€ lektorbooks

A Practical Guide to Al, Python,
and Hardware Projects

bearndioi)

(Slektor

The BeagleY-AI Handbook

A Practical Guide to AI, Python,
and Hardware Projects

Dr. Dogan Ibrahim
Ahmet Ibrahim BSc, MSc

(Slektor

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11, NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

@ All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

® Declaration

The author and publisher have made every effort to ensure the accuracy of the information contained in this book.
They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by errors or
omissions in this book, whether such errors or omissions result from negligence, accident, or any other cause.

® ISBN 978-3-89576-656-5 Print
ISBN 978-3-89576-657-2 eBook

@® © Copyright 2025 Elektor International Media
www.elektor.com
Editor: Glaucileine Vieira
Prepress Production: D-Vision, Julian van den Berg
Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,
electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers
high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in
several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Contents

Contents

ChapterlelIntroduction ittt nnnnnrsasasssnsnnnnnnnnnns 11
1.1 The BeagleY-AI Single Board Computer (SBC). o o i i 11
1.2 BeagleY-Al Features. it 11
1.3 BeagleY-Al Board Component Layout. i 12
1.4 Comparison with the Raspberry Pi5 14
1.5 Pros and ConS. . o oottt i e e e e 15

Chapter 2 o Installing the OperatingSystem. ittt ittt i e e ns 17
2.1 OVEIVIEW . o vttt e 17
2.2 The Installation of the Operating System i 17
2.3 Connectiontoa Wi-Fi. . . . oo 20
2.4 Accessing Your BeagleY-AI Console from Your PC — The PuTTY Program 22
2.4.1 Configuring PUTTY. e 24
2.5 BeagleY-AI CPU Temperature s 25

Chapter 3 e Usingthe ConsoleCommands. . . .« c s vt v v e st v nnnn st nnnnnssnns 27
3L OVEIVIEW L ottt s 27
3.2 The Command Prompt 27
3.3 Useful Console Commands vttt e e e e 27
3.3.1 System and user information e 27
3.3.2 Some useful commands. 30
3.3.3 Resource monitoring on BeagleY-AL. i 39
3.3.4 Shutting DowWNn 41
3.3.5 Networking 42
3.3.6 System information and other useful commands 43

Chapter 4 e GUI Desktop Applications. ittt it i n s n s 45
4.1 OVEIVIEBW & ottt 45
4.2 The GUI Desktop . . . v v v i e e e e e e e e e e 45
4.2.1 Applications Menu. it 45

Chapter 5 e Using a Text EditorinConsoleMode. e et v nnnnnnrnns 57
5.1 OVEIVIEW . o vt e e e s 57
5.2 Thenano Text Editor 57

The Beagle-Y AI Book

5.3TheviText Editor e 62
5.4 Using ThONNY e e e e e 65
5.4.1 The Thonny IDE e e e e s 65
5.5 The gedit Text Editor e 66
5.5.1 Using gedit e e 66
Chapter 6 e Creating and Running a PythonProgram oo vunn 68
6.1 OVEIVIEW . . . ot e e e e e e 68
6.2 Method 1 - Interactively from Command Prompt in Console Mode. 68
6.3 Method 2 - Create a Python Filein Console Mode 68
6.4 Method 3 - Create a Python File in GUI DesktopMode. 69
6.5 Which Method? e 70
Chapter 7 e Python Programming and Simple Programs.« s s v v v e e s v v uns 71
7.1 OVEIVIEW . ot 71
7.2 Variable Names e 71
7.3 Reserved WOrds . . .o v it e 71
7.4 ComMMENES 72
7.5 Line Continuation s 72
7.6 Blank Lines. . . .t e 72
7.7 More Than One statementonaline 72
7.8 Indentation. 73
7.9 Python Data Types. . . . o i vt e e e e 73
7.10 NUMberS. . . . e e 73
7.00 SEriNGS . o o e e 77
7.11.1 String functions e e 78
7.11.2 ESCApPE SEQUENCES . + + + v v v v v v v v e e e e e e e e e e e e e 79
7.12 Print Statement. 80
7.13 List Variables. 80
7.13.1 List functions 81
7.14 Tuple Variableso e e 82
7.15 Dictionary Variables 83
7.15.1 Dictionary functions i e 83
7.16 Keyboard Input o e e 83

Contents

7.17 Comparison Operators i i s 84
7.18 Logical Operators. 84
7.19 Assignment Operators 84
7.20 Control of FIOW . . v v i i e e e 85
7.20.1 Theif, if..else, and elif e 85
7.20.2 The for statement. 86
7.20.3 The while statement 87
7.20.4 The continue statement. 88
7.20.5 The break statement. 88
7.20.6 The pass statement. e 89
7.21 Example 1 - 4 Band Resistor Color Code Identifier. 89
7.22 Example 2 — Series or Parallel Resistors 91
7.23 Example 3 - Resistive Potential Divider. e 93
7.24 Trigonometric FUNCEIONS s 96
7.25 User Defined FUNCLIONS. oot e e e 96
7.26 EXamples . . .o e e e e e 100
7.27 Recursive FUNCEIONS 111
7.28 EXCEPLiONS . . . i it e e e e e e e e 111
7.29 try/final EXCeplions 114
7.30Date and Time. 115
7.31 Creating Your Own Modules. 116
Chapter 8 e BeagleY-AI LED Projects. . . .« c v v v v vt s s s s nnnennenncnnnnnnnnns 120
B OV VIBW & ot 120
8.2 BeagleY-AI GPIO pin Definitions e 120
8.3 Project 1 —Flashingan LED 121
8.4 Project 2 - Alternately Flashing LEDs. oo i i 125
8.5 Project 3 — Binary Counting with 8 LEDsS. oot 127
8.6 Project 4 - Christmas Lights (Random Flashing 8 LEDS). 133
8.7 Project 5 - Chasing LEDS ittt 135
8.8 Project 6 — Rotating LEDs with Pushbutton Switch. 137
8.9 Project 7 - Morse Code Exerciser with LED or Buzzer. 140
8.10 Project 8 — Electronic Dice i i 145

The Beagle-Y AI Book

8.11 Project 9 - Varying the LED FlashingRate 149
Chapter9 e Usingan I2CLCD. ... u v et nrnsusnsnnnnsnsnsnsnnnnnnsnsnsns 152
0.1 OVEIVIEBW & vttt e e 152
9.2 THE I2C BUS .+« v v ot ittt e e e e e e e e e e e 152
9.3 12C Pins of BEAgleY-Alttt e e e e 153
9.4 Project 1 - Using an I2C LCD - Seconds CoUNter. . . . v v v v v it oo e i e e s 154
9.5 Project 2 — Using an I2C LCD - Display TiIMe. v v v i e i e i e e e e 158
9.6 Project 3 - Using an I2C LCD - Display the IP address of BeagleY-AI 160
9.7 Project 4 — Reaction Timer — Outputto Screen 161
9.8 Project 5 — Reaction Timer — Output to LCD 163
9.9 Project 6 — Automatic Dusk Lights. 166
9.10 Project 7 — Ultrasonic Distance Measurement 168
9.11 Project 8 — Car Parking SENSOrs. v v it it e e e 172
Chapter 10 e Plotting Graphs With Python and BeagleY-AIL.................. 176
10.1 OVEIVIEW . . it e e e e e e e 176
10.2 The Matplotlib Graph Plotting Library 176
10.3 Project 1 — RC Transient Circuit Analysis - Charging. 190
10.4 Project 2 - RC Transient Circuit Analysis - Discharging. 193
10.5 Transient RL Circuits oo it e e e 195
10.6 Project 3 = RCL Transient Circuit Analysis. i 196
10.7 Project 4 - Temperature, Pressure, and Humidity Measurement -
Display on the Screen i e e e 200
10.8 Project 5 - Temperature, Pressure, and Humidity Measurement -
Plotting the Data. 203
Chapter1l1 e Usingad4x4Keypad. ivvieerrnnnnnssnnnnnssnnnnnssns 206
11,1 OVeIVIBW &t e 206
11.2 Project 1 —Usingadx4 Keypad 206
11.3 Project 2 - Security Lock with KeypadandLCD 214
Chapter 12 ¢ I2C, SPIBus, and PWMProjects« s v v st v et v nnnnnnnnnnns 217
12.1 OVEIVIEW . .ttt e e e e e 217
12.2 Project 1 - I2C Port EXpander v vttt e e e e e 217
12.3 Project 2 - SPTI ADC - Voltmeter. o o o 220
12.3.1 The SPI bUS . . . ot 221

8

Contents

12.4 Project 3 — Voltmeter — Output toLCD o i 227

12.5 Project 4 - Analog Temperature Sensor Thermometer - Output to the Screen . .230

12.6 Project 5 - Analog Temperature Sensor Thermometer - Outputon LCD 232
12.7 Using a Digital to Analog Converter (DAC) i v i it i i i 235
12.7.1 The MCP4921 DAC . . . o ittt e e e e e e e 235

12.7.2 Project 6 - Generating square wave signal with any peak voltage up to +3.3 V. . 236

12.7.3 Project 7 - Generating sawtooth wave signal 240
12.7.4 Project 8 - Generating triangle wave signal 242
12.7.5 Project 9 - Generating arbitrary wave signal. 244
12.7.6 Project 10 - Generating sinewave signal, 247
12.7.7 Project 11 = SPI Port Expander. it 251
12.8 Pulse Width Modulation (PWM o i e 256
12.8.1 PWM channels of BeagleY-AI e e 258
12.8.2 Project 12 - Generate 1000Hz PWM waveform with 50% duty cycle 258
12.8.3 Project 13 - Changing the brightnessofan LED 261
12.8.4 Project 14 — Mosquito repeller i e 262
Chapter 13 ¢ Communication Overthe Wi-Fi......... ... i iiiinnnnn 265
13,1 OVEIVIBW & 265
13,2 UDP and TCP. . . .ot e e e e e 265
13.2.1 UDP communication e 266
13.2.2 TCP communication. oo e 266
13.3 Project 1 - Sending a Text Message to a Smartphone Using TCP. 267
13.4 Project 2 - Two-way Communication with the Smartphone Using TCP 271
13.5 Project 3 - Communicating witha PCUsingTCP., 273
13.6 Project 4 — Controlling an LED Connected to BeagleY-AI from a
Smartphone Using TCP s 276
13.7 Project 5 - Sending a Text Message to a Smartphone Using UDP. 278
13.8 Project 6 — Controlling an LED Connected to BeagleY-AI from a
Smartphone Using UDP 281
13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi. 283

13.9.1 Project 7 - BeagleY-AI and Raspberry Pi Pico W communication -
controllingarelay over Wi-Fi o i 286

The Beagle-Y AI Book

13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pressure
Dataonthe Cloud. 289

13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO Ports
from the Internet e 297

13.12 Project 9 — Web Server - Controlling an LED Connected to BeagleY-AI

Using the Flask 300
Chapter 14 e Using Serial Communication. v vt ittt v s e e s s nnnnnsnnn 303
14,1 OVEIVIEW &ttt e e e e 303
14.2 USB - TTL Serial Conversion Modules. i 304

14.3 BeagleY-Al and PC Communication Over Serial Port - Testing the Hardware and

Software Configurations. i i 306
14.4 Project 1 - BeagleY-Al - PC Two-Way Communication Over Serial Port -
Using Python 308
14.5 Reading Geographical Coordinates - Usinga GPS 311
14.5.1 Project 2 - Displaying geographical coordinates on the monitor 312
14.5.2 Project 3 - Displaying geographical coordinateson LCD. 317
14.5.3 Project 4 - BeagleY-AI - Raspberry Pi 4 communication over a serial link321
Chapter 150 Real Time CIoCk (RTC). . v v v v v v v v s s s s s s s s nnnnnnnnnnnnnnnns 325
15,1 OVeIVIBW &t e 325
15.2 The Hardwareot o e e e 325
15.3 Setting the RTC Time o 0t e e e e e e e e e e 326
Chapter 16 e Artificial Intelligence (AI) with the BeagleY-AI................ 327
16.1 OVEIVIEW & vt et e 327
16.2 BeagleY-Al Detailed Hardware Specifications. 327
16.3 Project 1 - BeagleY-Al TensorFlow Lite Object Detection. 328
16.4 BeagleY-AI ChatGPT e e 335
16.5 BeagleY-Al Smart Assistant. 335
16.6 BeagleY-AL RODOLICS .« . . v v oo e 336
16.7 BeagleY-Al Machine Learning ittt i e e e e e e 336
Chapter 17 e UsefulWebsitesciiiiinie e ennannnnnnns 337
IndeX ... v ittt ittt s s s s e s 338

e 10

Chapter 1 e Introduction

1.1 The BeagleY-AI Single Board Computer (SBC)

BeagleY-AI is a low-cost, open-source, and powerful 64-bit quad-core single-board
computer, equipped with a GPU, DSP, and vision/deep learning Al accelerators, designed
for developers and makers. Developed by BeagleBoard.org Foundation, it is designed
to meet the needs of both professional developers and educational environments. It is
affordable, easy to use, and eliminating barriers to innovation. Developers can explore in-
depth lessons or push practical applications to their limits without restrictions.

For more information about BeagleY-Al, including detailed specifications, documentation,
and resources for getting started, visit the official website at

beagleboard.org

The board is controlled by the Debian Linux operating system, which includes a built-
in development environment. This enables the seamless running of AI applications on a
dedicated 4 TOPS co-processor, while simultaneously handling real-time I/O tasks with an
800 MHz microcontroller.

BeagleY-Al is based on the Texas Instruments AM67A Arm-based vision processor. It
features a quad-core 64-bit Arm®Cortex®-A53 CPU subsystem at 1.4 GHz, dual general-
purpose C7x DSP with Matrix Multiply Accelerator (MMA) capable of 4 TOPs each, Arm
Cortex-R5 subsystem for low-latency I/O and control, a 50 GFLOP GPU, video and vision
accelerators, and other specialized processing capabilities.

In this chapter, you will learn the basic features and hardware details of the BeagleY-Al
board. A comparison is made with the popular Raspberry Pi 5 computer which has very
similar board layout and features. In the remaining chapters of the book, you will learn how
to install the operating system, how to access the BeagleY-Al board remotely, how to create
Python programs to run on the board, and how to create software-only and hardware-
based projects using the peripheral ports such as GPIO, SPI, UART, I2C, and many others.

1.2 BeagleY-AI Features
The board has the following features:

Feature Description

Texas Instruments AM67A, Quad 64-bit Arm® Cortex®-A53 @1.4 GHz,
Processor multiple cores including Arm/GPU processors, DSP, and vision/deep learning
accelerators

RAM 4GB LPDDR4
Wi-Fi Beagleboard BM3301, 802.11ax
Bluetooth Bluetooth Low Energy 5.4 (BLE)

o 11

The Beagle-Y AI Book

4x USB 3.0 ports (5Gbps shared) + USB 2.0 Type-C Port with Device-mode
capability

USB Ports

Ethernet Gigabit Ethernet, with PoOE+ support (requires separate PoE HAT)

Camera/Display 2 x 4-lane MIPI camera connector (one connector muxed with DSI capability)

Display Output 1 x HDMI display, 1 x OLDI display, 1 x DSI MIPI Display

Real-time Clock
Supports external coin-cell battery for power failure time retention

(RTC)

Debug UART 1 x 3-pin debug UART
Power 5 V/3 A DC power via USB-C
Power Button On/Off included

PCI-Express® Gen3 x 1 interface for fast peripherals (requires separate M.2

PCIe Interface
HAT or other adapter)

Expansion .
40-pin header
Connector
Fan connector 1 x 4-pin fan connector, supports PWM control and fan speed measurement
Storage microSD card slot with UHS-1 support
Tag Connect 1 x JTAG, 1 x External PMIC programming port

Table 1.1: BeagleY-AI features

The AM67A scalable processor family is based on the evolutionary Jacinto™ 7 architecture,
targeted at Smart Vision Camera and General Compute applications. The AM67A processor
family is designed for a broad set of cost-sensitive, high-performance computing applications
in factory automation, building automation, human-machine interface, security systems,
test and measurement, robotics, industrial PC, and other markets.

For more information about the AM67A processor, visit:
https://www.ti.com/product/AM67A

1.3 BeagleY-AI Board Component Layout

Front view

Figure 1.1 shows the components at the front of the board. Starting from the top-right-
hand corner of the board and moving to the left we can see the following components:

e 4-pin External fan connector

e AM67A processor

e 40-pin expansion header

e 4 GB LPDDR4 memory

e BM3301 WiFi (802.1ax) + BLE (v5.4)
e BM3301 antenna

e PCle port (Gen 3)

Power On/Off button

e 12

Chapter 1 e Introduction

e Bicolour LED

e Power management IC

e USB-C power and USB-2 port
e microHDMI monitor port

e 3-pin UART debug port

¢ 4-lane MIPI CSI connector

e 4-lane MIPI DSI/CSI connector
e Power over Ethernet port (PoE)
e Gigabit Ethernet port

2 x USB-3 (5 Gbps) ports

2 x USB-3 (5 Gbps) ports

BM3301 40-pin Expansion il TI AME7A
WiFi 6 + BLES.4 RAM Headar SoC Connactar

TR T T e w .
Tyiraeii ‘ ~m
5
BM3301 = = Sl
-

_m
@—» :

Bicolor LED
Indicatar

PMIC
Power

¥
w

2x USE 3
5 Gtips Hast

Gigabit Ethernet]
Motwiork connoctivity.
PoE
HAT connector

4 lane MIPI
DSI/CSl Connector
Back view

Figure 1.2 shows the components at the back of the board, which include the following:

micro HDMI 4 lane MIPI

Display CSl Connector

Figure 1.1 BeagleY-AI front view.

JTAG SoC debug connector
JTAG PMIC debug connector
e OLDI display connector
microSD card adapter

e 13

The Beagle-Y AI Book

microSD
Storage

OLDI

Display

Figure 1.2 BeagleY-AI back view.

1.4 Comparison with the Raspberry Pi 5

Figure 1.3 shows the front views of the BeagleY-AI board and the Raspberry Pi 5 board.
The two boards look identical in size and in most component layouts. Table 1.1 shows a
comparison of the BeagleY-AI and the Raspberry Pi 5.

BeagleY-Al

Figure 1.3 BeagleY-AI and the Raspberry Pi 5.

Feature BeagleY-AIl Raspberry Pi 5

CPU AM67A, Quad-core 64-bit, | BCM2712, Quad-core 64-bit
Cortex-A53 1.4GHz Cortex-A76 2.4GHz

Memory 4GB 2GB, 4GB, 8GB

R5 core YES None

microHDMI 1 2

USB-3 ports (5Gbps) 4 2

USB-2 port (480Mbps) 1 2

e 14

Chapter 1 e Introduction

Display support 3x (1x HDMI, 1x OLDI, 2x HDMI
1x DSI)

Graphics processing unit IMG-BXS-4-64 Videocore VII

Dual C7x DSP with Matrix multiply | 1

accumulator (4 TOPS), NPU

CSI/DSI ports 1 0

Video encode/decode 1 None

CSI port 2 2

Fan connector 1 1

UART connector 1 1

PCIe port 1 1

microSD card slot 1 1

40-pin GPIO header 1 1

Ethernet port (Gigabit) 1 1

Power button 1 1

WiFi + BLE 1 1

Table 1.2 Comparison of the BeagleY-AI and Raspberry Pi 5

1.5 Pros and Cons

Pros:

e AI Performance: The dual C7x DSPs and MMAs deliver up to 4 TOPS, making
it ideal for deep learning tasks.

e Connectivity: With USB 3.0, Gigabit Ethernet, Wi-Fi 6, and Bluetooth 5.4, the
board is well-equipped for various applications.

e Expandability: The PCIe Gen3 x1 connector and 40-pin GPIO header offer
significant customization options.

e Open-Source Hardware: Users can access and modify all hardware design
files, fostering innovation and adaptation.

e Industrial-Grade Components: The use of Texas Instruments hardware
ensures reliability and long-term support, making it suitable for both
development and deployment.

Cons:

e CPU Performance: The 1.4 GHz quad-core Cortex-A53 is underwhelming
compared to newer SBCs.

e 15

The Beagle-Y AI Book

e RAM Limitations: 4 GB of LPDDR4 RAM may not be sufficient for all
applications.

e Software Gaps: Some Al features and tools are not fully supported, limiting
the board's out-of-the-box capabilities.

e Heat Management: The board runs warm under load, and while it's fanless,
some users may prefer active cooling.

e 16

Chapter 2 o Installing the Operating System

Chapter 2 o Installing the Operating System

2.1 Overview

It is necessary to install a compatible operating system on a microSD card before the
BeagleY-AI SBC board can be used. In this chapter, you will learn how to install the BeagleY-
Al Debian operating system on a blank microSD card. Details on how to access the board
remotely are also given in this chapter.

2.2 The Installation of the Operating System
Before installing the operating system, make sure you have the following:

e 5V 3 A power supply
e 32 GB microSD card
e Boot image (operating system software image)

Using the bb-imager
You can use the bb-imager to install the operating system on the SD card. The steps are

as follows::

e Download and install the bb-imager for your operating system from the
following link:

https://beagley-ai.beagleboard.io/bb-imager/

e Click to start the bb-imager. You should see a screen similar to the one shown
in Figure 2.1.

» BeagleBoard Imager v2.0.0 ¥ oA v A K

BeagleBosrd Operating System Slorage

CHOOSE DEVICE CHOOSE STORAGE

Figure 2.1 bb-imager screen.

o Select BeagleY-AI as the device (Figure 2.2)

e 17

The Beagle-Y AI Book

* BeagleBoard Imager v2.0.0 ¥R W AKX
1 BeagleBoard X

Mo filtering
Show every passible image

ﬁ BeagleY-Al
BeagleY-Al based on TI AM&TA

Figure 2.2 Enter the details.

e Choose the operating system as BeagleY-AI Debian XFCE (Recommended)
as shown in Figure 2.3.

4 BeagleBoard Imager v2.0.0 ¥ A v o

Operating System

Beagle'-Al Debian XFCE (Recommended)
Debian graphical user interface (XFCE) image for BeagleY-Al based on TI AMETA
(J7225) processor (Recommended)

Erase
Format card as FAT32

Use custom
Select a custom .img from your computer

Figure 2.3 Choose the operating system.
e Choose your SD card storage and click NEXT

e Click EDIT SETTINGS and enter your chosen username, password, Wi-Fi SSID,
Wi-Fi password, and time zone (Figure 2.4)

e 18

Chapter 2 o Installing the Operating System

E 4 05 Customization ¥ A v A X

GENERAL SERVICES OPTIONS

Set hostname: beagle local
Set username and password

Username: beagle

Password: 90000008

Configure wireless LAN

SsID: mywifi
Password: LA Ll L Ll
[show password Hidden SSID

Wireless LAN country: IN -
Set locale settings

Time zone: Asia/Kolkata W

Keyboard layout: us hd

Figure 2.4 Edit the settings.

Click SERVICES and make sure that the Enable SSH and Use password
authentication are checked.

Click SAVE, and then click YES on the screen Would you like to apply OS
customization settings?

Click YES to confirm that all existing data will be deleted on the SD card and
to continue writing the operating system image on the SD card. Wait until the

writing and the verification processes are complete.

Remove the microSD card adapter from the PC and insert the microSD card
into the slot on your BeagleY-Al as in Figure 2.5.

Connect a monitor to the micro HDMI port of your BeagleY-AI board.
Connect a keyboard and mouse to the USB-3 ports.
Connect 5V 3 A power supply to the USB-C power port of the BeagleY-AlI.

Figure 2.11 shows a typical setup with a monitor.

e 19

The Beagle-Y AI Book

Keyboard & Mice

—J

Antenna

Ethernet
’ ' boogetioardory ‘ I
Type-C power supply delw—j—.

Figure 2.5 A typical setup (BeagleBoard.org).

o After a while you should see the green LED heartbeat and the GUI desktop
displayed as shown in Figure 2.6. Please note, it may take several minutes.

2.3 Connection to a Wi-Fi
Follow these steps to connect to a Wi-Fi network:

¢ Click the wireless icon at the top right-hand side of the screen.
¢ A list of Wi-Fi networks will be displayed.
e Click Connect to connect to your network and enter your password.

e Click Submit (Figure 2.6).

e 20

Chapter 2 o Installing the Operating System

10.cabfds-esh? Enabled (__\,
Made an -

DIRECT-1F-HP Laser 150nw PSK

BTHUDS;

[‘T'}wimlwnﬂtwrt Wit
S5I0: BTHUbS-65PN

EE WiFi anae
Prasword:| seeesssses ©

Warld &

DI D) 1)

Submit Capicef. | ([lennece
- ETB-F.H.CCIPZ - - PSK
The Hotal PSK
ASUS_XD5 Pk
missybells PEK Connect
SKY52042 PSK
Totorn PSK

Figure 2.6 Click Submit.
o After a short wait, your BeagleY-AI will connect to your Wi-Fi. Click Close to
exit the window. You should see the Wi-Fi icon change color to green, indicating
a successful connection.
You can display the IP address of your connection as follows:
e Click Applications, then Terminal Emulator.
¢ In the terminal, enter the following command:

sudo ifconfig

e You should see your IP address displayed under wlan0. In the author's setup,
the IP address was 192.168.1.127 (see Figure 2.7).

o 21

The Beagle-Y AI Book

isb@: flags=4099<UP,BROADCAST ,MULTICAST> mtu 1500
ether 1lc:ba:8c:a2:ed:6b txqueuelen 108@ (Ethernet)
RX packets @ bytes @ (0.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets @ bytes @ (0.2 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

isbl: flags=4099<UP,BROADCAST ,MULTICAST> mtu 1500
ether lc:ba:8c:a2:ed:6d txqueuelen 100@ (Ethernet)
RX packets @ bytes @ (0.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets @ bytes @ (0.9 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

vlan@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.127 netmask 255.255.255.8 broadcast 192.168.1.255
inet6 2a00:23c¢7:8694:3301:12ca:bfff:fed9:e9b2 prefixlen 64 scopei
cglobal>

inet6 fe80::12ca:bfff:fed9:e9b2 prefixlen 64 scopeid 0x20<link>
ether 10:ca:bf:d9:e9:b2 txqueuelen 1000 (Ethernet)
X packets 398 bytes 54423 (53.1 KiB)
(errors @ dropped @ overruns @ frame @
{ packets B6 bytes 14944 (14.5 KiB)
errors @ dropped @ overruns @ carrier @ collisions @

Figure 2.7 Command ifconfig (part of the display is shown).

2.4 Accessing Your BeagleY-AI Console from Your PC — The PuTTY
Program

In many applications, you may want to access your BeagleY-AI from your PC over the Wi-Fi
link. This can be done using a terminal emulator program on your PC. The author uses the
popular PUTTY for this purpose. You can download PuTTY from the following website:

https://www.putty.org

e PUTTY is a standalone program and there is no need to install it. Simply double-
click to run it. You should see the Putty startup screen as shown in Figure 2.8.

e 22

Chapter 2 o Installing the Operating System

[PuTTY Configuration
Category:
= Session Basic options for your PuTTY session
Logging 2
& Terminal Specify the destination you want to connect to
Keyboard Host Name (or IP address) Port
Bell 22
L Wi: de:::ures Connection type:
| Appearance ©OssH ()Seral () Other Telnet
Behaviour
Translation Load. save or delete a stored session
#-Selection Saved Sessions
Colours
=-Connection
Data Default Settings Load
Proxy KKTC
H-58H KKTC2 I Save
- Serial gs:i | _
Telnet RBE [Delete
Riogn RPIS-KKTC
suPpDUP 0 || B -
Close window on exit
() Always () Never © Only on clean exit
About Open Cancel

Figure 2.8 Putty startup screen.

e Make sure that the Connection type is SSH and enter the IP address of your

BeagleY-AlL. You can obtain the IP address by entering the command ifconfig
as shown earlier.

e Click Open in PUuTTY after entering the IP address and selecting SSH.

e The first time you run PUTTY, you may get a security message. Click Yes to
accept this security alert.

e You will then be prompted to enter the BeagleY-Al username and password
(these were entered in the sysconf.txt file during installation of the operating
system). You can now enter all Console-based commands through your PC.
Figure 2.9 shows the PUTTY screen with default screen settings.

e 23

The Beagle-Y AI Book

&P beagle@BeagleBone: ~ — O PTS

Figure 2.9 PuTTY screen with default settings.
e To change your password, enter the following command:
passwd
e To restart the BeagleY-Al enter the following command:
sudo reboot

e To shut down the BeagleY-Al enter the following command. Never shut down by
pulling the power cable, as this may result in the corruption or loss of files:

sudo shutdown -h now

2.4.1 Configuring PuTTY

By default, the PUTTY screen background is black with white foreground characters. The
author prefers to have a white background with black foreground characters, and the font
size set to 12 points in bold. It is recommended that you save your settings so that they
are available the next time you use PuTTY. Follow these steps to configure PuTTY with the
desired settings:

e Restart PUTTY.

Select SSH and enter the Raspberry Pi IP address.

Click Colours under Window.

e Set the Default Foreground and Default Bold Foreground colors to black
(Red:0, Green:0, Blue:0).

e 24

Chapter 2 o Installing the Operating System

e Set the Default Background and Default Bold Background to white
(Red: 255, Green:255, Blue:255).

Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0).

Select Appearance under Window and click Change in Font settings. Set
the font to Bold 12.

e Select Session, give the session a name (e.g., MyZero), and click Save.

Click Open to open the PUTTY session with the saved configuration.

e Next time you re-start the PuTTY, select the saved session and click Load,
followed by Open, to start a session with the saved configuration.

Figure 2.10 shows the PuTTY screen with black bold characters on a white background. In
this example, the PuTTY session was hamed as beagle.

‘@ beagle@BeagleBone: ~ — (m] X
= login as: beagle

Pre-authentication banner message from server:
| Debian GNU/Linux 12

I
| BeagleBoard.org Debian Bockworm Xfce Image 2024-05-04

| Support: https://bbb.ic/debian

| default username is [beagle]

|
End of banner message from server
beaglefl92.168.1.127's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Wed Oct 9 18:18:16 2024 from 192.168.1.131
lbeagleiBeagleBone:~$ ||

Figure 2.10 Putty screen with white background and black characters.

2.5 BeagleY-AI CPU Temperature

Without a heatsink, the Beagle-Y-AI typically heats up to about 58 - 60°C when idle. With
4 cores running in a complex operation, the CPU temperature can reach nearly 70°C. It
is recommended to use a heatsink or an active cooler (such as the Raspberry Pi 5 active
cooler) to help lower the device temperature, particularly during CPU-intensive tasks.

The CPU temperature can be displayed by entering the following command. As shown in the

example below, the temperature is in milli-Celsius. In this case, the CPU temperature was
measured shortly after the board was started, and it was 48.819°C:

e 25

The Beagle-Y AI Book

beagle@beagle:~ $ cat /sys/devices/virtual/thermal/thermal_zone
[0-2]/temp

47697
48146
48819
beagle@beagle:~ $

° 26

Chapter 3 ¢ Using the Console Commands

Chapter 3 e Using the Console Commands

3.1 Overview

BeagleY-Al is based on a version of the Linux operating system, one of the most popular
operating systems in use today. Linux shares similarities with other operating systems,
such as Windows and UNIX, and is an open-source system based on UNIX, developed
collaboratively by many companies since 1991. In general, Linux is harder to manage than
some other operating systems like Windows but offers more flexibility and configuration
options. There are several popular versions of the Linux operating system, such as Debian,
Ubuntu, Red Hat, Fedora, and others.

Linux commands are text-based. In this chapter, you will be looking at some of the useful
Linux commands and see how you can manage your BeagleY-AI using these commands.

The console commands can either be entered using the Putty terminal emulator, as
described in the previous chapter, or they can be entered using the Terminal Emulator
application in GUI Desktop.

3.2 The Command Prompt
Assuming your username is beagle, after you log in to BeagleY-AI, you will see the following
prompt displayed where the system waits for you to enter a command:

beagle@beagle: ~$
Here, the ~ character indicates that you are currently in your default directory.

3.3 Useful Console Commands

In this section, you will be learning some of the useful Console commands, with examples
provided for each command. In this chapter, commands entered by the user are
shown in bold for clarity. Also, it is important to remind you that all commands must be
terminated by the Enter key.

3.3.1 System and user information

These commands are useful as they provide information about the system. The command
cat /proc/cpuinfo displays information about the processor (the command cat displays
the contents of a file, and in this example, it shows the contents of the /proc/cpuinfo
file). Figure 3.1 shows an example display, where only part of the display is shown here.

e 27

The Beagle-Y AI Book

beaglefbeagle:~$
processor
BogoMIPS
Features
CPU implementer
CPU
CPU
CPU
CPU

variant
part
revision

processor
BogoMIPS

Features

CPU
CPU
CPU
CPU
CPU

variant
part
revision

processor
BogoMIPS

Features

CPU implementer
CPU
CPU
CPU
CPU

variant
part
revision

processor

c

architecture:

implementer :
architecture:

architecture:

at /proc/cpuinfo
0

400.00

fp asimd evtstrm
0x41

8

0x0

0xd03

4

1

400.00

fp asimd evtstrm
Ox41l

8

0x0

0xd03

4

2

400.00

fp asimd evtstrm
0x41

8

0x0

0xd03

4

3

aes pmull shal sha2 cre32 cpuid

aes pmull shal sha2? cre32 cpuid

aes pmull shal sha2 cre32 cpuid

Figure 3.1 Command: cat /proc/cpuinfo (part of the display is shown).

The command uname -s displays the operating system kernel name, which is Linux. The
command uname -a displays complete detailed information about the kernel and the
operating system. An example is shown in Figure 3.2.

beagle@beagle:~5 uname -a
Linux beagle 6.1.83-ti-arm64-r63 #lbookworm SMP PREEMPT DYNAMIC Wed Jul 10 23:0
:56 UTC 2024 aarch64 GNU/Linux
beaglefbeagle:~$§ I

Figure 3.2 Command: uname - a.

The command cat /proc/meminfo displays information about the memory on your
BeagleY-Al, such as the total memory and free memory at the time the command is issued.
Figure 3.3 shows an example, where only part of the display is shown here.

e 28

Chapter 3 ¢ Using the Console Commands

beagleflbeagle:~$ cat /proc/meminfo

MemTotal: 3883876 kB
MemFree: 2566148 kB
MemAvailable: 3027204 kB
Buffers: 30508 kB
Cached: 540800 kB
SwapCached: 0 kB
Active: 1034332 kB
Inactive: 96644 kB
Active (anon) : 561736 kB
Inactive (anon) : 0 kB
Active (file) : 472596 kB
Inactive (file) : 96644 kB
Unevictable: €4 kB
Mlocked: 64 kB
SwapTotal: 4194300 kB
SwapFree: 4194300 kB
Zswap: 0 kB
Zswapped: 0 kB
Dirty: 8 kB
Writeback: 0 kB
AnonPages: 544692 kB
Mapped: 293488 kB
Shmem: 2060 kB
EKReclaimable: 47144 kB
Slab: 93992 kB
SReclaimable: 47144 kB
SUnreclaim: 46848 kB

Figure 3.3 Command: cat /proc/meminfo (part of the display is shown).

The command whoami displays the name of the current user. In this case, beagle is
displayed as the current user.

A new user can be added to your BeagleY-Al using the command useradd. In the example
in Figure 3.5, a user called Jane is added. A password for the new user can be added using
the passwd command followed by the username. In Figure 3.4, the password for user Jane
is set to mypassword (not displayed for security reasons). Notice that both the useradd
and passwd commands are privileged and the keyword sudo must be entered before
these commands. Notice that the —m option creates a home directory for the new user.

beaglelbeagle:~$ sudo useradd -m Jane

beagle@beagle:~$ sudo passwd Jane

New password:

Retype new password:

passwd: password updated successfully
eagle@beagle:~$ ||

Figure 3.4 Commands: useradd and passwd.

You can log in to the new user account by specifying the username and password. You can
type the command exit to log out from the new account.

The command sudo apt-get upgrade is used to upgrade all the software packages on
the system.

e 29

The Beagle-Y AI Book

3.3.2 Some useful commands
To display the default home directory, enter:

beagle@beagle: ~$ pwd
/home/beagle
beagle@beagle: ~$

To display the directory structure, enter the command Is / (Figure 3.5):

beagle@fbeagle:~$ 1ls /
data etc media opt root sys usr
boot dev home lost+found mnt proc run srv - var

beaglelbeagle:~$ ||
Figure 3.5 Files in the directory.

To show the subdirectories and files in your working directory, enter Is (Figure 3.6)

beaglefbeagle:~§ ls

Desktop Downloads Pictures Templates led.py
Documents Music Publie Videos
beaglefbeagle:~$ [

Figure 3.6 Files in the home directory.
Notice that the subdirectories are displayed in blue and the files in black.
The command Is can take a number of arguments. Some examples are given below.

To display the subdirectories and files in a single row (Figure 3.7).

beaglefbeagle:~$ 1ls -1
Desktop

Documents
Downloads

Music

Pictures

Public

Templates

Videos

led.py
beaglefbeagle:~5 [

Figure 3.7 Files in a single row.

To display the file types, enter the command Is —F. Note that directories have a "/" after
their names, and executable files have a "*" character after their names:

To list the filenames separated by commas, enter the command Is -m.

You can mix the arguments, as shown in Figure 3.8.

e 30

Chapter 3 ¢ Using the Console Commands

beaglefbeagle:~% 1ls -m -F

Desktop/, Documents/, Downloads/, Music/, Pictures/, Public/, Templates/,
Videos/, led.py

beaglefibeagle:~$.

Figure 3.8 Mixing the arguments.

Subdirectories are created using the command mkdir followed by the name of the
subdirectory.

The command find is used to search for a file and outputs a list of all directories that
contain the file. For example, the command find / -name myfile.txt searches the default
folder for the file myfile.txt.

File Permissions

One of the important arguments used with the Is command is -l (lowercase letter |) which
displays the file permissions (Figure 3.9), file sizes, and when they were last modified. In
the example below, each line relates to one directory or file. Reading from right to left, the
name of the directory or the file is on the right-hand side. The date the directory or file
was created is on the left-hand side of its name. Next comes the size, given in bytes. The
characters at the beginning of each line indicate the permissions. i.e., who is allowed to use
or modify the file or the directory.

beagle@beagle:~$ 1ls -1
total 36

drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Desktop
drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Documents
drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Downloads
drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Music
drwxr-xr-x 2 beagle beagle 4096 Sep 4 0B:56 Pictures
drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Public
drwxr-xr-x 2 beagle beagle 4096 Sep 4 08:56 Templates
drwxr-xr-x 2 beagle beagle 4096 Sep 4 0B:56 Videos
-rw-r--r-- 1 beagle beagle 119 Oct 9 22:52 led.py

beaglef@beagle:~$ [
Figure 3.9 Command ls -l.

The permissions are divided into 3 categories:

e What the user (or owner, or creator) can do - called user.

e What the group owner (people in the same group) can do - group.

e What everyone else can do - called world.
In the example in Figure 3.9, the first word, beagle, shows who the user of the file (or
directory) is, and the second word, beagle, shows the group name that owns the file. In

this example, both the user and the group names are beagle.

The permissions can be analyzed by breaking down the characters into four chunks for:
File type, User, Group, and World. The first character for a file is "-" and for a directory, it

e 31

The Beagle-Y AI Book

is "d". Next comes the permissions for the User, Group, and World. The permissions are as
follows:

e Read permission (r): the permission to open and read a file or to list a
directory.

o Write permission (w): the permission to modify a file, or to delete or create a
file in a directory.

e Execute permission (x): the permission to execute the file (applies to
executable files), or to enter a directory.

The three letters rwx are used as a group; if no permission is assigned, then a "-" character
is used.

As an example, considering the Music directory, where we have the following permission
codes:

drwxr-xr-x which translates to:

d: it is a directory.

rwx: user (owner) can read, write, and execute

r-x: group can read and execute, but cannot write (e.g., create or delete).
r-x: world (everyone else) can read and execute, but cannot write.

The chmod command is used to change the file permissions. Before going into details of
how to change the permissions, let us look and see what arguments are available in chmod
for changing the file permissions.

The available arguments for changing file permissions are given below. We can use these
arguments to add/remove permissions or to explicitly set permissions. It is important
to realize that if we explicitly set permissions, then any unspecified permissions in the
command will be revoked:

u: user (or owner)
g: group

o: other (world)
a: all

+: add

- remove

=: set

r: read

w: write

X: execute

e 32

Chapter 3 ¢ Using the Console Commands

To change the permissions of a file, we type the chmod command, followed by one of
the letters u,g,0, or a to select the people, followed by the +,-, or = to select the type of
change, and finally followed by the filename. In this example, a file with the name led.py
was created in the home directory for demonstration purposes. The led.py file has user
read and write permissions.

We will be changing the permissions so that the user does not have read permission on

this file:

beagle@beagle: ~$ chmod u-r led.py
beagle@beagle: ~$ Is -lh

The result is shown in Figure 3.10.

beaglefbeagle:~$ chmod u-r
beaglefbeagle:~§
beaglefbeagle:~§ 1s -lh
total 36K

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
W E =

beaglefbeagle:~§ .

beagle beagle
beagle beagle
beagle beagle

beagle beagle
beagle beagle
beagle beagle
beagle beagle
1 beagle beagle

2
2
2
2 beagle beagle
2
2
2
2

led.py

b e b b B B B
o
A

Sep
Sep

Sep
Sep
Sep
Sep
Sep
Oct

W ok b b B B B B B

:56 Desktop
:56 Documents
:56 Downloads
:56 Music

156 Pictures
:56 Public
:56 Templates
:56 Videos
:52 led.py

Figure 3.10 File permissions of led.py.

Notice that if you now try to display the contents of file led.py using the cat command, you

will get an error message:

beagle@beagle: ~$ cat led.py
cat: led.py: Permission denied
beagle@beagle: ~$

All the permissions can be removed from a file by the following command (Figure 3.11):

pi@raspberrypi: ~$ chmod a= led.py

beaglefbeagle:~$ chmod a= led.py

beaglefbeagle:~§ ls

total 36K
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

2
2
2
2
2
2
2
2

beagle
beagle
beagle
beagle
beagle
beagle
beagle
beagle
beagle

beaglefbeagle:~5 [I

-1lh

beagle
beagle
beagle
beagle
beagle
beagle
beagle
beagle
beagle

b b b b B e

.0K
0K
0K
0K

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Oct

OB e b b b b b b

:56 Desktop
:56 Documents
:56 Downloads
:56 Music

:56 Pictures
:56 Public
:56 Templates
:56 Videos
:52 led.py

Figure 3.11 Remove all permissions.

e 33

The Beagle-Y AI Book

In the following example, rwx user permissions are given to file led.py:
beagle@beagle: ~$ chmod u+rwx led.py

Figure 3.12 shows the new permissions of file led.py.

beaglelbeagle:~$ chmod u+rwx led.py
beagle@fbeagle:~§ 1ls -lh
total 36K

drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Desktop
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Documents
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 0B:56 Downlocads
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Music
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Pictures
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Public
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Templates
drwxr-xr-x 2 beagle beagle 4.0K Sep 4 08:56 Videos
—IWR-———=~ 1 beagle beagle 119 Oct 9 22:52 led.py

beaglefbeagle:~$ I
Figure 3.12 New permissions of file led.py.

To change the working directory, the command cd is used. In the following example, we
change our working directory to Music:

beagle@beagle: ~$ cd /home/pi/Music
beagle@beagle: ~/Music $

To go up one directory level, i.e., to our default working directory:

beagle@beagle: ~/Music $ cd ..
beagle: ~$

To change your working directory to Music, you can also enter the command:

beagle@beagle: ~$ cd ~/Music
beagle@beagle: ~/Music $

To go back to the default working directory, you can enter:

beagle@beagle: ~/Music $ cd ~
beagle@beagle: ~$

To find out more information about a file, you can use the file command. For example:
beagle@beagle: ~$ file led.py
led.py: Python script, ASCII text executable
beagle@beagle: ~$

The =R argument of the command Is lists all the files in all the subdirectories of the current
working directory.

e 34

Chapter 3 ¢ Using the Console Commands

To display information on how to use a command, you can use the command man. Figure
3.13 shows an example to get help on using the mkdir command. Press q to exit from the
man menu.

MEDIR (1) User Commands MEDIR (1)
NAME
mkdir - make directories
SYNOPSIS
mkdir [OPTION]... DIRECTORY...
DESCRIPTICN

Create the DIRECTORY (ies), if they do not already exist.

Mandatory arguments to long options are mandatory for short optiong
too.

-m, --mode=MODE

set file mode (as in chmod), not a=rwx - umask

-p, —-parents
no error if existing, make parent directories as needed, with
their file modes unaffected by any -m option.

Manual page mkdir(l) line 1 (press h for help or g to quit)

Figure 3.13 Help on mkdir command (part of the display is shown).

Help
The command man usually gives several pages of information on how to use a command.
You can type q to exit the command man and return to the operating system prompt.

The command less can be used to display a long listing one page at a time. Using the up
and down arrow keys, we can move between pages. An example is given below. Type q to
exit:

beagle@beagle: ~$ man Is | less
<display of help on using the Is command>
beagle@beagle: ~$

Date and Time
To display the current date and time, the command date is used. For example:

beagle@beagle: ~$ date
Thu Oct 10 10:01:20 UTC 2024
beagle@beagle: ~$

Copying a File
To make a copy of a file, use the command cp. In the following example, a copy of the file

led.py is made, and the new file is given the name test.txt:

beagle@beagle: ~$ cp led.py test.py
beagle@beagle: ~$

e 35

The Beagle-Y AI Book

Wildcards

You can use wildcard characters to select multiple files with similar characteristics. e.g.,
files having the same file extension names. The * character is used to match any number of
characters. Similarly, the ? character is used to match any single character. In the example
below, all the files with extensions .txt are listed:

beagle@beagle: ~$ Is *.py
led.py test.py
beagle@beagle: ~$

The wildcard characters [a-z] can be used to match any single character in the specified
character range. An example is given below, which matches any files that start with letters
o, p, q,r, s, ort, and with the .py extension:

beagle@beagle: ~$ Is [o-t]*.py
test.py
beagle@beagle: ~$

Renaming a File
You can rename a file using the mv command. In the example below, the name of the file
test.py is changed to test2.py:

beagle@beagle: ~$ mv test.py test2.py
beagle@beagle: ~$

Deleting a File
The command rm can be used to remove (delete) a file. In the example below, file test2.
txt is deleted:

beagle@beagle: ~$ rm test2.py
beagle@beagle: ~$

The argument =v can be used to display a message when a file is removed. Also, the
argument —i asks for confirmation before a file is removed. In general, the two arguments
are used together as =vi. An example is given below:

beagle@beagle: ~$ rm -vi test2.py
rm: remove regular file 'test2.py'? y
removed 'test2.py"

beagle@beagle: ~$

Sorting a file
The command sort displays the contents of a file in ascending order. The general format of

this command is:

sort <options> <filename>

e 36

Chapter 3 ¢ Using the Console Commands

Valid options are:

-u Removes duplicates from the output
-r Sorts the output in descending order
-0 Writes the sorted output to a file

Word count
The command wc <filename> displays the word count in a file.

File differences
The command diff <filel> <file2) displays the differences between two files, line by line.

Removing a Directory
A directory can be removed using the command rmdir:

beagle@beagle: ~$ rmdir Music
beagle@beagle: ~$

Re-directing the Output
The greater-than sign > can be used to re-direct the output of a command to a file. For
example, we can re-direct the output of the command Is to a file called Istest.txt:

beagle@beagle: ~$ Is > Istest.txt
beagle@beagle: ~$

The command cat can be used to display the contents of a file:

beagle@beagle: ~$ cat led.py
This is a file

This is line 2

beagle@beagle: ~$

Using two greater-than signs >> adds to the end of a file.

Writing to the Screen or a File

The command echo can be used to write to the screen. It can be used to perform simple
mathematical operations if the numbers and the operation are enclosed in two brackets,
preceded by a $ character:

beagle@beagle: ~$ echo $((5*6))
30
beagle@beagle: ~$

The command echo can also be used to write a line of text to a file. An example is shown
below:

e 37

The Beagle-Y AI Book

beagle@beagle: ~$ echo a line of text > lin.dat
beagle@beagle: ~$ cat lin.dat

a line of text

beagle@beagle: ~$

Matching a String

The command grep can be used to match a string in a file. An example is given below
assuming that the file lin.dat contains sting a line of text. Notice that the matched word is
shown in bold:

beagle@beagle: ~$ grep line lin.dat
a line of text
beagle@beagle: ~$

Head and Tail Commands
The command head can be used to display the first 10 lines of a file. The format of this

command is as follows:

beagle@beagle: ~$ head led.py

beagle@beagle: ~$

Similarly, the command tail is used to display the last 10 lines of a file. The format of this
command is as follows:

beagle@beagle: ~$ tail led.py

beagle@beagle: ~$

The command which displays the location of an executable program. For example, the
location of the Python program can be found as follows:

beagle@beagle: ~$ which python
/usr/bin/python
beagle@beagle: ~$

Super User Commands

Some of the commands are privileged and only authorized users can use them. Inserting
the word sudo at the beginning of a command gives us the authority to use the command
without having to log in as an authorized user.

What software is installed on my BeagleY-Al

To find out what software is installed on your system, enter the following command. You
should get several pages of display (Figure 3.14).

e 38

Chapter 3 ¢ Using the Console Commands

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Exrr?=(none) /Reinst-required (Status,Err: uppercase=bad)

||/ Name Version

ii ael 2.3,1-3

ii adduser 3.134

ii adwaita-icon-theme 43-1

ii adwaita-gt:armé4 1.4.2-3

ii alsa-utils 1.2.8-1

ii apparmor 3.0.8-3

ii appstream 0.16.1-2

ii apt 2.6.1

ii apt-file 3.3

ii apt-utils 2.6.1

ii aspell 0.60.8-4+bl

ii aspell-en 2020.12.07-0-1
ii at-spi2-common 2.46.0-5

ii at-spi2-core 2.46.0-5

ii avahi-daemon 0.8-10

Figure 3.14 Software installed (part of the display is shown).

You can also find out if a certain software package is already installed on your system using
the command dpkg with option -s.

If the software is not installed, you get a message similar to the following (assuming we are
checking to see if a software package called bbgd is installed):

beagle@beagle: ~$ dpkg —s bbgd
dpkg-query: package 'bbgd' is not installed and no information is available

beagle@beagle: ~$

3.3.3 Resource monitoring on BeagleY-AIl

System monitoring is an important topic for managing the usage of your BeagleY-Al. One
of the most useful system monitoring commands is the command top, which displays the
current usage of system resources and displays which processes are running and how much
memory and CPU time they are consuming.

Figure 3.15 shows a typical system resource display obtained by entering the following
command (only part of the display is shown, enter q to exit):

beagle@beagle: ~$ top
beagle@beagle: ~$

e 39

The Beagle-Y AI Book

tep - 10:16:50 up 1:24, 2 users, load average: 0.00, 0.00, 0.00
Tasks: 188 total, 1 running, 187 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.1 us, 0.2 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3792.8 total, 2284.5 free, B866.7 used, 797.6 buff/cache
MiB Swap: 4096.0 total, 4096.0 free, 0.0 used. 2926.1 avail Mem
PID USER -]
3213 beagle 20 0 8788 4356 2468 R 0.7 0L 0:00.27 tep
1570 beagle 20 0 416128 31936 23584 s 0.3 0.8 0:08.91 panel-8+
1 root 20 0 21508 12248 8884 s 0.0 0.3 0:04.28 systemd
2 root 20 0 0 0 0s 0.0 0.0 0:00.03 kthreadd
3 root 0 -20 0 0 0I 0.0 0.0 0:00.00 rcu_gp
4 root 0 -20 0 0 0rI 0.0 0.0 0:00.00 rcu par+
5 root 0 -20 0 0 0I 0.0 0.0 0:00.00 slub fl+
6 root 0 -20 0 0 0I 0.0 0.0 0:00.00 netns
10 root 0 -20 (4] 0 0I 0.0 0.0 0:00.00 mm_perc+
11 root 20 o0 0 0 0I 0.0 0.0 0:00.00 rcu tas+
12 root 20 0O 0 o 0I 0.0 0.0 0:00.00 rcu_ tas+
13 root 20 0 (1] [¢] 0I 0.0 0.0 0:00.00 rcu tas+
14 root 20 0 0 0 0s 0.0 0.0 0:00.07 ksoftir+
15 root 20 0 0 0 0I 0.0 0.0 0:00.74 rcu pre+
Figure 3.15 Typical system resource display (part of the display is shown).

Some of the important points in Figure 3.15 are summarized below (for lines 1 to 5 of the
display):

e There are a total of 188 processes in the system.

e Currently, only one process is running, 187 processes are sleeping, and 0
processes are stopped.

e The percentage CPU utilization is 0.1us for user applications (us).

e The percentage CPU utilization is 0.2 us for system applications (sy).

e There are no processes requiring more or less priority (ni).

e There are no processes waiting for I/O completion (wa).

e There are no processes waiting for hardware interrupts (hi).

e There are no processes waiting for software interrupts (si).

e There is no time reserved for a hypervisor (st).

e The total usable memory is 3792 bytes, of which 866 bytes are in use, 2284
bytes are free, and 797 bytes are used by buffers/cache.

e Line 5 displays the swap space usage.

The process table gives the following information for all the processes loaded into the
system:

e PID: the process ID number

e USER: owner of the process

e PR: priority of the process

e NI: the nice value of the process

e VIRT: the amount of virtual memory used by the process
e RES: the size of the resident memory

e SHR: shared memory the process is using

e S: process status (sleeping, running, zombie)

e %CPU: the percentage of CPU consumed

e %MEM: percentage of RAM used

e 40

Chapter 3 ¢ Using the Console Commands

e TIME+: total CPU time the task used
e COMMAND: The actual name of the command

The command htop is similar to the command top, except it has more features and is
more user-friendly.

The command ps can be used to list all the processes used by the current user:

beagle@beagle: ~$ ps

PID TTY TIME CMD
1842 pts/0 00:00:00 bash
3255 pts/0 00:00:00 ps

beagle@beagle

The command ps —ef gives a lot more information about the processes running in the
system.

Killing a process
There are many options for killing (or stopping) a process. A process can be killed by
specifying its PID and using the following command:

beagle@beaglei: ~$ kill -9 <PID>

Disk (microSD card) usage
The disk-free command df can be used to display the disk usage statistics. An example is
shown in Figure 3.16. Option =h displays in human-readable form.

beaglefbeagle:~$ df -h

Filesystem S8ize Used Avail Use% Mounted on
/dev/root 256 6.46G 18¢ 28% /

devtmpfs 1.56 0 1.5¢ 0% /dev

tmpfs 1.96 0 1.9 0% /dev/shm

tmpfs 759M 1.5M 758M 1% /run

tmpfs 5.0 B8.0K 5.0M 1% /run/lock
/dev/mmeblklpl 253M 57M 196M 23% /boot/firmware
tmpfs 380M 60K 380M 1% /run/user/1000

beaglelbeagle:~$.
Figure 3.16 Command: df -h

The command free shows how much memory is used and the amount of free memory.

3.3.4 Shutting Down

Although you can disconnect the power supply from your BeagleY-AI when you finish
working with it, it is not recommended since there are many processes running on the
system and it is possible to corrupt the file system. It is much better to shut down the
system in an orderly manner.

The following command will stop all the processes, make the file system safe, and then turn
off the system safely:

e 41

The Beagle-Y AI Book

beagle@beagle: ~$ sudo halt
The following command stops and then re-starts the system:
beagle@beagle: ~$ sudo reboot

The system can also be shut down and then re-started after a time by entering the following
command. Optionally, a shutdown message can be displayed if desired:

beagle@beaglei: ~$ shutdown -r <time> <message>
For example, to shut down at 1:55 AM, enter:
beagle@beagle: ~$ sudo shutdown -h 01:55
or enter the following command to shut down immediately:
beagle@beagle: ~$ sudo shutdown now
The system will power off immediately!

3.3.5 Networking
Some useful networking commands are:

ifconfig: check the IP address of your Raspberry Pi.

iwconfig: check which network the BeagleY-AlI is using. An example is shown in Figure
3.17. Here, the SSID of the Wi-Fi adapter used is BTHub5-6SPN.

beaglefbeagle:~$ iwconfig

lo no wireless extensions.
dummy 0 no wireless extensions.
eth0 no wireless extensions.
wlanO IEEE 802.11 ESSID:"BTHub5-6SPN"

Mode :Managed Frequency:2.437 GHz Access Point: BB:BE:F4:AF:57:9C
Bit Rate=65 Mb/s Tx-Power=20 dBm

Retry short limit:7 RTS thr:off Fragment thr:off

Power Management:off

Link Quality=69/70 Signal level=-41 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:10 Invalid misc:16 Missed beacon:0

SoftAp0 IEEE 802.11 Mode:Master
Retry short limit:7 RTS thr:off Fragment thr:off
Power Management:off

usb0 no wireless extensions.

Figure 3.17 Command iwconfig

e 42

Chapter 3 ¢ Using the Console Commands

ping: used to test the availability of a network device. An example is shown in Figure 3.18.

beaglelbeagle:~$ ping 192.168.1.127

PING 192.168.1.127 (192.168.1.127) 56(84) bytes of data.

64 bytes from 192.168.1.127: icmp segq=l ttl=64 time=0.273 ms
64 bytes from 192.168.1.127: icmp segq=2 ttl=64 time=0.177 ms
64 bytes from 192.168.1.127: icmp seq=3 ttl=64 time=0.179 ms
64 bytes from 192.168.1.127: icmp seq=4 ttl=64 time=0.175 ms
64 bytes from 192.168.1.127: icmp seq=5 ttl=64 time=0.163 ms
64 bytes from 192.168.1.127: icmp seq=6 ttl=64 time=0.145 ms
~C

--- 192.168.1.127 ping statistiecs ---

6 packets transmitted, 6 received, 0% packet loss, time 5112ms
rtt min/avg/max/mdev = 0.145/0.185/0.273/0.040 ms

Figure 3.18 Command ping

wget: this command is used to download a file from the web and saves the file in the
current directory.

hostname - I: shows the IP address.
iwctl device list: lists the wireless devices attached (you should see wlan0 listed).

iwctl station wlan0 get-networks: lists of available Wi-Fi networks (Figure 3.19).

beagle@beagle:~$ iwctl station wlan0 get-networks
Available networks

Network name Security Signal
> BTHub5-6SPN psk kkkk
DIRECT-1F-HP Laser 150nw psk hkkk
EE WiFi open dkdd
World Machine psk hdedkk
The Hotal psk hhkk
BT-X5F9ZQ psk dkkk
Hi Spencer psk b
TP-Link 46F1 psk kkkk
BT-HXAGHX psk kkkk
ASUS_XD5 psk *kkd

beaglelbeagle:~$ [
Figure 3.19 List of available networks.

iwctl station wlan0 show: check wlan0 status
3.3.6 System information and other useful commands

The command uname is used to display system information. This command has the
following options:

-a Show all system information
-s Display the kernel name
-n Print the network node hostname

e 43

The Beagle-Y AI Book

-r Print the kernel release
-V Print the kernel version number
-m Print the system hardware name
-p Print the processor type

=i Print the hardware platform type

-0 Print the operating system type

If you have executed many commands and want to use some of them again but you cannot
remember the command name, you can use the command history. An example is shown
in Figure 3.20. To execute a command from the history, enter ! followed by the command
number.

beaglelbeagle:~$ history
1l nano x.y

2 y

3 1s

4 python

5 ifconfig

6 sudo apt-get install tightvncserver
7 tightvncserver

8 hostname -I

9 wvncserver

10 chmod +x home/debian/xstartup

11 1s ~/vnec

12 1s ~/.vnec

13 1s ~/.vnc/xstartup

14 chmod +x ~/.vnc/xstartup

15 cat ~/.vnc/xstartup

16 sudo apt-get install dbus-x11

17 1s ~/.vne/xstartup

18 1s ~/.wvnc/xstartup/

19 cp ~/.vne/xstartup ~/.vnc/xstartup2

Figure 3.20 The history command.
The command clear is also useful and it is used to clear the screen.
To install a package, use the command: sudo apt 1install <package_name>

The & operator allows you to run any command in the background so that you can use the
terminal for other tasks. This operator must be added to the end of a command.

The && operator allows you to run two or more commands at the same time. For example:
commandl && command2

e 44

Chapter 4 e GUI Desktop Applications

Chapter 4 e GUI Desktop Applications

4.1 Overview

In this chapter, you will learn how to use some of the important GUI Desktop applications. It
is assumed that you have a monitor, a keyboard, and a mouse connected to your BeagleY-
Al

4.2 The GUI Desktop

Figure 4.1 shows the GUI Desktop. At the top left corner, there is the Applications icon.
On the left side of the screen, we have icons for Trash, File System, and Home. At the top
right-hand side, we have the Wi-Fi icon, Speaker icon, date and time, and the computer
name. At the bottom of the screen, we have several icons for quick access, such as the
Terminal Emulator, the File Manager, the Web Browser, the Application Finder, and the
Home directory icon.

Figure 4.1 The GUI Desktop.

4.2.1 Applications Menu
Figure 4.2 shows the items under the Applications Menu.

e 45

The Beagle-Y AI Book

™ Applications - Bl Termir

& Run Program
B Terminal Emulator
B File Manager

N ig

Development
W Intemet

I3 Multimedia

v v v w w w

System
About Xfce
® Log Out
. —

Figure 4.2 Items under the Applications Menu.

Terminal Emulator

This application is used to enter console commands to your BeagleY-Al. The window is

similar to the window opened when using the Putty. Figure 4.4 shows the Terminal Emulator
application window.

Terminal - beagle@beagle: -

w Tarminal Tabs Help

Figure 4.4 Terminal Emulator application window.

File Manager

This is a graphical file manager application (Figure 4.5). You can open files and folders,
delete files, create folders, zoom in and out, and many more file processing options.

® 46

Chapter 4 e GUI Desktop Applications

m beagle - Thunar A _ O X%
File Edit View Go Bookmarks Help
< D A @) B momefbeaglel (24
Places " _— P - P
- Computer D D \l/ @
m Desktop Desktop Documents Downloads Pictures Public
;E‘ Trash _— _m— i
Devices rj L]
M FlleSystem Templates Videos 10s led.py test.py

i

7 folders | 3 files: 188.1 KiB (192630 bytes) | Free space: 17.3 GiB

Figure 4.5 File Manager application window.

Mail Reader
This application can be used to read your mails.

Web Browser
Click on this application to start a Web Browser.

Settings

This menu item includes many applications (see Figure 4.6). With this menu, you can
change the display settings, configure color profiles, configure the keyboard, configure
the power manager, set up date and time, set up users and groups, and many more
applications. Some important applications are described below:

Desktop: use this application to change the wallpaper, change the color of the desktop,
change the icon size, etc. Figure 4.7 shows the Desktop application window.

Display: use this application to configure the display settings, such as the resolution, scale,
refresh rate, rotation, etc. Figure 4.8 shows the Display application window.

e 47

The Beagle-Y AI Book

e 48

Terminal - beagle@bea...
& Run Program...
Terminal Emulator
B File Manager

=) Mail Reader

€D Web Browser

@ settin

(8 = Settings Manager

& Accessories 3 Accessibility
= Development » ke Appearance
@ Internet » & Color Profiles
{4 Multimedia » [l Default Applications
i) System » M Desktop

't About Xfce Display
® Log Out

5 File Manager Settings
@ iwgtk
Keyboard
" Mouse and Touchpad
M Panel
® Power Manager
. Print Settings
‘ n PulseAudio Volume Control
4 Qt5 Settings
B Removable Drives and Media

Session and Startup
<= Settings Editor
& Time and Date

1 Users and Groups
1 Window Manager
&9 Window Manager Tweaks
B, Workspaces
Xfce Terminal Settings

Figure 4.6 Settings menu applications.

e Desktop _..

Background ~ Menus lcons

Wallpaper for my desktop

Folder: |] templates - Style: = Scaled

elp

-

Apply to all workspaces

Change the background in minutes: - 10 j: Random Order

X Close

Figure 4.7 Desktop application window.

Chapter 4 e GUI Desktop Applications

General Advanced

Display

& Help

Dell 22"

Resolution:

Scale:

Refresh rate:

Rotation:

Reflection:

1680x1050*

1x

59.95 Hz

None

None

-
16:10 »
-
-
-

-

v Apply

X Close

Figure 4.8 Display application window.

iwgtk: this is the Wi-Fi configuration application where all available networks are listed as
shown in Figure 4.9. You can see from this figure that the author's BeagleY-AlI is connected
to a network called BTHub5-6SPN.

P iwgtk P s
phy0 () Close
wlan0 Known networks
10:ca:bf:d9:e9:b2 Enabled: (:) Scan
Diagnostics Mode: Stationw Provision
7= BTHUBS-65PN PSK | Disconnect
’;;\\ DIRECT-1F-HP Laser 150nw PSK Connect
o EE WiFi Open Connect
“ov World Machine PSK Connect
7% The Hotal PSK Connect
!;\ BT-X5F9Z2Q PSK Connect
Hi Spencer E PSK Connect
TP-Link_46F1 PSK Connect
BT-HXAGHX PSK Connect
ASUS_XD5 PSK Connect

Figure 4.9 Available Wi-Fi networks.

Keyboard: this is a very useful application that enables you to change the keyboard settings,
such as the key repeat speed, cursor type, define keyboard shortcuts, and keyboard layout.
Figure 4.10 shows the Keyboard application window.

e 49

The Beagle-Y AI Book

i Keyboard T T =
Behavior Application Shortcuts Layout

General

Restore numn lock state on startup

Typing Settings
Enable key repeat
Repeat delay:

Repeat speed:

Cursor
Show blinking
Blink delay:
120
k
Test area:
:5; Help X Close

Figure 4.10 Keyboard application window.

Mouse and Touchpad: this application enables you to configure the mouse by specifying
the mouse type, mouse button configuration (left-handed or right-handed), mouse pointer
speed, mouse double-click time, etc.

Power Manager: with this application, you can configure the power button options, system
sleep mode (suspend or hibernate), display blanking after a given time, display brightness
control, and security settings. Figure 4.11 shows the Power Manager application window.

a Power Manager A - O X
General System Display Security

Buttons
When power button is pressed: Ask -
When sleep button is pressed: Do nothing -
When hibernate button is pressed: | Do nothing A g
When battery button is pressed: Do nothing -
Brightness step count: 10 - 4

Appearance
Status notifications
System tray icon

:3:}: Help X Close

Figure 4.11 Power Manager application window.

e 50

Chapter 4 e GUI Desktop Applications

Print Settings: with this application, you can configure a printer for your BeagleY-AlI.

PulseAudio Volume Control: this application enables you to set the volume control,
configure recording and playback, specify input device, etc.

Removable Drives and Media: use this application to mount removable devices, configure
CDs and DVDs, play CDs and DVDs, configure digital camera inputs, and configure to
run a program when a keyboard, mouse, or tablet is connected. Figure 4.12 shows the
application window.

! Removable Drives and Media e oz R
Storage Multimedia Cameras Printers Input Devices

Removable Storage

IB Mount removable drives when hot-plugged
Mount removable media when inserted

Browse removable media when inserted
Auto-run programs on new drives and media

Auto-open files on new drives and media

Blank CDs and DVDs
Burn a CD or DVD when a blank disc is inserted

Command for Data CDs: B
Command for Audio CDs: =
:-:i Help 3 close

Figure 4.12 Application window.
Session and Startup: this application is used to configure login and logout sessions,
auto-start application configuration, current and saved sessions, and manage remote
applications, etc.

Settings Editor: use this application to configure various display and keyboard options.

Time and Date: configure the current date and time using this application. Figure 4.13
shows the application window.

e 51

The Beagle-Y AI Book

@ Time and Date Settings A X
Time zone: Etc/UTC
Configuration: Manual -
Time: | 13 : |35 1] 34
Date: October 2024
Sun Mon Tue Wed Thu F Sat
1 2 3 4 5
6 7 8 9 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
& Unlock x r‘goge

Figure 4.13 Date and time application window.

Users Settings: this option allows you to add or delete users on the system. Figure 4.14
shows the application window. In this example, there are 3 users registered on the system:
Jane, John, and Beagle User (beagle).

E“ Display A - O X

General Advanced

Dell 22" -

Resolution: 1680x1050* 16:10w

Scale: 1x -
Refresh rate: | 59.95 Hz A4
Rotation: None A
Reflection: None A
 Apply
& Help k X Close

Figure 4.14 Users Settings application window.

Window Manager: use this application to configure window settings, such as the title
font, title alignment, button layout, keyboard shortcuts, window focus, and various other
window-based options.

Xfce Terminal Settings: with this application, you can configure the terminal preferences,
display the toolbar and menubar, display borders around windows, colors, shortcut options,
mouse pointer options, and many more.

Accessories

This menu item includes several applications (Figure 4.15). Some commonly used
applications are described in this section.

e 52

Chapter 4 e GUI Desktop Applications

Application Finder: use this application to locate an application in the system.

Barrier: use this application to share your mouse and keyboard between multiple computers

on your desk.

Bulk Rename: with this application, you can rename multiple files.

Applications - Terminat - beagle@bea...

@] Run Program...

B Terminal Emulator
B File Manager

[~ Mail Reader

& web Browser

W Settings

a Accessories &% application Finder

»
1 3
s Development » & Archive Manager

@ Internet » M Barrier

I Multimedia » T Bulk Rename

) System » B Screenshot

About Xfce 5P Thunar File Manager
© Log Out & Vim
N

Figure 4.15 Accessories menu options.

Screenshot: this application enables you to take screenshots. You can specify to capture
either the entire screen, an active window, or a selected region. You can specify a delay
before capturing the screen if required.

VIM: this is a text editor that you can use either to create program files or any other text

files.

Development

Thonny: this is the Thonny Integrated Development Environment (IDE) and a text editor
that can be used to develop Python programs. You can create a Python program, download
it to BeagleY-AI, and then run it. We will cover how to use Thonny in a later chapter. Figure
4.16 shows the Thonny screen.

e 53

The Beagle-Y AI Book

Tk Thonny - <untitled> @ 1:1 a— O

File Edit View Run Tools Help
DEE O @ ™=
| <untitled> |

=2 1
\
|
|

Local Python 3 = ;‘usrfhin,‘pythona

Figure 4.16 The Thonny screen.

Internet
This menu option includes the following applications. Use the Chrome or Firefox to access
the internet:

e Chrome Web Browser
e Firefox ESR
o Firefox Nightly

Multimedia
PulseAudio Volume Control: as described earlier, this application allows you to configure
the recording and playback of audio, as well as the audio input and output ports.

System

This menu has the applications shown in Figure 4.17. Some commonly used applications in
this menu are described below.

e 54

Chapter 4 e GUI Desktop Applications

M Applications - B Terminal - beagle@bea...

&) Run Program

EX Terminal Emulator

- File Manager
Mail Reader

@ web Browser

w Settings

i Accessories
Development

& Internet

v v v w w

I Multimedia

O System » = Htop
About Xfce Print Settings

@ Log Out & Thunar File Manager

BRI 51 Time and Date
Users and Groups

B xfce Terminal

Figure 4.17 System applications window.

htop: this application displays the tasks running on the system. An example is shown in
Figure 4.18.

>_] Terminal - A~ - O X
File Edit View Terminal Tabs Help

192
0.22 8.22
:18:32

.43 htop

.21 xfced-termina
L41

.11 fusr/bin/dbus
.38 /usr/lib/aarc
.68 /sbin/init
.76 /1ib/systemd/
.15 /lib/systemd/
.45 /1ib/systemd/
.6R /1lib/systemd/
.df.flib/systemdf

N

28 0 90 9 0 99 W ol

NN LN W
Soo0eSS e S

336

fiFs

Figure 4.18 htop command display.

ﬁ
Cﬂ_

Print Settings: as described earlier, use this option to configure a printer for the system.

e 55

The Beagle-Y AI Book

Log Out
This menu includes the following applications (Figure 4.19):

e Log Out

e Restart

e Shut Down

e Suspend

e Hibernate

e Hybrid Sleep
e Switch User

Log out Beagle User

® ® ©

Log Out Restart Shut Down
Suspend Hibernate Hybrid Sleep Switch User

[save session for future logins

Cancel

Figure 4.19 Log Out window.

e 56

Chapter 5 ¢ Using a Text Editor in Console Mode

Chapter 5 e Using a Text Editor in Console Mode
5.1 Overview
A text editor is used to create or modify the contents of a text file. There are many text
editors available for the Linux operating system. Some popular ones are nano, vim, Vi,
Thonny, gedit, and many more. In this chapter, we will look at some of these text editors
and show how to use them.
5.2 The nano Text Editor
Start the nano text editor by entering the word nano, followed by the filename you wish
to create or modify. The example below shows how to create a new file called first.txt:

beagle@beagle: ~ $ nano first.txt
You should see the editor screen as in Figure 5.1. The name of the file to be edited is written
at the top middle part of the screen. The message New File at the bottom of the screen
shows that this is a newly created file. The shortcuts at the bottom of the screen are there
to perform various editing functions. These shortcuts are accessed by pressing the Ctrl key
together with another key. Some of the useful shortcuts are given below:

Ctrl+W: Search for a word

Ctrl+V: Move to the next page

Ctrl+Y: Move to the previous page

Ctrl+K: Cut the current line of text

Ctrl+R: Read file

Ctrl+U: Paste the text you previously cut

Ctrl+3: Justify

Ctrl+\: Search and replace text

Ctrl+C: Display the current column and row position

Ctrl+G: Get detailed help on using the nano

Ctrl+-: Go to specified line and column position

Ctrl+0: Save (write out) the file currently open

Ctrl+X: Exit nano

e 57

The Beagle-Y AI Book

& pi@raspenyp o

g* Location
i Go To Line

Figure 5.1 nano text editor screen.
Now, type the following text as shown in Figure 5.2:

nano is a simple and yet powerful text editor.
This simple text example demonstrates how to use nano.
This is the last line of the example.

ano 2 File: firat.txt Modified

Figure 5.2 Sample text.

The use of nano is now demonstrated with the following steps:
Step 1: Go to the beginning of the file by moving the cursor.
Step 2: Look for the word simple by pressing Ctrl+W and then typing simple in the

window opened at the bottom left-hand corner of the screen. Press the Enter key. The
cursor will be positioned on the word simple (see Figure 5.3).

e 58

Chapter 5 e Using a Text Editor in Console Mode

pi@raspberrypi: ~ . S an = {if= %J

GNU nano 2.2.6 : firat.txt Modified

Figure 5.3 Searching word simple.

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing
Ctrl+K. The first line will disappear as in Figure 5.4.

@ pi@raspbemypi: ~ | =HEEN X

GNU nanao 2.2.6 File: first.txt Modified -

Figure 5.4 Cuttig the first line.

Step 4: Paste the cut line after the first line. Place the cursor on the second line and press
Ctrl+U (see Figure 5.5).

EP piraspberrypi ~ L= [E e

. = B ¥ -
GHU nano 2.2.6 File: first.txt Modified

Figure 5.5 Paste the line cut previously.

Step 5: Place the cursor at the beginning of the word simple on the first row. Enter
Ctrl+C. This word's row and column positions will be displayed at the bottom of the screen
(see Figure 5.6).

e 59

The Beagle-Y AI Book

pi@raspberrypi: ~

=] B [

GNU nano 2.2.6

[line 1/5 (20%);
cf

File:

d

firat.txt

col ‘6/55 [10%); char 5/141

P

(3%} 1

Modified

Figure 5.6 Displaying the row and column position of a word.

Step 6: Press Ctrl+G to display the help page as in Figure 5.7. Notice that the display is
many pages long and you can jump to the next pages by pressing Ctrl+Y or to the previous
pages by pressing Ctrl+V. Press Ctrl+X to exit the help page.

[[. [

Modified

é’? pi@raspberrypi: ~
GNU pano 2.2.6

- - . e e
File: first.txt

Figure 5.7 Displaying the help page.

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter
key, to move the cursor to line 2, column 5 (see Figure 5.8).

e 60

Chapter 5 ¢ Using a Text Editor in Console Mode

pi@raspberrypi: ~ " Se 88 = = ﬁf)h]

GNU nano 2.2.86 File: first.txt Hodified

[Enter line number, column nw

Figure 5.8 Moving to line 2, column 5.

Step 8: Replace the word example with the word file. Press Ctrl+\ and type the first
word as example (see Figure 5.9). Press Enter and then type the replacement word as
file. Press Enter and accept the change by typing .

=R

@ pi@raspberrypi: ~ da s]
GHU nano 2.2.6 File: firgt.ixt Modified

Figure 5.9 Replacing text.
Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then
enter the filename to be written to, or simply press Enter to write to the existing file (first.
txt in this example). The file will be saved in your current working directory.
Step 10: Display the contents of the file:
beagle@beagle: ~ $ cat first.txt

This simple text file demonstrates how to use nano.

e 61

The Beagle-Y AI Book

In summary, nano is a simple and yet powerful text editor that allows us to create new

Nano is a simple and yet powerful text editor
This is the last line of the example.

beagle@beagle: ~ $

text files or edit existing files.

5.3 The vi Text Editor

The vi text editor has been around for many years and it has been the standard Unix
operating system default text editor. The vi editor is a fully featured, powerful text editor
for doing many different tasks. The only problem with using vi is that it is not very user-
friendly, and learning may take some time. In this section, we will be looking at the basic
features of this editor and show how we can use it in simple editing applications.

Notice that you cannot use the keyboard arrow keys with the vi editor. Some of the useful

vi editor commands are listed below:

e 62

7z

'wq

:q!

Il i

O XTI T s O

saves the changes and exits vi
saves the changes and exits vi
exits without saving the changes

moves the cursor left (backwards)
moves the cursor down

moves the cursor up

moves the cursor right (spacebar)

moves to the last column on the current line

moves the cursor to the first column on the current line
moves the cursor to the beginning of the next word
moves the cursor to the beginning of the previous word
moves the cursor to the top of the screen

moves the cursor to the middle of the screen

moves the cursor to the bottom of the screen

moves to the last line in the file

moves to line n

replaces the character under the cursor with the next character typed

inserts before the cursor
appends after the cursor
appends at the end of the line

deletes the character under the cursor
deletes the line under the cursor
deletes the word under the cursor

Chapter 5 e Using a Text Editor in Console Mode

/ searches for a word (forwards)
? searches for a word (backwards)
'S searches and replaces a word in the current line

Start the vi text editor by typing vi followed by the name of the file to be created or
modified. In this example, it is assumed that a new file called myfile.txt is to be created:

beagle@beagle: ~ $ vi myfile.txt

You should see the vi text editor screen displayed as in Figure 5.10. The name of the file
being edited is displayed at the bottom of the screen.

[(B [

pi@raspberrypi: ~

Figure 5.10 vi text editor screen.

The vi editor is different from most other text editors in that it is not possible to start typing
inside the editor window. The steps for editing this file are given below:

Step 1: The vi editor has different modes and you must be in the insert mode to be able
to write to the window. Press i to move to the insert mode. Then type in the following text
(see Figure 5.11):

The vi text editor is a very powerful text editor.

But it is not easy to use this editor.
This exercise should help you understand the basic commands.

e 63

The Beagle-Y AI Book

pi@raspberrypi: ~ - daas | — | (=} |—&|

Figure 5.11 Entering the text.

Step 2: To come out of the insert mode, press the ESC key. To save the file, type characters
:w. You can exit the editor after saving the changes by typing :q. Alternatively, you can
type ZZ (note upper case) to save and exit. If you make changes to the file and attempt to
quit without saving, you will get an error message. If you want to exit without saving the
changes, simply type :q!

Step 3: Make sure you are in the command mode and type the character / followed by a
word to search for this word in the text. For example, type /editor to search for the word
editor (see Figure 5.12) in the text.

@ pi@raspberrypi |) [

m

Figure 5.12 Searching for text.

Step 4: Insert the word is before the word editor. Type i followed by is and space and
terminate insert mode by pressing the ESC key.

e 64

Chapter 5 ¢ Using a Text Editor in Console Mode

Step 5: Move the cursor right by pressing the | key. Similarly, move the cursor left by
pressing the h key. Move the cursor down (to the second line) by pressing the j key.

Step 6: Search for the word this and delete it. Type /this followed by the Enter key. Type
dw to delete the word.

Step 7: Delete the second line where the cursor is by typing dd

Step 8: Search for the word help and replace it with the word guide. Go to the line where
the word help is. Type /help, then type :s/help/guide/

Step 9: You can search and replace a word in any line other than the current line. For this
example, position the cursor on the first line. Change the word basic in the second line to
BASIC. Type:

:1,2s/basic/BASIC/

Notice that you can specify the range of lines by separating them with a comma. In this
example, the search starts from line 1 and terminates at line 2.

5.4 Using Thonny

Thonny is more than a simple text editor. It is an Integrated Development Environment
(IDE) that can be used to write programs and then upload them to your BeagleY-AI (see
Figure 4.16)

5.4.1 The Thonny IDE
Start the Thonny IDE from the GUI Desktop under the Development menu.

The screen consists of two parts: the upper part is where you write your programs and the
lower part is the shell where small interactive Python program codes can be written. This
part is mainly used for testing small codes.

The upper part contains the following menu items:

File: click to create a new program (or a text file), open an existing program, save a
program, or print a program.

Edit: click to cut, copy, paste, select, and find & replace text or characters in a file.

View: click to view files, heap, exceptions, program tree, stack, variables, program
arguments, focus editor, and change the font size.

Run: click to configure the Python interpreter, run a program, debug a program, and send
EOF/Soft reboot.

e 65

The Beagle-Y AI Book

Tools: click to manage packages, open the system shell, open the Thonny folder, and
manage plug-ins.

Help: click to display the help contents, version history, report problems, and About Thonny.

The Thonny IDE must be configured before it is used to write and upload programs to your
BeagleY-Al. The details of this are given in a later chapter.

5.5 The gedit Text Editor

The gedit text editor is the default editor in some Linux systems, and it is easy to use while
offering many options. To use gedit on BeagleY-Al, you need to install it first. Enter the
following command to install gedit:

sudo apt install gedit

5.5.1 Using gedit
As an example, let us create a simple text file named test.dat, consisting of 3 lines. Enter
the following command to start gedit:

gedit test.dat

A new screen will pop up and wait for you to type your text (or the program). Type the
following lines (Figure 5.13):

this is line 1
this is line 2
this is line 3

You can use the three lines next to the Save button to perform the following:

e Save the file created

¢ Find text inside the file

¢ Find and replace text inside the file
e Go to a specified line

e Check spelling (in Tools)

e Set the language (in Tools)

e Document statistics (in Tools)

e Display line numbers (in Preferences)
e Display status bar (in Preferences)
e Text wrapping (in Preferences)

e Highlight text (in Preferences)

e Keyboard shortcuts

e Help

Click Save to save your text file.

e 66

Chapter 5 ¢ Using a Text Editor in Console Mode

Open » [

1 this is line 1
2 this is line 2
3 this is ine 3
4

test.dat

Save

=

Plain Text v Tab Width: 8 v

Ln1, Col 12

INS

Figure 5.13 Text file using gedit.

e 67

The Beagle-Y AI Book

Chapter 6 e Creating and Running a Python Program

6.1 Overview

Several Integrated Development Environments (IDEs) can be used to program the Beagle-Y
Al Visual Studio (VS) includes support for 36 programming languages, including C++, C#,
BASIC, and several other others. It also provides open-source support for Python through
the Python Development and Data Science workloads, as well as the free Python Tools for
Visual Studio extension.

You will be programming your BeagleY-AI computer using the Python programming
language. It is worthwhile to look at the creation and running of a simple Python program
on your BeagleY-AI computer. In this Chapter, the message Hello From BeagleY-AI will
be displayed on your PC screen.

As described below, there are three methods that you can create and run Python programs
on your BeagleY-Al.

6.2 Method 1 - Interactively from Command Prompt in Console Mode
In this method, you will log in to your BeagleY-AI through a PC using SSH, or start the
Terminal Emulator in GUI Desktop mode. Here, you will create and run the Python program
interactively. This method is excellent for small programs. The steps are as follows:

e Log in to your BeagleY-Al using SSH or start the Terminal Emulator.

e At the command prompt, enter python. You should see the Python command
mode, which is identified by three characters >>>

e Type the program:

print ("Hello From BeagleY-AI")

e The text will be displayed interactively on the screen, as shown in Figure 6.1.
Note that, at the time of writing this book, the Python version was: 3.11.2.

beaglefbeagle:~$ python

Python 3.11.2 (main, Aug 26 2024, 07:20:54) [GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello from BeagleY-AI")

Hello from BeagleY-AI

>>> i

Figure 6.1 Running a program interactively.
e Type Ctrl+z to exit from the program.

6.3 Method 2 - Create a Python File in Console Mode

In this method, you will log in to your BeagleY-AI using SSH as before, or start the Terminal
Emulator in GUI Desktop mode and then create a Python file. A Python file is simply a text
file with the extension .py. You can use a text editor, e.g., the nano text editor to create
your file. In this example, a file called hello.py is created using the nano text editor. Figure

e 68

Chapter 6 ¢ Creating and Running a Python Program

6.2 shows the contents of the file hello.py. This figure also shows how to run the file under
Python. Notice that the program is run by entering the command:

python hello.py

beaglelfbeagle:~$ cat hello.py
print ("Hello From BeagleY-AI")

beaglel@beagle:~$ python hello.py
Hello From BeagleY-AI
beaglefbeagle:~$ ||

Figure 6.2 Creating and running a Python file.

6.4 Method 3 - Create a Python File in GUI Desktop Mode

In this method, you will be using the Thonny IDE to create and run your program. The
Thonny IDE must be configured before it can be used to write and upload programs to your
BeagleY-Al. Click the bottom-right corner of the screen to select your processor type and
choose Local Python 3. You are now ready to write your program.

The steps are:
e Type the following code to the upper part of the screen:

print("Hello From BeagleY-AI")
e Click File -> Save and save with the name hello.py
e Click the Run icon (green menu button at the top) to run the program. The

output of the program will be displayed at the bottom of the screen, as shown
in Figure 6.3.

e 69

The Beagle-Y AI Book

Th Thonny - /home/beagle/he|
File Edit View Run Tools Help

Y= o % e ™
-helln.py |
1 print("Hello from BeagleY-AI")
2 |

[l

| shell |

>>>

Hello from BeagleY-AI

>>=

Figure 6.3 Run the program (part of the display is shown).

You can run small programs in interactive mode by entering them at the lower part of the
screen called Shell. The results will be displayed immediately under the shell window.

6.5 Which Method?

The choice of a method depends upon the size and complexity of a program. Small
programs can be run interactively without creating a program file. Larger programs can be
created as Python files and then they can run either in the console mode or in Desktop GUI
mode under the Thonny IDE. Running under the Thonny IDE has the advantage that code
justification is corrected automatically as you write the code. In this book, the Thonny IDE
is used for small programs, and the nano editor is used for larger programs to create the
program files.

e 70

Chapter 7 e Python Programming and Simple Programs

Chapter 7 e Python Programming and Simple Programs

7.1 Overview

Python is an interpreted, interactive, and object-oriented programming language. It was
developed by Guido van Rossum in the 1980s at the National Institute for Mathematics and
Computer Science in the Netherlands. It is derived from many other languages, including
C, C++, Modula-3, Smalltalk, and Unix shell. The language is how maintained by a team
at the Institute.

Python is interactive which means that you can issue a command and see the result
immediately without having to compile the command. It is interpreted, which means no
pre-compilation is required before it is run.

Python supports object-oriented techniques of programming. It is a beginner-friendly
language, easy to learn, and maintain. Beginners can easily learn programming in a
relatively short period of time. Python supports a large library of functions, which makes
it very powerful. The language is portable, meaning that it can run on several different
popular platforms.

In this and the next chapters, you will learn the details of the Python programming language
on the BeagleY-AI computer and see how you can write programs using this language.
Many example programs are given to show how electronic engineers can use Python to help
them in their calculations.

7.2 Variable Names
Python variable names are case sensitive and can start with a letter A to Z or a to z or
an underscore character "_", followed by more letters or numbers 0 to 9. Some valid and

invalid example variable names are given below:

SUM - valid
Sum - valid
SUm - valid
_total - valid
Cnt5 - valid
8tot - invalid
%int - invalid
&xyz - invalid
My_Number - valid
@loop - invalid
_Account - valid

Note that variables total, Total, TOTAL, ToTal, or toTAL are all different.
7.3 Reserved Words

There are some words which are reserved for use by the Python interpreter and thus cannot
be used as variable names by programmers. A list of these reserved words is given below.

o 71

The Beagle-Y AI Book

Notice that all the reserved words contain lowercase letters:

and for raise
assert from return
break global try
class if while
continue import with
def in yield
del is

elif lambda

else not

except or

exec pass

finally print

7.4 Comments
Comment lines in Python start with a hash sign "#". All characters after the # sign are
ignored by the Python interpreter. An example comment line is shown below:
This is a comment line
Comments can also be inserted after a statement:
Sum =0 # Another comment
7.5 Line Continuation
The line continuation character "\" can be used to continue a statement on following lines.
An example is shown below:
Sum = a +\
b +\
C
Which is equivalent to:

Sum=a+b+c

7.6 Blank Lines
A line containing no statements is ignored by the Python interpreter.

7.7 More Than One statement on a Line
It is permissible to have more than one statement on a single line by separating the

statements with a semicolon character. An example is given below:

cnt = 5; sum = 0; tot = 20;

72

Chapter 7 e Python Programming and Simple Programs

7.8 Indentation

In most programming languages blocks of code are identified by using braces at the beginning
and end of the block, or by identifying the end of the block using a suitable statement. e.g.,
END, WEND, or ENDIF. In Python, there are no braces or statements to indicate the start
and end of a block. Instead, blocks of code are identified by line indentation. All statements
within a block must be indented by the same amount. The actual humber of spaces used
to indent a block is not important, as long as all the statements in the block use the same
number of spaces.

A valid block of code is given below (don't worry at this stage what the code does):

if j == 5:
a=a+1
b=a+2

else:
a=0
b=20

The following block of code is not valid since the indentation is not correct:

if j == 5:
a=a+1
b=a+2
else:
a=0
b=20

7.9 Python Data Types
Python supports the following data types:

e Numbers

e Strings

e Lists

e Dictionaries
e Tuples

e Sets

e Files

7.10 Numbers
Python supports the following numeric variable types:

e int - signed integer
e long - long integer
e float - floating point real number

e Complex numbers

e 73

The Beagle-Y AI Book

Numbers can be represented in decimal, Octal, binary, or hexadecimal. Long integers are
shown with an upper case letter L.

Some example numbers are shown below:

Integer
100 - decimal
-67 - decimal
500 - decimal
0x20 - hexadecimal
0b10000001 - binary
002377 - octal
202334567L - long decimal
OX3AEEFAE - hexadecimal

Floating point
2.355
23.780
-45.6
1.298
24.45E4

Complex
24.442,6j
0.78-4.2j
23.7j

We can assign numeric values to variables. These variable objects are created when values
are assigned to them:

sum = 28
a=0

We can delete a variable object by using the del statement:
del sum, a

We can assign a value to several variables at the same time:
w=x=y=z=0

Similarly, we can have statements of the form:

w,x,y=3,58

e 74

Chapter 7 e Python Programming and Simple Programs

Which is equivalent to:
w =3
Xx=5
y=8

We can perform the following mathematical operations on numbers:

Expression operators

+ addition

- subtraction

* multiplication

/ division

>> shift right

<< shift left

*k power (exponentiation)
% remainder

Bitwise operators

| bitwise OR
& bitwise AND
N bitwise exclusive-or
~ bitwise complement

Some mathematical functions

pow(X, Y) same as x**y

abs(x) absolute value of x

round(x, n) round X to n digits from the decimal point
floor(x) largest integer not greater than x
int(x) convert x to integer

hex(x) hexadecimal equivalent of integer x
bin(x) binary equivalent of integer x
exp(x) exponential of x

factorial(n) factorial of number n

ceil(x) smallest integer not less than x
log(x) natural logarithm of x (base 2)
log10(x) logarithm of x (base 10)

Some mathematical utility libraries

random random number library
math mathematics library

Figure 7.1 to Figure 7.3 show examples of using numbers in Python. The statement import

is used to import a library to a Python program. The math library contains a large number
of mathematical functions, such as logarithmic functions, trigonometric functions, square

e 75

The Beagle-Y AI Book

root, hyperbolic functions, angular conversion, and so on. Further details on these functions
can be obtained from the following link:

https://docs.python.org/3/library/math.html

The random library is useful for generating random numbers. The function randint(a, b)
in this library generates a random integer between integers a and b (inclusive). Details of
functions available in the random library can be obtained from the following link:

https://docs.python.org/2/library/random.htmi

>>»> 28 + 35

€3

>>> 22 * 6

132

>>> 2 **% 5

32

>>»> 2 << 3

16

>»>> 5 % 2

1

>>> abs (-100)
100

>>> 0x10

16

>>> 0ol7

15

>>> 0b00001111
15

>»> (2 + 33) * 3
(6+93)

>>> hex (20)
"0x14'

>>> bin(15)
'Obl111"’
>>>

Figure 7.1 Using numbers in Python.

>>> int(23.256)

23

>>> float(4)

4.0

>>> 1/3.0
0.3333333333333333
>>> 10/4.0

2.5

>>> import math

>>> math.sqrt (16)
4.0

>>> math.pi
3.141592653589793
>>> math.floor(-3.5)
-4.0

>>> math.trunc(-4.5)
-4

>>> math.sin(30.0 * math.pi/180)
0.499999999999599994
[>>> pow(2, 4)

116

[>>> max(2,5,12,8)
|12

;}>> min(2,4,6,8)

12

Figure 7.2 Using numbers in Python.

e 76

Chapter 7 ¢ Python Programming and Simple Programs

>>> a = 0b00001110

>>> bin(a & 0bll)

'0b10’

>>> bin(a | 0bll)
'0Obl111"

>>> math.e
2.718281828459045

>>> math.floor (-2.7)
-3.0

>>> sum((1,2,3,4,5,6,7,8,9,10))
55

>>> import random

>>> random.randint(l, 5)

3

>>> random,randint(l, 5)
4

>>> random.randint(l, 5)
5

>>> (2 + 43) + (4 + 37)
(6+73)

>>> (2.4 * 3), (5.0 / 2.0), math.sqgrt(12.0)
(7.199999999999999, 2.5, 3.4641016151377544)

Figure 7.3 Using numbers in Python.

7.11 Strings
In Python, strings are declared by enclosing characters between a pair of single or double
quotation marks. An example is given below:

myname = "James Booth"

We can manipulate strings by extracting characters, joining two strings, assigning a string
to another string, and so on. Some commonly used string manipulation operations are
shown in Figure 7.4 and Figure 7.5.

>>> name = "John"

>>> surname = "Adams"

>>> full name = name + surname
>>> print(full name)

JohnAdams

>>> initial = name([0]

>>> print(initial)

J

>>»> initials = name[0] + surname[0]
>>> print(initials)

JA

>>> print(name[0:3])

Joh

>>> print(name[:2])

Jo

>>> print(name[2:])

hn

>>> print(name*2)

JohnJdehn

>>> print (name[0:2] + surname[2:4] + "end")
Joamend

>>> print(name + " " + surname)
John Adams

>>> print(len(name))

4

Figure 7.4 String manipulation operations.

o 77

The Beagle-Y AI Book

>>> name = "Smith"
>>> print(name[-1])
h

>>> print(name[-2])
t
>>> print(name.find('i'}))

2

>>> name.replace('i', 'k')

'Smkth'

>>> numbers = "111,222,6333,6444,555"

>>> numbers.split(',')

[*11i1', *222', '333', '444', '555']

>>> name

'Smith'’

>>> name[0] = 's'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>> name = 's' + name[l:]

>>> name

'smith’

Figure 7.5 String manipulation operations.

Notice that a third index, as the step, can be used in string slicing operation. The step is
added to the first offset until the second offset and the character at this position is extracted.
In the following example, the characters at positions 0, 2, 4, and 6 are extracted:

>>> a = "computer"
>>> b = a[0:7:2]
>>> print(b)

cmue

7.11.1 String functions
Python supports a large number of string functions. Some commonly used string functions

are given below:

e 78

e capitalize() changes the first letter of a string to upper case and all

other characters to lower case.

count(str,beg,end) finds how many times str occurs in a string.

Starting and ending positions should be specified.

find(str,beg,end) determines if str occurs in a string. Starting and ending

positions should be specified. The index is returned if
the str is found, otherwise, -1 is returned.

len(string) returns the length of a string.

isalpha() returns True if the string contains all alphabetical

numeric characters.

isalnum() returns True if the string contains alphabetical and

numeric characters.

Chapter 7 e Python Programming and Simple Programs

o isdigit()
o islower()
* isupper()
o lower()
* upper()
e Istrip()
e rstrip()

e swapcase()

returns True if the string contains all digits.

returns True if the string contains all lowercase letters.
returns True if the string contains all uppercase letters.
converts all uppercase characters to lowercase.
converts all lowercase characters to uppercase.
removes all leading whitespaces.

removes all trailing whitespaces.

changes the case of all letters.

Figure 7.6 shows examples of using some of the string functions.

>>> a = "computer"

>>> b = a.capitalize()

>>> print(b)

Computer

>>> print(a.count('p', 0, len(a)))

>>> print(a.find('p', 0, len(a)))
3

>>> print(len(a))

8

>>> b = a.upper()
>>> print(b)
COMPUTER

>>> a.isalpha()

True

>>> a.isdigit()
False

>>> b = a.swapcase ()
>>> print(b)
COMPUTER

Figure 7.6 Using the string functions.

7.11.2 Escape sequences

Escape sequences are special non-printable characters used to generate functions such
as newline, tab, formfeed, carriage return, etc. Escape sequences start with the character
"\". A list of the commonly used escape sequences is given below:

e \n newline

e \a bell

e \b backspace

o \f formfeed

o \r carriage return
o \t horizontal tab
o \v vertical tab

e \xhh character with 2 hexadecimal value hh

e 79

The Beagle-Y AI Book

As an example, the following statement will display the letter a followed by two newlines:
print("a\n\n")

7.12 Print Statement

The print statement is one of the most commonly used statements. It displays text
or numbers on the screen. Text is displayed by enclosing it in quotes. Numeric data is
displayed by simply entering the variable name. The data to be displayed is enclosed in
round brackets. Text and numeric data can be mixed in display outputs and the type of the
variable to be displayed can be declared using formatting characters. A list of the commonly
used formatting characters is given below:

* %c character

* %s string

e %d signed integer

e %u unsigned integer

® %X lower case hexadecimal number
e %X upper case hexadecimal number
o %f floating point number

e %E exponential notation

Figure 7.7 shows some examples of using the print statement.

>>> first, last = 1, 100
>>> print("First = %d Last = %d" % (first, last))
First = 1 Last = 100

5>

>>> name, age = "John", 21

>>> print("Name $s Age = %d" %(name, age))
Name = John Age 21

ol

>>> a = 2.345

>>> print("a is %E" %(a))

a is 2.345000E+00

2>

»> a, b=5, 10

>>> print("a is %d\n b is %d" %(a, b))

ais 5

b is 10

>>>

>>> a = 100

>>> print("3X" %(a))

64

Figure 7.7 Using the print statement.

7.13 List Variables

List variables are variables separated by commas and enclosed in square brackets. The
variables in a list can be of different types. The contents of a list can be accessed using
square brackets to index the required item inside the list. Indexing starts from 0. As with
the strings, the "*" character can be used for repetition and the "+" character can be used
for concatenation. Some examples are given below:

e 80

Chapter 7 e Python Programming and Simple Programs

mylist = ['John', '"Adam’, 230, 12.25, 'Peter’, 89]
second = [30, 23]

s = mylist[0] # s = 'John'

s = mylist[2] #s =230

s = mylist[2:4] # s =230,12.25

s = mylist[3:] # s = 12.25, 'Peter', 89

s = mylist * 2 # s = 'John', 'Adam’, 230, 12.25, 'Peter', 89, 'John’,
'‘Adam’', 230, 12.25, 'Peter’, 89

s = mylist + second # s = 'John', 'Adam’, 230, 12.25, 'Peter', 89, 30, 23

The contents of a list can be modified by assigning a new value to the required index
position. For example, we can change the 2"d element of the list mylist from 230 to 100 as:

mylist[2] = 100

Python does not allow referencing items that are not present in a list. For example, the
following statement gives an error message:

mylist[200]
Lists can be nested to form two dimensional matrices. An example is given below:
M =[[1, 2, 3],
[4, 5, 6],
[7,8,91]

The nested list is indexed starting from [0][0]. For example, the elements of row 1 can be
accessed as follows:

>>> M[1] # Elements of row 1

[4, 5, 6]

>>> M[1][1] # Element at row 1, column 1
5

The statement L = [] creates an empty list called L.

7.13.1 List functions
Python language supports a large number of list functions. Some commonly used list
functions are given below:

e del([i:j]) deletes elements from i to j-1

e list.append(x) appends an item to the end of a list
e list.extend([x,y,z]) adds several items to the list

e cmp(L1,L2) compares elements of lists L1 and L2

e 81

The Beagle-Y AI Book

e len(L) returns the length of list L.

e max(L) returns the item with the maximum value

e min(L) returns the item with the minimum value

e list.count(x) returns how many times x occurs in a list

e list.index(x) returns the position of the first occurrence of x
e list.insert(i,x) inserts x at position i in the list

e list.remove(x) removes the indexed item from the list

e list.reverse() reverses a list

e list.sort() sorts a list

e list.pop() deletes and returns the last item

Figure 7.8 shows some examples of using the print statement.

>>> 1st = ['A', 'B', 'C', 'D', 'E']
>>> del(lst[2])

>>> print(lst)

i'a'; 'B', 'D', 'E']

>>> del(lst[1:3])

>>> print(lst)

['A', 'E']

>>> lst.append('Z')

>>> print(lst)

["A', "By, YE']

>>> lst.extend(['a', 'b', 'e'])
>>> print(lst)

[ratl, “EY, “Zv, "a', "hr, 'gv]
>>> print(lst.index('a'))

3

>>> print(lst.reverse())

None

>>> print(lst)

[rer; "ht'y: ety TR R TAY])
>>> lst.sort()

>>> print(lst)

[TA', "BY, "Z'; 'a'; 'b'; Ye']
>>> print(len(lst))

6

Figure 7.8 Using the list functions.

7.14 Tuple Variables

Tuples are similar to lists but their contents cannot be changed. i.e., they are read-only.
Also, tuple variables are enclosed in round brackets (parentheses). Some examples are
given below:

mytuple = ['John', 'Adam’, 230, 12.25, 'Peter’, 89]

second = [30, 23]

s = mytuple[0] # s = 'John'

s = mytuple[2] #s =230

s = mytuple[2:4] # s =230,12.25

s = mytuple[3:] # s =12.25, 'Peter’, 89

s = mytuple * 2 # s = 'John', 'Adam’, 230, 12.25, 'Peter’, 89, 'John',

'‘Adam’', 230, 12.25, 'Peter’, 89

e 82

Chapter 7 e Python Programming and Simple Programs

s = mytuple + second # s = 'John', 'Adam', 230, 12.25, 'Peter’, 89, 30, 23
The following statement is not valid since we cannot change the contents of a tuple:
mytuple[2] = 200
7.15 Dictionary Variables
Dictionaries are similar to hash tables with keys and values. Each key is separated from its
value by a colon sign, the items are separated by commas, and the whole thing is enclosed
in curly brackets. The keys in a dictionary must have data types of numbers, strings, or

tuples. The values can be of any data type. An example is given below:

mydict = {'Name': 'John', 'Surname': 'Adams’, 'Age': 25}

s = mydict['Name'] # s = 'John'

s = mydict['Age'] #s=25

s = mydict.keys() # s = ['Age’, 'Surname’, 'Name']
s = mydict.values() # s = [125, 'Adams’, 'John']

7.15.1 Dictionary functions
Python language supports a large number of dictionary functions. Some commonly used
dictionary functions are given below:

e cmp(dl, d2) compares two dictionaries d1 and d2

e len() returns the number of items in a dictionary
e del(d[key]) deletes an item from the dictionary

e d.clear removes all items from the dictionary

e d.keys() returns a list of dictionary keys

e d.values() returns a list of dictionary values

Figure 7.9 shows some examples of using the print statement.

>>> d = {'A':1, 'B':2, 'C':3, 'D':4}
i)» print (len(d))

i4

>>> print(d.keys())
i['A', L LI - A s L
>>> print(d.values())
fx, 3, 2, 4

[>>> del(d['C'])

>>> print(d)

{'A': 1, 'B': 2, 'D': 4}
>>> d.clear()

>>> print (d)

)

Figure 7.9 Using the dictionary functions.

7.16 Keyboard Input
Python provides the following function for reading data from the keyboard:

e 83

The Beagle-Y AI Book

e input provides a prompted read. The data from the keyboard is
returned as a string

Figure 7.10 shows examples of using the keyboard input function. Notice that the function
returns a string. Therefore, if numeric data is entered then it should be converted into a
numeric data type before being used in mathematical operations.

>>> name = input("Enter your name: ")
I'Ente: your name: John Smith

|>>> a = input("Enter a number: ")
[Enter a number: 5

[>>> b = input("Enter another number: ")
E_Enter another number: 4

>»> e = int(a) + int(b)

!;>> print(c)

i»>»>> a = int(input("Enter a number: "))
Enter a number: 2

[»>>> b = int(input ("Enter another number: "))
Enter another number: 4

>>c=a*bhb

>>> print(c)

'8
>>>]

Figure 7.10 Keyboard input examples

7.17 Comparison Operators
Valid Python comparison operators are:

checks if two operands are equal

checks if two operands are not equal

checks if the left operand is greater than the right one

checks if the left operand is less than the right one

checks if the left operand is greater than or equal to the right one
checks if the left operand is less than or equal to the right one

ANV AV

7.18 Logical Operators
Valid Python logical operators are:

e and logical AND of the two operands
e Or logical OR of the two operands

e not logical inverse of the operand

7.19 Assignment Operators

o = assignment operator

o += compound add operator

o -= compound subtract operator
o *= compound multiply operator
o /= compound divide operator

e 84

Chapter 7 e Python Programming and Simple Programs

7.20 Control of Flow

In normal program flow, statements are executed sequentially one after another one. The
flow control statements are used to make decisions and change the order of execution
depending on the results of these decisions.

Python programming language supports the following flow control statements:

o if

o if-else

o elif

o for

e while

e break

e continue
e pass

7.20.1 The if, if..else, and elif
The general format of the if statement is:

if expression: statement
or

if expression:
Statement 1
Statement 2

else:
Statement 1
Statement 2

Notice the use of indentation inside the if blocks and the colon character at the end of the
if and else statements.

An example use of the if statement is:
if a == 5: print(‘ais 5")
if there is only one statement after the if, then it can be typed on the same line. If there is

more than one statement, then all the statements must be written on the next lines with
the same amount of indentation. An example is given below:

if a == 100:
x=0
y=0

else:
x=1
y =10

e 85

The Beagle-Y AI Book

The elif statement is used to check for different conditions in an if block. An example is
given below:

ifa > 10:
b=0
c=0

elifa == 10:
b=2
c=4

Notice that the if statements can be nested as shown in the following example:

ifa == 100:
c=0
k=1
if b == 10:
c=20
m:
else:
c=23

7.20.2 The for statement
The for statement is used to create loops (iteration) in programs. The general format of
this statement is:

for variable in sequence:
statements

Here, the sequence is evaluated first and the first item in the sequence is assigned to the
variable and the statements are executed. Then the second item is assigned to the variable
and the statements are executed. This continues until there are no more items in the
sequence. An example use of the for statement is shown below:

for letter in "COMPUTER":
print(letter)

The following will be displayed on the screen:

omMm-—-AcCc v =Z200

e 86

Chapter 7 e Python Programming and Simple Programs

The for statement is commonly used to create loops in programs. The range statement
denotes the range of the variable as in the following example:

for cnt in range(0, 5):
print(cnt)

The following will be displayed on the screen:

NWNRO

Notice that the upper value of the range is one less than the specified value i.e., in the
above example, the range is from 0 to 4 and not to 5.

We can specify a step size in the last parameter when using the range statement, in the
following example, the step size is 5, and the list takes values 0, 5, 10, 15, 20, 25:

List(range(0, 30, 5))
The for statement can be nested if desired.

7.20.3 The while statement
The while statement can also be used to create loops (iteration) in programs. The general
format of this statement is:

while expression:
statements

The statements are executed while the expression evaluates to True. An example is given
below:

cnt=0

while cnt < 5:
print(cnt)
cnt=cnt+ 1

The output of the program is as follows:

A WNREO

e 87

The Beagle-Y AI Book

Notice that the statements that belong to the while statement must be indented. It is
important to make sure that the expression is modified inside the loop, otherwise, an
infinite loop will be formed, as shown in the following example:

cnt=0
while cnt < 5:
print(cnt)

7.20.4 The continue statement

The continue statement is used in for and while loops and this statement skips all the
remaining statements in a loop and returns to the beginning of the loop. An example is
given below. In this example, number 3 is not displayed by the print statement:

cnt=0
while cnt < 5:
cnt=cnt+ 1
if cnt ==
continue
print(cnt)

The output of this example is as follows:

ua b~ N

7.20.5 The break statement

The break statement is used in for and while loops and this statement terminates the loop
and execution continues with the next statement. An example is given below:

cnt=0
while cnt < 5:
cnt=cnt+ 1
if cnt ==
break
print(cnt)

The output of this example will be:

e 88

Chapter 7 e Python Programming and Simple Programs

7.20.6 The pass statement

The pass statement is used when a statement is required syntactically but you do not
want any command or code to execute. The pass statement is a null operation and nothing
happens when it executes. An example is given below:

for letter in '"COMPUTER':
if letter == "'P":
pass
print('Passed")
print(letter)

The output of this program is:

C
(e}
M
Passed

o m-—-4cC o

We have covered the basic statements of the Python programming language. We will now
develop example programs using the knowledge we have gained so far.

7.21 Example 1 - 4 Band Resistor Color Code Identifier

In this example, the user enters the three colors of a 4-band resistor, and the program
calculates and displays the value of the resistor in Ohms. The tolerance of the resistor is
not displayed.

Background Information: Resistor values are identified by the following color codes:

Black:
Brown:
Red:
Orange:
Yellow:
Green:
Blue:
Violet:
Grey:
White:

OCoOoNOOU P~ WNRO

The first two colors determine the first two digits of the value, while the last color determines
the multiplier. For example, red red red corresponds to 22 x 102 = 2200 Ohms.

e 89

The Beagle-Y AI Book

Program Listing: Figure 7.11 shows the program listing (program: resistor.py). At the
beginning of the program, a list called color is created, which stores the valid resistor
colors. Then a heading is displayed, and a while loop is created which runs as long as the
string variable yn is equal to y. Inside the loop, the program reads the three colors from
the keyboard using the input function and stores them as strings in variables FirstColor,
SecondColor, and ThirdColor. These strings are then converted into lowercase so that
they are compatible with the values listed in the list box. The index values of these colors
in the list are then found using function calls of the form colors.index. Remember that the
index values start from 0. As an example, if the user entered red, then the corresponding
index value will be 2. The resistor value is then calculated by multiplying the first color
number by 10 and adding it to the second color number. The result is then multiplied by the
power of 10 of the third color index. The final result is displayed on the screen. The program
then asks whether or not the user wants to continue. If the answer is y, then the program
returns to the beginning, otherwise the program is terminated.

#===
RESISTOR COLOR CODES
e

#

The user enters the three colors of a resistor

and the program calculates and displays the value
of the resistor in Ohms

#

Program: resistor.py

Date : October, 2024

Author : Dogan Ibrahim

colors = ['black','brown','red','orange','yellow','green',\
'blue', 'violet','grey', 'white']

print ("RESISTOR VALUE CALCULATOR")
pr'i nt(":::::::::::::::::::::::::")
yn = "y

while yn == 'y':
FirstColor = input("Enter First Color: ")
SecondColor = [dinput("Enter Second Color: ")

ThirdColor = input("Enter Third Color: ")
Convert to lowercase

FirstColor = FirstColor.lower ()

SecondColor = SecondColor.lower ()

ThirdColor = ThirdColor.lower ()

Find the values of colors

e 90

Chapter 7 e Python Programming and Simple Programs

FirstValue = colors.index(FirstColor)
SecondValue = colors.index(SecondColor)
ThirdvValue = colors.index(ThirdColor)

Now calculate the value of the resistor
Resistor = 10 * FirstValue + SecondValue
Resistor = Resistor * (10 xx ThirdValue)

print("Resistance = %d Ohms" % (Resistor))

Ask for more

yn = input("\nDo you want to continue?: ")
yn

yn. lower ()
Figure 7.11 Program listing.

The program was created using the nano text editor and then run from the command line
by entering the following command:

beagle@beagle:~ $ python resistor.py

Figure 7.12 shows a typical run of the program.

beaéle@beaéle:*S pythen resisto%jpy
RESISTOR VALUE CALCULATOR

Enter First Colour: red
‘Enter Second Colour: red
Enter Third Colour: yellow
Resistance = 220000 Ohms

‘Do you want to continue?: n
beagle@beagle:~$ ||
Figure 7.12 Typical run of the program.

You could also write and then run the program using the Thonny IDE.

7.22 Example 2 - Series or Parallel Resistors

This program calculates the total resistance of a number of series or parallel connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

Background Information: When a number of resistors are in series, then the resultant
resistance is the sum of the resistance of each resistor. When the resistors are in parallel,
then the reciprocal of the resultant resistance is equal to the sum of the reciprocal
resistances of each resistor.

e 91

The Beagle-Y AI Book

Program Listing: Figure 7.13 shows the program listing (program: serpal.py). At the
beginning of the program a heading is displayed, and the program enters into a while
loop. Inside this loop, the user is prompted to enter the number of resistors in the circuit
and whether they are connected in series or in parallel. The function str converts a number
into its equivalent string (e.g., the number 5 is converted into string "5"). If the connection
is in series (mode equals 's'), the program accepts the value of each resistor from the
keyboard, and the total resistance is calculated by summing the resistance of each resistor.
On the other hand, if the connection is in parallel (mode equals 'p'), the program accepts
the value of each resistor from the keyboard, and the reciprocal of each resistor's value is
added to the total. After all resistor values have been entered, the program calculates and

displays the resultant resistance.

#===
RESISTORS IN SERIES OR PARALLEL

#

#

This program calculates the total resistance of

serial or parallel connected resistors

#

Program: serpal.py

Date : October, 2024

Author : Dogan Ibrahim
#===
print ("RESISTORS IN SERIES OR PARALLEL")
print("===============================")

yn = "y"

while yn == 'y':

N = dint(input("\nHow many resistors are there?: "))
mode = input("Are the resistors series (s) or parallel (p)?: ")

mode = mode. lower ()

Read the resistor values and calculate the total

resistor = 0.0

if mode == 's':
for n in range(O,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "
r = int(input(s))
resistor = resistor + r
print("Total resistance = %d Ohms" %(resistor))

elif mode == 'p':

for n in range(O,N):
s = "Enter resistor " + str(n+l) + " value in Ohms: "

e 92

Chapter 7 e Python Programming and Simple Programs

r = float(input(s))
resistor = resistor + 1 / r
print("Total resistance = %.2f Ohms" %(1 / resistor))

#
Check if the user wants to exit
#
yn = input("\nDo you want to continue?: ")

yn = yn.lower ()
Figure 7.13 Program listing.

Figure 7.14 shows a typical run of the program.

beaglefbeagle:~$ python serpal.py
RESISTORS IN SERIES OR PARALLEL

How many resistors are there?: 2

Are the resistors series (s) or parallel (p)?: s
Enter resistor 1 value in Ohms: 22

Enter resistor 2 value in Ohms: 33

Total resistance = 55 Ohms

Do you want to continue?: y

How many resistors are there?: 2

Are the resistors series (s) or parallel (p)7?: p
Enter resistor 1 value in Ohms: 10

Enter resistor 2 value in Ohms: 10

Total resistance = 5.00 Ohms

Do you want to continue?: n
beagle@beagle:~$ 0
Figure 7.14 Typical run of the program.

7.23 Example 3 - Resistive Potential Divider
Description: This case study calculates the resistances in a resistive potential divider
circuit.

Background Information: Resistive potential divider circuits consist of two resistors.
These circuits are used to lower a voltage to a desired value. Figure 7.15 shows a typical
resistive potential divider circuit. Here, Vin and Vo are the input and output voltages,
respectively. R1 and R2 are the resistor pair used to lower the voltage from Vin to Vo. A
large number of resistor pairs can be used to get the desired output voltage. Choosing
large resistors draws little current from the circuit while choosing small resistors draws
larger currents. In this design, the user specifies Vin, Vo, and R2. The program calculates
the required R1 value to lower the voltage to the desired level. Additionally, the program
displays the output voltage with the chosen physical resistors.

e 93

The Beagle-Y AI Book

— o\Vo

vin O R2

O
Figure 7.15 Resistive potential divider circuit.

The output voltage is given by:

Vo = Vin x R2 / (R1 + R2)
R1 is then given by:

R1 = (Vin - Vo) x R2 / Vo
The above formula is used to calculate the required value of R1, given Vin, Vo, and R2.
Program Listing: Figure 7.16 shows the program listing (program: divider.py). At the
beginning of the program, a heading is displayed. The program then reads Vin, Vo, and R2
from the keyboard. The program calculates R1 and displays R1 and R2. The user is then
asked to enter a chosen physical value for R1. With the chosen value of R1, the program
displays Vin, Vo, R1, and R2, and asks the user whether or not the result is acceptable. If

the answer to this question is y, the program terminates. If, on the other hand, the answer
is n then the user is given the option to try again.

This is a resistive potential divider circuit program.
The program calculates the resistance values that will

#
#
#
#
#
lower the input voltage to the desired value
#
Program: divider.py

#

#

Date : October, 2024

Author : Dogan Ibrahim
#===
print ("RESISTIVE POTENTIAL DIVIDER")
print("===s========================")
Riflag =
R2flag =

while Rilflag == 1:
Vin = float(input("\nInput voltage (Volts): "))

e 94

Chapter 7 e Python Programming and Simple Programs

Vo float(input("Desired output voltage (Volts): "))
R2 = float(input("Enter R2 (in Ohms): "))

Calculate R1

Rl = R2 * (Vin - Vo) / Vo
print("\nR1 = %3.2f Ohms R2 = %3.2f Ohms" %(R1, R2))

Read chosen physical R1 and display actual Vo

NewR1l = float(input("\nEnter chosen R1 (Ohms): "))

Display and print the output voltage with chosen R1

print("\nWith the chosen R1l,the results are:")
Vo = R2 * Vin / (NewR1l + R2)
print("R1 = %3.2F R2 = %3.2f Vin = %3.2f Vo = %3.3f" %(NewR1,R2,Vin,Vo))

Check if happy with the values ?

happy = input("\nAre you happy with the values? ")
happy = happy.lower ()
if happy == 'y':
break
else:
mode = input("Do you want to try again? ")
mode = mode. lower ()

if mode == 'y':
Riflag = 1
else:
Rlflag = 0
break

Figure 7.16 Program listing.

Figure 7.17 shows a typical run of the program.

e 95

The Beagle-Y AI Book

beaglefbeagle:~$ python divider.py
RESISTIVE POTENTIAL DIVIDER

Input voltage (Volts): 12
Desired output voltage (Volts): 5
Enter R2 (in Ohms): 1000

Rl = 1400.00 Ohms R2 = 1000.00 Ohms
Enter chosen Rl (Ohms): 1400

With the chosen R1l,the results are:
Rl = 1400.00 R2 = 1000.00 Vin = 12.00 Vo = 5.000

Are you happy with the values? y
beaglelbeagle:~$ |]

Figure 7.17 Typical run of the program.

7.24 Trigonometric Functions

Python supports a large number of trigonometric functions. The arguments to trigonometric
functions must be in radians. The math library must be imported into the program before
these functions can be used:

e sin(x) trigonometric sine

e cos(x) trigonometric cosine

e tan(x) trigonometric tangent

e asin(x) trigonometric arc sin

e atan(x) trigonometric arc tangent

e atan2(y, x) trigonometric atan(y/x)

e degrees(x) convert degrees into radians
e radians(x) convert radians into degrees

Some examples of using the trigonometric functions are given in Figure 7.18.

>>> import math

>>> print (math.radians (45))
0.785398163397

>>> print (math.degrees(l))
57.2957795131

>>> print(math.sin(math.radians(30)))
0.5

>>> print(math.cos (math.radians (60)))
0.5

>>> print (math.degrees (math.asin(0.5}))
30.0

Figure 7.18 Trigonometric function examples.

7.25 User Defined Functions

Functions are like small programs within a program. We can use functions to break up a
complex program into several manageable sections, where each section can be implemented
as a function. Functions enable us to reuse parts of our programs. For example, we can
create a function to calculate the cube root of a number and then call this function from
different parts of our program. Another advantage of using functions is that they make it
easier to maintain and update our programs.

e 96

Chapter 7 e Python Programming and Simple Programs

A function that we create can be called from anywhere in a program. Functions have their
own variables and their own commands. As we have seen in earlier parts of this chapter,
Python has a large number of built-in functions for various operations such as arithmetic,
trigonometric, string manipulation, and so on. User-defined functions are created by
programmers. In this section, we shall be looking at how functions can be created and used
in our programs.

A user-defined function consists of the following:

o functions begin with the keyword def, followed by function name, and round
brackets, followed by a colon sign.

e Input arguments to the function must be placed inside the brackets at the
beginning of the function definition.

e The body of a function must be indented with the same number of spaces on
the left-hand side

e An optional text message can be displayed at the first line of a function to
describe what the function does.

e A function must be terminated with the return statement

An example function, named Mult is given below. This function takes two numbers first and
second as its arguments, multiplies them, and returns the result:

def Mult(first, second):
"This is a simple multiplication function"
result = first * second
return result
A function is called from the main program by specifying the name of the function and
enclosing any arguments in a pair of brackets. For example, to call the above function
to multiply numbers 5 and 3 and store the result in a variable called a, we include the
following statement in our program:
a = Mult(5, 3)
We can also call a function by specifying the keyword arguments. i.e.:

a = Mult(first = 5, second = 3)

Figure 7.19 shows the above example in a Python program.

e 97

The Beagle-Y AI Book

{>>> def Mult (first, second):

"This is a simple multiplication function"
result = first * second
return result

>>> a = Mult(5, 3)

i>>} print(a)
|15

Figure 7.19 Creating and calling a function.

Another example is shown in Figure 7.20. In this example, the function displays a string
passed as an argument. Notice that there is no data returned from this function.

>>> def Prnt(strng):
[... print(strng)

|... return

|

!)}) Prnt ("Hello there")
Hello there

Figure 7.20 A function displaying a string.

The variables used in a function are local to that function. Thus, for example, if there are
two variables with the same name, one inside the function and the other outside, changing
the one inside the function does not change the one outside. Variables outside a function
are called global variables, whereas the ones inside a function are called local variables.

See Figure 7.21 for an example where the contents of variable res are not changed outside
the function.

1»>>> def Mult(first, second):
lsas res = first * second
return res

>>> res = 2

>>> a = Mult(3, 8)
>>> print(a)

124

Figure 7.21 Variables in a function are local.

The rules for global variables are as follows:

¢ Global variables are variables assigned at the top of the program outside the
function definitions.

¢ Global names must be declared only if they are assigned within a function.
¢ Global names may be referenced within a function without being declared.
Therefore, by declaring a variable outside the functions and also inside a function but with

the global keyword, we can change its contents inside the function. An example is given
below, which identifies the use of global variables:

e 98

Chapter 7 e Python Programming and Simple Programs

cnt =10 # variable cnt is global
def tstfunc(): # function declaration
global cnt # variable cnt defined as global
cnt = 200 # value of global cnt is changed
tstfunc() # function is called
print(cnt) # value of cnt is 200

As explained above, if the value of a global variable is not changed inside a function, then
there is no need to define it as global. In the following code, there is no need to define x
as global inside the function:

x =10

y=4

def tst():
global y
y=x+2

It is important to note that the variables in a function call are passed by value. This means
that the value of a parameter cannot be changed inside a function. An example is shown
in Figure 7.22. In this example, notice that the value of variable cnt is not changed inside
the function call.

>>> ent = 2
»>> def Mult(first, second):
s ent = 5

return (first * second)

[>>> a = Mult(5, 6)
[»>>> print(a)

130

|»>> print(ent)

|2

Figure 7.22 Variables are passed by value.

A function normally returns only one item back to the calling program. In some applications,
we may want to return more than one item to the calling program. This is easily done by
returning a tuple and then unpacking it in the main program. An example is shown in
Figure 7.23. In this example, the function MyFunc is declared with two arguments. The
arguments are added and stored in a local variable called sum. Similarly, the difference of
the arguments is stored in variable diff. The function returns both sum and diff as a tuple.
The calling main program unpacks the returned data and stores it in variables x and y.

e 99

The Beagle-Y AI Book

>>> def MyFunc(a, b):
sum = a + b
diff = a - b
return sum, diff

>>> X, y = MyFunc (12, 5)
>>> print(x, y)
(17, 7

Figure 7.23 Returning more than one variable from a function,

7.26 Examples

Example 4

Write a program to read an angle from the keyboard in degrees and display the trigonometric
sine of this angle. Repeat until the user stops the program.

Solution 4

The required program listing and example output are shown in Figure 7.24 (program:
trig.py). The angle entered by the user is converted into a floating point and is stored
in a variable angle. Then the trigonometric sine of this angle is displayed. The program
continues until the user enters n in response to the prompt Any more?

= Thanny - IhGmeeagletig py & 355 -
Flle Ecit View Run Tocis Help

—a% 0% o -

[hellalpy tigpy T dssistanl

11 dimport math

15 yn = 'y'
4 print{"Trigonometric sine")
print{‘=—=—== ANt

while yn = 'y':
angle = float{input(“Enter angle in degrees: "))
19 r = math.radians{angle)
s = math.sin{r)
print{"sine of %3.2f degrees is: %f\n" %langle, s)
yn = input{“&ny more? °)

shedl
Iriganonetric sine

Enter angle in degrees: 34
sine of 32,88 degrees is: 0.500083

any moreT

Lotal Pylhon 3 + i 3

Figure 7.24 Program listing.
This program was created and run using the Thonny IDE.
Example 5

Modify the program in Example 4 so that the user can choose between sine, cosine, and
tangent.

e 100

Chapter 7 e Python Programming and Simple Programs

Solution 5

The modified program listing and example output are shown in Figure 7.25 and Figure
7.26 (program: trigall.py). The user is given a menu with four choices: sine, cosine,
tangent, and exit. The angle is read from the keyboard and is converted into radians. The
program then calculates the trigonometric value and displays it on the screen. This process
is repeated until the user selects the exit option.

This program reads an angle from the keyboard
and displays its trigonometric sine, cosine, or
tangent depending on user choice. The angle is

the required trigonometric function is calculated

#
#
#
#
#
#
read in degrees,converted into radians and then
#
#
Author: Dogan Ibrahim

File : trigall.py

Date : October, 2024

import math

choice = '1'
while choice != '0':
print("Trigonometric Sine, Cosine, or Tangent")
print("======================================\p")
print("1. Sine")
print("2. Cosine")
print("3. Tangent")
print("e. Exit")
choice = dinput("Enter choice: ")

if choice != '0':
angle = float(input("Enter angle in degrees: "))
r = math.radians(angle)
if choice == '1':
s = math.sin(r)
strng = "sine"
elif choice == '2"':
s = math.cos(r)
strng = "cosine"
elif choice == '3':
s = math.tan(r)
strng = "tangent"
print(strng + " of %3.2f degrees 1is: %f\n" %(angle, s))
print("End of program")

Figure 7.25 Modified program listing.

e 101

The Beagle-Y AI Book

beaglefbeagle:~$ python trigall.py
Trigonometric Sine, Cosine, or Tangent

Sine

Cosine

Tangent

. Exit

Enter choice: 2

Enter angle in degrees: 60

cosine of 60.00 degrees is: 0.500000

o WM

Trigonometric Sine, Cosine, or Tangent

Sine

Cosine

Tangent

Exit

Enter choice: 0
End of program
beagleflbeagle:~$ ||

(=R A

Figure 7.26 Example output.
This program was created using the nano text editor and then run using the command:
beagle@beagle:~ $ python trigall.py

Example 6
Write a program to tabulate the trigonometric sines of angles from 0° to 90° in steps of 5°.

Solution 6

The required program listing is shown in Figure 7.27 (program: sinetable.py). After
displaying a heading, the for statement is used to create a loop. Variable angle takes values
from 0 to 90 (inclusive) in steps of 5. The trigonometric sine is calculated and displayed.

This program tabulates the trigonometric sine of

#
#
#
#
angles from 0 to 90 degrees in steps of 5 degress
#
Author: Dogan Ibrahim

File : sinetable.py

Date : October, 2024

import math
print("TABLE OF TRIGONOMETRIC SINE")

pr'i nt(":::::::::::::::::::::::::\n")
print(" ANGLE SINE")

e 102

Chapter 7 e Python Programming and Simple Programs

for angle in range(0, 95, 5):
r = math.radians(angle)
s = math.sin(r)
print(" %d %f" %(angle, s))

print("End of program")

Figure 7.27 Program listing.

An example run of the program is shown in Figure 7.28.

beaglefbeagle:~§ python sinetable.py
TABLE OF TRIGONOMETRIC SINE

ANGLE SINE

0 0.000000
5 0.087156
10 0.173648
15 0.258819
20 0.342020
25 0.422618
30 0.500000
35 0.573576
40 0.642788
45 0.707107
50 0.766044
55 0.819152
60 0.866025
65 0.906308
70 0.939693
75 0.965926
80 0.984808
B5 0.996195
90 1.000000

End of program

Figure 7.28 Example run of the program.

Example 7

Write a program to read meters from the keyboard. Convert into yards and inches and

display the result.

Solution 7

The required program listing and example output are shown in Figure 7.29 and Figure 7.30
respectively (program: conv.py). After displaying a heading, meters are read from the
keyboard using the input statement. The value is then converted into yards and inches by
multiplying with 1.0936 and 39.370 respectively. The results are displayed on the screen.

e 103

The Beagle-Y AI Book

This program reads meters from the keyboard and
converts and displays in yards and -inches

Author: Dogan Ibrahim
File : conv.py
Date : October, 2024

B N T T

meters = float(input("Enter meters: "))

yards = 1.0936 * meters

inches = 39.370 * meters

print("%f meters = %f yards, %f inches" %(meters, yards, inches))
print("End of program")

Figure 7.29 Program listing.

beagle@beagle:~$ python conv.py
Convert meters 1into yards and inches

Enter meters: 20

20.000000 meters = 21.872000 yards, 787.400000 inches
End of program

beagle@beagle:~$

Figure 7.30 Example output.

Example 8
Repeat Example 7 but do the conversion in a function called Conv. Show how this function
can be called from the main program.

Solution 8

The required program listing is shown in Figure 7.31 (program: convfunc.py). Function
Conv is declared at the beginning of the program. Meters to be converted into yards and
inches are passed as an argument to the function. The function returns the yards and
inches in a tuple. The main program reads the meters from the keyboard and calls the
function Conv. The result is displayed on the screen.

e 104

Chapter 7 e Python Programming and Simple Programs

This program reads metres from the keyboard and

converts and displays in yards and inches

Author: Dogan Ibrahim
File : convfunc.py
Date : October, 2024

H* O H H H H H H H

def Conv(m):
"Convert metres into yards and inches"
y = 1.0936 * m
i = 39.370 * m

return y, i
print("Convert metres into yards and inches")

metres = float(input("Enter metres: "))
yards, dinches = Conv(metres)
print("%f metres = %f yards, %f inches" %(metres, yards, qinches))

print("End of program")
Figure 7.31 Program listing.

Example 9
Write a function called Cyl to calculate the area and volume of a cylinder, given its radius
and height. Use this function in @ main program.

Solution 9
The area and volume of a cylinder are given by the formula:

Area = 2nrh
Volume = nr2h

The required program listing and example output are shown in Figure 7.32 and Figure 7.33
respectively (program: cylinder.py). The radius and height of the cylinder are passed as
arguments to a function, which calculates the area and volume of the cylinder and returns
the results to the main program, where they are displayed on the screen.

e 105

The Beagle-Y AI Book

This program reads the radius and height of a cylinder

and calculates and displays its area and volume

Author: Dogan Ibrahim
File : cylinder.py
Date : October, 2024

B N T T

import math

def Cyl(r, h):
"Area and volume of a cylinder"
area = 2 x math.pi * r * h
volume = math.pi * r * r x h
return area, volume

print("Area and Volume of a Cylinder")
print("=============================")
radius = float(input("Enter the radius: "))
height = float(input("Enter the height: "))
A, V = Cyl(radius, height)

print("Area = %f Volume = %f" %(A, V))
print("End of program")

Figure 7.32 Program listing.

beaglefbeagle:~$ python cylinder.py
Area and Volume of a Cylinder

Enter the radius: 25

Enter the height: 12

Area = 1884.955592 Volume = 23561.944902
End of program

beagle@beagle:~$ [

Figure 7.33 Example output.

Example 10
Write a calculator program to carry out the four simple mathematical operations of addition,
subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 10

The required program listing is shown in Figure 7.34 (program: calc.py). Two numbers
are received from the keyboard and stored in variables n1 and n2. Then, the required
mathematical operation is received, and it is performed. The result, stored in variable
result, is displayed on the screen. The user is given the option of terminating the program.

e 106

Chapter 7 e Python Programming and Simple Programs

o
CALCULATOR PROGRAM

—=================

#

This is a simple calculator program that can
carry out 4 basic arithmetic opertions

#

Author: Dogan Ibrahim

File : calc.py

Date : October, 2024
o
any = 'y'

while any == 'y':

print("\nCalculator Program")
pr'int(”::::::::::::::::::")

nl = float(input("Enter first number: "))
n2 = float(input("Enter second number: "))

op = input("Enter operation (+-x/): ")

if op =="+":

result = nl + n2
elif op == "-":

result = nl1 - n2
elif op == "*":

result = nl * n2
elif op == "/":

result = nl1 / n2
print("Result = %f" %(result))
any = dinput("\nAny more (yn): ")

Figure 7.34 Program listing.

An example run of the program is shown in Figure 7.35.

e 107

The Beagle-Y AI Book

heaéle@heaéle:*S python calc.py

Calculator Program

Enter first number: 25
Enter second number: 50
Enter operation (+-*%/): +
Result = 75.000000

Any more (yn): y

Calculator Program

Enter first number: 12
Enter second number: 2
Enter operation (+-%/): *
Result = 24.000000

Any more (yn): n
beagle@beagle:~$ |}

Figure 7.35 Example output.

Example 11
Write a program to simulate double dice. i.e., to display two random numbers between 1
and 6 every time it is run.

Solution 11
The required program listing and example output are shown in Figure 7.36 (program: dice.
py). Here, the random number generator randint is used to generate random numbers
between 1 and 6 when the Enter key is pressed. The program is terminated when the letter
X is entered.

dice.py X

import random
strt = 'a'

while strt.upper{) = "X':
strt = input("Pres ENTER to start, X to exit ")
first = random. randint(1, 6)
second = random, randint{l, &)
print("%d %d" %(first, second})

Shell

B2t

Pres ENTER to start, X to exit
6 1
Pres ENTER to start, X to exit

1

Pres ENTER to start, X to exit
4 1

Pres ENTER to start, X to exit =
3 2

2> |

Figure 7.36 Program listing and example output.

e 108

Chapter 7 e Python Programming and Simple Programs

Example 12

Write a program to use functions to calculate and display the areas of shapes: square,
rectangle, triangle, circle, and cylinder. The sizes of the required sides should be received
from the keyboard.

Solution 12
The areas of the shapes to be used in the program are as follows:

Square: side = a area = a?
Rectangle: sides a, b area = ab
Circle: radius r area = nr2
Triangle: base b, height h area = bh/2
Cylinder: radius r, height h area = 2nrh

The required program listing is shown in Figure 7.37 (program: areas.py). A different
function is used for each shape, and the sizes of the sides are received inside the functions.
The main program displays the calculated area for the chosen shape.

This program calculates and displays the areas
of various geometrical shapes
of numbers 1in a list

Author: Dogan Ibrahim
File : areas.py
Date : October, 2024

H O H OH H B H H H

import math

def Square(a): # square
return a x a

def Rectangle(a, b): # rectangle
return(a x b)

def Triangle(b, h): # triangle
return(b x h / 2)

def Circle(r): # circle
return(math.pi * r x r)

def Cylinder(r, h): # cylinder
return(2 * math.pi * r * h)

e 109

The Beagle-Y AI Book

print("AREAS OF SHAPES")
pr'i nt(":::::::::::::::\n")
print("What is the shape?: ")

shape = 1dinput("Square (s)\nRectangle(r)\nCircle(c)\n\
Triangle(t)\nCylinder(y): ")

shape = shape.lower ()

if shape == 's':
a = float(input("Enter a side of the square: "))
area = Square(a)
s = "Square"

elif shape == 'r':
a = float(input("Enter one side of the rectangle: "))
b = float(input("Enter other side of the rectangle: "))
area = Rectangle(a, b)
s = "Rectangle"

elif shape == 'c':
radius = float(input("Enter radius of the circle: "))
area = Circle(radius)
s = "Circle"

elif shape == 't':
base = float(input("Enter base of the triangle: "))
height = float(input("Enter height of the triangle: "))
area = Triangle(base, height)
s = "Triangle"

elif shape == 'y':
radius = float(input("Enter radius of cylinder: "))
height = float(input("Enter height of cylinder: "))
area = Cylinder(radius, height)
s = "Cylinder"

print("Area of %s s %f" %(s, area))
Figure 7.37 Program listing.

An example run of the program is shown in Figure 7.38.

e 110

Chapter 7 e Python Programming and Simple Programs

beaglefbeagle:~$ python areas.py
AREAS OF SHAPES

What is the shape?:

Square (s)

Rectangle (r)

Circle(c)

Triangle(t)

Cylinder(y): r

Enter one side of the rectangle: 12
Enter other side of the rectangle: 3
Area of Rectangle is 36.000000
beagle@beagle:~$ [

Figure 7.38 Example output.

7.27 Recursive Functions

Recursive functions are functions that call themselves either directly or indirectly, and such
functions are supported by Python. Although the topic of recursive functions is an advanced
topic, an example is given in Figure 7.39 to illustrate the principles of such functions.
This recursive function implements the factorial operation. Detailed analysis of recursive
functions is beyond the scope of this book.

>>> def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)

>>>

>>> factorial (4)
124

>>> factorial (6)
720

>>> i

Figure 7.39 Recursive factorial function.

7.28 Exceptions

There may be major errors in our programs, such as dividing by zero, file permission errors,
and so on. Normally, when Python encounters such errors, it cannot handle them, and the
program crashes.

One way to handle such errors orderly and avoid crashes is to use exception handling in
our programs. The basic method is that whenever an error occurs, the program detects
this error and takes appropriate measures to handle the error, and continues to execute
normally. Exception handling is also useful if we wish to terminate a running program in an
orderly manner, such as shutting down any input-output operations when the program is
terminated asynchronously by the user (e.g., by pressing the Ctrl+C key).

The statements try and except are used to handle unexpected errors or terminations in
our programs. The general format of exception handling is as follows:

try:

o111

The Beagle-Y AI Book

Normal program statements
Normal program statements
except condition 1:
if condition 1 type error occurs then execute this block of code

except condition 2:
if condition 2 type error occurs then execute this block of code

else:

We can use the except statement with no condition in order to handle any type of exception.
Some of the commonly used exceptions are:

exception EOFError: the end-of-file condition is reached while reading data
exception ImportError: import statement could not load a module
exception IndexError: sequence subscript is out of range

exception KeyError: a dictionary key is not found in the set of existing keys

exception KeyboardInterrupt: user hits the interrupt key (normally the Cntrl+C
or Delete key)

exception MemoryError: operation ran out of memory
exception OverFlowError: arithmetic operation resulted in overflow

exception RuntimeError: an error is detected that does not fall into any other
categories

exception ValueError: an operation or function receives an argument that has
the right type but an inappropriate value

exception ZeroDivisionError: a division by zero occurred

Some examples of using exceptions in programs are given below.

e 112

Chapter 7 e Python Programming and Simple Programs

Example 13
Write a program to wait for an input from the keyboard. Terminate the program orderly
when the Cntrl+C keys are pressed on the keyboard.

Solution 13

Figure 7.40 shows the program listing (program: exceptl.py). The exception
KeyboardInterrupt is used in this program. The message End of Program is displayed
when the Ctrl+C key combination is pressed on the keyboard.

KeyboardInteerupt EXCEPTION

This program detects the keyboard entry Ctrl+C and
the program is teminated orderly after the message
End of Program 1is displayed

Author : Dogan Ibrahim
File ¢ exceptl.py
Date : October, 2024

H O H OH H B H H

mode = input("Enter Ctrl+C to terminate the program: ")
except KeyboardInterrupt:
print("\nEnd of Program")

Figure 7.40 Program listing.

Example 14
Write a program to detect division by zero and to display the message Divide by Zero
when this exception is detected.

Solution 14

Figure 7.41 shows the program listing (program: except2.py). In this example, the
program is forced to divide a number by zero, which is detected as an exception, and the
program displays a message when this occurs.

ZeroDivisionError EXCEPTION

This program detects when a number is divided by zero
and generates an exception to display a message

##

Author : Dogan Ibrahim

File ¢ except2.py
Date ¢ July, 2024
#==

e 113

The Beagle-Y AI Book

print("Divide by zero exception')

try:
s=10/0

except ZeroDivisionError:
print("Divide by Zero")

Figure 7.41 Program listing.
When the program is run it displays the following message:

Divide by zero exception
Divide by Zero

7.29 try/final Exceptions

The statement finally can be used in exception handling. The Try/finally combination
specifies an exception where the block beginning with finally is always executed on the way
out, regardless of whether an exception occurs in the try block. An example is given below:

Example 15
Write a program to look for KeyboardInterrupt exception and display the message
Exception not occurred if an exception has not occurred.

Solution 15
Figure 7.42 shows the program listing (program: except3.py). The block inside finally is
executed regardless of whether an exception occurs.

try/finally In EXCEPTION
This program detects the keyboard entry Ctrl1+C and

displays the message Keyboard Interrupt if interrupt
occurs. Message Continue is displayed regardless of

#

#

#

#

#

whether an exception occurred
#

Author : Dogan Ibrahim

#

#

File : except3.py

Date : July, 2024
#==
try:

mode = raw_input("Enter Ctrl+C to terminate the program: ")
except KeyboardInterrupt:

print("\nKeyboard Interrupt")
finally:

print("\nContinue")

Figure 7.42 Program listing.

e 114

Chapter 7 e Python Programming and Simple Programs

When the program is run the following is displayed

Enter Ctrl+C to terminate the program:

After entering Ctrl+C:

Keyboard Interrupt

7.30 Date and Time

In some applications, it may be necessary to get the current date and time. Python supports
a number of functions to get the current date and time. The module time must be imported
before these functions can be used. Some of the commonly used date and time functions
are as follows:

time.localtime() returns the current date and time in the following
format:

time.struct_time(tm_year=2013,tm_mon=12,tm_mday=18,

tm_hour=12,tm_min=45,tm_sec=3,tw_wday=2,tm_yday=352,

tm_isdst=0)

time.asctime() returns the date and time in a standard readable
format

time.clock() returns the current CPU time in seconds
time.ctime() returns the current date and time

time.time() returns the current time in seconds since the epoch
time.sleep(x) suspends the calling program for x seconds

Some examples are given in Figure 7.43.

>>> import time
>>> print(time.localtime())

time.struct time (tm year=2023, tm mon=10, tm mday=6, tm hour=14, tm min=31,

lec=0, tm_wd.ay=4, tm_yday=273, tm isdst=l)
2>

»>>> print(time,asctime())

[Fri Oct 6 14:31:05 2023

>>>

>>> print(time.ctime())

Fri Oct 6 14:31:15 2023
>>>

>>> print(time.time())
1696599083.4537978

>

Figure 7.43 Example date and time functions.

e 115

The Beagle-Y AI Book

The datetime module can also be used for date and time functions. This module must be
imported in order to use these functions. Some examples of date functions are shown in
Figure 7.44.

>>> from datetime import date
>>> print(date.today())
12023-10-06

2>

>>> print(date.today () .year)
12023

e

>>> print(date.today () .month)
10

>

»>>> print(date.today () .day)

|6

>>> i

Figure 7.44 Examples of using the datetime date functions.

The function strftime(format) is very useful as it can be used to format a date and time
string. Some examples of using this function are given in Figure 7.45.

>>»> from datetime import datetime

>>> print(datetime.now() .strftime ("%¥Y:%m"))
2023:10

23>

>>> print (datetime.now() .strftime ("2H:3M:35"))
14:41:08

25>

>>> print (datetime.now() .strftime ("%d:%m:3¥Y"))
06:10:2023

22>

>>> print (datetime.now() .strftime ("%d:%m:3¥Y %H:iM:%s"))
06:10:2023 14:42:07

>>> i

Figure 7.45 Examples of using strftime.

7.31 Creating Your Own Modules

In some applications, we may want to create our own Python modules and import them into
our programs. Python modules are simply .py program files. Writing a module is just like
writing any other Python program. Modules can contain functions, classes, and variables.

A simple module called msg.py is shows below:

def hello():
print("Hello there!")

We can now import this module into our Python programs. An example program called
myprog.py is shown below:

import msg
msg.hello()

e 116

Chapter 7 e Python Programming and Simple Programs

Running the program: python myprog.py will display the following output:
Hello there!

We can also modify our program myprog.py and import and then call the module as
follows:

from msg import hello
hello()

We can use variables in our module as shown below:
msg.py

def hello():
print("Hello there!")

name = "Jones"
myprog.py

import msg

msg.hello()

print(msg.name)

The program will display:

Hello there!
Jones

Aliases can be created for modules. This is shown in the following code:
myprog.py

import msg as tst
tst.hello()

Will display the output:

Hello there!
An example module is given below that calculates the cube of a humber.
Example 16

Write a module that calculates the cube of the integer number passed to it. Show how this
module can be imported and used in a program.

o117

The Beagle-Y AI Book

Solution 16

Figure 7.46 shows the module listing (program: cubeno.py). The function cube inside
cubeno.py has the number as its argument. The cube of this number is calculated and
returned. Figure 7.47 shows the program (program: myprog.py). As an example, when
the number is 3, the output from the program is:

Cube of 3 is: 27

def cube(N):
r=N=+*N=*N
return r

Figure 7.46 Program cubeno.py listing.

import cubeno

n= 3

res = cubeno.cube(n)

print("Cube of %d is: %d" %(n,res))

Figure 7.47 Program myprog.py.

Module Search Path: When a module is to be imported, Python looks at the following
folders in the order given:

e The folder from which the module is called (where the calling main program is)
e The list of directories contained in the PYTHONPATH environment variable.
¢ Installation dependent list of directories configured when Python was installed

Python's search path can be displayed by entering the following command interactively:

>>> import sys
>>> sys.path

The display on the author's computer is shown in Figure 7.48.

beaglefbeagle:~§ python

Python 3.11.2 (main, Aug 26 2024, 07:20:54) [GCC 12.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

|>>> import sys

>>> sys.path

![' ', 'Jusr/lib/python31l.zip', '/usr/lib/python3.11', '/usr/lib/python3.11/lib-d
lynload', '/usr/local/lib/python3.l1/dist-packages', '/usr/lib/python3/dist-packa
lges', '/usr/lib/python3.11/dist-packages']

>>> 11

Figure 7.48 Python path display.

e 118

Chapter 7 e Python Programming and Simple Programs

To make sure that your module is found by Python, you can do one of the following:
e Put the module program file in the folder where your main program is.

e Modify the PYTHONPATH environment variable to contain the folder where the
module program is.

e Put the module program in one of the folders already contained in the
PYTHONPATH.

e 119

The Beagle-Y AI Book

Chapter 8 e BeagleY-AI LED Projects

8.1 Overview

This Chapter is about the BeagleY-AI hardware interface and using LEDs in simple projects.
The BeagleY-Al is connected to external electronic circuits and devices using its GPIO
(General Purpose Input Output) port connector. This is a 2.54 mm, 40-pin expansion
header, arranged in a 2x20 strip as shown in Figure 8.1. The I/O ports are numbered as
GPIONN.

HAT
EE—O0 (o ny’ 5V 4
121 W AS3TPW—O o—Ew
121 S ATICEWF—O (o ' GND 4
AT—O O—ATITILY MEFTW UART
f GND z®) (o GP1015 J/' RXD AVX:3S
FGPI017 aum e O— 43Ty AaYW PCM
F GP1027 gupe] (o ' GND 4
f GPI022 aup®) (o oy GP1023 4
B8B5—O0 (o oy GP1024 4
sp10 AFSY (FICF—O O—Aany
SACN MISO § GPI09 ame] (o ' GP1025 4
AN SCLK f/ GPI011 guy®) (o ny’ GP108 J CEQ 431/
Ay—O0 ooy’ GP107 J CE1 A93T)
EEPROM AW AGITIW—O O—AATITEW A5EW EEPROM
f GPIOS amme (o ' GIND 4
f GPI06 ampe] (o oy 'GP1012 J/ PWMO 4
 PWM1 J GPI013 zug® (e ' GND 4
W FS JGPI019 auge] o oy GP1016 4
F GP1026 ap @} O—Ad3TFY AW PCM
Ar—O0 O—Ad3TFAY LSUF PCM

Figure 8.1 BeagleY-AI GPIO pins.

8.2 BeagleY-AI GPIO pin Definitions

When the GPIO connector is at the far side of the board, the pins starting from the left
of the connector are numbered as 1, 3, 5, 7, and so on, while the ones at the top are
numbered as 2, 4, 6, 8 and so on (Figure 8.2).

e 120

Chapter 8 e BeagleY-AI LED Projects

Pin 2

Figure 8.2 GPIO pin numbering.

The GPIO provides 26 general-purpose bi-directional I/O pins. Some of the pins have
multiple functions. For example, GPIO10 is a general-purpose I/0 pin, shared with the SPI
MOSI and SPIO.

Two power outputs are provided: +3.3 V and +5.0 V. The GPIO pins operate at +3.3 V logic
levels (unlike many other computer circuits that operate with +5 V). A pin can either be an
input or an output. When configured as an output, the pin voltage is either 0 V (logic 0) or
+3.3 V (logic 1). BeagleY-Al is normally operated using an external power supply (e.g., a
mains adapter) with +5 V output. A 3.3 V output pin can supply up to 16 mA of current.
The total current drawn from all output pins should not exceed the 51 mA limit. Care should
be taken when connecting external devices to the GPIO pins as drawing excessive currents
or short-circuiting a pin can easily damage your BeagleY-AI. The amount of current that
can be supplied by the 5 V pin depends on many factors such as the current required by
the device itself, current taken by the USB peripherals, camera current, micro HDMI port
current, and so on.

When configured as an input, a voltage above +1.7 V will be taken as logic 1, and a voltage
below +1.7 V will be taken as logic 0. Care should be taken not to supply voltages greater
than +3.3 V to any I/O pin as large voltages can easily damage your BeagleY-AI board as
there is no over-voltage protection circuitry.

8.3 Project 1 - Flashing an LED

Description: This is perhaps the easiest hardware project you can design using your
BeagleY-AlL. In this project you will connect an LED to one of the ports of the BeagleY-AI
and then flash the LED at a rate of once a second. The aim of this project is to show how a

e 121

The Beagle-Y AI Book

simple Python program can be written and then run from a file. The project also shows how
to connect an LED to a BeagleY-AI GPIO pin. In addition, the project shows how to use the
GPIO library to configure and set a GPIO pin to logic 0 or 1.

Block diagram: The block diagram of the project is shown in Figure 8.3

LED

BeagleY-Al

Figure 8.3 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.4. A small low-
current LED is connected to port pin GPIO17 (pin 11) of the BeagleY-AI through a current-
limiting resistor. The value of the current limiting resistor is calculated as follows:

The output high voltage of a GPIO pin is 3.3 V. The voltage across an LED is approximately
1.8 V. The current through the LED depends upon the type of LED used and the amount
of required brightness. Assuming that we are using a small LED, we can assume a forward

LED current of about 3 mA. Then, the value of the current limiting resistor is:

R=(3.3V-1.8V)/3mA =500 Q. We can choose a 470 Q resistor.

e 122

Chapter 8 e BeagleY-AI LED Projects

In Figure 8.4, the LED is operated in current sourcing mode, where a high output from the
GPIO pin drives the LED. The LED can also be operated in current sinking mode, where
the other end of the LED is connected to the +3.3 V supply and not to ground. In current
sinking mode, the LED is turned ON when the GPIO pin is at logic low.

11 470 A
GPI017 4:—[>|1
LED

BeagleY-Al

Figure 8.4 Circuit diagram of the project.

Construction: The project is constructed on a breadboard as shown in Figure 8.5. Jumper
wires are used to connect the LED to the GPIO port. Notice that the short side of the LED
must be connected to ground.

.
.u . s -
wE = 1K
e . .
esssas . |
. .. s b P
R . “u o
. . . caeww
e .. . svaaw
.e . . e
.. . . s
&% LR .. e e
e .. veeew
e sewe s
teenaw R
ey e
R <<y e
sas e e &
seaenn B8 8. &
T Sy LR
L e
.- - L L Y
i iy cae e
T 2 e e
‘. s b L |
= PR
aedese v ey
s s LN N]
sssans]
g s .. ihady
R L]
2 whee

Program listing: The libgpiod library which is required for I/O programming should
already be installed in the default image, in case it's not installed, then install it by using
the command below:

e 123

The Beagle-Y AI Book

sudo apt-get install python3-libgpiod

The program is called led.py, and the listing is shown in Figure 8.6. The program was
written using the nano text editor. At the beginning of the program, the gpiod and time
libraries are imported. Then, the LED is linked to GPIO port 17 and it is configured as an
output with default value of 0, i.e., the LED is OFF at the beginning of the program. Then
an endless while loop is formed where the LED is turned ON and OFF with a one-second
delay between each output. Function set_value() sets the value of a GPIO pin to 0 or 1.

oo
#

FLASHING LED

============

#

In this project a small LED 1is connected to GPIO17 of

the BeagleY-AI. The program flashes the LED every

second.

#

Program: led.py

Date : October, 2024

Author : Dogan Ibrahim

B
import gpiod # import gpiod

import time # import time library

led = gpiod.find_line('GPIO17"')
led.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

while True:
led.set_value(1l)
time.sleep(1)
led.set_value(0)
time.sleep(1)

turn ON LED

wait 1 second
turn OFF LED
wait 1 second

H* W I H

Figure 8.6 Program listing of the project.
The program is run from the console mode as follows:
beagle@beagle: ~ $ python led.py
If you wish to run the program from the GUI Desktop environment, you should use the
Thonny IDE. Type in the program if it is not already in your default directory. Click Run to

run the program. You should see the LED flashing every second. To terminate the program,
close the screen by clicking on the STOP button.

e 124

Chapter 8 e BeagleY-AI LED Projects

Note: You can copy the programs from your BeagleY-AI home directory to your PC using
the winSCP file copy program (available free of charge on the Internet).

8.4 Project 2 - Alternately Flashing LEDs

Description: This project is similar to the previous one but here two LEDs are used and
they flash alternately every second. The aim of this project is to show how more than one
LED can be connected to BeagleY-AL.

Block diagram: The block diagram of the project is shown in Figure 8.7

LED1 LED2

BeagleY-Al

Figure 8.7 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.8. Two small LEDs
are connected to port pins GPIO17 (pin 11) and GPIO27 (pin 13) of the BeagleY-AI through
current limiting resistors.

e 125

The Beagle-Y AI Book

BeagleY-Al

GPIO 17

GPIO 27

GND

39J_

11 470 2 LED1

470
13 LED2

Figure 8.8 Circuit diagram of the project.

Program listing: The program is called alternate.py and the listing is shown in Figure
8.9. The program was written using the nano text editor. At the beginning of the program,
led1 and led2 are linked to GPIO ports 17 and 27 respectively, and configured as outputs.
The rest of the program is executed indefinitely in a while loop where the LEDs are turned
on and off alternately, with a one-second delay between each output. Enter Ctrl+C to

terminate the program.

every second.

Program: alternate.py
Date : October, 2024
Author : Dogan Ibrahim

HOH HE F O W W W W HE

import gpiod
import time

ledl = gpiod.find_line('GPIO17"')
led2 = gpiod.find_line('GPIO27"')

ledl.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
led2.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

while True:
ledl.set_value(1)
led2.set_value(0)
time.sleep (1)

e 126

In this project two small LED 1is connected to GPIO17 and
GPIO27 of BeagleY-AI. The program flashes the LEDs alternately

import gpiod
import time library

turn ON ledl
turn OFF led2
wait 1 second

Chapter 8 e BeagleY-AI LED Projects

ledl.set_value(0) # turn OFF ledl
led2.set_value(1l) # turn ON led2
time.sleep (1) # wait 1 second

Figure 8.9 Program listing of the project.

8.5 Project 3 - Binary Counting with 8 LEDs

Description: In this project, 8 LEDs are connected to the BeagleY-AI GPIO pins. The LEDs
count up in binary every second. The aim of this project is to show how 8 LEDs can be
connected to the GPIO pins. In addition, the project shows how to group the LEDs as an
8-bit port and control them as a single port.

Block diagram: The block diagram of the project is shown in Figure 8.10.

LEDs

BeagleY-Al

Figure 8.10 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.11. The LEDs
are connected to 8 GPIO pins through 470 Ohm current-limiting resistors. The following 8
GPIO pins are grouped as an 8-bit port, where GPIO2 is configured as the LSB and GPIO9
is configured as the MSB:

MSB LSB

GPIO: 9 10 22 27 17 4 3 2
Pin no: 2119 15 13 11 7 5 3

e 127

The Beagle-Y AI Book

Construction: The project is constructed on a breadboard as shown in Figure 8.12. Notice
that in this project, a T-Cobbler (Figure 8.13) connects to the 40-pin GPIO header of the
BeagleY-Al through a ribbon cable. A T-type connector is used at the other side of this
ribbon cable, which is plugged into a breadboard. This setup makes it very easy to connect
to the BeagleY-Al header, especially when there are many connections to make. The GPIO

BeagleY-Al

GPIO 2
GPIO 3
GPIO 4
GPIO 17

GPIO 27

GPIO 22
GPIO 10

GPIO @

GND

LEDs
3 470 T
5 470 A
7 470

4 470 A

1
13 470 i

15 470 A
19 470 ;
4 470 A

2 =

39J;

Figure 8.11 Circuit diagram of the project.

pin names are written on the T-cobbler for ease of access.

e 128

Chapter 8 e BeagleY-AI LED Projects

Figure 8.13 The T-Cobbler.

Program listing: The program is called LEDCNT.py and the listing is shown in Figure 8.14.
The program was written using the nano text editor. At the beginning of the program, the
LEDs are linked to GPIO ports and are configured as outputs. Inside the main program, a
loop is formed to execute forever, and inside this loop, the LEDs count up by one in binary.

e 129

The Beagle-Y AI Book

The variable cnt is used as the counter. Function Port_Output is used to control the LEDs.
This function can take integer numbers from 0 to 255 and it converts the input number (x)
into binary using the built-in function bin. Then the leading "0Ob" characters are removed
from the output string b (the bin function inserts characters "0b" at the beginning of the
converted string). Afterward, the converted string b is made up of 8 characters by inserting
leading Os. The string is then sent to the PORT bit by bit, starting from the least-significant
bit (GPIO2) position. The result is that the 8 LEDs count up in binary.

o
#

BINARY UP COUNTING LEDs

=======================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port and then

the LEDs count up in binary with one second delay between
each output.

#

Program: LEDCNT.py

Date : October, 2024

Author : Dogan Ibrahim
o
import gpiod # import gpiod
import time # import time

#

LED connections

#

PORT = [0] * 8

PORT[0] = gpiod.find_line('GPIO9"')

PORT[1] = gpiod.find_line('GPIO10")
PORT[2] = gpiod.find_line('GPI022")
PORT[3] = gpiod.find_line('GPIO27")
PORT[4] = gpiod.find_line('GPIO17")
PORT[5] = gpiod.find_line('GPIO4")
PORT[6] = gpiod.find_line('GPIO3")
PORT[7] = gpiod.find_line('GPIO2")

PORT[0O] .request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[1].request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[2] .request(consumer="'beag;e',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[3].request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

e 130

Chapter 8 o BeagleY-AI LED Projects

PORT[4] .request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[5] .request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[6] .request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
PORT[7] .request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):
b ="e" + b # insert leading os
for i 1in range (0, 8):
if b[i] == "1":
PORT[1i].set_value(l) # bit ON
else:
PORT[1i].set_value(0) # bit OFF
return
#
Main program loop. Count up in binary every second
#
cnt = 0

while True:

Port_Output(cnt) # send cnt to port
time.sleep (1) # wait 1 second
cnt = cnt + 1 # increment cnt
if cnt > 255:

cnt = 0

Figure 8.14 Program listing.

Recommended modifications: Modify the program such that the LEDs count down every
two seconds.

Modified Program

The program shown in Figure 8.14 can be modified and made more friendly by storing the
LED port numbers in a list. The modified program, LEDCNT2.py, is shown in Figure 8.15.
In this version, the LED port numbers are stored in the list LED. PORT is defined as a list
having 8 elements. Inside the function Configure(), the LEDs are linked to GPIO ports and
they are configured as outputs. Then, the function Port_Output is used, as before, to send
the port data to the LEDs.

e 131

The Beagle-Y AI Book

o
#

BINARY UP COUNTING LEDs

=======================

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port and then

the LEDs count up in binary with one second delay between
each output.

#

In this version of the program the LEDs are grouped as an
8 bit port

#

Program: LEDCNT2.py

Date : October, 2024

Author : Dogan Ibrahim
oo
import gpiod # import gpiod
import time # import time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

for i 1in range(8):

PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))
PORT[1i].request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

This function sends 8-bit data (0 to 255) to the PORT

#

def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length

for i 1in range (0, diff):
b ="e" +b # insert leading os

for i in range (0, 8):
if b[i] == "1":

e 132

Chapter 8 e BeagleY-AI LED Projects

PORT[1i].set_value(l) # bit ON
else:
PORT[1i].set_value(0) # bit OFF
return
#
Main program loop. Count up in binary every second
#
cnt = 0
Configure()

while True:

Port_Output(cnt) # send cnt to port
time.sleep(1) # wait 1 second
cnt = cnt + 1 # increment cnt
if cnt > 255:

cnt = 0

Figure 8.15 Modified program.

8.6 Project 4 - Christmas Lights (Random Flashing 8 LEDs)

Description: In this project, 8 LEDs are connected to BeagleY-AI GPIO pins, just as in
Project 3. The LEDs flash randomly every 0.5 seconds just like fancy Christmas lights. The
aim of this project is to show how to generate random numbers between 1 and 255.

The block diagram and circuit diagram of the projects are the same as those in Figure 8.10
and Figure 8.11 respectively.

Program listing: The program is called xmas.py and the listing is shown in Figure 8.16.
The program was written using the nano text editor. At the beginning of the program, the
random module and other required modules are imported to the program. Then, a loop
is created to execute forever and inside this loop, a random number is generated between
1 and 255, and this number is used as an argument to function Port_Output. The binary
pattern corresponding to the generated number is sent to the port, which turns the LEDs
on or off in a random manner.

In this project 8 LEDs are connected to the following
GPIO pins:

9 10 22 27 17 4 3 2

H O H B H H o H H

The program groups these LEDs as an 8-bit port.The LEDs

e 133

The Beagle-Y AI Book

#

#

Program: xmas.py

Date : October, 2024

Author Dogan Ibrahim

import gpiod
import time

import random

LED = [9, 10, 22, 27, 17, 4, 3, 2]
PORT = [0] * 8
#

This function initializes the ports
#
def Configure():

for i 1in range(8):

turn ON and OFF randomly after generating a random number 1-255

import gpiod
dimport time

import random

PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))

PORT[1i].request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

convert into binary
remove leading "Ob"
find the length

insert leading os

bit ON

bit OFF

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x)
b = b.replace("ob", "")
diff = 8 - len(b)
for i in range (0, diff):
b ="e" +b
for i 1in range (0, 8):
if b[i] == "1":
PORT[i].set_value(l)
else:
PORT[i].set_value(0)
return
#
Main program loop
#
Configure()

while True:
numbr = random.randint(1l, 255)
Port_Output (numbr)
time.sleep(0.5)

generate random number
send cnt to port
wait 0.5 second

Figure 8.16 Program listing.

e 134

Chapter 8 e BeagleY-AI LED Projects

Recommended modifications: Modify the program such that 10 LEDs can be connected
to the BeagleY-AI board and flashed randomly.

8.7 Project 5 - Chasing LEDs
Description: In this project 8 LEDs are connected to the BeagleY-AI GPIO pins as in the

previous project. As shown in Figure 8.17, the LEDs rotate (chase each other) from the LSB
to MSB with one second delay between each output.

0000000 ®
olololele} o
ololole] lolo
QL0004
Q000000
e o]

Figure 8.17 Chasing LEDs.

@,
O
O
@
O

The block diagram and circuit diagram of the projects are same as in Figure 8.10 and Figure
8.11 respectively.

Program listing: The program is called rotate.py and the listing is shown in Figure 8.18.
The program was written using the nano text editor. Inside the main program, a loop is
created to execute indefinitely, and inside this loop, the variable rot is used as an argument
to the Port_Output function. This variable is shifted left at each iteration, and thus the
LED on sequence is from left to right (from LSB to MSB). A one-second delay is inserted
between each output.

o
#

ROTATING LEDs

=============

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

The program groups these LEDs as an 8-bit port.The LEDs
turn ON and OFF as 1if they are chasing each other

#

Program: rotate.py

Date : October, 2024

Author : Dogan Ibrahim

e 135

The Beagle-Y AI Book

__
import gpiod # import gpiod
import time # import time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

for i 1in range(8):

PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))
PORT[1i].request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):
b ="e" +b # insert leading os
for i in range (0, 8):
if b[i] == "1":
PORT[1i].set_value(l) # bit ON
else:
PORT[1i].set_value(0) # bit OFF
return
#
Main program loop
#
Configure()
rot = 1

while True:
Port_Output(rot)
time.sleep(1)
rot = rot << 1
if rot > 128:
rot = 1

send rot to port
wait 1 second
rotate rot

if at the end

H* W I H

Figure 8.18 Program listing.

e 136

Chapter 8 e BeagleY-AI LED Projects

8.8 Project 6 — Rotating LEDs with Pushbutton Switch

Description: In this project, 8 LEDs are connected to the BeagleY-AI GPIO pins as in the
previous project. In addition, a pushbutton switch is connected to one of the GPIO ports.
The LEDs rotate in one direction when the button is not pressed, and in the opposite
direction when the button is pressed. Only one LED is on at any time. A one-second delay
is inserted between each output. The aim of this project is to show how a pushbutton switch
can be connected to a GPIO pin.

Block diagram: The block diagram of the project is shown in Figure 8.19.

LEDs

BeagleY-Al

Figure 8.19 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.20. The LEDs are
connected to 8 GPIO pins through 470-ohm current limiting resistors, as in the previous
projects. The push-button switch is connected to GPIO11 (pin 23) of BeagleY-AIL. The
pushbutton switch is connected through a 10K and a 1K resistor. When the switch is not
pressed, the input is at logic 1. When the switch is pressed, the input changes to logic 0.
Notice that the 1K resistor is used here for safety in case the input channel is configured
as an output by mistake. If this happens, without a resistor, the output would be short-
circuited, which could damage the BeagleY-AI hardware.

e 137

The Beagle-Y AI Book

BeagleY-Al
Hizav LEDs
470 A
10k - gpioz |2 ———
GPIO11 5 470 A
1K GPIO3
7 470
GPI04 +—r——}—
':[l 11 470 A
Button | GPIO17 —:I—%
— 13 470
- GPI027 1T}
470 A
GPI022 L|:|—%<
470
GPIO10 L|:|—[)|—<
470 A
GPIO9 L|:|—[)|—<
GND 1
39J_ N

Figure 8.20 Circuit diagram of the project.

Construction: The project is constructed on a breadboard, as shown in Figure 8.21.

Figure 8.21 Project constructed on a breadboard.

e 138

Chapter 8 o BeagleY-AI LED Projects

Program listing: The program is called buttonled.py and the listing is shown in Figure
8.22. The program was written using the nano text editor. The LEDs are assigned as in the
previous project. The button is assigned to port GPIO11 and is configured as an input. A
while loop is created to execute indefinitely, and inside this loop, the variable rot is used as
an argument to the Port_Output function. If the button is not pressed, then rot is shifted
right, and the LED on sequence is from left to right (from MSB to LSB). If on the other
hand, the button is pressed, then the LED on sequence is from right to left (from LSB to
MSB). A one-second delay is inserted between each output.

#

ROTATING LEDs ITH PUSH BUTTON

—===============z=============

#

In this project 8 LEDs are connected to the following

GPIO pins:

#

9 10 22 27 17 4 3 2

#

In addition, a puch button switch is connected to GPIO1l.

Normally the button 1is at logic 1 and goes to 0 when pressed.

The LEDs rotate in one direction and when the button is pressed
the direction of rotation 1is reversed. One second delay is inserted
#

Program: buttonled.py

Date : October, 2024

Author : Dogan Ibrahim
oo
import gpiod # import gpiod

import time # dimport time

LED = [9, 10, 22, 27, 17, 4, 3, 2]

PORT = [0] * 8

#

This function initializes the ports

#

def Configure():

for i 1in range(8):

PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))
PORT[1i].request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

Configure the button as input

#

button = gpiod.find_line('GPIO11"')
button.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

e 139

The Beagle-Y AI Book

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):
b ="e" +b # insert leading os
for i in range (0, 8):
if b[i] == "1":
PORT[1i].set_value(l) # bit ON
else:
PORT[1i].set_value(0) # bit OFF
return
#
Main program loop
#
Configure()
rot =1

while True:
Port_Output(rot)
time.sleep(1)

send rot to port
wait 1 second
button=0 when pressed
rotate left

if button.get_value()== 0:
rot = rot << 1
if rot > 128:
rot = 1

H* W I H

else:
rot = rot >> 1 # rotate right
if rot ==
rot = 128

Figure 8.22 Program listing.
Note that the internal pull-up resistors can be enabled on input ports.
8.9 Project 7 - Morse Code Exerciser with LED or Buzzer
Description: In this project, an LED or a buzzer is connected to GPIO17 (pinl1l) of the
BeagleY-AlL. The user enters a text from the keyboard. The buzzer is then turned on and
off to sound the letters of the text in Morse code.
Circuit diagram: The circuit diagram of the project is shown in Figure 8.23, where an

active buzzer is connected to GPIO11 of the BeagleY-AlL.

e 140

Chapter 8 e BeagleY-AI LED Projects

11 Active Buzzer
GPIO17

BeagleY-Al —

]
Figure 8.23 Circuit diagram of the project.
Morse Code: In Morse code, each letter is made up of dots and dashes. Figure 8.24 shows
the Morse code of all the letters in the English alphabet (this table can be extended by
adding the Morse code for numbers and punctuation marks). The following rules apply to
the timing of dots and dashes:
e The duration of a dot is taken as the unit time, which determines the
transmission speed. Normally, the speed of transmission is quoted in words
per minute (wpm). The standard required minimum in Morse code-based
communication is 12 wpm.
e The duration of a dash is 3 unit times.
e The time between each dot and dash is a unit time.
e The time between the letters is 3 unit times.
e The time between the words is 7 unit times.
The unit time in milliseconds is calculated using the following formula:

Time (ms) = 1200/wpm

In this project, the Morse code is simulated at 10 wpm. Thus, the unit time is taken to be
1200/10 = 120ms.

Letter Morse code
A: -

O mMmognNw
1

e 141

The Beagle-Y AI Book

N<Xs<cHnhmOUVOZIMrRY rj T
1

Figure 8.24 Morse code of English letters.

Program listing: The program is called morse.py and the listing is shown in Figure 8.25.
The Morse code alphabet is stored in list Morse_Code. Function DO_DOT implement a
single dot with a duration of one unit time. The function DO_DASH implements a single
dash with duration of 3 unit times. The function DO_SPACE implements a space character
with duration of 7 unit times. The rest of the program is executed in a loop where a text is
read from the keyboard, and the buzzer sounds in such a way to represent the Morse code
of this text. The program terminates if the user enters the text QUIT.

You should run the program from the command mode as follows:

beagle@beagle:~ $ python morse.py

This project can be used to learn the Morse code. A buzzer is
connected to GPIO17 of the BeagleY-AI.

The program reads a text from the keyboard and then sounds the
buzzer to simulate sending or receiving the Morse code of this
text.

HOoH H H O ¥ H H H H

In this project the Morse code speed is assumed to be 10 wpm,

e 142

Chapter 8 e BeagleY-AI LED Projects

but can easily be changed by changing the parameter wpm.

#

File : morse.py

Date : October, 2024

Author: Dogan Ibrahim

import gpiod
import time

Buzzer = gpiod.find_line('GPIO17"')
Buzzer.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

words_per_minute = 10 # define words per min
wpm = 1200/words_per_minute # unit time in milliseconds

unit_time = wpm / 1000

Morse_Code = {

ATg 0=y
B8 "=co0"y
UCEREE
DIy =000,
IETg ol
IEIg Uoo=0Ty
1§y T==o1,
78 Uoo00y
viILlg ooty
10y ===l
Ui U=g=t
ILIg Uo=060Ty
M-
i =g
@18 ===l
Py ==gl,
Qg U==o=1,
TRVS To=00y
0808 U500
iy =0
Wig Too="y
IWig Usoo="y
gy ==l
R0 =g o=ily
g =g==ly
1Z0g ==,
}

#
This function sends a DOT (unit time)

e 143

The Beagle-Y AI Book

#

def DO_DOT():
Buzzer.set_value(1)
time.sleep(unit_time)
Buzzer.set_value(0)
time.sleep(unit_time)

return
#
This function sends a DASH (3*unit time)
#

def DO_DASH():
Buzzer.set_value(1l)
time.sleep(3*unit_time)
Buzzer.set_value(0)
time.sleep(unit_time)
return

#
This function sends inter-word space (7xunit time)
#
def DO_SPACE():
time.sleep(7*unit_time)

return
#
Main program code
#
text = ""
while text != "QUIT":
text = dinput("Enter text to send: ")
if text != "QUIT":
for letter in text:
if letter == ' ':
DO_SPACE ()
else:

for code in Morse_Code[letter.upper()]:
if code == '-':
DO_DASH ()
elif code == '".':
DO_DOT ()
time.sleep(unit_time)
time.sleep(3*unit_time)

time.sleep(2)

Figure 8.25 Program listing of the project.

o 144

Chapter 8 e BeagleY-AI LED Projects

Recommended modification: An LED can be connected to the GPIO pin instead of the
buzzer so that the Morse code can be seen in visual form.

8.10 Project 8 — Electronic Dice

Description: In this project, 7 LEDs are arranged in the form of the faces of a dice, and
a push-button switch is used. When the button is pressed, the LEDs turn on to display
numbers 1 to 6, as if on a real dice. The display is turned off after 3 seconds, ready for the
next game. The aim of this project is to show how a dice can be constructed with 7 LEDs.

Block diagram: The block diagram of the project is shown in Figure 8.26.

LEDs

BeagleY-Al
Figure 8.26 Block diagram of the project.

Figure 8.27 shows the LEDs that should be turned on to display the 6 dice numbers.

o ¢ e O e O e o o o o ®

cOeCc OO0 COCeOC OO0 OO0 eCe

o o o e O ® & e o o ¢ ®
1 2 3 4 5 6

Figure 8.27 LED Dice.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.28. Here, 8 GPIO
pins are collected together to form a PORT. The following pins are used for the LEDs (there
are 7 LEDs, but 8 port pins are used in the form of a byte where the most-significant bit
position is not used):

e 145

The Beagle-Y AI Book

Bit 7 6 5 4 3 2 1 0
GPIO: 9 10 22 27 17 4 3 2
BeagleY-Al Do A D4 A
Hizav 1 1?
10k cpioz 13270 1A D3A | D5 A
23 GPIO11 5 470 l_
1K GPIO3 —1 = - -
470 D2 A D6,
GPIo4 H— = DtL 4
E[l 11 470 — —
Button | GPIO17 — -
— 13 470
; GPI027 —
470
cpio22 M
470
cpioto K&
GND

39_l_

Figure 8.28 Circuit diagram of the project.
The push-button switch is connected to GPIO port pin GPIO11.

Table 8.1 gives the relationship between a dice humber and the corresponding LEDs to be
turned on to imitate the faces of a real dice. For example, to display number 1 (i.e., only
the middle LED is on), you have to turn LED D3 on. Similarly, to display nhumber 4, you
have to turn on DO, D2, D4 and D6.

Required number LEDs to be turned on

D3

DO, D6

DO, D2, D4, D6
DO, D2, D3, D4, D6

1
2
3 DO, D3, D6
4
5

6 DO, D1, D2, D4, D5, D6

Table 8.1 Dice number and LEDs to be turned on

The relationship between the required number and the data to be sent to the PORT to turn
on the correct LEDs is given in Table 8.2. For example, to display dice nhumber 2, you have
to send hexadecimal 0x41 to the PORT. Similarly, to display number 5, we have to send
hexadecimal 0x5D to the PORT and so on.

e 146

Chapter 8 e BeagleY-AI LED Projects

Required number PORT data (Hex)

0x08

0x41

0x55

1
2
3 0x49
4
5

0x5D

6 0x77
Table 8.2 Required number and PORT data

Program listing: The program is called dice.py and the listing is shown in Figure 8.29.
The bit pattern to be sent to the LEDs corresponding to each dice number is stored in
hexadecimal format in a list called DICE_NO (see Table 8.2). GPIO 1 is configured as a
button pin, and the push-button switch is connected to this pin to simulate the "throwing"
of a dice. The main program waits until a button is pressed. Then, a random number is
generated between 1 and 6 and stored in variable n. The bit pattern corresponding to this
number is found and sent to function Port_Output so that the required LEDs are turned on
to represent the dice number. This process is repeated after 3-seconds of delay.

oo
#

ELECTRONIC DICE WITH LEDs

—===========z=============

#

Yhis is an electronic dice project. A button is connected to

GPIO1l of the BeagleY-AI. A random number is generated between

1 and 6 when the button is pressed. The dice number 1is displayed
on 7 LEDs configured as the faces of a dice.

#

Program: dice.py

Date : October, 2024

Author : Dogan Ibrahim
oo
import gpiod # import gpiod

import time # dimport time

import random # import random

DICE_NO = [0, 0x08, 0x41, 0x49, 0x55, 0x5D, Ox77]
LED = [9, 10, 22, 27, 17, 4, 3, 2]
PORT = [0] * 8

#

This function initializes the ports
#

def Configure():

e 147

The Beagle-Y AI Book

for i 1in range(8):
PORT[i] = gpiod.find_line('GPIO'+str(LED[i]))
PORT[1i].request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

#

Configure the button as input

#

button = gpiod.find_line('GPIO11")
button.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
b = bin(x) # convert into binary
b = b.replace("ob", "") # remove leading "Ob"
diff = 8 - len(b) # find the length
for i 1in range (0, diff):
b ="e" +b # insert leading os
for i in range (0, 8):
if b[i] == "1":
PORT[1i].set_value(l) # bit ON
else:
PORT[1i].set_value(0) # bit OFF
return
#
Main program loop
#
Configure()

while True:

if button.get_value() == if button is pressed
n = random.randint(l, 6) generate random no
print(n) display it
pattern=DICE_NO[n]
Port_Output(pattern)
time.sleep(3)

Port_Output(0)

get the pattern
display the pattern
wait 3 sconds

H* o H W I I

clear display

Figure 8.29 Program listing of the project.

e 148

Chapter 8 BeagleY-AI LED Projects

8.11 Project 9 — Varying the LED Flashing Rate

Description: In this project, an LED and two pushbuttons are connected to the BeagleY-Al
board. Normally, the LED flashes every second. Pressing the Faster button increases the
flashing rate. Similarly, pressing the Slower button decreases the flashing rate. The aim of
this project is to show how more than one pushbutton can be connected to the BeagleY-AI
board.

Block diagram: The block diagram of the project is shown in Figure 8.30.

Slower

LED

BeagleY-Al
Figure 8.30 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 8.31. Here, the LED
is connected to GPIO17, the Faster button to GPIO9, and the Slower button to GPIO11.
The button states are at logic 1 and go to logic 0 when pressed.

e 149

The Beagle-Y AI Book

1
10k[]]
23
1k
EI]cLJ
Slower
10k
23 21
1k

Faster |

Program listing: The program is called sfled.py and the listing is shown in Figure 8.32.
At the beginning of the program, the LED and button ports are identified. The LED is
configured as output, and the two buttons are configured as inputs. The remainder of the
program runs in a loop. Here, pressing the Faster button increases the flashing rate by
decreasing the delay by 0.2 seconds, and pressing the Slower button increases the delay

by 0.2 seconds.

Program: sfled.py
Date : October, 2024
Author : Dogan Ibrahim

¥ H I O W W W O I I

import gpiod

e 150

BeagleY-Al
+3.3V
GPIO11
LED
11 470 A
GPIO17 &D‘i
GPIO9
GND

39J__

Figure 8.31 Circuit diagram.

In this project an LEDs and two buttons named Faster and Slower
are connected to the BeagleY-AI. Normally the LED flashes every
second. Pressing Faster increases the flashing rate. Similarly,
pressing Slower decreases the flashing rate.

import gpiod

Chapter 8 e BeagleY-AI LED Projects

import time

LED = gpiod.find_line('GPIO1

LED.request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

Faster = gpiod.find_line('GP
Slower = gpiod.find_line('GP

Faster.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)
Slower.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

#

Main program loop
#

dl =1

while True:
LED.set_value(1)
time.sleep(dl)
LED.set_value(0)
time.sleep(dl)

if Faster.get_value() == 0:

dl = dl - 0.2
if dl <= 0:
dl = 0.1

if Slower.get_value() == 0:

dl = dl + 0.2

#

")

109')
1011')

T N T

#
#

import time

default delay

LED ON

delay

LED OFF

delay

request for faster
lower delay

request for slower
increase delay

Figure 8.32 Program listing.

Testing: Keep the Faster button pressed and you should see the LED flashing faster.

Similarly, keep the Slower button pressed, and the LED should flash slower.

e 151

The Beagle-Y AI Book

Chapter 9 e Using an I2C LCD

9.1 Overview

The 12C (also known as I2C) bus is commonly used in microcontroller-based projects. In
this chapter, you will be looking at the use of this bus on BeagleY-Al. Some other interesting
projects are also given in this chapter. The aim is to make the reader familiar with the 12C
bus library functions and to show how they can be used in a real project. Before looking
at the details of the projects, it is worthwhile to look at the basic principles of the I2C bus.

9.2 The I2C Bus

The I2C bus is one of the most commonly used microcontroller communication protocols for
communicating with external devices such as sensors and actuators. The I2C bus is a single
master, multiple slave bus, and it can operate at standard mode: 100 Kbit/s, full speed:
400 Kbit/s, fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-
drain wires, pulled up with resistors:

SDA: data line
SCL: clock line

Figure 9.1 shows the structure of an I2C bus with one master and three slaves.

PULL-UP
RESISTORS
SDA
MASTER
SCL
SLAVE 1 SLAVE 2 SLAVE 3

Figure 9.1 I°C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an
individual slave device on the same bus. For this reason, the protocol defines that each
slave device provides a unique slave address for the given bus. This address is usually
7-bits wide. When the bus is free, both lines are high. All communication on the bus is
initiated and completed by the master which initially sends a start bit and completes a
transaction by sending a stop bit. This alerts all the slaves that some data is coming on
the bus, and all the slaves listen on the bus. After the start bit, 7 bits of the unique slave
address are sent. Each slave device on the bus has its own address, and this ensures that
only the addressed slave communicates on the bus at any time to avoid any collisions. The
last sent bit is a read/write (R/W) bit, such that if this bit is 0, it means that the master
wishes to write to the bus (e.g., to a register of a slave); if this bit is 1, it means that the
master wishes to read from the bus (e.g., from the register of a slave). The data is sent on

e 152

Chapter 9 ¢ Using an I2C LCD

the bus with the MSB (most significant bit) first. An acknowledgment (ACK) bit takes
place after every byte, and this bit allows the receiver to signal to the transmitter that the
byte was received successfully, allowing the transmission of another byte may be sent. The
ACK bit is sent at the 9th clock pulse.

The communication over the 12C bus is simply as follows:

e The master sends on the bus the address of the slave it wants to communicate
with.

e The LSB is the R/W bit which establishes the direction of data transmission, i.e.,
from master to slave (R/W = 0), or from slave to master (R/W = 1).

e Required bytes are sent, each interleaved with an ACK bit, until a stop condition
occurs

Depending on the type of slave device used, some transactions may require separate
transactions. For example, the steps to read data from an I2C compatible memory device

are:

e The master starts the transaction in write mode (R/W = 0) by sending the slave
address on the bus.

e The memory location to be retrieved is then sent as two bytes (assuming
64Kbit memory).

e The master sends a STOP condition to end the transaction.

e The master starts a new transaction in read mode (R/W = 1) by sending the
slave address on the bus.

e The master reads the data from the memory. If reading the memory in
sequential format, then more than one byte will be read.

e The master sets a stop condition on the bus.

9.3 I2C Pins of BeagleY-Al
BeagleY-AI I2C port is at the following GPIO pins:

GPIO2 SDA1 pin 3
GPIO3 SCL1 pin5

GPIO25 SDA4 pin 22
GPIO22 SCL4 pin 15

e 153

The Beagle-Y AI Book

There are also I2C pins at the GPIO0 and GPIO1, but these are shared with other modules
on the board, and using them as an I2C is not recommended.

2.2 kQ pull-up resistors are used from the 12C pins to +3.3 V. Notice that because the 12C
pins are pulled-up to +3.3 V and BeagleY-AI pins are not +5 V compatible, it is necessary
to use voltage level converter circuits if the 12C LCD operates with +5 V.

9.4 Project 1 — Using an I2C LCD - Seconds Counter

Description: In this project, an I2C type LCD is connected to the BeagleY-Al. The program
counts up in seconds and displays on the LCD. The aim of this project is to show how an
12C-type LCD can be used in projects.

The I2C LCD

The I2C LCD has 4 pins: GND, +V, SDA, and SCL. SDA can be connected to pin GPIO2, and
SCL to pin GPIO 3. The +V pin of the display should be connected to the +5 V (pin 2) of
the BeagleY-Al. BeagleY-AI GPIO pins are not +5 V tolerant, but the 12C LCD operates with
+5V where its SDA and SCL pins are pulled to +5 V. It is not a good idea to connect the LCD
directly to BeagleY-Al as it can damage its I/0O circuitry. There are several solutions here.
One solution is to remove the I2C pull-up resistors on the LCD module. The other option is
to use an LCD that operates with +3.3 V. Another solution is to use a bidirectional +3.3 V to
+5 V logic level converter chip. In this project, you will use the TXS0102 bidirectional logic

level converter chip, like the one shown in Figure 9.2.

Figure 9.2 Logic level converter.

Block diagram: Figure 9.3 shows the block diagram of the project.

e 154

Chapter 9 ¢ Using an I2C LCD

12C LCD
BeagleY-Al
Figure 9.3 Block diagram.
Circuit diagram: The circuit diagram is shown in Figure 9.4.
2
+5V
BeagleY-Al
VB
SDA Al B1 spaA Vee
5 LCD
SCL A2 B2 SCL GND
TXS0102
VA J_
GND OE —
1 L
+3.3V -
GND

39|
Figure 9.4 Circuit diagram of the project.

Figure 9.5 shows the front and back of the 12C-based LCD. Notice that the LCD has a small
board mounted at its back to control the I2C interface. The LCD contrast is adjusted through
the small potentiometer mounted on this board. A jumper is provided on this board to
disable the backlight if required.

Figure 9.5 12C-based LCD (front and back views)

e 155

The Beagle-Y AI Book

Program Listing: Before developing the program, make sure that you have the latest
version of the i2c tools and smbus. Enter the following command:

beagle@beagle:~ $ sudo apt-get install i2c-tools
beagle@beagle:~ $ sudo apt-get install python3-smbus

Connect the LCD to your BeagleY-AI as shown in Figure 9.4. Then, enter the following
command to ensure that the LCD is detected by your BeagleY-Al:

beagle@beagle:~ $ sudo i2cdetect -r -y 1

You should see a table similar to the one shown below. A humber in the table means that
the LCD has been recognized correctly and the I2C slave address of the LCD is shown in the
table. In this example the LCD address is 27:

0] 1 2 3 4 5 6 7 8 9 a b c d e f
00: - mm e m mm em m e m e -
10: - mm e m mm em m e m e -
20t -- -= —= —= o= —— = 27 —= o= —— o= - -

30: —= -- o= o= —m —m —m o —m o o o o o -
R I e
50- _ J— _— J— J— —_ J— _ J— J— JR— J— —_ J— —_—
60: —= -—= = = = —— —— o o o— —m o oo o -

701 —= —= o= —— —m —m —— m o m o o o o -

You should now install an I12C LCD library so that you can send commands and data to the
LCD. There are many Python libraries available for the 12C type LCDs. The one chosen here
is on GitHub from Dave Hylands. This library is installed as follows:
¢ Go to the following web link:
https://github.com/dhylands/python_Icd/tree/master/Icd

e Copy the following files to your home directory /home/beagle using WinSCP:

i2c_lcd.py
lcd_api.py

e Check to make sure that the file is copied successfully. You should see the file
listed with the command:

beagle@beagle: ~ $ Is
You are now ready to write the program. Figure 9.6 shows the program listing (led.py). At

the beginning of the program, the LCD driver libraries lcd_api and i2c_lcd are imported
into the program. The heading SECONDS COUNTER is displayed at the top row (row 1) and

e 156

Chapter 9 ¢ Using an I2C LCD

the program enters a loop. Inside this loop, variable cnt is incremented every second and
the total value of cnt is displayed on the LCD continuously in the following format:

SECONDS COUNTER

nn
oo
I2C LCD SECONDS COUNTER
=======================
#
In this program an I2C LCD is connected to the BeagleY-AI.
The program counts up in seconds and displays on the LCD.
#
At the beginning of the program the text SECONDS COUNTER s
displayed
#
Program: lcd.py
Date : October 2024
Author : Dogan Ibrahim
Moo

import smbus
import time
from lcd_api import LcdApi
from i2c_lcd import I2clLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS
I2C_NUM_COLS

2
16

mylcd = I2clcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear () # clear LCD
mylcd.putstr ("SECONDS COUNTER") # display string
cnt = 0 # initialize cnt
while True: # infinite loop
cnt = cnt + 1 # increment count

mylcd.move_to(0,1)
mylcd.putstr(str(cnt)) # display cnt
time.sleep(1) # wait one second

Figure 9.6 Program listing.

e 157

The Beagle-Y AI Book

Figure 9.7 shows the display.

SECONDS COUMTER:
£

Figure 9.7 The LCD display.

The I2C LCD library supports many functions. Some of the most commonly used ones
include (refer to the LCD library documentation for further details):

clear() clear LCD and set to home position
show_cursor() show cursor
hide_cursor() hide cursor
blink_cursor_on() blink cursor
blink_cursor_off() stop blinking cursor
display_on() display on
display_off() display off
backlight_on() backlight on
backlight_off() backlight off
move_to(x, y) move cursor to (X, y)
putchar() display a character
putstr() display a string

9.5 Project 2 - Using an I2C LCD - Display Time
Description: In this project, an I2C type LCD is connected to the BeagleY-Al as in the
previous project. The program displays the current time on the LCD.

e 158

Chapter 9 ¢ Using an I2C LCD

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4 respectively.

Program listing: Figure 9.8 shows the program listing (LCDtime.py). At the beginning
of the program, time, datetime, and I2C LCD modules are imported into the program.
The LCD is cleared, and the program enters a loop. Inside this loop, the current time is
extracted using the strftime() function, and the current time is then displayed on the top
row of the LCD every second in the following format:

hh:mm:ss

I2C LCD TIME DISPLAY

This program displays the current time on the LCD.

Program: LCDtime.py
Date : October 2024
Author : Dogan Ibrahim

HOoH H OB H B H

from time {import sleep

from datetime import datetime
from Tlcd_api dimport LcdApi
from i2c_lcd import I2clLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear () # clear LCD

while True: # infinite loop
now = datetime.now()
time = now.strftime("%H:%M:%S")
mylcd.move_to(0,0)
mylcd.putstr(str(time))
sleep (1) # wait one second
mylcd.clear ()

Figure 9.8 Program listing.

Figure 9.9 shows the display.

e 159

The Beagle-Y AI Book

Figure 9.9 LCD display.

9.6 Project 3 - Using an I2C LCD - Display the IP address of BeagleY-
AI

Description: In this project, an I2C-type LCD is connected to the BeagleY-Al as in the
previous projects. The IP address of the BeagleY-Al is displayed on the top row of the LCD.

The block diagram and circuit diagram are as in Figure 9.3 and Figure 9.4, respectively.

Program listing: Figure 9.10 shows the program listing (LCDip.py). The IP address
is extracted using the hosthame command with the =I option. The IP address is then
displayed on the LCD in the following format:

192.168.3.196

This program displays the IP address on the LCD.

Program: LCDip.py
Date : October 2024
Author : Dogan Ibrahim

HOH H H H H =

e 160

Chapter 9 ¢ Using an I2C LCD

from time {import sleep

from subprocess import check_output
from Tlcd_api import LcdApi

from i2c_lcd import I2clLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2clcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

ip = check_output(["hostname", "-I"],encoding="utf-8").split()[0]
mylcd.putstr(str(ip))

while True:

pass
Figure 9.10 Program listing.

9.7 Project 4 - Reaction Timer - Output to Screen

Description: This is a reaction timer project. The user presses a button as soon as he/
she sees an LED lighting up. The time delay between seeing the light and pressing the
button is measured and displayed on the screen. The LED then turns OFF, and the process
is repeated after a random delay of 1 to 10 seconds. The aim of this project is to show how

the time can be read and how a simple reaction timer project can be designed.

Block Diagram: Figure 9.11 shows the block diagram of the project.

Button

BeagleY-Al

Figure 9.11 Block diagram of the project.

LED

Circuit Diagram: The circuit diagram of the project is very simple, and it consists of an
LED and a push-button switch. The LED and the button are connected to GPIO17 and
GPIO27, respectively. The button is connected using two resistors as shown in Figure 9.12.

e 161

The Beagle-Y AI Book

1{+3.3v LED
11 470 A
10k GPI017 _:_D‘_l
131 GPI027 -
1k
BeagleY-Al

Button ED
F GND

Figure 9.12 Circuit diagram of the project.

Program listing: The program is called reaction.py and its listing is shown in Figure 9.13.
At the beginning of the program, the random library and other used libraries are imported.
The program runs in a loop where the system time is recorded as soon as the LED is turned
on. The program waits for the user to press the button, and the system time is read again
at this moment. The difference between the second time and the first time is displayed as
the reaction time of the user. This process repeats after a random delay of 1 to 10 seconds.
Note that the floating point function time.time() returns the time in seconds since the
epoch.

o
#

REACTION TIMER

==============

#

This 1is a reaction timer program. The user presses a button
as soon as he/she see a light. The time between seeing the
light and pressing the button is measured and is displayed
in milliseconds as the reaction time of the user. The light
comes ON after a random number of seconds between 1 and 10
seconds.

#

Program: reaction.py

Date : October, 2024

Author : Dogan Ibrahim
o

import time
import random
import gpiod
import time

e 162

Chapter 9 ¢ Using an I2C LCD

button = gpiod.find_line('GPIO027")

led = gpiod.find_line('GPIO17"')
led.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
button.request(consumer="beagle',type=gpiod.LINE_REQ_DIR_IN)

Start of main program

#

while True:
T = random.randint(1, 10) # generate random no
time.sleep(T)

led.set_value(1l) # LED ON

start_time = time.time() # start time

while(button.get_value() == 1): # wait until pressed
pass

end_time = time.time()

diff_time = 1000.0*(end_time - start_time)

diff_int = int(diff_time)

print(«Reaction time=%d ms» %diff_int)

led.set_value(0) # LED OFF
time.sleep(3) # wait 3 seconds

Figure 9.13 Program listing.

An example output is shown in Figure 9.14.

beagle@beagle:~$ python reaction.py
Reaction time=678 ms

Reaction time=2242 ms

Reaction time=4076 ms

Reaction time=387 ms

Figure 9.14 Example output.

9.8 Project 5 — Reaction Timer - Output to LCD

Description: This project is very similar to the previous one but here the output is sent to
LCD instead of the screen. As before, the user presses a button as soon as he/she sees a
LED lighting. The time delay between seeing the light and pressing the button is measured
and displayed on the LCD. The LED then turns OFF and the process is repeated after a
random delay of 1 to 10 seconds.

Block Diagram: Figure 9.15 shows the block diagram of the project.

e 163

The Beagle-Y AI Book

BeagleY-Al LCD

Figure 9.15 Block diagram of the project.

Circuit Diagram: The circuit diagram of the project, shown in Figure 9.16, is very simple
and it consists of an LED, a push-button switch, and an LCD display. The LED and the button
are connected to GPIO17 and GPIO27 respectively, as in the previous project.

1] LED
+3.3V 11470 A
GPI017 —:n—[)|—_|_
BeagleY-Al =
10k]|
13| spio27 SDAE a1 VA OF gy SDA LcD
i« scL |2 A2 B2 ScL
2 TXS0102 Vece GND
+5V VB o l
BuﬂonE{] 39 -
GND

Figure 9.16 Circuit diagram of the project.

Program listing: The program is called LCDreaction.py and its listing is shown in Figure
9.17. The program is basically the same as the one in Figure 9.27, but here the output is
sent to the LCD.

REACTION TIMER - OUTPUT TO LCD

This is a reaction timer program. The user presses a button
as soon as he/she see a light. The time between seeing the
light and pressing the button is measured and is displayed

on LCD in milliseconds as the reaction time of the user. The
light comes ON after a random number of seconds between 1 and
10 seconds.

¥ HE F O W W W W HE

e 164

Chapter 9 ¢ Using an I2C LCD

Program: LCDreaction.py

Date : October, 2024
Author : Dogan Ibrahim

import time
import random
import gpiod

from Tlcd_api import LcdApi
from i2c_lcd import I2clcd

I2C_ADDR = 0x27
I2C_NUM_ROWS 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(l, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)
mylcd.clear ()

button = gpiod.find_line('GPIO027"')

led = gpiod.find_line('GPIO17")
led.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
button.request(consumer="beagle',type=gpiod.LINE_REQ_DIR_IN)

Start of main program

#

while True:
T = random.randint(1, 10)
time.sleep(T)

led.set_value(1l) # LED ON
start_time = time.time() # start time
while(button.get_value() == 1):

pass

end_time = time.time()

diff_time = 1000.0x(end_time - start_time)

diff_int = str(int(diff_time)) + " ms"
mylcd.move_to(0, 0)

mylcd.putstr(diff_int)

led.set_value(0) # LED OFF
time.sleep(3)

mylcd.clear ()

Figure 9.17 Program listing.

e 165

The Beagle-Y AI Book

9.9 Project 6 — Automatic Dusk Lights

Description: In this project, a light dependent resistor (LDR) is used to sense the darkness,
and a relay is activated when the ambient light intensity falls below the required level. It
is possible to connect e.g. lights to the relay so that they turn on automatically when, for
example, it is dusk. The aim of this project is to show how to use an LDR in a BeagleY-Al
project, and also how to connect and activate a relay.

Block Diagram: Figure 9.18 shows the block diagram of the project.

LDR BeagleY-Al

Figure 9.18 Block diagram of the project.

Circuit Diagram: As shown in Figure 9.19, the circuit diagram of the project is simple and
it consists of an LDR, a 10-kilo ohm potentiometer, and a relay. The LDR is connected to
GPIO4, and the relay to GPIO17.

The resistance of an LDR increases as the light level falls. The response of a typical LDR
is shown in Figure 9.20. The LDR is connected as a resistive potential divider circuit. The
voltage across the LDR increases as the light level falls. When dark, logic 0 will be sent to
the BeagleY-AI which in turn will activate the relay. In light conditions, logic 1 will be sent
to the BeagleY-AI, which will deactivate the relay. The potentiometer can be adjusted so
that the relay is activated at the required light level. This process will require some trial
and error.

e 166

Chapter 9 ¢ Using an I2C LCD

']
+3.3V
BeagleY-Al

11 .
LDR C) GPI017 S RELAY (& To lights, etc.
7 {Gpioa 1
d] 10k GND

BQJT_

Figure 9.19 Circuit diagram of the project.

1000
100
=
3 gl
§ 10 ™
o N
2 \
T 10 ~

0.1

0.1 1.0 10 100 1000 10,000

Lux

Figure 9.20 Response of a typical LDR.

Program listing: Figure 9.21 shows the program listing (program: dusklight.py). The
LDR is the input, and the relay is the output. The program detects the voltage at its GPIO4
pin and if it is at logic 0 (i.e. dark) then it deactivates the relay, otherwise, the relay is
activated. The potentiometer can be used to adjust the required light trigger level.

In this project a light dependent resistor (LDR) is used to
detect the ambient light level. When the light level falls
below the required value, a relay is activated which turns
ON the lights.

The potentiometer can be used to adjust the triggering
light level of the project.

H R H B H H H H H I H H

e 167

The Beagle-Y AI Book

Program: dusklight.py

Date : October, 2024
Author : Dogan Ibrahim

import gpiod

LDR = gpiod.find_line('GPIO4")
LDR.request(consumer="beagle',type=gpiod.LINE_REQ_DIR_IN)

RELAY = gpiod.find_line('GPIO17"')
RELAY.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

RELAY.set_value(0) # RELAY OFF)

while True:
if LDR.get_value() == 0:

RELAY.set_value(1) # At logic 0 (dark)
else:
RELAY.set_value(0) # At logic 1 (light)

Figure 9.21 Program listing.
9.10 Project 7 — Ultrasonic Distance Measurement
Description: This project uses an ultrasonic transmitter/receiver pair to measure the
distance in front of the sensor. The distance is displayed on the screen. The aim of the
project is to show how ultrasonic sensors can be attached to a BeagleY-AI and how distance

can be measured using these sensors.

Block diagram: Figure 9.22 shows the block diagram of the project.

Ultrasonic TX/RX
BeagleY-Al

Obstacle

Figure 9.22 Block diagram of the project.

e 168

Chapter 9 ¢ Using an I2C LCD

Circuit Diagram: An ultrasonic sensor is used to sense the distance in front of the sensor.
The outputs of the ultrasonic sensors are +5 V and therefore are not compatible with the
inputs of the BeagleY-Al. A resistive potential divider circuit is used to lower the voltage to
+3.3 V. The voltage at the output of the potential divider resistor is:

Vo=5Vx2K/(2K+1K)=33V

In this project, an HC-SR04-type ultrasonic transmitter/receiver module is used (see Figure
9.23). These modules have the following specifications:

e Operating voltage (current): 5V (2 mA) operation
¢ Detection distance: 2 cm - 450 cm

e Input trigger signal: 10 us TTL

e Sensor angle: not more than 15 degrees

The sensor modules have the following pins:
Vcc: +V power
Trig: Trigger input
Echo: Echo output
Gnd: Power ground

Figure 9.23 Ultrasonic transmitter/receiver module.
The principle of operation of the ultrasonic sensor module is as follows:
e A 10 us trigger pulse is sent to the module
e The module then sends eight 40 kHz square wave signals and automatically
detects the returned (echoed) pulse signal
o If an echo signal is returned the time to receive this signal is recorded

e The distance to the object is calculated as:

Distance to object (in meters) = (time to received echo in seconds x speed of
sound) / 2

The speed of sound is 343 m/s, or 0.0343 cm/us

e 169

The Beagle-Y AI Book

Therefore,
Distance to object (in cm) = (time to received echo in us) x 0.0343 /2
or,
Distance to object (in cm) = (time to received echo in pus) x 0.01715
Figure 9.24 shows the principle of operation of the ultrasonic sensor module. For example,
if the time to receive the echo is 294 microseconds, then the distance to the object is

calculated as:

Distance to object (cm) = 294 x 0.01715 = 5.04 cm

10us trigger

Trig

8 cycle burst ‘ ‘ I _‘

Echo

Figure 9.24 Operation of the ultrasonic sensor module.

Figure 9.25 shows the circuit diagram of the project. The trig and echo pins of the sensor
are connected to GPIO4 and GPIO17 respectively. The echo output of the ultrasonic sensor
is connected to the BeagleY-AI through a resistive potential divider circuit to drop the
voltage level to +3.3 V.

+5V
Vce 7
trig GPIO4
HC-SR04 1k 1
echo GPIO17
Gjl_D 2k BeagleY-Al
- GND

= 39JT_

Figure 9.25 Circuit diagram of the project.

e 170

Chapter 9 e Using an I12C LCD

Program listing: Figure 9.26 shows the program listing (ultrasonic.py). At the beginning
of the program, the echo and trigger pins are defined. Function GetDistance() calculates
the distance to the obstacle and returns it to the main program after rounding it to 2
decimal places. A 10ms trigger pulse is sent and the program waits until it receives the echo
signal. The elapsed time is multiplied by 17150 to calculate the distance in centimeters. The
remainder of the program runs in a loop where the distance is measured continuously and
displayed on the screen. Figure 9.41 shows an example output from the program.

oo
#

ULTRASONIC DISTANCE SENSOR

—======z===================

#

This program uses a HC-SR04 type ultrasonic transmitter/receiver
to measure the distance to an obstacle in-front of the sensor.

The measured distance is displayed on the screen.

#

Program: ultrasonic.py

Date : October 2024

Author : Dogan Ibrahim

import gpiod
import time

trigger = gpiod.find_line('GPIO4"')

echo = gpiod.find_line('GPIO17"')
trigger.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
echo.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

#

This function calculates the distance
#

def GetDistance(trig, echo):

trig.set_value(0) # trig=0

time.sleep(0.08) # waiting for sensor to settle
trig.set_value(1l) # send trigger
time.sleep(0.00001) # wait 10ms

trig.set_value(0) # trig=0

while echo.get_value() ==
start_time = time.time()

while echo.get_value() ==
end_time = time.time()

pulse_width = end_time - start_time # calculate elapsed time

o171

The Beagle-Y AI Book

distance = pulse_width * 17150 # calculate distance
distance = round(distance, 2) # round
return distance

while True:
obstacle = GetDistance(trigger, echo)
print("Distanc (cm)=", obstacle)
time.sleep(1)

Figure 9.26 Program listing.

beaglelbeagle:~$ python ultrasonic.py
Distanc (em)= 161.36
Distanc (cm)= 161.38
Distanc (cm)= 161.4
Distanc (cm)= 161.77
Distanc (em)= 7.73
Distanc (cm)= 7.85
Distanc (cm)= 5.69
Distanc (cm)= 16.59
Distanc (cm)= 17.73
Distanc (em)= 21.63
Distanc (cm)= 25.22
Distanc (cm)= 21.43
Distanc (ecm)= 25.71
Distanc (cm)= 108.42
Distanc (cm)= 206.82

Figure 9.27 Example output.

9.11 Project 8 — Car Parking Sensors

Description: This is a parking sensors project to help a person park a car safely and easily.
A pair of ultrasonic transmitter/receiver sensors are mounted in the front and back of a
vehicle to sense the distance to the objects, and an active buzzer sounds if the sensors are
too close to the objects in front of them. In this project, a safe distance is assumed to be
10cm.

Block Diagram: Figure 9.28 shows the block diagram of the project.

Front of the vehicle

Rear of the vehicle

Buzzer

Figure 9.28 Block diagram of the project.

e 172

Chapter 9 e Using an I12C LCD

Circuit Diagram: Figure 9.29 shows the circuit diagram. The trig and echo pins of the
Front ultrasonic sensor are connected to GPIO4 and GPIO17, respectively, as in the previous
project. Similarly, the trig and echo pins of the rear ultrasonic sensor are connected to
GPIO27 and GPI022, respectively. The echo outputs of the ultrasonic sensors are connected
to the BeagleY-Al through resistive potential divider resistors to drop the voltage levels to

+3.3 V. The active buzzer is connected to GPIO10 of the BeagleY-Al.

2 |
+5V
Vce 7
trig GPIO4
FRONT SENSOR |HC-SR04 |) iy
echo GPIO17
GJ'\‘_D % | BeagleY-Al
= BUZZER
— 19
= GMO10-——<:>—]_
Vee 13 —
trig GPIO27 -
REAR SENSOR |HC-SR04 | 1) 5
echo GPI1022
GND

2k GND
J— 39J_

Figure 9.29 Circuit diagram of the project.

Program listing: Figure 9.30 shows the program listing (program parking.py). At the
beginning of the program, the trigger and echo pins are defined. The triggers are configured
as outputs, and the echoes are configured as inputs. If the distance from either sensor to
an object is less than or equal to the Allowed_Distance (set to 10cm) then the buzzer is
sounded to indicate that the vehicle is too close to an object (either at the front or the rear).

oo
PARKING SENSORS

=======z========

#

This is a parking sensors project. Ultrasonic tranamitter/receiver

sensors are attached to the front and rear of a vehicle. In addition

an active buzzer is connected to the BeagleY-AI. The program senses

the objects 1in the front and rear of the vehicle and sounds the buzzer
if the vehicle 1is too close to the objects. In this project a distance
less than 10cm is considered to be too close.

#

File : parking.py

Date : October, 2024

e 173

The Beagle-Y AI Book

Author: Dogan Ibrahim

import time
import gpiod

Buzzer = gpiod.find_line('GPIO10")
forwardecho = gpiod.find_line('GPIO17")
rearecho = gpiod.find_line('GPI022")
forwardtrig = gpiod.find_line('GPIO0O4")
reartrig = gpiod.find_line('GPIO27")

Buzzer.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
forwardtrig.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
reartrig.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
forwardecho.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)
rearecho.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

#
Calculate the distance to the obstacle
#
def Get_Distance(trig, echo):
trig.set_value(0)
time.sleep(0.08)
trig.set_value(1l)
time.sleep(0.00001)
trig.set_value(0)

while echo.get_value() == 0:
start_time = time.time()

while echo.get_value() == 1:
end_time = time.time()

pulse_width = end_time - start_time
distance = pulse_width * 17150
return distance

Allowed_Distance = 10 # allowed 10cm
Buzzer.set_value(0) # buzzer OFF

obstacle_f and obstacle_r are the distances to the obstacles 1in the
front and rear, respectively

#

while True:

obstacle_f = Get_Distance(forwardtrig, forwardecho)

e 174

Chapter 9 ¢ Using an I2C LCD

obstacle_r = Get_Distance(reartrig, rearecho)

if obstacle_f <= Allowed_Distance or obstacle_r <= Allowed_Distance:
Buzzer.set_value(1)

else:

Buzzer.set_value(0)

Figure 9.30 Program listing.

e 175

The Beagle-Y AI Book

Chapter 10 ¢ Plotting Graphs With Python and
BeagleY-AI

10.1 Overview

In this chapter, you will learn how to draw graphs using the Python programming language.
Additionally, examples and projects are given on drawing graphs for simple electronic
circuits.

10.2 The Matplotlib Graph Plotting Library
Matplotlib is a Python plotting library that is used to create two-dimensional graphs. Before
using this package, it must be installed on your Raspberry Pi 5 using the following command:

beagle@beagle:~ $ sudo apt-get install python3-matplotlib

You must import the matplotlib module at the beginning of our programs before you can
use Matplotlib. Use the following statement:

import matplotlib.pyplot as plt
Perhaps the easiest way to learn how to use Matplotlib is to look at an example.

Note that graphs can only be plotted in GUI Desktop mode. Write your programs using
Thonny or the Terminal Emulator in console mode.

Example 1
Write a program to draw a line graph passing from the following (x, y) points:

X:2468
y: 481216

Solution 1

The required program listing is shown in Figure 10.1 (program: graph1.py). This program
is very simple. The function call plt.plot plots the graph with the specified x and y values.
The graph is shown on the GUI Desktop when the statement plt.show() is executed. The
program was written in console mode on the GUI Desktop.

beagle@beagle:~ $ python graphl.py

ETE

This program draws a line graph passing from
the following points:

#

#x =246 8

e 176

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

#y =42812 16

#

Author: Dogan Ibrahim
File : graphl.py

Date : October, 2023

import matplotlib.pyplot as plt

[2, 4, 6, 8]
[4, 8, 12, 16]

<
0]

plt.plot(x, y)
plt.show()

Figure 10.1 Program listing.

Figure 10.2 shows the graph plotted by the program. Notice that at the bottom of the
graph, we have several buttons to control the graph, such as zoom, save, etc.

Figure] oy

16 1 ’

14

12

10 1

84

6

4

2 3 a 5 6 7 8

®E€P Q= =199 y=1616

Figure 10.2 Line graph drawn by the program.
You can add titles, axis labels, and grid to your graph using the following functions:
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("Simple X-Y Graph")
plt.grid(True)

The new graph is shown in Figure 10.3.

e 177

The Beagle-Y AI Book

Simple X-Y Graph

¥ values
=
=)

2 3 4 5 L] 7 8
values

eI Q= w368 y=15.16

Figure 10.3 Graph with labels, title, and grid.

Matplotlib supports a large number of functions (see web link: https://matplotlib.org/2.0.2/
api/pyplot_summary.html for a full description of all the functions). Some commonly used
functions are:

e bar: make a bar plot

e box: turn the axis box on or off

e boxplot: make a box plot

o figtext: add text to the figure

e hist: plot a histogram

e legend: place a legend on the axes

¢ loglog: make a logarithmic plot

e pie: plot a pie chart

e polar: make a polar plot

¢ plotfile: plot data in a file

e semilogx: logarithmic plot with log on x-axis
e semilogy: logarithmic plot with log on y-axis
e suptitle: add a cantered title to the plot

e tick_params: change the appearance of ticks and tick labels

Example 2
Write a program to draw a sine curve from 0 to 2n.

Solution 2

You have to use NumPy arrays to store your data points before plotting. Figure 10.4 shows
the program listing (program: graph2.py).

e 178

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

H*+ o H B H B H

This program draws a sine graph from 0 to 2pi

Author: Dogan Ibrahim
File : graph2.py
Date : October, 2023

import matplotlib.pyplot as plt

import numpy as np

H*+ O < X H #H oH
n 1

plt.
plt.
plt.
plt.
plt.
plt.

Calculate the data points in np

np.arange(0®, 2 *x np.pi, 0.1)
np.sin(x)

Now plot the graph

plot(x, y)
xlabel("X values")
ylabel("Sin(X)")
title("Sine Wave")
grid(True)

show ()

Figure 10.4 Program listing.

The graph drawn by the program is shown in Figure 10.5.

e 179

The Beagle-Y AI Book

4 Sine Wave

1.00 4

0.75 4

0.50 4

0.25

0.00

Sin{X)

-0.25 1

—-0.50 1

=0.75 1

-1.00 4

0 1 2 3 4 5 []

Figure 10.5 Graph drawn by the program.

Example 3
Draw the graph of the following function as x is varied from 0 to 4:

y =2x2+ 3x+ 2
Solution 3

Figure 10.6 shows the program listing (program: graph3.py). After calculating the x and
y values, the graph is drawn as shown in Figure 10.7.

B
Function Graph

==============

#

This program draws a graph of the function:
#

y = 2x2 + 3x + 2 from x=0 to x = 4

#

Author: Dogan Ibrahim

File : graph3.py

Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

Calculate the data points 1in np

= np.arange(0, 4, 0.1)
= [(2*x1*1i+3%1i+2) for iin x]

< X #* o o#

e 180

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

#
Now plot the graph
#
plt.plot(x, y)
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=2x2 + 3x + 2")
plt.grid(True)
plt.show()
Figure 10.6 Program listing.
y=2%2 + 3X + 2
20 -
30 -
g
= 20
10
04— - - - - r r - -
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
X values
¢ $Q= x=0.912 y=34.9
Figure 10.7 Graph drawn by the program.
Example 4

This is an example of drawing two graphs on the same axes. Write a program to draw the
graphs of the following two functions as x is varied from 0 to 3:

y=x2+2
y=x2+4
Solution 4

Figure 10.8 shows the program listing (program: graph4.py). After calculating the x and
y values the graphs are drawn as shown in Figure 10.9.

e 181

The Beagle-Y AI Book

This program draws a graph of the functions:

x2 + 4 from x=0 to x = 3

<
1

#

#

#

#

#

y = x2 + 2
#

#

Author: Dogan Ibrahim

File : graph4.py

Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

#

Calculate the data points 1in np
#

X = np.arange(0, 3, 0.1)

yl = [(i x i + 2) for i 1in x]

y2 = [(i x i + 4) for i 1in x]

#

Now plot the graph

#

plt.plot(x, yl, linestyle='solid')
plt.plot(x, y2, linestyle='dashed')
plt.xlabel("X values")
plt.ylabel("Y values")
plt.title("y=x2+2 and y=x2+4")
plt.grid(True)

plt.show()

Figure 10.8 Program listing.

e 182

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

y=x2+2 and y=x2+4

10

w

¥ values

0.0 0.5 10 15 2.0 2.5 3.0
X values

AeE» Q= B x=1.701 y=10.84
Figure 10.9 Graph drawn by the program.

In order to identify the individual graphs in a multi-graph drawing, you can plot each graph
with a different color, or with different types of lines. Some examples are shown below:

plt.plot(x, y1, color="blue")
plt.plot(x, y2, color='green')

or
plt.plot(x, y1, linestyle="solid")
plt.plot(x, y2, linestyle='dashed")

Figure 10.10 shows the graph in Figure 10.9 drawn with different line styles.

e 183

The Beagle-Y AI Book

y=x2+2 and y=x2+4

12 A Z

¥ values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X values

€2 $Q= x=0871 y=12.61
Figure 10.10 Using different line styles.

Example 5
In this example, you will use legends to identify multiple graphs in a multi-graph drawing.
The functions to be drawn are the same as the ones given in the previous example.

Solution 5

Figure 10.11 shows the program listing (program: graph5.py). The label parameter is
used to identify the two graphs. Also, the statement plt.legend() must be specified to
draw the legend.

This program draws a graph of the functions:

y = X2 + 2
x2 + 4 from x=0 to x = 3

In this program the graphs are +identified
Author: Dogan Ibrahim

File : graph5.py
Date : October, 2023

¥ O I O W W W I O I I
<
"

import matplotlib.pyplot as plt

import numpy as np

e 184

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

#

Calculate the data points 1in np

#

X =
yl
y2

#

np.arange(0, 3, 0.1)
[(i * i+ 2) for i in x]
[(i* i+ 4) for i in x]

Now plot the graph

#

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

plot(x, yl, linestyle='solid', label='x2+2")
plot(x, y2, linestyle='dashed', label='x2+4")
xlabel("X values")

ylabel("Y values")

title("y=x2+2 and y=x2+4")

grid(True)

legend ()

show ()

Figure 10.11 Program listing.

Figure 10.12 shows the graph drawn by the program.

y=x2+2 and y=x2+4

— X242
127 e

10 4

Y values

0.0 05 1.0 15 2.0 2.5 3.0
X values

AEI Q=B %=0.659 y=12.02

Figure 10.12 Graph drawn by the program.

e 185

The Beagle-Y AI Book

Example 6
Write a program to draw a pie chart for the following data;

France = 15%, Germany = 20%, Italy = 20%, UK = 45%
Solution 6

Figure 10.13 shows the program listing (program: graph6.py). The Pie chart is drawn with
an equal aspect ratio so that is a circle.

o
Pie Chart

=========

#

This program draws a pie chart for the data:
#

France=15%, Germany=20%,Italy=20%,UK=45%
#

Author: Dogan Ibrahim

File : graph6.py

Date : October, 2023

import matplotlib.pyplot as plt
import numpy as np

labels = "France", "Germany", "Italy", "UK"
sizes = [15, 20, 20, 45]

x, chrt = plt.subplots()
chrt.pie(sizes, labels=labels)
chrt.axis('equal')

plt.show()

Figure 10.13 Program listing.

The Pie chart drawn by the program is shown in Figure 10.14.

e 186

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

ﬁ Germany

Italy

€ PQE

Figure 10.14 Pie chart drawn by the program.

We can explode parts of the Pie chart by specifying the parts to be exploded. For example,
to explode the fourth item in our example, we can issue the statement:

Explode = (0, 0, 0, 0.1) # specify the amount to be exploded

The amount of explosion is determined by the value we specify. Also, the percentages of
each part can be written inside the Pie chart elements by using the statement:

autopct='%1.1f%%' # specify 1 digit after the decimal point

Parts of the pie chart can be shadowed if desired to give it a 3D effect. This can be done
using the statement:

shadow=True

The program shown in Figure 10.15 (program: graphZ.py) makes use of the above
features, and the resulting pie chart is shown in Figure 10.16.

This program draws a pie chart for the data:
France=15%, Germany=20%,Italy=20%,UK=45%

Part UK is exploded 1in this graph. Also, the

e 187

The Beagle-Y AI Book

percentage of each part is written inside the
corresponding parts and pats are shadowed

Author: Dogan Ibrahim
File : graph7.py
Date : October, 2023

H O H H H H®

import matplotlib.pyplot as plt
import numpy as np

labels = "France", "Germany", "Italy", "UK"
sizes = [15, 20, 20, 45]
explode = (06, 0, 0, 0.1)

x, chrt = plt.subplots()
chrt.pie(sizes, labels=labels, explode=explode,\
autopct="'%1.1f%%"',shadow=True)

chrt.axis('equal')

plt.show()
Figure 10.15 Program listing.
‘ Germany
taly
fE€> A=
Figure 10.16 Pie chart drawn by the program.
Example 7

Write a program to draw a bar chart for the following data:

France = 10, Italy = 8, Germany = 6, UK = 2

e 188

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

Solution 7
Figure 10.17 shows the program listing (program: graph8.py). After specifying the values
for each bar, the bar chart is drawn.

H O H OH H B H H

This program draws a bar chart for the data:

France=10, Italy=8,Germany=6,UK=2

Author: Dogan Ibrahim
File : graph8.py
Date : October, 2023

import matplotlib.pyplot as plt

import numpy as np

labels = ("France", "Germany", "Italy", "UK")

pos

= np.arange(len(labels))

values = [10, 8, 6, 2]

plt.
plt.
plt.
plt.
plt.

bar(pos, values, align='center',alpha=0.5)
xticks(pos, labels)

ylabel('MB/s')

title('Internet Speed')

show ()

Figure 10.17 Program listing.

Figure 10.18 shows the graph drawn by the program.

e 189

The Beagle-Y AI Book

Internet Speed

France

A€ Q= A
Figure 10.18 Graph drawn by the program.

You can plot a horizontal bar chart by replacing the statement plt.bar with plt.barh.

10.3 Project 1 - RC Transient Circuit Analysis - Charging
Description: This project is about analyzing a charging RC transient circuit by plotting its
time response.

Background Information: RC circuits are used in many radio and communications
circuits. A typical RC transient circuit consists of a resistor in series with a capacitor, as
shown in Figure 10.19. When the switch is closed, the voltage across the capacitor rises
exponentially with a time constant, T = RC.

R

Vin I
c Ve
.,

Figure 10.19 Charging RC circuit.

Expressed mathematically, assuming that initially the capacitor is discharged, when the
switch is closed the voltage across the capacitor rises a given by the following formula:

_ 1 _ 1R
Ve=Vin|1—e ""| (10.1)

e 190

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

Initially, the voltage across the capacitor is 0V, and in a steady state, the voltage across the
capacitor becomes equal to Vin. The time constant is the time at which the output voltage
rises to around 63.2% of its final value.

Program Listing: Figure 10.20 shows the program listing (program: RCrise.py). After
displaying the heading, the values of the input voltage Vin, and resistor and capacitor
values are read from the keyboard. The program then calculates the time constant as
T=RC and displays the time constant and also draws the time response of the circuit. The
graph is drawn as the time value (x-axis) changes from 0 to 6T and 50 points are taken to
draw the graph. The time constant is also written on the graph at the point (Time constant,
Vin / 2). The horizontal axis is in seconds, while the vertical axis is in volts.

This program reads the R and C values and then
calculates and displays the time conctant. Also,
the time response of the circuit is drawn

Author: Dogan Ibrahim
File : RCrise.py
Date : October, 2024

H O H H H B H H H

import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")
pr'i nt(":::::::::::::::::::::”)

#

Read Vin, R and C

#

Vin = float(input("Enter Vin in Volts: "))

R = float(input("Enter R in Ohms: "))
float(input("Enter C in microfarads: "))
C / 1000000.0

O 0O
0]

Calculate and display time constant

R = C
= 6.0 x T
F / 50.0
print("Time constant = %f seconds" %(T))

Z m H # F#H# H=*
0]

e 191

The Beagle-Y AI Book

Now plot the time response

= np.arange(0, F, N)
= [(Vin x (1.0 - math.exp(-i/T))) for i in x]

< X #* #* o

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response")
plt.grid(True)

TC = "T="+str(T)+"s"
plt.text(T, Vin/2, TC)
plt.show()

Figure 10.20 Program listing.

Figure 10.21 shows an example graph displayed by the program. In this example, the
following input values were used (see Figure 10.22):

Vin = 10 volts
R = 100 ohm

C = 10 microfarad

The time constant was calculated to be 0.1 seconds.

RC Response

o

T=0.001s

Capacitor Volts

0.000 0001 0002 0003 0004 0005 0.006
Time (s)

#RE€EI Q=
Figure 10.21 Graph plotted by the program.

e 192

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

Figure 10.22 Input values to the example program.

10.4 Project 2 - RC Transient Circuit Analysis - Discharging
Description: This case study is about analyzing a discharging RC transient circuit by
plotting its time response.

Background Information: In this case study, an RC circuit is used as in Figure 10.23. We
assume that the capacitor is fully charged after switch s1 is closed. We then close switch s2
so that the capacitor discharges through resistor R. The time response of the voltage across
the capacitor is given by the following formula:

Ve=Voe "F¢ (10.2)

Where Vo is the initial voltage across the capacitor (normally the same as Vin) before s2 is
closed. Again, T=RC is known as the time constant of the circuit.

s1 R

C}—‘*—E:::J——:I:—————{D
Vin /s2 —|—C Ve
QO

Figure 10.23 Discharging RC circuit.

Program Listing: Figure 10.24 shows the program listing (program: RCfall.py). After
displaying the heading, the values of the initial voltage across the capacitor (Vo), and the
resistor and capacitor are read from the keyboard. The program then calculates the time
constant as T=RC, displays the time constant, and also draws the time response of the
circuit. The graph is drawn as the time value (x-axis), changes from 0 to 6T, and 50 points
are taken to draw the graph. The time constant is also written on the graph at the point
(Time constant, Vo / 2). The horizontal axis is in seconds, while the vertical axis is in volts.

#
—====================

#
This program reads the R and C values and then
calculates and displays the time constant. Also,

the time response of the circuit is drawn as the

e 193

The Beagle-Y AI Book

capacitor is discharged
#

Author: Dogan Ibrahim

File : RCfall.py

Date : October, 2024

import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response'")
pr'i nt(":::::::::::::::::::::”)

#

Read Vo, R and C

#

Vo = float(input("Enter Initial Capacitor Voltage 1in Volts: "))
R = float(input("Enter R in Ohms: "))

float(input("Enter C in microfarads: "))

C =C / 1000000.0

#

Calculate and display time constant
#

T=Rx*xC

F=6.0*T

N=F/ 50.0

print("Time constant = %f seconds" %(T))

Now plot the time response

np.arange(0, F, N)
= [(Vo * (math.exp(-i/T))) for i in x]

< X #* #* o

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response")
plt.grid(True)

TC = "T="+str(T)+"s"
plt.text(T, Vo/2, TC)
plt.show()

Figure 10.24 Program listing.

e 194

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

Figure 10.25 shows an example graph displayed by the program. In this program, the
following input values were used (see Figure 10.26):

Initial capacitor voltage = 10 volts
R = 1000 ohms

C = 100 microfarads

The time constant was calculated to be 0.1 seconds.

7 - —

RC Response

10 4

T=0.1s

Capacitor Volts

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

€ $Q=
Figure 10.25 Graph plotted by the program.

Figure 10.26 Input values to the example program.

10.5 Transient RL Circuits
The time response of a transient resistor-inductor circuit is similar to the RC circuit.
When the circuit is connected to a DC supply of value Vin, the current in the circuit rises
exponentially and is given by the following formula:

s Vin RilL|

[1—e
(10.3)

Where, Vin is in volts, R in ohms, L in henries, and t in seconds. The time constant of this
circuit is given by T = L/R.

e 195

The Beagle-Y AI Book

After the current reaches its steady state value, disconnecting the DC supply and shorting
the leads causes the current in the circuit to fall exponentially, given by the following
formula:

Yo -mnm
I=—¢
R (10.4)

Where, Vo is the initial voltage across the inductor.

The transient response of RL circuits is similar to those of the RC circuits and therefore is
not covered further in this book.

10.6 Project 3 — RCL Transient Circuit Analysis
Description: This case study is about analyzing the transient response of a second-order,
series-connected RLC circuit by plotting its time response.

Background Information: An RLC circuit (Figure 10.27) is a second-order system that
can have three modes of operation depending on the values of the components when a DC
voltage is applied across its terminals.

L
22

VinQO c=

Figure 10.27 RLC circuit.

Underdamped mode: This mode is identified when the following condition holds true:

R<2‘\|'|£
C (10.5)

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

Vin
WIJ ‘\"II 1 B E

ijt|= -~ sin| w1 ')

(10.6)

Where:

e 196

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

1 lc
B \I|£<1
2L (10.7)

Critically damped mode: In this mode of operation, the following is satisfied:

R=2 \:IIL
C (10.8)

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

it =0 o™
L (10.9)
Where:
1 R |IE
=——— and, &=—, == 10.10
Jic ™" ¢ 2\L 1 ()

Overdamped mode: In this mode of operation, the following is satisfied:

R>2|

O]

(10.11)

When DC voltage is applied to the circuit, the current in the circuit is given by the following
formula:

i Vin | =2 a1
ilt|=————¢"""sinh| Wty & —1]|
. : . (10.12)
Where:
1 R [C
W=—— and, f=—,=>1 (10.13)
VLC 50T

Program Listing: Figure 10.28 shows the program listing (program: RLC.py). At
the beginning of the program, a heading is displayed and then the values of the input
voltage, resistor, capacitor, and inductor are read and stored in variables Vin, R, C, and L,
respectively. The program then finds out in which mode the circuit will be operating based
on the value of €. Then, three functions are used, one for each mode, to calculate and plot
the transient response of the circuit. The mode of the circuit is displayed on the graph at
the coordinate (3T, 0), where T = 2n/W. In all the graphs, 80 points are used to draw the
points from 0 to 6T.

e 197

The Beagle-Y AI Book

This program reads the R,L,C values and then
calculates and displays the transient response

Author: Dogan Ibrahim
File : RLC.py
Date : October, 2024

B N T T

import matplotlib.pyplot as plt
import numpy as np

import math

global x, y, z

def critically_damped():
global x,y
X = np.arange(0, F, N)
y = [Vinx((1/L) * i * math.exp(-i*w)) for i in x]

def underdamped():
global x,y,z
X = np.arange(0, F, N)
zeta = math.sqrt(l - zxz)
y = [Vinx(1/(wxLxzeta)*(math.exp(-z*wx*i))*math.sin(wxixzeta)) for i in x]

def overdamped():

global x,y,z

X = np.arange(0, F, N)

y = [Vinx(1/(wxLx(math.sqrt(z*xz-1))))*(math.exp(-z*w*i))*\
math.sinh(wxi*math.sqrt(zxz-1)) for i in x]

print("RLC Transient Response")
pr'i nt(":::::::::::::::::::::”)

#

Read Vin, R,C and L

#

Vin = float(input("Enter Vin in Volts: "))
float(input("Enter R in Ohms: "))
float(input("Enter C in microfarads: "))
C / 1000000.0

float(input("Enter L in millihenries: "))
L / 1000.0

r-r O 0O =3
1

e 198

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

w = math.sqrt(1/(L *x C))

z = (R/2) * math.sqrt(C / L)
T = (2.0 * math.pi) / w
F=6x*xT

N=F/ 80.0

#

Find the mode of operation
#

mode = R - 2.0 * math.sqrt(L / C)
if abs(mode) < 0.01:
case = 2
md = "Critically Damped"
critically_damped()
elif mode < 0:
case = 1
md = "Underdamped"
underdamped ()
elif mode > 0:
case = 3
md = "Overdamped"
overdamped ()

#

Now plot the time response
#

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Current")
plt.title("RLC Response'")
plt.grid(True)
plt.text(3*xT,0, md)
plt.show()

Figure 10.28 Program listing.
Figure 10.29 shows a typical run of the program with the following values:
Vin = 10 volts
R = 10 ohms

C = 100 microfarads
L = 200 microhenries

e 199

The Beagle-Y AI Book

(RLC Response

0.20 4

0.15 4

0.10 4

0.05 4

Current

0.00 4

—0.05 A

=0.10 A

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Time {(s)

e FQ= B

Figure 10.29 Response of the circuit.

10.7 Project 4 — Temperature, Pressure, and Humidity Measurement -
Display on the Screen

Description: In this project, the BME280 sensor module is used to read the ambient
temperature, pressure, and humidity, and to display the readings on the screen.

Block diagram: Figure 10.30 shows the block diagram of the project.

BME280 sensor

BeagleY-Al

Figure 10.30 Block diagram of the project.

The BME280 Sensor Module

The BME280 module (Figure 10.31) is a low-cost sensor developed for measuring the
ambient temperature, atmospheric pressure, and humidity. This module operates with the
12C (or SPI) bus interface and has the pins SDA, SCL, Vin, and GND. The basic specifications
of this module are:

e 200

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

e Operating voltage: 1.2to 3.6 V

e Interface I2C or SPI

e Current consumption: 1.8 pA

e Humidity sensor response time: 1 s

e Humidity sensor accuracy: £3%

e Pressure sensor range: 300 to 1100 hPa
e Temperature range: -40 to +85°C

Figure 10.31 The BME280 sensor module.

Circuit diagram: The project circuit diagram is shown in Figure 10.32. The module is
connected to BeagleY-AI SDA (pin 3) and SCL (pin 5) pins. +3.3 V power is applied from
pin 1.

1
+3.3V
Vin 5
SDA SDA
BME280 o' [5]oq,
GND
L BeagleY-Al
' GND

39J_

Figure 10.32 Circuit diagram of the project.

e 201

The Beagle-Y AI Book

The default address of the BME280 is 0x76. This can be confirmed by entering the following
command after the circuit is built (Figure 10.33):

i2cdetect -r-y 1

01 2 3 45 6 7 8 9 abocdef£
00: m— e = mm mm e e
108 == == == == == == m= mm —m mm e —m —m —m e o
B
301 == == == m= = mm mm o mm m em —m o m -
40: == == == == == mm mm mm mm e e me e e e e
B0: == == == == == == == == == == == == == == —o =

BIE i i S AR e e e S e e

70: == == —= —= —= —= 76 --
beaglelbeagle:~$ ||

Figure 10.33 Checking the I?C bus for the sensor module.

Program listing: Figure 10.34 shows the program listing (bme280.py). Before running
the program, it is necessary to load the BME280 library. The steps are (ignore the warning
messages):

e git clone https://github.com/MarcoAndreaBuchmann/bme280pi.git
e cd bme280pi
e sudo python3 setup.py install

The sensor library can be imported to your Python programs as follows:

from bme280pi import Sensor
sensor = Sensor()

At the beginning of the program, the BME280 sensor library is imported as above, and the
sensor address is specified, Inside the main program loop the temperature, atmospheric
pressure, and humidity are read and displayed on the screen every 5 seconds.

oo
TEMPERATURE ,ATMOSPHERIC PRESSURE AND HUMIDITY

—==

#

This program reads the ambient temperature, atmospheric
pressure, and humidity using a BME280 sensor module. The
readings are dislayed on the screen every 5 seconds

#

Program: bme280.py

Date : October, 2024

Author : Dogan Ibrahim

from time import sleep
from bme280pi import Sensor

e 202

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

sensor = Sensor(address = 0x76)

while True: # infinite loop
data = sensor.get_data() # get sensor data
temperature = datal['temperature'] # temperature
pressure = data['pressure'] # pressure
humidity = data['humidity'] # humidity

print("Temperature = %5.2f C" %temperature)
print("Pressure = %d hPa" %pressure)
print("Humidity = %d" %humidity)

print("")

sleep(5)

Figure 10.34 Program listing.

Figure 10.35 shows an example output from the program.

beaglelbeagle:~§ python bme280.py
Temperature = 21.84 C

Pressure = 1016 hPa

Humidity 0

Temperature = 21.83 C
Pressure = 1015 hPa
Humidity 0

Temperature = 22.47 C
Pressure = 1015 hPa
Humidity 0

Temperature = 23.33 C
Pressure = 1015 hPa
Humidity = 0

Figure 10.35 Output from the program.

10.8 Project 5 - Temperature, Pressure, and Humidity Measurement -
Plotting the Data

Description: This project is very similar to the previous one, but here the data is plotted
on the GUI Desktop.

The block diagram and circuit diagram of the project are the same as in Figure 10.30 and
Figure 10.32.

Program listing: Figure 10.36 shows the program listing (bme280plot.py). The sensor
data is collected for 60 seconds where the temperature, pressure, and humidity are stored
in t[1, p[1, and h[]. The time in seconds is stored in tim[]. When the program runs,
the message Collecting data... is displayed. The collected data is plotted as shown in
Figure 10.37. Note that you can adjust the position of the graphs on the screen using the
horizontal arrow tool at the bottom of the screen.

e 203

The Beagle-Y AI Book

oo
PLOT TEMPERATURE, ATMOSPHERIC PRESSURE AND HUMIDITY

—===

#

This program reads the ambient temperature, atmospheric

pressure, and humidity using a BME280 sensor module. The

readings are plotted on the Desktop

#

Program: bme280plot.py

Date : October, 2024

Author : Dogan Ibrahim
oo

from time import sleep
from bme280pi import Sensor
import matplotlib.pyplot as plt

sensor = Sensor(address = 0x76)

p = [0]*60

t=[0]*60

h=[0]*60

data = [0]*60

tim=[0]*x60
print("Collecting data...")

for i in range(60):
data=sensor.get_data()
tim[i]=1
p[i] =int(data['pressure'])
t[i] = int(data['temperature'])
h[i] = int(data['humidity'])
sleep(0.1)

plt.figure()

plt.subplot(2, 2, 1)
plt.plot(tim,t)
plt.title("Temperature (C)")
plt.grid()

plt.subplot(2, 2, 2)
plt.plot(tim,p)
plt.title("Pressure (hPa)")
plt.grid()

plt.subplot(2, 2, 3)
plt.plot(tim,h)

e 204

Chapter 10 e Plotting Graphs With Python and BeagleY-Al

plt.title("Relative Humidity (%)")

plt.grid()
plt.show()

Figure 10.36 Program listing.

Temperature (C)

Pressure (hPa)

31.0 4

30.0 1+

29.5 1

29.0 4

30.5 11

55 1

1050 -
1025 1+
'foo0 4
I Il 975 4
T T T r 950 .
0 20 40 60 (1] 20 40 60
Relative Humidity (%)

0 20 40 60

€2 Q=

Figure 10.37 Example output from the program.

e 205

The Beagle-Y AI Book

Chapter 11 e Using a 4 x 4 Keypad

11.1 Overview

Keypads are useful devices for entering data into microcontroller-based systems. They are
especially useful in portable applications where the user has to enter data or make a choice.
In this chapter, you will learn to use a 4x4 keypad in your BeagleY-AI projects.

11.2 Project 1 - Using a 4x4 Keypad
Description: This is a 4x4 keypad program. The program reads the key pressed by the
user and displays its code on the screen. The aim of the project is to show how a 4x4
keypad can be used with a BeagleY-AI project.

The 4x4 Keypad: Several types of keypads can be used in microcontroller-based projects.
In this project, a 4x4 keypad (see Figure 11.1) is used. This keypad has keys for numbers 0
to 9, as well as the letters A, B, C, D, *, and #. The keypad is interfaced with the processor
using 8 wires, labeled R1 to R4 (representing the rows) and C1 to C4 (representing the
columns)(see Figure 11.2).

Figure 11.1 4x4 keypad.

e 206

Chapter 11 e Using a 4 x 4 Keypad

C1 Cc2 C3 C4
1 2 3 A
R R
Z-¢ a9 a9 I'JH'
R2 e & ®
4| 2| 2] £
—¢ —e — —e
R34 S0 =g oD
A = = A A
T @ o & —e I- —e
R4—e @ ¢ &

Figure 11.2 Circuit diagram of the 4x4 keypad.

The operation of the keypad is very simple: the columns are configured as inputs and they
are all set High, while the rows are configured as outputs. The pressed key is identified by
using column scanning. In this process, one row is forced Low while the other rows remain
High. Then, the state of each column is scanned, and if a column is found to be Low, the

intersection of that column and row is the key pressed. This process is repeated for all the
rows.

Block diagram: Figure 11.3 shows the block diagram.

BeagleY-Al

4 x 4 Keypad
Figure 11.3 Block diagram.

Circuit diagram: The circuit diagram of the project is shown in Figure 11.4. The 4x4
keypad is connected to the following GPIO pins of the BeagleY-AI. The column pins are held

e 207

The Beagle-Y AI Book

High by using external 10 Kilo-ohm resistors to +3.3 V:

Keypad pin BeagleY-AI pin

R1 GPIO 4
R2 GPIO17
R3 GP1027
R4 GP1022
c1 GPIO10
c2 GPIO9
c3 GPIO11
c4 GPIOS

1

+3.3V
10k n_nn_n1 Ok BeagleY-Al

R1 7 lapi04

R2 " apio17

R3 3 gpio27

4x4 R4 5| gpio22

Keypad 19

C1 GPIO10

c2 211 Gri09

c3 231 GPI011

ca 2 16pI05

GND

39|
Figure 11.4 Circuit diagram.

Figure 11.5 shows the pin configuration of the 4x4 keypad used in the project.

e 208

Chapter 11 e Using a 4 x 4 Keypad

L N

R1 R2Z R3 R4 C1 C2C3 C4
Figure 11.5 Pin configuration of the 4x4 keypad.

Program listing: Figure 11.6 shows the program listing (program: keypad.py). At the
beginning of the program, column and row pins are configured. Rows are configured as
outputs and columns as inputs. All the rows are set High initially. The function GetChar()
waits until a key is pressed and then returns the key to the calling code. This function calls
the function ReadRow(). ReadRow() takes two arguments: the row number and the
keypad characters on that row. It scans the columns, and if a column is in a Low state, the
function returns the keypad character corresponding to that column. The program then
calls GetChar() and displays the pressed key on the screen.

In this program a 4 x 4 keypad 1is connected to BeagleY-AI.

the program displays the key pressed on the screen

Program: keypad.py
Date : October, 2024
Author : Dogan Ibrahim

H O H OH H B H H H

import gpiod
from time import sleep

#

ROW pins
#

e 209

The Beagle-Y AI Book

ROW1 gpiod.find_line('GPIO4")
ROW2 = gpiod.find_line('GPIO17"')
ROW3 = gpiod.find_line('GPIO27"')
ROW4 = gpiod.find_line('GPI022"')

#

COLUMN pins

#

COL1 = gpiod.find_line('GPIO10"')
COL2 = gpiod.find_line('GPIO9"')
COL3 = gpiod.find_line('GPIO11l"')
COL4 = gpiod.find_line('GPIO5"')

#

ROWS as outputs

#
ROW1.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW2. request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW3.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW4 . request (consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW1.set_value(l)
ROW2.set_value(l)
ROW3.set_value(l)
ROW4.set_value(l)

#

COLUMNS as inputs and (pulled HIGH in hardware)

#
COL1l.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)
COL2.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)
COL3.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)
COL4.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_IN)

#
This function sets a row to 0 and then finds out which
key s pressed on a column
#
def ReadRow(line, char):
x = 'E'
line.set_value(0)
if COLl.get_value() == 0:

x = char[0]
if COL2.get_value() == 0:
x = char[1]

if COL3.get_value() ==

e 210

Chapter 11 e Using a 4 x 4 Keypad

x = char[2]
if COL4.get_value() == 0:
x = char[3]
line.set_value(1)
return x

#
This function waits until a character 1is pressed on keypad
#
def GetChar():
r="E'
while r == 'E':
a = ReadRow(ROWL, ["1","2","3" "A"])
b = ReadRow(ROW2, ["4","5","6","B"])
c = ReadRow(ROW3, ["7","8","9","C"])
d = ReadRow(ROW4, ["x","@","#" "D"])
if a != 'E':
r=a
elif b !="E':
r==>b
elif c != "E":
r=-c
elif d != '"E':
r=d
sleep(0.1)
return r

c = GetChar() # Wait for key press
print (c) # Display the pressed key

Figure 11.6 Program listing.

Importing the keypad functions in a program

It is easier to import the keypad function under a file instead of writing them every time you
want to use them. This can be done by collecting all the functions in a single file and then
importing that file at the beginning of your Python programs. Figure 11.7 shows a program
called keypadfuncs.py, which can be imported into your programs. This file must be
placed in your default directory (/home/beagle). Note that the keypad rows and columns
must be connected to the same BeagleY-AI GPIO pins as given in this project.

e 211

The Beagle-Y AI Book

oo
#

4 x 4 KEYPAD

—===========

#

In this program a 4 x 4 keypad 1is connected to BeagleY-AI.
the program displays the key pressed on the screen

#

Program: keypad.py

Date : October, 2024

Author : Dogan Ibrahim

import gpiod
from time import sleep

#

ROW pins

#

ROW1 = gpiod.find_line('GPIO4"')

ROW2 = gpiod.find_line('GPIO17"')
ROW3 = gpiod.find_line('GPIO27"')
ROW4 = gpiod.find_line('GPI022"')

#

COLUMN pins

#

COL1 = gpiod.find_line('GPIO10"')
COL2 = gpiod.find_line('GPIO9"')
COL3 = gpiod.find_line('GPIO11l"')
COL4 = gpiod.find_line('GPIO5"')

#

ROWS as outputs

#
ROW1.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW2. request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW3.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)
ROW4 . request (consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

ROW1.set_value(l)
ROW2.set_value(l)
ROW3.set_value(l)
ROW4.set_value(l)

#
COLUMNS as inputs and (pulled HIGH in hardware)

e 212

Chapter 11 e Using a 4 x 4 Keypad

COL1.request(consumer="'beagle',type=gpiod.
COL2.request(consumer="'beagle',type=gpiod.
COL3.request(consumer="'beagle',type=gpiod.
COL4.request(consumer="'beagle',type=gpiod.

#
This function sets a row to 0 and then
key is pressed on a column
#
def ReadRow(line, char):
x = 'E'
line.set_value(0)
if COLl.get_value() == 0:
x = char[0]
if COL2.get_value() ==
x = char[1]
if COL3.get_value() == 0:
x = char[2]
if COL4.get_value() == 0:
x = char[3]
line.set_value(1)
return x

#

LINE_REQ_DIR_IN)
LINE_REQ_DIR_IN)
LINE_REQ_DIR_IN)
LINE_REQ_DIR_IN)

finds out which

This function waits until a character 1is pressed on keypad

#
def GetChar():
r="E'
while r == 'E':
a = ReadRow(ROWL, ["1","2","3" "A"])
b = ReadRow(ROW2, ["4","5","6","B"])
c = ReadRow(ROW3, ["7","8","9","C"])
d = ReadRow(ROW4, ["x","@","#" "D"])
if a != 'E':
r=a
elif b !="E':
r==>b
elif
r
elif d != '"E':
r=d
sleep(0.2)
return r

0
0]
m

0]
0

Figure 11.7 Program: keypadfuncs.py.

e 213

The Beagle-Y AI Book

Figure 11.8 shows a program (keypadtest.py) that imports the keypad functions.

This program imports the keypad functions

Program: keypadtest.py
Date : October, 2024
Author : Dogan Ibrahim

H O H H H H W

from keypadfuncs import GetChar

c = GetChar() # Wait for key press
print (c) # Display the pressed key

Figure 11.8 Program: keypadtest.py.

11.3 Project 2 - Security Lock with Keypad and LCD

Description: This is an electronic lock project where a relay is used to open a door. A
4-digit secret code is set up in the program. The user must enter the secret code for the
door to open.

Block diagram: Figure 11.9 shows the block diagram of the project.

BeagleY-Al

Figure 11.9 Block diagram.
Circuit diagram: The circuit diagram is shown in Figure 11.10. The LCD is connected as

in the previous LCD-based projects. The keypad is connected as in the previous project. A
relay is connected to GPIO21 (pin 40) of the BeagleY-AlL.

e 214

Chapter 11 e Using a 4 x 4 Keypad

1

+3.3V
mk[']_mmmk BeagleY-Al
; +5v|2
R1 GPIO4
R2 M Gpio17 |
R3 31 Gpio27 Voo
4x4 R4 151 GPio22 SDA LcD
Keypad 19
C1 v i s 5 SCL . 5nD
C2 P GPIO9 SDA A1 B1 J_
c3 GPIO11 gcL |3 =
29 A2 B2 +3.3V
C4 GPIO5 szo102VA A
GND OE j_
40
GPIO21 J_—
GND Vee
39] Relay
= GND

1

Figure 11.10 Circuit diagram.

Program listing: Figure 11.11 shows the program listing (lock.py). At the beginning of
the program, the LCD is initialized. The secret code is set to "1357". The program then
displays Code: and expects the user to enter the correct code. If the correct code is
entered, the message Door Opened is displayed and the relay is turned On for 20 seconds.
After this time, the relay is deactivated. If the wrong code is entered, the message Error is
displayed for 5 seconds, and the user is asked to enter the correct code again.

oo
#

KEYPAD OPERATED LOCK

—===================

#

In this program a door (or a safe) is opened via a relay.

The user is required to enter the correct secret code for

the door to open. Once opened the door stays open for 20 secs
#

Program: lock.py

Date : October, 2024

Author : Dogan Ibrahim

import gpiod
from time {import sleep
from lcd_api import LcdApi

e 215

The Beagle-Y AI Book

from i2c_lcd import I2clcd
from keypadfuncs import GetChar

Relay = gpiod.find_line('GPIO21"')
Relay.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

Relay.set_value(0)
I2C_ADDR = 0Ox27
I2C_NUM_ROWS = 2

I2C_NUM_COLS = 16

mylcd = I2cLcd(l, I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)
mylcd.clear ()

Codea = "1"
Codeb = "3"
Codec = "5"
Coded = "7"

while True:
mylcd.move_to(0, 0)
mylcd.putstr("Code: ")
GetChar ()
GetChar ()
GetChar ()
GetChar ()

a

b
c
d

if (a == Codea and b == Codeb and c == Codec and d == Coded):
mylcd.clear ()
mylcd.putstr ("Door Opened")
Relay.set_value(1)
sleep(20)
Relay.set_value(0)
mylcd.clear ()

Figure 11.11 Program listing.

Suggested modification: Modify the program in Figure 11.11 so that the lock is disabled
for 10 minutes if the wrong code is entered 3 times.

e 216

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

Chapter 12 e I2C, SPI Bus, and PWM Projects

12.1 Overview

12C and SPI buses are two very important peripheral buses used in microcontroller systems.
Most sensors in microcontroller applications are based on using one of these buses. In this
chapter, you will learn how to use these buses with the BeagleY-Al in some simple projects.

12.2 Project 1 - I2C Port Expander

Description: A simple project is given in this section to show how the I2C functions can be
used in a program. In this project, the 12C bus-compatible Port Expander chip (MCP23017)
is used to give an additional 16 I/O ports to BeagleY-Al. This is useful in some applications
where a large number of I/0 ports may be required. In this project, an LED is connected to
MCP23017 port pin GPAO (pin 21), and the LED is flashed On and Off every second to verify
the program's operation. A 470-ohm current limiting resistor is used in series with the LED.

The aim: This project aims to show how the 12C bus can be used in BeagleY-Al projects.

Block diagram: The block diagram of the project is shown in Figure 12.1.

MCP23017 LED

BeagleY-Al

Figure 12.1 Block diagram of the project.

The MCP23017
The MCP23017 is a 28-pin chip with the following features. The pin configuration is shown
in Figure 12.2:

e 16 bi-directional I/O ports

e Up to 1.7 MHz operation on I2C bus

e Interrupt capability

e External reset input

e Low standby current

e +1.8Vto +5.5V operation

e 3 address pins, so that up to 8 devices can be used on the I2C bus
e 28-pin DIL package

e 217

The Beagle-Y AI Book

Figure 12.2 Pin configuration of the MCP23017.

GPBO~—=[]+1 ~ 28h<-— GPA7
GPB1 -—[]2 27 [] =—= GPAG
GPB2 =—=[]3 26] =—» GPAS
GPB3 =——=[]4 25[] =— GPA4
GPB4 =—=[]5 24 [] =— GPA3
GPB5 =—[6 23[] == GPA2
GPB6 ~—=[]7 22 [] =—» GPA1
GPB7 =—=[]8 21[] =—= GPAD
Vpp —= (19 20— INTA
V_§§ —=[]10 19— INTB
SCK —=[]12 17T0=-— A2
S| —=[]13 16 [0=— A1
SO -—[]14 15[] =-— A0

The pin descriptions are given in Table 12.1.

The MCP23017 is addressed using pins A0 to A2. Table 12.2 shows the address selection. In
this project, the address pins are connected to ground, thus the address of the chip is 0x20.
The chip address is 7 bits wide, with the low bit set or cleared depending on whether we
wish to read data from the chip or write data to the chip respectively. Since in this project,
we will be writing to the MCP23017, the low bit should be 0, making the chip byte address

Pin Description
GPAO-GPA7 Port A pins
GPB0-GPB7 Port B pins

VDD Power supply
VSS Ground

SDA 12C data pin
SCL 12C clock pin
RESET Reset pin

A0-A2 12C address pins

Table 12.1 MCP23017 pin descriptions

(also called the device opcode) 0x40.

e 218

A2 Al A0 Address
0 0 0 0x40
0 0 1 0x21
0 1 0 0x22
0 1 1 0x23
1 0 0 0x24
1 0 1 0x25
1 1 0 0x26
1 1 1 0x27

Table 12.2 Address selection of the MCP23017

Chapter 12 o 12C, SPI Bus, and PWM Projects

The MCP23017 chip has 8 internal registers that can be configured for its operation. The
device can either be operated in 16-bit mode or in two 8-bit modes by configuring bit
IOCON.BANK. On power-up, this bit is cleared, which selects the two 8-bit mode by default.

The I/0 direction of the port pins is controlled with registers IODIRA (at address 0x00) and
IODIRB (at address 0x01). Clearing a bit to 0 in these registers sets the corresponding port
pin(s) as output(s). Similarly, setting a bit to 1 in these registers sets the corresponding
port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13 respectively.
This is shown in Figure 12.3.

IODIRA

. s 0| o0 0| 0|1 11 1 GPIOA Register:
(Register: 0x00) ¢ ¢ ¢ i T T T T 0x12
OUTPUTS INPUTS

IODIRB

GPIOB Register:
(Register: 0x01) AR s 1 o

TTITTresr =

OUTPUTS INPUTS

Figure 12.3 Configuring the I/O ports.

Circuit diagram: Figure 12.4 shows the circuit diagram of the project. Notice that 12C pins
of the port expander are connected to pins GPIO2 (SDA) and GPIO3 (SCL) of the BeagleY-
Al. The LED is connected to port pin GPAO of the MCP23017 (pin 21). The address select
bits of the MCP23017 are all connected to ground.

+33vH
BeagleY-Al
9
\/Fgld t1s
ese
GPI02 (SDA) |3 lspa
GPIO3 (SCL) |5 2lseL N
15
= Ao GPAO
= A1 LED 1
A2 -
GND — Vss

39J_ ' 1Cj_MCP23017

Figure 12.4 Circuit diagram of the project.

e 219

The Beagle-Y AI Book

More information on the MCP23017 chip can be obtained from the datasheet:
http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Program listing: Figure 12.5 shows the program listing (Program: MCP23017). At the
beginning of the program, GPIOA is configured as an output. Then, an endless loop is
created, and the LED is turned On and Off with a one-second delay between each output.
The function bus.write_byte_data() writes a byte to the specified I2C device address and
the specified register address.

#==
PORT EXPANDER

—============

#

In this project a MCP23017 type port expander chip 1is used to

provide 16 additional I/I ports to the BeagleY-AI. As an example,

an LED is connected to the chip and the LED is flashed every second
with one second delay between each output

#

Author: Dogan Ibrahim

File : MCP23017,py

Date : November 2024
#==

import smbus
import time

bus = smbus.SMBus (1) # Using i2c busl
addr = 0x20 # MCP23017 address
MCP_GPIOA_REG = 0x12 # MCP23017 GPIOA address

MCP_IODIRA_REG = 0
bus.write_byte_data(addr ,MCP_IODIRA_REG,0) # Configure as output

while True:
bus.write_byte_data(addr,MCP_GPIOA_REG,1) # LED ON
time.sleep (1)
bus.write_byte_data(addr, MCP_GPIOA_REG,0) # LED OFF
time.sleep (1)

Figure 12.5 Program listing.

12.3 Project 2 - SPI ADC - Voltmeter

Description: This is a voltmeter project. Because the BeagleY-Al does not have any
onboard analog-to-digital converters (ADC), an external ADC chip (MCP3002) is used in
this project. The voltage to be measured is applied to the ADC, and its value is displayed
on the screen.

e 220

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

Block diagram: Figure 12.6 shows the block diagram.

BeagleY-Al

MCP3002

Figure 12.6 Block diagram.

12.3.1 The SPI bus
The MCP3002 ADC chip operates with the SPI bus. It is useful to summarize the operation
of the SPI bus in this section.

The SPI bus is a commonly used protocol to connect sensors and many other devices to
microcontrollers. The SPI bus is a master-slave type bus protocol. In this protocol, one
device (the microcontroller) is designated as the master, and one or more other devices
(usually sensors) are designated as slaves. In a minimum bus configuration, there is one
master and only one slave. The master establishes communication with the slaves and
controls all the activity on the bus.

Figure 12.7 shows an example of an SPI with one master and 3 slaves. The SPI bus uses
3 signals: clock (SCK), data in (SDI), and data out (SDO). The SDO of the master is
connected to the SDIs of the slaves, and the SDOs of the slaves are connected to the SDI
of the master. The master generates the SCK signals to enable data transfer on the bus.
In every clock pulse, one bit of data is transferred from master to slave, or from slave to
master. The communication is only between a master and a slave, and the slaves cannot
communicate with each other. It is important to note that only one slave can be active at
any time because there is no mechanism to identify multiple slaves simultaneously. Thus,
slave devices have enable lines (e.g., Chip Select (CS) or Chip Enable (CE)), which are
normally controlled by the master. A typical communication between a master and several
slaves is as follows:

e Master enables slave 1

e Master sends SCK signals to read or write data to slave 1
e Master disables slave 1 and enables slave 2

e Master sends SCK signals to read or write data to slave 2
e The above process continues as required

e 221

The Beagle-Y AI Book

Microcontroller cs cs cs
SLAVE 1 SLAVE 2 SLAVE 3

SPI BUS MASTER

SCK l l
SDI
SDO

Figure 12.7 SPI bus with one master and 3 slaves.

The SPI signal names are also called MISO (Master In, Slave Out), and MOSI (Master Out,
Slave In). Clock signal SCK is also called SCLK, and the CS is also called SSEL or CE. In the
SPI projects in this chapter, the development kit is the master, and one or more slaves can
be connected to the bus. Transactions over the SPI bus are started by enabling the SCK
line. The master then asserts the SSEL line Low so that data transmission can begin. The
data transmission involves two registers, one in the master and one in the slave device.
Data is shifted out from the master into the slave with the MSB bit first. If more data is to
be transferred, then the process is repeated. Data exchange is complete when the master
stops sending clock pulses and deselects the slave device.

Both the master and the slave must agree on the clock polarity and phase on the line, which
are known as the SPI bus modes. These two settings are named Clock Polarity (CPOL) and
Clock Phase (CPHA) respectively. CPOL and CPHA can have the following values:

CPOL Clock active state

1 Clock active High
11 Clock active Low

CPHA Clock phase
1 Clock out of phase with data
2 Clock in phase with data

The four SPI modes are:

Mode CPOL CPHA
0 0 0

1 0 1
2 1 0
3 1 1

® 222

Chapter 12 o 12C, SPI Bus, and PWM Projects

When CPOL = 0, the active state of the clock is 1, and its idle state is 0. For CPHA = 0, data
is captured on the rising edge of the clock, and data is shifted out on the falling edge. For
CPHA = 1, data is captured on the falling edge of the clock and is shifted out on the rising

edge of the clock.

When CPOL = 1, the active state of the clock is 0, and its idle state is 1. For CPHA = 0,
data is captured on the falling edge of the clock and is output on the rising edge. For CPHA
= 1, data is captured on the rising edge of the clock and is shifted out on the falling edge.

BeagleY-AI SPI bus pins are:

MOSI GPIO10

MISO GPIO9
SCLK GPIO11
CEO GPIOS8

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog

input capability to the BeagleY-Al. This chip has the following features:

10-bit resolution (0 to 1023 quantization levels)

e On-chip sample and hold

e SPI bus compatible

e Wide operating voltage (+2.7 V to +5.5V)
e 75 Ksps sampling rate

e 5 nA standby current, 50 pA active current

The MCP3002 is a successive approximation 10-bit ADC with an on-chip sample and hold
amplifier. The device is programmable to operate as either a differential input pair or as
dual single-ended inputs. The device is offered in an 8-pin package. Figure 12.8 shows the
pin configuration of the MCP3002.

Figure 12.8 Pin configuration of the MCP3002.

CS/ISHON 1~ 8 3 Vpp/Vrer
CHO[] 2 3 7 [0 CLK
CHIL]3 & 6 [Dour
VesU4 ™ 5Dy

The pin definitions are as follows:

vdd/Vref:
CHO:
CH1:
CLK:
DIN:

Power supply and reference voltage input
Channel 0 analog input

Channel 1 analog input

SPI clock input

SPI serial data in

e 223

The Beagle-Y AI Book

DOUT: SPI serial data out
CS/SHDN: Chip select/shutdown input

In this project, the supply voltage and the reference voltage are set to +3.3 V. Thus, the
digital output code is given by:

Digital output code = 1024 x Vin / 3.3

or, Digital output code = 310.30 x Vin

Each quantization level corresponds to 3300 mV/1024 = 3.22 mV. Thus, for example, input
data "00 0000001" corresponds to 3.22 mV, "00 0000010" corresponds to 6.44 mV, and
SO on.

The MCP3002 ADC has two configuration bits: SGL/DIFF and ODD/SIGN. These bits follow
the sign bit and are used to select the input channel configuration. The SGL/DIFF is used to
select single-ended or pseudo-differential mode. The ODD/SIGN bit selects which channel
is used in single-ended mode and is used to determine polarity in pseudo-differential mode.
In this project, we are using channel 0 (CHO) in single-ended mode. According to the
MCP3002 data sheet, SGL/DIFF and ODD/SIGN must be set to 1 and 0 respectively.

Figure 12.9 shows the circuit diagram of the project where the voltage to be measured is
applied directly to the CHO input of the ADC.

1
8 +3.3V
Vdd/Vref
cs 1 Zlceo
, Dout E—2miso
Voltage o—2{cHo |7 23|
S| o
L | mcp3ooz
);/JS_S BeagleY-Al
GND

39J_
Figure 12.9 Circuit diagram of the project.

Program listing: The spidev must be installed on your BeagleY-AI and SPI overlay defined,
and permission given to spidev:

e 224

Chapter 12 o 12C, SPI Bus, and PWM Projects

beagle@beagle:~ $ sudo apt-get install python3-spidev
o edit file /boot/firmware/extlinux/extlinux.conf and add the following line:

fdtoverlays /overlays/k3-am67a-beagley-ai-spidev0.dtb0

beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf
e Enter Ctrl+X followed by Y to save and exit the editor
e Reboot your BeagleY-Al
beagle@beagle:~ $ sudo reboot
e Give permission to spidev
beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

Note: Overlays are located in the directory: /boot/firmware/overlays and should be
added to file: /boot/firmware/extlinux/extlinux.conf.

Figure 12.10 shows the program listing (voltmeter.py). Function get_adc_data is used to
read the analog data, where the channel humber (channel_no) is specified in the function
argument as 0 or 1. Notice that we have to send the start bit, followed by the SGL/DIFF
and ODD/SIGN bits, and the MSBF bit to the chip.

It is recommended to send leading zeroes on the input line before the start bit. This is often
done when using microcontroller-based systems that must send 8 bits at a time.

The following data can be sent to the ADC (SGL/DIFF = 1 and ODD/SIGN = channel_no) as
bytes with leading zeroes for a more stable clock cycle. The general data format is:

0000 000S DCMO 0000 0000 0000
Where, S = start bit, D = SGL/DIFF bit, C = ODD/SIGN bit, M = MSBF bit
For channel 0: 0000 0001 1000 0000 0000 0000 (0x01, 0x80, 0x00)
For channel 1: 0000 0001 1100 0000 0000 0000 (0x01, 0xCO, 0x00)

Notice that the second byte can be sent by adding 2 to the channel humber (to make it 2
or 3) and then shifting 6 bits to the left as shown above to give 0x80 or 0xCO.

The chip returns 24-bit data (3 bytes) and we must extract the correct 10-bit ADC data
from this 24-bit data. The 24-bit data is in the following format ("X" is don't -care bit):

e 225

The Beagle-Y AI Book

XXXX XXXX XXXX DDDD DDDD DDXX

Assuming that the returned data is stored in 24-bit variable ADC, we have:
ADC[0] = "XXXX XXXX"
ADC[1] = "XXXX DDDD"
ADC[2] = "DDDD DDXX"

Thus, we can extract the 10-bit ADC data with the following operations:
(ADC[2] >> 2) so, low byte = "00DD DDDD"

and

(ADC[1] & 15) << 6) so, high byte = "DD DD00 0000"

Adding the low byte and the high byte we get the 10-bit converted ADC data as:

DD DDDD DDDD

At the beginning of the program in Figure 12.10, an instance of the SPI is created. The
function get_adc_data reads the temperature from sensor chip MCP3002 and returns
a digital value between 0 and 1023. This value is then converted into millivolts and is
displayed on the screen. Figure 12.11 shows an example output from the project where the

input CHO was connected to GND or +3.3 V.

o
VOLTMETER

=========

#

This is a voltmeter project. The voltage to be measured 1is applied
to CHO 1input of the MCP3002 ADC. The measured voltage is displayed
on the screen using a print statement

#

Program: voltmeter.py

Date : October, 2024

Author : Dogan Ibrahim

import spidev
from time import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CE® for CS

e 226

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

spi.max_speed_hz = 4000

#
This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
return rcv

#
Start of main program. Read the 1input voltage and display in mv
#
while True:
adc = get_adc_data(0)

mV = adc *x 3300.0 / 1023.0 # convert to mV
print("Voltage = %5.2f mvV" %mV) # display voltage in mV
sleep (1) # wait one second

Figure 12.10 Program listing.

Voltage = 3287.10 mV
Voltage = 3296.77 mV
Voltage = 3290.32 mV
Voltage = 3290.32 mV
Voltage = 3274.19 mV
Voltage = 0.00 mV
Voltage = 0.00 mV
Voltage = 0.00 mV
Voltage = 0.00 mV
|Voltage = 3300.00 mV
Voltage = 3280.65 mV
[Voltage = 3277.42 mV

Voltage = 3290.32 mV

Figure 12.11 Example output from the program.
12.4 Project 3 — Voltmeter - Output to LCD
Description: This project is basically the same as the previous one, but here the measured

voltage is displayed on LCD.

Block diagram: Figure 12.12 shows the block diagram.

e 227

The Beagle-Y AI Book

i':‘:%g

MCP3002

LCD

BeagleY-Al

Figure 12.12 Block diagram.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.13. The LCD and
the MCP3002 are connected as in the previous projects.

1]
8 +3.3V
Vdd/Vref
cs 1 24ceo
2 Dout 6 21 MISO 3 VA OF
Voltage o—={CHO |7 23| . SDA Al B1 SDA
5 LCD
To be |5 19 SCL A2 B2 SCL
Measured Din MOSI szo102 Vee GND
]-T MCP3002 +5v |2 VB
Vss GND J_
4J_ BeagleY-Al l =
GND

g
Figure 12.13 Circuit diagram of the project.
Program listing: Figure 12.14 shows the program listing (LCDvolt.py). This program is

basically the same as the one in Figure 12.10, but here the output is sent to LCD instead of
being displayed on the screen. The data is displayed in the following format:

nnnn mV
oo
VOLTMETER WITH LCD DISPLAY
—=========================
#
This is a voltmeter project. The voltage to be measured 1is applied
to CHO 1input of the MCP3002 ADC. The measured voltage is displayed
on the LCD
#
Program: LCDvolt.py
Date : October, 2024
Author : Dogan Ibrahim

e 228

Chapter 12 o 12C, SPI Bus, and PWM Projects

import spidev

from lcd_api import LcdApi
from i2c_lcd import I2clLcd

from time {import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()
spi.open(0,0)
spi.max_speed_hz = 4000

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

we are using CE® for CS

mylcd = I2clcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear ()

#

This function returns the ADC data read from the MCP3002

#

def get_adc_data(channel_no):

ADC = spi.xfer2([1,

(2 + channel_no) << 6, 0])

rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

#

Start of main program. Read the voltage and display it

#
while True:

adc = get_adc_data(0)
mV = adc *x 3300.0 / 1023.0

convert to mV

disp = str(mvV)[:4] + " mV"

mylcd.move_to(0,0)
mylcd.putstr(disp)
sleep(2)
mylcd.clear ()

Figure 12.14 Program listing.

e 229

The Beagle-Y AI Book

12.5 Project 4 - Analog Temperature Sensor Thermometer - Output to
the Screen

Description: In this project, an analog temperature sensor chip is used to measure and
then display the ambient temperature every second on the screen. The temperature is
read using an external ADC as in the previous project. The aim of this project is to show
how the ambient temperature can be read and displayed on the monitor using an analog
temperature sensor chip.

Block Diagram: Figure 12.15 shows the block diagram of the project.

ADC

Temperature BeagleY-Al
sensor

Figure 12.15 Block diagram of the project.

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog
input capability to the BeagleY-AI. Figure 12.16 shows the circuit diagram of the project. A
TMP36DZ type analog temperature sensor chip is connected to CHO of the ADC. TMP36DZ is
a 3-terminal small sensor chip with pins: Vs, GND, and Vo. Vs is connected to +3.3 V, GND
is connected to the system ground, and Vo is the analog output voltage. The temperature
in degrees Centigrade is given by:

Temperature = (Vo - 500) / 10
Where, Vo is the sensor output voltage in millivolts.

CS, Dout, CLK, and Din pins of the ADC are connected to the SPI pins CEO, MISO, SCLK,
and MOSI pins of the BeagleY-Al respectively.

e 230

Chapter 12 o 12C, SPI Bus, and PWM Projects

1
8 +3.3V
vdd/Vref
cs 2ok
2 Dout 6 21 MISO
TMP36 CHO ok 21501k
pin P— 1% {mos|
J_ MCP3002
— vV BeagleY-Al
- SS
Temperature sensor 4J_

39J;

Figure 12.16 Circuit diagram of the project.

Program listing: Figure 12.17 shows the BeagleY-Al Python program listing (program:
tmp36.py). The function get_adc_data is used to read the analog data, where the
channel number (channel_no) is specified in the function argument as 0 or 1. The function
get_adc_data reads the temperature from sensor chip MCP3002 and returns a digital
value between 0 and 1023. This value is then converted into millivolts, 500 is subtracted
from it, and the result is divided by 10 to find the temperature in degrees Centigrade. The
temperature is displayed on the monitor every second.

o
ANALOG TEMPERATURE MEASUREMENT

==============================

#

This is a thermometer project. Ambient temperature is read using
an ADC and is then displayed on the screen every second

#

Program: tmp36.py

Date : October, 2024

Author : Dogan Ibrahim

import spidev
from time import sleep

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CE® for CS
spi.max_speed_hz = 4000

e 231

The Beagle-Y AI Book

This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):

ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])

rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)

return rcv

#
Start of main program. Read the analog voltage and display it
#
while True:
adc = get_adc_data(0)
mV = adc *x 3300.0 / 1023.0 # convert to mvV
Temperature = (mV - 500) / 10.0
print("Temperature = %5.2f C" %Temperature)
sleep (1) # wait one second

Figure 12.17 Python program listing.

A typical display on the monitor is shown in Figure 12.18.

Temperature = 20.00
Temperature = 20.00
Temperature = 20.00
Temperature = 20.00
Temperature = 20.00
Temperature = 20.00
Temperature = 20.00
Temperature = 20.00

o000

Figure 12.18 Typical display.
12.6 Project 5 - Analog Temperature Sensor Thermometer — Output on
LCD
Description: This project is similar to the previous one, but here the temperature is

displayed on LCD.

Block diagram: Figure 12.19 shows the block diagram of the project.

® 232

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

Temperature
sensor

BeagleY-Al

Figure 12.19 Block diagram.

LCD

Circuit diagram: The circuit diagram of the project is shown in Figure 12.20. The ADC and
the sensor chip are connected as in the previous project.

TMP36

L

Temperature sensor

SDA
SCL

LCD

Vece

1]
8 +3.3V
Vdd/Vref
cs H—24lceo
Dout 6 21 MISO 3 VA OE
CHO CLK 7 23 SCLK SDA A1 B1
Din 5 19 MOSI SCL A2 B2
MCP3002 . VBTXSO102
\4/88 BeagleY-Al =
L 1
GND

©
8

SQL_

Figure 12.20 Circuit diagram

Program listing: Figure 12.21 shows the program listing (LCDtmp36.py). The program
is very similar to the previous one, but here the temperature is displayed on LCD.

Date

H O H H H H FH H H

import spidev

Program:

LCDtmp36.py
: October, 2024
Author :

from time import sleep

from lcd_api import LcdApi

Dogan Ibrahim

This is a thermometer project. Ambient temperature is read using
an ADC and is then displayed on LCD

e 233

The Beagle-Y AI Book

from i2c_lcd import I2clcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR, I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

#

Create SPI instance and open the SPI bus

#

spi = spidev.SpiDev ()

spi.open(0,0) # we are using CE® for CS
spi.max_speed_hz = 4000

#
This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
return rcv

#
Start of main program. Read the analog temperature, convert
into degrees Centigrade and display on the monitor every second
#
while True:
adc = get_adc_data(0)
mV = adc *x 3300.0 / 1023.0 # convert to mvV
Temperature = (mV - 500) / 10.0
T = str(Temperature)[:5] + " C"
mylcd.move_to(0,0)
mylcd.putstr(T)
sleep(5) # wait one second

mylcd.clear ()
Figure 12.21 Program listing.
If you get a permission error, run the following command:

beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

° 234

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

12.7 Using a Digital to Analog Converter (DAC)

A digital-to-analog converter (DAC) is an electronic circuit that converts a digital signal into
an analog signal. They are commonly used in music players to convert digital data into
analog audio signals. They are also used in mobile phones, televisions, and digital audio
processing systems. Waveform generators are important in many electronic communication
applications. In this chapter, you will develop projects to generate waveforms such as
square, sine, triangular, staircase, etc, by using an external DAC chip and programming the
BeagleY-AlL. You will be using the popular MCP4921 DAC chip from Microchip.

12.7.1 The MCP4921 DAC

Before using the MCP4921, it is worthwhile to look at its features and operation in some
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 12.22
shows the pin layout of this chip. The basic features are:

e 12-bit operation

e 20 MHz clock support

e 4.5 ps settling time

e External voltage reference input

e Unity or 2x Gain control

e 1x or 2x gain

e 2.7V to 5.5V supply voltage

e -400C to +125°C temperature range

Vop [1]® ~ [8]Vour
p— -
cs[2] & |7]Vss
&
scK [3] & 6] VRer
spi[4] <= [5]{pAac

Figure 12.22 MCP4921 DAC.
The pin descriptions are:

Vdd: supply voltage

CS: chip select (active Low)

SCK: SPI clock

SDI: SPI data in

LDAC: Used to transfer input register data to the output (active Low)
Vref Reference input voltage

Vout: analog output

Vss: supply ground

e 235

The Beagle-Y AI Book

In projects in this chapter, you will be operating the MCP4921 with a gain of 1. As a result,
with a reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC
will be 3300 mV / 4096 = 0.8 mV

The SPI Bus

As discussed in an earlier chapter, the Serial Peripheral Interface (SPI) bus consists of two
data wires and one clock wire. Additionally, a chip enable (CE or CS) connection is used to
select a slave in a multi-slave system. The wires used are:

MOSI (or SDI): Master Out Slave In. This signal is output from the master and is input
to a slave.

MISO: Master In Slave Out. This signal is output from a slave and input to a master.
SCLK (or SCK): The clock, controlled by the master.
CE (or CS): Chip Enable (slave select).

The following pins are the SPI bus pins on BeagleY-AI:

GPIO pin SPI1 Physical pin no
GPIO 10 MOSI (SPIO) 19
GPIO 9 MISO (SPIO) 21
GPIO 11 SCLK (SPIO) 23
GPIO 8 CEO (SPIO0) 24

12.7.2 Project 6 - Generating square wave signal with any peak volt-
age up to +3.3V

Description: In this project, you will be using the DAC to generate a square wave signal
with a frequency of 1kHz, where the required output voltage is a 2 V peak.

Block Diagram: Figure 12.23 shows the block diagram of the project.

BeagleY-Al MCP4921

PSCGU250

Figure 12.23 Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 12.24. The output
of the DAC is connected to a PSCGU250 type digital oscilloscope.

e 236

Chapter 12 o 12C, SPI Bus, and PWM Projects

1

+3.3V
BeagleY-Al ! 6
Vdd Vref
23 3 .
GPIOM SCK 8 To Oscilloscope
19 4 Vout ———
GPIO10 SDI MCP4921
crio26 P—2lcs
Vss LDAC

GND 7| 5|
39J_

Figure 12.24 Circuit diagram of the project

Program Listing: Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of
the digital input data. The upper byte consists of the following bits:

D8:D11 Bits D8:D11 of the digital input data

SHDN 1: active (output available), 0: shutdown the device

GA Output gain control. 0: 2x gain, 1: 1x gain

BUF 0: unbuffered input, 1: buffered input

A/B 0: write to DACa, 1: Write to DACb (MCP4921 supports only
DACa)

In normal operation, we will send the upper byte (D8:D11) of the 12-bit (D0:D11) input
data with bits D12 and D13 set to 1 to ensure that the device is active and the gain is set
to 1x. Then, we will send the lower byte (D0:D7) of the data. This means that 0x30 should
be added to the upper byte before sending it to the DAC.

Figure 12.25 shows the program listing (program: squaredac.py). GPIO26 is used as the
CS pin. Variable frequency is set to 1000 which is the required frequency. The function
DAC sends the 12-bit input data to the DAC. This function consists of two parts. In the first
part, the High byte is sent after adding 0x30 as described above. The function xfer2 is used
to send the data to the DAC. In the second part of the function, the Low byte is extracted
and sent to the DAC. Notice that we could have sent both the high byte and the low byte
using the same xfer2 function, as follows:

highbyte = (data >> 8) & OxOF
highbyte = highbyte + 0x30

lowbyte = data & OxFF

xfer2([highbyte, lowbyte])

e 237

The Beagle-Y AI Book

Variable ONvalue is set to 2000*4095/3300, which is the digital value corresponding to
2000mwv (i.e., 2 V, remember that the DAC is 12 bits /, with 4095 steps, and the reference
voltage is set to 3300 mV). The OFFvalue is set to 0 V. Normally, the delay between the
On and Off times should have been equal to halfperiod. However, it was found by the
experiments that the DAC routine takes about 0.2 ms (0.0002 seconds) and this affects
the period and consequently the frequency of the output waveform. Because of this, 2 mV
is subtracted from halfperiod.

This program generates square waveform with the frequency 1kHz.
In this program the MC4921 DAC chip is used to set the output
peak voltage to 2V

Author: Dogan Ibrahim
File : squaredac.py
Date : October, 2024

HOH O I I W W W HE

from time import sleep
import gpiod
import spidev # Import SPI

CS = gpiod.find_line('GPIO26")
CS.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev ()
spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS.set_value(l) # DIsable CS

frequency = 1000 # Required Frequency
period = 1 / frequency # Period of the signal
halfperiod = period / 2 # Half period

#

This function implements the DAC. The data in "data" 1is sent
to the DAC
#
def DAC(data):
CS.set_value(0) # Enable CS
#
Send HIGH byte
#

e 238

Chapter 12 o 12C, SPI Bus, and PWM Projects

temp = (data >> 8) & OxOF
temp = temp + 0Ox30
spi.xfer2([temp])

#

Send LOW byte

#
temp = data & OxFF
spi.xfer2([temp])

CS.set_value(l)

try:
ONvalue = 1int(2000%4095/3300)
OFFvalue = 0

while True:
DAC(ONvalue)
sleep(halfperiod - 0.0002)
DAC (OFFvalue)
sleep(halfperiod - 0.0002)

except KeyboardInterrupt:
pass

Get upper byte
OR with 0x30
Send to DAC

Get lower byte
Send to DAC

ETE e Y

Disable CS

2V output

Send to DAC
Wait
Send to DAC
Wait

Figure 12.25 Program listing.

Figure 12.26 shows the output waveform generated by the program. Notice that the peak

output voltage is 2 V as expected.

e 239

The Beagle-Y AI Book

¥ rcsGu2so
File Edit Options View Math Help Function Generaton Options Tools
Oscilloscope ;)
Dscloscope || Spectumansbzer || TiansientRecorder || Circuit Analyzer || 10110010 | iy
v Tmaz

[SRVASRARSRARRASRVARRIRTR!

2
3

[[e e [
Ll e e E e e e

5

L

B g L] Histoy

Vols/Div, Ch Ch | [Thigger

o B CAdeset] (Pest] (00 [CAwoset] o[| owor (80] [Lon] [2i<]
[[Lav v][oav | [eigsceen | [av |V oav | [1{ e (T (o]

Figure 12.26 Output waveform.

12.7.3 Project 7 - Generating sawtooth wave signal
Description: In this project, you will be using the DAC to generate a sawtooth wave signal
with the following specifications:

Peak voltage: 3.3V
Step width: 1 ms
Number of steps: 6

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure
12.24

Program Listing: Figure 12.27 shows the program listing (program: sawtooth.py). The
program is very similar to the one given in Figure 12.25.

GENERATE SAWTOOTH WAVEFORM

=======z===z=====z===========

#

This program generates sawtooth waveform with 6 steps where each
step has a width of 1ms

#

Author: Dogan Ibrahim

File : sawtooth.py

Date : October, 2024
oo
from time import sleep # Import time

e 240

Chapter 12 o 12C, SPI Bus, and PWM Projects

import spidev # Import SPI
import gpiod

CS = gpiod.find_line('GPIO26")
CS.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev ()
spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS.set_value(l) # Disable CS
#

This function implements the DAC. The data in "data" 1is sent
to the DAC

#

def DAC(data):
CS.set_value(0) # Enable CS

#

Send HIGH byte

#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.set_value(l) # Disable CS

try:

while True: # Do forever
i=0

while i < 1.1:

DACValue = 1int(i*4095) # Value to send
DAC(DACValue) # Send to DAC
sleep(0.0007) # Wait

i=1+ 0.2

except KeyboardInterrupt:
pass

Figure 12.27 Program listing.

e 241

The Beagle-Y AI Book

An example output waveform taken from the oscilloscope is shown in Figure 12.28. Notice
that the time delay had to be adjusted experimentally to give the correct timing.

9 pcsGu2s0

File Edit Options View Math Help Function Generator Options Tools
Oscilloscope

[Dsciloscope 1[Spectumanaeer |[TiansientRecodsr || Circut Analyzer | [10110010 |

Time/Div.

.
v ams (100ms]5oma |
((20ms | 10me
(ims) 0.5ms]
(0:2me) (0.1
(50us |20]
ik [
(20) 0w]
(050 (0.2
(o] (2]

i)

[|L|1&] &]@i.w jl’ { oot ([0n] [] [2i<]

Lo J) oav | [(smsoeen | [v Jlv][o3 | consen [T ()

Figure 12.28 Example output waveform.

12.7.4 Project 8 - Generating triangle wave signal
Description: In this project, we will be using the DAC to generate a triangle wave signal.

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure
12.24

Program Listing: Figure 12.29 shows the program listing (program: triangle.py). The
program is very similar to the one given in Figure 12.27.

This program generates triangle waveform

Author: Dogan Ibrahim
File : triangle.py
Date : October, 2024

import gpiod

from time import sleep # Import time
import spidev # Import SPI

e 242

Chapter 12 o 12C, SPI Bus, and PWM Projects

CS = gpiod.find_line('GPIO26")
CS.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev ()
spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS.set_value(l) # Disable CS
sample = 0
Inc = 0.05

#
This function implements the DAC. The data in "data" 1is sent
to the DAC

#

def DAC(data):
CS.set_value(0) # Enable CS

#

Send HIGH byte

#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC

#

Send LOW byte

#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.set_value(l) # Disable CS

try:

while True:

DACValue = int(samplex4095) # Value to send
DAC(DACValue) # Send to DAC
sleep(0.0001) # Wait

#

sample = sample + Inc Next sample
if sample > 1.0 or sample < 0:
Inc = -Inc

sample = sample + Inc

except KeyboardInterrupt:
pass

Figure 12.29 Program listing.

e 243

The Beagle-Y AI Book

An example output waveform taken from the oscilloscope is shown in Figure 12.30.

§ PcsGuzso
File Edit Options View Math Help

Function Generaton

Dscilloscope

Options Tools

€ Y

alyzer

[0 | || Tiansient Recoder || Circuit Analyzer

|| 10110010 I Time/Div.

v

())
(] (0]

2

(20ms) (10ms |
(Lme |
[ims) (05ms]
[0.2ms) [01ms
[50us] (2008
B
(e]

(aza]
Go

(]

e e e

Volts/Div. Ch

1 Ch2
“ On |__Autosat |__ Persist | On |__Autosst =

Trigger

1HEl

) D

owvoif [On_| [Lof

el Crwa 1

€.

Figure 12.30 Example output waveform.

[av |][oav | [sigseeen | [av |[Cv][oav |
If you get a permission error, run the following command:

beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

12.7.5 Project 9 - Generating arbitrary wave signal

Description: In this project, you will be using the DAC to generate an arbitrary waveform.
One period of the shape of the waveform will be sketched, and values of the waveform at

different points will be extracted and loaded into a look-up table.
the data points at the appropriate times to generate the required

The program will output
waveform.

The shape of one period of the waveform to be generated is shown in Figure 12.31. Notice

that the waveform has a period of 20 ms.

e 244

Chapter 12 o 12C, SPI Bus, and PWM Projects

The waveform takes the following values:

Time (ms)

0

OCoOoONOOUTPA, WNH

—
o

Va
3 T
SRR E R
2.25 FAREERRER
AN
1. 1 [
. ATy i K
EEIEE R ERERER R
0.75 ,,'|l||,||1|l|||'lr
_.-,'||'|1|||1|1||1FI|,\ ms
0 kbl L
012345678 91011121314151617181920

Figure 12.31 Waveform to be generated.

0
0.375
0.75
1.125
1.50
1.875
2.25
2.625
3.00
3.00
3.00

Amplitude (V)

Time (ms)

11
12
13
14
15
16
17
18
19
20

Amplitude (V)
3.00
3.00
2.625
2.25
1.875
1.50
1.125
0.75
0.375
0

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: Figure 12.32 shows the program listing (program: arbit.py). The sam-
ple points of the waveform are stored in a list called wave. Variable sample indexes this
list and sends the sample values to the DAC. The time of each sample was specified to be
1 ms. It was found by experiment that 0.8ms delay gave the correct results because of the
delay in the DAC routine.

H*+ O

This program generates an arbitrary waveform whose sample points

are defined in the program

#
Author:

Dogan Ibrahim

e 245

The Beagle-Y AI Book

File : arbit.py
Date : October, 2024

import gpiod
from time import sleep # Import time
import spidev # Import SPI

CS = gpiod.find_line('GPIO26"')
CS.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev ()
spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz=3900000

CS.set_value(l) # Disable CS

sample = 0

#

Waveform sample points

#

wave = [0,0.375,0.75,1.125,1.5,1.875,2.25,2.625,3,3,3,3,3,\
2.625,2.25,1.875,1.5,1.125,0.75,0.375,0]

#
This function implements the DAC. The data in "data" 1is sent
to the DAC

#
def DAC(data):
CS.set_value(0) # Enable CS
#
Send HIGH byte
#
temp = (data >> 8) & OxOF # Get upper byte
temp = temp + 0x30 # OR with 0x30
spi.xfer2([temp]) # Send to DAC
temp = data & OxFF
spi.xfer2([temp])
CS.set_value(l) # Disable CS
try:

while True:
DACValue = int(wave[sample]*4095/3.3) # Value to send
DAC (DACValue) # Send to DAC
sample = sample + 1 # Inc sample index

e 246

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

sleep(0.0008) # Wait
if sample == 20: # If 20 sampes
sample = 0

except KeyboardInterrupt:
pass

Figure 12.32 Program listing.

An example output waveform taken from the oscilloscope is shown in Figure 12.33.

¥ PCsGU250

File Edit Options View Math Help Function Generator Options Tools
Oscilloscope

Dscilloscope || Spectumansbzer || TransientRecoder || Cicuit Analyzes || 1011000 |

Time/Div.

(500ms| (2000
w 5
(20me) (10ms |
(0.2ms 0.1
(50 | (200 |
| (10][5 |
(2 (s |
(05 02
(0w (2]

| —r
Lr T * | Histoy

Vols/Div. T che Ti
{ [On [Adoset | [Pesit][_0On] [At | T [w oo [[on | [on] [21<]

) oo (Cemseen | (o) lond] - o PP (50

Figure 12.33 Example output waveform.

12.7.6 Project 10 - Generating sine wave signal

Description: In this project, we will be using the DAC to generate a low-frequency sine
wave using the built-in trigonometric sin function. The generated sine wave will have an

amplitude of 1.5V, a frequency of 100Hz (period = 10ms), and an offset of 1.5 V.

The block diagram and circuit diagram of the project are as in Figure 12.23 and Figure

12.24

Program Listing: The frequency of the sine wave to be generated is 100Hz. This wave
has a period of 10 ms or 10,000 ps. If we assume that the sine wave will consist of 100
samples, then each sample should be output at 10,000/100 = 100 ps intervals. The sample

values will be calculated using the trigonometric sin function of Python.

e 247

The Beagle-Y AI Book

The sin function will have the format:
(211 * count
T s
where, T is the period of the waveform and is equal to 100 samples. Thus, the sine wave

is divided into 100 samples and each sample is output at 100 ps. The above formula can
be re-written as:

sin

sin (0.0628 x count)

It is required that the amplitude of the waveform should be 1.5 V. With a reference voltage
of +3.3 V and a 12-bit DAC converter (0 to 4095 quantization levels), 1.5 V is equal to
1.5*4095/3.3, which is equal to 1861.3 (i.e., the amplitude). Thus, we will multiply our sine
function with the amplitude at each sample to give:

1861.3 x sin (0.0628 x count)

The D/A converter used in this project is unipolar and cannot output negative values.
Therefore, an offset is added to the sine wave to shift it so that it is always positive. The
offset should be larger than the absolute value of the maximum negative value of the sine
wave, which is 1861.3 when the sin function above is equal to 1.5. In this project, we are
adding a 1.5 V offset which corresponds to a decimal value of 1861.3 (i.e., the offset) at
the DAC output. Thus, at each sample, we will calculate and output the following value to
the DAC:

1861.3+1861.2 x sin (0.0628 x count)
The sine waveform values for a period are obtained outside the program loop using the
following statement. List sins contains all the 100 sine values of the waveform. The reason
for calculating these values outside the program loop is to minimize the time to calculate

the sin function:

for i in range(100):
sins[i] = int(offset + amplitude * sin(R*i)

where, R is set to 0.0628
Figure 12.34 shows the program listing (program: sine.py). Most parts of the program are

similar to the other waveform generation programs. Inside the program loop samples of the
sine wave are sent to the DAC at each sample time.

e 248

Chapter 12 o 12C, SPI Bus, and PWM Projects

File
Date

H* O H H H H H H H

Author: Dogan Ibrahim

sine.py

: October, 2024

import gpiod

from time {import sleep

import spidev

import math

CS = gpiod.find_line('GPIO026")
CS.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

spi = spidev.SpiDev ()

spi.open(0, 0)

spi.max_speed_hz = 3900000

CS.set_value(l)

sample =

T = 100

R = 0.0628
amplitude = 1861.3
offset = 1861.3

sins = [None]*101

#

This program generates sine waveform with a period of 10ms. Both
the amplitude and the offset of the waveform are set to 1.5V

Import time
Import SPI
Import math

Bus=0, device=0

Disable CS

This function implements the DAC. The data in "data" 1is sent
to the DAC

#

def DAC(data):
CS.set_value(0)

#

Send HIGH byte

#
temp
temp

(data >> 8) & OxOF
temp + Ox30

spi.xfer2([temp])

#

Send LOW byte

Enable CS

Get upper byte
OR with 0x30
Send to DAC

e 249

The Beagle-Y AI Book

#
temp = data & OxFF # Get lower byte
spi.xfer2([temp]) # Send to DAC
CS.set_value(l) # Disable CS

#

Generate the 100 sine wave samples and store in list sins

#

for i in range(100):
sins[i] = int(offset + amplitudexmath.sin(Rxi))

try:
while True:

DACValue = sins[sample] # Value to send
DAC (DACValue) # Send to DAC
sleep(0.0001) # Wait

sample = sample + 1 # Next sample

if sample == 100: # 100 samples?

sample = 0

except KeyboardInterrupt:
pass

Figure 12.34 Program listing.
An example output waveform taken from the oscilloscope is shown in Figure 12.35. Notice

that the frequency of the waveform is not very accurate because the delay function of Py-
thon is not accurate.

e 250

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

I Osciloscope || Spectumanaizer || TransientRecoder || Circuit Analyzes | Cot0o10 | | TPV

1

a3

|
|
|
|
|
|
|
|
[ElE1E

3
=
g

3
33333

=
&

[

i

r T : | Histary e

Vols/Diy, chi i
= On) [Auoset | [Pemst On_| (CAdest) - = orvait [Lon | [(0f | [3i<]
{ L Jlav |l oav | [Bosceen | [o |l v || o3 | [:[

F3 = e |

Figure 12.35 Example output waveform.
If you get a permission error, run the following command:
beagle@beagle:~ $ sudo chmod ugo+rwx /dev/spidev*

12.7.7 Project 11 - SPI Port Expander

Description: This project is very similar to the port expender project given earlier in this
chapter. In that project, the I12C compatible chip MCP23017 was used. In this project,
the SPI bus-compatible port expander chip MCP23S17 is used to give an additional 16
I/0 ports to the BeagleY-Al. The operation of the MCP23S17 is identical to the operation
of MCP23017, except that the MCP23S17 uses the SPI bus. In this project, an LED is
connected to MCP23S17 port pin GPAO, and the LED is flashed On and Off every second, as
in the 12C based project. A 470 Ohm current-limiting resistor is used in series with the LED.

Block diagram: The block diagram of the project is the same as in Figure 12.1, but the
MCP23017 chip is replaced with MCP23S17.

The MCP23S17

The MCP23S17 is a 28-pin chip with the following features. The pin configuration is shown
in Figure 12.36, which is the same as the pin configuration of MCP23017, but SPI pins are
used instead of 12C pins:

e 16 bi-directional I/O ports

Up to 1.7 MHz operation on I2C bus
Interrupt capability

e External reset input

Low standby current

e 251

The Beagle-Y AI Book

e +1.8Vto +5

.5 V operation

e 3 address pins, so that up to 8 devices can be used on the SPI bus
e 28-pin DIL package

GPBO ~—[]*1 ~ 28
GPB1=—=[]2 27
GPB2 =—=[]3 26
GPB3 =—[]4 25
GPB4<—=[]5 24
GPB5 =—=[]6 23
GPB6 =—[]7 22
GPB7 =—[]8 21
VDD —[]9 20
Vgg —[]10 19
Cs —[11 18
SCK —»[]12 17
S| —=[]13 16
SO =—[]14 15

] -—= GPAT7
] «—— GPAG
] =—» GPAS
] -— GPA4
] =— GPA3
] =— GPA2
] =— GPA1
] «— GPAO
[]—= INTA
[]— INTB
[1—> RESET
[]<+— A2
[]=— A1
[]=-— A0

Figure 12.36 Pin configuration of the MCP23S17.

The pin descriptions are given in Table 12.3.

Pin Description
GPAO-GPA7 Port A pins
GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SI SPI MOSI data pin
SCK SPI clock pin

SO SPI MISO data pin
Cs SPI SSEL chip enable pin
A0-A2 12C address pins
RESET Reset pin

INTA Interrupt pin

INTB Interrupt pin

The MCP23S17 is a slave SPI device. The slave address contains four upper fixed bits
(0100) and three user-defined hardware address bits (pins A2, A1, and AQ) with the read/
write bit filling out the control byte. These address bits are enabled/disabled by the control
register IOCON.HAEN. By default, the user address bits are disabled at power-up (i.e., I0-
CON.HAEN = 0) and A2 = A1 = A0 = 0, and the chip is addressed with 0x40. As such, we
can use two MCP23S17 chips on SPIO by connecting one CS bit to CEO, and the other one
to CE1, and addressing both chips with 0x40. By setting bit HAEN to 1, we can change the

e 252

Table 12.3 MCP23S17 pin descriptions

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

addresses of the devices in multiple MCP23S17-based applications (e.g., more than 2) by
connecting the A2, A1, and A0 accordingly. 16 such chips can be connected (8 to CEQ and 8
to CE1), corresponding to 16x16 = 256 I/O ports. Figure 12.37 and Figure 12.38 show the
addressing format. The address pins should be externally biased even if disabled.

oS i
47 Control Byte 4b
[0[1]0]0][A2[A1[A0[RW]|

4— Slave Address ——»

R/W bit ——
R/W = 0 = write
R/W =1 =read

Figure 12.37 MCP23S17 control byte format.

| sJo|1[of[o0|A2]A1|A0| 0 JACK*| A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 JACK*|

!

“——— Device Opcode >

e

Register Address ————-

*The ACKs are provided by the MCP23017.
Figure 12.38 MCP23S17 addressing registers.

Like the MCP23017, the MCP23S17 chip has 8 internal registers that can be configured for
its operation. The device can either be operated in 16-bit mode or in two 8-bit modes by
configuring bit IOCON.BANK. On power-up, this bit is cleared, which chooses the two 8-bit
mode by default.

The I/0 direction of the port pins is controlled with registers IODIRA (at address 0x00) and
IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the corresponding
port pin(s) as output(s). Similarly, setting a bit to 1 in these registers makes the corre-
sponding port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13,
respectively. This is shown in Figure 12.39.

IODIRA .
[Register:0x0m| g [0 l Ol 0 ‘ 1 | 1 [1 ‘1 | GP!O%}:{fzg:ster:
REREEEE
OUTPUTS INPUTS
IODIRB
(Register: 0x01]‘ g ‘ 0 l 0 | 0 ‘ 1 | 1 ll ‘ 1 I GPIO?}:fagister:
REE RN
OUTPUTS INPUTS

Figure 12.39 Configuring the I/O ports.

e 253

The Beagle-Y AI Book

Further information on the MCP23S17 chip can be obtained from the Microchip Inc. data
sheet at the following website:

http://ww1l.microchip.com/downloads/en/DeviceDoc/20001952C.pdf

Circuit diagram: Figure 12.40 shows the circuit diagram of the project. CS is controlled
separately and in this project, GP1026 is used as the CS pin.

+33vH
9] J
Vdd 18
Reset
apioto P23l
apiot1 P2 sck i A arg
apioze B Mcg GPAO —ED—':'I
15 =
BeagleY-Al 76| A0
—={A1
A2
-4 Vss
GND 10_|_MCP23$17

39J:

Figure 12.40 Circuit diagram of the project.

Program listing: Figure 12.41 shows the program listing (Program: MCP23S17). The
programming of the MCP23S17 chip is as follows (notice that not all SPI devices require
device addresses):

e Send device address (it is 0x40 in this project)
e Send register address
e Send register data

First of all, we have to program the I/O direction register IODIRA to 0 so that PORTA pins
are outputs. This register has address 0x0. Then, we should program bit 0 of PORTA (pin
GPIOA) where the LED is connected to. The address of register GPIOA is 0x12.

At the beginning of the program, the SPI interface signals between the BeagleY-AI and
MCP23S17 are defined. The required addresses of the MCP23S17 and the CS connection
are then defined, and CS is initially set to 1 so that the MCP23S17 chip command mode is
disabled (CS must be controlled separately).

The function Configure configures PORTA as output. Function Send sends data to the
specified port register (RegAddr) so that the required pin is at logic 1 or 0. Data is either 0
or 1. When 1, the LED is turned On, and when 0 the LED is turned Off. The main program
runs in a loop and calls the function Send every second to flash the LED.

e 254

Chapter 12 o 12C, SPI Bus, and PWM Projects

B o
SPI BUS PORT EXPANDER

—====================

#

In this project the SPI bus compatible MCP23S17 chip 1is used
to add 16 more ports to BeagleY-AI SBC. An LED 1is connected
to pin GPAO® of the expander and the LED 1is flashed every

second

#

Author: Dogan Ibrahim

File : MCP23S17.py

Date : October 2024
oo

import spidev
import gpiod
from time {import sleep

CS = gpiod.find_line('GPIO026")
CS.request(consumer="'beagle', type=gpiod.LINE_REQ_DIR_OUT,default_val=1)

Device_Address = 0x40 # MCP23S17 SPI address
spi = spidev.SpiDev ()

spi.open(0, 0) # Bus=0, device=0
spi.max_speed_hz = 3900000

CS.set_value(l)
MCP_GPIOA = 0x12

MCP_IODIRA = © # MCP IODIRA address
#

This function configures PORTA as output

#

def Configure():
buff = [0, 0, 0]
buff[0] = Device_Address
buff[1] = MCP_IODIRA
buff[2] 0
CS.set_value(0)
spi.writebytes([buff[0],buff[1],buff[2]])
CS.set_value(l)

#
This function sends data to register RegAddr
#
def Send(RegAddr, data):
buff = [0, 0, 0]

e 255

The Beagle-Y AI Book

buff[@] = Device_Address

buff[1] = RegAddr

buff[2] = data

CS.set_value(0)
spi.writebytes([buff[0],buff[1],buff[2]])
CS.set_value(l)

Configure()
#
Main program flashes the LED every second
#
while True:
Send (MCP_GPIOA, 1) # LED ON
sleep (1) # 1 second delay
Send (MCP_GPIOA, 0) # LED OFF
sleep (1) # 1 second delay

Figure 12.41 Program listing.

12.8 Pulse Width Modulation (PWM

Pulse Width Modulation (PWM) is a commonly used technique for controlling the power
delivered to analog loads using digital waveforms. Although analog voltages (and currents)
can be used to control the delivered power, they have several drawbacks. Controlling large
analog loads requires large voltages and currents that cannot easily be obtained using
standard analog circuits and DACs. Precision analog circuits can be heavy, large, and ex-
pensive and they are also sensitive to noise. By using the PWM technique the average value
of voltage (and current) fed to a load is controlled by switching the supply voltage On and
Off at a fast rate. The longer the power on time, the higher the voltage supplied to the load.

Figure 12.42 shows a typical PWM waveform, which is essentially a repetitive positive
pulse. The waveform has a period (T), On time (Ton), and an OFF time (T — Ton). The
minimum and maximum values of the voltage supplied to the load are 0 and Vp respec-
tively. The PWM switching frequency is usually set to be very high (usually in the order of
several kHz) so that it does not affect the load being powered. The main advantage of PWM
is that the load is operated efficiently since the power loss in the switching device is very
low. When the switch is On there is practically no voltage drop across the switch, and when
the switch is Off there is no current supplied to the load.

e 256

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

Voltage
A

Vp

Ton T Time

Figure 12.42 PWM waveform.

The duty cycle (or D) of a PWM waveform is defined as the ratio of the On time to its period.
Expressed mathematically:

Duty Cycle (D) = Ton/ T
The duty cycle is usually expressed as a percentage, as follows:
D= (TON / TOFF) x 100 %

By varying the duty cycle between 0% and 100%, we can effectively control the average
voltage supplied to the load, from 0 and V,.

The average value of the voltage applied to the load can be calculated by considering a
general PWM waveform, as shown in Figure 1. The average value A of waveform f(t) with
period T, peak value ynax, and minimum value y,, is calculated as:

or,

[15

.[ymax dt+ _[Y min a

T

a=1
T

on

In a PWM waveform ymin = 0, and the above equation becomes:

1 |
A :? | TON y max |
or, A=D Yinax

e 257

The Beagle-Y AI Book

As seen from the above equation, the average value of the voltage supplied to the load is
directly proportional to the duty cycle of the PWM waveform. By varying the duty cycle, we
control the average voltage supplied to the load. Figure 12.43 shows the average voltage
for different values of the duty cycle.

Voltage
A

25% 50% 75% 100%

o
0 Time

Figure 12.43 Average voltage (shown as dashed line) supplied to a load.
It is interesting to notice that with correct low-pass filtering, the PWM can be used as a DAC

if the MCU does not have a DAC channel. By varying the duty cycle we can effectively vary
the average analog voltage supplied to the load.

12.8.1 PWM channels of BeagleY-AI
The BeagleY-Al has hardware PWM channels at the following GPIO ports:

PWMO-A: GPIO5, GPIO15
PWMO-B: GPIO12, GPIO14
PWM1-A: GPIO6, GPIO21
PWM1-B: GPIO13, GPIO20

Example projects for using the PWM are given in this section.

12.8.2 Project 12 - Generate 1000Hz PWM waveform with 50% duty
cycle

Description: In this project, we will generate a PWM waveform with a frequency of 1000 Hz
and a duty cycle of 50% using GPIO20 (Pin 38, or hat-38). The aim of this project is to show
how we can use the PWM functions.

To enable the PWM pin, we must include the PWM overlay in the file: /boot/firmware/
extlinux/extlinux.conf. Run the following command to see a list of the overlays (Figure

12.44):

beagle@beagle:~ $ Is /boot/firmware/overlays/ | grep beagley-ai-pwm

e 258

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

jpeaglelibeagle:~5 ls /boot/firmware/overlays/ | grep beagley-ai-pwm
k3-am67a-beagley-ai-pwm-ecapO-gpiol2.dtbo
k3-am67a-beagley-ai-pwm-ecapl-gpiol6.dtbo
k3-am67a-beagley-ai-pwm-ecapl-gpio2l.dtbe
k3-am67a-beagley-ai-pwm-ecap2-gpiol7.dtbe
k3-am67a-beagley-ai-pwm-ecap2-gpiocl8.dtbo
k3-am67a-beagley-ai-pwm-epwm0O-gpiol2.dtbeo
k3-am67a-beagley-ai-pwm-epwm0O-gpiocld.dtbo
k3-am67a-beagley-ai-pwm-epwm(l-gpicl5-gpiol2.dtbo
k3-am67a-beagley-ai-pwm-epwm0O-gpiol5-gpicld.dtbo
k3-am67a-beagley-ai-pwm-epwmO-gpiol5.dtbo
k3-am67a-beagley-ai-pwm-epwm0O-gpio5-gpiol2.dtbo
k3-am67a-beagley-ai-pwm-epwm0l-gpico5-gpiocld.dtbo
k3-am67a-beagley-ai-pwm-epwm0-gpio5.dtbo
k3-am67a-beagley-ai-pwm-epwml-gpicl3.dtbo
k3-amé67a-beagley-ai-pwm-epwml-gpic20.dtbo
k3-amé7a-beagley-ai-pwm-epwml-gpio2l-gpiocl3.dtbo
k3-am67a-beagley-ai-pwm-epwml-gpic2l-gpioc20.dtbe
k3-am67a-beagley-ai-pwm-epwml-gpio2l.dtbo
k3-am67a-beagley-ai-pwm-epwml-gpiob-gpiol3.dtbo
k3-am67a-beagley-ai-pwm-epwml-gpic6-gpio20.dtbo
k3-am67a-beagley-ai-pwm-epwml-gpio6.dtbo
beagletbeagle:~$ I

Figure 12.44 List of PWM overlays.

Select the overlay for GPI0O20. i.e., k3-am67a-beagley-ai-pwm-epwm1l-gpio20.dtbo

e beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf

Go to the end of the file and type:
fdtoverlays /overlays/k3-am67a-beagley-ai-pwm-epwm1-gpio20.dtbo

e Press Ctrl+X, then Y to save and exit. Figure 12.45 shows the end of the file.

fdtdir /)
fdt /ti/k3-am67a-beagley-ai.dtb

#fdtoverlays /overlays/k3-amé67a-beagley-ai-spidev0.dtbo
#initrd /initrd.img

fdtoverlays /overlays/k3-am67a-beagley-ai-pwm-epwml-gpio20.dtbo
initrd /initrd.img

Figure 12.45 Include the overlay file.
e Reboot your BeagleY-AlI

beagle@beagle:~ $ sudo reboot

e Run the following command to make sure that the pwm overlay has been
loaded (see Figure 12.46)

beagle@beagle:~ $ sudo beagle-version | grep UBOOT

e 259

The Beagle-Y AI Book

beaglefbeagle:~$ sudo beagle-version | grep UBOOT

UBOOT: Booted Device-Tree: [k3-am67a-beagley-ai.dts]

UBOOT: Loaded Overlay: [k3-amé7a-beagley-ai-pwm-epwml-gpioc20.kernel]
beaglefbeagle:~$]

Figure 12.46 Check the overlay.
e Export pin GPIO38 (hat-38) as pwm
beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

Program listing: Figure 12.47 shows the program listing (Program: PWM1.py). The
period and the duty cycle must be specified in nanoseconds, where the duty cycle is the On
time in nanoseconds. For a 1000 Hz signal, the period is 1 ms, or 1,000,000 ns. For a 50%
duty cycle, the On time must be 500,000 ns. Figure 12.48 shows the generated waveform
on the oscilloscope. Here, the horizontal axis was 500 ps/division, and the vertical axis was
2 V/division. Clearly, the period of the generated waveform is 1 ms (frequency = 1000 Hz),
the duty cycle is 50%, and the amplitude is about 3.3 V.

This is a PWM example where a 1000Hz square wave signal is
generated with a 50% duty cycle on pin GPIO20 of the BeagleY-AI

Program: PWM1.py
Date : October, 2024
Author : Dogan Ibrahim

¥ o I I W W W HE

def write_file(path, value):
f = open(path, 'w')
f.write(str(value))
f.close()

write_file("/dev/hat/pwm/GPI020/period",1000000)
write_file("/dev/hat/pwm/GPI020/duty_cycle", 500000)

write_file("/dev/hat/pwm/GPI020/enable", 1)

while True:

pass

Figure 12.47 Program: PWM1.py.

e 260

Chapter 12 ¢ 12C, SPI Bus, and PWM Projects

File View Format Communications Language Help
caus| g R0 RED| @

: : : : CH1 Cursor
dy:
yl:
yZ:

dx:
: %2
+ < - i i- B | Divisions [-25~25

0.00

Type: None
CH1 Time / Div

scale: 500us

e fssissem — i S T — . I CH1 Volt / Div
: : scale: 200V

[Reii] 500uS 200V /1 CH1 WaveForm Info
Type Value
Frequency: 1.000 kHz
Period: 1000.000 us

Figure 12.48 Generated PWM waveform.

12.8.3 Project 13 - Changing the brightness of an LED

Description: In this project, an LED is connected to port GPIO20 through a 470 Ohm
current-limiting resistor. The program changes the brightness of the LED by adjusting the
duty cycle of the PWM voltage sent to the LED. The aim of this project is to show how the
PWM can be used in a project.

Program listing: Figure 12.49 shows the program listing (Program: LEDfade.py). The
frequency is set to 1000 Hz to ensure the LED light remains steady (i.e., not flashing).
As the duty cycle is increased from 0% to 100% in steps, the LED brightness gradually
increases.

oo
#

PWM FADE LED

============

#

This is a PWM example where an LED is connected to GPI020

and this port is configured as PWM port. The frequency of PWM

is set to 1000 Hz but the duty cycle is changed from 0% to 100%
#

Program: LEDfade.py

Date : October, 2024

Author : Dogan Ibrahim

e 261

The Beagle-Y AI Book

import time

def write_file(path, value):
f = open(path, 'w')
f.write(str(value))
f.close()

write_file("/dev/hat/pwm/GPI020/period",1000000)
write_file("/dev/hat/pwm/GPI020/duty_cycle", 500000)
write_file("/dev/hat/pwm/GPI020/enable", 1)

i=0
while True:
write_file("/dev/hat/pwm/GPI020/duty_cycle", 1)
time.sleep(0.4)
i =1 + 80000
if i > 1000000:
i=0

Figure 12.49 Program listing.
Export pin GPIO38 (hat-38) as pwm
beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

12.8.4 Project 14 - Mosquito repeller

Description: The concept of mosquito repeller is very simple. A sound with a frequency
higher than 20 kHz is termed ultrasonic. Humans can only hear sounds in the frequency
range of 20 Hz to 20 kHz. It is well known that various animals and insects can hear
ultrasonic sounds. Male mosquitos emit sounds in the range of 20 kHz to 40 kHz. After
breeding, female mosquitos tend to avoid male mosquitos, and therefore, they tend to avoid
ultrasonic sounds. Most mosquito repellers generate 40 kHz ultrasonic sounds through an
ultrasonic transducer. In this project, a 40 kHz ultrasonic sound is generated using the
BeagleY-Al.

Circuit diagram: Figure 12.50 shows the circuit diagram. Basically, an ultrasonic
transducer is used through a transistor switch connected to pin GPI020 of the BeagleY-AlI.

® 262

Chapter 12 o 12C, SPI Bus, and PWM Projects

+V

BeagleY-Al Ultrasonic transducer

GP1020

GND
1l

Figure 12.50 Circuit diagram of the project.

Program listing: Figure 12.51 shows the program listing (Program: Ultra.py). The
program is very similar to the previous one. A 40 kHz sound wave has a period of 2500 ns.
Choosing a 50% duty cycle, the waveform On time, or the duty cycle setting should be
12500 ns as shown in Figure 12.51. Figure 12.52 shows the output waveform on an
oscilloscope.

This is a mosquito repeller program where a 40kHz sound
is generated and sent to an ultrasonic transducer

Program: Ultra.py
Date : October, 2024
Author : Dogan Ibrahim

H O H OH H B H H H H

def write_file(path, value):
f = open(path, 'w')
f.write(str(value))
f.close()

write_file("/dev/hat/pwm/GPI020/period",25000)
write_file("/dev/hat/pwm/GPI020/duty_cycle", 12500)

write_file("/dev/hat/pwm/GPI020/enable", 1)

while True:

pass

Figure 12.51 Program listing.

® 263

The Beagle-Y AI Book

File View Format Communications Language Help

@& @~ | Eaen BESQ| ®

200V N] CH1 Waveorm Info

Type
Frequency:
Period:

CH1 Cursor

dy:

yi:

yZ

dx:

xl:

x2

Divisions [-25~25]

0.00

Type: MNone
CH1 Time / Div

scale: 10us

CH1 Volt / Div

scale: 200V

Value
40,000 kHz
25.000 uS

Figure 12.52 Output waveform.

Export pin GPIO38 (hat-38) as pwm

beagle@beagle@~ $ sudo beagle-pwm-export --pin hat-38

° 264

Chapter 13 ¢« Communication Over the Wi-Fi

Chapter 13 ¢ Communication Over the Wi-Fi

13.1 Overview

Three major features of BeagleY-Al are its Wi-Fi, Bluetooth communication, and Al
capabilities. BeagleY-Al is equipped with a dual-band 2.4GHz IEEE802.11ax wireless
LAN module and Bluetooth Low Energy (BLE) 5.4. Without these built-in features, you
would typically need to use external network-based hardware communication modules to
communicate over the Internet. Network communication is handled using either UDP or
TCP protocols. In this chapter, you will learn how to write Python programs using both the
UDP and TCP protocols using the on-board Wi-Fi module.

13.2 UDP and TCP

Communication over a Wi-Fi link is in the form of a client and server, and sockets are used
to send and receive data packets. The server side usually waits for a connection from the
clients, and once a connection is made two-way communication can start. Two protocols
are mainly used for sending and receiving data packets over a Wi-Fi link: UDP and TCP.
TCP is a connection-based protocol, which guarantees the delivery of packets. Packets
are given sequence numbers, and the receipt of all the packets is acknowledged to avoid
them arriving in the wrong order. As a result of this confirmation, TCP is usually slow,
but it is reliable, as it guarantees the delivery of packets. UDP, on the other hand, is not
connection-based. Packets do not have sequence numbers, and as a result of this, there
is no guarantee that the packets will arrive at their destinations, or they may arrive in the
wrong sequence. UDP has less overhead than TCP and as a result, it is faster. Table 13.1
lists some of the differences between the TCP and UDP protocols.

TCP UbDP

Packets have sequence numbers and delivery There is no delivery acknowledgment
Clarity

Engagement

Delivery

Correct article usage
client
of every packet is acknowledged

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires less resources

Connection based Not connection based

Not suitable for multicast Has multicast capability

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 13.1 TCP and UDP packet communications.

e 265

The Beagle-Y AI Book

13.2.1 UDP communication
Figure 13.1 shows the UDP communication over a Wi-Fi link:

Server

ounhkwneE

Client

nhwhe

Create a UDP socket

Bind the socket to the server address

Wait until the datagram packet arrives from the client
Process the datagram packet

Send a reply to the client, or close the socket

Go back to Step 3 (if not closed)

Create a UDP socket (and optionally Bind)

Send a message to the server

Wait until the response from the server is received
Process the reply

Go back to step 2, or close the socket

CREATE SOCKET CREATE SOCKET
Y
BIND TO SOCKET
Y \
RECEIVE DATA
(Waitfordata) [— — — — —] SEND DATA
Or CLOSE Or CLOSE
Y Y
SENDDATA | — — — — — —»| RECEIVE DATA
\i A |

Figure 13.1 UDP communication.

13.2.2 TCP communication
Figure 13.2 shows the TCP communication over a Wi-Fi link:

e 266

Chapter 13 ¢« Communication Over the Wi-Fi

Server

Create a TCP socket

Bind the socket to the server address

Listen for connections

Accept the connection

Wait until the datagram packet arrives from the client
Process the datagram packet

Send a reply to the client, or close the socket

Go back to Step 3 (if not closed)

NV A WM

Client

Create a TCP socket

Connect to the server

Send a message to the server

Wait until the response from the server is received
Process the reply

Go back to step 2, or close the socket

CREATE SOCKET

ounkwnNneE

CREATE SOCKET

- CONNECT

A

RECEIVE DATA
(Wait for data)

ol s e e i i) SEND DATA

Or CLOSE Or CLOSE

Y

SENDDATA | — — — — — —| RECEIVE DATA

L 2 L]

Figure 13.2 TCP communication.

13.3 Project 1 - Sending a Text Message to a Smartphone Using TCP
Description: In this project, a TCP/IP-based communication is established with an Android
smartphone. The program reads text messages from the keyboard and sends them to
the smartphone. The aim of this project is to show how TCP/IP communication can be
established with an Android smartphone.

® 267

The Beagle-Y AI Book

Background Information: Port numbers range from 0 to 65535. Numbers from 0 to
1023 are reserved and are called well-known ports. For example, port 23 is the Telnet port,
port 25 is the SMTP port, etc. In this section, you will be using port number 1500 in your
program. BeagleY-Al is the Server node in this example, and smartphone is the Client node.

Block diagram: Figure 13.3 shows the project block diagram where the BeagleY-AI and
smartphone communicate over a Wi-Fi router.

A Wi-Fi

ROUTER
Beagle-Al
IP: 192.168.1.127 SMART PHONE
Port: 1500 IP: 192.168.1.247

Port: 1500

Figure 13.3 Block diagram of the project.

Program listing: In this project, BeagleY-Al is the server. Figure 13.4 shows the program
listing (tcpserver.py). At the beginning of the program, a TCP/IP socket is created (sock.
SOCK_STREAM) and is then bound to port 1500. The program listens for a connection.
Notice thatitis possible for the server to listen to multiple clients, but it can only communicate
with one at any time. When the client makes a connection, this is accepted by the server.
The server then reads a message from the keyboard and sends it to the client over the
Wi-Fi link. Notice that the setsockopt() statement ensures that the program can be used
again without having to wait for the socket timeout of 30 seconds.

This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link

Author: Dogan Ibrahim

File : tcpserver.py
Date : October, 2024

e 268

Chapter 13 ¢« Communication Over the Wi-Fi

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.1.127", 1500))

sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message
yn = 'y
while yn == 'y':
msg = input("Enter your message: ") # read a message
msg = msg + "\n"
client.send(msg.encode('utf-8')) # send the message
yn = input("Send more messages?: ")

yn yn. lower ()

print("\nClosing connection to client")
sock.close()

Figure 13.4 Program listing.
Testing
You should stop the firewall running on your BeagleY-AlI if it is running. Enter the following
command to check the status of the firewall:
beagle@beagle:~ $ sudo ufw status
If the firewall is running, you should disable it using the following command:
beagle@beagle:~ $ sudo ufw disable
There are many TCP apps available free of charge on the Internet for smartphones. In this

project, the TCP Client by JOY S.R.L. app is used on an Android smartphone. This app is
available free of charge in the Play Store (see Figure 13.5).

e 269

The Beagle-Y AI Book

15:03 = - Frall 53% m

T

é
TCP Client
@ HARDCODED JOY S.R.L.

Figure 13.5 Apps used in the project.

The program is run as follows:
e Run the server program first:
beagle@beagle:~ $ python tcpserver.py

e Run the Android app and configure it as shown in Figure 13.6 (click the 3-line

settings icon at the top right-hand of the screen), where 192.168.1.127 is the
IP address of the BeagleY-AlI.

1504 A HM -

X Settings -> TCP

This device role
TCP Client

Remote IP Address
[192.168.1.127]

Remote Port
[1500]

Figure 13.6 Configure the TCP Client app.
¢ Click CONNECT in the settings menu to connect to BeagleY-AlI over TCP/IP.

e You should see a connection message on your BeagleY-Al screen and also the
IP address of the remote Android smartphone. Now enter a message and press
the Enter key. In this example, the message HELLO FROM BEAGLEY-AI is

sent to the client (Figure 13.7). Figure 13.8 shows the message displayed on
the smartphone.

e 270

Chapter 13 ¢« Communication Over the Wi-Fi

beaglefbeagle:~$ python tcpserver.py
Connected to client: ('192.168.1.247', 39638)
Enter your message: HELLO FROM BEAGLEY-AI
Send more messages?: N

Closing connection to client
beagle@beagle:~$ [

Figure 13.7 Enter the message on the keyboard.

1512 7 M +

B3 TCP Client
Rx:22B,Tx:0B

HELLO FROM BEAGLEY-AI

Figure 13.8 Message displayed on the smartphone.

13.4 Project 2 - Two-way Communication with the Smartphone Using
TCP

Description: This project is similar to the previous one, but here two-way communication
is established between the BeagleY-AI and the smartphone.

The block diagram of the project is the same as in Figure 13.3

Program listing: Figure 13.9 shows the program listing (tcp2way.py). Here, port 1500
is used, as in the previous project. The program has been changed to send and receive
messages from the smartphone. Socket function recv(byte count) sends messages over
the TCP/IP link to the connected node.

This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link

Author: Dogan Ibrahim
File : tcp2way.py
Date : October, 2024

H O H OH H B H H H H

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

e 271

The Beagle-Y AI Book

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind (("192.168.1.127", 1500))
sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message
yn = 'y'
try:
while yn == 'y':
msg = input("Enter your message: ") # read a message

msg = msg +"\n"

client.send(msg.encode('utf-8')) # send the message

msg = client.recv(1024)
print("Received message: ")
print(msg.decode('utf-8"))

yn = input("Send more messages?: ")
yn = yn.lower ()

except KeyboardInterrupt:
print("\nClosing connection to client")
sock.close()

Figure 13.9 Program listing.

Testing

You will be using the Android app as in Figure 13.5. Start the BeagleY-AI server program
and then exchange messages between the smartphone and BeagleY-AI. Example
communication is shown in Figure 13.10. In this example, BeagleY-AI sends the message
Message from BEAGLEY-AI. In return, the Android smartphone sends the message
message from ANDROID.

e 272

Chapter 13 ¢« Communication Over the Wi-Fi

beagle@beagle:~$ python tcp2way.py

Connected to client: ('192.168.1.247', 39900)
lIEnter your message: Message from BEAGLEY-AI
'Received message:

message from ANDROID

'\Send more messages?: n
beagle@beagle:~$ ||

15:26

B2l TCP Client
Rx:24 B, Tx:21 B

Message from BEAGLEY-AI
message from ANDROID

Figure 13.10 Example communication between BeagleY-AI and Android app.

13.5 Project 3 - Communicating with a PC Using TCP

Description: In this project, a TCP/IP-based communication is established between the
BeagleY-AI and a PC running Python. Messages are exchanged between the BeagleY-AI and
the PC. The aim of this project is to show how TCP/IP communication can be established
with a PC.

Background Information: In this project, BeagleY-Al is the server and PC is the client.
The programs on both sides are developed using the Python programming language.
Python 3.11 is used on the PC. If you do not have Python on your PC, you can install it from
the following website:

https://www.python.org/downloads/

Block diagram: Figure 13.11 shows the block diagram.

e 273

The Beagle-Y AI Book

/' ROUTER

CLIENT

PC
IP:192.168.1.127 IP: 192.168.1.131
Port: 1500 Port: 1500

Figure 13.11 Block diagram.

BeagleY-AI program Listing: The BeagleY-Al program listing is shown in Figure 13.12
(tcppc.py). The program is very similar to the one given in Figure 13.9, i.e., program:
tcp2way.py. You should terminate the program by entering Ctri+C.

#===
SEND/RECEIVE TEXT MESSAGES USING TCP/IP

===============z========================

#

This 1is the TCP/IP server program. It communicates with a PC

running TCP/IP on the same port

#

Author: Dogan Ibrahim

File : tcppc.py

Date : October, 2024

import socket
import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind (("192.168.1.127", 1500))

sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message
try:

while True:
msg = input("Enter your message: ") # read a message
msg = msg +|l\nll

e 274

Chapter 13 ¢« Communication Over the Wi-Fi

client.send(msg.encode('utf-8')) # send the message

msg = client.recv(1024)
print("Received message: ", msg.decode('utf-8'))

except KeyboardInterrupt:
print("\nClosing connection to client")
sock.close()
time.sleep (1)

Figure 13.12 BeagleY-AI program listing.
PC Program Listing: The PC program listing is shown in Figure 13.13 (client.py). The

program creates a socket and connects to the server. Then, messages are exchanged
between the client and the server.

#===
TCP/IP CLIENT

—============

#

This is the client program on the PC.The program exchanges

messages with the server on the BeagleY-AI

#

Author: Dogan Ibrahim

File : client.py

Date : October, 2023

import socket

import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.connect(("192.168.1.127", 1500))

try:
while True:
msg = sock.recv(1024)
print("Received message: ", msg.decode('utf-8"))
data = input("Enter message to send: ")
sock.send(data.encode('utf-8'))

except KeyboardInterrupt:
print("Closing connection to server")
sock.close()

time.sleep (1)

Figure 13.13 PC program listing.

e 275

The Beagle-Y AI Book

The steps to run the program are as follows:

e Run the server program on BeagleY-Al
e Run the client program on the PC
e Write messages as desired

Note: You may find that after exiting the program you may not be able to run it again. This
is because the socket stays open for about 30 seconds, and the error message saying that
the Address is already in use may be displayed. You can check the state of the port with
the following command:

pi@raspberrypi:~ $ netstat —n | grep 5000

If the display includes the text ESTABLISHED, then it means that the socket has not been
closed properly, and you will have to restart your BeagleY-AI to run the program again. If,
on the other hand, you see the message with TIME_WAIT, then you should wait about 30
seconds before re-starting the program.

13.6 Project 4 - Controlling an LED Connected to BeagleY-AI from a
Smartphone Using TCP

Description: In this project, an LED is connected to BeagleY-AI. The LED is turned On and
Off by sending commands On and Off respectively from an Android smartphone. The aim
of this project is to show how an LED connected to BeagleY-AI can be controlled from an
Android smartphone remotely by sending commands using the TCP/IP protocol over a Wi-Fi
link. In this project, BeagleY-Al is the server, and the smartphone is the client.

Block diagram: Figure 13.14 shows the block diagram of the project.

ROUTER CLIENT
SERVE
il

|

.8
Smart Phone
BEAGLEY-AI LED IP: 192.168.1.247
IP: 192.168.1.127 " Port: 5000
Port: 1500 '

Figure 13.14 Block diagram of the project.

e 276

Chapter 13 ¢« Communication Over the Wi-Fi

The LED is connected to port pin GPIO21 (pin 40) through a 470-ohm current limiting
resistor.

Program Listing: Figure 13.15 shows the program listing (program: serverled.py). As
in the previous program, a socket is created and port 1500 is used. The LED is assigned
to port GPIO pin 21, and it is turned Off at the beginning of the program. The server waits
for a connection from the client and then accepts the connection and displays the message
Connected. It then waits to receive a command from the client. If the command is On,
then the LED is turned On. If, on the other hand, the command is Off then the LED is turned
Off. Sending the command X terminates the server connection and exits the program.

#==
CONTROL LED FROM SMART PHONE

============================

#

In this program TCP/IP is used where BeagleY-AI is the server

and the smartphone 1is the client. An LED connected to BeagleY-AI
GPIO21 and is controlled from the smartphone

#

Author: Dogan Ibrahim

File : serverled.py

Date : November, 2024

import socket
import gpiod
from time {import sleep

led = gpiod.find_line('GPIO21")
led.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

led.set_value(0)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.1.127", 1500)) # BeagleY-AI IP
sock.listen(1)

client, addr = sock.accept()

print("Connected")

data = [' '] % 10

while data != b'X\n': # Terminate?
data = client.recv(1024)
if data == b'ON\n': # ON
led.set_value(l)
elif data == b'OFF\n': # OFF

e 277

The Beagle-Y AI Book

led.set_value(0)

sock.close()
sleep (1)

Figure 13.15 Program listing.
The program can be tested using the Android app TCP client (Figure 13.5) used in Project
1. The server program is started, then the client is started. Figure 13.16 shows sending the

On command to turn On the LED.

16:26 M -

(& Connected to 192.168.1.127:1500

Rx:0B, Tx: 7B

ON
OFF

Figure 13.16 Command sent to turn On/Off the LED.

Suggestions: The LED in this project can be replaced, for example, with a relay, and
electrical equipment can be controlled remotely over Wi-Fi.

13.7 Project 5 - Sending a Text Message to a Smartphone Using UDP
Description: In this project, a UDP-based communication is established with an Android
smartphone. The program reads text messages from the keyboard and sends them to the
smartphone. The aim of this project is to show how UDP communication can be established
with an Android smartphone.

The block diagram is the same as in Figure 13.3.

Program Listing: In this project, BeagleY-Al is the server and the smartphone is the
client. Figure 13.17 shows the program listing (udpserver.py). At the beginning of the
program, a UDP socket is created (sock.SOCK_DGRAM) and is then bound to port 1500.
The server program then reads text messages sent from the smartphone and displays them
on the screen. Messages sent by the BeagleY-Al are displayed on the smartphone.

#
#
#
This 1is the UDP server program running on BeagleY-AI.
The program exchanges text messages with an Android

smartphone

e 278

Chapter 13 ¢« Communication Over the Wi-Fi

#

Author: Dogan Ibrahim
File : udpserver.py

Date : October, 2024

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.1.127", 1500))

try:
while True:

print()
print("Waiting for messages")
data, addr = sock.recvfrom(1024)
print(addr)
print("Received msg:", data.decode('utf-8'))
msg = input("Message to send: ")
sock.sendto(msg.encode('utf-8'), addr)
print("Message sent")

except KeyboardInterrupt:
print("\nClosing connection to client")

sock.close()
Figure 13.17 Program listing.

There are many UDP apps available free of charge for both Android and iOS smartphones.
In this project, TCP UDP Server & Client from Stervs for Android smartphones is used
(Figure 13.18).

1647 =M%, - Tl 42%8

o TCP UDP Server &

Client

ToP UGE Client

Stervs
Contains ads - In-app purchases

Figure 13.18 UDP app.

e 279

The Beagle-Y AI Book

The steps to test the program are as follows:
e Start the server program on BeagleY-Al:
beagle@beagle:~ $ python udpserver.py
e Start the smartphone app and click Create client at the bottom of the screen.

Set the Server-IP and Port number, and click the arrow to run it (Figure
13.19).

1647 =1 %

Overview

Show IP addresses @

Client 1 o]

Server-IP: 192.168.1.127
Port: 1500
Protocol: UDP

State: Running

i
N,
]

Remove Ads
With this purchase you can remove the £1.59

ads from the app

w =]

Overview Create server Create client

Figure 13.19 Configure the UDP app.
e Click the three lines to open a screen, write a message on the mobile phone

app, and then click SEND. The message Hello from Android was sent as an
example (Figure 13.20).

e 280

Chapter 13 ¢« Communication Over the Wi-Fi

¢ Write a message on BeagleY-Al, and this message will be displayed on the
smartphone. Hello from BeagleY-AI was sent for an example (Figure 13.20).

e Enter Ctrl4+C on BeagleY-AI to close the socket

beaglelbeagle:~$ python udpserver.py

Waiting for messages

('192.168.1.247', 34118)

Received msg: Hello from Andreoid
Message to send: Hellec from BeagleY-AI
Message sent

Waiting for messages
-

X

LF

[Client]: Hello from Android 5
[Server]: Hello from BeagleY-Al

+ Rules ~ ~

Message

| Send

(@] @ o Q B

Figure 13.20 Sending and receiving messages.

13.8 Project 6 — Controlling an LED Connected to BeagleY-AI from a
Smartphone Using UDP

Description: In this project, an LED is connected to BeagleY-AI port pin GPIO21 (pin 40)
through a 470-ohm current limiting resistor. The LED is turned On and Off by sending
commands On and Off respectively from an Android smartphone. The aim of this project
is to show how an LED on BeagleY-Al can be controlled from a smartphone by sending
commands using the UDP protocol over a Wi-Fi link. Here, BeagleY-Al is the server and the
smartphone is the client.

The LED can easily be replaced with a relay, for example, to control electrical appliances
from a smartphone.

Program Listing: Figure 13.21 shows the program listing (udpled.py). As in the previous
program, a socket is created and the server waits to receive commands from a client to
control the LED. If the command is On, then the LED is turned On. If, on the other hand,
the command is Off, the LED is turned Off. Command X terminates the server program.

e 281

The Beagle-Y AI Book

#==
CONTROL LED FROM SMARTPHONE

—===========================

#

In this program UDP 1is used where BeagleY-AI 1is the server

and the smartphone is the client. An LED connected to the server
and is controlled from the smartphone

#

Author: Dogan Ibrahim

File : udpled.py

Date : October, 2024

import socket
import gpiod
from time import sleep

led = gpiod.find_line('GPIO21"')
led.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT, default_val=0)

led.set_value(0)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.1.127", 1500)) # Bind to Zero 2 W IP,port

data = [' '] * 10
while data != b'X':
data, addr = sock.recvfrom(1024)

if data == b'ON': # ON command
led.set_value(l) # LED ON

elif data == b'OFF': # OFF command
led.set_value(0) # LED OFF

sock.close()
sleep (1)

Figure 13.21 Program listing.
The program can be tested using the UDP Sender/Receiver app used in Figure 13.18.
The steps to test the program are as follows:
e Construct the circuit on BeagleY-AI with the LED.
e Start the server program on BeagleY-AI:

beagle@beagle:~ $ python udpled.py

° 282

Chapter 13 ¢« Communication Over the Wi-Fi

e Start and configure the smartphone app.

e Write the command On and press Send on the smartphone. The LED should
turn On. Similarly, write Off and the LED should turn Off. Sending X should
terminate the BeagleY-AI program.

13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi

Raspberry Pi Pico W (it will be called Pico from now on) is a low-cost $6 microcontroller
module based on the RP2040 microcontroller chip with a dual-core Cortex-M0O+ processor
with an on-board Wi-Fi module. Figure 13.22 shows the front view of the Pico hardware
module, which is essentially a small board. In the middle of the board is the tiny 7 x 7mm
RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of the board,
there are 40 gold-colored male GPIO (General-Input-Output) pins with holes. You should
solder pins into these holes so that external connections can be made easily to the board.
The holes are numbered starting with number 1 at the top left corner of the board and the
numbers increase downwards up to number 40, which is at the top right-hand corner of the
board. The board is breadboard compatible (i.e., 0.1-inch pin spacing), and after soldering
the pins, the board can be plugged into a breadboard for easy connection to the GPIO pins
using jumper wires. Next to these holes, you will see bumpy circular cut-outs which can be
plugged on top of other modules without having any physical pins fitted.

ALTITREIAR S e bes = ' aomsct -

E' '

i
)

tomi el

= E
1

-

Figure 13.22 Front view of the Pico hardware module.

At one edge of the board, there is the micro-USB B port for providing power to the board
and for programming it. Next to the USB port, there is an on-board user LED that can be
used during program development. Next to this LED, there is a button named BOOTSEL
that is used during the programming of the microcontroller, as we will see in the next
chapters. Next to the processor chip, there are three holes where external connections can
be made. These are used to debug your programs using Serial Wire Debug (SWD). At the
other edge of the board is the single-band 2.4 GHz Wi-Fi module (802.11n). Next to the
Wi-Fi module is the on-board antenna.

e 283

The Beagle-Y AI Book

You will notice the following types of letters and numbers at the back of the board:

GND - power supply ground (digital ground)

AGND - power supply ground (analog ground)

3V3 - +3.3 V power supply (output)

GPO - GP22 - digital GPIO

GP26_A0 - GP28_A2 - analog inputs

ADC_VREF - ADC reference voltage

TP1 - TP6 - test points

SWDIO, GND, SWCLK - debug interface

RUN - default RUN pin. Connect LOW to reset the RP2040
3V3_EN - this pin by default enables the +3.3 V power supply.

+3.3 V can be disabled by connecting this pin LOW

VSYS - system input voltage (1.8 V to 5.5 V) used by the on-

board SMPS to generate +3.3 V supply for the board

VBUS - micro-USB input voltage (+5 V)

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input) - used in ADC mode (ADC3) to measure VSYS/3
GP24 (input) - VBUS sense - HIGH if VBUS is present, else LOW
GP23 (output) - controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

e 284

32-bit RP2040 Cortex-M0+ dual-core processor operating at 133 MHz

2 MB Q-SPI Flash memory

264KB SRAM memory

26 GPIO (+3.3 V compatible)

3 x 12-bit ADC pins

Accelerated floating point libraries on-chip

On-board single-band Infineon CYW43439 wireless chip, 2.4 GHz wireless
interface (802.11b/g/n), and Bluetooth 5.2 (not supported at the time of
writing)

Serial Wire Debug (SWD) port

Micro-USB port (USB 1.1) for power (+5 V) and data (programming)

2 x UART, 2 x I2C, 2 x SPI bus interface

16 x PWM channels

1 x Timer (with 4 alarms), 1 x Real-Time Counter

On-board temperature sensor

On-board LED at GPIOO, controlled by the 43439 module

Castellated module allowing soldering directly to carrier boards
8xProgrammable 10 (PIO) state machines for custom peripheral support
MicroPython, C, C++ programming

Drag & drop programming using mass storage over USB

Chapter 13 ¢« Communication Over the Wi-Fi

Pico GPIO hardware is +3.3 V compatible, so it is important not to exceed this voltage when
interfacing external input devices to the GPIO pins. +5 V to +3.3 V logic converter circuits
or resistive potential divider circuits must be used if it is required to interface devices with
+5 V outputs to the Pico GPIO pins.

Pico can be programmed using MicroPython or C/C++ languages. It is assumed that the
readers have Pico development boards with MicroPython installed. It will also be useful if
the readers are familiar with using the Thonny with the Pico. An excellent book entitled:
Raspberry Pi Pico W, written by the author, is available on the Elektor website, and
interested readers should purchase this book for developing Pico-based projects.

Figure 13.23 shows the pin configuration of the Pico.

x §12c0SDA R sPioRX § - GPO_ QR
UARTO RX i
3

SPI0 SCK g

5

UART1TX § 12C0 SDA [

g 3VAEN |
3s EVEIGINH)

35 & ADC_VREF

12¢0 SCL_§ SPI0ESn i '8 GP28 | Aoc2 |
T ¢ Sl GND

sPi0 ScK §GP6. B k-] GP27 § ADC1 § 12C1 SCL |

10 KIS GP26§ ADCO _§ 12C1 SDA |

LUART1 TX § I2COSDA § _SPI1RX_§ _GPE__gilge

[UaRT1 Rx § 12coscL | spiicsn §Gpo RT3 iy cp22 |
IR 3 k] GND |
sPi1 SCK B GP10_ Bl = F8 GP21 |
[i2ciscL | sPiiTx | GPIl RESR @ & LY GP20 |
| UARTO Tx § 12COSDA § SPi1Rx B GP12 RlSR e = 25 IEEI
uarto Rx § i2c0SeL Y spii csn | GRIS RIgp ® 2 4 GP18 ¥ 5Pi0 SCK § 1261 SDA
|G BESRe 3 23 [
SCK § GP14 R} z e o 8 GP17§ SPI0CSn § 1260 SCL § UARTORX |
[12C1 SEL § sPiiTx §GPIS Rl . FIRGPI6 - SPIO RX

Figure 13.23 Pico pin configuration.

13.9.1 Project 7 — BeagleY-AI and Raspberry Pi Pico W communication
- controlling a relay over Wi-Fi

Description: In this project, you have a BeagleY-AI and Raspberry Pi Pico W. A pushbutton
is connected to Pico, and a +3.3 V relay is connected to the BeagleY-Al. Pressing the button
on the Pico sends a command to BeagleY-Al over the Wi-Fi to activate the relay. The relay

e 285

The Beagle-Y AI Book

remains active for 5 seconds. In this project, BeagleY-Al and Pico communicate using the
UDP protocol, where BeagleY-Al is the server and Pico is the client.

Block diagram: Figure 13.24 shows the block diagram of the project.

WI-FI ROUTER

BeagleY-Al

Figure 13.24 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 13.25, with the
button and relay connected to the Pico and BeagleY-AI, respectively.

% +3.3V +3.3V 1—‘
10k 3 Rel
elay [—©

. 4 GP?2 GPIOZ S
Button [I J_
Raspberry Pi BeagleY-Al 1
= Pico W)

GND GND

1 L

Figure 13.25 Circuit diagram of the project.

e 286

Chapter 13 ¢« Communication Over the Wi-Fi

Pico program listing: Figure 13.26 shows the Pico program listing (picoudp.py). At
the beginning of the program, the LED is assigned to port GP2 and is turned Off. The
function Connect() is called to connect to the local Wi-Fi. Then, a socket is created with
port number 2000 and IP address 192.168.1.21. When the button is pressed, the program
sends 1 to the BeagleY-Al so that the LED can be turned On. This process is repeated after
a 1l-second delay.

B o
RASPBERRY PI PICO W - BEAGLEY-AI COMMS

—=====================================

#

In this project a pushbutton is connected to GP2 of PICO W.
Pressing the button sends a command to BeagleY-AI to

activate a relay. UDP protocol is used in this project.

#

Author: Dogan Ibrahim

File : picoudp.py

Date : October, 2024

from machine import Pin
import network

import socket

import utime

global wlan

BUTTON = Pin(2, Pin.IN) # Button at GP2
#

This function attempts to connect to Wi-Fi

#

def connect():

global wlan

wlan = network.WLAN(network.STA_IF)

while wlan.isconnected() == False:
print("Waiting to be connected")
wlan.active(True)
wlan.connect ("TP-Link_6138_EXT", '"24844604")
utime.sleep(5)

connect()
print("Connected")

UDP_PORT = 1500 # Port used
UDP_IP = "192.168.1.21" # Zero 2W IP
cmd = b"1" # Cmd to turn ON

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

e 287

The Beagle-Y AI Book

while True:

while BUTTON.value() == 1: # Not pressed
pass

while BUTTON.value() == 0: # Not released
pass

sock.sendto(cmd, (UDP_IP, UDP_PORT)) # Send cmd

print("Command sent'") # Message

utime.sleep (1) Wait 1 sec

Figure 13.26 Raspberry Pi Pico W program listing (picoudp.py).

BeagleY-AI program listing: Figure 13.27 shows the BeagleY-Al program listing
(Beagleudp.py). At the beginning of the program, the libraries used are imported, and
the relay is configured at port GPIO2 and is deactivated. Then, a socket is created, and the
program binds to it with the BeagleY-AI IP address. The program then waits to receive a
command from the Pico. The received command is stored in variable data, and if it is 1,
then the relay is activated for 5 seconds. At the end of this time, the relay is deactivated
and the program repeats waiting for a command.

#===
RASPBERRY PI PICO W - BEAGLEY-AI COMMS

======================================

#

This 1is the UDP server program running on BeagleY-AI.

The program receives a command from PICO W and activates a
relay connected to GPIO2 for 5 seconds.

#

Author: Dogan Ibrahim

File : Beagleudp.py

Date : October, 2024

import gpiod
import socket
from time import sleep

RELAY = gpiod.find_line('GPIO2')
RELAY.request(consumer="'beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind (("192.168.1.127", 1500))

try:
while True:
data, addr = sock.recvfrom(1024) # GEt command
if data == b'1': # Command is 1?
RELAY.set_value(1l) # Activate Relay

e 288

Chapter 13 ¢« Communication Over the Wi-Fi

sleep(5) # 5 seconds delay
RELAY.set_value(0) # Deactivate Relay
except KeyboardInterrupt: # Keyboard -interrupt

print("\nClosing connection to client")

sock.close()
Figure 13.27 BeagleY-AI program listing (Beagleudp.py).

Testing the project
The steps to test the project are:

e Run the server on BeagleY-Al:
beagle@beagle: ~$ python Beagleudp.py

e Run the Pico program in Thonny by clicking the green Run button. You should
see the message Connected when Pico connects to the local router.

e Push the button on Pico. The message Command sent will be displayed on the
Pico terminal. A packet will be sent to BeagleY-AI, which will turn ON the LED
for 5 seconds

e Enter Ctrl+C to terminate the program.
13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pres-
sure Data on the Cloud
Description: In this project, the ambient temperature and atmospheric pressure are read

and stored in the Cloud. A BME280-type sensor module (see Chapter 10.7) is used in this
project.

Block diagram: The block diagram of the project is shown in Figure 13.28.

e 289

The Beagle-Y AI Book

/

Wi-Fi Router

BeagleY-Al

Figure 13.28 Block diagram of the project.

Circuit diagram: Figure 13.29 shows the circuit diagram. SCL and SDA pins of BME280
are connected to the SDA (pin 3) and SCL (pin 5) of the BeagleY-AI. The sensor is powered
from +3.3 V.

1
+3.3V
Vce
SDA 3 GPIO2 (SDA)
BMe280 5
SCL GPIO3 (SCL)
(j'jD BeagleY-Al
' GND

39]
Figure 13.29 Circuit diagram of the project,

The Cloud

Several cloud services can be used to store data (for example, SparkFun, ThingSpeak,
Cloudino, Bluemix, etc). In this project, ThingSpeak is used. This is a free cloud service
where sensor data can be stored and retrieved using simple HTTP requests. Before using
ThingSpeak, we have to create an account from their website and then log in to this
account.

e 290

Chapter 13 ¢« Communication Over the Wi-Fi

Go to the ThingSpeak website:
https://thingspeak.com/

Click Get Started For Free and create an account if you don't already have one. Then,
you should create a New Channel by clicking on New Channel. Fill in the form as shown
in Figure 13.30. Give the name BeagleY-AI to the application, provide a description, and
create two fields called Atmospheric Pressure and Temperature. You can optionally fill
in the other items as well if you wish.

mThingSpeak'" Channels * Apps * Devices ™ Support ™

New Channel

Name BeagleY-Al

BME280 Pressure and Temperature

Description
Field 1 Pressure
Field 2 Temperature|
Field 3 a

Figure 13.30 Create a New Channel (only part of the form shown).
Click Save Channel at the bottom of the form. Your channel is now ready to be used with
your data. You will now see tabs with the following names. You can click on these tabs and

see the contents to make corrections if necessary:

e Private View: This tab displays private information about your channel, where
only you can see it.

e Public View: If your channel is public, use this tab to display selected fields
and channel visualizations.

e Channel Settings: This tab shows all the channel options you set at creation.
You can edit, clear, or delete the channel from this tab.

e API Keys: This tab displays your channel API keys. Use the keys to read from
and write to your channel.

e Data Import/Export: This tab enables you to import and export channel
data.

e 291

The Beagle-Y AI Book

You should click the API Keys tab and save your unique Write API and Read API keys,
and unique Channel ID, in a safe place, as you will need to use them in our program. The
API Keys and the Channel ID in this project were as in Figure 13.31.

Write APl Key

K&y KQB94MIGTESGKAIK

Generate Mew Write API Key

Read API Keys

ey JVO9BZ1KIVOFUZSY

Mote

¥

Channel Settings
Percentage Complete 50%

Channel ID 2696815

Name BeagleY-Al

BME280 Pressure and Temperature

Description
Field 1 Pressure
Field 2 Temperature

Figure 13.31 Author's Channel ID and API Keys.

Also, select the Public View and navigate to Sharing. You may select the option Share
channel view with everyone so that everyone can access your data remotely.

Program listing: In this program, you will be using the BME280 library as described in
Chapter 10.7. The steps to install the library are not repeated here.

After constructing the circuit, you should check to make sure that the BME280 is detected
by the BeagleY-Al. Enter the following command:

beagle@beagle:~ $ sudo i2cdetect -r-y 1

® 292

Chapter 13 ¢« Communication Over the Wi-Fi

You should see the hardware address of the BME280 chip displayed as 76 (see Figure
13.32).

0 1 2 3 45 6 7 8 9 abocde £

00: mm e e m e e em -
10: == == == == == m= m= me me e e e e oo e oo
20; == == == == = == == == mm me mm me mm e e e
30: == == == == mm m e e e e e e e e e e
L
50: == == == == == == == == == == == == == == == -

Bl: == == == = m= = mm mm mm mm = m— m— —— == ——

70: == == == == == == 76 ==
beaglelfbeagle:~$.

Figure 13.32 BME280 hardware address detected.

Figure 13.33 shows the program listing (Cloud.py). At the beginning of the program, the
libraries used are imported. ThingSpeak Write Key and Host Address are defined. The
main program loop starts with the while statement. Inside this loop, the IP address of the
ThingSpeak website is extracted, and a connection is made to this site at port 80. Then,
the atmospheric pressure and temperature readings are obtained from the BMP280 module
and are included in the path statement. The sock.send statement sends an HTTP GET
request to the ThingSpeak site and uploads the pressure and temperature values. This
process is repeated every 30 seconds.

Figure 13.34 shows the pressure and temperature data plotted by ThingSpeak. The Chart
Options can be clicked to change various parameters of the charts. For example, Figure
13.35 shows the pressure as a column display. In Figure 13.36, the pressure is shown as a
step graph. A title and X-axis label are added in Figure 13.37 to the pressure graph. Figure
13.38 shows the current temperature displayed in a clock format (click Add Widgets for
this type of display).

Because the Channel was saved as public, you can view the graph from a web browser (see
Figure 13.39) by entering the Channel ID. In this project, the link to view the data graphs
from a web browser is (this link is only available while the program is running):

https://api.thingspeak.com/channels/2696815

We can also export some or all of the fields in CSV format by clicking Export recent data,
so that it can be analyzed by external statistical packages such as Excel.

The ambient temperature and pressure sensor BMPE280 is connected to BeagleY-AI.
The project reads the temperature and atmospheric pressure and sends
to the Cloud where it can be accessed from anywhere. In addition, change

H O H H HF H H

of the temperature and the pressure can be plotted in the cloud.

e 293

The Beagle-Y AI Book

The program uses the ThingSpeak cloud service

Author: Dogan Ibrahim
File : Cloud.py
Date : October, 2024

import socket
from time import sleep

from bme280pi import Sensor

sensor = Sensor(address = 0x76)

APIKEY = "KQB94MJIG765GKA3K" # ThingSpeak API key
host = "api.thingspeak.com" # ThingSpeak host
#

Send data to ThingSpeak. This function sends the temperature and
humidity data to the cloud every 30 seconds.
#
while True:
sock = socket.socket()
addr = socket.getaddrinfo("api.thingspeak.com",80)[0][-1]
sock.connect (addr)
data = sensor.get_data()
p = data['pressure'] # Pressure in haP
t = data['temperature'] # Temperature in C
path = "api_key="+APIKEY+"&fieldl="+str(p)+"&field2="+str(t)
sock.send(bytes("GET /update?%s HTTP/1.0\r\nHost: %s\r\n\r\n"
%(path,host),"utf8"))
sleep(5)
sock.close()
sleep(25)

Figure 13.33 Program listing.

e 294

Chapter 13 ¢« Communication Over the Wi-Fi

Field 1 Chart o & = Field 2 Chart
BeagleY-Al BeagleY-Al
210
‘-' 2.5
=
E f 2o
o
4 é 215
L &
= 28
20.5
101k
091500 091530 0916500 091630 09:15:00 09:1530 09: 16,00 091630
Date Date
ThingSpeak.com Thingsprak.cam

Figure 13.34 Plotting the pressure and temperature.

Field 1 Chart o & %
BeagleY-Al
1.00k
80O
4
5 600
M
B 400
-
200
0.00
09:15:00 09:16:00 09:17.00 09:18:00
Date

ThingSpeak.com

Figure 13.35 Displaying temperature as columns.

Field 1 Chart B O & %
BeagleY-Al
v
-] 1 [
=
1.01k
0915 0916 osay 0918 0919
Date

ThingSpeak.com

Figure 13.36 Displaying pressure as steps.

e 295

The Beagle-Y AI Book

Field 1 Chart F O & x

Atmospheric Pressure

1.00k
800
g
5 600
7
£ 400
200
0,00
09:15 09:16 0917 0918 0919 09:20 09:21
Time
ThingSpeak.com
Figure 13.37 Adding title and x-axis label.
Temperature Z O & x

1011.6131459624221

Figure 13.38 Displaying the current temperature in a clock format.

BeagleY-Al

Channel ID: 2696815
Author: doganibrahim

BME280 Pressure and Temperature

Access: Public

Export recent data

Field 1 Chart 2z o Field 2 Chart o

BeagleY-Al BeagleY-Al

Pressure
Temperature

ThingSpaak.com Thingspesk.com

Figure 13.39 Displaying the graphs from a website.

e 296

Chapter 13 ¢« Communication Over the Wi-Fi

13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO
Ports from the Internet

Flask is a simple micro-framework written in Python for Python. It is free of charge and can
be used to create a web server on BeagleY-Al and other members of the family to control its
GPIO ports over the internet. The nice advantage of Flask is that it does not require special
tools or libraries, and has no database or any other third-party libraries.

Flask should already be available in Python on your BeagleY-AI, but if not, it can be installed
with the following command:

beagle@beagle:~ $ sudo apt-get install python3-flask
It will be a good idea to create a new folder on your BeagleY-Al and store all of your flask-
related documents there. Let's create a folder called MyFlask under our default directory
/home/beagle:

beagle@beagle:~ $ mkdir MyFlask
Make MyFlask your default directory:

beagle@beagle:~ $ cd MyFlask
We are now ready to create our first web server application using Flask. To test Flask on
your BeagleY-Al single board computer, use the nano text editor and create a file called

flasktest.py with the following lines in it:

from flask import Flask # import module flask
app = Flask(__name__) # create a flask object called app

@app.route('/")

def index(): # run index when called
return 'Hello from Flask' # msg to display when run
if _name___ =='_main__":

app.run(debug=True, port=8080, host='0.0.0.0") # listen on port 8080
Now, run the above program:
beagle@beagle:~ $ sudo python flasktest.py

You should see messages similar to the ones shown in Figure 13.40.

e 297

The Beagle-Y AI Book

beaglefbeagle:~/MyFlask$ sudo python flasktest.py

*
| %

Serving Flask app 'flasktest'
Debug mode: on

WARNING: This is a development server. Do not use it in
Use a production WSGI server instead.

*
I *
*

» ¥ ¥ N

Running on all addresses (0.0.0.0)
Running on http://127.0.0.1:8080
Running on http://192.168.1.127:8080

Restarting with stat
Debugger is active!
Debugger PIN: 587-204-632

Figure 13.40 Flask messages.

Now, open a web browser (e.g., Google Chrome) from a computer connected to the same
Wi-Fi router and enter the IP address of your BeagleY-Al followed by :8080 as the port
number. In this example use 192.168.1.127:8080. You should see the Hello from Flask
message appear on a webpage, as shown in Figure 13.41.

v @ 192.168.1.127:8080 X +
<« c A Notsecure 192.168.1.127:8080

& Google recommends setting Chrome as default ‘

Hello from Flask

Figure 13.41 Message on the webpage.

We can now create an HTML page and pass variables from a Python program. Create a
folder called templates under MyFlask, move to the templates directory, and create a
file called index.html using the nano text editor with the following lines (notice that the
variables inside the double curly brackets will have data passed to them from the Python

program):

<head>
<title>{{ title }}</title>
</head>
<body>
<h1>Hello from Flask</h1>
<h2>The time on the server is: {{ time }}</h2>
</body>

We will now modify our flasktest.py program under the MyFlask directory as follows:

e 298

Chapter 13 ¢« Communication Over the Wi-Fi

from flask import Flask, render_template
import time

app = Flask(__name__)
@app.route('/")

def index():

now = time.ctime()

DataToPass = {

'title' : "TESTING FLASK",
'time': now
b

return render_template('index.html’, **DataToPass)
if _ _name___ =='_main__":

app.run(debug=True, port=80, host='0.0.0.0") # listen on port 80

The current date and time are obtained using the function call time.ctime(), and the
result is stored in the variable now. Then, a dictionary called DataToPass is created, and
the values of title and time are stored in this dictionary. These values will be passed to the
items in double curly brackets in the webpage defined by index.html. When the function
returns, the variables inside the dictionary are passed to the web browser through the
dictionary.

Now, run the program flasktest.py with the command sudo python flasktest.py. Go
to a web browser and enter the IP address of your BeagleY-Al followed by the :8080 port
number (e.g., for the author's computer: 192.168.1.127:8080). You should see a display
similar to the one shown in Figure 13.42.

= Cc A\ Notsecure 192.168.1.127:8080

& Google recommends setting Chrome as default Set as default

Hello from Flask

The time on the server is: Thu Oct 24 11:47:44 2024

Figure 13.42 Web page displaying the date and time.

Now that we have learned how to pass variables from a Python program to a web page, we
can monitor the status of a GPIO pin or control a GPIO pin from a web page.

e 299

The Beagle-Y AI Book

13.12 Project 9 - Web Server - Controlling an LED Connected to Beag-
leY-AI Using the Flask

Description: In this project, an LED is connected to port GPIO21 of the BeagleY-AI through
a 470-ohm current limiting resistor. The LED is turned On or Off via remote web pages
using Flask. The aim of this project is to show how Flask can be used to control an LED
connected to BeagleY-Al.

HTML Template Program Listing: The HTML template index.html in folder /home/
beagle/MyFlask/templates is simple and it consists of a title and two buttons: On and
Off. The title is in double curly brackets and therefore it expects data to be passed to it
from Python. Two buttons are defined, called LED On and LED Off, with green and red
colors respectively, the LED On button having reference /LED/on and LED Off having
reference /LED/off. Figure 13.43 shows the program listing.

<head>
<title>{{ title }}</title>
</head>

<body>
<h3>
<button type="button">LED ON</button>

<button type="button">LED OFF</button>

</h3>
</body>

Figure 13.43 HTML template program listing.

BeagleY-AI Program Listing: Figure 13.44 shows the Python program listing on BeagleY-
Al in the folder /home/beagle/MyFlask (program: flasktest.py). The program has the
basic Flask-type template as shown earlier with some additional code. Port pin GPIO21 is
configured as an output, and the LED is turned OFF at the beginning of the program. The
title to be passed to index.html is named LED CONTROL and the function index is used
to pass this string. Notice that another app.route is created with parameters device and
action. In this example, the device is LED, and its actions are on and off. Function action
checks the device, and if it is LED, then the actuator is set to LED. For every actuator, we
must have an action. If the action is on, the LED is turned On. Otherwise, if the action is
off, the LED is turned Off.

#
=============================

#
This program turns the LED ON or OFF from a web browser
activated from any computer on the same Wi-Fi router as

e 300

Chapter 13 ¢« Communication Over the Wi-Fi

the BeagleY-AI. The LED 1is controlled by clicking buttons
when the web page is started.

Author: Dogan Ibrahim
File : flasktest.py
Date : November, 2024

H* O H H H R

from flask {import Flask,render_template
import gpiod
import time

app=Flask(__name__)

#

Define GPIO21 as output and turn OFF LED at beginning

#

LED = gpiod.find_line('GPIO21")
LED.request(consumer="beagle',type=gpiod.LINE_REQ_DIR_OUT,default_val=0)

@app.route('/")
def 1dindex():
DataToPass = {
'title': "LED CONTROL"
}

return render_template('index.html', **DataToPass)

@app.route("/<device>/<action>")
def action(device, action):
if device == "LED":
actuator = LED

if action == "on":
actuator.set_value(1l)

if action == "off":
actuator.set_value(0)

return render_template('index.html')

if __name__ == '__main__"':

app.run(debug=False, port=8080,host='0.0.0.0")
Figure 13.44 Program: flasktest.py.

To run the program, you should follow these steps:

e 301

The Beagle-Y AI Book

e Connect an LED to GPIO21 through a current-limiting resistor

e Run program flasktest.py

beagle@beagle:~/MyFlask $ python flasktest.py

e Activate a web browser from a computer connected to the same Wi-Fi router
and enter the IP address of your BeagleY-AlL. As shown in Figure 13.45, you
should see two buttons to control the LED. Clicking the buttons turns the LED
On or Off accordingly.

8

(_

192.168.1.127:8080/LED/off

C

LED ON | | LED OFF

*

-+

O 8 192.168.1.127:8080/LED/off

Figure 13.45 Controlling the LED from a web page.

e Figure 13.46 shows a typical run of the program.

beagleflbeagle:~/MyFlask$ python flasktest.py
* Serving Flask app 'flasktest'
* Debug mode: off

WARNING

* Running on
* Running on
* Running on

192.168.
192.168.
192.168.
192.168.

131
.131

131

.131

: This is a development server. Do not
Use a production WSGI server instead.

all addresses (0.0.0.0)
http://127.0.0.1:8080
http://192.168.1.127:8080
- - [24/0ct/2024 14:58:23] "GET
- - [24/0ct/2024 14:58:25] "GET
- - [24/0ct/2024 14:58:27] "GET
- - [24/0ct/2024 14:58:29] "GET
- - [24/0ct/2024 15:48:18] "GET

192.168.

e Terminate your program by entering Ctrl+C.

e 302

1
12
1.
s
1

.131

use it in a production deplo

/ HTTP/1.1" 200 -

/LED/on HTTP/1.1" 200 -
/LED/off HTTP/1.1" 200 -
/LED/on HTTP/1.1" 200 -
/LED/off HTTP/1.1" 200 -

Figure 13.46 Run of the program.

Chapter 14 e Using Serial Communication

Chapter 14 e Using Serial Communication

14.1 Overview

Serial communication is a simple means of sending data by wire to long distances quickly
and reliably. Data is transmitted one bit at a time, rather than in parallel, as it reduces the
cost of cabling, and also sending in serial format is less affected by electrical noise. Serial
communication can be done either in software or by using a UART chip. Using a UART chip
has the advantage that the communication can be very high-speed. Error detection is also
easily handled in UART-based systems. The most commonly used serial communication
method is based on the RS232 standard. In this standard, data is sent over a single line
from a transmitting device to a receiving device in bit serial format at a pre-specified speed,
also known as the Baud rate, or the number of bits sent/received each second. Typical Baud
rates are 4800, 9600, 19200, 38400, etc.

RS232 serial communication is a form of asynchronous data transmission where data is
sent character by character using dedicated hardware and without the support of a clock
signal. Each character is preceded by a Start bit, seven or eight data bits, an optional parity
bit, and one or more stop bits. The most commonly used format is eight data bits, no
parity bit, and one stop bit. Therefore, a data frame consists of 10 bits. With a Baud rate
of 9600, you can transmit and receive 960 characters every second. The least significant
data bit is transmitted first, and the most significant bit is transmitted last. In most
asynchronous serial communication systems, a parity bit is used to detect single-bit error
in the transmission. The concept of parity is very simple. A parity bit can be Odd, Even, or
None. In an Odd parity transmission, the number of 1s transmitted is Odd. If the number is
even, a 1 is added as the last bit to make the total Odd. Even parity is the reverse, where
the number of 1s transmitted is Even. If the number is not even, a 1 is added as the last
bit to make it even.

In standard RS232 communication, logic high is defined to be at -12 V, and logic 0 is at
+12 V. Figure 14.1 shows how character A (ASCII binary pattern 0010 0001) is transmitted/
received over a serial line. The line is normally idle at -12 V. The start bit is first sent by the
line going from high to low. Then eight data bits are sent starting from the least significant
bit. Finally, the stop bit is sent by raising the line from low to high.

IDLE

A 4

START 1 0 0 0 0 0 1 0 STOP

Figure 14.1 Sending character A in serial format.

In serial connection, a minimum of three wires are used for communication: transmit (TX),
receive (RX), and ground (GND). Some high-speed serial communication systems use
additional control signals for synchronization, such as CTS (Clear To Send), DTR (Data
Terminal Ready), and so on. Some systems use software synchronization techniques where
a special character (XOFF) is used to tell the sender to stop sending, and another character

e 303

The Beagle-Y AI Book

(XON) is used to tell the sender to restart transmission. RS232 devices are connected to
each other using two types of connectors: a 9-way connector, and a 25-way connector.
Table 14.1 shows the TX, RX, and GND pins for each type of connector.

9-pin connector

Pin Function

2 Transmit (TX)
3 Receive (RX)
5 Ground (GND)

25-pin connector

Pin Function

2 Transmit (TX)
3 Receive (RX)
7 Ground (GND)

Table 14.1 Minimum pins required for RS232 serial communication.

As described above, RS232 voltage levels are at £12 V. On the other hand, most microcon-
troller input-output ports operate at 0 to +5 V or 0 to +3.3 V voltage levels. It is therefore
necessary to translate the voltage levels before a microcontroller can be connected to a
RS232 compatible device. Thus, the output signal from the microcontroller has to be con-
verted into £12 V, and the input from an RS232 device must be converted into 0 to +5 V
or 0 to +3.3 V before it can be connected to a microcontroller. This voltage translation is
normally done using special RS232 voltage converter chips. One such popular chip is the
MAX232. This is a popular dual converter chip, which requires a few external capacitors for
its operation.

Nowadays, serial communication is done using standard TTL or CMOS logic levels instead
of £12 V, where logic 1 is normally greater than +3 V, and logic 0 is about 0 V. A serial line
is idle when the voltage is higher than +3.3 V. The start bit is identified on the high-to-low
transition of the ling, i.e, the transition from higher voltage to 0 V. Two serial devices sup-
porting the same logic levels can easily be connected to each other. Basically, the TX and the
RX pins should be crossed and the ground pins should be connected directly to each other.

14.2 USB - TTL Serial Conversion Modules

USB-TTL serial modules are used to connect a PC to another device (for example, BeagleY-
Al, Arduino Uno, Raspberry Pi, etc.) through the USB port. Figure 14.2 shows the USB-
TTL converted module used by the author. At one end of this module, there is the USB
connector, and at the other end, there is a header for making connections to the device
which is to communicate with the PC over the serial port. A jumper on the module selects
the serial port voltage levels as +5 V or +3.3 V. In our applications, you should set the
jumper so that +3.3 V is selected. The header on the other side of the module has the
following pin names:

e 304

Chapter 14 e Using Serial Communication

+5 V (output)

+3.3 V (output)

TXD (serial output from the module)
RXD (serial input to the module)
GND (ground pin)

Figure 14.2 USB-TTL serial converted module.

In a typical application, you should make the connections between the PC and the external
device as shown in Figure 14.3.

USB TXD RXD
PC RXD TXD
GND GND
USB-TTL Converter
Module

BeagleY-Al,Arduino,
Raspberry Pi, etc

Figure 14.3 USB-TTL converter module connections.

When the USB-TTL converter module is connected to a PC, a serial port with the name
COMXx is created automatically, where x is the port number. The port number can be found
on the PC Device Manager screen under Ports (COM & LPT). In the author's application
in Figure 14.4, the serial port number was COM4. The port humber is important when we
want to communicate with the PC over the serial port.

e 305

The Beagle-Y AI Book

€1 Memory technology devices
U Mice and other pointing devices
[Monitors
3 Network adapters
v @ Ports (COM & LPT)
@ USB-SERIAL CH340 (COM4)
= Print queues
= Printers
D Processors
B9 Security devices

Figure 14.4 Serial port number.

14.3 BeagleY-AI and PC Communication Over Serial Port — Testing the
Hardware and Software Configurations

In this example, we will be using serial port pins 8 and 10 of the BeagleY-Al board. Pin 8 is
the TXD pin, while pin 10 is the RXD pin of serial port /dev/ttyAMAO of the BeagleY-Al.

Before using the serial port on the BeagleY-AI, we must load the ttyAMAO overlay in the
file: /boot/firmware/extlinux/extlinux.conf. Run the following command to see a list
of the overlays:

beagle@beagle:~ $ Is /boot/firmware/overlays/

Select the overlay for ttyAMAO. i.e., k3-am67a-beagley-ai-uart-ttyama0.dtbo. The
steps are:

e beagle@beagle:~ $ sudo nano /boot/firmware/extlinux/extlinux.conf

Go to the end of the file and type:
fdtoverlays /overlays/k3-am67a-beagley-ai-uart-ttyAMAO.dtbo

e Enter Ctrl+X followed by Y to save and exit. Figure 14.5 shows the end of the
file.

label microSD (default)

kernel /Image

append console=ttyS2,115200n8 root=/dev/mmcblklp3 ro rootfst
/dev/mmcblklp2 rootwait net.ifnames=0 quiet

fdtdir /

fdt /ti/k3-amé7a-beagley-ai.dtb

fdtoverlays /overlays/k3-am67a-beagley-ai-uart-ttyama0.dtbo

#initrd /initrd.img
Figure 14.5 Adding the serial port overlay file.

e 306

Chapter 14 e Using Serial Communication

e Reboot your BeagleY-AlI
beagle@beagle:~ $ sudo reboot

e Enter the following command to make sure that the serial port overlay has been
loaded (see Figure 14.6)

beagle@beagle:~ $ sudo beagle-version | grep UBOOT

beaglelbeagle:~$

beaglefbeagle:~$ sudo beagle-version | grep UBOOT

UBCOT: Booted Device-Tree: [k3-amé7a-beagley-ai.dts]

UBOOT: Loaded Overlay:[k3-am67a-beagley-ai-uart-ttyama0.kernel]
beaglefbeagle:~$ I

Figure 14.6 Check the serial port overlay.

e Connect the circuit as shown in Figure 14.7 and plug in the USB-TTL converter
module into the USB port of your PC. Make sure that a COM port is created on
your PC as described earlier.

BeagleY-Al
TXD 8_ RXD
10
RXD TXD USB PC
GND 39 GND
USB-TTL

Figure 14.7 Circuit diagram.

Start the Terminal Emulator on the GUI Desktop of your BeagleY-AI (or start
remote SSH access to your BeagleY-AI from the PC)

e Start a terminal emulator program on your PC (e.g., Putty, Tera Term, etc.). In
this example, the Putty program is used.

Configure the Putty screen as shown in Figure 14.8, by selecting Serial, Speed
9600, and Serial line to COM4 (this may differ on your PC). It is recommended
to configure the Putty screen settings so that, for example, you have a white
background with black letters on it.

e 307

The Beagle-Y AI Book

% PuTTY Configuration X
Category:
|) Session Basic options for your PuTTY session
Lo_gging Specify the destination you wantlo connectto
= Terminal
| Keyboard Serial line Speed
Bell com4| 9600
& Wi:;;:rures Connection type:
' Appearance () SSH Oserial () Other Telnet ™
Behaviour
Translation Load. save or delete a stored session
i Selection Saved Sessions
Colours
[=-Connection -
Data Default Settings Load
Proxy KKTC
& S5H KKTC2 I Sevé
" Serial RPI3
Telnet RPI Delete
Rlogin RP15
RPIS-KKTC
SUPDUP — —

Close window on exit
(O Aways () Never © Only on clean exit

About | Open Cancel

Figure 14.8 Putty configuration.

e Enter the following message on your BeagleY-Al Terminal Emulator screen:
beagle@beagle:~ $ echo "Hello from BeagleY-AI" > /dev/ttyAMAO

You should see the message displayed on your Putty screen (Figure 14.9). This proves that
the serial hardware and software configurations between the BeagleY-Al and the PC are
correct.

&P COM4 - PuTTY
Hello from BeagleY-AI

Figure 14.9 Putty screen displaying the message.

14.4 Project 1 - BeagleY-AI - PC Two-Way Communication Over Serial
Port - Using Python

Description: In this project, a Python program has been created to establish two-way
communication between the BeagleY-Al and the PC. The characters typed on the PC Putty
screen are displayed on the BeagleY-AI Terminal Emulator screen where the program is run.

e 308

Chapter 14 e Using Serial Communication

Block Diagram: Figure 14.10 shows the project block diagram.

USB-TTL Module

BeagleY-Al

Laptop

Figure 14.10 Block diagram.
The circuit diagram is the same as in Figure 14.7.
Program listing: For this project, you should use the version of Putty where CR+LF can be
added to the end of the data to be sent. This version is available at the following site. Open
the zip file and run Putty. There is no need to install it. Select Terminal -> Keyboard and

set The Enter key to CR+LF as shown in Figure 14.11.:

https://www.grzegorz.net/pliki/putty-crif.zip

PuTTY Configuration
Category:
El-Session Options controlling the effects of keys
Logging)
& Teminal Change the sequences sentby:
| Keyboard The Backspace key
Bell () Control-H © Control-? (127)
Features The Enter key
£ Window (OcCR OCRLF
Appearance The Home and End keys
Behawo_ur © Standard O ot
;:::L?:” The Function keys and keypad
Colciis ©Escin™ () Linux () Xterm R6
(= Connection OvT400 OvT100+ Osco
g:::y Application keypad settings:
Telnet Initial state of cursor keys:
Rlogin © Normal () Application
i SSH Initial state of numeric keypad:
Serial © Normal () Application (C)NetHack
Enable extra keyboard features:
("] AltGr acts as Compose key
B Control-Altis different from AlGr

Figure 14.11 Set the Enter key to CR LF.

e 309

The Beagle-Y AI Book

Figure 14.12 shows the program listing (Program: seriall.py). At the beginning of the
program, libraries serial and time are imported. The serial port /dev/ttyAMAO is opened
with a 9600 baud rate. The function write() sends data to the serial port, while the function
readline() reads a line terminated with carriage-return (CR) and line-feed (LF).

In this program, the serial port speed is set to 9600, which is the default speed of serial
port /dev/ttyAMAO. The speed, number of data bits, etc., can be changed with the following
statements (here, the speed is set to 115200):

ser = serial.Serial(
port="'/dev/ttyAMAO',
baudrate = 115200,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
bytesize=serial . EIGHTBITS,
timeout=1

This program establishes two-way serial communication with a PC
Author: Dogan Ibrahim
File : seriall.py

Date @ November 2024

import serial
from time import sleep

md = IIYIY
ser = serijal.Serial ("/dev/ttyAMA®", 9600) # open serial port
while md == "Y":
ser.write("Send data to BeagleY-AI: ".encode())
received_data = ser.readline() # read data
print (received_data.decode()) # print received data
md = input("More data ? ") # more?

md = md.upper ()
ser.write("End of communication...".encode()) # end

Figure 14.12 Program listing.

e 310

Chapter 14 e Using Serial Communication

Figure 14.13 shows an example of communication between the BeagleY-AI and the PC.
BEAGLEY-Al:

beaglelbeagle:~$ python seriall.py
Hello Beagley-AI. This is the PC

More data ? y
This is another message from BeagleY-AI

More data ? n
beagle@beagle:~$ |}

PG

2P COM4 - PuTTY

Send data to BeagleY-AI: Hello Beagley-AI. This is the PC

Send data to BeagleY-AI: This is another message from BeagleY-AI

End of communication...[]

Figure 14.13 Example communication.

14.5 Reading Geographical Coordinates - Using a GPS

There are cases, especially when working mobile, where we may want to know the
geographical coordinates (e.g., latitude and longitude) of our location. GPS receivers
receive geographical data from the GPS satellites and provide accurate information about
the position of the user on Earth. These satellites circle the Earth at an altitude of about
20,000 km and complete two full orbits every day. For a receiver to determine its position,
the receiver must communicate with at least 3 satellites. Therefore, if the receiver does not
have a clear view of the sky, it may not be possible to determine its position on Earth. In
some applications, external antennas are used so that even weak signals can be received
from the GPS satellites.

The data sent out from a GPS receiver is in text format and is known as the NMEA sentences.
Each NMEA sentence starts with a $ character, and the values in a sentence are separated
by commas. Some of the NMEA sentences returned by a GPS receiver are given below:

$GPGLL: This sentence returns the local geographical latitude and longitude.

$GPRMC: This sentence returns the local geographical latitude and longitude,
speed, track angle, date, time, and magnetic variation.

$GPVTG: This sentence returns the true track, magnetic track, and ground speed.
$GGGA: This sentence returns the local geographical latitude and longitude,

time, fix quality, number of satellites being tracked, horizontal dilution of
position, altitude, height of geoid, and DGPS data

e 311

The Beagle-Y AI Book

$GPGSV: There are 4 sentences with this heading. These sentences return the
number of satellites in view, satellite number, elevation, azimuth, and

SNR.

14.5.1 Project 2 - Displaying geographical coordinates on the monitor

Description: In this project, the GPS Click board (www.mikroe.com) is used. This is a
small GPS receiver (see Figure 14.14) which is based on the LEA-6S type GPS. This board
operates with +3.3 V and provides two types of outputs: I2C or serial output. In this
project, the default serial output is used which operates at 9600 baud rate. An external
dynamic antenna can be attached to the board in order to improve its reception for indoor

use or for use in places where there may not be a clear view of the sky.

ujo|o OIOLGIT}I 5

. GNDl
5§

LEA-8S-0-000

IIIIIIIH IIHHJIIIIIIIIMIIHI

Figure 14.14 GPS Click board.

Figure 14.15 shows the complete list of the NMEA sentences output from the GPS Click

board every second.

$GPGLL ,5127.3917,N,00003.13141 ,E, 10534 .00, A, A=67

$GPRMC, 05305 00,A,5127.35909, BBBS 13148,E,0.030,,270919, , ,A=7E
$GPVTG, T, ,M,0030.N,0.055,K, Ax2

$GGGA, 105335 00,5127.35909 N, 83833 13148,E,1,09,1.18,46.5,M,45.4 M, ,
$6PSA.A,3,01,32.08,28,18,03,22,14,11,,,,2.12,1.18,1. 7606

$6PGSY, 4,1,13,01,7,304,40,03,40,224,31,08,38.165,32,10, 05,056, «77
$6PGSV, 4,2,13,11,83,217,3,14,39,09 ,24,17,17,314,22,18,73,091 .41%76
$GPGSV.4.3,13.22,63.,219.33,24,1,002, ,27,05,150, ,28,30, 284 , 28« 7F
$G6PGSV.4.4.13.32,34.063,35+4E

=66

Figure 14.15 NMEA sentences output from the GPS Click board

GPS Click board is a 2x8 pin dual-in-line module and it has the following pin configuration

(pin 1 is the top-left pin of the module):

: No connection 16: No connection
: Reset 15: No connection
: No connection 14: TX

: No connection 13: RX

: No connection 12: SCL

: No connection 11: SDA

1 +3.3V 10: No connection
: GND 9: GND

ONO UL DA WNH-

e 312

Chapter 14 e Using Serial Communication

In serial operation, only the following pins are required: +3.3 V, GND, TX. In this project,
an external dynamic antenna is attached to the GPS Click board as it was used indoors.

$GPGLL is one of the commonly used NMEA sentences, and this is the sentence used in this
project to extract the station's geographical coordinates. This sentence is output as follows:

$GPGLL,5127.37032,N,00003.12782,E,221918.00,A,A*61
The fields in this sentence can be decoded as follows:
GLL Geographic position, latitude, and longitude

5127.37032 Latitude 51 deg, 27.3702 min. North
00003.12782 Longitude 0 deg, 3.12782 min. East

221918 Fix taken at 22L19L18 UTC
A Data active (or V for void)
*61 checksum data

Notice that the fields are separated by commas. The validity of the data is shown by letters
A or V in the data, where A shows that the data is valid, and V indicates that the data is
not valid.

Block Diagram: Figure 14.16 shows the block diagram of the project.

i ¥

¥4
a | T g
“~ @
w £
&
ot
&
X

w
W

&
A GPs satellites
/

y 4
GPS Antennna

GPS Click
Receiver BeagleY-Al

Figure 14.16 Block diagram of the project.

e 313

The Beagle-Y AI Book

Circuit Diagram: The circuit diagram of the project is shown in Figure 14.17. The UART
TX pin of the GPS click board (pin 14) is connected to the serial RXD input (pin 10) of the
BeagleY-Al. The GPS click board is powered by the +3.3 V supply of the BeagleY-AL.

Antenna 1 +3.3V
7 BeagleY-Al
3.3V
S X["Urxp
GND
89|
= GND

39JT_

Figure 14.17 Circuit diagram of the project

You can display all the GPS NMEA sentences sent by the GPS click board by installing the
PUuTTY terminal emulation software on your BeagleY-AI. Enter the following command:

beagle@beagle:~ $ sudo apt-get install putty -y

The installed software will be available in GUI Desktop under Applications -> Internet
-> PuTTY SSH Client. Start the application and fill in the details as shown in Figure 14.18.

B

PuTTY Cenfiguration

A - O X

Category: Basic options for your PUTTY session
Specify the destination you want to connect to

Logging Serial line Speed
 Terminal I fdev/ttyAMAQ| 9600

Keyponidt Connection type:

Bell

Eeatires S5H © serial Other: Telnet -
¥ Window Load, save or delete a stored session

Appearance Saved Sessions

Behaviour

Translation

b Selection Defauit Settings Load

Colours

Fonts Save
 Connection Delete

Data

Proxy

b SSH

Serial Close window on exit:

o, O Always Never Only on clean exit

Rlogin

About & Open Cancel

Figure 14.18 Putty details.

Click Open to start the terminal emulation software. Figure 14.19 shows an example
display of NMEA sentences received from the GPS Click board.

e 314

Chapter 14 e Using Serial Communication

& /dev/ttyAMAD - PuTTY A _ DO X

Figure 14.19 Example output of NMEA sentences.

In this project, the latitude and longitude are extracted from the NMEA sentence $GPGLL
without using a library.

Program Listing: Figure 14.20 shows the program listing (program: gps.py). At the
beginning of the program, the following libraries are imported:

time
serial

Variable port is assigned to /dev/ttyAMO which is the serial port name for Raspberry Pi
4. Function Get_GPS() receives a line of NMEA sentence and looks for string $GPGLL.
When this string is detected, the line of the sentence is broken down into parts separated
by commas using the built-in function split(",") and stored in sdata. If the 6% field is
character V, it is assumed that the sentence is not valid (e.g., there is no satellite reception)
and the text NO DATA is displayed. Otherwise, the latitude and its direction are extracted
from fields 1 and 2 and stored in variables lat and latdir respectively. The longitude and
its direction are extracted from fields 3 and 4 and stored in variables lon and londir,
respectively.

The latitude is received in the format: ddmm.mmmmmbD which corresponds to dd degrees
mm.mmmmm minutes, and direction D which is N or S. Similarly, the longitude is received
in the format: dddmm.mmmmmbD where D is E or W. The main program separates the
degrees and minutes and displays them on the screen. The latitude is displayed in the
format: dd mm.mmmmm D, and the longitude is displayed as: ddd mm.mmmmm D.

e 315

The Beagle-Y AI Book

oo
GEOGRAPHICAL COORDINATES

¥

#

In this project a GPS receiver module (GPS CLICK) is connected
to the serial input of the BeagleY-AI.The program displays the
latitude and longitude of the receiver location

#

Author: Dogan Ibrahim

File : gps.py

Date : October 2024
oo
import time # Import time library
import serial # Import srial

port = "/dev/ttyAMAQ" # Serial port

lat=latdir=1lon=londir = "@"

#
This function receives and extracts the latitude and longitude
from the NME sentence $PGLL
#
def Get_GPS(data):
global lat,latdir,lon,londir
dat = data.decode('utf-8')

if dat[0:6] == "$GPGLL":
sdata = dat.split(",") # SPLlit data
if sdata[6] == "V": # Valid data?
print("NO DATA") # No data
return

lat = sdata[1l]
latdir = sdata[2]
lon = sdatal[3]
londir = sdata[4]
return

Get latitude
Latitude dir
Get longitude

H* W I H

Longitude dir

#
Receive the GPS coordinates and display on screen
#
ser = serijal.Serial(port,baudrate=9600,timeout=0.5)

try:
while True:

data = ser.readline() # Read a line
Get_GPS(data) # Decode

e 316

Chapter 14 e Using Serial Communication

deg = lat[0:2]
min = lat[2:]
latitude = str(deg) + " " + str(min) + " " + str(latdir)

deg = lon[0:3]
min = lon[3:]

longitude = str(deg) + " " + str(min) + " " + str(londir)

print("Latitude : ", latitude)

print("Longitude: ", longitude)

print("")

time.sleep (1) # Wait 1 second

except KeyboardInterrupt: # Cntrl+C detected

ser.close() # Close serial
print("End of program") # End of program

Figure 14.20 Program: gps.py.

An example display on the screen is shown in Figure 14.21

& beagle@beagle: ~
Longitude: 000 03.12710 E

Latitude : 51 27.36246 N
Longitude: 000 03.12710 E

Latitude : 51 27.36246 N
Longitude: 000 03.12710 E

Latitude : 51 27.36203 N
Longitude: 000 03.12804 E

Latitude : 51 27.36203 N
Longitude: 000 03.12804 E

Latitude : 51 27.36203 N
Longitude: 000 03.12804 E

Latitude : 51 27.36203 N
Longitude: 000 03.12804 E

Latitude : 51 27.36203 N
Longitude: 000 03.12804 E

Figure 14.21 Example display of the geographical coordinates.
14.5.2 Project 3 - Displaying geographical coordinates on LCD

Description: This project is similar to the previous one, except that here the geographical
coordinates are displayed on an I2C LCD.

e 317

The Beagle-Y AI Book

Block diagram: Figure 14.22 shows the project block diagram.

T
-

. &
o ® wy ®
“ @
g i
ol W

& %lw

A

Es
/ GPS Satellites
/

¥
GPS Antennna

LCD

GPS Click
Receiver BeagleY-Al

Figure 14.22 Block diagram.

Circuit diagram: The circuit diagram is similar to Figure 14.17, but here, additionally, the
LCD is added to the circuit together with the voltage converter module.

2]
1 +5V
Antenna +3.3V
7
53V GPIO2 (SDAY |3 ve Y
GPS 14 10 Al B1 SDA
CLICK TX RXD 5 TXS0102 12C LCD
GND GPIO3 (SCL) A2 B2 SCL
GND
8, 9J__ BeagleY-Al GT OE VA T
+3.3V
GND
39

Figure 14.23 Circuit diagram.
Program listing: Figure 14.24 shows the program listing (Program: gpslcd.py). The

program is very similar to the one given in Figure 14.20, except that here the LCD is
initialized, and the latitude and longitude data are displayed on the LCD.

e 318

Chapter 14 e Using Serial Communication

In this project a GPS receiver module (GPS CLICK) is connected
to the serial input RXD of BeagleY-AI SBC. Additionally, an
I2C LCD 1is connected. The program displays the latitude and
longitude of the receiver location on the LCD

Author: Dogan Ibrahim
File : gpslcd.py
Date : November 2024

H o H OB H B H H H H R

import smbus

from lcd_api import LcdApi

from i2c_lcd import I2clLcd

import time # Import time library
import serial # Import srial

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear ()

port = "/dev/ttyAMAQ" # Serdial port
lat=latdir=lon=londir = "@"

#
This function receives and extracts the latitude and longitude
from the NME sentence $PGLL
#
def Get_GPS(data):
global lat,latdir,lon,londir
dat = data.decode('utf-8')

if dat[0:6] == "$GPGLL":

sdata = dat.split(",") # SPLlit data

if sdata[6] == "V'": # Valid data?
mylcd.clear () # Clear LCD
mylcd.move_to(0, 0) # At 0,0
mylcd.putstr ("NO DATA") # No data
return

lat = sdata[1l] # Get latitude

latdir = sdata[2] # Latitude dir

lon = sdatal[3] # Get longitude

e 319

The Beagle-Y AI Book

londir = sdata[4] # Longitude dir
return

#

Receive the GPS coordinates and display on the LCD
#

ser = serijal.Serial(port,baudrate=9600,timeout=0.5)

try:

while True:
data = ser.readline() # Read a line
Get_GPS(data) # Decode

deg = lat[0:2]
min = lat[2:]
latitude = str(deg) + " " + str(min) + " " + str(latdir)

deg = lon[0:3]
min = lon[3:]
longitude = str(deg) + " " + str(min) + " " + str(londir)

mylcd.clear ()
mylcd.move_to(0, 0)

mylcd.putstr(latitude) # Display latitude
mylcd.move_to(0, 1)
mylcd.putstr(longitude) # Display longitude
time.sleep(1) # WAit 1 secons
except KeyboardInterrupt: # Cntrl+C detected
ser.close() # Close serial
print("End of program") # End of program

Figure 14.24 Program listing.

An example display is shown in Figure 14.25.

Figure 14.25 Example display.

e 320

Chapter 14 e Using Serial Communication

14.5.3 Project 4 - BeagleY-AI - Raspberry Pi 4 communication over a
serial link

Description: In this project, a BeagleY-AI and a Raspberry Pi 4 are used. Raspberry Pi 4
sends a random number to BeagleY-Al. In return, BeagleY-Al increments this number by
one and sends it back to the Raspberry Pi 4 where it is displayed on the monitor. The aim of
this project is to show how the two computers can communicate over a serial link.

Block diagram: Figure 14.26 shows the project block diagram.

Raspberry Pi 4

Figure 14.26 Block diagram.

Circuit diagram: The connections between the Raspberry Pi 4 and BeagleY-Al are very
simple. As shown in Figure 14.27, the TXD and RXD pins of both computers are interchanged.

Raspberry Pi BeagleY-Al
GP1014 (TXD) 8 10 RXD
GPI1015 (RXD) 10 8 TXD

GND P2 39 I eND

Figure 14.27 Circuit diagram.

The Raspberry Pi 4 computers have two built-in hardware UARTs: a PLO11 and a mini UART.
These are implemented using different hardware blocks, so they have slightly different
characteristics. Since both are 3.3 V devices, extra care must be taken when connecting
to other serial communication lines. On Raspberry Pi equipped with the Wireless/Bluetooth
modules (e.g., Raspberry Pi 3, Zero W, 4, etc.), the PLO11 UART is by default connected
to the Bluetooth module, while the mini UART is the primary UART with the Linux console
on it. In all other models, the PLO11 is used as the primary UART. By default, /dev/ttySO
refers to the mini UART, and /dev/ttAMAO refers to the PLO11. The Linux console uses
the primary UART, which depends on the Raspberry Pi model used. Also, if enabled, /dev/

e 321

The Beagle-Y AI Book

serialO0 refers to the primary UART (if enabled), and if enabled, /dev/seriall refers to the
secondary UART.

By default, the primary UART (serialQ) is assigned to the Linux console. To use the serial
port for other purposes, this default configuration must be changed. On startup, systemd
checks the Linux kernel command line for any console entries and will use the console
defined therein. To stop this behavior, the serial console setting needs to be removed from
the command line. This is easily done by using the raspi-config utility by selecting option
3 (Interfacing options), then I6 (Serial), and selecting No. Exit raspi-config and restart
your Raspberry Pi. You should now be able to access the serial port. Don't forget to re-
enable the console setting after finishing).

For Raspberry Pi 3 and 4 the serial port (/dev/ttySO0) is routed to GPIO14 (TXD) and
GPIO15 (RXD) on the GPIO header. Models earlier than Raspberry Pi 3 use this port for
Bluetooth. In this project, we are using the Raspberry Pi 4 whose serial port is: /dev/
ttySO0. If you are using an earlier than model 3, use the serial port named: /dev/ttyA-
MAO.

Raspberry Pi 4 program: Figure 14.28 shows the Raspberry Pi program (Program:
RPsender.py). At the beginning of the program, the serial library is imported, and the
serial line /dev/ttySerial0 is initialized to work at 9600 Baud. The program generates
a random integer number between 1 and 1000 and sends it to BeagleY-AI over the serial
link. It then waits to receive the incremented number from the BeagleY-Al and displays the
number on the monitor. The user is asked if the program should continue. If the answer is
y (or Y) then the process continues. Otherwise, the program terminates after sending "0"
to BeagleY-Al which causes the BeagleY-AI program to terminate as well.

#===
BEAGLEY-AI - RASPBERRY PI 4 COMMUNICATION

—==

#

In this program Raspberry Pi 4 sends a random integer number to
BeagleY-AI. This number is incremented by one and sent back to
Raspberry Pi 4 where it is displayed

#

Author: Dogan Ibrahim

File : RPsender.py

Date : November 2024

import time
import serial
import random

port = «/dev/ttySO»
ser = serial.Serial(port, baudrate=9600)

e 322

Chapter 14 e Using Serial Communication

chk = «Y»

while chk == «Y»:

rnd = random.randint(l, 1000)

print(«Number sent to BeagleY-AI 1is: «, rnd)
ser.write(str(rnd).encode())
ser.write(«\r\n».encode())

resp = ser.readline()

respstr = resp.decode()

num = int(respstr)

print(«Number received from BeagleY-AI is: «, num)

chk = dinput(«\nContinue?: «)
chk

chk.upper ()

ser.write(«0».encode())

S
t
S

BeagleY-AI program:

er.write(«\r\n».encode())
ime.sleep(2)
er.close()

ETE e Y

ETE e Y

random no
display msg
send the msg
CR+LF

read back
decode

conv to 1int
display

More?

Figure 14.28 Raspberry Pi 4 program.

Figure 14.29 shows the BeagleY-AI program (Program:

Beaglercv,py). At the beginning of the program, the serial library is imported, and the
serial line /dev/ttyAMAO is initialized to work at 9600 Baud. The program then waits to
receive a number from Raspberry Pi 4. The received number is incremented by one and
sent back to Raspberry Pi 4. The program terminates if a "0" is received from Raspberry

Pi 4.
B
#

BEAGLEY-AI - RASPBERRY PI 4 COMMUNICATION

—==

#

In this project BeagleY-AI receives a random number from

Raspberry Pi4, increments the number by 1 and sends it back
to Raspberry Pi 4

#

Program: Beaglercv.py

Date : November 2024

Author : Dogan Ibrahim

i

mport serial

port = "/dev/ttyAMAQ"

e 323

The Beagle-Y AI Book

ser serial.Serial(port,baudrate=9600)

num = ""

while True:

num = ser.readline() # get the number
num = num.decode() # decode
numv = int(num) # conv to integer
if numv == 0: # to exit
break
numv = numv + 1 # increment
ser.write(str(numv).encode()) # send to BeagleY-AI

ser.write("\r\n".encode())
ser.close()
Figure 14.29 BeagleY-AI program.

Testing
e Start the BeagleY-Al program, which should block, waiting to receive a number
from the Raspberry Pi 4.

e Start the Raspberry Pi 4 program. The generated integer random number and
the incremented number sent by BeagleY-Al are displayed on the monitor.

e Enter y (or Y) to continue running the program, otherwise enter any other
character to terminate both programs.

e Figure 14.30 shows an example run of the Raspberry Pi 4 program (it is
assumed that the BeagleY-AI program was already started)

pilfpi:~ 5 python RPsender.py

Number sent to BeagleY-AI is: 655
Number received from BeagleY-AI is: 656
|

Continue?: y

Number sent to BeagleY-AI is: 924
Number received from BeagleY-AI is: 925

Continue?: y
Number sent to BeagleY-AI is: 295
Number received from BeagleY-AI is: 296

|Continue?: y
[Number sent to BeagleY-AI is: 408
Number received from BeagleY-AI is: 409

|Continue?: n
pitpi:~ $ i
Figure 14.30 Example run of Raspberry Pi 4 program.

e 324

Chapter 15 e Real Time Clock (RTC)

Chapter 15 e Real Time Clock (RTC)

15.1 Overview
Real Time Clocks (RTCs) provide precise and reliable timekeeping, which are beneficial for
applications ranging from simple timekeeping to complex scheduling and secure operations.

Without an RTC, a computer must rely on perhaps getting the date and time information
from the internet using, for example, the Network Time Protocol (NTP). However, there
are many cases where an SBC such as BeagleY-AI may not have a constant or reliable
network connection. In situations like these, an RTC allows the board to keep time even
if the network connection is severed or the board loses power for an extended period.
Fortunately, BeagleY-AI comes with a built-in DS1340 type on-board RTC for timekeeping
purposes.

The RTC is useful for the following applications:

e Maintaining accurate time and date

e Timestamping applications and events
Scheduling tasks accurately at specified times
Network synchronization with other devices

15.2 The Hardware

A small 1.00 mm pitch, 2-pin JST SH connector is provided on the BeagleY-Al board to
connect a coin cell battery (Figure 15.1) to enable the RTC to keep time even when power
is lost to the board.

noEEERRERADR @

.

BATTERY

Figure 15.1 BeagleY-AI on-board RTC battery connector
(https://docs.beagle.cc/boards/beagley/ai/demos/beagley-ai-using-rtc.html)

e 325

The Beagle-Y AI Book

15.3 Setting the RTC Time

The RTC time should be set to the current time before it is read. The RTC time can be set
accurately using the following command. Here, the date is set to 15 October 2024, and the
time to 10:46:00:

beagle@beagle:~ $ sudo hwclock --set --date "2024-10-15 22:22:22"
There are two different times with different formats:

e System time, which can be displayed using the date command
e RTC time, which can be displayed using the sudo hwclock command

An example is shown below:

beagle@beagle:~ $ date

Tue Oct 15 09:46:26 UTC 2024
beagle@beagle:~ $ sudo hwclock
2024-10-15 10:47:56.279-31+00:00

We can set the two times to be the same format using the following date command:

beagle@beagle:~ $ date +%Y-%m-%d' '%H:%M:%S.%N%:z
2024-10-15 10:09:49.749529714+00:00

beagle@beagle:~ $ sudo hwclock

2024-10-15 10:09:57.807556+00:00

Notice that the two-time readings may differ slightly. Environmental conditions can cause
electronics to become slightly out of sync and can cause drift. RTCs are accurate devices
that implement various methods to keep the drifts as small as possible for example by
compensating for temperature changes.
To sync the system clock, enter the command:

beagle@beagle:~ $ sudo hwclock —systohc
Now, let's display both the system and the RTC times one after the other one quickly. You

should see that there could be about a one-second difference between the two. This is
because it may take about a second to query and display the RTC clock.

e 326

Chapter 16 e Artificial Intelligence (AI) with the BeagleY-Al

Chapter 16 o Artificial Intelligence (AI) with the
BeagleY-Al

16.1 Overview

Although the BeagleY-AI can be used as a general-purpose single-board computer, it has
been developed for artificial intelligence applications. The processor is powered by Texas
Instruments AM67A quad-core Cortex-A53 running at 1.4GHz along with an ARM Cortex-
R5F processor running at 800MHz for handling general tasks. The processor is equipped with
2 x C7x DSP modules and a Matrix Multiply Accelerator (MMA), enhancing Al performance
and making the board suitable for Al-based applications. Each C7x DSP delivers 2 TOPS,
thus offering a total of 4 TOPS processing power. Additionally, a graphics accelerator is
provided, offering 50GFlops for video and multitasking operations, which are required in Al
applications.

Since the BeagleY-Al is a new product, there are currently few Al-based projects utilizing
this board. In this chapter, we will develop an Al project that uses TensorFlow Lite for object
detection. Links to other Al-based projects using the BeagleY-AI can be found in different
sections of this chapter.

16.2 BeagleY-AlI Detailed Hardware Specifications

It is interesting to have a look at the detailed hardware specifications of the BeagleY-Al
before investigating its application in an Al project. For this, you should install the inxi
applications:

beagle@beagle:~ $ sudo apt install inxi

Run the program by simply entering inxi -F. Figure 16.1 shows the output where the CPU,
memory, disk, audio, network, etc. details are listed.

e 327

The Beagle-Y AI Book

beaglelbeagle:~$ inxi -F
|System:
Host: beagle Kernel: 6.1.83-ti-arm64-r63 arch: aarch64 bits: 64
Console: pty pts/0 Distro: Debian GNU/Linux 12 (bookworm)

Machine:
| Type: ARM System: BeagleBoard.org BeagleY-AI details: N/A
ICPU:
Info: quad core model: N/A variant: cortex-a53 bits: 64 type: MCP cache:
L2: 512 KiB
Speed: N/A min/max: N/A cores: No per core speed data found.
|Graphics:

Device-1: hdmi-connector driver: display connector v: N/A
Device-2: amé2p-pvr driver: N/A
Device-3: amé2p-pvr driver: N/A
Display: x11 server: X.org v: 1.21.1.7 driver: X: loaded: N/A
unloaded: fbdev,modesetting gpu: display connector note: X driver n/a
tty: 80x24 resolution: 1680x1050
API: OpenGL Message: GL data unavailable in console. Try -G --display
jAudio:
Device-1: hdmi-connector driver: display connector
Device-2: simple-audio-card driver: asoc simple card
API: ALSA v: k6.1.83-ti-arm64-r63 status: kernel-api
Server-1:; PipeWire v: 1.0.5 status: active
Network:
Message: No ARM data found for this feature.
IF-ID-1: docker(state: down mac: 02:42:bB:ba:c9:0d
IF-ID-2: dummy0 state: down mac: b2:1d:1f:ea:8£:94
IF-ID-3: eth0 state: down mac: c0:d6:0a:£9:cd:B6
IF-ID-4: SoftAp0 state: down mac: 1l2:ca:bf:d9:e9:b3
IF-ID-5: usb0 state: down mac: lc:ba:Bc:a2:ed:6b
IF-ID-6: usbl state: down mac: lc:ba:Bc:a2:ed:6d
IF-ID-7: wlan0 state: up mac: 1l0:ca:bf:d9:e9:b2
Drives:
Local Storage: total: 29.54 GiB used: 7.44 GiB (25.2%)
ID-1: /dev/mmcblkl vendor: Lexar model: 1LX32G size: 29.54 GiB
Partition:
ID-1: / size: 24.79 GiB used: 7.38 GiB (29.8%) fs: extd dev: /dev/mmcblklp3
Swap:
ID-1: swap-l type: partition size: 4 GiB used: 0 KiB (0.0%)
dev: /dev/mmcblklp2
Sensors:
System Temperatures: cpu: N/A mobo: N/A
Fan Speeds (RPM): cpu: 0
Info:
Processes: 190 Uptime: Tm Memory: 3.7 GiB used: 852.3 MiB (22.5%)
Init: systemd target: graphical (5) Shell: Bash inxi: 3.3.26
beagle@beagle:~§ ||

Figure 16.1 Detailed hardware specifications.

16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection

This project describes how to set up and run an object detection model using TensorFlow
Lite on the BeagleY-AI platform. Full hardware and software details, as well as step-by-step
installation instructions for the required software, are provided on the following websites:

and

e 328

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-object-
detection-tutorial.html#

https://www.cnx-software.com/2024/10/13/beagley-ai-review-sbc-debian-12-
tensorflow-lite-ai-demos/

Chapter 16 e Artificial Intelligence (AI) with the BeagleY-Al

The following are required for the project:

e Beagle-Y AI board

e USB Webcam. The author used a Full HD 1080P, 12.0 MEGA Pixel F/#2.0,
F:4.8mm AUSDOM webcam, but it should work with other webcams as well.

e GUI Desktop connection to your Beagle-Y Al

e Internet connection to your Beagle-Y Al for installing the required software

The steps in developing this project are given below (characters entered by the user are in
bold for clarity):

e Open a Terminal session on your Desktop GUI

Install a lightweight version of Conda using Miniforge/Mambaforge 24.3.0.0:

wget https://github.com/conda-forge/miniforge/releases/
download/24.3.0-0/Mambaforge-24.3.0-0-Linux-aarch64.sh
bash Mambaforge-24.3.0-0-Linux-aarch64.sh

Accept the Conda license
e Check that Conda has been installed successfully by entering the command:
conda -version
You should see the version number displayed as: conda 24.3.0
e Create a virtual environment with Python 3.9:
conda create -name myenv python=3.9

Activate the virtual environment:

conda activate myenv
e Install the required Python packages:

pip install https://github.com/google-coral/pycoral/releases/
download/v2.0.0/tflite_runtime-2.5.0.post1-cp39-cp39-linux_
aarch64.whl

pip install numpy==1.26.4

pip install opencv-python

pip install tflite-runtime

e 329

The Beagle-Y AI Book

e Create a directory for the object recognition models:

mkdir object-recognition
cd object-recognition

e Download a pre-trained model and unzip to directory TFLite_model:

wget https://storage.googleapis.com/download.tensorflow.org/
models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d
TFLite_model

e Connect the USB webcam to one of the USB ports of your BeagleY-AI and enter
the following command to find your video driver:

Is =1 /dev | grep video

In the author's application, the result of this command is shown in Figure
16.2 and the video driver was number 0.

(base) beaglefbeagle:~/cbject-recognition$ ls -1 /dev | grep video

crw-rw---- 1 root video 29, 0 Dec 21 16:56 fb0

crw-rw----+ 1 root video 235, 0 Dec 21 16:56 medial
crw-rw----+ 1 root video 81, 0 Dec 21 16:56 videoO
crw-rw----+ 1 root video 81, 1 Dec 21 16:56 videol
crw-rw----+ 1 root wvideo 81, 2 Dec 20 21:58 wvideo2
crw-rw----+ 1 root video 81, 3 Dec 20 21:58 video3
crw-rw----+ 1 root wvideo 81, 4 Dec 20 21:58 videod

Figure 16.2 Webcam video drivers

¢ Create a file with the name object-detection.py using the nano text editor
and copy the program shown in Figure 16.3 to this file. Note: This program
has been copied from the following site:

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-object-
detection-tutorial.html#

nano object-detection.py
Exit the nano text editor by entering Ctrl+X followed by Y to save and exit nano.

import os

import argparse

import cv2

import numpy as np

import time

from threading import Thread

e 330

Chapter 16 e Artificial Intelligence (AI) with the BeagleY-Al

import dimportlib.util

from typing import List

import sys

from tflite_runtime.interpreter import Interpreter, load_delegate

video_driver_id = 3

class VideoStream:

«»»Handles video streaming from the webcam.»»»

def __init__(self, resolution=(640, 480), framerate=30):
self.stream = cv2.VideoCapture(video_driver_id)
self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJIPG'))
self.stream.set(3, resolution[0])
self.stream.set(4, resolution[1])
self.grabbed, self.frame = self.stream.read()
self.stopped = False

def start(self):
«»»Starts the thread that reads frames from the video stream.»»»
Thread(target=self.update, args=()).start()
return self

def update(self):
«»»Continuously updates the frame from the video stream.»»»
while True:
if self.stopped:
self.stream.release()
return

self.grabbed, self.frame = self.stream.read()

def read(self):
«»»Returns the most recent frame.»»»
return self.frame

def stop(self):
«»»Stops the video stream and closes resources.»»»
self.stopped = True

def load_labels(labelmap_path: str) -> List[str]:
«»»lLoads labels from a label map file.»»»
try:
with open(labelmap_path, 'r') as f:
labels = [line.strip() for line in f.readlines()]
if labels[0] == '2?22':
labels.pop(0)
return labels

e 331

The Beagle-Y AI Book

except IOError as e:
print(f»Error reading label map file: {e}»)
sys.exit()

def main():

Argument parsing

parser = argparse.ArgumentParser ()

parser.add_argument('--modeldir', required=True, help='Folder the .tflite
file is located in')

parser.add_argument('--graph', default='detect.tflite', help='Name of the
.tflite file')

parser.add_argument('--labels', default='labelmap.txt', help='Name of the
labelmap file')

parser.add_argument('--threshold', default='0.5', help='Minimum confidence
threshold')

parser.add_argument('--resolution', default='1280x720', help='Desired webcam
resolution')

args = parser.parse_args()

Configuration

model_path = os.path.join(os.getcwd(), args.modeldir, args.graph)
labelmap_path = os.path.join(os.getcwd(), args.modeldir, args.labels)
min_conf_threshold = float(args.threshold)

resW, resH = map(int, args.resolution.split('x"))

Load labels and interpreter

labels = load_labels(labelmap_path)

interpreter = Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get model details

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

height, width = input_details[0]['shape'][1:3]
floating_model = (input_details[0]['dtype'] == np.float32)

outname = output_details[0]['name']
boxes_idx, classes_idx, scores_idx = (1, 3, 0) if 'StatefulPartitionedCall'

in outname else (0, 1, 2)
Initialize video stream
videostream = VideoStream(resolution=(resW, resH), framerate=30).start()

time.sleep (1)

frame_rate_calc = 1
freq = cv2.getTickFrequency ()

e 332

Chapter 16 e Artificial Intelligence (AI) with the BeagleY-Al

while True:
tl = cv2.getTickCount()
frame = videostream.read()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)

if floating_model:
input_data = (np.float32(input_data) - 127.5) / 127.5

interpreter.set_tensor (input_details[0]['index'], input_data)
interpreter.invoke()

boxes = dnterpreter.get_tensor(output_details[boxes_idx]['index'])[0]
classes = fdnterpreter.get_tensor (output_details[classes_idx]['index'])[0]
scores = finterpreter.get_tensor (output_details[scores_idx]['index'])[0]

for i 1in range(len(scores)):
if min_conf_threshold < scores[i] <= 1.0:
ymin, xmin, ymax, xmax = [int(coord) for coord in (boxes[i] *
[resH, resW, resH, resW])]
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (10, 255, 0), 2)
object_name = labels[int(classes[i])]
label = f'{object_name}: {int(scores[i] * 100)}%'
labelSize, baselLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_
SIMPLEX, 0.7, 2)
label_ymin = max(ymin, labelSize[1l] + 10)
cv2.rectangle(frame, (xmin, label_ymin - labelSize[1] - 10),
(xmin + labelSize[0], label_ymin + baselLine - 10), (255, 255, 255), cv2.FILLED)
cv2.putText(frame, label, (xmin, label_ymin - 7), cv2.FONT_
HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)

cv2.putText(frame, f'FPS: {frame_rate_calc:.2f}', (30, 50), cv2.FONT_
HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('Object detector', frame)

t2 = cv2.getTickCount()

timel = (t2 - t1) / freq
frame_rate_calc = 1 / timel

if cv2.waitKey(1l) == ord('q'):
break

cv2.destroyAllWindows ()
videostream.stop()

e 333

The Beagle-Y AI Book

if __name__ == «__main__»:

main()
Figure 16.3 Program: object-detection.py

e Make sure to change your video driver ID in the file object-detection.py
depending on your video driver. Here, the video driver ID is set to 0.

e Run the program by entering the following command in GUI Desktop mode:

(base) beagle@beagle:~/object-recognition$ python3 object_detection.
py --modeldir=TFLite_model

e Move the webcam to focus on an object and you should see the object
identification displayed at the top left corner of the screen. Figure 16.4 shows
an example of identifying a keyboard. Another example of identifying a laptop
is shown in Figure 16.5.

e 334

Chapter 16 e Artificial Intelligence (AI) with the BeagleY-Al

Figure 16.5 Identifying a laptop

In this project, the BeagleY-Al displays a frame rate of only 3 FPS. Some users recommended
using the Texas Instruments Deep Learning (TIDL) library for faster processing on the
BeagleY-Al.

16.4 BeagleY-AI ChatGPT

This project uses voice input and voice output functionalities with a BeagleY-Al. The project
employs ReSpeaker Lite as the audio input and output device, enabling interaction with the
ChatGPT and speech-to-text conversion services. Full project details are available on the
following website:

https://wiki.seeedstudio.com/respeaker_lite_beagley-ai_chatgpt/
The required hardware for this project are:

e BeagleY-Al
e ReSpeaker Lite USB-2 -Mic Array

The project is based on using Python programming where the program implements a voice
assistant that listens for a wake-up word. This word is converted into text, a response is
generated using GPT-4. The response is then converted to speech and played back to the
user. If the program fails to recognize the command three times, it returns to listening
mode and waits until the wake-up word is detected again. Full project details, including the
Python program, are given on the above website.

16.5 BeagleY-AI Smart Assistant

This is a smart voice assistant project, where the project responds to a prompt poised by a
person. OpenAl is used in the project. Full hardware and software project details are given
on the following website:

e 335

The Beagle-Y AI Book

https://medium.com/@s-kodiganti/designing-a-smart-assistant-with-beagley-ai-
139d0451cd15

The following are required for the project:

e BeagleY-Al

Google ALY voice kit

e USB microphone

e USB monitor+keyboard+mouse
OpenAl developer account

16.6 BeagleY-AI Robotics

This is a YouTube video that shows the application of BeagleY-Al in robotics. A robotic arm
is shown with a suction cup and an air pipe running through the outside. In this project,
you drop an object in the center of a box, and it detects the object, picks it up, and places
it in the appropriate box.

Full details of this project are available at the following YouTube site:
https://www.youtube.com/shorts/wcF1PEYNZWk

16.7 BeagleY-AI Machine Learning

This YouTube video shows the application of BeagleY-AlI in machine learning. Details of the

project are available at the following YouTube site:

https://www.youtube.com/watch?v=rPUL7HnFPDI

e 336

Chapter 17 o Useful Websites

Chapter 17 e Useful Websites

Further information, projects, tutorials, and documentation are available on the Beagleboard
forum website. Readers can search various hardware and software-related items at the
following website:

openbeagle.org

A list of useful websites is given in this chapter to help readers gain more information on
using the BeagleY-AlI.

https://forum.beagleboard.org/

https://www.beagleboard.org/collaborate
https://www.beagleboard.org/boards/beagley-ai
https://www.ti.com/tool/BEAGLEY-AI
https://www.elektor.com/products/beagley-ai-sbc-with-gpu-dsp-and-ai-
accelerators?srsltid=AfmB0OooUO2Nc38wi62qUIwWZXDP7I21Nznru-
9LY2hDUOFI8XVbluzd5R
https://docs.beagle.cc/books/beaglebone-cookbook/index.html
https://community.element14.com/products/devtools/single-board-computers/
next-genbeaglebone/b/blog/posts/beaglebone-control-stepper-motors-with-

pru---part-5-it-works

https://www.hackster.io/cw-earley/simple-bluetooth-device-detection-
0d2469#schematics

https://docs.beagle.cc/boards/beagley/ai/demos/beagley-ai-using-i2c-oled-
display.html

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-using-i2c-
oled-display.html

https://www.youtube.com/watch?v=Salpz00IE84

https://medium.com/@s-kodiganti/designing-a-smart-assistant-with-beagley-
@i-139d0451cd15

https://www.cnx-software.com/2024/10/13/beagley-ai-review-sbc-debian-12-
tensorflow-lite-ai-demos/

e 337

The Beagle-Y AI Book

Index

A
AM67A
API key

B

Binary counting
Blank lines
Bluetooth
BM3301
BME280

C

Camera

Chasing LEDs
chmod

Command prompt
Comments
Console commands
Control of flow

CPU temperature
CSI port

D

DAC

Debug UART
Dictionary variables
Display support

Distance measurement

dpkg
Dusk lights

E

Electronic dice
Escape sequences
Exceptions

F

Fan connector
File permissions
Flask

G

gedit
GPIO connector

e 338

12
291

127
72
11
11

200

12
135
32
27
72
27
85
25
15

235
12
83
15

168
39

166

145
79
111

12, 15
31
297

66
120

GPS

head

I
Indentation
IP address

JTAG

K
Keyboard input
Keypad

L

LCD

Line continuation
List variables
Log out

M
MCP23017
MCP3002
MCP4921
MCP23517

N
nano

P
Pin definitions
ping

Plotting graphs
Port expander
Power button
Power manager
PuTTY

pwd

PWM

R
R5 core

312

38

73
21

12, 13

83
206

152
72
80
56

217
221
235
251

57

120
43
176
251
12

22

30
217

14

Index

Reaction timer
Rotating LED
RTC

S

SCL
Screenshot
SDA
Security lock
Serial communication
shutdown
sort

SPI bus

SSH

Strings

T
tail

TCP

Terminal emulator
ThingSpeak

Thonny

TMP36DZ

top

TOPS

Trigonometric functions
Tuple variables

U

UDP

uname

User-defined functions
User settings

\"
Voltmeter

w

Web Server
WiFi
Wildcards

161
137
12, 325

152
53
152
214
303
41
36
217
19
77

38
266
21, 46
291
53, 65
230
39

11

96

82

266
28
96
52

220

300
11, 265
36

e 339

€ lektorbooks

The BeagleY-Al Handbook

Welcome to your BeagleY-Al journey! This compact, powerful,
and affordable single-board computer is perfect for developers
and hobbyists. With its dedicated 4 TOPS Al co-processor and a
1.4GHz Quad-core Cortex-A53 CPU, the BeagleY-Al is equipped to
handle both Al applications and real-time |I/O tasks. Powered by the
Texas Instruments AM67A processor, it offers DSPs, a 3D graphics
unit, and video accelerators.

Inside this handbook, you'll find over 50 hands-on projects that cover
a wide range of topics—from basic circuits with LEDs and sensors to
an Al-driven project. Each project is written in Python 3 and includes
detailed explanations and full program listings to guide you. Whether
you're a beginner or more advanced, you can follow these projects as
they are or modify them to fit your own creative ideas.

What youll be working on
Here's a glimpse of some exciting projects included in this handbook:

> Morse Code Exerciser with LED or Buzzer
Type a message and watch it come to life as an LED or buzzer
translates your text into Morse code.

> Ultrasonic Distance Measurement
Use an ultrasonic sensor to measure distances and display the result
in real time.

> Environmental Data Display & Visualization
Collect temperature, pressure, and humidity readings from the
BME280 sensor, and display or plot them on a graphical interface.

> SPI - Voltmeter with ADC
Learn how to measure voltage using an external ADC and display
the results on your BeagleY-Al.

> GPS Coordinates Display
Track your location with a GPS module and view geographic
coordinates on your screen.

> BeagleY-Al and Raspberry Pi 4 Communication
Discover how to make your BeagleY-Al and Raspberry Pi
communicate over a serial link and exchange data.

> Al-Driven Object Detection with TensorFlow Lite
Set up and run an object detection model using TensorFlow Lite
on the BeagleY-Al platform, with complete hardware and software
details provided.

(>)lektor

design » share > earn

Prof. Dr. Dogan
Ibrahim holds
a BSc degree
in Electronic
Engineering,

5 L =Y an MSc degree
in Automatic Control Engineering,
and a PhD in Digital Signal
Processing. He has worked in
numerous industrial organizations
before returning to academic
life. Prof. Ibrahim is the author
of over 60 technical books and
over 200 technical articles on
microcontrollers, microprocessors,
and related fields. He is a Chartered
Electrical Engineer and a Fellow of
the Institution of Engineering and
Technology.

Ahmet Ibrahim
obtained his
BSc degree from
the University
of Greenwich
AL in London,
where he also completed an MSc
course. Ahmet has worked at various
industrial organizations at different
levels and is currently working in a
large organization in the IT field. He
is the author of several technical
books and articles.

Elektor International Media
www.elektor.com

I|S|BN| 9|]8389[?ii5]|5
9 "783895%766565

	Search…
	The BeagleY-AI Handbook
	All rights reserved
	Contents

	1 • Introduction
	1.1 The BeagleY-AI Single Board Computer (SBC)
	1.2 BeagleY-AI Features
	1.3 BeagleY-AI Board Component Layout
	1.4 Comparison with the Raspberry Pi 5
	1.5 Pros and Cons

	2 • Installing the Operating System
	2.1 Overview
	2.2 The Installation of the Operating System
	2.3 Connection to a Wi-Fi
	2.4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY Program
	2.4.1 Configuring PuTTY

	2.5 BeagleY-AI CPU Temperature

	3 • Using the Console Commands
	3.1 Overview
	3.2 The Command Prompt
	3.3 Useful Console Commands
	3.3.1 System and user information
	3.3.2 Some useful commands
	3.3.3 Resource monitoring on BeagleY-AI
	3.3.4 Shutting Down
	3.3.5 Networking
	3.3.6 System information and other useful commands

	4 • GUI Desktop Applications
	4.1 Overview
	4.2 The GUI Desktop
	4.2.1 Applications Menu

	5 • Using a Text Editor in Console Mode
	5.1 Overview
	5.2 The nano Text Editor
	5.3 The vi Text Editor
	5.4 Using Thonny
	5.4.1 The Thonny IDE

	5.5 The gedit Text Editor
	5.5.1 Using gedit

	6 • Creating and Running a Python Program
	6.1 Overview
	6.2 Method 1 – Interactively from Command Prompt in Console Mode
	6.3 Method 2 – Create a Python File in Console Mode
	6.4 Method 3 – Create a Python File in GUI Desktop Mode
	6.5 Which Method?

	7 • Python Programming and Simple Programs
	7.1 Overview
	7.2 Variable Names
	7.3 Reserved Words
	7.4 Comments
	7.5 Line Continuation
	7.6 Blank Lines
	7.7 More Than One statement on a Line
	7.8 Indentation
	7.9 Python Data Types
	7.10 Numbers
	7.11 Strings
	7.11.1 String functions
	7.11.2 Escape sequences

	7.12 Print Statement
	7.13 List Variables
	7.13.1 List functions

	7.14 Tuple Variables
	7.15 Dictionary Variables
	7.15.1 Dictionary functions

	7.16 Keyboard Input
	7.17 Comparison Operators
	7.18 Logical Operators
	7.19 Assignment Operators
	7.20 Control of Flow
	7.20.1 The if, if..else, and elif
	7.20.2 The for statement
	7.20.3 The while statement
	7.20.4 The continue statement
	7.20.5 The break statement
	7.20.6 The pass statement

	7.21 Example 1 – 4 Band Resistor Color Code Identifier
	7.22 Example 2 – Series or Parallel Resistors
	7.23 Example 3 - Resistive Potential Divider
	7.24 Trigonometric Functions
	7.25 User Defined Functions
	7.26 Examples
	7.27 Recursive Functions
	7.28 Exceptions
	7.29 try/final Exceptions
	7.30 Date and Time
	7.31 Creating Your Own Modules

	8 • BeagleY-AI LED Projects
	8.1 Overview
	8.2 BeagleY-AI GPIO pin Definitions
	8.3 Project 1 – Flashing an LED
	8.4 Project 2 – Alternately Flashing LEDs
	8.5 Project 3 – Binary Counting with 8 LEDs
	8.6 Project 4 – Christmas Lights (Random Flashing 8 LEDs)
	8.7 Project 5 – Chasing LEDs
	8.8 Project 6 – Rotating LEDs with Pushbutton Switch
	8.9 Project 7 – Morse Code Exerciser with LED or Buzzer
	8.10 Project 8 – Electronic Dice
	8.11 Project 9 – Varying the LED Flashing Rate

	9 • Using an I2C LCD
	9.1 Overview
	9.2 The I2C Bus
	9.3 I2C Pins of BeagleY-AI
	9.4 Project 1 – Using an I2C LCD – Seconds Counter
	9.5 Project 2 – Using an I2C LCD – Display Time
	9.6 Project 3 – Using an I2C LCD – Display the IP address of BeagleY-AI
	9.7 Project 4 – Reaction Timer – Output to Screen
	9.8 Project 5 – Reaction Timer – Output to LCD
	9.9 Project 6 – Automatic Dusk Lights
	9.10 Project 7 – Ultrasonic Distance Measurement
	9.11 Project 8 – Car Parking Sensors

	10 • Plotting Graphs With Python and BeagleY-AI
	10.1 Overview
	10.2 The Matplotlib Graph Plotting Library
	10.3 Project 1 – RC Transient Circuit Analysis - Charging
	10.4 Project 2 – RC Transient Circuit Analysis - Discharging
	10.5 Transient RL Circuits
	10.6 Project 3 – RCL Transient Circuit Analysis
	10.7 Project 4 – Temperature, Pressure, and Humidity Measurement – Display on the Screen
	10.8 Project 5 – Temperature, Pressure, and Humidity Measurement – Plotting the Data

	11 • Using a 4 x 4 Keypad
	11.1 Overview
	11.2 Project 1 – Using a 4x4 Keypad
	11.3 Project 2 – Security Lock with Keypad and LCD

	12 • I2C, SPI Bus, and PWM Projects
	12.1 Overview
	12.2 Project 1 - I2C Port Expander
	12.3 Project 2 - SPI ADC - Voltmeter
	12.3.1 The SPI bus

	12.4 Project 3 – Voltmeter – Output to LCD
	12.5 Project 4 – Analog Temperature Sensor Thermometer – Output to the Screen
	12.6 Project 5 – Analog Temperature Sensor Thermometer – Output on LCD
	12.7 Using a Digital to Analog Converter (DAC)
	12.7.1 The MCP4921 DAC
	12.7.2 Project 6 - Generating square wave signal with any peak voltage up to +3.3 V
	12.7.3 Project 7 - Generating sawtooth wave signal
	12.7.4 Project 8 - Generating triangle wave signal
	12.7.5 Project 9 - Generating arbitrary wave signal
	12.7.6 Project 10 - Generating sine wave signal
	12.7.7 Project 11 – SPI Port Expander

	12.8 Pulse Width Modulation (PWM)
	12.8.1 PWM channels of BeagleY-AI
	12.8.2 Project 12 – Generate 1000Hz PWM waveform with 50% duty cycle
	12.8.3 Project 13 – Changing the brightness of an LED
	12.8.4 Project 14 – Mosquito repeller

	13 • Communication Over the Wi-Fi
	13.1 Overview
	13.2 UDP and TCP
	13.2.1 UDP communication
	13.2.2 TCP communication

	13.3 Project 1 – Sending a Text Message to a Smartphone Using TCP
	13.4 Project 2 – Two-way Communication with the Smartphone Using TCP
	13.5 Project 3 – Communicating with a PC Using TCP
	13.6 Project 4 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using TCP
	13.7 Project 5 – Sending a Text Message to a Smartphone Using UDP
	13.8 Project 6 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using UDP
	13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
	13.9.1 Project 7 – BeagleY-AI and Raspberry Pi Pico W communication – controlling a relay over Wi-Fi

	13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pressure Data on the Cloud
	13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO Ports from the Internet
	13.12 Project 9 – Web Server - Controlling an LED Connected to BeagleY-AI Using the Flask

	14 • Using Serial Communication
	14.1 Overview
	14.2 USB – TTL Serial Conversion Modules
	14.3 BeagleY-AI and PC Communication Over Serial Port – Testing the Hardware and Software Configurations
	14.4 Project 1 – BeagleY-AI – PC Two-Way Communication Over Serial Port – Using Python
	14.5 Reading Geographical Coordinates – Using a GPS
	14.5.1 Project 2 – Displaying geographical coordinates on the monitor
	14.5.2 Project 3 – Displaying geographical coordinates on LCD
	14.5.3 Project 4 – BeagleY-AI – Raspberry Pi 4 communication over a serial link

	15 • Real Time Clock (RTC)
	15.1 Overview
	15.2 The Hardware
	15.3 Setting the RTC Time

	16 • Artificial Intelligence (AI) with the BeagleY-AI
	16.1 Overview
	16.2 BeagleY-AI Detailed Hardware Specifications
	16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection
	16.4 BeagleY-AI ChatGPT
	16.5 BeagleY-AI Smart Assistant
	16.6 BeagleY-AI Robotics
	16.7 BeagleY-AI Machine Learning

	17 • Useful Websites
	Index

