
Dogan Ibrahim

Ahmet Ibrahim

The BeagleY-AI
Handbook

A Practical Guide to AI, Python,
and Hardware Projects and Hardware Projects

More than More than

50 50
projects projects
inside!inside!

books
books

The BeagleY-AI Handbook
A Practical Guide to AI, Python,

and Hardware Projects

●

Dr. Dogan Ibrahim

Ahmet Ibrahim BSc, MSc

● 4

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

PO Box 11, NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or

storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this

publication, without the written permission of the copyright holder except in accordance with the provisions of the

Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency

Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to

reproduce any part of the publication should be addressed to the publishers.

● Declaration

The author and publisher have made every effort to ensure the accuracy of the information contained in this book.

They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by errors or

omissions in this book, whether such errors or omissions result from negligence, accident, or any other cause.

● ISBN 978-3-89576-656-5 Print

ISBN 978-3-89576-657-2 eBook

● © Copyright 2025 Elektor International Media

www.elektor.com

Editor: Glaucileine Vieira

Prepress Production: D-Vision, Julian van den Berg

Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Contents

● 5

Contents

Chapter 1 • Introduction .11

1.1 The BeagleY-AI Single Board Computer (SBC). 11

1.2 BeagleY-AI Features. 11

1.3 BeagleY-AI Board Component Layout . 12

1.4 Comparison with the Raspberry Pi 5 . 14

1.5 Pros and Cons . 15

Chapter 2 • Installing the Operating System. .17

2.1 Overview . 17

2.2 The Installation of the Operating System . 17

2.3 Connection to a Wi-Fi. 20

2.4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY Program 22

2.4.1 Configuring PuTTY. 24

2.5 BeagleY-AI CPU Temperature . 25

Chapter 3 • Using the Console Commands. .27

3.1 Overview . 27

3.2 The Command Prompt . 27

3.3 Useful Console Commands . 27

3.3.1 System and user information . 27

3.3.2 Some useful commands. 30

3.3.3 Resource monitoring on BeagleY-AI. 39

3.3.4 Shutting Down . 41

3.3.5 Networking . 42

3.3.6 System information and other useful commands . 43

Chapter 4 • GUI Desktop Applications .45

4.1 Overview . 45

4.2 The GUI Desktop . 45

4.2.1 Applications Menu. 45

Chapter 5 • Using a Text Editor in Console Mode. .57

5.1 Overview . 57

5.2 The nano Text Editor . 57

Contents

The Beagle-Y AI Book

● 6

5.3 The vi Text Editor . 62

5.4 Using Thonny . 65

5.4.1 The Thonny IDE . 65

5.5 The gedit Text Editor . 66

5.5.1 Using gedit . 66

Chapter 6 • Creating and Running a Python Program .68

6.1 Overview . 68

6.2 Method 1 – Interactively from Command Prompt in Console Mode. 68

6.3 Method 2 – Create a Python File in Console Mode . 68

6.4 Method 3 – Create a Python File in GUI Desktop Mode . 69

6.5 Which Method? . 70

Chapter 7 • Python Programming and Simple Programs. .71

7.1 Overview . 71

7.2 Variable Names . 71

7.3 Reserved Words . 71

7.4 Comments . 72

7.5 Line Continuation . 72

7.6 Blank Lines . 72

7.7 More Than One statement on a Line . 72

7.8 Indentation. 73

7.9 Python Data Types. 73

7.10 Numbers. 73

7.11 Strings . 77

7.11.1 String functions . 78

7.11.2 Escape sequences . 79

7.12 Print Statement . 80

7.13 List Variables. 80

7.13.1 List functions . 81

7.14 Tuple Variables . 82

7.15 Dictionary Variables . 83

7.15.1 Dictionary functions . 83

7.16 Keyboard Input . 83

Contents

● 7

7.17 Comparison Operators . 84

7.18 Logical Operators. 84

7.19 Assignment Operators . 84

7.20 Control of Flow . 85

7.20.1 The if, if..else, and elif . 85

7.20.2 The for statement . 86

7.20.3 The while statement . 87

7.20.4 The continue statement . 88

7.20.5 The break statement . 88

7.20.6 The pass statement. 89

7.21 Example 1 – 4 Band Resistor Color Code Identifier. 89

7.22 Example 2 – Series or Parallel Resistors . 91

7.23 Example 3 - Resistive Potential Divider. 93

7.24 Trigonometric Functions . 96

7.25 User Defined Functions. 96

7.26 Examples . 100

7.27 Recursive Functions . 111

7.28 Exceptions . 111

7.29 try/final Exceptions . 114

7.30 Date and Time. 115

7.31 Creating Your Own Modules. 116

Chapter 8 • BeagleY-AI LED Projects .120

8.1 Overview . 120

8.2 BeagleY-AI GPIO pin Definitions . 120

8.3 Project 1 – Flashing an LED . 121

8.4 Project 2 – Alternately Flashing LEDs . 125

8.5 Project 3 – Binary Counting with 8 LEDs. 127

8.6 Project 4 – Christmas Lights (Random Flashing 8 LEDs) 133

8.7 Project 5 – Chasing LEDs . 135

8.8 Project 6 – Rotating LEDs with Pushbutton Switch . 137

8.9 Project 7 – Morse Code Exerciser with LED or Buzzer . 140

8.10 Project 8 – Electronic Dice . 145

The Beagle-Y AI Book

● 8

8.11 Project 9 – Varying the LED Flashing Rate . 149

Chapter 9 • Using an I2C LCD. .152

9.1 Overview . 152

9.2 The I2C Bus . 152

9.3 I2C Pins of BeagleY-AI . 153

9.4 Project 1 – Using an I2C LCD – Seconds Counter . 154

9.5 Project 2 – Using an I2C LCD – Display Time. 158

9.6 Project 3 – Using an I2C LCD – Display the IP address of BeagleY-AI 160

9.7 Project 4 – Reaction Timer – Output to Screen . 161

9.8 Project 5 – Reaction Timer – Output to LCD . 163

9.9 Project 6 – Automatic Dusk Lights . 166

9.10 Project 7 – Ultrasonic Distance Measurement . 168

9.11 Project 8 – Car Parking Sensors. 172

Chapter 10 • Plotting Graphs With Python and BeagleY-AI.176

10.1 Overview . 176

10.2 The Matplotlib Graph Plotting Library . 176

10.3 Project 1 – RC Transient Circuit Analysis - Charging . 190

10.4 Project 2 – RC Transient Circuit Analysis - Discharging 193

10.5 Transient RL Circuits . 195

10.6 Project 3 – RCL Transient Circuit Analysis . 196

10.7 Project 4 – Temperature, Pressure, and Humidity Measurement –

Display on the Screen . 200

10.8 Project 5 – Temperature, Pressure, and Humidity Measurement –

Plotting the Data. 203

Chapter 11 • Using a 4 x 4 Keypad. .206

11.1 Overview . 206

11.2 Project 1 – Using a 4x4 Keypad . 206

11.3 Project 2 – Security Lock with Keypad and LCD . 214

Chapter 12 • I2C, SPI Bus, and PWM Projects .217

12.1 Overview . 217

12.2 Project 1 - I2C Port Expander . 217

12.3 Project 2 - SPI ADC - Voltmeter. 220

12.3.1 The SPI bus . 221

Contents

● 9

12.4 Project 3 – Voltmeter – Output to LCD . 227

12.5 Project 4 – Analog Temperature Sensor Thermometer – Output to the Screen . . 230

12.6 Project 5 – Analog Temperature Sensor Thermometer – Output on LCD 232

12.7 Using a Digital to Analog Converter (DAC) . 235

12.7.1 The MCP4921 DAC . 235

12.7.2 Project 6 - Generating square wave signal with any peak voltage up to +3.3 V. . 236

12.7.3 Project 7 - Generating sawtooth wave signal . 240

12.7.4 Project 8 - Generating triangle wave signal . 242

12.7.5 Project 9 - Generating arbitrary wave signal. 244

12.7.6 Project 10 - Generating sine wave signal . 247

12.7.7 Project 11 – SPI Port Expander. 251

12.8 Pulse Width Modulation (PWM . 256

12.8.1 PWM channels of BeagleY-AI . 258

12.8.2 Project 12 – Generate 1000Hz PWM waveform with 50% duty cycle 258

12.8.3 Project 13 – Changing the brightness of an LED . 261

12.8.4 Project 14 – Mosquito repeller . 262

Chapter 13 • Communication Over the Wi-Fi .265

13.1 Overview . 265

13.2 UDP and TCP. 265

13.2.1 UDP communication . 266

13.2.2 TCP communication. 266

13.3 Project 1 – Sending a Text Message to a Smartphone Using TCP 267

13.4 Project 2 – Two-way Communication with the Smartphone Using TCP 271

13.5 Project 3 – Communicating with a PC Using TCP. 273

13.6 Project 4 – Controlling an LED Connected to BeagleY-AI from a

Smartphone Using TCP . 276

13.7 Project 5 – Sending a Text Message to a Smartphone Using UDP. 278

13.8 Project 6 – Controlling an LED Connected to BeagleY-AI from a

Smartphone Using UDP . 281

13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi. 283

13.9.1 Project 7 – BeagleY-AI and Raspberry Pi Pico W communication –

controlling a relay over Wi-Fi . 286

The Beagle-Y AI Book

● 10

13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pressure

Data on the Cloud . 289

13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO Ports

from the Internet . 297

13.12 Project 9 – Web Server - Controlling an LED Connected to BeagleY-AI

Using the Flask . 300

Chapter 14 • Using Serial Communication. .303

14.1 Overview . 303

14.2 USB – TTL Serial Conversion Modules. 304

14.3 BeagleY-AI and PC Communication Over Serial Port – Testing the Hardware and

Software Configurations. 306

14.4 Project 1 – BeagleY-AI – PC Two-Way Communication Over Serial Port –

Using Python . 308

14.5 Reading Geographical Coordinates – Using a GPS . 311

14.5.1 Project 2 – Displaying geographical coordinates on the monitor 312

14.5.2 Project 3 – Displaying geographical coordinates on LCD. 317

14.5.3 Project 4 – BeagleY-AI – Raspberry Pi 4 communication over a serial link 321

Chapter 15 • Real Time Clock (RTC). .325

15.1 Overview . 325

15.2 The Hardware . 325

15.3 Setting the RTC Time . 326

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI327

16.1 Overview . 327

16.2 BeagleY-AI Detailed Hardware Specifications. 327

16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection 328

16.4 BeagleY-AI ChatGPT . 335

16.5 BeagleY-AI Smart Assistant. 335

16.6 BeagleY-AI Robotics . 336

16.7 BeagleY-AI Machine Learning . 336

Chapter 17 • Useful Websites .337

Index .338

● 11

Chapter 1 • Introduction

1.1 The BeagleY-AI Single Board Computer (SBC)

BeagleY-AI is a low-cost, open-source, and powerful 64-bit quad-core single-board

computer, equipped with a GPU, DSP, and vision/deep learning AI accelerators, designed

for developers and makers. Developed by BeagleBoard.org Foundation, it is designed

to meet the needs of both professional developers and educational environments. It is

affordable, easy to use, and eliminating barriers to innovation. Developers can explore in-

depth lessons or push practical applications to their limits without restrictions.

For more information about BeagleY-AI, including detailed specifications, documentation,

and resources for getting started, visit the official website at

 beagleboard.org

The board is controlled by the Debian Linux operating system, which includes a built-

in development environment. This enables the seamless running of AI applications on a

dedicated 4 TOPS co-processor, while simultaneously handling real-time I/O tasks with an

800 MHz microcontroller.

BeagleY-AI is based on the Texas Instruments AM67A Arm-based vision processor. It

features a quad-core 64-bit Arm®Cortex®-A53 CPU subsystem at 1.4 GHz, dual general-

purpose C7x DSP with Matrix Multiply Accelerator (MMA) capable of 4 TOPs each, Arm

Cortex-R5 subsystem for low-latency I/O and control, a 50 GFLOP GPU, video and vision

accelerators, and other specialized processing capabilities.

In this chapter, you will learn the basic features and hardware details of the BeagleY-AI

board. A comparison is made with the popular Raspberry Pi 5 computer which has very

similar board layout and features. In the remaining chapters of the book, you will learn how

to install the operating system, how to access the BeagleY-AI board remotely, how to create

Python programs to run on the board, and how to create software-only and hardware-

based projects using the peripheral ports such as GPIO, SPI, UART, I2C, and many others.

1.2 BeagleY-AI Features

The board has the following features:

Feature Description

Processor

Texas Instruments AM67A, Quad 64-bit Arm® Cortex®-A53 @1.4 GHz,

multiple cores including Arm/GPU processors, DSP, and vision/deep learning

accelerators

RAM 4GB LPDDR4

Wi-Fi Beagleboard BM3301, 802.11ax

Bluetooth Bluetooth Low Energy 5.4 (BLE)

The Beagle-Y AI Book

● 12

USB Ports
4x USB 3.0 ports (5Gbps shared) + USB 2.0 Type-C Port with Device-mode

capability

Ethernet Gigabit Ethernet, with PoE+ support (requires separate PoE HAT)

Camera/Display 2 x 4-lane MIPI camera connector (one connector muxed with DSI capability)

Display Output 1 x HDMI display, 1 x OLDI display, 1 x DSI MIPI Display

Real-time Clock

(RTC)
Supports external coin-cell battery for power failure time retention

Debug UART 1 x 3-pin debug UART

Power 5 V/3 A DC power via USB-C

Power Button On/Off included

PCIe Interface
PCI-Express® Gen3 x 1 interface for fast peripherals (requires separate M.2

HAT or other adapter)

Expansion

Connector
40-pin header

Fan connector 1 x 4-pin fan connector, supports PWM control and fan speed measurement

Storage microSD card slot with UHS-1 support

Tag Connect 1 x JTAG, 1 x External PMIC programming port

Table 1.1: BeagleY-AI features

The AM67A scalable processor family is based on the evolutionary Jacinto™ 7 architecture,

targeted at Smart Vision Camera and General Compute applications. The AM67A processor

family is designed for a broad set of cost-sensitive, high-performance computing applications

in factory automation, building automation, human-machine interface, security systems,

test and measurement, robotics, industrial PC, and other markets.

For more information about the AM67A processor, visit:

 https://www.ti.com/product/AM67A

1.3 BeagleY-AI Board Component Layout

Front view

Figure 1.1 shows the components at the front of the board. Starting from the top-right-

hand corner of the board and moving to the left we can see the following components:

• 4-pin External fan connector

• AM67A processor

• 40-pin expansion header

• 4 GB LPDDR4 memory

• BM3301 WiFi (802.1ax) + BLE (v5.4)

• BM3301 antenna

• PCIe port (Gen 3)

• Power On/Off button

Chapter 1 • Introduction

● 13

• Bicolour LED

• Power management IC

• USB-C power and USB-2 port

• microHDMI monitor port

• 3-pin UART debug port

• 4-lane MIPI CSI connector

• 4-lane MIPI DSI/CSI connector

• Power over Ethernet port (PoE)

• Gigabit Ethernet port

• 2 x USB-3 (5 Gbps) ports

• 2 x USB-3 (5 Gbps) ports

Figure 1.1 BeagleY-AI front view.

Back view

Figure 1.2 shows the components at the back of the board, which include the following:

• JTAG SoC debug connector

• JTAG PMIC debug connector

• OLDI display connector

• microSD card adapter

The Beagle-Y AI Book

● 14

Figure 1.2 BeagleY-AI back view.

1.4 Comparison with the Raspberry Pi 5

Figure 1.3 shows the front views of the BeagleY-AI board and the Raspberry Pi 5 board.

The two boards look identical in size and in most component layouts. Table 1.1 shows a

comparison of the BeagleY-AI and the Raspberry Pi 5.

Figure 1.3 BeagleY-AI and the Raspberry Pi 5.

Feature BeagleY-AI Raspberry Pi 5

CPU AM67A, Quad-core 64-bit,

Cortex-A53 1.4GHz

BCM2712, Quad-core 64-bit

Cortex-A76 2.4GHz

Memory 4GB 2GB, 4GB, 8GB

R5 core YES None

microHDMI 1 2

USB-3 ports (5Gbps) 4 2

USB-2 port (480Mbps) 1 2

Chapter 1 • Introduction

● 15

Display support 3x (1x HDMI, 1x OLDI,

1x DSI)

2x HDMI

Graphics processing unit IMG-BXS-4-64 Videocore VII

Dual C7x DSP with Matrix multiply

accumulator (4 TOPS), NPU

1

CSI/DSI ports 1 0

Video encode/decode 1 None

CSI port 2 2

Fan connector 1 1

UART connector 1 1

PCIe port 1 1

microSD card slot 1 1

40-pin GPIO header 1 1

Ethernet port (Gigabit) 1 1

Power button 1 1

WiFi + BLE 1 1

 Table 1.2 Comparison of the BeagleY-AI and Raspberry Pi 5

1.5 Pros and Cons

Pros:

• AI Performance: The dual C7x DSPs and MMAs deliver up to 4 TOPS, making

it ideal for deep learning tasks.

• Connectivity: With USB 3.0, Gigabit Ethernet, Wi-Fi 6, and Bluetooth 5.4, the

board is well-equipped for various applications.

• Expandability: The PCIe Gen3 x1 connector and 40-pin GPIO header offer

significant customization options.

• Open-Source Hardware: Users can access and modify all hardware design

files, fostering innovation and adaptation.

• Industrial-Grade Components: The use of Texas Instruments hardware

ensures reliability and long-term support, making it suitable for both

development and deployment.

Cons:

• CPU Performance: The 1.4 GHz quad-core Cortex-A53 is underwhelming

compared to newer SBCs.

The Beagle-Y AI Book

● 16

• RAM Limitations: 4 GB of LPDDR4 RAM may not be sufficient for all

applications.

• Software Gaps: Some AI features and tools are not fully supported, limiting

the board's out-of-the-box capabilities.

• Heat Management: The board runs warm under load, and while it's fanless,

some users may prefer active cooling.

Chapter 2 • Installing the Operating System

● 17

Chapter 2 • Installing the Operating System

2.1 Overview

It is necessary to install a compatible operating system on a microSD card before the

BeagleY-AI SBC board can be used. In this chapter, you will learn how to install the BeagleY-

AI Debian operating system on a blank microSD card. Details on how to access the board

remotely are also given in this chapter.

2.2 The Installation of the Operating System

Before installing the operating system, make sure you have the following:

• 5 V 3 A power supply

• 32 GB microSD card

• Boot image (operating system software image)

Using the bb-imager

You can use the bb-imager to install the operating system on the SD card. The steps are

as follows::

• Download and install the bb-imager for your operating system from the

following link:

https://beagley-ai.beagleboard.io/bb-imager/

• Click to start the bb-imager. You should see a screen similar to the one shown

in Figure 2.1.

Figure 2.1 bb-imager screen.

• Select BeagleY-AI as the device (Figure 2.2)

The Beagle-Y AI Book

● 18

Figure 2.2 Enter the details.

• Choose the operating system as BeagleY-AI Debian XFCE (Recommended)

as shown in Figure 2.3.

Figure 2.3 Choose the operating system.

• Choose your SD card storage and click NEXT

• Click EDIT SETTINGS and enter your chosen username, password, Wi-Fi SSID,

Wi-Fi password, and time zone (Figure 2.4)

Chapter 2 • Installing the Operating System

● 19

Figure 2.4 Edit the settings.

• Click SERVICES and make sure that the Enable SSH and Use password

authentication are checked.

• Click SAVE, and then click YES on the screen Would you like to apply OS

customization settings?

• Click YES to confirm that all existing data will be deleted on the SD card and

to continue writing the operating system image on the SD card. Wait until the

writing and the verification processes are complete.

• Remove the microSD card adapter from the PC and insert the microSD card

into the slot on your BeagleY-AI as in Figure 2.5.

• Connect a monitor to the micro HDMI port of your BeagleY-AI board.

• Connect a keyboard and mouse to the USB-3 ports.

• Connect 5 V 3 A power supply to the USB-C power port of the BeagleY-AI.

• Figure 2.11 shows a typical setup with a monitor.

The Beagle-Y AI Book

● 20

Figure 2.5 A typical setup (BeagleBoard.org).

• After a while you should see the green LED heartbeat and the GUI desktop

displayed as shown in Figure 2.6. Please note, it may take several minutes.

2.3 Connection to a Wi-Fi

Follow these steps to connect to a Wi-Fi network:

• Click the wireless icon at the top right-hand side of the screen.

• A list of Wi-Fi networks will be displayed.

• Click Connect to connect to your network and enter your password.

• Click Submit (Figure 2.6).

Chapter 2 • Installing the Operating System

● 21

Figure 2.6 Click Submit.

• After a short wait, your BeagleY-AI will connect to your Wi-Fi. Click Close to

exit the window. You should see the Wi-Fi icon change color to green, indicating

a successful connection.

You can display the IP address of your connection as follows:

• Click Applications, then Terminal Emulator.

• In the terminal, enter the following command:

sudo ifconfi g

• You should see your IP address displayed under wlan0. In the author's setup,

the IP address was 192.168.1.127 (see Figure 2.7).

The Beagle-Y AI Book

● 22

Figure 2.7 Command ifconfi g (part of the display is shown).

2.4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY

Program

In many applications, you may want to access your BeagleY-AI from your PC over the Wi-Fi

link. This can be done using a terminal emulator program on your PC. The author uses the

popular PuTTY for this purpose. You can download PuTTY from the following website:

https://www.putty.org

• PuTTY is a standalone program and there is no need to install it. Simply double-

click to run it. You should see the Putty startup screen as shown in Figure 2.8.

Chapter 2 • Installing the Operating System

● 23

Figure 2.8 Putty startup screen.

• Make sure that the Connection type is SSH and enter the IP address of your

BeagleY-AI. You can obtain the IP address by entering the command ifconfig

as shown earlier.

• Click Open in PuTTY after entering the IP address and selecting SSH.

• The first time you run PuTTY, you may get a security message. Click Yes to

accept this security alert.

• You will then be prompted to enter the BeagleY-AI username and password

(these were entered in the sysconf.txt file during installation of the operating

system). You can now enter all Console-based commands through your PC.

Figure 2.9 shows the PuTTY screen with default screen settings.

The Beagle-Y AI Book

● 24

Figure 2.9 PuTTY screen with default settings.

• To change your password, enter the following command:

passwd

• To restart the BeagleY-AI enter the following command:

sudo reboot

• To shut down the BeagleY-AI enter the following command. Never shut down by

pulling the power cable, as this may result in the corruption or loss of files:

sudo shutdown –h now

2.4.1 Configuring PuTTY

By default, the PuTTY screen background is black with white foreground characters. The

author prefers to have a white background with black foreground characters, and the font

size set to 12 points in bold. It is recommended that you save your settings so that they

are available the next time you use PuTTY. Follow these steps to configure PuTTY with the

desired settings:

• Restart PuTTY.

• Select SSH and enter the Raspberry Pi IP address.

• Click Colours under Window.

• Set the Default Foreground and Default Bold Foreground colors to black

(Red:0, Green:0, Blue:0).

Chapter 2 • Installing the Operating System

● 25

• Set the Default Background and Default Bold Background to white

(Red:255, Green:255, Blue:255).

• Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0).

• Select Appearance under Window and click Change in Font settings. Set

the font to Bold 12.

• Select Session, give the session a name (e.g., MyZero), and click Save.

• Click Open to open the PuTTY session with the saved configuration.

• Next time you re-start the PuTTY, select the saved session and click Load,

followed by Open, to start a session with the saved configuration.

Figure 2.10 shows the PuTTY screen with black bold characters on a white background. In

this example, the PuTTY session was named as beagle.

Figure 2.10 Putty screen with white background and black characters.

2.5 BeagleY-AI CPU Temperature

Without a heatsink, the Beagle-Y-AI typically heats up to about 58 - 60°C when idle. With

4 cores running in a complex operation, the CPU temperature can reach nearly 70°C. It

is recommended to use a heatsink or an active cooler (such as the Raspberry Pi 5 active

cooler) to help lower the device temperature, particularly during CPU-intensive tasks.

The CPU temperature can be displayed by entering the following command. As shown in the

example below, the temperature is in milli-Celsius. In this case, the CPU temperature was

measured shortly after the board was started, and it was 48.819ºC:

The Beagle-Y AI Book

● 26

 beagle@beagle:~ $ cat /sys/devices/virtual/thermal/thermal_zone

[0-2]/temp

 47697

 48146

 48819

 beagle@beagle:~ $

Chapter 3 • Using the Console Commands

● 27

Chapter 3 • Using the Console Commands

3.1 Overview

BeagleY-AI is based on a version of the Linux operating system, one of the most popular

operating systems in use today. Linux shares similarities with other operating systems,

such as Windows and UNIX, and is an open-source system based on UNIX, developed

collaboratively by many companies since 1991. In general, Linux is harder to manage than

some other operating systems like Windows but offers more flexibility and configuration

options. There are several popular versions of the Linux operating system, such as Debian,

Ubuntu, Red Hat, Fedora, and others.

Linux commands are text-based. In this chapter, you will be looking at some of the useful

Linux commands and see how you can manage your BeagleY-AI using these commands.

The console commands can either be entered using the Putty terminal emulator, as

described in the previous chapter, or they can be entered using the Terminal Emulator

application in GUI Desktop.

3.2 The Command Prompt

Assuming your username is beagle, after you log in to BeagleY-AI, you will see the following

prompt displayed where the system waits for you to enter a command:

 beagle@beagle: ~$

Here, the ~ character indicates that you are currently in your default directory.

3.3 Useful Console Commands

In this section, you will be learning some of the useful Console commands, with examples

provided for each command. In this chapter, commands entered by the user are

shown in bold for clarity. Also, it is important to remind you that all commands must be

terminated by the Enter key.

3.3.1 System and user information

These commands are useful as they provide information about the system. The command

cat /proc/cpuinfo displays information about the processor (the command cat displays

the contents of a file, and in this example, it shows the contents of the /proc/cpuinfo

file). Figure 3.1 shows an example display, where only part of the display is shown here.

The Beagle-Y AI Book

● 28

Figure 3.1 Command: cat /proc/cpuinfo (part of the display is shown).

The command uname –s displays the operating system kernel name, which is Linux. The

command uname –a displays complete detailed information about the kernel and the

operating system. An example is shown in Figure 3.2.

Figure 3.2 Command: uname – a.

The command cat /proc/meminfo displays information about the memory on your

BeagleY-AI, such as the total memory and free memory at the time the command is issued.

Figure 3.3 shows an example, where only part of the display is shown here.

Chapter 3 • Using the Console Commands

● 29

Figure 3.3 Command: cat /proc/meminfo (part of the display is shown).

The command whoami displays the name of the current user. In this case, beagle is

displayed as the current user.

A new user can be added to your BeagleY-AI using the command useradd. In the example

in Figure 3.5, a user called Jane is added. A password for the new user can be added using

the passwd command followed by the username. In Figure 3.4, the password for user Jane

is set to mypassword (not displayed for security reasons). Notice that both the useradd

and passwd commands are privileged and the keyword sudo must be entered before

these commands. Notice that the –m option creates a home directory for the new user.

Figure 3.4 Commands: useradd and passwd.

You can log in to the new user account by specifying the username and password. You can

type the command exit to log out from the new account.

The command sudo apt-get upgrade is used to upgrade all the software packages on

the system.

The Beagle-Y AI Book

● 30

3.3.2 Some useful commands

To display the default home directory, enter:

 beagle@beagle: ~$ pwd

 /home/beagle

 beagle@beagle: ~$

To display the directory structure, enter the command ls / (Figure 3.5):

Figure 3.5 Files in the directory.

To show the subdirectories and files in your working directory, enter ls (Figure 3.6)

Figure 3.6 Files in the home directory.

Notice that the subdirectories are displayed in blue and the files in black.

The command ls can take a number of arguments. Some examples are given below.

To display the subdirectories and files in a single row (Figure 3.7).

Figure 3.7 Files in a single row.

To display the file types, enter the command ls –F. Note that directories have a "/" after

their names, and executable files have a "*" character after their names:

To list the filenames separated by commas, enter the command ls –m.

You can mix the arguments, as shown in Figure 3.8.

Chapter 3 • Using the Console Commands

● 31

Figure 3.8 Mixing the arguments.

Subdirectories are created using the command mkdir followed by the name of the

subdirectory.

The command find is used to search for a file and outputs a list of all directories that

contain the file. For example, the command find / -name myfile.txt searches the default

folder for the file myfile.txt.

File Permissions

One of the important arguments used with the ls command is -l (lowercase letter l) which

displays the file permissions (Figure 3.9), file sizes, and when they were last modified. In

the example below, each line relates to one directory or file. Reading from right to left, the

name of the directory or the file is on the right-hand side. The date the directory or file

was created is on the left-hand side of its name. Next comes the size, given in bytes. The

characters at the beginning of each line indicate the permissions. i.e., who is allowed to use

or modify the file or the directory.

Figure 3.9 Command ls -l.

The permissions are divided into 3 categories:

• What the user (or owner, or creator) can do – called user.

• What the group owner (people in the same group) can do - group.

• What everyone else can do – called world.

In the example in Figure 3.9, the first word, beagle, shows who the user of the file (or

directory) is, and the second word, beagle, shows the group name that owns the file. In

this example, both the user and the group names are beagle.

The permissions can be analyzed by breaking down the characters into four chunks for:

File type, User, Group, and World. The first character for a file is "-" and for a directory, it

The Beagle-Y AI Book

● 32

is "d". Next comes the permissions for the User, Group, and World. The permissions are as

follows:

• Read permission (r): the permission to open and read a file or to list a

directory.

• Write permission (w): the permission to modify a file, or to delete or create a

file in a directory.

• Execute permission (x): the permission to execute the file (applies to

executable files), or to enter a directory.

The three letters rwx are used as a group; if no permission is assigned, then a "-" character

is used.

As an example, considering the Music directory, where we have the following permission

codes:

 drwxr-xr-x which translates to:

 d: it is a directory.

 rwx: user (owner) can read, write, and execute

 r-x: group can read and execute, but cannot write (e.g., create or delete).

 r-x: world (everyone else) can read and execute, but cannot write.

The chmod command is used to change the file permissions. Before going into details of

how to change the permissions, let us look and see what arguments are available in chmod

for changing the file permissions.

The available arguments for changing file permissions are given below. We can use these

arguments to add/remove permissions or to explicitly set permissions. It is important

to realize that if we explicitly set permissions, then any unspecified permissions in the

command will be revoked:

u: user (or owner)

g: group

o: other (world)

a: all

+: add

-: remove

=: set

r: read

w: write

x: execute

Chapter 3 • Using the Console Commands

● 33

To change the permissions of a file, we type the chmod command, followed by one of

the letters u,g,o, or a to select the people, followed by the +,-, or = to select the type of

change, and finally followed by the filename. In this example, a file with the name led.py

was created in the home directory for demonstration purposes. The led.py file has user

read and write permissions.

We will be changing the permissions so that the user does not have read permission on

this file:

beagle@beagle: ~$ chmod u-r led.py

beagle@beagle: ~$ ls –lh

The result is shown in Figure 3.10.

Figure 3.10 File permissions of led.py.

Notice that if you now try to display the contents of file led.py using the cat command, you

will get an error message:

 beagle@beagle: ~$ cat led.py

 cat: led.py: Permission denied

 beagle@beagle: ~$

All the permissions can be removed from a file by the following command (Figure 3.11):

 pi@raspberrypi: ~$ chmod a= led.py

Figure 3.11 Remove all permissions.

The Beagle-Y AI Book

● 34

In the following example, rwx user permissions are given to file led.py:

 beagle@beagle: ~$ chmod u+rwx led.py

Figure 3.12 shows the new permissions of file led.py.

Figure 3.12 New permissions of file led.py.

To change the working directory, the command cd is used. In the following example, we

change our working directory to Music:

 beagle@beagle: ~$ cd /home/pi/Music

 beagle@beagle: ~/Music $

To go up one directory level, i.e., to our default working directory:

 beagle@beagle: ~/Music $ cd ..

 beagle: ~$

To change your working directory to Music, you can also enter the command:

 beagle@beagle: ~$ cd ~/Music

 beagle@beagle: ~/Music $

To go back to the default working directory, you can enter:

 beagle@beagle: ~/Music $ cd ~

 beagle@beagle: ~$

To find out more information about a file, you can use the file command. For example:

 beagle@beagle: ~$ file led.py

 led.py: Python script, ASCII text executable

 beagle@beagle: ~$

The –R argument of the command ls lists all the files in all the subdirectories of the current

working directory.

Chapter 3 • Using the Console Commands

● 35

To display information on how to use a command, you can use the command man. Figure

3.13 shows an example to get help on using the mkdir command. Press q to exit from the

man menu.

Figure 3.13 Help on mkdir command (part of the display is shown).

Help

The command man usually gives several pages of information on how to use a command.

You can type q to exit the command man and return to the operating system prompt.

The command less can be used to display a long listing one page at a time. Using the up

and down arrow keys, we can move between pages. An example is given below. Type q to

exit:

 beagle@beagle: ~$ man ls | less

 <display of help on using the ls command>

 beagle@beagle: ~$

Date and Time

To display the current date and time, the command date is used. For example:

 beagle@beagle: ~$ date

 Thu Oct 10 10:01:20 UTC 2024

 beagle@beagle: ~$

Copying a File

To make a copy of a file, use the command cp. In the following example, a copy of the file

led.py is made, and the new file is given the name test.txt:

 beagle@beagle: ~$ cp led.py test.py

 beagle@beagle: ~$

The Beagle-Y AI Book

● 36

Wildcards

You can use wildcard characters to select multiple files with similar characteristics. e.g.,

files having the same file extension names. The * character is used to match any number of

characters. Similarly, the ? character is used to match any single character. In the example

below, all the files with extensions .txt are listed:

 beagle@beagle: ~$ ls *.py

 led.py test.py

 beagle@beagle: ~$

The wildcard characters [a-z] can be used to match any single character in the specified

character range. An example is given below, which matches any files that start with letters

o, p, q, r, s, or t, and with the .py extension:

 beagle@beagle: ~$ ls [o-t]*.py

 test.py

 beagle@beagle: ~$

Renaming a File

You can rename a file using the mv command. In the example below, the name of the file

test.py is changed to test2.py:

 beagle@beagle: ~$ mv test.py test2.py

 beagle@beagle: ~$

Deleting a File

The command rm can be used to remove (delete) a file. In the example below, file test2.

txt is deleted:

 beagle@beagle: ~$ rm test2.py

 beagle@beagle: ~$

The argument –v can be used to display a message when a file is removed. Also, the

argument –i asks for confirmation before a file is removed. In general, the two arguments

are used together as –vi. An example is given below:

beagle@beagle: ~$ rm –vi test2.py

rm: remove regular file 'test2.py'? y

removed 'test2.py'

beagle@beagle: ~$

Sorting a file

The command sort displays the contents of a file in ascending order. The general format of

this command is:

 sort <options> <filename>

Chapter 3 • Using the Console Commands

● 37

Valid options are:

-u Removes duplicates from the output

-r Sorts the output in descending order

-o Writes the sorted output to a file

Word count

The command wc <filename> displays the word count in a file.

File differences

The command diff <file1> <file2) displays the differences between two files, line by line.

Removing a Directory

A directory can be removed using the command rmdir:

 beagle@beagle: ~$ rmdir Music

 beagle@beagle: ~$

Re-directing the Output

The greater-than sign > can be used to re-direct the output of a command to a file. For

example, we can re-direct the output of the command ls to a file called lstest.txt:

 beagle@beagle: ~$ ls > lstest.txt

 beagle@beagle: ~$

The command cat can be used to display the contents of a file:

 beagle@beagle: ~$ cat led.py

 This is a file

 This is line 2

 beagle@beagle: ~$

Using two greater-than signs >> adds to the end of a file.

Writing to the Screen or a File

The command echo can be used to write to the screen. It can be used to perform simple

mathematical operations if the numbers and the operation are enclosed in two brackets,

preceded by a $ character:

 beagle@beagle: ~$ echo $((5*6))

 30

 beagle@beagle: ~$

The command echo can also be used to write a line of text to a file. An example is shown

below:

The Beagle-Y AI Book

● 38

 beagle@beagle: ~$ echo a line of text > lin.dat

 beagle@beagle: ~$ cat lin.dat

 a line of text

 beagle@beagle: ~$

Matching a String

The command grep can be used to match a string in a file. An example is given below

assuming that the file lin.dat contains sting a line of text. Notice that the matched word is

shown in bold:

 beagle@beagle: ~$ grep line lin.dat

 a line of text

 beagle@beagle: ~$

Head and Tail Commands

The command head can be used to display the first 10 lines of a file. The format of this

command is as follows:

 beagle@beagle: ~$ head led.py

 …………………………………..

 …………………………………..

 beagle@beagle: ~$

Similarly, the command tail is used to display the last 10 lines of a file. The format of this

command is as follows:

 beagle@beagle: ~$ tail led.py

 ………………………………….

 ………………………………….

 beagle@beagle: ~$

The command which displays the location of an executable program. For example, the

location of the Python program can be found as follows:

 beagle@beagle: ~$ which python

 /usr/bin/python

 beagle@beagle: ~$

Super User Commands

Some of the commands are privileged and only authorized users can use them. Inserting

the word sudo at the beginning of a command gives us the authority to use the command

without having to log in as an authorized user.

What software is installed on my BeagleY-AI

To find out what software is installed on your system, enter the following command. You

should get several pages of display (Figure 3.14).

Chapter 3 • Using the Console Commands

● 39

Figure 3.14 Software installed (part of the display is shown).

You can also find out if a certain software package is already installed on your system using

the command dpkg with option –s.

If the software is not installed, you get a message similar to the following (assuming we are

checking to see if a software package called bbgd is installed):

 beagle@beagle: ~$ dpkg –s bbgd

 dpkg-query: package 'bbgd' is not installed and no information is available

 ……………………………………………………………………………..

 …………………………………………………………………………….

 beagle@beagle: ~$

3.3.3 Resource monitoring on BeagleY-AI

System monitoring is an important topic for managing the usage of your BeagleY-AI. One

of the most useful system monitoring commands is the command top, which displays the

current usage of system resources and displays which processes are running and how much

memory and CPU time they are consuming.

Figure 3.15 shows a typical system resource display obtained by entering the following

command (only part of the display is shown, enter q to exit):

 beagle@beagle: ~$ top

 beagle@beagle: ~$

The Beagle-Y AI Book

● 40

Figure 3.15 Typical system resource display (part of the display is shown).

Some of the important points in Figure 3.15 are summarized below (for lines 1 to 5 of the

display):

• There are a total of 188 processes in the system.

• Currently, only one process is running, 187 processes are sleeping, and 0

processes are stopped.

• The percentage CPU utilization is 0.1us for user applications (us).

• The percentage CPU utilization is 0.2 us for system applications (sy).

• There are no processes requiring more or less priority (ni).

• There are no processes waiting for I/O completion (wa).

• There are no processes waiting for hardware interrupts (hi).

• There are no processes waiting for software interrupts (si).

• There is no time reserved for a hypervisor (st).

• The total usable memory is 3792 bytes, of which 866 bytes are in use, 2284

bytes are free, and 797 bytes are used by buffers/cache.

• Line 5 displays the swap space usage.

The process table gives the following information for all the processes loaded into the

system:

• PID: the process ID number

• USER: owner of the process

• PR: priority of the process

• NI: the nice value of the process

• VIRT: the amount of virtual memory used by the process

• RES: the size of the resident memory

• SHR: shared memory the process is using

• S: process status (sleeping, running, zombie)

• %CPU: the percentage of CPU consumed

• %MEM: percentage of RAM used

Chapter 3 • Using the Console Commands

● 41

• TIME+: total CPU time the task used

• COMMAND: The actual name of the command

The command htop is similar to the command top, except it has more features and is

more user-friendly.

The command ps can be used to list all the processes used by the current user:

 beagle@beagle: ~$ ps

 PID TTY TIME CMD

 1842 pts/0 00:00:00 bash

 3255 pts/0 00:00:00 ps

 beagle@beagle

The command ps –ef gives a lot more information about the processes running in the

system.

Killing a process

There are many options for killing (or stopping) a process. A process can be killed by

specifying its PID and using the following command:

 beagle@beaglei: ~$ kill -9 <PID>

Disk (microSD card) usage

The disk-free command df can be used to display the disk usage statistics. An example is

shown in Figure 3.16. Option –h displays in human-readable form.

Figure 3.16 Command: df -h

The command free shows how much memory is used and the amount of free memory.

3.3.4 Shutting Down

Although you can disconnect the power supply from your BeagleY-AI when you finish

working with it, it is not recommended since there are many processes running on the

system and it is possible to corrupt the file system. It is much better to shut down the

system in an orderly manner.

The following command will stop all the processes, make the file system safe, and then turn

off the system safely:

The Beagle-Y AI Book

● 42

 beagle@beagle: ~$ sudo halt

The following command stops and then re-starts the system:

 beagle@beagle: ~$ sudo reboot

The system can also be shut down and then re-started after a time by entering the following

command. Optionally, a shutdown message can be displayed if desired:

 beagle@beaglei: ~$ shutdown –r <time> <message>

For example, to shut down at 1:55 AM, enter:

 beagle@beagle: ~$ sudo shutdown -h 01:55

or enter the following command to shut down immediately:

 beagle@beagle: ~$ sudo shutdown now

The system will power off immediately!

3.3.5 Networking

Some useful networking commands are:

ifconfig: check the IP address of your Raspberry Pi.

iwconfig: check which network the BeagleY-AI is using. An example is shown in Figure

3.17. Here, the SSID of the Wi-Fi adapter used is BTHub5-6SPN.

Figure 3.17 Command iwconfig

Chapter 3 • Using the Console Commands

● 43

ping: used to test the availability of a network device. An example is shown in Figure 3.18.

Figure 3.18 Command ping

wget: this command is used to download a file from the web and saves the file in the

current directory.

hostname – I: shows the IP address.

iwctl device list: lists the wireless devices attached (you should see wlan0 listed).

iwctl station wlan0 get-networks: lists of available Wi-Fi networks (Figure 3.19).

Figure 3.19 List of available networks.

iwctl station wlan0 show: check wlan0 status

3.3.6 System information and other useful commands

The command uname is used to display system information. This command has the

following options:

-a Show all system information

-s Display the kernel name

-n Print the network node hostname

The Beagle-Y AI Book

● 44

-r Print the kernel release

-v Print the kernel version number

-m Print the system hardware name

-p Print the processor type

-i Print the hardware platform type

-o Print the operating system type

If you have executed many commands and want to use some of them again but you cannot

remember the command name, you can use the command history. An example is shown

in Figure 3.20. To execute a command from the history, enter ! followed by the command

number.

Figure 3.20 The history command.

The command clear is also useful and it is used to clear the screen.

To install a package, use the command: sudo apt install <package_name>

The & operator allows you to run any command in the background so that you can use the

terminal for other tasks. This operator must be added to the end of a command.

The && operator allows you to run two or more commands at the same time. For example:

command1 && command2

Chapter 4 • GUI Desktop Applications

● 45

Chapter 4 • GUI Desktop Applications

4.1 Overview

In this chapter, you will learn how to use some of the important GUI Desktop applications. It

is assumed that you have a monitor, a keyboard, and a mouse connected to your BeagleY-

AI.

4.2 The GUI Desktop

Figure 4.1 shows the GUI Desktop. At the top left corner, there is the Applications icon.

On the left side of the screen, we have icons for Trash, File System, and Home. At the top

right-hand side, we have the Wi-Fi icon, Speaker icon, date and time, and the computer

name. At the bottom of the screen, we have several icons for quick access, such as the

Terminal Emulator, the File Manager, the Web Browser, the Application Finder, and the

Home directory icon.

Figure 4.1 The GUI Desktop.

4.2.1 Applications Menu

Figure 4.2 shows the items under the Applications Menu.

The Beagle-Y AI Book

● 46

Figure 4.2 Items under the Applications Menu.

Terminal Emulator

This application is used to enter console commands to your BeagleY-AI. The window is

similar to the window opened when using the Putty. Figure 4.4 shows the Terminal Emulator

application window.

Figure 4.4 Terminal Emulator application window.

File Manager

This is a graphical fi le manager application (Figure 4.5). You can open fi les and folders,

delete fi les, create folders, zoom in and out, and many more fi le processing options.

Chapter 4 • GUI Desktop Applications

● 47

Figure 4.5 File Manager application window.

Mail Reader

This application can be used to read your mails.

Web Browser

Click on this application to start a Web Browser.

Settings

This menu item includes many applications (see Figure 4.6). With this menu, you can

change the display settings, configure color profiles, configure the keyboard, configure

the power manager, set up date and time, set up users and groups, and many more

applications. Some important applications are described below:

Desktop: use this application to change the wallpaper, change the color of the desktop,

change the icon size, etc. Figure 4.7 shows the Desktop application window.

Display: use this application to configure the display settings, such as the resolution, scale,

refresh rate, rotation, etc. Figure 4.8 shows the Display application window.

The Beagle-Y AI Book

● 48

Figure 4.6 Settings menu applications.

Figure 4.7 Desktop application window.

Chapter 4 • GUI Desktop Applications

● 49

Figure 4.8 Display application window.

iwgtk: this is the Wi-Fi configuration application where all available networks are listed as

shown in Figure 4.9. You can see from this figure that the author's BeagleY-AI is connected

to a network called BTHub5-6SPN.

Figure 4.9 Available Wi-Fi networks.

Keyboard: this is a very useful application that enables you to change the keyboard settings,

such as the key repeat speed, cursor type, define keyboard shortcuts, and keyboard layout.

Figure 4.10 shows the Keyboard application window.

The Beagle-Y AI Book

● 50

Figure 4.10 Keyboard application window.

Mouse and Touchpad: this application enables you to confi gure the mouse by specifying

the mouse type, mouse button confi guration (left-handed or right-handed), mouse pointer

speed, mouse double-click time, etc.

Power Manager: with this application, you can confi gure the power button options, system

sleep mode (suspend or hibernate), display blanking after a given time, display brightness

control, and security settings. Figure 4.11 shows the Power Manager application window.

Figure 4.11 Power Manager application window.

Chapter 4 • GUI Desktop Applications

● 51

Print Settings: with this application, you can configure a printer for your BeagleY-AI.

PulseAudio Volume Control: this application enables you to set the volume control,

configure recording and playback, specify input device, etc.

Removable Drives and Media: use this application to mount removable devices, configure

CDs and DVDs, play CDs and DVDs, configure digital camera inputs, and configure to

run a program when a keyboard, mouse, or tablet is connected. Figure 4.12 shows the

application window.

Figure 4.12 Application window.

Session and Startup: this application is used to configure login and logout sessions,

auto-start application configuration, current and saved sessions, and manage remote

applications, etc.

Settings Editor: use this application to configure various display and keyboard options.

Time and Date: configure the current date and time using this application. Figure 4.13

shows the application window.

The Beagle-Y AI Book

● 52

Figure 4.13 Date and time application window.

Users Settings: this option allows you to add or delete users on the system. Figure 4.14

shows the application window. In this example, there are 3 users registered on the system:

Jane, John, and Beagle User (beagle).

Figure 4.14 Users Settings application window.

Window Manager: use this application to configure window settings, such as the title

font, title alignment, button layout, keyboard shortcuts, window focus, and various other

window-based options.

Xfce Terminal Settings: with this application, you can configure the terminal preferences,

display the toolbar and menubar, display borders around windows, colors, shortcut options,

mouse pointer options, and many more.

Accessories

This menu item includes several applications (Figure 4.15). Some commonly used

applications are described in this section.

Chapter 4 • GUI Desktop Applications

● 53

Application Finder: use this application to locate an application in the system.

Barrier: use this application to share your mouse and keyboard between multiple computers

on your desk.

Figure 4.15 Accessories menu options.

Bulk Rename: with this application, you can rename multiple files.

Screenshot: this application enables you to take screenshots. You can specify to capture

either the entire screen, an active window, or a selected region. You can specify a delay

before capturing the screen if required.

VIM: this is a text editor that you can use either to create program files or any other text

files.

Development

Thonny: this is the Thonny Integrated Development Environment (IDE) and a text editor

that can be used to develop Python programs. You can create a Python program, download

it to BeagleY-AI, and then run it. We will cover how to use Thonny in a later chapter. Figure

4.16 shows the Thonny screen.

The Beagle-Y AI Book

● 54

Figure 4.16 The Thonny screen.

Internet

This menu option includes the following applications. Use the Chrome or Firefox to access

the internet:

• Chrome Web Browser

• Firefox ESR

• Firefox Nightly

Multimedia

PulseAudio Volume Control: as described earlier, this application allows you to configure

the recording and playback of audio, as well as the audio input and output ports.

System

This menu has the applications shown in Figure 4.17. Some commonly used applications in

this menu are described below.

Chapter 4 • GUI Desktop Applications

● 55

Figure 4.17 System applications window.

htop: this application displays the tasks running on the system. An example is shown in

Figure 4.18.

Figure 4.18 htop command display.

Print Settings: as described earlier, use this option to configure a printer for the system.

The Beagle-Y AI Book

● 56

Log Out

This menu includes the following applications (Figure 4.19):

• Log Out

• Restart

• Shut Down

• Suspend

• Hibernate

• Hybrid Sleep

• Switch User

Figure 4.19 Log Out window.

Chapter 5 • Using a Text Editor in Console Mode

● 57

Chapter 5 • Using a Text Editor in Console Mode

5.1 Overview

A text editor is used to create or modify the contents of a text file. There are many text

editors available for the Linux operating system. Some popular ones are nano, vim, vi,

Thonny, gedit, and many more. In this chapter, we will look at some of these text editors

and show how to use them.

5.2 The nano Text Editor

Start the nano text editor by entering the word nano, followed by the filename you wish

to create or modify. The example below shows how to create a new file called first.txt:

 beagle@beagle: ~ $ nano first.txt

You should see the editor screen as in Figure 5.1. The name of the file to be edited is written

at the top middle part of the screen. The message New File at the bottom of the screen

shows that this is a newly created file. The shortcuts at the bottom of the screen are there

to perform various editing functions. These shortcuts are accessed by pressing the Ctrl key

together with another key. Some of the useful shortcuts are given below:

Ctrl+W: Search for a word

Ctrl+V: Move to the next page

Ctrl+Y: Move to the previous page

Ctrl+K: Cut the current line of text

Ctrl+R: Read file

Ctrl+U: Paste the text you previously cut

Ctrl+J: Justify

Ctrl+\: Search and replace text

Ctrl+C: Display the current column and row position

Ctrl+G: Get detailed help on using the nano

Ctrl+-: Go to specified line and column position

Ctrl+O: Save (write out) the file currently open

Ctrl+X: Exit nano

The Beagle-Y AI Book

● 58

Figure 5.1 nano text editor screen.

Now, type the following text as shown in Figure 5.2:

nano is a simple and yet powerful text editor.

This simple text example demonstrates how to use nano.

This is the last line of the example.

Figure 5.2 Sample text.

The use of nano is now demonstrated with the following steps:

Step 1: Go to the beginning of the file by moving the cursor.

Step 2: Look for the word simple by pressing Ctrl+W and then typing simple in the

window opened at the bottom left-hand corner of the screen. Press the Enter key. The

cursor will be positioned on the word simple (see Figure 5.3).

Chapter 5 • Using a Text Editor in Console Mode

● 59

Figure 5.3 Searching word simple.

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing

Ctrl+K. The first line will disappear as in Figure 5.4.

Figure 5.4 Cuttig the first line.

Step 4: Paste the cut line after the first line. Place the cursor on the second line and press

Ctrl+U (see Figure 5.5).

Figure 5.5 Paste the line cut previously.

Step 5: Place the cursor at the beginning of the word simple on the first row. Enter

Ctrl+C. This word's row and column positions will be displayed at the bottom of the screen

(see Figure 5.6).

The Beagle-Y AI Book

● 60

Figure 5.6 Displaying the row and column position of a word.

Step 6: Press Ctrl+G to display the help page as in Figure 5.7. Notice that the display is

many pages long and you can jump to the next pages by pressing Ctrl+Y or to the previous

pages by pressing Ctrl+V. Press Ctrl+X to exit the help page.

Figure 5.7 Displaying the help page.

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter

key, to move the cursor to line 2, column 5 (see Figure 5.8).

Chapter 5 • Using a Text Editor in Console Mode

● 61

Figure 5.8 Moving to line 2, column 5.

Step 8: Replace the word example with the word file. Press Ctrl+\ and type the first

word as example (see Figure 5.9). Press Enter and then type the replacement word as

file. Press Enter and accept the change by typing y.

Figure 5.9 Replacing text.

Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then

enter the filename to be written to, or simply press Enter to write to the existing file (first.

txt in this example). The file will be saved in your current working directory.

Step 10: Display the contents of the file:

beagle@beagle: ~ $ cat first.txt

This simple text file demonstrates how to use nano.

The Beagle-Y AI Book

● 62

Nano is a simple and yet powerful text editor

This is the last line of the example.

 beagle@beagle: ~ $

In summary, nano is a simple and yet powerful text editor that allows us to create new

text files or edit existing files.

5.3 The vi Text Editor

The vi text editor has been around for many years and it has been the standard Unix

operating system default text editor. The vi editor is a fully featured, powerful text editor

for doing many different tasks. The only problem with using vi is that it is not very user-

friendly, and learning may take some time. In this section, we will be looking at the basic

features of this editor and show how we can use it in simple editing applications.

Notice that you cannot use the keyboard arrow keys with the vi editor. Some of the useful

vi editor commands are listed below:

ZZ saves the changes and exits vi

:wq saves the changes and exits vi

:q! exits without saving the changes

h moves the cursor left (backwards)

j moves the cursor down

k moves the cursor up

l moves the cursor right (spacebar)

$ moves to the last column on the current line

o moves the cursor to the first column on the current line

w moves the cursor to the beginning of the next word

b moves the cursor to the beginning of the previous word

H moves the cursor to the top of the screen

M moves the cursor to the middle of the screen

L moves the cursor to the bottom of the screen

G moves to the last line in the file

nG moves to line n

r replaces the character under the cursor with the next character typed

i inserts before the cursor

a appends after the cursor

A appends at the end of the line

x deletes the character under the cursor

dd deletes the line under the cursor

dw deletes the word under the cursor

Chapter 5 • Using a Text Editor in Console Mode

● 63

/ searches for a word (forwards)

? searches for a word (backwards)

:s searches and replaces a word in the current line

Start the vi text editor by typing vi followed by the name of the file to be created or

modified. In this example, it is assumed that a new file called myfile.txt is to be created:

 beagle@beagle: ~ $ vi myfile.txt

You should see the vi text editor screen displayed as in Figure 5.10. The name of the file

being edited is displayed at the bottom of the screen.

Figure 5.10 vi text editor screen.

The vi editor is different from most other text editors in that it is not possible to start typing

inside the editor window. The steps for editing this file are given below:

Step 1: The vi editor has different modes and you must be in the insert mode to be able

to write to the window. Press i to move to the insert mode. Then type in the following text

(see Figure 5.11):

 The vi text editor is a very powerful text editor.

 But it is not easy to use this editor.

 This exercise should help you understand the basic commands.

The Beagle-Y AI Book

● 64

Figure 5.11 Entering the text.

Step 2: To come out of the insert mode, press the ESC key. To save the file, type characters

:w. You can exit the editor after saving the changes by typing :q. Alternatively, you can

type ZZ (note upper case) to save and exit. If you make changes to the file and attempt to

quit without saving, you will get an error message. If you want to exit without saving the

changes, simply type :q!

Step 3: Make sure you are in the command mode and type the character / followed by a

word to search for this word in the text. For example, type /editor to search for the word

editor (see Figure 5.12) in the text.

Figure 5.12 Searching for text.

Step 4: Insert the word is before the word editor. Type i followed by is and space and

terminate insert mode by pressing the ESC key.

Chapter 5 • Using a Text Editor in Console Mode

● 65

Step 5: Move the cursor right by pressing the l key. Similarly, move the cursor left by

pressing the h key. Move the cursor down (to the second line) by pressing the j key.

Step 6: Search for the word this and delete it. Type /this followed by the Enter key. Type

dw to delete the word.

Step 7: Delete the second line where the cursor is by typing dd

Step 8: Search for the word help and replace it with the word guide. Go to the line where

the word help is. Type /help, then type :s/help/guide/

Step 9: You can search and replace a word in any line other than the current line. For this

example, position the cursor on the first line. Change the word basic in the second line to

BASIC. Type:

 :1,2s/basic/BASIC/

Notice that you can specify the range of lines by separating them with a comma. In this

example, the search starts from line 1 and terminates at line 2.

5.4 Using Thonny

Thonny is more than a simple text editor. It is an Integrated Development Environment

(IDE) that can be used to write programs and then upload them to your BeagleY-AI (see

Figure 4.16)

5.4.1 The Thonny IDE

Start the Thonny IDE from the GUI Desktop under the Development menu.

The screen consists of two parts: the upper part is where you write your programs and the

lower part is the shell where small interactive Python program codes can be written. This

part is mainly used for testing small codes.

The upper part contains the following menu items:

File: click to create a new program (or a text file), open an existing program, save a

program, or print a program.

Edit: click to cut, copy, paste, select, and find & replace text or characters in a file.

View: click to view files, heap, exceptions, program tree, stack, variables, program

arguments, focus editor, and change the font size.

Run: click to configure the Python interpreter, run a program, debug a program, and send

EOF/Soft reboot.

The Beagle-Y AI Book

● 66

Tools: click to manage packages, open the system shell, open the Thonny folder, and

manage plug-ins.

Help: click to display the help contents, version history, report problems, and About Thonny.

The Thonny IDE must be configured before it is used to write and upload programs to your

BeagleY-AI. The details of this are given in a later chapter.

5.5 The gedit Text Editor

The gedit text editor is the default editor in some Linux systems, and it is easy to use while

offering many options. To use gedit on BeagleY-AI, you need to install it first. Enter the

following command to install gedit:

 sudo apt install gedit

5.5.1 Using gedit

As an example, let us create a simple text file named test.dat, consisting of 3 lines. Enter

the following command to start gedit:

 gedit test.dat

A new screen will pop up and wait for you to type your text (or the program). Type the

following lines (Figure 5.13):

 this is line 1

 this is line 2

 this is line 3

You can use the three lines next to the Save button to perform the following:

• Save the file created

• Find text inside the file

• Find and replace text inside the file

• Go to a specified line

• Check spelling (in Tools)

• Set the language (in Tools)

• Document statistics (in Tools)

• Display line numbers (in Preferences)

• Display status bar (in Preferences)

• Text wrapping (in Preferences)

• Highlight text (in Preferences)

• Keyboard shortcuts

• Help

Click Save to save your text file.

Chapter 5 • Using a Text Editor in Console Mode

● 67

Figure 5.13 Text file using gedit.

The Beagle-Y AI Book

● 68

Chapter 6 • Creating and Running a Python Program

6.1 Overview

Several Integrated Development Environments (IDEs) can be used to program the Beagle-Y

AI. Visual Studio (VS) includes support for 36 programming languages, including C++, C#,

BASIC, and several other others. It also provides open-source support for Python through

the Python Development and Data Science workloads, as well as the free Python Tools for

Visual Studio extension.

You will be programming your BeagleY-AI computer using the Python programming

language. It is worthwhile to look at the creation and running of a simple Python program

on your BeagleY-AI computer. In this Chapter, the message Hello From BeagleY-AI will

be displayed on your PC screen.

As described below, there are three methods that you can create and run Python programs

on your BeagleY-AI.

6.2 Method 1 – Interactively from Command Prompt in Console Mode

In this method, you will log in to your BeagleY-AI through a PC using SSH, or start the

Terminal Emulator in GUI Desktop mode. Here, you will create and run the Python program

interactively. This method is excellent for small programs. The steps are as follows:

• Log in to your BeagleY-AI using SSH or start the Terminal Emulator.

• At the command prompt, enter python. You should see the Python command

mode, which is identified by three characters >>>

• Type the program:

print ("Hello From BeagleY-AI")

• The text will be displayed interactively on the screen, as shown in Figure 6.1.

Note that, at the time of writing this book, the Python version was: 3.11.2.

Figure 6.1 Running a program interactively.

• Type Ctrl+z to exit from the program.

6.3 Method 2 – Create a Python File in Console Mode

In this method, you will log in to your BeagleY-AI using SSH as before, or start the Terminal

Emulator in GUI Desktop mode and then create a Python file. A Python file is simply a text

file with the extension .py. You can use a text editor, e.g., the nano text editor to create

your file. In this example, a file called hello.py is created using the nano text editor. Figure

Chapter 6 • Creating and Running a Python Program

● 69

6.2 shows the contents of the file hello.py. This figure also shows how to run the file under

Python. Notice that the program is run by entering the command:

 python hello.py

Figure 6.2 Creating and running a Python file.

6.4 Method 3 – Create a Python File in GUI Desktop Mode

In this method, you will be using the Thonny IDE to create and run your program. The

Thonny IDE must be configured before it can be used to write and upload programs to your

BeagleY-AI. Click the bottom-right corner of the screen to select your processor type and

choose Local Python 3. You are now ready to write your program.

The steps are:

• Type the following code to the upper part of the screen:

 print("Hello From BeagleY-AI")

• Click File -> Save and save with the name hello.py

• Click the Run icon (green menu button at the top) to run the program. The

output of the program will be displayed at the bottom of the screen, as shown

in Figure 6.3.

The Beagle-Y AI Book

● 70

Figure 6.3 Run the program (part of the display is shown).

You can run small programs in interactive mode by entering them at the lower part of the

screen called Shell. The results will be displayed immediately under the shell window.

6.5 Which Method?

The choice of a method depends upon the size and complexity of a program. Small

programs can be run interactively without creating a program file. Larger programs can be

created as Python files and then they can run either in the console mode or in Desktop GUI

mode under the Thonny IDE. Running under the Thonny IDE has the advantage that code

justification is corrected automatically as you write the code. In this book, the Thonny IDE

is used for small programs, and the nano editor is used for larger programs to create the

program files.

Chapter 7 • Python Programming and Simple Programs

● 71

Chapter 7 • Python Programming and Simple Programs

7.1 Overview

Python is an interpreted, interactive, and object-oriented programming language. It was

developed by Guido van Rossum in the 1980s at the National Institute for Mathematics and

Computer Science in the Netherlands. It is derived from many other languages, including

C, C++, Modula-3, Smalltalk, and Unix shell. The language is now maintained by a team

at the Institute.

Python is interactive which means that you can issue a command and see the result

immediately without having to compile the command. It is interpreted, which means no

pre-compilation is required before it is run.

Python supports object-oriented techniques of programming. It is a beginner-friendly

language, easy to learn, and maintain. Beginners can easily learn programming in a

relatively short period of time. Python supports a large library of functions, which makes

it very powerful. The language is portable, meaning that it can run on several different

popular platforms.

In this and the next chapters, you will learn the details of the Python programming language

on the BeagleY-AI computer and see how you can write programs using this language.

Many example programs are given to show how electronic engineers can use Python to help

them in their calculations.

7.2 Variable Names

Python variable names are case sensitive and can start with a letter A to Z or a to z or

an underscore character "_", followed by more letters or numbers 0 to 9. Some valid and

invalid example variable names are given below:

 SUM - valid

 Sum - valid

 SUm - valid

 _total - valid

 Cnt5 - valid

 8tot - invalid

 %int - invalid

 &xyz - invalid

 My_Number - valid

 @loop - invalid

 _Account - valid

Note that variables total, Total, TOTAL, ToTaL, or toTAL are all different.

7.3 Reserved Words

There are some words which are reserved for use by the Python interpreter and thus cannot

be used as variable names by programmers. A list of these reserved words is given below.

The Beagle-Y AI Book

● 72

Notice that all the reserved words contain lowercase letters:

 and for raise

 assert from return

 break global try

 class if while

 continue import with

 def in yield

 del is

 elif lambda

 else not

 except or

 exec pass

 finally print

7.4 Comments

Comment lines in Python start with a hash sign "#". All characters after the # sign are

ignored by the Python interpreter. An example comment line is shown below:

 # This is a comment line

Comments can also be inserted after a statement:

 Sum = 0 # Another comment

7.5 Line Continuation

The line continuation character "\" can be used to continue a statement on following lines.

An example is shown below:

 Sum = a +\

 b +\

 c

Which is equivalent to:

 Sum = a + b + c

7.6 Blank Lines

A line containing no statements is ignored by the Python interpreter.

7.7 More Than One statement on a Line

It is permissible to have more than one statement on a single line by separating the

statements with a semicolon character. An example is given below:

 cnt = 5; sum = 0; tot = 20;

Chapter 7 • Python Programming and Simple Programs

● 73

7.8 Indentation

In most programming languages blocks of code are identified by using braces at the beginning

and end of the block, or by identifying the end of the block using a suitable statement. e.g.,

END, WEND, or ENDIF. In Python, there are no braces or statements to indicate the start

and end of a block. Instead, blocks of code are identified by line indentation. All statements

within a block must be indented by the same amount. The actual number of spaces used

to indent a block is not important, as long as all the statements in the block use the same

number of spaces.

A valid block of code is given below (don't worry at this stage what the code does):

 if j == 5:

 a = a + 1

 b = a + 2

 else:

 a = 0

 b = 0

The following block of code is not valid since the indentation is not correct:

 if j == 5:

 a = a + 1

 b = a + 2

 else:

 a = 0

 b = 0

7.9 Python Data Types

Python supports the following data types:

• Numbers

• Strings

• Lists

• Dictionaries

• Tuples

• Sets

• Files

7.10 Numbers

Python supports the following numeric variable types:

• int - signed integer

• long - long integer

• float - floating point real number

• Complex numbers

The Beagle-Y AI Book

● 74

Numbers can be represented in decimal, Octal, binary, or hexadecimal. Long integers are

shown with an upper case letter L.

Some example numbers are shown below:

Integer

100 - decimal

-67 - decimal

500 - decimal

0x20 - hexadecimal

0b10000001 - binary

0o2377 - octal

202334567L - long decimal

0x3AEEFAE - hexadecimal

Floating point

2.355

23.780

-45.6

1.298

24.45E4

Complex

24.4+2,6j

0.78-4.2j

23.7j

We can assign numeric values to variables. These variable objects are created when values

are assigned to them:

 sum = 28

 a = 0

We can delete a variable object by using the del statement:

 del sum, a

We can assign a value to several variables at the same time:

 w = x = y = z = 0

Similarly, we can have statements of the form:

 w, x, y = 3, 5, 8

Chapter 7 • Python Programming and Simple Programs

● 75

Which is equivalent to:

 w = 3

 x = 5

 y = 8

We can perform the following mathematical operations on numbers:

Expression operators

+ addition

- subtraction

* multiplication

/ division

>> shift right

<< shift left

** power (exponentiation)

% remainder

Bitwise operators

 | bitwise OR

& bitwise AND

^ bitwise exclusive-or

~ bitwise complement

Some mathematical functions

pow(x, y) same as x**y

abs(x) absolute value of x

round(x, n) round x to n digits from the decimal point

floor(x) largest integer not greater than x

int(x) convert x to integer

hex(x) hexadecimal equivalent of integer x

bin(x) binary equivalent of integer x

exp(x) exponential of x

factorial(n) factorial of number n

ceil(x) smallest integer not less than x

log(x) natural logarithm of x (base 2)

log10(x) logarithm of x (base 10)

Some mathematical utility libraries

random random number library

math mathematics library

Figure 7.1 to Figure 7.3 show examples of using numbers in Python. The statement import

is used to import a library to a Python program. The math library contains a large number

of mathematical functions, such as logarithmic functions, trigonometric functions, square

The Beagle-Y AI Book

● 76

root, hyperbolic functions, angular conversion, and so on. Further details on these functions

can be obtained from the following link:

 https://docs.python.org/3/library/math.html

The random library is useful for generating random numbers. The function randint(a, b)

in this library generates a random integer between integers a and b (inclusive). Details of

functions available in the random library can be obtained from the following link:

 https://docs.python.org/2/library/random.html

Figure 7.1 Using numbers in Python.

Figure 7.2 Using numbers in Python.

Chapter 7 • Python Programming and Simple Programs

● 77

Figure 7.3 Using numbers in Python.

7.11 Strings

In Python, strings are declared by enclosing characters between a pair of single or double

quotation marks. An example is given below:

 myname = "James Booth"

We can manipulate strings by extracting characters, joining two strings, assigning a string

to another string, and so on. Some commonly used string manipulation operations are

shown in Figure 7.4 and Figure 7.5.

Figure 7.4 String manipulation operations.

The Beagle-Y AI Book

● 78

Figure 7.5 String manipulation operations.

Notice that a third index, as the step, can be used in string slicing operation. The step is

added to the first offset until the second offset and the character at this position is extracted.

In the following example, the characters at positions 0, 2, 4, and 6 are extracted:

 >>> a = "computer"

 >>> b = a[0:7:2]

 >>> print(b)

 cmue

7.11.1 String functions

Python supports a large number of string functions. Some commonly used string functions

are given below:

• capitalize() changes the first letter of a string to upper case and all

other characters to lower case.

• count(str,beg,end) finds how many times str occurs in a string.

 Starting and ending positions should be specified.

• find(str,beg,end) determines if str occurs in a string. Starting and ending

positions should be specified. The index is returned if

the str is found, otherwise, -1 is returned.

• len(string) returns the length of a string.

• isalpha() returns True if the string contains all alphabetical

numeric characters.

• isalnum() returns True if the string contains alphabetical and

numeric characters.

Chapter 7 • Python Programming and Simple Programs

● 79

• isdigit() returns True if the string contains all digits.

• islower() returns True if the string contains all lowercase letters.

• isupper() returns True if the string contains all uppercase letters.

• lower() converts all uppercase characters to lowercase.

• upper() converts all lowercase characters to uppercase.

• lstrip() removes all leading whitespaces.

• rstrip() removes all trailing whitespaces.

• swapcase() changes the case of all letters.

Figure 7.6 shows examples of using some of the string functions.

Figure 7.6 Using the string functions.

7.11.2 Escape sequences

Escape sequences are special non-printable characters used to generate functions such

as newline, tab, formfeed, carriage return, etc. Escape sequences start with the character

"\". A list of the commonly used escape sequences is given below:

• \n newline

• \a bell

• \b backspace

• \f formfeed

• \r carriage return

• \t horizontal tab

• \v vertical tab

• \xhh character with 2 hexadecimal value hh

The Beagle-Y AI Book

● 80

As an example, the following statement will display the letter a followed by two newlines:

 print("a\n\n")

7.12 Print Statement

The print statement is one of the most commonly used statements. It displays text

or numbers on the screen. Text is displayed by enclosing it in quotes. Numeric data is

displayed by simply entering the variable name. The data to be displayed is enclosed in

round brackets. Text and numeric data can be mixed in display outputs and the type of the

variable to be displayed can be declared using formatting characters. A list of the commonly

used formatting characters is given below:

• %c character

• %s string

• %d signed integer

• %u unsigned integer

• %x lower case hexadecimal number

• %X upper case hexadecimal number

• %f floating point number

• %E exponential notation

Figure 7.7 shows some examples of using the print statement.

Figure 7.7 Using the print statement.

7.13 List Variables

List variables are variables separated by commas and enclosed in square brackets. The

variables in a list can be of different types. The contents of a list can be accessed using

square brackets to index the required item inside the list. Indexing starts from 0. As with

the strings, the "*" character can be used for repetition and the "+" character can be used

for concatenation. Some examples are given below:

Chapter 7 • Python Programming and Simple Programs

● 81

 mylist = ['John', 'Adam', 230, 12.25, 'Peter', 89]

 second = [30, 23]

 s = mylist[0] # s = 'John'

 s = mylist[2] # s = 230

 s = mylist[2:4] # s = 230, 12.25

 s = mylist[3:] # s = 12.25, 'Peter', 89

 s = mylist * 2 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John',

'Adam', 230, 12.25, 'Peter', 89

 s = mylist + second # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 30, 23

The contents of a list can be modified by assigning a new value to the required index

position. For example, we can change the 2nd element of the list mylist from 230 to 100 as:

 mylist[2] = 100

Python does not allow referencing items that are not present in a list. For example, the

following statement gives an error message:

 mylist[200]

Lists can be nested to form two dimensional matrices. An example is given below:

 M = [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

The nested list is indexed starting from [0][0]. For example, the elements of row 1 can be

accessed as follows:

 >>> M[1] # Elements of row 1

 [4, 5, 6]

 >>> M[1][1] # Element at row 1, column 1

 5

The statement L = [] creates an empty list called L.

7.13.1 List functions

Python language supports a large number of list functions. Some commonly used list

functions are given below:

• del([i:j]) deletes elements from i to j-1

• list.append(x) appends an item to the end of a list

• list.extend([x,y,z]) adds several items to the list

• cmp(L1,L2) compares elements of lists L1 and L2

The Beagle-Y AI Book

● 82

• len(L) returns the length of list L.

• max(L) returns the item with the maximum value

• min(L) returns the item with the minimum value

• list.count(x) returns how many times x occurs in a list

• list.index(x) returns the position of the first occurrence of x

• list.insert(i,x) inserts x at position i in the list

• list.remove(x) removes the indexed item from the list

• list.reverse() reverses a list

• list.sort() sorts a list

• list.pop() deletes and returns the last item

Figure 7.8 shows some examples of using the print statement.

Figure 7.8 Using the list functions.

7.14 Tuple Variables

Tuples are similar to lists but their contents cannot be changed. i.e., they are read-only.

Also, tuple variables are enclosed in round brackets (parentheses). Some examples are

given below:

 mytuple = ['John', 'Adam', 230, 12.25, 'Peter', 89]

 second = [30, 23]

 s = mytuple[0] # s = 'John'

 s = mytuple[2] # s = 230

 s = mytuple[2:4] # s = 230, 12.25

 s = mytuple[3:] # s = 12.25, 'Peter', 89

 s = mytuple * 2 # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 'John',

'Adam', 230, 12.25, 'Peter', 89

Chapter 7 • Python Programming and Simple Programs

● 83

 s = mytuple + second # s = 'John', 'Adam', 230, 12.25, 'Peter', 89, 30, 23

The following statement is not valid since we cannot change the contents of a tuple:

 mytuple[2] = 200

7.15 Dictionary Variables

Dictionaries are similar to hash tables with keys and values. Each key is separated from its

value by a colon sign, the items are separated by commas, and the whole thing is enclosed

in curly brackets. The keys in a dictionary must have data types of numbers, strings, or

tuples. The values can be of any data type. An example is given below:

 mydict = {'Name': 'John', 'Surname': 'Adams', 'Age': 25}

 s = mydict['Name'] # s = 'John'

 s = mydict['Age'] # s = 25

 s = mydict.keys() # s = ['Age', 'Surname', 'Name']

 s = mydict.values() # s = [125, 'Adams', 'John']

7.15.1 Dictionary functions

Python language supports a large number of dictionary functions. Some commonly used

dictionary functions are given below:

• cmp(d1, d2) compares two dictionaries d1 and d2

• len() returns the number of items in a dictionary

• del(d[key]) deletes an item from the dictionary

• d.clear removes all items from the dictionary

• d.keys() returns a list of dictionary keys

• d.values() returns a list of dictionary values

Figure 7.9 shows some examples of using the print statement.

Figure 7.9 Using the dictionary functions.

7.16 Keyboard Input

Python provides the following function for reading data from the keyboard:

The Beagle-Y AI Book

● 84

• input provides a prompted read. The data from the keyboard is

returned as a string

Figure 7.10 shows examples of using the keyboard input function. Notice that the function

returns a string. Therefore, if numeric data is entered then it should be converted into a

numeric data type before being used in mathematical operations.

Figure 7.10 Keyboard input examples

7.17 Comparison Operators

Valid Python comparison operators are:

• == checks if two operands are equal

• != checks if two operands are not equal

• > checks if the left operand is greater than the right one

• < checks if the left operand is less than the right one

• >= checks if the left operand is greater than or equal to the right one

• <= checks if the left operand is less than or equal to the right one

7.18 Logical Operators

Valid Python logical operators are:

• and logical AND of the two operands

• or logical OR of the two operands

• not logical inverse of the operand

7.19 Assignment Operators

• = assignment operator

• += compound add operator

• -= compound subtract operator

• *= compound multiply operator

• /= compound divide operator

Chapter 7 • Python Programming and Simple Programs

● 85

7.20 Control of Flow

In normal program flow, statements are executed sequentially one after another one. The

flow control statements are used to make decisions and change the order of execution

depending on the results of these decisions.

Python programming language supports the following flow control statements:

• if

• if-else

• elif

• for

• while

• break

• continue

• pass

7.20.1 The if, if..else, and elif

The general format of the if statement is:

 if expression: statement

or

 if expression:

 Statement 1

 Statement 2

 else:

 Statement 1

 Statement 2

Notice the use of indentation inside the if blocks and the colon character at the end of the

if and else statements.

An example use of the if statement is:

 if a == 5: print('a is 5')

if there is only one statement after the if, then it can be typed on the same line. If there is

more than one statement, then all the statements must be written on the next lines with

the same amount of indentation. An example is given below:

 if a == 100:

 x = 0

 y = 0

 else:

 x = 1

 y = 10

The Beagle-Y AI Book

● 86

The elif statement is used to check for different conditions in an if block. An example is

given below:

 if a > 10:

 b = 0

 c = 0

 elif a == 10:

 b = 2

 c = 4

Notice that the if statements can be nested as shown in the following example:

 if a == 100:

 c = 0

 k = 1

 if b == 10:

 c = 20

 m = 1

 else:

 c = 23

7.20.2 The for statement

The for statement is used to create loops (iteration) in programs. The general format of

this statement is:

 for variable in sequence:

 statements

Here, the sequence is evaluated first and the first item in the sequence is assigned to the

variable and the statements are executed. Then the second item is assigned to the variable

and the statements are executed. This continues until there are no more items in the

sequence. An example use of the for statement is shown below:

 for letter in "COMPUTER":

 print(letter)

The following will be displayed on the screen:

 C

 O

 M

 P

 U

 T

 E

 R

Chapter 7 • Python Programming and Simple Programs

● 87

The for statement is commonly used to create loops in programs. The range statement

denotes the range of the variable as in the following example:

 for cnt in range(0, 5):

 print(cnt)

The following will be displayed on the screen:

 0

 1

 2

 3

 4

Notice that the upper value of the range is one less than the specified value i.e., in the

above example, the range is from 0 to 4 and not to 5.

We can specify a step size in the last parameter when using the range statement, in the

following example, the step size is 5, and the list takes values 0, 5, 10, 15, 20, 25:

 List(range(0, 30, 5))

The for statement can be nested if desired.

7.20.3 The while statement

The while statement can also be used to create loops (iteration) in programs. The general

format of this statement is:

 while expression:

 statements

The statements are executed while the expression evaluates to True. An example is given

below:

 cnt = 0

 while cnt < 5:

 print(cnt)

 cnt = cnt + 1

The output of the program is as follows:

 0

 1

 2

 3

 4

The Beagle-Y AI Book

● 88

Notice that the statements that belong to the while statement must be indented. It is

important to make sure that the expression is modified inside the loop, otherwise, an

infinite loop will be formed, as shown in the following example:

 cnt = 0

 while cnt < 5:

 print(cnt)

7.20.4 The continue statement

The continue statement is used in for and while loops and this statement skips all the

remaining statements in a loop and returns to the beginning of the loop. An example is

given below. In this example, number 3 is not displayed by the print statement:

 cnt = 0

 while cnt < 5:

 cnt = cnt + 1

 if cnt == 3:

 continue

 print(cnt)

The output of this example is as follows:

 1

 2

 4

 5

7.20.5 The break statement

The break statement is used in for and while loops and this statement terminates the loop

and execution continues with the next statement. An example is given below:

 cnt = 0

 while cnt < 5:

 cnt = cnt + 1

 if cnt == 3:

 break

 print(cnt)

The output of this example will be:

 1

 2

Chapter 7 • Python Programming and Simple Programs

● 89

7.20.6 The pass statement

The pass statement is used when a statement is required syntactically but you do not

want any command or code to execute. The pass statement is a null operation and nothing

happens when it executes. An example is given below:

 for letter in 'COMPUTER':

 if letter == 'P':

 pass

 print('Passed')

 print(letter)

The output of this program is:

 C

 O

 M

 Passed

 P

 U

 T

 E

 R

We have covered the basic statements of the Python programming language. We will now

develop example programs using the knowledge we have gained so far.

7.21 Example 1 – 4 Band Resistor Color Code Identifier

In this example, the user enters the three colors of a 4-band resistor, and the program

calculates and displays the value of the resistor in Ohms. The tolerance of the resistor is

not displayed.

Background Information: Resistor values are identified by the following color codes:

Black: 0

Brown: 1

Red: 2

Orange: 3

Yellow: 4

Green: 5

Blue: 6

Violet: 7

Grey: 8

White: 9

The first two colors determine the first two digits of the value, while the last color determines

the multiplier. For example, red red red corresponds to 22 x 102 = 2200 Ohms.

The Beagle-Y AI Book

● 90

Program Listing: Figure 7.11 shows the program listing (program: resistor.py). At the

beginning of the program, a list called color is created, which stores the valid resistor

colors. Then a heading is displayed, and a while loop is created which runs as long as the

string variable yn is equal to y. Inside the loop, the program reads the three colors from

the keyboard using the input function and stores them as strings in variables FirstColor,

SecondColor, and ThirdColor. These strings are then converted into lowercase so that

they are compatible with the values listed in the list box. The index values of these colors

in the list are then found using function calls of the form colors.index. Remember that the

index values start from 0. As an example, if the user entered red, then the corresponding

index value will be 2. The resistor value is then calculated by multiplying the first color

number by 10 and adding it to the second color number. The result is then multiplied by the

power of 10 of the third color index. The final result is displayed on the screen. The program

then asks whether or not the user wants to continue. If the answer is y, then the program

returns to the beginning, otherwise the program is terminated.

#===

RESISTOR COLOR CODES

#

The user enters the three colors of a resistor

and the program calculates and displays the value

of the resistor in Ohms

#

Program: resistor.py

Date : October, 2024

Author : Dogan Ibrahim

#===

colors = ['black','brown','red','orange','yellow','green',\

'blue','violet','grey','white']

print("RESISTOR VALUE CALCULATOR")

print("=========================")

yn = "y"

while yn == 'y':

 FirstColor = input("Enter First Color: ")

 SecondColor = input("Enter Second Color: ")

 ThirdColor = input("Enter Third Color: ")

#

Convert to lowercase

 FirstColor = FirstColor.lower()

 SecondColor = SecondColor.lower()

 ThirdColor = ThirdColor.lower()

#

Find the values of colors

Chapter 7 • Python Programming and Simple Programs

● 91

#

 FirstValue = colors.index(FirstColor)

 SecondValue = colors.index(SecondColor)

 ThirdValue = colors.index(ThirdColor)

#

Now calculate the value of the resistor

#

 Resistor = 10 * FirstValue + SecondValue

 Resistor = Resistor * (10 ** ThirdValue)

 print("Resistance = %d Ohms" % (Resistor))

#

Ask for more

 yn = input("\nDo you want to continue?: ")

 yn = yn.lower()

Figure 7.11 Program listing.

The program was created using the nano text editor and then run from the command line

by entering the following command:

 beagle@beagle:~ $ python resistor.py

Figure 7.12 shows a typical run of the program.

Figure 7.12 Typical run of the program.

You could also write and then run the program using the Thonny IDE.

7.22 Example 2 – Series or Parallel Resistors

This program calculates the total resistance of a number of series or parallel connected

resistors. The user specifies whether the connection is in series or in parallel. Additionally,

the number of resistors used is also specified at the beginning of the program.

Background Information: When a number of resistors are in series, then the resultant

resistance is the sum of the resistance of each resistor. When the resistors are in parallel,

then the reciprocal of the resultant resistance is equal to the sum of the reciprocal

resistances of each resistor.

The Beagle-Y AI Book

● 92

Program Listing: Figure 7.13 shows the program listing (program: serpal.py). At the

beginning of the program a heading is displayed, and the program enters into a while

loop. Inside this loop, the user is prompted to enter the number of resistors in the circuit

and whether they are connected in series or in parallel. The function str converts a number

into its equivalent string (e.g., the number 5 is converted into string "5"). If the connection

is in series (mode equals 's'), the program accepts the value of each resistor from the

keyboard, and the total resistance is calculated by summing the resistance of each resistor.

On the other hand, if the connection is in parallel (mode equals 'p'), the program accepts

the value of each resistor from the keyboard, and the reciprocal of each resistor's value is

added to the total. After all resistor values have been entered, the program calculates and

displays the resultant resistance.

#===

RESISTORS IN SERIES OR PARALLEL

#

This program calculates the total resistance of

serial or parallel connected resistors

#

Program: serpal.py

Date : October, 2024

Author : Dogan Ibrahim

#===

print("RESISTORS IN SERIES OR PARALLEL")

print("===============================")

yn = "y"

while yn == 'y':

 N = int(input("\nHow many resistors are there?: "))

 mode = input("Are the resistors series (s) or parallel (p)?: ")

 mode = mode.lower()

#

Read the resistor values and calculate the total

#

 resistor = 0.0

 if mode == 's':

 for n in range(0,N):

 s = "Enter resistor " + str(n+1) + " value in Ohms: "

 r = int(input(s))

 resistor = resistor + r

 print("Total resistance = %d Ohms" %(resistor))

 elif mode == 'p':

 for n in range(0,N):

 s = "Enter resistor " + str(n+1) + " value in Ohms: "

Chapter 7 • Python Programming and Simple Programs

● 93

 r = float(input(s))

 resistor = resistor + 1 / r

 print("Total resistance = %.2f Ohms" %(1 / resistor))

#

Check if the user wants to exit

#

 yn = input("\nDo you want to continue?: ")

 yn = yn.lower()

Figure 7.13 Program listing.

Figure 7.14 shows a typical run of the program.

Figure 7.14 Typical run of the program.

7.23 Example 3 - Resistive Potential Divider

Description: This case study calculates the resistances in a resistive potential divider

circuit.

Background Information: Resistive potential divider circuits consist of two resistors.

These circuits are used to lower a voltage to a desired value. Figure 7.15 shows a typical

resistive potential divider circuit. Here, Vin and Vo are the input and output voltages,

respectively. R1 and R2 are the resistor pair used to lower the voltage from Vin to Vo. A

large number of resistor pairs can be used to get the desired output voltage. Choosing

large resistors draws little current from the circuit while choosing small resistors draws

larger currents. In this design, the user specifies Vin, Vo, and R2. The program calculates

the required R1 value to lower the voltage to the desired level. Additionally, the program

displays the output voltage with the chosen physical resistors.

The Beagle-Y AI Book

● 94

Figure 7.15 Resistive potential divider circuit.

The output voltage is given by:

 Vo = Vin × R2 / (R1 + R2)

R1 is then given by:

 R1 = (Vin – Vo) × R2 / Vo

The above formula is used to calculate the required value of R1, given Vin, Vo, and R2.

Program Listing: Figure 7.16 shows the program listing (program: divider.py). At the

beginning of the program, a heading is displayed. The program then reads Vin, Vo, and R2

from the keyboard. The program calculates R1 and displays R1 and R2. The user is then

asked to enter a chosen physical value for R1. With the chosen value of R1, the program

displays Vin, Vo, R1, and R2, and asks the user whether or not the result is acceptable. If

the answer to this question is y, the program terminates. If, on the other hand, the answer

is n then the user is given the option to try again.

#==

RESISTIVE POTENTIAL DIVIDER

#

This is a resistive potential divider circuit program.

The program calculates the resistance values that will

lower the input voltage to the desired value

#

Program: divider.py

Date : October, 2024

Author : Dogan Ibrahim

#===

print("RESISTIVE POTENTIAL DIVIDER")

print("===========================")

R1flag = 1

R2flag = 0

while R1flag == 1:

 Vin = float(input("\nInput voltage (Volts): "))

Chapter 7 • Python Programming and Simple Programs

● 95

 Vo = float(input("Desired output voltage (Volts): "))

 R2 = float(input("Enter R2 (in Ohms): "))

#

Calculate R1

 R1 = R2 * (Vin - Vo) / Vo

 print("\nR1 = %3.2f Ohms R2 = %3.2f Ohms" %(R1, R2))

#

Read chosen physical R1 and display actual Vo

#

 NewR1 = float(input("\nEnter chosen R1 (Ohms): "))

#

Display and print the output voltage with chosen R1

#

 print("\nWith the chosen R1,the results are:")

 Vo = R2 * Vin / (NewR1 + R2)

 print("R1 = %3.2F R2 = %3.2f Vin = %3.2f Vo = %3.3f" %(NewR1,R2,Vin,Vo))

#

Check if happy with the values ?

#

 happy = input("\nAre you happy with the values? ")

 happy = happy.lower()

 if happy == 'y':

 break

 else:

 mode = input("Do you want to try again? ")

 mode = mode.lower()

 if mode == 'y':

 R1flag = 1

 else:

 R1flag = 0

 break

Figure 7.16 Program listing.

Figure 7.17 shows a typical run of the program.

The Beagle-Y AI Book

● 96

Figure 7.17 Typical run of the program.

7.24 Trigonometric Functions

Python supports a large number of trigonometric functions. The arguments to trigonometric

functions must be in radians. The math library must be imported into the program before

these functions can be used:

• sin(x) trigonometric sine

• cos(x) trigonometric cosine

• tan(x) trigonometric tangent

• asin(x) trigonometric arc sin

• atan(x) trigonometric arc tangent

• atan2(y, x) trigonometric atan(y/x)

• degrees(x) convert degrees into radians

• radians(x) convert radians into degrees

Some examples of using the trigonometric functions are given in Figure 7.18.

Figure 7.18 Trigonometric function examples.

7.25 User Defined Functions

Functions are like small programs within a program. We can use functions to break up a

complex program into several manageable sections, where each section can be implemented

as a function. Functions enable us to reuse parts of our programs. For example, we can

create a function to calculate the cube root of a number and then call this function from

different parts of our program. Another advantage of using functions is that they make it

easier to maintain and update our programs.

Chapter 7 • Python Programming and Simple Programs

● 97

A function that we create can be called from anywhere in a program. Functions have their

own variables and their own commands. As we have seen in earlier parts of this chapter,

Python has a large number of built-in functions for various operations such as arithmetic,

trigonometric, string manipulation, and so on. User-defined functions are created by

programmers. In this section, we shall be looking at how functions can be created and used

in our programs.

A user-defined function consists of the following:

• functions begin with the keyword def, followed by function name, and round

brackets, followed by a colon sign.

• Input arguments to the function must be placed inside the brackets at the

beginning of the function definition.

• The body of a function must be indented with the same number of spaces on

the left-hand side

• An optional text message can be displayed at the first line of a function to

describe what the function does.

• A function must be terminated with the return statement

An example function, named Mult is given below. This function takes two numbers first and

second as its arguments, multiplies them, and returns the result:

 def Mult(first, second):

 "This is a simple multiplication function"

 result = first * second

 return result

A function is called from the main program by specifying the name of the function and

enclosing any arguments in a pair of brackets. For example, to call the above function

to multiply numbers 5 and 3 and store the result in a variable called a, we include the

following statement in our program:

 a = Mult(5, 3)

We can also call a function by specifying the keyword arguments. i.e.:

 a = Mult(first = 5, second = 3)

Figure 7.19 shows the above example in a Python program.

The Beagle-Y AI Book

● 98

Figure 7.19 Creating and calling a function.

Another example is shown in Figure 7.20. In this example, the function displays a string

passed as an argument. Notice that there is no data returned from this function.

Figure 7.20 A function displaying a string.

The variables used in a function are local to that function. Thus, for example, if there are

two variables with the same name, one inside the function and the other outside, changing

the one inside the function does not change the one outside. Variables outside a function

are called global variables, whereas the ones inside a function are called local variables.

See Figure 7.21 for an example where the contents of variable res are not changed outside

the function.

Figure 7.21 Variables in a function are local.

The rules for global variables are as follows:

• Global variables are variables assigned at the top of the program outside the

function definitions.

• Global names must be declared only if they are assigned within a function.

• Global names may be referenced within a function without being declared.

Therefore, by declaring a variable outside the functions and also inside a function but with

the global keyword, we can change its contents inside the function. An example is given

below, which identifies the use of global variables:

Chapter 7 • Python Programming and Simple Programs

● 99

 cnt = 10 # variable cnt is global

 def tstfunc(): # function declaration

 global cnt # variable cnt defined as global

 cnt = 200 # value of global cnt is changed

 tstfunc() # function is called

 print(cnt) # value of cnt is 200

As explained above, if the value of a global variable is not changed inside a function, then

there is no need to define it as global. In the following code, there is no need to define x

as global inside the function:

 x = 10

 y = 4

 def tst():

 global y

 y = x + 2

It is important to note that the variables in a function call are passed by value. This means

that the value of a parameter cannot be changed inside a function. An example is shown

in Figure 7.22. In this example, notice that the value of variable cnt is not changed inside

the function call.

Figure 7.22 Variables are passed by value.

A function normally returns only one item back to the calling program. In some applications,

we may want to return more than one item to the calling program. This is easily done by

returning a tuple and then unpacking it in the main program. An example is shown in

Figure 7.23. In this example, the function MyFunc is declared with two arguments. The

arguments are added and stored in a local variable called sum. Similarly, the difference of

the arguments is stored in variable diff. The function returns both sum and diff as a tuple.

The calling main program unpacks the returned data and stores it in variables x and y.

The Beagle-Y AI Book

● 100

Figure 7.23 Returning more than one variable from a function,

7.26 Examples

Example 4

Write a program to read an angle from the keyboard in degrees and display the trigonometric

sine of this angle. Repeat until the user stops the program.

Solution 4

The required program listing and example output are shown in Figure 7.24 (program:

trig.py). The angle entered by the user is converted into a floating point and is stored

in a variable angle. Then the trigonometric sine of this angle is displayed. The program

continues until the user enters n in response to the prompt Any more?

Figure 7.24 Program listing.

This program was created and run using the Thonny IDE.

Example 5

Modify the program in Example 4 so that the user can choose between sine, cosine, and

tangent.

Chapter 7 • Python Programming and Simple Programs

● 101

Solution 5

The modified program listing and example output are shown in Figure 7.25 and Figure

7.26 (program: trigall.py). The user is given a menu with four choices: sine, cosine,

tangent, and exit. The angle is read from the keyboard and is converted into radians. The

program then calculates the trigonometric value and displays it on the screen. This process

is repeated until the user selects the exit option.

#--

TRIGONOMETRIC SINE,COSINE,TANGENT PROGRAM

===

#

This program reads an angle from the keyboard

and displays its trigonometric sine, cosine, or

tangent depending on user choice. The angle is

read in degrees,converted into radians and then

the required trigonometric function is calculated

#

Author: Dogan Ibrahim

File : trigall.py

Date : October, 2024

#--

import math

choice = '1'

while choice != '0':

 print("Trigonometric Sine, Cosine, or Tangent")

 print("======================================\n")

 print("1. Sine")

 print("2. Cosine")

 print("3. Tangent")

 print("0. Exit")

 choice = input("Enter choice: ")

 if choice != '0':

 angle = float(input("Enter angle in degrees: "))

 r = math.radians(angle)

 if choice == '1':

 s = math.sin(r)

 strng = "sine"

 elif choice == '2':

 s = math.cos(r)

 strng = "cosine"

 elif choice == '3':

 s = math.tan(r)

 strng = "tangent"

 print(strng + " of %3.2f degrees is: %f\n" %(angle, s))

print("End of program")

Figure 7.25 Modified program listing.

The Beagle-Y AI Book

● 102

Figure 7.26 Example output.

This program was created using the nano text editor and then run using the command:

 beagle@beagle:~ $ python trigall.py

Example 6

Write a program to tabulate the trigonometric sines of angles from 0º to 90º in steps of 5º.

Solution 6

The required program listing is shown in Figure 7.27 (program: sinetable.py). After

displaying a heading, the for statement is used to create a loop. Variable angle takes values

from 0 to 90 (inclusive) in steps of 5. The trigonometric sine is calculated and displayed.

#--

TRIGONOMETRIC SINE TABLE

========================

#

This program tabulates the trigonometric sine of

angles from 0 to 90 degrees in steps of 5 degress

#

Author: Dogan Ibrahim

File : sinetable.py

Date : October, 2024

#--

import math

print("TABLE OF TRIGONOMETRIC SINE")

print("=========================\n")

print(" ANGLE SINE")

Chapter 7 • Python Programming and Simple Programs

● 103

for angle in range(0, 95, 5):

 r = math.radians(angle)

 s = math.sin(r)

 print(" %d %f" %(angle, s))

print("End of program")

Figure 7.27 Program listing.

An example run of the program is shown in Figure 7.28.

Figure 7.28 Example run of the program.

Example 7

Write a program to read meters from the keyboard. Convert into yards and inches and

display the result.

Solution 7

The required program listing and example output are shown in Figure 7.29 and Figure 7.30

respectively (program: conv.py). After displaying a heading, meters are read from the

keyboard using the input statement. The value is then converted into yards and inches by

multiplying with 1.0936 and 39.370 respectively. The results are displayed on the screen.

The Beagle-Y AI Book

● 104

#--

CONVERSION PROGRAM

==================

#

This program reads meters from the keyboard and

converts and displays in yards and inches

#

Author: Dogan Ibrahim

File : conv.py

Date : October, 2024

#--

print("Convert meters into yards and inches")

print("====================================")

meters = float(input("Enter meters: "))

yards = 1.0936 * meters

inches = 39.370 * meters

print("%f meters = %f yards, %f inches" %(meters, yards, inches))

print("End of program")

Figure 7.29 Program listing.

beagle@beagle:~$ python conv.py

Convert meters into yards and inches

====================================

Enter meters: 20

20.000000 meters = 21.872000 yards, 787.400000 inches

End of program

beagle@beagle:~$

Figure 7.30 Example output.

Example 8

Repeat Example 7 but do the conversion in a function called Conv. Show how this function

can be called from the main program.

Solution 8

The required program listing is shown in Figure 7.31 (program: convfunc.py). Function

Conv is declared at the beginning of the program. Meters to be converted into yards and

inches are passed as an argument to the function. The function returns the yards and

inches in a tuple. The main program reads the meters from the keyboard and calls the

function Conv. The result is displayed on the screen.

Chapter 7 • Python Programming and Simple Programs

● 105

#--

CONVERSION PROGRAM

==================

#

This program reads metres from the keyboard and

converts and displays in yards and inches

#

Author: Dogan Ibrahim

File : convfunc.py

Date : October, 2024

#--

def Conv(m):

 "Convert metres into yards and inches"

 y = 1.0936 * m

 i = 39.370 * m

 return y, i

print("Convert metres into yards and inches")

print("====================================")

metres = float(input("Enter metres: "))

yards, inches = Conv(metres)

print("%f metres = %f yards, %f inches" %(metres, yards, inches))

print("End of program")

Figure 7.31 Program listing.

Example 9

Write a function called Cyl to calculate the area and volume of a cylinder, given its radius

and height. Use this function in a main program.

Solution 9

The area and volume of a cylinder are given by the formula:

 Area = 2πrh

 Volume = πr2h

The required program listing and example output are shown in Figure 7.32 and Figure 7.33

respectively (program: cylinder.py). The radius and height of the cylinder are passed as

arguments to a function, which calculates the area and volume of the cylinder and returns

the results to the main program, where they are displayed on the screen.

The Beagle-Y AI Book

● 106

#---

CONVERSION PROGRAM

==================

#

This program reads the radius and height of a cylinder

and calculates and displays its area and volume

#

Author: Dogan Ibrahim

File : cylinder.py

Date : October, 2024

#---

import math

def Cyl(r, h):

 "Area and volume of a cylinder"

 area = 2 * math.pi * r * h

 volume = math.pi * r * r * h

 return area, volume

print("Area and Volume of a Cylinder")

print("=============================")

radius = float(input("Enter the radius: "))

height = float(input("Enter the height: "))

A, V = Cyl(radius, height)

print("Area = %f Volume = %f" %(A, V))

print("End of program")

Figure 7.32 Program listing.

Figure 7.33 Example output.

Example 10

Write a calculator program to carry out the four simple mathematical operations of addition,

subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 10

The required program listing is shown in Figure 7.34 (program: calc.py). Two numbers

are received from the keyboard and stored in variables n1 and n2. Then, the required

mathematical operation is received, and it is performed. The result, stored in variable

result, is displayed on the screen. The user is given the option of terminating the program.

Chapter 7 • Python Programming and Simple Programs

● 107

#--

CALCULATOR PROGRAM

==================

#

This is a simple calculator program that can

carry out 4 basic arithmetic opertions

#

Author: Dogan Ibrahim

File : calc.py

Date : October, 2024

#--

any = 'y'

while any == 'y':

 print("\nCalculator Program")

 print("==================")

 n1 = float(input("Enter first number: "))

 n2 = float(input("Enter second number: "))

 op = input("Enter operation (+-*/): ")

 if op =="+":

 result = n1 + n2

 elif op == "-":

 result = n1 - n2

 elif op == "*":

 result = n1 * n2

 elif op == "/":

 result = n1 / n2

 print("Result = %f" %(result))

 any = input("\nAny more (yn): ")

Figure 7.34 Program listing.

An example run of the program is shown in Figure 7.35.

The Beagle-Y AI Book

● 108

Figure 7.35 Example output.

Example 11

Write a program to simulate double dice. i.e., to display two random numbers between 1

and 6 every time it is run.

Solution 11

The required program listing and example output are shown in Figure 7.36 (program: dice.

py). Here, the random number generator randint is used to generate random numbers

between 1 and 6 when the Enter key is pressed. The program is terminated when the letter

X is entered.

Figure 7.36 Program listing and example output.

Chapter 7 • Python Programming and Simple Programs

● 109

Example 12

Write a program to use functions to calculate and display the areas of shapes: square,

rectangle, triangle, circle, and cylinder. The sizes of the required sides should be received

from the keyboard.

Solution 12

The areas of the shapes to be used in the program are as follows:

 Square: side = a area = a2

 Rectangle: sides a, b area = ab

 Circle: radius r area = πr2

 Triangle: base b, height h area = bh/2

 Cylinder: radius r, height h area = 2πrh

The required program listing is shown in Figure 7.37 (program: areas.py). A different

function is used for each shape, and the sizes of the sides are received inside the functions.

The main program displays the calculated area for the chosen shape.

#--

AREAS OF SHAPES

===============

#

This program calculates and displays the areas

of various geometrical shapes

of numbers in a list

#

Author: Dogan Ibrahim

File : areas.py

Date : October, 2024

#--

import math

def Square(a): # square

 return a * a

def Rectangle(a, b): # rectangle

 return(a * b)

def Triangle(b, h): # triangle

 return(b * h / 2)

def Circle(r): # circle

 return(math.pi * r * r)

def Cylinder(r, h): # cylinder

 return(2 * math.pi * r * h)

The Beagle-Y AI Book

● 110

print("AREAS OF SHAPES")

print("===============\n")

print("What is the shape?: ")

shape = input("Square (s)\nRectangle(r)\nCircle(c)\n\

Triangle(t)\nCylinder(y): ")

shape = shape.lower()

if shape == 's':

 a = float(input("Enter a side of the square: "))

 area = Square(a)

 s = "Square"

elif shape == 'r':

 a = float(input("Enter one side of the rectangle: "))

 b = float(input("Enter other side of the rectangle: "))

 area = Rectangle(a, b)

 s = "Rectangle"

elif shape == 'c':

 radius = float(input("Enter radius of the circle: "))

 area = Circle(radius)

 s = "Circle"

elif shape == 't':

 base = float(input("Enter base of the triangle: "))

 height = float(input("Enter height of the triangle: "))

 area = Triangle(base, height)

 s = "Triangle"

elif shape == 'y':

 radius = float(input("Enter radius of cylinder: "))

 height = float(input("Enter height of cylinder: "))

 area = Cylinder(radius, height)

 s = "Cylinder"

print("Area of %s is %f" %(s, area))

Figure 7.37 Program listing.

An example run of the program is shown in Figure 7.38.

Chapter 7 • Python Programming and Simple Programs

● 111

Figure 7.38 Example output.

7.27 Recursive Functions

Recursive functions are functions that call themselves either directly or indirectly, and such

functions are supported by Python. Although the topic of recursive functions is an advanced

topic, an example is given in Figure 7.39 to illustrate the principles of such functions.

This recursive function implements the factorial operation. Detailed analysis of recursive

functions is beyond the scope of this book.

Figure 7.39 Recursive factorial function.

7.28 Exceptions

There may be major errors in our programs, such as dividing by zero, file permission errors,

and so on. Normally, when Python encounters such errors, it cannot handle them, and the

program crashes.

One way to handle such errors orderly and avoid crashes is to use exception handling in

our programs. The basic method is that whenever an error occurs, the program detects

this error and takes appropriate measures to handle the error, and continues to execute

normally. Exception handling is also useful if we wish to terminate a running program in an

orderly manner, such as shutting down any input-output operations when the program is

terminated asynchronously by the user (e.g., by pressing the Ctrl+C key).

The statements try and except are used to handle unexpected errors or terminations in

our programs. The general format of exception handling is as follows:

 try:

The Beagle-Y AI Book

● 112

 Normal program statements

 Normal program statements

 except condition 1:

 if condition 1 type error occurs then execute this block of code

 ……………..

 ……………..

 except condition 2:

 if condition 2 type error occurs then execute this block of code

 ……………….

 ……………….

 else:

 if there are no errors detected then execute this block of code

 …………………

 …………………

We can use the except statement with no condition in order to handle any type of exception.

Some of the commonly used exceptions are:

exception EOFError: the end-of-file condition is reached while reading data

exception ImportError: import statement could not load a module

exception IndexError: sequence subscript is out of range

exception KeyError: a dictionary key is not found in the set of existing keys

exception KeyboardInterrupt: user hits the interrupt key (normally the Cntrl+C

or Delete key)

exception MemoryError: operation ran out of memory

exception OverFlowError: arithmetic operation resulted in overflow

exception RuntimeError: an error is detected that does not fall into any other

categories

exception ValueError: an operation or function receives an argument that has

the right type but an inappropriate value

exception ZeroDivisionError: a division by zero occurred

Some examples of using exceptions in programs are given below.

Chapter 7 • Python Programming and Simple Programs

● 113

Example 13

Write a program to wait for an input from the keyboard. Terminate the program orderly

when the Cntrl+C keys are pressed on the keyboard.

Solution 13

Figure 7.40 shows the program listing (program: except1.py). The exception

KeyboardInterrupt is used in this program. The message End of Program is displayed

when the Ctrl+C key combination is pressed on the keyboard.

#===

KeyboardInteerupt EXCEPTION

#

This program detects the keyboard entry Ctrl+C and

the program is teminated orderly after the message

End of Program is displayed

#

Author : Dogan Ibrahim

File : except1.py

Date : October, 2024

#==

try:

 mode = input("Enter Ctrl+C to terminate the program: ")

except KeyboardInterrupt:

 print("\nEnd of Program")

Figure 7.40 Program listing.

Example 14

Write a program to detect division by zero and to display the message Divide by Zero

when this exception is detected.

Solution 14

Figure 7.41 shows the program listing (program: except2.py). In this example, the

program is forced to divide a number by zero, which is detected as an exception, and the

program displays a message when this occurs.

#===

ZeroDivisionError EXCEPTION

#

This program detects when a number is divided by zero

and generates an exception to display a message

##

Author : Dogan Ibrahim

File : except2.py

Date : July, 2024

#==

The Beagle-Y AI Book

● 114

print("Divide by zero exception")

try:

 s = 10 / 0

except ZeroDivisionError:

 print("Divide by Zero")

Figure 7.41 Program listing.

When the program is run it displays the following message:

 Divide by zero exception

 Divide by Zero

7.29 try/final Exceptions

The statement finally can be used in exception handling. The Try/finally combination

specifies an exception where the block beginning with finally is always executed on the way

out, regardless of whether an exception occurs in the try block. An example is given below:

Example 15

Write a program to look for KeyboardInterrupt exception and display the message

Exception not occurred if an exception has not occurred.

Solution 15

Figure 7.42 shows the program listing (program: except3.py). The block inside finally is

executed regardless of whether an exception occurs.

#===

try/finally In EXCEPTION

#

This program detects the keyboard entry Ctrl+C and

displays the message Keyboard Interrupt if interrupt

occurs. Message Continue is displayed regardless of

whether an exception occurred

#

Author : Dogan Ibrahim

File : except3.py

Date : July, 2024

#==

try:

 mode = raw_input("Enter Ctrl+C to terminate the program: ")

except KeyboardInterrupt:

 print("\nKeyboard Interrupt")

finally:

 print("\nContinue")

Figure 7.42 Program listing.

Chapter 7 • Python Programming and Simple Programs

● 115

When the program is run the following is displayed

 Enter Ctrl+C to terminate the program:

After entering Ctrl+C:

 Keyboard Interrupt

7.30 Date and Time

In some applications, it may be necessary to get the current date and time. Python supports

a number of functions to get the current date and time. The module time must be imported

before these functions can be used. Some of the commonly used date and time functions

are as follows:

• time.localtime() returns the current date and time in the following

format:

• time.struct_time(tm_year=2013,tm_mon=12,tm_mday=18,

• tm_hour=12,tm_min=45,tm_sec=3,tw_wday=2,tm_yday=352,

• tm_isdst=0)

• time.asctime() returns the date and time in a standard readable

format

• time.clock() returns the current CPU time in seconds

• time.ctime() returns the current date and time

• time.time() returns the current time in seconds since the epoch

• time.sleep(x) suspends the calling program for x seconds

Some examples are given in Figure 7.43.

Figure 7.43 Example date and time functions.

The Beagle-Y AI Book

● 116

The datetime module can also be used for date and time functions. This module must be

imported in order to use these functions. Some examples of date functions are shown in

Figure 7.44.

Figure 7.44 Examples of using the datetime date functions.

The function strftime(format) is very useful as it can be used to format a date and time

string. Some examples of using this function are given in Figure 7.45.

Figure 7.45 Examples of using strftime.

7.31 Creating Your Own Modules

In some applications, we may want to create our own Python modules and import them into

our programs. Python modules are simply .py program files. Writing a module is just like

writing any other Python program. Modules can contain functions, classes, and variables.

A simple module called msg.py is shows below:

 def hello():

 print("Hello there!")

We can now import this module into our Python programs. An example program called

myprog.py is shown below:

 import msg

 msg.hello()

Chapter 7 • Python Programming and Simple Programs

● 117

Running the program: python myprog.py will display the following output:

 Hello there!

We can also modify our program myprog.py and import and then call the module as

follows:

 from msg import hello

 hello()

We can use variables in our module as shown below:

msg.py

 def hello():

 print("Hello there!")

 name = "Jones"

myprog.py

 import msg

 msg.hello()

 print(msg.name)

The program will display:

 Hello there!

 Jones

Aliases can be created for modules. This is shown in the following code:

myprog.py

 import msg as tst

 tst.hello()

Will display the output:

 Hello there!

An example module is given below that calculates the cube of a number.

Example 16

Write a module that calculates the cube of the integer number passed to it. Show how this

module can be imported and used in a program.

The Beagle-Y AI Book

● 118

Solution 16

Figure 7.46 shows the module listing (program: cubeno.py). The function cube inside

cubeno.py has the number as its argument. The cube of this number is calculated and

returned. Figure 7.47 shows the program (program: myprog.py). As an example, when

the number is 3, the output from the program is:

 Cube of 3 is: 27

def cube(N):

 r = N * N * N

 return r

Figure 7.46 Program cubeno.py listing.

import cubeno

n= 3

res = cubeno.cube(n)

print("Cube of %d is: %d" %(n,res))

Figure 7.47 Program myprog.py.

Module Search Path: When a module is to be imported, Python looks at the following

folders in the order given:

• The folder from which the module is called (where the calling main program is)

• The list of directories contained in the PYTHONPATH environment variable.

• Installation dependent list of directories configured when Python was installed

Python's search path can be displayed by entering the following command interactively:

 >>> import sys

 >>> sys.path

The display on the author's computer is shown in Figure 7.48.

Figure 7.48 Python path display.

Chapter 7 • Python Programming and Simple Programs

● 119

To make sure that your module is found by Python, you can do one of the following:

• Put the module program file in the folder where your main program is.

• Modify the PYTHONPATH environment variable to contain the folder where the

module program is.

• Put the module program in one of the folders already contained in the

PYTHONPATH.

The Beagle-Y AI Book

● 120

Chapter 8 • BeagleY-AI LED Projects

8.1 Overview

This Chapter is about the BeagleY-AI hardware interface and using LEDs in simple projects.

The BeagleY-AI is connected to external electronic circuits and devices using its GPIO

(General Purpose Input Output) port connector. This is a 2.54 mm, 40-pin expansion

header, arranged in a 2x20 strip as shown in Figure 8.1. The I/O ports are numbered as

GPIOnn.

Figure 8.1 BeagleY-AI GPIO pins.

8.2 BeagleY-AI GPIO pin Definitions

When the GPIO connector is at the far side of the board, the pins starting from the left

of the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the top are

numbered as 2, 4, 6, 8 and so on (Figure 8.2).

Chapter 8 • BeagleY-AI LED Projects

● 121

Figure 8.2 GPIO pin numbering.

The GPIO provides 26 general-purpose bi-directional I/O pins. Some of the pins have

multiple functions. For example, GPIO10 is a general-purpose I/O pin, shared with the SPI

MOSI and SPI0.

Two power outputs are provided: +3.3 V and +5.0 V. The GPIO pins operate at +3.3 V logic

levels (unlike many other computer circuits that operate with +5 V). A pin can either be an

input or an output. When configured as an output, the pin voltage is either 0 V (logic 0) or

+3.3 V (logic 1). BeagleY-AI is normally operated using an external power supply (e.g., a

mains adapter) with +5 V output. A 3.3 V output pin can supply up to 16 mA of current.

The total current drawn from all output pins should not exceed the 51 mA limit. Care should

be taken when connecting external devices to the GPIO pins as drawing excessive currents

or short-circuiting a pin can easily damage your BeagleY-AI. The amount of current that

can be supplied by the 5 V pin depends on many factors such as the current required by

the device itself, current taken by the USB peripherals, camera current, micro HDMI port

current, and so on.

When configured as an input, a voltage above +1.7 V will be taken as logic 1, and a voltage

below +1.7 V will be taken as logic 0. Care should be taken not to supply voltages greater

than +3.3 V to any I/O pin as large voltages can easily damage your BeagleY-AI board as

there is no over-voltage protection circuitry.

8.3 Project 1 – Flashing an LED

Description: This is perhaps the easiest hardware project you can design using your

BeagleY-AI. In this project you will connect an LED to one of the ports of the BeagleY-AI

and then flash the LED at a rate of once a second. The aim of this project is to show how a

The Beagle-Y AI Book

● 122

simple Python program can be written and then run from a file. The project also shows how

to connect an LED to a BeagleY-AI GPIO pin. In addition, the project shows how to use the

GPIO library to configure and set a GPIO pin to logic 0 or 1.

Block diagram: The block diagram of the project is shown in Figure 8.3

Figure 8.3 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.4. A small low-

current LED is connected to port pin GPIO17 (pin 11) of the BeagleY-AI through a current-

limiting resistor. The value of the current limiting resistor is calculated as follows:

The output high voltage of a GPIO pin is 3.3 V. The voltage across an LED is approximately

1.8 V. The current through the LED depends upon the type of LED used and the amount

of required brightness. Assuming that we are using a small LED, we can assume a forward

LED current of about 3 mA. Then, the value of the current limiting resistor is:

 R = (3.3 V – 1.8 V) / 3 mA = 500 Ω. We can choose a 470 Ω resistor.

Chapter 8 • BeagleY-AI LED Projects

● 123

In Figure 8.4, the LED is operated in current sourcing mode, where a high output from the

GPIO pin drives the LED. The LED can also be operated in current sinking mode, where

the other end of the LED is connected to the +3.3 V supply and not to ground. In current

sinking mode, the LED is turned ON when the GPIO pin is at logic low.

Figure 8.4 Circuit diagram of the project.

Construction: The project is constructed on a breadboard as shown in Figure 8.5. Jumper

wires are used to connect the LED to the GPIO port. Notice that the short side of the LED

must be connected to ground.

Figure 8.5 Constructing the project on a breadboard.

Program listing: The libgpiod library which is required for I/O programming should

already be installed in the default image, in case it's not installed, then install it by using

the command below:

The Beagle-Y AI Book

● 124

 sudo apt-get install python3-libgpiod

The program is called led.py, and the listing is shown in Figure 8.6. The program was

written using the nano text editor. At the beginning of the program, the gpiod and time

libraries are imported. Then, the LED is linked to GPIO port 17 and it is configured as an

output with default value of 0, i.e., the LED is OFF at the beginning of the program. Then

an endless while loop is formed where the LED is turned ON and OFF with a one-second

delay between each output. Function set_value() sets the value of a GPIO pin to 0 or 1.

#---

#

FLASHING LED

============

#

In this project a small LED is connected to GPIO17 of

the BeagleY-AI. The program flashes the LED every

second.

#

Program: led.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time library

led = gpiod.find_line('GPIO17')

led.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

while True:

 led.set_value(1) # turn ON LED

 time.sleep(1) # wait 1 second

 led.set_value(0) # turn OFF LED

 time.sleep(1) # wait 1 second

Figure 8.6 Program listing of the project.

The program is run from the console mode as follows:

beagle@beagle: ~ $ python led.py

If you wish to run the program from the GUI Desktop environment, you should use the

Thonny IDE. Type in the program if it is not already in your default directory. Click Run to

run the program. You should see the LED flashing every second. To terminate the program,

close the screen by clicking on the STOP button.

Chapter 8 • BeagleY-AI LED Projects

● 125

Note: You can copy the programs from your BeagleY-AI home directory to your PC using

the winSCP file copy program (available free of charge on the Internet).

8.4 Project 2 – Alternately Flashing LEDs

Description: This project is similar to the previous one but here two LEDs are used and

they flash alternately every second. The aim of this project is to show how more than one

LED can be connected to BeagleY-AI.

Block diagram: The block diagram of the project is shown in Figure 8.7

Figure 8.7 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.8. Two small LEDs

are connected to port pins GPIO17 (pin 11) and GPIO27 (pin 13) of the BeagleY-AI through

current limiting resistors.

The Beagle-Y AI Book

● 126

Figure 8.8 Circuit diagram of the project.

Program listing: The program is called alternate.py and the listing is shown in Figure

8.9. The program was written using the nano text editor. At the beginning of the program,

led1 and led2 are linked to GPIO ports 17 and 27 respectively, and configured as outputs.

The rest of the program is executed indefinitely in a while loop where the LEDs are turned

on and off alternately, with a one-second delay between each output. Enter Ctrl+C to

terminate the program.

#---

#

FLASHING LEDs

=============

#

In this project two small LED is connected to GPIO17 and

GPIO27 of BeagleY-AI. The program flashes the LEDs alternately

every second.

#

Program: alternate.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time library

led1 = gpiod.find_line('GPIO17')

led2 = gpiod.find_line('GPIO27')

led1.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

led2.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

while True:

 led1.set_value(1) # turn ON led1

 led2.set_value(0) # turn OFF led2

 time.sleep(1) # wait 1 second

Chapter 8 • BeagleY-AI LED Projects

● 127

 led1.set_value(0) # turn OFF led1

 led2.set_value(1) # turn ON led2

 time.sleep(1) # wait 1 second

Figure 8.9 Program listing of the project.

8.5 Project 3 – Binary Counting with 8 LEDs

Description: In this project, 8 LEDs are connected to the BeagleY-AI GPIO pins. The LEDs

count up in binary every second. The aim of this project is to show how 8 LEDs can be

connected to the GPIO pins. In addition, the project shows how to group the LEDs as an

8-bit port and control them as a single port.

Block diagram: The block diagram of the project is shown in Figure 8.10.

Figure 8.10 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.11. The LEDs

are connected to 8 GPIO pins through 470 Ohm current-limiting resistors. The following 8

GPIO pins are grouped as an 8-bit port, where GPIO2 is configured as the LSB and GPIO9

is configured as the MSB:

 MSB LSB

 GPIO: 9 10 22 27 17 4 3 2

 Pin no: 21 19 15 13 11 7 5 3

The Beagle-Y AI Book

● 128

Figure 8.11 Circuit diagram of the project.

Construction: The project is constructed on a breadboard as shown in Figure 8.12. Notice

that in this project, a T-Cobbler (Figure 8.13) connects to the 40-pin GPIO header of the

BeagleY-AI through a ribbon cable. A T-type connector is used at the other side of this

ribbon cable, which is plugged into a breadboard. This setup makes it very easy to connect

to the BeagleY-AI header, especially when there are many connections to make. The GPIO

pin names are written on the T-cobbler for ease of access.

Chapter 8 • BeagleY-AI LED Projects

● 129

Figure 8.12 Constructing the project on a breadboard.

Figure 8.13 The T-Cobbler.

Program listing: The program is called LEDCNT.py and the listing is shown in Figure 8.14.

The program was written using the nano text editor. At the beginning of the program, the

LEDs are linked to GPIO ports and are configured as outputs. Inside the main program, a

loop is formed to execute forever, and inside this loop, the LEDs count up by one in binary.

The Beagle-Y AI Book

● 130

The variable cnt is used as the counter. Function Port_Output is used to control the LEDs.

This function can take integer numbers from 0 to 255 and it converts the input number (x)

into binary using the built-in function bin. Then the leading "0b" characters are removed

from the output string b (the bin function inserts characters "0b" at the beginning of the

converted string). Afterward, the converted string b is made up of 8 characters by inserting

leading 0s. The string is then sent to the PORT bit by bit, starting from the least-significant

bit (GPIO2) position. The result is that the 8 LEDs count up in binary.

#---

#

BINARY UP COUNTING LEDs

=======================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port and then

the LEDs count up in binary with one second delay between

each output.

#

Program: LEDCNT.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time

#

LED connections

#

PORT = [0] * 8

PORT[0] = gpiod.find_line('GPIO9')

PORT[1] = gpiod.find_line('GPIO10')

PORT[2] = gpiod.find_line('GPIO22')

PORT[3] = gpiod.find_line('GPIO27')

PORT[4] = gpiod.find_line('GPIO17')

PORT[5] = gpiod.find_line('GPIO4')

PORT[6] = gpiod.find_line('GPIO3')

PORT[7] = gpiod.find_line('GPIO2')

PORT[0].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[1].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[2].request(consumer='beag;e',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[3].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

Chapter 8 • BeagleY-AI LED Projects

● 131

PORT[4].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[5].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[6].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

PORT[7].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop. Count up in binary every second

#

cnt = 0

while True:

 Port_Output(cnt) # send cnt to port

 time.sleep(1) # wait 1 second

 cnt = cnt + 1 # increment cnt

 if cnt > 255:

 cnt = 0

Figure 8.14 Program listing.

Recommended modifications: Modify the program such that the LEDs count down every

two seconds.

Modified Program

The program shown in Figure 8.14 can be modified and made more friendly by storing the

LED port numbers in a list. The modified program, LEDCNT2.py, is shown in Figure 8.15.

In this version, the LED port numbers are stored in the list LED. PORT is defined as a list

having 8 elements. Inside the function Configure(), the LEDs are linked to GPIO ports and

they are configured as outputs. Then, the function Port_Output is used, as before, to send

the port data to the LEDs.

The Beagle-Y AI Book

● 132

#---

#

BINARY UP COUNTING LEDs

=======================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port and then

the LEDs count up in binary with one second delay between

each output.

#

In this version of the program the LEDs are grouped as an

8 bit port

#

Program: LEDCNT2.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

 for i in range(8):

 PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

 PORT[i].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

Chapter 8 • BeagleY-AI LED Projects

● 133

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop. Count up in binary every second

#

cnt = 0

Configure()

while True:

 Port_Output(cnt) # send cnt to port

 time.sleep(1) # wait 1 second

 cnt = cnt + 1 # increment cnt

 if cnt > 255:

 cnt = 0

Figure 8.15 Modified program.

8.6 Project 4 – Christmas Lights (Random Flashing 8 LEDs)

Description: In this project, 8 LEDs are connected to BeagleY-AI GPIO pins, just as in

Project 3. The LEDs flash randomly every 0.5 seconds just like fancy Christmas lights. The

aim of this project is to show how to generate random numbers between 1 and 255.

The block diagram and circuit diagram of the projects are the same as those in Figure 8.10

and Figure 8.11 respectively.

Program listing: The program is called xmas.py and the listing is shown in Figure 8.16.

The program was written using the nano text editor. At the beginning of the program, the

random module and other required modules are imported to the program. Then, a loop

is created to execute forever and inside this loop, a random number is generated between

1 and 255, and this number is used as an argument to function Port_Output. The binary

pattern corresponding to the generated number is sent to the port, which turns the LEDs

on or off in a random manner.

#---

#

CHRISTMAS LIGHTS

================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port.The LEDs

The Beagle-Y AI Book

● 134

turn ON and OFF randomly after generating a random number 1-255

#

Program: xmas.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time

import random # import random

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

 for i in range(8):

 PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

 PORT[i].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop

#

Configure()

while True:

 numbr = random.randint(1, 255) # generate random number

 Port_Output(numbr) # send cnt to port

 time.sleep(0.5) # wait 0.5 second

Figure 8.16 Program listing.

Chapter 8 • BeagleY-AI LED Projects

● 135

Recommended modifications: Modify the program such that 10 LEDs can be connected

to the BeagleY-AI board and flashed randomly.

8.7 Project 5 – Chasing LEDs

Description: In this project 8 LEDs are connected to the BeagleY-AI GPIO pins as in the

previous project. As shown in Figure 8.17, the LEDs rotate (chase each other) from the LSB

to MSB with one second delay between each output.

Figure 8.17 Chasing LEDs.

The block diagram and circuit diagram of the projects are same as in Figure 8.10 and Figure

8.11 respectively.

Program listing: The program is called rotate.py and the listing is shown in Figure 8.18.

The program was written using the nano text editor. Inside the main program, a loop is

created to execute indefinitely, and inside this loop, the variable rot is used as an argument

to the Port_Output function. This variable is shifted left at each iteration, and thus the

LED on sequence is from left to right (from LSB to MSB). A one-second delay is inserted

between each output.

#---

#

ROTATING LEDs

=============

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port.The LEDs

turn ON and OFF as if they are chasing each other

#

Program: rotate.py

Date : October, 2024

Author : Dogan Ibrahim

The Beagle-Y AI Book

● 136

#--

import gpiod # import gpiod

import time # import time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

 for i in range(8):

 PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

 PORT[i].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop

#

Configure()

rot = 1

while True:

 Port_Output(rot) # send rot to port

 time.sleep(1) # wait 1 second

 rot = rot << 1 # rotate rot

 if rot > 128: # if at the end

 rot = 1

Figure 8.18 Program listing.

Chapter 8 • BeagleY-AI LED Projects

● 137

8.8 Project 6 – Rotating LEDs with Pushbutton Switch

Description: In this project, 8 LEDs are connected to the BeagleY-AI GPIO pins as in the

previous project. In addition, a pushbutton switch is connected to one of the GPIO ports.

The LEDs rotate in one direction when the button is not pressed, and in the opposite

direction when the button is pressed. Only one LED is on at any time. A one-second delay

is inserted between each output. The aim of this project is to show how a pushbutton switch

can be connected to a GPIO pin.

Block diagram: The block diagram of the project is shown in Figure 8.19.

Figure 8.19 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.20. The LEDs are

connected to 8 GPIO pins through 470-ohm current limiting resistors, as in the previous

projects. The push-button switch is connected to GPIO11 (pin 23) of BeagleY-AI. The

pushbutton switch is connected through a 10K and a 1K resistor. When the switch is not

pressed, the input is at logic 1. When the switch is pressed, the input changes to logic 0.

Notice that the 1K resistor is used here for safety in case the input channel is configured

as an output by mistake. If this happens, without a resistor, the output would be short-

circuited, which could damage the BeagleY-AI hardware.

The Beagle-Y AI Book

● 138

Figure 8.20 Circuit diagram of the project.

Construction: The project is constructed on a breadboard, as shown in Figure 8.21.

Figure 8.21 Project constructed on a breadboard.

Chapter 8 • BeagleY-AI LED Projects

● 139

Program listing: The program is called buttonled.py and the listing is shown in Figure

8.22. The program was written using the nano text editor. The LEDs are assigned as in the

previous project. The button is assigned to port GPIO11 and is configured as an input. A

while loop is created to execute indefinitely, and inside this loop, the variable rot is used as

an argument to the Port_Output function. If the button is not pressed, then rot is shifted

right, and the LED on sequence is from left to right (from MSB to LSB). If on the other

hand, the button is pressed, then the LED on sequence is from right to left (from LSB to

MSB). A one-second delay is inserted between each output.

#---

#

ROTATING LEDs ITH PUSH BUTTON

=============================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

In addition, a puch button switch is connected to GPIO11.

Normally the button is at logic 1 and goes to 0 when pressed.

The LEDs rotate in one direction and when the button is pressed

the direction of rotation is reversed. One second delay is inserted

#

Program: buttonled.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

 for i in range(8):

 PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

 PORT[i].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

Configure the button as input

#

button = gpiod.find_line('GPIO11')

button.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

The Beagle-Y AI Book

● 140

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop

#

Configure()

rot = 1

while True:

 Port_Output(rot) # send rot to port

 time.sleep(1) # wait 1 second

 if button.get_value()== 0: # button=0 when pressed

 rot = rot << 1 # rotate left

 if rot > 128:

 rot = 1

 else:

 rot = rot >> 1 # rotate right

 if rot == 0:

 rot = 128

Figure 8.22 Program listing.

Note that the internal pull-up resistors can be enabled on input ports.

8.9 Project 7 – Morse Code Exerciser with LED or Buzzer

Description: In this project, an LED or a buzzer is connected to GPIO17 (pin11) of the

BeagleY-AI. The user enters a text from the keyboard. The buzzer is then turned on and

off to sound the letters of the text in Morse code.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.23, where an

active buzzer is connected to GPIO11 of the BeagleY-AI.

Chapter 8 • BeagleY-AI LED Projects

● 141

Figure 8.23 Circuit diagram of the project.

Morse Code: In Morse code, each letter is made up of dots and dashes. Figure 8.24 shows

the Morse code of all the letters in the English alphabet (this table can be extended by

adding the Morse code for numbers and punctuation marks). The following rules apply to

the timing of dots and dashes:

• The duration of a dot is taken as the unit time, which determines the

transmission speed. Normally, the speed of transmission is quoted in words

per minute (wpm). The standard required minimum in Morse code-based

communication is 12 wpm.

• The duration of a dash is 3 unit times.

• The time between each dot and dash is a unit time.

• The time between the letters is 3 unit times.

• The time between the words is 7 unit times.

The unit time in milliseconds is calculated using the following formula:

 Time (ms) = 1200/wpm

In this project, the Morse code is simulated at 10 wpm. Thus, the unit time is taken to be

1200/10 = 120ms.

 Letter Morse code

 A: .-

 B : -...

 C : -.-.

 D : -..

 E : .

 F : ..-.

 G : --.

The Beagle-Y AI Book

● 142

 H :

 I : ..

 J : .---

 K : -.-

 L : .-..

 M : --

 N : -.

 O : ---

 P : .--.

 Q : --.-

 R : .-.

 S : ...

 T : -

 U : ..-

 V : ...-

 W : .--

 X : -..-

 Y : -.--

 Z : --..

Figure 8.24 Morse code of English letters.

Program listing: The program is called morse.py and the listing is shown in Figure 8.25.

The Morse code alphabet is stored in list Morse_Code. Function DO_DOT implement a

single dot with a duration of one unit time. The function DO_DASH implements a single

dash with duration of 3 unit times. The function DO_SPACE implements a space character

with duration of 7 unit times. The rest of the program is executed in a loop where a text is

read from the keyboard, and the buzzer sounds in such a way to represent the Morse code

of this text. The program terminates if the user enters the text QUIT.

You should run the program from the command mode as follows:

 beagle@beagle:~ $ python morse.py

#---

#

MORSE CODE EXERCISER

====================

#

This project can be used to learn the Morse code. A buzzer is

connected to GPIO17 of the BeagleY-AI.

#

The program reads a text from the keyboard and then sounds the

buzzer to simulate sending or receiving the Morse code of this

text.

#

In this project the Morse code speed is assumed to be 10 wpm,

Chapter 8 • BeagleY-AI LED Projects

● 143

but can easily be changed by changing the parameter wpm.

#

File : morse.py

Date : October, 2024

Author: Dogan Ibrahim

#---

import gpiod

import time

Buzzer = gpiod.find_line('GPIO17')

Buzzer.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

words_per_minute = 10 # define words per min

wpm = 1200/words_per_minute # unit time in milliseconds

unit_time = wpm / 1000

Morse_Code = {

 'A': '.-',

 'B': '-...',

 'C': '-.-.',

 'D': '-..',

 'E': '.',

 'F': '..-.',

 'G': '--.',

 'H': '....',

 'I': '..',

 'J': '.---',

 'K': '-.-',

 'L': '.-..',

 'M': '--',

 'N': '-.',

 'O': '---',

 'P': '.--.',

 'Q': '--.-',

 'R': '.-.',

 'S': '...',

 'T': '-',

 'U': '..-',

 'V': '...-',

 'W': '.--',

 'X': '-..-',

 'Y': '-.--',

 'Z': '--..'

 }

#

This function sends a DOT (unit time)

The Beagle-Y AI Book

● 144

#

def DO_DOT():

 Buzzer.set_value(1)

 time.sleep(unit_time)

 Buzzer.set_value(0)

 time.sleep(unit_time)

 return

#

This function sends a DASH (3*unit time)

#

def DO_DASH():

 Buzzer.set_value(1)

 time.sleep(3*unit_time)

 Buzzer.set_value(0)

 time.sleep(unit_time)

 return

#

This function sends inter-word space (7*unit time)

#

def DO_SPACE():

 time.sleep(7*unit_time)

 return

#

Main program code

#

text = ""

while text != "QUIT":

 text = input("Enter text to send: ")

 if text != "QUIT":

 for letter in text:

 if letter == ' ':

 DO_SPACE()

 else:

 for code in Morse_Code[letter.upper()]:

 if code == '-':

 DO_DASH()

 elif code == '.':

 DO_DOT()

 time.sleep(unit_time)

 time.sleep(3*unit_time)

 time.sleep(2)

Figure 8.25 Program listing of the project.

Chapter 8 • BeagleY-AI LED Projects

● 145

Recommended modification: An LED can be connected to the GPIO pin instead of the

buzzer so that the Morse code can be seen in visual form.

8.10 Project 8 – Electronic Dice

Description: In this project, 7 LEDs are arranged in the form of the faces of a dice, and

a push-button switch is used. When the button is pressed, the LEDs turn on to display

numbers 1 to 6, as if on a real dice. The display is turned off after 3 seconds, ready for the

next game. The aim of this project is to show how a dice can be constructed with 7 LEDs.

Block diagram: The block diagram of the project is shown in Figure 8.26.

Figure 8.26 Block diagram of the project.

Figure 8.27 shows the LEDs that should be turned on to display the 6 dice numbers.

Figure 8.27 LED Dice.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28. Here, 8 GPIO

pins are collected together to form a PORT. The following pins are used for the LEDs (there

are 7 LEDs, but 8 port pins are used in the form of a byte where the most-significant bit

position is not used):

The Beagle-Y AI Book

● 146

 Bit 7 6 5 4 3 2 1 0

 GPIO: 9 10 22 27 17 4 3 2

Figure 8.28 Circuit diagram of the project.

The push-button switch is connected to GPIO port pin GPIO11.

Table 8.1 gives the relationship between a dice number and the corresponding LEDs to be

turned on to imitate the faces of a real dice. For example, to display number 1 (i.e., only

the middle LED is on), you have to turn LED D3 on. Similarly, to display number 4, you

have to turn on D0, D2, D4 and D6.

Required number LEDs to be turned on

1 D3

2 D0, D6

3 D0, D3, D6

4 D0, D2, D4, D6

5 D0, D2, D3, D4, D6

6 D0, D1, D2, D4, D5, D6

 Table 8.1 Dice number and LEDs to be turned on

The relationship between the required number and the data to be sent to the PORT to turn

on the correct LEDs is given in Table 8.2. For example, to display dice number 2, you have

to send hexadecimal 0x41 to the PORT. Similarly, to display number 5, we have to send

hexadecimal 0x5D to the PORT and so on.

● 147

Required number PORT data (Hex)

1 0x08

2 0x41

3 0x49

4 0x55

5 0x5D

6 0x77

 Table 8.2 Required number and PORT data

Program listing: The program is called dice.py and the listing is shown in Figure 8.29.

The bit pattern to be sent to the LEDs corresponding to each dice number is stored in

hexadecimal format in a list called DICE_NO (see Table 8.2). GPIO 1 is configured as a

button pin, and the push-button switch is connected to this pin to simulate the "throwing"

of a dice. The main program waits until a button is pressed. Then, a random number is

generated between 1 and 6 and stored in variable n. The bit pattern corresponding to this

number is found and sent to function Port_Output so that the required LEDs are turned on

to represent the dice number. This process is repeated after 3-seconds of delay.

#---

#

ELECTRONIC DICE WITH LEDs

=========================

#

Yhis is an electronic dice project. A button is connected to

GPIO11 of the BeagleY-AI. A random number is generated between

1 and 6 when the button is pressed. The dice number is displayed

on 7 LEDs configured as the faces of a dice.

#

Program: dice.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

import time # import time

import random # import random

DICE_NO = [0, 0x08, 0x41, 0x49, 0x55, 0x5D, 0x77]

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

Chapter 8 • BeagleY-AI LED Projects

The Beagle-Y AI Book

● 148

 for i in range(8):

 PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

 PORT[i].request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

Configure the button as input

#

button = gpiod.find_line('GPIO11')

button.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):

 b = bin(x) # convert into binary

 b = b.replace("0b", "") # remove leading "0b"

 diff = 8 - len(b) # find the length

 for i in range (0, diff):

 b = "0" + b # insert leading os

 for i in range (0, 8):

 if b[i] == "1":

 PORT[i].set_value(1) # bit ON

 else:

 PORT[i].set_value(0) # bit OFF

 return

#

Main program loop

#

Configure()

while True:

 if button.get_value() == 0: # if button is pressed

 n = random.randint(1, 6) # generate random no

print(n) # display it

 pattern=DICE_NO[n] # get the pattern

 Port_Output(pattern) # display the pattern

 time.sleep(3) # wait 3 sconds

 Port_Output(0) # clear display

Figure 8.29 Program listing of the project.

● 149

8.11 Project 9 – Varying the LED Flashing Rate

Description: In this project, an LED and two pushbuttons are connected to the BeagleY-AI

board. Normally, the LED flashes every second. Pressing the Faster button increases the

flashing rate. Similarly, pressing the Slower button decreases the flashing rate. The aim of

this project is to show how more than one pushbutton can be connected to the BeagleY-AI

board.

Block diagram: The block diagram of the project is shown in Figure 8.30.

Figure 8.30 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.31. Here, the LED

is connected to GPIO17, the Faster button to GPIO9, and the Slower button to GPIO11.

The button states are at logic 1 and go to logic 0 when pressed.

Chapter 8 • BeagleY-AI LED Projects

The Beagle-Y AI Book

● 150

Figure 8.31 Circuit diagram.

Program listing: The program is called sfled.py and the listing is shown in Figure 8.32.

At the beginning of the program, the LED and button ports are identified. The LED is

configured as output, and the two buttons are configured as inputs. The remainder of the

program runs in a loop. Here, pressing the Faster button increases the flashing rate by

decreasing the delay by 0.2 seconds, and pressing the Slower button increases the delay

by 0.2 seconds.

#---

#

VARYING LED FLASHING RATE

=========================

#

In this project an LEDs and two buttons named Faster and Slower

are connected to the BeagleY-AI. Normally the LED flashes every

second. Pressing Faster increases the flashing rate. Similarly,

pressing Slower decreases the flashing rate.

#

Program: sfled.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod # import gpiod

Chapter 8 • BeagleY-AI LED Projects

● 151

import time # import time

LED = gpiod.find_line('GPIO17')

LED.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

Faster = gpiod.find_line('GPIO9')

Slower = gpiod.find_line('GPIO11')

Faster.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

Slower.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

Main program loop

#

dl = 1 # default delay

while True:

 LED.set_value(1) # LED ON

 time.sleep(dl) # delay

 LED.set_value(0) # LED OFF

 time.sleep(dl) # delay

 if Faster.get_value() == 0: # request for faster

 dl = dl - 0.2 # lower delay

 if dl <= 0:

 dl = 0.1

 if Slower.get_value() == 0: # request for slower

 dl = dl + 0.2 # increase delay

Figure 8.32 Program listing.

Testing: Keep the Faster button pressed and you should see the LED flashing faster.

Similarly, keep the Slower button pressed, and the LED should flash slower.

The Beagle-Y AI Book

● 152

Chapter 9 • Using an I2C LCD

9.1 Overview

The I2C (also known as I2C) bus is commonly used in microcontroller-based projects. In

this chapter, you will be looking at the use of this bus on BeagleY-AI. Some other interesting

projects are also given in this chapter. The aim is to make the reader familiar with the I2C

bus library functions and to show how they can be used in a real project. Before looking

at the details of the projects, it is worthwhile to look at the basic principles of the I2C bus.

9.2 The I2C Bus

The I2C bus is one of the most commonly used microcontroller communication protocols for

communicating with external devices such as sensors and actuators. The I2C bus is a single

master, multiple slave bus, and it can operate at standard mode: 100 Kbit/s, full speed:

400 Kbit/s, fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-

drain wires, pulled up with resistors:

SDA: data line

SCL: clock line

Figure 9.1 shows the structure of an I2C bus with one master and three slaves.

Figure 9.1 I2C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an

individual slave device on the same bus. For this reason, the protocol defines that each

slave device provides a unique slave address for the given bus. This address is usually

7-bits wide. When the bus is free, both lines are high. All communication on the bus is

initiated and completed by the master which initially sends a start bit and completes a

transaction by sending a stop bit. This alerts all the slaves that some data is coming on

the bus, and all the slaves listen on the bus. After the start bit, 7 bits of the unique slave

address are sent. Each slave device on the bus has its own address, and this ensures that

only the addressed slave communicates on the bus at any time to avoid any collisions. The

last sent bit is a read/write (R/W) bit, such that if this bit is 0, it means that the master

wishes to write to the bus (e.g., to a register of a slave); if this bit is 1, it means that the

master wishes to read from the bus (e.g., from the register of a slave). The data is sent on

Chapter 9 • Using an I2C LCD

● 153

the bus with the MSB (most significant bit) first. An acknowledgment (ACK) bit takes

place after every byte, and this bit allows the receiver to signal to the transmitter that the

byte was received successfully, allowing the transmission of another byte may be sent. The

ACK bit is sent at the 9th clock pulse.

The communication over the I2C bus is simply as follows:

• The master sends on the bus the address of the slave it wants to communicate

with.

• The LSB is the R/W bit which establishes the direction of data transmission, i.e.,

from master to slave (R/W = 0), or from slave to master (R/W = 1).

• Required bytes are sent, each interleaved with an ACK bit, until a stop condition

occurs

Depending on the type of slave device used, some transactions may require separate

transactions. For example, the steps to read data from an I2C compatible memory device

are:

• The master starts the transaction in write mode (R/W = 0) by sending the slave

address on the bus.

• The memory location to be retrieved is then sent as two bytes (assuming

64Kbit memory).

• The master sends a STOP condition to end the transaction.

• The master starts a new transaction in read mode (R/W = 1) by sending the

slave address on the bus.

• The master reads the data from the memory. If reading the memory in

sequential format, then more than one byte will be read.

• The master sets a stop condition on the bus.

9.3 I2C Pins of BeagleY-AI

BeagleY-AI I2C port is at the following GPIO pins:

GPIO2 SDA1 pin 3

GPIO3 SCL1 pin 5

GPIO25 SDA4 pin 22

GPIO22 SCL4 pin 15

The Beagle-Y AI Book

● 154

There are also I2C pins at the GPIO0 and GPIO1, but these are shared with other modules

on the board, and using them as an I2C is not recommended.

2.2 kΩ pull-up resistors are used from the I2C pins to +3.3 V. Notice that because the I2C

pins are pulled-up to +3.3 V and BeagleY-AI pins are not +5 V compatible, it is necessary

to use voltage level converter circuits if the I2C LCD operates with +5 V.

9.4 Project 1 – Using an I2C LCD – Seconds Counter

Description: In this project, an I2C type LCD is connected to the BeagleY-AI. The program

counts up in seconds and displays on the LCD. The aim of this project is to show how an

I2C-type LCD can be used in projects.

The I2C LCD

The I2C LCD has 4 pins: GND, +V, SDA, and SCL. SDA can be connected to pin GPIO2, and

SCL to pin GPIO 3. The +V pin of the display should be connected to the +5 V (pin 2) of

the BeagleY-AI. BeagleY-AI GPIO pins are not +5 V tolerant, but the I2C LCD operates with

+5V where its SDA and SCL pins are pulled to +5 V. It is not a good idea to connect the LCD

directly to BeagleY-AI as it can damage its I/O circuitry. There are several solutions here.

One solution is to remove the I2C pull-up resistors on the LCD module. The other option is

to use an LCD that operates with +3.3 V. Another solution is to use a bidirectional +3.3 V to

+5 V logic level converter chip. In this project, you will use the TXS0102 bidirectional logic

level converter chip, like the one shown in Figure 9.2.

Figure 9.2 Logic level converter.

Block diagram: Figure 9.3 shows the block diagram of the project.

Chapter 9 • Using an I2C LCD

● 155

Figure 9.3 Block diagram.

Circuit diagram: The circuit diagram is shown in Figure 9.4.

Figure 9.4 Circuit diagram of the project.

Figure 9.5 shows the front and back of the I2C-based LCD. Notice that the LCD has a small

board mounted at its back to control the I2C interface. The LCD contrast is adjusted through

the small potentiometer mounted on this board. A jumper is provided on this board to

disable the backlight if required.

Figure 9.5 I2C-based LCD (front and back views)

The Beagle-Y AI Book

● 156

Program Listing: Before developing the program, make sure that you have the latest

version of the i2c tools and smbus. Enter the following command:

 beagle@beagle:~ $ sudo apt-get install i2c-tools

 beagle@beagle:~ $ sudo apt-get install python3-smbus

Connect the LCD to your BeagleY-AI as shown in Figure 9.4. Then, enter the following

command to ensure that the LCD is detected by your BeagleY-AI:

 beagle@beagle:~ $ sudo i2cdetect –r –y 1

You should see a table similar to the one shown below. A number in the table means that

the LCD has been recognized correctly and the I2C slave address of the LCD is shown in the

table. In this example the LCD address is 27:

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

You should now install an I2C LCD library so that you can send commands and data to the

LCD. There are many Python libraries available for the I2C type LCDs. The one chosen here

is on GitHub from Dave Hylands. This library is installed as follows:

• Go to the following web link:

https://github.com/dhylands/python_lcd/tree/master/lcd

• Copy the following files to your home directory /home/beagle using WinSCP:

i2c_lcd.py

lcd_api.py

• Check to make sure that the file is copied successfully. You should see the file

listed with the command:

beagle@beagle: ~ $ ls

You are now ready to write the program. Figure 9.6 shows the program listing (lcd.py). At

the beginning of the program, the LCD driver libraries lcd_api and i2c_lcd are imported

into the program. The heading SECONDS COUNTER is displayed at the top row (row 1) and

Chapter 9 • Using an I2C LCD

● 157

the program enters a loop. Inside this loop, variable cnt is incremented every second and

the total value of cnt is displayed on the LCD continuously in the following format:

 SECONDS COUNTER

 nn

#---

I2C LCD SECONDS COUNTER

=======================

#

In this program an I2C LCD is connected to the BeagleY-AI.

The program counts up in seconds and displays on the LCD.

#

At the beginning of the program the text SECONDS COUNTER is

displayed

#

Program: lcd.py

Date : October 2024

Author : Dogan Ibrahim

#--

import smbus

import time

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear() # clear LCD

mylcd.putstr("SECONDS COUNTER") # display string

cnt = 0 # initialize cnt

while True: # infinite loop

 cnt = cnt + 1 # increment count

 mylcd.move_to(0,1)

 mylcd.putstr(str(cnt)) # display cnt

 time.sleep(1) # wait one second

Figure 9.6 Program listing.

The Beagle-Y AI Book

● 158

Figure 9.7 shows the display.

Figure 9.7 The LCD display.

The I2C LCD library supports many functions. Some of the most commonly used ones

include (refer to the LCD library documentation for further details):

clear() clear LCD and set to home position

show_cursor() show cursor

hide_cursor() hide cursor

blink_cursor_on() blink cursor

blink_cursor_off() stop blinking cursor

display_on() display on

display_off() display off

backlight_on() backlight on

backlight_off() backlight off

move_to(x, y) move cursor to (x, y)

putchar() display a character

putstr() display a string

9.5 Project 2 – Using an I2C LCD – Display Time

Description: In this project, an I2C type LCD is connected to the BeagleY-AI as in the

previous project. The program displays the current time on the LCD.

Chapter 9 • Using an I2C LCD

● 159

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.8 shows the program listing (LCDtime.py). At the beginning

of the program, time, datetime, and I2C LCD modules are imported into the program.

The LCD is cleared, and the program enters a loop. Inside this loop, the current time is

extracted using the strftime() function, and the current time is then displayed on the top

row of the LCD every second in the following format:

 hh:mm:ss

#---

I2C LCD TIME DISPLAY

=======================

#

This program displays the current time on the LCD.

#

Program: LCDtime.py

Date : October 2024

Author : Dogan Ibrahim

#--

from time import sleep

from datetime import datetime

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear() # clear LCD

while True: # infinite loop

 now = datetime.now()

 time = now.strftime("%H:%M:%S")

 mylcd.move_to(0,0)

 mylcd.putstr(str(time))

 sleep(1) # wait one second

 mylcd.clear()

Figure 9.8 Program listing.

Figure 9.9 shows the display.

The Beagle-Y AI Book

● 160

Figure 9.9 LCD display.

9.6 Project 3 – Using an I2C LCD – Display the IP address of BeagleY-

AI

Description: In this project, an I2C-type LCD is connected to the BeagleY-AI as in the

previous projects. The IP address of the BeagleY-AI is displayed on the top row of the LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4, respectively.

Program listing: Figure 9.10 shows the program listing (LCDip.py). The IP address

is extracted using the hostname command with the –I option. The IP address is then

displayed on the LCD in the following format:

 192.168.3.196

#---

#

I2C LCD IP DISPLAY

==================

This program displays the IP address on the LCD.

#

Program: LCDip.py

Date : October 2024

Author : Dogan Ibrahim

Chapter 9 • Using an I2C LCD

● 161

#--

from time import sleep

from subprocess import check_output

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()

ip = check_output(["hostname", "-I"],encoding="utf-8").split()[0]

mylcd.putstr(str(ip))

while True:

 pass

Figure 9.10 Program listing.

9.7 Project 4 – Reaction Timer – Output to Screen

Description: This is a reaction timer project. The user presses a button as soon as he/

she sees an LED lighting up. The time delay between seeing the light and pressing the

button is measured and displayed on the screen. The LED then turns OFF, and the process

is repeated after a random delay of 1 to 10 seconds. The aim of this project is to show how

the time can be read and how a simple reaction timer project can be designed.

Block Diagram: Figure 9.11 shows the block diagram of the project.

Figure 9.11 Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is very simple, and it consists of an

LED and a push-button switch. The LED and the button are connected to GPIO17 and

GPIO27, respectively. The button is connected using two resistors as shown in Figure 9.12.

The Beagle-Y AI Book

● 162

Figure 9.12 Circuit diagram of the project.

Program listing: The program is called reaction.py and its listing is shown in Figure 9.13.

At the beginning of the program, the random library and other used libraries are imported.

The program runs in a loop where the system time is recorded as soon as the LED is turned

on. The program waits for the user to press the button, and the system time is read again

at this moment. The difference between the second time and the first time is displayed as

the reaction time of the user. This process repeats after a random delay of 1 to 10 seconds.

Note that the floating point function time.time() returns the time in seconds since the

epoch.

#--

#

REACTION TIMER

==============

#

This is a reaction timer program. The user presses a button

as soon as he/she see a light. The time between seeing the

light and pressing the button is measured and is displayed

in milliseconds as the reaction time of the user. The light

comes ON after a random number of seconds between 1 and 10

seconds.

#

Program: reaction.py

Date : October, 2024

Author : Dogan Ibrahim

#---

import time

import random

import gpiod

import time

Chapter 9 • Using an I2C LCD

● 163

button = gpiod.find_line('GPIO27')

led = gpiod.find_line('GPIO17')

led.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

button.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

Start of main program

#

while True:

 T = random.randint(1, 10) # generate random no

 time.sleep(T)

 led.set_value(1) # LED ON

 start_time = time.time() # start time

 while(button.get_value() == 1): # wait until pressed

 pass

 end_time = time.time()

 diff_time = 1000.0*(end_time - start_time)

 diff_int = int(diff_time)

 print(«Reaction time=%d ms» %diff_int)

 led.set_value(0) # LED OFF

 time.sleep(3) # wait 3 seconds

Figure 9.13 Program listing.

An example output is shown in Figure 9.14.

Figure 9.14 Example output.

9.8 Project 5 – Reaction Timer – Output to LCD

Description: This project is very similar to the previous one but here the output is sent to

LCD instead of the screen. As before, the user presses a button as soon as he/she sees a

LED lighting. The time delay between seeing the light and pressing the button is measured

and displayed on the LCD. The LED then turns OFF and the process is repeated after a

random delay of 1 to 10 seconds.

Block Diagram: Figure 9.15 shows the block diagram of the project.

The Beagle-Y AI Book

● 164

Figure 9.15 Block diagram of the project.

Circuit Diagram: The circuit diagram of the project, shown in Figure 9.16, is very simple

and it consists of an LED, a push-button switch, and an LCD display. The LED and the button

are connected to GPIO17 and GPIO27 respectively, as in the previous project.

Figure 9.16 Circuit diagram of the project.

Program listing: The program is called LCDreaction.py and its listing is shown in Figure

9.17. The program is basically the same as the one in Figure 9.27, but here the output is

sent to the LCD.

#--

#

REACTION TIMER - OUTPUT TO LCD

==============================

#

This is a reaction timer program. The user presses a button

as soon as he/she see a light. The time between seeing the

light and pressing the button is measured and is displayed

on LCD in milliseconds as the reaction time of the user. The

light comes ON after a random number of seconds between 1 and

10 seconds.

#

Chapter 9 • Using an I2C LCD

● 165

Program: LCDreaction.py

Date : October, 2024

Author : Dogan Ibrahim

#---

import time

import random

import gpiod

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)

mylcd.clear()

button = gpiod.find_line('GPIO27')

led = gpiod.find_line('GPIO17')

led.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

button.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

Start of main program

#

while True:

 T = random.randint(1, 10)

 time.sleep(T)

 led.set_value(1) # LED ON

 start_time = time.time() # start time

 while(button.get_value() == 1):

 pass

 end_time = time.time()

 diff_time = 1000.0*(end_time - start_time)

 diff_int = str(int(diff_time)) + " ms"

 mylcd.move_to(0, 0)

 mylcd.putstr(diff_int)

 led.set_value(0) # LED OFF

 time.sleep(3)

 mylcd.clear()

Figure 9.17 Program listing.

The Beagle-Y AI Book

● 166

9.9 Project 6 – Automatic Dusk Lights

Description: In this project, a light dependent resistor (LDR) is used to sense the darkness,

and a relay is activated when the ambient light intensity falls below the required level. It

is possible to connect e.g. lights to the relay so that they turn on automatically when, for

example, it is dusk. The aim of this project is to show how to use an LDR in a BeagleY-AI

project, and also how to connect and activate a relay.

Block Diagram: Figure 9.18 shows the block diagram of the project.

Figure 9.18 Block diagram of the project.

Circuit Diagram: As shown in Figure 9.19, the circuit diagram of the project is simple and

it consists of an LDR, a 10-kilo ohm potentiometer, and a relay. The LDR is connected to

GPIO4, and the relay to GPIO17.

The resistance of an LDR increases as the light level falls. The response of a typical LDR

is shown in Figure 9.20. The LDR is connected as a resistive potential divider circuit. The

voltage across the LDR increases as the light level falls. When dark, logic 0 will be sent to

the BeagleY-AI which in turn will activate the relay. In light conditions, logic 1 will be sent

to the BeagleY-AI, which will deactivate the relay. The potentiometer can be adjusted so

that the relay is activated at the required light level. This process will require some trial

and error.

Chapter 9 • Using an I2C LCD

● 167

Figure 9.19 Circuit diagram of the project.

Figure 9.20 Response of a typical LDR.

Program listing: Figure 9.21 shows the program listing (program: dusklight.py). The

LDR is the input, and the relay is the output. The program detects the voltage at its GPIO4

pin and if it is at logic 0 (i.e. dark) then it deactivates the relay, otherwise, the relay is

activated. The potentiometer can be used to adjust the required light trigger level.

#--

#

DUSK LIGHT

==========

#

In this project a light dependent resistor (LDR) is used to

detect the ambient light level. When the light level falls

below the required value, a relay is activated which turns

ON the lights.

#

The potentiometer can be used to adjust the triggering

light level of the project.

#

The Beagle-Y AI Book

● 168

Program: dusklight.py

Date : October, 2024

Author : Dogan Ibrahim

#---

import gpiod

LDR = gpiod.find_line('GPIO4')

LDR.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

RELAY = gpiod.find_line('GPIO17')

RELAY.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

RELAY.set_value(0) # RELAY OFF)

while True:

 if LDR.get_value() == 0:

 RELAY.set_value(1) # At logic 0 (dark)

 else:

 RELAY.set_value(0) # At logic 1 (light)

Figure 9.21 Program listing.

9.10 Project 7 – Ultrasonic Distance Measurement

Description: This project uses an ultrasonic transmitter/receiver pair to measure the

distance in front of the sensor. The distance is displayed on the screen. The aim of the

project is to show how ultrasonic sensors can be attached to a BeagleY-AI and how distance

can be measured using these sensors.

Block diagram: Figure 9.22 shows the block diagram of the project.

Figure 9.22 Block diagram of the project.

Chapter 9 • Using an I2C LCD

● 169

Circuit Diagram: An ultrasonic sensor is used to sense the distance in front of the sensor.

The outputs of the ultrasonic sensors are +5 V and therefore are not compatible with the

inputs of the BeagleY-AI. A resistive potential divider circuit is used to lower the voltage to

+3.3 V. The voltage at the output of the potential divider resistor is:

 Vo = 5 V × 2 K / (2 K + 1 K) = 3.3 V

In this project, an HC-SR04-type ultrasonic transmitter/receiver module is used (see Figure

9.23). These modules have the following specifications:

• Operating voltage (current): 5 V (2 mA) operation

• Detection distance: 2 cm – 450 cm

• Input trigger signal: 10 us TTL

• Sensor angle: not more than 15 degrees

The sensor modules have the following pins:

Vcc: +V power

Trig: Trigger input

Echo: Echo output

Gnd: Power ground

Figure 9.23 Ultrasonic transmitter/receiver module.

The principle of operation of the ultrasonic sensor module is as follows:

• A 10 us trigger pulse is sent to the module

• The module then sends eight 40 kHz square wave signals and automatically

detects the returned (echoed) pulse signal

• If an echo signal is returned the time to receive this signal is recorded

• The distance to the object is calculated as:

 Distance to object (in meters) = (time to received echo in seconds × speed of

sound) / 2

The speed of sound is 343 m/s, or 0.0343 cm/µs

The Beagle-Y AI Book

● 170

Therefore,

Distance to object (in cm) = (time to received echo in µs) × 0.0343 / 2

or,

 Distance to object (in cm) = (time to received echo in µs) × 0.01715

 Figure 9.24 shows the principle of operation of the ultrasonic sensor module. For example,

if the time to receive the echo is 294 microseconds, then the distance to the object is

calculated as:

 Distance to object (cm) = 294 × 0.01715 = 5.04 cm

Figure 9.24 Operation of the ultrasonic sensor module.

Figure 9.25 shows the circuit diagram of the project. The trig and echo pins of the sensor

are connected to GPIO4 and GPIO17 respectively. The echo output of the ultrasonic sensor

is connected to the BeagleY-AI through a resistive potential divider circuit to drop the

voltage level to +3.3 V.

Figure 9.25 Circuit diagram of the project.

Chapter 9 • Using an I2C LCD

● 171

Program listing: Figure 9.26 shows the program listing (ultrasonic.py). At the beginning

of the program, the echo and trigger pins are defined. Function GetDistance() calculates

the distance to the obstacle and returns it to the main program after rounding it to 2

decimal places. A 10ms trigger pulse is sent and the program waits until it receives the echo

signal. The elapsed time is multiplied by 17150 to calculate the distance in centimeters. The

remainder of the program runs in a loop where the distance is measured continuously and

displayed on the screen. Figure 9.41 shows an example output from the program.

#---

#

ULTRASONIC DISTANCE SENSOR

==========================

#

This program uses a HC-SR04 type ultrasonic transmitter/receiver

to measure the distance to an obstacle in-front of the sensor.

The measured distance is displayed on the screen.

#

Program: ultrasonic.py

Date : October 2024

Author : Dogan Ibrahim

#--

import gpiod

import time

trigger = gpiod.find_line('GPIO4')

echo = gpiod.find_line('GPIO17')

trigger.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

echo.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

This function calculates the distance

#

def GetDistance(trig, echo):

 trig.set_value(0) # trig=0

 time.sleep(0.08) # waiting for sensor to settle

 trig.set_value(1) # send trigger

 time.sleep(0.00001) # wait 10ms

 trig.set_value(0) # trig=0

 while echo.get_value() == 0:

 start_time = time.time()

 while echo.get_value() == 1:

 end_time = time.time()

 pulse_width = end_time - start_time # calculate elapsed time

The Beagle-Y AI Book

● 172

 distance = pulse_width * 17150 # calculate distance

 distance = round(distance, 2) # round

 return distance

while True:

 obstacle = GetDistance(trigger, echo)

 print("Distanc (cm)=", obstacle)

 time.sleep(1)

Figure 9.26 Program listing.

Figure 9.27 Example output.

9.11 Project 8 – Car Parking Sensors

Description: This is a parking sensors project to help a person park a car safely and easily.

A pair of ultrasonic transmitter/receiver sensors are mounted in the front and back of a

vehicle to sense the distance to the objects, and an active buzzer sounds if the sensors are

too close to the objects in front of them. In this project, a safe distance is assumed to be

10cm.

Block Diagram: Figure 9.28 shows the block diagram of the project.

Figure 9.28 Block diagram of the project.

Chapter 9 • Using an I2C LCD

● 173

Circuit Diagram: Figure 9.29 shows the circuit diagram. The trig and echo pins of the

Front ultrasonic sensor are connected to GPIO4 and GPIO17, respectively, as in the previous

project. Similarly, the trig and echo pins of the rear ultrasonic sensor are connected to

GPIO27 and GPIO22, respectively. The echo outputs of the ultrasonic sensors are connected

to the BeagleY-AI through resistive potential divider resistors to drop the voltage levels to

+3.3 V. The active buzzer is connected to GPIO10 of the BeagleY-AI.

Figure 9.29 Circuit diagram of the project.

Program listing: Figure 9.30 shows the program listing (program parking.py). At the

beginning of the program, the trigger and echo pins are defined. The triggers are configured

as outputs, and the echoes are configured as inputs. If the distance from either sensor to

an object is less than or equal to the Allowed_Distance (set to 10cm) then the buzzer is

sounded to indicate that the vehicle is too close to an object (either at the front or the rear).

#--

PARKING SENSORS

===============

#

This is a parking sensors project. Ultrasonic tranamitter/receiver

sensors are attached to the front and rear of a vehicle. In addition

an active buzzer is connected to the BeagleY-AI. The program senses

the objects in the front and rear of the vehicle and sounds the buzzer

if the vehicle is too close to the objects. In this project a distance

less than 10cm is considered to be too close.

#

File : parking.py

Date : October, 2024

The Beagle-Y AI Book

● 174

Author: Dogan Ibrahim

#---

import time

import gpiod

Buzzer = gpiod.find_line('GPIO10')

forwardecho = gpiod.find_line('GPIO17')

rearecho = gpiod.find_line('GPIO22')

forwardtrig = gpiod.find_line('GPIO4')

reartrig = gpiod.find_line('GPIO27')

Buzzer.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

forwardtrig.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

reartrig.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

forwardecho.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

rearecho.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

Calculate the distance to the obstacle

#

def Get_Distance(trig, echo):

 trig.set_value(0)

 time.sleep(0.08)

 trig.set_value(1)

 time.sleep(0.00001)

 trig.set_value(0)

 while echo.get_value() == 0:

 start_time = time.time()

 while echo.get_value() == 1:

 end_time = time.time()

 pulse_width = end_time - start_time

 distance = pulse_width * 17150

 return distance

Allowed_Distance = 10 # allowed 10cm

Buzzer.set_value(0) # buzzer OFF

obstacle_f and obstacle_r are the distances to the obstacles in the

front and rear, respectively

#

while True:

 obstacle_f = Get_Distance(forwardtrig, forwardecho)

Chapter 9 • Using an I2C LCD

● 175

 obstacle_r = Get_Distance(reartrig, rearecho)

 if obstacle_f <= Allowed_Distance or obstacle_r <= Allowed_Distance:

 Buzzer.set_value(1)

 else:

 Buzzer.set_value(0)

Figure 9.30 Program listing.

The Beagle-Y AI Book

● 176

Chapter 10 • Plotting Graphs With Python and
BeagleY-AI

10.1 Overview

In this chapter, you will learn how to draw graphs using the Python programming language.

Additionally, examples and projects are given on drawing graphs for simple electronic

circuits.

10.2 The Matplotlib Graph Plotting Library

Matplotlib is a Python plotting library that is used to create two-dimensional graphs. Before

using this package, it must be installed on your Raspberry Pi 5 using the following command:

 beagle@beagle:~ $ sudo apt-get install python3-matplotlib

You must import the matplotlib module at the beginning of our programs before you can

use Matplotlib. Use the following statement:

 import matplotlib.pyplot as plt

Perhaps the easiest way to learn how to use Matplotlib is to look at an example.

Note that graphs can only be plotted in GUI Desktop mode. Write your programs using

Thonny or the Terminal Emulator in console mode.

Example 1

Write a program to draw a line graph passing from the following (x, y) points:

 x: 2 4 6 8

 y: 4 8 12 16

Solution 1

The required program listing is shown in Figure 10.1 (program: graph1.py). This program

is very simple. The function call plt.plot plots the graph with the specified x and y values.

The graph is shown on the GUI Desktop when the statement plt.show() is executed. The

program was written in console mode on the GUI Desktop.

 beagle@beagle:~ $ python graph1.py

#--

SIMPLE LINE GRAPH

=================

#

This program draws a line graph passing from

the following points:

#

x = 2 4 6 8

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 177

y = 4 8 12 16

#

Author: Dogan Ibrahim

File : graph1.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

x = [2, 4, 6, 8]

y = [4, 8, 12, 16]

plt.plot(x, y)

plt.show()

Figure 10.1 Program listing.

Figure 10.2 shows the graph plotted by the program. Notice that at the bottom of the

graph, we have several buttons to control the graph, such as zoom, save, etc.

Figure 10.2 Line graph drawn by the program.

You can add titles, axis labels, and grid to your graph using the following functions:

 plt.xlabel("X values")

 plt.ylabel("Y values")

 plt.title("Simple X-Y Graph")

 plt.grid(True)

The new graph is shown in Figure 10.3.

The Beagle-Y AI Book

● 178

Figure 10.3 Graph with labels, title, and grid.

Matplotlib supports a large number of functions (see web link: https://matplotlib.org/2.0.2/

api/pyplot_summary.html for a full description of all the functions). Some commonly used

functions are:

• bar: make a bar plot

• box: turn the axis box on or off

• boxplot: make a box plot

• figtext: add text to the figure

• hist: plot a histogram

• legend: place a legend on the axes

• loglog: make a logarithmic plot

• pie: plot a pie chart

• polar: make a polar plot

• plotfile: plot data in a file

• semilogx: logarithmic plot with log on x-axis

• semilogy: logarithmic plot with log on y-axis

• suptitle: add a cantered title to the plot

• tick_params: change the appearance of ticks and tick labels

Example 2

Write a program to draw a sine curve from 0 to 2π.

Solution 2

You have to use NumPy arrays to store your data points before plotting. Figure 10.4 shows

the program listing (program: graph2.py).

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 179

#--

SINE GRAPH

==========

#

This program draws a sine graph from 0 to 2pi

#

Author: Dogan Ibrahim

File : graph2.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

#

Calculate the data points in np

#

x = np.arange(0, 2 * np.pi, 0.1)

y = np.sin(x)

#

Now plot the graph

#

plt.plot(x, y)

plt.xlabel("X values")

plt.ylabel("Sin(X)")

plt.title("Sine Wave")

plt.grid(True)

plt.show()

Figure 10.4 Program listing.

The graph drawn by the program is shown in Figure 10.5.

The Beagle-Y AI Book

● 180

Figure 10.5 Graph drawn by the program.

Example 3

Draw the graph of the following function as x is varied from 0 to 4:

 y = 2x2 + 3x + 2

Solution 3

Figure 10.6 shows the program listing (program: graph3.py). After calculating the x and

y values, the graph is drawn as shown in Figure 10.7.

#--

Function Graph

==============

#

This program draws a graph of the function:

#

y = 2x2 + 3x + 2 from x=0 to x = 4

#

Author: Dogan Ibrahim

File : graph3.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

#

Calculate the data points in np

#

x = np.arange(0, 4, 0.1)

y = [(2 * i * i + 3 * i + 2) for i in x]

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 181

#

Now plot the graph

#

plt.plot(x, y)

plt.xlabel("X values")

plt.ylabel("Y values")

plt.title("y=2x2 + 3x + 2")

plt.grid(True)

plt.show()

Figure 10.6 Program listing.

Figure 10.7 Graph drawn by the program.

Example 4

This is an example of drawing two graphs on the same axes. Write a program to draw the

graphs of the following two functions as x is varied from 0 to 3:

 y = x2 + 2

 y = x2 + 4

Solution 4

Figure 10.8 shows the program listing (program: graph4.py). After calculating the x and

y values the graphs are drawn as shown in Figure 10.9.

The Beagle-Y AI Book

● 182

#--

Function Graph

==============

#

This program draws a graph of the functions:

#

y = x2 + 2

y = x2 + 4 from x=0 to x = 3

#

Author: Dogan Ibrahim

File : graph4.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

#

Calculate the data points in np

#

x = np.arange(0, 3, 0.1)

y1 = [(i * i + 2) for i in x]

y2 = [(i * i + 4) for i in x]

#

Now plot the graph

#

plt.plot(x, y1, linestyle='solid')

plt.plot(x, y2, linestyle='dashed')

plt.xlabel("X values")

plt.ylabel("Y values")

plt.title("y=x2+2 and y=x2+4")

plt.grid(True)

plt.show()

Figure 10.8 Program listing.

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 183

Figure 10.9 Graph drawn by the program.

In order to identify the individual graphs in a multi-graph drawing, you can plot each graph

with a different color, or with different types of lines. Some examples are shown below:

 plt.plot(x, y1, color='blue')

 plt.plot(x, y2, color='green')

or

 plt.plot(x, y1, linestyle='solid')

 plt.plot(x, y2, linestyle='dashed')

Figure 10.10 shows the graph in Figure 10.9 drawn with different line styles.

The Beagle-Y AI Book

● 184

Figure 10.10 Using different line styles.

Example 5

In this example, you will use legends to identify multiple graphs in a multi-graph drawing.

The functions to be drawn are the same as the ones given in the previous example.

Solution 5

Figure 10.11 shows the program listing (program: graph5.py). The label parameter is

used to identify the two graphs. Also, the statement plt.legend() must be specified to

draw the legend.

#--

Function Graph

==============

#

This program draws a graph of the functions:

#

y = x2 + 2

y = x2 + 4 from x=0 to x = 3

#

In this program the graphs are identified

#

Author: Dogan Ibrahim

File : graph5.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 185

#

Calculate the data points in np

#

x = np.arange(0, 3, 0.1)

y1 = [(i * i + 2) for i in x]

y2 = [(i * i + 4) for i in x]

#

Now plot the graph

#

plt.plot(x, y1, linestyle='solid', label='x2+2')

plt.plot(x, y2, linestyle='dashed', label='x2+4')

plt.xlabel("X values")

plt.ylabel("Y values")

plt.title("y=x2+2 and y=x2+4")

plt.grid(True)

plt.legend()

plt.show()

Figure 10.11 Program listing.

Figure 10.12 shows the graph drawn by the program.

Figure 10.12 Graph drawn by the program.

The Beagle-Y AI Book

● 186

Example 6

Write a program to draw a pie chart for the following data;

 France = 15%, Germany = 20%, Italy = 20%, UK = 45%

Solution 6

Figure 10.13 shows the program listing (program: graph6.py). The Pie chart is drawn with

an equal aspect ratio so that is a circle.

#--

Pie Chart

=========

#

This program draws a pie chart for the data:

#

France=15%, Germany=20%,Italy=20%,UK=45%

#

Author: Dogan Ibrahim

File : graph6.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

labels = "France", "Germany", "Italy", "UK"

sizes = [15, 20, 20, 45]

x, chrt = plt.subplots()

chrt.pie(sizes, labels=labels)

chrt.axis('equal')

plt.show()

Figure 10.13 Program listing.

The Pie chart drawn by the program is shown in Figure 10.14.

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 187

Figure 10.14 Pie chart drawn by the program.

We can explode parts of the Pie chart by specifying the parts to be exploded. For example,

to explode the fourth item in our example, we can issue the statement:

 Explode = (0, 0, 0, 0.1) # specify the amount to be exploded

The amount of explosion is determined by the value we specify. Also, the percentages of

each part can be written inside the Pie chart elements by using the statement:

 autopct='%1.1f%%' # specify 1 digit after the decimal point

Parts of the pie chart can be shadowed if desired to give it a 3D effect. This can be done

using the statement:

 shadow=True

The program shown in Figure 10.15 (program: graph7.py) makes use of the above

features, and the resulting pie chart is shown in Figure 10.16.

#--

Pie Chart

=========

#

This program draws a pie chart for the data:

#

France=15%, Germany=20%,Italy=20%,UK=45%

#

Part UK is exploded in this graph. Also, the

The Beagle-Y AI Book

● 188

percentage of each part is written inside the

corresponding parts and pats are shadowed

#

Author: Dogan Ibrahim

File : graph7.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

labels = "France", "Germany", "Italy", "UK"

sizes = [15, 20, 20, 45]

explode = (0, 0, 0, 0.1)

x, chrt = plt.subplots()

chrt.pie(sizes, labels=labels, explode=explode,\

autopct='%1.1f%%',shadow=True)

chrt.axis('equal')

plt.show()

Figure 10.15 Program listing.

Figure 10.16 Pie chart drawn by the program.

Example 7

Write a program to draw a bar chart for the following data:

 France = 10, Italy = 8, Germany = 6, UK = 2

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 189

Solution 7

Figure 10.17 shows the program listing (program: graph8.py). After specifying the values

for each bar, the bar chart is drawn.

#--

Bar Chart

=========

#

This program draws a bar chart for the data:

France=10, Italy=8,Germany=6,UK=2

#

Author: Dogan Ibrahim

File : graph8.py

Date : October, 2023

#--

import matplotlib.pyplot as plt

import numpy as np

labels = ("France", "Germany", "Italy", "UK")

pos = np.arange(len(labels))

values = [10, 8, 6, 2]

plt.bar(pos, values, align='center',alpha=0.5)

plt.xticks(pos, labels)

plt.ylabel('MB/s')

plt.title('Internet Speed')

plt.show()

Figure 10.17 Program listing.

Figure 10.18 shows the graph drawn by the program.

The Beagle-Y AI Book

● 190

Figure 10.18 Graph drawn by the program.

You can plot a horizontal bar chart by replacing the statement plt.bar with plt.barh.

10.3 Project 1 – RC Transient Circuit Analysis - Charging

Description: This project is about analyzing a charging RC transient circuit by plotting its

time response.

Background Information: RC circuits are used in many radio and communications

circuits. A typical RC transient circuit consists of a resistor in series with a capacitor, as

shown in Figure 10.19. When the switch is closed, the voltage across the capacitor rises

exponentially with a time constant, T = RC.

Figure 10.19 Charging RC circuit.

Expressed mathematically, assuming that initially the capacitor is discharged, when the

switch is closed the voltage across the capacitor rises a given by the following formula:

 (10.1)

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 191

Initially, the voltage across the capacitor is 0V, and in a steady state, the voltage across the

capacitor becomes equal to Vin. The time constant is the time at which the output voltage

rises to around 63.2% of its final value.

Program Listing: Figure 10.20 shows the program listing (program: RCrise.py). After

displaying the heading, the values of the input voltage Vin, and resistor and capacitor

values are read from the keyboard. The program then calculates the time constant as

T=RC and displays the time constant and also draws the time response of the circuit. The

graph is drawn as the time value (x-axis) changes from 0 to 6T and 50 points are taken to

draw the graph. The time constant is also written on the graph at the point (Time constant,

Vin / 2). The horizontal axis is in seconds, while the vertical axis is in volts.

#--

RC TRANSIENT RESPONSE

=====================

#

This program reads the R and C values and then

calculates and displays the time conctant. Also,

the time response of the circuit is drawn

#

Author: Dogan Ibrahim

File : RCrise.py

Date : October, 2024

#--

import matplotlib.pyplot as plt

import numpy as np

import math

print("RC Transient Response")

print("=====================")

#

Read Vin, R and C

#

Vin = float(input("Enter Vin in Volts: "))

R = float(input("Enter R in Ohms: "))

C = float(input("Enter C in microfarads: "))

C = C / 1000000.0

#

Calculate and display time constant

#

T = R * C

F = 6.0 * T

N = F / 50.0

print("Time constant = %f seconds" %(T))

The Beagle-Y AI Book

● 192

#

Now plot the time response

#

x = np.arange(0, F, N)

y = [(Vin * (1.0 - math.exp(-i/T))) for i in x]

plt.plot(x, y)

plt.xlabel("Time (s)")

plt.ylabel("Capacitor Volts")

plt.title("RC Response")

plt.grid(True)

TC = "T="+str(T)+"s"

plt.text(T, Vin/2, TC)

plt.show()

Figure 10.20 Program listing.

Figure 10.21 shows an example graph displayed by the program. In this example, the

following input values were used (see Figure 10.22):

 Vin = 10 volts

 R = 100 ohm

 C = 10 microfarad

The time constant was calculated to be 0.1 seconds.

Figure 10.21 Graph plotted by the program.

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 193

Figure 10.22 Input values to the example program.

10.4 Project 2 – RC Transient Circuit Analysis - Discharging

Description: This case study is about analyzing a discharging RC transient circuit by

plotting its time response.

Background Information: In this case study, an RC circuit is used as in Figure 10.23. We

assume that the capacitor is fully charged after switch s1 is closed. We then close switch s2

so that the capacitor discharges through resistor R. The time response of the voltage across

the capacitor is given by the following formula:

 (10.2)

Where Vo is the initial voltage across the capacitor (normally the same as Vin) before s2 is

closed. Again, T=RC is known as the time constant of the circuit.

Figure 10.23 Discharging RC circuit.

Program Listing: Figure 10.24 shows the program listing (program: RCfall.py). After

displaying the heading, the values of the initial voltage across the capacitor (Vo), and the

resistor and capacitor are read from the keyboard. The program then calculates the time

constant as T=RC, displays the time constant, and also draws the time response of the

circuit. The graph is drawn as the time value (x-axis), changes from 0 to 6T, and 50 points

are taken to draw the graph. The time constant is also written on the graph at the point

(Time constant, Vo / 2). The horizontal axis is in seconds, while the vertical axis is in volts.

#--

RC TRANSIENT RESPONSE

=====================

#

This program reads the R and C values and then

calculates and displays the time constant. Also,

the time response of the circuit is drawn as the

The Beagle-Y AI Book

● 194

capacitor is discharged

#

Author: Dogan Ibrahim

File : RCfall.py

Date : October, 2024

#--

import matplotlib.pyplot as plt

import numpy as np

import math

print("RC Transient Response")

print("=====================")

#

Read Vo, R and C

#

Vo = float(input("Enter Initial Capacitor Voltage in Volts: "))

R = float(input("Enter R in Ohms: "))

C = float(input("Enter C in microfarads: "))

C = C / 1000000.0

#

Calculate and display time constant

#

T = R * C

F = 6.0 * T

N = F / 50.0

print("Time constant = %f seconds" %(T))

#

Now plot the time response

#

x = np.arange(0, F, N)

y = [(Vo * (math.exp(-i/T))) for i in x]

plt.plot(x, y)

plt.xlabel("Time (s)")

plt.ylabel("Capacitor Volts")

plt.title("RC Response")

plt.grid(True)

TC = "T="+str(T)+"s"

plt.text(T, Vo/2, TC)

plt.show()

Figure 10.24 Program listing.

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 195

Figure 10.25 shows an example graph displayed by the program. In this program, the

following input values were used (see Figure 10.26):

 Initial capacitor voltage = 10 volts

 R = 1000 ohms

 C = 100 microfarads

The time constant was calculated to be 0.1 seconds.

Figure 10.25 Graph plotted by the program.

Figure 10.26 Input values to the example program.

10.5 Transient RL Circuits

The time response of a transient resistor-inductor circuit is similar to the RC circuit.

When the circuit is connected to a DC supply of value Vin, the current in the circuit rises

exponentially and is given by the following formula:

 (10.3)

Where, Vin is in volts, R in ohms, L in henries, and t in seconds. The time constant of this

circuit is given by T = L/R.

The Beagle-Y AI Book

● 196

After the current reaches its steady state value, disconnecting the DC supply and shorting

the leads causes the current in the circuit to fall exponentially, given by the following

formula:

 (10.4)

Where, Vo is the initial voltage across the inductor.

The transient response of RL circuits is similar to those of the RC circuits and therefore is

not covered further in this book.

10.6 Project 3 – RCL Transient Circuit Analysis

Description: This case study is about analyzing the transient response of a second-order,

series-connected RLC circuit by plotting its time response.

Background Information: An RLC circuit (Figure 10.27) is a second-order system that

can have three modes of operation depending on the values of the components when a DC

voltage is applied across its terminals.

Figure 10.27 RLC circuit.

Underdamped mode: This mode is identified when the following condition holds true:

 (10.5)

When DC voltage is applied to the circuit, the current in the circuit is given by the following

formula:

 (10.6)

Where:

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 197

 and, (10.7)

Critically damped mode: In this mode of operation, the following is satisfied:

 (10.8)

When DC voltage is applied to the circuit, the current in the circuit is given by the following

formula:

 (10.9)

Where:

 and, (10.10)

Overdamped mode: In this mode of operation, the following is satisfied:

 (10.11)

When DC voltage is applied to the circuit, the current in the circuit is given by the following

formula:

 (10.12)

Where:

 and, (10.13)

Program Listing: Figure 10.28 shows the program listing (program: RLC.py). At

the beginning of the program, a heading is displayed and then the values of the input

voltage, resistor, capacitor, and inductor are read and stored in variables Vin, R, C, and L,

respectively. The program then finds out in which mode the circuit will be operating based

on the value of ξ. Then, three functions are used, one for each mode, to calculate and plot

the transient response of the circuit. The mode of the circuit is displayed on the graph at

the coordinate (3T, 0), where T = 2π/W. In all the graphs, 80 points are used to draw the

points from 0 to 6T.

The Beagle-Y AI Book

● 198

#--

RLC TRANSIENT RESPONSE

======================

#

This program reads the R,L,C values and then

calculates and displays the transient response

#

Author: Dogan Ibrahim

File : RLC.py

Date : October, 2024

#--

import matplotlib.pyplot as plt

import numpy as np

import math

global x, y, z

def critically_damped():

 global x,y

 x = np.arange(0, F, N)

 y = [Vin*((1/L) * i * math.exp(-i*w)) for i in x]

def underdamped():

 global x,y,z

 x = np.arange(0, F, N)

 zeta = math.sqrt(1 - z*z)

 y = [Vin*(1/(w*L*zeta)*(math.exp(-z*w*i))*math.sin(w*i*zeta)) for i in x]

def overdamped():

 global x,y,z

 x = np.arange(0, F, N)

 y = [Vin*(1/(w*L*(math.sqrt(z*z-1))))*(math.exp(-z*w*i))*\

math.sinh(w*i*math.sqrt(z*z-1)) for i in x]

print("RLC Transient Response")

print("=====================")

#

Read Vin, R,C and L

#

Vin = float(input("Enter Vin in Volts: "))

R = float(input("Enter R in Ohms: "))

C = float(input("Enter C in microfarads: "))

C = C / 1000000.0

L = float(input("Enter L in millihenries: "))

L = L / 1000.0

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 199

w = math.sqrt(1/(L * C))

z = (R/2) * math.sqrt(C / L)

T = (2.0 * math.pi) / w

F = 6 * T

N = F / 80.0

#

Find the mode of operation

#

mode = R - 2.0 * math.sqrt(L / C)

if abs(mode) < 0.01:

 case = 2

 md = "Critically Damped"

 critically_damped()

elif mode < 0:

 case = 1

 md = "Underdamped"

 underdamped()

elif mode > 0:

 case = 3

 md = "Overdamped"

 overdamped()

#

Now plot the time response

#

plt.plot(x, y)

plt.xlabel("Time (s)")

plt.ylabel("Current")

plt.title("RLC Response")

plt.grid(True)

plt.text(3*T,0, md)

plt.show()

Figure 10.28 Program listing.

Figure 10.29 shows a typical run of the program with the following values:

 Vin = 10 volts

 R = 10 ohms

 C = 100 microfarads

 L = 200 microhenries

The Beagle-Y AI Book

● 200

Figure 10.29 Response of the circuit.

10.7 Project 4 – Temperature, Pressure, and Humidity Measurement –

Display on the Screen

Description: In this project, the BME280 sensor module is used to read the ambient

temperature, pressure, and humidity, and to display the readings on the screen.

Block diagram: Figure 10.30 shows the block diagram of the project.

Figure 10.30 Block diagram of the project.

The BME280 Sensor Module

The BME280 module (Figure 10.31) is a low-cost sensor developed for measuring the

ambient temperature, atmospheric pressure, and humidity. This module operates with the

I2C (or SPI) bus interface and has the pins SDA, SCL, Vin, and GND. The basic specifications

of this module are:

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 201

• Operating voltage: 1.2 to 3.6 V

• Interface I2C or SPI

• Current consumption: 1.8 μA

• Humidity sensor response time: 1 s

• Humidity sensor accuracy: ±3%

• Pressure sensor range: 300 to 1100 hPa

• Temperature range: -40 to +85ºC

Figure 10.31 The BME280 sensor module.

Circuit diagram: The project circuit diagram is shown in Figure 10.32. The module is

connected to BeagleY-AI SDA (pin 3) and SCL (pin 5) pins. +3.3 V power is applied from

pin 1.

Figure 10.32 Circuit diagram of the project.

The Beagle-Y AI Book

● 202

The default address of the BME280 is 0x76. This can be confirmed by entering the following

command after the circuit is built (Figure 10.33):

 i2cdetect -r–y 1

Figure 10.33 Checking the I2C bus for the sensor module.

Program listing: Figure 10.34 shows the program listing (bme280.py). Before running

the program, it is necessary to load the BME280 library. The steps are (ignore the warning

messages):

• git clone https://github.com/MarcoAndreaBuchmann/bme280pi.git

• cd bme280pi

• sudo python3 setup.py install

The sensor library can be imported to your Python programs as follows:

 from bme280pi import Sensor

 sensor = Sensor()

At the beginning of the program, the BME280 sensor library is imported as above, and the

sensor address is specified, Inside the main program loop the temperature, atmospheric

pressure, and humidity are read and displayed on the screen every 5 seconds.

#---

TEMPERATURE,ATMOSPHERIC PRESSURE AND HUMIDITY

===

#

This program reads the ambient temperature, atmospheric

pressure, and humidity using a BME280 sensor module. The

readings are dislayed on the screen every 5 seconds

#

Program: bme280.py

Date : October, 2024

Author : Dogan Ibrahim

#--

from time import sleep

from bme280pi import Sensor

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 203

sensor = Sensor(address = 0x76)

while True: # infinite loop

 data = sensor.get_data() # get sensor data

 temperature = data['temperature'] # temperature

 pressure = data['pressure'] # pressure

 humidity = data['humidity'] # humidity

 print("Temperature = %5.2f C" %temperature)

 print("Pressure = %d hPa" %pressure)

 print("Humidity = %d" %humidity)

 print("")

 sleep(5)

Figure 10.34 Program listing.

Figure 10.35 shows an example output from the program.

Figure 10.35 Output from the program.

10.8 Project 5 – Temperature, Pressure, and Humidity Measurement –

Plotting the Data

Description: This project is very similar to the previous one, but here the data is plotted

on the GUI Desktop.

The block diagram and circuit diagram of the project are the same as in Figure 10.30 and

Figure 10.32.

Program listing: Figure 10.36 shows the program listing (bme280plot.py). The sensor

data is collected for 60 seconds where the temperature, pressure, and humidity are stored

in t[], p[], and h[]. The time in seconds is stored in tim[]. When the program runs,

the message Collecting data… is displayed. The collected data is plotted as shown in

Figure 10.37. Note that you can adjust the position of the graphs on the screen using the

horizontal arrow tool at the bottom of the screen.

The Beagle-Y AI Book

● 204

#---

PLOT TEMPERATURE, ATMOSPHERIC PRESSURE AND HUMIDITY

==

#

This program reads the ambient temperature, atmospheric

pressure, and humidity using a BME280 sensor module. The

readings are plotted on the Desktop

#

Program: bme280plot.py

Date : October, 2024

Author : Dogan Ibrahim

#--

from time import sleep

from bme280pi import Sensor

import matplotlib.pyplot as plt

sensor = Sensor(address = 0x76)

p = [0]*60

t=[0]*60

h=[0]*60

data = [0]*60

tim=[0]*60

print("Collecting data...")

for i in range(60):

 data=sensor.get_data()

 tim[i]=i

 p[i] =int(data['pressure'])

 t[i] = int(data['temperature'])

 h[i] = int(data['humidity'])

 sleep(0.1)

plt.figure()

plt.subplot(2, 2, 1)

plt.plot(tim,t)

plt.title("Temperature (C)")

plt.grid()

plt.subplot(2, 2, 2)

plt.plot(tim,p)

plt.title("Pressure (hPa)")

plt.grid()

plt.subplot(2, 2, 3)

plt.plot(tim,h)

Chapter 10 • Plotting Graphs With Python and BeagleY-AI

● 205

plt.title("Relative Humidity (%)")

plt.grid()

plt.show()

Figure 10.36 Program listing.

Figure 10.37 Example output from the program.

The Beagle-Y AI Book

● 206

Chapter 11 • Using a 4 x 4 Keypad

11.1 Overview

Keypads are useful devices for entering data into microcontroller-based systems. They are

especially useful in portable applications where the user has to enter data or make a choice.

In this chapter, you will learn to use a 4x4 keypad in your BeagleY-AI projects.

11.2 Project 1 – Using a 4x4 Keypad

Description: This is a 4x4 keypad program. The program reads the key pressed by the

user and displays its code on the screen. The aim of the project is to show how a 4x4

keypad can be used with a BeagleY-AI project.

The 4x4 Keypad: Several types of keypads can be used in microcontroller-based projects.

In this project, a 4x4 keypad (see Figure 11.1) is used. This keypad has keys for numbers 0

to 9, as well as the letters A, B, C, D, *, and #. The keypad is interfaced with the processor

using 8 wires, labeled R1 to R4 (representing the rows) and C1 to C4 (representing the

columns)(see Figure 11.2).

Figure 11.1 4x4 keypad.

Chapter 11 • Using a 4 x 4 Keypad

● 207

Figure 11.2 Circuit diagram of the 4x4 keypad.

The operation of the keypad is very simple: the columns are configured as inputs and they

are all set High, while the rows are configured as outputs. The pressed key is identified by

using column scanning. In this process, one row is forced Low while the other rows remain

High. Then, the state of each column is scanned, and if a column is found to be Low, the

intersection of that column and row is the key pressed. This process is repeated for all the

rows.

Block diagram: Figure 11.3 shows the block diagram.

Figure 11.3 Block diagram.

Circuit diagram: The circuit diagram of the project is shown in Figure 11.4. The 4x4

keypad is connected to the following GPIO pins of the BeagleY-AI. The column pins are held

The Beagle-Y AI Book

● 208

High by using external 10 Kilo-ohm resistors to +3.3 V:

Keypad pin BeagleY-AI pin

 R1 GPIO 4

 R2 GPIO17

 R3 GPIO27

 R4 GPIO22

 C1 GPIO10

 C2 GPIO9

 C3 GPIO11

 C4 GPIO5

Figure 11.4 Circuit diagram.

Figure 11.5 shows the pin configuration of the 4x4 keypad used in the project.

Chapter 11 • Using a 4 x 4 Keypad

● 209

Figure 11.5 Pin configuration of the 4x4 keypad.

Program listing: Figure 11.6 shows the program listing (program: keypad.py). At the

beginning of the program, column and row pins are configured. Rows are configured as

outputs and columns as inputs. All the rows are set High initially. The function GetChar()

waits until a key is pressed and then returns the key to the calling code. This function calls

the function ReadRow(). ReadRow() takes two arguments: the row number and the

keypad characters on that row. It scans the columns, and if a column is in a Low state, the

function returns the keypad character corresponding to that column. The program then

calls GetChar() and displays the pressed key on the screen.

#--

#

4 x 4 KEYPAD

============

#

In this program a 4 x 4 keypad is connected to BeagleY-AI.

the program displays the key pressed on the screen

#

Program: keypad.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod

from time import sleep

#

ROW pins

#

The Beagle-Y AI Book

● 210

ROW1 = gpiod.find_line('GPIO4')

ROW2 = gpiod.find_line('GPIO17')

ROW3 = gpiod.find_line('GPIO27')

ROW4 = gpiod.find_line('GPIO22')

#

COLUMN pins

#

COL1 = gpiod.find_line('GPIO10')

COL2 = gpiod.find_line('GPIO9')

COL3 = gpiod.find_line('GPIO11')

COL4 = gpiod.find_line('GPIO5')

#

ROWS as outputs

#

ROW1.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW2.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW3.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW4.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW1.set_value(1)

ROW2.set_value(1)

ROW3.set_value(1)

ROW4.set_value(1)

#

COLUMNS as inputs and (pulled HIGH in hardware)

#

COL1.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL2.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL3.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL4.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

This function sets a row to 0 and then finds out which

key is pressed on a column

#

def ReadRow(line, char):

 x = 'E'

 line.set_value(0)

 if COL1.get_value() == 0:

 x = char[0]

 if COL2.get_value() == 0:

 x = char[1]

 if COL3.get_value() == 0:

Chapter 11 • Using a 4 x 4 Keypad

● 211

 x = char[2]

 if COL4.get_value() == 0:

 x = char[3]

 line.set_value(1)

 return x

#

This function waits until a character is pressed on keypad

#

def GetChar():

 r = 'E'

 while r == 'E':

 a = ReadRow(ROW1, ["1","2","3","A"])

 b = ReadRow(ROW2, ["4","5","6","B"])

 c = ReadRow(ROW3, ["7","8","9","C"])

 d = ReadRow(ROW4, ["*","0","#","D"])

 if a != 'E':

 r = a

 elif b !='E':

 r = b

 elif c != 'E':

 r = c

 elif d != 'E':

 r = d

 sleep(0.1)

 return r

c = GetChar() # Wait for key press

print (c) # Display the pressed key

Figure 11.6 Program listing.

Importing the keypad functions in a program

It is easier to import the keypad function under a file instead of writing them every time you

want to use them. This can be done by collecting all the functions in a single file and then

importing that file at the beginning of your Python programs. Figure 11.7 shows a program

called keypadfuncs.py, which can be imported into your programs. This file must be

placed in your default directory (/home/beagle). Note that the keypad rows and columns

must be connected to the same BeagleY-AI GPIO pins as given in this project.

The Beagle-Y AI Book

● 212

#--

#

4 x 4 KEYPAD

============

#

In this program a 4 x 4 keypad is connected to BeagleY-AI.

the program displays the key pressed on the screen

#

Program: keypad.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod

from time import sleep

#

ROW pins

#

ROW1 = gpiod.find_line('GPIO4')

ROW2 = gpiod.find_line('GPIO17')

ROW3 = gpiod.find_line('GPIO27')

ROW4 = gpiod.find_line('GPIO22')

#

COLUMN pins

#

COL1 = gpiod.find_line('GPIO10')

COL2 = gpiod.find_line('GPIO9')

COL3 = gpiod.find_line('GPIO11')

COL4 = gpiod.find_line('GPIO5')

#

ROWS as outputs

#

ROW1.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW2.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW3.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW4.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW1.set_value(1)

ROW2.set_value(1)

ROW3.set_value(1)

ROW4.set_value(1)

#

COLUMNS as inputs and (pulled HIGH in hardware)

Chapter 11 • Using a 4 x 4 Keypad

● 213

#

COL1.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL2.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL3.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

COL4.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_IN)

#

This function sets a row to 0 and then finds out which

key is pressed on a column

#

def ReadRow(line, char):

 x = 'E'

 line.set_value(0)

 if COL1.get_value() == 0:

 x = char[0]

 if COL2.get_value() == 0:

 x = char[1]

 if COL3.get_value() == 0:

 x = char[2]

 if COL4.get_value() == 0:

 x = char[3]

 line.set_value(1)

 return x

#

This function waits until a character is pressed on keypad

#

def GetChar():

 r = 'E'

 while r == 'E':

 a = ReadRow(ROW1, ["1","2","3","A"])

 b = ReadRow(ROW2, ["4","5","6","B"])

 c = ReadRow(ROW3, ["7","8","9","C"])

 d = ReadRow(ROW4, ["*","0","#","D"])

 if a != 'E':

 r = a

 elif b !='E':

 r = b

 elif c != 'E':

 r = c

 elif d != 'E':

 r = d

 sleep(0.2)

 return r

Figure 11.7 Program: keypadfuncs.py.

The Beagle-Y AI Book

● 214

Figure 11.8 shows a program (keypadtest.py) that imports the keypad functions.

#--

#

4 x 4 KEYPAD TEST

=================

#

This program imports the keypad functions

#

Program: keypadtest.py

Date : October, 2024

Author : Dogan Ibrahim

#--

from keypadfuncs import GetChar

c = GetChar() # Wait for key press

print (c) # Display the pressed key

Figure 11.8 Program: keypadtest.py.

11.3 Project 2 – Security Lock with Keypad and LCD

Description: This is an electronic lock project where a relay is used to open a door. A

4-digit secret code is set up in the program. The user must enter the secret code for the

door to open.

Block diagram: Figure 11.9 shows the block diagram of the project.

Figure 11.9 Block diagram.

Circuit diagram: The circuit diagram is shown in Figure 11.10. The LCD is connected as

in the previous LCD-based projects. The keypad is connected as in the previous project. A

relay is connected to GPIO21 (pin 40) of the BeagleY-AI.

Chapter 11 • Using a 4 x 4 Keypad

● 215

Figure 11.10 Circuit diagram.

Program listing: Figure 11.11 shows the program listing (lock.py). At the beginning of

the program, the LCD is initialized. The secret code is set to "1357". The program then

displays Code: and expects the user to enter the correct code. If the correct code is

entered, the message Door Opened is displayed and the relay is turned On for 20 seconds.

After this time, the relay is deactivated. If the wrong code is entered, the message Error is

displayed for 5 seconds, and the user is asked to enter the correct code again.

#--

#

KEYPAD OPERATED LOCK

====================

#

In this program a door (or a safe) is opened via a relay.

The user is required to enter the correct secret code for

the door to open. Once opened the door stays open for 20 secs

#

Program: lock.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import gpiod

from time import sleep

from lcd_api import LcdApi

The Beagle-Y AI Book

● 216

from i2c_lcd import I2cLcd

from keypadfuncs import GetChar

Relay = gpiod.find_line('GPIO21')

Relay.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

Relay.set_value(0)

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)

mylcd.clear()

Codea = "1"

Codeb = "3"

Codec = "5"

Coded = "7"

while True:

 mylcd.move_to(0, 0)

 mylcd.putstr("Code: ")

 a = GetChar()

 b = GetChar()

 c = GetChar()

 d = GetChar()

 if (a == Codea and b == Codeb and c == Codec and d == Coded):

 mylcd.clear()

 mylcd.putstr("Door Opened")

 Relay.set_value(1)

 sleep(20)

 Relay.set_value(0)

 mylcd.clear()

Figure 11.11 Program listing.

Suggested modification: Modify the program in Figure 11.11 so that the lock is disabled

for 10 minutes if the wrong code is entered 3 times.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 217

Chapter 12 • I2C, SPI Bus, and PWM Projects

12.1 Overview

I2C and SPI buses are two very important peripheral buses used in microcontroller systems.

Most sensors in microcontroller applications are based on using one of these buses. In this

chapter, you will learn how to use these buses with the BeagleY-AI in some simple projects.

12.2 Project 1 - I2C Port Expander

Description: A simple project is given in this section to show how the I2C functions can be

used in a program. In this project, the I2C bus-compatible Port Expander chip (MCP23017)

is used to give an additional 16 I/O ports to BeagleY-AI. This is useful in some applications

where a large number of I/O ports may be required. In this project, an LED is connected to

MCP23017 port pin GPA0 (pin 21), and the LED is flashed On and Off every second to verify

the program's operation. A 470-ohm current limiting resistor is used in series with the LED.

The aim: This project aims to show how the I2C bus can be used in BeagleY-AI projects.

Block diagram: The block diagram of the project is shown in Figure 12.1.

Figure 12.1 Block diagram of the project.

The MCP23017

The MCP23017 is a 28-pin chip with the following features. The pin configuration is shown

in Figure 12.2:

• 16 bi-directional I/O ports

• Up to 1.7 MHz operation on I2C bus

• Interrupt capability

• External reset input

• Low standby current

• +1.8 V to +5.5 V operation

• 3 address pins, so that up to 8 devices can be used on the I2C bus

• 28-pin DIL package

The Beagle-Y AI Book

● 218

 Figure 12.2 Pin configuration of the MCP23017.

The pin descriptions are given in Table 12.1.

Pin Description

GPA0-GPA7 Port A pins

GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SDA I2C data pin

SCL I2C clock pin

RESET Reset pin

A0-A2 I2C address pins

Table 12.1 MCP23017 pin descriptions

The MCP23017 is addressed using pins A0 to A2. Table 12.2 shows the address selection. In

this project, the address pins are connected to ground, thus the address of the chip is 0x20.

The chip address is 7 bits wide, with the low bit set or cleared depending on whether we

wish to read data from the chip or write data to the chip respectively. Since in this project,

we will be writing to the MCP23017, the low bit should be 0, making the chip byte address

(also called the device opcode) 0x40.

A2 A1 A0 Address

0 0 0 0x40

0 0 1 0x21

0 1 0 0x22

0 1 1 0x23

1 0 0 0x24

1 0 1 0x25

1 1 0 0x26

1 1 1 0x27

Table 12.2 Address selection of the MCP23017

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 219

The MCP23017 chip has 8 internal registers that can be configured for its operation. The

device can either be operated in 16-bit mode or in two 8-bit modes by configuring bit

IOCON.BANK. On power-up, this bit is cleared, which selects the two 8-bit mode by default.

The I/O direction of the port pins is controlled with registers IODIRA (at address 0x00) and

IODIRB (at address 0x01). Clearing a bit to 0 in these registers sets the corresponding port

pin(s) as output(s). Similarly, setting a bit to 1 in these registers sets the corresponding

port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13 respectively.

This is shown in Figure 12.3.

Figure 12.3 Configuring the I/O ports.

Circuit diagram: Figure 12.4 shows the circuit diagram of the project. Notice that I2C pins

of the port expander are connected to pins GPIO2 (SDA) and GPIO3 (SCL) of the BeagleY-

AI. The LED is connected to port pin GPA0 of the MCP23017 (pin 21). The address select

bits of the MCP23017 are all connected to ground.

Figure 12.4 Circuit diagram of the project.

The Beagle-Y AI Book

● 220

More information on the MCP23017 chip can be obtained from the datasheet:

 http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Program listing: Figure 12.5 shows the program listing (Program: MCP23017). At the

beginning of the program, GPIOA is configured as an output. Then, an endless loop is

created, and the LED is turned On and Off with a one-second delay between each output.

The function bus.write_byte_data() writes a byte to the specified I2C device address and

the specified register address.

#==

PORT EXPANDER

=============

#

In this project a MCP23017 type port expander chip is used to

provide 16 additional I/I ports to the BeagleY-AI. As an example,

an LED is connected to the chip and the LED is flashed every second

with one second delay between each output

#

Author: Dogan Ibrahim

File : MCP23017,py

Date : November 2024

#==

import smbus

import time

bus = smbus.SMBus(1) # Using i2c bus1

addr = 0x20 # MCP23017 address

MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address

MCP_IODIRA_REG = 0

bus.write_byte_data(addr,MCP_IODIRA_REG,0) # Configure as output

while True:

 bus.write_byte_data(addr,MCP_GPIOA_REG,1) # LED ON

 time.sleep(1)

 bus.write_byte_data(addr, MCP_GPIOA_REG,0) # LED OFF

 time.sleep(1)

Figure 12.5 Program listing.

12.3 Project 2 - SPI ADC - Voltmeter

Description: This is a voltmeter project. Because the BeagleY-AI does not have any

onboard analog-to-digital converters (ADC), an external ADC chip (MCP3002) is used in

this project. The voltage to be measured is applied to the ADC, and its value is displayed

on the screen.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 221

Block diagram: Figure 12.6 shows the block diagram.

Figure 12.6 Block diagram.

12.3.1 The SPI bus

The MCP3002 ADC chip operates with the SPI bus. It is useful to summarize the operation

of the SPI bus in this section.

The SPI bus is a commonly used protocol to connect sensors and many other devices to

microcontrollers. The SPI bus is a master-slave type bus protocol. In this protocol, one

device (the microcontroller) is designated as the master, and one or more other devices

(usually sensors) are designated as slaves. In a minimum bus configuration, there is one

master and only one slave. The master establishes communication with the slaves and

controls all the activity on the bus.

Figure 12.7 shows an example of an SPI with one master and 3 slaves. The SPI bus uses

3 signals: clock (SCK), data in (SDI), and data out (SDO). The SDO of the master is

connected to the SDIs of the slaves, and the SDOs of the slaves are connected to the SDI

of the master. The master generates the SCK signals to enable data transfer on the bus.

In every clock pulse, one bit of data is transferred from master to slave, or from slave to

master. The communication is only between a master and a slave, and the slaves cannot

communicate with each other. It is important to note that only one slave can be active at

any time because there is no mechanism to identify multiple slaves simultaneously. Thus,

slave devices have enable lines (e.g., Chip Select (CS) or Chip Enable (CE)), which are

normally controlled by the master. A typical communication between a master and several

slaves is as follows:

• Master enables slave 1

• Master sends SCK signals to read or write data to slave 1

• Master disables slave 1 and enables slave 2

• Master sends SCK signals to read or write data to slave 2

• The above process continues as required

The Beagle-Y AI Book

● 222

Microcontroller

SPI BUS MASTER

SLAVE 1 SLAVE 2 SLAVE 3

SDI

SCK

SDO

CS CS CS

Figure 12.7 SPI bus with one master and 3 slaves.

The SPI signal names are also called MISO (Master In, Slave Out), and MOSI (Master Out,

Slave In). Clock signal SCK is also called SCLK, and the CS is also called SSEL or CE. In the

SPI projects in this chapter, the development kit is the master, and one or more slaves can

be connected to the bus. Transactions over the SPI bus are started by enabling the SCK

line. The master then asserts the SSEL line Low so that data transmission can begin. The

data transmission involves two registers, one in the master and one in the slave device.

Data is shifted out from the master into the slave with the MSB bit first. If more data is to

be transferred, then the process is repeated. Data exchange is complete when the master

stops sending clock pulses and deselects the slave device.

Both the master and the slave must agree on the clock polarity and phase on the line, which

are known as the SPI bus modes. These two settings are named Clock Polarity (CPOL) and

Clock Phase (CPHA) respectively. CPOL and CPHA can have the following values:

CPOL Clock active state

1 Clock active High

11 Clock active Low

CPHA Clock phase

1 Clock out of phase with data

2 Clock in phase with data

The four SPI modes are:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 223

When CPOL = 0, the active state of the clock is 1, and its idle state is 0. For CPHA = 0, data

is captured on the rising edge of the clock, and data is shifted out on the falling edge. For

CPHA = 1, data is captured on the falling edge of the clock and is shifted out on the rising

edge of the clock.

When CPOL = 1, the active state of the clock is 0, and its idle state is 1. For CPHA = 0,

data is captured on the falling edge of the clock and is output on the rising edge. For CPHA

= 1, data is captured on the rising edge of the clock and is shifted out on the falling edge.

BeagleY-AI SPI bus pins are:

MOSI GPIO10

MISO GPIO9

SCLK GPIO11

CE0 GPIO8

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog

input capability to the BeagleY-AI. This chip has the following features:

• 10-bit resolution (0 to 1023 quantization levels)

• On-chip sample and hold

• SPI bus compatible

• Wide operating voltage (+2.7 V to +5.5 V)

• 75 Ksps sampling rate

• 5 nA standby current, 50 µA active current

The MCP3002 is a successive approximation 10-bit ADC with an on-chip sample and hold

amplifier. The device is programmable to operate as either a differential input pair or as

dual single-ended inputs. The device is offered in an 8-pin package. Figure 12.8 shows the

pin configuration of the MCP3002.

Figure 12.8 Pin configuration of the MCP3002.

The pin definitions are as follows:

Vdd/Vref: Power supply and reference voltage input

CH0: Channel 0 analog input

CH1: Channel 1 analog input

CLK: SPI clock input

DIN: SPI serial data in

The Beagle-Y AI Book

● 224

DOUT: SPI serial data out

CS/SHDN: Chip select/shutdown input

In this project, the supply voltage and the reference voltage are set to +3.3 V. Thus, the

digital output code is given by:

 Digital output code = 1024 x Vin / 3.3

or, Digital output code = 310.30 x Vin

Each quantization level corresponds to 3300 mV/1024 = 3.22 mV. Thus, for example, input

data "00 0000001" corresponds to 3.22 mV, "00 0000010" corresponds to 6.44 mV, and

so on.

The MCP3002 ADC has two configuration bits: SGL/DIFF and ODD/SIGN. These bits follow

the sign bit and are used to select the input channel configuration. The SGL/DIFF is used to

select single-ended or pseudo-differential mode. The ODD/SIGN bit selects which channel

is used in single-ended mode and is used to determine polarity in pseudo-differential mode.

In this project, we are using channel 0 (CH0) in single-ended mode. According to the

MCP3002 data sheet, SGL/DIFF and ODD/SIGN must be set to 1 and 0 respectively.

Figure 12.9 shows the circuit diagram of the project where the voltage to be measured is

applied directly to the CH0 input of the ADC.

Figure 12.9 Circuit diagram of the project.

Program listing: The spidev must be installed on your BeagleY-AI and SPI overlay defined,

and permission given to spidev:

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 225

• beagle@beagle:~ $ sudo apt-get install python3-spidev

• edit file /boot/firmware/extlinux/extlinux.conf and add the following line:

fdtoverlays /overlays/k3-am67a-beagley-ai-spidev0.dtb0

• beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf

• Enter Ctrl+X followed by Y to save and exit the editor

• Reboot your BeagleY-AI

beagle@beagle:~ $ sudo reboot

• Give permission to spidev

beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

Note: Overlays are located in the directory: /boot/firmware/overlays and should be

added to file: /boot/firmware/extlinux/extlinux.conf.

Figure 12.10 shows the program listing (voltmeter.py). Function get_adc_data is used to

read the analog data, where the channel number (channel_no) is specified in the function

argument as 0 or 1. Notice that we have to send the start bit, followed by the SGL/DIFF

and ODD/SIGN bits, and the MSBF bit to the chip.

It is recommended to send leading zeroes on the input line before the start bit. This is often

done when using microcontroller-based systems that must send 8 bits at a time.

The following data can be sent to the ADC (SGL/DIFF = 1 and ODD/SIGN = channel_no) as

bytes with leading zeroes for a more stable clock cycle. The general data format is:

 0000 000S DCM0 0000 0000 0000

Where, S = start bit, D = SGL/DIFF bit, C = ODD/SIGN bit, M = MSBF bit

For channel 0: 0000 0001 1000 0000 0000 0000 (0x01, 0x80, 0x00)

For channel 1: 0000 0001 1100 0000 0000 0000 (0x01, 0xC0, 0x00)

Notice that the second byte can be sent by adding 2 to the channel number (to make it 2

or 3) and then shifting 6 bits to the left as shown above to give 0x80 or 0xC0.

The chip returns 24-bit data (3 bytes) and we must extract the correct 10-bit ADC data

from this 24-bit data. The 24-bit data is in the following format ("X" is don't -care bit):

The Beagle-Y AI Book

● 226

 XXXX XXXX XXXX DDDD DDDD DDXX

Assuming that the returned data is stored in 24-bit variable ADC, we have:

 ADC[0] = "XXXX XXXX"

 ADC[1] = "XXXX DDDD"

 ADC[2] = "DDDD DDXX"

Thus, we can extract the 10-bit ADC data with the following operations:

 (ADC[2] >> 2) so, low byte = "00DD DDDD"

and

 (ADC[1] & 15) << 6) so, high byte = "DD DD00 0000"

Adding the low byte and the high byte we get the 10-bit converted ADC data as:

 DD DDDD DDDD

At the beginning of the program in Figure 12.10, an instance of the SPI is created. The

function get_adc_data reads the temperature from sensor chip MCP3002 and returns

a digital value between 0 and 1023. This value is then converted into millivolts and is

displayed on the screen. Figure 12.11 shows an example output from the project where the

input CH0 was connected to GND or +3.3 V.

#---

VOLTMETER

=========

#

This is a voltmeter project. The voltage to be measured is applied

to CH0 input of the MCP3002 ADC. The measured voltage is displayed

on the screen using a print statement

#

Program: voltmeter.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import spidev

from time import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev()

spi.open(0,0) # we are using CE0 for CS

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 227

spi.max_speed_hz = 4000

#

This function returns the ADC data read from the MCP3002

#

def get_adc_data(channel_no):

 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])

 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

 return rcv

#

Start of main program. Read the input voltage and display in mv

#

while True:

 adc = get_adc_data(0)

 mV = adc * 3300.0 / 1023.0 # convert to mV

 print("Voltage = %5.2f mV" %mV) # display voltage in mV

 sleep(1) # wait one second

Figure 12.10 Program listing.

Figure 12.11 Example output from the program.

12.4 Project 3 – Voltmeter – Output to LCD

Description: This project is basically the same as the previous one, but here the measured

voltage is displayed on LCD.

Block diagram: Figure 12.12 shows the block diagram.

The Beagle-Y AI Book

● 228

Figure 12.12 Block diagram.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.13. The LCD and

the MCP3002 are connected as in the previous projects.

Figure 12.13 Circuit diagram of the project.

Program listing: Figure 12.14 shows the program listing (LCDvolt.py). This program is

basically the same as the one in Figure 12.10, but here the output is sent to LCD instead of

being displayed on the screen. The data is displayed in the following format:

 nnnn mV

#---

VOLTMETER WITH LCD DISPLAY

==========================

#

This is a voltmeter project. The voltage to be measured is applied

to CH0 input of the MCP3002 ADC. The measured voltage is displayed

on the LCD

#

Program: LCDvolt.py

Date : October, 2024

Author : Dogan Ibrahim

#--

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 229

import spidev

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

from time import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev()

spi.open(0,0) # we are using CE0 for CS

spi.max_speed_hz = 4000

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()

#

This function returns the ADC data read from the MCP3002

#

def get_adc_data(channel_no):

 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])

 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

 return rcv

#

Start of main program. Read the voltage and display it

#

while True:

 adc = get_adc_data(0)

 mV = adc * 3300.0 / 1023.0 # convert to mV

 disp = str(mV)[:4] + " mV"

 mylcd.move_to(0,0)

 mylcd.putstr(disp)

 sleep(2)

 mylcd.clear()

Figure 12.14 Program listing.

The Beagle-Y AI Book

● 230

12.5 Project 4 – Analog Temperature Sensor Thermometer – Output to

the Screen

Description: In this project, an analog temperature sensor chip is used to measure and

then display the ambient temperature every second on the screen. The temperature is

read using an external ADC as in the previous project. The aim of this project is to show

how the ambient temperature can be read and displayed on the monitor using an analog

temperature sensor chip.

Block Diagram: Figure 12.15 shows the block diagram of the project.

Figure 12.15 Block diagram of the project.

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog

input capability to the BeagleY-AI. Figure 12.16 shows the circuit diagram of the project. A

TMP36DZ type analog temperature sensor chip is connected to CH0 of the ADC. TMP36DZ is

a 3-terminal small sensor chip with pins: Vs, GND, and Vo. Vs is connected to +3.3 V, GND

is connected to the system ground, and Vo is the analog output voltage. The temperature

in degrees Centigrade is given by:

 Temperature = (Vo – 500) / 10

Where, Vo is the sensor output voltage in millivolts.

CS, Dout, CLK, and Din pins of the ADC are connected to the SPI pins CE0, MISO, SCLK,

and MOSI pins of the BeagleY-AI respectively.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 231

Figure 12.16 Circuit diagram of the project.

Program listing: Figure 12.17 shows the BeagleY-AI Python program listing (program:

tmp36.py). The function get_adc_data is used to read the analog data, where the

channel number (channel_no) is specified in the function argument as 0 or 1. The function

get_adc_data reads the temperature from sensor chip MCP3002 and returns a digital

value between 0 and 1023. This value is then converted into millivolts, 500 is subtracted

from it, and the result is divided by 10 to find the temperature in degrees Centigrade. The

temperature is displayed on the monitor every second.

#---

ANALOG TEMPERATURE MEASUREMENT

==============================

#

This is a thermometer project. Ambient temperature is read using

an ADC and is then displayed on the screen every second

#

Program: tmp36.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import spidev

from time import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev()

spi.open(0,0) # we are using CE0 for CS

spi.max_speed_hz = 4000

#

The Beagle-Y AI Book

● 232

This function returns the ADC data read from the MCP3002

#

def get_adc_data(channel_no):

 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])

 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

 return rcv

#

Start of main program. Read the analog voltage and display it

#

while True:

 adc = get_adc_data(0)

 mV = adc * 3300.0 / 1023.0 # convert to mV

 Temperature = (mV - 500) / 10.0

 print("Temperature = %5.2f C" %Temperature)

 sleep(1) # wait one second

Figure 12.17 Python program listing.

A typical display on the monitor is shown in Figure 12.18.

Figure 12.18 Typical display.

12.6 Project 5 – Analog Temperature Sensor Thermometer – Output on

LCD

Description: This project is similar to the previous one, but here the temperature is

displayed on LCD.

Block diagram: Figure 12.19 shows the block diagram of the project.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 233

Figure 12.19 Block diagram.

Circuit diagram: The circuit diagram of the project is shown in Figure 12.20. The ADC and

the sensor chip are connected as in the previous project.

Figure 12.20 Circuit diagram

Program listing: Figure 12.21 shows the program listing (LCDtmp36.py). The program

is very similar to the previous one, but here the temperature is displayed on LCD.

#---

ANALOG TEMPERATURE MEASUREMENT - OUTPUT ON LCD

===

#

This is a thermometer project. Ambient temperature is read using

an ADC and is then displayed on LCD

#

Program: LCDtmp36.py

Date : October, 2024

Author : Dogan Ibrahim

#--

import spidev

from time import sleep

from lcd_api import LcdApi

The Beagle-Y AI Book

● 234

from i2c_lcd import I2cLcd

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR, I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev()

spi.open(0,0) # we are using CE0 for CS

spi.max_speed_hz = 4000

#

This function returns the ADC data read from the MCP3002

#

def get_adc_data(channel_no):

 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])

 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

 return rcv

#

Start of main program. Read the analog temperature, convert

into degrees Centigrade and display on the monitor every second

#

while True:

 adc = get_adc_data(0)

 mV = adc * 3300.0 / 1023.0 # convert to mV

 Temperature = (mV - 500) / 10.0

 T = str(Temperature)[:5] + " C"

 mylcd.move_to(0,0)

 mylcd.putstr(T)

 sleep(5) # wait one second

 mylcd.clear()

Figure 12.21 Program listing.

If you get a permission error, run the following command:

 beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 235

12.7 Using a Digital to Analog Converter (DAC)

A digital-to-analog converter (DAC) is an electronic circuit that converts a digital signal into

an analog signal. They are commonly used in music players to convert digital data into

analog audio signals. They are also used in mobile phones, televisions, and digital audio

processing systems. Waveform generators are important in many electronic communication

applications. In this chapter, you will develop projects to generate waveforms such as

square, sine, triangular, staircase, etc, by using an external DAC chip and programming the

BeagleY-AI. You will be using the popular MCP4921 DAC chip from Microchip.

12.7.1 The MCP4921 DAC

Before using the MCP4921, it is worthwhile to look at its features and operation in some

detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 12.22

shows the pin layout of this chip. The basic features are:

• 12-bit operation

• 20 MHz clock support

• 4.5 μs settling time

• External voltage reference input

• Unity or 2x Gain control

• 1x or 2x gain

• 2.7 V to 5.5 V supply voltage

• -40ºC to +125ºC temperature range

Figure 12.22 MCP4921 DAC.

The pin descriptions are:

Vdd: supply voltage

CS: chip select (active Low)

SCK: SPI clock

SDI: SPI data in

LDAC: Used to transfer input register data to the output (active Low)

Vref Reference input voltage

Vout: analog output

Vss: supply ground

The Beagle-Y AI Book

● 236

In projects in this chapter, you will be operating the MCP4921 with a gain of 1. As a result,

with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC

will be 3300 mV / 4096 = 0.8 mV

The SPI Bus

As discussed in an earlier chapter, the Serial Peripheral Interface (SPI) bus consists of two

data wires and one clock wire. Additionally, a chip enable (CE or CS) connection is used to

select a slave in a multi-slave system. The wires used are:

MOSI (or SDI): Master Out Slave In. This signal is output from the master and is input

to a slave.

MISO: Master In Slave Out. This signal is output from a slave and input to a master.

SCLK (or SCK): The clock, controlled by the master.

CE (or CS): Chip Enable (slave select).

The following pins are the SPI bus pins on BeagleY-AI:

GPIO pin SPI Physical pin no

GPIO 10 MOSI (SPI0) 19

GPIO 9 MISO (SPI0) 21

GPIO 11 SCLK (SPI0) 23

GPIO 8 CE0 (SPI0) 24

12.7.2 Project 6 - Generating square wave signal with any peak volt-

age up to +3.3 V

Description: In this project, you will be using the DAC to generate a square wave signal

with a frequency of 1kHz, where the required output voltage is a 2 V peak.

Block Diagram: Figure 12.23 shows the block diagram of the project.

Figure 12.23 Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.24. The output

of the DAC is connected to a PSCGU250 type digital oscilloscope.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 237

Figure 12.24 Circuit diagram of the project

Program Listing: Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of

the digital input data. The upper byte consists of the following bits:

D8:D11 Bits D8:D11 of the digital input data

SHDN 1: active (output available), 0: shutdown the device

GA Output gain control. 0: 2x gain, 1: 1x gain

BUF 0: unbuffered input, 1: buffered input

A/B 0: write to DACa, 1: Write to DACb (MCP4921 supports only

DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input

data with bits D12 and D13 set to 1 to ensure that the device is active and the gain is set

to 1x. Then, we will send the lower byte (D0:D7) of the data. This means that 0x30 should

be added to the upper byte before sending it to the DAC.

Figure 12.25 shows the program listing (program: squaredac.py). GPIO26 is used as the

CS pin. Variable frequency is set to 1000 which is the required frequency. The function

DAC sends the 12-bit input data to the DAC. This function consists of two parts. In the first

part, the High byte is sent after adding 0x30 as described above. The function xfer2 is used

to send the data to the DAC. In the second part of the function, the Low byte is extracted

and sent to the DAC. Notice that we could have sent both the high byte and the low byte

using the same xfer2 function, as follows:

 highbyte = (data >> 8) & 0x0F

 highbyte = highbyte + 0x30

 lowbyte = data & 0xFF

 xfer2([highbyte, lowbyte])

.

The Beagle-Y AI Book

● 238

Variable ONvalue is set to 2000*4095/3300, which is the digital value corresponding to

2000mv (i.e., 2 V, remember that the DAC is 12 bits /, with 4095 steps, and the reference

voltage is set to 3300 mV). The OFFvalue is set to 0 V. Normally, the delay between the

On and Off times should have been equal to halfperiod. However, it was found by the

experiments that the DAC routine takes about 0.2 ms (0.0002 seconds) and this affects

the period and consequently the frequency of the output waveform. Because of this, 2 mV

is subtracted from halfperiod.

#---

GENERATE SQUARE WAVEFORM

========================

#

This program generates square waveform with the frequency 1kHz.

In this program the MC4921 DAC chip is used to set the output

peak voltage to 2V

#

Author: Dogan Ibrahim

File : squaredac.py

Date : October, 2024

#---

from time import sleep

import gpiod

import spidev # Import SPI

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz = 3900000

CS.set_value(1) # DIsable CS

frequency = 1000 # Required Frequency

period = 1 / frequency # Period of the signal

halfperiod = period / 2 # Half period

#

This function implements the DAC. The data in "data" is sent

to the DAC

#

def DAC(data):

 CS.set_value(0) # Enable CS

#

Send HIGH byte

#

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 239

 temp = (data >> 8) & 0x0F # Get upper byte

 temp = temp + 0x30 # OR with 0x30

 spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

#

 temp = data & 0xFF # Get lower byte

 spi.xfer2([temp]) # Send to DAC

 CS.set_value(1) # Disable CS

try:

 ONvalue = int(2000*4095/3300) # 2V output

 OFFvalue = 0

 while True:

 DAC(ONvalue) # Send to DAC

 sleep(halfperiod - 0.0002) # Wait

 DAC(OFFvalue) # Send to DAC

 sleep(halfperiod - 0.0002) # Wait

except KeyboardInterrupt:

 pass

Figure 12.25 Program listing.

Figure 12.26 shows the output waveform generated by the program. Notice that the peak

output voltage is 2 V as expected.

The Beagle-Y AI Book

● 240

Figure 12.26 Output waveform.

12.7.3 Project 7 - Generating sawtooth wave signal

Description: In this project, you will be using the DAC to generate a sawtooth wave signal

with the following specifications:

 Peak voltage: 3.3 V

 Step width: 1 ms

 Number of steps: 6

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: Figure 12.27 shows the program listing (program: sawtooth.py). The

program is very similar to the one given in Figure 12.25.

#---

GENERATE SAWTOOTH WAVEFORM

==========================

#

This program generates sawtooth waveform with 6 steps where each

step has a width of 1ms

#

Author: Dogan Ibrahim

File : sawtooth.py

Date : October, 2024

#---

from time import sleep # Import time

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 241

import spidev # Import SPI

import gpiod

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz = 3900000

CS.set_value(1) # Disable CS

#

This function implements the DAC. The data in "data" is sent

to the DAC

#

def DAC(data):

 CS.set_value(0) # Enable CS

#

Send HIGH byte

#

 temp = (data >> 8) & 0x0F # Get upper byte

 temp = temp + 0x30 # OR with 0x30

 spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

#

 temp = data & 0xFF # Get lower byte

 spi.xfer2([temp]) # Send to DAC

 CS.set_value(1) # Disable CS

try:

 while True: # Do forever

 i = 0

 while i < 1.1:

 DACValue = int(i*4095) # Value to send

 DAC(DACValue) # Send to DAC

 sleep(0.0007) # Wait

 i = i + 0.2

except KeyboardInterrupt:

 pass

Figure 12.27 Program listing.

The Beagle-Y AI Book

● 242

An example output waveform taken from the oscilloscope is shown in Figure 12.28. Notice

that the time delay had to be adjusted experimentally to give the correct timing.

Figure 12.28 Example output waveform.

12.7.4 Project 8 - Generating triangle wave signal

Description: In this project, we will be using the DAC to generate a triangle wave signal.

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: Figure 12.29 shows the program listing (program: triangle.py). The

program is very similar to the one given in Figure 12.27.

#---

GENERATE TRIANGLE WAVEFORM

==========================

#

This program generates triangle waveform

#

Author: Dogan Ibrahim

File : triangle.py

Date : October, 2024

#---

import gpiod

from time import sleep # Import time

import spidev # Import SPI

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 243

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz = 3900000

CS.set_value(1) # Disable CS

sample = 0

Inc = 0.05

#

This function implements the DAC. The data in "data" is sent

to the DAC

#

def DAC(data):

 CS.set_value(0) # Enable CS

#

Send HIGH byte

#

 temp = (data >> 8) & 0x0F # Get upper byte

 temp = temp + 0x30 # OR with 0x30

 spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

#

 temp = data & 0xFF # Get lower byte

 spi.xfer2([temp]) # Send to DAC

 CS.set_value(1) # Disable CS

try:

 while True:

 DACValue = int(sample*4095) # Value to send

 DAC(DACValue) # Send to DAC

 sleep(0.0001) # Wait

 sample = sample + Inc # Next sample

 if sample > 1.0 or sample < 0:

 Inc = -Inc

 sample = sample + Inc

except KeyboardInterrupt:

 pass

Figure 12.29 Program listing.

The Beagle-Y AI Book

● 244

An example output waveform taken from the oscilloscope is shown in Figure 12.30.

Figure 12.30 Example output waveform.

If you get a permission error, run the following command:

beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

12.7.5 Project 9 - Generating arbitrary wave signal

Description: In this project, you will be using the DAC to generate an arbitrary waveform.

One period of the shape of the waveform will be sketched, and values of the waveform at

different points will be extracted and loaded into a look-up table. The program will output

the data points at the appropriate times to generate the required waveform.

The shape of one period of the waveform to be generated is shown in Figure 12.31. Notice

that the waveform has a period of 20 ms.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 245

Figure 12.31 Waveform to be generated.

The waveform takes the following values:

 Time (ms) Amplitude (V) Time (ms) Amplitude (V)

0 0 11 3.00

1 0.375 12 3.00

2 0.75 13 2.625

3 1.125 14 2.25

4 1.50 15 1.875

5 1.875 16 1.50

6 2.25 17 1.125

7 2.625 18 0.75

8 3.00 19 0.375

9 3.00 20 0

10 3.00

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: Figure 12.32 shows the program listing (program: arbit.py). The sam-

ple points of the waveform are stored in a list called wave. Variable sample indexes this

list and sends the sample values to the DAC. The time of each sample was specified to be

1 ms. It was found by experiment that 0.8ms delay gave the correct results because of the

delay in the DAC routine.

#---

GENERATE ARBITRARY WAVEFORM

===========================

#

This program generates an arbitrary waveform whose sample points

are defined in the program

#

Author: Dogan Ibrahim

The Beagle-Y AI Book

● 246

File : arbit.py

Date : October, 2024

#---

import gpiod

from time import sleep # Import time

import spidev # Import SPI

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz=3900000

CS.set_value(1) # Disable CS

sample = 0

#

Waveform sample points

#

wave = [0,0.375,0.75,1.125,1.5,1.875,2.25,2.625,3,3,3,3,3,\

2.625,2.25,1.875,1.5,1.125,0.75,0.375,0]

#

This function implements the DAC. The data in "data" is sent

to the DAC

#

def DAC(data):

 CS.set_value(0) # Enable CS

#

Send HIGH byte

#

 temp = (data >> 8) & 0x0F # Get upper byte

 temp = temp + 0x30 # OR with 0x30

 spi.xfer2([temp]) # Send to DAC

 temp = data & 0xFF

 spi.xfer2([temp])

 CS.set_value(1) # Disable CS

try:

 while True:

 DACValue = int(wave[sample]*4095/3.3) # Value to send

 DAC(DACValue) # Send to DAC

 sample = sample + 1 # Inc sample index

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 247

 sleep(0.0008) # Wait

 if sample == 20: # If 20 sampes

 sample = 0

except KeyboardInterrupt:

 pass

Figure 12.32 Program listing.

An example output waveform taken from the oscilloscope is shown in Figure 12.33.

Figure 12.33 Example output waveform.

12.7.6 Project 10 - Generating sine wave signal

Description: In this project, we will be using the DAC to generate a low-frequency sine

wave using the built-in trigonometric sin function. The generated sine wave will have an

amplitude of 1.5 V, a frequency of 100Hz (period = 10ms), and an offset of 1.5 V.

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: The frequency of the sine wave to be generated is 100Hz. This wave

has a period of 10 ms or 10,000 µs. If we assume that the sine wave will consist of 100

samples, then each sample should be output at 10,000/100 = 100 µs intervals. The sample

values will be calculated using the trigonometric sin function of Python.

The Beagle-Y AI Book

● 248

The sin function will have the format:

where, T is the period of the waveform and is equal to 100 samples. Thus, the sine wave

is divided into 100 samples and each sample is output at 100 µs. The above formula can

be re-written as:

It is required that the amplitude of the waveform should be 1.5 V. With a reference voltage

of +3.3 V and a 12-bit DAC converter (0 to 4095 quantization levels), 1.5 V is equal to

1.5*4095/3.3, which is equal to 1861.3 (i.e., the amplitude). Thus, we will multiply our sine

function with the amplitude at each sample to give:

The D/A converter used in this project is unipolar and cannot output negative values.

Therefore, an offset is added to the sine wave to shift it so that it is always positive. The

offset should be larger than the absolute value of the maximum negative value of the sine

wave, which is 1861.3 when the sin function above is equal to 1.5. In this project, we are

adding a 1.5 V offset which corresponds to a decimal value of 1861.3 (i.e., the offset) at

the DAC output. Thus, at each sample, we will calculate and output the following value to

the DAC:

The sine waveform values for a period are obtained outside the program loop using the

following statement. List sins contains all the 100 sine values of the waveform. The reason

for calculating these values outside the program loop is to minimize the time to calculate

the sin function:

 for i in range(100):

 sins[i] = int(offset + amplitude * sin(R*i)

where, R is set to 0.0628

Figure 12.34 shows the program listing (program: sine.py). Most parts of the program are

similar to the other waveform generation programs. Inside the program loop samples of the

sine wave are sent to the DAC at each sample time.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 249

#---

GENERATE SINE WAVEFORM

======================

#

This program generates sine waveform with a period of 10ms. Both

the amplitude and the offset of the waveform are set to 1.5V

#

Author: Dogan Ibrahim

File : sine.py

Date : October, 2024

#---

import gpiod

from time import sleep # Import time

import spidev # Import SPI

import math # Import math

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz = 3900000

CS.set_value(1) # Disable CS

sample = 0

T = 100

R = 0.0628

amplitude = 1861.3

offset = 1861.3

sins = [None]*101

#

This function implements the DAC. The data in "data" is sent

to the DAC

#

def DAC(data):

 CS.set_value(0) # Enable CS

#

Send HIGH byte

#

 temp = (data >> 8) & 0x0F # Get upper byte

 temp = temp + 0x30 # OR with 0x30

 spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

The Beagle-Y AI Book

● 250

#

 temp = data & 0xFF # Get lower byte

 spi.xfer2([temp]) # Send to DAC

 CS.set_value(1) # Disable CS

#

Generate the 100 sine wave samples and store in list sins

#

for i in range(100):

 sins[i] = int(offset + amplitude*math.sin(R*i))

try:

 while True:

 DACValue = sins[sample] # Value to send

 DAC(DACValue) # Send to DAC

 sleep(0.0001) # Wait

 sample = sample + 1 # Next sample

 if sample == 100: # 100 samples?

 sample = 0

except KeyboardInterrupt:

 pass

Figure 12.34 Program listing.

An example output waveform taken from the oscilloscope is shown in Figure 12.35. Notice

that the frequency of the waveform is not very accurate because the delay function of Py-

thon is not accurate.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 251

Figure 12.35 Example output waveform.

If you get a permission error, run the following command:

beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

12.7.7 Project 11 – SPI Port Expander

Description: This project is very similar to the port expender project given earlier in this

chapter. In that project, the I2C compatible chip MCP23017 was used. In this project,

the SPI bus-compatible port expander chip MCP23S17 is used to give an additional 16

I/O ports to the BeagleY-AI. The operation of the MCP23S17 is identical to the operation

of MCP23017, except that the MCP23S17 uses the SPI bus. In this project, an LED is

connected to MCP23S17 port pin GPA0, and the LED is flashed On and Off every second, as

in the I2C based project. A 470 Ohm current-limiting resistor is used in series with the LED.

Block diagram: The block diagram of the project is the same as in Figure 12.1, but the

MCP23017 chip is replaced with MCP23S17.

The MCP23S17

The MCP23S17 is a 28-pin chip with the following features. The pin configuration is shown

in Figure 12.36, which is the same as the pin configuration of MCP23017, but SPI pins are

used instead of I2C pins:

• 16 bi-directional I/O ports

• Up to 1.7 MHz operation on I2C bus

• Interrupt capability

• External reset input

• Low standby current

The Beagle-Y AI Book

● 252

• +1.8 V to +5.5 V operation

• 3 address pins, so that up to 8 devices can be used on the SPI bus

• 28-pin DIL package

 Figure 12.36 Pin configuration of the MCP23S17.

The pin descriptions are given in Table 12.3.

Pin Description

GPA0-GPA7 Port A pins

GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SI SPI MOSI data pin

SCK SPI clock pin

SO SPI MISO data pin

CS SPI SSEL chip enable pin

A0-A2 I2C address pins

RESET Reset pin

INTA Interrupt pin

INTB Interrupt pin

 Table 12.3 MCP23S17 pin descriptions

The MCP23S17 is a slave SPI device. The slave address contains four upper fixed bits

(0100) and three user-defined hardware address bits (pins A2, A1, and A0) with the read/

write bit filling out the control byte. These address bits are enabled/disabled by the control

register IOCON.HAEN. By default, the user address bits are disabled at power-up (i.e., IO-

CON.HAEN = 0) and A2 = A1 = A0 = 0, and the chip is addressed with 0x40. As such, we

can use two MCP23S17 chips on SPI0 by connecting one CS bit to CE0, and the other one

to CE1, and addressing both chips with 0x40. By setting bit HAEN to 1, we can change the

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 253

addresses of the devices in multiple MCP23S17-based applications (e.g., more than 2) by

connecting the A2, A1, and A0 accordingly. 16 such chips can be connected (8 to CE0 and 8

to CE1), corresponding to 16x16 = 256 I/O ports. Figure 12.37 and Figure 12.38 show the

addressing format. The address pins should be externally biased even if disabled.

Figure 12.37 MCP23S17 control byte format.

Figure 12.38 MCP23S17 addressing registers.

Like the MCP23017, the MCP23S17 chip has 8 internal registers that can be configured for

its operation. The device can either be operated in 16-bit mode or in two 8-bit modes by

configuring bit IOCON.BANK. On power-up, this bit is cleared, which chooses the two 8-bit

mode by default.

The I/O direction of the port pins is controlled with registers IODIRA (at address 0x00) and

IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the corresponding

port pin(s) as output(s). Similarly, setting a bit to 1 in these registers makes the corre-

sponding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13,

respectively. This is shown in Figure 12.39.

Figure 12.39 Configuring the I/O ports.

The Beagle-Y AI Book

● 254

Further information on the MCP23S17 chip can be obtained from the Microchip Inc. data

sheet at the following website:

http://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Circuit diagram: Figure 12.40 shows the circuit diagram of the project. CS is controlled

separately and in this project, GPIO26 is used as the CS pin.

Figure 12.40 Circuit diagram of the project.

Program listing: Figure 12.41 shows the program listing (Program: MCP23S17). The

programming of the MCP23S17 chip is as follows (notice that not all SPI devices require

device addresses):

• Send device address (it is 0x40 in this project)

• Send register address

• Send register data

First of all, we have to program the I/O direction register IODIRA to 0 so that PORTA pins

are outputs. This register has address 0x0. Then, we should program bit 0 of PORTA (pin

GPIOA) where the LED is connected to. The address of register GPIOA is 0x12.

At the beginning of the program, the SPI interface signals between the BeagleY-AI and

MCP23S17 are defined. The required addresses of the MCP23S17 and the CS connection

are then defined, and CS is initially set to 1 so that the MCP23S17 chip command mode is

disabled (CS must be controlled separately).

The function Configure configures PORTA as output. Function Send sends data to the

specified port register (RegAddr) so that the required pin is at logic 1 or 0. Data is either 0

or 1. When 1, the LED is turned On, and when 0 the LED is turned Off. The main program

runs in a loop and calls the function Send every second to flash the LED.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 255

#--

SPI BUS PORT EXPANDER

=====================

#

In this project the SPI bus compatible MCP23S17 chip is used

to add 16 more ports to BeagleY-AI SBC. An LED is connected

to pin GPA0 of the expander and the LED is flashed every

second

#

Author: Dogan Ibrahim

File : MCP23S17.py

Date : October 2024

#--

import spidev

import gpiod

from time import sleep

CS = gpiod.find_line('GPIO26')

CS.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

Device_Address = 0x40 # MCP23S17 SPI address

spi = spidev.SpiDev()

spi.open(0, 0) # Bus=0, device=0

spi.max_speed_hz = 3900000

CS.set_value(1)

MCP_GPIOA = 0x12

MCP_IODIRA = 0 # MCP IODIRA address

#

This function configures PORTA as output

#

def Configure():

 buff = [0, 0, 0]

 buff[0] = Device_Address

 buff[1] = MCP_IODIRA

 buff[2] = 0

 CS.set_value(0)

 spi.writebytes([buff[0],buff[1],buff[2]])

 CS.set_value(1)

#

This function sends data to register RegAddr

#

def Send(RegAddr, data):

 buff = [0, 0, 0]

The Beagle-Y AI Book

● 256

 buff[0] = Device_Address

 buff[1] = RegAddr

 buff[2] = data

 CS.set_value(0)

 spi.writebytes([buff[0],buff[1],buff[2]])

 CS.set_value(1)

Configure()

#

Main program flashes the LED every second

#

while True:

 Send(MCP_GPIOA, 1) # LED ON

 sleep(1) # 1 second delay

 Send(MCP_GPIOA, 0) # LED OFF

 sleep(1) # 1 second delay

Figure 12.41 Program listing.

12.8 Pulse Width Modulation (PWM

Pulse Width Modulation (PWM) is a commonly used technique for controlling the power

delivered to analog loads using digital waveforms. Although analog voltages (and currents)

can be used to control the delivered power, they have several drawbacks. Controlling large

analog loads requires large voltages and currents that cannot easily be obtained using

standard analog circuits and DACs. Precision analog circuits can be heavy, large, and ex-

pensive and they are also sensitive to noise. By using the PWM technique the average value

of voltage (and current) fed to a load is controlled by switching the supply voltage On and

Off at a fast rate. The longer the power on time, the higher the voltage supplied to the load.

Figure 12.42 shows a typical PWM waveform, which is essentially a repetitive positive

pulse. The waveform has a period (T), On time (TON), and an OFF time (T – TON). The

minimum and maximum values of the voltage supplied to the load are 0 and VP respec-

tively. The PWM switching frequency is usually set to be very high (usually in the order of

several kHz) so that it does not affect the load being powered. The main advantage of PWM

is that the load is operated efficiently since the power loss in the switching device is very

low. When the switch is On there is practically no voltage drop across the switch, and when

the switch is Off there is no current supplied to the load.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 257

Figure 12.42 PWM waveform.

The duty cycle (or D) of a PWM waveform is defined as the ratio of the On time to its period.

Expressed mathematically:

 Duty Cycle (D) = TON / T

The duty cycle is usually expressed as a percentage, as follows:

 D = (TON / TOFF) x 100 %

By varying the duty cycle between 0% and 100%, we can effectively control the average

voltage supplied to the load, from 0 and Vp.

The average value of the voltage applied to the load can be calculated by considering a

general PWM waveform, as shown in Figure 1. The average value A of waveform f(t) with

period T, peak value ymax, and minimum value ymin is calculated as:

or,

In a PWM waveform ymin = 0, and the above equation becomes:

or,

The Beagle-Y AI Book

● 258

As seen from the above equation, the average value of the voltage supplied to the load is

directly proportional to the duty cycle of the PWM waveform. By varying the duty cycle, we

control the average voltage supplied to the load. Figure 12.43 shows the average voltage

for different values of the duty cycle.

Figure 12.43 Average voltage (shown as dashed line) supplied to a load.

It is interesting to notice that with correct low-pass filtering, the PWM can be used as a DAC

if the MCU does not have a DAC channel. By varying the duty cycle we can effectively vary

the average analog voltage supplied to the load.

12.8.1 PWM channels of BeagleY-AI

The BeagleY-AI has hardware PWM channels at the following GPIO ports:

PWM0-A: GPIO5, GPIO15

PWM0-B: GPIO12, GPIO14

PWM1-A: GPIO6, GPIO21

PWM1-B: GPIO13, GPIO20

Example projects for using the PWM are given in this section.

12.8.2 Project 12 – Generate 1000Hz PWM waveform with 50% duty

cycle

Description: In this project, we will generate a PWM waveform with a frequency of 1000 Hz

and a duty cycle of 50% using GPIO20 (Pin 38, or hat-38). The aim of this project is to show

how we can use the PWM functions.

To enable the PWM pin, we must include the PWM overlay in the file: /boot/firmware/

extlinux/extlinux.conf. Run the following command to see a list of the overlays (Figure

12.44):

 beagle@beagle:~ $ ls /boot/firmware/overlays/ | grep beagley-ai-pwm

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 259

Figure 12.44 List of PWM overlays.

Select the overlay for GPIO20. i.e., k3-am67a-beagley-ai-pwm-epwm1-gpio20.dtbo

• beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf

Go to the end of the file and type:

fdtoverlays /overlays/k3-am67a-beagley-ai-pwm-epwm1-gpio20.dtbo

• Press Ctrl+X, then Y to save and exit. Figure 12.45 shows the end of the file.

Figure 12.45 Include the overlay file.

• Reboot your BeagleY-AI

beagle@beagle:~ $ sudo reboot

• Run the following command to make sure that the pwm overlay has been

loaded (see Figure 12.46)

beagle@beagle:~ $ sudo beagle-version | grep UBOOT

The Beagle-Y AI Book

● 260

Figure 12.46 Check the overlay.

• Export pin GPIO38 (hat-38) as pwm

beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

Program listing: Figure 12.47 shows the program listing (Program: PWM1.py). The

period and the duty cycle must be specified in nanoseconds, where the duty cycle is the On

time in nanoseconds. For a 1000 Hz signal, the period is 1 ms, or 1,000,000 ns. For a 50%

duty cycle, the On time must be 500,000 ns. Figure 12.48 shows the generated waveform

on the oscilloscope. Here, the horizontal axis was 500 μs/division, and the vertical axis was

2 V/division. Clearly, the period of the generated waveform is 1 ms (frequency = 1000 Hz),

the duty cycle is 50%, and the amplitude is about 3.3 V.

#---

#

PWM EXAMPLE

===========

#

This is a PWM example where a 1000Hz square wave signal is

generated with a 50% duty cycle on pin GPIO20 of the BeagleY-AI

#

Program: PWM1.py

Date : October, 2024

Author : Dogan Ibrahim

#--

def write_file(path, value):

 f = open(path, 'w')

 f.write(str(value))

 f.close()

write_file("/dev/hat/pwm/GPIO20/period",1000000)

write_file("/dev/hat/pwm/GPIO20/duty_cycle", 500000)

write_file("/dev/hat/pwm/GPIO20/enable", 1)

while True:

 pass

Figure 12.47 Program: PWM1.py.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 261

Figure 12.48 Generated PWM waveform.

12.8.3 Project 13 – Changing the brightness of an LED

Description: In this project, an LED is connected to port GPIO20 through a 470 Ohm

current-limiting resistor. The program changes the brightness of the LED by adjusting the

duty cycle of the PWM voltage sent to the LED. The aim of this project is to show how the

PWM can be used in a project.

Program listing: Figure 12.49 shows the program listing (Program: LEDfade.py). The

frequency is set to 1000 Hz to ensure the LED light remains steady (i.e., not flashing).

As the duty cycle is increased from 0% to 100% in steps, the LED brightness gradually

increases.

#---

#

PWM FADE LED

============

#

This is a PWM example where an LED is connected to GPIO20

and this port is configured as PWM port. The frequency of PWM

is set to 1000 Hz but the duty cycle is changed from 0% to 100%

#

Program: LEDfade.py

Date : October, 2024

Author : Dogan Ibrahim

#--

The Beagle-Y AI Book

● 262

import time

def write_file(path, value):

 f = open(path, 'w')

 f.write(str(value))

 f.close()

write_file("/dev/hat/pwm/GPIO20/period",1000000)

write_file("/dev/hat/pwm/GPIO20/duty_cycle", 500000)

write_file("/dev/hat/pwm/GPIO20/enable", 1)

i = 0

while True:

 write_file("/dev/hat/pwm/GPIO20/duty_cycle", i)

 time.sleep(0.4)

 i = i + 80000

 if i > 1000000:

 i = 0

Figure 12.49 Program listing.

Export pin GPIO38 (hat-38) as pwm

beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

12.8.4 Project 14 – Mosquito repeller

Description: The concept of mosquito repeller is very simple. A sound with a frequency

higher than 20 kHz is termed ultrasonic. Humans can only hear sounds in the frequency

range of 20 Hz to 20 kHz. It is well known that various animals and insects can hear

ultrasonic sounds. Male mosquitos emit sounds in the range of 20 kHz to 40 kHz. After

breeding, female mosquitos tend to avoid male mosquitos, and therefore, they tend to avoid

ultrasonic sounds. Most mosquito repellers generate 40 kHz ultrasonic sounds through an

ultrasonic transducer. In this project, a 40 kHz ultrasonic sound is generated using the

BeagleY-AI.

Circuit diagram: Figure 12.50 shows the circuit diagram. Basically, an ultrasonic

transducer is used through a transistor switch connected to pin GPIO20 of the BeagleY-AI.

Chapter 12 • I2C, SPI Bus, and PWM Projects

● 263

Figure 12.50 Circuit diagram of the project.

Program listing: Figure 12.51 shows the program listing (Program: Ultra.py). The

program is very similar to the previous one. A 40 kHz sound wave has a period of 2500 ns.

Choosing a 50% duty cycle, the waveform On time, or the duty cycle setting should be

12500 ns as shown in Figure 12.51. Figure 12.52 shows the output waveform on an

oscilloscope.

#---

#

MOSQUITO REPELLER

=================

#

This is a mosquito repeller program where a 40kHz sound

is generated and sent to an ultrasonic transducer

#

Program: Ultra.py

Date : October, 2024

Author : Dogan Ibrahim

#--

def write_file(path, value):

 f = open(path, 'w')

 f.write(str(value))

 f.close()

write_file("/dev/hat/pwm/GPIO20/period",25000)

write_file("/dev/hat/pwm/GPIO20/duty_cycle", 12500)

write_file("/dev/hat/pwm/GPIO20/enable", 1)

while True:

 pass

Figure 12.51 Program listing.

The Beagle-Y AI Book

● 264

Figure 12.52 Output waveform.

Export pin GPIO38 (hat-38) as pwm

beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

Chapter 13 • Communication Over the Wi-Fi

● 265

Chapter 13 • Communication Over the Wi-Fi

13.1 Overview

Three major features of BeagleY-AI are its Wi-Fi, Bluetooth communication, and AI

capabilities. BeagleY-AI is equipped with a dual-band 2.4GHz IEEE802.11ax wireless

LAN module and Bluetooth Low Energy (BLE) 5.4. Without these built-in features, you

would typically need to use external network-based hardware communication modules to

communicate over the Internet. Network communication is handled using either UDP or

TCP protocols. In this chapter, you will learn how to write Python programs using both the

UDP and TCP protocols using the on-board Wi-Fi module.

13.2 UDP and TCP

Communication over a Wi-Fi link is in the form of a client and server, and sockets are used

to send and receive data packets. The server side usually waits for a connection from the

clients, and once a connection is made two-way communication can start. Two protocols

are mainly used for sending and receiving data packets over a Wi-Fi link: UDP and TCP.

TCP is a connection-based protocol, which guarantees the delivery of packets. Packets

are given sequence numbers, and the receipt of all the packets is acknowledged to avoid

them arriving in the wrong order. As a result of this confirmation, TCP is usually slow,

but it is reliable, as it guarantees the delivery of packets. UDP, on the other hand, is not

connection-based. Packets do not have sequence numbers, and as a result of this, there

is no guarantee that the packets will arrive at their destinations, or they may arrive in the

wrong sequence. UDP has less overhead than TCP and as a result, it is faster. Table 13.1

lists some of the differences between the TCP and UDP protocols.

TCP UDP

Packets have sequence numbers and delivery

Clarity

Engagement

Delivery

Correct article usage

client

 of every packet is acknowledged

There is no delivery acknowledgment

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires less resources

Connection based Not connection based

Not suitable for multicast Has multicast capability

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 13.1 TCP and UDP packet communications.

The Beagle-Y AI Book

● 266

13.2.1 UDP communication

Figure 13.1 shows the UDP communication over a Wi-Fi link:

Server

1. Create a UDP socket

2. Bind the socket to the server address

3. Wait until the datagram packet arrives from the client

4. Process the datagram packet

5. Send a reply to the client, or close the socket

6. Go back to Step 3 (if not closed)

Client

1. Create a UDP socket (and optionally Bind)

2. Send a message to the server

3. Wait until the response from the server is received

4. Process the reply

5. Go back to step 2, or close the socket

Figure 13.1 UDP communication.

13.2.2 TCP communication

Figure 13.2 shows the TCP communication over a Wi-Fi link:

Chapter 13 • Communication Over the Wi-Fi

● 267

Server

1. Create a TCP socket

2. Bind the socket to the server address

3. Listen for connections

4. Accept the connection

5. Wait until the datagram packet arrives from the client

6. Process the datagram packet

7. Send a reply to the client, or close the socket

8. Go back to Step 3 (if not closed)

Client

1. Create a TCP socket

2. Connect to the server

3. Send a message to the server

4. Wait until the response from the server is received

5. Process the reply

6. Go back to step 2, or close the socket

Figure 13.2 TCP communication.

13.3 Project 1 – Sending a Text Message to a Smartphone Using TCP

Description: In this project, a TCP/IP-based communication is established with an Android

smartphone. The program reads text messages from the keyboard and sends them to

the smartphone. The aim of this project is to show how TCP/IP communication can be

established with an Android smartphone.

The Beagle-Y AI Book

● 268

Background Information: Port numbers range from 0 to 65535. Numbers from 0 to

1023 are reserved and are called well-known ports. For example, port 23 is the Telnet port,

port 25 is the SMTP port, etc. In this section, you will be using port number 1500 in your

program. BeagleY-AI is the Server node in this example, and smartphone is the Client node.

Block diagram: Figure 13.3 shows the project block diagram where the BeagleY-AI and

smartphone communicate over a Wi-Fi router.

Figure 13.3 Block diagram of the project.

Program listing: In this project, BeagleY-AI is the server. Figure 13.4 shows the program

listing (tcpserver.py). At the beginning of the program, a TCP/IP socket is created (sock.

SOCK_STREAM) and is then bound to port 1500. The program listens for a connection.

Notice that it is possible for the server to listen to multiple clients, but it can only communicate

with one at any time. When the client makes a connection, this is accepted by the server.

The server then reads a message from the keyboard and sends it to the client over the

Wi-Fi link. Notice that the setsockopt() statement ensures that the program can be used

again without having to wait for the socket timeout of 30 seconds.

#===

SEND TEXT MESSAGES USING TCP/IP

===============================

#

This is the TCP/IP server program. It receives text messages

from the keyboard and sends to an Android smart phone over

a Wi-Fi link

#

Author: Dogan Ibrahim

File : tcpserver.py

Date : October, 2024

Chapter 13 • Communication Over the Wi-Fi

● 269

#==

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.bind(("192.168.1.127", 1500))

sock.listen(1)

client, addr = sock.accept() # accept connection

print("Connected to client: ", addr) # connected message

yn = 'y'

while yn == 'y':

 msg = input("Enter your message: ") # read a message

 msg = msg + "\n"

 client.send(msg.encode('utf-8')) # send the message

 yn = input("Send more messages?: ")

 yn = yn.lower()

print("\nClosing connection to client")

sock.close()

Figure 13.4 Program listing.

Testing

You should stop the firewall running on your BeagleY-AI if it is running. Enter the following

command to check the status of the firewall:

 beagle@beagle:~ $ sudo ufw status

If the firewall is running, you should disable it using the following command:

 beagle@beagle:~ $ sudo ufw disable

There are many TCP apps available free of charge on the Internet for smartphones. In this

project, the TCP Client by JOY S.R.L. app is used on an Android smartphone. This app is

available free of charge in the Play Store (see Figure 13.5).

The Beagle-Y AI Book

● 270

Figure 13.5 Apps used in the project.

The program is run as follows:

• Run the server program first:

beagle@beagle:~ $ python tcpserver.py

• Run the Android app and configure it as shown in Figure 13.6 (click the 3-line

settings icon at the top right-hand of the screen), where 192.168.1.127 is the

IP address of the BeagleY-AI.

Figure 13.6 Configure the TCP Client app.

• Click CONNECT in the settings menu to connect to BeagleY-AI over TCP/IP.

• You should see a connection message on your BeagleY-AI screen and also the

IP address of the remote Android smartphone. Now enter a message and press

the Enter key. In this example, the message HELLO FROM BEAGLEY-AI is

sent to the client (Figure 13.7). Figure 13.8 shows the message displayed on

the smartphone.

Chapter 13 • Communication Over the Wi-Fi

● 271

Figure 13.7 Enter the message on the keyboard.

Figure 13.8 Message displayed on the smartphone.

13.4 Project 2 – Two-way Communication with the Smartphone Using

TCP

Description: This project is similar to the previous one, but here two-way communication

is established between the BeagleY-AI and the smartphone.

The block diagram of the project is the same as in Figure 13.3

Program listing: Figure 13.9 shows the program listing (tcp2way.py). Here, port 1500

is used, as in the previous project. The program has been changed to send and receive

messages from the smartphone. Socket function recv(byte count) sends messages over

the TCP/IP link to the connected node.

#===

SEND/RECEIVE TEXT MESSAGES USING TCP/IP

=======================================

#

This is the TCP/IP server program. It receives text messages

from the keyboard and sends to an Android smart phone over

a Wi-Fi link

#

Author: Dogan Ibrahim

File : tcp2way.py

Date : October, 2024

#==

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The Beagle-Y AI Book

● 272

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.bind(("192.168.1.127", 1500))

sock.listen(1)

client, addr = sock.accept() # accept connection

print("Connected to client: ", addr) # connected message

yn = 'y'

try:

 while yn == 'y':

 msg = input("Enter your message: ") # read a message

 msg = msg +"\n"

 client.send(msg.encode('utf-8')) # send the message

 msg = client.recv(1024)

 print("Received message: ")

 print(msg.decode('utf-8'))

 yn = input("Send more messages?: ")

 yn = yn.lower()

except KeyboardInterrupt:

 print("\nClosing connection to client")

 sock.close()

Figure 13.9 Program listing.

Testing

You will be using the Android app as in Figure 13.5. Start the BeagleY-AI server program

and then exchange messages between the smartphone and BeagleY-AI. Example

communication is shown in Figure 13.10. In this example, BeagleY-AI sends the message

Message from BEAGLEY-AI. In return, the Android smartphone sends the message

message from ANDROID.

Chapter 13 • Communication Over the Wi-Fi

● 273

Figure 13.10 Example communication between BeagleY-AI and Android app.

13.5 Project 3 – Communicating with a PC Using TCP

Description: In this project, a TCP/IP-based communication is established between the

BeagleY-AI and a PC running Python. Messages are exchanged between the BeagleY-AI and

the PC. The aim of this project is to show how TCP/IP communication can be established

with a PC.

Background Information: In this project, BeagleY-AI is the server and PC is the client.

The programs on both sides are developed using the Python programming language.

Python 3.11 is used on the PC. If you do not have Python on your PC, you can install it from

the following website:

 https://www.python.org/downloads/

Block diagram: Figure 13.11 shows the block diagram.

The Beagle-Y AI Book

● 274

Figure 13.11 Block diagram.

BeagleY-AI program Listing: The BeagleY-AI program listing is shown in Figure 13.12

(tcppc.py). The program is very similar to the one given in Figure 13.9, i.e., program:

tcp2way.py. You should terminate the program by entering Ctrl+C.

#===

SEND/RECEIVE TEXT MESSAGES USING TCP/IP

=======================================

#

This is the TCP/IP server program. It communicates with a PC

running TCP/IP on the same port

#

Author: Dogan Ibrahim

File : tcppc.py

Date : October, 2024

#==

import socket

import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.bind(("192.168.1.127", 1500))

sock.listen(1)

client, addr = sock.accept() # accept connection

print("Connected to client: ", addr) # connected message

try:

 while True:

 msg = input("Enter your message: ") # read a message

 msg = msg +"\n"

Chapter 13 • Communication Over the Wi-Fi

● 275

 client.send(msg.encode('utf-8')) # send the message

 msg = client.recv(1024)

 print("Received message: ", msg.decode('utf-8'))

except KeyboardInterrupt:

 print("\nClosing connection to client")

 sock.close()

 time.sleep(1)

Figure 13.12 BeagleY-AI program listing.

PC Program Listing: The PC program listing is shown in Figure 13.13 (client.py). The

program creates a socket and connects to the server. Then, messages are exchanged

between the client and the server.

#===

TCP/IP CLIENT

=============

#

This is the client program on the PC.The program exchanges

messages with the server on the BeagleY-AI

#

Author: Dogan Ibrahim

File : client.py

Date : October, 2023

#===

import socket

import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.connect(("192.168.1.127", 1500))

try:

 while True:

 msg = sock.recv(1024)

 print("Received message: ", msg.decode('utf-8'))

 data = input("Enter message to send: ")

 sock.send(data.encode('utf-8'))

except KeyboardInterrupt:

 print("Closing connection to server")

 sock.close()

 time.sleep(1)

Figure 13.13 PC program listing.

The Beagle-Y AI Book

● 276

The steps to run the program are as follows:

• Run the server program on BeagleY-AI

• Run the client program on the PC

• Write messages as desired

Note: You may find that after exiting the program you may not be able to run it again. This

is because the socket stays open for about 30 seconds, and the error message saying that

the Address is already in use may be displayed. You can check the state of the port with

the following command:

 pi@raspberrypi:~ $ netstat –n | grep 5000

If the display includes the text ESTABLISHED, then it means that the socket has not been

closed properly, and you will have to restart your BeagleY-AI to run the program again. If,

on the other hand, you see the message with TIME_WAIT, then you should wait about 30

seconds before re-starting the program.

13.6 Project 4 – Controlling an LED Connected to BeagleY-AI from a

Smartphone Using TCP

Description: In this project, an LED is connected to BeagleY-AI. The LED is turned On and

Off by sending commands On and Off respectively from an Android smartphone. The aim

of this project is to show how an LED connected to BeagleY-AI can be controlled from an

Android smartphone remotely by sending commands using the TCP/IP protocol over a Wi-Fi

link. In this project, BeagleY-AI is the server, and the smartphone is the client.

Block diagram: Figure 13.14 shows the block diagram of the project.

Figure 13.14 Block diagram of the project.

Chapter 13 • Communication Over the Wi-Fi

● 277

The LED is connected to port pin GPIO21 (pin 40) through a 470-ohm current limiting

resistor.

Program Listing: Figure 13.15 shows the program listing (program: serverled.py). As

in the previous program, a socket is created and port 1500 is used. The LED is assigned

to port GPIO pin 21, and it is turned Off at the beginning of the program. The server waits

for a connection from the client and then accepts the connection and displays the message

Connected. It then waits to receive a command from the client. If the command is On,

then the LED is turned On. If, on the other hand, the command is Off then the LED is turned

Off. Sending the command X terminates the server connection and exits the program.

#==

CONTROL LED FROM SMART PHONE

============================

#

In this program TCP/IP is used where BeagleY-AI is the server

and the smartphone is the client. An LED connected to BeagleY-AI

GPIO21 and is controlled from the smartphone

#

Author: Dogan Ibrahim

File : serverled.py

Date : November, 2024

#===

import socket

import gpiod

from time import sleep

led = gpiod.find_line('GPIO21')

led.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

led.set_value(0)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

sock.bind(("192.168.1.127", 1500)) # BeagleY-AI IP

sock.listen(1)

client, addr = sock.accept()

print("Connected")

data = [' '] * 10

while data != b'X\n': # Terminate?

 data = client.recv(1024)

 if data == b'ON\n': # ON

 led.set_value(1)

 elif data == b'OFF\n': # OFF

The Beagle-Y AI Book

● 278

 led.set_value(0)

sock.close()

sleep(1)

Figure 13.15 Program listing.

The program can be tested using the Android app TCP client (Figure 13.5) used in Project

1. The server program is started, then the client is started. Figure 13.16 shows sending the

On command to turn On the LED.

Figure 13.16 Command sent to turn On/Off the LED.

Suggestions: The LED in this project can be replaced, for example, with a relay, and

electrical equipment can be controlled remotely over Wi-Fi.

13.7 Project 5 – Sending a Text Message to a Smartphone Using UDP

Description: In this project, a UDP-based communication is established with an Android

smartphone. The program reads text messages from the keyboard and sends them to the

smartphone. The aim of this project is to show how UDP communication can be established

with an Android smartphone.

The block diagram is the same as in Figure 13.3.

Program Listing: In this project, BeagleY-AI is the server and the smartphone is the

client. Figure 13.17 shows the program listing (udpserver.py). At the beginning of the

program, a UDP socket is created (sock.SOCK_DGRAM) and is then bound to port 1500.

The server program then reads text messages sent from the smartphone and displays them

on the screen. Messages sent by the BeagleY-AI are displayed on the smartphone.

#==

SEND TEXT MESSAGES USING UDP

============================

#

This is the UDP server program running on BeagleY-AI.

The program exchanges text messages with an Android

smartphone

Chapter 13 • Communication Over the Wi-Fi

● 279

Author: Dogan Ibrahim

File : udpserver.py

Date : October, 2024

#==

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind(("192.168.1.127", 1500))

try:

 while True:

 print()

 print("Waiting for messages")

 data, addr = sock.recvfrom(1024)

 print(addr)

 print("Received msg:", data.decode('utf-8'))

 msg = input("Message to send: ")

 sock.sendto(msg.encode('utf-8'), addr)

 print("Message sent")

except KeyboardInterrupt:

 print("\nClosing connection to client")

 sock.close()

Figure 13.17 Program listing.

There are many UDP apps available free of charge for both Android and iOS smartphones.

In this project, TCP UDP Server & Client from Stervs for Android smartphones is used

(Figure 13.18).

Figure 13.18 UDP app.

The Beagle-Y AI Book

● 280

The steps to test the program are as follows:

• Start the server program on BeagleY-AI:

beagle@beagle:~ $ python udpserver.py

• Start the smartphone app and click Create client at the bottom of the screen.

Set the Server-IP and Port number, and click the arrow to run it (Figure

13.19).

Figure 13.19 Configure the UDP app.

• Click the three lines to open a screen, write a message on the mobile phone

app, and then click SEND. The message Hello from Android was sent as an

example (Figure 13.20).

Chapter 13 • Communication Over the Wi-Fi

● 281

• Write a message on BeagleY-AI, and this message will be displayed on the

smartphone. Hello from BeagleY-AI was sent for an example (Figure 13.20).

• Enter Ctrl+C on BeagleY-AI to close the socket

Figure 13.20 Sending and receiving messages.

13.8 Project 6 – Controlling an LED Connected to BeagleY-AI from a

Smartphone Using UDP

Description: In this project, an LED is connected to BeagleY-AI port pin GPIO21 (pin 40)

through a 470-ohm current limiting resistor. The LED is turned On and Off by sending

commands On and Off respectively from an Android smartphone. The aim of this project

is to show how an LED on BeagleY-AI can be controlled from a smartphone by sending

commands using the UDP protocol over a Wi-Fi link. Here, BeagleY-AI is the server and the

smartphone is the client.

The LED can easily be replaced with a relay, for example, to control electrical appliances

from a smartphone.

Program Listing: Figure 13.21 shows the program listing (udpled.py). As in the previous

program, a socket is created and the server waits to receive commands from a client to

control the LED. If the command is On, then the LED is turned On. If, on the other hand,

the command is Off, the LED is turned Off. Command X terminates the server program.

The Beagle-Y AI Book

● 282

#==

CONTROL LED FROM SMARTPHONE

============================

#

In this program UDP is used where BeagleY-AI is the server

and the smartphone is the client. An LED connected to the server

and is controlled from the smartphone

#

Author: Dogan Ibrahim

File : udpled.py

Date : October, 2024

#===

import socket

import gpiod

from time import sleep

led = gpiod.find_line('GPIO21')

led.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT, default_val=0)

led.set_value(0)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind(("192.168.1.127", 1500)) # Bind to Zero 2 W IP,port

data = [' '] * 10

while data != b'X':

 data, addr = sock.recvfrom(1024)

 if data == b'ON': # ON command

 led.set_value(1) # LED ON

 elif data == b'OFF': # OFF command

 led.set_value(0) # LED OFF

sock.close()

sleep(1)

Figure 13.21 Program listing.

The program can be tested using the UDP Sender/Receiver app used in Figure 13.18.

The steps to test the program are as follows:

• Construct the circuit on BeagleY-AI with the LED.

• Start the server program on BeagleY-AI:

beagle@beagle:~ $ python udpled.py

Chapter 13 • Communication Over the Wi-Fi

● 283

• Start and configure the smartphone app.

• Write the command On and press Send on the smartphone. The LED should

turn On. Similarly, write Off and the LED should turn Off. Sending X should

terminate the BeagleY-AI program.

13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi

Raspberry Pi Pico W (it will be called Pico from now on) is a low-cost $6 microcontroller

module based on the RP2040 microcontroller chip with a dual-core Cortex-M0+ processor

with an on-board Wi-Fi module. Figure 13.22 shows the front view of the Pico hardware

module, which is essentially a small board. In the middle of the board is the tiny 7 x 7mm

RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of the board,

there are 40 gold-colored male GPIO (General-Input-Output) pins with holes. You should

solder pins into these holes so that external connections can be made easily to the board.

The holes are numbered starting with number 1 at the top left corner of the board and the

numbers increase downwards up to number 40, which is at the top right-hand corner of the

board. The board is breadboard compatible (i.e., 0.1-inch pin spacing), and after soldering

the pins, the board can be plugged into a breadboard for easy connection to the GPIO pins

using jumper wires. Next to these holes, you will see bumpy circular cut-outs which can be

plugged on top of other modules without having any physical pins fitted.

Figure 13.22 Front view of the Pico hardware module.

At one edge of the board, there is the micro-USB B port for providing power to the board

and for programming it. Next to the USB port, there is an on-board user LED that can be

used during program development. Next to this LED, there is a button named BOOTSEL

that is used during the programming of the microcontroller, as we will see in the next

chapters. Next to the processor chip, there are three holes where external connections can

be made. These are used to debug your programs using Serial Wire Debug (SWD). At the

other edge of the board is the single-band 2.4 GHz Wi-Fi module (802.11n). Next to the

Wi-Fi module is the on-board antenna.

The Beagle-Y AI Book

● 284

You will notice the following types of letters and numbers at the back of the board:

GND - power supply ground (digital ground)

AGND - power supply ground (analog ground)

3V3 - +3.3 V power supply (output)

GP0 – GP22 - digital GPIO

GP26_A0 – GP28_A2 - analog inputs

ADC_VREF - ADC reference voltage

TP1 – TP6 - test points

SWDIO, GND, SWCLK - debug interface

RUN - default RUN pin. Connect LOW to reset the RP2040

3V3_EN - this pin by default enables the +3.3 V power supply.

 +3.3 V can be disabled by connecting this pin LOW

VSYS - system input voltage (1.8 V to 5.5 V) used by the on-

board SMPS to generate +3.3 V supply for the board

VBUS - micro-USB input voltage (+5 V)

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input) - used in ADC mode (ADC3) to measure VSYS/3

GP24 (input) - VBUS sense - HIGH if VBUS is present, else LOW

GP23 (output) - controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

• 32-bit RP2040 Cortex-M0+ dual-core processor operating at 133 MHz

• 2 MB Q-SPI Flash memory

• 264KB SRAM memory

• 26 GPIO (+3.3 V compatible)

• 3 x 12-bit ADC pins

• Accelerated floating point libraries on-chip

• On-board single-band Infineon CYW43439 wireless chip, 2.4 GHz wireless

interface (802.11b/g/n), and Bluetooth 5.2 (not supported at the time of

writing)

• Serial Wire Debug (SWD) port

• Micro-USB port (USB 1.1) for power (+5 V) and data (programming)

• 2 x UART, 2 x I2C, 2 x SPI bus interface

• 16 x PWM channels

• 1 x Timer (with 4 alarms), 1 x Real-Time Counter

• On-board temperature sensor

• On-board LED at GPIO0, controlled by the 43439 module

• Castellated module allowing soldering directly to carrier boards

• 8×Programmable IO (PIO) state machines for custom peripheral support

• MicroPython, C, C++ programming

• Drag & drop programming using mass storage over USB

Chapter 13 • Communication Over the Wi-Fi

● 285

Pico GPIO hardware is +3.3 V compatible, so it is important not to exceed this voltage when

interfacing external input devices to the GPIO pins. +5 V to +3.3 V logic converter circuits

or resistive potential divider circuits must be used if it is required to interface devices with

+5 V outputs to the Pico GPIO pins.

Pico can be programmed using MicroPython or C/C++ languages. It is assumed that the

readers have Pico development boards with MicroPython installed. It will also be useful if

the readers are familiar with using the Thonny with the Pico. An excellent book entitled:

Raspberry Pi Pico W, written by the author, is available on the Elektor website, and

interested readers should purchase this book for developing Pico-based projects.

Figure 13.23 shows the pin configuration of the Pico.

Figure 13.23 Pico pin configuration.

13.9.1 Project 7 – BeagleY-AI and Raspberry Pi Pico W communication

– controlling a relay over Wi-Fi

Description: In this project, you have a BeagleY-AI and Raspberry Pi Pico W. A pushbutton

is connected to Pico, and a +3.3 V relay is connected to the BeagleY-AI. Pressing the button

on the Pico sends a command to BeagleY-AI over the Wi-Fi to activate the relay. The relay

The Beagle-Y AI Book

● 286

remains active for 5 seconds. In this project, BeagleY-AI and Pico communicate using the

UDP protocol, where BeagleY-AI is the server and Pico is the client.

Block diagram: Figure 13.24 shows the block diagram of the project.

Figure 13.24 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 13.25, with the

button and relay connected to the Pico and BeagleY-AI, respectively.

Figure 13.25 Circuit diagram of the project.

Chapter 13 • Communication Over the Wi-Fi

● 287

Pico program listing: Figure 13.26 shows the Pico program listing (picoudp.py). At

the beginning of the program, the LED is assigned to port GP2 and is turned Off. The

function Connect() is called to connect to the local Wi-Fi. Then, a socket is created with

port number 2000 and IP address 192.168.1.21. When the button is pressed, the program

sends 1 to the BeagleY-AI so that the LED can be turned On. This process is repeated after

a 1-second delay.

#--

RASPBERRY PI PICO W - BEAGLEY-AI COMMS

======================================

#

In this project a pushbutton is connected to GP2 of PICO W.

Pressing the button sends a command to BeagleY-AI to

activate a relay. UDP protocol is used in this project.

#

Author: Dogan Ibrahim

File : picoudp.py

Date : October, 2024

#--

from machine import Pin

import network

import socket

import utime

global wlan

BUTTON = Pin(2, Pin.IN) # Button at GP2

#

This function attempts to connect to Wi-Fi

#

def connect():

 global wlan

 wlan = network.WLAN(network.STA_IF)

 while wlan.isconnected() == False:

 print("Waiting to be connected")

 wlan.active(True)

 wlan.connect("TP-Link_6138_EXT", "24844604")

 utime.sleep(5)

connect()

print("Connected")

UDP_PORT = 1500 # Port used

UDP_IP = "192.168.1.21" # Zero 2W IP

cmd = b"1" # Cmd to turn ON

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

The Beagle-Y AI Book

● 288

while True:

 while BUTTON.value() == 1: # Not pressed

 pass

 while BUTTON.value() == 0: # Not released

 pass

 sock.sendto(cmd, (UDP_IP, UDP_PORT)) # Send cmd

 print("Command sent") # Message

 utime.sleep(1) Wait 1 sec

Figure 13.26 Raspberry Pi Pico W program listing (picoudp.py).

BeagleY-AI program listing: Figure 13.27 shows the BeagleY-AI program listing

(Beagleudp.py). At the beginning of the program, the libraries used are imported, and

the relay is configured at port GPIO2 and is deactivated. Then, a socket is created, and the

program binds to it with the BeagleY-AI IP address. The program then waits to receive a

command from the Pico. The received command is stored in variable data, and if it is 1,

then the relay is activated for 5 seconds. At the end of this time, the relay is deactivated

and the program repeats waiting for a command.

#===

RASPBERRY PI PICO W - BEAGLEY-AI COMMS

======================================

#

This is the UDP server program running on BeagleY-AI.

The program receives a command from PICO W and activates a

relay connected to GPIO2 for 5 seconds.

Author: Dogan Ibrahim

File : Beagleudp.py

Date : October, 2024

#==

import gpiod

import socket

from time import sleep

RELAY = gpiod.find_line('GPIO2')

RELAY.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind(("192.168.1.127", 1500))

try:

 while True:

 data, addr = sock.recvfrom(1024) # GEt command

 if data == b'1': # Command is 1?

 RELAY.set_value(1) # Activate Relay

Chapter 13 • Communication Over the Wi-Fi

● 289

 sleep(5) # 5 seconds delay

 RELAY.set_value(0) # Deactivate Relay

except KeyboardInterrupt: # Keyboard interrupt

 print("\nClosing connection to client")

 sock.close()

Figure 13.27 BeagleY-AI program listing (Beagleudp.py).

Testing the project

The steps to test the project are:

• Run the server on BeagleY-AI:

beagle@beagle: ~$ python Beagleudp.py

• Run the Pico program in Thonny by clicking the green Run button. You should

see the message Connected when Pico connects to the local router.

• Push the button on Pico. The message Command sent will be displayed on the

Pico terminal. A packet will be sent to BeagleY-AI, which will turn ON the LED

for 5 seconds

• Enter Ctrl+C to terminate the program.

13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pres-

sure Data on the Cloud

Description: In this project, the ambient temperature and atmospheric pressure are read

and stored in the Cloud. A BME280-type sensor module (see Chapter 10.7) is used in this

project.

Block diagram: The block diagram of the project is shown in Figure 13.28.

The Beagle-Y AI Book

● 290

Figure 13.28 Block diagram of the project.

Circuit diagram: Figure 13.29 shows the circuit diagram. SCL and SDA pins of BME280

are connected to the SDA (pin 3) and SCL (pin 5) of the BeagleY-AI. The sensor is powered

from +3.3 V.

Figure 13.29 Circuit diagram of the project,

The Cloud

Several cloud services can be used to store data (for example, SparkFun, ThingSpeak,

Cloudino, Bluemix, etc). In this project, ThingSpeak is used. This is a free cloud service

where sensor data can be stored and retrieved using simple HTTP requests. Before using

ThingSpeak, we have to create an account from their website and then log in to this

account.

Chapter 13 • Communication Over the Wi-Fi

● 291

Go to the ThingSpeak website:

 https://thingspeak.com/

Click Get Started For Free and create an account if you don't already have one. Then,

you should create a New Channel by clicking on New Channel. Fill in the form as shown

in Figure 13.30. Give the name BeagleY-AI to the application, provide a description, and

create two fields called Atmospheric Pressure and Temperature. You can optionally fill

in the other items as well if you wish.

Figure 13.30 Create a New Channel (only part of the form shown).

Click Save Channel at the bottom of the form. Your channel is now ready to be used with

your data. You will now see tabs with the following names. You can click on these tabs and

see the contents to make corrections if necessary:

• Private View: This tab displays private information about your channel, where

only you can see it.

• Public View: If your channel is public, use this tab to display selected fields

and channel visualizations.

• Channel Settings: This tab shows all the channel options you set at creation.

You can edit, clear, or delete the channel from this tab.

• API Keys: This tab displays your channel API keys. Use the keys to read from

and write to your channel.

• Data Import/Export: This tab enables you to import and export channel

data.

The Beagle-Y AI Book

● 292

You should click the API Keys tab and save your unique Write API and Read API keys,

and unique Channel ID, in a safe place, as you will need to use them in our program. The

API Keys and the Channel ID in this project were as in Figure 13.31.

Figure 13.31 Author's Channel ID and API Keys.

Also, select the Public View and navigate to Sharing. You may select the option Share

channel view with everyone so that everyone can access your data remotely.

Program listing: In this program, you will be using the BME280 library as described in

Chapter 10.7. The steps to install the library are not repeated here.

After constructing the circuit, you should check to make sure that the BME280 is detected

by the BeagleY-AI. Enter the following command:

beagle@beagle:~ $ sudo i2cdetect -r–y 1

Chapter 13 • Communication Over the Wi-Fi

● 293

You should see the hardware address of the BME280 chip displayed as 76 (see Figure

13.32).

Figure 13.32 BME280 hardware address detected.

Figure 13.33 shows the program listing (Cloud.py). At the beginning of the program, the

libraries used are imported. ThingSpeak Write Key and Host Address are defined. The

main program loop starts with the while statement. Inside this loop, the IP address of the

ThingSpeak website is extracted, and a connection is made to this site at port 80. Then,

the atmospheric pressure and temperature readings are obtained from the BMP280 module

and are included in the path statement. The sock.send statement sends an HTTP GET

request to the ThingSpeak site and uploads the pressure and temperature values. This

process is repeated every 30 seconds.

Figure 13.34 shows the pressure and temperature data plotted by ThingSpeak. The Chart

Options can be clicked to change various parameters of the charts. For example, Figure

13.35 shows the pressure as a column display. In Figure 13.36, the pressure is shown as a

step graph. A title and X-axis label are added in Figure 13.37 to the pressure graph. Figure

13.38 shows the current temperature displayed in a clock format (click Add Widgets for

this type of display).

Because the Channel was saved as public, you can view the graph from a web browser (see

Figure 13.39) by entering the Channel ID. In this project, the link to view the data graphs

from a web browser is (this link is only available while the program is running):

 https://api.thingspeak.com/channels/2696815

We can also export some or all of the fields in CSV format by clicking Export recent data,

so that it can be analyzed by external statistical packages such as Excel.

#---

ATMOSPHERIC PRESSURE AND TEMPERATURE ON THE CLOUD

===

#

The ambient temperature and pressure sensor BMPE280 is connected to BeagleY-AI.

The project reads the temperature and atmospheric pressure and sends

to the Cloud where it can be accessed from anywhere. In addition, change

of the temperature and the pressure can be plotted in the cloud.

The Beagle-Y AI Book

● 294

#

#

The program uses the ThingSpeak cloud service

#

Author: Dogan Ibrahim

File : Cloud.py

Date : October, 2024

#--

import socket

from time import sleep

from bme280pi import Sensor

sensor = Sensor(address = 0x76)

APIKEY = "KQB94MJG765GKA3K" # ThingSpeak API key

host = "api.thingspeak.com" # ThingSpeak host

#

Send data to ThingSpeak. This function sends the temperature and

humidity data to the cloud every 30 seconds.

#

while True:

 sock = socket.socket()

 addr = socket.getaddrinfo("api.thingspeak.com",80)[0][-1]

 sock.connect(addr)

 data = sensor.get_data()

 p = data['pressure'] # Pressure in haP

 t = data['temperature'] # Temperature in C

 path = "api_key="+APIKEY+"&field1="+str(p)+"&field2="+str(t)

 sock.send(bytes("GET /update?%s HTTP/1.0\r\nHost: %s\r\n\r\n"

%(path,host),"utf8"))

 sleep(5)

 sock.close()

 sleep(25)

Figure 13.33 Program listing.

Chapter 13 • Communication Over the Wi-Fi

● 295

Figure 13.34 Plotting the pressure and temperature.

Figure 13.35 Displaying temperature as columns.

Figure 13.36 Displaying pressure as steps.

The Beagle-Y AI Book

● 296

Figure 13.37 Adding title and x-axis label.

Figure 13.38 Displaying the current temperature in a clock format.

Figure 13.39 Displaying the graphs from a website.

Chapter 13 • Communication Over the Wi-Fi

● 297

13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO

Ports from the Internet

Flask is a simple micro-framework written in Python for Python. It is free of charge and can

be used to create a web server on BeagleY-AI and other members of the family to control its

GPIO ports over the internet. The nice advantage of Flask is that it does not require special

tools or libraries, and has no database or any other third-party libraries.

Flask should already be available in Python on your BeagleY-AI, but if not, it can be installed

with the following command:

 beagle@beagle:~ $ sudo apt-get install python3-flask

It will be a good idea to create a new folder on your BeagleY-AI and store all of your flask-

related documents there. Let's create a folder called MyFlask under our default directory

/home/beagle:

 beagle@beagle:~ $ mkdir MyFlask

Make MyFlask your default directory:

 beagle@beagle:~ $ cd MyFlask

We are now ready to create our first web server application using Flask. To test Flask on

your BeagleY-AI single board computer, use the nano text editor and create a file called

flasktest.py with the following lines in it:

 from flask import Flask # import module flask

 app = Flask(__name__) # create a flask object called app

 @app.route('/')

 def index(): # run index when called

 return 'Hello from Flask' # msg to display when run

 if __name__ == '__main__':

 app.run(debug=True, port=8080, host='0.0.0.0') # listen on port 8080

Now, run the above program:

 beagle@beagle:~ $ sudo python flasktest.py

You should see messages similar to the ones shown in Figure 13.40.

The Beagle-Y AI Book

● 298

Figure 13.40 Flask messages.

Now, open a web browser (e.g., Google Chrome) from a computer connected to the same

Wi-Fi router and enter the IP address of your BeagleY-AI followed by :8080 as the port

number. In this example use 192.168.1.127:8080. You should see the Hello from Flask

message appear on a webpage, as shown in Figure 13.41.

Figure 13.41 Message on the webpage.

We can now create an HTML page and pass variables from a Python program. Create a

folder called templates under MyFlask, move to the templates directory, and create a

file called index.html using the nano text editor with the following lines (notice that the

variables inside the double curly brackets will have data passed to them from the Python

program):

 <head>

 <title>{{ title }}</title>

 </head>

 <body>

 <h1>Hello from Flask</h1>

 <h2>The time on the server is: {{ time }}</h2>

 </body>

We will now modify our flasktest.py program under the MyFlask directory as follows:

Chapter 13 • Communication Over the Wi-Fi

● 299

 from flask import Flask, render_template

 import time

 app = Flask(__name__)

 @app.route('/')

 def index():

 now = time.ctime()

 DataToPass = {

 'title' : "TESTING FLASK",

 'time': now

 }

 return render_template('index.html', **DataToPass)

 if __name__ == '__main__':

 app.run(debug=True, port=80, host='0.0.0.0') # listen on port 80

The current date and time are obtained using the function call time.ctime(), and the

result is stored in the variable now. Then, a dictionary called DataToPass is created, and

the values of title and time are stored in this dictionary. These values will be passed to the

items in double curly brackets in the webpage defined by index.html. When the function

returns, the variables inside the dictionary are passed to the web browser through the

dictionary.

Now, run the program flasktest.py with the command sudo python flasktest.py. Go

to a web browser and enter the IP address of your BeagleY-AI followed by the :8080 port

number (e.g., for the author's computer: 192.168.1.127:8080). You should see a display

similar to the one shown in Figure 13.42.

Figure 13.42 Web page displaying the date and time.

Now that we have learned how to pass variables from a Python program to a web page, we

can monitor the status of a GPIO pin or control a GPIO pin from a web page.

The Beagle-Y AI Book

● 300

13.12 Project 9 – Web Server - Controlling an LED Connected to Beag-

leY-AI Using the Flask

Description: In this project, an LED is connected to port GPIO21 of the BeagleY-AI through

a 470-ohm current limiting resistor. The LED is turned On or Off via remote web pages

using Flask. The aim of this project is to show how Flask can be used to control an LED

connected to BeagleY-AI.

HTML Template Program Listing: The HTML template index.html in folder /home/

beagle/MyFlask/templates is simple and it consists of a title and two buttons: On and

Off. The title is in double curly brackets and therefore it expects data to be passed to it

from Python. Two buttons are defined, called LED On and LED Off, with green and red

colors respectively, the LED On button having reference /LED/on and LED Off having

reference /LED/off. Figure 13.43 shows the program listing.

<head>

 <title>{{ title }}</title>

</head>

<body>

 <h3>

 <button type="button">LED ON</button>

 <button type="button">LED OFF</button>

 </h3>

</body>

Figure 13.43 HTML template program listing.

BeagleY-AI Program Listing: Figure 13.44 shows the Python program listing on BeagleY-

AI in the folder /home/beagle/MyFlask (program: flasktest.py). The program has the

basic Flask-type template as shown earlier with some additional code. Port pin GPIO21 is

configured as an output, and the LED is turned OFF at the beginning of the program. The

title to be passed to index.html is named LED CONTROL and the function index is used

to pass this string. Notice that another app.route is created with parameters device and

action. In this example, the device is LED, and its actions are on and off. Function action

checks the device, and if it is LED, then the actuator is set to LED. For every actuator, we

must have an action. If the action is on, the LED is turned On. Otherwise, if the action is

off, the LED is turned Off.

#==

CONTROLLING LED FROM WEB PAGE

=============================

#

This program turns the LED ON or OFF from a web browser

activated from any computer on the same Wi-Fi router as

Chapter 13 • Communication Over the Wi-Fi

● 301

the BeagleY-AI. The LED is controlled by clicking buttons

when the web page is started.

#

Author: Dogan Ibrahim

File : flasktest.py

Date : November, 2024

#===

from flask import Flask,render_template

import gpiod

import time

app=Flask(__name__)

#

Define GPIO21 as output and turn OFF LED at beginning

#

LED = gpiod.find_line('GPIO21')

LED.request(consumer='beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

@app.route('/')

def index():

 DataToPass = {

 'title': "LED CONTROL"

 }

 return render_template('index.html', **DataToPass)

@app.route("/<device>/<action>")

def action(device, action):

 if device == "LED":

 actuator = LED

 if action == "on":

 actuator.set_value(1)

 if action == "off":

 actuator.set_value(0)

 return render_template('index.html')

if __name__ == '__main__':

 app.run(debug=False, port=8080,host='0.0.0.0')

Figure 13.44 Program: flasktest.py.

To run the program, you should follow these steps:

The Beagle-Y AI Book

● 302

• Connect an LED to GPIO21 through a current-limiting resistor

• Run program flasktest.py

beagle@beagle:~/MyFlask $ python flasktest.py

• Activate a web browser from a computer connected to the same Wi-Fi router

and enter the IP address of your BeagleY-AI. As shown in Figure 13.45, you

should see two buttons to control the LED. Clicking the buttons turns the LED

On or Off accordingly.

Figure 13.45 Controlling the LED from a web page.

• Figure 13.46 shows a typical run of the program.

Figure 13.46 Run of the program.

• Terminate your program by entering Ctrl+C.

Chapter 14 • Using Serial Communication

● 303

Chapter 14 • Using Serial Communication

14.1 Overview

Serial communication is a simple means of sending data by wire to long distances quickly

and reliably. Data is transmitted one bit at a time, rather than in parallel, as it reduces the

cost of cabling, and also sending in serial format is less affected by electrical noise. Serial

communication can be done either in software or by using a UART chip. Using a UART chip

has the advantage that the communication can be very high-speed. Error detection is also

easily handled in UART-based systems. The most commonly used serial communication

method is based on the RS232 standard. In this standard, data is sent over a single line

from a transmitting device to a receiving device in bit serial format at a pre-specified speed,

also known as the Baud rate, or the number of bits sent/received each second. Typical Baud

rates are 4800, 9600, 19200, 38400, etc.

RS232 serial communication is a form of asynchronous data transmission where data is

sent character by character using dedicated hardware and without the support of a clock

signal. Each character is preceded by a Start bit, seven or eight data bits, an optional parity

bit, and one or more stop bits. The most commonly used format is eight data bits, no

parity bit, and one stop bit. Therefore, a data frame consists of 10 bits. With a Baud rate

of 9600, you can transmit and receive 960 characters every second. The least significant

data bit is transmitted first, and the most significant bit is transmitted last. In most

asynchronous serial communication systems, a parity bit is used to detect single-bit error

in the transmission. The concept of parity is very simple. A parity bit can be Odd, Even, or

None. In an Odd parity transmission, the number of 1s transmitted is Odd. If the number is

even, a 1 is added as the last bit to make the total Odd. Even parity is the reverse, where

the number of 1s transmitted is Even. If the number is not even, a 1 is added as the last

bit to make it even.

In standard RS232 communication, logic high is defined to be at -12 V, and logic 0 is at

+12 V. Figure 14.1 shows how character A (ASCII binary pattern 0010 0001) is transmitted/

received over a serial line. The line is normally idle at -12 V. The start bit is first sent by the

line going from high to low. Then eight data bits are sent starting from the least significant

bit. Finally, the stop bit is sent by raising the line from low to high.

 START 1 0 0 0 0 0 1 0 STOP

IDLE

Figure 14.1 Sending character A in serial format.

In serial connection, a minimum of three wires are used for communication: transmit (TX),

receive (RX), and ground (GND). Some high-speed serial communication systems use

additional control signals for synchronization, such as CTS (Clear To Send), DTR (Data

Terminal Ready), and so on. Some systems use software synchronization techniques where

a special character (XOFF) is used to tell the sender to stop sending, and another character

The Beagle-Y AI Book

● 304

(XON) is used to tell the sender to restart transmission. RS232 devices are connected to

each other using two types of connectors: a 9-way connector, and a 25-way connector.

Table 14.1 shows the TX, RX, and GND pins for each type of connector.

9-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

5 Ground (GND)

25-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

7 Ground (GND)

Table 14.1 Minimum pins required for RS232 serial communication.

As described above, RS232 voltage levels are at ±12 V. On the other hand, most microcon-

troller input-output ports operate at 0 to +5 V or 0 to +3.3 V voltage levels. It is therefore

necessary to translate the voltage levels before a microcontroller can be connected to a

RS232 compatible device. Thus, the output signal from the microcontroller has to be con-

verted into ±12 V, and the input from an RS232 device must be converted into 0 to +5 V

or 0 to +3.3 V before it can be connected to a microcontroller. This voltage translation is

normally done using special RS232 voltage converter chips. One such popular chip is the

MAX232. This is a popular dual converter chip, which requires a few external capacitors for

its operation.

Nowadays, serial communication is done using standard TTL or CMOS logic levels instead

of ±12 V, where logic 1 is normally greater than +3 V, and logic 0 is about 0 V. A serial line

is idle when the voltage is higher than +3.3 V. The start bit is identified on the high-to-low

transition of the line, i.e, the transition from higher voltage to 0 V. Two serial devices sup-

porting the same logic levels can easily be connected to each other. Basically, the TX and the

RX pins should be crossed and the ground pins should be connected directly to each other.

14.2 USB – TTL Serial Conversion Modules

USB–TTL serial modules are used to connect a PC to another device (for example, BeagleY-

AI, Arduino Uno, Raspberry Pi, etc.) through the USB port. Figure 14.2 shows the USB-

TTL converted module used by the author. At one end of this module, there is the USB

connector, and at the other end, there is a header for making connections to the device

which is to communicate with the PC over the serial port. A jumper on the module selects

the serial port voltage levels as +5 V or +3.3 V. In our applications, you should set the

jumper so that +3.3 V is selected. The header on the other side of the module has the

following pin names:

Chapter 14 • Using Serial Communication

● 305

+5 V (output)

+3.3 V (output)

TXD (serial output from the module)

RXD (serial input to the module)

GND (ground pin)

Figure 14.2 USB-TTL serial converted module.

In a typical application, you should make the connections between the PC and the external

device as shown in Figure 14.3.

Figure 14.3 USB-TTL converter module connections.

When the USB-TTL converter module is connected to a PC, a serial port with the name

COMx is created automatically, where x is the port number. The port number can be found

on the PC Device Manager screen under Ports (COM & LPT). In the author's application

in Figure 14.4, the serial port number was COM4. The port number is important when we

want to communicate with the PC over the serial port.

The Beagle-Y AI Book

● 306

Figure 14.4 Serial port number.

14.3 BeagleY-AI and PC Communication Over Serial Port – Testing the

Hardware and Software Configurations

In this example, we will be using serial port pins 8 and 10 of the BeagleY-AI board. Pin 8 is

the TXD pin, while pin 10 is the RXD pin of serial port /dev/ttyAMA0 of the BeagleY-AI.

Before using the serial port on the BeagleY-AI, we must load the ttyAMA0 overlay in the

file: /boot/firmware/extlinux/extlinux.conf. Run the following command to see a list

of the overlays:

 beagle@beagle:~ $ ls /boot/firmware/overlays/

Select the overlay for ttyAMA0. i.e., k3-am67a-beagley-ai-uart-ttyama0.dtbo. The

steps are:

• beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf

Go to the end of the file and type:

fdtoverlays /overlays/k3-am67a-beagley-ai-uart-ttyAMA0.dtbo

• Enter Ctrl+X followed by Y to save and exit. Figure 14.5 shows the end of the

file.

Figure 14.5 Adding the serial port overlay file.

Chapter 14 • Using Serial Communication

● 307

• Reboot your BeagleY-AI

beagle@beagle:~ $ sudo reboot

• Enter the following command to make sure that the serial port overlay has been

loaded (see Figure 14.6)

beagle@beagle:~ $ sudo beagle-version | grep UBOOT

Figure 14.6 Check the serial port overlay.

• Connect the circuit as shown in Figure 14.7 and plug in the USB-TTL converter

module into the USB port of your PC. Make sure that a COM port is created on

your PC as described earlier.

Figure 14.7 Circuit diagram.

• Start the Terminal Emulator on the GUI Desktop of your BeagleY-AI (or start

remote SSH access to your BeagleY-AI from the PC)

• Start a terminal emulator program on your PC (e.g., Putty, Tera Term, etc.). In

this example, the Putty program is used.

• Configure the Putty screen as shown in Figure 14.8, by selecting Serial, Speed

9600, and Serial line to COM4 (this may differ on your PC). It is recommended

to configure the Putty screen settings so that, for example, you have a white

background with black letters on it.

The Beagle-Y AI Book

● 308

Figure 14.8 Putty configuration.

• Enter the following message on your BeagleY-AI Terminal Emulator screen:

beagle@beagle:~ $ echo "Hello from BeagleY-AI" > /dev/ttyAMA0

You should see the message displayed on your Putty screen (Figure 14.9). This proves that

the serial hardware and software configurations between the BeagleY-AI and the PC are

correct.

Figure 14.9 Putty screen displaying the message.

14.4 Project 1 – BeagleY-AI – PC Two-Way Communication Over Serial

Port – Using Python

Description: In this project, a Python program has been created to establish two-way

communication between the BeagleY-AI and the PC. The characters typed on the PC Putty

screen are displayed on the BeagleY-AI Terminal Emulator screen where the program is run.

Chapter 14 • Using Serial Communication

● 309

Block Diagram: Figure 14.10 shows the project block diagram.

Figure 14.10 Block diagram.

The circuit diagram is the same as in Figure 14.7.

Program listing: For this project, you should use the version of Putty where CR+LF can be

added to the end of the data to be sent. This version is available at the following site. Open

the zip file and run Putty. There is no need to install it. Select Terminal -> Keyboard and

set The Enter key to CR+LF as shown in Figure 14.11.:

 https://www.grzegorz.net/pliki/putty-crlf.zip

Figure 14.11 Set the Enter key to CR LF.

The Beagle-Y AI Book

● 310

Figure 14.12 shows the program listing (Program: serial1.py). At the beginning of the

program, libraries serial and time are imported. The serial port /dev/ttyAMA0 is opened

with a 9600 baud rate. The function write() sends data to the serial port, while the function

readline() reads a line terminated with carriage-return (CR) and line-feed (LF).

In this program, the serial port speed is set to 9600, which is the default speed of serial

port /dev/ttyAMA0. The speed, number of data bits, etc., can be changed with the following

statements (here, the speed is set to 115200):

ser = serial.Serial(

 port='/dev/ttyAMA0',

 baudrate = 115200,

 parity=serial.PARITY_NONE,

 stopbits=serial.STOPBITS_ONE,

 bytesize=serial.EIGHTBITS,

 timeout=1

)

#===

SERIAL COMMUNICATION WITH PC

============================

#

This program establishes two-way serial communication with a PC

#

Author: Dogan Ibrahim

File : serial1.py

Date @ November 2024

#===

import serial

from time import sleep

md = "Y"

ser = serial.Serial ("/dev/ttyAMA0", 9600) # open serial port

while md == "Y":

 ser.write("Send data to BeagleY-AI: ".encode())

 received_data = ser.readline() # read data

 print (received_data.decode()) # print received data

 md = input("More data ? ") # more?

 md = md.upper()

ser.write("End of communication...".encode()) # end

Figure 14.12 Program listing.

Chapter 14 • Using Serial Communication

● 311

Figure 14.13 shows an example of communication between the BeagleY-AI and the PC.

Figure 14.13 Example communication.

14.5 Reading Geographical Coordinates – Using a GPS

There are cases, especially when working mobile, where we may want to know the

geographical coordinates (e.g., latitude and longitude) of our location. GPS receivers

receive geographical data from the GPS satellites and provide accurate information about

the position of the user on Earth. These satellites circle the Earth at an altitude of about

20,000 km and complete two full orbits every day. For a receiver to determine its position,

the receiver must communicate with at least 3 satellites. Therefore, if the receiver does not

have a clear view of the sky, it may not be possible to determine its position on Earth. In

some applications, external antennas are used so that even weak signals can be received

from the GPS satellites.

The data sent out from a GPS receiver is in text format and is known as the NMEA sentences.

Each NMEA sentence starts with a $ character, and the values in a sentence are separated

by commas. Some of the NMEA sentences returned by a GPS receiver are given below:

 $GPGLL: This sentence returns the local geographical latitude and longitude.

 $GPRMC: This sentence returns the local geographical latitude and longitude,

speed, track angle, date, time, and magnetic variation.

 $GPVTG: This sentence returns the true track, magnetic track, and ground speed.

 $GGGA: This sentence returns the local geographical latitude and longitude,

time, fix quality, number of satellites being tracked, horizontal dilution of

position, altitude, height of geoid, and DGPS data

The Beagle-Y AI Book

● 312

 $GPGSV: There are 4 sentences with this heading. These sentences return the

number of satellites in view, satellite number, elevation, azimuth, and

SNR.

14.5.1 Project 2 – Displaying geographical coordinates on the monitor

Description: In this project, the GPS Click board (www.mikroe.com) is used. This is a

small GPS receiver (see Figure 14.14) which is based on the LEA-6S type GPS. This board

operates with +3.3 V and provides two types of outputs: I2C or serial output. In this

project, the default serial output is used which operates at 9600 baud rate. An external

dynamic antenna can be attached to the board in order to improve its reception for indoor

use or for use in places where there may not be a clear view of the sky.

Figure 14.14 GPS Click board.

Figure 14.15 shows the complete list of the NMEA sentences output from the GPS Click

board every second.

Figure 14.15 NMEA sentences output from the GPS Click board

GPS Click board is a 2x8 pin dual-in-line module and it has the following pin configuration

(pin 1 is the top-left pin of the module):

1: No connection 16: No connection

2: Reset 15: No connection

3: No connection 14: TX

4: No connection 13: RX

5: No connection 12: SCL

6: No connection 11: SDA

7: +3.3V 10: No connection

8: GND 9: GND

Chapter 14 • Using Serial Communication

● 313

In serial operation, only the following pins are required: +3.3 V, GND, TX. In this project,

an external dynamic antenna is attached to the GPS Click board as it was used indoors.

$GPGLL is one of the commonly used NMEA sentences, and this is the sentence used in this

project to extract the station's geographical coordinates. This sentence is output as follows:

 $GPGLL,5127.37032,N,00003.12782,E,221918.00,A,A*61

The fields in this sentence can be decoded as follows:

GLL Geographic position, latitude, and longitude

5127.37032 Latitude 51 deg, 27.3702 min. North

00003.12782 Longitude 0 deg, 3.12782 min. East

221918 Fix taken at 22L19L18 UTC

A Data active (or V for void)

*61 checksum data

Notice that the fields are separated by commas. The validity of the data is shown by letters

A or V in the data, where A shows that the data is valid, and V indicates that the data is

not valid.

Block Diagram: Figure 14.16 shows the block diagram of the project.

Figure 14.16 Block diagram of the project.

The Beagle-Y AI Book

● 314

Circuit Diagram: The circuit diagram of the project is shown in Figure 14.17. The UART

TX pin of the GPS click board (pin 14) is connected to the serial RXD input (pin 10) of the

BeagleY-AI. The GPS click board is powered by the +3.3 V supply of the BeagleY-AI.

Figure 14.17 Circuit diagram of the project

You can display all the GPS NMEA sentences sent by the GPS click board by installing the

PuTTY terminal emulation software on your BeagleY-AI. Enter the following command:

 beagle@beagle:~ $ sudo apt-get install putty -y

The installed software will be available in GUI Desktop under Applications -> Internet

-> PuTTY SSH Client. Start the application and fi ll in the details as shown in Figure 14.18.

Figure 14.18 Putty details.

Click Open to start the terminal emulation software. Figure 14.19 shows an example

display of NMEA sentences received from the GPS Click board.

Chapter 14 • Using Serial Communication

● 315

Figure 14.19 Example output of NMEA sentences.

In this project, the latitude and longitude are extracted from the NMEA sentence $GPGLL

without using a library.

Program Listing: Figure 14.20 shows the program listing (program: gps.py). At the

beginning of the program, the following libraries are imported:

 time

 serial

Variable port is assigned to /dev/ttyAM0 which is the serial port name for Raspberry Pi

4. Function Get_GPS() receives a line of NMEA sentence and looks for string $GPGLL.

When this string is detected, the line of the sentence is broken down into parts separated

by commas using the built-in function split(",") and stored in sdata. If the 6th fi eld is

character V, it is assumed that the sentence is not valid (e.g., there is no satellite reception)

and the text NO DATA is displayed. Otherwise, the latitude and its direction are extracted

from fi elds 1 and 2 and stored in variables lat and latdir respectively. The longitude and

its direction are extracted from fi elds 3 and 4 and stored in variables lon and londir,

respectively.

The latitude is received in the format: ddmm.mmmmmD which corresponds to dd degrees

mm.mmmmm minutes, and direction D which is N or S. Similarly, the longitude is received

in the format: dddmm.mmmmmD where D is E or W. The main program separates the

degrees and minutes and displays them on the screen. The latitude is displayed in the

format: dd mm.mmmmm D, and the longitude is displayed as: ddd mm.mmmmm D.

The Beagle-Y AI Book

● 316

#---

GEOGRAPHICAL COORDINATES

#

In this project a GPS receiver module (GPS CLICK) is connected

to the serial input of the BeagleY-AI.The program displays the

latitude and longitude of the receiver location

#

Author: Dogan Ibrahim

File : gps.py

Date : October 2024

#---

import time # Import time library

import serial # Import srial

port = "/dev/ttyAMA0" # Serial port

lat=latdir=lon=londir = "0"

#

This function receives and extracts the latitude and longitude

from the NME sentence $PGLL

#

def Get_GPS(data):

 global lat,latdir,lon,londir

 dat = data.decode('utf-8')

 if dat[0:6] == "$GPGLL":

 sdata = dat.split(",") # SPlit data

 if sdata[6] == "V": # Valid data?

 print("NO DATA") # No data

 return

 lat = sdata[1] # Get latitude

 latdir = sdata[2] # Latitude dir

 lon = sdata[3] # Get longitude

 londir = sdata[4] # Longitude dir

 return

#

Receive the GPS coordinates and display on screen

#

ser = serial.Serial(port,baudrate=9600,timeout=0.5)

try:

 while True:

 data = ser.readline() # Read a line

 Get_GPS(data) # Decode

Chapter 14 • Using Serial Communication

● 317

 deg = lat[0:2]

 min = lat[2:]

 latitude = str(deg) + " " + str(min) + " " + str(latdir)

 deg = lon[0:3]

 min = lon[3:]

 longitude = str(deg) + " " + str(min) + " " + str(londir)

 print("Latitude : ", latitude)

 print("Longitude: ", longitude)

 print("")

 time.sleep(1) # Wait 1 second

except KeyboardInterrupt: # Cntrl+C detected

 ser.close() # Close serial

 print("End of program") # End of program

Figure 14.20 Program: gps.py.

An example display on the screen is shown in Figure 14.21

Figure 14.21 Example display of the geographical coordinates.

14.5.2 Project 3 – Displaying geographical coordinates on LCD

Description: This project is similar to the previous one, except that here the geographical

coordinates are displayed on an I2C LCD.

The Beagle-Y AI Book

● 318

Block diagram: Figure 14.22 shows the project block diagram.

Figure 14.22 Block diagram.

Circuit diagram: The circuit diagram is similar to Figure 14.17, but here, additionally, the

LCD is added to the circuit together with the voltage converter module.

Figure 14.23 Circuit diagram.

Program listing: Figure 14.24 shows the program listing (Program: gpslcd.py). The

program is very similar to the one given in Figure 14.20, except that here the LCD is

initialized, and the latitude and longitude data are displayed on the LCD.

Chapter 14 • Using Serial Communication

● 319

#---

GEOGRAPHICAL COORDINATES ON LCD

#

In this project a GPS receiver module (GPS CLICK) is connected

to the serial input RXD of BeagleY-AI SBC. Additionally, an

I2C LCD is connected. The program displays the latitude and

longitude of the receiver location on the LCD

#

Author: Dogan Ibrahim

File : gpslcd.py

Date : November 2024

#---

import smbus

from lcd_api import LcdApi

from i2c_lcd import I2cLcd

import time # Import time library

import serial # Import srial

I2C_ADDR = 0x27

I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()

port = "/dev/ttyAMA0" # Serial port

lat=latdir=lon=londir = "0"

#

This function receives and extracts the latitude and longitude

from the NME sentence $PGLL

#

def Get_GPS(data):

 global lat,latdir,lon,londir

 dat = data.decode('utf-8')

 if dat[0:6] == "$GPGLL":

 sdata = dat.split(",") # SPlit data

 if sdata[6] == "V": # Valid data?

 mylcd.clear() # Clear LCD

 mylcd.move_to(0, 0) # At 0,0

 mylcd.putstr("NO DATA") # No data

 return

 lat = sdata[1] # Get latitude

 latdir = sdata[2] # Latitude dir

 lon = sdata[3] # Get longitude

The Beagle-Y AI Book

● 320

 londir = sdata[4] # Longitude dir

 return

#

Receive the GPS coordinates and display on the LCD

#

ser = serial.Serial(port,baudrate=9600,timeout=0.5)

try:

 while True:

 data = ser.readline() # Read a line

 Get_GPS(data) # Decode

 deg = lat[0:2]

 min = lat[2:]

 latitude = str(deg) + " " + str(min) + " " + str(latdir)

 deg = lon[0:3]

 min = lon[3:]

 longitude = str(deg) + " " + str(min) + " " + str(londir)

 mylcd.clear()

 mylcd.move_to(0, 0)

 mylcd.putstr(latitude) # Display latitude

 mylcd.move_to(0, 1)

 mylcd.putstr(longitude) # Display longitude

 time.sleep(1) # WAit 1 secons

except KeyboardInterrupt: # Cntrl+C detected

 ser.close() # Close serial

 print("End of program") # End of program

Figure 14.24 Program listing.

An example display is shown in Figure 14.25.

Figure 14.25 Example display.

Chapter 14 • Using Serial Communication

● 321

14.5.3 Project 4 – BeagleY-AI – Raspberry Pi 4 communication over a

serial link

Description: In this project, a BeagleY-AI and a Raspberry Pi 4 are used. Raspberry Pi 4

sends a random number to BeagleY-AI. In return, BeagleY-AI increments this number by

one and sends it back to the Raspberry Pi 4 where it is displayed on the monitor. The aim of

this project is to show how the two computers can communicate over a serial link.

Block diagram: Figure 14.26 shows the project block diagram.

Figure 14.26 Block diagram.

Circuit diagram: The connections between the Raspberry Pi 4 and BeagleY-AI are very

simple. As shown in Figure 14.27, the TXD and RXD pins of both computers are interchanged.

Figure 14.27 Circuit diagram.

The Raspberry Pi 4 computers have two built-in hardware UARTs: a PL011 and a mini UART.

These are implemented using different hardware blocks, so they have slightly different

characteristics. Since both are 3.3 V devices, extra care must be taken when connecting

to other serial communication lines. On Raspberry Pi equipped with the Wireless/Bluetooth

modules (e.g., Raspberry Pi 3, Zero W, 4, etc.), the PL011 UART is by default connected

to the Bluetooth module, while the mini UART is the primary UART with the Linux console

on it. In all other models, the PL011 is used as the primary UART. By default, /dev/ttyS0

refers to the mini UART, and /dev/ttAMA0 refers to the PL011. The Linux console uses

the primary UART, which depends on the Raspberry Pi model used. Also, if enabled, /dev/

The Beagle-Y AI Book

● 322

serial0 refers to the primary UART (if enabled), and if enabled, /dev/serial1 refers to the

secondary UART.

By default, the primary UART (serial0) is assigned to the Linux console. To use the serial

port for other purposes, this default configuration must be changed. On startup, systemd

checks the Linux kernel command line for any console entries and will use the console

defined therein. To stop this behavior, the serial console setting needs to be removed from

the command line. This is easily done by using the raspi-config utility by selecting option

3 (Interfacing options), then I6 (Serial), and selecting No. Exit raspi-config and restart

your Raspberry Pi. You should now be able to access the serial port. Don't forget to re-

enable the console setting after finishing).

For Raspberry Pi 3 and 4 the serial port (/dev/ttyS0) is routed to GPIO14 (TXD) and

GPIO15 (RXD) on the GPIO header. Models earlier than Raspberry Pi 3 use this port for

Bluetooth. In this project, we are using the Raspberry Pi 4 whose serial port is: /dev/

ttyS0. If you are using an earlier than model 3, use the serial port named: /dev/ttyA-

MA0.

Raspberry Pi 4 program: Figure 14.28 shows the Raspberry Pi program (Program:

RPsender.py). At the beginning of the program, the serial library is imported, and the

serial line /dev/ttySerial0 is initialized to work at 9600 Baud. The program generates

a random integer number between 1 and 1000 and sends it to BeagleY-AI over the serial

link. It then waits to receive the incremented number from the BeagleY-AI and displays the

number on the monitor. The user is asked if the program should continue. If the answer is

y (or Y) then the process continues. Otherwise, the program terminates after sending "0"

to BeagleY-AI which causes the BeagleY-AI program to terminate as well.

#===

BEAGLEY-AI - RASPBERRY PI 4 COMMUNICATION

===

#

In this program Raspberry Pi 4 sends a random integer number to

BeagleY-AI. This number is incremented by one and sent back to

Raspberry Pi 4 where it is displayed

#

Author: Dogan Ibrahim

File : RPsender.py

Date : November 2024

#===

import time

import serial

import random

port = «/dev/ttyS0»

ser = serial.Serial(port, baudrate=9600)

Chapter 14 • Using Serial Communication

● 323

chk = «Y»

while chk == «Y»:

 rnd = random.randint(1, 1000) # random no

 print(«Number sent to BeagleY-AI is: «, rnd) # display msg

 ser.write(str(rnd).encode()) # send the msg

 ser.write(«\r\n».encode()) # CR+LF

 resp = ser.readline() # read back

 respstr = resp.decode() # decode

 num = int(respstr) # conv to int

 print(«Number received from BeagleY-AI is: «, num) # display

 chk = input(«\nContinue?: «) # More?

 chk = chk.upper()

ser.write(«0».encode())

ser.write(«\r\n».encode())

time.sleep(2)

ser.close()

Figure 14.28 Raspberry Pi 4 program.

BeagleY-AI program: Figure 14.29 shows the BeagleY-AI program (Program:

Beaglercv,py). At the beginning of the program, the serial library is imported, and the

serial line /dev/ttyAMA0 is initialized to work at 9600 Baud. The program then waits to

receive a number from Raspberry Pi 4. The received number is incremented by one and

sent back to Raspberry Pi 4. The program terminates if a "0" is received from Raspberry

Pi 4.

#---

#

BEAGLEY-AI - RASPBERRY PI 4 COMMUNICATION

===

#

In this project BeagleY-AI receives a random number from

Raspberry Pi4, increments the number by 1 and sends it back

to Raspberry Pi 4

#

Program: Beaglercv.py

Date : November 2024

Author : Dogan Ibrahim

#---

import serial

port = "/dev/ttyAMA0"

The Beagle-Y AI Book

● 324

ser = serial.Serial(port,baudrate=9600)

num = ""

while True:

 num = ser.readline() # get the number

 num = num.decode() # decode

 numv = int(num) # conv to integer

 if numv == 0: # to exit

 break

 numv = numv + 1 # increment

 ser.write(str(numv).encode()) # send to BeagleY-AI

 ser.write("\r\n".encode())

ser.close()

Figure 14.29 BeagleY-AI program.

Testing

• Start the BeagleY-AI program, which should block, waiting to receive a number

from the Raspberry Pi 4.

• Start the Raspberry Pi 4 program. The generated integer random number and

the incremented number sent by BeagleY-AI are displayed on the monitor.

• Enter y (or Y) to continue running the program, otherwise enter any other

character to terminate both programs.

• Figure 14.30 shows an example run of the Raspberry Pi 4 program (it is

assumed that the BeagleY-AI program was already started)

Figure 14.30 Example run of Raspberry Pi 4 program.

Chapter 15 • Real Time Clock (RTC)

● 325

Chapter 15 • Real Time Clock (RTC)

15.1 Overview

Real Time Clocks (RTCs) provide precise and reliable timekeeping, which are beneficial for

applications ranging from simple timekeeping to complex scheduling and secure operations.

Without an RTC, a computer must rely on perhaps getting the date and time information

from the internet using, for example, the Network Time Protocol (NTP). However, there

are many cases where an SBC such as BeagleY-AI may not have a constant or reliable

network connection. In situations like these, an RTC allows the board to keep time even

if the network connection is severed or the board loses power for an extended period.

Fortunately, BeagleY-AI comes with a built-in DS1340 type on-board RTC for timekeeping

purposes.

The RTC is useful for the following applications:

• Maintaining accurate time and date

• Timestamping applications and events

• Scheduling tasks accurately at specified times

• Network synchronization with other devices

15.2 The Hardware

A small 1.00 mm pitch, 2-pin JST SH connector is provided on the BeagleY-AI board to

connect a coin cell battery (Figure 15.1) to enable the RTC to keep time even when power

is lost to the board.

Figure 15.1 BeagleY-AI on-board RTC battery connector

(https://docs.beagle.cc/boards/beagley/ai/demos/beagley-ai-using-rtc.html)

The Beagle-Y AI Book

● 326

15.3 Setting the RTC Time

The RTC time should be set to the current time before it is read. The RTC time can be set

accurately using the following command. Here, the date is set to 15 October 2024, and the

time to 10:46:00:

 beagle@beagle:~ $ sudo hwclock --set --date "2024-10-15 22:22:22"

There are two different times with different formats:

• System time, which can be displayed using the date command

• RTC time, which can be displayed using the sudo hwclock command

An example is shown below:

 beagle@beagle:~ $ date

 Tue Oct 15 09:46:26 UTC 2024

 beagle@beagle:~ $ sudo hwclock

 2024-10-15 10:47:56.279-31+00:00

We can set the two times to be the same format using the following date command:

 beagle@beagle:~ $ date +%Y-%m-%d' '%H:%M:%S.%N%:z

 2024-10-15 10:09:49.749529714+00:00

 beagle@beagle:~ $ sudo hwclock

 2024-10-15 10:09:57.807556+00:00

Notice that the two-time readings may differ slightly. Environmental conditions can cause

electronics to become slightly out of sync and can cause drift. RTCs are accurate devices

that implement various methods to keep the drifts as small as possible for example by

compensating for temperature changes.

To sync the system clock, enter the command:

 beagle@beagle:~ $ sudo hwclock –systohc

Now, let's display both the system and the RTC times one after the other one quickly. You

should see that there could be about a one-second difference between the two. This is

because it may take about a second to query and display the RTC clock.

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI

● 327

Chapter 16 • Artificial Intelligence (AI) with the
BeagleY-AI

16.1 Overview

Although the BeagleY-AI can be used as a general-purpose single-board computer, it has

been developed for artificial intelligence applications. The processor is powered by Texas

Instruments AM67A quad-core Cortex-A53 running at 1.4GHz along with an ARM Cortex-

R5F processor running at 800MHz for handling general tasks. The processor is equipped with

2 x C7x DSP modules and a Matrix Multiply Accelerator (MMA), enhancing AI performance

and making the board suitable for AI-based applications. Each C7x DSP delivers 2 TOPS,

thus offering a total of 4 TOPS processing power. Additionally, a graphics accelerator is

provided, offering 50GFlops for video and multitasking operations, which are required in AI

applications.

Since the BeagleY-AI is a new product, there are currently few AI-based projects utilizing

this board. In this chapter, we will develop an AI project that uses TensorFlow Lite for object

detection. Links to other AI-based projects using the BeagleY-AI can be found in different

sections of this chapter.

16.2 BeagleY-AI Detailed Hardware Specifications

It is interesting to have a look at the detailed hardware specifications of the BeagleY-AI

before investigating its application in an AI project. For this, you should install the inxi

applications:

 beagle@beagle:~ $ sudo apt install inxi

Run the program by simply entering inxi -F. Figure 16.1 shows the output where the CPU,

memory, disk, audio, network, etc. details are listed.

The Beagle-Y AI Book

● 328

Figure 16.1 Detailed hardware specifications.

16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection

This project describes how to set up and run an object detection model using TensorFlow

Lite on the BeagleY-AI platform. Full hardware and software details, as well as step-by-step

installation instructions for the required software, are provided on the following websites:

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-object-

detection-tutorial.html#

and

https://www.cnx-software.com/2024/10/13/beagley-ai-review-sbc-debian-12-

tensorflow-lite-ai-demos/

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI

● 329

The following are required for the project:

• Beagle-Y AI board

• USB Webcam. The author used a Full HD 1080P, 12.0 MEGA Pixel F/#2.0,

F:4.8mm AUSDOM webcam, but it should work with other webcams as well.

• GUI Desktop connection to your Beagle-Y AI

• Internet connection to your Beagle-Y AI for installing the required software

The steps in developing this project are given below (characters entered by the user are in

bold for clarity):

• Open a Terminal session on your Desktop GUI

• Install a lightweight version of Conda using Miniforge/Mambaforge 24.3.0.0:

wget https://github.com/conda-forge/miniforge/releases/

download/24.3.0-0/Mambaforge-24.3.0-0-Linux-aarch64.sh

bash Mambaforge-24.3.0-0-Linux-aarch64.sh

• Accept the Conda license

• Check that Conda has been installed successfully by entering the command:

conda –version

You should see the version number displayed as: conda 24.3.0

• Create a virtual environment with Python 3.9:

conda create –name myenv python=3.9

• Activate the virtual environment:

conda activate myenv

• Install the required Python packages:

pip install https://github.com/google-coral/pycoral/releases/

download/v2.0.0/tflite_runtime-2.5.0.post1-cp39-cp39-linux_

aarch64.whl

pip install numpy==1.26.4

pip install opencv-python

pip install tflite-runtime

The Beagle-Y AI Book

● 330

• Create a directory for the object recognition models:

mkdir object-recognition

cd object-recognition

• Download a pre-trained model and unzip to directory TFLite_model:

wget https://storage.googleapis.com/download.tensorflow.org/

models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

 unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d

TFLite_model

• Connect the USB webcam to one of the USB ports of your BeagleY-AI and enter

the following command to find your video driver:

ls –l /dev | grep video

In the author's application, the result of this command is shown in Figure

16.2 and the video driver was number 0.

Figure 16.2 Webcam video drivers

• Create a file with the name object-detection.py using the nano text editor

and copy the program shown in Figure 16.3 to this file. Note: This program

has been copied from the following site:

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-object-

detection-tutorial.html#

nano object-detection.py

Exit the nano text editor by entering Ctrl+X followed by Y to save and exit nano.

import os

import argparse

import cv2

import numpy as np

import time

from threading import Thread

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI

● 331

import importlib.util

from typing import List

import sys

from tflite_runtime.interpreter import Interpreter, load_delegate

video_driver_id = 3

class VideoStream:

 «»»Handles video streaming from the webcam.»»»

 def __init__(self, resolution=(640, 480), framerate=30):

 self.stream = cv2.VideoCapture(video_driver_id)

 self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))

 self.stream.set(3, resolution[0])

 self.stream.set(4, resolution[1])

 self.grabbed, self.frame = self.stream.read()

 self.stopped = False

 def start(self):

 «»»Starts the thread that reads frames from the video stream.»»»

 Thread(target=self.update, args=()).start()

 return self

 def update(self):

 «»»Continuously updates the frame from the video stream.»»»

 while True:

 if self.stopped:

 self.stream.release()

 return

 self.grabbed, self.frame = self.stream.read()

 def read(self):

 «»»Returns the most recent frame.»»»

 return self.frame

 def stop(self):

 «»»Stops the video stream and closes resources.»»»

 self.stopped = True

def load_labels(labelmap_path: str) -> List[str]:

 «»»Loads labels from a label map file.»»»

 try:

 with open(labelmap_path, 'r') as f:

 labels = [line.strip() for line in f.readlines()]

 if labels[0] == '???':

 labels.pop(0)

 return labels

The Beagle-Y AI Book

● 332

 except IOError as e:

 print(f»Error reading label map file: {e}»)

 sys.exit()

def main():

 # Argument parsing

 parser = argparse.ArgumentParser()

 parser.add_argument('--modeldir', required=True, help='Folder the .tflite

file is located in')

 parser.add_argument('--graph', default='detect.tflite', help='Name of the

.tflite file')

 parser.add_argument('--labels', default='labelmap.txt', help='Name of the

labelmap file')

 parser.add_argument('--threshold', default='0.5', help='Minimum confidence

threshold')

 parser.add_argument('--resolution', default='1280x720', help='Desired webcam

resolution')

 args = parser.parse_args()

 # Configuration

 model_path = os.path.join(os.getcwd(), args.modeldir, args.graph)

 labelmap_path = os.path.join(os.getcwd(), args.modeldir, args.labels)

 min_conf_threshold = float(args.threshold)

 resW, resH = map(int, args.resolution.split('x'))

 # Load labels and interpreter

 labels = load_labels(labelmap_path)

 interpreter = Interpreter(model_path=model_path)

 interpreter.allocate_tensors()

 # Get model details

 input_details = interpreter.get_input_details()

 output_details = interpreter.get_output_details()

 height, width = input_details[0]['shape'][1:3]

 floating_model = (input_details[0]['dtype'] == np.float32)

 outname = output_details[0]['name']

 boxes_idx, classes_idx, scores_idx = (1, 3, 0) if 'StatefulPartitionedCall'

in outname else (0, 1, 2)

 # Initialize video stream

 videostream = VideoStream(resolution=(resW, resH), framerate=30).start()

 time.sleep(1)

 frame_rate_calc = 1

 freq = cv2.getTickFrequency()

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI

● 333

 while True:

 t1 = cv2.getTickCount()

 frame = videostream.read()

 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 frame_resized = cv2.resize(frame_rgb, (width, height))

 input_data = np.expand_dims(frame_resized, axis=0)

 if floating_model:

 input_data = (np.float32(input_data) - 127.5) / 127.5

 interpreter.set_tensor(input_details[0]['index'], input_data)

 interpreter.invoke()

 boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0]

 classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0]

 scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0]

 for i in range(len(scores)):

 if min_conf_threshold < scores[i] <= 1.0:

 ymin, xmin, ymax, xmax = [int(coord) for coord in (boxes[i] *

[resH, resW, resH, resW])]

 cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (10, 255, 0), 2)

 object_name = labels[int(classes[i])]

 label = f'{object_name}: {int(scores[i] * 100)}%'

 labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_

SIMPLEX, 0.7, 2)

 label_ymin = max(ymin, labelSize[1] + 10)

 cv2.rectangle(frame, (xmin, label_ymin - labelSize[1] - 10),

(xmin + labelSize[0], label_ymin + baseLine - 10), (255, 255, 255), cv2.FILLED)

 cv2.putText(frame, label, (xmin, label_ymin - 7), cv2.FONT_

HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)

 cv2.putText(frame, f'FPS: {frame_rate_calc:.2f}', (30, 50), cv2.FONT_

HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)

 cv2.imshow('Object detector', frame)

 t2 = cv2.getTickCount()

 time1 = (t2 - t1) / freq

 frame_rate_calc = 1 / time1

 if cv2.waitKey(1) == ord('q'):

 break

 cv2.destroyAllWindows()

 videostream.stop()

The Beagle-Y AI Book

● 334

if __name__ == «__main__»:

 main()

Figure 16.3 Program: object-detection.py

• Make sure to change your video driver ID in the file object-detection.py

depending on your video driver. Here, the video driver ID is set to 0.

• Run the program by entering the following command in GUI Desktop mode:

(base) beagle@beagle:~/object-recognition$ python3 object_detection.

py --modeldir=TFLite_model

• Move the webcam to focus on an object and you should see the object

identification displayed at the top left corner of the screen. Figure 16.4 shows

an example of identifying a keyboard. Another example of identifying a laptop

is shown in Figure 16.5.

Figure 16.4 Identifying a keyboard

Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI

● 335

Figure 16.5 Identifying a laptop

In this project, the BeagleY-AI displays a frame rate of only 3 FPS. Some users recommended

using the Texas Instruments Deep Learning (TIDL) library for faster processing on the

BeagleY-AI.

16.4 BeagleY-AI ChatGPT

This project uses voice input and voice output functionalities with a BeagleY-AI. The project

employs ReSpeaker Lite as the audio input and output device, enabling interaction with the

ChatGPT and speech-to-text conversion services. Full project details are available on the

following website:

 https://wiki.seeedstudio.com/respeaker_lite_beagley-ai_chatgpt/

The required hardware for this project are:

• BeagleY-AI

• ReSpeaker Lite USB-2 –Mic Array

The project is based on using Python programming where the program implements a voice

assistant that listens for a wake-up word. This word is converted into text, a response is

generated using GPT-4. The response is then converted to speech and played back to the

user. If the program fails to recognize the command three times, it returns to listening

mode and waits until the wake-up word is detected again. Full project details, including the

Python program, are given on the above website.

16.5 BeagleY-AI Smart Assistant

This is a smart voice assistant project, where the project responds to a prompt poised by a

person. OpenAI is used in the project. Full hardware and software project details are given

on the following website:

The Beagle-Y AI Book

● 336

 https://medium.com/@s-kodiganti/designing-a-smart-assistant-with-beagley-ai-

139d0451cd15

The following are required for the project:

• BeagleY-AI

• Google AIY voice kit

• USB microphone

• USB monitor+keyboard+mouse

• OpenAI developer account

16.6 BeagleY-AI Robotics

This is a YouTube video that shows the application of BeagleY-AI in robotics. A robotic arm

is shown with a suction cup and an air pipe running through the outside. In this project,

you drop an object in the center of a box, and it detects the object, picks it up, and places

it in the appropriate box.

Full details of this project are available at the following YouTube site:

 https://www.youtube.com/shorts/wcF1PEYnZWk

16.7 BeagleY-AI Machine Learning

This YouTube video shows the application of BeagleY-AI in machine learning. Details of the

project are available at the following YouTube site:

 https://www.youtube.com/watch?v=rPUL7HnFPDI

Chapter 17 • Useful Websites

● 337

Chapter 17 • Useful Websites

Further information, projects, tutorials, and documentation are available on the Beagleboard

forum website. Readers can search various hardware and software-related items at the

following website:

 openbeagle.org

A list of useful websites is given in this chapter to help readers gain more information on

using the BeagleY-AI.

• https://forum.beagleboard.org/

• https://www.beagleboard.org/collaborate

• https://www.beagleboard.org/boards/beagley-ai

• https://www.ti.com/tool/BEAGLEY-AI

• https://www.elektor.com/products/beagley-ai-sbc-with-gpu-dsp-and-ai-

accelerators?srsltid=AfmBOooUO2Nc38wi62qUJwZXDP7l21Nznru-

9LY2hDUOhFJ8XVbluzd5R

• https://docs.beagle.cc/books/beaglebone-cookbook/index.html

• https://community.element14.com/products/devtools/single-board-computers/

next-genbeaglebone/b/blog/posts/beaglebone-control-stepper-motors-with-

pru---part-5-it-works

• https://www.hackster.io/cw-earley/simple-bluetooth-device-detection-

0d2469#schematics

• https://docs.beagle.cc/boards/beagley/ai/demos/beagley-ai-using-i2c-oled-

display.html

• https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-using-i2c-

oled-display.html

• https://www.youtube.com/watch?v=SaIpz00lE84

• https://medium.com/@s-kodiganti/designing-a-smart-assistant-with-beagley-

ai-139d0451cd15

• https://www.cnx-software.com/2024/10/13/beagley-ai-review-sbc-debian-12-

tensorflow-lite-ai-demos/

The Beagle-Y AI Book

● 338

Index

A

AM67A 12

API key 291

B

Binary counting 127

Blank lines 72

Bluetooth 11

BM3301 11

BME280 200

C

Camera 12

Chasing LEDs 135

chmod 32

Command prompt 27

Comments 72

Console commands 27

Control of flow 85

CPU temperature 25

CSI port 15

D

DAC 235

Debug UART 12

Dictionary variables 83

Display support 15

Distance measurement 168

dpkg 39

Dusk lights 166

E

Electronic dice 145

Escape sequences 79

Exceptions 111

F

Fan connector 12, 15

File permissions 31

Flask 297

G

gedit 66

GPIO connector 120

GPS 312

H

head 38

I

Indentation 73

IP address 21

J

JTAG 12, 13

K

Keyboard input 83

Keypad 206

L

LCD 152

Line continuation 72

List variables 80

Log out 56

M

MCP23017 217

MCP3002 221

MCP4921 235

MCP23S17 251

N

nano 57

P

Pin definitions 120

ping 43

Plotting graphs 176

Port expander 251

Power button 12

Power manager 5

PuTTY 22

pwd 30

PWM 217

R

R5 core 14

Index

● 339

Reaction timer 161

Rotating LED 137

RTC 12, 325

S

SCL 152

Screenshot 53

SDA 152

Security lock 214

Serial communication 303

shutdown 41

sort 36

SPI bus 217

SSH 19

Strings 77

T

tail 38

TCP 266

Terminal emulator 21, 46

ThingSpeak 291

Thonny 53, 65

TMP36DZ 230

top 39

TOPS 11

Trigonometric functions 96

Tuple variables 82

U

UDP 266

uname 28

User-defined functions 96

User settings 52

V

Voltmeter 220

W

Web Server 300

WiFi 11, 265

Wildcards 36

The BeagleY-AI Handbook
A Practical Guide to AI, Python,

and Hardware Projects

Welcome to your BeagleY-AI journey! This compact, powerful,

and affordable single-board computer is perfect for developers

and hobbyists. With its dedicated 4 TOPS AI co-processor and a

1.4GHz Quad-core Cortex-A53 CPU, the BeagleY-AI is equipped to

handle both AI applications and real-time I/O tasks. Powered by the

Texas Instruments AM67A processor, it off ers DSPs, a 3D graphics

unit, and video accelerators.

Inside this handbook, you‘ll find over 50 hands-on projects that cover

a wide range of topics—from basic circuits with LEDs and sensors to

an AI-driven project. Each project is written in Python 3 and includes

detailed explanations and full program listings to guide you. Whether

you‘re a beginner or more advanced, you can follow these projects as

they are or modify them to fit your own creative ideas.

What you´ll be working on

Here’s a glimpse of some exciting projects included in this handbook:

> Morse Code Exerciser with LED or Buzzer

Type a message and watch it come to life as an LED or buzzer

translates your text into Morse code.

> Ultrasonic Distance Measurement

Use an ultrasonic sensor to measure distances and display the result

in real time.

> Environmental Data Display & Visualization

Collect temperature, pressure, and humidity readings from the

BME280 sensor, and display or plot them on a graphical interface.

> SPI – Voltmeter with ADC

Learn how to measure voltage using an external ADC and display

the results on your BeagleY-AI.

> GPS Coordinates Display

Track your location with a GPS module and view geographic

coordinates on your screen.

> BeagleY-AI and Raspberry Pi 4 Communication

Discover how to make your BeagleY-AI and Raspberry Pi

communicate over a serial link and exchange data.

> AI-Driven Object Detection with TensorFlow Lite

Set up and run an object detection model using TensorFlow Lite

on the BeagleY-AI platform, with complete hardware and software

details provided.

Prof. Dr. Dogan

Ibrahim holds

a BSc degree

in Electronic

Engineering,

an MSc degree

in Automatic Control Engineering,

and a PhD in Digital Signal

Processing. He has worked in

numerous industrial organizations

before returning to academic

life. Prof. Ibrahim is the author

of over 60 technical books and

over 200 technical articles on

microcontrollers, microprocessors,

and related fields. He is a Chartered

Electrical Engineer and a Fellow of

the Institution of Engineering and

Technology.

Ahmet Ibrahim

obtained his

BSc degree from

the University

of Greenwich

in London,

where he also completed an MSc

course. Ahmet has worked at various

industrial organizations at diff erent

levels and is currently working in a

large organization in the IT field. He

is the author of several technical

books and articles.

and Hardware Projects

Elektor International Media

www.elektor.com

books
books

	Search…
	The BeagleY-AI Handbook
	All rights reserved
	Contents

	1 • Introduction
	1.1 The BeagleY-AI Single Board Computer (SBC)
	1.2 BeagleY-AI Features
	1.3 BeagleY-AI Board Component Layout
	1.4 Comparison with the Raspberry Pi 5
	1.5 Pros and Cons

	2 • Installing the Operating System
	2.1 Overview
	2.2 The Installation of the Operating System
	2.3 Connection to a Wi-Fi
	2.4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY Program
	2.4.1 Configuring PuTTY

	2.5 BeagleY-AI CPU Temperature

	3 • Using the Console Commands
	3.1 Overview
	3.2 The Command Prompt
	3.3 Useful Console Commands
	3.3.1 System and user information
	3.3.2 Some useful commands
	3.3.3 Resource monitoring on BeagleY-AI
	3.3.4 Shutting Down
	3.3.5 Networking
	3.3.6 System information and other useful commands

	4 • GUI Desktop Applications
	4.1 Overview
	4.2 The GUI Desktop
	4.2.1 Applications Menu

	5 • Using a Text Editor in Console Mode
	5.1 Overview
	5.2 The nano Text Editor
	5.3 The vi Text Editor
	5.4 Using Thonny
	5.4.1 The Thonny IDE

	5.5 The gedit Text Editor
	5.5.1 Using gedit

	6 • Creating and Running a Python Program
	6.1 Overview
	6.2 Method 1 – Interactively from Command Prompt in Console Mode
	6.3 Method 2 – Create a Python File in Console Mode
	6.4 Method 3 – Create a Python File in GUI Desktop Mode
	6.5 Which Method?

	7 • Python Programming and Simple Programs
	7.1 Overview
	7.2 Variable Names
	7.3 Reserved Words
	7.4 Comments
	7.5 Line Continuation
	7.6 Blank Lines
	7.7 More Than One statement on a Line
	7.8 Indentation
	7.9 Python Data Types
	7.10 Numbers
	7.11 Strings
	7.11.1 String functions
	7.11.2 Escape sequences

	7.12 Print Statement
	7.13 List Variables
	7.13.1 List functions

	7.14 Tuple Variables
	7.15 Dictionary Variables
	7.15.1 Dictionary functions

	7.16 Keyboard Input
	7.17 Comparison Operators
	7.18 Logical Operators
	7.19 Assignment Operators
	7.20 Control of Flow
	7.20.1 The if, if..else, and elif
	7.20.2 The for statement
	7.20.3 The while statement
	7.20.4 The continue statement
	7.20.5 The break statement
	7.20.6 The pass statement

	7.21 Example 1 – 4 Band Resistor Color Code Identifier
	7.22 Example 2 – Series or Parallel Resistors
	7.23 Example 3 - Resistive Potential Divider
	7.24 Trigonometric Functions
	7.25 User Defined Functions
	7.26 Examples
	7.27 Recursive Functions
	7.28 Exceptions
	7.29 try/final Exceptions
	7.30 Date and Time
	7.31 Creating Your Own Modules

	8 • BeagleY-AI LED Projects
	8.1 Overview
	8.2 BeagleY-AI GPIO pin Definitions
	8.3 Project 1 – Flashing an LED
	8.4 Project 2 – Alternately Flashing LEDs
	8.5 Project 3 – Binary Counting with 8 LEDs
	8.6 Project 4 – Christmas Lights (Random Flashing 8 LEDs)
	8.7 Project 5 – Chasing LEDs
	8.8 Project 6 – Rotating LEDs with Pushbutton Switch
	8.9 Project 7 – Morse Code Exerciser with LED or Buzzer
	8.10 Project 8 – Electronic Dice
	8.11 Project 9 – Varying the LED Flashing Rate

	9 • Using an I2C LCD
	9.1 Overview
	9.2 The I2C Bus
	9.3 I2C Pins of BeagleY-AI
	9.4 Project 1 – Using an I2C LCD – Seconds Counter
	9.5 Project 2 – Using an I2C LCD – Display Time
	9.6 Project 3 – Using an I2C LCD – Display the IP address of BeagleY-AI
	9.7 Project 4 – Reaction Timer – Output to Screen
	9.8 Project 5 – Reaction Timer – Output to LCD
	9.9 Project 6 – Automatic Dusk Lights
	9.10 Project 7 – Ultrasonic Distance Measurement
	9.11 Project 8 – Car Parking Sensors

	10 • Plotting Graphs With Python and BeagleY-AI
	10.1 Overview
	10.2 The Matplotlib Graph Plotting Library
	10.3 Project 1 – RC Transient Circuit Analysis - Charging
	10.4 Project 2 – RC Transient Circuit Analysis - Discharging
	10.5 Transient RL Circuits
	10.6 Project 3 – RCL Transient Circuit Analysis
	10.7 Project 4 – Temperature, Pressure, and Humidity Measurement – Display on the Screen
	10.8 Project 5 – Temperature, Pressure, and Humidity Measurement – Plotting the Data

	11 • Using a 4 x 4 Keypad
	11.1 Overview
	11.2 Project 1 – Using a 4x4 Keypad
	11.3 Project 2 – Security Lock with Keypad and LCD

	12 • I2C, SPI Bus, and PWM Projects
	12.1 Overview
	12.2 Project 1 - I2C Port Expander
	12.3 Project 2 - SPI ADC - Voltmeter
	12.3.1 The SPI bus

	12.4 Project 3 – Voltmeter – Output to LCD
	12.5 Project 4 – Analog Temperature Sensor Thermometer – Output to the Screen
	12.6 Project 5 – Analog Temperature Sensor Thermometer – Output on LCD
	12.7 Using a Digital to Analog Converter (DAC)
	12.7.1 The MCP4921 DAC
	12.7.2 Project 6 - Generating square wave signal with any peak voltage up to +3.3 V
	12.7.3 Project 7 - Generating sawtooth wave signal
	12.7.4 Project 8 - Generating triangle wave signal
	12.7.5 Project 9 - Generating arbitrary wave signal
	12.7.6 Project 10 - Generating sine wave signal
	12.7.7 Project 11 – SPI Port Expander

	12.8 Pulse Width Modulation (PWM)
	12.8.1 PWM channels of BeagleY-AI
	12.8.2 Project 12 – Generate 1000Hz PWM waveform with 50% duty cycle
	12.8.3 Project 13 – Changing the brightness of an LED
	12.8.4 Project 14 – Mosquito repeller

	13 • Communication Over the Wi-Fi
	13.1 Overview
	13.2 UDP and TCP
	13.2.1 UDP communication
	13.2.2 TCP communication

	13.3 Project 1 – Sending a Text Message to a Smartphone Using TCP
	13.4 Project 2 – Two-way Communication with the Smartphone Using TCP
	13.5 Project 3 – Communicating with a PC Using TCP
	13.6 Project 4 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using TCP
	13.7 Project 5 – Sending a Text Message to a Smartphone Using UDP
	13.8 Project 6 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using UDP
	13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
	13.9.1 Project 7 – BeagleY-AI and Raspberry Pi Pico W communication – controlling a relay over Wi-Fi

	13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pressure Data on the Cloud
	13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO Ports from the Internet
	13.12 Project 9 – Web Server - Controlling an LED Connected to BeagleY-AI Using the Flask

	14 • Using Serial Communication
	14.1 Overview
	14.2 USB – TTL Serial Conversion Modules
	14.3 BeagleY-AI and PC Communication Over Serial Port – Testing the Hardware and Software Configurations
	14.4 Project 1 – BeagleY-AI – PC Two-Way Communication Over Serial Port – Using Python
	14.5 Reading Geographical Coordinates – Using a GPS
	14.5.1 Project 2 – Displaying geographical coordinates on the monitor
	14.5.2 Project 3 – Displaying geographical coordinates on LCD
	14.5.3 Project 4 – BeagleY-AI – Raspberry Pi 4 communication over a serial link

	15 • Real Time Clock (RTC)
	15.1 Overview
	15.2 The Hardware
	15.3 Setting the RTC Time

	16 • Artificial Intelligence (AI) with the BeagleY-AI
	16.1 Overview
	16.2 BeagleY-AI Detailed Hardware Specifications
	16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection
	16.4 BeagleY-AI ChatGPT
	16.5 BeagleY-AI Smart Assistant
	16.6 BeagleY-AI Robotics
	16.7 BeagleY-AI Machine Learning

	17 • Useful Websites
	Index

