

System Reliability Assessment and Optimization

ffirs.indd 1ffirs.indd 1 15-06-2022 07:10:3915-06-2022 07:10:39

Wiley Series in Quality & Reliability Engineering

Dr. Andre V. Kleyner
Series Editor

The Wiley Series in Quality & Reliability Engineering aims to provide a solid educational
foundation for both practitioners and researchers in the Q&R field and to expand the
reader’s knowledge base to include the latest

developments in this field. The series will provide a lasting and positive contribution
to the teaching and practice of engineering.

The series coverage will contain, but is not exclusive to,

	● Statistical methods
	● Physics of failure
	● Reliability modeling
	● Functional safety
	● Six-sigma methods
	● Lead-free electronics
	● Warranty analysis/management
	● Risk and safety analysis

Wiley Series in Quality & Reliability Engineering

System Reliability Assessment and Optimization: Methods and Applications
by Yan-Fu Li, Enrico Zio
July 2022

Design for Excellence in Electronics Manufacturing
Cheryl Tulkoff, Greg Caswell
April 2021

Design for Maintainability
by Louis J. Gullo (Editor), Jack Dixon (Editor)
March 2021

Reliability Culture: How Leaders can Create Organizations that Create Reliable Products
by Adam P. Bahret
February 2021

Lead-free Soldering Process Development and Reliability
by Jasbir Bath
(Editor) August 2020

Automotive System Safety: Critical Considerations for Engineering and Effective Management
Joseph D. Miller
February 2020

ffirs.indd 2ffirs.indd 2 15-06-2022 07:10:3915-06-2022 07:10:39

Prognostics and Health Management: A Practical Approach to Improving System
Reliability Using Condition-Based Data
by Douglas Goodman, James P. Hofmeister, Ferenc Szidarovszky
April 2019

Improving Product Reliability and Software Quality: Strategies, Tools, Process
and Implementation, 2nd Edition
Mark A. Levin, Ted T. Kalal, Jonathan Rodin
April 2019

Practical Applications of Bayesian Reliability
Yan Liu, Athula I. Abeyratne
April 2019

Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors
Liudong Xing, Gregory Levitin, Chaonan Wang
March 2019

Reliability Engineering and Services
Tongdan Jin
March 2019

Design for Safety
by Louis J. Gullo, Jack
Dixon February 2018

Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing,
Fatigue and Reliability by Alec Feinberg October 2016

Next Generation HALT and HASS: Robust Design of Electronics and Systems
by Kirk A. Gray, John J. Paschkewitz May 2016

Reliability and Risk Models: Setting Reliability Requirements, 2nd Edition
by Michael Todinov November 2015

ffirs.indd 3ffirs.indd 3 15-06-2022 07:10:3915-06-2022 07:10:39

System Reliability Assessment and Optimization

Methods and Applications

Yan-Fu Li
Department of Industrial Engineering, Tsinghua University, China

Enrico Zio
MINES ParisTech/PSL Université, Italy

ffirs.indd 5ffirs.indd 5 15-06-2022 07:10:3915-06-2022 07:10:39

This edition first published 2022
©2022 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this
title is available at http://www.wiley.com/go/permissions.

The right of Yan-Fu Li and Enrico Zio to be identified as the authors of this work has been asserted in
accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives, written sales materials or promotional statements for this work. The fact that
an organization, website, or product is referred to in this work as a citation and/or potential source of
further information does not mean that the publisher and authors endorse the information or services
the organization, website, or product may provide or recommendations it may make. This work is
sold with the understanding that the publisher is not engaged in rendering professional services. The
advice and strategies contained herein may not be suitable for your situation. You should consult with
a specialist where appropriate. Further, readers should be aware that websites listed in this work may
have changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
Names: Li, Yan-Fu, author. | Zio, Enrico, author.
Title: System reliability assessment and optimization: methods and applications / Yan-Fu Li, Enrico Zio.
Description: Hoboken, NJ : John Wiley & Sons, 2022. | Series: Wiley series in quality & reliability

engineering | Includes bibliographical references and index.
Identifiers: LCCN 2022009590 (print) | LCCN 2022009591 (ebook) | ISBN 9781119265870 (hardback) |

ISBN 9781119265924 (pdf) | ISBN 9781119265863 (epub) | ISBN 9781119265856 (ebook)
Subjects: LCSH: Reliability (Engineering) | Industrial safety.
Classification: LCC TA169 .Z57 2022 (print) | LCC TA169 (ebook) |

DDC 620/.00452--dc23/eng/20220316
LC record available at https://lccn.loc.gov/2022009590
LC ebook record available at https://lccn.loc.gov/2022009591

Cover image: © Vithun Khamsong/Getty Images
Cover design by Wiley

Set in 9.5/12.5pt STIXTwoText by Integra Software Services Pvt. Ltd, Pondicherry, India

ffirs.indd 6ffirs.indd 6 15-06-2022 07:10:3915-06-2022 07:10:39

To all the students, collaborators and colleagues, to whom we are forever indebted for all
the enriching experience and knowledge that they have shared with us and that have made

us grow professionally and personally.

ffirs.indd 7ffirs.indd 7 15-06-2022 07:10:3915-06-2022 07:10:39

ix

Contents

Series Editor’s Foreword by Dr. Andre V. Kleyner  xv
Preface  xvii
Acknowledgments  xix
List of Abbreviations  xx
Notations  xxii

Part I  The Fundamentals  1

1	 Reliability Assessment  3
1.1	 Definitions of Reliability  3
1.1.1	 Probability of Survival  3
1.2	 Component Reliability Modeling  6
1.2.1	 Discrete Probability Distributions  6
1.2.2	 Continuous Probability Distributions  8
1.2.3	 Physics-of-Failure Equations  13
1.3	 System Reliability Modeling  15
1.3.1	 Series System  15
1.3.2	 Parallel System  16
1.3.3	 Series-parallel System  16
1.3.4	 K-out-of-n System  17
1.3.5	 Network System  18
1.4	 System Reliability Assessment Methods  18
1.4.1	 Path-set and Cut-set Method  18
1.4.2	 Decomposition and Factorization  19
1.4.3	 Binary Decision Diagram  19
1.5	 Exercises  20
	 References  22

ftoc.indd 9ftoc.indd 9 18-05-2022 02:49:1918-05-2022 02:49:19

Contentsx

2	 Optimization  23
2.1	 Optimization Problems  23
2.1.1	 Component Reliability Enhancement  23
2.1.2	 Redundancy Allocation  24
2.1.3	 Component Assignment  25
2.1.4	 Maintenance and Testing  26
2.2	 Optimization Methods  30
2.2.1	 Mathematical Programming  30
2.2.2	 Meta-heuristics  34
2.3	 Exercises  36
	 References  37

Part II  Reliability Techniques  41

3	 Multi-State Systems (MSSs)  43
3.1	 Classical Multi-state Models  43
3.2	 Generalized Multi-state Models  45
3.3	 Time-dependent Multi-State Models  46
3.4	 Methods to Evaluate Multi-state System Reliability  48
3.4.1	 Methods Based on MPVs or MCVs  48
3.4.2	 Methods Derived from Binary State Reliability Assessment  48
3.4.3	 Universal Generating Function Approach  49
3.4.4	 Monte Carlo Simulation  50
3.5	 Exercises  51
	 References  51

4	 Markov Processes  55
4.1	 Continuous Time Markov Chain (CMTC)  55
4.2	 In homogeneous Continuous Time Markov Chain  61
4.3	 Semi-Markov Process (SMP)  66
4.4	 Piecewise Deterministic Markov Process (PDMP)  74
4.5	 Exercises  82
	 References  84

5	 Monte Carlo Simulation (MCS) for Reliability and Availability Assessment  87
5.1	 Introduction  87
5.2	 Random Variable Generation  87
5.2.1	 Random Number Generation  87
5.2.2	 Random Variable Generation  89
5.3	 Random Process Generation  93
5.3.1	 Markov Chains  93
5.3.2	 Markov Jump Processes  94
5.4	 Markov Chain Monte Carlo (MCMC)  97
5.4.1	 Metropolis-Hastings (M-H) Algorithm  97

ftoc.indd 10ftoc.indd 10 18-05-2022 02:49:1918-05-2022 02:49:19

Contents xi

5.4.2	 Gibbs Sampler  98
5.4.3	 Multiple-try Metropolis-Hastings (M-H) Method  99
5.5	 Rare-Event Simulation  101
5.5.1	 Importance Sampling  101
5.5.2	 Repetitive Simulation Trials after Reaching Thresholds (RESTART)  102
5.6	 Exercises  103
	 Appendix  104
	 References  115

6	 Uncertainty Treatment under Imprecise or Incomplete Knowledge  117
6.1	 Interval Number and Interval of Confidence  117
6.1.1	 Definition and Basic Arithmetic Operations  117
6.1.2	 Algebraic Properties  118
6.1.3	 Order Relations  119
6.1.4	 Interval Functions  120
6.1.5	 Interval of Confidence  121
6.2	 Fuzzy Number  121
6.3	 Possibility Theory  123
6.3.1	 Possibility Propagation  124
6.4	 Evidence Theory  125
6.4.1	 Data Fusion  128
6.5	 Random-fuzzy Numbers (RFNs)  128
6.5.1	 Universal Generating Function (UGF) Representation of Random-fuzzy

Numbers  129
6.5.2	 Hybrid UGF (HUGF) Composition Operator  130
6.6	 Exercises  132
	 References  133

7	 Applications  135
7.1	 Distributed Power Generation System Reliability Assessment  135
7.1.1	 Reliability of Power Distributed Generation (DG) System  135
7.1.2	 Energy Source Models and Uncertainties  136
7.1.3	 Algorithm for the Joint Propagation of Probabilistic and Possibilistic

Uncertainties  138
7.1.4	 Case Study  140
7.2	 Nuclear Power Plant Components Degradation  140
7.2.1	 Dissimilar Metal Weld Degradation  140
7.2.2	 MCS Method  145
7.2.3	 Numerical Results  147
	 References  149

Part III  Optimization Methods and Applications  151

8	 Mathematical Programming  153
8.1	 Linear Programming (LP)  153

ftoc.indd 11ftoc.indd 11 18-05-2022 02:49:1918-05-2022 02:49:19

Contentsxii

8.1.1	 Standard Form and Duality  155
8.2	 Integer Programming (IP)  159
8.3	 Exercises  164
	 References  165

9	 Evolutionary Algorithms (EAs)  167
9.1	 Evolutionary Search  168
9.2	 Genetic Algorithm (GA)  170
9.2.1	 Encoding and Initialization  171
9.2.2	 Evaluation  172
9.2.3	 Selection  173
9.2.4	 Mutation  174
9.2.5	 Crossover  175
9.2.6	 Elitism  178
9.2.7	 Termination Condition and Convergence  178
9.3	 Other Popular EAs  179
9.4	 Exercises  181
	 References  182

10	 Multi-Objective Optimization (MOO)  185
10.1	 Multi-objective Problem Formulation  185
10.2	 MOO-to-SOO Problem Conversion Methods  187
10.2.1	 Weighted-sum Approach  188
10.2.2	 ε-constraint Approach  189
10.3	 Multi-objective Evolutionary Algorithms  190
10.3.1	 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)  190
10.3.2	 Improved Strength Pareto Evolutionary Algorithm (SPEA 2)  193
10.4	 Performance Measures  197
10.5	 Selection of Preferred Solutions  200
10.5.1	 “Min-Max” Method  200
10.5.2	 Compromise Programming Approach  201
10.6	 Guidelines for Solving RAMS+C Optimization Problems  201
10.7	 Exercises  203
	 References  204

11	 Optimization under Uncertainty  207
11.1	 Stochastic Programming (SP)  207
11.1.1	 Two-stage Stochastic Linear Programs with Fixed Recourse  209
11.1.2	 Multi-stage Stochastic Programs with Recourse  217
11.2	 Chance-Constrained Programming  218
11.2.1	 Model and Properties  219
11.2.2	 Example  221
11.3	 Robust Optimization (RO)  222
11.3.1	 Uncertain Linear Optimization (LO) and its Robust Counterparts  223

ftoc.indd 12ftoc.indd 12 18-05-2022 02:49:1918-05-2022 02:49:19

Contents xiii

11.3.2	 Tractability of Robust Counterparts  224
11.3.3	 Robust Optimization (RO) with Cardinality Constrained Uncertainty Set  225
11.3.4	 Example  226
11.4	 Exercises  228
	 References  229

12	 Applications  231
12.1	 Multi-objective Optimization (MOO) Framework for the Integration of

Distributed Renewable Generation and Storage  231
12.1.1	 Description of Distributed Generation (DG) System  232
12.1.2	 Optimal Power Flow (OPF)  234
12.1.3	 Performance Indicators  235
12.1.4	 MOO Problem Formulation  237
12.1.5	 Solution Approach and Case Study Results  238
12.2	 Redundancy Allocation for Binary-State Series-Parallel Systems (BSSPSs)

under Epistemic Uncertainty  240
12.2.1	 Problem Description  240
12.2.2	 Robust Model  241
12.2.3	 Experiment  243
	 References  244

Index  245

ftoc.indd 13ftoc.indd 13 18-05-2022 02:49:1918-05-2022 02:49:19

xv

Series Editor’s Foreword
Dr. Andre V. Kleyner

The Wiley Series in Quality & Reliability Engineering aims to provide a solid educational
foundation for researchers and practitioners in the field of quality and reliability engi-
neering and to expand the knowledge base by including the latest developments in these
disciplines.

The importance of quality and reliability to a system can hardly be disputed. Product
failures in the field inevitably lead to losses in the form of repair cost, warranty claims,
customer dissatisfaction, product recalls, loss of sale, and in extreme cases, loss of life.

Engineering systems are becoming increasingly complex with added functions and
capabilities; however, the reliability requirements remain the same or even growing
more stringent. Modeling and simulation methods, such as Monte Carlo simulation,
uncertainty analysis, system optimization, Markov analysis and others, have always
been important instruments in the toolbox of design, reliability and quality engineers.
However, the growing complexity of the engineering systems, with the increasing inte-
gration of hardware and software, is making these tools indispensable in today’s product
development process.

The recent acceleration of the development of new technologies including digitaliza-
tion, forces the reliability professionals to look for more efficient ways to deliver the
products to market quicker while meeting or exceeding the customer expectations of
high product reliability. It is important to comprehensively measure the ability of a prod-
uct to survive in the field. Therefore, modeling and simulation is vital to the assessment
of product reliability, including the effect of variance on the expected product life, even
before the hardware is built. Variance is present in the design parameters, material prop-
erties, use conditions, system interconnects, manufacturing conditions, lot-to-lot varia-
tion and many other product inputs, making it difficult to assess. Thus, modeling and
simulation may be the only tools to fully evaluate the effect of variance in the early prod-
uct development phases and to eventually optimize the design.

The book you are about to read has been written by leading experts in the field of reli-
ability modeling, analysis, simulation and optimization. The book covers important top-
ics, such as system reliability assessment, modeling and simulation, multi-state systems,
optimization methods and their applications, which are highly critical to meeting the
high demands for quality and reliability. Achieving the optimal feasible performance of

fbetw.indd 15fbetw.indd 15 13-06-2022 07:34:4813-06-2022 07:34:48

Series Editor’s Forewordxvi

the system is eventually the final objective in modern product design and manufactur-
ing, and this book rightfully puts a lot of emphasis on the process of optimization.

Paradoxically, despite its evident importance, quality and reliability disciplines are
somewhat lacking in today’s engineering educational curricula. Only few engineering
schools offer degree programs, or even a sufficient set of courses, in quality and reliabil-
ity methods. The topics of reliability analysis, accelerated testing, reliability modeling
and simulation, warranty data analysis, reliability growth programs, reliability design
optimization and other aspects of reliability engineering receive very little coverage in
today’s engineering students curricula. As a result, the majority of the quality and relia-
bility practitioners receive their professional training from colleagues, professional semi-
nars and professional publications. In this respect, this book is intended to contribute to
closing this gap and provide additional educational material as a learning opportunity
for a wide range of readers from graduate level students to seasoned reliability
professionals.

We are confident that this book, as well as this entire book series, will continue Wiley’s
tradition of excellence in technical publishing and provide a lasting and positive contri-
bution to the teaching and practice of reliability and quality engineering.

fbetw.indd 16fbetw.indd 16 13-06-2022 07:34:4813-06-2022 07:34:48

xvii

Preface

Engineering systems, like process and energy systems, transportation systems, struc-
tures like bridges, pipelines, etc., are designed to ensure successful operation throughout
the anticipated service lifetime in compliance with given all-around sustainability
requirements. This calls for design, operation, and maintenance solutions to achieve the
sustainability targets with maximum benefit from system operation. Reliability, availa-
bility, maintainability and Safety criteria (RAMS) are among the indicators for measur-
ing system functionality with respect to these intended targets.

Today, modern engineering systems are becoming increasingly complex to meet the
high expectations by the public for high functionality, performance, and reliability, and
with this, RAMS properties have become further key issues in design, maintenance, and
successful commercialization.

With high levels of RAMS being demanded on increasingly complex systems, the reli-
ability assessment and optimization methods and techniques need to be continuously
improved and advanced. As a result, many efforts are being made to address various
challenges in complex engineering system lifecycle management under the global trend
of systems integration. Mathematically and computationally, the reliability assessment
and optimization are challenged by various issues related to the uncertain, dynamic,
multi-state, non-linear interdependent characteristics of the modern engineering sys-
tems and the problem of finding optimal solutions in irregular search spaces character-
ized by non-linearity, non-convexity, time-dependence and uncertainty.

In the evolving and challenging RAMS engineering context depicted above, this book
provides a precise technical view on system reliability methods and their application to
engineering systems. The methods are described in detail with respect to their mathe-
matical formulation and their application is illustrated through numerical examples and
is discussed with respect to advantages and limitations. Applications to real world cases
are given as a contribution to bridging the gap between theory and practice.

The book can serve as a solid theoretical and practical basis for solving reliability
assessment and optimization problems regarding systems of different engineering disci-
plines and for further developing and advancing the methods to address the newly aris-
ing challenges as technology evolves.

Reliability engineering is founded on scientific principles and deployed by mathemati-
cal tools for analyzing components and systems to guarantee they provide their func-
tions as intended by design.

fpref.indd 17fpref.indd 17 6/11/2022 1:39:14 PM6/11/2022 1:39:14 PM

Prefacexviii

On the other hand, technological advances continuously bring changes of perspec-
tives, in response to the needs, interests, and priorities of the practical engineering world.
As technology advances at a fast pace, the complexity of modern engineered systems
increases and so do, at the same time, the requirements for performance, efficiency, and
reliability. This brings new challenges that demand continuous developments and
advancements in complex system reliability assessment and optimization.

Therefore, system reliability assessment and optimization is inevitably a living field,
with solution methodologies continuously evolving through the advancements of math-
ematics and simulation to follow up the development of new engineering technology
and the changes in management perspectives. For this, advancements in the fields of
operations research, reliability, and optimization theory and computation continuously
improve the methods and techniques for system reliability assessment and optimization
and for their application to very large and increasingly complex systems made of a large
number of heterogeneous components with many interdependencies under various
physical and economic constraints.

Within the ongoing efforts of development and advancement, this book presents an
overview of methods for assessing and optimizing system reliability. We address differ-
ent types of system reliability assessment and optimization problems and the different
approaches for their solutions. We consider the development and advancement in the
fields of operations research, reliability, and optimization theory to tackle the reliability
assessment and optimization of complex systems in different technological domains.

The book is directed to graduate students, researchers and practitioners in the areas of
system reliability, availability, maintainability and Safety (RAMS), and it is intended to
provide an overview of the state of knowledge of and tools for reliability assessment and
system optimization. It is organized in three parts to introduce fundamentals, and illus-
trate methods and applications.

The first part reviews the concepts, definitions and metrics of reliability assessment
and the formulations of different types of reliability optimization problems depending on
the nature of the decision variables and considering redundancy allocation and mainte-
nance and testing policies. Plenty of numerical examples are provided to accompany the
understanding of the theoretical concepts and methods.

The second part covers multi-state system (MSS) modeling and reliability evaluation,
Markov processes, Monte Carlo simulation (MCS), and uncertainty treatment under
poor knowledge. The reviewed methods range from piecewise-deterministic Markov
processes (PDMPs) to belief functions.

The third part of the book is devoted to system reliability optimization. In general terms,
system reliability optimization involves defining the decision variables, the constraints
and the single or multiple objective functions that describe the system reliability perfor-
mance and involves searching for the combination of values of the decision variables that
realize the target values the objective functions. Different formulations and methods are
described with precise mathematical details and illustrative numerical examples, cover-
ing mathematical programming, evolutionary algorithms, multi-objective optimization
(MOO) and optimization under uncertainty, including robust optimization (RO).

Applications of the assessment and optimization methods to real-world cases are also
given, concerning for example the reliability of renewable energy systems. From this point of
view, the book bridges the gap between theoretical development and engineering practice.

fpref.indd 18fpref.indd 18 6/11/2022 1:39:14 PM6/11/2022 1:39:14 PM

xix

Acknowledgments

Live long and prosper, RAMS and system reliability! The authors would express the
deepest appreciations to the great scholars along the line of honors and achievements for
their inspirations and role modeling.

Many thanks to the postgraduate students in Tsinghua: Tianli Men, Hanxiao Zhang,
Ruochong Liu, Chen Zhang and Chuanzhou Jia. Thanks for their priceless efforts in
editing, depicting, and proofreading in various chapters.

The authors would like to specially thank the Wiley colleagues for their continuous
and kindhearted monitoring and encouragement throughout the years.

At last, this work is supported in part by the National Natural Science Foundation of
China under a key project grant No. 71731008 and the Beijing Natural Science Foundation
grant No. L191022.

flast.indd 19flast.indd 19 13-06-2022 08:17:3513-06-2022 08:17:35

xx

ABC	 artificial bee colony algorithm
ACO	 ant colony optimization
AGAN	 as-good-as-new
B&B	 branch-and-bound
BBA	 basic belief assignment
BDD	 binary decision diagram
BFS	 basic feasible solution
BSS	 binary state system
BSSPS	 binary-state series-parallel system
cdf	 cumulative distribution function
CG	 column generation
CLT	 Central Limit Theorem
CTMC	 continuous time Markov chain
CVaR	 conditional value-at-risk
DC	 direct current
DE	 deterministic equivalent
DE	 differential evolution
DG	 distributed generation
DM	 decision maker
DP	 dynamic programming
DTMC	 discrete time Markov chain
EA	 evolutionary algorithm
ENS	 energy not supplied
EENS	 expected energy not supplied
EV	 electrical vehicles
FV	 finite-volume
GA	 genetic algorithm
GD	 generational distance
HCTMC	 homogeneous CTMC
HPIS	 high-pressure injection system
HUGF	 hybrid UGF
HV	 hyper-volume

List of Abbreviations

flast.indd 20flast.indd 20 13-06-2022 08:17:3513-06-2022 08:17:35

List of Abbreviations xxi

ICTMC	 inhomogeneous CTMC
ILP	 integer linear programming
IP	 integer programming
LO	 Linear optimization
LP	 linear programming
LPM	 LP master problem
MCMC	 Markov Chain Monte Carlo
MCS	 Monte Carlo simulation
MCS-OPF	 Monte Carlo simulation – optimal power flow
MCV	 minimal cut vector
MDD	 multi-valued decision diagram
MH	 Metropolis-Hastings
MIP	 mixed integer programming
MOO	 multi-objective optimization
MP	 mathematical programming
MPV	 minimal path vector
MRC	 Markov renewal chain
MS	 Main supply power spot
MSCS	 multi-state coherent system
MSM	 multi-state model
MSMS	 multi-state monotone system
MSS	 multi-state system
MTBF	 mean time between failures
MTBR	 mean time between repairs
MTTF	 mean time to failure
NLP	 non-linear programming
NPGA	 niched Pareto GA
NPP	 nuclear power plant
NSGA-II	 fast non-dominated sorting genetic algorithm
OPF	 optimal power flow
pdf	 probability density function
PDMP	 piecewise-deterministic Markov process
pmf	 probability mass function
P-o-F	 Physics-of-Failure
PSO	 particle swarm optimization
PV	 solar photovoltaic
RAM	 reliability, availability, and maintainability
RAMS	 RAM and Safety criteria
RAMS+C	 RAMS and Cost
RAP	 redundancy allocation problem
RC	 robust counterpart
RESTART	 Repetitive Simulation Trials After Reaching Thresholds
RFN	 random-fuzzy number

flast.indd 21flast.indd 21 13-06-2022 08:17:3513-06-2022 08:17:35

List of Abbreviationsxxii

RLPM	 restricted LPM
RO	 robust optimization
SMP	 semi-Markov process
SODE	 single-object DE
SOEA	 single-objective EA
SOGA	 single-objective GA
SOO	 single-objective optimization
SOPSO	 single-objective PSO
SP	 stochastic programming
SPEA	 strength Pareto evolutionary algorithm
SPEA 2	 improved strength Pareto evolutionary algorithm
SSO	 social spider optimization
ST	 storage device
TDMSM	 time-dependent MSM
TIMSM	 time-independent MSM
TS	 Tabu search
UGF	 universal generating function
VEGA	 vector-evaluated GA
W	 wind turbine

Notations: Part I

t 	 time point

n tf ()	 number of failed items

n ts ()	 number of the survived items

n0 	 sample size

T 	 random variable of the failure time

F t()	 cdf of failure time

f t()	 pdf of failure time

R t() 	 reliability at time t

h t()	 hazard function at time t

H t()	 cumulative hazard function at time t

Q t�().	 estimate of the unreliability

R t�() 	 estimate of the reliability

D t()	 component or system demand at time t

G t()	 performance function at time t

MTTF 	 mean time to failure

X 	 random variable

flast.indd 22flast.indd 22 13-06-2022 08:17:4113-06-2022 08:17:41

List of Abbreviations xxiii

a 	 crack length

N 	 load cycle

Q	 total volume of wear debris produced

R ts ()	 reliability of the system at time t

⋅()	 unreliability function of the system

C 	 cost

x 	 decision variable

g x()	 inequality constraints

h x()	 equality constraints

f x() 	 criterion function

D V A=(), 	 directed graph

d ⋅()	 length of the shortest path

Notations: Part II

t 	 time point

S 	 state set

M 	 perfect state

x = …()x xn1, , 	 component state vector

X = …()X Xn1, , 	 state of all components

φ ⋅()	 structure function of the system

gi 	 performance level of component i

λkj
i 	 transition rate of component i from state k to state j

Q tkj
i ()	 kernel of the SMP analogous to λkj

i of the CTMC

Tn
i 	 time of the n-th transition of component i

Gn
i 	 performance of component i at the n-th transition

θ jk
i t()	 probability that the process of component i starts from state j at time t

A tW
ϕ ()	 availability with a minimum on performance of total ϕ at time t

u zi ()	 universal generating function of component i

p X jij i= =()Pr 	 probability of component i being at state j

p t() 	 state probability vector

λij t()	 transition rate from state i to state j at time t in Markov process

ΛΛ 	 transition rate matrix

Π ⋅()	 possibility function

N ⋅()	 necessity function

flast.indd 23flast.indd 23 13-06-2022 08:17:4713-06-2022 08:17:47

List of Abbreviationsxxiv

Bel ⋅()	 belief function

Pl ⋅()	 plausibility function

F− ⋅()1 	 inverse function

E ⋅()	 expectation equation

⊗ 	 UGF composition operator

Π ⋅()	 possibility function

N ⋅()	 necessity function

Bel ⋅()	 belief function

Pl ⋅()	 plausibility function

F− ⋅()1 	 inverse function

E ⋅()	 expectation equation

S ⋅()	 system safety function

Risk ⋅()	 system risk function

C ⋅()	 cost function

Notation: Part III

ri 	 reliability of subsystem i

x= …()x xn
T

1, , 	 decision variable vector

c � �� �c cn
T

1
, , 	 coefficients of the objective function

b � �� �b bm
T

1
, , 	 right-hand side values of the inequality constraints

z= …()z z zM1 2, , , 	 objective vector

xl l L*, , , ,= …1 2 	 set of optimal solutions

w= …()w w wM1 2, , , 	 weighting vector

x* 	 global optimal solution

R ⋅()	 system reliability function

A ⋅()	 system availability function

M ⋅()	 system maintainability function

	 system safety function

C ⋅()	 cost function

Risk ⋅()	 system risk function

RN 	 N -dimensional solution space

fi 	 i-th objective functions

g j 	 j -th equality constraints

hk 	 k -th inequality constraints

flast.indd 24flast.indd 24 13-06-2022 08:17:5913-06-2022 08:17:59

List of Abbreviations xxv

ωω	 random event

ξξ= () () ()()q h T
ω ω ω

T TT, , 	 second-stage problem parameters

W 	 recourse matrix

y ω()	 second-stage or corrective actions

Q x() 	 expected recourse function

U 	 uncertainty set

u 	 uncertainty parameters

ζ 	 perturbation vector

Z 	 perturbation set

xu
* 	 optimal solution under the uncertainty parameter u

flast.indd 25flast.indd 25 13-06-2022 08:18:0013-06-2022 08:18:00

1

Part I

The Fundamentals

p01.indd 1p01.indd 1 10-06-2022 20:43:1810-06-2022 20:43:18

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

3

1

Reliability Assessment

Reliability is a critical attribute for the modern technological components and systems.
Uncertainty exists on the failure occurrence of a component or system, and proper
mathematical methods are developed and applied to quantify such uncertainty. The
ultimate goal of reliability engineering is to quantitatively assess the probability of fail-
ure of the target component or system [1]. In general, reliability assessment can be car-
ried out by both parametric or nonparametric techniques. This chapter offers a basic
introduction to the related definitions, models and computation methods for reliability
assessments.

1.1  Definitions of Reliability

According to the standard ISO 8402, reliability is the ability of an item to perform a
required function, under given environmental and operational conditions and for
a stated period of time without failure. The term “item” refers to either a component or
a system. Under different circumstances, the definition of reliability can be interpreted
in two different ways:

1.1.1  Probability of Survival

Reliability of an item can be defined as the complement to its probability of failure,
which can be estimated statistically on the basis of the number of failed items in a sam-
ple. Suppose that the sample size of the item being tested or monitored is n0. All items in
the sample are identical, and subjected to the same environmental and operational con-
ditions. The number of failed items is nf and the number of the survived ones is ns ,
which satisfies

	n n nf s+ = 0 	 (1.1)

c01.indd 3c01.indd 3 10-06-2022 13:27:4510-06-2022 13:27:45

1  Reliability Assessment4

The percentage of the failed items in the tested sample is taken as an estimate of the
unreliability, Q ,

	Q
n
n

f
 =

0
	 (1.2)

Complementarily, the estimate of the reliability, R , of the item is given by the percent-
age of survived components in the sample:

	R
n
n Qs



= = −
0

1 	 (1.3)

Example 1.1

A valve fabrication plant has an average output of 2,000 parts per day. Five hundred
valves are tested during a reliability test. The reliability test is held monthly. During the
past three years, 3,000 valves have failed during the reliability test. What is the reliability
of the valve produced in this plant according to the test conducted?

Solution

The total number of valves tested in the past three years is

n0 500 12 3 18000= × × =

The number of failed components is

nf = 3000

According to Equation 1.3, an estimate of the valve reliability is

R n
n

n n
n

s f
 = =

−
=

−
≈

0

0

0

18000 3000
18000

0 833.

1.1.2  Probability of Time to Failure

Let random variable T denote the time to failure. Then, the reliability function at time t
can be expressed as the probability that the component does not fail at time t , that is,

	R t P T t()= >()	 (1.4)

Denote the cumulative distribution function (cdf) of T as F t(). The relationship between
the cdf and the reliability is

	R t F t()= − ()1 	 (1.5)

c01.indd 4c01.indd 4 10-06-2022 13:27:4810-06-2022 13:27:48

1.1  Definitions of Reliability 5

Further, denote the probability density function (pdf) of failure time T as f t(). Then,
equation (1.5) can be rewritten as

	R t f d
t

()= − ()∫1
0

ξ ξ 	 (1.6)

Example 1.2

The failure time of a valve follows the exponential distribution with parameter λ= 0 025.
(in arbitrary units of time-1). The value is new and functioning at time t= 0 . Calculate
the reliability of the valve at time t= 30 (in arbitrary units of time).

Solution

The pdf of the failure time of the valve is

f t e e tt t()= = ≥− −λ λ 0 025 00 025. ,.

The reliability function of the valve is given by

R t e d
t

()= −∫ −1 0 025
0

0 025. . ξ ξ

At time t= 30, the value of the reliability is

R e d30 1 0 025 0 472
0

30
0 025()= − ≈∫ −. .. ξ ξ

In all generality, the expected value or mean of the time to failure T is called the mean
time to failure (MTTF), which is defined as

	MTTF E T tf t dt=   = ()
∞

∫
0

	 (1.7)

It is equivalent to

	MTTF R t dt= ()
∞

∫
0

	 (1.8)

Another related concept is the mean time between failures (MTBF). MTBF is the average
working time between two consecutive failures. The difference between MTBF and
MTTF is that the former is used only in reference to a repairable item, while the latter is
used for non-repairable items. However, MTBF is commonly used for both repairable
and non-repairable items in practice.

c01.indd 5c01.indd 5 10-06-2022 13:27:5110-06-2022 13:27:51

1  Reliability Assessment6

The failure rate function or hazard rate function, denoted by h t(), is defined as the
conditional probability of failure in the time interval t t t, + ∆ given that it has been
working properly up to time t , which is given by

	h t P T t t T t
f t
R tt

()= ≤ + >()= ()
()→

lim |
∆

∆
0

	 (1.9)

Furthermore, the cumulative failure rate function, or cumulative hazard function,
denoted by H t(), is given by

	H t h t dt
t

()= ()∫
0

	 (1.10)

1.2  Component Reliability Modeling

As mentioned in the previous section, in reliability engineering, the time to failure of an
item is a random variable. In this section, we briefly introduce several commonly used
discrete and continuous distributions for component reliability modeling.

1.2.1  Discrete Probability Distributions

If random variable X can take only a finite number k of different values x x xk1 2, , ,… or
an infinite sequence of different values x x1 2, ,…, the random variable X has a discrete
probability distribution. The probability mass function (pmf) of X is defined as the func-
tion f such that for every real number x ,

	f x P X x()= =()	 (1.11)

If x is not one of the possible values of X , then f x()= 0. If the sequence x x1 2, ,…

includes all the possible values of X , then ∑ ()=
i

if x 1. The cdf is given by

	F x P X xi i()= ≤()	 (1.12)

1.2.1.1  Binomial Distribution
Consider a machine that produces a defective item with probability p p ()0 1< < and
produces a non-defective item with probability 1−p . Assume the events of defects in
different items are mutually independent. Suppose the experiment consists of examining
a sample of n of these items. Let X denote the number of defective items in the sample.
Then, the random variable X follows a binomial distribution with parameters n and p
and has the discrete distribution represented by the pmf in (1.14), shown in Figure 1.1.
The random variable with this distribution is said to be a binomial random variable, with
parameters n and p ,

c01.indd 6c01.indd 6 10-06-2022 13:27:5810-06-2022 13:27:58

1.2  Component Reliability Modeling 7

	 f x
n
x

p p for x n

otherwise

x n x

()=










−() = …
−1 0 1

0

, , , , ,

, ..










	 (1.13)

The pmf of the binomial distribution is

	F x
n
i

p p
i

x
i n i()=











−()
=

−
∑

0

1 	 (1.14)

For a binomial distribution, the mean, µ , is given by

	µ =np	 (1.15)

and the variance, σ2 , is given by

	σ2 1= −()np p 	 (1.16)

1.2.1.2  Poisson Distribution
Poisson distribution is widely used in quality and reliability engineering. A random vari-
able X has the Poisson distribution with parameter λ λ, ,> 0 the pmf (shown in
Figure 1.2) of X is as follows:

	 f x
e

x
for x

otherwise

x

()= = …








−λλ
!

, , , ,

, .

0 1

0
	 (1.17)

The mean and variance of the Poisson distribution are

	µ σ λ= =2 	 (1.18)

Figure 1.1  The pmf of the binomial distribution with n p= =5 0 4, . .

c01.indd 7c01.indd 7 10-06-2022 13:28:0110-06-2022 13:28:01

1  Reliability Assessment8

1.2.2  Continuous Probability Distributions

We say that a random variable X has a continuous distribution or that X is a con-
tinuous random variable if there exists a nonnegative function f , defined on the real
line, such that for every interval of real numbers (bounded or unbounded), the prob-
ability that X takes a value in an interval a b,   is the integral of f over that interval,
that is,

	P a X b f x dx
a

b

≤ ≤()= ()∫ .	 (1.19)

If X has a continuous distribution, the function f will be the probability density func-
tion (pdf) of X. The pdf must satisfy the following requirements:

	f x x()≥ 0, . for all 	 (1.20)

The cdf of a continuous distribution is given by

	
−∞

∞

∫ () =f x dx 1. 	 (1.21)

Figure 1.2  The pmf of the Poisson distribution with λ= 0 6. .

c01.indd 8c01.indd 8 10-06-2022 13:28:0310-06-2022 13:28:03

1.2  Component Reliability Modeling 9

The mean, µ, and variance, σ2, of the continuous random variable are calculated by

	µ

σ µ

= ()

= −() ()

−∞

∞

−∞

∞

∫

∫

xf x dx

x f x dx2 2 .

	 (1.22)

1.2.2.1  Exponential Distribution
A random variable T follows the exponential distribution if and only if the pdf (shown in
Figure 1.3) of T is

	f t e tt()= ≥−λ λ , ,0 	 (1.23)

where λ> 0 is the parameter of the distribution. The cdf of the exponential distribution is

	F t e tt()= − ≥−1 0λ , . 	 (1.24)

If T denotes the failure time of an item with exponential distribution, the reliability func-
tion will be

	R t e tt()= ≥−λ , .0 	 (1.25)

The hazard rate function is

	h t()=λ. 	 (1.26)

The mean, µ , and variance, σ2 are

	µ
λ

λ
σ

=

=

1

12
2 .

	 (1.27)

Figure 1.3  The pdf of the exponential distribution with λ=1.

c01.indd 9c01.indd 9 10-06-2022 13:28:0710-06-2022 13:28:07

1  Reliability Assessment10

1.2.2.2  Weibull Distribution
A random variable T follows the Weibull distribution if and only if the pdf (shown in
Figure 1.4) of T is

	f t t e t
t

()= ≥
− −








β

η

β

β
η

β

1
0, , 	 (1.28)

where β> 0 is the shape parameter and η> 0 is the scale parameter of the distribution.
The cdf of the Weibull distribution is

	F t e t
t

()= − ≥
−







1 0η

β

, . 	 (1.29)

If T denotes the time to failure of an item with Weibull distribution, the reliability func-
tion will be

	R t e t
t

()= ≥
−







η

β

, .0 	 (1.30)

The hazard rate function is

	h t t t()=







 ≥
−

β
η η

β 1

0, .	 (1.31)

The mean, µ , and variance, σ2 , are

	µ η
β
β

σ η
β
β

β
β

=
+









=
+







−

+









Γ

Γ Γ

1

2 12 2

,




























2

.

	 (1.32)

Figure 1.4  The pdf of the Weibull distribution with β η= =1 79 1. , .

c01.indd 10c01.indd 10 10-06-2022 13:28:1110-06-2022 13:28:11

1.2  Component Reliability Modeling 11

1.2.2.3  Gamma Distribution
A random variable T follows the gamma distribution if and only if the pdf (shown in
Figure 1.5) of T is

	 f t t e tt()= ()
≥− −λ

β

β
β λ

Γ
1 0, , 	 (1.33)

where β> 0 is the shape parameter and η> 0 is the scale parameter of the distribution.
The cdf of the gamma distribution is

	F t x e dx t
t

x()= ()
≥∫ − −λ

β

β
β λ

Γ
0

1 0, . 	 (1.34)

If T denotes the failure time of an item with gamma distribution, the reliability function
will be

	R t x e dx t
t

x()= ()
≥

∞
− −∫

λ
β

β
β λ

Γ
1 0, . 	 (1.35)

The hazard rate function is

	h t t e

x e dx
t

t

t
x

()= ≥
− −

∞ − −∫

β λ

β λ

1

1
0, . 	 (1.36)

The mean, µ , and variance, σ2 , are

	µ β
λ

σ
β
λ

=

=2
2 .

	 (1.37)

Figure 1.5  The pdf of the gamma distribution with β λ= =1 99 1. , .

c01.indd 11c01.indd 11 10-06-2022 13:28:1510-06-2022 13:28:15

1  Reliability Assessment12

1.2.2.4  Lognormal Distribution
A random variable T follows the lognormal distribution if and only if the pdf (shown in
Figure 1.6) of T is

	f t
t

t t()= − −()










 >

1
2

1
2

02
2

σ π σ
µexp ln , ,	 (1.38)

where σ> 0 is the shape parameter and µ> 0 is the scale parameter of the distribution.
Note that the lognormal variable is developed from the normal distribution. The random
variable X T= ln is a normal random variable with parameters µ and σ . The cdf of the
lognormal distribution is

	F t t t()= −







 >Φ

ln , ,µ
σ

0 	 (1.39)

where Φ x() is the cdf of a standard normal random variable. If T denotes the failure time
of an item with lognormal distribution, the reliability function of T will be

	R t t t()= − −







 >1 0Φ

ln , .µ
σ

	 (1.40)

The hazard rate function is

	h t
f t

t
t()= ()

−
−









>
1

0
Φ

ln
, .

µ
σ

	 (1.41)

The mean, µ , and variance, σ 2, are

	µ

σ

µ σ

µ σ σ

=

= −()

+

+

e

e e

2

2 2

2

2 2 1

/ ,

.

	 (1.42)

Figure 1.6  The pdf of the lognormal distribution with µ σ= =0 0 954, . .

c01.indd 12c01.indd 12 10-06-2022 13:28:2110-06-2022 13:28:21

1.2  Component Reliability Modeling 13

1.2.3  Physics-of-Failure Equations

Different from the traditional reliability assessment approach, the Physics-of-Failure
(P-o-F) represents an approach to reliability assessment based on modeling and simula-
tion of the physical processes leading to the occurrence of failures in an item [2]. The
P-o-F approach begins within the first stages of the design of the item. A model is con-
structed based on the customer’s requirements, service environment, and stress analysis
[1]. Once the models are established, a reliability assessment can be conducted on the
item.

1.2.3.1  Paris’ Law for Crack Propagation
Paris’ law is a crack growth equation that gives the rate of growth of a fatigue crack [3]. The
stress intensity factor K characterizes the load around a crack tip and the rate of crack
growth is experimentally shown to be a function of the range of the stress intensity ∆K
experienced in a loading cycle (shown in Figure 1.7). The Paris’ equation describing this is

Example 1.3

The random variable of the time to failure of an item, T , follows the following pdf:

f t
t

otherwise
()= ≤ ≤









1
6000

0 6000

0

, ,

, .

where t is in days and t≥ 0.

a)	 What is the probability of failure of the item in the first 100 days?
b)	 Find the MTTF of the item.

Solution

a)	 The cdf of the random variable is

F t
t t

otherwise
()= ≤ ≤









6000
0 6000

0

, ,

, .

The probability of failure in the first 100 days is

P T F≤()= ()= ≈100 100 100
6000

0 017. .

b)	 The MTTF of the item is

MTTF E days=   =
−

=∫T t dt
0

6000 6000
6000

3000 .

c01.indd 13c01.indd 13 10-06-2022 13:28:2410-06-2022 13:28:24

1  Reliability Assessment14

	 d
d

a
N

C K m
= ()∆ ,	 (1.43)

where a is the crack length and d
d

a
N

 is the fatigue crack growth for a load cycle N . The

material coefficients C and m are obtained experimentally and their values depend on
environment, temperature, and stress ratio. The stress intensity factor range has been
found to correlate with the rate of crack growth in a variety of different conditions, which
is the difference between the maximum and minimum stress intensity factors in a load
cycle, defined as

	∆K K Kmax min= − . 	 (1.44)

1.2.3.2  Archard’s Law for Wear
The Archard’s wear equation is a simple model used to describe sliding wear, which is
based on the theory of asperity contact [4]. The volume of the removed debris due to
wear is proportional to the work done by friction forces. The Archard’s wear equation is
given by

	Q KWL
H

= ,	 (1.45)

Figure 1.7  Illustration of Paris Law.

c01.indd 14c01.indd 14 10-06-2022 13:28:2710-06-2022 13:28:27

1.3  System Reliability Modeling 15

where Q is the total volume of the wear debris produced, K is a dimensionless constant,
W is the total normal load, L is the sliding distance, and H is the hardness of the softest
contacting surfaces. It is noted that WL is proportional to the friction forces. K is obtained
from experimental results and it depends on several parameters, among which are sur-
face quality, chemical affinity between the material of two surfaces, surface hardness
process, etc.

1.3  System Reliability Modeling

The methods to model and estimate the reliability of a single component were intro-
duced in Section 1.2. Compared with the single component case, the system reliability
modeling and assessment is more complicated. The term ‘system’ is used to indicate a
collection of components working together to perform a specific function. The reliability
of a system depends not only on the reliability of each component but also on the struc-
ture of the system, the interdependence of its components, and the role of each compo-
nent within the system, etc. To compute the reliability of the system, it is essential to
construct the model of the system, representing the above characteristics.

The conventional approaches typically assume that the components and the system
have two states: perfect working and complete failure [5]. Below, we introduce the reli-
ability models of a binary state system with specific structures. Details about the multi-
state system can be found in Chapter 3.

1.3.1  Series System

In a series system, all components must operate successfully for the system to function or
operate successfully. It implies that the failure of any component will cause the entire
system to fail. The reliability block diagram of a series system is shown in Figure 1.8.

Let Ri be the reliability of the ith component, i n= …1 2, , , , , and Rs be the reliability of
the system. Let xi be the event that the ith component is operational and let x be the
event that indicates system is operational. The reliability of the series system can be cal-
culated by

	R P x P x x xs n= ()= …()1 2, , , . 	 (1.46)

Assume all the components in the series system are independent; if so, the reliability of
the system can be expressed as

	R Rs
i

n

i=
=
∏

1

. 	 (1.47)

Figure 1.8  Reliability block diagram of a series system.

c01.indd 15c01.indd 15 10-06-2022 13:28:3210-06-2022 13:28:32

1  Reliability Assessment16

Considering that the component reliability is a number between 0 and 1, we have the
following relationship

	R min R R Rs n<= …{ }1 2, , , . 	 (1.48)

1.3.2  Parallel System

In a parallel system, the system functions or operates successfully when at least one compo-
nent function is working. It implies that the failure of all components will cause the entire
system to fail. The reliability block diagram of a parallel system is shown in Figure 1.9.

Denote Fs as the probability of failure of the system. Denote Fi as the probability of
failure of component i. The system reliability can be expressed as

	 R F F Rs s
i

n

i
i

n

i= − = − = − − 
= =
∏ ∏1 1 1 1

1 1

. 	 (1.49)

It follows that

	 R max R R Rs n≥ …{ }1 2, , , . 	 (1.50)

1.3.3  Series-parallel System

A series-parallel system consists of m subsystems that are connected in series, with ni
units connected in parallel in each subsystem, i m= …1, , . The reliability block diagram
of a series-parallel system is shown in Figure 1.10.

R3

n

Rn

R2

R1

2

1

3

...

Figure 1.9  Reliability block diagram of a parallel system.

c01.indd 16c01.indd 16 10-06-2022 13:28:3610-06-2022 13:28:36

1.3  System Reliability Modeling 17

Denote Rij as the reliability of component j in subsystem i, 1 1≤ ≤ ≤ ≤i m j ni, . Let Ri
be the reliability of the subsystem i, 1≤ ≤i m . First, the reliability of each subsystem is
derived as for the parallel system, that is,

	R R i mi
j

n

ij

i

= − −() = …
=
∏1 1 1 2

1

, , , , . 	 (1.51)

The reliability of the series-parallel system is, then,

	R R Rs
i

m

i
i

m

j

n

ij

i

= = − −()










= = =
∏ ∏ ∏

1 1 1

1 1 . 	 (1.52)

1.3.4  K-out-of-n System

For a system composed of n components, the system is operational if and only if at least
k of the n components are operational. We call this type of system as k -out-of-n : G sys-
tem, where G is short for Good. For a system composed of n components, the system fails
if and only if at least k of the n components are failed. We call this type of system a k
-out-of-n : F system. According to the definition, the series system is a 1-out-of-n : F sys-
tem, where F is short for Failed. The parallel system is a 1-out-of-n : G system. We will
mainly present the reliability of the k -out-of-n : G system here.

Assume that the n components are identical and independent. Denote R as the relia-
bility of each component, F as the unreliability of each component, F R= −1 . Let Pi be
the probability so that exactly i components are functional. In a k -out-of-n : G system,
the number of functional components follows the binomial distribution with parameter
n and R. The probability that exactly i components are functional, Pi , is

	P
n
i

R F i ni
i n i=











= …− , , , , , .0 1 2 	 (1.53)

nmn2n1

m

33 3

2

2

2 2

1

1

1 1

Figure 1.10  Reliability block diagram of a series-parallel system.

c01.indd 17c01.indd 17 10-06-2022 13:28:4110-06-2022 13:28:41

1  Reliability Assessment18

The reliability of the system is the probability that the number of functional components
is greater than or equal to k . Thus, the system reliability, Rs , is calculated by

	R P
n
i

R Fs
i k

n

i
i k

n
i n i= =











= =

−∑ ∑ . 	 (1.54)

If the components are not identical, the system reliability should be calculated by enu-
merating all combinations of working components.

1.3.5  Network System

There are systems that can be represented by network diagrams, for example, gas net-
works, telecommunications networks, and power networks. A network system consists
of a set of nodes and links. All the nodes and links have a probability of failure.

1.4  System Reliability Assessment Methods

There are many reliability assessment approaches developed to compute the reliability of
complex systems, e.g. networks. Path-set and cut-set methods, decomposition and fac-
torization methods, and binary decision diagram (BDD) are four commonly used meth-
ods, and we will introduce them in this section.

1.4.1  Path-set and Cut-set Method

A path set P is a set of components, which by functioning ensures that the system is
functioning. A path set is said to be minimal if it cannot be reduced without losing its
status as a path set. A cut set K is a set of components, which by failing causes the system
to fail. A cut set is said to be minimal if it cannot be reduced without losing its status as
a cut set. We refer to these minimal sets as minimal path and cut sets or vectors (MPSs,
MPVs and MCSs, MCVs).

Consider the minimal path sets of the system, P P Pp1 2, , , … , and the minimal cut sets of
the system, K K Kk1 2, , , … . The reliability of the system is given by the union of all mini-
mal path sets. The unreliability is given by the probability that at least one minimal cut
set occurs.

Example 1.4

Consider a bridge structure with five edges, E E1 5, ,… , as shown in Figure 1.11:

a)	 Find the minimal path sets and the minimal cut sets of the system.
b)	 Calculate the reliability of the system if the reliability of each component is R.

c01.indd 18c01.indd 18 10-06-2022 13:28:4310-06-2022 13:28:43

1.4  System Reliability Assessment Methods 19

1.4.2  Decomposition and Factorization

The decomposition method begins by selecting a critical component, denoted by x ,
which is an important component of the complex system structure. The reliability of the
system can be calculated by the conditional probability:

	R P x R x P x R xs = () ()+ − ()system functional| system functional(|) 1(().	 (1.55)

The factorization method is developed based on the decomposition method, which is
used in a network system. Denote e as a critical edge in the network G. The reliability of
the network is

	R P G e R P G e Rs e e= () + −() functional| functional(|) .1 	 (1.56)

1.4.3  Binary Decision Diagram

Binary decision diagram (BDD) is used to represent a Boolean function. A Boolean func-
tion can be represented as a rooted, directed, acyclic graph, which consists of several
nodes and two terminal nodes. The two terminal nodes are labeled 0 (FALSE) and 1
(TRUE). Each node u is labeled by a Boolean variable xi and has two child nodes called
low child and high child. The edge from a node to a child represents an assignment of the
value FALSE (or TRUE, respectively) to variable xi . The advantage of BDD in reliability
assessment is that its accuracy and efficiency are high [6]. The algorithm to compute the
probability of a gate from a BDD is based on the Shannon Decomposition, which is
defined by recursive equations.

Solution

a)	 The minimal path sets are

P P P P1 2 3 41 3 2 5 1 4 5 2 3 4={ } ={ } ={ } ={ }, , , , , , , , , .

The minimal cut sets are

K K K K1 2 3 41 2 3 5 1 4 5 2 3 4={ } ={ } ={ } ={ }, , , , , , , , , .

b)	 The reliability of the system is calculated by the union of the path sets:

= + − +2 2 5 22 3 4 5R R R R .

E1

E2

E3

E4

E5

Figure 1.11  Bridge system.

c01.indd 19c01.indd 19 10-06-2022 13:28:4610-06-2022 13:28:46

1  Reliability Assessment20

1.5  Exercises

1	 Consider an electrical generating system with two engines, E E1 2, , and three genera-
tors, G G G1 2 3, , , each one with rate equal to 30 kVA. The system fails when the gen-
erators fail to supply at least 60 kVA. The structure of the system is shown in Figure
1.13.
a.	 Find the minimal cut sets of the system.
b.	 Estimate the unreliability of the system for one-month operation, given that the

failure rate for each engine is 5 10 6 1× − −h and that for each generator is 10 5 1− −h .
2	 Consider the reliability of the following system consisting of five components in

Figure 1.14. All the components are identical and independent from each other. The
reliability of components i is Ri . Let Rs be the reliability of the system. Give the reli-
ability formulation of the system.

Example 1.5

Calculate the reliability of the bridge system in Figure 1.11, if the reliability of each com-
ponent is R.

Solution

The block decision diagram of the bridge system is shown in Figure 1.12.
The reliability of the system is

R R R R R R R R R R R R

R R

s = + −()+ −()+ −() + −()+ −()
+ −() +

3 3 4 3 2 2 3 2

3 2

1 1 2 1 1 1

1 RR R R R R R2 3 2 3 4 51 2 2 5 2−() = + − + .

0

0

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

55

2222 22

333 3

4

55 55

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

Figure 1.12  Block decision diagram of the bridge system.

c01.indd 20c01.indd 20 10-06-2022 13:28:4910-06-2022 13:28:49

1.5  Exercises 21

3	 The system has N = 4 components. Each component has three states: (M ∈{ }0 1 2, ,).
Let xi denote the state of component i: then, we have the probability P xi ≥()=1 0 7. ,
P xi =()=2 0 5. , for i =1 2 3 4, , , . Give the following system structure function,
a.	 φ x x x x x()= +()()min , , .1 2 3 4
b.	 Find all minimal path and cut vectors (MPVs and MCVs) of the system.
c.	 Calculate system reliability R x= ()≥()Pr φ 1 .

4	 The power grid structure is shown in Figure 1.15 below. There are three substations:
A is the power supplier that generates electric power to be transmitted to the substa-
tions B and C, which are the power consumers. Assume that the substations are
always working but the power transmission lines may fail. The overall power grid
works only if all the following conditions are satisfied:

E2

G3G2G1

E1

Figure 1.13  Electrical generating system.

54

1

3

2

Figure 1.14  Reliability block diagram of the system.

B

5

4

2

1

3

CA

Figure 1.15  Diagram of the power grid structure.

c01.indd 21c01.indd 21 10-06-2022 13:28:5310-06-2022 13:28:53

1  Reliability Assessment22

i.	 Both substations B and C have power input.

ii.	 At least two outgoing transmission lines of A are working.

Then
a.	 Build a BDD for the power grid system.
b.	 Estimate the unreliability of the system for one-month operation by BDD,

given that the failure rate for lines 1, 2, 3 is λ1
6510= − h-1 and for lines 4, 5 is

λ2
510= − h-1.

5	 Consider the series-parallel system in Figure 1.16. The components 1, 2, 3, and 4 are
independent from each other and have exponential reliabilities with failure rates λ1 ,
λ2, λ3 and λ4 , respectively. Assuming that λ λ1 32= and λ λ4 2 2= /, calculate the system mean
time to failure (MTTF) expression in terms of λ2 and λ3.

6	 A manufacturer performs a test on a ceramic capacitor and finds that it experiences
failures exponentially distributed in time, with rate λ= −510 4 failures per hour. To
retain operation performance of the ceramic capacitor, an instantaneous and imper-
fect maintenance activity is performed at an interval of 103 hours. The reliability after
maintenance is 0.98. Calculate the average availability and the instantaneous availa-
bility at time 1 2103. hours.

References

1	 Zio, E. (2007). An Introduction to the Basics of Reliability and Risk Analysis, Vol. 13. World
scientific.

2	 Matic, Z. and Sruk, V. (2008, June). The physics-of-failure approach in reliability
engineering. In ITI 2008-30th International Conference on Information Technology
Interfaces (pp. 745–750). IEEE.

3	 Paris, P. and Erdogan, F. (1963). A critical analysis of crack propagation laws.
4	 Magnee, A. (1995). Generalized law of erosion: Application to various alloys and

intermetallics. Wear 181: 500–510.
5	 Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing:

Probability Models. Florida State Univ Tallahassee.
6	 Rauzy, A. (2008). Binary decision diagrams for reliability studies. In: Handbook of

Performability Engineering, (ed. K.B. Misra) 381–396. London: Springer.

1 2

3 4

Figure 1.16  Reliability block diagram of the system.

c01.indd 22c01.indd 22 10-06-2022 13:28:5510-06-2022 13:28:55

23

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

2

Optimization

Reliability optimization aims at maximizing system reliability and related metrics
(e.g. weight and volume) while minimizing the cost required for the improvements of
them. Reliability optimization has been an active research domain since the 1960s,
with various formulations and solution schemes proposed. In general, the decision
variables of the optimization problems are the parameters, which can be used for sys-
tem reliability improvement. For instances, the parameters that define the system reli-
ability allocation (e.g. component failure probability, failure rate), the parameters that
describe system logic configuration (e.g. number of redundant components, compo-
nent assignments), and those relevant to testing and maintenance activities (e.g. test
intervals, maintenance periodicities).

In Section 2.1, four different types of reliability optimization problems are reviewed.
The types are distinguished according to the nature of the decision variables. On the
other hand, system reliability can be optimized through either single objective or
multi-objective approach. The solution techniques to single-objective reliability opti-
mization problems have been well documented in the surveys by Kuo and Prasad [1]
and by Kuo and Wan [2]. We also reviewed the details of multi-objective reliability
optimization problems in Chapter 10.

2.1  Optimization Problems

2.1.1  Component Reliability Enhancement

The objective of component reliability enhancement problems is to optimize system reli-
ability via improving reliability metrics of individual components. In 1973, Kulshrestha
and Gupta [3] first formulated one such problem to maximize the reliability of a series
system, as follows

	max R r
i

N

i=
=
∏

1

	 (2.1a)

c02.indd 23c02.indd 23 10-06-2022 13:45:1210-06-2022 13:45:12

2  Optimization24

	s.t.
i

N

ji i jh r b j m
=
∑ ()≤ = …

1

1 2, , , , 	 (2.1b)

where N is the number of subsystems, ri is the reliability of subsystem i (i.e., component
i, because each subsystem i is composed of only one component), h rji i() is the j-th
resource consumed at subsystem i, and bj is the total amount of resource j available. This
problem is also referred to as the reliability allocation problem, which is among the earli-
est attempts to system reliability optimization. Tillman et al. record the related publica-
tions during 1960s and 1970s in [4].

In literature, the objective of various research works are to optimize time-related relia-
bility metrics, such as the mean time between failure (MTBF), the and mean time between
repair (MTBR), and other lifetime distribution parameters of the components [5–6].
To achieve superior optimization results, component reliability enhancement is increas-
ingly combined with other reliability improvement approaches, such as redundancy allo-
cation. For example, in [7], the component reliability metrics, i.e. the component failure
rates, repair rates, and component reliability, are regarded as the decision variables
together with the number of redundancies in each subsystem. This type of problem is
referred to as reliability-redundancy allocation problem [2].

2.1.2  Redundancy Allocation

The redundancy allocation, first formulated by Ghare and Taylor [8] in 1969 and Beraha
and Misra [9] in 1974, is a well-established approach for reliability optimization. It aims
to improve system reliability via installing additional redundant components into the
system. A classical formulation of the redundancy allocation problem (RAP) is presented
as follows, which aims to minimize the total system cost while keeping the system reli-
ability R equal to or above a predefined acceptable level R0 .

	minC c y
i

N

j

v

ij ij

i

=
= =
∑∑

1 1

	 (2.2a)

	s.t.R y r R
i

N

j

v

ij
yi

ij()= − −()











≥

= =
∏ ∏

1 1
01 1 	 (2.2b)

	u y l yij ij ij ij≥ ≥ ∈ ≥;  0 	 (2.2c)

The formulation is for a representative binary-state series-parallel system (BSSPS), where
vi is the number of component versions available to the i-th subsystem, rij is the reliability
of the j-th component version in the i-th subsystem, y y y y yv N NvN

= … … …()11 1 11
, , ; ; , , is the

decision vector, yij is the number of components of the j-th version in the i-th subsystem,
and uij and lij are the upper and lower limits of the number of j-th component versions at
the i-th subsystem, respectively.

c02.indd 24c02.indd 24 10-06-2022 13:45:2110-06-2022 13:45:21

2.1  Optimization Problems 25

An other classical formulation of RAP is to maximizes system reliability while keeping
the cost below a certain budget.

RAP is an NP-hard [10] problem with non-linear and combinatorial nature. Most
of the existing RAP works are based on a binary-state system (BSS) model. In litera-
ture, numerous methods have been proposed to solve it, including the exact methods
[11,12] and the heuristic methods [13,14]. Comprehensive reviews on BSS RAP and
its optimization solution methods can be found in Kuo and Prasad [1] and Kuo and
Wan [2]. The MSS model has recently gained increasing popularity for system relia-
bility assessment, because it realistically considers more than one intermediate state
for the system and its elements between the two extremes of perfect functioning and
complete failure. The MSS RAP was first investigated by Ushakov in 1987 [15] where
the Universal Generating Function (UGF) approach [16] was used for reliability
computation. Complex MSS RAP is typically solved by meta-heuristics, including
genetic algorithm (GA) [17], tabu search (TS) [14], ant colony optimization (ACO)
[18], particle swarm optimization (PSO) [19] and artificial bee colony (ABC) algo-
rithm [20].

Similar to the case of component enhancement, redundancy allocation is also used
in combination with other reliability improvement methods, such as maintenance
and testing. In [21], joint redundancy and imperfect maintenance strategy optimiza-
tion are considered. In [22], redundancy and number of maintenance teams are opti-
mized together. In [23], redundancy and the component test intervals are optimized
together.

To ensure high system reliability, redundancy allocation has been implemented on
various industrial systems. For example, it has been recently applied on the renewable
energy system design: in 2011, Xie and Billinton [24] proposed to minimize the total
system cost (which are reliability-related, including the capital cost, maintenance and
operation cost, and the customer interruption cost), through optimizing the number and
types of wind turbine units installed at the multiple wind sites.

2.1.3  Component Assignment

In an industrial system, there are often interchangeable components, of differing quality
and reliability, that can be allocated in the different positions of its functional logic and
physical structure. For example, components with multiple functions can be inter-
changeable; identical components at different ages can be interchangeable. The overall
system reliability can be improved by a proper assembly of such components into the
required positions. In 1972 and 1974, Derman et al. [25] first formulated this problem in
a parallel system and solved it with a method extended from the sum of products. Later
on, the problem has been extended to series-parallel (and parallel-series) systems, con-
secutive k-out-of-n systems and general coherent systems. An overview on these research
works can be found in [1].

c02.indd 25c02.indd 25 10-06-2022 13:45:2110-06-2022 13:45:21

2  Optimization26

Consider a representative BSSPS with m components to be assigned to k positions in the

system. At each subsystem i, there are a set Si of available positions. We have k S
i

N

i=
=
∑

1

.

Let yhj =1 denote the component j that is assigned to position h and 0 otherwise. The assign
ment of the components can be represented by the vector y= … … …()y y y ym k km11 1 1, , , , , .
Then the optimal assignment problem is formulated as follows:

	max R r
i

N

h S j

m

hj
y

i

hj= − −()










= ∈ =
∏ ∏∏

1 1

1 1 	 (2.3a)

	s.t.
j

m

hjy h k
=
∑ = = …

1

1 1 2, , , , 	 (2.3b)

	
h

k

hj hjy y j m
=
∑ ≤ ∈ = …

1

1 0 1 1 2; , , , , 	 (2.3c)

where rhj is the reliability of component j assigned to position h .
In recent studies by Lin and Yeh [26,27], the component assignment problem is

extended to computer, communication, and power networks. The generic network reli-
ability is defined as the probability that the network can transmit d units of commodities
from an origin to a specific destination. The power network expansion problem studied
by Cadini, et al., [28] is similar to a component assignment problem in the sense that the
optimal expansion solution seeks to add (i.e., allocate) transmission lines in proper loca-
tions so as to maximize the network reliability.

2.1.4  Maintenance and Testing

The engineered safety systems, e.g., the high-pressure injection system (HPIS) in a
nuclear power plant (NPP), are usually under periodical tests and maintenances to reveal
and repair the failures that may have occurred since the previous inspection. In such
systems, a period of downtime can be caused by either failure or testing and mainte-
nance, which makes the system unavailable. To ensure system safety, the system loss or
cost due to the downtime has to be minimized. In the late 1960s and early 1970s, Jacobs
[29] and Hirsch [30] attempted to find the best test intervals that minimize the time-
average unavailability. In 1995, Vaurio [31] considered a more general formulation,
which includes the cost minimization together with an unavailability constraint to
search for the optimal test and maintenance intervals. A trade-off between the cost of
system testing and unavailability is considered, because frequent testing usually increases
the cost whereas infrequent testing usually leads to high unavailability. In the works by
Munõz, et al. [32], Martorell, et al. [33], and Busacca, et al. [34], different methods were
developed to find the optimal test or maintenance intervals so as to minimize system cost
and unavailability.

c02.indd 26c02.indd 26 10-06-2022 13:45:2610-06-2022 13:45:26

2.1  Optimization Problems 27

The system unavailability is often defined on the basis of the minimal cut sets, which
was found as a result of the fault tree analysis of the system. To give an example, the
system unavailability has the following approximate expression, as reported in [35]:

	U u
j

N

i

n

i
j

m j

y y()≈ ()
= =
∑∏

1 1

, 	 (2.4)

where y is the vector of decision variables that governs the system availability character-
istics and maintainability activities, Nm is the total number of minimal cut sets, nj is the
number of basic events (i.e. the number of components in binary state setting) relevant
to the j-th minimal cut set, and ui

j y() is the unavailability associated with the i-th com-
ponent belonging to the j-th minimal cut.

As to the unavailability of the i-th generic component, several models are available in
the literature to account for different contributions from failure on demand, mainte-
nance, etc. Below is the original model presented in [31]:

	u T t
Ti i i i i

i

i
y()= + +ρ λ

1
2

, 	 (2.5)

where ρi is the probability of failure on demand, λi is the failure rate, Ti is the test inter-
val and ti is the mean downtime due to a test or maintenance carried out within Ti . In
this case, yi i i i iT t=()ρ λ, , , . Each of these parameters can, in turn, be a function of other
parameters related to the causes of unavailability. This formulation implies that any una-
vailability contribution can be represented as a term being (1) independent of Ti , (2)
proportional to Ti , or (3) inversely proportional to Ti [31]. Later on, this model was
extended in various studies [34,36].

The cost function of the system is a sum of the cost of the individual components that
constitute the system

	C c
i

N

i

c

y y()= ()
=
∑

1

, 	 (2.6)

where Nc is the total number of components in the system and ci y() is the cost allocated
to each component. Typically, the component cost is made up of two major contributors:
the costs of test and maintenance and the costs of the consequences of the failures [34].
Besides unavailability and cost, other objectives are considered by different researchers.
For examples, Čepin and Mavko [37] consider the time-dependent failure probability of
the system. Martorell, et al. [38] consider risk, reliability, and maintainability. The prob-
lem is essentially multi-objective. The formulation and solution approaches to multi-
objective optimization will be presented in Chapter 10.

In more recent studies, a number of maintenance and test parameters, different from
the previous elements of y, were used as the decision variables. In [39], Wang and Pham
considered the number of imperfect maintenance actions and the length of the initial
imperfect maintenance interval. Yang and Chang [40] regarded the type of maintenance

c02.indd 27c02.indd 27 10-06-2022 13:45:3410-06-2022 13:45:34

2  Optimization28

actions (e.g. no maintenance, minor and major maintenance) as the decision variables.
Liu, et al. [41] introduced a maintenance threshold level. Khatab, et al. [42] considered
the reliability threshold together with the number of preventive maintenance actions as
decision variables.

In the following subsections, we will introduce three commonly used policies for com-
ponent maintenance and replacements [43].

2.1.4.1  Age Replacement Policy
Under an age replacement policy [44], a component is replaced after a constant time T since
its installation, or, at its failure, whichever occurs first. In general, we take the age replace-
ment policy under the following assumptions: 1) the failures are instantly detected; 2) each
failed component should be replaced with a new one; and, 3) the replacement time is negli-
gible; 4) the failure time X kk = …()1 2, , of each component is independent and has an iden-
tical distribution F t X tk()= ≤()Pr , with mean µ .

Now, assume a new component is installed at time t= 0 , an age replacement proce-
dure generates a renewal process, and, let Xk k{ } =

∞

1
 be the failure times of successive

operating components, with Z X Tk k= { }min , . Then, Zk k{ } =
∞

1
 represents the length of

the intervals between each replacements k, which may caused by either failures or
planned replacements, and we have

Pr
,

,
.Z t

F t t T
t Tk ≤{ }= () <
≥







for
for 1

We consider the problem of minimizing the expected cost per unit of time for an infinite
time span. We introduce the following costs: c1 the failure cost, and c c2 1()< the replace-
ment cost. Let N t1() denote the number of failures during 0,t( and N t2() denote the
number of replacements with a working component during =(0,t . Then, the expected
cost during 0,t( is given by

C t c E N t c E N t()= ()()+ ()()1 1 2 2 .

We call the time interval from one replacement to the next replacement as one cycle.
Thus, the expected cost per unit of time for an infinite time span is

C T
C t

tt
()= ()

=
→∞
lim

 expected cost of one cycle
mean time of onne cycle

.

We call C T() the expected cost rate, and, generally adopt it as the objective function of
an optimization problem. When we set a planned replacement at time T with failure
time X , the expected cost of one cycle is

c X T c X T c F T c F T1 2 1 2Pr Pr .≤()+ >()= ()+ ()

The mean time of one cycle is

0 0 0

T T T

tdPr X t TPr X T tdF t TF T F t dt∫ ∫ ∫≤()+ >()= ()+ ()= () .

c02.indd 28c02.indd 28 10-06-2022 13:45:4010-06-2022 13:45:40

2.1  Optimization Problems 29

Thus, the expected cost rate is

C T
c F T c F T

F t dt
T()= ()+ ()

()∫
1 2

0

.

If T =∞, then the policy corresponds to the replacement only at failure, and the
expected cost rate is

C C T c
t

∞()= ()=
→∞
lim .1

µ

2.1.4.2  Periodic Replacement Policy
When a reliability system is very complex and large-scale, one should allow for only
minimal repair at each failure, and only performs the replacement actions periodically.
We call such policy as the periodic replacement with minimal repair at failures [45],
which is introduced as follows: Suppose the failure times of a component have a density
function f t() and a cumulative distribution F t() with finite mean µ and failure rate
h t f t F t()= () ()/ , where F t F t()= − ()1 . Consider one cycle with constant time T from
the planned replacement to the next one. Let c1 be the cost of minimal repair and c2 be
the cost of the planned replacement. Then, the expected cost of one cycle is

c E N t c E N t c H T c1 1 2 2 1 2()()+ ()()= ()+
which is because the expected number of failures during one cycle is E N t h t dt

T

1
0

()()= ()∫
= H(T), as proven by Theorem 4.1 in [46]. Therefore, the expected cost rate is

C T
T

c H T c()= ()+





1
1 2 .

2.1.4.3  Block Replacement Policy
Under the block replacement policy [47], two types of actions are considered: the preven-
tive replacement that occurs at fixed intervals of time regardless of the state of the com-
ponent and the failure replacement when the component fails. The objective is to
determine the optimal time interval to replace and optimize the expected cost rate.
Suppose the replacement is conducted at time kT k , ,= …()1 2 and each component has an
identical time to failure cdf F t() with mean µ . F t nn()() = …() 1 2, , is the n-fold convolu-
tion of F t(). Consider one cycle with constant time T from the planned replacement to
the next one. Let c1 be the cost of replacement of a failed component and c2 be the cost of
the planned replacement. Then, because the expected number of failed components dur-

ing one cycle is M T F T
n

n()= ()
=

∞
()∑

1

 from (1.19) in [46], the expected cost in one cycle is

c E N t c E N t c M T c1 1 2 2 1 2()()+ ()()= ()+ .

Therefore, the expected cost rate is

C T
T

c M T c()= ()+





1
1 2 .

c02.indd 29c02.indd 29 10-06-2022 13:45:5010-06-2022 13:45:50

2  Optimization30

If a component is replaced only at failure, i.e. T =∞, then, we have lim / /
T

M T T
→∞

() =1 µ
and the expected cost rate is

C C T c
T

∞()= ()=
→∞

lim .1

µ

2.2  Optimization Methods

In this section, we provide basics of commonly-used modelling and solution schemes for
reliability optimization problems.

2.2.1  Mathematical Programming

Dantzig and Thapa [48] define mathematical programming (MP) as “…the branch of
mathematics dealing with techniques for maximizing or minimizing an objective func-
tion subject to linear, non-linear, and integer constraints on the variables.” MP utilizes
mathematical theory and computational solutions to assist in decision making, usually
regarding the best use of (scarce) resources. MP can be written as

	max or min() ()f x 	 (2.7a)

	s.t. g j mj x()≥ = …0 1 2, , , , 	 (2.7b)

	h j m m pj x()= = + + …0 1 2, , , , 	 (2.7c)

where x is the decision variable with n dimensions. g x x x x()= () ()… ()()g g gm1 2, , , are
the inequality constraints and h x x x x()= () ()… ()()+h h hm p1 2, , , are the equality con-
straints. The set of the elements of the definition space that satisfy all the constraints is
called the feasible region. The decision makers assess the quality of the possible alterna-
tive solutions with respect to a given criterion function f x(), which is called objective
function.

MP can be classified in several ways, such as based on the nature of problem or equa-
tions, the type of decision variables, etc. Based on the structure of a problem, MP involves

	● models with linear functions, i.e. linear programming (LP)
	● models with only integer variables, i.e. integer programming (IP)
	● models with more general functions, i.e. non-linear programming (NLP)
	● models with continuous and discrete variables, i.e. mixed integer programming (MIP)
	● models with random parameters, i.e. stochastic programming (SP)

Classical MP problems include set coverage problem, knapsack problem, and traveling
salesman problem, etc. Along with the development of MP research, many numerical
solution methods, such as dynamic programming (DP), branch and bound (B&B), and
column generation (CG) has been proposed for solve MP problems, each take advantage
of specific problem structures. We introduce these methods in the following subsections.

c02.indd 30c02.indd 30 10-06-2022 13:45:5610-06-2022 13:45:56

2.2  Optimization Methods 31

2.2.1.1  Branch-and-Bound (B&B)
The B&B method [50] is a divide-and-conquer method based on an efficient enumera-
tion of the possible feasible solutions. The principle of B&B is to divide the solution space
into disjoint subsets, which are denoted by the nodes of the branching tree. Then, the
algorithm explores the other nodes of the branching tree under a given strategy. To avoid
exploring the entire branching tree, the algorithm assesses the node before branching a
new node. The best solution which might be found in the associated subtree is compared
with the best solution that has currently been obtained. If the best solution under the
node is worse than the current best solution, the subtree is discarded. Otherwise, the
node is branched and the above operations are repeated. The application of B&B is
widely used in IP or MIP with binary variables. The illustration of B&B used for binary
variables is shown in Figure 2.1.

2.2.1.2  Dynamic Programming (DP)
DP has a rich and diverse history in the field of mathematics [51]. It is an optimization
method based on the principle defined by Bellman: “An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the first decision.” It can
be summarized as follows: A multi-stage problem can be decomposed into a sequence of
interrelated one-stage problems. The optimal solution for the multistage problem must
consist of optimal policies for its substage problem.

To introduce DP to solve the multi-stage problems in a general framework, we conduct a
simple example of a shortest path problem shown in Figure 2.2. We consider a directed graph
D V A=(), with the arc distance ce for arc e A∈ . The problem is to find the shortest path from
the source node s to the sink node t . We observe that if the shortest path from s to t passes
through the node w , then the subpaths s w, () and w t, () must be the shortest paths from s to
w and w to t , respectively. Let d v() denote the length of the shortest path from s to v. Then

d v d w c
w V v

wv()= ()+{ }
∈ ()−
min ,

00x3

x2

x1

x= (0, 0, 0) x= (0, 0, 1) x= (0, 1, 0)

0

00

0

0111 1

11

1

Figure 2.1  Example for the search tree in B&B.

c02.indd 31c02.indd 31 10-06-2022 13:46:0010-06-2022 13:46:00

2  Optimization32

where V v−() denotes the processor set in G V A, () of node v. That is, the shortest path
from s to v is the shortest path from s to the neighbor of v and then to v.

2.2.1.3  Column Generation (CG)
CG [52] refers to an algorithm to solve LP problems when there are a huge number of
variables compared to the number of constraints. Instead of enumeration, the simplex
algorithm is used in CG to decide whether the current best solution is optimal.

To illustrate CG solving a LP problem, we consider a simple example, which refers to
the following problem:

	 LP max () = = ∈ = …











=
∑ ∑z c x A x b x X k K
k

K
k k

k

K
k k k k

1

1: , , , ,



	 (2.8)

where X x R D x dk k n k k
k

k= ∈ ≤{ }+ : for k K= …1, , . Assuming that all sets X k consist of a

huge but finite set of points xk t
t

Tk,{ }
=1

, we have

X x R x x tk k n k

t

T

k t
k t

t

T

k t k t
k

k k

= ∈ = = ≥ ∀ = …
= =
∑ ∑{ : , , , , ,,

,
, ,

1 1

1 0 1λ λ λ TTk .

Now, we replace xk with
t

T

k t
k t

k

x
=
∑

1

λ ,
, , leading to an equivalent LP master problem (LPM):

	z c xLPM

k

K

t

T
k k t

k t

k

= ()
= =
∑∑max

1 1

,
,λ 	 (2.9a)

	 LPM() () =
= =
∑∑
k

K

t

T
k k t

k t

k

A x b
1 1

,
,λ 	 (2.9b)

	
t

T

k t

k

k K
=
∑ = ∀ = …

1

1 1λ , , , , 	 (2.9c)

	λk t kt T k K, , , , , , ,≥ ∀ = … = …0 1 1 	 (2.9d)

t

w

s

Figure 2.2  Shortest s t− path.

c02.indd 32c02.indd 32 10-06-2022 13:46:0810-06-2022 13:46:08

2.2  Optimization Methods 33

In the following, we present the CG procedure to solve the above LPM.

Initialization. c x A x ek T k T
k
T

T

() ()





, , is a column (vector) for LPM and for each x X k∈ .

We assume a subset of columns is known as the initialization (at least one for each X k),
providing a feasible restricted LPM (RLPM):

	  

z cLPM =max λ 	 (2.10a)

	 RLPM() = λ b 	 (2.10b)

	 λ≥ 0 	 (2.10c)

where c and A are the sub-matrices of the original parameter matrix with the initialized
columns. Solving RLPM provides an optimal primal solution λ* and an optimal dual
solution π µ,()∈ ×R Rm K where π represents the dual variables associated with the joint
constraints (2.9b), and µ represents the dual variables for the constraints (2.9c).

Primal Feasibility. Any feasible solution of RLPM is feasible for LPM. Because λ* is a
feasible solution for LPM,  cλ* will give a lower bound for LPM, meaning -

 

z c b zLPM

i

m

i i
k

K

k
LPM= = + ≤

= =
∑ ∑λ π µ*

1 1

.

Optimality Check for LPM. We need to check whether π µ,() is dual-feasible for LPM.

This means to check whether the reduced price c x A xk k
k− −π µ of each col-

umn c x A x ek T k T
k
T

T

() ()





, , for each k and for each x X k∈ is no more than zero. Rather

than checking all possible points in X k enumeration, we treat all points implicitly by
solving the following subproblem:

ς π µk
k k

k
kc A x x X= −() − ∈{ }max :

Generating a New Column. If ςk > 0 is for some k , the column corresponding to the opti-
mal solution xk of the subproblem will have a positive reduced price. We introduce the

column c x A x ek k T k k T
k
T

T

 () ()





, , into RLPM and re-optimize it until the stopping crite-

rion is reached.

Stopping Criterion. If ςk ≤ 0 is for k K= …1, , , the solution π µ,() will be dual-feasible for

LPM; therefore,
i

m

i i
k

K

kb
= =
∑ ∑+

1 1

π µ is an upper bound of LPM, meaning z bLPM

i

m

i i
k

K

k≤ +
= =
∑ ∑

1 1

π µ ,

and λ is optimal for LPM.

c02.indd 33c02.indd 33 10-06-2022 13:46:2110-06-2022 13:46:21

2  Optimization34

2.2.2  Meta-heuristics

Meta-heuristic is a general search method used to solve complex combinatorial optimi-
zation problems. These problems are computationally challenging because solving
them involves examining a huge number (usually exponential) of solutions made by the
combination of values of the decision variables, and, evaluating the objective function
in correspondence, to identify the optimal solution. For example, let us consider for the
case that there are n jobs waiting to be completed by m machines. The processing time
of the jobs and the processing power of machines are given. The goal is to schedule n
jobs to m machines so as to minimize the makespan, which is the total length of the
schedule that all jobs have finished processing. When the numbers of n and m are
small, the problem is easily solved by enumerating all possible combinations; however,
when the number of jobs and machines are large, the number of combinations increases
exponentially, which makes the problem intractable by enumeration. These combinato-
rial problems suffering from the solutions explosion phenomenon are common in prac-
tical engineering where many parameters are involved, such as for planning a production
process and designing a system. Therefore, it is important to devise intelligent algo-
rithms to solve them in reasonable computational time. Moreover, the use of exact
methods for the solution of these problems generally requires the problems be convex
and linear, the objective of the optimization be differentiable and so on, which is often
not the case in practice. There is, then, a great need for intelligent algorithms capable of
solving these kinds of problems without having to pose restrictions on the mathemati-
cal properties.

Instead of enumerating all possible combinations of solutions, meta-heuristic
methods construct the candidate solutions following certain policies. They gradually
learn about the structure of the problem from the objective function values evaluated
at the candidate solutions identified in the successive steps of the iterative search.
The knowledge gained is used to construct new candidate solutions of improved
quality, i.e. improved values of the objective function. Although these methods may
miss the global optimal solution but, as a counterpart, they can often provide sub
optimal results with good qualities, within an acceptable computational time.
Moreover, meta-heuristic methods are derivative-free procedures, which do not
require particular restrictions on the mathematical properties of the problems, such
as convexity and differentiability. Therefore, the meta-heuristic methods can deal
with a wide range of practical optimization problems including those non-convex,
non-linear, and discrete ones.

In recent years, advanced meta heuristic methods which mimic behavioral policies in
populations, have been widely proposed and studied. To name a few, it includes the
cooperative behaviour of bees in the ABC algorithm, the social-spider behavior in the
social spider optimization (SSO) algorithm, the social behavior of birds in the PSO algo-
rithm, and the emulation of differential and conventional evolution of species in the
differential evolution (DE) and genetic algorithm policies, etc.

c02.indd 34c02.indd 34 10-06-2022 13:46:2210-06-2022 13:46:22

2.2  Optimization Methods 35

2.2.2.1  Genetic Algorithm (GA)
GA is one of the most classic population-based meta-heuristic algorithms. Every solution
provided by GA is coded into a chromosome where each decision variable is represented
by a gene. GA first randomly generates an initial population; then, the ‘selection’, ‘crosso-
ver’, and ‘mutation’ operators are applied to modify the individuals of the population
until the maximum number of generations is reached. GA utilizes the fitness function to
evaluate the fitness of each individual in the population. To improve the quality of solu-
tions, the crossover operator is used to generate new solutions whereby the solutions
candidates are selected probabilistically, with a given selection mechanism, to generate
the offsprings that enter the next population. The selection mechanism will more prob-
ably choose the solutions with better values of the objective function (called fitness in
GA terminology). To avoid trapping into the local optimal solutions, the mutation opera-
tor is applied to pull out the population from the local region by randomly changing the
genes of its individuals. The important steps of GA are described as follows:

	● Selection. The selection of parents to generate successive populations in GA aims to
select the fittest individuals (i.e. those with best values of the objective function) with
highest probabilities. A number of selection mechanisms are available in literature
[53]: roulette wheel, Boltzmann selection, tournament selection, rank selection, and
steady-state selection.

	● Crossover. After selecting the individuals, the crossover operator proceeds to generate
individuals of the new population. The main task of the crossover operator is to com-
bine two different individuals to generate a new one. There are different techniques for
crossover operator in literature [54], such as single-point and double-point crossover,
three parents crossover, cycle crossover, order crossover, masked crossover.

	● Mutation. The last main operator is mutation, the application in which certain genes
of individuals are altered with a small mutation rate. The mutation operator prevents
the population from remaining trapped in local optima. Some of the popular mutation
operators [55] are the following: power mutation, shrink, Gaussian, uniform.

2.2.2.2  Differential Evolution (DE)
DE [56] is also a population-based algorithm. Unlike GA, DE perturbs the current indi-
viduals with the scaled differences of randomly selected and distinct individuals. This
property allows DE to perform fewer mathematical operations than GA and other algo-
rithms, hence requiring reduced execution time compared to other algorithms. In DE,
the individual solutions are called parameter vectors or genomes, like in GA. A parent
vector from the current generation is called a target vector, a mutant vector obtained
after the mutation operation is called a donor vector, and an offspring individual con-
structed by recombining the donor vector with the target vector is called a trial vector.
The important steps of DE are described as follows.

	● Mutation. Unlike GA, the mutation operator in DE is performed on all target vectors
(parameter vectors, individuals) at every iteration.

c02.indd 35c02.indd 35 10-06-2022 13:46:2210-06-2022 13:46:22

2  Optimization36

	● Crossover. The crossover operator is applied after generating the donor vector by
means of the mutation operator. This operator is utilized to enhance the diversity of
the population by exchanging the components of the donor vector with the target vec-
tor, to generate the trial vector. Exponential and binomial crossover methods are typi-
cally used in DE.

	● Selection. The selection operator decides whether the trial vector or target vector is
selected to enter the successive generation. The vector with best fitness value is selected
to ensure the population never deteriorates.

2.2.2.3  Particle Swam Optimization (PSO)
PSO [57] is inspired by the social behavior of organisms within large groups, such as
birds, fish, and even humans. This algorithm emulates the interaction between members
to share information. Its main advantage is its fast convergence compared with many
other global optimization algorithms. PSO consists of a swarm of particles, whose trajec-
tories are adjusted by a stochastic term and a deterministic term. Each particle is influ-
enced by its best reached position and the best position reached by a particle member of
the group but tends to move randomly. A particle i is denoted by its velocity vector vi and
its position vector xi . In every iteration, each particle adjusts its position according to its
new velocity:

v wv c r xBest x c r gBest xi
t

i
t

i
t

i
t

i
t

i
t+ = + −()+ −()1

1 1 2 2

	x x v ti
t

i
t

i
t+ = + ⋅1

where xBest and gBest are the best positions of the particle and group, respectively. The
parameter w c c r r, , , , 1 2 1 2 denotes the weight with two positive constants and two ran-
dom parameters, respectively.

2.3  Exercises

1	 A unit wears out according to a normal distribution with a mean of 1,000,000 cycles
and standard deviation of 100,000 cycles. The cost of preventive replacement is $50
and that of the corrective replacement is $100. Assume the preventive replacements
can be performed at discrete time intervals equivalent to 100,000 cycles per interval.
Please determine the optimal preventive replacement interval by using block replace-
ment policy.

2	 Solve the Problem 1 by using the age replacement policy. Determine the optimal pre-
ventive replacement interval.

3	 A system is found to exhibit a constant failure rate of 5 10 5× − failures per hour. The
system is repaired upon failure and then, returned to its original condition. What is
the expected number of failures after two years of operation?

c02.indd 36c02.indd 36 10-06-2022 13:46:2510-06-2022 13:46:25

References 37

4	 Use any exact method to solve the following redundancy allocation problem, and,
then, solve it by a heuristic algorithm. Compare the results of them.

min
i

i ic x
=
∑

1

5

	s.t.
i

i
xr i

=
∏ − −()





 ≥

1

5
1 1 0 9.

	x N ii ∈ ∀ = …+, , ,1 5

where the parameters are set as

Subsystem i 1 2 3 4 5

ri 0.93 0.89 0.91 0.88 0.92

ci 1.3 2.2 3.1 2.5 2.9

(Solution: DP method for redundancy allocation problem proposed in [12]).

References

1	 Kuo, W. and Prasad, V.R. (2000). An annotated overview of system-reliability
optimization. IEEE Transactions on Reliability 49 (2): 176–187.

2	 Kuo, W. and Wan, R. (2007). Recent advances in optimal reliability allocation. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 37 (2):
143–156.

3	 Kulshrestha, D. and Gupta, M. (1973). Use of dynamic programming for reliability
engineers. IEEE Transactions on Reliability 22 (4): 240–241.

4	 Tillman, F.A., Kuo, W., and Hwang, C.-L. (1980). Optimization of Systems Reliability.
Marcel Dekker.

5	 Yun, W.Y., Park, G., and Han, Y.J. (Sep 2014). An optimal reliability and maintainability
design of a searching system. Communications in Statistics-Simulation and Computation
43 (8): 1959–1978. doi:10.1080/03610918.2013.815771.

6	 Azaron, A., Perkgoz, C., Katagiri, H., Kato, K., and Sakawa, M. (May 2009). Multi-
objective reliability optimization for dissimilar-unit cold-standby systems using a
genetic algorithm. Computers & Operations Research 36 (5): 1562–1571. doi:10.1016/j.
cor.2008.02.017.

7	 Huang, H.Z., Qu, J., and Zuo, M.J. (2009). Genetic-algorithm-based optimal
apportionment of reliability and redundancy under multiple objectives. IIE Transactions
41 (4): 287–298. doi:10.1080/07408170802322994.

c02.indd 37c02.indd 37 10-06-2022 13:46:2810-06-2022 13:46:28

2  Optimization38

8	 Ghare, P. and Taylor, R. (1969). Optimal redundancy for reliability in series systems.
Operations Research 17 (5): 838–847.

9	 Beraha, D. and Misra, K. (1974). Reliability optimization through random search
algorithm. Microelectronics Reliability 13 (4): 295–297.

10	 Chern, M.-S. (1992). On the computational complexity of reliability redundancy
allocation in a series system. Operations Research Letters 11 (5): 309–315.

11	 Sup, S.C. and Kwon, C.Y. (1999). Branch-and-bound redundancy optimization for a series
system with multiple-choice constraints. IEEE Transactions on Reliability 48 (2): 108–117.

12	 Yalaoui, A., Châtelet, E., and Chu, C. (2005). A new dynamic programming method for
reliability & redundancy allocation in a parallel-series system. IEEE Transactions on
Reliability 54 (2): 254–261.

13	 Zia, L. and Coit, D.W. (Dec 2010). Redundancy allocation for series-parallel systems
using a column generation approach. IEEE Transactions on Reliability 59 (4): 706–717.

14	 Ouzineb, M., Nourelfath, M., and Gendreau, M. (2010). An efficient heuristic for
reliability design optimization problems. Computers & Operations Research 37 (2):
223–235.

15	 Ushakov, I. (1987). Optimal standby problems and a universal generating function.
Soviet Journal of Computer and Systems Sciences 25 (4): 79–82.

16	 Ushakov, I. (1986). Universal generating function. Soviet Journal of Computer and
System Sciences 24 (5): 37–49.

17	 Levitin, G., Lisnianski, A., BenHaim, H., and Elmakis, D. (Jun 1998). Redundancy
optimization for series-parallel multi-state systems. IEEE Transactions on Reliability 47
(2): 165–172.

18	 Massim, Y., Zeblah, A., Meziane, R., Benguediab, M., and Ghouraf, A. (2005). Optimal
design and reliability evaluation of multi-state series-parallel power systems. Nonlinear
Dynamics 40 (4): 309–321.

19	 Wang, Y. and Li, L. (Mar 2012). Heterogeneous redundancy allocation for series-parallel
multi-state systems using hybrid particle swarm optimization and local search. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 42 (2):
464–474.

20	 Hsieh, T.-J. and Yeh, W.-C. (2012). Penalty guided bees search for redundancy allocation
problems with a mix of components in series–parallel systems. Computers & Operations
Research 39 (11): 2688–2704.

21	 Liu, Y., Huang, H.Z., Wang, Z.L., Li, Y.F., and Yang, Y.J. (Jun 2013). A joint redundancy
and imperfect maintenance strategy optimization for multi-state systems. IEEE
Transactions on Reliability 62 (2): 368–378. doi:10.1109/tr.2013.2259193.

22	 Lins, I.D. and Droguett, E.L. (Jan 2011). Redundancy allocation problems considering
systems with imperfect repairs using multi-objective genetic algorithms and discrete
event simulation. Simulation Modelling Practice and Theory 19 (1): 362–381.
doi:10.1016/j.simpat.2010.07.010.

23	 Zio, E. and Podofillini, L. (Oct 2007). Importance measures and genetic algorithms for
designing a risk-informed optimally balanced system. Reliability Engineering & System
Safety 92 (10): 1435–1447. doi:10.1016/j.ress.2006.09.011.

c02.indd 38c02.indd 38 10-06-2022 13:46:2810-06-2022 13:46:28

References 39

24	 Xie, K.G. and Billinton, R. (Mar 2011). Determination of the optimum capacity and type
of wind turbine generators in a power system considering reliability and cost. IEEE
Transactions on Energy Conversion 26 (1): 227–234. doi:10.1109/tec.2010.2082131.

25	 Derman, C., Lieberman, G.J., and Ross, S.M. (1972). On optimal assembly of systems.
Naval Research Logistics Quarterly 19 (4): 569–574.

26	 Lin, Y.K. and Yeh, C.T. (Aug 2011). Multistate components assignment problem with
optimal network reliability subject to assignment budget. Applied Mathematics and
Computation 217 (24): 10074–10086. doi:10.1016/j.amc.2011.05.001.

27	 Lin, Y.K. and Yeh, C.T. (May 2012). Multi-objective optimization for stochastic
computer networks using NSGA-II and TOPSIS. European Journal of Operational
Research 218 (3): 735–746. doi:10.1016/j.ejor.2011.11.028.

28	 Cadini, F., Zio, E., and Petrescu, C.A. (Mar 2010). Optimal expansion of an existing
electrical power transmission network by multi-objective genetic algorithms. Reliability
Engineering & System Safety 95 (3): 173–181. doi:10.1016/j.ress.2009.09.007.

29	 Jacobs, I. (1968). Reliability of engineered safety features as a function of testing
frequency. Nulcear Safety 9: 302–312.

30	 Hirsch, H.M. (1971). Setting test intervals and allowable bypass times as a function of
protection system goals. IEEE Transactions on Nuclear Science 18 (1): 488–494.

31	 Vaurio, J. (1995). Optimization of test and maintenance intervals based on risk and cost.
Reliability Engineering & System Safety 49 (1): 23–36.

32	 Munoz, A., Martorell, S., and Serradell, V. (1997). Genetic algorithms in optimizing
surveillance and maintenance of components. Reliability Engineering & System Safety 57
(2): 107–120.

33	 Martorell, S., Villamizar, M., Carlos, S., and Sanchez, A. (Dec 2010). Maintenance
modeling and optimization integrating human and material resources. Reliability
Engineering & System Safety 95 (12): 1293–1299. doi:10.1016/j.ress.2010.06.006.

34	 Busacca, P.G., Marseguerra, M., and Zio, E. (2001). Multiobjective optimization by
genetic algorithms: Application to safety systems. Reliability Engineering & System
Safety 72 (1): 59–74.

35	 Henley, E.J. and Kumamoto, H. (1981). Reliability Engineering and Risk Assessment.
Englewood Cliffs (NJ): Prentice-Hall.

36	 Martorell, S., Sánchez, A., Carlos, S.A., and Serradell, V. (2002). Simultaneous and
multi-criteria optimization of TS requirements and maintenance at NPPs. Annals of
Nuclear Energy 29 (2): 147–168.

37	 Čepin, M. and Mavko, B. (1997). Probabilistic safety assessment improves surveillance
requirements in technical specifications. Reliability Engineering & System Safety 56 (1):
69–77.

38	 Martorell, S. et al. (2005). RAMS+C informed decision-making with application to
multi-objective optimization of technical specifications and maintenance using genetic
algorithms. Reliability Engineering & System Safety 87 (1): 65–75.

39	 Wang, L., Chu, J., and Mao, W. (2009). A condition-based replacement and spare
provisioning policy for deteriorating systems with uncertain deterioration to failure.
European Journal of Operational Research 194 (1): 184–205.

c02.indd 39c02.indd 39 10-06-2022 13:46:2810-06-2022 13:46:28

2  Optimization40

40	 Yang, F. and Chang, C.S. (Nov 2009). Multiobjective evolutionary optimization of
maintenance schedules and extents for composite power systems. IEEE Transactions on
Power Systems 24 (4): 1694–1702. doi:10.1109/tpwrs.2009.2030354.

41	 Liu, X., Li, J.R., Al-Khalifa, K.N., Hamouda, A.S., Coit, D.W., and Elsayed, E.A. (Apr
2013). Condition-based maintenance for continuously monitored degrading systems
with multiple failure modes. IIE Transactions 45 (4): 422–435. doi:10.1080/07408
17x.2012.690930.

42	 Khatab, A., Ait-Kadi, D., and Rezg, N. (2014). Availability optimisation for stochastic
degrading systems under imperfect preventive maintenance. International Journal of
Production Research 52 (14): 4132–4141. doi:10.1080/00207543.2013.835499.

43	 Elsayed, E.A. (2020). Reliability Engineering. John Wiley & Sons.
44	 Badía, F., Berrade, M., and Lee, H. (2020). An study of cost effective maintenance

policies: Age replacement versus replacement after N minimal repairs. Reliability
Engineering System Safety 201: 106949.

45	 Dong, W., Liu, S., and Du, Y. (2019). Optimal periodic maintenance policies for a
parallel redundant system with component dependencies. Computers Industrial
Engineering 138: 106133.

46	 Nakagawa, T. (2006). Maintenance Theory of Reliability. Springer Science & Business
Media.

47	 Ke, H. and Yao, K. (2016). Block replacement policy with uncertain lifetimes. Reliability
Engineering & System Safety 148: 119–124.

48	 Dantzig, G.B. and Thapa, M.N. (1997). The Linear Programming Problem. In: Linear
Programming: 1: Introduction, 1–33.

49	 Vanderbei, R.J. (2015). Linear Programming. Springer.
50	 Lawler, E.L. and Wood, D.E. (1966). Branch-and-bound methods: A survey. Operations

Research 14 (4): 699–719.
51	 Bellman, R.E. and Dreyfus, S.E. (2015). Applied Dynamic Programming. Princeton

university press.
52	 Desaulniers, G., Desrosiers, J., and Solomon, M.M. (2006). Column Generation. Springer

Science & Business Media.
53	 Shukla, A., Pandey, H.M., and Mehrotra, D., “Comparative review of selection

techniques in genetic algorithm,” in 2015 international conference on futuristic trends on
computational analysis and knowledge management (ABLAZE), 2015: IEEE, pp. 515–519.

54	 Kora, P. and Yadlapalli, P. (2017). Crossover operators in genetic algorithms: A review.
International Journal of Computer Applications 162 (10).

55	 Deep, K. and Thakur, M. (2007). A new mutation operator for real coded genetic
algorithms. Applied Mathematics Computation 193 (1): 211–230.

56	 Price, K.V. (2013). Differential evolution. In: Ivan ZelinkaVáclav SnášelAjith Abraham
Handbook of Optimization. Springer, 187–214.

57	 Clerc, M. (2010). Particle Swarm Optimization. John Wiley & Sons.

c02.indd 40c02.indd 40 10-06-2022 13:46:2810-06-2022 13:46:28

41

Part II

Reliability Techniques

p02.indd 41p02.indd 41 10-06-2022 21:01:5510-06-2022 21:01:55

43

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

3

Multi-State Systems (MSSs)

Conventional approaches typically assume that the components and the system have
two states: perfect working and complete failure [1]. However, many engineering sys-
tems can carry on their intended tasks with various levels of performance, with the com-
ponents being partially functioning. Let us take an offshore gas pipeline network as an
example. The network has a compressor subsystem composed of multiple compressors,
and, the state of the subsystem is defined as its capacity for gas transportation. Thus, the
subsystem state is a function of the capacities of the functioning compressors. Thus, once
certain compressors fail or under maintenance actions, the subsystem state shall change,
and it could take multiple values in long run [2]. Another example is a wind turbine
system. The generator component can produce power less efficiently due to the failure of
the anemometer, which can lead to inaccurate readings of the wind speed on which to
base the blades adjustments [3]. For such cases, the multi-state models (MSMs) offer
higher flexibility and a more precise approximation than the binary state models in the
modelling of the system state distribution and its real-world dynamics.

The first attempts to investigate MSMs appeared as theoretical studies by Barlow and
Wu [4], El-Neweihi, et al. [5] and Ross [6] in the late 1970s, followed by the independent
works by Griffith [7], Block and Savits [8], Butler [9], Natvig [10] and Ebrahimi [11] in the
early 1980s. These works extended the theory of binary coherent structures to multi-state
components and lay the foundation of multi-state theory by properly defining the concepts
of multi-state monotone system (MSMS), multi-state coherent system (MSCS) (a special
case of the former), minimal path vectors (MPVs), and minimal cut vectors (MCVs).

3.1  Classical Multi-state Models

In classical model, the component and system have the same set of possible working
states. For a multi-state system (MSS) of n components, let i n∈ …{ }1, , denote the com-
ponent index and S M= …{ }0, , denote the state set of each component and the system,
where M represents the state of perfect functioning, 0 represents the state of complete
failure, and the other intermediate numbers represent the partially functioning states.
Let x Si ∈ denote the state of component i; then, x = …()x xn1, , denotes the component

c03.indd 43c03.indd 43 10-06-2022 14:56:4410-06-2022 14:56:44

3  Multi-State Systems (MSSs)44

state vector and S x= = ≤ ≤ = …S x M i nn
i{ | , , , }0 1 for denotes the component state

space. For any two state vectors x and y, x y< implies that x yi i≤ for all i n∈ …{ }1, , and
x yi i< for at least one i n∈ …{ }1, , . The system state φ taking values from S is essentially
a deterministic function of x , i.e. φ φ= ()x . The function φ ⋅() is called the structure func-
tion of the system. The following assumptions concerning φ characterize different types
of MSS:

i  φ is non-decreasing, i.e. if x y≤ , then φ φx y()≤ ();
ii  φ 0 0()= and φ M()=M where 0 0 0= …(), , and M = …()M M, , ;

iii  for all j M∈ …{ }0, , , φ j j()= where j j j= …(), , ; and
iv  for all i n∈ …{ }1, , and all j M∈ …{ }0, , , there exists a vector ⋅()= … ⋅ …()− +, , , , , , ,x x x x xi i n1 1 1

such that for k j≠ , we have φ j x ji ,()= and φ k x ji ,()≠ .That is, the system contains
no irrelevant components.

The system with φ satisfying assumptions i and ii is called an MSMS, whereas the system
with φ satisfying all the above assumptions is called an MSCS.

The definitions of MPV and MCV are key concepts in classical MSS theory:

	● MPV:A vectorx is an MPV to level j if φ x j()≥ ; and for any y x< , itimplies φ y j()<
	● MCV:A vectorx is an MCV to level j ifφ x j()< ; for any y x> , itimplies φ y j()≥

For a system under random setting, let a random variable Xi denote the state of compo-
nent i; then, p X jij i= =()Pr is the probability of component i being at state j . Clearly,

we have
j

M

ijp
=
∑ =

0

1 for any i. Let random vector X X Xn= …()1, , denote the state of all

components where X Xn1, ,… are assumed to be statistically mutually independent. Then,
φ X() is the random variable representing the system state, with p X jj = ()=()Pr φ .

The system reliability with respect to state j is defined as R X jj
φ φ= ()≥()Pr , i.e. the

probability of occupying a state higher than j assuming j as lower threshold.

Let y y yk
j

k
j

nk
j= …()1 , , for k n j∈ …{ }1, , φ (where n j

φ is the total number of MPVs to state j)

denote the k -th MPV to state j . Let z z zl
j

l
j

nl
j= …()1 , , for l m j∈ …{ }1, , φ (where m j

φ is the

total number of MCVs to state j) denote the l-th MCV to state j . Let Ak
j denote the event

that X yk
j≥ and Bl

j denote the event that X zl
j≤ . Then

	R A Bj

k

n

k
j

l

m

l
j

j j

φ

φ φ

=











= −












= =
∪ ∪Pr Pr

1 1
1 

. 	 (3.1)

We have Pr Pr , , PrA X y X y X yk
j

k
j

n nk
j

i

n

i ik
j()= ≥ … ≥()= ≥()

=
∏1 1

1

 and

Pr Pr , , PrB X z X z X zl
j

l
j

n nl
j

i

n

i il
j()= ≤ … ≤()= ≤()

=
∏1 1

1

.

c03.indd 44c03.indd 44 10-06-2022 14:56:5510-06-2022 14:56:55

3.2  Generalized Multi-state Models 45

The computational complexity to arrive at the exact system reliability grows exponen-
tially with the number of components. Due to this difficulty, many researchers aim at
searching for bounds of the system reliability [5]. A comprehensive summary of the the-
oretical studies on classical MSMs is presented in [12].

3.2  Generalized Multi-state Models

After the establishment of classical MSM, subsequent efforts have been made to extend
its modelling. In 1982 and 1983, Hudson and Kapur [13,14] defined an MSM allowing
different numbers of states for each component and the system: x S Mi i i∈ = …{ }0, , and
φ∈ S . In 1993, Aven [15] gave a more general definition, which allowed the states being
any non-negative real number: x x xi i iMi

∈ …{ }0, , , xi0 0= and x xij ik< for all j k< and
φ φ φ∈ …{ }0, , M , and φ0 0= and φ φj k< for all j k< . This definition is closer to reality
than the calssical MSM in section 3.1, because the states reflect their values to the cus-
tomer [16]. Based on this MSM, the definitions of MPVs, MCVs, and performance meas-
ures (including reliability) are also presented in [15].

In a series of studies [17–19] from 1996 to 1998, Lisnianski and Levitin have defined a
MSM abstracted from the reliability models of power system components [20]. Their
modelling is close to Aven’s MSM. In this definition, one multi-state component i is char-
acterized by the performance level (or rate), g L g gi i i iMi

∈ = …{ }0, , where gij is a non-
negative real number and gi0, and giMi

 are the performance levels at complete failure
and perfect functioning states, respectively. The elements in the performance set are
assumed to be in ascending order. Let the vector g= …()g gn1, , denote the performances
of all components. The system performance ϕ∈ is a deterministic function of g , i.e.
ϕ ϕ= ()g . The function ϕ ⋅() is also called the system structure function and it has the
following assumptions:

i  ϕ is non-decreasing in each argument;
ii  argmax , ,

g M nMg g g
n

ϕ()= …{ }1 1
 and argmin , ,

g ng gϕ g()= …{ }10 0 ; and

iii  for all i n∈ …{ }1, , and all g Lij i∈ , there exists a vector ⋅()= … ⋅ …()− +, , , , , , ,g g g g gi i n1 1 1
such that for j k≠ , we have φ φg gij ik, ,g g()≠ ().That is, the system contains no irrel-
evant components.

The properties above are analogous to the assumptions i, ii, and iv of the classical MSS model.
Under a random setting, the performance Gi of component i is a random variable taking val-
ues from Li, and the system demand W is a random variable taking values from
D w w wM j= … ∈{ }≥0 0, , |  , a set of non-negative real-valued demand levels. Then,

p G gij i ij= =()Pr is the probability of component i being at state j and
j

M

ij

i

p
=
∑ =

0

1 for any i. For

the system demand, q W wj j= =()Pr and
j

M

jq
=
∑ =

0

1. Let random vector G G Gn= …()1, ,

denote the state of all components; then, ϕ ϕ= ()G is a random variable representing the sys-
tem performance. The system reliability with respect to W is defined as

c03.indd 45c03.indd 45 10-06-2022 14:57:0310-06-2022 14:57:03

3  Multi-State Systems (MSSs)46

	R W q w W wW

j

M

j j jϕ ϕ ϕ= ≥()= ≥ =
=
∑Pr (|).

0

Pr 	 (3.2)

Lisnianski and Levitin’s MSM have become the most frequently applied and studied in
recent literature because they give a representation closer to the reality compared to
previous MSMs. More details about this modelare presented in their book [21].

3.3  Time-dependent Multi-state Models

In practice, multi-state components or MSSs may be requested to work at different per-
formance levels at different times to satisfy the customer’s changing demand. In addi-
tion, they may be subject to maintenance actions, which require them to be off-line for a
period of time. For examples, the power plant production varies according to the daily or
seasonal load demands, and the plant needs to be regularly shut down for inspections
and repairs. This stimulates the efforts to consider the time dimension in MSMs and to
develop different reliability measures for the dynamic MSMs.

In 1984, Funnemark and Natvig [22] considered the time-dependent MSM (TDMSM).
The state of component i is a stochastic process X ti (). At any fixed time t ∈ ≥ 0 , X ti () is
a random variable taking values from Si . The joint state of all compo-
nents X t X t X tn()= ()… ()()1 , , follows a vector stochastic process. The state of an MSS
with the structure function φis a stochastic process φ X t()(). At any fixed time t , φ X t()()
is a random variable taking values from S . The MPVs and MCVs are defined at the fixed
time t , similar to those in the time-independent MSMs (TIMSMs). The generalized
TDMSMs [15,21] basically reuse the definitions made by Funnemark and Natvig. The
only difference of Aven’s TDMSM [15] is that the elements of the sets where X ti () and
φ X t()()aretaking values from can be non-negative real numbers. In Lisnianski and
Levitin’s TDMSM [21], G ti (), ϕ G t()()and W t() are used to denote the stochastic compo-
nent performance, system performance, and system demand, respectively. They all can
take non-negative real values.

In reliability engineering, various types of stochastic processes, e.g. point processes,
renewal processes, and Markov processes [21,23,24] are applied to model component
dynamics among which Markov processes are mostly used [21]. In the family of Markov
Processes, continuous time Markov chain (CTMC) is the most applied one. In the case of
discrete time, e.g. t t tn n= +−1 ∆ , the discrete time Markov chain (DTMC) is used. For
simpilicity, we will only discuss the about the continuous case, in this section. Let G ti ()
be a CTMC on the set Li ; the quantity of primary interest is the state probability vec-

tor p t p t p ti i iMi
()= ()… ()()0 , , at any time t . By the law of probability, we have

j

M

ij

i

p t
=
∑ ()=

0

1

at any time t . In the case of homogeneous CTMC (HCTMC), p ti () can be found by solv-
ing the following system of differential equations:

c03.indd 46c03.indd 46 10-06-2022 14:57:0910-06-2022 14:57:09

3.3  Time-dependent Multi-state Models 47

	 d
dt

p t p t p tj
i

k
k j

M

k
i

kj
i

j
i

k
k j

M

jk
i

i i

()= () − ()
=
≠

=
≠

∑ ∑
0 0

λ λ ,	 (3.3)

where p tj
i (), the same as p tij (), is the probability of state j of component i at time t (for

ease of notation, we move the index of the component to the superscript), and λkj
i is the

rate which characterizes the stochastic transition of component i from state k to state j .
The transition rate λkj

i is defined as

	λkj
i

t

i ij i ikG t t g G t g
t

=
+()= ()=

→
lim

(|)
.

∆

∆

∆0

Pr
	 (3.4)

HCTMC is applicable only when the transition time between any two states, i.e. the state
holding time, follows an exponential distribution. In many real-world cases, this restric-
tion needs to be removed. Semi-Markov process (SMP) is an alternative because it allows
arbitrary state holding time distributions [21]. The key concept of SMP is the kernel
Q tkj

i (), analogous to λkj
i of the CTMC:

	
Q t G g T T t G G T T

G

kj
i

n
i

ij n
i

n
i i

n
i i

n
i

n

()= = − ≤ … …()
=

+ +Pr , | , , ; , ,

Pr

1 1 0 0

++ += − ≤ =()1 1
i

ij n
i

n
i

n
i

ikg T T t G g, | ,
	 (3.5)

where Tn
i is the time of the n-th transition of component i, and Gn

i is the performance of
component i at the n-th transition. Similar to CTMC, the SMP is mainly used to find the
component state probabilities. Let θ jk

i t() denote the probability that the process of com-
ponent i starts from state j at time 0 and will reach state k at time t . By solving the fol-
lowing system of integral equations, it can be found that

	θ δ τ θ τ τjk
i

jk
i

j
i

m

M t

jm
i

mk
it F t q t d

i

()= − ()




+ () −()

=
∑∫1

0 0

,	 (3.6)

where δ jk
i =1 if j k= and δ jk

i = 0 if j k≠ , F t Q tj
i

m

M

jm
i

i

()= ()
=
∑

0

, and q
dQ

djm
i jm

i

τ
τ

τ
()= ()

.

Given the initial state and the kernel matrix Q tkj
i ()




, p tj

i () can be found. The CTMC and
SMP can also be used to solve for the system state probability when the transition rates
and kernel matrixes for the system transitions are defined.

As to the system reliability-related measure, availability is the most frequently used
metric in TDMSMs. It quantifies the ability of the system to satisfy the customer demand
at any specific moment during the system life time. In generalized TDMSMs [15,21], the
availability is defined assuming a minimum on total performance of ϕ as

	A t G t w W t w W t wW

j

M

j j jϕ ϕ()= ()()≥ ()= × ()=()
=
∑

0

Pr Pr(|) . 	 (3.7)

c03.indd 47c03.indd 47 10-06-2022 14:57:1410-06-2022 14:57:14

3  Multi-State Systems (MSSs)48

By extending the time-dependent instantaneous availability in Equation (3.7), other
time-independent measures, such as average and limiting availability [15,25], can be
introduced to quantify the integral and asymptotic measure of the system reliability
characteristics (i.e., the probability that the system is in the desired state or above during
a time interval or after the initial transient, asymptotically in time).

3.4  Methods to Evaluate Multi-state System Reliability

Based on MSMs, a number of reliability assessment methods have been proposed. In this
section, they are classified into four groups. They are mainly developed for the TIMSMs.
Some of them, e.g. the methods based on MPVs or MCVs and the universal generating
function (UGF) approach are extended to TDMSMs by Natvig [12] and Lisnianski and
Levitin [21], respectively. The Monte Carlo simulation (MCS) method is naturally
adapted to the time-dependent case as proposed by Zio, et al. [26].

3.4.1  Methods Based on MPVs or MCVs

As mentioned in Section 3.1, in classical multi-state theory, the system reliability is
expressed in terms of the probability of the union of all MPVs or all MCVs. Based on this
formulation, two ways exist to evaluate system reliability. The first is to mathematically
derive the lower and upper bounds [5,8,9,27]. The second computes the exact reliability
using special principles or algorithms, such as inclusion-exclusion method [5,10,14,28],
state-space decomposition [29], and recursive method [30]. A common prerequisite of
these methods is that all MPVs or MCVs of an MSS are given. However, finding all of
them is, in general, computationally difficult despite some algorithms are proposed for
special classes of MSS [31,32].

3.4.2  Methods Derived from Binary State Reliability Assessment

Representing the multi-state component by a set of binary variables, the MSS reliability
can be eventually calculated using the well-established binary algorithms. In 1980,
Caldarola [33] proposed the Boolean algebra with restrictions on variables for this con-
version. The binary variable bij takes the value of 1 if component i is at state j and the
value of 0 if it is at one state other than j . There are two restrictions on each bij : 1)
∨ ==j

M
ij

i b0 1 and 2) b b j kij ik∧ = ∀ ≠0, . With these restrictions, the basic rules of tradi-
tional Boolean algebra operations are applied to derive the system state expression. bij s
are not pairwise mutually independent and the number of binary variables is
m mn1 1 1+()×…× +() for representing the system state. In [34], this method is adopted

to analyze MSS, and the inclusion-exclusion method is, then, used to obtain system prob-
ability expressions.

In 1994, Wood [35] proposed a slightly different conversion. The state of component i

is represented by the sum of bij and i.e. x bi
j

M

ij

i

=
=
∑

0

, and the state of the system is

c03.indd 48c03.indd 48 10-06-2022 14:57:1610-06-2022 14:57:16

3.4  Methods to Evaluate Multi-state System Reliability 49

represented by the sum of binary variables φ j b() and i.e. φ φb b
j

M
j()= ()

=
∑

0

. The restrictions

are that bij =1 implies bik =1 for all k j≤ and φ j b()=1implies φk b()=1 for all k j≤ .
This conversion has the same drawbacks as Caldarola’s approach. To compute system
reliability, the conditional probability expansion (i.e. factoring approach) is used in [35]
to handle the following situations: the components are dependent and the same variable
appears in multiple places in the system expression.

Fault trees are often used to find the state probability distributions of binary systems.
In 1990, Kai [36] applied the recursive pivotal decomposition algorithm of binary fault
trees to the multi-state case. This method does not require the MPVs or MCVs.

Binary decision diagrams (BDDs), proposed by Bryant [37], are an efficient tool of
Boolean expressions manipulation because they require less memory to represent large
Boolean expressions compared to other methods. In 2003, Zhang, et al. [38] applied
BDDs for MSS reliability assessment. The basis for BDD implementation is the Shannon
decomposition:

Let f be a Boolean logic function on the set of binary variables b bm1, ,…{ } . Then

	f b f b f ii b i bi i
= =() + =()= =0 10 1 for any ,	 (3.8)

where fb vi=
 is f evaluated with b vi = . Its idea is similar to the factoring approach. In

[38], a BDD operation is proposed to realize the Boolean algebra with restrictions on
variables, and the final system BDD is efficiently evaluated to obtain the system reliabil-
ity. However, this approach still involves a large number of possibly dependent binary
variables. To remedy this problem, the multi-valued decision diagram (MDD) [39] is
applied. This approach directly uses the multi-valued xi and implements a multi-valued
logic function. In a more recent work [40], MDD is used to evaluate multi-state k-out-of-
n system reliability in comparison with the recursive method proposed in [30].

3.4.3  Universal Generating Function Approach

The UGF approach, originated by Ushakov in 1987 [41], is adopted for system reliability
assessment by Lisnianski, Levitin, and their colleagues in [17], based on their MSS
model. It is an analytical tool to describe multi-state components and to construct the
overall model of complex MSSs. The UGF of component i is expressed as

	u z p zi
j

M

ij
g

i
ij()=

=
∑

0

,	 (3.9)

where z is the base of the z-transform. It is essentially an equivalent representation of
the probability mass function (pmf) of the performance of component i . Based on the
component UGF, the composition operator ⊗ϕ is proposed to derive the UGF of an

c03.indd 49c03.indd 49 10-06-2022 14:57:2210-06-2022 14:57:22

3  Multi-State Systems (MSSs)50

arbitrary MSS with the structure function ϕ G G Gn1 2, ,…() [42]. It has the following
general expression

	⊗ ()… ()()= …
= = =

…(∑ ∑ ∏ϕ
ϕu z u z p zn

j

M

j

M

j

M

ij
g g

n

n

i

i

i

j njn
1

0 0 01

1
1 1, , , ,))










. 	 (3.10)

To derive the system UGF, the iterative approach [42] is often used:

u z u z u z′ ()=⊗ () ()()2 1 21 2ϕ &
, , u z u z u z′ ′()=⊗ () ()()

′3 2 32 3ϕ &
, ,…,

u z u z u z u zn n n
n n

′ −()()= ()=⊗ () ()







−()
ϕ ϕ

1 1'&
' ,

where 2', 3', …, n' are the virtual components, essentially the combinations of 2, 3, …, n
components, respectively. The like-term collection technique [43] is implemented dur-
ing each iteration to enhance computation efficiency. The sequence of components in
the iterations also affects computational speed.

In 2008, Li and Zuo [44] proposed a recursive algorithm with the following formula:

	R w n p R w g nk k
j

M

nj k k nj

n

, , ,()= − −()
=
∑

0

1 	 (3.11)

where k denotes the k -th system demand state to compete with the UGF composition
approach for the reliability evaluation of multi-state weighted k-out-of-n systems. The
results show that the recursive algorithm is generally more efficient than UGF composi-
tion though the time complexities of the two approaches are both exponential to n in the
worst cases.

3.4.4  Monte Carlo Simulation

The application of the above evaluation methods generally have certain prerequisites,
e.g. independence of components. However, many real-world systems often possess
complex characteristics, e.g. operational dependencies. For example, in a production line
of a nodal series structure, if one of the nodes throughput changes (e.g. switches from
100% to 50%), the other nodes will have to be reconfigured (i.e. they must deterministi-
cally change their states) so as to provide the same throughput [45]. The MCS appears to
be the only feasible approach to quantitatively capture the realistic aspects of the MSS
complex dynamic behavior [46]. In 2003, Zio et al. [45] proposed an MCS technique
which allows modeling multi-state components subject to operational dependencies.
Later, MCS is used to estimate the reliability of a multi-state network by Ramirez-
Marquez and Coit [47]. The major disadvantage of MCS is the uncertainty in its conver-
gence to a stable estimate within reasonable computational time. The successful
implementation of MCS depends on the proper representation and modeling of the
multi-state dynamics of the components and the systems, e.g. by Petri Nets [48], and on
the efficient evaluation methods, e.g. by biasing techniques [49].

c03.indd 50c03.indd 50 10-06-2022 14:57:2410-06-2022 14:57:24

References 51

3.5  Exercises

1	 Find all minimal path and cut sets and compute the reliability of the following sys-
tem: number of components, N = 3; highest state, M = 2 ; P xi ≥()=1 0 9. ,
P xi =()=2 0 7. , for i=1, 2, 3; φ x x x x()= +()()min 1 2 3, ; R x= ()≥()Pr φ 1 .

2	 Derive the following integral equation for semi-Markov state probability

θ δ τ θ τ τjk
i

jk
i

j
i

m

M t

jm
i

mk
it F t q t d

i

()= − ()




+ () −()

=
∑∫1

0 0

.

3	 Consider a multi-state parallel system with three components. Every component has
three possible states: 0, 1, 2. The system function is φ g g g g()= + +1 2 3. The compo-
nent state performance and probability distributions are shown in the following
tables. Compute the system reliability R x= ()≥()Pr φ 5 using MCS and UGF
methods.

State probability distribution of each component

j= 0 j=1 j= 2

i=1 0.1 0.2 0.7

i= 2 0.4 0.2 0.4

i= 3 0.3 0.5 0.2

State performance of each component

j= 0 j=1 j= 2

i=1 1 2 3

i= 2 1 3 4

i= 3 1 3 5

References

1	 Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing:
Probability Models. New York City: Holt, Rinehart and Winston.

2	 Natvig, B. and Mørch, H.W. (2003). An application of multistate reliability theory to an
offshore gas pipeline network. International Journal of Reliability, Quality and Safety
Engineering 10 (04): 361–381.

3	 Li, Y.F., Valla, S., and Zio, E. (2015). Reliability assessment of generic geared wind
turbines by GTST-MLD model and Monte Carlo simulation. Renewable Energy 83:
222–233.

4	 Barlow, R.E. and Wu, A.S. (1978). Coherent systems with multi-state components.
Mathematics of Operations Research 3 (4): 275–281.

c03.indd 51c03.indd 51 10-06-2022 14:57:2710-06-2022 14:57:27

3  Multi-State Systems (MSSs)52

  5	 El-Neweihi, E., Proschan, F., and Sethuraman, J. (1978). Multistate coherent systems.
Journal of Applied Probability 15 (4): 675–688.

  6	 Ross, S.M. (1979). Multi-valued state component reliability systems. Annals of
Probability 7: 379–383.

  7	 Griffith, W.S. (1980). Multistate reliability models. Journal of Applied Probability 17 (3):
735–744.

  8	 Block, H.W. and Savits, T.H. (1982). A decomposition for multistate monotone systems.
Journal of Applied Probability 19 (2): 391–402.

  9	 Butler, D.A. (1982). Bounding the reliability of multistate systems. Operations Research
30 (3): 530–544.

10	 Natvig, B. (1982). Two suggestions of how to define a multistate coherent system.
Advances in Applied Probability 14 (2): 434–455.

11	 Ebrahimi, N. (1984). Multistate reliability models. Naval Research Logistics Quarterly 31
(4): 671–680.

12	 Natvig, B. (2010). Multistate Systems Reliability Theory with Applications. John Wiley &
Sons.

13	 Hudson, J.C. and Kapur, K.C. (1982). Reliability theory for multistate systems with
multistate components. Microelectronics Reliability 22 (1): 1–7.

14	 Hudson, J.C. and Kapur, K.C. (1983). Reliability analysis for multistate systems with
multistate components. AIIE Transactions 15 (2): 127–135.

15	 Aven, T. (1993). On performance measures for multistate monotone systems. Reliability
Engineering & System Safety 41 (3): 259–266.

16	 Brunelle, R.D. and Kapur, K.C. (1997). Customer-centered reliability methodology. In:
Reliability and Maintainability Symposium. 1997 Proceedings, Annual, 286–292. IEEE.

17	 Lisnianski, A., Levitin, G., Ben-Haim, H., and Elmakis, D. (1996). Power system
structure optimization subject to reliability constraints. Electric Power Systems Research
39 (2): 145–152.

18	 Levitin, G., Lisnianski, A., and Elmakis, D. (1997). Structure optimization of power
system with different redundant elements. Electric Power Systems Research 43 (1):
19–27.

19	 Levitin, G., Lisnianski, A., Ben-Haim, H., and Elmakis, D. (1998). Redundancy
optimization for series-parallel multi-state systems. IEEE Transactions on Reliability 47
(2): 165–172.

20	 Billinton, R., Allan, R.N., and Allan, R.N. (1984). Reliability Evaluation of Power Systems.
New York City: Plenum press.

21	 Lisnianski, A. and Levitin, G. (2003). Multi-state System Reliability: Assessment,
Optimization and Applications, 6. World scientific.

22	 Natvig, B. and Streller, A. (1984). The steady-state behaviour of multistate monotone
systems. Journal of Applied Probability 21 (4): 826–835.

23	 Aven, T. and Jensen, U. (1999). Stochastic Models in Reliability. New York City: Springer.
24	 Epstein, B. and Weissman, I. (2010). Mathematical Models for Systems Reliability. CRC

Press.

c03.indd 52c03.indd 52 10-06-2022 14:57:2710-06-2022 14:57:27

References 53

25	 Brunelle, R.D. and Kapur, K.C. (1999). Review and classification of reliability measures
for multistate and continuum models. IIE Transactions 31 (12): 1171–1180.

26	 Zio, E. and Podofillini, L. (2003). Monte Carlo simulation analysis of the effects of
different system performance levels on the importance of multi-state components.
Reliability Engineering & System Safety 82 (1): 63–73.

27	 Hudson, J.C. and Kapur, K.C. (1985). Reliability bounds for multistate systems with
multistate components. Operations Research 33 (1): 153–160.

28	 Janan, X. (1985). On multistate system analysis. IEEE Transactions on Reliability 34 (4):
329–337.

29	 Aven, T. (1985). Reliability evaluation of multi-state systems with multi-state
components. IEEE Transactions on Reliability 34 (5): 473–479.

30	 Zuo, M.J. and Tian, Z. (2006). Performance evaluation of generalized multi-state
k-out-of-n systems. IEEE Transactions on Reliability 55 (2): 319–327.

31	 Yeh, W.-C. (2001). A simple approach to search for all d-MCs of a limited-flow network.
Reliability Engineering & System Safety 71 (1): 15–19.

32	 Yeh, W.-C. (2001). A simple algorithm to search for all d-MPs with unreliable nodes.
Reliability Engineering & System Safety 73 (1): 49–54.

33	 Caldarola, L. (1980). Coherent systems with multistate components. Nuclear
Engineering and Design 58 (1): 127–139.

34	 Veeraraghavan, M. and Trivedi, K.S. (1994). A combinatorial algorithm for performance
and reliability analysis using multistate models. IEEE Transactions on Computers 43 (2):
229–234.

35	 Wood, A.P. (1985). Multistate block diagrams and fault trees. IEEE Transactions on
Reliability 34 (3): 236–240.

36	 Kai, Y. (1990). Multistate fault-tree analysis. Reliability Engineering & System Safety 28
(1): 1–7.

37	 Bryant, R.E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 100 (8): 677–691.

38	 Zang, X., Wang, D., Sun, H., and Trivedi, K.S. (2003). A BDD-based algorithm for
analysis of multistate systems with multistate components. IEEE Transactions on
Computers 52 (12): 1608–1618.

39	 Xing, L. and Dai, Y. (2009). A new decision-diagram-based method for efficient analysis
on multistate systems. IEEE Transactions on Dependable and Secure Computing 6 (3):
161–174.

40	 Mo, Y.C., Xing, L.D., Amari, S.V., and Dugan, J.B. (2015). Efficient analysis of multi-
state k-out-of-n systems. Reliability Engineering & System Safety 133: 95–105.

41	 Ushakov, I. (1987). Optimal standby problems and a universal generating function.
Soviet Journal of Computer and Systems Sciences 25 (4): 79–82.

42	 Levitin, G. (2006). The Universal Generating Function in Reliability Analysis and
Optimization. London: Springer.

43	 Levitin, G. (2001). Reliability evaluation for acyclic consecutively connected networks
with multistate elements. Reliability Engineering & System Safety 73 (2): 137–143.

c03.indd 53c03.indd 53 10-06-2022 14:57:2710-06-2022 14:57:27

3  Multi-State Systems (MSSs)54

44	 Li, W. and Zuo, M.J. (2008). Reliability evaluation of multi-state weighted k-out-of-n
systems. Reliability Engineering & System Safety 93 (1): 160–167.

45	 Zio, E., Marella, M., and Podofillini, L. (2007). A Monte Carlo simulation approach to
the availability assessment of multi-state systems with operational dependencies.
Reliability Engineering & System Safety 92 (7): 871–882.

46	 Poszgai, P. and Bertsche, B. (2003). On the influence of the passive states on the
availability of mechanical systems. In: Safety and Reliability (ed. Bedford & van Gelder),
1255–1262.

47	 Ramirez-Marquez, J.E. and Coit, D.W. (2005). A Monte-Carlo simulation approach for
approximating multi-state two-terminal reliability. Reliability Engineering & System
Safety 87 (2): 253–264.

48	 Dutuit, Y., Châtelet, E., Signoret, J.-P., and Thomas, P. (1997). Dependability modelling
and evaluation by using stochastic Petri nets: Application to two test cases. Reliability
Engineering & System Safety 55 (2): 117–124.

49	 Marseguerra, M. and Zio, E. (1993). Nonlinear Monte Carlo reliability analysis with
biasing towards top event. Reliability Engineering & System Safety 40 (1): 31–42.

c03.indd 54c03.indd 54 10-06-2022 14:57:2710-06-2022 14:57:27

55

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

4

Markov Processes

As discussed in Chapter 3, a multi-state system (MSM) is often applied for system degra-
dation process modeling because it offers the possibility of describing the degradation
state of the components and system by a number of consecutive levels from perfect work-
ing to complete failure. To model the dynamics and transitions of such a multi-state
degradation process, Markov models have often been used [1-3]. In doing this, the rates
of transition among the degradation states are typically assumed to be constant, which
implies that the degradation process is memoryless. The resulting stochastic process is
called a homogeneous continuous time Markov chain (HCTMC). In many realistic situ-
ations, (e.g. cracking of nuclear component [4], battery aging [5], and cancer patients’
life quality [6]) with varying external factors influencing the degradation processes, the
transition rates can no longer be considered as time-independent. Under these circum-
stances, the inhomogeneous continuous time Markov chain (ICTMC) is more suited
than HCTMC for modeling the degradation process. In addition, the semi-Markov pro-
cess (SMP) is a more general model than the ICTMC that can deal with arbitrary transi-
tion rates: given this property, it is well-suited to model the degradation influenced by
the environmental factors that change with time and other features. Piecewise-
deterministic Markov process (PDMP) can be regarded as a special class of the SMP that
explicitly describe the system dynamics and the degradation dependence.

In all, the theoretical foundations of Markov processes presented in this chapter are
kept to the minimum, meaning brief and limited. Interested readers can refer to any
textbook on stochastic processes for more details.

4.1  Continuous Time Markov Chain (CMTC)

Markov chain is a special type of Markov process. Let X t t() ≥{ }, 0 denote a stochastic
process defined on a state space S M= …{ }0 1, , , , which is finite or infinite. Assume the
state of the process at time t is X t i()= ; the conditional probability that the process will
be in state j at time t t+∆ is

c04.indd 55c04.indd 55 11-06-2022 16:25:4311-06-2022 16:25:43

4  Markov Processes56

	Pr | , , ,X t t j X t i X u h u u t+()= ()= ()= () ≤ <()∆ 0 	 (4.1)

where h u() is the historical trajectory of the process till time t. In real-life situations,
keeping the complete history of the process is often difficult; thus, it is reasonable to
assume that the future evolution of the process is only dependent on the present situa-
tion and independent of anything that has happened in the past. In mathematical words,
we have the following equation

Pr | , , Pr |X t t j X t i X u h u u t X t t j X t i+()= ()= ()= () ≤ <()= +()= ()=(∆ ∆ 0)).� (4.2)

This is called the Markov property. A stochastic process that satisfies the Markov prop-
erty, i.e. Equation (4.2), is called a Markov process (or a CTMC). When the time t is dis-
crete, it is called a discrete time Markov chain (DTMC). In DTMC, the time is often
denoted by a step indicator k and the chain by X k Lk , , , ,= …{ }0 1 where L is the index of
the last time step. Because CTMC is more frequently used in reliability engineering and
DTMC has several similarities to CTMC, we will focus on CTMC in this book.

The conditional probability Pr |X t t j X t i+()= ()=()∆ in Equation (4.2) represents the
probability that the process will, when in state i at time t, make a transition into state j at
time t t+∆ . This value is called a one-step transition probability, denoted as p t t tij , +()∆ . If
p t t tij , +()∆ is independent of t, then the CTMC is said to have stationary or homogeneous
transition probabilities. In a mathematical expression, we have the following equation:

	Pr | Pr | , , .X t t j X t i X t j X i t t+()= ()=()= ()= ()=() ∀ ≥∆ ∆ ∆0 0 	 (4.3)

It is called the stationary property of the Markov process. CTMC with the stationary
property is called HCTMC. The transition probability p s s tij , +() in HCTMC is briefly
denoted as p tij (). The matrix P t p t i j S tij()= () ∈ ≥(), , , 0 is called the transition probabil-
ity matrix of the HCTMC.

For p tij () of an HCTMC, the following limits exist:

	 lim ,
∆

∆

∆t

ii
i ii

p t
t

v
→

− ()
= =

0

1
λ 	 (4.4)

	 lim , ,
∆

∆

∆t

ij
ij

p t
t

i j
→

()
= ≠

0
λ 	 (4.5)

where λij is called the transition rate from state i to state j, and vi is called the transition rate
associated with state i. Let τi denote the sojourn time of X in state i before making a transi-
tion to a different state; τi follows the exponential distribution with parameter vi . State i is
named as absorbing if vi = 0, named as stable if 0< <∞vi , and instantaneous if vi =∞.

The transition rates of the HCTMC form a matrix Λ=()λij :

c04.indd 56c04.indd 56 11-06-2022 16:25:5011-06-2022 16:25:50

4.1  Continuous Time Markov Chain (CMTC) 57

Example 4.1 [7]

Consider a system with one component and one repairman. Assume the failure times
and repair times of the system follow exponential distributions. The component has a
discrete state space S={ }0 1, where state 0 represents the working state and state 1 rep-
resents the failure state. The rate of failure (i.e. the transition rate from state 0 to state 1)
of the system is λ , and the rate of repair (i.e. the transition rate from state 1 to state 0) of
the system is µ. The Markov diagram of this system is sketched in Figure 4.1.

Because we have ΛI = 0, the transition rate matrix of the one component/one repair-
man system is given as follows:

Λ=
−

−













λ λ
µ µ

.

The primary quantity of interest in many applications of CTMC is the state probability

vector at any time instant t, p t p t i S ti()= () ∈ ≥(), , 0 . By the definition of probability, we

have ∑
∈

()= ∀ ≥
i S

ip t t1 0, . Obviously, p t p p ti
j S

j ji()= () ()∑
∈

0 . In the case of HCTMC, p t()

is typically found by solving the following system of differential equations (i.e. Chapman-
Kolmogorov equations)

Figure 4.1  The Markov Diagram of the One Component/one Repairman System.

	=

−
−

−

























λ λ λ
λ λ λ

λ λ λ

00 01 0

10 11 1

0 1

�
�

� � � �
�

M

M

M M MM

. 	
� (4.6)

Clearly, we have ΛI = 0 where I denotes the identity matrix, which indicates that the
row-sums of Λ are equal to zero. From Equations (4.4) and (4.5), it yields that Λ= ()′P 0 .
The transition rate matrix Λ and the initial state probability vector p 0 0()= () ∈()p i Si , ,
then, completely characterize a CTMC.

c04.indd 57c04.indd 57 11-06-2022 16:25:5311-06-2022 16:25:53

4  Markov Processes58

Example 4.2

Reference [7] considers a system with M identical components and M repairmen avail-
able. Assume that each component can be in two states: working or failure. The rate of
failure and rate of repair are λ and µ, respectively. The state space of the M components
and M repairmen system is S i i M= ∈ ≤ ≤{ | }N 0 where N denotes the set of non-nega-
tive integer numbers. State i shows there are i components are currently failed in the
system and the others are functioning. Thus, state 0 represents the case that all compo-
nents are functioning and state M represents that all components have failed. Besides,
we propose the following hypotheses: No more than one event (i.e. the failure or repair
of a component) can simultaneously occur in a sufficiently small time interval ∆t , such
that all events are mutually exclusive.

From the Chapman-Kolmogorov equations [8], it is clear that the transition rate matrix
could be constructed as long as one derives the transition probability between state i and
its successive state i+1. Let us consider the transition probability in the sufficiently-
small time interval ∆t ,

p t M i ti i, (|+ ()= −1 ∆ ∆Pr anyone of the components fails in
theere are already components failed

the st working co
)

Pr
i

= 1 mmponent fails in
the nd working component fails i

Pr

∆t()
+ 2 nn

the th working component fails in

Pr

∆

∆

∆

t

M i t
()+…

+ −()()
=λ tt t t

M i t
+ +…+

= −()
λ λ

λ

∆ ∆

∆

	 d
dt

p t p t p ti
j S
j i

j ji i
j S
j i

ij()= () − ()∑ ∑
∈
≠

∈
≠

λ λ , � (4.7)

where i j, are the state indexes ranging from 0 to M , and λij is the transition rate of
HCTMC.

To obtain Equation (4.7), we first decompose the state probability as

	p t t p t p t p t p ti
j S
j i

ji j ii i+()= () ()+ () ()∑
∈
≠

∆ ∆ ∆ .� (4.8)

Subtracting p ti () from both sides yields

	p t t p t p t p t p t p ti i
j S
j i

ji j ii i+()− ()= () ()− − ()() ()∑
∈
≠

∆ ∆ ∆1 .� (4.9)

Dividing Equation (4.9) by ∆t and letting ∆t→ 0 yields Equation (4.7).

c04.indd 58c04.indd 58 11-06-2022 16:25:5711-06-2022 16:25:57

4.1  Continuous Time Markov Chain (CMTC) 59

Similarly,

p t i ti i+ ()= +()1 1, ∆ ∆µ

Hence, one gets the following transition rates:

λ λi i M i, + = −()1

	λ µi i i, − =1

	λ λ λ λ µii i i i i M i i= + = −() ++ −, ,1 1

The transition rate matrix of the M components and M repairmen system is

Λ=

−

− − −() −()
− − −() −()

M M
M M

M M

λ λ

µ µ λ λ

µ µ λ λ

1 1
2 2 2 2

� � �

M M
M M

−() − −() −
−

































1 1µ µ λ λ
µ µ

The Markov diagram of the M components and M repairmen system is sketched
in Figure 4.2.

For the finite state space, Equation (4.7) can be solved by several different
approaches. In this chapter, we introduce the classical Laplace transform method
[9]. Let us define the Laplace transform of the state probability p ti () as

	p s e p t dti
e st

i()= ()
∞
−∫

0

� (4.10)

and the matrix function pe
i
es p s i S()= () ∈(), . We take the Laplace transform of

Equation (4.7) and derive

Figure 4.2  The Markov Diagram of the M Components and M Repairmen System.

c04.indd 59c04.indd 59 11-06-2022 16:26:0011-06-2022 16:26:00

4  Markov Processes60

	s s se ep p p()− ()= ()0 Λ ,� (4.11a)

	 s seI p p−  ()= ()Λ 0 .� (4.11b)

Hence, p p Ie s s()= () − 
−0 1

Λ where ⋅ 
−1 denotes the inverse matrix. By inverting the

Laplace transform pe s() back to the time domain, we could obtain the state probability
vector p t().

When t→∞, the state probabilities pi t() of CTMC may reach steady values πi, which
are named steady-state probabilities. To compute the steady-state probabilities, we want
the left-hand side of Equation (4.7) to equal zero. Then, the following relation holds

	 ∑
∈
≠

− =
j S
j i

j ji i iiπ λ πλ 0� (4.12)

Denote the row vector ππ = ∈()πi i S, . From Equation (4.12), we obtain

	����= 0, � (4.13)

	ππeT =1,� (4.14)

where e= …()1 1, , is the unit vector. Equation (4.14) is the normalizing equation of ππ. By
solving Equations (4.13) and (4.14), we obtain

	π= ∀ ∈
∑ ∈

D
D

i Si

j S j
, , � (4.15)

where Di represents the determinant of the square matrix obtained from Λ, by deleting
the i-th row and column.
Example 4.3

We consider again the one component and one repairman system. Assume the compo-
nent is working at t= 0 , so the initial state probability vector is p 0 1 0()=(), . According
to Equation (4.11b), we have

p p Ie s s

s
s

s s

()= () − 

= 


+ −
− +













=
+

−

−

0

1 0

1

1

1

2

Λ

λ λ
µ µ

λλ µ

µ λ
µ λ

µ
λ µ

λ
λ µ

+





+

+













=
+
+ +() + +()










s

s
s

s
s s s s

1 0







We invert the Laplace transform and derive

c04.indd 60c04.indd 60 11-06-2022 16:26:0511-06-2022 16:26:05

4.2  In homogeneous Continuous Time Markov Chain 61

4.2  In homogeneous Continuous Time Markov Chain

In a HCTMC, the transition rates are constant. However, in many realistic situations
(e.g. cracking of nuclear component and battery aging), the external factors influencing
the degradation processes are changing, so the transition rates can no longer be regarded
as time-independent. Under these circumstances, the ICTMC is more suited than
HCTMC for modeling the degradation process.

Let X t t() ≥{ }, 0 be an ICTMC on a state space S M= …{ }0 1, , , , which is finite or infi-
nite. As in the previous section, we define the transition rate as

	 lim
,

,
∆

∆

∆t

ii
ii

p t t
t

t
→

− ()
= ()

0

1
λ 	 (4.16)

	 lim
,

, ,
∆

∆

∆t

ij
ij

p t t
t

t i j
→

()
= () ≠

0
λ 	 (4.17)

where λij t() is called the transition rate from state i to state j at time t, and p t tij ,∆() is
the transition probability of the ICTMC from state i to state j at time t. Due to the time
dependency, to obtain the closed-form solutions to the ICTMC differential equations
(4.18) is difficult:

	 d
dt

p t p t t p t ti
j S
j i

j ji i
j S
j i

ij()= () ()− () ()∑ ∑
∈
≠

∈
≠

λ λ . 	 (4.18)

p t e et t()=
+
+
+ +

−
+













− +() − +()µ
λ µ

λ
λ µ

λ
λ µ

λ
λ µ

λ µ λ µ

The first vector element is the system instantaneous availability (i.e. the probabil-
ity of being in operational state 0 at time t), which can be given as

p t e t
0 ()= +

+
+

− +()µ
λ µ

λ
λ µ

λ µ .

and the second vector element is the system instantaneous unavailability (i.e. the
probability of being in failed state 1 at time t)

p t e t
1()= +

−
+

− +()λ
λ µ

λ
λ µ

λ µ .

c04.indd 61c04.indd 61 11-06-2022 16:26:0911-06-2022 16:26:09

4  Markov Processes62

To obtain the state probability vector p t p t i S ti()= () ∈ ≥(), , 0 , Equation (4.18) has to be
solved by numerical methods. In this chapter, we introduce two kinds of numerical
methods: the Runge-Kutta methods and the Monte Carlo simulation (MCS) method.

The Runge-Kutta Methods compose an important family of iterative approximation
methods used to solve the differential equations of ICTMC. Let Λ t t tij()= () ≥()λ , 0
denote the transition matrix of ICTMC. Equation (4.18) can be rewritten as

	 d
dt

t t t t tp p f p()= () ()= ()()Λ , .	 (4.19)

The main idea of Runge-Kutta methods is to compute p t t+()∆ by adding to p t() the
product of the weighted sum of s , which derivatives at different locations within the time
interval t t t, +()∆ . Mathematically, p t t+()∆ can be expressed as

	p pt t t t b
i

s

i i+()= ()+ ⋅ ⋅
=
∑∆ ∆

1

γγ ,	 (4.20)

	γγ γγi i
j

s

ij jt c t t t a= + ⋅ ()+ ⋅ ⋅










∑
=

f p∆ ∆, ,
1

	 (4.21)

where f is the first-order derivative of p t() at (,)t c t t t ai
j

s

ij j+ ⋅ ()+ ⋅ ⋅
=
∑∆ ∆p

1

γγ , and a bij i,

and ci are the coefficients which are usually arranged in a Butcher Table:

	

c a
c

c

a

a
b

a
a

a
b

s s

s

s

ss

s

1 11

2 21

1

1

1

2

…
…

…
…

� � � �

. 	 (4.22)

A Runge-Kutta method is consistent if
j

s

ij ia c
=
∑ =

1

. The Runge-Kutta method is explicit if

the Butcher Table in Equation (4.22) is a lower triangular matrix; if it is not necessarily a
lower triangular, then the Runge-Kutta method will be implicit, which is more general
than the explicit case.

The elements in the Butcher Table are coefficients chosen to match as many of the
terms in the Taylor series

	
p p p p pt t t t t t t t t

t
s

s

+()= ()+ ⋅ ()+ ⋅ ()+ ⋅ ()

+…+

() () ()∆ ∆
∆ ∆

∆

1
2

2
3

3

2 3! !

!!
,⋅ ()+ ()() +p s st O t∆ 1

	 (4.23)

c04.indd 62c04.indd 62 11-06-2022 16:26:1411-06-2022 16:26:14

4.2  In homogeneous Continuous Time Markov Chain 63

so as to minimize the approximation error. The vector quantity p i() can be expressed by

f p= ()1 and its derivatives, for example

 p f f f
p

2() =
∂
∂
+ ⋅

∂
∂t

 and p f f f
p

f f
p

f
p

f f f
p

3
2

2

2
2

2

22() =
∂

∂
+ ⋅ ⋅

∂
∂ ∂

+ ⋅
∂

∂
+
∂
∂
⋅
∂
∂
+ ⋅

∂
∂








t t t
.

On the other hand, γγ i can also be expressed by f and its derivatives, by using the
Taylor series

	 , , ,γγ γγi i
j

s

ij jt t c t
t

t t a t t t= ()()+ ⋅ ⋅
∂
∂

()()+ ⋅ ⋅ ⋅
∂
∂

()∑
=

f p f p f
p

p∆ ∆
1

(()+ ()O t∆ 3 . 	 (4.24)

The coefficients in the Butcher Table (4.22) can, thus, be obtained by setting the right-
hand side of Equation (4.20) equal to the Taylor series of p t t+()∆ in Equation (4.23).
For example, a general form of an explicit 2-stage Runge-Kutta Method is

	p pt t t t b
i

i i+()= ()+ ⋅ ⋅
=
∑∆ ∆

1

2

γγ ,	 (4.25)

where γγ1 = ()()f pt t, , γγ γγ2 2 21 1= + ⋅ ()+ ⋅ ⋅()f pt c t t t a∆ ∆, and the coefficients are in a
lower triangular Butcher Table. By Taylor expansion, we obtain

	γγ 2 2 21 1= ()()+ ⋅ ⋅
∂
∂

()()+ ⋅ ⋅ ⋅
∂
∂

()()f p f p k f
p

pt t c t
t

t t a t t t, , , ,∆ ∆ 	 (4.26)

	
p p f p

f p

t t t b b t t t

c b
t

t t a

+()= ()+ + ⋅ ⋅ ()()
+ ⋅ ⋅

∂
∂

()()+

∆ ∆ () ,

,

1 2

2 2 21 ⋅⋅ ⋅ ()()⋅ ∂
∂

()()










 ⋅ + ()b t t f

p
t p t t O t2

2 3f p, , .∆ ∆
	 (4.27)

Therefore, b b1 2 1+ = , c a2 21= and c b a b2 2 21 2 1 2⋅ = ⋅ = / .
In the MCS approach, Equation (4.18) is rewritten as

	 d
dt

p t p t t t p t ti
M

j
j i

j ji j i i()= () () ()− () ()∑

=
≠

0

ρ λ λ ,	 (4.28)

where λ λi
j
j i

M

ijt t()= ()
=
≠

∑
0

 and ρ λ λji ji jt t t()= () ()/ . The quantity ρ ji t() is regarded as the

conditional probability that given the transition out of state j at time t, with the transition
arrival state i. To rewrite Equation (4.28) in an integral form, we use an integrating

factor B t t dti
t

i()= ()














∫exp

0

λ ' ' is used. Multiplying both sides of Equation (4.28) by the

integrating factor, one obtains

c04.indd 63c04.indd 63 11-06-2022 16:26:2111-06-2022 16:26:21

4  Markov Processes64

	 d
dt

p t B t B t p t t ti i i
j
j i

M

j ji j() ()



 = () () () ()

=
≠

∑
0

ρ λ .	 (4.29)

Taking the integral of both sides, we have

	

p t B t p B t p t t ti i i

t

i
j
j i

M

j ji j() ()= ()+ () () () ()







 ′ ′ ′∫ ∑

=
≠

0
0 0

' ρ λ














≡ ()= () − ()















+′ ′∫

∫

dt

p t p t dti i

t

i

t

'

exp0
0

0

λ

exxp − ()
















() () ()′ ′ ′
′ =

≠

∫ ∑
t

t

i
j
j i

M

j ji jt dt p t t t dtλ ρ λ'' ''
0

''.

	 (4.30)

In the MCS of the Markov process, the probability distribution function p ti () is not sam-
pled directly. Instead, the holding time at each given state i is sampled, and, then, the
transition from state j to another state j is determined. This procedure is repeated until
the accumulated holding time reaches the predefined time horizon. The resulting time
sequence consists of the holding times at different states. To sample the holding time, the
probability density (or total frequency) of departing state i, ψi t(), can be obtained by
multiplying λi t() to both sides of Equation (4.30)

	

ψ λ

λ λ

i t i t pi t

pi i t
t

t dt

t

i

()= () ()

= () () − ()
















+

′ ′∫0
0

0

exp

∫∫ ∫() − ()














 =
≠

∑ () (
′

′ ′λ ψ ρλi t
t

t dt
j
j i

M
j t ji t

t

iexp '' ''
0

))

= () ()+
=
≠

∑ () () ()′ ′ ′∫

dt

pi i t
j
j i

M t

j t ji t i t t dt

'

| | ',0 0
0 0

φ ψ ρ φ

	 (4.31)

where

	φ λ λi i
t

t

it t t t dt t t| exp ,′ ′′ ′′ ′()= () − ()















≥

′
∫ 	 (4.32)

c04.indd 64c04.indd 64 11-06-2022 16:26:2411-06-2022 16:26:24

4.2  In homogeneous Continuous Time Markov Chain 65

is defined as the conditional probability density function (pdf) that the process will
depart state i at time t given that the process is at state i at time ′t . Equation (4.31) indi-
cates that the pdf ψi t() consists of the sum of contributions from the random walks with
transitions passing through all the states (including state i) from time 0 to t. From
Equation (4.31), the MCS procedure mentioned above can be derived: the cumulative
distribution function (cdf) of the holding time, as shown in Equation (4.33), is obtained
by integrating Equation (4.32)

	Φi
t

t

it t t dt| exp′ ′′ ′′()= − − ()














′

∫1 λ 	 (4.33)

Now, given the current time ′t at state i, the holding time t can be sampled through
direct inversion sampling, acceptance-rejection sampling, and other sampling tech-
niques. Following the departure from state i, the sampling of the arrived state j* can be
done by choosing a uniformly distributed random number U0 and selecting the state
which satisfies the following condition

	
l

j

il
l

j

ilt U t
=

−

=
∑ ∑()< < ()

0

1

0
0

* *

.ρ ρ 	 (4.34)

Example 4.4

We consider a non-repairable system with two pumps. Both pumps have a time-depend-
ent failure rate λ t t()= 0 3. where t is the system time of evolution. The failure of each
pump can lead to a system crash or a safe shutdown of the other pump. The transition
diagram is shown in Figure 4.3.

The corresponding transition rate matrix is

ΛΛ t

t t
t t

t
t

()=

−
−




















0 6
0
0
0

0 36
0 3
0
0

0
0 18

0
0

0 24
0 12

0
0

. .
. .

.

. 





The numerical solution techniques are applied to this problem. Table 4.1 summarizes
the probabilities of the safe and unsafe failure states at the time steps from 1 to 5.

As to the computational efficiencies, the Runge-Kutta method (time interval size = 0.1)
takes 0.2899 seconds, and MCS (50,000 runs) takes 36.24 seconds to obtain the state
probabilities presented in Table 4.1.

c04.indd 65c04.indd 65 11-06-2022 16:26:2611-06-2022 16:26:26

4  Markov Processes66

4.3  Semi-Markov Process (SMP)

In reliability engineering, Markov chains are frequently used for modeling multi-state
systems (MSSs). The sojourn time in a Markov process usually refers to the time it takes
for an MSS to degrade from one state to another. In CTMCs, the sojourn time is assumed
to follow an exponential distribution. However, in practical industrial systems, the deg-
radation time typically shows a non-exponential distribution, e.g. Weibull distribution,
gamma distribution, and Birnbaum-Saunders distribution, etc. Therefore, we need a
more flexible model to describe such systems.

An SMP is one that changes states in accordance with a Markov chain but takes arbi-
trary amounts of time between changes. Let X t t() ≥{ }, 0 denote an SMP defined on a
state space S M= …{ }0 1, , , , which is finite or infinite. We decompose the SMP into sev-
eral parts: denote T T kk= ∈{ }, N as the successive time points when state changes
in X t t() ≥{ }, 0 occur J J kk= ∈{ }, N as the process visited states at the corresponding
time points Tk . Let Y Y kk= ∈{ }, N be the successive sojourn times on the visited state,
and obviously, it is Y T T kk k k= − ∀ ∈+1 , N . The relationship between the pro-
cess X t t() ≥{ }, 0 and the process J J kk= ∈{ }, N is given by

Table 4.1  Results for the degradation model obtained by the two solution techniques.

Time Runge-Kutta method MCS

Prob
(safe failure)

Prob
(unsafe failure)

Prob
(safe failure)

Prob
(unsafe failure)

1 0.0099 0.1284 0.1015 0.1221

2 0.0843 0.3497 0.0857 0.3530

3 0.2098 0.5175 0.2124 0.5142

4 0.3045 0.6004 0.3012 0.5977

5 0.3456 0.6302 0.3551 0.6331

1 pump2 pumps

Unsafe failure

Safe failure
0.18t0.36t

0.12t0.24t

Figure 4.3  Degradation Process of a Two-pump System.

c04.indd 66c04.indd 66 11-06-2022 16:26:2911-06-2022 16:26:29

4.3  Semi-Markov Process (SMP) 67

	X t X J T t T t kt k k k()= = ≤ < ≥ ∈+, , , , 1 0 N 	 (4.35)

or equivalently,

	X J J Xt N t k Zk
= =(), ,or 	 (4.36)

where N t k T tk()= ∈ ≤max{ | }N is the counting process of the number of jumps in 0,t  ,
Z t T X Xk k k k= > ≠− −min{ | }1 1 for all k ∈N*and Z0 0= where N*denotes the set of posi-
tive integers. The sample path of an SMP is demonstrated in Figure 4.4.

Thus, the following conditional independence relation holds:

	

Pr | , ,

(,

X t t j X t i X u h u u t

J j T Tk k k

+()= ()= ()= () ≤ <()
= = − ≤+ +

∆

∆

Pr

0

1 1 tt J T J T J i T
J j T T t J i

k k

k k k k

| , , , , , ,
(, |).

0 0 1 1

1 1

() ()… =()
= = − ≤ =+ +Pr ∆

	 (4.37)

If the sojourn time at any state (T T kk k+ − ∀ ∈1 , N) follows the exponential distribution
with parameter λ , the SMP reduces to the HCTMC:

	

Pr | , ,

(,

X t t j X t i X u h u u t

J j T Tk k k

+()= ()= ()= () ≤ <()
= = − ≤+ +

∆

∆

Pr

0

1 1 tt J T J T J i T
J j T T t J i

k k

k k k k

| , , , , , ,)
(, |)

0 0 1 1

1 1

() ()… =()
= = − ≤ =+ +Pr ∆

== = = −()+
−Pr(|) .J j J i ek k

t
1 1 λ∆

	 (4.38)

For the sojourn process, Y Y kk= ∈{ }, N , we define the cumulative distribution of the
sojourn time as

	H t Y t J i i S ki k k()= ≤ =() ∀ ∈ ∈Pr | , , N 	 (4.39)

and, the probability density distribution of the sojourn time

	h t d
dt

H t i S ki i()= () ∀ ∈ ∈, , NN	 (4.40)

Figure 4.4  Sample Path of an SMP.

c04.indd 67c04.indd 67 11-06-2022 16:26:3311-06-2022 16:26:33

4  Markov Processes68

the conditional cumulative distribution of the sojourn time

	F t Y t J i J j i j S kij k k k()= ≤ = =() ∀ ∈ ∈+Pr | , , , ,1 N	 (4.41)

and the conditional probability density distribution of the sojourn time

	f t d
dt

F t i j S kij ij()= () ∀ ∈ ∈, , , N 	 (4.42)

Note that the process J J kk= ∈{ }, N is the embedded Markov chain of the SMP. The

transition probability matrix P ' , ,'= ∈()p i j Sij of J J kk= ∈{ }, N is constructed by

	 ′ = = =() ∀ ∈ ∈+p J j J i i j S kij k kPr | , , , .1 N 	 (4.43)

We define the matrix Q t Q t i j S tij()= () ∈ ≥(), , , 0 , with the cumulative semi-Markov
kernel

	Q t J j Y t J i i j S kij k k k()= = ≤ = ∀ ∈ ∈+Pr(, |), , ,1 N 	 (4.44)

and the semi-Markov kernel

	q Qt d
dt

t()= ()	 (4.45)

Now, any matrix-valued function q t q t i j S tij()= () ∈ ≥(), , , 0 , which satisfies the follow-

ing properties, could be the semi-Markov kernel: (1) q t i j S tij ()≥ ∀ ∈ ≥0 0, , , ; (2)

q i j Sij 0 0()= ∀ ∈, , ; (3)
0

1
∞

∈
∫ ∑ () = ∀ ∈

j S
ijq t dt i S, .

Therefore, we obtain

	p Q t i j S tij t ij
' lim , , ,= () ∀ ∈ ≥

→∞
0 	 (4.46)

and

	 f t

q t

p
p

p
i j S tij

ij

ij
ij

t ij

()=
()

>

=

∀ ∈ ≥










=∞{ }

'
'

'

,

,
, , ,

0

1 0
0



	 (4.47)

	h t q t i S ti
j S

ij()= () ∀ ∈ ≥∑
∈

, , 0 	 (4.48)

c04.indd 68c04.indd 68 11-06-2022 16:26:3911-06-2022 16:26:39

4.3  Semi-Markov Process (SMP) 69

Example 4.5

Consider the three-state semi-Markov system given in Figure 4.5. The distribution of the holding
times between the states are F12 1= ()exp λ , F21 1 1= ()Weibull α β, , F23 2 2= ()Weibull α β, , and
F31 2= ()exp λ , respectively.

The transition probability matrix of the embedded Markov chain is

′ =





















P

0 1 0

0
1 0 0
21 23p p' ' ,

where

p p F t dF t t
21 23

0
23 21

0

1

1 1
1 1' '= − = − ()



 ()=











∞ ∞

∫ ∫
β
α α 

−









−





















−β β β

α α

1 1 21

1 2
exp t t


dt.

Hence, we have the semi-Markov kernel of the three-state system as

q t
q t

q t q t
q t

()=
()

() ()
()





















0 0
0
0 0

12

21 23

31

,

where

q t t

q t p t t

12 1 1

21 21
1

1 1

11

()= −()

()=










−
−

λ λ

β
α α

β

exp ,

exp'

αα

β
α α

β

1

23 23
2

2 2

1





















()=





,

'q t p t 




−






















()=

−β β

α

λ

2 21

2

31 2

exp ,t

q t eexp .−()λ2t

21

3

Q21

Q23Q31

Q12

Figure 4.5  A Three-state semi-Markov System.

c04.indd 69c04.indd 69 11-06-2022 16:26:4211-06-2022 16:26:42

4  Markov Processes70

4.3.1  Markov Renewal Process

The process J T J T kk k, , ,()= () ∈{ }N is a Markov renewal chain (MRC) associated with
the semi-Markov kernel q t(), if it satisfies the following condition:

	
Pr

= Pr
(, | , , , , , ,)

(
J j T T t J T J T J i T

J j
k k k k k

k

+ +

+

= − ≤ () ()… =()
=

1 1 0 0 1 1

1 ,, |)T T t J ik k k+ − ≤ =1
	 (4.49)

From Equation (4.36), we can see that the SMP is a stochastic process generated on the
basis of an MRC.

We define an integral linear equation of the form

	ϕ ϕi t g i t q s j t s ds
y S

t

ij, , ,()= ()+ () −()
∈
∑∫

0

	 (4.50)

as a Markov renewal equation where q t q t i j S tij()= () ∈ ≥(), , , 0 is the semi-Markov

kernel, g i t,() is a given function defined on S× ≥R 0 , where R≥0 denotes the set of

positive real numbers, and ϕ is the unknown function. Let us denote ϕϕ t i t i S()= () ∈()ϕ , ,

and g t g i t i S()= () ∈(), , ; then

	ϕϕ ϕϕt t t t()= ()+ () ()g q * , 	 (4.51)

where * denotes the convolution product. And Equation (4.51) is equivalent to

	 �� ��I q− ()() ()= ()t t g t* , 	 (4.52)

where δ is the Kronecker delta.
We define the transition probability matrix of the SMP as the matrix-valued func-

tion P t p t i j S tij()= () ∈ ≥(), , , 0 , with

	
 p t X s t j X s i

X t j X i i j S t
ij ()= +()= ()=()
= ()= ()=() ∀ ∈ ≥

Pr |

Pr | , , , .0 0
	 (4.53)

and we write

	

p t X t j X i

X t j T t X J i

X t

ij ()= ()= ()=()
= ()= > ()= =()
+ ()=

Pr

Pr ,

|

|

Pr

0

01 0

jj T t X J i

Y t E T t X t j Jij J T

,

Pr {() (| ,,

1 0

1 1 1

0

1 1

≤ ()= =()
= >()+ < ()=

|

Prδ TT

H t dQ s p t sij i
l S

t

il lj

1

0

1

()

= − ()()+ () −()
∈
∑∫

)}

,δ

	 (4.54)

c04.indd 70c04.indd 70 11-06-2022 16:26:4711-06-2022 16:26:47

4.3  Semi-Markov Process (SMP) 71

Example 4.6

We consider a system with state space S i i s= ∈ ≤ ≤{ | }N 0 , and consider a partition of S
into two non-empty sets, S0 and S1 , where S0 contains all the functioning states and S1

contains all the failure states. Set S r0 = and S s r1 = − where ⋅ denotes the cardinal

number of the set. Let q t q t i j S tij()= () ∈ ≥(, , ,)0 denote the semi-Markov kernel of the
system and the initial state probability vector αα = ()= () ∈()p 0 0p i Si , . Now, consider the
following partition of the semi-Markov kernel:

q
q q
q q

t
t t
t t

()= () ()
() ()

















00 01

10 11
,

and the partition of the initial state probability vector:

αα αα αα= 

0 1 .

The reliability of the system at time t, R t(), can, then, be expressed by the probability of
the event ∀ ∈   ()∈{ }u t X u S0 0, , , i.e.

R t u t X u S

W t S

W t
j S i S

()= ∀ ∈   ()∈()
= ()∈()
= ()=∑∑
∈ ∈

Pr , ,

Pr

(

0 0

0

0 0

Pr jj W i W i

i p t
j S i S

ij

|)

,

0 0

0 0

()= ()=()

= () ()∑∑
∈ ∈

Pr

α

where δij is the Kronecker delta, and E ⋅{} denotes the expectation. Equation (4.54) can
be then, equivalently written in matrix form:

	P I H q Pt t t t()= − ()+ () ()* .	 (4.55)

Similarly, we can obtain

	F Q q Ft t t t()= ()+ () ()* ,	 (4.56)

where F t F t i j S tij()= () ∈ ≥(), , , 0 denotes the matrix of the conditional cumulative dis-
tribution of sojourn time of the SMP. The problem of deriving the transition probability
matrix or the conditional cumulative distribution of sojourn time of the SMP is equiva-
lent to solve the corresponding Markov renewal Equations (4.55) and (4.56).

c04.indd 71c04.indd 71 11-06-2022 16:26:5211-06-2022 16:26:52

4  Markov Processes72

where W t t() ≥{ }, 0 is an SMP with state space S0∪{ }∆ , ∆ is an absorbing state. To
state it more clearly, let TS1

 be the hitting time of S1 by the process X t t() ≥{ }, 0 ,
then W t() shall satisfy

W t
X t t T

t T
S

S
()= () <

≥







,
,

,1

1
∆

and the semi-Markov kernel of W t t() ≥{ }, 0 is

q q00
0

0
t t() ()













0
,

where q q I0
01t t s r()= () − and where Is r− denotes an s r−()-order identity matrix. Thus,

we have

 R t t t t tr r r()= () = − ()() + () ()()αα αα αα0 00 0 0 0 00 001 1 1P I H q P* ,

where 1r denotes a r -dimensional unit column vector, and P00 t() denotes the
corresponding partition of the transition probability matrix. Similarly, the maintainability
of the system , which indicates the probability that the system will be restored to the state
of functioning within a time period t, if it fails, satisfies

 M t t t t ts r s r s r()= − () = − ()() + () ()()− − −1 11 11 1 1 1 11 11αα αα ααP I H q P1 1 * ..

We consider the partition of the mean sojourn time as m m m=()0 1, T where ⋅()T denotes
the transpose matrix. The stationary distribution of the SMP is

 ,��
��
= ()1

m
v mdiag

and the steady-state availability of the system is

 A diagT
s= ()1

υυm
m v 1 ,

where υυ denotes the stationary distribution of the embedded Markov chain J J kk= ∈{ }, N
and diag ⋅() denotes the diagonal matrix. The mean time to failure (MTTF) and mean
time to repair (MTTR) of the system are, respectively,

 MTTF = −()−αα0 00
1

0I P m ,

	MTTR= −()−αα1 11
1

1I P m .

To obtain the aforementioned functions, in this chapter, we have introduced the Laplace
transform of the Markov renewal equations. Take Equation (4.51) as an example, let us
define G t g t i S ti()= () ∈ ≥(), , 0 , where g t H ti i()= − ()1 . Because

	 g s e Q t dt
s

Q si
st

l s
il

l s
il
e()()= − ()











= − (

∞
−

∈ ∈
∫ ∑ ∑
0

1 1 1))










,� (4.57)

c04.indd 72c04.indd 72 11-06-2022 16:27:0111-06-2022 16:27:01

4.3  Semi-Markov Process (SMP) 73

Example 4.7

We continue with the three-state semi-Markov system given in Figure 4.5. Suppose that
states 1 and 2 are the working states, and state 3 represents the failure state, which means
we have the partition S0 1 2={ }, and S1 3={ }. By solving the Markov renewal equations,
we obtain

 R t t t r()= − ()() − ()()−
αα0 00

1
0 1I Q I H* ,

	M t t t s r()= − − ()() − ()()−
−1 11 11

1
1αα I Q I H* .

Therefore, we obtain

 R t Q Q Q Q t Q Q Q()= () −() −()()+ () −() −
− −

α α1 1 1 2 1 121 12
1

12 23 21 12
1* * * 223()()t ,

M t Q t()= − () − ()()1 3 1 31α .

Assume we have the stationary distribution of the embedded Markov chain as

υ=
+
()1

2
1 1

p
p, , and the mean sojourn time of the SMP as m=()m m m T

1 2 3, , ; then, we

obtain

m Q t dt1
0

211= − ()()
∞

∫ ,

	m Q t Q t dt2
0

21 231= − ()− ()()
∞

∫ ,

we can take the Laplace transform of Equation (4.51) and derive

	1 1
s

s s
s

s se e e eP G Q P()= ()+ () ().� (4.58)

Hence,

	1
1

s
s s s s se e e e eP I Q G U G()= − ()



 ()= () ()
−

, � (4.59a)

	P U Gt d u t u
t

()= () −()∫
0

. � (4.59b)

where U Qt U t i j S t tij
n

n()= () ∈ ≥()= ()
=

∞
()∑, , , 0

0

 and ⋅ 
()n denotes the nth power of the

matrix. Then, U tij () denotes the expected number of visits to state j in the time interval
0,t  , given that the process starts from state i. We call U(t) the Markov renewal

functions.

c04.indd 73c04.indd 73 11-06-2022 16:27:0811-06-2022 16:27:08

4  Markov Processes74

4.4  Piecewise Deterministic Markov Process (PDMP)
PDMP is adopted to treat the system dynamics and the degradation dependence in multi-
state physics systems. For this, the degradation processes are classified into two groups:
(1) L= {L1, L2, …, LM } modeled by M physics-based models and (2) K = {K1, K2 , …, KN }
modeled by N multi-state models (MSMs) where L m Mm , , , , = …1 2 and K n Nn, , , , = …1 2

are the indexes of the degradation processes. Let X tLm

� ����
() denote the time-dependent con-

tinuous variables of the degradation process Lm and Y tKn
() denote the state variable of

the degradation process Kn.
Dependence between degradation processes may exist within each group and between

the two groups, for example, the evolution of X tLm

� ����
() may be influenced by the degrada-

tion states of X t m mm′ () ≠ ′
� ����

, and Y tKn
();the transition rates of Y tKn

() may be influenced

by the degradation states of Y t n nKn′
() ≠ ′, and X tLm

� ����
(). An illustration of a system with

two dependent degradation processes is shown in Figure 4.6 where the further degraded
states of K1(L1) lead to higher degradation rates of L1 (higher transition rates of K1 to
step to further degraded states). In this particular case, the degradation rate of X tL1

� ���
()

changes at the same time when Y tK1
() changes. However, this does not necessarily occur

in all cases because the degradation rate of X tL1

� ���
() may also depend on other influencing

factors and the related coefficients in the physics equations.

	m Q t dt3
0

311= − ()()
∞

∫ ,

and the stationary distribution

ππ =()=
+ +

()π π π1 2 3
1 2 3

1 2 3
1, , , , .

m m pm
m m pm

Thus, the steady-state availability is obtained as

A m m
m m pm

=
+

+ +
1 2

1 2 3
.

The MTTF and MTTR are, respectively,

MTTF
p

m m

MTTR m

=
−

+()

=
′

1
1 21

1 2

3.

c04.indd 74c04.indd 74 11-06-2022 16:27:1511-06-2022 16:27:15

4.4  Piecewise Deterministic Markov Process (PDMP) 75

Let

	
�

� ���

� ����

���
�

Z t

X t

X t

X t
L

LM()=

()

()













=
1

 (()

()

()












= ()






Y t

Y t
Y t

K

KN

1

�
���









∈ = ×E SRdL � (4.60)

denote the overall degradation processes of the system where E is the space combining

RdL (d dL
m

M

Lm
=

=
∑

1

) and S . The evolution of
�
Z t() involves two parts:

1)	 The stochastic behavior of
�

Y t(), which is governed by the transition rates depending
on the degradation states of all the degradation processes in the system:

Figure 4.6  An illustrative example of a system with two dependent degradation processes. (Top
Figure: degradation process of L1; Bottom Figure: degradation process of K1).

c04.indd 75c04.indd 75 11-06-2022 16:27:1711-06-2022 16:27:17

4  Markov Processes76

	
lim P Y t t j X t Y t i
t n

N

Kn∆
∆

 , ,

→ =

+()= () ()= =





0 1

� � ��� � �
�� ��K U






= ()() ∀ ≥ ∈ ≠

/

 | , , , , ,

∆t

j X t t i j iiλ�
� ��� � � � �

�� ��K 0 jj.
� (4.61)

2)	 The deterministic behavior of X t
���
() between two consecutive jumps of

�
Y t(), which is

described by the deterministic physics equations depending on the degradation states
of all the degradation processes in the system

	

�
���

� ���

� ����
�X t

X t

X t

L

LM

()=
()

()












1

Ù

Ù


=

()()

()

f X t t

f X

L
Y t

L

L
Y t

M

1 1

�

�

� ����� ���

� �����
�

(, |)

(

 θθ

 , |)
���

� ���

t t

f

L

L
Y t

M
()













= ()

 θθ
���� ���

(, |).X t t
m

M

Lm
() =

=

 Uθθ θθL
1

� (4.62)

Let Tk denote the k -th transition time of the process
�

Y t(). The set Z Tk k k

� ��
, { }

≥0
 is, then, a

Markov renewal process [10] defined on the space E× +R . The probability that the

whole system will step to state
�
j from state

�
i ,
� � � �
i j i j, ,∈ ≠E in the time inter-

val T T tn n, + ∆ , given Z Tk k k n

� ��
, { }

≤
, is:

	
P Z j T T T t Z T Zn n n n k k k n n+ +

≤ −
= ∈ +  { }1 1 1

� ����� � � �� � ��
, , | , , ∆ =={ }










= = ∈ + + +

�

� ����� � � �
i T

P Z j T T T t Z

n

n n n n n

,

, , |

 1 1 ∆
�� � � � � �
=




∀ ≥ ∈ ≠i n i j i j, , , , .0 E

	 (4.63)

Let F denote the predefined space of the failure states of
�
Z t(); then, the system reliabil-

ity at time t is defined as

	R t P Z s s t()= ()∉ ∀ ≤





�
F , . 	 (4.64)

To consider a general setting, F is dependent on system topology, which is problem-
specific and can be determined by using reliability analysis tools, such as fault tree
analysis.

For reliability assessment, MCS and the finite-volume (FV) method are two widely
used numerical approaches to solve PDMP. First, we illustrate a detailed description of
the procedures of the MCS method. We rewrite Equation (4.63) as

c04.indd 76c04.indd 76 11-06-2022 16:27:2211-06-2022 16:27:22

4.4  Piecewise Deterministic Markov Process (PDMP) 77

	
P Z B T T T t Z in n n n n

B

+ +∈ ∈ +  =





= ∫∫
1 1

0

� ����� � �� �
, , | ,

*

 ∆ θθK

,,

, , | , , , , ,
∆

∆
t

N i dz ds n t i B
 

() ∀ ≥ ≥ ∈ ∈
� � �� �

 θθK E0 0 ε � (4.65)

where B is a measurable set on E, ε is a σ -algebra of E [10], and N i dz ds
� � ��
, , | θθK() is a

semi-Markov kernel on E , which verifies that ∫∫ ≤ ∀ ≥ ∈
 E t

N i dz ds t i
* ,

(, , |) , ,
0

1 0
∆

∆
� � �� �

 θθK E.

It can be further developed as

	N i dz ds dF s i s dzK i K
� � �� � � ��

�, , | | , , | θθ θθ θθ()= () ()β K 	
(4.66a)

where

	NdF si
� |θθK()	

(4.66b)

is the pdf of T Tn n+ −1 given Z in

� �� �
= and

	β
� � ��
i s dz, , | ¸ K()	

(4.66c)

is the conditional probability of state Zn+1

� �����
 given T T sn n+ − =1 .

Then, the MCS method can be used to estimate the reliability of the system within a
certain mission time Tmiss , given the initial system state Z0

� ��
 at time T0 0= . The method to

simulate the behavior of the system consists of sampling the transition time from
Equation (4.66b) and the arrival state from Equation (4.66c) for the components in the
second group and, then, using the physics Equation (4.62) to calculate the evolution of
the components in the first group within the transition times. Each simulation trial con-
tinues until the time of system evolution reaches Tmiss or until the system enters the fail-
ure space F , Afterwards, the occurrence of the simulation trial is recorded for the
statistical estimation of the system reliability.

c04.indd 77c04.indd 77 11-06-2022 16:27:2711-06-2022 16:27:27

4  Markov Processes78

Set Nmax (the maximum number of replications) and k= 0 (index of MCS trials)
Set k'= 0 (number of MCS trials that end in failure state)
While k Nmax<

Initialize the system by setting Z
X

Y
'
��� �

�=
()









0

 (initial system state) and the time

T = 0 (initial system time)

Set ′ =t 0 (state holding time)
While T Tmiss<
Sample a random value of ′t from the pdf Equation (4.66b)
Sample an arrival state Y '

���
 for stochastic process

�
Y t() from all possible states,

by using the conditional probability function Equation (4.66c)
Set T T t= + '
Calculate X t

���
() in the interval T t T− ′, by using the physics equations

Equation (4.62)

Set Z
X T

Y
'

'

���
���

���=
()











If T Tmiss≤

If ∃ ∈ −  ()= ()










∈′t T t T Z t

X t
Y

, ,

�

���

� F

Set ′ ′= +k k 1
Break
End if

Else (when T Tmiss>)

If ∃ ∈ −  ()=
()










∈′t T t T Z t

X t
Ymiss, ,

�

���

� F

Set ′ ′= +k k 1
Break
End if

End if
Set Y Y
�� ���
= ′

End While
Set k k= +1

End While

The procedure of the MCS method [11] is as follows:

c04.indd 78c04.indd 78 11-06-2022 16:27:3211-06-2022 16:27:32

4.4  Piecewise Deterministic Markov Process (PDMP) 79

The estimated component reliability at time Tmiss can be obtained as

	R T k
Nmiss

max

�()= − ′1 � (4.67)

where k’ represents the number of trials that end in the failure state of the system, and
the sample variance is [12]

	var
R T R T

NR T

miss miss

maxmiss
�

� �

() =
() − ()()

−

1

1
. � (4.68)

A FV scheme discretizing the state space of the continuous variables and the time space
of PDMP is an alternative that can, in certain cases, lead to results comparable to the
MCS method but in significantly shorter computing times. Here, we illustrate an explicit
FV scheme for system reliability estimation [13].

The FV method can be applied under the following assumptions:

	● The transition rates λ�
� � �

i j i j| , , ,⋅() ∀ ∈ θθK S are continuous and bounded functions from
RdL to R+.

	● The physic equations f iL
i

L

�� �� � | ⋅ ⋅() ∀ ∈, ,θθ S are continuous functions from R RdL× + to
RdL and locally Lipschitz continuous.

	● The physics equations f t iL
i

L

�� �� � | ⋅() ∀ ∈, ,θθ S are sub-linear, i.e. there are some V1 0>
and V2 0> such that

∀ ∈ ∈ ≤ +()++� � �� � ��
x t f x t V x t Vd

L
i

L
LR R, (, |) . θθ 1 2

	● The functions div f iL
i

L

�� �� � | ⋅ ⋅()





 ∀ ∈, ,θθ S are almost everywhere bounded in absolute

value by some real value D> 0 (independent of i).

Let g
�� ��
i d dL L⋅ ⋅() × →, : R R R denote the solution of

∂
∂

()= () ∀
t

x t f x t t ii
L L

i i
L Lg g

� � �� �� � � �� � �� � �
, | (, | , |),θθ θθ θθ ∈∈ ∈ ∈S, , �x tdLR R

with

g S
�� �� � � �i

Lx x i, | , , , dL0 θθ()= ∀ ∈ →∈R

where g x ti
L

�� �� �, |θθ() represents the deterministic evolution of X t
���
() at time t, starting from

the condition �x and while the processes X t
���
() are holding in state

�
i .

The state space RdL of continuous variables X t
���
() is divided into an admissible mesh M ,

which is a family of measurable subsets of RdL (M is a partition of RdL), such that

c04.indd 79c04.indd 79 11-06-2022 16:27:4011-06-2022 16:27:40

4  Markov Processes80

	●

A

dA L

∈
∪ =
M

R ;

	● ∀ ∈A B, M , A B A B≠ ⇒ =∅∩ ;

	● m dx AA
A

= > ∀ ∈∫
� ��

0, M where mA is the volume of grid A; and

	● sup diam AA∈ ()<+∞M where diam A sup x yx y A()= −∀ ∈
� �

� �
, .

Additionally, the time space R+ is divided into small intervals R+
= …

= +()



∪

n
n t n t

0 1 2
1

, , ,
,

 ∆ ∆

by setting the time step ∆t> 0 (the length of each interval).

Let p dzt L K
� |θθ θθ θθ=()∪ denote the probability distribution of

�
Z t(). The numerical

scheme aims at constructing an approximate value ρt x dx
�� ��

, | ⋅()θθ for p dxt
��

,·| θθ() so

ρt x
��

, | ⋅()θθ is constant in each n t n t A y A ii∆ ∆, , , +()



× ×{ } ∀ ∈ ∈1 M

�
S :

	ρt nx i P A i i x A t n t n t
�� � � � �, | , | , , , ,θθ θθ()= () ∀ ∈ ∈ ∈ +()

S ∆ ∆1 
 . 	 (4.69)

P A i i A0 , | , ,
� �
θθ() ∀ ∈ ∈S M is defined as follows:

	P A i
p dx i

m
A

A
0

0
, |

, |
.

 �
�� �

θθ
θθ

()=
()∫

	 (4.70)

Then, P A i i A nn+ () ∀ ∈ ∈ ∈1 , | , , ,
� �
θθ S M N can be calculated considering the determinis-

tic evaluation of X t
���
() and the stochastic evolution of Y t

���
() based on P in M , |

�
¸() by the

Chapman-Kolmogorov forward equation as follows:

	

P A i

tb
P A i t a

tb

n

A
i n

j S

A
ji

A

+

+
∈

()

=
+

()+
+

∑

1

1
1

1 1

, |

, |

�

� �
�

�

��

�

θθ

θθ
∆

∆
∆ jj nP A j+ ()1

� �
, | , θθ

	 (4.71)

where

a i x dx m i AA
ji

A
j K A

��
�
� � � �� �

= () ∀ ∈ ∈∫λ , | / , , θθ S M

is the average transition rate from state
�
j to state

�
i for grid A,

b a i AA
i

j i
A
ij

�

� �

�� �
= ∀ ∈ ∈∑

≠

, , S M

is the average transition rate out of state
�
i for grid A,

c04.indd 80c04.indd 80 11-06-2022 16:27:4811-06-2022 16:27:48

4.4  Piecewise Deterministic Markov Process (PDMP) 81

Figure 4.7  The Evolution of Degradation Processes during n t n t∆ ∆, +()



1 [14].

P A i m P B i m i An
B

BA
i

n A+
∈

()= () ∀ ∈ ∈∑1
� � � ��

, | , | / , , θθ θθ
M

MS

is the approximate value of the pdf on
�
i n t n t A{ }× +() +()



×1 2∆ ∆, according to the

deterministic evolution of X t
���
(), and

m dy i A BBA
i

y B g y t Ai
L

�

� ��� �

� �� �
�= ∀ ∈ ∈

∈ ()∈∫ , , ,
{ | , | }

S M
∆ θ

is the volume of the part of grid B , which will enter grid A after time ∆t according to the
deterministic evolution of X t

���
().

Figure 4.7 shows an illustrative example in R2 to explain the procedure of FV mode-
ling scheme.

The FV scheme solves the PDMP by considering two different situations to calculate
the probabilities that

� � �
Z t i i S A()∈() ∀ ∈ ∈A where, , , M at time n t+()1 ∆ , according to

Equation (4.71). The first one (denoted by “1” in Figure 4.7) is that
�
X t() evolves but

�
Y t()

does not change, which is quantified by the first term of the right-hand part of Equation

(4.71), where 1
1+∆tbA

i
� is the approximated probability that no transition occurs from

state
�
i for grid A, and, B B1 2, are the grids of which some parts will enter grid A, due to

the deterministic evolution of X t
���
() at time n t+()1 ∆ , given

� �
Y t i()= . The second one

(denoted by “2” in Figure 4.7), is that
�

Y t() steps to state
�
i from another state

�
j S∈ , which

is quantified by the second term of the right-hand part of Equation (4.71), where a tA
ji
��
∆ is

the transition probability from state
�
j to state

�
i for grid A, and, B B3 4, are the grids of

which some parts will enter grid A, due to the deterministic evolution of X t
���
() at

time n t+()1 ∆ , given
� �

Y t j()= .

c04.indd 81c04.indd 81 11-06-2022 16:27:5511-06-2022 16:27:55

4  Markov Processes82

The approximate solution ρt x dx
�� ��

,·| θθ() weakly converges toward p dxt
�,·| θθ() when

∆t→ 0 and M /∆t→ 0 where M M= ()∈sup diam AA .
The reliability of the system can, then, be calculated as

	R t p dz
z

t()= ()
∉
∫
�

�

F

| .¸ � (4.72)

4.5  Exercises

1	 Consider a job shop consisting of M machines and a single repairman. Suppose the
amount of time a machine runs before breaking down is exponentially distributed
with rate λ , and the amount of time it takes the repairman to fix any broken machine
is exponentially distributed with rate µ . If we say the state is i whenever there are i
machines down, then
a.	 Calculate the steady state probability distribution of the job shop.
b.	 Calculate the average number of machines not in use.
c.	 Compute the long-run proportion of time that a given machine is working.

2	 Consider a system with a total of n+1 pumps, one of which is in use and n of which
are spare pumps. When the pump in use fails and spare pumps are available, the
failed pump is replaced by a spare pump immediately. The spare pumps will not fail
when not in use. The failed pump will be repaired successfully. Only one pump is
repaired at a time. Therefore, the state space of the system is expressed as
S n n= + …{ }1 1 0, , , , , representing the total number of pumps not failed. The transi-
tion rate in this Markov chain model is composed of the pump failure rate function
and repair rate function. The failure rate function is λ α β βt t()= −

0 0
10 , and the repair

rate function is µ α β βt t()= −
1 1

11 . Derive the reliability function of the system. If the
mean number of failures during the time interval 0,t  with initial state i is N t V ti i()= (),
derive the reward matrix r.

3	 Consider a series-parallel system as shown in Figure 4.8. In this system, the three
components are mutually stochastic independent. Components 1 and 2 have two dif-
ferent states, respectively, and Component 3 has three different states.

The performance of the ith component at state j is denoted as gij . The probability
that the ith component is at state j at time t is denoted as p tij (). The transition rate of
the ith component from state j to state k at time t is denoted as λ jk

i t(). The values of
gij , pij 0(), and λ jk

i t() are listed in the table below.
If the system demand is 1.8 ton/min, calculate the system reliability function and

the mean lifetime of the system.

c04.indd 82c04.indd 82 11-06-2022 16:28:0011-06-2022 16:28:00

4.5  Exercises 83

2

2

Component 3

Component 2

Component 1

23

1

1

1

3
32

λ 3
21

λ

1
21λ

2
21λ

Figure 4.8  The Diagram of the Series-parallel System.

4	 Consider a two-component cold standby system with a single repair facility which
appears and disappears from the system randomly. The state transition diagram is
given in Figure 4.9. In this diagram, States 4, 5, and 6 are down states, where state 6 is
a nonregenerative one. The letters a , b , and c denote constant transition rates (expo-
nential distributions of the transition times) for transitions between states, and G t() is
the distribution function of the repair time. Write the cumulative semi-Markov kernel
of the system.

Component State Performance gij
(ton/min)

Initial state probability
pij 0()

Transition rate λ jk
i t()

(year) (-1)

1 1 0 0
λ21

1 0 8 0 2t t()= +. .
2 1.5 1

2 1 0 0 λ21
2 21 5 0 2t t()= +. .

2 2.0 1

3 1 0 0 λ32
3 1 2 0 15t t()= +. .

λ21
3 2 0 0 2t t()= +. .

2 1.8 0

3 4.0 1

G (t)

G (t) G (t)

610

2 4 5

3

a

a

b

ac

c

cc

Figure 4.9  State Transition Diagram for a Two–component Cold Standby System with a Single
Repair Facility

c04.indd 83c04.indd 83 11-06-2022 16:28:0311-06-2022 16:28:03

4  Markov Processes84

5	 Consider a M -component series system. The random variables Jn, n M= …1 2, , ,
denote the type (number) of the component that has failed at the nth-failure. The life-
times of the components are mutually stochastic independent and exponentially dis-
tributed, with parameters λk and k M= …1 2, , , . The time X T Tn n n= − −1 is the sum of

the lifetime and repair time. The repair times have distribution functions Fk, k M= …1 2, , , ,

with finite expectations µk k M, , , ,= …1 2 . The process J Tn n n
,() ≥0

 is a Markov renewal

process with cumulative semi-Markov kernel Q t(). Let φ t() be the indicator function
of the state of the system, i.e. φ t()=1 means the system is functioning at time t
and φ t()= 0 means the system is under repair at time t. Define also the pro-
cess Z tt , ≥()0 , which indicates the number of the last failed components before t and
put L t Z j tij t()= = ()=Pr{ | }φ 0 .

a.	 Write the Markov renewal equation of L tij ().
b.	 If S t() denotes the number of the hitting times in a renewal process, then the fol-

lowing relationship will exist:

lim .
t

t

t x dS x y dy
→∞

∞

∫ ∫−() ()= ()
0 0

1
ϕ

ρ
ϕ

The abovementioned equation is called the renewal theorem.
Calculate limt ijL t→∞ ().

References

  1	 Black, M., Brint, A.T., and Brailsford, J.R. (2005). A semi-Markov approach for modelling
asset deterioration. Journal of the Operational Research Society 56 (11): 1241–1249.

  2	 Kim, J. and Makis, V. (2009). Optimal maintenance policy for a multi-state deteriorating
system with two types of failures under general repair. Computers & Industrial
Engineering 57 (1): 298–303.

  3	 Chryssaphinou, O., Limnios, N., and Malefaki, S. (2011). Multi-state reliability systems
under discrete time semi-markovian hypothesis. IEEE Transactions on Reliability 60 (1):
80–87.

  4	 Unwin, S.D., Lowry, P.P., Layton, R.F., Heasler, P.G., and Toloczko, M.B. (2011).
Multi-state physics models of aging passive components in probabilistic risk
assessment. In: Proceedings of ANS PSA 2011 International Topical Meeting on
Probabilistic Safety Assessment and Analysis, 1–12.

  5	 Cloth, L., Jongerden, M.R., and Haverkort, B.R. (2007). Computing battery lifetime
distributions. Presented at the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2007 (DSN ‘07), Edinburgh.

  6	 Liu, Y. and Kapur, K.C. (2008). New model and measurement for reliability of multi-
state systems. In: Handbook of Performability EngineeringLondon (ed. Krishna B. Misra),
Springer.

c04.indd 84c04.indd 84 11-06-2022 16:28:0811-06-2022 16:28:08

References 85

  7	 Zio, E. (2009). Computational Methods for Reliability and Risk Analysis. World Scientific
Publishing Company.

  8	 Bogachev, V.I., Krylov, N.V., Röckner, M., and Shaposhnikov, S.V. (2015). Fokker-
Planck-Kolmogorov Equations. American Mathematical Soc.

  9	 Kexue, L. and Jigen, P. (2011). Laplace transform and fractional differential equations.
Applied Mathematics Letters 24 (12): 2019–2023.

10	 Cocozza-Thivent, C., “Processus de renouvellement markovien, Processus de Markov
déterministes par morceaux,” Online book available on the webpage: https://hal.
archives-ouvertes.fr/hal-01418366/document. (accessed 4 January 2022), 2011.

11	 Lin, Y.H., Li, Y.F., and Zio, E. (2015). A Reliability Assessment Framework for Systems
With Degradation Dependency by Combining Binary Decision Diagrams and Monte
Carlo Simulation. IEEE Transactions on Systems Man & Cybernetics Systems 46 (11):
1556–1564.

12	 Lewis, E. and Böhm, F. (1984). Monte Carlo simulation of Markov unreliability models.
Nuclear Engineering and Design 77 (1): 49–62.

13	 Cocozza-Thivent, R.E.C. and Mercier, S. (2006). A finite-volume scheme for dynamic
reliability models. IMA Journal of Numerical Analysis 26: 446–471.

14	 Lin, Y.-H., Li, Y.-F., and Zio, E. (2015). Fuzzy reliability assessment of systems with
multiple-dependent competing degradation processes. Fuzzy Systems, IEEE
Transactions On 23 (5): 1428–1438.

c04.indd 85c04.indd 85 11-06-2022 16:28:0811-06-2022 16:28:08

87

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

5

Monte Carlo Simulation (MCS) for Reliability
and Availability Assessment

5.1  Introduction

The Monte Carlo simulation (MCS) may be the only method that can yield solutions to
complex multi-dimensional stochastic modeling problems, such as those typically
involved in the reliability and availability analysis of real systems.

MCS performs a type of random experiment on a computer, and its development and
implementation require domain knowledge in different fields, such as probability and
statistics. Its key principle is the repeated random sampling to obtain numerical results.
MCS is typically used in three kinds of problems [1]: numerical integration, optimiza-
tion, and sample generation from a probability distribution, e.g. for uncertainty
propagation.

5.2  Random Variable Generation

The foundation of MCS is random variable generation. The foundation of random vari-
able generation is random number generation.

Generally, there are two steps to generate a random variable V from any distribution.
The first step is to draw random numbers, U U Un1 2, , ,… , from a uniform distribution in
the unit hypercube 0 1,()n , and the second step is to return V f U U Un= …()1 2, , , where f
is a function from 0 1,()n to d . The first step will be discussed in Section 5.2.1; the sec-
ond step will be discussed in Section 5.2.2.

5.2.1  Random Number Generation

Random number generation is a method to create an infinite set of random numbers,
which are independent and identically distributed (iid). The uniform distribution on the
interval (0,1) is called a uniform random number generator. On a computer, when a user
inputs an initial number, which is called seed, the uniform random number generator

c05.indd 87c05.indd 87 10-06-2022 15:56:4610-06-2022 15:56:46

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment88

produces a series of independent uniform random numbers in the interval (0,1). It is the
basis of all other random number generators.

Note that the concept of an infinite set of random numbers is only a mathematical
abstraction, which is impossible for the contemporary computers to implement. The
best one can hope is to generate a sequence of random numbers with statistical proper-
ties that are indistinguishable from a sequence of truly random values. In fact, some
physical generators based on universal radiation or quantum mechanics might offer
such a stable randomness. Nevertheless, most generation methods are based on
numerical algorithms implemented in computers. Such algorithms can be described as
a tuple S f U g, , , ,µ() where

	● S is a finite set of states;
	● f is a function from S to S;
	● µ is a probability distribution on S;
	● U is the output space;
	● g is a function from S to U.

The algorithm is made up of four steps:

1)	 Initialize: Choose the seed S0 from the distribution µ on S. Set t = 1;
2)	 Transition: Set S St t= ()−f 1 ;
3)	 Output: Set U g St t= ();
4)	 Repeat: Set t = t + 1 and go back to step 2.

Below are some of the properties of a good random number generator.

	● Passing statistical tests: The goal of the random number generator is to generate ran-
dom numbers, which are indistinguishable from genuine uniform random numbers.
So, it is necessary for the random numbers to pass specific statistical tests verifying
respective properties.

	● Theoretical support: A good generator should be based on a sound mathematical prin-
ciple and should allow for the analysis of its properties.

	● Reproducible: An important property of the generator is to be reproducible, such that
it is unnecessary to store the entire sequence of numbers to repeat the outcome. This
is important for testing and for comparison to other techniques. Normally, physical
generation methods are not reproducible unless the generation progress is recorded.

	● Fast and efficient: A good generator should be able to produce numbers in a fast and
efficient way and not require much storage in computer memory. Some Monte Carlo
methods for optimization or estimation require plenty of random numbers, which
cannot be produced by current physical generation methods.

	● Large period: The period of a good random number generator (the number of itera-
tions before the sequence of random values returns repeatedly) should be very large,
normally of the order of 1050 . This is to avoid the repetition of the same sequence,
which would introduce dependence in the outcomes.

	● Multiple streams: For many applications, running multiple independent random
number sequences in parallel is essential.

c05.indd 88c05.indd 88 10-06-2022 15:56:5010-06-2022 15:56:50

5.2  Random Variable Generation 89

	● Cheap and easy: A good random number generator should be easy to install, imple-
ment, and run. Generally, such a random number generator should be portable and
used universally.

	● Not produce 0 or 1 values: An ideal property of a random number generator is to
exclude 0 and 1 from the number sequence, so as to avoid numerical complications in
their use for calculation.

5.2.1.1  Linear Recurrences
Linear recurrences are the most common methods to generate pseudorandom numbers.
A linear congruential generator generates numbers with the algorithm

X Xt t c mod m t= +() = …−α 1 1 2, , , ,

with the state S Xt t m= ∈ … −{ }0 1, , and where α (multiplier) and c (increment) are

integers. Normally, the outcomes are of the form U X
mt

t= , which gives values in (0,1).

Example 5.1  Lewis, Goodman, and Miller [2] chose α = = =7 16807 05 , c , and
m= − =2 1 214748364731 . This setting passed lots of the standard statistical tests and
has been used successfully in different applications. The method is called minimal stand-
ard linear congruential generator (LCG) and used for comparison with other
generators.

Though it has some good properties, its period 2 131−() is not long enough to meet the
requirements of Quasi Monte Carlo methods.

Quasi Monte Carlo methods are MCS methods where the ordinary uniform random
points are replaced by quasirandom points. Quasirandom numbers are like random
numbers but are present with more regularity, which makes them more suited for
numerical evaluation of multi-dimensional integrals. The main types of quasirandom
sequences include Halton, Faure, Sobol, and Korobov sequences [3].

5.2.2  Random Variable Generation

The generation of uniform random numbers was introduced in the previous section.
This section illustrates how to implement the second step of transforming the random
numbers into the values of random variables. Typical methods for generating random
variables involve the inverse-transform method, the composition method, the accept-
ance-rejection method, etc. This section mainly considers the inverse-transform method
and the acceptance-rejection method.

5.2.2.1  Inverse-transform Method
Assume X to be a random variable with cumulative distribution function (cdf) F. The
inverse function F−1 can be defined as

F y x F x y y− ()= ()≥{ } ≤ ≤1 0 1inf : ,

c05.indd 89c05.indd 89 10-06-2022 15:56:5210-06-2022 15:56:52

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment90

Take the uniform random number u ~ U(0,1). The cdf of the inverse transform F u− ()1 is
given by

 F u x u F x F x− ()≤()= ≤ ()()= ()1

Therefore, to generate a random variable X with cdf F , one can generate u U~ ,0 1() and
set X F u= ()−1 .

Generally, the inverse-transform method requires that the cdf F can be presented in a
form for which the inverse function F−1 can be derived analytically or algorithmically.
Thus, the common applicable distributions are exponential distributions, uniform distri-
butions, Cauchy distributions, etc. However, for certain distributions, it is hard to find
the inverse transform, which is required to solve

F f t dt u
x

(x)= () =
−∞
∫

with respect to x. Even in the situation where F−1 exists in an analytical form, the inverse-
transform may not be the most efficient method to generate random variables.

Example 5.2  Assume we want to obtain a sample from an exponential probability dis-
tribution f x e x()= −λ λ . We should first generate uniform random numbers u ~ ,U 0 1().
Then, we can derive the cdf:

F x e x()= − −1 λ

Then, we invert to get

F x
x− ()=−
−()1 1ln

.
λ

From this, we can obtain the realization of the exponential random variable X as
X ~ F u− ()1 . The histograms in Figure 5.1 show the results and a comparison with the

true exponential distribution.

5.2.2.2  Acceptance-rejection Method
Let f x() and g x() be two probability density functions (pdfs), which satisfy that for

some C≥1, Cg x f x()≥ () for all x. Let X ~g x() and u ~ U(0,1) be independent. Then, the

conditional pdf of X given u
f X

Cg X
≤
()
()

 is f x(). This theorem can be proved [4]. g x() is

the proposal pdf, which is chosen easy to generate random variables from it. The algo-
rithm of the acceptance-rejection method is as follows [4]:

1)	 Draw X from g x().
2)	 Draw U from U(0,1), which is independent of X.

c05.indd 90c05.indd 90 10-06-2022 15:56:5610-06-2022 15:56:56

5.2  Random Variable Generation 91

3)	 If U ≤
()
()

f X
Cg X

, output X; otherwise, return to step 1.

The efficiency of the acceptance-rejection method depends on the probability of accept-
ance, which is

 U ≤
()
()












= ()∫ ∫

≤
()
()











f X
Cg X

g x I
u

f x
Cg x0

1






=
()

=∫dudx
f x

C
dx

C
1

Example 5.3  Consider the random variable x with probability distribution (see
Figure 5.2)

f x
x x

x x
()=

+ ≤ <

− ≤ ≤()






3 0 4 0 0 4
2 4 2 0 4 1

. (.)
. .

We can first generate U0 0 1~ ,U() where g(x) is the pdf of U0 . As

3g x f x()≥ ()

We can generate U1 0 1~ ,U(), which is independent of U0 . Draw x from the distribu-

tion g x(); if U
f X
g X1 3

≤
()
()

 , we will accept x as a sample from the distribution f x(). If not,

we will reject x.
From Figure 5.2, we see that the distribution obtained from the samples derived by the

acceptance-rejection method is similar to the real distribution.

Exponential Distribution

4
xx

4 22 00

0.
0

0.
0

0.
2

0.
2

0.
4D
en

si
ty

D
en

si
ty

0.
4

0.
6

0.
6

0.
8

0.
8

1.
0

1.
0

66 88

Inverse Sampling of Exponential Distribution

Figure 5.1  comparison between inverse sampling of exponential distribution and
exponential distribution.

c05.indd 91c05.indd 91 10-06-2022 15:56:5910-06-2022 15:56:59

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment92

5.2.2.3  Multivariate Random Variable Generation
In this section, we address the problem of generating a vector of values of random varia-
bles X= …()X Xn

T
1, , with a given joint pdf f x(). When the components X Xn1, ,… are

independent, it is easy to solve the problem. Assume the Xi component’s marginal pdf
is f i ni , , , ;= …1 then, f f fnx()= …()Π 1, , . To generate the vector X, we can repeatedly draw
X Xn1, ,… from their marginal pdfs f fn1, ,… with the methods referred in the last section:

1)	 Draw X Xn1, ,… from pdfs f fn1, ,… independently.

2)	 Return X= …()X Xn1, , T.

If the components of X are dependent, we can draw the joint pdf f x() by exploiting the
product rule: of conditional pdfs:

f x f x x f x f x x f x x xn n n n()= …()= () ()… …()−1 1 1 2 2 1 1 1, , | | , , ,

where f x1 1() is the marginal pdf of X1 and f x x xk k k(| , ,)1 1… − is the conditional pdf of Xk
given X x1 1= ,…, X xk k− −=1 1 . The common procedure is as follows:

1)	 Generate X1 with the pdf f1.

2)	 For t = 1:n-1, given X x X xt t1 1= … =, ., , generate Xt+1 with the pdf f xt t x xt+ + …()1 1 1| , .

3)	 Return X= …()X Xn
T

1, .

Figure 5.2  Distribution obtained by acceptance-rejection method.

c05.indd 92c05.indd 92 10-06-2022 15:57:0710-06-2022 15:57:07

5.3  Random Process Generation 93

We can also adapt the multi-dimensional acceptance-rejection method to generate
random vector X .

5.3  Random Process Generation

5.3.1  Markov Chains

As seen in Chapter 4, a Markov chain is a stochastic process X t Tt , ∈{ } with a countable
index set T ⊂ , which has the Markov property

X X X X Xt s t t s t+ +…()=()| , , | .1

An important property of the Markov chains is that they can be generated sequentially
as follows:

1)	 Generate X0 from its distribution. Set t = 0.
2)	 Generate Xt+1 from the conditional distribution of Xt+1 given Xt .
3)	 Set t = t + 1 and return to step 2.

Normally, the conditional distribution of Xt+1 given Xt can be specified as
follows. X g t X U tt t t+ = () = …1 0 1 2, , , , , , where g is an easily evaluated function, and Ut is
a random variable, which can be easily generated and may depend on Xt and t.

When the Markov chain X X0 1, ,…{ } has a discrete state space S and is time-homoge-
neous, its distribution is completely defined by the distribution of X0 and the matrix of
one-step transition probabilities =()pij where

p X j X i i j Sij t t= = =() ∈+ 1 | , ,

The conditional distribution of Xt+1 given Xt = i is then the i-th row of  . The genera-
tion of a time-homogeneous Markov chain with finite discrete states follows three steps:

1)	 Generate X0 from the initial distribution. Set t = 0.
2)	 Generate Xt+1 from the discrete distribution depending on the Xt -th row of  .
3)	 Set t = t + 1 and return to step 2.

Example 5.4  Thomas has four doors A, B, C, and D in his house. One day, he finds a
mouse in his house. The mouse runs around the house from one door to another door.
After a period of observation, Thomas finds that the moves of the mouse follow a prob-
ability distribution. The probability of the mouse moving from one door to another only
depends on the door where the mouse is. Assume the probability distribution can be
described by the following transition matrix P. Let Xt be the position of the mouse at
time t. Then, { Xt } is a time-homogeneous Markov chain with the matrix P:

c05.indd 93c05.indd 93 10-06-2022 15:57:1410-06-2022 15:57:14

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment94

P=



































0 1
2

1
3

1
6

1
2

0 1
3

1
6

1
3

1
3

0 1
3

1
6

1
2

1
3

0 

Realization of the Markov chain can be obtained as explained before and the state distri-
bution is plotted in the Figure 5.3.

5.3.2  Markov Jump Processes

Different from the Markov chain, the Markov jump process is a stochastic process
X t Tt , ∈{ } with a continuous index set T⊆ and a discrete state space S , which has the

Markov property

X X X X Xt s t t s t+ +…()=()| , , | .1

Assume the index set is T = ∞ 0, , and the state space is S= …{ }1 2, , .

Figure 5.3  State distribution of Markov chain.

c05.indd 94c05.indd 94 10-06-2022 15:57:1510-06-2022 15:57:15

5.3  Random Process Generation 95

A time-homogeneous Markov jump process is usually described by its Q-matrix,

Q

q q q
q q q
q q q

=

− …
− …

− …

























1 12 13

21 2 23

31 32 3

� � � �

,

where qij is the transition rate from state i to state j:

q
X j X i

t
Sij t

k t k=
= =

∈
→

+lim
(|)

, ,
0


 i

and qi is the holding rate in i:

q
X i X i

t
Si t

k t k=
− = =

∈
→

+lim
(|)

,
0

1 
 i

Usually, we assume that 0≤ <∞qij and that q qi
j i

ij=∑
≠

, so the sum of each row is 0. An

important behavior of such a Markov jump process is as follows. If the process is in a
certain state i at time t, it will remain in the same state for an additional Exp q()-distrib-
uted amount of time. Once the process leaves the state i, it will jump to another state j

with a probability of p
q
qij

ij

i
= , no matter the history of the process. In particular, the

process can be analyzed as a Markov chain. The jump states S S0 1, , … form a Markov
chain with the transition matrix P=()Pij . We can define the holding time as H H1 2, , …
and the jump times as J J1 2, , …, and the generation procedures are as follows:

1)	 Set J0 0= . Generate S0 from its distribution. Set X S0 0= and n = 0.

2)	 Generate H Exp qn Sn+ ()1 ~ .

3)	 Set J J Hn n n+ += +1 1.

4)	 Set X St n= for J t Jn n≤ < +1 .
5)	 Generate Sn+1 from the distribution related to the Sn -th row of P. Set n = n + 1 and

return to step 2.

Example 5.5  Assume there are two babies and one babysitter. Both babies have
exponentially distributed waking times and times for babysitter to make them sleep.
The waking and babysitting rates are respectively a b a b1 1 2 2, , , . The babysitter can
only babysit one baby at a time. If two babies are awake, the babysitter will keep
babysitting the baby who is first awake. The system can be seen as a Markov jump
process with five states: 1 (both babies are asleep); 2 (baby 1 wakes and baby 2 is
asleep); 3 (baby 2 wakes and baby 1 is asleep); 4 (both babies wake and baby 1 wakes
first); 5 (both babies wake and baby 2 wakes first). The transition matrix is as follows.
Assume a a b b1 2 1 21 2 3 4= = = =, , , .

c05.indd 95c05.indd 95 10-06-2022 15:57:2110-06-2022 15:57:21

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment96

Q

a a a a
b b a a
b b a a

b b
b

=

− +()
− +()

− +()
−

−

1 2 1 2

1 1 2 2

2 2 1 1

1 1

2

0 0
0 0

0 0
0 0 0
0 0 0 bb2













We can see the Markov jump process from Figure 5.4.
When it comes to the nonhomogeneous case, the algorithm is similar, but the rates

appearing in matrix Q depend on time T. Replace qij with qij t() and let q t q ti
j i

ij()= ()∑
≠

.

The process jumps from a state to another depending on a time-nonhomogeneous
Markov chain and stays some time in each state. Assume at a certain time, Tn , the pro-
cess jumps to state Sn = i. Let Hn+1 denote the holding time in state i. Then,

q t
t T H t h T H t T

h
F t h T

i h

n n n n n

h

n

()=
− + − −

=
+ −()−

< < >
→

+ +

→

lim

lim

0

1 1

0

()

FF t T

F t T h

T
F t T

F t T

n

n

n

n

n

−()
− −()()

=
−()

− −()

=− − −()()

1 1

1

f t

d
dt

ln ,

where F t() is the cdf of Hn+1 , and f t() its pdf. We can get F t() by using

Figure 5.4  Markov jump process.

c05.indd 96c05.indd 96 10-06-2022 15:57:2410-06-2022 15:57:24

5.4  Markov Chain Monte Carlo (MCMC) 97

F t H t e tn

q s ds
Tn

Tn t

i

()= ≤()= −
∫

≥+

− ()
+

 1 1 0,

At time T T Hn n n+ += +1 1 , the process jumps to state j with probability
q T
q T

j Sij n

i n

+

+

()
()

∈1

1
, .

So, we get the following algorithm:

1)	 Set T0 0= . Generate S0 according to its distribution. Set X Y0 0= and n = 0.
2)	 Generate Hn+1 from the cdf given above.
3)	 Set T T Hn n n+ += +1 1 .
4)	 Set X St n= for T t Tn n≤ < +1.

5)	 Generate Sn+1 from the distribution
q T
q T

y SS S n

S n

n

n

, ,+

+

()
()

∈














1

1
. Set n = n + 1 and return to

step 2.

5.4  Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a key method for sampling from a given distribution.
By means of generating a Markov chain which has the desired distribution as its limiting
distribution, we can get a sample of the desired distribution by observing the chain after a few
steps. In this section, we will describe three most prominent MCMC algorithms:

1)	 The Metropolis-Hastings (M-H)algorithm, i.e. the independence sampler and ran-
dom walk sampler [5];

2)	 The Gibbs sampler, which is very useful in Bayesian analysis [5];
3)	 Multiple-try Metropolis-Hastings method where different algorithms are combined [5].

5.4.1  Metropolis-Hastings (M-H) Algorithm

The M-H algorithm is similar to the acceptance-rejection algorithm to some degree. Let
f x() be a function, which is proportional to the desired probability distribution p x():

1)	 Initialize with some X0 as the first sample, and select an arbitrary probability q y x(|) as
a proposal or instrumental density, which is used to generate the next sample y given x .

2)	 Generate y with the distribution q y x(|) given X0 .

3)	 Calculate the acceptance ratio α x y
f y q x y
f x q y x

, min
|
|

,()= () ()
() ()















1 .

4)	 Generate a uniform random number u ~ ,U 0 1(). If u X yt≤ ()α , , then set Xt+ =1 y . If
not, then set X Xt t+ =1 .

The probability α x, y() is called the acceptance probability. The algorithm proceeds by
randomly accepting the moves or remaining in place. We can see that α can represent
how probable the new sample is, given the current one. So, when α is large enough
(α≥1), one accepts the new sample; otherwise, there is some possibility that it remains
in place. Therefore, there is a tendency to stay in high-density regions of p x().

c05.indd 97c05.indd 97 10-06-2022 15:57:3110-06-2022 15:57:31

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment98

We, thus, get the so-called M-H Markov chain, X X XT0 1, , … , with XT approximately
distributed as f x() for large T .

Example 5.6  Assume we want to sample from a distribution p x(). We only know

function f x() where f x
p x

Z
()= ()

 and f x x e x()= −2 .

We can sample from p x() as just explained.
We can see from Figure 5.5 above that the result obtained is close to the real

distribution.

5.4.2  Gibbs Sampler

A Gibbs sampler can be seen as a special case of the M-H algorithm for generating n-dimen-
sional random vectors [6]. One of the most distinguishing features of the Gibbs sampler is
that the corresponding Markov chain is constructed from a set of conditional distributions
in either a deterministic or random form. Gibbs sampling is useful when the joint distribu-
tion is unknown or difficult to sample from directly, but the conditional distribution of each
variable is known and easy to sample from.

Assume that we want to sample a random vector X= …()X Xn1, , according to a target
pdf f x(). Suppose that f x x x x xi i i n(| , , , , ,)1 1 1… …− + represents the conditional pdf of
the ith component of the vector X. The Gibbs sampler algorithm is as follows:

1)	 Initialize with a state X0 . Set t = 0.
2)	 For a given Xt , draw Y= …()Y Yn1, , as follows:

	● Generate Y1 from the conditional distribution f x x xt t n(| , ,), ,1 2… .
	● Generate Yi from f x Y Y x xi i t i t n(| , , , , ,), ,1 1 1… …− + .
	● Generate Yn from f x Y Yn n(| , ,)1 1… − .

3)	 Set Xt+ =1 Y.

14
x x

12108 86 64 42 20 0

0.
35

0.
35

0.
30

0.
30

0.
25

0.
25

0.
20

0.
20

0.
15

0.
15

0.
10

0.
10

0.
05

0.
05

0.
00

0.
00

D
en

si
ty

D
en

si
ty

Metropolis–Hastings Sampling True Distribution

Figure 5.5  M-H sampling.

c05.indd 98c05.indd 98 10-06-2022 15:57:4110-06-2022 15:57:41

5.4  Markov Chain Monte Carlo (MCMC) 99

Example 5.7  Assume that X i() () ()=()x yi i, is a vector whose components follow a

bivariate normal distribution X N~ 0,∑(), the standard deviations of x and y are 1, and

the correlation coefficient between x and y is r = 0.98. We can sample X with Gibbs sam-
pler, with the results shown in Figure 5.6.

5.4.3  Multiple-try Metropolis-Hastings (M-H) Method

The multiple-try M-H algorithm is an extension of the M-H algorithm, which can acceler-
ate the sampling by making the sampling step size larger and the acceptance rate higher.

In M-H method, we often use the normal distribution as the proposal distribution

i.e. Q ′()= ()x x N x It t, ,σ2 . However, it is difficult to determine the value of σ2 in N xt ,σ2().
Although the method is fundamental to converge to the limiting distribution, with a finite
sample size in practice, the progress can be slow. If σ2 is very large, most steps of the sam-
pling will be rejected; if σ2 is very small, most steps will be accepted, and the Markov chain
will be close to a random walk through the probability space.

Figure 5.6  Sampling with Gibbs sampler.

c05.indd 99c05.indd 99 10-06-2022 15:57:4510-06-2022 15:57:45

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment100

Especially when the dimensionality of x is high, it is difficult to get the appropriate
acceptance rate and step size at the same time.

Multiple-try Metropolis algorithm can resolve this issue. Its procedures are shown as
follows. Assume q y x(|) is an arbitrary symmetric proposal function. Initialize the
sequence with some X0 which satisfies f X0 0()> . Let M be the dimension parameter.

1)	 Set t= 0 .

2)	 Draw proposals Y Y
iid

q y XM t1, ,
~

(|)… .

3)	 Draw a random index J from the set 1, ,…{ }M , such that

 J j
f Y

f Y f Y
j Mj

M
=()=

()
()+…+ ()

= …
1

1, , , .

4)	 Draw proposals Z Z q z YM J1 1, , ~ |… ()− and set Z XM t= given J .

5)	 Set α X Y
f Y f Y
f Z f Zt J

M

M
, min ,()= ()+…+ ()

()+…+ ()














1

1
1 .

Draw u ~ ,U 0 1(). If u X Yt J≤ ()α , , X Yt J+ =1 ; if not, then X Xt t+ =1 .
6)	 Set t t= +1, return to step 2.

Example 5.8  Assume we want to obtain a sample from a distribution p(x). We only

know function f x() where f x
p x

Z
()= ()

.

f x x e x()= −2

We can sample from p x() and the results are shown in Figure 5.7. Compared with
Example 5.6 where M-H is applied, it converges faster with multiple-try M-H algorithm.

0.
35

0.
35

0.
30

0.
30

0.
25

0.
25

0.
20

0.
20

0.
15

0.
15

0.
10

0.
10

0.
05

0.
05

0.
00

0.
00

x x
1510 865 420 0

D
en

si
ty

D
en

si
ty

Multiple–try Metropolis–Hastings Sampling True Distribution

Figure 5.7  Sampling with Multiple-try Metropolis-Hastings (M-H) Method.

c05.indd 100c05.indd 100 10-06-2022 15:57:4910-06-2022 15:57:49

5.5  Rare-Event Simulation 101

5.5  Rare-Event Simulation

Components and systems failure events are typically rare. Let us refer to failure event A
of a generic component, whose probability α = ()P A  1. The normal, crude Monte
Carlo method estimates α by the proportion b of times in which the event A occurs over
n repeated independent trials.

b
n

B
j

n

j=
=
∑

1

1

,

where B B Bn1 2, , ,… are binary numbers that indicate the realizations of event A, i.e.
Bi = 1 means occurrence and Bi = 0 overwise. According to the Central Limit Theorem
(CLT) for binomial distributions [7], we have

lim ,
n

N
→∞

−()
−()

= ()
n b α

α α1
0 1

and

b≈ +
−() ()α

α α1
0 1

n
N ,

for n 1
α

. The absolute error is

b
n

N− ≈
−() ()α

α α1
0 1,

and the relative error is

b
n

N
α

α
α

− ≈
− ()1 1 0 1,

Therefore, crude Monte Carlo requires that

n 1
α

for the relative error to be small. This makes rare-event simulation expensive in many
cases.

5.5.1  Importance Sampling

One of the most widely used methods for rare-event sampling is importance sampling.
Let us consider the problem of evaluating E f x()



 , x ~ p, which is

E f x f x p x dx
x

()



 = () ()∫

c05.indd 101c05.indd 101 10-06-2022 15:57:5510-06-2022 15:57:55

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment102

To estimate this quantity using MCS, we would need to generate samples from the prob-
ability distribution p(x). To do so more efficiently, we can introduce another distribution
q(x), from which we can simply draw samples:

∫ ∫

∫

() () = () ()() ()

= () ()
x x

f x p x dx f x
p x
q x

q x dx

g x q x dx
x

where g x f x
p x
q x

f x w x()= () ()()
= () ().

The original problem has become equivalent to evaluating E g x()() with the probabil-

ity distribution q x() and where w x
p x
q x

()= ()
()

 is called importance weight. When we

adopt the importance sampling for rare-event sampling, we can choose q x() to control
the variance of the sampling.

Example 5.9  Consider a function f x exp x()= − −()2 6 . Assume we want to get
E f X()() where X U~ ,1 11() . That is, we want to calculate the integral

1

11

2 6∫ − −()exp x dx

The normal way to solve the problem is to first generate samples X ~ ,U 1 11() and
then calculate the mean of 10 ⋅ ()f X . The true mean is about 1. In one run, we get

0.9930885.
The function f x() in this case is peaked at 6 and decreases quickly elsewhere; there-

fore, by using the uniform distribution, many of the samples contribute little to the
expectation. If we use a Gaussian function with a peak at 6 and a small variance, we get
greater precision:

1

11

6
2

6
22 6 1

1
2

1
22

2

∫ − −()
−
−()

−
−()

exp x

e

e dx
x

x

π

π

The result is 0.9996468, which is closer to the true value.

5.5.2  Repetitive Simulation Trials after Reaching Thresholds (RESTART)

The Repetitive Simulation Trials After Reaching Thresholds (RESTART) method is an
alternative to the crude Monte Carlo computation of rare-event probabilities. The core
concept of the RESTART method is that, given a rare event A whose probability must be
estimated, an event C is defined so that C A⊃ and 1 P C P A() () . The probability of
occurrence of event A can be written as [8]

c05.indd 102c05.indd 102 10-06-2022 15:58:0210-06-2022 15:58:02

5.6  Exercises 103

P A P C P A C()= ()⋅ ()| .

In a simulation, P C() is usually easier to estimate than P A C|() , since P(C) is estimated
from the whole simulation and P(A|C) is estimated from the small portion of simulations
in which C occurs.

The RESTART can be enhanced by defining multiple thresholds Ci that satisfy
C C C AM1 2⊃ ⊃…⊃ ⊃ . The efficiency of the method is greatly improved with multiple
thresholds [9].

Let us consider a Markov process X t(). S is the state space of X t(). To make the RESTART
method work, we need a function φ : S→ , which is called the importance function.
Thresholds Ti 1≤ ≤()i M of φ are defined, so that each set Ci is associated with φ≥Ti .

When an event occurs where the system is in set A or Ci , the event is called event A or
event Ci . Other two kinds of events Bi and Di are defined as follows:

Bi : instant of the transition from other states to Ci
Di: instant of the transition from Ci to other states

The RESTART method works as follows:

1)	 When an event Bi occurs, the system state is saved;
2)	 When an event Di occurs, the system state at last event Bi is restored and simulation

is conducted again beginning with Bi until it reaches Di;
3)	 The process mentioned above is repeated Ri times, which is the number of retrials

for threshold i. The starting event of each trial is always the same Bi, while the end-
ing events are different, Di1, Di2 ,..., DiRi;

4)	 During one trial of level i, an event Bi+1 may occur and Ri+1 trials of level i+1 would
be made before the trial of level i finishes;

5)	 When event DiR occurs, simulation continues in the usual way (do not need to start
with Bi).

The statistics should be modified accordingly to calculate the probability of event A.
The way to modify the statistics is presented as follows. If the estimator of the probability
of the rare event in crude simulation is:

P N
N

A=

where NA is the number of events A occurred in the simulation and N is the total number
of simulated event, then, the estimator with RESTART should be:

P N

N R
A

ii
M

^ =
⋅

=∏ 1
where NA includes all the events A occurred in all retrials, while N only includes the
events simulated in the first trial of each set of retrials.

5.6  Exercises

1. Sample by inverse sampling from an exponential probability distribution p x e()= −λ λx
where λ= 2 .

c05.indd 103c05.indd 103 10-06-2022 15:58:0810-06-2022 15:58:08

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment104

2. Assume there are two babies and one babysitter. Both babies have exponentially dis-
tributed waking times and times for the babysitter to make them sleep. The waking and
babysitting rates are respectively a b a b1 1 2 2, , , . The babysitter can only babysit one baby
at a time. If both babies are awake, the babysitter will keep babysitting the baby who is
first awake. The system can be seen as a Markov jump process with five states: 1 (both
babies are asleep); 2 (baby 1 wakes and baby 2 is asleep); 3 (baby 2 wakes and baby 1 is
asleep); 4 (both babies wake and baby 1 wakes first); 5 (both babies wake and baby 2
wakes first). The transition matrix is as follows. Assume a a b b1 2 1 22 3 4 5= = = = , , .

Q

a a a a
b b a a
b b a a

b b
b b

=

− +()
− +()

− +()
−

−

1 2 1 2

1 1 2 2

2 2 1 1

1

2

0 0
0 0

0 0
0 0 0
0 0 0 22













Sample states with the Markov jump process method (t≤10).
3. Assume we want to sample from a distribution p(x). We only know function f(x)

where f x
p x

Z
()= ()

.

f x e x()= −2

Sample from f x() with M-H algorithm.
4. Estimate P X≥()4 where X ~ ,N 0 1() with importance sampling. (For example, you
can use g X N()= ()5 1, as a proposal distribution).

Appendix

R Code for the examples presented in the chapter:

#Example 5.2
cdf <- function(f, lower_bound, upper_bound)
{
 if(lower_bound < -1000) lower_bound <- -1000 # Trim
large negatives
 if(upper_bound > 1000) upper_bound <- 1000 # Trim
large positive
 x <- seq(lower_bound, upper_bound, length.out = 10000) # Finely
divide x axis
 delta <- mean(diff(x)) # Get
delta x (i.e. dx)
 mid_x <- (x[-1] + x[-length(x)])/2 # Get
the mid point of each slice
 result <- cumsum(delta * f(mid_x)) # sum f(x)
dx

c05.indd 104c05.indd 104 10-06-2022 15:58:1210-06-2022 15:58:12

Appendix 105

 result <- result / max(result) # normal-
ize
 list(x = mid_x, cdf = result) # return
both x and f(x) in list
}
inv_sample <- function(f, n = 1, lower_bound = -1000, upper_bound
= 1000)
{
 CDF <- cdf(f, lower_bound, upper_bound)
 samples <- runif(n)
 sapply(samples, function(s) CDF$x[which.min(abs(s - CDF$cdf))])
}
hist(inv_sample(dexp, 10000, 0, 100), breaks=100, freq=FALSE,ma
in="Inverse Sampling of Exponential Distribution",xlab="X",ylim
=c(0,1))
par(new=TRUE)
plot(dexp,0,8,main="Exponential
Distribution",xlab="X",ylab="Density",ylim=c(0,1))

#Example 5.3
#f(x) function
fx <- function(x){
 if(x<=0.4) y=3*x+0.4
 else y=2.4-2*x
 return(y)
}
fx1 <- function(x){
 return(3*x+0.4)
}
fx2 <- function(x){
 return(2.4-2*x)
}
accept <- function() {
 while (T) {
 x <- runif(1) # sample from g~U(0,1)
 u <- runif(1)
 if (u < fx(x)/3) # Whether accept x
 break
 failtime <<- failtime + 1 # record failure times
 }
 x
}
samplex <-function(n){
 set.seed(123)
 replicate(n,accept())
}
n = 100000
failtime=0 # record failure times
res <- samplex(n)
failrate <- failtime/(failtime+n)

c05.indd 105c05.indd 105 10-06-2022 15:58:1210-06-2022 15:58:12

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment106

plot(density(res), xlim=c(0, 1), col="red", xlab="x",
 main="Reject Sampling for f(x)")
curve(fx1, 0, 0.4, col="blue", add=T, lty=2)
curve(fx2, 0.4, 1, col="blue", add=T, lty=2)
legend("topright", legend=c("Simulative", "Theoretical f(x)"),
 col=c("red", "blue"), lty=c(1,2), bty="n")

#example 5-4
simulate discrete Markov chains with transition matrix P
sim.markov <- function(P, iterations=50) {
 # number of states
 num.states <- nrow(P)
 # stores the states
 states <- numeric(iterations)
 # initialize variable for first state
 states[1] <- 1
 for(t in 2:iterations) {
 # probability vector to simulate next state
 p <- P[states[t-1],]
 ## draw from multinomial and determine state
 states[t] <- which(rmultinom(1, 1, p) == 1)
 }
 return(states)
}
P <- t(matrix(c(0, 1/2, 1/3,1/6,
 1/2, 0, 1/3,1/6,
 1/3, 1/3, 0,1/3,
 1/6, 1/2, 1/3, 0), nrow=4, ncol=4))
num.chains <- 5
num.iterations <- 50
chain.states <- matrix(NA, ncol=num.chains, nrow=num.iterations)
for(c in seq_len(num.chains)){
 chain.states[,c] <- sim.markov(P)
}
matplot(chain.states, type='l', lty=1, col=1:5, ylim=c(0,4),
ylab='state', xlab='time')
abline(h=1, lty=3)
abline(h=3, lty=3)
count.num = array(table(chain.states))
hist(chain.states,breaks = c(0.5, 1.5, 2.5, 3.5,4.5),freq=FALSE,ma
in="Steady States Distribution",xlab="States")

#Example 5-5
sim.cont.markov <- function(Q, t=5,dt=0.001) {
 # number of states
 num.states <- nrow(Q)
 # probability matrix
 P <- Q
 diag(P) = rep(0,dim(P)[1]);
 P <- P/apply(P,1,sum)

c05.indd 106c05.indd 106 10-06-2022 15:58:1210-06-2022 15:58:12

Appendix 107

 # stores the states
 iterations = t/dt
 states <- numeric(iterations)
 # initialize variable for first state
 states[1] <- 1
 for(t in 2:iterations) {
 # probability vector to simulate next state
 m <- states[t-1]
 p <- P[m,]
 set.seed(1)
 ran.num <- runif(1)
 if(ran.num<dt*(-Q[m,m])){
 states[t] <- which(rmultinom(1, 1, p) == 1)
 }
 else{
 states[t] <- states[t-1]
 }
 }
 return(states)
 }
 a1=1
 a2=2
 b1=3
 b2=4
 Q <- t(matrix(c(-(a1+a2), a1	 , a2	 , 0, 0,
 b1	 , -(b1+a2), 0	 , a2, 0,
 b2	 , 0	 , -(b2+a1), 0,a1,
 0	 , 0	 , b1	 ,-b1, 0,
 0	 , b2	 , 0	 , 0, -b2),
nrow=5,ncol=5))
 t <- seq(0,5,0.001)[-length(t)]
 states <- sim.cont.markov(Q)
 plot(t,states,type="l")

#Example 5-6
 fx = function(x){
 if(x<0){
 return(0)}
 else {
 return(x*x*exp(-x))
 }
 }
 fx2 =function(x){
 return(fx(x)/2)
 }
 x = rep(0,50000)
 x[1] = 1 #starting value
 for(i in 2:50000){
 currentx = x[i-1]
 newx = currentx + rnorm(1,mean=0,sd=1)

c05.indd 107c05.indd 107 10-06-2022 15:58:1210-06-2022 15:58:12

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment108

 A = fx(newx)/fx(currentx)
 if(runif(1)<A){
 x[i] = newx # accept move with probabily min(1,A)
 } else {
 x[i] = currentx # otherwise "reject" move, and stay
where we are
 }
 }
 hist(x,breaks=100, freq=FALSE,main="Metropolis-Hastings Sampling",
xlab="X",ylim=c(0,0.35))
 plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

#Example 5-7
 gibbs<-function (n, r)
 {
 mat <- matrix(ncol = 2, nrow = n)
 x <- 0
 y <- 0
 mat[1,] <- c(x, y)
 for (i in 2:n) {
 x <- rnorm(1, r * y, sqrt(1 - r^2))
 y <- rnorm(1, r * x, sqrt(1 - r^2))
 mat[i,] <- c(x, y)
 }
 mat
 }
 bvn<-gibbs(10000,0.98)

 par(mfrow=c(3,2))
 plot(bvn,col=1:10000)
 plot(bvn,type="l")
 plot(ts(bvn[,1]))
 plot(ts(bvn[,2]))
 hist(bvn[,1],40)
 hist(bvn[,2],40)
 par(mfrow=c(1,1))

#Example 5-8
 fx = function(x){
 if(x<0){
 return(0)}
 else {
 return(x*x*exp(-x))
 }
 }
 fx2 =function(x){
 return(fx(x)/2)
 }
 n = 10

c05.indd 108c05.indd 108 10-06-2022 15:58:1310-06-2022 15:58:13

Appendix 109

 x = rep(0,50000)
 y = rep(0,10)
 z = rep(0,10)
 x[1] = 1 #starting value
 for(i in 2:50000){
 currentx = x[i-1]
 for(j in 1:10){
 y[j]=currentx + rnorm(1,mean=0,sd=1)
 }
 sumy <- 0
 for(k in 1:10){
 sumy <- sumy + fx(y[k])
 }
 ynorm = rep(0,10)
 for(k in 1:10){
 ynorm[k]=fx(y[k])/sumy
 }
 itemy <- which(rmultinom(1, 1, ynorm) == 1)
 for(j in 1:9){
 z[j] <- y[itemy]+rnorm(1,mean=0,sd=1)
 }
 z[10] <- currentx
 sumz <- 0
 for(k in 1:10){
 sumz <- sumz + fx(z[k])
 }
 alphay <- sumy/sumz
 if(runif(1) < alphay){
 x[i]=y[itemy]
 }
 else{
 x[i]=currentx
 }
 }
 hist(x,breaks=100, freq=FALSE,main="Multiple-try Metropolis-
Hastings Sampling",xlab="X",ylim=c(0,0.35))
 plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

 #Example 5-9
 fx <- function(x){
 return(exp(-2*abs(x-6)))
 }
 n=10000
 x <- array(runif(n,1,11))
 x.f <- apply(x,1,fx)
 10*sum(x.f)/n

 fx2 <- function(x){
 return(exp(-2*abs(x-6))/(1/sqrt(2*pi)*exp(-((x-6)**2)/2)))

c05.indd 109c05.indd 109 10-06-2022 15:58:1310-06-2022 15:58:13

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment110

 }
 y <- array(rnorm(n,6,1))
 y.f <- apply(y,1,fx2)
 10*sum(y.f)/n
 if(lower_bound < -1000) lower_bound <- -1000 # Trim large nega-
tives
 if(upper_bound > 1000) upper_bound <- 1000 # Trim large
positive
 x <- seq(lower_bound, upper_bound, length.out = 10000) # Finely
divide x axis
 delta <- mean(diff(x)) # Get delta x (i.e.
dx)
 mid_x <- (x[-1] + x[-length(x)])/2 # Get
the mid point of each slice
 result <- cumsum(delta * f(mid_x)) # sum f(x)
dx
 result <- result / max(result) # normal-
ize
 list(x = mid_x, cdf = result) # return both
x and f(x) in list
}
inv_sample <- function(f, n = 1, lower_bound = -1000, upper_bound
= 1000)
{
 CDF <- cdf(f, lower_bound, upper_bound)
 samples <- runif(n)
 sapply(samples, function(s) CDF$x[which.min(abs(s - CDF$cdf))])
}
hist(inv_sample(dexp, 10000, 0, 100), breaks=100, freq=FALSE,main
="Inverse Sampling of Exponential Distribution",xlab="X",ylim
=c(0,1))
par(new=TRUE)
plot(dexp,0,8,main="Exponential Distribution",xlab="X",ylab="
Density",ylim=c(0,1))

#Example 5.3
#f(x) function
fx <- function(x){
 if(x<=0.4) y=3*x+0.4
 else y=2.4-2*x
 return(y)
}
fx1 <- function(x){
 return(3*x+0.4)
}
fx2 <- function(x){
 return(2.4-2*x)
}
accept <- function() {
 while (T) {

c05.indd 110c05.indd 110 10-06-2022 15:58:1310-06-2022 15:58:13

Appendix 111

 x <- runif(1) # sample from g~U(0,1)
 u <- runif(1)
 if (u < fx(x)/3) # Whether accept x
 break
 failtime <<- failtime + 1 # record failure times
 }
 x
}

samplex <-function(n){
 set.seed(123)
 replicate(n,accept())
}
n = 100000
failtime=0 # record failure times
res <- samplex(n)
failrate <- failtime/(failtime+n)
plot(density(res), xlim=c(0, 1), col="red", xlab="x",
 main="Reject Sampling for f(x)")
curve(fx1, 0, 0.4, col="blue", add=T, lty=2)
curve(fx2, 0.4, 1, col="blue", add=T, lty=2)
legend("topright", legend=c("Simulative", "Theoretical f(x)"),
 col=c("red", "blue"), lty=c(1,2), bty="n")

#example 5-4
simulate discrete Markov chains with transition matrix P
sim.markov <- function(P, iterations=50) {
 # number of states
 num.states <- nrow(P)
 # stores the states
 states <- numeric(iterations)
 # initialize variable for first state
 states[1] <- 1
 for(t in 2:iterations) {
 # probability vector to simulate next state
 p <- P[states[t-1],]
 ## draw from multinomial and determine state
 states[t] <- which(rmultinom(1, 1, p) == 1)
 }
 return(states)
}
P <- t(matrix(c(0, 1/2, 1/3,1/6,
 1/2, 0, 1/3,1/6,
 1/3, 1/3, 0,1/3,
 1/6, 1/2, 1/3, 0), nrow=4, ncol=4))
num.chains <- 5
num.iterations <- 50
chain.states <- matrix(NA, ncol=num.chains, nrow=num.iterations)
for(c in seq_len(num.chains)){

c05.indd 111c05.indd 111 10-06-2022 15:58:1310-06-2022 15:58:13

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment112

 chain.states[,c] <- sim.markov(P)
}
matplot(chain.states, type='l', lty=1, col=1:5, ylim=c(0,4),
ylab='state', xlab='time')
abline(h=1, lty=3)
abline(h=3, lty=3)
count.num = array(table(chain.states))
hist(chain.states,breaks = c(0.5, 1.5, 2.5, 3.5,4.5),freq=FALSE,ma
in="Steady States Distribution",xlab="States")

 #Example 5-5
 sim.cont.markov <- function(Q, t=5,dt=0.001) {
 # number of states
 num.states <- nrow(Q)
 # probability matrix
 P <- Q
 diag(P) = rep(0,dim(P)[1]);
 P <- P/apply(P,1,sum)
 # stores the states
 iterations = t/dt
 states <- numeric(iterations)
 # initialize variable for first state
 states[1] <- 1
 for(t in 2:iterations) {
 # probability vector to simulate next state
 m <- states[t-1]
 p <- P[m,]
 set.seed(1)
 ran.num <- runif(1)
 if(ran.num<dt*(-Q[m,m])){
 states[t] <- which(rmultinom(1, 1, p) == 1)
 }
 else{
 states[t] <- states[t-1]
 }
 }
 return(states)
 }
 a1=1
 a2=2
 b1=3
 b2=4
 Q <- t(matrix(c(-(a1+a2), a1	 , a2	 , 0, 0,
 b1	 , -(b1+a2), 0	 , a2, 0,
 b2	 , 0	 , -(b2+a1), 0,a1,
 0	 , 0	 , b1	 ,-b1,0,
 0	 , b2	 , 0	 , 0,
-b2),nrow=5,ncol=5))
 t <- seq(0,5,0.001)[-length(t)]

c05.indd 112c05.indd 112 10-06-2022 15:58:1310-06-2022 15:58:13

Appendix 113

 states <- sim.cont.markov(Q)
 plot(t,states,type="l")

#Example 5-6
 fx = function(x){
 if(x<0){
 return(0)}
 else {
 return(x*x*exp(-x))
 }
 }
 fx2 =function(x){
 return(fx(x)/2)
 }
 x = rep(0,50000)
 x[1] = 1 #starting value
 for(i in 2:50000){
 currentx = x[i-1]
 newx = currentx + rnorm(1,mean=0,sd=1)
 A = fx(newx)/fx(currentx)
 if(runif(1)<A){
 x[i] = newx # accept move with probabily min(1,A)
 } else {
 x[i] = currentx # otherwise "reject" move, and stay
where we are
 }
 }
 hist(x,breaks=100, freq=FALSE,main="Metropolis-Hastings Sampling
",xlab="X",ylim=c(0,0.35))
 plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

#Example 5-7
 gibbs<-function (n, r)
 {
 mat <- matrix(ncol = 2, nrow = n)
 x <- 0
 y <- 0
 mat[1,] <- c(x, y)
 for (i in 2:n) {
 x <- rnorm(1, r * y, sqrt(1 - r^2))
 y <- rnorm(1, r * x, sqrt(1 - r^2))
 mat[i,] <- c(x, y)
 }
 mat
 }
 bvn<-gibbs(10000,0.98)
 par(mfrow=c(3,2))
 plot(bvn,col=1:10000)

c05.indd 113c05.indd 113 10-06-2022 15:58:1310-06-2022 15:58:13

5  Monte Carlo Simulation (MCS) for Reliability and Availability Assessment114

 plot(bvn,type="l")
 plot(ts(bvn[,1]))
 plot(ts(bvn[,2]))
 hist(bvn[,1],40)
 hist(bvn[,2],40)
 par(mfrow=c(1,1))

#Example 5-8
 fx = function(x){
 if(x<0){
 return(0)}
 else {
 return(x*x*exp(-x))
 }
 }
 fx2 =function(x){
 return(fx(x)/2)
 }
 n = 10
 x = rep(0,50000)
 y = rep(0,10)
 z = rep(0,10)
 x[1] = 1 #starting value
 for(i in 2:50000){
 currentx = x[i-1]
 for(j in 1:10){
 y[j]=currentx + rnorm(1,mean=0,sd=1)
 }
 sumy <- 0
 for(k in 1:10){
 sumy <- sumy + fx(y[k])
 }
 ynorm = rep(0,10)
 for(k in 1:10){
 ynorm[k]=fx(y[k])/sumy
 }
 itemy <- which(rmultinom(1, 1, ynorm) == 1)
 for(j in 1:9){
 z[j] <- y[itemy]+rnorm(1,mean=0,sd=1)
 }
 z[10] <- currentx
 sumz <- 0
 for(k in 1:10){
 sumz <- sumz + fx(z[k])
 }
 alphay <- sumy/sumz
 if(runif(1) < alphay){
 x[i]=y[itemy]
 }
 else{

c05.indd 114c05.indd 114 10-06-2022 15:58:1310-06-2022 15:58:13

References 115

 x[i]=currentx
 }
 }
 hist(x,breaks=100, freq=FALSE,main="Multiple-try Metropolis-
Hastings Sampling",xlab="X",ylim=c(0,0.35))
 plot(fx2,0,8,main="True Distribution",xlab="X",ylab="Density",yl
im=c(0,0.35))

 #Example 5-9
 fx <- function(x){
 return(exp(-2*abs(x-6)))
 }
 n=10000
 x <- array(runif(n,1,11))
 x.f <- apply(x,1,fx)
 10*sum(x.f)/n
 fx2 <- function(x){
 return(exp(-2*abs(x-6))/(1/sqrt(2*pi)*exp(-((x-6)**2)/2)))
 }
 y <- array(rnorm(n,6,1))
 y.f <- apply(y,1,fx2)

 10*sum(y.f)/n

References

  1	 Kroese, D.P., Brereton, T., Taimre, T., and Botev, Z.I. (2014). Why the Monte Carlo method
is so important today. WIREs Computational Statistics 6: 386–392. doi:10.1002/wics.1314.

  2	 Lewis, P.A.W., Goodman, A.S., and Miller, J.M. (2010). A pseudo-random number
generator for the system/360. Ibm Systems Journal 8 (2): 136–146.

  3	 Keller, A., Heinrich, S., and Niederreiter, H. (eds.) (2007). Monte Carlo and Quasi-monte
Carlo Methods 2006. Springer Science & Business Media.

  4	 Flury, B.D. (1990). Acceptance–rejection sampling made easy. SIAM Review 32 (3):
474–476.

  5	 Kroese, D.P., Taimre, T., and Botev, Z.I. (2011). Handbook of Monte Carlo Methods.
Hoboken, NJ: John Wiley & Sons. 706.

  6	 Casella, G. and George, E.I. (1992). Explaining the Gibbs sampler. The American
Statistician 46 (3): 167–174.

  7	 Heyde, C.C. (2014). Central limit theorem. Wiley StatsRef: Statistics Reference Online.
  8	 Villen-Altamirano, M. and Villen-Altamirano, J. (1991). Restart: A method for

accelerating rare event simulations. Queuing Performance & Control in Atm Proceedings
of International Telegraphic Congress 13 (4): 299–301.

  9	 Villén-Altamirano, J. (1998). Restart method for the case where rare events can occur in
retrials from any threshold. AEU - International Journal of Electronics and
Communications 52 (3): 183–189.

10	 Zio, E. (2013). The Monte Carlo simulation method for system reliability and risk
analysis, Springer Series in Reliability Engineering, doi10.1007/978-1-4471-4588-2

c05.indd 115c05.indd 115 10-06-2022 15:58:1310-06-2022 15:58:13

117

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

6

Uncertainty Treatment under Imprecise or
Incomplete Knowledge

In most engineering system models, the uncertain behavior of a component or system is
captured by the probability mass function (pmf) or probability density function (pdf) of
its performance. The probability functions are appropriate to describe the randomness in
the behavior, i.e. uncertainty of the objective and aleatory type [1], due to the natural
variability or stochasticity of the component or system behavior [2]. Another type of
uncertainty that must be accounted for in reliability engineering is due to the incomplete
or imprecise knowledge about the component or system behavior [3-8], which then is
reflected in its modelling and the associated model parameters estimation. This type of
uncertainty is often referred to as subjective or epistemic [1,9].

Traditionally, all uncertainties have been described by probabilities. The typical fre-
quentist representation, considering mainly the randomness features, is the most com-
monly used approach for uncertainty treatment [10]. Subjective probability is used to
express the epistemic uncertainty of unknown frequencies, i.e. the chances [11].
However, this approach is reported to be limited to treat various uncertainties. For exam-
ple, one may assign a failure probability to an offshore platform based on the assumption
that its structure can withstand a certain accidental load; while in real-life situations, the
structure could fail at a lower load level, and the preassigned probability could not reflect
this uncertainty [12]. To meet the practical demands for uncertainty treatment, different
approaches have been developed. This chapter presents some of these: interval, fuzzy
numbers, possibility, evidence, and random-fuzzy numbers. The first three approaches
are focused on epistemic uncertainty, and the latter two are capable of treating aleatory
and epistemic uncertainties. The associated basic arithmetic operations for uncertainty
propagation are introduced.

6.1  Interval Number and Interval of Confidence

6.1.1  Definition and Basic Arithmetic Operations

Sometimes in practice, with the lack of additional information, the uncertainty in a
parameter is described by experts in terms of an interval of possible values within a

c06.indd 117c06.indd 117 13-06-2022 14:56:2613-06-2022 14:56:26

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 118

minimum and a maximum. Using intervals is one practical way to deal with such epis-
temic uncertainty on the value of the parameter. We use the following symbol to denote
an interval number:

X x x x x x x=   = ∈ ≤ ≤, { | } R

where x and x (x x≤) are the finite lower and upper bounds of X, respectively. In the
rest of this section, we will presume that x x≤ . In certain cases, we can have x =−∞
and/or x =+∞. Typically, the brackets ⋅  indicate a closed interval. In other cases, we
may have half-open intervals: x x, ( as a left-open interval, x x, ) as a right-open inter-
val, and x x, () as an open interval.

Interval arithmetic is an arithmetic with operations defined on intervals. A form of
interval arithmetic first appeared in the early twentieth century [13]. More modern
development of interval arithmetic was initiated by R. E. Moore [14] in 1962. The four
basic interval arithmetic operations are presented as follows.

Addition X Y x y x y+ = + +



,

Subtraction X Y x y x y− = − −



,

Multiplication X Y xy xy xy xy xy xy xy xy× = { } { }



min max, , , , , , ,

Division X Y X Y/ /= ×1 , where 1 1 1/ / , /X x x=   if x> 0 or x < 0

The ranges of the operations above are exactly the ranges of the corresponding real oper-
ations. For inversion operation, if one interval includes the value of zero, i.e. x x< <0 , then
we typically have a union of two separated intervals, 1 1 1/ , / / ,X x x= −∞  +∞ ∪ ,
as the inversion of X .

6.1.2  Algebraic Properties

The following properties hold for addition and multiplication.

Commutativity X Y Y X+ = + , X Y Y X× = ×

Associativity X Y Z X Y Z+ +()= +()+ , X Y Z X Y Z× ×()= ×()×

Example 6.1  Consider the following intervals:

X = − 2 45 5 34. , . , Y =  4 56 9 13. , . and Z = − − 6 43 1 95. , . .

Then, X Y+ =  2 11 14 47. , . ,

X Z− = − 0 50 11 77. , . ,

X Z/ . , . ,= − 2 7385 1 2564

c06.indd 118c06.indd 118 13-06-2022 14:56:3113-06-2022 14:56:31

6.1  Interval Number and Interval of Confidence 119

X Y Z× × = − × − −  = −22 3685 48 7542 6 43 1 95 313 4895 143. , . . , . . , ..8295 

= − × − −  = −2 45 5 34 58 7059 8 8920 313 4895 143 8295. , . . , . . , .  .

As for the distributive law of ordinary arithmetic:

x y z x y x z× +()= × + × ,

this does not always hold for intervals. For example, let X =  2 3, , Y =  1 2, , and
Z = − 1 0, . Then,

X Y Z× +()=  ×  =  2 3 0 2 0 6, , , ,

whereas

X Y X Z× + × =   + −  = − 2 6 3 0 1 6, , , ,

However, the distributive law is true as long as the intervals Y and Z have the same sign:

X Y Z X Y X Z Y Z× +()= × + × × > if 0,

For example, we have

2 3 1 2 0 1 2 9 2 3 1 2 2, , , , , , ,  ×   +  ()=   =  ×  + 3 0 1 × , .

6.1.3  Order Relations

Just as real numbers can be ordered, the interval numbers can be ordered, too, e.g. by <,
the relation symbol. This relation is transitive for real numbers: If x y< and y z< , then
x z< for any x y z, , ∈R . A similar and preliminary order relation can be defined for
intervals:

X Y x y< <means that ,

Then, this order relation will have the transitive property,

X Y Y Z X Z< < ⇒ <and ,

For example, [-1, 0] < [1, 2] and [1, 2] < [3, 4] gives [-1, 0] < [3, 4].
However, this relation cannot be used to compare a large number of intervals which

are overlapping, e.g. [1, 3] and [2, 4].
More generalized order relations have been defined to cope with these situations and

used in decision-making contexts. The relation ≤LR [15] is one such relation. It is defined as:

X Y x y x yLR≤ ≤ ≤iff and ,

X Y X Y X YLR LR< ≤ ≠iff and ,

c06.indd 119c06.indd 119 13-06-2022 14:56:3513-06-2022 14:56:35

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 120

which represents the decision maker’s preference on the interval with the highest mini-
mum and maximum. It is transitive, reflexive, and antisymmetric and, thus, a partial
order. Still, many pairs of intervals cannot be compared to it, e.g. X =  1 4, and Y =  2 3, .

The relation ≤CW is another order relation defined on the basis of the center and width

of the interval [15]. For X x x=  , , we have x x x
C =

+
2

 and x x x
W =

−
2

 as the center

and width, respectively. The relation is defined as

X Y x y x yCW C C W W≤ ≤ ≥iff and ,

X Y X Y X YCW CW< ≤ ≠iff and ,

which represents the decision maker’s preference on the interval with the highest expec-
tation and lowest uncertainty. Also, this relation gives only a partial order and many
pairs of intervals cannot be compared by it, e.g. X =  1 5, and Y =  2 3, .

6.1.4  Interval Functions

Let f x()denote a real-valued function of a single real-valued variable x. By replacing x
with an interval X, the resulting function of the interval can be expressed as follows:

f X f x x X()= () ∈{ | }

where f X() is the image of the set X under the mapping f ⋅(). In case of multiple varia-
bles, the function of intervals can be written as follows:

f X X f x x x X x Xn n n1 1 1, , { , , | , , }…()= …() ∈ … ∈ ,

where X Xn1, ,… are n intervals.
Below are two example functions.

6.1.4.1  Quadratic Function
The real-valued function is

f x x x()= ∈2, R

Then, for X x x=  , , we have

f X x x X()= ∈{ }2 |

=






>






<

{ }




≤

x x x

x x x

x x x

2 2

2 2

2 2

0

0

0

, ,

, ,

, max , ,

 00≤










x

c06.indd 120c06.indd 120 13-06-2022 14:56:3913-06-2022 14:56:39

6.2  Fuzzy Number 121

X X X2 ≠ × . For example, −  =  2 1 0 42, , whereas − × −  = − 2 1 2 1 2 4, , , . This discrep-
ancy is due to interval dependency, which assumes the two intervals are independent
when we consider multiplying them.

6.1.4.2  Exponential Function
The real-valued function is

f x x x()= () ∈exp , R ,

Then, for X x x=  , , we have

f X x x()= () ()



exp , exp ,

The exponential function is one type of monotonic function. For all monotonic increasing
functions, we have f X f x f x()= () ()



, whereas, for all monotonic decreasing functions,

we have f X f x f x()= () ()



, .

For more information about interval arithmetic, the readers are referred to the book
[16].

6.1.5  Interval of Confidence

The intervals mentioned above are regarded as the intervals of confidence if the bounds of
the intervals are also uncertain. In these cases, to quantify the uncertainty, we may asso-
ciate a level of presumption to the interval. For example, we can estimate that the life-
time of a component is 11 years, and we can estimate that its lifetime is between 10 and
12 years. We may assign confidence 0 to [10, 12] and confidence 1 to [11, 11]. The two
levels of presumption can be represented by a value in the range [0, 1]. Let α denote the
presumption level, α∈  0 1, . Based on this, we can have the following important
property:

∀ ∈   > ⇒ 

 ⊂




α α α α α α α α1 2 1 20 1

1 1 2 2
, , , , , , x x x x

which means that if α decreases, the interval of confidence will never decrease. This
brings us to the introduction of another important descriptor of uncertainty: the fuzzy
number.

6.2  Fuzzy Number

The concept of a fuzzy number can be presented in different ways. If we follow
Kaufmann and Gupta [17], it is understood to be an extension of the interval of con-
fidence (as presented in Section 6.1.5). However, the classical way of defining fuzzy
numbers is from the viewpoint of fuzzy set theory [18]. Let A* be an ordinary set that

c06.indd 121c06.indd 121 13-06-2022 14:56:4113-06-2022 14:56:41

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 122

are characterized in terms of the binary function µA x* ,()∈{ }0 1 , which indicates
whether the given element belongs to set A* . In a fuzzy set A , any of its elements x
is associated with a membership function value (an extension of the characteristic
function of the ordinary set above), µA x()∈  0 1, , which describes the degree to
which the element belongs to A . Such a degree of membership takes values in 0 1,   .

Two properties are needed to define a fuzzy number on a fuzzy set: convexity and nor-
mality. A fuzzy set is convex if and only if each of its ordinary subsets is convex, i.e. a
closed interval of real numbers. The normality requires that the highest membership
value on A equals 1. A fuzzy number is, then, a convex and normal fuzzy set of real num-
bers, denoted as X x xXα µ α= ()≥{ | } . Thus, a fuzzy number can be considered a gener-
alization of the interval of confidence introduced in Section 6.1.5. In Figure 6.1, the
subplots show a non-normal convex fuzzy set, a normal non-convex fuzzy set and a nor-
mal convex fuzzy set, i.e. a fuzzy number, respectively.

The arithmetic operations of fuzzy numbers can be achieved by using the arithmetic
operations of the intervals illustrated in the previous sections, applying them to the inter-
vals membership level α . For example, let X and Y be two fuzzy numbers, and let Xα
and Yα be their intervals of confidence at the membership presumption level α∈  0 1, .
Then, we can write

X Y x x y y x y x yα α α α α α α α α α+ =   +




 = + +



, , , .

There is another method that can be used for the arithmetic operations of fuzzy num-
bers, namely the fuzzy extension principle [19]. By this, we have the following expres-
sion for the arithmetic operations between two fuzzy numbers,

µ µ µX Y x y X Yz x y⊗ ⊗()= () ()()sup min , ,

where X and Y are fuzzy numbers and ⊗ is any arithmetic operation +−× ÷{ }, , , .

Example 6.2  A discrete fuzzy number usually has the following expression

A a a
i

A i i= ()
=

∞

∑
1

µ / . For two discrete fuzzy numbers X = + +0 2 1 1 2 0 5 3. / / . / and

Y = + +0 3 2 1 3 0 4 4. / / . / , their sum can be obtained according to the extension princi-
ple as follows:

X Y+ = + + +0 2 3 0 2 4 0 2 5. / . / . /

0 3 4 1 5 0 4 6. / / . /+ + +

0 3 5 0 5 6 0 4 7. / . / . /+ + .

Maximizing the presumption level at the same value, then we have

X Y+ = + + + +0 2 3 0 3 4 1 5 0 5 6 0 4 7. / . / / . / . / .

c06.indd 122c06.indd 122 13-06-2022 14:56:4613-06-2022 14:56:46

6.3  Possibility Theory 123

6.3  Possibility Theory

The possibility theory is a popular alternative to represent and treat epistemic uncer-
tainty [19]. In this theory, the uncertain number �X in the sample space Θ⊆ℜ is defined
by the possibility distribution function π : , Θ→  0 1 , such that supx x∈ ()=Θ π 1. For
each element x ∈Θ, π x() represents the degree of possibility that �X takes value x . If
there is an element xi that makes π xi()= 0, then xi will be regarded as an impossible

μA

μA

x(a). A non-normal convex fuzzy set0.0

1.0

0.5

x(b). A normal non-convex fuzzy set0.0

1.0

0.5

μA

x(c). A convex and normal fuzzy set0.0

1.0

0.5

Figure 6.1  (a). A non-normal convex fuzzy set. (b). A normal non-convex fuzzy set. (c). A convex
and normal fuzzy set.

c06.indd 123c06.indd 123 13-06-2022 14:56:4713-06-2022 14:56:47

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 124

outcome. On the other hand, if π xi()=1, then xi will be regarded as a definitely possible
outcome, i.e. an unsurprisingly normal, usual outcome [20]. This is a much weaker state-
ment than the situation when probability equals 1, which makes the value xi certain and
the value x xj i≠ impossible. It is also known that π �X x() is formally equivalent to the
fuzzy set { / | }µ x x x() ∈Θ [19]. The two measures of possibility distribution, namely the
possibility Π B() and the necessity N B(), are defined as

Π ΠB x N B B xx B x B()= () ()= − ()= − ()()∈{ } ∈{ }sup and infπ π1 1 .

Π B() indicates to what extent event B is plausible and N B() indicates to what extent
event B is certain. For any pair of events B1 and B2 , it obeys the following rules:

Π Π ΠB B B B N B B N B N B1 2 1 2 1 2 1 2∪ ∩()= () ()() ()= () ()()max , min , . and

The possibility measures can be linked to probabilities in the following manner [12].
The possibility distribution π x() can also be represented by a nested set of confidence

intervals, the α -cuts x x x xα α π α, |   = ()≥{ } of α where xα and xα are respectively the
lower and upper limits of the α -cuts, respectively. The degree of certainty of x xα α,  
containing the value of �X is equal to N x x N X x N X xα α α α α, min ,  ()= ≥() ≤()()= −1 .
On the other hand, the α -cuts of a possibility distribution can be interpreted as the prob-
abilistic constraints P X x x∈  ()≥ −α α α, 1 ; thus, the possibility distribution is linked to
imprecise probability [21]. Then, N x xα α,  () corresponds to a lower bound of probabil-
ity and Π x xα α,  ()=1 corresponds to an upper bound of probability.

Example 6.3  Let us consider the opinions given by experts about a certain measure-
ment. They are certain that it varies within the interval [1, 4]. Based on their experience
and possibly a few measurements, they suggest the true value of �X is most likely to fall
into a smaller interval [2, 3]. The possibility distribution, the related possibility measures
and the α -cut are depicted in Figure 6.2.

For example, x x0 7 0 7 1 7 3 3. ., . , .   =   is the set of values for which the possibility distribu-
tion function is greater than or equal to 0.7: We conclude that if the event B indicates that
the parameters lie in the interval [1 7 3 3. , .], then N B P B B()= ≤ ()≤ = ()0 3 1. Π .

6.3.1  Possibility Propagation

The possibilistic output �Y of a model of possibilistic inputs �Xi is often a multivariate
function � � � �Y f X X Xn= ()1 2, ,.., . Given the possibility distributions of the uncertain input
variable �X , it is possible to infer the possibility distribution of �Y by means of the α -cut
method. For a given input variable �X , we define the α -cut of �X as:

X x U xXα π α α= ∈ ()≥ ≤ ≤{ | , }� 0 1 ,

X x xα α α=  , ,

c06.indd 124c06.indd 124 13-06-2022 14:56:5313-06-2022 14:56:53

6.4  Evidence Theory 125

where U is the universe of discourse of �X (i.e. the range of its possible values) and xα
and xα are the lower and upper limits of the α -cut, respectively. Given the α -cuts of each
uncertain input parameter, the α -cut of the output Y can be obtained as:

Y y yα α α= 

, ,

Y f X X Xnα α α α= …()inf , , ,1 2 ,

Y f X X Xnα α α α= …()sup , , ,1 2 ,

where Xiα represents the α -cut of the ith possibilistic input variable. For each α -cut of
the output �Y , the maximum and minimum outputs (upper bound Yα, and lower bound
Yα) are obtained.

6.4  Evidence Theory

The evidence theory, also called Dempster-Shafer theory [23], provides a single frame-
work to treat variability and imprecision separately. Let Ω= …{ }θ θ1, , n denote a finite
discrete set of mutually exclusive events, called the frame of discernment. It is assumed
that one’s total belief induced by a body of evidence can be divided into various portions,
each one assigned to a subset A of Ω. To express this, a basic belief assignment (BBA)
function is defined on the power set 2Ωmapping the belief masses onto the events or sets
of events:

m m A
A

φ()= ()=∑
⊆

0 1and
Ω

,

where φ represents the empty set and m A() is the belief mass that one is willing to com-
mit exactly to A and not to its subsets. For example, let Ω={ }1 2, : then, 2 1 2Ω Ω={ }φ, , , ,

2 1 3 4 0

α=0.7

1

L
ikelihood

Values considered
not possible

Values considered
not possible

Values considered
certain

Values considered
most likely

Lower probability
bound or necessity

measure

Possibility
distribution

Upper probability
bound or possibility

measure

α-cut

Figure 6.2  Possibility distribution of �x, and related possibility measures and the α-cut [22].

c06.indd 125c06.indd 125 13-06-2022 14:56:5613-06-2022 14:56:56

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 126

and a BBA function can be defined, for example, m m m1 0 1 2 0 2 1 2 0 7()= ()= { }()=. , . , , . .
The subset A⊆Ω is called a focal element if m A()> 0 and F are the set of all focal ele-
ments induced by m. The duplet B F=〈 〉,m is referred to as the body of evidence.

A Bayesian BBA is a special case where all the focal elements are singletons and the
belief masses equal probabilities.

The differences between probability distribution functions and BBAs are twofold: 1)
the probability distribution functions are defined on Ω whereas the BBAs are defined on
the power set 2Ω and 2) the sub-additivity hypothesis is not required in the evidence
theory as it is, instead, in the probability theory.

The evidence theory provides two indicators to quantitatively describe uncertainty
with respect to a set A: the belief Bel A() and the plausibility Pl A() functions, which are
also referred to as belief functions. A portion of belief mass committed to an element A
must be committed to any of its subsets: to obtain the total belief in A, one must sum up
the belief masses of every subset B of A. The function that accounts for the total belief of
A is called belief function:

Bel A m B
B A B

()= ()∑
⊆ ∀ ⊆,

,
2Ω

It is easily verified that the belief in some hypothesis A and the belief in its complement
A do not necessarily sum to 1. Therefore, Bel A() does not reveal to what extent one
believes in A or, dually, to what extent one doubts A. Instead, it is the quantity Pl A(),
namely the plausibility of A, which is introduced to define to what extent one fails to
doubt in A:

Pl A m B
B B

()=
∩

()∑
≠ ∀ ⊆A φ,

,
2Ω

Belief and plausibility have the following relations:

Bel A Pl A()= − ()1 ,

Pl A Bel A()= − ()1 .

Bel A() gathers the imprecise evidence that asserts A, and Pl A() gathers the imprecise
evidence that does not conflict with A. Therefore, the interval Bel A Pl A() ()



, contains all

probability values induced by the mass distribution m A() on subset A. The mass distri-
bution m is the generalization of the probability distribution p and the possibility distri-
bution π of uncertain discrete variables (the continuous variables have to be discretized)
[24]. The evidence theory, thus, encompasses the probability theory and possibility the-
ory in two ways: 1) when the focal elements are nested, Bel is a necessity measure, that
is Bel=Π and Pl is a possibility measure, that is Pl N= and 2) when the focal elements
are some disjoint intervals, and Bel and Pl are both probability measures, that is
Bel Pl P= = .

c06.indd 126c06.indd 126 13-06-2022 14:57:0113-06-2022 14:57:01

6.4  Evidence Theory 127

From the above section, we can calculate the belief and plausibility functions from the
BBA. On the other hand, if we know belief or plausibility, then we will be able to calcu-
late the BBA using the following formula:

m A Bel B
B A

A B()= −() ()∑
⊆

−

1 ,

where A B− is the cardinality of the difference of set A from set B.

Example 6.4  Let A a a a={ }1 2 3, , and m a a m a1 2 10 3 0 1, . , .{ }()= { }()= , m a a2 3,{ }()
= ()=0 2 0 4. , .m A . The focal set of this BBA is F = { } { } { }{ }a a a a a A1 1 2 2 3, , , , , .

We can compute the belief and plausibility of any subset of A. For example, the belief
in a a1 2,{ } is

Bel a a m a a m a1 2 1 2 1 0 4, , . .{ }()= { }()+ { }()=

The plausibility of a a1 2,{ } is

Pl a a m a a m a m A1 2 1 2 1 0 8, , . .{ }()= { }()+ { }()+ ()=

Given the belief values, to compute the BBA of a a1 2,{ }, we have the following formula:

m a a1 2
1 01 0 1 1 0 4 0 3,{ }()= −() × + −() × =

In the end, we can build the following table for the BBAs, belief and plausibility of all

subsets of A.

Table 7.1  The BBAs, belief and plausibility of subsets of A.

Set m Bel Pl

ϕ 0 0 0

a1{ } 0.1 0.1 0.8

a2{ } 0 0 0.9

a3{ } 0 0 0.6

a a1 2,{ } 0.3 0.4 0.8

a a1 3,{ } 0 0.1 0.7

a a2 3,{ } 0.2 0.2 0.9

A 0.4 1 1

c06.indd 127c06.indd 127 13-06-2022 14:57:0513-06-2022 14:57:05

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 128

6.4.1  Data Fusion

The data fusion method was developed to combine the evidence from different sources
of uncertainty. Because a piece of evidence can be possibilistic (fuzzy) or probabilistic,
evidence theory provides a framework to fuse the different uncertainties. Let B F1 1 1= ,m
and B F2 2 2= ,m denote two bodies of evidence where F1 and F2 are the focal sets of the
same universe U, induced by m1 and m2, respectively. The conflict occurs whenever the
focal elements have no overlap, i.e. A A1 2∩ =∅. Thus, the total conflict of the two evi-
dence bodies is defined as follows:

κ=

∩
() ()∑

=∅A A

m A m A
1 2

1 1 2 2

where A1 1∈F and A2 2∈F . Then, we can create a fused body of evidence B Ff f fm= ,
from the two evidence bodies B1 and B2 . First, the focal set is defined as follows:

F F Ff A A A A A A= ≠∅ ∈ ∈∩ ∩{ | , }.1 2 1 2 1 1 2 2 and

Then, the BBA mf is defined as

m Bf
A A m A m A

()= ∩
−

∑ = () ()
1 2

1 1 2 2

1
C

κ

The normalization factor 1−κ is introduced at the denominator to ensure mf adds up to
1. For more details about evidence theory, the readers can refer to the book [25].

6.5  Random-fuzzy Numbers (RFNs)

Random-fuzzy numbers (RFNs) were first introduced by Kaufmann and Gupta [17] as a
tool to jointly express epistemic and aleatory uncertainties. Later, RFN Cooper, et al. [26]
and Baudrit, et al. [24] extended it to hybrid uncertainty propagation in the area of risk
analysis. Given the monotonicity of the cumulative distribution functions (cdfs) of ran-
dom variables and the nestedness of the possibility distribution functions of the fuzzy
numbers, the formal definition of RFN proposed by Ferson and Ginzburg [27] is pre-
sented as follows.

Definition  (Ferson and Ginzburg [27]) Let F denote the set of all cdfs defined on the
real number set R , and each element F ∈ F is an onto function F : ,R→  0 1 such that
F x F x1 2()≥ () whenever x x1 2> . An RFN is a set of closed intervals, each characterized
by a pair of functions from F :

H F F: , : ,0 1   → × 



F F α α α�

such as for α α1 2 0 1, ,ε   , F x F x F x F xα α α α1 2 2 1
()≥ ()≥ ()≥ () wherenever α α1 2< , where α1

and α2 represent fuzzy membership values of x .

c06.indd 128c06.indd 128 13-06-2022 14:57:0913-06-2022 14:57:09

6.5  Random-fuzzy Numbers (RFNs) 129

Example 6.5  Figure 6.3 (a) depicts the three-dimensional representation of an RFN.
The x-axis is the real number line, the F-axis gives the cumulative probability values, and
the π -axis contains the possibility values. The shaded area at the α∈()0 1, level includes
all the closed probability intervals, limited by Fα as the lower bound and Fα as the upper
bound. Figure 6.3(b) depicts the intersection of the RFN with the plane F(x) = p, which
is essentially a fuzzy number. Figure 6.3(c) shows a two-dimensional representation of
the RFN from Figure 6.1(a), and its α level probability intervals. Figure 6.3(d) depicts the
intersection of the RFN with the plane F(x) = p, from Figure 6.3(c), in a two-dimensional
representation.

6.5.1  Universal Generating Function (UGF) Representation of Random-
fuzzy Numbers

We first recall the UGF for a discrete random variable X, as

u z p zX
j

J

j
x j()=

=
∑

0

	 (6.1)

where z is the base of z-transform, J is the total number of realizations of X , x j is the

j-th realization of X , and pj is the probability mass attached to x j and satisfying
j

J

jp
=
∑ =

0

1.

1

p

1

1 2 3 4 5 x

(b)

F(x)F(x)

π (x)

α

π (x)

1

1 2 3 4 5 x

(d)

(a)

1 1

1 2 3 4 5 x

1

1 2 3 4 5 x

(c)

p

One α level
probability
interval

00

0 0

Figure 6.3  Three-dimensional and two-dimensional representations of an example RFN [22].

c06.indd 129c06.indd 129 13-06-2022 14:57:1113-06-2022 14:57:11

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 130

The u-function is useful in representing the probability distribution function of discrete
random variables because it preserves some basic properties of the moment-generating
function, which uniquely determines its probability distribution function [28].

Definition  The u-function of a discrete RFN ��X , denoted by u zX�� (), can be written as
follows:

u z p z p zX
j

J

j
X

j

J

j
x xj j j

��
�()= =

= =





∑ ∑

0 0

,
α 	 (6.2)

This definition satisfies the basic property of the UGF: The coefficient and exponent are
not necessarily scalar variables but can be other mathematical objects (e.g. vector,
matrix) [28]. It is seen that Equation (6.1) is the special case of Equation (6.2): if all the
exponents of z in Equation (6.2) are crisp values (i.e. sufficient information is collected to
eliminate the imprecision in state values), then Equation (6.2) will reduce to Equation
(6.1). On the other hand, if there is only one coefficient of z, equal to 1, then Equation
(6.2) will reduce to the following expression:	

u z z zX
X x x

�
�()= =

 α α, 	 (6.3)

which is the u-function of a pure fuzzy number. Recall that π �X x() can be uniquely
determined by its α-cut set x xα α,   ; therefore, Equation (6.3) defines a one-to-one cor-
respondence to �X . For example, the u-function of the fuzzy number depicted in Figure
6.2 is z 1 4+ − α α, .

6.5.2  Hybrid UGF (HUGF) Composition Operator

Because RFN treats the two types of uncertainties separately, the composition operator
of hybrid UGF has the properties of probabilistic UGF composition operator [29] and of
the fuzzy extension principle [19]. In the following three cases, we will show that the
conventional UGF composition operator ⊗ f is applicable to hybrid UGF compositions if
its structure function f ⋅() supports fuzzy arithmetic operations.

Case 1: ⊗ f between the u-functions of two fuzzy variables �X1 and �X2,

u z u z zX f X
f X X

� �
� �

1 2

1 2()⊗ ()= (,)

The extension principle [19] reads that π π π� � �Y y f x x X Xy x x()= () ()()= ()sup min ,,1 2 1 21 2 . For
example, if we have �X1 1 4= + − α α, and �X2 2 3= + − α α, , then the u-function of the
denominator will be able to be written as:

u z u z z zX X
X X

� �
� �

1 2

1 2
1 2 4 3()⊗ ()= =×

× +()× +() −()× −()



α α α α, .

c06.indd 130c06.indd 130 13-06-2022 14:57:1413-06-2022 14:57:14

6.5  Random-fuzzy Numbers (RFNs) 131

The fuzzy arithmetic presumes the total dependence between the α -cuts [24].

Case 2: ⊗ f between one random variable X1 and one fuzzy variable �X2,	

u z u z p zX f X
j

J

j
f X Xj

1 2

1

1

1

1 1 2

0
1()⊗ ()=

=

()∑�
�,

For example, suppose that X3 has three states (0, 0.2, 0.8) with the probability vector (0.4,
0.4, 0.2) and �X1 1 4= + − α α, ; then, the outcome of this term can be written as:

u z u z z z zX X3 1
0 4 0 4 0 20 0 2 1 0 2 4 0 8()⊗ ()= + +×

+() −()



� , . .α α 11 0 8 4+() −()



α α, . .

Case 3: ⊗ f between two random fuzzy variables ��X1 and ��X2,

u z u z p p zX f X
j

J

j

J

j j
f X Xj j

�� ��
� �

1 2

1

1

2

2

1 2

1 1 2 2

0 0
1 2

 ()⊗ ()=
= =

()∑∑
,

For example, we have the following operation for the addition of two RFNs:

u �� ��X Xz u z z z z
1 2

0 4 0 4 0 20 0 2 1 0 2 4 0()⊗ ()= + ++
+() −()



. . .. , .α α .. , .

.. .

8 1 0 8 4

0 0 2 1 20 4 0 4

+() −()





+

+() +()







⊗

+

α α

α αz z ,, . . , ..0 2 4 3 0 8 1 2 0 8 4 32−() −()



 +() +() −() −()



+α α α α α α0 z 

+() +() −() −()













= +0 16 0 160 0 2 1 2 0 2 4 3. . . , .z z α α α α ++ ++() +() −() −()





+()
0 08

0 16

0 8 1 2 0 8 4 3

0 2 1 0 2

.

.

. , .

. , .

z

z

α α α α

α 44 0 2 1 3 0 2 4 4

0

0 16

0 08

−()



 +() +() −() −()



+ +α α α α α.

.

. , .z

z .. , . . , ..2 1 9 4 0 2 4 13 4 0 8 1 0 8 40 08+() +() −() −()



 +() −(+α α α α α αz))





+() +() −() −()



 +

+

+0 08 040 2 1 6 0 2 4 7 0 8 1. .. , . .z zα α α α 0 αα α α α() +() −() −()



3 0 4 4, . .8

In general, the HUGF composition operator of n u-functions, i.e. components, is defined
as follows:

⊗ () ()… ()()= …
= = =
∑ ∑∏f X X X
j

J

j

J

i

n

iju z u z u z p z
n

n

n

i
�� �� ��

1 2

1

1

0 0 1

, , , ff X X Xj j njn
� � �

1 1 2 1
, , ,…()

For the case of two arguments, the following two interchangeable notations can be used:

⊗ () ()()= ()⊗ ()f X X X f Xu z u z u z u z�� �� �� ��
1 2 1 2

, .

Two basic properties of ⊗ f , namely the associative and commutative properties, are used
for reducing the computation time of uncertainty propagation.

c06.indd 131c06.indd 131 13-06-2022 14:57:1713-06-2022 14:57:17

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 132

If the function f ⋅() possesses the associative property for any of its component, then
⊗ f will possess this property:

⊗ ()… () ()… ()()=
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , ,

⊗ ⊗ ()… ()() ⊗ ()… ()()()
+f f X X f X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , , .

If the function f ⋅() possesses the commutative property for any of its component, then
⊗ f will possess this property:

⊗ ()… () ()… ()()=
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , ,

⊗ ()… () ()… ()()
+f X X X Xu z u z u z u z

i i n
�� �� �� ��

1 1
, , , , , .

These properties are useful in reducing the computation time. By applying these two
properties, the elementary random and fuzzy variables might be separated:

⊗ ()… () ()… ()()=f X X X Xu z u z u z u z
l m1 1

, , , , ,� �

⊗ ⊗ ()… ()() ⊗ ()… ()()()f f X X f X Xu z u z u z u z
m l1 1

, , , , ,� � .

In this way, the fuzzy numbers can be processed prior to combination with the
probabilistic variables, which involves multiplying the polynomials. Thanks to the
total dependence between the α -cuts, the convolution type of computation can be
avoided.

For further details on uncertainty treatment methods and their application to system
RAMS, the interested reader can consult the book in reference [30].

6.6  Exercises

1)	 Prove the distributive law for interval numbers.
2)	 For two interval numbers, prove that if X YCW≤ and X YLR≤ hold, then X Y= .
3)	 For two fuzzy numbers X and Y and given the respective membership functions

µX x

x
x x

x x

x

()=

≤−

+ − ≤ ≤−

− + − ≤ ≤

≤







0 5

3
5
3

5 2

3
1
3

2 1

0 1

, ,

, ,

, ,

, ,







c06.indd 132c06.indd 132 13-06-2022 14:57:2013-06-2022 14:57:20

References 133

and

µY y

y
y y

y y

y

()=

≤−

+ − ≤ ≤

− + ≤ ≤

≤







0 3

7
3
7

3 4

8
12
8

4 12

0 12

, ,

, ,

, ,

, ,







compute the membership functions of X Y− and X Y÷ .
4)	 For two bodies of evidence, B F1 1 1= ,m and B F2 2 2= ,m , we have the following focal

sets and BBA functions:

F1 3 1 2 2 3 1 2 3= { } { } { } { }{ }a a a a a a a a, , , , , , , and m1 1 0 1 0 3 0 2 0 4F()={ }. , . , . , . ;

F2 1 1 2 1 2 3= { } { } { }{ }a a a a a a, , , , , and m2 2 0 3 0 2 0 5F()={ }. , . , . .

Compute the fused body of evidence for all subsets of A a a a={ }1 2 3, , .
5)	 For the following fuzzy random variable

u z p z p zX
j

J

j
X

j

J

j
x xj j j

��
�()= =

= =





∑ ∑

0 0

,
α

what is its mean and variance?

References

  1	 Apostolakis, G.E. (1990). The concept of probability in safety assessments of
technological systems. Science 250 (4986): 1359–1364.

  2	 Montgomery, D.C. and Runger, G.C. (2010). Applied Statistics and Probability for
Engineers, 5th e. Hoboken, NJ: John Wiley & Sons.

  3	 Li, Y.F. and Zio, E. (2012). Uncertainty analysis of the adequacy assessment model of a
distributed generation system. Renewable Energy 41: 235–244.

  4	 Singer, D. (1990). A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets
and Systems 34: 145–155.

  5	 Lin, C.H., Ke, J.C., and Huang, H.I. (2012). Reliability-based measures for a system with an
uncertain parameter environment. International Journal of Systems Science 43 (6): 1146–1156.

  6	 Wang, A.S., Luo, Y., Tu, G.Y., and Liu, P. (2011). Quantitative evaluation of human-
reliability based on Fuzzy-clonal selection. IEEE Transactions on Reliability 60 (3): 517–527.

  7	 Cai, K.Y. (1996). Introduction to Fuzzy Reliability. Kluwer Academic Pub-lishers.
  8	 Chen, S.M. (1994). Fuzzy system reliability analysis using fuzzy number arithmetic

operations. Fuzzy Sets and Systems 64: 31–38.
  9	 Helton, J.C. (2004). Alternative representations of epistemic uncertainty. Reliability

Engineering & System Safety 85 (1-3): 1–10.
10	 Paté-Cornell, M.E. (1996). Uncertainties in risk analysis: Six levels of treatment.

Reliability Engineering & System Safety 54 (2-3): 95–111.

c06.indd 133c06.indd 133 13-06-2022 14:57:2213-06-2022 14:57:22

6  Uncertainty Treatment under Imprecise or Incomplete Knowledge 134

11	 Kaplan, S. and Garrick, B.J. (1981). On the quantitative definition of risk. Risk Analysis
1 (1): 11–27.

12	 Aven, T. and Zio, E. (2011). Some considerations on the treatment of uncertainties in
risk assessment for practical decision making. Reliability Engineering & System Safety 96
(1): 64–74.

13	 Burkill, J.C. (1924). Functions of intervals. Proceedings of the London Mathematical
Society 2 (1): 275–310.

14	 Moore, R.E. (1962). Interval arithmetic and automatic error analysis in digital
computing. DTIC Document.

15	 Ishibuchi, H. and Tanaka, H. (1990). Multiobjective programming in optimization of the
interval objective function. European Journal of Operational Research 48 (2): 219–225.

16	 Moore, R.E., Kearfott, R.B., and Cloud, M.J. (2009). Introduction to Interval Analysis.
Philadelphia, PA: SIAM.

17	 Kaufmann, A. and Gupta, M.M. (1985). Introduction to Fuzzy Arithmetic: Theory and
Applications. New York City: Van Nostrand Reinhold.

18	 Zadeh, L.A. (1996). Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected
Papers by Lotfi A Zadeh, 394–432. World Scientific, River Edge, NJ.

19	 Dubois, D., Nguyen, H.T., and Prade, H. (2000). Possibility theory, probability and fuzzy
sets: Misunderstandings, bridges and gaps. In: Fundamentals of Fuzzy Sets (ed. D.
Dubois and H. Prade), 343–438. Boston, MA: Kluwer.

20	 Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics
& Data Analysis 51: 47–69.

21	 de Cooman, G. and Aeyels, D. (1999). Supremum-preserving upper probabilities.
Information Sciences 118: 173–212.

22	 Li, Y.F., Ding, Y., and Zio, E. (Mar 2014). Random Fuzzy extension of the universal
generating function approach for the reliability assessment of multi-state systems under
aleatory and epistemic uncertainties. IEEE Transactions on Reliability 63 (1): 13–25.
doi:10.1109/tr.2014.2299031.

23	 Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton Univ. Press.
24	 Baudrit, C., Dubois, D., and Guyonnet, D. (2006). Joint propagation of probabilistic and

possibilistic information in risk assessment. IEEE Transactions on Fuzzy Systems 14 (5):
593–608.

25	 Yager, R.R. and Liu, L. (2008). Classic Works of the Dempster-Shafer Theory of Belief
Functions, 1 e. (Studies in Fuzziness and Soft Computing), 806. Berlin Heidelberg:
Springer-Verlag.

26	 Cooper, J.A., Ferson, S., and Ginzburg, L. (1996). Hybrid processing of stochastic and
subjective uncertainty data. Risk Analysis 16 (6): 785–791.

27	 Ferson, S. and Ginzburg, L.R. (1995). Hybrid arithmetic. In: ISUMA-NAFIPS, 619–623.
Los Alamitos, CA.

28	 Lisnianski, A. and Levitin, G. (2003). Multi-state System Reliability: Assessment,
Optimization and Applications. Singapore: World Scientific.

29	 Ushakov, I. (1986). Universal generating function. Soviet Journal of Computer Systems
Science 24 (5): 118–129.

c06.indd 134c06.indd 134 13-06-2022 14:57:2213-06-2022 14:57:22

135

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

7

Applications

This chapter contains two case studies that make use of the uncertainty quantification
and computation tools introduced in all the previous chapters of Part II. The first case
study is about the reliability assessment of a distributed power generation system under
hybrid uncertainties. The fuzzy number, possibility distribution, and evidence function
are implemented; the uncertainty propagation algorithm is introduced. The detailed
version of this case study can be found in [1]. The second case study is about the degra-
dation modelling of a nuclear component subject to multiple failure modes. The multi-
state system (MSS) models, Markov processes, and Monte Carlo simulation (MCS)
algorithm are presented for this application example. The details about this case study
can be found in [2].

7.1  Distributed Power Generation System Reliability
Assessment

7.1.1  Reliability of Power Distributed Generation (DG) System

We present a model for the reliability assessment of a representative distributed power
generation system, which consists of a number of power generation and consumption
units. The generation units include renewable generators, e.g. solar generators, wind
turbines, electric vehicles (EVs) and the conventional power source by way of transform-
ers (Figure 7.1). The transmission lines are often left out of consideration in the reliabil-
ity assessment studies [3,4]. The consumption units can be different types of loads, e.g.
residential, commercial, and industrial loads [5].

In the power engineering domain, reliability is defined somewhat differently. In many
cases, reliability assessment is conducted in the form of power adequacy (PA) assess-
ment, which focuses on evaluating the sufficiency of generation facilities within the sys-
tem to satisfy the consumer demand [6] (i.e. power generation PG exceeding load power
consumption PL):

P P PA G L= − . 	 (7.1)

c07.indd 135c07.indd 135 10-06-2022 17:11:1310-06-2022 17:11:13

7  Applications136

The power adequacy quantity is related to the reliability of the MSS introduced in Chapter
3, where system reliability is described considering the adequacy index PA as Pr PA ≥()0 .

Power generation PG consists of two parts: power from the transmission system, PT ,
and power from the distributed generators, PDG :

P P PG T DG= + .	 (7.2)

Considering the distributed generators units of the representative distributed power gen-
eration system in Figure 7.1, the compound power output PDG is

P P P PDG = + +S W EV , 	 (7.3)

where P P
i

m

i
S

S

S =
=
∑

1

, P P
i

m

i
W

W

W =
=
∑

1

, and P P
i

m

i
EV

EV

EV =
=
∑

1

 are the power outputs from the set

of mS solar generators, mW wind turbines, and mEV EVs, respectively, with P Pi
S

i
W, , and

Pi
EV being the power outputs from the individual units. The value of PEV is negative

when the EV group is charging batteries (i.e. consuming power from the network).

7.1.2  Energy Source Models and Uncertainties

The power function of the ith solar generator can be written as	

P g si
S

S i i
S= (), .θ 	 (7.3)

Solar irradiation si is typically modeled by a probabilistic distribution (e.g. beta distribu-
tion) because the historical solar irradiation data is often sufficient and accessible to

Loads

Wind turbines

Solar generators

Electric Vehicles

Transformers

Distribution
network

Electrical power �ow

Figure 7.1  Conceptual diagram of the representative distributed generation system [1].

c07.indd 136c07.indd 136 10-06-2022 17:11:1710-06-2022 17:11:17

7.1  Distributed Power Generation System Reliability Assessment 137

justify such representation [7]. The operation parameters θi
S (detailed definitions can be

found in [1]) are normally provided as deterministic values. However, due to the chang-
ing operation conditions, they are not fixed values but little data are available to build
probability distributions for them. Consequently, experts’ judgments are used to esti-
mate the operation parameters, with inevitable imprecision. To capture this, possibility
distributions can be used.

The wind turbines model have a similar description of the uncertainties as the solar
generators model. The power function of the ith wind turbine is written as

P g vi
W

W i i
W= (), .θ 	 (7.4)

Wind speed vi is modeled by a probabilistic distribution (e.g. Weibull distribution)
because the historical wind speed data are sufficient and accessible to support such
representation of uncertainty. The operation parameters θi

W (details can be found in [1])
of the ith wind turbine model are considered ‘coefficients’. Similar to the solar genera-
tion parameters, we adopt probability distributions for the wind turbine operation
parameters.

All EVs distributed on the network are treated as a single aggregation with three pos-
sible power output states: charging (PEV < 0), disconnection (PEV = 0), and discharging
(PEV > 0). Different from solar and wind generators, EV power outputs are primarily
influenced by the activities of the drivers, who can decide the amount of energy to be
exchanged with the grid and the timing/location for the exchange. Due to privacy issues,
gathering informative operation data for each EV might be difficult, so the estimation of
the model parameters relies on expert judgment and knowledge of the drivers’ behavior,
which is imprecise. Then, the possibilistic distribution is chosen to model the uncertain-
ties in EV power.

As for transformers, the operation has two types of uncertainties: fluctuations of the
grid and hardware degradation. Due to the inherent fluctuations in the grid, the power
output of the transformer in its working state varies from 80% to 100% of its capacity. As
for the degradation and failure mechanisms of the transformers, they have been exten-
sively studied and sufficient data exist to estimate the parameters of probabilistic distri-
butions for describing them. Finally, the real-time load values are monitored by the
metering devices installed at the load points, and data are available to establish a proba-
bilistic representation of the associated uncertainties.

Table 7.1 summarizes the aforementioned uncertainties. The overall adequacy assess-
ment model of the distributed generators system can be written as

P f s s v v P P PA m m T L EV
S

m
S W

S W S= … … … …1 1 1 1, , , , , , , , , , , , , , 

  θ θ θ θm
W

W







 � (7.5)

where the possibilistic variables are denoted by the symbol (~). The system adequacy
output is a function of aleatory and epistemic uncertain variables and parameters.

c07.indd 137c07.indd 137 10-06-2022 17:11:1810-06-2022 17:11:18

7  Applications138

7.1.3  Algorithm for the Joint Propagation of Probabilistic and
Possibilistic Uncertainties

Consider a general power adequacy model Y f X X X Xk k n= … …()+1 1, , , ,
 of n uncertain

variables X i ni , , ,= …1 , ordered in such a way that the first k variables are described by
probability distributions p x p xX Xk1

()… ()(), , , and the last n-k variables are possibilistic

and represented by possibility distributions π π
 X Xk n

x x
+
()… ()()

1
, , . The propagation of

the hybrid uncertainty can be performed by MCS combined with the extension principle

of fuzzy set theory by means of the following two major steps [8]:

1)	 Repeat MCS to process the uncertainty in the probabilistic variables.
2)	 Analyze fuzzy intervals for treating the uncertainty in the possibilistic variables.

The detailed algorithm [9] to calculate the fuzzy random output can be summarized as
follows:

Table 7.1  Different uncertainties of the energy models of the distributed generators system [1].

Component Parameter Source of uncertainty Type of Information
available

Uncertainty
representation

Solar
generator

Solar
irradiation

Irradiation variability Historical data Probabilistic
(e.g. Beta)

Operation
parameters

Incomplete knowledge Experts’ judgments,
users’ experiences

Possibilistic

Wind turbine Wind speed Speed variability Historical data Probabilistic
(e.g. Weibull)

Operation
parameters

Incomplete knowledge Experts’ judgments,
users’ experiences

Possibilistic

EV
aggregation

Power output Incomplete knowledge,
subjective decisions

Experts’ judgments,
users’ experiences

Possibilistic

Transformer Grid power Power
fluctuations

Historical data Probabilistic

Time to
failure

Mechanical
degradation/failure data

Historical data Probabilistic

Load Load value Consumption variability Historical data Probabilistic

For i = 1, 2, …, m (the outer loop processing aleatory uncertainty), do the following:

1)	 Sample the ith realization x x xi i
k
i

1 2, , ,…() of the probabilistic variable vec-
tor X X Xk1 2, , , …().

2)	 For α α α= ⋅ …0 2 1, , , ,∆ ∆ (the inner loop processing epistemic uncertainty), ∆α
is the step size, e.g. ∆α=0.05), do:

c07.indd 138c07.indd 138 10-06-2022 17:11:2010-06-2022 17:11:20

7.1  Distributed Power Generation System Reliability Assessment 139

2.1	 Calculate the corresponding α-cuts of possibility distributions π π
 X Xk n+
…()

1
, ,

as the intervals of the possibilistic variables  X Xk n+ …()1, , .

2.2	 Compute the minimal and maximal values of the outputs of the

model f X X X Xk k n1 1, , , , ,… …()+
  , denoted by f i

α and f i
α, respectively. In this

computation, the probabilistic variables are fixed at the sampled values
x x xi i

k
i

1 2, , ,…() whereas the possibilistic variables take all values within the

ranges of the α -cuts of their possibility distributions π π
 X Xk n+
…()

1
, , .

2.3	 Record the extreme values f i
α and f i

α as the lower and upper limits of the α

-cuts of f x x x X Xi i
k
i

k n1 2 1, , , , , ,… …()+
  .

End
3)	 Collect all the lower and upper limits of the different α-cuts

of f x x x X Xi i
k
i

k n1 2 1, , , , , ,… …()+
  to establish an approximated possibility distribu-

tion (denoted by πi
f) of the model output.

End

This procedure results in an ensemble of m realizations of the approximated possibility
distributions π π1

f
m
f, ,…() . For each set A in the universe of discourse of all power ade-

quacy values, the following formulas are used to obtain the possibility measure Pos Ai
f ()

and the necessity measure Nec Ai
f (), given the possibility distribution πi

f :

Pos A xi
f

x A i
f()= (){ }∈{ }sup π ,

Nec A xi
f

x A i
f()= − (){ }∈{ }inf 1 π .	 (7.6)

These m different possibility and necessity measures are, then, used to obtain the belief
Bel A() and the plausibility Pl A() of any set A, respectively:

Pl A p Pos A
i

m

i i
f()= ()

=
∑

1

,

Bel A p Nec A
i

m

i i
f()= ()

=
∑

1

, 	 (7.7)

where pi is the probability of sampling the i-th realization (, , ,)x x xi i
k
i

1 2… of the random
variable vector (, ,)X Xk1… . For each set A, this algorithm computes the

c07.indd 139c07.indd 139 10-06-2022 17:11:3110-06-2022 17:11:31

7  Applications140

probability-weighted average of the possibility measures associated with each output
fuzzy interval.

For pure probabilistic propagation, the possibilistic distributions have to be converted
into pdfs. This conversion can be achieved by various techniques [10], e.g. by simple
normalization:

p x
x

x dx
X

X

X
i

i

i

()=
()

()∫
+∞

π

π





0

. 	 (7.8)

Once the probabilistic distribution for each fuzzy variable is determined, the
outer loop of the algorithm is performed m times, and at each iteration, the vector

X X Xn1 2, , , …() is sampled and the corresponding adequacy value is calculated. After the
m repetitions, the empirical probability distribution of system adequacy PA is obtained.

7.1.4  Case Study

The system used as case study is modified from the IEEE 34 node distribution test feeder.
Detailed information about this study can be found in [1]. Figures 7.2–7.4 present the
graphical comparisons between the empirical cumulative distribution function (cdf)
obtained by the probabilistic propagation approach and the belief and plausibility func-
tions obtained by the joint propagation approach at different renewable penetration lev-
els. The following observations can be drawn from the comparisons:

1)	 The cdf of distributed generators adequacy obtained by the pure probabilistic
approach lies within the boundaries of belief and plausibility functions obtained by
the joint propagation approach.

2)	 An explicit separation exists between the belief and plausibility functions reflecting
the total imprecision of the information concerning the renewable generators
parameters.

3)	 The separation between belief function and plausibility function grows with the pen-
etration level, yet the empirical cdf remains relatively stable. More detailed analysis
of the results and discussions on their implementation can be found in [1].

7.2  Nuclear Power Plant Components Degradation

7.2.1  Dissimilar Metal Weld Degradation

The cracking process in an Alloy 82/182 dissimilar metal weld in a primary coolant system
can follow three major morphologies [11]: axial, radial, and circumferential. The latter two
types can lead to the rupture of the component. The crack growth has two steps: crack initia-
tion and crack propagation. The radial crack mainly grows outward from the initiation site
toward the outer diameter; the process can lead to a leak and potentially to rupture. The
crack grows evenly around the circumference, potentially leading to rupture.

c07.indd 140c07.indd 140 10-06-2022 17:11:3110-06-2022 17:11:31

7.2  Nuclear Power Plant Components Degradation 141

5000

0.2

0

0.4

0.6

0.8

Renewable penetration level: 15%

hybird approach: Plausibility
hybird approach: Belief
MC approach: CDF

1

400030002000
adequacy

1000–1000–2000–3000–4000–5000 0

Figure 7.2  Comparison of joint propagation and pure probabilistic approaches at a renewable
penetration level of 15% [1].

hybird approach: Plausibility
hybird approach: Belief
MC approach: CDF

Renewable penetration level: 25%

0.2

0.4

0.6

0.8

1

5000400030002000
adequacy

1000–1000–2000–3000–4000–5000 0
0

Figure 7.3  Comparison of joint propagation and pure probabilistic approaches at a renewable
penetration level of 25% [1].

c07.indd 141c07.indd 141 10-06-2022 17:11:3210-06-2022 17:11:32

7  Applications142

The Alloy 82/182 crack growth rate equations have been studied by various organiza-
tions including Ringhals AB, Electricité de France, and the Electric Power Research
Institute. These equations take a similar form and include a stress and Arrhenius tem-
perature dependence:

a da
dt

f f K ealloy orient
Q R T Tref= =

−() −()



α β / / /1 1 	 (7.9)

where a (a≥ 0) is the crack growth rate in time, a is the crack length (m), t is the time
since crack initiation (s), α is the crack growth amplitude, falloy is a constant (equal to 1.0
for Alloy 182 and 0.385 for Alloy 82), forient is a constant equal to 1.0, K is the crack tip
stress intensity factor (MPa√m), β is the stress intensity exponent, Q is the thermal acti-
vation energy for crack growth (kJ/mole), R is the universal gas constant (kJ/mole-oK), T
is the absolute operating temperature at crack location (oK), and Tref is the absolute ref-
erence temperature used to normalize data (oK).

The multi-state physics model, proposed by Unwin, et al. [11] to describe the crack
growth in the case study, is represented in Figure 7.5.

In [11], the transition rates ϕ1, ϕ ϕ2 3, , and ϕ4 are time-dependent and stochastic; the
others are assumed constant.

hybird approach: Plausibility
hybird approach: Belief
MC approach: CDF

Renewable penetration level: 35%

5000400030002000

adequacy

1000–1000–2000–3000–4000–5000 0

0.2

0.4

0.6

0.8

1

0

Figure 7.4  Comparison of joint propagation and pure probabilistic approaches at a renewable
penetration level of 35% [1].

c07.indd 142c07.indd 142 10-06-2022 17:11:3610-06-2022 17:11:36

7.2  Nuclear Power Plant Components Degradation 143

The transition rate ϕ1 from initial state S to micro-crack state M is defined as

ϕ
τ τ

τ τ1

1

=







⋅







 ⋅ ()∫
−b t f b d db

b

PDF , , 	 (7.10)

where f bPDF τ,() is the joint probability density function of τ and b, and the integral
is defined on the domains of τ and b. The parameter τ is a time constant, which has
been observed to have a stress and temperature dependence; b is a fitting
parameter.

The transition rates ϕ2 and ϕ3 describing the transitions from micro-crack state M to
radial-crack state D and circumferential-crack state C, respectively, have similar defini-
tions. Let aD denote the threshold length of a radial-crack; then, at time u after crack
initiation, the probability of the state D is defined as:

D u P Pr a a t dtD D

u

()= ⋅ ≤ ()














∫

0

 , 	 (7.11)

where PD is the probability that the crack grows to state D with the current state is M. The
analogous probability C u() that the crack goes to state C at time u after crack initiation
is defined as:

C u P Pr a a t dtC C

u

()= ⋅ ≤ ()














∫

0

 ,	 (7.12)

where aC is the threshold length of a circumferential crack and PC is the probability that
the crack goes to state C given that the current state is M.

S

C

M

D

R

L C: Circumferential crack
D: Radial Crack
L: Leak State
M: Micro Crack
R: Ruptured state
S: Initial state

Figure 7.5  Transition diagram of the multi-state physics model of crack development in Alloy
82/182 dissimilar metal welds [2].

c07.indd 143c07.indd 143 10-06-2022 17:11:3810-06-2022 17:11:38

7  Applications144

The transition rate ϕ2 (between state M and D) is defined as [12]:

ϕ
π

π
2

2

1 1
=

()
− ()

=
⋅ ()

− ()∫
∞

dD u du
D u

a u a u P

P a da

D D D

D a uD

/ (/) /
,

/
 

� (7.13)

and similarly

ϕ
π

π
3

2

1 1
=

()
− ()

=
⋅ ()

− ()∫
∞

dC u du
C u

a u a u P

P a da

C C C

C a uC

/ (/) /
,

/
 

� (7.14)

By assuming the crack growth rate a is following a uniform distribution with a maxi-
mum value of aM , i.e.:

π  

 

a
else

a
if a a

m
m()=









< <
1 0

0

,

,
, 	 (7.15)

then, Equations (7.13) and (7.14) are reduced to:

ϕ2
2 1 1

0
= − −()()

>
a P

a u P a ua
if u a aD D

M D D M
D M

 



/()
, /

,
,

otherwise









� (7.16)

and

ϕ3
2 1 1

0
= − −()()

>
a P

a u P a ua
if u a aC C

M C C M
C M

 



/()
, /

,
,

else









� (7.17)

respectively.
The transition rate ϕ4 from state D to state L is defined by the growth in crack size up

to a threshold aL of leakage:

L w Pr a a a t dtL D

w

()= − ≤ ()














∫

0

 , 	 (7.18)

ϕ4 1
=

()
− ()

dL w dw
L w

/
, 	 (7.19)

where w is the time from the radial crack formation [21]. By assuming the same distribu-
tion over the crack growth rate, then

c07.indd 144c07.indd 144 10-06-2022 17:11:4110-06-2022 17:11:41

7.2  Nuclear Power Plant Components Degradation 145

ϕ4

1

0
=

> −







w
if w a a a

otherwise
L D M, () /

,
.



	 (7.20)

Transition rates from leak to rupture and from circumferential crack to rupture are
assumed to be constant. These transition rates, together with other constant parameters,
are presented in Table 7.2.

7.2.2  MCS Method

The multi-state physical models, like that presented in Figure 7.5, are non-homogenous
Markov processes and typically have no closed-form solutions. Thus, simulation algo-
rithms or numerical methods are developed to solve them. In this section, we will intro-
duce the developed simulation procedures for the model considered. For the details
about the theoretical foundation of this method, please refer to [2].

Prior to the simulation, external influencing factors should be incorporated through
the following three steps.

1)	 Formulate the functions describing the physics of the transition rates.
2)	 Identify the external influencing factors θi (e.g. temperature, stress).
3)	 Define the distribution functions, p θ(), representing the uncertainties in the values of

these factors.

The algorithm for simulating the component degradation process on the time horizon
0,tmax  is sketched in the following pseudocode.

Table 7.2  Case study parameter definitions and values [2].

b –Weibull shape parameter for crack initiation model 2.0

τ – Weibull scale parameter for crack initiation model 4 years

aD – Crack length threshold for radial macro-crack 10 mm

PD – Probability that micro-crack evolves as radial crack 0.009
aM – Maximum credible crack growth rate 9.46 mm/yr

aC – Crack length threshold for circumferential macro-crack 10 mm

PC – Probability that micro-crack evolves as circumferential crack 0.001

aL – Crack length threshold for leak 20 mm

ω1 - Repair transition rate from micro-crack 1 × 10(−3) /yr

ω2- Repair transition rate from radial macro-crack 2 × 10(−2) /yr

ω3 - Repair transition rate from circumferential macro-crack 2 × 10(−2) /yr

ω4- Repair transition rate from leak 8 × 10(−1) /yr

ϕ5 – Leak to rupture transition rate 2 × 10(−2) /yr

ϕ6 – Macro-crack to rupture transition rate 1 × 10(−5) /yr

c07.indd 145c07.indd 145 10-06-2022 17:11:4410-06-2022 17:11:44

7  Applications146

Initialize the system by allocating a token onto place i = M (initial state of perfect
performance), setting the time t = 0 (initial time) and the total number of replications
to Nmax .

Set ′ =t 0.
Set n=1.
While n Nmax< ,

While t tmax< ,

Sample a realization of the external influencing factors θ from the joint prob-
ability function p θ() .

Sample a departure time t from the distribution function F t ti | ,′()θ .

Sample a random number U from the uniform distribution in [0, 1].

For each outgoing transition (j = 0,1,…,M, j≠ i),
Calculate the transition probability q ti j, ,θ() .

If
k

j

i k
k

j

i kq U q
=

−

=
∑ ∑< <

0

1

0

* *

, , ,

then activate the transition to state j* .
End If.

End For.
Set t t'= .

Remove the token from place i and add a new token onto place j* .

End While.
Set n n= +1.

End While.

Subsequent to the execution of the simulation algorithm, an esti-
mate P t P t P t P tM   ()= () ()… (){ }0 1, , , of the state probability vector is computed by divid-
ing the total number of visits to each state by the total number of simulations NR :

P t
N

n t n t n t
max

M
()= () ()… (){ }1

0 1, , , , where { | , , , }n t i M t ti max() = … ≤0 is the total

number of visits to state i at time t. The distributions p θ() and F t ti | ′() may have compli-
cated mathematical expressions; under these circumstances, the Markov Chain Monte
Carlo (MCMC) technique can be used to sample random values [13]. There are two key
quantities in the simulation procedure above: F t ti | ′() and q ti j, ,θ() . The former is the
cdf of the departure time t given that it is at state i at time t ' and is defined as:

F t t F t t p d t dti i
t

t

i| | , exp ,′ ′ ′′ ′′()= () () = − − ()











∫ ∫ ∫

′

θ θ θ θ1 λ 


()p dθ θ. � (7.21)

c07.indd 146c07.indd 146 10-06-2022 17:11:4810-06-2022 17:11:48

7.2  Nuclear Power Plant Components Degradation 147

The latter is the marginal transition probability to any other state j M j i= … ≠{ , | }0
given that the present state is i. It is defined as:

q t
t

t
p di j

i j

i
,

, ,
,

.()= ()
() ()∫

λ

λ

θ

θ
θ θ 	 (7.22)

The details about the computation of these quantities can be found in [2].

7.2.3  Numerical Results

The simulation model has been executed Nmax =107 times over a component lifetime
tmax = 80 years in line with the original study. To investigate the convergence of the
simulation model, the 107 realizations have been subdivided into N = 20 subsamples of
500,000 each. The sample mean and variance of the estimated state probabilities are
calculated as

P Pt
N

t
k

N

k()= ()
=
∑1

1

 , 	 (7.23)

var
N

t tt
k

N

kP P P




()
=

=
−

() − ()



∑1

1 1

2
, 	 (7.24)

where P t k() is the estimated state probability vector from the k-th subsample. The con-
vergence of the state probability values can be observed by the variance in (7.24) and the
sequence of sample means on the steadily incremental subsamples, i.e.

P Pt
n

t
conv k

k

n

k() = ()
=
∑,

,1

1

 	 (7.25)

where n takes value from 1 to N.
At t = 80 years, the variances are 0 6749 10 8. × − , 0 776 10 8. × − , 0 0352 10 8. × − , 0 0106 10 8. × − ,

0 0037 10 8. × − , and 0 0337 10 8. × − for initial, micro-crack, circumferential, radial, leak,
and rupture states, respectively. Similar results are found at different time moments. The
examples of convergence curves at 80 years are presented in Figure 7.6. The good stabili-
zation of P 80()conv k, is manifested. P Pt tconv k() = (), . Similar convergence curves are
obtained at different time moments but are not presented to save space.

The numerical comparisons on the state probability values at year 80 are reported
in Table 7.3. As expected, the relative differences (i.e. the differences between the
state probability values computed by the simulation method minus those obtained
with the state-space enrichment method, divided by the former) decrease as the step
size is reduced. For the details about the state-space enrichment method, please
refer to [14].

c07.indd 147c07.indd 147 10-06-2022 17:11:5310-06-2022 17:11:53

7  Applications148

Figure 7.6  Convergence plots of state probabilities at t = 80 years [2].

Table 7.3  Comparison of the simulation results with the state-space enrichment results (state
probability values at year 80) [2].

Simulation State-space
enrichment
Step size =
1 year

Relative
difference

State-space
enrichment
Step size =
0.5 year

Relative
difference

State-space
enrichment
Step size =
0.1 year

Relative
difference

Initial state
probability

0.0036 0.0033 8.33% 0.0034 5.56% 0.0036 0.00%

Micro-crack
probability

0.9958 0.9963 -0.05% 0.9961 -0.03% 0.9959 -0.01%

Circumferential
crack probability

2.72e-4 1.94e-04 28.68% 2.33e-04 14.34% 2.78e-04 -2.21%

Radial crack
probability

7.78e-5 6.38e-05 17.99% 6.97e-05 10.41% 7.66e-05 1.54%

Leak probability 1.18e-5 8.93e-06 24.32% 1.06e-05 10.17% 1.24e-05 -5.08%

Rupture state
probability

2.11e-4 1.38e-04 34.60% 1.73e-04 18.01% 2.12e-04 -0.47%

c07.indd 148c07.indd 148 10-06-2022 17:11:5410-06-2022 17:11:54

References 149

References

1	 Li, Y. and Zio, E. (2012). Uncertainty analysis of the adequacy assessment model of a
distributed generation system. Renewable Energy 41: 235–244.

2	 Li, Y.-F., Zio, E., and Lin, Y.-H. (2012). A multistate physics model of component
degradation based on stochastic petri nets and simulation. IEEE Transactions on
Reliability 61 (4): 921–931.

3	 Hegazy, Y., Salama, M., and Chikhani, A. (2003). Adequacy assessment of distributed
generation systems using Monte Carlo simulation. IEEE Transactions on Power Systems
18 (1): 48–52.

4	 Karki, R., Hu, P., and Billinton, R. (2010). Reliability evaluation considering wind and
hydro power coordination. IEEE Transactions on Power Systems 25 (2): 685–693.

5	 El-Khattam, W., Hegazy, Y., and Salama, M. (2006). Investigating distributed generation
systems performance using Monte Carlo simulation. IEEE Transactions on Power
Systems 21 (2): 524–532.

6	 Allan, R.N. (2013). Reliability Evaluation of Power Systems. Chester, England: Springer
Science & Business Media.

7	 Conti, S. and Raiti, S. (2007). Probabilistic load flow using Monte Carlo techniques for
distribution networks with photovoltaic generators. Solar Energy 81 (12): 1473–1481.

8	 Baudrit, C., Dubois, D., and Guyonnet, D. (2006). Joint propagation and exploitation of
probabilistic and possibilistic information in risk assessment. IEEE Transactions on
Fuzzy Systems 14 (5): 593–608.

9	 Baraldi, P. and Zio, E. (2008). A combined Monte Carlo and possibilistic approach to
uncertainty propagation in event tree analysis. Risk Analysis 28 (5): 1309–1326.

10	 Flage, R., Aven, T., and Zio, E., “Alternative representations of uncertainty in system
reliability and risk analysis: Review and discussion,” in ESREL 2008, 2008, pp.
2081–2091.

11	 Unwin, S.D., Lowry, P.P., Layton, R.F., Heasler, P.G., and Toloczko, M.B. (2011).
Multi-state physics models of aging passive components in probabilistic risk
assessment. In: Proceedings of ANS PSA 2011 International Topical Meeting on
Probabilistic Safety Assessment and Analysis, 1–12.

12	 Fleming, K.N. et al. (2010). Treatment of passive component reliability in risk-informed
safety margin characterization. Idaho National Laboratory, Idaho Falls, Idaho, INL/
EXT-10-20013.

13	 Zio, E. and Zoia, A. (2009). Parameter identification in degradation modeling by
Reversible-Jump Markov Chain Monte Carlo. IEEE Transactions on Reliability 58 (1):
123–131.

14	 Unwin, S.D., Lowry, P.P., Layton, R.F., Heasler, P.G., and Toloczko, M.B. (2011).
Multi-state physics models of aging passive components in probabilistic risk
assessment. In: ANS PSA 2011 International Topical Meeting on Probabilistic Safety
Assessment and Analysis, 1–12. Richland, WA: Pacific Northwest National Laboratory
(PNNL).

c07.indd 149c07.indd 149 10-06-2022 17:11:5410-06-2022 17:11:54

151

Part III 

Optimization Methods and Applications

Reliability optimization aims at maximizing system reliability and related metrics, while
minimizing the cost associated to the reliability improvements. It has been an active
research domain since the 1960s. Various reliability optimization problems have been
formulated and various solution techniques proposed. In general, the decision variables
of such optimization problems encode the parameters driving the system reliability
improvements, for example the inherent component reliability (and the related param-
eters, like failure probability, failure rate, etc.), the system logic configuration (e.g. the
number of subsystems in series, the number of redundant components, the components
type, etc.), which determine the system reliability allocation, and those relevant to test-
ing and maintenance activities (e.g. the test intervals, maintenance periodicities, etc.),
which determine the system availability and maintainability characteristics. The generic
formulation of the reliability optimization problem typically consists of two parts: the
objective function (of the decision variables), which is defined so as to lead to maximize
reliability (or minimize unavailability); the constraints, which ensure that the resources,
e.g. cost and weight, used to enhance system reliability are under certain limits. This is
not the only formulation, as the objective function and constraints are interchangeable
and can be combined in multi-objective formulations. For example, in some formula-
tions the objective function is cost minimization and there is one constraint requiring a
reliability value higher than a certain level.

The objective and constraints are mostly nonlinear and the decision variables can be a
mix of continuous variables (e.g. test interval) and integer variables (e.g. number of
redundant components). In addition, uncertainties could exist in the parameters of the
objective function and constraints, and in the coefficients of the problem. These charac-
teristics render the reliability optimization problems generally quite difficult to solve.
Solution techniques applied to reliability optimization problems have been well docu-
mented in the surveys by Kuo and Prasad [1] and by Kuo and Wan [2].

This part of the book collects various formulations and solution methods, covering
from the conventional mathematical programming to the latest robust optimization
methods. In Chapter 8, the mathematical programming approaches are introduced. In
Chapter 9, evolutionary algorithms are presented. Since reliability optimization is essen-
tially multi-objective, in Chapter 10 the multi-objective formulation and the solution
methods are introduced. Chapter 11 presents the optimization under uncertainty and
Chapter 12 presents applications and case studies.

p03.indd 151p03.indd 151 15-06-2022 20:52:0615-06-2022 20:52:06

Optimization Methods and Applications152

References

1	 Kuo, W. and Prasad, V. R. (2000). An annotated overview of system-reliability
optimization. IEEE Transactions on Reliability 49 (2): 176–187.

2	 Kuo, W. and Wan, R. (2007). Recent advances in optimal reliability allocation.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
37 (2): 143–156.

p03.indd 152p03.indd 152 15-06-2022 20:52:0615-06-2022 20:52:06

153

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

8

Mathematical Programming

Mathematical programming methods, e.g. linear programming, integer programming
(IP), convex optimization, aim to search for the exact solution(s) to an optimization
problem in tractable time. They have very good theoretical foundations as well as a long
history in solving various practical and challenging optimization problems with success.
However, reliability optimization problems are typically non-linear and complex in
nature, thus meta-heuristic and evolutionary algorithms are being often adopted because
they are relatively straightforward to comprehend and implement.

The major drawback of evolutionary algorithms is the inability to guarantee the global
optimal solution. On the contrary, mathematical programming methods can achieve the
global optimal solution though they might be relatively difficult to comprehend and
time-consuming to perform in some cases. Yet when addressing a reliability optimiza-
tion problem, one should first analyze its mathematical properties and consider whether
a mathematical programming method is suitable for solving the problem. Evolutionary
algorithms can be considered if the mathematical programming methods are infeasible
or inefficient. Thus, as the first chapter of the optimization part of this book, it is devoted
to two basic mathematical programming methods. For more advanced knowledge about
mathematical programming, please refer to the books [1-3].

8.1  Linear Programming (LP)

In reliability optimization problems, component reliability enhancement is among the
most important ones. The problem amounts to optimizing the reliability of the system by
improving the reliability of its components. Already in 1973, Kulshrestha and Gupta [4]
had formulated one such problem to maximize the reliability of a series system as
follows:

max
r i n i

n

i
i

R r
, , , ,= …

=

=∏1 2 1

	 (8.1a)

c08.indd 153c08.indd 153 10-06-2022 18:21:0610-06-2022 18:21:06

8  Mathematical Programming154

s.t.
i

n

ji i jh r b j m
=
∑ ()≤ = …

1

1 2, , , , 	 (8.1b)

α βi i ir i≤ ≤ ∀, 	 (8.1c)

0 1< < < ∀α βi i i, 	 (8.1d)

where n is the number of subsystems (i.e. stages), ri is the reliability of subsystem i (for
example, it corresponds to a simple component i, considering a series system that has
only one component in each subsystem), h rji i() is the j-th resource consumed for subsys-
tem i, and bj is the total amount of resource j available, j m= …1 2, , , . This problem is also
referred to as the system reliability allocation, and it is among the earliest attempts to
system reliability optimization.

Assuming a resource function of the form h r M c rji i ji ji i()= + ()ln where
M cji ji i≥− ()ln α , taking the logarithm of the objective function, and letting ln r yi i()= ,
we have the following converted problem:

max
y i n i

n

i
i

R y
, , , ,

ln
= …

=

=∑1 2 1

	 (8.2a)

s.t.
i

n

ji j i jM c y b j m
=
∑ +()≤ = …

1

1 2, , , , 	 (8.2b)

ln lnα βi i iy i()≤ ≤ () ∀, 	 (8.2c)

0 1< < < ∀α βi i i, 	 (8.2d)

In this formulation, the objective function and all constraints are linear, and the deci-
sion variables are continuous. This is referred to as a linear programming (LP) problem
which is the foundation of other mathematical programming problems, like linear inte-
ger programming (IP).

Example 8.1  Suppose two subsystems are in a series system, and their reliabilities are
r1 and r2 , respectively. The converted variables are y1 and y2, respectively. There are two
constraints and the limits of y1 and y2 are [-0.7, -0.001]. The problem formulation of this
example is shown as follows:

max y y1 2+ 	 (8.3a)

s.t. 70 100 35 50 951 2+ + + ≤y y 	 (8.3b)

50 50 140 200 1801 2+ + + ≤y y 	 (8.3c)

− ≤ ≤− ∀0 7 0 001. . ,y ii 	 (8.3d)

c08.indd 154c08.indd 154 10-06-2022 18:21:1210-06-2022 18:21:12

8.1  Linear Programming (LP) 155

Because only two variables exist, we can solve the problem by representing the set of
points that satisfy all constraints (i.e. feasible region) on the two-dimensional plane and
searching for the point that maximizes the objective function. Each inequality constraint
is satisfied by a half-plane of points and the feasible region is the intersection of all these
half-planes. Figure 8.1 illustrates this process of the graphical solution method. The
shaded area is the feasible region of the LP problem and the dashed line is the objective
to be maximized, i.e. y y1 2+ . As one moves the line from the bottom-left corner up and
to the right, then the value of y y1 2+ increases. Thus, we look for the line that is furthest
from the bottom-left corner and still touches the feasible region. This occurs at the inter-
section of the lines 10 5 11 2y y+ =− and 5 20 11 2y y+ =− . Thus, the optimal solution of
the problem is (-3/35, -1/35), and the corresponding maximal value of the objective func-
tion is -4/35.

8.1.1  Standard Form and Duality

In general, all LP problems can be converted into a standard form where all decision
variables are non-negative and the main constraints are inequalities. Let x = …()x xn

T
1, ,

denote the vector of the decision variables, c= …()c cn
T

1, , denote the coefficients of the
objective function, b= …()b bm

T
1, , denote the right-hand side values of the inequality

constraints, and

Figure 8.1  Graphical solution to the LP problem of Equation (8.3).

c08.indd 155c08.indd 155 10-06-2022 18:21:1510-06-2022 18:21:15

8  Mathematical Programming156

A=













a a

a a

n

m mn

11 1

1

�
� � �
�

denote the coefficients of the constraints. The standard LP form in the case of maximiza-
tion can be presented as follows:

max
 x i n i

n

i i
i

c x
, , , ,= …

=
∑1 2 1

	 (8.4a)

s.t.
i

n

ij i ja x b j m
=
∑ ≤ = …

1

1, , , 	 (8.4b)

x i ni ≥ = …0 1, , , 	 (8.4c)

where n is the number of decision variables and m is the number of the constraints. The
above can also be written in the following matrix form:

max c xT 	 (8.5a)

s.t.Ax b≤ 	 (8.5b)

x ≥ 0 	 (8.5c)

In case of an LP minimization problem, the objective becomes “min” and the inequali-
ties become ≥. The standard LP problems are typically solved by the Simplex method [5],
developed by G.B. Dantzig in 1947. The Simplex procedures are presented as follows:

	● Determine the extreme points of the polygon (or polyhedron in higher-dimensional
spaces) of the feasible region.

	● Find some feasible extreme points and calculate the objective value, z .
	● Test if an extreme point is optimal:

	– If no, move to the adjacent extreme point that gives the greatest rate of improvement
in objective z , to perform the same test,

	– If yes, stop the process.
	● Stop the process if an unbounded case occurs.

Example 8.2  In the following paragraphs, we will illustrate the Simplex method to
solve the following LP problem:

max
x x

x x
1 2

2 31 2,
+ 	 (8.6a)

s.t. x x1 2 20+ ≤ 	 (8.6b)

0 16 0 101 2≤ ≤ ≤ ≤x x, 	 (8.6c)

c08.indd 156c08.indd 156 10-06-2022 18:21:2110-06-2022 18:21:21

8.1  Linear Programming (LP) 157

As seen in Figure 8.1, the optimal solution lies on one of the extreme points. Thus, the
first step of the Simplex method is to find all the extreme points of the feasible region. To
complete this task, we introduce three slack variables to convert inequality constraints to
equality constraints. Then the original problem becomes the following:

max
x x s s s

x x s s s
1 2 1 2 3

2 3 0 0 01 2 1 2 3, , , ,
+ + + + 	 (8.7a)

s.t. x x s1 2 1 20+ + = 	 (8.7b)

x s1 2 16+ = 	 (8.7c)

x s2 3 10+ = 	 (8.7d)

x i s ii i≥ =() ≥ =()0 1 2 0 1 2 3 , , , , 	 (8.7e)

Now the task is to solve the linear model of Equations (8.7b–8.7d) with five variables.
Because there are two equations less than variables, we assign two variables to be zeros
and then solve the remaining 3 × 3 linear system. The unique solution to this system is a
basic solution. Any basic feasible solution (BFS) corresponds to an extreme point where
all its variables are non-negative.

The disadvantage is that the number of BFSs could be large. For example, suppose we
have 500 variables and 400 equality constraints: This gives a number of BFSs of the order

of
500
100










, and it is difficult or even impossible, to explore all BFSs to find the optimal

extreme point.
Alternatively, we can start with some extreme points and move to the adjacent one

which gives the highest rate of improvement in the objective function. This process iter-
ates until we find the optimal extreme point. The canonical form of Equation (8.7) is
illustrative to identify the extreme points and move from one point to another.
Let z= + + + +2 3 0 0 01 2 1 2 3x x s s s , the canonical form is shown as follows:

1 2 3
0 1 1

0 0 0
1 0 0

0 1 0
0 0 1

0 1 0
0 0 1

− −











 













z
x
x
s
s
s

1

2

1

2

3 

=













0
20
16
10

	 (8.8)

In this form, the dependent variable has only one non-zero entry in its corresponding
column in the 4 6× matrix. In other words, the dependent variables are expressed by the
independent variables. In Equations (8.7–8.8), the set of dependent variables is s s s1 2 3, , { }
and the set of independent variables is x x1 2, { }. Then, the process is presented as
follows:

c08.indd 157c08.indd 157 10-06-2022 18:21:2610-06-2022 18:21:26

8  Mathematical Programming158

Step 1: Select one initial extreme point.
We assign the independent variables x1 0= and x2 0= . In this case, we have z= 0.

Step 2: Select one dependent variable to enter the independent variable set and one inde-
pendent variable to enter the dependent variable set.
By looking at the objective function, if we increase x1 by one unit, we can increase z by
two units; if we increase x2 by one unit, then we can increase z by three units. Therefore,
we let x2 be the dependent variable.

On the other hand, we cannot increase x2 without limit, but we want to increase it as much
as possible. Holding x1 0= , we have x s2 1 20+ = , s2 16= and x s2 3 10+ = . Then x2 cannot
surpass 10 and, thus, s3 should be the independent variable because in this case s3 0= .

We need the set of dependent variables s s x1 2 2, , { } and the set of independent varia-
bles x s1 3, { }. To achieve this, we have to transform the linear model. In canonical form,
this change means that the column corresponding to x2 needs to have only one non-zero
entry value 1. The following operation is conducted:

1 2 3 0 0 0
0 1 1 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1− −











z
x
xx
s
s
s

2

1

2

3

0
20













=
116
10













�

(8.9)

1 2 0 0 0 3
0 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

1−
−













z
x
xx
s
s
s

2

1

2

3

30
1













=
00

16
10













Step 3: Obtain a new solution and repeat Step 2.
Given the set of dependent variables s s x1 2 2, , { } and the set of independent varia-
bles x s1 3, { }, we obtain that z= 30 according to the canonical form in Equation (8.9).
Again, by looking at the objective function, if we increase x1 by one unit, then we increase
z by two units; if we increase s3 by one unit, we decrease z by three units. Therefore, we
let x1 be the dependent variable.

On the other hand, by holding s3 0= , we have x s1 1 10+ = , x s1 2 16+ = , and x2 10= .
Then x1 cannot surpass 10 and, thus, s1 should be the independent variable.

Now we get the set of dependent variables x s x1 2 2, , { } and the set of independent vari-
ables as s s1 3, { }. To achieve this, the following operation is conducted in the canonical
form:

*
*()

3
1−

c08.indd 158c08.indd 158 10-06-2022 18:21:3410-06-2022 18:21:34

8.2  Integer Programming (IP) 159

1 2 0 0 0 3
0 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

1−
−













z
x
xx
s
s
s

2

1

2

3

30
1













=
00

16
10













�
(8.10)

1 0 0 2 0 1
0 1 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 1

1

−
−













z
x
xx
s
s
s

2

1

2

3

50
1













=
00
6

10













Step 4: Obtain a new solution and repeat Step 2.
Given the set of dependent variables x s x1 2 2, , { } and the set of independent variables s s1 3, { },
we obtain that z= 50 according to the canonical form in Equation (8.10). Then we repeat
Step 2 and we find that the increase of any variable in s s1 3, { } decreases z .

Step 5: Stop the iteration and output the results.
The optimal solution is z= 50 at x x1 2 10= = .

In the above example, we have illustrated the Simplex method performed by hand. In
practice, the problems are much larger in terms of the number of decision variables and
constraints. A computer software must be used to solve them. For this, several automatized
tools, e.g. CPLEX, LINDO, and XPRESS can efficiently solve LP problems.

8.2  Integer Programming (IP)

Redundancy allocation, first formulated by Ghare and Taylor [6] in 1969 and Beraha and
Misra [7] in 1974, is a well-established way to reliability optimization. It aims to improve
system reliability via installing redundant components into the system. Let yij denote the
number of components (integer value) of the j-th version at the i-th subsystem. The formula-
tion of the redundancy allocation problem (RAP) aims to maximize the total system reliabil-
ity while keeping the system cost C not larger than a predefined level C0. The formulation
for the representative binary state series-parallel system (BSSPS) is presented as follows:

max R r
i

N

j

v

ij
xi

ijx()= − −()










= =
∏ ∏

1 1

1 1 � (8.11a)

s.t.
i

N

j

v

ij ij

i

c x C
= =
∑∑ ≤

1 1
0 � (8.11b)

u x l xij ij ij ij≥ ≥ ∈, *  � (8.11c)

*
*()

2
1−

c08.indd 159c08.indd 159 10-06-2022 18:21:3810-06-2022 18:21:38

8  Mathematical Programming160

where vi is the number of component versions available to the ith subsystem,
rij is the reliability of the jth version component at the ith subsystem,
x = … … …()x x x xv N NvN11 1 11

, , ; ; , , is the decision vector, and uij and lij are, respectively, the
upper and lower limits of the number of jth version components at the ith subsystem.

The formulation in Equation (8.11) can be generalized as follows:

min f x()� (8.12a)

s.t. g x b()≥ � (8.12b)

x x∈ ≥n, 0 � (8.12c)

where n is the number of non-negative integer decision variables. This type of problem
is called an IP problem. In many cases, the IP problem is referred to as the integer linear
programming (ILP) problem where the objective function and constraints (except the
integer constraints) are all linear.

The ILP problem has a simple formulation, but in general, it is NP-complete, which
means it is among the most difficult decision problems to solve. IP has been an active
research area for decades. Several methods have been developed, and they can be mainly
grouped into two classes: exact methods and heuristics. The exact methods, e.g. branch-
and-bound (B&B) and cutting plane techniques, can obtain the global optimal solution,
but they are restrained to certain problem types, e.g. ILP problems. The heuristics, e.g.
hill climbing and genetic algorithms can work on any IP problems, but they cannot guar-
antee to obtain the global optimal solution.

In the following, we introduce B&B method procedures and apply them to solve one
ILP problem as well as the RAP in Equation (8.11). The B&B algorithm contains the
procedure of implicit enumeration. Even for the 0-1 LP problem, the number of possible
solutions is 2n , where n is the number of decision variables. The main idea of implicit
enumeration is to skip the enumeration of a large part of the solutions. The underlying
mechanism used in implicit enumeration is ‘divide and conquer’. There are two major
phases in B&B: In the phase of separation (i.e. branching), the solution set is divided into
subsets; in the phase of evaluation (bounding), the subset is evaluated using LP tech-
niques and those subsets that do not contain the optimal solution are eliminated. An ILP
is an LP with additional integrity constraints, and the optimal value of the LP is an upper
bound or lower bound of the ILP for a maximization or minimization problem,
respectively.

Prior to the B&B algorithm, we first present the search tree, i.e. the B&B tree, which is
useful for the illustration of the algorithm procedures. For simplicity, let all decision
variables be binary numbers x ∈{ }0 1, n. As shown in Figure 8.2, at the top node of the
tree, we set x1 0= for its left branch and x1 1= for its right branch. For each branch, we
solve the relaxation of the original ILP problem with x1 0= and x1 1= , respectively.
Then we proceed to the second variable x2 under the branches generated by x1, and
repeat the branching and evaluation steps for x2. This process iterates until the last vari-
able is explored. Finally, a search tree is generated, as shown in Figure 8.2.

c08.indd 160c08.indd 160 10-06-2022 18:21:4610-06-2022 18:21:46

8.2  Integer Programming (IP) 161

Besides the branching and evaluation, the B&B algorithm also involves bound and cut
procedures. The whole algorithm is presented as follows:

Step 1.  Initialization: solve the relaxation of the original problem.

Step 1.1. If all elements of the solution vector are integers, then stop; and
�Step 1.2. �If any element of the solution vector is non-integer, then store this solution as one

bound to the original problem.
Step 2. � Branch: Select one appropriate variable xi , set its value to the closest upper

and lower integers and obtain two sub-problems, respectively.
Step 3.  Bound: Select and solve one relaxed sub-problem.
Step 4. � If any of the following condition is satisfied:

	– the solution is an integer solution;
	– the corresponding problem is infeasible;
	– the solution is worse than a known feasible solution;

then stop the branch and then go to Step 3;
Otherwise, go to Step 2.

Step 5.  Stop the algorithm till all nodes (sub-problems) in the search tree are visited.

Example 8.3  Consider the following Knapsack problem:

min
x x x x

x x x x
1 2 3 4

9 2 4 31 2 3 4, , ,
+ + + � (8.13a)

s.t. 3 2 4 2 81 2 3 4x x x x+ + + ≤ � (8.13b)

x ii ∈{ } =0 1 1 2 3 4, , , , , � (8.13c)

The B&B solution procedures are illustrated in Figure 8.3. The order of branching is
x x x x1 2 3 4, , , , and the relaxation of the original problem is as follows:

Figure 8.2  Search tree.

c08.indd 161c08.indd 161 10-06-2022 18:21:4810-06-2022 18:21:48

8  Mathematical Programming162

min
x x x x

x x x x
1 2 3 4

9 2 4 31 2 3 4, , ,
+ + + � (8.14a)

s.t.3 2 4 2 81 2 3 4x x x x+ + + ≤ � (8.14b)

0 1 1 2 3 4≤ ≤ =x ii , , , , � (8.14c)

At the first step, we solve the problem in Equation (8.14) and find the optimal solution
x =()1 1 0 25 1, , . , to which corresponds the objective value z=15 . Then we generate the
branches at x1. By setting x1 0= , we obtain the sub-problem (8.15a)-(8.15c) for the left
branch, and its optimal solution is x =()1 1 1, , , which corresponds to the objective value
z= 9. This is a feasible and integer solution, and we record it as the temporary optimal
solution. We can stop the branch from this node because the solutions to all sub-prob-
lems under this node will not be better than the present optimal solution.

min
x x x

x x x
2 3 4

2 4 32 3 4, ,
+ + � (8.15a)

s.t.2 4 2 82 3 4x x x+ + ≤ � (8.15b)

0 1 2 3 4≤ ≤ =x ii , , , � (8.15c)

Then we look at the sub-problem of the right branch of x1. By setting x1 1= , we will get
the same solution as the one to the original problem. Then we continue the branching
and evaluation process following the depth-first rule [8]. For the sub-problem whose
x x1 21 0= =, and x3 0= , we can obtain x4 1= as the optimal solution, which corre-
sponds to the objective value z=12 . Because it is larger than the objective value of the
temporary optimal solution, we take this solution as the newest optimal solution. Also,
we stop the branching at this node.

Figure 8.3  The search tree of Example 8.3.

c08.indd 162c08.indd 162 10-06-2022 18:21:5310-06-2022 18:21:53

8.2  Integer Programming (IP) 163

The B&B process continues till all nodes of the search tree are visited. The global opti-
mal solution is x =()1 1 0 1, , , , which corresponds to the objective value z=14 . The sub-
problem whose solution is x x1 21 1= =, and x3 1= becomes infeasible because the
constraint will require x4 being negative. Thus, the branching process stops on this node.

Next, we apply the B&B method in reliability optimization. Reliability optimization
problems are typically non-linear. On the other hand, they are usually monotone to the
decision variables, e.g. the objective function value of RAP in Equation (8.11) increases
as xij increases. Thus, their relaxations would be convex in several cases. If the relaxation
is convex the original non-linear IP problem can be solved by the B&B method. Under
this situation, we have two extensions to Example 8.3: The decision variables non-binary
integers, and the objective function is non-linear. The key steps of the B&B method to
solve this problem are presented as follows:

1)	 Choose one variable that has a non-integer value and branch the variable to the next
higher integer for one sub-problem and the next lower integer for the another sub-
problem. The real value of variable j can be expressed as x x xi i=   +

* , where xi  is
the integer part of xi and 0 1< <x * . The lower-bound and upper-bound constraints
of the two mutually exclusive problems are x xi i≥   +1 and x xi i≤   , respectively.
Add these two constraints to both branched problems. Solve both problems by non-
linear optimization methods, e.g. KKT conditions.

2)	 Now xi is an integer in either branch. Fix the integers of xi for the following steps of
B&B. Select the branch that results in the highest system reliability. Then repeat the
above steps on another variable x xk i≠ for each new problem until all variables
become integers.

3)	 Stop branching the problem if the solution is worse than the current best integer solu-
tion. Stop the iteration when all the desired integer variables are obtained.

The following example illustrates these procedures.

Example 8.4  Given the parameters in the following table, solve the RAP in Equation

(8.11). This is a simplified problem where each subsystem has only one component type.

max
x x x x

x x x xR x
1 2 3 4

1 2 3 41 0 2 1 0 3 1 0 25 1 0 15
, , ,

. . . .()= −() −() −() −()� (8.16a)

s.t.1 2 2 3 3 4 4 5 561 2 3 4. . . .x x x x+ + + ≤ � (8.16b)

1≤ ∈x x Zi I, * � (8.16c)

Subsystem, i 1 2 3 4

ri 0.8 0.7 0.75 0.85

ci 1.2 2.3 3.4 4.5

C0 56=

c08.indd 163c08.indd 163 10-06-2022 18:21:5810-06-2022 18:21:58

8  Mathematical Programming164

Because the relaxation of the objective function is convex, the B&B method is applicable
to this problem. The solution procedures are illustrated in the search tree in Figure 8.4.
In Step 1, the original problem is relaxed and solved. The optimal solution found is
x =()5 2712 6 2641 5 2610 3 8618. , . , . , . , which corresponds to the objective value z= 0 9979. .
Continuous convex optimization problems can be solved by various computation soft-
ware packages, e.g. MATLAB. For details about convex optimization, the interested read-
ers can refer to the classical book by Boyd and Vandenberghe [1].

In Step 2, we choose x4 for branching. Because the optimal x4 is 3 8618. in the last step,
we generate two branches: the left for x4 3≤ and the right for x4 4≥ . For the two sub-
problems under these branches, we set x4 3= and x4 4= , respectively.

In Step 3, we relax both sub-problems under the two branches, solve the relaxed problems
and obtain the optimal solutions x =()5 1956 6 1636 5 1732 4 0000. , . , . , . with z= 0 9979. ,
and x =()5 7456 6 8921 5 8089 3 0000. , . , . , . with z= 0 9960. , for the right and left sub-prob-
lems, respectively. Because the right sub-problem has a higher optimal value, we give prior-
ity to this sub-problem for further branching. This is a ‘greedy search’-type of heuristic that
follows the large-first principle for maximization.

The process continues until we obtain a feasible optimal solution
x =()6 0000 6 0000 5 0000 4 0000. , . , . , . with z= 0 9977. . Because this optimal value is higher
than those of the sub-problems under the branch x4 3≤() and the branch x x4 23 7≤ ≥(), ,
we stop further branching at the respective nodes.

At last, the optimal redundancy allocation scheme is 6 6 5 4, , , (). This is the true global
optimal solution to this example.

8.3  Exercises

1)	 Solve Example 8.2 by the graphical method.

Figure 8.4  The search tree of Example 8.4.

c08.indd 164c08.indd 164 10-06-2022 18:22:0410-06-2022 18:22:04

References 165

Solve the following RAP given the parameters in the table below:

max R rs
j

j
x jx()= − −()











=
∏

1

4
1 1

s.t.
j

ij j ic x b i
=
∑ ≤ =

1

4

1 2, ,

1 1 2 3 4≤ =x jj , , , ,

In the B&B method, the order of branching is important to the computation complex-
ity. Change the branching sequence in Example 8.3 to ‘x x x x3 4 2 1→ → → ’ and resolve
again the problem. Is this sequence more efficient? Why?

References

1	 Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge, UK: Cambridge
University Press.

2	 Bertsimas, D. and Weismantel, R. (2005). Optimization over Integers. Belmont, MA:
Dynamic Ideas.

3	 Wolsey, L.A. (1998). Integer Programming. New York City: John Wiley & Sons.
4	 Kulshrestha, D. and Gupta, M. (1973). Use of dynamic programming for reliability

engineers. Reliability, IEEE Transactions On 22 (4): 240–241.
5	 Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton

University Press.
6	 Ghare, P. and Taylor, R. (1969). Optimal redundancy for reliability in series systems.

Operations Research 17 (5): 838–847.
7	 Beraha, D. and Misra, K. (1974). Reliability optimization through random search

algorithm. Microelectronics Reliability 13 (4): 295–297.
8	 Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1 (2): 146–160.

Stage, j 1 2 3 4

rj 0.8 0.7 0.75 0.85

c j1 1.2 2.3 3.4 4.5

c j2 5 4 8 7

b1 56=
b2 120=

c08.indd 165c08.indd 165 10-06-2022 18:22:0810-06-2022 18:22:08

167

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

9

Evolutionary Algorithms (EAs)

Practical reliability optimization problems can be, in general, difficult to solve via stand-
ard mathematical programming methods, e.g. linear programming (LP) and integer pro-
gramming (IP) because the objective and constraints are mostly non-linear, and the
decision variables can mix continuous variables (e.g. test interval) and integer variables
(e.g. redundancy). Evolutionary algorithms (EAs), inspired by natural principles of evo-
lution, can perform population-based stochastic search to produce good solutions (not
necessarily globally optimal) in polynomial time. In addition, EAs are easy to compre-
hend and, thus, to implement. As a result, many reliability engineers and researchers
often resort to EAs for solving their reliability optimization problems.

In literature, EAs are also called meta-heuristics. These two terminologies are used
interchangeably in many occasions, so as in this book. In practice, mathematical pro-
gramming methods might be able to find the global optimal solution of a complex relia-
bility optimization problem, but the computation cost can be high and the achieved
global optimal solution can be slightly better than other local optimal solutions. Under
these situations, EAs can be the preferred alternatives. EAs generally contain two com-
ponents: randomization and improvements on the best solutions. Randomization aims
at avoiding the solutions being trapped in local optima and increasing diversity. The
improvements on the best solutions control the direction of random search so that the
solutions converge to optimality. The balance between randomization and selection of
the best solutions is the key to the success of EAs in application.

Generally, EAs possess the following four advantages:

1)	 They are readily working with continuous, integer, categorical and mixed decision
variables.

2)	 They search from a population of solutions, instead of a single one.
3)	 They require only evaluating the objective function (without calculating its deviation

or derivative).
4)	 They use probabilistic transition rules to guide the search, which helps avoid getting

trapped in local minima.

For more advanced knowledge about EAs, please refer to the books [1,2].

c09.indd 167c09.indd 167 10-06-2022 18:22:4010-06-2022 18:22:40

9  Evolutionary Algorithms (EAs)168

9.1  Evolutionary Search

Evolutionary search is the foundation of EAs. It combines Monte Carlo random search
and the evolution strategy that iteratively improves the obtained solution. The Monte
Carlo random search procedure is straightforward: It generates a large but finite number
of random samples of the decision variables in a way that they are uniformly distributed
in the domain of interest. After evaluating the corresponding objective function of all
generated samples, the Monte Carlo search returns the best solution found randomly in
the domain of interest.

Let us consider the following 0-1 Knapsack problem:

Max
x x x i

n

i i
m

f x w x
1 2 1, , ,…

=

()=∑ 	 (9.1a)

	s.t. g x c x C
i

n

i i()= ≤
=
∑

1
0 	 (9.1b)

	xi ∈{ }0 1, 	 (9.1c)

where wi , ci and C0 are all constants. This is an NP-hard problem, e.g. if n= 500, and its
search space is of size 2500 ≫ 1080, i.e. the number of elementary particles in the universe.
Let x = …()x x xn1 2, , , denote the vector of candidate solution, x * denote the global
optimal solution, and Kmax denote the maximal number of iterations of the search. The
Monte Carlo search procedures for solving this problem are presented as follows

Algorithm 9.1  Monte Carlo search

1.	 Set k← 0 , x← …()0 0 0, , ,
2.	 For (t t← +1, t Tmax<)
3.	 Randomly sample a solution x n

∈{ }0 1,
4.	 If x x= * then
5.	 Terminate and return x
6.	 End-if

7.	 End-for

The disadvantage of the Monte Carlo random search mainly lies in the fact that in each
iteration, one candidate solution is generated independently and randomly for trial,
without utilizing the current best solution. This type of strategy is intuitively unpromis-
ing because it could even generate repeated solutions. In the following paragraph, a
quantitative analysis on the computational complexity of this method is provided.

In the Monte Carlo search, the probability to generate x * at a single iteration
is P n

1 2= =()= −Pr x x * . The probability to generate x * with k iterations

is Pk
n k

= − −()−1 1 2 . Solving for k, the number of iterations needed to find x * is

c09.indd 168c09.indd 168 10-06-2022 18:22:4410-06-2022 18:22:44

9.1  Evolutionary Search 169

k Pk
n= −() −()−ln ln1 1 2/ . Given the approximation x x≈ +()ln 1 , we have

k Pn
k≈− −()2 1ln . It is obvious that k is exponential to n , which means the Monte Carlo

search can become an extensive method from the computational viewpoint. The condi-
tion that the Monte Carlo method uses more iterations for finding the optimal solution
than the enumeration does is − −()≥2 1 2n

k
nPln , which says that P ek ≥ − ≈−1 0 631 . .

This result means that if we want to have a probability higher than about 0.63 to find the
optimal solution in k runs, then enumeration is better than Monte Carlo search.

Evolutionary search, on the other hand, takes the advantage of randomization and cre-
ates new solutions based on the present best solution. The following (1+1) EA [3] is
among the simplest EAs. The shaded area is the main difference between this algorithm
and Monte Carlo search, and the random modification is carried out on the best solution
of the last iteration and the present best solution is passed to the next iteration.

Algorithm 9.2  (1+1) Evolutionary Algorithm

1.	 Set t← 0, x← …()0 0 0, , ,
2.	 Randomly sample a solution x n

∈{ }0 1,
3.	 For (t t← +1, t Tmax<)
4.	 Create a copy ′x of x
5.	 Invert each bit of ′x with probability p
6.	 If (′x matches x * in more bits than x) then
7.	 x x← ′
8.	 End-if
9.	 If x x= * then

10.	 Terminate and return x
11.	 End-if

12.	 End-for

To analyze the computational time of (1+1) EA for finding the global optimal solution
x * , assume that m bits are still not optimal in the best solution. The probability to pre-
serve all n m− correct bits under Step 5 is 1−() −p n m . The probability to improve exactly

one of the wrong bits is mp p m1 1
−() − . The probability that the new solution ′x is better

than the previous one x is Pr ′()≥ −() −x x is better than mp p n1 1. The expected number

of iterations until an improvement happens is E
mp p n1 1

1

1
≤

−() −
. Thus, the expected

total number of improvements is E E
p p mn

i

n

i n
m

n

= ≤
−()=

−
=

∑ ∑
1

1
1

1

1

1 . Consider that

lim ln .
n→∞

=
∑ −











= = …

m

n

m
n

1

1 0 0522γ , we have E
p p

nn n≈
−()

()−

1

1 1 ln . Assume that p
n

=
1 ,

finally we get E ne nn ≈ ()ln . In conclusion, (1+1) EA is of n nlog() computational

c09.indd 169c09.indd 169 10-06-2022 18:22:5110-06-2022 18:22:51

9  Evolutionary Algorithms (EAs)170

complexity. In this algorithm, there are only one-bit improving mutations and an upper
bound on En . For more advanced EAs, e.g. genetic algorithm, the expected computa-
tional complexity would be much smaller.

To summarize, there are two basics components in EA: randomization and selection of
the best solutions. The former avoids the solutions being trapped in local optima and
increases diversity, and the latter ensures the solutions converge to optimality. Balance
between the two components is the key to the success of EA implementations.

9.2  Genetic Algorithm (GA)

A genetic algorithm (GA) [4] is perhaps the most popular and successful EA. It imitates
the biological evolution and natural selection processes on a group of individuals (solu-
tions), to eventually achieve quality solutions. The standard operation procedures of a
single-objective GA (SOGA) are presented as follows:

Algorithm 9.3  Genetic Algorithm

1.	 Set t← 0
2.	 Initialize Xt
3.	 Evaluate Xt
4.	 For (t t← +1, t <Tmax)
5.	 Select Xt from Xt−1
6.	 Crossover Xt
7.	 Mutate Xt
8.	 Evaluate Xt
9.	 Apply elitist strategy to Xt (given Xt−1)

10.	 End-for

where Xt is the population of solutions (i.e., individuals), t is the generation counter (i.e.,
the population iteration index), and Gmax is the maximum number of generations. X0
consists of a group of encoded individuals x randomly generated at the initialization step.
The evaluation of the population requires computing the value of the objective function
for each individual solution in the population and converting it into the fitness value,
which reflects the quality of the corresponding individual. The selection step determines
the group of individuals entering the evolution process with a probability related to the
fitness values. The individuals with high fitness values have large probabilities to survive
in the evolution process. The crossover and mutation are the important evolutionary
operators of GA. In the crossover, generally, two individuals, named parents, are paired
to produce new individuals, named offsprings, by exchanging some parts of the encoded
solutions. Crossover allows the parts of the good solutions to be retained and copied in the
population, so the algorithm can eventually converge to an overall good solution. On the
other hand, the mutation operator randomly changes the coding of the individuals. The
perturbations brought by mutation introduce diversity into the population and assist the

c09.indd 170c09.indd 170 10-06-2022 18:22:5510-06-2022 18:22:55

9.2  Genetic Algorithm (GA) 171

search escaping from local minima. The elitist strategy maintains the fittest individual of
the population. It ensures that the best solution will not be lost during the stochastic
search process. The following sections introduce each main step of GA.

9.2.1  Encoding and Initialization

To design a GA, the first step is to translate the candidate solutions into genotypes for
manipulation by GA. There are different ways to carry out this task. The method chosen
must be relevant to the problem that is being solved. The encoding will influence the fit-
ness evaluation and the genetic operators. In general, there are four types of encoding:
discrete encoding, real-valued encoding, order-based encoding, and tree-based encod-
ing, each suitable to a certain problem type.

Discrete encoding makes use of discrete values, e.g. binary, integer, or any other
system with a finite set of values. The most common discrete encoding is the binary
encoding. Figure 9.1 shows one example of binary chromosome and its various phe-
notypes. In analogy to the chromosome and gene of living creatures, GA also con-
siders chromosomes that represent candidate solutions and genes that are the
elements of the chromosomes. A chromosome is a genotype. To evaluate the fitness
of the chromosome, it needs to be translated into a phenotype, which is the original
form of the candidate solution. In Figure 9.1, three different phenotypes are shown,
corresponding to integer, real number and assignment type of solutions, respec-
tively. The solution type is determined by the nature of the optimization problem.
Figure 9.1 also implies the potential difficulty of binary encoding in dealing with
continuous search domains of large dimensions and high numerical precision. One
problem can occur when a variable takes a finite number of values, which is not a
power of 2, because in this case some binary chromosomes are redundant or
useless.

The real-valued encoding is a straightforward type of encoding. Generally, it directly
utilizes the original form of a candidate solution, i.e. a vector of the decision variables
(real-valued), x = …()x xn1, , where xi R∈ . Thus, real-valued encoding appears to be a
natural alternative for solving optimization problems with decision variables in continu-
ous domains.

Choromosome

Gene

Genotype Phenotype

Integer: 1* 26+1*2 4+1*2 2+ 1*20=85

Real number: 10 + 85 /2 55*(2 0-1 0)=13 .333

(a number between 10 and 20)

Assignment: Job 1 2 3 4 5 6 7 8

Worker 1 2 1 2 1 2 1 2
...

0 1 0 1 0 1 0 1

Figure 9.1  Example of binary encoding.

c09.indd 171c09.indd 171 10-06-2022 18:22:5610-06-2022 18:22:56

9  Evolutionary Algorithms (EAs)172

In the order-based encoding scheme, individuals are represented as permutations used
for ordering/sequencing problems. For this type of encoding, special genetic operators
are needed to make sure the individuals remain valid permutations. For example, to
solve a travelling salesman problem, each city can be assigned a unique number from 1
to 5, and thus, a candidate solution could be (5, 4, 2, 1, 3).

The tree-based encoding is mainly used for solving the optimization problems that can
be formulated in terms of finding an optimal tree structure. For example, for the shortest
path problem with multiple sources and destinations, in the encoding scheme, the indi-
viduals in the population are trees. Each tree represents one path from a source node to
several destination nodes, i.e. the source is the root and the destinations are mapped into
leaf nodes. Figure 9.2 shows such an example and the related tree, representing six paths
from the source node A to the destination nodes D, E, F, and G.

Initialization is performed on the encoding scheme. It generates the initial population
of chromosomes (i.e. solutions) uniformly distributed over the search space. For exam-
ple, for binary encoding, the initialization samples the value 0 or 1 with probability 0.5
for each gene; for real-valued encoding, the initialization uniformly samples a real value
within a given interval for each gene. The above procedures create a population from
scratch. In other cases, the initial population can be inherited from previous results or
other heuristics; in these cases, the initial population is closer to the optimal solution but
could lead to possible loss of genetic diversity and introduce possible unrecoverable bias
in the search.

9.2.2  Evaluation

Evaluation is the step in which the fitness value of a chromosome is calculated. The
fitness value drives the probability that a chromosome survives in the selection proce-
dure to the next generation. To compute the fitness value, the evaluation step first

A

B C

D

E D G F E F

Figure 9.2  Example of tree-based encoding.

c09.indd 172c09.indd 172 10-06-2022 18:22:5610-06-2022 18:22:56

9.2  Genetic Algorithm (GA) 173

decodes the chromosome, i.e. translates the genotype into the phenotype, and then
uses the decoded value to compute the value of the objective function. In general, if the
objective function is to be maximized, then no further conversion of the value is
needed; if the objective function is to be minimized, then the objective value needs to
be converted, e.g. via taking the reciprocal 1 / f x(), so that in the selection procedure,
the chromosomes with larger fitness values have higher survival probabilities to the
next generation.

In addition, the constraints of the optimization problem need to be considered in the
evaluation step because it could happen that one phenotype breaks some constraints.
Typically, there are two ways to handle constraints: penalizing the fitness and imple-
menting a repair method. The former simply adds to the fitness value a term that meas-
ures the degree of the constraint violation, e.g. δmax ,g x C()−()0 0 in Equation (9.1)
where δ is the penalty coefficient, a large constant value. The latter involves designing a
mechanism that can fix the chromosome to satisfy all constraints, e.g. via switching
some ‘1’ valued genes to ‘0’, in Problem 9.1.

As a matter of fact, the evaluation step is generally the most computationally expen-
sive step for real applications because the objective value might be the computed out-
come of a subroutine, a black-box simulator, or of any external process (e.g. robot
experiment). Thus, it is recommended to avoid re-evaluating the same chromosome
throughout all generations. Another option is to use computationally cheaper surrogates
to approximate the fitness evaluations, but this could disturb the evolution process
towards the optimal solution, the surrogates cannot be used for a large number of gen-
erations, and the evolution path by using surrogates needs to be constantly checked and
corrected if needed.

9.2.3  Selection

After the fitness evaluation, the selection strategy is applied to favor the best chromo-
somes (i.e., with the highest fitness values) to have more chance of surviving to the fol-
lowing genetic operations. Different from the genetic operations, which aim at creating
diversified offsprings, selection represents the evolution pressure that forces the popula-
tion to evolve toward an improved one. Still, the chromosomes of lower quality must also
have a certain chance of survival to the next generation because they may carry useful
genetic elements.

Fitness-proportional selection is the most popular method for selection. It is also
referred to as roulette-wheel selection. For one chromosome, the probability of being
selected is determined as

p f
fi

s i

i i
=
∑

.	 (9.2)

Under this scheme, a chromosome of higher fitness value has more chances to be
selected.

c09.indd 173c09.indd 173 10-06-2022 18:22:5710-06-2022 18:22:57

9  Evolutionary Algorithms (EAs)174

However, this method has three disadvantages: 1) the risk of trapping into local
optima because the superior (fittest) chromosomes could quickly dominate the entire
population; 2) the discrimination power is low when the fitness values are close to
each other; and 3) the proportion reflecting the relative share of each chromosome in
the minimization problem should be distorted due to the inversion of the fitness
values.

To remedy these drawbacks, other selection approaches, e.g. tournament selection and
rank-based selection, can be used. Tournament selection [5] performs several tourna-
ments among a few chromosomes randomly chosen from the population and the winner
of each tournament is selected to undergo genetic operations. Compared to the fitness-
proportional selection procedure, tournament selection is independent from the scale of
the fitness values. Rank-based selection [6] arranges the chromosomes from their best to
the worst fitness values, and selects the chromosomes according to a probabilistic func-
tion of their ranks where the best chromosome is ranked m (total number of chromo-
somes in the population) and the worst chromosome is ranked 1. This basically overcomes
the three major drawbacks of the fitness-proportional selection.

9.2.4  Mutation

The mutation is a genetic operator that alters one or more gene values in a chromosome
so the genetic diversity is achieved. The mutation is made according to a user-defined
mutation probability pm (typically a low value, e.g. pm ≤ 0 001.). An example is the inver-
sion operation of one bit in the (1+1) evolutionary algorithm in Section 9.1. A mutation
can significantly change the previous solution. For different encoding schemes, the
mutation operators are different.

For binary encoding, the mutation operator inverts the value of a gene, with a given
probability pm . This is identical to the inversion operation in the (1+1) EA.

For real-valued encoding, the mutation operator perturbs values by adding a random
noise to the original gene values. Typically, a normally distributed noise N 0,σ() is used
where 0 is the mean value and σ is the standard deviation. Thus, the mathematical
expression for mutation of the i-th gene is x x Ni i i

' ,= + ()0 σ . Another type of mutation
operator is the uniform mutation, which replaces the value of the chosen gene with a
uniform random value selected within user-defined bounds for that gene. Both these
mutation operators can be used for real-valued and integer-valued encoding schemes.

For order-based encoding, a standard mutation operator leads to infeasible solutions.
Therefore, at least two values must be changed at the same time. Under this setting, pm
now represents the probability the operator will be applied once on the whole chromo-
some rather than individually on each gene. The swap operator, shown in Figure 9.3,
randomly selects two genes and then swaps their positions. More information about
other order-based mutations, e.g. insert mutation and inversion mutation can be found
in Eiben and Smith’s book [7].

For tree-based encoding, the mutation operator randomly selects a node in the
tree structure and replaces its subtree (node inclusive) with a randomly created tree.

c09.indd 174c09.indd 174 10-06-2022 18:22:5910-06-2022 18:22:59

9.2  Genetic Algorithm (GA) 175

Similar to the order-based case, pm represents the probability that a whole chromo-
some is selected for mutation. A schematic example of this mutation is shown in
Figure 9.4. This type of mutation operator is also called subtree mutation. For details
about other tree-based mutations, please refer to Koza’s genetic programming book
[8].

To conclude the mutation section, know that a mutation operator should allow reach-
ing each part of the search space, the amount of mutation is important and should be
controllable, mutation should produce physically valid chromosomes.

9.2.5  Crossover

Crossover, also called recombination, is a genetic operator that combines the genetic
information of the paired parent chromosomes to generate new offsprings (i.e. children)
as an analogy to the biological reproduction. Similar to mutation, crossover occurs
according to a user-defined probability pc (typically a high value, e.g. pc ≥ 0 6.), which
determines the chance of applying the crossover operator on each pair. For different
encoding schemes, the applicable crossover operators are different.

For binary-valued, integer-valued, and real-valued encodings, the same type of crosso-
ver operators can be applied. Figure 9.5 shows the single-point crossover scheme where
the paired chromosomes are cut at the same crossover point, and the genes to the right

57 4 2 8 3 1 65 7 1 2 8 3 4 6

Figure 9.3  Swap operator for order-based encoding.

A

B C

D

EDG F E F

A

B F

D

CG F E

Figure 9.4  One example of tree-based mutation.

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

29 7 2 5 3 7 6

11 4 3 1 4 5 3

Parents Children

Figure 9.5  Single-point crossover.

c09.indd 175c09.indd 175 10-06-2022 18:23:0210-06-2022 18:23:02

9  Evolutionary Algorithms (EAs)176

of this point are swapped between the two parent chromosomes. The crossover point
occurs with an equal probability between any two adjacent genes.

Two-point crossover is the extension of single-point crossover. The two crossover
points are randomly selected and the genes between these two points are swapped
between the parent chromosomes. One example is shown in Figure 9.6. Furthermore,
two-point crossover can be generalized to n-point crossover, which swaps the genes
between two adjacent crossover points between the parents.

Uniform crossover operator swaps the genes on the randomly selected crossover points
between the parents. To illustrate this crossover operator, as shown in Figure 9.7, a mask
vector of ‘0’ and ‘1’ values is randomly generated, and the genes of the parents are
swapped at the points with ‘1’ values on the mask vector. There exists a relation between
the uniform crossover and n-point crossover. For example, a mask ‘00011100’ defines a
two-point crossover with the fourth and sixth genes as crossover points.

Because crossover is conducted with high probability, its disruptive effect needs to be
considered carefully when selecting or designing the crossover operators for a GA. For
example, in the global optimal solution, there are some inseparable building blocks, e.g.
composed of two consecutive genes. The single-point crossover (or mutation) operator is
said to disrupt the building block if it separates the two genes and distrutes them into
different children and then the building block might not appear in neither child. This
effect can be remedied by utilizing the two-point crossover, that does not break the block.
However, the disruptive effect is not always unwelcomed because it can increase the
chance for the GA to jump to different points of the search space, which enhances the
exploration capability. In the end, as said before, the right balance between global explo-
ration and local exploitation is the key to the successful implementation of a GA. For
details about multi-point crossover (including n-point crossover and uniform crossover)
and disruptive effects, the interested readers can refer to De Jong and Spear’s work in [9].

For real-valued encoding, a few special crossover operators are different from the com-
mon single-point, multi-point, and uniform crossover operators. One example is the
arithmetical crossover where each gene of the offspring chromosome is the weighted
sum of the parent genes at the same position. Mathematically speaking, let x1 and x2
denote the two parent chromosomes and  ′x 1 and  ′x 2  denote the two children chromo-
somes after arithmetical crossover: Then, for the i-th gene  ′x i1  in the first child, we
have ′ = + −()x x xi i i1 1 21λ λ ; similarly for the i-th gene  ′x i2  in the second child, we have
′ = + −()x x xi i i2 2 11λ λ where λ is a constant for uniform arithmetical crossover and var-

ies with the generations for non-uniform arithmetical crossover. For other types of real-
valued crossover operators, the interested readers can refer to [10].

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

19 7 2 5 3 7 3

21 4 3 1 4 5 6

Parents Children

Figure 9.6  Two-point crossover.

c09.indd 176c09.indd 176 10-06-2022 18:23:0410-06-2022 18:23:04

9.2  Genetic Algorithm (GA) 177

For order-based encoding, similar to the case of mutation, standard crossover opera-
tors, e.g. single-point and n-point operators, may lead to infeasible solutions. Thus, vari-
ous specialized operators are designed for order-based encoding. Among them, order 1
crossover is a common one; its key idea is to preserve the relative order of the occurrence
of the genes.The procedure is presented as follows:

Procedure 9.1  Order 1 crossover

1.	 Randomly choose a gene set from the first parent and copy this to the first child.
2.	 Copy the remaining genes, that are not in the copied part, to the first child:

2.1	 Starting right from the cut point of the copied part,
2.2	 Using the order of the same genes in the second parent, and
2.3	 Wrapping around at the end of the chromosome.

3.	 Repeat this process with the parent roles reversed

Figure 9.8 Illustrative example of the procedure.
More information about other crossover operators, e.g. partially mapped crossover and

cycle crossover can be found in Eiben and Smith’s book [7].

19 7 2 1 4 5 3

2 1 4 3 5 3 7 6

29 4 2 1 3 7 3

11 7 3 5 4 5 6

Parents Children

10 1 0 0 1 1 0

Mask

Figure 9.7  Uniform crossover.

87 6 2 1 4 5 3

38 7 2 1 6 5 4

Parent1

Child1

2 1 4 3 5 8 7 6

Parent2

2 1 5

7,6,4,3,8

4,3,8,7,6

Order

Figure 9.8  Example of Order 1 crossover.

c09.indd 177c09.indd 177 10-06-2022 18:23:0410-06-2022 18:23:04

9  Evolutionary Algorithms (EAs)178

For tree-based encoding, the crossover operator randomly selects one node in each
parent tree and swaps the subtrees between the parents under the respective nodes. A
schematic example of this crossover is shown in Figure 9.9. This type of crossover opera-
tor is also called subtree crossover. For details about other tree-based crossover opera-
tors, please refer to Koza’s genetic programming book [8].

To conclude the crossover section, know that the offspring should inherit certain genetic
materials from the parents, the crossover operators should be designed in conjunction
with the representation scheme, and crossover should produce valid chromosomes.

9.2.6  Elitism

Elitism, i.e. elitist selection, allows a limited number of the chromosomes with the best
fitness values in the present population to be preserved in the next generation.
Typically, the elitism rate is used to control the proportion of the selected best chromo-
somes from the current population. For example, given a population of 20 chromo-
somes, elitism rate = 0.1 means the top two chromosomes will survive unaltered in the
next generation.

Elitism is a simple but non-negligible step in GA, and furthermore, it has been proven
in theory that without elitism, GA cannot guarantee to converge to the global optimal
solution [11].

9.2.7  Termination Condition and Convergence

Because GA is a stochastic optimization method, the termination condition needs to be
decided before its implementation. The maximal number of generations (or fitness

A

B C

D

EDG F E F

A

B F

D

CG F E

A

B

D

G F E

C

EDF

A

B

D

G F

F

C E

Child1 Child2

Parent1 Parent2

Figure 9.9  Example of crossover for tree-based encoding.

c09.indd 178c09.indd 178 10-06-2022 18:23:0510-06-2022 18:23:05

9.3  Other Popular EAs 179

evaluations) is one commonly used condition. It is mainly related to the limited compu-
tational resources. Another typical type of termination condition is the maximal number
of generations with unchanged best fitness value. Let ft

* and ft−1
* denote the best fitness

values from the population at generation t and t−1, respectively, and let δt t tf f= − −
* *

1
be the difference between two generations: if δt = 0 for a predefined number Tconv of
generations, then the algorithm will terminate. Moreover, the above two conditions can
be used simultaneously to achieve the balance between the computational resource and
the convergence requirement.

9.3  Other Popular EAs

This section briefly introduces two EAs: differential evolution (DE) and particle
swarm optimization (PSO), which are as successful as GAs in solving various prob-
lems. DE was originally proposed as a population-based global optimization algorithm
for real-valued problems [12]. Due to its simplicity and efficiency, DE has soon become
a popular EA in various scientific and engineering fields, including reliability engi-
neering [13]. The procedures of a single-objective DE (SODE) are presented as
follows:

Algorithm 9.4  Differential Evolution

1.	 Set t← 0
2.	 Initialize Xt
3.	 Evaluate Xt
4.	 For (t t← +1, t Tmax<)
5.	 Mutate Xt to create Vt
6.	 Crossover Vt to create Ut
7.	 Select Xt+1 from Ut
8.	 End-for

X x xt t N t= …{ }1, ,, , . Each element xij t, of the individual xi t, takes a continuous value
within its limits: x jmin

 and x jmax
. In Step 5, the mutation procedure is performed as fol-

lows. Create N donor vectors each defined as

v x x xi t r t r t r tF i N, , , , , , ,= + ⋅ −() = …
1 2 3

1 	 (9.3)

where F is the scaling factor and xr t1 , , xr t2 , , and xr t3 , are three randomly chosen individu-
als in Xt ,with indexes r r r N1 2 3 1 2, , , , , ∈ …{ } and satisfying r r r i1 2 3≠ ≠ ≠ .

In Step 6, the crossover procedures are presented as follows: Apply the operator in
Equation (9.4) to mix each donor vector vi t, with its target vector xi t, to create the cor-
responding trial vector ui t, :

	u
v rand P or j j

otherwisex
ij t

ij t j c rand

ij t
,

,

,

=
≤ =







= …, , ,j K1 	 (9.4)

c09.indd 179c09.indd 179 10-06-2022 18:23:1210-06-2022 18:23:12

9  Evolutionary Algorithms (EAs)180

where randj is a uniform random value lying in the range 0 1,  , Pc is the crossover prob-
ability, K is the vector dimension, and j Krand ∈ …{ }1 2, , , is a randomly chosen parameter
index ensuring ui t, differs from xi t, . Evaluate all the trial vectors.

In Step 7, the new population Xt+1 is generated by selecting the survivors between the
target vectors and the corresponding trial vectors, with respect to their fitness values f ;
in the case of minimization, it proceeds as follows:

x
u u x
x u xi t

i t i t i t

i t i t i t

f f
f f,

, , ,

, , ,

,+ =
()≤ ()
()> ()






1 jj K= …1, , 	 (9.5)

PSO is based on the social behavior of biological organisms that move in groups, such
as birds and fish [14]. Its basic element is a particle representing one candidate solution
in the search space. PSO has certain similarities to other EAs, e.g., GAs whereas it is
uniquely characterized by the cooperative mechanism. More specifically, all particles
change position over time with their own information and that provided by their neigh-
borhoods. One particle’s successful adaptation is shared and reflected in the performance
of its neighbors [15]. Depending on how the neighborhood is determined, the PSO algo-
rithm may embody the gbest and lbest models [16]. In the former, each particle intercon-
nects to all others in the swarm, thus sharing information within the whole group. In the
latter, a particle does not communicate with the entire swarm of particles but only with
some selected ones.

Mathematically, in PSO, a particle i is characterized by three vectors: xi
t

i
t

in
tx x= …()1, , ,

its position in the n-dimensional search space at time t, pi i inp p= …()1, , , the best indi-
vidual position it has thus far visited, and vi

t
i
t

in
tv v= …()1, , ,its velocity of motion. The

procedures of single-objective PSO (SOPSO) with gbest model are presented as follows:

Algorithm 9.5  Particle Swarm Optimization

1.	 Set t← 0
2.	 Initialize X V Pt t, ,
3.	 Evaluate Xt
4.	 Initialize g xi

t Xt
f xi

t= ()∈argmin

5.	 For (t t← +1, t Tmax<)
6.	 Compute Xt+1 and Vt+1
7.	 Evaluate Xt+1
8.	 Update P and g
9.	 End-for

In Step 2: X x xt
t

N
t= …{ }1, , where each particle i is within the range l uxi xi,   ;

V v vt
t

N
t= …{ }1, , , and for each particle i, its velocity vector vi

t is randomly generated
within the range l uvi vi,   ; P p p= …{ }1, , N , and for each particle i, its best known posi-
tion is p xi i

t= . In Step 3, g is the swarm’s best-known position.

c09.indd 180c09.indd 180 10-06-2022 18:23:2410-06-2022 18:23:24

9.4  Exercises 181

In Step 6, for each particle i, its position in the next iteration is computed using the
following formulas:

x x vi
t

i
t

i
t+ += +1 1 	 (9.6)

v v p x g xi
t

i
t

i i
t

i
tw c r c r+ = + −()+ −()1

1 1 2 2 	 (9.7)

where w is the inertia weight determining the exploration scope of the search space; c1
and c2 are the acceleration constants for pi and g respectively; r1 and r2 are the inde-
pendent uniform random numbers between 0 and 1.

In Step 8, for each particle i, if f fi
t

ix p+()< ()1 , then set p xi i
t= +1 ; if f fi

tx g+()< ()1 ,
then set g x= +

i
t 1.

9.4  Exercises

1)	 Write the lines of MATLAB/PYTHON code to simulate the sum distribution of two
random variables v and u. If v and u are uniformly distributed in [0, 1], what are the
distributions of u+v, u-v, and uv?

2)	 Write one EA to solve the following redundancy allocation problem, given the param-
eters in the table below.

	max
=1

4
R rs j

x jx()= − −()









j

∏ 1 1

	s.t.
j

ij j ic x b i
=
∑ ≤ =

1

4

1 2, ,

	1 1 2 3 4≤ =x jj , , , ,

Stage, j 1 2 3 4

rj
0.8 0.7 0.75 0.85

c j1
1.2 2.3 3.4 4.5

c j2
5 4 8 7

b1 56=

b2 120=

3)	 Assume we have the following function

	f x x x x() = − + +3 260 900 100

where X is constrained to the range of integers [0,…, 31]. We wish to maximize f(X) (the
optimal is for X = 10) using a GA. Use a binary representation to represent x by five
binary digits.

c09.indd 181c09.indd 181 10-06-2022 18:23:3210-06-2022 18:23:32

9  Evolutionary Algorithms (EAs)182

a)	 Given the following, four chromosomes give the values for X and f(X).

Chromosome Binary String

P1 11100

P2 01111

P3 10111

P4 00100

b)	 If P2 and P3 are chosen as parents and we apply one-point crossover, show the result-
ing children, C1 and C2. Use a crossover point of 1 (where 0 is to the very left of the
chromosome).
Do the same using P2 and P4 with a crossover point of 2, and create C3 and C4.

c)	 Calculate the value of X and f(X) for C1 to C4.
d)	 Assume that the initial population is X ={ }17 21 4 28, , , . Using one-point crossover,

what is the probability of finding the optimal solution? Explain your reasons.

References

1	 De Jong, K.A. (2006). Evolutionary Computation: A Unified Approach. Cambridge, MA:
MIT Press.

2	 Bäck, T., Fogel, D.B., and Michalewicz, Z. (1997). Handbook of Evolutionary
Computation. Boca Raton, FL: CRC Press.

3	 Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276 (1-2): 51–81.

4	 Holand, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press.

5	 Miller, B.L. and Goldberg, D.E. (1995). Genetic algorithms, tournament selection, and
the effects of noise. Complex Systems 9 (3): 193–212.

6	 Goldberg, D.E. and Deb, K. (1991). A comparative analysis of selection schemes used in
genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93.

7	 Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary Computing. New York
City: Springer.

8	 Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

9	 De Jong, K.A. and Spears, W.M. (1992). A formal analysis of the role of multi-point
crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence 5 (1):
1–26.

10	 Herrera, F., Lozano, M., and Verdegay, J.L. (1998). Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12
(4): 265–319.

11	 Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE
Transactions on Neural Networks 5 (1): 96–101.

c09.indd 182c09.indd 182 10-06-2022 18:23:3210-06-2022 18:23:32

References 183

12	 Storn, R. and Price, K. (1995). Differential Evolution-a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces, Vols. TR-95-012. Berkeley, CA:
International Computer Science Institute.

13	 Arya, L.D.A.L.D., Choube, S.C., and Arya, R. (Feb 2011). Differential evolution applied
for reliability optimization of radial distribution systems. International Journal of
Electrical Power & Energy Systems 33 (2): 271–277.

14	 Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. in Proceedings of 1995
IEEE International Conference on Neural Networks, pp. 1942–1948.

15	 Kennedy, J., Kennedy, J.F., and Eberhart, R.C. (2001). Swarm Intelligence. San
Francisco: USA Morgan Kaufmann.

16	 Bratton, D. and Kennedy, J., “Defining a standard for particle swarm optimization,” in
Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, Honolulu, Hawaii, 2007: IEEE,
pp. 120–127.

c09.indd 183c09.indd 183 10-06-2022 18:23:3210-06-2022 18:23:32

185

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

10

Multi-Objective Optimization (MOO)

System reliability optimization typically considers multiple reliability-related objectives:
reliability, availability, and maintainability (RAM). For hazardous systems, risk attrib-
utes must also be considered, i.e. consideration of RAM and Safety criteria (RAMS) [1].
Moreover, any design, inspection, and maintenance activity is associated with a cost. In
conclusion, system reliability optimization has essentially a multi-objective formulation,
which aims at finding the appropriate choices of reliability design, inspection and main-
tenance procedures that optimally balance the conflicting RAMS and cost attributes
(RAMS+C) [2].

Then the decision variable vector x is evaluated with respect to multiple numerical objec-
tives related to the RAMS+C attributes: R x() = system reliability; A x() = system availabil-
ity; M x() = system maintainability, e.g. the unavailability contribution due to failures but
also test and maintenance; S x() = system safety, normally quantified in terms of the system
risk measure Risk x() (e.g. as assessed from a probabilistic risk analysis); and C x() = cost
required to implement the vector choice x. Many works convert the multi-objective optimi-
zation (MOO) problem into a single-objective one by, e.g. regarding one of the RAMS attrib-
utes or cost as the single objective and the other attributes as constraints or by aggregating
all attributes into a single objective. Then the techniques of the solution to single-objective
optimization (SOO) problems that have been documented in Chapters 8 and 9 can be used.

This chapter mainly focuses on MOO problems. It covers various topics related to
MOO, including MOO problem formulation, method of conversion from MOO problem
to SOO problem, MOO evolutionary algorithms, performance measures and method of
selection of the preferred solutions. Finally, the guidelines of implementing and develop-
ing MOO methods for solving RAMS+C problems are presented.

10.1  Multi-objective Problem Formulation

In general, a MOO (minimization) problem can be formulated as follows:

min f x i Mi () = …, , ,1 	 (10.1a)

c10.indd 185c10.indd 185 10-06-2022 20:17:1010-06-2022 20:17:10

10  Multi-Objective Optimization (MOO)186

s t. .
, , ,
, , ,

g x j J
h x k K

j

k

()= = …

()≤ = …








0 1
0 1

	 (10.1b)

where fi is the i-th of the M objective functions, x = …()x x xN1 2, , , is the decision varia-
ble vector that represents a solution in the solution space RN , g j is the j-th of the J equal-
ity constraints, and hk is the k-th of the K inequality constraints. Let z f x ii i= () ∀, ;
then z z z zM= …()1 2, , , is the objective vector and z is inside RM, the objective space.

For ease of notation, we assume all objective functions are to be minimized: If any
f xi () were to be maximized, they can be converted into 1− ()f xi for minimization.
Adopting the general definition for RAMS+C optimization, the MOO problem has the
following formulation:

min 1 1− () − () () () ()()R A M Risk Cx x x x x, , , , 	 (10.2a)

s.t.R RLx()≥ 	 (10.2b)

	A ALx()≥ 	 (10.2d)

	M MUx()≤ 	 (10.2e)

	Risk RUx()≤ 	 (10.2f)

	C CUx()≤ 	 (10.2g)

	x x xNd
=()∈1, ,… RNd 	 (10.2h)

The quantities R A M R CL L U U U, , , , represent the constraining threshold values for the
reliability, unavailability, maintainability, risk, and cost objectives, respectively. As
mentioned in Chapter 1, Reliability of a certain component or system measures its
capability to sustain operation without failure under specified conditions during a
given period of time. It is an intrinsic property that directly depends on the compo-
nent’s or system’s physical characteristics and its design, rather than on its mainte-
nance. Maintenance, on the other hand, relates to all activities performed on the
component or system during the operational lifetime to sustain or restore its func-
tional capabilities. In spite of its positive effects on component or system functional-
ity, maintenance activities could result to the downtime of the component or system
during which the system might not perform its designated functions. Availability
measures the probability that the component or system performs its designated func-
tions at any time point considering unplanned failure interruptions and planned
maintenance activities. Maintainability measures the capability of the system to be

c10.indd 186c10.indd 186 10-06-2022 20:17:1510-06-2022 20:17:15

10.2  MOO-to-SOO Problem Conversion Methods 187

maintained under specified conditions during a given period of time. For quantitative
analysis, the above mentioned metrics are typically all defined in probabilistic terms.
Safety is defined as the capability to prevent or mitigate the consequences of postu-
lated accidents on specified targets (e.g. workers, public, and environment); risk is
often adopted as the quantitative metric of interest, in relation to scenarios, probabili-
ties of occurrence, and consequences.

MOO requires minimizing all objectives simultaneously. If no conflict exists between
any pair of the objectives, one would find a single solution that minimizes all objectives
at the same time. In this case, solving the MOO problem is equivalent to minimizing one
of the objectives. The MOO methods need to be applied only when conflicts exist among
the objectives. In this case, due to the contradiction and possible incommensurability of
the objective functions, MOO methods identify a set of optimal solutions xl l L*, , , ,= …1 2
instead of a single optimal solution.

In the set of optimal solutions of a MOO problem, no one can be regarded as better
than any other with respect to all the objective functions. The identification of this set of
solutions can be achieved in terms of the concepts of Pareto optimality and dominance
[3]. In case of a minimization problem, the solution xa is regarded to dominate solution
xb (x xa b) if both following conditions are satisfied:

	∀ ∈ …{ } ()≤ ()i M f fi a i b1 2, , , , x x 	 (10.3a)

	∃ ∈ …{ } ()< ()j M f fj a j b1 2, , , , x x 	 (10.3b)

If one or both of the above conditions are violated, xb is said to be non-dominated by xa.
Within the entire search space, the solutions non-dominated by any others are Pareto-
optimal and constitute the Pareto-optimal set; the corresponding z objective functions
values form the Pareto-optimal front in RM. The goal of a MOO method is to search for
solutions in the Pareto-optimal set while maintaining diversity so as to cover the Pareto-
optimal front. Therefore, flexibility is allowed in the final decisions on the solutions to be
implemented (Figure 10.1).

10.2  MOO-to-SOO Problem Conversion Methods

The goal of the methods for MOO problem solution is to obtain the Pareto-optimal front,
or Pareto front in short. There are typically two ways of achieving this goal. The first one
is to convert the MOO problem into multiple SOO problems, such that the solution to
each SOO problem produces one member of the Pareto-optimal front. The second one is
to simultaneously optimize the multiple objectives. In this section, the MOO-SOO con-
version methods are introduced: once the SOO problems are obtained, then the methods
introduced in Chapters 8 and 9 can be applied.

c10.indd 187c10.indd 187 10-06-2022 20:17:1710-06-2022 20:17:17

10  Multi-Objective Optimization (MOO)188

10.2.1  Weighted-sum Approach

The weighted-sum approach aggregates multiple objectives into one single objective
using a weighting vector w= …()w w wM1 2, , , as in the following:

min
i

M

i iw f
=
∑ ()

1
x 	 (10.4a)

	s.t.
, , ,
, , ,

g j J
h k K

j

k

x
x
()= = …

()≤ = …







0 1
0 1

	 (10.4b)

where each wi ≥ 0 and
i

M

iw
=
∑ =

1

1. Consequently, the solution to Equation (10.4) is also a

solution to Equation (10.1). The coefficients are selected depending on the decision
maker (DM) preferences. In multiple criteria decision analysis theory, there are a num-
ber of methods, e.g. AHP and TOPSIS, that have been developed for the quantification of
the DMs preferences. Interested readers could refer to [4] for detailed information.

This approach is most straightforward to convert a MOO problem. For problems that
have a convex Pareto-optimal front, it guarantees finding the solutions on the entire
Pareto-optimal set by varying the values of the weight vector. However, this method has
four disadvantages: Different weight vectors do not necessarily result into different
Pareto-optimal solutions; uniformly distributed sets of weight vectors do not necessarily
result into uniformly distributed Pareto-optimal solutions; there are difficulties to han-
dle objectives of different numerical scales; and there are difficulties to find certain
Pareto-optimal solutions in a non-convex objective space.

0
Minimize

M
inim

ize Pareto-optimal front

Figure 10.1  Pareto dominance and Pareto optimality.

c10.indd 188c10.indd 188 10-06-2022 20:17:2010-06-2022 20:17:20

10.2  MOO-to-SOO Problem Conversion Methods 189

10.2.2  ε-constraint Approach

To alleviate the difficulties faced by the weighted-sum approach, the ε-constraint
approach was proposed in 1971 by Haimes, et al. [5]. It reformulates the MOO problem
by keeping one objective and transforming the others into constraints bounded by user-
specific values. The transformed problem has the following expression:

Min fθ x(),	 (10.5a)

	s.t.
, , ,

, , ,
, , ,

f i M and i
g j J
h k K

i i

j

k

x
x
x

()≤ = … ≠

()= = …

()≤ = …





ε θ1
0 1
0 1






	 (10.5b)

where εi is the upper bound of fi x() and satisfies that L Ui i i≤ ≤ε . By iteratively increas-
ing or decreasing the value of εi , in principle, we can obtain all Pareto-optimal solutions
on the entire Pareto-optimal set regardless the convexity of the Pareto front. The disad-
vantages of this method lie in the difficulties to determine the ranges of the objectives
being constrained and the values of εi , especially when many objectives are involved.
The lower limit of each converted objective Li can be obtained by solving the individual
SOO using the same objective. However, computing the upper limit Ui is not straightfor-
ward. A Payoff Table (as shown in Table 10.1) is usually implemented [6]. In this table,
the leftmost cell of each row contains the optimal solution to an individual objective, e.g.
xi

min represents the optimal solution to the ith objective. The cell of row i under column

j includes the jth objective function value, given xi
min. Through this table, the upper

limit Ui can be estimated by max
j i j

minf x(){ }. However, there can be large discrepancy

between this estimation and the real upper limit. The readers can refer to [6] for details
about finding the real upper limit.

10.2.3  Goal Programming

Goal programming was first introduced in 1955 by Charnes, et al. [7] to solve a single-
objective linear programming (LP) problem and is widely used for solving MOO prob-
lems. The main idea of goal programming is to find the solutions that achieve the

Table 10.1  Payoff Table of the MOO problem formulation.

z1 … zM

x1
min f min

1 1x() … fM
minx1()

… … …

xM
min f M

min
1 x() … fM M

minx()

c10.indd 189c10.indd 189 10-06-2022 20:17:2510-06-2022 20:17:25

10  Multi-Objective Optimization (MOO)190

predefined targets at one or more objectives. If there is no solution to achieving the pre-
defined targets in all objectives, the task will be to find the solutions that minimize the
deviations from the objectives. On the other hand, if solutions exist within the desired
targets, the task will be to identify those solutions.

For a MOO problem, the simplest version of goal programming requires the DM to set
the target and relative weight for each objective function. An optimal solution x * is
defined as the one that minimizes the deviation from the set targets. Goal programming
generally takes the following form:

	Min
i

M

i i ic d d
=

+ −∑ +()
1

	 (10.6a)

	s.t.

, , ,

f d d f

d d

d d i M

i i i i

i i

i i

x()+ − =

=

≥ = …











+ −

+ −

+ −

0

0

0 1
	 (10.6b)

where ci is the weight of the deviation of each objective, di
+ and di

− are respectively the
positive and negative deviations, and fi

0 is the predefined target for the i-th objective.
The disadvantages of this method are similar to the weighted sum approach, as the DM
has to provide targets and weights for each of the objective functions.

10.3  Multi-objective Evolutionary Algorithms

The above mentioned approaches for solving MOO problems are often referred to as
classical. They all suggest certain ways of converting a MOO problem into a SOO prob-
lem. They have some common difficulties, such as that only one Pareto-optimal solution
can be found in one simulation run and that certain problem knowledge, such as wi, εi,
ci and fi

0 is required from the DM.
The EAs, e.g. genetic algorithms (GAs) [8], introduced in Chapter 9, are stochastic

optimization methods mimicking biological evolution on a group of individuals (solu-
tions). The parallelization and evolution operations of EAs are well-suited to the charac-
teristics of MOO problems. Parallelization helps to identify multiple solutions on the
Pareto front in one run without soliciting knowledge from the DM; the evolution opera-
tors have the capability to avoid trapping into the local minima (which is common in
non-convex objective spaces). These properties render the EAs by far the most popular
methods implemented for RAMS+C MOO. There are several EAs specifically developed
for solving MOO problems. In the following, we will introduce two representative ones.

10.3.1  Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

Fast non-dominated sorting genetic algorithm (NSGA-II) [9] has become one of the
standard approaches of multi-objective EAs (MOEAs). The input parameters are N

c10.indd 190c10.indd 190 10-06-2022 20:17:2910-06-2022 20:17:29

10.3  Multi-objective Evolutionary Algorithms 191

population size, Pc crossover probability, Pm mutation probability and T maximum num-
ber of generations. The output is PT final population. The procedure of NSGA-II is pre-
sented as the following:

Procedure 10.1  Nsga-II

1.	 Initialization: Set the generation counter t= 0 ; randomly generate an initial popula-
tion Pt of size N.

2.	 Mating selection: Perform the binary tournament selection with replacement on Pt to
select parents to be processed by genetic operators.

3.	 Variation: Apply crossover and mutation operators to the paired parents with proba-
bility Pc and Pm, respectively, to create offspring population Qt of size N.

4.	 Dominance ranking: F P Q= ∪t t , then use the fast non-dominated sorting algorithm
to identify the non-dominated fronts F F F1 2, , ,… k in the union F .

5.	 Environmental selection:
5.1	 Set Pt+ =∅1 , then perform what follows;
5.2	 For i k= …1, , do the following steps;
5.3		 If P Ft i+ + ≤1 N , then set P P Ft t i+ += ∪1 1 ; and
5.4		 Else, calculate crowding distance of the solutions in Fi; add the least
crowded N P− +t 1 solutions of Fi to Pt+1.

6.	 Set t t= +1.

7.	 Termination: t T> , then stop and return Pt; otherwise, go to Step 2.

The procedures above show three key concepts: dominance ranking, fast non-dominated
sorting algorithm, and crowding distance. In the fast non-dominated sorting algorithm,
for each solution, there are two entities: domination count nx, i.e. the number of solu-
tions which dominate the present solution x and Sx, a set of solution that the solution x
dominates. The algorithm is presented as follows:

Algorithm 10.1  Fast non-dominated sorting.

1.	 For each x P∈
2.	 Set nx ← 0, Sx ←∅
3.	 For each x P′∈
4.	 If x x ′ then // if x dominates ′x
5.	 S S xx x← ′{ }∪ // add x′ to the set of solutions dominated by x
6.	 Else if x x′  then
7.	 n nx x← +1 // increase the domination counter of x
8.	 End-if
9.	 End-for
10.	 If nx = 0 then // x belongs to the first front
11.	 xrank←1 // assign front number to x

c10.indd 191c10.indd 191 10-06-2022 20:17:3910-06-2022 20:17:39

10  Multi-Objective Optimization (MOO)192

12.	 F F x1 1← { }∪
13.	 End-if
14.	 End-for
15.	 Set k←1 // initialize the front counter
16.	 While Fk ≠∅
17.	 Q←∅
18.	 For each x F∈ k
19.	 For each x S′ ∈ x
20.	 n nx x′ ′← −1
21.	 If nx ′ = 0 then // x ′ belongs to the next front
22.	 xrank k′ ← +1 // assign front number to x ′
23.	 Q Q x← ′{ }∪
24.	 End-if
25.	 End-for
26.	 End-for
27.	 k k← +1
28.	 F Qk ←
29.	 End-while

where x is the index of x in the current population. The outputs of this algorithm
include the total number of front k and all non-dominated fronts F F F1 2, ,,... k . Figure
10.2 shows an example of this sorting.

To identify the different Pareto-optimal fronts in Figure 10.2, the step are shown in
Table 10.2 according to the fast non-dominated sorting algorithm, i.e. Algorithm 10.1.

Crowding distance is another important concept in NSGA-II. Suppose there are l = F
solutions on the front. For each objective function k , sort the l solutions in worsening
order, and let x i k,[] represent the i-th solution in the sorted list with respect to objective
function k . The definition of crowding distance is shown as follows:

Level 3

Level 2

Level 1

(minimize)

(minimize)

Figure 10.2  Fast non-dominance sorting, an example.

c10.indd 192c10.indd 192 10-06-2022 20:17:4310-06-2022 20:17:43

10.3  Multi-objective Evolutionary Algorithms 193

	d
f f

f f
i

i k

k k i k k i k

k k
x

x x
,

, ,
 
=
()− ()

−
=

+  − 1 1

max min for 22 1, ,… −l � (10.7)

We have the two extreme cases: d
k

k
x 1,[]
=∞ and d

l k

k
x ,[]
=∞ . For each solution x , the

crowding distance is the sum of all its crowding distances, each with respect to one objec-
tive, i.e. d d

k

k
x x=∑ .

Take solution 4 in Figure 10.3 for example. For f1, sort solutions as 1 2 3 4 5 6, , , , ,{ } and

d
f f

f f4
1 1 5 1 3

1 1
=
()− ()
−

x x
max min . For f2, sort solutions as 6 5 4 3 2 1, , , , ,{ } and d

f f
f f4

2 2 3 2 5

2 2
=
()− ()
−

x x
max min .

The crowding distance of 4 is d d d4 4
1

4
2= + .

NSGA-II has three major advantages: O MN 2() computational complexity of sorting
(where M is the number of objectives and N is the population size), elitism approach, and
self-maintained diversity. In theory, NSGA-II is a GA without elitism strategy because no
mechanism preserves the best solutions found in each generation.

10.3.2  Improved Strength Pareto Evolutionary Algorithm (SPEA 2)

The strength Pareto evolutionary algorithm (SPEA) [10] is an elitist EA. The elitism is
introduced by explicitly maintaining an external archive Et of non-dominated solutions

1 For each x ∈Ρ , set nx = 0 and Sx =φ .

2 For solution 1, since 1 3 , 1 4 and 1 5 , update S1 ={ }3 4 5, , and n1 0= .

For solution 2, since 2 3 , 2 4 and 2 5 , update S2 ={ }3 4 5, , and n2 0= .

For solution 3, since 3 5 , 2 3 and 1 3 , update S3 ={ }5 and n3 2= .

For solution 4, since 4 5 and 1 4 , update S4 ={ }5 and n4 1= .

For solution 5, since 1 5 , 2 5 , 3 5 and 4 5 , update S5 =φ and n5 4= .

3 Since n n1 2 0= = , set F1 ={ }1 2, . Set k=1.

4 For x ′ ∈ S1 , update n nx x′ ′= −1. For x S′ ∈ 2 , update n nx x′ ′= −1 . Obtain
n3 0= , n3 0= and n5 2= .

5 Set k= 2. Since n n3 4 0= = , set F2 3 4={ }, .

6 For x ′ ∈ S3 , update n nx x′ ′= −1. For x ′ ∈ S4 , update n nx x′ ′= −1 . Obtain
n5 0= .

7 Set k= 3. Since n5 0= , set F3 5={ }.
8 Stop and declare the total number of fronts k= 3 and all non-dominated sets Fi ,

for i=1 2 3, , .

Table 10.2 Steps of fast non-dominance sorting, an example.

c10.indd 193c10.indd 193 10-06-2022 20:18:0210-06-2022 20:18:02

10  Multi-Objective Optimization (MOO)194

in the course of searching. It is able to retain the elites using the ranking principle in the
environmental selection step and is characterized by the clustering mechanism to trun-
cate the external population to increase the diversity of non-dominated solutions. Despite
the advantages mentioned above, SPEA is typically time-consuming, mainly due to the
complexity of the clustering algorithm. Thus, the improved SPEA (SPEA 2) was pro-
posed for better performance [11]. Different from SPEA, SPEA 2 considers the domina-
tion strength of each solution and applies the k-th nearest neighbor-based density to
maintain population diversity. In SPEA 2, the fitness assignment incorporating domina-
tion strength and density information is the diversity-preserving mechanism.
The procedures of SPEA 2 are presented as follows.

Procedure 10.2  SPEA 2

1.	 Initialization: Set the generation counter t = 0; randomly generate an initial popula-
tion Pt of size N ; create the empty archive (external population) Et of size NE .

2.	 Fitness assignment: Calculate the fitness of each solution x in P Et t∪ via the follow-
ing steps:

2.1.	 Compute the raw fitness of solution x : R x, y,
y P E ,y xt t

t S t()= ()∑
∈ ∪ 

where S ty,() is the number of solutions in P Et t∪ dominated by the solution y,

i.e. the strength of y . For a non-dominated solution x , set R tx,()= 0 .

2.2.	 Calculate the density estimate of solution x : D tx,()= +()−σx
k 2

1
 where σxk is

the distance between x and its k-th nearest neighbor. A common setting for k is
N N+ E .

2.3.	 Assign the fitness value to solution x : F R Dx,t x,t x,t()= ()+ () .

3.	 Environmental selection: Copy all non-dominated solutions, the fitness values of
which are lower than one, from P Et t∪ to Et+1 .

11 (minimize)

(minimize)

3

2

1

6

4
5

Figure 10.3  An example of crowding distance.

c10.indd 194c10.indd 194 10-06-2022 20:18:0610-06-2022 20:18:06

10.3  Multi-objective Evolutionary Algorithms 195

3.1.	 If Et E+ ≤1 N , then add the best NE tE− +1 dominated solutions of P Et t∪ into
Et+1 according to the fitness values;

3.2.	 Else, then iteratively remove Et E+ −1 N solutions with respect to density.
Break any tie by examining the maximum σl for l k= − …1 1, , , sequentially.

4.	 Termination: If the stopping criterion is satisfied, then stop and return the set of non-
dominated solutions in Et+1.

5.	 Mating selection: Perform the binary tournament selection with replacement on Et+1
to select parents for genetic operators.

6.	 Variation: Apply crossover and mutation operators to the parents to create offspring
solutions which constitute the next generation Pt+1. Set t t= +1 and go to Step 2.

In SPEA 2, there are two key mechanisms: fitness assignment and environmental selec-
tion. For the former, we will explain the procedure to compute the final fitness value of
a solution x. The domination strength S y() is the number of solutions it dominates in
archive Et and population Pt . It is mathematically defined as follows:

S y y y P E y y()= ′ ′ ∈ ′∪{ | , }t t 

	 (10.8)

The raw fitness solution x is determined by the strengths of its dominators in archive
Et and population Pt . Its definition is shown as follows:

R S
P t

x y
y E y xt

()= ()∑
∈ ∪ , 

	 (10.9)

A high R x() value means that x is dominated by many solutions. For a non-dominated
solution x, we have R x()= 0. Although the raw fitness assignment provides a type of
niching mechanism based on the Pareto dominance concept, it may fail when most indi-
viduals do not dominate each other. Thus, additional density information needs to be
incorporated to the fitness.

The density estimate D x() for solution x is defined as the inverse of the distance σxk to
its k-th nearest neighbor in archive Et and population Pt:

D x x
k()= +()−σ 2

1
� (10.10)

In the denominator, 2 is added to ensure that D x() < 1. The final fitness value is
defined as the sum of the raw fitness and the density estimate:

F R Dx x x()= ()+ () � (10.11)

For a non-dominated solution x, its fitness value is F x()<1; for a dominated solution x,
its fitness value is F x()>1.

c10.indd 195c10.indd 195 10-06-2022 20:18:1610-06-2022 20:18:16

10  Multi-Objective Optimization (MOO)196

For the environmental selection, all non-dominated solutions in P Et t∪ , whose fitness
values are lower than one, are first copied into Et+1 ; then the archive truncation is per-
formed considering the following two cases.

Case 1: If Et+ ≤1 NE, add the best NE − +Et 1 dominated solutions of P Et t∪ into Et+1
according to the fitness values.

Case 2: If Et EN+ >1 , iteratively remove Et EN+ −1 solutions with respect to density.
At each removal iteration, solution x to be removed should satisfy x yd≤ for all y E∈ +t 1 .
The relation x yd≤ is defined as

∀ < < = ∨+0 1k t
k kE x y:σ σ

∃ < < ∀ < < =()∧ <+0 01k l kt
l l k kE x y x y: [:]σ σ σ σ � (10.12)

In the following Table 10.3, we show one example of the removal iterations. Given the
solution and its objective values in the first three columns, the distance of each solution
to all other solutions are calculated and sorted in increasing order in the fourth column.
The distances to the first and second nearest neighbors are shown in the fifth and sixth
columns. We can see that in iteration #1, solution 4 is removed. Then all the distances are
recalculated after the removal. In iteration #2, solution 1 is removed.

To summarize, the SPEA 2 has the following advantages: It provides a better distribu-
tion of Pareto-optimal solutions than NSGA-II, especially when the number of objectives
increases, and the archive truncation guarantees the preservation of boundary solutions.
Its disadvantages mainly lie in the computational complexities, i.e. calculation of den-
sity estimator and the calculation of fitness are time-consuming.

Table 10.3  Example of removal iterations.

Iteration #1

Solution x f1 f2 Distance to all solutions in increasing order σx
1 σx

2

1 0.31 6.10 [0.83, 0.99, 1.60, 2.47] 0.83 –

2 0.22 7.09 [0.17, 0.99, 2.60, 3.47] 0.17 0.99

3 0.66 3.65 [0.87, 2.47, 3.30, 3.47] 0.87 –

4 0.27 6.93 [0.17, 0.83, 2.43, 3.30] 0.17 0.83

5 0.58 4.52 [0.87, 1.60, 2.43, 2.60] 0.87 –

Iteration #2

Solution x f1 f2 Distance to all solutions in increasing
order

σx
1 σx

2

1 0.31 6.10 [0.70, 1.60, 2.47] 0.70 1.60

2 0.22 7.09 [0.70, 2.28, 3.15] 0.70 2.28

3 0.66 3.65 [0.87, 2.47, 3.15] 0.87 –

5 0.58 4.52 [0.87, 1.60, 2.28] 0.87 –

c10.indd 196c10.indd 196 10-06-2022 20:18:2210-06-2022 20:18:22

10.4  Performance Measures 197

Besides NSGA-II and SPEA 2, other well-known MOGAs include vector-evaluated GA
(VEGA) [12] and niched Pareto GA (NPGA) [13]. The details about MOEAs for RAMS+C
optimization have been well-documented in the tutorials by Marseguerra and Zio [2]
and, Konak et al. [14]. Despite the popularity of the MOEAs, in general, they have the
following disadvantages: There is no guarantee to find a true Pareto-optimal solution;
there is no guarantee to identify all Pareto-optimal solutions; they are computationally
expensive for large population sizes.

10.4  Performance Measures

The performance of the MOO methods needs to be evaluated quantitatively to guide the
creation and implementation of efficient MOO methods for the different problems.
Performance measures are defined for this purpose. There are two goals for MOO: dis-
cover solutions as close to the Pareto-optimal front as possible (i.e., search for the Pareto-
optimal front) and maintain a diverse set of Pareto-optimal solutions (i.e., search along
the Pareto-optimal front). A MOO method is considered of good performance if both of
the above goals are sufficiently satisfied. Correspondingly, the performance measures
are of three categories: measure to evaluate closeness to the true Pareto-optimal front;
measure to evaluate diversity among non-dominated solutions; and measure to evaluate
closeness and diversity. For more comprehensive information about the performance
measures, please refer to [15,16].

In this section, we introduce three representative measures, each belonging to one
category. The first measure is named as generational distance (GD) [17]. It explicitly
computes the closeness of a non-dominated solution set Q to a known Pareto-optimal set
P*. It is mathematically defined as

GD
d

Q
i

Q
i
p

p

=







∑ =1

1/

� (10.13)

For p= 2, it defines di as the Euclidean distance (in the objective space) between solu-

tion i Q∈ and its nearest solution in P*, i.e. d f fi
k P m

M

m
i

m
k= −()

∈
=

() ()∑min
*

*

1

2
 where fm

k* ()

denotes the m-th objective function value of the k-th solutions in P*. Figure 10.4 shows
one example of computing GD.

An algorithm having a smaller value of GD is regarded superior to another one having
a larger value of GD. The disadvantages of GD as a measure of performance is that the set
P* should be known; otherwise, it is necessary to find an appropriate set, which can be
considered as P* before computing GD.

The second measure is named spacing, which quantifies the diversity of the non-dom-
inated front. It is calculated with a relative distance measure between consecutive solu-
tions in the non-dominated set Q, as in equation (10.14):

c10.indd 197c10.indd 197 10-06-2022 20:18:2410-06-2022 20:18:24

10  Multi-Objective Optimization (MOO)198

S= −()
=
∑

1

1

2

Q
d d

i

Q

i � (10.14)

where d d Q
i

Q

i=
=
∑

1

/ and di = min
k Q k i

m

M

m
i

m
kf f

∈ ∧ ≠
=

() ()∑ −
1

, which is the minimum value of the

sum of the absolute differences in objective function values of the i-th solution and any
other solution k in Q. A smaller value of S indicates a more uniform distribution of Q.
Figure 10.5 shows one example of computing the spacing measure. For example, in the

case of solution A, dA= +() +() +() +()()=min . . , . . , . . , . . .1 6 2 7 2 8 5 0 5 8 5 6 7 2 6 6 4 3 .

The complexity of computing spacing is O(Q 2). However, half of the calculations can
be avoided by exploiting the symmetry in distance measures. Also, normalization of the
objectives before calculating spacing is essential.

The third measure is called hyper-volume (HV), which is a composite type of measure
that evaluates closeness and diversity. It calculates the volume covered by the solutions
of the set Q. For each solution i Q∈ a hypercube νi is constructed with a reference point
W and a diagonal corner i. The union of all hypercubes is the HV and it can be calcu-
lated as

HV=volume ∪()=i
Q

i1ν 	 (10.15)

The reference point W can be regarded as the vector of worst objective function values.
Algorithms providing solutions that give large values of HV are desirable. Figure 10.6
illustrates the computation of HV through an example.

Figure 10.4  An example of generational distance (GD) computation.

c10.indd 198c10.indd 198 10-06-2022 20:18:2610-06-2022 20:18:26

10.4  Performance Measures 199

In case the objective functions values are in different orders of magnitude, for exam-
ple, if f1 is an order of magnitude larger than f2, reducing HV by a unit improvement
in f1 will be much greater than doing that by a unit improvement in f2. In these cases,
one of the following two remedies should be considered: normalize all objective values

and use the metric HVR, which is the ratio of the HVs of Q and P*, HVR
HV

HV
=

()
()

Q

P*
.

Figure 10.5  An example of computing spacing.

A

B

C D
E

Figure 10.6  An example of illustration and computation of hyper-volume (HV).

c10.indd 199c10.indd 199 10-06-2022 20:18:2810-06-2022 20:18:28

10  Multi-Objective Optimization (MOO)200

10.5  Selection of Preferred Solutions

Once the Pareto-optimal solution set is obtained, higher-level decision making is neces-
sary to choose one or more preferred solutions according to different application back-
grounds and specific preferences. The methods for selecting the best compromise
solution are called post-optimal techniques, and the methods for selecting a preferred
Pareto-optimal region are called optimization-level techniques [16]. In this section, we
introduce two popular methods for selecting the best compromise solution. For detailed
information about other methods, please refer to [16].

10.5.1  “Min-max” Method

This is a widely used approach for defining a single best-compromise solution. Let zm
nad

denote the maximum value of the m-th objective function on set Q. The relative devia-
tion of each objective for each solution is calculated as r z f zm m

nad
m

i
m
nad= −()() / ;

then r rz m m= { }min is taken as the representative value of each solution. The solution z*
with the maximum rz is selected to be the best compromise solution. In practice, DMs
should adopt this method when they desire a solution that is representative of the
‘center’ of the Pareto-front. Figure 10.7 illustrates one example of using the min-max
method to choose the best-compromise solution from a bi-objective minimization
problem.

Figure 10.7  Best-compromise solution z* selected from the Pareto-front by the min-max
method, for a two-objective minimization problem.

c10.indd 200c10.indd 200 10-06-2022 20:18:3110-06-2022 20:18:31

10.6  Guidelines for Solving RAMS+C Optimization Problems 201

10.5.2  Compromise Programming Approach

This approach selects the best-compromise solution, which is located closest to a given
reference point z . The ideal objective vector z* can be regarded as the reference point.
The following metric is used to measure the distance of the solutions of set Q to the refer-
ent point z :

d i z f f
m

M

m
i

m
z p

p

,
/

()= −










=

() ()∑
1

1

� (10.16)

Then the problem of selecting the solutions is converted to the minimization of the
distance metric in Equation (10.16). Figure 10.8 illustrates this idea in the two-objective
case with p= 2.

10.6  Guidelines for Solving RAMS+C Optimization
Problems

To summarize this chapter, we have drawn out the complete framework to deal with
RAMS+C optimization problems, which includes problem formulation, solution method
selection and preferred solution(s) selection. Implementation guidelines are presented
as the following steps, together with the main points of attention:

1)	 Formulate the RAMS+C optimization problem. As stated in the previous sections,
RAMS+C optimization is essentially multi-objective; the following aspects have to be
taken into account in the problem formulation:
a)	 All objectives need to be analyzed first to reveal the relations between them. For

example, the generic unavailability U Ax x()= − ()1 might contain maintainabil-
ity M x() to describe the unavailability due to test and maintenance activities. The

Figure 10.8  Illustration of the compromise Min-Max programming approach, for a two-
objective minimization problem with p= 2.

c10.indd 201c10.indd 201 10-06-2022 20:18:3210-06-2022 20:18:32

10  Multi-Objective Optimization (MOO)202

MOO methods are worth applying only when conflicts exist between at least one
pair of objectives; otherwise, a single-objective method can be used to find one
solution that optimizes all objectives.

b)	 DM’s preferences for each objective need to be solicited. The preferences can be
represented by weights or converted into utility functions. If there is sufficient
information about the preferences, in the next step a priori solution methods need
to be selected; otherwise, the a posteriori solution methods have to be chosen. In
addition, if the DMs need to intervene during the optimization process, the inter-
active methods could be considered.

2)	 Select appropriate optimization methods. The choice of the optimization method
depends on the formulation of the problem and can largely impact the optimization
results. The following aspects need to be considered in this step:
a)	 If each objective with the constraints can be analytically solved by a single-objective

mathematical programming method in polynomial time, then it is recommended to
combine the mathematical programming and the classical MOO problem solution
approaches, e.g. weighted-sum (a priori) and ε-constraint (posteriori) approaches.
If the DM provides preference weights (and targets), then weighted-sum (or goal
programming) can be used; if the DM wishes to obtain a complete Pareto-optimal-
front, then the ε-constraint needs to be used. It is not recommended to use weight-
ed-sum or goal programming to produce the complete Pareto-optimal front due to
their disadvantages presented in Sections 10.2.1 and 10.2.2.

b)	 If one of the objectives exhibits difficult characteristics, e.g. non-linear, non-
convex, NP-hard, then it is recommended to use MOEAs or the classical MOO
problem solution approaches combined with single-objective EAs (SOEAs). The
original problem can also be relaxed and solved approximately by mathematical
programming techniques. This approach is recommended if the practitioner has
good knowledge about advanced mathematical optimization theory.

c)	 Test more than one method especially for difficult problems, because no one
method is the best for all cases, and each method has its own advantages and draw-
backs.

3)	 Solve the optimization problem. Depending on the optimization methods selected, the
following aspects need to be considered:
a)	 In case the exact solutions to all individual objectives can be found via mathematical

programming in polynomial time, then the whole problem will be solved once
using a priori algorithm and one exact solution will be obtained. If posteriori
methods are used, then the whole problem needs to be solved multiple times, each
under a different setting of the parameters, e.g. ε, and a set of the solutions on the
Pareto-optimal front will be obtained.

b)	 If MOEAs (or ε-constraint + SOEAs) are used, then multiple simulation runs will
be required due to the stochastic nature of these algorithms. The parameters of
EAs need to be tuned and the convergence of the EAs ensured. Typically, each
simulation run delivers one approximate Pareto-front. To obtain the best results
across all runs, all fronts need to be combined, and a final ‘front of fronts’ will be
selected from them. For ε-constraint + SOEAs, each simulation run delivers one

c10.indd 202c10.indd 202 10-06-2022 20:18:3210-06-2022 20:18:32

10.7  Exercises 203

single solution and different ε values need to be explored to obtain the fronts. The
final front can be selected from all results.

c)	 In case that a priori MOO problem solution methods are used together with
SOEAs, multiple simulation runs, parameter tuning and convergence insurance
are also necessary.

d)	 The performance measures are used to evaluate the quality of the obtained results.
If the results are fronts, then the measures presented in Section 10.4 will be useful
whereas if the results are single solution points, and statistics such as min, mean,
standard deviations, etc. will be used.

e)	 The optimization results are recommended to be presented, compared, analyzed
and validated at this step.

4)	 Select the preferred solution(s). This step is necessary when the a posteriori methods
are used. First, it is recommended to select the best front from all the final fronts of
different methods. The DMs are, therefore, solicited to determine the preferred
solution(s) or the method that selects the preferred solution(s).

5)	 Validate the results and the procedures. All results and procedures need to be thor-
oughly checked to ensure the correctness of the implementation and the meaningful-
ness and usefulness of the results.

10.7  Exercises

1)	 Which among the following statements is NOT the difference of MOO from SOO?
a)	 MOO has three optimization goals.
b)	 MOO also deals with objective space.
c)	 MOO tends to obtain a diverse set of optimal solutions.
d)	 MOO has artificial fix-ups.

2)	 For an optimization problem with M objectives, what is the computational complex-
ity of a continuously updated approach for identifying the non-dominated solution
set in a given set of size N?

3)	 What are the main advantages and disadvantages of weighted sum-method and
Ɛ-constraint method, respectively?

4)	 In the following non-dominated solutions for a minimization problem, which is the
preferred solution selected by min-max approach?

Solution f1 f2

1 1.1 5.0

2 2.5 3.2

3 3.6 1.3

4 0.0 6.1

5 4.8 0.0

c10.indd 203c10.indd 203 10-06-2022 20:18:3210-06-2022 20:18:32

10  Multi-Objective Optimization (MOO)204

a)	 Solution 1
b)	 Solution 2
c)	 Solution 3
d)	 Solution 4
e)	 Solution 5

5)	 For a two-objective minimization problem, consider the parent Pt and the archive Et
at the t -th generation as follows: The size of Pt and Et are N = 4 and NE = 3, respec-
tively. For the density estimation in fitness assignment, set k N NE= + = 2.
Calculate Et+1 by using SPEA2. During the calculation, keep the accuracy to 0.01.

Parent population Pt Archive Et

Solution Q f2 Solution f1 f2

1 3.0 3.5 a 5.0 2.0

2 3.0 4.0 b 4.0 3.5

3 1.0 3.8 c 7.0 3.0

4 6.0 0.0

References

1	 Frank, M.V. (1995). Choosing among safety improvement strategies: A discussion with
example of risk assessment and multi-criteria decision approaches for NASA. Reliability
Engineering & System Safety 49 (3): 311–324.

2	 Marseguerra, M. and Zio, E. (2006). Basics of genetic algorithms optimization for RAMS
applications. Reliability Engineering & System Safety 91 (9): 977–991.

3	 Sawaragy, Y., Nakayama, H., and Tanino, T. (1985). Theory of Multiobjective Optimization.
Orlando, FL: Academic Press.

4	 Keeney, R.L. and Raiffa, H. (1993). Decisions with Multiple Objectives: Preferences and
Value Trade-offs. London, England: Cambridge University Press.

5	 Haimes, Y.Y., Lasdon, L.S., and Wismer, D.A. (1971). On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Transactions
on Systems Man and Cybernetics 1: 296–297.

6	 Isermann, H. and Steuer, R.E. (1988). Computational experience concerning payoff tables
and minimum criterion values over the efficient set. European Journal of Operational
Research 33 (1): 91–97.

7	 Charnes, A., Cooper, W.W., and Ferguson, R.O. (1955). Optimal estimation of executive
compensation by linear programming. Management Science 1 (2): 138–151.

8	 Holand, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press.

c10.indd 204c10.indd 204 10-06-2022 20:18:3410-06-2022 20:18:34

References 205

9	 Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6 (2): 182–197.

10	 �Zitzler, E. and Thiele, L. (1998). An evolutionary algorithm for multi-objective
optimization: The strength pareto approach. TIK-report 43.

11	 �Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: improving the strength Pareto
evolutionary algorithm.

12.	 �Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. In: Proceedings of the 1st international Conference on Genetic Algorithms,
93–100. L. Erlbaum Associates Inc.

13	 �Horn, J., Nafpliotis, N., and Goldberg, D.E. (1994). A niched Pareto genetic algorithm for
multi-objective optimization. In: Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on, 82–87: IEEE.

14	 �Konak, A., Coit, D.W., and Smith, A.E. (2006). Multi-objective optimization using
genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9): 992–1007.

15	 �Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., and Da Fonseca, V.G. (2003).
Performance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7: 117–132.

16	 �Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms. Hoboken,
NJ: John Wiley & Sons.

17	 �van Veldhuizen, D.A. (1999). Multiobjective evolutionary algorithms: Classifications,
analyses, and new innovations. Graduate School of Engineering, Air Force Institute of
Technology, Air University, Wright-Patterson AFB, OH.

c10.indd 205c10.indd 205 10-06-2022 20:18:3410-06-2022 20:18:34

207

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

11

Optimization under Uncertainty

Reliability engineering very often deals with the uncertainties in the failure and repair
processes of components and systems. As presented in Chapter 6, different types of
uncertainties exist, which need to be considered in most RAM and Safety criteria (RAMS)
optimization. As a result, reliability engineering often adopts and calibrates the methods
developed in other domains, e.g. operations research, for solving reliability-related and
risk-related optimization problems under uncertainty.

11.1  Stochastic Programming (SP)

Stochastic programming (SP) has been used in a wide variety of application, such as
finance planning, power system capacity expansion, airline management planning, loca-
tion and distribution, and production planning [1]. Its approach is similar to the classical
mathematical (or deterministic) programming for solving optimization problems with
“random” parameters. Random parameters characterize many real-world applications;
in our case of interest, for example, power system operation costs depend on electricity
market prices and weather conditions (for renewable generation), which are random.
The failure rates of the system’s components depend on their operating environments,
which are randomly changing, etc. As discussed in Chapter 6, this type of uncertain
parameters can be represented by means of random variables, with probability distribu-
tions whose parameters are estimated from data.

To include such randomness in the optimization problem, one natural way is to take
the expectation of the optimal solutions corresponding to the realizations of the random
parameters, as in this example.

Example 11.1  Maintenance manager Ms. Wang is responsible for maintaining a group
of 100 water pumps. She needs to decide the maintenance actions to be performed in the
next week, with lubrication or repair. For simplicity, assume the condition of all pumps

c11.indd 207c11.indd 207 13-06-2022 15:09:2113-06-2022 15:09:21

11  Optimization under Uncertainty208

is good or defective. If a pump is good, lubrication is most economical to perform; if it is
defective, repair is the most economical action. Table 11.1 shows the cost ($) of the main-
tenance actions corresponding to each condition.

Assume that the probability of being defective is p for each pump and suppose that p =
0.1. Because lubrication is optimal for good pumps and repair is optimal for defective
ones, is it optimal to lubricate 90% of the pumps and repair 10% of them? If yes, then in
this plan, the expected total cost is (10 + 600 × 0.1) × 0.9 + (50 + 100 × 0.1) × 0.1 = 69
dollars.

Let us check if the solution above is correct. Given that the expected costs of perform-
ing different actions are 10 + 600 × 0.1 = 70$ for lubrication and 50 + 100 × 0.1 = 60$ for
repair, the formulation of this optimization problem is the following:

max 70 601 2x x+

	s.t. x x1 2 1+ =

	x x1 2 0, ≥

Obviously, the solution is doing repair for ALL, and the expected cost of this plan is 60
dollars against the previous one of 69 dollars.

From this example, we can see that the optimal solution in general is not equal to the
“average” of the best decisions for each specific future outcome. The correct way is to
optimize the expectation of the objective values taking into account the random param-
eters. SP is the way to deal with this. With SP, randomness is represented in terms of the
random experiments with outcomes denoted by ω . The set of all outcomes is represented
by Ω . Outcomes may be combined into subsets of Ω , which are called events. Let B
denote a collection of all random events. For each event B∈B, a value Pr B() is associ-
ated, called its probability.

Under this setting, the objective (or constraint) function becomes the expectation of
the random objective function (or constraint):

F x E f x()= ()()(),ξ ω 	 (11.1)

or the probability of the event B x():

F x B x()= ()∈ ()()Pr ξ ω 	 (11.2)

Table 11.1  The cost ($) of different maintenance actions under
each condition.

Action
Condition

Lubrication Repair

Good 10 50

Defect 600* 100

*It includes the expected loss incurred by uncorrected defects

c11.indd 208c11.indd 208 13-06-2022 15:09:2313-06-2022 15:09:23

11.1  Stochastic Programming (SP) 209

where x= …()x x xn1 2, , , is a vector of decision variables and ξ= …()ξ ξ ξ1 2, , , m is a vector
of random parameters. The second formulation in Equation (11.2) is also referred to as
chance-constrained problem.

In the following of this section, we introduce three representative types of SP, namely:
two-stage stochastic linear programs with fixed recourse, multi-stage stochastic pro-
grams with recourse, and probabilistic or chance-constrained programs.

11.1.1  Two-stage Stochastic Linear Programs with Fixed Recourse

The most widely applied and studied SP models are two-stage linear programs. The deci-
sion maker takes certain actions in the first stage after which a random event occurs
affecting the outcome of the first-stage decision. A recourse decision can be made in the
second stage to compensate for any bad effects that might occur as a result of the first-
stage decision, which will forbid the random event occurrence.

The formulation of classical two-stage stochastic linear programs with fixed recourse
[2,3] is as follows:

	min minz T T
= + () ()






c x qEξ ω ωy 	 (11.3a)

	s.t. Ax b= 	 (11.3b)

	T x W hω ω ω() + ()= ()y 	 (11.3c)

	x y≥ ()≥0 0, ω 	 (11.3d)

where x is a n1 1× vector of decisions to be taken without full information on the subse-
quent random events. These decisions are called first-stage decisions. Corresponding to
x are the first-stage vectors and matrix c b, and A, of sizes n1 1× , m1 1× , and m n1 1× ,
respectively. In the second stage, a number of random events ω ∈Ω may be realized. For
a given realization ω , the second-stage problem parameters q ω(), h ω() and T ω() become
known where q ω() is n2 1× , h ω() is m2 1× , and T ω() is m n2 1× . The recourse matrix W
is the known matrix of size m n2 2× , which is assumed to be fixed. Then second-stage or
corrective actions y ω() are taken. The ξ is the vector formed by components of qT, hT
and T . The notation Eξ denotes the mathematical expectation with respect to ξ.

The objective function Equation (11.3a) contains a deterministic term c xT and the
expectation of the second-stage objective q yω ω() ()T taken over all realizations of
the random event ω . This second-stage term is the more difficult one because for each
ω , the value y ω() is the solution of a linear program. To address this issue, a determinis-
tic equivalent (DE) program is developed in the following.

For a given realization ω , let

	Q Tx q y Wy h T x y
y

, min{ | , }ξ ω ω ω ω ω ω ω
ω

()()= () () ()= ()− () ()≥
()

0 	 (11.4)

be the second-stage value function, i.e. recourse function. The expected second-stage
value function, i.e. expected recourse function, is defined as

	Q x x()= ()()Eξ ωQ ,ξ 	 (11.5)

c11.indd 209c11.indd 209 13-06-2022 15:09:2913-06-2022 15:09:29

11  Optimization under Uncertainty210

Then we can rewrite the problem in Equation (11.3) in terms of only x as follows

	min z T= + ()c x xQ 	 (11.6a)

	s.t. Ax b= 	 (11.6b)

	x≥0 	 (11.6c)

This representation is named the DE of the original stochastic program. For a given reali-
zation ω , it is a non-linear program due to the ‘min’ operation in the recourse function.

To solve the problem in Equation (11.3), the most difficult part is the evaluation of the
expected recourse function Q x() because it often needs a large number of realizations of
the random parameters ξ . To deal with this problem, the key idea is to approximate Q x()
using different approaches, e.g. sampling and decomposition. In the following, we intro-
duce the solution techniques based upon the above two approaches.

Sample Average Approximation
In theory, we would want to obtain a solution with reasonable accuracy and acceptable
solving time. A possible way to unite these two conflicting goals is by randomization, i.e.,
Monte Carlo sampling techniques. Suppose the total number of the possible realizations
of random parameters ξ is large or infinite, and we can generate random samples
ξ ξ1, ,… N of the random vector ξ. Given these samples, we can approximate the expecta-
tion function Q x Q()= ()()Eξ ωx,ξ by the average

	 �QN
j

N
jx Q x()= ()−

=
∑N 1

1

, ξ 	 (11.7)

and, thus, the problem in Equation (11.3) can be rewritten as

	min ,x X N
jg∈

−

=

()= + ()∑ � x c x Q xT N
j

N
1

1

ξ 	 (11.8)

This technique is fundamental and it can be used to solve general stochastic programs,
e.g. with non-linear objective functions and constraints. Extensions of this technique
include sample average approximation with an L-shaped method [4], the stochastic
decomposition method [5,6], and the stochastic quasi-gradient [7].

Example 11.2  The planning horizon is J ={ }0 1 2 3 4 5, , , , , in arbitrary units of time. A
system consists of one component with known failure distribution, i.e. the lifetime
equals to 1, 2, 3 with a probability of 0.6, 0.3 and 0.1. We assume this component must be
replaced when it fails. Each planned maintenance is economical with the repair cost
d= 2 in arbitrary unit of cost. If the failure occurs without a maintenance plan, the
replacement generates the cost c=10. At the current time 1, the component is working.
So, how to select the replacement decision at current time to minimize the total expected
cost for the entire planning period J ?

The current system state is represented as t, ,ξ a() where t is the current time, the com-
ponent state ξ=1 if component is failed and 0 otherwise, and a is the age of the

c11.indd 210c11.indd 210 13-06-2022 15:09:3313-06-2022 15:09:33

11.1  Stochastic Programming (SP) 211

component. Start the timer at the current time and set the remaining time period as
J =  0 1 2 3 4, , , , with T = 4 . Given the current state, the expected minimum total mainte-

nance cost f at ξ,() at current time is formally obtained by solving:

	 f a x xt ξ, min()= + ()d t
aQ 	 (11.9a)

	s.t. x≥ξ 	 (11.9b)

	x ∈{ }0 1, 	 (11.9c)

Let x =1 if we decide to replace the component at the current time, and 0 otherwise. The
total maintenance cost in Equation (11.9a) of a decision is the sum of the current main-
tenance cost and the future cost. The expected minimum future cost given the system
state is represented as Qt

a x().
The maximum number of components used in the remaining period is T + =1 5. So,

the possible components are R ={ }1 2 3 4 5, , , , . Given the current age a and the failure
distribution, all possible scenarios of this problem are defined as w∈Ω with probability
p w(). Each life of the individual r ∈R in scenario w is Tr

w . Then we can formulate the
extensive form with the second-stage variables given by

	y
r

ttr
w =

1,

if individual is replaced at
or before in scenarrio

otherwise

,
 , ,w t J r w

0










∀ ∈ ∈ ∈ R Ω

The deterministic formulation is

	min ∑ ∑
∈ ∈

() + −()









w r
tr
wp w cy d c x

Ω R

	s.t. y y t J T r wtr
w

t r
w≤ ∈ { } ∈ ∈+1, , \ , ,R Ω

	y y t J T r q wt r
w

tr
w

+ + ≤ ∈ { } ∈ { } ∈1 1, , \ , \ ,R Ω

	y y r q wtr
w

t T r
w

r
w≤ ∈ { } ∈+ ++1 1, , \ , ,R Ω t T Tr

w∈ … −{ }+0 1, ,

	y w T TT
w w

w
1 1 11, ,= ∈ ≤Ω and if

	y r wr
w
0 0 1= ∈ { } ∈, \ ,R Ω

	x y ww= ∈01, Ω

	x≥ ξ

	y t J r wtr
w ∈{ } ∈ ∈ ∈0 1, , , ,R Ω

	x ∈{ }0 1,

where q denotes the last individual in R .

c11.indd 211c11.indd 211 13-06-2022 15:09:3913-06-2022 15:09:39

11  Optimization under Uncertainty212

To avoid solving this large integer programming (IP) for all possible scenarios, we use
the sample average approximation method to approximate this problem. We generate
Ω =15 random realizations of T rr

w ,∀ ∈R . The approximated objective value is 23.333.
The decision is 1 indicating that the replacement is implemented at the current time.

L-shaped method
Decomposition methods make use of the special structure of this stochastic program
to improve the effectiveness of the solution algorithms. The most common decompo-
sition technique is called L-shaped technique [8]. Other decomposition procedures
include inner linearization, Dantzig-Wolfe decomposition, etc. The basic idea of the
L-shaped method is to approximate the non-linear term (the recourse function) in
the objective by a linear one. Therefore, the master problem of x is reconstructed as
the first-stage problem plus the outer linearization of the recourse function. Thus, the
recourse function is only evaluated in the sub-problem to avoid numerous
evaluations.

Suppose the random vector ξ has finite possible realizations ξk with probability pk
for k K= …1, , . We denote the second-stage decision vector as yk under each realization
of ξk k k kq h T=(), , and k K= …1, , . The recourse function can be rewritten as

	Q x E Q p Q
k

K

k k()= ()()= ()
=
∑ξ ξ ω ξx x, ,

1

Then the large-scale DE linear program (i.e., the extensive form) of Equation (11.6) is
defined in the following way:

	 min
, , ,x y y

T

k

K

k k
T

K 1 1
…

=

= +∑z p kc x q y 	 (11.10a)

	s.t. Ax b= 	 (11.10b)

	T x Wy hk k k K+ = = …k , , ,1 	 (11.10c)

	x y≥ ≥ = …0 0 1, , , , k k K 	 (11.10d)

The special structure of the constraint matrix for the two-stage extensive form is shown
as the block matrix

	

A
T W
T W

T WK

1

2

� �













Taking the dual of the extensive form, the constraint matrix is rewritten as a block-
angular structure:

c11.indd 212c11.indd 212 13-06-2022 15:09:4313-06-2022 15:09:43

11.1  Stochastic Programming (SP) 213

	

A T T T

W

W

W

K
T T T T

T

T

T

1 2 �

�













This is a large linear programming (LP) problem and has special structure. Therefore,
we can solve this problem by a Benders decomposition [9] of the primal or a Dantzig-
Wolfe decomposition [10] of the dual to reduce the computation.

For Equation (11.6), the recourse function Q x() is approximated with an artificial
variable θ, which represents the lower bound for Q x(). Now we have

	θ≥ + −Q())(� �x u xxT

where u T x=− ∈∂
=
∑
k

K

k k
T

kp
1

λ* ()Q � and λk
* is the optimal dual solution of the recourse prob-

lem in scenario k with x� . So, given a feasible decision x� , we can build up the linear
approximation of Q x() by

	θ≥ −e� Ex

where E p
k

K

k k
T

k= ⋅()
=
∑

1

λ* T and e p
k

K

k k
T

k
� = ⋅()

=
∑

1

λ* h .
(Hints:

1. u T x=− ∈∂ ()
=
∑
k

K

k k
T

kp
1

λ* Q

Because Q x E Q p Q
k

K

k k()= ()()= ()
=
∑ξ ωx y, ,ξ ξ

1

 , then ∂ ()= ∂ ()
=
∑Q x x
k

K

k kp Q
1

, ξ . We also

have that Q k Kk k
T

k k k k kx q y Wy h T x y, : , , , minξ()= = − ≥ = …{ }0 1 . Consider the dual

problem of this problem with dual variable λk ; then	

min : , , ,q y Wy h T x yk
T

k k k k k k K= − ≥ = …{ }0 1

	= −() ≤{ }max h T x W qk k
T

k k
T

k
Tλ λ:

So, Q k k k
T

kx h T x, * ξ λ()= −() where λk
* is the optimal solution of the dual problem. We

get that − ∈∂ ()T xk
T

k kQλ ξ* , . u T x=− ⋅ ∈∂ ()
=
∑
k

K

k k
T

kp
1

λ* Q is obtained. Given the decision x� ,

the vector − ⋅
=
∑
k

K

k k
T

kp
1

T λ* is one of the directional vectors ∂ ()Q x� where λk
* is associated

with x� .

2. θ≥ −e� Ex

Given θ≥ ()+ −()Q x x x� �uT and u T=− ⋅
=
∑
k

K

k k
T

kp
1

λ*.

c11.indd 213c11.indd 213 13-06-2022 15:09:5113-06-2022 15:09:51

11  Optimization under Uncertainty214

Q x x x x T x x� � � �()+ −()= ()− ⋅() −()

=

= =

=

∑ ∑u p Q pT

k

K

k k
k

K

k k
T

k
T

k

1 1

, * ξ λ

11 1

1

K

k k

T

k
k

K

k k
T

k
T

k

K

k k
T

k

p

p

∑ ∑

∑

−() − ⋅() −()

= ⋅()
=

=

h T x T x x

h

� �λ λ

λ

* *

* −− ⋅()
=
∑
k

K

k k
T

kp
1

λ* T x

Then the lower bound of recourse function θ≥ −e Ex is obtained).
To guarantee the decision x�  is feasible for the recourse problem, that is

x x x�∈ = ()<∞K2 { | }Q , we have to check its feasibility first. Consider the linear program

	min wk
T T' = ++ −e v e v

	s.t. Wy Iv Iv h T x+ + = −+ −
k k

�

	y v v, , + −≥0

where eT = …()1 1, , . If wk
' ≤ 0 for all scenarios k and x� is feasible for the recourse pro

blem. Otherwise, there exists scenario k and wk
' > 0, so that x� is infeasible.

To cut this infeasible solution x� , we generate the feasible cuts. Consider the dual
problem and let σk

* represent the dual optimal solution: Therefore, this decision has the

property () ()*σk
T

k kh T− >x� 0 and σk
T

W*() ≤0. However, for all x ∈K2, there exist

y≥0 subject to W h T xy k k= − . So, σ σk
T

k k k
T* *() −()=() ≤h T x Wy 0, and the inequality

σk
T

k k
*() −()≥h T x 0 can cut this infeasible solution x� . The algorithm of L-shaped method

[8] is presented as follows.

Standard L-shaped Algorithm

Step 0. Set r s v= = = 0.
Step 1. Set v v= +1. Solve the linear program:

	min z T= +c x θ 	 (11.11a)

	s.t. Ax= b	 (11.11b)

	D xf fd f r≥ = …, , ,1 	 (11.11c)

	E xg ge g s+ ≥ = …θ , , ,1 	 (11.11d)

	x≥ ∈0, θ R 	 (11.11e)
The optimal solution is x v v, θ(). If no constraint exists, set θv as −∞; that is, θv is not
considered in the LP.

Step 2. Add feasibility cuts.
If xv K∈ 2, go to Step 3. Otherwise, add the cut(s) in Equation (11.11d) and return to Step 1.

c11.indd 214c11.indd 214 13-06-2022 15:09:5913-06-2022 15:09:59

11.1  Stochastic Programming (SP) 215

For k K= …1, , solve the linear program

	min ′ = ++ −w T Te v e v

	s.t. Wy Iv Iv h T x+ − = −+ −
k k

v

	y v v, , + −≥0

where eT = …()1 1, , . If there exists k , the associated ′ >w 0 . Then the constraint in

Equation (11.11c) is generated with D Tf+ =()1 σk
v T

k and df k
v T

k+ =()1 σ h where σk
v

contains the associated dual multipliers. Set f f= +1, add the constraint to Equa-
tion (11.11) and return to Step 1. Otherwise, go to Step 3.

Step 3. Add optimality cuts.
For k K= …1, , , solve the sub-problem

	min w k
T= q y

	s.t. Wy h T x= −k k
v

	y≥0

Let λk
v be the optimal dual multipliers of the sub-problem given k and x v .

Let w pv

k

K

k k
v T

k k
v= ⋅() −()

=
∑

1

λ h T x . If θv vw≥ , stop and x v becomes the optimal solu-

tion. Otherwise, add the constraint to Equation (11.11d) with E Tg
T

+
=

= ⋅()∑1
1k

K

k k
v

kp λ

and e pg
k

K

k k
v T

k+
=

= ⋅()∑1
1

λ h into the problem (11.11). Set g g= +1, and return to Step 1.

Example 11.3  There are three types of components available in the market, which can
be used for the system. The costs of the three components are 0.4, 0.8, and 0.6 per arbi
trary unit price, respectively. After the system works for a period of time t , the propor
tion of the three types that has not failed is a a a a=()1 2 3, , . Assume that the survival rate
a is fixed under the same environment condition and changes as the conditions change.
The system requires that at least 90% of components should be working at time t . If the
requirement is not satisfied, a maintenance plan is used to guarantee this system require
ment. The maintenance costs are only related to the environment conditions. The deci
sion makers (DMs) wants to decide which percentage of these three types of components
to buy, so they can minimize the purchase cost and the expected maintenance cost.

The L-shaped method has three main steps: (1) the master problem in Equation
(11.11a) determines the first-stage decision xv of the deterministic part of the objective
and is sent to the second stage; (2) feasibility cuts in Equation (11.11c) are generated
based on the second-stage feasibility; (3) optimality cuts in Equation (11.11d) are gener-
ated to give the linear approximations to the expected recourse function Q x().

c11.indd 215c11.indd 215 13-06-2022 15:10:0513-06-2022 15:10:05

11  Optimization under Uncertainty216

We denote the random condition as ξ and the realization as ξk k K,∀ ∈ with probability
pk . The survival rate and the maintenance cost take on the values (0.7, 0.6, 0.5) and 5
with probability 0.1, (0.7, 0.6, 0.7) and 3 with probability 0.4, (0.5, 0.7, 0.8) and 2 with
probability 0.2, and (0.6, 0.7, 0.9) and 4 with probability 0.3. The extensive form becomes

	

min . . .0 4 0 8 0 6

1

1 2 3x x x E q
T

T

+ + + ()
+ ≥

=

ξ y

T x y h

e x

	x y, ≥0

where hk = 0 9. , TT ξ() and q ξ() denote the survival rate and the maintenance cost,
respectively, and e T

=()1 1 1, , .
Use the L-shaped method to solve this problem. In this example, the second stage is

always satisfied because h T x− ≤T 1 and y h T x≥ − T always exist. Step 2 can be omitted.

Iteration 1:
Step 1. Ignoring θ, the master program is min{ . . . | , , , }0 4 0 8 0 6 1 0 0 01 2 3 1 2 3 1 2 3x x x x x x x x x+ + + + = ≥ ≥ ≥

min{ . . . | , , , }0 4 0 8 0 6 1 0 0 01 2 3 1 2 3 1 2 3x x x x x x x x x+ + + + = ≥ ≥ ≥ . The solution is x1 1 0 0=(), , T and θ1 =−∞.

Step 3.
	● For ξ ξ= 1, solve the sub-problem

w y y y1 5 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= =0 2 51. ,λ .
	● For ξ ξ= 2 , solve the sub-problem

w y y y2 3 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 2. , λ2 3= .
	● For ξ ξ= 3, solve the sub-problem

w y y y3 2 0 5 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 4. , λ3 2= .
	● For ξ ξ= 4 , solve the sub-problem

w y y y4 4 0 6 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 3. , λ4 4= .
Using h k Kk = ∀ ∈0 9. , , we get that

	E T T T T1 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 2 11 2 14 2 49= + + + =(). , . , .λ λ λ λ

	e h h h h1 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 2 97= + + + =.λ λ λ λ

	w e1
1 1

1 10 86= − = >E x . θ

Finally, as w1 1> θ , add the cut

	2 11 2 14 2 49 2 971 2 3
1. . . .x x x+ + + ≥θ .

c11.indd 216c11.indd 216 13-06-2022 15:10:1113-06-2022 15:10:11

11.1  Stochastic Programming (SP) 217

Iteration 2:
Step 1. Solve the master program

min{ . . . | , .
. .
0 4 0 8 0 6 1 2 11

2 14 2 49
1 2 3 1 2 3 1

2 3

x x x x x x x
x x
+ + + + + =

+ + +
θ

θ

≥≥ ≥ ≥ ≥2 97 0 0 01 2 3. , , , } x x x

The solution is x T2 0 0 1=(), , and θ2 0 48= . .
Step 3.

	● For ξ ξ= 1, solve the sub-problem

w y x y y1 35 0 5 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 4. , λ1 5= .
	● For ξ ξ= 2 , solve the sub-problem

w y y y2 3 0 7 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 2. , λ2 3= .
	● For ξ ξ= 3, solve the sub-problem

w y y y3 2 0 8 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0 1. , λ3 2= .
	● For ξ ξ= 4 , solve the sub-problem

w y y y4 4 0 9 0 9 0= + ≥ ≥min{ | . . , }

The solution is y= 0, λ4 0= .
Using h k Kk = ∀ ∈0 9. , we get that

	E T T T T2 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 1 39 1 3 1 41= + + + =(). , . , .λ λ λ λ

	e h h h h2 1 1 2 2 3 3 4 40 1 0 4 0 2 0 3 1 89= + + + =.λ λ λ λ

	w e2
2 2

2 20 48= − = =E x . θ

Stop.
The outcome is the following: x T2 0 0 1=(), , is the optimal solution and the optimal

objective value is 1.08.

11.1.2  Multi-stage Stochastic Programs with Recourse

The previous sections focused on stochastic programs with two stages. However, most
practical decision problems involve a sequence of decisions that react to outcomes that
evolve over time. In this section, the SP approach to multi-stage problems [11] is presented.
The linear, fixed recourse, finite horizon framework is used due to its widespread
implementation [12]. Its formulation is presented as follows (the transposes indexes are
suppressed in the notation when they are clear from the context to avoid excessive notation):

	min min minz H
H H H E E= + () ()+…+ () ()




…


c x c x c1 1 2 2 2

2ξ ξω ω ω ωx 

 	 (11.12)

c11.indd 217c11.indd 217 13-06-2022 15:10:1613-06-2022 15:10:16

11  Optimization under Uncertainty218

	s.t. W x h1 1 1=

	T x W x h1 2 1 2 2 2 2ω ω ω() + ()= ()

	�

	T x W x hH H H H H H H H− − −() ()+ ()= ()1 1 1ω ω ω ω

	x x1 0 0 2≥ ()≥ = …; , , ,t ωt t H

where c1 is a known vector in ℜn1 , h1 is a known vector in ℜm1 , ξ ωt T() is the vector
formed by components of c ht T t T

ω ω() (), and T t t− ()1 ω , and each W t is a known m nt t×
matrix. The decisions x depend on the history up to time t , which is indicated by ωt .

The DE form of this problem can be described in terms of dynamic programming (DP)
[1]. If the stages are 1 to H , we can define states as x t tω(). For the terminal conditions,
we have:

	QH H H H Hx c x− ()()= () ()1, minξ ω ω ω 	 (11.13a)

	s.t. W x h T xH H H H Hω ω ω()= ()− ()− −1 1 	 (11.13b)

	xH ω()≥ 0 	 (11.13c)

Solutions for other stages can be obtained with a backward recursion, letting
Qt t t t t

t Q+ + +()= ()()





+
1 1 1

1x xEξ ξ ω, for all t to obtain the recursion for t H= … −2 1, ,

	Qt t t t t t tx c x x− +()()= () ()+ ()1 1, minξ ω ω ω Q 	 (11.14a)

	s.t. W x h T xt t t t tω ω ω()= ()− ()− −1 1 	 (11.14b)

	x t ω()≥ 0 	 (11.14c)

where x t indicates the state of the system. Other state information in terms of the reali
zations of the random parameters up to time t should be included if the distribution of
ξt is not independent of the past outcomes.

11.2  Chance-Constrained Programming

With random parameters in the optimization problem, we have to determine the deci
sions prior to the realization of the random parameters. Due to the random effects
related to the realizations of the random parameters, we can hardly select the decisions
without constraint violation. In the two-stage SP problem, such constraint violation
can be handled with the compensations in the second stage, e.g. as done in the maintenance
problem of the components in Example 11.2 in Section 11.1. However, for some
cases, e.g. safety constraints, compensations do not exist and the constraint violation is
almost never avoidable. In such situation, the chance-constrained programming

c11.indd 218c11.indd 218 13-06-2022 15:10:2213-06-2022 15:10:22

11.2  Chance-Constrained Programming 219

[13,14] is considered whereby the constraint violation is restricted to a low
percentage:

	min , , ,f g p px x() ()≥()≥{ } ∈  |P ξ 0 0 1 	 (11.15)

where, x is the decision variable vector and ξ is the random parameter vector. The value
p∈  0 1, is called probability level. The DM should ensure that the probability of the con-
straint being satisfied is larger than p . The chance constraint is

	P g p px, , ,ξ()≥()≥ ∈  0 0 1 	 (11.16)

which can be rewritten as

	α αx x x()≥ () ()≥()p g, ,where : = P ξ 0 	 (11.17)

The chance-constrained model is often difficult to solve. The main difficulty of chance-
constrained programming is that the function α ⋅() cannot be expressed explicitly in few
situations. The theoretical properties and the solution methods are strongly related to the
characterizations of the constraint and the random parameters. Therefore, in this chap
ter, we only consider the chance constraint under three special conditions:

1)	 Distribution of the random parameters (e.g. continuous, discrete, independent,
dependent)

2)	 Type of constraint system (e.g. linear, separable, coupled)
3)	 Type of chance constraints (individual, joint)

11.2.1  Model and Properties

i) General chance constraints
The chance constraint in Equation (11.16) can be written more explicitly considering the
type of the chance constraints. The first one is to take the probability over the whole
constraint system, which is called a joint chance constraint:

	P g j m pj x, , , ,ξ()≥ = …()≥0 1 	 (11.18)

On the other hand, the probability can be considered for each constraint individually:

	P g p j mj jx, ,, , ,ξ()≥()≥ = …0 1 	 (11.19)

This type of individual constraint scheme may yield a large number of inequalities.
Comparing to the single constraint in the joint case, this may be mathematically more
tractable to solve.
ii) Linear type

When the chance constraints are linear for the random vector, Equation (11.16) can be
reformulated as

	Type I separated model() ()= ()−g x x A,ξ ξh 	 (11.20)

	Type II bilinear model() ()= () ()−g x A x b,ξ ξ h 	 (11.21)

c11.indd 219c11.indd 219 13-06-2022 15:10:2513-06-2022 15:10:25

11  Optimization under Uncertainty220

where h ⋅() is a function only related to x , b is a deterministic vector, A is a deterministic
matrix, and A ξ() is a stochastic matrix of ξ.
iii) Random right-hand side

The random right-hand side is a special case of the linear separated model in Equation
(11.20), with parameter matrix A reduced to the identity matrix. Therefore, the formula-
tion in Equation (11.17) can be given by

	α ξx x x()= ()≥()= ()()P h F hξ 	 (11.22)

where Fξ is the cumulative multivariable distribution function of the random vector ξ .
This formulation can be described as the composition formula α ξ= F h� , and thus, the
properties like continuity, convexity and differentiability can be considered.

The model of individual chance constraints in Equation (11.19) with the random right-
hand side is given by

	α ξ ξj j j j jh F h p j m
j

x x x()= ()≥()= ()()≥ = …P , , ,1 	 (11.23)

where Fξ j
 denotes the one-dimensional cumulative distribution function of the random

parameter ξ j. This formula can be inverted by the quantile h x q p mj j j()≥ () = …, , ,j 1
where q pj j() is the p j -quantile of Fξ j

.
When the components ξ j{ } of the random vector ξ are independent, the model of joint

chance constraint in Equation (11.18) with the random right-hand side is given by

	α ξ ξx x x x()= ()≥()= ()() ()()≥ = …P h F h F h p j m
m mξ

1 1 1� , , 	 (11.24)

Although this formulation in Equation (11.24) cannot be expressed explicitly like the
individual chance constraint model, the one-dimensional cumulative distributions are
tractable.
iv) Convexity

The convexity of the feasible set of the chance-constrained programming is essential
because this property is a basic issue for any optimization problem:

	{ | , }x xP g p ξ()≥()≥0 	 (11.25)

The feasible set of the linear chance constraint with random right-hand side is given by

	{ | } { | }x x x xP h p F h p()≥()≥ = ()()≥ξ ξ 	 (11.26)

When the composition function F hξ � is concave, this feasible set is convex. According
to the operations to preserve concavity of functions,

1)	 F hξ � is concave if Fξ is concave and non-decreasing in each argument, and hj are
concave.

2)	 F hξ � is concave if Fξ is concave and non-increasing in each argument, and hj are
convex.

The cumulative distribution function (cdf) Fξ is non-decreasing. However, it can never
be concave due to its bound between 0 and 1. Therefore, we can find a function ϕ that
guarantees the composition ϕ ξ� �F h is a concave function. Then ϕ ξ� �F h is concave
if ϕ ξ� F is concave and non-decreasing in each argument, and hj are concave. The function

c11.indd 220c11.indd 220 13-06-2022 15:10:3013-06-2022 15:10:30

11.2  Chance-Constrained Programming 221

ϕ can be the function log ⋅(), since most of the prominent multivariate distribution
functions are log-concave. With the convexity of the feasible set, joint chance-constrained
programming might be solved with convex optimization methods. For more advanced
knowledge about chance-constrained programming, the readers can refer to [13,14].

11.2.2  Example

There are three subsystems i in the system, and each subsystem has one different type of
component. The number of the components of each subsystem are a a a1 2 3, , , respec-
tively. After the system works for a period of time T , the proportion of these three types
that has failed is r r r r T

=()1 2 3, , . To repair all the failed components in the three subsys-
tems, three types of maintainers are available in the market to select, each of which has
different maintenance capabilities within the given maintenance time. The maintenance
capability of type j maintainer for subsystem i is denoted as bij . The cost of type j main-
tainer is cj per person and in arbitrary units of cost. The decision vector is the number of
the maintainers for type j and is indicated as x j .

Deterministic model:
For the deterministic model, the problem is formulated as follows:

	min
j

j jc x
=
∑

1

3

	Bx Ar≥

	x Z jj ∈ =+, , ,1 2 3

where A is a diagonal matrix of a a a1 2 3, , and B is the matrix of bij . We set c=()4 3 5, , ,
r =()0 3 0 5 0 4. , . , . , a=()100 50 80, , and

	B=













3 2 0
2 0 2
0 2 3

The optimal value is 77 with the optimal solution x =()6 6 7, , .

Chance-constrained model:
To consider the uncertainty of the failure rate r r r r T

=()1 2 3, , , we look at the individual
chance-constrained problem. Assume the failure rate for type i denoted by ξi follows the
normal distribution, i.e. ξ σi i iN r~ , 2(). The chance-constrained model is

	min
j

j jc x
=
∑

1

3

	P
j

ij j i ib x a p i
=
∑ ≥











≥ =

1

3

1 2 3ξ , , ,

	x Z jj ∈ =+, , ,1 2 3

c11.indd 221c11.indd 221 13-06-2022 15:10:3513-06-2022 15:10:35

11  Optimization under Uncertainty222

The chance constraints can be rewritten as
j

ij j i i i i pb x a r a q i
=
∑ ≥ + =

1

3

1 2 3σ , , , where qp is

the p-quantile of the standard normal distribution. Set the probability level p as 0.9 and
σi as 0.1, 0.2, 0.3 respectively. We can solve this problem as an integer program. The solu-
tion is x =()6 13 13, , and the optimal value is 128.

11.3  Robust Optimization (RO)

The stochastic optimization and chance-constrained problem illustrated in the previous
sections mainly deal with the uncertain parameters when their probability distributions
are known. When the probability distribution of an uncertain parameter is unknown
and the uncertain parameter values are known to reside in the uncertainty set, robust
optimization (RO) [15–17] can be considered. RO guarantees the feasibility of all con-
straints under any realization of the parameters within the uncertainty set. The original
RO dates back to the 1940s, using worst-case analysis and Wald’s maximin model [18] as
tools to treat severe uncertainty.

Suppose uncertainty exists in the objective function. The uncertainty parameters
u ∈Rk are assumed to take arbitrary values in the uncertainty set U ⊆ Rk , and the prob-
lem can be formulated as follows:

	min ,f0 x u()

	s t f i mi. . , , , x()≤ = …0 1 	 (11.27)

where x ∈Rn is a vector of decision variables, and f f R Ri
n

0, : → are functions. The min-
max and min-max regret criteria are often used to hedge against parameters variations. The
min-max criterion aims to obtain a solution that achieves the best possible performance in
the worst case. The min-max regret criterion, less conservative, aims at obtaining a solution
minimizing the maximum deviation between the value of the solution and the optimal
value of the corresponding uncertainty value over all possible uncertainty values.

The min-max version considers to find a solution under the worst-case value across all
u ∈ U , which is given by

	min max , : , , ,
u if f i m
∈

() ()≤ = …{ }
U

0 0 1x u x

Given the feasible solution x , its regret under the uncertainty value u∈U is defined as

	Reg f f ux u x u x u, , ,*()= ()− ()0 0

where xu
* is an optimal solution under the uncertainty parameter u and f u0 x u* ,() is the

corresponding optimal value. The min-max regret version considers finding a solution
minimizing its maximum regret, which is given by

	min : , , ,Reg f i mmax ix x() ()≤ = …{ }0 1

	   = ()− ()() ()≤ = …{ }
∈

min max , , : , , ,*

u u if f u f i m
U

0 0 0 1x u x x

c11.indd 222c11.indd 222 13-06-2022 15:10:4013-06-2022 15:10:40

11.3  Robust Optimization (RO) 223

In this section, we introduce the RO under the uncertain linear optimization (LO)
problem to show its properties.

11.3.1  Uncertain Linear Optimization (LO) and its Robust Counterparts

Definition 11.1  An uncertain LO problem is a collection

	LO d
x

T

c d
U

U
= + ≤{ }{ }

()∈
min :

, , ,
c x Ax b

A b
	 (11.28)

of general LO problems min :x
Tc x d+ ≤{ }Ax b , which includes m constraints and n

variables with the data c A b, , ,d() varying in a given uncertainty set U ⊂ +()× +()R m n1 1 . We
often assume that the uncertainty set is parameterized in an affine fashion with pertur-
bation vector ζ varying in a given perturbation set Z :

	U =











=











+
=
∑

c
A b

c
A b

cT T

l

L

l
l
T

ld d d0 0

0 0 1

ζ
AA

R
l l

L

b












∈ ⊂















: ζ Z

Definition 11.2  A vector x is a robust feasible solution to LOU if it satisfies the con-
straints for any realization of uncertain data from the uncertainty set, i.e.

	A dx c A b≤ ∀()∈b, , , , U

Definition 11.3  Given a robust feasible solution x , the robust value c� x() of the objec-
tive in LOU is the largest value of objective c xT d+ over all realizations of the uncertain
data, i.e.

	c d
c d

T� x c x
A b

()= +()
()∈

sup
, , , U

Definition 11.4  The robust counterpart (RC) of the uncertain problem LOU is the
optimization problem which minimizes the robust value of the objective over all robust
feasible solutions, that is,

 min sup { :
, , ,x c d

Tc c d� x x()= +() ≤












()∈A b

Ax b
U

The optimal solution of RC is called a robust optimal solution to LOU , and the cor
responding objective value is called the robust optimal value of LOU . Here are some
properties of the uncertain LO problem. For details of the general proof of these prope
rties, see [15].

Remark 11.1  An uncertain LO problem can always be translated into an uncertain
LO problem with certain objective. W.l.o.g.,1 we can restrict the uncertain LO problem
with certain objectives.

1 Abbr. for “without loss of generality”.

c11.indd 223c11.indd 223 13-06-2022 15:10:4513-06-2022 15:10:45

11  Optimization under Uncertainty224

Remark 11.2  If the right-hand side of the constraint is uncertain, we can translate these
uncertain data by adding a new variable xn+ =−1 1, whose coefficient is this uncertain data.
W.l.o.g., we can restrict the uncertain LO problem with certain right-hand side constraints.

Remark 11.3  The uncertainty set U can be replaced by its convex hull conv U().
Remark 11.4  The uncertainty in the data can be modelled constraint-wise. Assume
that LOU is with certain objective. Then the RC of LOU is

	min : , ,
x

T d Ac x x b A b+ ≤ ∀()∈{ }U
If we consider each constraint Ax() ≤i ib , then

	a b bi
T

i i i ix a≤ ∀()∈, , U

where ai
T is the i-th row of A and Ui is the projection of U on the i-th constraint. The

RC of LOU with a certain objective remains intact when the uncertainty set U is
extended to the direct product U U U= ×…×1 m .

11.3.2  Tractability of Robust Counterparts

According to the remarks mentioned above, w.l.o.g., we consider the uncertain LO prob-
lem with a certain objective, certain right-hand side, and a single constraint because of
the constraint-wise property

	 a
a

T bx≤{ }
∈U

	 (11.29)

The data varying in the uncertainty set are

	U Z= = + = + ∈












=

∑a a a a D0

1

0

l

L

l
lζ ζ ζ:

where D∈ ×Rn L. Assume that the perturbation set Z is convex.
Equation (11.29) contains infinite constraints due to the perturbation vector on set Z ,

and it seems intractable in this formulation. The goal is to build a representation to refor-
mulate this semi-infinite linear constraint as a finite system of explicit convex constraints
and to convert the RC of LOU into an explicit and tractable convex program.

A single constraint in Equation (11.29) equals to

	 a D0+() ≤ ∀ ∈ζζ ζζ
T

bx , Z 	 (11.30)

We consider that the perturbation set Z is polyhedral:

	Z = + ≥{ }ζζ ζζ: P q 0

where P� �Rh L , ξ∈ RL , and q Rh∈ . Therefore, Equation (11.30) can be converted into

	

11 30 0

0

0

. max

min :

:
()⇔() + () ≤

⇔() + =−

+ ≥
a D

a q w P w D

P q

w

T T T

T T T T

bx x

x

�� ��
��

xx

x x

,

: , ,

w

w a q w P w D w

≥{ }≤
⇔ () + ≤ =− ≥

0

00

b

b
T T T T�

c11.indd 224c11.indd 224 13-06-2022 15:10:5213-06-2022 15:10:52

11.3  Robust Optimization (RO) 225

The second equality uses the strong duality of LO. All constraints and the objective are
linear, and the RC with this representation is tractable. Table 11.2 shows the tractable RC
representations of an uncertain LO problem for different perturbation sets Z . [19].

11.3.3  Robust Optimization (RO) with Cardinality Constrained Uncertainty Set

The robust approaches, i.e. box and ellipsoidal uncertainty sets, are too conservative [20].
Reference [21] proposed the cardinality constrained uncertainty to control the robust
ness to withstand parameter uncertainty. We consider the constraint in Equation (11.29)
with the uncertainty set as

	U = ∈ − +




∈{ }a : , ,a a a i Ii i i i i

0 0a a� �

where I is the index set of all variables xi and ai
0 is the nominal value of uncertain

data ai . The range of variation on uncertain data ai is a� i and ai takes values according to
a symmetric distribution in interval a ai i i i

0 0− +





a a� �, . The parameter Γ∈ 

0, I is intro

duced to adjust the conservative level of the robust solution. It is unlikely that all uncer
tain parameters will change, i.e., up to Γ  of all uncertain parameters are allowed to
change by a� i and one parameter is allowed to change by Γ Γ− ()a� i. Then the constraint
in Equation (11.29) is formulated by

	
i I

i i
i S

i i s sa x x x b S s S I S s I
∈ ∈
∑ ∑ ∪+ + −() ≤ { } ⊆ =   ∈

0 a a� �� � � �, : , , � SS{ } 	 (11.31)

which is equivalent to

	
i I

i i
S s S I S s I S i S

i ia x a x
∈ { } ⊆ =  ∈{ } ∈
∑ ∑+

∪
+ − ()0 max

: , ,Γ
Γ Γ

�
� a�� s sx b














≤

Table 11.2  Tractable RC representations given different Z .

Perturbation set type Z RC Tractability

Box ζζ
∞
≤1 a D b

T T0
1

() + ≤x x LP

Ellipsoidal ζζ 2 1≤ a D b
T T0

2() + ≤x x CQP

Polyhedral P qζζ + ≥ 0

a q w b

P w D
w

T T

T T

0

0

() + ≤

=−
≥











x

x
LP

Cone P q Kζζ + ∈

a q w b

P w D

w K

T T

T T

*

0() + ≤

=−

∈











x

x Conic opt.

c11.indd 225c11.indd 225 13-06-2022 15:10:5813-06-2022 15:10:58

11  Optimization under Uncertainty226

The constraint is intractable because the combinations of set S s∪{ }{ } are exponential
under the operation max. We give the tractable representations as follows:

Given x , we define

	φ x()=
∪

+ − ()


{ } ⊆ =  ∈{ } ∈
∑max

: , ,S s S I S s I S i S
i i s sa x a x

Γ
Γ Γ

�
� �












�

This equals

	φ ψx a x
i I

i i i()= ∑
∈

max �

	s.t. ∑
∈

≤
i I

iψ Γ

	0 1≤ ≤ ∀ ∈ψi i I,

φ x() is equivalent to the following problem using the strong duality of LP:

	φ ξ ρx
i I

i()= +∑
∈

min Γ

	s.t. ξ ρ+ ≥ ∀ ∈i i ia x i I� ,

	ρi i I≥ ∀ ∈0,

	ξ≥ 0

Then the tractable reformulations of Equation (11.31) are given by

	ξ ρ+ ≤∑
∈i I

i b 	 (11.32)

	ξ ρ+ ≥ ∀ ∈i i ia x i I� , 	 (11.33)

	ρi i I≥ ∀ ∈0, 	 (11.34)

	ξ≥ 0 	 (11.35)

When Γc = 0, the uncertainty of parameter a is not considered in the constraint in
Equation (11.31). When Γc I= , the most conservative formulation of the uncertain data
is considered.

11.3.4  Example

In this section, we give an example to illustrate the RO applied to reliability optimization
problems. We consider a problem similar to Example 1 in Section 11.1. The difference is
that the repairmen cost is certain and equal to 3.5 per unit, and instead of knowing the

c11.indd 226c11.indd 226 13-06-2022 15:11:0213-06-2022 15:11:02

11.3  Robust Optimization (RO) 227

probability distribution of the uncertain survival rate a, we know that a resides in the
uncertainty set U = + ∈{ }a D0 ζ ζ: Z and Z R= ∈ ≤{ }∞ζ ζ3 1: . a0 0 7 0 6 0 8=(). , . , . and
D E= 0 1. where E is the 3 3× unit matrix. Therefore, the design to minimize the pur-
chase cost and maintenance cost is

	min0 4 0 8 0 7 3 51 2 3x x x y+ + +

	a xT y a+ ≥ ∈0 9. ,∀ U

	e xT =1

	x y, ≥ 0

where e=()1 1 1, , T . The first constraint ensures that 90% of components are working after
the maintenance. The second constraint means that the total percentage of all compo-
nents is 1. In this case, RC can be formulated as

	

RC⇔ + ≥ ∀ ∈

() + () ≥

() −

⇔

⇔

∞
≤

a x a

a x D x

a x D x

T

T T T

T T

y 0 9

0 90

1

0
1

. ,

min .
:

U

ζζ ζζ
ζζ

≥≥

− ≤() ≤ = …

() − ≥











⇔

=
∑

0 9

1

0 90

1

.

, , ,

.

u u l L

u

l
l T

l

T

l

L

l

d x

a x


where dl is the l-th column of the matrix D.
Therefore, RC can be represented by a tractable representation as follows:

	min0 4 0 8 0 7 3 51 2 3x x x y+ + +

	0 1 1 1. x u≤

	0 1 2 2. x u≤

	0 1 3 3. x u≤

	0 7 0 6 0 8 0 91 2 3 1 2 3. . . .x x x y u u u+ + + − − − ≥

	e xT =1

	x u, ,y ≥0

The robust optimal solution is x * , ,=()0 0 1 and y* .= 0 2 . The robust optimal value of
objective is 1.4.

c11.indd 227c11.indd 227 13-06-2022 15:11:0713-06-2022 15:11:07

11  Optimization under Uncertainty228

11.4  Exercises

1.	 Solve the following two-stage SP problem by L-shaped method:

	z x x E q y q y= + + +()min100 1501 2 1 1 2 2ξ

	x x1 2 120+ ≤

	7 10 601 2 1y y x+ ≤

	6 5 801 2 2y y x+ ≤

	y y1 1 2 2≤ ≤d d,

	x x y y1 2 1 240 20 0≥ ≥ ≥, , ,

where ξT d d q q=()1 2 1 2, , , takes values (450, 100, -24, -28) with probability 0.7 and (300,
400, -25, -30) with probability 0.3.

2.	 Consider the example in Section 11.2.2 but now with ξ following the uniform distri-
bution, i.e. ξi i i i iU r r~ ,− −



r r� � and r�i ir= / 4. Show that the chance-constrained

model follows the same path as before.
3.	 Consider the example in Section 11.3.3 but now with the uncertainty set
U = + ∈{ }a D0 ζ ζ: Z and Z R= ∈ ≤{ }ζ ζ3

2 2: . Give the RC representation of this
problem and solve it.

4.	 Consider the redundancy allocation problem (RAP) for binary-state series-parallel
system:

	max∏
∈

− −()







j J
j

x
r j1 1

	A bx≤

	l x u≤ ≤

	x Zn∈ +

where J n= …{ }1 2, , , and A Rm n∈ × . Suppose the component reliability �rj in subsys-
tem j J∈ is uncertain, and it takes a random value in r rj j j� �−





δ , : that is, � �r rj j j j= −δ ξ
where the perturbations ξ j are n independent random variables with 0 1≤ ≤ξ j .
Show the tractable RC representation for this reliability optimization.

5.	 Budget uncertainty set [21] is a less conservative approach than the box uncertainty
set for the robust problem. For Exercise 4, consider the budget uncertainty set instead
of the box uncertainty set, i.e.

	∑
∈

≤
j J

jξ Γ

where Γ∈  0,n and is not necessarily an integer. The role of Γ is to adjust the robust-
ness of the model against the level of conservatism of the solution. Give the tractable
RC representation for this reliability optimization.

c11.indd 228c11.indd 228 13-06-2022 15:11:1313-06-2022 15:11:13

References 229

References

1	 Birge, J.R. and Louveaux, F. (2011). Introduction to Stochastic Programming. New York
City: Springer Science & Business Media.

2	 Dantzig, G.B. (2010). Linear programming under uncertainty. In: Stochastic
Programming 50 (12 supplement, 1764–1769. New York City: Springer.

3	 Beale, E.M. (1955). On minimizing a convex function subject to linear inequalities.
Journal of the Royal Statistical Society: Series B (Methodological) 17 (2): 173–184.

4	 Dantzig, G.B. and Glynn, P.W. (1990). Parallel processors for planning under
uncertainty. Annals of Operations Research 22 (1): 1–21.

5	 Higle, J.L. and Sen, S. (1991). Stochastic decomposition: An algorithm for two-stage
linear programs with recourse. Mathematics of Operations Research 16 (3): 650–669.

6	 Higle, J.L. and Sen, S. (1996). Stochastic Decomposition: A Statistical Method for
Large Scale Stochastic Linear Programming. Secaucus, NJ: Springer Science &
Business Media.

7	 Ermoliev, Y.M. and Wets, R.-B. (1988). Numerical Techniques for Stochastic Optimization.
Heidelberg, Germany: Springer-Verlag.

8	 Van Slyke, R.M. and Wets, R. (1969). L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics 17
(4): 638–663.

9	 Rahmaniani, R., Crainic, T.G., Gendreau, M., and Rei, W. (2017). The Benders
decomposition algorithm: A literature review. European Journal of Operational Research
259 (3): 801–817.

10	 Vanderbeck, F. and Savelsbergh, M.W. (2006). A generic view of Dantzig-Wolfe
decomposition in mixed integer programming. Operations Research Letters 34 (3):
296–306.

11	 Zahiri, B., Torabi, S.A., Mohammadi, M., and Aghabegloo, M. (2018). A multi-stage
stochastic programming approach for blood supply chain planning. Computers
Industrial Engineering 122: 1–14.

12	 Yahyatabar, A. and Najafi, A.A. (2018). Condition based maintenance policy for
series-parallel systems through Proportional Hazards Model: A multi-stage stochastic
programming approach. Computers Industrial Engineering 126: 30–46.

13	 Dentcheva, D. (2006). Optimization models with probabilistic constraints. In:
Probabilistic and Randomized Methods for Design under Uncertainty (ed. G. Calafiore
and F. Dabbene), 49–97. Springer.

14	 Prékopa, A. (2003). Probabilistic programming. Handbooks in Operations Research and
Management Science 10: 267–351.

15	 Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization. Princeton,
NJ: Princeton University Press.

16	 Ben-Tal, A. and Nemirovski, A. (2008). Selected topics in robust convex optimization.
Mathematical Programming 112 (1): 125–158.

17	 Bertsimas, D., Brown, D.B., and Caramanis, C. (2011). Theory and applications of robust
optimization. SIAM Review 53 (3): 464–501.

c11.indd 229c11.indd 229 13-06-2022 15:11:1313-06-2022 15:11:13

11  Optimization under Uncertainty230

18	 Wald, A. (1945). Statistical decision functions which minimize the maximum risk. In:
Annals of Mathematics, 265–280.

19	 Gorissen, B.L., Yanıkoğlu, İ., and Den Hertog, D. (2015). A practical guide to robust
optimization. Omega 53: 124–137.

20	 Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research 52 (1):
35–53.

21	 Bertsimas, D. and Sim, M. (2003). Robust discrete optimization and network flows.
Mathematical Programming 98 (1): 49–71.

c11.indd 230c11.indd 230 13-06-2022 15:11:1313-06-2022 15:11:13

231

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

12

Applications

This chapter contains two application cases that make use of the optimization
methods introduced in the previous chapters of Part III. The first case study consid-
ers optimizing the design of a distributed power generation system under various
uncertainties. Multi-objective optimization (MOO) and Monte Carlo simulation
(MCS) are implemented to solve this problem. The second case study is about redun-
dancy allocation for binary-state series-parallel systems (BSSPSs) under epistemic
uncertainty.

12.1  Multi-objective Optimization (MOO) Framework for
the Integration of Distributed Renewable Generation and
Storage

We present a MOO framework for integrating renewable generators and storage devices
into an electrical distribution network. The framework searches for the optimal size and
location of the distributed renewable generation units. Uncertainties in renewable
resources availability, components failure and repair events, loads and grid power supply
are incorporated. A Monte Carlo simulation – optimal power flow (MCS-OPF) computa-
tional model is used to generate scenarios of the uncertain variables and evaluate the
network electric performance. For monitoring and controlling the risk associated to the
performance of the distributed generation (DG) system, we consider the conditional
value-at-risk (CVaR) measure within the framework. The MOO problem is formulated
with respect to the minimization of the expectations of the global cost (Cg)
and Energy Not Supplied (ENS), combined with their respective CVaR. The fast
non-dominated sorting genetic algorithm (NSGA-II) [1] is used for the MOO framework.
The framework is applied to a distribution network derived from the IEEE 13 nodes test
feeder [2].

c12.indd 231c12.indd 231 10-06-2022 20:38:3410-06-2022 20:38:34

12  Applications232

12.1.1  Description of Distributed Generation (DG) System

The DG system model, presented in Section 7.1.1, has neglected many of the topological
and electrical characteristics of the DG system because the adequacy assessment gener-
ally does not require such information. However, in this chapter we intend to introduce
a more detailed DG system model for a better approximation to the real-world DG sys-
tem and will obtain practical optimization results for the allocation of the DG
generators.

Four main classes of components are considered: nodes, feeders, renewable DG units
and main supply power spots (MSs). The nodes can be understood as fixed spatial loca-
tions at which generation units and loads can be allocated. Feeders connect different
nodes and through them the power is distributed. Renewable DG units and MSs are
power sources; for electric vehicles (EVs) and storage devices, they can also act as loads
when they are in charging state. The locations of the MSs are fixed. The MOO aims at
optimally allocating renewable DG units at the different nodes. Figure 12.1 shows an
example of configuration of a DG system adapted from the IEEE 13 nodes test feeder [3],
where the regulator, capacitor, switch, and the feeders with length equal to zero are
neglected.

The renewable DG technologies include solar photovoltaic (PV), wind turbines
(W), electric vehicles (EV) and storage devices (ST), i.e. batteries. The power output
of each of these technologies is inherently uncertain. PV and W generations are sub-
ject to variability through their dependence on environmental conditions, i.e., solar
irradiance and wind speed. Dis/connection and dis/charging patterns in EV and ST,
respectively, further influence the uncertainty in the power outputs from the DG
units. Also generation and distribution interruptions caused by failures are regarded
as significant. The details about different types of DG unit models can be found in
publication [4].

MS
1

5 4 2 3

9 8

10 11

renewable
DG unit

~

~

~

load
power

generation

power flow

Figure 12.1  Example of distribution generation (DG) system configuration [4].

c12.indd 232c12.indd 232 10-06-2022 20:38:3410-06-2022 20:38:34

12.1  Multi-objective Optimization (MOO) 233

We will introduce the basic notations of this application case, as follows:

N set of all nodes

M set of all types of main supply power sources

D set of all DG technologies

Pv set of all PV technologies

W set of all wind technologies

E v set of all EV technologies

ST set of all ST

F set of all feeders

The configurations of power sources allocated in the network, indicating the size of
power capacity and the location, is given in matrix form:

Ξ=

+ + +ξ ξ ξ ξ ξ ξ

ξ ξ ξ

11 1 1 1 1 1 1

1

, , , , , ,

, ,

|

|

� � � �
� � � � � � � �
� �

j j

i i j i

M M M M D

,, , , ,

, , , , ,

|

|

|

M M M M D

N N N M N M N

ξ ξ ξ

ξ ξ ξ ξ ξ

i i j i

j

+ + +

+

1

1 1

� �
� � � � � � � �
� � � MM N M D

M D

+ +





























= 



j � ξ ,

|Ξ Ξ

� (12.1)

where

Ξ configuration matrix of type, size and location of the power sources allocated in
the distribution network

ΞM
allocated main supply part of the configuration matrix

ΞD allocated DG units part of the configuration matrix

n number of nodes in the network, N

m number of main supply type (transformers), M

d number of DG technologies, D

	

ξ
ζ

ij
j

=
number of unitsof theMStypeorDG technology allocated at nodee

otherwise

i
i j Z0 12 2






∀ ∈ ∈ ∈ ()∪ +N D, , .M ζ

Feeders deployment is described by the set of the node pairs connected:

F = ()… (){ } ∀()∈ × ()′ ′ ′1 2, , , , , , , ,i i i i i i is a feederN N � (12.3)

Any configuration {Ξ, F } of power sources Ξ and feeders F of the distribution network
is affected by uncertainty, so the operation and performance of the distribution network
is strongly dependent on the network configuration and scenarios.

Non-sequential MCS is adopted to sample the output of each component without time
dependence, with the aim of reducing the computation times. For a given structure and
configuration of the distribution network Ξ,F{ }, the set

�
ϑ of sampled output variables

c12.indd 233c12.indd 233 10-06-2022 20:38:3810-06-2022 20:38:38

12  Applications234

constitutes an operational scenario in correspondence of which the distribution network
operation is modeled by optimal power flow (OPF) and its performance evaluated. The
two inputs to the OPF model are the network configuration Ξ,F{ } and the operational
conditions scenario

�
ϑ :

�
ϑ= 




∀′t P L s ws t Q mc mc id i j

ms
i i i Rop i j

st
i j i ii j

, , , , , , , ,, , , ,,
,, , , , ,′ ′∈ ∈ ()∈∪i j i iN DM F � (12.4)

where,

td hour of the day h , randomly sampled from a uniform distribution U 1 24,()
Pi j

ms
, main supply power of the power source j at node i kW 

Li power demand at node i kW 
si solar irradiance at node i kW m/ 2





wsi wind speed at node i m s/ 
tRopi j,

residence time interval for operating state op of the power source j at node i h 
Qi j

st
, level of charge in the battery in the power source j at node i KJ 

mci j, binary mechanical state variable of the power source j at node i

mci i, ′ binary mechanical state variable of the feeder i i, ′()

12.1.2  Optimal Power Flow (OPF)

Power system analysis is performed by direct current (DC) OPF, which takes into account
the active power flows, neglecting power losses, and assumes a constant value of the volt-
age throughout the network. This allows to transform the classical nonlinear power flow
formulation into a linear one, gaining simplicity and computational tractability. For a
given configuration Ξ,F{ } and operational scenario

�
ϑ the formulation of the OPF prob-

lem is:

	 min & & ,
C P C P tO M

net
Gu

i N j
O M Gu

h
j
v

i j

� � �
ϑ ϑ ϑ()=

∪

× ×∑ ∑
∈ ∈M D

� (12.5a)

s.t. ∑ ∑
∈ ∈′

′ ′ ′

∪
+ + −()





 j
Gu i

i N
i i i i i iP LS mc B

ij

M D

� � � � �
ϑ ϑ ϑ ϑ ϑδ δ, ,






− = ∀ ∈ ()∈′ ′′L i i i ii

�
ϑ

0 , , ,N F � (12.5b)

P P i jGu Gai j i j, ,
,

� �
ϑ ϑ≤ ∀ ∈ ∈ ∪N DM � (12.5c)

0≤ ∀ ∈ ∈ ∪P i jGui j, ,
�
ϑ N DM � (12.5d)

mc B V Amp i i i ii i i i i i i i, , , , , ,′ ′ ′ ′−()≤ × ∀ ∈ ()∈′ ′
� � �
ϑ ϑ ϑδ δ N F � (12.5e)

− −()≤ × ∀ ∈ ()∈′ ′′ ′ ′ ′mc B V Amp i i i ii i i i i i i i, , , , , ,
� � �
ϑ ϑ ϑδ δ N F � (12.5f)

c12.indd 234c12.indd 234 10-06-2022 20:38:4810-06-2022 20:38:48

12.1  Multi-objective Optimization (MOO) 235

where,

th duration of the scenario h 
CO M

net
&

�
ϑ operating and maintenance costs of the total power supply and generation $ 

CO M j
v& operating and maintenance variable costs of the power source j kWh$ / 

mci i, ′

�
ϑ mechanical state of the feeder i i, ′()

Bi i, ′ susceptance of the feeder i i, ′() 1 /Ω 
mci j,

�
ϑ mechanical state of the power source j at node i

PGai j,

�
ϑ available power in the source j at node i kW 

PGui j,

�
ϑ power produced by source j at node i kW 

LSi

�
ϑ load shedding at node i kW 

V nominal voltage of the network kV 
Ampi i, ′ ampacity of the feeder i i, ′() A 

The load shedding in the node i, LSi, is defined as the amount of load(s) disconnected in
node i to alleviate overloaded feeders and/or balance the demand of power with the
available power supply.

The OPF objective is the minimization of the operating and maintenance costs associ-
ated with the generation of power for a given scenario

�
ϑ of duration th . Equation (12.5b)

correspond to the power balance equation at node i, whereas Equations (12.5c) and
(12.5d) are the bounds of the power generation, Equations (12.5e) and (12.5f) account for
the technical limits of the feeders.

The available power in the distribution network is a function of the configuration Ξ
and the mechanical states of the power sources:

P mc GGa i j i j i ji j, , , , ,
� � �
ϑ ϑ ϑξ= 	 (12.6)

where, Gi j,

�
ϑ represents the unitary power output and depends on the type of power

source, i.e.

	 Gi j

Pi j
ms mci j j M

Pi j
pv si mci j

,

, ,

, , ,
�

�

� �

ϑ

ϑ

ϑ ϑ

=







 ∈







 ∈







 ∈ ∀ ∈




j P

Pi j
w wsi mci j j w i N

Pi j
ev op td

ν

ϑ ϑ

ϑ

, , , ,

,

� �

�











 ∈



, , ,

, , ,

tRop mci j j v

Pi j
st Qst mci j

� �

� �

ϑ ϑ ε

ϑ ϑ





 ∈










j ST

. � (12.7)

12.1.3  Performance Indicators

Given a set γ of nS sampled operational scenarios
�
�ϑ and �∈ …{ }1, ,nS , the OPF is solved

for each scenario
�
�ϑ ∈ γ , giving in output the respective values of ENS and global cost.

c12.indd 235c12.indd 235 10-06-2022 20:38:5510-06-2022 20:38:55

12  Applications236

ENS is a common index for reliability evaluation in power systems [3]. In the present
work, this is obtained directly from the OPF output in the form of the aggregation of all-
nodal load shedding per scenario

�
�ϑ :

ENS
LS

t
i i

h

→ ∈

→

= ∀ ∈
∑ϑ

ϑ

ϑ γ�

�

�

���
N , ,	 (12.8)

	ENS ENS ENS ENS ns
� ����� � � �

�
γ ϑ ϑ ϑ
= … …







1 , , , , .� (12.9)

The global cost Cg of the distribution network is formed by two terms: fixed costs and
variable costs. The former term includes those costs paid at the beginning of the opera-
tion after the installation of the DG (conception of ΞD). The variable term refers to the
operating and maintenance costs. These costs are dependent on the power generation
and supply, which are a direct output of the OPF in Equation (12.5a). In addition, this
term considers revenues associated to the renewable sources incentives as well as energy
prices. Thereby, the global cost function for a scenario

�
�ϑ is given by:

	
C

C C

t
t C inc epg

i j i j inv O M

h
S

O M
netj j

f

t

� �
�ϑ ϑ

ξ
=

+()
× + − +()×

∑ ∑∈ ∈N D , &
& ∑∑∑

∈ ∈

× ∀ ∈
i j

Gu
SP t

i j

t

N D
,

, ,
�

�

�ϑ ϑ γ 	 (12.10)

	C C C Cg g g g
ns

� �� � � �
�

γ ϑ ϑ ϑ
= … …










1 , , , , . � (12.11)

where

Cinv j
investment cost of the DG technology j $ 

CO M j
f& operating and maintenance fixed costs of the DG technology j $ 

tS horizon of analysis h 
inc incentive for generation from renewable sources $ / kWh 
ep energy price $ / kWh 
Cg

t

�
ϑ global cost $ 

The proposed MOO framework introduces CVaR as a coherent measure of the risk asso-
ciated to the functions of interest. This risk measurement allows evaluating how “risky”
is the selection of a determined value of expected losses. We consider a fixed configura-
tion of the distribution network {Ξ,F } including the integration of DG units as a “port-
folio.” The assessed ENS

� ����� γ
and Cg

� �� γ , found from the MCS-OPF to the set of scenarios γ ,
can be treated as estimations of the probability of the “losses.” In this sense, if the deci-
sions are intended to be taken based on the expectations of ENS

� ����� γ
and Cg

� �� γ
, then the

CVaR ENS
� ����� γ





 and CVaR Cg

� �� γ





 will represent the risk associated to these expectations.

As shown in Figure 12.2A, for a discrete approximation of the probability of the losses,
given a confidence level or α-percentile, the value-at-risk VaRα represents the smallest value
of losses for which the probability that the losses do not exceed the value of VaRα is greater
than or equal to α . Thus, from the cumulative distribution function (cdf) F(losses), it is pos-
sible to construct the α-tail cdf Fα(losses) for the losses, such as (Figure 12.2B): the α -tail cdf
represents the risk “beyond the VaR ” and its mean value corresponds to the CVaRα .

c12.indd 236c12.indd 236 10-06-2022 20:39:0010-06-2022 20:39:00

12.1  Multi-objective Optimization (MOO) 237

12.1.4  MOO Problem Formulation

The MOO problem consists of the two objective functions measuring the Cg and ENS
and the associated risks. Specifically, their expected values and their CVaR values are
combined, weighted by a factor of β ∈  0 1, , which allows modulating the expected per-
formance of the distribution network and its associated risk. Considering a set of ran-
domly generated scenarios γ , the optimization problem is formulated as follows:

	● Objective functions:

	min f EC CVaR Cg g1 1= × + −()× 





β βγ

α
γ� ��

� (12.12a)

	min ()f EENS CVaR ENS2 1= × + −()×β βγ
α

γ� �����
� (12.12b)

	● Constraints:

	ξ
ζ

i j
if DG

otherwise, = ∀
1 technology j are allocated at node i

0






∈ ∈ ∈ +i j ZN D, ,ζ � (12.12c)

	∑∑
∈ ∈

+()≤
i j

i j j O mCinv C BGT
j
f

N D

ξ , & � (12.12d)

	∑
∈

≤ ∀ ∈
i

i j j j
N

Dξ τ, , � (12.12e)

OPF (, ,)Ξ F γ in Equations (12.4a)–(12.4f)

where ECg and expected energy not supplied (EENS) denote the expected values of ECg
and ENS, respectively.

Figure 12.2  Graphical representation of the CVaR concept [4].

c12.indd 237c12.indd 237 10-06-2022 20:39:0410-06-2022 20:39:04

12  Applications238

The meaning of each constraint is

Equation
(12.11c)

the decision variable ξi j, is a positive integer number

Equation
(12.11d)

the total costs of investment, and fixed operation and maintenance of the DG
units must be less than or equal to the available budget BGT

Equation
(12.11e)

the total number of DG units of each technology j to allocate must be less
than or equal to the maximum number of units τ j available to be integrated

Equations
(12.4a)–(12.4f)

all the equations of OPF must be satisfied for all scenarios in γ

12.1.5  Solution Approach and Case Study Results

The combinatorial MOO problem under uncertainties is solved by the NSGA-II algo-
rithm presented in Chapter 10. In this approach, the evaluation of the objective functions

Figure 12.3  Flow chart of NSGA-II MCS-OPF MOO framework.

c12.indd 238c12.indd 238 10-06-2022 20:39:0810-06-2022 20:39:08

12.1  Multi-objective Optimization (MOO) 239

is performed by the developed MCS-OPF. The searching process of the overall NSGA-II
MCS-OPF is summarized as shown in Figure 12.3.

As mentioned in Section 12.1.1, the testbed is modified from the IEEE 13 nodes test
feeder (shown in Figure 12.1). The details about the characteristics of the components in
the DG system can be found in [4]. The Pareto fronts, resulting from the MOO realiza-
tions for the different values of β , are presented in Figure 12.4. Each set of solutions
corresponds to the “last-generation” population of the GA and the non-dominated
solutions are presented in bold markers.

In Figure 12.5, the performance of the distribution network referring to the ENS and
the Cg is improved for any realization of the MOO; if compared to the only MS case, it
will show the gain in reliability of power supply and the economic benefits obtained
by purchasing power from the different renewable DG sources. On the other hand, it
is possible to infer that, in general, for lower values of the weight parameter β, the
mean values of Cg is higher. This is expected, given that for the definition of the objec-
tive functions, when β tends to 0, the MOO tends to minimize the CVaR. (We skipped
much of the analyses and discussions about the results because the intention of this
chapter is only to illustrate through case studies the way of utilizing the methods and
tools presented in previous Chapters. For the details about this case study, please refer
to [4].)

Figure 12.4  Pareto fronts for different values of β [4].

c12.indd 239c12.indd 239 10-06-2022 20:39:1010-06-2022 20:39:10

12  Applications240

12.2  Redundancy Allocation for Binary-State Series-
Parallel Systems (BSSPSs) under Epistemic Uncertainty

In this section, we consider the redundancy allocation problem (RAP) with uncertain
data in a binary-state series-parallel system (BSSPS). We assume the states of compo-
nents and system are binary, the states of individual components are statistically inde-
pendent, and the redundancy strategies in all subsystems are active.

12.2.1  Problem Description

We consider a BSSPS with I subsystems connected in series. In each subsystem i I∈ ,
the decision variables are the redundancy levels xi of the components to be placed in
parallel. The system cost is minimized under a system reliability requirement. The RAP
model is given by

	min∑
∈i I

i ic x∼ 	 (12.13a)

	s.t.∏
∈

− −()()≥
i I

i
xr Ri1 1 0 � (12.13b)

	L x U i Ii i i≤ ≤ ∀ ∈, � (12.13c)

	x i Ii ∈{ } ∀ ∈0 1, , � (12.13d)

where Equation (12.13b) represents the requirement that the system reliability should be
larger than R0 , Equations (12.13c) shows the range of redundancy levels in each
subsystem.

Figure 12.5  EENS v/s ECg [4].

c12.indd 240c12.indd 240 10-06-2022 20:39:1310-06-2022 20:39:13

12.2  Redundancy Allocation for Binary-State Series-Parallel Systems (BSSPSs) 241

The reliability function can be linearized with binary variables [5]. Therefore, the
model in Equations (12.13a)–(12.13d) can be reformulated as the following integer pro-
gramming problem:

min∑
∈i I

i ic x� � (12.14a)

	s.t ln. ln∑∑
∈ ∈

+
− −()





 ≥

i I k K
ik i

L k

i

ir Rχ 1 1 0 � (12.14b)

	∑
∈

= ∀ ∈
k K

ik
i

i Iχ 1, � (12.14c)

	x k Li
k K

ik i
i

= +∑
∈

χ � (12.14d)

	χik ii I k K∈{ } ∀ ∈ ∈0 1, , , � (12.14e)

where the binary variable χik denotes whether x Li i− equals to k Ki∈
and K U Li i i= … −{ }0 1, , , . Therefore, the redundancy level xi can be replaced by

∑
∈

+
k K

ik i
i

k Lχ with χik . The constraint in Equation (12.13c) ensures that only one redun-

dancy level L ki + for k Ki∈ is selected for the redundancy level xi . The reliability func-
tion is log-transformed to the linear forms

∑ ∑∑
∈ ∈ ∈

+
− −()()= − −()()

i I
i

x

i I k K
ik i

L kr ri

i

iln ln1 1 1 1χ as in Equation (12.14b).

12.2.2  Robust Model

We consider that the parameters of cost �c are uncertain. In practice, it is reasonable to
estimate the mean (nominal) values ci and variation ranges ci� of these parameters for all
possible component types. We assume all cost parameters �ci, i I∈ are mutually independ-
ent, symmetric, and bounded, which take values in [c ci i− � , c ci i+ �]. Therefore, the robust
model with polyhedral uncertainty set is used to handle the RAP with uncertain data.
The uncertainty set of �c is denoted as follows:

C : : , ,= ∈ ∈ − +




∀ ∈{ }+c R c c c c c i II

i i i i i� � �

For the constraints with uncertain data, the robust formulation of objective in Equation
(12.14a) with �c ∈C is given by

minmax
x c i I

i ic x
∼

�
∈ ∈
∑

C

� (12.15)

The general uncertainty sets considered in robust models include polyhedral uncertainty
set [6] and ellipsoidal uncertainty set [7]. In this RAP, we use the cardinality constrained
uncertainty proposed in [8] to deal with the polyhedral uncertainty on �c. The protection

c12.indd 241c12.indd 241 10-06-2022 20:39:1910-06-2022 20:39:19

12  Applications242

level Γc ∈

0, I is introduced to control the robustness of the model on Equation (12.15).

The cardinality constrained robust representation of Equation (12.15) is given by

	 ∑ ∑
∈ { } ⊆ =[] ∈{ } ∈

+
∪

+ −[]()
i I

i i
S s S I S s I S i S

i i
c c

sc x c x c
c

max
: , ,Γ

Γ Γ
�

� � xxs















� (12.16)

i.e. up to Γc[] of all uncertain parameters are allowed to change by ci� and one parame-
ter csi
� is allowed to change by Γ Γc c

sc− 


()� . Finally, the robust optimization model for

the BSSPS RAP (12.14a)–(12.14e) is as follows:

min max∑ ∑
∈ { } ⊆ = ∈{ } ∈[]

+
∪

+ −[]()
i I

i i
S s S I S s I S i S

i i
c cc x c x

c: , ,Γ
Γ Γ

�

� cc xs s�














� (12.17a)

	s t b e. . . .12 13 12 13()−() � (12.17b)

Given the robust model in Equations(12.17a)–(12.17b) in the BSSPS RAP, we present
the tractable formulation for it in this section. The formulationin Equation (12.17a) is
intractable because the combinations of S s S I S s I Sc∪{ } ⊆ = 




∈{ }: , ,Γ � compared

under the operation “max” are exponential. These semi-infinite formulations can be
transformed into linear formulations through a duality argument.

Proposition 1  Given a decision x , the semi-infinite formulation in Equation (12.17a)
is equivalent to the following program:

min∑ ∑
∈ ∈

+ +
i I

i i
c c

i I
i
cc x ξ ρΓ � (12.18a)

	ξ ρc
i
c

i ic x i I+ ≥ ∀ ∈� , � (12.18b)

	ρi
c i I≥ ∀ ∈0, � (12.18c)

	ξc ≥ 0 � (12.18d)

	x Z i Ii ∈ ∀ ∈+, � (12.18e)

where ξ ρc
i
c, are auxiliary variables.

Proof  The proof of Proposition 1 is given in Section 11.3.3.
Therefore, the tractable formulation of the model in Equations (12.17a)–(12.17b) is
given by

min

b e b e

∑ ∑
∈ ∈

+ +

()−() ()−(
i I

i i
c c

i I
i
cc x ξ ρΓ

12 17 12 17 12 13 12 13. . , . .))

c12.indd 242c12.indd 242 10-06-2022 20:39:2210-06-2022 20:39:22

12.2  Redundancy Allocation for Binary-State Series-Parallel Systems (BSSPSs) 243

12.2.3  Experiment

We consider a BSSPS of 10 subsystems and a reliability requirement larger than 0.9. The
nominal cost parameters ci are uniformly generated in the range 10 15,


 in arbitrary

units of cost and ci
∼ is set as ci / 2 . The reliability of each component in subsystem i I∈ is

uniformly generated from 0 85 0 90. , .



 . The bounds of the redundancy level for subsystem

i is Li =1 and Ui = 5 , for i I∈ .
To illustrate the performance of protection level Γc on the robust model, we vary Γc in

the set 0 1 10, , ,…{ }. Given a protection level Γc, the associated robust solution and objec-
tive are represented as x c* Γ() and C c* Γ(), respectively. To explore the robustness of the
solutions x c* Γ(), 100,000 samples for the cost parameters �c s are simulated from the
uniform distribution, normal distribution, or triangle distribution on C . The objective
value Cs cΓ() of solution x c* Γ() under the sample �c

s
 is calculated by �c xs c() ()T * Γ . Then

the violation probability of the robust solution is represented by the frequency that

C c* Γ() is less than Cs cΓ().
Figure 12.6 shows the violation probabilities for different Γc . The violation probability

drops sharply with the increase in the protection level. Actually, when Γc = 2, the viola-
tion probability is 0.004 and when Γc=4, the violation probability has become smaller
than 10 5− .

Figure 12.7 shows the change percentage in objective values given by

C C

C

c* *

* %
Γ()− ()
()

×
0

0
100

considering different levels of robustness. As we increase the protection level Γc and the
optimal value increases with Γc, the robust solution becomes more conservative.
According to Figures 12.6 and 12.7, we observe that by allowing the cost to increase by
0.08, we can make the probability of constraint violation less than 0.04. In addition, by

Figure 12.6  Violation probabilities for different Γc.

c12.indd 243c12.indd 243 10-06-2022 20:39:2710-06-2022 20:39:27

12  Applications244

allowing the cost to increase by 0.24, the violation probability is less than 10 5− . Therefore,
we can sacrifice a relatively small increment in the objective value to greatly reduce the
violation probability.

References

1	 Rezaei, F., Najafi, A.A., and Ramezanian, R. (2020). Mean-conditional value at risk model
for the stochastic project scheduling problem. Computers Industrial Engineering 142:
(106356).

2	 Schneider, K.P. et al. (2017). Analytic considerations and design basis for the IEEE
distribution test feeders. IEEE Transactions on Power Systems 33 (3): 3181–3188.

3	 Azaron, A., Perkgoz, C., Katagiri, H., Kato, K., and Sakawa, M. (May 2009). Multi-objective
reliability optimization for dissimilar-unit cold-standby systems using a genetic algorithm.
Computers & Operations Research 36 (5): 1562–1571. doi:10.1016/j.cor.2008.02.017.

4	 Mena, R., Hennebel, M., Li, Y.F., Ruiz, C., and Zio, E. (Sep 2014). A risk-based simulation
and multi-objective optimization framework for the integration of distributed renewable
generation and storage. Renewable & Sustainable Energy Reviews 37: 778–793.
doi:10.1016/j.rser.2014.05.046.

5	 Feizollahi, M.J. and Modarres, M. (2012). The robust deviation redundancy allocation problem
with interval component reliabilities. IEEE Transactions on Reliability 61 (4): 957–965.

6	 Soyster, A.L. (1973). Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research 21 (5): 1154–1157.

7	 Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear programming problems
contaminated with uncertain data. Mathematical Programming 88 (3): 411–424.

8	 Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research 52 (1):
35–53.

Figure 12.7  Change percentage in objective function for varying Γc .

c12.indd 244c12.indd 244 10-06-2022 20:39:2810-06-2022 20:39:28

245

System Reliability Assessment and Optimization: Methods and Applications,
First Edition. Yan-Fu Li and Enrico Zio.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

Index

a
Acceptance-rejection method  90
Age replacement policy  28
Archard’s law for wear  14
Associativity  118

b
Basic belief assignment (BBA)  125
Binary decision diagram (BDD)  19
Binary-state series-parallel system

(BSSPS)  24
Binary-state system (BSS)  25
Binomial Distribution  6
Block replacement policy  29
Boolean logic function  49
Branch-and-bound (B&B)  31

c
Central Limit Theorem (CLT)  101
Column generation (CG)  32
Commutativity  118
Component reliability enhancement  153
Compromise programming approach  201
Conditional value-at-risk (CVaR)  231
Continuous time Markov chain

(CTMC)  55
Cumulative distribution function (cdf)  4
Cumulative hazard function  6

d
Differential evolution (DE)  35
Discrete time Markov chain  56

Distributed generation (DG) system  135
Dynamic programming (DP)  31

e
Energy not supplied (ENS)  231
Expected cost rate  28
Exponential Distribution  9
Extreme points  156

f
Fitness-proportional selection  173
Fuzzy number  121

g
Gamma Distribution  11
Generational distance (GD)  197
Genetic algorithm (GA)  35
Gibbs sampler  98
Goal Programming  189

h
Homogeneous continuous time markov

chain  61
Hyper-volume (HV)  198

i
Importance sampling  101
Inhomogeneous continuous time Markov

chain (ICTMC)  61
Integer linear programming (ILP)  160
Integer programming (IP)  30
Interval of confidence  121
Inverse-transform method  89

bindex.indd 245bindex.indd 245 6/11/2022 1:02:13 PM6/11/2022 1:02:13 PM

Index246

k
K-out-of-n System  17

l
Linear programming (LP)  30
Lognormal Distribution  12
L-shaped method  212

m
Markov chain monte carlo (MCMC)  97
Markov jump processes  94
Markov processes  55
Markov renewal process  69
Mathematical programming (MP)  30
Mean time between failures (MTBF)  5
Mean time between repair (MTBR)  24
Mean time to failure (MTTF)  5
Meta-heuristics  34
Metropolis-Hastings (M-H) algorithm  97
Minimal cut vectors (MCVs)  43
Minimal path vectors (MPVs)  43
Min-max method  200
Mixed integer programming (MIP)  30
Monte Carlo random search  168
Monte Carlo simulation (MCS)  48
Multi-Objective optimization (MOO)  185
Multiple-try Metropolis algorithm  100
Multi-state models (MSMs)  43
Multi-valued decision diagram (MDD)  49

n
Necessity  124
Network System  18
Non-dominated sorting genetic algorithm

(NSGA-II)  190
Non-linear programming (NLP)  30

o
Optimal power flow (OPF)  234

p
Parallel System  16
Pareto-optimal front  187
Pareto-optimal set  187
Pareto-optimal  187
Particle swam optimization (PSO)  36
Path-set and Cut-set  18
Periodic replacement policy  29

Physics-of-Failure (P-o-F)  13
Piecewise deterministic Markov Process  74
Poisson Distribution  7
Possibility  124
Probability density function (pdf)  5
Probability mass function (pmf)  6

r
RAM and Safety (RAMS)  185
RAMS and cost (RAMS+C)  185
Random variable generation  87
Random-fuzzy numbers (RFNs)  128
Rank-based selection  174
Redundancy allocation problem (RAP)  24
Reliability assessment  3
Reliability, Availability, and Maintainability

(RAM)  185
RAM and Safety criteria (RAMS)  185
RAMS and cost(RAMS+C)  185
Robust counterpart (RC)  223
Robust optimization (RO)  222
Runge-Kutta methods  62

s
Sample average approximation  210
Semi-Markov process (SMP)  66
Series System  15
Series-parallel System  16
Simplex method  156
Single-objective GA (SOGA)  170
Single-objective optimization (SOO)  185
Single-objective PSO (SOPSO)  180
Stochastic programming (SP)  30
Strength pareto evolutionary algorithm

(SPEA)  193

t
Time-dependent MSM (TDMSM)  46
Tournament selection  174

u
Universal Generating Function (UGF)  49

w
Weibull Distribution  10
Weighted-sum approach  188

ε-constraint Approach  189

bindex.indd 246bindex.indd 246 6/11/2022 1:02:13 PM6/11/2022 1:02:13 PM

