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Preface 

There is no doubt that our current and even future lives are highly connected to 

satellite. We launch satellites to establish the global positioning system to get the 

precise position of the unmanned vehicles and even the mankind. We launch satellites 

to achieve Earth observation, weather forecast, fire forecast, video broadcasting, 

environmental monitoring, etc. Satellite has played an important role in our daily 

life. To provide such services for mankind, the attitude control system should be 

developed for satellite. Otherwise, the payloads such as cameras, antennas, etc., 

will not work perfectly. In the attitude control system design, attitude controller 

design is one of the most important parts. Although the linear control theory-based 

controllers including the proportional–integral–derivative control law and its variants 

have been widely used in satellite attitude control engineering, they are becoming 

inappropriate for modern satellites demanding high control performance. That is 

because the dynamics of any satellite is inherently nonlinear in nature. Inspired 

by the superior performance ensured by nonlinear control theory, many nonlinear 

attitude control approaches have been proposed for satellites. However, the problem 

of designing an nonlinear controller to accomplish attitude maneuvers with high 

control performance is still open. 

In addition to the nonlinear dynamics of the satellite attitude system, modeling 

error is another main hindrance. This inevitably acts on the satellite attitude dynamics. 

It mostly comes from uncertain and unmodeled inertia, unmeasurable flexible vibra-

tion and coupling between the rigid and the flexible part of the satellite, actuator 

fault, actuator misalignment, and the environmental disturbance torques including 

the gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and 

the solar radiation pressure torque. Due to the current finite modeling technology, the 

modeling error is unknown and even time-varying. In practice, if the modeling error 

is not appropriatly handled and compensated, the attitude control performance will 

be deteriorated and even the instability of the attitude control system may be resulted. 

This has led to intense interest in the development of modeling error compensation 

control approaches, which are supposed to solve this problem. 

From the standpoint of rejecting, attenuating, and compensating for modeling 

error, significant developments have been witnessed for the satellite attitude control
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system design in the past two decades. However, there is currently a lack of a unified 

control framework. Most of the existing methods can compensate for a single type 

of modeling error only. In addition, many of them do not consider physical and 

cost limits such as actuator constraint and unmeasurable angular velocity due to 

gyro failure. On the other hand, fast attitude maneuvering requirement may not be 

considered during critical phases of the mission in the literature during modeling 

error compensation. Moreover, the existing robust or adaptive attitude controllers 

with modeling error accommodated are characterized by severe conservativeness. 

This will lead to more energy consumption, and thus reduce the lifespan of a satellite. 

In aerospace engineering, those issues should be addressed simultaneously. 

Motivated by the demand for attitude control with the above challenges solved 

and many existing approaches are unable to achieve this goal, this book attempts to 

solve the above challenge during satellite attitude control system design. This book 

focuses on designing advanced compensation control techniques for more types of 

modeling error with fast, high-accuracy, high-stability, and or velocity-free attitude 

maneuvering accomplished for satellite. This book first concentrates on developing 

nonlinear robust solutions to two or more than two types of modeling error compen-

sation attitude control problem of satellite even in the presence of actuator constraint 

and fault. Its focus comes to design advanced approaches to achieve fast attitude 

slewing control for satellite with two or more than two types of modeling error 

compensated adaptively. Finally, three new observer-based approaches are synthe-

sized to accomplish attitude control for satellite, while the modeling error is precisely 

and fully compensated. The corresponding controller has less and even no conser-

vativeness. Energy is saved when they are applied to perform attitude maneuvering. 

More specifically, the effectiveness and the superior attitude control performance of 

those modeling error compensation approaches proposed in this book are verified by 

numerical simulation and experimental tests via several testbeds on the ground. 

The book itself provides the reader with the current state of the art in the nonlinear 

attitude control area of rigid or flexible satellite with modeling error. Moreover, it 

also contains the attitude representation, model of satellite attitude system including 

the attitude kinematics and the attitude dynamics, some fundamental definitions, and 

lemmas used in nonlinear control theory. Hence, this book can be used as a reference 

by satellite control engineers and satellite attitude control academic researchers. The 

book also has readers who are interested in attitude control of other rigid bodies such 

as unmanned aerial or underwater vehicles. Prerequisites for understanding the book 

are a sound of knowledge of basic nonlinear control theory especially the Lyapunov 

stability analysis, rigid body attitude dynamics, basic mathematics, and fundamental 

physics. 
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Chapter 1 

Overview 

1.1 Introduction 

The space and universe have always been full of attraction and mystery to the 

mankind. We have long had the dream and ideal of traveling to space and explor-

ing the universe. The first satellite launched on October 4, 1957 declared that the 

mankind had entered the space age. The space technology has advanced by leaps 

and bounds. The development of space technology has shown that the mankind has 

made great achievements in its journey of the continuous research, exploration, and 

utilization of space. It brings about important impetus and significant changes in the 

economic and social developments of mankind. Especially, it can also “impact life 

on earth through the stimulation of technological development, and generation of 

scientific knowledge” said by Dr. Ernst Stuhlinger, the associate director for science 

of NASA Marshall Space Flight Center, in 1970. Of course, space technology is one 

of the most challenging missions and complex engineering in the world. 

Satellite is the fundamental platform of any aerospace mission such as Earth obser-

vation, communication, navigation, deep space exploration, etc. For any satellite, an 

attitude control system (ACS) should be designed. This system is one of the most 

important subsystems of the satellite. It plays an important role and is an essential 

part in satellite design. Attitude control should be carried out to accomplish attitude 

stabilization or tracking maneuvers to ensure that its payloads operate normally. For 

example, the desired attitude trajectory should be followed to ensure that the camera 

fixed in the satellite can focus on the interested areas and then take images. The 

stabilization of attitude is one of the fundamental maneuvers and the primary atti-

tude control tasks that any satellite needs to frequently perform during its mission. 

It is recognized by aerospace engineers that attitude control determines whether the 

space missions can be accomplished or not. 

Modern space missions are becoming more and more complicated. They ask for 

more and better requirements for the attitude control performance. More specifi-

cally, highly accurate slewing or pointing attitude maneuvers are necessitated. Note 

that the dynamics of any satellite is inherently nonlinear in nature. Moreover, this 
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4 1 Overview

nonlinear attitude dynamics is inevitably subject to modeling error. This modeling 

error will deteriorate the satellite attitude maneuvering performance. It lets the linear 

control theory-based control methods such as the proportional–integral-derivative 

(PID) attitude controller and its variants result in an unsatisfactory/inferior perfor-

mance. That is because the PID controller has a weak capability of handling with 

such modeling error. To solve this drawback, advanced attitude control schemes 

are, therefore, imperative for satellites to maintain desirable stability, reliability, and 

enhanced performance. Inspired by the superior performance ensured by nonlinear 

control theory [ 1– 3], although significant developments have been witnessed in the 

nonlinear controller design for satellite attitude stabilization and maneuver tracking 

objectives [ 4– 7], the problem of attitude control is still open. In particular, from the 

standpoint of rejecting or attenuating modeling error [ 8– 12], there is currently a lack 

of a unified attitude control framework. 

1.2 Attitude Dynamics Modeling Error 

Due to the current finite modeling technology, the mathematical model of the satel-

lite attitude system can not be precisely established. The nonlinear attitude dynamics 

can not be fully described. There exists dynamics modeling error. The external dis-

turbance torques, uncertain inertia, flexible vibration, actuator fault, and actuator 

misalignment are the five primary modeling error. 

1.2.1 External Disturbance Torques 

The gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and 

the solar radiation pressure torque are the primary environmental and external dis-

turbance. Any non-symmetrical satellite in the orbit is affected by a gravitational 

torque. This is due to the variation in the Earth’s gravitational force over the satellite. 

Magnetic disturbance torques are induced by the interaction between the satellite’s 

residual magnetic field and the geomagnetic field. The aerodynamic torque results 

from the satellite’s motion through the tenuous upper atmosphere. The air molecule 

interaction with satellite body will produce such torque on the satellite. It is most 

effective on satellites orbiting below .400–.500 km. The photons from the sun gener-

ate a force that produces a torque about the center of the mass of the satellite. This 

solar radiation pressure has more effect on light objects with relatively high surface. 

Although there are many mathematical models for those four types of external dis-

turbance torques [ 13]. They can be not exactly derived. Moreover, in addition to 

those four torques, there are also some unexpected disturbance torques such as the 

collision torque due to debris or robotic manipulation. They can not be modeled.
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1.2.2 Unmodeling Inertia 

Once the design of the satellite is finished on the ground, its inertia matrix can be 

calculated and estimated by using standard equations [ 13]. This calculated inertia is 

constantly called the nominal inertia of the satellite. When the satellite is running 

in the space orbit, its mass properties will be uncertain. It may change due to the 

motion of onboard payloads such as camera and antennas, rotation of solar arrays, 

fuel consumption, out-gassing, etc. This leads to the actual inertia of the satellite 

deviating from the nominal value. Moreover, such deviated inertia is time-varying, 

uncertain, and unmodeled. 

1.2.3 Flexible Vibration 

To meet ever more demanding mission requirements, there has been a trend for devel-

oping satellites with large flexible appendages such as antennas and solar arrays. 

Those appendages are large, lightweight, and low-stiffness. Such a type of satellite 

is usually called a flexible satellite. For example, the flexible satellite ETS-VIII has 

two large deployable reflectors measuring.17m × 19m, and also a pair of large solar 

array panels measuring.19m × 2m [ 14]. Although the trend towards larger satellites 

can meet the increasing mission demands, this will inevitably increase the difficulty 

in their attitude control. This is because the coupling between the structural vibra-

tions of the flexible components and the rigid-body motion can introduce dynamic 

perturbations to the satellite’s attitude. Moreover, when performing rapid attitude 

maneuvering with high-pointing accuracy demanded by aerospace tasks [ 15– 17], it 

induces flexible appendages to vibrate. For most flexible satellites, this coupling and 

the flexible vibration are not measurable. Hence, those two will act on the flexible 

satellite attitude dynamics as modeling error. 

1.2.4 Actuator Fault 

A satellite’s challenging operating conditions increase the possibility of malfunctions 

in sensors and actuators and faults in the controllers. The analysis of recent satellite 

accident statistics shows that the fault of the attitude control system accounts for.32%. 

Moreover, in this percentage, nearly.44%of the faults are caused by actuator faults, as 

shown in Fig. 1.1. Once a satellite is launched, it is highly unlikely that its hardware 

can be repaired. Thus, the actuator fault cannot be fixed with replacement parts. 

When an actuator fault occurs, it will result in an error torque between the nominal 

torque and the actual torque generated by the satellite’s attitude control actuators. 

This error torque is viewed as the modeling error in the attitude dynamics. It can 

potentially cause a host of economic, environmental, and safety problems. A recent
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Fig. 1.1 The component 

fault analysis of ACS of 

satellite [ 18] 
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Fig. 1.2 The ChinaSat 6C 

satellite 

accident occurred with the ChinaSat 6C satellite developed by the China Academy 

of Space Technology, as shown in Fig. 1.2. This satellite was launched on March 

10, 2019. However, faults occurred in its thrusters on December 25, 2023. This led 

to more energy consumption and a reduction in its lifespan. This incident strongly 

motivates the development of attitude control systems that ensure an efficient and 

timely response to maintain stability, reliability, and required performance properties 

even when components fail. 

1.2.5 Actuator Misalignment 

Actuator misalignment is another type of modeling error in the satellite attitude 

system. Due to this misalignment, the actual torque acting on the three-axis of the 

satellite is different from the nominal torque. The extreme case of a backward actuator 

is especially important. In practice, whether due to finite manufacturing tolerances 

or warping of the satellite structure during launch, some actuator alignment error 

exists indeed. Moreover, the satellite’s inertia properties are highly coupled to the 

actuator alignments. Hence, actuator misalignment may cause the onboard attitude 

controller to fail. This may cause mission performance to degrade and thus pose a 

significant risk to the successful operation of the satellite.
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Fig. 1.3 The configuration of four reaction wheels 

Fig. 1.4 The schematic representation of reaction wheel misalignment 

Figure 1.3 shows the mechanical configuration of four reaction wheels used to 

activate a satellite attitude system. Three wheels are mounted orthogonally, aligned 

with the satellite body axes, i.e.,.+XB ,.+YB , and.+ZB , respectively. A fourth, redun-

dant, wheel is mounted skewed at equal angles (.54.7 degrees) to each of the body 

axes, aligned diagonally in the .+XB , .+YB , and .+ZB quadrant. This “skew” wheel 

could be used to provide control power about any of the other axes if one of the 

orthogonal wheels was to fail. In practice, some alignment errors will exist in this 

reaction wheel. As an example, actuator alignment error can be mathematically mod-

eled as shown in Fig. 1.4 for this configuration misalignment. The reaction wheel 

mounted on .+XB axis is tilted over the nominal direction with constant angles, . Δα1

and .Δβ1; also the reaction wheels mounted on .+XB and .+YB axis are tilted over 

the nominal direction with .Δα2, .Δβ2, .Δα3, and .Δβ3, respectively. While the “skew” 

wheel is titled over the nominal direction with .Δα4 and .Δβ4. 

1.3 External Disturbance Attenuation Control 

To attenuate the effect of the external disturbance on satellite attitude control per-

formance, many solutions have been developed for satellite [ 19– 22]. In the exist-

ing literature on solving the problem, there are two types of approaches. One is to 

view disturbance torque and uncertain inertia as lumped disturbances/uncertainties, 

and then design a robust attitude controller [ 23]. Applying such a robust controller,
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robustness to disturbance and uncertain inertia is guaranteed [ 24, 25]. Desired atti-

tude control performance is resulted despite external disturbances, system uncertain-

ties, and even flexible vibrations. The other type to achieve disturbance/uncertainties 

rejection control is the disturbance observer-based (DOB) control design [ 26, 27]. 

For this type, an observer is first designed to estimate disturbance/uncertainties, and 

the controller is developed by using the observed value to achieve the control objec-

tives with the disturbance accommodated. 

1.3.1 Robust Attenuation Control 

Robust control of external disturbance is widely seen in the literature [ 28– 30]. For 

instance, the.H∞ control theory was applied to achieve robust control of external dis-

turbance [ 31, 32]. In [ 33], another robust controller was reported to handle external 

disturbance for the rigid bodies subject to actuator faults and angular velocity con-

straints. This method was further applied in [ 34] for satellite attitude tracking with 

the prescribed performance ensured despite disturbance. In [ 35], a backstepping-

based attitude stabilization controller was designed with external disturbances and 

constraints in input and measurement solved. The problem of robust disturbance 

control was also studied in [ 36]. Only a class of external disturbances with known 

dynamics was addressed. In [ 37], the attitude stabilization problem of rigid bodies 

with external disturbance was solved in the event-triggered framework. 

In [ 38], an adaptive robust tracking controller was presented for robot manip-

ulators. The tracking error was governed to be finite-time stable. In [ 39], robust 

cooperative control design of multiple surface vessels was studied, while the vessels 

were subject to unknown ocean currents and unmodelling dynamics. In [ 40], the 

problem of designing a robust tracking controller for rigid body with uncertainty 

was studied, and it was further investigated in [ 41] and [ 42]. The proposed schemes 

were verified on quadrotors. For surface vessels subject to disturbance uncertainty, 

a backstepping-based robust trajectory tracking controller was reported in [ 43]. In 

[ 44], a novel controller was developed for aerial robots to achieve attitude trajectory 

tracking with robustness guaranteed. The proposed law governed the tracking error 

converging into a small ball, and such error is robust to unknown dynamics. Using the 

technique of uncertainty and disturbance estimator, a robust tracking control strategy 

was synthesized for non-affine systems. 

In the robust attitude control design, disturbance and uncertainties will not be 

rejected, and robustness to them is achieved with acceptable attitude control perfor-

mance. In contrast, another approach to achieve attitude control with good accuracy 

is to reject disturbance/uncertainties [ 45– 48]. For this type of approach, the magni-

tude or its upper bound of disturbance torque and uncertainties will be estimated, 

and then a controller will be designed to compensate for it. To achieve this goal, the 

adaptive control technique is one widely applied approach [ 49, 50]. In [ 51], robust 

trajectory tracking control was guaranteed for a delta robot. Disturbance rejection 

was achieved by the adaptive control technique. In [ 52], an adaptive estimation law
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was firstly designed to estimate the parameters of uncertain inertia. By using the 

estimated information, a nonlinear controller was proposed for the attitude track-

ing maneuver. In [ 53], the Chebyshev neural network was adopted to approximate 

the uncertain dynamics introduced by disturbance and uncertain parameters. Using 

the approximated value, a terminal sliding mode attitude controller was proposed. 

In addition to those adaptive controllers, some investigations on attitude control by 

using adaptive control were also available in [ 54, 55]. 

Of particular interest, taking the sliding mode control theory’s (SMC) advantages 

including rapid response and insensitiveness to uncertain parameters or disturbances, 

this technique has become one of the widely applied tool to design robust attitude 

controller [ 56, 57]. In [ 58], a high-order sliding mode controller was developed. 

Attitude tracking with high-pointing accuracy was achieved. The proposed controller 

guaranteed that the system output was robust to disturbance and uncertain inertia. 

In [ 59], the problem of attitude tracking control despite disturbance and uncertain 

inertia was addressed by presenting a sliding mode controller. This problem was also 

investigated in [ 60] for satellite attitude stabilization maneuver with actuator output 

torque constrained. The rejection of disturbance was achieved via the SMC [ 61]. 

1.3.2 Observer-Based Attenuation Control 

The disturbance robust control of satellite is characterized that the developed robust 

controllers are conservative. In practice, this conservativeness is not desirable for 

rigid bodies. Motivated by avoiding this drawback, the disturbance-observer-based 

(DOB) control is a common solution with the disturbance rejection ensured [ 62– 66]. 

In this solution, a disturbance observer (DO) is preliminarily designed to estimate 

the external disturbance. Then, a control law is designed by using the estimation 

of the disturbance to stabilize the closed-loop attitude system [ 67– 70]. A recent 

review on observer-based uncertainty or disturbance attenuation control design was 

given in [ 71]. More specifically, observer-based PID tracking control design was 

witnessed for uncertain systems in [ 72, 73]. In [ 74], a DOB anti-windup controller 

was presented for hypersonic vehicles. Integrating the DO with the adaptive control 

theory, a neural-network-based controller was developed for robots with variable 

stiffness joints and uncertainties [ 75]. For a class of uncertain stochastic systems, a 

DOB .H∞ control law was designed in [ 76]. Although the disturbances acting on the 

system were accommodated, the disturbances were required to satisfy an exogenous 

model. In [ 77], to handle the external disturbances and uncertainties in the hybrid 

active-passive heave system, a robust prediction control approach was presented via 

the DOB technique. 

The development of DO plays an important role in the DOB rejection control. To 

ensure perfect estimation for disturbance, a number of investigations on DO design 

have been reported. In [ 78, 79], a high-gain DO was seen to estimate the external 

disturbance or the uncertainties. However, the high gains would amplify the effect 

of sensor noise on the system performance. Due to the robustness property of sliding
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mode control, sliding mode observer (SMO) [ 80– 82] or high-order sliding mode 

observer (HOSMO) [ 83– 85] are widely applied in DOB control design with external 

disturbance compensated. 

The extended-state-observer (ESO) is another widely applied technique to accom-

plish the design of DO [ 86– 88]. For example, the estimation of the mismatched 

uncertainty was studied in [ 89]. An ESO was presented in [ 90] for the quadrotor 

to estimate the external disturbance due to unknown gust wind. In [ 91], the trajec-

tory tracking control problem of underwater robots despite external disturbance and 

uncertainties was studied by including an ESO. In [ 92], the problem of robust load 

frequency control of power systems was studied via sliding mode control and ESO. 

For a class of multi-input-multi-output systems, a generalized ESO was presented in 

[ 93]. Moreover, the adaptive ESO (AESO) was another solution to the problem of 

disturbance or uncertainty estimation [ 94]. 

The most existing DO design requires the external disturbance to satisfy some 

strict conditions. For instance, most ESO are only feasible for the unknown constant 

disturbance or the disturbance with slow variation [95]. More specifically, because the 

external disturbance is treated as an extended state in ESO, the external disturbance 

should be differentiable. On the other hand, it usually requires the SMO or HOSMO 

to be upper bounded by a known value. In practice, however, the external disturbance 

may not satisfy these assumptions. The class of the external disturbance handled by 

the existing DO is limited. Hence, it is of interest to determine observers that can 

release these constraints or assumptions. Although this is achieved in [ 95], its result 

is applicable to linear systems only. 

To solve the above drawback [ 96], viewing disturbance as an unknown input, and 

then applying the theoretical framework of unknown-input-observer (UIO) [ 97] is  

becoming an effective way to estimate disturbances. In [ 98], the tracking control 

problem of the linear parameter-varying system was solved by using an unknown 

input observer. For linear/nonlinear systems, the problem of high-performance con-

trol design by using UIO to estimate system uncertainties and disturbances has been 

extensively investigated [ 99]. An output feedback bilateral teleoperation approach 

was designed for robot manipulators [100]. In this approach, UIO was applied to 

estimate external forces. On the other hand, the problem of observer-based distur-

bance rejection approach design has also attracted considerable attention in the field 

of satellite/unmanned aerial vehicle attitude control design in recent years. The result 

of applying this approach to achieve attitude control can be referred to [101]. In [102], 

a disturbance observer-based SMC approach was proposed for quadrotor vehicles. A 

sliding mode observer was presented to estimate external disturbances. The problem 

of designing observer-based disturbance control for satellite attitude system design 

was solved in [103].
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1.4 Satellite Actuator Fault Tolerant Control 

The recent incident strongly motivates the development of attitude control sys-

tems that ensure an efficient and timely response to maintain stability, reliabil-

ity, and required performance properties even when components fail [104–106]. In 

the aerospace industry and academia, fault-tolerant control (FTC) is a widely used 

scheme to accommodate component failures automatically [107–111]. For satellite 

attitude fault tolerant control, a lot of FTC approaches have been developed in the 

past two decades [ 29, 112–114]. The detailed literature review can be seen in [ 18]. 

In this section, some classical attitude FTC schemes are reviewed only. For exam-

ple, an adaptive FTC was given in [115] to perform the attitude tracking maneuver 

for satellite. The transient performance was ensured. In [116], a velocity-free FTC by 

integrating the adaptive and the fuzzy control theory was presented for the satellite. 

In [117], the FTC problem with prescribed performance guaranteed was studied for 

satellite attitude tracking maneuvers. In [118], the problems of FTC design ensur-

ing finite-time convergence were investigated for the satellite with actuator faults. 

In [119], the attitude FTC problem was studied by integrating the iterative learning 

observer and the control allocation. By a combination of the Lyapunov function and 

the extended-state observer, an attitude controller was presented in [120] with actu-

ator saturation constraint solved. Using an adaptive extended-state observer, another 

attitude controller having the capability of handling actuator uncertainty and achiev-

ing robustness as well as precise tracking accuracy was proposed in [121]. By esti-

mating the unmeasurable modal variables, a distributed adaptive attitude controller 

has been reported in [122]. An attitude FTC for satellite with actuator faults was 

designed by using a fault detection observer [123]. An iterative learning observer-

based FTC law was given to solve the attitude stabilization problem [124]. With 

the development of the intelligent control, the neural network control schemes were 

proposed to address actuator faults [125, 126]. 

1.5 Satellite Actuator Misalignment Control 

There have been several investigations on satellite attitude control in the presence of 

actuator misalignments [127, 128]. In [129], an adaptive control law was given to 

accomplish attitude maneuver in the presence of relatively small gimbals’ alignment 

error of variable speed control moment gyros. In [130], a nonlinear model reference 

adaptive control scheme was tested in the presence of alignment errors up to fifteen 

degrees. Although an extended Kalman filter was used to develop methods for on-

orbit actuator alignment calibration, uncertain inertia properties were not taken into 

account [131]. In another work [132], an adaptive tracking controller was synthesized 

for Hamiltonian systems. This control law was successfully applied to a satellite with 

both inertia and actuator uncertainties.
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It is worth mentioning that most attitude controllers for actuator alignment were 

designed in the framework of robust control. A control law was synthesized that 

the robustness to actuator misalignment was guaranteed. This was reported for the 

formation flying of satellites in [133]. The misalignment of a specific actuator, i.e., 

thruster, was addressed by applying the adaptive control theory. This theory was 

further used in [134–136] to tackle with the misalignment of other actuators such as 

reaction wheels. In [137, 138], another control theory, i.e., the sliding mode control, 

was adopted to synthesize attitude controllers for satellites. High-accuracy attitude 

maneuvers were successfully performed with actuator misalignment accommodated. 

Other nonlinear control theory-based laws were also available for satellite attitude 

tracking maneuver [139–144]. The finite-time stability of the attitude tracking system 

was achieved despite the actuator misalignment. 

1.6 Uncertain Inertia Control of Satellite 

Significant development has been witnessed in the attitude tracking controller design 

in the presence of uncertain inertia [145–149]. The current approaches to handling 

system uncertainties are mostly nonlinear control theory based. Attitude controllers 

are designed to ensure the stability of the closed-loop tracking system in the presence 

of uncertainties [150, 151]. For example, an angular velocity observer-based attitude 

tracking solution to the external disturbance rejection problem was reported for 

satellite [152]. This was achieved by the theory of adaptive control. The bound of 

the external disturbance is required and should be known. This theory was also 

applied in [153] to study the attitude tracking control problem. The uncertain inertia 

and the bias in the measurement of angular velocity were considered. In [154], 

the coordinated attitude control was investigated, while the satellite was subject to 

systems uncertainties and attitude constraint. Taking input quantization issue into 

consideration, robust attitude tracking was achieved for satellite in [155] and [156]. 

In [157], the attitude tracking control was achieved via attitude output feedback 

only. Moreover, the finite-time control theory can be applied to develop controllers 

to achieve fast attitude slewing [158–161]. System stability was achieved after a 

finite time period. Although the controller design to achieve attitude tracking was 

discussed well, the system uncertainties were considered only, actuator uncertainties 

were not handled. 

In particular, the adaptive control has been shown to be an effective scheme in the 

investigations of a wide class of nonlinear systems [162–166], in which there exist 

unknown parameters. Therefore, adaptive control can be also applied for satellite 

attitude maneuvering with uncertain inertia. Moreover, by viewing the torque induced 

by uncertain inertia as external disturbance, then the methods summarized in Sect. 

1.3 are appropriate and applicable to achieve attitude control for satellite.
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1.7 Nonlinear Control with Actuator Constraint 

For any linear or nonlinear system in practice, the torque or the force generated 

by its actuators is finite and bounded due to the physical limitation. All actuators 

are constrained. Once the required control effort saturates the actuators, the output 

signals may not achieve the control mission, if the system is not equipped with an 

appropriate control methodology to dump the saturated actuators. Then, it may lead 

to control performance deterioration or system instability. Hence, actuator constraint 

is another key issue that needs to be addressed [167–169]. 

1.7.1 Methods for General Nonlinear Systems 

Many results were seen for nonlinear systems to the stability analysis and controller 

design with actuator constraint [ 28, 170–172]. For example, a saturation-based fixed-

time funnel boundary was proposed in [173] for a class of strict feedback systems 

with actuator constraint and external disturbances. The corrected signal associated 

with the actuator constraint error was embedded in the funnel function. For a class 

of dynamical networks with actuator constraints, a saturated controller was designed 

to achieve finite-time synchronization [174]. Taking the parametric and the unmod-

eled uncertainties into consideration for the nonlinear systems, a nested-saturation-

function-based control scheme incorporated with a saturated linear ESO was pro-

posed in [175]. For the uncertain nonlinear systems with actuator constraint, an 

adaptive sliding mode controller by using a barrier function was proposed in [176]. 

In [177], a dual periodic event-triggered control including saturation-assisted and 

complemental periodic event-triggers was synthesized to solve the consensus prob-

lem for the multi-agent systems (MAS) with actuator constraint. 

When a fault occurs in the actuator further, the control system would continue 

issuing its maneuver that may no longer be achievable by the system. In this case, the 

required control effort will quickly saturate the actuators while striving to maintain 

the “healthy” maneuvering performance. It will subsequently destabilize the sys-

tem. Therefore, actuator constraint should also be accommodated with actuator fault 

considered simultaneously. In [178], a finite-time fault estimator-based FTC scheme 

was proposed to address the accurate trajectory-tracking problem of a surface vehi-

cle under actuator constraint and actuator failures. In [179], a smooth function was 

designed to approximate the controller saturation function and a neural network 

(NN) to uncertainties and failures for the MAS. For the aircraft control system with 

actuator constraint and actuator failures, an enhanced anti-disturbance control by 

utilizing novel auxiliary systems was reported in [180] to avoid and compensate for 

the actuator constraint.
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1.7.2 Attitude Control with Actuator Constraint 

For a satellite attitude control system, its typical actuators are reaction wheel, thruster, 

and magnetic torquer. Those actuators have a bounded output torque. Actuator con-

straints are met in satellite. In the past two decades, significant developments are 

seen in attitude control with actuator constraint [181–190]. One of the most promi-

nent methods is the anti-windup design due to its simple structure [191]. In [191], 

an anti-windup controller was proposed for large angle attitude control of satel-

lite with actuator saturation. For the attitude tracking control problem with system 

uncertainties and state constraints, an anti-windup compensator-based robust adap-

tive controller was designed in [192] to handle actuator constraints. Considering 

the satellite attitude trajectory tracking control system with external disturbance and 

actuator constraints, an ESO and anti-windup compensator-based robust finite-time 

controller was proposed in [193]. For the attitude tracking control problem of a 

special rigid-flexible-rigid microsatellite with multi-uncertainties and actuator con-

straints, a robust control system structure including an observer-based compensator 

and a modified proportional-derivative control law was presented in [194]. 

In [195], the backstepping technique was applied to the nonlinear flight system 

in the absence of input constraint first, and then a command filter was employed to 

compensate for the effect of the control signal rate constraint. In [196], a robust vari-

able structure controller was designed to control the satellite attitude under actuator 

constraint. An alternative algorithm that applied a positive constant gain within the 

framework of integrator backstepping-based control design to reduce peak control 

torque was seen in [197]. A nonlinear adaptive controller including feedback and 

feed-forward components to handle actuator constraint and linearly parameterized 

disturbance was reported in [198]. Consider the constraints of input signals and the 

prescribed performance of the satellite formation control system, an SMC-based 

fixed-time controller was presented in [199] by incorporating an anti-windup satu-

ration compensator. For the multi-satellite consensus control system under actuator 

constraint, a novel optimal control law was developed in [200]. 

Control allocation is another useful method to deal with the actuator constraint 

issue. A systematic result by using control allocation methods design was available in 

[201] for satellite. In [202], a saturated proportional-derivative controller combining 

with a null-space-based optimal control reallocation was presented for the satellite 

attitude control system. 

1.8 Angular Velocity-Free Attitude Control 

Most controllers for linear or nonlinear systems are developed based on the assump-

tion that precise measurement of the system’s full states is available. This assumption 

is widely used in satellite attitude control system design. The direct and exact mea-

surement of both the attitude and the angular velocity is assumed to be available. How-
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ever, the precise measurements of angular velocity are not always satisfied in practice 

due to either cost limitations or implementation constraints. Some unexpected faults 

or failures occurring in gyros and other rate sensors also lead to the wrong mea-

surement of velocity. Therefore, towards the implementation-cost optimization issue 

and sensor fault avoidance, it is highly desirable to design a partial-state feedback 

attitude controller that does not require the angular velocity measurement. 

In the past two decades, the development of attitude control without the mea-

surements of angular velocity has attracted significant attention in the academic and 

satellite engineering communities. The earliest known result in the field of velocity-

free control was presented in [203, 204] through passivity framework. Subsequent 

extensions to that control design scheme without angular velocity were presented 

in [205, 206]. In [207], an alternative solution to stabilize attitude by using quater-

nion only has been proposed based on optimal control technique. Moreover, several 

other control techniques are also motivated with Lyapunov based techniques [208]. 

In general, the existing angular velocity-free attitude control approaches can be clas-

sified into two types. One is the observer-based control. The other is the filter-based 

control. 

1.8.1 Observer-Based Velocity-Free Control 

One solution to the attitude control problem without angular velocity is the develop-

ment of a model-based observer [209, 210] to estimate the angular velocity [211– 

218]. In this observer-based scheme, angular velocity is estimated with desired esti-

mation accuracy [219–222]. In [116], an adaptive observer by using the fuzzy control 

technique was developed for the unmeasured angular velocity. Although the velocity 

estimation error was exponentially stable, external disturbances were not consid-

ered. In [223], a smooth angular velocity observer was proposed with the estimation 

error asymptotically stabilized. However, this was also done in free of external dis-

turbance. In [224], a velocity-free attitude stabilization law was reported with an 

angular velocity observer. In [225], a hybrid observer was available to exponentially 

estimate the unmeasured angular velocity for rigid bodies. Although these angular 

velocity observer-based controllers can achieve attitude maneuvers with attitude out-

put feedback only, their structures are complicated. They require expensive onboard 

computations. This makes them be not user-friendly for engineering. 

If, in addition to unmeasured states, there are parametric uncertainties [226], an 

observer can be made robust by applying SMC [227]. This observer is called sliding-

mode observers (SMOs) [228, 229]. Sliding-mode observers have been proven to be 

an effective way to estimate unmeasured states [230]. Output feedback control with 

a sliding mode observer can make use of equivalent control concept [231–233]. In 

[231], the finite-time output feedback stabilization of a class of second-order systems 

was discussed. In [232], global finite-time observers were proposed for Lipschitz 

nonlinear systems. To improve the estimation performance of SMO in the presence



16 1 Overview

of system uncertainties and disturbances, some other SMO-based design has been 

discussed, such as high-gain SMO [ 78, 234, 235] and high-order SMO [236–238]. 

Almost all of the aforementioned SMO design provides an asymptotic conver-

gence of the observer error. However, finite-time convergence is not ensured. In some 

applications, it is highly desired a finite-time convergence [239]. For instance, syn-

chronization of chaotic signals is of major importance for walking robots in secure 

communication or attitude maneuvers of time-critical satellites [240]. For those sys-

tems, each step should be done in a finite time. Currently, observer design for states 

with finite-time convergence has received considerable attention [241]. Many finite-

time observer design methods have been proposed for different systems [242]. The 

high-gain finite-time observer was further pursued using homogeneity concepts in 

[243]. More recently, there has been another approach to achieve observation in finite 

time. It is designed by using terminal sliding-mode control technique [244]. 

1.8.2 Filter-Based Velocity-Free Control 

An alternative to the angular velocity-free attitude control problem is the filter-based 

or the auxiliary-based technique [245–247]. This solution is free of any angular 

velocity observer. In accordance, the controller is synthesized directly to stabilize 

the attitude system via the Lyapunov stability theory. The first attempt to design such 

filter-based velocity-free control was made in [248]. The satellite’s attitude regula-

tion or tracking maneuvers were achieved in [249–252] via this solution. External 

disturbances were not addressed. In [253], a velocity-free rotation tracking law was 

seen by including a filter to compensate for the unmeasured angular velocity. In 

[254], the velocity-free attitude control issue with actuator and rate constraints was 

investigated by using the filter-based technique. The robust attitude tracking control 

problem without measurements of angular velocity was solved in [255] via a quater-

nion filter. In [256], another velocity-free attitude stabilization control design was 

reported by applying potential functions. It was not capable of handling disturbances. 

In [257], the pose tracking control problem without velocity feedback was further 

investigated. The satellite was assumed to be under no effect of disturbance. In [258], 

another filter-based velocity-free attitude controller was synthesized to perform the 

rest-to-rest attitude maneuvering of satellites in the absence of any disturbances. 

The filter-based velocity-free control is further examined in [259]. That approach 

integrates a velocity-generating filter from attitude measurements to design an adap-

tive attitude tracking controller. Another quaternion-based output feedback control 

design was reported in [260]. Although that approach does not need the angular 

velocity and can guarantee the uniformly asymptotical stability of the closed loop 

system, it is assumed that full knowledge of the inertia matrix and system dynam-

ics is known in advance. In [ 19], by introducing an auxiliary dynamical system, a 

velocity-free control scheme for the attitude tracking of rigid satellites is discussed. 

However, the technique was developed without any external disturbances considered. 

To treat the external disturbances, an adaptive attitude tracking control approach was
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presented in [253] for the rigid satellite. An approximate differentiation filter was 

introduced to account for the unmeasured angular velocity. In addition, augmenta-

tion of an existing controller using the Chebyshev neural network was considered in 

[261]. The effect of unknown dynamics and external disturbances is carried out by 

using online neural network approximation. Moreover, the tracking error is shown 

to be uniformly ultimately bounded even without velocity measurements. 

1.9 Flexible Satellite Attitude Control 

Robust control, exploring various types of techniques, has been frequently consid-

ered for attitude control design of flexible satellites in the presence of modeling error 

with flexible vibration included. In [262], a robust controller was proposed for the 

flexible mechanical systems and the validity of the design method was confirmed for 

the flexible satellite attitude control problem. In [263], an extended potential differ-

ence controller was developed for a flexible satellite, and robustness to vibrations and 

external disturbances was achieved. An optimization-based approach was proposed 

in [264] for the robustness analysis of an attitude and orbit control system for flexible 

satellites. Simulation studies indicated that the proposed approach appears to have 

significant potential for improving the industrial flight clearance process for next-

generation high-performance satellite control systems. In [265], the attitude tracking 

control problem was investigated by designing a model-based robust controller. Actu-

ator fault, uncertain inertia, and vibrations in flexible appendages were addressed. A 

robust attitude and vibration control of a flexible satellite was reported in [266] that 

uses shunted piezoelectric transducers, bonded to the flexible elements in such a way 

that the vibration energy is transferred to an electric circuit and partially dissipated. 

In [267], a phase-plane controller was proposed for a flexible satellite (i.e., TacSat-4) 

attitude control by thrusters. Robustness against structural bending modes less than 

. 1 Hz was ensured. 

The majority of the existing robust control schemes for flexible satellites attitude 

control are proven to be effective only through simulation studies. Of particular inter-

est are the studies carried out in [ 31] and [ 32], the designed controllers are intended 

for experimental verification on ETS-VIII at the end of its mission life. In [ 31], a 

two-degrees-of-freedom control based on robust direct velocity and displacement 

feedback was proposed (instead of the existing classical PID control law) as a candi-

date controller technology. Optimization algorithms for both the feedback and feed-

forward controllers described by the linear matrix inequalities in the framework of 

.H∞ controller synthesis were proposed. The capability to handle flexible vibrations 

was verified through simulations. In the follow-up work [ 32], a linearly interpolated 

gain scheduling controller was designed for ETS-VIII using its linear parameter-

varying model. In a more recent work by the same authors [ 14], an experimental 

study was presented in which the on-orbit flight tests of a two-degrees-of-freedom 

robust controller for ETS-VIII, namely step responses corresponding to the antenna
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calibration maneuver and impulse responses corresponding to external disturbance 

can be found. 

1.10 Fast Attitude Control 

Although various controllers are available to perform attitude maneuvers for satel-

lites, most of them stabilize the states of the attitude system as the time approaches 

infinity. The infinite settling time criterion is not an option during critical phases of 

the mission. In practice, many missions demand fast attitude maneuvering [268]. To 

meet this demand, the finite-time stability (FTS) concept is available [269]. 

Aiming to achieve attitude control within finite-time convergence, attitude con-

trol design via SMC has got significant consideration [270]. In [271], the terminal 

SMC (TSMC) was utilized to achieve finite-time control. However, the TSMC suffers 

from singularity. To avoid this problem, many non-singular attitude TSMC (NTSMC) 

approaches have been reported [272]. The implementation of those results necessi-

tates the full knowledge of uncertainties or needs large control gains to attenuate 

uncertainties. This leads the controllers to be conservative and chattering with rapid 

energy consumption. As such, the adaptive control theory has been invoked to alle-

viate chattering [273, 274], whereas their controllers were discontinuous due to the 

incorporated signum function. To avoid this discontinuity, the signum function was 

replaced with the hyperbolic tangent or the saturation function in [275]. However, 

such chattering alleviation is obtained at the cost of control accuracy degradation. 

Another solution to this problem is the higher order sliding mode-based control while 

finite-time convergence is ensured [276]. Complicated theoretical analysis and heavy 

computation were involved. Motivated by solving this challenge and eliminating 

chattering, this paper will propose a novel continuous adaptive law by estimating the 

upper bound of uncertainties. 

In practice, actuator uncertainty may exist due to aging or malfunction of the 

actuator’s components. Considering this issue and applying the nonsingular TSMC 

[277], the fast TSMC [278], the backstepping control [279], and the integral back-

stepping [280], many attitude stabilization controllers are seen to achieve finite-time 

convergence. 

1.11 Motivation for This Book 

It is obtained from satellite engineering that any satellite has severe modeling error. 

On the other hand, any satellite is also subject to actuator constraints. The angular 

velocity measurement may be unavailable further for satellites. Moreover, fast atti-

tude slewing maneuvers are demanded to be performed to accomplish the planned 

space missions. As a result, the following four challenges are raised in the satel-

lite attitude control, while the preceding reviewed attitude control approaches have



1.12 Organization of the Book 19

a weak capability of addressing those challenges. Although the results in [281– 

284], the tracking control approaches proposed for unmanned aerial vehicle [285], 

robotic manipulator [286], snake robot [287], and nano-positing systems [288], can 

be referred to solve those challenges, there is not a standard or general solution 

framework. The following challenges are still open. 

• From the standpoint of modeling error compensation control, two or more than two 

types of modeling error introduced in Sect. 1.2 should be addressed. This problem 

is widely seen in microsatellites. Most of the existing approaches can handle a 

single type of modeling error only. 

• From the standpoint of attitude control, high-accuracy attitude control should be 

achieved with two or more than two types of modeling error and actuator constraint 

simultaneously addressed even without angular velocity measurement. However, 

most of the attitude control schemes in the literature are not capable of solving 

this problem. 

• The attitude maneuvering should be accomplished during critical phases of the 

mission with the fast rate even in the presence of two or more than two types of 

modeling error summarized in Sect. 1.2. 

• From the view of saving energy, the modeling error should be compensated with 

less and even no conservativeness. However, the existing robust or adaptive attitude 

controllers are characterized by severe conservativeness. 

Considering the demand for attitude control with the above four challenges solved 

and many existing approaches are unable to achieve this goal, this book attempts to 

solve the above four challenges during satellite attitude control system design. This 

book focuses on designing advanced compensation control techniques for more types 

of modeling error with fast, high-accuracy, high-stability, and or velocity-free attitude 

maneuvering accomplished for satellites. 

1.12 Organization of the Book 

The book is organized into twelve chapters, including three parts on technical results 

(a totally nine chapters). Part I includes Chaps. 1 and 2 with the overview on modeling 

error compensation attitude control of satellite and the preliminary knowledge of 

this book. Part II concentrates on the robust velocity-free solution to two or more 

than two types of the modeling error compensation attitude control problem of the 

satellite even in the presence of actuator constraint and fault. Part III focuses on the 

recent solution to achieve fast attitude slewing control for satellites with two or more 

than two types of modeling error compensated adaptively. Part IV presents some 

new observer-based approaches to accomplish attitude control for satellites with less 

conservativeness, while the modeling error is precisely and fully compensated. The 

outline of each chapter is listed as follows. 

Chapter 1 provides an overview of this book. It gives a description of modeling 

error acting on the satellite attitude control system. This chapter then briefly intro-
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duces a literature review on the recent attitude control approaches for satellites with 

modeling error. Moreover, the motivation of this book is given in this chapter. 

Chapter 2 is a preliminary chapter to provide knowledge for the rest of this book. 

That knowledge includes the standard notations, definitions, preliminary lemmas, 

attitude representation methods of satellite, and the mathematical model of satellite 

attitude control system. This chapter ends with the description of three types of 

testbeds for attitude control testing on the ground. 

Chapter 3 investigates the large-angle velocity-free attitude tracking control prob-

lem of rigid satellites with modeling error. An efficient and practical angular velocity-

free control strategy with a simple, yet efficient structure is proposed. The attitude 

tracking maneuver is accomplished with the attitude pointing control performance 

robustness to modeling error. 

Chapter 4 is dedicated to solving the angular velocity-free attitude control prob-

lem of satellites with modeling error and actuator constraint. A velocity-free neural 

network attitude stabilization controller and a disturbance attenuation attitude track-

ing controller are presented. The effect of the modeling error is attenuated by tunning 

control gains with great robustness guaranteed. 

Chapter 5 is concerned with attitude controller design for satellites without the 

angular velocity measurements. The velocity-free attitude control problem in the 

presence of modeling error consists of external disturbance and actuator fault is 

addressed. Once again, the proposed approach in this chapter is a robust control 

solution to handle modeling error. 

Chapter 6 addresses the velocity-free attenuation control problem of a class of 

nonlinear systems with modeling error induced by external disturbance and actuator 

faults. The modeling error is adaptively estimated and compensated. The proposed 

approach is applicable for satellite attitude stabilization maneuvering despite the 

modeling error due to uncertain inertia, disturbance, and actuator fault. 

Chapter 7 is devoted to prescribed attitude stabilization performance control of 

satellite with the modeling error including actuator fault and external disturbance. The 

modeling error is adaptively compensated via reinforcement learning. The attitude 

of the considered satellite is stabilized by presenting a reinforcement learning-based 

fixed-time optimal control framework. 

Chapter 8 focuses on the rapid attitude control problem of satellites with model-

ing error including uncertain inertia and external disturbances. A sliding mode-based 

fixed-time control approach is presented with the modeling error adaptively com-

pensated. It is proved that the states of the satellite attitude system can converge into 

a small set after a fixed-time even in the presence of modeling error. 

Chapter 9 studies the extended state observer-based attitude control for flexible 

satellites with modeling error induced by external disturbances and unknown vibra-

tions induced by flexible appendages. The modeling error is precisely estimated and 

fully compensated by the extended state observer. The key feature of this control 

approach is that its controller has no conservativeness. 

Chapter 10 aims to solve the modeling error compensation control problem of 

the satellite attitude system in the presence of the disturbance observer-based con-

trol framework. The drawbacks of the existing disturbance observer requesting the
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modeling error to be constant or with a minor rate of change are addressed. This 

framework lets the attitude maneuvering be accomplished at an exponential rate. 

Chapter 11 provides the satellite attitude control system design with a modeling 

error compensation control approach in the unknown input observer-based frame-

work. A new unknown input observer is presented to estimate modeling error. The 

developed controller with the output of that observer incorporated can achieve high 

accuracy pointing control of the satellite. 

Chapter 12 is dedicated to ending the book with some concluding remarks on the 

developed compensation control approaches and to present some future work. 

1.13 Summary 

The overview of this book is presented in this chapter. The main modeling error 

of the satellite attitude control system is introduced. The recent works on handling 

such modeling error with satellite attitude controlled are reviewed. Moreover, the 

motivation and the organization of this book are detailed given in this chapter. 
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Chapter 2 

Preliminaries 

2.1 Introduction 

Since the terminology used in the field of satellite attitude control and stability 

analysis of nonlinear systems is not unique and differs among authors, this chapter 

starts with brief notations and expressions frequently used throughout the book. 

Following that, some mathematical lemmas and definitions are introduced to facilitate 

theoretical analysis in the rest of this book. The attitude control system of rigid 

or flexible satellites is then modeled. This chapter finishes with the testbeds used 

to verify the effectiveness of the subsequent modeling error compensation-based 

attitude control approaches. 

2.2 Notation 

The notation in this book is fairly standard. Let .R be the set of the real numbers 

and .R+ be the set of the positive real numbers. The set of .m by . n real matrices 

is denoted as .Rm×n . For the sets .S1 ⊆ R
n and .S2 ⊆ R

n , .S1\S2 denotes the set 

.{x ∈ R
n : x ∈ S1, x /∈ S2}..In ∈ R

n×n is the.n × n identity matrix.. 0 is a zero vector 

or matrix having an appropriate dimension. For any matrix .A ∈ R
m×n , .AT denotes 

its transpose, .A† represents its pseudo inverse, .A−1 is its left inverse if .A has full 

column rank, and .A2 = ATA. .|| · || stands for the Euclidean norm for vectors or 

the induced matrix norm for matrices. .det(·) denotes the determinant of a square 

matrix. The space of all signals which are globally bounded and square-integrable on 

.[0, t f ), .t f ∈ R+ or .t f = +∞, are denoted by .L∞[0, t f ) and .L2[0, t f ), respectively. 

.λmin(A) and .λmax(A) are the minimum and the maximum eigenvalue of .A ∈ R
m×m , 

respectively. .ln(·), .exp(·), .tanh(·), .sech(·), .cosh(·), and .sgn(·) are the logarithmic, 

the exponential, the hyperbolic tangent, the hyperbolic secant, the hyperbolic cosine, 

and the sign function, respectively. 
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For two given vectors .x = [x1, x2, . . . , xn]T ∈ R
n and . y = [y1, y2, . . . , xn]T ∈

R
n and a given positive scalar .l ∈ R+, .x

l ∈ R
n , .

√
x ∈ R

n , . x
y

∈ R
n , .[x]m ∈ R

n , 

and .|x| ∈ R
n are five vectors defined as ..xl = [xl

1, x
l
2, .. . . , xl

n]T, .. 
√
x = [√x1,

.
√
x2, . . . ,

√
xn]T, . xy = [ x1

y1
, x2
y2

, . . . , xn
yn

]T, ..[x]l = [|x1|l .. sgn(x1), |x2|lsgn(x2), . . . ,
.|xn|lsgn(xn)|]T, and .|x| = [|x1|, |x2|, . . . , |xn|]T, respectively; the partial differen-
tial of scalar function .h(x) ∈ R with regard to . x is defined as .∇xh(x) ∈ R

n; the  

partial differential of a set of functions .h(x) ∈ R
l with respect to . x is given as 

.∇xh(x) ∈ R
l×n; the ball .Bl(x) = { y ∈ R

n : || y − x|| < l} is also defined; . x ≤ y

means that .xi ≤ yi holds for all .i = 1, 2, . . . , n. .diag(x) ∈ R
n×n denotes a diagonal 

matrix with. x as the vector of diagonal entries of such a matrix..sgn(x) ∈ R
n ,. ln(x) ∈

R
n , .cosh(x) ∈ R

n , and .tanh(x) ∈ R
n are defined with their . i th argument given 

by .sgn(xi ), .ln(xi ), .cosh(xi ), and .tanh(xi ), respetively, .i = 1, 2, ..., n. Two matri-

ces .Sech(x) = diag([sech(x1), sech(x2), . . . , sech(xn)]T) ∈ R
n×n and . Cosh(x) =

diag([cosh(x1), cosh(x2), . . . , cosh(xn)]T) ∈ R
n×n are also defined. . sat(x, lmax) ∈

R
n is a vector-valued saturation function as .. sat(x, lmax) = [sat(x1), sat(x2),

.. . . , sat(xn)]T, .lmax ∈ R+, where 

.sat(xi ) =

⎧

⎪

⎨

⎪

⎩

lmax, if xi > lmax

xi , if − lmax ≤ xi ≤ lmax

−lmax, if xi < −lmax

(2.1) 

Moreover, for any given vector.υ = [υ1, υ2, υ3]T ∈ R
3,.υ× ∈ R

3×3 denotes the skew-

symmetric matrix defined as 

.υ× =

⎡

⎣

0 −υ3 υ2

υ3 0 −υ1

−υ2 υ1 0

⎤

⎦ (2.2) 

2.3 Mathematical Definition 

Consider a nonlinear system 

.ẋ = f (x, d, t), x(0) = x0 (2.3) 

where .x ∈ R
n is the system state, . f : R

n × R
m × R+ → R

n is a nonlinear function 

and piecewise continuous in . t , and .d ∈ R
m is the modeling error or external distur-

bance. The solution of (2.3) which starts from the point .x0 at .t = 0 is denoted as 

.x(t, x0). Moreover, the origin .x = 0 is the unique equilibrium point of (2.3).
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Definition 2.1 The origin of (2.3) is  

• Lyapunov stable: there is .δ > 0 such that for any .x0 ∈ R
n , if  .x0 ∈ Bδ(0) then 

.x(t, x0) ∈ Bδ(0) for all .t ≥ 0. 

• Asymptotically stable: if it is Lyapunov stable and . lim
t→∞

x(t, x0) = 0 for any . x0 ∈
R

n . 

• Globally exponentially stable: if.||x(t, x0)|| ≤ k||x0||e−αt is satisfied for any. x0 ∈
R

n , .k ∈ R+, .α ∈ R+. 
• Uniformly ultimately bounded stable: if exists a ball .Bδ(0) such that for all 

.x0 ∈ Bδ(0), there is a constant .ς ∈ R+ and a constant .T (ς) ∈ R+ satisfying 

.||x(t, x0)|| ≤ ς for all .t ≥ T (ς). 

• Finite-time stable: if it is Lyapunov stable and for any .x0 ∈ R
n there exists . 0 <

tT < ∞ such that .x(t, x0) = 0 for all .t > tT . The function . T (x0) = inf{tT ≥ 0 :
x(t, x0) = 0,∀t ≥ tT } is called the settling-time function of (2.3). 

• Fixed-time stable: if it is finite-time stable and the settling-time function of (2.3), 

.T (x0), is bounded on .R
n , i.e., there exists .Tmax satisfying .. supx0∈Rn T (x0) ≤

.Tmax < ∞. 

Definition 2.2 [ 1] The origin of (2.3) is  practically fixed-time stable, if it is Lya-

punov stable and there exists a bounded set .D1 ⊆ R
n and a scalar .T f ∈ R+ such that 

for any .r ∈ R+ and any state starting within the ball .Br (0) converges to .D1 in the 

time .T f and stays in .D1 thereafter. 

Definition 2.3 [ 2] The origin of (2.3) is  practically exponentially stable if there 

exists .r ∈ R+, .γ1 ∈ R+, and .γ2 ∈ R+ such that .||x(t, x0)|| ≤ r + γ2||x0||e−γ1t . 

Definition 2.4 [ 3] Let  .γ ∈ R+ be a given constant, then the origin of (2.3) is said  

to be stabilized with .L2 gain disturbance attenuation level of . γ from the disturbance 

. d to the state . x, if the following inequality holds for any .μ ∈ R+. 

.

{ T

0

||x(t, x0)||2dt ≤ γ 2

{ T

0

||d||2dt + μ,∀d ∈ L2[0, T ),∀T ∈ R (2.4) 

2.4 Preliminary Lemmas 

Lemma 2.1 For a given vector .x = [x1, x2, . . . , xn]T ∈ R
n , it follows that .. 1

2
tanh2

.(xi ) ≤ ln(cosh(xi )), .||Sech2(x)|| = 1, and .tanhT(x)tanh(x) ≤ xTtanhT(x), . i =
1, 2, . . . , n.
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Lemma 2.2 [ 4] For a given vector.x = [x1, x2, . . . , xn]T ∈ R
n and any two positive 

constants statisfying .0 < c1 ≤ 1 as well as .c2 > 1, then 

.

(

n
∑

i=1

|xi |
)c1

≤
n

∑

i=1

|xi |c1 ,
(

n
∑

i=1

|xi |
)c2

≤ nc2−1

n
∑

i=1

|xi |c2 (2.5) 

Lemma 2.3 [ 5] Let . υ and . ρ be real-value functions defined in .R+, and let . b and . c

be positive constants. If they satisfy the differential inequality 

.υ̇ ≤ −cυ + bρ(t)2, υ(0) ≥ 0 (2.6) 

then the following inequality holds: 

(i) If .ρ ∈ L∞[0,+∞), then .υ ∈ L∞[0,+∞) and 

.υ(t) ≤ υ(0) exp(−ct) +
b

c
||ρ||2∞ (2.7) 

(ii) If .ρ ∈ L2[0,+∞), then .υ ∈ L∞[0,+∞) and 

.υ(t) ≤ υ(0) exp(−ct) + b||ρ||22 (2.8) 

Lemma 2.4 [ 6] The origin of (2.3) is practically fixed-time stable, if there is a 

positive function .V (x) ∈ R satisfying 

.V̇ (x) ≤ −α0V
r1(x) − β0V

r2(x) + ρ (2.9) 

where .α0 ∈ R+, .β0 ∈ R+ , .r1 > 1 , .0 < r2 < 1, and .ρ ∈ R+ are positive constants. 

Moreover, the state .x(t, x0) converges into the residual set: 

.D1 =
{

x(t, x0) : V (x) ≤ min

{

(

l

α0

)
1
r1

,

(

l

β0

)
1
r2

}}

(2.10) 

with .l = ρ

1−θ
and the constant .0 < θ < 1. The finite-time .Tmax ∈ R+ required to 

reach into .D1 is bounded by 

.Tmax ≤
1

α0(r1 − 1)
+

1

β0(1 − r2)
,∀x0 ∈ R

n (2.11) 

2.5 Definition of Reference Frames 

This section describes different reference frames for representing the satellite’s posi-

tion and attitude. Those reference frames are shown in Fig. 2.1.
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Fig. 2.1 The Earth-centered inertial, the body, and the orbit reference frames 

2.5.1 Earth-Centered Inertial Frame 

The Earth-centered inertial frame .FI is an inertial frame for terrestrial navigation. 

The frame is fixed in space. This means that it is a non-accelerated reference frame 

in which Newton’s Laws are valid. The origin of this frame is oriented at the center 

of Earth. The .x-axis points toward the point where the plane of the Earth’s orbit 

toward the Sun, crosses the Equator going from South to North. .z-axis points toward 

the North pole. .y-axis completes the right-hand Cartesian coordinate system. This 

defines a right-handed orthogonal body coordinate frame .(X I ,YI , Z I ). 

2.5.2 Orbit Frame 

The orbit frame .FO rotates relative to the Earth-centered inertial frame, with an 

orbital rate depending on the altitude of the satellite. The origin .O is at the center of 

the mass of the satellite. The .x-axis is toward the direction of motion tangentially to 

the orbit. The tangent is only perpendicular to the radius vector in the circular orbit 

and does not align with the velocity vector of the satellite in elliptical orbits. The 

.z-axis points toward the center of Earth. The .y-axis is perpendicular to the orbital 

plane and completes the right-hand system .(XO ,YO , ZO).
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2.5.3 Body Frame 

This frame .FB is a moving reference frame fixed on the satellite. The orientation of 

the satellite is determined relative to the orbit frame. The angular velocity is expressed 

in the body frame. The .x-axis is forward and the .z-axis is downward. The .y-axis 

completes the right hand orthogonal system .(XB,YB, ZB). The origin .O is at the 

center of the mass of the satellite. Its axes are fixed in the satellite body and coincide 

with the principal axis of inertia. 

2.6 Attitude Representation 

2.6.1 Euler Angles 

The Euler angles are an intuitive way to represent satellite attitude with explicit 

physical meanings. The foundation of Euler angles is the Euler theorem, that is the 

rotation of a rigid body around one fixed point can be regarded as the composition 

of several finite rotations around the fixed point [ 7]. 

The orientation of the satellite’s body-fixed frame .FB with respect to .FO involves 

three successive Euler angles rotations. In practical aerospace missions, it is possible 

to bring a rigid body into an arbitrary orientation by performing three successive 

rotations that involve the axes fixed in the Earth-centered inertial frame [ 8, 9]. As 

shown in Fig. 2.2, .FB is first transformed into the intermediate frame . 1 via a rotation 

about the.ZB axis by the angle. ψ . This is followed by a rotation about the new.X1 axis 

by an angle. φ. Finally, the satellite’s pitch angle,. θ , defines the rotation about the new 

. Y2. Figure 2.3 shows a 3D representation of the Euler angles describing the orientation 

of the body-fixed frame .FB with respect to the orbit frame .FO . According to the 

preceding rotation, the physical meanings of the three Euler angles are presented as 

follows. 

• The yaw angle .ψ ∈ R: It is the angle between the axis .OXO in the frame .FO and 

the projection on the local level of the .OXB axis in the frame .FB . 

Fig. 2.2 Euler angles
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Fig. 2.3 Euler rotation 

• The roll angle .φ ∈ R: It is the angle between the pitch axis .OYB in the frame . FB

and its projection on the local level. 

• The pitch angle .θ ∈ R: It is the angle between the roll axis .OXB in the frame . FB

and its projection on the local level. 

2.6.2 Unit Quaternion 

According to [ 8, 9], the unit quaternion is another widely utilized method to represent 

the satellite attitude. On the basis of the Euler theorem, four attitude parameters 

composed by the Euler axis/angles can be presented in the form of 

. Q = [q0, qT]T = [q0, q1, q2, q3]T =
[

cos
ϕ

2
, ex sin

ϕ

2
, ey sin

ϕ

2
, ez sin

ϕ

2

]T

(2.12) 

where .ē = [ex , ey, ez]T ∈ R
3 is the Euler rotation axis satisfying .e2x + e2y + e2z = 1, 

.ϕ ∈ R is the rotation angle around the Euler rotation axis, .q = [q1, q2, q3]T ∈ R
3, 

and .q2
0 + q2

1 + q2
2 + q2

3 = 1. 

2.6.3 Modified Rodrigues Parameters 

According to [ 9], the modified Rodrigues parameters (MRPs) based attitude presen-

tation is a three-parameter and non-redundant attitude description method. Given a 

Euler rotation angle .ϕ ∈ R about the Euler principal axis .n ∈ R
3, the attitude ori-

entation of the satellite in .FB with respect to .FI can be represented by the MRPs 

vector .σ = [σ1, σ2, σ3]T and
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.σ = n tan

(

ϕ

4

)

,ϕ ∈ [0◦, 360◦) (2.13) 

Moreover, the mathematical relationship between the MRPs. σ and the unit quaternion 

.Q defined in (2.13) is given by 

.σi =
qi

1 + q0
, i = 1, 2, 3 (2.14) 

2.7 Modeling of Satellite Attitude Control System 

The mathematical model of the attitude control system of any satellite consists of 

two parts. One is the attitude kinematics and the other is the attitude dynamics. 

2.7.1 Attitude Kinematics 

In this section, the attitude kinematics of the satellite is modeled by using the Euler 

angles, the unit quaternion, and the modified Rodrigues parameters. 

A Attitude Kinematics via Euler Angles 

When the Euler angles are used to represent the attitude of the satellite, its attitude 

kinematics can be described as [ 10] 

.Θ̇ = R−1(Θ)(ω + ωc(Θ)) (2.15) 

where .Θ = [θ, φ,ψ]T is the attitude Euler angles vector of the satellite with respect 
to the orbit frame .FO obtained by a yaw-pitch-roll (.ψ-.φ-. θ ) sequence of rotations. 

.ω = [ω1, ω2, ω3]T ∈ R
3 is the satellite’s angular velocity with respect to .FI and 

expressed in the body-fixed frame .FB . .R(Θ) ∈ R
3×3 and .ωc(Θ) ∈ R

3 are defined 

as 

.R(Θ) =

⎡

⎣

1 0 − sin φ

0 cos θ cosφ sin θ

0 − sin θ cosφ cos θ

⎤

⎦ (2.16) 

.ωc(Θ) = ω0

⎡

⎣

sinψ cosφ

cosψ cos θ + sinψ sin θ sin φ

− cosψ sin θ + sinψ cos θ sin φ

⎤

⎦ (2.17) 

where .ω0 ∈ R+ is the satellite’s orbital rate. It can be calculated by .ω0 =
/

μe

a3c
is 

satellite orbital rate, .ac ∈ R+ is the distance from the center of Earth to the satellite’s
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center of mass, and .μe ∈ R+ is the gravitational parameter of Earth. The term . ωb =
[ωb1, ωb2, ωb3]T = R(Θ)Θ̇ actually is the satellite angular velocity with respect to 

.FO . 

Remark 2.1 It is obtained from (2.16) that .det(R(Θ)) = cosφ. Hence, the fol-

lowing equation should be met such that .R(Θ) is invertible, and then the attitude 

kinematics (2.15) remains valid for .t ≥ 0, 

.φ(t) /=
Nπ

2
,∀t ≥ 0 (2.18) 

where .N is an odd integer. To ensure (2.18), the initial pitch angle .φ(0) can be 

restricted such that .−π
2

< φ(0) < π
2
, and then the controller should be designed to 

achieve.−π
2

< φ(t) < π
2
for.t > 0. The restriction on.φ(0) is a mild condition, which 

is satisfied in practice. That is because the attitude stabilization maneuver is usually 

performed before the attitude tracking maneuvering in aerospace engineering. After 

the attitude stabilization maneuver, the satellite attitude will be stabilized with small 

attitude angles deviation, that is, .−π
2

< θ < π
2
, .−π

2
< φ < π

2
, and . −π

2
< ψ < π

2

can be guaranteed. 

Remark 2.2 In addition to the Euler angles (EAs), the unit quaternion (UQ), the 

rotation matrix (RM), and the Rodriguez parameters (RPs), as well as its modified 

version (MRPs), can also be applied to represent the attitude. Each attitude repre-

sentation method has its advantages and disadvantages. For example, the unwinding 

phenomena will occur in the satellite attitude system design if its attitude is repre-

sented by using the UQ. In comparison with UQ, RM, RPs, and MRPs, the EAs 

can explicitly provide the attitude control designer with a satellite’s physical orien-

tation angles in space. This is the reason that the Euler attitude angles representation 

is widely applied in satellite attitude control engineering. Additionally, it is easily 

obtained that only a restriction .−π
2

< φ(t) < π
2
, .t ≥ 0 is imposed, and there is not 

any restriction on the roll and the yaw attitude angles. The roll attitude angle and the 

yaw attitude angle can be.−π < θ < π and.−π < ψ < π , respectively. For practical 

aerospace engineering, the pitch attitude angle satisfying .−π
2

< φ(t) < π
2
is quite 

large for the tracking missions. Therefore, based on the aforementioned analysis, the 

Euler attitude angle representation is confirmed to be appropriate for the large-angle 

attitude maneuver. 

B Attitude Kinematics via Unit Quaternion 

When the unit quaternion is adopted to represent the attitude of the satellite, its 

attitude kinematics can be modeled as 

.q̇ =
1

2
(q× + q0 I3)ω (2.19) 

.q̇0 = −
1

2
qTω (2.20)
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where .ω = [ω1, ω2, ω3]T represents the angular velocity of the body with respect 

to the frame .FI and expressed in body-fixed frame .FB . The unit quaternion 

.Q = [q0, qT]T ∈ R × R
3 describes the attitude orientation of the satellite in frame 

.FB with respect to the Earth-centered inertial frame .FI with .qTq + q2
0 = 1 satisfied. 

C Attitude Kinematics via MRPs 

When the MRPs are used to represent the attitude of the satellite, its attitude 

kinematics can be modeled as [ 11] 

.σ̇ = G(σ )ω (2.21) 

where the matrix .G(σ ) ∈ R
3×3 is given as 

.G(σ ) =
1

4
((1 − σ Tσ )I3 + 2σ× + 2σσ T) (2.22) 

Property 2.1 The matrix .G(σ ) satisfies 

.GT(σ )G(σ ) =
(

1 + σ Tσ

4

)2

I3, G
−1(σ ) =

16

(1 + σ Tσ )
GT(σ ) (2.23) 

Remark 2.3 As a complete revolution is performed, this particular MRPs set goes 

singular. As shown in [ 12], the original MRPs vector and its corresponding shadow 

counterpart.σ s = − σ
σTσ

could be used to represent satellite’s attitude rotation to avoid 

the singularity problem. 

2.7.2 Attitude Dynamics 

In aerospace engineering, the satellite having large flexible appendages is called flex-

ible satellite. Otherwise, it is named as rigid satellite. The attitude dynamics for both 

types of satellite is modeled in this section. 

A Attitude Dynamics of Rigid Satellite 

The attitude dynamics of a rigid satellite can be described by [ 10] 

.Jω̇ = −S(ω)Jω + u + ud (2.24) 

where .u = [u1, u2, u3]T ∈ R
3 is the total control torque generated by actuators and 

applied to the satellite. The positive-definite matrix .J ∈ R
3×3 is the total inertia of 

such rigid satellite. .ud = [ud1, ud2, ud3]T ∈ R
3 is the unknown torque generated by 

the modeling error in the dynamics of such rigid satellite.
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B Attitude Dynamics of Flexible Satellite 

The attitude dynamics of a flexible satellite can be found from the Euler-Lagrange 

analysis. It is described as [ 10, 13] 

.Jω̇ = −ω×(Jω + δη̇) − δη̈ + u + ud (2.25) 

.η̈ + Ξη̇ + ⌃2η + δTω̇ = 0 (2.26) 

where the matrix .J ∈ R
3×3 is positive-definite and denotes the total inertia of such 

flexible satellite, .δ ∈ R
3×N is the coupling matrix between the elastic structures and 

rigid dynamics, .η ∈ R
N is the modal coordinate vector relative to the main body. 

.Ξ = diag([2Ξ1⌃1, 2Ξ2⌃2, . . . , 2ΞN⌃N ]T) ∈ R
N×N is the modal damping matrix, 

.⌃2 = diag([⌃2
1,⌃

2
2, . . . , ⌃

2
N ]T) ∈ R

N×N is the stiffness matrix, and .N ∈ R+ is the 

number of elastic modes considered, where.Ξi ∈ R is the damping ratio, and. ⌃i ∈ R

is the modal frequency, .i = 1, 2, . . . , N . .ud = [ud1, ud2, ud3]T ∈ R
3 is the uncertain 

torque generated by the modeling error in the dynamics of such flexible satellite. 

.u = [u1, u2, u3]T ∈ R
3 is the total control torque generated by all actuators. 

Remark 2.4 The attitude dynamics (2.25) and (2.26) are established by computing 

the kinetic and the potential energies and then applying the Lagrange equations. The 

elastic displacement of the flexible appendages is assumed to be small. Note that 

(2.25) and (2.26) are quite standard and precise to describe the dynamics of the rigid 

and the flexible part of the satellite. When investigating flexible satellite attitude 

control problem, almost all the existing controllers were designed based on (2.25) 

and (2.26). 

2.8 Attitude Control Testbed for Satellite 

A simulation study is not enough for attitude control verification. Hardware-in-loop 

tests on the ground are further requested to verify the performance of attitude con-

trollers. At this time, experimental testbeds are necessitated. Currently such testbeds 

are classified into non-air-bearing and air-bearing. Three types of testbeds applied to 

test the controllers in this book are introduced in this section. 

2.8.1 Three-Axis Non-Air-Bearing Simulator 

Figure 2.4 shows a three-degrees-of-freedom simulator for attitude control test-

ing. Each degree of freedom is actuated by SGMAH servomotors manufactured 

by Yaskawa Electric. The encoder mounted to each servomotor is RON786C from 

HEIDENHAIN, Inc. Each encoder has.3600 lines, which yields a resolution of. 14400

pulses/rev after the A and B signals from the encoder have been processed by Interpo-
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Fig. 2.4 The 

non-air-bearing 

three-degrees-of-freedom 

testbed 

lation and Digitizing Electronics IBV 600 from HEIDENHAIN, Inc. The controller 

core of the simulator is a TMS320F2812 digital signal processor that obtains position 

information, calculates control algorithms, and sends control efforts to the regulated 

current converter through a.12-bit digital-to-analog converter and some analog signal 

processing circuits. The sampling period is.0.25 seconds. In the experimental system, 

a personal computer was used to develop the control program written in C language, 

to compile it, to download the resulting code into the digital signal processor for 

execution, and to acquire experimental data. When carrying out tests, the considered 

satellite will be mounted on the payload. 

2.8.2 Single-Axis Air-Bearing Testbed 

Figure 2.5 shows a single-axis air-bearing suspending rotary testbed to verify the 

validity of the attitude controllers. This testbed consists of an air-bearing simulator, 

a flexible beam made from a slender aluminum beam, and some measuring and 

control instruments. The rigid hub and the flexible beam are suspended by air-bearing 

to simulate the state of zero gravity in space. The vibrations of the flexible beam are 

measured by an accelerometer installed on the tip of the beam. The rotary angle of 

the table is measured by combination of an inductosyn with an angle digital display 

meter. The system uses thruster and reaction wheels as actuators. The maximum 

torque that can be generated by the reaction wheel is .0.15 N. ·m. An optical fiber 

rate gyro is used to measure rotation angular velocity. In the experimental system, a 

personal xPC-based computer was used to develop the control program written in C 

language, to compile it, to download the resulting code into the core controller for 

execution, and to acquire experimental data.
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Fig. 2.5 The single-axis attitude air-bearing testbed 

2.8.3 Three-Axis Air-Bearing Testbed 

Figure 2.6 shows a scaling satellite three-axis attitude dynamics and control simula-

tor. This simulator is a three-degrees-of-freedom experimental testbed for validation 

of guidance, navigation, and control (GNC) schemes for satellites. It can ensure full 

freedom in the yaw axis, .±30 degrees in the pitch axis, and .±20 degrees in the 

roll axis. The simulator includes a three-axis spherical air bearing to simulate the 

zero-gravity laboratory environment. Three reaction wheels are fixed on each axis, 

respectively, to achieve attitude control. Six cold-gas thrusters with a compressed air 

tank for thruster air supply are distributed about the simulator to provide rotational 

motion around the roll, the pitch, and the yaw axis. The simulator’s center of grav-

ity is maintained by using a mass balancing platform a triad of linear actuators. In 

the simulator, there are three orthogonally mounted single-axis rate gyros, a three-

axis magnetometer, and three-axis accelerator, to achieve attitude determination. At 

the core of the simulator is an xPC-based control computer. The developed attitude 

control system runs entirely on this computer with the hardware-in-the-loop. The 

power needed by the testbed is supplied by a battery charger located off the simula-

tor. A desktop computer is also located off of the testbed. It communicates with the 

computer on the simulator for data acquisition and display.
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Fig. 2.6 The three-axis 

attitude air-bearing testbed 

2.9 Summary 

This is a preliminary chapter. Mathematical notations, some basic definitions, and 

mathematical lemmas related to nonlinear system stability were presented, which are 

useful to the development and theoretical analysis of attitude control approaches to be 

developed in the rest of this book. The reference frames used to represent satellite’s 

attitude were introduced. The mathematical model of the satellite’s attitude control 

system was then given. At last, three types of testbeds applied to test the attitude 

control approaches were elaborated. 
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Chapter 3 

Observer-Free Output Feedback Attitude 
Control 

3.1 Introduction 

Most aerospace tasks require satellites to perform large-angle attitude tracking 

maneuvers [ 1, 2]. Many investigations on large-angle attitude controller design have 

been reported to accomplish these maneuvers. The work in [ 3] was an earlier attempt 

to achieve this objective. An adaptive attitude controller was presented. However, 

modeling error was not handled; moreover, a linearized model was used, even though 

this model may not fully and well characterize the satellite dynamics. A simple con-

troller demanding minimum onboard computations was presented in [ 4] for  large  

pitch-angle maneuver without considering any modeling error. To address the prob-

lem of fast and large-angle attitude control, a robust control law was developed for 

flexible satellites [ 5]. In [ 6], the robust large-angle attitude control problem with 

modeling error due to external disturbance and delayed control inputs was investi-

gated. In [ 7], a model predictive controller was designed for satellites to perform the 

large-angle attitude maneuvers with input-to-state stability ensured. To the authors’ 

best knowledge, few studies have been seen on angular velocity observer-free atti-

tude control design for satellites with modeling error due to external disturbances 

[ 8]. Although this was achieved in [ 9] with the attitude stabilized with good accuracy, 

the structure of the controller was complicated. 

Motivated by addressing the preceding challenges and drawbacks, this chapter 

mainly focuses on designing a practical engineering approach to achieve a large-angle 

attitude tracking maneuver for rigid satellites. It only requires the attitude output for 

feedback. This chapter is the extension of [ 10]. Unlike [ 10], the linearization error 

and the modeling error due to external disturbances are considered when presenting 

the mathematical model. Moreover, experimental tests are conducted. The main 

contributions of this chapter are listed as follows. 

• Unlike the angular velocity observer-based attitude control strategies, the presented 

control framework does not need any observer for the unmeasured angular veloc-

ity. The controller has a simple structure to achieve a large-angle attitude tracking 

maneuver. In comparison with the conventional intelligent attitude control strate-
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gies such as the neural-network-based controllers and the fuzzy theory-based con-

trollers, the proposed scheme demands inexpensive onboard computations. Hence, 

this approach shows more practical application potential. 

• This proposed angular velocity observer-free attitude control is an improvement 

over the existing observer-free attitude output feedback control schemes [ 11], 

because the controller in this chapter is developed with modeling error induced by 

external disturbance explicitly considered. Applying the result in [ 11], the attitude 

tracking maneuver and practical stability may be accomplished in the presence 

of external disturbances by providing sufficiently large control gains to dominate 

the disturbance through knowledge of an upper limit. However, when the external 

disturbances are considered, rigorous stability analysis is not presented in [ 11]. 

In contrast, the stability of the closed-loop system from the designed approach 

is rigorously theoretically proved despite external disturbances; moreover, high 

control accuracy is ensured by the synthesized velocity-free controller despite 

such modeling error. 

• Although the main result of this chapter is developed on the basis of the linearized 

attitude system, in comparison with the Proportional-Integral-Derivative (PID) 

control law for the linearized attitude system, the proposed control approach does 

not ignore the linearization error. Therefore, it renders the presented scheme more 

practically suitable for large-angle attitude tracking maneuvers. 

3.2 Transformed Open-Loop Attitude System 

In this chapter, rigid satellite is considered with its products of inertia ignored. Only 

the principal moment of inertia is considered. Moreover, the attitude is represented 

by the Euler angles. Then, the rigid satellite’s inertia matrix can be denoted as . J =

diag([J1, J2, J3]
T) ∈ R

3×3. Like the conventional attitude control design in practical 

engineering, a linearized vector is first introduced as 

.a = [θ̇ − ω0ψ , φ̇ − ω0, ψ̇ + ω0θ ]T (3.1) 

Based on (3.1), one can rewrite the attitude kinematics (2.15) as  

.ω = a + Δ f 1(Θ, Θ̇) (3.2) 

where .Δ f 1(Θ, Θ̇) = R(Θ)Θ̇ − ωc(Θ) − a is the linearization error. 

Remark 3.1 Although a linearized term (3.1) is introduced to transform the attitude 

kinematics into (3.2), it is different from the traditional method [ 12, 13] to linearize 

the attitude kinematics. That is because the linearization error, .Δ f 1, is not ignored 

in (3.2). The results in [ 12] and [ 13] were presented by assuming that the satellite has 

only a small attitude deviation from the orientation of.FO and, hence, the linearization 

error .Δ f 1 is ignored.
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From (3.2), the attitude dynamics (2.24) of the rigid satellite can be rewritten into 

an open-loop system given by 

.JΘ̈ + MΘ̇ + NΘ = u + ud + Δ f 2 + Δ f 3 (3.3) 

where .N = ω2
0diag([J2 − J3, 0, J2 − J1]

T), and 

.M = −ω0(J1 + J3 − J2)

⎡

⎣

0 0 1

0 0 0

−1 0 0

⎤

⎦ (3.4) 

.Δ f 2 = −(Δ f 1)
× J(a + Δ f 1) − a× JΔ f 1 − J

d(Δ f 1)

dt
(3.5) 

.Δ f 3 =

⎡

⎣

(J2 − J3)φ̇(ψ̇ + ω0θ)

(J3 − J1)(θ̇ ψ̇ + ω0θ θ̇ − ω0ψψ̇ − ω2
0θψ)

(J1 − J2)φ̇(θ̇ − ω0ψ̇)

⎤

⎦ (3.6) 

It can be inferred from (3.3) that .Δ f 2 and .Δ f 3 are induced by the linearization 

error .Δ f 1. These two items explicitly appear in the transformed dynamics (3.3). 

They may deteriorate the attitude control accuracy especially when the large-angle 

attitude tracking maneuver is being performed. Hence, the linearization error should 

be fully considered in attitude controller design. 

3.3 Problem Statement 

In this chapter, the environment disturbance torques are considered only in the mod-

eling error. This means that the inertia .J is known. Let . Θd = [θd , φd , ψd ]
T ∈ R

3

(known, while .Θ̇d and .Θ̈d are bounded and continuous) with .−π
2

< φd < π
2
be the 

planned attitude trajectory to be followed, given any angular velocity and the ini-

tial attitude such that .−π
2

< φ(0) < π
2
, the control problem can be stated as: For 

rigid satellites with their attitude system described by (2.15) and (2.24), using the 

attitude feedback .Θ only to design an observer-free controller for . u to maneuver 

the large-angle attitude tracking. The trajectory .Θd is followed with high accuracy. 

.−π
2

< φ(t) < π
2
is ensured for .t ≥ 0 by choosing appropriate gains for the designed 

controller. Moreover, the controller should be synthesized without angular velocity 

measurements and also without any observer for the unmeasured angular velocity.
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3.4 Angular Velocity-Free Robust Controller 

Let .Θe = Θ − Θd be the attitude tracking error and .ωe = Θ̇ − Θ̇d be the velocity 

tracking error. The modeling errors .Δ f 2, .Δ f 3, and the external disturbance .ud are 

lumped as a system uncertainty .d ∈ R
3, that is 

.d = ud + Δ f 2 + Δ f 3 (3.7) 

Then, the transformed open-loop system (3.3) can be reformed as 

.JΘ̈ + MΘ̇ + NΘ = u + d (3.8) 

To this end, the main solution to the large-angle attitude tracking problem with atti-

tude output feedback only is given in the following theorem, while the measurements 

of angular velocity are not needed. 

Theorem 3.1 Consider the rigid satellites with their attitude model described by 

(2.15) and (2.24), let an angular velocity-free robust controller be developed as 

.u = −kpΘe − kdve + JΘ̈d + MΘ̇d + NΘ (3.9) 

and .ve ∈ R
3 is synthesized as .ve = Θc + κΘe ,.Θc satisfies 

.Θ̇c = −k f (Θc + κΘe) (3.10) 

where .kp ∈ R+, .kd ∈ R+, .k f ∈ R+, and .κ ∈ R+ are four scalars. If these four gains 

are selected to satisfy 

.kp > 4δ21||J|| (3.11) 

.kd > 4κδ22||J|| (3.12) 

.δ2kpκλmin(J) ≥ 4δ1||M||2 (3.13) 

.kdkpk f δ1 ≥ 4κ(kdδ1 + kpδ2)
2 (3.14) 

.kdk f λmin(J) ≥ 4δ2(k f ||J|| + ||M||)2 (3.15) 

.2δ1kp − 1 > 0 (3.16) 

.

kdk f

2κ
− kdδ2 −

1

4
> 0 (3.17) 

.2δ2κλmin(J) − 4δ1λmax(J) − 4||M|| − 1 > 0 (3.18)
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with .δ1 ∈ R+ and .δ2 ∈ R+ being two constants such that .0 < δ1 < 1, .0 < δ2 < 1, 

respectively; then it follows that: 

(R1): The .L2-gain disturbance attenuation with a level of . γ is achieved if . d ∈

L2[0, T ), where .γ =

/

δ21+δ22+1

ρ
, and 

.ρ =min

{

δ1kp
2

− 1
4

λmax(D1)
,

kdk f

2κ
− kdδ2 − 1

4

λmax(D2)
,

δ2κλmin(J)

2
− δ1λmax(J) − ||M|| − 1

4

λmax(D1) + λmax(D2)

}

(3.19) 

where .D1 and .D2 are two constants matrices given by 

.D1 =

[

kp I3 2δ1 J

2δ1 J
T J

]

(3.20) 

.D2 =

[

kd
κ
I3 −2δ2 J

−2δ2 J
T J

]

(3.21) 

(R2): The tracking errors .Θe and .ωe are uniformly ultimately bounded if . d ∈

L∞[0, ∞). 

Remark 3.2 From (3.10) and the definition of . ve, it follows that that the transfer 

function between .ve and .Θe satisfies 

.ve(s) = T (s)Θe(s), T (s) =
κs

s + k f

(3.22) 

which implies that (3.22) is not an observer, because it does not have control input 

directly acting on (3.22). Hence, it can be obtained from Theorem 3.1 that the devel-

oped control law obviates the use of any observer to the estimation of the unmeasur-

able angular velocity. The velocity-free attitude control objective with no observer 

to estimate the unmeasurable velocity is achieved. 

Remark 3.3 Although the linearization technique is applied to obtain the trans-

formed kinematics (3.2) and dynamics (3.3), the linearization errors.Δ f 1(ω0,Θ, Θ̇), 

.Δ f 2, and .Δ f 3 are not ignored. Hence, although the controller (3.9) is developed 

based on the transformed model (3.3), it essentially considers the model uncertainties 

and linearization errors for the original model (2.15) and (2.24).  Based on Remark  

2.2 and compared with the control law in [ 14], the presented scheme is efficient for 

performing a large-angle attitude maneuver. That is because the controller in [ 14] 

was synthesized by assuming a small attitude deviation. However, the controller (3.9) 

inherently has a simple structure without complicate online computation. Then, it is 

summarized from these two advantages that the developed control scheme is prac-

tically implementation-efficient and is suitable for satellites to perform large-angle 

attitude maneuvers.
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3.5 Stability Proof 

The Lyapunov stability theory can be applied to prove Theorem 3.1 with the proof 

organized as: A candidate Lyapunov function is first defined, and then the stability 

analysis is conducted. 

3.5.1 Candidate Lyapunov Function 

Select a candidate Lyapunov function as .V = V1 + V2 for the model (2.15) and 

(2.24), where .V1 and .V2 are defined as 

.V1 =
1

2
ω
T
e Jωe +

kp

2
Θ

T
e Θe +

kd

2κ
v
T
e ve (3.23) 

.V2 = (δ1Θe − δ2ve)
T Jωe (3.24) 

It can be found that 

.V ≥
1

4

[

Θe

ωe

]T

D1

[

Θe

ωe

]

+
1

4

[

ve

ωe

]T

D2

[

ve

ωe

]

(3.25) 

.V ≤

[

Θe

ωe

]T

D1

[

Θe

ωe

]

+

[

ve

ωe

]T

D2

[

ve

ωe

]

(3.26) 

With the choices of the gains given in (3.11) and (3.12), .D1 and .D2 are ensured to 

be positive definite. Then, .V > 0 always holds for the state .x = [ΘT
e , v

T
e ,ω

T
e ]

T /= 0. 

Hence, .V is proved to be continuously differentiable and positive definite. With 

respect to the states .Θe, . ve, and .ωe, .V is radically unbounded. 

3.5.2 Stability Analysis 

Inserting the control law (3.9) into the transformed system (3.8) leads to 

.JΘ̈e + Mωe = −kpΘe − kdve + d (3.27) 

Applying the definition of .ve and (3.10), one has 

.v̇e = −k f ve + κωe (3.28)
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From (3.27) and (3.28), it yields 

.

V̇1 = ω
T
e Jω̇e + kpΘ

T
e Θ̇e +

kd

κ
v
T
e v̇e

= ω
T
e d −

kdk f

κ
v
T
e ve − ω

T
e Mωe

(3.29) 

.

V̇2 =
(

δ1Θ̇e − δ2v̇e

)T
Jωe + (δ1Θe − δ2ve)

T Jω̇e

= −δ1kpΘ
T
e Θe − kdδ1Θ

T
e ve − δ1Θ

T
e Mωe + δ1Θ

T
e d

+ δ1ω
T
e Jωe + kpδ2v

T
e Θe + kdδ2v

T
e ve + δ2v

T
e Mωe

− δ2v
T
e d − δ2(−k f ve + κωe)

T Jωe

(3.30) 

Combining (3.29) with (3.30) leads to 

.

V̇ ≤ −
δ1kp

2
||Θe||

2 −

(

kdk f

2κ
− kdδ2

)

||ve||
2 + δ1Θ

T
e d − δ2v

T
e d

−

(

δ2κλmin(J)

2
− δ1λmax(J) − ||M||

)

||ωe||
2 + ω

T
e d

−
1

2

[

||Θe||

||ωe||

]T

D3

[

||Θe||

||ωe||

]

−
1

2

[

||Θe||

||ve||

]T

D4

[

||Θe||

||ve||

]

−
1

2

[

||ωe||

||ve||

]T

D5

[

||ωe||

||ve||

]

(3.31) 

where 

.D3 =

[ δ1kp
2

−δ1||M||

−δ1||M|| δ2κλmin(J)

2

]

(3.32) 

.D4 =

[

δ1kp
2

−kdδ1 − kpδ2

−kdδ1 − kpδ2
kdk f

2κ

]

(3.33) 

.D5 =

[

δ2κλmin(J)

2
−δ2(k f ||J|| + ||M||)

−δ2(k f ||J|| + ||M||)
kdk f

2κ

]

(3.34) 

Furthermore, applying Young’s inequality leads to 

.4δ1Θ
T
e d ≤ ||Θe||

2 + 4δ21||d||2 (3.35) 

. − 4δ2ve
Td ≤ ||ve||

2 + 4δ22||d||2 (3.36) 

.4ωT
e d ≤ ||ωe||

2 + 4||d||2 (3.37)
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The matrices .D3, .D4, and .D5 are also ensured to be positive definite due to the 

gains choices in (3.13)–(3.15). Then, (3.31) can be simplified as follows by inserting 

(3.35)–(3.37) 

.

V̇ ≤ −

(

δ1kp

2
−

1

4

)

||Θe||
2 −

(

kdk f

2κ
− kdδ2 −

1

4

)

||ve||
2

−

(

δ2κλmin(J)

2
− δ1λmax(J) − ||M|| −

1

4

)

||ωe||
2

+ (δ21 + δ22 + 1)||d||2

(3.38) 

In addition, the following can be obtained from (3.26). 

.V ≤ λmax(D1)||Θe||
2 + (λmax(D1) + λmax(D2)) ||ωe||

2 + λmax(D2)||ve||
2 (3.39) 

Because all the control gains are chosen to satisfy (3.16)–(3.18), it follows from 

(3.19) and (3.39) that 

.V̇ ≤ −ρ||x||2 + (δ21 + δ22 + 1)||d||2 (3.40) 

Based on the preceding analysis, it can be established by the following. 

(1) If .d ∈ L2[0, T ), integrating (3.40) from .t = 0 to .t = T yields 

.

{ T

0

||Θe||
2dt ≤

{ T

0

||x||2dt ≤
V (0)

ρ
+ γ 2

{ T

0

||d||2dt (3.41) 

Then, using Definition 2.4, (3.41) shows that the closed-loop attitude system is sta-

bilized with .L2-gain disturbance attenuation level of .γ from the lumped system 

uncertainty . d to the tracking errors .Θe and .ωe. 

(2) In the case of .d ∈ L∞[0, ∞), there will have a positive scalar .dmax ∈ R+ such 

that .||d|| ≤ dmax. Then, it can be found that (3.40) will be further bounded by 

.V̇ ≤ −ρ||x||2 + (δ21 + δ22 + 1)d2
max (3.42) 

Hence, one has .V̇ < 0 when . x is outside of the ball .Bε(0), where .ε = dmaxγ . That is 

to say, .V will decrease monotonically when the state . x is not within the ball .Bε(0). 

Then, all the signals in the closed-loop system are ensured to be bounded. More 

specifically, there is a scalar .T0 ∈ R+ such that .||Θe|| ≤ ε, .||ve|| ≤ ε, and . ||ωe|| ≤ ε

for .t ≥ T0. Using Definition 2.1, .Θe and .ωe are proved to be uniformly ultimately 

bounded stable.
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3.5.3 Discussions 

For any on-orbital satellite, the external disturbances acting on it are bounded 

practically. Otherwise, the satellite will be out of control. Hence, it should have 

.ud ∈ L∞[0, ∞) at least. In addition, the attitude stabilization maneuver is usually 

performed before the attitude tracking maneuvering in practice. When the attitude 

stabilization maneuver is finished, the attitude and the rotation velocity (. θ̇ , . φ̇, and 

. ψ̇) are stabilized with small deviation, that is, .−π
2

< θ < π
2
, .−π

2
< φ < π

2
and 

.−π
2

< ψ < π
2
are achieved. Then, the satellite is at least with .Θ ∈ L∞[0, ∞) and 

.Θ̇ ∈ L∞[0, ∞) after attitude stabilization maneuvering. Meanwhile, it is seen from 

the definition of .Δ f 1 that .Δ f 1 is a function of variables .Θ and . Θ̇. Hence, one has 

.Δ f 1 ∈ L∞[0, ∞) because .J is also bounded. Moreover, it can be obtained from 

(3.5) and (3.6) that .Δ f 2 and .Δ f 3 are two functions of the attitude angle . Θ, the  rota-

tion velocity. Θ̇, and the attitude acceleration. Θ̈, which also belongs to.L∞[0, ∞) for 

any on-orbital satellite; otherwise, the satellite’s attitude will be uncontrollable. To 

this end, it follows that .Δ f 2 ∈ L∞[0, ∞) and .Δ f 3 ∈ L∞[0, ∞). Based on these 

analyses, .d ∈ L∞[0,∞) can be obtained from (3.7). Therefore, applying (R2) in 

Theorem 3.1 can conclude that the closed-loop system ensured by the controller 

(3.9) is at least uniformly ultimately bounded stable. 

It is seen from (3.41) that when.d ∈ L2[0, T ), the external disturbance attenuation 

capability can be improved by choosing appropriate gains to ensure a smaller value 

for. γ . In the case of.d ∈ L∞[0, ∞), it is known from (3.42) that the control accuracy 

depends on . γ . Smaller . γ ensures better attitude tracking accuracy. Hence, from the 

definition of . γ and Theorem 3.1, the following procedures can be followed to select 

the control gains. 

• Step #1: Calculate .λmin(J), .λmax(J), .||M||, and .||J||. 

• Step #2: Select small values for .δ1 and .δ2 such that .0 < δ2 < 1 and .0 < δ2 < 1. 

Smaller .δ1 and .δ2 will accordingly lead to a smaller . γ . 

• Step #3: Choose a positive gain . κ with (3.18) satisfied. 

• Step #4: Select the gain .kp by satisfying (3.11), (3.13), and (3.16). 

• Step #5: Choose positive control gains .kd and .k f satisfying (3.12), (3.14), (3.15), 

and (3.17). 

• Step #6: Based on Step #3–#5, tune . kp, . kd , . κ , and .k f to have a smaller . γ until the 

requirements imposed by the aerospace tasks on the attitude tracking accuracy is 

met. 

3.6 Simulation Results 

Having proved in Sect. 3.5 that, the developed tracking control framework is capable 

of maneuvering the large-angle attitude with good control performance, this section 

will apply a currently being developed satellite example to validate this effectiveness.
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This satellite has a circular orbit with its altitude .650 km. The inclination of the 

satellite’s orbit is .92.5 degrees. In accordance, the orbital rate of this satellite is 

.ω0 = 0.0011 rad/s. The satellite’s inertia is .J1 = 50 kg. ·m. 
2, .J2 = 45 kg. ·m. 

2, and 

.J3 = 55 kg. ·m. 
2. The maximum torques generated by the actuators in the roll, pitch, 

and yaw axis, are .0.1 N. ·m, .0.1 N. ·m, and .0.1 N. ·m, respectively. 

One on-orbital task of this satellite is to take high-resolution images of some hot 

districts by using its payload, that is, camera. This task requires the satellite attitude 

control system to follow a desired attitude trajectory planned as 

.Θd = [θd , φd , ψd ]
T =

⎡

⎣

−40 sin(0.05t − π
10

)

60 cos(0.02t − π
4
)

40 sin(0.01t − π
6
)

⎤

⎦ degrees (3.43) 

To validate the superior attitude tracking control performance of the designed 

controller with angular velocity measurement obviated, the following two cases of 

external disturbances are considered. 

• Case #1: A practical disturbance for any on-orbital satellite is considered. The 

external disturbance .ud consists of the earth magnetic torque .udm , the gravity 

gradient torque .udg , the solar radiation torque .uds , and the aerodynamic torque 

.uda , that is,.ud = u#1 = udg + uda + udm + uds . These four torques are calculated 

as in [ 12]. According to the orbital and the physical parameters of the satellite, 

it is obtained from [ 12] that .ud and the lumped disturbance . d are such that . ud ∈

L2[0, T ) and .d ∈ L2[0, T ) for all .T > 0. 

• Case #2: A severe disturbance is assumed with . ud = [−0.01, − 0.005, 0.01]T

N. ·m. Then, one has.ud ∈ L∞[0, ∞) and.d ∈ L∞[0, ∞) from the analysis in Sect. 

3.5. 

When conducting all simulations, the control gains are chosen according to the 

steps in Sect. 3.5 by trial-and-error until the expected attitude pointing accuracy 

and attitude stability were achieved, and they are finally selected as: .δ1 = 0.5, 

.δ2 = 0.5, .kp = 300, .kd = 1500, .k f = 8, and .κ = 4. The satellite’s initial states are 

.Θ(0) = [4, − 4, 2]T degrees and .ω(0) = [0.18, 0.22, − 0.22]T deg/s or . Θ̇(0) =

[0.2, 0.3, − 0.2]T deg/s. 

3.6.1 Results of Case #1 

When the angular velocity-free robust controller (3.9) is applied for case #1, the 

resulting error of the attitude tracking is presented in Fig. 3.1. The tracking error 

.Θe = [θe, φe, ψe]
T of the attitude is stabilized after about.160 s. Although the satellite 

considered is not capable of measuring the angular velocity, the velocity tracking error 

in this case is still shown. This is seen in Fig. 3.2. Almost the same as the attitude 

tracking error, it requires .160 s to stabilize the velocity tracking error. The control 

torque consumed to provide the satellite with such tracking performance is illustrated
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Fig. 3.1 The attitude 

tracking error of the 

controller (3.9) for .ud in 

Case #1
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Fig. 3.2 The angular 

velocity tracking error of the 
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in Fig. 3.3. The steady-state behavior of the state’s tracking error is observed with 

the solid line in Figs. 3.4 and 3.5, respectively. The attitude tracking errors in the 

roll, the pitch, and the yaw axis are seen to be .|θe| ≤ 3.0 × 10−5 degrees, . |φe| ≤

2.0 × 10−5 degrees, and.|ψe| ≤ 3.0 × 10−5 degrees. The velocity tracking error. ωe =

[ωe1, ωe2, ωe3]
T is with .|ωei | ≤ 2.0 × 10−7 deg/s, .i = 1, 2, 3. These results verify 

that the designed scheme can provide the attitude tracking maneuver with high control 

accuracy. The desired task is accomplished after about .160 s. 

Because the disturbance considered in this case is such that .ud ∈ L2[0, T ) and 

.d ∈ L2[0, T ) for the time .T > 0, as proved in Theorem 3.1, the proposed controller 

should achieve a level . γ of .L2-gain disturbance attenuation from the lumped distur-

bance to the tracking errors. It follows that .γ = 0.2453 from the proof of Theorem 

3.1 by using the given gains of the satellite’s physical parameters and the controller. 

To validate this, the other three simulations are further done with the external distur-

bance .ud equaling to .4ud , .7ud , and .10ud , where .ud = u#1. The initial behavior of 

the attitude tracking error and the velocity tracking error in the presence of .4ud , .7ud , 

and .10ud are almost the same as the results in case of .ud = u#1. There is a difference 

in converging time only. The steady-state behavior of .Θe and .ωe in the presence of 

.4ud , .7ud , and .10ud , are shown in Figs. 3.4 and 3.5, respectively. Through numerical 

calculation, .x ∈ Bε(0)was well verified when the external disturbance .ud was equal
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Fig. 3.3 The input torque of the controller (3.9) for .ud in Case #1 

Fig. 3.4 The steady-state behavior of the attitude tracking error from the controller (3.9) in Case  

#1
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Fig. 3.5 The steady-state behavior of the angular velocity tracking error ensured by the controller 

(3.9) for .ud , .4ud , .7ud , and .10ud in Case #1 

to .u#1, .4ud , .7ud , and .10ud . The corresponding control effort in case of .u#1, .4ud , 

.7ud and .10ud can be seen in Fig. 3.6. Their steady-state behavior shows that only 

minor differences exist in the control torque. This is induced by the different attitude 

and angular velocity tracking errors. The conclusion (R1) in Theorem 3.1 is well 

validated. 

3.6.2 Results of Case #2 

For case #2, when the developed control scheme is implemented in the satellite, it 

can be found from Figs. 3.7 and 3.8 that although the satellite is under the effect 

of severe external disturbance and without any angular velocity measurements for 

feedback, the planned attitude maneuvering is still accomplished. It is seen in Fig. 

3.7a that the desired trajectory can be tracked after .160 s. Moreover, it is seen in 

Fig. 3.7b that the tracking control accuracy of the attitude is .|θe| ≤ 0.00190 degrees,
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Fig. 3.6 The steady-state behavior of the control torque in the presence of .ud , .4ud , .7ud and . 10ud
in Case #1
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Fig. 3.7 The attitude tracking error ensured by the controller (3.9) in Case #2  

Fig. 3.8 The angular velocity tracking error from the controller (3.9) in Case #2  

.|φe| ≤ 0.00095 degrees, and .|ψe| ≤ 0.00190 degrees. The steady-state behavior in 

Fig. 3.8b shows that the velocity tracking error .ωe is subject to . |ωei | ≤ 5.0 × 10−6

deg/s, .i = 1, 2, 3. The achieved high attitude-pointing accuracy is promising. The 

stringent requirement demanded by the onboard camera can also be satisfied in order 

for the camera to work properly. The planned task can thus be accomplished despite 

severe disturbance. The result (R2) in Theorem 3.1 is verified. 

3.6.3 Quantitative Analysis 

To quantitatively evaluate the proposed angular velocity observer-free tracking con-

trol (AVOFTC), the attitude pointing accuracy and the attitude stability are used as 

two performance indexes. The resulting tracking performance from AVOFTC for 

case #1 and case #2 are listed in Tables 3.1 and 3.2. Moreover, in comparison with
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Table 3.1 The attitude control accuracy comparison between AVOFTC and UQFTC 

Simulation scenarios Controller Attitude pointing accuracy (deg) 

.|θe| .|φe| . |ψe|

Case #1 .u#1 AVOFTC 2.2.×10−5 1.7.×10−5 2.51. ×10−5

UQFTC 0.05 0.03 0.07 

.4u#1 AVOFTC 9.0.×10−5 7.0.×10−5 1.05. ×10−4

UQFTC 0.06 0.09 0.08 

.7u#1 AVOFTC 1.8.×10−4 1.1.×10−4 1.7. ×10−4

UQFTC 0.1 0.1 2.3. ×10−6

.10u#1 AVOFTC 2.6.×10−5 1.6.×10−4 2.55. ×10−4

UQFTC 0.12 0.10 0.12 

Case #2 AVOFTC 0.0019 9.5.×10−4 0.0019 

UQFTC 0.2 0.15 0.3 

Table 3.2 The attitude stability comparison between AVOFTC and UQFTC 

Simulation scenarios Controller Attitude stability (deg/s) 

.|ωe1| .|ωe2| . |ωe3|

Case #1 .u#1 AVOFTC 1.45.×10−7 7.0.×10−8 8.0. ×10−8

UQFTC 1.25.×10−7 6.0.×10−8 7.2. ×10−8

.4u#1 AVOFTC 6.0.×10−7 2.8.×10−7 3.4. ×10−7

UQFTC 7.5.×10−7 4.2.×10−7 3.1. ×10−7

.7u#1 AVOFTC 1.1.×10−6 3.2.×10−7 5.9. ×10−7

UQFTC 2.6.×10−7 6.4. ×10−7

.10u#1 AVOFTC 1.5.×10−6 6.0.×10−7 7.2. ×10−7

UQFTC 4.8.×10−6 5.7.×10−7 9.8. ×10−7

Case #2 AVOFTC 3.6.×10−6 8.0.×10−7 2.2. ×10−7

UQFTC 6.7.×10−6 7.4.×10−7 5.9. ×10−7

the unit-quaternion feedback tracking control (UQFTC) presented in [ 11] is carried 

out. It is seen in Tables 3.1 and 3.2 that, a desirable attitude-pointing accuracy is 

ensured by AVOFTC for any case of external disturbance, and the corresponding 

attitude stability is very high. Although the UQFTC control is implemented without 

angular velocity measurements, its tracking performance is not accepted. That is 

because UQFTC is not capable of handling external disturbance. 

3.7 Experimental Tests 

In this section, the practical application of the designed angular velocity observer-free 

control approach will be verified on the testbed shown in Fig. 2.6. When conducting
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all experimental tests, the testbed’s initial states are set at .Θ(0) = [0, 0, 0]T degrees 

and .Θ̇(0) = [0, 0, 0]T deg/s. The desired attitude is planned as follows 

.Θd = [θd , φd , ψd ]
T =

⎡

⎣

−20 sin(0.05t − π
10

)

10 cos(0.02t − π
4
)

10 sin(0.01t − π
6
)

⎤

⎦ degrees (3.44) 

The inertia matrix and the maximum control torque of this testbed and the 

microsatellite in Sect. 3.6 are almost the same. When conducting experimental tests, 

only the planned trajectory (3.44) has a difference in the magnitude when compared 

with the desired trajectory (3.43) in simulation. In fact, due to mechanical limits, the 

test-bed cannot provide .±60 degrees attitude maneuver in the pitch axis and . ±40

degrees attitude maneuver in the roll axis as given in (3.43). 

3.7.1 Experimental Test #1 

In this test, only the reaction wheels ran, while the thrusters were not commanded to 

operate. This test aims to validate the capability of the presented framework to handle 

the external disturbance .ud = u#1 in case #1. This disturbance was numerically 

introduced and injected into the attitude control system. Once the torque . u was 

determined from the controller,.u + u#1 was then calculated and sent to the controller 

of reaction wheels. By this, the external disturbance in case #1 was simulated in this 

simulator. 

With the developed controller applied to carry out this test, the obtained attitude 

tracking result was observed in Fig. 3.9. The desired trajectory (3.44) was success-

fully followed. The error of the angular velocity tracking resulting from the controller 

was illustrated in Fig. 3.10. The torque demanded to achieve that control perfor-

mance was shown in Fig. 3.11. The proposed controller ensured the attitude tracking 

accuracy to be .|θe| ≤ 0.0310 degrees, .|φe| ≤ 0.0233 degrees, and . |ψe| ≤ 0.0222

degrees. The ensured attitude stability or the angular tracking accuracy was such 

that.|ωe1| ≤ 0.0027927 deg/s,.|ωe2| ≤ 0.0035262 deg/s, and.|ωe3| ≤ 0.023132 deg/s. 

These results verified the controller’s effectiveness in ensuring .L2-gain disturbance 

attenuation. 

3.7.2 Experimental Test #2 

To experimentally verify the capability of the designed tracking control approach 

to tackle with bounded external disturbance considered in case #2, another test was 

carried out. In this test, as the same as Test #1, reaction wheels operated as the actuator 

for the simulator. However, six thrusters ran and randomly generated a constant but 

unknown minor torque in each axis. This torque acted on the simulator as an external
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Fig. 3.9 The tracking error 

of the attitude from the 

controller (3.9) in Test #1  

Fig. 3.10 The angular 

velocity tracking error from 

the controller (3.9) in Test #1  

Fig. 3.11 The input torque 

demanded by the controller 

(3.9) in Test #1
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Fig. 3.12 The tracking error 

of the attitude from the 

controller (3.9) in Test #2  

Fig. 3.13 The angular 

velocity tracking error from 

the controller (3.9) in Test #2  

disturbance. Although the magnitude of this disturbance torque was not the same as 

the values in case #2, their disturbance types are the same, that is, both belong to 

.L∞[0, ∞). 

After finishing Test #2, the data of the errors of the attitude tracking and the 

angular velocity tracking acquired were shown in Figs. 3.12 and 3.13, respectively; 

while the consumed control effort was illustrated in Fig. 3.14. From Figs.  3.12 and 

3.13, it was seen that the planned tracking maneuver was accomplished via the pro-

posed output feedback controller. The desired trajectory (3.44) was successfully fol-

lowed after about 180 s with the attitude tracking accuracy satisfying. |θe| ≤ 0.090332

degrees, .|φe| ≤ 0.16441 degrees, and .|ψe| ≤ 0.20480 degrees. Moreover, the con-

troller governed the velocity tracking accuracy such that .|ωe1| ≤ 0.055838 deg/s, 

.|ωe2| ≤ 0.018145 deg/s, and .|ωe3| ≤ 0.12923 deg/s. The tracking errors of the satel-

lite states were ensured to be uniformly ultimately bounded despite the external 

disturbance generated by thrusters in this test. The conclusion (R2) in Theorem 3.1 

is thus experimentally validated.
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Fig. 3.14 The input torque 

demanded by the controller 

(3.9) in Test #2  

3.7.3 Quantitative Analysis 

From the experimental results of Tests #1 and #2 and comparing them with the 

simulation results in Sect. 3.6, although there are discrepancies in the tracking per-

formance between the experimental results and the simulation results, the designed 

controller’s performance was experimentally validated. In addition, that discrepancy 

is owing to that the accuracy of attitude measurement sensors used on the testbed is 

not as high as the accuracy in simulation; actually, an ideal attitude measurement, 

that is., the attitude can be perfectly measured without sensor noise, etc, is assumed 

in Sect. 3.6. On the other hand, for the experimental Tests #1 and #2, the achieved 

attitude pointing accuracy is both superior to .0.05 degrees. The requirement on the 

attitude pointing accuracy imposed by the planned task is satisfied. However, the 

resulting angular velocity tracking accuracy in Test #1 and #2 are both inferior to 

.0.001 deg/s. This is owing to sensor noises and environmental noise on the ground. 

In ground tests, it is hard and even impossible to achieve the attitude stability of 

.0.001 deg/s. 

Moreover, Test #1 and Test #2 were further carried out by using the UQFTC. The 

resulting attitude tracking accuracy and the velocity tracking accuracy of test #1 were 

.|θe| = 0.52 degrees, .|φe| = 0.76 degrees, .|ψe| = 1.04 degrees, and . |ωei | ≤ 0.432

deg/s, .i = 1, 2, 3. For Test #2, the tracking control accuracy of the attitude and the 

angular velocity were .|θe| = 2.5146 degrees, .|φe| = 3.0973 degrees, . |ψe| = 5.3650

degrees, and .|ωei | ≤ 2.7221 deg/s, .i = 1, 2, 3. This experimental attitude tracking 

performance was inferior to the performance ensured by the proposed approach. 

From the above results, the practical application potential of the presented 

observer-free robust attitude control has been verified.
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3.8 Summary 

The difficult problem of large-angle attitude tracking control for satellites without 

angular velocity measurements was addressed. An efficient and practical angular 

velocity-free control strategy with a simple, yet efficient structure was proposed. 

The attitude tracking maneuver was accomplished with the desired attitude pointing 

accuracy ensured despite the modeling error due to external disturbances. Compared 

with the existing observer-based velocity-free schemes, no observer was embedded 

into the control scheme. The developed approach can be implemented online and in 

real-time. It does not require expensive online computation, enabling its convenient 

application to practical large-angle attitude tracking maneuvers. 
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Chapter 4 

Velocity-Free Attitude Control 

with Actuator Constraint 

4.1 Introduction 

In addition to the interest in ensuring attitude control with high performance based 

on “velocity-free” output feedback, there is a practical motivation in introducing 

control input constraints nested into the closed loop. From the viewpoint of control 

law design, due to physical limitations, momentum exchange devices and/or thrusters 

as actuators for the satellite attitude control fail to render infinite control torque, and 

thus the actuator outputs are constantly bounded or constrained. Once the actuator 

reaches its constraints, the efforts to further increase the actuator output would not 

result in any variation in the output, and then this usually deteriorates the system 

performance or even results in system instability. Hence, it is very necessary to take 

actuator constraints into account during attitude controller design. 

In the past decades, the actuator constraint problem has received more and more 

attention [ 1– 7]. For the linear system, predictive control [ 8] and optimal control [ 9] 

have been applied to treat with actuator constraints problem. However, the control 

system must be determined prior and no disturbances are considered. The problem of 

input constraints for aerospace application was considered in [ 10]. An anti-windup 

control scheme has been proposed for the large angel attitude control of satellites 

with actuator constraint. In [ 11], a back-stepping technique was applied to the non-

linear flight system in the absence of input constraint first, and then a command 

filter was employed to compensate for the effect of the control signal rate constraint. 

In [ 12], a robust variable structure controller was designed to control the satellite 

attitude under actuator constraint. However, its control scheme lacks generality to 

the nonlinear systems. 

Note that few results in satellite attitude control without angular velocity mea-

surement in the presence of modeling error and actuator constraint were seen in the 

literature. With a view to tackle this challenge, this chapter focuses on developing 

a structure-simple control scheme that can achieve attitude tracking or stabilization 

with high performance even in the presence of uncertainties, disturbances, actuator 

constraints, and the unavailability of angular velocity. The resulting closed-loop sys-
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tem is proved to be uniformly ultimate bounded stable. To the best of our knowledge, 

there are few works with all these issues considered simultaneously in the literature. 

4.2 Attitude Uniformly Ultimately Bounded Control 

In this section, the satellite considered is flexible. The task to be accomplished is 

the attitude tracking maneuver. Moreover, the attitude kinematics (2.19)–(2.20) and 

the attitude dynamics (2.25)–(2.26) are used to describe the flexible satellite attitude 

control system. 

4.2.1 Flexible Satellite Attitude Tracking System 

Let the unit quaternion.Qd = [qd0, qT
d ] ∈ R

4,.qd = [qd1, qd2, qd3]T ∈ R
3, denote the 

desired attitude of the satellite and described in a desired frame.FD with respect to the 

Earth-centered inertial frame .FI . .ωd = [ωd1, ωd2, ωd3]T ∈ R
3 is the desired angular 

velocity. Then, the desired attitude .Qd satisfies the following kinematics: 

.q̇d = 1

2
(q×

d + qd0 I3)ωd (4.1) 

.q̇d0 = −1

2
q×
d ωd (4.2) 

Define .Qe = [qe0, qT
e ]T ∈ R

4, .qe = [qe1, qe2, qe3]T as the attitude tracking error 

between the satellite’s actual attitude .Q and the desired attitude .Qd , then one has 

.Qe = Q−1
d ⊗ Q, where. ⊗” denotes the quaternion multiplication. According to [ 13] 

and the attitude kinematics (2.19)–(2.20), it follows that the kinematics of the attitude 

tracking error .Qe satisfies 

.q̇e = 1

2
(q×

e + qe0 I3)ωe (4.3) 

.q̇e0 = −1

2
qT
e ωe (4.4) 

where 

.ωe = ω − R(Qe)ωd (4.5) 

denotes the angular velocity tracking error, and .R(Qe) ∈ R
3×3 denotes the rotation 

matrix that brings .FD onto .FB , i.e.,
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.R(Qe) = (q2
e0 − qT

e qe)I3 + 2qeq
T
e − 2qe0q

×
e (4.6) 

From the attitude dynamics (2.25)–(2.26) and (4.5), the attitude tracking error 

dynamics can be obtained as 

.

Jω̇e + (ωe + R(Qe)ωd)
× J(ωe + R(Qe)ωd) − Jω×

e R(Qe)ωd

+ J R(Qe)ω̇d + ((ωe + R(Qe)ωd)
×δη̇ + δη̈) = u + ud

(4.7) 

Based on the preceding analysis, when the unit quaternion is adopted to represent 

the attitude of the flexible satellite, then its attitude tracking system can be mathe-

matically modeled by (4.3), (4.4), and (4.7). 

4.2.2 Problem Formulation 

In practice, the control torque . u generated by all the actuators is constrained and 

bounded. Suppose that it is bounded by a known constant .umax ∈ R+, i.e., 

.|ui | ≤ umax, i = 1, 2, 3 (4.8) 

Moreover, only the environmental disturbance torque is considered in the modeling 

error in this section. Then, .ud in (4.7) is bounded by a positive but unknown constant 

.d̄i ∈ R+, .i = 1, 2, 3, i.e., 

.|udi | ≤ d̄i (4.9) 

To this end, the control objective in this section can be stated as: Consider the 

attitude tracking system described by (4.3), (4.4), and (4.7), design a velocity-free 

control law . u to accomplish the attitude tracking maneuver with the tracking error 

.Qe governed to be as small as possible even in the presence of the modeling error 

satisfying (4.9) and the actuator constraint (4.8). 

4.2.3 Transformed Attitude Tracking System 

Let .F = (0.5(q×
e + qe0 I3))

−1, then it can be obtained from (4.3) and (4.7) that 

.J∗q̈e + F∗q̇e + M∗ + E∗ = u∗ + d∗ (4.10) 

where.u∗ = [u∗
1, u

∗
2, u

∗
3]T = FTu,.d∗ = [d∗

1 , d
∗
2 , d

∗
3 ]T = FTud ,.J

∗ = FT J F,. F∗ =
−J∗ Ḟ

−1
F − FT(J F Q̇e)

×F, .E∗ = FT((R(Qe)ωd)
×δη̇ + δη̈), and
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.

M∗ = FT(Fq̇e)
× J R(Qe)ωd + FT(R(Qe)ωd)

× J Fq̇e

+ FT(R(Qe)ωd)
× J R(Qe)ωd + FT(Fq̇e)

×δη̇

− FT J((Fq̇e)
×R(Qe)ωd − R(Qe)ω̇d)

(4.11) 

Remark 4.1 To avoid the singularity of .F that will occur at .qe0 = 0, let the attitude 

error of the satellite be restricted in the workspace .W [ 14], then the attitude tracking 

model (4.3), (4.4), and (4.7) can be rewritten into (4.10). 

.W =
{

F : ||qe|| ≤ em < 1, qe0 ≥
/

1 − e2m > 0

}

(4.12) 

Property 4.1 If each element.u∗
i of.u

∗ is bounded by.ūmax = 2
3
umax, i.e.,.|u∗

i | ≤ ūmax, 

.i = 1, 2, 3, then the actuator constraint (4.8) can be met. 

Proof If .|u∗
i | ≤ ūmax is satisfied, then it follows from .u∗ = FTu that 

.u = (FT)−1u∗ = 1

2
(q×

e + qe0 I3)
Tu∗ (4.13) 

Applying .|qej | ≤ 1, . j = 0, 1, 2, 3, leads to 

.|ui | ≤ 1

2

j=3
∑

j=1

|u∗
j | ≤ 3

2
ūmax = umax (4.14) 

Thereby, the conclusion in Property 4.1 is proved. ⬜

Property 4.2 The lumped disturbance .d∗ is bounded. More specifically, one has 

.|d∗
i | ≤ δ̄i , i = 1, 2, 3 (4.15) 

where .δ̄i ∈ R+ is an unknown constant. 

Property 4.3 .J∗ = FT J F is symmetric and positive-definite. 

Property 4.4 The matrix . J̇
∗ − 2F∗ is skew-symmetric [15], where . J̇

∗
is the time-

derivative of .J∗. 

4.2.4 Command Filter 

To achieve the control objective without the measurements of the angular velocity, a 

pseudo velocity filter [ 7] is first introduced and given by 

.αF = [αF1, αF2, αF3]T = −K Fqe + vF (4.16)



4.2 Attitude Uniformly Ultimately Bounded Control 79

where 

.v̇F = −(LF + K F )vF + (K 2
F + K FLF − K F )qe (4.17) 

with .LF = diag([l1F , l2F , l3F ]T), and .K F = diag([k1F , k2F , k3F ]T). .li F ∈ R+ and 

.ki F > 1 are constants chosen by the designer, .i = 1, 2, 3. 

Define a filtered tracking error as 

.rF = q̇e + qe + αF (4.18) 

In view of (4.16), it follows that 

.α̇F = −LFαF − K F rF (4.19) 

From (4.16), the time-derivative of (4.18) can be obtained as 

.ṙF = q̈e + q̇e + α̇F = q̈e + rF − qe − (I3 + LF )αF − K F rF (4.20) 

Multiplying both side of (4.20) by .J∗ yields 

.J∗ ṙF = −F∗rF + d∗ + u∗ − (K F − I3)J
∗rF − E∗ + ϕF (4.21) 

where .ϕF denotes the lumped modeling error and given by 

.ϕF = −M∗ + F∗(qe + αF ) − J∗qe − (LF + I3)J
∗αF (4.22) 

Remark 4.2 Although the second time-derivative of.qe is involved in (4.20), it is just 

applied to derive the final attitude tracking model (4.21). In the subsequent controller 

design, .q̈e will not be involved. 

4.2.5 Velocity-Free Neural Network Controller 

Due to the advantages of neural network for approximating unknown system dynam-

ics and its powerful representation capabilities for nonlinear function [ 16], the single 

layer neural network approximation technique is applied to represent the uncertainty 

.ϕF . Then, .ϕF can be viewed as the output of the single neural network given by 

.ϕF = W T X(qd , q̇d , q̈d) (4.23) 

where .X(qd , q̇d , q̈d) = [X1, X2, . . . , Xn]T ∈ R
n is the bias function of the neural 

network and .W ∈ R
n is its weight. 

Let .ϕ∗
F be the optimal function approximation using an ideal neural network 

approximator, then one has
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.ϕF = ϕ∗
F + εF = (W∗)TX + εF (4.24) 

where .W∗ is the optimal approximation weight, and .εF denotes the approximation 

error and is supposed to be bounded by .|εF | ≤ ε∗
F , in which .ε∗

F ∈ R+ is a positive 

constant. Because the optimal weight needed for the best approximation of the . ϕF

is difficult to determine, its estimate function can be defined as 

.ϕ̂F = [ϕ̂F1, ϕ̂F2, ϕ̂F3]T = Ŵ
T
X (4.25) 

where .Ŵ ∈ R
n is the estimate of .W∗. 

Suppose that.d∗ and.E∗ are considered as the lumped disturbances for the attitude 

tracking error system, then (4.21) can be transformed into 

.J∗ ṙF = −F∗rF + d∗ + u∗ − (LF − I3)J
∗rF + ϕF (4.26) 

where .d∗ = d∗ − E∗. 

Remark 4.3 For practical flexible satellite attitude tracking control, there always 

exists damping, even small, in the flexible structures, such that the magnitudes of 

elastic vibration and its rate are bounded. Hence,.E∗ is bounded. Moreover, the neural 

network reconstruction error .εF and the disturbance .d∗ are bounded in the tracking 
error system. Therefore, .d∗ + εF is always bounded for all the time, i.e., 

.||d∗ + εF || ≤ em1 (4.27) 

where .em1 ∈ R+ is a positive constant. 

Theorem 4.1 Consider the flexible satellite attitude tracking control system modeled 

by (4.3), (4.4), and (4.7), let a velocity-free neural network controller be developed 

as .u = (FT)−1u∗ with 
.u∗ = K F tanh(λFαF ) − ϕ̂F (4.28) 

where .ϕ̂F is determined by (4.25) and its weight .Ŵ updated by 

.

Ŵ = γF

{ t

0

(XqT
e (l) + XαT

F (l) − ẊqT
e (l))dl + γFXqT

e

− πFγF

{ t

0

||αF ||Ŵ(l)dl

(4.29) 

where .λF ∈ R+ , .γF ∈ R+, and .πF ∈ R+ are positive control gains. Then, the uni-

form ultimate bounded stability of the filtered tracking error .rF is achieved. The 

actuator constraints is satisfied by choosing appropriate .K F . 

Proof Applying (4.29), one has 

.
˙̂
W = γFXrTF − πFγF ||αF|| Ŵ (4.30)
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Consider a candidate Lyapunov function as 

.V1 = 1

2
rTF J

∗rF + W̃
T
W̃

2γF

+ (
√

ln(cosh(λFαF )))T[−1
F

√

ln(cosh(λFαF )) (4.31) 

where .W̃ = W∗ − Ŵ and .[F = diag([λF, λF, λF]T). 
From (4.26), one can obtain that 

.

V̇1 = rTF J
∗ ṙF + 1

2
rTF J̇

∗
rF − 1

γF

W̃
T
W̃

+ (
√

ln(cosh(λFαF )))T[−1
F

diag(tanh(λFαF))(λFαF)

2
√
ln(cosh(λFαF ))

= rTF (−F∗rF + u∗ − (K F − I3)J
∗rF + d∗ + ϕF ) + 1

2
rTF J̇

∗
rF

− 1

γF

W̃
T
W̃ + α̇T

F tanh(λFαF )

(4.32) 

Substituting (4.28) into (4.32) yields 

.

V̇1 = rTF (K F tanh(λFαF ) + W̃
T
X + εF − (K F − I3)J

∗rF + d∗)

− 1

γF

W̃
T ˙̂
W + α̇T

F tanh(λFαF )

= − αT
F LF tanh(λFαF ) + rTF (εF + d∗) − rTF (K F − I3)J

∗rF

+ πF ||αF|| W̃T
Ŵ

(4.33) 

Note that 

.

W̃
T
Ŵ = W̃

T
(W∗ − W̃) ≤ −W̃

T
W̃ + ||W̃ ||||W∗||

≤ −1

2
W̃

T
W̃ + 1

2

||

||W∗||
||

2
(4.34) 

Additionally, the optimal approximation weight .W∗ is bounded by a known positive 

constant .em2 ∈ R+, i.e., .
1
2

||

||W∗||
||

2 ≤ em2. Then, it follows 

.

V̇1 = − αT
F LF tanh(λFαF ) + rTF (εF + d∗) − rTF (K F − I3)J

∗rF

+ πF ||αF|| W̃T
Ŵ

≤ − lmin ||αF|| ||tanh(λFαF )|| + em1 ||rF|| − l ||rF||2 + πFem2 ||αF||
= − ||αF|| (lmin ||tanh(λFαF )|| − πFem2) − ||rF|| (l ||rF|| − em1)

(4.35) 

where .lmin = min
i=1,2,3

li F and .l = λmin((K F − I3)J
∗). It is seen from (4.35) that . V̇1 <

0 when .[αT
F , rTF ]T are outside the set
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.S1 =
{

([αT
F , rTF ]T : ||tanh(λFαF )|| ≤

πFem2

lmin

, ||rF|| ≤
em1

l

}

(4.36) 

which is a small set containing the origin .[αT
F , rTF ]T = 0. Hence, applying Definition 

2.1 can prove that the filtered tracking error is uniformly ultimately bounded stable 

with 

. lim
t→∞

||rF || ∈ S1, lim
t→∞

||αF || ∈ S1 (4.37) 

This implies that larger .lmin and . l or smaller .πF will yield better attitude tracking 

control performance. This completes the proof. ⬜

Remark 4.4 With the pseudo velocity filter (4.16), it is seen that the control law 

(4.28) and the updating law (4.29) are independent of the measurement of the angu-

lar velocity. Hence, the developed controller does not rely on the angular velocity 

measurement. 

Remark 4.5 From the updating law (4.29), it can be assumed that .
|

|ϕ̂Fi

|

| ≤ χFi , 

.i = 1, 2, 3. Hence, if.ki F are selected appropriately to satisfy.ki F < ūmax − χFi , then 

.|u∗
i | ≤ ki F | tanh(λFαi )| + |ϕ̂Fi | ≤ ki F + χFi≤ūmax

can be got from (4.28). Therefore, 

actuator constraints are satisfied. 

4.2.6 Numerical Example 

To verify the effectiveness of the proposed control scheme, numerical simulation is 

carried out by using the flexible satellite system in (2.19)–(2.20) and (2.25)–(2.26) 

in conjunction with the controller (4.28). The physical parameters of this satellite 

are given by .umax = 5 N. ·m and 

.J =

⎡

⎣

607.4 −15.4 −0.9

−15.4 1560.8 25.4

−0.9 25.4 1462.3

⎤

⎦ kg · m2 (4.38) 

.δ =

⎡

⎣

6.45637 1.27814 2.15629

−1.25819 0.91756 −1.67264

1.11687 2.48901 −0.83674

⎤

⎦ kg
1
2 · m (4.39) 

Three elastic modes (i.e., .N = 3) are considered with natural frequencies . ⌃1 =
0.7681, .⌃2 = 1.1038, .⌃3 = 1.8733 rad/s and damping .Ξ1 = 0.003, . Ξ2 = 0.003

as well as .Ξ3 = 0.003. The desired attitude trajectory is planned as . qd(t) =
1
10

[7
√
2, cos(0.5t), sin(0.5t)]T. The external disturbance torque acting on the flexible 

satellite is chosen from [ 17] 

.ud = (||ω||2 + 0.5)[sin 0.8t , cos 0.5t , cos 0.3t]T N · m (4.40)
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Table 4.1 The performance comparisons for the controller (4.28), ANOFC, and PID+Anti-windup 

control 

Control scheme Maximum value 

of vibration 

Settling time 

of vibration (s) 

Settling time 

of tracking (s) 

The controller (4.28) 0.6 80 75 

PID+Anti-windup 

control 

0.3 800 1000 

ANOFC [ 18] 0.005 150 300 

To implement the neural network controller (4.28), the control gains are chosen 

as .γF = 25, .πF = 0.15, .λF = 7.5, .li F = 10, and .ki F = 45, .i = 1, 2, 3. Moreover, 

.X in (4.28) are chosen as Gaussian-type functions [ 19]: 

.X i = exp

(

−||x − ci||2

l2i

)

, i = 1, 2, . . . , n (4.41) 

where .x = [qT
d , q̇

T
d , q̈

T
d ]T, .li =

√
15, .n = 10, and .ci denotes the vector having 

the same dimension as .x with its element randomly chosen between .−1 and 

. 1. In the simulation, the initial attitude of the flexible satellite is set as . q(0) =
[0.2, − 0.15, 0.3571]T. The initial angular velocity is supposed to be . ω(0) =
[0.28, − 0.138, 0.138]T rad/s. The initial modal displacements are . ηi (0) = 0.001

and .η̇i (0) = 0.0005, .i = 1, 2, 3. 

When the neural network controller (4.28) is applied, the attitude tracking maneu-

ver is successfully accomplished. The attitude tracking error and angular velocity 

error signals will converge to zero in around .75s. The control torque of each axis 

in this case is less than the required maximum bound. No terrible elastic oscillation 

is induced. When using the PID controller for the attitude tracking maneuver with 

the actuator constraints considered, to compensate for the effect of actuator satura-

tion, the so-called anti-windup approach [ 10] is introduced to the PID. Under the 

action of PID plus anti-windup control, it almost takes.1000 s to achieve the objective 

of attitude tracking after the occurrence of actuator constraints. In addition, when 

the PID and the anti-windup control are applied, its control performance is much 

worse than our proposed control. For the purpose of further comparison, the atti-

tude tracking maneuver is also accomplished by using the adaptive nonlinear output 

feedback control (ANOFC) with quaternion measurement only as designed in [ 20]. 

The simulation results show that no severe vibration is observed from the ANOFC, 

the tracking objective can only be achieved after .300 s. The bad control performance 

is observed in comparison with our proposed controller (4.28). However, the track-

ing performance obtained from the ANOFC is better than the PID plus anti-windup 

control. Further, extensive simulations were also done using different control param-

eters and even disturbance inputs. The overall results on maximum control torque, 

maximum vibration displacement and settling time of vibration and tracking are also 

summarized in Table 4.1.
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4.3 .L2-gain Disturbance Attenuation Attitude Control 

In this section, the satellite considered is rigid with the attitude represented by the 

modified Rodrigues parameters. The task to be accomplished is the attitude stabiliza-

tion maneuver. Moreover, the attitude kinematics (2.21) and the attitude dynamics 

(2.24) are used to describe the rigid satellite attitude control system. 

Introducing .P = G−1(σ ), then the kinematics (2.21) and the attitude dynamics 

(2.24) can be combined to form second-order nonlinear equation 

.J∗(σ )σ̈ + C(σ , σ̇ )σ̇ = PT(σ )u + PT(σ )ud (4.42) 

where .J∗(σ ) = PT J P and .C(σ , σ̇ ) = −PT(J P Ġ + (J P σ̇ )×)P . 

The transformed attitude control system (4.42) is characterized by the following 

three properties. 

Property 4.5 The matrix .J∗(σ ) is positive-definite and bounded by two constants 

.Jmin ∈ R+ and .Jmax ∈ R+ such that 

.Jmin||x||2 ≤ xT J∗(σ )x ≤ Jmax||x||2,∀x ∈ R
3,∀σ ∈ R

3 (4.43) 

Property 4.6 The matrix . J̇
∗
(σ ) − 2C(σ , σ̇ ) is skew-symmetric, i.e., for given vec-

tors .x ∈ R
3, .σ ∈ R

3, one has 

.xT( J̇
∗
(σ ) − 2C(σ , σ̇ ))x = 0 (4.44) 

Property 4.7 The matrix .C(σ , σ̇ ) is bounded with respect to .σ and linear with 

respect to . σ̇ . There exists a positive constant .Cmax ∈ R+ satisfying [21] 

. ||C(σ , σ̇ )|| ≤ Cmax ||σ̇|| ,∀σ ∈ R
3 (4.45) 

4.3.1 Problem Statement 

The control objective is to find a control law . u to guarantee that the attitude . σ con-

verges to an arbitrary small set, i.e., .||σ (t)|| ≤ ε0 for .t ≥ T and external disturbance 

attenuation is ensured in the .L2 gain sense. Moreover, this objective is achieved even 

in the presence of no angular velocity measurements, actuator constraint (4.8), i.e., 

.|ui | ≤ umax, .i = 1, 2, 3, where .umax ∈ R+ is a positive constant decided by actuator 

physical property, and the modeling error induced by uncertain inertia as well as 

external disturbances.
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4.3.2 Velocity-Free Filter 

Since direct or accurate measurements of satellite angular velocity may be unavail-

able, a passivity filter is first introduced and defined by 

. ṗ = −l1 p + l1l2σ (4.46) 

where . p = [p1, p2, p3]T ∈ R
3 can be viewed as an estimate of . ω. .l1 ∈ R+ and . l2 ∈

R+ are two positive filter gains. 

The output of the filter (4.46) is given by 

.σ f = [σ f 1, σ f 2, σ f 3]T = p − l2σ (4.47) 

Then, it follow from (4.46) and (4.47) that 

.σ̇ f = ṗ − l2σ̇ = −l1σ f − l2σ̇ (4.48) 

4.3.3 .L2-gain Disturbance Attenuation Controller 

Theorem 4.2 Consider the rigid satellite attitude system described by (2.21) and 

(2.24) in the disturbance-free case, i.e., .ud(t) ≡ 0, if the following controller is 

implemented 

.u = (PT(σ ))−1(k I tanh(χ) − kptanh(σ ) + kd tanh(σ f ) + kWσ f ) (4.49) 

where.χ = [χ1, χ2, χ3]T = −γ 2σ − γ
{ t

0
tanh(σ (s))ds,.γ ∈ R+,.η ∈ R+,.kp ∈ R+, 

.k I ∈ R+, .kd ∈ R+, and .kW ∈ R+ are control gains chosen to satisfy that 

.

kp

4
− 1

γ 2
Jmax > 0 (4.50) 

.m1 = 3l2kW

4l1
−

(

3KW

2l1

)2

η − 1

γ
(
√
3Cmax + Jmax) > 0 (4.51) 

.m2 = 1

γ
kp − 1

4γ
kd − l2kW

l1γ 2
> 0 (4.52) 

.m4 = kd

2γ

(

2γ l1

l2
− 1

)

> 0 (4.53) 

.m3 = 3kW

4l1l2
− 1

4η
> 0 (4.54) 

then it follows that . lim
t→∞

σ (t) = 0 and . lim
t→∞

ω(t) = 0.
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Proof Consider a Lyapunov function candidate 

.

V2 =
(

1

2
σ̇ T + 1

γ
tanh(σ )

)T

J∗σ̇ + kd

l2

3
∑

i=1

ln(cosh(σ f i ))

+ kp

3
∑

i=1

ln(cosh(σi )) + kW

2l2
σ T

f σ f + k I

γ 2

{ tanh(χ)

0

sTCosh2(χ)ds

(4.55) 

where 

.

{ tanh(χ)

0

sTCosh2(χ)ds =
3

∑

i=1

{ tanh(χi )

0

cosh2(χi )sidsi > 0 (4.56) 

Applying (4.50), Lemma 2.1, and Property 4.5, one can prove that 

.

1

4
σ̇ T J∗σ̇ + 1

γ
(tanh(σ ))T J∗σ̇ + kp

2

3
∑

i=1

ln(cosh(σi ))

≥ kp

2

3
∑

i=1

ln(cosh(σi )) − 1

γ 2
(tanh(σ ))T J∗tanh(σ )

≥
3

∑

i=1

(
kp

4
− Jmax

γ 2
) tanh2(σi ) > 0

(4.57) 

In view of (4.56) and (4.57), it yields 

.

V2 ≥1

4
σ̇ T J∗σ̇ + kd

2l2

3
∑

i=1

tanh2(σ fi ) + kp

4

3
∑

i=1

tanh2(σi )

+ k I

γ 2

{ tanh(χ)

0

sTCosh2(χ)ds + kW

2l2
σ T

f σ f > 0

(4.58) 

Hence, the Lyapunov function candidate .V2 can be concluded to be globally positive 

and radically unbounded. 

When the considered rigid satellite is disturbance-free, note that. ||tanh(σ )|| ≤
√
3

and 

.(tanh(σ ))Ttanh(σ f ) ≤ 1

4
||tanh(σ )||2 + ||tanh(σ f )||2 (4.59) 

Using Property 4.6, Property 4.7, (4.42), and the controller (4.49), the time-derivative 

of .V2 can be simplified as
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.

V̇2 = 1

γ

(

tanh(σ )TC(σ , σ̇ ) + (Sech2(σ )σ̇ )T
)

σ̇ +
(

kW σ̇ T + kW

l2
σ̇ T

f

)

σ f

+ (tanh(σ ))T
(

kd

γ
tanh(σ f ) − kp

γ
tanh(σ ) + kW

γ

)

σ f

− kdl1

l2
σ T

f tanh(σ f )

≤ 1

γ
(
√
3Cmax + Jmax)||σ̇||2 −

(

kp

γ
− kd

4γ

)

||tanh(σ )||2

− 1

2γ

(

2γ l1kd

l2
− kd

)

||

||tanh(σ f )
||

||

2 +
(

kW σ̇ T + kW

l2
σ̇ T

f

)

σ f

+ kW

γ
(tanh(σ ))Tσ f

(4.60) 

In particular, using Young’s inequality, the last three items on the right hand of (4.60) 

have the following result 

. 

kW

γ
(tanh(σ ))Tσ f + kW σ̇ Tσ f + kW

l2
σ̇ T

f σ f

≤ l2kW

l1γ 2
||tanh(σ )||2 − 3l1kW

4l2

(

σ̇ f + l2σ̇

l1

)T
σ̇ f + l2σ̇

l1

≤ l2kW

l1γ 2
||tanh(σ )||2 −

(

3l2kW

4l1
−

(

3kW

2l1

)2

η

)

||σ̇||2 −
(

3kW

4l1l2
− 1

4η

)

||

||σ̇ f

||

||

2

(4.61) 

From (4.60)–(4.61), it can be found that 

.V̇2 ≤ −m1||σ̇||2 − m2||tanh(σ )||2 − m3

||

||σ̇ f

||

||

2 − m4

||

||tanh(σ f )
||

||

2
(4.62) 

With the control gains given in (4.50)–(4.54), it leads (4.62) to  .V̇2 ≤ 0. This  

implies that . lim
t→∞

V2(t) = V2(∞) exists. Then, it shows from the Barbalat’s lemma 

that 

. lim
t→∞

||σ̇|| = lim
t→∞

||tanh(σ )|| = 0 (4.63) 

and 

. lim
t→∞

σ̇ (t) = lim
t→∞

σ (t) = 0 (4.64) 

Consequently, one can conclude that . lim
t→∞

ω(t) = 0 from (2.21). ⬜

Remark 4.6 The attitude controller (4.49) involves the computation of the filter 

output .σ f and the attitude orientation . σ only. Hence, it is rigorously independent of 

the angular velocity measurement . ω.
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Remark 4.7 The design of the controller (4.49) does not require any information on 

the satellite’s inertia matrix . J . Hence, from the standpoint of uncertainties rejection, 

the derived controller has great stability and robustness. 

In the next, a practical problem is solved, namely, the external disturbance effect 

on attitude control performance. The corresponding stability analysis can be stated 

by the following theorem. 

Theorem 4.3 Consider the rigid satellite attitude control system described by (2.21) 

and (2.24) in the presence of the modeling error induced by the uncertain inertia 

and external disturbance, with the application of the controller (4.49), if the control 

gains are chosen to satisfy (4.50), (4.53)–(4.54), and 

.m̄1 = 3l2kW

4l1
−

(

3kW

2l1

)2

η − 1

γ
(
√
3Cmax + Jmax) − 1

4β1

> 0 (4.65) 

.m̄2 = 1

γ
kP − 1

4γ
kd − l2kW

l1γ 2
− 1

4γ 2β2

> 0 (4.66) 

where .βi ∈ R+, .i = 1, 2, are positive constants, then the control objective stated in 

Sect. 4.3.1 can be met. 

Proof When the external disturbance .ud is considered, the right-hand of (4.60) 

should be added by new items .σ̇ Tud and .
1
γ
(tanh(σ ))Tud , respectively. Applying the 

following inequalities 

.σ̇ Tud ≤ 1

4β1

σ̇ Tσ̇ + β1u
T
dud (4.67) 

.

1

γ
(tanh(σ ))Tud ≤ 1

4γ 2β2

||tanh(σ )||2 + β2u
T
dud (4.68) 

and calculating the time-derivative of .V2 in (4.55) gives  

.

V̇2 ≤(β1 + β2)||ud||2 − m̄1||σ̇||2 − m3||σ̇ f ||2

− m̄2||tanh(σ )||2 − m4||tanh(σ f )||2
(4.69) 

From (4.53)–(4.54) and (4.65)–(4.66), one has 

.V̇2 ≤ (β1 + β2)||ud ||2 − m̄1||σ̇||2 − m̄2||tanh(σ )||2 (4.70) 

It is seen from (4.70) that .V̇2 < 0 when .[σ T, σ̇ T]T are outside of the set 

.S2 =
{

[σ T, σ̇ T]T : ||tanh(σ )|| ≤ β̄||ud ||√
m̄2

, ||σ̇ || ≤ β̄||ud ||√
m̄1

}

(4.71) 

where .β̄ =
√

β1 + β2.
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It is proved from (4.70) that.V2 decreases monotonically outside the set.S2. Hence, 

all the signal in the resulting closed-loop attitude system are bounded ultimately. 

Moreover, it can be obtained that 

. lim
t→∞

[||tanh(σ )||, ||σ̇ ||]T ∈ S2 (4.72) 

Integrating both sides of (4.70) from the initial time . t0 to . T yields 

.V2(T ) − V2(t0) ≤ (β1 + β2)

{ T

t0

||ud(s)||2ds − m̄2

{ T

t0

||tanh(σ (s))||2ds (4.73) 

Since .V2(t) is a non-negative function and from the property of hyperbolic tangent 

function, it yields 

.

{ T

t0

||σ (s)||2ds ≈
{ T

t0

||tanh(σ (s))||2ds ≤ ε0

{ T

t0

||ud(s)||2ds (4.74) 

with .ε0 = β1+β2

m̄2
. In the term of the above inequality and Definition 2.4, it can be 

proved that .L2-gain of the disturbance attenuation is achieved to be a given small 

value by adjusting. ε0, thereby completing the proof of achieving the control objective 

as stated in Sect. 4.3.1. ⬜

4.3.4 Control Input Upper Bound Analysis 

From (4.46), one has 

. ṗ ≤ −l1 p + l1l2 |σ | , p(0) ≥ 0 (4.75) 

Using Lemma 2.3, solving (4.75) yields 

.pi (t) ≤ pi (0)exp(−l1t) + l1l2

{ t

0

exp(−l1(t − l)) |σi (l)| dl, i = 1, 2, 3 (4.76) 

Applying the switching between MRPs and the shadow MRPs sets stated in Remark 

2.3, .|σi | ≤ ||σ|| ≤ 1 always holds. Hence, by choosing . p(0) = 0, one has . || p(t)|| ≤√
3l2. To this end, according to Property 2.1, direct calculation shows that .G(σ ) in 

(2.21) satisfies 

.||(PT(σ ))−1|| = ||G(σ )|| = 1 + σ Tσ

4
≤ 1

2
(4.77) 

Theorem 4.4 For the developed attitude controller (4.49), if the control gains are 

chosen to satisfy (4.50), (4.53)–(4.54), (4.65)–(4.66), and
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.

1

2
(
√
3(kp + kI + kd) + (

√
3 + 1)kW l2) ≤ umax (4.78) 

then the control input of each actuator rigorously enforces the actuator magnitude 

constraints, i.e., .|ui | ≤ umax, .i = 1, 2, 3, is always met for .∀t ≥ 0. 

Proof Combining (4.49) and (4.78), for .i = 1, 2, 3, it leaves .ui as 

.

|ui | ≤ ||u||
≤

||

||(PT(σ ))−1
||

||

||

||k I tanh(χ) − kptanh(σ ) + kd tanh(σ f ) + kWσ f

||

||

≤ 1

2
(
√
3(kp + kI + kd) + kW ||σ f ||)

(4.79) 

In addition, it can be proved from (4.47) that .σ f is bounded by 

.||σ f || ≤ || p|| + l2||σ || ≤ (
√
3 + 1)l2 (4.80) 

This last result together with (4.78) can be used in (4.79) to demonstrate that 

.|ui | ≤ 1

2
(
√
3(kp + kI + kd) + (

√
3 + 1)kW l2) ≤ umax (4.81) 

Hence, the attitude controller (4.49) is proved to be within the actuator constraint. ⬜

4.3.5 Numerical Study 

To verify the effectiveness of the proposed control approach, the detailed response 

is numerically simulated using the rigid satellite control system governed by (2.21) 

and (2.24) in conjunction with the controller (4.49). The satellite is activated by six 

thrusters distributed symmetrically on three axes of the body frame of the satellite 

with a maximum thrust of .umax = 5 N. ·m. The nominal inertia matrix is specified by 

. J0 = diag([20, 20, 30]T) kg.·m2. A time-varying moment inertia matrix as stated in 

[ 22] is incorporated as modeling error. Moreover, the external disturbance .ud is also 

taken into account, which is given as same as in [ 22]. 

In simulation, the proposed controller (4.49) (LAFC), the unit quaternion out-

put feedback controller (UQOF) developed in [ 23], and the nonlinear Proportional-

Integral control design without angular velocity (NPIC) designed in [ 20] are com-

pared while the satellite attitude is maneuvering. The control gains for those three 

controllers are listed in Table 4.2. The initial orientation of satellite is . σ (0) =
[0.2499,−0.8837,−0.2901]T with a zero initial body angular velocity.
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Table 4.2 The controller gains chosen for numerical study 

Controller Control gains 

LAFC (4.49) .kp = 1.4, .kI = 0.015, .kd = 1.2, .kW = 0.1, 

.l1 = l2 = 20, .βi = 2, .η = 0.0017, . γ = 1000

UQOF .α1 = 2.5, .α2 = 2.5, 

. [1 = diag([0.75, 0.75, 0.75]T)

NPIC .kx = 2, .ki = 0.01, . kp = 5

We first present the simulation results when applying LAFC. We see the solid 

line in Figs. 4.1, 4.2, 4.3, 4.4 and 4.5, the controller managed to stabilize the origin 

equilibrium point in .30 s with great pointing accuracy. Indeed, since the knowledge 

of the satellite’s inertia was not required and an implicit integral item was incor-

porated in the control law design, the external disturbance’s effect on the attitude 

Fig. 4.1 The initial attitude from AVFC and UQOF
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Fig. 4.2 The steady-state attitude from LAFC and UQOF 

control performance can be compensated efficiently, and also great robustness to 

system uncertainties can be guaranteed. It is also interesting to note that the control 

output of each thruster can rigorously enforce its magnitude constraints, as shown 

in Fig. 4.5 (solid line). For the case of UQOF, as expected, we see the dashed line 

clearly in Figs. 4.1, 4.2, 4.3, 4.4 and 4.5 that UQOF can achieve the objective of 

attitude stabilization. However, due to the inherent properties of UQOF that there 

does not exist any robustness to the unknown inertia parameters and the external 

disturbances, a relatively lower pointing accuracy and slew rate accuracy response 

is observed. The application of NPIC leads to the attitude and the angular velocity 

shown by the dotted line in Fig. 4.1–4.4. As pointed out in [ 20] that this control 

law is only efficient for tackling nonzero constant external disturbance. Therefore, 

when time-varying disturbance given in [ 22] is considered, bad control performance 

is obtained although the attitude stabilization maneuver can be accomplished with 

angular velocity measurements eliminated. Moreover, note that, to guarantee that 

the actual output of thruster is less its upper bound, the control gains in NPIC were 

selected smaller. Consequently, terrible oscillations in attitude, velocity and control
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Fig. 4.3 The initial angular velocity from LAFC and UQOF 

input are induced. Despite the fact that there still exists some room for improvement 

with different design control parameter sets, there is not much improvement in the 

control input response. 

Comparison with [ 23] and [ 20] shows that the solution (4.49) provides a faster 

response and higher pointing accuracy. The steady-state stabilization errors for 

LAFC, UQOF, and NPIC are summarized in Table 4.3. 

4.4 Summary 

The adaptive attitude tracking control problem of flexible satellites with modeling 

error induced by uncertainty and external disturbance was first studied in this chapter. 

A neural network-based tracking controller was presented to guarantee the uniformly 

ultimate boundedness of the attitude tracking error. This controller was free of the 

angular velocity measurement. The controller rigorously enforces the actuator con-

straint. The main feature of this controller was that it establishes a straightforward
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Fig. 4.4 The steady-state angular velocity from LAFC and UQOF 

relationship between the magnitudes of the available control inputs and those of the 

desired trajectories and disturbances. Another problem solved in this chapter is the 

angular velocity-free attitude stabilization control of rigid satellites with actuator 

constraint and modeling error due to uncertain inertia and external disturbance. The 

proposed control law was inertia-independent with angular velocity eliminated and 

allowed .L2-gain of the closed-loop attitude system to be chosen arbitrarily small to 

achieve any level of.L2-gain external disturbance attenuation. The developed scheme 

has a simple design procedure, structure, and inexpensive computation cost, and thus 

demands much less onboard resources during its implementation.
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Fig. 4.5 The control input of velocity from LAFC and UQOF 

Table 4.3 The control performance for the controller (4.49), UQOF, and NPIC 

Performance Axis Controller 

LAFC UQOF NPIC 

Pointing accuracy 

(rad) 

Roll .2.0 × 10−5
.2.5 × 10−4

. 3.0 × 10−4

Pitch .2.0 × 10−5
.1.5 × 10−3

. 1.2 × 10−3

Yaw .2.0 × 10−5
.2.5 × 10−3

. 3.0 × 10−3

Slew rate accuracy 

(rad/s) 

Roll .7.0 × 10−5
.8.0 × 10−4

. 1.0 × 10−3

Pitch .4.0 × 10−5
.2.0 × 10−3

. 2.5 × 10−3

Yaw .2.5 × 10−5
.3.0 × 10−3

. 3.5 × 10−3

Attitude stabilization time (s) 30 100 75
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Chapter 5 

Velocity-Free Attitude Fault-Tolerant 

Control 

5.1 Introduction 

The analysis of recent spacecraft accident statistics shows that a significant portion 

of such is attributed to actuator fault in attitude control system [ 1]. In December 

1983, faulty reaction wheels of satellite GPS BI-05 led to mission failure. A recent 

accident occurred with GPS BII-07, a spacecraft in the NAVSTAR GPS constellation 

developed by the U.S. Department of Defense. It suffered a reaction wheel failure 

that led to three-axis stabilization failure and a total loss of the spacecraft [ 2]. Those 

accidents justify the development of fault tolerant control (FTC). It aims to ensure 

proper operation even in the presence of component faults. Up to date, a variety of 

FTC approaches have been proposed [ 3– 5]. Because spacecraft attitude dynamics is 

inherent with nonlinearity, external disturbance, and uncertainty, designing FTC for 

spacecraft is becoming much more difficult. Active FTC is an approach characterized 

by a Fault Detection and Isolation (FDI) mechanism to detect and identify fault online. 

Many efforts on active FDI together with methods for reconfiguring control systems 

have been conducted for satellites [ 6– 10]. 

An alternative active FTC is the so-called passive approach. It applies the robust 

control technique to ensure system stability without FDI even in the presence of fault. 

So far several passive FTC algorithms have been developed and applied to satellites 

[ 11, 12]. The problem of automated attitude recovery for rigid and flexible LAFC 

was discussed based on feedback linearization control [ 13]. A variable structure FTC 

controller was synthesized to perform attitude stabilization maneuver [ 14]. Attitude 

tracking control of a rigid satellite was investigated by designing a passive fault-

tolerant controller [ 15]. Two types of faults in the reaction wheel were accommodated 

by applying SMC [ 16]. A terminal sliding mode-based FTC was developed to perform 

rest-to-rest on a satellite system [ 17]. 

The implementation of the preceding FTC or FDI schemes necessitates full state 

feedback. This may be not satisfied in practice. For instance, the angular velocity 

measurement would not be available. Although many approaches have been proposed 

to handle actuator faults and unmeasured angular velocity, few results are seen to 
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Fig. 5.1 The full control architecture of VFAFTTC with actuator faults and angular velocity mea-

surement uncertainty 
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Fig. 5.2 The full control architecture of VFAFTTC with actuator faults and no measurement of 

angular velocity 

address these two problems simultaneously. Motivated by simultaneously address-

ing the problems including actuator faults, angular velocity measurement uncertainty, 

uncertain dynamics, and external disturbance, a novel robust velocity-free attitude 

fault-tolerant tracking control scheme (VFAFTTC) is developed. It consists of a 

reconstruction law developed in [ 23] and a novel robust adaptive control law. When 

angular velocity measurement is available, the full control architecture of the pro-

posed scheme is shown in Fig. 5.1, wherein the reconstruction law is to estimate 

the angular velocity measurement uncertainty. For the case that there is no angu-

lar velocity measurement, the full control architecture of the proposed approach is 

illustrated in Fig. 5.2. In Fig.  5.2, the angular velocity estimation law is to estimate 

the angular velocity by using the attitude measurement. The main novelty of this 

proposed control approach is listed as follows. 

• The proposed solution can accomplish the attitude tracking control task for satel-

lites with uncertain dynamics due to uncertain parameters, external disturbance, 

actuator faults, and angular velocity measurement uncertainty. The attitude track-

ing error is governed to be uniformly ultimately bounded. The control framework 

is shown in Fig. 5.1. 

• Compared with the state-of-the-art approaches to handle actuator faults for satel-

lites, the proposed strategy does require any prior knowledge of the actuator faults.
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Moreover, this scheme is practically implementable without any angular velocity 

sensors, and the resulting closed-loop system is shown in Fig. 5.2. 

• The proposed control approach does not necessitate the dynamic model of the 

actuators when handling actuator faults. 

5.2 Reaction Wheel Faults 

Reaction wheel is a type of actuator widely used in satellite attitude control. It 

consists of a flywheel driven by an electric motor and the associated bearing and 

drive electronics. It is vulnerable to two main sources of faults [ 18]: 

• (F1) Decreased reaction torque: It is induced by increased friction between stator 

and rotor, marginal failure of bearings, and decreased motor torque and current 

drive. These issues affect the rate of change of the wheel speed and consequently 

decrease the generated reaction torque. 

• (F2) Increased bias torque: When the external disturbance is negated and the 

demanded reaction torque is zero, the reaction wheel should hold its speed and 

generate no torque. Incipient faults can occur based on changes in friction due to 

aging, time-varying temperature, etc., that may accelerate or decelerate the wheel, 

thereby generating a bias torque, even when the commanded torque is zero. 

These two faults can be mathematically modeled as 

.u = (In − E)τ + ū (5.1) 

where.τ = [τ1, τ2, τ3]T ∈ R
3 is the control torque commanded by attitude controller, 

.E = diag([l11(t), l22(t), l33(t)]T) ∈ R
3×3 with .0% ≤ li i (t) ≤ 100%, .i = 1, 2, 3 is 

the healthy and time-varying indicator matrix due to fault F1, and. ū = [ū1, ū2, ū3]T ∈
R

3 is the fault entering the satellite in an additive way due to the increased bias torque. 

For example, if the . i th actuator operates normally, then it has .li i = 0% and .ūi = 0. 

The case in which .li i = 30% implies that the . i th actuator loses 30.% control torque. 

Remark 5.1 In this chapter, only the bias torque fault and the partial loss of actuator 

effectiveness are considered. The total loss fault, i.e., .li i = 100% and the lock-in-

place fault, i.e., .ūi has a constant value are not investigated. If some actuator under-

goes the total loss fault or the lock-in-place fault, then the satellite dynamics will be 

underactuated. The controller design for the underactuated system is not the main 

issue investigated in this book. 

5.3 Angular Velocity Measurement Uncertainty 

When implementing any feedback controller to satellites, the attitude feedback. σ or. q

can be supplied and measured by attitude sensors. However, in practical applications,
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the availability of the angular velocity measurement . σ̇ , . ω, or . q̇ is not always satisfied 

because of either cost limitations or implementation constraints. This issue should be 

solved. Let.vm = [vm1, vm2, vm3]T ∈ R
3 be the angular velocity estimation, and. vu ∈

R
3 denote the angular velocity estimation error or the angular velocity measurement 

uncertainty, the following can be established as 

.vm = σ̇ + vu (5.2) 

.vm = q̇ + vu (5.3) 

.vm = ω + vu (5.4) 

Remark 5.2 For the satellites with angular velocity or rate sensors such as the 

gyroscope, .vu in (5.2)–(5.4) can be viewed as the angular velocity sensor faults. 

5.4 Problem Formulation 

The modeling error considered in this chapter consists of the environmental distur-

bance torque, uncertain inertia, and the reaction wheel faults (5.1). Moreover, the 

satellite considered is rigid with the attitude represented by the modified Rodrigues 

parameters . σ . According to (4.42), the following second-order nonlinear equation 

can describe the rigid satellite attitude system. 

.M0(σ )σ̈ + C0(σ , σ̇ )σ̇ + Δh(σ , σ̇ , σ̈ ) = PT(σ )u + PT(σ )ud (5.5) 

where .M0(σ ) = PT J0P , .C0(σ , σ̇ ) = −PT(J0PĠ + (J0P σ̇ )×)P , and .. Δh(σ ,

.σ̇ , σ̈ ) = PTΔJ P − PT(ΔJ P Ġ + (ΔJ P σ̇ )×)P . .J0 is the nominal inertia param-

eters. .ΔJ is the uncertain inertia. .Δh(σ , σ̇ , σ̈ ) denote the uncertain dynamics intro-

duced by the uncertain inertia of the satellite. 

Remark 5.3 For the attitude system (5.5), .M0(σ ) and .C0(σ , σ̇ ) satisfy Property 

4.5, Property 4.6, and Property 4.7 with different values of .Jmin, .Jmax, and .Cmax. 

Let .σ d = [σd1, σd2, σd3]T ∈ R
3 be the desired trajectory to be followed. .σ̇ d and 

.σ̈ d are continuous and bounded, respectively, i.e., .||σ̇ d || ≤ σ̇max
d , where . σ̇max

d ∈ R+
is a positive scalar. The control problem of this chapter can be stated as: For the 

satellite with its dynamics described by (5.5), applying the available measurement 

. σ and estimated angular velocity .vm only to design a controller to ensure that the 

desired trajectory .σ d can be followed despite the reaction wheel faults (5.1), the 

angular velocity measurement uncertainty (5.2), the uncertain inertia .ΔJ , and the 

external disturbance .ud .
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5.5 Transformed System with Reaction Wheel Fault 

Two new variables .x1 = [x11, x12, x13]T = σ and .x2 = [x21, x22, x23]T = σ̇ are first 

introduced. Then, the attitude system (5.5) with the reaction wheel faults (5.1) and 

the angular velocity uncertainty (5.2) can be rewritten as 

.ẋ1 = vm − vu (5.6) 

.

M0(x1)ẋ2 + C0(x1, x2)x2 =PT(x1)(In − E)τ + PT(x1)ū

+ PT(x1)ud − Δh(σ , σ̇ , σ̈ )
(5.7) 

5.6 Terminal Sliding-Mode Observer 

From (5.2), the following equation will always hold 

.v̇m = σ̈ + v̇u (5.8) 

Because .vm is the estimation of the angular velocity, .v̇m represents the esti-

mated measurement of the angular acceleration. . σ̈ is the real angular acceleration. 

.v̇u = [v̇u1, v̇u2, v̇u3]T ∈ R
3 denotes the measurement error/uncertainty in the angular 

acceleration. 

In satellite engineering, the rate damping control and the attitude acquisition are 

performed by thrusters before attitude stabilization or tracking maneuvering. After 

rate damping and attitude acquisition, the angular acceleration is maintained to be 

within a certain value. Let this certain value be denoted as .σ̈i_max ∈ R+, .i = 1, 2, 3, 

then it follows that .|σ̈i (t)| ≤ σ̈i_max for .t ≥ 0. 

Assumption 5.1 .v̇u is bounded and satisfies .|v̇ui | ≤ σ̈i_max, .i = 1, 2, 3. 

Based on Assumption 5.1, one has 

.||v̇u || ≤

[

|

|

|

3
∑

i=1

σ̈ 2
i_max = γ (5.9) 

As a stepping stone, an auxiliary system is introduced as 

.ẋa = vm − kr xe (5.10) 

where .kr ∈ R+ is a constant, .xa ∈ R
3 is the auxiliary system’s state, and . xe = xa −

x1.
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From (5.6), (5.8), and (5.10), it leaves the dynamics of .xe as the following linear 

system with unknown input: 

.

⎧

⎪

⎨

⎪

⎩

[

ẋe

v̇u

]

=
[

−kr In In

0 0

][

xe

vu

]

+
[

0

v̇u

]

y = xe

(5.11) 

where .[xTe , vT
u ]T ∈ R

6 is the state of this system, and . y ∈ R
3 is the system output. 

Based on (5.10) and the definition of . xe, it follows that 

.ẋa = −kr xa + kr x1 + vm (5.12) 

Because .x1 and .vm are available, .xa can be calculated by solving (5.12). Then, 

. y = xe = xa − x1 can be obtained by using the available .xa and . x1. The output . y

is, thus, available. 

To this end, the work of reconstructing .vu is changed into estimating the state of 

the system (5.11) by using the output . y only. To solve this problem, the following 

terminal sliding-mode observer is designed 

.

{ ˙̂xe = −kr x̂e + v̂u − η1sgn(e1) − η2e1
˙̂
vu = −η3e1 − η4[ev]

a
b − η5sgn(ev)

(5.13) 

where .x̂e is the estimation of .xe, v̂u is the estimation of . vu , . ev = η1sgn(e1), e1 =
x̂e − y, and .ηi ∈ R+, i = 1, 2, 3, 4, 5, are the observer gains. .a ∈ R+ and . b ∈ R+
are two odd integers satisfying . a < b.

Lemma 5.1 When the terminal sliding-mode observer (5.13) is applied to estimate 

the angular velocity estimation error or the measurement uncertainty .vu satisfying 

Assumption 5.1, the estimation error .e = [eT1 , eT2 ]T is ensured to have . ||e(t)|| ≤ ε0
for all .t ≥ 0, where .e2 = v̂u − vu = [e21, e22, e23]T is the reconstruction error of . vu

and 

.ε0 = max{
√
3η4(η1)

a
b +

√
3η5 + γ

λmin(Q)
, ||e(0)||} (5.14) 

with the positive-definite constant matrix .Q given by 

.Q =
[

(kr + η2)In −In
η3 In 0

]

(5.15) 

Proof From (5.11) and (5.13), one has 

.ė1 = −kr e1 + e2 − η1sgn (e1) − η2e1 (5.16) 

.ė2 = −η3e1 − η4[ev]
a
b − η5sgn (ev) − v̇u (5.17)
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Consider a candidate Lyapunov function .V0 = 1
2
eTe, applying (5.9) and (5.16)– 

(5.17) result in 

.

V̇0 = −kr e
T
1 e1 + eT1 e2 − η1e

T
1 sgn(e1) − η2e

T
1 e1 − η3e

T
2 e1

− η4e
T
2 [ev]

a
b − η5e

T
2 sgn(ev) − eT2 v̇u

≤ −eT Qe − η1||e1|| +
(√

3η4(η1)
a
b +

√
3η5 + γ

)

||e||

≤ −||e||
(

λmin(Q)||e|| −
(√

3η4(η1)
a
b +

√
3η5 + γ

))

(5.18) 

Hence, .V̇0 < 0 if .||e|| >
√
3η4(η1)

a
b +

√
3η5+γ

λmin(Q)
. This implies that if . e is outside the com-

pact set .D1 = {e|||e|| ≤
√
3η4(η1)

a
b +

√
3η5+γ

λmin(Q)
}, then .V̇0 < 0; and hence, .||e|| decreases 

monotonically with respect to. t . A decreasing value of .V0 eventually drives . e into the 

set .D1 and, then, it will never go out of .D1. The  set .D1 is, thus, attractive. Therefore, 

it can be proved that .||e|| ≤ ε0, t ≥ 0. ⬜

Lemma 5.2 For the angular velocity estimation error or the measurement uncer-

tainty .vu satisfying Assumption 5.1, applying the terminal sliding-mode observer 

(5.13), let .kr and the observer gains and initial estimation states be chosen such that 

.η1 > max

⎧

⎨

⎩

(√
3η4 +

√
3η5 + γ

λmin(Q)
+ ς0

)
b

b−a

, 1

⎫

⎬

⎭

(5.19) 

.η5 − γ > 0 (5.20) 

where .ς0 ∈ R+ is a scalar. Then, .vu can be precisely reconstructed . v̂u . .e2(t) ≡ 0 is 

guaranteed for .t > t1 = b(e2(t0))
b−a
2b

(b−a)η4
+ t0, t0 = ||e1(0)||

ς0
. 

Proof See [ 23] for the reason that the observer gains should be chosen to satisfy 

(5.19)–(5.20). ⬜

Remark 5.4 It is seen in Lemma 5.1 that in comparison with the existing Luenberger-

type state observers [ 25– 27] and other observers such as the globally convergent 

velocity observer [ 28], the proposed terminal sliding-mode observer (5.13) ensures 

the reconstruction error to be finite-time stable. Hence, a faster estimation for the 

angular velocity measurement uncertainty.vu is achieved. This is the main motivation 

of presenting the terminal sliding-mode observer (5.13) in this chapter. 

5.7 Velocity-Free Fault-Tolerant Attitude Controller 

It is inferred from (5.1) that .0 < μ = ||E|| = .maxi=1,2,3{|li i |} < 1. However, . μ is 

unknown. Although there may exist bias torque fault . ū in actuators, it is bounded.
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Conservatively, the bias torque in the . i th reaction wheel actuator should be smaller 

than the maximum torque .ui_max ∈ R+ of the . i th reaction wheel actuator, i.e., . ūi ≤
ui_max, .i = 1, 2, 3. .Δh(σ , σ̇ , σ̈ ) and .ud should also be bounded, i.e., there exist two 

unknown scalars .dmax _1 ∈ R+ and .dmax _2 ∈ R+ such that . ||Δh(σ , σ̇ , σ̈ )|| ≤ dmax _2

and .||ud || ≤ dmax _1. If  .Δh(σ , σ̇ , σ̈ ) and .ud are not bounded, then the maximum 

torque generated by actuators will be unable to attenuate .Δh(σ , σ̇ , σ̈ ) and .ud . In  

this case, the satellite will be uncontrollable. This makes the attitude controller design 

without any sense. Therefore,.||Δh(σ , σ̇ , σ̈ )|| ≤ dmax _2 and.||ud || ≤ dmax _1 and rea-

sonable. On the other hand, it is also obtained from Property 2.1 that . ||G(σ )|| ≤ 0.5

and .||P(x1)|| = 16||G(σ )||
(1+σ

T
σ )2

≤ 8. As a consequence, one has 

. ||PT(x1)ū + PT(x1)ud − Δh(σ , σ̇ , σ̈ )|| ≤ 8dmax _1 + dmax _2 + 8

[

|

|

|

3
∑

i=1

u2i_max = ρ

(5.21) 

where the constant .ρ ∈ R is positive but unknown. 

Let .z1 = [z11, z12, z13]T = σ − σ d denote the attitude tracking error of the satel-

lite, and introduce another new variable as .z2 = vm − σ̇ d + kc1z1 − v̂u , where 

.kc1 ∈ R+ is a scalar. From Lemma 5.2, it is known that .z1 and .z2 are available 

for feedback when designing an attitude tracking controller. 

Theorem 5.1 For the satellite dynamics (5.5) with external disturbances, uncertain 

inertia .ΔJ , reaction wheel actuator faults (5.1), and angular velocity measurement 

uncertainty (5.2) satisfying Assumption 5.1, applying the estimation law (5.13) for the 

angular velocity measurement uncertainty, let a velocity-free fault-tolerant attitude 

controller be developed as 

.τ = GT(x1)(τ nor + τ com_l + τ com_2) (5.22) 

with 

.

τ nor = − z1 − kc2z2 + C0(x1, z2 + σ̇ d − kc1z1)(kc1z1 − σ̇ d)

− M0(x1) (−σ̈ d + kc1 (z2 − kc1z1))
(5.23) 

.τ com_1 = −(μ̂0 − 1)||τ nor + τ com_2||sgn(z2) (5.24) 

.τ com_2 = −ρ̂sgn (z2) (5.25) 

where .kc2 ∈ R+ is the control gain, .ρ̂ ∈ R is the estimation of the scalar . ρ, . μ̂0 ∈ R

is the estimation of the constant .μ0 = 1
1−μ

, .μ0 ≥ 1; .μ̂0 and . ρ̂ are updated by 

.
˙̂μ0 = −kc3μ̂0 + kc3||τ nor + τ com_2||||z2||, μ̂0(0) ≥ 1 (5.26) 

.
˙̂ρ = −kc4ρ̂ + kc4||z2||, ρ̂(0) > 0 (5.27)
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with two gains .kc3 ∈ R+ and .kc4 ∈ R+. If the observer gains . kr , .ηi , i = 1, 2, 3, 4, 5, 

and the control gains are chosen with (5.19), (5.20), and 

.2kc1 > 3 (5.28) 

.kc2 − 2 − ((kc1Cmaxε0)
2 + Cmaxε0) > 0 (5.29) 

satisfied, then, the closed-loop system is stable in that all the signals are uniformly 

ultimately bounded. 

Proof Differentiating .z1 by using inserting (5.8) results in 

. ż1 = z2 − kc1z1 + v̂u − vu = z2 − kc1z1 + e2 (5.30) 

Applying Property 4.5, (5.7), (5.8), (5.22), (5.23), and (5.30), it follows that 

.

M0(x1) ż2 =M0(x1)(v̇m − σ̈ d + kc1 ż1 − ˙̂
vu)

= − z1 − kc2z2 + τ com_l + τ com_2 − Eτ

+ PT(x1)ū + PT(x1)ud − Δh(σ , σ̇ , σ̈ )

− C0(x1, x2)x2 − M0(x1)(ė2 + kc1e2)

− C0(x1, z2 + σ̇ d − kc1z1)(kc1z1 − σ̇ d)

(5.31) 

Using Property 4.7, it leads to 

.

−C0(x1, x2)x2 + C0(x1, x2)z2 = C0(x1, z2 − x2)x2

= C0(x1, kc1z1 − σ̇ d − e2)(z2 + σ̇ d − kc1z1 + e2)

= C0(x1, z2 + σ̇ d − kc1z1)(kc1z1 − σ̇ d) + C0(x1, kc1z1 − σ̇ d)e2

− C0(x1, e2)e2 − C0(x1, z2 + σ̇ d − kc1z1)e2

(5.32) 

For the dynamics (5.5), select a Lyapunov candidate function as 

.V1 = 1

2
zT1 z1 + 1

2
zT2 M0(x1)z2 + 1

2kc3
(1 − μ)μ̃2

0 + 1

2kc4
ρ̃2 (5.33) 

where .ρ̃ = ρ − ρ̂ and .μ̃0 = μ0 − μ̂0 are the estimation error of . ρ and .μ0, respec-

tively. Using 4.5, it is seen from (5.33) that 

.K1||X||2 ≤ V1 (5.34) 

with .X = [zT1 , zT2 , zT1 , μ̃0, ρ̃]T and .K1 = min
{

1
2
, λ2

2
,
1−μ

2kc3
, 1
2kc4

}

> 0. 

Differentiating .V1 with (5.30)–(5.32) and 4.6 applied, one has
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. 

V̇1 =zT1 ż1 + zT2 Ṁ0(x1)z2

2
+ zT2 M0(x1) ż2 − (1 − μ)

kc3
μ̃0

˙̂μ0 − ρ̃ ˙̂ρ
kc4

= − kc1||z1||2 − kc2||z2||2 + zT1 e2 − ρ̃(||z2|| − ρ̂) + zT2 (τ com_l + τ com_2

− Eτ + PT(x1)ū + PT(x1)ud − Δh(σ , σ̇ , σ̈ ) − M0(x1)(ė2 + kc1e2)

+ C0(x1, kc1z1 − σ̇ d)e2C0(x1, e2)e2 − C0(x1, z2 + σ̇ d − kc1z1)e2)

− (1 − μ)μ̃0(||unor + τ com_2||||z2|| − μ̂0)

(5.35) 

On the other hand, it can be obtained from (5.24) and (5.25) that 

.zT2 (τ com_2 + PT(x1)(ū + ud) − Δh(σ , σ̇ , σ̈ )) ≤ −ρ̂||z2|| + ρ||z2|| (5.36) 

= ρ̃||z2|| 

.zT2 (τ com_1 − Eτ ) ≤ (1 − μ)μ̃0||τ nor + τ com_2||||z2|| (5.37) 

Using (5.36)–(5.37) and (5.26)–(5.27), (5.35) can be further simplified as 

.

V̇1 ≤ − kc1||z1||2 − kc2||z2||2 + zT1 e2 + ρ̃ρ̂ + (1 − μ)μ̃0μ̂0

+ zT2 (−M0(x1)(ė2 + kc1e2) + C0(x1, kc1z1 − σ̇ d)e2

− C0(x1, e2)e2 − C0(x1, z2 + σ̇ d − kc1z1)e2)

(5.38) 

From Lemma 5.1, .||e(t)|| ≤ ε0 is seen for .t ≥ 0 and regardless of the controller. 

Hence, one has .||e1(t)|| ≤ ε0 and .||e2(t)|| ≤ ε0, .t ≥ 0. Then, it follows from (5.17) 

and Assumption 5.1 that 

.

||ė2|| ≤ η3||e1|| + η4||[ev]
a
b || + η5||sgn(ev)|| + ||v̇u ||

≤ η3ε0 +
√
3η4η

a
b

1 +
√
3η5 + γ = l0

(5.39) 

Invoking (5.39), Property 4.5, and Property 4.7, the following inequalities hold for 

. t ≥ 0

.

−zT2 M0(x1)(ė2 + kc1e2) ≤ λ1||z2||||M0(x1)||(||ė2|| + kc1||e2||)
≤ λ1 (l0 + kc1ε0) ||z2||
≤ 0.5||z2||2 + 0.5(λ1(l0 + kc1ε0))

2

(5.40) 

.

zT2 C0(x1, kc1z1 − σ̇ d)e2 ≤Cmax||z2||||kc1z1 − σ̇ d ||||e2||
≤Cmaxε0||z2||(kc1||z1|| + σ̇max

d )

≤1

2
||z2||2 + 1

2
(Cmaxε0σ̇

max
d )2

+ 1

2
||z1||2 + (kc1Cmaxε0)

2

2
||z2||2

(5.41)
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.

zT2C0 (x1, e2) e2 ≤ Cmax||z2||||e2||2 ≤ Cmaxε
2
0||z2||

≤ 0.5||z2||2 + 0.5(Cmaxε
2
0)

2
(5.42) 

. 

zT2C0(x1, z2 + σ̇ d − kc1z1)e2 ≤Cmax||z2||||z2 + σ̇ d − kc1z1||||e2||
≤Cmaxε0||z2||(||z2|| + kc1||z1|| + σ̇max

d )

≤0.5||z2||2 + 0.5(Cmaxε0σ̇
max
d )2 + 0.5||z1||2

+ 0.5(kc1Cmaxε0)
2||z2||2 + Cmaxε0||z2||2

(5.43) 

Then, one can simplify (5.38) as follows by using (5.40)–(5.43): 

.

V̇1 ≤ −
(

kc2 − 2 − ((kc1Cmaxε0)
2 + Cmaxε0)

)

||z2||2 + ε0||z1||
− (kc1 − 1)||z1||2 + ρ̃(ρ − ρ̃) + (1 − μ)μ̃0(μ0 − μ̃0)

+ (λ1 (l0 + kc1ε0))
2

2
+ (Cmaxε

2
0)

2

2
+ (Cmaxε0σ̇

max
d )2

≤ −
(

kc2 − 2 − ((kc1Cmaxε0)
2 + Cmaxε0)

)

||z2||2 − 0.5ρ̃2

−
(

kc1 − 3

2

)

||z1||2 + 1

2
ρ2 − (1 − μ)

2
μ̃2
0 + (1 − μ)

2
μ2
0

+ (λ1(l0 + kc1ε0))
2

2
+ (Cmaxε

2
0)

2

2
+ (Cmaxε0σ̇

max
d )2 + ε20

2

(5.44) 

To this end, the following two parts are given to analyze the stability of the closed-

loop attitude tracking control system. 

(1) Stability analysis of the closed-loop attitude tracking system for .t ≥ 0: With 

.0 < μ < 1 and the gain choice in (5.28) and (5.29), one can rewrite (5.44) as  

.V̇1 ≤ −K2V1 + ε1, t ≥ 0 (5.45) 

where 

. K2 = min

{

2kc1 − 3,
2(kc2 − 2 − ((kc1Cmaxε0)

2 + Cmaxε0))

λ1

, kc3, kc4

}

> 0

(5.46) 

.ε1 =
ρ2 + μ2

0 + λ2
1(l0 + kc1ε0)

2 +
(

Cmaxε
2
0

)2 + ε20

2
+ (Cmaxε0σ̇

max
d )2 > 0 (5.47) 

Solving (5.45) results in 

.0 ≤ V1(t) ≤
(

V1(0) − ε1

K2

)

exp(−K2t) + ε1

K2

≤ ε2, t ≥ 0 (5.48)
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with .ε2 = max{V1(0),
ε1
K2

}. It follows  from  (5.34) and (5.48) that 

.||X|| ≤
/

ε2

K1

, t ≥ 0 (5.49) 

which implies that . z1, . z2, .μ̃0, and . ρ̃ are bounded for all .t ≥ 0. Because .σ̈ d , . ρ, and . μ

are bounded, using (5.22)–(5.25), one can conclude that .μ̂0, . ρ̂, and .uc are bounded. 

Therefore, it is proved that the closed-loop attitude tracking control system is stable 

in that all the signals are bounded. 

(2) Convergence property of .z1 and .z1 for .t ≥ t1: Because of the reconstruction 

law (5.13) when implementing the controller (5.22), .e2(t) ≡ 0 and .ė2(t) ≡ 0 for 

.t ≥ t1 are obtained from Lemma 5.2. Inserting .e2(t) ≡ 0 and .ė2(t) ≡ 0 into (5.38), 

for .t ≥ t1, it leaves (5.38) as  

.

V̇1 ≤ − kc1||z1||2 − kc2||z2||2 + ρ̃ρ̂ + (1 − μ)μ̃0μ̂0

≤ − kc1||z1||2 − kc2||z2||2 − (1 − μ)

2
μ̃2
0 − ρ̃2

2
+ ρ2

2
+ μ2

0

2

≤ − K3V1 + ε3

(5.50) 

where .K3 = min{2kc1, 2kc2
λ1

, kc3, kc4} > 0 and .ε3 = ρ2+μ2
0

2
> 0. 

Solving (5.50) yields 

.

0 ≤ V1(t) ≤ V1(t1) exp(−K3(t − t1)) + ε3

{ t

t1

exp(−K3(t − s))ds

= V1(t1) exp(−K3(t − t1)) + ε3

K3
(1 − exp(−K3(t − t1)))

, t ≥ t1 (5.51) 

Therefore, using (5.34), it is proved that the state .X is bounded ultimately as 

.0 ≤ V1(t) ≤ max

{

2V1(t1) exp(−K3(t − t1)),
2ε3

K3

}

, t ≥ t1 (5.52) 

.0 ≤ ||X|| ≤ max

{

/

2V1(t1)

K1

exp(−K3(t − t1)

2
),

/

2ε3

K1K3

}

, t ≥ t1 (5.53) 

. 0 ≤ ||z1|| ≤ ||X|| ≤ max

{

/

2V1(t1)

K1

exp(−K3(t − t1)

2
),

/

2ε3

K1K3

}

, t ≥ t1

(5.54) 

From (5.54), using Definition 2.1, it can be concluded that . z1, . z2, .μ̃0 and . ρ̃ are 

ultimately uniformly bounded. .σ̈ d , . ρ, and . μ are bounded, using (5.22)–(5.25), one 

can further conclude that .μ̂0, . ρ̂, and .uc are bounded. ⬜
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It is seen in the proof of Theorem 5.1 that uniformly ultimately bounded stability of 

the attitude tracking error.z1 is ensured despite the angular velocity uncertainty. vu , the  

disturbances . d, the actuator faults (5.1), and the uncertain inertia .ΔJ . This is owing 

to the control efforts .τ com_l and .τ com_2 in the controller (5.22). The control effort 

(5.23) is used to govern the stability of the nominal system (i.e., the satellite dynamics 

is free of actuator faults, unknown dynamics, and external disturbance). The control 

power (5.24) is applied to compensate for the reaction wheel actuator faults (5.1). The 

control effort (5.25) is to compensate for the disturbance . d and uncertain dynamics 

.Δh(σ , σ̇ , σ̈ ). Moreover, this approach does not necessitate the exact knowledge of 

the actuator faults. It is independent of when, where, and how the actuator faults 

occur. In addition, the designed controller does not require any identification process 

to reconstruct the external disturbance and the uncertain dynamics. Therefore, the 

presented scheme is essentially a robust control method. The tracking performance is 

ensured to be robust to the external disturbance, the actuator faults, and the uncertain 

dynamics. 

It is also found in Lemma 5.2 and Theorem 5.1 that, if there are angular velocity 

sensors, then the proposed approach can accomplish the attitude tracking task despite 

actuator faults and angular velocity measurement uncertainty. If there is not any rate 

sensor to supply angular velocity measurements, then the proposed scheme can still 

guarantee that the desired attitude is followed even in the case of actuator faults. 

This is achieved by providing an estimated angular velocity to replace the angular 

velocity. 

Remark 5.5 From the proof of Lemma 5.2 and Theorem 5.1, it is known that a 

faster convergence of the reconstruction error for the angular velocity measurement 

uncertainty and the attitude tracking error is ensured by choosing gains. Moreover, 

it is seen in (5.54) that larger .K3 (i.e., larger .kci , i = 1, 2, 3, 4) will lead to a smaller 

.||z1||. Higher tracking accuracy is achieved. Therefore, the observer gains and the 
control gains can be selected based on the following procedures to ensure better 

estimation performance and better tracking control accuracy for the satellite attitude 

control system. 

• Step #1: Determine the value of. γ according to (5.9) and the maximum acceleration 

velocity. 

• Step #2: Choose a positive . ς0. A larger .ς0 will lead to a smaller . t0. 

• Step #3: Select positive observer gains . kr , . a, and . b satisfying .a < b to ensure a 

smaller . t1. Then, a faster estimation of .vu is achieved. 

• Step #4: Choose positive observer gains . η1, . η2, . η3, . η4, and .η5 such that (5.19) and 

(5.20). 

• Step #5: Determine the value of .Cmax by using the physical parameters. 

• Step #6: Select positive control gains .kc1, .kc2, .kc3, and .kc4 with (5.28)–(5.29) 

satisfied. Larger .kc1, .kc2, .kc3, and .kc4 will result in faster convergence of .μ̂0,. ρ̂, and 

smaller attitude tracking error . z1.
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5.8 Numerical Example 

To demonstrate the effectiveness of the proposed control scheme incorporated with 

the angular velocity observer in this chapter, a rigid satellite is numerically simulated. 

The orbit of the satellite is circular, with an altitude of .500 km and an inclination of 

.89 degrees. The nominal inertia matrix .J0 of this satellite is 

.J0 =

⎡

⎣

20 0 0.9

0 17 0

0.9 0 15

⎤

⎦ kg · m2 (5.55) 

Due to the onboard payload motion, the mass properties of the satellite may vary. 

Thus, a time-varying moment inertia matrix is considered [ 20] with 

.ΔJ = diag([3, 2, 1]T)(1 + exp(−0.1t) + 2ϑ(t − 10) − 4ϑ(t − 20))kg · m2 (5.56) 

where .ϑ(·) is defined as .ϑ(t ≥ 0) = 1 and .ϑ(t < 0) = 0. The external disturbance 

.ud is assumed as 

.ud =

⎡

⎣

2 cos(6ξd t) + 1.3 sin(2ξd t) − 1

3.5 cos(9ξd t) − 2 sin(5ξd t) + 6

2.5 cos(6ξd t) − 5 sin(3ξd t) + 4

⎤

⎦× 10−3 N · m (5.57) 

with .ξd = ||ω|| + 0.001 and .ω(0) = [−0.1984, 0.3998,−0.321]T rad/s. 

To validate the proposed approach, simulation was conducted with the desired atti-

tude planned as .σ d = [0.6321,−0.08562, 0.212]T. The designed controller (5.22) 
was implemented with its gains and its initial observer states selected as .kr = 0.001, 

.η1 = 120, .η2 = 0.0001, .η3 = 0.0001, .η4 = 0.001, .η5 = 20, .a = 1, .b = 2, . kc1 =
0.38, .kc2 = 200, .kc3 = 0.5, .kc4 = 0.001, .x̂e(0) = y(0), .xa(0) = 0, and . v̂u(0) =
vu(0) − σ̇ (0). The initial attitude of the satellite was .. σ (0) = [0.8172, 0.8562,
.0.8562]T × 10−3. Moreover, the following ad hoc numerical differentiation of the 

measurement provided by attitude sensors was employed to estimate the angular 

velocity . σ̇ in the numerical simulation. 

.vm = σ ((N + 1)Δt) − σ (NΔt)

Δt
(5.58) 

where .Δt ∈ R+ was the sampling time, and .N = 0, 1, 2, · · · , was the sampling 

point. At this time, the reconstruction law in Fig. 5.2 is to estimate the angular 

velocity estimation error . vu . 

The nominal inverse dynamics control law which is widely applied was also tested 

for comparison. This law is given by [ 24] 

.τ nor = GT(M0(σ )(−kd(σ̇ − σ̇ d) − kp z1 + σ̈ d) + C0(σ , σ̇ )σ̇ ) (5.59)
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where .kp ∈ R+ and .kc ∈ R+ are two control gains. From [ 24], it is known that the 

control law (5.59) can stabilize the nominal attitude tracking system (i.e., the satellite 

is free of disturbance, uncertainty, and actuator fault). However, the implementation 

of the nominal controller (5.59) necessitates the exact value of . σ̇ . Note that . σ̇ may 

be not accurately measured in practice. Instead, it is feedback by (5.58). Hence, the 

nominal inverse dynamics control was practically implemented as 

.τ nor = GT(M0(σ )(−kd(vm − σ̇ d) − kp z1 + σ̈ d) + C0(σ , vm)vm) (5.60) 

Here, the control law (5.60) is called the practical inverse dynamics controller. 

5.8.1 Reaction Wheel Fault Scenarios 

To investigate the fault tolerant control performance of the controller (5.22), the 

reaction wheels are assumed to experience the following faults. 

• The reaction wheel mounted in line with the.XB axis of .FB loses.20% of its normal 

power after .10 s. An increased bias torque .−0.001 .N · m occurs for all the time. 

• The actuator fixed in line with the .YB axis of .FB loses its power of .40% after .10 s. 

An increased bias torque .0.001 .N · m occurs once the attitude tracking maneuver 

was started. 

• The reaction wheel mounted in line with .ZB axis of.FB undergoes .50% loss of 

effectiveness after .10 s, and an increased bias torque .−0.001 .N · m occurs for all 

the time. 

5.8.2 Simulation Results 

When the practical inverse dynamics controller (5.60) was applied to the satellite 

attitude system, the angular velocity measurement uncertainty introduced by the ad 

hoc numerical differentiation (5.58) was relatively large. It led the practical inverse 

dynamics controller (5.60) to achieve an inferior tracking result. However, once the 

designed scheme, i.e., VFAFTTC, was applied in the satellite attitude system, the 

resulting tracking error of the planned attitude was shown in Fig. 5.3. As expected, 

the tracking task was accomplished by the proposed scheme. As we can see in Fig. 

5.3a, the planned trajectory was followed after .16 s. The tracking accuracy of . |z11| ≤
4.0 × 10−4,.|z12| ≤ 8.0 × 10−4, and.|z13| ≤ 8.0 × 10−4were found in Fig. 5.3b. This 

accuracy is superior enough to guarantee the accomplishment of the planned tasks 

despite the actuator faults, the angular velocity measurement uncertainty, the external 

disturbance, and the uncertain inertia. This superior trajectory tracking property 

is owing to the effect of the incorporated estimation law for the angular velocity
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Fig. 5.3 The attitude tracking error .z1 from VFAFTTC 

Fig. 5.4 The angular velocity estimation error .e2 from VFAFTTC 

measurement uncertainty. It was observed in Fig. 5.4 that the estimation of the angular 

velocity measurement uncertainty was achieved after a period of short time, i.e., 

.0.3 s. Moreover, high-precision estimation was ensured by this estimation law. As 

illustrated in Fig. 5.4b, the estimation accuracy was superior to .2.0 × 10−6 rad/s. 

Finally, due to the adaptive control parts .τ com_l and .τ com_2 in the controller (5.22), 

the external disturbance, the actuator faults (F1-F2), and the uncertain dynamics 

.Δh(σ , σ̇ , σ̈ )were adaptively compensated. Those simulation results coincided with 

Theorem 5.1 well. The control torque commanded by the proposed VFAFTTC to 

accomplish the attitude tracking task is shown in Fig. 5.5.
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Fig. 5.5 The commanded 

control torque from 

VFAFTTC 

5.8.3 Quantitative Analysis 

More simulations were further carried out for the following two testing scenarios 

by applying the nominal inverse dynamics controller (5.59), the practical inverse 

dynamics control law (5.60), the controller (5.60) with the reconstruction law (5.13), 

the proposed control approach, and the proposed controller (5.22) in conjunction 

with a globally convergent velocity observer (GCVO) [ 28]. 

• Case #1: The satellite was free of external disturbance, actuator faults, and uncer-

tain inertia. 

• Case #2: The external force, the uncertain inertia, and the actuator faults F1-F2 in 

Sect. 5.8 were considered. 

To quantitatively evaluate the above five control schemes, two performance indices 

were used: first, the tracking accuracy, i.e., the absolute value of the steady behavior 

of the attitude tracking errors .|z1i |, .i = 1, 2, 3, and second, the system settling-time 

. ts , i.e., the time after which .z1i have a steady-state behavior, respectively. 

The control gains in the controllers (5.59) and (5.60) were chosen by trial and 

error until a good tracking performance was achieved. After carrying out .2000 times 

numerical simulations for Case #1 and Case #2 by using those five controllers with 

different .σ d , respectively, the tracking performance was listed in Tables 5.1 and 5.2, 

respectively. 

(C1) It was seen in Table 5.1 that except for the practical inverse dynamics con-

troller, the other four approaches achieved almost the same tracking performance 

for Case #1. However, the nominal inverse dynamics controller (5.59), the practical 

inverse dynamics controller (5.60), and the controller (5.60) with the reconstruction 

law (5.13) failed to perform the tracking task in Case #2. That is because those three 

controllers are not capable of handling external disturbances, actuator faults, and 

uncertain dynamics. 

(C2) As listed in Table 5.1, the proposed control approach and the approach 

with the controller (5.22) and the GCVO applied ensured almost the same tracking 

accuracy for Case #1 and Case #2. That is because the GCVO and the presented
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Table 5.1 The comparison of the average attitude tracking accuracy of .2000 times simulations 

(“. ×” denotes that the corresponding approach fails to accomplish the attitude tracking task) 

Control 

schemes 

The average tracking accuracy 

.|z11| .|z12| . |z13|
Case #1 Case #2 Case #1 Case #2 Case #1 Case #2 

Controller 

(5.59) 

.2.74 ×
10−6

.× .3.68 ×
10−4

.× .4.30 ×
10−4

. ×

Controller 

(5.60) 

.× .× .× .× .× . ×

Controller 

(5.60) +  

estimation 

law (5.13) 

.2.77 ×
10−4

.× .3.79 ×
10−4

.× .4.27 ×
10−4

. ×

Controller 

(5.22) +  

GCVO 

.2.82 ×
10−4

.4.27 ×
10−4

.3.63 ×
10−4

.7.92 ×
10−4

.4.31 ×
10−4

. 7.84 ×
10−4

The 

proposed 

controller 

.2.76 ×
10−4

.4.15 ×
10−4

.3.65 ×
10−4

.7.85 ×
10−4

.4.04 ×
10−4

. 7.93 ×
10−4

Table 5.2 The comparison of the average settling time . ts of .2000 times simulations (“. ×” denotes 

that the corresponding approach fails to perform the attitude tracking task) 

Control schemes The average settling time . ts (sec) 

Case #1 Case #2 

Controller (5.59) .24.6 . ×
Controller (5.60) .× . ×
Controller (5.60) + estimation 

law (5.13) 

.36.1 . ×

Controller (5.22) + GCVO .22.4 . 39.3

The proposed controller .10.2 . 16.5

estimation law (5.13) can both provide the unmeasured joint velocity with precise 

estimation information. However, as we can see in Table 5.2, the developed approach 

guaranteed a shorter settling time for both cases. This is because the estimation 

law (5.13) can provide the estimation error with a finite-time convergence, while 

the GCVO can guarantee an asymptotic estimation only. Hence, the effect of the 

velocity estimation error was eliminated within a shorter period by the proposed 

control approach. 

In the above quantitative analysis, the trajectory tracking performance was evalu-

ated only. The performance of the estimation law (5.13) was not shown. To evaluate 

its estimation performance, another two performance indices were adopted: first, the 

estimation accuracy, i.e., the steady-state behavior of the estimation error .||e2||, and 
second, the estimation time . tse, i.e., the time after which .||e2|| has a steady-state 
behavior. The estimation performance obtained from 2000 times tests was listed in 

Table 5.3. For Case #1 and Case #2, although almost the same estimation accuracy
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was achieved for both observers, the GCVO achieved a slower estimation than the 

estimation law (5.13). That is since the GCVO can govern the estimation error to 

be asymptotically stable only, while the estimation law (5.13) can ensure finite-time 

convergence for .||e2||. 
Through the above results and analysis, the effectiveness of the developed attitude 

tracking control architecture has been validated. 

5.9 Summary 

Considering angular velocity measurement uncertainty and modeling error including 

reaction wheel actuator faults, external disturbance, and uncertain inertia, simulta-

neously, a novel robust velocity-free fault tolerant attitude tracking control approach 

was presented for satellites. An observer-based reconstruction law was incorporated 

into this architecture to provide an exact reconstruction of that angular velocity mea-

surement uncertainty after a finite time. With the application of this approach, the 

attitude tracking task was accomplished. The attitude tracking error was governed to 

be uniformly ultimately bounded, even when the satellite does not have any velocity 

sensor. The key advantage of this methodology is that actual angular velocity and 

any prior knowledge of reaction wheel actuator faults are not required. Moreover, the 

proposed control did not require any online or offline fault detection and isolation 

mechanism. 
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Modeling Error Adaptive Compensation 
Attitude Control



Chapter 6 

Adaptive Attitude Stabilization Control 

6.1 Introduction 

Although many observers, sliding mode observer (SMO), or even finite-time observer 

for state estimation, and observer-based output feedback control approaches have 

been reported, those schemes are characterized by two drawbacks: (1) they are 

designed based on the assumption that all actuators operate normally, i.e., actuator 

faults never occur; and (2) a practical issue, i.e., actuator constraint is not investi-

gated. Challenging operating conditions increase the possibility of malfunctions in 

sensors, actuators, and controllers. 

With an effort to tackle the above two drawbacks, this chapter investigates the fea-

sibility of partial-state feedback control design for a class of multi-input multi-output 

systems with actuator faults, system uncertainties, external disturbances, immeasur-

able states, and actuator constraints explicitly addressed simultaneously. The main 

result to be achieved is to extend previous work on partial-state feedback control [ 1] 

while approaching the challenging case of output feedback control for a general type 

of nonlinear systems subject to the above five issues rather than only the satellite 

attitude control system. However, the approach in [ 1] was not able to handle system 

uncertainties, it can only be applied to satellites and would be ineffective when applied 

to other nonlinear systems. An adaptive SMO-based velocity-free fault-tolerant and 

uncertainties attenuation control scheme is proposed for such as solution, as shown 

in Fig. 6.1. The controller is designed using the measurable output and the estimated 

value for the adaptive SMO only. The main contributions of this chapter, relative to 

the existing works, can be outlined as follows. 

• In terms of theoretical contribution: Compared with the state observer even finite-

time observer-based control schemes such as [ 2– 4] which can only handle three 

issues including system uncertainties, external disturbances, and immeasurable 

states, this chapter presents a general solution for the integrated design to address 

not only those three issues but also actuator faults and actuator input saturation 

simultaneously. Hence, the proposed control scheme will have an extra fault-

tolerant capability to handle actuator faults. Actually, simply combing the existing 
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Fig. 6.1 The structure of the 

adaptive SMO-based 

velocity-free control 

state observer-based control [ 2– 4] with FTC such as [ 5] cannot solve those five 

problems simultaneously, because those five issues are highly coupled. Hence, the 

design of the approach to them is complex and multidimensional, it needs adequate 

techniques. 

• In terms of engineering application: The proposed approach is able to achieve not 

only the FTC for actuator faults but also the attenuation control for disturbances 

and system uncertainties. Moreover, that is implemented with output feedback 

only. It means that sensors for measuring system output are requested only to be 

equipped, while the sensors for obtaining system states’ measurements are not 

needed. A low-cost reliable control design is achieved. This leads to the great 

potential application of the approach to achieve economic control system design. 

6.2 Euler-Lagrange System 

Consider a multi-input-multi-output nonlinear system represented by the Euler-

Lagrange equation of the form [ 6] 

.H(x)ẍ + C(x, ẋ)ẋ + g(x) = u + d + f (x, ẋ, t) (6.1) 

where .x ∈ R
n is the generalized coordinates, .ẋ ∈ R

n is the generalized velocity, 

.u ∈ R
n is the control force, .H(x) ∈ R

n×n denotes the symmetric positive-definite 

inertia, .C(x, ẋ) ∈ R
n×n is the matrix of Coriolis and centrifugal force, . f (x, ẋ, t) ∈

R
n is the system uncertainty, .d ∈ R

n is the external disturbance, and . g(x) ∈ R
n

represents the gravitational force. Moreover, this Euler-Lagrange system has the 

following properties. 

Property 6.1 The matrix .H(x) is bounded by . 0 < lmin|| y||2≤ yTH(x) y≤lmax|| y||2
for .∀ y ∈ R

n and .∀x ∈ R
n , where .lmin ∈ R+ and .lmax ∈ R+ are two scalars. 

Property 6.2 The matrix.Ḣ(x) − 2C(x, ẋ) is skew-symmetric for all.x ∈ R
n . There 

has . yT(Ḣ(x) − 2C(x, ẋ)) y = 0, .∀x ∈ R
n and .∀ y ∈ R

n .
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Property 6.3 The matrix .C(x, ẋ) is bounded with respect to . x and linear with 

respect to . ẋ. It exists a scalar .cmax ∈ R+ such that .||C(x, ẋ)|| ≤ cmax||ẋ||, .∀x ∈ R
n . 

Remark 6.1 The Euler-Lagrange system (6.1) can be adopted to describe the 

dynamics of many industrial systems, such as robotic manipulators, satellites, twin-

lift helicopters, hypersonic flight vehicles, and marine vehicle. In addition, the exter-

nal disturbance acting on this system is usually bounded in practice. The following 

assumption is thus made reasonably. 

Assumption 6.1 The external disturbance in (6.1) is bounded. There always exist a 

constant .dmax ∈ R+ such that .||d|| ≤ dmax for all .t ≥ 0. ⬜

6.3 General Model of Actuator Faults 

The nonlinear system (6.1) is presented in the absence of actuator fault. However, 

actuator faults may occur. Because a minor fault in the actuator may lead to an unsatis-

factory performance or even system instability, actuator fault should be investigated. 

Actuator fault is commonly categorized into four major types: (F1) Locked-in-place, 

(F2) Loss of effectiveness, (F3) Hard cover, and (F4) Floating around trim. These 

faults are illustrated in Fig. 6.2, where .τmax and .−τmax, .τmax ∈ R+, represent, respec-
tively, the upper bound and lower bound of the actuator response;.tF denotes the time 

when fault occurs. 

Assume that the Euler-Lagrange system (6.1) is controlled by .N ∈ R+ actuators. 

After characterizing the fault types, the fault generated F1–F4 can be modeled for 

each actuator as [ 7]. 

.τai = li (t)τci + τ̄ci , i = 1, 2, . . . , N (6.2) 

Fig. 6.2 Four types of actuator faults: a F1; b F2; c F3; and d F4 (the solid line denotes the 

commanded control of the actuator, while the dashed line denotes the applied control of the actuator)
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where .li (t) ∈ R+, i ∈ 1, 2, . . . , N is the actuator fault indicator represented by a 

quantitative value in the range of . 0–. 1, i.e., .0 ≤ li (t) ≤ 1; .τ̄ci ∈ R, . i = 1, 2, . . . , N

with .|τ̄ci | ≤ τmax denotes the uncertain actuator failure. .τci ∈ R, .i = 1, 2, . . . , N is 

the desired control force commanded by the controller. .τai ∈ R, .i = 1, 2, . . . , N is 

the actual control generated by the actuator. 

• No fault: .τai = τci , .li (t) = 1, and .τ̄ci = 0. 

• Locked-in-place fault:.li (t) = 0, and.τci is to a constant value at which the actuator 

has frozen leading to .τai = τ̄ci . 

• Loss of effectiveness fault: In this case, if it is assumed that there is 50. %degradation 

in the control actuation, .li (t) will take a value of .0.5, and .τ̄ci = 0. 

• Floating around trim fault: Float-type failure can be accounted for, with . li (t) = 1

and .τ̄ci /= 0. 

• Hard-cover fault: .li (t) = 0 and .τ̄ci = τmax. 

Suppose that all actuators of the Euler-Lagrange system (6.1) are configured with 

an actuator matrix .D ∈ R
n×N . For full control of this system, redundant actuators 

are usually mounted, i.e., .n ≤ N . As a result, .D is available and it is generally made 

full-row rank. The relationship between . u in (6.1) and the commanded control of the 

actuator can be established as 

.u = Dτ a = DE(t)τ c + Dτ̄ c (6.3) 

where .τ a = [τa1, τa2, . . . , τaN ]T is the applied control by .N actuators, .. τ c = [τc1,

.τc2, . . . , τcN ]T is the control input commanded by the system controller, . τ̄ c =
[τ̄c1, τ̄c2, . . . , τ̄cN ]T is the uncertain fault, and .. E(t) = diag([l1(t), l2(t), . . . ,

.lN (t)]T) ∈ R
N×N is the actuation effectiveness matrix. 

6.4 Problem Statement 

The objective is to design an observer for the Euler-Lagrange system (6.1) with 

only the available measurement . x. The resulting observation error asymptotically 

converges to zero, or an arbitrary small set containing the origin with finite-time 

convergence. Then, based on the measurement . x and the states of the observer, 

a controller is designed to guarantee that all states in the closed-loop system are 

uniformly ultimately bounded in the presence of input constraint, i.e., .|τci | ≤ τmax, 

.i = 1, 2, . . . , N and modeling error consisting of external disturbance .ud , system  

uncertainty . f (x, ẋ, t), and actuator fault (6.3).
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6.5 Observer-Based State Estimation 

6.5.1 Adaptive State Observer 

In this section, the Euler-Lagrange system is assumed to have no system uncertainty. 

That is . f (x, ẋ, t) = 0. Given that the matrices .H(x), .C(x, ẋ), and .g(x) in (6.1) 

are known. An SMO will be developed for the estimation of . x and . ẋ with only 

the available measurement . x. Define .x1 = x, .x2 = ẋ, and system output . y = x. 

Consider actuator fault (6.3), (6.1) can be rewritten as 

.ẋ1 = x2 (6.4) 

.H( y)ẋ2 = −C( y, x2)x2 − g( y) + DE(t)τ c + Dτ̄ c + d (6.5) 

Let.x̂1 and.x̂2 denote the estimate of.x1 and.x2, respectively. Define the observation 

error .e1 = [e11, e12, . . . , e1n]T = x̂1 − x1, .e2 = [e21, e22, . . . , e2n]T = x̂2 − x2, the  

following terminal SMO is designed: 

.
˙̂x1 = x̂2 − xv (6.6) 

. H( y) ˙̂x2 = −C( y, x̂2)x̂2 − k3

(k1)
γ

β

[xv]
γ

β − k2

k1
xv − g( y) − k4 x̂2 + Dτ c (6.7) 

where .xv = [xv1, xv2, . . . , xvn]T = k1sgn(e1), .ki ∈ R+, .i = 1, 2, 3, 4 are observer 

gains, .γ ∈ R+ and .β ∈ R+ are two odd integers such that .γ < β. 

Combining (6.4) and (6.5) with the observer (6.6) and (6.7), the observation error 

dynamics is obtained as 

.ė1 = e2 − xv (6.8) 

.

H( y)ė2 = − C( y, x̂2)x̂2 + C( y, x2)x2 + D(I N − E(t))τ c

− k2

k1
xv − k3

(k1)
γ

β

[xv]
γ

β − k4 x̂2 − Dτ̄ c − d
(6.9) 

Note that, we assume that the state. ẋ is bounded, i.e.,.||ẋ|| ≤ Q0. That is a reasonable 

assumption, because for most rigid bodies represented by (6.1),. ẋ stands for velocity, 

. ẋ is bounded due to the physical limitation of mechanical. However, this assumption 

will not be required when the observer is used in connection with the controller 

design, as discussed in Sect. 6.6 (Theorem 6.3). 

Lemma 6.1 With the SMO (6.6)–(6.7), select the observer gains satisfying 

.

Q2

(1 − π1)η1
<

k4

cmax

− Q0 (6.10)
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where .Q1 = 2
√

N ||D||τmax + dmax + k4Q0, .η1 ∈ R+ and .0 < π1 < 1 are two pos-

itive scalars, while .Q2 = Q1 + √
n(k2 + k3). If .||ẋ|| ≤ Q0 is satisfied, and .x̂2(0) is 

chosen such that .||e2(0)|| ≤ k4
cmax

− Q0, then the error . e2 will be always bounded by 

.
k4

cmax
− Q0, i.e., .||e2(t)|| ≤ k4

cmax
− Q0 for .t ≥ 0. 

Proof Applying the linear property of .C(x, ẋ) in Property 6.3, one has 

.C( y, x2)x2 − C( y, x̂2)x̂2 = −C( y, x2)e2 − C( y, e2)x̂2 (6.11) 

Choose a Lyapunov candidate function .V0 = 1
2
eT2 H( y)e2 for the error dynamics 

(6.8), (6.9), it is obtained from Assumption 6.1 and Property 6.2 that 

.

V̇0 = e2
T

(

D(I N − E(t))τ c − C( y, e2)x̂2 − Dτ̄ c − d − k2

k1
xv

− k3

(k1)
γ

β

[xv]
γ

β − k4 x̂2

)

≤ Q1||e2|| − (k4 − cmax(||e2|| + Q0))||e2||2 − k2e
T
2 sgn(e1)

− k3e
T
2diag(|sgn(e1)|

γ

β )sgn(xv)

≤ −(k4 − cmax(||e2|| + Q0))||e2||2 + (Q1 +
√

nk2 +
√

nk3)||e2||
= −(k4 − cmax(||e2|| + Q0))||e2||2 + Q2||e2||

(6.12) 

where .eT2 (D(I N − E(t))τ c − Dτ̄ c − d) ≤ Q1||e2|| is used. 
As a consequence, if .||e2|| < k4

cmax
− Q0, then there will exist an positive scalar 

.
η1

cmax
such that .cmax(||e2|| + Q0) + η1 = k4. The inequality (6.12) becomes 

.

V̇0 ≤ −η1||e2||2 + Q2||e2||
= −η1π1||e2||2 + (Q2 − (1 − π1)η1||e2||)||e2||

(6.13) 

It thus leads to 

.V̇0 ≤ −η1π1||e2||2 ≤ −2η1π1

lmax

V0 (6.14) 

when .e2 is outside of the set .D1 =
{

e2 : ||e2|| ≤ Q2

(1−π)η1

}

; here, the inequality . V0 ≤
0.5lmax||e2||2 from Property 6.1 is used. 

From (6.14), it can be concluded that.V0 will decrease monotonically for.e2 /∈ D1. 

Then, it is got to know from the definition of .V0 that .e2 will decrease mono-

tonically once .e2 is outside the set .D1, while .||e2|| < k4
cmax

− Q0 is satisfied. That 

means that, .D1 is a region of attraction for .||e2|| < k4
cmax

− Q0. Furthermore, because 

the estimate .x̂2(0) is chosen such that .||e2|| < k4
cmax

− Q0, using the above anal-

ysis and the observer gains chosen according to (6.10), it can be concluded that 

.||e2(t)|| < k4
cmax

− Q0 for all .t ≥ 0. The proof is completed. ⬜
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Fig. 6.3 The geometric 

representation of sets in the 

proof of Lemma 6.1 

Remark 6.2 The proof process of Lemma 6.1 can be illustrated by Fig. 6.3. . k4
should be chosen large enough to guarantee that .e2(0) is within the set . D2 =
{

e2 : ||e2|| ≤ k4
cmax

− Q0

}

. If  .e2(0) starts with .A which is within the set .D2\D1, 

the error state .e2 will move in .D1. Once inside the set .D1, e2(t) cannot get out. If 

.e2(0) starts with .B in the set .D1, the state .e2(t) will never move out of the set .D1, 

as shown by the analysis in the proof of Lemma 6.1. Hence, it can be concluded that 

.D1 is a region of attraction. It also ensures .e2 ∈ D2 for all .t ≥ 0; this means that . e2
is always bounded. 

Theorem 6.1 Consider the Euler-Lagrange system (6.1) in combination with the 

SMO (6.6), (6.7). Given the initial estimate.x̂2(0) chosen such that. ||e2(0)|| ≤ k4
cmax

−
Q0, choose .β, γ , and the observer gains . ki , .i = 1, 2, 3, 4 such that (6.10) and 

.k1 >
k4

cmax

− Q0 (6.15) 

.

k3

k
γ /β

1

− κ1 − Q1

(

k4

cmax

− Q0

)− γ

β

> 0 (6.16) 

.

k2

k1
− 2k4 > 0 (6.17) 

where .λ1 ∈ R+ and .κ1 ∈ R+ are two scalars. Then, whether the actuator fault (6.3) 

occurs or not, the observer errors . e1 and . e2 are finite time stable, i.e., . e1(t) ≡ 0

for .t ≥ T0 = ||e1(0)||
λ1

and .e2(t) ≡ 0 for .t ≥ T1 = T0 + β2
β−γ
2β (lmax)

β+γ
2β (V0)

β−γ
2β (T0)

κ1(β−γ )
, where 

.λ1 ∈ R+ is a constant such that .λ1 +
)

k4
cmax

− Q0

)

≤ k1. 

Proof To prove Theorem 6.1, the Lyapunov’s direct method is adopted, and it can 

be divided into the following two parts.
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• Stability analysis of the estimation error . e1: 

It can be obtained from (6.15) that there exists a constant .λ1 ∈ R+ such that . λ1 +
( k4

cmax
− Q0) ≤ k1. Then, consider an candidate Lyapunov function as .V1 = 0.5eT1 e1, 

applying Lemma 6.1 yields 

.V̇1 = eT1 (e2 − k1sgn(e1)) ≤ −||e1||(k1 − ||e2||) ≤ −λ1||e1|| = −λ1

√

2V1 (6.18) 

Solving (6.18) yields .V1(t) ≡ 0 for .t ≥ T0, i.e., .||e1(t)|| ≡ 0 for that .t ≥ T0. The  

observation error .e1 is thus finite-time stable by using Definition 2.1. Sliding motion 

takes place on .e1 = ė1 = 0 by .t = T0, then solving for equivalent output injection 

yields.[xv]eq = e2; here, the subscript “eq” denotes the equivalent state on the sliding 

surface .e1 = ė1 = 0 in the sense of sliding-mode control theory. 

• Stability analysis of the estimation error . e2: 

Once the sliding motion (.e1 = ė1 = 0) is achieved after the finite time . T0, using  

.[xv]eq = e2, the error dynamics has the form 

.

H( y)ė2 = −C( y, x̂2)x̂2 + C( y, x2)x2 + D(I N − E(t))τ c

− k2

k1
e2 − k3

(k1)
γ

β

[xv]
γ

β − k4 x̂2 − Dτ̄ c − d
(6.19) 

From Lemma 6.1, it follows that .||e2|| < k4
cmax

− Q0 for that .t ≥ 0. Then, further 

differentiating .V0, applying (6.11), Property 6.2, Property 6.3, and the gain choice 

in (6.16), (6.17) yield 

. 

V̇0 = eT2

)

D(IN − E(t))τ c − C( y, e2)x̂2 − k2e2

k1
− k3 [xv]

γ
β

(k1)
γ
β

− k4 x̂2 − Dτ̄ c − d

)

≤ Q1||e2|| −
(

k2

k1
− (cmax(||e2|| + Q0) + k4)

)

||e2||2 − k3||e2||1+
γ
β

(k1)
γ
β

= −κ1||e2||1+
γ
β −

)

k3

(k1)
γ
β

− κ1 − Q1

(

k4

cmax
− Q0

)− γ
β

)

||e2||1+
γ
β −

(

k2

k1
− 2k4

)

||e2||2

≤ −κ1||e2||1+
γ
β

≤ −κ1

(

2V0

lmax

)

β+γ
2β

(6.20) 

Because the above stability analysis for .e2 starts with the time . T0, one can integrate 

both sides of (6.20) from .T0 to . t , and solve (6.20) to obtain .V0(t) ≡ 0 for all .t ≥ T1. 

According to the definition of .V0 and the positive definiteness of .H( y), it follows  

that .e2(t) ≡ 0 for all .t ≥ T1, i.e., the observer error .e2 is thus finite time stable by 

using Definition 2.1. Thereby, the proof is completed here. ⬜
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Remark 6.3 It should be pointed out that, the value of .T0 cannot be explicitly deter-

mined. That is because.λ1 is only used to theoretically analyze the finite-time conver-

gence of . e1. It is only proven that .λ1 does indeed exist according to (6.15). However, 

its exact value would be unknown. It is also not necessary to choose .λ1 in the imple-

mentation of the approach. 

6.5.2 Effect of System Uncertainties 

Limit to finite system modeling techniques, mathematical model could not be exactly 

established. The Euler-Lagrange system (6.1) will be subject to modeling error 

. f (x, ẋ, t). Generally, . f (x, ẋ, t) is represented by . f (x, ẋ, t) = ξ(x, ẋ, t)Φ with 

.Φ ∈ R
l1 a constant but unknown parameter vector, and .ξ(x, ẋ, t) ∈ R

n×l1 a bounded 

function such that 

.||ξ(x1, ẋ1, t)Φ − ξ(x2, ẋ2, t)Φ|| ≤ cq ||ẋ1 − ẋ2|| + cp||x1 − x2|| (6.21) 

for .x1 ∈ R
n , .x2 ∈ R

n , .cp ∈ R+ and .cq ∈ R+ are bounded but possibly time-varying 

positive scalars. Uncertainty. f (x, ẋ, t) includes, for example, uncertainty in Coriolis-

Centrifugal forces, gravity forces, and viscous frictions. For a manipulator with rev-

olute joints and with bounded joint velocities, due to the dependency of dynamics to 

joint angles, the representation . f (x, ẋ, t) = ξ(x, ẋ, t)Φ is always possible [ 8]. 

In the sequel, we denote .Φ̂ ∈ R
l1 as the estimate of .Φ and present the following 

adaptive observer design approach with system uncertainties considered. 

Theorem 6.2 Consider the terminal SMO given in Sect. 6.5.1, an except that (6.7) 

is replaced by 

.

H( y) ˙̂x2 = −C( y, x̂2)x̂2 − g( y) + Dτ c − k2

k1
xv − k4 x̂2

− k3

(k1)
γ

β

[xv]
γ

β + ξ( y, x̂2, t)Φ̂

(6.22) 

where . Φ̂ is adaptively updated by 

.Φ̂ = [ξT( y, x̂2, t) y − [ϕ (6.23) 

.ϕ̇ = dξT( y, x̂2, t)

dt
y + ξT( y, x̂2, t)x̂2 + δ1Φ̂ (6.24) 

and .δ1 ∈ R+ is a constant, .[ ∈ R
l1×l1 is a positive-definite constant matrix. Choose 

the initial state .Φ̂(0) and the observer gains to satisfy
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.k1 >
Q2

(1 − π1)η1
(6.25) 

.

/

2l0V2(0) + 2ρ

lminl0
<

Q2

(1 − π1)η1
<

k4 − cq

cmax

− Q0 (6.26) 

where.V2(0) = 0.5eT2 (0)H( y(0))e2(0) + 0.5Φ̃
T
(0)[−1Φ̃(0),.Φ̃(0) = Φ̂(0) − Φ(0), 

.ρ = 0.5δ1δ2||Φ||2; .λ1 ∈ R+, .δ1 ∈ R+, and .δ2 > 0.5 are three positive constants, 

.l0 = min
{

(
2η1π1

lmax
, δ1(2δ2−1)

δ2πmax

}

, while .πmax is the maximum eigenvalue of the matrix . [. 

Suppose that the initial estimate .x̂2(0) is chosen such that .||e2(0)|| ≤ Q2

(1−π1)η1
, then 

the observer error . e1 will be finite time stable with finite-time . T0, i.e., .e1(t) ≡ 0 for 

.t ≥ T0 = ||e1(0)||
λ1

with .λ1 ∈ R+ being a constant such that .λ1 + Q2

(1−π1)η1
≤ k1 and the 

observer error . e2 is ultimately uniformly bounded. 

Proof Like the proof of Theorem 6.1, the proof of Theorem 6.2 can be divided into 

the following two parts. 

• Stability analysis of the estimation error . e2: 

With the replaced estimation (6.22) for .x2, one has 

.

H( y)ė2 = −C( y, x̂2)x̂2 + C( y, x2)x2 + D(I N − E(t))τ c

− k2

k1
xv − k3

(k1)
γ

β

[xv]
γ

β − k4 x̂2 + ξ( y, x̂2, t)Φ̂

− ξ(x, ẋ, t)Φ − Dτ̄ c − d

(6.27) 

Note that 

.

ξ( y, x̂2, t)Φ̂ − ξ(x, ẋ, t)Φ = ξ( y, x̂2, t)Φ̂ − ξ(x1, x2, t)Φ

= −ξ( y, x̂2, t)Φ̃ + ξ̃Φ
(6.28) 

where .ξ̃ = ξ( y, x̂2, t) − ξ(x1, x2, t). It thus results (6.23) in  

.
˙̂
Φ = −[ξT( y, x̂2, t)e2 − δ1[Φ̂ (6.29) 

With (6.21), one has .||ξ̃Φ|| = ||ξ( y, x̂2, t)Φ − ξ(x1, x2, t)Φ|| ≤ cq ||e2||. 
Choosing another candidate Laypunov function .V2 = eT2 H( y)e2

2
+ Φ̃

T
[−1Φ̃
2

with 

.Φ̃ = Φ − Φ̂, differentiating .V2 and substituting (6.28) and (6.29) lead to



6.5 Observer-Based State Estimation 133

.

V̇0 = eT2

)

D(I N − E(t))τ c − C( y, e2)x̂2 − Dτ c − k2

k1
xv − k3

(k1)
γ

β

[xv]
γ

β

−k4 x̂2 − d + ξ( y, x̂2, t)Φ̂ − ξ(q, q̇, t)Φ
)

− Φ̃
T
[−1 ˙̂

Φ

≤ Q1||e2|| − (k4 − cmax(||e2|| + Q0) − cq)||e2||2 + δ1Φ̃
T
Φ̂

− k2e
T
2 sgn(e1) − k3e

T
2diag(|sgn(e1)|

γ

β )sgn(xv)

≤ δ1Φ̃
T
Φ̂ − (k4 − cmax(||e2|| + Q0) − cq)||e2||2

+ (Q1 +
√

nk2 +
√

nk3)||e2||

= δ1Φ̃
T
Φ̂ − (k4 − cmax(||e2|| + Q0) − cq)||e2||2 + Q2||e2||

(6.30) 

As the proof of Lemma 6.1, if  .||e2|| <
k4−cq

cmax
− Q0, then there will still exist an 

positive scalar .
η1

cmax
such that .cmax(||e2|| + Q0) + η1 = k4 − cq . This leads (6.30) to  

.

V̇2 ≤ −η1||e2||2 + Q2||e2|| + δ1Φ̃
T
Φ̂

= −η1π1||e2||2 + (Q2 − (1 − π1)η1||e2||)||e2|| + δ1Φ
TΦ̂

(6.31) 

At this time, when .e2 is outside of the set .D1, we get 

.

V̇2 ≤ −η1π1||e2||2 + δ1Φ̃
T
Φ̂

≤ −l0

)

eT2 H( y)e2

2
+ Φ̃

T
[−1Φ̃

2

)

+ δ1(2δ2 − 1)Φ̃
T
[−1Φ̃

2δ2πmax

+ δ1Φ̃
T
Φ̂

(6.32) 

Define. δ1(2δ2−1)Φ̃
T
[−1Φ̃

2δ2πmax
= ϕ̄ ∈ R+, it leaves (6.32) as.V̇2 ≤ −l0V2 + ϕ̄ + δ1Φ̃

T
Φ̂. 

Using the completion of squares, the following equation can be calculated: 

.

δ1Φ̃
T
Φ̂ = δ1Φ̃

T
(Φ − Φ̃) ≤ δ1

(

1

2δ2
||Φ̃||2 + δ2

2
||Φ||2 − ||Φ̃||2

)

= −δ1(2δ2 − 1)

2δ2
||Φ̃||2 + δ1δ2

2
||Φ||2

(6.33) 

From (6.33), one can apply the definition of .ϕ̄ to obtain 

.

ϕ̄ + δ1Φ̃
T
Φ̂ ≤ ϕ̄ − δ1(2δ2 − 1)

2δ2
||Φ̃||2 + δ1δ2

2
||Φ||2

≤ δ1δ2

2
||Φ||2 = ρ

(6.34) 

Then, one has 

.V̇2 ≤ −l0V2 + ρ (6.35)
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Solving this inequality yields .V2(t) ≤ V2(0) + ρ

l0
. Using  .0.5lmin||e2||2 ≤ V2 for all 

.e2 ∈ R
n , one can get .||e2|| ≤ ε for all .t ≥ 0, where .ε =

/

2l0V2(0)+2ρ

lminl0
. 

From the above analysis, it can be concluded from the gains’ choice (6.26) and 

the chosen initial values .x̂2(0) and .Φ̂(0) that the inequality .||e2|| ≤ ε will always 

hold for all .t ≥ 0. That is to say, .e2 is ultimatly uniformly bounded by Definition 

2.1. 

• Stability analysis of the estimation error . e1: 

The stability analysis of the estimation error .e1 is as same as in the proof of 

Theorem 6.1. 

Summarizing the above analysis, Theorem 6.2 is thus proved. ⬜

Remark 6.4 From the proof of Theorem 6.2, it can be known that once the initial 

values of .x̂1(0), .x̂2(0), and .Φ̂(0) are chosen, the observation or estimation accuracy 

for.e2 highly depends on the choice of the observer gains. A smaller value of.δ1, πmax, 

and . δ2, or a larger value of . η1, .π1 will result in a smaller value of . ε. Consequently, 

the accuracy of the observation for .x2 is much higher. 

6.6 Adaptive State Observer-Based Controller 

A velocity-free fault-tolerant and modeling error compensation control scheme is 

proposed for the Euler-Lagrange system (6.1) based on the observer proposed. The 

controller is designed as 

.τ c = sat(D
†

vc, τmax) (6.36) 

where .vc = [vc1, vc2, . . . , vcN ]T ∈ R
n denotes the input of the controller. For conve-

nience of input constraint effect analysis, the following auxiliary system is introduced 

. ẋa = −kaxa − ||Δτ c||2
||xa||2

xa − Δτ c (6.37) 

where .ka ∈ R+, .xa ∈ R
n is the state of the auxiliary system, and . Δτ c = D(τ c −

D
†

vc).

Introducing coordinate change .z2 = x̂2 + ρ1 x̂1 with the scalar .ρ1 ∈ R+ the sta-

bility of the closed-loop system with the control (6.36) can be summarized in the 

following theorem. 

Theorem 6.3 Consider the Euler-Lagrange system given by (6.1) with the mod-

eling error induced by actuator fault (6.3) and uncertainties . f (q, q̇, t) satisfying 

(6.21). Application of the adaptive SMO (6.6) and (6.22), if the controller (6.36) is 

implemented with the input signal . vc designed by
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.

vc = g( y) + k2xv

k1
+ k3

(k1)
γ

β

[xv]
γ

β + k4 x̂2 − ρ2z2 − ρ3xa

− ξ( y, x̂2, t)Φ̂ − x̂1 − ρ1H( y)(z2 − ρ1 x̂1) − ρ1C( y, x̂2)x̂1 − ∏0

(6.38) 

where .ρ2 ∈ R+, .ρ3 ∈ R+ are the control gains, and .. ∏0 = ρ1

2
(c2max||z2||2+

.||H( y)||2)z2. Suppose that the control gains are chosen such that. ka − 0.5ρ2
3 − 0.5 >

0 and .ρ2 − 1 > 0, then all the states of the closed-loop system, i.e., . q and . q̇, are ulti-

mately uniformly bounded. The modeling error consisting of external disturbances, 

actuator fault, and system uncertainty is attenuated and compensated. 

Proof With application of the controller (6.36), it results in 

.Dτ c = Dsat(D
†

vc, τmax) = Δτ c + vc (6.39) 

Using the definition of . z2, inserting (6.38) into the adaptive SMO (6.22) yields 

.H( y) ż2 = Δτ c − C( y, x̂2)z2 − ρ1H( y)xv − x̂1 − ρ2z2 − ρ3xa − ∏0. (6.40) 

Consider a candidate Lyapunov function as .V3 = 1
2
(x̂

T
1 x̂1 + zT2 H( y)z2 + xTa xa). 

Using Property 6.2, the linearity property in Property 6.3, combining (6.6), (6.37), 

and (6.40) results in 

.

V̇3 = −ρ1||x̂1||2 − xv x̂
T
1 − xTa Δτ c + zT2 (−C( y, e2)z2 + Δτ c

− ρ1H( y)xv − ρ2z2 − ρ3xa − ∏0) − ka||xa||2 − ||Δτ c||2
(6.41) 

Because.||xv|| ≤ √
nk1 holds due to.xv = k1sgn(e1), it can be obtained from Property 

6.3 that 

.

zT2 (−C( y, e2)z2 − ρ1H( y)xv) ≤cmax||e2||||z2||2 + ρ1||H( y)||||z2||
√

nk1

≤ρ1c2max||z2||4
2

+ ||e2||2
2ρ1

+ ρ1

2
||H( y)||2||z2||2 + nk2

1

2ρ1

(6.42) 

Using Young’s inequalities .−xv x̂
T
1 ≤ ρ1||x̂1||2

2
+ nk21

2ρ1
, .zT2Δτ c ≤ ||Δτ c||2+||z2||2

2
, 

.−ρ3z
T
2 xa ≤ ||z2||2+ρ2

3 ||xa ||2
2

,.−xTa Δτ c ≤ ||Δτ c||2+||xa ||2
2

, and imposing (6.42), then (6.41) 

will be bounded by 

. V̇3 ≤ −ρ1

2
||x̂1||2 − (ρ2 − 1)||z2||2 −

(

ka − ρ2
3

2
− 1

2

)

||xa||2 + ||e2||2
2ρ1

+ nk2
1

ρ1

(6.43) 

It is known from the proof of Theorem 6.2 that, .||e2(t)|| ≤ ε holds for all .t ≥ 0. It  

follows from (6.43) that
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.V̇3 ≤ −2λ0V3 + ||ε||2
2ρ1

+ nk2
1

ρ1

(6.44) 

where .λ0 = min{0.5ρ1,
ρ2−1

lmax
, ka − 0.5ρ2

3 − 0.5}. That means that .V3 is ultimately 

uniformly bounded together with the states . x̂1, . z2, and .xa . More specifically, there 

exists a finite-time. t f such that.||x̂1|| < ε̄ and.||z2|| < ε̄ for. ∀ε̄ >

/

1
2λ0ρ1

(
||ε||2
2

+ nk2
1)

and .∀t > t f . 

Because .e1(t) is finite time stable in .T0 and .e2(t) is ultimately uniformly bounded 

with .||e2(t)|| ≤ ε, for all .t > t̄ f = max{t f , T0}, it follows  that  

.||x|| = ||x̂1 − e1|| ≤ ||x̂1|| + ||e1|| < ε̄ (6.45) 

and 

.||ẋ|| = ||x2|| ≤ ||x̂2|| + ||e2|| ≤ ||z2|| + ||ρ1 x̂1|| + ||e2|| < ε∗ (6.46) 

where .ε∗ = ε̄ + ρ1ε̄ + ε. It is thus concluded from (6.45), (6.46), and Definition 

2.1 that the states of the closed-loop system, i.e., . x and . ẋ are ultimately uniformly 

bounded. The proof is hence completed here. ⬜

It can be summarized from the proof of Theorem 6.3 that, only the system output, 

the states of the observer, and the state of the auxiliary system (6.37) are feedback 

to the controller (6.36). Hence, the controller is rigorously independent on the mea-

surements . ẋ. Moreover, the assumption, i.e., .||ẋ|| ≤ Q0 is also not required in the 

controller design. 

Summarizing the analyses in the proof of Theorem 6.3 and Remark 6.4, all the 

gains of the observer and the controller can be chosen according to the following 

procedures when implementing the proposed approach. 

• Step #1: Determine the observation/estimation accuracy accuracy . ε for . e2. 

• Step #2: It is seen in the proof of Theorem 6.2 that.ε =
/

2l0V2(0)+2ρ

lminl0
, then once can 

choose .η1, 0 < π1 < 1, . δ1, .δ2 > 0.5, . [, .x̂2(0), and .Φ̂(0) to satisfy this equation. 

• Step #3: Select . k1, . k2, . k3, . k4, . β, and . γ to satisfy inequalities (6.25), (6.26). 

• Step #4: Choose a positive . ε̄ according to the set of requirements (such as control 

accuracy) imposed by the mission. It is known from (6.45) that if smaller . ε̄ is 

selected, then higher accuracy will be achieved. 

• Step #5: Based on the inequality .ε̄ >

/

0.5||ε||2+nk21
2λ0ρ1

in the proof of Theorem 6.3 

and the value of . ε determined in Step 1, choose . ρ1, .ρ2 > 1, . ρ3, and .ka such that 

.ε̄ >

/

0.5||ε||2+nk21
2λ0ρ1

and .ka − 0.5ρ2
3 − 0.5 > 0. However, a smaller .ρ1 will lead to a 

high-accuracy control of . ẋ according to (6.46).
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6.7 Application to Microsatellite Attitude Control 

Having shown that, for proper choices of the gains for the observer and the controller 

as given in Sects. 6.5 and 6.6, the system states . x and . ẋ will be ultimately uniformly 

bounded, this section will apply the proposed control to the problem of rigid satel-

lite attitude stabilization control through along with accompanying simulation and 

experimental results. 

Consider a microsatellite controlled by using four reaction wheels with the 

maximum torque .τmax = 0.1 .N · m. The corresponding actuator matrix is . D∗ =
[1, 0, 0, 1√

3
; 0, 1, 0, 1√

3
; 0, 0, 1, 1√

3
]. Assuming that only the satellite attitude .σ is 

measurable, while its angular velocity .ω is immeasurable, i.e., .σ̇ = . [ω1, ω2, ω3]T
is immeasurable. Because .J∗(σ ) in (4.42) is a known function of . σ , consider-

ing reaction wheel faults, the transformed rigid satellite attitude system (4.42) 

in Sect. 4.3 can be put into the Euler-Lagrange system (6.1) with .g( y) = 0, by  

introducing the change of variables . y = σ , x1 = σ , x2 = σ̇ , D = (P(σ ))TD∗, and 
.d = (P(σ ))Tud . Hence, the proposed observer-based velocity-free control approach 

in this chapter is applicable to the rigid satellite attitude control problem. 

To this end, the control objective of that considered rigid satellite attitude system to 

be achieved can be stated as: Consider the rigid satellite attitude system described by 

(4.42) for given any initial attitude and angular velocity, design a velocity-free (i.e.,. σ̇

is not required) control law . u to accomplish attitude stabilization maneuver, i.e., the 

closed-loop attitude control system can be stabilized with the attitude . σ converging 

to zero or a small set containing the origin. Moreover, the control objective should 

be met in the presence of external disturbance .ud , actuator fault, actuator constraint, 

and system uncertainties. 

6.7.1 Simulation Results 

The external disturbance for .ud in (4.42) is calculated as in [ 9], and the following 

fault scenarios are introduced and simulated. 

• The actuator mounted in line with .+X B-axis loses .50% of its normal power after 

. 3s. 

• The actuator mounted in line with .+YB-axis loses its power of .10% in the time 

interval from . 5 to .10 s; this wheel gets locked-in place at a value of .−0.01 . N · m
after .10 s. 

• The actuator fixed in line with .+Z B -axis experiences .0.005 .N · m of floating 

around trim fault after . 7s, i.e.,.e3(t) = 1 for all.t ≥ 0, and.τ̄c3 = 0.005N · mwhen 

.t ≥ 7. 

• The fourth actuator is always healthy. 

For the considered rigid satellite, the uncertainties in its attitude control system 
are mainly induced by uncertain inertia. The mass properties of rigid may be uncer-
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tain due to onboard payload motion, rotation of solar arrays, or fuel consumptions, 
making . J time-varying and even uncertain. Therefore, the simulation is carried out 
under the condition that the moment inertia matrix .J = J0 + ΔJ is unknown and 
time varying. Here, .J0 = diag([16, 18, 23.5]T) .kg · m2 is the nominal part, and the 
following uncertain .ΔJ is considered in simulation. 

.ΔJ = (1 + exp(−0.1t) + 2υ(t − 10) − 1.5υ(t − 20))diag([3, 2, 1]T) kg · m2 (6.47) 

where .υ(·) is defined as .υ(t ≥ 0) = 1 and .υ(t < 0) = 0. 

Based on Remark  6.4 and the procedures of choosing the controller and observer 

parameters as stated in Sects. 6.5 and 6.6, the control gains for the controller 

(6.36) are chosen as .ka = 5, .ρ1 = 2.2, .ρ2 = 2.05, and .ρ3 = 2.75. The gains of the 

observer are chosen as .γ = 7, .β = 19, .k1 = 0.15, .k2 = 9, .k3 = 16, .k4 = 0.0005, 

.[ = diag([2, 2, 3, 3, 3, 4]T), and .δ1 = 0.001. The initial states of the satellite are 

.σ (0) = [0.4,−0.25, 0.3]T and .σ̇ (0) = [0, 0, 0]T rad/s. 

Figures 6.4 and 6.5 show the observer error states obtained from the SMO (6.6) 

and (6.22) incorporated in the controller (6.36). It is shown that sliding motion is 

obtained on .e1 = 0 in finite time at about 3.7 s. After a short period, roughly 0.3 s, 

uniformly ultimately bounded stability of .e2 is achieved. This convergence happens 

in the presence of external disturbance and actuator faults. Moreover, high observing 

accuracies for.x1 and.x2 are realized with the reconstruction error.|e1i | ≤ 2.0 × 10−7, 

and .|e2i | ≤ 1.0 × 10−5, i = 1, 2, 3. From the results obtained, the estimate states 

. x̂1, .x̂2 can converge to the actual states . σ , .σ̇ with minor errors under the effect 

of the observer despite external disturbance and reaction wheel faults. Hence, the 

conclusion in Theorem 6.2 is verified. 

Because the observer can precisely reconstruct the satellite attitude .σ and its 

angular velocity . σ̇ , the observer-based and its angular velocity-free controller (6.36) 

guarantees the satellite attitude and its velocity to be uniformly ultimately bounded 

stable in finite time roughly .65s, as we can see in Figs. 6.6 and 6.7. The attitude 

stabilization maneuver is thus accomplished without angular velocity measurement, 

even when an actuator fault occurs. The associated commanded control is shown in 

Fig. 6.8. The control power of each reaction wheel is within its maximum allowable 

Fig. 6.4 The observer error 

.e1 from the adaptive SMO
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Fig. 6.5 The observer error 

.e2 from the adaptive SMO
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Fig. 6.6 The attitude from 

the controller (6.36) 

Fig. 6.7 The angular 

velocity from the controller 

(6.36) 

limit, i.e., 0.1 .N · m. It is interesting to see Fig. 6.8 that the control power of each 

actuator will not be near zero. That is due to the fact that, extra control torque is 

needed to compensate for the lock-in-place fault, and the floating around trim fault 

occurring in the actuators in .+YB and .+Z B . 

Taking sensor noise into account, numerical simulation is further carried out 

to verify the realistic application of the proposed approach to engineering. For 

satellite, nongyroscopic sensors are equipped to measure its attitude information. 

In practical satellite engineering, attitude sensors are usually modeled by a zero-
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Fig. 6.8 The commanded 

control from the controller 

(6.36)
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mean Gaussian white-noise process with standard deviation .σST. Hence, the attitude 

control by using the designed scheme is further simulated with .σST = 35 arcsec-

onds, while the control and the observer gains are chosen the same as the values in 

the preceding simulation. Results show that, high observing accuracies for .x1 and 

.x2 are still guaranteed. The reconstruction errors are .|e1i | ≤ 2.2 × 10−5, and . |e2i | ≤
1.6 × 10−3, i = 1, 2, 3. Moreover, the attitude control accuracy is.|σi | ≤ 3.0 × 10−3, 

and.|ωi | ≤ 1.2 × 10−3, i = 1, 2, 3. Those control performances still satisfy the strin-

gent pointing requirements of the satellite to provide operation conditions for the 

payloads even in the presence of actuator faults. 

6.7.2 Experimental Results 

To test the proposed controller on the ground, the three-degrees-of-freedom simula-

tor shown in Fig. 2.4 is used. During experimental tests, the considered microsatellite 

will be mounted on the payload of this simulator. When the proposed approach is 

applied, the experimental results are shown in Figs. 6.9 and 6.10. It is seen from 

Fig. 6.9a that, the attitude stabilization is accomplished within .60 s. By transforming 

the modified Rodrigues parameters . σ into Euler attitude angles, it can be obtained 

that the attitude pointing accuracy achieved is .0.015 degrees. The resulting angular 

velocity is shown in Fig. 6.10. As the steady state behavior clearly shows in Fig. 6.11, 

attitude stability is within.0.002 deg/s. These control performances can guarantee the 

satellite attitude system satisfies necessary stringent requirements for accomplishing 

the planned mission, such as image taking and data transmission. On the other hand, 

it is worth mentioning that, the inertia moment cannot be precisely calculated in prac-

tice. As a result, the value of the inertia used in the implementation of the proposed
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Fig. 6.9 The experimental 

result of the attitude from the 

controller (6.36) 

Fig. 6.10 The initial angular 

velocity from the controller 

(6.36) in test  

control is not the exact value of the real inertia. Hence, there exist uncertainties in 

the attitude control system during experiments. 

Compared the experimental results in Figs. 6.9, 6.10 and 6.11 with the simu-

lation results in Figs. 6.6 and 6.7, almost no overshoot is observed in experiment 

results. That is because, when carrying out experiments on ground and indoor, there 

is no external disturbance acting on the testbed. However, it can be seen that the
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Fig. 6.11 The angular 

velocity’s steady-state from 

the controller (6.36) in test  

experimental results match the simulation results very well, and 60 s are needed to 

stabilize the attitude in both results. To summarize, high-accuracy pointing control 

(order of .10−2 deg) and high-accuracy attitude stability (order of .10−3deg/s) can 

high-accuracy attitude be realized through the proposed control. Hence, the easi-

ness of implementation, high accuracy, and robustness are well verified through the 

experiment. 

6.8 Summary 

A velocity-free fault-tolerant and modeling error compensation control approach 

was proposed for a class of nonlinear systems. The SMO presented achieved pre-

cise reconstruction of unmeasured system states even in the presence of system 

uncertainties. The control design was carried out using the estimated states and the 

measurement of system output. Contrary to the existing observer-based velocity-

free feedback control schemes, the controller guaranteed the uniformly ultimately 

boundedness of the states in the closed-loop system, despite actuator fault, actuator 

constraint, and external disturbance. The proposed method was applied to the attitude 

control of a satellite with only the measurement of attitude available. 
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Chapter 7 

Fixed-Time Optimal Attitude Control 

7.1 Introduction 

The main feature of the existing attitude control approaches can only achieve steady-

state performance. The transient control performance can not be determined or pre-

scribed. This is an important performance index in the practical satellite mission. To 

achieve satellite attitude maneuvering with external disturbances, performance con-

straints, and actuator faults [ 1], an adaptive FTC law was designed via the prescribed 

performance control (PPC) technique. Considering actuator fault and performance 

constraint, a robust FTC scheme was designed by the backstepping control technique 

[ 2]. Using the fixed-time and appointed-time prescribed performance functions, a 

adaptive fixed-time FTC law for a mechanical system [ 3] and a barrier Lyapunov 

functions-based adaptive appointed-time FTC algorithm for a satellite [ 4] were pre-

sented. 

Note that the optimal attitude control scheme is rarely reported to satellite atti-

tude control system with actuator fault. That is because obtaining the solution of the 

Hamilton–Jacobi–Bellman (HJB) equation is intractable. Motivated by this problem, 

the adaptive dynamic programming (ADP) method was available [ 5– 8]. It combines 

reinforcement learning (RL) and the dynamic programming method to improve con-

trol performance by learning environmental feedback. The ADP method applies the 

actor-critic/critic-only neural network (NN) to approximate the optimal control law. 

Hence, it circumvents the difficult problem of obtaining the HJB equation’s analytical 

solution in the traditional optimal control method [ 9– 11]. 

Currently, the RL-based approximate optimal control has been widely used. In 

[ 12], an optimal control policy utilizing online iterative learning was presented for 

a discrete-time nonlinear system. In [ 13], a backstepping tracking control scheme 

for an unmanned ship was developed by using actor-critic NN. Combining the game 

theory and the ADP, a distributed optimal FTC scheme was proposed for a class 

of nonlinear systems [ 14]. In [ 15], an RL-based optimal attitude tracking control 

policy was developed for satellites with uncertainties, where a critic-only NN was 

adopted to learn that control policy. In [ 16], an online learning attitude controller 
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via the saturated HJB error was proposed. A variable parameter was given to change 

the learning gain and relax the persistent excitation condition. In [ 17], the tracking 

control policy was designed by employing the ADP to accomplish a quadrotor’s 

path following. Usually, the RL-based optimal control policy needs to satisfy the 

persistent excitation assumption. To relax it, a modified online learning optimal 

control policy with the finite excitation assumption was proposed [ 18, 19]. Using 

the simple critic-only structure [ 8], the estimator-based optimal control was reported 

to ensure the optimality and predefined behavioral metrics of an uncertain Euler– 

Lagrange system by combining the RL and PPC method. Using the gradient descent 

approach, the finite-time convergent data-based updating law for the critic weight 

was developed [ 20]. The weight estimate error can be reduced to a tiny set in finite 

time. 

Most of the preceding RL-based optimal control can only guarantee the uniformly 

ultimately bounded stability of the closed-loop system. Although the closed-loop 

system has a good balance between the control cost and the control performance, 

its convergence rate may be slow. To solve this problem, a fixed-time fault tolerant 

optimal attitude control is presented in this chapter with its highlights listed as: 

• To guarantee the prescribed attitude stabilization performance, a prescribed per-

formance function without knowing the precise system’s initial value is designed. 

Utilizing the error transformation method, the attitude stabilization errors restricted 

by the function are transformed to the unconstrained variables. On this basis, a 

fixed-time RL-based optimal control framework is proposed to guarantee the atti-

tude control system’s prescribed performance, optimality, and fixed-time stability 

even in the presence of faults and disturbances. 

• The critic-only NN weight update law is presented by using the adaptive control 

methodology rather than the traditional gradient descent algorithm [ 9, 10, 18]. In 

particular, the proposed control scheme integrates the update law, which not only 

can make the weight update law independent of the persistent excitation condition, 

but also ensures the practical fixed-time stability of the estimation error. 

• Considering the advantages of finite-time control techniques, i.e., fast convergence 

rate and high convergence accuracy, the fractional terms are added to the design 

process of the classic ADP-based optimal controller to obtain the new ADP-based 

fixed-time optimal controller. Compared with the traditional approximate optimal 

control policies [ 9, 10, 18], the proposed RL-based optimal control framework 

can guarantee the system to be fixed-time stable. It means that the controlled 

system’s state and NN weight estimation error with the application of the presented 

controller have a faster convergence rate. 

7.2 Problem Statement 

Taking actuator fault into consideration, then the rigid satellite attitude system 

described by (2.21) and (2.24) can be given by
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.

{

σ̇ = G(σ )ω

Jω̇ = −ω× Jω + u + ς
(7.1) 

where .ς = ((E − I3)u + ū) + ud is the lumped term including the actuator fault 

.(E − I3)u + ū and the external disturbance torque .ud , where .. E = diag([l11, l22,

.l33]T) is the fault coefficient with .0 < li i ≤ 1, .i = 1, 2, 3, and .ū ∈ R
3 is the biased 

faulty torque. The model of the actuator faults, i.e., .(E − I3)u + ū, considered in 

this chapter is directly referred from [ 21] and [ 22]. It is fully analyzed in [ 21] and 

[ 22] that this model is practically reasonable. 

In aerospace engineering, the dynamic behavior of the attitude stabilization error is 

expected to be limited in the preset bounds to guarantee its transient and steady-state 

performance, i.e., the tracking error. σi ,.i =1, 2, 3 needs to satisfy.−ρ(t) < σi < ρ(t), 

where .ρ(t) is the prescribed performance function and designed as 

.ρ(t) = exp

(

1

a0 + t
− b0t

)

+ ρ∞ (7.2) 

where .a0 ∈ R+, .b0 ∈ R+, and .ρ∞ ∈ R+ are constants. Then, one has 

.ρ̇(t) =
(

−b0 − 1

(a0 + t)2

)

exp

(

1

a0 + t
− b0t

)

< 0 (7.3) 

The function (7.2) has the following properties: (i) .ρ(0) > ρ∞, (ii) . lima0→0 ρ(0) =
∞, and (iii) .limt→∞ ρ(t) = ρ∞, where .ρ∞ is the ultimately bound of .|σi |. The  

property (ii) indicates that the function (7.2) does not require the system’s initial 

states. 

A new variable .z = [z1, z2, z3]T is defined to transform the attitude stabilization 

error constrained by .ρ(t) into an unconstrained variable, i.e., 

.zi = 1

2
ln

1 + σi

ρi

1 − σi

ρi

, i = 1, 2, 3 (7.4) 

If . zi is bounded, then .σi is within the predefined bounds. The transformation process 

will be valid. Moreover, the time-derivative of (7.4) is given  as  

. ż = ⌃(σ̇ − [σ ) (7.5) 

where .⌃ = diag([ ρ1

ρ2
1−σ 2

1

,
ρ2

ρ2
2−σ 2

2

,
ρ3

ρ2
3−σ 2

3

]T) and .[ = diag([ ρ̇1

ρ1
,

ρ̇2

ρ2
,

ρ̇3

ρ3
]T). 

To this end, another state.x = [zT,ωT]T ∈ R
6 can be introduced to transform (7.1) 

into 

.ẋ = f (x) + G(x)u + G(x)ς (7.6) 

where. f (x) = [(⌃(G(σ )ω − [σ ))T,−(J−1ω× JωT)T]T and.G(x) = [0T, (J−1)T]T. 
Using (7.4), one can obtain . f (0) = 0.
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The control objective of this chapter can be stated as: For the rigid satellite attitude 

control system (7.1) with modeling error induced by actuator fault and external 

disturbance, design a reinforcement learning-based fault tolerant optimal attitude 

controller to stabilize the attitude with performance constraint. Moreover, this attitude 

stabilization should be accomplished within fixed time. 

Remark 7.1 When all the actuators of the rigid satellite system are fault-free, i.e., 

.ū = 0,.E ≡ I3 for all.t ≥ 0 and it is disturbance-free, the nominal system is obtained. 

According to (7.6), this nominal system can be written as 

.ẋ = f (x) + G(x)u (7.7) 

To stabilize this nominal system fast, an RL-based fixed-time optimal control frame-

work is designed. It is utilized as a fundamental controller of the subsequent fault 

tolerant control design. 

7.3 Fixed-Time Optimal Stabilization Control 

To guarantee the optimality of the nominal system (7.7), a control policy . u is to be 

designed to minimize the cost function .I (x), i.e., 

.I (x) =
{ ∞

0

U (x, u) dτ (7.8) 

where .U(x, u) = xT Qx + uTRu ≥ 0, .U(0, 0) = 0, .Q ∈ R
6×6 and .R ∈ R

3×3 are 

two positive-definite matrices. 

Using the optimal control policy .u∗, the corresponding optimal cost is given by 

.I
∗(x) =

{ ∞

0

U
(

x, u∗) dτ (7.9) 

Taking the time-derivative for both sides of .I∗(x), the following HJB equation is 

obtained 

.H(x, u∗,∇xI
∗) = U(x, u∗) + ∇T

x I
∗( f (x) + G(x)u∗) = 0 (7.10) 

where .∇xI
∗ ∈ R

6. 

Solving (7.10) can get the optimal control policy as 

.u∗ = −1

2
R−1GT(x)∇xI

∗ (7.11)
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Inserting .u∗ into (7.10), one has 

. H(x, u∗,∇xI
∗) = xT Qx + ∇T

x I
∗ f (x) − 1

4
∇T

x I
∗G(x)R−1G(x)T∇xI

∗ = 0

(7.12) 

Note that obtaining the solution to (7.12) is difficult, while the NN with sufficient 

basis functions compact set can reconstruct any smooth function. Therefore, the NN 

can be selected to approximate .I
∗(x), i.e., 

.I
∗(x) = ΞT(x)W∗ + ε(x) (7.13) 

where .Ξ(x) ∈ R
n denotes the basis function, .W∗ ∈ R

n is the optimal weight, and 

.ε(x) is the NN approximation error. Then, (7.11) can be rephrased as 

.u∗ = −1

2
R−1GT(x)

(

∇T
x ΞW∗ + ∇xε

)

(7.14) 

with.∇xΞ ∈ R
n×6. Hence, the approximation of.I∗(x) is written as.I(x) = ΞT(x)Ŵ. 

.u∗ is approximated by 

.u0 = −1

2
R−1GT(x)∇T

x ΞŴ (7.15) 

where .Ŵ is used to approximate .W∗. 

Assumption 7.1 The NN approximation error satisfies .||∇xε|| ≤ εN with .εN being 

a positive scalar [ 9, 18]. 

Theorem 7.1 Considering the rigid satellite’s nominal attitude system (7.7) in the 

presence of Assumption 7.1, if the RL-based optimal control policy is designed as 

.u = u0 − G(x)†
(

κtanh
( x

c

)

+ Ax + α [x]
p

q + β [x] m
n

)

(7.16) 

with the NN weight . Ŵ updated by 

.
˙̂
W = 1

2γ1
∇xΞG(x)R−1G(x)Tx − γ2

γ1
Ψ(x)Ŵ (7.17) 

where .κ ∈ R
6×6 and .A ∈ R

6×6 are positive diagonal matrices, .p > q and . m <

n are positive odd scalars, .α ∈ R+, .β ∈ R+, and .c ∈ R+ are positive constants, 

.Ψ(x) = exp(− γ3
||x|| ) + γ4, .γ1 ∈ R+, .γ2 ∈ R+, .γ3 ∈ R+, and .γ4 ∈ R+ are positive 

real numbers, then the NN weight approximation error .W̃ =W∗ − Ŵ and the 

state . x are fixed-time stable. 

Proof Let a candidate Lyapunov function be given as 

.V1 = 1

2
xTx + 1

2
γ1W̃

TW̃ (7.18)
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Differentiating .V1 and inserting (7.7) as well as (7.16) yield 

.

V̇1 = xT
(

f (x) + G(x)u0 − G(x)u∗ + G(x)u∗ − κtanh
( x

c

)

− Ax − α [x]
p

q − β [x] m
n

)

− γ1W̃
T ˙̂
W

=W̃T

(

1

2
∇xΞG(x)R−1G(x)Tx − γ1

˙̂
W

)

+ xT ( f (x)

+ 1

2
G(x)R−1GT(x)∇xε + G(x)u∗ − Ax − α [x]

p

q

−β [x] m
n − κtanh

( x

c

))

(7.19) 

Using (7.17), .W̃TŴ ≤ −min(Ψ(x))||W̃||2 + max(Ψ(x))||W∗||2 can be 

obtained. Note that . f (x) is locally Lipchitz function, there is a positive scalar 

.L f satisfying .|| f (x)|| ≤ L f ||x||. One can obtain .||G(x)|| ≤ Ḡ, where .Ḡ is a real 

number. Since .u∗ is the optimal control policy to enforce the states of the sys-

tem (7.7) to converge to the origin, it is reasonable to assume that it has an 

upper bound satisfying .||u∗|| ≤ ψ . Consider the inequality . |χ | − χ tanh
(

χ

c

)

≤ η̄0c

reported in [ 23], where .η̄0 = 0.2785, c > 0, and .χ ∈ R. Furthermore, using the fact 

that .||x|| =
∑6

i=1

(

x2i
)

1
2 ≤

∑6
i=1 |xi |, one has 

. −xTκtanh
( x

c

)

≤ λmin(κ)

(

−
6

∑

i=1

|xi | + 6η̄0c

)

≤ −λmin(κ)||x|| + η0 (7.20) 

with .η0 = 6λmin(κ)η̄0c. 

Then, .V̇1 is simplified as 

.

V̇1 ≤ − min{Ψ(x)}γ2||W̃||2 − λmin(A)||x||2 + η0

+ γ0||x|| − λmin(κ)||x|| + γ2max{Ψ(x)}||W∗||2 + L f ||x||2

≤ − α1V1 + β1

(7.21) 

where .α1 = min{ 2γ2min(Ψ(x))

γ1
, 2(λmin(A) − L f )}, .β1 = η0 + γ2max(Ψ(x))||W∗||2. 

If .λmin(κ) ≥ Ḡψ + 1
2
λmax(R−1)Ḡ2εN and .λmin(A) − L f > 0 are satisfied, one has 

.V1 ≤
(

V1(0) − β1

α1

)

exp(−α1t) + β1

α1
. Hence,. x and.W̃ are bounded. One can assume 

that .||W̃|| ≤ k1, where .k1 ∈ R+ is a positive constant. 

In addition, (7.19) can be rewritten as 

.

V̇1 = xT
(

f (x) − Ax + 1

2
G(x)R−1GT(x)∇xε − α [x]

p

q − β [x] m
n

− κtanh
( x

c

)

+ G(x)u∗
)

+ γ2Ψ(x)W̃TŴ

(7.22)
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where the last term of (7.22) is bounded by 

.

γ2Ψ(x)W̃TŴ = γ2Ψ(x)

n
∑

i=1

(W̃iW
∗
i − W̃2

i )

≤ − η1

2
||W̃||2 + η2

2
||W∗||2 − η1

2
(||W̃||2) m+n

2n

− η2

2
(||W̃||2)

p+q

2q + η1

2
(||W̃||2) m+n

2n + η2

2
(||W̃||2)

p+q

2q

(7.23) 

with .η1 = min{γ2Ψ(x)} and .η2 = max{γ2Ψ(x)}. 
Using the similar process in (7.21) and (7.23), .V̇1 in (7.22) can be simplified as 

.

V̇1 ≤ xT
(

− α [x]
p

q − β [x] m
n

)

+ η0 + γ2Ψ(x)W̃TŴ

≤ − αxT [x]
p

q − βxT [x] m
n − η1

2
(||W̃||2) m+n

2n − η2

2
(||W̃||2)

p+q

2q

− η1

2
||W̃||2 + η1

2
(||W̃||2) m+n

2n + η2

2
(||W̃||2)

p+q

2q + η0 + η2

2
||W∗||2

(7.24) 

If .||W̃||2 < 1, one has .− η1
2
||W̃||2 + η1

2
(||W̃||2) m+n

2n < ξ , where .. ξ = (a0)
a0

1−a0 −
.(a0)

1
1−a0 and .a0 = m+n

2n
is a positive scalar. If .||W̃||2 ≥ 1, it leads to . − η1

2
||W̃||2 +

η1
2
(||W̃||2) m+n

2n ≤ 0. 

According to (7.21), there is a positive scalar .k1 satisfying .||W̃|| < k1, then it can 

prove that 

.

V̇1 ≤ − α(||x||2)
p+q

2q − β(||x||2) m+n
2n

η2

2
(||W̃||2)

p+q

2q + η1

2
ξ + η2

2
(k2

1)
p+q

2q

+ η0 + η2

2
||W∗||2 − η1

2
(||W̃||2) m+n

2n

≤ − α2V
p+q

2q

1 − β2V
m+n
2n

1 + ηι

(7.25) 

where .α2 = 2
p−q

2q min
{

2
p+q

2q 6
p−q

2q α,
η2
2
( 2

γ1
)

p+q

2q

}

, .β2 = min
{

2
m+n
2n β,

η1
2
( 2

γ1
)

m+n
2n

}

, and 

.ηι = η1
2
ξ + η2

2
(k2

1)
p+q

2q + η0 + η2
2
||W∗||2. According to (7.25) and Lemma 2.4, the  

state . x in the nominal system (7.7) and .W̃ can converge to the corresponding small 

regions .D1 and . D2

.D1 =
{

x : lim
t→T1

||x|| ≤
√
2min

{

( ηι

α2(1 − θ0)

)
q

p+q ,
( ηι

β2(1 − θ0)

)
n

m+n

}}

(7.26) 

.D2 =
{

x : lim
t→T1

||W̃|| ≤
/

2

γ1
min

{

( ηι

α2(1 − θ0)

)
q

p+q ,
( ηι

β2(1 − θ0)

)
n

m+n

}}

(7.27) 

within the fixed time.T1 determined by.T1 ≤ 2q

α2θ0(p−q)
+ 2n

β2θ0(n−m)
, where.0 < θ0 < 1. 

Hence, the attitude stabilization error . σ will be restricted in the prescribed bounds
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due to the boundedness of . z, i.e., .x = [zT,ωT]T is bounded. The conclusion in 

Theorem 7.1 is thereby proved. 

Because. x and.W̃ are bounded by.D1 and.D2, respectively, we can further analyze 

the error between the designed controller (7.16) and the optimal solution (7.14), i.e., 

.u − u∗. It follows  that  

.

u − u∗ = 1

2
R−1GT(x)

(

∇T
x ΞW̃ + ∇xε

)

− G(x)†
(

Ax + κtanh
( x

c

)

+ α [x]
p

q + β [x] m
n

)

(7.28) 

Let the radiuses of the sets.D1 and.D2 be.rd1 and.rd2, respectively. Then, it follows that 

.||Ax + κtanh(x/c) + α [x]
p

q + β [x] m
n || ≤ ϒ , where. ϒ = λmax(A)rd1 + λmax(κ)

+ α
√
6rd1

p

q + β
√
6rd1

m
n . Moreover, it is also reasonable to assume that. ||∇xΞ|| ≤ φ̄

and .||G(x)†|| ≤ Ḡ0, where .φ̄ ∈ R+ and .Ḡ0 ∈ R+ are positive scalars. Then, it can 

be concluded that 

.||u − u∗|| ≤ 1

2
λmax(R

−1)Ḡ(φ̄rd2 + εN ) + Ḡ0ϒ (7.29) 

Therefore, when. x and.W̃ converge to the small residual sets.D1 and.D2, respectively, 

the control policy . u can approach to the optimal control .u∗. In accordance, the 
controller (7.16) is an approximate optimal controller. ⬜

Remark 7.2 The approximated optimal control policy (7.16) is different from the 

RL-based optimal control law in [ 5, 18]. The development of the control law (7.16) is  

inspired by the concept of sliding mode control. In (7.16), the continuous robust term 

.κtanh
(

x
c

)

is employed to attenuate the NN approximation error, which is usually 

used to attenuate the bounded external disturbance in sliding mode control. The other 

three terms .Ax + α [x]
p

q + β [x] m
n are designed to increase the converge rate (i.e., 

achieving fixed-time stability). Therefore, the fixed-time stability of the closed-loop 

system is achieved. 

Remark 7.3 The existing NN weight updating laws of the actor-critic/critic-only 

NN are designed by gradient descent algorithm and depend on the persistent/finite 

excitation assumptions [ 5, 9, 18, 24]. The weight estimation errors are uniformly 

ultimately bounded. Different from them, the weight updating law (7.17) not only 

relaxes these assumptions but also ensures that the weight estimation errors converge 

to a small neighborhood around zero with fixed-time convergence. Therefore, the 

critic-only NN can approximate the function .I
∗ with a faster rate. 

Remark 7.4 The designed term .Ψ(x) = exp(− γ3
||x|| ) + γ4 in weight update law 

(7.17) is to tune the weight .Ŵ adaptively. One can see that the term is related to the 

state . x. For all . x, .Ψ(x) > 0. When the state . x is far away from the origin, the value 

of .Ψ(x) is big. When the state . x is near to the origin, the value of .Ψ(x) is small. This 

means the adjustment process of neural network weight has more self-adaptation 

ability compared with a single constant . γ4.
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7.4 Fixed-Time Optimal Fault-Tolerant Control 

Considering the modeling error consisting of external disturbance and actuator fault, 

the system (7.6) can be rewritten as 

.ẋ = f (x) + G(x)u + ς1 (7.30) 

where .ς1 = G(x)ς is the modeling error. 

In view of (7.30), an estimator will be designed to compensate for the modeling 

error .ς1. Moreover, introducing a new variable as 

.ẋa = f (x) + G(x)u + β1xe (7.31) 

where .β1 ∈ R+ is a positive constant. 

From (7.30) and (7.31), .xe = x − xa is defined. One has .ẋe = ς1 − β1xe. Then, 

the following nonlinear estimator is proposed to estimate .ς1. 

.ς̂1 = β1 x̂e + ẋe (7.32) 

where .ς̂1 is the estimation of .ς1. 

Defining .x̃e = xe − x̂e, where .x̂e is the estimation of .xe and updated by 

.
˙̂xe = ẋe + β2 x̃e + b1 [x̃e]

m
n + b2 [x̃e]

p

q (7.33) 

where .β2 ∈ R+, .b1 ∈ R+, and .b2 ∈ R+ are constants. Then, it follows that 

.

˙̃xe = ς1 − β1xe − (ẋe + β2 x̃e + b1 [x̃e]
m
n + b2 [x̃e]

p

q )

= − β2 x̃e − b1 [x̃e]
m
n − b2 [x̃e]

p

q

(7.34) 

and the estimator error .ς̃1 = ς1 − ς̂1 satisfies 

. ς̃1 = ς1 −
(

β1 x̂e − β1xe + ς1

)

= β1 x̃e (7.35) 

To this end, selecting .V̄ = 0.5x̃
T
e x̃e and differentiating it as well as inserting (7.34), 

one has . ˙̄V ≤ −2
m+n
2n b1V̄

m+n
2n − 2

p+q

2q 6
p−q

2q b2V̄
p+q

2q . Using Definition 2.1, it can prove 

that .x̃e converges to the origin within the fixed time . T0. The estimation error .ς̃1 can 

also converge to zero when .t ≥ T0. 

Remark 7.5 The term . ẋ is required in the designed observer. The sliding mode 

differentiator given in [ 25] can be applied to obtain the value of . ẋ by inputting 

the value of . x into that differentiator. In engineering, the attitude and the angular 

velocity can be measured by sensors. Hence, . x is measurable. The estimator (7.32) 

is implementable in practice.
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Theorem 7.2 For the faulty attitude control system (7.30), applying the estimator 

(7.32), if the RL-based fixed-time fault-tolerant optimal control policy is synthesized 

as 

. u = u0 − G(x)†
(

κtanh
( x

c

)

+ Ax + β2
1

4β2

x + α [x]
p

q + β [x] m
n − ς̂1

)

(7.36) 

then the system state . x, the estimation error . ς̃ , and the weight estimation error . W̃

can be steered into the corresponding small sets within a fixed time. The prescribed 

performance and the optimality of the faulty system are ensured simultaneously. 

Proof Let another Lyapunov candidate function be specified by 

.V2 = 1

2
xTx + 1

2
γ1W̃

TW̃ + 1

2
x̃
T
e x̃e (7.37) 

Substituting (7.30), (7.35), and (7.36) into .V̇2, it yields 

. 

V̇2 = xT( f (x) + G(x)u + ς1) − γ1W̃
T ˙̂
W + x̃

T
e
˙̃xe

= xT
(

f (x) + G(x)u0 − G(x)u∗ + G(x)u∗ − ς̂1 + ς1 − κtanh
( x

c

)

− Ax − α [x]
p

q − β [x] m
n − β2

1

4β2

x
)

− γ1W̃
T ˙̂
W + x̃

T
e
˙̃xe

= xT
(

f (x) + G(x)u0 − G(x)u∗ + G(x)u∗ − κtanh
( x

c

)

− Ax − α [x]
p

q − β [x] m
n − β2

1

4β2

x
)

+ β1x
T x̃e − γ1W̃

T ˙̂
W + x̃

T
e
˙̃xe

(7.38) 

Using the definition of . x̃e, .V̇2 can be written as 

. 

V̇2 ≤ −
(

β2||x̃e||2 − β1||x||||x̃e|| + β2
1

4β2

||x||2
)

− b1 x̃
T
e [x̃e]

m
n − b2 x̃

T
e [x̃e]

p

q

+ xT
(

f (x) + G(x)u0 − G(x)u∗ + G(x)u∗ − κtanh
( x

c

)

− Ax − α [x]
p

q − β [x] m
n

)

− γ1W̃
T ˙̂
W

≤ −
(

√

β2||x̃e|| − β1

2
√

β2

||x||
)2

− b1 x̃
T
e [x̃e]

m
n − b2 x̃

T
e [x̃e]

p

q + xT
(

f (x)

+ G(x)u0 − G(x)u∗ + G(x)u∗ − κtanh
( x

c

)

− Ax − α [x]
p

q

− β [x] m
n

)

− γ1W̃
T ˙̂
W

(7.39)
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According to (7.23), .V̇2 can be simplified as 

. 

V̇2 ≤ − α(||x||2)
p+q
2q − β(||x||2)

m+n
2n + η2

2
||W∗||2 − η1

2
(||W̃||2)

m+n
2n − η2

2
(||W̃||2)

p+q
2q

− b1(||x̃e||2)
m+n
2n − b2(||x̃e||2)

p+q
2q − λmin(A)||x||2 + L f ||x||2 + xT

(

G(x)u∗

+ 1

2
G(x)R−1GT(x)∇xε

)

− κ ||x|| + η0

≤ − α3V

p+q
2q

2 − β3V
m+n
2n

2 + ηκ

(7.40) 

where.β3 = min
{

2
m+n
2n β,

η1
2
( 2

γ1
)

m+n
2n , b12

m+n
2n

}

,..ηκ = η1
2
ξ + η2

2
(k2

1)
p+q

2q +η0 + η2
2
||W∗||2, 

and .α3 = 3
p−q

2q min
{

2
p+q

2q 6
p−q

2q α,
η2
2
( 2

γ1
)

p+q

2q , 2
p+q

2q 6
p−q

2q b2

}

. 

If.λmin(κ) ≥ Ḡψ + 1
2
λmax(R

−1)Ḡ2εN and.λmin(A) − L f > 0 are satisfied, (7.40) 

will hold. Utilizing Lemma 2.4, it can prove that the system (7.30) is stable within 

fixed-time. T2, which is bounded by.T2 ≤ 2q

α3θ0(p−q)
+ 2n

β3θ0(n−m)
with.0 < θ0 < 1.After  

. T2, . x, .W̃, and .x̃e will converge into the residual sets .D3, .D4, and .D5, respectively. 

They are given by 

.D3 =
{

x : ||x|| ≤
√
2min

{

( ηκ

(1 − θ0)α3

)
q

p+q ,
( ηκ

(1 − θ0)β3

)
n

m+n

}}

(7.41) 

.D4 =
{

W̃ : ||W̃|| ≤
/

2

γ1
min

{

( ηκ

(1 − θ0)α3

)
q

p+q ,
( ηκ

(1 − θ0)β3

)
n

m+n

}}

(7.42) 

.D5 =
{

x̃e : ||x̃e|| ≤
√
2min

{

( ηκ

(1 − θ0)α3

)
q

p+q ,
( ηκ

(1 − θ0)β3

)
n

m+n

}}

(7.43) 

Therefore, the proposed RL-based fixed-time fault-tolerant optimal controller can 

drive the state . x converge to the small region .D3. The prescribed performance of 

the attitude stabilization error . σ is assured. According to (7.35) and (7.40), one can 

obtain that the estimation error . ς̃ such that .||ς̃ || = β1||x̃e|| ≤ β1rd5, where .rd5 is the 

radius of .D5. The proposed estimator thus precisely compensates for the modeling 

error. ⬜

Remark 7.6 The Lyapunov function .V2 contains the estimation error . x̃e, i.e., . ς̃1 =
β1 x̃e. According to (7.40), .x̃e can converge to the small set .D5 when .t > T2. The  

boundedness of the estimation error .ς̃1 will be ensured for all .t > 0. The stability 

proof of the overall estimator-controller closed-loop system is presented.
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7.5 Numerical Example 

In this section, Theorems 7.1 and 7.2 are examined by numerical simulation with the 

following two cases considered. 

(1) Case I: There is no actuator fault and no external disturbance acting on the 

satellite attitude system. 

(2) Case II: The satellite attitude system is subject to some actuator fault and 

external disturbance. 

The rigid satellite’s inertial matrix is.J = [20, 0, 0.9; 0, 17, 0; 0.9, 0, 15] kg · m2. 

Its initial states are set as .Ξ(0) = [0.2517, 0.388,−0.4247]T and . ω(0) = [0, 0, 0]T
rad/s. The parameters of the prescribed performance function (7.2) are selected as 

.a0 = 80, .b0 = 0.3, and .ρ∞ = 0.0001. The set of neural network basis function is 

selected as .Ξ(x) = [x2
1 , x2

2 , x2
3 , x1x2, x2x3, x1x3]T. The control gains in (7.36) are  

given as .γ1 = 0.008, .R = 0.2I3, .κ = 0.01I6, .A = 2I6, .α = 0.5, .β = 4, .
p

q
= 17

19
, 

and . m
n

= 19
13
. To show the superiority of the RL-based fixed-time optimal control 

scheme in reducing control cost quantitatively, the simulation results of each case 

will eventually be computed using a new cost function .Vci , .i = 1, 2, i.e., . Vci =
{ ∞
0

(x̄TQx̄ + uTRu)dt , where .x̄ = [σ T,ωT]T, .Q = 5I6, and .R = 5I3. 

7.5.1 Simulation Result of Case I 

In this case, the RL-based fixed-time optimal control policy (7.16) with performance 

constraints (it is named as PPCADP here) and the traditional RL-based optimal con-

trol policy with critic-only NN structure (TADP) in [ 18] are compared. The attitude 

. σ guaranteed by PPCADP and TADP is shown in the Figs. 7.1 and 7.2, respectively. 

It is seen in Fig. 7.1 that. σ1,. σ2, and.σ3 are within the pre-specified region given by the 

bounded functions and have a faster convergence rate. They are stable before .10 s. 

The angular velocity is shown in Fig. 7.3. PPCADP ensures higher control accu-

racy and smaller stabilization time than TADP. The initial weight of .Ŵ is selected 

.Ŵ(0) = [58, 60, 56, 60, 62, 61]T, the NN weight (i.e., .Ŵ) updated by (7.17) is  

demonstrated in Fig. 7.5. The weight .Ŵ remains at the corresponding stable value 

when the attitude control system is stable. The control input of the nominal system 

with PPCADP and TADP is presented in Fig. 7.4. The dashed line has a smaller 

control torque when the system is stable. To achieve a faster convergence rate and 

higher control accuracy, PPCADP requires a bigger initial control input. However, 

the lower cost of the overall spacecraft attitude control system with PPCADP can be 

achieved than TADP. This can be seen in the total control cost .Vc1 shown in Fig. 7.6. 

.Vc1 obtained from TADP in the first .40 s is larger due to it slower convergence rate.
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Fig. 7.1 The attitude achieved by PPCADP in Case I
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Fig. 7.2 The attitude achieved by TADP in Case I
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Fig. 7.3 The angular velocity achieved by PPCADP and TADP in Case I
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7.5.2 Simulation Result of Case II 

In this case, the external disturbance is supposed as 

.ud =

⎡

⎣

3 cos (0.02t) + 2.5 sin (0.01π t)

1.5 cos (0.02π t) − 2 sin (0.04t)

3.4 cos (0.02π t) − 0.5 sin (0.02t)

⎤

⎦ × 10−2 N · m (7.44) 

The actuator fault is listed in the Table 7.1. To estimate the lumped term . ς , the  

parameters of estimator (7.32) are selected as .b1 = 2, .b2 = 3, .β1 = 0.2, and . β2 =
0.5. 

The RL-based fixed-time fault-tolerant optimal controller (7.36) (ADPFTC) and 

the integral sliding mode fault-tolerant control (ISMFTC) in [ 26] are compared. 

The initial value of .Ŵ is set as .Ŵ(0) = [73, 74, 75, 77, 76]T. The convergence 
performance of the attitude .σ with the application of ADPFTC and ISMFTC are 

shown in Figs.  7.7 and 7.8, respectively. Although the convergence time of both 

control schemes is similar (i.e., they are stable before .20 s), compared with Fig. 7.8, 

one can find that the attitude . σ1, . σ2, and .σ3 in Fig. 7.7 are within the predefined 

bounds strictly. 

The angular velocity is depicted in Fig. 7.9, ADPFTC achieves higher control 

accuracy and smaller convergence time than ISMFTC. The estimation error . ς̃ is 

shown in the Fig. 7.11. The estimation accuracy resulting from the proposed estimator 

. ς̂ is high (i.e., .|ς̃i | < 3 × 10−5, .i = 1, 2, 3). The estimated weight .Ŵ is shown in 

Fig. 7.12, and .Ŵ remains at a stable value finally. The control torque of the faulty 

system with ADPFTC and ISMFTC are shown in Fig. 7.10. ADPFTC demands 

smaller control torque. The control cost .Vc2 is presented in Fig. 7.13. It demonstrates 

that the lower cost of the attitude control system with ADPFTC was achieved than 

ISMFTC. Furthermore, .Vc2 achieved by ADPFTC in the first .100 s is reduced by 

.64.77% compared with ISMFTC. To this end, the effectiveness of the RL-based 

control (7.35) is verified. 

Table 7.1 The actuator faults in Case II 

.i-

Actuator 

.li i .ūi (N. ·m) 

.i = 1 .

{

1 0 < t < 15

0.9 + 0.05 sin(2π t) 0 ≥ 15
0.001 

.i = 2 .

{

0.9 0 < t < 10

1 0 ≥ 10
0 

.i = 3 .

{

0.6 + 0.1 sin(3π t) 0 < t < 20

1 0 ≥ 20
0.05.sin(t)
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Fig. 7.7 The attitude achieved by ADPFTC in Case II
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Fig. 7.8 The attitude achieved by ISMFTC in Case II
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Fig. 7.9 The velocity achieved by ADPFTC and ISMFTC in Case II
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Fig. 7.10 The control achieved by ADPFTC and ISMFTC in Case II
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Fig. 7.13 .Vc2 achieved by 

ADPFTC and ISMFTC in 

Case II 
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V
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Total 0-10s 10-40s 40-100s 

786.6 785.73 

0.56 0.31 

277.1 276.22 

0.57 0.31 

7.6 Summary 

An RL-based fixed-time attitude optimal control framework was presented for satel-

lites with prescribed performance, external disturbance, and actuator fault. An NN 

weight update law without employing finite/persistent excitation conditions was 

designed. The weight estimation error can converge to a small region within a fixed 

time. A fixed-time estimator was introduced to address the external disturbance and 

actuator fault. The proposed RL-based fault-tolerant optimal control policy guar-

anteed that the system states, the weight estimation error, and the lumped term 

estimation error were fixed-time stable. This approach achieved faster stability in 

comparison with the uniformly ultimately bounded stability of the existing RL-based 

optimal control method. 
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Chapter 8 

Faster Fixed-Time Attitude Stabilization 

Control 

8.1 Introduction 

Applying the finite-time attitude controllers, the settling time cannot be precisely 

estimated. Some conditions should be imposed on states to obtain a desirable con-

vergence time. The finite-time convergence depends on initial states [ 1]. A prior 

precise estimation of the settling time can not be obtained. 

Unlike the finite-time stability (FTS) [ 2, 3], the fixed-time stability [ 4, 5] is effi-

cient to guarantee a desired finite convergence time despite any initial states. Only 

the control gains determine the settling time. This method can obtain finite-time 

convergence while the settling time does not depend on initial states. Its key feature 

is that the bound of settling time is determined by control gains only. Hence, the 

convergence rate of the system states can be predefined offline. For instance, a fixed-

time control approach was available for network consensus [ 6]. Inspired by [ 6], a 

non-singular fixed-time TMSC approach was proposed for nonlinear systems with 

matched uncertainties [ 7]. In [ 8], it was shown that the settling-time ensured by the 

NTSMC controller is not optimal, the proposed stable system achieved less conver-

gence time than that in [ 6]. Another fixed-time control scheme was proposed in [ 9] to  

ensure the satellite attitude to have fixed-time convergence despite uncertainties and 

disturbances. In [ 10], the fixed-time attitude tracking problem for rigid satellites was 

studied with singularity avoided. The predefined convergence time of the attitude 

tracking error was guaranteed further. The fixed-time relative position and attitude 

synchronization control of satellite fly-around mission for a noncooperative target 

was studied in [ 12]. Two relative position and attitude stabilization controllers with 

fixed-time convergence were further presented to achieve the fly-around maneuver 

for a non-cooperative target [ 11, 13]. 

Motivated by providing faster attitude control capability, a novel fast fixed time 

but singularity-free stable system is preliminarily designed in this chapter. Applying 

the proposed fixed-time stable system, a continuous faster fixed-time controller is 

then developed for the attitude stabilization maneuvering of a flexible satellite. The 

main features of this chapter are highlighted as follows: 
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• A new fixed-time surface is preliminary presented based on a novel fixed-time 

stable system. Compared with the existing fixed-time stable system [ 6, 8], the 

proposed fixed-time stable system can provide a faster convergence rate. 

• A novel faster fixed-time sliding mode-based attitude control framework is pre-

sented for flexible satellites. The attitude and the angular velocity are governed 

to be practically fixed-time stable despite uncertain inertia, disturbance, and any 

initial states. In comparison with the existing fixed-time approaches [ 9, 10, 12, 

14, 15], a global faster convergence is ensured when the states are near or far from 

the equilibrium point. 

• Compared with the adaptive attitude controllers [ 16– 18], the designed controller 

is continuous and chattering free. 

8.2 Problem Statement 

In this chapter, the satellite considered is flexible. The attitude kinematics (2.19)– 

(2.20) and the attitude dynamics (2.25)–(2.26) are used to describe the flexible satel-

lite attitude control system. Moreover, the modeling error considered in this chapter 

consists of the disturbance torque .ud and uncertain inertia. Let the nominal inertia 

and the uncertain inertia be denoted by .J0 (positive definite) and .ΔJ , respectively 

it leads the total inertia . J in (2.25) to be .J = J0 + ΔJ . 

Assumption 8.1: There is a positive scalar .a1 ∈ R+ such that .||ΔJ || ≤ a1. 

Assumption 8.2: The disturbance torque.ud is finite. A positive scalar.a2 ∈ R+ exists 

such that .||ud || ≤ a2. 

Assumption 8.3: The flexible coupling term .δη̈ + ω×δη̇ in (2.26) satisfies . ||δη̈ +
ω×δη̇|| ≤ a3 + a4||ω|| with two positive constants .a3 ∈ R+ and .a4 ∈ R+. 

Since the flexible appendages of any on-orbital satellite have damping devices, 

the flexible vibration will be bounded. The damping devices will run to decrease the 

flexible vibration, when the vibration is large. Hence, .δη̈ and .δη̇ = [η̄1, η̄2, η̄3]T are 

bounded in practice. There exists two positive constants .ā3 ∈ R+ and .ā4 ∈ R+ such 

that .||δη̈|| ≤ ā3 and .||δη̇|| ≤ ā4. Then, one has . ||δη̈ + ω×δη̇|| ≤ ā3 + a4||ω×δη̇|| ≤
ā3 +

√
3ā4||ω||. Assumption 8-3 is thus reasonable, i.e., .ā3 = a3 and .a4 =

√
3ā4. 

To this end, the control problem of this chapter is formulated as: Despite the 

modeling error induced by the uncertainty inertia .ΔJ and the unknown disturbance 

.ud , the flexible vibration, and any initial states, develop a controller to guarantee that 

the flexible satellite attitude system (2.19)–(2.20) and (2.25)–(2.26) is practically 

fixed-time stable. Two positive scalars.∈q ∈ R+ and.∈ω ∈ R+ exist such that. ||q(t)|| ≤
∈q and .||ω(t)|| ≤ ∈ω for .t ≥ ts , where .ts ∈ R+ is a positive constant.
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8.3 A New Fixed-Time Stable System 

Theorem 8.1 Let a system be designed as 

.. ż = − 1

N (z)

(

α0[z]1+γ0 + β0[z]
p1
q1

)

(8.1) 

where .z ∈ R is the system state, .N (z) = a1 + (1 − a1) exp(−b1|z|c1) and . γ0 =
( m1

2n1
)(1 + sgn(|z| − 1)). .α0 > 0, .β0 > 0, .0 < a1 < 1, and .b1 > 0 are four scalars. 

.c1 > 0 is an even integer. .m1 > 0, .n1 > 0, .p1 > 0, and .q1 > 0 are odd integers 

satisfying .m1 > n1 and .p1 < q1. Then, the system (8.1) is fixed-time stable. 

Proof Introducing a new variable as .y = |z|
q1−p1
q1 and using (8.1), it follows that 

..

ẏ =q1 − p1

q1
[z]− p1

q1 ż

= q1 − p1

q1N[z]
p1
q1

(α0[z]1+γ0 + β0[z]
p1
q1 )

=q1 − p1

q1

1

N (z)
(α0|z|

q1−p1
q1

+γ0 + β0)

=q1 − p1

q1

1

N (z)
(α0y

1+γ0
q1

q1−p1 + β0)

(8.2) 

Solving (8.2), the settling-time .Ts is given by 

..

Ts = q1

q1 − p1

{ y(0)

0

N (z)

α0y
1+γ0

q1
q1−p1 + β0

dy

= q1

q1 − p1

(

{ y(0)

1

N (z)

α0y
1+γ0

q1
q1−p1 + β0

dy +
{ 1

0

N (z)

α0y
1+γ0

q1
q1−p1 + β0

dy

)

= q1

q1 − p1

({ y(0)

1

N (z)

α0yρ1 + β0

dy +
{ 1

0

N (z)

α0y + β0

dy

)

(8.3) 

where .ρ1 = 1 + m1q1
n1(q1−p1)

. 

If .N (z) = 1, the settling-time (8.3) can be rewritten as 

.. T '
s = q1

q1 − p1

({ y(0)

1

1

α0yρ1 + β0

dy +
{ 1

0

1

α0y + β0

dy

)

(8.4) 

Since .a1 ≤ N (z) < 1, it is proved from  (8.3) and (8.4) that .Ts < T '
s is valid for 

any .y(0). The system (8.1) is therefore fixed-time stable by using Definition 2.1. 

Moreover, invoking .ρ1 = 1 + m1q1
n1(q1−p1)

> 1, .T '
s is bounded by
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..

T '
s ≤ q1

q1 − p1

({ y(0)

1

1

α0yρ1
dy +

{ 1

0

1

α0y + β0

dy

)

≤ q1

q1 − p1

(

1 − y(0)1−ρ1

α0(ρ1 − 1)
dy +

{ 1

0

1

α0y + β0

dy

)

≤ n1

α0m1

+ q1

q1 − p1

1

α0

ln

(

1 + α0

β0

)

(8.5) 

To this end, the proof of Theorem 8.1 is completed. ⬜

In [ 6], a fixed-time stable system (named as FTSS1) is presented as 

..ż = −α0z
m1
n1 − β0z

p1
q1 (8.6) 

Another fixed-time stable system (called as FTSS2) is also given in [ 8], which is 

..ż = −α0z
1
2
+ m1

2n1
+

(

m1
2n1

− 1
2

)

sgn(|z|−1) − β0z
p1
q1 (8.7) 

For FTSS1 and FTSS2, .α0 > 0 and .β0 > 0 are two scalars. .m1 > 0, .n1 > 0, .p1 > 0, 

.q1 > 0 are four odd integers such that .m1 > n1 and .p1 < q1. 

Theorem 8.2 The convergence rate of the proposed fixed-time stable system (8.1) 

is faster than FTSS1 and FTSS2. 

Proof It can be obtained from [ 6] and [ 8] that the settling time of FTSS1 and FTSS2 

can be uniformly given by 

.. TF = q1

q1 − p1

({ y(0)

1

1

α0yξ + β0

dy +
{ 1

0

1

α0y + β0

dy

)

(8.8) 

where .ξ = 1 + (m1−n1)q1
n1(q1−p1)

for FTSS1 and .ξ = 1 for FTSS2. 

Subtracting .TF from .T '
s yields 

..

T '
s − TF = q1

q1 − p1

({ y(0)

1

1

α0yρ1 + β0

dy −
{ y(0)

1

1

α0yξ + β0

dy

)

= q1

q1 − p1

{ y(0)

1

α0(y
ξ − yρ1)

(α0yρ1 + β0)(α0yξ + β0)
dy

(8.9) 

In accordance to the definition of .ρ1 and . ξ , one has .ρ1 > ξ and .yξ − yρ1 < 0. Then, 

.T '
s − TF < 0 can be proved from (8.9) for any initial states. As a consequence, 

.Ts < T '
s < TF is obtained. This implies that the convergence rate of the proposed 

system (8.1) is faster than FTSS1 and FTSS2. ⬜

Remark 8.1 .N (z) in (8.1) is used to tune the convergence rate. When the states are 

far from the equilibrium point, .N (z) tends to .a1 and then .
1

N (z)
approaches . 1

a1
> 1. A
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faster convergence is thus obtained. Once the states are near the equilibrium point, 

.N (z) approaches. 1. This means that.N (z) varies between. 1 and. a1. Moreover, a novel 

power term is also included in (8.1). As the states become smaller, .γ0 can improve 

the convergence rate. According to definition of . γ0, when .|z| < 1, the proposed 

fixed-time stable system (8.1) uses a linear term of . z instead of .[z] m
n . As a result, the 

convergence speed significantly increases due to.m1 > n2. Therefore, in combination 

with Theorem 8.2, it could be claimed that (8.1) is a new fast fixed-time stable system. 

8.4 Fixed-Time Faster Sliding Mode Surface 

Inspired by Theorem 8.1, a novel non-singular faster sliding mode surface (NFSMS) 

is presented as 

..S = ω + 1

N (q)
(k1[q]1+γ0 + k2Sc) (8.10) 

where .S = [S1, S2, S3]T, .γ0 = m1

2n1
(1 + sgn(||q|| − 1), and .. N (q) = a1 + (1 − a1)

.exp(−b1||q||c1). .m1 > 0 and .n1 > 0 are two odd integers such that .m1 > n1. 

.0 < a1 < 1, .b1 > 0, .k1 > 0, and .k2 > 0 are positive gains. .c1 > 0 is an even integer. 

.Sc = [Sc1, Sc2, Sc3]T is designed 

..Sci =
{

|qi |
p1
q1 sgn(qi ), if S̄i = 0 or S̄i /= 0, |qi | ≥ φ̄

l1qi + l2q
2
i sgn(qi ), if S̄i /= 0, |qi | < φ̄

(8.11) 

with .i = 1, 2, 3 and a constant .0 < φ̄ < 1. .p1 and .q1 are two positive integers satis-

fying .p1 < q1, and 

..l1 =
(

2 − p1

q1

)

φ̄
p1
q1

−1
(8.12) 

..l2 =
(

p1

q1
− 1

)

φ̄
p1
q1

−2
(8.13) 

..S̄ = [S̄1, S̄2, S̄3]T = ω + 1

N (q)

(

k1[q]1+γ0 + k2[q]
p1
q1

)

(8.14) 

Theorem 8.3 Consider the flexible satellite system described by (2.19)–(2.20) and 

(2.25)–(2.26), once its states reach the NFSMS (8.10), i.e.,.S = S̄ = 0, then they will 

respectively converge to their stable equilibrium points .q = [1, 0, 0, 0]T and . ω = 0

in a fixed time despite any initial attitude and angular velocity. 

Proof Once the NFSMS (8.10) is reached, it follows that .S = S̄ = 0 and 

..ω = − 1

N (q)
(k1[q]1+γ0 + k2Sc) (8.15)
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Define a Lyapunov function as .V1 = 0.5(qTq + (1 − q0)
2), its time-derivative can 

be computed from (2.19)–(2.20) as  

..V̇1 = − q T

2N (q)

(

k1[q]1+γ0 + k2[q]
p1
q1

)

(8.16) 

which can prove . lim
t→∞

q = 0 and . lim
t→∞

q0 = 1 or .−1. 

Consider a new Lyapunov candidate function as .V2 = 0.5qTq + 0.5(1 + q0)
2. 

Differentiating .V2 results in 

..V̇2 = qT

2N (q)

(

k1[q]1+γ0 + k2[q]
p1
q1

)

(8.17) 

It is found from (8.17) and the Lyapunov instability theorem [ 19] that the equilibrium 

point.[qT, q0]T = [0, 0, 0,−1]T is not stable..[qT, q0]T = [0, 0, 0, 1]T is thus selected 
as the equilibrium point to be stabilized. 

Since .q0 → 1, the following inequality is satisfied. 

..(1 − q0)
2 ≤ (1 − q0)(1 + q0) = q2

1 + q2
2 + q2

3 (8.18) 

which implies .V1 ≤ q2
1 + q2

2 + q2
3 . Therefore, one has 

..V̇1 ≤ −α1V
2+γ0
2

1 − βV

q1+p1
2q1

1 (8.19) 

where .α1 = 3−0.5γ0 k1
2N (q)

and .β = k2
2N (q)

. Invoking Theorem 8.1, . q and . ω are proved to be 

fixed-time stable. ⬜

Remark 8.2 The development of the adjustable function .N (q) in (8.10) is inspired 

by [ 20]. Although .N (q) in (8.10) is the same as the adjustable function used in [ 20], 

and the other part of the sliding surface (8.10) is different from the sliding surface 

given in [ 20]. As proved in Theorem 8.3, a fixed-time convergence can be obtained 

from (8.10) despite any initial states. However, the finite convergence time obtained 

from [ 20] is dependent on the system’s initial states. This article is an improvement 

and extension of [ 20]. 

8.5 Faster Fixed-Time Attitude Controller 

Using the NFSMS (8.10) and the dynamics (2.25)–(2.26), one has 

..J0 Ṡ = F + u + ∏ (8.20) 

where
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.

F = − ω× J0ω + 1

N 2(q)
J0

(

1

2
N (q)(k1P1 + k2P2)(q0 I3 + q×)ω

−Ṅ (qv)(k1[q]1+γ0 + k2Sc)
)

(8.21) 

.P1 = (1 + γ0)diag(|q|γ0) (8.22) 

.P2 = diag([P21, P22, P23]T) (8.23) 

.P2i =
{

p1
q1

|qi |
p1−q1
q1 , if S̄i = 0 or S̄i /= 0, |qi | ≥ φ̄, i = 1, 2, 3

l1 + 2l2|qi |, if S̄i /= 0, |qi | < φ̄
(8.24) 

and .∏ = ud − ω×δη̇ − δη̈ − ΔJω̇ − ω×ΔJω. 

According to Assumption 8-1 to Assumption 8-3, one has 

..||∏|| ≤ a2 + a3 + a4||ω|| + a1||ω̇|| + a1||ω||2 ≤ c1 + c2M (8.25) 

where .c1 = a2 + a3 and .c2 = max {a1, a4} are constants but unknown. . M = ||ω|| +
||ω̇|| + ||ω||2 is available by using the measurement . ω. Therefore, it can be obtained 

that 

..||∏||2 ≤ (c1 + c2M)(c1 + c2M) = κ1 + κ2M + κ3M
2 (8.26) 

where .κ1 = c21, .κ2 = 2c1c2, and .κ3 = c22 are positive but unknown constants. 

Let a robust adaptive fixed-time control law be designed as 

.. u = − 1

N (S)

(

γ1S + γ2[S]1+γ̄ + γ3[S]
p2
q2

)

− F − uadp (8.27) 

where .γ̄ = m2

2n2
(1 + sgn(||S|| − 1)). .γ1 > 0, .γ2 > 0, and .γ3 > 0 are constants. . m2 >

0, .n2 > 0, .p2 > 0, and .q2 > 0 are four odd integers satisfying .m2 > n2, .p2 < q2. 

.uadp is an adaptive control effort specified by 

..uadp = S

2ε2
(κ̂1 + κ̂2M + κ̂3M

2) (8.28) 

with .κ̂i ∈ R updated by 

..
˙̂κ1 = p11

( ||S||2
2ε2

− p12κ̂1

)

(8.29) 

..
˙̂κ2 = p21

( ||S||2M
2ε2

− p22κ̂2

)

(8.30)
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..
˙̂κ3 = p31

( ||S||2M2

2ε2
− p32κ̂3

)

(8.31) 

where .ε ∈ R+, .p11 ∈ R+, .p12 ∈ R+, .p21 ∈ R+, .p22 ∈ R+, .p31 ∈ R+, and . p32 ∈ R+
are positive gains. 

Theorem 8.4 When implementing the fixed-time attitude controller (8.27) with the 

adaptive update law (8.28) to the flexible satellite attitude system (2.19)–(2.20) and 

(2.25)–(2.26), the closed-loop system is practically fixed-time stable. 

Proof Construct a Lyapunov function as 

..V3 = ST J0S +
3

∑

i=1

1

pi1
κ̃2
i (8.32) 

where .κ̃i = κi − κ̂i . Using  (8.27)–(8.31), one can differentiate .V3 as 

.. 

V̇3 =2ST(F + u + ∏) −
3

∑

i=1

2

pi1
κ̃i ˙̂κ i

= − 2ST

N (S)

(

γ1S + γ2[S]1+γ̄ + γ3[S]
p2
q2

)

− 2ST(uadp − ∏) −
3

∑

i=1

2

pi1
κ̃i ˙̂κi

≤2||S||||∏|| − 2γ2

N (S)

3
∑

i=1

|Si |2+σ2 −
3

∑

i=1

2

pi1
κ̃i ˙̂κi

− 2γ3

N (S)

3
∑

i=1

|Si |
p2
q2

+1 − 2STuadp − 2γ1

N (S)
||S||2

(8.33) 

Using (8.26) and .||S||||∏|| ≤ ||S||2||∏||2
2ε2

+ ε2

2
, it leaves (8.33) as  

..

V̇3 ≤ε2 − 2γ2

S

3
∑

i=1

|Si |2+γ̄ − 2γ3

N (S)

3
∑

i=1

|Si |
p2
q2

+1 −
3

∑

i=1

κ̃i

( ||S||2M i−1

ε2

−2pi2κ̂i
)

− 2γ1

N (S)
||S||2

≤ε2 − 2γ1

N (S)
||S||2 +

3
∑

i=1

(pi2κ
2
i − pi2κ̃

2
i )

= − η1V3 + δ1

(8.34) 

where.η1 = min{ 2γ1
N (S)λmax(J0)

, p11 p12, p21 p22, p31 p32},.δ1 =
∑3

i=1 pi2κ
2
i + ε2. Then, 

one can prove that . S and .κ̃i are uniformly ultimately bounded. It is therefore reason-

able to assume that there exist positive constants . ζi such that .|κ̃i | ≤ ζi , .i = 1, 2, 3.
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On the other hand, (8.33) can be also simplified as 

.. 

V̇3 ≤ε2 − 2γ2

N (S)

3
∑

i=1

|Si |2+γ̄ − 2γ3

N (S)

3
∑

i=1

|Si |
p2
q2

+1 −
3

∑

i=1

κ̃i

( ||S||2M i−1

ε2
− 2pi2κ̂i

)

− 2γ1

N (S)
||S||2

≤ − 2γ2

N (S)

3
∑

i=1

|Si |2+γ̄ − 2γ3

N (S)

3
∑

i=1

|Si |
p2
q2

+1 + 2p12κ1κ̃1 + 2p22κ2κ̃2 + 2p32k3κ̃3 + ε2

≤ − 2γ2

N (S)

(

1

λmax(J0)

)

2+γ̄
2

(||S||)2+γ̄ − 2γ3

N (S)

(

1

λmax(J0)

)

p2+q2
2q2

(||S||)
p2+q2
q2

−
3

∑

i=1

(

ξi

pi1
κ̃2
i

)

2+γ̄
2

−
3

∑

i=1

(

ξi

pi1
κ̃2
i

)

p2+q2
2q2 + δ1

(8.35) 

where .κ̃i κ̂i = κ̃2
i − κ̃iκi ≤ χi

2
κ2
i − 2χi−1

2χi
κ̃2
i is used, .χi ∈ R+ is a positive scalar, . i =

1, 2, 3,.δ1 =
∑3

i=1

(

χ̄i

pi1
κ̃2
i

)
2+γ̄

2 +
∑3

i=1

(

χ̄i

pi1
κ̃2
i

)

p2+q2
2q2 −

∑3
i=1

2χ̄i

pi1
κ̃2
i +

∑3
i=1 pi2χiκ

2
i , 

and .χ̄i = 2χi−1

2χi
. 

If . ξi
pi1

κ̃2
i ≥ 1, it has 

..

(

ξi

pi1
κ̃2
i

)
2+γ̄

2

+
(

ξi

pi1
κ̃2
i

)

p2+q2
2q2

− 2ξi

pi1
κ̃2
i ≤

(

ξi

pi1
κ̃2
i

)
2+γ̄

2

− ξi

pi1
κ̃2
i (8.36) 

For the case .
ξi
pi1

κ̃2
i < 1, it follows that 

..

(

ξi

pi1
κ̃2
i

)
2+γ̄

2

+
(

ξi

pi1
κ̃2
i

)

p2+q2
2q2

− 2ξi

pi1
κ̃2
i ≤

(

ξi

pi1
κ̃2
i

)

p2+q2
2q2

− ξi

pi1
κ̃2
i ≤ 1 (8.37) 

Following .|κ̃i | ≤ ζi , (8.36), and (8.37), it yields 

..

(

ξi

pi1
κ̃2
i

)
2+γ̄

2

+
(

ξi

pi1
κ̃2
i

)

p2+q2
2q2

− 2ξi

pi1
κ̃2
i ≤ max

{

(

ξi

pi1
ζ 2
i

)
2+γ̄

2

− 1, 1

}

(8.38) 

Then, using Lemma 2.2, (8.35) can be rewritten as 

..V̇3 ≤ −η2V
2+γ̄

2

3 − η3V

p2+q2
2q2

3 + δ2 (8.39) 

where 

..η2 = min

{

γ2

(

1

λmax(J0)

)
2+γ̄

2

, ξ
2+γ̄

2

i

}

(8.40)



174 8 Faster Fixed-Time Attitude Stabilization Control

..η3 = min

{

γ3

(

1

λmax(J0)

)

p2+q2
2q2

, ξ

p2+q2
2q2

i

}

(8.41) 

..δ2 =
3

∑

i=1

(

max

{

(

ξi

pi1
ζ 2
i

)
2+γ̄

2

− 1, 1

}

+ pi2χiκ
2
i

)

+ ε2 (8.42) 

Invoking Lemma 2.4 and (8.39) can prove that the NFSMS (8.10) is practically 

fixed-time stable. The states and . S will converge to the set . D3 = {S : ||S|| ≤ ∈s}
after fixed time . T̄1, where .∈s = min{h1, h2} and 

..h1 =
(

δ2

(1 − θ̄ )η2

)
2

2+γ̄

(8.43) 

..h2 =
(

δ2

(1 − θ̄ )η3

)

2q2
p2+q2

(8.44) 

..T̄1 <
2n2

η1m2

+ 2q2

q2 − p2

1

η1
ln

(

1 + η2

η3

)

(8.45) 

with a scalar .0 < θ̄ < 1. 

Once the NFSMS (8.10) converges into the set .D3, the following three cases 

should be analyzed. 

Case 1: If  .S̄i = 0 is reached, it implies that .S = 0. Based on the Theorem 8.3, 

.qi = 0 and .ωi = 0 will be achieved after fixed time, .i = 1, 2, 3. 

Case 2: If  .S̄i /= 0 and .|qi | ≤ φ̄, according to (8.11), then one has .. ωi + 1
N (q)

.(k1[qi]1+γ0 + k2(l1qi + l2q
2
i sgn(qi ))) = Si . Because the NFSMS (8.10) converges 

to the set .D3 = {S : ||S|| ≤ ∈s} after fixed time . T̄1, it follows  that  

..∈ω = ∈s + k1∈
1+γ0
q + k2∈

p1
q1
q (8.46) 

..∈q = max

{

φ̄,min

{

(

∈s

k1

)

1+γ0
2

,

(

∈s

k2

)

p1
2q2

}}

(8.47) 

Case 3: If .S̄i /= 0 and .|qi | ≥ φ̄, it can be got that 

.. ωi + 1

N (qv)

(

k1[qi]1+γ0 + k2[qi]
p1
q1

)

= Si (8.48) 

which can be rewritten as 

.. ωi + 1

N (qv)

(

k1 − Si

[qi]1+γ0

)

[qi]1+γ0 + 1

N (qv)
k2[qi]

p1
q1 = 0 (8.49)
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.. ωi + 1

N (qv)
k1[qi]1+γ0 + 1

N (qv)

(

k2 − Si

[qi]
p1
q1

)

[qi]
p1
q1 = 0 (8.50) 

Choosing .k1 and .k2 such that .k1 − Si
[qi ]1+γ0

> 0 or .k2 − ψi

[qi ]p1/q1
> 0, then it is con-

cluded from Theorem 8.1 that the angular velocity .ωi will converges to zero after 

fixed-time. At this time, based on .ωi = 0 after fixed-time, solving (8.48) leads to 

.|qi | ≤ ∈q after fixed-time. 

Summarizing the analysis in Case 1, Case 2, and Case 3, it can be concluded that 

the attitude. qi and the angular velocity.ωi will converge into the sets. D4 = {qi : |qi | ≤
∈q} and .D5 = {ωi : |ωi | ≤ ∈ω} after fixed time, respectively. Using Definition 2.2, it  

is proved that the closed-loop flexible satellite attitude control system is practically 

fixed-time stable. ⬜

Remark 8.3 When applying the proposed approach to perform attitude maneuvers 

in practice, the controller (8.27) and the adaptive control law (8.28) will be imple-

mented and numerically computed by an embedded computer equipped in flexible 

satellites. The designed approach is thus implementable and applicable in practical 

aerospace engineering. 

Remark 8.4 The implementation of the proposed approach, the work of tuning 

or choosing the control gains . ki , . γ j , . pi , . qi , .mi , . ni , . ε, . a1, . b1, . c1, and . φ̄, .i = 1, 2, 

. j = 1, 2, 3, to achieve higher pointing accuracy and acceptable control effort should 

be carefully done. The following details should be followed when choosing gains. 

(1) The parameter . φ̄ has a direct effect on the converging accuracy of the system 

states . q and . ω. It is found from (8.10) that the selection of . φ̄ affects the effectiveness 

of resolving the singularity problem. When .φ̄ = 0, the proposed NFSMS (8.10) 

becomes the conventional fast terminal sliding mode manifold, which leads to the 

unexpected singularity problem. 

(2) Larger .ki and .γ j leads to a faster convergence rate. However, larger .ki and . γ j

will result in a large overshoot and more control energy consumption. 

(3) For the purpose of accomplishing attitude control with high pointing accuracy, 

. ε should be chosen small enough. Since. ε appears in the denominator of.uadp, a higher 

control input is required. Hence, a tradeoff should be considered between the control 

effort and the system performance. Fortunately, since the maximum torque generated 

by actuators is known to a designer, the gain . ε should be selected to satisfy that the 

control torque does not exceed the maximum power. 

(4) According to the settling time expression, the parameters . pi , . qi , .mi , and . ni
also play important roles in dominating the system convergence rate and accuracy. 

When applying the proposed fixed-time attitude control approach, those control 

gains should be chosen appropriately to achieve the desired convergence rate and 

attitude control accuracy. It should be stressed that there is not a standard procedure 

to select out those gains. They are currently selected by trial and error until a good 

tracking performance is obtained.
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8.6 Simulation Results 

To verify the capability of the presented approach, simulation is conducted with the 

controller (8.29) applied to a flexible satellite with .. J0 = [486.7, 14.9,−1.2; 14.9,
.177.4,−7.3,−1.2,−7.3, 404.3] kg · m2 and .. δ = [1, 0.1, 0.1; 0.5, 0.1, 0.01;−1,

.0.3, 0.01] kg 1
2 · m/s2. For this satellite, the first three elastic modes are considered, 

i.e.,.N = 3. The natural frequencies of the flexible appendage are.⌃1 = 1.8912 rad/s, 

.⌃2 = 2.884 rad/s, and .⌃3 = 3.4181 rad/s. The damping ratios are .ξ1 = 0.01, . ξ2 =
0.01, and .ξ3 = 0.01. The control gains are chosen as .γ1 = 5, .γ2 = γ3 = 20, .k1 = 1, 

.k2 = 0.8, .p1 = p2 = 9, .q1 = q2 = 15, .m1 = m2 = 35, .n1 = n2 = 33, . a1 = a2 =
0.8, .b1 = b2 = 10, .c1 = c2 = 2, .φ̄ = 0.001, .pi j = 0.1, .i = 1, 2, 3, . j = 1, 2, and 

.κ1(0) = κ2(0) = κ3(0) = 0. The initial states are.q(0) = [−0.31, 0.09, 0.41, 0.85]T, 

.ω(0) = [0.01, 0.02, −0.01]T rad/s, .η(0) = 0, and .η̇(0) = 0. The uncertain inertia is 

assumed as .ΔJ = 0.1J . Moreover, the following external disturbance is considered 

.d =

⎡

⎣

0.2 cos(0.2π t) − 0.1 cos(0.4π t) − 0.1

0.3 sin(0.2π t) − 0.1 cos(0.4π t) + 0.2

0.2 sin(0.2π t) − 0.2sin(0.4π t) − 0.3

⎤

⎦N · m. (8.51) 

After applying the controller (8.27) to the attitude stabilization maneuvering task, 

the resulting attitude and the rotation velocity are shown in Figs. 8.1, 8.2, 8.3 and 

8.4, respectively. Those results verify the analysis in Sect. 8.5 well. The proposed 

law ensures a fast convergence. The planned attitude maneuver is accomplished 

after .ts = 12 seconds. The attitude control accuracy is superior to .1.2 × 10−6, i.e., 

.|qi | ≤ 1.2 × 10−6 is ensured for.t ≥ 12 seconds,.i = 1, 2, 3, 4. The control accuracy 

of the rotation velocity is better than.1.5 × 10−6 rad/s, i.e.,.|ωi | ≤ 1.5 × 10−6 rad/s is 

achieved for.t ≥ 12 seconds,.i = 1, 2, 3. The ensured convergence time, the pointing 

accuracy, and the attitude stability can provide the satellite’s payload with a perfect 

attitude system. Hence, the planned missions can be successfully carried out. The 

control power requested to achieve that control performance is shown in Fig. 8.5. 

Moreover, the flexible vibration is illustrated in Fig. 8.6. It is seen that the flexible 

vibration is bounded and damped naturally. The reasonability of Assumption 8-3 is 

verified. 

The pointing accuracy and the attitude stability are plotted in terms of the conver-

gence time in Fig. 8.7. It shows that different requirements on the pointing accuracy 

and the attitude stability lead to different convergence time. For instance, if the mis-

sion requires the satellite to provide the control accuracy of .|qi | ≤ 2.2 × 10−6 and 

.|ωi | ≤ 2.2 × 10−6 rad/s, then the convergence time is 8.8 s. It is seen that inferior 

control accuracy corresponds to less convergence time. 

To further assess the suggested controller’s performance, the following two per-

formance indices are considered. 

(1) The integral absolute errors (IAEs) of the attitude and the angular velocity 

described as .IAEqi =
{ To
0

|qi (t)|dt , .IAEωi
=

{ To
0

|ωi |dt , .i = 1, 2, 3, where . To ∈ R

is the attitude maneuvering time. A less IAE means a faster convergent rate.
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Fig. 8.1 The initial attitude 

from the controller (8.27)
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Fig. 8.2 The 

steady-behavior of the 

attitude from the controller 

(8.27)
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Fig. 8.3 The initial angular 

velocity from the controller 

(8.27)
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(2) The integral time-weighted absolute errors (ITAEs) defined as . ITAEqi =
{ To
0

t |qi (t)|dt , .ITAEωi
=

{ To
0

t |ωi |dt , .i = 1, 2, 3. The ITAE index evaluates the con-

trol accuracy of the steady-state behavior rather than the initial response. Note that 

the ITAE index does not evaluate the sluggish initial errors. However, the initial errors 

could be evaluated by the IAE index. Hence, those two performance indices should 

be considered simultaneously to comprehensively evaluate the attitude stabilization
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Fig. 8.4 The 

steady-behavior of the 

velocity from the controller 

(8.27)
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Fig. 8.5 The input of the 

controller (8.27)
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Fig. 8.6 The flexible 

vibration from the controller 

(8.27)
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performance of any control schemes despite system uncertainties and disturbances. 

Smaller IAE and ITAE mean better control performance. 

With these two performance indices in mind, the fixed-time control strategies 

presented in [ 6] and [ 8] are also applied to the considered flexible satellite attitude 

system to carry out numerical simulation for the purpose of comparing their control 

performance with that of the designed approach. The obtained performance indices of 

those three controllers are listed in Table 8.1 and Table 8.2 to acquire more insights on
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Fig. 8.7 The relation between the control accuracy and the convergence time 

Table 8.1 The IAE performance comparison of three schemes 

IAE The controller (8.27) The controller [ 8] The controller [ 6] 

.I AEq1 10.3 10.52 11.3 

.I AEq2 2.6 2.9 3.1 

.I AEq3 14.6 16.1 16.9 

.I AEω1 6.4 9.5 10.1 

.I AEω2 2.6 4.1 4.2 

.I AEω3 8.8 13.3 13.7 

Table 8.2 The ITAE performance comparison of three schemes 

IAE The controller (8.27) The controller [ 8] The controller [ 6] 

.I AEq1 25.7 34.1 41.5 

.I AEq2 3.6 5.3 6.1 

.I AEq3 33.9 55.1 63.2 

.I AEω1 19.93 44.7 52.4 

.I AEω2 5.78 12.7 14.2 

.I AEω3 29.9 69.2 77.1 

the effectiveness of the controllers. It is observed that the desired control performance 

was guaranteed by the controller (8.27) in the presence of the external disturbance 

(8.51). The convergence rate provided by the proposed controller is faster than those 

in [ 6] and [ 8]. 

To this end, it can be concluded from the abovementioned simulation results that 

the presented faster fixed-time control approach successfully solves the fixed-time 

attitude stabilization problem for flexible satellites with external disturbance and 

uncertainties. The proposed law obtaining an improved performance, such as fast 

transient and high precision compared to existing attitude controllers, is validated.
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8.7 Summary 

A new faster fixed-time attitude stabilization controller was presented for flexible 

satellites. Regarding any initial attitude and angular velocity, the attitude stabilization 

maneuvering was accomplished after a fixed convergence time despite any uncer-

tain inertia parameters and disturbances. The attitude and the angular velocity were 

practically fixed-time stable. Compared with the existing fixed-time controllers, the 

designed approach can provide the system’s states with a faster convergence rate near 

or far from the stable equilibrium points. The proposed controller was non-singular 

and chattering-free. 
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Compensation Attitude Control



Chapter 9 

Extended-State Observer-Based Attitude 

Control 

9.1 Introduction 

Recent years have witnessed a lot of attention to the flexible satellite attitude control 

problem. Many control schemes have been presented [ 1], including the backstep-

ping control [ 2], the proportional-derivative control [ 3], the .H∞ control [ 4], the 

adaptive control [ 5], the active disturbance rejection [ 6], the DOB control [ 7], and so 

forth [ 8]. 

Although a number of studies have shown that robust control techniques are effec-

tive in handling flexible vibrations, most of them can only guarantee robustness rather 

than asymptotic stability of the closed-loop attitude system. A satisfactorily high-

accuracy of attitude control would not be achieved. When using adaptive or sliding 

mode control techniques to design controllers for external disturbance rejection and 

flexible vibration attenuation, and to achieve asymptotic attitude control, the upper 

bound of disturbance and vibrations are usually estimated in the controller design. 

It results in that the controller has certain conservativeness. 

In view of addressing those drawbacks, one effective but direct methodology is 

to estimate the disturbance and flexible vibrations as accurately as possible first, and 

then design the controller by using the estimated value. Therefore, inspired by the 

concept of fault detection and identification block [ 9– 11] that detects and identifies 

faults online and reconfigures the controller online, or nonlinear observer of esti-

mating system uncertainties [ 12– 14], a nonlinear estimator-based control approach 

is presented in this chapter for a flexible satellite. An estimator is first designed to 

estimate the magnitude of external disturbance and unknown flexible vibrations in 

satellite attitude dynamics. This is achieved in finite time and with zero estimation 

error. A controller designed by using that estimated value is then presented. Asymp-

totic stability of the closed-loop system is guaranteed. 

The main contribution of this chapter in comparison with the existing schemes 

in the literature for external disturbances rejection and vibration attenuation control 

is that, the proposed approach is able to achieve high-accuracy attitude control with 
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asymptotic stability of the closed-loop system, and to guarantee no conservativeness 

of the developed controller. 

9.2 Mathematical Model 

The mechanical structure of a flexible satellite considered in this chapter is shown in 

Fig. 9.1. The model consists of a rigid hub with radius . b, which denotes the central 

body of the satellite, and two uniform cantilever flexible beams with the length . l and 

the tip mass .m p, which represent antennas, solar arrays, or any other flexible struc-

tures. This model is representative of a relatively large class of spacecraft employed 

for communication, remote sensing, or numerous other applications. Denote . w(x, t)

as the flexible deformation at point . x with respect to the frame .FB , .x ∈ [0, l]. 
The dynamic model of the considered flexible satellite motion can be found from 

Euler-Lagrange analysis and is given by the attitude kinematics (2.15) and the dynam-

ics (2.25)–(2.26). Moreover, by using appropriate calculations, this flexible satellite 

attitude kinematics (2.15) and the dynamics (2.25)–(2.26) can be combined into the 

following two-order differential equation: 

.M(Θ)Θ̈ + H1(Θ, Θ̇)Θ̇ + H2(Θ, Θ̇) = τ − d (9.1) 

where .d = −RT(Θ)(−ω×δη̇ − δη̈ + ud), .τ = RT(Θ)u, .M(Θ) = RT(Θ)J R(Θ), 

.H1(Θ, Θ̇) = RT(Θ)
(

J dR(Θ)

dt
− ω× J R(Θ)

)

, and .. H2(Θ, Θ̇) = −RT(Θ)

.

(

J dωc(Θ)

dt
− ω× Jωc(Θ)

)

. 

Property 9.1 The matrix .M(Θ) is symmetric positive-definite. 

l 

I
X 

B
X 

B
Y 

B
Z 

O 
b 

p
m 

B
Z

B
Y 

w(x,t) 

Flexible deformation 

Fig. 9.1 The mechanical structure of the flexible satellite in Chap. 9
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Property 9.2 .Ṁ(Θ) − 2H1(Θ, Θ̇) is skew-symmetric. For any .x ∈ R
3 and . Θ ∈

R
3, .xT(Ṁ(Θ) − 2H1(Θ, Θ̇))x = 0 is always valid. 

9.3 Problem Statement 

The main goal is to design a controller for the flexible satellite to accomplish atti-

tude stabilization maneuver with high-attitude pointing accuracy and high stability. 

More specifically, given any initial attitude and angular velocity, consider the flexible 

satellite attitude system described by (2.15) and the dynamics (2.25)–(2.26) in the  

presence of modeling error due to external disturbances .ud and unknown flexible 

vibrations, design a controller . u that the body-fixed frame .FB is controlled to coin-

cide with the frame .FO . It can guarantee that the attitude .Θ and the angular velocity 

.ωb are globally asymptotically stable, i.e., .Θ → 0 and .ωb → 0. 

Remark 9.1 It is worth mentioning that the flexible structures are not controlled. 

That is because there is no control input for the dynamics of flexible structures, as 

it can be seen in (2.26). This means that the controller to be developed is inherently 

a passive but not an active control law for suppressing the vibration of flexible 

structures. Only the attitude controller needs to be designed with the desired attitude 

maneuver accomplished, while it is not necessary to design a control law to achieve 

vibration suppression control of a flexible structure. Actually, if the controller is an 

active vibration suppression scheme, then it should have control power generated for 

motors, etc., to govern the flexible structure. Therefore, the aforesaid goal should be 

achieved even in the presence of flexible vibrations, while the flexible vibrations are 

attenuated under the effect of the damping incorporated in the flexible appendages. 

9.4 Extended-State Observer for Modeling Error 

It is seen in the dynamics (2.25) that the lumped modeling error .ud − ω×δη̇ − δη̈ is 

unknown, and this will significantly affect the attitude control performance. Hence, 

to eliminate this effect and accomplish the attitude stabilization maneuver with high 

accuracy, a nonlinear estimator is developed to estimate that lumped modeling error. 

Introducing.Mg(Θ) = M(Θ)Θ̇ and using Property 9.2 yield. Ṁg(Θ) = τ − d −
H3 with .H3 = H2(Θ, Θ̇) + (H1(Θ, Θ̇) − Ṁ(Θ))Θ̇. Define a new coordinate as 

.χ = ke
{ t

0
(τ − H3 − χ(l))dl − keMg , where .ke > 0 is a positive constant. Then, 

it follows that 

. χ̇ = −keχ + ked (9.2) 

Starting from (9.2), the problem of estimating.ud − ω×δη̇ − δη̈ can be formulated 

as that of estimating the state of a linear augmented system driven by . χ and by an
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unknown input. If the unknown input . d can be exactly estimated, then . ud − ω×δη̇ −
δη̈ can be estimated by multiplying .−(RT(Θ))−1. 

Assume that the lumped disturbance . d is described by a differentiable function 

with time-derivative .ρ ∈ R
3. Define two state variables as .x1 = χ , .x2 = d, then the 

following linear system can be obtained. 

.ẋ1 = −kex1 − kex2 (9.3) 

.ẋ2 = ρ (9.4) 

In aerospace engineering of flexible satellites, there practically always exists 

damping even small in its flexible appendages. This makes the magnitudes of elastic 

vibrations.||η||, its rate.||η̇||, and its acceleration.||η̈|| bounded during attitude maneu-

vering. On the other hand, the aerodynamic torque and the solar radiation torque are 

also bounded. Therefore, the following will be used in the estimator design. 

Assumption 9.1 Although the input . d is unknown, its amplitude is bounded by a 

constant .μ1 > 0, i.e., .||d|| ≤ μ1. 

Theorem 9.1 For the linear system given by (9.3) and (9.4) with unknown input, 

design a nonlinear estimator as 

.
˙̂x1 = −ke x̂1 + ke x̂2 − l1sgn(e1) − l2e1 (9.5) 

.
˙̂x2 = −l3e1 − l4[xv]

m
n − l5sgn(xv) (9.6) 

where .x̂i is the estimate of .xi , i = 1, 2, respectively. .xv = l1sgn(e1), . ei = x̂i −
xi , . l j , . j = 1, 2, . . . , 5 are positive estimate gains, while .m ∈ R+ and .n ∈ R+ are 

positive odd integers such that .m < n. Choose the gains such that 

.l5ke − μ1 > 0 (9.7) 

and 

.l1 > max

{

(√
3kel4+

√
3l5+μ1

λmin(M)
+ μ2

)
n

n−m

,
(

ke(
√
3l5+μ1)+μ2λmin(A)√
3l5+μ1+μ2λmin(A)

)
n
m

}

(9.8) 

where .μ2 is a positive scalar, and .A =
[

(ke + l2)I3 −ke I3
l3 I3 0

]

. Then, . d and . ud −

ω×δη̇ − δη̈ will be estimated by .x̂2, .−(RT(Θ))−1 x̂2 in finite time, respectively. 

Moreover, one has .ud − ω×δη̇ − δη̈≡ − (RT(Θ))−1 x̂2 for all the time . t ≥ Te =
n(V1(t̄))

n−m
2n

(n−m)l4k
m/n
e

+ t̄ , where .V1(t̄) = (x̂2(t̄) − x2(t̄))
2 and .t̄ = ||e1(0)||

μ2
. 

Proof Please refer to [ 15]. ⬜
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The proposed estimator can be viewed as a disturbance observer [ 16– 19]. 

Although many disturbance observer design approaches are available in literature 

[ 18, 20], the proposed observer can achieve a fast and precise estimation. This can 

be seen in Theorem 9.1. The estimation error is guaranteed to be finite-time stable. 

In comparison with the existing schemes such as [ 13, 21], a faster and more precise 

reconstruction is achieved. 

9.5 Observer-Based Attitude Controller 

As discussed in [ 22], there is a mathematical relationship between Euler angles 

rotation and unit-quaternion. Because the orientation of the considered satellite in 

this chapter with respect to .FO is obtained by a yaw-pitch-roll sequence of rotations, 

its corresponding unit-quaternion .Qe = [qe0, qT
e ]T ∈ R

4, .qe ∈ R
3 can be obtained 

from . ψ , . φ, and . θ that 

.Qe =

⎡

⎢

⎢

⎢

⎢

⎣

cos( θ
2
) cos(

φ

2
) cos(

ψ

2
) + sin( θ

2
) sin(

φ

2
) sin(

ψ

2
)

sin( θ
2
) cos(

φ

2
) cos(

ψ

2
) − cos( θ

2
) sin(

φ

2
) sin(

ψ

2
)

cos( θ
2
) sin(

φ

2
) cos(

ψ

2
) + sin( θ

2
) cos(

φ

2
) sin(

ψ

2
)

− sin( θ
2
) sin(

φ

2
) cos(

ψ

2
) + cos( θ

2
) cos(

φ

2
) sin(

ψ

2
)

⎤

⎥

⎥

⎥

⎥

⎦

(9.9) 

It is worth mentioning that this quaternion .Qe denotes the satellite orientation 

between .FB and .FO . Hence, using this unit-quaternion representation, the flexible 

satellite attitude kinematics (2.15) and the dynamics (2.25) can again be given by 

[ 23]: 

.

{

q̇e0 = − 1
2
qT
e ωb

q̇e = 1
2
(q×

e + qe0 I3)ωb

(9.10) 

. Jω̇b = −(ωb)
× Jωb + H4 + ω×δη̇ − δη̈ + u + ud (9.11) 

where . H4 = (ωb)
× Jωc(Θ) + (ωc(Θ))× Jω + Jω̇c(Θ)

To achieve a high-accuracy attitude stabilization maneuver, the following nonlin-

ear controller is presented: 

.u = ua_N + ua_com (9.12) 

where .ua_N ∈ R
3 is the normal control effort, and .ua_com ∈ R

3 is the compensation 

control module added to the output of the nominal controller to compensate for 

disturbance and flexible vibrations. This compensation controller is designed by 

using the estimate of .ud − ω×δη̇ − δη̈ in the preceding part. 

Theorem 9.2 Consider the flexible satellite attitude system described by using the 

attitude kinematics (2.15) and the dynamics (2.25)–(2.26), with the application of the 

nonlinear estimator (9.5)–(9.6), design the nominal and the compensation control
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module as 

.ua_N = −kc1(qe + kc2ωb) − H4 (9.13) 

.ua_com = (RT(Θ))−1 x̂2 (9.14) 

where.kc1 ∈ R+ and.kc2 ∈ R+ are two positive control gains. If these gains are chosen 

satisfying (9.7), (9.8) and 

.kc2 − kc3

kc1
> 0 (9.15) 

.

λR

4kc3kc1
− (l5ke − μ1) ≥ 0 (9.16) 

where .kc3 ∈ R+ is an arbitrarily positive scalar, then the closed-loop attitude sys-

tem can be guaranteed to be asymptotic stable, i.e., .Θ → 0, .ωb → 0. The attitude 

stabilization maneuver is, thus, accomplished with high accuracy for the considered 

flexible satellite. 

Proof Consider a radially unbounded positive definite Lyapunov function candidate 

for the system (9.10)–(9.11) as  

.V2 = ωT
b Jωb

2kc1
+ qT

e qe + (1 − qe0)
2 + eT1 e1

2
+ eT2 e2

2
(9.17) 

Inserting the controller (9.13)–(9.14) into (9.11) results in 

.

Jω̇b = − kc1(qe + kc2ωb) − S(ωb)Jωb

+ ω×δη̇ − δη̈ + ud + (RT(Θ))−1 x̂2

= − kc1(qe + kc2ωb) − S(ωb)Jωb + (RT(Θ))−1e2

(9.18) 

Using (9.10) and (9.18), the time-derivative of the Lyapunov function .V2 can be 

calculated as 

.

V̇2 = ωT
b Jω̇b

kc1
+ qT

e (q
×
e + qe0 I3)ωb + (1 − qe0)q

T
e ωb +

2
∑

i=1

eTi ėi

= −kc2||ωb||2 + ωT
b (R

T(Θ))−1e2

kc1
+

2
∑

i=1

eTi ėi

(9.19) 

According to the proof of Theorem 9.1 in [ 15], it can be obtained that 

.eT1 ė1 ≤ −(ke + l2)||e1||2 − (l1 − ke||e2||)||e1|| (9.20) 

.eT2 ė2 ≤ −l4k
m
n
e ||e2||

m+n
n − (l5ke − μ1)||e2|| (9.21)
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and 

.||e2|| ≤ ||e|| ≤ λR (9.22) 

.l1 ≥ keλR + ε0 (9.23) 

where .λR =
√
3kel4l1

m
n +

√
3l5+μ1

λmin(A)
. Then, it can be obtained from (9.20)–(9.23) that 

.

2
∑

i=1

eTi ėi ≤ −(ke + l2)||e1||2 − l4k
m
n
e ||e2||

m+n
m − (l5ke − μ1)||e2|| (9.24) 

In addition, applying the Young’s inequality, one has 

.

ωT
b (R

T(Θ))−1e2

kc1
≤ kc3||ωb||2

kc1
+ ||e2||2

4kc3kc1
(9.25) 

Therefore, (9.19) can be simplified as follows by using (9.20)–(9.23). 

.

V̇2 ≤ − (kc2 − kc3

kc1
)||ωb||2 − (ke + l2)||e1||2 − l4k

m
n
e ||e2||

m+n
m

+ ||e2||
( ||e2||
4kc3kc1

− (l5ke − μ1)

)

||e2||
(9.26) 

Furthermore, the followings can be obtained from (9.15), (9.16), and (9.22) 

.V̇2 ≤ −
(

kc2 − kc3

kc1

)

||ωb||2 − (ke + l2)||e1||2 − l4k
m
n
e ||e2||

m+n
m (9.27) 

By integrating (9.27) form 0 to .∞, one has 

.

{ ∞

0

V̇2(l)dl ≤ V2(0) − V2(∞) ≤ V2(0) < ∞ (9.28) 

Because the Lyapunov function is radially unbounded, all the signals remain 

bounded. Using Barbalat’s lemma, it can be proved from the uniformly continuity of 

.V̇2 that.V̇2(t) → 0 as.t → ∞. This further guarantee that. lim
t→∞

V̈2(t) = 0 because.V̇2 is 

uniformly continuous. To this end, it can be obtained from (9.27) that. lim
t→∞

e1(t) = 0, 

. lim
t→∞

e2(t) = 0,. lim
t→∞

ωb(t) = 0, and. lim
t→∞

ω̇b(t) = 0. Using  (9.23) and. lim
t→∞

e2(t) = 0, 

it can be proved that .qe → 0 as .t → ∞. From the unity constraint . q2
e0 + qT

e qe = 1

of the quaternion .Qe, it follows that .qe0 → ±1 as .t → ∞. This strictly corresponds 

to .Θ → 0. As a result, the closed-loop attitude system is asymptotic stable. High-

accuracy attitude control is, hence, achieved.
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Summarizing the aforesaid analysis, it is proved that .Θ → 0 and .ωb → 0 as 

.t → ∞. It means that the satellite body-fixed frame .FB will finally coincide with the 

orbit reference frame .FO . High-accuracy attitude stabilization is, hence, achieved.⬜

9.6 Simulation Results 

As the initial step towards final experimental verification, the performance of the 

proposed controller should be numerically simulated first. Hence, a flexible satellite 

currently being developed will be simulated to test the effectiveness of the proposed 

control scheme. The orbit of the satellite is circular, with an altitude of 638 km 

and an inclination of 95.4 deg. Its orbital rate is .ω0 = 0.0011 rad/s. Its physical 

parameters are . J = [486.7, 14.9, − 1.2; 14.9, 177.4, − 7.3; − 1.2, − 7.3, 404.3]
.kg · m2,.δ = [1, 0.1, 0.1; 0.5, 0.1, 0.01; − 1, 0.3,0.01].kg 1

2 · m/s2, and the first three 

elastic modes have been taken into account, i.e., .N = 3. The natural frequencies are 

.⌃1 = 1.8912 rad/s, .⌃2 = 2.884 rad/s, .⌃3 = 3.4181 rad/s, and damping ratios are 

.ξ1 = 0.01, .ξ2 = 0.01, and .ξ3 = 0.01. A time-varying external disturbance is also 

considered. It is given by .ud = (||ωb||2 + 0.05)[sin 0.8t , cos 0.5t , cos 0.3t]T N · m. 

The gains of the estimator (9.5)–(9.6) are chosen as .ke = 7.5, .l1 = 0.05, . l2 =
0.5, .l3 = 0.5, .l4 = 10.5, .l5 = 0.05, .m = 17, and .n = 19. The control gains for 

the controller (9.12) are chosen as .kc1 = 15 and .kc2 = 16.7. The initial satellite 

attitude angles are .θ = 6 degrees, .φ = −4.5 degrees, and .ψ = 3 degrees, while 

the initial velocity is .ωb(0) = [0.2, 0.1,−0.15]Tdeg/s. The initial flexible modal 

displacements and velocities are given by .ηi (0) = 0 and .η̇i (0) = 0 for .i = 1, 2, 3. 

Denoting the actual estimation error between the magnitude of the external dis-

turbance, the vibrations .ud − ω×δη̇ − δη̈ and the estimated value . −(RT(Θ))−1 x̂2
as . ε, i.e., .ε = (ud − ω×δη̇ − δη̈) + (RT(Θ))−1 x̂2. When the proposed estimation-

based approach is implemented to the considered flexible satellite attitude system, 

Fig. 9.2 shows the successful estimation using the incorporated nonlinear estimator. 

As shown by the steady-state behavior of the actual estimation error . ε in Fig. 9.2b, 

the estimation accuracy is smaller than .1.0 × 10−3 N · m. The lumped disturbance 

.ud − ω×δη̇ − δη̈ including external disturbances and flexible vibrations is exactly 

reconstructed by .−(RT(Θ))−1 x̂2 after a short period of time, roughly .Te = 3.1 sec-

onds. This can be seen in Fig. 9.2a. That estimation result verified the conclusion 

in Theorem 9.1 that, the total unknown torque induced by external disturbance and 

flexible vibrations can be precisely estimated by .−(RT(Θ))−1 x̂2 in finite time . Te. 

Due to the precise estimation of the external disturbances and unknown flexible 

vibrations torque supplied by the estimator (9.5), (9.6), the controller in (9.12) can 

completely compensate for the effect of external disturbance and unknown vibra-

tions. As a result, the controller produces an asymptotic convergence of the angular 

velocity and the attitude angles. External disturbance rejection and robustness against 

unknown flexible vibrations are achieved. The attitude Euler angles are presented in
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Fig. 9.2 The estimation 

error of the lumped modeling 

error
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(b) The steady-state behavior 

Fig. 9.3 and the attitude velocity is illustrated in Fig. 9.4. The attitude pointing accu-

racy is within .0.0005 degrees and attitude stability is within 0.0002 deg/sec. Those 

obtained attitude stability and pointing accuracy satisfy a set of stringent pointing 

requirements to perform the planned mission even in the face of external disturbances 

and unknown flexible vibrations. The vibrations of flexible appendages can be seen 

in Fig. 9.5. The corresponding control torque is shown in Fig. 9.6. It is interesting 

to see that the attenuation control of vibrations is achieved, and they will be com-

pletely suppressed after 200 s. Based on this result, one has .−ω×δη̇ − δη̈ = 0 after 

200 s. That is to say, the signal estimated after 200 s is the external disturbance .ud . 

At this time, the control effort in (9.12) only needs to compensate for the external 

disturbance. That is the reason why the steady behavior of . u in Fig. 9.6b is quite the 

same as external disturbance .ud .
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Fig. 9.3 The attitude Euler 

angles from the controller 

(9.12)

-8

-4 

0 

4 

8 

0 30 60 90 120 150 

T
h

e
 a

tt
it

u
d

e
 a

n
g

le
s 

 (
d

e
g
) 

Time (sec) 

Fig. 9.4 The angular 

velocity from the controller 

(9.12)
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Fig. 9.5 The flexible 

vibrations from the 

controller (9.12)
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Fig. 9.6 The control input 

of the controller (9.12)
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9.7 Experimental Study 

In this section, experiments are further performed to verify the validity of the proposed 

approach on the single-axis air-bearing suspending rotary testbed, as shown in Fig. 

2.5. In comparison with Figs. 9.1 and 2.5, it is known that this testbed can exactly 

simulate the attitude motion of Euler attitude yaw angle .ψ rotation. 

To verify the engineering application of the proposed nonlinear estimator-based 

attitude control approach, the experiment has been conducted by using the testbed. 

A large-angle attitude stabilization maneuver is performed. The initial attitude angle 

is .ψ(0) = 60 degrees, and the initial angular velocity is .ωb3(0) = 0 deg/s. With an 

application of the proposed controller, the experimental results are shown in Figs. 

9.7, 9.8 and 9.9. It can be seen in Fig. 9.7a that the attitude stabilization maneuver is 

accomplished within 40 s. Moreover, the attitude pointing accuracy achieved is 0.002 

degrees. This can be observed in the steady-state behavior of Fig. 9.7b, and hence 

high-accuracy control performance is guaranteed. The resulting angular velocity is 

shown in Fig. 9.9. As the steady-state behavior clearly shows in Fig. 9.8b, attitude
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Fig. 9.7 The experimental 

result of the attitude from the 

controller (9.12)
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stability is within .0.0015 deg/s. This accuracy is very high for flexible satellite. The 

actual control input torque is shown in Fig. 9.9. 

Compared the experimental results in Figs. 9.7, 9.8 and 9.9 with the simulation 

results in Figs. 9.3, 9.4, 9.5 and 9.6, it is interesting to see that there exists a minor 

difference in the attitude stabilization time. That is because the inertia parameters 

in the experimental testbed have a scaling factor 10.% of the inertia matrix used in 

simulations. Moreover, the obtained attitude pointing accuracy between simulation 

and experimental results is also different, and the latter is almost less than the former 

by an order of magnitude. That is due to the fact that the actual actuator, gyro, and 

controller are used in experiments rather than using an ideal mathematical model in 

simulation. Although some differences are observed, it can be seen that the behavior 

(including overshoot) of experimental results matches the behavior of the simulation 

results well. 

To summarize, high-accuracy pointing control (order of .10−3 deg) and high-

accuracy attitude stability (order of .10−3 deg/s) can be realized through the proposed 

control. Hence, the ease of implementation, high accuracy, and robustness of the 

proposed control are well verified through the experiment.
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Fig. 9.8 The experimental 

result of the angular velocity 

from the controller (9.12)
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Fig. 9.9 The experimental 

result of the input torque of 

the controller (9.12)
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9.8 Summary 

Although there have been significant investigations in robust and high-accuracy 

control design for flexible satellites, very few have addressed the problem of the 

conservativeness of the controller. In this chapter, an estimator-based methodology 

for flexible attitude stabilization control is presented. The scheme incorporates a 

nonlinear estimator for estimating the external disturbances and unknown flexible 

vibrations simultaneously, and a Proportional-Derivative (PD)-type controller. The 

estimation is achieved in finite time and with zero estimation error. The controller is 

designed by using the estimated value. Hence, modeling error compensation with dis-

turbance rejection and vibration attenuation control can be achieved. The outstanding 

advantage of the approach is that it can achieve high-accuracy attitude control with 

asymptotic stability of the closed-loop system and no-conservativeness of the con-

troller simultaneously. It has been verified through simulations and experiments that 

the proposed control is easily implementable with high-pointing accuracy achieved 

and robust against unknown flexible vibrations. 
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Chapter 10 

Disturbance Observer-Based Attitude 
Control 

10.1 Introduction 

The most existing DO requires external disturbance or modeling error to satisfy 

some strict conditions. For instance, most ESO are only feasible for the unknown 

constant disturbance .ud or the disturbance with slow variation [ 1– 3], i.e., .u̇d = 0, 

.u̇d ≈ 0, . lim
t→∞

u̇d = 0, or .||u̇d || ≤ δ1, where .δ1 is positive and small scalar. When the 

external disturbance is treated as an extended state in ESO, the external disturbance 

should be differentiable. On the other hand, it usually requires the SMO or HOSMO 

to be upper bounded by a known value . δ2, i.e., .||ud || ≤ δ2. In practice, however, 

the external disturbance may not satisfy these assumptions. The class of the external 

disturbance handled by the existing DO is limited. Hence, it is of interest to determine 

observers that can release these constraints or assumptions. Although this is achieved 

in [ 2], its result is applicable to linear systems only. In this chapter, we address this 

problem first by deriving a novel DO-based control approach that stabilizes the rigid 

bodies’ system despite any type of external disturbance. The main features of this 

control approach are listed as follows. 

• A general systematic DO-based control approach is presented. The closed-loop 

attitude system is stabilized in the presence of external disturbances. The attitude 

and the angular velocity are exponentially stabilized if the external disturbance has 

no rate of change. When the external disturbance is time-varying, the attitude and 

the angular velocity are exponentially stabilized to a small set containing the origin, 

despite the slow-varying or fast-varying disturbances. Moreover, the controller has 

a simple structure. It necessitates inexpensive onboard computations. 

• The proposed DO provides the disturbance estimation error with exponential rate. 

Compared with the existing DO or ESO, the designed observer can release the 

restrictions on the rate of change of the modeling error. The class of disturbances 

handled in this chapter can be much larger than the existing DO or ESO. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 

B. Xiao et al., Advanced Attitude Control of Satellite, 

https://doi.org/10.1007/978-981-97-2847-3_10 

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-2847-3_10&domain=pdf
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10
https://doi.org/10.1007/978-981-97-2847-3_10


202 10 Disturbance Observer-Based Attitude Control

Note that although many investigations have been reported for satellite attitude 

tracking control design with modeling error and actuator uncertainties addressed, 

most of them have the following drawbacks: (1) Few results can handle system 

uncertainties and actuator uncertainties simultaneously. (2) Most of the attitude 

tracking schemes in literature cannot guarantee the exponential stability of the over-

all system. Therefore, the robustness to uncertainties is weak. Although such stability 

was reported in [ 4], actuator uncertainties were not investigated. (3) The existing 

approaches to actuator misalignment are only appropriate for satellites with its 

actuators belonging to a specific type and having a particular configuration. 

Motivated by addressing the aforementioned three challenges, a new resilient 

control approach is then presented in this chapter for attitude tracking with practi-

cally exponential convergence ensured. This is developed in the framework of the 

observer-based control technique. A structure simple estimation law is preliminarily 

synthesized to observe the modeling error including the system uncertainties and 

actuator uncertainties. Based on this observer, a self-resilient controller is then syn-

thesized. The following are the main contributions of this resilient control approach. 

• The proposed resilient control approach governs the attitude tracking system to 

be practically exponentially stable despite the system uncertainties and the actua-

tor uncertainties. Hence, in comparison with the existing attitude controllers that 

ensure asymptotic stability or ultimately uniformly bounded stability [ 5– 8], the 

proposed controller has more robustness to uncertainties. 

• In contrast to [ 4, 9, 10], the resilient control scheme has the capability of tolerating 

systems and actuator uncertainties, while the controllers in [ 4, 9, 10] can only 

provide exponential stability in the absence of systems uncertainties and external 

disturbances. Moreover, the designed controller is independent of the actuator’s 

type and its configuration in the satellite. It has an excellent resilient capability to 

the actuator uncertainties in a more general way. 

• The controller is designed with the satellite’s attitude represented by using atti-

tude Euler angles. Moreover, in comparison with the neural-network-based attitude 

controller [ 11], the structure of the proposed approach is simple, and its imple-

mentation does not necessitate expensive onboard computation. The presented 

approach has significant practical application potential. 

10.2 Attitude Exponential Stabilization Control 

10.2.1 Problem Statement 

In this section, the rigid satellite is considered with its attitude represented by the 

modified Rodrigues parameters. The control objective of this section can be stated 

as: For any initial states .σ (0) and .ω(0), the goal is to use the angular velocity and the 

attitude feedback to design a robust control torque. u to guarantee that the closed-loop
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system described by (2.21) and (2.24) is globally exponentially stabilized despite 

any modeling error .ud . The attitude . σ and the angular velocity . ω are exponentially 

stabilized to their equilibrium points or converge to a small set around the equilibrium 

points with acceptable control accuracy. 

10.2.2 Disturbance Observer 

Consider a class of nonlinear systems with their model described by 

.ẋ = f (x) + g(x)u + d (10.1) 

where .x ∈ R
n is the measurable state of the system, .u ∈ R

m is the system’s control 

input, .d ∈ R
n is the modeling error acting on the system. The function . f (x) ∈ R

n

is known. The matrix .g(x) ∈ R
n×m is known and invertible. 

To estimate or observe the modeling error in the nonlinear system in (10.1), a 

novel but structure-simple observer will be presented in this section. A new state 

.xa ∈ R
n is preliminarily introduced with its dynamics satisfying 

.ẋa = f (x) + g(x)u + F1xe (10.2) 

where .xe = x − xa and .F1 ∈ R
n×n is a constant matrix determined by the designed. 

Lemma 10.1 For the nonlinear system (10.1) with the modeling error . d, let an 

observer be designed as 

.
˙̂
ξ = −Lξ̂ + L(F1xe − F2(xe)) (10.3) 

with .F2(xe) = Lxe, .L = LT ∈ R
n×n is the observer gain matrix, and it is positive-

definite. Applying the observer state, develop an estimation law for the modeling 

error . d as 

.d̂ = ξ̂ + F2(xe) (10.4) 

where . d̂ is the estimation of . d. Suppose that the observer gain . L is chosen such that 

.λmin(L) − 1
4

> 0, then the following results can be achieved for all .de(0). 

(R1) The disturbance estimation error.de = d − d̂ is globally exponentially stable 

if .ḋ = 0. 

(R2) If .ḋ /= 0 and the rate of change of . d is bounded, i.e., there exists a positive 

scalar .μ ∈ R such that .||ḋ(t)|| ≤ μ for all .t ≥ 0, then the disturbance estimation 

error .de converges with an exponential rate, equal to .(1 − α)(λmin(L) − 1
4
), to the  

ball with radius .
2μ√

α(4λmin(L)−1)
where .0 < α < 1.
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Proof From (10.1) and (10.2), it can be obtained that the dynamics of .xe is such that 

.ẋe = −F1xe + d (10.5) 

In accordance, it follows from (10.5) that the estimation error .de is such that 

.

ḋe = ḋ − ˙̂
d

= ḋ + Lξ̂ − LF1xe + LF2(xe) − Lẋe

= ḋ + Lξ̂ − LF1xe + LF2(xe) − L(−F1xe + d)

= ḋ − Lde

(10.6) 

Choose a Lyapunov candidate function for (10.6) as .Vo = 1
2
dT
e de, one has 

.V̇o = dT
e ḋe = −LdT

e de + dT
e ḋ (10.7) 

Then, the following two cases are discussed to analyze the stability of . de. 

Case #1: If .ḋ = 0, then (10.7) can be further simplified as 

.V̇o = −LdT
e de ≤ −2λmin(L)Vo (10.8) 

where .λmin(L) > 0. Solving (10.8) yields .Vo(t) ≤ Vo(0) exp(−2λmin(L)t) or 

.||de(t)|| ≤
√

2Vo(0) exp(−λmin(L)t) (10.9) 

which implies that the observer error .de(t) will be globally exponentially stabilized 

for any initial observer state, i.e., . lim
t→∞

||de(t)|| = 0. 

Case #2: If .ḋ /= 0 and .||ḋ(t)|| ≤ μ, one can get from (10.7) that 

.

V̇o ≤ −λmin(L)||de||2 + ||de||μ ≤ −(λmin(L) − 1

4
)||de||2 + μ2

= −(1 − α)

(

λmin(L) − 1

4

)

||de||2 − α

(

λmin(L) − 1

4

)

||de||2 + μ2

(10.10) 

where .0 < α < 1 is a positive constant. Therefore 

.V̇o ≤ −(1 − α)

(

λmin(L) − 1

4

)

||de||2,∀||de|| ≥ 2μ√
α(4λmin(L) − 1)

(10.11) 

To this end, it can be concluded from (10.11) and Definition 2.1 that the estimation 

error .de is globally uniformly ultimately bounded.
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Moreover, solving (10.11), one has 

. Vo(t) ≤ Vo(0) exp(−2(1 − α)(λmin(L) − 1

4
)t),∀||de|| ≥ 2μ√

α(4λmin(L) − 1)
(10.12) 

and 

. ||de|| ≤
√

2Vo(0) exp(−(1 − α)(λmin(L) − 1

4
)t),∀||de|| ≥ 2μ√

α(4λmin(L) − 1)
(10.13) 

Hence 

. ||de|| ≤
√

2Vo(0) exp(−(1 − α)(λmin(L) − 1

4
)t) + 2μ√

α(4λmin(L) − 1)
,∀t ≥ 0

(10.14) 

Then, one can conclude from Definition 2.3 that the estimation error .de con-

verges with an exponential rate, i.e., .(1 − α)(λmin(L) − 1
4
) to the ball with radius 

.
2μ√

α(4λmin(L)−1)
for all .de(0). 

Summarizing the above analysis for those two cases, the conclusions in Lemma 

10.1 are then proved. ⬜

Remark 10.1 It is seen in Lemma 10.1 that the presented observer can achieve an 

exponential estimation of slow-varying and even fast-varying modeling error. It can 

be obtained from (10.14) that the exponential rate can be tuned to be faster and the 

estimation accuracy of .de can be governed to be higher by choosing larger observer 

gain . L. 

Remark 10.2 In comparison with the existing ESO for modeling error or external 

disturbance, the observer (10.3) does not require the modeling error . d to satisfy 

.u̇d = 0, .u̇d ≈ 0, or  . lim
t→∞

u̇d = 0. As a sequence, the class of the modeling error 

that can be handled by the proposed observer is much larger than the existing DO, 

ESO [ 1, 12, 13], and SMO [ 3, 14]. Although both the observer (10.3) and the 

disturbance observer in [ 2] can avoid the drawback in the existing ESO or SMO, etc. 

the proposed observer (10.3) is more general and more systemic than the result in 

[ 2]. That is because the observer in [ 2] is applicable to linear systems only, while the 

observer (10.3) is feasible for a more general class of nonlinear systems. The observer 

proposed by [ 2] is a special case of the observer in (10.3). From this standpoint of 

view, the proposed observer (10.3) has wide application potential. Compared with 

the existing SMO, nonlinear DO, and HOSMO which do not necessitate the rate of 

change of the external disturbance to be zero or almost zero, the developed observer 

(10.3) can ensure the estimation error to be exponentially stable; furthermore, the 

observer (10.3) is characterized by a simple structure, and it necessitates inexpensive 

onboard computations.
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10.2.3 Estimator for Satellite’s Modeling Error 

Because the inertia matrix . J is positive-definite, the attitude dynamics (2.24) can be 

rewritten as 

.ω̇ = −J−1S(ω)Jω + J−1u + J−1u + J−1ud (10.15) 

The transformed dynamics (10.15) can be described in the form of the nonlinear 

system (10.1) by denoting .x = ω, . f (x) = −J−1S(ω)Jω, .g(x) = J−1, and . d =
J−1ud . Then, the result presented in Sect. 10.2.1 can be applied to get the following 

theorem. 

Theorem 10.1 With the application of the observer (10.3) in Lemma 10.1, develop 

an estimation law as 

.ûd = J(ξ̂ + F2(xe)), or ûd = J d̂ (10.16) 

Choose the observer gain . L such that .λmin(L) − 1
4

> 0, then it follows that 

(R1) The estimation error.ue = ud − ûd is globally exponentially stable if.u̇d = 0. 

(R2) If .u̇d /= 0 and the rate of change of .ud is bounded, i.e., there exists a pos-

itive scalar .μ1 ∈ R such that .||u̇d(t)|| ≤ μ1 for .t ≥ 0, then the estimation error . ue

converges with an exponential rate, equal to .(1 − α)(λmin(L) − 1
4
), to the ball with 

radius .
2||J ||||J−1||μ1√
α(4λmin(L)−1)

, where .0 < α < 1. 

Proof From the above denotations, it follows that .ud = Jd and 

.ue = Jd − J d̂ = Jde (10.17) 

On the other hand, combing .d = J−1ud with .||u̇d(t)|| ≤ μ1, one has 

.||d(t)|| = ||J−1ud || ≤ ||J−1||μ1 (10.18) 

Then, denoting .μ = ||J−1||μ1 and following the proof of Lemma 10.1, Theorem 

10.1 can be directly proved. ⬜

10.2.4 Observer-Based Exponential Controller 

Let introduce another two new variables as .z1 = σ and .z2 = ω + α1, where . α1 =
k1G

T(σ )z1 and .k1 ∈ R+ is a positive scalar. Then, it is ready to present the main 

solution in the following theorem to the attitude stabilization control problem. 

Theorem 10.2 For the rigid satellite attitude system (2.21) and (2.24) with modeling 

error, applying the disturbance estimation law (10.16), develop a nonlinear controller 

as 

.u = −k2z2 − GT(σ )z1 + ω× Jω − J α̇1 − ûd (10.19)
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where .k2 ∈ R+ is a positive control gain. Suppose that the control gains are chosen 

such that 

.λmin(L) − 4l1 − 1

4
> 0 (10.20) 

.k2 − ||J ||2
l1

> 0 (10.21) 

with .l1 ∈ R+ being a positive scalar, then the following can be achieved. 

(R1) The closed-loop attitude system is globally exponentially stabilized if.u̇d = 0. 

The estimation error . ue, the attitude . σ , and the angular velocity .ω are globally 

exponentially stabilized. 

(R2) The closed-loop attitude system is ultimately uniformly bounded if . ud /= 0

and the rate of change of .ud is bounded, i.e., there exists a positive scalar . μ1 ∈ R

such that.||u̇d(t)|| ≤ μ1 for all.t ≥ 0. More specifically, the attitude. σ , the estimation 

error . ue, and the angular velocity .ω converges with an exponential rate, equal to 

.κ(1 − α), to the ball with radius .
||J−1||μ1√

2κα
where .0 < α < 1 is a positive constant, 

and 

.κ = min

{

λmin(L) − 4l1 − 1

4
,
k1

16
,

1

λmax(J)

(

k2 − ||J ||2
l1

)}

> 0 (10.22) 

Remark 10.3 Because the proposed controller (10.19) can ensure the exponential 

stability of the closed-loop system in the presence of any type of modeling error, 

it can guarantee that the attitude control performance is more robust to modeling 

error. Moreover, for slow-varying or even fast-varying modeling error, it can be 

obtained from (10.22) that the attitude control accuracy can be ensured to be as high 

as possible by selecting appropriate gains. Larger . κ will lead to a higher attitude 

stabilization accuracy. On the other hand, it is seen that the controller (10.19) is with 

a simple structure. It does not involve expensive computation. The controller (10.19) 

is actually a compensation control scheme. The included term .−ûd is applied to 

compensate for the modeling error online and in real-time. Hence, this controller 

has less conservativeness in comparison with the existing robust modeling error 

attenuation/rejection controller for rigid satellites. 

Remark 10.4 For any rigid satellite in practice, its inertia .J is bounded, and its 

varying rate .J̇ is also bounded. The modeling error .ud acting on it is bounded 

practically. Moreover,.u̇d is bounded at least. Otherwise, the rigid satellite will be out 

of control. Hence,. ḋ is bounded for practical rigid satellites. The equation. ||u̇d(t)|| ≤
μ1 is satisfied at least in practical engineering. Therefore, applying (R2) in Theorem 

10.1 leads to the conclusion that all the signals involved in the closed-loop attitude 

system, with the developed controller, are uniformly ultimately bounded at least.
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Proof Based upon the definition of .z1 and . z2, it follows  from  (2.21) and Property 

2.1 that 

.

ż1 = G(σ )(z2 − α1) = −k1G(σ )GT(σ )z1 + G(σ )z2

= −k1

(

1 + σ Tσ

4

)2

z1 + G(σ )z2
(10.23) 

For the attitude system (2.21)–(2.24), select a Lyapunov candidate function as . V =
Vo + V1, where 

.V1 = 1

2
zT1 z1 + 1

2
zT2 J z2 (10.24) 

Applying (2.24) and (10.23), differentiating (10.24) and inserting the control law 

(10.19) yield 

.

V̇1 = −k1z
T
1

(

1 + σ Tσ

4

)2

z1 + zT1G(σ )z2 + zT2 J(ω̇ + α̇1)

≤ − k1

16
||z1||2 − k2||z2||2 + zT2ue

(10.25) 

Moreover, it can be obtained from (10.7) and (10.17) that the time derivative of . V

can be calculated as 

.V̇ ≤ −LdT
e de + dT

e ḋ − k1

16
||z1||2 − k2||z2||2 + zT2 Jde (10.26) 

Then, the following two cases are discussed to analyze the stability of . de. 

Case #1: If.u̇d = 0, then it follows that.ḋ = 0. At this time, one can further simplify 

(10.26) as  

.

V̇ ≤ −λmin(L)||de||2 − k1

16
||z1||2 − k2||z2||2 + zT2 Jde

≤ −(λmin(L) − 4l1)||de||2 − k1

16
||z1||2 −

(

k2 − ||J ||2
l1

)

||z2||2

≤ −2γ V

(10.27) 

where .γ = min
{

λmin(L) − 4l1,
k1
16

, 1
λmax(J)

(

k2 − ||J ||2
l1

)}

> 0. Then, using (10.17) 

and solving (10.27) yields .V (t) ≤ V (0)e−2γ t or 

.||de(t)|| ≤
√

2V (0) exp(−γ t), ||ue(t)|| ≤
√

2V (0) exp(−γ t) (10.28) 

.||z1(t)|| ≤
√

2V (0) exp(−γ t), ||z2(t)|| ≤
/

2V (0)

λmin(J)
exp(−γ t) (10.29)
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Hence, it can be concluded from (10.28) and (10.29) that the disturbance estimation 

error .ue(t), the attitude . σ , and the angular velocity .ω are globally exponentially 

stabilized, i.e., . lim
t→∞

||ue(t)|| = 0, . lim
t→∞

||σ (t)|| = 0, and . lim
t→∞

||ω(t)|| = 0. 

Case #2: If.u̇d = 0 and.||u̇d(t)|| ≤ μ1, then using the proof of Theorem 10.1 leads 

(10.26) to be  

. 

V̇ ≤ −(λmin(L) − 4l1)||de||2 + ||de||||J−1||μ1 − k1

16
||z1||2 −

(

k2 − ||J ||2
l1

)

||z2||2

≤ −
(

λmin(L) − 4l1 − 1

4

)

||de||2 − k1

16
||z1||2 −

(

k2 − ||J ||2
l1

)

||z2||2 + ||J−1||2μ2
1

≤ −2κV + ||J−1||2μ2
1

= −2κ(1 − α)V − 2καV + ||J−1||2μ2
1

(10.30) 

Then, it leads to 

.V̇ ≤ −2κ(1 − α)V , ∀||V (t)|| ≥ ||J−1||μ1√
2κα

(10.31) 

To this end, it can be concluded from (10.31) and Definition 2.1 that the closed-loop 

system is globally uniformly ultimately bounded. 

Moreover, solving (10.31) results in 

.V (t) ≤ V (0) exp(−2κ(1 − α)t),∀||V (t)|| ≥ ||J−1||μ1√
2κα

(10.32) 

and for all .||V (t)|| ≥ ||J−1|| μ1√
2κα

, it can be got that 

. ||de(t)|| ≤
√

2V (0) exp(−κ(1 − α)t), ||ue(t)|| = ||J ||
√

2V (0) exp(−κ(1 − α)t)

(10.33) 

. ||z1(t)|| ≤
√

2V (0) exp(−κ(1 − α)t), ||z2(t)|| ≤
/

2V (0)

λmin(J)
exp(−κ(1 − α)t)

(10.34) 

Applying Property 2.1 the definition of . z2, it follows that the following holds for 

all . ||V (t)|| ≥ ||J−1|| μ1√
2κα

. 

||ω|| = ||z2|| + ||α1|| ≤ ||z2|| + k1||G(σ )||||z1||

≤ ||z2|| + k1

4
||z1|| ≤

(
/

2V (0)

λmin(J)
+ k1

4

√

2V (0)

)

exp(−κ(1 − α)t)

(10.35)
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From (10.33)–(10.35), it can be proved that, 

.||ue(t)|| ≤ β1||J || exp(−κ(1 − α)t) + ς,∀t ≥ 0 (10.36) 

.||σ (t)|| ≤ β1 exp(−κ(1 − α)t) + ς,∀t ≥ 0 (10.37) 

.||ω(t)|| ≤ β exp(−κ(1 − α)t) + ς,∀t ≥ 0 (10.38) 

where .β = β1√
λmin(J)

+ k1β1

4
, .β1 =

√
2V (0), and .ς = ||J−1||μ1√

2κα
. Then, it can be con-

cluded from Definition 2.3 and (10.36)–(10.38) that the estimation error . ue, the atti-

tude . σ , and the angular velocity . ω converge with an exponential rate . (i.e., κ(1 − α))

to the ball with radius .ς = ||J−1||μ1√
2κα

for all the initial states. 

Summarizing the above analysis for those two cases, the conclusions in Theorem 

10.2 are then proved. ⬜

10.2.5 Rigid Microsatellite Example 

Having shown in Sect. 10.2.4 that, the presented DO-based control scheme can 

accomplish the attitude stabilization maneuver with the desired control performance 

guaranteed, this section will present a numerical example of a currently being devel-

oped rigid satellite to validate that effectiveness in Theorems 10.1 and 10.2. This  

satellite is in a circular orbit. The altitude and the inclination of its orbit are designed 

to be 670 km and .90.5 degrees, respectively. This satellite’s moment of inertia is 

.J = [32, 1.1, − 0.3; 1.1, 30, 0.8;−0.3, 0.8, 31] kg · m2. To validate the superior 

attitude stabilization performance of the designed controller despite the modeling 

error, simulations are carried out with the following two cases of modeling error 

considered, respectively. 

• Case #1: An external disturbance having constant value is considered by assuming 

.ud = [0.01, 0.005, − 0.008]T N · m. 

• Case #2: In this case, the satellite is assumed to be under the effect of the following 

time-varying external disturbance: 

.ud = [ud1, ud2, ud3]T N · m, udi = sin(μi t + ηi ) (10.39) 

where .μ1 = 80, .μ2 = 50, .μ3 = 20, .η1 = 0.5, .η2 = 0.3, and .η3 = 0.9. 

When conducting all simulations, the mathematical model (2.21) and (2.24) are  

applied in conjunction with the DO-based controller (10.19). The control gains are 

chosen as .k1 = 15, .k2 = 14.5, .l1 = 75, .L = diag([305, 305, 305]T), .F1 = 250I3, 

and .α = 0.5. The initial attitude of this rigid satellite is . σ (0) = [0.4,−0.3,−0.5]T
with its initial angular velocity set as .ω(0) = [0, 0, 0]T rad/s.
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A Simulation Results of Case #1 

In this case, the attitude stabilization results by the presented controller (10.19) can 

be seen in Figs. 10.1 and 10.2. The attitude and the angular velocity are successfully 

stabilized after about 50 . s. Moreover, after going to see the steady-state behavior 

of the attitude and the angular velocity, the control accuracy with .|σi | ≤ 10−10 and 

.|ωi | ≤ 10−10 rad/s, i .= 1, 2, 3 can be observed. The convergence of the attitude and 

the angular velocity are illustrated in Figs. 10.3 and 10.4, respectively. The inequality 

(10.29) is verified. The exponential stability of the closed-loop attitude system is seen 

despite the constant external disturbance. The conclusion (R1) in the Theorem 10.3 

is validated. The control torque required to ensure that perfect attitude stabilization 

performance is shown in Fig. 10.4. 

The above attitude stabilization result with exponential convergence is owing to 

the incorporated DO (10.16). When the controller (10.19) is applied to this case, 

the estimation error of the constant external disturbance is shown in Fig. 10.5. It is  

seen that the disturbance is precisely estimated after 50 . s. More specifically, it is 

seen in Fig. 10.6 that the inequality (10.28) is strictly satisfied. The conclusion that 

the estimation error is exponentially stable in the presence of constant disturbance 

is validated. 

Fig. 10.1 The attitude from 

the controller (10.19) in Case  

#1
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Fig. 10.2 The angular 

velocity from the controller 

(10.19) in Case #1
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(a) Attitude .
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(b) Angular velocity . 

Fig. 10.3 The convergence property from the controller (10.19) in Case #1  

Fig. 10.4 The input of the 

controller (10.19) in Case #1
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Fig. 10.5 The estimation 

error from the DO (10.16) in  

Case #1
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B Simulation Results of Case #2 

When the time-varying external disturbance (10.39) is considered in this case, apply-

ing the developed DOB control law (10.19) to the satellite’s attitude system, it is 

found that the attitude stabilization maneuver can be still accomplished. This can
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Fig. 10.6 The convergence property of the DO (10.16) in Case #1
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(a) The initial response.
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(b) The steady-state behavior. 

Fig. 10.7 The attitude from the controller (10.19) in Case #2  

be verified by the results shown in Figs. 10.7 and 10.8. The attitude and the angular 

velocity are stabilized within 50 . s. Moreover, it can be obtained from Fig. 10.7b that 

the attitude control accuracy is governed to be .|σi | ≤ 2.5 × 10−6, i .= 1, 2, 3. The 

steady-state behavior in Fig. 10.8b shows that the controller leads the angular veloc-

ity, i.e., the attitude stability, to be .|ωi | ≤ 1.7 × 10−4 rad/s, i . = 1, 2, 3. These attitude 

pointing accuracy and attitude stability are very high even in the presence of a time-

varying external disturbance (10.39). It can satisfy the stringent requirements of the 

attitude control system to accomplish the planned missions. Figure 10.9 shows the 

estimation error achieved by the incorporated DO (10.16). The external disturbance 

(10.39) is precisely estimated by the .ûd in (10.16) after about 50 . s. Moreover, it can 

be seen from its steady-state behavior in Fig. 10.9b that the estimation accuracy of 

the disturbance is .|uei | ≤ 3.0 × 10−4N · m, i .= 1, 2, 3. 

The convergence behavior of .||ue(t)||, .||σ (t)||, and .||ω(t)|| are illustrated in Figs. 
10.10, 10.11 and 10.12, respectively. In addition, it can be got from (10.39) that 

.μ1 = 96.4365. Using the chosen control gains, one has .ς = 0.033078. Then, the
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(b) The steady-state behavior 

Fig. 10.8 The angular velocity from the controller (10.19) in Case #2
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(b) The steady-state behavior 

Fig. 10.9 The estimation error from the DO (10.16) in Case #2
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Fig. 10.10 The convergence of the attitude from the controller (10.19) in Case #2
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Fig. 10.11 The convergence of the angular velocity from the controller (10.19) in Case #2  
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Fig. 10.12 The convergence property of the DO (10.16) in Case #2  

inequalities (10.36)–(10.38) can be validated. To this end, it can be summarized 

from the above results that the attitude and the angular velocity are exponentially 

stabilized to a residual set around the equilibrium points with a radius . ς . The con-

clusion (R2) in the Theorem 10.1 is hence verified. The control torque consumed to 

achieve this exponential stability is shown in Fig. 10.13. It is seen in Fig. 10.13b that 

the control input is not zero when the attitude is stabilized. That is, because extra 

control torque, i.e., the term .−ûd in (10.19), should be functional to compensate for 

the external disturbance. 

C Discussion 

To quantitatively evaluate the proposed DOB control approach, the attitude point-

ing accuracy, and the attitude stability are used as two control performance indexes.
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(b) The steady-state behavior 

Fig. 10.13 The input of the controller (10.19) in Case #2  

Moreover, the estimation accuracy of the disturbance is adopted as a performance 

index to evaluate the estimation performance of the proposed observer. On the other 

hand, to verify the sensitivity of the proposed approach to sensor noise, more simula-

tions are carried out for case #1 and case #2 with measurement noise considered. The 

attitude and the angular velocity sensor noises are assumed to be a zero-mean Gaus-

sian random variable with a variance of 0.0001, respectively. For case #1 and case 

#2, in the presence of measurement noises, the convergence behavior of the attitude 

. σ , the angular velocity . ω, and the disturbance estimation error .ue are the same as 

the results when the measurement noises are not considered, respectively. The only 

difference is that the control accuracy and the estimation accuracy in the presence 

of noises are inferior to the accuracy in the absence of measurement noises. The 

obtained attitude control performance and the disturbance estimation performance 

are listed in Table 10.1. It is observed that although the measurement noise will 

deteriorate the attitude control performance and the external disturbance estimation 

performance, the estimation accuracy, the attitude pointing accuracy, and the angular 

velocity control accuracy still satisfy (10.36)–(10.38), respectively. The exponential 

stability is still achieved despite sensor noise. Hence, the proposed control approach 

has great application potential for engineering. 

10.3 Attitude Exponential Tracking Control 

10.3.1 Modeling of Actuator Uncertainties 

In practical aerospace engineering, the actuators fixed in the satellite usually have 

uncertainties. More specifically, the actuator misalignment due to finite manufactur-

ing technique and the actuator faults due to component aging are the widely known 

uncertainties in satellite actuators. It is known from [ 15] that the actuator faults of
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Table 10.1 Comparison of the control performance from the controller (10.19) 

The performance 

indexes 

Simulation condition 

Without measurement noise With measurement noise 

Case #1 Case #2 Case #1 Case #2 

The attitude 

control accuracy 

. |σi |, i = 1, 2, 3

.7.0 × 10−19
.2.5 × 10−6

.4.0 × 10−6
. 1.2 × 10−4

The attitude 

stability 

. |ωi |(rad/s), i =
1, 2, 3

.3.0 × 10−22
.1.7 × 10−4

.1.5 × 10−4
. 3.8 × 10−4

The disturbance 

estimation 

accuracy 

. |uei |(N · m), i =
1, 2, 3

.3.5 × 10−12
.3.0 × 10−4

.2.7 × 10−5
. 1.4 × 10−3

satellite can be mathematically modeled as 

.τ o = (I N − E)τ + Δτ (10.40) 

where .τ = [τ1, τ2, . . . , τN ]T ∈ R
n is the commanded torque of actuator’s con-

troller, .τ o ∈ R
n is the actual output torque of actuators, .I N is an .N × N iden-

tity matrix, the diagonal matrix .E = diag([e1, e2, . . . , eN ]T) ∈ R
N×N with . 0% ≤

ei ≤ 100% denotes the effectiveness of all the actuators, .i = 1, 2, ..., N , . Δτ =
[Δτ1, Δτ2, . . . , ΔτN ]T ∈ R

n is the bias fault vector of the actuators, and . N ≥ 3

is the total number of actuators fixed in the satellite to perform attitude maneuvers. 

Let.D0 ∈ R
3×N and.ΔD ∈ R

3×N be the nominal alignment and the corresponding 

misalignment matrix of actuators, respectively; the actuator uncertainties including 

the misalignment and faults can be mathematically modeled as 

.u = (D0 + ΔD)τ o = (D0 + ΔD)((I N − E)τ + Δτ ) (10.41) 

It is seen that .τ o in (10.41) is the actual torque generated by the faulty actuators. 

Hence, .D0τ o denotes the nominal three-axis control torque acting on the satellite, 

.ΔDτ o is the generated error torque due to the actuator misalignment, while . τ o =
(I N − E)τ + Δτ is the actual output torque generated by the faulty actuators. 

Because the actuators have misalignment, the inertia matrix . J will be unknown. 

Let the positive-definite constant matrix .J0 ∈ R
3×3 denote the nominal inertia of 

satellite, and let the unknown and even time-varying matrix.ΔJ ∈ R
3×3 be the uncer-

tain inertia induced by actuator misalignment and fuel consumption, etc. Then, one 

has .J = J0 + ΔJ .
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10.3.2 Problem Description 

The problem of attitude tracking will be investigated in this section. Let the desired 

attitude trajectory be determined as .Θd = [φd , θd , ψd ]T ∈ R
3 with .−π

2
< θd < π

2
. 

Then, the problem description of this section can be formulated as: For the rigid 

satellites with their attitude system described by (2.15) and (2.24), suppose that the 

initial attitude of the satellite is such that .−π
2

< θ(0) < π
2
, then develop a control 

law . τ for attitude tracking maneuvering. The controller should have the self-resilient 

control capability of accommodating the modeling error due to external disturbance, 

actuator uncertainties, and uncertainties in the inertia..Θd is ensured to be followed by 

.Θ with the tracking error .Θe = [φe, θe, ψe]T = Θd − Θ practically exponentially 

stabilized, while .−π
2

< θ(t) < π
2
is guaranteed for .t ≥ 0 by choosing appropriate 

control gains. 

10.3.3 System Transformation 

Taking the actuator uncertainties (10.41), the disturbance, and the uncertain inertia 

.ΔJ into consideration, the rigid satellite attitude system (2.15) and (2.24) can be 

rewritten as 

.Θ̇ = ω + Δ f 1(Θ, Θ̇) (10.42) 

.J0ω̇ = −ω× J0ω + D0τ + Δ f 2(t,ω, ω̇) (10.43) 

where .Δ f 1(Θ, Θ̇) = −(R(Θ) − I3)Θ̇ − ωc(Θ) and 

.

Δ f 2(t,ω, ω̇) = ud − ω×ΔJω − D0Eτ + D0Δτ

+ ΔD ((I N − E) τ + Δτ ) − ΔJω̇
(10.44) 

Here, .Δ f 1(Θ, Θ̇) can be viewed as the uncertainty in the attitude kinematics. 

.Δ f 2(t,ω, ω̇) denotes the uncertainty in the attitude dynamics, which is induced 

by the disturbance .ud , the actuator uncertainties, and the uncertain inertia .ΔJ . 

Let introduce a new variable as .x = [ΘT, ωT]T, then one can rewrite (10.42) and 
(10.43) as  

.Aẋ = f (x) + U + Δ f (10.45) 

where .A =
[

I3 0

0 J0

]

, . f (x) =
[

ω

−ω× J0ω

]

, .U =
[

0

D0τ

]

, .Δ f =
[

Δ f 1(Θ, Θ̇)

Δ f 2(t,ω, ω̇)

]

. 

In (10.45), the vector . f (x) is known, and the vector .Δ f can be viewed as the 

system uncertainties. To guarantee the successful maneuver of attitude tracking, in 

combination with the transformed system (10.45), a novel observer-based practically 

exponential and resilient control approach will be developed in this section. The 

architecture of this resilient control in the attitude system is illustrated in Fig. 10.14.
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Fig. 10.14 The attitude tracking system ensured by the observer-based practically exponential and 

resilient control approach 

For this control scheme, a novel observer is preliminarily synthesized to reconstruct 

the lumped uncertainties .Δ f . The output of the observer is then applied to evaluate 

whether the rigid satellite attitude system is controllable or not. If the evaluation 

result is positive, then the output of the observer and the system measurements will 

be feedback to synthesize a resilient control law to ensure that the overall attitude 

tracking system is exponentially stabilized. Otherwise, the satellite attitude will not 

be resilient. The attitude tracking maneuver should be ended. 

10.3.4 Disturbance Observer for Uncertainties 

Using the definition of .Δ ḟ 1(Θ, Θ̇), it can be obtained that 

.Δ ḟ 1(Θ, Θ̇) = −dR(Θ)

dt
Θ̇ − (R(Θ) − I3)Θ̈ − dωc(Θ)

dt
(10.46) 

In practice, the angular velocity and the angular jerk-acceleration of the satellite 

are bounded, i.e.,.Θ̇ and.Θ̈ are bounded. Hence,.Δ ḟ 1(Θ, Θ̇)will be bounded. There 

exists a positive constant .l1 ∈ R+ such that 

.||Δ ḟ 1(Θ, Θ̇)|| ≤ l1 (10.47) 

Because .Δ f 2(t,ω, ω̇) denotes the uncertain torque acting on the attitude dynam-

ics, .Δ ḟ 2(t,ω, ω̇) should be also be bounded. Otherwise, .Δ f 2(t,ω, ω̇) will be not 

bounded, and the attitude of the satellite will be out of control. Therefore, a positive 

scalar .l2 ∈ R will also exist to satisfy 

.||Δ ḟ 2(t,ω, ω̇)|| ≤ l2 (10.48) 

From (10.47) and (10.48), it yields
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.||Δ ḟ || =

[

|

|

|

2
∑

i=1

||Δ ḟ i || ≤ l =
/

l21 + l22 (10.49) 

Based on the above analysis, it is ready to present the following estimation law 

to precisely estimate the total uncertainties . Δ f

.Δ f O = ξ + koAx (10.50) 

where .ko ∈ R is a positive scalar, .Δ f O = [Δ f TO1, Δ f TO2]T ∈ R
6 is the estimation 

of .Δ f , and .ξ ∈ R
6 is the following observer’s output: 

.
˙̂
ξ = −koξ̂ + ko(− f (x) − U − koAx) (10.51) 

Theorem 10.3 For the system (10.45), choose the estimation gain such that . 2ko −
1 > 0, then the estimation law (10.50) can govern the estimation error . Δ f e =
[Δ f Te1, Δ f Te2]T = Δ f − Δ f O to converge with an exponential rate, equal to 

.0.5(1 − η1)(2ko − 1), to the ball with radius . l√
η1(2ko−1)

, where .0 < η1 < 1 is a pos-

itive scalar. 

Proof From (10.45), (10.50), and (10.51), it can be obtained that the dynamics of 

.xe is such that 

.Δ ḟ e = Δ ḟ − Δ ḟ O = Δ ḟ − ξ̇ − koAẋ = −koΔ f e + Δ ḟ (10.52) 

Choose a Lyapunov function for (10.52) as .V3 = 1
2
Δ f Te Δ f e, applying (10.49) leads 

to 

.

V̇3 = −ko||Δ f e||2 + Δ f Te Δ ḟ ≤ −ko||Δ f e||2 + l||Δ f e||

≤ −(ko − 1

2
)||Δ f e||2 + 1

2
l2

= −(1 − η1)(ko − 0.5)||Δ f e||2 − η1(ko − 0.5)||Δ f e||2 + 0.5l2

(10.53) 

Then, it follows that 

.V̇3 ≤ −(1 − η1)

(

ko − 1

2

)

||Δ f e||2, ∀||Δ f e|| ≥ l√
η1(2ko − 1)

(10.54) 

Moreover, solving inequality (10.54) results in 

. ||Δ f e|| ≤
√

2V3(0)exp(−
(1 − η1)(2ko − 1)

2
t), ∀||Δ f e|| ≥ l√

η1(2ko − 1)
(10.55)
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Hence, 

.||Δ f e|| ≤
√

2V3(0) exp(−
(1 − η1)(2ko − 1)

2
t) + l√

η1(2ko − 1)
, ∀t ≥ 0 (10.56) 

This proves that the estimation error .Δ f e of the uncertainties converges with an 

exponential rate (i.e., .0.5(1 − η1)(2ko − 1)) to the ball with a radius . l√
η1(2ko−1)

for 

all .Δ f e(0). ⬜

It is seen in (10.56) that larger .ko leads to smaller .||Δ f e||. It means that the 

estimation accuracy of.||Δ f e||will be increased by tuning large. ko. Moreover, larger 

.ko also results in a faster convergence rate of the estimation error.||Δ f e||. In addition, 
it can be obtained from (10.56) that 

. ||Δ f e2|| ≤
√

2V3(0)exp(−
(1 − η1)(2ko − 1)

2
t) + l√

η1(2ko − 1)
, ∀t ≥ 0

(10.57) 

Therefore, choosing larger .ko can ensure .||Δ f e2|| ≈ 0 and . ||Δ f 2(t,ω, ω̇)|| ≈
||Δ f O2||. Then, it is ready to design the following controllability determination 

mechanism for the three-axis attitude control system. 

Controllability determination mechanism: If .||Δ f O2|| < ||D0τ ||, then the satel-
lite is three-axis attitude controllable. Otherwise, the attitude is out of out. 

Remark 10.5 In fact, .||Δ f O2|| < ||D0τ || means that the uncertain torque induced 

by disturbance, actuator uncertainty, and uncertain inertia, is smaller than the remain-

ing control power supplied by actuators. Then, the uncertain torque can be compen-

sated. Otherwise, the uncertain torque will lead to the instability of the closed-loop 

system, because the open-loop system is unstable. 

10.3.5 Observer-Based Resilient Controller 

Introduce another new variable as .z1 = Θ̇d − ω + kc1Θe − Δ f O1, where . kc1 ∈ R+
is a positive gain. For the nominal inertia .J0. Then, the main solution to the attitude 

tracking problem of satellite with actuator uncertainties, disturbances, and uncertain 

inertia is presented as follows. 

Theorem 10.4 Consider a rigid satellite with its attitude system described by (2.15) 

and (2.24), with the application of the estimation law (10.50), and let the attitude 

controller be designed as 

.τ = (D0)
†(J0Θ̈d + kc1 J0Θ̇e + ω× J0ω − Δ f O2 + Θe + kc2z1) (10.58) 

where .kc2 ∈ R+ is a positive constant. If the gains of the estimation law and the 

controller are selected such that 

.ko > 3, kc1 > 1, kc2 > 0.5ko||J0||2 (10.59)



222 10 Disturbance Observer-Based Attitude Control

Then, the closed-loop system will be practically exponentially stable. The estimation 

error .Δ f e, the attitude tracking error .Θe, and the tracking error .Θ̇e of the velocity 

will converge with an exponential rate, equal to .κ(1 − η2), to the ball with a radius 

.ε = l
2
√

κη2
, where .0 < η2 < 1 is a positive scalar, and 

.κ = min

{

ko − 3

2
, kc1 − 1,

1

λmax(J)

(

kc2 − ko

2
||J0||2

)}

> 0 (10.60) 

Remark 10.6 It is seen in Theorem 10.4 that the controller (10.58) practically expo-

nentially stabilize the closed-loop tracking system. In comparison with the exist-

ing approaches ensuring asymptotic stability or ultimately uniformly stability, the 

controller (10.58) can ensure the attitude tracking performance is more robust and 

self-resilient to the disturbances, the uncertain inertia parameters, and the actuator 

uncertainties. 

Remark 10.7 It can be seen in Theorems 10.3 and 10.4 that the gains’ selection 

of the observer (10.50) and the controller (10.26)) are independent of the upper 

bound . l of the uncertainty .Δ f . The  term . l is mathematically denoted to establish the 

formula for the estimation accuracy .
l√

η1(2ko−1)
, and the control accuracy .

l
2
√

κη2
. The  

implementation of the observer (10.50) and the controller (10.58) do not necessitate 

the value of . l. 

From Theorem 10.3 and the presented controllability determination mechanism, 

it is known that: 

• Case #1: If the uncertain torque .||Δ f 2|| is less than the remaining control power 

.||D0τ ||, then .Δ f 2 will be precisely estimated by .Δ f O2. Meanwhile, the term 

.−Δ f O2 in the controller (10.58) will compensate for the uncertainty .Δ f 2, and 

then the closed-loop system will be stabilized even in the presence of system 

uncertainty and actuator uncertainties. The actuator misalignment torque .Dτ o, 

the actuator faults . τo, the external disturbance .ud , and the system uncertainty 

induced by .ΔJ are precisely estimated and compensated by the proposed scheme. 

• Case #2: When .||Δ f 2|| is larger than the remaining control effort .||D0τ ||, then it 
can be detected by the observer that the attitude system is out of control. 

Moreover, the above two cases are handled by the proposed approach automatically 

without any other interface. From this standpoint of view, it can be claimed that 

the proposed controller (10.58) has great self-resilient control capability of handling 

these uncertainties. 

10.3.6 Stability Analysis 

The Lyapunov stability theory can be applied to prove Theorem 10.4 with the proof 

organized as follows.
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Proof Based upon (10.42) and the definition of .Θe and . z1, it has 

.Θ̇e = Θ̇d − ω − Δ f 1(Θ, Θ̇) = z1 − kc1Θe − Δ f e1 (10.61) 

It can be further obtained from (10.43) that 

.

J0 ż1 = J0(Θ̈d − ω̇ + kc1Θ̇e − Δ ḟ O1)

= J0Θ̈d + kc1 J0Θ̇e + ω× J0ω − D0τ − J0Δ ḟ O1 − Δ f 2
(10.62) 

Inserting the controller (10.58) into (10.62), (10.62) can be simplified as 

.J0 ż1 = −Θe − kc2z1 − J0Δ ḟ O1 − Δ f e2 (10.63) 

To this end, let a Lyapunov candidate function be chosen as 

.V4 = 1

2
Δ f Te Δ f e + 1

2
ΘT

e Θe + 1

2
zT1 J0z1 (10.64) 

Differentiating (10.64) and inserting (10.58), (10.61), as well as (10.63) lead to 

.

V̇4 =Δ f Te Δ ḟ e + ΘT
e Θ̇e + zT1 J0 ż1

= − ko||Δ f e||2 − kc1||Θe||2 − kc2||z1||2

+ Δ f eΔ ḟ − ΘT
e Δ f e1 − zT1Δ f e2 − zT1 J0Δ ḟ O1

(10.65) 

Moreover, it can be obtained from (10.50)–(10.52) that 

.Δ ḟ O1 = −koΔ f e1 (10.66) 

Then, it leaves (10.55) from (10.56) as  

.

V̇4 = − ko||Δ f e||2 − kc1||Θe||2 − kc2||z1||2

+ Δ f eΔ ḟ − ΘT
e Δ f e1 − zT1Δ f e2 + koz

T
1 J0Δ f e1

(10.67) 

Using Young’s inequality and (10.49), one has 

.2Δ f eΔ ḟ ≤ ||Δ f e||2 + ||Δ ḟ ||2 ≤ ||Δ f e||2 + l2 (10.68) 

. − 2ΘT
e Δ f e1 ≤ ||Θe||2 + ||Δ f e1||2 ≤ ||Θe||2 + ||Δ f e||2 (10.69) 

. − 2zT1Δ f e2 ≤ ||z1||2 + ||Δ f e2||2 ≤ ||Θe||2 + ||Δ f e||2 (10.70) 

.koz
T
1 J0Δ f e1 ≤ ko

2
||J0||2||z1||2 + 1

2
||Δ f e||2 (10.71)
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Applying (10.68)–(10.71), it can simplify (10.67) as  

. 

V̇4 ≤ −ko − 3

2
||Δ f e||2 − (kc1 − 1)||Θe||2 −

(

kc2 − ko

2
||J0||2

)

||z1||2 + 0.5l2

≤ −2κV + 0.5l2 = −2κ(1 − η2)V4 − 2κη2V4 + 0.5l2

(10.72) 

Solving the inequality (10.72) results in 

.V4 ≤ V (0) exp(−2κ(1 − η2)t), ∀V4 ≥ l

2
√

κη2
(10.73) 

From (10.61), (10.64), and (10.73), the following inequalities hold for .V4 ≥ l
2
√

κη2
: 

.||Δ f e|| ≤
√

2V4(0)exp(−κ(1 − η2)t) (10.74) 

.||Θe|| ≤
√

2V4(0) exp(−κ(1 − η2)t) (10.75) 

.||z1|| ≤
/

2V4(0)

Jm
exp(−κ(1 − η2)t) (10.76) 

.||Θ̇e|| ≤
(

1√
λmin(J)

+ kc1 + 1

)

√

2V4(0)exp(−κ(1 − η2)t) (10.77) 

Then, it is ready to conclude from (10.74)–(10.77) that 

.||Δ f e|| ≤
√

2V4(0) exp(−κ(1 − η2)t) + ε (10.78) 

.||Θe|| ≤
√

2V4(0) exp(−κ(1 − η2)t) + ε (10.79) 

.||z1|| ≤
/

2V4(0)

Jm
exp(−κ(1 − η2)t) + ε (10.80) 

.||Θ̇e|| ≤
(

1√
Jm

+ kc1 + 1

)

√

2V4(0) exp(−κ(1 − η2)t) + ε (10.81) 

where.ε = l
2
√

κη2
. Based on (10.78)–(10.81) and using Definition 2.3, it can be proved 

that the closed-loop attitude system is practically exponentially stable. The estimation 

error .Δ f e, the attitude tracking error .Θe, and the velocity tracking error .Θ̇e are 

practically exponentially stable. They practically exponentially converge within a 

ball with radius . ε, while the exponential convergence rate is .κ(1 − η2). ⬜

It is seen from (10.78)–(10.81) that larger . κ leads to a faster convergence rate 

.κ(1 − η2) and higher estimation and control accuracy . ε. Then, based on the defini-
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tion of . ε in (10.60), it can be obtained that larger . ko, .kc1, and .kc2 will lead to a faster 

exponential convergence rate, higher estimation accuracy, and higher tracking accu-

racy. Therefore, the following procedures can be obeyed to obtain a better estimation 

and control performance: 

• Step #1: Calculate the nominal values for .||J0|| and .JM . 

• Step #2: Choose .ko such that .ko > 3. 

• Step #3: Select .kc1 to satisfy .kc1 > 1. 

• Step #4: Based on Step 1 and Step 2, choose .kc2 to satisfy .kc2 > 0.5ko||Jo||2. 
• Step #5: If the desired estimation accuracy and the control accuracy are not met, 

then repeat Step .#2 ∼ #4 by choosing larger . ko, .kc1, and .kc2. 

10.3.7 Simulation Example 

As presented in Sect. 10.3.6, the resilient controller (10.58) can accomplish the atti-

tude tracking maneuvering with exponential convergence, an example of a currently 

being developed rigid satellite is presented in this section to validate the conclusion 

in Theorems 10.3 and 10.4. This satellite is in a circular orbit. The altitude and the 

inclination of its orbit are designed to be .660 km and .90.5 degrees, respectively; cor-

respondingly, the satellite’s orbital rate is .ω0 = 0.0011 rad/s. Its nominal inertia is 

.J0 = [30, 0.1, − 0.2; 0.1, 25, 0.4; − 0.2, 0.4, 30].kg · m2. For a specific aerospace 

task, the following trajectory is planned for the satellite to provide its payloads with 

the desired attitude 

.Θd = [φd , θd , ψd ]T =

⎡

⎣

−5 sin(0.02t − π
8
)

3 cos(0.02t − π
10

)

5 sin(0.03t − π
8
)

⎤

⎦ degrees (10.82) 

Four reaction wheels (RWs) are fixed in the satellite as the actuators to produce 

torque for attitude tracking maneuvering. The nominal configuration of those four 

RWs is .D0 = [1, 0, 0, 1√
3
; 0, 1, 0, 1√

3
; 0, 0, 1, 1√

3
]. Due to misalignment, the actual 

configuration is .D = [D1, D2], where 

.D1 =

⎡

⎣

cosΔα1 sinΔα2 sinΔβ2 sinΔα3 cosΔβ3

sinΔα1 cosΔβ1 cosΔα2 sinΔα3 sinΔβ3

sinΔα1 sinΔβ1 sinΔα2 cosΔβ2 cosΔα3

⎤

⎦ (10.83) 

.D2 =

⎡

⎣

cos(α4 + Δα4) cos(β4 + Δβ4)

cos(α4 + Δα4) sin(β4 + Δβ4)

sin(α4 + Δα4)

⎤

⎦ (10.84)
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Here, .β4 = π
4
rad, and .α4 = arcsin( 1√

3
) rad; .−π < Δβ j < π , . j ∈ {1, 2, 3}, and 

small angles .−π
2

< Δαi < π
2
, .−π

2
< Δβi < π

2
, .i = 1, 2, 3, 4 are the misalignment 

angles of those four RWs. 

A Simulation Result 

In the simulation, the uncertain inertia is assumed to be .ΔJ = 10%J0. The  mis-

alignment angles of the four RWs are randomly chosen as .Δα1 = 0.1638 rad, 

.Δα2 = 0.2125 rad,.Δα3 = −0.1953 rad,.Δα4 = −0.2164 rad,.Δβ1 = −2.5287 rad, 

.Δβ2 = −1.3917 rad, .Δβ3 = 0.2946 rad, and .Δβ4 = 0.0693 rad. The actuator faults 

in the four RWs are assumed to be 

.e1 =
{

0, t ≤ 2

0.4, t > 2
, e2 =

{

0, t ≤ 4

0.7, t > 4
(10.85) 

.e3 =
{

0, t ≤ 3

0.2, t > 3
, e4 =

{

0, t ≤ 5

1, t > 5
(10.86) 

.Δτ1 ≡ 0, Δτ2 ≡ 0, Δτ3 =
{

0, t ≤ 3

0.001, t > 3
, Δτ4 ≡ 0 (10.87) 

Moreover, the external disturbance acting on the satellite mainly includes the gravity-

gradient torque, the aerodynamic torque, and the Earth magnetic torque. By using 

the physical and the orbital parameters of the satellite, the external disturbance is 

calculated and assumed as follows. It could approximate the real disturbance value 

of the satellite 

.udi = κi sin(μi t + ηi ) (10.88) 

where .κ1 = 0.002, .κ2 = −0.003, .κ3 = 0.004, .μ1 = 0.8, .μ2 = 0.5, .μ3 = 0.2, . η1 =
0.5, .η2 = 0.3, and .η3 = 0.9. 

When carrying out simulations, the gains of the proposed resilient control strategy 

are selected as .kc1 = 10.5, kc2 = 5000, and .ko = 25. The initial states of the satellite 

are .φ(0) = −0.02 degrees, .θ(0) = 0.02 degrees, .ψ(0) = 0.01 degrees, and . ω(0) =
[0.001, 0.001, 0.001]T rad/s. 

Based on the above-listed satellite physical parameters and the selected gains, 

the proposed resilient control scheme is applied to conduct simulation through Mat-

lab/Simulink. Figures 10.15 and 10.16 show the estimation result of the incorpo-

rated observer to estimate uncertainties. From Fig. 10.15a, it is known that the term 

.Δ f 1(Θ, Θ̇) is estimated after about 0.05 . s. Its estimation accuracy is superior to 

2.0e-7, which is shown in Fig. 10.15b. As we can see in Fig. 10.16a, the uncertainty 

.Δ f 2 can be estimated or reconstructed by .Δ f O2 within the same period required 

for .Δ f O1 to estimate .Δ f 1. Figure 10.16b shows that the corresponding estimation 

accuracy of .Δ f 2 is better than 8.0e-4 .N · m. The estimation accuracy of .Δ f 1 and 

.Δ f 2 is very superior. Moreover, exponential convergence behaviors of the estimation
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Fig. 10.15 The estimation error .Δ f e1 from the estimator (10.50)
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(b) The steady-behavior response. 

Fig. 10.16 The estimation error .Δ f e2 from the estimator (10.50) 

errors .Δ f e1 and .Δ f e2 are seen in Figs. 10.17 and 10.18. These results successfully 

verify the conclusion in Theorem 10.3. 

Figures 10.19a and 10.20a show the attitude tracking result under the effect of 

the presented resilient control approach. It is found in Fig. 10.19b that the planned 

attitude trajectory (10.82) is followed with the attitude pointing accuracy being .1.2e-

4 degrees. .|φe| ≤ 1.2e-4 degrees, .|θe| ≤ 1.2e-4 degrees, and .|ψe| ≤ 1.1e-4 degrees 

are achieved after about .10 seconds. In addition, Fig. 10.20b shows that the attitude 

stability is ensured by the resilient controller (10.58) to be better than .4.0e-5 deg/s. 

Such attitude stability is very high. More specifically, the resulting tracking error 

of the velocity is .|φ̇e| ≤ 3.0e-5 degrees, .|θ̇e| ≤ 3.8e-5 degrees, and .|ψ̇e| ≤ 1.2e-5 

degrees. Based on the above tracking performance, it is seen that the maneuvering 

of attitude tracking is successfully performed after about .15 seconds. The planned 

aerospace task is then accomplished despite system uncertainties and actuator uncer-

tainties. This is owing to the effect of the observer (10.50) in the approach. Because
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Fig. 10.17 The response of 

.||Δ f e1|| from the estimator 

(10.50) 
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Fig. 10.18 The response of 

.||Δ f e2|| from the estimator 

(10.50) 
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Fig. 10.19 The attitude tracking error from the controller (10.58)
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Fig. 10.20 The angular velocity tracking error from the controller (10.58) 

Fig. 10.21 The response of 

.||Θe|| from the controller 

(10.58) 
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Fig. 10.22 The response of 

.||Θ̇e|| from the controller 
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the uncertainties in the system and the actuators can be precisely estimated by 

the observer (10.50), then the estimation values .Δ f O1 and .Δ f O2 in the resilient 

controller (10.58) can compensate for the uncertainties. Moreover, the results in 

Figs. 10.21 and 10.22 show that the tracking errors of the attitude and the velocity
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are exponentially converging. Hence, it is successful to validate the conclusion in 

Theorem 10.4. 

B Experimental Result 

In this section, the practical application of the designed control approach was verified 

on the scaling satellite three-axis attitude dynamics and control simulator, as we can 

see in Fig. 2.6. During tests, because all the actuators were healthy, the actuator faults 

(10.85)–(10.87) were numerically injected. The six thrusters were commanded to 

generate torque with its value being the same as (10.88). This torque was viewed as 

an external disturbance. Due to the finite manufacturing technique, the real actuator 

configuration and the real inertia of the testbed were not the same as the designed 

values. Hence, the testbed was with uncertain inertia and actuator configuration. To 

this end, the testbed was subject to system uncertainties and actuator uncertainties 

were simulated. This testbed was appropriate for testing the effectiveness of the 

presented resilient control. 

The experimental results were shown in Figs. 10.23 and 10.24. It was seen in 

Figs. 10.23a and 10.19a that the experimental attitude tracking response matched 

the simulation results well. More specifically, it is shown in Fig. 10.24b that the 

attitude pointing accuracy ensured by the resilient controller was superior to 0.035 

degrees, i.e., .|φe| ≤ 0.034 degrees, .|θe| ≤ 0.031 degrees, and .|ψe| ≤ 0.033 degrees. 

The tracking error of the angular velocity was superior to 0.14. ◦/s. This was observed 
in Fig. 10.24b. Hence, the attitude tracking maneuver was successfully performed 

despite the system uncertainties and the actuator uncertainties. Moreover, this attitude 

maneuvering was achieved after about 20 s, as illustrated in Figs. 10.23a and 10.24a. 

The difference between the initial response of the angular velocity tracking error in 

Figs. 10.20a and 10.24a was because the initial angular velocity of the testbed was 

not set as the values in the simulation. It should be pointed out that compared with the 

high control accuracy in Figs. 10.19 and 10.20 obtained from the simulation, a lower
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Fig. 10.23 The attitude tracking error from the controller (10.58) in test
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(b) The steady-behavior response. 

Fig. 10.24 The angular velocity tracking error from the controller (10.58) in test  

control accuracy of the attitude and the angular velocity was seen in Figs. 10.23 and 

10.24 for the experimental tests. This is because the measurement accuracy of the 

testbed is not very high. Nevertheless, the obtained attitude pointing accuracy, attitude 

stability, and system convergence time were desirable for practical application. To this 

end, the experimental verification of the Theorem 10.3 and the practical application 

of the proposed resilient control law was done. 

10.4 Summary 

In this chapter, an exponential attitude stabilization control approach was presented 

for rigid satellite with modeling error. A DO-based controller was developed. Despite 

the modeling error, the controller can exponentially stabilize the attitude, the angu-

lar velocity, and the DO error to be within a radius arbitrarily small set. It did not 

require the assumption that the rate of change of the external disturbances should be 

zero or almost zero. Hence, the proposed approach was capable of handling a large 

range of external disturbances. Disturbance attenuation control was achieved. More-

over, the controller has a simple structure without complicated computation. More 

robustness to external disturbance was guaranteed. Then, the practically exponential 

attitude tracking problem of rigid satellites with modeling error due to external distur-

bance, uncertain inertia parameters, actuator faults, and actuator misalignment was 

addressed. An observer-based resilient control solution was designed. This approach 

guaranteed that the desired attitude trajectory was followed with the attitude and 

the angular velocity tracking error practically exponentially converging to a radius 

arbitrary small region. The scheme was developed based on the attitude system of 

the satellite with its attitude represented by Euler angles. Moreover, the controller 

was independent of the actuator type and its configuration. Another feature of the
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controller was its simple structure and less onboard computation. Hence, it lets the 

proposed solution have superior practical application potential for satellite engineer-

ing. 
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Chapter 11 

Unknow Input Observer-Based Attitude 

Control 

11.1 Introduction 

Considering modeling error or disturbance as an unknown input, employing the 

unknown input observer (UIO) [ 1] to estimate modeling error or disturbance is 

another solution to design an attitude controller with high pointing accuracy. The 

development of a UIO-based attitude controller for satellite was discussed in [ 2]. 

Motivated by the advantages of UIO-based control, this chapter first presents a UIO-

based robust control approach for flexible satellite’s attitude stabilization maneuvers 

with fixed convergence time. The main features of this approach are highlighted as: 

• The conventional fixed-time stability theorem [ 3] is extended in this chapter to 

decrease the settling time. A new stable system, based on which the main result 

of the chapter is presented, is developed with its settling time shorter than [ 4]. 

• Inspired by [ 5], a fixed-time nonlinear observer to reconstruct the lumped uncer-

tainties is developed. Any prior knowledge of the total uncertainties is not required. 

Unlike the existing disturbance observers [ 6], the restrictions on the uncertainties 

are relaxed. Moreover, another feature of this observer is that the estimation error 

is finite-time stable regardless of initial estimation errors. 

• By designing a novel fixed-time terminal sliding surface, a robust attitude control 

law is proposed for flexible satellites with external disturbance, uncertainties in 

inertia parameters and actuators accommodated. 

It should be pointed out that most of the preceding observer-based schemes are 

able only to guarantee the closed-loop tracking system stability to be stable, while 

they do not take control performance such as overshoot into consideration. To solve 

these challenges, a novel UIO-based tracking control framework is further presented 

in this chapter. The main contributions are as follows. 

• A more general class of uncertain systems with lossless second-order mechanical 

systems or Lagrangian systems included in the model has been investigated. The 

proposed approach is, thus, applicable for trajectory following control of modern 

industrial systems such as robotic manipulators, etc. 
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• A general tracking control architecture is presented. This is designed by using 

the UIO technique. In comparison with the existing ESO-based approaches, it can 

remove the need that the uncertainty/disturbance should be with no variation or 

slow variation. When compared with the SMO-/HOSMO-based controllers, the 

proposed scheme can eliminate the assumption that the uncertainty/disturbance 

should be upper bounded by a known scalar. 

• The proposed control approach can achieve trajectory tracking control with expo-

nential convergence. A perfect tracking performance without overshoot can be 

guaranteed even in face of system uncertainty and external disturbance. It lets this 

proposed scheme with significant application potential. 

• A fast estimation of the disturbance and uncertainty can be achieved by the pro-

posed estimator. Finite-time stability of the estimation error is further guaranteed. 

11.2 UIO-Based Attitude Stabilization Control 

In this section, the satellite considered is flexible with its attitude system described 

by (2.15), (2.25) and, (2.26). The modeling error consists of actuator uncertainty, 

external disturbance, and uncertain inertia. Let .J0 ∈ R
3×3 and .ΔJ ∈ R

3×3 be the 

nominal and the uncertain inertia. Then, it has .J = J0 + ΔJ . 

11.2.1 General Model of Actuator Uncertainty 

In practice, a satellite’s actuator may have uncertainty [ 7]. Nonnominal behavior may 

be seen in the actuator. This uncertainty would yield performance deterioration or 

system instability. Let the commanded/nominal torque of the actuator be denoted as 

.uA = [uA1, uA2, uA3]T ∈ R
3. .uF ∈ R

3 represents the uncertainty torque. Then, the 

relationship between the commanded torque .τ A and the actual control torque . u can 

be mathematically modeled as 

.u = uA + uF (11.1) 

11.2.2 Problem Formulation 

Suppose that the considered flexible satellite has an attitude sensor and gyros to 

measure the attitude .Θ and the angular velocity . ω. Then, the control problem of 

this section can be formulated as: Applying the feedback of states’ measurement . Θ

and . ω, design a control law for .uA to ensure that the attitude angles .Θ is stabilized 

to . 0 after a fixed-time .tF ∈ R+ even in the presence of the external disturbance .ud ,
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the uncertain inertia .ΔJ , and the actuator uncertainty .uF , i.e., .Θ(t) ≡ 0 for .t ≥ tF . 

Moreover, .tF should be independent of the initial attitude and angular velocity. 

The flexible satellite’s attitude control system (2.15), (2.25), and (2.26) with actu-

ator uncertainty (11.1) can be combined as 

.M(Θ)Θ̈ + C1(Θ, Θ̇)Θ̇ + C2(Θ, Θ̇) = ū + d̄ (11.2) 

where .d̄ = RT(Θ)(ud + uF − ΔJω̇ − ω×ΔJω − ω×δTη̇ − δTη̈), .ū = RT(Θ)uA, 

.M(Θ) = RT(Θ)J0R(Θ), .C1(Θ, Θ̇) = RT(Θ)
(

J0
dR(Θ)

dt
− ω× J0)R(Θ)

)

, and 

.C2(Θ, Θ̇) = −RT(Θ)
(

J0
dωc(Θ)

dt
− ω× J0ωc(Θ)

)

. 

Defining .x1 = [x11, x12, x13]T = Θ and .x2 = [x21, x22, x23]T = Θ̇, the system 

(11.2) can be transformed into 

.

{

ẋ1 = x2

ẋ2 = τ + d − M−1(x1)(C1(x1, x2)x2 + C2(x1, x2))
(11.3) 

where .x1 and .x2 are the system states, .d = M−1(Θ)d̄ denotes the lumped uncer-

tainty, and .τ = M−1(Θ)ū is the transformed control input. 

Remark 11.1 Because the attitude .Θ and the angular velocity . ω are measurable, 

it can be obtained that the states .x1 and .x2 of the transformed system (11.3) are  

measurable. 

11.2.3 Main Result 

In this section, an observer-based fixed-time control framework is presented for a 

flexible satellite attitude system to improve the convergence rate and the pointing 

accuracy. This control framework is developed by using the measurements of the 

attitude .Θ and the angular velocity .ω or . Θ̇. Moreover, it consists of a fixed-time 

observer and a robust fixed-time attitude stabilization controller. The fixed-time 

observer is to estimate the lumped uncertainty . d. The states measurements and the 

estimated information .dest are feedback to develop the robust fixed-time attitude 

stabilization controller to achieve the closed-loop system’s fixed-time stability. The 

closed-loop attitude stabilization system resulting from this control framework is 

shown in Fig. 11.1. 

A A Faster Fixed-Time Stable System 

Before the observer-based attitude control design, a fixed-time stable system is devel-

oped as 

.ẏ = −ξ(y)(αy p + βyλ)k, y ∈ R, y0 = y(0) (11.4)
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dest 

Actuators 
= 0 Flexible 

satellite
Robust fixed-time controller 

Fixed-time observer 

Uncertainty 

The measurement of 

Disturbances 

Uncertain inertia 

Fig. 11.1 The closed-loop system from the proposed control in this Chapter 

where .a > 1, .b ∈ R+, .c ∈ R+, .α ∈ R+, .β ∈ R+, . p̄ ∈ R+, .q̄ ∈ R+, and . k ∈ R+
are scalars.. p̄k < 1,.q̄k > 1,.ξ(y) = a + (1 − a) exp(−b||y||c), and. λ = 1

2k
+ 1

2
q̄ +

(

1
2
q̄ − 1

2k

)

sgn(||y|| − 1). 

Lemma 11.1 For any initial value . y0, the system (11.4) is fixed-time stable, and its 

settling-time is .T1 ∈ R+, i.e., .y(t) ≡ 0 for .t ≥ T1, where .T1 is bounded as 

.T1 <
1

βk(q̄k − 1)
+ 1

βk(1 − p̄k)
ln

(

1 +
)

β

α

)k
)

(11.5) 

Moreover, the convergence rate is faster than the fixed-time stable system proposed 

in [ 3]. 

Proof Defining a new variable .W = y1− p̄k , it can be obtained from (11.4) that 

.

Ẇ = −(1 − p̄k)y− p̄k
(

ξ(y)
1
k αy p̄ + ξ(y)

1
k βyλ

)k

= −(1 − p̄k)
(

ξ(y)
1
k α + ξ(y)

1
k βW η̄

)k
(11.6) 

where .η̄ = λ− p̄

1− p̄k
. 

Since .1 − p̄k > 0 and .ξ(y) > 1, it follows from (11.6) that 

. Ẇ ≤ −(1 − p̄k)(α + βW η̄)k (11.7) 

Applying the result in [ 3], Definition 2.1, and Lemma 2.3, it can be proved from (11.7) 

that .W is fixed-time stable. Moreover, solving (11.7), one can get the settling-time 

as



11.2 UIO-Based Attitude Stabilization Control 237

. 

T1 = 1

(1 − p̄k)

{ W0

0

1
(

ξ (y)
1
k α + ξ (y)

1
k βW η̄

)k
dW

= 1

(1 − p̄k)

(

{ W0

1

1

ξ(y)(α + βW η̂)k
dW +

{ 1

0

1

ξ(y)(α + βW
1
k )k

dW

)

(11.8) 

where .η̂ = q̄− p̄

1− p̄k
and .W0 = (y(0))1− p̄k . 

If .ξ(y) = 1, then one has 

.T '
1 = 1

(1 − p̄k)

(

{ W0

1

1

(α + βW η̂)k
dW +

{ 1

0

1

(α + βW
1
k )k

dW

)

(11.9) 

Since .1 ≤ ξ(y) ≤ a, then .
1
a

≤ 1
ξ(y)

≤ 1. Hence, for all .W0, it is concluded that 

.T1 < T '
1 (11.10) 

On the other hand, .T '
1 is also the settling time of the fixed-time system given in [ 3]. 

To this end, one can prove that the settling time provided by the proposed system 

(11.4) is less than [ 3]. The convergence rate of the system (11.4) is faster than [ 3]. 

From (11.9), it be proved that .T '
1 is bounded as 

.

T '
1 ≤ 1

(1 − p̄k)

){ W0

1

1

βkW η̂k
dW +

{ 1

0

1

αk + βkW
dW

)

≤ 1

(1 − p̄k)

(

1 − W
1−η̂k

0

βk(η̂k − 1)
+ 1

βk
ln

(

1 +
)

β

α

)k
)) (11.11) 

Since .η̂k > 1 and .W0 > 0, one has 

.T '
1 ≤ 1

βk(q̄k − 1)
+ 1

βk(1 − p̄k)
ln

(

1 +
)

β

α

)k
)

(11.12) 

which does not depend on the initial condition. ⬜

Lemma 11.1 is fundamental to the development of the subsequent observer and 

controller. The subsequent fixed-time observer, sliding surface, and attitude con-

troller are developed based on it; moreover, the system stability will be analyzed by 

using Lemma 11.1. Indeed, this fixed-time stable system introduces a time-varying 

gain to significantly improve convergence speed near and even far away from the 

origin. Thus, it is expected that the observer-based attitude control possesses fast 

and fixed-time convergence properties.
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B Fixed-Time Unknown Input Observer 

The transformed system (11.3) can be rewritten as 

.ẋ2 = −l1x2 + dl + τ (11.13) 

where .dl = −M−1(x1)(C1(x1, x2)x2 + C2(x1, x2)) + l1x2 + d and .l1 ∈ R
+ is a 

positive gain. 

For (11.13), an auxiliary system is introduced as 

.ẋa = −l1xa + τ (11.14) 

where .xa ∈ R
3 represents the state of this auxiliary system. 

Let the error between.x2 and.xa be defined as.z = x2 − xa , it leaves the dynamics 

of the error be the following linear system. 

.

{

ż = −l1z + dl

y = l2z
(11.15) 

where .l2 ∈ R+ is a positive constant, . z is the system’s state, . y ∈ R
3 is the system’s 

output, and .dl is the unknown input of this system. 

Let the fixed-time unknown input observer for the lumped uncertainty be designed 

as 

.
˙̂z = ẏ

l2
+ l3 y − l2l3 ẑ + ξ(e)

1
k1

(

α1[e]
2p1k1−1

k1 − β1[e]
2λ1k1−1

k1

)k1

(11.16) 

where .l3 ∈ R+, .α1 ∈ R+, .β1 ∈ R+, .p1 ∈ R+, .q̄1 ∈ R+, .a1 ≥ 1, .b1 ∈ R+, .c1 ∈ R+, 
and .k1 ∈ R+ are observer gains. .ξ(e) = a1 + (1 − a1) exp(−b1||e||c1), . λ1 = 1

2k1
+

1
2
q̄1 +

(

1
2
q̄1 − 1

2k1

)

sgn(||e|| − 1), . ẑ is the estimation of . z, and .e = z − ẑ is the esti-

mation error. Moreover, . ẏ is the time derivative of . y. 

Theorem 11.1 The proposed observer (11.4) ensures the estimation error . e to be 

fixed-time stable, i.e., .e(t) ≡ 0 for .t ≥ Te, where .Te satisfies 

.Te <
1

μ
k1
2 (q̄1k1 − 1)

+ 1

μ
k1
2 (1 − p1k1)

ln

(

1 +
)

μ2

μ1

)k1
)

(11.17) 

where .μ1 = 2p1α1 and .μ2 = 2λ1β1. 

Proof It is obtained from (11.15) and (11.16) that the estimation error of the observer 

satisfies
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.

ė = ż − ˙̂z = ż + l2l3 ẑ − 1

l2
ẏ − l3 y

−
(

ξ(e)
1
k1 α1[e]

2p1k1−1

k1 + ξ(e)
1
k1 β1[e]

2λ1k1−1

k1

)k1

= − l2l3e −
(

ξ(e)
1
k1 α1[e]

2p1k1−1

k1 + ξ(e)
1
k1 β1[e]

2λ1k1−1

k1

)k1

(11.18) 

Define a Lyapunov candidate function as .V1 = 1
2
eTe, it leaves its time derivative as 

.

V̇1 = eT ė ≤ −eT
(

ξ(e)
1
k1 α1[e]

2p1k1−1

k1 + ξ(e)
1
k1 β1[e]

2λ1k1−1

k1

)k1

≤ −
3

∑

i=1

(

ξ(e)
1
k1 α1|ei |

2p1k1−1

k1
+ 1

k1 + ξ(e)
1
k1 β1|ei |

2λ1k1−1

k1
+ 1

k1

)k1

≤ −
(

ξ
1
k1 μ1V

p1
1 + ξ

1
k1 μ2V

λ1

1

)k1

(11.19) 

Applying Lemmas 11.1 and 2.3, it is concluded that .V1(e) ≡ 0 is met for .t ≥ Te, 

where the settling-time .Te satisfies (11.17). ⬜

Theorem 11.2 Let an estimation law .dest be designed as 

.dest = d̂l − l1x2 + M−1(x1)(C1(x1, x2)x2 + C2(x1, x2)) (11.20) 

where 

.d̂l = l1l2 ẑ + ẏ

l2
(11.21) 

Then, the lumped uncertainty . d is precisely estimated by .dest within a fixed time . Te. 

The estimation error .de = d − dest is such that .de(t) ≡ 0 for .t ≥ Te. 

Proof From (11.16) and (11.21), it follows that 

.

de =dl − l1x2 + M−1(x1)(C1(x1, x2)x2 + C2(x1, x2))

− d̂l + l1x2 − M−1(x1)(C1(x1, x2)x2 + C2(x1, x2))

=dl − d̂l

(11.22) 

Substituting (11.21) in  (11.22) gives  

. de = dl − l1l2 ẑ + ẏ

l2
= dl − l1l2 ẑ − l1l2z + l2dl

l2
= l1e (11.23) 

Because .e(t) ≡ 0 is achieved from Theorem 11.1 for .t ≥ Te, .de(t) = 0 is achieved 

for .t ≥ Te. It is inferred that . d is estimated utilizing .dest after . Te. ⬜
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Remark 11.2 It is seen in Theorems 11.1 and 11.2 that . ẏ is required to implement 

the proposed control approach in practice. To satisfy this requirement, the high-

order sliding-mode differentiators (HOSMDs) [ 8] can be applied to obtain . ẏ. That is 

because the HOSMDs can achieve an exact and finite-time estimation of the required 

. ẏ by inputting the signal value . y into the differentiator. It is seen in [ 8] that a . K th-

order sliding-mode differentiator (.K > 2) has a form of 

.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̄v0 = v0, v0 = v̄1 − κ0||v̄0 − h|| K
K+1 [v̄0 − h]0

˙̄v j = v j , v j = v̄ j+1 − κ j ||v̄ j − v j−1||
K− j

K+1− j [v̄ j − v j−1]0
...

j = 1, 2, . . . , K − 1

˙̄vK = −κK [v̄K − vK−1]0

(11.24) 

where .κ j ∈ R+ is positive gains, .v̄ j ∈ R
r is the state of this differentiator, . j =

1, 2, . . . , K , .h ∈ R
r is the input signal. Following [ 8], .ḣ = v0 is achieved after a 

finite time. Hence, when applying the differentiator (11.24) to calculate . ẏ, . y should 

be chosen as the input signal . h, i.e., .h = y, and .v̄ j ∈ R
3, . j = 1, 2, . . . , K . Then, it 

follows that . ẏ = v0. 

Remark 11.3 It is seen in Remark 11.1 that . Θ, . ω, . Θ̇, . x1, and .x2 are measur-

able via the sensors fixed in considered satellite. Moreover, .xa can be obtained by 

solving (11.14) for any . u. Then, . z can be numerically obtained, and . ẑ is available 

from (11.16). Therefore, the unknown input observer (11.16) is available for prac-

tical implementation. In addition, it is known from the paragraph below (11.2) and 

the nominal inertia .J0 that .M
−1(x1), .C1(x1, x2), .C2(x1, x2) are available. Conse-

quently, it can be obtained from Remark 11.2 and (11.21) that the estimation .dest is 

also available. 

C A Fixed-Time Sliding Manifold 

The following fixed-time sliding manifold . S (FTSM) is synthesized in this part to 

circumvent the singularity issue and provide the system states with fast fixed-time 

convergence. 

.S = H(x1)x1 + [x2]γ (11.25) 

with .H(x1) = diag([h(x11), h(x12), h(x13)]T) and 

.h(x1i ) =
(

ξ(x1)
1
k2 α2|x1i |p2−

1
k2γ + ξ(x1)

1
k2 β2|x1i |λ2− 1

k2γ

)k2γ

, i = 1, 2, 3 (11.26) 

where .α2 ≥ 1, .α2 ∈ R+, .β2 ∈ R+, .p2 ∈ R+, .q̄2 ∈ R+, .k2 ∈ R+, .γ > 1, . b2 ∈
R+, and .c2 ∈ R+ are constants. .

1
γ

< p2k2 < 1, .q̄2k2 > 1, . λ2 = 1
2k2

+ 1
2
q̄2 +

(

1
2
q̄2 − 1

2k2

)

sgn(||x1|| − 1), and .ξ(x1) = a2 + (1 − a2) exp(−b2||x1||c2).
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Theorem 11.3 If a control law can be presented to govern the states of the attitude 

system to reach.S = 0 and stay in thereafter, then the system states converge to. 0 after 

a fixed time .Ts ∈ R+, which does not depend on the initial conditions. Moreover, . Ts
is bounded as 

.Ts <
1

β
k2
2 (q̄2k2 − 1)

+ 1

β
k2
2 (1 − p2k2)

ln

(

1 +
)

β2

α2

)k2
)

(11.27) 

Proof When .S = 0 is reached, from (11.25), one has 

.

ẋ1i = − (h(x1i ))
1
γ [x1i]

1
γ

= −
(

ξ(x1)
1
k2 α1|x1i |p2−

1
k2γ − ξ(x1)

1
k2 β2|x1i |λ2− 1

k2γ

)k2
[x1i]

1
γ

= −
(

ξ(x1)
1
k2 α2|x1i |p2 − ξ(x1)

1
k2 β2|x1i |λ2

)k2
sgn(x1i )

(11.28) 

Defining a new variable .Ξ̄i = |x1i |1−p2k2 , (11.28) is expressed as 

.

˙̄Ξi = − (1 − p2k2)ẋ1i |x1i |−p2k2sgn(x1i )

= − (1 − p2k2)|x1i |−p2k2

(

ξ(x1)
1
k2 α2|x1i |p2 + ξ(x1)

1
k2 β2|x1i |λ2

)k2

= − (1 − p2k2)
(

ξ(x1)
1
k2 α2 + ξ(x1)

1
k2 β2Ξ̄

η̄2
i

)k2

(11.29) 

where .η̄2 = λ2−p2
1−p2k2

. Similar to Lemma 11.1, the system state converges to zero after 

a fixed time given  by  (11.27). ⬜

Remark 11.4 In [ 9, 10], a fixed-time sliding manifold has been presented as (11.25) 

in which .h(x1i ) is expressed as 

.h(x1i ) =
(

α2|x1i |p2−
1

k2γ + β2|x1i |q̄2−
1

k2γ

)k2γ

(11.30) 

The fixed time ensured by [ 9, 10] is bounded by .T̄x ≤ 1

β
k2
2 (q̄2k2−1)

+ 1

α
k2
2 (1−p2k2)

. Since 

.ln

)

1 +
(

β2

α2

)k2
)

≤
(

β2

α2

)k2
always holds, the proposed FTSM of this chapter obtains 

faster convergence rate than the FTSM presented by [ 10]. 

D Robust Fixed-Time Attitude Controller 

Let the robust fixed-time attitude stabilization controller be synthesized as 

.

uA =(RT(Θ))−1M(Θ)(M−1(x1)(C1(x1, x2)x2

+ C2(x1, x2)) − 1

γ
(M̃(x1) + M(x1))[x1]2−γ

− dest −
1

ρ0γ
P̄(x2)

(

ξ(S)
1
k3 α3[S]

2p3k3−1

k3 + ξ(S)
1
k3 β3[S]

2λ3k3−1

k3

)k3

(11.31)
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with . P̄(x2) = diag([P̄1, P̄2, P̄3]T), .P̄i = μσ̄ (|x2i |γ−1)|x2i |γ−1, .i = 1, 2, 3. .k3 > 1, 

.α3 ∈ R+,.β3 ∈ R+, and.ρ0 = π
2σ̄

are control gains..p3k3 < 1,.q̄3k3 > 1, and. M̃(x1) =
diag([h̃(x11), h̃(x12), h̃(x13)])T, .i = 1, 2, 3, 

.

h̃(x1i ) = k1γ
(

ξ(x1)
1
k2 α2|x1i |p2−

1
k2γ + ξ(x1)

1
k2 β2|x1i |λ2− 1

k2γ

)k2γ−1

×
)

ξ(x1)
1
k2 α2

)

p2 − 1

k2γ

)

|x1i |p2−
1

k2γ

+ξ(x1)
1
k2 β2

)

λ2 − 1

k2γ

)

|x1i |λ2− 1
k2γ

)

(11.32) 

Moreover, the function .μσ̄ is 

.μσ̄ (x) =
{

sin
(

0.5πx
σ̄

)

, |x | ≤ σ̄

1, |x | > σ̄
(11.33) 

Theorem 11.4 For the flexible satellite with modeling error induced by .ud , the  

uncertain inertia .ΔJ , and the actuator uncertainty .uF , applying the estimation law 

(11.16) and the fixed-time attitude controller (11.31), then the attitude Euler angles 

and the rotation velocity are fixed-time stable with the settling time .Tc satisfying 

.Tc < Ts + T1, where .T1 is bounded by 

.T1 <
1

μ
k3
4 (q̄3k3 − 1)

+ 1

μ
k3
4 (1 − p3k3)

ln

)

1 +
)

μ4

μ3

k3
))

(11.34) 

where .μ3 = α3(ρ0)
− 1

k3 (μσ̄ (|x2i |γ−1))
1
k3 and .μ4 = β3(ρ0)

− 1
k3 (μσ̄ (|x2i |γ−1))

1
k3 . 

Proof Select another Lyapunov candidate function .Vs = STS. Applying (11.25), 

one can calculate the time derivative of .Vs as 

. 

V̇s =2ST(Ḣ(x1)x1 + H(x1)ẋ1)

+ 2STγ diag(|x2|γ−1)(τ + d − M−1(x1)(C1(x1, x2)x2 + C2(x1, x2)))

(11.35) 

Let .μσ̄ = [μσ̄ (|x21|γ−1), μσ̄ (|x22|γ−1), μσ̄ (|x23|γ−1)]T be defined, then substituting 

the controller (11.31) into (11.35) yields 

.

V̇s = 2

ρ0

STdiag(μσ̄ )
(

ξ
1
k3 α3[S]

2p3k3−1

k3 + ξ
1
k3 β3[S]

2λ3k3−1

k3

)k3

+ γ STdiag(|x2|γ−1)(d − dest)

(11.36) 

Since .de = d − dest = 0 for .t > Te, (11.36) can be simplified as
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.

V̇s = 2

ρ0

STdiag(μσ̄ )
(

ξ
1
k3 α3[S]

2p3k3−1

k3 + ξ
1
k3 β3[S]

2λ3k3−1

k3

)k3

≤ −
3

∑

i=1

(

ξ
1
k3 α3(ρ0)

− 1
k3 (μσ̄ (|x2i |γ−1))

1
k3 |Si |

2p3k3−1

k3
+ 1

k3

+ ξ
1
k3 β3(ρ0)

− 1
k3 (μσ̄ (|x2i |γ−1))

1
k3 |Si |

2λ3k3−1

k3
+ 1

k3

)k3

≤ −
(

ξ
1
k3 μ3V

p3
s + ξ

1
k3 μ4V

λ3

s

)k3

(11.37) 

Applying Lemma 2.3 and the result in Lemma 11.1, it is ready to conclude that 

.Vs ≡ 0 after the settling time .T1 satisfying (11.34). 

After reaching the sliding surface .S = 0, it can be obtained from Theorem 10.2 

that the states will be zero after the settling time . Ts . Then, one can prove that the 

attitude Euler angles and the angular velocity are fixed-time stable with the settling 

time .Tc satisfying .Tc < Ts + T1 regardless of any initial states. ⬜

Remark 11.5 In contrast to the existing observers, the proposed observer (11.16) 

provides precise estimation for the lumped uncertainty after a fixed time which does 

not depend on the initial estimation error. The estimation error is zero after that fixed 

time. Moreover, it relaxes some assumptions such as the need for the upper limit of 

total uncertainties to be available in advance or the time derivative of the disturbance 

to converge to zero. This is one of the main contributions of this work. 

Remark 11.6 When practically implement the proposed approach to perform atti-

tude maneuvers, the controller (11.31) and the observer (11.16) will be numeri-

cally computed by the satellite’s onboard embedded computer. The designed control 

scheme is hence implementable for in-orbital satellite. Moreover, the procedures to 

choose the control gains are listed in the following Remark 11.7. Hence, the controller 

is practically implementable for satellite system. 

Remark 11.7 When implementing the proposed approach, control gains . αi , . βi , . pi , 

. qi , . ki , . a j , and . b j , .i = 1, 2, 3, . j = 1, 2, should be carefully chosen and turned to 

achieve higher attitude accuracy and acceptable control power. Based on (11.27) and 

(11.34), the following procedures should be followed for choice of the control gains. 

(1) Larger .αi and .βi lead to a faster convergence rate, but large overshoot and 

more control energy consumption will result. Hence, a compromise should be made 

between the converging rate and the overshoot. 

(2) According to (11.27) and (11.34), the gains . pi , . qi , and .ki also important to 

determine the system’s converging rate. 

(3) The gains .a j and .b j have profound influence on the convergence rate. If . a j

is selected near . 1, the effect of . ξ is reduced, and vice versa. By choosing .b j large 

enough, the impact of . ξ is highlighted.
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11.2.4 Simulation Results 

To validate the superior attitude control performance of the presented approach, 

numerical simulation is conducted on a flexible satellite with its structure shown in 

Fig. 9.1. The details of this satellite are provided in [ 11]. The task of this satellite 

is Earth observation. The satellite’s orbit of the satellite is circular. Its altitude and 

inclination are .638 km and .95.4 degrees, respectively, i.e., .ω0 = 0.0011 rad/s. As 

shown in Fig. 9.1, there are two solar paddles fixed in the .+YB and the .−YB axis, 

respectively. They are called the north and the south solar paddle, receptively. Each 

paddle has a dimension of 15. ×0.75 m. The nominal designed inertia of the satellite is 

.J0 = [487, 15, − 1.2; 14.9, 177, − 7.3; − 1.2, − 7.3, 404] kg · m2. After ground 

testing, the coupling matrix between the rigid body and the solar paddles is calculated 

as .δ = [1, 0.1, 0.1; 0.5, 0.1, 0.01; − 1, 0.3, 0.01] kg · m2. Moreover, it is tested that 

when choosing the elastic mode number .N as .N = 3, the flexible vibration of solar 

paddles can be mainly reflected. Hence, .N = 3 is chosen to establish the model of 

the attitude control system. Correspondingly, the natural frequencies are measured as 

.⌃1 = 1.8912 rad/s,.⌃2 = 2.884 rad/s,.⌃3 = 3.4181 rad/s, respectively. The damping 

ratios are measured on the ground as .ξ1 = ξ2 = ξ3 = 0.01. 

For the considered satellite, the gravity-gradient torque, the aerodynamic torque, 

and the Earth magnetic torque are the primary external disturbances for.ud , which will 

be considered in the simulation. They will be mathematically calculated according 

to [ 6] and put into the system model. Moreover, the uncertain inertia is assumed to 

be .ΔJ = 0.1J0. When carrying out simulation, the initial attitude are . ψ(0) = 15

degrees, .φ(0) = 25 degrees, and .θ(0) = −5 degrees. The initial angular velocity is 

.ω(0) = [0.01, − 0.01, − 0.02]T rad/s. 

Besides the proposed observer-based fast fixed-time attitude control (named 

OBFFTAC), the fixed-time attitude control presented in [ 9] (denoted by FTAC) 

is also simulated under the same condition for performance comparison. For a 

fair comparison, the parameters of OBFFTAC are taken the same as FTAC except 

for the new parameters in the sliding manifold as well as the controller. The 

OBFFTAC parameters are chosen as .γ = 1.5, .p1 = 0.35, .p2 = 0.3, .p3 = 0.45, 

.q1 = 0.6, .q2 = 0.75, .q3 = 0.45, .α1 = 0.2, .α2 = 0.1, .α3 = 0.4, .β1 = 0.08, 

.β2 = 0.06, .β3 = 0.1, .k1 = 2, .k2 = 2, .k3 = 2, .l1 = 0.02, .l2 = 14, .l3 = 25, .σ = 0.01, 

.a1 = 1.4, .a2 = 1.35, .b1 = 6, .b2 = 4, and .c1 = c2 = 1. Moreover, the fifth-order 

sliding mode differentiator (11.24) is applied to calculate . ẏ with .K = 5 and 

.κ0 = κ1 = κ2 = κ3 = κ4 = κ5 = 1.5. 

A Comparison in the Case of Normal Actuators 

In the subsection, the case that all the actuators of the flexible satellite do not 

have any uncertainty is considered. For this case, the attitude stabilization results 

from the OBFFTAC and the FTAC are illustrated in Figs. 11.2, 11.3, 11.4. It is  

found that the OBFFTAC achieves a faster converging rate and higher pointing 

accuracy, while the maximum required control torques are almost identical. To
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Fig. 11.2 The attitude from (11.31) with normal actuator
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Fig. 11.3 The angular velocity from (11.31) with normal actuator
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Fig. 11.4 The torque of the controller (11.31) with normal actuator
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Table 11.1 The performance comparison with normal actuators 

Controller Euler angles Angular velocity Convergence time 

OBFFTAC .5.5 × 10−6
.4 × 10−7 44.6 

FTAC .4 × 10−3
.3 × 10−5 51.2 

Improvement 

percentage, % 

98.25 98.67 12.89 
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Fig. 11.5 Norm of the attitude from (11.31) with normal actuators 

provide further insight into the control performance in terms of pointing accuracy 

as well as the convergence rate, the data analysis is given in Table 11.1. In the table, 

the convergence time is defined as the time after which .||Θ|| ≤ 6 × 10−3 (deg) 

and .||ω|| ≤ 4 × 10−5(deg/s) are satisfied. It is found that the OBFFTAC provides a 

faster convergence rate and smaller steady-state error. The improvement percentage 

confirms the superior performance of OBFFTAC especially in terms of pointing 

accuracy. Moreover, the norm of the attitude angles and the rotation velocity are 

illustrated in Figs. 11.5 and 11.6, respectively. That two controllers accomplish the 

planned attitude maneuvering. However, the OBFFTAC provides greatly preferable 

control performance to the FTAC both in theory and simulation. 

B Comparison in the Case of Actuator Uncertainty 

To evaluate the robust control capability of the controllers, actuator uncertainty is 

considered in this case. In particular, the actuator uncertainty is assumed to be the 

actuator fault: 

.uF = (E(t) − I3)uA + ū (11.38) 

where .E(t) = diag([l1, l2, l3]T) refers to the actuator effectiveness matrix in which 

.gi represents fault indicator of the .i th actuator, .ū = [ū1, ū2, ū3]T denotes the bias 

fault. For example, .li = 1 and .ūi = 0 is associated with the case that .i th actuator is
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Fig. 11.6 Norm of the angular velocity from (11.31) with normal actuators
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Fig. 11.7 The attitude from (11.31) with actuator uncertainty 

healthy. .0 < li < 1 denotes that the .i th actuator partially rather than totally loses its 

control effectiveness. 

In this subsection, the fault indicator and bias faulty torque are given 

as .ū1 = 0.6N. ·m, .ū2 = −0.03N. ·m, .ū1 = 0.05N. ·m, .l1 =
{

1, if t ≤ 20

0.5, otherwise
, . l2 =

{

1, if t ≤ 35

0.6, otherwise
and .l3 =

{

1, if t ≤ 25

0.5, otherwise
, when conducting simulation. More-

over, all the control gains are chosen the same as given in the preceding case. 

Figures 11.7 and 11.8 illustrate the attitude and the rotation velocity revealing that 

the OBFFTAC obtains a much faster convergence rate for the case of having actuator 

uncertainty. The control performance is considerably degraded under the FTAC. The 

convergence time obtained by the FTAC significantly increases because of its longer 

rotation path.



248 11 Unknow Input Observer-Based Attitude Control

-0.02

-0.015

-0.01

-0.005 

0 

0.005 

0.01 

0.015 

0 20  40  60  80  100  

1 

2 

3

 (
d

e
g

/s
e
c)

 

Time (sec) 

(a) The OBFFTAC

-0.02

-0.015

-0.01

-0.005 

0 

0.005 

0.01 

0.015 

0  20 40  60 80  100  

1 

2 

3

 (
d

e
g

/s
e
c)

 

Time (sec) 

(b) The FTAC 

Fig. 11.8 The angular velocity from (11.31) with actuator uncertainty 
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Fig. 11.10 Norm of the angular velocity from (11.31) with actuator uncertainty 

According to Figs. 11.9 and 11.10, it can concluded that the OBFFTAC obtains 

the most accurate attitude control. This is due to the observer-based estimation law 

(11.16). The comparison result is listed in Table 11.2. The proposed strategy, in
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Table 11.2 The performance comparison in the case of actuator uncertainty 

Controller Euler angles Angular velocity Convergence time 

OBFFTAC .7 × 10−6
.6 × 10−7 44.6 

FTAC .0.2 .4 × 10−4
. ∞

Improvement 

percentage, % 

99.99 99.85 100
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Fig. 11.11 The torque of the controller (11.31) with actuator uncertainty 

contrast to the FTAC, successfully deals with the actuator uncertainty. It is confirmed 

that the control performance of the FTAC was significantly deteriorated while the 

actuators experienced uncertainty. The attitude control results of the OBFFTAC are 

roughly similar to that of the previous case. However, the FTAC failed to drive the 

attitude angles and the rotation velocity to the desired region. The superiority of the 

OBFFTAC over the FTAC was highlighted by this scenario. 

The control power consumed is shown in Fig. 11.11. The maximum required 

control efforts for those two controllers are almost identical showing the superior 

control performance of the OBFFTAC. The lumped uncertainties along with their 

estimations are illustrated in Fig. 11.12. It is observed from the estimation errors 

in Fig. 11.13 that the total uncertainties are precisely reconstructed in a finite time, 

which is independent of the initial estimation errors. When a sudden actuator failure 

happened, the observer successfully estimated it to preserve stability and control 

performance. Such results confirm the claims in Theorem 11.3 that the suggested 

estimation law can estimate the lumped uncertainties in a fixed time. This is also the 

reason that superiority can be obtained from the OBFFTAC.
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11.3 UIO-Based Attitude Tracking Control 

11.3.1 System Description 

For a general class of second-order uncertain systems with their dynamics described 

by 
.A0(x)ẍ + f 0(x, ẋ) + g0(x) + Δh(x, ẋ, ẍ) = u + d (11.39) 

where.x ∈ R
n is the state vector,.A0(x) ∈ R

n×n is a nominal inertia matrix of the sys-

tem, . f 0(x, ẋ) ∈ R
n and .g0(x) ∈ R

n denote the certain/nominal nonlinearities in the 

systems’ dynamics, .u ∈ R
n is the system input vector, .d ∈ R

n is the unknown exter-

nal disturbance, and the unknown vector .Δh(x, ẋ, ẍ) ∈ R
n denotes the uncertain 

dynamics acting on the system, i.e., 

.Δh(x, ẋ, ẍ) = Δ f (x, ẋ) + Δg(x) + ΔA(x)ẍ (11.40) 

in which .ΔA(x) ∈ R
n×n is the uncertain inertia, .Δ f (x, ẋ) ∈ R

n and . Δg(x) ∈ R
n

denote the system’s uncertain parts of the nominal . f 0(x, ẋ) and .g0(x), respectively. 

For the considered system (11.39), it has following properties which can be 

adopted in the following control framework design and analysis of system’s sta-

bility. 

Property 11.1 The symmetric inertia matrix .A0(x) is positive-definite. Moreover, 

there are two positive and known scalars .κ1 ∈ R+ and .κ2 ∈ R+ ensuring that the 

following inequality always hold for any vector .a ∈ R
n and .x ∈ R

n . 

.0 < κ1||a||2 ≤ aTA0(x)a ≤ κ2||a||2 (11.41) 

Remark 11.8 In comparison with another mathematical model given in (6.1) and 

used to describe Euler-Lagrange systems or a class of mechanical systems, the model 

(11.39) is more representative. It can be applied to describe the dynamics of more 

systems. Systems with the form (6.1) can be described by (11.39) absolutely. This is 

achieved by denoting .C(q, q̇)q̇ as . f 0(x, ẋ). However, systems modeled by (11.39) 

would be not described by (6.1). This implies that the existing second-order mechan-

ical systems can be included in the systems described by (11.39). Hence, the math-

ematical model (11.39) has a more general form. To this end, it can be got to know 

that the model (11.39) can be adopted to describe the dynamics of many industrial 

systems, such as robotic manipulators, satellites, twin-lift helicopters, hypersonic 

flight vehicles, and marine vehicles. 

Remark 11.9 To facilitate the following tracking controller design, the model given 

in (11.39) can be rewritten as 

.A0(x)ẍ + f 0(x, ẋ) + g0(x) = u + ud (11.42) 

where .ud = d − Δh(x, ẋ, ẍ). The  term  .ud denotes the total modeling error acting 

the system.
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11.3.2 Problem Statement 

The main problem to be investigated in this section can be formulated as: For the 

systems described by (11.39), design a general control framework to achieve the 

objective of tracking control with exponential convergence. More specifically, given 

any bounded desired/reference trajectory .xd (its first two time derivatives are also 

bounded for all time), develop a control input . u to guarantee that .xd can be followed 

even in the presence of system uncertainty .Δh(x, ẋ, ẍ) and external disturbance . d, 

i.e., the trajectory tracking error .xe = x − xd and the velocity tracking error and the 

velocity tracking error .xv = ẋ − ẋd are globally exponentially stable. 

11.3.3 UIO-Based Exponential Tracking Controller 

In this section, a general UIO-based tracking control architecture will be presented 

for the considered system (11.39) with exponential convergence performance 

guaranteed. This proposed control framework is illustrated in Fig. 11.14. It consists 

of two parts. One is the UIO observer-based estimator. It aims to estimate the total 

uncertainty precisely .ud . The other part is the control law. This law is designed by 

using the information supplied by the estimator. It will be applied to accomplish the 

planned trajectory tracking task with the total uncertainty compensated. 

A Unknown Input Finite-Time Observer for Modeling Error 

We firstly introduce two new variables as .ψ1 = x and .ψ2 = ẋ. It leaves (11.42) as  

follows by using the Property 11.1 

.ψ̇1 = ψ2 (11.43) 

.ψ̇2 = −l1A
−1
0 (ψ1)ψ2 + ζ (ψ1,ψ2) + A−1

0 (x)u + A−1
0 ud (11.44) 

Fig. 11.14 The diagram of 

the proposed general control 

framework 

System uncertainty 

External 

disturbance 

Control Module 

Observer-

based 

estimator 

Tracking 

controller
The Plant
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where .ζ (ψ1,ψ2) = −A−1
0 (ψ1)( f 0(ψ1,ψ2) + g0(ψ1) − l1ψ2), the positive scalar 

.l1 ∈ R+ is known and determined by the designer. 

For (11.44), another certain system is further introduced, which is of the form 

.ψ̇a = −l1A
−1
0 (ψ1)ψa + ζ (ψ1,ψ2) + A−1

0 (ψ1)u (11.45) 

where the state .ψa takes values in .R
n , and its measurement is available. 

Define the error between .ψ2 and .ψa as .ψe, i.e., .ψe = ψ2 − ψa , and define an 

output signal as . y = l2ψe with .l2 ∈ R+ being a positive constant. Because the mea-

surements of .ψ2 and .ψa are available, the signal . y can be available. 

On the basis of the above analysis, using the measurable output . y and .ψe, the  

following estimator is developed and applied to estimate the total uncertainty . ud

acting on the system (11.39) 

.ûd = A0(ψ1)
l1l2A

−1
0 (ψ1)ψ̂e + ẏ

l2
(11.46) 

with .ψ̂e ∈ R
n being the estimate of .ψe and determined by the following unknown 

input observer: 

.
˙̂
ψe = −l2l3ψ̂e + 1

l2
ẏ + l3 y − l4[ψ̃e]

γ1
γ2 (11.47) 

where .ψ̃e = [ψ̃e1, ψ̃e2, . . . , ψ̃en]T = ψ̂e − ψe is the observer error between .ψe and 

.ψ̂e; .l3 ∈ R+ and .l4 ∈ R+ are two observer gains with positive value; .γ1 .∈ R+ and 

.γ2 .∈ R+ are two positive odd integers such that .γ1 < γ2. 

B Exponential Tracking Controller 

In addition to the defined trajectory error .xe and the velocity tracking error .xv , a new  

variable is defined as: 

.xm = xv + lcxe (11.48) 

where .lc ∈ R+ is a positive scalar. 

Define the estimation error between .ud and .ûd as . ue, i.e., .ue = ud − ûd . Then, 

applying the estimator proposed in (11.46), it is ready to present the main solution 

to the problem of asymptotic tracking control design in the following theorems. 

Theorem 11.5 Consider the uncertain systems described by (11.39), with the appli-

cation of the estimator (11.46), design a controller as 

.

u = − kpxe − kdxm + f 0(x, ẋ) + g0(x) − ûd + A0(x)ẍd

− lcA0(x)(xm − lcxe) − 0.5 Ȧ0(x)xm
(11.49)



254 11 Unknow Input Observer-Based Attitude Control

where .kp ∈ R+ and .kd ∈ R+ are two positive control gains, if the control gains are 

selected to satisfy 

.kd − 0.5 > 0 (11.50) 

.l2l3 − 0.5 > 0 (11.51) 

then the estimator-based closed-loop system can be stabilized exponentially. More-

over, the total uncertainty .ud can be precisely estimated by this estimator (11.46). 

with exponential convergence. The tracking error . xe, the velocity tracking error .xv , 

and the estimation error . ue, are exponentially stable. 

Proof Firstly, it follows from (11.44) and (11.45) that the dynamics of the observer 

error .ψe is such that 

.ψ̇e = −l1A
−1
0 (ψ1)ψe + A−1

0 (ψ1)ud (11.52) 

Using (11.52) and (11.46), it is able to get that .ue is such that 

.

ue = ud − ûd

= A0(ψ1)(ψ̇e + l1A
−1
0 (ψ1)ψe) − 1

l2
(l1l2ψ̂e + l2A0(ψ1)ψ̇e)

= −l1ψ̃e

(11.53) 

Moreover, applying the observer (11.47) and (11.52) leads to 

.

˙̃
ψe = ˙̂

ψe − ψ̇e = −l2l3ψ̂e + 1

l2
ẏ + l3 y − l4[ψ̃]

γ1
γ2 − ψ̇e

= −l2l3ψ̃e − l4[ψ̃e]
γ1
γ2

(11.54) 

Then, combining (11.53) and (11.54), one can find that 

.u̇e = −l1
˙̃
ψe = −l2l3ue − l4[ue]

γ1
γ2 (11.55) 

On the other hand, with the definition of .xe and (11.48), it follows that 

.ẋe = ẋ − ẋd = xm − lcxe (11.56) 

It can also be calculated by applying (11.42), the controller (11.49), and (11.56) that 

.

A0(x)ẋm =A0(x)(ẍ − ẍd + lc(xm − lcxe))

=u + ud − f 0(x, ẋ) − g0(x) − A0(x)ẍd

+ lcA0(x)(xm − lcxe)

= − kpxe − kdxm − ue − 0.5 Ȧ0(x)xm

(11.57)
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Now, one can define a positive-definite Lyapunov function candidate as 

.V1 = 1

2
xTm A0(x)xm + 1

2
kpx

T
e xe + 1

2
uT
e ue (11.58) 

Inserting (11.53) and (11.55)–(11.57) into the time-derivative of .V1 yields 

.

V̇1 =0.5xTm Ȧ0(x)xm + xTm A0(x)ẋm + kpx
T
e ẋe + uT

e u̇e

=xTm(−kpxe − kdxm − ue) + kpx
T
e (xm − lcxe)

+ uT
e (−l2l3ue − l4[ue]

γ1
γ2 )

≤ − kplc||xe||2 − kd ||xm ||2 − xTmue − l2l3||ue||2

≤ − kplc||xe||2 − (kd − 0.5)||xm ||2 − (l2l3 − 0.5)||ue||2

(11.59) 

To this end, using (11.41) in the Property 11.1 and the choice of control gains in 

(11.50)-(11.51), it leaves (11.59) as  

.

V̇1 ≤ −kplc||xe||2 − (kd − 0.5)||xm ||2 − (l2l3 − 0.5)||ue||2

≤ −kp lc||xe||2 − (kd − 1

2
)
xTm A0(x)xm

κ2
− (l2l3 − 1

2
)||ue||2

≤ −εV1

(11.60) 

where .ε = min
{

2lc,
2kd−1

κ2
, l2l3 − 1

2

}

> 0. 

Solving (11.60), one has .V1(t) ≤ V1(0) exp(−εt) for any initial states. The 

estimator-based closed-loop system is, thus, globally exponentially stable. More-

over, using (11.41) in the Property 11.1 and the definition of .V1 in (11.58), it can be 

obtained that 

.||xe|| ≤
√

2V1(0) exp(−
εt

2
) (11.61) 

.||xm || ≤
/

2V1(0)

κ1
exp(−εt

2
) (11.62) 

.||ue|| ≤
√

2V1(0) exp(−
εt

2
) (11.63) 

From (11.48), it further has 

.||xv|| ≤ ||xm || + lc||xe|| ≤
)

1 + 1
√

κ1

)

√

2V1(0) exp(−
εt

2
) (11.64) 

Hence, it can be concluded from Definition 2.1 that the trajectory tracking error . xe, 

the velocity tracking error . xe, and the estimation error .ue are globally exponentially
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stable. The desired trajectory.xd can be tracked with high accuracy and with a globally 

exponential rate of convergence. ⬜

Theorem 11.6 The total uncertainty .ud can not only be precisely estimated by the 

estimator (11.46) with the estimation error .ud exponentially stabilized, but the esti-

mation error .ue will also be stabilized to zero in a period of finite time. That is, the 

estimation error can be finite-time stable. 

Proof For the dynamics of the observer error given in (11.54), choose a positive-

definite Lyapunov function candidate as .V2(t) = 1
2
ψ̃

T

e ψ̃e, it can come to get from 

(11.54) that 

.V̇2(t) = ψ̃
T

e (−l2l3ψ̃e − l4[ψ̃e]
γ1
γ2 ) ≤ −2l2l3V2 − 2

γ1+γ2
2γ2 l4V

γ1+γ2
2γ2

2 (11.65) 

where the inequality .ψ̃
T

e [ψ̃e]
γ1
γ2 ≥ ||ψ̃e||

γ1+γ2
γ2 is used. 

Because .γ1 and .γ2 are two positive odd integers and are chosen to satisfy .γ1 < γ2, 

one has .0 <
γ1+γ2
2γ2

< 1. As a result, the following can be obtained from the definition 

of .V2(t) by solving (11.65) 

.V2(t) ≡ 0, ψ̃e(t) ≡ 0, t ≥ t f (11.66) 

where the positive constant .t f ∈ R+ is bounded by 

.t f ≤ γ2

l2l3(γ2 − γ1)
ln

(

l2l3||ψ̃e(0)||
γ2−γ1

γ2

l4
+ 1

)

(11.67) 

At meaning time, from (11.53) and (11.66), it is ready to get that 

.ue(t) ≡ 0, t ≥ t f (11.68) 

This can lead to the conclusion that the estimation error of .ud is finite-time stable 

[ 12]. The proposed estimator (11.46) is able to estimate the total uncertainty .ud with 

finite-time convergence. This thereby completes the proof. ⬜

It can be inferred from the proof of Theorem 11.5 that the entire controller– 

estimator system is globally exponentially stabilized. The tracking error is globally 

exponentially stable even if the system is under the effect of uncertainty and exter-

nal disturbance rather than asymptotically stable [ 13– 15] or ultimately uniformly 

bounded stable [ 16]. Consequently, the desired trajectory can be followed without 

any overshoot. This superior tracking performance is greatly friendly and desirable 

for the practical application of the proposed tracking control framework.
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11.3.4 Rigid-Flexible Coupling Satellite Example 

The effectiveness of the developed control framework will be validated in this section 

by applying it to a rigid-flexible satellite example. Figure 11.15 shows the mechanical 

diagram of this exampled satellite. It has a central rigid body with radius . b and . a

uniform cantilever as its flexible appendage, while the length and the tip mass of 

the appendage are . l and .m p, respectively. This type of satellite is widely launched 

in aerospace to accomplish missions such as communication and remote sensing, 

etc. Constantly, payload such as camera is fixed in the central hub, while flexible 

appendage such as solar arrays and antennas can be modeled as the uniform cantilever. 

In Fig. 11.15, the central body will rotate around the rigid point . O. The cantilever 

beam with sectional area . a, elastic modulus . E, and volume density . ρ, is fixed to the  

point.OB on the surface of the central rigid body. The coordinates applied to establish 

the attitude of the satellite are the inertial frame .FI (.XI , . YI , . ZI ) and the floating frame 

.FB(.XB , .YB , .ZB). 

It is well known that the complicated dynamics of satellites coupled with large 

flexible appendages may best be modeled using the finite element (FE) method. 

Therefore, the FE model will be used to describe the flexible vibration of the rigid-

coupling satellite. On the other hand, the deformation and the strain are both assumed 

to be minor. As a result, it can neglect small axial tension and high-order nonlinear 

terms. To this end, applying the first-order approximation technique and FE model, 

the mathematical model of this rigid-flexible satellite’s attitude system can be estab-

lished as follows, while the physical parameter values considered here are with all 

units SI. 

. (Jmb − pTGp)θ̈ − UM−1
p C f ṗ − UM−1

p (K f + θ̇2G) p − 2θ̇ pTG ṗ = Tc + Td
(11.69) 

.η̇ + M−1
p C f ṗ + M−1

p (K f + θ̇2G) p = 0 (11.70) 

IX 

IY 

O 
b 

pm 

BX
BY 

B
O 

l 

Flexible deformation 

Fig. 11.15 The mechanical structure of the rigid-coupling satellite
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with .Jmb = Jh + J f + Jt − UM−1
p UT > 0, .GT = G = D − M p, and . η̇ = ṗ +

M−1
p UTθ̇ . The Euler angle .θ ∈ R denotes the satellite attitude, .Tc ∈ R is the control 

torque, .Td ∈ R is the disturbance torque, . p ∈ R
2N is the nodal displacement coor-

dinate vector (but unknown) of the beam with .N being the number of nodes when 

the FE method is adopted; .Jh ∈ R, .J f ∈ R, and .Jt ∈ R are the inertia of the cen-

tral rigid body, the cantilever beam, and the tip mass, respectively. .U ∈ R
2N is the 

rigid-flexible coupling coefficients vector. The symmetric positive-definite matrices 

.M p ∈ R
2N×2N and .K f ∈ R

2N×2N are the mass matrix and the stiffness matrix of 

the flexible cantilever team, respectively. .C f ∈ R
2N×2N and the symmetric positive-

definite matrix .D ∈ R
2N×2N are the structural damping and the dynamic stiffness 

matrix of the flexible cantilever beam, respectively. .η ∈ R
2N is the modal coordinate 

vector relative to the rigid body. It can be seen in (11.69) that the dynamic stiffness 

term .θ̇2G is added to the system stiffness term and its effect on the model is directly 

proportional to the square of the angular velocity. Hence, such a coupling effect can 

not be ignored when this rigid-flexible coupling satellite is going to perform rapid 

attitude maneuver. 

Suppose that the desired attitude trajectory is.θd ∈ R and the desired angular veloc-

ity trajectory is .θ̇d ∈ R, the tracking control problem of this rigid-flexible coupling 

satellite can be formulated as: design a control law for .Tc to guarantee that . θd ∈ R

and .θ̇d ∈ R can be followed by . θ and . θ̇ , respectively. To this end, the attitude dynam-

ics (11.69) can be written in the form of (11.1) by denoting .x = θ , .A0(x) = Jmb, 

.u = Tc, .d = Td , . f 0(x, ẋ) = 0, .g0(x) = 0, and 

.

Δh(x, ẋ, ẍ) = − pTGpθ̇ − UM−1
p C f ṗ

− UM−1
p (K f + θ̇2G) p − 2θ̇ pTG ṗ

(11.71) 

Consequently, the proposed control framework can be applied to perform the attitude 

tracking maneuver for this considered rigid-flexible satellite. 

A Simulation Results 

The effectiveness and the super tracking control performance of the presented control 

framework will be verified by conducting numerical simulation on a currently being 

developed rigid-flexible coupling satellite with its physical parameters given by:. a =
6.5 × 10−5

.m2, .b = 1, .l = 20 m, .m p = 0.3 kg, .Jh = 100 .kg · m2, .Jt = 123 .kg · m2, 

.J f = 615.3 .kg · m2 and .N = 30. The disturbance torque acting on the satellite is 

numerically assumed to be as 

.Td = 0.2(5 + 4 sin(t) − cos(0.4t + 2θ̇ sin(0.1t)))N · m (11.72) 

To guarantee that the payload fixed in the main body of the satellite such as the camera 

has appropriate attitude to accomplish the planned on-orbital missions successfully, 

the desired attitude trajectory should be established/planned as
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Fig. 11.16 The attitude tracking error from the controller (11.49). a Initial response. b Steady-

state behavior obtained from the controller. c Steady-state behavior from the controller without the 

estimator 

.θd = 0.3 cos
(

0.1t + π

4

)

rad (11.73) 

When implementing the proposed control framework to the satellite attitude sys-

tem, the gains of the controller (11.49) are chosen as.lc = 160,.kp = 35, and.kd = 75; 

while the gains of the incorporated estimator (11.46) are selected as .l1 = 0.005, 

.l2 = 7.5, .l3 = 75, .l4 = 145, .l5 = 0.05, .γ1 = 99, and .γ2 = 101. When performing 

the planned attitude tracking maneuver, the initial attitude angle and the initial angu-

lar velocity are .θ(0) = 1 rad and .θ̇ (0) = −0.1 rad/s. The initial nodal displacement 

of the flexible cantilever beam is . p(0) = 0 with . ṗ(0) = 0. 

The attitude tracking result obtained from the proposed control is shown in Figs. 

11.16 and 11.17. It can be got from Fig. 11.16a, b to know that the desired attitude 

trajectory is perfectly followed with the attitude pointing accuracy. |xe| ≤ 2.5 × 10−8

rad guaranteed. The tracking error of the angular velocity can be seen in Fig. 11.17. 

It shows in Fig. 11.17b that the resulting attitude stability is .|xv| ≤ 2.5 × 10−8 rad/s.
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Fig. 11.17 The angular velocity tracking error from the controller (11.49). a Initial response. b 

Steady-state behavior obtained from the controller. c Steady-state behavior from the controller 

without the estimator 

The pointing-accuracy and attitude stability are so significantly high that perfect 

attitude and angular velocity can be established for the satellite. These two can 

guarantee the satellite’s payloads to successfully accomplish the planned missions. 

On the other hand, as the initial response of the attitude and the angular velocity 

tracking error shown in Figs. 11.16a and 11.17b, respectively, they both are with 

an exponential convergence. The planned attitude tracking mission is accomplished 

without any overshoot. It can be further found by zooming the attitude tracking error 

in Fig. 11.16a that, a steady-state behavior is guaranteed for the attitude tracking error 

after.30 s. This settling time is quite short, and hence a fast attitude tracking maneuver 

can be ensured. These results completely verify the conclusions in Theorem 11.6. 

It should be pointed out that, the above perfect attitude tracking performance is 

owing to the incorporated estimator (11.46). When the proposed controller (11.49) 

without the estimator (11.46) is implemented to the rigid-flexible coupling satellite, 

the resulting tracking error can be seen in Figs. 11.16 and 11.17. It can be obtained 

from Fig. 11.16a and 11.17a that severe overshoot is observed. Moreover, the attitude
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Fig. 11.18 The uncertainty estimation from the estimator (11.46)

-1

-0.5 

0 

0.5 

1 

0 0.0002 0.0004 0.0006 0.0008 0.001 

E
st

im
a
ti

o
n

 e
rr

o
r 
u

e 
(N

m
) 

Time (sec) 

t
f
 =0.0002sec 

(a) The initial response

-1e-4

-5e-5 

0 

5e-5 

1e-4 

300 400 500 600 700 800 900 

E
st

im
a

ti
o

n
 e

rr
o

r 
u

e 
(N

m
) 

Time (sec) 

(b) The steady-state behavior 

Fig. 11.19 The estimation error from the estimator (11.46) 

pointing accuracy .|xe| ≤ 0.002 rad and attitude stability .|xv| ≤ 0.001 rad/s can be 

obtained, as we can see in Figs. 11.16c and 11.17c, respectively. These two are quite 

inferior. The stringent requirements of attitude pointing accuracy and attitude stability 

to guarantee the normal operation of the satellite’s payload can not be satisfied. Hence, 

the planned aerospace missions would not be accomplished. 

These results obtained from the controller (11.49) with the estimator (11.46) 

eliminated, reflect the importance of the incorporated estimator (11.46). Actually, 

this estimator is an important part of the proposed control framework. With the 

application of the estimator, the true uncertainty can be estimated. Then, the 

uncertainty and the external disturbance can be compensated by the term .−ûd in 

the controller (11.49), and hence good tracking performance is achieved. In this 

simulation, the total uncertainty including external disturbance and its estimation 

are shown in Fig. 11.18. Perfect estimation is observed. In Fig. 11.19, one can also 

go to its initial response to find out that the estimation error will be with a steady 

behavior after a short period, roughly .t f = 0.0002 . s; moreover, the estimation error



262 11 Unknow Input Observer-Based Attitude Control

is .|ue| ≤ 6.0 × 10−5
.N · m. The conclusions in Theorem 11.6 can be demonstrated 

by these simulation results. 

B Experimental Results 

In addition to numerical simulation, any control approach to be applied in practice 

should be experimentally tested. Hence, experiments will be further carried out in 

this part to test the effectiveness of the developed tracking control framework. The 

tests will be conducted on a single-axis air-bearing suspending rotary testbed. This 

testbed is shown in Fig. 2.5. Compared Fig. 2.5 with Fig. 11.15, it is known that this 

testbed can exactly simulate the attitude motion of Euler attitude angle . θ rotation. 

With the application of the proposed control framework to the testbed to perform 

the preceding planned tracking mission, the attitude tracking results are illustrated in 

Figs. 11.20 and 11.21. The corresponding control torque is shown in Fig. 11.22. It can 

be seen in Fig. 11.20 that the attitude tracking maneuver is successfully accomplished 

after 32 . s. As shown by the steady-state behavior, the attitude pointing accuracy is 

guaranteed to be within 0.0005 rad. It can also been in Fig. 11.22 that the angular 

velocity tracking error is less than 0.00025 rad/s, i.e., the attitude stability is 0.00025 

rad/s. The high attitude pointing accuracy and the high attitude stability are feasible 

Fig. 11.20 The 

experimental attitude 

tracking error from the 

controller (11.49) 
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Fig. 11.22 The input of the 

controller (11.49) in the  

experimental test
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and perfect for the fixed payloads to perform the planned orbital missions. Moreover, 

it can be seen in Figs. 11.20 and 11.21 that an exponential convergence rate is 

ensured for both the attitude and the angular velocity tracking error. No overshoot is 

achieved by the proposed control framework. To that end, the performance and the 

effectiveness of the proposed tracking control framework are experimentally verified. 

If the experimental results in Figs. 11.20 and 11.21 are further compared with the 

simulation results in Figs. 11.16 and 11.17, it is interesting to see that the obtained 

attitude pointing accuracy between simulation and experimental results is also dif-

ferent. The latter is almost less than the former with three-orders of magnitude. That 

is due to the fact that the actual actuator, gyro, and controller are used in experiments 

rather than using an ideal mathematical model in simulation. Moreover, noise is also 

with the gyro and attitude sensor. Although some differences are observed, it can be 

seen that the behavior of experimental results matches the behavior of the simulation 

results well. 

From the above simulation and experimental results, it can be summarized and 

verified that the proposed tracking control framework is able to achieve high-accuracy 

tracking control with exponential convergence. 

11.4 Summary 

Although there exist several approaches regarding flexible satellite attitude control 

with accurate pointing, few can achieve fixed-time convergence of the system states in 

the face of actuator uncertainty. This chapter presented an estimation-based strategy 

for flexible satellite attitude stabilization maneuvering first. In particular, the control 

law incorporated a fast fixed-time observer for reconstructing the uncertain dynamics, 

and a robust fixed-time controller. This was developed via a nonsingular terminal 

sliding mode surface providing a faster converging rate when compared to the existing 

fixed-time surfaces. Then, an exponential tracking control theoretical framework was 

established for a general class of nonlinear systems even with modeling error. With
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the application of this architecture, the closed-loop trajectory tracking system was 

guaranteed to be globally exponentially stable. Hence, the undesirable overshoot 

resulting from the existing tracking controllers can be avoided. The exponential 

convergence rate can be tuned to be as fast as possible by tuning the control gains. 

It is hence able to decrease the system settling time. With such obtained desired no 

overshoot and less settling time control performance, the developed control approach 

can be practically appealing for engineering. Moreover, the systems investigated are 

with a general form of mathematical model. It guarantees that the proposed control 

framework is applicable to a full of physical systems in practice. 
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Chapter 12 

Conclusion 

12.1 Conclusion 

This book mainly investigated the attitude control problem of satellites with modeling 

error. To achieve this objective, motivated by the superior performance ensured by the 

nonlinear control theory, several advanced nonlinear compensation error approaches 

were developed for the satellite with its attitude controller having high performance 

even in the presence of other physical constraints. Those approaches were catego-

rized into three types and presented in Part II, Part III, and Part IV, respectively. 

The first type was the robust compensation attitude control methods in Part II. They 

compensated for the modeling error in the sense that the attitude control performance 

has great robustness to the modeling error by tunning control gains. The second type 

was the adaptive compensation attitude control strategies in Part III. They adaptively 

estimated the severe case (i.e., the upper bound) of the modeling error and then adap-

tively compensated for them. The third type was the observer-based compensation 

attitude control approaches in Part IV. For those approaches, observers were designed 

first to estimate or reconstruct the modeling error, and then the attitude controllers 

were synthesized by using the estimation value to achieve attitude control. In general, 

the approaches in this book eliminated the drawbacks of most of the existing com-

pensation control schemes. The detailed features and advantages of those developed 

compensation-based attitude control approaches were highlighted as follows. 

The robust compensation attitude control approaches were developed in 

Chaps. 3–5. More specifically, an observer-free controller was presented in Chap. 

3 to achieve large-angle attitude tracking with modeling error induced by external 

disturbance. The controller features a simpler control structure and much less com-

putational complexity. Two robust attitude controllers were developed in Chap. 4 for 

attitude tracking and stabilization maneuvering of satellites with actuator constraints. 

The modeling error consisting of actuator fault and external disturbance was further 

compensated in Chap. 5 even in the presence of actuator faults and angular veloc-

ity measurement uncertainty. The controllers in Chaps. 3–5 do not require angular 
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velocity measurements. They can achieve higher control performance for attitude 

maneuvering by tunning their control gains. 

The adaptive compensation attitude control methods were designed in 

Chaps. 6–8. The modeling error compensation control problem of a class of non-

linear systems with multiple actuator faults was addressed in Chap. 6. An adaptive 

controller was synthesized by using the output measurement only. This controller 

was applicable to stabilize the satellite’s attitude with high performance via the atti-

tude feedback only. The fast attitude slewing control problem of flexible satellites 

with modeling error due to external disturbance and uncertain inertia was solved in 

Chap. 7. This was achieved by presenting an adaptive sliding mode-based fixed-time 

controller. The closed-loop attitude control system was governed to be fixed-time 

stable with a faster convergence rate than the existing fixed-time controllers. The 

attitude stabilization control problem of satellite with actuator fault, external distur-

bance, and performance constraint was solved via a reinforcement learning-based 

fixed-time optimal control framework in Chap. 8. The closed-loop attitude system 

was stabilized within a fixed time. The control cost was also significantly reduced. 

Moreover, the persistent excitation condition that should be met in the conventional 

neural network weight updating laws was eliminated. 

The observer-based compensation attitude control methods were designed in 

Chaps. 9–11. The extended-state observer-based attitude controller presented in 

Chap. 9 can provide asymptotical attitude control for flexible satellites with mod-

eling error consisting of external disturbance and unknown flexible vibration pre-

cisely compensated. Two disturbance observer-based exponential attitude controllers 

developed in Chap. 10 were able to perform attitude stabilization and tracking maneu-

vers with the desired control accuracy ensured with an exponential rate. Four types 

of modeling error, i.e., the external disturbance, the actuator faults, the actuator 

misalignment, and the uncertain inertia were fully compensated. This problem was 

further studied in Chap. 11 by presenting an unknown-input observer-based con-

trol architecture. The fixed-time and the finite-time attitude control were achieved, 

respectively. Fast attitude maneuvering can be accomplished. The common feature 

of the controllers in Chaps. 9–11 was that they accommodated the modeling error 

with the modeling error completely and exactly compensated. They have no conser-

vativeness with the energy saved during the attitude maneuvering. 

All the controllers presented in this book have a certain capability of solving the 

challenges stated in Sect. 1.11. Unlike most of the existing attitude control methods 

that have capability of accommodating modeling error, two or even more than two 

types of modeling error can be compensated for satellite attitude control system with 

actuator constraint or without angular velocity measurement. Moreover, a stringent 

of requirements on the attitude control performance such as high pointing accuracy, 

better attitude stability, and fast convergence rate are met by the proposed controllers 

in this book. Another feature of this book was that the effectiveness of all the con-

trollers in this book was numerically verified. In addition, some control approaches 

in the book were even experimentally validated. This moves a step further toward 

application in satellite attitude control practice.
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12.2 Future Work 

When applying the compensation control approaches in this book to satellite attitude 

control engineering, the following issues should be addressed further. They are also 

the future work to be carried out.

• The fast, the finite-time, or the fixed-time attitude control and the actuator con-

straint should be solved simultaneously. This may be theoretically achieved by 

improving the controllers in Chaps. 6–8. On the other hand, this can also be 

addressed by inventing new actuators that have large control torque.

• Although the observer-based compensation controllers in Chaps. 9–11 have no 

conservativeness. Their implementation necessitates angular velocity measure-

ments. This lets them be inappropriate for the microsatellite attitude control. That 

is because sometimes the angular velocity of microsatellite may not be available. 

Hence, observer-based velocity-free compensation attitude control should be con-

ducted in the future.

• Only the attitude controller design problem of the satellite attitude system was 

investigated in this book. It is known that the satellite attitude system design does 

not contain the controller design only. The attitude determination and the desired 

attitude planning are also involved. Those two works are also quite important. 

Therefore, those two works should be done future.

• Satellite and especially microsatellite swarm flying is becoming a new space sys-

tem architecture for future complicated tasks. That is because more and more space 

tasks would not be carried out by using a single satellite. Hence, the extension of 

the compensation controllers in this book to achieve attitude coordination control 

of the satellite swarm is another future work.
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