficiency of the method is greatly improved with multiple 
thresholds [9].

Let us consider a Markov process X t( ). S is the state space of X t( ). To make the RESTART 
method work, we need a function φ : S→ , which is called the importance function. 
Thresholds Ti 1≤ ≤( )i M  of φ are defined, so that each set Ci  is associated with φ≥Ti .

When an event occurs where the system is in set A or Ci , the event is called event A or 
event Ci . Other two kinds of events Bi  and Di are defined as follows:

Bi : instant of the transition from other states to Ci
Di: instant of the transition from Ci  to other states

The RESTART method works as follows:

1)	 When an event Bi occurs, the system state is saved;
2)	 When an event Di occurs, the system state at last event Bi is restored and simulation 

is conducted again beginning with Bi until it reaches Di;
3)	 The process mentioned above is repeated Ri times, which is the number of retrials 

for threshold i. The starting event of each trial is always the same Bi, while the end-
ing events are different, Di1, Di2 ,..., DiRi;

4)	 During one trial of level i, an event Bi+1 may occur and Ri+1 trials of level i+1 would 
be made before the trial of level i finishes;

5)	 When event DiR occurs, simulation continues in the usual way (do not need to start 
with Bi).

The statistics should be modified accordingly to calculate the probability of event A. 
The way to modify the statistics is presented as follows. If the estimator of the probability 
of the rare event in crude simulation is:

P N
N

A=

where NA is the number of events A occurred in the simulation and N is the total number 
of simulated event, then, the estimator with RESTART should be:

P N

N R
A

ii
M

^ =
⋅

=∏ 1  
where NA includes all the events A occurred in all retrials, while N only includes the 
events simulated in the first trial of each set of retrials.

5.6  Exercises

1. Sample by inverse sampling from an exponential probability distribution p x e( )= −λ λx  
where λ= 2 .
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2. Assume there are two babies and one babysitter. Both babies have exponentially dis-
tributed waking times and times for the babysitter to make them sleep. The waking and 
babysitting rates are respectively a b a b1 1 2 2, , ,      . The babysitter can only babysit one baby 
at a time. If both babies are awake, the babysitter will keep babysitting the baby who is 
first awake. The system can be seen as a Markov jump process with five states: 1 (both 
babies are asleep); 2 (baby 1 wakes and baby 2 is asleep); 3 (baby 2 wakes and baby 1 is 
asleep); 4 (both babies wake and baby 1 wakes first); 5 (both babies wake and baby 2 
wakes first). The transition matrix is as follows. Assume a a b b1 2 1 22 3 4 5= = = =     , , .

Q

a a a a
b b a a
b b a a

b b
b b

=

− +( )
− +( )

− +( )
−

−

1 2 1 2

1 1 2 2

2 2 1 1

1

2

0 0
0 0

0 0
0 0 0
0 0 0 22













Sample states with the Markov jump process method (t≤10 ).
3. Assume we want to sample from a distribution p(x). We only know function f(x) 

where f x
p x

Z
( )= ( )

.

f x e x( )= −2

Sample from f x( ) with M-H algorithm.
4. Estimate P X≥( )4  where X ~ ,N 0 1( ) with importance sampling. (For example, you 
can use g X N( )= ( )5 1,  as a proposal distribution).

Appendix

R Code for the examples presented in the chapter:

#Example 5.2
cdf <- function(f, lower_bound, upper_bound)
{
  if(lower_bound < -1000) lower_bound <- -1000          # Trim 
large negatives
  if(upper_bound > 1000) upper_bound <- 1000            # Trim 
large positive
  x <- seq(lower_bound, upper_bound, length.out = 10000) # Finely 
divide x axis
  delta <- mean(diff(x))                                  # Get 
delta x (i.e. dx)
  mid_x <- (x[-1] + x[-length(x)])/2                      # Get 
the mid point of each slice
  result <- cumsum(delta * f(mid_x))                      # sum f(x) 
dx
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  result <- result / max(result)                          # normal-
ize
  list(x = mid_x, cdf = result)                           # return 
both x and f(x) in list
}
inv_sample <- function(f, n = 1, lower_bound = -1000, upper_bound 
= 1000)
{
  CDF <- cdf(f, lower_bound, upper_bound)
  samples <- runif(n)
  sapply(samples, function(s) CDF$x[which.min(abs(s - CDF$cdf))])
}
hist(inv_sample(dexp, 10000, 0, 100), breaks=100,  freq=FALSE,ma
in="Inverse Sampling of Exponential Distribution",xlab="X",ylim
=c(0,1))
par(new=TRUE)
plot(dexp,0,8,main="Exponential 
Distribution",xlab="X",ylab="Density",ylim=c(0,1))

#Example 5.3
#f(x) function
fx <- function(x){
  if(x<=0.4) y=3*x+0.4
  else y=2.4-2*x
  return(y)
}
fx1 <- function(x){
  return(3*x+0.4)
}
fx2 <- function(x){
  return(2.4-2*x)
}
accept <- function() {
  while (T) {
    x <- runif(1)   # sample from g~U(0,1)
    u <- runif(1)
    if (u < fx(x)/3)   # Whether accept x
      break
    failtime <<- failtime + 1   # record failure times
  }
  x
}
samplex <-function(n){
  set.seed(123)
  replicate(n,accept())
}
n = 100000
failtime=0  # record failure times
res <- samplex(n)
failrate <- failtime/(failtime+n)
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plot(density(res), xlim=c(0, 1), col="red", xlab="x",
     main="Reject Sampling for f(x)")
curve(fx1, 0, 0.4, col="blue", add=T, lty=2)
curve(fx2, 0.4, 1, col="blue", add=T, lty=2)
legend("topright", legend=c("Simulative", "Theoretical f(x)"),
       col=c("red", "blue"), lty=c(1,2), bty="n")

#example 5-4
# simulate discrete Markov chains with transition matrix P
sim.markov <- function( P, iterations=50) {
  # number of states
  num.states <- nrow(P)
  # stores the states
  states  <- numeric(iterations)
  # initialize variable for first state
  states[1]    <- 1
  for(t in 2:iterations) {
    # probability vector to simulate next state
    p  <- P[states[t-1], ]
    ## draw from multinomial and determine state
    states[t] <-  which(rmultinom(1, 1, p) == 1)
  }
  return(states)
}
P <- t(matrix(c( 0,  1/2, 1/3,1/6,
                1/2,    0, 1/3,1/6,
                1/3,  1/3,   0,1/3,
                1/6,  1/2, 1/3, 0), nrow=4, ncol=4))
num.chains     <- 5
num.iterations <- 50
chain.states <- matrix(NA, ncol=num.chains, nrow=num.iterations)
for(c in seq_len(num.chains)){
  chain.states[,c] <- sim.markov(P)
}
matplot(chain.states, type='l', lty=1, col=1:5, ylim=c(0,4), 
ylab='state', xlab='time')
abline(h=1, lty=3)
abline(h=3, lty=3)
count.num = array(table(chain.states))
hist(chain.states,breaks = c(0.5, 1.5, 2.5, 3.5,4.5),freq=FALSE,ma
in="Steady States Distribution",xlab="States")

#Example 5-5
sim.cont.markov <- function(Q, t=5,dt=0.001) {
    # number of states
    num.states <- nrow(Q)
    # probability matrix
    P  <- Q
    diag(P) = rep(0,dim(P)[1]);
    P  <- P/apply(P,1,sum)
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    # stores the states
    iterations = t/dt
    states  <- numeric(iterations)
    # initialize variable for first state
    states[1]    <- 1
    for(t in 2:iterations) {
      # probability vector to simulate next state
      m  <- states[t-1]
      p  <- P[m,]
      set.seed(1)
      ran.num <- runif(1)
      if(ran.num<dt*(-Q[m,m])){
        states[t] <-  which(rmultinom(1, 1, p) == 1)
      }
      else{
        states[t] <- states[t-1]
      }
    }
    return(states)
  }
  a1=1
  a2=2
  b1=3
  b2=4
  Q <- t(matrix(c(-(a1+a2), a1	 , a2	 ,  0, 0,
                  b1	 , -(b1+a2), 0	 , a2, 0,
                  b2	 ,  0	 , -(b2+a1),  0,a1,
                  0	 ,  0	 , b1	 ,-b1, 0,
                  0	 ,  b2	 , 0	 ,   0, -b2), 
nrow=5,ncol=5))
  t <- seq(0,5,0.001)[-length(t)]
  states <- sim.cont.markov(Q)
  plot(t,states,type="l")

#Example 5-6
  fx = function(x){
    if(x<0){
      return(0)}
    else {
      return( x*x*exp(-x))
    }
  }
  fx2 =function(x){
    return(fx(x)/2)
  }
  x = rep(0,50000)
  x[1] = 1     #starting value
  for(i in 2:50000){
    currentx = x[i-1]
    newx = currentx + rnorm(1,mean=0,sd=1)
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    A = fx(newx)/fx(currentx)
    if(runif(1)<A){
      x[i] = newx       # accept move with probabily min(1,A)
    } else {
      x[i] = currentx        # otherwise "reject" move, and stay 
where we are
    }
  }
  hist(x,breaks=100,  freq=FALSE,main="Metropolis-Hastings Sampling", 
xlab="X",ylim=c(0,0.35))
  plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

#Example 5-7
  gibbs<-function (n, r)
  {
    mat <- matrix(ncol = 2, nrow = n)
    x <- 0
    y <- 0
    mat[1, ] <- c(x, y)
    for (i in 2:n) {
      x <- rnorm(1, r * y, sqrt(1 - r^2))
      y <- rnorm(1, r * x, sqrt(1 - r^2))
      mat[i, ] <- c(x, y)
    }
    mat
  }
  bvn<-gibbs(10000,0.98)

  par(mfrow=c(3,2))
  plot(bvn,col=1:10000)
  plot(bvn,type="l")
  plot(ts(bvn[,1]))
  plot(ts(bvn[,2]))
  hist(bvn[,1],40)
  hist(bvn[,2],40)
  par(mfrow=c(1,1))

#Example 5-8
  fx = function(x){
    if(x<0){
      return(0)}
    else {
      return( x*x*exp(-x))
    }
  }
  fx2 =function(x){
    return(fx(x)/2)
  }
  n = 10
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  x = rep(0,50000)
  y = rep(0,10)
  z = rep(0,10)
  x[1] = 1     #starting value
  for(i in 2:50000){
    currentx = x[i-1]
    for(j in 1:10){
      y[j]=currentx + rnorm(1,mean=0,sd=1)
    }
    sumy <- 0
    for(k in 1:10){
      sumy <- sumy + fx(y[k])
    }
    ynorm = rep(0,10)
    for(k in 1:10){
      ynorm[k]=fx(y[k])/sumy
    }
    itemy <-  which(rmultinom(1, 1, ynorm) == 1)
    for(j in 1:9){
      z[j] <- y[itemy]+rnorm(1,mean=0,sd=1)
    }
    z[10] <- currentx
    sumz <- 0
    for(k in 1:10){
      sumz <- sumz + fx(z[k])
    }
    alphay <- sumy/sumz
    if(runif(1) < alphay){
      x[i]=y[itemy]
    }
      else{
      x[i]=currentx
    }
  }
  hist(x,breaks=100,  freq=FALSE,main="Multiple-try Metropolis-
Hastings Sampling",xlab="X",ylim=c(0,0.35))
  plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

  #Example 5-9
  fx <- function(x){
      return(exp(-2*abs(x-6)))
  }
  n=10000
  x <- array(runif(n,1,11))
  x.f <- apply(x,1,fx)
  10*sum(x.f)/n

  fx2 <- function(x){
    return(exp(-2*abs(x-6))/(1/sqrt(2*pi)*exp(-((x-6)**2)/2)))
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  }
  y <- array(rnorm(n,6,1))
  y.f <- apply(y,1,fx2)
  10*sum(y.f)/n
  if(lower_bound < -1000) lower_bound <- -1000    # Trim large nega-
tives
  if(upper_bound > 1000) upper_bound <- 1000    # Trim large 
positive
  x <- seq(lower_bound, upper_bound, length.out = 10000) # Finely 
divide x axis
  delta <- mean(diff(x))                     # Get delta x (i.e. 
dx)
  mid_x <- (x[-1] + x[-length(x)])/2                      # Get 
the mid point of each slice
  result <- cumsum(delta * f(mid_x))                      # sum f(x) 
dx
  result <- result / max(result)                          # normal-
ize
  list(x = mid_x, cdf = result)                     # return both 
x and f(x) in list
}
inv_sample <- function(f, n = 1, lower_bound = -1000, upper_bound 
= 1000)
{
  CDF <- cdf(f, lower_bound, upper_bound)
  samples <- runif(n)
  sapply(samples, function(s) CDF$x[which.min(abs(s - CDF$cdf))])
}
hist(inv_sample(dexp, 10000, 0, 100), breaks=100,  freq=FALSE,main 
="Inverse Sampling of Exponential Distribution",xlab="X",ylim
=c(0,1))
par(new=TRUE)
plot(dexp,0,8,main="Exponential Distribution",xlab="X",ylab=" 
Density",ylim=c(0,1))

#Example 5.3
#f(x) function
fx <- function(x){
  if(x<=0.4) y=3*x+0.4
  else y=2.4-2*x
  return(y)
}
fx1 <- function(x){
  return(3*x+0.4)
}
fx2 <- function(x){
  return(2.4-2*x)
}
accept <- function() {
  while (T) {

c05.indd   110c05.indd   110 10-06-2022   15:58:1310-06-2022   15:58:13



Appendix 111

    x <- runif(1)   # sample from g~U(0,1)
    u <- runif(1)
    if (u < fx(x)/3)   # Whether accept x
      break
    failtime <<- failtime + 1   # record failure times
  }
  x
}

samplex <-function(n){
  set.seed(123)
  replicate(n,accept())
}
n = 100000
failtime=0  # record failure times
res <- samplex(n)
failrate <- failtime/(failtime+n)
plot(density(res), xlim=c(0, 1), col="red", xlab="x",
     main="Reject Sampling for f(x)")
curve(fx1, 0, 0.4, col="blue", add=T, lty=2)
curve(fx2, 0.4, 1, col="blue", add=T, lty=2)
legend("topright", legend=c("Simulative", "Theoretical f(x)"),
       col=c("red", "blue"), lty=c(1,2), bty="n")

#example 5-4
# simulate discrete Markov chains with transition matrix P
sim.markov <- function( P, iterations=50) {
  # number of states
  num.states <- nrow(P)
  # stores the states
  states  <- numeric(iterations)
  # initialize variable for first state
  states[1]    <- 1
  for(t in 2:iterations) {
    # probability vector to simulate next state
    p  <- P[states[t-1], ]
    ## draw from multinomial and determine state
    states[t] <-  which(rmultinom(1, 1, p) == 1)
  }
  return(states)
}
P <- t(matrix(c( 0,  1/2, 1/3,1/6,
                1/2,    0, 1/3,1/6,
                1/3,  1/3,   0,1/3,
                1/6,  1/2, 1/3, 0), nrow=4, ncol=4))
num.chains     <- 5
num.iterations <- 50
chain.states <- matrix(NA, ncol=num.chains, nrow=num.iterations)
for(c in seq_len(num.chains)){
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  chain.states[,c] <- sim.markov(P)
}
matplot(chain.states, type='l', lty=1, col=1:5, ylim=c(0,4), 
ylab='state', xlab='time')
abline(h=1, lty=3)
abline(h=3, lty=3)
count.num = array(table(chain.states))
hist(chain.states,breaks = c(0.5, 1.5, 2.5, 3.5,4.5),freq=FALSE,ma
in="Steady States Distribution",xlab="States")

  #Example 5-5
  sim.cont.markov <- function(Q, t=5,dt=0.001) {
    # number of states
    num.states <- nrow(Q)
    # probability matrix
    P  <- Q
    diag(P) = rep(0,dim(P)[1]);
    P  <- P/apply(P,1,sum)
    # stores the states
    iterations = t/dt
    states  <- numeric(iterations)
    # initialize variable for first state
    states[1]    <- 1
    for(t in 2:iterations) {
      # probability vector to simulate next state
      m  <- states[t-1]
      p  <- P[m,]
      set.seed(1)
      ran.num <- runif(1)
      if(ran.num<dt*(-Q[m,m])){
        states[t] <-  which(rmultinom(1, 1, p) == 1)
      }
      else{
        states[t] <- states[t-1]
      }
    }
    return(states)
  }
  a1=1
  a2=2
  b1=3
  b2=4
  Q <- t(matrix(c(-(a1+a2), a1	 , a2	 ,  0, 0,
                  b1	 , -(b1+a2), 0	 , a2, 0,
                  b2	 , 0	 , -(b2+a1),  0,a1,
                  0	 , 0	 , b1	 ,-b1,0,
                  0	 , b2	 , 0	 ,  0, 
-b2),nrow=5,ncol=5))
  t <- seq(0,5,0.001)[-length(t)]
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  states <- sim.cont.markov(Q)
  plot(t,states,type="l")

#Example 5-6
  fx = function(x){
    if(x<0){
      return(0)}
    else {
      return( x*x*exp(-x))
    }
  }
  fx2 =function(x){
    return(fx(x)/2)
  }
  x = rep(0,50000)
  x[1] = 1     #starting value
  for(i in 2:50000){
    currentx = x[i-1]
    newx = currentx + rnorm(1,mean=0,sd=1)
    A = fx(newx)/fx(currentx)
    if(runif(1)<A){
      x[i] = newx       # accept move with probabily min(1,A)
    } else {
      x[i] = currentx        # otherwise "reject" move, and stay 
where we are
    }
  }
  hist(x,breaks=100,  freq=FALSE,main="Metropolis-Hastings Sampling
",xlab="X",ylim=c(0,0.35))
  plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

#Example 5-7
  gibbs<-function (n, r)
  {
    mat <- matrix(ncol = 2, nrow = n)
    x <- 0
    y <- 0
    mat[1, ] <- c(x, y)
    for (i in 2:n) {
      x <- rnorm(1, r * y, sqrt(1 - r^2))
      y <- rnorm(1, r * x, sqrt(1 - r^2))
      mat[i, ] <- c(x, y)
    }
    mat
  }
  bvn<-gibbs(10000,0.98)
  par(mfrow=c(3,2))
  plot(bvn,col=1:10000)
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  plot(bvn,type="l")
  plot(ts(bvn[,1]))
  plot(ts(bvn[,2]))
  hist(bvn[,1],40)
  hist(bvn[,2],40)
  par(mfrow=c(1,1))

#Example 5-8
  fx = function(x){
    if(x<0){
      return(0)}
    else {
      return( x*x*exp(-x))
    }
  }
  fx2 =function(x){
    return(fx(x)/2)
  }
  n = 10
  x = rep(0,50000)
  y = rep(0,10)
  z = rep(0,10)
  x[1] = 1     #starting value
  for(i in 2:50000){
    currentx = x[i-1]
    for(j in 1:10){
      y[j]=currentx + rnorm(1,mean=0,sd=1)
    }
    sumy <- 0
    for(k in 1:10){
      sumy <- sumy + fx(y[k])
    }
    ynorm = rep(0,10)
    for(k in 1:10){
      ynorm[k]=fx(y[k])/sumy
    }
    itemy <-  which(rmultinom(1, 1, ynorm) == 1)
    for(j in 1:9){
      z[j] <- y[itemy]+rnorm(1,mean=0,sd=1)
    }
    z[10] <- currentx
    sumz <- 0
    for(k in 1:10){
      sumz <- sumz + fx(z[k])
    }
    alphay <- sumy/sumz
    if(runif(1) < alphay){
      x[i]=y[itemy]
    }
      else{
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      x[i]=currentx
    }
  }
  hist(x,breaks=100,  freq=FALSE,main="Multiple-try Metropolis-
Hastings Sampling",xlab="X",ylim=c(0,0.35))
  plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

  #Example 5-9
  fx <- function(x){
      return(exp(-2*abs(x-6)))
  }
  n=10000
  x <- array(runif(n,1,11))
  x.f <- apply(x,1,fx)
  10*sum(x.f)/n
  fx2 <- function(x){
    return(exp(-2*abs(x-6))/(1/sqrt(2*pi)*exp(-((x-6)**2)/2)))
  }
  y <- array(rnorm(n,6,1))
  y.f <- apply(y,1,fx2)

  10*sum(y.f)/n
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6

Uncertainty Treatment under Imprecise or  
Incomplete Knowledge

In most engineering system models, the uncertain behavior of a component or system is 
captured by the probability mass function (pmf) or probability density function (pdf) of 
its performance. The probability functions are appropriate to describe the randomness in 
the behavior, i.e. uncertainty of the objective and aleatory type [1], due to the natural 
variability or stochasticity of the component or system behavior [2]. Another type of 
uncertainty that must be accounted for in reliability engineering is due to the incomplete 
or imprecise knowledge about the component or system behavior [3-8], which then is 
reflected in its modelling and the associated model parameters estimation. This type of 
uncertainty is often referred to as subjective or epistemic [1,9].

Traditionally, all uncertainties have been described by probabilities. The typical fre-
quentist representation, considering mainly the randomness features, is the most com-
monly used approach for uncertainty treatment [10]. Subjective probability is used to 
express the epistemic uncertainty of unknown frequencies, i.e. the chances [11]. 
However, this approach is reported to be limited to treat various uncertainties. For exam-
ple, one may assign a failure probability to an offshore platform based on the assumption 
that its structure can withstand a certain accidental load; while in real-life situations, the 
structure could fail at a lower load level, and the preassigned probability could not reflect 
this uncertainty [12]. To meet the practical demands for uncertainty treatment, different 
approaches have been developed. This chapter presents some of these: interval, fuzzy 
numbers, possibility, evidence, and random-fuzzy numbers. The first three approaches 
are focused on epistemic uncertainty, and the latter two are capable of treating aleatory 
and epistemic uncertainties. The associated basic arithmetic operations for uncertainty 
propagation are introduced.

6.1  Interval Number and Interval of Confidence

6.1.1  Definition and Basic Arithmetic Operations

Sometimes in practice, with the lack of additional information, the uncertainty in a 
parameter is described by experts in terms of an interval of possible values within a 
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 118

minimum and a maximum. Using intervals is one practical way to deal with such epis-
temic uncertainty on the value of the parameter. We use the following symbol to denote 
an interval number:

X x x x x x x=   = ∈ ≤ ≤, { | }  R

where x  and x  (x x≤   ) are the finite lower and upper bounds of X, respectively. In the 
rest of this section, we will presume that x x≤   . In certain cases, we can have x =−∞  
and/or x =+∞. Typically, the brackets ⋅   indicate a closed interval. In other cases, we 
may have half-open intervals: x x,  (   as a left-open interval, x x,   ) as a right-open inter-
val, and x x,  ( ) as an open interval.

Interval arithmetic is an arithmetic with operations defined on intervals. A form of 
interval arithmetic first appeared in the early twentieth century [13]. More modern 
development of interval arithmetic was initiated by R. E. Moore [14] in 1962. The four 
basic interval arithmetic operations are presented as follows.

Addition X Y x y x y+ = + +



,  

Subtraction X Y x y x y− = − −



,  

Multiplication X Y xy xy xy xy xy xy xy xy× = { } { }



min  max, , , , , , ,

Division X Y X Y/ /= ×1 , where 1 1 1/ / , /X x x=     if x> 0  or x < 0

The ranges of the operations above are exactly the ranges of the corresponding real oper-
ations. For inversion operation, if one interval includes the value of zero, i.e. x x< <0 , then 
we typically have a union of two separated intervals, 1 1 1/ , / / ,X x x= −∞  +∞ ∪  , 
as the inversion of X .

6.1.2  Algebraic Properties

The following properties hold for addition and multiplication.

Commutativity X Y Y X+ = + , X Y Y X× = ×

Associativity X Y Z X Y Z+ +( )= +( )+ , X Y Z X Y Z× ×( )= ×( )×

Example 6.1  Consider the following intervals:

X = − 2 45 5 34. , .  , Y =  4 56 9 13. , .   and Z = − − 6 43 1 95. , . .

Then, X Y+ =  2 11 14 47. , . , 

X Z− = − 0 50 11 77. , . , 

X Z/ . , . ,= − 2 7385 1 2564 
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6.1  Interval Number and Interval of Confidence 119

X Y Z× × = − × − −  = −22 3685 48 7542 6 43 1 95 313 4895 143. , . . , . . ,    ..8295 

= − × − −  = −2 45 5 34 58 7059 8 8920 313 4895 143 8295. , . . , . . , .   .

As for the distributive law of ordinary arithmetic:

x y z x y x z× +( )= × + × ,

this does not always hold for intervals. For example, let X =  2 3,   , Y =  1 2,   , and 
Z = − 1 0,   . Then,

X Y Z× +( )=  ×  =  2 3 0 2 0 6, , ,      ,

whereas

X Y X Z× + × =   + −  = − 2 6 3 0 1 6, , , ,     

However, the distributive law is true as long as the intervals Y  and Z  have the same sign:

X Y Z X Y X Z Y Z× +( )= × + × × > if 0,

For example, we have

2 3 1 2 0 1 2 9 2 3 1 2 2, , , , , , ,            ×   +  ( )=   =  ×  +     3 0 1 × , .

6.1.3  Order Relations

Just as real numbers can be ordered, the interval numbers can be ordered, too, e.g. by <, 
the relation symbol. This relation is transitive for real numbers: If x y<  and y z< , then 
x z<  for any x y z, , ∈R . A similar and preliminary order relation can be defined for 
intervals:

X Y x y< <means that ,

Then, this order relation will have the transitive property,

X Y Y Z X Z< < ⇒ <and ,

For example, [-1, 0] < [1, 2] and [1, 2] < [3, 4] gives [-1, 0] < [3, 4].
However, this relation cannot be used to compare a large number of intervals which 

are overlapping, e.g. [1, 3] and [2, 4].
More generalized order relations have been defined to cope with these situations and 

used in decision-making contexts. The relation ≤LR  [15] is one such relation. It is defined as:

X Y x y x yLR≤ ≤ ≤iff and ,

X Y X Y X YLR LR< ≤ ≠iff and ,
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 120

which represents the decision maker’s preference on the interval with the highest mini-
mum and maximum. It is transitive, reflexive, and antisymmetric and, thus, a partial 
order. Still, many pairs of intervals cannot be compared to it, e.g. X =  1 4,    and Y =  2 3,   .

The relation ≤CW  is another order relation defined on the basis of the center and width 

of the interval [15]. For X x x=  ,   , we have x x x
C =

+  
2

 and x x x
W =

−
2

 as the center 

and width, respectively. The relation is defined as

X Y x y x yCW C C W W≤ ≤ ≥iff and ,

X Y X Y X YCW CW< ≤ ≠iff and ,

which represents the decision maker’s preference on the interval with the highest expec-
tation and lowest uncertainty. Also, this relation gives only a partial order and many 
pairs of intervals cannot be compared by it, e.g. X =  1 5,    and Y =  2 3,   .

6.1.4  Interval Functions

Let f x( )denote a real-valued function of a single real-valued variable x. By replacing x 
with an interval X, the resulting function of the interval can be expressed as follows:

f X f x x X( )= ( ) ∈{ | }

where f X( ) is the image of the set X under the mapping f ⋅( ). In case of multiple varia-
bles, the function of intervals can be written as follows:

f X X f x x x X x Xn n n1 1 1, , { , , | , , }…( )= …( ) ∈ … ∈ ,

where X Xn1, ,…  are n intervals.
Below are two example functions.

6.1.4.1  Quadratic Function
The real-valued function is

f x x x( )= ∈2, R

Then, for X x x=  ,   , we have

f X x x X( )= ∈{ }2 |

=






>






<

{ }




≤

x x x

x x x

x x x

2 2

2 2

2 2

0

0

0

, ,

, ,

, max , ,

    

 

    00≤










x
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6.2  Fuzzy Number 121

X X X2 ≠ × . For example, −  =  2 1 0 42, ,     whereas − × −  = − 2 1 2 1 2 4, , ,      . This discrep-
ancy is due to interval dependency, which assumes the two intervals are independent 
when we consider multiplying them.

6.1.4.2  Exponential Function
The real-valued function is

f x x x( )= ( ) ∈exp , R ,

Then, for X x x=  ,   , we have

f X x x( )= ( ) ( )



exp , exp ,

The exponential function is one type of monotonic function. For all monotonic increasing 
functions, we have f X f x f x( )= ( ) ( )



,  whereas, for all monotonic decreasing functions, 

we have f X f x f x( )= ( ) ( )



,   .

For more information about interval arithmetic, the readers are referred to the book 
[16].

6.1.5  Interval of Confidence

The intervals mentioned above are regarded as the intervals of confidence if the bounds of 
the intervals are also uncertain. In these cases, to quantify the uncertainty, we may asso-
ciate a level of presumption to the interval. For example, we can estimate that the life-
time of a component is 11 years, and we can estimate that its lifetime is between 10 and 
12 years. We may assign confidence 0 to [10, 12] and confidence 1 to [11, 11]. The two 
levels of presumption can be represented by a value in the range [0, 1]. Let α  denote the 
presumption level, α∈  0 1,   . Based on this, we can have the following important 
property:

∀ ∈   > ⇒ 

 ⊂




α α α α α α α α1 2 1 20 1

1 1 2 2
, , , , , ,       x x x x

which means that if α  decreases, the interval of confidence will never decrease. This 
brings us to the introduction of another important descriptor of uncertainty: the fuzzy 
number.

6.2  Fuzzy Number

The concept of a fuzzy number can be presented in different ways. If we follow 
Kaufmann and Gupta [17], it is understood to be an extension of the interval of con-
fidence (as presented in Section 6.1.5). However, the classical way of defining fuzzy 
numbers is from the viewpoint of fuzzy set theory [18]. Let A*  be an ordinary set that  
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 122

are characterized in terms of the binary function µA x* ,( )∈{ }0 1  , which indicates 
whether the given element belongs to set A* . In a fuzzy set A , any of its elements x  
is associated with a membership function value (an extension of the characteristic 
function of the ordinary set above), µA x( )∈  0 1,   , which describes the degree to 
which the element belongs to A . Such a degree of membership takes values in 0 1,    .

Two properties are needed to define a fuzzy number on a fuzzy set: convexity and nor-
mality. A fuzzy set is convex if and only if each of its ordinary subsets is convex, i.e. a 
closed interval of real numbers. The normality requires that the highest membership 
value on A equals 1. A fuzzy number is, then, a convex and normal fuzzy set of real num-
bers, denoted as X x xXα µ α= ( )≥{ | } . Thus, a fuzzy number can be considered a gener-
alization of the interval of confidence introduced in Section 6.1.5. In Figure 6.1, the 
subplots show a non-normal convex fuzzy set, a normal non-convex fuzzy set and a nor-
mal convex fuzzy set, i.e. a fuzzy number, respectively.

The arithmetic operations of fuzzy numbers can be achieved by using the arithmetic 
operations of the intervals illustrated in the previous sections, applying them to the inter-
vals membership level α . For example, let X  and Y  be two fuzzy numbers, and let Xα  
and Yα  be their intervals of confidence at the membership presumption level α∈  0 1,   . 
Then, we can write

X Y x x y y x y x yα α α α α α α α α α+ =   +




 = + +



, , , .     

There is another method that can be used for the arithmetic operations of fuzzy num-
bers, namely the fuzzy extension principle [19]. By this, we have the following expres-
sion for the arithmetic operations between two fuzzy numbers,

µ µ µX Y x y X Yz x y⊗ ⊗( )= ( ) ( )( )sup min ,   ,

where X  and Y  are fuzzy numbers and ⊗  is any arithmetic operation +−× ÷{ }, , ,   .

Example 6.2  A discrete fuzzy number usually has the following expression 

A a a
i

A i i= ( )
=

∞

∑
1

µ / . For two discrete fuzzy numbers X = + +0 2 1 1 2 0 5 3. / / . /  and 

Y = + +0 3 2 1 3 0 4 4. / / . / , their sum can be obtained according to the extension princi-
ple as follows:

X Y+ = + + +0 2 3 0 2 4 0 2 5. / . / . /

0 3 4 1 5 0 4 6. / / . /+ + +

0 3 5 0 5 6 0 4 7. / . / . /+ + .

Maximizing the presumption level at the same value, then we have

X Y+ = + + + +0 2 3 0 3 4 1 5 0 5 6 0 4 7. / . / / . / . / .
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6.3  Possibility Theory 123

6.3  Possibility Theory

The possibility theory is a popular alternative to represent and treat epistemic uncer-
tainty [19]. In this theory, the uncertain number �X  in the sample space Θ⊆ℜ  is defined 
by the possibility distribution function π : ,   Θ→  0 1 , such that supx x∈ ( )=Θ π 1. For 
each element x ∈Θ, π x( ) represents the degree of possibility that �X  takes value x . If 
there is an element xi  that makes π xi( )= 0, then xi  will be regarded as an impossible 

μA

μA

x(a). A non-normal convex fuzzy set0.0

1.0

0.5

x(b). A normal non-convex fuzzy set0.0

1.0

0.5

μA

x(c). A convex and normal fuzzy set0.0

1.0

0.5

Figure 6.1  (a). A non-normal convex fuzzy set. (b). A normal non-convex fuzzy set. (c). A convex 
and normal fuzzy set.
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 124

outcome. On the other hand, if π xi( )=1, then xi  will be regarded as a definitely possible 
outcome, i.e. an unsurprisingly normal, usual outcome [20]. This is a much weaker state-
ment than the situation when probability equals 1, which makes the value xi  certain and 
the value x xj i≠  impossible. It is also known that π �X x( )  is formally equivalent to the 
fuzzy set { / | }µ x x x( ) ∈Θ [19]. The two measures of possibility distribution, namely the 
possibility Π B( )  and the necessity N B( ), are defined as

Π ΠB x N B B xx B x B( )= ( ) ( )= − ( )= − ( )( )∈{ } ∈{ }sup and infπ π1 1 .

Π B( ) indicates to what extent event B is plausible and N B( ) indicates to what extent 
event B  is certain. For any pair of events B1 and B2 , it obeys the following rules:

Π Π ΠB B B B N B B N B N B1 2 1 2 1 2 1 2∪ ∩( )= ( ) ( )( ) ( )= ( ) ( )( )max , min , .  and

The possibility measures can be linked to probabilities in the following manner [12].
The possibility distribution π x( ) can also be represented by a nested set of confidence 

intervals, the α -cuts x x x xα α π α, |   = ( )≥{ } of α where xα and xα   are respectively the 
lower and upper limits of the α -cuts, respectively. The degree of certainty of x xα α,     
containing the value of �X  is equal to N x x N X x N X xα α α α α, min ,  ( )= ≥( ) ≤( )( )= −1 . 
On the other hand, the α -cuts of a possibility distribution can be interpreted as the prob-
abilistic constraints P X x x∈  ( )≥ −α α α,   1 ; thus, the possibility distribution is linked to 
imprecise probability [21]. Then, N x xα α,   ( ) corresponds to a lower bound of probabil-
ity and Π x xα α,   ( )=1 corresponds to an upper bound of probability.

Example 6.3  Let us consider the opinions given by experts about a certain measure-
ment. They are certain that it varies within the interval [1, 4]. Based on their experience 
and possibly a few measurements, they suggest the true value of �X  is most likely to fall 
into a smaller interval [2, 3]. The possibility distribution, the related possibility measures 
and the α -cut are depicted in Figure 6.2.

For example, x x0 7 0 7 1 7 3 3. ., . , .     =    is the set of values for which the possibility distribu-
tion function is greater than or equal to 0.7: We conclude that if the event B indicates that 
the parameters lie in the interval [1 7 3 3. , .  ], then N B P B B( )= ≤ ( )≤ = ( )0 3 1. Π .

6.3.1  Possibility Propagation

The possibilistic output �Y  of a model of possibilistic inputs �Xi is often a multivariate 
function � � � �Y f X X Xn= ( )1 2, ,.., . Given the possibility distributions of the uncertain input 
variable �X , it is possible to infer the possibility distribution of �Y  by means of the α -cut 
method. For a given input variable �X , we define the α -cut of �X  as:

X x U xXα π α α= ∈ ( )≥ ≤ ≤{ | , }�  0 1 ,

X x xα α α=  ,   ,
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6.4  Evidence Theory 125

where U is the universe of discourse of �X  (i.e. the range of its possible values) and xα 
and xα  are the lower and upper limits of the α -cut, respectively. Given the α -cuts of each 
uncertain input parameter, the α -cut of the output Y can be obtained as:

Y y yα α α= 

,   ,

Y f X X Xnα α α α= …( )inf , , ,1 2  ,

Y f X X Xnα α α α= …( )sup , , ,1 2  ,

where Xiα  represents the α -cut of the ith possibilistic input variable. For each α -cut of 
the output �Y , the maximum and minimum outputs (upper bound Yα, and lower bound 
Yα) are obtained.

6.4  Evidence Theory

The evidence theory, also called Dempster-Shafer theory [23], provides a single frame-
work to treat variability and imprecision separately. Let Ω= …{ }θ θ1, , n  denote a finite 
discrete set of mutually exclusive events, called the frame of discernment. It is assumed 
that one’s total belief induced by a body of evidence can be divided into various portions, 
each one assigned to a subset A of Ω. To express this, a basic belief assignment (BBA) 
function is defined on the power set 2Ωmapping the belief masses onto the events or sets 
of events:

m m A
A

φ( )= ( )=∑
⊆

0 1and
Ω

,

where φ represents the empty set and m A( ) is the belief mass that one is willing to com-
mit exactly to A and not to its subsets. For example, let Ω={ }1 2, : then, 2 1 2Ω Ω={ }φ, , , , 

2 1 3 4 0 

α=0.7 

1 

L
ikelihood 

Values considered 
not possible 

Values considered 
not possible 

Values considered 
certain 

Values considered 
most likely 

Lower probability 
bound or necessity 

measure 

Possibility 
distribution  

Upper probability 
bound or possibility 

measure 

α-cut 

Figure 6.2  Possibility distribution of �x, and related possibility measures and the α-cut [22].
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 126

and a BBA function can be defined, for example, m m m1 0 1 2 0 2 1 2 0 7( )= ( )= { }( )=. , . , , .    . 
The subset A⊆Ω  is called a focal element if m A( )> 0 and F  are the set of all focal ele-
ments induced by m. The duplet B F=〈 〉,m  is referred to as the body of evidence.

A Bayesian BBA is a special case where all the focal elements are singletons and the 
belief masses equal probabilities.

The differences between probability distribution functions and BBAs are twofold: 1) 
the probability distribution functions are defined on Ω whereas the BBAs are defined on 
the power set 2Ω  and 2) the sub-additivity hypothesis is not required in the evidence 
theory as it is, instead, in the probability theory.

The evidence theory provides two indicators to quantitatively describe uncertainty 
with respect to a set A: the belief Bel A( ) and the plausibility Pl A( ) functions, which are 
also referred to as belief functions. A portion of belief mass committed to an element A 
must be committed to any of its subsets: to obtain the total belief in A, one must sum up 
the belief masses of every subset B of A. The function that accounts for the total belief of 
A is called belief function:

Bel A m B
B A B

( )= ( )∑
⊆ ∀ ⊆,

,
2Ω  

It is easily verified that the belief in some hypothesis A and the belief in its complement 
A do not necessarily sum to 1. Therefore, Bel A( ) does not reveal to what extent one 
believes in A or, dually, to what extent one doubts A. Instead, it is the quantity Pl A( ), 
namely the plausibility of A, which is introduced to define to what extent one fails to 
doubt in A:

Pl A m B
B B

( )=
∩

( )∑
≠ ∀ ⊆A    φ,

,
2Ω

Belief and plausibility have the following relations:

Bel A Pl A( )= − ( )1 ,

Pl A Bel A( )= − ( )1 .

Bel A( ) gathers the imprecise evidence that asserts A, and Pl A( ) gathers the imprecise 
evidence that does not conflict with A. Therefore, the interval Bel A Pl A( ) ( )



,  contains all 

probability values induced by the mass distribution m A( ) on subset A. The mass distri-
bution m is the generalization of the probability distribution p  and the possibility distri-
bution π  of uncertain discrete variables (the continuous variables have to be discretized) 
[24]. The evidence theory, thus, encompasses the probability theory and possibility the-
ory in two ways: 1) when the focal elements are nested, Bel is a necessity measure, that 
is Bel=Π and Pl  is a possibility measure, that is Pl N=  and 2) when the focal elements 
are some disjoint intervals, and Bel and Pl  are both probability measures, that is 
Bel Pl P= = .
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6.4  Evidence Theory 127

From the above section, we can calculate the belief and plausibility functions from the 
BBA. On the other hand, if we know belief or plausibility, then we will be able to calcu-
late the BBA using the following formula:

m A Bel B
B A

A B( )= −( ) ( )∑
⊆

−

 

1 ,

where A B−  is the cardinality of the difference of set A from set B.

Example 6.4  Let A a a a={ }1 2 3, ,  and m a a m a1 2 10 3 0 1, . , .{ }( )= { }( )= , m a a2 3,{ }( )
= ( )=0 2 0 4. , .m A . The focal set of this BBA is F = { } { } { }{ }a a a a a A1 1 2 2 3, , , , , .

We can compute the belief and plausibility of any subset of A. For example, the belief 
in a a1 2,{ } is

Bel a a m a a m a1 2 1 2 1 0 4, , . .{ }( )= { }( )+ { }( )=

The plausibility of a a1 2,{ } is

Pl a a m a a m a m A1 2 1 2 1 0 8, , . .{ }( )= { }( )+ { }( )+ ( )=

Given the belief values, to compute the BBA of a a1 2,{ }, we have the following formula:

m a a1 2
1 01 0 1 1 0 4 0 3, . . . .{ }( )= −( ) × + −( ) × =

In the end, we can build the following table for the BBAs, belief and plausibility of all 

subsets of A.

Table 7.1  The BBAs, belief and plausibility of subsets of A.

Set m Bel Pl

ϕ 0 0 0

a1{ } 0.1 0.1 0.8

a2{ } 0 0 0.9

a3{ } 0 0 0.6

a a1 2,{ } 0.3 0.4 0.8

a a1 3,{ } 0 0.1 0.7

a a2 3,{ } 0.2 0.2 0.9

A 0.4 1 1
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 128

6.4.1  Data Fusion

The data fusion method was developed to combine the evidence from different sources 
of uncertainty. Because a piece of evidence can be possibilistic (fuzzy) or probabilistic, 
evidence theory provides a framework to fuse the different uncertainties. Let B F1 1 1= ,m  
and B F2 2 2= ,m  denote two bodies of evidence where F1  and F2  are the focal sets of the 
same universe U, induced by m1 and m2, respectively. The conflict occurs whenever the 
focal elements have no overlap, i.e. A A1 2∩ =∅. Thus, the total conflict of the two evi-
dence bodies is defined as follows:

κ=

∩
( ) ( )∑

=∅A A

m A m A
1 2

1 1 2 2
 

where A1 1∈F  and A2 2∈F . Then, we can create a fused body of evidence B Ff f fm= ,  
from the two evidence bodies B1 and B2 . First, the focal set is defined as follows:

F F Ff A A A A A A= ≠∅ ∈ ∈∩ ∩{ | , }.1 2 1 2 1 1 2 2  and

Then, the BBA mf  is defined as

m Bf
A A m A m A

( )= ∩
−

∑ = ( ) ( )
1 2

1 1 2 2

1
C  

κ

The normalization factor 1−κ  is introduced at the denominator to ensure mf  adds up to 
1. For more details about evidence theory, the readers can refer to the book [25].

6.5  Random-fuzzy Numbers (RFNs)

Random-fuzzy numbers (RFNs) were first introduced by Kaufmann and Gupta [17] as a 
tool to jointly express epistemic and aleatory uncertainties. Later, RFN Cooper, et al. [26] 
and Baudrit, et al. [24] extended it to hybrid uncertainty propagation in the area of risk 
analysis. Given the monotonicity of the cumulative distribution functions (cdfs) of ran-
dom variables and the nestedness of the possibility distribution functions of the fuzzy 
numbers, the formal definition of RFN proposed by Ferson and Ginzburg [27] is pre-
sented as follows.

Definition  (Ferson and Ginzburg [27]) Let F denote the set of all cdfs defined on the 
real number set R , and each element F ∈ F  is an onto function F : ,R→  0 1   such that 
F x F x1 2( )≥ ( ) whenever x x1 2> . An RFN is a set of closed intervals, each characterized 
by a pair of functions from F :

H F F: , : ,0 1     → × 



F F α α α�

such as for α α1 2 0 1, ,ε    , F x F x F x F xα α α α1 2 2 1
( )≥ ( )≥ ( )≥ ( ) wherenever α α1 2< ,  where α1 

and α2  represent fuzzy membership values of x .
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6.5  Random-fuzzy Numbers (RFNs) 129

Example 6.5  Figure 6.3 (a) depicts the three-dimensional representation of an RFN. 
The x-axis is the real number line, the F-axis gives the cumulative probability values, and 
the π -axis contains the possibility values. The shaded area at the α∈( )0 1,  level includes 
all the closed probability intervals, limited by Fα  as the lower bound and Fα  as the upper 
bound. Figure 6.3(b) depicts the intersection of the RFN with the plane F(x) = p, which 
is essentially a fuzzy number. Figure 6.3(c) shows a two-dimensional representation of 
the RFN from Figure 6.1(a), and its α  level probability intervals. Figure 6.3(d) depicts the 
intersection of the RFN with the plane F(x) = p, from Figure 6.3(c), in a two-dimensional 
representation.

6.5.1  Universal Generating Function (UGF) Representation of Random-
fuzzy Numbers

We first recall the UGF for a discrete random variable X, as

u z p zX
j

J

j
x j( )=

=
∑

0

	 (6.1)

where z  is the base of z-transform, J  is the total number of realizations of X , x j  is the 

j-th realization of X , and pj  is the probability mass attached to x j  and satisfying 
j

J

jp
=
∑ =

0

1. 

1 

p 

1

1 2 3 4 5 x

(b)

F(x)F(x)

π (x)

α

π (x)

1

1 2 3 4 5 x

(d)

(a)

1 1 

1 2 3 4 5 x 

1 

1 2 3 4 5 x

(c) 

p

One α level
probability
interval

00

0 0

Figure 6.3  Three-dimensional and two-dimensional representations of an example RFN [22].
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6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 130

The u-function is useful in representing the probability distribution function of discrete 
random variables because it preserves some basic properties of the moment-generating 
function, which uniquely determines its probability distribution function [28].

Definition  The u-function of a discrete RFN ��X , denoted by u zX�� ( ), can be written as 
follows:

u z p z p zX
j

J

j
X

j

J

j
x xj j j

��
�( )= =

= =





∑ ∑

0 0

,
α 	 (6.2)

This definition satisfies the basic property of the UGF: The coefficient and exponent are 
not necessarily scalar variables but can be other mathematical objects (e.g. vector, 
matrix) [28]. It is seen that Equation (6.1) is the special case of Equation (6.2): if all the 
exponents of z in Equation (6.2) are crisp values (i.e. sufficient information is collected to 
eliminate the imprecision in state values), then Equation (6.2) will reduce to Equation 
(6.1). On the other hand, if there is only one coefficient of z, equal to 1, then Equation 
(6.2) will reduce to the following expression:	

u z z zX
X x x

�
�( )= =

 α α, 	 (6.3)

which is the u-function of a pure fuzzy number. Recall that  π �X x( ) can be uniquely 
determined by its α-cut set x xα α,    ; therefore, Equation (6.3) defines a one-to-one cor-
respondence to �X . For example, the u-function of the fuzzy number depicted in Figure 
6.2 is z 1 4+ − α α,  .

6.5.2  Hybrid UGF (HUGF) Composition Operator

Because RFN treats the two types of uncertainties separately, the composition operator 
of hybrid UGF has the properties of probabilistic UGF composition operator [29] and of 
the fuzzy extension principle [19]. In the following three cases, we will show that the 
conventional UGF composition operator ⊗ f  is applicable to hybrid UGF compositions if 
its structure function f ⋅( ) supports fuzzy arithmetic operations.

Case 1: ⊗ f  between the u-functions of two fuzzy variables �X1 and �X2,

u z u z zX f X
f X X

� �
� �

1 2

1 2( )⊗ ( )= ( , )

The extension principle [19] reads that π π π� � �Y y f x x X Xy x x( )= ( ) ( )( )= ( )sup min ,,1 2 1 21 2  . For 
example, if we have �X1 1 4= + − α α,    and �X2 2 3= + − α α,   , then the u-function of the 
denominator will be able to be written as:

u z u z z zX X
X X

� �
� �

1 2

1 2
1 2 4 3( )⊗ ( )= =×

× +( )× +( ) −( )× −( )



α α α α, .
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The fuzzy arithmetic presumes the total dependence between the α -cuts [24].

Case 2: ⊗ f between one random variable X1 and one fuzzy variable �X2,	

u z u z p zX f X
j

J

j
f X Xj

1 2

1

1

1

1 1 2

0
1( )⊗ ( )=

=

( )∑�
�,

For example, suppose that X3 has three states (0, 0.2, 0.8) with the probability vector (0.4, 
0.4, 0.2) and �X1 1 4= + − α α,   ; then, the outcome of this term can be written as:

u z u z z z zX X3 1
0 4 0 4 0 20 0 2 1 0 2 4 0 8( )⊗ ( )= + +×

+( ) −( )



� . . .. , . .α α  11 0 8 4+( ) −( )



α α, .  .

Case 3: ⊗ f between two random fuzzy variables ��X1 and ��X2,

u z u z p p zX f X
j

J

j

J

j j
f X Xj j

�� ��
� �

1 2

1

1

2

2

1 2

1 1 2 2

0 0
1 2 

 ( )⊗ ( )=
= =

( )∑∑
,

For example, we have the following operation for the addition of two RFNs:

u �� ��X Xz u z z z z
1 2

0 4 0 4 0 20 0 2 1 0 2 4 0( )⊗ ( )= + ++
+( ) −( )



. . .. , .α α .. , .

.. .

8 1 0 8 4

0 0 2 1 20 4 0 4

+( ) −( )





+

+( ) +( )







⊗

+

α α

α αz z ,, . . , ..0 2 4 3 0 8 1 2 0 8 4 32−( ) −( )



 +( ) +( ) −( ) −( )



+α α α α α α0 z 

+( ) +( ) −( ) −( )













= +0 16 0 160 0 2 1 2 0 2 4 3. . . , .z z α α α α ++ ++( ) +( ) −( ) −( )





+( )
0 08

0 16

0 8 1 2 0 8 4 3

0 2 1 0 2

.

.

. , .

. , .

z

z

α α α α

α 44 0 2 1 3 0 2 4 4

0

0 16

0 08

−( )



 +( ) +( ) −( ) −( )



+ +α α α α α.

.

. , .z

z .. , . . , ..2 1 9 4 0 2 4 13 4 0 8 1 0 8 40 08+( ) +( ) −( ) −( )



 +( ) −(+α α α α α αz ))





+( ) +( ) −( ) −( )



 +

+

+0 08 040 2 1 6 0 2 4 7 0 8 1. .. , . .z zα α α α 0 αα α α α( ) +( ) −( ) −( )



3 0 4 4, . .8

In general, the HUGF composition operator of n u-functions, i.e. components, is defined 
as follows:

⊗ ( ) ( )… ( )( )= …
= = =
∑ ∑∏f X X X
j

J

j

J

i

n

iju z u z u z p z
n

n

n

i
�� �� ��

1 2

1

1

0 0 1

, , , ff X X Xj j njn
� � �

1 1 2 1
, , ,…( )

For the case of two arguments, the following two interchangeable notations can be used:

⊗ ( ) ( )( )= ( )⊗ ( )f X X X f Xu z u z u z u z�� �� �� ��
1 2 1 2

, .

Two basic properties of ⊗ f , namely the associative and commutative properties, are used 
for reducing the computation time of uncertainty propagation.

c06.indd   131c06.indd   131 13-06-2022   14:57:1713-06-2022   14:57:17
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If the function f ⋅( ) possesses the associative property for any of its component, then 
⊗ f  will possess this property:

⊗ ( )… ( ) ( )… ( )( )=
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , ,

⊗ ⊗ ( )… ( )( ) ⊗ ( )… ( )( )( )
+f f X X f X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , , .

If the function f ⋅( ) possesses the commutative property for any of its component, then 
⊗ f  will possess this property:

⊗ ( )… ( ) ( )… ( )( )=
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , ,

⊗ ( )… ( ) ( )… ( )( )
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , , .

These properties are useful in reducing the computation time. By applying these two 
properties, the elementary random and fuzzy variables might be separated:

⊗ ( )… ( ) ( )… ( )( )=f X X X Xu z u z u z u z
l m1 1

, , , , ,� �

⊗ ⊗ ( )… ( )( ) ⊗ ( )… ( )( )( )f f X X f X Xu z u z u z u z
m l1 1

, , , , ,� � .

In this way, the fuzzy numbers can be processed prior to combination with the 
probabilistic variables, which involves multiplying the polynomials. Thanks to the 
total dependence between the α -cuts, the convolution type of computation can be 
avoided.

For further details on uncertainty treatment methods and their application to system 
RAMS, the interested reader can consult the book in reference [30].

6.6  Exercises

1)	 Prove the distributive law for interval numbers.
2)	 For two interval numbers, prove that if X YCW≤  and X YLR≤  hold, then X Y= .
3)	 For two fuzzy numbers X  and Y  and given the respective membership functions

µX x

x
x x

x x

x

( )=

≤−

+ − ≤ ≤−

− + − ≤ ≤

≤







0 5

3
5
3

5 2

3
1
3

2 1

0 1

, ,

, ,

, ,

, ,

 

 






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and

µY y

y
y y

y y

y

( )=

≤−

+ − ≤ ≤

− + ≤ ≤

≤







0 3

7
3
7

3 4

8
12
8

4 12

0 12

, ,

, ,

, ,

, ,

 

 

 







compute the membership functions of X Y−  and X Y÷ .
4)	 For two bodies of evidence, B F1 1 1= ,m  and B F2 2 2= ,m , we have the following focal 

sets and BBA functions:

F1 3 1 2 2 3 1 2 3= { } { } { } { }{ }a a a a a a a a, , , , , , ,       and m1 1 0 1 0 3 0 2 0 4F( )={ }. , . , . , . ;

F2 1 1 2 1 2 3= { } { } { }{ }a a a a a a, , , , ,     and m2 2 0 3 0 2 0 5F( )={ }. , . , . .

Compute the fused body of evidence for all subsets of A a a a={ }1 2 3, , .
5)	 For the following fuzzy random variable

u z p z p zX
j

J

j
X

j

J

j
x xj j j

��
�( )= =

= =





∑ ∑

0 0

,
α

what is its mean and variance?
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7

Applications

This chapter contains two case studies that make use of the uncertainty quantification 
and computation tools introduced in all the previous chapters of Part II. The first case 
study is about the reliability assessment of a distributed power generation system under 
hybrid uncertainties. The fuzzy number, possibility distribution, and evidence function 
are implemented; the uncertainty propagation algorithm is introduced. The detailed 
version of this case study can be found in [1]. The second case study is about the degra-
dation modelling of a nuclear component subject to multiple failure modes. The multi-
state system (MSS) models, Markov processes, and Monte Carlo simulation (MCS) 
algorithm are presented for this application example. The details about this case study 
can be found in [2].

7.1  Distributed Power Generation System Reliability 
Assessment

7.1.1  Reliability of Power Distributed Generation (DG) System

We present a model for the reliability assessment of a representative distributed power 
generation system, which consists of a number of power generation and consumption 
units. The generation units include renewable generators, e.g. solar generators, wind 
turbines, electric vehicles (EVs) and the conventional power source by way of transform-
ers (Figure 7.1). The transmission lines are often left out of consideration in the reliabil-
ity assessment studies [3,4]. The consumption units can be different types of loads, e.g. 
residential, commercial, and industrial loads [5].

In the power engineering domain, reliability is defined somewhat differently. In many 
cases, reliability assessment is conducted in the form of power adequacy (PA) assess-
ment, which focuses on evaluating the sufficiency of generation facilities within the sys-
tem to satisfy the consumer demand [6] (i.e. power generation PG  exceeding load power 
consumption PL):

P P PA G L= − . 	 (7.1)
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The power adequacy quantity is related to the reliability of the MSS introduced in Chapter 
3, where system reliability is described considering the adequacy index PA as Pr PA ≥( )0 .

Power generation PG  consists of two parts: power from the transmission system, PT , 
and power from the distributed generators, PDG :

P P PG T DG= + .	 (7.2)

Considering the distributed generators units of the representative distributed power gen-
eration system in Figure 7.1, the compound power output PDG  is

P P P PDG = + +S W EV , 	 (7.3)

where P P
i

m

i
S

S

S =
=
∑

1

, P P
i

m

i
W

W

W =
=
∑

1

, and P P
i

m

i
EV

EV

EV =
=
∑

1

 are the power outputs from the set 

of mS  solar generators, mW  wind turbines, and mEV  EVs, respectively, with P Pi
S

i
W,   , and 

Pi
EV  being the power outputs from the individual units. The value of  PEV  is negative 

when the EV group is charging batteries (i.e. consuming power from the network).

7.1.2  Energy Source Models and Uncertainties

The power function of the ith solar generator can be written as	

P g si
S

S i i
S= ( ), .θ 	 (7.3)

Solar irradiation si  is typically modeled by a probabilistic distribution (e.g. beta distribu-
tion) because the historical solar irradiation data is often sufficient and accessible to 

Loads

Wind turbines 

Solar generators 

Electric Vehicles 

Transformers 

Distribution
network 

Electrical power �ow 

Figure 7.1  Conceptual diagram of the representative distributed generation system [1].
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justify such representation [7]. The operation parameters θi
S  (detailed definitions can be 

found in [1]) are normally provided as deterministic values. However, due to the chang-
ing operation conditions, they are not fixed values but little data are available to build 
probability distributions for them. Consequently, experts’ judgments are used to esti-
mate the operation parameters, with inevitable imprecision. To capture this, possibility 
distributions can be used.

The wind turbines model have a similar description of the uncertainties as the solar 
generators model. The power function of the ith wind turbine is written as

P g vi
W

W i i
W= ( ), .θ 	 (7.4)

Wind speed vi  is modeled by a probabilistic distribution (e.g. Weibull distribution) 
because the historical wind speed data are sufficient and accessible to support such 
representation of uncertainty. The operation parameters θi

W  (details can be found in [1]) 
of the ith wind turbine model are considered ‘coefficients’. Similar to the solar genera-
tion parameters, we adopt probability distributions for the wind turbine operation 
parameters.

All EVs distributed on the network are treated as a single aggregation with three pos-
sible power output states: charging (PEV < 0), disconnection ( PEV = 0 ), and discharging 
(PEV > 0). Different from solar and wind generators, EV power outputs are primarily 
influenced by the activities of the drivers, who can decide the amount of energy to be 
exchanged with the grid and the timing/location for the exchange. Due to privacy issues, 
gathering informative operation data for each EV might be difficult, so the estimation of 
the model parameters relies on expert judgment and knowledge of the drivers’ behavior, 
which is imprecise. Then, the possibilistic distribution is chosen to model the uncertain-
ties in EV power.

As for transformers, the operation has two types of uncertainties: fluctuations of the 
grid and hardware degradation. Due to the inherent fluctuations in the grid, the power 
output of the transformer in its working state varies from 80% to 100% of its capacity. As 
for the degradation and failure mechanisms of the transformers, they have been exten-
sively studied and sufficient data exist to estimate the parameters of probabilistic distri-
butions for describing them. Finally, the real-time load values are monitored by the 
metering devices installed at the load points, and data are available to establish a proba-
bilistic representation of the associated uncertainties.

Table 7.1 summarizes the aforementioned uncertainties. The overall adequacy assess-
ment model of the distributed generators system can be written as

P f s s v v P P PA m m T L EV
S

m
S W

S W S= … … … …1 1 1 1,  , , , , , , , ,  , , ,  , , 

  θ θ θ θm
W

W







 � (7.5)

where the possibilistic variables are denoted by the symbol (~). The system adequacy 
output is a function of aleatory and epistemic uncertain variables and parameters.
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7.1.3  Algorithm for the Joint Propagation of Probabilistic and 
Possibilistic Uncertainties

Consider a general power adequacy model Y f X X X Xk k n= … …( )+1 1,  , , ,
  of n uncertain 

variables X i ni , , ,= …1 , ordered in such a way that the first k variables are described by 
probability distributions p x p xX Xk1

( )… ( )( ), , , and the last n-k variables are possibilistic 

and represented by possibility distributions π π
 X Xk n

x x
+
( )… ( )( )

1
, , .  The propagation of 

the hybrid uncertainty can be performed by MCS combined with the extension principle 

of fuzzy set theory by means of the following two major steps [8]:

1)	 Repeat MCS to process the uncertainty in the probabilistic variables.
2)	 Analyze fuzzy intervals for treating the uncertainty in the possibilistic variables.

The detailed algorithm [9] to calculate the fuzzy random output can be summarized as 
follows:

Table 7.1  Different uncertainties of the energy models of the distributed generators system [1].

Component Parameter Source of uncertainty Type of Information 
available

Uncertainty 
representation

Solar 
generator

Solar 
irradiation

Irradiation variability Historical data Probabilistic 
(e.g. Beta)

Operation 
parameters

Incomplete knowledge Experts’ judgments, 
users’ experiences

Possibilistic

Wind turbine Wind speed Speed variability Historical data Probabilistic 
(e.g. Weibull)

Operation 
parameters

Incomplete knowledge Experts’ judgments, 
users’ experiences

Possibilistic

EV 
aggregation

Power output Incomplete knowledge, 
subjective decisions

Experts’ judgments, 
users’ experiences

Possibilistic

Transformer Grid power Power
fluctuations

Historical data Probabilistic

Time to 
failure

Mechanical 
degradation/failure data

Historical data Probabilistic

Load Load value Consumption variability Historical data Probabilistic

For i = 1, 2, …, m (the outer loop processing aleatory uncertainty), do the following:

1)	 Sample the ith realization x x xi i
k
i

1 2, , ,…( )  of the probabilistic variable vec-
tor X X Xk1 2, , ,  …( ).

2)	 For α α α= ⋅ …0 2 1, , , ,∆ ∆  (the inner loop processing epistemic uncertainty), ∆α  
is the step size, e.g. ∆α=0.05), do:
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7.1  Distributed Power Generation System Reliability Assessment 139

2.1	 Calculate the corresponding α-cuts of possibility distributions π π
 X Xk n+
…( )

1
, ,  

as the intervals of the possibilistic variables  X Xk n+ …( )1, , .

2.2	 Compute the minimal and maximal values of the outputs of the 

model f X X X Xk k n1 1, , , , ,… …( )+
  , denoted by f i

α and f i
α, respectively. In this 

computation, the probabilistic variables are fixed at the sampled values 
x x xi i

k
i

1 2, , ,…( )  whereas the possibilistic variables take all values within the 

ranges of the α -cuts of their possibility distributions π π
 X Xk n+
…( )

1
, , .

2.3	 Record the extreme values f i
α and f i

α as the lower and upper limits of the α

-cuts of f x x x X Xi i
k
i

k n1 2 1, , , , , ,… …( )+
  .

End
3)	 Collect all the lower and upper limits of the different α-cuts 

of f x x x X Xi i
k
i

k n1 2 1, , , , , ,… …( )+
   to establish an approximated possibility distribu-

tion (denoted by πi
f ) of the model output.

End

This procedure results in an ensemble of m realizations of the approximated possibility 
distributions π π1

f
m
f, ,…( ) . For each set A in the universe of discourse of all power ade-

quacy values, the following formulas are used to obtain the possibility measure Pos Ai
f ( ) 

and the necessity measure Nec Ai
f ( ), given the possibility distribution πi

f :

Pos A xi
f

x A i
f( )= ( ){ }∈{ }sup π ,

Nec A xi
f

x A i
f( )= − ( ){ }∈{ }inf 1 π .	 (7.6)

These m different possibility and necessity measures are, then, used to obtain the belief 
Bel A( ) and the plausibility Pl A( ) of any set A, respectively:

Pl A p Pos A
i

m

i i
f( )= ( )

=
∑

1

,

Bel A p Nec A
i

m

i i
f( )= ( )

=
∑

1

, 	 (7.7)

where pi  is the probability of sampling the i-th realization ( , , , )x x xi i
k
i

1 2…  of the random 
variable vector ( , , )X Xk1… . For each set A, this algorithm computes the 
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7  Applications140

probability-weighted average of the possibility measures associated with each output 
fuzzy interval.

For pure probabilistic propagation, the possibilistic distributions have to be converted 
into pdfs. This conversion can be achieved by various techniques [10], e.g. by simple 
normalization:

p x
x

x dx
X

X

X
i

i

i

( )=
( )

( )∫
+∞

π

π





0

. 	 (7.8)

Once the probabilistic distribution for each fuzzy variable is determined, the  
outer loop of the algorithm is performed m times, and at each iteration, the vector 

X X Xn1 2, , ,  …( ) is sampled and the corresponding adequacy value is calculated. After the 
m repetitions, the empirical probability distribution of system adequacy PA is obtained.

7.1.4  Case Study

The system used as case study is modified from the IEEE 34 node distribution test feeder. 
Detailed information about this study can be found in [1]. Figures 7.2–7.4 present the 
graphical comparisons between the empirical cumulative distribution function (cdf) 
obtained by the probabilistic propagation approach and the belief and plausibility func-
tions obtained by the joint propagation approach at different renewable penetration lev-
els. The following observations can be drawn from the comparisons:

1)	 The cdf of distributed generators adequacy obtained by the pure probabilistic 
approach lies within the boundaries of belief and plausibility functions obtained by 
the joint propagation approach.

2)	 An explicit separation exists between the belief and plausibility functions reflecting 
the total imprecision of the information concerning the renewable generators 
parameters.

3)	 The separation between belief function and plausibility function grows with the pen-
etration level, yet the empirical cdf remains relatively stable. More detailed analysis 
of the results and discussions on their implementation can be found in [1].

7.2  Nuclear Power Plant Components Degradation

7.2.1  Dissimilar Metal Weld Degradation

The cracking process in an Alloy 82/182 dissimilar metal weld in a primary coolant system 
can follow three major morphologies [11]: axial, radial, and circumferential. The latter two 
types can lead to the rupture of the component. The crack growth has two steps: crack initia-
tion and crack propagation. The radial crack mainly grows outward from the initiation site 
toward the outer diameter; the process can lead to a leak and potentially to rupture. The 
crack grows evenly around the circumference, potentially leading to rupture.
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Figure 7.2  Comparison of joint propagation and pure probabilistic approaches at a renewable 
penetration level of 15% [1].
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Figure 7.3  Comparison of joint propagation and pure probabilistic approaches at a renewable 
penetration level of 25% [1].
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The Alloy 82/182 crack growth rate equations have been studied by various organiza-
tions including Ringhals AB, Electricité de France, and the Electric Power Research 
Institute. These equations take a similar form and include a stress and Arrhenius tem-
perature dependence:

a da
dt

f f K ealloy orient
Q R T Tref= =

−( ) −( )



α β / / /1 1 	 (7.9)

where a  ( a≥ 0) is the crack growth rate in time, a is the crack length (m), t is the time 
since crack initiation (s), α  is the crack growth amplitude, falloy  is a constant (equal to 1.0 
for Alloy 182 and 0.385 for Alloy 82), forient  is a constant equal to 1.0, K is the crack tip 
stress intensity factor (MPa√m), β  is the stress intensity exponent, Q is the thermal acti-
vation energy for crack growth (kJ/mole), R is the universal gas constant (kJ/mole-oK), T 
is the absolute operating temperature at crack location (oK), and Tref  is the absolute ref-
erence temperature used to normalize data (oK).

The multi-state physics model, proposed by Unwin, et al. [11] to describe the crack 
growth in the case study, is represented in Figure 7.5.

In [11], the transition rates ϕ1, ϕ ϕ2 3,  , and ϕ4  are time-dependent and stochastic; the 
others are assumed constant.

hybird approach: Plausibility
hybird approach: Belief
MC approach: CDF

Renewable penetration level: 35%

5000400030002000

adequacy

1000–1000–2000–3000–4000–5000 0

0.2

0.4

0.6

0.8

1

0

Figure 7.4  Comparison of joint propagation and pure probabilistic approaches at a renewable 
penetration level of 35% [1].
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The transition rate ϕ1 from initial state S to micro-crack state M is defined as

ϕ
τ τ

τ τ1

1

=







⋅







 ⋅ ( )∫
−b t f b d db

b

PDF , , 	 (7.10)

where f bPDF τ,( ) is the joint probability density function of τ  and b, and the integral 
is defined on the domains of τ  and b. The parameter τ  is a time constant, which has 
been observed to have a stress and temperature dependence; b is a fitting 
parameter.

The transition rates ϕ2  and ϕ3  describing the transitions from micro-crack state M to 
radial-crack state D and circumferential-crack state C, respectively, have similar defini-
tions. Let aD  denote the threshold length of a radial-crack; then, at time u after crack 
initiation, the probability of the state D is defined as:

D u P Pr a a t dtD D

u

( )= ⋅ ≤ ( )














∫

0

 , 	 (7.11)

where PD is the probability that the crack grows to state D with the current state is M. The 
analogous probability C u( ) that the crack goes to state C at time u after crack initiation 
is defined as:

C u P Pr a a t dtC C

u

( )= ⋅ ≤ ( )














∫

0

 ,	 (7.12)

where aC  is the threshold length of a circumferential crack and PC  is the probability that 
the crack goes to state C given that the current state is M.

S 

C 

M 

D 

R 

L C:  Circumferential crack 
D:  Radial Crack 
L:   Leak State 
M: Micro Crack 
R:  Ruptured state 
S:  Initial state 

Figure 7.5  Transition diagram of the multi-state physics model of crack development in Alloy 
82/182 dissimilar metal welds [2].
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The transition rate ϕ2  (between state M and D) is defined as [12]:

ϕ
π

π
2

2

1 1
=

( )
− ( )

=
⋅ ( )

− ( )∫
∞

dD u du
D u

a u a u P

P a da

D D D

D a uD

/ ( / ) /
,

/
 

� (7.13)

and similarly

ϕ
π

π
3

2

1 1
=

( )
− ( )

=
⋅ ( )

− ( )∫
∞

dC u du
C u

a u a u P

P a da

C C C

C a uC

/ ( / ) /
,

/
 

� (7.14)

By assuming the crack growth rate a  is following a uniform distribution with a maxi-
mum value of aM , i.e.:

π  

 

a
else

a
if a a

m
m( )=









< <
1 0

0

,

,
, 	 (7.15)

then, Equations (7.13) and (7.14) are reduced to:

ϕ2
2 1 1

0
= − −( )( )

>
a P

a u P a ua
if u a aD D

M D D M
D M

 



/( )
,   /

,                       
,

otherwise









� (7.16)

and

ϕ3
2 1 1

0
= − −( )( )

>
a P

a u P a ua
if u a aC C

M C C M
C M

 



/( )
,    /

,                       
,

else







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� (7.17)

respectively.
The transition rate ϕ4  from state D to state L is defined by the growth in crack size up 

to a threshold aL  of leakage:

L w Pr a a a t dtL D

w

( )= − ≤ ( )














∫

0

 , 	 (7.18)

ϕ4 1
=

( )
− ( )

dL w dw
L w

/
, 	 (7.19)

where w is the time from the radial crack formation [21]. By assuming the same distribu-
tion over the crack growth rate, then
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ϕ4

1

0
=

> −







w
if w a a a

otherwise
L D M, ( ) /

,
.



	 (7.20)

Transition rates from leak to rupture and from circumferential crack to rupture are 
assumed to be constant. These transition rates, together with other constant parameters, 
are presented in Table 7.2.

7.2.2  MCS Method

The multi-state physical models, like that presented in Figure 7.5, are non-homogenous 
Markov processes and typically have no closed-form solutions. Thus, simulation algo-
rithms or numerical methods are developed to solve them. In this section, we will intro-
duce the developed simulation procedures for the model considered. For the details 
about the theoretical foundation of this method, please refer to [2].

Prior to the simulation, external influencing factors should be incorporated through 
the following three steps.

1)	 Formulate the functions describing the physics of the transition rates.
2)	 Identify the external influencing factors θi  (e.g. temperature, stress).
3)	 Define the distribution functions, p θ( ), representing the uncertainties in the values of 

these factors.

The algorithm for simulating the component degradation process on the time horizon 
0,tmax   is sketched in the following pseudocode.

Table 7.2  Case study parameter definitions and values [2].

b –Weibull shape parameter for crack initiation model 2.0

τ – Weibull scale parameter for crack initiation model 4 years

aD  – Crack length threshold for radial macro-crack 10 mm

PD  – Probability that micro-crack evolves as radial crack 0.009
aM  – Maximum credible crack growth rate 9.46 mm/yr

aC  – Crack length threshold for circumferential macro-crack 10 mm

PC  – Probability that micro-crack evolves as circumferential crack 0.001

aL  – Crack length threshold for leak 20 mm

ω1 - Repair transition rate from micro-crack 1 × 10(−3) /yr

ω2- Repair transition rate from radial macro-crack 2 × 10(−2) /yr

ω3 - Repair transition rate from circumferential macro-crack 2 × 10(−2) /yr

ω4- Repair transition rate from leak 8 × 10(−1) /yr

ϕ5  – Leak to rupture transition rate 2 × 10(−2) /yr

ϕ6  – Macro-crack to rupture transition rate 1 × 10(−5) /yr
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Initialize the system by allocating a token onto place i = M (initial state of perfect 
performance), setting the time t = 0 (initial time) and the total number of replications 
to Nmax .

Set ′ =t 0.
Set n=1.
While n Nmax< ,

While t tmax< ,

Sample a realization of the external influencing factors θ  from the joint prob-
ability function p θ( ) .

Sample a departure time t  from the distribution function F t ti | ,′( )θ .

Sample a random number U  from the uniform distribution in [0, 1].

For each outgoing transition (j = 0,1,…,M, j≠ i),
Calculate the transition probability q ti j, ,θ( ) .

If 
k

j

i k
k

j

i kq U q
=

−

=
∑ ∑< <

0

1

0

* *

, , ,

then activate the transition to state j* .
End If.

End For.
Set t t'= .

Remove the token from place i and add a new token onto place j* .

End While.
Set n n= +1.

End While.

Subsequent to the execution of the simulation algorithm, an esti-
mate P t P t P t P tM   ( )= ( ) ( )… ( ){ }0 1, , ,  of the state probability vector is computed by divid-
ing the total number of visits to each state by the total number of simulations NR :  

P t
N

n t n t n t
max

M
( )= ( ) ( )… ( ){ }1

0 1, , , , where { | , , , }n t i M t ti max( ) = … ≤0    is the total 

number of visits to state i at time t. The distributions p θ( ) and F t ti | ′( ) may have compli-
cated mathematical expressions; under these circumstances, the Markov Chain Monte 
Carlo (MCMC) technique can be used to sample random values [13]. There are two key 
quantities in the simulation procedure above: F t ti | ′( ) and q ti j, ,θ( ) . The former is the 
cdf of the departure time t  given that it is at state i at time t ' and is defined as:

F t t F t t p d t dti i
t

t

i| | , exp ,′ ′ ′′ ′′( )= ( ) ( ) = − − ( )











∫ ∫ ∫

′

θ θ θ θ1 λ 


( )p dθ θ. � (7.21)
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The latter is the marginal transition probability to any other state j M j i= … ≠{ , | }0  
given that the present state is i. It is defined as:

q t
t

t
p di j

i j

i
,

, ,
,

.( )= ( )
( ) ( )∫

λ

λ

θ

θ
θ θ 	 (7.22)

The details about the computation of these quantities can be found in [2].

7.2.3  Numerical Results

The simulation model has been executed Nmax =107  times over a component lifetime 
tmax = 80  years in line with the original study. To investigate the convergence of the 
simulation model, the 107 realizations have been subdivided into N = 20 subsamples of 
500,000 each. The sample mean and variance of the estimated state probabilities are 
calculated as

P Pt
N

t
k

N

k( )= ( )
=
∑1

1

 , 	 (7.23)

var
N

t tt
k

N

kP P P




( )
=

=
−

( ) − ( )



∑1

1 1

2
, 	 (7.24)

where P t k( )  is the estimated state probability vector from the k-th subsample. The con-
vergence of the state probability values can be observed by the variance in (7.24) and the 
sequence of sample means on the steadily incremental subsamples, i.e.

P Pt
n

t
conv k

k

n

k( ) = ( )
=
∑,

,1

1

 	 (7.25)

where n takes value from 1 to N.
At t = 80 years, the variances are 0 6749 10 8. × − , 0 776 10 8. × − , 0 0352 10 8. × − , 0 0106 10 8. × − ,  

0 0037 10 8. × − , and 0 0337 10 8. × −  for initial, micro-crack, circumferential, radial, leak, 
and rupture states, respectively. Similar results are found at different time moments. The 
examples of convergence curves at 80 years are presented in Figure 7.6. The good stabili-
zation of P 80( )conv k,  is manifested. P Pt tconv k( ) = ( ), . Similar convergence curves are 
obtained at different time moments but are not presented to save space.

The numerical comparisons on the state probability values at year 80 are reported 
in Table 7.3. As expected, the relative differences (i.e. the differences between the 
state probability values computed by the simulation method minus those obtained 
with the state-space enrichment method, divided by the former) decrease as the step 
size is reduced. For the details about the state-space enrichment method, please 
refer to [14].

c07.indd   147c07.indd   147 10-06-2022   17:11:5310-06-2022   17:11:53
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Figure 7.6  Convergence plots of state probabilities at t = 80 years [2].

Table 7.3  Comparison of the simulation results with the state-space enrichment results (state 
probability values at year 80) [2].

Simulation State-space 
enrichment
Step size =  
1 year

Relative
difference

State-space 
enrichment
Step size =  
0.5 year

Relative
difference

State-space 
enrichment
Step size =  
0.1 year

Relative
difference

Initial state 
probability

0.0036 0.0033 8.33% 0.0034 5.56% 0.0036 0.00%

Micro-crack 
probability

0.9958 0.9963 -0.05% 0.9961 -0.03% 0.9959 -0.01%

Circumferential 
crack probability

2.72e-4 1.94e-04 28.68% 2.33e-04 14.34% 2.78e-04 -2.21%

Radial crack 
probability

7.78e-5 6.38e-05 17.99% 6.97e-05 10.41% 7.66e-05 1.54%

Leak probability 1.18e-5 8.93e-06 24.32% 1.06e-05 10.17% 1.24e-05 -5.08%

Rupture state 
probability

2.11e-4 1.38e-04 34.60% 1.73e-04 18.01% 2.12e-04 -0.47%
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Part III 

Optimization Methods and Applications

Reliability optimization aims at maximizing system reliability and related metrics, while 
minimizing the cost associated to the reliability improvements. It has been an active 
research domain since the 1960s. Various reliability optimization problems have been 
formulated and various solution techniques proposed. In general, the decision variables 
of such optimization problems encode the parameters driving the system reliability 
improvements, for example the inherent component reliability (and the related param-
eters, like failure probability, failure rate, etc.), the system logic configuration (e.g. the 
number of subsystems in series, the number of redundant components, the components 
type, etc.), which determine the system reliability allocation, and those relevant to test-
ing and maintenance activities (e.g. the test intervals, maintenance periodicities, etc.), 
which determine the system availability and maintainability characteristics. The generic 
formulation of the reliability optimization problem typically consists of two parts: the 
objective function (of the decision variables), which is defined so as to lead to maximize 
reliability (or minimize unavailability); the constraints, which ensure that the resources, 
e.g. cost and weight, used to enhance system reliability are under certain limits. This is 
not the only formulation, as the objective function and constraints are interchangeable 
and can be combined in multi-objective formulations. For example, in some formula-
tions the objective function is cost minimization and there is one constraint requiring a 
reliability value higher than a certain level.

The objective and constraints are mostly nonlinear and the decision variables can be a 
mix of continuous variables (e.g. test interval) and integer variables (e.g. number of 
redundant components). In addition, uncertainties could exist in the parameters of the 
objective function and constraints, and in the coefficients of the problem. These charac-
teristics render the reliability optimization problems generally quite difficult to solve. 
Solution techniques applied to reliability optimization problems have been well docu-
mented in the surveys by Kuo and Prasad [1] and by Kuo and Wan [2].

This part of the book collects various formulations and solution methods, covering 
from the conventional mathematical programming to the latest robust optimization 
methods. In Chapter 8, the mathematical programming approaches are introduced. In 
Chapter 9, evolutionary algorithms are presented. Since reliability optimization is essen-
tially multi-objective, in Chapter 10 the multi-objective formulation and the solution 
methods are introduced. Chapter 11 presents the optimization under uncertainty and 
Chapter 12 presents applications and case studies.
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8

Mathematical Programming

Mathematical programming methods, e.g. linear programming, integer programming 
(IP), convex optimization, aim to search for the exact solution(s) to an optimization 
problem in tractable time. They have very good theoretical foundations as well as a long 
history in solving various practical and challenging optimization problems with success. 
However, reliability optimization problems are typically non-linear and complex in 
nature, thus meta-heuristic and evolutionary algorithms are being often adopted because 
they are relatively straightforward to comprehend and implement.

The major drawback of evolutionary algorithms is the inability to guarantee the global 
optimal solution. On the contrary, mathematical programming methods can achieve the 
global optimal solution though they might be relatively difficult to comprehend and 
time-consuming to perform in some cases. Yet when addressing a reliability optimiza-
tion problem, one should first analyze its mathematical properties and consider whether 
a mathematical programming method is suitable for solving the problem. Evolutionary 
algorithms can be considered if the mathematical programming methods are infeasible 
or inefficient. Thus, as the first chapter of the optimization part of this book, it is devoted 
to two basic mathematical programming methods. For more advanced knowledge about 
mathematical programming, please refer to the books [1-3].

8.1  Linear Programming (LP)

In reliability optimization problems, component reliability enhancement is among the 
most important ones. The problem amounts to optimizing the reliability of the system by 
improving the reliability of its components. Already in 1973, Kulshrestha and Gupta [4] 
had formulated one such problem to maximize the reliability of a series system as 
follows:

max
r i n i

n

i
i

R r
, , , ,= …

=

=∏1 2 1

	 (8.1a)
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s.t.
i

n

ji i jh r b j m
=
∑ ( )≤ = …

1

1 2, , , , 	 (8.1b)

α βi i ir i≤ ≤ ∀, 	 (8.1c)

0 1< < < ∀α βi i i, 	 (8.1d)

where n  is the number of subsystems (i.e. stages), ri is the reliability of subsystem i (for 
example, it corresponds to a simple component i, considering a series system that has 
only one component in each subsystem), h rji i( ) is the j-th resource consumed for subsys-
tem i, and bj  is the total amount of resource j available, j m= …1 2, , , . This problem is also 
referred to as the system reliability allocation, and it is among the earliest attempts to 
system reliability optimization.

Assuming a resource function of the form h r M c rji i ji ji i( )= + ( )ln  where  
M cji ji i≥− ( )ln α ,  taking the logarithm of the objective function, and letting ln r yi i( )= ,  
we have the following converted problem:

max
y i n i

n

i
i

R y
, , , ,

ln
= …

=

=∑1 2 1

	 (8.2a)

s.t.
i

n

ji j i jM c y b j m
=
∑ +( )≤ = …

1

1 2, , , , 	 (8.2b)

ln lnα βi i iy i( )≤ ≤ ( ) ∀, 	 (8.2c)

0 1< < < ∀α βi i i, 	 (8.2d)

In this formulation, the objective function and all constraints are linear, and the deci-
sion variables are continuous. This is referred to as a linear programming (LP) problem 
which is the foundation of other mathematical programming problems, like linear inte-
ger programming (IP).

Example 8.1  Suppose two subsystems are in a series system, and their reliabilities are 
r1 and r2 , respectively. The converted variables are y1 and y2, respectively. There are two 
constraints and the limits of y1 and y2 are [-0.7, -0.001]. The problem formulation of this 
example is shown as follows:

max y y1 2+ 	 (8.3a)

s.t. 70 100 35 50 951 2+ + + ≤y y 	 (8.3b)

50 50 140 200 1801 2+ + + ≤y y 	 (8.3c)

− ≤ ≤− ∀0 7 0 001. . ,y ii 	 (8.3d)
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8.1  Linear Programming (LP) 155

Because only two variables exist, we can solve the problem by representing the set of 
points that satisfy all constraints (i.e. feasible region) on the two-dimensional plane and 
searching for the point that maximizes the objective function. Each inequality constraint 
is satisfied by a half-plane of points and the feasible region is the intersection of all these 
half-planes. Figure 8.1 illustrates this process of the graphical solution method. The 
shaded area is the feasible region of the LP problem and the dashed line is the objective 
to be maximized, i.e. y y1 2+ . As one moves the line from the bottom-left corner up and 
to the right, then the value of y y1 2+  increases. Thus, we look for the line that is furthest 
from the bottom-left corner and still touches the feasible region. This occurs at the inter-
section of the lines 10 5 11 2y y+ =−  and 5 20 11 2y y+ =− . Thus, the optimal solution of 
the problem is (-3/35, -1/35), and the corresponding maximal value of the objective func-
tion is -4/35.

8.1.1  Standard Form and Duality

In general, all LP problems can be converted into a standard form where all decision 
variables are non-negative and the main constraints are inequalities. Let x = …( )x xn

T
1, ,  

denote the vector of the decision variables, c= …( )c cn
T

1, ,  denote the coefficients of the 
objective function, b= …( )b bm

T
1, ,  denote the right-hand side values of the inequality 

constraints, and

Figure 8.1  Graphical solution to the LP problem of Equation (8.3).
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A=
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









a a

a a

n

m mn

11 1

1

�
� � �
�

denote the coefficients of the constraints. The standard LP form in the case of maximiza-
tion can be presented as follows:

max
 x i n i

n

i i
i

c x
, , , ,= …

=
∑1 2 1

	 (8.4a)

s.t.    
i

n

ij i ja x b j m
=
∑ ≤ = …

1

1, , , 	 (8.4b)

x i ni ≥ = …0 1, , ,  	 (8.4c)

where n  is the number of decision variables and m is the number of the constraints. The 
above can also be written in the following matrix form:

max c xT 	 (8.5a)

s.t.Ax b≤ 	 (8.5b)

x ≥ 0 	 (8.5c)

In case of an LP minimization problem, the objective becomes “min” and the inequali-
ties become ≥. The standard LP problems are typically solved by the Simplex method [5], 
developed by G.B. Dantzig in 1947. The Simplex procedures are presented as follows:

	● Determine the extreme points of the polygon (or polyhedron in higher-dimensional 
spaces) of the feasible region.

	● Find some feasible extreme points and calculate the objective value, z .
	● Test if an extreme point is optimal:

	– If no, move to the adjacent extreme point that gives the greatest rate of improvement 
in objective z , to perform the same test, 

	– If yes, stop the process.
	● Stop the process if an unbounded case occurs.

Example 8.2  In the following paragraphs, we will illustrate the Simplex method to 
solve the following LP problem:

max
x x

x x
1 2

2 31 2,
+ 	 (8.6a)

s.t. x x1 2 20+ ≤ 	 (8.6b)

0 16 0 101 2≤ ≤ ≤ ≤x x,   	 (8.6c)
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As seen in Figure 8.1, the optimal solution lies on one of the extreme points. Thus, the 
first step of the Simplex method is to find all the extreme points of the feasible region. To 
complete this task, we introduce three slack variables to convert inequality constraints to 
equality constraints. Then the original problem becomes the following:

max
x x s s s

x x s s s
1 2 1 2 3

2 3 0 0 01 2 1 2 3, , , ,
+ + + + 	 (8.7a)

s.t. x x s1 2 1 20+ + = 	 (8.7b)

x s1 2 16+ = 	 (8.7c)

x s2 3 10+ = 	 (8.7d)

x i s ii i≥ =( ) ≥ =( )0 1 2 0 1 2 3     , , , , 	 (8.7e)

Now the task is to solve the linear model of Equations (8.7b–8.7d) with five variables. 
Because there are two equations less than variables, we assign two variables to be zeros 
and then solve the remaining 3 × 3 linear system. The unique solution to this system is a 
basic solution. Any basic feasible solution (BFS) corresponds to an extreme point where 
all its variables are non-negative.

The disadvantage is that the number of BFSs could be large. For example, suppose we 
have 500 variables and 400 equality constraints: This gives a number of BFSs of the order 

of 
500
100










, and it is difficult or even impossible, to explore all BFSs to find the optimal 

extreme point.
Alternatively, we can start with some extreme points and move to the adjacent one 

which gives the highest rate of improvement in the objective function. This process iter-
ates until we find the optimal extreme point. The canonical form of Equation (8.7) is 
illustrative to identify the extreme points and move from one point to another. 
Let z= + + + +2 3 0 0 01 2 1 2 3x x s s s , the canonical form is shown as follows:

1 2 3
0 1 1

0 0 0
1 0 0

0 1 0
0 0 1

0 1 0
0 0 1

− −










     

    













z
x
x
s
s
s

1

2

1

2

3 

=













0
20
16
10

	 (8.8)

In this form, the dependent variable has only one non-zero entry in its corresponding 
column in the 4 6×  matrix. In other words, the dependent variables are expressed by the 
independent variables. In Equations (8.7–8.8), the set of dependent variables is s s s1 2 3, ,   { } 
and the set of independent variables is x x1 2,  { }. Then, the process is presented as 
follows:
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8  Mathematical Programming158

Step 1: Select one initial extreme point.
We assign the independent variables x1 0=  and x2 0= . In this case, we have z= 0.

Step 2: Select one dependent variable to enter the independent variable set and one inde-
pendent variable to enter the dependent variable set.
By looking at the objective function, if we increase x1 by one unit, we can increase z  by 
two units; if we increase x2 by one unit, then we can increase z  by three units. Therefore, 
we let x2 be the dependent variable.

On the other hand, we cannot increase x2 without limit, but we want to increase it as much 
as possible. Holding x1 0= , we have x s2 1 20+ = , s2 16=  and x s2 3 10+ = . Then x2 cannot 
surpass 10 and, thus, s3  should be the independent variable because in this case s3 0= .

We need the set of dependent variables s s x1 2 2, ,   { }  and the set of independent varia-
bles x s1 3,  { }. To achieve this, we have to transform the linear model. In canonical form, 
this change means that the column corresponding to x2 needs to have only one non-zero 
entry value 1. The following operation is conducted:

1 2 3 0 0 0
0 1 1 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1− −











z
x
xx
s
s
s

2

1

2

3

0
20













=
116
10













�

(8.9)

1 2 0 0 0 3
0 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

1−
−













z
x
xx
s
s
s

2

1

2

3

30
1













=
00

16
10













Step 3: Obtain a new solution and repeat Step 2.
Given the set of dependent variables s s x1 2 2, ,   { }  and the set of independent varia-
bles x s1 3,  { }, we obtain that z= 30  according to the canonical form in Equation (8.9). 
Again, by looking at the objective function, if we increase x1 by one unit, then we increase 
z  by two units; if we increase s3  by one unit, we decrease z  by three units. Therefore, we 
let x1 be the dependent variable.

On the other hand, by holding s3 0= , we have x s1 1 10+ = , x s1 2 16+ = , and x2 10= . 
Then x1 cannot surpass 10 and, thus, s1 should be the independent variable.

Now we get the set of dependent variables x s x1 2 2, ,   { } and the set of independent vari-
ables as s s1 3,  { }. To achieve this, the following operation is conducted in the canonical 
form:

*
*( )

3
1−
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1 2 0 0 0 3
0 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

1−
−













z
x
xx
s
s
s

2

1

2

3

30
1













=
00

16
10













�
(8.10)

1 0 0 2 0 1
0 1 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 1

1

−
−













z
x
xx
s
s
s

2

1

2

3

50
1













=
00
6

10













Step 4: Obtain a new solution and repeat Step 2.
Given the set of dependent variables x s x1 2 2, ,   { } and the set of independent variables s s1 3,  { },  
we obtain that z= 50 according to the canonical form in Equation (8.10). Then we repeat 
Step 2 and we find that the increase of any variable in s s1 3,  { } decreases z .

Step 5: Stop the iteration and output the results.
The optimal solution is z= 50  at x x1 2 10= =  .

In the above example, we have illustrated the Simplex method performed by hand. In 
practice, the problems are much larger in terms of the number of decision variables and 
constraints. A computer software must be used to solve them. For this, several automatized 
tools, e.g. CPLEX, LINDO, and XPRESS can efficiently solve LP problems.

8.2  Integer Programming (IP)

Redundancy allocation, first formulated by Ghare and Taylor [6] in 1969 and Beraha and 
Misra [7] in 1974, is a well-established way to reliability optimization. It aims to improve 
system reliability via installing redundant components into the system. Let yij  denote the 
number of components (integer value) of the j-th version at the i-th subsystem. The formula-
tion of the redundancy allocation problem (RAP) aims to maximize the total system reliabil-
ity while keeping the system cost C  not larger than a predefined level C0. The formulation 
for the representative binary state series-parallel system (BSSPS) is presented as follows:

max R r
i

N

j

v

ij
xi

ijx( )= − −( )










= =
∏ ∏

1 1

1 1 � (8.11a)

s.t.
i

N

j

v

ij ij

i

c x C
= =
∑∑ ≤

1 1
0 � (8.11b)

u x l xij ij ij ij≥ ≥ ∈, *   � (8.11c)

*
*( )

2
1−
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8  Mathematical Programming160

where vi  is the number of component versions available to the ith subsystem, 
rij  is the reliability of the jth version component at the ith subsystem, 
x = … … …( )x x x xv N NvN11 1 11

, , ; ; , ,   is the decision vector, and uij  and lij  are, respectively, the 
upper and lower limits of the number of jth version components at the ith subsystem.

The formulation in Equation (8.11) can be generalized as follows:

min f x( )� (8.12a)

s.t. g x b( )≥ � (8.12b)

x x∈ ≥n, 0 � (8.12c)

where n is the number of non-negative integer decision variables. This type of problem 
is called an IP problem. In many cases, the IP problem is referred to as the integer linear 
programming (ILP) problem where the objective function and constraints (except the 
integer constraints) are all linear.

The ILP problem has a simple formulation, but in general, it is NP-complete, which 
means it is among the most difficult decision problems to solve. IP has been an active 
research area for decades. Several methods have been developed, and they can be mainly 
grouped into two classes: exact methods and heuristics. The exact methods, e.g. branch-
and-bound (B&B) and cutting plane techniques, can obtain the global optimal solution, 
but they are restrained to certain problem types, e.g. ILP problems. The heuristics, e.g. 
hill climbing and genetic algorithms can work on any IP problems, but they cannot guar-
antee to obtain the global optimal solution.

In the following, we introduce B&B method procedures and apply them to solve one 
ILP problem as well as the RAP in Equation (8.11). The B&B algorithm contains the 
procedure of implicit enumeration. Even for the 0-1 LP problem, the number of possible 
solutions is 2n , where n is the number of decision variables. The main idea of implicit 
enumeration is to skip the enumeration of a large part of the solutions. The underlying 
mechanism used in implicit enumeration is ‘divide and conquer’. There are two major 
phases in B&B: In the phase of separation (i.e. branching), the solution set is divided into 
subsets; in the phase of evaluation (bounding), the subset is evaluated using LP tech-
niques and those subsets that do not contain the optimal solution are eliminated. An ILP 
is an LP with additional integrity constraints, and the optimal value of the LP is an upper 
bound or lower bound of the ILP for a maximization or minimization problem, 
respectively.

Prior to the B&B algorithm, we first present the search tree, i.e. the B&B tree, which is 
useful for the illustration of the algorithm procedures. For simplicity, let all decision 
variables be binary numbers x ∈{ }0 1,   n. As shown in Figure 8.2, at the top node of the 
tree, we set x1 0=  for its left branch and x1 1=  for its right branch. For each branch, we 
solve the relaxation of the original ILP problem with x1 0=  and x1 1= , respectively. 
Then we proceed to the second variable x2 under the branches generated by x1, and 
repeat the branching and evaluation steps for x2. This process iterates until the last vari-
able is explored. Finally, a search tree is generated, as shown in Figure 8.2.
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8.2  Integer Programming (IP) 161

Besides the branching and evaluation, the B&B algorithm also involves bound and cut 
procedures. The whole algorithm is presented as follows:

Step 1.  Initialization: solve the relaxation of the original problem.

Step 1.1. If all elements of the solution vector are integers, then stop; and
�Step 1.2. �If any element of the solution vector is non-integer, then store this solution as one 

bound to the original problem.
Step 2. � Branch: Select one appropriate variable xi , set its value to the closest upper 

and lower integers and obtain two sub-problems, respectively.
Step 3.  Bound: Select and solve one relaxed sub-problem.
Step 4. � If any of the following condition is satisfied:

	– the solution is an integer solution;
	– the corresponding problem is infeasible;
	– the solution is worse than a known feasible solution;

then stop the branch and then go to Step 3;
Otherwise, go to Step 2.

Step 5.  Stop the algorithm till all nodes (sub-problems) in the search tree are visited.

Example 8.3  Consider the following Knapsack problem:

min
x x x x

x x x x
1 2 3 4

9 2 4 31 2 3 4, , ,
+ + + � (8.13a)

s.t. 3 2 4 2 81 2 3 4x x x x+ + + ≤ � (8.13b)

x ii ∈{ } =0 1 1 2 3 4, , , , ,  � (8.13c)

The B&B solution procedures are illustrated in Figure 8.3. The order of branching is 
x x x x1 2 3 4, , , , and the relaxation of the original problem is as follows:

Figure 8.2  Search tree.
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8  Mathematical Programming162

min
x x x x

x x x x
1 2 3 4

9 2 4 31 2 3 4, , ,
+ + + � (8.14a)

s.t.3 2 4 2 81 2 3 4x x x x+ + + ≤ � (8.14b)

0 1 1 2 3 4≤ ≤ =x ii , , , ,  � (8.14c)

At the first step, we solve the problem in Equation (8.14) and find the optimal solution 
x =( )1 1 0 25 1, , . ,  to which corresponds the objective value z=15 . Then we generate the 
branches at x1. By setting x1 0= , we obtain the sub-problem (8.15a)-(8.15c) for the left 
branch, and its optimal solution is x =( )1 1 1, , , which corresponds to the objective value 
z= 9. This is a feasible and integer solution, and we record it as the temporary optimal 
solution. We can stop the branch from this node because the solutions to all sub-prob-
lems under this node will not be better than the present optimal solution.

min
x x x

x x x
2 3 4

2 4 32 3 4, ,
+ + � (8.15a)

s.t.2 4 2 82 3 4x x x+ + ≤ � (8.15b)

0 1 2 3 4≤ ≤ =x ii , , ,  � (8.15c)

Then we look at the sub-problem of the right branch of x1. By setting x1 1= , we will get 
the same solution as the one to the original problem. Then we continue the branching 
and evaluation process following the depth-first rule [8]. For the sub-problem whose 
x x1 21 0= =,  and x3 0= , we can obtain x4 1=  as the optimal solution, which corre-
sponds to the objective value z=12 . Because it is larger than the objective value of the 
temporary optimal solution, we take this solution as the newest optimal solution. Also, 
we stop the branching at this node.

Figure 8.3  The search tree of Example 8.3.
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8.2  Integer Programming (IP) 163

The B&B process continues till all nodes of the search tree are visited. The global opti-
mal solution is x =( )1 1 0 1, , , , which corresponds to the objective value z=14 . The sub-
problem whose solution is x x1 21 1= =,  and x3 1=  becomes infeasible because the 
constraint will require x4  being negative. Thus, the branching process stops on this node.

Next, we apply the B&B method in reliability optimization. Reliability optimization 
problems are typically non-linear. On the other hand, they are usually monotone to the 
decision variables, e.g. the objective function value of RAP in Equation (8.11) increases 
as xij  increases. Thus, their relaxations would be convex in several cases. If the relaxation 
is convex the original non-linear IP problem can be solved by the B&B method. Under 
this situation, we have two extensions to Example 8.3: The decision variables non-binary 
integers, and the objective function is non-linear. The key steps of the B&B method to 
solve this problem are presented as follows:

1)	 Choose one variable that has a non-integer value and branch the variable to the next 
higher integer for one sub-problem and the next lower integer for the another sub-
problem. The real value of variable j can be expressed as x x xi i=   +

* , where xi   is 
the integer part of xi  and 0 1< <x * . The lower-bound and upper-bound constraints 
of the two mutually exclusive problems are x xi i≥   +1 and x xi i≤   , respectively. 
Add these two constraints to both branched problems. Solve both problems by non-
linear optimization methods, e.g. KKT conditions.

2)	 Now xi  is an integer in either branch. Fix the integers of xi  for the following steps of 
B&B. Select the branch that results in the highest system reliability. Then repeat the 
above steps on another variable x xk i≠  for each new problem until all variables 
become integers.

3)	 Stop branching the problem if the solution is worse than the current best integer solu-
tion. Stop the iteration when all the desired integer variables are obtained.

The following example illustrates these procedures.

Example 8.4  Given the parameters in the following table, solve the RAP in Equation 

(8.11). This is a simplified problem where each subsystem has only one component type.

max
x x x x

x x x xR x
1 2 3 4

1 2 3 41 0 2 1 0 3 1 0 25 1 0 15
, , ,

. . . .( )= −( ) −( ) −( ) −( )� (8.16a)

s.t.1 2 2 3 3 4 4 5 561 2 3 4. . . .x x x x+ + + ≤ � (8.16b)

1≤ ∈x x Zi I, * � (8.16c)

Subsystem, i 1 2 3 4

ri 0.8 0.7 0.75 0.85

ci 1.2 2.3 3.4 4.5

C0 56=
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8  Mathematical Programming164

Because the relaxation of the objective function is convex, the B&B method is applicable 
to this problem. The solution procedures are illustrated in the search tree in Figure 8.4. 
In Step 1, the original problem is relaxed and solved. The optimal solution found is 
x =( )5 2712 6 2641 5 2610 3 8618. , . , . , .      , which corresponds to the objective value z= 0 9979. . 
Continuous convex optimization problems can be solved by various computation soft-
ware packages, e.g. MATLAB. For details about convex optimization, the interested read-
ers can refer to the classical book by Boyd and Vandenberghe [1].

In Step 2, we choose x4  for branching. Because the optimal x4  is 3 8618.  in the last step, 
we generate two branches: the left for x4 3≤  and the right for x4 4≥ . For the two sub-
problems under these branches, we set x4 3=  and x4 4= , respectively.

In Step 3, we relax both sub-problems under the two branches, solve the relaxed problems 
and obtain the optimal solutions x =( )5 1956 6 1636 5 1732 4 0000. , . , . , .       with z= 0 9979. ,  
and x =( )5 7456 6 8921 5 8089 3 0000. , . , . , .       with z= 0 9960. , for the right and left sub-prob-
lems, respectively. Because the right sub-problem has a higher optimal value, we give prior-
ity to this sub-problem for further branching. This is a ‘greedy search’-type of heuristic that 
follows the large-first principle for maximization.

The process continues until we obtain a feasible optimal solution 
x =( )6 0000 6 0000 5 0000 4 0000. , . , . , .       with z= 0 9977. . Because this optimal value is higher 
than those of the sub-problems under the branch x4 3≤( ) and the branch x x4 23 7≤ ≥( ),   ,  
we stop further branching at the respective nodes.

At last, the optimal redundancy allocation scheme is 6 6 5 4, , ,     ( ). This is the true global 
optimal solution to this example.

8.3  Exercises

1)	 Solve Example 8.2 by the graphical method.

Figure 8.4  The search tree of Example 8.4.
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Solve the following RAP given the parameters in the table below:

max R rs
j

j
x jx( )= − −( )











=
∏

1

4
1 1

s.t.
j

ij j ic x b i
=
∑ ≤ =

1

4

1 2, ,

1 1 2 3 4≤ =x jj , , , , 

In the B&B method, the order of branching is important to the computation complex-
ity. Change the branching sequence in Example 8.3 to ‘x x x x3 4 2 1→ → → ’ and resolve 
again the problem. Is this sequence more efficient? Why?
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rj 0.8 0.7 0.75 0.85

c j1 1.2 2.3 3.4 4.5

c j2 5 4 8 7
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9

Evolutionary Algorithms (EAs)

Practical reliability optimization problems can be, in general, difficult to solve via stand-
ard mathematical programming methods, e.g. linear programming (LP) and integer pro-
gramming (IP) because the objective and constraints are mostly non-linear, and the 
decision variables can mix continuous variables (e.g. test interval) and integer variables 
(e.g. redundancy). Evolutionary algorithms (EAs), inspired by natural principles of evo-
lution, can perform population-based stochastic search to produce good solutions (not 
necessarily globally optimal) in polynomial time. In addition, EAs are easy to compre-
hend and, thus, to implement. As a result, many reliability engineers and researchers 
often resort to EAs for solving their reliability optimization problems.

In literature, EAs are also called meta-heuristics. These two terminologies are used 
interchangeably in many occasions, so as in this book. In practice, mathematical pro-
gramming methods might be able to find the global optimal solution of a complex relia-
bility optimization problem, but the computation cost can be high and the achieved 
global optimal solution can be slightly better than other local optimal solutions. Under 
these situations, EAs can be the preferred alternatives. EAs generally contain two com-
ponents: randomization and improvements on the best solutions. Randomization aims 
at avoiding the solutions being trapped in local optima and increasing diversity. The 
improvements on the best solutions control the direction of random search so that the 
solutions converge to optimality. The balance between randomization and selection of 
the best solutions is the key to the success of EAs in application.

Generally, EAs possess the following four advantages:

1)	 They are readily working with continuous, integer, categorical and mixed decision 
variables.

2)	 They search from a population of solutions, instead of a single one.
3)	 They require only evaluating the objective function (without calculating its deviation 

or derivative).
4)	 They use probabilistic transition rules to guide the search, which helps avoid getting 

trapped in local minima.

For more advanced knowledge about EAs, please refer to the books [1,2].
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9  Evolutionary Algorithms (EAs)168

9.1  Evolutionary Search

Evolutionary search is the foundation of EAs. It combines Monte Carlo random search 
and the evolution strategy that iteratively improves the obtained solution. The Monte 
Carlo random search procedure is straightforward: It generates a large but finite number 
of random samples of the decision variables in a way that they are uniformly distributed  
in the domain of interest. After evaluating the corresponding objective function of all 
generated samples, the Monte Carlo search returns the best solution found randomly in 
the domain of interest.

Let us consider the following 0-1 Knapsack problem:

Max
x x x i

n

i i
m

f x w x
1 2 1, , ,…

=

( )=∑ 	 (9.1a)

	s.t. g x c x C
i

n

i i( )= ≤
=
∑

1
0 	 (9.1b)

	xi ∈{ }0 1, 	 (9.1c)

where wi , ci  and C0 are all constants. This is an NP-hard problem, e.g. if n= 500, and its 
search space is of size 2500 ≫ 1080, i.e. the number of elementary particles in the universe. 
Let x = …( )x x xn1 2, , ,  denote the vector of candidate solution, x *  denote the global  
optimal solution, and Kmax  denote the maximal number of iterations of the search. The 
Monte Carlo search procedures for solving this problem are presented as follows

Algorithm 9.1  Monte Carlo search

1.	 Set k← 0 , x← …( )0 0 0, , ,
2.	 For (t t← +1, t Tmax< )
3.	 Randomly sample a solution x n

∈{ }0 1,
4.	 If x x= *  then
5.	 Terminate and return x
6.	 End-if

7.	 End-for

The disadvantage of the Monte Carlo random search mainly lies in the fact that in each 
iteration, one candidate solution is generated independently and randomly for trial, 
without utilizing the current best solution. This type of strategy is intuitively unpromis-
ing because it could even generate repeated solutions. In the following paragraph, a 
quantitative analysis on the computational complexity of this method is provided.

In the Monte Carlo search, the probability to generate x *  at a single iteration 
is P n

1 2= =( )= −Pr x x * . The probability to generate x *  with k iterations 

is Pk
n k

= − −( )−1 1 2 . Solving for k, the number of iterations needed to find x *  is 
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9.1  Evolutionary Search 169

k Pk
n= −( ) −( )−ln ln1 1 2/ . Given the approximation x x≈ +( )ln 1 , we have 

k Pn
k≈− −( )2 1ln . It is obvious that k  is exponential to n , which means the Monte Carlo 

search can become an extensive method from the computational viewpoint. The condi-
tion that the Monte Carlo method uses more iterations for finding the optimal solution 
than the enumeration does is − −( )≥2 1 2n

k
nPln , which says that P ek ≥ − ≈−1 0 631 . . 

This result means that if we want to have a probability higher than about 0.63 to find the 
optimal solution in k runs, then enumeration is better than Monte Carlo search.

Evolutionary search, on the other hand, takes the advantage of randomization and cre-
ates new solutions based on the present best solution. The following (1+1) EA [3] is 
among the simplest EAs. The shaded area is the main difference between this algorithm 
and Monte Carlo search, and the random modification is carried out on the best solution 
of the last iteration and the present best solution is passed to the next iteration.

Algorithm 9.2  (1+1) Evolutionary Algorithm

1.	 Set t← 0, x← …( )0 0 0, , ,
2.	 Randomly sample a solution x n

∈{ }0 1,
3.	 For (t t← +1, t Tmax< )
4.	 Create a copy ′x  of x   
5.	 Invert each bit of ′x  with probability p
6.	 If ( ′x  matches x *  in more bits than x ) then
7.	 x x← ′
8.	 End-if
9.	 If x x= *  then

10.	 Terminate and return x
11.	 End-if

12.	 End-for

To analyze the computational time of (1+1) EA for finding the global optimal solution 
x * , assume that m bits are still not optimal in the best solution. The probability to pre-
serve all n m−  correct bits under Step 5 is 1−( ) −p n m . The probability to improve exactly 

one of the wrong bits is mp p m1 1
−( ) − . The probability that the new solution ′x  is better 

than the previous one x  is Pr  ′( )≥ −( ) −x x is better than mp p n1 1. The expected number 

of iterations until an improvement happens is E
mp p n1 1

1

1
≤

−( ) −
. Thus, the expected 

total number of improvements is E E
p p mn

i

n

i n
m

n

= ≤
−( )=

−
=

∑ ∑
1

1
1

1

1

1 . Consider that 

lim ln .
n→∞

=
∑ −











= = …

m

n

m
n

1

1 0 0522γ , we have E
p p

nn n≈
−( )

( )−

1

1 1 ln . Assume that p
n

=
1 , 

finally we get E ne nn ≈ ( )ln . In conclusion, (1+1) EA is of n nlog( ) computational 
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9  Evolutionary Algorithms (EAs)170

complexity. In this algorithm, there are only one-bit improving mutations and an upper 
bound on En . For more advanced EAs, e.g. genetic algorithm, the expected computa-
tional complexity would be much smaller.

To summarize, there are two basics components in EA: randomization and selection of 
the best solutions. The former avoids the solutions being trapped in local optima and 
increases diversity, and the latter ensures the solutions converge to optimality. Balance 
between the two components is the key to the success of EA implementations.

9.2  Genetic Algorithm (GA)

A genetic algorithm (GA) [4] is perhaps the most popular and successful EA. It imitates 
the biological evolution and natural selection processes on a group of individuals (solu-
tions), to eventually achieve quality solutions. The standard operation procedures of a 
single-objective GA (SOGA) are presented as follows:

Algorithm 9.3  Genetic Algorithm

1.	 Set t← 0
2.	 Initialize Xt
3.	 Evaluate Xt
4.	 For (t t← +1, t <Tmax )
5.	 Select Xt  from Xt−1
6.	 Crossover Xt
7.	 Mutate Xt
8.	 Evaluate Xt
9.	 Apply elitist strategy to Xt  (given Xt−1)

10.	 End-for

where Xt  is the population of solutions (i.e., individuals), t  is the generation counter (i.e., 
the population iteration index), and Gmax  is the maximum number of generations. X0  
consists of a group of encoded individuals x  randomly generated at the initialization step. 
The evaluation of the population requires computing the value of the objective function 
for each individual solution in the population and converting it into the fitness value, 
which reflects the quality of the corresponding individual. The selection step determines 
the group of individuals entering the evolution process with a probability related to the 
fitness values. The individuals with high fitness values have large probabilities to survive 
in the evolution process. The crossover and mutation are the important evolutionary 
operators of GA. In the crossover, generally, two individuals, named parents, are paired 
to produce new individuals, named offsprings, by exchanging some parts of the encoded 
solutions. Crossover allows the parts of the good solutions to be retained and copied in the 
population, so the algorithm can eventually converge to an overall good solution. On the 
other hand, the mutation operator randomly changes the coding of the individuals. The 
perturbations brought by mutation introduce diversity into the population and assist the 
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9.2  Genetic Algorithm (GA) 171

search escaping from local minima. The elitist strategy maintains the fittest individual of 
the population. It ensures that the best solution will not be lost during the stochastic 
search process. The following sections introduce each main step of GA.

9.2.1  Encoding and Initialization

To design a GA, the first step is to translate the candidate solutions into genotypes for 
manipulation by GA. There are different ways to carry out this task. The method chosen 
must be relevant to the problem that is being solved. The encoding will influence the fit-
ness evaluation and the genetic operators. In general, there are four types of encoding: 
discrete encoding, real-valued encoding, order-based encoding, and tree-based encod-
ing, each suitable to a certain problem type.

Discrete encoding makes use of discrete values, e.g. binary, integer, or any other 
system with a finite set of values. The most common discrete encoding is the binary 
encoding. Figure 9.1 shows one example of binary chromosome and its various phe-
notypes. In analogy to the chromosome and gene of living creatures, GA also con-
siders chromosomes that represent candidate solutions and genes that are the 
elements of the chromosomes. A chromosome is a genotype. To evaluate the fitness 
of the chromosome, it needs to be translated into a phenotype, which is the original 
form of the candidate solution. In Figure 9.1, three different phenotypes are shown, 
corresponding to integer, real number and assignment type of solutions, respec-
tively. The solution type is determined by the nature of the optimization problem. 
Figure 9.1 also implies the potential difficulty of binary encoding in dealing with 
continuous search domains of large dimensions and high numerical precision. One 
problem can occur when a variable takes a finite number of values, which is not a 
power of 2, because in this case some binary chromosomes are redundant or 
useless.

The real-valued encoding is a straightforward type of encoding. Generally, it directly 
utilizes the original form of a candidate solution, i.e. a vector of the decision variables 
(real-valued), x = …( )x xn1, ,  where xi R∈ . Thus, real-valued encoding appears to be a 
natural alternative for solving optimization problems with decision variables in continu-
ous domains.

Choromosome 

Gene 

Genotype Phenotype

Integer: 1* 26+1*2 4+1*2 2+ 1*20=85 

Real number: 10 + 85 /2 55*(2 0-1 0 )=13 .333

(a number between 10 and 20)

Assignment: Job 1 2 3 4 5 6 7 8

Worker 1 2 1  2 1 2 1 2
...

0 1 0 1 0 1 0 1 

Figure 9.1  Example of binary encoding.
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9  Evolutionary Algorithms (EAs)172

In the order-based encoding scheme, individuals are represented as permutations used 
for ordering/sequencing problems. For this type of encoding, special genetic operators 
are needed to make sure the individuals remain valid permutations. For example, to 
solve a travelling salesman problem, each city can be assigned a unique number from 1 
to 5, and thus, a candidate solution could be (5, 4, 2, 1, 3).

The tree-based encoding is mainly used for solving the optimization problems that can 
be formulated in terms of finding an optimal tree structure. For example, for the shortest 
path problem with multiple sources and destinations, in the encoding scheme, the indi-
viduals in the population are trees. Each tree represents one path from a source node to 
several destination nodes, i.e. the source is the root and the destinations are mapped into 
leaf nodes. Figure 9.2 shows such an example and the related tree, representing six paths 
from the source node A to the destination nodes D, E, F, and G.

Initialization is performed on the encoding scheme. It generates the initial population 
of chromosomes (i.e. solutions) uniformly distributed over the search space. For exam-
ple, for binary encoding, the initialization samples the value 0 or 1 with probability 0.5 
for each gene; for real-valued encoding, the initialization uniformly samples a real value 
within a given interval for each gene. The above procedures create a population from 
scratch. In other cases, the initial population can be inherited from previous results or 
other heuristics; in these cases, the initial population is closer to the optimal solution but 
could lead to possible loss of genetic diversity and introduce possible unrecoverable bias 
in the search.

9.2.2  Evaluation

Evaluation is the step in which the fitness value of a chromosome is calculated. The 
fitness value drives the probability that a chromosome survives in the selection proce-
dure to the next generation. To compute the fitness value, the evaluation step first 

A 

B C 

D 

E D G F E F 

Figure 9.2  Example of tree-based encoding.
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9.2  Genetic Algorithm (GA) 173

decodes the chromosome, i.e. translates the genotype into the phenotype, and then 
uses the decoded value to compute the value of the objective function. In general, if the 
objective function is to be maximized, then no further conversion of the value is 
needed; if the objective function is to be minimized, then the objective value needs to 
be converted, e.g. via taking the reciprocal 1 / f x( ), so that in the selection procedure, 
the chromosomes with larger fitness values have higher survival probabilities to the 
next generation.

In addition, the constraints of the optimization problem need to be considered in the 
evaluation step because it could happen that one phenotype breaks some constraints. 
Typically, there are two ways to handle constraints: penalizing the fitness and imple-
menting a repair method. The former simply adds to the fitness value a term that meas-
ures the degree of the constraint violation, e.g. δmax ,g x C( )−( )0 0  in Equation (9.1) 
where δ  is the penalty coefficient, a large constant value. The latter involves designing a 
mechanism that can fix the chromosome to satisfy all constraints, e.g. via switching 
some ‘1’ valued genes to ‘0’, in Problem 9.1.

As a matter of fact, the evaluation step is generally the most computationally expen-
sive step for real applications because the objective value might be the computed out-
come of a subroutine, a black-box simulator, or of any external process (e.g. robot 
experiment). Thus, it is recommended to avoid re-evaluating the same chromosome 
throughout all generations. Another option is to use computationally cheaper surrogates 
to approximate the fitness evaluations, but this could disturb the evolution process 
towards the optimal solution, the surrogates cannot be used for a large number of gen-
erations, and the evolution path by using surrogates needs to be constantly checked and 
corrected if needed.

9.2.3  Selection

After the fitness evaluation, the selection strategy is applied to favor the best chromo-
somes (i.e., with the highest fitness values) to have more chance of surviving to the fol-
lowing genetic operations. Different from the genetic operations, which aim at creating 
diversified offsprings, selection represents the evolution pressure that forces the popula-
tion to evolve toward an improved one. Still, the chromosomes of lower quality must also 
have a certain chance of survival to the next generation because they may carry useful 
genetic elements.

Fitness-proportional selection is the most popular method for selection. It is also 
referred to as roulette-wheel selection. For one chromosome, the probability of being 
selected is determined as

p f
fi

s i

i i
=
∑

.	 (9.2)

Under this scheme, a chromosome of higher fitness value has more chances to be 
selected.
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9  Evolutionary Algorithms (EAs)174

However, this method has three disadvantages: 1) the risk of trapping into local 
optima because the superior (fittest) chromosomes could quickly dominate the entire 
population; 2) the discrimination power is low when the fitness values are close to 
each other; and 3) the proportion reflecting the relative share of each chromosome in 
the minimization problem should be distorted due to the inversion of the fitness 
values.

To remedy these drawbacks, other selection approaches, e.g. tournament selection and 
rank-based selection, can be used. Tournament selection [5] performs several tourna-
ments among a few chromosomes randomly chosen from the population and the winner 
of each tournament is selected to undergo genetic operations. Compared to the fitness-
proportional selection procedure, tournament selection is independent from the scale of 
the fitness values. Rank-based selection [6] arranges the chromosomes from their best to 
the worst fitness values, and selects the chromosomes according to a probabilistic func-
tion of their ranks where the best chromosome is ranked m (total number of chromo-
somes in the population) and the worst chromosome is ranked 1. This basically overcomes 
the three major drawbacks of the fitness-proportional selection.

9.2.4  Mutation

The mutation is a genetic operator that alters one or more gene values in a chromosome 
so the genetic diversity is achieved. The mutation is made according to a user-defined 
mutation probability pm  (typically a low value, e.g. pm ≤ 0 001. ). An example is the inver-
sion operation of one bit in the (1+1) evolutionary algorithm in Section 9.1. A mutation 
can significantly change the previous solution. For different encoding schemes, the 
mutation operators are different.

For binary encoding, the mutation operator inverts the value of a gene, with a given 
probability pm . This is identical to the inversion operation in the (1+1) EA.

For real-valued encoding, the mutation operator perturbs values by adding a random 
noise to the original gene values. Typically, a normally distributed noise N 0,σ( ) is used 
where 0 is the mean value and σ  is the standard deviation. Thus, the mathematical 
expression for mutation of the i-th gene is x x Ni i i

' ,= + ( )0 σ . Another type of mutation 
operator is the uniform mutation, which replaces the value of the chosen gene with a 
uniform random value selected within user-defined bounds for that gene. Both these 
mutation operators can be used for real-valued and integer-valued encoding schemes.

For order-based encoding, a standard mutation operator leads to infeasible solutions. 
Therefore, at least two values must be changed at the same time. Under this setting, pm  
now represents the probability the operator will be applied once on the whole chromo-
some rather than individually on each gene. The swap operator, shown in Figure 9.3, 
randomly selects two genes and then swaps their positions. More information about 
other order-based mutations, e.g. insert mutation and inversion mutation can be found 
in Eiben and Smith’s book [7].

For tree-based encoding, the mutation operator randomly selects a node in the 
tree structure and replaces its subtree (node inclusive) with a randomly created tree. 
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9.2  Genetic Algorithm (GA) 175

Similar to the order-based case, pm  represents the probability that a whole chromo-
some is selected for mutation. A schematic example of this mutation is shown in 
Figure 9.4. This type of mutation operator is also called subtree mutation. For details 
about other tree-based mutations, please refer to Koza’s genetic programming book 
[8].

To conclude the mutation section, know that a mutation operator should allow reach-
ing each part of the search space, the amount of mutation is important and should be 
controllable, mutation should produce physically valid chromosomes.

9.2.5  Crossover

Crossover, also called recombination, is a genetic operator that combines the genetic 
information of the paired parent chromosomes to generate new offsprings (i.e. children) 
as an analogy to the biological reproduction. Similar to mutation, crossover occurs 
according to a user-defined probability pc  (typically a high value, e.g. pc ≥ 0 6. ), which 
determines the chance of applying the crossover operator on each pair. For different 
encoding schemes, the applicable crossover operators are different.

For binary-valued, integer-valued, and real-valued encodings, the same type of crosso-
ver operators can be applied. Figure 9.5 shows the single-point crossover scheme where 
the paired chromosomes are cut at the same crossover point, and the genes to the right 

57 4 2 8 3 1 65 7 1 2 8 3 4 6 

Figure 9.3  Swap operator for order-based encoding.

A 

B C

D

EDG F E F

A

B F

D

CG F E

Figure 9.4  One example of tree-based mutation.

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

29 7 2 5 3 7 6

11 4 3 1 4 5 3

Parents Children

Figure 9.5  Single-point crossover.
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9  Evolutionary Algorithms (EAs)176

of this point are swapped between the two parent chromosomes. The crossover point 
occurs with an equal probability between any two adjacent genes.

Two-point crossover is the extension of single-point crossover. The two crossover 
points are randomly selected and the genes between these two points are swapped 
between the parent chromosomes. One example is shown in Figure 9.6. Furthermore, 
two-point crossover can be generalized to n-point crossover, which swaps the genes 
between two adjacent crossover points between the parents.

Uniform crossover operator swaps the genes on the randomly selected crossover points 
between the parents. To illustrate this crossover operator, as shown in Figure 9.7, a mask 
vector of ‘0’ and ‘1’ values is randomly generated, and the genes of the parents are 
swapped at the points with ‘1’ values on the mask vector. There exists a relation between 
the uniform crossover and n-point crossover. For example, a mask ‘00011100’ defines a 
two-point crossover with the fourth and sixth genes as crossover points.

Because crossover is conducted with high probability, its disruptive effect needs to be 
considered carefully when selecting or designing the crossover operators for a GA. For 
example, in the global optimal solution, there are some inseparable building blocks, e.g. 
composed of two consecutive genes. The single-point crossover (or mutation) operator is 
said to disrupt the building block if it separates the two genes and distrutes them into 
different children and then the building block might not appear in neither child. This 
effect can be remedied by utilizing the two-point crossover, that does not break the block. 
However, the disruptive effect is not always unwelcomed because it can increase the 
chance for the GA to jump to different points of the search space, which enhances the 
exploration capability. In the end, as said before, the right balance between global explo-
ration and local exploitation is the key to the successful implementation of a GA. For 
details about multi-point crossover (including n-point crossover and uniform crossover) 
and disruptive effects, the interested readers can refer to De Jong and Spear’s work in [9].

For real-valued encoding, a few special crossover operators are different from the com-
mon single-point, multi-point, and uniform crossover operators. One example is the 
arithmetical crossover where each gene of the offspring chromosome is the weighted 
sum of the parent genes at the same position. Mathematically speaking, let x1 and x2  
denote the two parent chromosomes and  ′x 1 and  ′x 2  denote the two children chromo-
somes after arithmetical crossover: Then, for the i-th gene  ′x i1  in the first child, we 
have ′ = + −( )x x xi i i1 1 21λ λ ; similarly for the i-th gene  ′x i2  in the second child, we have 
′ = + −( )x x xi i i2 2 11λ λ  where λ  is a constant for uniform arithmetical crossover and var-

ies with the generations for non-uniform arithmetical crossover. For other types of real-
valued crossover operators, the interested readers can refer to [10].

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

19 7 2 5 3 7 3

21 4 3 1 4 5 6

Parents Children

Figure 9.6  Two-point crossover.
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9.2  Genetic Algorithm (GA) 177

For order-based encoding, similar to the case of mutation, standard crossover opera-
tors, e.g. single-point and n-point operators, may lead to infeasible solutions. Thus, vari-
ous specialized operators are designed for order-based encoding. Among them, order 1 
crossover is a common one; its key idea is to preserve the relative order of the occurrence 
of the genes.The procedure is presented as follows:

Procedure 9.1  Order 1 crossover

1.	 Randomly choose a gene set from the first parent and copy this to the first child.
2.	 Copy the remaining genes, that are not in the copied part, to the first child:

2.1	 Starting right from the cut point of the copied part,
2.2	 Using the order of the same genes in the second parent, and
2.3	 Wrapping around at the end of the chromosome.

3.	 Repeat this process with the parent roles reversed

Figure 9.8 Illustrative example of the procedure.
More information about other crossover operators, e.g. partially mapped crossover and 

cycle crossover can be found in Eiben and Smith’s book [7].

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

29 4 2 1 3 7 3

11 7 3 5 4 5 6

Parents Children

10 1 0 0 1 1 0

Mask 

Figure 9.7  Uniform crossover.

87 6 2 1 4 5 3

38 7 2 1 6 5 4

Parent1 

Child1

2 1 4 3 5 8 7 6

Parent2

2 1 5

7,6,4,3,8 

4,3,8,7,6

Order  

Figure 9.8  Example of Order 1 crossover.
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9  Evolutionary Algorithms (EAs)178

For tree-based encoding, the crossover operator randomly selects one node in each 
parent tree and swaps the subtrees between the parents under the respective nodes. A 
schematic example of this crossover is shown in Figure 9.9. This type of crossover opera-
tor is also called subtree crossover. For details about other tree-based crossover opera-
tors, please refer to Koza’s genetic programming book [8].

To conclude the crossover section, know that the offspring should inherit certain genetic 
materials from the parents, the crossover operators should be designed in conjunction 
with the representation scheme, and crossover should produce valid chromosomes.

9.2.6  Elitism

Elitism, i.e. elitist selection, allows a limited number of the chromosomes with the best 
fitness values in the present population to be preserved in the next generation. 
Typically, the elitism rate is used to control the proportion of the selected best chromo-
somes from the current population. For example, given a population of 20 chromo-
somes, elitism rate = 0.1 means the top two chromosomes will survive unaltered in the 
next generation.

Elitism is a simple but non-negligible step in GA, and furthermore, it has been proven 
in theory that without elitism, GA cannot guarantee to converge to the global optimal 
solution [11].

9.2.7  Termination Condition and Convergence

Because GA is a stochastic optimization method, the termination condition needs to be 
decided before its implementation. The maximal number of generations (or fitness 

A 

B C

D

EDG F E F

A

B F

D

CG F E

A

B

D

G F E

C

EDF

A

B

D

G F

F

C E

Child1 Child2

Parent1 Parent2

Figure 9.9  Example of crossover for tree-based encoding.
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9.3  Other Popular EAs 179

evaluations) is one commonly used condition. It is mainly related to the limited compu-
tational resources. Another typical type of termination condition is the maximal number 
of generations with unchanged best fitness value. Let ft

*  and ft−1
*  denote the best fitness 

values from the population at generation t  and t−1, respectively, and let δt t tf f= − −
* *

1 
be the difference between two generations: if δt = 0 for a predefined number Tconv  of 
generations, then the algorithm will terminate. Moreover, the above two conditions can 
be used simultaneously to achieve the balance between the computational resource and 
the convergence requirement.

9.3  Other Popular EAs

This section briefly introduces two EAs: differential evolution (DE) and particle 
swarm optimization (PSO), which are as successful as GAs in solving various prob-
lems. DE was originally proposed as a population-based global optimization algorithm 
for real-valued problems [12]. Due to its simplicity and efficiency, DE has soon become 
a popular EA in various scientific and engineering fields, including reliability engi-
neering [13]. The procedures of a single-objective DE (SODE) are presented as 
follows:

Algorithm 9.4  Differential Evolution

1.	 Set t← 0
2.	 Initialize Xt
3.	 Evaluate Xt
4.	 For (t t← +1, t Tmax< )
5.	 Mutate Xt  to create Vt
6.	 Crossover Vt  to create Ut
7.	 Select Xt+1 from Ut
8.	 End-for

X x xt t N t= …{ }1, ,, , . Each element xij t,  of the individual xi t,  takes a continuous value 
within its limits: x jmin

 and x jmax
. In Step 5, the mutation procedure is performed as fol-

lows. Create N  donor vectors each defined as

v x x xi t r t r t r tF i N, , , , ,  , ,= + ⋅ −( ) = …
1 2 3

1 	 (9.3)

where F  is the scaling factor and xr t1 , , xr t2 , , and xr t3 ,  are three randomly chosen individu-
als in Xt ,with indexes r r r N1 2 3 1 2, , , , ,    ∈ …{ } and satisfying r r r i1 2 3≠ ≠ ≠ .

In Step 6, the crossover procedures are presented as follows: Apply the operator in 
Equation (9.4) to mix each donor vector vi t,  with its target vector xi t,  to create the cor-
responding trial vector ui t, :

	u
v rand P or j j

otherwisex
ij t

ij t j c rand

ij t
,

,       

,

 
      

=
≤ =







= …, , ,j K1 	 (9.4)
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9  Evolutionary Algorithms (EAs)180

where randj  is a uniform random value lying in the range 0 1,  , Pc  is the crossover prob-
ability, K is the vector dimension, and j Krand ∈ …{ }1 2, , ,  is a randomly chosen parameter 
index ensuring ui t,  differs from xi t, . Evaluate all the trial vectors.

In Step 7, the new population Xt+1 is generated by selecting the survivors between the 
target vectors and the corresponding trial vectors, with respect to their fitness values f ; 
in the case of minimization, it proceeds as follows:

x
u u x
x u xi t

i t i t i t

i t i t i t

f f
f f,

, , ,

,   , ,

   
   

,+ =
( )≤ ( )
( )> ( )






1 jj K= …1, , 	 (9.5)

PSO is based on the social behavior of biological organisms that move in groups, such 
as birds and fish [14]. Its basic element is a particle representing one candidate solution 
in the search space. PSO has certain similarities to other EAs, e.g., GAs whereas it is 
uniquely characterized by the cooperative mechanism. More specifically, all particles 
change position over time with their own information and that provided by their neigh-
borhoods. One particle’s successful adaptation is shared and reflected in the performance 
of its neighbors [15]. Depending on how the neighborhood is determined, the PSO algo-
rithm may embody the gbest and lbest models [16]. In the former, each particle intercon-
nects to all others in the swarm, thus sharing information within the whole group. In the 
latter, a particle does not communicate with the entire swarm of particles but only with 
some selected ones.

Mathematically, in PSO, a particle i is characterized by three vectors: xi
t

i
t

in
tx x= …( )1, , , 

its position in the n-dimensional search space at time t, pi i inp p= …( )1, , , the best indi-
vidual position it has thus far visited, and vi

t
i
t

in
tv v= …( )1, , ,its velocity of motion. The 

procedures of single-objective PSO (SOPSO) with gbest model are presented as follows:

Algorithm 9.5  Particle Swarm Optimization

1.	 Set t← 0
2.	 Initialize X V Pt t, ,  
3.	 Evaluate Xt
4.	 Initialize g xi

t Xt
f xi

t= ( )∈argmin

5.	 For (t t← +1, t Tmax< )
6.	 Compute Xt+1 and Vt+1
7.	 Evaluate Xt+1
8.	 Update P  and g
9.	 End-for

In Step 2: X x xt
t

N
t= …{ }1, ,  where each particle i is within the range l uxi xi,    ; 

V v vt
t

N
t= …{ }1, , , and for each particle i, its velocity vector vi

t  is randomly generated 
within the range l uvi vi,    ; P p p= …{ }1, , N , and for each particle i, its best known posi-
tion is p xi i

t= . In Step 3, g  is the swarm’s best-known position.
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In Step 6, for each particle i, its position in the next iteration is computed using the 
following formulas:

x x vi
t

i
t

i
t+ += +1 1 	 (9.6)

v v p x g xi
t

i
t

i i
t

i
tw c r c r+ = + −( )+ −( )1

1 1 2 2 	 (9.7)

where w  is the inertia weight determining the exploration scope of the search space; c1  
and c2  are the acceleration constants for pi and g  respectively; r1 and r2  are the inde-
pendent uniform random numbers between 0 and 1.

In Step 8, for each particle i, if f fi
t

ix p+( )< ( )1 , then set p xi i
t= +1 ; if f fi

tx g+( )< ( )1 , 
then set g x= +

i
t 1.

9.4  Exercises

1)	 Write the lines of MATLAB/PYTHON code to simulate the sum distribution of two 
random variables v and u. If v and u are uniformly distributed in [0, 1], what are the 
distributions of u+v, u-v, and uv?

2)	 Write one EA to solve the following redundancy allocation problem, given the param-
eters in the table below.

	max
=1

4
R rs j

x jx( )= − −( )









j

∏ 1 1

	s.t.
j

ij j ic x b i
=
∑ ≤ =

1

4

1 2,  ,

	1 1 2 3 4≤ =x jj , , , ,  

Stage, j 1 2 3 4

rj
0.8 0.7 0.75 0.85

c j1
1.2 2.3 3.4 4.5

c j2
5 4 8 7

b1 56=

b2 120=

3)	 Assume we have the following function

	f x    x x x( ) = − + +3 260 900 100

where X is constrained to the range of integers [0,…, 31]. We wish to maximize f(X) (the 
optimal is for X = 10) using a GA. Use a binary representation to represent x by five 
binary digits.
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9  Evolutionary Algorithms (EAs)182

a)	 Given the following, four chromosomes give the values for X and f(X).

Chromosome Binary String

P1 11100

P2 01111

P3 10111

P4 00100

b)	 If P2 and P3 are chosen as parents and we apply one-point crossover, show the result-
ing children, C1 and C2. Use a crossover point of 1 (where 0 is to the very left of the 
chromosome).
Do the same using P2 and P4 with a crossover point of 2, and create C3 and C4.

c)	 Calculate the value of X and f(X) for C1 to C4.
d)	 Assume that the initial population is X ={ }17 21 4 28, , ,      . Using one-point crossover, 

what is the probability of finding the optimal solution? Explain your reasons.
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10

Multi-Objective Optimization (MOO)

System reliability optimization typically considers multiple reliability-related objectives: 
reliability, availability, and maintainability (RAM). For hazardous systems, risk attrib-
utes must also be considered, i.e. consideration of RAM and Safety criteria (RAMS) [1]. 
Moreover, any design, inspection, and maintenance activity is associated with a cost. In 
conclusion, system reliability optimization has essentially a multi-objective formulation, 
which aims at finding the appropriate choices of reliability design, inspection and main-
tenance procedures that optimally balance the conflicting RAMS and cost attributes 
(RAMS+C) [2].

Then the decision variable vector x is evaluated with respect to multiple numerical objec-
tives related to the RAMS+C attributes: R x( ) = system reliability; A x( ) = system availabil-
ity; M x( ) = system maintainability, e.g. the unavailability contribution due to failures but 
also test and maintenance; S x( ) = system safety, normally quantified in terms of the system 
risk measure Risk x( ) (e.g. as assessed from a probabilistic risk analysis); and C x( ) = cost 
required to implement the vector choice x. Many works convert the multi-objective optimi-
zation (MOO) problem into a single-objective one by, e.g. regarding one of the RAMS attrib-
utes or cost as the single objective and the other attributes as constraints or by aggregating 
all attributes into a single objective. Then the techniques of the solution to single-objective 
optimization (SOO) problems that have been documented in Chapters 8 and 9 can be used.

This chapter mainly focuses on MOO problems. It covers various topics related to 
MOO, including MOO problem formulation, method of conversion from MOO problem 
to SOO problem, MOO evolutionary algorithms, performance measures and method of 
selection of the preferred solutions. Finally, the guidelines of implementing and develop-
ing MOO methods for solving RAMS+C problems are presented.

10.1  Multi-objective Problem Formulation

In general, a MOO (minimization) problem can be formulated as follows:

min f x i Mi ( ) = …, , ,1 	 (10.1a)
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10  Multi-Objective Optimization (MOO)186

s t. .
, , ,
, , ,

g x j J
h x k K

j

k

( )= = …

( )≤ = …








0 1
0 1

	 (10.1b)

where fi  is the i-th of the M  objective functions, x = …( )x x xN1 2, , ,  is the decision varia-
ble vector that represents a solution in the solution space RN , g j  is the j-th of the J equal-
ity constraints, and hk  is the k-th of the K inequality constraints. Let z f x ii i= ( ) ∀, ; 
then z z z zM= …( )1 2, , ,  is the objective vector and z  is inside RM, the objective space.

For ease of notation, we assume all objective functions are to be minimized: If any 
f xi ( ) were to be maximized, they can be converted into 1− ( )f xi  for minimization. 
Adopting the general definition for RAMS+C optimization, the MOO problem has the 
following formulation:

min 1 1− ( ) − ( ) ( ) ( ) ( )( )R A M Risk Cx x x x x, , , , 	 (10.2a)

s.t.R RLx( )≥ 	 (10.2b)

	A ALx( )≥ 	 (10.2d)

	M MUx( )≤ 	 (10.2e)

	Risk RUx( )≤ 	 (10.2f)

	C CUx( )≤ 	 (10.2g)

	x x xNd
=( )∈1, ,… RNd 	 (10.2h)

The quantities R A M R CL L U U U, , , ,  represent the constraining threshold values for the 
reliability, unavailability, maintainability, risk, and cost objectives, respectively. As 
mentioned in Chapter 1, Reliability of a certain component or system measures its 
capability to sustain operation without failure under specified conditions during a 
given period of time. It is an intrinsic property that directly depends on the compo-
nent’s or system’s physical characteristics and its design, rather than on its mainte-
nance. Maintenance, on the other hand, relates to all activities performed on the 
component or system during the operational lifetime to sustain or restore its func-
tional capabilities. In spite of its positive effects on component or system functional-
ity, maintenance activities could result to the downtime of the component or system 
during which the system might not perform its designated functions. Availability 
measures the probability that the component or system performs its designated func-
tions at any time point considering unplanned failure interruptions and planned 
maintenance activities. Maintainability measures the capability of the system to be 
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10.2  MOO-to-SOO Problem Conversion Methods 187

maintained under specified conditions during a given period of time. For quantitative 
analysis, the above mentioned metrics are typically all defined in probabilistic terms. 
Safety is defined as the capability to prevent or mitigate the consequences of postu-
lated accidents on specified targets (e.g. workers, public, and environment); risk is 
often adopted as the quantitative metric of interest, in relation to scenarios, probabili-
ties of occurrence, and consequences.

MOO requires minimizing all objectives simultaneously. If no conflict exists between 
any pair of the objectives, one would find a single solution that minimizes all objectives 
at the same time. In this case, solving the MOO problem is equivalent to minimizing one 
of the objectives. The MOO methods need to be applied only when conflicts exist among 
the objectives. In this case, due to the contradiction and possible incommensurability of 
the objective functions, MOO methods identify a set of optimal solutions xl l L*, , , ,= …1 2  
instead of a single optimal solution.

In the set of optimal solutions of a MOO problem, no one can be regarded as better 
than any other with respect to all the objective functions. The identification of this set of 
solutions can be achieved in terms of the concepts of Pareto optimality and dominance 
[3]. In case of a minimization problem, the solution xa is regarded to dominate solution 
xb (x xa b ) if both following conditions are satisfied:

	∀ ∈ …{ } ( )≤ ( )i M f fi a i b1 2, , , , x x 	 (10.3a)

	∃ ∈ …{ } ( )< ( )j M f fj a j b1 2, , , , x x 	 (10.3b)

If one or both of the above conditions are violated, xb is said to be non-dominated by xa.  
Within the entire search space, the solutions non-dominated by any others are Pareto-
optimal and constitute the Pareto-optimal set; the corresponding z  objective functions 
values form the Pareto-optimal front in RM. The goal of a MOO method is to search for 
solutions in the Pareto-optimal set while maintaining diversity so as to cover the Pareto-
optimal front. Therefore, flexibility is allowed in the final decisions on the solutions to be 
implemented (Figure 10.1).

10.2  MOO-to-SOO Problem Conversion Methods

The goal of the methods for MOO problem solution is to obtain the Pareto-optimal front, 
or Pareto front in short. There are typically two ways of achieving this goal. The first one 
is to convert the MOO problem into multiple SOO problems, such that the solution to 
each SOO problem produces one member of the Pareto-optimal front. The second one is 
to simultaneously optimize the multiple objectives. In this section, the MOO-SOO con-
version methods are introduced: once the SOO problems are obtained, then the methods 
introduced in Chapters 8 and 9 can be applied.
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10  Multi-Objective Optimization (MOO)188

10.2.1  Weighted-sum Approach

The weighted-sum approach aggregates multiple objectives into one single objective 
using a weighting vector w= …( )w w wM1 2, , ,  as in the following:

min
i

M

i iw f
=
∑ ( )

1
x 	 (10.4a)

	s.t.
, , ,
, , ,

g j J
h k K

j

k

x
x
( )= = …

( )≤ = …







0 1
0 1

	 (10.4b)

where each wi ≥ 0  and 
i

M

iw
=
∑ =

1

1. Consequently, the solution to Equation (10.4) is also a 

solution to Equation (10.1). The coefficients are selected depending on the decision 
maker (DM) preferences. In multiple criteria decision analysis theory, there are a num-
ber of methods, e.g. AHP and TOPSIS, that have been developed for the quantification of 
the DMs preferences. Interested readers could refer to [4] for detailed information.

This approach is most straightforward to convert a MOO problem. For problems that 
have a convex Pareto-optimal front, it guarantees finding the solutions on the entire 
Pareto-optimal set by varying the values of the weight vector. However, this method has 
four disadvantages: Different weight vectors do not necessarily result into different 
Pareto-optimal solutions; uniformly distributed sets of weight vectors do not necessarily 
result into uniformly distributed Pareto-optimal solutions; there are difficulties to han-
dle objectives of different numerical scales; and there are difficulties to find certain 
Pareto-optimal solutions in a non-convex objective space.

0
Minimize 

M
inim

ize Pareto-optimal front

Figure 10.1  Pareto dominance and Pareto optimality.
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10.2  MOO-to-SOO Problem Conversion Methods 189

10.2.2  ε-constraint Approach

To alleviate the difficulties faced by the weighted-sum approach, the ε-constraint 
approach was proposed in 1971 by Haimes, et al. [5]. It reformulates the MOO problem 
by keeping one objective and transforming the others into constraints bounded by user-
specific values. The transformed problem has the following expression:

Min fθ x( ),	 (10.5a)

	s.t.
, , ,

, , ,
, , ,

f i M and i
g j J
h k K

i i

j

k

x
x
x

( )≤ = … ≠

( )= = …

( )≤ = …





ε θ1
0 1
0 1






	 (10.5b)

where εi  is the upper bound of fi x( ) and satisfies that L Ui i i≤ ≤ε . By iteratively increas-
ing or decreasing the value of εi , in principle, we can obtain all Pareto-optimal solutions 
on the entire Pareto-optimal set regardless the convexity of the Pareto front. The disad-
vantages of this method lie in the difficulties to determine the ranges of the objectives 
being constrained and the values of εi , especially when many objectives are involved. 
The lower limit of each converted objective Li  can be obtained by solving the individual 
SOO using the same objective. However, computing the upper limit Ui  is not straightfor-
ward. A Payoff Table (as shown in Table 10.1) is usually implemented [6]. In this table, 
the leftmost cell of each row contains the optimal solution to an individual objective, e.g. 
xi

min represents the optimal solution to the ith objective. The cell of row i under column 

j  includes the jth objective function value, given xi
min. Through this table, the upper 

limit Ui  can be estimated by max
j i j

minf x( ){ }. However, there can be large discrepancy 

between this estimation and the real upper limit. The readers can refer to [6] for details 
about finding the real upper limit.

10.2.3  Goal Programming

Goal programming was first introduced in 1955 by Charnes, et al. [7] to solve a single-
objective linear programming (LP) problem and is widely used for solving MOO prob-
lems. The main idea of goal programming is to find the solutions that achieve the 

Table 10.1  Payoff Table of the MOO problem formulation.

z1 … zM

x1
min f min

1 1x( ) … fM
minx1( )

… … …

xM
min f M

min
1 x( ) … fM M

minx( )
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10  Multi-Objective Optimization (MOO)190

predefined targets at one or more objectives. If there is no solution to achieving the pre-
defined targets in all objectives, the task will be to find the solutions that minimize the 
deviations from the objectives. On the other hand, if solutions exist within the desired 
targets, the task will be to identify those solutions.

For a MOO problem, the simplest version of goal programming requires the DM to set 
the target and relative weight for each objective function. An optimal solution x * is 
defined as the one that minimizes the deviation from the set targets. Goal programming 
generally takes the following form:

	Min
i

M

i i ic d d
=

+ −∑ +( )
1

	 (10.6a)

	s.t.

, , ,

f d d f

d d

d d i M

i i i i

i i

i i

x( )+ − =

=

≥ = …











+ −

+ −

+ −

0

0

0 1
	 (10.6b)

where ci  is the weight of the deviation of each objective, di
+ and di

−  are respectively the 
positive and negative deviations, and fi

0 is the predefined target for the i-th objective. 
The disadvantages of this method are similar to the weighted sum approach, as the DM 
has to provide targets and weights for each of the objective functions.

10.3  Multi-objective Evolutionary Algorithms

The above mentioned approaches for solving MOO problems are often referred to as 
classical. They all suggest certain ways of converting a MOO problem into a SOO prob-
lem. They have some common difficulties, such as that only one Pareto-optimal solution 
can be found in one simulation run and that certain problem knowledge, such as wi, εi, 
ci  and fi

0 is required from the DM.
The EAs, e.g. genetic algorithms (GAs) [8], introduced in Chapter 9, are stochastic 

optimization methods mimicking biological evolution on a group of individuals (solu-
tions). The parallelization and evolution operations of EAs are well-suited to the charac-
teristics of MOO problems. Parallelization helps to identify multiple solutions on the 
Pareto front in one run without soliciting knowledge from the DM; the evolution opera-
tors have the capability to avoid trapping into the local minima (which is common in 
non-convex objective spaces). These properties render the EAs by far the most popular 
methods implemented for RAMS+C MOO. There are several EAs specifically developed 
for solving MOO problems. In the following, we will introduce two representative ones.

10.3.1  Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

Fast non-dominated sorting genetic algorithm (NSGA-II) [9] has become one of the 
standard approaches of multi-objective EAs (MOEAs). The input parameters are N 
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10.3  Multi-objective Evolutionary Algorithms 191

population size, Pc  crossover probability, Pm  mutation probability and T maximum num-
ber of generations. The output is PT  final population. The procedure of NSGA-II is pre-
sented as the following:

Procedure 10.1  Nsga-II

1.	 Initialization: Set the generation counter t= 0 ; randomly generate an initial popula-
tion Pt of size N.

2.	 Mating selection: Perform the binary tournament selection with replacement on Pt to 
select parents to be processed by genetic operators.

3.	 Variation: Apply crossover and mutation operators to the paired parents with proba-
bility Pc and Pm, respectively, to create offspring population Qt  of size N.

4.	 Dominance ranking: F P Q= ∪t t , then use the fast non-dominated sorting algorithm 
to identify the non-dominated fronts F F F1 2, , ,… k in the union F .

5.	 Environmental selection:
5.1	 Set Pt+ =∅1 , then perform what follows;
5.2	 For i k= …1, ,  do the following steps;
5.3		 If P Ft i+ + ≤1 N , then set P P Ft t i+ += ∪1 1 ; and
5.4		 Else, calculate crowding distance of the solutions in Fi; add the least 
crowded N P− +t 1  solutions of Fi  to Pt+1.

6.	 Set t t= +1.

7.	 Termination: t T> , then stop and return Pt; otherwise, go to Step 2.

The procedures above show three key concepts: dominance ranking, fast non-dominated 
sorting algorithm, and crowding distance. In the fast non-dominated sorting algorithm, 
for each solution, there are two entities: domination count nx, i.e. the number of solu-
tions which dominate the present solution x and Sx, a set of solution that the solution x 
dominates. The algorithm is presented as follows:

Algorithm 10.1  Fast non-dominated sorting.

1.	 For each x P∈
2.	 Set nx ← 0, Sx ←∅
3.	 For each x P′∈
4.	 If x x ′  then // if x  dominates ′x
5.	 S S xx x← ′{ }∪  // add x′ to the set of solutions dominated by x
6.	 Else if x x′   then
7.	 n nx x← +1  // increase the domination counter of x
8.	 End-if
9.	 End-for
10.	 If nx = 0  then // x belongs to the first front
11.	 xrank←1   // assign front number to x
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10  Multi-Objective Optimization (MOO)192

12.	 F F x1 1← { }∪
13.	 End-if
14.	 End-for
15.	 Set k←1  // initialize the front counter
16.	 While Fk ≠∅
17.	 Q←∅
18.	 For each x F∈ k
19.	 For each x S′ ∈ x
20.	 n nx x′ ′← −1
21.	 If nx ′ = 0  then // x ′  belongs to the next front
22.	 xrank k′ ← +1  // assign front number to x ′
23.	 Q Q x← ′{ }∪
24.	 End-if
25.	 End-for
26.	 End-for
27.	 k k← +1
28.	 F Qk ←
29.	 End-while

where x  is the index of x  in the current population. The outputs of this algorithm 
include the total number of front k and all non-dominated fronts F F F1 2, ,,... k . Figure 
10.2 shows an example of this sorting.

To identify the different Pareto-optimal fronts in Figure 10.2, the step are shown in 
Table 10.2 according to the fast non-dominated sorting algorithm, i.e. Algorithm 10.1. 

Crowding distance is another important concept in NSGA-II. Suppose there are l = F  
solutions on the front. For each objective function k , sort the l solutions in worsening 
order, and let x i k,[ ]  represent the i-th solution in the sorted list with respect to objective 
function k . The definition of crowding distance is shown as follows:

Level 3

Level 2

Level 1

(minimize)

(minimize)

Figure 10.2  Fast non-dominance sorting, an example.
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=
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−
=
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max min for 22 1, ,… −l � (10.7)

We have the two extreme cases: d
k

k
x 1,[ ]
=∞  and d

l k

k
x ,[ ]
=∞ . For each solution x , the 

crowding distance is the sum of all its crowding distances, each with respect to one objec-
tive, i.e. d d

k

k
x x=∑ .

Take solution 4 in Figure 10.3 for example. For f1, sort solutions as 1 2 3 4 5 6, , , , ,{ } and 

d
f f

f f4
1 1 5 1 3

1 1
=
( )− ( )
−

x x
max min . For f2, sort solutions as 6 5 4 3 2 1, , , , ,{ } and d

f f
f f4

2 2 3 2 5

2 2
=
( )− ( )
−

x x
max min . 

The crowding distance of 4 is d d d4 4
1

4
2= + .

NSGA-II has three major advantages: O MN 2( ) computational complexity of sorting 
(where M is the number of objectives and N is the population size), elitism approach, and 
self-maintained diversity. In theory, NSGA-II is a GA without elitism strategy because no 
mechanism preserves the best solutions found in each generation.

10.3.2  Improved Strength Pareto Evolutionary Algorithm (SPEA 2)

The strength Pareto evolutionary algorithm (SPEA) [10] is an elitist EA. The elitism is 
introduced by explicitly maintaining an external archive Et  of non-dominated solutions 

1 For each x ∈Ρ , set nx = 0  and Sx =φ .

2 For solution 1, since 1 3 , 1 4  and 1 5 , update S1 ={ }3 4 5, ,  and n1 0= .

For solution 2, since 2 3 , 2 4  and 2 5 , update S2 ={ }3 4 5, ,  and n2 0= .

For solution 3, since 3 5 , 2 3  and 1 3 , update S3 ={ }5  and n3 2= .

For solution 4, since 4 5  and 1 4 , update S4 ={ }5  and n4 1= .

For solution 5, since 1 5 , 2 5 , 3 5  and 4 5 , update S5 =φ  and n5 4= .

3 Since n n1 2 0= = , set F1 ={ }1 2, . Set k=1.

4 For x ′ ∈ S1 , update n nx x′ ′= −1. For x S′ ∈ 2 , update n nx x′ ′= −1 . Obtain 
n3 0= , n3 0=  and n5 2= .

5 Set k= 2. Since n n3 4 0= = , set F2 3 4={ }, .

6 For x ′ ∈ S3 , update n nx x′ ′= −1. For x ′ ∈ S4 , update n nx x′ ′= −1 . Obtain 
n5 0= .

7 Set k= 3. Since n5 0= , set F3 5={ }.
8 Stop and declare the total number of fronts k= 3 and all non-dominated sets Fi , 

for i=1 2 3, , .

Table 10.2 Steps of fast non-dominance sorting, an example.
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10  Multi-Objective Optimization (MOO)194

in the course of searching. It is able to retain the elites using the ranking principle in the 
environmental selection step and is characterized by the clustering mechanism to trun-
cate the external population to increase the diversity of non-dominated solutions. Despite 
the advantages mentioned above, SPEA is typically time-consuming, mainly due to the 
complexity of the clustering algorithm. Thus, the improved SPEA (SPEA 2) was pro-
posed for better performance [11]. Different from SPEA, SPEA 2 considers the domina-
tion strength of each solution and applies the k-th nearest neighbor-based density to 
maintain population diversity. In SPEA 2, the fitness assignment incorporating domina-
tion strength and density information is the diversity-preserving mechanism.
The procedures of SPEA 2 are presented as follows.

Procedure 10.2  SPEA 2

1.	 Initialization: Set the generation counter t = 0; randomly generate an initial popula-
tion Pt  of size N ; create the empty archive (external population) Et  of size NE .

2.	 Fitness assignment: Calculate the fitness of each solution x  in P Et t∪  via the follow-
ing steps:

2.1.	 Compute the raw fitness of solution x : R x, y,
y P E ,y xt t

t S t( )= ( )∑
∈ ∪ 

 

where S ty,( )  is the number of solutions in P Et t∪  dominated by the solution y, 

i.e. the strength of y . For a non-dominated solution x , set R tx,( )= 0 .

2.2.	 Calculate the density estimate of solution x : D tx,( )= +( )−σx
k 2

1
 where σxk  is 

the distance between x  and its k-th nearest neighbor. A common setting for k is 
N N+ E .

2.3.	 Assign the fitness value to solution x : F R Dx,t x,t x,t( )= ( )+ ( ) .

3.	 Environmental selection: Copy all non-dominated solutions, the fitness values of 
which are lower than one, from P Et t∪  to Et+1 .

11 (minimize)

(minimize)

3

2

1

6

4
5

Figure 10.3  An example of crowding distance.
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10.3  Multi-objective Evolutionary Algorithms 195

3.1.	 If Et E+ ≤1 N , then add the best NE tE− +1  dominated solutions of P Et t∪  into 
Et+1 according to the fitness values;

3.2.	 Else, then iteratively remove Et E+ −1 N  solutions with respect to density. 
Break any tie by examining the maximum σl  for l k= − …1 1, , , sequentially.

4.	 Termination: If the stopping criterion is satisfied, then stop and return the set of non-
dominated solutions in Et+1.

5.	 Mating selection: Perform the binary tournament selection with replacement on Et+1 
to select parents for genetic operators.

6.	 Variation: Apply crossover and mutation operators to the parents to create offspring 
solutions which constitute the next generation Pt+1. Set t t= +1  and go to Step 2.

In SPEA 2, there are two key mechanisms: fitness assignment and environmental selec-
tion. For the former, we will explain the procedure to compute the final fitness value of 
a solution x. The domination strength S y( ) is the number of solutions it dominates in 
archive Et  and population Pt . It is mathematically defined as follows:

S y y y P E y y( )= ′ ′ ∈ ′∪{ | , }t t 

	 (10.8)

The raw fitness solution x is determined by the strengths of its dominators in archive 
Et  and population Pt . Its definition is shown as follows:

R S
P t

x y
y E y xt

( )= ( )∑
∈ ∪ , 

	 (10.9)

A high R x( ) value means that x  is dominated by many solutions. For a non-dominated 
solution x, we have R x( )= 0. Although the raw fitness assignment provides a type of 
niching mechanism based on the Pareto dominance concept, it may fail when most indi-
viduals do not dominate each other. Thus, additional density information needs to be 
incorporated to the fitness.

The density estimate D x( ) for solution x is defined as the inverse of the distance σxk to 
its k-th nearest neighbor in archive Et and population Pt:

D x x
k( )= +( )−σ 2

1
� (10.10)

In the denominator, 2 is added to ensure that D x( ) < 1. The final fitness value is 
defined as the sum of the raw fitness and the density estimate:

F R Dx x x( )= ( )+ ( ) � (10.11)

For a non-dominated solution x, its fitness value is F x( )<1; for a dominated solution x, 
its fitness value is F x( )>1.
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10  Multi-Objective Optimization (MOO)196

For the environmental selection, all non-dominated solutions in P Et t∪ , whose fitness 
values are lower than one, are first copied into Et+1 ; then the archive truncation is per-
formed considering the following two cases.

Case 1: If Et+ ≤1 NE, add the best NE − +Et 1  dominated solutions of P Et t∪  into Et+1 
according to the fitness values.

Case 2: If Et EN+ >1 , iteratively remove Et EN+ −1  solutions with respect to density. 
At each removal iteration, solution x to be removed should satisfy x yd≤  for all y E∈ +t 1 . 
The relation x yd≤  is defined as

∀ < < = ∨+0 1k t
k kE x y:σ σ

∃ < < ∀ < < =( )∧ <+0 01k l kt
l l k kE x y x y: [ : ]σ σ σ σ � (10.12)

In the following Table 10.3, we show one example of the removal iterations. Given the 
solution and its objective values in the first three columns, the distance of each solution 
to all other solutions are calculated and sorted in increasing order in the fourth column. 
The distances to the first and second nearest neighbors are shown in the fifth and sixth 
columns. We can see that in iteration #1, solution 4 is removed. Then all the distances are 
recalculated after the removal. In iteration #2, solution 1 is removed.

To summarize, the SPEA 2 has the following advantages: It provides a better distribu-
tion of Pareto-optimal solutions than NSGA-II, especially when the number of objectives 
increases, and the archive truncation guarantees the preservation of boundary solutions. 
Its disadvantages mainly lie in the computational complexities, i.e. calculation of den-
sity estimator and the calculation of fitness are time-consuming.

Table 10.3  Example of removal iterations.

Iteration #1

Solution x f1 f2 Distance to all solutions in increasing order σx
1 σx

2

1 0.31 6.10 [0.83, 0.99, 1.60, 2.47] 0.83 –

2 0.22 7.09 [0.17, 0.99, 2.60, 3.47] 0.17 0.99

3 0.66 3.65 [0.87, 2.47, 3.30, 3.47] 0.87 –

4 0.27 6.93 [0.17, 0.83, 2.43, 3.30] 0.17 0.83

5 0.58 4.52 [0.87, 1.60, 2.43, 2.60] 0.87 –

Iteration #2

Solution x f1 f2 Distance to all solutions in increasing 
order

σx
1 σx

2

1 0.31 6.10 [0.70, 1.60, 2.47] 0.70 1.60

2 0.22 7.09 [0.70, 2.28, 3.15] 0.70 2.28

3 0.66 3.65 [0.87, 2.47, 3.15] 0.87 –

5 0.58 4.52 [0.87, 1.60, 2.28] 0.87 –
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10.4  Performance Measures 197

Besides NSGA-II and SPEA 2, other well-known MOGAs include vector-evaluated GA 
(VEGA) [12] and niched Pareto GA (NPGA) [13]. The details about MOEAs for RAMS+C 
optimization have been well-documented in the tutorials by Marseguerra and Zio [2] 
and, Konak et al. [14]. Despite the popularity of the MOEAs, in general, they have the 
following disadvantages: There is no guarantee to find a true Pareto-optimal solution; 
there is no guarantee to identify all Pareto-optimal solutions; they are computationally 
expensive for large population sizes.

10.4  Performance Measures

The performance of the MOO methods needs to be evaluated quantitatively to guide the 
creation and implementation of efficient MOO methods for the different problems. 
Performance measures are defined for this purpose. There are two goals for MOO: dis-
cover solutions as close to the Pareto-optimal front as possible (i.e., search for the Pareto-
optimal front) and maintain a diverse set of Pareto-optimal solutions (i.e., search along 
the Pareto-optimal front). A MOO method is considered of good performance if both of 
the above goals are sufficiently satisfied. Correspondingly, the performance measures 
are of three categories: measure to evaluate closeness to the true Pareto-optimal front; 
measure to evaluate diversity among non-dominated solutions; and measure to evaluate 
closeness and diversity. For more comprehensive information about the performance 
measures, please refer to [15,16].

In this section, we introduce three representative measures, each belonging to one 
category. The first measure is named as generational distance (GD) [17]. It explicitly 
computes the closeness of a non-dominated solution set Q to a known Pareto-optimal set 
P*. It is mathematically defined as

GD
d

Q
i

Q
i
p

p

=







∑ =1

1/

� (10.13)

For p= 2, it defines di as the Euclidean distance (in the objective space) between solu-

tion i Q∈  and its nearest solution in P*, i.e. d f fi
k P m

M

m
i

m
k= −( )

∈
=

( ) ( )∑min
*

*

1

2
 where fm

k* ( )  

denotes the m-th objective function value of the k-th solutions in P*. Figure 10.4 shows 
one example of computing GD.

An algorithm having a smaller value of GD is regarded superior to another one having 
a larger value of GD. The disadvantages of GD as a measure of performance is that the set 
P*  should be known; otherwise, it is necessary to find an appropriate set, which can be 
considered as P*  before computing GD.

The second measure is named spacing, which quantifies the diversity of the non-dom-
inated front. It is calculated with a relative distance measure between consecutive solu-
tions in the non-dominated set Q, as in equation (10.14):
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S= −( )
=
∑

1

1

2

Q
d d

i

Q

i � (10.14)

where d d Q
i

Q

i=
=
∑

1

/  and di = min
k Q k i

m

M

m
i

m
kf f

∈ ∧ ≠
=

( ) ( )∑ −
1

, which is the minimum value of the 

sum of the absolute differences in objective function values of the i-th solution and any 
other solution k  in Q. A smaller value of S indicates a more uniform distribution of Q. 
Figure 10.5 shows one example of computing the spacing measure. For example, in the 

case of solution A, dA= +( ) +( ) +( ) +( )( )=min . . , . . , . . , . . .1 6 2 7 2 8 5 0 5 8 5 6 7 2 6 6 4 3 .

The complexity of computing spacing is O( Q 2). However, half of the calculations can 
be avoided by exploiting the symmetry in distance measures. Also, normalization of the 
objectives before calculating spacing is essential.

The third measure is called hyper-volume (HV), which is a composite type of measure 
that evaluates closeness and diversity. It calculates the volume covered by the solutions 
of the set Q. For each solution i Q∈  a hypercube νi  is constructed with a reference point 
W and a diagonal corner i. The union of all hypercubes is the HV and it can be calcu-
lated as

HV=volume ∪( )=i
Q

i1ν 	 (10.15)

The reference point W  can be regarded as the vector of worst objective function values. 
Algorithms providing solutions that give large values of HV are desirable. Figure 10.6 
illustrates the computation of HV through an example.

Figure 10.4  An example of generational distance (GD) computation.
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10.4  Performance Measures 199

In case the objective functions values are in different orders of magnitude, for exam-
ple, if f1  is an order of magnitude larger than f2, reducing HV by a unit improvement 
in f1  will be much greater than doing that by a unit improvement in f2. In these cases, 
one of the following two remedies should be considered: normalize all objective values 

and use the metric HVR, which is the ratio of the HVs of Q  and P*, HVR
HV

HV
=

( )
( )

Q

P*
.

Figure 10.5  An example of computing spacing.

A

B

C D
E

Figure 10.6  An example of illustration and computation of hyper-volume (HV).
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10  Multi-Objective Optimization (MOO)200

10.5  Selection of Preferred Solutions

Once the Pareto-optimal solution set is obtained, higher-level decision making is neces-
sary to choose one or more preferred solutions according to different application back-
grounds and specific preferences. The methods for selecting the best compromise 
solution are called post-optimal techniques, and the methods for selecting a preferred 
Pareto-optimal region are called optimization-level techniques [16]. In this section, we 
introduce two popular methods for selecting the best compromise solution. For detailed 
information about other methods, please refer to [16].

10.5.1  “Min-max” Method

This is a widely used approach for defining a single best-compromise solution. Let zm
nad  

denote the maximum value of the m-th objective function on set Q. The relative devia-
tion of each objective for each solution is calculated as r z f zm m

nad
m

i
m
nad= −( )( ) / ; 

then r rz m m= { }min  is taken as the representative value of each solution. The solution z*  
with the maximum rz  is selected to be the best compromise solution. In practice, DMs 
should adopt this method when they desire a solution that is representative of the 
‘center’ of the Pareto-front. Figure 10.7 illustrates one example of using the min-max 
method to choose the best-compromise solution from a bi-objective minimization 
problem.

Figure 10.7  Best-compromise solution z*  selected from the Pareto-front by the min-max 
method, for a two-objective minimization problem.
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10.6  Guidelines for Solving RAMS+C Optimization Problems 201

10.5.2  Compromise Programming Approach

This approach selects the best-compromise solution, which is located closest to a given 
reference point z . The ideal objective vector z*  can be regarded as the reference point. 
The following metric is used to measure the distance of the solutions of set Q to the refer-
ent point z :

d i z f f
m

M

m
i

m
z p

p

,
/

( )= −










=

( ) ( )∑
1

1

� (10.16)

Then the problem of selecting the solutions is converted to the minimization of the 
distance metric in Equation (10.16). Figure 10.8 illustrates this idea in the two-objective 
case with p= 2.

10.6  Guidelines for Solving RAMS+C Optimization 
Problems

To summarize this chapter, we have drawn out the complete framework to deal with 
RAMS+C optimization problems, which includes problem formulation, solution method 
selection and preferred solution(s) selection. Implementation guidelines are presented 
as the following steps, together with the main points of attention:

1)	 Formulate the RAMS+C optimization problem. As stated in the previous sections, 
RAMS+C optimization is essentially multi-objective; the following aspects have to be 
taken into account in the problem formulation:
a)	 All objectives need to be analyzed first to reveal the relations between them. For 

example, the generic unavailability U Ax x( )= − ( )1  might contain maintainabil-
ity M x( ) to describe the unavailability due to test and maintenance activities. The 

Figure 10.8  Illustration of the compromise Min-Max programming approach, for a two-
objective minimization problem with p= 2.
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10  Multi-Objective Optimization (MOO)202

MOO methods are worth applying only when conflicts exist between at least one 
pair of objectives; otherwise, a single-objective method can be used to find one 
solution that optimizes all objectives.

b)	 DM’s preferences for each objective need to be solicited. The preferences can be 
represented by weights or converted into utility functions. If there is sufficient 
information about the preferences, in the next step a priori solution methods need 
to be selected; otherwise, the a posteriori solution methods have to be chosen. In 
addition, if the DMs need to intervene during the optimization process, the inter-
active methods could be considered.

2)	 Select appropriate optimization methods. The choice of the optimization method 
depends on the formulation of the problem and can largely impact the optimization 
results. The following aspects need to be considered in this step:
a)	 If each objective with the constraints can be analytically solved by a single-objective 

mathematical programming method in polynomial time, then it is recommended to 
combine the mathematical programming and the classical MOO problem solution 
approaches, e.g. weighted-sum (a priori) and ε-constraint (posteriori) approaches. 
If the DM provides preference weights (and targets), then weighted-sum (or goal 
programming) can be used; if the DM wishes to obtain a complete Pareto-optimal-
front, then the ε-constraint needs to be used. It is not recommended to use weight-
ed-sum or goal programming to produce the complete Pareto-optimal front due to 
their disadvantages presented in Sections 10.2.1 and 10.2.2.

b)	 If one of the objectives exhibits difficult characteristics, e.g. non-linear, non-
convex, NP-hard, then it is recommended to use MOEAs or the classical MOO 
problem solution approaches combined with single-objective EAs (SOEAs). The 
original problem can also be relaxed and solved approximately by mathematical 
programming techniques. This approach is recommended if the practitioner has 
good knowledge about advanced mathematical optimization theory.

c)	 Test more than one method especially for difficult problems, because no one 
method is the best for all cases, and each method has its own advantages and draw-
backs.

3)	 Solve the optimization problem. Depending on the optimization methods selected, the 
following aspects need to be considered:
a)	 In case the exact solutions to all individual objectives can be found via mathematical 

programming in polynomial time, then the whole problem will be solved once 
using a priori algorithm and one exact solution will be obtained. If posteriori 
methods are used, then the whole problem needs to be solved multiple times, each 
under a different setting of the parameters, e.g. ε, and a set of the solutions on the 
Pareto-optimal front will be obtained.

b)	 If MOEAs (or ε-constraint + SOEAs) are used, then multiple simulation runs will 
be required due to the stochastic nature of these algorithms. The parameters of 
EAs need to be tuned and the convergence of the EAs ensured. Typically, each 
simulation run delivers one approximate Pareto-front. To obtain the best results 
across all runs, all fronts need to be combined, and a final ‘front of fronts’ will be 
selected from them. For ε-constraint + SOEAs, each simulation run delivers one 
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single solution and different ε values need to be explored to obtain the fronts. The 
final front can be selected from all results.

c)	 In case that a priori MOO problem solution methods are used together with 
SOEAs, multiple simulation runs, parameter tuning and convergence insurance 
are also necessary.

d)	 The performance measures are used to evaluate the quality of the obtained results. 
If the results are fronts, then the measures presented in Section 10.4 will be useful 
whereas if the results are single solution points, and statistics such as min, mean, 
standard deviations, etc. will be used.

e)	 The optimization results are recommended to be presented, compared, analyzed 
and validated at this step.

4)	 Select the preferred solution(s). This step is necessary when the a posteriori methods 
are used. First, it is recommended to select the best front from all the final fronts of 
different methods. The DMs are, therefore, solicited to determine the preferred 
solution(s) or the method that selects the preferred solution(s).

5)	 Validate the results and the procedures. All results and procedures need to be thor-
oughly checked to ensure the correctness of the implementation and the meaningful-
ness and usefulness of the results.

10.7  Exercises

1)	 Which among the following statements is NOT the difference of MOO from SOO?
a)	 MOO has three optimization goals.
b)	 MOO also deals with objective space.
c)	 MOO tends to obtain a diverse set of optimal solutions.
d)	 MOO has artificial fix-ups.

2)	 For an optimization problem with M  objectives, what is the computational complex-
ity of a continuously updated approach for identifying the non-dominated solution 
set in a given set of size N?

3)	 What are the main advantages and disadvantages of weighted sum-method and 
Ɛ-constraint method, respectively?

4)	 In the following non-dominated solutions for a minimization problem, which is the 
preferred solution selected by min-max approach?

Solution f1 f2

1 1.1 5.0

2 2.5 3.2

3 3.6 1.3

4 0.0 6.1

5 4.8 0.0
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10  Multi-Objective Optimization (MOO)204

a)	 Solution 1
b)	 Solution 2
c)	 Solution 3
d)	 Solution 4
e)	 Solution 5

5)	 For a two-objective minimization problem, consider the parent Pt and the archive Et 
at the t -th generation as follows: The size of Pt and Et are N = 4  and NE = 3, respec-
tively. For the density estimation in fitness assignment, set k N NE= + = 2. 
Calculate Et+1  by using SPEA2. During the calculation, keep the accuracy to 0.01.

Parent population Pt Archive Et

Solution Q f2 Solution f1 f2

1 3.0 3.5 a 5.0 2.0

2 3.0 4.0 b 4.0 3.5

3 1.0 3.8 c 7.0 3.0

4 6.0 0.0
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11

Optimization under Uncertainty

Reliability engineering very often deals with the uncertainties in the failure and repair 
processes of components and systems. As presented in Chapter 6, different types of 
uncertainties exist, which need to be considered in most RAM and Safety criteria (RAMS) 
optimization. As a result, reliability engineering often adopts and calibrates the methods 
developed in other domains, e.g. operations research, for solving reliability-related and 
risk-related optimization problems under uncertainty.

11.1  Stochastic Programming (SP)

Stochastic programming (SP) has been used in a wide variety of application, such as 
finance planning, power system capacity expansion, airline management planning, loca-
tion and distribution, and production planning [1]. Its approach is similar to the classical 
mathematical (or deterministic) programming for solving optimization problems with 
“random” parameters. Random parameters characterize many real-world applications; 
in our case of interest, for example, power system operation costs depend on electricity 
market prices and weather conditions (for renewable generation), which are random. 
The failure rates of the system’s components depend on their operating environments, 
which are randomly changing, etc. As discussed in Chapter 6, this type of uncertain 
parameters can be represented by means of random variables, with probability distribu-
tions whose parameters are estimated from data.

To include such randomness in the optimization problem, one natural way is to take 
the expectation of the optimal solutions corresponding to the realizations of the random 
parameters, as in this example.

Example 11.1  Maintenance manager Ms. Wang is responsible for maintaining a group 
of 100 water pumps. She needs to decide the maintenance actions to be performed in the 
next week, with lubrication or repair. For simplicity, assume the condition of all pumps 
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11  Optimization under Uncertainty208

is good or defective. If a pump is good, lubrication is most economical to perform; if it is 
defective, repair is the most economical action. Table 11.1 shows the cost ($) of the main-
tenance actions corresponding to each condition.

Assume that the probability of being defective is p for each pump and suppose that p = 
0.1. Because lubrication is optimal for good pumps and repair is optimal for defective 
ones, is it optimal to lubricate 90% of the pumps and repair 10% of them? If yes, then in 
this plan, the expected total cost is (10 + 600 × 0.1) × 0.9 + (50 + 100 × 0.1) × 0.1 = 69 
dollars.

Let us check if the solution above is correct. Given that the expected costs of perform-
ing different actions are 10 + 600 × 0.1 = 70$ for lubrication and 50 + 100 × 0.1 = 60$ for 
repair, the formulation of this optimization problem is the following:

max 70 601 2x x+

	s.t. x x1 2 1+ =

	x x1 2 0,   ≥

Obviously, the solution is doing repair for ALL, and the expected cost of this plan is 60 
dollars against the previous one of 69 dollars.

From this example, we can see that the optimal solution in general is not equal to the 
“average” of the best decisions for each specific future outcome. The correct way is to 
optimize the expectation of the objective values taking into account the random param-
eters. SP is the way to deal with this. With SP, randomness is represented in terms of the 
random experiments with outcomes denoted by ω . The set of all outcomes is represented 
by Ω . Outcomes may be combined into subsets of Ω , which are called events. Let B  
denote a collection of all random events. For each event  B∈B, a value Pr B( ) is associ-
ated, called its probability.

Under this setting, the objective (or constraint) function becomes the expectation of 
the random objective function (or constraint):

F x E f x( )= ( )( )( ),ξ ω 	 (11.1)

or the probability of the event B x( ):

F x B x( )= ( )∈ ( )( )Pr ξ ω 	 (11.2)

Table 11.1  The cost ($) of different maintenance actions under  
each condition.

Action
Condition

Lubrication Repair

Good 10 50

Defect 600* 100

*It includes the expected loss incurred by uncorrected defects

c11.indd   208c11.indd   208 13-06-2022   15:09:2313-06-2022   15:09:23



11.1  Stochastic Programming (SP) 209

where x= …( )x x xn1 2, , ,  is a vector of decision variables and ξ= …( )ξ ξ ξ1 2, , , m  is a vector 
of random parameters. The second formulation in Equation (11.2) is also referred to as 
chance-constrained problem.

In the following of this section, we introduce three representative types of SP, namely: 
two-stage stochastic linear programs with fixed recourse, multi-stage stochastic pro-
grams with recourse, and probabilistic or chance-constrained programs.

11.1.1  Two-stage Stochastic Linear Programs with Fixed Recourse

The most widely applied and studied SP models are two-stage linear programs. The deci-
sion maker takes certain actions in the first stage after which a random event occurs 
affecting the outcome of the first-stage decision. A recourse decision can be made in the 
second stage to compensate for any bad effects that might occur as a result of the first-
stage decision, which will forbid the random event occurrence.

The formulation of classical two-stage stochastic linear programs with fixed recourse 
[2,3] is as follows:

	min minz T T
= + ( ) ( )






c x qEξ ω ωy 	 (11.3a)

	s.t. Ax b= 	 (11.3b)

	T x W hω ω ω( ) + ( )= ( )y 	 (11.3c)

	x y≥ ( )≥0 0, ω 	 (11.3d)

where x  is a n1 1×  vector of decisions to be taken without full information on the subse-
quent random events. These decisions are called first-stage decisions. Corresponding to 
x  are the first-stage vectors and matrix c b,  and A, of sizes n1 1× , m1 1× , and m n1 1× , 
respectively. In the second stage, a number of random events ω ∈Ω  may be realized. For 
a given realization ω , the second-stage problem parameters q ω( ), h ω( ) and T ω( ) become 
known where q ω( ) is n2 1× , h ω( ) is m2 1× , and T ω( ) is m n2 1× . The recourse matrix W  
is the known matrix of size m n2 2× , which is assumed to be fixed. Then second-stage or 
corrective actions y ω( ) are taken. The ξ  is the vector formed by components of qT, hT  
and T . The notation Eξ  denotes the mathematical expectation with respect to ξ.

The objective function Equation (11.3a) contains a deterministic term c xT  and the 
expectation of the second-stage objective q yω ω( ) ( )T  taken over all realizations of  
the random event ω . This second-stage term is the more difficult one because for each  
ω , the value y ω( ) is the solution of a linear program. To address this issue, a determinis-
tic equivalent (DE) program is developed in the following.

For a given realization ω , let

	Q Tx q y Wy h T x y
y

, min{ | , }ξ ω ω ω ω ω ω ω
ω

( )( )= ( ) ( ) ( )= ( )− ( ) ( )≥
( )

0 	 (11.4)

be the second-stage value function, i.e. recourse function. The expected second-stage 
value function, i.e. expected recourse function, is defined as

	Q x x( )= ( )( )Eξ ωQ ,ξ 	 (11.5)

c11.indd   209c11.indd   209 13-06-2022   15:09:2913-06-2022   15:09:29



11  Optimization under Uncertainty210

Then we can rewrite the problem in Equation (11.3) in terms of only x  as follows

	min z T= + ( )c x xQ 	 (11.6a)

	s.t. Ax b= 	 (11.6b)

	x≥0 	 (11.6c)

This representation is named the DE of the original stochastic program. For a given reali-
zation ω , it is a non-linear program due to the ‘min’ operation in the recourse function.

To solve the problem in Equation (11.3), the most difficult part is the evaluation of the 
expected recourse function Q x( ) because it often needs a large number of realizations of 
the random parameters ξ . To deal with this problem, the key idea is to approximate Q x( ) 
using different approaches, e.g. sampling and decomposition. In the following, we intro-
duce the solution techniques based upon the above two approaches.

Sample Average Approximation
In theory, we would want to obtain a solution with reasonable accuracy and acceptable 
solving time. A possible way to unite these two conflicting goals is by randomization, i.e., 
Monte Carlo sampling techniques. Suppose the total number of the possible realizations 
of random parameters ξ is large or infinite, and we can generate random samples 
ξ ξ1, ,…   N of the random vector ξ. Given these samples, we can approximate the expecta-
tion function Q x Q( )= ( )( )Eξ ωx,ξ  by the average

	 �QN
j

N
jx Q x( )= ( )−

=
∑N 1

1

,  ξ 	 (11.7)

and, thus, the problem in Equation (11.3) can be rewritten as

	min ,x X N
jg∈

−

=

( )= + ( )∑   � x c x Q xT N
j

N
1

1

ξ 	 (11.8)

This technique is fundamental and it can be used to solve general stochastic programs, 
e.g. with non-linear objective functions and constraints. Extensions of this technique 
include sample average approximation with an L-shaped method [4], the stochastic 
decomposition method [5,6], and the stochastic quasi-gradient [7].

Example 11.2  The planning horizon is J ={ }0 1 2 3 4 5, , , , ,           in arbitrary units of time. A 
system consists of one component with known failure distribution, i.e. the lifetime 
equals to 1, 2, 3 with a probability of 0.6, 0.3 and 0.1. We assume this component must be 
replaced when it fails. Each planned maintenance is economical with the repair cost 
d= 2 in arbitrary unit of cost. If the failure occurs without a maintenance plan, the 
replacement generates the cost c=10. At the current time 1, the component is working. 
So, how to select the replacement decision at current time to minimize the total expected 
cost for the entire planning period J ?

The current system state is represented as t, ,ξ a( ) where t  is the current time, the com-
ponent state ξ=1 if component is failed and 0 otherwise, and a is the age of the 
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11.1  Stochastic Programming (SP) 211

component. Start the timer at the current time and set the remaining time period as 
J =  0 1 2 3 4, , , ,         with T = 4 . Given the current state, the expected minimum total mainte-

nance cost f at ξ,( )  at current time is formally obtained by solving:

	 f a x xt ξ, min( )= + ( )d t
aQ 	 (11.9a)

	s.t. x≥ξ 	 (11.9b)

	x ∈{ }0 1,   	 (11.9c)

Let x =1 if we decide to replace the component at the current time, and 0 otherwise. The 
total maintenance cost in Equation (11.9a) of a decision is the sum of the current main-
tenance cost and the future cost. The expected minimum future cost given the system 
state is represented as Qt

a x( ).
The maximum number of components used in the remaining period is T + =1 5. So, 

the possible components are R ={ }1 2 3 4 5, , , , . Given the current age a  and the failure 
distribution, all possible scenarios of this problem are defined as w∈Ω  with probability 
p w( ). Each life of the individual r ∈R  in scenario w  is Tr

w . Then we can formulate the 
extensive form with the second-stage variables given by

	y
r

ttr
w =

1,    
   

if individual is replaced at 
or before in scenarrio

otherwise
 

,
  , ,w t J r w

0










∀ ∈ ∈ ∈  R   Ω

The deterministic formulation is

	min ∑ ∑
∈ ∈

( ) + −( )









w r
tr
wp w cy d c x

Ω R

	s.t. y y t J T r wtr
w

t r
w≤ ∈ { } ∈ ∈+1, , \ , ,R Ω

	y y t J T r q wt r
w

tr
w

+ + ≤ ∈ { } ∈ { } ∈1 1, , \ , \ ,R Ω

	y y r q wtr
w

t T r
w

r
w≤ ∈ { } ∈+ ++1 1, , \ , ,R Ω  t T Tr

w∈ … −{ }+0 1, ,

	y w T TT
w w

w
1 1 11, ,= ∈ ≤Ω and if

	y r wr
w
0 0 1= ∈ { } ∈, \ ,R Ω

	x y ww= ∈01, Ω

	x≥ ξ

	y t J r wtr
w ∈{ } ∈ ∈ ∈0 1, , , ,R Ω

	x ∈{ }0 1,

where q  denotes the last individual in R .
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To avoid solving this large integer programming (IP) for all possible scenarios, we use 
the sample average approximation method to approximate this problem. We generate 
Ω =15 random realizations of T rr

w ,∀ ∈R . The approximated objective value is 23.333. 
The decision is 1 indicating that the replacement is implemented at the current time.

L-shaped method
Decomposition methods make use of the special structure of this stochastic program 
to improve the effectiveness of the solution algorithms. The most common decompo-
sition technique is called L-shaped technique [8]. Other decomposition procedures 
include inner linearization, Dantzig-Wolfe decomposition, etc. The basic idea of the 
L-shaped method is to approximate the non-linear term (the recourse function) in  
the objective by a linear one. Therefore, the master problem of x  is reconstructed as 
the first-stage problem plus the outer linearization of the recourse function. Thus, the 
recourse function is only evaluated in the sub-problem to avoid numerous 
evaluations.

Suppose the random vector ξ has finite possible realizations ξk  with probability pk  
for k K= …1, , . We denote the second-stage decision vector as yk under each realization 
of ξk k k kq h T=( ), ,     and k K= …1, , . The recourse function can be rewritten as

	Q x E Q p Q
k

K

k k( )= ( )( )= ( )
=
∑ξ ξ ω ξx x, ,

1

 

Then the large-scale DE linear program (i.e., the extensive form) of Equation (11.6) is 
defined in the following way:

	 min
, , ,x y y

T

k

K

k k
T

K   1 1
…

=

= +∑z p kc x q y 	 (11.10a)

	s.t. Ax b= 	 (11.10b)

	T x Wy hk k k K+ = = …k , , ,1 	 (11.10c)

	x y≥ ≥ = …0 0 1, , , ,  k k K 	 (11.10d)

The special structure of the constraint matrix for the two-stage extensive form is shown 
as the block matrix

	

A
T W
T W

T WK

       
     

     
     
     

1

2

� �













Taking the dual of the extensive form, the constraint matrix is rewritten as a block-
angular structure:
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A T T T

W

W

W

K
T T T T

T

T

T

1 2 �

�

       

       
       

       













This is a large linear programming (LP) problem and has special structure. Therefore, 
we can solve this problem by a Benders decomposition [9] of the primal or a Dantzig-
Wolfe decomposition [10] of the dual to reduce the computation.

For Equation (11.6), the recourse function Q x( ) is approximated with an artificial 
variable θ, which represents the lower bound for Q x( ). Now we have

	θ≥ + −Q( ) )(� �x u xxT

where u T x=− ∈∂
=
∑
k

K

k k
T

kp
1

λ* ( )Q �  and λk
* is the optimal dual solution of the recourse prob-

lem in scenario k  with x� . So, given a feasible decision x� , we can build up the linear 
approximation of Q x( ) by

	θ≥ −e� Ex

where E p
k

K

k k
T

k= ⋅( )
=
∑

1

λ* T  and e p
k

K

k k
T

k
� = ⋅( )

=
∑

1

λ* h .
(Hints:

1. u T x=− ∈∂ ( )
=
∑
k

K

k k
T

kp
1

λ* Q

Because Q x E Q p Q
k

K

k k( )= ( )( )= ( )
=
∑ξ ωx y, ,ξ ξ

1

  , then ∂ ( )= ∂ ( )
=
∑Q x x
k

K

k kp Q
1

,  ξ . We also 

have that Q k Kk k
T

k k k k kx q y Wy h T x y, : , , ,  minξ( )= = − ≥ = …{ }0 1 . Consider the dual 

problem of this problem with dual variable λk ; then	

min : , , ,q y Wy h T x yk
T

k k k k k k K= − ≥ = …{ }0 1

	= −( ) ≤{ }max  h T x W qk k
T

k k
T

k
Tλ λ:

So, Q k k k
T

kx h T x, * ξ λ( )= −( )  where λk
* is the optimal solution of the dual problem. We 

get that − ∈∂ ( )T xk
T

k kQλ ξ* ,   . u T x=− ⋅ ∈∂ ( )
=
∑
k

K

k k
T

kp
1

λ* Q  is obtained. Given the decision x� ,  

the vector − ⋅
=
∑
k

K

k k
T

kp
1

T λ*  is one of the directional vectors ∂ ( )Q x�  where λk
* is associated 

with x� .

2. θ≥ −e� Ex

Given θ≥ ( )+ −( )Q x x x� �uT  and u T=− ⋅
=
∑
k

K

k k
T

kp
1

λ*.
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Q x x x x T x x� � � �( )+ −( )= ( )− ⋅( ) −( )

=

= =

=

∑ ∑u p Q pT

k

K

k k
k

K

k k
T

k
T

k

1 1

, * ξ λ

11 1

1

K

k k

T

k
k

K

k k
T

k
T

k

K

k k
T

k

p

p

∑ ∑

∑

−( ) − ⋅( ) −( )

= ⋅( )
=

=

h T x T x x

h

� �λ λ

λ

* *

* −− ⋅( )
=
∑
k

K

k k
T

kp
1

λ* T x

Then the lower bound of recourse function θ≥ −e Ex  is obtained).
To guarantee the decision x�  is feasible for the recourse problem, that is  

x x x�∈ = ( )<∞K2 { | }Q , we have to check its feasibility first. Consider the linear program

	min wk
T T' = ++ −e v e v

	s.t. Wy Iv Iv h T x+ + = −+ −
k k

�

	y v v, ,  + −≥0

where eT = …( )1 1, , . If wk
' ≤ 0 for all scenarios k and x�  is feasible for the recourse pro

blem. Otherwise, there exists scenario k  and wk
' > 0, so that x�  is infeasible.

To cut this infeasible solution x� , we generate the feasible cuts. Consider the dual  
problem and let σk

* represent the dual optimal solution: Therefore, this decision has the 

property ( ) ( )*σk
T

k kh T− >x� 0  and σk
T

W*( ) ≤0. However, for all x ∈K2, there exist 

y≥0 subject to W h T xy k k= − . So, σ σk
T

k k k
T* *( ) −( )=( ) ≤h T x Wy 0, and the inequality  

σk
T

k k
*( ) −( )≥h T x 0 can cut this infeasible solution x� . The algorithm of L-shaped method 

[8] is presented as follows.

Standard L-shaped Algorithm

Step 0. Set r s v= = = 0.
Step 1. Set v v= +1. Solve the linear program:

	min z T= +c x θ 	 (11.11a)

	s.t. Ax= b	 (11.11b)

	D xf fd f r≥ = …, , ,1 	 (11.11c)

	E xg ge g s+ ≥ = …θ , , ,1 	 (11.11d)

	x≥ ∈0, θ R 	 (11.11e)
The optimal solution is x v v,  θ( ). If no constraint exists, set θv  as −∞; that is, θv  is not 
considered in the LP.

Step 2. Add feasibility cuts.
If xv K∈ 2, go to Step 3. Otherwise, add the cut(s) in Equation (11.11d) and return to Step 1.
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11.1  Stochastic Programming (SP) 215

For k K= …1, ,  solve the linear program

	min ′ = ++ −w T Te v e v

	s.t. Wy Iv Iv h T x+ − = −+ −
k k

v

	y v v, ,  + −≥0

where eT = …( )1 1, , . If there exists k , the associated ′ >w 0 . Then the constraint in 

Equation (11.11c) is generated with D Tf+ =( )1 σk
v T

k and df k
v T

k+ =( )1 σ h  where σk
v  

contains the associated dual multipliers. Set f f= +1, add the constraint to Equa-
tion (11.11) and return to Step 1. Otherwise, go to Step 3.

Step 3. Add optimality cuts.
For k K= …1, , , solve the sub-problem

	min w k
T= q y

	s.t. Wy h T x= −k k
v

	y≥0

Let λk
v be the optimal dual multipliers of the sub-problem given k  and x v . 

Let w pv

k

K

k k
v T

k k
v= ⋅( ) −( )

=
∑

1

λ h T x . If θv vw≥ , stop and x v  becomes the optimal solu-

tion. Otherwise, add the constraint to Equation (11.11d) with E Tg
T

+
=

= ⋅( )∑1
1k

K

k k
v

kp λ  

and e pg
k

K

k k
v T

k+
=

= ⋅( )∑1
1

λ h  into the problem (11.11). Set g g= +1, and return to Step 1.

Example 11.3  There are three types of components available in the market, which can 
be used for the system. The costs of the three components are 0.4, 0.8, and 0.6 per arbi
trary unit price, respectively. After the system works for a period of time t , the propor
tion of the three types that has not failed is a a a a=( )1 2 3, , . Assume that the survival rate 
a  is fixed under the same environment condition and changes as the conditions change. 
The system requires that at least 90% of components should be working at time t . If the 
requirement is not satisfied, a maintenance plan is used to guarantee this system require
ment. The maintenance costs are only related to the environment conditions. The deci
sion makers (DMs) wants to decide which percentage of these three types of components 
to buy, so they can minimize the purchase cost and the expected maintenance cost.

The L-shaped method has three main steps: (1) the master problem in Equation 
(11.11a) determines the first-stage decision xv  of the deterministic part of the objective 
and is sent to the second stage; (2) feasibility cuts in Equation (11.11c) are generated 
based on the second-stage feasibility; (3) optimality cuts in Equation (11.11d) are gener-
ated to give the linear approximations to the expected recourse function Q x( ).
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11  Optimization under Uncertainty216

We denote the random condition as ξ and the realization as ξk k K,∀ ∈  with probability 
pk . The survival rate and the maintenance cost take on the values (0.7, 0.6, 0.5) and 5 
with probability 0.1, (0.7, 0.6, 0.7) and 3 with probability 0.4, (0.5, 0.7, 0.8) and 2 with 
probability 0.2, and (0.6, 0.7, 0.9) and 4 with probability 0.3. The extensive form becomes

	

min . . .0 4 0 8 0 6

1

1 2 3x x x E q
T

T

+ + + ( )
+ ≥

=

ξ y

T x y h

e x

	x y,   ≥0

where hk = 0 9. , TT ξ( ) and q ξ( ) denote the survival rate and the maintenance cost, 
respectively, and e T

=( )1 1 1, ,   .
Use the L-shaped method to solve this problem. In this example, the second stage is 

always satisfied because h T x− ≤T 1 and y h T x≥ − T  always exist. Step 2 can be omitted.

Iteration 1:
Step 1. Ignoring θ, the master program is min{ . . . | , , , }0 4 0 8 0 6 1 0 0 01 2 3 1 2 3 1 2 3x x x x x x x x x+ + + + = ≥ ≥ ≥ 

min{ . . . | , , , }0 4 0 8 0 6 1 0 0 01 2 3 1 2 3 1 2 3x x x x x x x x x+ + + + = ≥ ≥ ≥  . The solution is x1 1 0 0=( ), ,    T  and θ1 =−∞.

Step 3.
	● For ξ ξ= 1, solve the sub-problem

w y y y1 5 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= =0 2 51. ,λ .
	● For ξ ξ= 2 , solve the sub-problem

w y y y2 3 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 2. , λ2 3= .
	● For ξ ξ= 3, solve the sub-problem

w y y y3 2 0 5 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 4. , λ3 2= .
	● For ξ ξ= 4 , solve the sub-problem

w y y y4 4 0 6 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 3. , λ4 4= .
Using h k Kk = ∀ ∈0 9. , , we get that

	E T T T T1 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 2 11 2 14 2 49= + + + =( ). . . . . , . , .λ λ λ λ    

	e h h h h1 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 2 97= + + + =. . . . .λ λ λ λ

	w e1
1 1

1 10 86= − = >E x . θ

Finally, as w1 1> θ , add the cut

	2 11 2 14 2 49 2 971 2 3
1. . . .x x x+ + + ≥θ .

c11.indd   216c11.indd   216 13-06-2022   15:10:1113-06-2022   15:10:11



11.1  Stochastic Programming (SP) 217

Iteration 2:
Step 1. Solve the master program

min{ . . . | , .
. .
0 4 0 8 0 6 1 2 11

2 14 2 49
1 2 3 1 2 3 1

2 3

x x x x x x x
x x
+ + + + + =

+ + +
θ

θ
 

≥≥ ≥ ≥ ≥2 97 0 0 01 2 3. , , , } x x x

The solution is x T2 0 0 1=( ), ,     and θ2 0 48= . .
Step 3.

	● For ξ ξ= 1, solve the sub-problem

w y x y y1 35 0 5 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 4. , λ1 5= .
	● For ξ ξ= 2 , solve the sub-problem

w y y y2 3 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 2. , λ2 3= .
	● For ξ ξ= 3, solve the sub-problem

w y y y3 2 0 8 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 1. , λ3 2= .
	● For ξ ξ= 4 , solve the sub-problem

w y y y4 4 0 9 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0, λ4 0= .
Using h k Kk = ∀ ∈0 9. , we get that

	E T T T T2 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 1 39 1 3 1 41= + + + =( ). . . . . , . , .λ λ λ λ    

	e h h h h2 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 1 89= + + + =. . . . .λ λ λ λ

	w e2
2 2

2 20 48= − = =E x . θ

Stop.
The outcome is the following: x T2 0 0 1=( ), ,     is the optimal solution and the optimal 

objective value is 1.08.

11.1.2  Multi-stage Stochastic Programs with Recourse

The previous sections focused on stochastic programs with two stages. However, most 
practical decision problems involve a sequence of decisions that react to outcomes that 
evolve over time. In this section, the SP approach to multi-stage problems [11] is presented. 
The linear, fixed recourse, finite horizon framework is used due to its widespread 
implementation [12]. Its formulation is presented as follows (the transposes indexes are 
suppressed in the notation when they are clear from the context to avoid excessive notation):

	min min minz H
H H H  E E= + ( ) ( )+…+ ( ) ( )




…


c x c x c1 1 2 2 2

2ξ ξω ω ω ωx 

 	 (11.12)
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11  Optimization under Uncertainty218

	s.t. W x h1 1 1=

	T x W x h1 2 1 2 2 2 2ω ω ω( ) + ( )= ( )

	� 

	T x W x hH H H H H H H H− − −( ) ( )+ ( )= ( )1 1 1ω ω ω ω

	x x1 0 0 2≥ ( )≥ = …; , , ,t ωt t H

where c1 is a known vector in ℜn1 , h1 is a known vector in ℜm1 , ξ ωt T( )  is the vector 
formed by components of c ht T t T

ω ω( ) ( ),  and T t t− ( )1 ω , and each W t is a known m nt t×  
matrix. The decisions x  depend on the history up to time t , which is indicated by ωt .

The DE form of this problem can be described in terms of dynamic programming (DP) 
[1]. If the stages are 1 to H , we can define states as x t tω( ). For the terminal conditions, 
we have:

	QH H H H Hx c x− ( )( )= ( ) ( )1, minξ ω ω ω 	 (11.13a)

	s.t. W x h T xH H H H Hω ω ω( )= ( )− ( )− −1 1 	 (11.13b)

	xH ω( )≥ 0 	 (11.13c)

Solutions for other stages can be obtained with a backward recursion, letting 
Qt t t t t

t Q+ + +( )= ( )( )





+
1 1 1

1x xEξ ξ ω,  for all t  to obtain the recursion for t H= … −2 1, ,

	Qt t t t t t tx c x x− +( )( )= ( ) ( )+ ( )1 1, minξ ω ω ω Q 	 (11.14a)

	s.t. W x h T xt t t t tω ω ω( )= ( )− ( )− −1 1 	 (11.14b)

	x t ω( )≥ 0 	 (11.14c)

where x t  indicates the state of the system. Other state information in terms of the reali
zations of the random parameters up to time t  should be included if the distribution of 
ξt  is not independent of the past outcomes.

11.2  Chance-Constrained Programming

With random parameters in the optimization problem, we have to determine the deci
sions prior to the realization of the random parameters. Due to the random effects  
related to the realizations of the random parameters, we can hardly select the decisions 
without constraint violation. In the two-stage SP problem, such constraint violation  
can be handled with the compensations in the second stage, e.g. as done in the maintenance 
problem of the components in Example 11.2 in Section 11.1. However, for some  
cases, e.g. safety constraints, compensations do not exist and the constraint violation is 
almost never avoidable. In such situation, the chance-constrained programming  
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11.2  Chance-Constrained Programming 219

[13,14] is considered whereby the constraint violation is restricted to a low  
percentage:

	min , , ,f g p px x( ) ( )≥( )≥{ } ∈  |P  ξ 0 0 1 	 (11.15)

where, x  is the decision variable vector and ξ  is the random parameter vector. The value 
p∈  0 1,  is called probability level. The DM should ensure that the probability of the con-
straint being satisfied is larger than p . The chance constraint is

	P  g p px, , ,ξ( )≥( )≥ ∈  0 0 1 	 (11.16)

which can be rewritten as

	α αx x x( )≥ ( ) ( )≥( )p g, ,where : = P ξ 0 	 (11.17)

The chance-constrained model is often difficult to solve. The main difficulty of chance-
constrained programming is that the function α ⋅( ) cannot be expressed explicitly in few 
situations. The theoretical properties and the solution methods are strongly related to the 
characterizations of the constraint and the random parameters. Therefore, in this chap
ter, we only consider the chance constraint under three special conditions:

1)	 Distribution of the random parameters (e.g. continuous, discrete, independent, 
dependent)

2)	 Type of constraint system (e.g. linear, separable, coupled)
3)	 Type of chance constraints (individual, joint)

11.2.1  Model and Properties

i) General chance constraints
The chance constraint in Equation (11.16) can be written more explicitly considering the 
type of the chance constraints. The first one is to take the probability over the whole 
constraint system, which is called a joint chance constraint:

	P g j m pj x, , , ,ξ( )≥ = …( )≥0 1 	 (11.18)

On the other hand, the probability can be considered for each constraint individually:

	P g p j mj jx, ,, , ,ξ( )≥( )≥ = …0 1 	 (11.19)

This type of individual constraint scheme may yield a large number of inequalities. 
Comparing to the single constraint in the joint case, this may be mathematically more 
tractable to solve.
ii) Linear type

When the chance constraints are linear for the random vector, Equation (11.16) can be 
reformulated as

	Type I separated model( ) ( )= ( )−g x x A,ξ ξh 	 (11.20)

	Type II bilinear model( ) ( )= ( ) ( )−g x A x b,ξ ξ h 	 (11.21)
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11  Optimization under Uncertainty220

where h ⋅( ) is a function only related to x , b  is a deterministic vector, A is a deterministic 
matrix, and A ξ( ) is a stochastic matrix of ξ.
iii) Random right-hand side

The random right-hand side is a special case of the linear separated model in Equation 
(11.20), with parameter matrix A reduced to the identity matrix. Therefore, the formula-
tion in Equation (11.17) can be given by

	α ξx x x( )= ( )≥( )= ( )( )P h F hξ 	 (11.22)

where Fξ  is the cumulative multivariable distribution function of the random vector ξ . 
This formulation can be described as the composition formula α ξ= F h� , and thus, the 
properties like continuity, convexity and differentiability can be considered.

The model of individual chance constraints in Equation (11.19) with the random right-
hand side is given by

	α ξ ξj j j j jh F h p j m
j

x x x( )= ( )≥( )= ( )( )≥ = …P , , ,1 	 (11.23)

where Fξ j
 denotes the one-dimensional cumulative distribution function of the random 

parameter ξ j. This formula can be inverted by the quantile h x q p mj j j( )≥ ( ) = …, , ,j 1  
where q pj j( ) is the p j -quantile of Fξ j

.
When the components ξ j{ } of the random vector ξ  are independent, the model of joint 

chance constraint in Equation (11.18) with the random right-hand side is given by

	α ξ ξx x x x( )= ( )≥( )= ( )( ) ( )( )≥ = …P h F h F h p j m
m mξ

1 1 1� , , 	 (11.24)

Although this formulation in Equation (11.24) cannot be expressed explicitly like the 
individual chance constraint model, the one-dimensional cumulative distributions are 
tractable.
iv) Convexity

The convexity of the feasible set of the chance-constrained programming is essential 
because this property is a basic issue for any optimization problem:

	{ | , }x xP g p ξ( )≥( )≥0 	 (11.25)

The feasible set of the linear chance constraint with random right-hand side is given by

	{ | } { | }x x x xP h p F h p( )≥( )≥ = ( )( )≥ξ ξ 	 (11.26)

When the composition function F hξ �  is concave, this feasible set is convex. According 
to the operations to preserve concavity of functions,

1)	 F hξ �  is concave if Fξ  is concave and non-decreasing in each argument, and hj  are 
concave.

2)	 F hξ �  is concave if Fξ  is concave and non-increasing in each argument, and hj  are 
convex.

The cumulative distribution function (cdf) Fξ  is non-decreasing. However, it can never 
be concave due to its bound between 0 and 1. Therefore, we can find a function ϕ  that 
guarantees the composition ϕ ξ� �F h  is a concave function. Then ϕ ξ� �F h  is concave 
if ϕ ξ� F  is concave and non-decreasing in each argument, and hj  are concave. The function 
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11.2  Chance-Constrained Programming 221

ϕ  can be the function log ⋅( ), since most of the prominent multivariate distribution 
functions are log-concave. With the convexity of the feasible set, joint chance-constrained 
programming might be solved with convex optimization methods. For more advanced 
knowledge about chance-constrained programming, the readers can refer to [13,14].

11.2.2  Example

There are three subsystems i in the system, and each subsystem has one different type of 
component. The number of the components of each subsystem are a a a1 2 3, ,    , respec-
tively. After the system works for a period of time T , the proportion of these three types 
that has failed is r r r r T

=( )1 2 3, , . To repair all the failed components in the three subsys-
tems, three types of maintainers are available in the market to select, each of which has 
different maintenance capabilities within the given maintenance time. The maintenance 
capability of type j  maintainer for subsystem i is denoted as bij . The cost of type j  main-
tainer is cj  per person and in arbitrary units of cost. The decision vector is the number of 
the maintainers for type j  and is indicated as x j .

Deterministic model:
For the deterministic model, the problem is formulated as follows:

	min
j

j jc x
=
∑

1

3

	Bx Ar≥

	x Z jj ∈ =+, , ,1 2 3

where A is a diagonal matrix of a a a1 2 3, ,     and B  is the matrix of bij . We set c=( )4 3 5, ,    , 
r =( )0 3 0 5 0 4. , . , .    , a=( )100 50 80, ,     and

	B=













3 2 0
2 0 2
0 2 3

The optimal value is 77 with the optimal solution x =( )6 6 7, , .

Chance-constrained model:
To consider the uncertainty of the failure rate r r r r T

=( )1 2 3, , , we look at the individual 
chance-constrained problem. Assume the failure rate for type i denoted by ξi  follows the 
normal distribution, i.e. ξ σi i iN r~ ,   2( ). The chance-constrained model is

	min
j

j jc x
=
∑

1

3

	P
j

ij j i ib x a p i
=
∑ ≥











≥ =

1

3

1 2 3ξ , , ,

	x Z jj ∈ =+, , ,1 2 3
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11  Optimization under Uncertainty222

The chance constraints can be rewritten as 
j

ij j i i i i pb x a r a q i
=
∑ ≥ + =

1

3

1 2 3σ , , ,  where qp  is 

the p-quantile of the standard normal distribution. Set the probability level p  as 0.9 and 
σi  as 0.1, 0.2, 0.3 respectively. We can solve this problem as an integer program. The solu-
tion is x =( )6 13 13, ,  and the optimal value is 128.

11.3  Robust Optimization (RO)

The stochastic optimization and chance-constrained problem illustrated in the previous 
sections mainly deal with the uncertain parameters when their probability distributions 
are known. When the probability distribution of an uncertain parameter is unknown 
and the uncertain parameter values are known to reside in the uncertainty set, robust 
optimization (RO) [15–17] can be considered. RO guarantees the feasibility of all con-
straints under any realization of the parameters within the uncertainty set. The original 
RO dates back to the 1940s, using worst-case analysis and Wald’s maximin model [18] as 
tools to treat severe uncertainty.

Suppose uncertainty exists in the objective function. The uncertainty parameters 
u ∈Rk  are assumed to take arbitrary values in the uncertainty set U ⊆ Rk , and the prob-
lem can be formulated as follows:

	min ,f0 x u( )

	s t f i mi. . , , ,  x( )≤ = …0 1 	 (11.27)

where x ∈Rn is a vector of decision variables, and f f R Ri
n

0, : →  are functions. The min-
max and min-max regret criteria are often used to hedge against parameters variations. The 
min-max criterion aims to obtain a solution that achieves the best possible performance in 
the worst case. The min-max regret criterion, less conservative, aims at obtaining a solution 
minimizing the maximum deviation between the value of the solution and the optimal 
value of the corresponding uncertainty value over all possible uncertainty values.

The min-max version considers to find a solution under the worst-case value across all 
u ∈ U , which is given by

	min max , : , , ,
u if f i m
∈

( ) ( )≤ = …{ }
U

0 0 1x u x

Given the feasible solution x , its regret under the uncertainty value u∈U  is defined as

	Reg f f ux u x u x u, , ,*( )= ( )− ( )0 0

where xu
*  is an optimal solution under the uncertainty parameter u and f u0 x u* ,( ) is the 

corresponding optimal value. The min-max regret version considers finding a solution 
minimizing its maximum regret, which is given by

	min : , , ,Reg f i mmax ix x( ) ( )≤ = …{ }0 1

	    = ( )− ( )( ) ( )≤ = …{ }
∈

min max , , : , , ,*

u u if f u f i m
U

0 0 0 1x u x x
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11.3  Robust Optimization (RO) 223

In this section, we introduce the RO under the uncertain linear optimization (LO) 
problem to show its properties.

11.3.1  Uncertain Linear Optimization (LO) and its Robust Counterparts

Definition 11.1  An uncertain LO problem is a collection

	LO d
x

T

c d
U

U
= + ≤{ }{ }

( )∈
min :

, , ,
c x Ax b

A b
	 (11.28)

of general LO problems min :x
Tc x d+ ≤{ }Ax b , which includes m constraints and n  

variables with the data c A b, , ,d( ) varying in a given uncertainty set U ⊂ +( )× +( )R m n1 1 . We 
often assume that the uncertainty set is parameterized in an affine fashion with pertur-
bation vector ζ  varying in a given perturbation set Z :

	U =











=











+
=
∑

c
A b

c
A b

cT T

l

L

l
l
T

ld d d0 0

0 0 1

ζ
AA

R
l l

L

b












∈ ⊂















: ζ Z

Definition 11.2  A vector x  is a robust feasible solution to LOU  if it satisfies the con-
straints for any realization of uncertain data from the uncertainty set, i.e.

	A dx c A b≤ ∀( )∈b, , , , U

Definition 11.3  Given a robust feasible solution x , the robust value c� x( ) of the objec-
tive in LOU  is the largest value of objective c xT d+  over all realizations of the uncertain 
data, i.e.

	c d
c d

T� x c x
A b

( )= +( )
( )∈

sup
, , , U

Definition 11.4  The robust counterpart (RC) of the uncertain problem LOU  is the 
optimization problem which minimizes the robust value of the objective over all robust 
feasible solutions, that is,

 min sup { :
, , ,x c d

Tc c d� x x( )= +( ) ≤












( )∈A b

Ax b
U

The optimal solution of RC is called a robust optimal solution to LOU , and the cor
responding objective value is called the robust optimal value of LOU . Here are some 
properties of the uncertain LO problem. For details of the general proof of these prope
rties, see [15].

Remark 11.1  An uncertain LO problem can always be translated into an uncertain 
LO problem with certain objective. W.l.o.g.,1 we can restrict the uncertain LO problem 
with certain objectives.

1 Abbr. for “without loss of generality”.
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11  Optimization under Uncertainty224

Remark 11.2  If the right-hand side of the constraint is uncertain, we can translate these 
uncertain data by adding a new variable xn+ =−1 1, whose coefficient is this uncertain data. 
W.l.o.g., we can restrict the uncertain LO problem with certain right-hand side constraints.

Remark 11.3  The uncertainty set U  can be replaced by its convex hull conv U( ).
Remark 11.4  The uncertainty in the data can be modelled constraint-wise. Assume 
that LOU  is with certain objective. Then the RC of LOU  is

	min : , ,
x

T d Ac x x b A b+ ≤ ∀( )∈{ }U
If we consider each constraint Ax( ) ≤i ib , then

	a b bi
T

i i i ix a≤ ∀( )∈, , U

where ai
T is the i-th row of A and Ui  is the projection of U  on the i-th constraint. The 

RC of LOU  with a certain objective remains intact when the uncertainty set U  is 
extended to the direct product U U U= ×…×1 m .

11.3.2  Tractability of Robust Counterparts

According to the remarks mentioned above, w.l.o.g., we consider the uncertain LO prob-
lem with a certain objective, certain right-hand side, and a single constraint because of 
the constraint-wise property

	 a
a

T bx≤{ }
∈U

	 (11.29)

The data varying in the uncertainty set are

	U Z= = + = + ∈












=

∑a a a a D0

1

0

l

L

l
lζ ζ ζ:

where D∈ ×Rn L. Assume that the perturbation set Z  is convex.
Equation (11.29) contains infinite constraints due to the perturbation vector on set Z , 

and it seems intractable in this formulation. The goal is to build a representation to refor-
mulate this semi-infinite linear constraint as a finite system of explicit convex constraints 
and to convert the RC of LOU  into an explicit and tractable convex program.

A single constraint in Equation (11.29) equals to

	 a D0+( ) ≤ ∀ ∈ζζ ζζ
T

bx ,  Z 	 (11.30)

We consider that the perturbation set Z  is polyhedral:

	Z = + ≥{ }ζζ ζζ: P q 0

where P� �Rh L , ξ∈ RL , and q Rh∈ . Therefore, Equation (11.30) can be converted into

	

11 30 0

0

0

. max

min :

:
( )⇔( ) + ( ) ≤

⇔( ) + =−

+ ≥
a D

a q w P w D

P q

w

T T T

T T T T

bx x

x

�� ��
��
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x x

, 

: , ,   

w

w a q w P w D w

≥{ }≤
⇔ ( ) + ≤ =− ≥
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00

b

b
T T T T�
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11.3  Robust Optimization (RO) 225

The second equality uses the strong duality of LO. All constraints and the objective are 
linear, and the RC with this representation is tractable. Table 11.2 shows the tractable RC 
representations of an uncertain LO problem for different perturbation sets Z . [19].

11.3.3  Robust Optimization (RO) with Cardinality Constrained Uncertainty Set

The robust approaches, i.e. box and ellipsoidal uncertainty sets, are too conservative [20]. 
Reference [21] proposed the cardinality constrained uncertainty to control the robust
ness to withstand parameter uncertainty. We consider the constraint in Equation (11.29)  
with the uncertainty set as

	U = ∈ − +




∈{ }a : , ,a a a i Ii i i i i

0 0a a� �

where I  is the index set of all variables xi  and ai
0  is the nominal value of uncertain 

data ai . The range of variation on uncertain data ai  is a� i  and ai  takes values according to 
a symmetric distribution in interval a ai i i i

0 0− +





a a� �, . The parameter Γ∈ 

0,   I  is intro

duced to adjust the conservative level of the robust solution. It is unlikely that all uncer
tain parameters will change, i.e., up to Γ  of all uncertain parameters are allowed to 
change by a� i  and one parameter is allowed to change by Γ Γ− ( )a� i. Then the constraint 
in Equation (11.29) is formulated by

	
i I

i i
i S

i i s sa x x x b S s S I S s I
∈ ∈
∑ ∑ ∪+ + −( ) ≤ { } ⊆ =   ∈

0 a a� �� � � �,   : , , � SS{ } 	 (11.31)

which is equivalent to

	
i I

i i
S s S I S s I S i S

i ia x a x
∈ { } ⊆ =  ∈{ } ∈
∑ ∑+

∪
+ − ( )0 max

: , ,Γ
Γ Γ

�
� a�� s sx b














≤

Table 11.2  Tractable RC representations given different Z .

Perturbation set type Z RC Tractability

Box ζζ
∞
≤1 a D b

T T0
1

( ) + ≤x x LP

Ellipsoidal ζζ 2 1≤ a D b
T T0

2( ) + ≤x x CQP

Polyhedral P qζζ + ≥ 0

a q w b

P w D
w

T T

T T

0

0

( ) + ≤

=−
≥











x

x
LP

Cone P q Kζζ + ∈

a q w b

P w D

w K

T T

T T

*

0( ) + ≤

=−

∈











x

x Conic opt.
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11  Optimization under Uncertainty226

The constraint is intractable because the combinations of set S s∪{ }{ } are exponential 
under the operation max. We give the tractable representations as follows:

Given x , we define

	φ x( )=
∪

+ − ( )


{ } ⊆ =  ∈{ } ∈
∑max

: , ,S s S I S s I S i S
i i s sa x a x

Γ
Γ Γ

�
� �












�

This equals

	φ ψx a x
i I

i i i( )= ∑
∈

max �

	s.t. ∑
∈

≤
i I

iψ Γ

	0 1≤ ≤ ∀ ∈ψi i I,

φ x( ) is equivalent to the following problem using the strong duality of LP:

	φ ξ ρx
i I

i( )= +∑
∈

min Γ

	s.t. ξ ρ+ ≥ ∀ ∈i i ia x i I� ,

	ρi i I≥ ∀ ∈0,

	ξ≥ 0

Then the tractable reformulations of Equation (11.31) are given by

	ξ ρ+ ≤∑
∈i I

i b 	 (11.32)

	ξ ρ+ ≥ ∀ ∈i i ia x i I� , 	 (11.33)

	ρi i I≥ ∀ ∈0, 	 (11.34)

	ξ≥ 0 	 (11.35)

When Γc = 0, the uncertainty of parameter a is not considered in the constraint in 
Equation (11.31). When Γc I= , the most conservative formulation of the uncertain data 
is considered.

11.3.4  Example

In this section, we give an example to illustrate the RO applied to reliability optimization 
problems. We consider a problem similar to Example 1 in Section 11.1. The difference is 
that the repairmen cost is certain and equal to 3.5 per unit, and instead of knowing the 
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11.3  Robust Optimization (RO) 227

probability distribution of the uncertain survival rate a, we know that a resides in the 
uncertainty set U = + ∈{ }a D0 ζ ζ: Z  and Z R= ∈ ≤{ }∞ζ ζ3 1: . a0 0 7 0 6 0 8=( ). , . , .     and 
D E= 0 1.  where E  is the 3 3×  unit matrix. Therefore, the design to minimize the pur-
chase cost and maintenance cost is

	min . . . .0 4 0 8 0 7 3 51 2 3x x x y+ + +

	a xT y a+ ≥ ∈0 9. ,∀ U

	e xT =1

	x y, ≥ 0

where e=( )1 1 1, ,   T . The first constraint ensures that 90% of components are working after 
the maintenance. The second constraint means that the total percentage of all compo-
nents is 1. In this case, RC can be formulated as

	

RC⇔ + ≥ ∀ ∈

( ) + ( ) ≥

( ) −

⇔

⇔

∞
≤

a x a

a x D x

a x D x

T

T T T

T T

y 0 9

0 90

1

0
1

. , 

min .
:

U

ζζ ζζ
ζζ

≥≥

− ≤( ) ≤ = …

( ) − ≥











⇔

=
∑

0 9

1

0 90

1

.

,   , ,

.

u u l L

u

l
l T

l

T

l

L

l

d x

a x


where dl is the l-th column of the matrix D.
Therefore, RC can be represented by a tractable representation as follows:

	min . . . .0 4 0 8 0 7 3 51 2 3x x x y+ + +

	0 1 1 1. x u≤

	0 1 2 2. x u≤

	0 1 3 3. x u≤

	0 7 0 6 0 8 0 91 2 3 1 2 3. . . .x x x y u u u+ + + − − − ≥

	e xT =1

	x u, ,y ≥0

The robust optimal solution is x * , ,=( )0 0 1  and y* .= 0 2 . The robust optimal value of 
objective is 1.4.
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11  Optimization under Uncertainty228

11.4  Exercises

1.	 Solve the following two-stage SP problem by L-shaped method:

	z x x E q y q y= + + +( )min100 1501 2 1 1 2 2ξ

	x x1 2 120+ ≤

	7 10 601 2 1y y x+ ≤

	6 5 801 2 2y y x+ ≤

	y y1 1 2 2≤ ≤d d,  

	x x y y1 2 1 240 20 0≥ ≥ ≥, , ,   

where ξT d d q q=( )1 2 1 2, , ,  takes values (450, 100, -24, -28) with probability 0.7 and (300, 
400, -25, -30) with probability 0.3.

2.	 Consider the example in Section 11.2.2 but now with ξ  following the uniform distri-
bution, i.e. ξi i i i iU r r~ ,− −



r r� �  and r�i ir= / 4. Show that the chance-constrained 

model follows the same path as before.
3.	 Consider the example in Section 11.3.3 but now with the uncertainty set 
U = + ∈{ }a D0 ζ ζ: Z  and Z R= ∈ ≤{ }ζ ζ3

2 2: . Give the RC representation of this 
problem and solve it.

4.	 Consider the redundancy allocation problem (RAP) for binary-state series-parallel 
system:

	max∏
∈

− −( )







j J
j

x
r j1 1

	A bx≤

	l x u≤ ≤

	x Zn∈ +

where J n= …{ }1 2, , ,  and A Rm n∈ × . Suppose the component reliability �rj in subsys-
tem j J∈  is uncertain, and it takes a random value in r rj j j� �−





δ ,   : that is, � �r rj j j j= −δ ξ  
where the perturbations ξ j  are n  independent random variables with 0 1≤ ≤ξ j . 
Show the tractable RC representation for this reliability optimization.

5.	 Budget uncertainty set [21] is a less conservative approach than the box uncertainty 
set for the robust problem. For Exercise 4, consider the budget uncertainty set instead 
of the box uncertainty set, i.e.

	∑
∈

≤
j J

jξ Γ

where Γ∈  0,n  and is not necessarily an integer. The role of Γ  is to adjust the robust-
ness of the model against the level of conservatism of the solution. Give the tractable 
RC representation for this reliability optimization.
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12

Applications

This chapter contains two application cases that make use of the optimization  
methods introduced in the previous chapters of Part III. The first case study consid-
ers optimizing the design of a distributed power generation system under various 
uncertainties. Multi-objective optimization (MOO) and Monte Carlo simulation 
(MCS) are implemented to solve this problem. The second case study is about redun-
dancy allocation for binary-state series-parallel systems (BSSPSs) under epistemic 
uncertainty.

12.1  Multi-objective Optimization (MOO) Framework for 
the Integration of Distributed Renewable Generation and 
Storage

We present a MOO framework for integrating renewable generators and storage devices 
into an electrical distribution network. The framework searches for the optimal size and 
location of the distributed renewable generation units. Uncertainties in renewable 
resources availability, components failure and repair events, loads and grid power supply 
are incorporated. A Monte Carlo simulation – optimal power flow (MCS-OPF) computa-
tional model is used to generate scenarios of the uncertain variables and evaluate the 
network electric performance. For monitoring and controlling the risk associated to the 
performance of the distributed generation (DG) system, we consider the conditional 
value-at-risk (CVaR) measure within the framework. The MOO problem is formulated 
with respect to the minimization of the expectations of the global cost (Cg )  
and Energy Not Supplied (ENS), combined with their respective CVaR. The fast 
non-dominated sorting genetic algorithm (NSGA-II) [1] is used for the MOO framework. 
The framework is applied to a distribution network derived from the IEEE 13 nodes test 
feeder [2].
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12.1.1  Description of Distributed Generation (DG) System

The DG system model, presented in Section 7.1.1, has neglected many of the topological 
and electrical characteristics of the DG system because the adequacy assessment gener-
ally does not require such information. However, in this chapter we intend to introduce 
a more detailed DG system model for a better approximation to the real-world DG sys-
tem and will obtain practical optimization results for the allocation of the DG 
generators.

Four main classes of components are considered: nodes, feeders, renewable DG units 
and main supply power spots (MSs). The nodes can be understood as fixed spatial loca-
tions at which generation units and loads can be allocated. Feeders connect different 
nodes and through them the power is distributed. Renewable DG units and MSs are 
power sources; for electric vehicles (EVs) and storage devices, they can also act as loads 
when they are in charging state. The locations of the MSs are fixed. The MOO aims at 
optimally allocating renewable DG units at the different nodes. Figure 12.1 shows an 
example of configuration of a DG system adapted from the IEEE 13 nodes test feeder [3], 
where the regulator, capacitor, switch, and the feeders with length equal to zero are 
neglected.

The renewable DG technologies include solar photovoltaic (PV), wind turbines 
(W), electric vehicles (EV) and storage devices (ST), i.e. batteries. The power output 
of each of these technologies is inherently uncertain. PV and W generations are sub-
ject to variability through their dependence on environmental conditions, i.e., solar 
irradiance and wind speed. Dis/connection and dis/charging patterns in EV and ST, 
respectively, further influence the uncertainty in the power outputs from the DG 
units. Also generation and distribution interruptions caused by failures are regarded 
as significant. The details about different types of DG unit models can be found in 
publication [4].

MS 
1 

5 4 2 3 

9 8 

10 11 

renewable  
DG unit 

~

~

~

load 
power 

generation 

power flow 

Figure 12.1  Example of distribution generation (DG) system configuration [4].
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12.1  Multi-objective Optimization (MOO) 233

We will introduce the basic notations of this application case, as follows:

N set of all nodes

M set of all types of main supply power sources

D set of all DG technologies

Pv set of all PV technologies

W set of all wind technologies

E v set of all EV technologies

ST set of all ST

F set of all feeders

The configurations of power sources allocated in the network, indicating the size of 
power capacity and the location, is given in matrix form:

Ξ=

+ + +ξ ξ ξ ξ ξ ξ

ξ ξ ξ

11 1 1 1 1 1 1

1

, , , , , ,

, ,

|

|

� � � �
� � � � � � � �
� �

j j

i i j i

M M M M D

,, , , ,

, , , , ,

|

|

|

M M M M D

N N N M N M N

ξ ξ ξ

ξ ξ ξ ξ ξ

i i j i

j

+ + +

+

1

1 1

� �
� � � � � � � �
� � � MM N M D

M D

+ +





























= 



j � ξ ,

|Ξ Ξ

� (12.1)

where

Ξ configuration matrix of type, size and location of the power sources allocated in 
the distribution network

ΞM
allocated main supply part of the configuration matrix

ΞD allocated DG units part of the configuration matrix

n number of nodes in the network, N

m number of main supply type (transformers), M

d number of DG technologies, D

	

ξ
ζ

ij
j

=
number of unitsof theMStypeorDG technology allocated at nodee

otherwise

i
i j Z0 12 2






∀ ∈ ∈ ∈ ( )∪ +N D, , .M ζ

Feeders deployment is described by the set of the node pairs connected:

F = ( )… ( ){ } ∀( )∈ × ( )′ ′ ′1 2, , , , , , , ,i i i i i i is a feederN N � (12.3)

Any configuration {Ξ, F } of power sources Ξ and feeders F  of the distribution network 
is affected by uncertainty, so the operation and performance of the distribution network 
is strongly dependent on the network configuration and scenarios.

Non-sequential MCS is adopted to sample the output of each component without time 
dependence, with the aim of reducing the computation times. For a given structure and 
configuration of the distribution network Ξ,F{ }, the set 

�
ϑ  of sampled output variables 
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12  Applications234

constitutes an operational scenario in correspondence of which the distribution network 
operation is modeled by optimal power flow (OPF) and its performance evaluated. The 
two inputs to the OPF model are the network configuration Ξ,F{ } and the operational 
conditions scenario 

�
ϑ :

�
ϑ= 




∀′t P L s ws t Q mc mc id i j

ms
i i i Rop i j

st
i j i ii j

, , , , , , , ,, , , ,,
,, , , , ,′ ′∈ ∈ ( )∈∪i j i iN DM F � (12.4)

where,

td hour of the day h , randomly sampled from a uniform distribution U 1 24,( )
Pi j

ms
, main supply power of the power source j  at node i  kW 

Li power demand at node i kW 
si solar irradiance at node i kW m/ 2





wsi wind speed at node i  m s/ 
tRopi j,

residence time interval for operating state op of the power source j at node i h 
Qi j

st
, level of charge in the battery in the power source j at node i KJ 

mci j, binary mechanical state variable of the power source j at node i

mci i, ′ binary mechanical state variable of the feeder i i, ′( )

12.1.2  Optimal Power Flow (OPF)

Power system analysis is performed by direct current (DC) OPF, which takes into account 
the active power flows, neglecting power losses, and assumes a constant value of the volt-
age throughout the network. This allows to transform the classical nonlinear power flow 
formulation into a linear one, gaining simplicity and computational tractability. For a 
given configuration Ξ,F{ } and operational scenario 

�
ϑ  the formulation of the OPF prob-

lem is:

	 min & & ,
C P C P tO M

net
Gu

i N j
O M Gu

h
j
v

i j

� � �
ϑ ϑ ϑ( )=

∪

× ×∑ ∑
∈ ∈M D

� (12.5a)

s.t. ∑ ∑
∈ ∈′

′ ′ ′

∪
+ + −( )





 j
Gu i

i N
i i i i i iP LS mc B

ij

M D

� � � � �
ϑ ϑ ϑ ϑ ϑδ δ, ,






− = ∀ ∈ ( )∈′ ′′L i i i ii

�
ϑ

0 , , ,N F  � (12.5b)

P P i jGu Gai j i j, ,
,

� �
ϑ ϑ≤ ∀ ∈ ∈ ∪N DM � (12.5c)

0≤ ∀ ∈ ∈ ∪P i jGui j, ,
�
ϑ N DM � (12.5d)

mc B V Amp i i i ii i i i i i i i, , , , , ,′ ′ ′ ′−( )≤ × ∀ ∈ ( )∈′ ′
� � �
ϑ ϑ ϑδ δ N F � (12.5e)

− −( )≤ × ∀ ∈ ( )∈′ ′′ ′ ′ ′mc B V Amp i i i ii i i i i i i i, , , , , ,
� � �
ϑ ϑ ϑδ δ N F � (12.5f)
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where,

th duration of the scenario h 
CO M

net
&

�
ϑ operating and maintenance costs of the total power supply and generation $ 

CO M j
v& operating and maintenance variable costs of the power source j kWh$ / 

mci i, ′

�
ϑ mechanical state of the feeder i i, ′( )

Bi i, ′ susceptance of the feeder i i, ′( )  1 /Ω 
mci j,

�
ϑ mechanical state of the power source j at node i

PGai j,

�
ϑ available power in the source j at node i  kW 

PGui j,

�
ϑ power produced by source j at node i kW 

LSi

�
ϑ load shedding at node i kW 

V nominal voltage of the network kV 
Ampi i, ′ ampacity of the feeder i i, ′( )  A 

The load shedding in the node i, LSi, is defined as the amount of load(s) disconnected in 
node i to alleviate overloaded feeders and/or balance the demand of power with the 
available power supply.

The OPF objective is the minimization of the operating and maintenance costs associ-
ated with the generation of power for a given scenario 

�
ϑ of duration th . Equation (12.5b) 

correspond to the power balance equation at node i, whereas Equations (12.5c) and 
(12.5d) are the bounds of the power generation, Equations (12.5e) and (12.5f) account for 
the technical limits of the feeders.

The available power in the distribution network is a function of the configuration Ξ 
and the mechanical states of the power sources:

P mc GGa i j i j i ji j, , , , ,
� � �
ϑ ϑ ϑξ= 	 (12.6)

where, Gi j,

�
ϑ  represents the unitary power output and depends on the type of power 

source, i.e.

	 Gi j

Pi j
ms mci j j M

Pi j
pv si mci j

,

, ,

, , ,
�

�

� �

ϑ

ϑ

ϑ ϑ

=
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




 ∈







 ∈







 ∈ ∀ ∈




j P

Pi j
w wsi mci j j w i N

Pi j
ev op td

ν

ϑ ϑ

ϑ

, , , ,

,

� �

�











 ∈



, , ,

, , ,

tRop mci j j v

Pi j
st Qst mci j

� �

� �

ϑ ϑ ε

ϑ ϑ





 ∈










j ST

. � (12.7)

12.1.3  Performance Indicators

Given a set γ  of nS  sampled operational scenarios 
�
�ϑ  and �∈ …{ }1, ,nS , the OPF is solved 

for each scenario 
�
�ϑ ∈ γ , giving in output the respective values of ENS and global cost.

c12.indd   235c12.indd   235 10-06-2022   20:38:5510-06-2022   20:38:55
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ENS is a common index for reliability evaluation in power systems [3]. In the present 
work, this is obtained directly from the OPF output in the form of the aggregation of all-
nodal load shedding per scenario 

�
�ϑ :

ENS
LS

t
i i

h

→ ∈

→

= ∀ ∈
∑ϑ

ϑ

ϑ γ�

�

�

���
N , ,	 (12.8)

	ENS ENS ENS ENS ns
� ����� � � �

�
γ ϑ ϑ ϑ
= … …







1 , , , , .� (12.9)

The global cost Cg  of the distribution network is formed by two terms: fixed costs and 
variable costs. The former term includes those costs paid at the beginning of the opera-
tion after the installation of the DG (conception of ΞD ). The variable term refers to the 
operating and maintenance costs. These costs are dependent on the power generation 
and supply, which are a direct output of the OPF in Equation (12.5a). In addition, this 
term considers revenues associated to the renewable sources incentives as well as energy 
prices. Thereby, the global cost function for a scenario 

�
�ϑ  is given by:

	
C

C C

t
t C inc epg

i j i j inv O M

h
S

O M
netj j

f

t

� �
�ϑ ϑ

ξ
=

+( )
× + − +( )×

∑ ∑∈ ∈N D , &
& ∑∑∑

∈ ∈

× ∀ ∈
i j

Gu
SP t

i j

t

N D
,

, ,
�

�

�ϑ ϑ γ 	 (12.10)

	C C C Cg g g g
ns

� �� � � �
�

γ ϑ ϑ ϑ
= … …










1 , , , , . � (12.11)

where

Cinv j
investment cost of the DG technology j $ 

CO M j
f& operating and maintenance fixed costs of the DG technology j $ 

tS horizon of analysis h 
inc incentive for generation from renewable sources $ / kWh 
ep energy price $ / kWh 
Cg

t

�
ϑ global cost $ 

The proposed MOO framework introduces CVaR as a coherent measure of the risk asso-
ciated to the functions of interest. This risk measurement allows evaluating how “risky” 
is the selection of a determined value of expected losses. We consider a fixed configura-
tion of the distribution network {Ξ,F } including the integration of DG units as a “port-
folio.” The assessed ENS

� ����� γ
and Cg

� �� γ , found from the MCS-OPF to the set of scenarios γ , 
can be treated as estimations of the probability of the “losses.” In this sense, if the deci-
sions are intended to be taken based on the expectations of ENS

� ����� γ
and Cg

� �� γ
, then the 

CVaR ENS
� ����� γ





 and CVaR Cg

� �� γ





  will represent the risk associated to these expectations.

As shown in Figure 12.2A, for a discrete approximation of the probability of the losses, 
given a confidence level or α-percentile, the value-at-risk VaRα represents the smallest value 
of losses for which the probability that the losses do not exceed the value of VaRα is greater 
than or equal to α . Thus, from the cumulative distribution function (cdf) F(losses), it is pos-
sible to construct the α-tail cdf Fα(losses) for the losses, such as (Figure 12.2B): the α -tail cdf 
represents the risk “beyond the VaR ” and its mean value corresponds to the CVaRα .
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12.1  Multi-objective Optimization (MOO) 237

12.1.4  MOO Problem Formulation

The MOO problem consists of the two objective functions measuring the Cg  and ENS 
and the associated risks. Specifically, their expected values and their CVaR  values are 
combined, weighted by a factor of β ∈  0 1, , which allows modulating the expected per-
formance of the distribution network and its associated risk. Considering a set of ran-
domly generated scenarios γ , the optimization problem is formulated as follows:

	● Objective functions:

	min f EC CVaR Cg g1 1= × + −( )× 





β βγ

α
γ� ��

� (12.12a)

	min ( )f EENS CVaR ENS2 1= × + −( )×β βγ
α

γ� �����
� (12.12b)

	● Constraints:

	ξ
ζ

i j
if DG

otherwise, = ∀
1 technology j are allocated at node i

0






∈ ∈ ∈ +i j ZN D, ,ζ � (12.12c)

	∑∑
∈ ∈

+( )≤
i j

i j j O mCinv C BGT
j
f

N D

ξ , & � (12.12d)

	∑
∈

≤ ∀ ∈
i

i j j j
N

Dξ τ, , � (12.12e)

OPF ( , , )Ξ F γ  in Equations (12.4a)–(12.4f)

where ECg  and expected energy not supplied (EENS) denote the expected values of ECg  
and ENS, respectively.

Figure 12.2  Graphical representation of the CVaR concept [4].
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The meaning of each constraint is

Equation 
(12.11c)

the decision variable ξi j, is a positive integer number

Equation 
(12.11d)

the total costs of investment, and fixed operation and maintenance of the DG 
units must be less than or equal to the available budget BGT

Equation 
(12.11e)

the total number of DG units of each technology j to allocate must be less 
than or equal to the maximum number of units τ j available to be integrated

Equations 
(12.4a)–(12.4f)

all the equations of OPF must be satisfied for all scenarios in γ

12.1.5  Solution Approach and Case Study Results

The combinatorial MOO problem under uncertainties is solved by the NSGA-II algo-
rithm presented in Chapter 10. In this approach, the evaluation of the objective functions 

Figure 12.3  Flow chart of NSGA-II MCS-OPF MOO framework.
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12.1  Multi-objective Optimization (MOO) 239

is performed by the developed MCS-OPF. The searching process of the overall NSGA-II 
MCS-OPF is summarized as shown in Figure 12.3.

As mentioned in Section 12.1.1, the testbed is modified from the IEEE 13 nodes test 
feeder (shown in Figure 12.1). The details about the characteristics of the components in 
the DG system can be found in [4]. The Pareto fronts, resulting from the MOO realiza-
tions for the different values of β , are presented in Figure 12.4. Each set of solutions 
corresponds to the “last-generation” population of the GA and the non-dominated 
solutions are presented in bold markers.

In Figure 12.5, the performance of the distribution network referring to the ENS and 
the Cg  is improved for any realization of the MOO; if compared to the only MS case, it 
will show the gain in reliability of power supply and the economic benefits obtained 
by purchasing power from the different renewable DG sources. On the other hand, it 
is possible to infer that, in general, for lower values of the weight parameter β, the 
mean values of Cg  is higher. This is expected, given that for the definition of the objec-
tive functions, when β tends to 0, the MOO tends to minimize the CVaR. (We skipped 
much of the analyses and discussions about the results because the intention of this 
chapter is only to illustrate through case studies the way of utilizing the methods and 
tools presented in previous Chapters. For the details about this case study, please refer 
to [4].)

Figure 12.4  Pareto fronts for different values of β [4].
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12.2  Redundancy Allocation for Binary-State Series-
Parallel Systems (BSSPSs) under Epistemic Uncertainty

In this section, we consider the redundancy allocation problem (RAP) with uncertain 
data in a binary-state series-parallel system (BSSPS). We assume the states of compo-
nents and system are binary, the states of individual components are statistically inde-
pendent, and the redundancy strategies in all subsystems are active.

12.2.1  Problem Description

We consider a BSSPS with I  subsystems connected in series. In each subsystem i I∈ , 
the decision variables are the redundancy levels xi  of the components to be placed in 
parallel. The system cost is minimized under a system reliability requirement. The RAP 
model is given by

	min∑
∈i I

i ic x∼ 	 (12.13a)

	s.t.∏
∈

− −( )( )≥
i I

i
xr Ri1 1 0 � (12.13b)

	L x U i Ii i i≤ ≤ ∀ ∈, � (12.13c)

	x i Ii ∈{ } ∀ ∈0 1, , � (12.13d)

where Equation (12.13b) represents the requirement that the system reliability should be 
larger than R0 , Equations (12.13c) shows the range of redundancy levels in each 
subsystem.

Figure 12.5  EENS v/s ECg [4].
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12.2  Redundancy Allocation for Binary-State Series-Parallel Systems (BSSPSs) 241

The reliability function can be linearized with binary variables [5]. Therefore, the 
model in Equations (12.13a)–(12.13d) can be reformulated as the following integer pro-
gramming problem:

min∑
∈i I

i ic x� � (12.14a)

	s.t ln. ln∑∑
∈ ∈

+
− −( )





 ≥

i I k K
ik i

L k

i

ir Rχ 1 1 0 � (12.14b)

	∑
∈

= ∀ ∈
k K

ik
i

i Iχ 1, � (12.14c)

	x k Li
k K

ik i
i

= +∑
∈

χ � (12.14d)

	χik ii I k K∈{ } ∀ ∈ ∈0 1, , , � (12.14e)

where the binary variable χik  denotes whether x Li i−  equals to k Ki∈  
and K U Li i i= … −{ }0 1, , , . Therefore, the redundancy level xi  can be replaced by 

∑
∈

+
k K

ik i
i

k Lχ  with χik . The constraint in Equation (12.13c) ensures that only one redun-

dancy level L ki +  for k Ki∈  is selected for the redundancy level xi . The reliability func-
tion is log-transformed to the linear forms  

∑ ∑∑
∈ ∈ ∈

+
− −( )( )= − −( )( )

i I
i

x

i I k K
ik i

L kr ri

i

iln ln1 1 1 1χ  as in Equation (12.14b).

12.2.2  Robust Model

We consider that the parameters of cost �c  are uncertain. In practice, it is reasonable to 
estimate the mean (nominal) values ci and variation ranges ci�  of these parameters for all 
possible component types. We assume all cost parameters �ci, i I∈  are mutually independ-
ent, symmetric, and bounded, which take values in [c ci i− � , c ci i+ � ]. Therefore, the robust 
model with polyhedral uncertainty set is used to handle the RAP with uncertain data. 
The uncertainty set of �c is denoted as follows:

C : :  , ,= ∈ ∈ − +




∀ ∈{ }+c R c c c c c i II

i i i i i� � �

For the constraints with uncertain data, the robust formulation of objective in Equation 
(12.14a) with �c ∈C  is given by

minmax
x c i I

i ic x
∼

�
∈ ∈
∑

C

� (12.15)

The general uncertainty sets considered in robust models include polyhedral uncertainty 
set [6] and ellipsoidal uncertainty set [7]. In this RAP, we use the cardinality constrained 
uncertainty proposed in [8] to deal with the polyhedral uncertainty on �c. The protection 
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level Γc ∈

0, I  is introduced to control the robustness of the model on Equation (12.15). 

The cardinality constrained robust representation of Equation (12.15) is given by

	 ∑ ∑
∈ { } ⊆ =[ ] ∈{ } ∈

+
∪

+ −[ ]( )
i I

i i
S s S I S s I S i S

i i
c c

sc x c x c
c

max
: , ,Γ

Γ Γ
�

� � xxs















� (12.16)

i.e. up to Γc[ ] of all uncertain parameters are allowed to change by ci�  and one parame-
ter csi
�  is allowed to change by Γ Γc c

sc− 


( )� . Finally, the robust optimization model for 

the BSSPS RAP (12.14a)–(12.14e) is as follows:

min max∑ ∑
∈ { } ⊆ = ∈{ } ∈[ ]

+
∪

+ −[ ]( )
i I

i i
S s S I S s I S i S

i i
c cc x c x

c: , ,Γ
Γ Γ

�

� cc xs s�














� (12.17a)

	s t b e. . . .12 13 12 13( )−( ) � (12.17b)

Given the robust model in Equations(12.17a)–(12.17b) in the BSSPS RAP, we present 
the tractable formulation for it in this section. The formulationin Equation (12.17a) is 
intractable because the combinations of S s S I S s I Sc∪{ } ⊆ = 




∈{ }: , ,Γ �  compared 

under the operation “max” are exponential. These semi-infinite formulations can be 
transformed into linear formulations through a duality argument.

Proposition 1  Given a decision x , the semi-infinite formulation in Equation (12.17a) 
is equivalent to the following program:

min∑ ∑
∈ ∈

+ +
i I

i i
c c

i I
i
cc x ξ ρΓ � (12.18a)

	ξ ρc
i
c

i ic x i I+ ≥ ∀ ∈� , � (12.18b)

	ρi
c i I≥ ∀ ∈0, � (12.18c)

	ξc ≥ 0 � (12.18d)

	x Z i Ii ∈ ∀ ∈+,   � (12.18e)

where ξ ρc
i
c,  are auxiliary variables.

Proof  The proof of Proposition 1 is given in Section 11.3.3.
Therefore, the tractable formulation of the model in Equations (12.17a)–(12.17b) is 
given by

min

b e b e

∑ ∑
∈ ∈

+ +

( )−( ) ( )−(
i I

i i
c c

i I
i
cc x ξ ρΓ

12 17 12 17 12 13 12 13. . , . . ))
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12.2.3  Experiment

We consider a BSSPS of 10 subsystems and a reliability requirement larger than 0.9. The 
nominal cost parameters ci  are uniformly generated in the range 10 15,


  in arbitrary 

units of cost and ci
∼  is set as ci / 2 . The reliability of each component in subsystem i I∈  is 

uniformly generated from 0 85 0 90. , .



 . The bounds of the redundancy level for subsystem 

i is Li =1 and Ui = 5 , for i I∈ .
To illustrate the performance of protection level Γc on the robust model, we vary Γc in 

the set 0 1 10, , ,…{ }. Given a protection level Γc, the associated robust solution and objec-
tive are represented as x c* Γ( ) and C c* Γ( ), respectively. To explore the robustness of the 
solutions x c* Γ( ), 100,000 samples for the cost parameters �c s are simulated from the 
uniform distribution, normal distribution, or triangle distribution on C . The objective 
value Cs cΓ( ) of solution x c* Γ( ) under the sample �c

s
 is calculated by �c xs c( ) ( )T * Γ . Then 

the violation probability of the robust solution is represented by the frequency that 

C c* Γ( ) is less than Cs cΓ( ).
Figure 12.6 shows the violation probabilities for different Γc . The violation probability 

drops sharply with the increase in the protection level. Actually, when Γc = 2, the viola-
tion probability is 0.004 and when Γc=4, the violation probability has become smaller 
than 10 5− .

Figure 12.7 shows the change percentage in objective values given by

C C

C

c* *

* %
Γ( )− ( )
( )

×
0

0
100

considering different levels of robustness. As we increase the protection level Γc and the 
optimal value increases with Γc, the robust solution becomes more conservative. 
According to Figures 12.6 and 12.7, we observe that by allowing the cost to increase by 
0.08, we can make the probability of constraint violation less than 0.04. In addition, by 

Figure 12.6  Violation probabilities for different Γc.
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allowing the cost to increase by 0.24, the violation probability is less than 10 5− . Therefore, 
we can sacrifice a relatively small increment in the objective value to greatly reduce the 
violation probability.
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