
Snowflake
Security

Securing Your Snowflake Data Cloud
—
Ben Herzberg
Yoav Cohen

Snowflake Security
Securing Your Snowflake

Data Cloud

Ben Herzberg
Yoav Cohen

Snowflake Security: Securing Your Snowflake Data Cloud

ISBN-13 (pbk): 978-1-4842-7388-3		 ISBN-13 (electronic): 978-1-4842-7389-0
https://doi.org/10.1007/978-1-4842-7389-0

Copyright © 2022 by Ben Herzberg, Yoav Cohen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7388-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ben Herzberg
Modiin, Israel

Yoav Cohen
Ness-Ziona, Israel

https://doi.org/10.1007/978-1-4842-7389-0

This book is dedicated to my beloved family. Thanks for
supporting me throughout this – Tal, Yoray, Shira, and Ori.

I’d also like to thank my parents and siblings for always
sticking up for me.

—Ben “Green Dragon” Herzberg

This book is dedicated to Maya, Emma, Ethan,
Eviatar, and Eliana, my co-founders in life.

—Yoav Cohen

v

Table of Contents

Chapter 1: ��Snowflake Organization Structure��� 1

1.1. �Single Account vs. Multiple Accounts��� 1

1.1.1. �Scaling Multiple Accounts Management�� 3

1.2. �Choosing the Right Pricing Plan�� 3

1.3. �Summary�� 4

Chapter 2: ��Infrastructure Security��� 5

2.1. �Account Data Storage��� 5

2.2. �Access to the Stored Data��� 6

2.2.1. �The Standard Multi-tenant Deployment�� 6

2.2.2. �Business Critical Edition��� 8

2.2.3. �Virtual Private Snowflake��� 9

2.2.4. �PrivateLink�� 10

2.3. �Access to Historical Data�� 11

2.3.1. �Stage Data�� 11

2.3.2. �Internal or External Backup�� 11

About the Authors��� xi

About the Technical Reviewers�� xiii

Acknowledgments��xv

Foreword��xvii

Introduction���xix

Let’s Get Started���xxvii

vi

2.3.3. �Time Travel��� 12

2.3.4. �Fail-Safe��� 12

2.4. �Good to Know�� 13

2.5. �Summary�� 13

Chapter 3: ��Data Encryption and Ingestion��� 15

3.1. �Encryption of Data in Transit��� 15

3.2. �Encryption at Rest��� 16

3.2.1. �Uploading Files to Staging Areas�� 17

3.2.2. �Snowflake-Provided Staging Areas�� 17

3.2.3. �Customer-Provided Staging Areas�� 19

3.2.4. �Using Storage Integration��� 21

3.2.5. �How Snowflake Encrypts Your Data in Tables�� 21

3.2.6. �Unloading Files to Staging Areas�� 24

3.2.7. �External Tables��� 25

3.2.8. �Customer Managed Keys�� 25

3.2.9. �Application-Level Encryption�� 26

3.3. �Summary�� 29

Chapter 4: ��Authentication: Keeping Strangers Out�� 31

4.1. �Users Management��� 31

4.2. �User Provisioning�� 33

4.2.1. �SCIM Integration��� 33

4.2.2. �User Provisioning Using SQL Integration�� 46

4.2.3. �Combining SCIM and SQL Integration��� 47

4.3. �Authentication Types��� 47

4.3.1. �Built-In Authentication�� 48

4.3.2. �Federation: Single Sign-On (SSO) Integration��� 52

4.3.3. �Nonhuman Authentication�� 59

4.3.4. �Compensating Factors in Authentication�� 64

4.4. �Summary�� 65

Table of Contents

vii

Chapter 5: ��Network Access Control��� 67

5.1. �How Do Network Access Policies Work?��� 67

5.1.1. �Setting Up Account-Level Network Policy�� 68

5.1.2. �Setting Up User-Level Network Policy�� 68

5.1.3. �Limitations�� 69

5.2. �PrivateLink Integrations�� 70

5.3. �Summary�� 71

Chapter 6: ��Authorization: Data Access Control��� 73

6.1. �Data Access Models�� 74

6.1.1. �MAC (Mandatory Access Control)��� 74

6.1.2. �DAC (Discretionary Access Control)�� 75

6.1.3. �ABAC (Attribute-Based Access Control)�� 76

6.1.4. �RBAC (Role-Based Access Control)�� 76

6.2. �Snowflake Access Control Model�� 77

6.2.1. �Snowflake Security Model�� 78

6.2.2. �The Built-In Roles in Snowflake�� 80

6.3. �Designing Your Role Architecture�� 81

6.3.1. �Document Your Role Architecture��� 81

6.3.2. �Privilege Granting��� 82

6.3.3. �Approaches to Access Management�� 82

6.3.4. �Creating Your Own Blend of Data Access��� 90

6.4. �Fine-Grained Data Access Control�� 90

6.4.1. �Column-Based Access Control��� 91

6.4.2. �Row-Based Access Control�� 99

6.4.3. �Combining Column and Row Security�� 105

6.4.4. �Attribute-Based Access Control�� 106

6.4.5. �Self-Service Access Control��� 107

6.4.6. �Third-Party Solutions�� 107

6.5. �Rolling Out Access Control Changes��� 108

6.6. �Summary�� 108

Table of Contents

viii

Chapter 7: ��Auditing and Monitoring�� 109

7.1. �Snowflake Audits Characteristics��� 109

7.1.1. �Every Operation Is Audited��� 109

7.1.2. �Audits Are Available via… Snowflake��� 110

7.2. �Snowflake Metadata��� 110

7.2.1. �Account Usage vs. Information Schema��� 110

7.2.2. �Relevant Views for Security in Snowflake.account_usage��� 111

7.2.3. �The Reader Accounts Schema�� 129

7.2.4. �Views in the Information Schema��� 129

7.2.5. �Table Functions in the Information Schema��� 134

7.2.6. �Use Cases��� 144

7.3. �Object Tagging�� 155

7.4. �How to Monitor?�� 156

7.4.1. �Using Tasks to Prepare Data��� 156

7.4.2. �Building a Snowsight Security Dashboard��� 158

7.5. �Alerting�� 160

7.5.1. �Using Custom Scripting�� 161

7.5.2. �Using Tasks and External Functions��� 161

7.5.3. �Using SnowAlert��� 161

7.6. �Using Third-Party Vendors for Monitoring, Auditing, and Alerting��������������������������������������� 162

7.7. �Summary�� 162

Chapter 8: ��Secure Data Sharing with Snowflake��� 163

8.1. �Direct Share�� 163

8.1.1. �Consuming Shared Data��� 164

8.1.2. �Sharing Partial Data Using Secure Objects�� 165

8.2. �Data Exchange and the Snowflake Data Marketplace�� 171

8.2.1. �Managing Data Exchange��� 172

8.3. �Reader Accounts��� 173

8.4. �Distributed Data Clean Rooms�� 174

8.5. �Summary�� 175

Table of Contents

ix

Chapter 9: ��Snowflake for Security��� 177

9.1. �How We Got Here�� 177

9.1.1. �In Comes SIEM��� 178

9.1.2. �Snowflake As a Security Data Lake�� 178

9.2. �Why Snowflake for a Security Data Lake�� 179

9.2.1. �Ease of Integration��� 179

9.2.2. �Scalability and Features��� 179

9.2.3. �Enrichments with Data Marketplace Sources�� 179

9.2.4. �Sharing Is Easy��� 180

9.3. �SnowAlert��� 180

9.3.1. �Getting Started��� 181

9.3.2. �Running SnowAlert��� 181

9.3.3. �Managing SnowAlert�� 182

9.3.4. �SnowAlert Data��� 182

9.4. �Summary�� 183

��Epilogue��� 185

��Index�� 187

Table of Contents

xi

About the Authors

Ben Herzberg is an experienced hacker and developer with years of experience in

endpoint security, behavioral analytics, application security, and data security. His

professional experience in development, research, and security includes roles such as

the CTO of Cynet and leading the threat research group at Imperva. Ben is now the Chief

Scientist for Satori, streamlining data access and security with DataSecOps.

Ben also loves to write, speak at conferences, travel, and meet new people.

Yoav Cohen is the Co-founder and Chief Technology Officer of Satori Cyber. At Satori,

Yoav is building the company’s technology vision and leading the research and

engineering teams. Before founding Satori Cyber, Yoav was the Senior Vice President

of Product Development for Imperva, which he joined as part of the acquisition of

Incapsula, a cloud-based web applications security and acceleration company, where

he was the Vice President of Engineering. Before joining Incapsula, Yoav held several

technology leadership positions at SAP.

When he isn’t glued to his laptop or on a whiteboard, Yoav can be found traveling

with his wife and four kids in an RV, playing electric guitar, or doing laps at the pool. He is

still dreaming about building his own operating system.

Yoav holds an M.Sc. in Computer Science and a B.Sc. in Computer Science and

Biology from Tel-Aviv University.

xiii

About the Technical Reviewers

Chris Edge has been working in IT for his whole career, starting off in various back-office

roles, such as document management (ISO/BS standards), networks, and infrastructure,

before learning that dealing with all things data related was the perfect job for him!

Chris has been working in the analytics domain now for over 25 years, having been

instrumental in setting up many greenfield sites incorporating various database, ETL,

and reporting technologies over the last two and a half decades, and helping to steer

companies that are mid-flight and looking for new ways of working.

Chris is one of the three partners of Leading Edge IT, a consultancy dealing with all

things data, focusing on strategy and execution, focused in the cloud.

Chris Tabb started his career in the business intelligence/analytics domain 25 years ago,

beginning at Cognos in the 1990s working in the back-office before becoming an expert

in all their products and leaving to become an independent BI consultant in 1998. It is

safe to say he loves data and always has.

He has followed the evolution of the analytics industry, working hands-on with all

the technologies in the ecosystem: databases, ETL/ELT, BI/OLAP/visualization tools, big

data technologies, and infrastructure on-premises/cloud across many vendors, some

old, some new.

Nowadays, he works at a more strategic level providing technical roadmap, vendor

selection, migration strategies, data management, and data and application architecture,

but he still likes to keep hands-on with products in the data ecosystem. He also actively

participates in podcasts and posts where he provides his views and insights into the data

world using #DataTips.

Ian Chotakoo has worked in the IT industry across multiple sectors including defense,

retail, banking, and manufacturing.

He has been part of the full development life cycle with a focus on data, leadership,

complex delivery, and commercial awareness to influence and ensure successful

business outcomes.

Ian holds a B.Sc. in Information Technology and Business Information Systems,

having fallen in love with technology while growing up in the 1980s.

xv

Acknowledgments

Writing a book about a product that develops fast, the way Snowflake does, is

challenging. It is shooting at a moving target, and throughout this project, we were glad

to have a lot of help from different sources.

Our energies on writing this book started at home with our families, who gave us

their full support to work on this project despite working full capacity on Satori. Writing

this took away some of our weekends and nights, and we’re hoping to give them some

of this time back as soon as we find a way to time travel.

We went on a mission to help companies achieve better DataSecOps and to help

them solve security and governance challenges in an agile way using Satori. During our

work with many data-driven companies, we spent a lot of time trying to understand

and help others understand how to secure their data stores better, and Snowflake in

particular. That was also when we understood there was a need for this book.

This project couldn’t have happened without the immense support we got from

Satori. This help was both directly by giving us the time and assistance in working on this

project and indirectly by giving us the emotional support we needed for taking on such

a challenge while also staying focused on our company mission. In Satori, many people

helped us throughout this journey. We would like to specifically thank Eldad Chai,

Satori’s Co-founder and CEO, and David Levin, Satori’s Head of Product, for their help.

We’ve had great help from Chris Edge, Chris Tabb, and Ian Chotakoo from Leading

Edge IT, a leading (as the name implies :)) Snowflake solution partner. They took part in

the technical editing of this book. They also went well above that in greatly supporting

this project since its incubation and until it was ready to publish. Their vast experience

and knowledge around Snowflake made their help unparalleled.

From Snowflake itself, we’ve had some great insights and support from several

people, including Vikas Jain, Omer Singer, Kent Graziano, Seth Youssef, Jonathan Sander,

David “BigDataDave” Spezia, Felipe Hoffa, and several others. Their help included

discussions about new features and several capabilities, which allowed us to focus our

efforts on this project. In addition, they were patient and fun to work with, making this

interaction all the more enjoyable.

xvii

Foreword

Once upon a time, businesses waited to worry about the security of their data stack

until their employees, customers, or board told them about a problem. In today’s world,

the responsible business or technology leader needs to be proactive. Decisions about

securing data are foundational and impact everything from how employees or vendors

are onboarded to the way reports are distributed, new systems are deployed, and

workflows are designed. Why? Because today all businesses run on data.

I have been working to launch software businesses in the tech and media industries

since the 1990s. It is rare to find enterprise software that makes teams want to use it

more as the business grows, gets more complex, and operations scale. Here is the secret

sauce. Sales and support teams are the first to see and hear what customers need to be

“successful.” The game changer is when those needs are communicated to the tech team.

Any cloud data platform provider can help their customer learn to use their product in

the way the provider intended. Few can build for what their unique customer needs and

then deliver that capability at scale. Ultimately, it’s the engineering leadership that must

deliver on the promise to meet customers’ needs. That willingness to partner on building

and delivering is rare.

I first heard about Snowflake in 2016. Several of my peers who were leading large

data teams at other companies had started to comment on the performance they were

getting with their queries. I had just moved to Seattle to build out a new data team. At

the time, I was consumed with hiring, finding data sources, doing the basic reporting,

creating a data model, and keeping pace with newly launched online retail businesses

hungry for data. I like to be the early adopter. But it felt like too much of a lift to bring in a

new data platform.

Then it was 2018, and this was a perfect opportunity. I was grappling with how

to integrate a fragmented legacy data infrastructure and a tech org with the dual

performance dilemma of frequent systems performance problems and fewer resources

than required to supply stakeholders with data. By the end of that first proof of concept,

we saw the promise that Snowflake could address all three issues. So, the crucial next

xviii

step was ensuring whether we could meet our high hurdle for data security. Performance

at scale is the entry point for B2B technology providers with any global enterprise, but

trust and security are the true differentiators. I believe that Snowflake has both.

Now in 2021, I read or hear about companies and organizations using or misusing

data in some new way. Staying fluent in how information moves through an organization

and its IT systems is typically not easy. In most organizations, people mainly care

only about the information and tools they rely on to get their work done. Nearly every

organization has some amount of “shadow IT” in marketing, finance, customer service,

operations, etc., based on individual preferences and the aspiration “to move quickly

and break things” or “be a disruptor.” But what happens when the systems in the

shadows that once met a burning need are orphaned? I think it’s an interesting question

to ask, and while I don’t necessarily have a point of view on the solution, I know at least a

part of the resulting scenario is a risk.

Fragmentation in the fabric of enterprise technology creates risk with an increased

likelihood of error, corruption, misuse, or theft. When you start to look at how much

data organizations have started accumulating directly or through third parties, the

implications of poor data security become staggering.

Yoav and Ben are helping a lot of organizations with these challenges every day

across all sorts of technologies, and now they seek to educate people on Snowflake.

They’ve been working on these issues as operators for a long time. Satori was created to

build the tools and integration capabilities they wish they’d had so that tech leaders can

be better informed about the data security risks in their organizations and make better-

informed decisions on how to resolve them.

This guide is written from the perspective of people who understand you’re trying to

manage risk in an entire organization, not just one tool or platform. They understand the

decisions, policies, and other factors that go into making the modern enterprise security

strategy successful. They also understand not everyone who may need to become an

expert starts out that way.

Overall, the more businesses and tech leaders care about and want to understand

data security to protect their employees and customers, the better off we will be for it

going forward.

—Anita Lynch
VP, Data Governance, Disney Streaming

Foreword

xix

Introduction

We have been fighting cyber attacks and helping organizations defend themselves from

cyber attacks for most of our careers. With cybercriminals, hacktivists, state-sponsored

attackers, and insider threats, organizations are at risk of having their data stolen, leaked,

or misused. But it doesn’t take a sophisticated hacker to put your organization at risk –

breach of compliance or not meeting contractual obligations can create damage as well.

An effective program to maintain your data properly secured and governed

relies on multiple layers of defense and includes, among others, application security,

network security, and endpoint security. However, at the core of your organization’s

strategy to secure and govern data lies the data store – a database, cloud file system,

data warehouse, data lake, or any of the other forms of technology used to store your

organization’s data.

In recent years, and as part of our work building Satori, a startup company with the

mission of simplifying data governance, we’ve seen Snowflake grow in popularity, being

adopted by organizations small and large. Snowflake is fantastic – it just works, and it

does what it does exceptionally well. In addition, it brings with it many features to secure

and govern your data. Still, like many other Something as a Service like SaaS, IaaS, PaaS,

and DBaaS, there’s a shared responsibility between you, the customer, and the vendor, in

our case, Snowflake, to ensure your data is safe.

You’d be surprised (or not?), but most data leaks are not the result of a Mission

Impossible Ethan Hunt rappelling down into a data center stealing encrypted hard

drives and decrypting them on NSA supercomputers. Although we are certain

such events do occur, most attacks usually target the weakest link in your defenses:

employees who are reusing passwords for multiple platforms, permissions to database

objects that were never revoked, credentials you provisioned for some script someone

urgently needed a while back and were left unattended, and so on. This is not meant

to cause you despair and make you feel like a lot can go wrong (though a lot can go

wrong); it’s intended as good news – there are plenty of simple steps you can take to

reduce your risk.

xx

We know it can be overwhelming and that sometimes it feels like keeping data secure

is an impossible task. However, from our experience, the best way to systematically

identify and fortify your weakest links is to be able to reason about the security and

governance of your data more logically, focusing your attention on a single domain at a

time. But where to get started? Is there a playbook to follow?

The goal of this book is to provide you with a framework to reason about the security

and governance of your data on Snowflake, to understand what Snowflake is doing and

what’s left for you to do, and give you a playbook, which, if followed, can take your data

on Snowflake to the next level of security and governance.

While this book focuses on Snowflake, the principles laid out throughout this

book can be applied to other data store technologies. Each has its own features and

capabilities regarding security and governance, and there are a host of tools you can use

to complement or simplify the process.

�Who Is This Book For?
We wrote this book for the people responsible for implementing data security

and governance controls on Snowflake, whether they are experienced Snowflake

administrators looking for a checklist or evaluating Snowflake as their next data

store technology and understanding how they can migrate data safely to that

new environment. The book is a valuable resource for data engineers, database

administrators, DataOps/DataSecOps engineers, security practitioners, and anyone

interested in learning more about securing data in the cloud with Snowflake.

�Prerequisites
This book will not teach you “everything you need to know” about Snowflake itself.

However, it is a book about Snowflake security, and we do expect readers to have at

least basic knowledge of Snowflake, SQL, and so on. You can find resources for learning

Snowflake online, and we’ve listed a few good ones on this book’s website (https://

snowflake-security.com).

Introduction

https://snowflake-security.com
https://snowflake-security.com

xxi

�Staying Focused
Snowflake offers a lot of different ways to do things. For example, you can use its web

UI to change your configuration or use SQL commands. In addition, you have a lot of

optional parameters you may configure. And there is a vast amount of metadata you can

use when analyzing your account activity.

As we believe in the old saying that “if you chase two rabbits, you will lose them

both,” and because this is a book and not documentation, we would like to stay focused

and made the following decisions:

•	 Though occasionally we will show how to do things using the web UI,

our preference will be to use SQL commands. The main reason is that

using the SQL commands is more effective at scale and that using the

web UI is more self-explanatory.

•	 Snowflake integrates with multiple cloud platforms and third-party

services. It would exceed the scope of this book in providing a

detailed explanation or example of each. We chose the most popular

ones and tried to convey the principles and logic behind each topic

rather than replace the official documentation.

�Reference Material
We’ve included the code samples in this book in a git repository to clone and expand

and contribute to helping others. Our git repository is at https://github.com/

SnowflakeSecurityBook.

With this book, we’re also publishing a page with some resources at https://

snowflake-security.com. Though we can only commit to a best-effort level of updates,

we will add more resources to the book’s website to keep it quite up to date.

Snowflake has excellent documentation at https://docs.snowflake.com, which you

should use in conjunction with this book. In addition, we advise you to visit the docs site

from time to time to read up on new features and changes.

The Snowflake community site at https://community.snowflake.com is where you

can ask questions and interact with other Snowflake users. Sign up to the community site

Introduction

https://github.com/SnowflakeSecurityBook
https://github.com/SnowflakeSecurityBook
https://snowflake-security.com
https://snowflake-security.com
https://docs.snowflake.com
https://community.snowflake.com

xxii

to get email updates on upcoming behavior changes you need to be aware of. Another

excellent opportunity to engage with the Snowflake community is to join a Snowflake

user group at https://usergroups.snowflake.com.

Yoav often refers to himself jokingly as a software archeologist for his love of learning

not just about the technology but also how it came to be. If you share that passion and

want to learn more about how Snowflake was founded and the philosophy behind their

innovation, we recommend you check out Rise of the Data Cloud by Frank Slootman

and Steve Hamm.

�What’s Happening to Data?
Before diving into the different security controls and considerations specific to Snowflake,

we felt it would be helpful to give a short overview of the ongoing transformation

happening in the data processing industry. This is by no means a comprehensive

description of these changes, which would deserve a book on its own, but nonetheless

gives a frame of reference for Snowflake and the considerations about its security.

Over the last decade, more data is collected and from more sources. The reasons for

this vary, but we’ll mention some of the key ones:

•	 The rapid growth in the amount of data sent from billions of IoT

devices and millions of applications.

•	 Data science libraries and tools are common and straightforward to

use, enabling organizations to make value from data in an easier way

that encourages more people to use the data.

•	 A great variety of technologies make it easier to collect, process, and

store data, especially in the cloud.

The essence can be understood from the following simplified figure. Having more

data to collect forces the industry to make better technology to handle this data, enabling

more teams to use the data, which then feeds the beast by collecting more data.

Introduction

https://usergroups.snowflake.com

xxiii

The data collected is used to analyze the past and predict the future and no longer

by a relatively small number of data consumers within an organization. Many different

teams attempt to take advantage of as much data processing as possible.

For example, a travel booking company may use data about its users, some of it

collected by the company itself, by looking at order history, search history, reviews

history, and so on. Some of it is enriched from third-party sources. The data is then used

to predict what types of offers will convert best for each customer. By leveraging as much

data as possible, the company can increase revenue and provide better service.

This means that more data consumers will want to use the data and not just increase

sales. HR wants to predict employee attrition, customer success wants to know which

customers might churn, etc. This means that being data driven is not solely the realm

of the big tech giants who are always at the forefront of technology. Still, mainstream

industries can and are benefitting from data analytics.

This creates security challenges in managing the massive amount of data processed

by these companies on platforms such as Snowflake. What makes it even more difficult

is that data is a moving target. It keeps changing as more data of different data types are

sent to the cloud, transformed, or cloned and as more data consumers are using it.

The security challenges intensify as smaller teams are expected to meet the demands

of data owners and data consumers and security, governance, and privacy teams.

�Where Snowflake Fits In
Even before the age of big data and predictive analytics, organizations used data to make

sense of and analyze their operations – sales pipeline, manufacturing productivity, and

marketing campaigns, for example. But with data locked in different database systems

that do not talk to each other, organizations needed a place to model and store their data

to make it readily available for analysis. That place is the data warehouse. It is a database

system optimized for loading large amounts of data using a standard structure to query it

in many different ways easily.

Introduction

xxiv

Snowflake, the data cloud, was designed from the ground up to take advantage of

the elasticity and scalability of the public cloud. Founded in 2012 by Mike Speiser of

Sutter Hill Ventures, with co-founders Benoit Dageville, Marcin Zukowski, and Thierry

Cruanes, Snowflake set out to eliminate the cost of owning your own data infrastructure,

which at the time was a multimillion dollar investment in hardware, software licenses,

and personnel.

Before Snowflake, the only way to increase the storage capacity of your data

solution was to add servers with the additional storage capacity and relatively expensive

computing power or central processing units (CPUs). Snowflake identified that

computing power and storage capacity did not have to expand at the same rate. Instead,

they took advantage of the public cloud’s ability to provision storage independently of

computing to break that paradigm and make scaling out a data solution much more

cost-effective.

Another challenge that data warehouse owners faced was handling peak workloads –

those times where you need to crunch a lot more data in much less time. Organizations

either had to own data warehouses that sat idle 90% of the time to sustain those peak

workloads or jump through hoops like manually stopping all other data processing

activities when a big job was submitted. With the cloud’s ability to connect more

compute power to existing storage, Snowflake enables organizations to spin up as much

computing power as needed to handle peak workloads and tear them back down later in

a pay-for-use model. No more upfront costs for resources that are not being fully utilized.

With its lower cost of ownership, improved performance, and flexible scalability,

Snowflake perfectly fits today’s needs, where organizations collect more data than ever,

and data analytics is at the core of every digitally transformed business.

�Why Snowflake Security?
Given the considerable growth in companies taking advantage of Snowflake to store and

process their data, and as a lot of this data is sensitive for different reasons (business

secrets, PII, PHI, and more), we felt it would be helpful to write a book dedicated to

keeping this data secure. We felt this would be especially useful since, in many cases, the

Snowflake administrators in organizations are data engineers and not security experts.

Introduction

xxv

�The Importance of Data Security
Data is, in many cases, the biggest asset that a company has or at least one of the top

resources. However, in addition to providing an immense value, data is also a significant

liability in many cases. For example, holding PII of data subjects can give the company a

competitive edge, incur risk (for instance, in case of a data breach), and require meeting

specific regulatory and other compliance requirements.

That is why the security architecture of a data solution is, in most cases, as important

as the software architecture and should be part of the design of data handling in the

organization and should not be an afterthought.

�Shared Responsibility Model
One of the key selling points of Snowflake is that it’s a SaaS product, where you don’t

deal with many of the underlying infrastructures. This has benefits in reducing the

amount of data engineering work you have to do. It also reduces the security surface you

are responsible for, as Snowflake is accountable for some security risks.

This means that in some of the cases, security will be handled out of the box by

Snowflake or the public cloud providers (at the time of writing: AWS, GCP, and Azure),

some will be provided by Snowflake but need to be configured by you, and for some, you

will need to add on top of what’s provided by Snowflake. This is outlined throughout the

book, but the essence is

•	 Infrastructure security is provided by the different public cloud

providers where your Snowflake data is stored.

•	 Snowflake handles data encryption at rest.

•	 Snowflake provides several tools and features around authentication

and authorization which you will need to configure and, in some

cases, build on top of what Snowflake offers.

•	 Data access is encrypted out of the box, and you may also want to

add network policies or other security controls on top of your data

access.

Introduction

xxvi

�Meet ACME Candy Industries
By now, you probably have a tingling feeling that you’d like to start experimenting and

not just discuss theories. Even if you already have a Snowflake account, we suggest using

a separate account just for experimenting with the examples and concepts throughout

the book.

Throughout this book, the examples we will give are those of ACME Candy

Industries, a fictitious company dealing with producing the ultimate candies. And

snacks. This demo organization will provide continuity throughout the book, but the

issues ACME Candy Industries is facing should apply to other areas outside of candy

making.

Introduction

xxvii

Let’s Get Started

Snowflake has many exciting security features, and it’s tempting to focus on the shiny

objects first. But most of the value can be derived from a few basic things, which if you

get right will reduce your overall risk in a big way. As a junior software engineer, Yoav

once asked a software architect what software architecture is. He said it was “the things

that are harder to change later on.” Although it’s possible to change almost everything in

your data warehouse design, there are some things that if you get right at the onset make

everything else much easier down the road. So what is the road going to look like?

In Chapters 1 and 2, we will discuss structuring of your Snowflake organization, as

well as the Snowflake infrastructure security, and some of the decisions you will need to

make around the foundations of your Snowflake activity.

Chapter 3 will discuss Snowflake’s encryption and ingestion security aspects. Much

of it is educational, to know what happens “behind the scenes” to protect your data, but

in other parts, it will help you with making decisions.

Once you nail down the fundamentals, it’s time to think about how to organize your

data. Much like a physical warehouse, there needs to be logic behind where everything

is, to make it easy to find what you’re looking for, and, in the context of security and data

governance, set the right gateways and checkpoints before data can be used. In Chapter 4,

we will discuss authentication. In Chapter 5, we will discuss network access control. In

Chapter 6, we will discuss authorization.

A large part of a healthy security posture is the ability to understand what’s going on

and act fast when things are not going as planned. Chapter 7 will discuss auditing and

monitoring and will go through the sources from which you can get metadata about

your Snowflake usage, as well as how to monitor the data. Throughout the chapter, we’re

including examples of queries that can retrieve helpful information to improve your

security level.

Finally, in Chapters 8 and 9, we will discuss two specific topics – the specific options

in which you can securely share data between different Snowflake accounts, within and

outside of your organization, and the ability to use Snowflake for a security data lake

solution.

1
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_1

CHAPTER 1

Snowflake Organization
Structure
Snowflake offers organizations with a rich topology of objects to help manage larger

and more complex data infrastructures, while simplifying topics like billing, invoicing,

database replication, and more. At the root of each Snowflake deployment lies the

organization object. Organizations are a logical entity, not tied to any specific cloud

provider or region.

Prior to introducing the organization’s feature, the topmost object of a Snowflake

deployment was the account, which was associated with a specific cloud provider or

region. For example, https://acme.snowflakecomputing.com is a Snowflake account

owned by ACME Candies, hosted in Amazon Web Service (AWS) in the North Virginia

region (us-east-1). Accounts contain databases, which contain schemas, which contain

tables, views, and other database objects. Should you be using a single or multiple

accounts?

1.1.  �Single Account vs. Multiple Accounts
There’s no doubt that managing multiple accounts means more work for you: because

organizations are a relatively new concept in Snowflake, much of the work you do on one

account would need to be done on your other accounts as well. That includes defining

users and roles, integrating with an external authentication service, monitoring, and so

on. However, we believe that the benefits of a multi-account strategy outweigh the short-

term simplicity of a single account strategy, mostly because of the strong separation

https://doi.org/10.1007/978-1-4842-7389-0_1#DOI
https://acme.snowflakecomputing.com

2

it provides which you can leverage to your advantage. There are multiple factors to

consider when designing a multi-account strategy:

•	 Separation between different environments – Many data

engineering teams are adopting practices from software engineering

such as introducing changes in a development or testing

environment before they are moved to production, in an attempt

to test these changes in less critical environments first. In addition,

locating different environments on different accounts can enable you

to choose a different balance between productivity and security risk

for each environment independently.

•	 Separation between different businesses – Many large

organizations are global now, with subsidiaries all around the world.

Providing each subsidiary with its own Snowflake account can help

overcome challenges of a fragmented IT environment. For example, a

subsidiary that has regulatory constraints from using a specific cloud

provider or region, or a business that has not yet migrated its identity

and access system to a centralized one, controlled by global IT.

•	 Data sovereignty – Unless your business is very local, operating in

just a single geographic area or jurisdiction, at some point you’ll need

to consider restricting certain data to specific geographic locations,

which means you’ll need a separate account in each of these regions.

•	 Multi-cloud – Many organizations today have a strategy for operating

on more than one cloud provider, either to reduce dependency on

a single vendor or as a result of acquiring or merging with other

organizations that happen to operate on a different cloud provider.

•	 Cost – Because each account is associated with its own pricing plan,

you can decide which feature set is required for you in each account.

For example, in a production environment, you might want a higher-

grade feature set, while a dev environment might have different

requirements.

Chapter 1 Snowflake Organization Structure

3

1.1.1.  �Scaling Multiple Accounts Management
Until recently, one of the hassles about managing multiple accounts was that the process

of provisioning the accounts themselves (adding new accounts for your organization,

as well as modifying or deleting them) was hard to automate. This made things

cumbersome, especially when your organization had multiple different business units

which you wanted to separate to different accounts. This left you with a choice between

having more accounts but more data engineering overhead and less accounts which

sometimes causes a less simplified approach when administering the accounts.

Nowadays, Snowflake allows you to manage your organization’s account by using the

ORGADMIN role. The ORGADMIN role enables you to create accounts or modify them

easily. For example, if ACME Candies wants to set up a new staging account, they can

run the following command using an ORGADMIN role:

CREATE ACCOUNT stage2

ADMIN_NAME = stageadmin

ADMIN_PASSWORD = '<PASSWORD>'

FIRST_NAME = stage

LAST_NAME = admin

MUST_CHANGE_PASSWORD = TRUE

EMAIL = 'dataops@acmecandies.com'

EDITION = standard

REGION = aws_us_east_1

REGION_GROUP = PUBLIC;

1.2.  �Choosing the Right Pricing Plan
At the time of writing this book, Snowflake offers four pricing plans each with its own

feature set and price point. The higher-grade plans offer security-oriented features such

as private link connectivity, bring-your-own-keys encryption, and even dedicated virtual

servers. We won’t discuss the specifics of these features in the context of choosing the

right pricing plan, because pricing plans tend to change often and you can switch pricing

plans at any time. However, based on what we’ll discuss in the remainder of this chapter,

you’ll have a pretty good idea of which pricing plan is right for each one of your accounts.

When in doubt, we suggest to start low and move up as needed. The great thing about

Snowflake’s business model is that you pay as you go and don’t need to commit upfront.

Chapter 1 Snowflake Organization Structure

4

1.3.  �Summary
•	 Snowflake offers a lot of flexibility to manage a complex data

environment.

•	 A Snowflake account is deployed and associated on a specific cloud

provider and region.

•	 We recommend using a separate Snowflake account for

development, testing, and production.

Chapter 1 Snowflake Organization Structure

5
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_2

CHAPTER 2

Infrastructure Security
This chapter deals with the infrastructure security behind your Snowflake account.

This is mainly about things that are good to know, or important decisions to make, as

opposed to things that you should take action about on an ongoing basis. We believe that

it’s important to also discuss the infrastructure security parts that you don’t have control

over, so you can understand what’s happening under the hood, so you can answer

questions that may arise during security assessments.

In addition to that, some topics here may influence the account plan that you choose

to have on all or some of your accounts.

2.1.  �Account Data Storage
The answer is that when you create a Snowflake account, you choose on which public

cloud and in which region your data is stored. At this time, Snowflake supports data

in AWS, Azure, and GCP (Google Cloud Platform). Within the public cloud, the data is

stored in storage buckets (S3 in AWS, Azure Blobs in Azure, and GCS in GCP). In any

case, and whichever deployment option you choose, the storage buckets used are per

account.

The data storage itself, in the physical level, is protected per the physical security

policy of each public cloud provider. Over the years, we spoke with a lot of organizations

doing some sort of a cloud migration, and physical security is often not a concern, and

your organization probably has other assets already on a public cloud. In any case, if you

want to drill down into that, you can refer to the specific public cloud provider’s physical

security policy and terms.

https://doi.org/10.1007/978-1-4842-7389-0_2#DOI

6

In most cases, obviously, organizations choose to have their Snowflake accounts

in the public cloud they’re using, as this makes the integration easier and more cost-

effective. For example, when transferring data for ingestion, it can be within the same

public cloud’s region, and access to data is also done from the same public cloud. As we

will see in the following, there are also options to have a tighter integration to your public

cloud resources using a PrivateLink connection.

Depending on the organization, sometimes it makes sense to have multiple

accounts, in two or more public clouds, when the organization uses several public

clouds. In some cases, it also makes sense to have separate Snowflake accounts for

different regions. This has a lot to do with the types of data you’re storing in your

Snowflake account, the compliance and regulation requirements you’re facing, and your

contractual obligations.

2.2.  �Access to the Stored Data
There are several deployment options for your Snowflake account, and not all of

them exist on each public cloud (currently PrivateLink is only for AWS and Azure

deployments). Let’s discuss the differences between these. To understand this, it’s

important to understand that a Snowflake service runs within a VPC and consists of a

load balancer, cloud services that are generic for the VPC’s operation, a metadata store,

and the virtual data warehouses. The latter are instances that are doing the actual work

on your data and regardless of your plan are separate between accounts, and even within

an account, you can use multiple virtual data warehouses.

2.2.1.  �The Standard Multi-tenant Deployment
In this deployment option, as displayed in Figure 2-1, access to the Snowflake VPC is

only done in the application layer, encrypted over HTTPS. However, the data is not

encrypted within the VPC itself. Your S3 bucket and virtual data warehouses (computing

instances) are separated by account, but the metadata store, load balancing, and other

cloud services are shared with the rest of the tenants in your VPC.

Chapter 2 Infrastructure Security

7

Obviously, this is not a show stopper for all organizations, but some organizations

have different requirements. Let’s understand the risks here. What this means is that if

someone has access to the VPC, and is able to inspect traffic within the VPC, they may

be able to intercept unencrypted data. Having this ability within a VPC is far from being

trivial, of course.

Other than this risk, in some cases, this may not meet certain compliance standards,

such as HIPAA.

Figure 2-1.  Snowflake standard deployment

Chapter 2 Infrastructure Security

8

2.2.2.  �Business Critical Edition
To mitigate the risks mentioned earlier, Snowflake offers a plan where data within the

VPC is also sent encrypted. Using this deployment option, you may also use the tri-secret

security feature. As you can see in Figure 2-2, though using the same multi-tenant cloud

services, the data is now encrypted by customer managed keys. For more information

about that, refer to the encryption chapter, but the main thing to remember is that this

edition allows you to have your own managed keys.

Figure 2-2.  Customer managed keys deployment

Chapter 2 Infrastructure Security

9

2.2.3.  �Virtual Private Snowflake
Definitely not for most organizations, but if your risk or regulation compliance

requirements are even higher, the next option you have is to use a Virtual Private

Snowflake (VPS), which means that you are no longer part of a multi-tenant service, and

the entire VPC is not shared with other Snowflake customers. You can see this dedicated

customer deployment in Figure 2-3. In addition to that, you can have an egress proxy

in your VPS, for added control over the traffic. Using a VPS is mostly done in heavily

regulated environments such as financial institutions.

Figure 2-3.  Virtual Private Snowflake deployment

Chapter 2 Infrastructure Security

10

2.2.4.  �PrivateLink
PrivateLink offers a direct connection from your VPC to your Snowflake deployment,

without the traffic going out of your public cloud and to the Internet. You are able to

connect PrivateLink to any Snowflake deployments, regardless of whether it’s VPS or

multi-tenant. For more information about PrivateLink, please refer to Chapter 5, “Network

Access Control.” In Figure 2-4, you can see a deployment of PrivateLink with customer

managed keys. Note that the difference is only the connection between the customer

machines and Snowflake’s infrastructure, which is not done through the public Internet.

Figure 2-4.  PrivateLink architecture

Chapter 2 Infrastructure Security

11

2.3.  �Access to Historical Data
It’s important to take into account access to historical data, so you know how to balance

your requirements (specifically, regarding time travel). Data that is no longer in your

tables may still exist, and this may be important to know, specifically for sensitive data.

For the sake of this section, when we speak of historical data, we mean data that is no

longer in your current tables.

Historical data can be accessed in four different ways; let’s discuss them.

2.3.1.  �Stage Data
Stage is where you put data that you load into Snowflake (or copy out of Snowflake).

Even if data is removed from tables, it may still exist in the stage. It is important to delete

stage files and stages which are no longer needed, to prevent exposure to sensitive data

that’s no longer needed. For more in-depth information about stage, refer to Chapter 3,

“Data Encryption and Ingestion,” and for information on how to monitor stage, refer to

Chapter 7, “Auditing and Monitoring.”

2.3.2.  �Internal or External Backup
Obviously, when you backup data, that is another place where you have the data.

Your organization probably has backup requirements on some or all the data in your

Snowflake data cloud, and it is important to be conscious about the backed up data and

have clear policies about this backup, including where it’s stored, who has access to it

and under what conditions, how access to this backup is logged and monitored, etc.

When we refer to an “internal backup,” we refer to data that is sometimes backed

up within the account (to a different database, schema, or table). This is often not a

good practice and can lead to data left behind, ungoverned, often containing sensitive

information. Please try to make backup processes of the Snowflake data that are

either contained within its existing mechanisms (time travel) or that are clear, well

documented, and understood by data owners.

Chapter 2 Infrastructure Security

12

2.3.3.  �Time Travel
“Wouldn’t it be great to have an UNDROP TABLE command?” Well, Snowflake has this

command, as part of its time travel feature. Time travel allows you to go back in time and

either undo actions (Undrop tables, schemas, and databases) or run select queries for a

specific time frame.

To set up time travel, you need to change the parameter data_retention_time_in_

days for the specified object. The setting will take place for all objects sitting “under” the

object. For example, if you’ve set the retention time to one day in a database, it will apply

to all schemas and tables within the database. You can set this setting all the way up from

a single table to the entire account, for example:

ALTER TABLE candy_flavors SET data_retention_time_in_days=30;

Querying historical data can be done with a SELECT query, with the at function

or before. As an example, the following query will retrieve data from the candy_flavors

table, as per one hour (3,600 seconds) ago:

SELECT * FROM candy_flavors at(offset => -3600);

If you want to understand more about the capabilities of time travel in Snowflake,

refer to the documentation. From a security perspective, it is important to note that

the ability to query data poses a challenge, mainly because of compliance reasons.

For example, let’s say that as a requirement coming from data protection and privacy

regulation, such as the CCPA, you need to apply a process of “Right to Be Forgotten”

across your data platforms, including Snowflake. The ability to pull such deleted

information may be an issue, and so, in such cases, you may want to set a shorter

retention period on such tables. In any case, depending on your plan, the maximum

retention time may be between one day and up to 90 days. Note that setting a high value

on tables with a lot of data changes may also have a large impact on your storage.

2.3.4.  �Fail-Safe
In addition to the “self-service restoration” that is available to you using time travel,

you can also use fail-safe restoration of data by contacting Snowflake’s support, for up

to seven days of restoration time after the expiration of time travel. This restoration

is handled by Snowflake support, and needless to say, this is an emergency cord you

should avoid pulling and rely instead on more controlled methods of backup.

Chapter 2 Infrastructure Security

https://docs.snowflake.com/en/user-guide/data-time-travel.html

13

Note that fail-safe does not restore temporary or transient objects, and of course,

these are better to be used if creating temporary objects.

2.4.  �Good to Know
Some things that are good to know about Snowflake’s infrastructure security: As part of

Snowflake’s security commitment, there is no direct access to Snowflake’s VPCs, and

all access to the data is done through an application layer. That means that there is no

engineer from Snowflake who should be able to access the buckets where your data is

stored, regardless of your account plan.

In addition, your encrypted data is only decrypted in the memory of the virtual data

warehouses, and only the data that needs to be decrypted for your data processing is

decrypted. Furthermore, the virtual data warehouses, which are per account, are also

ephemeral, meaning that they run only when needed.

It is also worth following the compliance information in Snowflake’s website, but

currently, Snowflake’s infrastructure has compliance certification of ISO, NIST, and

SOC2 for all plans and even more standards for business critical plans (PCI, HIPAA,

Fedramp, and more).

2.5.  �Summary
In this chapter, we went through Snowflake’s infrastructure security, the different

deployment options, and their security and compliance differences, as well as what you

need to do about backing up your infrastructure.

Chapter 2 Infrastructure Security

15
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_3

CHAPTER 3

Data Encryption
and Ingestion
In this chapter, we’ll discuss how Snowflake uses encryption to secure your data. The

good news is that Snowflake already provides a high standard of built-in, out-of-the-

box encryption, leaving you to decide if your use cases require anything beyond that.

For most people, encryption can be confusing. Our goal for this chapter is not to teach

you cryptography, but to enable you to ask the right questions and seek additional

information when it becomes relevant. Use this chapter to learn what Snowflake

provides and how that addresses your organization’s requirements.

Encryption, in the context of a data cloud, can mean one of two things: securing the

data sent to and from the data cloud, which is known as securing data in transit, and

securing the data stored in tables, also known as encryption of data at rest. Both have

become ubiquitous in recent years to mitigate real risks to your data.

3.1.  �Encryption of Data in Transit
Whenever a user queries Snowflake, the query is sent over the Internet to Snowflake,

and the result set is sent back. The data passes through many networks before it reaches

its destination, including your home/office network, your Internet Service Provider

(ISP), sometimes a global network carrier, a public cloud network, and so on. Even when

using methods like VPN (Virtual Private Network), the query still needs to get out of

someone’s computer and into Snowflake. With so many networks between your users

and Snowflake, it’s relatively easy for someone to try and leverage your data in transit, by

being what is known as a man in the middle.

https://doi.org/10.1007/978-1-4842-7389-0_3#DOI

16

In a man-in-the-middle (MITM) attack, someone is trying to eavesdrop the data you

send or receive from Snowflake, to learn your secrets or modify it without you knowing,

leading you to make wrong data-driven decisions. Encryption is one of the tools used

to defend against MITM attacks – by not sending clear-text data over the network, we

prevent attackers from reading it, per Figure 3-1.

Transport Layer Security, or TLS, is the most common protocol today to encrypt

data in transit. It is now known that older encryption protocols like Secure Sockets Layer

(SSL) and older versions of popular encryption software like OpenSSL were vulnerable

and that attackers used those vulnerabilities to steal confidential information without

leaving a trace. Today, the information security community puts a lot of emphasis on

ensuring the latest encryption standards are widely adopted and Snowflake follows these

recommendations. In fact, like many other online services today, Snowflake encrypts all

communications by default and does not accept non-encrypted communications at all.

But what happens to your data after you send it to Snowflake?

3.2.  �Encryption at Rest
Snowflake provides end-to-end encryption (E2EE) to ensure that only end users and

the Snowflake runtime components can read your data. Even the cloud provider

that your Snowflake account is deployed on cannot read your data, because the data

is encrypted at rest and only decrypted in the memory of the Snowflake runtime

components.

Figure 3-1.  MITM attack

Chapter 3 Data Encryption and Ingestion

17

There are two main methods to load data into Snowflake. The first is by using

SQL statements like INSERT or UPDATE. This method is usually reserved for smaller

amounts of data, and the integrity and confidentiality of these operations is maintained

by Snowflake’s built-in encryption of data in transit which we discussed in the previous

section. The second method is to load data by uploading files into Snowflake, and this

process consists of two steps: uploading files into a staging area and copying the files

into Snowflake tables. A third, optional step is unloading data from Snowflake into a

file. We will analyze each step to see how the integrity and confidentiality of your data is

maintained.

3.2.1.  �Uploading Files to Staging Areas
When uploading a data file into Snowflake, it’s first uploaded to a staging area before it’s

copied into a table. Uploading and copying are two separate operations, and files can

reside in staging areas for unlimited periods of time. Even when assuming that access to

staging areas is only permitted to authenticated users, if credentials are compromised,

the integrity and confidentiality of your data is at risk. Luckily, Snowflake and the cloud

providers make it easy to mitigate that risk with built-in support for data encryption.

Snowflake supports two types of staging areas:

•	 Snowflake-provided staging area – Also known as an internal stage,

is a Snowflake-managed file system where users can exchange files

with Snowflake. Use Snowflake-managed staging areas when you

need to upload files that are not yet stored in another storage bucket.

•	 Customer-provided staging area – Also known as an external stage,

is a cloud file system directory, like an Amazon S3 or Google Cloud

Storage bucket. Use customer-provided staging areas to upload files

that are already stored on the cloud and now need to be imported

into Snowflake.

3.2.2.  �Snowflake-Provided Staging Areas
When uploading to a Snowflake-provided staging area, Snowflake automatically

encrypts the files before they are loaded into tables. Snowflake provides three types of

internal staging areas:

Chapter 3 Data Encryption and Ingestion

18

•	 User stages – Snowflake allocates a staging area for each user. Use

this option when data files should only be accessible by a single user

but may be copied to multiple tables.

•	 Table stages – Snowflake allocates a staging area for each table. Use

this option when data files should be accessible by multiple users but

may only be copied to a single table.

•	 Named stages – These are database objects that can be created,

configured, and shared, providing maximum flexibility.

For example, to upload the employees.csv file to your user staging area, use the

following command:

PUT file:///tmp/data/employees.csv @~

To upload the same file to the staging area of the ORGDATA.PUBLIC.EMPLOYEES

table, use

USE ORGDATA.PUBLIC;

PUT file:///tmp/data/employees.csv @%employees;

For a complete reference of the PUT statement, visit the Snowflake Documentation.

To upload a file to a named internal staging area, you will need to create it first using

the CREATE STAGE statement, for example:

CREATE STAGE employees

To upload the employees.csv file to the employees’ staging area we just created, use

PUT file:///tmp/data/employees.csv @employees

Internal stages provide many options which are not covered here. For a full

reference, please visit the Snowflake Documentation.

Note that the preceding examples of using PUT commands are for scripting, and

do not work directly from the UI worksheets. If you are using the UI to load data into

Snowflake, you should use the Load Data action, within the database management, per

Figure 3-2.

Chapter 3 Data Encryption and Ingestion

https://docs.snowflake.com/en/sql-reference/sql/put.html
https://docs.snowflake.com/en/sql-reference/sql/create-stage.html

19

3.2.3.  �Customer-Provided Staging Areas
When uploading files to customer-provided or external stages, it’s up to you to decide

if the files should be encrypted, which we obviously recommend. Snowflake interfaces

with the native capabilities of the cloud provider’s storage service to manage the

decryption of the files in order to copy the data to tables or the encryption process when

data from tables is copied to files. While each cloud provider has a tad different set of

capabilities, the following options are generally available:

	 1.	 No encryption – Data is sent from the client and stored in clear

text on disk in the cloud provider’s data center. While easiest to

use, we do not recommend you use this option.

	 2.	 Server-side encryption – Data is sent from the client to the cloud

provider and encrypted by the cloud provider before it’s stored

on disk. This is a good option that balances between operational

overhead and security. The heavy lifting of managing encryption

is off-loaded to the cloud provider, but data is stored encrypted.

	 3.	 Client-side encryption – Data is encrypted on the client before

it’s uploaded to the cloud. This is the most secure option, as clear-

text data is not sent to the cloud but requires more planning and

effort to operate on the customer side.

Figure 3-2.  Loading data using the Snowflake UI

Chapter 3 Data Encryption and Ingestion

20

Each of these methods has more than one flavor, with pros and cons to each.

Generally speaking, the more control organizations have over the encryption process,

the more responsibility and effort is required. Please refer to your cloud provider’s

documentation for the latest information regarding the different encryption methods.

Let’s take a look at a simple example of loading data files to Snowflake using an

external staging area. ACME Candies has a daily process that exports data from the

HR system and uploads it to Amazon S3. Since HR data is sensitive, the files are stored

encrypted on the cloud storage. The simplest option to encrypt the files would be to ask

Amazon S3 to do it for us:

aws s3 cp --sse AES256 employees.csv s3://acme/hr/

By using the SSE (server-side encryption) parameter, we ask Amazon S3 to generate

the necessary keys to encrypt the data before it’s stored on disk. To configure Snowflake

to read files from this S3 bucket, we need to create an external stage, specifying AWS_

SSE_S3 in the encryption options, as follows:

CREATE STAGE hrdata

 url='s3://acme/hr/'

 credentials=(aws_key_id='<KEY_ID>' aws_secret_key='<SECRET_KEY>')

 encryption=(type = 'AWS_SSE_S3');

For a full reference, please visit the Snowflake Documentation.

Note  When uploading files to customer-provided staging areas, you use the
cloud provider’s native tools instead of the PUT command which is reserved for
Snowflake-provided staging areas. Under the hood, PUT uses the cloud provider’s
libraries to upload files.

Now that Snowflake has the information it needs to read your files from a staging

area, let’s see how your data stays secure when it’s copied into Snowflake tables.

Chapter 3 Data Encryption and Ingestion

https://docs.snowflake.com/en/sql-reference/sql/create-stage.html

21

3.2.4.  �Using Storage Integration
A better way to connect to external storage, instead of explicitly including credentials,

such as in the previous listing, is to create a storage integration between Snowflake

and the public cloud in which the storage for the external stage is located. This has the

following security benefits:

•	 You do not have to transfer credentials within the queries when

performing CREATE STAGE.

•	 You can specify specific locations for your stages explicitly to have

better control of where data is loaded from and into.

To set up a storage integration, you should follow the Snowflake documentation

at https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-

integration.html, and here are some security considerations when setting up security

integrations.

An important consideration is that if the data files are managed by a process external

to Snowflake, you should set a read-only policy, so that you lower the risk of a Snowflake

user exporting data to these buckets.

In order to reduce risks of sensitive data exposure in loading and unloading of data,

using integration with the storage allows you to set the external stage availability and

then allow the roles who can create stages to stay within these boundaries.

3.2.5.  �How Snowflake Encrypts Your Data in Tables
Once data files are uploaded to a staging area, Snowflake can read them and copy the

data into tables. For example, to copy the employees.csv file from the external stage we

just created, use the COPY INTO statement:

COPY INTO employees FROM @hrdata/employees.csv;

For a full reference, please visit the Snowflake Documentation.

A table is stored in one or more files, which Snowflake stores using the storage

service of the cloud provider. Table files are automatically encrypted by Snowflake,

with each file encrypted using a different data encryption key, to limit the scope of data

each key controls. With so many tables and files, each encrypted using a different key,

managing all these keys can become very complex. To simplify this process, Snowflake

uses a technique called key wrapping, or envelope encryption.

Chapter 3 Data Encryption and Ingestion

https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html
https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html
https://docs.snowflake.com/en/sql-reference/sql/copy-into-table.html

22

In key wrapping (per Figure 3-3), the key used to encrypt a file is stored alongside

the file. To protect the data encryption key, it’s stored in encrypted form, using a higher-

level key that is kept secret. When the file needs to be decrypted, the data encryption key

is extracted from the file and decrypted using the higher-level key, and then it can be

used to decrypt the contents of the file. Key wrapping removes the need to store all of the

encryption keys in clear text in a secure location, like a key management service. Instead,

only the higher-level key is stored in a secure location.

�Snowflake Hierarchical Key Model

Snowflake also uses a form of key wrapping to manage how table files are encrypted.

Keys are organized in a hierarchical model which includes the following levels, as shown

in Figure 3-4:

	 1.	 File keys – Used to encrypt and decrypt individual table files. File

keys are stored, encrypted, alongside the files.

	 2.	 Table master keys – Used to encrypt and decrypt the file keys.

Table master keys are stored, encrypted, in the table’s metadata.

	 3.	 Account master keys – Used to encrypt and decrypt the table

master keys. Account master keys are stored, encrypted, in the

account’s metadata.

	 4.	 Root keys – Used to encrypt and decrypt the account master

keys. Root keys only reside in a hardware security module (HSM)

and are never extracted from it. All cryptographic operations

are performed inside the HSM. For example, when an account

Figure 3-3.  Key wrapping

Chapter 3 Data Encryption and Ingestion

23

master key is loaded from the account metadata and needs to be

decrypted, it is sent to the HSM to be decrypted using the root key

rather than extracting the root key from the HSM to perform that

task. The root key is the only key that is stored in clear text which is

why it never leaves the HSM.

Note H ardware security modules are physical devices that are used to securely
store secret information, such as passwords or encryption keys, and to perform
cryptographic operations using them. HSMs are built according to strict standards
to be tamper resistant, to prevent theft of information and in some cases will erase
the data they hold to avoid it getting leaked. They are the gold standard when it
comes to storing sensitive data securely. All cloud providers offer HSM services.

The process to encrypt new data is as follows:

	 1.	 The user executes a COPY INTO statement to copy data from a

staging area to a table.

	 2.	 Snowflake creates a new file key and uses it to encrypt the new

data file.

Figure 3-4.  Snowflake hierarchical key model

Chapter 3 Data Encryption and Ingestion

24

	 3.	 Snowflake uses the table key to encrypt the file key and stores it

alongside the file.

	 4.	 The encrypted file and data key are stored together.

The process of decrypting data, for example, when the table is queried, is as follows:

	 1.	 Snowflake extracts the encrypted file key from the data file.

	 2.	 Snowflake uses the table key to decrypt the file key.

	 3.	 Snowflake uses the file key to decrypt the file.

Whenever Snowflake needs a key from a higher level of the hierarchy, for example, a

table key to encrypt or decrypt a file key, it needs to load the encrypted key from storage

and decrypt it using the key from the next level of the hierarchy, which eventually leads

to decrypting the account master key in the HSM. Snowflake maintains a cache of

decrypted keys in the memory of its runtime components to ensure this process is fast.

Because keys can get compromised, Snowflake constrains both the amount of data each

key protects and the duration of time in which the key can be used to read the data. Snowflake

automatically rotates the account and table master keys when they are more than 30 days old.

New versions of the keys are created, and older versions are only used to decrypt older data.

To complete the life cycle and phase out older keys completely, Snowflake provides an

additional feature called periodic rekeying. When periodic rekeying is enabled, table files that

were encrypted with keys that were retired over a year ago are automatically re-encrypted using

new keys. The new keys will be used to decrypt the files from now on. Periodic rekeying also

ensures that older data is re-encrypted using the latest security standards and technology.

3.2.6.  �Unloading Files to Staging Areas
Data can not only be copied from a file to a Snowflake table; the opposite direction is

possible as well. Unloading data, which is the process of copying data from a Snowflake

table to a file, is useful when you have to export data from Snowflake to another system.

Snowflake handles the encryption of data you unload in much the same way as for

loading data: when data is unloaded into a Snowflake-managed, or internal, staging

area, Snowflake automatically encrypts the files and decrypts them for you when you

download them using the GET statement. For example, use the following to export the

employees table to a CSV file:

GET @%employees file:///tmp/data/employees.csv

Chapter 3 Data Encryption and Ingestion

25

When data is unloaded to a customer-provided, or external, staging area, Snowflake

would use the specified encryption option in the stage’s definition to encrypt the files.

For example:

COPY INTO @hrdata/employees-out.csv FROM employees

When you download the files from the external stage, they will be decrypted by the

cloud provider’s SDK.

Using the hierarchical key model, Snowflake offers a comprehensive solution to

securing your data at rest using encryption. It also ensures that data coming in and out of

Snowflake is encrypted as well.

3.2.7.  �External Tables
You can not only import data to tables within Snowflake, but can also access files located

in external stages by creating an external table that is mapped to that file, by using the

CREATE EXTERNAL TABLE command. These tables will be read-only, as well as slower

than regular tables, and will be typically used in situations like data-lake querying, or as

part of an ingestion process where the raw data is processed from these tables. In many

cases, it makes sense to add secure views for querying the data from external tables, to

create an abstraction layer between the users and the raw data.

From a security perspective, it is important to remember that these files are placed in

public cloud buckets, and (especially when they contain sensitive data) you should make

sure that access to the files is also limited and monitored in the public cloud. For more

information about external tables, refer to the Snowflake documentation.

3.2.8.  �Customer Managed Keys
For organizations that need more control over the keys used to secure their data in

Snowflake, Snowflake provides an additional feature called Tri-Secret Secure, which

integrates customer-owned keys into Snowflake’s key hierarchy.

In Tri-Secret Secure, as per Figure 3-5, customers generate their own root key

using the cloud provider’s key management service and allow Snowflake to access it.

Snowflake uses both the customer-generated root key and the Snowflake-generated root

key to create a composed account master key. Now, when Snowflake needs to unwrap

the composed account master key, it needs to access both its HSM and the customer-

controlled KMS.

Chapter 3 Data Encryption and Ingestion

26

With Tri-Secret Secure, your data in Snowflake cannot be decrypted without your

approval to access the root key in your KMS. This also means that in the case of a data

breach, you can block Snowflake from decrypting any data and thus stopping any data

processing activity in your Snowflake account. However, as mentioned before, whenever

you are responsible for encryption keys, you need to make sure that your organization is

willing to accept the challenge of keeping them safe and available. Failure to meet that

challenge will result in data loss.

3.2.9.  �Application-Level Encryption
In all the encryption methods we discussed, Snowflake has access to the keys it needs

to decrypt your data, whether they are customer or Snowflake generated. In the event of

compromised keys, there’s risk to at least some of your data.

Another approach to gain even more control over how your data is encrypted is not

to share keys with Snowflake at all. Application-level encryption is a form of client-side

encryption; however, decryption keys are not shared in advance with the server side, if

they are shared at all. In application-level encryption, the user encrypts the data before

Figure 3-5.  Tri-Secret Secure

Chapter 3 Data Encryption and Ingestion

27

it’s loaded to Snowflake, and the data is stored in Snowflake tables in encrypted form.

For this to work, the client has to encrypt the data at the field level and not the file level.

From Snowflake’s perspective, it doesn’t even know that data is encrypted.

For example, let’s assume that the HR department collects the latest manager’s

review on each employee and stores it as text in the “review” column in the employees

table. ACME’s policy is to keep this data as secure as possible – even in the event of

a compromised encryption key. ACME encrypts the column before it loads data to

Snowflake, so the review text is stored in encrypted form in Snowflake tables. Even if

any of the keys in Snowflake’s hierarchical key mode is compromised, attackers can

potentially decrypt the employees table, but not the review text.

The downside of using application-level encryption is that it makes it harder to

use your data in Snowflake. For example, if the HR manager wants to list all employees

that received raving reviews from their manager by looking up specific keywords in

the comment text, Snowflake won’t be able to find those, because the comment text is

encrypted. For example, the following query would not return any results:

SELECT id, first_name, last_name

FROM employees

WHERE review ILIKE '%incredible%'

There are a few ways to work around this challenge. The first one is to process the

data in multiple steps: list all employees, potentially unloading the entire table to a

file and then decrypting the comment text before analyzing the data locally. We don’t

recommend this approach because it is cumbersome and creates copies of your data

(one in Snowflake, one in the staging area, and one in your local computer) which ends

up increasing the risk of a data breach.

A second option is to use Snowflake’s built-in decryption function as part of

processing the query. Let’s assume that we encrypted the comment text in the review

column using a passphrase, by either Snowflake’s built-in ENCRYPT function or a

compatible implementation. The same query shown earlier can now be rewritten to tell

Snowflake to decrypt the review column only when we query it:

SELECT id, first_name, last_name

FROM employees

WHERE DECRYPT(review, '<PASSPHRASE>') ILIKE '%incredible%'

Chapter 3 Data Encryption and Ingestion

28

As part of processing this query, Snowflake would call the decrypt function on the

comment text stored in the review column and would only return rows with the word

incredible in the comment text.

A third option, similar to the second one, is to use external user-defined functions

(UDF) to perform the decryption by a third-party service that customers control. You can

define an external UDF that calls your service to decrypt the data, for example:

CREATE OR REPLACE EXTERNAL FUNCTION decrypt_varchar_ext(v varchar)

 varchar api_integration = acme_api1 AS '<AWS API GW URL>';

And then use the UDF in the same way as Snowflake’s built-in DECRYPT function:

SELECT id, first_name, last_name

FROM employees

WHERE decrypt_varchar_ext(review) ILIKE '%incredible%'

However, in both the built-in decryption function and the external UDF, clear-text

data will be processed by Snowflake as part of processing the query. The only way to

avoid sharing clear-text data with Snowflake is to encrypt it at the field level before it is

loaded, but as discussed already, controlling the encryption and decryption processes

puts more responsibility on you to make sure your data is kept available and safe. We

recommend considering application-level encryption only for a small number of specific

fields and to spend time understanding the consequences of using this method.

Note that the function mentioned before may as well not decrypt payloads, but

de-tokenize it using an external function. That means that the field will contain a token

(identifier) which, in certain cases, will call an external function that retrieves the value

for the token. For example, the function has a key-value solution that transforms tokens

to payment card information, only in specific cases.

Note H omomorphic encryption is a field of cryptography that deals with running
computations on encrypted data without decrypting it. We are seeing some
encouraging early results of using homomorphic encryption in data stores and
expect to see more of that in the future.

Chapter 3 Data Encryption and Ingestion

29

3.3.  �Summary
•	 Snowflake takes care of securing your data when it’s sent or received

to or from Snowflake.

•	 When you want to load data into Snowflake from a cloud storage

bucket you own, it’s up to you to encrypt the data you put there and

configure Snowflake so it can read it to copy it into tables.

•	 Snowflake uses a form of key wrapping to encrypt your tables and

manages encryption keys in a hierarchical model, encrypting each

file with its own key.

•	 Snowflake enables customers to bring their own keys (BYOK) into the

key hierarchy for greater control over the encryption process.

•	 Application-level encryption can be utilized to protect highly

sensitive data at the field level without handing over keys to

Snowflake.

•	 The more control you take over the encryption process, the more

responsibilities you take on for keeping it secure and available.

Chapter 3 Data Encryption and Ingestion

31
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_4

CHAPTER 4

Authentication: Keeping
Strangers Out
Not everybody can enter ACME Candies’ offices. There is a certain process of who is

allowed to enter and under which conditions:

•	 Employees can get inside the office by using their personal RFID

badges.

•	 Employees from other branches can get inside the office, but only

after they show their employee badge to the receptionist, which calls

their company cellular number to verify.

•	 Partners or guests have to be accompanied by an employee.

In the same way you wouldn’t want strangers to roam around your office (especially

if you’re working from home), you definitely don’t want strangers to roam around your

data. This can have dire consequences, and this is why it’s important to have a very clear

and effective authentication policy. In this chapter, we will discuss authentication to

your Snowflake data cloud. We will take a look at the different authentication features

Snowflake offers and discuss their pros and cons.

4.1.  �Users Management
Snowflake users can either be created manually in Snowflake or provisioned

automatically by an identity provider, such as Okta or Azure AD. We recommend the

latter whenever possible to both simplify user onboarding and ensure users are removed

if they are no longer needed.

https://doi.org/10.1007/978-1-4842-7389-0_4#DOI

32

Creating local Snowflake users is done either by using the Web UI of Snowflake or by

using the CREATE USER command:

CREATE [OR REPLACE] USER [IF NOT EXISTS] <name>

 [objectProperties]

 [objectParams]

 [sessionParams]

For the complete list of parameters, you can refer to the Snowflake Documentation.

This can be as simple as

CREATE USER testuser PASSWORD='abc';

Though simple, this is a great example of Snowflake giving us a lot of flexibility which

can also drive us to dark places (in terms of security). The password parameter has no

policy enforcement over it and can literally be “abc” like in the earlier example. Using

such simple passwords is like keeping the engine going in a brand new car while going

out for milk.

In the Authentication world, we call different types of authentication
methods “factors.” Each factor is a specific type of credential used to verify
the identity of a user or an application. A long time ago, not all systems
and services used any authentication factor. In some legacy systems, there
are still no authentication factors, but in most, there is at least one factor
of authentication (such as a user/password combination, a PIN code, a
private-public key pair, etc.).

Nowadays, for human-based authentication, to reduce risks of account takeover

attacks, it is recommended to use two-factor authentication (or in short 2FA). Note that

by requiring two factors, we require a different type of credential, so it is not another

password (also known as “something you know”), but rather, in most cases some sort of

a token provided by an authenticator application (“something you have”). That token

is often referred to as a one-time password (or OTP). Now, even if your password is

compromised, the attacker will not be able to access your account, as they don’t have the

OTP required in addition to the password.

Moreover, as we will discuss in this chapter, configuring users with passwords as a

sole means of authentication is not a good practice. Passwords get leaked, reused, or are

otherwise a “sitting target” for attackers. Using Snowflake users with passwords is best

to be avoided, in favor of other means of authentication, but when it is used, the risks it

poses should be negated by adding different ways of security.

Chapter 4 Authentication: Keeping Strangers Out

https://docs.snowflake.com/en/sql-reference/sql/create-user.html

33

4.2.  �User Provisioning
User provisioning means that the actions around users’ creation, modification, or

removal of user accounts are handled from a centralized place. There can be different

identity data sources in organizations (e.g., HR systems, CRM, and user directories).

User provisioning allows for operational efficiency when onboarding users, modifying

users’ roles within organizations, etc. It is also an important part of meeting compliance

requirements and maintaining an effective security posture for an organization.

Snowflake supports several ways of integrating with identity management platforms

or identity providers (IdP)/identity management (IDM) platforms such as Okta, Azure

AD, and others. By completing this integration, the authentication of users will be done

by using a Single Sign-On (SSO) process, and not by issuing separate credentials for

Snowflake. This is a better security choice, as it will enforce the authentication policy set

by your organization, such as two-factor authentication, password strength, etc. It will

also remove another place where your users’ passwords are stored. Lastly, from an end-

user perspective, they get a uniform experience across all corporate applications.

4.2.1.  �SCIM Integration
SCIM, which stands for System for Cross-domain Identity Management, is a standard

whose current version (SCIM 2) was released by IETF (Internet Engineering Task Force)

in 2015. SCIM is using a RESTful API for managing identity across different platforms.

The principles of setting up SCIM in Snowflake, regardless of the specific integration

you’re using, are that you create a security integration of SCIM type and assign a role to it.

You then generate the API access token using Snowflake and use it in your SCIM application.

�Okta Integration

Okta is a popular identity management platform and is very simple to integrate. In Okta,

you define groups for the users in organizations (or inherit them from other directories, like

LDAP). When integrating Okta with Snowflake, you can use it for the following provisioning.

User Management

You can use the Okta integration for creating, modifying, or deleting Okta users in

Snowflake. That way, as an example, when a new employee is onboarded, they will

automatically have a Snowflake user account created for them.

Chapter 4 Authentication: Keeping Strangers Out

34

Role Management

We will learn more about role management and data authorization in later chapters, but

know that the integration allows you to push your Okta groups to Snowflake, which will

create a role for each Okta group, and also grant the members of the Okta groups with

those roles.

In other words, when you have a team in Okta, called “Marketing Ops,” which has

five members, with SCIM integration, you can set them up in Okta and not need to create

them (or modify them). You will, however, need to define within Snowflake what the

MARKETINGOPS role will allow them to do. In summary, you can only map Okta groups

to Snowflake roles.

Security Considerations

By default, Okta users are created, and a random password is generated for them in

Snowflake. We recommend disabling this, so that users will only be able to access

Snowflake using Okta’s SSO authentication. The security reasoning is that the more

authentication options you give, the more chances there are that things can go wrong. If

users should only log in to your Snowflake using Okta SSO, enforce it.

To do that, edit the Snowflake integration in Okta, and under Sync Password,

uncheck the setting Generate a new random password whenever the user’s Okta
password changes.

For more information about Okta SCIM integration, refer to the Snowflake

documentation at https://docs.snowflake.com/en/user-guide/scim-okta.html.

ACME Candies Wants This!

You, master of all things data in ACME Candies, checked and found out that until now

ACME Candies was using only “local” Snowflake users. You understand that this adds

risks to the authentication process and creates overhead when managing users, so you

want to integrate Snowflake with Okta. Here’s what you need to do:

Chapter 4 Authentication: Keeping Strangers Out

https://docs.snowflake.com/en/user-guide/scim-okta.html

35

	 1.	 If you do not have an Okta account and would just like to

experiment, you can open a free 30-day trial account here:

www.okta.com/free-trial/.

This will take you through the process of creating an account and

setting up multifactor authentication.

	 2.	 In Okta, once logged in, go to Directory ➤ Groups, and click Add
Group.

	 3.	 Give this group a name per the example in Figure 4-1, and click

Add Group within the dialog window.

Figure 4-1.  Adding a new Okta group

	 4.	 Go to Directory ➤ People, and add a user per the following

example, and click Add User.

	 5.	 Go to Applications ➤ Create New App, and choose the Snowflake

integration, and click the Add button.

	 6.	 In the next screen, fill your Snowflake account identifier (e.g., if your

account URL is https://acme.snowflakecomputing.com, enter

acmeindustries). If the account name also includes a region (e.g., if your

account URL is https://acme.us-east-1.snowflakecomputing.com),

the identifier should include the region as well.

Chapter 4 Authentication: Keeping Strangers Out

http://www.okta.com/free-trial/
https://acmecandies.snowflakecomputing.com
https://acme.us-east-1.snowflakecomputing.com

36

At this point, you will be asked about the authentication method you’d like to use.

You should use SAML 2.0 (Security Assertion Markup Language) as the authentication

method. In essence, integrating SSO ensures that your organization’s authentication

policy is enforced across the organization, including multifactor authentication. For

more information on why this is recommended, see the SAML 2.0 section later.

To do that, click the View Setup Instructions button, which will open a new window

with a SQL command configuring the security integration in Snowflake. Note that this

query needs to be run in the ACCOUNTADMIN role. This step configures Okta as a

security integration in Snowflake and tells Snowflake how to authenticate login requests

(using the provided certificate in the “certificate” parameter) and where to redirect

unauthenticated users to (using the “ssoUrl” parameter).

As for setting the actual provisioning of users and groups, you will need to “tell”

Snowflake how to trust Okta for provisioning users and groups and give Okta an API

token, so that it can access Snowflake and perform the operations behind the scenes

(add, modify, and delete users and roles).

On Snowflake, here are the commands you will need to run, which will be more or

less the same for other SCIM integrations as well. We will start by creating a role for Okta

to use to be able to control users and roles. See the following listing:

USE ROLE ACCOUNTADMIN;

CREATE OR REPLACE ROLE OKTA_PROVISIONER;

GRANT CREATE USER ON ACCOUNT TO ROLE OKTA_PROVISIONER;

GRANT CREATE ROLE ON ACCOUNT TO ROLE OKTA_PROVISIONER;

GRANT ROLE okta_provisioner TO ROLE ACCOUNTADMIN;

We continue by creating the actual security integration. This is the setting that tells

Snowflake that it allows Okta to provision users and roles using SCIM API:

CREATE OR REPLACE SECURITY INTEGRATION okta_provisioning

TYPE = scim

SCIM_CLIENT = 'okta'

RUN_AS_ROLE = 'OKTA_PROVISIONER';

Now that Snowflake is configured to accept SCIM API commands from Okta, we

need to fetch the API token from Snowflake and configure Okta. You generate the token

with the following command:

SELECT system$generate_scim_access_token('okta_provisioning');

Chapter 4 Authentication: Keeping Strangers Out

37

Copy the token, and head to Okta, where under the Snowflake application

configuration, you should navigate to Provisioning and choose the Integration

sub-menu. Make sure that the “Enable API Integration” checkbox is checked, and

paste the token. You can now hit the Test API Credentials button to make sure the

integration now works.

In the Assignments menu, you will be able to assign users and groups to Snowflake,

and these are the configurations which will be set in Snowflake (see Figure 4-2). The

users will be set as Snowflake users, and the groups will be set as Snowflake roles.

Furthermore, each user will be granted with the roles of the groups they are assigned to.

This will, of course, still leave you with configuring access for the different roles, which

we will discuss in Chapter 5, “Network Access Control.”

As you can see in the previous listing, the permissions we’ve given the OKTA_

PROVISIONER role, and thus to the Okta user, are very broad and allow it to create and

manage users and roles. It is advised to set a network policy over the SCIM integration

with Okta. For more information about that, read section “Assigning a Network Policy

Over SCIM.”

Figure 4-2.  Integration screen in Okta

Chapter 4 Authentication: Keeping Strangers Out

38

�Azure Active Directory Integration

In the same way that you can add an Okta built-in integration, Snowflake also supports a

built-in integration with Azure AD. The decision of which integration to use will depend

on the identity management platform that your organization uses. If you are using

Azure AD as an IdP, you can set up user and groups provisioning for Snowflake, and

conceptually the process is done in the same way – configuring Snowflake to create a

token for the SCIM API calls and then setting up provisioning in Azure AD.

If you do not have an Azure account but would like to still experiment, you can sign

up for a one-year free trial, though in most cases you want to set up user provisioning if

your organization already uses Azure AD.

Setting Up the Integration in Snowflake

To set up the integration in Snowflake, you will need to set up the user and role to be

used as the provisioner, which is pretty similar to the way we do this in Okta or other

SCIM integrations:

USE ROLE accountadmin;

CREATE OR REPLACE ROLE aad_provisioner;

GRANT CREATE USER ON ACCOUNT TO ROLE aad_provisioner;

GRANT CREATE ROLE ON ACCOUNT TO ROLE aad_provisioner;

GRANT ROLE aad_provisioner TO ROLE accountadmin;

CREATE OR REPLACE SECURITY INTEGRATION aad_provisioning

 type = scim

 scim_client = 'azure'

 run_as_role = 'AAD_PROVISIONER';

Now, we generate and copy the authentication token for the SCIM API calls; you will

need it for the Azure portal setup:

SELECT system$generate_scim_access_token('AAD_PROVISIONING');

Chapter 4 Authentication: Keeping Strangers Out

39

Figure 4-4.  Searching for Snowflake in Azure AD Gallery

Setting Up the Integration in Azure

To set up integration in Azure, go to your Azure portal, and in there, go to Azure Active
Directory. Once inside, head to Enterprise Applications, and click the New Application

button (as per Figure 4-3). This will take you to the Azure AD gallery page, which shows

you the applications you can add to your Azure AD, in which you should search for

Snowflake AAD, and then select it (per Figure 4-4).

Figure 4-3.  The Enterprise applications screen

Chapter 4 Authentication: Keeping Strangers Out

40

In the next screen, choose a name for the Snowflake integration, per Figure 4-5.

Once you create the integration, you will be redirected to the Snowflake AAD

application dashboard. In this page, first assign the users and groups for the Snowflake

AAD. The users are assigned both for provisioning and (if you choose to, which we highly

recommend) for SSO. Note that not in all Azure subscription plans you will be able to

assign groups, and for that, you might need to set up a trial period. You are adding users

by clicking the Add user/group button in the Users and groups screen, as per Figure 4-6.

Figure 4-5.  Choosing a name for the Snowflake integration

Chapter 4 Authentication: Keeping Strangers Out

41

Once you’ve assigned the users to Snowflake, go to the Provision Users and Groups,

and hit the Get Started button. In the following settings screen, fill in the following

information:

•	 Provisioning mode – Automatic

•	 Tenant URL – https://<YOUR ACCOUNT>.snowflakecomputing.

com/scim/v2/

Under Secret Token, put the token you got from the generate_scim_access_token

command in Snowflake (in the earlier section “Setting Up the Integration in Snowflake”).

The results should look like Figure 4-7. You will then need to save the settings and then

start provisioning from the Provisioning page (per Figure 4-8) which you can reach

from the navigation menu. Provisioning may take a couple of minutes, and you can see

the status in the Snowflake AAD Application screen, but you now have provisioning

configured.

Figure 4-6.  Users and groups

Chapter 4 Authentication: Keeping Strangers Out

42

Figure 4-8.  Starting the actual provisioning

Figure 4-7.  Setting up provisioning

Chapter 4 Authentication: Keeping Strangers Out

43

As with Okta SCIM integration, because the provisioning is using a role that enables

very strong changes to your data access (managing users and roles), we recommend

setting a network access policy on the Azure SCIM integration as well, to add an

additional layer of security. See section “Assigning a Network Policy Over SCIM” for

more details.

�Other SCIM

At the time of writing, the two supported identity management integrations are Okta

and Azure AD, but you can manually configure SCIM for other identity management

platforms, or even for creating a custom application that provisions Snowflake users and

roles using the SCIM protocol.

The principles are the same – you create a security integration of SCIM type and

assign a role to it. You then generate the API access token using Snowflake and use

it in your custom application. As an example, let’s create a sample SCIM integration,

by running the following SQL commands for creating the provisioning role and the

integration:

CREATE OR REPLACE ROLE SELFSERVICE_PROVISIONER;

GRANT CREATE USER ON ACCOUNT TO ROLE SELFSERVICE_PROVISIONER;

GRANT CREATE ROLE ON ACCOUNT TO ROLE SELFSERVICE_PROVISIONER;

GRANT ROLE SELFSERVICE_PROVISIONER TO ROLE ACCOUNTADMIN;

CREATE OR REPLACE SECURITY INTEGRATION SELFSERVICE_PROVISIONING

 TYPE = scim

 SCIM_CLIENT = 'generic'

 RUN_AS_ROLE = 'SELFSERVICE_PROVISIONER';

Now that the integration is active, we need to generate an API access token:

SELECT system$generate_scim_access_token('SELFSERVICE_PROVISIONING');

Taking the generated access token, we can then integrate into our application, when

sending REST API calls; as an example, the following curl command will use our token to

generate a new test user. Obviously, you will need to adjust it for your needs:

curl --location --request POST 'https://acme.snowflakecomputing.com/scim/

v2/Users' \

--header 'Authorization: Bearer <YOURTOKEN>' \

Chapter 4 Authentication: Keeping Strangers Out

44

--header 'Content-Type: application/scim+json' \

--header 'Accept-Encoding: utf-8' \

--header 'Accept-Charset: utf-8' \

--data-raw '{

"schemas": [

"urn:ietf:params:scim:schemas:core:2.0:User",

"urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"

],

"userName": "user1",

"password": "some_password",

"name": {

"givenName": "willy",

"familyName": "wonka"

},

"emails": [

{

"value": "willy.w@acme.com"

}

],

"displayName": "WillyW",

"active": true

}'

You can find examples of the rest of the REST API calls here: https://documenter.

getpostman.com/view/5462540/S1Lzx6gY?version=latest#intro.

�Assigning a Network Policy over SCIM

User and role provisioning, as we’ve seen, is using a generated API token for actions

which are very powerful (enabling people to access data). Unless you specifically

configure the integration to work with a network policy, the SCIM API calls can be sent

from any source network. That is why we recommend that you assign a network policy to

allow SCIM calls to only be sent from the identity management platforms.

To do that, we need to define a network policy that will allow access only from

specific IP addresses and then apply this policy on the SCIM integration. Creating the

network policy should be based on the IP addresses used by the identity management

Chapter 4 Authentication: Keeping Strangers Out

https://documenter.getpostman.com/view/5462540/S1Lzx6gY?version=latest#intro
https://documenter.getpostman.com/view/5462540/S1Lzx6gY?version=latest#intro

45

provider (e.g., you can find Okta’s IP addresses here: https://s3.amazonaws.com/

okta-ip-ranges/ip_ranges.json), and you can create the policy with the CREATE

NETWORK POLICY command (read more on network policies in Chapter 5, “Network

Access Control”).

Once the network policy is configured, use the following command to apply the

network access limitation on the SCIM integration:

ALTER SECURITY INTEGRATION okta_provisioning

SET network_policy = <name_of_the_network_policy>;

�SCIM Token Management

As with other secrets, it is a good practice to rotate the API token for SCIM integration.

This reduces risks of token misuse and may also be mandated by compliance auditing.

To generate a new token, simply rerun the CREATE OR REPLACE SECURITY
INTEGRATION command, and generate a new token. Our recommendation is,

depending on your size of operation, perform this once every three to six months.

Obviously, this process can be scripted and automated as well. This would be

done in a similar way to setting up the SCIM integration, by running the SCIM creation

command, which will generate a new token:

CREATE OR REPLACE SECURITY INTEGRATION <provisioner name>

 TYPE = scim

 SCIM_CLIENT = <SCIM client type>

 RUN_AS_ROLE = <provisioner role>;

Once that is done, you should retrieve the token again and update that in your IdP:

SELECT system$generate_scim_access_token('<provisioner name>');

SCIM access token does not support dual keys for a seamless rotation (like the one

supported in user key-pair authentication), so you should either automate the process so

that it happens when there is no provisioning, or expect the possibility of some failed API

calls, and preferably run this process during a scheduled maintenance window.

Chapter 4 Authentication: Keeping Strangers Out

https://s3.amazonaws.com/okta-ip-ranges/ip_ranges.json
https://s3.amazonaws.com/okta-ip-ranges/ip_ranges.json

46

�Debugging and Monitoring SCIM

No matter which SCIM integration you’re using, things can always go wrong (you made

a copy-and-paste error with the token, there are network connection errors, etc.).

There are two main places to look for when debugging. One is the logging done by your

identity management platform, and the other is Snowflake. In Snowflake, the logs can be

retrieved by the following SQL statements:

USE ROLE accountadmin;

USE <any database>.information_schema;

SELECT * FROM TABLE(rest_event_history('scim'));

You might want to run some more detailed query, such as the following, with

the second parameter defining the “from timestamp” and the third defining the “to

timestamp”:

SELECT * FROM TABLE(

 rest_event_history('scim',

 DATEADD('hour', -2, CURRENT_TIMESTAMP()),

 CURRENT_TIMESTAMP())

);

This can be used for debugging, but can also be used for auditing and monitoring of

your Snowflake data cloud. For more information about that, read Chapter 7, “Auditing

and Monitoring.”

4.2.2.  �User Provisioning Using SQL Integration
A different approach than using SCIM is to take leverage of the available SQL commands

in Snowflake to manage users and create a provisioning layer that uses the underlying

SQL commands to manage users and roles. The bottom line is that both methods can

allow you to perform the actions of creating, modifying, and deleting users and roles, as

well as assigning users to roles.

One advantage of provisioning using SQL integration is that if you intend to add

more capabilities which are not supported by SCIM, you will be able to do so, assuming

that you have the resources to spend in building such capabilities. One example is

Chapter 4 Authentication: Keeping Strangers Out

47

that you may choose to take advantage of role hierarchy in a way that’s specific to your

organization. You may also want to allocate resources like warehouses, masking or row

access policies, or other assigning technical roles.

Provisioning using SQL integration takes advantage of the SQL commands for

creating, modifying, and removing users and roles, and granting or revoking roles to

users. For example, this SQL command will create a new user (TEST1), create a new role

(MARKETINGOPS), and assign the user test1 to the MARKETINGOPS role:

CREATE USER TEST1;

CREATE ROLE MARKETINGOPS;

GRANT ROLE MARKETINGOPS TO USER TEST1;

This new role still does not have any privileges assigned to it (it can’t actually access

any data), and we will expand on that in Chapter 6, “Authorization: Data Access Control.”

4.2.3.  �Combining SCIM and SQL Integration
This goes without saying, but we thought it would be good to mention that you can use

both SCIM and SQL provisioning in parallel. A good example would be to provision your

human users from your identity management system, while provisioning applications

data access from a custom SQL provisioning. Another example would be to set the

high-level access via SCIM integration, while building a self-service provisioning for

temporary data access. More on that in Chapter 6, “Authorization: Data Access Control.”

4.3.  �Authentication Types
After configuring the way users and roles are maintained in your Snowflake account,

it is time to decide how users will be authenticated or, in other words, how will users

“prove” their identity to Snowflake. As with most other Snowflake configurations, there

is no “right answer” as to which authentication option to choose, but this is based on

your usage of the system, organization structure, and other requirements. Regardless,

we will try to point at the recommended way to configure authentication, per use case,

to reduce risks.

There is a distinction in authentication between a “built-in” authentication method

and a federated authentication. In the first, the service provider gets the credentials

from the user and verifies them and thus verifies the identity of the user. In the latter, the

Chapter 4 Authentication: Keeping Strangers Out

48

credentials are verified by an identity provider. The authentication by a single service

(the IdP), rather than by the different service providers, is called a Single Sign-On (SSO).

Snowflake supports both methods, as described in the following.

4.3.1.  �Built-In Authentication
Snowflake’s basic authentication is very easy to configure and use, and that’s the built-

in authentication. This basic authentication means assigning a password to each user,

enabling users to specify the password using Snowflake’s UI, (SnowSQL) command-line

interface, or any other tool or application.

It is not only the easiest to configure. It is also, unfortunately, the least desired

one in terms of security. Snowflake does not enforce password length or strength,

and there is no option to automatically set password expiration. We advise you not

to use user/password authentication, but rather use the more secure methods of

authentication – SSO integration for human users and key-pair authentication for

applications.

Having said that, if there are cases where you must use user/password

authentication, we advise to make sure the risk is mitigated by placing additional

controls. One is enabling the built-in multifactor authentication (MFA), as described

later. Another is making sure that such users are not given access to sensitive data

(which is often not the case – in many cases, it is accounts of high-privileged users).

And yet another one is limiting access of such users to specific networks, so they will

only be allowed to connect from certain IP ranges (e.g., corporate VPN, VPC, or office

IP ranges).

Regardless of the type of authentication, and whether the user authentication

is a human or an application, any authentication to your Snowflake account will be

associated with a specific Snowflake user (even if the user is authenticated via federated

access, the user will map to a Snowflake user, as discussed previously in the “User

Provisioning” section).

To create a user, use the CREATE USER command. For example, to add the user Ben,

with the password “averylongandcomplexpassword93920#@!”, run the following SQL

command:

CREATE USER BEN PASSWORD='averylongandcomplexpassword93920#@!';

Chapter 4 Authentication: Keeping Strangers Out

49

�Password Policy Enforcement

If you recall, we earlier gave an example where you can set a user’s password to be a

very short and weak password, such as “abc”. This is due to Snowflake not validating the

password’s strength when you initially create a user. However, once the user is created,

Snowflake enforces strong passwords. That means that passwords must be at least

eight characters long, with at least one digit and at least one uppercase letter and one

lowercase letter. As with any other password, do not reuse the same password you’re

using in another platform, and use a hard-to-guess password.

However, and this is a crucial point often overlooked by administrators, the password

policy only applies after the user’s first login. This means that if an admin sets a new

user account by running

CREATE USER TEST1 PASSWORD='abc';

the user will be able to log in with the password abc. Furthermore, unless the user

logged in, the password can also be altered by

ALTER USER TEST1 SET PASSWORD='abc';

Only after a user’s first login would the password be forced to be a strong one. The

reasoning is that an admin can set a user with an easy password for their first login, so

that the user would change it to a strong one later. We believe that this is not a good

practice and recommend the following:

•	 Once again, use SSO for user logins over the built-in password

management. This will enforce all your organization’s policies and

will not require having “yet another credential.”

•	 Even if you’re setting an initial password, make it a strong one.

There’s no reason, even for an initial password, to use a weak

password. The reason is that even in the short while between

creating a user and gaining ownership over one, that user can be

compromised. In addition, when other users know that initial

passwords are weak, this even increases the risks of an attempted

account takeover due to password guessing.

Chapter 4 Authentication: Keeping Strangers Out

50

•	 Whenever you’re setting a new user, set the MUST_CHANGE_

PASSSWORD parameter to true, as in the following example:

CREATE USER BEN

PASSWORD='The l0ng & wind1ng p@ssw000rd!',

MUST_CHANGE_PASSWORD=TRUE;

�Client Sessions Keep Alive

An important parameter is the CLIENT_SESSION_KEEP_ALIVE parameter. This

parameter defines whether the users’ sessions are kept alive when the user is idle

or whether they’re terminated after four hours, forcing the user to log in again. This

parameter can be set in the account, user, or specific session scope and should be kept to

false (which means the session should renew).

�Multifactor Authentication (MFA) in Snowflake

Authenticating a user using only a username and password is a problem. Many users

reuse passwords or choose an easy-to-guess password or their passwords leak for other

reasons, and you don’t want a stranger inside your data cloud, right? If you don’t have

an integration with a SSO provider, Snowflake also offers out-of-the-box multifactor

authentication. This means that users will not only be authenticated by “something they

know” (their password), but also with “something they have” (a token that they will get

from the two-factor authentication provider, Duo Mobile).

The MFA support in Snowflake is both for connections to the web UI and for

connections done using the SnowSQL command-line interface or other clients

connected with JDBC/ODBC.

Snowflake MFA also supports caching of the MFA token, meaning that you will not

need to enter the token every time you log in, rather it will be stored locally for a certain

period of time (up to four hours). In many organizations, this would be in-line with the

security guidelines, but not in all of them. Consult with your security team, and in case

you want to set it off (e.g., if MFA is only used for fallback authentication in extreme

edge cases by admins), you can turn it off using the ALLOW_CLIENT_MFA_CACHING

account-level parameter.

Chapter 4 Authentication: Keeping Strangers Out

51

Setting Up MFA in Snowflake

MFA in Snowflake is available to all account levels and is done in a self-service manner,

meaning that the users enroll themselves to MFA. This is done from the web UI, by going

to Preferences (in the upper right corner of the web interface). There, under Multi-
factor Authentication, you will find the enrollment link, as in Figure 4-9.

This will take you through an enrollment process, including installation of the Duo

Mobile application and setting up using a QR code to be scanned. Unfortunately, only

this specific authentication application is used, and if you’re already using another MFA

application (such as Google Authenticator which is a very common and free option),

you’ll need to have “yet another app” on your mobile.

As an account administrator, from time to time, you may need to disable users’ MFA

temporarily or to reset completely. To disable MFA temporarily for a user, you use the

ALTER USER command, with the MINS_TO_BYPASS_MFA parameter. For example,

to allow Jason to log in without MFA for an hour, you would run the following SQL

command:

ALTER USER JASON SET MINS_TO_BYPASS_MFA=60;

You can view that parameter by running

DESCRIBE USER JASON;

To completely reset the MFA token for Jason, you will need to run the following:

ALTER USER test1 SET DISABLE_MFA=TRUE;

Once you’ve done that, you need to instruct Jason to enroll again from Snowflake’s

web UI.

Figure 4-9.  Multi-factor Authentication enrollment

Chapter 4 Authentication: Keeping Strangers Out

52

So... Should You Use It?

You will probably not want to use this for your entire user base. While multifactor

authentication is important, it is best to be used with your organization’s SSO provider.

Using the built-in MFA capability is less desirable in our view from the following reasons:

•	 With this feature, we need to ask our users to enroll through the web

UI, install yet another application (which in many organizations is

frowned upon), and make their lives harder.

•	 We need to create a process around following that users actually do

that (more on that in Chapter 7, “Auditing and Monitoring”).

In most cases, there is no reason to use the built-in MFA. We would recommend

reserving that for the following cases:

•	 A small organization without an SSO provider or until SSO is set up.

•	 For risk mitigation purposes. For example, when you want to set up a

Snowflake user in addition to the SSO users, in case of SSO failure.

•	 For added security in specific cases, for example, only for admin

users.

4.3.2.  �Federation: Single Sign-On (SSO) Integration
In most cases, this would be the recommended authentication method for human

users to your organization’s Snowflake account. Using a federated environment means

that your users will not authenticate directly with Snowflake (the service provider), but

with your organization’s identity provider (IdP), which will be trusted by Snowflake to

authenticate users.

Chapter 4 Authentication: Keeping Strangers Out

53

SAML 2.0 and SSO 

In federated authentication, there are two types of services: the identity provider
(IdP) and the service provider (SP). In our case, the SP is Snowflake, and the IdP is
your organization’s IdP. They communicate over a protocol called SAML 2.0.

SAML (stands for Security Assertion Markup Language) is an open standard for
exchanging authentication and authorization data between IdPs and SPs, based
on XML messages passed. In a federated authentication, the user authenticates
against the IdP, and the SP then asserts the authentication.

Note that SAML SSO authentication can either be initiated by the SP (Snowflake)
or by the IdP (as a link in the IdP or a dashboard with buttons for all of your
authorized applications). When the authentication is initiated by the IdP, the user
is authenticated and then redirected to the SP. When the authentication is initiated
by the SP, the user is redirected from the SP to the IdP for authentication and then
redirected back to the SP.

To read more about SAML 2.0, visit http://docs.oasis-open.org/
security/saml/Post2.0/sstc-saml-tech-overview-2.0.html, or for
even more in-depth discussion of SAML, OAuth, and more, refer to Solving Identity
Management in Modern Applications: Demystifying OAuth 2.0, OpenID Connect,
and SAML 2.0 by Yvonne Wilson and Abhishek Hingnikar (Apress, 2019).

The advantages were already mentioned, but let’s go over them again:

•	 Users will not need to have one more password to remember, also

exposing more risks as users tend to reuse passwords, not use strong

enough passwords, or leak their passwords in other ways (e.g., by a

phishing campaign).

•	 Having strong password policies, password change policies, and

multifactor authentication built in and working reduces security

risks.

•	 This is also easier for compliance, as, assuming the SSO processes are

well defined, meeting the same with Snowflake makes it more simple

to meet compliance requirements.

Chapter 4 Authentication: Keeping Strangers Out

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

54

•	 You, as a Snowflake administrator, will not need to babysit your users

(resetting their MFA tokens, setting initial passwords, etc.), as well

as monitor all of this to reduce risk. You will then have more time on

your hands and can use it to read this book.

Federated authentication enables the following processes:

•	 Most importantly, it enables Snowflake login using SSO.

•	 Logging out.

•	 Session timeout.

Once you have configured (as per the following) the SSO flow, users will be

able to log in directly from the identity provider (from their applications “desktop”

or “dashboard”). It is optional, yet recommended, to also allow users to initiate the

authentication from Snowflake, as described in the following, by setting the account

parameter sso_login_page to true. This will add a button redirecting to the SSO

authentication from Snowflake’s login screen.

An important thing to note is that simply setting up federation does not cancel

“regular” logins, and if a user goes to your organization’s Snowflake login page or uses

a valid login and password combination in any tool or application, they will still be

authenticated. Therefore, if you are migrating your users from being local Snowflake

users to being federated using an IdP, we remind you that you also need to disable

their ability to log in locally by altering the user’s password to be blank. For example, to

disable Jason’s login credentials from working directly with Snowflake, run the following

command:

ALTER USER JASON SET PASSWORD='';

It is also important to note that logging out of an identity provider, in most cases,

will not force your Snowflake user outside of an existing Snowflake session, but will only

trigger the need for a federated login in the next time they either experience a session

timeout or log in again to Snowflake.

Chapter 4 Authentication: Keeping Strangers Out

55

�Setting Up SAML 2.0 Federated Authentication

As with other integrations (discussed in the SCIM section), Snowflake supports usage

of SAML 2.0, but with certain identity providers, there is an easier built-in integration.

At the time of writing, there is a native support in both Okta and Microsoft ADFS. You

can set SSO working in other providers as well, though it would require a bit more

customization work.

Setting Up SSO Integration with Okta

We’ll start by setting up SAML 2.0 integration with Okta, to allow a Single Sign-On

(SSO) connection if your organization uses Okta as its IdP. If you still haven’t integrated

Snowflake with Okta, you may refer to the beginning of this chapter, where we introduce

the basics, including how to set up a free trial Okta account, in case you don’t have one

and would still like to experiment. The directions here assume that you already have an

Okta account and that you’ve set up the initial Snowflake application.

Go to your Okta account, and enter the admin section. Once inside, hit the

Applications tab, and choose the Snowflake application (if it is not set up yet, set it

up, as per the instructions in the beginning of this chapter). Now choose Sign On in

the navigation bar, and click the button View Setup Instructions, which will open a

new browser window with the certificate and SSO URL to configure in Snowflake. The

certificate is used so that Snowflake can trust the SAML messages coming from Okta,

and the SSO URL is used to redirect users who are not yet authenticated to Okta for

authentication. After that, go to the original Okta configuration screen and hit Save.

Note that in Snowflake’s login dialog screen, in addition to the SSO login button,

the user will also be able to authenticate using a username and password. If you want to

disable that, you will need to unset the user’s password or set it to an empty string.

To configure that in Snowflake, head into your Snowflake web UI (note: you can

run the SQL commands from other clients as well, but we found the web UI the most

comfortable for such configurations), and make sure you’re using a sufficient role. Now

write the following SQL command in the worksheet:

ALTER ACCOUNT SET saml_identity_provider = '{

 "certificate": "<YOUR CERTIFICATE>",

 "ssoUrl": "<YOUR SSO URL>",

 "type": "OKTA"

 }';

Chapter 4 Authentication: Keeping Strangers Out

56

In addition, to activate the SP initiated SSO login link, run the following SQL

command:

ALTER ACCOUNT SET sso_login_page = true;

Note that when logging in, your Okta users must be configured in your Snowflake

as well. This can be done manually or of course in a much more provisioned way by

provisioning the users as described previously in the “SCIM Integration” section.

Setting Up SSO Integration with Other SAML 2.0 Providers

As previously mentioned, Okta is not the only identity provider supported by Snowflake,

but having a preset Snowflake application helps make configuration and integration

easier. Another option is to configure SAML to work with Microsoft ADFS. The

configuration on the Snowflake end is pretty much the same, except that the type of

SAML IdP should be ADFS, as the following:

ALTER ACCOUNT SET saml_identity_provider = '{

 "certificate": "<YOUR CERTIFICATE>",

 "ssoUrl": "<YOUR SSO URL>",

 "type": "ADFS"

 }';

Note that the certificate has to be without new lines, which is either done in a text

editor as a manual process or by script as part of an automated process.

The configuration and certificate issuing in Microsoft ADFS are a bit more

complicated than Okta, and you can follow the documentation at the following page to

do so:

https://docs.snowflake.com/en/user-guide/admin-security-fed-auth-configure-

idp.html#ad-fs-setup

In the same way, you can set custom SAML 2.0 integration with other identity

providers. For example, in Ping Identity, you will need to configure a new SAML

application in the following path in your administrator console: Applications ➤ Add
Application ➤ Web App ➤ SAML.

In each identity provider, you will need to follow the documentation of setting

a custom SAML application, by using your account’s federated authentication login

(https://<YOUR ACCOUNT>.snowflakecomputing.com/fed/login) and federated

Chapter 4 Authentication: Keeping Strangers Out

https://docs.snowflake.com/en/user-guide/admin-security-fed-auth-configure-idp.html#ad-fs-setup
https://docs.snowflake.com/en/user-guide/admin-security-fed-auth-configure-idp.html#ad-fs-setup

57

logout URL (https://<YOUR ACCOUNT>.snowflakecomputing.com/fed/logout). Once

configured, you will get the certificate and SSO URL from the SAML metadata, so that

you can configure Snowflake to trust your IdP.

The bad news is that each identity provider is slightly different, and configuring

the integration may require some translation between terms in different applications.

The good news is that you will probably only need to configure the integration in a

single identity provider that your organization uses (they don’t call it Single Sign On for

nothing), and you or the people in charge of this platform (in most cases, it’s IT) already

have an experience in integrating other applications.

�SSO for Code

We draw a line between any production-ready code (where it is well tested, audited, and

secrets are retrieved using a proper deployment process) and any other code being run

by engineers, analysts, data scientists, and others. The latter are not truly an application

accessing data, but a human accessing data, and for the same reasons you want humans

to have SSO (leading to a security policy including MFA) when they’re connected by

the web UI or other tools to Snowflake, you want the same level of security when they

connect directly.

Fortunately, though it’s more simple to connect without it, it does not complicate

things a lot, and we recommend to apply SSO for humans running scripts, unless there is

a very good reason to do otherwise (i.e., tests with a test account and no live data).

Python is very popular for ad hoc scripting and has very rich support for machine

learning libraries and is thus often used by data consumers to analyze data, transform

it, and make other use of it. To connect with Python using SSO, instead of using a

username/password connection, use the authenticator option:

ctx = snowflake.connector.connect(

 account='<YOUR ACCOUNT>',

 host='<YOUR ACCOUNT>.snowflakecomputing.com',

 authenticator='externalbrowser',

 warehouse='compute_wh',

 user='<CONNECTING USER>'

)

When you run a script with this connection, the application will show the following

message:

Chapter 4 Authentication: Keeping Strangers Out

58

Initiating login request with your identity provider. A browser window should have

opened for you to complete the login. If you can't see it, check existing browser windows, or

your OS settings. Press CTRL+C to abort and try again…

As per the message, it will also open a browser window to authenticate your

connection using your identity provider.

Another popular method used for ad hoc command-line queries is SnowSQL,

in which you can do the same by adding the following command-line parameter:

--authenticator externalbrowser.

The authenticator=externalbrowser parameter can be also used in JDBC and .NET

connection parameters, and in ODBC, you can set this parameter by editing odbc.ini

(Linux) or by using regedit in Windows.

SSO Connection Caching

It is recommended to use SSO connection caching in cases where there is heavy usage

of SSO for code, as otherwise users will need to go through the federated authentication

each time they run their scripts. This means that the application will store the

connection token in the key store of the operating system and will use that for a certain

amount of time instead of requesting a login each time.

To allow that, run the following command as an administrator:

ALTER ACCOUNT SET allow_id_token = true;

Note that not all clients support this (at the time of writing, only the Python, JDBC,

and ODBC connectors), and some may need additional packages to be installed. For

Python, you would need to install the following extra of the snowflake connector:

“snowflake-connector-python[secure-local-storage]”.

SSO with Automated Okta Authentication

Currently, only available in the Okta integration, you can configure SSO to work

without opening an external browser window. However, it will require passing the

SSO credentials in the connection string (you will not be prompted to insert them, you

must provide them). This can backfire if it causes users to put their SSO credentials

inside their scripts, so we advise to use this cautiously. To do that, you use the following

parameter:

authenticator='https://<YOUR OKTA ACCOUNT>.okta.com'

Chapter 4 Authentication: Keeping Strangers Out

59

�SSO for BI Tools

A common use case for humans connecting to Snowflake is by using BI Tools, and often

this is done by providing a specific Snowflake user for that BI tool. We recommend

against that, as you want each user to be identified separately from a security and

governance point of view. Instead, you should use OAuth integration when possible,

in which the authentication is performed by Snowflake (or by integration through an

identity provider), and your BI tool gets a temporary token to use for querying.

OAuth integration for BI tools is available, as the time of writing, in Tableau

and Looker, and is set up with the following SQL command, which you run as an

ACCOUNTADMIN:

CREATE OR REPLACE SECURITY INTEGRATION tableau

TYPE = OAUTH

ENABLED = TRUE

OAUTH_CLIENT = tableau_server

OAUTH_ISSUE_REFRESH_TOKENS = TRUE

OAUTH_REFRESH_TOKEN_VALIDITY = <SECONDS>

BLOCKED_ROLES_LIST = ('ACCOUNTADMIN', 'SYSADMIN', 'DATA_UPDATER');

This example configures OAuth for Tableau Server, but you can also adjust it

to support the rest of the BI tools. Some important security considerations are the

amount of seconds after which an access token is invalidated and the user needs to

re-authenticate and, most importantly, a list of roles which will be restricted from being

used by this OAuth integration. We will discuss more about roles and data access in

Chapter 6, “Authorization: Data Access Control.”

Another thing to note is that OAuth authentication will also lead to users being

individually authenticated, instead of having one “service account” for all the data access

done from the BI tools. Although some may see this as a pollution of your logs and users

listing, this gives a much more granular reporting of the actual users who were accessing

the data.

4.3.3.  �Nonhuman Authentication
Not only humans, scripts, and tools connect to Snowflake. In many cases, you’d want

to connect Snowflake to applications without human interaction for different reasons.

In such cases, we advise against using a simple approach of a user and password

Chapter 4 Authentication: Keeping Strangers Out

60

authentication, though in some cases it is impossible to circumvent (i.e., due to usage

of legacy code, or if your application does not support key-pair authentication, such as

Node.js or .NET applications).

The cases where only a user and password are used by an application are a soft spot,

and the risks imposed by this should be mitigated. Though the exact steps depend on the

details, we recommend to take the following precautions:

•	 Make sure that the user being used by the application has very strict

privileges, allowing it to do exactly what it needs to do. If it needs to

update the “candy costs” table, give it update privilege to the candy

costs table and no more.

•	 Make sure that you set a dedicated user for the application and not

reuse the user for usage in other applications or – even worse – used

by humans as well.

•	 Use a different user for development, staging, and production.

•	 Make sure that you’re using hard-to-guess passwords.

•	 Compensate with network policies (see Chapter 5, “Network Access

Control”).

•	 Monitor well, as per Chapter 7, “Auditing and Monitoring.”

�Key-Pair Authentication

Whenever possible, though, a stronger authentication is recommended, which is a key-

pair authentication. In this method of authentication, you generate a private and public

key pair and configure the public key in Snowflake, and only a user connecting with the

private certificate is able to connect to Snowflake.

Support is pretty wide, including SnowSQL, Python, Spark and Kafka connectors,

Go Driver, JDBC, and ODBC. It is noted, however, that at the time of writing, it is not

supported in .NET and Node.js.

To set up key-pair authentication, you will need to first generate the certificate and

then configure the public key in Snowflake. First, let’s generate the certificate. This can

either be an encrypted or unencrypted key, where we recommend using an encrypted

key, though this would depend on the scenario and is not needed in all cases (consult

with your security team about the specific case). Generating the certificate can be done

from command-line using openssl.

Chapter 4 Authentication: Keeping Strangers Out

61

First, from a terminal window on your machine (and afterward as part of your

deployment process), generate the private key, and choose a password for encrypting it:

openssl genrsa 2048 | opopenssl genrsa 2048 | openssl pkcs8 -topk8 -inform

PEM -out rsa_key.p8

If you don’t want to password encrypt it, add the -nocrypt flag to the command.

Next, generate the public key:

openssl genrsa 2048 | opopenssl rsa -in rsa_key.p8 -pubout -out rsa_key.pub

Now, edit your public key file (rsa_key.pub), and eliminate line breaks from the

certificate, and run the following SQL command as a Snowflake administrator:

ALTER USER <YOUR USER> SET rsa_public_key='<YOUR KEY>';

Once this is configured, you’re good to go. You have the private key, and Snowflake

has the means to authenticate it (by using the public key). You can use the following

Python script to test the connection:

import snowflake.connector

import os

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives.asymmetric import rsa

from cryptography.hazmat.primitives.asymmetric import dsa

from cryptography.hazmat.primitives import serialization

for testing:

os.environ['PRIVATE_KEY_PASSPHRASE'] = '<YOUR PASSWORD>'

with open("./rsa_key.p8", "rb") as key:

 p_key= serialization.load_pem_private_key(

 key.read(),

 password=os.environ['PRIVATE_KEY_PASSPHRASE'].encode(),

 backend=default_backend()

)

pkb = p_key.private_bytes(

 encoding=serialization.Encoding.DER,

 format=serialization.PrivateFormat.PKCS8,

 encryption_algorithm=serialization.NoEncryption())

Chapter 4 Authentication: Keeping Strangers Out

62

ctx = snowflake.connector.connect(
 user='<YOUR USER>',
 account='<YOUR ACCOUNT>',
 host='<YOUR ACCOUNT>.snowflakecomputing.com',
 private_key=pkb,
 warehouse='<YOUR WAREHOUSE>',
 database='<YOUR DB>',
 schema='<YOUR SCHEMA>'
)

cs = ctx.cursor()

Using Key-Pair Authentication in Production

There is a common misconception, in which things like key-pair encryption are magical

creatures which automagically protects everything and once implemented makes

everything using them or surrounding them completely secure. It is important to remind

you that when you connect using the private key, you are using a very secure channel to

connect to your Snowflake. However, if anyone else is using the private key, they enjoy

the same connection to your Snowflake account.

In other words, it is imperative that you keep your secrets secret. In the last section,

we created a local key pair, which is great for development and testing purposes, but in

production (as well as in staging), it is important to make key creation automated as part

of the deployment, or at least handled correctly, without leaving local copies of private

keys, instead using vaults to pull them and inject them into containers or otherwise use

them securely in your applications.

The public key still has to be configured in Snowflake, but is obviously less

sensitive than the private key and can either be updated manually or automatically. We

recommend automating the rotation of key pairs by writing specific deployment scripts

as per the following section, as part of a healthy DataSecOps operation.

Rotating Your Key Pairs

It is important to rotate your keys based on your security procedures. This limits the risk

of a leaked key to a certain period in time. Fortunately, Snowflake enables a “hotswap”

possibility to make a key-pair rotation without downtime or errors during the rotation

period. To rotate your keys, generate a new public-private pair (as per the previous

section), and then run the following:

Chapter 4 Authentication: Keeping Strangers Out

63

ALTER USER <YOUR USER> SET rsa_public_key_2='<YOUR KEY>';

Now, once you deploy your applications with the new private key, you will unset the

old key by using the following command:

ALTER USER <YOUR USER> UNSET rsa_public_key;

The next time you are changing the key pair, you will do the opposite (configure the

key in rsa_public_key, and then once you deploy the new private key, unset rsa_public_

key_2).

�Snowflake SQL API

Snowflake has a preview feature (at the time of writing), which allows users to send

queries to Snowflake using a REST API, instead of through connectors or the web UI.

This API currently only supports sending single queries in a synchronous or

asynchronous way, but this will probably expand over time.

You can either authenticate using an OAuth token you retrieve or by a key-pair

authentication. For more information about OAuth authentication, refer to Section

4.3.2.3, and for more information about public-private keys, refer to Section 4.3.3.1.

The specific way in which you authenticate using these secrets is specified in the

documentation here (https://docs.snowflake.com/en/developer-guide/sql-api/

guide.html#authenticating-to-the-server).

SQL API Security Notes

The following are some security notes to be aware of when using the SQL REST API:

•	 If the SQL API is used to send user-generated content, make sure the

input is validated or properly escaped prior to running the queries.

This can be done by parameter binding, per Section 4.3.3.3.

•	 If used in production, make sure that the secrets (private keys and

OAuth tokens) are generated automatically and placed in vaults, per

your security handling of secrets.

•	 Make sure you only use a user with the role required for the action

performed by the API, and not an overprivileged role.

Chapter 4 Authentication: Keeping Strangers Out

https://docs.snowflake.com/en/developer-guide/sql-api/guide.html#authenticating-to-the-server
https://docs.snowflake.com/en/developer-guide/sql-api/guide.html#authenticating-to-the-server

64

�Preventing SQL Injection in Application Queries

If the applications receive input from users, make sure you pass the input using data

binding, instead of by concatenating them to a SQL command. This is done to prevent

SQL injection attacks. As an example, if regional sales people of ACME Candies has an

internal portal, through which they can retrieve data about their deals, and it receives the

city as a variable, if a “normal” query for deals in NYC looks like this:

SELECT deal_name, deal_size FROM deals WHERE city = 'NYC';

A curious user who wants to retrieve all data may put nyc’ OR 1 -- as an input, which

will now list all results instead (the OR 1 adds a boolean expression that is always true,

and the -- comments out the rest of the query to prevent additional filtering), resulting in

the following query being executed:

SELECT deal_name, deal_size FROM deals WHERE city = 'NYC' OR 1 -- '

An even more curious user may also retrieve data from other tables, using UNION,

for example, by sending xxx' UNION ALL SELECT name, phone FROM sensitive_table

-- as value:

SELECT deal_name, deal_size FROM deals WHERE city = 'xxx' UNION ALL SELECT

name, phone FROM sensitive_table --

These risks should also be handled when authorizing data, and you will learn more

about that, including giving access only to specific rows of data within a Snowflake table,

in Chapter 6, “Authorization: Data Access Control.”

An example of using parameter binding in Snowflake (Python):

con.cursor().execute(

 "SELECT id, name FROM models WHERE type = %s", ("type",)

)

4.3.4.  �Compensating Factors in Authentication
During this chapter, we discussed ideal authentication for your human and nonhuman

Snowflake users. Life is not always ideal, and sometimes, you will be challenged

by requirements that will prevent you from immediately applying the optimal

authentication methods.

Chapter 4 Authentication: Keeping Strangers Out

65

A good example to that is BI tools that do not support OAuth authentication. If your

organization is using such tools, it will probably not replace such BI tools overnight,

and so you will want to establish compensating factors around that usage. These

compensating factors can be both by strengthening the authentication (e.g., by adding

network policies) and by limiting the impact of the users using such BI tools by giving

them only the privileges they need for the BI tool usage (the role granted can have only

select access and be further limited by row and column access policies, per Chapter 6,

“Authorization: Data Access Control”).

When dealing with compensating factors, remember that your main goal is to enable

data access while reducing risk. Depending on the structure of your organization, you

may want (or need) to consult with the security or GRC teams around some of these risks

and the alternative solutions.

4.4.  �Summary
In this chapter, we’ve discussed the ways in which you provision users in your

Snowflake data cloud, as well as how you authenticate users, whether they’re humans

or applications, and discussed the security implications and recommendations in each

case. We did cover a lot of ground and important ground as well. We know that your

situation is not necessarily perfect at the moment, but now is a good time to note to

yourself the main gaps you see, if you have an active organization running Snowflake,

and start reducing some of the risks before proceeding to the next chapters (or you can

do that in parallel).

In addition, we discussed some compensating factors which you should consider,

and we urge you to use them not only when “all else fails,” and you’re using a less

recommended form of authentication, but in any case you can, to reduce risks.

Chapter 4 Authentication: Keeping Strangers Out

66

For your convenience, we’re also adding the following simplified flow to help you

make authentication decisions in Snowflake:

Chapter 4 Authentication: Keeping Strangers Out

67
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_5

CHAPTER 5

Network Access Control
Network access control is quite a blunt tool, which is not necessarily a bad thing. What

this means is that you want to place access controls to your data warehouse based on

the network origin of the traffic. This can be a quick and effective way to reduce security

risks, as well as sometimes being part of compliance requirements (to have, as well as

show that you have network access policies placed on top of your data access).

When it comes to reducing security risks, this is quite simple. For example, if we

have an application user, to be used by a production application, there is no reason for

it to communicate with our data warehouse from anything other than a specific set of IP

addresses. In the same way, we may want all the traffic to our account to come only from

specific sets of IP addresses, such as our office IPs, VPNs, and VPCs.

Although network blocking is not a bulletproof method to prevent all risks, it is quite

effective to lower the attack surface of potential attackers, as well as to restrict users from

putting your organization at risk because they are careless and wanted to run “just one

query” from an insecure home network.

In addition to network access policies, which handles traffic done over the public

Internet, Snowflake also offers direct traffic from your VPC using PrivateLinks, which we

will also discuss.

5.1.  �How Do Network Access Policies Work?
In Snowflake, you create objects called network policies. These objects consist of a list of

IP ranges to allow access from, and optionally, a list of IP ranges to disallow access from.

The disallowed IP ranges are within the allowed IP ranges (as anything outside of the

allowed ranges is disallowed by default).

https://doi.org/10.1007/978-1-4842-7389-0_5#DOI

68

This is a sample network policy creation, which allows access from any IP in the IP

range, inserted within the CIDR format, of 6.6.6.0 to 6.6.6.255, excluding 6.6.6.1:

CREATE NETWORK POLICY candy_office

ALLOWED_IP_LIST = ('6.6.6.6/24')

BLOCKED_IP_LIST = ('6.6.6.1/32');

Those policies can be then used as a parameter in either your entire account, which

will be active for any user attempting to connect, or for specific users. If there is an

account-wide network policy, and a certain user also has a user network policy set, the

specific user network policy will determine whether the user will be able to connect.

In addition to the regular account and user scope, network policies can also be set on

security integrations, as we’ve seen in the previous chapter.

5.1.1.  �Setting Up Account-Level Network Policy
Once you have a network policy set up, as explained previously, to set it up on the

account, you need to assign the policy to the account, using the following command:

ALTER ACCOUNT SET NETWORK_POLICY="candy_office";

Note that if the network policy does not enable the current IP you’re sending the

query from, you will not be able to assign it (as you don’t want to get locked out of your

own network).

5.1.2.  �Setting Up User-Level Network Policy
Setting up a user’s network policy is also pretty straightforward and is done with the

following command:

ALTER USER BEN_SWEETTOOTH SET NETWORK_POLICY='CANDY_OFFICE';

Note that the network policy in an “alter user” has to be upper case.

To cancel either an account- or user-level network policy assignment, you can use

the UNSET command, for example:

ALTER USER BEN_SWEETTOOTH UNSET NETWORK_POLICY;

Chapter 5 Network Access Control

69

5.1.3.  �Limitations
There are several limitations in Snowflake’s network policies model. Let’s mention them,

as well as some options to work around them.

�No Group-Level Granularity

Since there is no notion of groups in Snowflake, there is also no notion of groups of users

with policies per group. Sure, there could have been one assigned per role, but that

would have been confusing as well, in terms of conflicts between certain different roles

that a user holds. This limitation means that you can either set a policy for the entire

account or for a specific user, but you have no option in between.

One obvious option is to use what you have, in which case you actually set a policy

for your entire account, and if there are exclusions, you set them on a personal basis.

However, this does not scale gracefully. When you have dozens of users or more, and

you want to apply network policies in an effective way, it gets difficult to scale, and you

either spend too much time setting up and assigning policies or you cut corners, and

either give slow service to your data consumers or make sacrifices about your security

risk level.

Workarounds

One possible solution is to run a recurring cron job, which will run periodically, and set

network policies according to specific characteristics, such as if they have specific roles

which propagated to the user account from the IdP, or in another way. For example, if in

ACME Candies there is a network policy specific to offices, a script can retrieve the list of

users with that role, then execute the ALTER USER commands.

Such a query can be:

SELECT CONCAT('ALTER USER ', grantee_name, ' SET NETWORK_POLICY=\

'SFO_OFFICE\';') AS cmd

FROM snowflake.account_usage.grants_to_users

WHERE DELETED_ON IS NULL

AND ROLE = 'SFO_OFFICE';

Chapter 5 Network Access Control

70

Another way, at least for IdP provisioned users, is to set network restrictions in the

IdP, so that authentication will not be possible, according to a specific network policy.

In other words, users will not be able to log in to your Snowflake account because of

external network policies.

�No Granularity Within Account

Another limitation in the network policies is that the network policies are for all access

to the account, and can’t be granular within the account itself. As an example, if ACME

Candies has several databases in their Snowflake account, and they want access to the

HR database to only be done from the office, this can’t be done with Snowflake network

policies.

Workarounds

One possibility is, of course, to separate such databases to a separate account and have

one account that’s only accessible from certain networks. This may be easier said than

done if we’re not designing a new account, but need to change architecture on a moving

target. This may need to include changes to data pipelines, authentication changes in the

new account, setting up user provisioning, and changing connections and applications.

In other words, it’s a lot easier when planning ahead.

�Network Policies Are Only IPv4

Another limitation is that the network policies (at the time of writing) don’t support IPv6

network ranges, but only IPv4. This currently has no workaround, and if that’s the case,

you can try Snowflake’s support, in case they can work out something specific for your

account.

5.2.  �PrivateLink Integrations
Network policies are great for most of the use cases. Snowflake is a cloud data service,

and as such, it makes sense that access to it is done over the Internet. However, in certain

cases, such as highly regulated industries, you want to completely eliminate traffic being

transferred over the public Internet, even though (as we’ve learned in Chapter 3, “Data

Encryption and Ingestion”) data in transit is always sent encrypted.

Chapter 5 Network Access Control

71

The reasons for using PrivateLink are mainly either that the organization is required

to do so due to compliance requirements (either directly or through interpretation of a

risk assessment) or in case of a security requirement. Keep in mind that in addition to

having to set up a PrivateLink, it also comes as part of the business critical plan, so it may

incur additional costs. As it integrates with your public cloud’s private link, it may incur

costs in your public cloud billing as well.

Setting up a new PrivateLink is done by first requesting Snowflake to start a

PrivateLink integration, which would require sending the VPC you want to connect

from (or more than one in case there’s more than one). This is done manually, through

support or in case needed through your account manager. Once this is done, follow

the documentation to set up the PrivateLink, whether this is AWS PrivateLink or Azure

PrivateLink.

An important point to consider is that once you finish configuring your PrivateLink,

you also need to add an account-level network policy to allow access to your Snowflake

account only from the VPC (for more information, see the earlier section about network

policies).

5.3.  �Summary
Snowflake offers several options to control your data access based on your network

origin. These include allowing and blocking access to your Snowflake account based

on network policies, either to an entire account or to specific users, and the option

to have traffic transferred within the public cloud’s network (without going out to the

Internet) for increased security. The latter option requires additional work in setting up,

and incurs costs, and is mainly used in heavily regulated industries or where there is a

significant security risk.

Chapter 5 Network Access Control

73
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_6

CHAPTER 6

Authorization: Data
Access Control
In ACME Candies’ offices, not everybody can go everywhere, even once you went

through the receptionist. Only candy makers go into the kitchen, only finance teams can

access the finance rooms, some of the rooms are only available during business hours,

and so on. There’s a good reason for that – if we let everybody go everywhere, we induce

risk.

The same can be said about the data you store in Snowflake. In most cases, allowing

everybody to have access to everything is not a good plan. As we discussed in the

introduction to this book, wanting to make more use of more data by more people is

probably one of the reasons you started using Snowflake in the first place. However, in

addition to the value that users bring by analyzing data, users with access to the data

also have its costs in terms of risk. The reason is that some of your data may have certain

levels of sensitivity, and having access to it increases the risk of sensitive data leakage.

Another challenge when limiting access to data is the burden it places on Snowflake

administrators (usually the data engineering teams), as they need to actually provide

access to specific data within the data warehouse. The more granular your data access

control is, the more potential overhead is added to these individuals, and as this may

very well be you reading this book (fourth wall alert), it may be good to discuss strategies

to lower that overhead.

It is important to note that providing data access is hard, and in many cases, what

you do depends on current and future usage of the data by its consumers. That is why it

is extremely important to make sure that data consumers are consulted with throughout

the process, which may save a lot of time and aggravation when limitations are put in

place.

https://doi.org/10.1007/978-1-4842-7389-0_6#DOI

74

In this chapter, we will discuss data access control methodologies in general, the

Snowflake access control model, and different strategies around actually allowing

data access to people in ways that take into account security, compliance, privacy, and

operational overhead.

6.1.  �Data Access Models
Though we are sure that you are familiar with at least some data access models, we

will give a short overview of the relevant access control models, to give a better context

for when we deal with Snowflake’s access control model. If you want to dive deep into

access control models, you can find more references on this book’s website (https://

snowflake-security.com), or you can refer to the book Authentication and Access
Control.

6.1.1.  �MAC (Mandatory Access Control)
Mandatory access control is an access control model in which a centralized system

controls access to objects, which is usually done based on labels (such as, based on

its military origins, top secret, secret, or confidential), and certain security clearances

for users. These labels are mostly coupled with a project clearance. If implemented at

ACME, if ACME Candies’ recipes are labeled top secret, and an employee without a

sufficient level of clearance tries to access them, they are not granted access to them.

Also, if a certain employee has a top secret access level, but no access to the specific

project, they will not have access to the recipes.

Chapter 6 Authorization: Data Access Control

https://snowflake-security.com
https://snowflake-security.com

75

Since mandatory access control is system-wide, it is less suitable for data warehouses

like Snowflake, where you want the ability for users to set access to objects and need a

more robust way of access control.

6.1.2.  �DAC (Discretionary Access Control)
In contrast to mandatory access control, discretionary access control is allowing or

limiting access to objects based on users and groups and the configuration settings for

them. The main difference between the mandatory and discretionary access control

models is that in a discretionary access control system, users can pass the permissions

they own to other users (e.g., grant access). This makes the access control more

decentralized than MAC.

Chapter 6 Authorization: Data Access Control

76

6.1.3.  �ABAC (Attribute-Based Access Control)
Also known as policy-based access control (PBAC). In this access control model, certain

attributes are collected when a user attempts to access the secured object, and the

system allows or restricts access based on a policy. The policies follow an “if … then”

process, where if certain conditions are met (a boolean result of true), then based on that

access is allowed or restricted.

An example would be that if a data scientist from ACME Candies attempts to

access financial data, and they are using a BI tool, they will be able to access the data.

However, if they attempt to access financial data, and using other tools (such as scripting

languages), they will not be able to access the data.

6.1.4.  �RBAC (Role-Based Access Control)
Role-based access control is nowadays the most common access control model in

organizations, where users are assigned roles and the privileges are set per role, which

gives access to objects accordingly. The roles define a set of permissions that are given to

the users.

Chapter 6 Authorization: Data Access Control

77

The “abstraction layer” added by giving roles to users and assigning the permissions

to the roles, as opposed to directly giving permissions to the users, enables managing

permissions in scale.

There is no conflict between RBAC and DAC or MAC, and as we will see (spoiler

alert), Snowflake indeed has a combination of both RBAC and DAC.

In this figure, users are assigned to roles. For example, user 1 and user 2 are assigned

to the marketing operations role which allows DDL commands (data definition

language) and write access on the marketing DB. User 4 and user 5 have read access,

because they are granted the marketing reader role. User 3 is granted with both roles, so

they can have both read and write permissions.

6.2.  �Snowflake Access Control Model
Snowflake’s access control model combines elements of RBAC and DAC. In Snowflake

(unlike many other databases like Postgres, MySQL, Oracle, and many others), you can’t

assign access privileges directly to users and can only assign them to roles, which are

then assigned to users. In addition, in Snowflake, each object (also known as “securable

object,” as it’s an object which you can secure access to) has an owner, who can grant

access to the object.

Chapter 6 Authorization: Data Access Control

78

This access model has a good intention, which is to better align Snowflake to the

modern RBAC way of granting access, eliminating the mess that sometimes occurs when

users are granted direct access to objects, which can over time cause entanglement of

data access permissions. This, however, does not mean that Snowflake automatically

ensures a scalable and easy-to-maintain access control structure, and as we will see,

architecting data access in Snowflake has different methods; not all of them fit every

organization and every use case.

Snowflake’s role-based access control applies both for data access and for actions

performed. As an example, certain roles may be allowed to create objects (such as

views), delete data, or update data while others will not.

6.2.1.  �Snowflake Security Model
Before we dive down into how users are authorized to data in Snowflake, let’s first

understand the objects in Snowflake, which would give us the high-level understanding

needed for when we discuss authentication and authorization.

In Snowflake, there are the following objects defined:

•	 Users – Which can be either human users or application users. Some

access definitions can be set in the scope of a user. For example, a

user can be configured to log in only from specific IP addresses (see

network security), or only using a specific authentication method

(e.g., only using multifactor authentication). For more information

about that, refer to the relevant chapters regarding authentication

and network access control.

•	 Roles – Which define a set of privileges and are used by users. Each

user can be granted one or more roles but may use only a single role

per action performed.

•	 Privileges – Which are directives, specifying that a certain role can

perform a certain action (e.g., SELECT, UPDATE, or CREATE USER)

on a certain securable object.

•	 Securable objects – Which are the objects to which we are setting

access. These include data objects (databases, schemas, tables, and

views), but also other objects, such as roles, users, functions, file

formats, stages, and sequences.

Chapter 6 Authorization: Data Access Control

79

Snowflake’s authorization is RBAC, meaning that the privileges are assigned to roles,

and the users can perform the actions allowed to them according to the roles they own

(or more specifically, the specific role they are using when performing the action).

This is quite different from other databases. For example, in Google BigQuery,

when you are performing an action (such as sending a query), you have a mapping of

the permissions that are granted to you based on the roles that were assigned to you

or the groups you belong to in Google Cloud’s Identity and Access Management. You

don’t need to decide which role to use for your query. Your access is the sum of the

permissions granted to all your roles and identities.

In most databases (such as PostgreSQL), you are getting access that is granted

to your user or to one of the groups you belong to. However, in Snowflake, you can

specifically choose a certain role (one that you’re granted with) for each action you

perform. You can try to query a table with a certain role, get an error message stating that

you don’t have sufficient permissions, and then try with another role and succeed. This

has its advantages and disadvantages, but is important to be aware of.

In addition, you may create a role hierarchy in Snowflake, meaning that a role will

inherit the privileges from another role (which may, in turn, inherit privileges from other

roles and so on). More on role hierarchies further in this chapter.

In this figure, there is a marketing admin role, which owns both the marketing

database and the marketing virtual data warehouse. The owner then grants certain

privileges to the marketing analytics role, such as usage of the data warehouse, database,

and schema, and selects on the tables. The marketing analytics role is then granted to

user 1 and user 2. Now, they can use this role to query data from the database. This can

be, and in real life is, much more complicated than that, as users often have several roles,

and these roles have a larger set of privileges.

Chapter 6 Authorization: Data Access Control

80

6.2.2.  �The Built-In Roles in Snowflake
Snowflake comes out of the box with the following roles:

•	 PUBLIC – This role is granted to all users and, as such, should only

be granted with objects you’re comfortable with all of your users

being able to access. Sometimes, objects get accidentally granted

to the public role, which we should monitor (refer to Chapter 7,

“Auditing and Monitoring,” for this).

•	 SYSADMIN – This role should be used to manage all non-user

and non-role objects in the account (databases, tables, views,

etc., with the exception of objects specifically granted only to the

ACCOUNTADMIN role). In addition, the best practice is to grant all

custom roles to the SYSADMIN roles, so they can manage access to

all underlying objects.

•	 USERADMIN – This role should be used only for the creation of users

and roles. As a best practice, this role should be the only one used for

creating users, so that it is easier to monitor user creation activities.

•	 SECURITYADMIN – This role should be able to manage all grants to

objects in your Snowflake account. In addition, it should be able to

perform user and role creation, as it is granted with the USERADMIN

role. This role should be reserved only for grants management and

should not be granted to any other role.

•	 ACCOUNTADMIN – This role has both the SYSADMIN and

SECURITYADMIN roles granted to it and as such is a “superuser.”

In addition, some special privileges are only granted to the

ACCOUNTADMIN role. It is important not to ever grant the

ACCOUNTADMIN role to any other role, as this role is reserved to be

the top-level role (same as a root account), and granting it to another

role may create non-monitored security issues, as well as operational

problems. It shouldn’t be used for day-to-day administration, rather

the lesser admin roles should be used for them.

•	 ORGADMIN – This role is (at the time of writing) not given by default,

but only if you choose to self-manage your organization’s accounts,

and can create new accounts, as well as modify account settings.

Chapter 6 Authorization: Data Access Control

81

You should monitor usage of all administrative roles (more in Chapter 7, “Auditing

and Monitoring”). Likewise, you should only grant them to users who actually need

them, as they have strong privileges that can be abused or can cause other issues.

Specifically, such roles should not be used for actual data analysis (as this will be a

breach of the separation of duties principle). In addition to that, you should never define

an administrative role (especially ACCOUNTADMIN) as the default role of a user.

6.3.  �Designing Your Role Architecture
Before we begin, we think that this section is an especially important section. I suggest

you take some time after reading it to reflect on optimal ways to architect data access

in your organization. There is no one solution that fits all organizations, as managing

access has a lot to do with the nature of the data stored, the general security policies in

the organization, the preferences between leniency and strictness, and the amount of

operational overhead which is reasonable to spend when managing data access.

In the end, in many cases, it will be your responsibility as a data engineer or

administrator to enable users’ access to data, and choosing a model that doesn’t

work well for your organization can have some dire security consequences, such

as unintended data exposure, data breaches, but also compliance violations and

operational issues like slowing down the organization’s “time to value” and taking a

large portion of the data administrator’s time. This may sound grim, but you can look at

this in the opposite direction – managing data access in a way that is suited well for your

organization will help to be both secure and efficient.

Another word of advice, don’t be quick to disqualify a certain approach just because

someone says it’s an anti-pattern. Eventually, it will be up to you to understand the needs

of your organization and provide the best way to manage access to data.

6.3.1.  �Document Your Role Architecture
Once you make decisions about the data access architecture, we recommend putting the

strategy in writing, in a document. The document should explain the role structure and

hierarchy (if there is one), the processes for getting access to more data, as well as the

access revocation process. The document would ideally be agreed as a protocol between

the different stakeholders – data, security, privacy and governance, data owners, and

data consumers.

Chapter 6 Authorization: Data Access Control

82

Having a clear access policy helps reduce friction between the different stakeholders,

but more importantly, it helps in maintaining consistency, which is important when you

want to avoid a mess in the data access model of your organization.

6.3.2.  �Privilege Granting
In Snowflake, you can grant privileges to roles, and when doing that, you can use the

optional parameter WITH GRANT OPTION, which means that not only are you granting

the privilege, but you are granting the option for users with the specified granted role to

grant the privilege to other roles.

The idea behind this is to enable self-management of roles and decentralize

role granting. However, this can backfire, when users who are not proficient with

the privileges and role structure in Snowflake, or with security and compliance

requirements, are granting unwanted privileges.

That is why, whenever you are using this feature, do it in an organized way. For

example, if your organization has data stewards in certain teams who are capable of

granting such privileges within their part of the organization, and will do so with the

specific privileges needed for a certain project, it may be good to do so. However, default

to not allowing users to be able to do so, especially on large scales, where things can

become messy.

An additional way of limiting object grants is to create schemas with the parameter

WITH MANAGED ACCESS. When you’re creating managed schemas, all objects within

the schema can only be granted by the schema owner, not by the individual object

owners. The advantage is that it reduces the amount of privileges being granted in an

uncontrolled manner.

6.3.3.  �Approaches to Access Management
Let’s discuss several ways to architect your data access. For each model, we will discuss

the process required to access data, as well as the advantages and disadvantages. Note

that your role management model has to suit your organization, so borrowing principles

from several models to fit your usage is perfectly okay, provided that there’s good logic

behind that.

Chapter 6 Authorization: Data Access Control

83

�IdP-Dominated Access

In an IdP-dominated access model, the organization relies as much as possible on

roles provisioned from the identity provider. That means that you limit the roles you’re

creating directly on Snowflake and instead inherit the roles from IdP groups. The logic

behind that is that by unifying roles in a role-based access control data warehouse with

their business context (the group from the IdP), you keep things tidy.

If, for example, there is a new employee in ACME Candies’ finance department,

they will be assigned to that group in ACME’s IdP. This will automatically enable access

to the new employee to all the data resources available to the finance department. This

also has the potential of lowering the amount of time spent by data engineers on setting

Snowflake roles and granting them to users.

There are, however, a few caveats to having a purely IdP-dominated data access

control. This is usually good for when there are very blunt borders between the different

roles, for example, when a certain identity group has a correlating database, schema, or

at least a set of tables. This is not always the situation in all organizations.

It is also not solving for a need for temporary access to data (if a data scientist in

ACME Candies requires access to marketing data, adding them to the marketing identity

group can have other unintended consequences, such as granting them access to other

marketing resources they should not have access to outside of Snowflake).

In addition, in many companies, the identities are managed by a team in IT, and

getting an identity group added is often a process that starts with opening a ticket and

continues with getting approval from the person’s manager, as well as the owner of the

group, who is not always the person who knows what the data access implications are

and what project the data is needed for. This often creates a “ticket thread” with back and

forth explanations and more people dragged into the process.

Lastly, this will mostly not solve for nonhuman users, who are in most cases

configured as “regular” Snowflake users.

�Classic Snowflake Role Management

An alternative to overreliance on IdP groups as roles is to create either functional or grouped

by business unit roles in Snowflake. These roles will, sometimes, be cross-department, as

needed. For example, the data scientists in ACME Candies may require a role that will allow

them access both to sales and marketing data. This can be a specific role for data scientists

allowing them access to both marketing and sales (which may be done by a hierarchy; see

“Role Hierarchy” section later).

Chapter 6 Authorization: Data Access Control

84

This also means that it will be easier to set access limited to only a subset of the users

for a subset of the data. For example, if there are 200 data scientists in ACME Candies,

and only a specific team needs access to specific data, it may make sense to provide

them with a specific role for that data. This especially makes sense when the specific

data has sensitive data in it, and you want to limit the exposure to the sensitive data as

much as possible.

One downside about managing everything around your roles directly in Snowflake

is that it may become an operational pain to maintain, as instead of IT tickets, the

organization will now have to open a ticket with data engineering to allow access to a

specific dataset, which may trigger a workflow of authorizations by the data owners or

may just mean a lot of overhead for the data engineering teams.

Another downside is that if not kept according to a specific method, this may

cause the role structure to become entangled, as more and more subsets are added to

Snowflake by data engineers (as well as by data consumers if they’re allowed to grant

access on their own).

In addition, it is rare that anyone opens a ticket to revoke access they requested.

This may lead to overprivileged data access, which may become a growing security and

compliance risk.

�Per Project Roles

Another use for custom Snowflake roles is for specific projects. For example, when

ACME Candies has a new project to have a lychee-eggplant-flavored bubble gum, and

this project requires data crunching by several teams in R&D, marketing, data science,

and more, a role can be created specifically for this project, so that once the project is

done (hopefully without any lychee-eggplant-flavored bubble gums produced), the

role will be revoked. Additionally, if users are no longer part of the project, they can be

revoked from the project.

This means that the custom Snowflake roles can have a higher granularity than just

the business units and can be cross-team, but also sub-teams (not all marketing, R&D, or

data science will have access to the lychee-eggplant project).

�Role Per User

This is not a common practice, but we’ve seen it being designed in some organizations, either

as a solution for the majority of data consumers or just to solve edge cases (more common).

Chapter 6 Authorization: Data Access Control

85

When it happens, sometimes it’s because of architects coming from a per user access control

(which is common in many databases), and they’re trying to replicate the same here.

The idea behind assigning a role per user is that it gives a very high level of

granularity in data access, according to each specific use. If Timothy needs access to a

specific table and Doron, working with him in the same team, does not, we will enable

access only for Timothy.

The main problem with that approach, as you can guess, is that this gets harder

to manage, especially in scale. That’s what role-based access control is good for – to

eliminate such overhead of setting access per user. When a new user onboards, the

process in these cases is to give them a role that is replicated from a similar person, or

open up access as they require it. The potential of making mistakes is big, as well as the

potential for a lot of mundane work of the data administrators of granting and revoking

access to all these users.

�Functional Roles Coupled with Access Roles

In this model, you assign roles in your organization (mostly by using IdP provisioning)

according to functional roles. For example: Claris is a “Financial Planner”. These roles

in Snowflake maps to sets of access roles, and these roles are granted to the functional

role. And so, if a user is a part of the certain IdP functional group, they automatically are

granted with the access mapped to that functional role.

In many organizations this is a good balance between hierarchy and keeping

authorization simple. The downside is that this is still not very granular, and does not solve

the problem of a certain user who needs access to specific resources of another group.

�Role Hierarchy

Snowflake features a hierarchical role model. What this means is that you can not only

grant roles to users but also to other roles. This gives great flexibility when architecting

roles and can eliminate some of the overhead required when managing roles at scale

and help reduce overprivileges given to users. It can also backfire and further complicate

your data access management (see the following section “Hierarchy Hell”).

Granting roles to other roles is pretty straightforward. You use the SQL command

GRANT. In the following example, we are granting our SDR_LATAM team with the

privileges of the SDR_GENERIC role:

GRANT ROLE SDR_GENERIC TO ROLE SDR_LATAM;

Chapter 6 Authorization: Data Access Control

86

Hierarchical roles work especially well in certain situations. One is when you want to

give access to common objects to a number of different teams. Let’s consider an example

where the different R&D teams in ACME are working on new candy flavors, and though

the data about the different projects are only accessible by the respective teams, there is

also a shared schema with generic information available to all of them, such as the raw

materials’ costs.

In this figure, you can see two R&D roles for two different teams (analysts and data

scientists). These are probably provisioned by IdP, so when a new user is joining such a

team, they automatically get granted that role. Both of these roles are granted with the

R&D shared role, which gives them data access to shared R&D data, as well as to use the

R&D virtual data warehouse. In addition to those shared objects, the data scientist role is

also granted with data access privileges to other resources. In that way, additional teams

can all get access to the shared objects, as well as to specific objects.

Another good use case for hierarchical roles would be when there is a temporary

project which is cross-team and where data should be available to several different

teams for the project’s duration. Without hierarchical roles, this would mean editing all

involved teams, granting them access to the different objects (tables, views, etc.). With

hierarchical roles, you can set one role with the privileges configured and grant that role

to the teams involved in the project. As an example, when ACME is working on their

yearly Halloween candies project, this requires temporary access to different tables

for many teams. This is done using a Project Halloween role, which is granted to the

different teams as in the following example.

Chapter 6 Authorization: Data Access Control

87

As you can see in this figure, two organizational roles, one from R&D and one from

marketing, are granted with the role Project Halloween, which is granted with data

access privileges to the data objects. Since they’re using their team role, it also has access

to other data objects which they can join, and each team can even use its own virtual

data warehouse when accessing the data. As soon as the project is over, and Project

Halloween is revoked, all teams automatically lose access to the data.

Hierarchy Hell

Role hierarchy is a double-edged sword and can become a complicating factor instead

of a simplifying one. When you grant access of a role to another role, you may not

realize that this role also inherits privileges from another role which are not needed by

the role, and you are giving the assignee role with more privileges that it needs, thus

increasing the risk. Likewise, when removing privileges from a role, you may be rightfully

intimidated by the possibility that an inheriting role needs this privilege and will be

affected, causing an operational issue.

Hierarchical roles can be hurting the opacity of your role hierarchy, and so, they

need to be used sparingly and in a very clear way. In addition, try to refrain from creating

a too high-tiered hierarchical structure, where you will need to recursively check a large

number of roles to find out the actual privileges of a user or a role.

Chapter 6 Authorization: Data Access Control

88

�Self-Service: Data Access Provisioning

In many organizations managing access to data, there is a process established where a

person who seeks access to data opens a ticket with IT, or directly with data engineering,

and then gets access to the data, according to the organization’s policies. This can

depend on certain things like the requester identity, business justification provided,

managerial approval, data owner approval, etc.

Actually, in some organizations, such processes do not exist, and decisions are

ad hoc. In this case, our recommendations are to start with creating such clear data

access policies so that decisions are consistent and make sure data is available to those

who need it while not creating too high of a risk.

There are several problems with such “rubber stamp” processes:

•	 Data engineers are spending a lot of time granting and revoking

access to data (because they’re the ones who can do it), instead of

doing more productive things.

•	 This entails in many cases a delay to the availability of data for the

consumers.

•	 In certain cases, this pressure can even degrade security when data

is granted not according to policies because corners are cut when the

data engineering teams are “under attack” by many data consumers

who want access. They may give too broad access just to streamline

the process.

In such cases, it makes sense to allow self-service access to data, based on such

processes. There are several ways to do this; let’s discuss them.

Role Creation Delegation

The discretionary data access model in Snowflake allows users to grant access to roles,

and not just a centralized team; this can be done by delegating data access granting to

the data owners within Snowflake. This means that you can give role owners the ability

to grant other users with that role and so de-centralize the access management.

There are several issues with this, making it unpopular in organizations. Not all data

owners have sufficient knowledge in Snowflake outside of querying data, and not in all

cases it makes sense to teach them how to do that (they do have their “day jobs” as well).

Chapter 6 Authorization: Data Access Control

89

Building a Self-Service Portal

For certain organizations, it makes sense to not only provision users and groups but also

to provision data access by using an application. This is done by creating an application

that supports workflows that automates access to data. As an example, the application

can enable users to request access to certain schemas or databases, which triggers a

workflow that ends up in approving the access. A daemon process can then revoke the

temporary access after a certain amount of time.

This means that at the end of the day, the organization has a data marketplace, which

allows it to make data available easily and in a transparent manner, while not breaking

compliance and reducing risks, as whenever a user requests access to data, the request is

audited, and if needed, the workflow may require authorizations from business owners.

In some organizations, this self-service application may even contain the option to

create new data objects by data owners. In such cases, the application acts as a wrapper

around the Snowflake, and using it is using it as a platform to set up new ingestion

pipelines and then to assign privileges for data consumers to use the data.

The main downside of this approach is the investment involved in setting up such

a service and making sure that it remains up to date. However, such self-service portals

can allow users to log in to a wrapper application, where they can see available datasets.

This can either be built on top of the private data exchange listings (see Chapter 8,

“Secure Data Sharing with Snowflake,” for that) or built based on privilege grants.

Let’s say that in ACME Candies, the customer support department offers temporary

self-service access to a database of support data they think may be helpful to other teams

as well. When a user logs into the application, they can request access to the dataset.

This may trigger some sort of a process inside the organization, with or without the

need for an approval, but the result will be that the provisioning application will send

Snowflake the following command:

GRANT ROLE cs_shared TO ROLE <user_team_role>;

This application can even have a service that runs periodically and revokes those

temporary grants. There are several ways to implement this – temporarily granting the

privileges themselves to the user’s team role or giving the user a temporary role with the

needed privileges. Keep in mind that assigning a new role may not be the best option as

the user will not be able to join the data with other data they have access to from other

roles or use another data warehouse.

Chapter 6 Authorization: Data Access Control

90

�Third-Party Solutions

There are third-party solutions that can integrate with Snowflake to provide data

access management. These vendor solutions come in several flavors which have their

advantages and disadvantages and either orchestrate setting of privileges in Snowflake

or perform the data access control on the network level.

The main advantage of using such tools is that you can have a more rich set of access

control abilities such as attribute-based access control (ABAC) or even self-service

access control, without having to build and especially maintain such complexities.

In many cases, these third-party solutions also provide the same enhanced

functionality for other (non-Snowflake) data environments, so you can have a clear data

access strategy across different data stores. The downside is that these services incur

additional costs.

6.3.4.  �Creating Your Own Blend of Data Access
The previous list of data access options should not make you a fanatic. We hope that

you’ve seen that each model has its advantages and disadvantages and that in many

cases you don’t want to go with only one solution. It is more than okay to do cherry

picking and create a more elaborate plan that treats certain parts of your data in one way

and others in another.

For example, you may decide to have your data separated into sensitive and

nonsensitive data (if that even makes sense for your organization) and have a more

strict access control model on the sensitive data, while using a more loose model on the

nonsensitive data.

A good example of a balanced approach is to give functional roles to users based on

their organizational roles and then attach specific “building block” roles to these roles.

6.4.  �Fine-Grained Data Access Control
So far we’ve dealt with access to securable objects. In Snowflake, that means that we

assign access down to the database, schema, or table level, but in several cases, we

want to be even more granular than that and authorize or restrict access to parts of the

data. We may give access to a specific table to a set of roles, but restrict access to specific

columns or rows only for a subset of these roles.

Chapter 6 Authorization: Data Access Control

91

In this section, we will discuss the cases where it makes sense to have a more

fine-grained access control and how to set it up.

6.4.1.  �Column-Based Access Control
You may encounter this also as column-based security, column-level access control,

or column-level security. Sometimes, this comes as a requirement to mask data based

on columns. Whatever it is called, in the technical level, it means that you have certain

tables where different people can access different columns, according to their needs or

access level. In most cases, this is due to the types of data stored in different columns,

which map to groups of people who are eligible to access such types of data.

For example, a table may contain a lot of information about the employees in ACME

Candies, and you want to allow only HR employees access to certain details (such

as employee ratings); only a certain team should be able to access employees’ bank

account details so they can deposit their salaries, while the employees themselves can

update their contact information.

In databases, there are several approaches to column-level security. In some

platforms, you can set access permissions at the column level (in the same way you grant

access to a table, you grant access to specific columns). In Snowflake, the access control

mechanism’s most granular object is a table (or a view), so you can’t set access to specific

columns only. You can, however, create column-level security in other ways, as we will

see here.

It is important to note that there are several ways to go about when redacting the

data. Data can be completely deleted, but it may also be masked. As we will see, masking

data gives better flexibility of removing parts of the data to retain more data processing

value, while still anonymizing data. For example, the data scientists in ACME Candies

should not see the personal details (such as customer names) of candy tasters, but

when they process data, they may want to get a hash (unique identifier) of the taster’s

identity, so they can make data analytics with relevancy for the unique tasters (to know

each taster’s results across the data, without knowing their true identity). In the same

way, perhaps ACME wants them to have access only to the phone number prefix (as it

indicates the region), but not to the complete phone number.

Let’s discuss ways to achieve column-level security, as some of them have

advantages over others, and which one you will implement depends on the exact

problems you’re trying to solve and the scale of your operations.

Chapter 6 Authorization: Data Access Control

92

�Static Cloning of Data

An obvious way to give users a subset of the data is to create copies of the data, with

redacted information, suited for the different people accessing the data. This means that

per our example, HR will get a table with the employee details containing the employee

ratings, accounting will get a copy with the bank account details, and so on. The rest of

the data can either be copied, masked, or not copied at all. That means that the tables

may retain the exact same schema, with redacted data, or get tables with fewer columns.

To do so, the traditional way of anonymizing data is to create several copies of the

same data and allow access to the tables containing the data with the sensitivity level

which correlates with the users’ access level. The data is traditionally copied by ETL

processes, to different locations, where the access controls are placed. There are several

ways to do so in Snowflake, including using tasks.

The upside is that this may create a very clear separation between different versions

of the data. Objects clear for a certain access level may be placed in a certain location

(database or schema) to make the borderline between different levels of anonymization

very clear. However, this approach has several disadvantages.

It is usually done in intervals, and the freshness of the data is updated accordingly.

For example, if the ETL process is daily, the teams accessing the anonymized copies are

getting stale data. This may or may not be crucial to your operations, depending on the

business use case. If it does not require up-to-date data, this is not a deal breaker.

This method is intensive on data writing. This means that once you set up such

copies of the data, they are created whether or not the data is needed. This is also true to

the storage used (though in Snowflake this is not a major expense). This means that this

method is by design better for situations where there are intensive reads of the data, but

writing the data is okay to be in intervals.

The third disadvantage is that it creates a lot of copies of data (each table can

have several duplications to different teams, and there may be a large number of

such tables). In addition to the storage costs, this creates problems when you want to

retroactively change anonymization levels (e.g., consider an audit that says that a certain

anonymization is not good enough) and may grow to situations where the whereabouts

of data start to be messy.

Finally, someone needs to write and maintain the ETLs, which – depending on the

complexity and amount of different types of data and number of duplications needed –

may add overhead to the data engineering teams.

Chapter 6 Authorization: Data Access Control

93

As a result of these disadvantages, the usage of static copies of data is often not the

best choice. However, in certain situations, it may still be valid, and the conditions are

intensive reading, freshness of the data not being a major issue, and that you perform

this in a way that is still organized and governed. The latter condition often means that it

works better for a smaller number of tables.

Some of the disadvantages of static copies of the data can be negated if instead of

creating actual copies of the data, you create an abstraction by using views. That means

that instead of actually copying the data to other tables, you create a view that filters the

data per the restrictions you want to put in place.

This eliminates the need for writing ETL, as the logic of the data redaction moves to

the views. It also means that the data is fresh, as it is pulled from the underlying tables.

That means that in most use cases, it is a preferred way over copying data (making this

an ELT, rather than an ETL).

Another point to consider is that when you’re cloning data, it is the ability to perform

k-anon anonymization. This means anonymizing items according to minimal item group

sizes that enables de-anonymization of data. This is a less straightforward process that

can be done on data, converting it to an anonymized table. Snowflake also has such a

capability in development (at the time of writing) that enables it to create an anonymized

view from a table, with a k-anon anonymization level based on a group size provided by

the user. The result is planned to be such a statement that will anonymize the table:

// Anonymize purchases table into the anonymized_purchases view, with a k of 7

CALL SYSTEM$ANONYMIZE('purchases', 'anonymized_purchases', 7)

�Abstraction by Using Secure Views

An even more dynamic way than by using views to create virtual duplicated tables is

using views to dynamically serve different data according to the user requesting the data

or, more commonly, according to their role. In this case, we will check the identity of

the data consumer with functions such as CURRENT_USER(), CURRENT_ROLE(), or

IS_ROLE_IN_SESSION() and perform the logic accordingly.

This way we can check whether the user is a part of a certain IdP group (as long as it’s

propagated from the IdP to Snowflake, see Chapter 4, “Authentication: Keeping Strangers

Out,” for information about that). Whenever someone has a certain role (or lacks a

certain role), we can give them a different value for a certain column.

Chapter 6 Authorization: Data Access Control

94

When doing this, we recommend using secure views over regular views. A secure view

is a Snowflake-specific type of view that has two additional features to a regular view. The

first is that the user can’t read the view definition (unless the user is the owner of the secure

view), which may be better to conceal the exact logic according to which you limit access

to sensitive data. The second is that it cancels certain optimizations used by Snowflake,

through which users can infer values which they don’t have access to.

As an example, let’s say that there’s a single table where ACME Candies stores

employee details. However, based on the role of the user accessing the data, they would

like to give different results. Let’s first set a mock employee’s table and fill it with mock

data:

CREATE TABLE employees_table (

 employee_id integer,

 employee_name text,

 home_address text,

 home_phone text,

 salary integer,

 evaluation integer

);

INSERT INTO employees_table VALUES

(1, 'Karl Herz', '27 West Street', '555-6655', 999999, 1000),

(2, 'Anna Lytics', '26 West Street', '555-5566', 999999, 1000);

Next, let’s create three roles for this exercise – HR, accounting, and office admin:

CREATE ROLE OFFICEADMIN;

CREATE ROLE ACCOUNTING;

CREATE ROLE HR;

Finally, let’s create a secure view, which returns results from the source employees_

table table, depending on the role you are using:

CREATE SECURE VIEW v_employees AS

SELECT employee_id, employee_name,

/* Administration specific columns: */

CASE

Chapter 6 Authorization: Data Access Control

95

 WHEN current_role() IN ('OFFICEADMIN') THEN

 home_address

 ELSE

 ''

 END AS home_address,

CASE

 WHEN current_role() IN ('OFFICEADMIN') THEN

 home_phone

 ELSE

 ''

 END AS home_phone,

/* Accounting specific columns: */

CASE

 WHEN current_role() IN ('ACCOUNTING') THEN

 salary

 ELSE

 0

 END AS salary,

/* HR specific columns: */

CASE

 WHEN current_role() IN ('HR') THEN

 evaluation

 ELSE

 0

 END AS evaluation

 FROM employees_table;

As you can see here, you are getting dynamic results, based on the CURRENT_

ROLE() function. You can customize this by adding more roles to the in clause or adding

additional conditions. This technique can even be used when sharing data across

accounts, where the CURRENT_ACCOUNT() can determine what columns you will be

getting (more on that in Chapter 8, “Secure Data Sharing with Snowflake”).

Chapter 6 Authorization: Data Access Control

96

�Dynamic Masking

Dynamic masking is a feature released especially for configuring column-level security

in Snowflake. At the time of writing, it is enabled for enterprise accounts and above. With

dynamic masking, you create masking policies, which are describing the transformations

you want to apply to data. You then assign these masking policies to the columns

containing the data you want to apply anonymization on.

If dynamic masking resembles the previous method of abstraction by using secure

views, it is because that’s what it is. Behind the scenes, dynamic masking is a further

abstraction of secure views, and whenever you implement column access policies,

Snowflake uses secure views to implement the logic which serves different content to

different data consumers.

The advantage over creating the abstraction layer of views on your own is in the

reusability of the policies, which also means easier maintenance over time. In addition,

when you apply new masking logic on tables, there is no need to create a new object,

assign privileges to it, and instruct the data users to query it instead of the original table

(though this can be skipped by setting the view to the same name of the original table

and renaming the original table instead, but this often creates additional complications

in an already operational infrastructure).

The disadvantages are that you need an enterprise account, and in case the access

control logic consists of more than just column-based security, the logic may be more

easily represented in self-made secure views (or, in case you want to apply column- and

row-based access controls, you may want to use dynamic masking with row access

policies, as per the following section).

Here’s an example of setting up a dynamic masking policy and applying it. We will

apply the same transformations we applied in the secure view example previously, so in

case you skipped here, first create the table and roles per the earlier example. Now, let’s

create the masking policies:

CREATE MASKING POLICY emp_contact AS (val string) RETURNS string ->

 CASE

 WHEN CURRENT_ROLE() IN ('OFFICEADMIN') THEN val

 ELSE ''

 END;

Chapter 6 Authorization: Data Access Control

97

CREATE MASKING POLICY emp_financial AS (val integer) RETURNS integer ->

 CASE

 WHEN CURRENT_ROLE() IN ('ACCOUNTING') THEN val

 ELSE 0

 END;

CREATE MASKING POLICY emp_hr AS (val integer) RETURNS integer ->

 CASE

 WHEN CURRENT_ROLE() IN ('HR') THEN val

 ELSE 0

 END;

We are creating these three policies – one to handle contact details, one to handle

financial details, and one to handle HR-related details. Of course in a real-world

scenario, we might set one for emails, one for social security number, etc. Now, let’s

apply these policies:

ALTER TABLE employees_table MODIFY COLUMN home_address SET MASKING POLICY

emp_contact;

ALTER TABLE employees_table MODIFY COLUMN home_phone SET MASKING POLICY

emp_contact;

ALTER TABLE employees_table MODIFY COLUMN salary SET MASKING POLICY

emp_financial;

ALTER TABLE employees_table MODIFY COLUMN evaluation SET MASKING POLICY

emp_hr;

At this point, you may be thinking to yourself that this is not saving a lot of time over

doing the same using a secure view. However, the benefits are that you don’t need to

have a view for each filtered table, and once you create policies, you can apply them on

multiple tables easily. In addition, as a built-in feature, it can be monitored and governed

better, which we will see in Chapter 7, “Auditing and Monitoring.”

Another relevant issue around dynamic masking you may want to be aware of is

a feature which was announced but not released yet (at the time of writing) called

conditional masking. Conditional masking allows you to mask a certain column, based

on the value of other columns. For example, it may mask all names from certain regions

or mask phone numbers of people defined as customers, but not for employees.

Chapter 6 Authorization: Data Access Control

98

�Column-Based Security for Semi-structured Data

In certain conditions, you may want to limit access based on semi-structured locations

of data (using the term “column” broadly in this context). For example, ACME may have

a JSON containing test results as part of a table, and this semi-structured data contains

fields which should be available only to certain users or roles.

When we want to implement access control over semi-structured data, things can get

more complicated than on regular columns. Here’s how to implement it as part of a view

abstraction, and here’s how to implement it in dynamic masking.

Let’s assume that there is a table with extra employee details that needs to be

masked, because they have the past evaluations of the employees. Let’s first create the

mock table and add some data to it:

CREATE TABLE employee_extra_details (employee_id integer, details variant);

INSERT INTO employee_extra_details (employee_id, details)

SELECT 1, PARSE_JSON('{"hobbies": ["hiking", "food"], "last_evaluation": 100}');

Now, let’s create the transformation function. This function takes the JSON content

and edits here:

CREATE OR REPLACE FUNCTION get_masked_extra_details(v variant)

RETURNS variant

LANGUAGE javascript

AS

'

V["last_evaluation"] = -1;

return V;

';

We can now create the dynamic policy that uses this function:

CREATE OR REPLACE MASKING POLICY data_mask_variant AS (val variant) RETURNS

variant ->

CASE WHEN CURRENT_ROLE() IN ('HR') THEN val

ELSE get_masked_extra_details(val)

END;

Chapter 6 Authorization: Data Access Control

99

And finally apply it:

ALTER TABLE employee_extra_details

MODIFY COLUMN details

SET MASKING POLICY data_mask_variant;

As you can see

	 1.	 You can apply the same on a secure view, with the same

comments we made about using a secure view vs. using a dynamic

view.

	 2.	 Dynamic masking of semi-structured data, especially when it is

not constant in its format, can be a challenging task.

�De-tokenization and Decryption

An advanced use case of dynamic masking, which can also be applied using secure

views, is to use a dynamic masking to de-tokenize or decrypt data, based on certain

roles which are querying the data. When doing so, the data is either kept encrypted,

or a token of the data is being kept in Snowflake. When querying the data, if a certain

condition is met (e.g., the role PRIVATE_DATA_ENABLED), the dynamic masking policy

calls an external function that decrypts or de-tokenizes the data in the specific column or

columns.

6.4.2.  �Row-Based Access Control
Whereas column-based access control deals with limiting access to certain columns,

which is done mainly to restrict access to certain types of data containing sensitive

information, row-based access control limits access to specific rows within tables. There

are several use cases where such requirements come into play, such as

	 1.	 Regional separation – Where you want to restrict access to

certain records based on the region of each record. An example of

this is due to privacy requirements, which requires placing access

control restrictions over access to information on data subjects of

specific locations (such as the EU).

Chapter 6 Authorization: Data Access Control

100

	 2.	 A multi-tenant environment – Where certain tables contain data

which should be limited when retrieved to different tenants using

the data.

	 3.	 Team-based data ownership – An example we’ve seen is in

financial institutions, where there are analyst teams who should

only be allowed to view details of specific customers. This often

also requires some sort of hierarchy, where certain roles should

have access to several analyst teams’ data.

Sometimes, such row-level security is implemented by an application accessing the

data, but in terms of security, it is always better to have a defense-in-depth approach and

apply the access restrictions in the data infrastructure layer as well.

�Implementing Row-Level Security Static Copies

Similar to column-based security, one approach is to separate subsets of the data in the

tables to multiple locations, based on the row-level logic. That means that if you have

teams based on countries, you will either store the data according to such restrictions

from the get-go or will create the separation later on. You can use Snowflake tasks to

perform the ETL tasks of creating the copies of the data containing only the required

rows or use secure views to give such access.

The advantages of this, in a simple case, can be that there are very clear boundaries

between the different “regions.” If, as an example, only EU employees of ACME should

be able to access EU customers’ data, you can set them up with an appropriate IdP

group which will be propagated to Snowflake, and only this role will have access to the

customers_eu table.

The disadvantage of this is that when things get complicated, the maintenance

required with making all these duplications can backfire and can leave you with a

messy database, which can lead to security issues as well as to a lot of data engineering

resources spent on this, especially when there are a lot of subgroups, tables, and changes

to the data schemas, users, and roles.

In addition, if the data is totally separated, getting data about the entire dataset

can prove difficult (e.g., when a team needs to produce global reports). This is another

example of why it’s important to understand the requirements from the different teams,

to make the correct data access decisions.

Chapter 6 Authorization: Data Access Control

101

�Implementing Row-Level Security Using Secure Views

A more dynamic approach would be to use secure views, which will contain the filtering

logic according to the row-level security requirements. This will be done dynamically,

based on the user or role used to pull the data. The user will query the view, instead of

querying the underlying table, which will filter only the relevant rows.

First, let’s create a sales table, with some mock data, to show regional sales for ACME

Candies:

CREATE TABLE sales_summary (sale_id integer, tcv integer, acv integer,

customer_name text, region_id integer);

INSERT INTO sales_summary (sale_id, tcv, acv, customer_name, region_id)

VALUES

(1, 333, 111, 'User 1', 1),

(2, 333, 111, 'User 2', 2),

(3, 333, 111, 'User 3', 1),

(4, 333, 111, 'User 4', 3),

(5, 333, 111, 'User 5', 3),

(6, 333, 111, 'User 6', 2);

Now, let’s create a mapping table, showing the regional entitlement of each role:

CREATE TABLE rows_filtering_by_regions (role_name text, region_id integer);

INSERT INTO rows_filtering_by_regions (role_name, region_id) VALUES

('REGION2', 2);

Finally, let’s create the secure view, with the logic to filter the results based on the

users’ roles:

CREATE SECURE VIEW v_sales_summary AS

SELECT sale_id, tcv, acv, customer_name, region_id

FROM sales_summary

WHERE region_id IN (

 SELECT region_id FROM rows_filtering_by_regions

 WHERE role_name=CURRENT_ROLE()

);

Now, only users accessing the data with the REGION2 role will be able to see sales in

region 2.

Chapter 6 Authorization: Data Access Control

102

We may want to make use of the CURRENT_AVAILABLE_ROLES() function instead,

to allow us to see all results meeting any of the roles we have enabled to our users. In this

case, even if we are not currently using REGION2 when accessing the data, we will see

all results from our region. This also enables us to assign several regions (or other row-

based filters) to the same user(s). This is our secure view in this case:

CREATE OR REPLACE SECURE VIEW v_sales_summary AS

SELECT sale_id, tcv, acv, customer_name, region_id

FROM sales_summary

WHERE region_id IN (

 SELECT region_id FROM rows_filtering_by_regions

 WHERE role_name IN (SELECT value FROM TABLE(flatten(input => parse_

json(CURRENT_AVAILABLE_ROLES()))))

);

�Abstraction by Using Secure UDFs

Sometimes, you want to create an even more fine-grained access control by using secure

functions instead of secure views. Secure functions, like secure views, are eliminating

certain optimizations, preventing data guessing, and they also block non-owners from

viewing their logic itself. The advantage of a secure function is that you can use them

with parameters, to limit pulling the data by certain parameters.

For example, ACME Candies may create the following secure function that will be

exposed from HR, to only respond if a certain employee exists in the database:

CREATE SECURE FUNCTION is_employee (employee_to_check string)

RETURNS BOOLEAN AS

'EXISTS (

SELECT 1 FROM employees_table

WHERE UPPER(employee_name) = UPPER(employee_to_check))';

Same can be applied for pulling complete tables based on row- and column-level

security. More on secure functions can be found also in Chapter 8, “Secure Data Sharing

with Snowflake.”

Chapter 6 Authorization: Data Access Control

103

�Row-Level Security in Semi-structured Data

As with column-level security, things get a bit more complicated when semi-structured

data is involved. This means that you will need to change the logic to filter according

to certain conditions in the JSON element stored within the record. As an example,

the operational teams may only be able to pull data with the “event_type” set to

“operational” in a variant column.

Let’s first create mock tables with some mock data. We’ll create a soc_events table

and a mapping table showing which role can access what event types:

CREATE TABLE soc_events (event_id integer, details variant);

INSERT INTO soc_events (event_id, details)

SELECT 1, PARSE_JSON('{"event_data": "some data goes here...", "event_

type": "operational"}');

INSERT INTO soc_events (event_id, details)

SELECT 2, PARSE_JSON('{"event_data": "some data goes here...", "event_

type": "non-operational"}');

CREATE TABLE soc_events_mapping (role string, event_type string);

INSERT INTO soc_events_mapping

VALUES ('OPERATIONS', 'operational');

Now, let’s create the view, with the filtering logic:

CREATE SECURE VIEW v_soc_events AS

SELECT * FROM soc_events

WHERE details:"event_type" IN

(SELECT event_type FROM soc_events_mapping WHERE role = CURRENT_ROLE());

Finally, let’s create the operations’ role and grant it with access to the secure view:

CREATE ROLE operations;

GRANT USAGE ON DATABASE <DB> TO operations;

GRANT USAGE ON SCHEMA <DB>.<SCHEMA> TO operations;

GRANT USAGE ON <WAREHOUSE> TO ROLE operations;

GRANT SELECT ON VIEW v_soc_events TO ROLE operations;

GRANT ROLE operations TO USER <USER>;

Chapter 6 Authorization: Data Access Control

104

Now, when we run the following query, we should get only the operational events:

USE operations;

SELECT * FROM v_soc_events;

�Snowflake Row Access Policies

Instead of writing your own implementation of row-based security, you can use

Snowflake’s row access policies. Similar to dynamic masking, row access policies are

created once and can be then applied on one or more tables or views. In this case, unlike

dynamic masking, the policy defines the filtering to apply, so that users are getting rows

from the table based on specific conditions.

For example, ACME Candies wants to allow access to the raw sales data based on the

regional entitlement of the roles. We will create a mock raw sales data on which we will

apply the policy and a mapping table, mapping the entitlement of the different regions to

the roles.

First, let’s create the mock data:

CREATE TABLE sales_raw (sales_info string, region string);

INSERT INTO sales_raw VALUES ('test', 'eu'), ('test2', 'us');

CREATE TABLE sales_entitlements (role_entitled string, region string);

INSERT INTO sales_entitlements VALUES ('SALES_EU', 'eu'), ('SALES_US', 'us');

Now, let’s create the row access policy, which defines that if the requesting role is

SALES_ADMIN, they will see all sales, regardless of region. However, other roles will

be looked up in the mapping table, to check if the current role can view data from the

specific region:

CREATE ROW ACCESS POLICY regional_access AS

(region_filter VARCHAR) RETURNS BOOLEAN ->

CURRENT_ROLE() = 'SALES_ADMIN'

OR EXISTS (

 SELECT 1 FROM sales_entitlements

 WHERE region = region_filter

 AND role_entitled = CURRENT_ROLE()

);

Chapter 6 Authorization: Data Access Control

105

Now, what we do is apply the regional_access policy on the region column of

sales_raw. This flexibility of applying the policy on a specific column (or columns) can

help when in another table that column may be called item_region or customer_region

instead of region. Here is the assignment command:

ALTER TABLE sales_raw ADD ROW ACCESS POLICY regional_access ON (region);

Some final notes on row access policies:

•	 Row access policies can also be applied on external tables, which can

make secure data access faster, as it may reduce or eliminate ETLs

needed to be done on such data.

•	 Row access policies and dynamic masking policies can work

alongside each other.

•	 Row access policies (unlike secure views) also work when deleting or

updating data.

�Hierarchical Row-Level Security

As mentioned earlier, in certain situations, it makes sense to configure a hierarchical

row-level security model. This solves for an organization where certain teams require

access to specific rows, and “parent” teams need access to data of several of these teams’

data. For example, in ACME Candies, there are regional account executive teams, and for

each group of regions, there is a managing team that should have access to all the data

within all their regions.

There are several ways to go about this. You can use Snowflake’s built-in hierarchical

role model and grant access of all privileges of the regional teams to the management

team role, or you can add the hierarchy to the view abstraction layer itself. The way to do

this depends on how you model your roles, which should be based on what will make

sense and be the cleanest long-term way to maintain roles and entitlements.

6.4.3.  �Combining Column and Row Security
Having column-level security does not mean you don’t need row-level security and vice

versa. In fact, in many cases, we are blessed with the opportunity to implement both row-

level security and column-level security on the same data. The good news is that you can

do so quite easily, regardless of the way you choose to implement each restriction.

Chapter 6 Authorization: Data Access Control

106

For example, dynamic masking can be applied on a view, so if you choose to

implement row-level security by a view abstraction layer, you can then apply dynamic

masking on its results. You can also implement both logics in the filtering done in the

view level. Here’s an example for that. Finally, and that would probably be the most tidy

way in most scenarios, you can implement both as policies (dynamic masking and row

access policies).

If there’s one thing to stress here, it is to have these processes well documented

within your organization, as they can become a sore spot for knowledge transfer and

things not working, resulting in either giving too much access to data which increases

security risks or creating an organizational bottleneck around, well, you (if you’re the

one setting up such permissions).

6.4.4.  �Attribute-Based Access Control
Snowflake does not officially have attribute-based access control (ABAC). This does

not mean that you can’t, at least partially, implement ABAC in Snowflake and set

specific access control based on specific policies. As an example, if we want to create

limitations over the tool which your users are using when accessing specific data, you

can implement that using the CURRENT_CLIENT() context function.

As an example, in ACME Candies, customer success engineers are given a Snowflake

user, but the security policy to be enforced is that they only access incident data from

Snowflake’s UI. To do that, let’s assume we have an incidents table; we can create the

following overlay view:

CREATE SECURE VIEW v_incidents AS

SELECT * FROM incidents

WHERE CURRENT_CLIENT() LIKE 'Snowflake UI%';

Now, if we grant the customer success team’s role with access to v_incidents, the

filter of the client type will always be applied, and only if it is Snowflake’s UI, they will

be able to query the data. This may also be combined with other restrictions, of course.

However, when doing so, please remember that if these restrictions are not visible, they

may come to haunt you when someone tries to query data and they fail for no obvious

reason. You can preemptively look in the query and access log to understand the impact

of such operations (for more information about those logs, refer to Chapter 7, “Auditing

and Monitoring”).

Chapter 6 Authorization: Data Access Control

107

6.4.5.  �Self-Service Access Control
In certain cases, especially when the organization is mature in its data consumption,

and has a large number of data consumers, and many different types of data, there arises

a need for allowing self-service access to data. The logic behind this is that if we can

automate the processes of authorizing data to data consumers, we can get data faster to

its consumers (which translates to better value for the data, as time is often an important

factor in such projects) and maintain the same level of security.

The process of allowing self-service to data consists of provisioning the data

authorization by an external application that grants and revokes access to the data,

according to certain workflows. In its simplest form, it’s a replacement of something that

data engineers are doing as a “rubber stamp.” For example, if the process of authorizing

data is that when the employee opens a ticket, gets approval from the data owner, and

then a data engineer runs the grant access command, it can be automated without the

need of the data engineer.

The main downside of such a system, which is also the reason why this is not the right

solution for all organization sizes is that someone needs to develop the application and

maintain it over time. In addition, it only makes sense to create such a system when there is

enough structure and a clear process. If, for example, the self-service application “doesn’t

know” who the data owner is, if the process requires their approval, things will break.

6.4.6.  �Third-Party Solutions
As we’ve seen, there are different ways to set access to data in Snowflake, including fine-

grained access control such as row-based and column-based security. There is a trade-

off between the amount of security value you’ll be getting and the amount of effort you

will need to invest when setting things up and in ongoing maintenance.

However, another option is to use a third-party solution. These solutions add better

data security and governance on top of Snowflake (and other data platforms). They

usually give you better tools for managing roles, permissions, and fine-grained access

control in scale and offer additional functionality. Such solutions will usually either

handle the security on the Snowflake side by creating the different objects for you or

perform the security as a network proxy.

Chapter 6 Authorization: Data Access Control

108

6.5.  �Rolling Out Access Control Changes
In production systems, changes in code and configuration should be rolled out in a safe

way. The world of software development is a bit more structured in that regard, and

in database management, sometimes, there is a tendency to just apply configuration

changes. It is important to attempt to be as methodical as possible in changes to access

controls.

In your organization, we recommend that you set a process for access control

changes, especially the more complicated ones mentioned earlier. If you’re introducing

new fine-grained access control which is a big leap, first apply them in testing and

staging environments and let the relevant data consumers (analysts, data scientists, data

accessing applications, etc.) work with the new access control model, to make sure that

everything is working properly.

6.6.  �Summary
In this chapter, we discussed data access control or authorization to data. This is a very

important topic in data security, and we hope that you enjoyed learning about the

different ways you can balance between security and productivity. Building a model

that works for your organization, is well documented, and is understood by the data

consumers in the organization is at the heart of giving a secure data processing service.

Using the tools in this chapter, you can probably find the most efficient way for your

organization to operate in a clear role structure and use the tools needed to protect your

data from unauthorized exposure.

Chapter 6 Authorization: Data Access Control

109
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_7

CHAPTER 7

Auditing and Monitoring
An important part of security is visibility and logging. The ability to have an audit of the

actions performed on the protected assets (in this case Snowflake) is important both

from a compliance perspective and to mitigate security risks. The ability to monitor your

Snowflake accounts allows you to focus your efforts around security and know when

stuff needs attention or goes wrong.

You’d be happy to know that many parts of the work required with getting your

auditing and monitoring up and running require little effort on your end.

Throughout this chapter, we’ve added examples that will help you get started in

making value from the raw data that Snowflake offers. These examples, we hope, are

enough to help you get started in setting up your own monitoring and auditing, as there

are a lot of individual preferences when it comes to keeping track of security issues.

7.1.  �Snowflake Audits Characteristics
Before digging into the various metadata that you can acquire from Snowflake’s views

and functions, here are a couple of features that make auditing of Snowflake data easier

than most equivalent platforms.

7.1.1.  �Every Operation Is Audited
Unlike other data warehouses, which in many cases require specifically configuring

logging of access to the database, as well as logging of all queries running on the

database, Snowflake logs both of these as an audit log. Not only does it log it, but the

logging is retained for a significant period (up to one year). This does not require

activating or configuring anything, such as a storage bucket to keep the logs.

As we’ve encountered cases where people asked themselves “where are the logs,”

only to find out that no logs were configured, this is a breath of fresh air.

https://doi.org/10.1007/978-1-4842-7389-0_7#DOI

110

7.1.2.  �Audits Are Available via… Snowflake
Not only are the logs working out of the box, but the logs are also very accessible, as

you can query them as Snowflake views or table functions. This makes it easy for data

engineering teams, who are using Snowflake themselves, to query the data quickly with

SQL statements or to build dashboards on top of it.

7.2.  �Snowflake Metadata
The access logs and query logs are part of the metadata kept in Snowflake for your

account objects and usage. Having both the logs and the configuration, in one

place, enables you to perform analytics that can help you better adhere to security

requirements and help you keep better track of relevant security issues, such as

overprivileged users, access problems, and identify bad security practices.

7.2.1.  �Account Usage vs. Information Schema
Metadata views are accessible from two locations in Snowflake. One is the information_

schema schema that’s available for each database in your Snowflake account, which we

will refer to as “information schema” from now on. The other is the schema account_

usage, inside the database called Snowflake, that’s available in all Snowflake accounts.

While the information schema contains a more up-to-date configuration of the specific

database, the account usage views contain delayed metadata logging. The data in the

information schema is further divided into views and table functions.

The main differences between the metadata in the information schema and that in

the account usage are as follows:

	 1.	 Data in the information schema views are up to date with the

current configuration of your Snowflake account, while it takes a

while for the data to appear in the account usage views. The time

it takes depends on the specific view but is somewhere between

45 minutes and 3 hours. You can see the specific data latency per

view in the documentation.

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/sql-reference/account-usage.html

111

	 2.	 The account usage data also contains data for dropped objects.

This is of utmost importance for security auditing and monitoring,

as we don’t want to ignore objects which do not exist anymore.

	 3.	 The retention time for historical data in the information schema

is only between a week and six months (depending on the specific

view). The retention time for account usage can be up to one year.

	 4.	 Retrieving and processing data from the account_usage views may

take a long time, even for relatively simple queries. In fact, if you

are doing intensive analytics on the metadata, it might be a good

idea to temporarily copy the data to separate tables.

You can view the full list of views, along with their retention time, and the

information contained within each one of them in the documentation.

7.2.2.  �Relevant Views for Security in
Snowflake.account_usage

Before digging in and looking at the data, we thought it would be good to give an

overview of the views where you can find the most relevant information for security

purposes. The following views are all in the account usage schema. Note that some of

these views are more useful than others, and we will concentrate on them throughout

this chapter, and there may be others with some security implications, but also with

useful operational metadata that you can use to track metrics related to storage, costs,

and more.

It is important to note that you need to use an ACCOUNTADMIN role to be able to

query the SNOWFLAKE database metadata tables. As we already explained before, using

the ACCOUNTADMIN should be used sparingly and mostly only to create other objects

and assign privileges to roles. In this spirit, before we query the SNOWFLAKE database,

we may want to either use one of the “lesser administrative roles” to access this database

or have a dedicated role for accessing this database. In ACME Candies, the chosen role is

log_analyzer, and so, as an ACCOUNTADMIN, let’s create the new role and grant it with

the required privileges:

CREATE ROLE IF NOT EXISTS log_analyzer;

GRANT IMPORTED PRIVILEGES ON DATABASE snowflake TO ROLE log_analyzer;

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/sql-reference/account-usage.html

112

�GRANTS_TO_ROLES

This view lists the different privileges granted to Snowflake roles. As mentioned earlier in

Chapter 6, “Authorization: Data Access Control,” privileges in Snowflake are given strictly to

roles, and this view contains all the different privileges that were granted to roles, including

those which were revoked. From a security point of view, sometimes the latter tend to be

significant, and monitoring the deleted privileges may be as beneficial as looking at the

existing privileges. When using this view, keep in mind that it has a latency of up to two hours.

This view contains the following data:

•	 CREATED_ON, MODIFIED_ON, DELETED_ON – When was the

privilege created, modified, and deleted (NULL if not deleted)?

•	 PRIVILEGE – What type of privilege is this (e.g., ownership, usage,

delete, select)?

•	 GRANTED_ON – The object type on which the privilege was granted

(e.g., table, schema, database, file format).

•	 NAME – The object name on which the privilege is granted (e.g., the

table name, schema name, database name, or file format type).

•	 TABLE_CATALOG, TABLE_SCHEMA – The database and schema in

which the object is located.

•	 GRANTED_TO is always the string “role,” probably there to remind us

that all privileges in Snowflake are assigned to roles.

•	 GRANTEE_NAME, GRANTED_BY – The role to which this privilege is

granted and the role which granted this privilege.

•	 GRANT_OPTION – If the value is TRUE, the grantee may grant this

privilege to other roles.

Examples

The following query will retrieve the list of 20 last revoked privileges:

SELECT * FROM snowflake.account_usage.grants_to_roles

WHERE DELETED_ON IS NOT NULL

ORDER BY DELETED_ON DESC

LIMIT 20;

Chapter 7 Auditing and Monitoring

113

The following query will retrieve the list of 20 last changes/grants to the PUBLIC role.

Note that granting privileges to the PUBLIC role is recommended to be used sparingly,

as this role is given to all users.

SELECT * FROM snowflake.account_usage.grants_to_roles

WHERE DELETED_ON IS NULL

AND GRANTEE_NAME='PUBLIC'

ORDER BY MODIFIED_ON DESC

LIMIT 20;

�GRANTS_TO_USERS

This view lists the roles which were granted to the users in your Snowflake account,

including those which were revoked. When using this view, keep in mind that it has a

latency of up to two hours.

This view contains the following data:

•	 CREATED_ON, DELETED_ON – When was the privilege created and

deleted (NULL if not deleted)?

•	 ROLE – Which role was granted to the user?

•	 GRANTED_TO is always the string “user”.

•	 GRANTEE_NAME, GRANTED_BY – The user to which this role is

granted and the role which granted this role.

Examples

The following query retrieved all users which were granted with the ACCOUNTADMIN

role. You’d want to limit this role to a small selection of administrators and enforce the

strongest access control and auditing on them, as this is the equivalent of a root access to

a server.

SELECT * FROM snowflake.account_usage.grants_to_users

WHERE ROLE='ACCOUNTADMIN'

AND DELETED_ON IS NULL;

Chapter 7 Auditing and Monitoring

114

�LOGIN_HISTORY

This view is also known in other databases and systems as the access log, and it shows all

failed and successful logins to your account. Login events are significant security events

and should be audited and monitored both from a security point of view and from a

compliance point of view. When using this view, keep in mind that it has a latency of up

to two hours.

This view contains the following data:

•	 EVENT_ID – An identifier for the login event; may be helpful when

joining with the SESSIONS view.

•	 EVENT_TIMESTAMP – The timestamp of the login event.

•	 EVENT_TYPE is always “LOGIN”.

•	 USER_NAME – The user who made the failed/successful login.

•	 CLIENT_IP – The IP address from which the user connected.

•	 REPORTED_CLIENT_TYPE and REPORTED_CLIENT_VERSION –

The tool reported by the user when connecting.

•	 FIRST_AUTHENTICATION_FACTOR – The authentication factor

used, such as PASSWORD or OAUTH_ACCESS_TOKEN.

•	 SECOND_AUTHENTICATION_FACTOR – The second authentication

factor used by the user (NULL if none), for example, DUO_PASSCODE.

•	 IS_SUCCESS – Whether the login attempt was successful.

•	 ERROR_CODE and ERROR_MESSAGE – The error which prevented

the login from being successful.

Examples

The following query shows the top ten users with the most IP addresses used for logins

in the last month. Users connecting from several different IP addresses may indicate a

security issue or a need to revise the network policies (see the corresponding chapter):

SELECT USER_NAME, COUNT(DISTINCT CLIENT_IP) AS NUM_OF_IPS

FROM snowflake.account_usage.login_history

WHERE EVENT_TIMESTAMP >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

Chapter 7 Auditing and Monitoring

115

GROUP BY 1

ORDER BY 2 DESC

LIMIT 10;

The following query shows the last ten failed logins in our system (remember that it

takes up to two hours for the logins to appear in the view):

SELECT EVENT_TIMESTAMP, USER_NAME, CLIENT_IP, REPORTED_CLIENT_TYPE, FIRST_

AUTHENTICATION_FACTOR, SECOND_AUTHENTICATION_FACTOR, ERROR_CODE, ERROR_

MESSAGE

FROM snowflake.account_usage.login_history

WHERE IS_SUCCESS = 'NO'

ORDER BY event_timestamp DESC

LIMIT 10;

The following query shows the top ten users with the most failed logins in the last

month:

SELECT USER_NAME, COUNT(1) AS NUM_OF_FAILED_LOGINS

FROM snowflake.account_usage.login_history

WHERE EVENT_TIMESTAMP >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

AND IS_SUCCESS='NO'

GROUP BY 1

ORDER BY 2 DESC

LIMIT 10;

�SESSIONS

This view has a high resemblance to the LOGIN_HISTORY view. It holds information

about the successful sessions only, but holds more specific data about the client

environment and the client applications used to connect to Snowflake. Since queries

have the session identifier in the query log, the data from the sessions view can be

easily joined with the data in the QUERY_HISTORY view, to create an enriched audit of

queries. The data is populated in latency of up to three hours, so keep in mind that due

to the QUERY_HISTORY view’s shorter latency (up to 45 minutes), you may get queries

which still don’t have recorded session information.

Chapter 7 Auditing and Monitoring

116

Examples

The following query uses this view together with the QUERY_HISTORY, to list SELECT

queries done by admin roles using a password authentication in the last month. As we

mentioned in the authentication method, administrators retrieving data using password

authentication is risky and should be avoided.

SELECT START_TIME, QUERY_HISTORY.USER_NAME, ROLE_NAME, ERROR_CODE, ERROR_

MESSAGE, QUERY_TEXT, AUTHENTICATION_METHOD, CLIENT_APPLICATION_ID

FROM snowflake.account_usage.query_history

LEFT JOIN snowflake.account_usage.sessions ON (query_history.session_id =

sessions.session_id)

WHERE ROLE_NAME LIKE '%ADMIN%'

AND QUERY_TYPE = 'SELECT'

AND AUTHENTICATION_METHOD = 'Password'

AND START_TIME >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

ORDER BY START_TIME DESC;

The following query shows queries using the Python connector and a password

authentication in the last month. As we learned in Chapter 4, “Authentication:

Keeping Strangers Out,” it would be best to transform those scripts to be using key-pair

authentication, to reduce their risk.

SELECT START_TIME, QUERY_HISTORY.USER_NAME, ROLE_NAME, ERROR_CODE, ERROR_

MESSAGE, QUERY_TEXT, AUTHENTICATION_METHOD, CLIENT_APPLICATION_ID

FROM snowflake.account_usage.query_history

LEFT JOIN snowflake.account_usage.sessions ON (query_history.session_id =

sessions.session_id)

WHERE START_TIME >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

AND ROLE_NAME LIKE '%ADMIN%'

AND CLIENT_APPLICATION_ID LIKE 'Python%'

ORDER BY START_TIME DESC;

�MASKING_POLICIES

This view contains the masking policies configured in your Snowflake account. This

table is useful to keep track of your masking policies. This can be if you automate

the process of managing your dynamic masking or to keep control over changes in

Chapter 7 Auditing and Monitoring

117

masking policies. The importance in tracking changes to masking policies is that this

configuration changes the level of masking performed over sensitive data retrieved from

your Snowflake account, which may lead to sensitive data exposure, and its audit may

also be needed as part of compliance requirements. When using this view, keep in mind

that it has a latency of up to two hours.

This view contains the following data:

•	 POLICY_NAME and POLICY_ID – The name and ID of the masking

policy

•	 POLICY_SCHEMA and POLICY_SCHEMA_ID – The name and ID of

the schema where the masking policy belongs

•	 POLICY_CATALOG and POLICY_CATALOG_ID – The name and ID

of the database where the masking policy belongs

•	 POLICY_OWNER – The role which owns this policy

•	 POLICY_SIGNATURE – The data type of this signature

•	 POLICY_RETURN_TYPE – The data type returned by the masking

function

•	 POLICY_BODY – The actual masking policy definition

•	 POLICY_COMMENT – The comment field used in the CREATE

command

•	 CREATED, LAST_ALTERED, DELETED – The timestamps of creation,

modification, and (if applicable) deletion of the masking policy

Examples

The following query returns the ten most recent masking policies which were deleted in

our Snowflake account:

SELECT POLICY_ID, POLICY_NAME, POLICY_BODY

FROM snowflake.account_usage.masking_policies

WHERE deleted IS NOT NULL

ORDER BY deleted DESC

LIMIT 10;

Chapter 7 Auditing and Monitoring

118

�POLICY_REFERENCES

This view shows the columns on which the masking policies are assigned. As you

probably remember (and if you don’t, feel free to hop to Chapter 6, “Authorization:

Data Access Control”), the good thing about dynamic masking is that you’re able to set

a policy once and then apply it to many different columns. The benefit of monitoring

this view is, as mentioned earlier regarding the MASKING_POLICIES view, that changes

to masking configuration are changes to the access of sensitive data in your Snowflake

account, and as such, changes to it may be risky.

Note that unlike other views in account_usage, here you will not see dropped

objects, and likewise, you will not be able to know when masking policies were

applied on specific columns. This makes tracking of masking policy assignment (and

unassignment) more challenging but not impossible, as you will still be able to see these

changes in the QUERY_HISTORY view.

This view contains the following data:

•	 POLICY_NAME and POLICY_ID – The name and ID of the masking

policy assigned

•	 POLICY_KIND – The type of policy, which is always MASKING_

POLICY, to remind us what type of business we’re into :)

•	 REF_DATABASE_NAME and REF_SCHEMA_NAME – The location

(database and schema) of the table or view on which the policy is

assigned

•	 REF_ENTITY_NAME – The name of the table or view on which the

policy is assigned

•	 REF_ENTITY_DOMAIN – The type of object (TABLE or VIEW) on

which the policy is assigned

•	 REF_COLUMN_NAME – The specific column on which the policy is

assigned

•	 REF_ARG_COLUMN_NAMES

Chapter 7 Auditing and Monitoring

119

Examples

The following query shows the dynamic policies assigned in the “production” database:

SELECT POLICY_NAME, CONCAT(REF_SCHEMA_NAME, '.', REF_ENTITY_NAME, '.',

REF_COLUMN_NAME)

FROM snowflake.account_usage.policy_references

WHERE REF_DATABASE_NAME='production';

�QUERY_HISTORY

This is one of the most important metadata views, as it contains all the queries executed

on your Snowflake account, in other databases also known as the native audit log or

query log. As almost all activities in Snowflake, even those done in the user interface, are

done using SQL statements, this will not only show you access to data but also changes

to configuration. Note that the data in this view has a latency of up to 45 minutes.

This importance is magnified, as in many other database solutions, you will need to

manually set up query logs, which may have an impact on your performance and/or costs,

in addition to being an overhead to set up. Having a query log up and running, starting

from your first query on Snowflake, and kept for a respectable one-year period, including

the out-of-the-box ability to run queries natively on this log, is a major win for Snowflake

and its users. In certain cases, you may still want to set up a process that replicates the

data to a different location, perhaps even within Snowflake, as directly querying this view

is good for ad hoc queries, but for more intense analytics, it can be quite slow.

If that’s not cool enough, the QUERY_HISTORY view also contains failed queries,

which are sometimes needed to be collected from a separate error log in other

databases, and having everything in one place is a blessing in terms of visibility.

This view will be useful in many ways, as it contains a lot of information of different

types. Many columns are useful when tracking the performance of your Snowflake

account(s), which is outside the scope of this book but may very well be within the scope

of your job role, or cool things you can add a lot of value in.

These are the most important columns in this view security-wise:

•	 QUERY_ID – The unique identifier of the query logged.

•	 QUERY_TEXT – The actual query sent. Note that although some

values are redacted in the query, such as passwords, a lot of data is

not redacted. This means that queries may contain sensitive data

such as operational or personal information. For example, a query

Chapter 7 Auditing and Monitoring

120

such as INSERT INTO USERS (…) may contain sensitive fields. As a

result of that, make sure that you limit access to the QUERY_HISTORY

only to a restricted set of users, and if you replicate the table for

analytics, make sure you are restrictive about its results as well.

•	 DATABASE_ID, DATABASE_NAME, SCHEMA_ID, SCHEMA_NAME –

The location context when executing the query. Note that even a

query running in a context of a specific schema or database can

access objects in other databases and schemas by referencing them

with their complete path (i.e., database.schema.table or database.

schema.view). That means that if you’re looking for all queries

running against objects in a specific database or schema, you will

need to also parse the QUERY_TEXT.

•	 QUERY_TYPE – The type of query logged, such as SELECT, CREATE,

and DROP, but also more specific types such as ALTER_TABLE_

MODIFY_COLUMN which can help you generate specific reports or

monitor specific operations.

•	 SESSION_ID – The session through which this query was executed.

This identifier can be used to track all queries sent throughout a

specific session, as well as when joined with the SESSIONS view.

•	 USER_ID – The user who sent the query.

•	 ROLE_NAME – The role which was used for the query.

•	 QUERY_TAG – The query tag, which is inherited from the Session.

•	 EXECUTION_STATUS – The status of the query, which can be

SUCCESS, FAIL, or INCIDENT.

•	 ERROR_CODE and ERROR_MESSAGE – The error which prevented

the query from being successful.

•	 START_TIME and END_TIME – The start and end timestamps of the

query execution.

Note that we’ve omitted many columns which contain interesting information (such

as credits used, execution time, and more). For the complete listing of columns, visit the

relevant Snowflake documentation page.

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/sql-reference/account-usage/query_history.html

121

Examples

The following query shows the latest failed queries which were sent by admin roles:

SELECT START_TIME, USER_NAME, ROLE_NAME, ERROR_CODE, ERROR_MESSAGE, QUERY_

TYPE, QUERY_TEXT FROM snowflake.account_usage.query_history

WHERE ROLE_NAME LIKE '%ADMIN%'

AND EXECUTION_STATUS = 'FAIL'

ORDER BY START_TIME DESC

LIMIT 50;

The following query shows the users with the most query errors in the last month

(which may or may not be due to suspicious behavior, you will probably need to also

tune this according to specific error types):

SELECT USER_NAME, COUNT(*) AS num_of_errors FROM snowflake.account_usage.

query_history

WHERE EXECUTION_STATUS = 'FAIL'

GROUP BY USER_NAME

ORDER BY num_of_errors DESC

LIMIT 10;

The following query lists all SELECT queries done on the database accounting by

using any admin role (as we mentioned earlier in Chapter 6, “Authorization: Data Access

Control,” using admin roles to query data is a bad security practice):

SELECT START_TIME, USER_NAME, ROLE_NAME, ERROR_CODE, ERROR_MESSAGE, QUERY_

TYPE, QUERY_TEXT FROM snowflake.account_usage.query_history

WHERE ROLE_NAME LIKE '%ADMIN%'

AND QUERY_TYPE = 'SELECT'

AND START_TIME >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

AND DATABASE_NAME = 'accounting'

ORDER BY START_TIME DESC;

�ROLES

This view shows you a list of the roles configured in your Snowflake account. This is a

fairly simple view, with the role name, timestamps of its creation and deletion (if it was

deleted), and comments (if such were added to the role).

Chapter 7 Auditing and Monitoring

122

Examples

Use the following query to show all the roles added throughout the last month:

SELECT NAME, CREATED_ON FROM snowflake.account_usage.roles

WHERE CREATED_ON >= TIMESTAMPADD(MONTH, -1, CURRENT_TIMESTAMP())

ORDER BY CREATED_ON DESC;

�STAGES

The stages view lists the stages configured in your Snowflake account, as well as those

which were deleted. If you’d like to refresh your knowledge about stages and how they’re

used, you can read the documentation or revisit Chapter 3, “Data Encryption and

Ingestion.” However, depending on the organization, it may very well be that various

teams have, over the months or years, uploaded files to staging, which contains sensitive

information, and just remained there.

This, in terms of security, can be very bad, the equivalent of forgetting files in public

cloud storage buckets. Oh, wait a minute, they ARE in public cloud storage buckets. In

all seriousness though, that CSV file which contained personal information of ACME

Candies’ customers or employees, and was used just temporarily, after which its tables

were created…? We’d better make sure that its stage files were also removed.

Another security risk is a stage which was uploaded and owned by a widely used role

(such as PUBLIC, of course). There is no contradiction between this and the previous

risk. Someone might have used the PUBLIC role to create a stage and import data, and

the data wasn’t deleted and is now accessible by a lot of users.

Once you find these stages (see the following examples for the query, or simply use

SHOW STAGES or SHOW STAGES LIKE for a quick listing), you may want to check what

they contain. To do that, you can use the LIST command (LIST @<stage name>) and

then the following command to directly explore the data in those files:

// lists the 2 first columns from the file

SELECT $1, $2 FROM @<stage name>/<path>;

For more information about working with stages, please refer to the documentation.

These are the columns in this view:

•	 STAGE_ID and STAGE_NAME – The identifier and name of the stage.

•	 STAGE_CATALOG_ID, STAGE_CATALOG, STAGE_SCHEMA_ID, and

STAGE_SCHEMA – The database and schema associated with the stage.

Chapter 7 Auditing and Monitoring

123

•	 STAGE_URL – The URL of the stage (if it’s an external stage), such as

the s3 bucket URL.

•	 STAGE_REGION – The region where the stage is located (e.g.,

us-east-1).

•	 STAGE_TYPE – The type of stage, Internal Named, External Named,

User, or Table. For more information about the differences, refer to

the Snowflake documentation, but the most important one in terms

of the security risk scenario mentioned before is the External Named

stage type.

•	 STAGE_OWNER – The role that owns the stage (unless it was

deleted).

•	 CREATED, LAST_ALTERED, DELETED – The timestamps of creation,

modification, and (if applicable) deletion of the stage.

Examples

The following query retrieves a list of all currently active stages (of all types), owned by

the PUBLIC role (meaning they’re open to all Snowflake users):

SELECT STAGE_NAME, STAGE_CATALOG, STAGE_SCHEMA, STAGE_TYPE, STAGE_URL,

CREATED

FROM snowflake.account_usage.stages

WHERE STAGE_OWNER = 'PUBLIC'

AND DELETED IS NULL

ORDER BY CREATED;

The following query retrieves the ten oldest external stages which are still active:

SELECT STAGE_NAME, STAGE_CATALOG, STAGE_SCHEMA, STAGE_TYPE, STAGE_URL,

CREATED

FROM snowflake.account_usage.stages

WHERE STAGE_TYPE = 'External Named'

AND DELETED IS NULL

ORDER BY CREATED

LIMIT 10;

Chapter 7 Auditing and Monitoring

124

�TASK_HISTORY

The task history view shows details about the execution of Snowflake tasks. Note that

the queries running as tasks are also present in the QUERY_HISTORY view, so auditing

the TASK_HISTORY view does not fix any blind spots. The main security benefit is if you

have a specific issue you want to investigate around task execution. The latency for this

view is up to 45 minutes, and the retention time is 1 year.

The view contains the following columns:

•	 QUERY_ID – The query ID, which you can use to join the data with

the QUERY_HISTORY view, in case you need additional information

from there

•	 NAME – The name of the task

•	 DATABASE_NAME and SCHEMA_NAME – The location of this task

•	 QUERY_TEXT – The actual query that the task runs

•	 CONDITION_TEXT – The WHEN condition that determines whether

the task should run

•	 STATE – The completion state of this task, which can be

SUCCEEDED, FAILED, CANCELLED, or SKIPPED

•	 ERROR_CODE and ERROR_MESSAGES – The error returned by the

query execution of the task (if there was one)

•	 SCHEDULED_TIME, QUERY_START_TIME, COMPLETED_ON – The

timestamp in which this task was scheduled, started, and completed

•	 ROOT_TASK_ID – The root task in the task hierarchy which started

the trigger flow leading to this task

•	 GRAPH_VERSION – The version of the task tree, where each

increment means a modification to one of the tasks. This helps you

understand what happened before and after changes to the task tree.

•	 RUN_ID – The start time (epoch) of the run of the task tree

•	 RETURN_VALUE – The returned value that the task returns to its

child tasks (if relevant)

Chapter 7 Auditing and Monitoring

125

Examples

The following query lists the last ten tasks which were executed with an

ACCOUNTADMIN role (which should not be used for task execution):

SELECT name, task_history.database_name, task_history.schema_name, query_

history.query_text, condition_text

FROM snowflake.account_usage.task_history

LEFT JOIN snowflake.account_usage.query_history ON (task_history.query_id =

query_history.query_id)

WHERE role_name LIKE '%ADMIN%'

ORDER BY scheduled_time DESC

LIMIT 10;

�USERS

The USERS view shows a listing of the users in the account. This includes users which

were deleted (up to the retention period of one year) and is useful for monitoring

users with lacking authentication configuration (for more information on that, revisit

Chapter 4, “Authentication: Keeping Strangers Out”). You can also monitor users who

are not in use, in which case it may be a good idea to suspend or terminate the users, as

having such stale users who are not really using the system is usually a risk without any

value. The data latency for this view is up to two hours.

If you are looking for an up-to-date listing of your users, you can use the SHOW

USERS command instead.

The view contains the following columns:

•	 NAME and LOGIN_NAME – The user’s unique identifier name and

login name, which will in most cases be the same (except lowercase

vs. uppercase). They can be different values, but each needs to be

unique.

•	 DISPLAY_NAME – The display name, which does not have to be

unique.

•	 CREATED_ON – The timestamp of creation for the user.

•	 DELETED_ON – The timestamp of deletion (in case the user was

deleted).

Chapter 7 Auditing and Monitoring

126

•	 FIRST_NAME and LAST_NAME – The user’s name, in case it was set.

•	 EMAIL – The user’s email address.

•	 MUST_CHANGE_PASSWORD – If set to true, the user will be forced

to change their password on the next login attempt. As mentioned

in Chapter 4, “Authentication: Keeping Strangers Out,” it is highly

recommended to set this to true when setting up new accounts.

•	 HAS_PASSWORD – Specifies whether the user has a password

configured.

•	 COMMENT – A comment field.

•	 DISABLED – Specifies whether the user is disabled (prevented from

logging in).

•	 SNOWFLAKE_LOCK – Specifies whether the user is temporarily

locked (for multiple failed login attempts).

•	 LOCKED_UNTIL_TIME – Specifies the number of minutes left until

the user is unlocked (if it is temporarily locked).

•	 DEFAULT_WAREHOUSE – The warehouse used by the user, unless

another is specified in the connection string, or changed with the

USE WAREHOUSE command.

•	 DEFAULT_NAMESPACE – The default namespace (database or

database and schema) in which the user is, unless otherwise

specified in the connection string or changed with the USE

command.

•	 DEFAULT_ROLE – The default role to be used by the user, unless

otherwise specified in the connection string or changed with the USE

ROLE command. To prevent admin role abuse, it is a best practice to

never have the default role as an administrative role.

•	 EXT_AUTHN_DUO and EXT_AUTHN_UID – Whether the Duo

MFA is active, and the ID of the authorization ID used by the Duo

MFA. For more information about the Duo MFA, refer to Chapter 4,

“Authentication: Keeping Strangers Out.”

Chapter 7 Auditing and Monitoring

127

•	 BYPASS_MFA_UNTIL – In case there is a temporary bypass of MFA

set for the user, this will show you until when it’s bypassed.

•	 LAST_SUCCESS_LOGIN – The timestamp of the latest successful

login, which can be helpful when looking for stale users.

•	 EXPIRES_AT – An automated expiration timestamp for the user. This

can be useful for setting up a temporary user.

•	 HAS_RSA_PUBLIC_KEY – Specifies whether the user has a key pair

configured in this Snowflake account. For more information about

authentication using key pair, refer to Chapter 4, “Authentication:

Keeping Strangers Out.”

�Examples

The following query shows all user accounts starting with “SVC” or “APP” that do not

have a key-pair authentication set up or have a password authentication set up. As per

Chapter 4, “Authentication: Keeping Strangers Out,” it is recommended to use key-pair

authentication for nonhuman users.

SELECT name, email, created_on

FROM snowflake.account_usage.users

WHERE (name ILIKE 'SVC%' OR name ILIKE 'APP%')

AND HAS_RSA_PUBLIC_KEY = FALSE

AND HAS_PASSWORD = TRUE;

The following query shows all active users (not deleted or disabled) that haven’t

logged in in the last three months. It is recommended to disable stale users.

SELECT name, email, created_on

FROM snowflake.account_usage.users

WHERE disabled = FALSE

AND deleted_on IS NULL

AND last_success_login <= TIMESTAMPADD(MONTH, -3, CURRENT_TIMESTAMP());

The following query shows all users with a default role set to an administrative role:

SELECT name, email, created_on

FROM snowflake.account_usage.users

WHERE default_role LIKE '%ADMIN%';

Chapter 7 Auditing and Monitoring

128

�ACCESS_HISTORY

ACCESS_HISTORY is a view which is still in public preview at the time of writing and

is only open to enterprise accounts. This view contains detailed information about the

locations which were accessed by each query. This view can be useful when joined with

the QUERY_HISTORY table, to get specific details about which data was accessed in each

query or to create reports or investigate access to specific locations. The data latency

of this view is three hours, and the data is retained for one year (note that QUERY_

HISTORY has a shorter data latency time of 45 minutes, so expect differences in recent

data between the two views).

Note that this view only contains SELECT operations (even if internal), but not other

operations like UPDATE, INSERT, MERGE, etc.

The view contains the following columns:

•	 QUERY_ID – The query ID, which can be used for joining with the

QUERY_HISTORY view.

•	 QUERY_START_TIME – The start time of the query.

•	 USER_NAME – The username of the user who ran the query.

•	 DIRECT_OBJECTS_ACCESSED – This is a JSON object, containing

an array with all the columns accessed by the query, per table or view

being accessed.

•	 BASE_OBJECTS_ACCESSED – This is a JSON object, containing an

array with all the underlying columns accessed by the query (always

down to the table level, no views).

�Examples

The following query returns all users who accessed any cc_num column in any table of

the current ACME Candies’ account, with the number of times they’ve accessed it:

SELECT USER_NAME, COUNT(*)

FROM snowflake.account_usage.access_history,

lateral flatten(base_objects_accessed) root,

lateral flatten(root.value) tbls,

lateral flatten(tbls.value) clmns

Chapter 7 Auditing and Monitoring

129

WHERE clmns.value:"columnName" = 'CC_NUM'

GROUP BY 1

ORDER BY 2;

7.2.3.  �The Reader Accounts Schema
The READER_ACCOUNT schema in the SNOWFLAKE database lists the metadata views

specific for reader accounts. As they are a modified subset of the ACCOUNT_USAGE

schema, we will list the relevant views, along with the relevant columns, but we will not

list the complete columns listing, as this can be found earlier, in the ACCOUNT_USAGE

schema (or you may refer to the Snowflake documentation).

The two relevant views for reader accounts auditing and monitoring are LOGIN_

HISTORY, listing the access attempts (successful and unsuccessful), and QUERY_

HISTORY, listing the queries being run by reader accounts.

In the login history view, you will see the additional field READER_ACCOUNT_

NAME, with the name of the reader account connecting to the Snowflake account to

retrieve data. The same column also exists in the READER_ACCOUNT.QUERY_HISTORY

view, which also has several columns missing, none of which were discussed before as

part of the columns interesting for security reasons.

To learn more about reader accounts, refer to Chapter 8, “Secure Data Sharing with

Snowflake.”

7.2.4.  �Views in the Information Schema
Each database in Snowflake has a schema called INFORMATION_SCHEMA, which

holds metadata specific to that database. In the beginning of this section, we discussed

the differences between this schema and the SNOWFLAKE.ACCOUNT_USAGE schema,

but as a reminder, the views in INFORMATION_SCHEMA are more fresh (has no latency

when data is inserted), but historical events are retained for shorter periods. In several

cases, it doesn’t matter which database’s INFORMATION_SCHEMA you’re querying; you

will get the same results (this is for account-level settings).

Here are the relevant views to security in INFORMATION_SCHEMA.

Chapter 7 Auditing and Monitoring

130

�APPLICABLE_ROLES

This view shows a list of roles granted either to other roles or to users. Note that you will

only be able to retrieve grants which are granted to your current user or to one of the

roles available to your user. Depending on the use case, you can use this view instead of

GRANTS_TO_USERS or GRANTS_TO_ROLES, to find out to whom a role is granted. The

advantage is that you will get completely up-to-date information, and the disadvantages

are that you will not see past grants (revoked grants) and that you will get the grantee in

one column, whether it’s a user or a role, and with no indicator of which type it is.

The view contains the following columns:

•	 ROLE_NAME – The role that is granted.

•	 GRANTEE – The role or user to which the role is granted.

•	 ROLE_OWNER – The role owning the role that is granted.

•	 IS_GRANTABLE – Is this role self-granted (can someone with this role

grant it to others)?

Examples

The following query checks the role granted to the current user or the current role (can

be used for access control filters, or as part of administrative applications):

SELECT role_name

FROM information_schema.applicable_roles

WHERE grantee = CURRENT_USER()

OR grantee = CURRENT_ROLE()

ORDER BY role_name;

�ENABLED_ROLES

This view contains only the roles enabled for the current specific role (in addition to the

PUBLIC role, which is enabled for all roles). Since this runs in the context of the current

role executing the query, you will only get partial information about the roles which you

can use with the current user, and as such (and in light of more informative views), this

view is less informative than others about the same data you may want to retrieve.

The view contains only two columns – the ROLE_NAME and ROLE_OWNER, both of

the granted roles.

Chapter 7 Auditing and Monitoring

131

�OBJECT_PRIVILEGES

This view contains the privileges granted on different objects for your currently used

role. Since this view is quick and up to date, it can be used for administrative purposes

(e.g., if you want to create a role management overlay on top of Snowflake). An important

thing to note is that this view is specific to each database, and so, if you choose to retrieve

it, you may want to retrieve it from certain databases or from all of them.

The view contains the following columns:

•	 GRANTOR – The role who granted the object.

•	 GRANTEE – The role who was granted with the object.

•	 OBJECT_CATALOG and OBJECT_SCHEMA – The database and

schema in which the object is located.

•	 OBJECT_NAME – The object for which the privilege was granted.

•	 OBJECT_TYPE – The type of object (e.g., TABLE, VIEW, USER,

ROLE, etc.).

•	 PRIVILEGE_TYPE – The type of action granted in this privilege.

•	 IS_GRANTABLE – Whether the grantee can grant this privilege to

other roles.

•	 CREATED – The timestamp in which this privilege was granted. As

a reminder, this is a configuration view and does not list revoked

privileges.

Examples

The following query retrieves the list of all the functions in the database which are

granted to the current role used in the query:

SELECT grantor, grantee, object_catalog, object_schema, object_name,

privilege_type, is_grantable, created

FROM information_schema.object_privileges

WHERE OBJECT_TYPE='FUNCTION';

Chapter 7 Auditing and Monitoring

132

�STAGES

The importance of monitoring stages was mentioned earlier when discussing the

SNOWFLAKE.ACCOUNT_USAGE.STAGES view. Since this view is relevant for

the current role of the user, it is less useful than the one in ACCOUNT_USAGE for

housekeeping purposes across your account, but since it’s updated in real time, it can be

more useful in the administering stage useful if you’re creating an in-house management

overlay. Also keep in mind that this view is specific for the current database queried, so

if you want to query all stages available for your role, you will need to iterate through all

available databases.

The view contains the following columns:

•	 STAGE_CATALOG and STAGE_SCHEMA – The database and schema

where this stage is configured.

•	 STAGE_NAME – The name of the stage.

•	 STAGE_URL – The location of the stage (e.g., s3://acme_candies_

ingestion).

•	 STAGE_REGION – The region of the stage.

•	 STAGE_TYPE – The type of stage, Internal Named, External Named,

User, or Table. For more information about the differences, refer to

the Snowflake documentation, but the most important one in terms

of the security risk scenario mentioned previously is the External

Named stage type.

•	 STAGE_OWNER – The role owning this stage.

•	 COMMENT – The comment added using the CREATE STAGE

command.

•	 CREATED and LAST_ALTERED – The timestamps of creation and last

change of this stage.

Chapter 7 Auditing and Monitoring

133

Examples

The following query retrieves a list of all external stages in the current database:

SELECT stage_name, stage_url, stage_region, stage_owner, created,

last_altered

FROM information_schema.stages

WHERE stage_type='External Named';

�TABLE_PRIVILEGES

This view contains the configuration of privileges in the current database for tables.

The results are a subset of the OBJECT_PRIVILEGES (if you filter by object_type =

'TABLE'). As with other database-level information schema views, if you require data

for multiple databases, you will need to iterate through them, and the data you’re

getting is limited to the current running role. On the other hand, the data in this view

is immediately updated as changes are made, unlike the SNOWFLAKE.ACCOUNT_

USAGE.GRANTS_TO_ROLES view, so it can be used when you require up-to-date

configuration information.

The view contains the following columns:

•	 GRANTOR – The role that granted the privilege.

•	 GRANTEE – The role that was granted with the privilege.

•	 TABLE_CATALOG and TABLE_SCHEMA – The location (database

and schema) of the table.

•	 TABLE_NAME – The name of the table.

•	 PRIVILEGE_TYPE – The type of privilege (e.g., SELECT, UPDATE,

INSERT). Note that if the user has ownership of the table, it will not

list the implicit underlying permissible actions.

•	 IS_GRANTABLE – Whether the grantee can further grant this

privilege.

•	 CREATED – The timestamp of creation of the table.

Chapter 7 Auditing and Monitoring

134

Examples

The following query retrieves a list of tables which are regrantable, in case we want to

make some limitations over these in ACME Candies:

SELECT grantor, grantee, table_catalog, table_schema, table_name,

privilege_type

FROM information_schema.table_privileges

WHERE is_grantable='YES';

�Other Views

In addition to the security views listed earlier, in the documentation, you can find a full

list of the views. Some of these can help you get lists of all objects in Snowflake (such

as tables, views, functions, external tables, and more). You can definitely use such

tables in good ways, such as to help you prepare a data inventory that will help you to

better control the data you have in your Snowflake account. You can also make a lot of

operational value from analyzing the data in the metadata to learn more about actions

which can impact your performance and costs.

7.2.5.  �Table Functions in the Information Schema
In addition to metadata coming from views, there is also metadata that can be pulled

by using specific table functions. These functions accept certain parameters and then

return the result as a table.

Access to these table functions is available to ACCOUNTADMIN and may also be

granted by granting the MONITOR USAGE global privilege. ACCOUNTADMIN should

not be used for “everyday monitoring” and should be granted from this role to another

administrative role with lesser privileges, so we don’t expose all the ACCOUNTADMIN

privileges for the users who are allowed to monitor our Snowflake.

In ACME Candies, the chosen role is log_analyzer, and so, as an ACCOUNTADMIN,

let’s create the new role and grant it with the required privileges:

CREATE ROLE IF NOT EXISTS log_analyzer;

GRANT MONITOR USAGE ON ACCOUNT TO ROLE log_analyzer;

In the following are some of the more useful table functions in terms of security

value.

Chapter 7 Auditing and Monitoring

135

�EXTERNAL_FUNCTIONS_HISTORY

This table function can be used to pull information about the external functions which

were triggered by your queries. The significance is that such external functions are

receiving data from your SQL queries, and as they’re external to Snowflake, data is

leaving your Snowflake account, and so it’s important to monitor this behavior. There is a

retention time limit of six months over this information.

Since the data is aggregated and will not show you information such as the users or

roles using those functions, it is useful for noticing anomalies, but in order to investigate

these, you will need to query the logs in SNOWFLAKE.ACCOUNT_USAGE.QUERY_

HISTORY.

The function accepts the following arguments:

•	 DATE_RANGE_START – Optionally providing the beginning of the

time range to query. If not provided, it’s defaulted to ten minutes

prior to DATE_RANGE_END.

•	 DATE_RANGE_END – Optionally providing the end of the time range

to query. If not provided, it’s defaulted to CURRENT_DATE.

•	 FUNCTION_SIGNATURE – Optionally providing a specific external

function’s signature to query for. The signature is the full location

of the function, with the argument types, for example, eu_candies.

research.enrich_flavors(integer, integer).

Notes:

	 1.	 Unfortunately, although you’re not required to provide the

FUNCTION_SIGNATURE, failure to do so will result in very partial

information, which lacks most of the returned fields.

	 2.	 The results are returned aggregated per period of time. The period

of these “buckets” is determined by the range of time requested.

The function returns the following columns:

•	 START_TIME and END_TIME – The time range of the bucket

described in this row

•	 NAME – The name of the external function

Chapter 7 Auditing and Monitoring

136

•	 ARGUMENTS – The data types of the arguments and of the return

value (e.g., GET_CANDY_FLAVORS(INTEGER) RETURN VARCHAR)

•	 FUNCTION_ENDPOINT_URL – The HTTPS API endpoint

•	 SOURCE_CLOUD, SOURCE_REGION – The source cloud and region

from which the data was sent

•	 TARGET_CLOUD, TARGET_REGION – The target cloud and regions

to which the data was sent

•	 INVOCATIONS – The number of API calls performed in the time range

•	 SENT_ROWS – The number of rows sent to the API endpoint in the

time range

•	 RECEIVED_ROWS – The number of rows returned by the API

endpoint in the time range

•	 SENT_BYTES – The number of bytes sent to the API endpoint in the

time range

•	 RECEIVED_BYTES – The number of bytes returned by the API

endpoint in the time range

Examples

The following query retrieves external function metrics about functions running in the

last six months, in one-day buckets (note that since the data is aggregated, you will not

get a breakdown of the actual functions):

SELECT start_time, end_time, invocations, sent_rows, received_rows, sent_

bytes, received_bytes

FROM TABLE(information_schema.external_functions_history(

 date_range_start => DATEADD('day', -180, CURRENT_TIMESTAMP())));

The following query retrieves the specific data about the ENRICH_QUERY external

function:

SELECT *

FROM TABLE(information_schema.external_functions_history(

 date_range_start => DATEADD('day', -180, CURRENT_TIMESTAMP()),

 function_signature => 'acme_candies.research.enrich_flavor(integer)'));

Chapter 7 Auditing and Monitoring

137

�LOGIN_HISTORY

This function returns the same fields that are returned by the SNOWFLAKE.ACCOUNT_

USAGE.LOGIN_HISTORY view. Its main advantage over the account usage view is

that it has no data latency, and so it will return even the most recent logins. Its main

disadvantage is the retention period – you can return only information about logins

performed in the last seven days (unlike one year in the account usage view).

This function returns only the results per your current role’s privilege. That means

that you will only get the results for the users owned by you. For a “regular” user, this will

be yourself, but if your current role owns users, you will see their logins as well.

The function accepts the following arguments:

•	 TIME_RANGE_START – Optionally providing the beginning of

the time range to query. Note that since this request returns only

a limited amount of results, they will be determined by the TIME_

RANGE_END. That means that if you choose a TIME_RANGE_

START of seven days ago and a TIME_RANGE_END of CURRENT_

TIMESTAMP, the oldest event returned will be TIME_RANGE_END

minus RESULT_LIMIT events.

•	 TIME_RANGE_END – Optionally providing the end of the time range

to query. If not provided, it’s defaulted to the most recent event.

•	 RESULT_LIMIT – The number of results to return, up to 10,000

(default is 100).

The function returns the same columns as the LOGIN_HISTORY view:

•	 EVENT_ID – An identifier for the login event may be helpful when

joining with the SESSIONS view.

•	 EVENT_TIMESTAMP – The timestamp of the login event.

•	 EVENT_TYPE is always “LOGIN”.

•	 USER_NAME – The user who made the failed/successful login.

•	 CLIENT_IP – The IP address from which the user connected.

•	 REPORTED_CLIENT_TYPE and REPORTED_CLIENT_VERSION –

The tool reported by the user when connecting.

Chapter 7 Auditing and Monitoring

138

•	 FIRST_AUTHENTICATION_FACTOR – The authentication factor

used, such as PASSWORD or OAUTH_ACCESS_TOKEN.

•	 SECOND_AUTHENTICATION_FACTOR – The second authentication

factor used by the user (NULL if none), for example, DUO_PASSCODE.

•	 IS_SUCCESS – Whether the login attempt was successful.

•	 ERROR_CODE and ERROR_MESSAGE – The error which prevented

the login from being successful.

Examples

The following query shows the last ten unsuccessful login attempts (within the last

10,000 results, which is the maximum amount of results to check):

SELECT *

FROM TABLE(information_schema.login_history(

 result_limit => 10000))

WHERE is_success='NO'

LIMIT 10;

�LOGIN_HISTORY_BY_USER

This function is identical to the LOGIN_HISTORY function described earlier, with the

only change being that it also accepts a user argument, which it filters by. This makes it a

better option to use, obviously, when you’re looking into logins of specific users.

The added argument, USER_NAME, is defaulted to the current user, if this argument

is not provided. The function returns the same columns as LOGIN_HISTORY.

Examples

The following query shows all logins (assuming they’re under 100) performed by the

user Ben, between five and six days ago:

SELECT *

FROM TABLE(information_schema.login_history_by_user(

 user_name => 'BEN',

 time_range_start => dateadd('day',-6,current_timestamp()),

 time_range_end => dateadd('day',-5,current_timestamp())

));

Chapter 7 Auditing and Monitoring

139

�POLICY_REFERENCES

This function gets information similar to the one returned by the account usage view

POLICY_REFERENCES and requires the ACCOUNTADMIN role to be executed. The

Account Usage view is more useful, as it can also be used by other roles as well, while the

advantage of this function is that it has no data latency. In most cases, this will matter

less, and thus, it is advised to use the account usage view.

�QUERY_HISTORY

This function returns data from the query log and will return the same columns as

SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY will. There are a few differences

between the view and the function:

	 1.	 Access to this function is available to all roles. It will show you

the query history for your use, and if you have the MONITOR

privilege, you will also be able to see other users’ queries.

	 2.	 You will get queries without any data latency. In fact, if you query

for the newest queries, you will even get the query you used

against this function within the results.

	 3.	 Results are limited for seven days (as opposed to one year in the

account usage view).

The function accepts the following arguments:

•	 END_TIME_RANGE_START – Yes, this may sound a bit confusing,

but since the function is retrieving results by the query’s end time,

this indicates the earliest query end_time to be returned.

•	 END_TIME_RANGE_END – This parameter indicates the latest end_

time in the time range.

•	 RESULT_LIMIT – The limit of results to be returned (up to 10,000,

default is 100).

Chapter 7 Auditing and Monitoring

140

The function returns the same columns as the LOGIN_HISTORY view. Since there

are a large number of columns returned, here are the most important ones in terms of

security (you can find the full listing in the documentation):

•	 QUERY_ID – The unique identifier of the query logged.

•	 QUERY_TEXT – The actual query sent. Note that although some

values are redacted in the query, such as passwords, a lot of data is

not redacted. This means that queries may contain sensitive data

such as operational or personal information. For example, a query

such as INSERT INTO USERS (…) may contain sensitive fields.

As a result of that, make sure that you limit access to the QUERY_

HISTORY only to a restricted set of users, and if you replicate the

table for analytics, make sure you are restrictive about its results as

well.

•	 DATABASE_ID, DATABASE_NAME, SCHEMA_ID, SCHEMA_NAME –

The location context when executing the query. Note that even a

query running in a context of a specific schema or database can

access objects in other databases and schemas by referencing them

with their complete path (i.e., database.schema.table or database.

schema.view). That means that if you’re looking for all queries

running against objects in a specific database or schema, you will

need to also parse the QUERY_TEXT.

•	 QUERY_TYPE – The type of query logged, such as SELECT, CREATE,

and DROP, but also more specific types such as ALTER_TABLE_

MODIFY_COLUMN which can help you generate specific reports or

monitor specific operations.

•	 SESSION_ID – The session through which this query was executed.

This identifier can be used to track all queries sent throughout a

specific session, as well as when joined with the SESSIONS view.

•	 USER_ID – The user who sent the query.

•	 ROLE_NAME – The role which was used for the query.

•	 QUERY_TAG – The query tag, which is inherited from the Session.

Chapter 7 Auditing and Monitoring

141

•	 EXECUTION_STATUS – The status of the query, which can be

SUCCESS, FAIL, or INCIDENT.

•	 ERROR_CODE and ERROR_MESSAGE – The error which prevented

the query from being successful.

•	 START_TIME and END_TIME – The start and end timestamps of the

query execution.

Examples

The following query retrieves the last ten queries, excluding the query used to retrieve

the query history. If you have the MONITOR privilege in the role used for this query, it

will be across all users:

SELECT *

FROM TABLE(information_schema.query_history(result_limit => 11))

LIMIT 10 OFFSET 1;

�QUERY_HISTORY_BY_*

If you want to filter by additional dimensions, there are currently three specific functions

which enable you to do so:

•	 QUERY_HISTORY_BY_SESSION – This function behaves the same as

QUERY_HISTORY, but accepts an additional parameter, session_id,

which accepts either a session ID or CURRENT_SESSION.

•	 QUERY_HISTORY_BY_USER – This function behaves the same as

QUERY_HISTORY, but accepts an additional parameter, user_name,

which can either be the username or CURRENT_USER (which is the

default).

•	 QUERY_HISTORY_BY_WAREHOUSE – This function behaves the

same as QUERY_HISTORY, but accepts an additional parameter,

warehouse_name, which accepts either a warehouse name or

CURRENT_WAREHOUSE (which is the default).

Chapter 7 Auditing and Monitoring

142

�REST_EVENT_HISTORY

This function returns the log information from the SCIM API calls made to your

Snowflake account. If you recall, SCIM is used in user provisioning integration, as we’ve

seen in Chapter 4, “Authentication: Keeping Strangers Out.” The function can help you

debug issues during provisioning setup or problems, but since SCIM is a very powerful

tool, it should also be used to monitor SCIM activity and to make sure that this is not

used in a careless or malicious way.

Keep in mind that the retention period is seven days, and so, it would make sense to

make a task that pulls the log into a more long-term repository. This function requires an

ACCOUNTADMIN role to be executed, and unfortunately, the privilege can’t be granted

to other roles.

The function accepts the following arguments:

•	 REST_SERVICE_TYPE – This is a required parameter and should

always be SCIM.

•	 TIME_RANGE_START – The timestamp to return events later than. If

this parameter is not provided, it will default to seven days ago.

•	 TIME_RANGE_START – The timestamp to return events later

than. If this parameter is not provided, it will default to CURRENT_

TIMESTAMP.

•	 RESULT_LIMIT – The limit of results to be returned (up to 10,000,

default is 100).

The function returns the following columns:

•	 EVENT_TIMESTAMP – The timestamp of the API call.

•	 EVENT_ID – The event identifier.

•	 EVENT_TYPE – This will always be SCIM (as it’s the only supported

rest API at the moment).

•	 ENDPOINT – The API endpoint relative URL.

•	 METHOD – The HTTP method used.

•	 STATUS – The HTTP status of the result.

•	 ERROR_CODE – The error code (if there was an error).

Chapter 7 Auditing and Monitoring

143

•	 DETAILS – JSON description of the result of the API call.

•	 CLIENT_IP – The client IP used to make the API CALL.

•	 ACTOR_NAME – The name of the actor making the API call.

•	 ACTOR_DOMAIN – The domain in which the request was made.

•	 RESOURCE_NAME – The name of the object making the request.

•	 RESOURCE_DOMAIN – The object type making the request.

Examples

The following query retrieves a list of the failed SCIM API calls. This can be useful in

terms of operational issues but can also point to security issues:

SELECT *

 FROM TABLE(information_schema.rest_event_history(

 rest_service_type => 'scim',

 result_limit => 10000))

 WHERE ERROR_CODE IS NOT NULL

 ORDER BY event_timestamp DESC;

The following query retrieves an aggregation of the IP addresses used for SCIM

API calls. As mentioned in Chapter 4, “Authentication: Keeping Strangers Out,” it is

recommended to apply a network policy on SCIM, and it’s advised to make sure only

relevant IP addresses are accessing SCIM.

SELECT client_ip, COUNT(*)

 FROM TABLE(information_schema.rest_event_history(

 rest_service_type => 'scim',

 result_limit => 10000))

 GROUP BY client_ip

 ORDER BY client_ip DESC;

�Other Table Functions

In addition to the table functions mentioned earlier, there are more table functions

which may be relevant to investigating specific incidents (e.g., when did loading of data

happen for a specific table, and from where), and for a full list of the table functions, you

can always refer to the Snowflake documentation.

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/sql-reference/info-schema.html

144

7.2.6.  �Use Cases
So far throughout this chapter, we’ve quite extensively given examples of the relevant

sources of metadata for Snowflake, on things you can and should monitor and audit

in Snowflake. We’d like to now focus on some of the important use cases you’d like to

monitor and connect the use cases with some of the locations we mentioned.

�Database Access Monitoring

Back in Chapter 4, “Authentication: Keeping Strangers Out,” we mentioned how

important it is to make sure that whoever “walks” into your data warehouse is

authenticated. One of the most important things to keep track of is the logins of

users to your Snowflake account. It’s important because if accounts are accessed by

unauthorized people, it may have severe consequences, such as data leaks. In many

cases, there are early signs of such occurrences:

•	 Sometimes attackers have incomplete information (such as a list of

possible passwords), and thus, it’s important to monitor failed login

attempts.

•	 Sometimes new IP addresses connecting (or trying to connect) to the

Snowflake account can indicate either attack attempts or careless

behavior (such as employees or administrators who are setting a too

liberal network policy for their comfort). It’s important to monitor the

IP addresses accessing the data warehouse, as well as the network

policies, to make sure you know of such issues.

•	 Sometimes users are setting a relaxed authentication method, such

as canceling two-factor authentication or using user-password

authentication for an application (instead of key-pair authentication).

It is important to monitor how access is done, and the configuration

of user access, to prevent such cases, which increase the security risk

on your Snowflake account.

In addition to all of that, having a control in place to audit all logins to the system is

important in terms of compliance. With regard to that, you should probably consult with

your organization’s compliance officer or team, to understand the specific requirements,

Chapter 7 Auditing and Monitoring

145

which are sometimes covered “out of the box” (by having the account usage login_

history view which holds all failed and successful logins for the last year), but sometimes

requires additional preparation from your end.

Examples

The following query checks for failed logins in the last ten minutes, for close monitoring:

SELECT event_timestamp, user_name, client_ip, reported_client_type, first_

authentication_factor, second_authentication_factor, error_code, error_

message

FROM TABLE(information_schema.login_history(

 result_limit => 10000,

 time_range_start => TIMEADD("minute", -10, CURRENT_TIMESTAMP()),

 time_range_end => CURRENT_TIMESTAMP()

))

WHERE is_success='NO';

The following query checks for users with the most failed logins in the last week:

SELECT user_name, COUNT(1) AS failed_logins

FROM snowflake.account_usage.login_history

WHERE is_success = 'NO'

AND event_timestamp >= TIMEADD("day", -7, CURRENT_TIMESTAMP())

GROUP BY 1

ORDER BY 2 DESC;

The following query shows the users logging in from the most IP addresses in the last

week:

SELECT user_name, COUNT(DISTINCT client_ip) AS ips_used

FROM snowflake.account_usage.login_history

WHERE event_timestamp >= TIMEADD("day", -7, CURRENT_TIMESTAMP())

GROUP BY 1

ORDER BY 2 DESC;

Chapter 7 Auditing and Monitoring

146

The following query shows all IP addresses used for successful logins in the last week

and not used before (depending on your Snowflake usage, this can be important on its

own or may need to be filtered for specific users):

WITH ips_prior_usage AS (

 SELECT DISTINCT client_ip FROM snowflake.account_usage.login_history

 WHERE event_timestamp < TIMEADD("day", -7, CURRENT_TIMESTAMP())

)

SELECT DISTINCT client_ip FROM snowflake.account_usage.login_history

WHERE event_timestamp >= TIMEADD("day", -7, CURRENT_TIMESTAMP())

AND client_ip NOT IN (SELECT client_ip FROM ips_prior_usage);

�Finding Admin Role Abuses

Another use case of monitoring your Snowflake account is to find abuse of admin roles.

In many cases, the reasons for these are not maliciousness, but carelessness. It’s not

that an administrator doesn’t care about the security of the Snowflake account, it’s often

simply lack of consciousness about security or careless behavior due to laziness or lack

of time. This means you’d like to monitor cases such as

•	 Admin roles that are granted too broadly (which increases the risks

based on account compromise or other careless administrative

behaviors).

•	 Admin roles used for data queries. Often it’s the case that admin roles

are used as a “god mode” to be able to access anything and handle

any problem, which is also increasing the risk of sensitive data being

exposed to the wrong hands and is often also against compliance

requirements. Admin roles should not be used for accessing data.

•	 Admin roles used with weak authentication or lack of network policies.

•	 Admin roles that are being used in scripts, especially using username

and password, which increase the risk of exposure to their credentials.

Note that, unfortunately, as you’ve seen throughout this chapter, in

several cases, you will actually need to defy this when monitoring data

that requires an admin role (even ACCOUNTADMIN). You need to

make sure that these cases are well compensated by other means like

stronger authentication, network policies, etc.

Chapter 7 Auditing and Monitoring

147

Examples

The following query returns a list of users with admin roles and their admin roles:

SELECT grantee_name AS user, ARRAY_AGG(role) AS roles FROM snowflake.

account_usage.grants_to_users

WHERE ROLE LIKE '%ADMIN'

AND deleted_on IS NULL

GROUP BY user;

The following query retrieves the SELECT queries performed by admin roles in the

last week:

SELECT user_name, role_name, query_id, query_text, database_name, schema_name

FROM snowflake.account_usage.query_history

WHERE role_name LIKE '%ADMIN'

AND query_type = 'SELECT';

The following query checks for users with admin roles who has a local password

configured:

WITH users_with_admin_roles AS (

SELECT grantee_name AS user FROM snowflake.account_usage.grants_to_users

WHERE ROLE LIKE '%ADMIN'

AND deleted_on IS NULL)

SELECT name FROM snowflake.account_usage.users

WHERE deleted_on IS NULL

AND has_password = 'TRUE'

AND name IN (SELECT user FROM users_with_admin_roles);

The following query finds admin roles used in sessions where the client is not the

web UI (this may need to be adjusted per your specific requirements, but using an admin

role from a script should really be controlled):

SELECT sessions.session_id, sessions.created_on, sessions.user_name, query_

history.role_name, sessions.client_application_id,

 login_history.client_ip FROM snowflake.account_usage.sessions

Chapter 7 Auditing and Monitoring

148

LEFT JOIN snowflake.account_usage.query_history ON (sessions.session_id =

query_history.session_id)

LEFT JOIN snowflake.account_usage.login_history ON (sessions.login_event_id

= login_history.event_id)

WHERE query_history.role_name LIKE '%ADMIN'

AND client_application_id NOT LIKE 'Snowflake UI%'

ORDER BY created_on DESC

LIMIT 100;

Finding admin users who are not using network policies or those that are using the

ones you don’t want to use is, unfortunately, not an easy task, as network policies can

only be pulled by a SHOW command (not a SELECT), which can’t be joined or used

within a CTE (a WITH statement).

The following workaround (courtesy of Snowflake’s support!) is creating a stored

procedure that holds this data:

CREATE OR REPLACE PROCEDURE myuserlist()

 RETURNS VARCHAR NOT NULL

 LANGUAGE JAVASCRIPT

 EXECUTE AS CALLER

 AS

 $$

 var return_value = "";

 try {

 // table to store user and network policy

 �command = "create or replace temporary table USER_LEVELS (username

varchar(100),value VARCHAR(100), level VARCHAR(100));";

 snowflake.createStatement({sqlText: command}).execute();

 // �run command for listing users, use the like statement to narrow

the list if required

 var stmt = snowflake.createStatement({sqlText: "SHOW USERS;"});

 stmt.execute();

 // �use the previous query ID to get the list of users and put into

user_list table

 var queryid = stmt.getQueryId();

 stmt = snowflake.createStatement(

Chapter 7 Auditing and Monitoring

149

 �{sqlText: "create or replace temporary table user_list as select $1

from table(result_scan('"+queryid+"'));"}

);

 stmt.execute();

 // �Now go through the user_list table and call show parameters for

each user and put the result in USER_LEVELS table

 var command = "SELECT * FROM user_list;";

 var stmt = snowflake.createStatement({sqlText: command });

 var rs = stmt.execute();

 //First record

 if (rs.next()) {

 name = rs.getColumnValue(1);

 cmd = "show parameters like 'NETWORK_POLICY' for user " + name

 var stmtx = snowflake.createStatement({sqlText: cmd});

 stmtx.execute();

 var queryid = stmtx.getQueryId();

 stmty = snowflake.createStatement(

 �{sqlText: "insert into USER_LEVELS select '" + name +

"',$2,$4 from table(result_scan('"+queryid+"'));"}

);

 stmty.execute();

 }

 // Remain records

 while (rs.next()) {

 name = rs.getColumnValue(1);

 �cmd = "show parameters like 'NETWORK_POLICY' for user \"" +

name + "\""

 var stmtx = snowflake.createStatement({sqlText: cmd});

 stmtx.execute();

 var queryid = stmtx.getQueryId();

 stmty = snowflake.createStatement(

 �{sqlText: "insert into USER_LEVELS select '" + name +

"',$2,$4 from table(result_scan('"+queryid+"'));"}

);

Chapter 7 Auditing and Monitoring

150

 stmty.execute();

 }

 }

 catch (err) {

 result = "Failed: Code: " + err.code + "\n State: " + err.state;

 result += "\n Message: " + err.message;

 result += "\nStack Trace:\n" + err.stackTraceTxt;

 }

 return return_value;

 $$

 ;

You can then use the stored procedure, as follows:

CALL myuserlist();

SELECT * FROM USER_LIST ORDER BY 1;

SELECT * FROM USER_LEVELS ORDER BY 1 ;

For retrieving a list of all network policies (as a JSON), you can use the following

undocumented query:

SELECT ENTITY_DETAIL('NETWORK_POLICY', '', '') AS NETWORK_POLICY_DETAIL;

�Monitoring Administrative Operations and Configuration Changes

It is important to track specific administrative operations, as these operations may

indicate behavior that can increase security risks (e.g., canceling network policies).

It is important mainly because in many cases, it is exactly these situations, such as

a configuration change done “temporarily,” that lower the level of security for the

protected resources. It starts with someone with benign intentions changing something

and ends in a data breach.

Some of the operations also need to be tracked as part of compliance requirements

(e.g., sometimes changes in access to sensitive data needs to be tracked). This can be a

requirement for an audit log for administrative operations, but can also be more specific,

depending on the specific requirements of your organization.

When it comes to having an audit log of administrative operations, you can extract

that as a subset of the QUERY_HISTORY, which is in the account usage schema. You can

either filter this view by admin roles, by the users known to have admin roles, and by

Chapter 7 Auditing and Monitoring

151

specific operations which can either be found by filtering the query_text column or in

some cases by the query_type column.

In addition to parsing the query log, you can also make periodic queries on specific

configuration you want to monitor, to make sure all changes are accounted for. For

example, you can monitor the users table according to your security policies (e.g., make

sure there are no users with weak authentication), monitor network policies for changes,

dynamic masking, and so on.

Examples

The following query looks for the last 100 queries that are using a system variable:

SELECT query_id, user_name, start_time, query_text

FROM snowflake.account_usage.query_history

WHERE query_text ILIKE '%SYSTEM$%'

ORDER BY start_time DESC

LIMIT 100;

The following query looks for the last 100 queries done with the ACCOUNTADMIN

role:

SELECT query_id, user_name, start_time, query_text

FROM snowflake.account_usage.query_history

WHERE role_name = 'ACCOUNTADMIN'

ORDER BY start_time DESC

LIMIT 100;

The following query looks for the last 100 queries that made changes to network

policies:

SELECT query_id, user_name, start_time, query_text

FROM snowflake.account_usage.query_history

WHERE query_type LIKE '%NETWORK_POLICY'

ORDER BY start_time DESC

LIMIT 100;

Chapter 7 Auditing and Monitoring

152

The following query checks for all users created not by the USERADMIN role in the

last month (which should handle user creations):

SELECT start_time, query_text, user_name, role_name FROM snowflake.account_

usage.query_history

WHERE query_type = 'CREATE_USER'

AND role_name != 'USERADMIN'

AND start_time > DATEADD('month', -1, CURRENT_TIMESTAMP());

Note A separate monitoring rule can monitor all user creations, without the
role_name filter.

The following query monitors the latest changes to time travel configuration of

objects. Time travel changes may break compliance, so it’s important to monitor them.

SELECT start_time, query_text, user_name, role_name FROM snowflake.account_

usage.query_history

WHERE query_text ILIKE '%data_retention_time_in_days%'

AND start_time > DATEADD('month', -1, CURRENT_TIMESTAMP());

The following query checks for changes in account-level parameters done in the last

month:

SELECT start_time, query_text, user_name, role_name FROM snowflake.account_

usage.query_history

WHERE query_type = 'ALTER_ACCOUNT'

AND start_time > DATEADD('month', -1, CURRENT_TIMESTAMP());

�Managing Overprivileged Users

As discussed in Chapter 6, “Authorization: Data Access Control,” one of the challenges

when managing privileges in Snowflake (and in general) is overprivileges. Over time,

users accumulate access to data they don’t need anymore (i.e., if they even needed it in

the first place), which means that you’re getting all the risk of data exposure, minus the

value which balances this trade-off. We went through this in length, suggesting options

like different role management strategies and self-service access provisioning.

Chapter 7 Auditing and Monitoring

153

However, either before or after you’re implementing processes to lower the amount

of overprivileged users, you should try to find out where you’re standing and monitor the

situation. This means that you’d like to know answers to questions such as

•	 Which roles are not used by any user and can be dropped?

•	 Which roles are not used by specific users and can be revoked?

•	 Which tables are not being accessed by users, despite having access

to them?

It is not always straightforward to find the answers to these questions. Sometimes

the role hierarchy makes it difficult to find the answers to some of these questions, which

requires recursively checking privileges for a user to know the answers to such questions.

In other cases, there are access control policies “hidden” within views to create row- or

column-based access control policies. The point here is not to despair you, our dear

reader! It is simply to reiterate that some things can be a bit more complicated to solve

and that you need to take into account the architecture of your Snowflake account.

Another challenge is knowing which tables were used in each query, so that you

can know whether or not they’ve been used by a certain user or using a certain role.

Currently, this requires parsing the query itself, to extract the tables (which is not a

simple task). Snowflake is also working on a more granular logging which will include

this information.

Examples

The following query checks for unused roles in the last six months. Note that it’s ignoring

role hierarchy, which may need to be taken into account, depending on your role

architecture. If so, you will need to expand on this.

WITH used_roles AS (

 SELECT DISTINCT role_name FROM snowflake.account_usage.query_history

 WHERE start_time > DATEADD("month", -6, CURRENT_TIMESTAMP())

)

SELECT name FROM snowflake.account_usage.roles

WHERE deleted_on IS NULL

AND name NOT IN (SELECT role_name FROM used_roles);

Chapter 7 Auditing and Monitoring

154

The following query checks which roles are privileged to a user, but unused in the

last six months by the user (note that if you’re using this at scale, it may be very slow due

to query_history being a huge table; you may want to copy it to a different table, or create

a slimmer summary of it instead):

WITH all_grants AS (

 SELECT created_on, role AS role_name, grantee_name AS user_name

 FROM snowflake.account_usage.grants_to_users

 WHERE deleted_on IS NULL

),

last_used_roles AS (

 SELECT role_name, user_name, MAX(start_time) AS last_query_time

 FROM snowflake.account_usage.query_history

 WHERE start_time > DATEADD("month", -6, CURRENT_TIMESTAMP())

 GROUP BY 1, 2

)

SELECT all_grants.user_name, all_grants.role_name FROM

 all_grants LEFT JOIN last_used_roles ON

 (all_grants.role_name = last_used_roles.role_name

 AND all_grants.user_name = last_used_roles.user_name)

 WHERE last_used_roles.last_query_time IS NULL;

�Monitoring Usage of Vulnerable Drivers

Another use case for monitoring can be to monitor access to the system, which is done

from vulnerable driver versions. From time to time, security vulnerabilities are found

in software, and monitoring access done by vulnerable drivers can help you to easily

pinpoint the users who are using the outdated drivers and ask them nicely to update

their drivers.

For up-to-date information, you can look in the release notes of the drivers or

attempt to make sure users are using the latest versions.

The following query gets the users with the driver versions they were using in the last

week:

SELECT user_name, reported_client_type || ' ' || reported_client_version AS

driver, COUNT(1) AS logins FROM snowflake.account_usage.login_history

WHERE event_timestamp > DATEADD('week', -1, CURRENT_TIMESTAMP())

Chapter 7 Auditing and Monitoring

155

AND driver NOT LIKE 'SNOWFLAKE_UI%'

GROUP BY 1, 2

ORDER BY 1;

This can be augmented by joining with grants_to_users, to prioritize users with

administrative roles, or be limited to a specific set of versions.

7.3.  �Object Tagging
The topic of object tagging (which, at the time of writing, is still in preview) can be used

for several things, but we thought it would be interesting to mention it as it can be very

useful for monitoring, as well as for other uses like applying smarter data access control.

Object tags are key-value pairs, which can be applied to securable objects like

databases, schemas, and virtual data warehouses, but even to specific columns. That way

you can add a lot of metadata context to your Snowflake objects, and either use that in

policies or in reports and monitoring.

A good example is using object tagging to tag specific columns based on the type of

data they have. For example, you may tag columns by types of PII that they hold. Then

you can apply reporting which can increase your security and governance, such as

looking at tables with PII that have public access or many other use cases.

To create new tags, you use the CREATE TAG command, as follows:

CREATE TAG PII_TYPE;

You can then apply the tag using the following command:

ALTER TABLE promotions.candyclub.users

MODIFY COLUMN user_email

SET TAG pii_type='email';

You can then use the new tag_references account usage view for monitoring. For

example, the following query checks for columns tagged as email, without an email

dynamic policy applied on them:

WITH column_with_tag AS

(

SELECT ref_entity_name AS table_name, ref_column_name AS column_name,

 ref_database_name AS db_name, ref_schema_name AS schema_name

Chapter 7 Auditing and Monitoring

156

FROM snowflake.account_usage.tag_references

WHERE tag_name = 'PII_TYPE'

AND column_tag_value = 'email'),

column_with_policy AS (

SELECT ref_entity_name AS table_name, ref_column_name AS column_name,

 ref_database_name AS db_name, ref_schema_name AS schema_name

FROM TABLE(information_schema.policy_references('security_policies.masking_

policies.email_mask')))

SELECT * FROM column_with_tag

EXCEPT

SELECT * FROM column_with_policy;

Though this feature is still in preview, we feel like there are going to be a lot of

innovative ways to use it, to gain great operational and security value.

7.4.  �How to Monitor?
Now that we discussed the relevant information you can pull from Snowflake and some

of the prominent use cases for monitoring and auditing your Snowflake account, a

question that remains unanswered is how exactly to monitor this data. Obviously, if

you’re looking at the data in an ad hoc manner, for example, when doing an incident

response, you can use Snowflake’s web UI or your favorite database client or data

analytics tool. However, when setting up your infrastructure for an ongoing monitoring

of your Snowflake account’s security, it’s time to make something more stable that

continuously gives you the visibility, availability, and alerting capabilities so you’re

always on top of your Snowflake account’s security.

7.4.1.  �Using Tasks to Prepare Data
Sometimes you may want to use Snowflake tasks to prepare data. There are several

reasons for doing that. You may want to prepare audit tables with specific data ready in

them, such as a table with a log of all admin actions (which is a subset of query_history).

You may want to have a table recording a snapshot of certain configurations periodically.

Chapter 7 Auditing and Monitoring

157

Another common use case is to copy large tables like query_history and login_

history from the account usage schema to a different location. This can be done so that

further analysis can be done with a separate non-admin role, in case you want to save

the data for longer retention periods than one year or in case you want to run analysis on

the data (in account usage, it is quite sluggish).

Snowflake tasks are a very strong engine for such ongoing activities such as ETLs

and maintenance, and in case you want to learn more about it, you can visit Snowflake’s

documentation. However, here are a couple of examples for such tasks, which you can

customize to your needs.

�Examples

First, let’s create admin_actions and query_history tables in the acme_admin.monitoring

schema:

CREATE DATABASE IF NOT EXISTS acme_admin;

CREATE SCHEMA IF NOT EXISTS acme_admin.monitoring;

CREATE TABLE acme_admin.monitoring.admin_actions

LIKE snowflake.account_usage.query_history;

CREATE TABLE acme_admin.monitoring.query_history

LIKE snowflake.account_usage.query_history;

The following query sets a task that copies the entire query_history table from the

previous day to the acme_admin.monitoring.query_history table, every day at 04:00am UTC:

CREATE TASK queries_duplication

 WAREHOUSE = compute_wh

 SCHEDULE = 'USING CRON 0 4 * * * UTC'

 TIMESTAMP_INPUT_FORMAT = 'YYYY-MM-DD HH24'

AS

INSERT INTO acme_admin.monitoring.query_history

SELECT * FROM snowflake.account_usage.query_history

WHERE start_time > DATEADD("day", -1, CURRENT_DATE());

ALTER TASK queries_duplication RESUME;

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/user-guide/tasks-intro.html
https://docs.snowflake.com/en/user-guide/tasks-intro.html

158

The following query sets a task that copies only admin actions (actions performed by

admin roles, though your requirements may be different, such as to filter by query_type)

from the previous day to the acme_admin.monitoring.admin_actions table, every day at

05:00am UTC:

CREATE TASK admin_actions_duplication

 WAREHOUSE = compute_wh

 SCHEDULE = 'USING CRON 0 5 * * * UTC'

 TIMESTAMP_INPUT_FORMAT = 'YYYY-MM-DD HH24'

AS

INSERT INTO acme_admin.monitoring.admin_actions_duplication

SELECT * FROM snowflake.account_usage.query_history

WHERE start_time > DATEADD("day", -1, CURRENT_DATE())

AND role_name LIKE '%ADMIN';

ALTER TASK admin_actions_duplication RESUME;

7.4.2.  �Building a Snowsight Security Dashboard
There are many different ways in which you can consume Snowflake data as part of data

analytics, and we all have our favorite tools, whether it’s exporting the data to a Splunk

or ELK, or integrating with a SIEM (Security Information and Events Management).

One might argue that instead of pulling the data from Snowflake, you should actually

push the logs from other security controls to your Snowflake (for more information, read

Chapter 9, “Snowflake for Security”).

If you choose to pull the data and display it in another dashboarding or analytics

platform, you can feel free to do so if that works for you. However, another cool solution

is to build your Snowflake security dashboard in Snowflake itself, using Snowsight. To log

into your Snowsight (which is available in all Snowflake account levels), go to https://

app.snowflake.com , and continue with the OAuth login.

Once inside Snowsight, go to the Dashboards menu item, and add a new dashboard,

using the + Dashboard button. Let’s call this new dashboard “Security Dashboard,” and

click Create Dashboard.

Once we’re inside the new dashboard, we can add tiles to the dashboard with

different visualizations we’d like to see in our security dashboard. Of course, you can

customize the dashboard based on the data we’ve seen in this chapter, per your liking

and needs, but let’s get started with a few tiles.

Chapter 7 Auditing and Monitoring

https://app.snowflake.com
https://app.snowflake.com

159

�Failed Logins Tile

In the first tile, we will set a tile to display the top login failures, grouped by usernames

and failure reasons. To do that, put the following query in the tile’s query box:

SELECT CONCAT(user_name, ' (', error_message, ')') AS User, COUNT(*) AS

failures FROM snowflake.account_usage.login_history WHERE event_timestamp =

:daterange

AND is_success = 'NO'

GROUP BY user_name, error_message

ORDER BY failures DESC

LIMIT 10

As you can see, the query contains the filter event_timestamp = :daterange, which

is a placeholder that changes to a time range filter, according to the date range selection

in the dashboard; for example, it may change to

(event_timestamp >= ('2022-01-01 13:31:27')::timestamp

AND event_timestamp < ('2022-01-14 13:31:27')::timestamp)

In the tile editor, choose Chart. At the time of writing, sadly, Snowsight has no pie

chart or donut pie chart, so we will resort to displaying the results as a bar chart. Choose

the bar chart from the Chart Type drop-down menu. In the x-axis, choose User to display

the correct labels and the horizontal bars orientation. Finally, change the tile’s title to

“Top Login Failures,” and return to the security dashboard, to add the next tile.

�Users Connecting from the Most IPs Tile

Now let’s either duplicate and edit the chart, or create a new one and customize it in the

same way, to create another title, displaying the users who are connected from the most

IP addresses:

SELECT user_name AS User, COUNT(DISTINCT client_ip) AS IPs FROM snowflake.

account_usage.login_history WHERE event_timestamp = :daterange

GROUP BY user_name, error_message

ORDER BY IPs DESC

LIMIT 10

Chapter 7 Auditing and Monitoring

160

�Users with Admin Roles Tile

Let’s add another tile, this time displaying a list of all users with an admin role enabled,

and this time, set this tile as a grid, not a chart:

SELECT grantee_name AS user

FROM snowflake.account_usage.grants_to_users

WHERE deleted_on IS NULL

AND role LIKE '%ADMIN%';

As you can see, these are examples, and you can add more tiles with information

that will be helping you monitor the security of your Snowflake account, either from

the examples throughout this chapter or from your own customizations. And if you

think of some additional ones with great value, we’d love to hear. Also, if you’re looking

for more information about how to work with Snowsight, you can go to Snowflake’s

documentation.

7.5.  �Alerting
Last but not least, having tables with data and a dashboard to display them is sweet, but

sometimes you want to know when something happens that requires your attention.

In those cases, you’d like to send out alerts to those responsible for the security of

your Snowflake security, whether that’s you or others. You can start at some level of

notification (even, yikes, an email) and continue from there as you mature this project to

using APIs to send alerts via Slack, open tickets on Jira, or interface with other services

like ServiceNow.

Examples to such alerts can be found throughout this chapter, but some examples

are notifications when

•	 There’s a new admin role grant.

•	 There’s a change in network policies, or in their assignment to the

account or to specific users.

•	 There’s an admin role usage for selecting data (be careful not to flood

yourself with this one).

•	 There are changes in column security definitions.

Chapter 7 Auditing and Monitoring

https://docs.snowflake.com/en/user-guide/ui-snowsight.html
https://docs.snowflake.com/en/user-guide/ui-snowsight.html

161

•	 There are changes in SCIM configuration or generation of tokens.

•	 There is a repeating login failure for a user.

You can find more examples throughout this chapter, or you can create your own

relevant ones.

Here are some ways in which you can implement these notifications.

7.5.1.  �Using Custom Scripting
One way to do so is to write an application that periodically queries Snowflake and,

depending on the results, triggers the workflow you’d like to trigger (such as send an API

call to an application that will send out a notification or open a ticket). This is a pretty

straightforward way, and you’d run it in the same way you’re running other similar

applications, using any scripting language, with its Snowflake connector. Of course,

when you’re connecting and performing these checks, make sure you’re doing in a

secure way (as per Chapter 4, “Authentication: Keeping Strangers Out”), by using a key-

pair authentication.

7.5.2.  �Using Tasks and External Functions
Another way to send out the notifications is to set up tasks that utilize external functions.

In the external functions, you implement the logic that triggers the workflow according

to the values sent by the queries. To do that, use the CREATE TASK for creating the

repeating task and CREATE EXTERNAL FUNCTION. However, keep in mind that though

this seems to be a quick, almost self-contained process, it requires creating an API

integration (which is currently supported in AWS, Azure, and GCP where the last is still

in preview at the time of writing) and splitting the logic between the tasks and the code

to verify the results. That is why this is less recommended.

7.5.3.  �Using SnowAlert
The third way is by using SnowAlert, an open source project by Snowflake, which enables

sending alerts over Snowflake query results, as well as over data ingested into Snowflake

from other systems. You can learn more about SnowAlert in Chapter 9, “Snowflake for

Security.”

Chapter 7 Auditing and Monitoring

162

7.6.  �Using Third-Party Vendors for Monitoring,
Auditing, and Alerting

As you can see, Snowflake provides quite an extensive platform for getting valuable

data that helps you to audit your activity, monitor your account’s security, and alert you

whenever you want to get notifications. However, there are several third-party solutions

that can help with that, either by building on top of what Snowflake has, by orchestrating

the abilities, or by controlling the data access and enriching it with additional context

from other controls like your IdP or other systems.

Using third-party vendors may be saving you a lot of resources, to free you up for

doing other things, and analyzing the advantages and disadvantages of each solution is

beyond the scope of this book.

7.7.  �Summary
In this chapter, we went through a lot of metadata which can be extracted from

Snowflake and how you can leverage this data to meet compliance requirements and

make sure your security risk is monitored and under control. We realize that this is a lot

of information to process, which can be translated into great visibility and additional

security for you and your users. We also realize that you’re a busy person and that you

have a lot to do.

That is why, our recommendation is to prioritize and start with basic monitoring

capabilities and continue to mature from there onward.

Chapter 7 Auditing and Monitoring

163
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_8

CHAPTER 8

Secure Data Sharing
with Snowflake
An important part of a modern data ecosystem in many cases is the ability to share data

between different teams and with others within or outside of your organization. The

latter is especially interesting, as almost all companies are now sharing data with other

companies (suppliers, customers, partners, service providers, government agencies, and

more), and data sharing is often done in a suboptimal way from both an operational and

a security perspective.

Let’s discuss the different methods of data sharing in Snowflake and the security

guidelines for each one.

8.1.  �Direct Share
The basic way to share data with other Snowflake accounts is to use direct share or secure

data sharing. When you want to share objects with other accounts, you need to create

a share object, which you can think of as a specific type of role, to which you can grant

privileges. Similar to roles, if you want to give the share access to tables, views, and other

objects within a schema, you must provide it with a usage grant on the database and schema.

The following query will create a share for ACME Candies’ ingredients buying

predictions with ACME candy ingredients, a supplier of ACME Candies:

CREATE SHARE ingredient_predictions;

GRANT USAGE ON DATABASE manufacturing TO SHARE ingredient_predictions;

GRANT USAGE ON SCHEMA manufacturing.goods TO SHARE ingredient_predictions;

GRANT SELECT ON TABLE manufacturing.goods.buying_predictions TO SHARE

ingredient_predictions;

ALTER SHARE ingredient_predictions ADD accounts=acme_ingredients;

https://doi.org/10.1007/978-1-4842-7389-0_8#DOI

164

Some notes about secure data sharing:

	 1.	 Since a share can only share tables and secure views from a single

database, if you want to share objects from different databases

using one share, you will need to add corresponding views in a

single database.

	 2.	 Shares must be in the same region. If you want to share data to a

different region, you need to first replicate the database to another

account you control in the region of the data-consuming account.

	 3.	 Sharing data with other accounts may impact your compliance.

For example, if you are HIPAA compliant, you need to sign a BAA

(business associate agreement) with the data consumer (or data

provider, if you are the data consumer).

	 4.	 As the data provider, you will not get any logging of the queries

running against the shared data. This may be a security concern.

	 5.	 Data sharing works even if you have tri-secret configured on your

account. If you have tri-secret and revoke your key, this will of

course prevent using the shared data from that point forward.

8.1.1.  �Consuming Shared Data
When you are consuming data, whether it’s a shared table or other shared objects, as

we will see in the following. When a share is shared with you, you can either create a

database for it from the UI (under Shares ➤ Inbound) or run the following SQL query;

in this case it’s ACME Candies accepting campaigns data from their partners, ACME

Savories:

CREATE DATABASE "CAMPAIGNS_FROM_SAVORIES"

FROM SHARE ACMESAVORIES."CAMPAIGNS_SHARED_WITH_CANDIES" COMMENT='Shared

campaigns data from ACME savories';

GRANT IMPORTED PRIVILEGES ON DATABASE "CAMPAIGNS_FROM_SAVORIES" TO ROLE

"ANALYST_DIRECTOR";

Chapter 8 Secure Data Sharing with Snowflake

165

A couple of security guidelines when consuming data from your partners:

	 1.	 Consider this data as data you don’t control, for example, when

making use of it in internal systems, make sure you treat input

as unsanitized. As an example, don’t assume that data imported

is filtered against XSS (cross-site scripting) payloads, so if you

display the data in internal systems, make sure you properly

escape it (as you should with other data, of course).

	 2.	 If this data contains sensitive information, such as PII, make sure

you are aware of it and are mapping access to the sensitive data, as

you would with regular sensitive data.

8.1.2.  �Sharing Partial Data Using Secure Objects
In many cases, you want to share partial data with the data consumer. For example,

ACME Candies may want to share a table with employees’ data with a company

handling payrolls, but not share all the data about those employees, just the relevant

columns.

In another case, ACME Candies may want to share purchase orders with its

suppliers. The purchase orders are in one table, but ACME wants each supplier to only

get the purchasing orders belonging to them.

Let’s discuss the different ways to share this data in a secure way.

�Using Secure Views

Let’s discuss the first case, of sharing only partial data from the employees’ table. We

will use a secure view to share only specific columns from the table. A secure view

is a view where even users with select access to the object can’t view its logic, and it

also eliminates some of the optimizations, to prevent getting answers about data you

shouldn’t be able to access by means like timing queries.

Chapter 8 Secure Data Sharing with Snowflake

166

When you grant access to a view, you don’t need to grant select access to the

underlying asset as well, meaning that if you share the secure view, the data-consuming

account will not be able to see the data you don’t want to share. Assuming we already

have a share called share_salaries, let’s set this up:

CREATE SECURE VIEW v_payrolls AS

SELECT first_name, last_name, bank_account, current_salary

FROM employees;

GRANT SELECT ON v_payrolls TO SHARE share_salaries;

Note that in the same way in which you create a secure view, you can create a secure

materialized view. Materialized views are pre-computed views, and more information

about them can be found in Snowflake documentation.

�Using Dynamic Secure Views

Let’s consider the second case, where we want to apply row-level security and share

each supplier with the purchase orders belonging to them. In this case, we can set up a

separate secure view for each supplier, which is going to be redundant and ugly. Instead,

we can use the supplier account as a contextual parameter, which we can filter the

results by.

Suppose we don’t want to pollute the purchase_orders table with the Snowflake

account IDs of our suppliers, we can create a mapping table containing the mapping

between account IDs and supplier IDs (or supplier names). Based on this, we can make a

dynamic view to pull data based on the account ID and only for pending orders.

Let’s first create some mock data. Here are the mock tables and data, in case you

want to try this out:

CREATE TABLE map_suppliers (supplier_id integer, account_id text);

INSERT INTO map_suppliers VALUES (1, CURRENT_ACCOUNT());

CREATE TABLE purchase_orders (product_id integer, product_name text,

quantity integer, order_status integer, supplier_id integer);

INSERT INTO purchase_orders VALUES (1, 'test', 5, 2, 1);

Chapter 8 Secure Data Sharing with Snowflake

167

And now let’s create the secure view, using the entitlement mapping to provide

dynamically filtered content:

CREATE SECURE VIEW v_purchase_orders AS

SELECT product_id, product_name, quantity

FROM purchase_orders

JOIN map_suppliers ON (purchase_orders.supplier_id = map_suppliers.

supplier_id)

WHERE order_status = 2 -- pending

AND map_suppliers.account_id = CURRENT_ACCOUNT();

�Using Secure UDFs

Suppose you want to be even more restrictive than giving a filtered secure view. This

may be due to the need to share data, but to restrict wide-scale access (such as the data

consumer pulling the entire dataset). It may also be when you want to provide the data

but now allow the data consumers to apply aggregations on the entire data set.

In this case, your next option is to use secure UDFs (user-defined functions). When

dealing with secure functions, as with secure views, the consumer does not require

access to the underlying data, and even further than that, you can limit them to pull

data based on certain dimensions, which will limit their ability to access your data. For

example, you may implement a function that returns data that is only relevant for a

specific time, specific product, etc.

Let’s say, for example, that ACME Candies wants to expose a function to their retail

partners, which will return a list of the upcoming allowed discounts on their candies. As

they don’t want a rogue retailer running a “SELECT *” query on the exposed data and

having access to all the discounts they provide on all product lines, they may implement

it as the get_discounts_for_product function, which accepts a product ID as a parameter.

To do that, let’s first add the mock future discounts table:

CREATE DATABASE sales;

CREATE SCHEMA sales.retail;

CREATE TABLE sales.retail.future_discounts

(product_id integer, from_date timestamp, to_date timestamp, discount_

amount integer);

Chapter 8 Secure Data Sharing with Snowflake

168

INSERT INTO sales.retail.future_discounts VALUES

(1, CURRENT_TIMESTAMP(), DATEADD('day', 7, CURRENT_TIMESTAMP()), 25);

USE sales.retail;

Now, let’s add the shared UDF:

CREATE SECURE FUNCTION

get_future_discounts_for_product(input_product_id integer)

RETURNS TABLE (from_date timestamp, to_date timestamp, discount_amount

integer)

AS

'SELECT from_date, to_date, discount_amount

FROM sales.retail.future_discounts

WHERE product_id = input_product_id';

Running the following query will return the discounts for product ID 1:

SELECT * FROM TABLE(GET_FUTURE_DISCOUNTS_FOR_PRODUCT(1));

And now all we need to do is to share this function with the retail partners, for their

delight:

CREATE SHARE IF NOT EXISTS retail_partners;

GRANT USAGE ON DATABASE sales TO SHARE retail_partners;

GRANT USAGE ON SCHEMA sales.retail TO SHARE retail_partners;

GRANT USAGE ON FUNCTION sales.retail.get_future_discounts_for_

product(integer) TO SHARE retail_partners;

ALTER SHARE retail_partners ADD ACCOUNTS = retailer1, retailer2;

Note that while this method gives you more control over what you share and under

what dimensions you’re providing the data, it is not bulletproof in its current form. The

retailers in this sample can still write a script that retrieves all products from 1 to n (also

known as scraping the data). Since usage of shared UDFs is logged in the consumers’

account, not in the provider account, you will not know it.

Given that, this will both require them to do some work explicitly to break your

sharing terms and add expenses on their end (e.g., instead of running one query of

SELECT ... INTO, they will need to run millions of queries). In other words, it’s all a

matter of risk and may suffice in many cases. After all, you do want to share this data, so

Chapter 8 Secure Data Sharing with Snowflake

169

it’s not business secrets, but you’re making it significantly harder to abuse your kind will.

However, unlike exposing an API for the same usage, sharing a UDF is much easier to set

up, and no external components are needed.

�Using Secure Joins

Another form of secure sharing is secure joins. Unlike secure views and secure UDFs,

this is not a SQL extension (SELECT * FROM tbl1 SECURE JOIN tbl2); rather it’s a

combination of secure functions used to securely join shared data, limiting the exposure

of the data shared.

Secure joins are useful in situations where you want to get an understanding of

joined items between a data provider and a data consumer, without exposing the group

of items themselves. As an example, it may be when you want to check what common

customers two companies have, without one of the companies exposing their customer

base to the other companies. As you can see, this is a concept or an implementation of

secure UDFs, and expanding on this concept can solve tough data sharing problems.

The idea of secure joins is to create a joined key for the private items, and this key is a

combination of hashed values that prevents de-anonymization of the shared data.

As an example, let’s say that ACME Candies wants to run a Valentine’s campaign with

one of its partners, ACME Savories. To better understand the effect of this collaboration,

ACME Candies wants to better understand the overlapping users between the

companies, as represented (for the purposes of this example) by a list of email addresses.

For simplicity, we will run this demo under one account, but the only difference is

that you also need to create a share, which grants access to the secure functions, as per

the last section. So let’s start with creating two tables, with examples of emails for the two

companies:

CREATE TABLE acme_candies (email string);

CREATE TABLE acme_savories (email string);

INSERT INTO acme_candies VALUES ('a@a.com'), ('b@b.com'), ('c@c.com'),

('d@d.com'), ('e@e.com');

INSERT INTO acme_savories VALUES ('c@c.com'), ('d@d.com'), ('e@e.com'),

('f@f.com'), ('g@g.com');

Chapter 8 Secure Data Sharing with Snowflake

170

Next, let’s create a function that generates the hashed join key:

CREATE SECURE FUNCTION get_join_key(email string)

RETURNS string AS

'

SHA2(email || SHA2(CURRENT_ACCOUNT() || \'<some salt>\'))

';

As you can see, we concatenate (using the || operator) the email which was the input,

along with the hash of the account running the function, and a salt we (as the data

provider) add, and then we hash (using SHA256, but of course any hashing algorithm

can work here) and return the results. This means that the key is different for each data

item (email), but also is different for each account, and with the added salt (known only

to the provider, ACME Candies), making it uniquely created only by the provider.

The second function we (ACME Candies) create is the following:

CREATE SECURE FUNCTION secure_lookup(join_key string, consumer_salt string)

RETURNS numeric(10)

AS

'

SELECT COUNT(*)

FROM acme_candies

WHERE join_key = SHA2(IFNULL(email, to_char(random())) || consumer_salt ||

SHA2(CURRENT_ACCOUNT() || \'<some salt>\'))

';

What we’ve done here is to perform a count which looks up a join key (which we

will generate from the get_join_key function) and match it with results from our ACME

Candies’ users. We’re creating the concatenation here as well with the same algorithm as

in get_join_key, and of course, we can’t pre-compute this, as the results are dynamically

created per account (due to the CURRENT_ACCOUNT() added to the hash). This means

that if you’re customizing the hash generation in get_join_key, you need to customize

the condition in secure_lookup as well.

Now, in ACME Savories, we’re adding the following function and a temporary table

with the overlapping data:

Chapter 8 Secure Data Sharing with Snowflake

171

CREATE FUNCTION get_customer_key (email string, consumer_salt string)

RETURNS STRING AS

'

IFNULL(email, to_char(random())) || consumer_salt

';

CREATE OR REPLACE TEMPORARY TABLE joinkeys AS

SELECT

get_join_key(get_customer_key(email, '<some consumer salt>')) AS join_key

FROM acme_savories;

The temporary table now holds hashed customer identifiers from ACME Savories’

side (the consumer side), and now we’re finally able to run the following query in the

consumer side, which can find the amount of overlapping consumers without being

exposed to the other company’s data:

SELECT SUM(secure_lookup(join_key, '<some consumer salt>')) AS overlapping_

customers,

COUNT(*) AS total_customers, ((overlapping_customers / total_customers) *

100) AS overlap_percent

FROM joinkeys;

The preceding query should return an overlap of three customers and 60% overlap.

The concept of secure joins is pretty cool and can also change, according to the

specific use case you’re trying to solve. It also is a bit advanced, and we recommend

trying the logic first on a single account, before sharing, so that it would be easier to

first get to a working algorithm, before ironing out the administrative side of sharing

the functions. If you want to learn more about secure joins, as well as see additional use

cases, we recommend this blogpost on Snowflake's website.

8.2.  �Data Exchange and the Snowflake Data
Marketplace

Snowflake’s data exchange builds on top of the data sharing we’ve discussed so far in

this chapter and leverages these capabilities to expose datasets that you want to share,

either within or outside of your organization. It enables you to set up listings of datasets

that you would like to share and manage it as a data catalog or data mart, where other

Chapter 8 Secure Data Sharing with Snowflake

https://www.snowflake.com/blog/secure-joins-how-to-join-data-between-companies-while-respecting-pii/

172

accounts can get this shared data. The Snowflake data marketplace is a public listing,

based on the data exchange, that enables you to publicly offer such data listings, either

for free or for a price.

Having a data exchange can help you simplify data sharing of your Snowflake data,

and by doing that, you can enjoy the following benefits:

	 1.	 You can have an internal “data mart,” which can simplify

authorization of data between your organization’s groups

(e.g., ACME operations can push data about the upcoming

shipments around the world, and ACME marketing can consume

that information and act upon). As we’ve seen in Chapter 6,

“Authorization: Data Access Control,” one of the most important

things about a secure authorization of data is to have a clear policy

about who can access what, and this can simplify that.

	 2.	 You can have an ecosystem with your partners (suppliers,

customers, and others) and remove risks of ad hoc projects by

clearly defining datasets that you feel comfortable providing to

them, with a clear process of how to get that.

	 3.	 In case you have data that you’re comfortable sharing publicly,

you can even share it publicly using the data marketplace.

8.2.1.  �Managing Data Exchange
Currently, setting up data exchange for your accounts is a manual process (you open it by

opening a support ticket requesting to do so), and managing listings and accepting shares

are supported only by using Snowflake’s new web UI (https://app.snowflake.com).

At the time of writing, data exchange is still a preview feature, so expect more details

about how to operate this and about guidelines on operation in a secure way to update

over time, when this feature becomes publicly available.

A couple of security guidelines when using data exchange:

	 1.	 Once shared, you will not know the queries running on your data.

That means that in your listings, you should follow the secure

objects usage from earlier in this chapter. For example, prefer

sharing using a secure view over sharing directly an object to be

able to control what exact data you want to share, apply dynamic

Chapter 8 Secure Data Sharing with Snowflake

https://app.snowflake.com

173

filtering if needed, and use secure functions when you want to

limit data retrieval even more.

	 2.	 Even if you’ve limited usage and dimensions over data using

functions (as per the secure functions section), keep in mind

that given the right incentive, the data can probably get

scraped (depending on the other side’s willingness to go that

way and spend those resources and depending on the exact

implementation). That does not mean that this is bad, it just

means that you should be aware of this in the risk assessment of

such a project.

	 3.	 If your compliance requirements are such that you must have

logs of access to the shared data, this is not included in the data

sharing (as data shared is logged in the data consumer end, not

in the data provider end). A “workaround” here may be if the

data consumer enables a secure view of filtered data from their

query_history account usage view (see Chapter 7, “Auditing and

Monitoring,” for more information on that), but this depends on

the use case.

	 4.	 You should, of course, be even more aware of the data sharing

risks in the public Snowflake data marketplace, as instead

of working with selected partners (or even teams inside an

organization), you are offering the data publicly. You should

make sure that what you’re sharing is completely anonymized

and contains no sensitive data that you don’t wish to share and

consider the option (mentioned in the earlier section regarding

secure functions) of data scraping, before you enable public

access to the data.

8.3.  �Reader Accounts
Up until now, we’ve discussed sharing of data between Snowflake accounts. But what

if ACME Candies wants to share data with one of their partners who does not have a

Snowflake account? Or what if ACME wants to share data while having complete visibility

into all data access done on the shared data? For doing that, you will use reader accounts.

Chapter 8 Secure Data Sharing with Snowflake

174

When you are creating reader accounts, instead of sharing data with an existing

Snowflake account, you are creating a managed account, managed by your organization.

This account, as the name suggests, can only read data, but otherwise is a fully functional

account (users, roles, authentication, etc.). As a managed account, they are not signing

a contract with Snowflake, and you, as the provider, are responsible for all billing. That

means that it may be necessary to have some sort of a contract between the provider and

the consumer, to make sure that everything is well understood.

As an example, ACME Candies would like to share some data with ACME transport,

which is not a Snowflake customer. The following query creates the reader account:

CREATE MANAGED ACCOUNT reader_transport

ADMIN_NAME = karl_herz,

ADMIN_PASSWORD = '<hard password>',

TYPE = reader;

Once the account is created, you should share data with it (using the secure data

sharing concepts in this chapter). Unlike normal shares, you can audit and monitor

the activity of the reader accounts. The metadata is visible to you, instead of the

account_usage schema, in the reader_account_usage section, which holds operational

monitoring views, as well as the query_history and login_history which we discussed in

Chapter 7, “Auditing and Monitoring.” What this means is that, for example, if you want

to monitor access to sensitive data and some of this data is in reader accounts, you will

need to monitor it in the same way you’re monitoring the account usage data.

The command will return the account name and login URL for the reader account,

which you can share (along with the credentials) to the data consumer. They should also

be responsible about their account security, in terms of making sure they apply strong

authentication, data authorization if needed, etc. (you can always gift them with this

book :)).

8.4.  �Distributed Data Clean Rooms
You can think of a distributed data clean room as a capsule that exists between two

companies (or two entities within the same organization), where data processing of

shared data can be done. A distributed data clean room is basically taking the secure

data sharing capabilities we discussed so far, such as secure functions, secure joins, and

a secure data exchange, and putting it all together.

Chapter 8 Secure Data Sharing with Snowflake

175

This means that, as an example, if ACME Candies wants to have a go-to market

activity with another company, where they want to work together on data of shared

customers, they do so in a buffered shared environment, where the data is accessed

after using secure joins, secure functions, or both, according to the type of activity the

companies want to do, and where the data can then be processed by data analysts. To

top it all off, of course you can add protection by using dynamic data masking and row-

based policies to protect sensitive data.

This enables such organizations to privately share data, while still being compliant

with data privacy and protection frameworks and regulations. The concept of data clean

rooms will probably gain more features over time, for example, setting rate limiting on

queries of data, and more controls.

8.5.  �Summary
Snowflake is built to enable secure data sharing, as it’s a data platform where the

metadata is centralized, making it easy to perform cross-account activities. In this

chapter, we’ve looked into the different ways in which you can securely share data within

and outside of an organization. Some of the ways to share data are answering specific

use cases (such as sharing data without exposing sensitive data), and it is important to

understand the concepts, so you can choose the right data sharing method with regard

to the value you’re trying to drive.

Chapter 8 Secure Data Sharing with Snowflake

177
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0_9

CHAPTER 9

Snowflake for Security
Throughout this book, we focused on operating Snowflake in a secure way. This chapter

is a bit different, in which we’d like to discuss using Snowflake as a security data lake to

enable better security across the enterprise. We will discuss how we got to the point that

it makes sense to have a security data store (we will do this briefly, as the evolution of

security controls deserves its own book) and what makes Snowflake a good choice for

such purposes. We will also show a practical approach to getting started.

9.1.  �How We Got Here
In a typical organization, in the beginning of the century (i.e., in case you’re reading this

book in the 21st century), you had a handful of security controls. You probably had a

firewall, an antivirus on your computers, and perhaps a bunch of other security controls.

The data coming from these controls could easily be checked.

Thinking about what happened since then is dazzling – public cloud, mobile

devices, IoT, big data, machine learning, AI, as well as other business and technological

advancements changed the attack surface of organizations. For example, you did not

need mobile device management when you had no mobile devices, and when data is

relatively centralized and on a smaller scale, it is more simple to secure.

In addition, there is more of a financial incentive to attack organizations and

individuals using cyber attacks (to put it simply, more money to be made). All of this

brought with it a large growth in cyber attacks, as well as a growing number of security

controls of different types.

A lot of these security controls are providing data about security events, but when

you have dozens of such security controls in your organization, you can’t have an expert

dedicated to each one, and you need a consolidated way to view and react to security

events.

https://doi.org/10.1007/978-1-4842-7389-0_9#DOI

178

9.1.1.  �In Comes SIEM
A SIEM (Security Information and Events Management) is a system that is used to

aggregate and manage information and events from several sources, being your security

controls. The idea is that events can be handled in a centralized manner, and you can

create logic on top of that with correlation rules to help identify attacks across several

security controls and regain control of your organization’s security.

Over time, SIEM systems evolved, as part of the challenge became an alert flood,

which in turn caused alert fatigue in organizations. When organizations sometimes

receive 100,000s of security events each day, looking at each event individually is not

feasible and does not scale, and so, there became a need to handle security events in

scale, to make sure that the security events are handled, and to find indicators of more

severe events that may indicate that more resources are needed to investigate or respond

to a certain incident.

9.1.2.  �Snowflake As a Security Data Lake
So, after having this brief, fast-forward introduction to the evolution of security controls,

we got to a point where we have a lot of controls in our organization, which can all give

us a lot of data, but it’s not easy to take this data and convert it to actual security value.

This means that if you pour this data to a data platform that allows different individuals

and teams to use it flexibly, you can make value of the data:

•	 Extracting logs and creating dashboards and reports about security

events can be done within a query or a set of queries.

•	 Investigation into specific incidents from millions of events can also

be done in a more simple way, reducing the time required to achieve

results.

•	 Creating alerting can become very flexible, with SQL queries that can

alert when certain conditions are met.

•	 More users can apply more data-driven approaches to solve security

problems, such as detection of risky events.

•	 Integration with other services such as threat intelligence, either as

input or as output, is easy when the data is already in a data platform.

Chapter 9 Snowflake for Security

179

The amount of value you can extract from consolidating your data to a data

processing platform depends on the security analytics capabilities you have in your

organization – security analysts and security analytics products.

9.2.  �Why Snowflake for a Security Data Lake
Given all of the above, it makes sense that you’d like to consolidate your security data

and perform analytics on it. There are several reasons why Snowflake is a good platform

to do that on. Let’s discuss some of them.

9.2.1.  �Ease of Integration
Snowflake is easy to pour data into, either as an ad hoc import of data or setting up

a continuous data pipeline. Because you have a lot of different security controls,

integration times are important, and since the integration of data into Snowflake is

relatively fast and simple, it reduces a lot of overhead from such a project.

9.2.2.  �Scalability and Features
Snowflake is easy to scale up – no additional clusters to install when you grow, no need

to change your table’s structures, etc. It also supports a lot of analytical and data science

functions as well as can be expanded by adding functions. It connects easily to different

BI tools. This is what makes Snowflake ideal for other data analytics applications as well,

but it manifests itself when working on a security data platform as well.

9.2.3.  �Enrichments with Data Marketplace Sources
The Snowflake data marketplace allows you to quickly add data from multiple sources

and add them to your queries, reporting, etc. For example, instead of building an

application that adds IP addresses mapping to countries and ASNs, you can consume

this data from the data marketplace and use it joined with your event data. You can add

to that more data about attacking IP addresses, and you can get a better knowledge of the

security events and which ones may be related or the most important to handle.

Chapter 9 Snowflake for Security

180

As Snowflake is making a lot of effort into adding additional data sources to the data

marketplace, it looks like in the future we will have more security data to choose from

in the marketplace. Think, for example, of how it may simplify file analysis if you have

different information about their hashed values and more information about domains

and other IoCs (indicators of compromise).

Another example, from our personal experience, is how Satori’s customers can

consume data from our data marketplace listing, to create self-service dashboards

on security and operational issues, such as which individuals are accessing sensitive

information and where sensitive data is residing across the enterprise. These analytics

may help direct security awareness training and security hardening initiatives,

respectively.

9.2.4.  �Sharing Is Easy
In the same way that using Snowflake as a data platform for security analytics gains from

getting data from different sources, in many cases, it’s important to share data in a secure

way between different teams within and outside of the organization. Using Snowflake,

it’s easy to share parts of data within the organization (for more information, go to the

fine-grained authorization part of Chapter 6, “Authorization: Data Access Control”) and

outside of your organization (e.g., with reader accounts).

9.3.  �SnowAlert
Speaking about using Snowflake for security is incomplete without discussing

SnowAlert. SnowAlert is an open source security analytics framework that identifies

(and alerts on, as the name suggests) security incidents from different data sources and

is based on Snowflake. SnowAlert was developed by Snowflake’s security team and is

continuously updated.

It is based on scheduled queries that are running on log information ingested into

Snowflake about system, network, and application events and is quite easy to extend.

The application itself runs in a container, and the query results are alerts that are fed into

Snowflake tables. These alerts are then standardized to eliminate duplicate entries and

suppress repeating alerts, and then notifications are sent to other platforms (such as Jira,

Slack, or ServiceNow) so that the right teams can take action based on the alerts.

Chapter 9 Snowflake for Security

181

SnowAlert also lists violations, which are essentially the same as alert information

(results of specific queries), but its results require continuous work on risk reduction,

rather than “closing an alert.” Examples can be found throughout Chapter 7, “Auditing

and Monitoring,” and include users with lacking authentication strength and other

configuration issues. Such data is also written to Snowflake for monitoring by BI tools.

9.3.1.  �Getting Started
To first get started with SnowAlert, run its docker in installation mode:

docker run -it snowsec/snowalert ./install

In the first time you run this, as with other docker containers, it will take a while to

download the docker, and once it finishes download, you will be asked for

	 1.	 Your Snowflake account URL (e.g., acmecandies.

snowflakecomputing.com).

	 2.	 A username and password for installation (note that you need to

use a user with administrative role for SnowAlert installation).

Of course, the preferred way is to use SSO, as per Chapter 4,

“Authentication: Keeping Strangers Out,” of this book.

	 3.	 The installation wizard will proceed to create the required

database objects, after which it will optionally allow you to

create Jira integration and generate an RSA key, for which we

recommend to use a randomized key.

	 4.	 You will be presented with an environment file command to

create. Do so, and run SnowAlert.

9.3.2.  �Running SnowAlert
Running SnowAlert is done by running the following command:

docker run --env-file acmecandies.envs snowsec/snowalert ./run all

(replace acmecandies with your account name, it will be displayed at the end of the

installation).

Chapter 9 Snowflake for Security

182

You can run this from your laptop or workstation, but you probably want to later on

set it to be running from whatever production environment it is that you’re using to run

containers from. Needless to say, you need to treat the secret key here as every other

secret key, as per the key-pair authentication section of Chapter 4, “Authentication:

Keeping Strangers Out.”

9.3.3.  �Managing SnowAlert
SnowAlert comes with a web UI to manage its rules and integrations. To run it, run the

web UI docker:

docker run -it -p 8000:8000 --env-file snowalert-acmecandies.envs

snowsec/snowalert-webui

(replace acmecandies with your account name).

You can use http://localhost:8000 to connect to your SnowAlert web UI server,

and from there, you can set up various connectors to security controls (to pull data

from), manage the alerts (as well as create new ones), and manage the violations (as well

as create new ones).

9.3.4.  �SnowAlert Data
SnowAlert data is located in your Snowflake account, under the SnowAlert database. You

can use SQL queries to query data from it – directly or through a BI or reporting tool. For

example, the following query pulls the last ten alerts:

SELECT id, alert_time, event_time, title, description

FROM snowalert.data.alerts

ORDER BY alert_time DESC

LIMIT 10;

To learn more about SnowAlert, refer to its documentation and github repository.

Chapter 9 Snowflake for Security

https://snowalert.readthedocs.io/
https://github.com/snowflakedb/SnowAlert

183

9.4.  �Summary
In this chapter, we explored the possibility of using Snowflake for your organization’s

security analytics. Snowflake has a lot of advantages for doing that, and taking SnowAlert

as a platform (from which you can expand) also has its advantages. This was in the

introductory chapter, as using or not using Snowflake as a data platform for your security

analytics is a lot about what your organization has already invested in, what it uses as a

SIEM, what does it use as its main data platform, and more.

Chapter 9 Snowflake for Security

185
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0

�Epilogue
Writing a book such as this is challenging. We attempted to strike a balance between not

being a book that has a high redundancy with the documentation, a balance between

providing “the code you need to solve a problem” and providing the reasoning, a balance

between addressing data engineers, security engineers, and other readers. We had a lot

of fun writing this book, and we’re hoping you had fun reading it and that you found it

useful.

Writing a book about a “moving target” such as Snowflake poses another challenge.

Since Snowflake didn’t decide on a code freeze throughout the writing process, some

features were released throughout the writing process, and some were announced but

not published yet. We tried to address those, even if the knowledge of such features was

obviously limited. This stresses the importance of keeping up to date with any system

you’re working on. Sometimes a problem you were trying to solve now has a more

elegant solution.

By the time you get here, we hope you feel that Snowflake provides a set of great

security features and that you’re able to move further toward reducing security risks in

your Snowflake data cloud. We’d also love to hear feedback from you and how you found

the book. We will also continue publishing content around Snowflake security (as we’ve

already done quite extensively before publishing this book).

If you’d like to stay up to date with Snowflake security issues, you’re also invited to

register with our website https://snowflake-security.com to get relevant updates. If

you’d like more generic information about DataSecOps, not only around Snowflake, feel

free to visit DataSecOps.xyz for information and events around DataSecOps.

https://doi.org/10.1007/978-1-4842-7389-0#DOI
https://snowflake-security.com

187
© Ben Herzberg, Yoav Cohen 2022
B. Herzberg and Y. Cohen, Snowflake Security, https://doi.org/10.1007/978-1-4842-7389-0

Index

A
Access control changes, 108
ACCESS_HISTORY view, 128
Access logs, 110
Access management

classic snowflake role
management, 83, 84

functional roles, 85
hierarchical role model, 85–87
IdP-dominated access model, 83
per project roles, 84
role per user, 84, 85
self-service, 88
third-party solutions, 90

ACCOUNTADMIN, 36, 59, 80, 111, 134
Account data storage, 5
Account-level network policy, 68, 71
Account master keys, 22
Account-wide network policy, 68
Alerting

custom scripting, 161
SnowAlert, 161
tasks and external functions, 161
third-party vendors, 162

Amazon Web Service (AWS), 1, 5, 6, 20
Application-level encryption, 26–28
Attribute-based access control (ABAC),

76–77, 90, 106
Auditing

third-party vendors, 162

Audits characteristics, 109–110
AWS PrivateLink, 71
Azure Active Directory integration, 38–40, 42
Azure PrivateLink, 71

B
Backup data, 11
BI tools, 59, 65, 76, 179, 181
Built-in authentication

client sessions keep alive, 50
MFA (see Multifactor authentication

(MFA))
password policy enforcement, 49, 50

Built-in encryption of data, 17
Business critical edition, 8

C
Classic snowflake role management,

83–84
CLIENT_SESSION_KEEP_ALIVE

parameter, 50
Client-side encryption, 19, 26
Cloud provider, 1, 2, 19–21
Column-based access control

abstraction, 93–95
de-tokenization and decryption, 99
dynamic masking, 96, 97
security for semi-structured data, 98, 99
static cloning of data, 92, 93

https://doi.org/10.1007/978-1-4842-7389-0#DOI

188

Compensating factors, authentication, 65
COPY INTO statement, 21, 23
CREATE USER command, 32, 48
CURRENT_ROLE() function, 93, 95
Customer managed keys, 8, 10, 25–26
Customer-provided staging areas, 17, 19–20
Cyber attacks, 177

D
Data access control, 73

attribute-based access control, 76
discretionary access control, 75
mandatory access control, 74, 75
role-based access control, 76, 77

Database access monitoring, 144–146
Data exchange

benefits, 172
managing, 172
security guidelines, 172

Data marketplace, 171–173, 179–180
Data sovereignty, 2
Decrypting data, 24
Decryption, 26–28, 99
De-tokenization, 99
Direct share

consuming shared data, 164
partial data (see Partial data sharing)

Discretionary access control (DAC), 75, 77
Discretionary data access model, 88
Distributed data clean rooms, 174–175
Dynamic masking, 96–99, 106, 151

E
Encryption of data

application-level encryption, 26–28
customer managed keys, 25, 26

customer-provided staging areas, 19, 20
external tables, 25
hierarchical key model, 22
process, 23
snowflake-provided staging areas, 17–19
storage integration, 21
in transit, 15, 16
unloading files to staging areas, 17, 24

End-to-end encryption (E2EE), 16
EXTERNAL_FUNCTIONS_HISTORY,

135–136

F
Fail-safe, 12–13
Federated authentication

advantages, 53
processes, 54
SAML 2.0

SSO integration with Okta, 55, 56
SSO integration with SAML 2.0

providers, 56, 57
File keys, 22
Fine-grained data access control

attribute-based access control, 106
column-based access control, 91–99
combining column and row

security, 105
row-based access control, 99–105
self-service access control, 107
third-party solutions, 107

G
GET statement, 24
Google BigQuery, 79
GRANTS_TO_ROLES, 112–113
GRANTS_TO_USERS, 113

Index

189

H
Hierarchical role model, 85–87, 105
Hierarchical row-level security, 105
Historical data access

fail-safe, 12
internal/external backup, 11
stage data, 11
time travel, 12

Human-based authentication, 32

I, J
Identity providers (IdP)/identity

management (IDM) platforms, 33
IdP-dominated access model, 83
Information schema, 110–111, 129, 134

table functions
EXTERNAL_FUNCTIONS_

HISTORY, 135, 136
LOGIN_HISTORY, 137, 138
LOGIN_HISTORY_BY_USER, 138
POLICY_REFERENCES, 139
QUERY_HISTORY, 139–141
QUERY_HISTORY_BY_*, 141
REST_EVENT_HISTORY, 142, 143

Infrastructure security
account data storage, 5
historical data access, 11–13
stored data access, 6–10
virtual data warehouses, 13

Ingestion process, 25
Internal backup, 11
Internet service provider (ISP), 15

K
Key-pair authentication, 60–62, 127, 161
Key wrapping, 21, 22

L
LOGIN_HISTORY function, 137–138
LOGIN_HISTORY view, 114, 115

M
Mandatory access control (MAC), 74–75
Man-in-the-middle (MITM) attack, 16
Marketing ops, 34
MASKING_POLICIES view, 116–118
Metadata views

ACCESS_HISTORY, 128
account usage vs. information

schema, 110
GRANTS_TO_ROLES, 112, 113
GRANTS_TO_USERS, 113
information schema

APPLICABLE_ROLES, 130
ENABLED_ROLES, 130
OBJECT_PRIVILEGES, 131
STAGES, 132
TABLE_PRIVILEGES, 133

LOGIN_HISTORY, 114, 115
MASKING_POLICIES, 116, 117
POLICY_REFERENCES, 118
QUERY_HISTORY, 119–121
READER_ACCOUNT schema, 129
ROLES, 121
SESSIONS, 115, 116
STAGES, 122, 123
TASK_HISTORY, 124, 125
use cases

database access
monitoring, 144, 146

finding admin role
abuses, 146–150

managing overprivileged
users, 152, 154

Index

190

monitoring administrative
operations and configuration
changes, 150, 152

vulnerable drivers, monitoring
usage, 154

USERS, 125–127
Monitoring

administrative operations/
configuration changes, 150, 152

security dashboard
failed logins tile, 159
users connecting, 159
users with admin roles tile, 160

tasks to prepare data, 156, 158
third-party vendors, 162

Multi-account strategy, 1, 2
Multi-cloud, 2
Multifactor authentication (MFA), 48

capability, 52
enrollment process, 51
organization’s SSO provider, 52
setting up in Snowflake, 51
token, 50

Multiple accounts management, 3

N
Named stages, 18
Network access control, 10, 37, 45, 67–71
Network access policies

account-level network policy, 68
limitations

no granularity within account, 70
no group-level granularity, 69, 70
only IPv4, 70

parameter, 68
user-level network policy, 68

Network blocking, 67
Network policies, 67–71
Nonhuman authentication

key-pair authentication, 60, 62
precautions, 60
preventing SQL injection in

application queries, 64
Snowflake SQL API, 63
SQL API security notes, 63

O
OAuth authentication, 59, 63, 65
OBJECT_PRIVILEGES, 131, 133
Object tags, 155–156
Okta integration

ACME Candies, 34–37
role management, 34
security considerations, 34
user management, 33

One-time password (OTP), 32
OpenSSL, 16
Organizations, 1, 5–7, 25, 177
Out-of-the-box encryption, 15
Overprivileged users, 152–154

P
Partial data sharing

dynamic secure views, 166
secure joins, 169–171
secure UDFs, 167, 168
secure views, 165

Password policy enforcement, 49–50
Policy-based access control (PBAC), 76
POLICY_REFERENCES view, 118–119
PostgreSQL, 79
Pricing plans, 3

Metadata views (cont.)

Index

191

PrivateLink integrations, 10, 70–71
Public cloud, 5, 6, 21, 25, 71
Python, 57, 58, 60, 61

Q
QUERY_HISTORY_BY_*, 141
QUERY_HISTORY view, 119–121
Query logs, 110, 119

R
Reader accounts, 129, 173–174
READER_ACCOUNT schema, 129
REST_EVENT_HISTORY, 142–143
Role architecture

access management (see Access
management)

document, 81
grant privileges, 82

Role-based access control
(RBAC), 76–77, 85

Root keys, 22, 23, 25
Row-based access control

abstraction by using secure UDFs, 102
hierarchical row-level security, 105
row-level security, secure views, 101, 102
row-level security static copies, 100
security in semi-structured data, 103
snowflake row access policies, 104, 105
use cases, 99

S
Securable objects, 77, 78, 90, 155
Secure data sharing, 163–175
Secure joins, 169–171, 174, 175
Secure Sockets Layer (SSL), 16

Secure views, 93–96, 101–102, 165–167
Security controls, 177–179, 182
Security data lake

data marketplace, 179
ease of integration, 179
scalability and features, 179
sharing is easy, 180

Security information and events
management (SIEM), 158, 178

Self-service
data access provisioning, 88
portal, building, 89

Self-service access control, 90, 107
Self-service restoration, 12
Server-side encryption (SSE), 19, 20
SESSIONS view, 115–116
Shared data, consuming, 164
Single Sign-On (SSO) integration, 33, 48

automated Okta authentication, 58
BI tools, 59
code, 57
connection caching, 58
with Okta, 55, 56
with SAML 2.0 providers, 56, 57

SnowAlert, 161
data, 182
docker in installation mode, 181
managing, 182
running, 181

Snowflake
load data methods, 17
organization structure, 1
pricing plans, 3
single account vs. multiple accounts, 1

Snowflake access control model
built-in roles, 80, 81
security model, 78, 79

Snowflake hierarchical key model, 22–24

Index

192

Snowflake-provided staging area, 17–19
SQL integration, 46–47
SQL statements, 17, 46, 110
Stage data, 11
Stages view, 122, 123, 132
Standard multi-tenant deployment, 6–7
Storage integration, 21
Stored data access

business critical edition, 8
PrivateLink, 10
standard multi-tenant deployment, 6, 7
virtual private snowflake, 9

System for Cross-domain Identity
Management (SCIM)

Azure AD, 38–43
debugging and monitoring, 46
network policy, assigning, 44
Okta integration (see Okta integration)
token management, 45

T
Table master keys, 22, 24
Table stages, 18
Task history view, 124, 125
Third-party solutions, 90, 107
Time travel feature, 12

Transport Layer Security (TLS), 16
Tri-Secret Secure, 25, 26

U
User-defined functions (UDFs), 28, 102,

167–169
User-level network policy, 68
User provisioning

SCIM integration
Azure Active Directory integration,

38–43
debugging and monitoring, 46
network policy, assigning, 44
Okta integration, 33–37
token management, 45

SQL integration, 46
Users management, 31–32
User stages, 18
USERS view, 125–127

V, W, X, Y, Z
Virtual data warehouses, 6, 13, 79, 86, 87
Virtual private network (VPN), 15, 48, 67
Virtual Private Snowflake (VPS), 9, 10
Vulnerable drivers, 154–155

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Let’s Get Started
	Chapter 1: Snowflake Organization Structure
	1.1. Single Account vs. Multiple Accounts
	1.1.1. Scaling Multiple Accounts Management

	1.2. Choosing the Right Pricing Plan
	1.3. Summary

	Chapter 2: Infrastructure Security
	2.1. Account Data Storage
	2.2. Access to the Stored Data
	2.2.1. The Standard Multi-tenant Deployment
	2.2.2. Business Critical Edition
	2.2.3. Virtual Private Snowflake
	2.2.4. PrivateLink

	2.3. Access to Historical Data
	2.3.1. Stage Data
	2.3.2. Internal or External Backup
	2.3.3. Time Travel
	2.3.4. Fail-Safe

	2.4. Good to Know
	2.5. Summary

	Chapter 3: Data Encryption and Ingestion
	3.1. Encryption of Data in Transit
	3.2. Encryption at Rest
	3.2.1. Uploading Files to Staging Areas
	3.2.2. Snowflake-Provided Staging Areas
	3.2.3. Customer-Provided Staging Areas
	3.2.4. Using Storage Integration
	3.2.5. How Snowflake Encrypts Your Data in Tables
	Snowflake Hierarchical Key Model

	3.2.6. Unloading Files to Staging Areas
	3.2.7. External Tables
	3.2.8. Customer Managed Keys
	3.2.9. Application-Level Encryption

	3.3. Summary

	Chapter 4: Authentication: Keeping Strangers Out
	4.1. Users Management
	4.2. User Provisioning
	4.2.1. SCIM Integration
	Okta Integration
	User Management
	Role Management
	Security Considerations
	ACME Candies Wants This!

	Azure Active Directory Integration
	Setting Up the Integration in Snowflake
	Setting Up the Integration in Azure

	Other SCIM
	Assigning a Network Policy over SCIM
	SCIM Token Management
	Debugging and Monitoring SCIM

	4.2.2. User Provisioning Using SQL Integration
	4.2.3. Combining SCIM and SQL Integration

	4.3. Authentication Types
	4.3.1. Built-In Authentication
	Password Policy Enforcement
	Client Sessions Keep Alive
	Multifactor Authentication (MFA) in Snowflake
	Setting Up MFA in Snowflake
	So... Should You Use It?

	4.3.2. Federation: Single Sign-On (SSO) Integration
	Setting Up SAML 2.0 Federated Authentication
	Setting Up SSO Integration with Okta
	Setting Up SSO Integration with Other SAML 2.0 Providers

	SSO for Code
	SSO Connection Caching
	SSO with Automated Okta Authentication

	SSO for BI Tools

	4.3.3. Nonhuman Authentication
	Key-Pair Authentication
	Using Key-Pair Authentication in Production
	Rotating Your Key Pairs

	Snowflake SQL API
	SQL API Security Notes

	Preventing SQL Injection in Application Queries

	4.3.4. Compensating Factors in Authentication

	4.4. Summary

	Chapter 5: Network Access Control
	5.1. How Do Network Access Policies Work?
	5.1.1. Setting Up Account-Level Network Policy
	5.1.2. Setting Up User-Level Network Policy
	5.1.3. Limitations
	No Group-Level Granularity
	Workarounds

	No Granularity Within Account
	Workarounds

	Network Policies Are Only IPv4

	5.2. PrivateLink Integrations
	5.3. Summary

	Chapter 6: Authorization: Data Access Control
	6.1. Data Access Models
	6.1.1. MAC (Mandatory Access Control)
	6.1.2. DAC (Discretionary Access Control)
	6.1.3. ABAC (Attribute-Based Access Control)
	6.1.4. RBAC (Role-Based Access Control)

	6.2. Snowflake Access Control Model
	6.2.1. Snowflake Security Model
	6.2.2. The Built-In Roles in Snowflake

	6.3. Designing Your Role Architecture
	6.3.1. Document Your Role Architecture
	6.3.2. Privilege Granting
	6.3.3. Approaches to Access Management
	IdP-Dominated Access
	Classic Snowflake Role Management
	Per Project Roles
	Role Per User
	Functional Roles Coupled with Access Roles
	Role Hierarchy
	Hierarchy Hell

	Self-Service: Data Access Provisioning
	Role Creation Delegation
	Building a Self-Service Portal

	Third-Party Solutions

	6.3.4. Creating Your Own Blend of Data Access

	6.4. Fine-Grained Data Access Control
	6.4.1. Column-Based Access Control
	Static Cloning of Data
	Abstraction by Using Secure Views
	Dynamic Masking
	Column-Based Security for Semi-structured Data
	De-tokenization and Decryption

	6.4.2. Row-Based Access Control
	Implementing Row-Level Security Static Copies
	Implementing Row-Level Security Using Secure Views
	Abstraction by Using Secure UDFs
	Row-Level Security in Semi-structured Data
	Snowflake Row Access Policies
	Hierarchical Row-Level Security

	6.4.3. Combining Column and Row Security
	6.4.4. Attribute-Based Access Control
	6.4.5. Self-Service Access Control
	6.4.6. Third-Party Solutions

	6.5. Rolling Out Access Control Changes
	6.6. Summary

	Chapter 7: Auditing and Monitoring
	7.1. Snowflake Audits Characteristics
	7.1.1. Every Operation Is Audited
	7.1.2. Audits Are Available via… Snowflake

	7.2. Snowflake Metadata
	7.2.1. Account Usage vs. Information Schema
	7.2.2. Relevant Views for Security in Snowflake.account_usage
	GRANTS_TO_ROLES
	Examples

	GRANTS_TO_USERS
	Examples

	LOGIN_HISTORY
	Examples

	SESSIONS
	Examples

	MASKING_POLICIES
	Examples

	POLICY_REFERENCES
	Examples

	QUERY_HISTORY
	Examples

	ROLES
	Examples

	STAGES
	Examples

	TASK_HISTORY
	Examples

	USERS
	Examples
	ACCESS_HISTORY
	Examples

	7.2.3. The Reader Accounts Schema
	7.2.4. Views in the Information Schema
	APPLICABLE_ROLES
	Examples

	ENABLED_ROLES
	OBJECT_PRIVILEGES
	Examples

	STAGES
	Examples

	TABLE_PRIVILEGES
	Examples

	Other Views

	7.2.5. Table Functions in the Information Schema
	EXTERNAL_FUNCTIONS_HISTORY
	Examples

	LOGIN_HISTORY
	Examples

	LOGIN_HISTORY_BY_USER
	Examples

	POLICY_REFERENCES
	QUERY_HISTORY
	Examples

	QUERY_HISTORY_BY_*
	REST_EVENT_HISTORY
	Examples

	Other Table Functions

	7.2.6. Use Cases
	Database Access Monitoring
	Examples

	Finding Admin Role Abuses
	Examples

	Monitoring Administrative Operations and Configuration Changes
	Examples

	Managing Overprivileged Users
	Examples

	Monitoring Usage of Vulnerable Drivers

	7.3. Object Tagging
	7.4. How to Monitor?
	7.4.1. Using Tasks to Prepare Data
	Examples

	7.4.2. Building a Snowsight Security Dashboard
	Failed Logins Tile
	Users Connecting from the Most IPs Tile
	Users with Admin Roles Tile

	7.5. Alerting
	7.5.1. Using Custom Scripting
	7.5.2. Using Tasks and External Functions
	7.5.3. Using SnowAlert

	7.6. Using Third-Party Vendors for Monitoring, Auditing, and Alerting
	7.7. Summary

	Chapter 8: Secure Data Sharing with Snowflake
	8.1. Direct Share
	8.1.1. Consuming Shared Data
	8.1.2. Sharing Partial Data Using Secure Objects
	Using Secure Views
	Using Dynamic Secure Views
	Using Secure UDFs
	Using Secure Joins

	8.2. Data Exchange and the Snowflake Data Marketplace
	8.2.1. Managing Data Exchange

	8.3. Reader Accounts
	8.4. Distributed Data Clean Rooms
	8.5. Summary

	Chapter 9: Snowflake for Security
	9.1. How We Got Here
	9.1.1. In Comes SIEM
	9.1.2. Snowflake As a Security Data Lake

	9.2. Why Snowflake for a Security Data Lake
	9.2.1. Ease of Integration
	9.2.2. Scalability and Features
	9.2.3. Enrichments with Data Marketplace Sources
	9.2.4. Sharing Is Easy

	9.3. SnowAlert
	9.3.1. Getting Started
	9.3.2. Running SnowAlert
	9.3.3. Managing SnowAlert
	9.3.4. SnowAlert Data

	9.4. Summary

	Epilogue
	Index

