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Preface 

From the first artificial satellite “Sputnik 1” launched by the Soviet Union in 1957 to 
the early twenty-first century, aerospace technology has achieved significant progress 
in the transition from the laboratory simulation to the practical application. As one 
of the most important categories in the spacecraft family, earth observation satellites 
mainly use spaceborne sensors to observe the earth’s surface and lower atmosphere in 
order to obtain relevant information. It has irreplaceable merits such as wide coverage, 
long duration, little spatial and boundary limitations, and high security on stuff. 
Therefore, the EOSs are playing a significant role in the aspects of remote sensing, 
disaster prevention and control, environmental protection, territorial mapping, urban 
planning, agriculture assessment, and meteorology. With the rapid development of 
the world space industry, the number of EOSs has gradually increased, the types 
are increasingly rich, and the capacity and complexity of satellite platforms and 
payloads have increased significantly, but it is still difficult to meet the increasing 
and diversified earth observation requirements of various sectors. How to efficiently 
and reasonably develop daily satellite earth observation programs and make full use 
of satellite earth observation capabilities, so as to enhance the overall effectiveness 
of earth observation systems is a key issue that needs to be addressed in the space 
field. 

The book is divided into eight chapters. Among them, the Chaps. 1 and 2, provide 
an overview of the key technologies and research status of task planning for earth 
observation satellites and analyze the challenges posed by various elements in the 
earth observation satellite system for planning and scheduling. The Chaps. 3–6 intro-
duce the centralized EOSs task scheduling models and algorithms under determin-
istic conditions, dynamic scenarios of EOSs task rescheduling methods, distributed 
EOSs task scheduling models and algorithms, and EOSs onboard autonomous task 
scheduling models and algorithms; The Chaps. 7 and 8 introduce the architecture, 
main functions and human–computer interaction interfaces of typical satellite task 
scheduling and planning systems from the perspective of practical applications, and 
look into future technology trends. 

The division of work in writing this book is as follows: Chap. 1: Hao Chen, Shuang 
Peng, Chun Du and Jun Li; Chap. 2: Hao Chen; Chap. 3: Hao Chen and Chun Du;
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Chap. 4: Chun Du and Hao Chen; Chap. 5: Shuang Peng; Chap. 6: Shuang Peng 
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Brief Introduction to This Book 

Based on the actual needs of the earth observation satellite (EOS) operation control 
center, this book analyzes and introduces the development of the EOS task scheduling 
technology. Firstly, the state-of-the-art achievements and advances in this area are 
summarized. Secondly, for both static and dynamic scenarios, generic models, algo-
rithms, and systems in centralized task scheduling technology, distributed task 
scheduling technology and onboard autonomous task scheduling technology are 
illustrated. Finally, the outlook on the expected technologies of the EOS task planning 
and scheduling for the future is summarized. 

This book is suitable for engineers, post-graduate students, PhD students, and 
researchers engaged in aerospace task planning and scheduling.
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Chapter 1 
Introduction 

1.1 Background of Earth Observation Satellite Task 
Scheduling 

The past twentieth century is an extraordinary era with significance historical revo-
lutions and great progress in science. For the first time, the human beings made 
a step out of the earth, where they lived and raised for hundreds of thousands of 
years, and made a step into the magnificent “Space age.” From the first artificial 
satellite “Sputnik 1” launched by the Soviet Union in 1957 to the early twenty-first 
century, aerospace technology has achieved significant progress in the transition from 
the laboratory simulation to the practical application. Meanwhile, with the develop-
ments of the spacecraft design, the applications of the aerospace technology have 
permeated to different societies including scientific research, economical events, and 
security operations. 

The earth observation satellites (EOSs) are one of the most important spacecrafts. 
The EOSs utilize the spaceborne sensors to detect the earth’s surface and the lower 
atmosphere to obtain the information of the ground targets. It has irreplaceable merits 
such as wide coverage, long duration, little spatial and boundary limitations, and high 
security on stuff. Therefore, the EOSs are playing a significant role in the aspects of 
remote sensing, disaster prevention and control, environmental protection, territorial 
mapping, urban planning, agriculture assessment, and meteorology. The categories of 
the EOSs are typically divided into the visible light EOS, the infrared EOS, the multi-
spectral EOS, the hyperspectral EOS, the ultra-broad spectrum EOS, the synthetic 
aperture radar (SAR) EOS, the surface electromagnetic detection (SED) EOS, etc., 
according to different sensors. All these techniques are of great interest to those 
powerful countries in the spaceflight with great advances in these years, which are 
the USA, Russia, China, France, and Germany. Specifically, the aerospace industry 
in China is arisen rapidly by the benefits of the achievements on the projects like 
“High-resolution Earth Observation System” and “Manned Spaceflight and Lunar 
Exploration.” In this instance, the task scheduling of the EOSs that play a critical
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2 1 Introduction

role in the aerospace technology, is of great and increasing interest to the academic 
research and industrial applications. 

1.1.1 Summary of the EOSs Task Scheduling 

The EOSs surround the earth in the specific orbits to provide observations for different 
targets on the ground according to different task requests. The obtained remote 
sensing image data is transmitted to the receiver on the ground station through a radio 
by the real-time transmission or the post-event transmission. Then the obtained data 
is preprocessed and recognized by the ground data processing center (DPC) to gain 
the effective information for the tasks. 

In practical application scenarios, the satellite-based ground target observation 
is typically carried on the following steps: First, the users propose the observa-
tion requests, and the Earth Observation Satellite Operation Center (EOSOC) then 
generates the corresponding ground target observation task based on the related 
analytical and the computational operations. Next, a Satellite Earth Observation 
Programme (SEOP) will be produced through the Satellite Tasks Scheduling (STS), 
with respect to the task-specific information, the attributes of satellites (orbits predic-
tion, available devices), and the relevant constraints (energy constraints, side viewing 
angle constraints, solar altitude angle constraints, cloud cover constraints, sensor 
switching time constraints, side viewing times constraints, spaceborne memory 
capacity constraints, etc.). After that, the control command for the satellite plat-
form and the loaded devices will be allocated through the measurements and control 
facilities on the EOSOC based on the SEOP, and assign the observations and the data 
transmission operations to the satellites. The remote sensing image data obtained by 
the satellites will then be distributed to the ground receiving station (GRS) and will 
be processed by the related data enhanced and analytical systems before dispatching 
to the users. The generic process is depicted in Fig. 1.1.

It can be seen from Fig. 1.1 that the STS is essential to the satellite control and 
ultimate performance. In the early stage of the earth observation satellite technique 
development, the number of the earth observation tasks is affordable to the EOSOC as 
limited loaded devices and primary aerospace technology do not require complicated 
disciplines for action controlling and task planning. Consequently, the observation 
time and angle are typically fixed and the satellite control is simple. However, with 
the developments on the aerospace technology, the EOSs are capacity of sideways 
viewing, which allows satellites performing observation task through adjusting the 
sideways viewing angle of the observation sensors. Recent advances on the Agile 
Earth Observation Satellite (AEOS) achieve better flexibility on the earth observation 
with respect to the Yaw, Roll, Pitch three-axis-angle maneuverability. Meanwhile, 
it is necessary to take more challenging practical constraints into account, as well 
as searching the best STS strategy in a larger solution space when dealing with the 
earth observation task scheduling problem.
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Fig. 1.1 Typical operation control flow of the EOSs

Priority is a fatal issue of the STS problem, task or target with higher priority 
should be sorted in prior. The value of the priority measures the significance of the 
observation data or the necessity of task. With the fact that the EOSs surround in 
the low-earth orbit with superior speed, the targets in the task list can only be very 
temporal observed toward the EOSs observation devices due to the earth curvature. 
The observed period is named access time window or observation time window, 
restraining the STS strategy. Besides, satellite observation sensors can only adjust 
to restricted angles in the specific observation time window, the power supply for 
the sensors adjustment, and the onboard storage memory is also limited, the EOSs 
are essentially constrained by the complicated conditions in practical scenarios. In 
this instance, satellites can barely complete all the earth observation tasks and only 
satisfy a part of the users’ requests in one STS period. Therefore, the completed tasks 
in one STS period are merely a subset of the total tasks. 

The STS aims at searching for the best subset from the whole satellite obser-
vation task set. This global optimal subset should maximize the total benefit (e.g., 
targets with the higher priority should be observed in prior) while satisfying all
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the constraints. The relevant aspects of the STS include satellite platforms, satellite 
payload, earth observation requests, earth target environment and scenarios, which 
are interfered and interacted, resulting in the complexity and difficulty of the STS 
problem. 

1.1.2 Theoretical Significance and Application Value 

(1) The STS problem is a typically NP-hard problem referring to the previous 
evidence in the literature [1], and thus no polynomial temporal algorithm 
can achieve accurate estimation for this problem. The complexity of the STS 
problem is further augmented while taking the agnostic multiple satellite 
resource, the different observation requests, and the fruitful target environment 
and scenarios into account. In sum, studies on solving the STS problem are of 
great sensation on the theoretical and practical advances. 

(2) The modern society has increasing demands on the remote sensing data, specif-
ically, the EOSs and the related technique have been widely applied to industry, 
agriculture, economy, and military areas with significant role. At the same time, 
with the increments of the number and categories of the in-orbit EOS and the 
sustainable growth on the users’ demand, it is imperative to propose an equi-
librium and comprehensive STS strategy to assign the different categories of 
satellites and their related devices and resources, satisfying the user demand as 
well as improving the level of resources utilization. The EOS resource planning 
and scheduling, as a fatal technology in the field of the satellite control and 
practical applications, has become an important research direction in aerospace 
technology. A mutual and optimal STS strategy is of great industrial value in 
terms of supplying key technical support in the practical applications. 

(3) Large amount of commercial aerospace companies spring up in China following 
the implementation of the national aerospace technology development strategy 
in these years. With the incremental demands and the explosion of the related 
patents, the STS, as one of the core technologies in aerospace application, has 
obtained more and more attentions with respect to the merits of stimulating the 
domestic demand, the promotion of the prosperity in all the related industry 
chain, and the contributions to the national economic development. 

1.2 Research Status of EOS Task Scheduling 

1.2.1 Centralized EOSs Task Scheduling 

Ground-based centralized EOS task scheduling is applicable to the most traditional 
STS scenario, in which the ground-based centralized EOS task scheduling algorithm 
centrally schedules and assigns the earth observation tasks of all satellites. Gener-
ally, the ground-based centralized EOS task scheduling algorithm is deployed on a
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high-performance computing cluster of the satellite operation and control center. It 
performs complex scheduling calculations to arrange the reasonable and optimized 
solutions for multiple satellites with a bird’s eye on the observation requirements and 
satellite constraints. At present, there have been huge progress in this field and most 
of the current works are modeling for specific satellite task scheduling problems or 
transforming them into classical scheduling problems and are solved in the tradi-
tional schemes. Some scholars have also studied the models and methods of STS for 
the complex earth observation targets, such as the area targets and the moving targets 
on the ocean surface. Detailed information is introduced below. 

1. Satellite task scheduling model 

Satellite Earth Observation Programme (SEOP) involves various disciplines 
including computer science, operations research, artificial intelligence, and the 
performance indicators (control accuracy, control mode, and storage characteris-
tics, etc.). In addition, the systems and their operating modes vary among different 
countries, leading to significantly different constraints, where the researchers have 
proposed their own modeling schemes from different perspectives. The majority 
of categories include the constraint satisfaction problem (CSP) models, the graph 
theory-based models, and the satellite-specific models. 

(1) Constraint satisfaction problem model for EOS scheduling 

The satellite earth observation process is subject to various constraints, and a 
large number of researchers across the world have established the CSP models 
by describing the various satellite constraints and the scheduling objective func-
tions through mathematical expressions. Lemaitre established a constraint satis-
faction problem model for the dexterous satellite mission scheduling and further 
compared the results of the greedy algorithms, the dynamic programming methods, 
the constraint propagation algorithms, and the local search algorithms [2]. Globus 
modeled the constraint satisfaction problem for multi-satellite scheduling, with a 
glimpse of the priority of mission requirements, as well as the constraint that each 
satellite has multiple remote sensing devices. These problems are typically solved by 
the simulated annealing algorithm, the genetic algorithm, the random hill-climbing 
algorithm, and the iterative sampling algorithm [3]. Bianchessi [4] modeled the 
constraint satisfaction problem for each of the two constellations and solved it using 
the column generation algorithm, the stochastic greedy algorithm, and the Lagrangian 
relaxation algorithm. Li considered data storage and downlink, applying the idea of 
hybrid modeling of constraint, to build a hybrid constraint planning model, and solved 
it by using the variable neighborhood forbidden search and the guided forbidden 
search methods [5]. Jun studied the integrated task scheduling problem of the imaging 
satellites in global optimization mode, established a constraint satisfaction problem 
model, introduced the multi-objective dominance relationship into the model, and 
proposed a multi-objective mission scheduling algorithm based on the SPEA2 genetic 
algorithm framework [6]. Jin established a constraint satisfaction problem that inte-
grates satellite resources and data downlink resources and proposed a comprehen-
sive scheduling method for star-ground resources based on the steady-state evolu-
tionary algorithm and the Lagrangian relaxation method [7]. Sun established the
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mechanism of single-objective optimization and the multi-objective optimization co-
evolution for the agile satellite resource scheduling problem with multi-user control 
and proposed a multi-objective co-evolutionary algorithm for multi-objective joint 
mission scheduling [8]. Wu et al. proposed an improved non-dominated ordering 
based on the synthetic aperture radar satellite formation for the imaging scheduling 
problem, considering three objective functions simultaneously to meet the needs of 
different types of targets NSGA-III imaging the scheduling method [9]. Li designed 
a preference-based multi-objective optimization solution framework for the agile 
satellite earth observation task scheduling problem and proposed two preference-
based multi-objective optimization algorithms based on the reference points and the 
target regions, respectively [10]. 

The CSP model can explicitly describe the relevant constraints and the 
scheduling evaluation criteria of the satellite earth observation process. It guides the 
algorithm to search for the optimal solution of the problem. However, the CSP model 
is established for specific satellite constraints and scheduling evaluation criteria, with 
close bound to the satellite scheduling problem. The constraints usually vary dramat-
ically among the EOSs, and thus different CSP models are needed for the different 
EOSs planning and scheduling problems. 

(2) Graph theory-based model for EOS scheduling 

Some researchers have developed graph theory-based models by mapping ground 
targets to a series of graph vertices and constraint relations to sets of edges. For 
example, Gabrel studied the imaging paths of acyclic directed graphs to represent the 
way satellites transition between multiple tasks, which were solved using the shortest 
path algorithm [11]. Zhang analyzed the single-satellite scheduling problem and 
established the shortest path model for multiple targets of satellite earth observation, 
which is solved by the idea of marker update [12]. 

The biggest advantage of the graph theory-based model is that it intuitively repre-
sents the temporal and conflict relationship among multiple earth observation tasks. 
However, it lacks capability to express the relevant constraints and optimization crite-
rion relationships in the process of multi-satellite joint earth observation. Therefore, 
the graph-theoretic models are widely implemented for the single-satellite scheduling 
problems or the multi-satellite scheduling problems that have been decomposed to 
the single-satellite level. 

(3) Model and system for specific types of EOS 

In order to improve the scheduling computing efficiency, some researchers have 
proposed their specific planning and scheduling models and built some scheduling 
systems for specific types of EOSs. When studying the observation task scheduling 
problem of the Landsat-7 resource satellite, Potter et al. established a scheduling 
model based on an idea called “multi-pass.” They completed the scheduling in 
multiple steps according to the priority of the task [13]. Yamaguchi [14] and Muraoka 
[15] studied the observation scheduling method for the AM-1 satellite with ASTER 
by calculating the priority of alternative imaging segments based on the shape and
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distribution of the observation area, as well as scheduling the imaging tasks in order of 
priority. Chien [16] and Rabideau [17] designed the Automated Scheduling and Plan-
ning Environment (ASPEN) system for the National Aeronautics and Space Admin-
istration’s (NASA) multiple-EOS task scheduling, which is solved by adopting an 
iterative domain knowledge-based repair mechanism. Frank [18] and Dungan et al. 
[19] from the NASA described the multi-satellite imaging scheduling problem as 
a constrained optimization problem and established a scheduling model based on 
the constraint-based interval (CBI) framework, which is solved by a greedy algo-
rithm with random search. Based on the above approach, they have implemented the 
EUROPA scheduling system. 

The design of the dedicated model is closely associated to the specific onboard 
equipment and scheduling scenarios. The model is simplified to improve the 
scheduling efficiency in a specific strategy, which is usually not general and generic. 

2. Reducing the EOS scheduling problem to classical scheduling problems 

Classical scheduling problems usually have more widely adopted modeling and solu-
tion methods. In order to utilize these models and solution methods, some scholars 
have reduced the EOS planning and scheduling problem to certain classical planning 
and scheduling problems before modeling and solving them. Vasquez et al. mapped 
the daily scheduling of the SPOT5 satellite observation task to a multi-dimensional 
0–1 backpack problem and constructed the constraint satisfaction problem model. 
Then, they adopted a forbidden search for the solution and obtained the upper bound 
of the problem using a relaxation method [20]. Wolfe et al. reduced the single-satellite 
scheduling problem to a single-machine scheduling problem, established the corre-
sponding integer programming model, and designed and compared eight heuristic 
algorithms from the perspectives of time window price and opportunity cost of a 
task, respectively [21]. The literature showed that the combination of these heuris-
tics can obtain a solution close to the upper bound of the problem [1]. Based on the 
observation characteristics of ROCSAT-II, Lin treated it as a workshop scheduling 
problem with time window constraints, which decomposes the main problem into 
several subproblems using the Lagrangian relaxation methods and forbidden search 
methods, and solved it using linear programming techniques [22]. He studied the 
multi-EOS scheduling problem without considering the satellite data downloading 
and reduced it to a multi-machine scheduling problem with time window constraints. 
He established two models of mixed integer programming and constraint satisfac-
tion, and solved it using the taboo search and column generation algorithms [23]. Li 
[5] and Guo [24] mapped the integrated task scheduling problem of satellites with 
multiple payload types, such as visible, synthetic aperture radar (SAR), infrared (IR), 
and multispectral, into a vehicle loading and unloading problem with time windows. 
They adopted the immune genetic algorithm and simulated annealing algorithm to 
solve the above models. 

Although the classical scheduling problem can be modeled and solved by drawing 
on a large number of research results, the classical problem usually has a more 
rigorous formal definition, so the satellite-related constraints may need to be simpli-
fied in the normalization process to fit the expression form of the target classical
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problem. The classical problem scheduling model is less scalable and difficult 
to express the satellite earth observation process under complex conditions. For 
example, it is difficult to express the nonlinear constraints in the satellite earth 
observation process when the EOS task scheduling problem is mapped to an integer 
programming problem model. 

3. Algorithms for EOS scheduling 

Whether building a mathematical model or reducing it to a classical problem, it is 
necessary to design the corresponding optimization algorithm. The selection, coding, 
and design of the optimization algorithms are directly related to the adopted models, 
while different planning and scheduling models take the most significant account on 
the design of solution algorithms. Optimization algorithms applied to this field can 
be essentially divided into two categories: the conventional optimization algorithms 
and the heuristic optimization algorithms. 

Typical conventional optimization algorithms applied to the field of the satellite 
task scheduling include the constraint programming method [2], the label-setting 
algorithm [11], the column generation algorithm [23], and so on. Since the satellite 
task scheduling is a typical NP-hard problem, conventional optimization algorithms 
can only solve small-scale earth observation satellite task scheduling problems [18, 
22]. 

At present, the vast majority of research works have adopted the heuristic opti-
mization algorithms for solving the problem. For example, Frank et al. utilized a 
heuristic-based stochastic search algorithm and designed several heuristic rules [18]. 
Wang et al. [25] designed a priority-based heuristic search algorithm that utilizes 
a combination of conflict resolution, finite backtracking, and on-demand down-
loading rules, which can produce satisfactory scheduling results in a short time. 
Chen et al. [26] designed several priority-based task conflict resolution heuristics for 
agile satellites, which can effectively resolve the conflict between observation tasks 
with overlapping observation time windows. 

However, the rule-based heuristic search algorithms usually perform ineffec-
tive when compared to the meta-heuristic optimization algorithms. The simulated 
annealing (SA), the tabu search (TS), the genetic algorithm (GA), the ant colony 
algorithm (ACA), the fireworks algorithms (FA) [27], the adaptive large neighbor-
hood search (ALNS) [28, 29], and other metaheuristic optimization algorithms have 
shown stronger capabilities in solving the combinatorial optimization problems and 
have been widely used in the earth observation satellite task scheduling. 

4. EOS task scheduling for specific targets 

Observation targets can be divided into the point targets, the area targets and the 
moving targets according to their types. The size of the point targets is relatively 
small comparing to the width of the onboard sensors. They can be completely covered 
by the field of view of the imaging satellite sensors. The size of the area targets is 
much larger, and the sensor of EOS cannot completely cover the targets in a single 
shoot, so it is necessary to be shot more than one time by a single satellite or a group 
of multiple satellites. The moving targets refer to the targets in motion in the ocean
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area of concern, which have a certain degree of uncertainty. This section introduces 
the current status of the EOS task scheduling research for area targets and moving 
targets. 

(1) EOS task scheduling for area targets 

In the area target-oriented satellite observation task scheduling, research work mainly 
adopts the research idea of “decomposition first, then scheduling.” Specifically, the 
area target satellite observation scheduling problem can be decomposed into two 
subproblems: the area target decomposition and the satellite observation scheduling. 
For the area target decomposition, the area target is divided into multiple subareas 
(strips) that can be fully covered by one shot of the onboard sensors, and the operating 
parameters of the satellite payload (switching time, satellite sway angle, etc.) are 
determined within each time window when the satellite visits the subareas. The 
satellite observation scheduling problem for area targets focuses on the observation 
strips after target decomposition, and its scheduling strategy follows the traditional 
observation scheduling method for point targets. 

Lemaître et al. [30] made an early exploration of the observation 
scheduling problem for area targets. The area target to be observed is a large polygon 
area, which usually cannot be completely observed by a single shoot. Lemaître et al. 
proposed a parallel segmentation approach to divide the whole polygon into several 
strips, ensuring that the area corresponding to each of these strips can be completely 
observed by the satellite in one shoot. Cordeau et al. [31] and Bianchessi [32] utilized 
the standard taboo search algorithm to solve area target observing scheduling problem 
and verified the feasibility of the proposed approaches by simulation experiments. 
Tangpattanakul et al. [33] proposed a genetic algorithm-based area target observing 
task scheduling task scheduling method, which can do multi-objective local search 
based on priority of area targets. 

Wang et al. [34] designed a parallel partitioning method to convert the area target 
into small observation strips according to the observation requirements and designed 
a priority-based heuristic algorithm with a conflict avoidance and finite backtracking 
search, which was able to find a satisfactory solution to the problem. Yang [35] 
established a CSP model for area target observation scheduling of the EOSs by 
analyzing the characteristics of the area target observation and proposed a multi-
satellite area target observation task scheduling algorithm based on a solution iter-
ative repair strategy. He conducted some experiments to verify the practicality and 
effectiveness of the proposed algorithm. Xu et al. [36] proposed a three-phase solu-
tion framework, including the area discretization, the target decomposition, and the 
task scheduling to solve the EOSs large area observation problem. Zhu [37] analyzed 
various specific situations of the area target coverage optimization problem of multi-
satellite cooperative observation and abstracted the multi-satellite cooperative area 
target observation problem into three basic types of problems, namely the maximum 
coverage area problem under the resource-limited situation, the minimum comple-
tion time problem under the resource-sufficient situation, and the minimum coverage
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cost problem under the resource-sufficient situation, and proposed the corresponding 
solutions for each type of problems respectively. 

(2) EOS task scheduling for moving targets 

The moving targets in this book refer to the targets that move with the low-level speed 
on the ocean surface. Unlike the task scheduling for observation of stationary ground 
targets, the task scheduling for moving targets usually includes three processing 
steps: search and discovery, relay observation, and dynamic adjustment of the satel-
lite observation programme. The difficulty and challenge of the problem solution is 
underlying how to accurately predict the target location by combining relevant infor-
mation, i.e., the way of effectively performing search and discovery, relay observa-
tion for moving targets, and the dynamic adjustment of the observation programme, 
respectively, can be handled by the general dynamic rescheduling methods (see 
related demonstration in Sect. 1.2.2). 

Berry [38] of the Defense Science and Technology Organization (DSTO), 
Australia, treated the observation scheduling problem of moving targets at sea as 
a sensor resource scheduling problem and established a generic framework for 
solving the problem. This method divides the observation area into several grids 
and implemented a probabilistic update strategy based on Bayesian criterion, in 
terms of establishing a Gaussian Markovian motion model for predicting the trajec-
tory of the moving targets. Ci [39] developed a partially observable Markov deci-
sion process (POMDP)-based moving target searching model for the “online” EOSs 
moving target observation task scheduling. Guo [24] proposed a stochastic model 
based on the dynamic update of target distribution probability, as well as an adap-
tive and interactive multimodality target prediction method; however, whose sensor 
optimization strategy with the maximum cumulative discovery probability is hard to 
accurately estimate the target state. Lu [40] reduced the complexity of the problem by 
transforming the task scheduling problem of the ocean motion targets into a poten-
tial area target observing task scheduling problem. However, the uncertainty of the 
motion targets could lead to ineffective target discovery. Xu et al. [41] proposed a 
multi-model motion prediction method for the discontinuous satellite observation, 
which integrates conventional uniform motion prediction, track-based prediction, 
and potential area prediction. Zhang [42] studied the problem of multi-satellite coop-
erative search for sea surface moving targets in a multi-obstacle sea surface envi-
ronment and proposed a multi-obstacle-oriented sea surface moving target motion 
prediction method for searching the targets on ocean surface. In terms of sensor 
planning and scheduling for moving targets, Yuan [43] decomposed the observa-
tion task scheduling problem of moving targets into two parts: the motion target state 
prediction and the sensor scheduling. He proposed a traceless particle filter-based 
sea surface motion target state prediction algorithm for target trajectory prediction, 
and a Rényi scatter-based satellite sensor scheduling method. Li et al. [44] proposed 
an onboard sensor scheduling method for moving targets based on reinforcement 
learning methods. Mei et al. [45] proposed a sensor scheduling algorithm based on 
the Kullback–Leibler (KL) divergence and the target detection probability, which 
significantly improved the capability of discovering moving targets for satellites.
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1.2.2 EOSs Task Rescheduling for Dynamic Scenarios 

Current methods for the EOSs task scheduling are mainly based on the determin-
istic scheduling, which is assumed that the observation tasks and satellite resources 
involved in scheduling keep static once the scheduling process starts. In practical, the 
satellites are working in a dynamic environment, where satellite resources may fail 
temporarily (or repair from failure) and new observation tasks may arrive randomly. 
If the satellite task scheduling process cannot adapt to these changes, it will definitely 
lead to a reduction of the satellite resource utilization. In view of this, the study of 
dynamic rescheduling of the satellite resources has become a hot topic of research 
for scholars all over the world. 

Pemberton et al. [46] of Veridian, France, were the first to analyze the require-
ments of the multi-satellite dynamic rescheduling and divided the reasons for multi-
satellite dynamic rescheduling into four cases: the changes in the state of satel-
lite resources, the arrival of new tasks, the selection of task opportunities, and the 
influence of environmental uncertainty. They pointed out that the problem has the 
general characteristics of a continuous planning and scheduling problem, requiring 
that the changes between two consecutive EOSs observation plan should be small 
enough. However, no specific scheduling strategies and methods are given in the 
paper. Verfaillie et al. analyzed the characteristics of the dynamic and uncertain 
scheduling problems in general and classified the current processing methods into 
the reactive processing strategies and the proactive processing strategies [47]. The 
reactive processing strategy is mainly a method that reacts quickly to changes in the 
environment and reschedules according to a predesigned strategy, while the applica-
tion of proactive processing strategy requires the acquisition of some prior knowledge 
of the changes in the environment, and the scheduling system will adjust the initial 
scheduling results autonomously based on this priori knowledge without waiting for 
the changes to occur before reacting. Obviously, according to the possible dynamic 
change factors in the satellite scheduling process summarized by Pemberton et al. 
[46], we cannot predict the information of the new observation tasks, and it is difficult 
to obtain any prior knowledge that the satellite will fail, so the dynamic rescheduling 
of the EOSs can only adopt the reactive processing strategy. 

In the dynamic rescheduling process, if the initial scheduling results are directly 
discarded and the deterministic satellite task scheduling algorithms are used again for 
the new scenarios (new task and new satellite resources), the real-time scheduling 
requirements are hard to be satisfied when the problem size is with large scale. 
Furthermore, if the rescheduling results are too different from the initial scheduling 
results, the rescheduling results may be difficult to be applied, while if the newly 
arrived tasks are not processed or the old tasks which cannot be performed by failed 
satellites are directly discarded, the optimization of the satellite observation plan is 
difficult to be guaranteed. Therefore, the rational application of the initial scheduling 
results becomes the main strategy to deal with the dynamic rescheduling problem of 
the earth observation satellites at present.
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When studying the SPOT satellite scheduling problem, Verfaillie et al. of the 
ESA proposed a dynamic treatment idea for the case of new tasks arrival [48]: A 
sufficient condition for a new observation task can be inserted into the scheduling 
programme is that when other tasks in the initial scheduling programme are changed 
by the task insertion, the changed tasks must be able to be inserted into another 
position of the scheduling programme and meet the scheduling deadline. Bensana 
et al. [49] studied the scheduling problem of a single earth observation satellite 
and used a mathematical method based on a Markov decision process framework 
to deal with the uncertainty of cloud cover and achieved an optimization of satellite 
scheduling results. Liao et al. analyzed the effect of the cloud coverage on the imaging 
process of the ROCSAT-II, modeled the problem as a stochastic integer programming 
problem, and used a rolling adjustment strategy to adjust the generated ROCSAT-
II satellite task scheduling programme in real time according to the latest weather 
conditions [50], but could only handle the linearly constrained case. Billups et al. of 
Colorado University proposed various dynamic rescheduling methods based on the 
greedy algorithms, the genetic algorithms, the integer programming methods, and 
the graph-theoretic methods for the single-satellite dynamic rescheduling problem 
under the constrained simplifying conditions [51], but they cannot solve the satellite 
model containing nonlinear constraints. 

All of the above works can only handle the single-satellite dynamic rescheduling 
problem, and with the advancements on the related research works, some scholars 
have extended these works and applied them to the field of the multi-satellite dynamic 
rescheduling. 

Yang et al. established a dynamic constraint satisfaction problem (DCSP) model 
for the changes of the satellite resource state and the arrivals of the new tasks, 
respectively. They proposed a corresponding reactive scheduling algorithm combined 
with heuristic rules to minimize the observation programme adjustment [52]. The 
core idea of this work is the task-and-priority-based iterative repair strategy; i.e., when 
a task conflicts, only the higher priority task is allowed to replace the lower priority 
task. Kramer et al. proposed the task swapping algorithm based on an iterative repair 
strategy for the general dynamic rescheduling problem [53, 54], which is based on the 
Max-Flexibility, the Min-Conflicts, and Min-Contention heuristic rules to iteratively 
select scheduled tasks, then replace them with tasks that are not currently scheduled, 
and then reschedule the replaced tasks, saving the new solution if the scheduling 
is successful or returning to the original one if the scheduling fails. Zhang et al. 
[55] conducted a study for the scenario of the resource failure and the emergency 
observation task arrival and proposed a heuristic search algorithm containing five task 
replacement strategies, such as the interval pruning, the task pruning, the minimum 
conflict part for a single task, the minimum conflict set, and the maximum flexibility. 
Zhu et al. [56, 57] designed a task fusion strategy based on group partitioning, 
where they proposed a dynamic insertion algorithm based on the task backoff and 
repair. Wang et al. [58] designed the insert-delete-re-insert (IDI) algorithm with 
three operations: insert task, delete task, and reinsert task, and the insert-shift-delete-
re-insert (ISDR) algorithm with four operations: insert task, shift task, delete task, 
and reinsert task, respectively. The experiments show that the optimality of ISDR
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is better than that of the IDI algorithm. Jian [59] designed a variable neighborhood 
search method with four operations of “insert-redistribute-replace-delete.” All of 
the above studies used a task replacement strategy based on heuristic rules, which 
can be regarded as an improvement of the priority-based iterative repair strategy. 
The iterative process decides whether the original task is replaced by the new task 
through certain heuristic rules, instead of considering only the task priority. 

The task priority-based iterative repair strategy is a greedy scheduling strategy, 
which is difficult to guarantee global optimality. The heuristic rule-based task replace-
ment strategy relies more on the task distribution characteristics in the scheduling 
problem, and the degree of optimization of the scheduling results will vary with 
different task distribution characteristics, which will lead to insufficient stability of 
the scheduling results in some extreme cases. Liu [60] applied dynamic rescheduling 
technology to multi-satellite observation of forest resources, and for perturbation 
situations such as the cloud cover occlusion and the resource failure. Firstly, a multi-
objective rescheduling model was constructed with the objectives of small deviation 
from the original observation programme, large completion observation benefit, and 
load balance. And then a multi-objective particle swarm scheduling algorithm was 
proposed. The performance of the multi-objective rescheduling algorithm is signif-
icantly improved by designing a local search and global search balancing control 
strategy, an adaptive parameter adjustment strategy, and a population diversity main-
tenance strategy. Zhang et al. [61] designed an event-driven strategy based on the 
trigger rules and constructed a reactive scheduling multi-satellite multi-objective 
optimization module with the objective function of maximizing the scheduling gain 
and minimizing the perturbation measure for the observation of sudden events such 
as earthquakes and fires. In this work, the authors considered dynamic uncertainties 
such as the satellite resource failure and the emergency mission addition and inte-
grated the task constraints, time constraints, satellite energy, and storage constraints. 
The number of triggers, the task completion rate, and the response time are also 
taken into account. Hu et al. [62] proposed a heuristic sliding time window insertion 
algorithm for emergency observation tasks, which integrates the task urgency and 
task conflict degree. 

1.2.3 Distributed EOSs Task Scheduling 

Under distributed conditions, the core research of multi-satellite collaborative task 
scheduling not only focuses on the resource assignment and task scheduling, but 
also focuses on how multiple satellites can autonomously perform task assignment 
through the information interaction and negotiation. The main idea is to model the 
satellite entities as autonomous and collaborative agents, where each agent only plans 
its own earth observation solution for the corresponding satellite (without knowing 
the global information of the whole constellation), and then generates the overall 
multi-satellite task scheduling solution through double-way collaboration among 
multiple agents [63]. The usage constraints of satellites are all encapsulated inside
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the agent and separated from the collaborative framework. When satellite resources 
are added or withdrawn, only the agent representing the satellite needs to be registered 
or canceled in the existing multi-agent system, which ensures the high scalability 
of the system. The “independent scheduling and computation plus collaboration” 
approach of the multiple agents owns inherent parallel computing structure and 
benefits from multiple blade servers, which can adapt to the requirements of task 
on-demand processing. 

Typical works include: Gao [64] proposed an extended contract network protocol 
for the distributed satellite system task collaboration based on the belief–desire– 
intention (BDI). The author then improved the basic contract network technology 
from three aspects of the task bidding and evaluation. Wang et al. [65, 66] used the 
historical information of collaborative scheduling to guide the subsequent collabo-
rative scheduling and proposed a distributed collaborative task scheduling algorithm 
based on the multi-agent hybrid learning strategy and reinforcement learning. Li 
et al. [67] proposed an efficient collaborative mechanism for parallel multi-satellites, 
which significantly improved the efficiency of multi-satellite agent collaboration. 
Feng et al. [68] added operators such as the single-satellite scheme clustering and 
evolutionary computation to the contract network algorithm to improve the optimality 
of multi-satellite earth observation programme. Bonnet et al. [69] designed a multi-
agent system with adaptive and self-organizing capabilities for the dynamic task 
scheduling problem of the earth observation satellite constellation, which can process 
the newly arrived earth observation requests in real time and improve the system’s 
reaction capacity. Du et al. [70] integrated various mechanisms such as clustering-
based task preprocessing, contract network protocol-based task assignment, and 
dynamic insertion-based task rescheduling, and proposed a multi-dimension multi-
agent cluster collaboration model to solve the problems of inflexible interaction 
patterns, the low negotiation efficiency, and the poor dynamic responsiveness. Zheng 
et al. [71] introduced the idea of game theory into the multi-satellite collaborative task 
scheduling and designed various negotiation mechanisms such as the utility-based 
regret game, the smoke signal game, and the broadcast-based game. 

1.2.4 EOSs Onboard Autonomous Task Scheduling 

Depending on the task scheduling approach, the satellite onboard autonomous task 
scheduling [72] can be divided into batch scheduling [73, 74], rolling scheduling 
[75, 76], and sequential decision-making [77], which are described below. 

1. Batch scheduling 

As shown in Fig. 1.2, in the batch scheduling mode, the onboard task scheduling 
system periodically plans the daily or weekly tasks and generates the executable earth 
observation plan. The satellite executes each satellite action sequentially according to 
the earth observation plan, and before its execution ends the onboard task scheduling 
system plans again for the task in the next scheduling period and generates the
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corresponding earth observation plan, and so on. Usually, there is no temporal 
overlap between two adjacent scheduling periods. The batch scheduling approach 
has been used in the early onboard autonomous task scheduling systems. In 1998, 
NASA validated the Remote Agent Experiment-Planning Scheduling (RAX-PS) 
technology using the Deep Space-1 probe in its New Millennium Program [73, 
74]. The RAX-PS is composed of scheduling engine and knowledge base. The 
heuristic search algorithm is adopted to solve the satellite task scheduling problem 
and generate the satellite action sequence scheme for each onboard subsystem. Zhang 
et al. [78] introduced the heuristic rules and simulated annealing strategy into the 
genetic algorithm as a way to improve the quality and efficiency of solving satel-
lite autonomous task scheduling problem. Miao et al. [79] proposed a hierarchical 
merit-based task scheduling algorithm for the multi-observation target imaging task 
scheduling problem in the hotspot regions, which generates observation schemes by 
optimizing observation targets at three levels of importance. Xue et al. [80] estab-
lished a satellite integrated mission model for three types of the joint task scheduling 
problems including target observation, data transmission, and orbital maneuvering 
under emergency conditions. They decomposed the problem into two subproblems 
of the sequence planning and time scheduling for processing, and proposed a satellite 
autonomous task scheduling algorithm based on heuristic search and improved plan 
review techniques, etc. Batch scheduling is the mainstream method of the on-ground 
satellite task scheduling system and there has been huge advance in this area, which 
can be referred to Sects. 1.2.1 and 1.2.2. 

In the batch scheduling approach, the task scheduling algorithm coordinates the 
observation tasks from a global perspective and usually searches for the optimal solu-
tion or near-optimal solution, but suffers from low efficiency. During the autonomous 
task scheduling process, the satellite is always flying at a high speed, and if the 
onboard autonomous task scheduling algorithm has not yet given an executable obser-
vation solution at the start time of observing a target, it means that the autonomous 
satellite cannot make a decision whether the current target should be observed, and 
the onboard task scheduling fails; if the intermediate results of the task scheduling 
process are used, the optimization of the observation solution is difficult to be guar-
anteed. Therefore, the batch scheduling method is suitable for application scenarios 
with the low timeliness requirements. 

2. Rolling scheduling 

As shown in Fig. 1.3, in the rolling scheduling approach, the satellite onboard 
autonomous task scheduling system plans the observation tasks in the next few

Fig. 1.2 Satellite onboard 
batch scheduling for the EOS 
tasks [76] 
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minutes to several orbital passes (called the rolling scheduling window) based on 
the status of the satellite’s resources and equipment including energy, storage, atti-
tude, etc., and the rolling scheduling window will keep moving forward with the time. 
When the states of observation tasks or resource in the rolling scheduling window 
change (e.g., the randomly arriving observation tasks, the task cancelation due to 
unsuitable observation conditions, the inconsistency of energy, the storage, and other 
resource states with program expectations, etc.), the onboard task scheduling system 
automatically and iteratively fixes and updates the existing observation program 
based on the variation of the observation tasks and energy storage resources in the 
rolling scheduling window. In the rolling scheduling approach, there is a temporal 
overlap between rolling scheduling windows, which ensures that the onboard task 
scheduling system can make timely and rapid adjustments based on the existing 
observation plan in response to the changes on the satellite. The rolling scheduling 
can be regarded as a compromise between the optimality and efficiency of the onboard 
autonomous task scheduling algorithm. 

Currently, both of the domestic and foreign aerospace agencies have applied 
rolling scheduling methods to the autonomous task scheduling systems on satel-
lites. In 2000, the NANA conducted an Autonomous Sciencecraft Experiment (ASE) 
experiment [75] on the Earth Observing One (EO-1) satellite to validate the Contin-
uous Task scheduling Program Execution and Replanning technique [81] (CASPER, 
the core component of onboard autonomous mission planning and scheduling), 
considers task scheduling as an incremental process that uses a heuristic-based 
approach based on the current resource status, the undertaken observation tasks, 
and the resource and task changes, an iterative repair technique based on heuristic 
rules is used to achieve the continuous planning of onboard observation tasks, which 
improves the responsiveness of the planning system to dynamic environment [76, 82].

Fig. 1.3 Satellite onboard rolling scheduling for EOS tasks [75] 
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The promising performance of CASPER has led to its wide application in subsequent 
satellite onboard task scheduling experiments. For example, in the Three Corner Sat 
(3CS) experiment [83] conducted in 2002, NASA successfully applied CASPER to 
three nanosatellites to complete a cloud imaging test mission. In 2006, NANA applied 
CASPER technology to the “TechSat21.” In 2006, NANA applied CASPER tech-
nology to the formation flight experiment of “TechSat21” program and conducted 
Autonomous Sciencecraft Constellation (ASC) experiment using three formation 
flight satellites [84, 85], which adopted the TeamAgent/ObjectAgent collaboration 
approach, and the TeamAgent used CASPER to perform the satellite formation 
mission. In 2013, NANA successfully applied CASPER technology to CubeSats 
and conducted the Intelligent Payload Experiment (IPEX) payload experiment [86]. 
In addition, scientists have also tried to apply CASPER to the deep space exploration 
activities [87, 88]. 

In 2001, the European Space Agency (ESA) conducted the PROBA-1 experi-
ment [89, 90] to the validate onboard resource management and monitoring, the 
mission scheduling and execution, and the scientific data collection. In 2007, the 
ESA conducted the PROBA-2 experiment, which validated the technology of the 
relevant satellite autonomous operation platform and launch technology. In 2014, 
the ESA conducted the PROBA-3 experiment, in which two satellites in the orbit 
formed a coronal observer to observe solar activity and managed to validate the 
satellite formation flight technology. 

Centre National d’Etudes Spatiales (CNES) and Office National d’Etudes et de 
Recherches Aerospatiales (ONERA) of France have conducted research on the 
framework, models, and algorithms for autonomous satellite onboard task plan-
ning techniques for spacecraft, respectively. The research work has been applied to 
(Autonomy Generic Architecture—Test and Application) project [91, 92]. Maillard 
and Verfaillie et al. [93, 94] proposed a joint satellite onboard-ground autonomous 
task scheduling framework considering the uncertainty of onboard energy and storage 
resource usage, in which the ground system generates an executable observation plan 
based on the satellite task scheduling model and uploads it to the satellite, and the 
onboard autonomous task scheduling system dynamically adjusts the observation 
programme by greedy strategy according to the use of onboard energy, storage, and 
other resources, so as to give priority to the execution of the high-priority tasks and the 
data transmission. Pralet and Beaumet et al. [77, 95] proposed a reactive/deliberative 
planning framework structure considering different types of satellite actions such as 
the earth observation, the data transmission, the attitude adjustment, the solar orien-
tation, and the earth orientation. The reaction planning module determines the next 
satellite action based on the decision rules, and the deliberative planning module 
searches for an optimal solution based on the rolling scheduling approach using an 
iterative greedy random search algorithm. The reaction/deliberative framework can 
respond to the uncertain dynamics on board (e.g., the uncertainty in resource usage, 
the dynamic changes in the missions, the uncertainty in the cloud environment, etc.) 
in a timely manner, improving the rapid response capability of the satellite. 

The German Aerospace Center (Deutsches Zentrum für Luftund Raumfahrt, DLR) 
conducted the Verification of Autonomous Mission Planning Onboard a Spacecraft
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(VAMOS) autonomous task scheduling experiment in the FireBIRD mission [96], 
which is capable of reacting quickly to the onboard states or events. 

In addition to the above-mentioned satellite onboard autonomous task scheduling 
systems, the rolling scheduling-based algorithms have also been widely studied. 
Li et al. [97] combined the supervised learning methods with the heuristic search 
algorithms. Neural networks were used to calculate the priority of each task, and 
then the heuristic search algorithm inserted the candidate tasks into the observa-
tion programme sequentially according to the priority of the tasks, enhancing the 
optimization-seeking capability. Liu et al. [98] discussed three issues such as the 
time window selection, the task-processing strategy, and the resource usage princi-
ples in the rolling task scheduling framework. Xing et al. [99] considered the influ-
ence of dynamic environment on the satellite onboard task scheduling process and 
analyzed the task update range and rescheduling timing, but did not give a specific 
rescheduling method. He et al. [100] considered the timeliness requirements of the 
random arrival observation task and the task execution deadline, and proposed various 
heuristic search algorithms such as the arrival time first, waiting time first, and dead-
line first. Xi et al. [101] designed a variety of the task ordering rules to address the 
timeliness requirements of dynamic demands and inserted tasks into the observation 
programme in a specified order. Liu et al. [102] combined the roulette idea with task 
ordering rules and proposed an iterative greedy search algorithm, where each itera-
tion of the solution starts from zero, randomly selects a task ordering rule, determines 
the task order using the roulette idea, and then inserts the tasks into the observation 
programme sequentially to form a new observation plan. The algorithm terminates 
when the cumulative gain of the observation programme no longer improves. Li et al. 
[103] modeled the earth observation satellite as an intelligent agent and proposed two 
heuristic search algorithms, time utilization first and resource utilization first, whose 
main idea is to rank the observation tasks according to their evaluation indexes 
in a descending order, and then insert the observation tasks into the observation 
programme sequentially until the satellite can no longer undertake any task. He et al. 
[104] considered the influence of cloud cover on the satellite imaging and divided 
the task scheduling process into three stages: preassignment, coarse scheduling, and 
fine scheduling. However, this method is only suitable for dealing with the cloud 
occlusion in real time and can hardly cope with the dynamically arriving observa-
tion tasks. It can be seen that the above research mainly adopts the heuristic search 
algorithm to solve the problem and incrementally update the existing observation 
programme by choosing a reasonable observation task insertion order. However, the 
design of the heuristic strategy often faces difficulties in taking advantage of the 
domain knowledge, and the optimization and stability of the algorithm. 

To address the shortcomings of the heuristic search algorithms in optimality, some 
researchers have tried to use deterministic search algorithms to calculate the optimal 
solution or combine relaxation techniques to search for the approximate optimal solu-
tion. Chen et al. [105] established a dynamic topological structure using a directed 
acyclic graph model for the autonomous task scheduling problem of electromag-
netic detection satellites. They defined the approximate dominance relation of paths, 
reduced the number of paths that need to be retained at the vertices in the graph by path
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dominance relaxation, and proposed an onboard autonomous task scheduling method 
based on label updating shortest path search. Chu et al. [106] introduced an appli-
cation scenario of the dual-satellite cluster for the sea surface search and rescue, 
containing wide target discovery and high-resolution target identification. A search 
method based on the branch and bound algorithm was then proposed. 

Compared with the batch scheduling, the rolling scheduling method decomposes 
the complex optimization problem into several overlapping optimization subprob-
lems, which largely reduces the difficulty of problem and speeds up the computing 
process. However, the performance of task scheduling algorithm is easily affected by 
the length of rolling scheduling window. If the window is too long, the number of the 
observation tasks involved in scheduling will increase, and the computational cost of 
the task scheduling algorithm will increase as well. If the rolling scheduling window 
is too short, the optimization performance of the satellite observation schema may 
deteriorate sharply due to the “short-sightedness.” Secondly, the rolling scheduling 
algorithm is mainly based on the rule-based heuristic search algorithm, and the 
optimality needs to be further improved. 

3. Sequential decision-making 

Sequential decision-making is an optimal decision-making method for uncertain 
dynamic systems. The process can be summarized as follows: starting from the 
initial state, making a decision at each moment, observing the change of the system’s 
state, making the next decision according to the new state, and repeating until the 
end. The process of sequential decision-making is shown in Fig. 1.4. The onboard 
autonomous task scheduling system iteratively decides the actions that the satellite 
should perform at each moment (stage) according to the satellite’s current states 
such as the energy, storage, and attitude. The major difference between the search 
algorithm used in the batch scheduling and rolling scheduling approach is that the 
sequential decision algorithm only needs to decide the next action based on the 
current status (including satellite status and the observation task status), without 
considering the future observation plan in advance, and thus greatly reduce the search 
space. Therefore, the sequential decision-making approach can react in real time to 
uncertainties such as random arrival of observation tasks, inconsistency between the 
resource status and observation programme expectations, thus greatly enhance the 
rapid response capability of the satellite.

Currently, there are very few studies using the sequential decision to solve the 
satellite onboard task planning problem, which is still in the exploratory stage and 
usually relies on the human-defined rules for decision-making. However, the opti-
mization performance is not satisfying yet. Chien et al. [87] constructed an onboard 
ad-hoc response system, which determines the next satellite action to be performed 
according to the predefined response rules. Beaumet et al. [77] used a priority-based 
randomized decision algorithm for the satellite actions to determine the actions to be 
performed by the satellite, taking into account various types of satellite actions such 
as the to-earth data transmission, the earth observation, the sun orientation, and the 
earth orientation during the satellite operation. With the rapid development and wide
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Fig. 1.4 Satellite onboard sequential decision-making for EOS tasks

application of machine learning technology, the knowledge mining of historical plan-
ning data can be used to guide the decision-making process, and help to improve the 
performance of sequential decision-making methods with rapid response capability. 
Currently, a small number of researches have been conducted using machine learning 
methods to solve the EOS scheduling problems [66, 107–109], which mainly employ 
case learning, supervised learning, and reinforcement learning to learn historical earth 
observation programme to further enhance the degree of decision optimization. 

1.2.5 Satellite Data Downlink Scheduling 

Satellite data downlink scheduling, which can also be called satellite range 
scheduling, refers to the task scheduling for the ground data receiving station. When 
the satellite enters the coverage area of the ground station antenna, it will establish a 
communication link with the ground station and downlink the earth observation data 
temporarily stored in the onboard memory to the ground, thus forming an information 
product. Usually, a set of receiving equipment can only provide data receiving service 
to one satellite at a time. Therefore, when multiple satellites appear in the same ground 
station reception range at the same time, the situation of multiple satellites competing 
for the ground station’s data downlink service occurs, which leads to the data down-
link conflicts and requires rational arrangement of the data downlink resources 
via optimization methods. A typical data downlink resource scheduling problem 
is the Air Force Satellite Control Network (AFSCN) scheduling problem, a ground 
station network including 16 sets of data transmission receiving antennas deployed 
worldwide. The network needs to handle more than 500 data downlink requests 
from different satellites every day. For the AFSCN scheduling problem, Barbulescu 
compared the performance of the heuristic construction and correction algorithm, the 
hill-climbing algorithm, and the evolutionary algorithm on the basis of the previous 
research experience, and experimentally showed that the evolutionary algorithm 
achieved the best results [110]. Clement et al. studied the Deep Space Network
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(DSN) scheduling problem and proposed a hybrid algorithm combining local search 
operator and iterative repair operator based on heuristic strategy [111]. Jin et al. 
constructed a generalized function model for fixed-priority number downlink tasks 
and proposed a heuristic method for arranging downlink resources [112]. Wu estab-
lished a satellite data real-time/playback downlink scheduling model for the charac-
teristics of incremental tasks in the emergency scheduling scenarios and proposed 
an improved particle swarm genetic algorithm to solve the problem [113]. Chen 
et al. considered the dynamic change of priority, constructed a conflict constraint 
graph model, and proposed a solution using genetic algorithm. On this basis, they 
adopted improved genetic algorithm and discrete the particle swarm optimization 
algorithm to investigate the new emerging problems in the process of data downlink 
resource scheduling, such as the problem of scheduling data downlink resources 
under the condition of incremental update of observation tasks, the problem of data 
transmission conflicts resolving among member satellites of the same cluster and the 
problem of satellite data real-time/playback downlink adaptive decision [114–116]. 
Xhafa et al. studied the effectiveness of the heuristic hill-climbing algorithm [117], 
the simulated annealing algorithm [118], and the genetic algorithm [119] for solving 
the data downlink resource scheduling problem and concluded that the meta-heuristic 
optimization algorithm is more suitable for the given problem. Yao et al. employed a 
genetic algorithm with heuristic information to solve satellite data downlink resource 
problem with mixed observation data including both point targets and area targets 
[120]. Xing et al. optimized two objectives simultaneously including the failure rate 
of the data downlink task and the balance of ground station usage and proposed 
a method based on the Multi-Objective Evolutionary Algorithms (MOEAs) [121]. 
Furthermore, Zhang et al. combined support vector machines with the MOEAs to 
improve the computational efficiency of the multi-objective optimization process 
[122]. Du et al. [123]. proposed a particle swarm optimization algorithm for the 
topic-oriented satellite data for the downlink scheduling problem.



Chapter 2 
Description and Analysis of the EOS 
Task Scheduling Problem 

In order to analyze the essence of the EOSs task scheduling problem, this chapter 
first describes the working process and mechanism of EOSs and data transmission 
resources. Then, the elements of the EOSs resource scheduling problem, including the 
elements of earth observation tasks, satellite resources, data transmission resources, 
and the elements of the optimization objective function, are clarified. On this basis, 
the main characteristics and challenges of the EOSs task scheduling problem are 
analyzed, and the differences and connections between the EOSs task scheduling 
problem and the classical task scheduling problem are discussed. 

2.1 Analysis of EOSs Operational Processes 

While earth observation satellites (EOSs) may differ in their imaging principles 
and sensor parameters, they share many common characteristics that are relevant 
to the task scheduling of these satellites [6]. Understanding these commonalities 
is essential for conducting effective EOSs task scheduling studies. Generally, an 
earth observation satellite follows a similar process: It carries a high-resolution earth 
observation payload (the sensor), orbits in near-earth orbit at high speeds, and when 
it passes over a ground target, it adjusts its attitude to capture images of the target 
using the sensor. The satellite then temporarily stores the observation data onboard 
before transmitting it back to the ground through a satellite-ground communication 
link when it enters the reception range of a ground station. To facilitate this process, 
it is necessary to define and understand the concepts related to the satellite operation 
process.
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2.1.1 The Observation Process of EOSs 

The EOSs’ flying around the earth and the rotation of the earth make it possible 
for the satellite to observe certain ground areas, and the range of these areas can 
be determined by the parameters of the onboard sensors and the trajectory of the 
subsatellite points. 

Definition 2.1: Trajectory of subsatellite points 
The projection point of a satellite’s position on the ground is called the subsatellite 
point, which can be expressed in terms of the geographical longitude and latitude. 
The motion of the satellite and the rotation of the earth make the subsatellite point 
move on the surface of the earth, forming the trajectory of subsatellite points, as 
shown in Fig. 2.1. Therefore, EOSs take advantage of the earth’s rotation to pass 
over a large area of the earth surface and achieve imaging coverage of a large area. 
The significance of the subsatellite points trajectory is that it can be used to determine 
the coverage of the ground by an EOS. 

Definition 2.2: Ground coverage of an earth observation satellite 
The ground coverage of an earth observation satellite is the effective visible area of 
the satellite to the ground. 

In the EOSs task scheduling problem, the ground coverage of an earth observation 
satellite is determined by the satellite’s subsatellite trajectory, the effective observa-
tion range of the satellite and the maximum roll angle. When an EOS is in orbit, the 
ground coverage of the EOS is a band area with the subsatellite point trajectory as

Fig. 2.1 Schematic diagram of the trajectory of subsatellite points 
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the midline, and any single ground target within the band area can be observed by 
the EOS, shown as shown in Fig. 2.2. 

Different EOSs have different orbital designs, which correspond to different 
imaging coverage areas, and these banded coverage areas may overlap during satel-
lite operation, and ground targets in the overlapping areas can be imaged by multiple 
EOSs. 

Definition 2.3: Ground observation strips 
When an EOS conducts earth observation, it is moving at high speeds, and the onboard 
sensors have a limited field of view. As a result, the observation data generated by each 
earth observation is a strip with a specific width, referred to as the ground observation 
strips (or observation strips). The width of the observation strip is determined by the 
flight altitude of the EOS and the field of view of the sensor. If the observation strip 
covers a ground target, it indicates that the satellite has successfully observed the 
target. Typically, the ground observation strip of a satellite is relatively narrow, as 
illustrated in Fig. 2.2. 

Definition 2.4: Earth observation requirement 
The requirement for earth observation is initiated by the user. It usually consists 
of an area of the earth’s surface and detailed observation demands for that area. A 
certain surface area of the earth, also known as the ground target, is the object of 
the satellite’s earth observation; the detailed observation demands are some special
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demands of the user for the observation data acquired by EOSs, and the common 
types of observation demands are the following.

• Demands for sensor utilization: The user requires that the observation should be 
a product imaged by a certain type of sensor, for example, demand for visible 
sensor, demand for IR sensor, demand for SAR sensor, etc.

• Demands for sensor resolution: The resolution of the data products generated 
by satellite observations should be greater than or equal to the sensor resolution 
demands proposed by the user.

• Demands for stereo imaging: The user requires multiple observations of this 
ground target at different angles to be able to accomplish the task of reconstructing 
this target in three dimensions.

• Demands for observation time period: The user requires that the ground target 
should be observed during a certain specified time period (e.g., 6:00–11:00 a.m.).

• Demands for observation timeliness: The user requires that the ground target 
observation data be available by a certain deadline.

• Demands for target group observation: The current target is strongly associated 
with one or more targets, constituting a target group that needs to be observed 
together, and the profit of these observations will be significantly reduced if 
observations are not available for all targets of the target group.

• Demands for time resolution: The demand is to observe a ground target at regular 
intervals to update the environmental situation periodically. For example, for the 
observation requirement “To observe No. 1 barrier lake in Wenchuan earthquake-
stricken area every 6 hours,” the time resolution is “not more than 6 hours.” 

Definition 2.5: Satellite imaging roll angle and satellite visible window 
For the ground target that is usually not on the subsatellite point trajectory, the 
satellite needs to adjust the satellite platform or sensor attitude to observe it at a 
certain angle, and this angle is called the satellite imaging roll angle, as Fig. 2.2 
shown. The satellite’s imaging roll angle cannot exceed its maximum roll angle. 

Based on the parameters of satellite orbit, the satellite’s orbit can be forecasted 
for a future period of time, and thus the set of visible time periods between the EOS 
and the ground target can be fixed based on the geographic location of the ground 
target. The visible time period between the satellite and the ground target is called the 
satellite visible window to the target (satellite visible window for short). Obviously, 
the satellite can only observe the ground targets (with a certain imaging roll angle) 
within a certain satellite visible window. 

Definition 2.6: Earth observation task 
The earth observation requirements, along with the corresponding satellite visible 
windows, are the earth observation tasks. Since the satellite visible window already 
specifies the visual relationship between the satellite and the ground target, an earth 
observation task can be referred to as a satellite earth observation task. When an EOS 
performs a satellite earth observation task, it means that the satellite will observe the 
specified ground target within a certain satellite visible time window.
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Definition 2.7: Earth observation meta-task 
Typically, an earth observation satellite (EOS) has multiple visible windows to 
observe a ground target. Each visible window specifies three factors: a satellite, 
a ground target, and a candidate access window. These factors constitute an earth 
observation meta-task, or simply, a meta-task. The satellite is the subject of the earth 
observation meta-mission, the ground target is the object to be observed, and the 
candidate access time window is the period during which the satellite is visible to 
the ground target. A meta-task is considered executed when the satellite observes 
the ground target within the access time window. The set of meta-tasks is usually the 
input to the satellite task scheduling algorithm, which decides which meta-tasks will 
be executed. 

Definition 2.8: Satellite earth observation programme 
The output of a satellite task scheduling algorithm is a satellite earth observation 
programme. Typically, a satellite earth observation programme contains the meta-
task to be performed and a satellite data transmission programme. 

Definition 2.9: Multi-satellite observation conflict region 
The overlapping coverage area of different earth observation satellites within one 
scheduling time horizon is called the multi-satellite observation conflict area, as 
shown in Fig. 2.3. Here the scheduling time horizon is the time period considered 
for satellite task scheduling. The ground target within the multi-satellite observation 
conflict region is called multi-satellite conflict observation target. 

Definition 2.10: Conflict observation task 
If the corresponding ground target of an earth observation task is a multi-satellite 
conflict observation target, the earth observation task is called multi-satellite conflict 
observation task (conflict observation task for short).
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It is worth noting that for the earth observation requirement of only one observa-
tion, more than one observation to target will waste valuable satellite resources. 
However, for requirements with multiple observation requirements (e.g., stereo 
imaging requirements, etc.), tasks in overlapping observation regions are not conflict 
observation tasks. 

In addition, earth observation satellites pass over the same ground target at certain 
intervals, a situation that we call revisits of ground targets. The main difference 
between revisits of ground targets and multi-satellite conflict observation targets is 
that revisits are for a single earth observation satellite, while the conflict observation 
targets are for multiple EOSs. 

2.1.2 EOSs Data Transmission Process 

Usually, the satellite data transmission resource includes two kinds of resources, 
ground station resources and relay satellite resources, and their data transmission 
processes are described below, respectively. 

1. Ground station data transmission process 

Ground data receiving stations, or simply ground stations, are situated on the earth’s 
surface and mainly consist of antennas, servo equipment, and receiving equipment, 
among other things [7]. When an EOS enters the receiving range of a ground 
station, its antenna captures the satellite, and a satellite-ground communication link 
is established. The data stored temporarily in the onboard memory of the satel-
lite is transmitted to the ground station through this communication link, and the 
onboard memory storage space is released once the transmission is complete. When 
the satellite leaves the receiving range of the ground station, the satellite-ground 
communication link is broken, and the ground station completes the data reception 
while the satellite completes the data transmission. It is important to note that each 
satellite data transmission activity corresponds uniquely to one ground station data 
reception activity. Unless stated otherwise, this text will not differentiate between 
satellite data transmission activities and ground station data reception activities. The 
process of the ground station data reception activity is illustrated in Fig. 2.4 [124].

Normally, a ground station has only one set of receiving equipment, and if multiple 
sets of receiving equipment exist at a ground station, each set of receiving equipment 
can be treated as a logical ground station. In the satellite data transmission resource 
scheduling process, the ground station with multiple sets of receiving equipment can 
be treated as if it were several co-located logical ground stations with one set of 
receiving equipment. 

Before the start of data reception, some preparations for the ground station are 
required, before the implementation of the reception of the satellite data. And after 
the data transmission process, the ground station also needs some time to release the 
link.



2.1 Analysis of EOSs Operational Processes 29

Ground station 

Getting 
Started 

Start 
capturing 

Start data 
transmission 

Minimum data 
transmission pitch angle 

Minimum capturing 
pitch angle 

Data transmission 

End data 
transmission 

End 
capturing 

Receiving range 

Fig. 2.4 Schematic diagram of the ground station data reception activity process

Therefore, the ground station reception equipment needs a certain reception prepa-
ration time and a resource release time [125]. In the scheduling process, the minimum 
time interval between two data reception processes of a ground station is called the 
ground station data reception switching time. 

When implementing data reception, a set of equipment can only receive data from 
one satellite at a time, called the ground station resource capacity constraint. When 
multiple EOSs enter the reception range of a ground station simultaneously, the 
ground station resource capacity constraint leads to multi-satellite data transmission 
conflicts since the ground station can only serve one satellite for data transmission. 

2. Relay satellite data reception process 

Relay satellites are positioned in geosynchronous orbit to provide high coverage 
Telemetry, Track, and Command (TT&C) as well as data relay services for medium-
and low-orbiting spacecraft. The use of relay satellites has the potential to signif-
icantly improve the communication coverage of such spacecraft. Essentially, relay 
satellites indirectly extend the visible time window between spacecraft and ground 
stations, thus increasing the amount of time available for spacecraft TT&C and data 
transmission. Proprietary agencies manage relay satellite systems, which offer TT&C 
and data relay services to multiple spacecraft operated by various departments and 
companies. These departments request relay satellite resources as needed, and the 
relay satellite management agency plans and schedules them in a unified manner. 
This ensures that available relay satellite time windows are efficiently allocated to 
different spacecraft of each department. 

When a relay satellite switches from providing data relay service for one spacecraft 
to providing data relay service for another spacecraft, a certain amount of switching 
time is required, called the relay satellite data reception switching time. The ground
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station data reception switching time and the relay satellite data reception switching 
time are collectively referred to as the data reception switching time of the data 
transmission resources. 

Similar to how ground stations are handled, we assume that a relay satellite can 
only serve one spacecraft at a time, called relay satellite resource capacity constraint. 
If a relay satellite has the ability to provide data relay service to multiple spacecrafts 
at the same time (called concurrent service capability), we logically treat it as if it 
were multiple relay satellites without concurrent service capability. 

This book assumes that relay satellite scheduling is completed and that relay 
satellite available time windows are known prior to the planning and scheduling of 
earth observation satellite resources. 

2.2 Description of EOS Task Scheduling Problem 

Task scheduling for EOSs refers to the problem of determining which satellites, at 
which time and in which operating mode to perform earth observation tasks, and 
at which time and with which data transmission resources to transmit observation 
data to the ground, in order to maximize the comprehensive benefits, addressing the 
large number of earth observation requirements. It can be seen that the EOSs task 
scheduling problem can be abstracted as a complex combined optimization problem 
composed of earth observation tasks, satellite resources, data transmission resources, 
and other elements. In the following, the elements will first be introduced, then the 
relationship between each element in the scheduling process will be analyzed, and 
finally the characteristics and difficulties of the EOSs resource scheduling problem 
will be analyzed. 

2.2.1 Elements of Earth Observation Tasks 

The earth observation requirements proposed by users (see Definition 2.4) is trans-
formed into a number of earth observation tasks after the satellite visible time window 
is calculated (see Definition 2.6). From the point of view of the earth observation 
satellite task scheduling process and applications, the earth observation task elements 
should contain the following information. 

1. Target geographic location and target category 

The geographic location of a ground target is represented by a series of latitude and 
longitude points. If the target size is negligible compared to the width of the satellite-
ground observation strip (see Definition 2.3), then the target can be represented 
as a point with no size range. For satellite task scheduling purposes, the target is 
represented by a single latitude and longitude point. However, if the target size is 
significant, it is considered an area target. An area target can be represented as a series
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of latitude and longitude points arranged in a certain order, and the geographical range 
of the area target is defined if the first latitude and longitude points are connected 
with the last one in the sequence to form a closed polygon area. Usually, a single 
observation by an EOS cannot cover the entire area target, and multiple satellites are 
required to coordinate the observation. The spatiotemporal information (geographic 
locations with time labels) of the target determines its visible time window with 
different satellites. 

2. Target priorities 

Target priority is an evaluation of the importance or urgence of earth observation 
requirements (see Definition 2.4), with a higher priority indicating that the task is 
more important or urgent. Earth observation tasks with a high priority should be 
given priority in response. 

3. Detailed observation demands 

In Definition 2.4, several common detailed observation demands are outlined. These 
demands vary and must be considered individually in the satellite task scheduling 
process. From the viewpoint of EOS task scheduling, detailed observation demands 
can be classified into two categories: detailed observation demands for filtering and 
detailed observation demands for scheduling. Typical detailed observation demands 
for filtering include sensor utilization, sensor resolution, observation time period, and 
observation timeliness. In terms of task scheduling, fulfilling filtering-type demands 
is relatively straightforward and can be accomplished by utilizing a rule-based expert 
system [126] to filter out EOS resources that are not capable of carrying out earth 
observation tasks. As an example, consider a detailed observation demand with a 
sensor utilization requirement of “visible.” In this case, it is sufficient to filter out all 
satellite visible windows that are accessed by non-visible sensors (e.g., IR sensors, 
SAR sensors, etc.). Typical detailed observation demands for scheduling include 
stereo imaging, target group observation, and time resolution. These demands require 
special considerations in the scheduling algorithm. For instance, for a stereo imaging 
demand, the observation must be carried out from different angles to the ground 
target, necessitating the scheduling algorithm to consciously schedule multiple EOSs 
with the same type of sensors to observe the target. Moreover, the scheduling algo-
rithm must make a prudent decision that, if a satellite’s observation capability falls 
short of the stereo imaging demand, the algorithm should redirect the satellite’s 
observation toward other ground targets instead of the target with the stereo imaging 
demand. 

2.2.2 Satellite Resource Elements 

1. Satellite orbit 

Satellites operate at high speed along a fixed space orbit, in contrast to aircraft that 
can freely navigate the sky. The characteristics of a satellite’s orbit determine its
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relative geometric relationship with the earth during its movement in orbit. Earth 
observation satellites typically reside in low earth orbit, limiting their visibility of 
ground targets and ground stations to specific visible windows. Satellites can only 
perform earth observation tasks, such as capturing images using onboard sensors or 
transmitting data, during these visible windows. 

2. Satellite platforms 

A satellite platform is a general term for the subsystems that ensure the proper func-
tioning of the payload. Based on their maneuverability, earth observation satellites 
(EOSs) can be categorized as Agile (AEOS) and Non-Agile (NEOS). 

Compared to traditional NEOS, AEOS has swift three-axis attitude maneuvering 
capabilities of Yaw, Roll, and Pitch on their platforms, which significantly increase 
their visible window on a target. Figure 2.5 provides a schematic diagram highlighting 
the differences between agile and non-agile EOSs [10]. The diagram presents three 
candidate observation tasks numbered ➀, ➁, and ➂. It is evident that the visible 
window of the AEOS is larger than that of the NEOS, and it is sufficient to observe 
a ground target. As depicted in Fig. 2.5, the AEOS can perform all three observing 
tasks, while the NEOS can only perform two. The flexibility of an AEOS consider-
ably enhances its observational abilities, but it also increases the complexity of the 
observation task scheduling problem. To schedule tasks for AEOS, one must decide 
not only which target to observe but also when to initiate the observation. 

In contrast to agile earth observation satellites, non-agile ones typically possess 
limited capabilities, often only allowing for rolling (side-looking) observations. Elec-
tromagnetic environment detection satellites, on the other hand, typically lack attitude

Fig. 2.5 Comparison of agile earth observation satellites with non-agile earth observation satellites 
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adjustment capabilities and are only capable of collecting data on the electromagnetic 
environment along the subsatellite trajectory. 

3. Satellite observation payload constraints 

The primary payload of an earth observation satellite is an earth observation sensor, 
with each type of sensor payload possessing unique characteristics. However, from a 
satellite task scheduling perspective, every switch-on and switch-off of a sensor can 
be considered a distinct working mode of the sensor. Constraints on payload usage 
can be summarized as follows:

• Sensor observation range constraint 

Each working mode of a satellite sensor corresponds to a specific observation spec-
trum, resolution, and range of view. The working mode set of a sensor ultimately 
determines the observation capability of the satellite payload. Therefore, the satel-
lite can only fulfill earth observation requests that fall within its observation capa-
bility. For example, an optical satellite with a resolution of 3 m cannot meet a user’s 
observation requirement for a 1-m resolution optical image.

• Working mode observation condition constraints 

Certain satellite payloads may encounter limitations in performing observations 
under specific conditions. For instance, optical satellites are particularly sensitive 
to light conditions and cloud cover, impeding their ability to observe ground targets 
in situations of poor lighting or overcast skies.

• Working time length constraint 

In order to safeguard satellite sensors, the maximum on/off time of each working 
mode is typically restricted. However, to ensure the acquisition of dependable obser-
vation data from ground targets, the switching on/off time length of a satellite must 
also satisfy a certain duration known as the minimum on/off time.

• Working mode switching constraints 

When performing observations of consecutive ground targets, a satellite requires 
a certain duration for switching between working modes. As such, the minimum 
duration time between working modes creates a constraint on the switching time.

• Action constraints 

Restricted by the payload characteristics, satellites are limited to performing a single 
action at any given time, and there is no temporal crossover permitted between two 
observation actions that employ different working modes by the same satellite. 

4. Satellite energy constraints 

Satellites rely on a power supply to facilitate their routine operations, including those 
of subsystems such as the onboard computer, attitude control, satellite system thermal 
control, sensors, and communications. Typically, the power for earth observation 
satellites (EOSs) is derived from solar energy. To ensure uninterrupted operation
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even in the shadow area, a combination of the “solar array + battery” power supply 
method is adopted [24]. However, the accumulated working time of the sensors is 
often restricted due to limitations in the satellite’s power supply capabilities. 

5. Satellite onboard memory capacity constraints 

Satellites performing earth observation tasks temporarily store acquired data in their 
onboard memory. However, this process reduces the available capacity of the onboard 
memory. To restore this capacity, the satellite transmits the data to a ground station 
directly or via a relay satellite. The inability to transmit the data effectively results 
in a zero available capacity for storing earth observation data. 

2.2.3 Elements of Data Transmission Resources 

Data transmission resources are comprised of ground station resources and relay 
satellite resources. When either of these resources provides data downlink services 
to a satellite, the satellite is then capable of transmitting observation data. 

1. Start time and end time of the data transmission 

For a satellite’s data transmission to be successful, it must occur within the visible 
window between the satellite and the ground station. Specifically, once the satellite 
enters the receiving range of the ground station and the antenna captures and tracks 
the satellite signal, the transmission process can begin. When the satellite moves out 
of range of the ground station, the data transmission process comes to an end (as 
illustrated in Fig. 2.4). 

In contrast, the start time and end time of data transmission via relay resources are 
determined by the scheduling results of the relay satellite management department. 
If a relay satellite is available during a certain period, all EOSs can theoretically use 
it to transmit data. 

2. Data reception switching time constraint for data transmission resources 

The switching time for ground station data reception and relay data reception is 
collectively known as the data transmission resource switching time. This term refers 
to the time it takes to switch from providing data downlink services to one satellite 
to providing these services to another. This switching time constraint requires that 
the time required to switch between satellites be greater than the data transmission 
resource switching time. 

However, due to this constraint, conflicts may arise in cases where multiple satel-
lites enter the data reception range of a ground station, as depicted in Fig. 2.6. These 
conflicts occur due to multi-satellite data transmission access, which is limited by 
the data transmission resource switching time constraint.

Figure 2.6 is a schematic diagram that illustrates a conflict in multi-satellite data 
transmission access for a single data transmission resource. The horizontal axis 
indicates data transmission time, while the vertical axis distinguishes the transmission
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Fig. 2.6 Schematic of multi-satellite data transmission access conflict

periods of different satellites. As depicted in the figure, the conflict arises because 
the interval between the data transmission slots of satellite 1 and satellite 2 is less 
than the data transmission resource switching time. However, the data transmission 
slot of satellite 3 does not conflict with the data transmission slots of either satellite 
1 or satellite 2. 

From Fig. 2.6, it is evident that the switch time of the data transmission resource 
can be added to the satellite data transmission slot by preprocessing. As such, 
scheduling processes need only consider the constraint of relay satellite resource 
capacity. For the subsequent satellite and data transmission scheduling process 
presented in this book, we assume that the data transmission resource switching 
time has been added to the satellite data transmission time slot. 

2.2.4 Optimization Objectives 

Satellite task scheduling is a multi-objective optimization problem that researchers 
have approached by proposing different optimization objectives based on various 
application scenarios. These objectives share certain commonalities and can be 
summarized into four categories. 

1. Task importance optimization objective 

The task importance optimization objective requires the prioritization of more impor-
tant earth observation tasks over less important ones if not all tasks can be completed. 
The importance of an earth observation task is reflected by its task priority, which is 
determined by the ground target priority. Therefore, the task importance optimization 
objective can be expressed as maximizing the total value of completed tasks. 

2. Objectives for optimizing the timeliness of the tasks 

The task timeliness optimization objective has two implications. First, it requires 
the prioritization of important earth observation tasks to be performed as early as
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possible, and their observation data should be transmitted to the ground station as 
quickly as possible. Second, tasks with specific observation timeliness demands (as 
defined in Definition 2.4) should be scheduled and completed before their deadline 
as far as possible. 

3. Task completion optimization objective 

For an earth observation requirement with a demand for target group observation (as 
defined in Definition 2.4), if the EOSs observe only six out of eight targets included 
in the target group, the task for the target group is not considered 100% complete. 
Similarly, for an earth observation requirement with a demand for time resolution 
(as defined in Definition 2.4), if the demand is “at least one observation every six 
hours” and there is a 6-h interval between two consecutive observations, the task is 
also not considered 100% complete. The task completion optimization objective is 
to achieve 100% completion for as many earth observation tasks as possible. 

4. Resource utilization optimization objective 

The resource utilization optimization objective aims to minimize the consumption or 
occupation of resources by EOSs during the performance of earth observation tasks. 

2.3 Difficulties and Challenges in the Scheduling of EOSs 
Task 

Compared with the general planning and scheduling problem, the EOS task 
scheduling problem has the following notable characteristics. 

2.3.1 Oversubscribed Problem Characteristics 

The term “overconstrained” refers to a situation in which there are too many 
conflicting constraints, leading to an infeasible solution to the problem. This is the 
opposite of the phenomenon of “underconstrained,” in which there are not enough 
constraints between variables, resulting in a problem with more than one feasible 
solution [5]. The earth observation satellites (EOSs) scheduling problem falls into 
the category of “overconstrained.” On the one hand, this is due to the fact that the 
development of EOS resources is far from meeting the growing demand for remote 
sensing data for various applications in different sectors. The demand for satellites 
by various departments is always relatively excessive, making the EOS resources 
always in a relatively scarce state. On the other hand, the operation of earth observa-
tion satellites is strictly limited by various constraints, leading to the overconstrained 
phenomenon. 

Of course, the overconstrained problem is a relative concept, and if certain 
constraints of the original problem are relaxed, the resulting new problem may
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have a feasible solution. However, for the earth observation satellite resource 
scheduling problem, the constraints related to both satellite resources and data trans-
mission resources are physical constraints that cannot be relaxed. Therefore, only 
the constraint that all tasks must be completed can be relaxed; i.e., some of the earth 
observation requirements can be dropped, although this relaxation usually leads to an 
underconstrained situation again. At this point, it is necessary to employ a feasible 
solution with some optimization objectives such that the scheduling result is an 
optimal or user-satisfactory solution. 

Barbulescu et al. have identified the concept of oversubscribed problem (OSP), 
which is characterized by a scarcity of resources and a larger number of tasks than 
the carrying capacity of the resources [110]. In such problems, tasks have priorities 
and optional time windows, and the objective function usually relates to task prior-
ities. Many applications, such as space telescope planning, earth observation satel-
lite scheduling, ground station scheduling, aircraft loading scheduling, and space 
shuttle payloads scheduling, exhibit oversubscribed scheduling characteristics. The 
EOSs task scheduling problem is a prime example of the oversubscribed scheduling 
problem, where the aim of scheduling is to choose a subset of earth observation tasks 
that meet all the satellite constraints while maximizing overall benefits. 

2.3.2 Non-fully Fungible Feature of Resources 

In general scheduling problems, an activity can be accomplished by multiple alterna-
tive resources. The resource scheduling problem for earth observation satellites also 
shares this feature. For instance, a particular earth observation task can be performed 
by either the sensors carried by satellite A or the sensors carried by satellite B. A 
specific satellite can transmit data to either ground station α or to ground station β. 
However, the difference lies in the fact that two satellites cannot have identical orbits, 
and two ground stations cannot have identical geographic locations. Therefore, the 
available resources in the EOSs scheduling problem are not entirely fungible. For 
example, if satellite A cannot perform an observation during a specific visible time 
window between a given ground target and satellite A due to various reasons such as 
performing another earth observation task or low energy, we cannot simply replace 
satellite A with satellite B. This is because there may not be a visible time window 
between satellite B and the ground target at that moment. Additionally, the perfor-
mance of the sensors carried by satellite A and satellite B may not be identical, since 
there could be differences in their payload types and resolution. This feature also 
contributes to the non-fully fungible nature of resources.
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2.3.3 Scheduling for Heterogenous Satellite Resources 

The satellites involved in task scheduling usually include both agile and non-agile 
satellites, and the sensors they carry include: optical, infrared, multispectral, hyper-
spectral, ultra-wide spectrum, SAR, electromagnetic detection, and many other types. 
Different types of satellites have different capabilities and are constrained by different 
orbits, satellite platforms, and satellite payloads. The EOSs task scheduling system 
needs to coordinate various heterogeneous satellite resources so as to maximize the 
overall observation benefits. The scheduling process exhibits typical multi-modal, 
nonlinear, and nonconvex optimization characteristics, and requiring multi-modal 
optimization techniques. 

2.3.4 Diverse Types of Earth Observation Demands 

As the application level of earth observation satellites deepens, the requirements 
for satellite observation are becoming diverse. In addition to the traditional obser-
vation targets, complex observation requirements such as area target coverage, 
ocean moving target search and tracking, ground target 3D reconstruction (stereo 
imaging demands), a group of targets observation, and regular refresh of the situa-
tion (temporal resolution demands) have gradually emerged. These factors need to 
be comprehensively considered in planning and scheduling, which also brings new 
challenges to EOSs task scheduling. 

2.3.5 Diversity of Data Transmission Modes 

Satellites can transmit data to ground stations through two modes: real-time trans-
mission and playback transmission [24]. The real-time transmission mode allows for 
instantaneous data transfer, with the satellite obtaining observation data through its 
sensor and transmitting it directly to the ground station via an onboard data trans-
mission antenna. In this mode, the satellite must be in simultaneous view of both the 
ground station and the target, and the process does not occupy onboard memory. On 
the other hand, in the playback mode, the satellite first observes the ground target, 
records the data in onboard memory, and then transmits the corresponding data to a 
ground station when the satellite passes over the receiving range. This is a delayed 
transmission mode that requires onboard memory usage. Figure 2.7 illustrates the 
process of real-time and playback transmission modes.

Observation tasks using the real-time transmission mode generally have higher 
priority due to their greater timeliness. The use of real-time transmission can signif-
icantly improve the timeliness of observation data. However, real-time transmission 
and playback transmission are contradictory, as in the real-time transmission mode
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Fig. 2.7 Schematic diagram of the real-time transmission and playback transmission process

the data stored in onboard memory cannot be transmitted to ground at the process, 
resulting in reducing the timeliness of the observation data in the onboard memory. 
Overuse of real-time transmission mode can occupy onboard memory for extended 
periods, increasing the risk of the satellite running out of memory and being unable 
to perform earth observations. Therefore, scheduling of real-time transmission and 
playback transmission actions needs to be reasonably determined based on earth 
observation task requirements and their distribution. 

2.3.6 Onboard Memory Occupation and Release 

During earth observation, a satellite records observation data on its onboard memory 
and transmits it to a ground station when it enters the receiving range. The onboard 
memory occupancy is released through playback transmission [7]. Figure 2.8 illus-
trates the relationship between onboard memory occupancy/release process and 
satellite actions.

The challenge lies in predicting the amount of data transmitted in a single data 
transmission activity, which depends on the scheduling results of observation and 
data transmission activities. Since it is uncertain which observation tasks will be 
performed until the scheduling computation is completed, accurately predicting 
satellite memory occupancy is difficult, adding complexity to problem resolution.
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2.3.7 Uncertainty Included in EOSs Task Scheduling 

The scheduling of earth observation satellites (EOSs) is subject to certain uncertain-
ties that can lead to additional difficulties in the scheduling process. These uncertain-
ties are mainly related to the characteristics of the observation tasks and the dynamics 
of satellite resources. 

1. Earth observation task uncertainty 

The scheduling of earth observation satellites (EOSs) is subject to various uncertain-
ties, including the new tasks random emerge, changes in task attributes, and cance-
lations [125]. For instance, when a new batch of tasks arrives, the existing earth 
observation programme must be adapted to accommodate them, ensuring maximum 
overall benefits. This requires effective coordination between new and existing tasks, 
with new tasks integrated into the original observation programme. 

In other words, when new tasks are added to the programme, it is essential to 
optimize the programme to incorporate these changes, maximizing its effectiveness. 
Effective coordination can help to manage uncertainties in the scheduling process, 
ensuring that new tasks are integrated seamlessly and maximizing the overall benefits 
of the EOSs. 

2. Characteristics of the dynamics of satellite resources 

The scheduling of earth observation satellites (EOSs) is subject to various uncer-
tainties, including temporary failures due to satellite malfunction in the complicated 
space environment where they operate. Typically, a failed satellite is only part of 
the resources of multiple EOSs, resulting in a temporary inability to perform earth 
observation tasks during the failure period. This situation requires effective coordi-
nation of available satellite resources to minimize the impact of the failure on the 
scheduling process.
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When a failed satellite is recovered, a unified approach should be taken in consid-
ering existing and new satellite resources to maximize the fulfillment of user obser-
vation requirements. This involves optimizing the scheduling process to ensure the 
best use of available resources, taking into account the specific needs of the obser-
vation tasks. Effective coordination can help to minimize the impact of temporary 
failures and ensure that the EOSs continue to operate efficiently in the challenging 
space environment. 

3. Available capacity agnostic of onboard memory for some special satellites [125] 

Certain types of earth observation satellites, such as electromagnetic detection satel-
lites, have unique characteristics that pose challenges in the task scheduling process. 
Specifically, the amount of data that sensors acquire during a single switch-on activity 
is highly dependent on the characteristics and intensity of the ground electromagnetic 
environment. Given that the electromagnetic environment is usually time-varying or 
random, it is not possible to precisely determine the amount of data acquired by 
the sensors during an observation, making it impossible to estimate the available 
capacity of onboard memory at a given moment. 

In contrast, general earth observation satellites (e.g., optical satellites) acquire a 
predetermined amount of data based on the switch-on duration and working mode of 
the sensors, providing deterministic information for ground scheduling. As a result, 
the uncertainty factor related to onboard memory capacity is a significant difference 
between the task scheduling of electromagnetic detection satellites and general earth 
observation satellites. This uncertainty factor presents a new challenge in maximizing 
the use of onboard memory capacity, which requires advanced scheduling algorithms 
that can adapt to the variability of the electromagnetic environment. 

2.3.8 Complicated Optimization Objectives 

The optimization objective in a general planning and scheduling problem is rela-
tively simple. For example, in the single machine scheduling problem, the objective 
is usually to complete the maximum number of artifacts per unit of time or to complete 
all artifacts in the shortest total time. In the multi-dimensional backpack problem, the 
objective is to maximize the value of the items placed into the backpack. However, 
the earth observation satellite task scheduling problem is a typical multi-objective 
optimization problem with potentially conflicting objectives that need to be opti-
mized simultaneously. This adds to the difficulty of the optimization computation. 
In engineering practice, to reduce the computational burden, a weighting approach 
is usually used to transform multiple optimization objectives into a single optimiza-
tion objective. However, this approach introduces another challenging problem: how 
to set the weights of each optimization objective. Although aerospace experts have 
found weight vectors that yield user-satisfactory solutions based on their experience, 
explicit rules for setting the weights of each optimization objective function have not 
been established [6].



Chapter 3 
Model and Method of Ground-Based 
Centralized EOS Task Scheduling 

Ground-based centralized satellite task scheduling is a well-studied problem in the 
field of satellite operations. This method assumes that a single operation and control 
center manages all satellite resources and establishes a mathematical model for earth 
observation satellites (EOSs) and their resource scheduling. A centralized optimiza-
tion algorithm is then used to solve the problem. The ground-based centralized satel-
lite task scheduling problem can be divided into two main subproblems: the earth 
observation task scheduling problem and the satellite data transmission scheduling 
problem. The former involves determining when the satellite should use its sensors 
to observe which targets, while the latter involves deciding when the satellite should 
transmit observation data to which ground station. The two problems have essential 
relationship due to constraints on the use of satellite sensor and resource constraints 
such as satellite energy and onboard memory storage. 

In addition to these fundamental subproblems, more complex scenarios, such as 
area targets and ocean moving targets, require additional consideration when devel-
oping satellite observation task scheduling methods. Finally, a learnable central-
ized satellite task scheduling method is proposed, which can continuously improve 
the performance of the optimization algorithm through online learning of historical 
scheduling results. 

3.1 Problem Description and Analysis 

3.1.1 Centralized EOS Task Scheduling Problem 

Earth observation satellites are intended to orbit the earth, and their onboard sensors 
are programmed to capture data related to specific ground targets as they pass over 
them. This observation data is temporarily stored in onboard memory and then trans-
mitted to a ground station using either real-time or playback transmission mode, 
depending on the availability of a ground station’s reception range.
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The ground-based centralized satellite task scheduling problem is a fundamental 
issue in satellite operations that can be mathematically formulated as follows: 

1. Given a scheduling time horizon wschedule = [tB, tE]. tB and tE are the start time 
and end time of the scheduling time horizon. All scheduling elements are limited 
to the given scheduling period. 

2. Given a EOSs set SAT. For∀s ∈ SAT, s ≡ 〈MODEs , memys , transs i, j , pre
s , posts ,

ΔT s m,ΔT s l ,ΔT s lc,ΔT s ld, ω
s〉, where MODEs is the set of observing modes of satel-

lite s. For an optical satellite, MODEs is the imaging roll angle of the satellite s. 
For a synthetic aperture radar (SAR) satellite, MODEs is the set of parameters of 
SAR sensors; for electromagnetic detection satellites, the working mode is the 
parameters of the onboard electromagnetic signal receiver. memys is the total 
capacity of the onboard memory of satellite s. If the onboard memory capacity is 
full (also known as onboard memory overflow), the satellite cannot continue its 
earth observation task using the playback transmission mode. transs i, j is the tran-
sition time from working mode i to working mode j , in which i, j ∈ MODEs . 
pres is the power-on preparation time of the satellite s. posts is the power-off stabi-
lization time of the satellite s.ΔT s m andΔT s l denote the minimum and maximum 
single observing time of satellite s. ΔT s lc is the longest cumulative working time 
of the satellite s in a single circle. ΔT s ld is the longest cumulative working time 
of the satellite s in a single day. ωs is the data acquiring/transmission ratio of 
the satellite s, i.e., the ratio of data generated per unit time from onboard earth 
observation sensor to the data transmitted per unit time of the data transmission 
payload. ωs characterizes the data transmission capability of the satellite. 

3. Given an observation target set TARGET. For  ∀tar ∈ TARGET, tar ≡ 〈lontar , 
lattar, rottar〉 in which, lontar and lattar are the target’s longitude and latitude. rottar 
is the maximum number of effective observations to the target tar. There is no 
furthermore reward if the observation times of tar are more than rottar. For  most  
of the targets, rottar = 1, which means the target only needs to be observed once. 
For targets with stereo imaging demands, the target should be observed from 
different angles, and rottar > 1. 

4. An EOS fly along a certain predefined trajectory and can only roll around 
and observe targets that are vertically distributed along its subsatellite trajec-
tory. Therefore, the performed observation event will exactly fill its visible time 
window (VTW). We consider each VTW as a meta-task (short for task, denoted 
as TASK), which is the minimal unit for scheduling. For ∀k ∈ TASK, k ≡ 〈sk , 
mods k , ψk , t k b , t

k 
e , tark , circlek〉. Where, sk ∈ SAT denotes the satellite that performs 

task k in the VTW. mods k ∈ MODEs denotes the working mode that satellite sk 
takes to perform task k. ψk is the priority of task k that denotes the reward when 
k is performed. t k b and t

k 
e are the start time and end time of the corresponding 

VTW. tark ∈ TARGET denotes the task k corresponds to the ground target tark . 
circlek ∈ N indicates the orbital circle of the satellite in which the current task is 
located.
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5. Given a set of data transmission resources GRD. ∀gs ∈ GRD, gs ≡ 〈
longs , latgs, 

altigs, rangegs
〉
. Where, longs is the longitude of the ground station gs, and latgs 

is the latitude of the ground station gs. altigs is the altitude of the ground station 
gs. rangegs is the antenna reception range of the ground station gs. 

6. After the calculation of the visible time window from the satellites to the ground 
stations, the set of data transmission activities is obtained, and denoted as DT. 
∀djob ∈ DT, djob ≡ 〈

sdjob , gdjob, t
djob 
db , t

djob 
de , livedtdjob

〉
. In which, sdjob ∈ SAT is 

the satellite involved in this data transmission. gdjob ∈ GRD is the ground station 
involved in this data transmission.

[
tdjob db , tdjob de

]
is the time window of the data 

transmission. livedtdjob is the transmission mode of the data transmission activity 
djob. If  livedtdjob = 1 indicates the real-time transmission mode, otherwise indi-
cates the playback transmission mode. The amount of data transmitted in a data 
transmission activity is usually related to the length of the visible time window 
(tdjob de − tdjob db ). Typically, a satellite cannot transmit all the data in the onboard 
memory in a single data transmission process. Thus, a selection of the data block 
from onboard memory to be transmitted is required. It is assumed that the EOS 
can automatically select the observation data of high-priority target and transmit 
it to ground first. 

7. Given the decision variables xs k , xg
s,g 
djob, and xgl

s,g 
djob, where, x

s 
task ∈ {0, 1}. If  

xs k = 1 denotes the observation task k will be performed by the satellite s, 
otherwise, it will not be performed in this VTM. Similarly, xgs,g djob ∈ {0, 1}. If  
xgs,g djob = 1 indicates that the data transmission activity djob of the satellite s will 
be received by the ground station g, otherwise, it will not be performed. xgls,g djob is 
an auxiliary decision variable. It makes sense, when xgs,g djob = 1. xgls,g djob ∈ {0, 1}, 
the xgls,g djob = 1 denotes real-time transmission mode for the data transmission 
activity djob, otherwise, playback transmission mode. k ∈ TASK, s ∈ SAT, 
djob ∈ DT, and g ∈ GRD. 

The purpose of ground-based centralized satellite task scheduling is to find reason-
able values of decision variables that enable the satellite earth observation programme 
to maximize the overall benefits while satisfying all satellite constraints. 

3.1.2 Scheduling Strategy Analysis 

In Sect. 3.1.1, the decision variables are defined, where xs task determines whether the 
corresponding meta-task is performed, and xgs,g djob, the  xgls,g djob determines whether 
the corresponding data transmission activities are performed and in which trans-
mission mode. The ground-based centralized satellite task scheduling problem is 
composed of two interdependent subproblems: the satellite earth observation task 
scheduling problem and the satellite data transmission scheduling problem. During 
the scheduling process, the satellite’s available memory capacity decreases as it 
completes earth observation tasks and stores observation data in onboard memory.
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Once the memory is full, the satellite can no longer continue earth observation. 
Similarly, the satellite’s available memory capacity is restored as it performs data 
transmission and downlinks data to ground stations. When the satellite operates in 
real-time transmission mode, existing data in onboard memory cannot be transmitted 
in real-time mode. Thus, solving these two subproblems together is necessary to 
achieve the optimal solution from a global perspective, although it requires a larger 
computational effort. 

Both the satellite earth observation task scheduling problem and the satellite data 
transmission scheduling problem have been shown to have NP-hard computational 
complexity, and integrating the two subproblems results in an exponential increase in 
computational effort, slower algorithm convergence, and complex constraint nesting 
relations that need to be addressed. In applications, the algorithm’s computation 
time is limited, necessitating a scheduling algorithm that can provide a relatively 
satisfactory solution in a short period. 

To balance solution optimization and computational burden, two mainstream 
approaches have emerged. The first approach, known as the progressive optimiza-
tion strategy, optimizes the satellite observation task and data transmission resources 
separately and iteratively for relatively large problem sizes. The second approach, 
known as the global optimization strategy, considers the two subproblems together 
and searches for the overall optimal solution of the problem from a global perspective 
for relatively small problem sizes. The subsequent sections will introduce these two 
approaches separately. 

3.2 Centralized EOS Task Scheduling Method Under 
a Progressive Optimization Strategy 

The centralized satellite task scheduling method based on a progressive optimization 
strategy employs a “divide-and-conquer” strategy. Initially, the two subproblems, 
satellite observation task scheduling and satellite data transmission scheduling, are 
solved sequentially, and subsequently, the interdependency between them is studied, 
leading to a scheduling scheme for the entire problem. 

As per the above analysis, the centralized satellite task scheduling method based on 
a progressive optimization strategy can be divided into three scheduling phases (e.g., 
Fig. 3.1). The first phase is the earth observation task scheduling, which considers 
only the constraints and optimization objectives related to the earth observation task 
(ignoring factors like observation data transmission and assuming infinite onboard 
memory capacity). The output of this stage is the satellite observation programme.

The second phase is the satellite data transmission scheduling, which considers 
the data transmission resources and the satellite observation programme generated in 
the first phase. This phase considers the constraints associated with data transmission 
and outputs the satellite data transmission programme.
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Fig. 3.1 Scheduling process of progressive optimization strategy

The third phase considers the interdependency between earth observation task 
scheduling and data transmission resource scheduling. It focuses on the constraints 
connecting the previous two stages, such as memory capacity constraints, and 
employs a progressive iterative fine-tuning method comprising the stochastic hill-
climbing algorithm and constraint propagation mechanism to enhance the scheduling 
results of the first two stages. The output of the third phase is the holistic earth 
observation programme. 

3.2.1 Centralized Scheduling for EOS Observation Tasks 

1. CSP-based scheduling models and solution methods 

Considering the payload characteristics and constraints of earth observation satellites, 
we have developed a constraint satisfaction problem (CSP) model to represent the 
scheduling problem. The CSP model is widely used as a centralized scheduling model 
for earth observation tasks. 

In this model, we have selected the task importance (as described in Sect. 2.2.4) 
as the objective function. The task importance is expressed as follows: 

V ob imp = max
∑

s∈SAT

∑

k∈TASK 
xs k · ψk (3.1) 

Equation (3.1) indicates that the scheduling model aims to achieve the maximum 
number of more important earth observation tasks; i.e., the optimization objective is 
to maximize the task importance, while satisfying various constraints, as described 
in detail below. 

(C1) Satellite single power-on time constraint. The duration of each task’s power-
on time must be within the range of the minimum and maximum single observing 
time. 

xs task · ΔT s m ≤ xs task ·
(
t task e − t task b

) ≤ xs task · ΔT s l , 
∀s ∈ SAT, ∀task ∈ TASK (3.2)
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In which, the ΔT s m and ΔT s l are minimum and maximum single observing time 
of satellite s, respectively. 

(C2) Satellite working mode switching time constraint. Each earth observation 
task requires the onboard sensor to operate in a specific working mode. To ensure 
the sensor operates efficiently, the time interval between any two consecutive obser-
vations (with different working mode) of the same satellite must be longer than or at 
least equal to the needed transition time from one working mode another. 

xs k1 · xs k2 ·
(
t k2 b − t k1 e + pres + posts

) ≤ xs k1 · xs k2 · transs mod s k1, mod s k2 
, 

∀s ∈ SAT, ∀k1, k2 ∈ TASK, t k2 b > t k1 b (3.3) 

In which, the pres is the power-on preparation time of the satellite s and the posts 

is the power-off stabilization time of the satellite s. transs i, j is the transition time from 
working mode i to working mode j , where i, j ∈ MODEs . 

(C3) Sensor maximum cumulative working time constraint in a single circle. 
Within one orbital circle (one orbital circle of the satellite around the earth), the 
accumulated satellite sensor working time cannot exceed the longest cumulative 
working time in a single circle.

∑

k∈TASK 
Circlek=cirnum 

xs k
(
t k e − t k b + pres + posts

) ≤ ΔT s lc, ∀s ∈ SAT, ∀cirnum ∈ N (3.4) 

In which, the ΔT s lc is the longest cumulative working time of the satellite s in a 
single circle. 

(C4) Sensor maximum cumulative working time constraint in a single day. The  
cumulative sensor working time of the satellite within a single orbit cannot exceed 
the longest working time allowed for a single orbit. Furthermore, within a 24-h 
period, the cumulative sensor working time cannot exceed the maximum working 
time allowed for a single day. 

task_q∑

k=task_p 

x s k ·
(
t k e − t k b + pres + posts

) ≤ ΔT s ld, 

∀s ∈ SAT, t k p e − t kq b ≤ 24(h), t kq b > t k p b (3.5) 

where ΔT s ld is the longest cumulative working time of the satellite s in a single day. 
From Eq. (3.5), it can be seen that a sliding time window can be used to verify if C4 
is satisfied within a 24-h period.
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(C5) The constraint of meta-task performing number. Each ground target has 
a maximum limit on the number of observations, after which further observations 
would not yield any significant benefits. Therefore, no target needs to be observed 
more than this limit. The number of observations varies for different types of targets, 
with point targets typically having an upper limit of one observation to complete the 
mission. For targets with stereo imaging requirements, the upper limit is usually set 
to 2–4 observations.

∑

task∈TASK 
Tartask=tar 

xs task ≤ rottar, ∀s ∈ SAT, ∀tar ∈ TARGET (3.6) 

(C6) Satellite capability constraint. Satellite sensors can perform only one task 
with a specific working mode at any given moment. 

xs k1 · xs k2 ·
(
t k2 b − t k1 e

) · (
t k2 e − t k1 b

) ≥ 0, ∀s ∈ SAT, ∀k1, k2 ∈ TASK (3.7) 

Based on the formulation of the CSP model presented above, it is evident that 
the centralized satellite earth observation task scheduling problem can be reduced 
to the multi-dimensional 0–1 knapsack problem by considering only a subset of 
the constraints. The multi-dimensional 0–1 knapsack problem is a classical NP-
hard problem according to algorithmic complexity theory [127], and no polynomial 
time solution method for this type of problem is known. Genetic algorithms are 
heuristic algorithms that simulate the process of biological reproduction and evolu-
tion in nature, and they have been widely employed to solve complex function opti-
mization problems, combinatorial optimization problems, planning and scheduling 
problems, among others [128]. Genetic algorithms have several features, including 
implicit parallelism, less requirement for prior knowledge, and neighborhood-based 
search, which make them suitable for solving the centralized earth observation task 
scheduling problem. 

Thus, we propose the Satellites Observation Task Centralized Scheduling Algo-
rithm (SOCSA) based on the elite archive genetic algorithm. The main steps of the 
SOCSA are as follows: 

Algorithm name: SOCSA 
Input: meta-task set TASK, satellite set SAT 

Output: satellite observation programme
{
xs task

}
, task ∈ TASK, s ∈ SAT

(continued)
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(continued)

begin 
1 Code the problem, initialize the population, and set the second population to an empty set. 
2 Select the parent individuals father1 and father2 from the population, perform the crossover 
operation to generate offspring individuals offspring1 and offspring2. Adding them to the second 
population. 
3 If the ratio of individuals in the second population to those in the population is smaller than 
the crossover probability, goto 2. 
4 Select individuals from the second population to perform the mutation operation. 
5 If the ratio of muted individual to un-muted one is smaller than the mutation probability, 
goto 4. 
6 Select some individuals from the population and the second population to form the next 
generation population using the selection operator, and save elitisms. 
7 Set the second population to the empty set. 
8 Obtain constraints of the satellite set SAT and do constraints handling for the population. 
9 If the exit condition is not satisfied, goto 2. 

10 decode, output satellite observation programme
{
xs task

}
, task ∈ TASK, s ∈ SAT. 

end 

SOCSA encodes the problem to generate multiple individuals (chromosomes), 
each representing a feasible satellite observation solution programme. These indi-
viduals form the population, and SOCSA simulates biological evolution by applying 
crossover, mutation, and selection operators to the parent population to generate 
individuals for a new offspring population. For infeasible solutions generated by the 
evolutionary process, SOCSA employs constraint handling (statement 8). It assigns a 
fitness value to each individual, with the task importance objective V ob imp serving as the 
fitness criterion. The higher the task importance objective, the greater the individual 
fitness. The iterative process continues to retain individuals with high fitness values 
(i.e., the more optimal satellite observation programme) and eliminates those with 
low fitness values to obtain a satisfactory scheduling result. The following sections 
describe the SOCSA genetic operator design and constraint handling process in 
detail. 

(1) Problem coding of SOCSA 

The problem coding for SOCSA is illustrated in Fig. 3.2. We utilize equal-length 
0–1 coding to construct the chromosome for representing the satellite observation 
programme, with each gene locus denoting the decision variable of an observation 
task. If xs k = 1 denotes the observation task k will be performed by the satellite s, 
otherwise, it will not be performed in this VTM, where t ∈ TASK, s ∈ SAT. The  
subsequent genetic operator operations and fitness value calculations are based on 
this problem encoding. 

(2) Crossover operator design of SOCSA 

For the coding characteristics of the centralized satellite earth observation task 
scheduling problem, we have designed a multi-point crossover operator. This oper-
ator selects a crossover point (CP) gene in the meta-task sequence of each satellite 
and performs the crossover operation, as shown in Fig. 3.3. The parent individual,
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father_1, is obtained by roulette selection, where the probability of each chromo-
some being selected is proportional to its fitness value. The second parent indi-
vidual, father_2, is obtained by random selection. Assuming the current chromosome 
contains five chromosome segments (a sequence of meta-tasks of five satellites), we 
generate a crossover point for each chromosome segment to achieve a multi-point 
crossover operation. 

(3) Mutation operator design of SOCSA 

The mutation operator employs a stochastic reverse method at a single point. It 
randomly selects a gene related to an observation task and alters its execution state. 
Figure 3.4 depicts the mutation process. In Fig. 3.4a, the mutation operation causes 
the satellite to perform the task represented by the mutation point (MP) gene, whereas 
the task would not have been performed before the mutation. Conversely, Fig. 3.4b 
illustrates the opposite scenario where the mutation operation results in the satellite 
not performing the MP gene task. 

In population-based optimization algorithms, such as genetic algorithms, the 
crossover and mutation operators generate new individuals that may contain infea-
sible solutions. Therefore, constraint handling mechanisms are necessary to ensure 
the feasible solutions are generated. In particular, the constraint handling process in

Fig. 3.2 Schematic diagram 
of SOCSA coding 
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Fig. 3.4 Schematic diagram of the operation of the SOCSA mutation operator 
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the crossover and mutation operators focuses on constraints (C1), (C2), and (C6). 
If a gene in the current chromosome conflicts with the gene at the crossover or 
mutation point, the meta-task represented by the conflicting gene is canceled to 
prevent infeasible solutions. After the generation of the population in each iteration, 
constraints (C3)–(C5) are then checked after population generated in each generation. 
The benefits of this treatment are: 

• Improve the efficiency of crossover and mutation operators that need to be called 
many times, and speed up the operation of the algorithm. 

• Let the crossover and mutation operators search solutions in the feasible region 
and the infeasible region under constraints (C3)–(C5) to increase the search range 
and increase the probability of optimal solution acquisition. 

A detailed discussion of the constraints handling approach for (C3)–(C5) will be 
provided in the section entitled “Constraint Handling in SOCSA.” 

(4) Select operator design of SOCSA 

The elite archive mechanism has become a popular selection operator in many genetic 
algorithm applications [128]. This mechanism plays a crucial role in enhancing the 
proximity of the approximate solution set to the optimal solution of the problem, 
while simultaneously preserving the diversity of the population. There are two 
primary methods to achieve this: the first involves considering the parent popula-
tion together with the newly generated individuals after the evolutionary operation. 
In this approach, the selection process is based on fitness, and the next generation 
population is obtained by selecting individuals from both the parent population and 
newly generated population, rather than directly replacing the parent individuals with 
the new ones (as shown in Fig. 3.5a). The second approach involves constructing 
an external elite solution pool to maintain the top individuals obtained during the 
evolutionary process. For instance, the top-N individuals generated in each genera-
tion can be added to the elite solution pool, which is continuously updated, ensuring 
that it always contains the best Top-N individuals generated so far (as depicted in 
Fig. 3.5b). The elite archive mechanism is beneficial in addressing the issue of losing 
elite solutions during the evolutionary process due to the randomness of the selection 
operator. These two approaches are illustrated in Fig. 3.5.

In order to reduce the space and time cost of maintaining the elite solution during 
the SOCSA operation and increase the speed of the algorithm operation, an elite 
archive mechanism without elite solution pool is used in the SOCSA algorithm (as 
Fig. 3.5a), i.e., a roulette wheel selection operator with elite archive mechanism is 
designed. The probability of individual chromosomes in the parent population being 
selected into the offspring population is proportional to their fitness values, and a 
number of the best chromosomes are selected directly into the offspring population 
as elite solutions. 

(5) Constraint handling of SOCSA 

This section aims to discuss the handling of constraints (C3)–(C5) in the SOCSA 
algorithm, whereas constraints (C1), (C2), and (C6) have been dealt with during the
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Fig. 3.5 Schematic diagram of the elite archive mechanism

crossover and mutation operations. Genetic algorithms commonly use two strategies 
for constraint handling: the penalty function (PF) method and the solution repair (SR) 
method. Among the two, the penalty function method is the most widely used [129]. 
Initially, this method was applied to constraint handling in mathematical optimization 
techniques. The idea is to create a penalty term for the chromosome that evaluates 
the extent of the current individual’s constraint violation and apply it to the fitness 
value evaluation function. If the current individual violates the constraint, its fitness 
value is reduced. Essentially, the penalty function method converts a constrained 
optimization problem into an unconstrained optimization problem by penalizing 
infeasible solutions. 

The problem solution space comprises of two regions: the feasible and infeasible 
regions (as depicted in Fig. 3.6). Several studies have demonstrated that the global 
optimal solution generally appears on the boundary between the feasible and infea-
sible regions. The advantage of the penalty function method is that it enables the 
search process to approach the global optimal solution from both the feasible and 
infeasible region directions [128]. During the evolution process of a genetic algo-
rithm, a solution in the infeasible region (e.g., point A in Fig. 3.6) may contain more 
information and be closer to the optimal solution than that from the feasible region 
(e.g., point B in Fig. 3.6).

The penalty function method’s unique bidirectional approximation process allows 
the genetic algorithm to converge faster. Compared to the solution repair method, the 
penalty function method does not require repeatedly calling complex solution repair 
algorithms, which reduces the computation time. In SOCSA, we adopt the penalty 
function method for constraint handling. 

In SOCSA, the penalty function is designed to calculate the penalty term by 
multiplying the total degree of chromosome constraint violations (C3 ~ C5) by the 
corresponding penalty coefficient, as depicted in Eq. (3.8). 

Vpenalty = cp ·
∑

s∈SAT

(
ω1 · ΔT s lc_ex + ω2 · ΔT s ld_ex + ω3 · Δxs rot_ex

)
(3.8)
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Fig. 3.6 Schematic diagram 
of feasible and infeasible 
regions
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In which, the Vpenalty is the penalty term. The ΔT s lc_ex is the time that the satellite 
sensor cumulative working time at each orbital circle exceeds the ΔT s lc which is the 
longest cumulative working time of the satellite s in a single circle (for constraint 
C3). Similarly, ΔT s ld_ex is the time that the satellite sensor cumulative working time 
within 24 h exceedsΔT s ld which is the longest cumulative working time of the satellite 
s in a single day (for constraint C4). Δxs rot_ex is the total number of observations of 
the target that exceed the upper limit of the numbers of the target should be observed 
(for constraint C5). cp (cp > 0) is the penalty factor. ω1, ω2, and ω3 are all constants 
∈ [0, 1], which are the weight coefficients of the constraint violation quantities, and 
ω1 + ω2 + ω3 = 1. 

It is evident that if the chromosome (satellite observation programme) does not 
violate any constraint. The individual fitness value evaluation function of the SOCSA 
algorithm with the penalty term is shown in Eq. (3.9) 

Fitness =
{
0, Vimp − Vpenalty < 0 
Vimp − Vpenalty, others 

(3.9) 

One of the significant challenges in using penalty functions in any application is 
determining an appropriate penalty value [128]. Large penalty values discourage the 
algorithm from exploring infeasible regions and rapidly shift the search to the feasible 
region, increasing the likelihood of the algorithm being trapped in a local optimal 
solution. Conversely, low penalty values do not restrict the algorithm from searching 
the infeasible region most of the time, causing the algorithm’s convergence process 
to slow down and the number of infeasible solutions in the population to increase. 

Several applications have demonstrated that the value of penalty coefficient is 
related to the task distribution’s character in scheduling problems [128]. However, in 
the centralized satellite earth observation task scheduling problem, the task distribu-
tion’s nature varies significantly in different scheduling horizons, making it difficult 
to find a single penalty coefficient that suits all situations [125]. Furthermore, even 
different penalty coefficients are required in different stages of the genetic algo-
rithm’s evolution process. Initially, a low penalty coefficient is desirable to enable
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the algorithm to search for optimal solutions in a larger region. When the algorithm 
is trapped in local optimal solution, the penalty coefficient should be reduced, and 
the algorithm is more likely to jump out of local optimal solution. In contrast, the 
penalty coefficient should be increased at the end of the evolution process to generate 
more feasible solutions in the population. Ideally, the algorithm should search for 
solutions in the boundary of the feasible region and the infeasible region to find the 
global optimum. If the search process remains in the feasible region for an extended 
period, changing the current penalty coefficient can redirect the search process to the 
infeasible region, and vice versa. 

Based on the preceding analysis, a mechanism for a dynamic penalty function with 
adaptive adjustment of penalty coefficients can be devised, as illustrated in Fig. 3.7. 
The dynamic penalty function is an adaptive mechanism for adjusting penalty coeffi-
cients, analogous to the negative feedback approach. During the evolutionary process, 
the algorithm regulates the penalty coefficients in response to the current state of 
the population to manage the penalty strength in constraint handling and guide the 
population toward the anticipated direction of evolution. 

The adaptive penalty factor cp(λ) dynamically changes in the following way 
(where λ denotes the current evolutionary generation). 

cp(λ + 1) = 

⎧ 
⎨ 

⎩ 

cp(λ) · θ1, case #1 
cp(λ)/θ2, case #2 
cgen(λ + 1), Other 

(3.10) 

where the term “case #1” describes scenarios where either the best individual is 
infeasible or the best individual has remained unchanged for the last h generations, 
possibly due to being trapped in a local optimal solution. Conversely, “case #2” refers 
to situations in which the best individual has been feasible for the past h generations. 
The parameter 0 < θ1, θ2 < 1 and θ1 /= θ2 (to avoid cycling). The evolution penalty 
coefficient, denoted by cgen(λ), is proportional to the pace of the evolutionary process 
in SOCSA and can be recursively defined by the following equation. 

cgen(λ + 1) = cp(λ) + cstep (3.11)

Fig. 3.7 Schematic diagram of the dynamic penalty function mechanism 
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where, cstep is the increment of penalty coefficient in evolutionary iteration, which 
can be expressed as: 

cstep = 
cmax − cp(0) 

λmax 
(3.12) 

In which, cp(0) is the initial penalty factor, and λmax is the maximum number of 
iterations of the SOCSA. cmax is the upper bound of the preset penalty coefficient. 
And cmax can be empirically estimated. 

2. Graph-based scheduling models and methods 

In earlier studies, some researchers have proposed a graph-based model for formu-
lating the satellite earth observation process. In this model, an earth observation satel-
lite with roll capability orbits in space along a fixed trajectory, while the imaging roll 
angle and the satellite visible window for a given scheduling meta-task are predeter-
mined. Consequently, the observation tasks have a temporal relationship with each 
other [11, 12]. Since satellites have limited capabilities for attitude adjustment, their 
imaging actions between transitions need to satisfy satellite constraints. To represent 
the observation tasks as vertices in a graph, a straightforward approach is to order 
the vertices according to the start time of observation. If two vertices (representing 
two tasks) are connected by an edge, the satellite can sequentially perform the two 
observation tasks in the order of their start times. 

For an EOS sat (sat ∈ SAT), each meta-task within its scheduling horizon can 
be represented as a vertex in a graph. The properties of the tasks, such as priority, 
working mode, start and end times of observation, are incorporated as attributes of 
the corresponding vertices. 

Two virtual vertexes OS and OT are added to the graph Gsat that correspond to 
the starting vertex and the terminating vertex for a certain satellite task scheduling 
process, respectively. All the vertexes form the vertex set Vsat, and the vertexes are 
sorted by the order of the start time of the observation tasks. 

The edge set of the graph Gsat is noted as Esat. Assume that the starting vertex OS 

and the terminating vertex OT connect with all other real vertexes. For two actual 
vertices, if performing the two corresponding observation tasks satisfies the satellite 
working mode switching time constraint (C2), an edge is established between the 
two vertices. In other words, if the task represented by vertex A is executed, and 
the satellite can subsequently perform the task represented by vertex B. Therefore, a 
directed edge exists from vertex A to vertex B. 

For ∀A ∈ Vsat, we have 〈OS, A〉 ∈ Esat, the 〈A, OT〉 ∈ Esat, 〈OS, OT〉 /∈ Esat. And  
for ∀A, B ∈ Vsat, if the observation tasks represented by A and B satisfy the satellite 
working mode switching time constraint (C2), the graph has an edge 〈A, B〉 ∈ Esat. 
Thus, by examining whether an edge exists between each vertex and its subsequent 
vertices, we can determine the set of edges Esat in the graph. 

As the meta-tasks represented by the vertices have a time-ordered relationship, 
the graph Gs = (Vsat, Esat) is an acyclic digraph. Therefore, every path from the 
virtual starting vertex OS to the virtual terminating vertex OT represents a candidate
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Fig. 3.8 A schematic 
diagram of the directed 
acyclic graph model for 
single satellite observation 
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satellite observation programme for the EOS. A schematic representation of the 
directed acyclic graph model for observation task scheduling is presented in Fig. 3.8. 

To handle multiple earth observation satellites, multiple directed graphs can be 
constructed, and these directed graphs collectively form the set of earth observation 
directed acyclic graphs [24], G = ∪  Gsat. 

Although the directed acyclic graph model can represent a single satellite earth 
observation task scheduling problem intuitively, whereas for multiple satellites 
observing task scheduling problem, the directed graph model makes the scheduling 
computation more difficult. Because the set of earth observation tasks from different 
satellites may contain the same targets in the scheduling horizon, the directed 
subgraphs for different EOS may have common vertexes in the graph G, as shown  
in Fig. 3.9.

Apparently, such common vertexes among subgraphs increase the complexity of 
the whole model and make it more difficult to figure out the satellite task scheduling 
results using the directed graph model. Thus, the directed acyclic graph model is 
more appropriate for representing single satellite earth observation task scheduling 
problems. 

In the directed acyclic graph model for EOS task scheduling, the task importance 
criterion V ob imp is still used as the objective function. In this case, we need to find the 
longest path (not the shortest path) in the graph, as it contains the most important 
meta-tasks. However, the longest path search problem is a typical NP-hard problem. 
The commonly used exact search algorithm is the graph path label updating algo-
rithm, which updates the multiple labels information of the candidate paths contin-
uously and removes paths that violate constraints (C1, C3–C6) as it searches for the 
path. If a meta-heuristic optimization algorithm, such as a genetic algorithm, is used
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Fig. 3.9 A schematic diagram of the directed acyclic graph model for multiple satellite observation 
task scheduling

to solve the directed acyclic graph model for satellite observation task scheduling, 
the solution method is similar to the SOCSA algorithm described in the previous 
section and will not be repeated here. 

3.2.2 Observation Task-Oriented Satellite Data Transmission 
Resources Scheduling 

Task-oriented data transmission resource scheduling is the second stage of the central-
ized satellite task scheduling process that is based on a progressive optimization 
strategy. In the first stage, the satellite observation programme is generated, and in 
the second stage, the goal of satellite data transmission resource scheduling is to 
allocate data transmission resources efficiently for the satellite. The aim is to allow 
the satellite to transmit important earth observation data to the ground as much 
and as quickly as possible, while preventing the satellite’s onboard memory from 
overflowing. 

In this section, we present the satellite data transmission resource scheduling 
model and the corresponding solving algorithm for the established model. 

1. Satellite data transmission resource scheduling model 

Earth observation satellites orbit the earth, perform earth observation tasks, and store 
data in onboard memory. When the satellite obtains the service of data transmission 
resources, it transmits a portion of the data stored in the onboard memory to the 
ground station to complete a data transmission activity. The amount of data trans-
mitted in one data transmission activity depends on the transmission rate of the
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satellite data transmission equipment and the data transmission time (i.e., the data 
reception time of a ground station). Upon completion of the data transmission activity, 
the onboard memory releases space (as explained in Sect. 2.3.6). The definitions of 
the relevant concepts are given as follows. 

(C7) Capacity constraints of data transmission resources. At any given moment, 
a single data transmission resource can only provide data transmission services to 
one satellite. If a ground station has multiple independent sets of data reception 
equipment, it can be considered as multiple data transmission resources located at 
the same position. 

xgs1,g djob1 · xgs2,g djob2 ·
(
tdjob2 db − tdjob1 de

)
≥ 0, 

∀s1, s2 ∈ SAT, ∀g ∈ GRD, djob1, djob2 ∈ DT, tdjob2 db ≥ tdjob1 db (3.13) 

(C8) Satellite data transmission resource selection constraint. If a satellite can 
transmit the same batch of observation data through more than one data transmission 
resource simultaneously, it only needs to select one of them for data transmission at 
any given moment. Therefore, the satellite only needs to establish a communication 
link with one data transmission resource and transmit the data to the ground at that 
moment.
[
tdjob1 db , tdjob1 de

]
∩

[
tdjob2 db , tdjob2 de

]
= ∅, 

∀s ∈ SAT, ∀g1, g2 ∈ GRD, djob1, djob2 ∈ DT, iff xgs,g1 djob1 = xgs,g2 djob2 = 1 (3.14) 

(C9) Satellite real-time transmission scenario constraint. When a satellite uses the 
real-time transmission mode, the time window for data transmission must completely 
cover the time window for the earth observation task. This allows the observation data 
of the task to be transmitted to the ground station immediately during the observation 
is being performed.

[
t task b , t task e

] ⊆
[
tdjob db , tdjob de

]
, ∀s ∈ SAT, ∀g ∈ GRD, 

djob ∈ DT, ∃task ∈ TASK, iff xgs,g djob = 1, xgls,g djob = 1 (3.15) 

Definition 3.1: Time window conflict of data transmission activity If two data 
transmission activities that use the same data transmission resource but different 
satellites have overlapping visible time windows, they cannot be carried out simul-
taneously. This results in a conflict between the two data transmission activities and 
violates constraint (violating the constraint (C7)). 

Definition 3.2: Conflict of selection of resources for data transmission If a 
satellite has the capability to transmit observation data to two data transmission 
resources simultaneously, there can be conflicts in the selection of resources for data
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transmission between the two data transmission activities (violating the constraint 
(C8)). 

Definition 3.3: Data transmission conflict window (DTCW) The longest window 
that contains continuous data transmission conflicts or a single data transmission 
activity. It is also named conflict window for short. 

Definition 3.4: Compatible data transmission chain One or more data transmis-
sion activities within the same data transmission conflict window do not conflict with 
each other (and do not violate Constraint (C7)). These activities form a sequence 
ordered by the start time of data transmission. 

Definition 3.5: Inclusion relation of compatible transmission chains If ξ1 and 
ξ2 are two compatible transmission chains, if data transmission activities in ξ1 are 
all included in ξ2 and the corresponding data transmission activities adopt the same 
transmission mode, then ξ2 includes ξ1, or denoted by ξ1 ⊆ ξ2. 

As is shown in Fig. 3.10, A, B, C , D, and E are data transmission activities of the 
same data transmission resource, ordered by their start time of data transmission. The 
horizontal axis is timeline, and the length of rectangle represents the size of visible 
time window. We can identify that conflicts occur between A and B, B and C , C 
and D, E doesn’t conflict with any transmission window. Therefore, A, B, C , and 
D constitute a data transmission conflict window, and E forms a conflict window by 
itself. All the data transmission activities of a resource can be divided into several 
conflict windows. A − C , A − D, and B − D are compatible data transmission 
chains. Besides, A, B, C , D, and E form a compatible data transmission chain by 
themselves. The inclusion relation of the compatible transmission chains in Fig. 3.10 
is A, C ⊆ A − C , A, D ⊆ A − D, and B, D ⊆ B − D. 

(1) Data transmission resource scheduling objective function 

The priority of a data transmission activity is determined by the priority of the 
targets included in the observation data being transmitted. If the data includes high-
priority targets, the data transmission activity will have a higher priority. With an 
existing satellite observation programme, changes in the satellite data transmission 
programme will result in changes to the observation data transmitted to the ground

A 
B 

C 

t 

D 

E 

Fig. 3.10 Schematic diagram of data transmission conflict windows 
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stations, leading to a change in the priority of the data transmission activities. This 
is referred to as the dynamic priority of a data transmission activity djob ∈ DT. 
For a single data transmission activity, its priority is a model variable that must be 
calculated in the scheduling process. The value of the priority is related to the overall 
priority of the observation data in the onboard memory of the satellite at the start 
time of the current data transmission activity. 

Considering the characteristics of the satellite data transmission scheduling 
problem, the optimization objectives are formulated as follows: 

(a) Optimization objective for data transmission importance 

V djob imp = max
∑

task∈Dd(djob) 
ψtask (3.16) 

where Dd(i ) is a mapping function that returns the set of meta-tasks whose 
observation data contained in the data transmission activity i, i ∈ DT. The  
optimization objective of data transmission importance indicates that the priority 
of a data transmission activity is higher if the data to be transmitted is more 
important. 

(b) Optimization objective for data transmission timeliness 

V djob urg = min
∑

task∈Dd(djob)

(
tdjob db − t task e

)
· ψtask (3.17) 

The optimization objective of data transmission timeliness suggests that obser-
vation data containing higher priority targets should be transmitted as early as 
possible. 

The priority (gain) of a single data transmission activity djob can be formulated 
as 

prtydjob = αdd 
imp · V djob imp − αdd 

urg · V djob urg (3.18) 

In which, αdd 
imp, α

dd 
urg are the weights, which can be set by the user, or given by 

experts. It is important to note that the observation data transmitted through the real-
time transmission mode and the playback transmission mode to a ground station 
may differ, resulting in different returns of the function Dd(djob). In the real-time 
transmission mode, both the observation sensor and the data transmission payload 
of a satellite are switched on simultaneously to perform observations and transmit 
the obtained data to the ground. During this process, the data in the onboard memory 
cannot be transmitted to the ground via the real-time data transmission activity. 
On the other hand, in the playback transmission mode, the satellite observation 
sensor remains switched off while the data transmission payload is switched on to 
transmit the data in the onboard memory to the ground. Therefore, the choice of data 
transmission mode for a data transmission activity djob depends on how to maximize
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the benefits of data transmission resource scheduling, as the prtydjob would also differ  
accordingly. 

Based on the principle of maximizing the benefits of data transmission activi-
ties, the optimal objective function for data transmission resource scheduling can be 
expressed as follows: 

V dd imp = max
∑

djob∈DT 

prtydjob · xgs,g djob (3.19) 

(2) The data transmission conflict section constraint graph 

Taking into account the time window conflicts of data transmission activities and the 
constraints on the selection of satellite data transmission resources, we can construct 
the data transmission conflict section constraint graph (CSCG). The CSCG can be 
formally represented as CSCG = (

V g, Eg 
1 , E

g 
2

)
, where V g is the set of vertexes, 

representing the data transmission activity. Eg 
1 , E

g 
2 is the set of edges, representing the 

constraint relations. The vertexes connected by edges from Eg 
1 , form compatible data 

transmission chain. If two vertexes connected by edges from Eg 
2 , the corresponding 

two data transmission activities violate constraint C8 (satellite data transmission 
resource selection constraint). 

The schematic diagram of CSCG is shown in Fig. 3.11. 
Figure 3.11 is the CSCG diagram for two data transmission resources (Resource 

A, Resource B ∈ GRD). Where, A1 ∼ A8, B1 ∼ B9 ∈ DT are the data transmission 
activities associated with the data transmission resources A and B, respectively. 
A1 ∼ A8 and B1 ∼ B9 have been sorted according to the start time of the data
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A6 
A4 A7 A8 

B1 
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B6B4 

B8 

B7 

B9 

Ground 
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Ground 
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DTCW1 DTCW2 DTCW3 DTCW4 DTCW5 DTCW6 

Fig. 3.11 Schematic diagram of the data transmission conflict section constraint graph 
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transmission and divided into data transmission conflict window (DTCW). There 
are six DTCWs in total in Fig. 3.11. 

The data transmission activities wrapped in dashed boxes represent those in the 
same DTCW (e.g., A2 and A3). The data transmission activities with edges connected 
in the dashed boxes form a compatible data transmission chain (e.g., B5 and B6 
∈ Eg 

1 ). The edges connecting the data transmission activities between different data 
transmission resources represent that the corresponding two data transmission activ-
ities violate Constraint C8, which is the satellite data transmission resource selection 
constraint (e.g., A2 vs. B2; A7 vs. B8 ∈ Eg 

2 ). Based on the CSCG, the purpose of 
satellite data transmission resource scheduling is to select a chain of data transmis-
sion activities from the different DTCWs to form a path from A1 to A8 and B1 to 
B9 (as shown by the arrows in the middle of Fig. 3.11) that maximizes the value of 
the data transmission resource scheduling optimization objective (see Eq. 3.19). 

Based on the optimization objective of the data transmission resource scheduling 
and the CSCG model, we can obtain Theorem 3.1. 

Theorem 3.1 If there is an inclusion relationship between two compatible data 
transmission chain, the gain from executing the longer compatible data transmission 
chain is not less than the gain from executing the shorter one. 

Proof Suppose there are two compatible data transmission chains ξ1, ξ2, and ξ1 ⊆ ξ2. 
If ξ1 = ξ2, then the above proposition clearly holds. Therefore, it is only necessary to 
prove the case ξ1 ⊂ ξ2. From Definition 3.5 we can see if ξ1 ⊂ ξ2, then ∃djob ∈ DT, 
such that djob /∈ ξ1, and djob ∈ ξ2. The gain of executing the compatible data 
transmission chain ξ2 is no less than the gain of executing ξ1 plus executing the data 
transmission activity djob, according to the evaluation criteria of the optimization 
objective for data transmission importance and the optimization objective for data 
transmission timeliness proposed above. 

Since the execution of the data transmission activity djob is greater than or equal 
to 0, the gain obtained from executing a compatible data transmission chain ξ2 at least 
as much as the gain obtained from executing ξ1 a single data transmission activity. 
Thus, the original proposition is proven. 

Based on Theorem 3.1, the compatible data transmission chains in a DTCW 
can be refined to reduce the search space of the algorithm, i.e., for all compatible 
data transmission chains in a DTCW, if there is an inclusion relationship between 
two compatible data transmission chains, the shorter one can be deleted. The above 
operation is performed for all DTCWs in the CSCG. The CSCG in the following 
refers to the refined CSCG. 

2. Satellite data transmission resource scheduling algorithm 

In the context of the communication scheduling problem within the US Air Force 
Satellite Control Network (AFSCN) ground station network, Barbulescu et al. have 
shown that the multiple ground station data transmission scheduling problem, with 
the objective of maximizing the total serving time while considering constraint (C7), 
is an NP-hard computational problem [110]. Our problem is further complicated
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by the need to consider the dynamic priority characteristics of data transmission 
activities. To address this, we propose the task-oriented satellite data transmission 
resources scheduling algorithm (TDRSA) based on the elite archive genetic algorithm 
for the CSCG model. The framework of TDRSA is similar to that of the previously 
proposed SOCSA and will not be reiterated here. Instead, we adopt the optimal 
objective function of data transmission resource scheduling (V dd imp shown in Eq. 3.19) 
as the evolutionary fitness value for TDRSA. This section will focus on the encoding 
of the problem and the design of genetic operators. 

(1) Problem coding of TDRSA 

For the satellite data transmission scheduling problem, we use an equal-length integer 
encoding approach to represent each DTCW of the CSCG model. For each DTCW 
j in the CSCG corresponds to a decision variable d j (d j ∈ N). If d j = α represents 
the compatible data transmission chain α from DTCW j will be performed, i.e., for 
∀djob ∈ α, set  xgs,g djob = 1. In addition, the xgls,g djob = 1 indicates that the corresponding 
data transmission activity will be performed in the real-time transmission mode; 
otherwise, the playback transmission mode is used. 

(2) Crossover operator design of TDRSA 

The crossover operator in TDRSA is designed as a single-point crossover approach. 
This operator randomly selects two parent individuals in a roulette wheel manner 
based on their fitness value and determines a crossover point to implement the 
crossover process randomly (as shown in Fig. 3.12). After the completion of the 
crossover operation, the constraint handling process is performed. The division of 
DTCWs in the CSCG model and the formation of compatible data transmission 
chains ensure the satisfaction of constraint (C7). Therefore, we only need to handle 
constraint (C8) after the crossover operation. To address this constraint, we select 
edges from the set Eg 

2 of CSCG models and randomly choose one data transmission 
activity to execute while canceling any conflicting data transmission activities. 

(3) Mutation operator design of TDRSA 

The mutation operator in TDRSA adopts a single-point random variation approach. 
Specifically, the execution state of a compatible data transmission chain within a 
DTCW is changed using a random neighborhood search (as shown in Fig. 3.13). 
The individual to be mutated is generated through random selection. In Fig. 3.13, the  
gray area represents the mutated DTCW, which has a total of 5 alternative compatible

Crossover Pointfather_1 

father_2 

offspring_1 

offspring_2 

Fig. 3.12 Schematic diagram of the operation of the TDRSA crossover operator 
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Fig. 3.13 Schematic 
diagram of the operation of 
the TDRSA mutation 
operator 
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data transmission chains. Before mutation, compatible data transmission chain 4 of 
the DTCW is executed. However, after mutation, compatible data transmission chain 
3 will be executed instead. Additionally, through mutation, the transmission mode 
(real-time or playback) of the mutated compatible data transmission chain 3 may 
also be randomly changed. 

After mutation, the constraint handling method used in the crossover operation is 
employed to check for any violations of constraint (C7) and constraint (C8). Addi-
tionally, constraint (C9) must also be verified and handled. If the mutation operator 
changes the transmission mode of a data transmission activity to real-time transmis-
sion mode but it cannot be performed in real-time mode, constraint (C9) is violated, 
and the transmission mode must be adjusted back to the original playback mode. 

(4) Select operator design of TDRSA 

The TDRSA selection operator is a variant of the roulette wheel selection operator 
that incorporates an elite archive mechanism similar to that of the SOCSA algorithm. 
This operator assigns probabilities to each chromosome in the parent population, 
based on their respective fitness values. Chromosomes with higher fitness values 
have a greater probability of being selected for the offspring population. Moreover, 
a few top-performing chromosomes are directly added to the offspring population as 
elite solutions. 

(5) TDRSA algorithm constraint handling 

Thanks to the data transmission conflict section constraint graph model, infeasible 
solutions generated during the iterations of the TDRSA algorithm can be corrected 
to feasible solutions in the crossover and mutation operators. Thus, the TDRSA 
algorithm does not require a special constraint handling algorithm. 

3.2.3 Progressive Iterative Repair Mechanism 

The initial two stages of the multi-stage scheduling problem involve resolving the 
satellite earth observation task scheduling problem and the satellite data transmission 
scheduling problem, respectively. These stages are essentially the process of finding 
the local optimum through multi-stage scheduling. However, it should be noted that
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the combination of these optimal solutions does not necessarily result in the global 
optimal solution for the overall multi-stage scheduling problem. 

For the proposed scheduling approach based on a progressive optimization 
strategy, neither of the first two scheduling stages considers the satellite memory 
capacity constraint. In the event that the onboard memory exceeds its capacity, the 
satellite cannot continue with its observation task until it executes a data transmis-
sion activity through the playback mode. The satellite memory capacity constraint 
is considered in this stage and described in detail below. 

(C10) Satellite memory capacity constraint. The maximum memory capacity of 
the onboard memory must not be exceeded at any given time.

∑

task∈TASK,stask=s 
t task e ≤t

(
t task e − t task b

) −
∑

djob∈DT,sdjob=s 

tdjob de ≤t

(
tdjob de − tdjob db

)

≤ memys ∀t ∈ [tB, tE], ∀s ∈ SAT (3.20) 

The third stage of the centralized EOS task scheduling method, based on a progres-
sive optimization strategy, involves a scheduling result progressive iterative repair 
mechanism. This mechanism considers all constraints and optimization objectives 
related to observation tasks, EOSs and data transmission resources, and addresses 
the constraint violations that occur in the scheduling results of the first two stages. 
The overall earth observation programme is generated after this process. 

The fundamental reason why it is difficult to obtain the global optimum of the 
overall earth observation programme under the progressive optimization strategy is 
that the divide-and-conquer strategy in the three-stage scheduling process. However, 
it is inevitable to sacrifice a part of optimality in order to give a satisfactory solution 
to the problem in a limited time. The existence of the satellite memory capacity 
constraint (C10) is the most direct reason for the degradation of the optimality of the 
scheduling results. Simply removing those meta-tasks that violate constraint (C10) 
will definitely lead to the degradation of the optimality of the overall earth observation 
programme. 

The idea of the progressive iterative repair mechanism is to repair the solutions 
violated the constraint (C10) through a heuristic strategy. It starts by removing lower-
priority tasks with longer observation times until the satellite observation programme 
no longer violates any constraints. Next, it adds tasks with higher priority and shorter 
observation times until a constraint is violated. This process is repeated several times 
to produce the final earth observation programme.
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3.3 Centralized EOS Task Scheduling Method Based 
on a Global Optimization 

The divide-and-conquer strategy is based on the key idea of progressive optimization, 
which divides the centralized satellite task scheduling problem into three subprob-
lems. On the one hand, this strategy effectively reduces the complexity of problem-
solving and computation burden; thus, it is possible to obtain a user-satisfactory solu-
tion within an acceptable computation time. On the other hand, due to the progres-
sive optimization strategy, it is difficult to ensure that the algorithm searches for 
the optimal solution from a global perspective. For example, during the satellite 
earth observation task scheduling stage, only observation tasks with high priority are 
considered for scheduling, without taking into account whether the onboard memory 
is overflowing or when the data in onboard memory will be transmitted to the ground. 
Similarly, during the data transmission resource scheduling stage, the existing satel-
lite observation programme cannot be modified even if there is no available data 
transmission resource to transmit the observation data in onboard memory to the 
ground. In some extreme cases, it may happen that a target is observed very early but 
downlinked very late, and the observation data occupies satellite onboard memory 
for a long time, increasing the risk of memory overflow without contributing to the 
data transmission timeliness objective. 

In recent years, with the significant increase in computational power, the central-
ized EOS task scheduling method based on a global optimization strategy has received 
more and more attention. This method considers the observation process and the data 
transmission process from a global optimization perspective to find a more reason-
able problem solution. Although it has rarely been applied to practical engineering, 
it plays an indispensable role in analyzing the optimization upper bound of satellite 
task scheduling problems from a theoretical perspective. In the foreseeable future, 
with the further enhancement of hardware computing power, this method will have 
good application prospects. In this section, a centralized satellite task scheduling 
method based on a global optimization strategy is presented. 

3.3.1 EOS Scheduling Model Based on Global Optimization 
Strategy 

The CSP model is still utilized to formulate the satellite task scheduling problem 
under the global optimization strategy. In contrast to the progressive optimization 
strategy, both the task importance optimization objective in the satellite earth obser-
vation task scheduling stage and the task timeliness objective in the data transmission 
resource scheduling stage are considered simultaneously. This approach aims to find 
a solution that optimizes both objectives under a global optimization perspective.
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Task importance optimization objective is formulated as follows: 

V wh imp = max
∑

s∈SAT

∑

task∈TASK 
xs task · ψtask · down(task) (3.21) 

In which, the down(task) function is used to obtain the result whether the observa-
tion data of task can be downlinked to the ground within the scheduling time horizon. 
If it can be, then down(task) = 1; otherwise down(task) = 0. 

Compared to Eq. (3.1), Eq. (3.21) requires not only that the satellite performs as 
many and more important earth observation tasks as possible but also that the obser-
vation data of these tasks be transmitted to the ground within the current scheduling 
time horizon. 

Task timeliness optimization objective is formulated as follows: 

V wh urg = max
∑

s∈SAT

∑

task∈TASK 
xs task · ψtask ·

(
tE − tdown task

)
(3.22) 

In which, tdown task is the observation data downlink time of task, which can be figured 
out from the satellite data transmission programme. The timeliness optimization 
objective requires that the observation data of tasks with higher priority should be 
transmitted to ground as early as possible. 

The optimization objective for satellite task scheduling based on the global opti-
mization strategy can be formulated as the form of a weighted sum of the two 
indicators mentioned above. 

Vwh = αwh 
imp · V wh imp + αwh 

urg · V wh urg (3.23) 

In which, αwh 
imp, α

wh 
urg are the weighting coefficients, and the weights can be set by 

the users, or given by the experts. 
In the CSP model for satellite task scheduling based on the global optimization 

strategy, the scheduling process needs with respect to the constraints C1–C10 (see 
Sect. 3.2 for details), which are not repeated here. 

3.3.2 Earth Observation Satellites Scheduling Algorithm 
with Data Downlink 

In this section, we propose a centralized earth Observation Satellites Scheduling 
Algorithm with Data Downlink (SSADD), based on an elite archive genetic algo-
rithm. The algorithm framework is similar to that of SOCSA, as introduced in 
Sect. 3.2.1, and will not be reiterated here. However, we will provide a detailed 
description of the genetic operators and constraint handling process used in SSADD. 

(1) Encoding of SSADD
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Fig. 3.14 Schematic diagram of SSADD coding 

The problem encoding of SSADD is shown in Fig. 3.14. We construct the chromo-
some using equal-length 0–1 coding to represent the satellite observation programme 
(first half of the chromosome) and satellite data transmission programme (he second 
half of the chromosome). Each gene locus of the first half of the chromosome repre-
sents the decision variable of an observation task. If xs k = 1 denotes the observation 
task k will be performed by the satellite s, otherwise, it will not be performed in this 
VTM, where t ∈ TASK, s ∈ SAT. Similarly, each gene locus of the second half of 
the chromosome represents the data transmission decision variables {xgs,g djob, xgl

s,g 
djob}. 

(2) Crossover operator design of SSADD 

We have developed a location-constrained multi-point crossover operator, as shown 
in Fig. 3.15, to perform crossover operations on individuals. This operator selects 
several crossover points from both the first and second halves of the chromosome 
to ensure that both observation tasks and data transmission activities are processed 
by the crossover operator. In Fig. 3.15, the current chromosome consists of three 
observation task chromosome segments and two data transmission activity chromo-
some segments. We obtain individual father_1 using roulette selection, where the 
probability of each chromosome being selected is proportional to its fitness value. 
The individual father_2 is obtained by random selection. 

(3) Mutation operator design of SSADD 

We have developed a location-constrained two-points mutation operator for SSADD. 
Specifically, one mutation point is selected from the first half of the chromosome, 
while another point is selected from the second half of the chromosome. When it 
comes to observation task chromosome segments, this operator selects an observation 
task gene randomly and changes the executing state for that gene. With regard to 
data transmission activity chromosome segments, the operator not only inverts the 
executing state for the data transmission activity, but also randomly assigns the data 
transmission mode (i.e., real-time transmission or playback) for that gene. It is noted
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Fig. 3.15 Schematic diagram of the operation of the SSADD crossover operator 

that, the mutation operator needs with respect to the satellite real-time transmission 
scenario constraint (C9). 

(4) Select operator design of SSADD 

The SSADD selection operator adopts an elite archive mechanism, which is similar 
to that of the selection operator of SOCSA, which can be found in detail in Sect. 3.2.1. 

(5) Constraint handling of SSADD 

Similarly to the constraint handling process of SOCSA, constraints C1, C2, C6– 
C9 can be handled (directly canceling the observation tasks or data transmission 
activities that violate any constraints) during the crossover and mutation operation 
of SSADD. In this section, we focus on how to handle constraints (C3), (C4), and 
(C10). 

The SOCSA algorithm utilizes a penalty function-based constraint handling 
method. However, the solution space of SSADD is considerably larger than that of 
SOCSA, and the penalty function approach is relatively inefficient and more prone to 
falling into local optima. As a result, we have designed a constraint handling method 
based on the solution repair method for SSADD. The key idea of the solution repair 
method is to design an algorithm to transform the infeasible solutions (violating some 
constraints) into feasible ones (violating no constraints). 

If the solution repair method is well designed and the computing cost is low, the 
solution repair method usually achieves better results compared to the penalty func-
tion method [129]. For constraints (C3), (C4), and (C10), a solution repair method 
based on the stochastic greedy strategy is designed as follows: 

Algorithm name: SolutionRepair4SSADD 
Input: chromosome before solution repair chrom 
Output: chromosome after solution repair chrom

(continued)
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(continued)

begin 
1 while  CheckCircleConstraint(chrom_pre) == false 
2 Task_Sets circle = FindCircleTask(chrom_pre) 
3 Random select a task k from Task_Sets circle // tasks with low priority and late downlink time 
have a higher probability of being selected 
4 set  xs k = 0 // Cancel the execution of this task 
5 end  while //  Handle the constraint (C3) 
6 while  CheckDayConstraint(chrom_pre) == false 
7 Task_Sets day_span = FindDaySpanTask(chrom_pre) 
8 Random select a task k from Task_Sets day_span // tasks with low priority and late downlink 

time have a higher probability of being selected 
9 set  xs k = 0 // Cancel the execution of this task 
10 end while // Handle the constraint (C4) 
11 while CheckMOverflowConstraint(chrom) == false 
12 Task_Sets overflow = FindOverflowTask(chrom_pre) 
13 Random select a task k from Task_Sets overflow // tasks with low priority and late downlink 
time have a higher probability of being selected 
14 set xs k = 0 // Cancel the execution of this task 
15 end while // Handle the constraint (C10) 
end 

In the solution repair algorithm, the chrom_pre is the first half of the chromosome 
chrom, which represents the execution state of observation tasks. 

Statement 1–5 handles constraint C3 (sensor maximum cumulative working time 
constraint in a single circle), the function CheckCircleConstraint() detects whether 
the chromosome violates constraint C3. If constraint C3 is violated, the function 
returns false. FindCircleTask() returns an observation task set involving all tasks 
violates constraint C3 within the earliest circle. The algorithm randomly selects one 
task from that circle (the strategy for selecting a task is that tasks with low priority 
and late downlink times have a higher probability of being selected) and cancels it 
until constraint C3 is no longer violated. 

Statement 6–10 handles constraint C4 (sensor maximum cumulative working 
time constraint in a single day), the process of dealing with constraint C4 is similar 
to constraint C3. The function CheckDayConstraint() detects whether the chro-
mosome violates constraint C4. If constraint C4 is violated, the function returns 
false. FindDaySpanTask() returns an observation task set involving all tasks violates 
constraint C4 within the first 24 h time span. 

Statements 11–15 are responsible for handling constraint C10 (Satellite memory 
capacity constraint). The function CheckMOverflowConstraint() checks whether the 
onboard memory will overflow (returning false if constraint C10 is violated). If so, 
the FindOverflowTask() function returns the set of tasks that caused the overflow 
of onboard memory, and the subsequent processing is similar to the handling of 
constraints C3 and C4. 

Apparently, the time complexity of the algorithm SolutionRepair4SSADD is 
O

(
n2

)
. Therefore, it is a polynomial time algorithm.
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3.4 EOS Scheduling for Complicated Observation Task 

The scheduling approaches introduced above are for targets that can be regarded as 
static points on the ground. In practice, there are two types of complicated observation 
targets, namely area targets and moving targets. In this section, we will focus on the 
satellite observation task scheduling methods for the two special types of targets. 

3.4.1 EOS Task Scheduling for Area Target 

Observation targets can be divided into two categories based on the relative size 
relationship between the field of view of the onboard sensor and the ground target 
area: point targets and area targets. Point targets are small relative to the field of 
view of the onboard sensor and can be completed through a single observation by 
one satellite. Examples of point targets include airports, ports, and other facilities. 
Scheduling methods for point targets have been introduced in Sects. 3.2–3.3. In  
contrast to the point target satellite observation scheduling problem, the area target 
satellite observation scheduling problem has the following characteristics. 

(1) Need to consider the geometric properties of an area target 

Since the area target is generally larger than the field of view of onboard sensor, 
it cannot be regarded as a point on ground. Thus, the geometrical characteristics 
of the area target and the field of view of onboard sensor must be considered (the 
geometrical characteristics of the coverage region of different types of sensors are 
generally different). 

(2) Need to consider the decomposability of observation tasks for an area target 

Since an area target cannot be covered by a single observation, it needs to be 
divided into several subtargets. Each subtarget is an observation strips, which can be 
performed by one observation via onboard sensors. Considering the characteristics 
of satellite observation process, the direction of observation strips division is parallel 
to the satellite orbit direction. 

(3) Need to consider the completion degree of an area target 

For point targets, there are only two possible states: satisfied (i.e., observed) or unsat-
isfied (i.e., unobserved). However, for area targets, partial satisfaction can be achieved 
if only a portion of the corresponding subtargets is observed. If an area target is 
completely covered, there should be an additional benefit beyond the sum of the bene-
fits of its corresponding subtargets. Moreover, the relationship between the comple-
tion degree of an area target and the benefit is nonlinear. The benefit of completing 
remaining subtargets on this basis increases with the degree of completion. Thus, the 
evaluation method for the completion degree of an area target (coverage rate of the 
area target) needs to be designed.
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The typical processing approach for area targets generally involves a two-stage 
strategy of “decomposition first, scheduling second.” In other words, the area target 
observation scheduling problem is decomposed into two subproblems: area target 
decomposition and satellite observation task scheduling for subarea targets. During 
the first stage, the area target is divided into multiple subtargets or strips that can 
be fully covered by onboard sensors via a single observation. The parameters, such 
as switch-on and switch-off time and satellite roll angle, of the onboard sensor are 
determined for each time window of satellite access to the subarea targets. The 
second stage involves scheduling the observation tasks for subarea targets (strips) 
which is very similar to conventional observation task scheduling algorithms for 
point targets. And for area targets, we need to consider the evaluation method for 
completion degree and benefit of observations to area targets. 

1. Area target decomposition algorithm 

Area target decomposition involves decomposing the area target observation tasks 
based on satellite visible windows and orbits and constructing a set of candidate 
observation strips for each time window. Given that area target decomposition is 
closely related to satellite parameters such as orbit and field of view, this section 
proposes a time-stamped observation strip model to capture the coverage character-
istics of satellite onboard sensors. Additionally, the section introduces the constraint 
satisfaction polygon cutting algorithm (CSPCA) for area target decomposition. 

(1) Time-stamped observation strip model 

The observation strip is a subtarget divided from an area target, and it can be covered 
by an onboard sensor within a single observation. 

Definition 3.6: Time-stamped coverage boundary The time-stamped coverage 
boundary describes the boundary of coverage area when an onboard sensor takes 
a photo to ground. It contains the location, coverage area, and access time of 
a satellite. Therefore, a time-stamped coverage boundary usually corresponds to 
a sequence of time-stamped latitude and longitude coordinate points, denoted as 
TBoundary = (TPoint1, . . . ,  TPointM ). In which, TPoint denotes a time-stamped 
coverage boundary point, defined as (Latitude, Longitude, TimeLabel), denoting 
the position and satellite access time of the boundary point, respectively. 

Definition 3.7: Time-stamped observation strip (TStrip) Time-stamped obser-
vation strip is a rectangular area covered by onboard sensor via a single observa-
tion. A time-stamped observation strip TStrip can be represented by a seven-tuple, 
TStrip ≡ 〈strip_ID , AreaTar, sat, t task b , t task e , angle, TBoundary〉, where strip_ID 
denotes the identifier of the observation strip, and AreaTar is the identifier of the 
area target corresponding to the observation strip. sat is the satellite performing the 
observation. t task b and t task e are the switch-on and switch-off time of e corresponding 
onboard sensors respectively. angle is the observation angle used by the satellite 
to perform the corresponding observation activity. TBoundary is the time-stamped 
coverage boundary of the observation strip.
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For a TStrip, the following basic operations can be performed on it. 

(1) Set a value to t task b and t task e . 
(2) Update the value of the TBoundary (the attributes of the corresponding TPoint). 
(3) Covering relationship analysis: both the observation strip and the area target 

can be regarded as Polygon. We can do spatial intersection operation between 
them to determine whether the two polygons overlap. If the result is empty (not 
overlap at all), return 0; else, return 1. 

The length of the observation strip depends on the difference between t task b and 
t task e , and the above operations (1) and (2) enable the correction of the observation 
strip length to make it reasonable (not too large or small) to alleviate the rick of 
violating satellite constraints. 

For example, when the length of observation strip is very long/short (the area 
target range is very large/small), a satellite may violate constraint C1 (satellite single 
power-on time constraint). 

Operation (3) is mainly used to calculate the coverage of the observation strip 
with respect to the area to be observed, which can be used as an important factor for 
deciding whether the observation strip is performed or not during task scheduling. 

After giving the definition of TStrip, the constraint-satisfiable area target 
decomposition algorithm will be described as follows. 

(2) Constraint-satisfiable area target decomposition algorithm 

To decompose an area target into candidate observation strips (which can be viewed as 
an earth observation meta-task), this section utilizes the observation angle discretiza-
tion strategy based on the access time window of a single satellite to the area target. It 
constructs observation strips with different observation angles within the maximum 
observation coverage of the satellite. 

Firstly, the notations are defined as follows: 

(1) Area target sets ATARGET ≡ {
AreaTar1, AreaTar2, . . . ,  AreaTarNp

}
, Np is the 

total number of area targets. 
(2) The satellite imaging roll angle is denoted as β, and range of the imaging roll 

angle is (βmin, βmax). If the satellite does not have rolling capability, then β = 0. 
(3) The minimal stride of imaging roll angle of Satellite sati . is denoted as Δβi . 
(4) The visible window set of satellite sati to AreaTar j can be denoted as Ti j  ={

t1, t2, . . . ,  tNi j

}
, where t1, t2, . . . ,  tNi j  is the satellite visible windows and Ni j  

is the total number of satellite visible windows. 
(5) For kth satellite visible window between satellite sati and area target AreaTar j , 

can be denoted as tNi jk  , where k ∈ [
1, Ni j

]
. There are several candi-

date observation strips in tNi jk  with different satellite imaging roll angle. 
The set of candidate observation strips in tNi jk  can be denoted as Ii jk  ={
stripi jk1, stripi jk2, . . . ,  stripi jk  Ni jk

}
, which is the decomposition result of 

AreaTar j in tNi jk  . stripi jkv means the vth candidate observation strips in tNi jk  . The  
set of candidate observation strips of the area target AreaTar j can be denoted as
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I j =
{
I1 j , I2 j , . . . ,  INS j

}
, where NS is the number of satellites involved in the 

scheduling. 

The constraint-satisfiable area target decomposition algorithm (CSPCA) is 
designed to obtain the candidate observation strips. CSPCA will generate the set of 
candidate observation strips for the pairs between each satellite and each area target. 
Taking the satellite sati for the area target AreaTar j as example. Firstly, CSPCA 
will figure out all the satellite visible windows between satellite sati and area target 
AreaTar j . Then, for each satellite visible window, the candidate satellite observation 
strips are generated with different imaging roll angle (increasing from βmin to βmax in 
a certain stride Δβi ) and the spatial coverage relationship between the strips and the 
area target. Lastly, the candidate strips of all satellite visible windows are combined 
to form the set of observation strips between satellite sati and area target AreaTar j . 
Similarly, the observation strips of all satellites for all area targets can be calculated. 

The pseudo-code of CSPCA is as follows: 

Algorithm name: CSPCA 
Input: Satellite set SAT, Area target set ATARGET, Scheduling time horizon [tB, tE] 
Output: The set of candidate observation strips IS 

begin 
1 for j ← 1 to Np  
2 for i ← 1 to Ns  
3 Ti j  ← ComputeTimeWindow

(
sati , AreaTar j , tB, tE

)
// figure out satellite visible 

windows 
4 for k ← 1 to  NTi j  

5 β ← βmin; 
6 while β <  βmax 

7 β ← β + Δβ 
8 stripi jkv · TimeLabelCoords ← ComputeStripCoordinate

(
sati , AreaTar j , β

)
// figure 

out the boundary points of the strip. 

9 stripi jkv · t task b , stripi jkv · t task e ← ComputeAccess
(
sati , stripi jkv · Coords

)
// figure 

out the observation start time and end time of the strip. 

10 Ii jk  ← Ii jk  ∪
{
stripi jkv

}

11 end while 
12 Ii j  ← Ii j  ∪

{
Ii jk

}

13 end for 
14 I j ← I j ∪

{
Ii j

}

15 end for 

16 IS ← ⋃Np 
j=1 I j 

end 

2. Satellite observation task scheduling for subarea targets (strips) 

After the constraint-satisfiable area target decomposition, the set of candidate obser-
vation strip is generated. For each candidate observation strip, it can be completely
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covered via a single observation by satellite. Thus, the observation strips can be 
regarded as point targets. 

The area target observation strip scheduling problem is similar to the point target 
observation scheduling problem and is formulated using a constraint satisfaction 
problem (CSP) model. However, the area target observation strip scheduling problem 
has unique characteristics that require a proper objective function. Unlike point 
targets, area targets are considered completed only when they are fully covered 
(100%). In practice, observation tasks for area targets are often only partially satis-
fied, meaning that only a subset of the observation strips are performed. Additionally, 
observation strips that belong to the same area target have a relationship with each 
other, and the relationship between the completion degree of an area target and 
its associated benefit is nonlinear. Therefore, a proper objective function must be 
designed for the CSP model to accurately capture the characteristics of the area 
target observation strip scheduling problem. The higher the degree of completion, 
the higher the benefit of completing remain subtargets (strips) on this basis. 

This section proposes an optimization objective function for the area target obser-
vation strip scheduling problem. The objective function is based on partial reward of 
area targets, considering the criteria of task importance. Then the scheduling method 
for the area target observation strips is introduced. 

(1) Partial reward of an area target 

For every satellite visible window, satellite can only select one candidate observation 
strip of the visible window to perform, which is only a part of the whole area target. 
Since the EOS resource is limited, the area target observation tasks may only be 
partially satisfied during the scheduling time horizon. For example, for 20 area targets 
observation scheduling scenario, the following are two possible scheduling results. 

Result 1: all 20 area target observation tasks achieved 50% imaging coverage within 
the limited scheduling time horizon. 

Result 2: among the 20 area target observation tasks, 10 area targets had an 80% 
completion rate and the other 10 area targets had only a 20% completion rate for the 
limited scheduling time horizon. 

Typically, result 2 is considered as a better result, as a half of these area targets 
obtain a higher imaging coverage (close to 100%). The benefit is quite low, if the 
imaging coverage for an area target is lower than 50%, since we cannot get the useful 
general information of the area target. 

To better describe the observed benefit of an area target, this section assumes 
that the benefit within the area target is positive correlation to the area of the region 
covered by the observed strip and defines the partial reward of an area target AreaTar j 
as follows: 

PartialReward
(
AreaTar j

) = P
(
CovAreaTar j , ε, δ

)
(3.24)
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Fig. 3.16 Relationship between imaging coverage rate and observation benefit of an area target 

In which, CovAreaTar j denotes the observed coverage ratio of the area target 
AreaTar j , and it is numerically equal to the area of the union of all performed obser-
vation strips divided by the area of AreaTar j . P

(
CovAreaTar j , ε, δ

)
is the reward factor, 

and it can be formulated as follows: 

P
(
CovAreaTar j , ε, δ

) = 

⎧ 
⎨ 

⎩ 

δ 
ε CovAreaTar j , ε,  δ  ∈ (0, 1), CovAreaTar j ≤ ε 
1−δ 
1−ε

(
CovAreaTar j − ε

) + δ ε,  δ  ∈ (0, 1), CovAreaTar j > ε  
CovAreaTar j , ε  = δ = 0 

(3.25) 

In which, ε and δ are parameters of reward factor, both of them ∈ [0, 1). From  
Eq. (3.25), we can see that when the observed coverage ratio of the area target is 
above the threshold ε, the observation benefit of the area target is the δ 

ε − 1 times 
to the original one. If we set ε = δ = 0, the observation benefit of the area target is 
proportional to the coverage rate CovAreaTar j . Figure 3.16 illustrates the observation 
benefit of the area target function with different ε and δ. 

(2) Objective function for area target observation strip scheduling 

For the area target observation strip scheduling problem, we still use the task impor-
tance criteria as the objective function for optimization. For area targets, the degree 
of target imaging coverage also needs to be taken into account. The relationship 
between imaging coverage rate and observation benefit of an area target has been 
formulated by PartialReward(). Thus, the task importance optimization objective is 
defined as follows: 

Vimp = max
∑

j∈TARGET 
ψAreaTar j · PartialReward

(
CovAreaTar j

)
(3.26)
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In which, the ψAreaTar j is the priority of the area target AreaTar j , that denotes the 
total reward when AreaTar j is covered by 100%. 

(3) Methodology for area target observation strip scheduling 

Using the CSPCA area target decomposition algorithm, area targets can be decom-
posed into multiple observation strips, each of which can be treated as an earth 
observation meta-task. Consequently, the area target observation task scheduling 
problem is transformed into an observation task scheduling problem with multiple 
associated point targets, i.e., the observation strips. We can adopt an algorithmic 
framework and operators similar to the SOCSA introduced in Sect. 3.2.1, and the 
optimization objective is employed as Eq. (3.26). 

3.4.2 EOS Task Scheduling for Ocean Moving Target 

The previous chapter focused on the scheduling of satellite observation tasks for 
fixed targets. However, scheduling observations for moving targets are also of great 
interest. The observation scheduling problem for moving targets is more complex 
than that for stationary targets due to several factors. The challenges of moving targets 
observation scheduling include the complexity of the geographical environment of 
the moving target, the uncertainty of the target’s trajectory, and the high level of 
timeliness required for the observation task. In this section, satellite observation task 
scheduling for ocean moving target is introduced. 

The moving targets in this section refer to the moving targets on the ocean surface, 
i.e., large ships or fleets. The exact destination and route of the moving target are 
unknown. Therefore, the difficulty of the EOS task scheduling problem for ocean 
moving target lies in how to make accurate prediction of the current position of a 
moving target. 

Satellite observation task scheduling for moving targets typically involves two 
stages: the search for discovery and the relay observation. During the search for 
discovery stage, the exact position and velocity of the moving target are unknown. 
Instead, we have to rely on the EOSs to observe the most likely area to find the target. 
This stage requires guessing the target’s position within a certain range of the ocean 
area. Once the moving target is discovered by a satellite, the relay observation stage 
begins. During this stage, the satellite that first observed the target relays the target’s 
exact position and velocity to other satellites, and we need to infer the position of 
the moving target when the next satellite passes the concerned ocean area, enabling 
them to track and observe the target. Therefore, the search for discovery and relay 
observation stages require careful planning and scheduling to ensure efficient use of 
satellite resources while satisfying observation task requirements. 

Theoretically, both in search for discovery stage and relay observation stage, 
we have to infer the exact position of the target, which can be modeled as a state 
estimation problem. In this section, a typical algorithm based on target distribution
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Fig. 3.17 Schematic diagram of regular grid division for the concerned ocean area 

updating in grid for the EOS task scheduling for ocean moving target problem is 
introduced. 

1. Regular grid division for the concerned ocean area 

In order to infer the position of a moving target using the state estimate theory, it is 
necessary to discretize the ocean region where the moving target may exist. Thus, 
we divide the ocean region into regular grids, as shown in Fig. 3.17. After the grid 
division, we need to calculate the probability that the moving target exists in each 
grid and make satellite observation strips cover the grids with the highest probability. 

The granularity of the grid division has a significant impact on the estimation 
computation. When the division granularity is too large, the localization accuracy of 
the moving target is compromised. On the other hand, if the granularity is too small, 
it can significantly increase the computational burden, leading to excessively long 
computation times. To address this challenge, the grid length and width are typically 
set to one-half of the minimum width of the satellite observation strips, taking into 
account the specific characteristics of the satellite observation process. 

2. Calculation of target transfer probabilities based on stochastic maneuver models 

Previous studies generally assume that the target moves in a straight line, and thus 
the target distribution probability follows Gaussian distribution. In fact, when the 
target moves in a certain ocean area, it may move in a straight line, or it may carry 
out circular motion, polyline motion, etc. Using one of the above motion models can 
not accurately describe the motion characteristics of a moving target. 

For these reasons, we assume that the moving target follows a stochastic maneuver 
model, i.e., that the target has the same probability of moving to any position in any 
direction within its range of motion. Assuming the target appears within the grid i
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at the timestamp tn−1, and the average velocity of the moving target is v, then for 
any timestamp tn the probability of the moving target lines in a circle (the center is 
the center point of grid i and the radius is d = v · Δt) is 1. Within the circle, the 
distribution probability of the moving target appearing at any grid is equal. 

According to the assumptions of the stochastic maneuver model described above, 
the transfer probability from grid i to the grid j (the probability of target moving 
from the grid i to the grid j) at  nth observation can be modeled based on maximum 
likelihood probability estimation, i.e., 

q(i, j |n) = max

(
0, 

v · Δt − d(i, j ) 
|v · Δt − d(i, j )|

)
· p(i |n − 1) 

|Ni | (3.27) 

where d(i, j) denotes the Euclidean distance from the center of the grid i to that of 

the grid j . And  max
(
0, v·Δt−d(i, j) 

|v·Δt−d(i, j)|
)
denotes if d(i, j) is more than the maximum 

distance the target can moved withinΔt (v ·Δt), the probability of the moving target 
exists in grid j is 0. Ni indicates the set of the grid that covered by a circle with grid 
i as the center and v · Δt as the radius. Thus, |Ni | is the number of grids contained 
in set Ni . p(i |n − 1) is the probability of the moving target existing in grid i , at the  
(n − 1)th observation. 

3. Observation strips generation algorithm for moving target based on transfer 
probability updating 

On the basis of grid dividing and moving target transfer probability, the observa-
tion strips generation algorithm for moving target is introduced in this section. The 
flowchart of the algorithm is shown in Fig. 3.18.

From the main steps of the algorithm, as shown in Fig. 3.18, the probability of the 
moving target in each grid is estimated based on the transfer probability calculation 
and the historical observation information during each satellite’s visible window over 
the concerned ocean area. The probability distribution of the moving target in the 
grid is dynamically updated and guides the subsequent observation actions. If the 
algorithm runs for the first time, it enters the leftmost branch, and the probability of 
each grid is initialized. Otherwise, it goes into either the search for discovery stage 
(middle branch) or the relay observation stage (right branch) based on whether the 
moving target was discovered in the last observation. In both stages, the posterior 
probability of the moving target’s existence in each grid (i.e., the target distribution 
probability) is updated based on the results of the previous satellite observation 
action. 

(1) Grid probability initialization 

When the algorithm runs for the first time, there is no historical observation infor-
mation available for the moving target. In such a situation, we can assume that the 
moving target may be located at any grid in the concerned ocean area, and therefore, 
the prior probability of the moving target existing in any grid is equal to each other. 
The sum of the prior probability of all grids in the concerned ocean area is equal to 
1. The target distribution probability under each grid can be calculated as follows:
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Fig. 3.18 Flowchart of the observation strips generation algorithm for moving target

p(i |0) = 1 

|NG| (3.28) 

where NG denotes the sum of all grids in the concerned ocean area. 

(2) Posterior probability updating for each grid in search for discovery stage 

If a target is not found in the last observation, there are two different cases. Case 1: the 
target has not been discovered from historical observations, case 2: the target has been 
discovered from historical observations, and was not found in the last observation.
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In case 1, the posterior probability of the grids covered by the last observation 
strips is zero, since the moving target is not discovered by last observation. The 
posterior probability of the grids can be calculated by the following equation. 

p( j |n) =
∑

i∈NG 

q(i, j |n) (3.29) 

where the p( j |n) is the posterior probability of the grid j at nth observation, and the 
q(i, j |n) is the transfer probability from grid i to the grid j at nth observation which 
can be calculated by Eq. (3.27). 

In case 2, we assume that last time, the target was discovered in the historical 
observation (the observation time is t0), the corresponding location is grid of i0, and 
the velocity of the moving target is v. In the following observations (the observation 
time is t1, t2, . . .  tn−1, respectively), the target has never been discovered. Now we 
need to estimate the location of the moving target at the next observation tn , which 
can be expressed as the probability of the moving target existing in each grid. At t0, 
since the target was discovered, the probability of the target existing in grid i0 is one, 
and the probability of the other grids is zero at timestamp t0. 

Therefore, from t0 to t1, the probability of the target existing in grid j can be 
calculated as 

p( j |1) = max

[
0, 

v · (t1 − t0) − d(i0, j ) 
|v · (t1 − t0) − d(i0, j )|

]
· 1
∣∣Ni0

∣∣ (3.30) 

where, d(i0, j) denotes the Euclidean distance from the center of the grid i0 to that 
of the grid j . Ni0 indicates the set of the grid that covered by a circle with grid i0 as 
the center and v · (t1 − t0) as the radius. 

For the following observations t2, . . .  tn−1, the posterior probability of the grids 
can be calculated by Eq. (3.29). 

(3) Posterior probability updating for each grid in relay observation stage 

The target was found in the grid in−1 last observation at timestamp tn−1, and thus 
the posterior probability of the moving target existing in grid in−1 is one, and the 
probability of the other grids is zero at timestamp tn−1. In the  nth observation (at 
timestamp tn), the target may move to another grid during the span (tn − tn−1). 

We assume that the probability of the target moving in all directions is equal, and 
the target moves at a uniform speed. Therefore, the probability of the target existing 
in grid j at timestamp tn can be calculated as follows: 

p( j |n) = max

[
0, 

v · (tn − tn−1) − d(in−1, j ) 
|v · (tn − tn−1) − d(in−1, j )|

]
· 1
∣∣Nin−1

∣∣ (3.31)
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where, d(in−1, j ) denotes the Euclidean distance from the center of the grid in−1 to 
that of the grid j . v is the velocity of the moving target. Nin−1 indicates the set of the 
grid that covered by a circle with grid i0 as the center and v · (t1 − t0) as the radius. 

(4) Satellite observation strip generation based on maximum coverage probability 

Based on the probability distribution of the grids in which the moving target is likely 
to exist, the scheduling algorithm generates observation strips for each satellite, 
ensuring that the strips cover the grids with the highest probability of containing the 
target. In the case of optical satellites, generating the observation strip requires deter-
mining the switch-on time and roll angle of the satellite. In contrast, for SAR satel-
lites, the scheduling algorithm must simultaneously determine the switch-on time and 
working mode. These parameters, including switch-on time, roll angle, and working 
mode, are crucial observation parameters in the satellite observation scheduling algo-
rithm. If the observation parameters of a satellite are fixed, the ground observation 
strip is determined. And we can figure out the score of the ground observation strip 
at nth observation as follows: 

Score =
∑

j∈Noc 

p( j |n) (3.32) 

where Noc is the grid set covered by the ground observation strip, and p( j |n) is the 
probability of the moving target existing in grid j at nth observation. We only need 
to traverse all the satellite parameters and find the strip with the highest score. 

(5) Moving target observation task scheduling calculation methodology 

The generation of observation strips for moving targets can be considered as earth 
observation meta-tasks, which can be scheduled using meta-task scheduling algo-
rithms. However, the generation of subsequent observation strips depends on the 
outcome of the previous observation, which may result in conflicts with the existing 
meta-tasks in the satellite earth observation programme. Therefore, subsequent meta-
tasks for moving targets need to be generated dynamically and added to the existing 
programme based on the results of previous observations. The satellite earth obser-
vation programme needs to be rescheduled to solve the conflicts, which will be 
introduced in Chap. 4. 

3.5 Learnable EOS Task Scheduling 

With the rapid development of machine learning technology in recent years, there 
is increasing interest in combining machine learning methods with satellite task 
scheduling algorithms to further improve performance. In this section, we will intro-
duce satellite task scheduling based on historical earth observation programme case-
based learning as an example of learnable EOS task scheduling. EOSs in fixed orbits 
fly over the same ground region in a certain period with the same trajectory, and the
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revisiting interval is called the satellite orbit period. Since the position of most ground 
targets does not change over a long period of time, the earth observation programme 
of a satellite exhibits periodically similar characteristics. The latent heuristic infor-
mation contained in similar historical satellite observation programme can be used 
to guide scheduling for current observation tasks. 

The centralized satellite observation task scheduling algorithm, SOCSA, proposed 
in Sect. 3.2.1, does not take into account the historical satellite observation 
programme. If the heuristic information contained in similar historical satellite obser-
vation programme could be effectively used to guide the scheduling algorithm, it 
could potentially improve the optimization of the solution and reduce computational 
time. Case-based learning (CBL) is an approach that utilizes knowledge from histor-
ical cases to address new problems. CBL is suitable for fields where regular knowl-
edge is difficult to find and causality is hard to express using an exact model, and it is 
capable of adapting to knowledge inconsistency problems [130]. In recent years, CBL 
has been widely applied in various fields, including medical diagnosis, machining 
design, circuit design, software engineering, and so on. Methods based on CBL have 
demonstrated better performance than traditional methods, and the advantages of 
CBL include accessibility and ease of application compared to complex structured 
descriptions of knowledge, such as precise mathematical models or rules. However, 
the process of CBL is usually designed for specific application filed so that it cannot 
be used directly in different areas. 

Introducing the CBL idea to the satellite observation task scheduling problem, 
heuristic information can be extracted from the results of previous scheduling results, 
and applied to the solution of current satellite observation task scheduling problem, 
thus further improving the performance of the scheduling algorithm, and reducing 
the computational time. The EOSs task scheduling with CBL can be divided into 
four stages: case feature representation and extraction, case retrieval and matching, 
case revision, and case application [107] as Fig. 3.19 shown. 

Each of the components of the CBL satellite observation task scheduling 
framework is described respectively as follows.

Case feature selection 

Case representation and feature extraction 

Case feature extraction Case saving 

Case retrieval 
and matching 

Target similarity matching 

Case revision 

Revision for single circle 

Case application 

Iterative optimization 

Case output 

Initialization 

C
ase B

ase 

Revision for whole case 

Case retrieval 

Circle similarity matching 

Fig. 3.19 Case-based learning framework for satellite observation task scheduling 
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3.5.1 Case Representation and Feature Extraction 

Case representation is a critical step in case-based learning, which involves repre-
senting new problems and cases in the case base using a structured approach. The 
choice of case representation method is crucial since it must be able to capture all 
the relevant information in the cases and facilitate efficient case indexing. In our 
approach, we represent satellite observation tasks using various features such as 
the observation target set, meta-task set, target location, target access time window, 
target observation demand, task priority, and sensor requirement. We also include 
the observation task scheduling results as features of a case. Based on these selected 
features, we construct the basis structure of a case that serves as the representation 
of the case. And then historical scheduling results can be stored into case base. 

3.5.2 Case Retrieval and Matching 

Based on case representation, we need to retrieve the historical cases which can match 
the current scheduling scenario to be solved. We retrieve historical cases during 
the periods near-by previous intervals of the satellite orbit period. Furthermore, 
match the scheduling scenario with the retrieved cases according to the geographical 
information of targets. The process is as follows: 

1. Satellite task scheduling case retrieval 

The track of subsatellite point will return to the original track after a satellite orbit 
period. Therefore, a satellite can observe the same targets with the same observation 
parameters after several satellite orbit periods. 

According to this characteristic, we take the satellite orbit period as the cycle 
period and find the historical cases whose scheduling horizon is before that of current 
scheduling scenario as candidates, as shown in Fig. 3.20. In the figure, the T _Sat 
denotes the satellite orbit period. It is worth noting that the alternative cases retrieved 
by the satellite orbit period may not necessarily match the current scheduling scenario 
exactly, and further case matching is required because the meta-tasks may be different 
in each scenario.

2. Satellite task scheduling case matching 

Case matching refers to selecting historical EOS task scheduling cases from the 
case base that are similar to the current scheduling scenario. The assumption is 
that if the set of EOS and ground targets is similar in scheduling scenario A and 
scenario B, then their scheduling results should be similar as well. Thus, potential 
heuristic information can be obtained from historical cases that are similar to the
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Fig. 3.20 Schematic diagram of satellite task scheduling case retrieval

current scheduling scenario, which can be used to solve the current EOSs scheduling 
problem. This section introduces two phases of similarity matching methods. 

(1) Similarity matching based on target location 

Target matching is the first phase of similarity matching used to estimate the similarity 
between two targets with the same priority. The similarity between two targets can 
be determined by checking if they have the same priority and if their spatial locations 
are close to each other. It is argued that targets with different priorities cannot be 
considered similar. For targets with the same priority, their spatial locations are 
analyzed to determine their similarity. Thus, similarity between point targets, between 
a point target and an area target, and between area targets is addressed and will be 
introduced, respectively. 

An intuitive idea to determine whether two targets are similar in spatial location 
is to use a distance metric. For two point targets with the same priority ptar1, ptar2 ∈ 
TARGET, we use the Manhattan distance to define the distance between two point 
targets as follows: 

distance(ptar1, ptar2) = ∣∣lonptar1 − lonptar2
∣∣ + ∣∣latptar1 − latptar2

∣∣ (3.33) 

The two point targets are considered to be similar if the Manhattan distance 
between them is less than the distance threshold δptsi which is a hyperparameter of 
our method. 

For a point target ptar1 and an area target atar2 with the same priority, the similarity 
between them can be formulated as follows: 

distance(ptar1, p) ≤ δptsi, ∃p ∈ atar2 (3.34) 

For two area targets atar1 and atar2, the similarity between them can be modeled 
as follows: 

distance(p1, p2) ≤ δptsi, ∃p1 ∈ atar1, ∃p2 ∈ atar2 (3.35)
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(2) Single-circle similarity matching 

The second phase of similarity matching is single-circle similarity matching. Single-
circle matching is used to match a certain circle of scheduling tasks with a certain 
circle of historical tasks on the same satellite. They are considered similar if the 
amount of the similar targets between current scenario and historical case in the 
corresponding orbit circle up to the single-circle matching threshold δcircle. For  tasks  
belonging to one circle of a satellite, the similarity between a historical case and 
current scheduling scenario is illustrated as Fig. 3.21. 

Usually, an EOSs scheduling scenario consists of several orbit circles. Therefore, 
the overall similarity between the current scheduling scenario and a historical case 
can be calculated based on the single-circle similarity. The overall satellite task 
similarity calculation is shown in Fig. 3.22. 

Finally, the similarity between the current scheduling scenario and the historical 
case is judged based on the amount of similar circles, and the overall similarity 
measure of the two scenarios can be formulated as: 

Msimi_total = 
match_cir_number 

total_number 
(3.36)
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where match_cir_number is the number of orbit circles that can be matched between 
the current scheduling scenario and the historical case. total_number is the total 
number of the circles the scheduling scenario contains. If Msimi_total ≥ δtotal, then the 
current scheduling scenario is considered to be similar to the historical case. Where 
δtotal is the threshold value to determine whether the current scheduling scenario is 
similar to the historical case. 

3.5.3 Satellite Observation Programme Case Revision 

For the selected cases with the most similar characteristics to the current scheduling 
scenario, the mismatched earth observation tasks in the historical scheduling scenario 
are revised so that the historical scheduling scenario can be better applied to the 
current scheduling computation. The revision method consists of two parts: removing 
tasks from the historical cases that do not match the tasks in the current scheduling 
scenario, and updating the satellite visible window and observation requirements of 
the tasks in the historical scheduling scenario. 

3.5.4 EOS Task Scheduling Based on Case-Based Learning 

The most crucial aspect of case-based learning is utilizing the heuristic information 
suggested by the historical cases to direct the scheduling calculations for the current 
scenario. To address the EOSs observation task scheduling problem, we must employ 
similar historical scheduling cases to guide the current search process toward the 
most promising areas of the solution space to obtain an optimal scheduling result. In 
this regard, we continue to use the genetic algorithm architecture to solve the EOSs 
observation task problem. It should be noted that the case-based learning approach 
presented in this section can also be applied to other meta-heuristic algorithms such 
as tabu search, ant colony algorithm, particle swarm optimization, and so on. 

In the context of the regular genetic algorithm, case heuristic information can influ-
ence operators such as population initialization, selection operator, crossover oper-
ator, and mutation operator. Population initialization can be improved by randomly 
fine-tuning similar cases, which often result in high-quality individuals. The selec-
tion operator, crossover operator, and mutation operator can be designed to refer to 
the results of the state of the corresponding scheduling tasks in historical cases with 
a certain probability, thereby making use of the heuristic information provided by 
the cases. 

Moreover, the historical cases are also obtained by the heuristic search algorithm 
which is the same as the current one, and there is still room for improving the 
optimization degree of the scheduling result. Overreferencing the historical cases 
may also lead the algorithm to continue to fall into local optimal solutions. In view 
of this, the satellite observation task scheduling based on case-based learning and
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genetic algorithm (STSCGA) is designed. The problem coding is the same as that of 
the SOCSA algorithm introduced in Sect. 3.2.1. The main steps of STSCGA are as 
follows: 

Algorithm name: STSCGA 
Input: Earth observation meta-task TASK, the set of satellites SAT, a collection of similar cases 
that have been retrieved SCASE 
Output: Earth observation programme

{
xs task

}
, task ∈ TASK, s ∈ SAT 

begin 
1 Randomly generating the population RdmGroup // Population generation randomly 
2 Set  i = 1 // Iteration times of population evolution 
3 while  (i ≤ G1) 
4 SOCSA_Selection () // Selection operator used in SOCSA 
5 SOCSA_Crossover () // Crossover operator used in SOCSA 
6 SOCSA_Mutation () // Mutation operator used in SOCSA 
7 Constraint handling for population 
8 end while 
9 Generating the second population CaseGroup based on historical cases SCASE 
10 Combine CaseGroup with RdmGroup and form the whole population 
11 while(G1 < i ≤ G2) 
12 CBL_Selection () // Case-based learning selection operator 
13 CBL_Crossover () // Case-based learning crossover operator 
14 CBL_Mutation () // Case-based learning mutation operator 
15 if (The best individual of population has not changed after G3 consecutive iterations) 
16 SOCSA_Selection () // Selection operator used in SOCSA 
17 SOCSA_Crossover () // Crossover operator used in SOCSA 
18 SOCSA_Mutation () // Mutation operator used in SOCSA 
19 end if 
20 Constraint handling for population 
21 end while 
22 while(G2 < i ≤ G4) 
23 SOCSA_Selection () // Selection operator used in SOCSA 
24 SOCSA_Crossover () // Crossover operator used in SOCSA 
25 SOCSA_Mutation () // Mutation operator used in SOCSA 
26 Constraint handling for population 
27 end while 
28 i = i + 1 
29 Decoding and output Earth Observation Programme

{
xs task

}
, task ∈ TASK, s ∈ SAT 

end 

G1, G2, G3, and G4 are hyperparameter of STSCGA. The STSCGA algorithm 
comprises 29 statements that initialize the algorithm parameters (statements 1–2), 
adopt the selection, crossover, and mutation operators from SOCSA (statements 
3–8), use fine-tuned historical earth observation programmes as high-quality indi-
viduals to form the second population (statement 9), merge the second population 
with the current population (statement 10), and apply case-based learning selection, 
crossover, and mutation operators to the evolutionary process (statements 11–21). 
The three case-based learning evolutionary operators are described in the subsequent
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paragraphs. If the best individual of the population has not changed after G3 consec-
utive iterations, the algorithm switches to regular evolutionary operators (the selec-
tion, crossover, and mutation operators used in SOCSA) to tempt to jump out of the 
suspected local optima. The evolutionary process continues on the entire population 
using the same selection, crossover, and mutation operators from SOCSA (state-
ments 22–27) to prevent local optima caused by case-based learning operators and 
exploit more optimal solutions. The evolution generations counter is updated (state-
ment 28), and the results of SOCSA are outputted (statement 29) before the algorithm 
exits. Statements 3–8 can be seen as a “warm-up” process to the randomly gener-
ated population RdmGroup, preventing the rapid elimination of randomly generated 
individuals due to the high fitness value of the individuals generated from the histor-
ical cases, which would compromise population diversity. Statements 22–27 aim to 
perform unbiased genetic operations on the mixed population to reduce the proba-
bility of the population falling into a local optimum. Constraints are handled in the 
same way as in SOCSA (through statements 7, 20, and 26). The case-based learning 
population initialization, selection, crossover, and mutation operators are described 
as follows: 

1. Case-based learning population initialization operator 

The population initialization operator of case-based learning selects a similar histor-
ical case randomly and generates an individual by fine-tuning the historical case 
randomly. This process is executed as follows: for each meta-task in the current 
scheduling scenario, if a similar task is found in the historical case, the execution 
state of the meta-task is more likely to be consistent with the scheduling result of the 
historical case, with a higher probability (e.g., 80%). If no similar meta-task is found 
in the historical case, the execution state of the meta-task is determined randomly. 

2. Case-based learning selection operator 

The case-based learning selection operator selects individuals from RdmGroup 
and CaseGroup respectively by roulette method. The individuals selected form 
RdmGroup (which is generated by random initialization) constitute a half of the 
population, and the individuals selected form CaseGroup (which is generated by 
case-based learning initialization) form another half of the population. This can effec-
tively maintain population diversity. The elite archive mechanism is also designed 
in the case-based learning selection operator, which is consistent with that of the 
SOCSA algorithm (introduced in Sect. 3.2.1). 

3. Case-based learning crossover operator 

The case-based learning crossover operator selects two parent individuals and 
does crossover to generate two offsprings. The crossover operation is the same 
as the crossover operation of SOCSA (introduced in Sect. 3.2.1). The difference 
between case-based learning crossover operator and the SOCSA crossover oper-
ator lies in how to select the two parent individuals. The parent individual selection 
strategy is the case-based learning crossover operator that has the equal probability 
of selecting two individuals from RdmGroup, or selecting two individuals from
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CaseGroup, or selecting one individual from RdmGroup and another individual from 
RdmGroup. The probability of the three situations is 1/3, respectively. If the case-
based learning crossover operator selects one individual from RdmGroup and another 
individual from RdmGroup, the two offsprings are randomly assigned to CaseGroup 
or RdmGroup. 

4. Case-based learning mutation operator 

The case-based learning mutation operator uses a random flipping variation approach, 
where an individual is randomly selected and a gene locus of that individual is 
randomly selected with a certain probability to determine whether the gene locus is 
reversed or not. 

The probability of determining whether the meta-task execution represented by 
that gene locus is reversed can be obtained by counting the corresponding task execu-
tion status in the similar historical cases. For example, if the corresponding task is 
performed in a lot of historical cases, the task should be performed with a higher 
probability in the current scheduling scenario. The individuals to be mutated are 
selected from CaseGroup and RdmGroup with an equal probability. 

5. Updating of the case base 

The case base should be updated continuously, the current scheduling result should 
also be stored in case base. In this way, the satellite observation task scheduling 
for the current scenario and the historical case base updating become a closed loop. 
With the operation of case-based learning mechanism, the optimization degree of 
the newly generated scheduling results will continue to be improved. The histor-
ical scheduling cases with higher benefits can provide better support for the future 
scheduling scenario. This will form a virtuous circle.



Chapter 4 
EOS Task Rescheduling for Dynamic 
Factors 

Chapter 3 introduced a ground-based centralized satellite task scheduling model and 
methods that can be applied to the task scheduling problem of earth observation 
satellites (EOSs) in static scenarios. The static scenarios refer to situations in which 
the satellite resources and observation tasks engaged in scheduling scenarios will not 
change once the scheduling process begins. However, EOSs operate in a complex 
environment full of changes. They may experience temporary failures, be repaired, or 
have new observation tasks submitted at any time. Failing to account for these changes 
during the task scheduling process will inevitably result in suboptimal scheduling 
outcomes. 

To address this problem, the study of EOS task rescheduling for dynamic factors 
has emerged as a hot topic in EOS task scheduling research [131]. As a necessary 
complement to the EOSs task scheduling under static conditions, this chapter will 
focus on the study of the EOSs task rescheduling method for dynamic factors. These 
factors mainly include the generation of new observation tasks and satellite failures/ 
restarts. 

4.1 Problem Description and Analysis 

4.1.1 Classification and Analysis for Dynamic Factors 

Satellite earth observation task rescheduling is generally caused by internal and 
external factors. Internal factors originate from the satellite system itself. The 
dynamic changes in power, storage space, and transmission resources of the satellite 
require adjustments to the original earth observation programme. External factors 
include changes in observation tasks (also referred to as observation requirements 
in some documents) and changes in the external environment during satellite opera-
tion (such as cloud occlusion caused by changes in meteorological conditions during 
optical satellite imaging). Two dynamic factors—the uncertainty of observation task

© National Defense Industry Press 2023 
H. Chen et al., Earth Observation Satellites, 
https://doi.org/10.1007/978-981-99-3565-9_4 

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3565-9_4&domain=pdf
https://doi.org/10.1007/978-981-99-3565-9_4


94 4 EOS Task Rescheduling for Dynamic Factors

emergence and the dynamic change of satellite resources—are present in all types 
of satellite task scheduling and are described in detail below. 

1. The uncertainty of observation task emerging 

In practice, new observation tasks may emerge at any time. Customers may submit 
new observation requests, and some of these requests may be urgent or essential (such 
as flood or volcanic eruption observation). Additionally, feedback information from 
ongoing observation tasks may require changes to the existing satellite observation 
programme. For example, observation tasks for moving targets in the ocean may 
require frequent revision as the predicted position of the moving target changes based 
on the last observation results. The ability to accommodate observation feedback 
significantly enhances the effective utilization of a set of satellite resources. 

2. Changes in the dynamics of satellite resources 

Satellites operate in a complex space environment, and their internal failures (such 
as telemetry equipment, sensor, power supply, or memory failure), environmental 
impacts (such as solar flares), or external factors (such as malicious attacks) can 
cause satellite resources to fail temporarily. As a result, observation tasks in the 
original satellite observation programme may not be carried out as intended, which 
can result in significant losses to end users of earth observation system. The afore-
mentioned dynamic changes in satellite resources are almost unpredictable, making 
the implementation of satellite earth observation task rescheduling subject to a high 
degree of uncertainty. 

4.1.2 Problem Modeling 

To address the aforementioned uncertainties, satellite earth observation task 
rescheduling mainly adopts two approaches. 

The first approach involves performing a complete rescheduling, which entails 
recalculating the task scheduling based on all current candidate observation tasks 
and satellite resources when dynamic factors emerge. The resulting satellite obser-
vation programme replaces the old one, and the two may be significantly different 
from each other. This may cause confusion among customers, as the response status 
to their numerous observation requests may change constantly. Additionally, the 
computation time required for a complete rescheduling is usually long. Therefore, 
complete rescheduling is not commonly used in practice. 

The second approach, called satellite task partial rescheduling, involves making 
partial adjustments to the existing satellite observation programme. In other words, 
the original observation programme is revised partially to adapt to the new scheduling 
scenario, such as new tasks or satellite resources. This approach responds to dynamic 
factors while maximizing the benefits of the rescheduling process, making it widely 
used in practice.
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This chapter focuses on satellite task partial rescheduling models and methods. 
Firstly, we provide a problem description and formulation. 

1. Given a scheduling time horizon wschedule = [tB, tE]. tB and tE are the start time 
and end time of the scheduling time horizon. 

2. Given a EOSs set SAT. For∀s ∈ SAT, s ≡ 〈MODEs , memys , transs i, j , pre
s , posts ,

�T s m, �T s l , �T s lc, �T s ld, ω
s〉. Where MODEs is the set of observing modes of 

satellite s. For an optical satellite, MODEs is the imaging roll angle of the satellite 
s. For a synthetic aperture radar (SAR) satellite, MODEs is the set of parame-
ters of SAR sensors; for electromagnetic detection satellites, the working mode is 
the parameters of the onboard electromagnetic signal receiver. memys is the total 
capacity of the onboard memory of satellite s. If the onboard memory capacity is 
full (also known as onboard memory overflow), the satellite cannot continue its 
earth observation task using the playback transmission mode. transs i, j is the tran-
sition time from working mode i to working mode j , in which i, j ∈ MODEs . 
pres is the power-on preparation time of the satellite s. posts is the power-off stabi-
lization time of the satellite s.�T s m and�T s l denote the minimum and maximum 
single observing time of satellite s. �T s lc is the longest cumulative working time 
of the satellite s in a single circle. �T s ld is the longest cumulative working time 
of the satellite s in a single day. ωs is the data acquiring/transmission ratio of 
the satellite s, i.e., the ratio of data generated per unit time from onboard earth 
observation sensor to the data transmitted per unit time of the data transmission 
payload. ωs characterizes the data transmission capability of the satellite. 

3. Given an observation target set TARGET. For  ∀tar ∈ TARGET, tar ≡ 〈lontar , 
lattar, rottar〉 in which, lontar and lattar are the target’s longitude and latitude. rottar 
is the maximum number of effective observations to the target tar. There is no 
furthermore reward if the observation times of tar are more than rottar. 

4. Given a meta-task set TASK, which is described in Sect. 3.1.1. For  ∀k ∈ TASK, 
k ≡ 〈sk , mods k , ψk , t k b , t

k 
e , tark , circlek〉. Where sk ∈ SAT denotes the satellite 

that perform task k in the VTW. mods k ∈ MODEs denotes the working mode 
that satellite sk takes to perform task k. ψk is the priority of task k that denotes 
the reward when k is performed. t k b and t

k 
e is the start time and end time of the 

corresponding VTW. tark ∈ TARGET, denotes the task k corresponds to the 
ground target tark . circlek ∈ N indicates the orbital circle of the satellite in which 
the current task is located. 

5. For a satellite s ∈ SAT after static scheduling (as presented in Chap. 3), the 
satellite observation programme of s is denoted as JOBs 

init. 
6. In the case of new task emerged, given a set of new targets to be observed 

TARGETnew, and the corresponding set of new meta-tasks of satellite s can be 
denoted as tasks new. 

7. In the case of satellite resource failure, the set of changes can be denoted as 
DIST. For ∀δ ∈ DIST, δ ≡ 〈

sδ , t δ off, t
δ 
on

〉
. Where sδ ∈ SAT is the satellite 

identifier, and t δ off is the time stamp when satellite k failed, and t δ on is the recovery
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time stamp of satellite k. Thus, satellite is unavailable in the period
[
t δ off, t δ on

]
,[

t δ off, t δ on
] ⊆ [tB, tE]. 

Based on the problem description above, for s ∈ SAT, the dynamic rescheduling 
for new tasks of satellite s is to insert new task set tasks new into the existed satel-
lite observation programme JOBs 

init, resolve conflicts between tasks and form the 
rescheduling result JOBs 

new. Similarly, the dynamic rescheduling for satellite resource 
failure is to insert the tasks that cannot be performed by the failure satellite to the 
observation programme of the other remained satellites, and form the rescheduling 
result JOBs 

new. 
In order to measure the change degree between original observation programme 

JOBs 
init and the revised one JOB

s 
new of satellite s, the rescheduling change degree 

[125] is defined as follows. 

Definition 4.1: Task change rate (TCR) ζ 

ζ =
∑

s∈SAT
∣∣JOBs 

init − JOBs 
new

∣∣
∑

s∈SAT
∣∣JOBs 

init

∣∣ . (4.1) 

ζ describes the degree of change between the initial scheduling result JOBs 
init and 

the rescheduling result JOBs 
new. The difference between JOB

s 
init and JOB

s 
new is larger; 

the value of ζ is higher. 
In practice, the upper limit ζmax of ζ is given as a constraint for rescheduling. 

Apparently, if all tasks of the initial scheduling result are required to be performed 
in the satellite observation programme after rescheduling, then ζmax = 0%. 

4.1.3 Mapping Between Dynamic Factors 

If the dynamic rescheduling for new tasks aims at finding more optimal scheduling 
results when new tasks emerge, the dynamic rescheduling for satellite resource failure 
is to reduce the loss in the case of satellite temporary unavailable. Once a satellite 
resource failure occurs, some satellites will not be available for a certain period of 
time, and the satellite observation programme for that period cannot be performed. 
The tasks that cannot be performed normally due to satellite resource failure is called 
failure tasks. The set of earth observation targets corresponding to the failed tasks is 
denoted as TARGEToff. In the rescheduling process, TARGEToff needs to be assigned 
to the remaining available satellite resources, in order to reduce the loss caused by a 
part of satellite resources failure. 

If we consider TARGEToff as the set of new emerged earth observation targets 
TARGETnew, then the dynamic rescheduling for satellite resource failure can be
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transformed into the dynamic rescheduling for new tasks. The mapping method is 
as follows. 

1. Delete tasks that cannot be performed in JOBs 
init, due to the satellite resource 

failure. And the satellite observation programme after task deleting form JOBs 
init 

is denoted as JOBs 
on. 

2. Filter unavailable satellite resources (the unavailable periods of satellite 
resources). The remaining available satellite resources can be denoted as SAT_ 
ON. 

3. Perform target access calculations between TARGEToff and SAT_ON and form⋃
s∈SAT_ON Task

s 
off.

⋃
s∈SAT_ON Task

s 
off can be regarded as the new tasks, and SAT_ON can be 

regarded as the set of available satellites in the current scenario. Therefore, dynamic 
rescheduling for satellite resource failure problem can be transfer to dynamic 
rescheduling for new tasks problem. 

4.1.4 Driving Strategy of Heuristic Dynamic Rescheduling 

The EOS task dynamic rescheduling algorithm is a reactive scheduling method that 
responds to dynamic factors. One important consideration is determining when to 
start the rescheduling process. There are three typical strategies: periodic-driven, 
event-driven, and hybrid-driven. 

The periodic-driven strategy involves a fixed rescheduling period, where new 
tasks emerging in the current cycle must wait until the start of the next cycle before 
being handled. This strategy is also known as batch task scheduling. 

In contrast, the event-driven strategy starts the rescheduling process immedi-
ately once a new task emerges. New tasks do not have to wait for the next cycle of 
the periodic-driven strategy, which allows them to be handled in a timely manner. 
However, the computation burden of this strategy can be high if new tasks emerge 
frequently. 

The hybrid-driven strategy combines the periodic-driven and event-driven strate-
gies. For normal new tasks, the rescheduling process starts under the periodic-driven 
strategy. For urgent or very important new tasks, the rescheduling process starts 
immediately under the event-driven strategy. This strategy is commonly used in 
practice. 

Regardless of the driven strategy, when the rescheduling process starts, the 
rescheduling algorithm try to revised the existed satellite observation programme 
according to the new emerging tasks. Two typical EOS task rescheduling algorithms 
will be described in Sects. 4.2 and 4.3, respectively.
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4.2 EOS Task Rescheduling Based on Heuristic Strategy 

Rule-based heuristic rescheduling algorithms are one type of typical EOS task 
rescheduling methods. The basic idea of these algorithms is to insert the new task 
into a proper position of the existed satellite observation programme and resolve 
conflicts between the inserted new tasks and the original ones via heuristic rules. 
This section will introduce the details of rule-based heuristic EOS task rescheduling 
algorithm. 

4.2.1 A General Method of Heuristic Dynamic Rescheduling 

If we insert a new observation task into the existed satellite observation programme, 
we can see there are three relationship of the new task and the existed tasks: 
separation, intersection, and inclusion as shown in Fig. 4.1. 

The rule-based heuristic EOS task rescheduling algorithm is designed to handle 
the three relationships between the new task and original tasks as shown in Fig. 4.1.

Satellite 

Time 

SatN 

Sat2 

Sat1 

Original task 

Inclusion 

Intersection 

Separation 

New task 

Fig. 4.1 Relationship between the new task and the original task in initial satellite observation 
programme 
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Fig. 4.2 Schematic diagram of the task insertion operator 

The algorithm inserts new tasks and resolves conflicts between tasks using different 
operators, which are described as follows. 

1. Task insertion operator 

Task insertion operator can be used if there are enough available free slots in the 
original observation programme into which the new task can be inserted. Therefore, 
the task insertion operator is applicable when the relationship between the new task 
and the existed tasks is separation. The process of task insertion is shown in Fig. 4.2. 

2. Task merging operator 

Task merging is a technique used when there is insufficient free time in the original 
satellite observation programme to accommodate a new task. Instead, the new task 
can be merged with one of the existing tasks in the programme. This requires merging 
both the satellite visible window and the working mode of the two tasks. For instance, 
in the case of an optical imaging satellite, merging two tasks requires the observation 
time windows of both tasks to intersect, and the roll angle of the satellite to be 
recalculated to cover both tasks. Therefore, task merging is applicable when there is 
a relationship between the new task and the existing ones, either through intersection 
or inclusion. The process of task merging is illustrated in Fig. 4.3. 

3. Task arbitration operator 

Task arbitration operator is used in the situation that a new task has a time conflict 
with one of the tasks in the original observation programme and the two tasks cannot 
be merged. The task arbitration operator determines which task will be performed 
among the conflict tasks based on heuristic rules.

t t 
(a) Before task merging (b) After task merging 

Fig. 4.3 Schematic diagram of the task merging operator 
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(a) Before task arbitration (b) After task arbitration 

Fig. 4.4 Schematic diagram of the task arbitration operator 

The heuristic rules used in EOS task scheduling are expert-designed and tailored to 
the specific requirements of satellite operation services. These rules aim to simplify 
and streamline the scheduling process by automating decision-making based on 
predetermined criteria. For example, a common heuristic rule is “higher priority 
tasks take precedence in arbitration.” This means that a task with a higher priority 
will be prioritized over a lower-priority task, resulting in the removal of the latter 
from the observation programme. In Sect. 4.2.2, we will delve into the specifics of 
the heuristic rules employed in EOS task scheduling. 

Therefore, the task arbitration operator is applicable when the relationship 
between the new task and the existed tasks is intersection or inclusion. The process 
of task arbitration is schematically shown in Fig. 4.4. 

4.2.2 Rules of Heuristic Rescheduling for New Task Insertion 

Dynamic rescheduling requires both optimality of the rescheduling observation 
programme and the computation timeliness; many scholars proposed heuristic rule-
based strategies [51, 132] for new task insertion, which can be divided into two 
categories. 

1. Task insertion based on priority 

The task priority-based heuristic insertion rule is a simple and effective method for 
generating high-quality rescheduled observation programme [133]. The main idea 
of this rule is to prioritize tasks based on their importance, which is the objective 
function of EOS task scheduling. Firstly, the new tasks are sorted in descending order 
of priority. Then, they are inserted into the observation programme one by one. If the 
insertion satisfies the constraints, it is successful. Otherwise, a merging operation is 
attempted. If merging fails, an arbitration operation is used. Finally, the lowest priority 
tasks are dropped until all the constraints are satisfied, and the constraint handling 
process (as described in Sect. 3.2.1) is performed. This heuristic insertion rule is 
simple to implement and can respond quickly to dynamic rescheduling scenarios. 
However, it may not always produce the optimal solution. 

The flow chart of the task insertion rules based on priority is shown in Fig. 4.5.
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Fig. 4.5 Flow chart of the 
task insertion rules based on 
priority
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It is noted that we also can replace the priority with other indicators to determine 
whether the new task can take place of the existed one when conflict occurs. The 
other indicator most adopted in EOS task rescheduling is task opportunity factor ρi 

[61, 131]. 
The task opportunity factor ρi is defined as: 

ρi = ψtask 

Num_wini 
, (4.2) 

where ψtask is the priority of the observation task, and Num_wini refers to the total 
number of the satellite visible windows to the ground target. 

From the definition of the task opportunity factor ρi , we can see the number of the 
satellite visible windows of the ground target refers to the observation opportunities 
of the ground target. If the number of the satellite visible windows is high, there 
are a lot of opportunities to complete the observation, and the urgency (ρi ) of each 
observation task to the ground target is low. 

2. Iterative repair-based task insertion 

Unlike the direct task insertion based on task priority, the iterative repair-based task 
insertion considers not only the priority of the new task but also the impact of the new 
task insertion to the whole observation programme. It searches for the opportunity 
of the inserting the dropped tasks into the observation programme again. 

The insertion of a new observation task with higher priority may result in the 
dropping of an existing task (tasks). In the absence of the dropped task (tasks), a 
new observation time window may become available in the observation programme, 
creating an opportunity to insert another candidate task (other candidate tasks). To 
manage the dropped tasks, a conflict task queue is utilized, which stores them in 
order of their priority (from high to low). During the rescheduling process, the tasks 
in the conflict task queue are revisited and reinserted into the observation programme 
to improve its optimization. 

For example, a typical rescheduling process is shown in Fig. 4.6. In Fig.  4.6(1), 
new task A is inserted in to the observation programme successfully, and task M 
and N are dropped, since they conflict with higher priority task A. Both task M and 
N are stored in the conflict task queue. In Fig. 4.6(2), the priority of new task B 
is higher than that of task A; thus, task A is replaced by task B, and task A is also 
stored in the conflict task queue. In Fig. 4.6(3), the rescheduling algorithm tries to 
insert the tasks of the conflict task queue into the observation programme. Currently, 
the conflict task queue contains task A, M and N . Apparently, task A cannot be 
inserted successfully, while task M and N can. Figure 4.6(4) shows the final satellite 
observation programme. The status of the conflict task queue is shown in Table 4.1.

The flow chart of the iterative repair-based task insertion rule is shown in Fig. 4.7.
In summary, the distinction between the task insertion methods based on priority 

rules and iterative repair lies in their approach to handling dropped tasks. The iterative 
repair-based method stores dropped tasks in a conflict task queue and attempts to 
re-insert it into the observation programme, whereas the priority-based method takes
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Fig. 4.6 Typical rescheduling process with the conflict task queue 

Table 4.1 Elements stored in 
the conflict task queue at each 
step of Fig. 4.6 

Step Handling task Elements in the conflict task queue 

(1) A Null 

(2) B M and N 

(3) M and N A, M and N 

(4) Null A

no action. While the iterative repair-based method may yield more optimal results, it 
also incurs additional computation time. The priority-based method is more suitable 
for applications with the highest timeliness requirements in an urgent rescheduling 
situation. 

4.3 EOS Task Rescheduling Based on Intelligent 
Optimization Operator 

4.3.1 EOS Task Rescheduling Based on SWO 

The heuristic rule-based dynamic rescheduling method for EOS tasks presented in 
the previous section involves selecting appropriate insertion locations for new tasks 
using heuristic policies. This approach enables a quick response to task rescheduling 
scenarios. In this section, we will introduce the EOS task dynamic rescheduling 
method based on heuristic local search, which can typically produce more optimal 
results than heuristic rule-based rescheduling methods, albeit with a slightly longer 
computation time. 

Squeaky-Wheel Optimization (SWO) is a typical heuristic local search method 
that has been successfully applied in several fields such as graph coloring, satellite 
range scheduling, space-based astronomical observation scheduling, etc. [125]. In
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Fig. 4.7 Flow chart of the iterative repair-based task insertion rule

this section, we present the Satellites Dynamic reScheduling Algorithm based on 
memorized SWO (SDSA) [134]. 

1. Basic SWO optimization operator 

The core idea of the SWO operator is an iterative cycle of “construct-analyze-priority 
adjustment” as shown in Fig. 4.8. The SWO operator consists of three modules, 
namely a constructor, an analyzer and a prioritizer.

In a scheduling problem, a solution is constructed by a greedy algorithm based on 
task priorities. The analyzer then evaluates the scheduling results generated by the 
constructor to identify any shortcomings and assigns blame values to each task. Next, 
the prioritizer reorders the tasks based on their blame values to guide the constructor
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Fig. 4.8 Schematic diagram 
of the optimization process 
of the SWO operator

Analyzer 

Constructor Prioritizer 

Solution Blame 

Priorities 

to prioritize the tasks with higher blame values and generate a new solution. This 
cycle continues until a termination condition is met. 

2. Design of dynamic rescheduling algorithm based on SWO with memory 

In SDSA, tasks can be divided into two categories: scheduled observation task 
sequence and unscheduled observation task sequences. In the initial state, the sched-
uled observation task sequence is

⋃
s∈SAT JOB

s 
init and the unscheduled task sequence 

is
⋃

s∈SAT Task
s 
new. During the iteration of the SDSA algorithm, the SWO oper-

ator continuously attempts to assign unscheduled tasks with high blame value and 
performs constraint handling on the scheduled task sequence to drop the conflicting 
tasks with low blame value, and add these dropped tasks to the unscheduled task 
sequence. The scheduled task sequence of SDSA is the rescheduling result. The 
framework of SDSA algorithm is described below. 

Algorithm name: SDSA 
Input: original scheduling result

⋃
s∈SAT JOBs 

init, new  tasks set
⋃

s∈SAT Tasks new 
Output: dynamic rescheduling result

⋃
s∈SAT JOBs 

new 

begin 
1 set  Assigned = ⋃

s∈SAT JOBs 
init, UnAssigned =

⋃
s∈SAT Tasks new 

2 Blame = Analyzer (UnAssigned) 
3 Prioritizer (UnAssigned, Blame) 
4 (Assigned, UnAssigned) = Constructor (Assigned, UnAssigned) 
5 if the algorithm satisfies the end condition then 
6 exit  
7 else goto 2  
8 end if  
9

⋃
s∈SAT JOBs 

new = Assigned 
end 

In the SDSA algorithm, statements 2–4 call the analyzer, prioritizer and 
constructor of SWO, respectively, for iterative optimization. Statements 5–8 perform 
the end condition judgment of the algorithm and exit if the algorithm satisfies the 
end condition, otherwise continue the cycle optimization process. 

Unlike the basic SWO operator, in SDSA, the analyzer and prioritizer act only on 
the unscheduled task sequence (UnAssigned), while the constructor acts on both the
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scheduled task sequence (Assigned) and unscheduled task sequence (UnAssigned). 
To prevent tasks from being repeatedly scheduled and dropped, a memory module is 
introduced in the iterative optimization process of SWO. Details about the analyzer, 
prioritizer, and constructor in SDSA are described below. 

1. The analyzer 

The analyzer is the key component of the SWO, and the capability of analyzer will 
directly affect the optimization performance of SWO. The analyzer in SDSA gives 
a blame value to every element of UnAssigned (the unscheduled task sequence). 

Similar to Chap. 3, the task importance objective is mainly considered. Therefore, 
the task with higher priority is considered to have a larger blame value. For a task i , 
the blame value of i can be formulated as: 

Blamei = ψT i∑
j∈UnAssigned ψT j 

. (4.3) 

In which, T i is the observation target of task i , and ψT i is the priority of the 
observation target T i . In the iterative optimization process, we also have to consider 
some other factors and revise the blame value of task i . The factors are as follows. 

• Task change rate. If the task change rate ζ exceeds its upper-bound ζmax, then the 
blame value of the tasks in original observation task sequence (

⋃
s∈SAT JOB

s 
init) 

increases. The effect of task change rate to the blame value of task i can be 
formulated as follow. 

if ζ >  ζmax, i ∈ UnAssigned ∩
(⋃

s∈SAT JOB
s 
init

)

Blamei = Blamei + max 
j∈UnAssigned

(
Blame j

)
. (4.4) 

• Memory effect. To prevent a task from being repeatedly scheduled, dropped, and 
rescheduled during the optimization cycle, we designed a list that keeps track 
of the number of times each task has been scheduled and dropped. If a task is 
scheduled and then dropped, its blame value is reduced since it can be regarded 
as repetitive and useless work. The more times a task is scheduled and dropped, 
the smaller its blame value becomes. The memory effect on the blame value of a 
task for repetitive work can be formulated as follows. 

∀i ∈ UnAssigned, Blamei = Blamei · (γ )ADT
i 
. (4.5) 

In which, ADTi is the number of times of the task i to be scheduled and then 
dropped. γ ∈ (0, 1) is the decay factor. The introduction of memory effect to the SWO
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operator is beneficial to reduce the computation time and accelerate the convergence 
speed of the SDSA. 

2. The prioritizer 

The prioritizer sorts the tasks in UnAssigned (the unscheduled task sequence) in 
descending order of the blame value. The “QuickSort” algorithm is employed in the 
prioritizer of the SDSA. 

3. The constructor 

The constructor gets the tasks from UnAssigned (the unscheduled task sequence) 
that has been sorted by prioritizer one by one and make attempt to insert them into 
Assigned (the scheduled task sequence) in turn. 

If the scheduled tasks do not conflict with the newly inserted task, the insertion is 
considered successful. Otherwise, the rescheduling evaluation value (e.g., priority of 
a task) of the current task to be inserted and the scheduled task(s) that conflict with 
it are calculated. The task with the higher rescheduling evaluation value will remain 
in the observation programme, while the other conflicting task(s) will be dropped. 

If the one conflicting with the current task to be inserted is also newly inserted 
task in this round, the current meta-task will be dropped directly. The main steps of 
the constructor of the SDSA are as follows. 

Algorithm name: SWO_Constructor 
Input: scheduled task sequence Assigned, unscheduled task sequence UnAssigned 
Output: updated scheduled task sequence Assigned_new 

updated unscheduled task sequence UnAssigned_new 

begin 
1 set  Assigned_new = Assigned, UnAssigned_new = ϕ, UnAssigned1 = UnAssigned 
2 while  UnAssigned1! =  ϕ 
3 Fetch the first element k from UnAssigned 
4 ConflictSet = GetConflictTask (Assigned_new, k) 
5 if  ConflictSet = ϕ then 
6 Insert the k into Assigned_new 
7 else  if  ConflictSet ∩ UnAssigned1 = NULL then 
8 calculate the rescheduling evaluation value of k and elements of ConflictSet 
9 if (The sum of the evaluation values of all tasks in ConflictSet ≤ that of k) 

or (task ∈ ⋃
s∈SAT JOBs 

init, and  ξ ≥ ξmax) then  

10 Drop all task contained in ConflictSet from Assigned_new 
11 Insert k into Assigned_new 
12 Add all elements of ConflictSet to UnAssigned_new 
13 end if 
14 else insert k into UnAssigned_new 
15 end if 
16 Delete k from UnAssigned1 
17 end while 
end 

In SWO_Constructor algorithm, Statement 5 obtains the set of tasks which conflict 
with  the task to be inserted (k).
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Fig. 4.9 Main steps of the SORSA algorithm 

4.3.2 EOS Task Rescheduling Based on Evolutionary 
Computation 

In Chap. 3, we introduced SOCSA, an EOS task scheduling algorithm under static 
situations. SOCSA is based on the evolutionary computation method, which natu-
rally accommodates dynamic rescheduling scenarios. Therefore, this section aims to 
extend the capabilities of SOCSA and propose a new algorithm, Satellites Observa-
tion Task Re-Scheduling Algorithm based on evolutionary computation (SORSA). 
The framework of SORSA is shown in Fig. 4.9. 

From Fig. 4.9, we can see that the running state of SORSA can be divided into 
two running phases. 

After SORSA starts running, it enters phase 1. The population is randomly gener-
ated, and the typical evolutionary cycle (namely the fitness evaluation, selection, 
crossover, and mutation) is running. When the exit condition is satisfied, the algorithm 
outputs the results and enters the phase 2. 

In the phase 2, all information of the current population is saved to the individuals 
pool, also known as “scenario hold” operation, and the algorithm enters standby 
mode. SORSA remains in standby mode unless new tasks emerge. When new tasks 
emerge, a population is generated that contains both the new tasks and the original 
tasks based on the basic structure of individual information in the individuals pool. 
The algorithm then enters phase 1 again. SORSA operates in this cycle. The encoding 
method, population initialization method, fitness evaluation, crossover, mutation, and
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Fig. 4.10 Schematic of the population reconstruction when new tasks emerge 

selection operator of SORSA are identical to those of SOCSA (described in Chap. 3). 
Therefore, we can conclude that phase 1 of SORSA is equivalent to SOCSA. 

The following will focus on the two main steps in phase 2 of SORSA, i.e., scenario 
hold and population reconstruction. 

1. The scenario hold operation of SORSA 

The scenario hold operation is to save the individuals in the current population to the 
individuals pool. It is noted that a de-duplication operation needs to be performed 
when saving new individuals into the individuals pool, since there may be identical 
individuals in the current population. 

2. The population reconstruction of SORSA 

The population reconstruction is the process of retrieving the individuals from the 
individuals pool and combining them with the new observation tasks to form a new 
population. The process of the population reconstruction is shown in Fig. 4.10. 

In Fig. 4.10, the twilled squares indicate new tasks and the white squares indicate 
original tasks. The encoding of SORSA is identical to that of SOCSA (details in 
Sect. 3.2.1), “1” means that the task will be performed and “0” otherwise. The tasks 
of the same satellite are sorted by the start time of observation. 

The de-duplication operation is performed in the scenario hold operation, which 
results in a smaller number of individuals in the individuals pool compared to the 
population size. To form the new population, all individuals in the individuals pool 
are first retrieved. If the size of the new population is still insufficient, individuals are 
randomly retrieved from the individuals pool with equal probability and added to the 
new population until the population size requirement is met. The coding sequences 
of individuals are updated to contain the new tasks, and their execution states are 
randomly initialized. There is no need to be concerned about whether the newly 
generated individuals may violate any constraints, as the constraint handling will be 
addressed in phase 1.



Chapter 5 
Distributed Satellite Task Scheduling 
Models and Methods 

This chapter presents an introduction to satellite task scheduling methods in 
distributed scenarios. Both distributed and centralized satellite task scheduling have 
their own advantages and disadvantages, which are applicable to different application 
scenarios. Together, they form the mainstream technology system of multi-satellite 
joint task scheduling. The distributed satellite task scheduling is based on the multi-
agent system (MAS) theory in distributed artificial intelligence. In this approach, 
each satellite participating in the scheduling process is considered an intelligent 
agent undertaking earth observation tasks based on its capabilities and benefits. These 
satellite agents interact with each other to rapidly form a multi-satellite observation 
programme. 

The chapter first describes the multi-satellite distributed task scheduling problem 
and analyzes its application scenarios along with the multi-agent system architecture. 
Then, it establishes the distributed satellite task scheduling model. Finally, it proposes 
the distributed satellite task scheduling method based on the cooperation mechanism, 
such as contract network protocol and blackboard model. 

5.1 Problem Description and Analysis 

5.1.1 Formulation of the Distributed Satellite Task 
Scheduling Problem 

In a centralized scheduling scenario, multiple satellites typically perform earth obser-
vation tasks under the unified management of the EOSOC. The EOSOC can conduct 
centralized scheduling based on obtaining all satellite information and data transmis-
sion resources, giving it good global optimization and solution capabilities. However,
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the centralized satellite task scheduling model has some limitations that should be 
considered. 

(1) Longer solving time: The computational complexity is high because the global 
optimization algorithm solves the problem based on all satellite information. 
As the number of observation requests and the number of satellites increase, the 
computational operation becomes enormous, resulting in a significant increase 
in computation time [24]. 

(2) Low dynamic adaptability: In the centralized task scheduling scenario, if a new 
task arrives, it is necessary to replan all tasks to develop a new earth observa-
tion programme or use a heuristic correction method to locally fine-tune the 
current programme. However, rescheduling is time-consuming and typically 
undesirable. If it becomes the norm for new tasks to arrive at any time, the earth 
observation programme will be repeatedly modified, and its optimality will 
be drastically reduced [135]. Consequently, centralized scheduling for satellite 
tasks makes responding reasonably to a dynamic changing environment of tasks 
and resources challenging. 

(3) Insufficient scalability: The centralized task scheduling method is closely 
coupled with specific satellite constraints. When a new satellite is deployed, the 
original scheduling algorithm must be adjusted to accommodate the change, 
making expanding the centralized scheduling method challenging. If a newly 
added satellite’s constraints and usage rules differ significantly, it may even 
require redesigning the existing centralized task scheduling method [136]. 

(4) Weak encapsulation of building blocks: In the centralized task scheduling 
method, the capabilities and constraints of each satellite need to be mathemat-
ically modeled, requiring the satellite center to master their technical param-
eters. However, in practice, various satellite operation centers usually manage 
different series of satellites, and technical parameters are generally inconvenient 
to disclose to each other. Consequently, applying the centralized satellite task 
scheduling method in such scenarios is challenging [137]. 

The emergence of the distributed satellite task scheduling method has addressed 
the limitations of the centralized approach. In this model, multiple satellite task 
planners are represented as intelligent agents that exchange information on tasks, 
resources, equipment status, and other relevant data to plan and decide on their tasks, 
leading to the collaborative observation of ground targets. The distributed method 
offers several advantages over the centralized approach. 

Firstly, the algorithms used in distributed satellite task scheduling are naturally 
parallel, and satellite agents can be deployed on different computing nodes. As a 
result, the allocation of earth observation tasks among satellite agents is accomplished 
efficiently through negotiation algorithms, reducing computation time.
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Secondly, the distributed task scheduling approach operates in an online 
processing mode, enabling real-time processing of earth observation tasks. When 
a task is received, each satellite agent determines whether to execute it based on 
available resources while negotiating with other agents for task repetition. This 
differs from the centralized approach, which employs global optimization for initial 
scheduling and local heuristic correction for dynamic rescheduling. 

Thirdly, the distributed task scheduling is based on the theory of multi-agent 
systems in distributed artificial intelligence, allowing new satellite deployment 
by modeling it as a new satellite agent and registering it into the multi-agent 
system. Similarly, satellite failure or withdrawal only requires the cancelation of 
the corresponding agent in the system. 

Lastly, distributed satellite task scheduling allows for modeling EOSs or EOSOCs 
as agents, encapsulating task scheduling calculations within the agent. This enables 
the distributed collaborative task scheduling of satellites between multiple EOSOCs 
using negotiation algorithms without disclosing technical details of satellites under 
each EOSOC’s jurisdiction. Joint negotiation algorithms can be used between 
multiple satellite centers to distribute earth observation tasks. 

The use of distributed satellite task scheduling theory effectively addresses the 
limitations of centralized satellite task scheduling. To clarify our discussion, we 
shall refer to the multiple satellites involved in the scheduling process as distributed 
satellite clusters in the context of distributed satellite task scheduling. This scheduling 
method is grounded in the theory of agent and multi-agent systems in distributed 
artificial intelligence, which we will elaborate on in the subsequent sections. 

5.1.2 Introduction to Agent and Multi-agent Systems 

In the mid-1950s, McCathy [138] first proposed the idea of an agent. Since then, 
agents, particularly multi-agent systems, have become a popular topic in artificial 
intelligence and computer science [139, 140]. The original definition of an agent 
referred to someone who performed specific tasks on behalf of another individual or 
organization. However, in computational science, an agent is a hardware or software-
based computer system with autonomy, reactivity, social ability, and proactiveness. 

In the context of distributed satellite task scheduling, an agent has specific charac-
teristics: (a) it exists in a particular environment and can perceive and influence it, (b) 
it has an autonomous purpose and can arrange activities to achieve its goal, and (c) it
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can exchange information with other agents in the environment. An agent typically 
possesses three critical properties: perceptiveness, autonomy, and interactivity. 

1. Perceptiveness 

The external environment can influence an agent’s problem-solving behavior and 
strategy. Therefore, it is necessary for the agent to continuously perceive any changes 
in the environment to ensure the goal’s relevance and the programme’s viability. 

2. Autonomy 

An agent possesses the capability of independent thinking and decision-making. 
It can make independent decisions without any human or agent intervention. It can 
adjust its behavior in response to changes within itself or in the external environment. 
Moreover, the agent can integrate information from other agents into its decision-
making process. 

3. Interactivity 

Communication can occur through specific methods in a virtual environment with 
multiple agents. Each agent can refer to the information provided by other agents 
during independent decision-making, reason about the data received, and learn from 
the shared experiences. 

Multi-agent systems have emerged as a prominent research topic in Distributed 
Artificial Intelligence (DAI). DAI is concerned with exploring how intelligent 
systems can achieve problem-solving in a logically or physically decentralized 
manner while collaborating. This approach is a computer simulation of the collab-
orative division of labor and cooperation mechanisms observed in humans [141]. 
DAI is comprised of two critical branches: distributed problem-solving (DPS) and 
multi-agent system (MAS). As research in this area progresses, there is a gradual inte-
gration of the two branches. Based on references [142, 143], MAS can be considered 
a further development of DPS. 

A MAS is a distributed and autonomous system composed of multiple mutu-
ally independent agents, working together toward accomplishing specific tasks or 
achieving common goals. MAS can be viewed as a virtual society of agents based 
on the principles of bounded rationality [144] and society of mind [145]. Each 
agent cooperates through reasoning, planning, negotiation, and negotiation to jointly 
complete complex tasks that are difficult for a single agent to complete. The autonomy 
of each agent and its ability to collaborate with others is a fundamental characteristic 
of MAS. Each agent in MAS has access to only partial information, resulting in a 
localized perspective and problem-solving ability. This contrasts with single-agent 
systems, where a central controller typically has access to all the information. In addi-
tion, MAS has no central control, with data being decentralized or distributed. The 
computation process is typically asynchronous, concurrent, or parallel. In summary, 
the primary features of MAS include autonomy, collaboration, localized knowledge,
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decentralized or distributed data, and asynchronous, concurrent, or parallel computa-
tion processes. These characteristics make MAS suitable for solving complex prob-
lems that would be difficult to solve with a single-agent system. Multi-agent systems 
have the following main characteristics. 

1. Social nature 

Within a multi-agent system, each agent operates as a member of a virtual society 
composed of several agents. As a part of this virtual society, each agent can commu-
nicate, cooperate, negotiate, compete, manage, and control other agents to achieve 
its objectives and contribute to the overall social value of the system. 

2. Isomorphism 

In a multi-agent system, each agent typically possesses unique capabilities that enable 
them to perform different collaborative divisions of labor. Consequently, a multi-
agent system composed of agents with varying task-processing capabilities exhibits 
heterogeneous characteristics. 

3. Collaborative nature 

In a virtual society, each agent must undertake complex tasks that often require 
collaboration with other agents. Thus, collaboration is a fundamental element of 
a multi-agent system, enabling members with diverse objectives to negotiate and 
cooperate to enhance the problem-solving ability of the system as a whole. 

Multi-agent system technology can express complex systems, as each member 
agent within a given multi-agent system possesses social, heterogeneous, and collab-
orative characteristics. As such, it provides a unified model and framework for various 
practical systems. 

In the distributed satellite task scheduling process, the satellite cluster can be 
considered a distributed intelligent system, resembling a virtual society. Each satellite 
has autonomous capabilities and can collaborate to perform complex earth observa-
tion tasks. Accordingly, current research aims to model the distributed satellite task 
scheduling problem using multi-agent systems. 

5.2 Distributed Satellite Task Scheduling Model Based 
on Multi-agent Systems 

5.2.1 Social Role Analysis of Multi-agent Systems 

The first step in developing a distributed satellite task scheduling model using a 
multi-agent system is to identify the elements and objects within the satellite cluster 
that must be mapped as agents. Given that individual earth observation satellites 
are independent of each other and that the satellites are distributed across different 
locations, each satellite and its internal components in the cluster are grouped together 
and mapped as a single agent. This approach results in all satellite agents forming 
a multi-agent system. As each agent in the multi-agent system has unique social
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and heterogeneous characteristics, the composition structure of the satellite cluster 
multi-agent system varies based on the collaborative division of labor among the 
satellite agents. 

To further classify the collaborative division of labor among satellites in a 
distributed satellite cluster, the characteristics of various multi-agent system compo-
sition structures are examined. For instance, Schetter et al. [146] conducted a study 
of the TechSat 21 project, which analyzed the collaborative division of labor among 
satellites with varying autonomous capabilities in a distributed satellite cluster. 
According to Schetter et al.’s findings, satellite agents can be classified into four 
levels. I1, I2, I3 and I4 as shown in Fig. 5.1. Among them, the I1 represents the 
satellite agent with the strongest autonomy capability, while I4 the satellite agent 
with the weakest autonomy capability. 

I4 indicates that a satellite agent is only responsible for receiving and executing 
tasks. It can only receive and execute commands and tasks from other satellite agents. 
The satellite is only a task executor. 

I3 denotes that a satellite agent has local planning capability, which means it can 
only generate planning results related to its tasks. Such a planning process involves 
only the satellite itself and not the entire satellite cluster. 

I2 represents the satellite agent can interact with other satellite agents. This kind of 
agent can resolve conflicts with other satellite agents by coordination and negotiation 
to improve the whole system’s performance. It requires the agent to have partial 
knowledge of the multi-agent system, i.e., the relevant knowledge of other satellite 
agents. Still, it cannot obtain all information within the whole satellite cluster. 

I1 denotes the satellite agent with the most substantial autonomy in the satellite 
cluster, and this type of satellite agent can obtain all information of the satellite
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cluster. It can generate the earth observation programme of the satellite cluster and 
assign the tasks undertaken to the appropriate satellites for execution. 

By dividing their work and assuming responsibilities based on the four levels 
of autonomy described above, satellite agents can establish satellite clusters 
with distinct multi-agent system structures. Schetter et al. [146] have proposed 
several general architectures for such structures, including top-down, centralized, 
distributed, and fully distributed forms. Figure 5.2 displays the schematic diagram 
and interrelationships of these structures. 

Figure 5.2 gives the structure of various multi-agent systems with different 
autonomy levels. As can be seen from the figure, the top-down coordination structure 
forms a master–slave structure. The I1-level satellite agent makes the programme of 
the whole satellite cluster and assigns the relevant tasks to the bottom I4-level satel-
lite agent to execute. Located at the bottom of the centralized coordination structure 
are I2-level and I3-level satellite agents. In the centralized structure, the I1-level 
satellite agent first plans the tasks of the whole satellite cluster and assigns specific 
tasks to I2-level and I3-level satellite agent, and then I2-level and I3-level satellite 
agent performs further scheduling and finally determines the execution plan. The 
multi-agent system with distributed coordination structure is an ideal structure with
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Fig. 5.2 Various multi-agent structures of distributed satellite clusters [146] 
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distributed hierarchy, which can be regarded as the union of several centralized coor-
dination structures. This structure can fully exploit each satellite agent’s adaptability, 
distribution, and autonomy capabilities. The fully distributed coordination structure 
assumes that all satellites in the satellite cluster have I1-level autonomous capability 
and the planning and decision computation at the satellite cluster can be performed 
among all satellite agents. The fully distributed coordination structure has no hier-
archy among the satellite agents, and its flat organizational structure guarantees the 
system a high degree of flexibility and reliability. Nevertheless, the communication 
overhead between agents in this structure is relatively high. As any agent can make 
global decisions, the interaction protocols can become intricate, and there can be 
significant redundancy of interaction information between each satellite agent. 

5.2.2 Satellite Agent Model Construction 

Based on the above analysis and carefully considering the intelligence and negotiation 
cost of the distributed satellite cluster, each satellite can be modeled as I2-level or 
I1-level intelligent agent. Then, the top-down and centralized coordination structures 
are not suitable for distributed task scheduling problem because they contain satellite 
agents with autonomous capabilities of I3-level and I4-level. Conversely, while the 
fully distributed coordination structure offers high flexibility and reliability, it is 
less efficient for negotiation and incurs higher costs for collaborative computation. 
Thus, we adopt the distributed coordination structure as the organizational structure 
for the multi-satellite multi-agent system. In this section, we introduce a distributed 
coordination structure multi-agent system with a variable division of labor as the 
organizational structure for an earth observation satellite cluster, where the division 
of labor among the satellites is flexible. At any moment, the collaborative division 
of labor of only one satellite in the satellite cluster is I1-level satellite agent, and the 
collaborative division of labor for the remaining satellites is I2-level satellite agent. 

Drawing from the above analysis, we develop a model for a distributed satellite 
cluster multi-agent system in this section, illustrated in Fig. 5.3 (using a cluster of five 
satellites as an example). In Fig. 5.3a, each agent represents a satellite in the cluster, 
and intersatellite links facilitate information exchange between agents. Figure 5.3b 
depicts the multi-agent system structure of the satellite cluster at a specific moment, 
where agent 1 can collaborate with the entire cluster, while agents 2 through 5 possess 
the local scheduling capability of the satellite cluster.

The deliberative agent architecture is utilized to model each satellite in the satel-
lite cluster, as presented in Fig. 5.4. The task planner, which is situated at the core 
of the satellite agent, is responsible for synthesizing the external information and 
current state and computing the earth observation meta-tasks that can be executed. 
Subsequently, it notifies the remaining satellite agents and adjusts its tasks in accor-
dance with the negotiation results obtained from the external satellite agent. The 
external environment perceiver is responsible for sensing the dynamic changes in 
the external environment and processing the negotiation information provided by
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the external satellite agent. The satellite state perceptron monitors the satellite state 
in real-time and delivers the results to the task planner to facilitate decision-making. 
The memory component serves as the storage system for the satellite agent, storing 
the information related to the tasks executed by the satellite and all negotiation results, 
thus providing data support for the mission planner. Finally, the constraint detector is 
responsible for identifying the sequence of earth observation meta-tasks developed 
by the task planner and feeding the task planner with the earth observation meta-tasks 
that violate the satellite constraints. 
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5.3 Distributed Satellite Task Scheduling Methods 

The interaction and collaboration mechanism among satellite agents is crucial for 
multi-agent systems to address the distributed task scheduling problem. The contract 
network protocol and the blackboard model are two widely adopted collaboration 
mechanisms in multi-agent systems. This section presents the distributed satel-
lite task scheduling techniques based on these two collaboration mechanisms and 
recommends some enhancement strategies. 

5.3.1 Distributed Task Scheduling Based on Contract 
Network Protocols 

1. Contracts network protocol 

The contract network protocol is a high-level protocol that facilitates effective agent 
collaboration by sharing tasks and simulating the contract bidding process [147]. It 
offers a solution to the task collaboration problem [148]. 

The protocol states that the contract network consists of some nodes, and each note 
represents an agent in the multi-agent system. Each node will dynamically assign 
one of the following three roles. 

(1) Manager: The manager generates tasks and assigns them to other nodes. 
Typically, there is only one manager at a specific time. 

(2) Worker: The worker completes the tasks. Usually, there are multiple workers in 
the system. 

(3) Contractor: The contractor is the worker who has been awarded the tender and 
must carry out the corresponding tasks for which the tender was awarded. 

The problem-solving process in the contract network is illustrated in Fig. 5.5.
The problem-solving approach comprises several steps, which are outlined below:

(1) The manager agent initiates a task notification and broadcasts it to the worker 
agents, as illustrated in Fig. 5.5a. 

(2) The worker agent receives the task notification and evaluates whether to bid 
based on the task requirements, its capabilities, knowledge, and expected bene-
fits. If the worker agent deems itself suitable for the task, it submits several bids 
to the manager agent as shown in Fig. 5.5b. 

(3) The manager agent receives multiple bids and selects one or more agents to 
complete the task, based on the information provided in the bids. The selected 
agents become the contractors, as depicted in Fig. 5.5c.
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Fig. 5.5 Problem-solving process of the contract network protocol

(4) The contractor completes the task under the supervision of the manager agent. 
If the contractor fails to complete the task, it is considered a breach of contract 
and will be penalized accordingly as shown in Fig. 5.5d. 

The distributed satellite task scheduling problem involves the selection of a 
manager agent from a satellite cluster to negotiate and allocate a series of earth 
observation targets among the remaining satellite agents. According to the tradi-
tional contract network protocol, the manager agent can only invite tenders for 
one observation target at a time, and the bidding order can significantly affect 
the scheduling result. This limitation poses a challenge to achieving optimized 
scheduling results and make full use of satellite resources. 

To address this challenge, outsourcing and exemption mechanisms [149] have 
been introduced, inspired by the outsourcing substitution mechanism in business. 
The outsourcing mechanism enables an agent to outsource a task to other more 
suitable agents if they cannot complete it. The exemption mechanism is similar 
to the amnesty principle in tabu search algorithms. If the agent abandons the task 
already undertaken and accepts a new task, it will not be penalized as long as the 
overall system benefit increases. Based on these concepts, the Satellite Distributed 
Scheduling Algorithm Based on Outsourcing Contract Net (SDSOCN) has been 
developed.
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Overall, the proposed algorithm seeks to enhance the performance of contract 
network-based distributed scheduling in satellite clusters by leveraging outsourcing 
and exclusion mechanisms. By adopting this approach, it is anticipated that the 
utilization of satellite resources can be significantly improved, and more optimal 
scheduling results can be achieved. 
Algorithm name: SDSOCN 
Input: set of earth observation targets to be assigned (TARGET) 
Output: set of earth observation meta-tasks to be performed by the satellite cluster 
(
⋃

s∈SAT TASKs 
do) 

begin 
1 randomly select a satellite agent s as the manager agent. TARGETs = TARGET 
2 while  TARGETs �= ∅ //TARGETs is the bidding queue of the satellite agent s 
3 manager agent removes the first target tar in TARGETs , and broadcasts its tender information 
4 for each k ∈ SAT 
5 satellite agent k calculates the access time window for target tar and generate earth observation 
meta-tasks 
6 satellite agent k initiate single-satellite scheduling calculations, send bids or non-participation 
messages 
7 end  for  
8 The manager agent analyzes the benefit value and cost of the bidding, then determines the set 
of winning agents 
9 assign the winning satellite agent set to SATwin and send the winning satellite the winning 
message 
10 the manager agent removes the task tar from TARGET set 
11 for each k ∈ SATwin // for each winning satellite Agent 
12 if satellite agent k has taken on a task that conflicts with the winning earth observation 
meta-task, then 
13 satellite agent k removes the conflict earth observation meta-task from TASKs 

do 

14 satellite agent k adds the target corresponding to the conflict earth observation meta-task to 

its tender queue TARGETk 

15 end if 
16 satellite agent k inserts the winning earth observation meta-task into the set of earth 
observation meta-tasks to be executed (TASKs 

do). 
17 end for 
18 end while 
19 The manager agent sends a broadcast to the remaining agents to find the next manager agent. 
20 each agent wishing to become the next manager sends an application message to the current 
manager agent. 
21 The manager agent selects the next manager agent based on the importance of the tasks in 
each applicant agent’s queue of targets to be tendered. 
22 mark the current manager satellite as agent s, go to 2.  
end 

In the SDSOCN algorithm, TARGETs in statement 2 is the set of observation 
targets to be tendered by the manager agent s. In statement 9, SATwin is the set 
of satellite agents that winning the bid. Each satellite agent first determines the 
manager by competition. Then, the manager agent and worker agents carry out the 
normal bidding process based on the contract network protocol to complete the
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task assignment work. The main differences between SDSOCN and the traditional 
contract network protocol are as follows. 

• A manager agent is a special kind of worker agent. Therefore, the manager agent 
is also involved in bidding work. 

• If the worker agent’s winning earth observation meta-task conflicts with the under-
taken earth observation meta-task, the conflicting earth observation meta-task 
is deleted directly (exemption mechanism). Then, its corresponding observation 
target is added to the worker agent’s target queue to be tendered. When this 
worker agent becomes a manager agent, it will tender each task in the pending 
tender target queue (outsourcing mechanism). 

2. Multi-agent collaboration processes based on contractual network protocols 

The previous section gave the SDSOCN algorithm based on the outsourcing and 
exemption mechanisms. In this part, the collaboration process between agents is 
described in detail. For an agent in the multi-agent system model, the roles that may 
be assumed at a given moment are worker or manager. Based on the division method 
above, when the agent is a manager, then its collaboration is divided into I1. When it 
is a worker, its collaborative division of labor is I2. The following will describe the 
collaboration process with other agents when an agent acts as a worker or manager. 

(1) Worker agent collaboration process 

Figure 5.6 describes the collaboration process between the worker agent and the 
remaining agents. If the worker agent receives a manager turnover message, it will 
apply for conversion to the manager agent according to the current target queue 
to be tendered. If the request is successful, it becomes the next manager agent. 
If the worker agent receives a bidding message for an observation target, it first 
calculates the accessibility of the target to be observed. If the agent has no access 
time window for the tendered observation target (the observation task set is empty), 
a non-participation message is sent to the manager agent. Otherwise, the cost for 
executing the observation target is calculated, and a bid is submitted to the manager 
agent. The bid generation (BG) algorithm is as follows.

Algorithm name: BG 
Input: earth observation target (tar) 
Output: Bid information (Bid) to the earth observation target (tar)

(continued)
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(continued)

begin 
1 receiving a bid message from the manager agent for the target tar 
2 perform accessibility calculations on the target (tar) to generate a collection of earth 
observation meta-tasks TASKtar 
3 if  TASKtar = φ then 
4 sending a non-participation message to the manager agent 
5 exit  
6 end if  
7 for each task ∈ TASKtar 
8 setting the evaluation value of the earth observation meta-task (task) as the bid gain 
9 calculation the set of earth observation meta-tasks that conflicted with task (ConflictSettask) 
10 sum the evaluation values of each task in ConflictSettask as the bidding price 
11 end for 
12 select the least costly earth observation meta-task (taskmin) from TASKtar 

13 using taskmin to generate the bid information (Bid) and send it to the manager agent 
end 

Statement 9 in the BG algorithm obtains the assumed tasks in the work agent that 
conflict with the current tender earth observation meta-task by computing them and 
forming the set of conflicting tasks ConflictSettask. 

(2) Manager agent collaboration process 

In task collaboration, the manager agent assumes a leading role in cooperation with 
the worker agents. The manager agent participates in the bidding process for earth 
observation targets in the target queue, following specific rules for bid evaluation 
and task assignment. Once the bidding process is completed, a manager replacement 
message is sent to the other worker agents to confirm the next manager agent under 
the rules. At this point, the current manager agent transitions into the work process 
of a worker agent. The collaboration process of the manager agent is illustrated in 
Fig. 5.7.

(3) Bid evaluation strategy for manager agent 

After receiving the bid information, the manager agent will analyze the bid infor-
mation and select one or more satellite agents that are most suitable to under-
take the bidding task. The manager agent evaluates each bid using a rule-based 
reasoning expert system (e.g., CLIPS-based expert decision support system [126]). 
The following are the bid evaluation rules we mainly use. 

(1) If the task has not been completed, the winning bid will be arranged if the benefit 
of task execution exceeds the cost. 

(2) Preference shall be given to the bidder whose bid is the least costly. 
(3) The bidder with the lowest load shall be selected in case of equal bidding cost. 

Rule (1) guarantees that the satellite cluster will do its best to accomplish the 
earth observation task, reflecting the exemption principle described above. Rule (2)
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ensures the utilization of satellite resources. Rule (3) guarantees the balanced load 
of the satellites in the satellite cluster. 

3. Further exploration 

Here, we will analyze the shortcomings of the contract network protocol and propose 
some improvement strategies. 

(1) Improved bidding strategies based on the horse-trading effect [135] 

In the framework of contract network computing, the benefits of individual earth 
observation meta-tasks in an earth observation task are allocated in advance. In some 
specific application scenarios, the benefit obtained from partial completion of an 
earth observation task may not be proportional to the benefit obtained from full 
completion. For example, the benefit obtained from a task completed by 90% may 
be only 70% or even less. If there are multiple tasks, the user always expects to be 
able to meet some of them first, and the remaining resources are redistributed to other 
tasks to improve the completion of the tasks. Thus, a three-stage market negotiation
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mechanism based on the Matthew effect (the rich get richer and the poor get poorer) 
is designed to solve this problem [150, 151]. The followings are its basic idea. 

(a) During the free negotiation phase, a predetermined amount of the reward for each 
earth observation task is withheld as an incentive for completion. This portion 
of the reward cannot be allocated by the manager agent and can only be obtained 
upon the successful completion of the task. The worker agents engage in iterative 
negotiations to optimize the overall system gain until a Nash equilibrium is 
achieved. Once the maximum number of free negotiation iterations has been 
reached, the system enters the monopolistic competition phase. 

(b) Monopolistic competition phase: At this stage, the earth observation tasks with 
a low degree of completion withdraw from the competition and release the 
occupied resources. The tasks with a high degree of completion can prioritize 
these resources to meet their requirements fully. After this process, it will enter 
the reshuffle stage. 

(c) Reshuffling phase: In this phase, earth observation tasks that have withdrawn 
from competition rejoin the consultation environment. However, if a task 
requirement has been fully met, the satellite agent cannot easily occupy its 
resources in the negotiation process. 

The objective of the free negotiation phase is to establish a just negotiation envi-
ronment and enhance the algorithm’s capacity for global search. In contrast, the 
monopolistic competition phase leverages the Matthew effect to promote task execu-
tion integrity and expedite the algorithm’s convergence rate. The final reshuffle phase 
seeks to strike a balance between task execution integrity and overall system benefits, 
thereby optimizing the system globally. This phase represents a crucial step toward 
achieving fine-grained optimization. 

(2) Improved bidding strategies based on clustering [68] 

In the framework of contract network calculation, each satellite agent selects some 
bids according to the set criteria, such as the maximum priority strategy, the minimum 
remaining scheduling time strategy, the maximum task satisfaction strategy, etc. 
The core of these criteria is calculating the evaluation value of bids based on some 
evaluation function and selecting the one with the higher benefit value [152]. The 
advantage of these strategies is simple, intuitive, and efficient. Still, the disadvantage 
is that the difference and diversity of bid selection are often insignificant, and it 
is easy to fall into local optimization. The top-ranked bids may differ only in a 
few earth observation meta-tasks for a given satellite agent. If the satellite agents 
aim to maximize their interests, their top-ranked bids may prioritize the observation 
activities of high-priority tasks. It will make the low-priority tasks challenging to 
plan because many resources are already occupied by high-priority tasks, which 
also leads to the loss of bid diversity and may cause the scheduling process to fall 
into local optimal solutions. In contrast, the clustering algorithm can divide the bids 
into several groups based on similarity, with some variability between each group.
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Therefore, all possible scenarios of observation activities within the agent can be 
clustered, and representatives from each class can be selected as bids for the tender. 

(3) Improved bid evaluation strategies based on intelligent optimization [153] 

Under the framework of contract network calculation, the manager agent usually 
adopts accurate search algorithms such as backtracking, branch and bound method 
to evaluate bids. The computation time is not long when the number of agents is 
small, and the number of bids is small so that it can meet the requirements. However, 
the computation time of manager agent evaluation bids grows exponentially with the 
increase in the number of agents and bids of each satellite, making it challenging to 
meet the requirements of fast dynamic response for online scheduling. The intelligent 
optimization algorithms simulate the evolutionary process of organisms in nature, 
which has good optimality and high solution efficiencies, such as genetic algorithm 
and particle swarm optimization algorithm. So these intelligent optimization algo-
rithms can be introduced into the bid evaluation process of the contract network 
calculation to search the optimal combination of bids for each satellite agent. Taking 
the genetic algorithm as an example, the manager agent constructs chromosomes by 
integer coding for each satellite agent’s bids and then selects one or no bids from each 
satellite agent’s bids according to the selection, crossover, and mutation evolution 
process. 

5.3.2 Distributed Task Scheduling Based on Blackboard 
and Evolutionary Computation 

1. Blackboard model 

The concept of the blackboard was first introduced by Newell in 1962. In the 
early 1970s, Carnegie-Mellon University proposed a blackboard model for problem-
solving and developed the HEARSAY-II speech understanding system, the first expert 
system based on the blackboard model. The blackboard model relies on multiple 
human or subject experts collaborating to solve a problem, using a shared workspace 
known as the blackboard. The problem-solving process begins when the problem 
and initial data are entered onto the blackboard. Experts share information through 
the blackboard and utilize their specialized knowledge to solve the problem. When 
an expert determines that there is enough information on the blackboard to support 
further problem-solving, they record their results on the blackboard. This newly 
added information allows other experts to continue their work, repeating the process 
until the problem is solved and the final results are obtained. The working process 
of the blackboard model is shown in Fig. 5.8.

The following are the three essential components of the blackboard model. 

(1) Knowledge Sources (KS). The application domain is divided into some inde-
pendent experts according to their expertise in solving the problem, and these 
experts are called knowledge sources (i.e., subjects).
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(2) Blackboard. A shared problem-solving workspace. It is generally organized in 
a hierarchical structure. It mainly stores the information the knowledge source 
requires, the solution data during the problem-solving process, and sometimes 
the control data. During the problem-solving process, the knowledge sources 
continuously modify the blackboard. Communication and interaction between 
knowledge sources take place through the blackboard. 

(3) Monitoring Mechanism. According to the problem-solving status on the black-
board and the solving skills of each knowledge source, the appropriate knowl-
edge sources are dynamically selected and activated based on some control 
strategy so that the knowledge sources can respond to the blackboard changes 
on time. 

The following are the key features of the blackboard model for implementing 
distributed collaborative problem-solving [154, 155].

• The subjects (i.e., knowledge sources) are independent, and there are no 
interactions between subjects. 

• The blackboard structures enable flexible representation of information. 
• Use of a common language of interaction. 
• An independent monitoring mechanism. 
• Blackboard structures are suitable for describing and processing problems at 

multiple levels of abstraction. 
• Opportunity problem-solving mechanisms, especially for complex problems 

where the order of problem-solving cannot be determined in advance.

Fig. 5.8 Working process of 
the blackboard model KS 1 

KS 2 

KS n 
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• The blackboard model provides a way to integrate existing software. 

2. Agent collaboration process based on blackboard model and evolutionary 
computation 

To solve the distributed satellite task scheduling problem, this approach combines the 
blackboard model with an intelligent optimization algorithm. Following the multi-
agent system architecture, each satellite is treated as an agent, with the manager agent 
serving as the blackboard’s function. Each satellite agent schedules its tasks indepen-
dently and communicates with the blackboard instead of directly with other agents. 
During each evolutionary calculation, each satellite agent retrieves the optimal solu-
tions of other agents from the blackboard and employs them to guide the evalu-
ation, selection, and restoration of the population individuals in its evolutionary 
computation. 

The Distributed Satellite Task Scheduling algorithm based on Blackboard Model 
and Genetic Algorithm (DSTS-BMGA) is designed using the genetic algorithm as an 
example. Each satellite agent initializes its subpopulation based on the earth observa-
tion meta-task information received from the manager agent. Each individual in the 
subpopulation represents the satellite agent’s current single-satellite earth observa-
tion programme. During each evolutionary calculation, the satellite agent performs 
crossover, variation, and constraint adjustment operations on its subpopulation and 
interacts with the manager agent to retrieve the individual representatives sent to the 
center by the other satellite agents. The satellite agent then calculates the adaptation 
value of each individual in the subpopulation and sends the optimal individual to the 
manager agent. This process is repeated, with the manager agent searching for a more 
optimal observation solution from each satellite agent until a satisfactory solution is 
found to the problem. The algorithm’s steps are as follows: 

Algorithm name: DSTS-BMGA 
Input: the set of earth observation meta-tasks TASK 
Output: the set of earth observation meta-tasks performed by each satellite TASKdo

(continued)
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(continued)

begin 
1 the manager agent gets the set of earth observation meta-tasks to be scheduled (TASK) 
2 for each k ∈ SAT 
3 manager agent send the TASK to satellite agent k 
4 satellite agent k random initialization of subpopulations 
5 satellite agent k select the best individuals in the subpopulation to send to the blackboard 
6 end for  
7 for each k ∈ SAT 
8 satellite agent k do crossover and mutation operations on subpopulations to generate 
next-generation populations 
9 receive the other satellite agent’s individuals (solution) from the blackboard and calculate the 
adaptation values for each individual of each next-generation population 
10 elite archiving 
11 send the optimal individual (solution) to the blackboard 
12 end for 
13 manager agent determines if the algorithm has reached the convergence condition, terminate 
the algorithm if yes, otherwise go to 7. 
14 each satellite agent decodes and sends the assumed tasks to the manager agent to generate the 
final solution (TASKdo) 
end 

Where the convergence condition of the algorithm can be designed as follows. 

(1) The locally optimal solutions of each satellite agent are identical and have 
undergone a certain number of generations of iterations, the exact number of 
generations being obtained empirically. 

(2) Algorithm iterations exceed the maximum number of iterations for scheduling. 
(3) Algorithm runtime exceeds the maximum runtime. 

The workflow of the DSTS-BMGA algorithm is shown in Fig. 5.9.
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Fig. 5.9 Distributed satellite task scheduling algorithm flow based on blackboard model and genetic 
algorithm



Chapter 6 
Satellite Onboard Autonomous Task 
Scheduling Models and Methods 

The scheduling of satellite tasks is generally performed on the ground. The EOSOC 
generates a daily executable programme an for each satellite, which is then translated 
into instructions and transmitted to the satellite via the TT&C equipment. The satellite 
follows these instructions without any modifications. However, recent advancements 
in artificial intelligence and space science technology have led to the emergence of 
a new generation of satellites with onboard data processing and autonomous task 
scheduling capabilities. In this book, these satellites are referred to as autonomous 
operation satellites. An autonomous operation satellite can carry out routine oper-
ations without human intervention, monitoring the system, detecting faults, and 
performing self-adaptation, self-regulation, self-tolerance, and self-recovery func-
tions in the event of faults or unknown environments. Such a satellite is no longer 
a passive executor, but rather a decision-maker that can actively generate or modify 
observation programme based on changes in the space environment, equipment 
status, and available resources. Its capability to respond quickly to uncertain space 
environments and unexpected satellite states surpasses that of traditional satellites. 
In the future, autonomous operation satellites will become one of the primary 
deployment forms of earth observation satellites [72]. 

The limited computing power of the onboard processor is a significant weak-
ness of the autonomous operation satellite. This processor is primarily an embedded 
processor that must consider the impact of space radiation, energy, temperature, 
weight, and other factors. As a result, it operates at a low frequency, has limited 
memory, and relatively weak computing power compared to the personal desktop 
computer or server typically used in the ground system. Furthermore, the onboard 
processor is responsible for operation environment awareness, state monitoring, atti-
tude adjustment and control, onboard fault tolerance, and self-recovery, among other 
tasks, which further stretch the scarce onboard computing resources. Due to the 
limitation of the onboard processor’s computing power, the task scheduling algo-
rithms used in ground computing devices cannot be applied onboard. Therefore, 
new methods and mechanisms must be investigated to adapt to these changes. This
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chapter introduces some mainstream satellite onboard autonomous task scheduling 
models and techniques. 

6.1 Satellite Onboard Autonomous Task Scheduling 
Problem 

Satellite onboard autonomous task scheduling refers to the process by which an 
earth observation satellite automatically develops an onboard programme with 
minimal reliance on ground personnel intervention. This process is based on received 
tasks, equipment status, energy, and storage resources. Satellites capable of onboard 
autonomous task scheduling are more intelligent than traditional ground-based task 
scheduling methods. They no longer act as simple command execution terminals but 
rather as task decision-makers. The technology of satellite onboard autonomous task 
scheduling offers several advantages. 

(1) Autonomous satellite onboard task scheduling can enhance the rapid response 
capabilities of satellites to emergencies. The satellite can detect anomalies on 
the ground through onboard data processing or receive observation requests 
from the ground sensor network or users and adjust its onboard observation 
programme accordingly [156]. For example, it can quickly adjust the onboard 
observation sensor to observe unexpected events such as volcanic eruptions, 
earthquakes, tsunamis, and military conflicts in sensitive areas. 

(2) The technology can also improve the utilization of satellite resources. Optical 
imaging satellites rely on optical sensors to scan ground targets, which are 
often obstructed by clouds. As a result, around 80% of the ground targets of 
optical imaging satellites fail to be observed due to cloud cover obstruction 
[157]. However, autonomous operation satellites can adjust their observation 
programme based on the cloud cover information uploaded by the ground station 
or obtained from onboard analysis results [77]. By doing so, the satellites can 
use their resources more efficiently to observe high-value targets and produce 
high-quality remote sensing images. 

(3) The technology can improve the granularity and flexibility of satellite task 
execution. Ground-based satellite task scheduling systems are subject to strin-
gent constraints to ensure operational safety, which can limit satellite capabili-
ties. For instance, energy constraints are usually based on cumulative working 
time and cannot accurately calculate the energy state onboard in real-time. 
Autonomous operation satellites can create more detailed programme based 
on real-time resource and equipment status and can modify the observa-
tion programme according to changes in resources and tasks, increasing the 
flexibility of satellite task execution. 

(4) Finally, autonomous task scheduling on satellites can reduce ground operators’ 
workload and staffing costs. By transferring part of the work undertaken by 
the ground control center to the satellite platform, the technology reduces staff
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involvement. It decreases the workload and staffing costs of maintaining and 
managing satellite operations. 

In the following section, we will describe the satellite onboard autonomous task 
scheduling process, and analyze its difficulties and characteristics. 

6.1.1 Process of Satellite Onboard Autonomous Task 
Scheduling 

The description of the satellite onboard autonomous task scheduling problem is illus-
trated in Fig. 6.1. The autonomous operation satellite orbits the earth and calculates 
the access time window for each ground target. It then generates corresponding 
earth observation meta-tasks within the autonomous scheduling horizon. The earth 
observation meta-task with the earliest access start time within the autonomous 
scheduling horizon is referred to as the critical task, and the critical scheduling dura-
tion is the time between the access start time of the critical task and the current 
onboard system time. The satellite onboard autonomous tasking process needs to 
calculate the scheduling result of each earth observation meta-task in the autonomous 
scheduling horizon within the critical scheduling duration. As time passes, new earth 
observation meta-tasks continuously come into the autonomous scheduling horizon. 
The satellite decides whether to execute each earth observation meta-task within 
the autonomous scheduling horizon based on onboard energy and storage resources, 
earth observation meta-task distribution information, and other factors. The first 
decision that must be made is whether the critical task should be executed. Suppose 
the task scheduling algorithm has not calculated whether the critical task should be 
executed while the onboard system time reaches the access start time of the critical 
task. In that case, the current scheduling is deemed failed, and the satellite misses the 
observation opportunity. The goal of satellite onboard autonomous task scheduling 
is to maximize user requirements while adhering to satellite constraints. 

The autonomous task scheduling process onboard satellites can establish a more 
detailed mathematical model compared to ground-based task scheduling. This is
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Fig. 6.1 Description of the satellite onboard autonomous task scheduling problem 



136 6 Satellite Onboard Autonomous Task Scheduling Models and Methods

because the satellite can obtain real-time information about energy, storage, payload, 
and other resources and equipment status. However, satellite task scheduling is a 
complex problem that involves numerous resources, diverse application require-
ments, and complex constraints. Typically, the satellite task scheduling problem 
consists of two subproblems: observation task scheduling and data transmission 
task scheduling. In this chapter, we focus only on the solution for the observation 
task scheduling problem, assuming that the data transmission resources used by the 
autonomous operation satellite have already been determined either by the ground 
or onboard. 

6.1.2 Challenges of Satellite Onboard Autonomous Task 
Scheduling 

1. Uncertainty in earth observation demands 

The uncertainty in earth observation demands refers to the dynamic changes in 
observation demand during satellite operations, as described in Sect. 4.1.1. 

2. Limited computing resources for task scheduling 

Earth observation satellites operate in the near-earth orbit and are susceptible to 
cosmic radiation and temperature differences, which put severe demands on onboard 
processors [158]. Therefore, aerospace-grade CPUs with low computing power are 
used to ensure reliability and stability. For instance, the RAD 6000 processor used 
by NASA on the Deep Space 1 satellite has a main frequency of 25 MHz and a 
computing power of no more than 100 Million Instructions Per Second (MIPS) [74]. 
The latest domestic Longxin 1E300 processor and foreign RAD750 processor have 
a main frequency of about 200 MHz and a computing power of approximately 240– 
400 MIPS [158, 159]. The main frequency of the latest domestic Longxin 1E300 
processor and foreign RAD750 processor is about 200 MHz, and the computing 
power is about 240 ~ 400 MIPS. The limited computational resources pose a 
significant challenge to onboard autonomous task scheduling. 

3. Timeliness of task scheduling 

Unlike the offline mode of “scheduling before execution” on the ground, the online 
mode of “scheduling while executing” on the satellite requires higher computational 
timeliness for the task scheduling algorithm. The algorithm must provide a practical 
and feasible programme before the execution of an observation task to avoid missing 
observation opportunities and reducing the satellite resource utilization. 

4. Uncertainty in the successive implementation of subsequent tasks 

Several factors, such as energy, storage, satellite attitude, and target distribution, 
influence the execution of observation tasks during an autonomous operational satel-
lite’s flight. Figure 6.2a shows that the meta-task c cannot be executed in observa-
tion programme P1 due to insufficient energy after performing several meta-tasks.
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Fig. 6.2 Schematic diagram 
of the uncertainty of 
continuous mission 
execution during the onboard 
autonomous task scheduling 
process 
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However, in Fig. 6.2b, the meta-tasks b and c can execute in observation programme 
P2, which demonstrates the uncertainty in the successful execution of subsequent 
tasks during the task scheduling process. 

6.2 Path Searching Approach for Satellite Onboard 
Autonomous Task Scheduling 

6.2.1 Rolling Optimization Strategy 

The rolling optimization strategy (Fig. 1.3) is a general approach for onboard 
autonomous task scheduling. As outlined in Sect. 1.1.4, the onboard planner 
schedules earth observation meta-tasks dynamically within the autonomous 
scheduling horizon, represented as

[
tsys + Tp, tsys + Th

]
(Tp � Th), where tsys 

denotes the onboard system time, Tp indicates the preparation time for task execu-
tion, and Th signifies the autonomous scheduling horizon’s duration. The autonomous 
scheduling horizon constantly shifts as the autonomous operation satellite proceeds, 
with new earth observation meta-tasks entering and existing ones departing due 
to execution, expiration, or cancelation. This necessitates the onboard planner’s 
continuous scheduling of future tasks. 

Within the autonomous scheduling horizon, two triggers are established. Any 
dynamic changes to the earth observation meta-tasks will prompt the onboard planner 
to replan and revise the earth observation programme. Figure 6.3 depicts the onboard 
autonomous task scheduling process under the rolling scheduling strategy.

(1) Earth observation meta-tasks enter the autonomous scheduling horizon at the 
system moment tsys. This scenario can be further divided into two: first, a known 
earth observation meta-task outside the autonomous scheduling horizon enters; 
and second, a user requests a new observation target, resulting in the system
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autonomous scheduling horizon 

system time trigger time 

syst syst Tp+ sys +t Th  

Fig. 6.3 Schematic diagram of rolling task scheduling 

generating a new earth observation meta-task with an access time within the 
autonomous scheduling horizon.

(2) The earth observation meta-task is removed from the autonomous 
scheduling horizon at system time. This scenario can be categorized into two: 
first, a canceled earth observation meta-task is removed from the earth observa-
tion programme; and second, a earth observation meta-task with an access start 
time equal to the current system time is executed if included in the observation 
programme, otherwise, it is disregarded. 

In the following step, we propose to integrate the rolling optimization approach 
with a graph model to schedule the earth observation meta-task within the 
autonomous scheduling horizon effectively. This integration will be achieved by 
utilizing a path search algorithm, which will aid in optimizing the scheduling strategy. 

6.2.2 Directed Acyclic Graph Model 

To begin, we will organize all earth observation meta-tasks within the autonomous 
scheduling horizon in ascending order based on their access start times. Subsequently, 
we will employ a directed acyclic graph G = (V , E) (as depicted in Fig. 6.4) to model 
the satellite observation task scheduling problem, where V , E represents the set of 
vertices and the set of directed edges in the graph G, respectively. For any given vertex 
vi ∈ V corresponding to the earth observation meta-task taski , we can describe it 
as and can be described as (t i b, t i e, modi , ψi , engi , memi ), where t i b, t i e, modi , ψi are, 
respectively, denotes the access start time, access end time, work mode, and priority 
of the taski , and engi , memi represents the energy and storage resources required to
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execute the taski . Each directed edge (i, j) ∈ E in the graph indicates a connection 
between two vertices vi and v j , that is, the earth observation meta-task taski and task j 

satisfy the work mode switching constraint that t j b − t i e ≥ transmodi ,mod j .Δengi j  is the 
weights of directed edge (i, j ), it denotes the maximum energy that can be replenished 
from the access end time of earth observation meta-task taski to access start time 
of earth observation meta-task task j . To facilitate problem-solving, we will add two 
virtual vertices to the directed acyclic graph model: the start vertex vs and the end 
vertex vt. We will then map the satellite earth observation task scheduling problem as 
a path search problem, with the objective of identifying a path from the start vertex vs 
to the end vertex vt that maximizes the evaluation value while satisfying the energy 
and storage constraints. 

The directed acyclic graph model utilizes several relevant symbols and decision 
variables, which are defined as follows.

• xi j  ∈ {0, 1}: the decision variable, the xi j  = 1 indicates that a directed edge (i, j ) 
is selected, otherwise it is not, 0 ≤ i < j ≤ n − 1 (n denotes the number of 
vertices in graph G, which contains the start vertice and end vertice). 

• yi j  ≥ 0: the decision variable, which represents the total amount of energy spilled 
while charging from the access end time of taski to the access start time of task j , 
0 ≤ i < j ≤ n − 1. 

• zi j  ≥ 0: the decision variable, which represents the total amount of data overflow 
from the access start time to the access end time of the data transmission task 
task j , 0 ≤ i < j ≤ n − 1.

Fig. 6.4 Directed acyclic diagram model for earth observation task scheduling 
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• eng0: the energy state at the initial moment. 
• mem0: the memory state at the initial moment. 
• Engy: the upper bound of onboard battery capacity onboard. 
• Memy: the upper bound of the storage space. 

Given the problem description and the mathematical notation and decision vari-
ables provided above, we can now construct a mixed integer programming model 
for the problem. The model is as follows. 

Optimization objectives. 

Vimp = max 

⎧ 
⎨ 

⎩ 

n−1∑

i=0 

n−1∑

j=0 

ψ j · xi j  
⎫ 
⎬ 

⎭ . (6.1) 

Constraints. 

n−1∑

j=1 

x0 j = 1 (6.2)  

n−2∑

i=0 

xi(n−1) = 1 (6.3) 

j−1∑

i=0 

xi j  ≤ 1, 1 ≤ j ≤ n − 1 (6.4)  

j−1∑

i=0 

xi j  = 
n−1∑

k= j+1 

x jk, 1 ≤ j ≤ n − 2 (6.5) 

eng0 + 
k−1∑

j=1 

j−1∑

i=0

((
Δengi j  − engi

) ∗ xi j  − yi j
)

+ 
k−1∑

i=0

(
Δengik  ∗ xik  − yik

) ≤ Engy, 1 ≤ k ≤ n − 1 (6.6) 

eng0 + 
k−1∑

j=1 

j−1∑

i=0

((
Δengi j  − engi

) ∗ xi j  − yi j
)

+ 
k−1∑

i=0

((
Δengik  − engk

) ∗ xik  − yik
) ≥ 0, 1 ≤ k ≤ n − 1 (6.7) 

mem0 + 
k−1∑

j=1 

j−1∑

i=0

(
mem j ∗ xi j  + zi j

)
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+ 
k−1∑

i=0 

memk ∗ xik  ≤ Memy, 1 ≤ k ≤ n − 1 (6.8) 

mem0 + 
k−1∑

j=1 

j−1∑

i=0

(
mem j ∗ xi j  + zi j

)

+ 
k−1∑

i=0 

(memk ∗ xik  + zik) ≥ 0, 1 ≤ k ≤ n − 1 (6.9) 

yik  = xik  ∗ max 

⎧ 
⎨ 

⎩ 0, eng0 + 
k−1∑

j=1 

j−1∑

i=0

((
Δengi j  − engi

) ∗ xi j  − yi j
)

+ 
k−1∑

i=0

Δengik  ∗ xik  − Engy

}

(6.10) 

zik  = xik  ∗ max 

⎧ 
⎨ 

⎩ 0, − 

⎛ 

⎝mem0 + 
k−1∑

j=1 

j−1∑

i=0

(
mem j ∗ xi j  + zi j

) + 
k−1∑

i=0 

memk ∗ xik  

⎞ 

⎠ 

⎫ 
⎬ 

⎭ . 

(6.11) 

The mathematical model presented above comprises an optimization function 
and several constraints. The optimization function, defined as Eq. (6.1), aims to 
maximize the cumulative priority of the earth observation meta-tasks executed by 
the autonomous operation satellite. Constraint (6.2) mandates that the out-degree 
of the starting vertex vs must be equal to 1, meaning that only one task can be 
executed after the starting vertex vs. Similarly, constraint (6.3) requires that the entry 
degree of the end vertex, denoted by vt must also be 1, indicating that only one 
task can point to the end vertex vt. Constraints (6.4) and (6.5) ensure that the in-
degree of any intermediate vertex must be the same as the out-degree and less than 
or equal to 1, indicating that each task has only one predecessor and one successor 
task. Together, these constraints guarantee the uniqueness of the solution. Constraint 
(6.6) stipulates that the energy state at the access start time of a task must not 
exceed the upper bound of the battery capacity. In this equation, the summation 
of the first two terms (eng0 +

∑k−1 
j=1

∑ j−1 
i=0 ((Δengi j  − engi ) ∗ xi j  − yi j  )) denotes 

the energy state after the previous mission of taskk is executed, while the third term 
(
∑k−1 

i=0 (Δengik  ∗ xik  − yik)) represents the amount of energy changed between the 
access end time of the previous mission of taskk and the access start time of taskk . 
Similarly, constraint (6.7) specifies that the energy state at the access end time of a 
mission cannot be lower than the lower bound of the energy state, where the third 
part of the equation (

∑k−1 
i=1 ((Δengik  − engk) ∗ xik  − yik)) represents the amount of 

energy changed from the end of the previous task execution to the end of the current 
task execution. Finally, constraints (6.8) and (6.9) mandate that the storage state at 
the end of any task execution cannot exceed the upper storage bound or fall below
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the lower storage bound, respectively. The energy level of a satellite can be restored 
during idle periods. However, updating the energy level by utilizing the maximum 
charged energy may result in surpassing the battery’s capacity, thus necessitating 
a correction. The amount of correction needed when the energy is restored can be 
determined using the constraint (6.10). Similarly, when updating the storage state 
with the maximum quantity of data that can be downlinked, the storage state may 
turn negative and therefore requires correction. The constraint (6.11) provides the 
necessary correction amount for the storage state during data downlinking. 

6.2.3 Exact Search Algorithm Based on Path Label Updating 

Utilizing the directed acyclic graph model presented previously, we employ the label 
updating algorithm [160] to tackle the path search issue in the graph. Initially, we 
provide definitions and theorems that will be utilized throughout the solution process. 

Definition 6.1: Path dominance Let P1, P2 ∈ PATHs,i , if it satisfies  ψ(P1) < 
ψ(P2), E(P1) ≥ E(P2), M(P1) ≥ M(P2), then the path is said to be P2 domi-
nates P1, denoted as P1 � P2, where PATHs,i is the set of all paths from the vertex 
vs to the vertex vi . ψ(P), E(P), and M(P) refer to the evaluation metrics, which 
consist of the cumulative sum of task priorities, energy consumption, and storage 
consumption for the earth observation programme represented by the given path P . 

Definition 6.2: Non-dominated and dominated paths Let P ∈ PATHs,i , if �Q ∈ 
PATHs,i , such that P � Q, then the path P is a non-dominated path. Otherwise P is 
a dominated path. 

Definition 6.3: Optimized path Let P ∈ PATHs,i , if  P is a non-dominated path, 
then we call P is an optimized path. 

Lemma 6.1 In the loop-free directed graph model, the subpaths of a non-dominated 
path are non-dominated paths. 

Proof We can demonstrate this assertion via a proof by contradiction. Let the path P 
be a non-dominated path consisting of vs → vi → v j . Then the path P1 ∈ PATHs,i 

is a subpath of P and ∃P2 ∈ PATHs,i , such that P1 � P2. Let  P3 ∈ PATHi, j 
be the subpath of P\P1, and since P1 � P2, then we have E(P1) ≥ E(P2) and 
M(P1) ≥ M(P2). If we combine the path P2 with path P3 to form a new path 
Q. It must be satisfied  ψ(P) = ψ(P1) + ψ(P3) < ψ(P2) + ψ(P3) = ψ(Q), 
E(P) = E(P1) + E(P3) ≥ E(P2) + E(P3) = E(Q), and M(P) = M(P1) + 
M(P3) ≥ M(P2) + M(P3) = M(Q), then we can get P � Q, so the path P is a 
contradiction of the non-dominated path. The original proposition is proved. 

Theorem 6.1 In the loop-free directed graph model, the optimized path’s subpaths 
are non-dominated.
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Proof According to Definition 6.3, the optimal path is a non-dominated path from 
vertex vs to vertex vi . Utilizing Lemma 6.1, it can be established that the subpaths 
of the non-dominated path are also non-dominated paths. Therefore, the subpaths 
of an optimized path are non-dominated paths as well, and the initial proposition is 
thereby validated. 

The label updating algorithm is utilized to locate the optimal paths by exploring 
all non-dominated paths from the vertices vs in graph. The algorithm eliminates the 
dominated paths from vs to each vertex, continually, effectively reducing the number 
of paths explored. The fundamental principle is to sustain a collection of tokens for 
each vertex in the graph, recording the vertex-to-vertex route. Each vertex is analyzed 
sequentially based on its topological order, and the label values of all its succeeding 
vertices are updated. When the update procedure arrives at vertex vt, all the optimized 
paths from vertex vs to vertex vt are found. The graph’s loop-free directed feature 
guarantees that only the set of labels of the successor vertices of the presently analyzed 
vertex needs to be updated, without considering its forward converging vertices. 
Consequently, each vertex in the graph is visited only once, significantly enhancing 
the efficiency of the optimized path search. The Label Updating-based Exact Path 
Searching algorithm (LUEPS) is outlined below. 

Algorithm name: LUEPS 
Input: directed acyclic graph G = (V , E) 
Output: from vertex vs to the vertex vt the set of optimized paths Label(t) 
begin 
1 Label(s) = {0, 0, 0, s, Null} 
2 Label(t) = {0, 0, 0, s, Null} 
3 Label(i ) = {ψ(i ), E(i ), M(i ), s, Null}, ∀vi ∈ V (G)\{vs, vt} 
4 for  i = 1, 2, . . . ,  t 
5 for each Q ∈ Label(i ) 
6 for each j ∈ succ(Q) 
7 for each P ′ = append(Q, j ) 
8 if  P � P ′ then 
9 Label( j ) = Label( j )\{lP} 
10 Label( j ) = Label( j ) ∪ {

V
(
P ′), E

(
P ′), M

(
P ′), i, pointP ′

}

11 else if P ′ � P then 
12 continue 
13 else 
14 Label( j ) = Label( j ) ∪ {

V
(
P ′), E

(
P ′), M

(
P ′), i, pointP ′

}

15 end if 
16 end for 
17 end for 
18 end for 
19 end for 
end 

The LUEPS algorithm employs the following notation: Let Label(i ) be the 
set of labels of vertex vi . Each label in Label(i ) represents a path from the
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vertex vs to vertex vi . ∀ lP ∈ Label(i ), the label lP is expressed as lP ≡{
ψ(P), E(P), M(P), prei (P), pointP

}
. The meaning of ψ(P), E(P), and M(P) 

has been illustrated in Definition 6.1. prei (P) denotes the predecessor vertex of vi in 
path P . Note that, vertex vs has no predecessor vertex. pointP is a pointer to the path 
P that records all the vertices in the path P from vertex vs to prei (P). In statement 3, 
ψ(i ), E(P) and M(P) denote the evaluation value, consumed energy, and consumed 
storage resources in the programme, which are represented by the path from vertices 
vs to vertex vi . succ(P) denotes the set of all successor nodes of the last vertex in path 
P . Due to the dynamic topological properties of the loop-free directed graph (see 
Fig. 6.2), different paths may have different sets of successor vertices, even if their 
last vertex is the same. Therefore, it is necessary to compute succ(P) in real-time 
based on the path P while searching. If the last vertex of the path P is vertex vt, then 
succ(P) = ∅. The function append(P, i ) adds vertex vi to the end of the path P and 
generates a new path. 

LUEPS is an accurate search algorithm that can find all optimized paths within 
the distance from the current position of the satellite to the satellite’s autonomous 
scheduling horizon. The relevant lemmas are presented first. 

Lemma 6.2 According to the LUEPS algorithm, for any vertex vi ∈ V (G)\{vs}, let  
P ∈ PATHs,i be an non-dominated path, and once the path P added into the set of 
tokens Label(i ), it will always remain in Label(i ). 

Proof From statements 10 to 11 of the LUEPS algorithm, if vi is a vertex in the path 
P and its label lP is removed (lP is the label of path P), then there must exist another 
path P ′ such that P � P ′. So if a label representing a non-dominated path once enters 
the label set Label(i ), it will always remain in Label(i ). The original proposition is 
proved. 

Lemma 6.3 According to the LUEPS algorithm, for any vertex vi ∈ V (G)\{vs} that 
Label(i ) contains all the non-dominated paths from the vertex vs to the vertex vi . 

Proof The proof is carried out by mathematical induction. Based on the topological 
ordering of the vertices in a loop-free directed graph, it may be helpful to set the 
vertex order to be s, 1, 2, . . . ,  t . 

Step 1: When i = 1, (where vi ∈ V (G)\{vs}). The vertex v1 has only one predecessor 
node vs, and so there can be only a unique path from the vertex vs to vertex v1. 
Statement 3 in the LUEPS algorithm is initialized with the guarantee that Label(1) 
contains all vertices vs to the vertex v1 of non-dominated paths. 

Step 2: Suppose that when i ≤ m (where m is the ordinal number of the last vertex in 
the path), the original proposition holds. Then when i = m + 1, suppose there exists 
a non-dominated path P ∈ PATHs,m+1 (whose label is lP), and lP /∈ Label(m + 1). 
Let v j is the predecessor node of vm+1 in path P , and 1 ≤ j < m (since statement 
3 guarantees that Label(m + 1) contains all the labels of paths whose predecessor 
node is vs, so we only consider the case of 1 ≤ j < m + 1). Let P = append

(
Q, v  j

)
,
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then Q ∈ PATHs, j be the subpath of P that excludes vm+1. From Lemma 6.1, it  
is clear that Q is also a non-dominated path. It follows from the assumption that 
Label( j ) contains a subpath representing the path Q of the label lQ. Then, according 
to the LUEPS algorithm statements 7–16, the path P will be generated and added 
to Label(m + 1). Then by Lemma 6.2, it can be seen that it will always be kept in 
Label(m + 1). Contrary to the assumption lP /∈ Label(m + 1) contradicts. So when 
i = m +1 time, the original proposition holds. In conclusion, the original proposition 
was proved. 

Lemma 6.4 According to the LUEPS algorithm, for any vertex vi ∈ V (G)\{vs}, the  
Label(i ) only contains the non-dominated paths from the vertex vs to vertex vi . 

Proof Let Label(i ) be the label set of vertices vi , it contains the label lP that repre-
senting path P , where P ∈ PATHs,i and P is a dominated path. Let ∃Q ∈ PATHs,i 

and P �Q. It is known that the token lQ of path Q must also be contained in Label(i) 
by Lemma 6.3. According to statements 7–12 of the LUEPS algorithm, it is known 
that lP has been removed from Label(i ) (statements 8 ~ 9) or will not be added 
into Label(i ) (statements 11 ~ 12), contradicting the assumption lP ∈ Label(i ). The  
original proposition is proved. 

Theorem 6.2 The result of running the LUEPS algorithm contains all optimized 
paths and only those paths. 

Proof The result of running the LUEPS algorithm is the set of contained paths 
Label(t). By Lemmas 6.3 and 6.4, it is known that when the vertex i = t is reached, 
then Label(t) contains and only contains all non-dominated paths from vs to vt. Then 
Label(t) contains and only contains all optimization paths. The original proposition 
is proved. 

The ultimate objective of satellite autonomous task scheduling is to find an opti-
mized path with the highest evaluation value from the scheduling start time to the 
scheduling end time. The purpose of reserving all non-dominated paths is to reuse 
the search results of the LUEPS algorithm for rescheduling when a new earth obser-
vation meta-task is added to the directed acyclic graph model. An optimized path 
represents a feasible solution for autonomous satellite operation at a given moment 
T. The LUEPS algorithm guarantees obtaining all optimized solutions within the 
autonomous scheduling horizon as per Theorem 6.2. Usually, the autonomous oper-
ation satellite should select the optimized solution with the highest evaluation value. 
However, in some scenarios (such as when the satellite is close to running out of 
energy), the path with the highest onboard evaluation value (which consumes more 
energy) may not necessarily be the most optimal solution for the current situation. 
A more scientific approach is for the satellite to utilize a rule-based expert system to 
autonomously select an optimized solution from the set of optimized solutions and 
execute it. 

To accommodate onboard scheduling characteristics, we adopt a 
scheduling strategy with a variable satellite autonomous scheduling horizon.
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We consider the node position farthest from the satellite’s current position to the set 
of generated labels that can be calculated within the time of the satellite’s overflight 
critical task as the range of the autonomous scheduling horizon. The autonomous 
scheduling horizon may be shorter when earth observation meta-tasks are more 
densely distributed and longer when they are more sparsely distributed, but always 
less than or equal to the maximum visible distance in the forward direction of the 
satellite. 

In this section, we analyze the time complexity of the LUEPS algorithm, which 
is influenced by the topological relations of the directed acyclic graph model. 
The time complexity of LUEPS for a problem size of n is O

(
n2L2

)
, where 

L = max(|Label(i )|), vi ∈ V (G)\{vs}. In the worst-case scenario where directed 
edges connect each vertex, and none of the paths are dominated by each other, the 
vertex with the highest number of labels is vertex vt. By applying knowledge of 
permutations and combinations, max(|Label(t)|) = 1+ C1 

n +C2 
n +· · ·  Cn 

n = 2n , the  
worst-case time complexity of the LUEPS algorithm is O(2n). This confirms that 
the satellite task scheduling problem is NP-complete, as previously shown in [1]. 
Although previous studies have indicated that the number of non-dominated paths 
from vertex v to an intermediate vertex is relatively insignificant in practice [161], the 
computational resources onboard the satellite are limited. As a result, the algorithm’s 
exponential time complexity may cause a short autonomous scheduling horizon or 
even scheduling failures. Therefore, efficient algorithms or heuristics are required to 
reduce the computational time and improve the scheduling horizon. 

6.2.4 Label Updating-Based Approximation Search 
Algorithm 

The LUEPS algorithm is faced with the challenge of saving all non-dominated paths 
from the starting vertex to every other vertex, leading to a substantial increase in 
search time as the number of vertices increases. Consequently, it is only appro-
priate for solving satellite task scheduling problems in small-scale scenarios. The 
Label Updating-based Approximate Path Searching algorithm (LUAPS) has been 
proposed to address this challenge. The LUAPS algorithm introduces the concept of 
path approximation, which decreases the number of labels assigned to each vertex 
by relaxing the path dominance relations and eliminating many similar paths. This 
reduction in the search space saves search time, thereby enhancing the efficiency 
of the algorithm. To establish a common understanding, the relevant definitions are 
presented below. 

Definition 6.4: Path approximation dominance Let P1, P2 ∈ PATHs,i , path P2 
is dominant to P1 if it satisfies one of the following two conditions and is denoted 
as P1 ≺ P2. 

(1) ψ(P1) < ψ(P2), E(P1)(1 + ε1) ≥ E(P2), M(P1) ≥ M(P2),
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(2) ψ(P1) < ψ(P2), E(P1) ≥ E(P2), M(P1)(1 + ε2) ≥ M(P2), 

where εk = δk/2n, δ (0 < δ  <  1) is the approximation factor, and n is the problem 
size (the number of tasks in the autonomous scheduling horizon), the k = {1, 2}. 
From Definitions 6.1 and 6.4, it can be shown that if P1�P2, then we have P1 ≺ P2. 
PATHs,i is the set of all paths from vertex vs to vertex vi . ψ(P), E(P) and M(P) 
denote the evaluation value, the consumed energy, and the consumed storage for the 
plan represented by path P, respectively. 

The LUAPS algorithm is built upon the LUEPS algorithm. The primary difference 
between the two algorithms is that the LUAPS algorithm incorporates the function 
TrimLabel (Label ( j)) to eliminate unnecessary labels from vertex j based on the path 
approximation dominance relation (refer to Definition 6.4). TrimLabel (Label ( j)) 
function is integrated into the LUEPS algorithm after operation 16. The algorithm 
TrimLabel algorithm is described as follows. 

Algorithm name: TrimLabel 
Input: Label( j) (label set of vertex j) 
Output: Label( j) (label set of vertex j after pruning) 

begin 
1 LB = Label( j ) 
2 Label( j ) = ∅  
3 Sort(LB) 
4 lP = LB[0] 
5 i = 1 
6 while  i < |LB| 
7 lP′ = LB[i] 
8 if  P ′ ≺ P then 
9 i = i + 1 
10 else if P ≺ P ′ then 
11 lP = lP′

12 i = i + 1 
13 else 
14 Label( j ) = Label( j ) ∪ {lP} 
15 lP = lP′

16 i = i + 1 
17 end if 
18 end while 
19 Label( j ) = Label( j ) ∪ {lP} 
end 

In the algorithm, operation 3 entails sorting all labels in LB according to their 
energy consumption in ascending order. lb[i] represents the ith label in LB. Opera-
tions 1–4 constitute the initialization process, while operations 5–19 follow the path 
approximation dominance relation (refer to Definition 6.4) for label pruning. Next, 
we will examine the distinctive features of the LUAPS algorithm. 

Theorem 6.3 The LUAPS algorithm is a polynomial time algorithm.
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Proof From the TrimLabel algorithm, the worst time complexity of the TrimLabel 
algorithm is O(L · ln(L)), where L = max(|Label(i )|), vi ∈ V (G)\{vs}. Then the 
worst time complexity of the LUAPS algorithm is O

(
n2L2 ln(L)

)
, where n is the 

problem size. For the approximate dominance relation condition (1), note that Engy 
is the maximum level of the onboard battery, then for ∀P ∈ PATHs,t , we have  
E(P) ≤ Engy. From the TrimLabel algorithm and Definition 6.4, it is known that 
the approximate dominance relation divides the energy interval [0, Engy] into at most⌊
log1+ε1 

Engy
⌋
parts ([] is a downward integer function), and adding 0 and Engy 

two elements, then for ∀vi ∈ V (G)\{vs}, it satisfied: 

|Label(i )| ≤ log1+ε1 
Engy + 2 (6.12) 

log1+ε1 
Engy = 

ln Engy 

ln(1 + ε1) 
≤ 

1 + ε1 
ε1 

ln Engy = 
2n · ln Engy 

δ1 
+ ln Engy (6.13) 

By substituting Eq. (6.12) into Eq. (6.13) yields. 

|Label(i )| ≤ 
2n · ln Engy 

δ1 
+ ln Engy + 2. (6.14) 

In Eq. (6.14), δ1 and ln Engy are constants, so the worst time complexity of 
LUAPS algorithm is O

(
n2 · n2 · lg(n)

) = O
(
n4 · lg(n)

)
. So LUAPS is polynomial 

time algorithm. 
Similarly, it can be shown that the complexity of satisfying the approximation 

relation condition (2) is O
(
n4 · lg(n)

)
. 

The original proposition is proved. 

In comparison to the LUEPS algorithm, the LUAPS algorithm may not always 
identify the optimal path with the highest evaluation value within the autonomous 
scheduling horizon. Nevertheless, due to the LUAPS algorithm’s better compu-
tational time complexity, it typically features a longer autonomous scheduling 
horizon for satellites than the LUEPS algorithm. Research has shown that larger 
autonomous scheduling horizons tend to result in better scheduling outcomes for 
satellites [91]. Consequently, in some cases, the LUAPS algorithm can deliver 
superior scheduling results to the LUEPS algorithm. 

As previously mentioned, the earth observation meta-tasks within the satellite’s 
autonomous scheduling horizon can shift at any time, with two possibilities: earth 
observation meta-task joining and earth observation meta-task dropping out. In the 
case of earth observation meta-task joining, the algorithm only needs to verify 
whether the vertices within their corresponding graph can be added to the path of 
each vertex, one by one, and update the label value accordingly. Conversely, for 
earth observation meta-task dropping out, it suffices to delete the path containing the 
associated vertex of the task in each vertex. The specific details of these actions are 
not repeated here.
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6.3 Machine Learning Methods for Satellite Onboard Task 
Decision-Making 

6.3.1 Observation Task Sequential Decision-Making Model 

Section 6.1.1 describes the satellite onboard autonomous tasks scheduling 
problem, revealing that it is unnecessary to simultaneously compute the obser-
vation programme for all the earth observation meta-tasks in the autonomous 
scheduling horizon. Instead, it suffices to identify the subsequent earth observation 
meta-task to execute after the current one is completed, which is a classic sequen-
tial decision-making process. To address this, we have introduced a novel solution, 
the sequential decision-making model for the satellite onboard autonomous task 
scheduling problem (Fig. 6.5). The core principle underlying this model is that, 
while executing the current earth observation meta-task, the autonomous operation 
satellite sequentially determines decisions about future earth observation meta-tasks 
chronologically until it identifies the next one to be completed. This model’s advan-
tage lies in the satellite’s ability to make real-time decisions on upcoming earth 
observation meta-tasks based on the real-time status information, such as energy 
status, memory status, satellite attitude, and target distribution information. Thus, 
it can swiftly respond and adapt to changes in the earth observation meta-tasks, 
significantly improving the satellite’s responsiveness to a highly dynamic operating 
environment.

Let tsys denote the system time, task0 denote the earth observation meta-task to be 
decided, Hd denote the minimum decision duration, and

[
tsys, tsys + Hd

]
denote the 

task decision horizon. The sequential decision-making process proceeds as follows: 
while executing the current earth observation meta-task, the autonomous operation 
satellite sequentially decides on the earth observation meta-tasks in the task decision 
horizon to identify the first earth observation meta-task to be executed. If there is 
no earth observation meta-task in the task decision horizon, or no decision on the 
earth observation meta-task to be completed, the end time of the decision horizon 
becomes the next decision time point. Figure 6.5 illustrates the onboard planner 
sequentially making decisions for earth observation meta-tasks 5, 6, 7, and 8 in the 
task decision horizon. The decision outcome for tasks 5 and 6 is “false,” while the 
decision outcome for 7 is “true,” making task 7 the subsequent task to execute. The 
algorithm then exits the decision process, awaiting the next round. 

Algorithm name: sequential decision-making for earth observation tasks 
Input: TASKdecision: the set of earth observation meta-tasks in the task decision horizon, tsys: the  
system time onboard 
Output: taskdo: the next task to be performed, tnext: the next decision time point

(continued)
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(continued)

begin 
1 tnext ← tsys + Hd 

2 taskdo ← null // Initialize the next execution task 
3 for  taski ∈ TASKdecision do 
4 if constraintcheck(taski ) then // determine if the earth observation meta-task violates the 
constraint 
5 continue 
6 end if  
7 do ← makedecision(taski ) // Decision on whether the current earth observation meta-task is 
executed 
8 if  do is True, then 
9 taskdo ← taski // Update the next implementation task 
10 tnext ← tai // Update next decision moment 
11 break 
12 end if 
13 end for 
end 

The sequential decision model for observation tasks aims to determine when 
and which earth observation meta-tasks to decide on. Once this is established, the 
subsequent inquiry pertains to the algorithm best suited to determine the perfor-
mance of the earth observation meta-task. Supervised learning [162] is a significant 
class of machine learning methods that can learn a functional mapping of inputs 
to outputs from training samples. By applying the supervised learning method to 
learn implicit decision knowledge from actual task scheduling data, we can effec-
tively combine it with the sequential decision model of observation tasks to achieve 
airborne autonomous real-time decision-making of earth observation meta-tasks. 

To achieve this goal, it is necessary to analyze the classification features that can be 
employed in the machine learning method for the sequential decision-making model. 
Additionally, we will introduce the corresponding sequential decision algorithms for 
the observation mission represented by ensemble learning and deep neural networks, 
as illustrated in Fig. 6.6.

Training an observation mission decision-making model requires substantial 
computing resources and numerous training samples. Therefore, training the model 
on the ground and then uploading it to the satellite is more feasible. 

6.3.2 Features for Observation Task Decision-Making 

The extraction and selection of decision features are crucial in representing the 
raw data when employing machine learning methods for decision-making regarding 
whether a earth observation meta-task can be executed. From a global perspec-
tive, earth observation meta-tasks compete for limited energy, storage, and equip-
ment resources onboard. Performing more tasks can result in the payload working 
longer and consuming more resources, leading to insufficient recharge time and
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fewer resources for subsequent earth observation meta-tasks. Conversely, underuti-
lization of satellite resources and ineffective earth observation can occur if fewer tasks 
are performed. Thus, when deciding whether to execute a earth observation meta-
task, attributes and distribution of subsequently planned meta-tasks should also be 
considered, in addition to its features and available resources. 

To fully represent earth observation meta-task distribution information, resource 
competition relationship, and conflict degree, several relevant features were iden-
tified. We designed five types of features: resource and equipment state features,
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features of pending earth observation meta-task, features of conflicting earth observa-
tion meta-tasks, features of non-conflicting earth observation meta-tasks, and optimal 
neighborhood features. 

(1) Resource and equipment state features 

Resource and equipment state features provide a comprehensive overview of the 
state of resources and equipment of the earth observation satellite, such as energy 
levels, storage capacity, and attitude. These features are crucial in determining the 
feasibility of executing a given task. 

(2) Pending earth observation meta-task features 

The pending earth observation meta-task refers to the current task under consid-
eration, and its features describe the attributes of this task. These features mainly 
include the observation priority, observation duration, energy consumption, memory 
consumption, and other relevant characteristics of the earth observation meta-task. 

(3) Conflicting earth observation meta-task features 

Conflicting earth observation meta-tasks refer to a set of earth observation meta-
tasks that cannot be executed after the execution of the pending earth observation 
meta-task due to constraints such as work mode switching, energy, and storage. Their 
features include the sum of priorities and the total number of these conflicting tasks. 

(4) Non-conflicting earth observation meta-task features 

As previously discussed, a potential competition exists among earth observation 
meta-tasks for the limited energy, storage, equipment, and other satellite resources. 
In order to ensure the optimality of the solution and prevent the task sequential 
decision-making algorithm from making non-optimal decisions due to a “short-
sighted” approach, it is imperative to incorporate information on the distribution 
of all earth observation meta-tasks during the autonomous scheduling horizon. 

(5) Neighborhood optimal features 

The feature quantity known as “neighborhood optimal” describes whether a property 
of the current earth observation meta-task is the largest in its spatiotemporal neigh-
borhood. For example, this feature can be used to determine whether the priority 
of the earth observation meta-task is the highest in the neighborhood, whether the 
observation duration is the longest, whether the sum of the conflicting target priori-
ties is the largest, whether the number of conflicting earth observation meta-tasks is 
the largest, whether the energy consumption is the largest, and whether the storage 
space consumption is the largest. 

It is important to note that overly complex decision network models may pose 
challenges for autonomous task decision-making due to limited onboard computing 
resources. The features mentioned above, such as prior knowledge of task distribu-
tion, can help to reduce the complexity of the decision network by facilitating the 
learning of potential features and minimizing computational demands.
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6.3.3 Ensemble Learning-Based Sequential 
Decision-Making Approach 

Ensemble learning [162] is a well-established machine learning technique that 
involves generating several weak classifiers by altering the distribution of the orig-
inal training sample. These classifiers are then combined to produce a stronger, 
more robust classifier. Compared to simpler supervised learning methods, such 
as support vector machine, neural network, and decision tree, ensemble learning 
frequently outperforms these methods by combining the classification results of 
multiple classifiers. 

Ensemble learning methods can be divided into two categories based on the 
different ways of selecting training samples and combining classifiers: bagging and 
boosting (as shown in Fig. 6.7). The bagging method employs a random sampling 
method with replacement to create multiple independent training sample subsets. 
These subsets are then used to train several independent classifiers, and their results 
are combined using a combination strategy to produce the final decision. Random 
forest (RF) algorithm is a typical representative of the bagging method. On the 
other hand, the boosting approach trains classifiers serially in steps, and the training 
samples of the current classifier are related to the learning results of previously 
trained classifiers. In each training iteration, the weights of misclassified samples are 
increased, and the weights of accurately classified samples are decreased according 
to their classification results. This approach alters the data distribution by updating 
the weights of the training samples. Finally, the results of multiple classifiers are 
synthesized using a combination strategy to produce the final decision. Gradient 
Boosting Decision Tree (GBDT) is a typical representative of the boosting method.

In conclusion, ensemble learning is a powerful technique combining multiple clas-
sifiers’ results to create a stronger, more accurate classifier. The bagging and boosting 
methods provide different ways to generate weak classifiers and combine their results. 
These methods have been widely used in various fields and have successfully solved 
practical problems. 

Both the bagging and boosting methods are ensemble learning techniques that 
combine multiple weak learners into a strong learner through a combination strategy. 
The most common combination strategies include the voting method, averaging 
method, and learning method. The voting method is mainly used for classification 
problems, where the final output is the category with the most votes among the outputs 
of multiple learners. The averaging method is primarily for regression prediction 
problems, where the final result is obtained by weighing the sum of the outputs 
of multiple learners. The learning method involves training a layer of learners to 
integrate the outputs of weak classifiers, and it is often referred to as the stacking 
integration method [163]. 

The base classifiers of bagging and boosting methods are typically decision trees 
and neural networks. The simpler the base classifier, the stronger the generalization 
ability of the integrated model, and the less likely overfitting occurs. In the bagging 
integration method, each base classifier is independent of the other, and there is no
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dependency. Its training goal is to reduce the bias of the classifiers, so the depth 
of the decision tree model is usually set large. In contrast, the boosting method fits 
each primary classifier to the data based on the trained basic classifiers, reducing 
the model’s bias in each iteration. Only the basic classifier with minor variance is 
selected to avoid model overfitting as much as possible. Therefore, the basic model 
of the boosting method must be weak, and the depth of the decision tree model is 
usually set small. 

We can use ensemble learning algorithms such as RF and GBDT to train the earth 
observation meta-task decision-making model. Since these algorithms are mature,
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they are not described in detail here. Interested readers can refer to [162] for further 
information on RF and GBDT models. 

1. Decision-making model training process 

The training of the decision-making model for observation tasks requires a large 
number of samples in the shape of (x, y), where x is the input feature vector for 
the earth observation meta-task, and y ∈ {0, 1} is the decision result. However, a 
given satellite task scheduling instance comprises a series of earth observation meta-
tasks and scheduling results. Therefore, it is necessary to convert the task scheduling 
instances and earth observation meta-tasks into samples for model training. 

To address this, we propose an algorithm for generating training samples based 
on the online decision process for the earth observation meta-task. The algorithm 
computes the features for each earth observation meta-task in time order, from earliest 
to latest, and sets its label value to 1 if it is included in the programme; otherwise, 
it is set to 0. It is important to note that earth observation meta-tasks that cannot 
be executed due to constraint violations (such as energy, storage, and work mode 
switching) are not required to be decided in the real-time decision process. Therefore, 
earth observation meta-tasks that cannot be executed due to constraint violations will 
be discarded and not included in the training samples. 

Algorithm name: Training sample generation algorithm 
Input: mission set (TASK), earth observation programme (P), ensemble learning model (model) 
Output: labeled training samples 

begin 
1 samples ← null 
2 for  taski ∈ TASK do 
3 if not constraintscheck(taski ) then // determine if the earth observation meta-task violates the 
constraint 
4 continue 
5 end if  
6 TASKdecision ← tasksindecisionhorizon() // Obtain earth observation meta-tasks in the task 
decision horizon 
7 featurei ← getfeature(taski , TASKdecision) 
8 if  taski ∈ P then 
9 labeli ← 1 
10 else 
11 labeli ← 0 
12 end if 
13 samples ← samples ∪ (featurei , labeli ) 
14 end for 
end
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6.3.4 Deep Neural Network-Based Sequential 
Decision-Making Approach 

Deep neural networks, which can automatically extract features through specific 
network structures and avoid complex feature engineering, have significantly 
progressed in recent years [164–167]. Convolutional neural networks (CNNs), as 
a type of deep neural networks, have become a significant tool for extracting image 
features automatically through multiple convolutional layers. CNNs are widely 
used in various computer vision fields, such as image classification, segmentation, 
and generation. In image classification, CNNs can accurately classify images into 
different categories based on their features. In image segmentation, CNNs can iden-
tify and segment different objects within an image. Furthermore, CNNs can also be 
used in image generation, where they can generate new images based on a given 
set of inputs. Therefore, CNNs have proved to be a versatile and effective technique 
for various computer vision tasks, making them a popular choice among researchers 
and practitioners [168, 169]. The achieved results are usually better than traditional 
machine learning methods based on feature engineering. Recurrent neural network 
(RNN) can automatically extract serial data features through a network structure with 
feedback and is used in natural language processing (NLP) problems such as speech 
recognition, machine translation, picture naming, etc. [170, 171]. The advent and 
utilization of novel techniques and methodologies, such as deep neural networks, 
present fresh perspectives for our research while simultaneously posing new chal-
lenges. In this section, we propose sequential decision-making algorithms for satel-
lite earth observation tasks, based on two prevalent types of deep neural networks: 
convolutional neural networks and recurrent neural networks. These algorithms are 
designed to cater to the specific requirements of satellite earth observation tasks, by 
effectively utilizing the capabilities of convolutional and recurrent neural networks. 
The proposed algorithms aim to enhance the accuracy and efficiency of satellite 
earth observation tasks, thereby enabling a more comprehensive understanding of 
the earth’s surface and its dynamics. 

1. Deep neural network decision model for earth observation tasks 

(1) Decision-making model for earth observation tasks based on convolutional 
neural networks 

Figure 6.8 illustrates the decision-making model for earth observation tasks, which 
is based on a convolutional neural network. The encoding network comprises two 
convolutional layers and two pooling layers, which are employed to automatically 
extract the earth observation meta-task features through multi-layer convolutional 
operations. The classification network consists of a three-layer fully connected neural 
network with two output nodes, which produce the probability of each category 
(1 for execution and 0 for non-execution) based on the abstract features derived from 
the encoding network. Finally, the category with the highest output probability is 
selected as the ultimate decision outcome. The proposed decision-making model
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provides an efficient and accurate approach to address earth observation tasks by 
utilizing the capabilities of convolutional neural networks. 

(2) Decision-making model for earth observation tasks based on recurrent neural 
network 

The decision-making model for earth observation tasks based on a recurrent neural 
network consists of coding and classification networks as shown in Fig. 6.9. The  
coding network uses a recurrent neural network structure to extract the related 
features of the earth observation meta-task. Then the output of the last hidden layer 
is input into the classification network. Finally, the classification network calculates 
the probability of each category by a fully connected neural network and uses it to 
determine the execution status of the task. 

Among coding networks, recurrent neural networks differ depending on the struc-
ture of the recurrent neurons employed. Long short-term memory (LSTM) [172] is
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a classical recurrent neural network. Due to its unique gate structure design, it effec-
tively solves the long-term dependence problem of sequence data and achieves satis-
factory results in processing time-series data. There are many textbooks and literature 
on convolutional neural networks and recurrent neural networks, the details of which 
can be found in the literature [167] and will not be repeated in this section. 

The two deep neural networks proposed for earth observation tasks decision-
making have slight variations in their applicability to different scenarios. The earth 
observation meta-task, which can be considered time-series data in the satellite task 
scheduling problem, is more effectively handled by the recurrent neural network-
based decision model, which generally produces better decision results but requires 
longer training time. In contrast, the convolutional neural network-based decision 
model has the inherent parallel computational properties of convolution and pooling, 
resulting in higher training efficiency. Hence, if the onboard processor has sufficient 
computing power, using the recurrent neural network to make observation task deci-
sions onboard would be a suitable choice. However, in cases where computational 
resources are limited, it is recommended to use a convolutional neural network model. 

2. The input of the task decision-making model 

Using deep neural networks to decide the scheduling state of a earth observation 
meta-task requires converting the raw meta-task data into recognizable features. 
For convolutional neural networks, the input comprises multi-dimensional matrix 
data, while for recurrent neural networks, the input is sequence data. Determining 
whether a earth observation meta-task can be executed depends on the present state 
of resources, such as energy and storage, and the distribution of earth observation 
meta-tasks within the autonomous scheduling horizon. The earth observation meta-
task in the autonomous scheduling horizon can be considered a sequence of earth 
observation meta-tasks in chronological order, which can also be viewed as two-
dimensional matrix data. Since the input to the convolutional neural network must 
be matrix data of a specific size, the length of the input earth observation meta-task 
sequence can be set to a fixed value to meet its usage requirements simultaneously. 
In cases where the input sequence length is insufficient, the data is processed with 
complementary zeros to compensate. 

The set TASKinput = {task0, task1, . . . ,  taskk−1} is the sequence of earth observa-
tion meta-tasks arranged in chronological order from earliest to latest, and task0 
is the earth observation meta-task to be decided. For ∀taski ∈ TASKinput, its 
feature vector xi can be expressed as (ψi , engi , memi , t i e − t i b, t i b − t i−1 

e ,Δeng(i−1)i ,
Δmem(i−1)i , c(i−1)i , c0i , BSTi ). The meaning of each element is as follows. 

• ψi : The priority of the earth observation meta-task taski . 
• engi : The energy to be consumed if the earth observation meta-task taski is 

executed. 
• memi : The storage to be consumed if the earth observation meta-task taski is 

executed. 
• t i e − t i b: The duration of the earth observation meta-task taski . 
• t i b − t i−1 

e : The time interval between the earth observation meta-task taski and 
previous earth observation meta-task taski−1.
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• Δeng(i−1)i : The amount of energy replenished during the time interval from the 
earth observation meta-task taski to earth observation meta-task taski−1. If  taski 
is the first earth observation meta-task of the input sequence, then Δeng(i−1)i is 
the energy state at the current moment. 

• Δmem(i−1)i : The amount of storage state change from the earth observation meta-
task taski to earth observation meta-task taski−1. The default value ofΔmem(i−1)i 

is 0. If taski is the first earth observation meta-task of the input sequence, then
Δmem(i−1)i replaced by the storage state at the current moment onboard. 

• c(i−1)i : If the time interval from the access end time of taski−1 to the access 
start time of taski satisfies the work mode switching constraint, then c(i−1)i = 0, 
otherwise c(i−1)i = 1. 

• c0i : If earth observation meta-tasks taski and the earth observation meta-task task0 
satisfy all constraints, then c0i = 0, otherwise c0i = 1. 

• BSTi : A Boolean variable set that represents whether some characteristics of the 
earth observation meta-task taski are the largest in the neighborhood, including: 
priority, observation duration, sum of conflicting target priorities, number of 
conflicting targets, energy consumption, storage consumption, etc. 

Based on the feature representation of the earth observation meta-task, we can 
construct the original input data for the convolutional neural networks and recurrent 
neural networks as shown in Fig. 6.10. In Fig.  6.10, each column corresponds to a 
earth observation meta-task, and each row corresponds to the feature value of the 
earth observation meta-task in that dimension. 

3. Loss function 

We use the cross-entropy loss function (see Eq. 6.15) [162] and Adam [173] opti-
mization algorithm to train a deep neural network-based task decision-making 
model.

features 

tasks 

Fig. 6.10 Input representation of deep neural network 
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L = −[
y · log ŷ + (1 − y) log

(
1 − ŷ

)]
, (6.15) 

which y and ŷ denote the sample labels’ real value and the model output’s predicted 
value, respectively. 

The training samples for the deep neural network-based task decision-making 
model are obtained like the ensemble learning-based task decision-making model. 
For details, please refer to Sect. 6.3.3. 

4. Deep neural network compression 

Despite significant advancements and improvements in onboard computing plat-
forms in recent years, their computing and storage capacities are still relatively 
weak compared to ground-based systems. As a result, decision-making times may be 
prolonged, and even decisions may fail if the task decision-making network param-
eters are too numerous or the number of layers is excessively deep. Therefore, it is 
essential to design neural networks that are appropriate for the onboard computational 
capacity’s depth and complexity rather than solely focusing on the decision-making 
effect without considering the decision-making network’s complexity. 

A primary point of view is that the shallow neural network compressed from the 
trained deep neural network has certain advantages over the direct trained shallow 
neural network regarding model representation, generalization, and robustness. For 
the satellite onboard autonomous task decision-making problem, the deep learning 
network training on the ground should be compressed into a shallow neural network 
that matches the onboard computing ability to operate normally in the resource-
constrained embedded environment. 

Deep neural network compression is an essential branch of machine learning 
research, and many research results have been achieved in recent years. The 
following methods are suitable for onboard autonomous task decision-making 
network compression. 

(1) Network pruning method 

The network pruning method is more intuitive and aims to discover those redundant 
connections in the deep neural network and remove them so that they are no longer 
involved in the network’s forward or backward operations, reducing the amount of 
network computation. The removed neurons and the corresponding connections are 
also no longer stored, thus also reducing the number of parameters for the model. 

The network pruning process results in a sparse deep neural network by removing 
some connections from the initially dense neural network. After completing the 
deep neural network training, the importance of each connection is defined using 
an evaluation criterion, such as the absolute value of the magnitude of the connec-
tion weights. This criterion is widely used since the smaller the weight value, the 
smaller the contribution of the corresponding neuron to the network output result. 
As a result, unimportant neurons in the network can be removed along with their 
corresponding connections. However, removing too many low-contributing neurons 
and connections may weaken the network output results and lead to error accumula-
tion, reducing the network’s decision accuracy. To restore the network performance,
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fine-tuning the pruned network is a widely adopted treatment. The pruned network is 
alternately pruned and fine-tuned until achieving an optimal balance between model 
size and model performance. Network pruning methods are typically more effective 
in compressing fully connected layers due to their higher redundancy compared to 
convolutional layers. 

(2) Weight quantification methods 

Weight quantization methods compress neural networks by reducing the number 
of bits representing each weight. The idea of quantization is straightforward. It is 
to cluster the weight values (e.g., k-means clustering, etc.). The range of values 
of the network weights and activations are counted. After finding the maximum 
and minimum values, a min–max mapping is performed to map all weights and 
activations to the 8-bit integer range (− 127 to 128). By quantizing the weights, the 
storage space occupied by the model can be reduced. If tens of millions of parameters 
are mapped from a 32-bit representation of a floating-point type to an 8-bit integer 
type, the size of the parameters is reduced to 1/4 of the original size. The size of the 
whole model is also reduced to 1/4 of the original size. Also, with the reduction of 
the model after parameter quantization, the computational resources required in the 
forward operation stage of the network will be significantly reduced. 

Obviously, weight quantization will lose accuracy, which is equivalent to intro-
ducing noise to the network, but deep neural networks are generally less sensitive to 
noise. The impact on the final decision task accuracy can be very small as long as the 
degree of quantization is controlled. From the architectural point of view, another 
benefit of weight quantization is energy saving and chip area. Each number uses fewer 
bits and fewer data to carry when doing operations, reducing the access memory over-
head (energy saving). At the same time, the number of multipliers required is also 
reduced (reducing chip area). The weight quantization method, therefore, is more 
suitable for use in an embedded environment. 

(3) Low-rank approximation method 

From a mathematical perspective, deep neural network computations can be seen 
as a series of matrix operations. The low-rank decomposition method optimizes the 
model computation process by breaking down these matrix operations into smaller 
components that have a precise mathematical interpretation. This approach is an 
effective way to reduce model redundancy and accelerate operations, particularly for 
fully connected layers. In convolutional neural networks, most of the computation is 
concentrated in the convolutional layer, where the parameters are typically saved in 
a multi-dimensional matrix format. The low-rank decomposition method, which is 
based on linear algebra theory, decomposes the large parameter matrix into smaller 
matrix combinations. This approach maintains the expressive ability of the original 
convolution layer while significantly reducing the amount of computation required. 
Therefore, the low-rank approximation method can approximate each convolution 
layer from shallow to deep with low-rank approximation orders, while ensuring 
a certain level of accuracy. This dramatically reduces the space and computation 
required for parameter storage. In summary, the low-rank decomposition method is an
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effective way to optimize deep neural network computations. By decomposing matrix 
operations into smaller components with a precise mathematical interpretation, this 
method reduces model redundancy and accelerates operations, particularly for fully 
connected layers. In convolutional neural networks, this method significantly reduces 
the amount of computation required for parameter storage while maintaining the 
expressive ability of the original convolution layer. The disadvantages of the low-
rank approximation are also more apparent. The decomposition is computationally 
expensive when the network is extensive. The low-rank approximation can only be 
performed layer-by-layer and cannot perform global parameter compression. 

(4) Knowledge distillation method 

Knowledge distillation is a current research area that has attracted significant atten-
tion with various implementation proposals. The basic idea is to use a pretrained 
large network, referred to as the teacher network, to train a smaller network, called 
the student network. The objective is to transfer the knowledge learned by the teacher 
network to the student network, which can then be used for classification, thus 
completing network compression. The underlying principle is to transfer knowl-
edge from a cumbersome model to a smaller and more deployable one that is better 
suited to transfer learning. The process of knowledge distillation involves training 
the student network to fit the teacher network and learn knowledge from it. Unlike 
the three network compression methods mentioned earlier, the teacher and student 
networks can be completely different from each other. However, the distillation effect 
is usually better when the network structures are similar. It is important to note that 
during knowledge distillation training, the output distribution of the student network 
must be consistent with that of the teacher network. To achieve this, the training loss 
function commonly uses Kullback–Leibler (K-L) divergence or mean square error 
(MSE). In summary, knowledge distillation is a promising approach to network 
compression that involves transferring knowledge from a pretrained large network 
to a smaller network, which is better suited for deployment and transfer learning. 
During the distillation process, the student network is trained to fit and learn from 
the teacher network. The output distribution of the student network is required to be 
consistent with that of the teacher network, which is ensured using K-L divergence 
or MSE as the training loss function. 

For the compression of the neural network, the specific compression method can 
be determined according to expert experience or experiment.



Chapter 7 
Satellite Task Scheduling System 

In Chaps. 3–6, some typical satellite task scheduling methods for centralized 
EOS task scheduling, dynamic rescheduling, distributed scheduling, and onboard 
autonomous scheduling are described in detail, which will eventually be applied to 
the satellite task planning and scheduling system. This chapter introduces several 
typical satellite task scheduling systems and simulation tools involved in the practice 
and focuses on analyzing more typical distributed task scheduling systems. 

7.1 Typical Satellite Task Scheduling Systems and Tools 

The satellite task scheduling system is an essential component of the earth obser-
vation system and the core component for efficiently utilizing satellite resources. 
Currently, all major spacefaring nations have designed and developed satellite task 
scheduling systems or simulation experiment tools for the management and task 
scheduling of satellites, such as NASA’s Automated Scheduling and Planning Envi-
ronment (ASPEN) system [111, 174, 175]. ESA’s ESTRACK Planning System (EPS) 
[176, 177] and the generic space mission analysis tool—STK (Satellite Tool Kit) 
[178]. The following is a brief description of ASPEN and STK. 

7.1.1 ASPEN/CASPER 

ASPEN is an object-oriented task scheduling system (Fig. 7.1) that automatically 
generates spacecraft-executable low-level action instructions by coding spacecraft
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Fig. 7.1 Graphical visualization interface of ASPEN 

operability constraints, flight rules, spacecraft hardware models, science experi-
ment objectives, and operational procedures. ASPEN provides reusable software 
components that implement complex planning and scheduling systems, specifically. 

(1) A uniform and easily expressible constraint modeling language: it allows users 
to customize the application and complete secondary development. 

(2) The constraint management system represents and maintains spacecraft oper-
ability, resource constraints, and activity requirements. 

(3) A range of search strategies for programme generation and repair. 
(4) A language for representing programme preferences and optimizing those 

preferences. 
(5) The real-time planning/replanning system-Continuous Activity Scheduling 

Planning Execution and Replanning (CASPER). 
(6) A temporal reasoning system for expressing and maintaining constraints on 

satellite usage. 
(7) A visual graphical interface for the presentation of planning results. 

CASPER is the core of the ASPEN system, which uses local, heuristic iterative 
search methods for satellite task scheduling. It allows the spacecraft to adapt to 
changes in resources, tasks, and generate executable solutions quickly and rapidly. 
The core ideas are described in Sect. 1.2.1 and will not be repeated here.
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7.1.2 Satellite Tool Kit—STK 

STK is a commercial space mission analysis and simulation software developed 
by Analytical Graphics, Inc. It covers the entire space mission cycle of concept, 
requirements, design, manufacturing, testing, launch, operations, and applications. 
Its main features include. 

(1) Analysis capability: it can calculate the position and attitude of the satellite at 
any moment in time and the coverage area of the satellite or ground station 
remote sensor. 

(2) Orbit generation: it provides satellite orbit generation wizards to help users 
create typical orbits, such as geosynchronous orbit, near-earth orbit. 

(3) Visibility analysis: it supports calculating access times between space objects 
such as launch vehicles, missiles, aircraft, ground vehicles, targets, with the 
ability to add geometric constraints (e.g., visual range, minimum elevation angle, 
etc.) between objects for detailed simulation. 

(4) Visual display: it supports visualization on 2D maps (see Fig. 7.2a), 3D maps 
(see Fig. 7.2b) visualization module to display all time-based information, with 
multi-window real-time display capability for task scene changes, etc.

(5) Comprehensive data reporting: it provides over a hundred types of reporting 
information in a text or graphical form, supporting user customization. 

(6) STK can perform spacecraft task scheduling through heuristic algorithms, and 
the scheduling interface is shown in Fig. 7.2c. 

7.2 Distributed Satellite Task Scheduling Systems 

A distributed satellite task scheduling system based on the multi-agent system has 
emerged as a promising solution to achieve joint planning and scheduling of many 
earth observation satellites with good scalability and the ability to adapt to changes 
in tasks, ground resources, and satellites. In this section, we introduce the architec-
ture and human–computer interaction interface of a typical distributed satellite task 
scheduling system, mainly referring to the work of literature [125, 136, 153, 179, 
180]. 

7.2.1 System Architecture Design 

The distributed satellite task scheduling system adopts a client–server system archi-
tecture (see Fig. 7.3). The server is deployed on the server cluster, responsible for 
receiving earth observation requirements and related resource status from external 
systems, running multi-satellite collaborative task scheduling algorithms, and gener-
ating satellite earth observation programmes. The clients are divided into central-
user client and end-user clients. The central-user client provides general functions
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(a) Two-dimensional visualization interface 

(b) Three-dimensional visualization interface 

Fig. 7.2 Graphical visualization interface of STK
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(c) Space resource planning interface 

Fig. 7.2 (continued)

for task scheduling, including the whole scheduling result viewing and revision, 
etc. The end-user clients support various mobile platforms, including handheld and 
vehicle-mounted devices. The end-users can remotely log in to the satellite operation 
center through the end-user clients, submit their earth observation requirements and 
formulate satellite earth observation programme related to them.

According to the system hardware architecture, the composition of the distributed 
satellite task scheduling system software is shown in Fig. 7.4.

The distributed satellite task scheduling system’s server is designed based on the 
multi-agent system architecture, comprising a cooperative scheduling agent module 
and several single-satellite scheduling agent modules. The system’s client primarily 
integrates the earth observation solution display and human–computer interaction 
functions. This section focuses on the server module, while the subsequent section 
will introduce the client module. 

The collaborative scheduling agent is responsible for managing each single-
satellite scheduling agent and collaborating with each to complete the allocation 
of earth observation tasks. The functions of the modules are as follows.

• Process management and monitoring unit: its primary function is to control and 
manage the collaborative process of each module, monitor the operational status
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Fig. 7.3 Hardware components of the distributed satellite task scheduling system
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Fig. 7.4 Main modules of the distributed satellite task scheduling system

of each module and generate monitoring information, monitor operational faults, 
and be responsible for alarms.

• Resource data acquisition unit: its primary function is to obtain information on 
system operation parameters, earth observation requirements, satellite resources, 
ground station resources, measurement and control resources, satellite orbit data, 
etc. It is also used to calculate resource accessibility, including the time window 
for satellite access to the target, the time window for satellite download data to 
the ground station, and the time window for the measurement and control system 
to upload the commands to the satellite.

• Data preprocessing unit: it mainly consists of two parts: mission detection filtering 
and working mode reasoning. The mission detection filtering specifically detects
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the legitimacy of the input mission information based on the expert system knowl-
edge base. It filters the satellite earth observation missions and data transmission 
resources that do not meet the requirements (e.g., optical satellites cannot perform 
tasks at night). The working mode decision module is responsible for acquiring 
information about earth observation missions and data transmission resources and 
reasoning about the working mode of satellite payloads based on the rules in the 
domain knowledge base as shown in Fig. 7.5. 

• Cooperative task scheduling unit: its primary function is to coordinate multiple 
single-satellite scheduling agents for scheduling and calculation based on the 
earth observation tasks, ground station resources, and other ground resources. The 
distributed collaborative scheduling algorithm decomposes tasks and resources 
into individual single-satellite scheduling agents, receives the earth observation 
programme generated by multiple single-satellite scheduling agents, and then 
evaluates and fuses multiple single-satellite earth observation programme to form 
a complete satellite earth observation solution.

• Multi-satellite constraint detection unit: it is responsible for detecting whether the 
use of satellites violates the set constraints.

• Multi-satellite conflict resolution module: it applies conflict resolution algorithms 
to resolve the conflicts between tasks.

• Multi-satellite knowledge base: it stores and manages the knowledge rules 
required in processes such as data preprocessing and multi-satellite collabora-
tive scheduling. The expert system knowledge base contains the rule categories 
is shown in Fig. 7.6.

The collaborative scheduling agent of distributed satellite task scheduling system 
provides a display interface for users to view the status of scheduling calculations as 
shown in Fig. 7.7.

Fig. 7.5 Workflow of the 
data preprocessing unit

domain 
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Fig. 7.6 Structure of the multi-satellite knowledge base

Fig. 7.7 Interface of the collaborative scheduling agent 

The single-satellite scheduling agent module completes single-satellite task 
scheduling under the organization of the collaborative scheduling agent module and 
submits the scheduling results to the collaborative scheduling agent module, whose 
submodules function as follows.

• Single-satellite task scheduling unit: according to the tasks and resources assigned 
by the collaborative scheduling agent, the single-satellite scheduling algorithm 
is invoked to perform scheduling calculations, generate a single-satellite earth 
observation programme, and send it to the collaborative scheduling agent.
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Fig. 7.8 Interface of the single-satellite scheduling agent 

• Single-satellite constraint detection unit: it is used to detect the constraint conflict 
in the single-satellite earth observation programme based on the constraints of 
that satellite.

• Single-satellite resolution unit: it resolves the conflict in the single-satellite earth 
observation plan based on conflict-solving rules.

• Single-satellite knowledge base: it stores and manages the knowledge rules 
required in single-satellite scheduling calculations. 

The single-satellite scheduling agent of the distributed satellite task scheduling 
system provides a display interface for users to view the status of this single-satellite 
scheduling agent module as shown in Fig. 7.8.
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7.2.2 Human–Computer Interaction Interface Design 
and Presentation 

The system provides users with several human–computer interactive interfaces for 
managing the satellite earth observation programme and maintaining the distributed 
satellite task scheduling system, such as programme viewing and editing, satellite 
resource management, knowledge base management. 

1. Human–computer interface for viewing and editing of earth observation 
programme 

The human–computer interface for viewing and editing provides three types of 
human–computer interaction: tables, electronic maps, and Gantt charts. The table 
primarily displays the attributes of the satellite earth observation meta-task, while the 
electronic map primarily shows the spatial distribution of the satellite earth observa-
tion meta-task. The Gantt chart primarily presents temporal relationship information 
of the earth observation meta-task. 

(1) Tables 

The table allows the details of each attribute element in the earth observation 
programme to be displayed or edited directly as shown in Fig. 7.9. 

(2) Gantt chart 

A Gantt chart visually represents the sequence and duration of specific activities using 
an activity list and a time scale. Gantt chart-based visual representations are designed 
for earth observation, data reception, and data transmission activity sequences. 

The Gantt chart’s advantage lies in its ability to visually represent the time-
series correlation of earth observation tasks and resources. Users can adjust the 
satellite earth observation programme using the Gantt chart interface. Once the 
programme is modified, the scheduling system automatically performs constraint

Fig. 7.9 Table for visualizing human–computer interaction of earth observation programme 
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detection on the adjusted scheduling results. If the adjustments violate the constraints, 
the scheduling system displays a constraint violation alert message and provides 
feasible adjustment suggestions. 

However, the weakness of the Gantt chart visualization approach is that it does 
not effectively represent the relationship between the satellite and ground station or 
the spatial location of observation targets. To address this limitation, it is necessary 
to introduce an electronic map-based visual representation of scheduling results as 
a complementary approach to the Gantt chart visual representation. 

(3) Maps 

The electronic map displays the spatial relationship between satellite orbits and 
resources, such as targets and data transmission. The system visually represents 
scheduling results based on geographic information system (GIS) technology. The 
electronic map’s base map is typically a high-precision Mercator projection of the 
world map. Planners can adjust the satellite earth observation programme on the 
electronic map, and the adjustment process is similar to that in the Gantt chart 
interface. 

2. Human–computer interaction interface for satellite resource management 

Users can complete the registration and logout functions of the single-satellite 
scheduling agent on the client side. The interface is shown in Fig. 7.10. Among them, 
the “sleep” state represents that the satellite scheduling agent has been deployed but 
has not formally entered the state of participating in scheduling calculation, and 
only the satellite scheduling agent in the “active” state can participate in scheduling 
process. 

3. Knowledge base management human–computer interaction interface 

The distributed satellite task scheduling system offers a human–computer interface 
for knowledge base management to maintain and manage the knowledge and rules

Fig. 7.10 Interface for the management of satellite agent status 
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required for data preprocessing and multi-satellite collaborative scheduling. This 
module includes adding, deleting, modifying, and retrieving rules and knowledge. 
It helps users understand the rules and facts the expert system uses and enables 
knowledge engineers to adapt the rules to actual needs.



Chapter 8 
Summary and Prospect 

With the rapid development of the global aerospace industry, the number and types of 
satellites in orbit and supporting resources are increasing, resulting in unprecedented 
attention to EOSs task scheduling in both academic and industrial circles. As a result, 
various new techniques and methods are emerging in this field. One of the main 
objectives of this book is to organize and present the current existing technologies 
and to explore future technological trends in this area. 

8.1 Summary of This Book 

This book presents the current research and practical progress in the field of earth 
observation satellite (EOS) task scheduling in a systematic order of “Problems 
(Chaps. 1 and 2)—Models and Algorithms (Chaps. 3–6)—Applications (Chap. 7).” 
The book aims to provide readers, whether a novice in the field, an academic deeply 
involved in the industry, or an experienced engineer, with a macro-understanding of 
the subject matter and the ability to select chapters of interest for further study. 

Chapter 1 introduces the background and significance of EOS task scheduling 
and outlines the current development of various branches of EOS task scheduling. 
The chapter also briefly introduces the writing ideas and chapter composition of the 
book. 

Chapter 2 provides a definition of the satellite task scheduling problem and intro-
duces relevant concepts and terminology, as well as the challenges posed to planning 
and scheduling by the various elements of the EOS system from a planning and 
scheduling perspective. The purpose of this chapter is to present the issues and 
analyze the difficulties. Subsequent chapters address the satellite task scheduling 
problem in different scheduling scenarios.
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Chapter 3 describes the centralized task scheduling model and algorithm for satel-
lites in static scenarios, which assumes that neither the earth observation tasks nor the 
satellite resources will not change once scheduling computation begins. This tradi-
tional and the most commonly used satellite task scheduling scenario is presented 
using evolutionary computation-based methods, while other meta-heuristic algo-
rithms (e.g., tabu search algorithm, ant colony algorithm, simulated annealing algo-
rithm, particle swarm algorithm, fireworks algorithm, etc.) follow a similar solution 
process. 

Chapter 4 describes EOS task rescheduling methods in dynamic scenarios, which 
are used after a satellite earth observation programme has been developed, due to 
task changes or failure of satellite resources. In practice, such methods are often used 
for satellite earth observation task scheduling in emergency situations. 

Chapter 5 describes the distributed satellite task scheduling method, which is one 
of the future development trends. Earth observation satellite task scheduling will 
gradually develop from a static offline centralized batch processing approach to a 
dynamic online distributed on-demand processing approach. This chapter establishes 
a distributed model for EOS task scheduling based on the idea of a multi-agent 
system and proposes scheduling algorithms based on contract network negotiation, 
blackboard model, and evolutionary computation, respectively. This type of method 
is still a hot research issue and has achieved initial results in practical application. 

Chapter 6 introduces task scheduling models and algorithms for autonomous earth 
observation satellites with onboard processing capabilities. The scheduling algo-
rithms based on graph theory and the sequential decision methods based on machine 
learning are introduced, and their application scenarios are analyzed. The devel-
opment of autonomous satellites has received attention worldwide, but currently, 
they are mainly used in application scenarios where satellite earth communication 
is limited, such as deep space exploration, and the applications of autonomous earth 
observation satellites are still in their infancy. The methods presented in this chapter 
have good research value and application prospects. 

Chapter 7 describes the architecture, main functions, and human–machine inter-
faces of some typical satellite task scheduling systems and aims to facilitate the 
application of the key technologies related to this book in practice. 

8.2 Future Promising Technologies 

In the author’s opinion, the future of satellite task scheduling in both research and 
practical applications will be defined by the following trends.
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8.2.1 Preference-Based Multi-objective Optimization 
for EOS Task Scheduling 

In essence, the satellite task scheduling problem is a multi-objective optimization 
problem, which involves the optimization of multiple objectives such as task priority, 
task timeliness, and task completion. The ideal situation is to optimize all three 
objectives simultaneously. However, in practice, there is often a trade-off between 
these objectives. For example, increasing task priority may lead to a decrease in 
task completion, as more low-priority tasks may not be observed. Multi-objective 
optimization aims to provide a set of optimized solutions that are not dominated 
by each other, known as the set of non-dominated solutions or Pareto solutions. 
Ultimately, the decision-maker selects one or a small number of solutions as final 
solutions based on actual needs or user preferences. 

Compared to single-objective optimization algorithms, multi-objective optimiza-
tion algorithms are more computationally intensive and take longer computation time, 
making them less used in engineering practice and still at the theoretical research 
stage. However, if the decision-maker’s potential preference information can be used 
to guide the algorithm’s search direction, the algorithm can focus on generating non-
dominated solutions that meet the decision-maker’s preferences, thereby improving 
algorithm performance and reducing computation time. The main challenges in this 
process are modeling, extracting, and representing user preference information, and 
designing preference-based multi-objective optimization algorithms. 

8.2.2 Multi-satellite Onboard Autonomous Cooperative Task 
Scheduling 

In the context of earth observation systems, satellite onboard autonomous task 
scheduling is an important trend that enhances the system’s rapid response capability. 
However, scheduling multiple satellites to work together presents more significant 
challenges compared to single-satellite autonomous task scheduling. 

The first challenge arises from the need for stable and uninterrupted communi-
cation links between satellites, which are crucial for cooperative task scheduling. 
During the movement of satellites, the dynamic changes in the network topology 
of the satellite communication system can cause communication link instability 
and time delays, which can significantly impact the autonomous task cooperative 
scheduling process. 

The second challenge involves the diversity of earth observation satellites, which 
exhibit varying constraints, working characteristics, and levels of intelligence. 
Heterogeneous satellite clusters require efficient and reasonable task assignment 
methods to members with different levels of intelligence, a considerable challenge 
for multi-satellite autonomous cooperative task scheduling.



178 8 Summary and Prospect

Lastly, the complexity and variability of earth observation requirements put high 
demands on the robustness and efficiency of the multi-satellite autonomous cooper-
ative task scheduling methods. Thus, the development of such methods still requires 
further research. 

In conclusion, multi-satellite autonomous cooperative task scheduling is an essen-
tial area of research that requires a solution for the challenges posed by the dynamic 
communication network topology, heterogeneity of satellite clusters, and complexity 
of earth observation requirements. 

8.2.3 Observation Task Cooperative Scheduling 
for Heterogeneous Platforms 

This book is dedicated to exploring the theories, models, and methods associated 
with satellite task scheduling. With the rapid advancement of the aerospace and 
aviation industries, collaborative observation using air/space-based earth observa-
tion resources, such as earth observation satellites, unmanned aerial vehicles, and 
airships, has garnered increasing attention. While these resources operate and observe 
differently (see Table 8.1), they offer excellent complementarity. If we can seam-
lessly integrate satellites, UAVs, airships, and other air and space resources for earth 
observation, we will be able to further enhance the task completion rate, temporal 
resolution of observation data, and timeliness of such data, thereby maximizing the 
comprehensive benefits of these valuable resources. However, efficiently and opti-
mally scheduling earth observation tasks to make full use of heterogeneous air and 
space-based earth observation resources remains a challenging issue.

8.2.4 Schedulability Prediction for Earth Observation Tasks 

In the current multi-user satellite earth observation system, each user independently 
submits earth observation requirements to the satellite operation and control center. 
Each user has a specific number of high-, medium-, and low-priority slots for 
earth observation requirements. The operation and control center coordinates the 
scheduling of earth observation tasks based on the requirements submitted by users. 
However, due to the limited resources of earth observation satellites, only a portion 
of the tasks can be performed, which can result in potential competition among inde-
pendent users. At the same time, if multiple users request observations of the same 
area, those observation requirements are combined, and the priority of that combined 
observation task is increased, creating a win–win situation for multiple users under 
certain conditions. 

The existing satellite scheduling process is opaque to users, and they are only noti-
fied of the observation task acceptance (or rejection) after the scheduling computation
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Table 8.1 Comparison of operational and observational characteristics of satellites, UAVs, and 
airships 

Platform Earth observation 
satellite 

Unmanned aerial 
vehicle 

Air ship 

Payload resolution High Extremely high High (decreases as 
roll angle increases) 

Running mode Orbiting as intended Settable track Settable track 

Aerial hovering 
capability 

Cannot Weak Strong 

Revisiting observation 
capability 

Revisiting 
observations by cycle 

Circle around and 
perform continuous 
observation 

Hover and stare 

Movement speed Rapid Medium Slow 

Regional coverage 
capacity 

Large Medium Small 

Endurance High Low Medium 

Platform security High Medium–low Medium

is complete. This results in users repeatedly modifying and resubmitting observa-
tion requirements through trial and error to ensure their interests are maximized, 
causing a significant computational burden on the satellite operation control center, 
and decreasing the overall efficiency of the satellite earth observation system. 

Therefore, is it possible to find a method to predict quickly, inexpensively, and 
with high accuracy the subset of earth observation tasks that can be performed 
without performing scheduling computation? This can guide the user to propose more 
reasonable observation requirements, such as priority, temporal resolution, thereby 
increasing user participation in the scheduling process. Schedulability prediction of 
earth observation tasks can achieve this objective. 

From the perspective of granularity, the earth observation task schedulability 
prediction can be divided into three levels: target-level forecast, satellite-level fore-
cast, and earth observation meta-task-level forecast. The target-level forecast predicts 
whether an individual ground target can be observed. The satellite-level forecast 
determines which satellite observes which target and requires not only completing 
the target-level forecast but also considering the satellite that performs the observa-
tion. The earth observation meta-task-level forecast predicts whether an earth obser-
vation meta-task is performed directly, and it not only completes the satellite-level 
forecast but also predicts when a particular satellite will observe a specific target. If a 
high-accuracy earth observation meta-task-level forecast can be achieved, the predic-
tion can be used as a complete earth observation programme, which can provide a 
high-quality initial solution for the scheduling algorithm or directly as a solution in 
an emergency. 

The finer the prediction, the more challenging it becomes, as the schedulability 
of an earth observation task depends not only on the capabilities and constraints of 
the entire earth observation satellite system, but also on its geographical location,
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priority, observation range requirements, observation time resolution requirements, 
observation urgency requirements, observation duration requirements, observation 
timeliness requirements, and other complex factors. Moreover, there is an implicit 
dependence on the direction of flight of the satellite and the presence of other high-
priority targets in its vicinity on whether the task can be responded to. Thus, extracting 
the features from these complex elements and modeling the dependencies between 
them to improve the prediction accuracy is a challenging problem.
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