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Preface

There is no doubt that our current and even future lives are highly connected to
satellite. We launch satellites to establish the global positioning system to get the
precise position of the unmanned vehicles and even the mankind. We launch satellites
to achieve Earth observation, weather forecast, fire forecast, video broadcasting,
environmental monitoring, etc. Satellite has played an important role in our daily
life. To provide such services for mankind, the attitude control system should be
developed for satellite. Otherwise, the payloads such as cameras, antennas, etc.,
will not work perfectly. In the attitude control system design, attitude controller
design is one of the most important parts. Although the linear control theory-based
controllers including the proportional—integral-derivative control law and its variants
have been widely used in satellite attitude control engineering, they are becoming
inappropriate for modern satellites demanding high control performance. That is
because the dynamics of any satellite is inherently nonlinear in nature. Inspired
by the superior performance ensured by nonlinear control theory, many nonlinear
attitude control approaches have been proposed for satellites. However, the problem
of designing an nonlinear controller to accomplish attitude maneuvers with high
control performance is still open.

In addition to the nonlinear dynamics of the satellite attitude system, modeling
error is another main hindrance. This inevitably acts on the satellite attitude dynamics.
It mostly comes from uncertain and unmodeled inertia, unmeasurable flexible vibra-
tion and coupling between the rigid and the flexible part of the satellite, actuator
fault, actuator misalignment, and the environmental disturbance torques including
the gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and
the solar radiation pressure torque. Due to the current finite modeling technology, the
modeling error is unknown and even time-varying. In practice, if the modeling error
is not appropriatly handled and compensated, the attitude control performance will
be deteriorated and even the instability of the attitude control system may be resulted.
This has led to intense interest in the development of modeling error compensation
control approaches, which are supposed to solve this problem.

From the standpoint of rejecting, attenuating, and compensating for modeling
error, significant developments have been witnessed for the satellite attitude control
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system design in the past two decades. However, there is currently a lack of a unified
control framework. Most of the existing methods can compensate for a single type
of modeling error only. In addition, many of them do not consider physical and
cost limits such as actuator constraint and unmeasurable angular velocity due to
gyro failure. On the other hand, fast attitude maneuvering requirement may not be
considered during critical phases of the mission in the literature during modeling
error compensation. Moreover, the existing robust or adaptive attitude controllers
with modeling error accommodated are characterized by severe conservativeness.
This will lead to more energy consumption, and thus reduce the lifespan of a satellite.
In aerospace engineering, those issues should be addressed simultaneously.

Motivated by the demand for attitude control with the above challenges solved
and many existing approaches are unable to achieve this goal, this book attempts to
solve the above challenge during satellite attitude control system design. This book
focuses on designing advanced compensation control techniques for more types of
modeling error with fast, high-accuracy, high-stability, and or velocity-free attitude
maneuvering accomplished for satellite. This book first concentrates on developing
nonlinear robust solutions to two or more than two types of modeling error compen-
sation attitude control problem of satellite even in the presence of actuator constraint
and fault. Its focus comes to design advanced approaches to achieve fast attitude
slewing control for satellite with two or more than two types of modeling error
compensated adaptively. Finally, three new observer-based approaches are synthe-
sized to accomplish attitude control for satellite, while the modeling error is precisely
and fully compensated. The corresponding controller has less and even no conser-
vativeness. Energy is saved when they are applied to perform attitude maneuvering.
More specifically, the effectiveness and the superior attitude control performance of
those modeling error compensation approaches proposed in this book are verified by
numerical simulation and experimental tests via several testbeds on the ground.

The book itself provides the reader with the current state of the art in the nonlinear
attitude control area of rigid or flexible satellite with modeling error. Moreover, it
also contains the attitude representation, model of satellite attitude system including
the attitude kinematics and the attitude dynamics, some fundamental definitions, and
lemmas used in nonlinear control theory. Hence, this book can be used as a reference
by satellite control engineers and satellite attitude control academic researchers. The
book also has readers who are interested in attitude control of other rigid bodies such
as unmanned aerial or underwater vehicles. Prerequisites for understanding the book
are a sound of knowledge of basic nonlinear control theory especially the Lyapunov
stability analysis, rigid body attitude dynamics, basic mathematics, and fundamental
physics.

Xi’an, China Bing Xiao
Beijing, China Zhaoyue Chen
Xi’an, China Jingwen Xu
Beijing, China Lu Cao

February 2024
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1.1 Introduction

The space and universe have always been full of attraction and mystery to the
mankind. We have long had the dream and ideal of traveling to space and explor-
ing the universe. The first satellite launched on October 4, 1957 declared that the
mankind had entered the space age. The space technology has advanced by leaps
and bounds. The development of space technology has shown that the mankind has
made great achievements in its journey of the continuous research, exploration, and
utilization of space. It brings about important impetus and significant changes in the
economic and social developments of mankind. Especially, it can also “impact life
on earth through the stimulation of technological development, and generation of
scientific knowledge” said by Dr. Ernst Stuhlinger, the associate director for science
of NASA Marshall Space Flight Center, in 1970. Of course, space technology is one
of the most challenging missions and complex engineering in the world.

Satellite is the fundamental platform of any aerospace mission such as Earth obser-
vation, communication, navigation, deep space exploration, etc. For any satellite, an
attitude control system (ACS) should be designed. This system is one of the most
important subsystems of the satellite. It plays an important role and is an essential
part in satellite design. Attitude control should be carried out to accomplish attitude
stabilization or tracking maneuvers to ensure that its payloads operate normally. For
example, the desired attitude trajectory should be followed to ensure that the camera
fixed in the satellite can focus on the interested areas and then take images. The
stabilization of attitude is one of the fundamental maneuvers and the primary atti-
tude control tasks that any satellite needs to frequently perform during its mission.
It is recognized by aerospace engineers that attitude control determines whether the
space missions can be accomplished or not.

Modern space missions are becoming more and more complicated. They ask for
more and better requirements for the attitude control performance. More specifi-
cally, highly accurate slewing or pointing attitude maneuvers are necessitated. Note
that the dynamics of any satellite is inherently nonlinear in nature. Moreover, this
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nonlinear attitude dynamics is inevitably subject to modeling error. This modeling
error will deteriorate the satellite attitude maneuvering performance. It lets the linear
control theory-based control methods such as the proportional—integral-derivative
(PID) attitude controller and its variants result in an unsatisfactory/inferior perfor-
mance. That is because the PID controller has a weak capability of handling with
such modeling error. To solve this drawback, advanced attitude control schemes
are, therefore, imperative for satellites to maintain desirable stability, reliability, and
enhanced performance. Inspired by the superior performance ensured by nonlinear
control theory [1-3], although significant developments have been witnessed in the
nonlinear controller design for satellite attitude stabilization and maneuver tracking
objectives [4-7], the problem of attitude control is still open. In particular, from the
standpoint of rejecting or attenuating modeling error [8—12], there is currently a lack
of a unified attitude control framework.

1.2 Attitude Dynamics Modeling Error

Due to the current finite modeling technology, the mathematical model of the satel-
lite attitude system can not be precisely established. The nonlinear attitude dynamics
can not be fully described. There exists dynamics modeling error. The external dis-
turbance torques, uncertain inertia, flexible vibration, actuator fault, and actuator
misalignment are the five primary modeling error.

1.2.1 External Disturbance Torques

The gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and
the solar radiation pressure torque are the primary environmental and external dis-
turbance. Any non-symmetrical satellite in the orbit is affected by a gravitational
torque. This is due to the variation in the Earth’s gravitational force over the satellite.
Magnetic disturbance torques are induced by the interaction between the satellite’s
residual magnetic field and the geomagnetic field. The aerodynamic torque results
from the satellite’s motion through the tenuous upper atmosphere. The air molecule
interaction with satellite body will produce such torque on the satellite. It is most
effective on satellites orbiting below 400-500 km. The photons from the sun gener-
ate a force that produces a torque about the center of the mass of the satellite. This
solar radiation pressure has more effect on light objects with relatively high surface.
Although there are many mathematical models for those four types of external dis-
turbance torques [13]. They can be not exactly derived. Moreover, in addition to
those four torques, there are also some unexpected disturbance torques such as the
collision torque due to debris or robotic manipulation. They can not be modeled.
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1.2.2 Unmodeling Inertia

Once the design of the satellite is finished on the ground, its inertia matrix can be
calculated and estimated by using standard equations [13]. This calculated inertia is
constantly called the nominal inertia of the satellite. When the satellite is running
in the space orbit, its mass properties will be uncertain. It may change due to the
motion of onboard payloads such as camera and antennas, rotation of solar arrays,
fuel consumption, out-gassing, etc. This leads to the actual inertia of the satellite
deviating from the nominal value. Moreover, such deviated inertia is time-varying,
uncertain, and unmodeled.

1.2.3 Flexible Vibration

To meet ever more demanding mission requirements, there has been a trend for devel-
oping satellites with large flexible appendages such as antennas and solar arrays.
Those appendages are large, lightweight, and low-stiffness. Such a type of satellite
is usually called a flexible satellite. For example, the flexible satellite ETS-VIII has
two large deployable reflectors measuring 17 m x 19 m, and also a pair of large solar
array panels measuring 19 m x 2 m [14]. Although the trend towards larger satellites
can meet the increasing mission demands, this will inevitably increase the difficulty
in their attitude control. This is because the coupling between the structural vibra-
tions of the flexible components and the rigid-body motion can introduce dynamic
perturbations to the satellite’s attitude. Moreover, when performing rapid attitude
maneuvering with high-pointing accuracy demanded by aerospace tasks [15-17], it
induces flexible appendages to vibrate. For most flexible satellites, this coupling and
the flexible vibration are not measurable. Hence, those two will act on the flexible
satellite attitude dynamics as modeling error.

1.2.4 Actuator Fault

A satellite’s challenging operating conditions increase the possibility of malfunctions
in sensors and actuators and faults in the controllers. The analysis of recent satellite
accident statistics shows that the fault of the attitude control system accounts for 32%.
Moreover, in this percentage, nearly 44% of the faults are caused by actuator faults, as
shown in Fig. 1.1. Once a satellite is launched, it is highly unlikely that its hardware
can be repaired. Thus, the actuator fault cannot be fixed with replacement parts.
When an actuator fault occurs, it will result in an error torque between the nominal
torque and the actual torque generated by the satellite’s attitude control actuators.
This error torque is viewed as the modeling error in the attitude dynamics. It can
potentially cause a host of economic, environmental, and safety problems. A recent
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satellite

accident occurred with the ChinaSat 6C satellite developed by the China Academy
of Space Technology, as shown in Fig. 1.2. This satellite was launched on March
10, 2019. However, faults occurred in its thrusters on December 25, 2023. This led
to more energy consumption and a reduction in its lifespan. This incident strongly
motivates the development of attitude control systems that ensure an efficient and
timely response to maintain stability, reliability, and required performance properties
even when components fail.

1.2.5 Actuator Misalignment

Actuator misalignment is another type of modeling error in the satellite attitude
system. Due to this misalignment, the actual torque acting on the three-axis of the
satellite is different from the nominal torque. The extreme case of a backward actuator
is especially important. In practice, whether due to finite manufacturing tolerances
or warping of the satellite structure during launch, some actuator alignment error
exists indeed. Moreover, the satellite’s inertia properties are highly coupled to the
actuator alignments. Hence, actuator misalignment may cause the onboard attitude
controller to fail. This may cause mission performance to degrade and thus pose a
significant risk to the successful operation of the satellite.
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Fig. 1.4 The schematic representation of reaction wheel misalignment

Figure 1.3 shows the mechanical configuration of four reaction wheels used to
activate a satellite attitude system. Three wheels are mounted orthogonally, aligned
with the satellite body axes, i.e., +X g, + Y, and +Zp, respectively. A fourth, redun-
dant, wheel is mounted skewed at equal angles (54.7 degrees) to each of the body
axes, aligned diagonally in the +Xp, +Yp, and +Zp quadrant. This “skew” wheel
could be used to provide control power about any of the other axes if one of the
orthogonal wheels was to fail. In practice, some alignment errors will exist in this
reaction wheel. As an example, actuator alignment error can be mathematically mod-
eled as shown in Fig. 1.4 for this configuration misalignment. The reaction wheel
mounted on + X p axis is tilted over the nominal direction with constant angles, A«
and Apf;; also the reaction wheels mounted on +Xpg and +Yp axis are tilted over
the nominal direction with Aay, AB,, Aaz, and ABs, respectively. While the “skew”
wheel is titled over the nominal direction with Aay and ABy.

1.3 External Disturbance Attenuation Control

To attenuate the effect of the external disturbance on satellite attitude control per-
formance, many solutions have been developed for satellite [19-22]. In the exist-
ing literature on solving the problem, there are two types of approaches. One is to
view disturbance torque and uncertain inertia as lumped disturbances/uncertainties,
and then design a robust attitude controller [23]. Applying such a robust controller,
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robustness to disturbance and uncertain inertia is guaranteed [24, 25]. Desired atti-
tude control performance is resulted despite external disturbances, system uncertain-
ties, and even flexible vibrations. The other type to achieve disturbance/uncertainties
rejection control is the disturbance observer-based (DOB) control design [26, 27].
For this type, an observer is first designed to estimate disturbance/uncertainties, and
the controller is developed by using the observed value to achieve the control objec-
tives with the disturbance accommodated.

1.3.1 Robust Attenuation Control

Robust control of external disturbance is widely seen in the literature [28-30]. For
instance, the H, control theory was applied to achieve robust control of external dis-
turbance [31, 32]. In [33], another robust controller was reported to handle external
disturbance for the rigid bodies subject to actuator faults and angular velocity con-
straints. This method was further applied in [34] for satellite attitude tracking with
the prescribed performance ensured despite disturbance. In [35], a backstepping-
based attitude stabilization controller was designed with external disturbances and
constraints in input and measurement solved. The problem of robust disturbance
control was also studied in [36]. Only a class of external disturbances with known
dynamics was addressed. In [37], the attitude stabilization problem of rigid bodies
with external disturbance was solved in the event-triggered framework.

In [38], an adaptive robust tracking controller was presented for robot manip-
ulators. The tracking error was governed to be finite-time stable. In [39], robust
cooperative control design of multiple surface vessels was studied, while the vessels
were subject to unknown ocean currents and unmodelling dynamics. In [40], the
problem of designing a robust tracking controller for rigid body with uncertainty
was studied, and it was further investigated in [41] and [42]. The proposed schemes
were verified on quadrotors. For surface vessels subject to disturbance uncertainty,
a backstepping-based robust trajectory tracking controller was reported in [43]. In
[44], a novel controller was developed for aerial robots to achieve attitude trajectory
tracking with robustness guaranteed. The proposed law governed the tracking error
converging into a small ball, and such error is robust to unknown dynamics. Using the
technique of uncertainty and disturbance estimator, a robust tracking control strategy
was synthesized for non-affine systems.

In the robust attitude control design, disturbance and uncertainties will not be
rejected, and robustness to them is achieved with acceptable attitude control perfor-
mance. In contrast, another approach to achieve attitude control with good accuracy
is to reject disturbance/uncertainties [45—48]. For this type of approach, the magni-
tude or its upper bound of disturbance torque and uncertainties will be estimated,
and then a controller will be designed to compensate for it. To achieve this goal, the
adaptive control technique is one widely applied approach [49, 50]. In [51], robust
trajectory tracking control was guaranteed for a delta robot. Disturbance rejection
was achieved by the adaptive control technique. In [52], an adaptive estimation law



1.3 External Disturbance Attenuation Control 9

was firstly designed to estimate the parameters of uncertain inertia. By using the
estimated information, a nonlinear controller was proposed for the attitude track-
ing maneuver. In [53], the Chebyshev neural network was adopted to approximate
the uncertain dynamics introduced by disturbance and uncertain parameters. Using
the approximated value, a terminal sliding mode attitude controller was proposed.
In addition to those adaptive controllers, some investigations on attitude control by
using adaptive control were also available in [54, 55].

Of particular interest, taking the sliding mode control theory’s (SMC) advantages
including rapid response and insensitiveness to uncertain parameters or disturbances,
this technique has become one of the widely applied tool to design robust attitude
controller [56, 57]. In [58], a high-order sliding mode controller was developed.
Attitude tracking with high-pointing accuracy was achieved. The proposed controller
guaranteed that the system output was robust to disturbance and uncertain inertia.
In [59], the problem of attitude tracking control despite disturbance and uncertain
inertia was addressed by presenting a sliding mode controller. This problem was also
investigated in [60] for satellite attitude stabilization maneuver with actuator output
torque constrained. The rejection of disturbance was achieved via the SMC [61].

1.3.2 Observer-Based Attenuation Control

The disturbance robust control of satellite is characterized that the developed robust
controllers are conservative. In practice, this conservativeness is not desirable for
rigid bodies. Motivated by avoiding this drawback, the disturbance-observer-based
(DOB) control is a common solution with the disturbance rejection ensured [62—66].
In this solution, a disturbance observer (DO) is preliminarily designed to estimate
the external disturbance. Then, a control law is designed by using the estimation
of the disturbance to stabilize the closed-loop attitude system [67-70]. A recent
review on observer-based uncertainty or disturbance attenuation control design was
given in [71]. More specifically, observer-based PID tracking control design was
witnessed for uncertain systems in [72, 73]. In [74], a DOB anti-windup controller
was presented for hypersonic vehicles. Integrating the DO with the adaptive control
theory, a neural-network-based controller was developed for robots with variable
stiffness joints and uncertainties [75]. For a class of uncertain stochastic systems, a
DOB H, control law was designed in [76]. Although the disturbances acting on the
system were accommodated, the disturbances were required to satisfy an exogenous
model. In [77], to handle the external disturbances and uncertainties in the hybrid
active-passive heave system, a robust prediction control approach was presented via
the DOB technique.

The development of DO plays an important role in the DOB rejection control. To
ensure perfect estimation for disturbance, a number of investigations on DO design
have been reported. In [78, 79], a high-gain DO was seen to estimate the external
disturbance or the uncertainties. However, the high gains would amplify the effect
of sensor noise on the system performance. Due to the robustness property of sliding
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mode control, sliding mode observer (SMO) [80-82] or high-order sliding mode
observer (HOSMO) [83-85] are widely applied in DOB control design with external
disturbance compensated.

The extended-state-observer (ESO) is another widely applied technique to accom-
plish the design of DO [86-88]. For example, the estimation of the mismatched
uncertainty was studied in [89]. An ESO was presented in [90] for the quadrotor
to estimate the external disturbance due to unknown gust wind. In [91], the trajec-
tory tracking control problem of underwater robots despite external disturbance and
uncertainties was studied by including an ESO. In [92], the problem of robust load
frequency control of power systems was studied via sliding mode control and ESO.
For a class of multi-input-multi-output systems, a generalized ESO was presented in
[93]. Moreover, the adaptive ESO (AESO) was another solution to the problem of
disturbance or uncertainty estimation [94].

The most existing DO design requires the external disturbance to satisfy some
strict conditions. For instance, most ESO are only feasible for the unknown constant
disturbance or the disturbance with slow variation [95]. More specifically, because the
external disturbance is treated as an extended state in ESO, the external disturbance
should be differentiable. On the other hand, it usually requires the SMO or HOSMO
to be upper bounded by a known value. In practice, however, the external disturbance
may not satisfy these assumptions. The class of the external disturbance handled by
the existing DO is limited. Hence, it is of interest to determine observers that can
release these constraints or assumptions. Although this is achieved in [95], its result
is applicable to linear systems only.

To solve the above drawback [96], viewing disturbance as an unknown input, and
then applying the theoretical framework of unknown-input-observer (UIO) [97] is
becoming an effective way to estimate disturbances. In [98], the tracking control
problem of the linear parameter-varying system was solved by using an unknown
input observer. For linear/nonlinear systems, the problem of high-performance con-
trol design by using UIO to estimate system uncertainties and disturbances has been
extensively investigated [99]. An output feedback bilateral teleoperation approach
was designed for robot manipulators [100]. In this approach, UIO was applied to
estimate external forces. On the other hand, the problem of observer-based distur-
bance rejection approach design has also attracted considerable attention in the field
of satellite/unmanned aerial vehicle attitude control design in recent years. The result
of applying this approach to achieve attitude control can be referred to [101]. In [102],
a disturbance observer-based SMC approach was proposed for quadrotor vehicles. A
sliding mode observer was presented to estimate external disturbances. The problem
of designing observer-based disturbance control for satellite attitude system design
was solved in [103].
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1.4 Satellite Actuator Fault Tolerant Control

The recent incident strongly motivates the development of attitude control sys-
tems that ensure an efficient and timely response to maintain stability, reliabil-
ity, and required performance properties even when components fail [104-106]. In
the aerospace industry and academia, fault-tolerant control (FTC) is a widely used
scheme to accommodate component failures automatically [107-111]. For satellite
attitude fault tolerant control, a lot of FTC approaches have been developed in the
past two decades [29, 112—114]. The detailed literature review can be seen in [18].

In this section, some classical attitude FTC schemes are reviewed only. For exam-
ple, an adaptive FTC was given in [115] to perform the attitude tracking maneuver
for satellite. The transient performance was ensured. In [116], a velocity-free FTC by
integrating the adaptive and the fuzzy control theory was presented for the satellite.
In [117], the FTC problem with prescribed performance guaranteed was studied for
satellite attitude tracking maneuvers. In [118], the problems of FTC design ensur-
ing finite-time convergence were investigated for the satellite with actuator faults.
In [119], the attitude FTC problem was studied by integrating the iterative learning
observer and the control allocation. By a combination of the Lyapunov function and
the extended-state observer, an attitude controller was presented in [120] with actu-
ator saturation constraint solved. Using an adaptive extended-state observer, another
attitude controller having the capability of handling actuator uncertainty and achiev-
ing robustness as well as precise tracking accuracy was proposed in [121]. By esti-
mating the unmeasurable modal variables, a distributed adaptive attitude controller
has been reported in [122]. An attitude FTC for satellite with actuator faults was
designed by using a fault detection observer [123]. An iterative learning observer-
based FTC law was given to solve the attitude stabilization problem [124]. With
the development of the intelligent control, the neural network control schemes were
proposed to address actuator faults [125, 126].

1.5 Satellite Actuator Misalignment Control

There have been several investigations on satellite attitude control in the presence of
actuator misalignments [127, 128]. In [129], an adaptive control law was given to
accomplish attitude maneuver in the presence of relatively small gimbals’ alignment
error of variable speed control moment gyros. In [130], a nonlinear model reference
adaptive control scheme was tested in the presence of alignment errors up to fifteen
degrees. Although an extended Kalman filter was used to develop methods for on-
orbit actuator alignment calibration, uncertain inertia properties were not taken into
account [ 131]. In another work [132], an adaptive tracking controller was synthesized
for Hamiltonian systems. This control law was successfully applied to a satellite with
both inertia and actuator uncertainties.
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It is worth mentioning that most attitude controllers for actuator alignment were
designed in the framework of robust control. A control law was synthesized that
the robustness to actuator misalignment was guaranteed. This was reported for the
formation flying of satellites in [133]. The misalignment of a specific actuator, i.e.,
thruster, was addressed by applying the adaptive control theory. This theory was
further used in [134—-136] to tackle with the misalignment of other actuators such as
reaction wheels. In [137, 138], another control theory, i.e., the sliding mode control,
was adopted to synthesize attitude controllers for satellites. High-accuracy attitude
maneuvers were successfully performed with actuator misalignment accommodated.
Other nonlinear control theory-based laws were also available for satellite attitude
tracking maneuver [ 139-144]. The finite-time stability of the attitude tracking system
was achieved despite the actuator misalignment.

1.6 Uncertain Inertia Control of Satellite

Significant development has been witnessed in the attitude tracking controller design
in the presence of uncertain inertia [145—149]. The current approaches to handling
system uncertainties are mostly nonlinear control theory based. Attitude controllers
are designed to ensure the stability of the closed-loop tracking system in the presence
of uncertainties [150, 151]. For example, an angular velocity observer-based attitude
tracking solution to the external disturbance rejection problem was reported for
satellite [152]. This was achieved by the theory of adaptive control. The bound of
the external disturbance is required and should be known. This theory was also
applied in [153] to study the attitude tracking control problem. The uncertain inertia
and the bias in the measurement of angular velocity were considered. In [154],
the coordinated attitude control was investigated, while the satellite was subject to
systems uncertainties and attitude constraint. Taking input quantization issue into
consideration, robust attitude tracking was achieved for satellite in [155] and [156].
In [157], the attitude tracking control was achieved via attitude output feedback
only. Moreover, the finite-time control theory can be applied to develop controllers
to achieve fast attitude slewing [158—161]. System stability was achieved after a
finite time period. Although the controller design to achieve attitude tracking was
discussed well, the system uncertainties were considered only, actuator uncertainties
were not handled.

In particular, the adaptive control has been shown to be an effective scheme in the
investigations of a wide class of nonlinear systems [162—166], in which there exist
unknown parameters. Therefore, adaptive control can be also applied for satellite
attitude maneuvering with uncertain inertia. Moreover, by viewing the torque induced
by uncertain inertia as external disturbance, then the methods summarized in Sect.
1.3 are appropriate and applicable to achieve attitude control for satellite.
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1.7 Nonlinear Control with Actuator Constraint

For any linear or nonlinear system in practice, the torque or the force generated
by its actuators is finite and bounded due to the physical limitation. All actuators
are constrained. Once the required control effort saturates the actuators, the output
signals may not achieve the control mission, if the system is not equipped with an
appropriate control methodology to dump the saturated actuators. Then, it may lead
to control performance deterioration or system instability. Hence, actuator constraint
is another key issue that needs to be addressed [167-169].

1.7.1 Methods for General Nonlinear Systems

Many results were seen for nonlinear systems to the stability analysis and controller
design with actuator constraint [28, 170-172]. For example, a saturation-based fixed-
time funnel boundary was proposed in [173] for a class of strict feedback systems
with actuator constraint and external disturbances. The corrected signal associated
with the actuator constraint error was embedded in the funnel function. For a class
of dynamical networks with actuator constraints, a saturated controller was designed
to achieve finite-time synchronization [174]. Taking the parametric and the unmod-
eled uncertainties into consideration for the nonlinear systems, a nested-saturation-
function-based control scheme incorporated with a saturated linear ESO was pro-
posed in [175]. For the uncertain nonlinear systems with actuator constraint, an
adaptive sliding mode controller by using a barrier function was proposed in [176].
In [177], a dual periodic event-triggered control including saturation-assisted and
complemental periodic event-triggers was synthesized to solve the consensus prob-
lem for the multi-agent systems (MAS) with actuator constraint.

When a fault occurs in the actuator further, the control system would continue
issuing its maneuver that may no longer be achievable by the system. In this case, the
required control effort will quickly saturate the actuators while striving to maintain
the “healthy” maneuvering performance. It will subsequently destabilize the sys-
tem. Therefore, actuator constraint should also be accommodated with actuator fault
considered simultaneously. In [178], a finite-time fault estimator-based FTC scheme
was proposed to address the accurate trajectory-tracking problem of a surface vehi-
cle under actuator constraint and actuator failures. In [179], a smooth function was
designed to approximate the controller saturation function and a neural network
(NN) to uncertainties and failures for the MAS. For the aircraft control system with
actuator constraint and actuator failures, an enhanced anti-disturbance control by
utilizing novel auxiliary systems was reported in [180] to avoid and compensate for
the actuator constraint.
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1.7.2 Attitude Control with Actuator Constraint

For a satellite attitude control system, its typical actuators are reaction wheel, thruster,
and magnetic torquer. Those actuators have a bounded output torque. Actuator con-
straints are met in satellite. In the past two decades, significant developments are
seen in attitude control with actuator constraint [181-190]. One of the most promi-
nent methods is the anti-windup design due to its simple structure [191]. In [191],
an anti-windup controller was proposed for large angle attitude control of satel-
lite with actuator saturation. For the attitude tracking control problem with system
uncertainties and state constraints, an anti-windup compensator-based robust adap-
tive controller was designed in [192] to handle actuator constraints. Considering
the satellite attitude trajectory tracking control system with external disturbance and
actuator constraints, an ESO and anti-windup compensator-based robust finite-time
controller was proposed in [193]. For the attitude tracking control problem of a
special rigid-flexible-rigid microsatellite with multi-uncertainties and actuator con-
straints, a robust control system structure including an observer-based compensator
and a modified proportional-derivative control law was presented in [194].

In [195], the backstepping technique was applied to the nonlinear flight system
in the absence of input constraint first, and then a command filter was employed to
compensate for the effect of the control signal rate constraint. In [196], a robust vari-
able structure controller was designed to control the satellite attitude under actuator
constraint. An alternative algorithm that applied a positive constant gain within the
framework of integrator backstepping-based control design to reduce peak control
torque was seen in [197]. A nonlinear adaptive controller including feedback and
feed-forward components to handle actuator constraint and linearly parameterized
disturbance was reported in [198]. Consider the constraints of input signals and the
prescribed performance of the satellite formation control system, an SMC-based
fixed-time controller was presented in [199] by incorporating an anti-windup satu-
ration compensator. For the multi-satellite consensus control system under actuator
constraint, a novel optimal control law was developed in [200].

Control allocation is another useful method to deal with the actuator constraint
issue. A systematic result by using control allocation methods design was available in
[201] for satellite. In [202], a saturated proportional-derivative controller combining
with a null-space-based optimal control reallocation was presented for the satellite
attitude control system.

1.8 Angular Velocity-Free Attitude Control

Most controllers for linear or nonlinear systems are developed based on the assump-
tion that precise measurement of the system’s full states is available. This assumption
is widely used in satellite attitude control system design. The direct and exact mea-
surement of both the attitude and the angular velocity is assumed to be available. How-
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ever, the precise measurements of angular velocity are not always satisfied in practice
due to either cost limitations or implementation constraints. Some unexpected faults
or failures occurring in gyros and other rate sensors also lead to the wrong mea-
surement of velocity. Therefore, towards the implementation-cost optimization issue
and sensor fault avoidance, it is highly desirable to design a partial-state feedback
attitude controller that does not require the angular velocity measurement.

In the past two decades, the development of attitude control without the mea-
surements of angular velocity has attracted significant attention in the academic and
satellite engineering communities. The earliest known result in the field of velocity-
free control was presented in [203, 204] through passivity framework. Subsequent
extensions to that control design scheme without angular velocity were presented
in [205, 206]. In [207], an alternative solution to stabilize attitude by using quater-
nion only has been proposed based on optimal control technique. Moreover, several
other control techniques are also motivated with Lyapunov based techniques [208].
In general, the existing angular velocity-free attitude control approaches can be clas-
sified into two types. One is the observer-based control. The other is the filter-based
control.

1.8.1 Observer-Based Velocity-Free Control

One solution to the attitude control problem without angular velocity is the develop-
ment of a model-based observer [209, 210] to estimate the angular velocity [211-
218]. In this observer-based scheme, angular velocity is estimated with desired esti-
mation accuracy [219-222]. In [116], an adaptive observer by using the fuzzy control
technique was developed for the unmeasured angular velocity. Although the velocity
estimation error was exponentially stable, external disturbances were not consid-
ered. In [223], a smooth angular velocity observer was proposed with the estimation
error asymptotically stabilized. However, this was also done in free of external dis-
turbance. In [224], a velocity-free attitude stabilization law was reported with an
angular velocity observer. In [225], a hybrid observer was available to exponentially
estimate the unmeasured angular velocity for rigid bodies. Although these angular
velocity observer-based controllers can achieve attitude maneuvers with attitude out-
put feedback only, their structures are complicated. They require expensive onboard
computations. This makes them be not user-friendly for engineering.

If, in addition to unmeasured states, there are parametric uncertainties [226], an
observer can be made robust by applying SMC [227]. This observer is called sliding-
mode observers (SMOs) [228, 229]. Sliding-mode observers have been proven to be
an effective way to estimate unmeasured states [230]. Output feedback control with
a sliding mode observer can make use of equivalent control concept [231-233]. In
[231], the finite-time output feedback stabilization of a class of second-order systems
was discussed. In [232], global finite-time observers were proposed for Lipschitz
nonlinear systems. To improve the estimation performance of SMO in the presence
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of system uncertainties and disturbances, some other SMO-based design has been
discussed, such as high-gain SMO [78, 234, 235] and high-order SMO [236-238].

Almost all of the aforementioned SMO design provides an asymptotic conver-
gence of the observer error. However, finite-time convergence is not ensured. In some
applications, it is highly desired a finite-time convergence [239]. For instance, syn-
chronization of chaotic signals is of major importance for walking robots in secure
communication or attitude maneuvers of time-critical satellites [240]. For those sys-
tems, each step should be done in a finite time. Currently, observer design for states
with finite-time convergence has received considerable attention [241]. Many finite-
time observer design methods have been proposed for different systems [242]. The
high-gain finite-time observer was further pursued using homogeneity concepts in
[243]. More recently, there has been another approach to achieve observation in finite
time. It is designed by using terminal sliding-mode control technique [244].

1.8.2 Filter-Based Velocity-Free Control

An alternative to the angular velocity-free attitude control problem is the filter-based
or the auxiliary-based technique [245-247]. This solution is free of any angular
velocity observer. In accordance, the controller is synthesized directly to stabilize
the attitude system via the Lyapunov stability theory. The first attempt to design such
filter-based velocity-free control was made in [248]. The satellite’s attitude regula-
tion or tracking maneuvers were achieved in [249-252] via this solution. External
disturbances were not addressed. In [253], a velocity-free rotation tracking law was
seen by including a filter to compensate for the unmeasured angular velocity. In
[254], the velocity-free attitude control issue with actuator and rate constraints was
investigated by using the filter-based technique. The robust attitude tracking control
problem without measurements of angular velocity was solved in [255] via a quater-
nion filter. In [256], another velocity-free attitude stabilization control design was
reported by applying potential functions. It was not capable of handling disturbances.
In [257], the pose tracking control problem without velocity feedback was further
investigated. The satellite was assumed to be under no effect of disturbance. In [258],
another filter-based velocity-free attitude controller was synthesized to perform the
rest-to-rest attitude maneuvering of satellites in the absence of any disturbances.
The filter-based velocity-free control is further examined in [259]. That approach
integrates a velocity-generating filter from attitude measurements to design an adap-
tive attitude tracking controller. Another quaternion-based output feedback control
design was reported in [260]. Although that approach does not need the angular
velocity and can guarantee the uniformly asymptotical stability of the closed loop
system, it is assumed that full knowledge of the inertia matrix and system dynam-
ics is known in advance. In [19], by introducing an auxiliary dynamical system, a
velocity-free control scheme for the attitude tracking of rigid satellites is discussed.
However, the technique was developed without any external disturbances considered.
To treat the external disturbances, an adaptive attitude tracking control approach was
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presented in [253] for the rigid satellite. An approximate differentiation filter was
introduced to account for the unmeasured angular velocity. In addition, augmenta-
tion of an existing controller using the Chebyshev neural network was considered in
[261]. The effect of unknown dynamics and external disturbances is carried out by
using online neural network approximation. Moreover, the tracking error is shown
to be uniformly ultimately bounded even without velocity measurements.

1.9 Flexible Satellite Attitude Control

Robust control, exploring various types of techniques, has been frequently consid-
ered for attitude control design of flexible satellites in the presence of modeling error
with flexible vibration included. In [262], a robust controller was proposed for the
flexible mechanical systems and the validity of the design method was confirmed for
the flexible satellite attitude control problem. In [263], an extended potential differ-
ence controller was developed for a flexible satellite, and robustness to vibrations and
external disturbances was achieved. An optimization-based approach was proposed
in [264] for the robustness analysis of an attitude and orbit control system for flexible
satellites. Simulation studies indicated that the proposed approach appears to have
significant potential for improving the industrial flight clearance process for next-
generation high-performance satellite control systems. In [265], the attitude tracking
control problem was investigated by designing a model-based robust controller. Actu-
ator fault, uncertain inertia, and vibrations in flexible appendages were addressed. A
robust attitude and vibration control of a flexible satellite was reported in [266] that
uses shunted piezoelectric transducers, bonded to the flexible elements in such a way
that the vibration energy is transferred to an electric circuit and partially dissipated.
In [267], a phase-plane controller was proposed for a flexible satellite (i.e., TacSat-4)
attitude control by thrusters. Robustness against structural bending modes less than
1 Hz was ensured.

The majority of the existing robust control schemes for flexible satellites attitude
control are proven to be effective only through simulation studies. Of particular inter-
est are the studies carried out in [31] and [32], the designed controllers are intended
for experimental verification on ETS-VIII at the end of its mission life. In [31], a
two-degrees-of-freedom control based on robust direct velocity and displacement
feedback was proposed (instead of the existing classical PID control law) as a candi-
date controller technology. Optimization algorithms for both the feedback and feed-
forward controllers described by the linear matrix inequalities in the framework of
Ho controller synthesis were proposed. The capability to handle flexible vibrations
was verified through simulations. In the follow-up work [32], a linearly interpolated
gain scheduling controller was designed for ETS-VIII using its linear parameter-
varying model. In a more recent work by the same authors [14], an experimental
study was presented in which the on-orbit flight tests of a two-degrees-of-freedom
robust controller for ETS-VIII, namely step responses corresponding to the antenna
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calibration maneuver and impulse responses corresponding to external disturbance
can be found.

1.10 Fast Attitude Control

Although various controllers are available to perform attitude maneuvers for satel-
lites, most of them stabilize the states of the attitude system as the time approaches
infinity. The infinite settling time criterion is not an option during critical phases of
the mission. In practice, many missions demand fast attitude maneuvering [268]. To
meet this demand, the finite-time stability (FT'S) concept is available [269].

Aiming to achieve attitude control within finite-time convergence, attitude con-
trol design via SMC has got significant consideration [270]. In [271], the terminal
SMC (TSMC) was utilized to achieve finite-time control. However, the TSMC suffers
from singularity. To avoid this problem, many non-singular attitude TSMC (NTSMC)
approaches have been reported [272]. The implementation of those results necessi-
tates the full knowledge of uncertainties or needs large control gains to attenuate
uncertainties. This leads the controllers to be conservative and chattering with rapid
energy consumption. As such, the adaptive control theory has been invoked to alle-
viate chattering [273, 274], whereas their controllers were discontinuous due to the
incorporated signum function. To avoid this discontinuity, the signum function was
replaced with the hyperbolic tangent or the saturation function in [275]. However,
such chattering alleviation is obtained at the cost of control accuracy degradation.
Another solution to this problem is the higher order sliding mode-based control while
finite-time convergence is ensured [276]. Complicated theoretical analysis and heavy
computation were involved. Motivated by solving this challenge and eliminating
chattering, this paper will propose a novel continuous adaptive law by estimating the
upper bound of uncertainties.

In practice, actuator uncertainty may exist due to aging or malfunction of the
actuator’s components. Considering this issue and applying the nonsingular TSMC
[277], the fast TSMC [278], the backstepping control [279], and the integral back-
stepping [280], many attitude stabilization controllers are seen to achieve finite-time
convergence.

1.11 Motivation for This Book

It is obtained from satellite engineering that any satellite has severe modeling error.
On the other hand, any satellite is also subject to actuator constraints. The angular
velocity measurement may be unavailable further for satellites. Moreover, fast atti-
tude slewing maneuvers are demanded to be performed to accomplish the planned
space missions. As a result, the following four challenges are raised in the satel-
lite attitude control, while the preceding reviewed attitude control approaches have
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a weak capability of addressing those challenges. Although the results in [281—
284], the tracking control approaches proposed for unmanned aerial vehicle [285],
robotic manipulator [286], snake robot [287], and nano-positing systems [288], can
be referred to solve those challenges, there is not a standard or general solution
framework. The following challenges are still open.

e From the standpoint of modeling error compensation control, two or more than two
types of modeling error introduced in Sect. 1.2 should be addressed. This problem
is widely seen in microsatellites. Most of the existing approaches can handle a
single type of modeling error only.

e From the standpoint of attitude control, high-accuracy attitude control should be
achieved with two or more than two types of modeling error and actuator constraint
simultaneously addressed even without angular velocity measurement. However,
most of the attitude control schemes in the literature are not capable of solving
this problem.

e The attitude maneuvering should be accomplished during critical phases of the
mission with the fast rate even in the presence of two or more than two types of
modeling error summarized in Sect. 1.2.

e From the view of saving energy, the modeling error should be compensated with
less and even no conservativeness. However, the existing robust or adaptive attitude
controllers are characterized by severe conservativeness.

Considering the demand for attitude control with the above four challenges solved
and many existing approaches are unable to achieve this goal, this book attempts to
solve the above four challenges during satellite attitude control system design. This
book focuses on designing advanced compensation control techniques for more types
of modeling error with fast, high-accuracy, high-stability, and or velocity-free attitude
maneuvering accomplished for satellites.

1.12 Organization of the Book

The book is organized into twelve chapters, including three parts on technical results
(atotally nine chapters). Part I includes Chaps. 1 and 2 with the overview on modeling
error compensation attitude control of satellite and the preliminary knowledge of
this book. Part II concentrates on the robust velocity-free solution to two or more
than two types of the modeling error compensation attitude control problem of the
satellite even in the presence of actuator constraint and fault. Part III focuses on the
recent solution to achieve fast attitude slewing control for satellites with two or more
than two types of modeling error compensated adaptively. Part IV presents some
new observer-based approaches to accomplish attitude control for satellites with less
conservativeness, while the modeling error is precisely and fully compensated. The
outline of each chapter is listed as follows.

Chapter 1 provides an overview of this book. It gives a description of modeling
error acting on the satellite attitude control system. This chapter then briefly intro-
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duces a literature review on the recent attitude control approaches for satellites with
modeling error. Moreover, the motivation of this book is given in this chapter.

Chapter 2 is a preliminary chapter to provide knowledge for the rest of this book.
That knowledge includes the standard notations, definitions, preliminary lemmas,
attitude representation methods of satellite, and the mathematical model of satellite
attitude control system. This chapter ends with the description of three types of
testbeds for attitude control testing on the ground.

Chapter 3 investigates the large-angle velocity-free attitude tracking control prob-
lem of rigid satellites with modeling error. An efficient and practical angular velocity-
free control strategy with a simple, yet efficient structure is proposed. The attitude
tracking maneuver is accomplished with the attitude pointing control performance
robustness to modeling error.

Chapter 4 is dedicated to solving the angular velocity-free attitude control prob-
lem of satellites with modeling error and actuator constraint. A velocity-free neural
network attitude stabilization controller and a disturbance attenuation attitude track-
ing controller are presented. The effect of the modeling error is attenuated by tunning
control gains with great robustness guaranteed.

Chapter 5 is concerned with attitude controller design for satellites without the
angular velocity measurements. The velocity-free attitude control problem in the
presence of modeling error consists of external disturbance and actuator fault is
addressed. Once again, the proposed approach in this chapter is a robust control
solution to handle modeling error.

Chapter 6 addresses the velocity-free attenuation control problem of a class of
nonlinear systems with modeling error induced by external disturbance and actuator
faults. The modeling error is adaptively estimated and compensated. The proposed
approach is applicable for satellite attitude stabilization maneuvering despite the
modeling error due to uncertain inertia, disturbance, and actuator fault.

Chapter 7 is devoted to prescribed attitude stabilization performance control of
satellite with the modeling error including actuator fault and external disturbance. The
modeling error is adaptively compensated via reinforcement learning. The attitude
of the considered satellite is stabilized by presenting a reinforcement learning-based
fixed-time optimal control framework.

Chapter 8 focuses on the rapid attitude control problem of satellites with model-
ing error including uncertain inertia and external disturbances. A sliding mode-based
fixed-time control approach is presented with the modeling error adaptively com-
pensated. It is proved that the states of the satellite attitude system can converge into
a small set after a fixed-time even in the presence of modeling error.

Chapter 9 studies the extended state observer-based attitude control for flexible
satellites with modeling error induced by external disturbances and unknown vibra-
tions induced by flexible appendages. The modeling error is precisely estimated and
fully compensated by the extended state observer. The key feature of this control
approach is that its controller has no conservativeness.

Chapter 10 aims to solve the modeling error compensation control problem of
the satellite attitude system in the presence of the disturbance observer-based con-
trol framework. The drawbacks of the existing disturbance observer requesting the
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modeling error to be constant or with a minor rate of change are addressed. This
framework lets the attitude maneuvering be accomplished at an exponential rate.

Chapter 11 provides the satellite attitude control system design with a modeling
error compensation control approach in the unknown input observer-based frame-
work. A new unknown input observer is presented to estimate modeling error. The
developed controller with the output of that observer incorporated can achieve high
accuracy pointing control of the satellite.

Chapter 12 is dedicated to ending the book with some concluding remarks on the
developed compensation control approaches and to present some future work.

1.13 Summary

The overview of this book is presented in this chapter. The main modeling error
of the satellite attitude control system is introduced. The recent works on handling
such modeling error with satellite attitude controlled are reviewed. Moreover, the
motivation and the organization of this book are detailed given in this chapter.
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Chapter 2 ®)
Preliminaries Geci

2.1 Introduction

Since the terminology used in the field of satellite attitude control and stability
analysis of nonlinear systems is not unique and differs among authors, this chapter
starts with brief notations and expressions frequently used throughout the book.
Following that, some mathematical lemmas and definitions are introduced to facilitate
theoretical analysis in the rest of this book. The attitude control system of rigid
or flexible satellites is then modeled. This chapter finishes with the testbeds used
to verify the effectiveness of the subsequent modeling error compensation-based
attitude control approaches.

2.2 Notation

The notation in this book is fairly standard. Let R be the set of the real numbers
and R, be the set of the positive real numbers. The set of m by n real matrices
is denoted as R™*". For the sets S; C R” and S, € R", §;\S, denotes the set
{xeR":x €S8, x ¢ S}. I, € R""isthen x n identity matrix. 0 is a zero vector
or matrix having an appropriate dimension. For any matrix A € R”"*", AT denotes
its transpose, A" represents its pseudo inverse, A~! is its left inverse if A has full
column rank, and A2 = ATA. || - || stands for the Euclidean norm for vectors or
the induced matrix norm for matrices. det(-) denotes the determinant of a square
matrix. The space of all signals which are globally bounded and square-integrable on
[0,1),t; € Ry orty = 400, are denoted by L[0, 17) and L0, £/), respectively.
Amin(A) and Apax (A) are the minimum and the maximum eigenvalue of A € R™*™,
respectively. In(-), exp(-), tanh(-), sech(-), cosh(-), and sgn(-) are the logarithmic,
the exponential, the hyperbolic tangent, the hyperbolic secant, the hyperbolic cosine,
and the sign function, respectively.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 35
B. Xiao et al., Advanced Attitude Control of Satellite,
https://doi.org/10.1007/978-981-97-2847-3_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-2847-3_2&domain=pdf
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2
https://doi.org/10.1007/978-981-97-2847-3_2

36 2 Preliminaries

For two given vectors X = [x1, X2,...,%,]T € R* and y = [y}, 2, ..., x,]T €
R” and a given positive scalar £ € R, x* € R", /x € R", i eR", |x]" e R,
and |x| € R" are five vectors defined as x¢ =[x, x5, ..., x!T, /x = [ /¥,
Va2 ST S = ] ) = sen(e), xel‘sgn(xa), -
|x,|*sgn(x )T, and |x| = [|x1], |x2], . .., |x.|]7, respectively; the partial differen-

tial of scalar function A(x) € R with regard to x is defined as V,h(x) € R"; the
partial differential of a set of functions h(x) € R’ with respect to x is given as
Veh(x) € R the ball B¢(x) = {y € R" : ||y — x|| < £} is also defined; x < y
means that x; < y; holds foralli =1, 2, ..., n. diag(x) € R"*" denotes a diagonal
matrix with x as the vector of diagonal entries of such a matrix. sgn(x) € R”,In(x) €
R", cosh(x) € R", and tanh(x) € R" are defined with their ith argument given
by sgn(x;), In(x;), cosh(x;), and tanh(x;), respetively, i =1, 2, ..., n. Two matri-
ces Sech(x) = diag([sech(x;), sech(x), ..., sech(x,)]T) € R™" and Cosh(x) =
diag([cosh(x;), cosh(xy), ..., cosh(x,)]T) € R™" are also defined. sat(x, £yy) €
R" is a vector-valued saturation function as sat(x, £y.,) = [sat(x;), sat(x,),
ooy sat(x)]T, €max € Ry, where

Lmax, if X; > Lrax
sat(x;) = 3 x;, if — Liax < Xi < €inax (2.1)

—Lmax, if X; < —€max

Moreover, for any given vector v = [vy, vy, u3]T € R3, v* e R3*3 denotes the skew-
symmetric matrix defined as

0 —U3 U
v = U3 0 — 1% (22)
—U Ui O

2.3 Mathematical Definition

Consider a nonlinear system
x=f(x,d,1),x(0) =xg (2.3)

where x € R” is the system state, f : R" x R™ x R, — R” is a nonlinear function
and piecewise continuous in ¢, and d € R™ is the modeling error or external distur-
bance. The solution of (2.3) which starts from the point xo at t = 0 is denoted as
x(t, xp). Moreover, the origin x = 0 is the unique equilibrium point of (2.3).
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Definition 2.1 The origin of (2.3) is

e Lyapunov stable: there is § > 0 such that for any xo € R", if xy € B;5(0) then
x(t,x9) € Bs(0) forall r > 0.

e Asymptotically stable: if it is Lyapunov stable and tlirgo x(t,x0) = 0 for any x¢ €
R".

e Globally exponentially stable: if ||x (t, xo)|| < k||xolle~®" is satisfied for any x( €
R ke R, € R,

e Uniformly ultimately bounded stable: if exists a ball B;(0) such that for all
xo € B5(0), there is a constant ¢ € R, and a constant 7' (¢) € R, satisfying
[lx (2, x0)|| < ¢ forallz > T(s).

e Finite-time stable: if it is Lyapunov stable and for any xo € R” there exists 0 <
t7 < oo such that x (¢, xo) = 0 for all t > #7. The function 7 (x¢) = inf{t;y > 0 :
x(t,x9) = 0,Vt > 17} is called the settling-time function of (2.3).

e Fixed-time stable: if it is finite-time stable and the settling-time function of (2.3),
T (xg), is bounded on R”, i.e., there exists T, satisfying Supy crn T (X0) <
Tinax < 00.

Definition 2.2 [1] The origin of (2.3) is practically fixed-time stable, if it is Lya-
punov stable and there exists a bounded set D; € R" and a scalar Ty € R such that
for any r € R, and any state starting within the ball B, (0) converges to D, in the
time Ty and stays in O thereafter.

Definition 2.3 [2] The origin of (2.3) is practically exponentially stable if there
exists r € Ry, y; € Ry, and y, € R, such that ||x (¢, xo)|| < 7 + y2||xol|e .

Definition 2.4 [3] Let y € R be a given constant, then the origin of (2.3) is said
to be stabilized with £, gain disturbance attenuation level of y from the disturbance
d to the state x, if the following inequality holds for any u € R.

T T
/ [lx (2, x0)||>dt < yzf \|d||?dt + ., Vd € L]0, T),VT € R 2.4)
0 0

2.4 Preliminary Lemmas

Lemma 2.1 For a given vector x = [x1, X, ..., x,17 € R, it follows that % tanh?
(x;) < In(cosh(x;)), ||Sech®(x)|| = 1, and tanh”(x)tanh(x) < xTtanh™(x), i =
1,2,...,n.
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Lemma 2.2 [4] Fora givenvectorx = [x1, X2, ..., x]T e R” and any two positive
constants statisfying 0 < ¢y < 1 aswell as ¢, > 1, then

2

n 1 n n n
<Z|xi|) SZIx,-IC‘,<Z|in> <ny x| 2.5)
i=1 i=1 i=1 i=1

Lemma 2.3 [5] Let v and p be real-value functions defined in R, and let b and ¢
be positive constants. If they satisfy the differential inequality

U< —cv+bpt)?, v0) >0 (2.6)

then the following inequality holds:
(i) If p € L[0, 4+00), then v € L[0, +00) and

b
u(t) < v(0) exp(—ct) + ;||p||§o 2.7)

(i) If p € L5[0, +00), then v € L[0, +00) and

(1) < v(0) exp(—ct) + bllpll; (2.8)

Lemma 2.4 [6] The origin of (2.3) is practically fixed-time stable, if there is a
positive function V (x) € R satisfying

V(x) < —aoV"(x) — oV (x) + p (2.9)

where g € Ry, Bo € Ry, r1 > 1,0 <r, <1, and p € R, are positive constants.
Moreover, the state x (t, xo) converges into the residual set:

Dy =3x(t,x0): V(x) < min i<i>_l , (L)_Z” (2.10)
ao Bo

with | = {25 and the constant 0 < 6 < 1. The finite-time Tnax € Ry required to

reach into D is bounded by

1
Thax <

V. R" 2.11
S wr - D Bl € @11

2.5 Definition of Reference Frames

This section describes different reference frames for representing the satellite’s posi-
tion and attitude. Those reference frames are shown in Fig. 2.1.
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Fig. 2.1 The Earth-centered inertial, the body, and the orbit reference frames

2.5.1 Earth-Centered Inertial Frame

The Earth-centered inertial frame ¥7; is an inertial frame for terrestrial navigation.
The frame is fixed in space. This means that it is a non-accelerated reference frame
in which Newton’s Laws are valid. The origin of this frame is oriented at the center
of Earth. The x-axis points toward the point where the plane of the Earth’s orbit
toward the Sun, crosses the Equator going from South to North. z-axis points toward
the North pole. y-axis completes the right-hand Cartesian coordinate system. This
defines a right-handed orthogonal body coordinate frame (X;, Y;, Z;).

2.5.2 Orbit Frame

The orbit frame ¥, rotates relative to the Earth-centered inertial frame, with an
orbital rate depending on the altitude of the satellite. The origin O is at the center of
the mass of the satellite. The x-axis is toward the direction of motion tangentially to
the orbit. The tangent is only perpendicular to the radius vector in the circular orbit
and does not align with the velocity vector of the satellite in elliptical orbits. The
z-axis points toward the center of Earth. The y-axis is perpendicular to the orbital
plane and completes the right-hand system (X o, Yo, Zo).
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2.5.3 Body Frame

This frame ¥ is a moving reference frame fixed on the satellite. The orientation of
the satellite is determined relative to the orbit frame. The angular velocity is expressed
in the body frame. The x-axis is forward and the z-axis is downward. The y-axis
completes the right hand orthogonal system (X, Yp, Zg). The origin O is at the
center of the mass of the satellite. Its axes are fixed in the satellite body and coincide
with the principal axis of inertia.

2.6 Attitude Representation

2.6.1 Euler Angles

The Euler angles are an intuitive way to represent satellite attitude with explicit
physical meanings. The foundation of Euler angles is the Euler theorem, that is the
rotation of a rigid body around one fixed point can be regarded as the composition
of several finite rotations around the fixed point [7].

The orientation of the satellite’s body-fixed frame ¥ with respect to ¥ involves
three successive Euler angles rotations. In practical aerospace missions, it is possible
to bring a rigid body into an arbitrary orientation by performing three successive
rotations that involve the axes fixed in the Earth-centered inertial frame [8, 9]. As
shown in Fig. 2.2, ¥ is first transformed into the intermediate frame 1 via a rotation
about the Z 5 axis by the angle 1. This is followed by a rotation about the new X axis
by an angle ¢. Finally, the satellite’s pitch angle, 6, defines the rotation about the new
Y,.Figure 2.3 shows a 3D representation of the Euler angles describing the orientation
of the body-fixed frame #p with respect to the orbit frame #¢. According to the
preceding rotation, the physical meanings of the three Euler angles are presented as
follows.

e The yaw angle ¥ € R: It is the angle between the axis O X ¢ in the frame # and
the projection on the local level of the O X g axis in the frame 5.

Satellite body Intermediate Intermediate .
Orbital frame
fixed frame frame 1 frame 2
X, x, |—? (x=x, X,
Roll angle P

Y, Y Y, — | Y=Y,

B 1 2 Pitch angle 072
Zy Z,=Zy Z, Zy

Yaw angle

Fig. 2.2 Euler angles
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Fig. 2.3 Euler rotation

e The roll angle ¢ € R: It is the angle between the pitch axis OYp in the frame Fp
and its projection on the local level.

e The pitch angle 0 € R: It is the angle between the roll axis O X g in the frame Fp
and its projection on the local level.

2.6.2 Unit Quaternion

According to [8, 9], the unit quaternion is another widely utilized method to represent
the satellite attitude. On the basis of the Euler theorem, four attitude parameters
composed by the Euler axis/angles can be presented in the form of

T
0=190.4"1" =90, 91, 92, 31" = [cos % ex sin % ey sin %, e sin 5}
(2.12)
where & = [e,, ey, e;]" € R’ is the Euler rotation axis satisfying e} + ¢} + ¢ = 1,
® € R is the rotation angle around the Euler rotation axis, ¢ = [q1, ¢2, qg]T € R3,
and g5 +¢7 + 45 +45 = 1.

2.6.3 Modified Rodrigues Parameters

According to [9], the modified Rodrigues parameters (MRPs) based attitude presen-
tation is a three-parameter and non-redundant attitude description method. Given a
Euler rotation angle ® e R about the Euler principal axis n € R?, the attitude ori-
entation of the satellite in 3 with respect to ¥; can be represented by the MRPs
vector 0 = [0}, 02, 03]T and



42 2 Preliminaries
o
o =ntn (). ®e0°360) 2.13)

Moreover, the mathematical relationship between the MRPs o and the unit quaternion
Q defined in (2.13) is given by

qi
1+ qo

i=1,2,3 (2.14)

g; =

2.7 Modeling of Satellite Attitude Control System

The mathematical model of the attitude control system of any satellite consists of
two parts. One is the attitude kinematics and the other is the attitude dynamics.

2.7.1 Attitude Kinematics

In this section, the attitude kinematics of the satellite is modeled by using the Euler
angles, the unit quaternion, and the modified Rodrigues parameters.

A Attitude Kinematics via Euler Angles

When the Euler angles are used to represent the attitude of the satellite, its attitude
kinematics can be described as [10]

© = R'(©)(@ + ©.(0)) (2.15)

where ©® = [0, ¢, w]T is the attitude Euler angles vector of the satellite with respect
to the orbit frame ¥, obtained by a yaw-pitch-roll (y-¢-8) sequence of rotations.
® = [w1, w2, w3]T € R? is the satellite’s angular velocity with respect to #; and
expressed in the body-fixed frame F3. R(®) € R3*3 and w.(®) € R? are defined
as

1 0 —sin¢

R(®) =] 0 cosf cos¢sinf (2.16)
0 —sin6 cos ¢ cosd

sin ¥ cos ¢
0. (@) =wy | cosy cosh + siny sinb sin ¢ (2.17)
— cos ¥ sin @ + sin ¥ cos O sin ¢

where wy € R, is the satellite’s orbital rate. It can be calculated by wy = /25 is

satellite orbital rate, a. € R, is the distance from the center of Earth to the satellite’s
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center of mass, and 1, € R is the gravitational parameter of Earth. The term w;, =
[wp1, wp2, wp3]T = R(O)O actually is the satellite angular velocity with respect to

Fo.

Remark 2.1 It is obtained from (2.16) that det(R(®)) = cos ¢. Hence, the fol-
lowing equation should be met such that R(®) is invertible, and then the attitude
kinematics (2.15) remains valid for ¢t > 0,

Nm
(1) # T’W >0 (2.18)

where N is an odd integer. To ensure (2.18), the initial pitch angle ¢(0) can be
restricted such that —% < ¢(0) < 7, and then the controller should be designed to
achieve —% < ¢(t) < % fort > 0. Therestriction on ¢ (0) is a mild condition, which
is satisfied in practice. That is because the attitude stabilization maneuver is usually
performed before the attitude tracking maneuvering in aerospace engineering. After
the attitude stabilization maneuver, the satellite attitude will be stabilized with small
attitude angles deviation, that is, —Z < 6 < % —% <¢ < %, and —% <Y < %

2
can be guaranteed.

Remark 2.2 In addition to the Euler angles (EAs), the unit quaternion (UQ), the
rotation matrix (RM), and the Rodriguez parameters (RPs), as well as its modified
version (MRPs), can also be applied to represent the attitude. Each attitude repre-
sentation method has its advantages and disadvantages. For example, the unwinding
phenomena will occur in the satellite attitude system design if its attitude is repre-
sented by using the UQ. In comparison with UQ, RM, RPs, and MRPs, the EAs
can explicitly provide the attitude control designer with a satellite’s physical orien-
tation angles in space. This is the reason that the Euler attitude angles representation
is widely applied in satellite attitude control engineering. Additionally, it is easily
obtained that only a restriction —% < ¢(t) < %, t > 0 is imposed, and there is not
any restriction on the roll and the yaw attitude angles. The roll attitude angle and the
yaw attitude angle canbe — < 6 < w and — < ¥ < m,respectively. For practical
aerospace engineering, the pitch attitude angle satisfying —% < ¢(t) < 7 is quite
large for the tracking missions. Therefore, based on the aforementioned analysis, the
Euler attitude angle representation is confirmed to be appropriate for the large-angle
attitude maneuver.

B Attitude Kinematics via Unit Quaternion

When the unit quaternion is adopted to represent the attitude of the satellite, its
attitude kinematics can be modeled as

N
q=§(q +qol3)o® (2.19)

) 1
db=-—59® (2.20)
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where @ = [w, wo, w3]T represents the angular velocity of the body with respect
to the frame ¥; and expressed in body-fixed frame 5. The unit quaternion
0 = [qo, g¢"1T € R x R3 describes the attitude orientation of the satellite in frame
F5 with respect to the Earth-centered inertial frame 77 with ¢Tq + g¢ = 1 satisfied.

C Attitude Kinematics via MRPs

When the MRPs are used to represent the attitude of the satellite, its attitude
kinematics can be modeled as [11]

6 =G(0)w (2.21)

where the matrix G (o) € R*>*3 is given as

G(o) = %((1 —0To)I3+20% +2007) (2.22)

Property 2.1 The matrix G(o) satisfies

16

1+6T0\’
(1+4+070)

G'(0)G(o) =( 2 ) 13,G (o) = G'(0) (2.23)
Remark 2.3 As a complete revolution is performed, this particular MRPs set goes
singular. As shown in [12], the original MRPs vector and its corresponding shadow
counterpart0* = ——7— could be used to represent satellite’s attitude rotation to avoid

the singularity problem.

2.7.2 Attitude Dynamics

In aerospace engineering, the satellite having large flexible appendages is called flex-
ible satellite. Otherwise, it is named as rigid satellite. The attitude dynamics for both
types of satellite is modeled in this section.

A Attitude Dynamics of Rigid Satellite

The attitude dynamics of a rigid satellite can be described by [10]
Jo=—-SwJo+u+uy (2.24)

where u = [uy, us, u3]" € R3 is the total control torque generated by actuators and
applied to the satellite. The positive-definite matrix J € R3*3 is the total inertia of
such rigid satellite. uy = [ug1, a2, us3]" € R3 is the unknown torque generated by
the modeling error in the dynamics of such rigid satellite.
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B Attitude Dynamics of Flexible Satellite

The attitude dynamics of a flexible satellite can be found from the Euler-Lagrange
analysis. It is described as [10, 13]

Jo=—-0"(Jo+38)) — 6 +u-+uy (2.25)
i+ E)+A*+8To=0 (2.26)

where the matrix J € R3*? is positive-definite and denotes the total inertia of such
flexible satellite, § € R**" is the coupling matrix between the elastic structures and
rigid dynamics, § € RY is the modal coordinate vector relative to the main body.
E =diag([2E1A,2E2A,, ..., 2EBxAyx]T) € RV*V is the modal damping matrix,
A? = diag([A2, A2, ..., A% ") € RV*N s the stiffness matrix, and N € R, is the
number of elastic modes considered, where E; € R is the damping ratio, and A; € R
is the modal frequency,i = 1,2, ..., N.ug = [ug1, uar, ug3]T € R? is the uncertain
torque generated by the modeling error in the dynamics of such flexible satellite.
u = [u, us, u3]" € R3 is the total control torque generated by all actuators.

Remark 2.4 The attitude dynamics (2.25) and (2.26) are established by computing
the kinetic and the potential energies and then applying the Lagrange equations. The
elastic displacement of the flexible appendages is assumed to be small. Note that
(2.25) and (2.26) are quite standard and precise to describe the dynamics of the rigid
and the flexible part of the satellite. When investigating flexible satellite attitude
control problem, almost all the existing controllers were designed based on (2.25)
and (2.26).

2.8 Attitude Control Testbed for Satellite

A simulation study is not enough for attitude control verification. Hardware-in-loop
tests on the ground are further requested to verify the performance of attitude con-
trollers. At this time, experimental testbeds are necessitated. Currently such testbeds
are classified into non-air-bearing and air-bearing. Three types of testbeds applied to
test the controllers in this book are introduced in this section.

2.8.1 Three-Axis Non-Air-Bearing Simulator

Figure 2.4 shows a three-degrees-of-freedom simulator for attitude control test-
ing. Each degree of freedom is actuated by SGMAH servomotors manufactured
by Yaskawa Electric. The encoder mounted to each servomotor is RON786C from
HEIDENHAIN, Inc. Each encoder has 3600 lines, which yields a resolution of 14400
pulses/rev after the A and B signals from the encoder have been processed by Interpo-
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Fig. 2.4 The
non-air-bearing
three-degrees-of-freedom

1
testbed . Payload where the
! micro-satellite is

mounted on

lation and Digitizing Electronics IBV 600 from HEIDENHAIN, Inc. The controller
core of the simulator is a TMS320F2812 digital signal processor that obtains position
information, calculates control algorithms, and sends control efforts to the regulated
current converter through a 12-bit digital-to-analog converter and some analog signal
processing circuits. The sampling period is 0.25 seconds. In the experimental system,
a personal computer was used to develop the control program written in C language,
to compile it, to download the resulting code into the digital signal processor for
execution, and to acquire experimental data. When carrying out tests, the considered
satellite will be mounted on the payload.

2.8.2 Single-Axis Air-Bearing Testbed

Figure 2.5 shows a single-axis air-bearing suspending rotary testbed to verify the
validity of the attitude controllers. This testbed consists of an air-bearing simulator,
a flexible beam made from a slender aluminum beam, and some measuring and
control instruments. The rigid hub and the flexible beam are suspended by air-bearing
to simulate the state of zero gravity in space. The vibrations of the flexible beam are
measured by an accelerometer installed on the tip of the beam. The rotary angle of
the table is measured by combination of an inductosyn with an angle digital display
meter. The system uses thruster and reaction wheels as actuators. The maximum
torque that can be generated by the reaction wheel is 0.15 N-m. An optical fiber
rate gyro is used to measure rotation angular velocity. In the experimental system, a
personal xPC-based computer was used to develop the control program written in C
language, to compile it, to download the resulting code into the core controller for
execution, and to acquire experimental data.
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Fig. 2.5 The single-axis attitude air-bearing testbed

2.8.3 Three-Axis Air-Bearing Testbed

Figure 2.6 shows a scaling satellite three-axis attitude dynamics and control simula-
tor. This simulator is a three-degrees-of-freedom experimental testbed for validation
of guidance, navigation, and control (GNC) schemes for satellites. It can ensure full
freedom in the yaw axis, £30 degrees in the pitch axis, and +20 degrees in the
roll axis. The simulator includes a three-axis spherical air bearing to simulate the
zero-gravity laboratory environment. Three reaction wheels are fixed on each axis,
respectively, to achieve attitude control. Six cold-gas thrusters with a compressed air
tank for thruster air supply are distributed about the simulator to provide rotational
motion around the roll, the pitch, and the yaw axis. The simulator’s center of grav-
ity is maintained by using a mass balancing platform a triad of linear actuators. In
the simulator, there are three orthogonally mounted single-axis rate gyros, a three-
axis magnetometer, and three-axis accelerator, to achieve attitude determination. At
the core of the simulator is an xPC-based control computer. The developed attitude
control system runs entirely on this computer with the hardware-in-the-loop. The
power needed by the testbed is supplied by a battery charger located off the simula-
tor. A desktop computer is also located off of the testbed. It communicates with the
computer on the simulator for data acquisition and display.
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Fig. 2.6 The three-axis
attitude air-bearing testbed

2 Preliminaries

2.9 Summary

This is a preliminary chapter. Mathematical notations, some basic definitions, and
mathematical lemmas related to nonlinear system stability were presented, which are
useful to the development and theoretical analysis of attitude control approaches to be
developed in the rest of this book. The reference frames used to represent satellite’s
attitude were introduced. The mathematical model of the satellite’s attitude control
system was then given. At last, three types of testbeds applied to test the attitude
control approaches were elaborated.
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Chapter 3 ®)
Observer-Free Output Feedback Attitude o=
Control

3.1 Introduction

Most aerospace tasks require satellites to perform large-angle attitude tracking
maneuvers [1, 2]. Many investigations on large-angle attitude controller design have
been reported to accomplish these maneuvers. The work in [3] was an earlier attempt
to achieve this objective. An adaptive attitude controller was presented. However,
modeling error was not handled; moreover, a linearized model was used, even though
this model may not fully and well characterize the satellite dynamics. A simple con-
troller demanding minimum onboard computations was presented in [4] for large
pitch-angle maneuver without considering any modeling error. To address the prob-
lem of fast and large-angle attitude control, a robust control law was developed for
flexible satellites [5]. In [6], the robust large-angle attitude control problem with
modeling error due to external disturbance and delayed control inputs was investi-
gated. In [7], a model predictive controller was designed for satellites to perform the
large-angle attitude maneuvers with input-to-state stability ensured. To the authors’
best knowledge, few studies have been seen on angular velocity observer-free atti-
tude control design for satellites with modeling error due to external disturbances
[8]. Although this was achieved in [9] with the attitude stabilized with good accuracy,
the structure of the controller was complicated.

Motivated by addressing the preceding challenges and drawbacks, this chapter
mainly focuses on designing a practical engineering approach to achieve a large-angle
attitude tracking maneuver for rigid satellites. It only requires the attitude output for
feedback. This chapter is the extension of [10]. Unlike [10], the linearization error
and the modeling error due to external disturbances are considered when presenting
the mathematical model. Moreover, experimental tests are conducted. The main
contributions of this chapter are listed as follows.

e Unlike the angular velocity observer-based attitude control strategies, the presented
control framework does not need any observer for the unmeasured angular veloc-
ity. The controller has a simple structure to achieve a large-angle attitude tracking
maneuver. In comparison with the conventional intelligent attitude control strate-
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gies such as the neural-network-based controllers and the fuzzy theory-based con-
trollers, the proposed scheme demands inexpensive onboard computations. Hence,
this approach shows more practical application potential.

e This proposed angular velocity observer-free attitude control is an improvement
over the existing observer-free attitude output feedback control schemes [11],
because the controller in this chapter is developed with modeling error induced by
external disturbance explicitly considered. Applying the result in [11], the attitude
tracking maneuver and practical stability may be accomplished in the presence
of external disturbances by providing sufficiently large control gains to dominate
the disturbance through knowledge of an upper limit. However, when the external
disturbances are considered, rigorous stability analysis is not presented in [11].
In contrast, the stability of the closed-loop system from the designed approach
is rigorously theoretically proved despite external disturbances; moreover, high
control accuracy is ensured by the synthesized velocity-free controller despite
such modeling error.

e Although the main result of this chapter is developed on the basis of the linearized
attitude system, in comparison with the Proportional-Integral-Derivative (PID)
control law for the linearized attitude system, the proposed control approach does
not ignore the linearization error. Therefore, it renders the presented scheme more
practically suitable for large-angle attitude tracking maneuvers.

3.2 Transformed Open-Loop Attitude System

In this chapter, rigid satellite is considered with its products of inertia ignored. Only
the principal moment of inertia is considered. Moreover, the attitude is represented
by the Euler angles. Then, the rigid satellite’s inertia matrix can be denoted as J =
diag([J;, J», J3]7) € R3*3. Like the conventional attitude control design in practical
engineering, a linearized vector is first introduced as

a=1[0—wy,p—w ¥+ wb]" (3.1)
Based on (3.1), one can rewrite the attitude kinematics (2.15) as
w=a+Af,(0,0) (3.2)

where A f,(9, G)) = R(@)@ — w.(0O) — a is the linearization error.

Remark 3.1 Although a linearized term (3.1) is introduced to transform the attitude
kinematics into (3.2), it is different from the traditional method [12, 13] to linearize
the attitude kinematics. That is because the linearization error, A f, is not ignored
in (3.2). The results in [12] and [ 13] were presented by assuming that the satellite has
only a small attitude deviation from the orientation of ¥ and, hence, the linearization
error A f is ignored.
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From (3.2), the attitude dynamics (2.24) of the rigid satellite can be rewritten into
an open-loop system given by

JO+MO+NO=u+us+Af,+Af; (3.3)

where N = widiag([J> — J3, 0, J» — J1]7), and

0 0
M= —wo(J1 +J3— Jr) 0 0 (3.4)
0

—1

S O =

d(Afy)

Afr=—(Af)"J@+Af)—a*JAf = T—

(3.5)

(J2 = IS + wob)
Afs=| (Js = J)OV + 0t — ooy — 030) (3.6)
(J1 — J2)pO — woty)

It can be inferred from (3.3) that A f, and A f; are induced by the linearization
error A f,. These two items explicitly appear in the transformed dynamics (3.3).
They may deteriorate the attitude control accuracy especially when the large-angle
attitude tracking maneuver is being performed. Hence, the linearization error should
be fully considered in attitude controller design.

3.3 Problem Statement

In this chapter, the environment disturbance torques are considered only in the mod-
eling error. This means that the inertia J is known. Let ®, = [6,, ¢4, YT e R3
(known, while @d and (:)d are bounded and continuous) with —% < Qg < % be the
planned attitude trajectory to be followed, given any angular velocity and the ini-
tial attitude such that —% < ¢(0) < %, the control problem can be stated as: For
rigid satellites with their attitude system described by (2.15) and (2.24), using the
attitude feedback ® only to design an observer-free controller for # to maneuver
the large-angle attitude tracking. The trajectory @, is followed with high accuracy.
—7% < ¢(t) < 7 isensured for # > 0 by choosing appropriate gains for the designed
controller. Moreover, the controller should be synthesized without angular velocity
measurements and also without any observer for the unmeasured angular velocity.
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3.4 Angular Velocity-Free Robust Controller

Let ®, = ® — O, be the attitude tracking error and ®, = © — @, be the velocity
tracking error. The modeling errors A f,, A f5, and the external disturbance u,; are
lumped as a system uncertainty d € R?, that is

d=u;+Af,+Af; (3.7)

Then, the transformed open-loop system (3.3) can be reformed as
JO+MO+NO=u+d (3.8)
To this end, the main solution to the large-angle attitude tracking problem with atti-

tude output feedback only is given in the following theorem, while the measurements
of angular velocity are not needed.

Theorem 3.1 Consider the rigid satellites with their attitude model described by
(2.15) and (2.24), let an angular velocity-free robust controller be developed as

u=—k,0, — kv, +JO; + MO, + NO (3.9)
and v, € R? is synthesized as v, = O, + kO, ,@, satisfies
Q. = —k; (O, +«0O,) (3.10)

wherek, e Ry, kg € Ry, ky € Ry, and k € R, are four scalars. If these four gains
are selected to satisfy

k, > 48217 (3.11)

ka > 483 || J | (3.12)

82k pic hanin (J) = 481 | M |)? (3.13)
kakpk 81 > dic (ka1 + k,82)° (3.14)
kak fhmin (J) = 483 (k1T || + |1 M]])? (3.15)
281k, —1>0 (3.16)

k;if — kydy — % >0 (3.17)

262K)"min(J) - 481}‘-max(1) - 4“M” -1>0 (318)
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with 6; € Ry and §; € R, being two constants such that 0 < §; < 1,0 < §, < 1,
respectively; then it follows that:
(R1): The L-gain disturbance attenuation with a level of y is achieved if d €

L£5[0, T), where y = ./ %, and

dik 1 kaky 1 Skhmin(J 1
p:min{ Mo 1 MY gy, — 1 2l 5o (D) — M| -]

; ) (3.19)
)Vmax(Dl) )\max(DZ) )\max(Dl) + )\max(DZ) }

where Dy and D, are two constants matrices given by

[ kds 28,0
D, = |:251JT J i| (3:20)
k
[ kry —28
Dz_[_%zﬂ ; } 3.21)

(R2): The tracking errors ©, and w, are uniformly ultimately bounded if d €
L[0, 00).

Remark 3.2 From (3.10) and the definition of v,, it follows that that the transfer
function between v, and ®, satisfies

v.(s) = T(5)O,(s). T(s) = % (3.22)

which implies that (3.22) is not an observer, because it does not have control input
directly acting on (3.22). Hence, it can be obtained from Theorem 3.1 that the devel-
oped control law obviates the use of any observer to the estimation of the unmeasur-
able angular velocity. The velocity-free attitude control objective with no observer
to estimate the unmeasurable velocity is achieved.

Remark 3.3 Although the linearization technique is applied to obtain the trans-
formed kinematics (3.2) and dynamics (3.3), the linearization errors A f | (wo, O, @),
Af,, and A f5 are not ignored. Hence, although the controller (3.9) is developed
based on the transformed model (3.3), it essentially considers the model uncertainties
and linearization errors for the original model (2.15) and (2.24). Based on Remark
2.2 and compared with the control law in [14], the presented scheme is efficient for
performing a large-angle attitude maneuver. That is because the controller in [14]
was synthesized by assuming a small attitude deviation. However, the controller (3.9)
inherently has a simple structure without complicate online computation. Then, it is
summarized from these two advantages that the developed control scheme is prac-
tically implementation-efficient and is suitable for satellites to perform large-angle
attitude maneuvers.



58 3 Observer-Free Output Feedback Attitude Control

3.5 Stability Proof

The Lyapunov stability theory can be applied to prove Theorem 3.1 with the proof
organized as: A candidate Lyapunov function is first defined, and then the stability
analysis is conducted.

3.5.1 Candidate Lyapunov Function

Select a candidate Lyapunov function as V = V; + V, for the model (2.15) and
(2.24), where V; and V, are defined as

1 k k
V= EwZJwe + 7”@)}@6 + ﬁvae (3.23)
Vo= (80, — 8v,)" Jw, (3.24)

It can be found that
1re.1',, 1e.1, 1fv71" v,
el Tl e
T T
o2 o] e
@, ®, (OB ®,

With the choices of the gains given in (3.11) and (3.12), D and D, are ensured to
be positive definite. Then, V > 0 always holds for the state x = [@_, vT oIt £ 0.

> Vo
Hence, V is proved to be continuously differentiable and positive definite. With
respect to the states ®,, v,, and w,, V is radically unbounded.

3.5.2 Stability Analysis

Inserting the control law (3.9) into the transformed system (3.8) leads to
JO, + Mo, = —k,0, — kv, +d (3.27)
Applying the definition of v, and (3.10), one has

Do = —k;v, + K@, (3.28)
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From (3.27) and (3.28), it yields
y Typ,: T & ka .
Vi=w,Jo, +k,0,0, + Ve be
kak
—w'd— ﬂvgve - oMo,
K
Vo= (810, — 820.) Jo + (510, — 8,0)" T,
=-61k,0!0, — k6,0 v, — 6,0 Mw, +6,0d

+ 8@3]&)6 + kpézv;r(ae + deQvae + (SszMwe
—8vld — 8(—ksv, +kw,) Jw,

Combining (3.29) with (3.30) leads to

. o1k kak
V< —L10P — (2L — kaba ) 1ve]? + 6,©]d — 8,0]d
2 2K
82K Amin (J)
- (% — 81 hmax(J) — ||M||> lw. > + . d

! [neen]Tm [n@en} _! [n@enfm[n@en]
2 Lol | 7 Ll | 2] el A
! ||we||}T [nwen}

— = D
z[nven > Lllvel

D3=[ = ;sinMu]
—5 M| K nzlin(-])

where

Sk,
L) —k; 81 — k,8
D, = 2 ‘ édkf -
—kd(sl _kp52 7
. [ b)) _az(kfn]:lkn + ||M||)}
—82 (k1T 1l + 1M1 T

Furthermore, applying Young’s inequality leads to
4510.d < @] +457|d|’
—4520.Td < [[ve||? + 453 |1d |

4old < |w|* +41d|?
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(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
(3.36)

(3.37)
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The matrices D3, D4, and Ds are also ensured to be positive definite due to the
gains choices in (3.13)—(3.15). Then, (3.31) can be simplified as follows by inserting
(3.35)-(3.37)

. Sik, 1 kak 1
V< (22— )02 — (L —kads — = ) v
2 4 2k 4

Satchmin (] | 338
_ (Zkf() S e () — | M Z) PG (3:38)

+ (&7 +8 + Dld)?
In addition, the following can be obtained from (3.26).

V < hmax (DD O + Cmax (D1) + Aemax (D2)) [0 [P + Amax (D) |01 (3.39)
Because all the control gains are chosen to satisfy (3.16)—(3.18), it follows from
(3.19) and (3.39) that

V < —pllx|® + 8] + 83 + D] (3.40)

Based on the preceding analysis, it can be established by the following.
(1) Ifd € £,[0, T), integrating (3.40) from ¢t = 0to ¢t = T yields

T T V O T
f 10,1121 < / IxPdr < %wz / \d|Pd: (3.41)
0 0 0

Then, using Definition 2.4, (3.41) shows that the closed-loop attitude system is sta-
bilized with £,-gain disturbance attenuation level of y from the lumped system
uncertainty d to the tracking errors @, and w,.

(2) In the case of d € L [0, 00), there will have a positive scalar dy,.x € R, such
that ||d|| < dmax- Then, it can be found that (3.40) will be further bounded by

V < —plix|® + (87 + 8 + d;

max

(3.42)

Hence, one has V < 0 when x is outside of the ball 8B, (0), where ¢ = dmaxy - That is
to say, V will decrease monotonically when the state x is not within the ball B, (0).
Then, all the signals in the closed-loop system are ensured to be bounded. More
specifically, there is a scalar Ty € R such that |®,| < e, ||v.]| < ¢, and ||@.| < &
for t > Ty. Using Definition 2.1, ®, and @, are proved to be uniformly ultimately
bounded stable.
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3.5.3 Discussions

For any on-orbital satellite, the external disturbances acting on it are bounded
practically. Otherwise, the satellite will be out of control. Hence, it should have
uy; € L]0, 00) at least. In addition, the attitude stabilization maneuver is usually
performed before the attitude tracking maneuvering in practice. When the attitude
stabilization maneuver is finished, the attitude and the rotation velocity (6‘, é, and

IL) are stabilized with small deviation, that is, =5 <6 < 3, =5 < ¢ < 5 and

—% < ¥ < 5 are achieved. Then, the satellite is at least w1tlf 0 e L0, oc?) and
Oc Lo[0, 00) after attitude stabilization maneuvering. Meanwhile, it is seen from
the definition of A f, that A f is a function of variables ® and ©. Hence, one has
Af, € L[0, 00) because J is also bounded. Moreover, it can be obtained from
(3.5) and (3.6) that A f, and A f'; are two functions of the attitude angle ©, the rota-
tion velocity O, and the attitude acceleration @, which also belongs to L[0, oo) for
any on-orbital satellite; otherwise, the satellite’s attitude will be uncontrollable. To
this end, it follows that A f, € L]0, 00) and A f; € L[0, 0o0). Based on these
analyses, d € L[0, oo) can be obtained from (3.7). Therefore, applying (R2) in
Theorem 3.1 can conclude that the closed-loop system ensured by the controller
(3.9) is at least uniformly ultimately bounded stable.

Itis seen from (3.41) that whend € £,[0, T), the external disturbance attenuation
capability can be improved by choosing appropriate gains to ensure a smaller value
for y. In the case of d € L,[0, 00), it is known from (3.42) that the control accuracy
depends on y. Smaller y ensures better attitude tracking accuracy. Hence, from the
definition of y and Theorem 3.1, the following procedures can be followed to select
the control gains.

e Step #1: Calculate Apin (J), Amax(J), |M ]|, and || J||.

e Step #2: Select small values for 6; and §, such that 0 <, < 1and 0 < §, < 1.
Smaller §; and §, will accordingly lead to a smaller y.

e Step #3: Choose a positive gain « with (3.18) satisfied.

o Step #4: Select the gain k), by satisfying (3.11), (3.13), and (3.16).

o Step #5: Choose positive control gains k; and k¢ satisfying (3.12), (3.14), (3.15),
and (3.17).

o Step #6: Based on Step #3—#5, tune k,, k4, «, and k ; to have a smaller y until the
requirements imposed by the aerospace tasks on the attitude tracking accuracy is
met.

3.6 Simulation Results

Having proved in Sect. 3.5 that, the developed tracking control framework is capable
of maneuvering the large-angle attitude with good control performance, this section
will apply a currently being developed satellite example to validate this effectiveness.
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This satellite has a circular orbit with its altitude 650 km. The inclination of the
satellite’s orbit is 92.5 degrees. In accordance, the orbital rate of this satellite is
wo = 0.0011 rad/s. The satellite’s inertia is J; = 50 kg~m2, J =45 kg~m2, and
J3 = 55 kg-m?. The maximum torques generated by the actuators in the roll, pitch,
and yaw axis, are 0.1 N-m, 0.1 N-m, and 0.1 N-m, respectively.

One on-orbital task of this satellite is to take high-resolution images of some hot
districts by using its payload, that is, camera. This task requires the satellite attitude
control system to follow a desired attitude trajectory planned as

—40sin(0.05t — %)
O, = [04, ¢a, val" = | 60cos(0.02t — I) | degrees (3.43)
405sin(0.017 — %)

To validate the superior attitude tracking control performance of the designed
controller with angular velocity measurement obviated, the following two cases of
external disturbances are considered.

e Case #1: A practical disturbance for any on-orbital satellite is considered. The
external disturbance u, consists of the earth magnetic torque u;,, the gravity
gradient torque u4,, the solar radiation torque u,4,, and the aerodynamic torque
Ugq,thatis, ug = g = ugg + ugq + gy + ugs. These four torques are calculated
as in [12]. According to the orbital and the physical parameters of the satellite,
it is obtained from [12] that u,; and the lumped disturbance d are such that u,; €
L5[0,T)andd € £,[0,T) forall T > 0.

e Case #2: A severe disturbance is assumed with uy; = [—0.01, — 0.005, 0.01]T
N-m. Then, one has uy € L,[0, 00) andd € L]0, oo) from the analysis in Sect.
3.5.

When conducting all simulations, the control gains are chosen according to the
steps in Sect. 3.5 by trial-and-error until the expected attitude pointing accuracy
and attitude stability were achieved, and they are finally selected as: §; = 0.5,
8, =0.5, k, =300, kg = 1500, ky = 8, and « = 4. The satellite’s initial states are
O(0) = [4, — 4, 2]T degrees and w(0) = [0.18, 0.22, — 0.22]T deg/s or @(0) =
[0.2,0.3, —0.2]T deg’s.

3.6.1 Results of Case #1

When the angular velocity-free robust controller (3.9) is applied for case #1, the
resulting error of the attitude tracking is presented in Fig. 3.1. The tracking error
0, = [6,, ¢., V.]" of the attitude is stabilized after about 160's. Althou gh the satellite
considered is not capable of measuring the angular velocity, the velocity tracking error
in this case is still shown. This is seen in Fig. 3.2. Almost the same as the attitude
tracking error, it requires 160s to stabilize the velocity tracking error. The control
torque consumed to provide the satellite with such tracking performance is illustrated
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in Fig. 3.3. The steady-state behavior of the state’s tracking error is observed with
the solid line in Figs. 3.4 and 3.5, respectively. The attitude tracking errors in the
roll, the pitch, and the yaw axis are seen to be |6,] < 3.0 x 1073 degrees, |¢.| <
2.0 x 107> degrees, and || < 3.0 x 107 degrees. The velocity tracking error w, =
[@e1, Wea, @e3]T is With |wei| < 2.0 x 1077 deg/s, i = 1,2, 3. These results verify
that the designed scheme can provide the attitude tracking maneuver with high control
accuracy. The desired task is accomplished after about 160s.

Because the disturbance considered in this case is such that u; € £,[0, T) and
d € £,[0, T) for the time T > 0, as proved in Theorem 3.1, the proposed controller
should achieve a level y of £;-gain disturbance attenuation from the lumped distur-
bance to the tracking errors. It follows that y = 0.2453 from the proof of Theorem
3.1 by using the given gains of the satellite’s physical parameters and the controller.
To validate this, the other three simulations are further done with the external distur-
bance u, equaling to 4u,, 7Tu,, and 10u,, where u; = uy,. The initial behavior of
the attitude tracking error and the velocity tracking error in the presence of 4u,, 7uy,
and 10u, are almost the same as the results in case of u; = us. There is a difference
in converging time only. The steady-state behavior of ®, and ®, in the presence of
4uy, Tuy, and 10u 4, are shown in Figs. 3.4 and 3.5, respectively. Through numerical
calculation, x € B,(0) was well verified when the external disturbance u,; was equal
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Fig. 3.5 The steady-state behavior of the angular velocity tracking error ensured by the controller
(3.9) for uy, 4uy, 7Tugy, and 10u, in Case #1

to uy, 4uy, Tuy, and 10u,. The corresponding control effort in case of uy;, 4uy,
Tuy and 10u, can be seen in Fig.3.6. Their steady-state behavior shows that only
minor differences exist in the control torque. This is induced by the different attitude
and angular velocity tracking errors. The conclusion (R1) in Theorem 3.1 is well
validated.

3.6.2 Results of Case #2

For case #2, when the developed control scheme is implemented in the satellite, it
can be found from Figs. 3.7 and 3.8 that although the satellite is under the effect
of severe external disturbance and without any angular velocity measurements for
feedback, the planned attitude maneuvering is still accomplished. It is seen in Fig.
3.7a that the desired trajectory can be tracked after 160s. Moreover, it is seen in
Fig. 3.7b that the tracking control accuracy of the attitude is |6,| < 0.00190 degrees,
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Fig. 3.7 The attitude tracking error ensured by the controller (3.9) in Case #2
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Fig. 3.8 The angular velocity tracking error from the controller (3.9) in Case #2

|pe| < 0.00095 degrees, and || < 0.00190 degrees. The steady-state behavior in
Fig. 3.8b shows that the velocity tracking error . is subject to |w,;| < 5.0 x 107
deg/s, i = 1,2, 3. The achieved high attitude-pointing accuracy is promising. The
stringent requirement demanded by the onboard camera can also be satisfied in order
for the camera to work properly. The planned task can thus be accomplished despite
severe disturbance. The result (R2) in Theorem 3.1 is verified.

3.6.3 Quantitative Analysis

To quantitatively evaluate the proposed angular velocity observer-free tracking con-
trol (AVOFTC), the attitude pointing accuracy and the attitude stability are used as
two performance indexes. The resulting tracking performance from AVOFTC for
case #1 and case #2 are listed in Tables 3.1 and 3.2. Moreover, in comparison with
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Table 3.1 The attitude control accuracy comparison between AVOFTC and UQFTC

Simulation scenarios Controller Attitude pointing accuracy (deg)
16| [Pe [Vel
Case #1 Uy AVOFTC 2.2x1073 1.7x1073 2.51x1073
UQFTC 0.05 0.03 0.07
Ay AVOFTC 9.0x107° 7.0%x107° 1.05x10~4
UQFTC 0.06 0.09 0.08
Tuw AVOFTC 1.8x10~* 1.1x10~* 1.7x10~%
UQFTC 0.1 0.1 2.3%107°
10u4 AVOFTC 2.6x107° 1.6x10~* 2.55x107*
UQFTC 0.12 0.10 0.12
Case #2 AVOFTC 0.0019 9.5%x10~* 0.0019
UQFTC 0.2 0.15 0.3
Table 3.2 The attitude stability comparison between AVOFTC and UQFTC
Simulation scenarios Controller Attitude stability (deg/s)
|we1 | |we2 | |we3|
Case #1 Uy AVOFTC 145%x10~7 | 7.0x1078 8.0x1078
UQFTC 1.25x1077 | 6.0x1078 7.2x1078
Auy AVOFTC 6.0x10~7 2.8x10~7 3.4x1077
UQFTC 7.5%x1077 42x1077 3.1x1077
Tu AVOFTC 1.1x107° 3.2x1077 5.9%10~7
UQFTC 2.6x1077 6.4x10~7
10u# AVOFTC 1.5x107° 6.0x10~7 7.2x1077
UQFTC 4.8x107° 5.7x1077 9.8x10~7
Case #2 AVOFTC 3.6x107° 8.0x1077 2.2x1077
UQFTC 6.7x107° 7.4x1077 5.9x1077

the unit-quaternion feedback tracking control (UQFTC) presented in [11] is carried
out. It is seen in Tables 3.1 and 3.2 that, a desirable attitude-pointing accuracy is
ensured by AVOFTC for any case of external disturbance, and the corresponding
attitude stability is very high. Although the UQFTC control is implemented without
angular velocity measurements, its tracking performance is not accepted. That is
because UQFTC is not capable of handling external disturbance.

3.7 Experimental Tests

In this section, the practical application of the designed angular velocity observer-free
control approach will be verified on the testbed shown in Fig. 2.6. When conducting
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all ex.perimental tests, the testbed’s initial states are set at @(0) = [0, 0, 0]T degrees
and @(0) = [0, 0, 0]T deg/s. The desired attitude is planned as follows

—20sin(0.05¢ — %)
Oy = [04, b0, Yal" = | 10c0s(0.02r — Z) | degrees (3.44)
10sin(0.017 — %)

The inertia matrix and the maximum control torque of this testbed and the
microsatellite in Sect. 3.6 are almost the same. When conducting experimental tests,
only the planned trajectory (3.44) has a difference in the magnitude when compared
with the desired trajectory (3.43) in simulation. In fact, due to mechanical limits, the
test-bed cannot provide 60 degrees attitude maneuver in the pitch axis and +40
degrees attitude maneuver in the roll axis as given in (3.43).

3.7.1 Experimental Test #1

In this test, only the reaction wheels ran, while the thrusters were not commanded to
operate. This test aims to validate the capability of the presented framework to handle
the external disturbance u,; = ug; in case #1. This disturbance was numerically
introduced and injected into the attitude control system. Once the torque u was
determined from the controller, # + ux; was then calculated and sent to the controller
of reaction wheels. By this, the external disturbance in case #1 was simulated in this
simulator.

With the developed controller applied to carry out this test, the obtained attitude
tracking result was observed in Fig. 3.9. The desired trajectory (3.44) was success-
fully followed. The error of the angular velocity tracking resulting from the controller
was illustrated in Fig. 3.10. The torque demanded to achieve that control perfor-
mance was shown in Fig. 3.11. The proposed controller ensured the attitude tracking
accuracy to be |6,| < 0.0310 degrees, |¢.| < 0.0233 degrees, and |,| < 0.0222
degrees. The ensured attitude stability or the angular tracking accuracy was such
that |w.1| < 0.0027927 deg/s, |we2| < 0.0035262 deg/s, and |w.3| < 0.023132 deg/s.
These results verified the controller’s effectiveness in ensuring £,-gain disturbance
attenuation.

3.7.2 Experimental Test #2

To experimentally verify the capability of the designed tracking control approach
to tackle with bounded external disturbance considered in case #2, another test was
carried out. In this test, as the same as Test #1, reaction wheels operated as the actuator
for the simulator. However, six thrusters ran and randomly generated a constant but
unknown minor torque in each axis. This torque acted on the simulator as an external
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disturbance. Although the magnitude of this disturbance torque was not the same as
the values in case #2, their disturbance types are the same, that is, both belong to
L[0, 00).

After finishing Test #2, the data of the errors of the attitude tracking and the
angular velocity tracking acquired were shown in Figs. 3.12 and 3.13, respectively;
while the consumed control effort was illustrated in Fig. 3.14. From Figs. 3.12 and
3.13, it was seen that the planned tracking maneuver was accomplished via the pro-
posed output feedback controller. The desired trajectory (3.44) was successfully fol-
lowed after about 180 s with the attitude tracking accuracy satisfying |6, | < 0.090332
degrees, |¢.| < 0.16441 degrees, and || < 0.20480 degrees. Moreover, the con-
troller governed the velocity tracking accuracy such that |w.;| < 0.055838 deg/s,
|wez| < 0.018145 deg/s, and |w,3]| < 0.12923 deg/s. The tracking errors of the satel-
lite states were ensured to be uniformly ultimately bounded despite the external
disturbance generated by thrusters in this test. The conclusion (R2) in Theorem 3.1
is thus experimentally validated.
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3.7.3 Quantitative Analysis

From the experimental results of Tests #1 and #2 and comparing them with the
simulation results in Sect. 3.6, although there are discrepancies in the tracking per-
formance between the experimental results and the simulation results, the designed
controller’s performance was experimentally validated. In addition, that discrepancy
is owing to that the accuracy of attitude measurement sensors used on the testbed is
not as high as the accuracy in simulation; actually, an ideal attitude measurement,
that is., the attitude can be perfectly measured without sensor noise, etc, is assumed
in Sect. 3.6. On the other hand, for the experimental Tests #1 and #2, the achieved
attitude pointing accuracy is both superior to 0.05 degrees. The requirement on the
attitude pointing accuracy imposed by the planned task is satisfied. However, the
resulting angular velocity tracking accuracy in Test #1 and #2 are both inferior to
0.001 deg/s. This is owing to sensor noises and environmental noise on the ground.
In ground tests, it is hard and even impossible to achieve the attitude stability of
0.001 deg/s.

Moreover, Test #1 and Test #2 were further carried out by using the UQFTC. The
resulting attitude tracking accuracy and the velocity tracking accuracy of test #1 were
|6.] = 0.52 degrees, |¢.| = 0.76 degrees, || = 1.04 degrees, and |w,;| < 0.432
deg/s, i = 1,2, 3. For Test #2, the tracking control accuracy of the attitude and the
angular velocity were |0,| = 2.5146 degrees, |¢.| = 3.0973 degrees, || = 5.3650
degrees, and |w,;| < 2.7221 deg/s, i = 1, 2, 3. This experimental attitude tracking
performance was inferior to the performance ensured by the proposed approach.

From the above results, the practical application potential of the presented
observer-free robust attitude control has been verified.
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3.8 Summary

The difficult problem of large-angle attitude tracking control for satellites without
angular velocity measurements was addressed. An efficient and practical angular
velocity-free control strategy with a simple, yet efficient structure was proposed.
The attitude tracking maneuver was accomplished with the desired attitude pointing
accuracy ensured despite the modeling error due to external disturbances. Compared
with the existing observer-based velocity-free schemes, no observer was embedded
into the control scheme. The developed approach can be implemented online and in
real-time. It does not require expensive online computation, enabling its convenient
application to practical large-angle attitude tracking maneuvers.
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Chapter 4 ®
Velocity-Free Attitude Control e
with Actuator Constraint

4.1 Introduction

In addition to the interest in ensuring attitude control with high performance based
on “velocity-free” output feedback, there is a practical motivation in introducing
control input constraints nested into the closed loop. From the viewpoint of control
law design, due to physical limitations, momentum exchange devices and/or thrusters
as actuators for the satellite attitude control fail to render infinite control torque, and
thus the actuator outputs are constantly bounded or constrained. Once the actuator
reaches its constraints, the efforts to further increase the actuator output would not
result in any variation in the output, and then this usually deteriorates the system
performance or even results in system instability. Hence, it is very necessary to take
actuator constraints into account during attitude controller design.

In the past decades, the actuator constraint problem has received more and more
attention [1-7]. For the linear system, predictive control [8] and optimal control [9]
have been applied to treat with actuator constraints problem. However, the control
system must be determined prior and no disturbances are considered. The problem of
input constraints for aerospace application was considered in [10]. An anti-windup
control scheme has been proposed for the large angel attitude control of satellites
with actuator constraint. In [11], a back-stepping technique was applied to the non-
linear flight system in the absence of input constraint first, and then a command
filter was employed to compensate for the effect of the control signal rate constraint.
In [12], a robust variable structure controller was designed to control the satellite
attitude under actuator constraint. However, its control scheme lacks generality to
the nonlinear systems.

Note that few results in satellite attitude control without angular velocity mea-
surement in the presence of modeling error and actuator constraint were seen in the
literature. With a view to tackle this challenge, this chapter focuses on developing
a structure-simple control scheme that can achieve attitude tracking or stabilization
with high performance even in the presence of uncertainties, disturbances, actuator
constraints, and the unavailability of angular velocity. The resulting closed-loop sys-
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tem is proved to be uniformly ultimate bounded stable. To the best of our knowledge,
there are few works with all these issues considered simultaneously in the literature.

4.2 Attitude Uniformly Ultimately Bounded Control

In this section, the satellite considered is flexible. The task to be accomplished is
the attitude tracking maneuver. Moreover, the attitude kinematics (2.19)—(2.20) and
the attitude dynamics (2.25)—(2.26) are used to describe the flexible satellite attitude
control system.

4.2.1 Flexible Satellite Attitude Tracking System

Let the unit quaternion Q, = [qa0, ¢7] € R*, ¢, = [qa1, qa2, qa3]T € R?, denote the
desired attitude of the satellite and described in a desired frame ¥, with respect to the
Earth-centered inertial frame F;. @y = [wa1, @42, wa3]" € R is the desired angular
velocity. Then, the desired attitude Q, satisfies the following kinematics:

S

q, = E(qd + gaol3)wy 4.1)
) I
qa0 = =544 @d 4.2)

Define Q, = [ge0, ¢ 1" € R, g, = [e1, g2, 931" as the attitude tracking error
between the satellite’s actual attitude Q and the desired attitude Q,, then one has
0,= Q;' ® 0O, where ®” denotes the quaternion multiplication. According to [13]
and the attitude kinematics (2.19)—(2.20), it follows that the kinematics of the attitude
tracking error Q, satisfies

. | SO
q.= E(qg + geol3) @, 4.3)
. I 5
G =540 (“44)
where
w,=w—R(0,)w, 4.5)

denotes the angular velocity tracking error, and R(Q,) € R**3 denotes the rotation
matrix that brings ¥p onto ¥, i.e.,
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R(Q,) = (g% —q )15 + 29,47 — 2q.0q (4.6)

From the attitude dynamics (2.25)—(2.26) and (4.5), the attitude tracking error
dynamics can be obtained as

Jo. + (@ + R(Q,)ws)" J (@ + R(Q,)ws) — Jo, R(Q,)wq

4.7
+ JR(Q,)®q + (w. + R(Q)wa) 87 + 8ij) = u +uy @7

Based on the preceding analysis, when the unit quaternion is adopted to represent
the attitude of the flexible satellite, then its attitude tracking system can be mathe-
matically modeled by (4.3), (4.4), and (4.7).

4.2.2 Problem Formulation

In practice, the control torque u generated by all the actuators is constrained and
bounded. Suppose that it is bounded by a known constant u,,x € Ry, i.e.,

|l/l,'| < Mmami = 172’ 3 (48)

Moreover, only the environmental disturbance torque is considered in the modeling
error in this section. Then, u, in (4.7) is bounded by a positive but unknown constant

deRy,i=1,2,3,1ie, )
lugi| < d; 4.9)
To this end, the control objective in this section can be stated as: Consider the
attitude tracking system described by (4.3), (4.4), and (4.7), design a velocity-free
control law u to accomplish the attitude tracking maneuver with the tracking error

0, governed to be as small as possible even in the presence of the modeling error
satisfying (4.9) and the actuator constraint (4.8).

4.2.3 Transformed Attitude Tracking System

Let F = (0.5(q) + geoI3))”", then it can be obtained from (4.3) and (4.7) that
JG,+ Fq+ M*"+E"=u*+d* (4.10)

where u* = [uf, u, u$]" = F'u,d* = [d}, d;,d}]" = F'uy, J* = F'JF, F* =
—J'F'F - F'(JFQ,*F, E* = FT((R(Q,)®,)” 8 + §i), and
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M*=F"(Fq,)"JR(Q,)0q + F'(R(Q,)00)“ JFq,
+ F'(R(Q)00)* JR(Q,)0q + F'(Fg,)" 80 (4.11)
— F'J((F§,)*R(Q,)0q — R(Q,)64)
Remark 4.1 To avoid the singularity of F that will occur at g.o = 0, let the attitude

error of the satellite be restricted in the workspace ‘W [14], then the attitude tracking
model (4.3), (4.4), and (4.7) can be rewritten into (4.10).

W={F:||qe||<em<1,qeoz,/1—e,%1>0} (4.12)

Property 4.1 Ifeach element u} ofu* is bounded by tl . =
i = 1,2, 3, then the actuator constraint (4.8) can be met.

2 . * ~
3 Umax, L.€., |I/tl- | < Umax,

Proof 1f |u?| < limay is satisfied, then it follows from u* = FTu that

u—(FT)_'u*—l(X—i— I)u 4.13
= =5 qeol3) u (4.13)

Applying |g.;| < 1,j =0,1,2,3, leads to
3_
Eumax = Umax (414)

Thereby, the conclusion in Property 4.1 is proved. ([

Property 4.2 The lumped disturbance d* is bounded. More specifically, one has
df| <8;,i=1,2,3 (4.15)

where §; € Ry is an unknown constant.
Property 4.3 J* = F'JF is symmetric and positive-definite.

Property 4.4 The matrix J —2F*is skew-symmetric [15], where J" is the time-
derivative of J*.

4.2.4 Command Filter

To achieve the control objective without the measurements of the angular velocity, a
pseudo velocity filter [7] is first introduced and given by

ar = [ar, ap, ar3]' = —Kpq, + vp (4.16)
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where
i)p=—(LF+KF)UF+(K%U+KFLF—KF)qe (4.17)

with LF = diag([llp, le, l3F]T), and KF = diag([klp, kzp, k3F]T). l,’F € R+ and

k;r > 1 are constants chosen by the designer, i = 1, 2, 3.
Define a filtered tracking error as

re=4q,+q,+aor (4.18)
In view of (4.16), it follows that
ap =—Lpap — Kpryg (4.19)
From (4.16), the time-derivative of (4.18) can be obtained as
rr=§4,+q,+ar=§4,+rr—q,— I3+ Lp)ay — Kprr (4.20)
Multiplying both side of (4.20) by J* yields
Jip=—Frr+d +u* — (Kr—I3)J'rr — E*+op (4.21)
where ¢ denotes the lumped modeling error and given by

op=-M"+F(q,+ar)—Jq —(Lr+13)J"ar (4.22)

Remark 4.2 Although the second time-derivative of ¢, is involved in (4.20), it is just
applied to derive the final attitude tracking model (4.21). In the subsequent controller
design, ¢, will not be involved.

4.2.5 Velocity-Free Neural Network Controller

Due to the advantages of neural network for approximating unknown system dynam-
ics and its powerful representation capabilities for nonlinear function [16], the single
layer neural network approximation technique is applied to represent the uncertainty
¢ . Then, ¢ can be viewed as the output of the single neural network given by

0r=W'X(q, 44 42 (4.23)

where X(q,, G4, 44) = [X1, X2, ..., X,]T € R" is the bias function of the neural
network and W € R”" is its weight.

Let ¢} be the optimal function approximation using an ideal neural network
approximator, then one has
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or =05 +er =W)X +ep (4.24)

where W* is the optimal approximation weight, and e  denotes the approximation
error and is supposed to be bounded by |e | < €} , in which ¢} € R is a positive
constant. Because the optimal weight needed for the best approximation of the ¢
is difficult to determine, its estimate function can be defined as

R e AT
Or = [9r1, Pr2, r3]T =W X (4.25)

where W € R” is the estimate of W*.
Suppose that d* and E* are considered as the lumped disturbances for the attitude
tracking error system, then (4.21) can be transformed into

Jip=—Frp+d +u" —(Lr —13)J'rr + ¢ (4.26)

where d* = d* — E*.

Remark 4.3 For practical flexible satellite attitude tracking control, there always
exists damping, even small, in the flexible structures, such that the magnitudes of
elastic vibration and its rate are bounded. Hence, E* is bounded. Moreover, the neural
network reconstruction error € r and the disturbance d* are bounded in the tracking
error system. Therefore, d* + & is always bounded for all the time, i.e.,

[ld* +erl| < em 4.27)

where ¢,,; € R, is a positive constant.

Theorem 4.1 Consider the flexible satellite attitude tracking control system modeled
by (4.3), (4.4), and (4.7), let a velocity-free neural network controller be developed
asu = (FY)~'u* with

u* = Kptanh(Arap) — @p (4.28)

where @ - is determined by (4.25) and its weight w updated by

t
W =yr / (XqT(0) + Xa(0) — XqT(0)de + yrXq"
0 (4.29)

t
- nm/ s [ W (O
0

where Ap € Ry, yr € Ry, and g € Ry are positive control gains. Then, the uni-
form ultimate bounded stability of the filtered tracking error rp is achieved. The
actuator constraints is satisfied by choosing appropriate K r.

Proof Applying (4.29), one has

A

W =y XrL — npyr llap| W (4.30)



4.2 Attitude Uniformly Ultimately Bounded Control 81

Consider a candidate Lyapunov function as

~ T ~

1 W W
V) = Er}J*rF + S + (vIn(cosh(rrar))) T3/ In(cosh(hrar)) (4.31)
F

where W = W* — W and Ty = diag([Ap, A, Ar]T).
From (4.26), one can obtain that

. 1 x 1 ~1~
Vi=rpJip+srpd re———W'W
2 VF
diag(tanh(A A
+ (vIn(cosh(pa )T i i
2/In(cosh(Arar)) (4.32)

1 .
=rﬁ—Fﬂw+wﬁ—wKF—IgJWF+4*+¢F%r7$J3F
1

——W TW + &}tanh()»pocF)
YF

Substituting (4.28) into (4.32) yields

. ~ T
Vi=rp(Kptanh(Arap) + W X +er — (Kp — I3) J*rp +d¥)
1 ~T12x T
- — W+ aFtanh(kFaF)
vF (4.33)

= — o} Lrtanh(hrar) +ri(er +d*) —r(Kp — I3) Jrp
~ T A
+rrllap|W W
Note that T L . T~ .
WW=W W'-W)<-W W4 |[|W]||[|W¥

Lot 1, 0 (4.34)
=W w4 |w

Additionally, the optimal approximation weight W* is bounded by a known positive
constant e, € R4, i.e., %H w* H2 < e,2. Then, it follows

Vi = —alLrtanh(\pap) +rh(ep +d*) —re(Kr — I3) J'rr
~ T A
+ 7 llap| W W
< — Lpin et || Itanhhpa ) || + et 17 Fll = LlP £ 1> + Trems llar|l

= — llepll Umin [tanh(Apap) | — wpem2) — lrpll Cllrell — emn)

(4.35)

where [ i, = 11111?3 Lirandl = dAyin (K — I3)J7¥). Itis seen from (4.35) that Vl <

0 when [e]., r.]T are outside the set
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Arell < — (4.36)

TEen, em
Sl={([o&,r}ﬂ:||tanh(AFocF)||< Fom2 1}
lmin L

which is a small set containing the origin [ot;, rop]T = 0. Hence, applying Definition
2.1 can prove that the filtered tracking error is uniformly ultimately bounded stable
with
lim ||rp|| € Sy, lim ||ar|| € S (4.37)
t—>00 t—>00

This implies that larger /.,;, and [ or smaller m will yield better attitude tracking
control performance. This completes the proof. (|

Remark 4.4 With the pseudo velocity filter (4.16), it is seen that the control law
(4.28) and the updating law (4.29) are independent of the measurement of the angu-
lar velocity. Hence, the developed controller does not rely on the angular velocity
measurement.

Remark 4.5 From the updating law (4.29), it can be assumed that |¢3p,~| < Xri,
i =1, 2, 3. Hence, if k; p are selected appropriately to satisfy k; g < Umax — X Fi» then
|uf| < kip|tanh(Apo;)| + |@Fil < kir + XFi<iin, can be got from (4.28). Therefore,
actuator constraints are satisfied.

4.2.6 Numerical Example

To verify the effectiveness of the proposed control scheme, numerical simulation is
carried out by using the flexible satellite system in (2.19)—(2.20) and (2.25)—(2.26)
in conjunction with the controller (4.28). The physical parameters of this satellite
are given by upm,x = 5 N-m and

607.4 —154 —-0.9
J=|-1541560.8 254 |kg-m? (4.38)
—-09 254 1462.3

6.45637 1.27814 2.15629 1
d = | —1.25819 091756 —1.67264 | kg2 - m (4.39)
1.11687 2.48901 —0.83674

Three elastic modes (i.e., N = 3) are considered with natural frequencies A; =
0.7681, A, = 1.1038, A3 = 1.8733 rad/s and damping E; = 0.003, E, = 0.003
as well as E3 = 0.003. The desired attitude trajectory is planned as q,(t) =
% [74/2, c0s(0.57), sin(0.57)]". The external disturbance torque acting on the flexible
satellite is chosen from [17]

ug = (|@||* + 0.5)[sin 0.8, cos0.5¢, cos0.3r]" N - m (4.40)
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Table4.1 The performance comparisons for the controller (4.28), ANOFC, and PID+Anti-windup
control

Control scheme Maximum value Settling time Settling time
of vibration of vibration (s) of tracking (s)

The controller (4.28) | 0.6 80 75

PID+Anti-windup 0.3 800 1000

control

ANOFC [18] 0.005 150 300

To implement the neural network controller (4.28), the control gains are chosen
as yp =25, mp =0.15, Ap =75, l;F = 10, and k;r = 45, i = 1, 2, 3. Moreover,
X in (4.28) are chosen as Gaussian-type functions [19]:

2
lx =l

Xizexp< £—2>,i=1,2,...,n “4.41)

where x = [¢7, 47, 431", ¢; = V/15, n =10, and ¢; denotes the vector having
the same dimension as x with its element randomly chosen between —1 and
1. In the simulation, the initial attitude of the flexible satellite is set as q(0) =
[0.2, —0.15,0.3571]". The initial angular velocity is supposed to be @(0) =
[0.28, — 0.138, 0.138]" rad/s. The initial modal displacements are 7;(0) = 0.001
and 7;(0) = 0.0005,i =1, 2, 3.

When the neural network controller (4.28) is applied, the attitude tracking maneu-
ver is successfully accomplished. The attitude tracking error and angular velocity
error signals will converge to zero in around 75s. The control torque of each axis
in this case is less than the required maximum bound. No terrible elastic oscillation
is induced. When using the PID controller for the attitude tracking maneuver with
the actuator constraints considered, to compensate for the effect of actuator satura-
tion, the so-called anti-windup approach [10] is introduced to the PID. Under the
action of PID plus anti-windup control, it almost takes 1000 s to achieve the objective
of attitude tracking after the occurrence of actuator constraints. In addition, when
the PID and the anti-windup control are applied, its control performance is much
worse than our proposed control. For the purpose of further comparison, the atti-
tude tracking maneuver is also accomplished by using the adaptive nonlinear output
feedback control (ANOFC) with quaternion measurement only as designed in [20].
The simulation results show that no severe vibration is observed from the ANOFC,
the tracking objective can only be achieved after 300 s. The bad control performance
is observed in comparison with our proposed controller (4.28). However, the track-
ing performance obtained from the ANOFC is better than the PID plus anti-windup
control. Further, extensive simulations were also done using different control param-
eters and even disturbance inputs. The overall results on maximum control torque,
maximum vibration displacement and settling time of vibration and tracking are also
summarized in Table 4.1.
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4.3 [,-gain Disturbance Attenuation Attitude Control

In this section, the satellite considered is rigid with the attitude represented by the
modified Rodrigues parameters. The task to be accomplished is the attitude stabiliza-
tion maneuver. Moreover, the attitude kinematics (2.21) and the attitude dynamics
(2.24) are used to describe the rigid satellite attitude control system.

Introducing P = G~ !(0), then the kinematics (2.21) and the attitude dynamics
(2.24) can be combined to form second-order nonlinear equation

J* ()6 +C(0,6)6 = PT(o)u+ P"(0)uy (4.42)

where J*(o6) = PTJP and C(0,6) = —PT(JPG + (JP6)*)P.
The transformed attitude control system (4.42) is characterized by the following
three properties.

Property 4.5 The matrix J* (o) is positive-definite and bounded by two constants
Jmin € Ry and Jnax € Ry such that

Juin X[ < X" J*(0)% < Jmax||X 1%, VX € R, Vo € R® (4.43)

Property 4.6 The matrix J *(a) —2C (0, 0) is skew-symmetric, i.e., for given vec-
tors x € R3, o € R3, one has

xT(J7(0) —2C(0,6)x =0 (4.44)

Property 4.7 The matrix C(o, 6) is bounded with respect to o and linear with
respect to 6. There exists a positive constant Cpax € Ry satisfying [21]

IC(@,6)]l < Crax 6], Vo € R? (4.45)

4.3.1 Problem Statement

The control objective is to find a control law u to guarantee that the attitude o con-
verges to an arbitrary small set, i.e., ||o ()| < &y for > T and external disturbance
attenuation is ensured in the £, gain sense. Moreover, this objective is achieved even
in the presence of no angular velocity measurements, actuator constraint (4.8), i.e.,
lu;| < umax, i = 1,2, 3, where upmax € Ry is a positive constant decided by actuator
physical property, and the modeling error induced by uncertain inertia as well as
external disturbances.
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4.3.2 Velocity-Free Filter

Since direct or accurate measurements of satellite angular velocity may be unavail-
able, a passivity filter is first introduced and defined by

p=-hp+liho (4.46)

where p = [p1, p2, p3]" € R3 can be viewed as an estimate of w. /; € Ry and [, €
R, are two positive filter gains.
The output of the filter (4.46) is given by

or=los,0m,0i3]' =p—ho (4.47)
Then, it follow from (4.46) and (4.47) that

d'f = p — 120' = —llaf — 120' (448)

4.3.3 L3-gain Disturbance Attenuation Controller

Theorem 4.2 Consider the rigid satellite attitude system described by (2.21) and
(2.24) in the disturbance-free case, i.e., uy(t) =0, if the following controller is
implemented

u = (P"(0)) ' (k;tanh(x) — k,tanh(o) + kstanh(o ;) + kwo 5) (4.49)

where X = [x1, x2. x3)T = —y20 —y fot tanh(o (s))ds,y e R,n e R, k, e R,
ki € Ry, kg € Ry, and ky € R are control gains chosen to satisfy that

k, 1
5 o > 0 (4.50)
4 y2
3bLk 3Kw \° 1
my=2 (28— (V3Cmax + ) > 0 (4.51)
411 2[1 Y
1 1 Lk
my = —kp— —ks— ~—5 >0 (4.52)
4 4y Liy
kg 2yl
my =~ (20 _q) 50 (4.53)
2y \ b
3k 1
Yo 50 (4.54)

T, m

then it follows that tlim o(t) =0and llim () =0.
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Proof Consider a Lyapunov function candidate

1 1 T ki <
Vo=[=-6T+ —tanh(a)) Jo+— In(cosh(o¢;))
’ <2 14 I ; !

(4.55)
kl tanh(y)
+kp Z In(cosh(o;)) + Gfo + — / sTCosh?(x)ds
y2Jo
i=1
where
tanh(x) tanh(x;)
/ sTCosh?(x)ds = Z / cosh?(x;)sids; > 0 (4.56)
0
Applying (4.50), Lemma 2.1, and Property 4.5, one can prove that
lc’rTJ*(r + l(tanh(a))TJ*(r kp 23: In(cosh(a;))
4 Y 2 & '
3
> 7‘” ; In(cosh(o;)) — P(tanh(a))TJ*tanh(a) (4.57)
3
Z Z" - max)tanhz(o,) >0
In view of (4.56) and (4.57), it yields
| P 3
V, deTJ*d + 2—2 Ztanhz(aﬁ.) Zp Z tanh?(0;)
i=1 i=1 (4.58)

/ tanh(y) kW
+ p/o sTCosh*(x)ds + 2—120_Tfa_f >0

Hence, the Lyapunov function candidate V, can be concluded to be globally positive
and radically unbounded.

When the considered rigid satellite is disturbance-free, note that |[tanh (o) || < V3
and

(tanh(o)) tanh(o ;) < %Htanh(a)”z + |Itanh(o ;)| (4.59)

Using Property 4.6, Property 4.7, (4.42), and the controller (4.49), the time-derivative
of V, can be simplified as
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o1 k
V, = — (tanh(0)"C (0, 6) + (Sech’*(0)6)") ¢ + (deT + l-%}) oy
14 2

k k k
+ (tanh(0))" <—‘1tanh(or ¢) — —“tanh(o) + —W) o
14 ' 14 14 '
kal
- ﬁa?tanh(of)
I

1 r r (4.60)
< ;(ﬁcmax + Jma) I611* — (7” - —") [tanh(o) >

4y
1 2]/11kd
2y b

k
- kd> |tanh(o )| + <ch'rT + l—%}) oy
2
ke T
+ —(tanh(¢))o ,
14

In particular, using Young’s inequality, the last three items on the right hand of (4.60)
have the following result

kW . kW .
7(tanh(0))Taf + kthTGf + EG}af

Lk 3liky (6 ¢+ 16\ 6+ 1o
< 22 tanh ()| - = W("” 2") 9+ 50
1y

412 l] ll
Lk 3k 3kw\® \ .. 3k 1\ ,.
< 22 tanh@) > — [ =2 — (2 ) n) 1ol = (50— — ) lé/]°
l])/ 411 211 411[2 47)
(4.61)
From (4.60)—(4.61), it can be found that
y ) 2 . 2 2
Va < —my||6]|> — my|tanh(0)|* — m3 |6 ||~ — m4|tanh(o 1) || (4.62)

With the control gains given in (4.50)—(4.54), it leads (4.62) to V2 < 0. This
implies that tlim V,(t) = V,(00) exists. Then, it shows from the Barbalat’s lemma
— 00

that

lim |6 || = lim |tanh(co)| = 0 (4.63)
—>00 —>00
and
limo(t) = limo@) =0 (4.64)
11— 00 —>00
Consequently, one can conclude that tlim (1) = 0 from (2.21). ([
— 00

Remark 4.6 The attitude controller (4.49) involves the computation of the filter
output o s and the attitude orientation o only. Hence, it is rigorously independent of
the angular velocity measurement .
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Remark 4.7 The design of the controller (4.49) does not require any information on
the satellite’s inertia matrix J. Hence, from the standpoint of uncertainties rejection,
the derived controller has great stability and robustness.

In the next, a practical problem is solved, namely, the external disturbance effect
on attitude control performance. The corresponding stability analysis can be stated
by the following theorem.

Theorem 4.3 Consider the rigid satellite attitude control system described by (2.21)
and (2.24) in the presence of the modeling error induced by the uncertain inertia
and external disturbance, with the application of the controller (4.49), if the control
gains are chosen to satisfy (4.50), (4.53)—(4.54), and

_ 3Lkw  [(3kw)® 1 5 1
- (=) 5 — —(V3Cmax + Jiax) — — > 0 4.65
= (%)” y lma) =gt > (405)
1 1 Lk 1
= —dkp— —ky— 2V 0 4.66
TEE T, T Y T 4y, g (4.66)

where B; € Ry, i = 1,2, are positive constants, then the control objective stated in
Sect. 4.3.1 can be met.

Proof When the external disturbance u, is considered, the right-hand of (4.60)
should be added by new items ¢ Tu, and %(tanh(a))Tud, respectively. Applying the
following inequalities

1
6'ug < —6"6 + puluy (4.67)

48,

1
4y2By

1
—(tanh(0)) uy < |tanh(a)||* + Brubug (4.68)
%

and calculating the time-derivative of V, in (4.55) gives

Vo <(B1 + B) luall® — iy ll6 1> — ms||6 f|?

_ ) 5 (4.69)
— my|[tanh(o) || — my||tanh(o /)||
From (4.53)—(4.54) and (4.65)—(4.66), one has
V2 < (B1 + Bo)llual® — i |61 — iz [ tanh(o) |1® (4.70)
It is seen from (4.70) that VZ < 0 when [o7, 67T are outside of the set
52 = 10 "1 hanhioy < 2L gy < PRy

where 8 = /B1 + Ba.
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It is proved from (4.70) that V, decreases monotonically outside the set S,. Hence,
all the signal in the resulting closed-loop attitude system are bounded ultimately.
Moreover, it can be obtained that

Jlim [[[tanh(o)]], 611" € Sa (4.72)

Integrating both sides of (4.70) from the initial time 7, to T yields

T T
Va(T) — Va(to) = (B1 + ﬂz)/ \laa ()| Pds — "'12/ Itanh(o (5))[°ds  (4.73)

fo

Since V,(¢) is a non-negative function and from the property of hyperbolic tangent
function, it yields

T T T
f o (s)]1%ds ~ / ||tanh(a (5))]]*ds < & / llug(s)]*ds (4.74)

To fo fo

with gy = ﬂ‘%fz In the term of the above inequality and Definition 2.4, it can be
proved that £;-gain of the disturbance attenuation is achieved to be a given small
value by adjusting &, thereby completing the proof of achieving the control objective
as stated in Sect. 4.3.1. ]

4.3.4 Control Input Upper Bound Analysis

From (4.46), one has
p=<-hLp+hLhlo|,p0) >0 (4.75)

Using Lemma 2.3, solving (4.75) yields

pi(t) = pi(0)exp(—=iit) + lllz/ exp(=Li(t = 0) loi(O)|de, i =1,2,3 (4.76)
0

Applying the switching between MRPs and the shadow MRPs sets stated in Remark
2.3, |oi| < ||| < 1 always holds. Hence, by choosing p(0) = 0, one has || p(?)|| <
V/31,. To this end, according to Property 2.1, direct calculation shows that G (a) in
(2.21) satisfies

l+ote 1

NPT @) =1G0)| = ——— <

) 2 (4.77)

Theorem 4.4 For the developed attitude controller (4.49), if the control gains are
chosen to satisfy (4.50), (4.53)—(4.54), (4.65)—(4.66), and
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1
E(ﬂac,, + ki 4 ka) + (V3 4 Dkwly) < tima (4.78)

then the control input of each actuator rigorously enforces the actuator magnitude
constraints, i.e., |u;| < umax, I = 1, 2,3, is always met for Vt > Q.

Proof Combining (4.49) and (4.78), fori = 1, 2, 3, it leaves u; as

luil < llull
< [(PT(@)™"| ||kstanh(x) — kptanh(o) + kstanh(o ;) + kwo | 4.79)
1
< 5(~/§<kp + ki + ka) + kwllo 1)

In addition, it can be proved from (4.47) that o ; is bounded by

lo 41l < llpll +Llle]] < (V3 + D (4.80)

This last result together with (4.78) can be used in (4.79) to demonstrate that

1
lu;| < E(ﬁac,, + ki +ka) + (V34 Dkwla) < thma (4.81)

Hence, the attitude controller (4.49) is proved to be within the actuator constraint. [J

4.3.5 Numerical Study

To verify the effectiveness of the proposed control approach, the detailed response
is numerically simulated using the rigid satellite control system governed by (2.21)
and (2.24) in conjunction with the controller (4.49). The satellite is activated by six
thrusters distributed symmetrically on three axes of the body frame of the satellite
with a maximum thrust of #,,x = 5 N-m. The nominal inertia matrix is specified by
Jo = diag([20, 20, 30]7) kg~m2. A time-varying moment inertia matrix as stated in
[22] is incorporated as modeling error. Moreover, the external disturbance u, is also
taken into account, which is given as same as in [22].

In simulation, the proposed controller (4.49) (LAFC), the unit quaternion out-
put feedback controller (UQOF) developed in [23], and the nonlinear Proportional-
Integral control design without angular velocity (NPIC) designed in [20] are com-
pared while the satellite attitude is maneuvering. The control gains for those three
controllers are listed in Table 4.2. The initial orientation of satellite is o (0) =
[0.2499, —0.8837, —0.2901]" with a zero initial body angular velocity.
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Table 4.2 The controller gains chosen for numerical study

Controller Control gains
LAFC (4.49) kp =14,k; =0.015, kg = 1.2, kw = 0.1,
I =1 =20,8 =2,7n=0.0017, y = 1000
UQOF a1 =2.5,0p =225,
I'; = diag([0.75,0.75,0.75]7)
NPIC ky =2,k =001,k, =5

We first present the simulation results when applying LAFC. We see the solid
line in Figs. 4.1, 4.2, 4.3, 4.4 and 4.5, the controller managed to stabilize the origin
equilibrium point in 30's with great pointing accuracy. Indeed, since the knowledge
of the satellite’s inertia was not required and an implicit integral item was incor-
porated in the control law design, the external disturbance’s effect on the attitude

60 80 100

| |

1
60 80 100

Time (sec) Time (sec)
(a) o (b) o2
0.2 -
0.1
0 2R e
o 0.1 —LAFC
- - UQOF
1 NPIC
-0.3
-04 | | | I |
0 20 40 60 80 100
Time (sec)
(c) o3

Fig. 4.1 The initial attitude from AVFC and UQOF
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Fig. 4.2 The steady-state attitude from LAFC and UQOF

control performance can be compensated efficiently, and also great robustness to
system uncertainties can be guaranteed. It is also interesting to note that the control
output of each thruster can rigorously enforce its magnitude constraints, as shown
in Fig.4.5 (solid line). For the case of UQOF, as expected, we see the dashed line
clearly in Figs. 4.1, 4.2, 4.3, 4.4 and 4.5 that UQOF can achieve the objective of
attitude stabilization. However, due to the inherent properties of UQOF that there
does not exist any robustness to the unknown inertia parameters and the external
disturbances, a relatively lower pointing accuracy and slew rate accuracy response
is observed. The application of NPIC leads to the attitude and the angular velocity
shown by the dotted line in Fig. 4.1-4.4. As pointed out in [20] that this control
law is only efficient for tackling nonzero constant external disturbance. Therefore,
when time-varying disturbance given in [22] is considered, bad control performance
is obtained although the attitude stabilization maneuver can be accomplished with
angular velocity measurements eliminated. Moreover, note that, to guarantee that
the actual output of thruster is less its upper bound, the control gains in NPIC were
selected smaller. Consequently, terrible oscillations in attitude, velocity and control
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Fig. 4.3 The initial angular velocity from LAFC and UQOF

input are induced. Despite the fact that there still exists some room for improvement
with different design control parameter sets, there is not much improvement in the
control input response.

Comparison with [23] and [20] shows that the solution (4.49) provides a faster
response and higher pointing accuracy. The steady-state stabilization errors for
LAFC, UQOF, and NPIC are summarized in Table 4.3.

4.4 Summary

The adaptive attitude tracking control problem of flexible satellites with modeling
error induced by uncertainty and external disturbance was first studied in this chapter.
A neural network-based tracking controller was presented to guarantee the uniformly
ultimate boundedness of the attitude tracking error. This controller was free of the
angular velocity measurement. The controller rigorously enforces the actuator con-
straint. The main feature of this controller was that it establishes a straightforward
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Fig. 4.4 The steady-state angular velocity from LAFC and UQOF

relationship between the magnitudes of the available control inputs and those of the
desired trajectories and disturbances. Another problem solved in this chapter is the
angular velocity-free attitude stabilization control of rigid satellites with actuator
constraint and modeling error due to uncertain inertia and external disturbance. The
proposed control law was inertia-independent with angular velocity eliminated and
allowed £;-gain of the closed-loop attitude system to be chosen arbitrarily small to
achieve any level of £,-gain external disturbance attenuation. The developed scheme
has a simple design procedure, structure, and inexpensive computation cost, and thus
demands much less onboard resources during its implementation.
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Table 4.3 The control performance for the controller (4.49), UQOF, and NPIC

Performance Axis Controller
LAFC UQOF NPIC

Pointing accuracy Roll 20x 1073 2.5 % 1074]3.0 x 107
(rad)

Pitch 2.0x107°| 1.5x1073[1.2 x 1073

Yaw 2.0 x 1072| 2.5x1073[3.0 x 103
Slew rate accuracy Roll 7.0 x 1073| 8.0 x 1074]1.0 x 1073
(rad/s)

Pitch 40x 107 2.0 x 1073[2.5 x 1073

Yaw 25%x107°| 3.0 x 1073[3.5 x 103
Attitude stabilization time (s) 30 100 75




96

4 Velocity-Free Attitude Control with Actuator Constraint

References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

. Farrell, J., Polycarpou, M., Sharma, M. (2003) Adaptive backstepping with magnitude, rate,

and bandwidth constraints: Aircraft longitude control. In Proceedings of the Annual American
Control Conference, Denver, Colorado Denver: 3898-3904

. He, P. G., Jagannathan, S. (2007) Reinforcement learning neural-network-based controller for

nonlinear discrete-time systems with input constraints. IEEE Transactions on Systems Man
and Cybernetics Part B: Cybernetics 37(2): 425-436

. Hu, Q. (2008) Adaptive output feedback sliding-mode manoeuvring and vibration control of

flexible spacecraft with input saturation. IET Control Theory and Applications 2(6): 467-478

. Graichen, K., Zeitz, M. (2008) Feedforward control design for finite-time transition problems of

nonlinear systems with input and output constraints. IEEE Transactions on Automatic Control
53(5): 1273-1278

. Leonessa, A., Haddad, W. M., Hayakawa, T., Morel, Y. (2009) Adaptive control for nonlinear

uncertain systems with actuator amplitude and rate saturation constraints. International Journal
of Adaptive Control and Signal Processing 23(1): 73-96

. Kulkarni, A., Purwar, S. (2009) Wavelet based adaptive backstepping controller for a class of

nonregular systems with input constraints. Expert Systems with Applications 36(3): 6686—6696

. Purwar, S., Kar, I. N., Jha, A. N. (2008) Adaptive output feedback tracking control of robot

manipulators using position measurements only. Expert Systems with Applications 34(4):
2789-2798

. Famularo, D., Martino, D., Mattei, M. (2008) Constrained control strategies to improve safety

and comfort on aircraft. Journal of Guidance, Control, and Dynamics 31(6): 1782-1792

. Luo, Y. H., Zhang, H. G. (2008) Approximate optimal control for a class of nonlinear discrete-

time systems with saturating actuators. Progress in Natural Science 18(8): 1023-1029

Bang, H., Tahk, M. J., Choi, H. D. (2003) Large angle attitude control of spacecraft with
actuator saturation. Control Engineering Practice 11(9): 989-997

Sonneveldt, L., Chu, Q. P., Mulder, J. A. (2007) Nonlinear flight control design using con-
strained adaptive backstepping. Journal of Guidance, Control, and Dynamics 30(2): 322-336
Boskovic, J. D., Li, S. M., Mehra, R. K. (2001) Robust adaptive variable structure control of
spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics 24(1):
14-22

. Cai, W. C., Liao, X. H., Song, Y. D. (2008) Indirect robust adaptive fault-tolerant control for

attitude tracking of spacecraft. Journal of Guidance, Control, and Dynamics 31(5): 1456—1463
Lo, S. C., Chen, Y. P. (1995) Smooth sliding mode control for spacecraft attitude tracking
maneuvers. Journal of Guidance, Control, and Dynamics 18(6): 1345-1349

Kristiansen, R., Nicklasson, P.J., Gravdahl, J. T. (2009) Satellite attitude control by quaternion-
based backstepping. IEEE Transactions on Control Systems Technology 17(1): 227-232
Chen, P. C., Huang, A. C. (2005) Adaptive multiple-surface sliding control of hydraulic active
suspension systems based on the function approximation technique. Journal of Vibration and
Control 11(5): 685-706

Leeghim, H., Choi, Y., Bang, H. (2009) Adaptive attitude control of spacecraft using neural
networks. Acta Astronautica 64(7-8): 778-786

Chen, F, Jiang, R., Zhang, K., Jiang, B., Tao, G. (2016) Robust backstepping sliding-mode
control and observer-based fault estimation for a quadrotor uav. IEEE Transactions on Industral
Electronics 63(8): 5044-5056

Zhou, J., Er, M. J., Zhou, Y. (2006) Adaptive neural network control of uncertain nonlinear
systems in the presence of input saturation. In: Proceedings of the 9th International Conference
on Control, Automation, Robotics and Vision, pp 1-5

Subbarao, K., Akella, M. R. (2004) Differentiator-free nonlinear proportional-integral con-
trollers for rigid-body attitude stabilization. Journal of Guidance, Control, and Dynamics 27(6):
1092-1096



References 97

21. Nicosia, S., Tomei, P. (1992) Nonlinear observer and output feedback attitude control of space-
craft. IEEE Transactions on Aerospace and Electronic Systems 28(4): 970-977

22. Song, Y.D., Cai, W. C. (2009) Quaternion observer-based model-independent attitude tracking
control of spacecraft. Journal of Guidance, Control, and Dynamics 32(5): 1476-1482

23. Tayebi, A. (2008) Unit quaternion-based output feedback for the attitude tracking problem.
IEEE Transactions on Automatic Control 53(6): 1516-1520



Chapter 5 ®)
Velocity-Free Attitude Fault-Tolerant e
Control

5.1 Introduction

The analysis of recent spacecraft accident statistics shows that a significant portion
of such is attributed to actuator fault in attitude control system [1]. In December
1983, faulty reaction wheels of satellite GPS BI-05 led to mission failure. A recent
accident occurred with GPS BII-07, a spacecraft in the NAVSTAR GPS constellation
developed by the U.S. Department of Defense. It suffered a reaction wheel failure
that led to three-axis stabilization failure and a total loss of the spacecraft [2]. Those
accidents justify the development of fault tolerant control (FTC). It aims to ensure
proper operation even in the presence of component faults. Up to date, a variety of
FTC approaches have been proposed [3—5]. Because spacecraft attitude dynamics is
inherent with nonlinearity, external disturbance, and uncertainty, designing FTC for
spacecraft is becoming much more difficult. Active FTC is an approach characterized
by a Fault Detection and Isolation (FDI) mechanism to detect and identify fault online.
Many efforts on active FDI together with methods for reconfiguring control systems
have been conducted for satellites [6-10].

An alternative active FTC is the so-called passive approach. It applies the robust
control technique to ensure system stability without FDI even in the presence of fault.
So far several passive FTC algorithms have been developed and applied to satellites
[11, 12]. The problem of automated attitude recovery for rigid and flexible LAFC
was discussed based on feedback linearization control [13]. A variable structure FTC
controller was synthesized to perform attitude stabilization maneuver [14]. Attitude
tracking control of a rigid satellite was investigated by designing a passive fault-
tolerant controller [15]. Two types of faults in the reaction wheel were accommodated
by applying SMC [16]. A terminal sliding mode-based FTC was developed to perform
rest-to-rest on a satellite system [17].

The implementation of the preceding FTC or FDI schemes necessitates full state
feedback. This may be not satisfied in practice. For instance, the angular velocity
measurement would not be available. Although many approaches have been proposed
to handle actuator faults and unmeasured angular velocity, few results are seen to
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Fig. 5.1 The full control architecture of VFAFTTC with actuator faults and angular velocity mea-
surement uncertainty
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Fig. 5.2 The full control architecture of VFAFTTC with actuator faults and no measurement of
angular velocity

Attitude measurement

address these two problems simultaneously. Motivated by simultaneously address-
ing the problems including actuator faults, angular velocity measurement uncertainty,
uncertain dynamics, and external disturbance, a novel robust velocity-free attitude
fault-tolerant tracking control scheme (VFAFTTC) is developed. It consists of a
reconstruction law developed in [23] and a novel robust adaptive control law. When
angular velocity measurement is available, the full control architecture of the pro-
posed scheme is shown in Fig. 5.1, wherein the reconstruction law is to estimate
the angular velocity measurement uncertainty. For the case that there is no angu-
lar velocity measurement, the full control architecture of the proposed approach is
illustrated in Fig. 5.2. In Fig. 5.2, the angular velocity estimation law is to estimate
the angular velocity by using the attitude measurement. The main novelty of this
proposed control approach is listed as follows.

e The proposed solution can accomplish the attitude tracking control task for satel-
lites with uncertain dynamics due to uncertain parameters, external disturbance,
actuator faults, and angular velocity measurement uncertainty. The attitude track-
ing error is governed to be uniformly ultimately bounded. The control framework
is shown in Fig. 5.1.

e Compared with the state-of-the-art approaches to handle actuator faults for satel-
lites, the proposed strategy does require any prior knowledge of the actuator faults.
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Moreover, this scheme is practically implementable without any angular velocity
sensors, and the resulting closed-loop system is shown in Fig. 5.2.

e The proposed control approach does not necessitate the dynamic model of the
actuators when handling actuator faults.

5.2 Reaction Wheel Faults

Reaction wheel is a type of actuator widely used in satellite attitude control. It
consists of a flywheel driven by an electric motor and the associated bearing and
drive electronics. It is vulnerable to two main sources of faults [18]:

e (F1) Decreased reaction torque: It is induced by increased friction between stator
and rotor, marginal failure of bearings, and decreased motor torque and current
drive. These issues affect the rate of change of the wheel speed and consequently
decrease the generated reaction torque.

e (F2) Increased bias torque: When the external disturbance is negated and the
demanded reaction torque is zero, the reaction wheel should hold its speed and
generate no torque. Incipient faults can occur based on changes in friction due to
aging, time-varying temperature, etc., that may accelerate or decelerate the wheel,
thereby generating a bias torque, even when the commanded torque is zero.

These two faults can be mathematically modeled as
u=I,—E)t+u 5.1)

where T = [11, T, 73]7 € R3 is the control torque commanded by attitude controller,
E = diag([11 (1), In(1), i3()]7) € R with 0% < [;(1) < 100%, i =1,2,3 is
the healthy and time-varying indicator matrix due to fault F1,and & = [ity, it2, i3]" €
IR3 is the fault entering the satellite in an additive way due to the increased bias torque.
For example, if the ith actuator operates normally, then it has /;; = 0% and u; = 0.
The case in which /;; = 30% implies that the ith actuator loses 30% control torque.

Remark 5.1 In this chapter, only the bias torque fault and the partial loss of actuator
effectiveness are considered. The total loss fault, i.e., I;; = 100% and the lock-in-
place fault, i.e., u; has a constant value are not investigated. If some actuator under-
goes the total loss fault or the lock-in-place fault, then the satellite dynamics will be
underactuated. The controller design for the underactuated system is not the main
issue investigated in this book.

5.3 Angular Velocity Measurement Uncertainty

When implementing any feedback controller to satellites, the attitude feedback o or ¢
can be supplied and measured by attitude sensors. However, in practical applications,
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the availability of the angular velocity measurement 6, @, or ¢ is not always satisfied
because of either cost limitations or implementation constraints. This issue should be
solved. Letv,, = [Un1, Um2, Um3]' € R3bethe angular velocity estimation, and v, €
R? denote the angular velocity estimation error or the angular velocity measurement
uncertainty, the following can be established as

v, =0+, 5.2)
vy =4+, (5.3)
Vv, =@+, 5.4

Remark 5.2 For the satellites with angular velocity or rate sensors such as the
gyroscope, v, in (5.2)—(5.4) can be viewed as the angular velocity sensor faults.

5.4 Problem Formulation

The modeling error considered in this chapter consists of the environmental distur-
bance torque, uncertain inertia, and the reaction wheel faults (5.1). Moreover, the
satellite considered is rigid with the attitude represented by the modified Rodrigues
parameters o. According to (4.42), the following second-order nonlinear equation
can describe the rigid satellite attitude system.

My(0)6 + Co(0,6)6 + Ah(o,6,6) = PT(o)u + P (0)uy (5.5)

where My(o) = PTJoP, Co(o,6) = —P " (JoPG + (JoP6)*)P, and Ah(o,
6,5)=PTAJP — P"(AJPG + (AJPG)*)P. J, is the nominal inertia param-
eters. A J is the uncertain inertia. Ah(o, o, ¢) denote the uncertain dynamics intro-
duced by the uncertain inertia of the satellite.

Remark 5.3 For the attitude system (5.5), My(0) and Cy(o, 0) satisfy Property
4.5, Property 4.6, and Property 4.7 with different values of Jin, Jmax, and Cpax-

Let 64 = [041, 042, 043]T € R? be the desired trajectory to be followed. ¢4 and
0 4 are continuous and bounded, respectively, i.e., [|64|| < 6, where 6 € Ry
is a positive scalar. The control problem of this chapter can be stated as: For the
satellite with its dynamics described by (5.5), applying the available measurement
o and estimated angular velocity v,, only to design a controller to ensure that the
desired trajectory o, can be followed despite the reaction wheel faults (5.1), the
angular velocity measurement uncertainty (5.2), the uncertain inertia A J, and the
external disturbance u,.
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5.5 Transformed System with Reaction Wheel Fault

Two new variables x1 = [x11, X12, x13]T = o and x, = [x21, X22, x23]T = & are first
introduced. Then, the attitude system (5.5) with the reaction wheel faults (5.1) and
the angular velocity uncertainty (5.2) can be rewritten as

X =v,—v, (5.6)
Mo(x )iz + Co(x1, x2)x2 =P (x) U, — E)T + PT(x )it
+ P (x)uy — Ah(s,6,5) C-D
5.6 Terminal Sliding-Mode Observer
From (5.2), the following equation will always hold
Dy =6 + By, (5.8)

Because v,, is the estimation of the angular velocity, v,, represents the esti-
mated measurement of the angular acceleration. ¢ is the real angular acceleration.
D, = [Duts V2, V3]’ € R3 denotes the measurement error/uncertainty in the angular
acceleration.

In satellite engineering, the rate damping control and the attitude acquisition are
performed by thrusters before attitude stabilization or tracking maneuvering. After
rate damping and attitude acquisition, the angular acceleration is maintained to be
within a certain value. Let this certain value be denoted as 6; max € R4, i =1, 2,3,
then it follows that [6;(¢)| < &; max for¢ > 0.

Assumption 5.1 v, is bounded and satisfies |Vyi| < 6; max, i = 1, 2, 3.

Based on Assumption 5.1, one has

3
. 2
z :ai_max
i=1

As a stepping stone, an auxiliary system is introduced as

X, =V, —kXx, (5.10)

where k, € R, is a constant, x, € R is the auxiliary system’s state, and x, = x, —
X1.
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From (5.6), (5.8), and (5.10), it leaves the dynamics of x, as the following linear
system with unknown input:

x| | =k, I || xe N 0
wl | 0 0w b, (5.11)
y =X

where [xT, vT]T € R® is the state of this system, and y € R? is the system output.
Based on (5.10) and the definition of x,, it follows that

X, =—kx,+kx;+v, (5.12)

Because x; and v, are available, x, can be calculated by solving (5.12). Then,
y = x, = x, — x| can be obtained by using the available x, and x;. The output y
is, thus, available.

To this end, the work of reconstructing v, is changed into estimating the state of
the system (5.11) by using the output y only. To solve this problem, the following
terminal sliding-mode observer is designed

%o = —k. R, + Dy — misgN(e]) — Me
;\e rXe + Uy nig ( 1) n2€1 (513)

v, = —n3e1 — nale,]v — nssgn(e,)
where X, is the estimation of x,, ¥, is the estimation of v,, e, = n;sgn(e;), e; =
X,—y,andn; e Ry,i =1,2,3,4,5, are the observer gains. a € R, and b € R,
are two odd integers satisfying a < b.

Lemma 5.1 When the terminal sliding-mode observer (5.13) is applied to estimate
the angular velocity estimation error or the measurement uncertainty v, satisfying
Assumption 5.1, the estimation error e = [e,T, e;]T is ensured to have ||e(t)|| < &
forallt > 0, where e; = v, — v, = [e1, ex, ex3]" is the reconstruction error of v,
and

x{ﬁm(m)% +/3n5 +y

& = ma , [1le(O)]]} (5.14)
0 )Vmin( Q)
with the positive-definite constant matrix Q given by
_ (kr + )1, =1,
0= [ nsl, 0 (5.15)
Proof From (5.11) and (5.13), one has
e = —k.e; + e, — msgn (e)) — e (5.16)

éy = —n3e; — nale, ]t — nssgn (e,) — b, (5.17)
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Consider a candidate Lyapunov function Vy = %eTe, applying (5.9) and (5.16)—
(5.17) result in

y T T T T T
Vo = —k.e e; + e ex —miesgn(e;) — me e — n3e,e;
T & T T.
—me, le,|? —nse,sgn(e,) —e,0,

—¢" Qe —millerll + (v3ma(n)? + V305 +7) el
~llell (%mn(@llell = (V3nsGm) +3ns+7))

(5.18)

IA

IA

«/§ﬂ4(n1)%+«/§ﬂ5+y
Amin (@)

V) b +Bus+y
Amin (@)
monotonically with respect to 7. A decreasing value of V,, eventually drives e into the
set P and, then, it will never go out of D;. The set D is, thus, attractive. Therefore,

it can be proved that ||e|| < go,t > 0. O

Hence, Vy < 0 if [le]| > . This implies that if e is outside the com-

pact set D = {e||le|| < }, then V, < 0; and hence, ||e|| decreases

Lemma 5.2 For the angular velocity estimation error or the measurement uncer-
tainty v, satisfying Assumption 5.1, applying the terminal sliding-mode observer
(5.13), let k, and the observer gains and initial estimation states be chosen such that

(5.19)

b
V3ns+ V305 +y "
7] > max + 5o , 1
)\min(Q)

ns—y >0 (5.20)

where gy € R, is a scalar. Then, v, can be precisely reconstructed v,. e;(t) = 0 is

b—a
_ b(ea(19)) _ e O]l
= T-amy Tl o=

Proof See [23] for the reason that the observer gains should be chosen to satisfy
(5.19)—(5.20). ]

Remark 5.4 Itisseenin Lemma 5.1 thatin comparison with the existing Luenberger-
type state observers [25-27] and other observers such as the globally convergent
velocity observer [28], the proposed terminal sliding-mode observer (5.13) ensures
the reconstruction error to be finite-time stable. Hence, a faster estimation for the
angular velocity measurement uncertainty v,, is achieved. This is the main motivation
of presenting the terminal sliding-mode observer (5.13) in this chapter.

guaranteed fort > t

5.7 Velocity-Free Fault-Tolerant Attitude Controller

It is inferred from (5.1) that 0 < u = || E|| = max;—; 2 3{|/;;|} < 1. However, u is
unknown. Although there may exist bias torque fault # in actuators, it is bounded.



106 5 Velocity-Free Attitude Fault-Tolerant Control

Conservatively, the bias torque in the ith reaction wheel actuator should be smaller
than the maximum torque u; m.x € R, of the ith reaction wheel actuator, i.e., u; <
Ui max-i =1,2,3. Ah(o, d,0) and u, should also be bounded, i.e., there exist two
unknown scalars dmax 1 € Ry and dax 2 € Ry such that [|[Ak(o, 0, 06)|| < dmax 2
and ||uy|| < dmnax 1- If AR(o,06,6) and u, are not bounded, then the maximum
torque generated by actuators will be unable to attenuate Ah(o, 0,6) and uy. In
this case, the satellite will be uncontrollable. This makes the attitude controller design
without any sense. Therefore, ||Ah(0, 6, 6)|| < dmax 2 and ||u4|| < dmax_1 and rea-
sonable. On the other hand, it is also obtained from Property 2.1 that ||G(g)|| < 0.5

and || P(x)|| = (1161%‘;))‘2' < 8. As a consequence, one has
IPT(x )it + PT(x))ug — Ah(0. 6. 6)|| < 8dmax 1+ dmax 2 +8 | Y _u? 0=

i=1
5.21)
where the constant p € R is positive but unknown.

Let z; = [z11, 212, 213]T = 0 — 04 denote the attitude tracking error of the satel-
lite, and introduce another new variable as z, = v,, — 64 + k.1z1 — V,, where
k.1 € Ry is a scalar. From Lemma 5.2, it is known that z; and z, are available
for feedback when designing an attitude tracking controller.

Theorem 5.1 For the satellite dynamics (5.5) with external disturbances, uncertain
inertia A J, reaction wheel actuator faults (5.1), and angular velocity measurement
uncertainty (5.2) satisfying Assumption 5. 1, applying the estimation law (5.13) for the
angular velocity measurement uncertainty, let a velocity-free fault-tolerant attitude
controller be developed as

T = G"(x))(Toor + Teom 1 + Teom 2) (5.22)
with
Thor = — 21 — k220 + Co(x1,22 + 04 — ke121) (ke1z1 — 64) (5.23)
— Mo(x1) (=64 + ke1 (22 — ke121))
Teom_1 = —(fo = DI|Tnor + Tcom_2|Isgn(z2) (5.24)
Teom 2 = — 58N (22) (5.25)
where k., € R is the control gain, p € R is the estimation of the scalar p, iy € R
is the estimation of the constant |1y = ﬁ, wo > 1, f1g and p are updated by
fto = —keaito + keal| Taor + Teom 2ll1221], 20(0) > 1 (5.26)

p = —keap + keallz2ll, p(0) > O (5.27)
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with two gains k.3 € Ry and k.4 € R.. If the observer gains k,, n;,i = 1,2,3,4,5,
and the control gains are chosen with (5.19), (5.20), and

2k >3 (5.28)
kez — 2 — ((ke1 Cmax€0)* + Cmax€0) > 0 (5.29)

satisfied, then, the closed-loop system is stable in that all the signals are uniformly
ultimately bounded.

Proof Differentiating z; by using inserting (5.8) results in
21 =22 —kazi + 0, — v, =22 —kazi + e (5.30)
Applying Property 4.5, (5.7), (5.8), (5.22), (5.23), and (5.30), it follows that

Mo(x1)z2 =Mo(x1) (b — 64 + kerzr — )
=—21 — ko2 + Teom1 + Teom2 — ET
+ P (x))u + P (x\)uy — Ah(c,6,5) (5.31)
— Co(x1,x2)Xx2 — Mo(x1)(€2 + kc1€2)
—Co(x1,22+ 04 — kaz1)(ke1z1 — 64)

Using Property 4.7, it leads to

—Co(x1, x2)x2 + Co(x1, x2)z2 = Co(x1, 220 — X2)X2
=Co(x1, k121 — 04 — €)(22 + 64 — k121 + €2)
=Co(x1, 220+ 64 — ke1z1)(ke1z1 — 64) + Co(x 1, ke1z1 — 6 4)er
— Co(xy,e)es — Co(x1, 22 + 04 — keiz1)ez

(5.32)

For the dynamics (5.5), select a Lyapunov candidate function as

1

I— i+ —5 (533
2k03 0 ’

2kc4

1 ¢ 1 ¢
Vi= 72121 + EZQMO(xl)ZZ +

where 0 = p — p and fig = o — Lo are the estimation error of p and g, respec-
tively. Using 4.5, it is seen from (5.33) that

KiIXI* <V (5.34)

202 2k Dke
Differentiating V; with (5.30)—(5.32) and 4.6 applied, one has

with X = 27, 21, 27, jig. 31T andKlzmin{l Jo lon I }>o.
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ngo(xl)zz
2
= — kerllz1l1”* — keallz2l1> + z{ €2 — A(llz2l] — $) + 23 (Tcom_t + Teom_2
— Et+ P (x)ia+ P (x))uy — Ah(o,6,6) — Mo(x))(ér + k1€2)
+ Co(x1, ko121 —02)eaCo(xy, e2)es — Co(x1,22 + 04 — ke121)€2)
— (1= w)ito(lttnor + Teom 21112211 — Qo)

. . ) 1
Vi=z21 + + 20 Mo(x1)zy — (

(5.35)
On the other hand, it can be obtained from (5.24) and (5.25) that

2 (Teom 2 + PT (X)) (@ + ug) — Ah(0,6,6)) < —pllzall + pllzall  (5.36)
= pllz2l|

Zg(rcomJ —Etv) < (1 — w)iollTnor + Teom_2ll1122 (5.37)

Using (5.36)—(5.37) and (5.26)—(5.27), (5.35) can be further simplified as

Vi < —kaillzil? = keallzal > + zfea + 54 + (1 = w)fiofto
+ 25 (—Mo(x1)(é2 + ke1€2) + Co(x 1, keizi — 64)ea (5.38)
— Co(x1,e)es — Co(x1, 22 + 04 — ke1z1)e2)
From Lemma 5.1, ||e(?)|| < &g is seen for ¢ > 0 and regardless of the controller.

Hence, one has ||e;(?)|| < &y and ||e;(?)|| < &g, t > 0. Then, it follows from (5.17)
and Assumption 5.1 that

lléall < nsllerll + nallLe, )11 + nslisgn(e,)|] + [10.]|

] (5.39)
< meo + V3! +V3ns+y =1

Invoking (5.39), Property 4.5, and Property 4.7, the following inequalities hold for
t>0

—23 Mo(x1)(é2 + kere2) < Allzall|IMoGxenl(1eal] + kerlleal])
< A1 (o + ke1€0) [1z2 (5.40)
< 0.5|z211* + 0.5(A 1 (lo + ke10))?

T . .
25 Co(x1, ko121 — 0 2)er <Craxllzallllke1zi — d4llllezl
<Cmax&ollz2ll(ke1l1z11] + 65)

1 1 _
SEHZZHZ + E(Cmaxg()a[;nax)2 (541)

1 2 (kclcmaxgo)2 2
+2||le| + > [1z2]
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T 2 2
Z2CO (x17 92) e = Cmax||z2||||e2|| = Cmax80||z2||

(5.42)
< 0.5]|z2/1* + 0.5(Crmaxe)?

2,Co(x1, 22+ 64 — ka1z1)e2 <Crmaxl|22l|22 + 64 — karzil]le2]]
<Crmaxsollz2l(||z2]| + ket l|z1]] 4+ 67%)
<0.5/122] 2 + 0.5(Cmax€06.™)? + 0.5] |21 |2
+ 0.5(ke1 Crmax€0)°[122] > + Cmaxol 1221

(5.43)
Then, one can simplify (5.38) as follows by using (5.40)—(5.43):
Vi < — (ke = 2 = ((ket Cnax€0)” + Cimax€0)) 1122117 + €ollz1 |
— (ket = DIzl + 5o — £) + (1 — ) ito(po — fio)
A (o + ke1€0))? (Cmaxed)? e
+ (A (o 180)) n (Cmax€) + (Coa606™?
2 2
= = (ke2 = 2 = (k1 Coax80)* + o) ) 221 = 0.557 (5:44)
3 1 (I=w ., A=
Y 2, L 2 2 2
( 1 2>||le| +2,0 2 Mo + 5 Mo
A (1 kc 2 C 252 2
n (Mo +2 1£0)) i ( ma;g()) + (Coae 8062 +%O

To this end, the following two parts are given to analyze the stability of the closed-
loop attitude tracking control system.

(1) Stability analysis of the closed-loop attitude tracking system for t > 0: With
0 < p < 1 and the gain choice in (5.28) and (5.29), one can rewrite (5.44) as

Vi< —K)Vi+e,t>0 (5.45)
where
2(kes — 2 — (ke C 24 C
Kz — min {de _ 3’ ( 2 (( 1 )\maxgo) + maxgo)), kc3’ kc4} -0
1
(5.46)
2 2 2 2 2\2 2

+ pg + Ao + kerg0)” + (Cmaxsy) + & .

g = 14 Mo 1(0 1 0) ( ma: ()) 0 + (Cmaxsoo—;mx)z >0 (547)

2

Solving (5.45) results in

0< Vi) < (Vi0) = 2L ) exp(—Kat) + -1 < 2,120 (5.48)
K> K>
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with &, = max{V;(0), 1‘2—‘2 . It follows from (5.34) and (5.48) that

&2
X||< . /[—=,t>0 5.49
I II_‘/K1 > (5.49)

which implies that 7, 22, o, and p are bounded for all # > 0. Because 64, p, and
are bounded, using (5.22)—(5.25), one can conclude that /19, p, and u, are bounded.
Therefore, it is proved that the closed-loop attitude tracking control system is stable
in that all the signals are bounded.

(2) Convergence property of z, and z, for t > t;: Because of the reconstruction
law (5.13) when implementing the controller (5.22), e;(t) = 0 and é,(t) = 0 for
t > t| are obtained from Lemma 5.2. Inserting e, (t) = 0 and é,(¢) = 0 into (5.38),
fort > 11, it leaves (5.38) as

Vi < —kallzil* — keallzall? + 55 + (1 — w)iiofio

. ~2 2 2
A=W PP P K (5.50)

<_kc Z_kc 2 _
< 11z1l] 2122 5 Moo= 5 > )

<-K3Vi+¢&3

where K = min{2k1, 22, k.3, ky) > 0 and &3 = 254 > 0,
Solving (5.50) yields

t
0=Vi(®) = Vit exp(—K3(t —11)) +£3/ exp(—K3(t — s5))ds
h , t>1  (5.51)

= V(1) exp(—K3(t — 17)) + %(1 — exp(—K3(t — 11)))

Therefore, using (5.34), it is proved that the state X is bounded ultimately as

2
0 < V() < max {2V1 (t1) exp(—K3(t — 11)), %} ,1>1 (5.52)
3
2Vi(t) Ks3(t — 1) 2e3
0<|IX]| < _— — , 1>t 5.53
<l ||_max{ X, exp( 7 ) K1K3} 1 (5.53)
2Vi(t) K3t —1) 283
0< < ||1X]|| < —_— — , , 1>t
<Ilzill <l ||_max{ K exp( 5 ) K1K3} 1

(5.54)
From (5.54), using Definition 2.1, it can be concluded that z;, z5, fip and o are
ultimately uniformly bounded. ¢4, p, and p© are bounded, using (5.22)—(5.25), one
can further conclude that [ig, p, and u, are bounded. O
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Itis seen in the proof of Theorem 5.1 that uniformly ultimately bounded stability of
the attitude tracking error z; is ensured despite the angular velocity uncertainty v,,, the
disturbances d, the actuator faults (5.1), and the uncertain inertia A J. This is owing
to the control efforts Tcom ;| and Teom 2 in the controller (5.22). The control effort
(5.23) is used to govern the stability of the nominal system (i.e., the satellite dynamics
is free of actuator faults, unknown dynamics, and external disturbance). The control
power (5.24) is applied to compensate for the reaction wheel actuator faults (5.1). The
control effort (5.25) is to compensate for the disturbance d and uncertain dynamics
Ah(o, 0, 6). Moreover, this approach does not necessitate the exact knowledge of
the actuator faults. It is independent of when, where, and how the actuator faults
occur. In addition, the designed controller does not require any identification process
to reconstruct the external disturbance and the uncertain dynamics. Therefore, the
presented scheme is essentially a robust control method. The tracking performance is
ensured to be robust to the external disturbance, the actuator faults, and the uncertain
dynamics.

It is also found in Lemma 5.2 and Theorem 5.1 that, if there are angular velocity
sensors, then the proposed approach can accomplish the attitude tracking task despite
actuator faults and angular velocity measurement uncertainty. If there is not any rate
sensor to supply angular velocity measurements, then the proposed scheme can still
guarantee that the desired attitude is followed even in the case of actuator faults.
This is achieved by providing an estimated angular velocity to replace the angular
velocity.

Remark 5.5 From the proof of Lemma 5.2 and Theorem 5.1, it is known that a
faster convergence of the reconstruction error for the angular velocity measurement
uncertainty and the attitude tracking error is ensured by choosing gains. Moreover,
it is seen in (5.54) that larger K3 (i.e., larger k.;, i = 1, 2, 3,4) will lead to a smaller
|lz1||. Higher tracking accuracy is achieved. Therefore, the observer gains and the
control gains can be selected based on the following procedures to ensure better
estimation performance and better tracking control accuracy for the satellite attitude
control system.

e Step #1: Determine the value of y according to (5.9) and the maximum acceleration
velocity.

e Step #2: Choose a positive ¢y. A larger ¢y will lead to a smaller ;.

e Step #3: Select positive observer gains k,, a, and b satisfying a < b to ensure a
smaller #;. Then, a faster estimation of v, is achieved.

e Step #4: Choose positive observer gains 11, 112, 13, 14, and 15 such that (5.19) and

(5.20).

Step #5: Determine the value of Cpy,x by using the physical parameters.

Step #6: Select positive control gains k.i, k.2, ke3, and keq with (5.28)—(5.29)

satisfied. Larger k.1, kc2, k¢3, and k.4 will result in faster convergence of (19,0, and

smaller attitude tracking error z;.
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5.8 Numerical Example

To demonstrate the effectiveness of the proposed control scheme incorporated with
the angular velocity observer in this chapter, a rigid satellite is numerically simulated.
The orbit of the satellite is circular, with an altitude of 500 km and an inclination of
89 degrees. The nominal inertia matrix Jg of this satellite is

20 0 0.9
Jo=1| 017 0 | kg-m? (5.55)
09 0 15

Due to the onboard payload motion, the mass properties of the satellite may vary.
Thus, a time-varying moment inertia matrix is considered [20] with

AJ = diag([3, 2, 11D + exp(=0.17) + 29 (t — 10) — 40 (r — 20))kg - m®>  (5.56)

where ¥ (-) is defined as ¥ (r > 0) = 1 and ¥ (¢ < 0) = 0. The external disturbance
u, is assumed as

2 cos(6&,1) + 1.3sin(2€,1) — 1
uy = | 3.5c08(9€4¢) — 2sin(5&41) +6 | x 107> N-m 5.57)
2.5cos(6&,1) — 5sin(3&,1) + 4

with & = ||@| + 0.001 and @(0) = [—0.1984, 0.3998, —0.321]" rad/s.

To validate the proposed approach, simulation was conducted with the desired atti-
tude planned as o4 = [0.6321, —0.08562, 0.212]T. The designed controller (5.22)
was implemented with its gains and its initial observer states selected as k, = 0.001,
n = 120, n, = 0.0001, 3 = 0.0001, n4s =0.001, ns =20, a=1, b=2, k, =
0.38, ke =200, k.3 = 0.5, k4 = 0.001, x.(0) = y(0), x,(0) =0, and 9,(0) =
v,(0) — 6(0). The initial attitude of the satellite was o (0) = [0.8172, 0.8562,
0.8562]T x 10~3. Moreover, the following ad hoc numerical differentiation of the
measurement provided by attitude sensors was employed to estimate the angular
velocity ¢ in the numerical simulation.

v, — o ((N+ l)AAtt) — 0 (NAY) (5.58)

where At € R, was the sampling time, and N =0, 1,2, --- , was the sampling
point. At this time, the reconstruction law in Fig. 5.2 is to estimate the angular
velocity estimation error v,,.

The nominal inverse dynamics control law which is widely applied was also tested
for comparison. This law is given by [24]

Toor = G (Mo(0)(—ka(6 — 64) — kpz1 + G4) + Co(0, 6)6) (5.59)
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where k, € R and k. € R, are two control gains. From [24], it is known that the
control law (5.59) can stabilize the nominal attitude tracking system (i.e., the satellite
is free of disturbance, uncertainty, and actuator fault). However, the implementation
of the nominal controller (5.59) necessitates the exact value of ¢. Note that & may
be not accurately measured in practice. Instead, it is feedback by (5.58). Hence, the
nominal inverse dynamics control was practically implemented as

Thor = GT(MO(U)(_kd(vm —0g) — kpzl +064)+ Colo, v,)v) (5.60)

Here, the control law (5.60) is called the practical inverse dynamics controller.

5.8.1 Reaction Wheel Fault Scenarios

To investigate the fault tolerant control performance of the controller (5.22), the
reaction wheels are assumed to experience the following faults.

e The reaction wheel mounted in line with the X g axis of Fp loses 20% of its normal
power after 108. An increased bias torque —0.001 N - m occurs for all the time.

e The actuator fixed in line with the Y axis of Fp loses its power of 40% after 10s.
An increased bias torque 0.001 N - m occurs once the attitude tracking maneuver
was started.

e The reaction wheel mounted in line with Zg axis of ¥ undergoes 50% loss of
effectiveness after 10s, and an increased bias torque —0.001 N - m occurs for all
the time.

5.8.2 Simulation Results

When the practical inverse dynamics controller (5.60) was applied to the satellite
attitude system, the angular velocity measurement uncertainty introduced by the ad
hoc numerical differentiation (5.58) was relatively large. It led the practical inverse
dynamics controller (5.60) to achieve an inferior tracking result. However, once the
designed scheme, i.e., VFAFTTC, was applied in the satellite attitude system, the
resulting tracking error of the planned attitude was shown in Fig. 5.3. As expected,
the tracking task was accomplished by the proposed scheme. As we can see in Fig.
5.3a, the planned trajectory was followed after 16 s. The tracking accuracy of |z1;| <
4.0 x 1074, |z12] < 8.0 x 1074, and |z13] < 8.0 x 10~* were found in Fig. 5.3b. This
accuracy is superior enough to guarantee the accomplishment of the planned tasks
despite the actuator faults, the angular velocity measurement uncertainty, the external
disturbance, and the uncertain inertia. This superior trajectory tracking property
is owing to the effect of the incorporated estimation law for the angular velocity
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Fig. 5.4 The angular velocity estimation error e, from VFAFTTC

measurement uncertainty. It was observed in Fig. 5.4 that the estimation of the angular
velocity measurement uncertainty was achieved after a period of short time, i.e.,
0.3 s. Moreover, high-precision estimation was ensured by this estimation law. As
illustrated in Fig. 5.4b, the estimation accuracy was superior to 2.0 x 1075 rad/s.
Finally, due to the adaptive control parts T.om | and T.om 2 in the controller (5.22),
the external disturbance, the actuator faults (F1-F2), and the uncertain dynamics
Ah(o, 0, 6) were adaptively compensated. Those simulation results coincided with
Theorem 5.1 well. The control torque commanded by the proposed VFAFTTC to
accomplish the attitude tracking task is shown in Fig. 5.5.
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5.8.3 Quantitative Analysis

More simulations were further carried out for the following two testing scenarios
by applying the nominal inverse dynamics controller (5.59), the practical inverse
dynamics control law (5.60), the controller (5.60) with the reconstruction law (5.13),
the proposed control approach, and the proposed controller (5.22) in conjunction
with a globally convergent velocity observer (GCVO) [28].

e Cuase #1: The satellite was free of external disturbance, actuator faults, and uncer-
tain inertia.

e Case #2: The external force, the uncertain inertia, and the actuator faults F1-F2 in
Sect. 5.8 were considered.

To quantitatively evaluate the above five control schemes, two performance indices
were used: first, the tracking accuracy, i.e., the absolute value of the steady behavior
of the attitude tracking errors |zy;|, i = 1, 2, 3, and second, the system settling-time
ty, 1.e., the time after which z;; have a steady-state behavior, respectively.

The control gains in the controllers (5.59) and (5.60) were chosen by trial and
error until a good tracking performance was achieved. After carrying out 2000 times
numerical simulations for Case #1 and Case #2 by using those five controllers with
different o 4, respectively, the tracking performance was listed in Tables 5.1 and 5.2,
respectively.

(C1) It was seen in Table 5.1 that except for the practical inverse dynamics con-
troller, the other four approaches achieved almost the same tracking performance
for Case #1. However, the nominal inverse dynamics controller (5.59), the practical
inverse dynamics controller (5.60), and the controller (5.60) with the reconstruction
law (5.13) failed to perform the tracking task in Case #2. That is because those three
controllers are not capable of handling external disturbances, actuator faults, and
uncertain dynamics.

(C2) As listed in Table 5.1, the proposed control approach and the approach
with the controller (5.22) and the GCVO applied ensured almost the same tracking
accuracy for Case #1 and Case #2. That is because the GCVO and the presented
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Table 5.1 The comparison of the average attitude tracking accuracy of 2000 times simulations

TRURL)

(““x” denotes that the corresponding approach fails to accomplish the attitude tracking task)

Control The average tracking accuracy
schemes

|z11] |z12] [z13]

Case #1 Case #2 Case #1 Case #2 Case #1 Case #2
Controller |2.74 x X 3.68 x X 4.30 x X
(5.59) 1076 10~4 10~4
Controller | x X X X X X
(5.60)
Controller |2.77 x X 3.79 x X 4.27 x X
(5.60) + 1074 1074 1074
estimation
law (5.13)
Controller |2.82 x 4.27 x 3.63 x 7.92 x 4.31 x 7.84 x
(5.22) + 104 1074 1074 104 104 104
GCVO
The 2.76 x 4.15 x 3.65 x 7.85 x 4.04 x 7.93 x
proposed | 107 1074 1074 1074 1074 1074
controller

Table 5.2 The comparison of the average settling time #; of 2000 times simulations (“x” denotes
that the corresponding approach fails to perform the attitude tracking task)

Control schemes The average settling time 7 (sec)

Case #1 Case #2
Controller (5.59) 24.6 X
Controller (5.60) X X
Controller (5.60) + estimation | 36.1 X
law (5.13)
Controller (5.22) + GCVO 22.4 39.3
The proposed controller 10.2 16.5

estimation law (5.13) can both provide the unmeasured joint velocity with precise
estimation information. However, as we can see in Table 5.2, the developed approach
guaranteed a shorter settling time for both cases. This is because the estimation
law (5.13) can provide the estimation error with a finite-time convergence, while
the GCVO can guarantee an asymptotic estimation only. Hence, the effect of the
velocity estimation error was eliminated within a shorter period by the proposed
control approach.

In the above quantitative analysis, the trajectory tracking performance was evalu-
ated only. The performance of the estimation law (5.13) was not shown. To evaluate
its estimation performance, another two performance indices were adopted: first, the
estimation accuracy, i.e., the steady-state behavior of the estimation error ||e;]|, and
second, the estimation time t,., i.e., the time after which ||e;|| has a steady-state
behavior. The estimation performance obtained from 2000 times tests was listed in
Table 5.3. For Case #1 and Case #2, although almost the same estimation accuracy
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was achieved for both observers, the GCVO achieved a slower estimation than the
estimation law (5.13). That is since the GCVO can govern the estimation error to
be asymptotically stable only, while the estimation law (5.13) can ensure finite-time
convergence for ||e]].

Through the above results and analysis, the effectiveness of the developed attitude
tracking control architecture has been validated.

5.9 Summary

Considering angular velocity measurement uncertainty and modeling error including
reaction wheel actuator faults, external disturbance, and uncertain inertia, simulta-
neously, a novel robust velocity-free fault tolerant attitude tracking control approach
was presented for satellites. An observer-based reconstruction law was incorporated
into this architecture to provide an exact reconstruction of that angular velocity mea-
surement uncertainty after a finite time. With the application of this approach, the
attitude tracking task was accomplished. The attitude tracking error was governed to
be uniformly ultimately bounded, even when the satellite does not have any velocity
sensor. The key advantage of this methodology is that actual angular velocity and
any prior knowledge of reaction wheel actuator faults are not required. Moreover, the
proposed control did not require any online or offline fault detection and isolation
mechanism.
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Chapter 6 ®)
Adaptive Attitude Stabilization Control e

6.1 Introduction

Although many observers, sliding mode observer (SMO), or even finite-time observer
for state estimation, and observer-based output feedback control approaches have
been reported, those schemes are characterized by two drawbacks: (1) they are
designed based on the assumption that all actuators operate normally, i.e., actuator
faults never occur; and (2) a practical issue, i.e., actuator constraint is not investi-
gated. Challenging operating conditions increase the possibility of malfunctions in
sensors, actuators, and controllers.

With an effort to tackle the above two drawbacks, this chapter investigates the fea-
sibility of partial-state feedback control design for a class of multi-input multi-output
systems with actuator faults, system uncertainties, external disturbances, immeasur-
able states, and actuator constraints explicitly addressed simultaneously. The main
result to be achieved is to extend previous work on partial-state feedback control [1]
while approaching the challenging case of output feedback control for a general type
of nonlinear systems subject to the above five issues rather than only the satellite
attitude control system. However, the approach in [1] was not able to handle system
uncertainties, it can only be applied to satellites and would be ineffective when applied
to other nonlinear systems. An adaptive SMO-based velocity-free fault-tolerant and
uncertainties attenuation control scheme is proposed for such as solution, as shown
in Fig. 6.1. The controller is designed using the measurable output and the estimated
value for the adaptive SMO only. The main contributions of this chapter, relative to
the existing works, can be outlined as follows.

e In terms of theoretical contribution: Compared with the state observer even finite-
time observer-based control schemes such as [2—4] which can only handle three
issues including system uncertainties, external disturbances, and immeasurable
states, this chapter presents a general solution for the integrated design to address
not only those three issues but also actuator faults and actuator input saturation
simultaneously. Hence, the proposed control scheme will have an extra fault-
tolerant capability to handle actuator faults. Actually, simply combing the existing
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state observer-based control [2—4] with FTC such as [5] cannot solve those five
problems simultaneously, because those five issues are highly coupled. Hence, the
design of the approach to them is complex and multidimensional, it needs adequate
techniques.

e In terms of engineering application: The proposed approach is able to achieve not
only the FTC for actuator faults but also the attenuation control for disturbances
and system uncertainties. Moreover, that is implemented with output feedback
only. It means that sensors for measuring system output are requested only to be
equipped, while the sensors for obtaining system states’ measurements are not
needed. A low-cost reliable control design is achieved. This leads to the great
potential application of the approach to achieve economic control system design.

6.2 Euler-Lagrange System

Consider a multi-input-multi-output nonlinear system represented by the Euler-
Lagrange equation of the form [6]

Hx)x+Cx,x)x+gx)=u+d+ f(x,x,1) 6.1)

where x € R” is the generalized coordinates, x € R" is the generalized velocity,
u € R" is the control force, H(x) € R"*" denotes the symmetric positive-definite
inertia, C(x, x) € R"*" is the matrix of Coriolis and centrifugal force, f(x, x,?) €
R”" is the system uncertainty, d € R” is the external disturbance, and g(x) € R”
represents the gravitational force. Moreover, this Euler-Lagrange system has the
following properties.

Property 6.1 The matrix H (x) is bounded by 0 < Lyin||y|1><yTH (x) y<Imax||¥|]?
forVy € R" and Vx € R", where lnin € Ry and liax € Ry are two scalars.

Propert)_' 6.2 Thematrix H (x) — 2C(x, x) is skew-symmetric forall x € R". There
has yT(H(x) —2C(x,x))y =0, Vx € R" andVy € R".
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Property 6.3 The matrix C(x, x) is bounded with respect to x and linear with
respect to X. It exists a scalar ciax € Ry such that ||C(x, X)|| < cmax||X]], VX € R™.

Remark 6.1 The Euler-Lagrange system (6.1) can be adopted to describe the
dynamics of many industrial systems, such as robotic manipulators, satellites, twin-
lift helicopters, hypersonic flight vehicles, and marine vehicle. In addition, the exter-
nal disturbance acting on this system is usually bounded in practice. The following
assumption is thus made reasonably.

Assumption 6.1 The external disturbance in (6.1) is bounded. There always exist a
constant di,x € Ry such that ||d|| < dpax forall ¢ > 0. O

6.3 General Model of Actuator Faults

The nonlinear system (6.1) is presented in the absence of actuator fault. However,
actuator faults may occur. Because a minor fault in the actuator may lead to an unsatis-
factory performance or even system instability, actuator fault should be investigated.
Actuator fault is commonly categorized into four major types: (F1) Locked-in-place,
(F2) Loss of effectiveness, (F3) Hard cover, and (F4) Floating around trim. These
faults are illustrated in Fig. 6.2, where Tmax and —Tmax, Tmax € Ry, represent, respec-
tively, the upper bound and lower bound of the actuator response; # denotes the time
when fault occurs.

Assume that the Euler-Lagrange system (6.1) is controlled by N € R actuators.
After characterizing the fault types, the fault generated F1-F4 can be modeled for
each actuator as [7].

T =it + T, i =1,2,...,N 6.2)
A A
"-l'llil\ fﬂla\
~~~~~~~~~ = b Time
: > — >
t Tipe e g T
—Teax “Tmax
(a) (b)
A A
Tmax Tmax
g Time Time
| > PR
f}'\/
“Tmax S et “Tmax

Fig. 6.2 Four types of actuator faults: a F1; b F2; ¢ F3; and d F4 (the solid line denotes the
commanded control of the actuator, while the dashed line denotes the applied control of the actuator)
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where [;(t) e Ry,i € 1,2, ..., N is the actuator fault indicator represented by a
quantitative value in the range of 0-1,1ie.,0 <[;(t) < 1; 7, e R, i=1,2,...,N
with |T.;| < Tmax denotes the uncertain actuator failure. 7, e R,i =1,2,..., N is
the desired control force commanded by the controller. 7,; e R,i =1,2,..., N is

the actual control generated by the actuator.

. Nofault: Ty = Tein Li(t) = 1,and 7,; = 0.

e Locked-in-place fault: l;(t) = 0, and t,; is to a constant value at which the actuator
has frozen leading to 7,; = 7.

Loss of effectiveness fault: In this case, if it is assumed that there is 50% degradation
in the control actuation, /; (¢) will take a value of 0.5, and 7.,; = 0.

Floating around trim fault: Float-type failure can be accounted for, with /;(¢) = 1
and 7; # 0.

Hard-cover fault: I;(t) = 0 and T,; = Tmax-

Suppose that all actuators of the Euler-Lagrange system (6.1) are configured with
an actuator matrix D € R™¥_ For full control of this system, redundant actuators
are usually mounted, i.e., n < N. As aresult, D is available and it is generally made
full-row rank. The relationship between u in (6.1) and the commanded control of the
actuator can be established as

u=Dt,=DE(t)t. + D7, (6.3)
where T, = [T41, Ta2, - - -, Tan 1T is the applied control by N actuators, T, = [7,],
T, ..., Ten]T is the control input commanded by the system controller, T, =
[Te1s T2 - --» Ten]T is the uncertain fault, and E(¢) = diag([;(t), l(?), .. .,

In()]T) € RV is the actuation effectiveness matrix.

6.4 Problem Statement

The objective is to design an observer for the Euler-Lagrange system (6.1) with
only the available measurement x. The resulting observation error asymptotically
converges to zero, or an arbitrary small set containing the origin with finite-time
convergence. Then, based on the measurement x and the states of the observer,
a controller is designed to guarantee that all states in the closed-loop system are
uniformly ultimately bounded in the presence of input constraint, i.e., |T¢| < Tmax,
i=1,2,..., N and modeling error consisting of external disturbance u,, system
uncertainty f(x, X, t), and actuator fault (6.3).
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6.5 Observer-Based State Estimation

6.5.1 Adaptive State Observer

In this section, the Euler-Lagrange system is assumed to have no system uncertainty.
That is f(x, x,t) = 0. Given that the matrices H (x), C(x, x), and g(x) in (6.1)
are known. An SMO will be developed for the estimation of x and * with only
the available measurement x. Define x; = x, x, = X, and system output y = x.
Consider actuator fault (6.3), (6.1) can be rewritten as

32?1 =X (64)
H(y)xy = —C(y,x2)x, — g(y) + DE(t)T. + DT, +d (6.5)
Letx; and X, denote the estimate of x | and x;, respectively. Define the observation

T I T A
error e; = [eyr, ez, ..., e, =X — X, es =[ez,ex,..., €] =X, — X2, the
following terminal SMO is designed:

=% —x, (6.6)
2 A on k3 r ko .
H(y)x; = —C(y, X2)x; — =Y x,]7 — T g(y) —ksX2 + DT, (6.7)
)7 1
where x, = [Xp1, X2, « - ., Xpn]T = kisgn(ey), k; e Ry, i = 1,2, 3,4 are observer

gains, y € R} and B € R, are two odd integers such that y < B.
Combining (6.4) and (6.5) with the observer (6.6) and (6.7), the observation error
dynamics is obtained as
é] =€) — X, (68)

H(y)é; =—C(y,X2)%2+ C(y, x2)x2+ DIy — E(1))T,
k k y
— 2y, — —— |x,|7 — k¥, — DT, —d
kit (ke

(6.9)

Note that, we assume that the state X is bounded, i.e., ||X|| < Q. Thatis a reasonable
assumption, because for most rigid bodies represented by (6.1), x stands for velocity,
x is bounded due to the physical limitation of mechanical. However, this assumption
will not be required when the observer is used in connection with the controller
design, as discussed in Sect. 6.6 (Theorem 6.3).

Lemma 6.1 With the SMO (6.6)—(6.7), select the observer gains satisfying

(o)) ky
—_— <
(1 - 771)771 Cmax

— Qo (6.10)
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where Q1 = 2\/_||D||rmax + dmax + k4 Qo, m1 € Ry and 0 < my < 1 are two pos-
itive scalars, while Q; = Q1 + /n(ks + k3). If || || < Qo is satisfied, and X,(0) is

chosen such that ||e>(0)|] < ,]‘4 — Qo, then the error e; will be always bounded by

— Qo, ie, |lex(®)]] < - "4 — Qg fort > 0.

Proof Applying the linear property of C(x, X) in Property 6.3, one has

Cnmx

C(y,x2)xy — C(y,X2)x, = —C(y,x2)e2 — C(y, e2)X> (6.11)

Choose a Lyapunov candidate function V = —ezH (¥)ey for the error dynamics
(6.8), (6.9), it is obtained from Assumption 6.1 and Property 6.2 that

. k
Vo=e" <D(IN —E@)t,—C(y,e)x, — Dt —d — k_zxv
i

- Lxy J’* —k4x2>
(1

< Qilleal] — (ks — cmax(l€2l] + Qo))lleal]* — kre3sgn(er)

— kseldiag(|sgn(e))| 7)sgn(x,)
< —(ks — cmax(lle2ll + Qo)lleal I + (Q1 + vnka + V/nks)|lea|
= —(ks — cmax(ll€2]] + Qo)) €21 + Q2lles]|

(6.12)

where e, DIy — Et)1, — DT. —d) < Q4||ez]] is used.
As a consequence, if ||ex|| < Lk—“ Qo, then there will exist an positive scalar
- such that cmax ([l€2|] + Qo) + 11 = k4. The inequality (6.12) becomes

Vo < —mlleall* + Qallesl|

5 (6.13)
= —mmillea]|” + (Q2 — (1 — w)n1llezlD|le2]]
It thus leads to
. 2 2y
Vo < —mimllex||” = ——W (6.14)
lmax

(1 } here, the inequality Vj <

when e, is outside of the set D = {ez llea|] <

0.50max||€2]|? from Property 6.1 is used.
From (6.14), it can be concluded that V{) will decrease monotonically for e; ¢ D).
Then, it is got to know from the definition of V, that e, will decrease mono-

tonically once e, is outside the set Dy, while ||e;|| < k0, is satisfied. That

Cmax
means that, D, is a region of attraction for ||e,|| < Lk—4 — Q. Furthermore, because
ma:

the estimate x,(0) is chosen such that ||ez|| < C—“ — Qo, using the above anal-

ysis and the observer gains chosen according to (6.10), it can be concluded that
llea(D)]] < k—: — Qo for all # > 0. The proof is completed. (I

Cm;
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Fig. 6.3 The geometric
representation of sets in the
proof of Lemma 6.1

A(t=0)

7 B=0)\

Remark 6.2 The proof process of Lemma 6.1 can be illustrated by Fig. 6.3. k4
should be chosen large enough to guarantee that e,(0) is within the set D, =

{ IS k4 QO}. If e,(0) starts with A which is within the set 9,\D;,

Cm,
the error state e2 will move in D;. Once inside the set D, e,(¢) cannot get out. If
e,(0) starts with B in the set Dy, the state e, () will never move out of the set D,
as shown by the analysis in the proof of Lemma 6.1. Hence, it can be concluded that
P is aregion of attraction. It also ensures e; € D, for all ¢ > 0; this means that e,
is always bounded.

Theorem 6.1 Consider the Euler-Lagrange system (6.1) in combination with the
SMO (6.6), (6.7). Given the initial estimate X, (0) chosen such that ||e>(0)|| < k“ —
Qo, choose B, y, and the observer gains k;, i = 1,2, 3, 4 such that (6.10) and

ks

k> ——— 0 (6.15)
k k N
%—m—@( - —Qo> >0 (6.16)
kl max
ks
o~ 2ki>0 (6.17)
1

where L1 € R, and k; € R are two scalars. Then, whether the actuator fault (6.3)
occurs or not, the observer errors e; and e, are finite time stable, i.e., e;(t) =0

B=y Bty B=y

B () 2P (Vo) 2P
fort > Ty = He|_(0)|| and e>(t) = 0fort > Ty = Ty + £ (1‘““;?03_)(/‘)/") 5 ywhere
M € Ry is a constant such that A + ( Qo) < k.

Proof To prove Theorem 6.1, the Lyapunov’s direct method is adopted, and it can
be divided into the following two parts.
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e Stability analysis of the estimation error e;:

It can be obtained from (6.15) that there exists a constant A; € R, such that A +
( 7N Qo) < k;. Then, consider an candidate Lyapunov function as V; = O.Sefel,

Cmax

applying Lemma 6.1 yields

Vi =e](es — kisgn(er)) < —|le1]|(ki — |leal]) < —Ailles]| = —A1v/2V) (6.18)

Solving (6.18) yields V() =0 for t > Ty, i.e., ||e;(t)|| = O for that r > Ty. The
observation error e is thus finite-time stable by using Definition 2.1. Sliding motion
takes place on e; = ¢; = 0 by r = T, then solving for equivalent output injection
yields [x,]eq = e2; here, the subscript “eq” denotes the equivalent state on the sliding
surface e; = €; = 0 in the sense of sliding-mode control theory.

e Stability analysis of the estimation error e;:

Once the sliding motion (e; = é; = 0) is achieved after the finite time 7, using
[x,]eq = €2, the error dynamics has the form

H(y)é; = —C(y,x2)%, +C(y, x2)x2 + DIy — E(t))7,
ka k3

J— _ez J— 7
ky (k)"

(6.19)

|x,|7 —kyXr — DT, —d

From Lemma 6.1, it follows that ||e;|| < Ck—“ — Qy for that ¢t > 0. Then, further
differentiating Vj, applying (6.11), Property 6.2, Property 6.3, and the gain choice
in (6.16), (6.17) yield

Y
Y k k B
VO = e%‘ D(IN — E(l))‘[(. — C(y’ez)jjz — 2_‘?2 _ % _k4.i'2 _ D'EL _d
ki e
k ksllea]|"t 7
< Qillea]l — (ﬁ — (cmax(lle2] + Qo) +k4)> lle2]|> — %
1

Y
v k k. B v k:
= —ailleal|TF — [ =5 =k — Ql( L Qo) lleal) T F — (—2 72k4> lleal?
(k1)# Cmax ki

1+%
< —«illez|| "7

2o\ o
= (l 0)
" (6.20)

Because the above stability analysis for e, starts with the time Tp, one can integrate
both sides of (6.20) from T to ¢, and solve (6.20) to obtain V() = O forall r > Tj.
According to the definition of Vj and the positive definiteness of H (y), it follows
that e, (t) = 0 for all r > T1, i.e., the observer error e, is thus finite time stable by
using Definition 2.1. Thereby, the proof is completed here. (]
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Remark 6.3 It should be pointed out that, the value of Ty cannot be explicitly deter-
mined. That is because A; is only used to theoretically analyze the finite-time conver-
gence of e;. It is only proven that A; does indeed exist according to (6.15). However,
its exact value would be unknown. It is also not necessary to choose A; in the imple-
mentation of the approach.

6.5.2 Effect of System Uncertainties

Limit to finite system modeling techniques, mathematical model could not be exactly
established. The Euler-Lagrange system (6.1) will be subject to modeling error
f(x,x,1). Generally, f(x,x,1t) is represented by f(x,x,t) = &(x, x, t)® with
& < R a constant but unknown parameter vector, and §(x, x,7) € R” *It 3 bounded
function such that

1§ Ce1, X1, )P — E(x2, X2, )R] < ¢ql1%1 — X[ + ¢pllx1 — x2]| (6.21)

forx; e R", x, e R", ¢, € Ry and ¢; € R, are bounded but possibly time-varying
positive scalars. Uncertainty f (x, x, ¢) includes, for example, uncertainty in Coriolis-
Centrifugal forces, gravity forces, and viscous frictions. For a manipulator with rev-
olute joints and with bounded joint velocities, due to the dependency of dynamics to
joint angles, the representation f(x, x,t) = &(x, x, )® is always possible [8].

In the sequel, we denote ® c R" as the estimate of ® and present the following
adaptive observer design approach with system uncertainties considered.

Theorem 6.2 Consider the terminal SMO given in Sect. 6.5.1, an except that (6.7)
is replaced by

: . n k .
H(y)x, = —-C(y,x2)x, — g(y) + Dt — k—zxv — k4Xxo
1

ks , . (6.22)
—— x]7 + &y X2, )®
(k1) ?
where ® is adaptively updated by
& =TE"(y, 22,1)y — T (6.23)
dET(y, &a, 1 X -
9= My +E (. %2, DX+ 5, (6.24)

dt

and 8, € Ry is a constant, T' € R' ¥ is a positive-definite constant matrix. Choose
the initial state ®(0) and the observer gains to satisfy
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0>
> =
(1 —=m)m

200V2(0) 4+ 2 ky —
oV2(0) +2p - 0> ke 0 (6.26)
lminKO (1 - 7[1)771 Cmax

where V(0) = 0.5¢T(0)H (y(0))e(0) + 0.5®" (0)T ' ®(0), ®(0) = &(0) — &(0),
p = 0.58]82||<I>||2; r e Ry, 6 € Ry, and 5, > 0.5 are three positive constants,

ky (6.25)

£y = min {(@, % ], while T, is the maximum eigenvalue of the matrix T.
Suppose that the initial estimate X,(0) is chosen such that ||e,(0)|] < (l—?r—f)m then

the observer error ey will be finite time stable with finite-time Ty, i.e., e((t) = 0 for
t>T) = ue./\_(l())n with Ay € Ry being a constant such that A; + (lfiﬁ < ki and the
observer error e, is ultimately uniformly bounded.

Proof Like the proof of Theorem 6.1, the proof of Theorem 6.2 can be divided into
the following two parts.

e Stability analysis of the estimation error e;:

With the replaced estimation (6.22) for x,, one has

H(y)e; = —C(y, %)%+ C(y,x2)x2+ DIy — E(t))7.
k k ;. .
— 22X — — o |xJF —kaky + E(p, %2, 1D (6.27)
ky (k1)#

—E(x,%,0)® — Di.—d

Note that
E(y. 32 N® —E(x. %, =E(y,fz,t)<i’~—§(i€1,x2,f)¢ 62%)
=—§(y, X2, )P+ &0
Whereg =E(y, X2, 1) — E(x1, x2, 1). It thus results (6.23) in
& = —TE"(y, £, er — 8, Td (6.29)

With (6.21), one has ||E®|| = [|£(y, X2, 1)® — &£(x1, X2, )®|| < ¢ llea]].

. . . T r1é .
Choosing another candidate Laypunov function V, = M + 22 yith

=0 9, differentiating V, and substituting (6.28) and (6.29) lead to
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. k k
Vo=el [ DUy — E@)t. — C(y,e)%) — DT — —x, — —— |x,] 7
ky (k1) ?

N N 2 . ~T 14
ity —d +E(, 82, 0B~ £(.4.0®) S T'®

~

< Qilleal] — (ks — cmax(lleall + Qo) — clleall* + 8,9 @
— kae]sgn(ey) — kze] diag(|sgn(e;)| #)sgn(x,)

<859 & — (ks — camn(lle2ll + Qo) — c))llea]
+ (01 + ks + /nk3)||es]]

— 59" & — (ks — cmn([le2l] + Qo) — cp)leal > + Oallea]]

(6.30)

As the proof of Lemma 6.1, if ||ex]| < kz—(" Qp, then there will still exist an

positive scalar - such that cmax([|€2]] + Qo) + m1 = k4 — ¢,4. This leads (6.30) to

. ~T A
Vo < —milleall* + Qalleal| + 6, @

R A (6.31)
= —mmille2]]” + (Q2 — (1 = wpmillexlDllex]| + 6, @ @
At this time, when e; is outside of the set D;, we get
Vy < —mmilleal* + 8, @
T (6.32)

~ ~T ~
eTH(ye T 5128, — 1D I 'e -
_60<2 (y)z+ i >+ 128 = 1) s

2 282 T max

A

Define 2.22-D®' T2 _ g € R,, itleaves (6.32)as Vo < —loVs + @ + 68 ' b

282 Tmax
Using the completion of squares, the following equation can be calculated:

~T A ~T - 1 - 1) ~
519 &=5® (@ —®) <6 =1+ =)@ — ||®]
26, 2

81286, — 1) 516 (633)
1 2 = 2 102 2
=——||® —||®
25, 211"+ ==l
From (6.33), one can apply the definition of ® to obtain
- ~T~. = 61(26—1 816
O+50 b <d— l(+)||<I>|| + -5 llelP
2 (6.34)
816, ’
= T“‘I’H =

Then, one has ]
Vo< —b6Va+p (6.35)
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Solving this inequality yields V,>(¢) < V,»(0) + [ﬁo. Using 0.5lmin|l€2]]> < V5 for all

e, € R", one can get ||e;|| < ¢ for all > 0, where ¢ = 1/%.
From the above analysis, it can be concluded from the gains’ choice (6.26) and

the chosen initial values x,(0) and <i>(0) that the inequality ||e;|| < & will always
hold for all + > 0. That is to say, e; is ultimatly uniformly bounded by Definition
2.1.

e Stability analysis of the estimation error ey:

The stability analysis of the estimation error e; is as same as in the proof of
Theorem 6.1.
Summarizing the above analysis, Theorem 6.2 is thus proved. (I

Remark 6.4 From the proof of Theorem 6.2, it can be known that once the initial
values of x1(0), X,(0), and <i>(0) are chosen, the observation or estimation accuracy
for e; highly depends on the choice of the observer gains. A smaller value of §;, 7yax,
and 4,, or a larger value of n;, ; will result in a smaller value of €. Consequently,
the accuracy of the observation for x, is much higher.

6.6 Adaptive State Observer-Based Controller

A velocity-free fault-tolerant and modeling error compensation control scheme is
proposed for the Euler-Lagrange system (6.1) based on the observer proposed. The
controller is designed as

7. = sat(D'v,, Tmax) (6.36)

where v, = [Vel, Vea, . . ., ven]T € R” denotes the input of the controller. For conve-
nience of input constraint effect analysis, the following auxiliary system is introduced

Az
|lxall?

Xag — ATC (637)

xa:_ka a

where k, € Ry, x, € R” is the state of the auxiliary system, and Az, = D(t, —
D'v,).

Introducing coordinate change z, = X, + pX; with the scalar p; € R, the sta-
bility of the closed-loop system with the control (6.36) can be summarized in the
following theorem.

Theorem 6.3 Consider the Euler-Lagrange system given by (6.1) with the mod-
eling error induced by actuator fault (6.3) and uncertainties f(q, q,t) satisfying
(6.21). Application of the adaptive SMO (6.6) and (6.22), if the controller (6.36) is
implemented with the input signal v. designed by
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kzxv
ky

+ —21 1%,) F + ks — p2z2 — p3%a
(ky)? (6.38)

—E(y, %2, N® — &1 — 0 H(y) (22 — pi&1) — 01 C(y, £2)% — I

ve =g(y) +

where p, € Ry, ps € R are the control gains, and Ty = 5-(ck  |lz2||*+
[|H (p)||*)z2. Suppose that the control gains are chosen such thatk, — 0.5,032 —-0.5>
0and p; — 1 > 0, then all the states of the closed-loop system, i.e., q and q, are ulti-
mately uniformly bounded. The modeling error consisting of external disturbances,
actuator fault, and system uncertainty is attenuated and compensated.

Proof With application of the controller (6.36), it results in
D1, = Dsat(D'v,, Tyay) = AT + v, (6.39)
Using the definition of z,, inserting (6.38) into the adaptive SMO (6.22) yields

H(y)zy = At. — C(y, %¥2)z2 — ptH(y)x, — X1 — p222 — p3xq — Iy (6.40)

Consider a candidate Lyapunov function as V3 = 3 (chfc 1+ 2 H(y)za + x1x,).
Using Property 6.2, the linearity property in Property 6.3, combining (6.6), (6 37),
and (6.40) results in

Vs = —pi||1]° — x.%] — xTAT, + 20 (~C(y, e2)z2 + AT,

(6.41)
— pitH()x, — p222 — p3xa — M) — kal|x,411* — || AT,

Because ||x, || < «/nk; holdsduetox, = kisgn(e;), it can be obtained from Property
6.3 that
T 2
2, (—=C(y, e2)z2 — pLH (y)x,) <cmaxlle2|ll|2211> + o1 | H(Y) |l |z2]1v/nk,

<,01C,"}mx||12||4 llez||?
- 2 2p1 (6.42)

P1 nk}
+ S IHWPllz2 ] + ==
2 2p1

; [P i ST pill#il? | nkf \IATL\I2+\IZ7II2
Using Young’s inequalities —x,x; < 554 + 2p]’ 2y At < 1=t
2 2 2 2 2
—p3zix, < w,—xZATC < %,andlmposmg (6.42),then (6.41)
will be bounded by

2 2

. Ol A Jo leal*  nk
Vi < —— %117 = (p2 — Dllzall* — a__3_ ol + —— + —
2 2 201 P1

(6.43)
It is known from the proof of Theorem 6.2 that, ||e>(¢)|| < € holds for all > 0. It
follows from (6.43) that
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2 2

. k
Vs < —2agVs + JEID | ik (6.44)

2p o1

where Ag = min{0.5p1, o=l g 0.5,032 — 0.5}. That means that Vj is ultimately

Imax

uniformly bounded together with the states X1, z», and x,. More specifically, there
exists a finite-time 7 ¢ such that ||X|| < £ and ||z5|| < &forVe > 2/\(1”01 (”82‘|2 + nkf)
and V¢ > ty.

Because e (¢) is finite time stable in 7j and e;(¢) is ultimately uniformly bounded
with [|ex(7)|| < e, forall 1 > 1, = max{ty, To}, it follows that

x|l = X1 — el < (%] + [les]| < & (6.45)
and
x| = llx2l] < 1X2l] + lleal] < llz2ll + [lo1X1]] + [le2]] < ™ (6.46)

where ¢* = & + p;&€ + ¢. It is thus concluded from (6.45), (6.46), and Definition
2.1 that the states of the closed-loop system, i.e., x and x are ultimately uniformly
bounded. The proof is hence completed here. 0

It can be summarized from the proof of Theorem 6.3 that, only the system output,
the states of the observer, and the state of the auxiliary system (6.37) are feedback
to the controller (6.36). Hence, the controller is rigorously independent on the mea-
surements x. Moreover, the assumption, i.e., ||X|] < Q is also not required in the
controller design.

Summarizing the analyses in the proof of Theorem 6.3 and Remark 6.4, all the
gains of the observer and the controller can be chosen according to the following
procedures when implementing the proposed approach.

e Step #1: Determine the observation/estimation accuracy accuracy ¢ for e;.
e Step #2: 1t is seen in the proof of Theorem 6.2 thate = , / 26V2(O+2p , then once can

Imin€o
choose 1,0 < m < 1, 8¢, 8, > 0.5, T, x,(0), and <i>(0) to satisfy this equation.
Step #3: Select ky, ks, k3, k4, 8, and y to satisfy inequalities (6.25), (6.26).
e Step #4: Choose a positive £ according to the set of requirements (such as control
accuracy) imposed by the mission. It is known from (6.45) that if smaller ¢ is
selected, then higher accuracy will be achieved.

e Step #5: Based on the inequality & > 4/ W in the proof of Theorem 6.3
and the value of ¢ determined in Step 1, choose p;, p» > 1, p3, and k, such that

&>,/ %;}T"k% and k, — 0.5,032 — 0.5 > 0. However, a smaller p; will lead to a
high-accuracy control of x according to (6.46).
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6.7 Application to Microsatellite Attitude Control

Having shown that, for proper choices of the gains for the observer and the controller
as given in Sects. 6.5 and 6.6, the system states x and x will be ultimately uniformly
bounded, this section will apply the proposed control to the problem of rigid satel-
lite attitude stabilization control through along with accompanying simulation and
experimental results.

Consider a microsatellite controlled by using four reaction wheels with the
maximum torque ‘L’max = 0.1 N-m. The corresponding actuator matrix is D* =
[1,0,0, [, 0,1,0, [, 0,0,1, [] Assuming that only the satellite attitude o is

measurable, while its angular velocity @ is immeasurable, i.e., 6 = [w1, ws, w3]T
is immeasurable. Because J*(o) in (4.42) is a known function of o, consider-
ing reaction wheel faults, the transformed rigid satellite attitude system (4.42)
in Sect. 4.3 can be put into the Euler-Lagrange system (6.1) with g(y) =0, by
introducing the change of variables y = 0,x, =0,x, =0,D = (P(0))"D*, and
d = (P(0))"u,. Hence, the proposed observer-based velocity-free control approach
in this chapter is applicable to the rigid satellite attitude control problem.

To this end, the control objective of that considered rigid satellite attitude system to
be achieved can be stated as: Consider the rigid satellite attitude system described by
(4.42) for given any initial attitude and angular velocity, design a velocity-free (i.e., 0
is not required) control law u to accomplish attitude stabilization maneuver, i.e., the
closed-loop attitude control system can be stabilized with the attitude o converging
to zero or a small set containing the origin. Moreover, the control objective should
be met in the presence of external disturbance u,, actuator fault, actuator constraint,
and system uncertainties.

6.7.1 Simulation Results

The external disturbance for u, in (4.42) is calculated as in [9], and the following
fault scenarios are introduced and simulated.

e The actuator mounted in line with 4 X p-axis loses 50% of its normal power after
3s.

e The actuator mounted in line with +Yg-axis loses its power of 10% in the time
interval from 5 to 10s; this wheel gets locked-in place at a value of —0.01 N - m
after 10 s.

e The actuator fixed in line with +Zp -axis experiences 0.005 N - m of floating
around trim fault after 7s, i.e., e3(t) = 1 forallt > 0, and 7.3 = 0.005 N - m when
t>1.

e The fourth actuator is always healthy.

For the considered rigid satellite, the uncertainties in its attitude control system
are mainly induced by uncertain inertia. The mass properties of rigid may be uncer-
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tain due to onboard payload motion, rotation of solar arrays, or fuel consumptions,
making J time-varying and even uncertain. Therefore, the simulation is carried out
under the condition that the moment inertia matrix J = Jo + AJ is unknown and
time varying. Here, Jo = diag([16, 18, 23.5]T) kg - m? is the nominal part, and the
following uncertain A J is considered in simulation.

AJ = (1 +exp(=0.11) + 2v(t — 10) — 1.5v(t — 20))diag([3,2, 11N kg - m?>  (6.47)

where v(-) is defined as v(t > 0) = 1 and v(r < 0) = 0.

Based on Remark 6.4 and the procedures of choosing the controller and observer
parameters as stated in Sects. 6.5 and 6.6, the control gains for the controller
(6.36) are chosen as k, = 5, p; = 2.2, pp = 2.05, and p3 = 2.75. The gains of the
observer are chosen as y =7, 8 =19, k; =0.15, kr =9, k3 = 16, k4 = 0.0005,
I' = diag([2, 2, 3, 3, 3, 41Ty, and 8, = 0.001. The initial states of the satellite are
a(0) =[0.4, —0.25,0.3]" and 6 (0) = [0, 0, 0]" rad/s.

Figures 6.4 and 6.5 show the observer error states obtained from the SMO (6.6)
and (6.22) incorporated in the controller (6.36). It is shown that sliding motion is
obtained on e; = 0 in finite time at about 3.7 s. After a short period, roughly 0.3 s,
uniformly ultimately bounded stability of e, is achieved. This convergence happens
in the presence of external disturbance and actuator faults. Moreover, high observing
accuracies for x| and x, are realized with the reconstruction error |e;;| < 2.0 x 1077,
and |ey| < 1.0 x 1073, i = 1, 2, 3. From the results obtained, the estimate states
X1, X, can converge to the actual states o, 6 with minor errors under the effect
of the observer despite external disturbance and reaction wheel faults. Hence, the
conclusion in Theorem 6.2 is verified.

Because the observer can precisely reconstruct the satellite attitude o and its
angular velocity ¢, the observer-based and its angular velocity-free controller (6.36)
guarantees the satellite attitude and its velocity to be uniformly ultimately bounded
stable in finite time roughly 655, as we can see in Figs. 6.6 and 6.7. The attitude
stabilization maneuver is thus accomplished without angular velocity measurement,
even when an actuator fault occurs. The associated commanded control is shown in
Fig. 6.8. The control power of each reaction wheel is within its maximum allowable

Fig. 6.4 The observer error 2e—4 -
e from the adaptive SMO _ 1
1.5¢4

le—4

5e-5 |l

The observer error ¢

Time (s)
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Fig. 6.5 The observer error
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limit, i.e., 0.1 N - m. It is interesting to see Fig. 6.8 that the control power of each
actuator will not be near zero. That is due to the fact that, extra control torque is
needed to compensate for the lock-in-place fault, and the floating around trim fault
occurring in the actuators in +Yp and +Z3.

Taking sensor noise into account, numerical simulation is further carried out
to verify the realistic application of the proposed approach to engineering. For
satellite, nongyroscopic sensors are equipped to measure its attitude information.
In practical satellite engineering, attitude sensors are usually modeled by a zero-
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mean Gaussian white-noise process with standard deviation osr. Hence, the attitude
control by using the designed scheme is further simulated with ogy = 35 arcsec-
onds, while the control and the observer gains are chosen the same as the values in
the preceding simulation. Results show that, high observing accuracies for x; and
X, are still guaranteed. The reconstruction errors are |ej;| < 2.2 x 1073, and |ey;| <
1.6 x 1073, = 1, 2, 3. Moreover, the attitude control accuracyis |o;| < 3.0 x 1073,
and |w;] < 1.2 x 1073, i = 1, 2, 3. Those control performances still satisfy the strin-
gent pointing requirements of the satellite to provide operation conditions for the
payloads even in the presence of actuator faults.

6.7.2 Experimental Results

To test the proposed controller on the ground, the three-degrees-of-freedom simula-
tor shown in Fig. 2.4 is used. During experimental tests, the considered microsatellite
will be mounted on the payload of this simulator. When the proposed approach is
applied, the experimental results are shown in Figs. 6.9 and 6.10. It is seen from
Fig. 6.9a that, the attitude stabilization is accomplished within 60's. By transforming
the modified Rodrigues parameters o into Euler attitude angles, it can be obtained
that the attitude pointing accuracy achieved is 0.015 degrees. The resulting angular
velocity is shown in Fig. 6.10. As the steady state behavior clearly shows in Fig. 6.11,
attitude stability is within 0.002 deg/s. These control performances can guarantee the
satellite attitude system satisfies necessary stringent requirements for accomplishing
the planned mission, such as image taking and data transmission. On the other hand,
itis worth mentioning that, the inertia moment cannot be precisely calculated in prac-
tice. As a result, the value of the inertia used in the implementation of the proposed
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control is not the exact value of the real inertia. Hence, there exist uncertainties in
the attitude control system during experiments.

Compared the experimental results in Figs. 6.9, 6.10 and 6.11 with the simu-
lation results in Figs. 6.6 and 6.7, almost no overshoot is observed in experiment
results. That is because, when carrying out experiments on ground and indoor, there
is no external disturbance acting on the testbed. However, it can be seen that the
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experimental results match the simulation results very well, and 60 s are needed to
stabilize the attitude in both results. To summarize, high-accuracy pointing control
(order of 1072 deg) and high-accuracy attitude stability (order of 10~3deg/s) can
high-accuracy attitude be realized through the proposed control. Hence, the easi-
ness of implementation, high accuracy, and robustness are well verified through the
experiment.

6.8 Summary

A velocity-free fault-tolerant and modeling error compensation control approach
was proposed for a class of nonlinear systems. The SMO presented achieved pre-
cise reconstruction of unmeasured system states even in the presence of system
uncertainties. The control design was carried out using the estimated states and the
measurement of system output. Contrary to the existing observer-based velocity-
free feedback control schemes, the controller guaranteed the uniformly ultimately
boundedness of the states in the closed-loop system, despite actuator fault, actuator
constraint, and external disturbance. The proposed method was applied to the attitude
control of a satellite with only the measurement of attitude available.
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Chapter 7 ®)
Fixed-Time Optimal Attitude Control s

7.1 Introduction

The main feature of the existing attitude control approaches can only achieve steady-
state performance. The transient control performance can not be determined or pre-
scribed. This is an important performance index in the practical satellite mission. To
achieve satellite attitude maneuvering with external disturbances, performance con-
straints, and actuator faults [1], an adaptive FTC law was designed via the prescribed
performance control (PPC) technique. Considering actuator fault and performance
constraint, a robust FTC scheme was designed by the backstepping control technique
[2]. Using the fixed-time and appointed-time prescribed performance functions, a
adaptive fixed-time FTC law for a mechanical system [3] and a barrier Lyapunov
functions-based adaptive appointed-time FTC algorithm for a satellite [4] were pre-
sented.

Note that the optimal attitude control scheme is rarely reported to satellite atti-
tude control system with actuator fault. That is because obtaining the solution of the
Hamilton—Jacobi—Bellman (HJB) equation is intractable. Motivated by this problem,
the adaptive dynamic programming (ADP) method was available [5—8]. It combines
reinforcement learning (RL) and the dynamic programming method to improve con-
trol performance by learning environmental feedback. The ADP method applies the
actor-critic/critic-only neural network (NN) to approximate the optimal control law.
Hence, it circumvents the difficult problem of obtaining the HIB equation’s analytical
solution in the traditional optimal control method [9—-11].

Currently, the RL-based approximate optimal control has been widely used. In
[12], an optimal control policy utilizing online iterative learning was presented for
a discrete-time nonlinear system. In [13], a backstepping tracking control scheme
for an unmanned ship was developed by using actor-critic NN. Combining the game
theory and the ADP, a distributed optimal FTC scheme was proposed for a class
of nonlinear systems [14]. In [15], an RL-based optimal attitude tracking control
policy was developed for satellites with uncertainties, where a critic-only NN was
adopted to learn that control policy. In [16], an online learning attitude controller
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via the saturated HJB error was proposed. A variable parameter was given to change
the learning gain and relax the persistent excitation condition. In [17], the tracking
control policy was designed by employing the ADP to accomplish a quadrotor’s
path following. Usually, the RL-based optimal control policy needs to satisfy the
persistent excitation assumption. To relax it, a modified online learning optimal
control policy with the finite excitation assumption was proposed [18, 19]. Using
the simple critic-only structure [8], the estimator-based optimal control was reported
to ensure the optimality and predefined behavioral metrics of an uncertain Euler—
Lagrange system by combining the RL and PPC method. Using the gradient descent
approach, the finite-time convergent data-based updating law for the critic weight
was developed [20]. The weight estimate error can be reduced to a tiny set in finite
time.

Most of the preceding RL-based optimal control can only guarantee the uniformly
ultimately bounded stability of the closed-loop system. Although the closed-loop
system has a good balance between the control cost and the control performance,
its convergence rate may be slow. To solve this problem, a fixed-time fault tolerant
optimal attitude control is presented in this chapter with its highlights listed as:

e To guarantee the prescribed attitude stabilization performance, a prescribed per-
formance function without knowing the precise system’s initial value is designed.
Utilizing the error transformation method, the attitude stabilization errors restricted
by the function are transformed to the unconstrained variables. On this basis, a
fixed-time RL-based optimal control framework is proposed to guarantee the atti-
tude control system’s prescribed performance, optimality, and fixed-time stability
even in the presence of faults and disturbances.

e The critic-only NN weight update law is presented by using the adaptive control
methodology rather than the traditional gradient descent algorithm [9, 10, 18]. In
particular, the proposed control scheme integrates the update law, which not only
can make the weight update law independent of the persistent excitation condition,
but also ensures the practical fixed-time stability of the estimation error.

e Considering the advantages of finite-time control techniques, i.e., fast convergence
rate and high convergence accuracy, the fractional terms are added to the design
process of the classic ADP-based optimal controller to obtain the new ADP-based
fixed-time optimal controller. Compared with the traditional approximate optimal
control policies [9, 10, 18], the proposed RL-based optimal control framework
can guarantee the system to be fixed-time stable. It means that the controlled
system’s state and NN weight estimation error with the application of the presented
controller have a faster convergence rate.

7.2 Problem Statement

Taking actuator fault into consideration, then the rigid satellite attitude system
described by (2.21) and (2.24) can be given by
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0=G(0)o

Jo=-"Jo+tu+g .
where ¢ = ((E — I3)u + u) + uy is the lumped term including the actuator fault
(E — I3)u + u and the external disturbance torque u,, where E = diag([/;1, /22,
I133]7) is the fault coefficient with 0 < I;; < 1,i = 1,2, 3, and # € R? is the biased
faulty torque. The model of the actuator faults, i.e., (E — I3)u + u, considered in
this chapter is directly referred from [21] and [22]. It is fully analyzed in [21] and
[22] that this model is practically reasonable.

In aerospace engineering, the dynamic behavior of the attitude stabilization error is
expected to be limited in the preset bounds to guarantee its transient and steady-state
performance, i.e., the tracking erroro;,i = 1,2, 3 needs tosatisfy —p(¢) < 0; < p(¢),
where p(¢) is the prescribed performance function and designed as

1
p(t) eXp(aOH 0)+,0 (7.2)

where ap € Ry, by € Ry, and py, € R are constants. Then, one has

. 1 1
,O(l‘) = (_b() - m) €xXp <m — b()l‘) <0 (7.3)

The function (7.2) has the following properties: (i) p(0) > poo, (i1) lim,,—0 0 (0) =
00, and (iii) lim,_, o p(t) = poo, Where po, is the ultimately bound of |o;|. The
property (ii) indicates that the function (7.2) does not require the system’s initial
states.

A new variable z = [z1, 22, z3]T is defined to transform the attitude stabilization
error constrained by p(¢) into an unconstrained variable, i.e.,

1 1+%
Zi:iln] a:’i:1’2’3 (7.4)

Pi

If z; is bounded, then o; is within the predefined bounds. The transformation process
will be valid. Moreover, the time-derivative of (7.4) is given as

z=A@ —To) (7.5)

i P ) ps T 1 pL P2 P33T
where A = dlag([p]z_dlz, prag pg_g}z] )and I' = diag([£}, 22, 2217).

To this end, another state x = [z7, ®"]T € R® can be introduced to transform (7.1)
into

¥ =f@x)+Gxu+Gx)g (7.6)

where f(x) = [((A(G(0)w — To))T, —(J 'o* JoH)TTand G(x) = [0, (JHT] .
Using (7.4), one can obtain f(0) = 0.
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The control objective of this chapter can be stated as: For the rigid satellite attitude
control system (7.1) with modeling error induced by actuator fault and external
disturbance, design a reinforcement learning-based fault tolerant optimal attitude
controller to stabilize the attitude with performance constraint. Moreover, this attitude
stabilization should be accomplished within fixed time.

Remark 7.1 When all the actuators of the rigid satellite system are fault-free, i.e.,
u=0,FE = I;forallt > 0anditis disturbance-free, the nominal system is obtained.
According to (7.6), this nominal system can be written as

x=f(x)+Gx)u (7.7)
To stabilize this nominal system fast, an RL-based fixed-time optimal control frame-

work is designed. It is utilized as a fundamental controller of the subsequent fault
tolerant control design.

7.3 Fixed-Time Optimal Stabilization Control

To guarantee the optimality of the nominal system (7.7), a control policy u is to be
designed to minimize the cost function J (x), i.e.,

J(x) = /OO(LI(x, u)dr (7.8)
0

where U (x, u) = xT Ox + u"Ru > 0, U(0,0) =0, (RS R*® and R € R3*3 are
two positive-definite matrices.
Using the optimal control policy u*, the corresponding optimal cost is given by

T*(x) = /oo U (x,u*)dt (7.9)
0

Taking the time-derivative for both sides of J*(x), the following HIB equation is
obtained

Hx,u*, VT = U, u*) + VT (f () + Gx)u*) = 0 (7.10)

where V,J* € R°.
Solving (7.10) can get the optimal control policy as

* 1 —1 T *
u' = - R'G (x)V:I (7.11)
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Inserting #* into (7.10), one has

H(x,u*, V,J3*) =xTQx + VII* f(x) — ivjj*g(x)Rflg(x)Tva* =0
(7.12)
Note that obtaining the solution to (7.12) is difficult, while the NN with sufficient
basis functions compact set can reconstruct any smooth function. Therefore, the NN
can be selected to approximate J*(x), i.e.,

T (x) = ET(x)W* + e(x) (7.13)

where Z (x) € R” denotes the basis function, W* € R" is the optimal weight, and
€(x) is the NN approximation error. Then, (7.11) can be rephrased as

1
ut = —ER’IQT(x) (ViEW* + Vye) (7.14)

with V, & e R"*° Hence, the approximation of 3* (x) is writtenas J(x) = &7 (x)(le .
u* is approximated by

1 ~
uy = —ER_IQT(x)VEE’W (7.15)

where W is used to approximate “W*.

Assumption 7.1 The NN approximation error satisfies ||V, ¢|| < ey with ey being
a positive scalar [9, 18].

Theorem 7.1 Considering the rigid satellite’s nominal attitude system (7.7) in the
presence of Assumption 7.1, if the RL-based optimal control policy is designed as

u=uy— g(x)T(lctanh (%) + Ax + Lng +Blx)" ) (7.16)

with the NN weight w updated by

W = R EGR'G)Tx — Pw)yW (7.17)
2y Y1

where k € R%*® and A € R®*® are positive diagonal matrices, p > q and m <
n are positive odd scalars, a € Ry, B € Ry, and ¢ € Ry are positive constants,
W(x) = exp(—‘ﬁ) +y4, 1 €ERL, y» eRy, y3 € Ry, and y4 € Ry are positive

1]
real numbers, then the NN weight approximation error ‘W = W* — W and the
state x are fixed-time stable.

Proof Let a candidate Lyapunov function be given as

1 |
Vi = ExTx + 5)/1’WT(W (7.18)
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Differentiating V) and inserting (7.7) as well as (7.16) yield

X
Cc

Vi =xT (f(x) + G(x)ug — Gx)u* + G(x)u* — ktanh ( )

—Ax —a L) - pla)E ) -y WTW

A

~ 1
= W' (vasg(x)ng(xfx - ny) +x' (f) (7.19)

1 »

+ 5 GORT'G (X) Ve + G — Ax —a |x]7
n x
—B|x)% — ktanh (—))
c

Using (7.17), WTW < —min(¥ (x))|W|?> + max(¥ (x))||'W*||> can be
obtained. Note that f(x) is locally Lipchitz function, there is a positive scalar
L satisfying || f(x)|| < L|lx||. One can obtain ||G(x)|| < G, where G is a real
number. Since u* is the optimal control policy to enforce the states of the sys-
tem (7.7) to converge to the origin, it is reasonable to assume that it has an

upper bound satisfying ||u*|| < . Consider the inequality |x| — x tanh (£) < foc
reported in [23], where 179 = 0.2785, ¢ > 0, and x € R. Furthermore, using the fact

1
that [[x]| = Y0, (x?)? < 3%, |x;|, one has

l

6
X _
—lectanh(;) < hmin (k) (— > x|+ 6noc> < —Amin (||| + 10 (7.20)
i=1

with 170 = 6Amin (k) 70c.
Then, V| is simplified as

Vi < —min{W @)}y [ W = Amin(A)[12]2 + 00
+ vol1x 1] = Amin () ||| + yamax{W )} [ W*||* + Ls|Ix])> (72D
<—-—aVi+ B

where o = min{Z28EED 2 (A) — L)), Bi = no + yamax(¥ ()| | W%,
If Amin (k) = G¥ + $Amax (R™1)G?ey and Amin(A) — Ly > 0 are satisfied, one has
Vi < <V1 ) — 5—:) exp(—a t) + f(—: Hence, x and ‘W are bounded. One can assume

that ||“!7V || < ki, where k; € R, is a positive constant.
In addition, (7.19) can be rewritten as

V=" (£00) — Ax + GRG0 Ve —ar L) — pLx
. T (7.22)
— ktanh <;) + Q(x)u*) + U E)WIW
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where the last term of (7.22) is bounded by

PV EWIW =1,0(x) > (W, W — W)
i=1

" mtn 7.23
== ZIWIPR+ 21w = 2 AW (7.23)

m+n

- 7(||W|| )5 (IIWII )2

el rWZ%
2(II )

with n; = min{y, ¥V (x)} and n, = max{y, ¥ (x)}. )
Using the similar process in (7.21) and (7.23), V; in (7.22) can be simplified as

Vi=xT(—alelf =B Lxl® ) om0+ 0@ W

nm +n

< —ax"|x]s — BxT [x]" — (IIWII ) %(H(MP)”TT (7.24)

m +ﬂ

m, - pa M
- ?1||’W||2+ (A 7(|I(W|| ) +mo+ EZII(W I?

If [W]? <1, one has —Z[W|?+ L(|W|>)%" <&, where & = (a0) ™5 -
(ao) ™% and ay = min is a positive scalar. If W2 > 1, it leads to — L ||'W|> +

m+n

L(IWIH=* <0,

According to (7.21), there is a positive scalar k| satisfying | |(W| | < ky, thenit can
prove that

. ptq o\ mtn 172
Vi < —a(llxI)= — B(lxlP)%

Ui <
+ 0+ gnw 1> - —(IIWII )5

(II’WII ) ! s; + —(k2> i

lll+n

(7.25)

r+q m+n

<- a2V1 - ,32V1 o4,

pP=q . rtq _p—q N2 ptq . m+n n "'_Jr"
where ap, = 22 min {2 %6 %, _(ﬁ) 2 }, B> = min [2 w B, ( ) }, and
no="5&+ %(klz)% + 1o+ %H‘W*HZ. According to (7.25) and Lemma 2.4, the
state x in the nominal system (7.7) and W can converge to the corresponding small
regions D; and D,

_ T . Un o un P
Dl_[x'tlinrll”x”f‘/Emm{(az(l—eo)) ’(ﬁz(l—eo)) }] (7.26)

I ~ 2 A < Ul e
Dz_ix',linr’,“w”5\/;““{(052(1—90)) ’(,32(1—90)) H (7.27)

cp. . . 2q m
within the fixed time 7 determined by 77 < P + ﬁzeo(n_m),whereo <6y < 1.

Hence, the attitude stabilization error o will be restricted in the prescribed bounds
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T is bounded. The conclusion in

due to the boundedness of z, ie., x = [zT, ®T]
Theorem 7.1 is thereby proved.

Because x and ‘W are bounded by 9, and D,, respectively, we can further analyze
the error between the designed controller (7.16) and the optimal solution (7.14), i.e.,

u — u*. It follows that

u—ut= %R“QT(x)(V;FE(W + Vye) — G(x)"(Ax + ktanh (f)

c

] (7.28)
+alx]r+Blx]")

Let the radiuses of the sets D, and D, be r,; and r4;, respectively. Then, it follows that
||Ax + rtanh(x/c) + o Lx]7 + B [x]% || < T, where T = Amax (A)rar + Amax ()
+ oe\/grdl 7 + ﬂ«/@rdl % . Moreover, it is also reasonable to assume that IV E|l < (ﬁ

and ||G(x)t|| < G, where ¢ € R, and Gy € R, are positive scalars. Then, it can
be concluded that

1 - - _
llu — u*|| < Exmaxm”)Gwrdz +ey) + GoY (7.29)

Therefore, when x and W converge to the small residual sets | and D;, respectively,
the control policy u can approach to the optimal control u*. In accordance, the
controller (7.16) is an approximate optimal controller. (I

Remark 7.2 The approximated optimal control policy (7.16) is different from the
RL-based optimal control law in [5, 18]. The development of the control law (7.16) is
inspired by the concept of sliding mode control. In (7.16), the continuous robust term
ktanh (f) is employed to attenuate the NN approximation error, which is usually
used to attenuate the bounded external disturbance in sliding mode control. The other
three terms Ax + o | x| a + B8 |x] W are designed to increase the converge rate (i.e.,
achieving fixed-time stability). Therefore, the fixed-time stability of the closed-loop
system is achieved.

Remark 7.3 The existing NN weight updating laws of the actor-critic/critic-only
NN are designed by gradient descent algorithm and depend on the persistent/finite
excitation assumptions [5, 9, 18, 24]. The weight estimation errors are uniformly
ultimately bounded. Different from them, the weight updating law (7.17) not only
relaxes these assumptions but also ensures that the weight estimation errors converge
to a small neighborhood around zero with fixed-time convergence. Therefore, the
critic-only NN can approximate the function J* with a faster rate.

Remark 7.4 The designed term W(x) = exp(—lﬂ) + y4 in weight update law

x|
(7.17) is to tune the weight w adaptively. One can see that the term is related to the
state x. For all x, W(x) > 0. When the state x is far away from the origin, the value
of W(x) is big. When the state x is near to the origin, the value of W (x) is small. This
means the adjustment process of neural network weight has more self-adaptation
ability compared with a single constant y;.
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Considering the modeling error consisting of external disturbance and actuator fault,
the system (7.6) can be rewritten as

x=fx)+Gx)u+g, (7.30)
where ¢; = G(x)¢ is the modeling error.

In view of (7.30), an estimator will be designed to compensate for the modeling
error ;. Moreover, introducing a new variable as

X, = fx)+Gx)u+ pix. (7.31)
where B € R} is a positive constant.
From (7.30) and (7.31), x, = x — x, is defined. One has x, = ¢; — Bix,. Then,
the following nonlinear estimator is proposed to estimate g;.

S =Pix. +x, (7.32)

where ¢ is the estimation of ¢;.
Defining ¥, = x, — X., where X, is the estimation of x, and updated by

Xo =X+ Poke + by [F]" + by |F]0 (7.33)
where 8, € Ry, by € Ry, and b, € R, are constants. Then, it follows that

¥o =61 — fiXe — (ko + PoFo 4 by [Fe] " 4 ba [F]7)

_ o o (7.34)
= - :32xe - bl Ler "= b2 |_er 4
and the estimator error ¢, = ¢, — ¢, satisfies
51 =61~ (Bife — Pixe + 61) = Bi¥. (7.35)

To this end, selecting V = 0.55635&:6 and differentiating it as well as inserting (7.34),

= m+n

= m+n pPtq _p—q — Ptq . oy .
one has V < —Z%bl\/ w —272% 6% bV 2, Using Definition 2.1, it can prove
that X, converges to the origin within the fixed time 7. The estimation error ¢, can
also converge to zero when ¢t > Tj.

Remark 7.5 The term x is required in the designed observer. The sliding mode
differentiator given in [25] can be applied to obtain the value of x by inputting
the value of x into that differentiator. In engineering, the attitude and the angular
velocity can be measured by sensors. Hence, x is measurable. The estimator (7.32)
is implementable in practice.
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Theorem 7.2 For the faulty attitude control system (7.30), applying the estimator
(7.32), if the RL-based fixed-time fault-tolerant optimal control policy is synthesized
as

Bt

u=uy— g(x)T(Ktanh( ) + Ax + 18

ol pLx)t - g)
2
(7.36)
then the system state x, the estimation error ¢, and the weight estimation error W
can be steered into the corresponding small sets within a fixed time. The prescribed
performance and the optimality of the faulty system are ensured simultaneously.

Proof Let another Lyapunov candidate function be specified by

1 | SR |
Vy = ExTx + EylfwT(W + zifie (7.37)

Substituting (7.30), (7.35), and (7.36) into Vs, it yields

Vo =x"(f () + G+ 6)) — W W + £1%,
—xT<f(x) +Gx)ug — Gx)u* + Gx)u* — ¢, + ¢, — ktanh (;)
2 .
—Ax —« Lfo —Blx]" — %x) - yl(WT(le—f—ieche
=xT(f () + G0uo — Gw” + Gxyu” — wtanh (*)

2

—Ax —a|x]7 ¢ — Blx]" — ﬁx) + BixT%, — )/{WT(!;V +JZ'Z.§?E
2
. (7.38)
Using the definition of X, V; can be written as
- L
Vo == (BalEIP = Bilbelllell + o lI7) = iE] L) ™ = ba] 5
2

x! (f(x) + G(x)uy — G(x)u* + G(x)u* — ktanh (;)
— Ax—alx)t —ﬁ x)F ) = Wty
= - (VBllz I - WT

+ Gx)uy — G(x)u* + G(x)u™ — rktanh (;) —Ax —« |_ng

el) — BET L F — bk L) 4 xT(f o)

—Blx)F) - W
(7.39)
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According to (7.23), V2 can be simplified as

; Lzt min 1) N a2y 2 m2 s ,00 B
Va < —a(lxl|») 2 — B(lx|*) 2 +7||W*||2—3(||wn2> 2 —3<||fwu2) 2

- m+n - ptq
—D1IED) T = ba(I%el D)3~ dmin(A)I[x] + L l1x] 2 + 5" (G0

1
+56R™'G"(x)Vxe ) — kllxll +m

l’zﬂ m+n
<—-a3V, ! _133‘/22" + M

(7.40)
W 4o + L W2,

m+n

where B3 = min{ZmTt",B, %(%)T,bﬂ%n}, Me="2E+ 2k

and a3 = 3% min {2%6%05, (25 2%6%1;2}.
If Amin (k) > GY + 3 Amax(R™1)G?ey and Amin (A) — Ly > Oaresatisfied, (7.40)
will hold. Utilizing Lemma 2.4, it can prove that the system (7.30) is stable within

fixed-time 75, whichis bounded by 7, < a}@(}%g_q) + ﬂwoi';_m) with0 < 6y < 1. After

T, x, W , and X, will converge into the residual sets D3, D, and Ds, respectively.
They are given by

n

_ . . N T Nie e
Dy = {x :l1x]] < /2 min {(7(1 —60)a3) , (7(1 — 90)ﬂ3) }] (7.41)

a1 3 . Nk # N e
1)4_[(W.||W||g\/;mm{((1_90)a3) ,((1_90)ﬂ3) ” (7.42)

s o= . Nk p%_q N i
1)5—{xe.||xe||§x/§m1n{(—(]_90)a3) (=08 o

Therefore, the proposed RL-based fixed-time fault-tolerant optimal controller can
drive the state x converge to the small region Ds. The prescribed performance of
the attitude stabilization error ¢ is assured. According to (7.35) and (7.40), one can
obtain that the estimation error ¢ such that ||¢|| = B1||X.|| < Bir4s, where rys is the
radius of Ds. The proposed estimator thus precisely compensates for the modeling
€ITOr. (I

Remark 7.6 The Lyapunov function V, contains the estimation error X,, i.e., ¢, =
B1X.. According to (7.40), X, can converge to the small set Ds when ¢t > T;. The
boundedness of the estimation error ¢; will be ensured for all # > 0. The stability
proof of the overall estimator-controller closed-loop system is presented.
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7.5 Numerical Example

In this section, Theorems 7.1 and 7.2 are examined by numerical simulation with the
following two cases considered.

(1) Case I: There is no actuator fault and no external disturbance acting on the
satellite attitude system.

(2) Case II: The satellite attitude system is subject to some actuator fault and
external disturbance.

The rigid satellite’s inertial matrix is J = [20, 0, 0.9; 0, 17, 0; 0.9, 0, 15] kg - m2.
Its initial states are set as = (0) = [0.2517, 0.388, —0.4247]T and w(0) = [0, 0, 0]T
rad/s. The parameters of the prescribed performance function (7.2) are selected as
ag = 80, by = 0.3, and p,, = 0.0001. The set of neural network basis function is
selected as E(x) = [x{, x3, x3, x1x2, X2x3, x1x3] 7. The control gains in (7.36) are
given as y; = 0.008, R = 0.213, k = 0.011¢, A =214, =0.5, 8 =4, g = %,
and 7 = %. To show the superiority of the RL-based fixed-time optimal control
scheme in reducing control cost quantitatively, the simulation results of each case
will eventually be computed using a new cost function V., i = 1,2, ie., V; =
Jo°x"Qx + u"Ru)dt, where X = [67, ®"]",Q = 516, and R = 515.

7.5.1 Simulation Result of Case I

In this case, the RL-based fixed-time optimal control policy (7.16) with performance
constraints (it is named as PPCADP here) and the traditional RL-based optimal con-
trol policy with critic-only NN structure (TADP) in [18] are compared. The attitude
o guaranteed by PPCADP and TADP is shown in the Figs. 7.1 and 7.2, respectively.
Itis seen in Fig. 7.1 that 0, 03, and o3 are within the pre-specified region given by the
bounded functions and have a faster convergence rate. They are stable before 10s.
The angular velocity is shown in Fig. 7.3. PPCADP ensures higher control accu-
racy and smaller stabilization time than TADP. The initial weight of W is selected
W(0) = [58, 60, 56, 60, 62, 61]7, the NN weight (i.e., W) updated by (7.17) is
demonstrated in Fig. 7.5. The weight W remains at the corresponding stable value
when the attitude control system is stable. The control input of the nominal system
with PPCADP and TADP is presented in Fig. 7.4. The dashed line has a smaller
control torque when the system is stable. To achieve a faster convergence rate and
higher control accuracy, PPCADP requires a bigger initial control input. However,
the lower cost of the overall spacecraft attitude control system with PPCADP can be
achieved than TADP. This can be seen in the total control cost V,; shown in Fig. 7.6.
V.1 obtained from TADP in the first 40s is larger due to it slower convergence rate.
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7.5.2 Simulation Result of Case Il

In this case, the external disturbance is supposed as

3cos (0.02¢) 4+ 2.5sin (0.017¢t)
u; = 1.5c0s (0.027rt) — 2 sin (0.041) x 1072 N -m (7.44)
3.4co0s (0.02rt) — 0.5 sin (0.021)

The actuator fault is listed in the Table 7.1. To estimate the lumped term g, the
parameters of estimator (7.32) are selected as by =2, b, =3, 81 =0.2, and 5, =
0.5.

The RL-based fixed-time fault-tolerant optimal controller (7.36) (ADPFTC) and
the integral sliding mode fault-tolerant control (ISMFTC) in [26] are compared.
The initial value of ‘W is set as W (0) = [73, 74, 75, 77, 76]T. The convergence
performance of the attitude o with the application of ADPFTC and ISMFTC are
shown in Figs. 7.7 and 7.8, respectively. Although the convergence time of both
control schemes is similar (i.e., they are stable before 20s), compared with Fig. 7.8,
one can find that the attitude oy, 0,, and o3 in Fig. 7.7 are within the predefined
bounds strictly.

The angular velocity is depicted in Fig. 7.9, ADPFTC achieves higher control
accuracy and smaller convergence time than ISMFTC. The estimation error ¢ is
shown in the Fig. 7.11. The estimation accuracy resulting from the proposed estimator
¢ is high (i.e., |&| <3 x 1073, i = 1, 2, 3). The estimated weight W is shown in
Fig. 7.12, and W remains at a stable value finally. The control torque of the faulty
system with ADPFTC and ISMFTC are shown in Fig. 7.10. ADPFTC demands
smaller control torque. The control cost V,; is presented in Fig. 7.13. It demonstrates
that the lower cost of the attitude control system with ADPFTC was achieved than
ISMFTC. Furthermore, V., achieved by ADPFTC in the first 100s is reduced by
64.77% compared with ISMFTC. To this end, the effectiveness of the RL-based
control (7.35) is verified.

Table 7.1 The actuator faults in Case II

i- L;i u; (N-m)
Actuator
i1 1 . 0<t<15 0.001
0.9+ 0.05sin(2rt) 0> 15
P2 0.9 0<t<10 0
1 0>10

i—3 0.6+0.1sin(B3nt) O0<t <20 0.05sin(7)
1 0>20
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7.6 Summary

An RL-based fixed-time attitude optimal control framework was presented for satel-
lites with prescribed performance, external disturbance, and actuator fault. An NN
weight update law without employing finite/persistent excitation conditions was
designed. The weight estimation error can converge to a small region within a fixed
time. A fixed-time estimator was introduced to address the external disturbance and
actuator fault. The proposed RL-based fault-tolerant optimal control policy guar-
anteed that the system states, the weight estimation error, and the lumped term
estimation error were fixed-time stable. This approach achieved faster stability in
comparison with the uniformly ultimately bounded stability of the existing RL-based
optimal control method.
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Chapter 8 ®
Faster Fixed-Time Attitude Stabilization Creck fr
Control

8.1 Introduction

Applying the finite-time attitude controllers, the settling time cannot be precisely
estimated. Some conditions should be imposed on states to obtain a desirable con-
vergence time. The finite-time convergence depends on initial states [1]. A prior
precise estimation of the settling time can not be obtained.

Unlike the finite-time stability (FTS) [2, 3], the fixed-time stability [4, 5] is effi-
cient to guarantee a desired finite convergence time despite any initial states. Only
the control gains determine the settling time. This method can obtain finite-time
convergence while the settling time does not depend on initial states. Its key feature
is that the bound of settling time is determined by control gains only. Hence, the
convergence rate of the system states can be predefined offline. For instance, a fixed-
time control approach was available for network consensus [6]. Inspired by [6], a
non-singular fixed-time TMSC approach was proposed for nonlinear systems with
matched uncertainties [7]. In [8], it was shown that the settling-time ensured by the
NTSMC controller is not optimal, the proposed stable system achieved less conver-
gence time than that in [6]. Another fixed-time control scheme was proposed in [9] to
ensure the satellite attitude to have fixed-time convergence despite uncertainties and
disturbances. In [10], the fixed-time attitude tracking problem for rigid satellites was
studied with singularity avoided. The predefined convergence time of the attitude
tracking error was guaranteed further. The fixed-time relative position and attitude
synchronization control of satellite fly-around mission for a noncooperative target
was studied in [12]. Two relative position and attitude stabilization controllers with
fixed-time convergence were further presented to achieve the fly-around maneuver
for a non-cooperative target [11, 13].

Motivated by providing faster attitude control capability, a novel fast fixed time
but singularity-free stable system is preliminarily designed in this chapter. Applying
the proposed fixed-time stable system, a continuous faster fixed-time controller is
then developed for the attitude stabilization maneuvering of a flexible satellite. The
main features of this chapter are highlighted as follows:
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e A new fixed-time surface is preliminary presented based on a novel fixed-time
stable system. Compared with the existing fixed-time stable system [6, 8], the
proposed fixed-time stable system can provide a faster convergence rate.

e A novel faster fixed-time sliding mode-based attitude control framework is pre-
sented for flexible satellites. The attitude and the angular velocity are governed
to be practically fixed-time stable despite uncertain inertia, disturbance, and any
initial states. In comparison with the existing fixed-time approaches [9, 10, 12,
14, 15], a global faster convergence is ensured when the states are near or far from
the equilibrium point.

e Compared with the adaptive attitude controllers [16—18], the designed controller
is continuous and chattering free.

8.2 Problem Statement

In this chapter, the satellite considered is flexible. The attitude kinematics (2.19)—
(2.20) and the attitude dynamics (2.25)—(2.26) are used to describe the flexible satel-
lite attitude control system. Moreover, the modeling error considered in this chapter
consists of the disturbance torque u, and uncertain inertia. Let the nominal inertia
and the uncertain inertia be denoted by J (positive definite) and A J, respectively
it leads the total inertia J in (2.25)tobe J = Jo+ AJ.

Assumption 8.1: There is a positive scalar a; € R, such that ||AJ]| < a;.

Assumption 8.2: The disturbance torque u, is finite. A positive scalara, € R exists
such that ||ug|| < a;.

Assumption 8.3: The flexible coupling term 8} + @* &% in (2.26) satisfies ||6# +
@ 81| < az + a4]|w|| with two positive constants a3 € Ry and a4 € R,

Since the flexible appendages of any on-orbital satellite have damping devices,
the flexible vibration will be bounded. The damping devices will run to decrease the
flexible vibration, when the vibration is large. Hence, §ij and 87 = [ij;, 2, 73]" are
bounded in practice. There exists two positive constants a3 € R, and a4 € Ry such
that ||6#j|| < a3 and ||67|| < a4. Then, one has ||§) + @™ 87| < a3 + a4||@* 87| <
as + \/5514||w||. Assumption 8-3 is thus reasonable, i.e., a; = asz and a4 = V3ay.

To this end, the control problem of this chapter is formulated as: Despite the
modeling error induced by the uncertainty inertia A J and the unknown disturbance
u 4, the flexible vibration, and any initial states, develop a controller to guarantee that
the flexible satellite attitude system (2.19)—(2.20) and (2.25)—(2.26) is practically
fixed-time stable. Two positive scalars €, € R, and ¢, € R, existsuchthat||g(?)|| <
€, and ||w(?)|| < €, fort > t;, where t; € R, is a positive constant.
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8.3 A New Fixed-Time Stable System

Theorem 8.1 Let a system be designed as

s 1 I+ Z_ll
t= =y (colel ™ 4 ol ) (8.1)

where z € R is the system state, N(z) = a; + (1 — ay) exp(—b1|z|") and yy =
(;”7‘1)(1 4+ sgn(lz] — 1)). 2o > 0, o > 0, 0 < a; < 1, and by > 0 are four scalars.
c1 > 0 is an even integer. m; > 0, ny > 0, p; > 0, and q, > 0 are odd integers
satisfying my > ny and p; < qy. Then, the system (8.1) is fixed-time stable.

Proof Introducing a new variable as y = |z|% and using (8.1), it follows that

. q1— D1 b,
y:
qi

q1 — P1 PL
=——5(aolz) " + Bolz] )

qlNI_ZJ i (82)

- 1 a-rt
:u—((xo|z| ]‘ll o —|—130)

q N@)

gq—p1 1 Ly L
=—————(ay " + Bo)
@1 N@©)

Solving (8.2), the settling-time Ty is given by

y(0) N
] / 1 (qZ]) dy
q1 — P1 Jo ooy Jr)/om +,30

9 v N(z) : N(z)
=— ( / — o vt | e ——dy] 33
q1 — P1 1 gy a-r + By 0 oy a-rt + By

y(0) N 1 N
__ 4 (/ (2) dy + (2) dy)
q1—p1 \Ji  ay” + Bo 0o @y + Bo

_ miq
where oy =1+ Hl(Qll*lpl)'
If N(z) = 1, the settling-time (8.3) can be rewritten as
¥(0) 1 1 1
T = a <f —dy +/ —dy) (8.4)
g1—p1i \J1  ay” + o o oy +Bo

Since a; < N(z) < 1, it is proved from (8.3) and (8.4) that T; < T, is valid for
any y(0). The system (8.1) is therefore fixed-time stable by using Definition 2.1.

Moreover, invoking p; = 1 + - (’;‘I‘Z‘m) > 1, T/ is bounded by
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s = y+ | ———dy
g —p1 \Ji  oagy” o %y + Bo

1—y(0)!= b
<4 ( YO 4+ / 7@) 8.5)
g1 —p1 \ ao(p1 — 1) o Y+ pBo
1
LMo —1n<1+@>
aopmi q1 — P1 @ Bo
To this end, the proof of Theorem 8.1 is completed. ([

In [6], a fixed-time stable system (named as FTSS1) is presented as

. 1

P = —apz" — Pzt (8.6)

Another fixed-time stable system (called as FTSS2) is also given in [8], which is

b (s _ 2 8.7)

7= —aoz — Boz

For FTSS1 and FTSS2, oy > 0 and By > 0 are two scalars. m; > 0,n; > 0, p; > 0,

q1 > 0 are four odd integers such that m; > n; and p; < q;.

Theorem 8.2 The convergence rate of the proposed fixed-time stable system (8.1)
is faster than FTSSI and FTSS2.

Proof 1t can be obtained from [6] and [8] that the settling time of FTSS1 and FTSS2
can be uniformly given by

q1 v(0) 1 1 1 0.8
Tp = — 4 +/ —d ) (8.8)
d q1 — p1 <./1 aoy¢ + Bo Y o oY+ Po Y
where & = 1 + Y14 for FTSS] and £ = 1 for FTSS2.

Subtracting Ty from 7 yields

¥(0) 1 ¥(0) 1
T - Tp =1 (/ ———dy —/ 7dy>
g —pi \Ji @y +Bo 1oyt + Bo

q /“‘” ao(ys — y™)
= y
qi—p1Ji o (aoy? 4 Bo)(aoys + Bo)

(8.9)

In accordance to the definition of p; and &, one has p; > & and y¢ — y”' < 0. Then,
T! — Trp < 0 can be proved from (8.9) for any initial states. As a consequence,
Ty < T] < Tr is obtained. This implies that the convergence rate of the proposed
system (8.1) is faster than FTSS1 and FTSS2. U

Remark 8.1 N(z)in (8.1) is used to tune the convergence rate. When the states are
far from the equilibrium point, N (z) tends to a; and then #Z) approaches ail > 1. A
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faster convergence is thus obtained. Once the states are near the equilibrium point,
N (z) approaches 1. This means that N (z) varies between 1 and a;. Moreover, a novel
power term is also included in (8.1). As the states become smaller, y, can improve
the convergence rate. According to definition of yp, when |z| < 1, the proposed
fixed-time stable system (8.1) uses a linear term of z instead of |z . As a result, the
convergence speed significantly increases due tom; > n,. Therefore, in combination
with Theorem 8.2, it could be claimed that (8.1) is a new fast fixed-time stable system.

8.4 Fixed-Time Faster Sliding Mode Surface

Inspired by Theorem 8.1, a novel non-singular faster sliding mode surface (NFSMS)
is presented as

S=w+ L(kl lg)"" + ks S,) (8.10)
N(q) ¢

where S =[S, $2, $317, yo = 5i-(1 +sgn(llgll — 1), and N(g) = a1 + (1 —ay)
exp(—b1|lql|®"). m; > 0 and n; > 0 are two odd integers such that m; > n;.
0<a <1,b; >0,k > 0,and k, > 0 are positive gains. ¢; > 0 is an even integer.

Se = [Se1, Sea, Se3]T is designed

o e G - -
5 = {lqml sen(gi). if § =0or 5 #0,lg;| = § S11)

7\ ha + baPsena), if S #0,1gil <

withi = 1,2,3 and a constant 0 < ¢ < 1. p; and g, are two positive integers satis-
fying p; < g1, and

I = (2 — ﬂ) G (8.12)
q1
L= (ﬂ—l) G2 (8.13)
q1
_ o 1 i
—_ T _ I+n I
S=1515 5 =0+ g (lg) Tt klgT) @14

Theorem 8.3 Consider the flexible satellite system described by (2.19)—(2.20) and
(2.25)—(2.26), once its states reach the NFSMS (8.10), i.e., S = S =0, then they will
respectively converge to their stable equilibrium points ¢ = [1, 0,0, 0]" and @ = 0
in a fixed time despite any initial attitude and angular velocity.

Proof Once the NESMS (8.10) is reached, it follows that S = S = 0 and

_ 1 14y
®=-as (q)(kl lg] ™ + k2 Se) (8.15)
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Define a Lyapunov function as V; = 0.5(g"q + (1 — go)?), its time-derivative can
be computed from (2.19)—(2.20) as

T

o 9 I4+yo Z_,]
= sy (L) ela) ) (8.16)

which can prove lim ¢ =0 and lim go = 1 or —1.
t—>00 =00

Consider a new Lyapunov candidate function as V, = 0.5¢"q + 0.5(1 + g¢)>.
Differentiating V, results in

T

— q 1+y0 ZT]
= anig (L) kalg) ) (8.17)

v
Itis found from (8.17) and the Lyapunov instability theorem [19] that the equilibrium
point[¢T, go]T = [0, 0, 0, —1]Tisnotstable.[gT, go]T = [0, 0, 0, 1]T is thus selected

as the equilibrium point to be stabilized.
Since gg — 1, the following inequality is satisfied.

(1 —qo)* < (1 —qo)(1 +q0) = ¢? + ¢3 + ¢3 (8.18)

which implies V| < qf + q22 + q32. Therefore, one has

2+y9 q1+tp1

Vi<—aV,? =gV, (8.19)
where «) = 3;;;:;;“ and B = 5 A’,‘%q) . Invoking Theorem 8.1, g and @ are proved to be
fixed-time stable. 0

Remark 8.2 The development of the adjustable function N (q) in (8.10) is inspired
by [20]. Although N (q) in (8.10) is the same as the adjustable function used in [20],
and the other part of the sliding surface (8.10) is different from the sliding surface
given in [20]. As proved in Theorem 8.3, a fixed-time convergence can be obtained
from (8.10) despite any initial states. However, the finite convergence time obtained
from [20] is dependent on the system’s initial states. This article is an improvement
and extension of [20].

8.5 Faster Fixed-Time Attitude Controller

Using the NFSMS (8.10) and the dynamics (2.25)—(2.26), one has
JoS=F +u+T (8.20)

where
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1 1
F =— o~ _— —-N kiP,+ kP 1 X
0 Jow + Nz(q)JO <2 (@) (ki Py + k2 P2)(qol3 + g ™)@ 821)
~N(g,)(kiLg]"™"" + k28.))
Py = (1 + yo)diag(|q|™) (8.22)
P, = diag([Py1, P, P3]") (8.23)
PPt e S S I>ad i
P2[ — q |ql| ! ’ lf. Sl_ OOr Sl 7é O: |ql| Z ¢7l 1’ 2’ 3 (8.24)
ll +212|CI1|, lf Si # O’ |91| < ¢
and Il =u; — 0”6 — 6 — AJw — 0 AJw.
According to Assumption 8-1 to Assumption 8-3, one has
|| < ar + a3 + asl|o|| + a1l|@]] + a1 ||@]]* < | + oM (8.25)
where ¢; = a; + a3 and ¢; = max {a;, a4} are constants but unknown. M = ||w|| +

[|®]] + ||@|]? is available by using the measurement w. Therefore, it can be obtained
that
I < (c1 + 2 M)(ci + M) = k1 + koM + 13 M? (8.26)

where k| = c%, Ky = 2c¢1¢p, and k3 = c% are positive but unknown constants.
Let a robust adaptive fixed-time control law be designed as

1 . »n
LTINS (1S +7aLSI™7 + %381 ) = F — gy (8.27)
where y = 22 (1 + sgn(||S|| — 1)). y1 > 0, ¥, > 0, and y3 > 0 are constants. m, >

2n
0,ny, >0, p22> 0, and ¢, > 0 are four odd integers satisfying m, > ns, p» < g».

u,qp 18 an adaptive control effort specified by

S .. .
tap = 53 (k1 + koM + isM?) (8.28)
with ; € R updated by
2 INIE .
ki = pn ( ez P (8.29)
€

. (USIPM
K2 = P2y 262 — P2k2 (8.30)
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2 INIRIE .
k3= p3 | T3 — P2k (8.31)

where ¢ € R+, Pl € R+, P12 € R+, P21 € R+, P € R+, P31 € R+,and P32 € R+
are positive gains.

Theorem 8.4 When implementing the fixed-time attitude controller (8.27) with the
adaptive update law (8.28) to the flexible satellite attitude system (2.19)—(2.20) and
(2.25)—(2.26), the closed-loop system is practically fixed-time stable.

Proof Construct a Lyapunov function as

ptl

=S"J,S + Z (8.32)

where k; = k; — k;. Using (8.27)—(8.31), one can differentiate V5 as

3
) 2 .
Vs =2ST(F+u+r[)—§ —Riki
i1 il

28T 3

- P 2 .
=- S+»lSIT +yslS18 ) = 28T (agy — ) = Y — ik
NS (7S + 11817 + yal )% ) = 25" (tagy — T ;pilm
<2|ISIIH]| - e D A“@—Zifziéi
B N(S) — pi1
_ 2y3 le' +I—ZST i — S|
N(S) ! N(S)
(8.33)
i INIEI &
Using (8.26) and [|S|||IT|| < =57~ + 5, it leaves (8.33) as
2 22N g ISIP M
V < _— Si +y S e —
p<e? - ; | N(S)D B Zl ( 5
A 2J/1 2
—2pioki) — S
piok;) N(S)II I 83
~2
< i2K:
=-mVi+d

. 2 3
wheren; = mln{m, P11 D12, P21P2s P31 Pb 81 = Y iy piok? + €. Then,
one can prove that § and «; are uniformly ultimately bounded. It is therefore reason-
able to assume that there exist positive constants ¢; such that |«;| < ¢, i =1, 2, 3.
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On the other hand, (8.33) can be also simplified as

2y) 2y3 R I1S|>M~! N
2 24y > . _ [
3 <e N(S)§:| St — N(S)§:|sl| -3 & y 2pinki

i=1

N(S)
< N(S) ;1P — N(S) Z 1105+ £ 2p1akikr + 2pnasais + 2prksis + &
24y pr2tan
2 2 _ 2 ] 297 P2ta
< (—) IS — 1 (—) s =
N( ) }‘max(JO) N(S) )‘max(JO)
3 £ V 3 é 1)22;242
i=2 1 ~2
— — K +36
; (pn ) ; (pn ' ) 1
(8.35)
where ki&; = k7 — Kik; < Lk} 2)5’;' ~i2 i . € R, is a positive scalar, i =
1,2,3,8 2\ N\ s 2
3, 1_21'1 le Ki +le p,] ki _Zt 1p,1K1+lep12Xlt’
= _ 2x-1
and Xi = 0
If 5222 > 1, it has
pi1 1
§ o\ L (& o) % § .\ &
~ ~ 2 [ ~ ~ [ ~
( : 3) ( : ,-) - =k < ( : 3) - =& (836)
Pil Pil Pi1 Pil Pi1

E‘

For the case /c < 1, it follows that

& & 2§; & &
(1) + ()™ B () e o
Pi1 Pi1 Pi1 Pi1 Pil

Following |k;| < ¢;, (8.36), and (8.37), it yields
P2+4y

(Sl 32) (5’ ?) i max{<i;f>2 —1, 1} (8.38)
Pil Pil Pi1 Pil

Then, using Lemma 2.2, (8.35) can be rewritten as

rJz hx'v)

Vi< —mVi® —mVy ™ +6 (8.39)

1 o
N = min {)/2 <m> . Ei 2 } (840)

where
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p2ta

n3 = min {)/3 <m> , Ei } (841)

247

3 2
8 = Z (max {(%ﬁ) -1, 1] + piZXiK,'z) +¢? (8.42)

i=1

Invoking Lemma 2.4 and (8.39) can prove that the NFSMS (8.10) is practically
fixed-time stable. The states and S will converge to the set D3 = {S : ||S]| < &}
after fixed time 77, where €, = min{h, h,} and

2
B =
hy = <72> (8.43)
(I —=0)m
29p
8 =
hy = <—> (8.44)
(I —=0)n;
-2 2 1
. EEL (1 + @> (8.45)
ninmy q2 — P2 m3

with a scalar 0 < 6 < 1.

Once the NFSMS (8.10) converges into the set Ds, the following three cases
should be analyzed.

Case I: If S’i = 0 is reached, it implies that S = 0. Based on the Theorem 8.3,
¢; = 0 and w; = 0 will be achieved after fixed time, i = 1, 2, 3.

Case 2: If §; #0 and |¢;| < ¢, according to (8.11), then one has w; + #q)
(k1lgi )" + ka(l1gi + lag?sgn(gi))) = Si. Because the NFSMS (8.10) converges
to the set D3 = {S : ||S|| < €,} after fixed time 77, it follows that

P1

€0 =€ + ki) + koeg' (8.46)

€, = max {q_ﬁ, min {(Z—j)z , (Z—;)M } } (8.47)

Case 3:If S; # 0and |g;| > qS it can be got that

wi+

R i) =S
g (bl "+ helg ) = s (8.48)

which can be rewritten as

o+ 1 (kl_ Si )qujl-i—yo_i_ ! kzl_q-JZ_llzo (8.49)
" Na@,) Lgi ] ) Nig,)
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S,’ P
(kz - —,,_1) lgi]m =0 (8.50)
Lgi ]

kilgi]"t +

1
@it N(q,) N(q,)

Choosing k; and k; such that k; — S—% > 0ork, — Lq,ﬁW > 0, then it is con-

cluded from Theorem 8.1 that the an;gular velocity w; will converges to zero after
fixed-time. At this time, based on w; = 0 after fixed-time, solving (8.48) leads to
lgi| < €, after fixed-time.

Summarizing the analysis in Case 1, Case 2, and Case 3, it can be concluded that
the attitude ¢; and the angular velocity w; will converge into the sets Dy = {g; : |g;i| <
€} and Ds = {w; : |w;| < €.} after fixed time, respectively. Using Definition 2.2, it
is proved that the closed-loop flexible satellite attitude control system is practically
fixed-time stable. O

Remark 8.3 When applying the proposed approach to perform attitude maneuvers
in practice, the controller (8.27) and the adaptive control law (8.28) will be imple-
mented and numerically computed by an embedded computer equipped in flexible
satellites. The designed approach is thus implementable and applicable in practical
aerospace engineering.

Remark 8.4 The implementation of the proposed approach, the work of tuning
or choosing the control gains k;, y;, pi, gi,» m;, n;, &, ai, by, ¢1, and q_b, i=1,2,
Jj =1, 2, 3, to achieve higher pointing accuracy and acceptable control effort should
be carefully done. The following details should be followed when choosing gains.

(1) The parameter ¢ has a direct effect on the converging accuracy of the system
states ¢ and w. It is found from (8.10) that the selection of ¢ affects the effectiveness
of resolving the singularity problem. When ¢ = 0, the proposed NFSMS (8.10)
becomes the conventional fast terminal sliding mode manifold, which leads to the
unexpected singularity problem.

(2) Larger k; and y; leads to a faster convergence rate. However, larger k; and y;
will result in a large overshoot and more control energy consumption.

(3) For the purpose of accomplishing attitude control with high pointing accuracy,
¢ should be chosen small enough. Since ¢ appears in the denominator of #,4p,, a higher
control input is required. Hence, a tradeoff should be considered between the control
effort and the system performance. Fortunately, since the maximum torque generated
by actuators is known to a designer, the gain ¢ should be selected to satisfy that the
control torque does not exceed the maximum power.

(4) According to the settling time expression, the parameters p;, ¢;, m;, and n;
also play important roles in dominating the system convergence rate and accuracy.

When applying the proposed fixed-time attitude control approach, those control
gains should be chosen appropriately to achieve the desired convergence rate and
attitude control accuracy. It should be stressed that there is not a standard procedure
to select out those gains. They are currently selected by trial and error until a good
tracking performance is obtained.
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8.6 Simulation Results

To verify the capability of the presented approach, simulation is conducted with the
controller (8.29) applied to a flexible satellite with J, = [486.7, 14.9, —1.2; 14.9,
177.4,-7.3,—1.2,-7.3,404.3]kg - m?> and 8§ =[1,0.1,0.1;0.5,0.1,0.01; —1,
0.3,0.01] kg% - m/s?. For this satellite, the first three elastic modes are considered,
i.e., N = 3. The natural frequencies of the flexible appendage are A; = 1.8912 rad/s,
A, = 2.884 rad/s, and A; = 3.4181 rad/s. The damping ratios are & = 0.01, & =
0.01, and & = 0.01. The control gains are chosen as y; = 5, y» = y3 = 20,k; = 1,
k2=0.8, P1 =p2=9, q1 =42 = 15, nmi =I112=35, n =n2=33, a) = day =
0.8, by =b, =10, ¢c; = ¢ =2, ¢ =0.001, pij=01,1=1,2,3, j=1,2, and
k1(0) = k2(0) = k3(0) = 0. The initial states are g (0) = [—0.31, 0.09, 0.41, 0.85]",
w(0) =[0.01, 0.02, —0.01]" rad/s, (0) = 0, and #(0) = 0. The uncertain inertia is
assumed as A J = 0.1J. Moreover, the following external disturbance is considered

0.2cos(0.2¢t) — 0.1 cos(0.4mt) — 0.1
d=| 03sin(0.27¢) — 0.1cos(0.47¢t) +0.2 | N - m. (8.51)
0.28in(0.27t) — 0.2sin(0.47t) — 0.3

After applying the controller (8.27) to the attitude stabilization maneuvering task,
the resulting attitude and the rotation velocity are shown in Figs. 8.1, 8.2, 8.3 and
8.4, respectively. Those results verify the analysis in Sect. 8.5 well. The proposed
law ensures a fast convergence. The planned attitude maneuver is accomplished
after #, = 12 seconds. The attitude control accuracy is superior to 1.2 x 1079, i.e.,
lgil < 1.2 x 10~ % is ensured fort > 12 seconds, i = 1, 2, 3, 4. The control accuracy
of the rotation velocity is better than 1.5 x 10~ rad/s, i.e., |w;| < 1.5 x 107 rad/s is
achieved for ¢t > 12 seconds, i = 1, 2, 3. The ensured convergence time, the pointing
accuracy, and the attitude stability can provide the satellite’s payload with a perfect
attitude system. Hence, the planned missions can be successfully carried out. The
control power requested to achieve that control performance is shown in Fig. 8.5.
Moreover, the flexible vibration is illustrated in Fig. 8.6. It is seen that the flexible
vibration is bounded and damped naturally. The reasonability of Assumption 8-3 is
verified.

The pointing accuracy and the attitude stability are plotted in terms of the conver-
gence time in Fig. 8.7. It shows that different requirements on the pointing accuracy
and the attitude stability lead to different convergence time. For instance, if the mis-
sion requires the satellite to provide the control accuracy of |g;| < 2.2 x 107° and
lwi] <2.2 % 107° rad/s, then the convergence time is 8.8s. It is seen that inferior
control accuracy corresponds to less convergence time.

To further assess the suggested controller’s performance, the following two per-
formance indices are considered.

(1) The integral absolute errors (IAEs) of the attitude and the angular velocity
described as IAE,, = [1" |¢;(1)|dt, IAE,, = [\ lo;ldt, i = 1,2,3, where T, € R
is the attitude maneuvering time. A less IAE means a faster convergent rate.
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Fig. 8.1 The initial attitude
from the controller (8.27)

Fig. 8.2 The
steady-behavior of the
attitude from the controller
(8.27)

Fig. 8.3 The initial angular
velocity from the controller
(8.27)
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(2) The integral time-weighted absolute errors (ITAEs) defined as ITAE,, =
7 11gi (1)|dt, ITAE,, = [, tlw;|dt,i = 1,2, 3. The ITAE index evaluates the con-
trol accuracy of the steady-state behavior rather than the initial response. Note that
the ITAE index does not evaluate the sluggish initial errors. However, the initial errors
could be evaluated by the IAE index. Hence, those two performance indices should
be considered simultaneously to comprehensively evaluate the attitude stabilization



178

Fig. 8.4 The
steady-behavior of the
velocity from the controller
(8.27)

Fig. 8.5 The input of the
controller (8.27)

Fig. 8.6 The flexible
vibration from the controller
(8.27)
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performance of any control schemes despite system uncertainties and disturbances.
Smaller IAE and ITAE mean better control performance.

With these two performance indices in mind, the fixed-time control strategies
presented in [6] and [8] are also applied to the considered flexible satellite attitude
system to carry out numerical simulation for the purpose of comparing their control
performance with that of the designed approach. The obtained performance indices of
those three controllers are listed in Table 8.1 and Table 8.2 to acquire more insights on
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Fig. 8.7 The relation between the control accuracy and the convergence time

Table 8.1 The IAE performance comparison of three schemes
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1AE The controller (8.27) | The controller [8] The controller [6]
TAE,, 10.3 10.52 11.3
IAE,, 2.6 2.9 3.1
TAE,, 14.6 16.1 16.9
TAE,, 6.4 9.5 10.1
TAE,, 2.6 4.1 4.2
ITAE,, 8.8 13.3 13.7

Table 8.2 The ITAE performance comparison of three schemes

1AE The controller (8.27) | The controller [8] The controller [6]
ITAE,, 25.7 34.1 41.5
ITAE,, 3.6 53 6.1
IAE,, 33.9 55.1 63.2
TAE,, 19.93 44.7 524
I1AE,, 5.78 12.7 14.2
TAE,, 29.9 69.2 77.1

the effectiveness of the controllers. Itis observed that the desired control performance
was guaranteed by the controller (8.27) in the presence of the external disturbance
(8.51). The convergence rate provided by the proposed controller is faster than those

in [6] and [8].

To this end, it can be concluded from the abovementioned simulation results that
the presented faster fixed-time control approach successfully solves the fixed-time
attitude stabilization problem for flexible satellites with external disturbance and
uncertainties. The proposed law obtaining an improved performance, such as fast
transient and high precision compared to existing attitude controllers, is validated.
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8.7 Summary

A new faster fixed-time attitude stabilization controller was presented for flexible
satellites. Regarding any initial attitude and angular velocity, the attitude stabilization
maneuvering was accomplished after a fixed convergence time despite any uncer-
tain inertia parameters and disturbances. The attitude and the angular velocity were
practically fixed-time stable. Compared with the existing fixed-time controllers, the
designed approach can provide the system’s states with a faster convergence rate near
or far from the stable equilibrium points. The proposed controller was non-singular
and chattering-free.

References

1. Tian, B., Lu, H., Zuo, Z., Wang, H. (2018) Fixed-time stabilization of high-order integrator
systems with mismatched disturbances. Nonlinear Dynamics 94(4): 2889-2899
2. Chen, C. C. (2019) A unified approach to finite-time stabilization of high-order nonlinear
systems with and without an output constraint. International Journal of Robust and Nonlinear
Control 29(2): 393-407
3. Li,B.,Qin, K., Xiao, B., Yang, Y. (2019) Finite-time extended state observer based fault tolerant
output feedback control for attitude stabilization. ISA Transactions 91: 11-20
4. Chen, C. C., Sun, Z. Y. (2018) Fixed-time stabilisation for a class of high-order non-linear
systems. IET Control Theory & Applications 12(18): 2578-2587
5. Polyakov, A. (2012) Nonlinear feedback design for fixed-time stabilization of linear control
systems. IEEE Transactions on Automatic Control 57(8): 21062110
6. Zuo, Z. Y. (2015) Nonsingular fixed-time consensus tracking for second-order multi-agent
networks. Automatica 54: 305-309
7. Zuo,Z.Y. (2015) Non-singular fixed-time terminal sliding mode control of nonlinear systems.
IET Control Theory & Applications 9(4): 545-552
8. Zhang, Y., Tang, S., Guo, J. (2018) Adaptive terminal angle constraint interception against
maneuvering targets with fast fixed-time convergence. International Journal of Robust and
Nonlinear Control 28(8): 2996-3014
9. Gao, J., Cai, Y. (2015) Fixed-time control for spacecraft attitude tracking based on quaternion.
Acta Astronautica 115: 303-313
10. Shi, X. N., Zhou, Z. G., Zhou, D. (2020) Adaptive fault-tolerant attitude tracking control of
rigid spacecraft on lie group with fixed-time convergence. Asian Journal of Control 22(1):
423-435
11. Huang, Y., Jia, Y. (2018) Robust adaptive fixed-time tracking control of 6-DOF spacecraft
fly-around mission for noncooperative target. International Journal of Robust and Nonlinear
Control 28(6): 2598-2618
12. Huang, Y., Jia, Y. (2019) Adaptive fixed-time six-DOF tracking control for noncooperative
spacecraft fly-around mission. IEEE Transactions on Control Systems Technology 27(4): 1796~
1804
13. Huang, Y., Jia, Y. (2017) Adaptive fixed-time relative position tracking and attitude syn-
chronization control for non-cooperative target spacecraft fly-around mission. Journal of the
Franklin Institute 354(18): 8461-8489
14. Jiang, B. Y., Hu, Q. L., Friswell, M. 1. (2016) Fixed-time attitude control for rigid spacecraft
with actuator saturation and faults. IEEE Transactions on Control Systems Technology 24(5):
1892-1898



References 181

15.

16.

17.

18.

19.
20.

Jiang, B., Hu, Q., Friswell, M. 1. (2016) Fixed-time rendezvous control of spacecraft with
a tumbling target under loss of actuator effectiveness. IEEE Transactions on Aerospace and
Electronic Systems 52(4): 1576-1586

Zhu, Z., Xia, Y., Fu, M. (2011) Attitude stabilization of rigid spacecraft with finite-time con-
vergence. International Journal of Robust and Nonlinear Control 21(6): 686—702

Zhou, N., Xia, Y., Wang, M., Fu, M. (2015) Finite-time attitude control of multiple rigid
spacecraft using terminal sliding mode. International Journal of Robust and Nonlinear Control
25(12): 1862-1876

Zhong, C., Wu, L., Guo, J., Guo, Y., Chen, Z. (2018) Robust adaptive attitude manoeuvre
control with finite-time convergence for a flexible spacecraft. Transactions of the Institute of
Measurement and Control 40(2): 425-435

Khalil, H. K. (2002) Nonlinear systems. Prentice Hall

Fallaha, C.J., Saad, M., Kanaan, H. Y., Al-Haddad, K. (2010) Sliding-mode robot control with
exponential reaching law. IEEE Transactions on Industrial Electronics 58(2): 600-610



Part IV
Observer-Based Modeling Error
Compensation Attitude Control



Chapter 9 ®)
Extended-State Observer-Based Attitude Gedes
Control

9.1 Introduction

Recent years have witnessed a lot of attention to the flexible satellite attitude control
problem. Many control schemes have been presented [1], including the backstep-
ping control [2], the proportional-derivative control [3], the Ho, control [4], the
adaptive control [5], the active disturbance rejection [6], the DOB control [7], and so
forth [8].

Although a number of studies have shown that robust control techniques are effec-
tive in handling flexible vibrations, most of them can only guarantee robustness rather
than asymptotic stability of the closed-loop attitude system. A satisfactorily high-
accuracy of attitude control would not be achieved. When using adaptive or sliding
mode control techniques to design controllers for external disturbance rejection and
flexible vibration attenuation, and to achieve asymptotic attitude control, the upper
bound of disturbance and vibrations are usually estimated in the controller design.
It results in that the controller has certain conservativeness.

In view of addressing those drawbacks, one effective but direct methodology is
to estimate the disturbance and flexible vibrations as accurately as possible first, and
then design the controller by using the estimated value. Therefore, inspired by the
concept of fault detection and identification block [9-11] that detects and identifies
faults online and reconfigures the controller online, or nonlinear observer of esti-
mating system uncertainties [12—14], a nonlinear estimator-based control approach
is presented in this chapter for a flexible satellite. An estimator is first designed to
estimate the magnitude of external disturbance and unknown flexible vibrations in
satellite attitude dynamics. This is achieved in finite time and with zero estimation
error. A controller designed by using that estimated value is then presented. Asymp-
totic stability of the closed-loop system is guaranteed.

The main contribution of this chapter in comparison with the existing schemes
in the literature for external disturbances rejection and vibration attenuation control
is that, the proposed approach is able to achieve high-accuracy attitude control with
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asymptotic stability of the closed-loop system, and to guarantee no conservativeness
of the developed controller.

9.2 Mathematical Model

The mechanical structure of a flexible satellite considered in this chapter is shown in
Fig. 9.1. The model consists of a rigid hub with radius b, which denotes the central
body of the satellite, and two uniform cantilever flexible beams with the length / and
the tip mass m,, which represent antennas, solar arrays, or any other flexible struc-
tures. This model is representative of a relatively large class of spacecraft employed
for communication, remote sensing, or numerous other applications. Denote w (x, t)
as the flexible deformation at point x with respect to the frame Fg, x € [0, [].

The dynamic model of the considered flexible satellite motion can be found from
Euler-Lagrange analysis and is given by the attitude kinematics (2.15) and the dynam-
ics (2.25)—(2.26). Moreover, by using appropriate calculations, this flexible satellite
attitude kinematics (2.15) and the dynamics (2.25)—(2.26) can be combined into the
following two-order differential equation:

M@©)O®+H(©,0)0 +H,(©,0)=1—d 9.1)

whered = —R"(®)(—w*8)) — 8ij + uy), T = RT(®)u, M(®) = R"(®)JR(O),
H\(©,6)=R"©) (J*52 ~ 0" JR@®)), and H:©,6)=-R"©)

(J% - wXch((B)).

Property 9.1 The matrix M (®) is symmetric positive-definite.

Flexible deformation
w(x, 1)

m,

Fig. 9.1 The mechanical structure of the flexible satellite in Chap. 9
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Property 92 M(©) — 2H (O, 0) is skew- symmetric. For any x € R3 and © e
,xT(M(©) —2H(©,0)x =0is always valid.

9.3 Problem Statement

The main goal is to design a controller for the flexible satellite to accomplish atti-
tude stabilization maneuver with high-attitude pointing accuracy and high stability.
More specifically, given any initial attitude and angular velocity, consider the flexible
satellite attitude system described by (2.15) and the dynamics (2.25)—(2.26) in the
presence of modeling error due to external disturbances u,; and unknown flexible
vibrations, design a controller u that the body-fixed frame Fp is controlled to coin-
cide with the frame F. It can guarantee that the attitude ® and the angular velocity
), are globally asymptotically stable, i.e., @ — 0 and w;, — 0.

Remark 9.1 It is worth mentioning that the flexible structures are not controlled.
That is because there is no control input for the dynamics of flexible structures, as
it can be seen in (2.26). This means that the controller to be developed is inherently
a passive but not an active control law for suppressing the vibration of flexible
structures. Only the attitude controller needs to be designed with the desired attitude
maneuver accomplished, while it is not necessary to design a control law to achieve
vibration suppression control of a flexible structure. Actually, if the controller is an
active vibration suppression scheme, then it should have control power generated for
motors, etc., to govern the flexible structure. Therefore, the aforesaid goal should be
achieved even in the presence of flexible vibrations, while the flexible vibrations are
attenuated under the effect of the damping incorporated in the flexible appendages.

9.4 Extended-State Observer for Modeling Error

It is seen in the dynamics (2.25) that the lumped modeling error u; — @* 83 — 83 is
unknown, and this will significantly affect the attitude control performance. Hence,
to eliminate this effect and accomplish the attitude stabilization maneuver with high
accuracy, a nonlinear estimator is developed to estimate that lumped modeling error.
Introducing M, (®) = M(@)@ and us1ng Property 9.2 yield Mg O =1—-d-
H with Hy = H,(©, ©) + (H,(0, ©) — M(0©))0. Define a new coordinate as
X = ke fol (t — H3 — x(£))dt — k.M, where k, > 0 is a positive constant. Then,

it follows that
X = —kex +k.d 9.2)

Starting from (9.2), the problem of estimating u; — @> 8% — §ij can be formulated
as that of estimating the state of a linear augmented system driven by x and by an
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unknown input. If the unknown input d can be exactly estimated, then u; — @879 —
8ij can be estimated by multiplying —(R™(@))~".

Assume that the lumped disturbance d is described by a differentiable function
with time-derivative p € R3. Define two state variables as x; = X, X2 = d, then the
following linear system can be obtained.

i‘] = —kexl — kexz (93)
X2=p 94

In aerospace engineering of flexible satellites, there practically always exists
damping even small in its flexible appendages. This makes the magnitudes of elastic
vibrations ||p||, its rate ||77]|, and its acceleration ||#|| bounded during attitude maneu-
vering. On the other hand, the aerodynamic torque and the solar radiation torque are
also bounded. Therefore, the following will be used in the estimator design.

Assumption 9.1 Although the input d is unknown, its amplitude is bounded by a
constant ) > 0, i.e., ||d]] < wu;.

Theorem 9.1 For the linear system given by (9.3) and (9.4) with unknown input,
design a nonlinear estimator as

X1 = —k&| + k%) — £15gn(e;) — Lre 9.5)
%)= —l3e) — bylx, )" — Lssgn(x,) (9.6)

where X; is the estimate of x;, i = 1, 2, respectively. x, = £;sgn(e;), ¢, = X; —
x;, £, j=1,2,...,5 are positive estimate gains, while m € Ry and n € R, are
positive odd integers such that m < n. Choose the gains such that

£5ke — M1 > 0 (97)

and

£1 > max (ﬁkve4+«/§e5+u1 )T (kg(«/ilerm)Jruz/\mm(A))E 9.8
1 { Amin (M) + MZ ’ \/355 +uq +M2)\min(A) ( )

(ke +€2) 15 —k. 13
U315 0
”87) — 8ij will be estimated by %,, —(RY(©))~'X, in finite time, respectively.
Moreover, one has ug — @*8) — 8ij= — (RT(®))~'%, for all the time t > T, =

2@ 24 7 where Vi(7) = (£2(7) — x2(7))* and T = 1401,
(n—m) sk, n2

where [, is a positive scalar, and A = [ i| Then, d and u; —

Proof Please refer to [15]. [
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The proposed estimator can be viewed as a disturbance observer [16-19].
Although many disturbance observer design approaches are available in literature
[18, 20], the proposed observer can achieve a fast and precise estimation. This can
be seen in Theorem 9.1. The estimation error is guaranteed to be finite-time stable.
In comparison with the existing schemes such as [13, 21], a faster and more precise
reconstruction is achieved.

9.5 Observer-Based Attitude Controller

As discussed in [22], there is a mathematical relationship between Euler angles
rotation and unit-quaternion. Because the orientation of the considered satellite in
this chapter with respect to F is obtained by a yaw-pitch-roll sequence of rotations,
its corresponding unit-quaternion Q, = [¢.0, ¢, 1" € R?, g, € R? can be obtained
from ¥/, ¢, and 6 that

cos(%) cos(%) cos(%) + sin(%) sin(%) sin(%)

0 — sin(%) cos(%) cos(%) — cos(%) sin(%) sin(%) ©9)
‘ cos(§) sin($) cos(%) + sin($) cos(%) sin(¥) '

—sin(§) sin($) cos(4) + cos(§) cos(%) sin(%)

It is worth mentioning that this quaternion @, denotes the satellite orientation
between Fp and Fp. Hence, using this unit-quaternion representation, the flexible
satellite attitude kinematics (2.15) and the dynamics (2.25) can again be given by
[23]:

. LT
0 = —54,®
g0 = T 9.10)
9. =34, +qe0l3)0)

Jo, = —(wp) Jwp, + Hy + 08 — 8 +u + uy 9.11)

where Hy = (0p)* J0.(0) + (0.(0))* Jo + Jo (O)
To achieve a high-accuracy attitude stabilization maneuver, the following nonlin-
ear controller is presented:
U=U; N+ Us_com (9.12)

where u, x € R3 is the normal control effort, and Uy com € R3 is the compensation
control module added to the output of the nominal controller to compensate for
disturbance and flexible vibrations. This compensation controller is designed by
using the estimate of u; — @* 83 — 83 in the preceding part.

Theorem 9.2 Consider the flexible satellite attitude system described by using the
attitude kinematics (2.15) and the dynamics (2.25)—(2.26), with the application of the
nonlinear estimator (9.5)—(9.6), design the nominal and the compensation control



190 9 Extended-State Observer-Based Attitude Control

module as
Ug N = —ke1(q, + keowp) — Hy (9.13)

Uy com = (RT(©))'%, (9.14)

wherek.1 € Ry andk., € R, aretwo positive control gains. Ifthese gains are chosen
satisfying (9.7), (9.8) and

ke
koo — -2 50 9.15)
kcl
MR sk )>0 (9.16)
4kc3kcl e H = '

where k.3 € Ry is an arbitrarily positive scalar, then the closed-loop attitude sys-
tem can be guaranteed to be asymptotic stable, i.e., ® — 0, @, — 0. The attitude
stabilization maneuver is, thus, accomplished with high accuracy for the considered
flexible satellite.

Proof Consider a radially unbounded positive definite Lyapunov function candidate
for the system (9.10)—(9.11) as

Vo QT T (1 g 4 S B2 9.17)
2= 2t qqe qeo ) ) .

Inserting the controller (9.13)—(9.14) into (9.11) results in

Jo, = —ke(q, + keawp) — S(wp) Jwp
+ @87 — 8if + ug + (RT(®) ', (9.18)
= —ke1(q, + kowp) — S(@p) Jop + (RT(©)) ™!

Using (9.10) and (9.18), the time-derivative of the Lyapunov function V, can be
calculated as

. w, Jo
Va=—r— 2o ;) + g0y + (1 = qe0)g, o + Ze éi

cl

: ) =1 (9.19)
@, (R (9))
= —kollwy|? + 2= 2 2 Z
According to the proof of Theorem 9.1 in [15], it can be obtained that

erer < —(ko + 0)ller|]” — (41 — kellealD el (9.20)
€36 < —Lak/ |lex|l™" — (Usk, — pn)llea| 9:21)
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and
lleall < lle]] < Ar (9.22)

€ = keAg + &9 (9.23)

where A g WM—W Then, it can be obtained from (9.20)-(9.23) that

2
Y ele < —(ke + W)ller|P — Gk lleal| ™ — (Uske — polleal]  (9.24)

In addition, applying the Young’s inequality, one has

T/ pT -1 2 2
w, (R (©)) e - kesllwpl] lle2]| 9.25)
kcl kcl 4kc3kcl
Therefore, (9.19) can be simplified as follows by using (9.20)—(9.23).
_ _ ks 2 2_popn wn
Vs < — (ke X Mewp||” — (ke + £2)le1]|” — Lake" |lea]|
‘“‘e I (9.26)
2
— (Usk, —
+ [lea]] <4kc3kcl (s Ml)) el
Furthermore, the followings can be obtained from (9.15), (9.16), and (9.22)
. kes mtn
Vo < — ke — k_ ol 2 = (ke + E)ller [P — Lak lleal] 9.27)
cl
By integrating (9.27) form O to oo, one has
o0 .
/ Va(6)dt < V2(0) — V2(00) < V2(0) < o0 (9.28)
0

Because the Lyapunov function is radially unbounded, all the signals remain

bounded. Using Barbalat’s lemma, it can be proved from the uniformly continuity of

V, that V() — Oast — oo. This further guarantee that lim V,(¢) = Obecause V; is
—>00

uniformly continuous. To this end, it can be obtained from (9.27) that lim e;(¢) = 0,
—00

lim e;(t) =0, lim w,(t) = 0,and lim @,(r) = 0. Using (9.23) and lim e,(r) = 0,

—>00 —>00 11— 00 —>00

it can be proved that ¢, — 0 as t — oo. From the unity constraint qezo +4q7q, =1

of the quaternion Q,, it follows that g.o — %1 ast — oo. This strictly corresponds

to @ — 0. As a result, the closed-loop attitude system is asymptotic stable. High-
accuracy attitude control is, hence, achieved.
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Summarizing the aforesaid analysis, it is proved that ® — 0 and w;, — 0 as
t — oo. It means that the satellite body-fixed frame Fp will finally coincide with the
orbit reference frame F . High-accuracy attitude stabilization is, hence, achieved.[]

9.6 Simulation Results

As the initial step towards final experimental verification, the performance of the
proposed controller should be numerically simulated first. Hence, a flexible satellite
currently being developed will be simulated to test the effectiveness of the proposed
control scheme. The orbit of the satellite is circular, with an altitude of 638 km
and an inclination of 95.4 deg. Its orbital rate is wy = 0.0011rad/s. Its physical
parameters are J = [486.7, 14.9, — 1.2;14.9,177.4, —7.3; — 1.2, —17.3,404.3]
kg-m2,8 =[1,0.1,0.1;0.5, 0.1, 0.01; — 1, 0.3,0.01] kg2 - m/s?, and the first three
elastic modes have been taken into account, i.e., N = 3. The natural frequencies are
Ay = 1.8912 rad/s, Ap, = 2.884 rad/s, Az = 3.4181rad/s, and damping ratios are
& =0.01, & = 0.01, and & = 0.01. A time-varying external disturbance is also
considered. It is given by uy = (||wy||* + 0.05)[sin 0.8¢, cos 0.5¢, cos 0.3t]" N - m.
The gains of the estimator (9.5)—(9.6) are chosen as k, = 7.5, £, = 0.05, ¢, =
0.5, £3=0.5, £, =10.5, £s =0.05, m = 17, and n = 19. The control gains for
the controller (9.12) are chosen as k.; = 15 and k., = 16.7. The initial satellite
attitude angles are 6 = 6 degrees, ¢ = —4.5 degrees, and ¥ = 3 degrees, while
the initial velocity is @,(0) = [0.2, 0.1, —O.IS]Tdeg/s. The initial flexible modal
displacements and velocities are given by 1,(0) = 0 and 7;(0) = 0 fori =1, 2, 3.
Denoting the actual estimation error between the magnitude of the external dis-
turbance, the vibrations u; — w” 87 — 8ij and the estimated value —(RT(®))"'%,
as e, ie., & = (ug — w*8f) — 8ij) + (RT(®))~'%,. When the proposed estimation-
based approach is implemented to the considered flexible satellite attitude system,
Fig. 9.2 shows the successful estimation using the incorporated nonlinear estimator.
As shown by the steady-state behavior of the actual estimation error € in Fig. 9.2b,
the estimation accuracy is smaller than 1.0 x 107> N - m. The lumped disturbance
u,; — w* &) — §i including external disturbances and flexible vibrations is exactly
reconstructed by —(R"(®))"'%, after a short period of time, roughly 7, = 3.1 sec-
onds. This can be seen in Fig. 9.2a. That estimation result verified the conclusion
in Theorem 9.1 that, the total unknown torque induced by external disturbance and
flexible vibrations can be precisely estimated by —(RT(®))"'%, in finite time 7.
Due to the precise estimation of the external disturbances and unknown flexible
vibrations torque supplied by the estimator (9.5), (9.6), the controller in (9.12) can
completely compensate for the effect of external disturbance and unknown vibra-
tions. As a result, the controller produces an asymptotic convergence of the angular
velocity and the attitude angles. External disturbance rejection and robustness against
unknown flexible vibrations are achieved. The attitude Euler angles are presented in
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Fig. 9.2 The estimation 06
error of the lumped modeling g €1
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(b) The steady-state behavior

Fig. 9.3 and the attitude velocity is illustrated in Fig. 9.4. The attitude pointing accu-
racy is within 0.0005 degrees and attitude stability is within 0.0002 deg/sec. Those
obtained attitude stability and pointing accuracy satisfy a set of stringent pointing
requirements to perform the planned mission even in the face of external disturbances
and unknown flexible vibrations. The vibrations of flexible appendages can be seen
in Fig. 9.5. The corresponding control torque is shown in Fig. 9.6. It is interesting
to see that the attenuation control of vibrations is achieved, and they will be com-
pletely suppressed after 200s. Based on this result, one has —w* 8y — §i) = 0 after
200s. That is to say, the signal estimated after 200s is the external disturbance u,.
At this time, the control effort in (9.12) only needs to compensate for the external
disturbance. That is the reason why the steady behavior of # in Fig. 9.6b is quite the
same as external disturbance u,.
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Fig. 9.3 The attitude Euler
angles from the controller
9.12)

Fig. 9.4 The angular
velocity from the controller
9.12)

Fig. 9.5 The flexible
vibrations from the
controller (9.12)
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Fig. 9.6 The control input 0.5
of the controller (9.12)
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9.7 Experimental Study

In this section, experiments are further performed to verify the validity of the proposed
approach on the single-axis air-bearing suspending rotary testbed, as shown in Fig.
2.5. In comparison with Figs. 9.1 and 2.5, it is known that this testbed can exactly
simulate the attitude motion of Euler attitude yaw angle i rotation.

To verify the engineering application of the proposed nonlinear estimator-based
attitude control approach, the experiment has been conducted by using the testbed.
A large-angle attitude stabilization maneuver is performed. The initial attitude angle
is ¥ (0) = 60 degrees, and the initial angular velocity is w;3(0) = 0 deg/s. With an
application of the proposed controller, the experimental results are shown in Figs.
9.7,9.8 and 9.9. It can be seen in Fig. 9.7a that the attitude stabilization maneuver is
accomplished within 40s. Moreover, the attitude pointing accuracy achieved is 0.002
degrees. This can be observed in the steady-state behavior of Fig. 9.7b, and hence
high-accuracy control performance is guaranteed. The resulting angular velocity is
shown in Fig. 9.9. As the steady-state behavior clearly shows in Fig. 9.8b, attitude
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Fig. 9.7 The experimental 60
result of the attitude from the

controller (9.12) 40
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stability is within 0.0015 deg/s. This accuracy is very high for flexible satellite. The
actual control input torque is shown in Fig. 9.9.

Compared the experimental results in Figs. 9.7, 9.8 and 9.9 with the simulation
results in Figs. 9.3, 9.4, 9.5 and 9.6, it is interesting to see that there exists a minor
difference in the attitude stabilization time. That is because the inertia parameters
in the experimental testbed have a scaling factor 10% of the inertia matrix used in
simulations. Moreover, the obtained attitude pointing accuracy between simulation
and experimental results is also different, and the latter is almost less than the former
by an order of magnitude. That is due to the fact that the actual actuator, gyro, and
controller are used in experiments rather than using an ideal mathematical model in
simulation. Although some differences are observed, it can be seen that the behavior
(including overshoot) of experimental results matches the behavior of the simulation
results well.

To summarize, high-accuracy pointing control (order of 10~ deg) and high-
accuracy attitude stability (order of 10~ deg/s) can be realized through the proposed
control. Hence, the ease of implementation, high accuracy, and robustness of the
proposed control are well verified through the experiment.
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Fig. 9.8 The experimental
result of the angular velocity
from the controller (9.12)

Fig. 9.9 The experimental
result of the input torque of
the controller (9.12)
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9.8 Summary

Although there have been significant investigations in robust and high-accuracy
control design for flexible satellites, very few have addressed the problem of the
conservativeness of the controller. In this chapter, an estimator-based methodology
for flexible attitude stabilization control is presented. The scheme incorporates a
nonlinear estimator for estimating the external disturbances and unknown flexible
vibrations simultaneously, and a Proportional-Derivative (PD)-type controller. The
estimation is achieved in finite time and with zero estimation error. The controller is
designed by using the estimated value. Hence, modeling error compensation with dis-
turbance rejection and vibration attenuation control can be achieved. The outstanding
advantage of the approach is that it can achieve high-accuracy attitude control with
asymptotic stability of the closed-loop system and no-conservativeness of the con-
troller simultaneously. It has been verified through simulations and experiments that
the proposed control is easily implementable with high-pointing accuracy achieved
and robust against unknown flexible vibrations.
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Chapter 10 ®)
Disturbance Observer-Based Attitude Gedes
Control

10.1 Introduction

The most existing DO requires external disturbance or modeling error to satisfy
some strict conditions. For instance, most ESO are only feasible for the unknown
constant disturbance u, or the disturbance with slow variation [1-3], i.e., ity = 0,
iy ~ 0, tlg(r)l@ iy = 0,0r ||a,|| < 8, where §; is positive and small scalar. When the

external disturbance is treated as an extended state in ESO, the external disturbance
should be differentiable. On the other hand, it usually requires the SMO or HOSMO
to be upper bounded by a known value §;, i.e., ||ug|| < §,. In practice, however,
the external disturbance may not satisfy these assumptions. The class of the external
disturbance handled by the existing DO is limited. Hence, it is of interest to determine
observers that can release these constraints or assumptions. Although this is achieved
in [2], its result is applicable to linear systems only. In this chapter, we address this
problem first by deriving a novel DO-based control approach that stabilizes the rigid
bodies’ system despite any type of external disturbance. The main features of this
control approach are listed as follows.

e A general systematic DO-based control approach is presented. The closed-loop
attitude system is stabilized in the presence of external disturbances. The attitude
and the angular velocity are exponentially stabilized if the external disturbance has
no rate of change. When the external disturbance is time-varying, the attitude and
the angular velocity are exponentially stabilized to a small set containing the origin,
despite the slow-varying or fast-varying disturbances. Moreover, the controller has
a simple structure. It necessitates inexpensive onboard computations.

e The proposed DO provides the disturbance estimation error with exponential rate.
Compared with the existing DO or ESO, the designed observer can release the
restrictions on the rate of change of the modeling error. The class of disturbances
handled in this chapter can be much larger than the existing DO or ESO.
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Note that although many investigations have been reported for satellite attitude
tracking control design with modeling error and actuator uncertainties addressed,
most of them have the following drawbacks: (1) Few results can handle system
uncertainties and actuator uncertainties simultaneously. (2) Most of the attitude
tracking schemes in literature cannot guarantee the exponential stability of the over-
all system. Therefore, the robustness to uncertainties is weak. Although such stability
was reported in [4], actuator uncertainties were not investigated. (3) The existing
approaches to actuator misalignment are only appropriate for satellites with its
actuators belonging to a specific type and having a particular configuration.

Motivated by addressing the aforementioned three challenges, a new resilient
control approach is then presented in this chapter for attitude tracking with practi-
cally exponential convergence ensured. This is developed in the framework of the
observer-based control technique. A structure simple estimation law is preliminarily
synthesized to observe the modeling error including the system uncertainties and
actuator uncertainties. Based on this observer, a self-resilient controller is then syn-
thesized. The following are the main contributions of this resilient control approach.

e The proposed resilient control approach governs the attitude tracking system to
be practically exponentially stable despite the system uncertainties and the actua-
tor uncertainties. Hence, in comparison with the existing attitude controllers that
ensure asymptotic stability or ultimately uniformly bounded stability [5-8], the
proposed controller has more robustness to uncertainties.

e Incontrastto [4, 9, 10], the resilient control scheme has the capability of tolerating
systems and actuator uncertainties, while the controllers in [4, 9, 10] can only
provide exponential stability in the absence of systems uncertainties and external
disturbances. Moreover, the designed controller is independent of the actuator’s
type and its configuration in the satellite. It has an excellent resilient capability to
the actuator uncertainties in a more general way.

e The controller is designed with the satellite’s attitude represented by using atti-
tude Euler angles. Moreover, in comparison with the neural-network-based attitude
controller [11], the structure of the proposed approach is simple, and its imple-
mentation does not necessitate expensive onboard computation. The presented
approach has significant practical application potential.

10.2 Attitude Exponential Stabilization Control

10.2.1 Problem Statement

In this section, the rigid satellite is considered with its attitude represented by the
modified Rodrigues parameters. The control objective of this section can be stated
as: For any initial states o (0) and @(0), the goal is to use the angular velocity and the
attitude feedback to design a robust control torque u to guarantee that the closed-loop
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system described by (2.21) and (2.24) is globally exponentially stabilized despite
any modeling error u,. The attitude o and the angular velocity @ are exponentially
stabilized to their equilibrium points or converge to a small set around the equilibrium
points with acceptable control accuracy.

10.2.2 Disturbance Observer

Consider a class of nonlinear systems with their model described by
x=f(x)+gx)u+d (10.1)

where x € R” is the measurable state of the system, u € R™ is the system’s control
input, d € R" is the modeling error acting on the system. The function f(x) € R"
is known. The matrix g(x) € R™*™ is known and invertible.

To estimate or observe the modeling error in the nonlinear system in (10.1), a
novel but structure-simple observer will be presented in this section. A new state
x, € R" is preliminarily introduced with its dynamics satisfying

X, =fx)+gx)u+ Fix, (10.2)

where x, = x — x, and F'; € R"*" is a constant matrix determined by the designed.

Lemma 10.1 For the nonlinear system (10.1) with the modeling error d, let an
observer be designed as

E=—LE+ L(Fix. - Fy(x.) (103)

with F»(x,) = Lx,, L = LT € R"™" js the observer gain matrix, and it is positive-
definite. Applying the observer state, develop an estimation law for the modeling
errord as

d=E§+ Fyx.) (10.4)

where d is the estimation of d. Suppose that the observer gain L is chosen such that
Amin(L) — % > 0, then the following results can be achieved for all d ,(0).

(R1) The disturbance estimation errord, = d — dis globally exponentially stable
ifd = 0.

(R2) If d =% 0 and the rate of change of d is bounded, i.e., there exists a positive
scalar @ € R such that ||d M|l < for all t > 0, then the disturbance estimation
error d, converges with an exponential rate, equal to (1 — o) (Amin (L) — %), to the

. . 2u
ball with radius NCTCTPRI A I where 0 < a < 1.
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Proof From (10.1) and (10.2), it can be obtained that the dynamics of x, is such that
x.=—Fix,+d (10.5)

In accordance, it follows from (10.5) that the estimation error d, is such that

A

d,=d—d
—d+LE—LF LF — L3
d+ ?\ lxe+ Z(xe) Xe (106)
=d+L§ - LFx,+ LFy(x,) — L(—Fx, +d)
=d-Ld,
Choose a Lyapunov candidate function for (10.6) as V,, = %d;rde, one has
V,=d'd, = —Ld'd, +d"'d (10.7)
Then, the following two cases are discussed to analyze the stability of d..
Case #1: If d = 0, then (10.7) can be further simplified as
V,=—Ld'd, < —2nn(L)V, (10.8)
where Amin (L) > 0. Solving (10.8) yields V,(t) < V,(0) exp(—2Amin(L)t) or
llde ()] < v/2V,(0) exp(—Amin (L)1) (10.9)

which implies that the observer error d,(¢) will be globally exponentially stabilized
for any initial observer state, i.e., lim ||d.(¢)|| = 0.
1—>00

Case #2: If d # 0 and ||d(t)|| < u, one can get from (10.7) that

. 1
Vo < —dmin(D)[|de|1* + 1lde ||t < —Oumin (L) — 4—1>||de||2 +u?

1 1 (10.10)
=-(-w (xmm@) - Z) ld.|* -« (Amm(m — Z) llde|* + 1
where 0 < a < 1 is a positive constant. Therefore
V, <—(1 )(k (L) 1)IId 1%, V]ld.|| > 2 (10.11)
o= - i - ell » ell Z .
o 4 Vo @ hmin(L) — 1)

To this end, it can be concluded from (10.11) and Definition 2.1 that the estimation
error d, is globally uniformly ultimately bounded.
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Moreover, solving (10.11), one has

1 2u
Vo(t) = Vo(0) exp(=2(1 = o) Gumin (L) = D0, Vlldell =~y
(10.12)
and
1 2u
l|d.|] < v/2V,(0) exp(—(1 — &) (Apmin(L) — Z)t),VIIdeII > @D =D
(10.13)
Hence
1 2u
el = V2Vo() exp(=(1 = ) Chmin () = 1)+ g V1 2 0
(10.14)

Then, one can conclude from Definition2.3 that the estimation error d, con-
verges with an exponential rate, i.e., (1 — &) (Amin(L) — i) to the ball with radius

21
NCTcrmmy e 'for alld,(0). ' o
Summarizing the above analysis for those two cases, the conclusions in Lemma

10.1 are then proved. (]

Remark 10.1 It is seen in Lemma 10.1 that the presented observer can achieve an
exponential estimation of slow-varying and even fast-varying modeling error. It can
be obtained from (10.14) that the exponential rate can be tuned to be faster and the
estimation accuracy of d, can be governed to be higher by choosing larger observer
gain L.

Remark 10.2 In comparison with the existing ESO for modeling error or external
disturbance, the observer (10.3) does not require the modeling error d to satisfy
u; =0, u; ~0, or hm 1, = 0. As a sequence, the class of the modeling error

that can be handled by the proposed observer is much larger than the existing DO,

ESO [1, 12, 13], and SMO [3, 14]. Although both the observer (10.3) and the
disturbance observer in [2] can avoid the drawback in the existing ESO or SMO, etc.
the proposed observer (10.3) is more general and more systemic than the result in
[2]. That is because the observer in [2] is applicable to linear systems only, while the
observer (10.3) is feasible for a more general class of nonlinear systems. The observer
proposed by [2] is a special case of the observer in (10.3). From this standpoint of
view, the proposed observer (10.3) has wide application potential. Compared with
the existing SMO, nonlinear DO, and HOSMO which do not necessitate the rate of
change of the external disturbance to be zero or almost zero, the developed observer
(10.3) can ensure the estimation error to be exponentially stable; furthermore, the
observer (10.3) is characterized by a simple structure, and it necessitates inexpensive
onboard computations.



206 10 Disturbance Observer-Based Attitude Control

10.2.3 Estimator for Satellite’s Modeling Error

Because the inertia matrix J is positive-definite, the attitude dynamics (2.24) can be
rewritten as
o=—J"'S@Jo+J ut+J u+J uy (10.15)

The transformed dynamics (10.15) can be described in the form of the nonlinear
system (10.1) by denoting x = @, f(x) = —J 'S(w)Jw, gx)=J", and d =
J 'u,. Then, the result presented in Sect. 10.2.1 can be applied to get the following
theorem.

Theorem 10.1 With the application of the observer (10.3) in Lemma 10.1, develop
an estimation law as

ity = J& + Fa(x,)),or ity = Jd (10.16)

Choose the observer gain L such that Apin (L) — % > 0, then it follows that
(R1) The estimation erroru, = ug — g is globally exponentially stable ifi; = 0.
(R2) If iy # 0 and the rate of change of u, is bounded, i.e., there exists a pos-
itive scalar p; € R such that ||u,(t)|| < py for t > 0, then the estimation error u,
converges with an exponential rate, equal to (1 — ) (Apin(L) — i), to the ball with

201J IS~ e

v DTy Where 0 < < 1.

radius

Proof From the above denotations, it follows that u; = Jd and
u,=Jd— Jjd = Jd, (10.17)
On the other hand, combing d = J~'u, with ||ity(t)|| < i1, one has
@I = 11T uall < 1177 1111 (10.18)

Then, denoting x = ||J ~!||4; and following the proof of Lemma 10.1, Theorem
10.1 can be directly proved. ]

10.2.4 Observer-Based Exponential Controller

Let introduce another two new variables as z; = o and z, = @ + «;, where o] =
kiG"(0)z; and k; € R, is a positive scalar. Then, it is ready to present the main
solution in the following theorem to the attitude stabilization control problem.

Theorem 10.2 For the rigid satellite attitude system (2.21) and (2.24) with modeling
error, applying the disturbance estimation law (10.16), develop a nonlinear controller
as

u=—kz— G (0)z +0 Jo— Ja, — iy (10.19)
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where ky € R is a positive control gain. Suppose that the control gains are chosen
such that

1
)‘min(L) - 4'll - Z >0 (1020)

1117

1

ky — >0 (10.21)

with [} € Ry being a positive scalar, then the following can be achieved.

(R1) The closed-loop attitude system is globally exponentially stabilized ifu; = 0.
The estimation error u,, the attitude o, and the angular velocity @ are globally
exponentially stabilized.

(R2) The closed-loop attitude system is ultimately uniformly bounded if uy # 0
and the rate of change of uy is bounded, i.e., there exists a positive scalar jt; € R
suchthat ||y (t)|| < wyforallt > 0. More specifically, the attitude o, the estimation
error u,, and the angular velocity @ converges with an exponential rate, equal to
K(L— «), to the ball with radius % where 0 < o < 1 is a positive constant,
an

K = min { Apin (L) — 41 —1 ﬁ ! ky — ||J||2 >0 (10.22)
- min T8 aa (D '

Remark 10.3 Because the proposed controller (10.19) can ensure the exponential
stability of the closed-loop system in the presence of any type of modeling error,
it can guarantee that the attitude control performance is more robust to modeling
error. Moreover, for slow-varying or even fast-varying modeling error, it can be
obtained from (10.22) that the attitude control accuracy can be ensured to be as high
as possible by selecting appropriate gains. Larger « will lead to a higher attitude
stabilization accuracy. On the other hand, it is seen that the controller (10.19) is with
a simple structure. It does not involve expensive computation. The controller (10.19)
is actually a compensation control scheme. The included term —i, is applied to
compensate for the modeling error online and in real-time. Hence, this controller
has less conservativeness in comparison with the existing robust modeling error
attenuation/rejection controller for rigid satellites.

Remark 10.4 For any rigid satellite in practice, its inertia J is bounded, and its
varying rate J is also bounded. The modeling error u, acting on it is bounded
practically. Moreover, 1, is bounded at least. Otherwise, the rigid satellite will be out
of control. Hence, d is bounded for practical rigid satellites. The equation ||z, (7)|| <
W is satisfied at least in practical engineering. Therefore, applying (R2) in Theorem
10.1 leads to the conclusion that all the signals involved in the closed-loop attitude
system, with the developed controller, are uniformly ultimately bounded at least.
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Proof Based upon the definition of z; and 25, it follows from (2.21) and Property
2.1 that

=G(o)(za — o)) = —k1G(6)G (0)z; + G(0)z>

I +oTa\? (10.23)
= —k1<T> 21 +G(0)z2

For the attitude system (2.21)—(2.24), select a Lyapunov candidate function as V =
V, 4+ Vi, where

1
23]z (10.24)

1
Vi= —ZFIFZ1 + 3

2
Applying (2.24) and (10.23), differentiating (10.24) and inserting the control law
(10.19) yield

. T l1+0"¢ 2
Vi = —kiz; — )@ +21G(0)z2 + 23 J (@ + &1)
(10.25)

IA

! 2 2, T
_EHZIH — kallz2|I” + 2y ue

Moreover, it can be obtained from (10.7) and (10.17) that the time derivative of V
can be calculated as

. . k
V<-Ld'd, +d'd- %HZIHZ —kallzal)* + 25 Jd, (10.26)

Then, the following two cases are discussed to analyze the stability of d..
Case#1:1fi; = 0, thenitfollows thatd = 0. Atthis time, one can further simplify
(10.26) as

. k
V < —Amin(L)|ld.|? — l—t‘,)nzln2 — kallza|* + 23 J d.

k I .
~Gumin (L) = 4 1de* = Tl - (kz == ) llzalP (10:27)

IA

< =2yV

7

where y = min {Anin(L) = 401, 8, 515 (ks = LAE) | > 0. Then, using (10.17)

and solving (10.27) yields V() < V(O)e’z”’ or
llde (DIl = 2V (0) exp(=y 1), l[u ()] = 2V (0) exp(—y1) (10.28)

V(0)
)\-min (J)

llz1I = V2V (0) exp(=y 1), |lz2(D]] = exp(=y1) (10.29)
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Hence, it can be concluded from (10.28) and (10.29) that the disturbance estimation
error u,(t), the attitude o, and the angular velocity @ are globally exponentially
stabilized, i.e., lim ||u.(¢)|| =0, lim ||o(¢)|] = 0, and lim ||@(?)|| = 0.
11— 00 —00 1—00
Case #2: If iz, = Oand ||i24(¢)|| < w1, then using the proof of Theorem 10.1 leads
(10.26) to be

: . 2 1 ki o ||J||2
V < =Cmin(L) = 4I)Idell® + ldel 117 Iy = $ellznll® = | k2 = llz2l1?

11
—(Amin(L) 411——>||de|| ——||11|| —( I )IIZzII + TP

<=2V + 1T Pu3
= —2%c(l —a)V —2caV + [T Pu?

(10.30)
Then, it leads to
. 1Al
V<=2ckl-—a)V,V||IVO®)||l > —— (10.31)
V2ka

To this end, it can be concluded from (10.31) and Definition 2.1 that the closed-loop
system is globally uniformly ultimately bounded.
Moreover, solving (10.31) results in

17

V() = V(0) exp(=2«(1 — a)1), V||V ()| = NerT

(10.32)

and for all ||V (¢)|| > ||J_ll|%, it can be got that

llde@)I| = V2V (0) exp(—« (1 — a)t), [lu (D)l = [|J]Iv/2V(0) exp(—k (1 — a)1)
(10.33)

V(0)
)"min (J)

exp(—« (1 —a)t)

(10.34)
Applying Property 2.1 the definition of z», it follows that the following holds for

all [Vl = 17"l 5=

lz1 I = v2V(0) exp(—k (1 — o)1), [|z2(1)]] <

llll = [lz2l] + lleerl] < [lz2] + k1[G (0)[]z1]]

k 2V (0 k
Sllzzll-l-zlllmllf < Vo 1\/2V(O>exp( k(1 —a)t)

mm(J
(10.35)
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From (10.33)—(10.35), it can be proved that,

llu (Ol < BillJIlexp(—=«(l —a)1) +¢,Vt =0 (10.36)
llo®ll = prexp(—«(l —a)t) +¢,V1 =0 (10.37)
llo()] < pexp(—«k (1 —a)t) +¢,V1 =0 (10.38)

where 8 = \/% + %, B1 =2V(0), and ¢ = % Then, it can be con-
cluded from Definition 2.3 and (10.36)—(10.38) that the estimation error u,, the atti-
tude o, and the angular velocity @ converge with an exponential rate (i.e., k (1 — «))
to the ball with radius ¢ = % for all the initial states.

Summarizing the above analysis for those two cases, the conclusions in Theorem

10.2 are then proved. ]

10.2.5 Rigid Microsatellite Example

Having shown in Sect. 10.2.4 that, the presented DO-based control scheme can
accomplish the attitude stabilization maneuver with the desired control performance
guaranteed, this section will present a numerical example of a currently being devel-
oped rigid satellite to validate that effectiveness in Theorems 10.1 and 10.2. This
satellite is in a circular orbit. The altitude and the inclination of its orbit are designed
to be 670 km and 90.5 degrees, respectively. This satellite’s moment of inertia is
J=1[32,1.1, —0.3;1.1,30,0.8; —0.3, 0.8, 31] kg - m2. To validate the superior
attitude stabilization performance of the designed controller despite the modeling
error, simulations are carried out with the following two cases of modeling error
considered, respectively.

e Case #1: An external disturbance having constant value is considered by assuming
uy = [0.01,0.005, —0.008]" N - m.

e Case #2: In this case, the satellite is assumed to be under the effect of the following
time-varying external disturbance:

ug = [ugr, uar, ug3)* N -m, ug; = sin(u;t + ;) (10.39)

where u; = 80, u, = 50, u3 =20, n; = 0.5, 7, = 0.3, and n3 = 0.9.

When conducting all simulations, the mathematical model (2.21) and (2.24) are
applied in conjunction with the DO-based controller (10.19). The control gains are
chosen as k; = 15, ko = 14.5, I, = 75, L = diag([305, 305, 305]7), F, = 25013,
and o = 0.5. The initial attitude of this rigid satellite is o (0) = [0.4, —0.3, —0.5]T
with its initial angular velocity set as @(0) = [0, 0, 0]T rad/s.
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A Simulation Results of Case #1

In this case, the attitude stabilization results by the presented controller (10.19) can
be seen in Figs. 10.1 and 10.2. The attitude and the angular velocity are successfully
stabilized after about 50 s. Moreover, after going to see the steady-state behavior
of the attitude and the angular velocity, the control accuracy with |o;| < 107'° and
lwi| < 10710 rad/s, i = 1, 2, 3 can be observed. The convergence of the attitude and
the angular velocity are illustrated in Figs. 10.3 and 10.4, respectively. The inequality
(10.29) is verified. The exponential stability of the closed-loop attitude system is seen
despite the constant external disturbance. The conclusion (R1) in the Theorem 10.3
is validated. The control torque required to ensure that perfect attitude stabilization
performance is shown in Fig. 10.4.

The above attitude stabilization result with exponential convergence is owing to
the incorporated DO (10.16). When the controller (10.19) is applied to this case,
the estimation error of the constant external disturbance is shown in Fig. 10.5. It is
seen that the disturbance is precisely estimated after 50 s. More specifically, it is
seen in Fig. 10.6 that the inequality (10.28) is strictly satisfied. The conclusion that
the estimation error is exponentially stable in the presence of constant disturbance
is validated.
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B Simulation Results of Case #2
When the time-varying external disturbance (10.39) is considered in this case, apply-

ing the developed DOB control law (10.19) to the satellite’s attitude system, it is
found that the attitude stabilization maneuver can be still accomplished. This can
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Fig. 10.7 The attitude from the controller (10.19) in Case #2

be verified by the results shown in Figs. 10.7 and 10.8. The attitude and the angular
velocity are stabilized within 50 s. Moreover, it can be obtained from Fig. 10.7b that
the attitude control accuracy is governed to be |o;| < 2.5 x 1075, i =1, 2, 3. The
steady-state behavior in Fig. 10.8b shows that the controller leads the angular veloc-
ity, i.e., the attitude stability, to be |w;| < 1.7 x 10~*rad/s, i = 1, 2, 3. These attitude
pointing accuracy and attitude stability are very high even in the presence of a time-
varying external disturbance (10.39). It can satisfy the stringent requirements of the
attitude control system to accomplish the planned missions. Figure 10.9 shows the
estimation error achieved by the incorporated DO (10.16). The external disturbance
(10.39) is precisely estimated by the @, in (10.16) after about 50 s. Moreover, it can
be seen from its steady-state behavior in Fig. 10.9b that the estimation accuracy of
the disturbance is |u,;| < 3.0 x 107*N -m, i=1,2, 3.

The convergence behavior of ||u.(¢)]], ||o (¢)|], and ||@(¢)]|| are illustrated in Figs.
10.10, 10.11 and 10.12, respectively. In addition, it can be got from (10.39) that
W1 = 96.4365. Using the chosen control gains, one has ¢ = 0.033078. Then, the
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inequalities (10.36)—(10.38) can be validated. To this end, it can be summarized
from the above results that the attitude and the angular velocity are exponentially
stabilized to a residual set around the equilibrium points with a radius ¢. The con-
clusion (R2) in the Theorem 10.1 is hence verified. The control torque consumed to
achieve this exponential stability is shown in Fig. 10.13. It is seen in Fig. 10.13b that
the control input is not zero when the attitude is stabilized. That is, because extra
control torque, i.e., the term —i, in (10.19), should be functional to compensate for
the external disturbance.

C Discussion

To quantitatively evaluate the proposed DOB control approach, the attitude point-
ing accuracy, and the attitude stability are used as two control performance indexes.
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Moreover, the estimation accuracy of the disturbance is adopted as a performance
index to evaluate the estimation performance of the proposed observer. On the other
hand, to verify the sensitivity of the proposed approach to sensor noise, more simula-
tions are carried out for case #1 and case #2 with measurement noise considered. The
attitude and the angular velocity sensor noises are assumed to be a zero-mean Gaus-
sian random variable with a variance of 0.0001, respectively. For case #1 and case
#2, in the presence of measurement noises, the convergence behavior of the attitude
o, the angular velocity w, and the disturbance estimation error u, are the same as
the results when the measurement noises are not considered, respectively. The only
difference is that the control accuracy and the estimation accuracy in the presence
of noises are inferior to the accuracy in the absence of measurement noises. The
obtained attitude control performance and the disturbance estimation performance
are listed in Table 10.1. It is observed that although the measurement noise will
deteriorate the attitude control performance and the external disturbance estimation
performance, the estimation accuracy, the attitude pointing accuracy, and the angular
velocity control accuracy still satisfy (10.36)—(10.38), respectively. The exponential
stability is still achieved despite sensor noise. Hence, the proposed control approach
has great application potential for engineering.

10.3 Attitude Exponential Tracking Control

10.3.1 Modeling of Actuator Uncertainties

In practical aerospace engineering, the actuators fixed in the satellite usually have
uncertainties. More specifically, the actuator misalignment due to finite manufactur-
ing technique and the actuator faults due to component aging are the widely known
uncertainties in satellite actuators. It is known from [15] that the actuator faults of
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Table 10.1 Comparison of the control performance from the controller (10.19)

The performance | Simulation condition
indexes Without measurement noise With measurement noise
Case #1 Case #2 Case #1 Case #2
The attitude 7.0 x 10719 2.5 %1076 4.0 x 1076 1.2x 1074
control accuracy
lojl,i =1,2,3
The attitude 3.0 x 10722 1.7 x 107 1.5x 1074 3.8 x 1074
stability
|wi|(rad/s), i =
1,2,3
The disturbance | 3.5 x 10712 3.0 x 1074 2.7 x 1073 1.4 %1073
estimation
accuracy
[tei|(N - m), i =
1,2,3

satellite can be mathematically modeled as
T,=Uy— E)T+ At (10.40)

where T = [1], T2, ..., Ty]T € R" is the commanded torque of actuator’s con-
troller, 7, € R” is the actual output torque of actuators, Iy is an N x N iden-
tity matrix, the diagonal matrix E = diag([ey, €2, ..., ex]") € RV*VN with 0% <
e; < 100% denotes the effectiveness of all the actuators, i = 1,2, ..., N, At =
[AT, ATy, ..., Aty]T € R” is the bias fault vector of the actuators, and N > 3
is the total number of actuators fixed in the satellite to perform attitude maneuvers.

Let Dy € R**Y and AD € R**" be the nominal alignment and the corresponding
misalignment matrix of actuators, respectively; the actuator uncertainties including
the misalignment and faults can be mathematically modeled as

u= Do+ AD)r, = Do+ AD)((Iy — E)T + A7) (10.41)

It is seen that 7, in (10.41) is the actual torque generated by the faulty actuators.
Hence, Dyt, denotes the nominal three-axis control torque acting on the satellite,
A Dz, is the generated error torque due to the actuator misalignment, while 7, =
(Iy — E)T + At is the actual output torque generated by the faulty actuators.

Because the actuators have misalignment, the inertia matrix J will be unknown.
Let the positive-definite constant matrix Jo € R3*® denote the nominal inertia of
satellite, and let the unknown and even time-varying matrix A J € R3*3 be the uncer-
tain inertia induced by actuator misalignment and fuel consumption, etc. Then, one
has J = Jo+ AJ.
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10.3.2 Problem Description

The problem of attitude tracking will be investigated in this section. Let the desired
attitude trajectory be determined as @y = [¢y, 04, Y41 € R3 with —% <0 < %
Then, the problem description of this section can be formulated as: For the rigid
satellites with their attitude system described by (2.15) and (2.24), suppose that the
initial attitude of the satellite is such that —7 < 6(0) < 7, then develop a control
law 7 for attitude tracking maneuvering. The controller should have the self-resilient
control capability of accommodating the modeling error due to external disturbance,
actuator uncertainties, and uncertainties in the inertia. @, is ensured to be followed by
©® with the tracking error @, = [¢,, 0., ¥.]T = @, — O practically exponentially
stabilized, while —7 < 6(¢) < 7 is guaranteed for # > 0 by choosing appropriate
control gains.

10.3.3 System Transformation

Taking the actuator uncertainties (10.41), the disturbance, and the uncertain inertia
A J into consideration, the rigid satellite attitude system (2.15) and (2.24) can be
rewritten as

O=w+Af(0,0) (10.42)

Joo = —@* Jow + Dot + A f5(t, 0, @) (10.43)
where A (0, ©) = —(R(O®) — 13)0 — w.(©) and

Af,(t,w,®) =uy — 0 AJw — DyEt + DyAt (10.44)
+AD((Iy —E)T+ A1) —AJ® ’

Here, A f,(O, ©) can be viewed as the uncertainty in the attitude kinematics.
Af,(t, , ) denotes the uncertainty in the attitude dynamics, which is induced

by the disturbance u,, the actuator uncertainties, and the uncertain inertia A J.
Let introduce a new variable as x = [®T, »']7, then one can rewrite (10.42) and

(10.43) as

Ax = f(x)+ U+ Af (10.45)

150 _ ® [ o _[Aaf©,6)
where A = |:0 JOi|’ f(x) = [—wxjow]’ U= |:D01i|’ Af= |:Af21(l,w, w)i|

In (10.45), the vector f(x) is known, and the vector A f can be viewed as the
system uncertainties. To guarantee the successful maneuver of attitude tracking, in
combination with the transformed system (10.45), a novel observer-based practically
exponential and resilient control approach will be developed in this section. The
architecture of this resilient control in the attitude system is illustrated in Fig. 10.14.
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For this control scheme, a novel observer is preliminarily synthesized to reconstruct
the lumped uncertainties A f. The output of the observer is then applied to evaluate
whether the rigid satellite attitude system is controllable or not. If the evaluation
result is positive, then the output of the observer and the system measurements will
be feedback to synthesize a resilient control law to ensure that the overall attitude
tracking system is exponentially stabilized. Otherwise, the satellite attitude will not
be resilient. The attitude tracking maneuver should be ended.

10.3.4 Disturbance Observer for Uncertainties
Using the definition of A f (09, G)), it can be obtained that

Af1(©,0) =

— (R(®) — I3)6 — (10.46)

dR(@) dw:.(0)
t Cdr

In practice, the angular velocity and the angular jerk-acceleration of the satellite
are bounded, i.e., ® and © are bounded. Hence, A f 1(®, ®) will be bounded. There
exists a positive constant /; € R, such that

IAf1(©, )] <1, (10.47)
Because A f, (7, w, @) denotes the uncertain torque acting on the attitude dynam-
ics, A f,(t, w, ®) should be also be bounded. Otherwise, A f,(t, @, ®) will be not

bounded, and the attitude of the satellite will be out of control. Therefore, a positive
scalar /; € R will also exist to satisfy

A f> (1, @, @) <1 (10.48)

From (10.47) and (10.48), it yields
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IAfIl =

2
YMlafillst=\B3+1 (10.49)
i=1

Based on the above analysis, it is ready to present the following estimation law
to precisely estimate the total uncertainties A f

Afy =&+ k,Ax (10.50)

where k, € R is a positive scalar, A f, = [AfTOI, AfTOZ]T € R% is the estimation
of A f,and & € RS is the following observer’s output:

£ = —kof +ko(—f(x) — U — k,Ax) (10.51)

Theorem 10.3 For the system (10.45), choose the estimation gain such that 2k, —
1 > O, then the estimation law (10.50) can govern the estimation error Af, =
[Af Zl, Af ZZ]T =Af —Af, to converge with an exponential rate, equal to
0.5(1 — n1)(2k, — 1), to the ball with radius ﬁ where 0 < n; < 1 is a pos-
itive scalar.

Proof From (10.45), (10.50), and (10.51), it can be obtained that the dynamics of
X, is such that

Af,=Af —Afo=Af —E—k,Ax = —k,Af, + Af (10.52)

Choose a Lyapunov function for (10.52) as V3 = %A f ZA f .. applying (10.49) leads
to

Vs = —kolIAS |7+ AfIAF < —ko|IAF NP +1ASI]
1 1
= =tk = DIASAP + 312 (10.53)

2
=—(1—n)ko — 09[AF I = mik, — 0.5)||A f,|I> +0.5°

A

Then, it follows that

. 1
Vi< ——m) (ko - 5) HAf AP YIASI = (10.54)

l
Vi 2k, — 1)

Moreover, solving inequality (10.54) results in

(1 =)k, — 1) !
18Il = V/2Vs@exp(- > D VllAL N = \/771(27k70—(%55)
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Hence,

(1 —n) 2k, — 1) l
A f.Il < v2V3(0) exp(— 5 1)+ m,w >0 (10.56)

This proves that the estimation error A f, of the uncertainties converges with an
exponential rate (i.e., 0.5(1 — 11)(2k, — 1)) to the ball with a radius ﬁ for
all A £,(0).

It is seen in (10.56) that larger k, leads to smaller ||A f,||. It means that the
estimation accuracy of || A f || will be increased by tuning large k,. Moreover, larger
k, also results in a faster convergence rate of the estimation error ||A f,||. In addition,
it can be obtained from (10.56) that

(I =n)2k, — 1) l
A f 2l = v/2V3(0)exp(— 2 N+ m,w z(;)o o

Therefore, choosing larger k, can ensure ||[Af,,|| ~0 and ||Af,(f, », ®)|| =
[|A f o2ll- Then, it is ready to design the following controllability determination
mechanism for the three-axis attitude control system.

Controllability determination mechanism: If ||A f o, || < ||Dot||, then the satel-
lite is three-axis attitude controllable. Otherwise, the attitude is out of out.

Remark 10.5 Infact, [|A f 55|l < ||Dot|| means that the uncertain torque induced
by disturbance, actuator uncertainty, and uncertain inertia, is smaller than the remain-
ing control power supplied by actuators. Then, the uncertain torque can be compen-
sated. Otherwise, the uncertain torque will lead to the instability of the closed-loop
system, because the open-loop system is unstable.

10.3.5 Observer-Based Resilient Controller

Introduce another new variable as z; = G)d —w+ kO, — Afy, where k., € Ry
is a positive gain. For the nominal inertia J. Then, the main solution to the attitude
tracking problem of satellite with actuator uncertainties, disturbances, and uncertain
inertia is presented as follows.

Theorem 10.4 Consider a rigid satellite with its attitude system described by (2.15)
and (2.24), with the application of the estimation law (10.50), and let the attitude
controller be designed as

7= (Do) (J0Ou + ka1 J0O, + @  Jo® — Af 9o + O, +kozi)  (10.58)

where k.o € Ry is a positive constant. If the gains of the estimation law and the
controller are selected such that

ko >3 ket > 1, kea > 0.5k,|| Jol? (10.59)
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Then, the closed-loop system will be practically exponentially stable. The estimation
error A f ,, the attitude tracking error ®,, and the tracking error @, of the velocity
will converge with an exponential rate, equal to k(1 — 1), to the ball with a radius

_ 1 . .
&= NN where 0 < 1, < 1 is a positive scalar, and

i {'“"3 ko —1 ! (k k"||J ||2>} 0 (10.60)
K = min s Rel — Ly /0 c2 — > .
2 T () U2 20

Remark 10.6 Itis seenin Theorem 10.4 that the controller (10.58) practically expo-
nentially stabilize the closed-loop tracking system. In comparison with the exist-
ing approaches ensuring asymptotic stability or ultimately uniformly stability, the
controller (10.58) can ensure the attitude tracking performance is more robust and
self-resilient to the disturbances, the uncertain inertia parameters, and the actuator
uncertainties.

Remark 10.7 It can be seen in Theorems 10.3 and 10.4 that the gains’ selection
of the observer (10.50) and the controller (10.26)) are independent of the upper
bound / of the uncertainty A f. The term / is mathematically denoted to establish the
formula for the estimation accuracy (Zlk , and the control accuracy 5—— W The
implementation of the observer (10. 50) and the controller (10.58) do not necessitate
the value of /.

From Theorem 10.3 and the presented controllability determination mechanism,
it is known that:

e Case #1: If the uncertain torque ||A f,|| is less than the remaining control power
[|Dot||, then A f, will be precisely estimated by A f,,. Meanwhile, the term
—A f», in the controller (10.58) will compensate for the uncertainty A f,, and
then the closed-loop system will be stabilized even in the presence of system
uncertainty and actuator uncertainties. The actuator misalignment torque Dt,,
the actuator faults t,, the external disturbance u,, and the system uncertainty
induced by A J are precisely estimated and compensated by the proposed scheme.

e Case #2: When ||A f,|| is larger than the remaining control effort || Dy7||, then it
can be detected by the observer that the attitude system is out of control.

Moreover, the above two cases are handled by the proposed approach automatically
without any other interface. From this standpoint of view, it can be claimed that
the proposed controller (10.58) has great self-resilient control capability of handling
these uncertainties.

10.3.6 Stability Analysis

The Lyapunov stability theory can be applied to prove Theorem 10.4 with the proof
organized as follows.
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Proof Based upon (10.42) and the definition of ®, and z;, it has

©,=0,-w—Af(0,0)=z— k10, — Af, (10.61)
It can be further obtained from (10.43) that

Joz1 = Jo(Oy — @ +ka©®, — Af o)

. . . (10.62)
=J0Ou + k1 J0O, + @ Jow — Dot — JoAf o — Af,
Inserting the controller (10.58) into (10.62), (10.62) can be simplified as
Jozi = =0, —kazi — JoAf o1 — Afu (10.63)
To this end, let a Lyapunov candidate function be chosen as
1ot 1 r [
Vi = EAfeAfe-i-E@e@e-l-EzlJoZl (10.64)

Differentiating (10.64) and inserting (10.58), (10.61), as well as (10.63) lead to

Vi :AfZAfe + 9:@)6 + 211021
= —kol|Af I = kal|®|* — keallz1]]? (10.65)
+ AfeAf - QZAfel - ZlTAfez - ZlTJoAfOI

Moreover, it can be obtained from (10.50)—(10.52) that
Afor = —koAf, (10.66)
Then, it leaves (10.55) from (10.56) as

Vi = — kolIAfolI* = ke l|®c 1> — keallz1

. T T T (10.67)
+ AfeAf - GeAfel - zl Aer +k0Z1 J()Afel
Using Young’s inequality and (10.49), one has
QAL AL <IIALJP+IAFIP <AL+ 12 (10.68)
—20]Af, SO+ AL P 11O+ IAfIIP (10.69)
—22{Af o 2P+ A f ol P < 11O + A S| (10.70)

k 1
koZi JoAf o < 3"||Jo||2||z1||2 + 5||Afe||2 (10.71)
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Applying (10.68)—(10.71), it can simplify (10.67) as

ko

. -3 k,
Vi = === lIALll? = (ks = DIIOIP - (kcz - 5||Jo||2> llziIP + 0.5

< —2kV 4+ 051> = —2k(1 — 92) Vs — 2k Vs + 0.51%

(10.72)

Solving the inequality (10.72) results in

[
Vi< V(@O —2k(1 —n)t),VV4 > 10.73
4 < V(0) exp(—2«(1 — n2)t) 4_2\/16_’72 ( )
From (10.61), (10.64), and (10.73), the following inequalities hold for V, > 2\/#,%:
A f Il < V2Va(0)exp(—k (1 — n2)1) (10.74)
O.]] < +v2V4(0) exp(—x (1 — m2)1) (10.75)
2V4(0)

lzill < | ———exp(=k (1 — n2)1) (10.76)

m

. 1
11Ol = <«/)~j(1) + ket + 1> V2Va(O)exp(—« (1 — n2)1) (10.77)

Then, it is ready to conclude from (10.74)—(10.77) that

NAf N < v2Va(0) exp(—k (1 —m)t) + ¢ (10.78)

O] < v2V4(0) exp(—k(1 —n2)t) + & (10.79)
2V4(0

llz1ll < # exp(—k (1 —m)t) + ¢ (10.80)

m

. 1
11@.]] = (F + ke1 + 1) V2V4(0)exp(—«k (1 —m2)1) + ¢ (10.81)

where ¢ = 2\/%' Based on (10.78)—(10.81) and using Definition 2.3, it can be proved
that the closed-loop attitude system is practically exponentially stable. The estimation
error A f,, the attitude tracking error ®,, and the velocity tracking error 0, are
practically exponentially stable. They practically exponentially converge within a

ball with radius e, while the exponential convergence rate is « (1 — 7). (]

It is seen from (10.78)—(10.81) that larger « leads to a faster convergence rate
k(1 — 1) and higher estimation and control accuracy &. Then, based on the defini-
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tion of & in (10.60), it can be obtained that larger k,, k., and k., will lead to a faster
exponential convergence rate, higher estimation accuracy, and higher tracking accu-
racy. Therefore, the following procedures can be obeyed to obtain a better estimation
and control performance:

Step #1: Calculate the nominal values for || Jo|| and Jy,.

Step #2: Choose k, such that k, > 3.

Step #3: Select k. to satisfy k.; > 1.

Step #4: Based on Step 1 and Step 2, choose k., to satisfy k., > 0.5k,||J,||%.

e Step #5: If the desired estimation accuracy and the control accuracy are not met,
then repeat Step #2 ~ #4 by choosing larger k,, k.1, and k..

10.3.7 Simulation Example

As presented in Sect. 10.3.6, the resilient controller (10.58) can accomplish the atti-
tude tracking maneuvering with exponential convergence, an example of a currently
being developed rigid satellite is presented in this section to validate the conclusion
in Theorems 10.3 and 10.4. This satellite is in a circular orbit. The altitude and the
inclination of its orbit are designed to be 660 km and 90.5 degrees, respectively; cor-
respondingly, the satellite’s orbital rate is wy = 0.0011 rad/s. Its nominal inertia is
Jo =1[30,0.1, —0.2;0.1,25,0.4; —0.2,0.4,30] kg - m2. Fora specific aerospace
task, the following trajectory is planned for the satellite to provide its payloads with
the desired attitude

—5sin(0.02¢ — X
Oy = [¢4, 04, Yal" = | 3c0s(0.02t — &) | degrees (10.82)
5sin(0.03t — %

Four reaction wheels (RWs) are fixed in the satellite as the actuators to produce
torque for attitude tracking maneuvering. The nominal configuration of those four
RWsis Dy =11,0,0, % 0,1,0, % 0,0,1, %]. Due to misalignment, the actual
configuration is D = [D, D;], where

cos A sin Aa; sin AB; sin Aoz cos ABs
D, = | sin Aaj cos AB, cos Ay sin Aoz sin AB; (10.83)
sin Aa; sin AB; sin Aa; cos AB, cos Aas

cos(ay + Aay) cos(Bs + ABy)
D, = | cos(ag + Aay) sin(Bg + ABs) (10.84)
sin(ay + Aay)
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Here, B4 = % rad, and a4 = arcsin(%) rad; —7 < AB; <m, je{l,2,3}, and
small angles —% < Ag; < % —% < AB;i < % i = 1,2, 3,4 are the misalignment
angles of those four RWs.

A Simulation Result

In the simulation, the uncertain inertia is assumed to be AJ = 10%J,. The mis-
alignment angles of the four RWs are randomly chosen as A« = 0.1638 rad,
Aoy = 0.2125rad, Az = —0.1953 rad, Aoy = —0.2164 rad, AB; = —2.5287 rad,
APy, = —1.3917 rad, AB3 = 0.2946 rad, and AB4 = 0.0693 rad. The actuator faults
in the four RWs are assumed to be

0, =<2 0, t<4
e = =7 o= (10.85)
04, t>2 07, t>4
0, t<3 0, 1<5
- =2 = 10.86
“ !0.2, r>3% {1, t>5 (10.86)
At =0, A, =0, An= % =3 Aty =0 (10.87)
PETERER S T 0001, 30 T T '

Moreover, the external disturbance acting on the satellite mainly includes the gravity-
gradient torque, the aerodynamic torque, and the Earth magnetic torque. By using
the physical and the orbital parameters of the satellite, the external disturbance is
calculated and assumed as follows. It could approximate the real disturbance value
of the satellite

ug;i = k; sin(uit + n;) (10.88)

where k; = 0.002, k, = —0.003, k3 = 0.004, u; = 0.8, up = 0.5, u3 =0.2, n; =
0.5,17, =0.3,and n3 = 0.9.

When carrying out simulations, the gains of the proposed resilient control strategy
are selected as k.; = 10.5, k., = 5000, and k, = 25. The initial states of the satellite
are ¢ (0) = —0.02 degrees, 6(0) = 0.02 degrees, 1/ (0) = 0.01 degrees, and w(0) =
[0.001, 0.001, 0.001]T rad/s.

Based on the above-listed satellite physical parameters and the selected gains,
the proposed resilient control scheme is applied to conduct simulation through Mat-
lab/Simulink. Figures 10.15 and 10.16 show the estimation result of the incorpo-
rated observer to estimate uncertainties. From Fig. 10.15a, it is known that the term
Af, (O, ©) is estimated after about 0.05 s. Its estimation accuracy is superior to
2.0e-7, which is shown in Fig. 10.15b. As we can see in Fig. 10.16a, the uncertainty
A f, can be estimated or reconstructed by A f, within the same period required
for A f,, to estimate A f,. Figure 10.16b shows that the corresponding estimation
accuracy of A f, is better than 8.0e-4 N - m. The estimation accuracy of A f, and
A f, is very superior. Moreover, exponential convergence behaviors of the estimation
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Fig. 10.15 The estimation error A f,; from the estimator (10.50)
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Fig. 10.16 The estimation error A f,, from the estimator (10.50)

errors A f,; and A f ,, are seen in Figs. 10.17 and 10.18. These results successfully
verify the conclusion in Theorem 10.3.

Figures 10.19a and 10.20a show the attitude tracking result under the effect of
the presented resilient control approach. It is found in Fig. 10.19b that the planned
attitude trajectory (10.82) is followed with the attitude pointing accuracy being 1.2e-
4 degrees. |¢.| < 1.2e-4 degrees, |6, < 1.2e-4 degrees, and |.| < 1.1e-4 degrees
are achieved after about 10 seconds. In addition, Fig. 10.20b shows that the attitude
stability is ensured by the resilient controller (10.58) to be better than 4.0e-5 deg/s.
Such attitude stability is very high. More specifically, the resulting tracking error
of the velocity is |g13g| < 3.0e-5 degrees, 16,] < 3.8e-5 degrees, and |¢g| < 1.2e-5
degrees. Based on the above tracking performance, it is seen that the maneuvering
of attitude tracking is successfully performed after about 15 seconds. The planned
aerospace task is then accomplished despite system uncertainties and actuator uncer-
tainties. This is owing to the effect of the observer (10.50) in the approach. Because
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Fig. 10.17 The response of
[|A f 11| from the estimator
(10.50)

Fig. 10.18 The response of
[|A f 45| from the estimator
(10.50)

(;5“
[ 0L,
..... we
_
oY)
"}
<
-’
v
@
1 1 1
20 30 40
Time (sec)

(a) The initial response.

10

Disturbance Observer-Based Attitude Control

0 0.05 0.1 0.15 0.2
Time (sec)

=4
™
T

I

1A
o
~

0 3 6 9 12
Time (sec)

2e-4

-2e-4 L
200 400

1 1 1
600 800 1000
Time (sec)

(b) The steady-behavior response

Fig. 10.19 The attitude tracking error from the controller (10.58)
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Fig. 10.20 The angular velocity tracking error from the controller (10.58)

Fig. 10.21 The response of
||®¢]| from the controller
(10.58)

Fig. 10.22 The response of
||®.|| from the controller
(10.58)
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the uncertainties in the system and the actuators can be precisely estimated by
the observer (10.50), then the estimation values A f,, and A f ), in the resilient
controller (10.58) can compensate for the uncertainties. Moreover, the results in
Figs. 10.21 and 10.22 show that the tracking errors of the attitude and the velocity
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are exponentially converging. Hence, it is successful to validate the conclusion in
Theorem 10.4.

B Experimental Result

In this section, the practical application of the designed control approach was verified
on the scaling satellite three-axis attitude dynamics and control simulator, as we can
see in Fig. 2.6. During tests, because all the actuators were healthy, the actuator faults
(10.85)—(10.87) were numerically injected. The six thrusters were commanded to
generate torque with its value being the same as (10.88). This torque was viewed as
an external disturbance. Due to the finite manufacturing technique, the real actuator
configuration and the real inertia of the testbed were not the same as the designed
values. Hence, the testbed was with uncertain inertia and actuator configuration. To
this end, the testbed was subject to system uncertainties and actuator uncertainties
were simulated. This testbed was appropriate for testing the effectiveness of the
presented resilient control.

The experimental results were shown in Figs. 10.23 and 10.24. It was seen in
Figs. 10.23a and 10.19a that the experimental attitude tracking response matched
the simulation results well. More specifically, it is shown in Fig. 10.24b that the
attitude pointing accuracy ensured by the resilient controller was superior to 0.035
degrees, i.e., |¢.| < 0.034 degrees, |6,| < 0.031 degrees, and || < 0.033 degrees.
The tracking error of the angular velocity was superior to 0.14°/s. This was observed
in Fig. 10.24b. Hence, the attitude tracking maneuver was successfully performed
despite the system uncertainties and the actuator uncertainties. Moreover, this attitude
maneuvering was achieved after about 20 s, as illustrated in Figs. 10.23a and 10.24a.
The difference between the initial response of the angular velocity tracking error in
Figs. 10.20a and 10.24a was because the initial angular velocity of the testbed was
not set as the values in the simulation. It should be pointed out that compared with the
high control accuracy in Figs. 10.19 and 10.20 obtained from the simulation, a lower
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(a) Whole response. (b) Steady-behavior response.

Fig. 10.23 The attitude tracking error from the controller (10.58) in test
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Fig. 10.24 The angular velocity tracking error from the controller (10.58) in test

control accuracy of the attitude and the angular velocity was seen in Figs. 10.23 and
10.24 for the experimental tests. This is because the measurement accuracy of the
testbed is not very high. Nevertheless, the obtained attitude pointing accuracy, attitude
stability, and system convergence time were desirable for practical application. To this
end, the experimental verification of the Theorem 10.3 and the practical application
of the proposed resilient control law was done.

10.4 Summary

In this chapter, an exponential attitude stabilization control approach was presented
for rigid satellite with modeling error. A DO-based controller was developed. Despite
the modeling error, the controller can exponentially stabilize the attitude, the angu-
lar velocity, and the DO error to be within a radius arbitrarily small set. It did not
require the assumption that the rate of change of the external disturbances should be
zero or almost zero. Hence, the proposed approach was capable of handling a large
range of external disturbances. Disturbance attenuation control was achieved. More-
over, the controller has a simple structure without complicated computation. More
robustness to external disturbance was guaranteed. Then, the practically exponential
attitude tracking problem of rigid satellites with modeling error due to external distur-
bance, uncertain inertia parameters, actuator faults, and actuator misalignment was
addressed. An observer-based resilient control solution was designed. This approach
guaranteed that the desired attitude trajectory was followed with the attitude and
the angular velocity tracking error practically exponentially converging to a radius
arbitrary small region. The scheme was developed based on the attitude system of
the satellite with its attitude represented by Euler angles. Moreover, the controller
was independent of the actuator type and its configuration. Another feature of the
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controller was its simple structure and less onboard computation. Hence, it lets the
proposed solution have superior practical application potential for satellite engineer-
ing.
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Chapter 11
Unknow Input Observer-Based Attitude e
Control

11.1 Introduction

Considering modeling error or disturbance as an unknown input, employing the
unknown input observer (UIO) [1] to estimate modeling error or disturbance is
another solution to design an attitude controller with high pointing accuracy. The
development of a UIO-based attitude controller for satellite was discussed in [2].
Motivated by the advantages of UIO-based control, this chapter first presents a UIO-
based robust control approach for flexible satellite’s attitude stabilization maneuvers
with fixed convergence time. The main features of this approach are highlighted as:

e The conventional fixed-time stability theorem [3] is extended in this chapter to
decrease the settling time. A new stable system, based on which the main result
of the chapter is presented, is developed with its settling time shorter than [4].

e Inspired by [5], a fixed-time nonlinear observer to reconstruct the lumped uncer-
tainties is developed. Any prior knowledge of the total uncertainties is not required.
Unlike the existing disturbance observers [6], the restrictions on the uncertainties
are relaxed. Moreover, another feature of this observer is that the estimation error
is finite-time stable regardless of initial estimation errors.

e By designing a novel fixed-time terminal sliding surface, a robust attitude control
law is proposed for flexible satellites with external disturbance, uncertainties in
inertia parameters and actuators accommodated.

It should be pointed out that most of the preceding observer-based schemes are
able only to guarantee the closed-loop tracking system stability to be stable, while
they do not take control performance such as overshoot into consideration. To solve
these challenges, a novel UIO-based tracking control framework is further presented
in this chapter. The main contributions are as follows.

e A more general class of uncertain systems with lossless second-order mechanical
systems or Lagrangian systems included in the model has been investigated. The
proposed approach is, thus, applicable for trajectory following control of modern
industrial systems such as robotic manipulators, etc.
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e A general tracking control architecture is presented. This is designed by using
the UIO technique. In comparison with the existing ESO-based approaches, it can
remove the need that the uncertainty/disturbance should be with no variation or
slow variation. When compared with the SMO-/HOSMO-based controllers, the
proposed scheme can eliminate the assumption that the uncertainty/disturbance
should be upper bounded by a known scalar.

e The proposed control approach can achieve trajectory tracking control with expo-
nential convergence. A perfect tracking performance without overshoot can be
guaranteed even in face of system uncertainty and external disturbance. It lets this
proposed scheme with significant application potential.

e A fast estimation of the disturbance and uncertainty can be achieved by the pro-
posed estimator. Finite-time stability of the estimation error is further guaranteed.

11.2 UIO-Based Attitude Stabilization Control

In this section, the satellite considered is flexible with its attitude system described
by (2.15), (2.25) and, (2.26). The modeling error consists of actuator uncertainty,
external disturbance, and uncertain inertia. Let Jo € R3*3 and AJ € R**3 be the
nominal and the uncertain inertia. Then, ithas J = Jo + AJ.

11.2.1 General Model of Actuator Uncertainty

In practice, a satellite’s actuator may have uncertainty [7]. Nonnominal behavior may
be seen in the actuator. This uncertainty would yield performance deterioration or
system instability. Let the commanded/nominal torque of the actuator be denoted as
Up=uar, uns, upz]T e R up e R3 represents the uncertainty torque. Then, the
relationship between the commanded torque t 4 and the actual control torque # can
be mathematically modeled as

U=us+tugr (11.1)

11.2.2 Problem Formulation

Suppose that the considered flexible satellite has an attitude sensor and gyros to
measure the attitude ® and the angular velocity w. Then, the control problem of
this section can be formulated as: Applying the feedback of states’ measurement @
and , design a control law for u 4 to ensure that the attitude angles @ is stabilized
to 0 after a fixed-time 7z € R even in the presence of the external disturbance u,,
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the uncertain inertia A J, and the actuator uncertainty up, i.e., @(¢) = 0 for t > 1.
Moreover, tr should be independent of the initial attitude and angular velocity.

The flexible satellite’s attitude control system (2.15), (2.25), and (2.26) with actu-
ator uncertainty (11.1) can be combined as

M©®)O+C,(0,0)00+C,(0,0)=0a+d (11.2)

whered = RT(O@)(ug +ur — AJo — 0 AJw — 0*8 ) — 8Tij), 1 = RT(O)uy,
M(©) = R"(©)JyR(©), C(©,0)=R"(©) (Jo‘“%@ - wXJo)R@)), and

C2(8, ) = —R"(©) (1022 — 0" J10.(©)).

Deﬁning X = [x”, X12, X13]T = 0O and Xy = [Xz], X272, XQ3]T = (':), the system
(11.2) can be transformed into

¥ =x2 (11.3)

¥r=14+d—M"(x)(Ci(x1,x2)x2 + Ca(x1, X2)) .
where x| and x, are the system states, d = M -1 (@)t_l denotes the lumped uncer-
tainty,and T = M ~1(®)u is the transformed control input.

Remark 11.1 Because the attitude ® and the angular velocity @ are measurable,
it can be obtained that the states x; and x; of the transformed system (11.3) are
measurable.

11.2.3 Main Result

In this section, an observer-based fixed-time control framework is presented for a
flexible satellite attitude system to improve the convergence rate and the pointing
accuracy. This control framework is developed by using the measurements of the
attitude © and the angular velocity @ or ©. Moreover, it consists of a fixed-time
observer and a robust fixed-time attitude stabilization controller. The fixed-time
observer is to estimate the lumped uncertainty d. The states measurements and the
estimated information d. are feedback to develop the robust fixed-time attitude
stabilization controller to achieve the closed-loop system’s fixed-time stability. The
closed-loop attitude stabilization system resulting from this control framework is
shown in Fig. 11.1.

A A Faster Fixed-Time Stable System

Before the observer-based attitude control design, a fixed-time stable system is devel-
oped as
v =—EM@y” + By y € R, yo = y(0) (11.4)
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Fig. 11.1 The closed-loop system from the proposed control in this Chapter

where a > 1, b€R+, CGR+, (XER+, IBER+, ﬁ€R+, é€R+, andk€R+
are scalars. pk < 1,gk > 1,&(y) = a + (1 — a) exp(—b||y||°),and » = & + 15 +

(1g — &) sen(llyll = D).

Lemma 11.1 For any initial value yo, the system (11.4) is fixed-time stable, and its
settling-time is T; € Ry, i.e., y(t) = 0 for t > T\, where T| is bounded as

T; ! ! 1 1 p ' 11.5
'S B Gk—D) B k) " +<E) (11>

Moreover, the convergence rate is faster than the fixed-time stable system proposed

in [3].

Proof Defining a new variable W = y'~7* it can be obtained from (11.4) that

. _ L . k
W= —(1 = ply ™ (50 fay” + 50 py")

N (11.6)
=~ - b (eta+emipw)
where 1 = %.
Since 1 — pk > 0 and £(y) > 1, it follows from (11.6) that
W < —(1 — pk)(a + BW)* (11.7)

Applying the resultin [3], Definition 2.1, and Lemma 2.3, it can be proved from (11.7)
that W is fixed-time stable. Moreover, solving (11.7), one can get the settling-time
as
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1 Wo 1
=i ), , Y
PRI (sta+emit pwi)

Wo .
S — S— dW+/ B
(] _pk) 1 E(y)(a+/3W")k 0 S(y)(a_i_ﬂw;)k
G—p (11.8)
where 7} = % and Wy = (y(()))l—ﬁk.

If £(y) = 1, then one has

1 Wo 1 1 1
T = —dW . aw 11.9
La-pk (/1 (o + WY +/0 @+ Wi > (11.9)

Since 1 < &(y) < a, then

< < 1. Hence, for all Wy, it is concluded that

_1
§)

1
T, <T| (11.10)

On the other hand, 77 is also the settling time of the fixed-time system given in [3].

To this end, one can prove that the settling time provided by the proposed system

(11.4) is less than [3]. The convergence rate of the system (11.4) is faster than [3].
From (11.9), it be proved that 7} is bounded as

1 Wo 1 1 1
T < —— —dw —dw
‘—<1—15k)<1 BEW i +fo o+ pW )

; 11.11
1 - wlt B\ (11.11)
< - — + |14+ (=
(I—=plky \ Bk =1 ~ B o
Since nk > 1 and Wy > 0, one has
T < ! + ! 1 1+<'B)k (11.12)
=< = —In — .
LT VI RS ) o
which does not depend on the initial condition. (]

Lemma 11.1 is fundamental to the development of the subsequent observer and
controller. The subsequent fixed-time observer, sliding surface, and attitude con-
troller are developed based on it; moreover, the system stability will be analyzed by
using Lemma 11.1. Indeed, this fixed-time stable system introduces a time-varying
gain to significantly improve convergence speed near and even far away from the
origin. Thus, it is expected that the observer-based attitude control possesses fast
and fixed-time convergence properties.
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B Fixed-Time Unknown Input Observer
The transformed system (11.3) can be rewritten as

X, =—-lix,+d +1 (11.13)

where d; = —M ™" (x1)(C1(x1, x2)x2 + C2(x1, X2)) + [1x2 +d and [; € R is a
positive gain.
For (11.13), an auxiliary system is introduced as

X,=—-lhx,+t (11.14)

where x, € R? represents the state of this auxiliary system.
Let the error between x, and x, be defined as z = x, — x,, it leaves the dynamics
of the error be the following linear system.
z = —1 d
b4 1z +4d; (11.15)
y=Dbz

where I, € R, is a positive constant, z is the system’s state, y € R? is the system’s
output, and d; is the unknown input of this system.

Let the fixed-time unknown input observer for the lumped uncertainty be designed
as

1 Zﬁllf] 1\ ki
=Y phy—bhi s (wle ™ g ™) A
2

where l3 ER+, (03] €R+, ‘B] €R+, P1 €R+, q1 €R+, ay > 1 b] GR+, C1 €R+,
and k; € R, are observer gains. £(e) = a; + (1 — a;) exp(—by|le||"), 1| = 2k1 +

2q1 + (2q1 ) sgn(|le|| — 1), Z is the estimation of z, and e = z — Z is the esti-
mation error. Moreover, y is the time derivative of y.

Theorem 11.1 The proposed observer (11.4) ensures the estimation error e to be
fixed-time stable, i.e., e(t) = 0 for t > T,, where T, satisfies

1 1 ki
T, < —— +— {1+ <&) (11.17)
[Lzl (qlk] — 1) /J,zl(l — Plkl) Mn1

where = 2P ay and p, = 2M By.

Proof ltisobtained from (11.15) and (11.16) that the estimation error of the observer
satisfies
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1
—z—z—z+lzlsz—l—y—lsy
2

2piky =t 2)l< —1\ ki
(é(e)"ouLeJ ki +§(e)*1ﬁ1LeJ ) (11.18)

1 2pyk 1 2A]k1 ki
—ble — (@ % arle) N + e pile) B )

Define a Lyapunov candidate function as V| = —e e, it leaves its time derivative as

. N 1* zm, ki
Vi=e"e < —e' (S(e)k 1|_eJ + S(e)k‘ Bilel )

IA

k-1, 1\ ki
—Z(s(e)‘lalle, T f @b piled HTR) T (1119)

Mm1Vy MZ 1

IA

Applying Lemmas 11.1 and 2.3, it is concluded that V;(e) = 0 is met for t > T,
where the settling-time 7, satisfies (11.17). U

Theorem 11.2 Let an estimation law d .y be designed as
de = d; — Lixy + M~ (x))(C1(x1, x2)x2 + Ca(xy, X2)) (11.20)

where 15
A Z
d, = 1622 +y

(11.21)
I

Then, the lumped uncertainty d is precisely estimated by d.y within a fixed time T,.
The estimation error d, = d — d g is such thatd,(t) = 0 fort > T,.
Proof From (11.16) and (11.21), it follows that

d.=d; — Lixy+ M7 (x))(Cy(x1, X2)x2 + C2(x1, X2))

—dj + Lixy — M7 (x))(C1(x1, x2)x2 + Ca(x1, X2)) (11.22)
—d, — d,

Substituting (11.21) in (11.22) gives

Ll + L3 — iz + Lod
dezd,_%;yzd,_”z ‘122”2’=zle (11.23)

Because e(t) = 0 is achieved from Theorem 11.1 for ¢t > T,, d.(¢t) = 0 is achieved
fort > T,. It is inferred that d is estimated utilizing d . after T,. O
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Remark 11.2 It is seen in Theorems 11.1 and 11.2 that y is required to implement
the proposed control approach in practice. To satisfy this requirement, the high-
order sliding-mode differentiators (HOSMDs) [8] can be applied to obtain y. That is
because the HOSMDs can achieve an exact and finite-time estimation of the required
y by inputting the signal value y into the differentiator. It is seen in [8] that a Kth-
order sliding-mode differentiator (K > 2) has a form of

o = o, o = 1 — kollTo — || ¥ By — h°
by =0 =0 —wllEy — v [FT (5 — 0]
: (11.24)
i =12 ..., K-1
vk = —kglvgk —vx_1)°

where k; € Ry is positive gains, v; € R" is the state of this differentiator, j =
1,2, ..., K, h € R is the input signal. Following [8], h= Vg is achieved after a
finite time. Hence, when applying the differentiator (11.24) to calculate y, y should
be chosen as the input signal k,i.e., h = y,and v; € R3, j=12,...,K.Then,it
follows that y = vy.

Remark 11.3 It is seen in Remark 11.1 that @, w, @, X1, and x, are measur-
able via the sensors fixed in considered satellite. Moreover, x, can be obtained by
solving (11.14) for any u. Then, z can be numerically obtained, and Z is available
from (11.16). Therefore, the unknown input observer (11.16) is available for prac-
tical implementation. In addition, it is known from the paragraph below (11.2) and
the nominal inertia J that M™! (x1), C1(x1, x2), C2(x1, x,) are available. Conse-
quently, it can be obtained from Remark 11.2 and (11.21) that the estimation d. is
also available.

C A Fixed-Time Sliding Manifold

The following fixed-time sliding manifold S (FTSM) is synthesized in this part to
circumvent the singularity issue and provide the system states with fast fixed-time

convergence.
S = H(x)x; + [x2]” (11.25)

with H (x;) = diag([h(x11), h(x12), h(x13)]7) and

1 P 1 a—\KkY
B = (80 anlxul™ ™ +EGe) = folxyT )L i =1,2,3 (1126)

where ar > 1, a» €R+, B ER+, P2 € R+, {iz € R+, k, € R+, y > 1, by €
R,, and ¢; € R, are constants. % < poky <1, @k > 1, Ay = i + %c}z +

(332 = 5k ) senlxill = 1), and £Gep) = a2 + (1 = @) exp(=ba |} [12).



11.2 UIO-Based Attitude Stabilization Control 241

Theorem 11.3 If a control law can be presented to govern the states of the attitude
systemto reach S = 0 and stay in thereafter, then the system states converge to 0 after
a fixed time T; € R, which does not depend on the initial conditions. Moreover, T
is bounded as

1 1 B\
T, < —— +— in {1+ <—) (11.27)
B>’ (Gako — 1) b (1 — paks) a2

Proof When S = 0 is reached, from (11.25), one has

f1i = — (h(ai)” Lo )7
1 1 1 1L\ k2 1
=— (E(x1)5a1|xli|p2_k2_y —§(x1)5ﬁ2|xli|kz_k2_”) Lx1i]” (11.28)

1 1 k2
= — (80 aaleul” — g0 Balxul)  senain)
Defining a new variable B = |x17 ] I=p;k2 (11.28) s expressed as

Ei = — (1 = paka)iy x| " sgn(xyy)
i i ka
= — (1 — poka)|xy; |70 (E(xl)k2 o lxy; |7 + E(xy) " ﬁzlxlil'\z) (11.29)

1 1 _ Nk
== (1= pak) ()R a2 + (e BE])

where 7, = +2=22_Similar to Lemma 11.1, the system state converges to zero after
T=prk y g
a fixed time given by (11.27). (]

Remark 11.4 In[9, 10], a fixed-time sliding manifold has been presented as (11.25)
in which A (xy;) is expressed as

_ L Go— L\ KoY
B = (alenl™ 27 + Boley ™57 ) (11.30)

The fixed time ensured by [9, 10] is bounded by T, < e (qzlkrl) + alz(z(lipzkg). Since

k ka
In (1 + (5—2) ’ < (%) always holds, the proposed FTSM of this chapter obtains

faster convergence rate than the FTSM presented by [10].
D Robust Fixed-Time Attitude Controller

Let the robust fixed-time attitude stabilization controller be synthesized as
us =(R'(©)"' M(©)(M ' (x1)(Ci(x1, x2)x2

1 -
= Caler,22)) = (M) + Mx) e (11.31)

2p3k3—1
3

1 - 1 1 2i3k3—1\ k3
—de— —P () (§OTaslS) T +ES LS )
poy
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with P(x2) = diag([P1. P2, Ps]"), Py = ps(Ixa|” Dl i = 1,23, ks > 1,

a3 € Ry, B3 € Ry, and pg = 5 are control gains. p3ks < 1,g3k3 > 1,and M (x) =
diag([h(x11), h(x12), h(x13)D)", i =1,2,3,

~ i L i _ 1\ ky-1
B = ki (G0 B anle]P 5 + £Gen Bl 2w )

1 1 _ L
x (S(xl)*’z a (pz - 5) |x1i 72 R (11.32)
L 1 a1
+Hx DR B | A2 — o g | Rr
2Y

Moreover, the function ps is

Ojnx),

sin (22 x| <&

(11.33)

1, x| > o

Mg (x) = {

Theorem 11.4 For the flexible satellite with modeling error induced by ugy, the
uncertain inertia A J, and the actuator uncertainty u g, applying the estimation law
(11.16) and the fixed-time attitude controller (11.31), then the attitude Euler angles
and the rotation velocity are fixed-time stable with the settling time T, satisfying
T. < Ty + T\, where Ty is bounded by

1 1 ,U,4k3
T < —— +— In(1+ (= (11.34)
g (@3ks — 1) g (1 — paks) M3

a1 1 1 1
where ps = az(po)” 5 (s (Ix2i Y =N % and pa = B3(po) ™ 5 (s (Ixa |V =) 5.

Proof Select another Lyapunov candidate function V, = STS. Applying (11.25),
one can calculate the time derivative of V; as

V, =28T(H (x1)x; + H(x)%)

+ 28Ty diag(|x2)”" (T +d — M7 (x1)(C1(x1, x2)x2 4+ Ca(x1, X2)))
(11.35)
Let s = [pa (x1 1”71, wa (Ix22l” "), pa (1x23]” ~")1" be defined, then substituting
the controller (11.31) into (11.35) yields

2 1 ol zaky=t \ b
Vy == $Tdiag(u;) (E5eslS) T +E7palS) )
£0
+ y STdiag(|x,|” ") (d — deg)

(11.36)

Sinced, =d —d.y = 0 fort > T,, (11.36) can be simplified as
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. 2 - 7 2A3k3 k3
V, =— S8 diag(u;) (E o LSJ + & 3 BsLS] )
L0

3
2p3k3—1

<=3 (5 as(00) B (s (xa VNS B T
;( w ’ (11.37)

k3
T ER Bap0) g (e TR ISR
<- (ééusvf” +ééu4VQ3) 3

Applying Lemma 2.3 and the result in Lemma 11.1, it is ready to conclude that
Vi = 0 after the settling time 7 satisfying (11.34).

After reaching the sliding surface S = 0, it can be obtained from Theorem 10.2
that the states will be zero after the settling time 7. Then, one can prove that the
attitude Euler angles and the angular velocity are fixed-time stable with the settling
time T, satisfying T, < T + T; regardless of any initial states. (]

Remark 11.5 In contrast to the existing observers, the proposed observer (11.16)
provides precise estimation for the lumped uncertainty after a fixed time which does
not depend on the initial estimation error. The estimation error is zero after that fixed
time. Moreover, it relaxes some assumptions such as the need for the upper limit of
total uncertainties to be available in advance or the time derivative of the disturbance
to converge to zero. This is one of the main contributions of this work.

Remark 11.6 When practically implement the proposed approach to perform atti-
tude maneuvers, the controller (11.31) and the observer (11.16) will be numeri-
cally computed by the satellite’s onboard embedded computer. The designed control
scheme is hence implementable for in-orbital satellite. Moreover, the procedures to
choose the control gains are listed in the following Remark 11.7. Hence, the controller
is practically implementable for satellite system.

Remark 11.7 When implementing the proposed approach, control gains «;, 8;, p;,
qi> ki, aj, and b, i =1,2,3, j =1, 2, should be carefully chosen and turned to
achieve higher attitude accuracy and acceptable control power. Based on (11.27) and
(11.34), the following procedures should be followed for choice of the control gains.

(1) Larger «; and B; lead to a faster convergence rate, but large overshoot and
more control energy consumption will result. Hence, a compromise should be made
between the converging rate and the overshoot.

(2) According to (11.27) and (11.34), the gains p;, g;, and k; also important to
determine the system’s converging rate.

(3) The gains a; and b; have profound influence on the convergence rate. If a;
is selected near 1, the effect of & is reduced, and vice versa. By choosing b; large
enough, the impact of £ is highlighted.
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11.2.4 Simulation Results

To validate the superior attitude control performance of the presented approach,
numerical simulation is conducted on a flexible satellite with its structure shown in
Fig. 9.1. The details of this satellite are provided in [11]. The task of this satellite
is Earth observation. The satellite’s orbit of the satellite is circular. Its altitude and
inclination are 638 km and 95.4 degrees, respectively, i.e., wgp = 0.0011 rad/s. As
shown in Fig. 9.1, there are two solar paddles fixed in the +Y5 and the —Yp axis,
respectively. They are called the north and the south solar paddle, receptively. Each
paddle has a dimension of 15x0.75 m. The nominal designed inertia of the satellite is
Jo=1[487,15, — 12,149,177, —7.3; — 1.2, — 7.3, 404] kg - m>. After ground
testing, the coupling matrix between the rigid body and the solar paddles is calculated
asé =1[1,0.1,0.1; 0.5, 0.1,0.01; —1,0.3,0.01]kg - m2. Moreover, it is tested that
when choosing the elastic mode number N as N = 3, the flexible vibration of solar
paddles can be mainly reflected. Hence, N = 3 is chosen to establish the model of
the attitude control system. Correspondingly, the natural frequencies are measured as
Ay = 1.8912rad/s, A, = 2.884rad/s, A3 = 3.4181 rad/s, respectively. The damping
ratios are measured on the ground as §; = &, = &; = 0.01.

For the considered satellite, the gravity-gradient torque, the aerodynamic torque,
and the Earth magnetic torque are the primary external disturbances for u;, which will
be considered in the simulation. They will be mathematically calculated according
to [6] and put into the system model. Moreover, the uncertain inertia is assumed to
be AJ = 0.1Jy. When carrying out simulation, the initial attitude are 1 (0) = 15
degrees, ¢ (0) = 25 degrees, and 6(0) = —5 degrees. The initial angular velocity is
»(0) =[0.01, —0.01, — 0.02]" rad/s.

Besides the proposed observer-based fast fixed-time attitude control (named
OBFFTAC), the fixed-time attitude control presented in [9] (denoted by FTAC)
is also simulated under the same condition for performance comparison. For a
fair comparison, the parameters of OBFFTAC are taken the same as FTAC except
for the new parameters in the sliding manifold as well as the controller. The
OBFFTAC parameters are chosen as y = 1.5, p; = 0.35, p, = 0.3, p3 = 0.45,
q1 =06, g2=0.75, g3 =045, «; =02, ap=0.1, a3 =04, B; =0.08,
B2=0.06,8=0.1,k; =2,k =2,k3 =2,1; =0.02,], = 14,13 = 25,0 = 0.01,
ar=14, ao =1.35 b, =6, b, =4, and ¢; = ¢, = 1. Moreover, the fifth-order
sliding mode differentiator (11.24) is applied to calculate y with K =5 and
K)o =K1 =K) =K3 =K4 =K5 = 1.5.

A Comparison in the Case of Normal Actuators

In the subsection, the case that all the actuators of the flexible satellite do not
have any uncertainty is considered. For this case, the attitude stabilization results
from the OBFFTAC and the FTAC are illustrated in Figs. 11.2, 11.3, 11.4. It is
found that the OBFFTAC achieves a faster converging rate and higher pointing
accuracy, while the maximum required control torques are almost identical. To



11.2 UIO-Based Attitude Stabilization Control

245

30 -
ob ¥
]
= --¢
S NN e 0
=
on
=
]
D
=
=
=
=
= -10
L
=
= 20 1 1 1 1
40 60 80 100

0.015 -
0.01
0.005
0
-0.005

w (deg/sec)

-0.01
\
-0.015

0.02 L

Time (sec)
(b) The FTAC

30 -
= —
D
2 -=¢
S NN 0
>
=3
=
<
D
=
=
=
N
s J0f
D
=
= =20 L 1 1 1 1
20 40 60 80 100
Time (sec)
(a) The OBFFTAC
Fig. 11.2 The attitude from (11.31) with normal actuator
0.015
0.01
0.005 -
bt 0}
2 .
0 . —w
2 -0.005 | S 1
~— '-,I -_——w
3 -001} , 2
S e w
-0.015 1\ 3
X/
0.02 L w s
0 20 40 60 80 100

Fig. 11.3 The angular velocity from (11.31) with normal actuator

0.5

Time (sec)
(a) The OBFFTAC

20 40 60
Time (sec)

(a) The OBFFTAC

1
80 100

0.5

025+

u, (Nm)

-0.25 !

-0.5

1
20 40 60 80

Time (sec)
(b) The FTAC

1
100

40 60 80
Time (sec)

(b) The FTAC
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Table 11.1 The performance comparison with normal actuators

Controller Euler angles Angular velocity Convergence time
OBFFTAC 55x107° 4x 1077 44.6

FTAC 4x1073 3x 1073 51.2
Improvement 98.25 98.67 12.89

percentage, %

—OBFFTAC
-—-FTAC

0.01 -

log (l161)

0.001 +
0.0001

0 20 40 60 80 100
Time (sec)

Fig. 11.5 Norm of the attitude from (11.31) with normal actuators

provide further insight into the control performance in terms of pointing accuracy
as well as the convergence rate, the data analysis is given in Table 11.1. In the table,
the convergence time is defined as the time after which ||®]] < 6 x 1073 (deg)
and ||@|| < 4 x 107(deg/s) are satisfied. It is found that the OBFFTAC provides a
faster convergence rate and smaller steady-state error. The improvement percentage
confirms the superior performance of OBFFTAC especially in terms of pointing
accuracy. Moreover, the norm of the attitude angles and the rotation velocity are
illustrated in Figs. 11.5 and 11.6, respectively. That two controllers accomplish the
planned attitude maneuvering. However, the OBFFTAC provides greatly preferable
control performance to the FTAC both in theory and simulation.

B Comparison in the Case of Actuator Uncertainty

To evaluate the robust control capability of the controllers, actuator uncertainty is
considered in this case. In particular, the actuator uncertainty is assumed to be the
actuator fault:

up =(E@)—I3)us+u (11.38)

where E(t) = diag([l;, L, [3]7) refers to the actuator effectiveness matrix in which
g; represents fault indicator of the ith actuator, u = [uy, >, i13]T denotes the bias
fault. For example, /; = 1 and u#; = 0 is associated with the case that ith actuator is
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Fig. 11.7 The attitude from (11.31) with actuator uncertainty

healthy. 0 < [; < 1 denotes that the ith actuator partially rather than totally loses its
control effectiveness.
In this subsection, the fault indicator and bias faulty torque are given

1, if r <20
0.5, otherwise’

as ) = 0.6N-m, up = —0.03N-m, #; =0.05N-m, /| =

1, ifr<35 I, ifr<?25 . . .
~ and [z = ., when conducting simulation. More-
0.6, otherwise 0.5, otherwise

over, all the control gains are chosen the same as given in the preceding case.

Figures 11.7 and 11.8 illustrate the attitude and the rotation velocity revealing that
the OBFFTAC obtains a much faster convergence rate for the case of having actuator
uncertainty. The control performance is considerably degraded under the FTAC. The
convergence time obtained by the FTAC significantly increases because of its longer
rotation path.
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According to Figs. 11.9 and 11.10, it can concluded that the OBFFTAC obtains
the most accurate attitude control. This is due to the observer-based estimation law
(11.16). The comparison result is listed in Table 11.2. The proposed strategy, in



11.2 UIO-Based Attitude Stabilization Control 249

Table 11.2 The performance comparison in the case of actuator uncertainty

Controller Euler angles Angular velocity Convergence time
OBFFTAC 7% 1070 6 x 1077 44.6

FTAC 0.2 4x 1074 o0

Improvement 99.99 99.85 100

percentage, %
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Fig. 11.11 The torque of the controller (11.31) with actuator uncertainty

contrast to the FTAC, successfully deals with the actuator uncertainty. It is confirmed
that the control performance of the FTAC was significantly deteriorated while the
actuators experienced uncertainty. The attitude control results of the OBFFTAC are
roughly similar to that of the previous case. However, the FTAC failed to drive the
attitude angles and the rotation velocity to the desired region. The superiority of the
OBFFTAC over the FTAC was highlighted by this scenario.

The control power consumed is shown in Fig. 11.11. The maximum required
control efforts for those two controllers are almost identical showing the superior
control performance of the OBFFTAC. The lumped uncertainties along with their
estimations are illustrated in Fig. 11.12. It is observed from the estimation errors
in Fig. 11.13 that the total uncertainties are precisely reconstructed in a finite time,
which is independent of the initial estimation errors. When a sudden actuator failure
happened, the observer successfully estimated it to preserve stability and control
performance. Such results confirm the claims in Theorem 11.3 that the suggested
estimation law can estimate the lumped uncertainties in a fixed time. This is also the
reason that superiority can be obtained from the OBFFTAC.
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11.3 UIO-Based Attitude Tracking Control

11.3.1 System Description

For a general class of second-order uncertain systems with their dynamics described
by
Ag(x)X + fo(x,X) + go(x) + Ah(x,x,X¥) =u+d (11.39)

where x € R” is the state vector, Ag(x) € R"*" is anominal inertia matrix of the sys-
tem, f,(x, x) € R” and g,(x) € R" denote the certain/nominal nonlinearities in the
systems’ dynamics, u € R”" is the system input vector, d € R" is the unknown exter-
nal disturbance, and the unknown vector Ah(x, x, X¥) € R" denotes the uncertain
dynamics acting on the system, i.e.,

Ah(x, %, %) = Af(x, %) + Ag(x) + AA(x)i (11.40)

in which AA(x) € R™*" is the uncertain inertia, A f(x, x) € R" and Ag(x) € R"
denote the system’s uncertain parts of the nominal f(x, x) and g,(x), respectively.
For the considered system (11.39), it has following properties which can be
adopted in the following control framework design and analysis of system’s sta-
bility.
Property 11.1 The symmetric inertia matrix Ao(x) is positive-definite. Moreover,
there are two positive and known scalars k) € Ry and ky € R ensuring that the
following inequality always hold for any vector a € R" and x € R".

0 < «illal* < a"Ag(x)a < k3||a|* (11.41)

Remark 11.8 In comparison with another mathematical model given in (6.1) and
used to describe Euler-Lagrange systems or a class of mechanical systems, the model
(11.39) is more representative. It can be applied to describe the dynamics of more
systems. Systems with the form (6.1) can be described by (11.39) absolutely. This is
achieved by denoting C(q, §)q as f,(x, X). However, systems modeled by (11.39)
would be not described by (6.1). This implies that the existing second-order mechan-
ical systems can be included in the systems described by (11.39). Hence, the math-
ematical model (11.39) has a more general form. To this end, it can be got to know
that the model (11.39) can be adopted to describe the dynamics of many industrial
systems, such as robotic manipulators, satellites, twin-lift helicopters, hypersonic
flight vehicles, and marine vehicles.

Remark 11.9 To facilitate the following tracking controller design, the model given
in (11.39) can be rewritten as

Ap(x)¥ + folx,X) + go(x) =u+uy (11.42)

where uy = d — Ah(x, x, X¥). The term u, denotes the total modeling error acting
the system.
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11.3.2 Problem Statement

The main problem to be investigated in this section can be formulated as: For the
systems described by (11.39), design a general control framework to achieve the
objective of tracking control with exponential convergence. More specifically, given
any bounded desired/reference trajectory x, (its first two time derivatives are also
bounded for all time), develop a control input u to guarantee that x,; can be followed
even in the presence of system uncertainty Ah(x, x, ¥) and external disturbance d,
i.e., the trajectory tracking error x, = x — x4 and the velocity tracking error and the
velocity tracking error x, = X — x4 are globally exponentially stable.

11.3.3 UlO-Based Exponential Tracking Controller

In this section, a general UIO-based tracking control architecture will be presented
for the considered system (11.39) with exponential convergence performance
guaranteed. This proposed control framework is illustrated in Fig. 11.14. It consists
of two parts. One is the UIO observer-based estimator. It aims to estimate the total
uncertainty precisely u,. The other part is the control law. This law is designed by
using the information supplied by the estimator. It will be applied to accomplish the
planned trajectory tracking task with the total uncertainty compensated.

A Unknown Input Finite-Time Observer for Modeling Error

We firstly introduce two new variables as ¥, = x and ¥, = x. It leaves (11.42) as
follows by using the Property 11.1

V=9, (11.43)
Vo= —LA; W)Y, + LW ¥) + A 0 + Ag g (11.44)
Fig. 11.14 The diagram of i C_onTro_l ]\Zot?ul; K
the proposed general control
framework

Tq - Tracking u The Plant —0—:)13
R i controller g
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where £ (¥, ¥2) = —Ag (W) (fo(¥ 1. ¥2) + &(¥)) — 11¥,), the positive scalar
Iy € Ry is known and determined by the designer.
For (11.44), another certain system is further introduced, which is of the form

V.= —LAS WDV, + LW V) + Ay I )u (11.45)

where the state ¥, takes values in R”, and its measurement is available.

Define the error between ¥, and ¥, as ¥, i.e., ¥, = ¥, — ¥,, and define an
output signal as y = ¥, with [, € R, being a positive constant. Because the mea-
surements of ¥, and ¥, are available, the signal y can be available.

On the basis of the above analysis, using the measurable output y and ¥, the
following estimator is developed and applied to estimate the total uncertainty u,
acting on the system (11.39)

LLAG W)Y, + 3

g = Ao(¥y) A

(11.46)

with 1/}6 € R” being the estimate of ¥, and determined by the following unknown
input observer:

A ~ 1. ~
¥, =—-bhy, + 5y +hy —lsly.]” (11.47)
2

where 1/7e = [&gl, 1}62, el &en]T = 1}6 — ¥, is the observer error between ¥, and
¥,z € Ry and Iy € R, are two observer gains with positive value; y; € Ry and
y» € R, are two positive odd integers such that y; < y».

B Exponential Tracking Controller

In addition to the defined trajectory error x, and the velocity tracking error x,,, a new
variable is defined as:
Xn =X, +1.x, (11.48)

where [, € R, is a positive scalar.

Define the estimation error between u, and @, as u,, i.e., u, = uy — ity. Then,
applying the estimator proposed in (11.46), it is ready to present the main solution
to the problem of asymptotic tracking control design in the following theorems.

Theorem 11.5 Consider the uncertain systems described by (11.39), with the appli-
cation of the estimator (11.46), design a controller as

u=—kyx,—kgx,+ fox,x) + go(x) — g + Apg(x)Xy

. (11.49)
- chO(x)(xm - lcxe) - O~5A0(x)xm
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where k, € R, and kg € R are two positive control gains, if the control gains are
selected to satisfy
kg —05>0 (11.50)

iz —05>0 (11.51)

then the estimator-based closed-loop system can be stabilized exponentially. More-
over, the total uncertainty uy can be precisely estimated by this estimator (11.46).
with exponential convergence. The tracking error x ., the velocity tracking error x .,
and the estimation error u,, are exponentially stable.

Proof Firstly, it follows from (11.44) and (11.45) that the dynamics of the observer
error ¥, is such that

Ve =LA W)Y, + A (P )ug (11.52)
Using (11.52) and (11.46), it is able to get that u, is such that
U, =uy — Uy
= AoH )+ 1A WD) = L+ BA YD (1159)
=Ly,
Moreover, applying the observer (11.47) and (11.52) leads to

~ A

; A 1. -~ n
'/’g='/’g_?//€=—lzl3llle+gy+[3y_l4b/dvz _we

) o (11.54)
=—bly, — LY )"
Then, combining (11.53) and (11.54), one can find that
iy = LW, = —blu, — ly|u,|» (11.55)
On the other hand, with the definition of x, and (11.48), it follows that
Xe=X—Xg=x, —l.x. (11.56)

It can also be calculated by applying (11.42), the controller (11.49), and (11.56) that

AO(x)x‘:m :AO(x)(x - x'd + lc(xm - lcxe))
=u+ug — folx,x) — go(x) — Ap(x)¥,4
+ chO(x)(xm - lcxe)

= — kX, — kX —u, —0.540(X)x,,

(11.57)
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Now, one can define a positive-definite Lyapunov function candidate as
1 ¢ | Q- 1 ¢
Vi = Exon(x)xm + Ekpxexe + Eue u, (11.58)

Inserting (11.53) and (11.55)—(11.57) into the time-derivative of V; yields

Vi =0.5xF Ag(x)x,, + X" Ag(x) ik, + kpx Tk, +ulit,
=x} (—kpX, — kX — o) + kpx ) (x,, — l.x,)
+ul (~blsu, — lylu,]?) (11.59)
< — kplellxe|* = kallxm|1> — x )0, — Lis|u|)?
< —kplellx |1 = (kg = 0.5)|1xl1> = (lals — 0.5)]|u.||*

To this end, using (11.41) in the Property 11.1 and the choice of control gains in
(11.50)-(11.51), it leaves (11.59) as

Vi < —kplel|x. | = (kg — 0.5)||x,]1* — (als — 0.5)|u.|*

1 xTAg(x)x,, 1
< —kpl |lx.|I* — (ka — —)M — (bls — )llu.|? (11.60)
2 K> 2
< —&V
where & = min {21, %=1 11y — 1] > 0.

Solving (11.60), one has V() < V;(0)exp(—et) for any initial states. The
estimator-based closed-loop system is, thus, globally exponentially stable. More-
over, using (11.41) in the Property 11.1 and the definition of V; in (11.58), it can be
obtained that

]| < v2V1(0) exp(—%t) (11.61)

x|l < MG:Xp(—ﬂ) (11.62)
K1 2

]| < /2V1(0) exp(—‘;—t) (11.63)

From (11.48), it further has

1 et
oIl < Hxemll + Lllxell < {1+ —= ) v/2V1(0) exp(——=-) (11.64)
/K1 2

Hence, it can be concluded from Definition 2.1 that the trajectory tracking error x.,,
the velocity tracking error x,, and the estimation error u, are globally exponentially
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stable. The desired trajectory x; can be tracked with high accuracy and with a globally
exponential rate of convergence. O

Theorem 11.6 The total uncertainty u, can not only be precisely estimated by the
estimator (11.46) with the estimation error u, exponentially stabilized, but the esti-
mation error u, will also be stabilized to zero in a period of finite time. That is, the
estimation error can be finite-time stable.

Proof For the dynamics of the observer error given in (11.54), choose a positive-
~T ~

definite Lyapunov function candidate as V,(¢) = %%e ¥,, it can come to get from

(11.54) that

ritr

. ~ ~ ~ rity.
Vat) = ¥o (~balsWr, — L4, 7) < 200 Vs — 275 1V, (11.65)

where the inequality 1}: Lw/}ej n > ||1/;e| | it is used.

Because y; and y, are two positive odd integers and are chosen to satisfy y; < y»,
one has 0 < %2”2 < 1. As aresult, the following can be obtained from the definition
of V,(¢) by solving (11.65)

Vat) =0, ¥,(1) = 0,1 > 1 (11.66)

where the positive constant 7y € R, is bounded by

~ n=-rr
v2 Lls|1¥ O] 7
tr < In +1 (11.67)
"= b =) ( ls

At meaning time, from (11.53) and (11.66), it is ready to get that
u,(t)=0,1t >ty (11.68)

This can lead to the conclusion that the estimation error of u, is finite-time stable
[12]. The proposed estimator (11.46) is able to estimate the total uncertainty u,; with
finite-time convergence. This thereby completes the proof. (I

It can be inferred from the proof of Theorem 11.5 that the entire controller—
estimator system is globally exponentially stabilized. The tracking error is globally
exponentially stable even if the system is under the effect of uncertainty and exter-
nal disturbance rather than asymptotically stable [13—15] or ultimately uniformly
bounded stable [16]. Consequently, the desired trajectory can be followed without
any overshoot. This superior tracking performance is greatly friendly and desirable
for the practical application of the proposed tracking control framework.
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11.3.4 Rigid-Flexible Coupling Satellite Example

The effectiveness of the developed control framework will be validated in this section
by applying it to arigid-flexible satellite example. Figure 11.15 shows the mechanical
diagram of this exampled satellite. It has a central rigid body with radius b and a
uniform cantilever as its flexible appendage, while the length and the tip mass of
the appendage are [ and m ,, respectively. This type of satellite is widely launched
in aerospace to accomplish missions such as communication and remote sensing,
etc. Constantly, payload such as camera is fixed in the central hub, while flexible
appendage such as solar arrays and antennas can be modeled as the uniform cantilever.
In Fig. 11.15, the central body will rotate around the rigid point O. The cantilever
beam with sectional area a, elastic modulus E, and volume density p, is fixed to the
point O on the surface of the central rigid body. The coordinates applied to establish
the attitude of the satellite are the inertial frame ¥;(X;, Y;, Z;) and the floating frame
F8(Xp, Y, Zp).

It is well known that the complicated dynamics of satellites coupled with large
flexible appendages may best be modeled using the finite element (FE) method.
Therefore, the FE model will be used to describe the flexible vibration of the rigid-
coupling satellite. On the other hand, the deformation and the strain are both assumed
to be minor. As a result, it can neglect small axial tension and high-order nonlinear
terms. To this end, applying the first-order approximation technique and FE model,
the mathematical model of this rigid-flexible satellite’s attitude system can be estab-
lished as follows, while the physical parameter values considered here are with all
units SI.

(Jup — P'GP)I —UM,'Cp — UM, (K; +6°G)p—20p"Gp =T. + T,
(11.69)

N+M,'Crp+M, (K;+6*G)p=0 (11.70)

Flexible deformation

Fig. 11.15 The mechanical structure of the rigid-coupling satellite
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with Jyp = Jy+Jp+J, —UM,'U" >0, G'=G=D—-M,, and 7= p+
M ;1 U"6. The Euler angle 6 € R denotes the satellite attitude, 7, € R is the control
torque, 7, € R is the disturbance torque, p € R?" is the nodal displacement coor-
dinate vector (but unknown) of the beam with N being the number of nodes when
the FE method is adopted; J, € R, J; € R, and J; € R are the inertia of the cen-
tral rigid body, the cantilever beam, and the tip mass, respectively. U € R?" is the
rigid-flexible coupling coefficients vector. The symmetric positive-definite matrices
M, € R*™>2N and K ; € R?V*2V are the mass matrix and the stiffness matrix of
the flexible cantilever team, respectively. C s € R2N>*2N and the symmetric positive-
definite matrix D € R*¥*2N are the structural damping and the dynamic stiffness
matrix of the flexible cantilever beam, respectively. § € R? is the modal coordinate
vector relative to the rigid body. It can be seen in (11.69) that the dynamic stiffness
term 62G is added to the system stiffness term and its effect on the model is directly
proportional to the square of the angular velocity. Hence, such a coupling effect can
not be ignored when this rigid-flexible coupling satellite is going to perform rapid
attitude maneuver.

Suppose that the desired attitude trajectory is 6; € R and the desired angular veloc-
ity trajectory is 6; € R, the tracking control problem of this rigid-flexible coupling
satellite can be formulated as: design a control law for 7, to guarantee that 6; € R
and 6, € R can be followed by 6 and 6, respectively. To this end, the attitude dynam-
ics (11.69) can be written in the form of (11.1) by denoting x = 6, Ay(x) = Jup,
u="71.,d =T, fo(x,x) =0, go(x) =0, and

Ah(x, %, ¥)=—p'Gpd —UM,'Cyp

| o N (11.71)

—UM, (K;+6°G)p—20p Gp
Consequently, the proposed control framework can be applied to perform the attitude
tracking maneuver for this considered rigid-flexible satellite.

A Simulation Results

The effectiveness and the super tracking control performance of the presented control
framework will be verified by conducting numerical simulation on a currently being
developed rigid-flexible coupling satellite with its physical parameters given by: a =
6.5x 10 m?,b =1,l =20m,m, = 0.3kg, J, = 100kg - m?, J, = 123 kg - m?,
Jr =6153kg- m? and N = 30. The disturbance torque acting on the satellite is
numerically assumed to be as

T; = 0.2(5 + 4sin(t) — cos(0.4¢ 4 26 sin(0.1¢))) N - m (11.72)
To guarantee that the payload fixed in the main body of the satellite such as the camera

has appropriate attitude to accomplish the planned on-orbital missions successfully,
the desired attitude trajectory should be established/planned as
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Fig. 11.16 The attitude tracking error from the controller (11.49). a Initial response. b Steady-
state behavior obtained from the controller. ¢ Steady-state behavior from the controller without the
estimator

6, = 0.3 cos (O.lt + %) rad (11.73)

When implementing the proposed control framework to the satellite attitude sys-
tem, the gains of the controller (11.49) are chosenas /. = 160, k, = 35,and k; = 75;
while the gains of the incorporated estimator (11.46) are selected as £; = 0.005,
ly=17.5,03="175404 =145, €5 = 0.05, y; =99, and y, = 101. When performing
the planned attitude tracking maneuver, the initial attitude angle and the initial angu-
lar velocity are 6(0) = 1 rad and 6(0) = —0.1 rad/s. The initial nodal displacement
of the flexible cantilever beam is p(0) = 0 with p(0) = 0.

The attitude tracking result obtained from the proposed control is shown in Figs.
11.16 and 11.17. It can be got from Fig. 11.16a, b to know that the desired attitude
trajectory is perfectly followed with the attitude pointing accuracy |x,| < 2.5 x 1078
rad guaranteed. The tracking error of the angular velocity can be seen in Fig. 11.17.
It shows in Fig. 11.17b that the resulting attitude stability is |x,| < 2.5 x 1078 rad/s.
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Fig. 11.17 The angular velocity tracking error from the controller (11.49). a Initial response. b
Steady-state behavior obtained from the controller. ¢ Steady-state behavior from the controller
without the estimator

The pointing-accuracy and attitude stability are so significantly high that perfect
attitude and angular velocity can be established for the satellite. These two can
guarantee the satellite’s payloads to successfully accomplish the planned missions.
On the other hand, as the initial response of the attitude and the angular velocity
tracking error shown in Figs. 11.16a and 11.17b, respectively, they both are with
an exponential convergence. The planned attitude tracking mission is accomplished
without any overshoot. It can be further found by zooming the attitude tracking error
in Fig. 11.16athat, a steady-state behavior is guaranteed for the attitude tracking error
after 30 s. This settling time is quite short, and hence a fast attitude tracking maneuver
can be ensured. These results completely verify the conclusions in Theorem 11.6.
It should be pointed out that, the above perfect attitude tracking performance is
owing to the incorporated estimator (11.46). When the proposed controller (11.49)
without the estimator (11.46) is implemented to the rigid-flexible coupling satellite,
the resulting tracking error can be seen in Figs. 11.16 and 11.17. It can be obtained
from Fig. 11.16a and 11.17a that severe overshoot is observed. Moreover, the attitude
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Fig. 11.19 The estimation error from the estimator (11.46)

pointing accuracy |x.| < 0.002 rad and attitude stability |x,| < 0.001 rad/s can be
obtained, as we can see in Figs. 11.16¢ and 11.17c, respectively. These two are quite
inferior. The stringent requirements of attitude pointing accuracy and attitude stability
to guarantee the normal operation of the satellite’s payload can not be satisfied. Hence,
the planned aerospace missions would not be accomplished.

These results obtained from the controller (11.49) with the estimator (11.46)
eliminated, reflect the importance of the incorporated estimator (11.46). Actually,
this estimator is an important part of the proposed control framework. With the
application of the estimator, the true uncertainty can be estimated. Then, the
uncertainty and the external disturbance can be compensated by the term —#, in
the controller (11.49), and hence good tracking performance is achieved. In this
simulation, the total uncertainty including external disturbance and its estimation
are shown in Fig. 11.18. Perfect estimation is observed. In Fig. 11.19, one can also
go to its initial response to find out that the estimation error will be with a steady
behavior after a short period, roughly 7, = 0.0002 s; moreover, the estimation error
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is .| < 6.0 x 107> N - m. The conclusions in Theorem 11.6 can be demonstrated
by these simulation results.

B Experimental Results

In addition to numerical simulation, any control approach to be applied in practice
should be experimentally tested. Hence, experiments will be further carried out in
this part to test the effectiveness of the developed tracking control framework. The
tests will be conducted on a single-axis air-bearing suspending rotary testbed. This
testbed is shown in Fig. 2.5. Compared Fig. 2.5 with Fig. 11.15, it is known that this
testbed can exactly simulate the attitude motion of Euler attitude angle 6 rotation.
With the application of the proposed control framework to the testbed to perform
the preceding planned tracking mission, the attitude tracking results are illustrated in
Figs. 11.20 and 11.21. The corresponding control torque is shown in Fig. 11.22. It can
be seen in Fig. 11.20 that the attitude tracking maneuver is successfully accomplished
after 32 s. As shown by the steady-state behavior, the attitude pointing accuracy is
guaranteed to be within 0.0005 rad. It can also been in Fig. 11.22 that the angular
velocity tracking error is less than 0.00025 rad/s, i.e., the attitude stability is 0.00025
rad/s. The high attitude pointing accuracy and the high attitude stability are feasible
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controller (11.49) in the
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and perfect for the fixed payloads to perform the planned orbital missions. Moreover,
it can be seen in Figs. 11.20 and 11.21 that an exponential convergence rate is
ensured for both the attitude and the angular velocity tracking error. No overshoot is
achieved by the proposed control framework. To that end, the performance and the
effectiveness of the proposed tracking control framework are experimentally verified.

If the experimental results in Figs. 11.20 and 11.21 are further compared with the
simulation results in Figs. 11.16 and 11.17, it is interesting to see that the obtained
attitude pointing accuracy between simulation and experimental results is also dif-
ferent. The latter is almost less than the former with three-orders of magnitude. That
is due to the fact that the actual actuator, gyro, and controller are used in experiments
rather than using an ideal mathematical model in simulation. Moreover, noise is also
with the gyro and attitude sensor. Although some differences are observed, it can be
seen that the behavior of experimental results matches the behavior of the simulation
results well.

From the above simulation and experimental results, it can be summarized and
verified that the proposed tracking control framework is able to achieve high-accuracy
tracking control with exponential convergence.

11.4 Summary

Although there exist several approaches regarding flexible satellite attitude control
with accurate pointing, few can achieve fixed-time convergence of the system states in
the face of actuator uncertainty. This chapter presented an estimation-based strategy
for flexible satellite attitude stabilization maneuvering first. In particular, the control
law incorporated a fast fixed-time observer for reconstructing the uncertain dynamics,
and a robust fixed-time controller. This was developed via a nonsingular terminal
sliding mode surface providing a faster converging rate when compared to the existing
fixed-time surfaces. Then, an exponential tracking control theoretical framework was
established for a general class of nonlinear systems even with modeling error. With
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the application of this architecture, the closed-loop trajectory tracking system was
guaranteed to be globally exponentially stable. Hence, the undesirable overshoot
resulting from the existing tracking controllers can be avoided. The exponential
convergence rate can be tuned to be as fast as possible by tuning the control gains.
It is hence able to decrease the system settling time. With such obtained desired no
overshoot and less settling time control performance, the developed control approach
can be practically appealing for engineering. Moreover, the systems investigated are
with a general form of mathematical model. It guarantees that the proposed control
framework is applicable to a full of physical systems in practice.
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Conclusion ot

12.1 Conclusion

This book mainly investigated the attitude control problem of satellites with modeling
error. To achieve this objective, motivated by the superior performance ensured by the
nonlinear control theory, several advanced nonlinear compensation error approaches
were developed for the satellite with its attitude controller having high performance
even in the presence of other physical constraints. Those approaches were catego-
rized into three types and presented in Part II, Part III, and Part IV, respectively.
The first type was the robust compensation attitude control methods in Part II. They
compensated for the modeling error in the sense that the attitude control performance
has great robustness to the modeling error by tunning control gains. The second type
was the adaptive compensation attitude control strategies in Part III. They adaptively
estimated the severe case (i.e., the upper bound) of the modeling error and then adap-
tively compensated for them. The third type was the observer-based compensation
attitude control approaches in Part I'V. For those approaches, observers were designed
first to estimate or reconstruct the modeling error, and then the attitude controllers
were synthesized by using the estimation value to achieve attitude control. In general,
the approaches in this book eliminated the drawbacks of most of the existing com-
pensation control schemes. The detailed features and advantages of those developed
compensation-based attitude control approaches were highlighted as follows.

The robust compensation attitude control approaches were developed in
Chaps. 3-5. More specifically, an observer-free controller was presented in Chap.
3 to achieve large-angle attitude tracking with modeling error induced by external
disturbance. The controller features a simpler control structure and much less com-
putational complexity. Two robust attitude controllers were developed in Chap. 4 for
attitude tracking and stabilization maneuvering of satellites with actuator constraints.
The modeling error consisting of actuator fault and external disturbance was further
compensated in Chap. 5 even in the presence of actuator faults and angular veloc-
ity measurement uncertainty. The controllers in Chaps. 3—5 do not require angular
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velocity measurements. They can achieve higher control performance for attitude
maneuvering by tunning their control gains.

The adaptive compensation attitude control methods were designed in
Chaps. 6-8. The modeling error compensation control problem of a class of non-
linear systems with multiple actuator faults was addressed in Chap. 6. An adaptive
controller was synthesized by using the output measurement only. This controller
was applicable to stabilize the satellite’s attitude with high performance via the atti-
tude feedback only. The fast attitude slewing control problem of flexible satellites
with modeling error due to external disturbance and uncertain inertia was solved in
Chap. 7. This was achieved by presenting an adaptive sliding mode-based fixed-time
controller. The closed-loop attitude control system was governed to be fixed-time
stable with a faster convergence rate than the existing fixed-time controllers. The
attitude stabilization control problem of satellite with actuator fault, external distur-
bance, and performance constraint was solved via a reinforcement learning-based
fixed-time optimal control framework in Chap. 8. The closed-loop attitude system
was stabilized within a fixed time. The control cost was also significantly reduced.
Moreover, the persistent excitation condition that should be met in the conventional
neural network weight updating laws was eliminated.

The observer-based compensation attitude control methods were designed in
Chaps. 9-11. The extended-state observer-based attitude controller presented in
Chap. 9 can provide asymptotical attitude control for flexible satellites with mod-
eling error consisting of external disturbance and unknown flexible vibration pre-
cisely compensated. Two disturbance observer-based exponential attitude controllers
developed in Chap. 10 were able to perform attitude stabilization and tracking maneu-
vers with the desired control accuracy ensured with an exponential rate. Four types
of modeling error, i.e., the external disturbance, the actuator faults, the actuator
misalignment, and the uncertain inertia were fully compensated. This problem was
further studied in Chap. 11 by presenting an unknown-input observer-based con-
trol architecture. The fixed-time and the finite-time attitude control were achieved,
respectively. Fast attitude maneuvering can be accomplished. The common feature
of the controllers in Chaps. 9—11 was that they accommodated the modeling error
with the modeling error completely and exactly compensated. They have no conser-
vativeness with the energy saved during the attitude maneuvering.

All the controllers presented in this book have a certain capability of solving the
challenges stated in Sect. 1.11. Unlike most of the existing attitude control methods
that have capability of accommodating modeling error, two or even more than two
types of modeling error can be compensated for satellite attitude control system with
actuator constraint or without angular velocity measurement. Moreover, a stringent
of requirements on the attitude control performance such as high pointing accuracy,
better attitude stability, and fast convergence rate are met by the proposed controllers
in this book. Another feature of this book was that the effectiveness of all the con-
trollers in this book was numerically verified. In addition, some control approaches
in the book were even experimentally validated. This moves a step further toward
application in satellite attitude control practice.
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12.2 Future Work

When applying the compensation control approaches in this book to satellite attitude
control engineering, the following issues should be addressed further. They are also
the future work to be carried out.

e The fast, the finite-time, or the fixed-time attitude control and the actuator con-
straint should be solved simultaneously. This may be theoretically achieved by
improving the controllers in Chaps. 6—8. On the other hand, this can also be
addressed by inventing new actuators that have large control torque.

e Although the observer-based compensation controllers in Chaps. 9-11 have no
conservativeness. Their implementation necessitates angular velocity measure-
ments. This lets them be inappropriate for the microsatellite attitude control. That
is because sometimes the angular velocity of microsatellite may not be available.
Hence, observer-based velocity-free compensation attitude control should be con-
ducted in the future.

e Only the attitude controller design problem of the satellite attitude system was
investigated in this book. It is known that the satellite attitude system design does
not contain the controller design only. The attitude determination and the desired
attitude planning are also involved. Those two works are also quite important.
Therefore, those two works should be done future.

e Satellite and especially microsatellite swarm flying is becoming a new space sys-
tem architecture for future complicated tasks. That is because more and more space
tasks would not be carried out by using a single satellite. Hence, the extension of
the compensation controllers in this book to achieve attitude coordination control
of the satellite swarm is another future work.
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