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Preface
This book has been drafted based on my lectures andseminars in recent years for postgraduate students atAuckland University of Technology (AUT), New Zealand.We have integrated and synthesized materials on robotics,machine vision, machine intelligence, and deep learning.Compared with conventional books, this book leads authorsto use the knowledge from digital image processing andcomputer vision to control robots with autonomoussystems. Our aim is to provide a resource that benefitspostgraduate students, particularly those who are workingon their theses, by sharing our research outputs andteaching work to augment their projects.In this book, we have structured the content with a focuson knowledge obtained from our seminars. We begin byexplaining fundamental concepts in robotics fromcomputational point of view. We delve into robotic visionwith deep learning methods. We add new content fromwhat we have known and applied robotic vision to roboticcontrol. At the end of each chapter, we emphasize on thepractical implementation of algorithms by using Python-based platforms and MATLAB toolboxes. Additionally, weprovide a lab session for each chapter with demonstrationsand experiment reporting as well as a list of questions forthe purpose of discussion and reflection.In this book, our focus is on robotic vision. The book isto follow our research methodology of computer sciencewith mathematical background, modeling, algorithms,experimental implementation, result analysis, andcomparisons.Before reading this book, we strongly encourage ourreaders to have a solid foundation in postgraduatemathematics. Developing computational knowledge will not



only aid readers to quickly understand this book but alsoenable them to engage with relevant journal articles andconference papers.This book was written for research students, computerengineers, computer scientists, and anyone interested inrobotic vision for both theoretical research and practicalapplications. Additionally, it is relevant for researchers inthe fields such as machine intelligence, pattern analysis,and control theory.
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1. Introduction to Robotic Vision
Wei Qi Yan1  Department of Computer and Information Sciences, AucklandUniversity of Technology, Auckland, New Zealand 
AbstractIn this chapter, robotic vision is delineated along with roboticcontrol, deep learning, and autonomous systems. Robotic vision is acrucial subject of robotics and the application of deep learning.This chapter explores robotic vision using video and image datafrom diverse robots (arm-type, mobile, aerial, etc.). The goal is tobuild foundational knowledge for vision-based control systems. Thesignificance of this chapter is to convey the holistic view of roboticvision.

1.1 Overview of Robotic VisionRobotic vision—computer vision applied to robotics—enablesmachines to perceive environments, interpret, and interact with thedesignated environment. By using digital cameras, sensors, and AI-based algorithms, robotic vision aids robots to recognize visualobjects, navigate spaces, and make intelligent decisions. In thisbook, the solutions are derived for robotic vision and visual controlcharacterized by using specifics of image data and deep learningalgorithms [7, 87]. This chapter encapsulates the fundamentals ofrobotic vision [37]. With respect to this book, there are twoconcepts, one is robotic vision, and the other is robot vision.Robotic vision is academic and formal. Robot vision is informal orcasual.The performance of robotic vision will be critically assessed withdeep learning algorithms, benchmark data, performance measures,

https://doi.org/10.1007/978-981-95-4360-1_1


and the ways to define ground truth. The opportunities of usingrobotic vision as a way of information acquisition through complexrobotic systems and applications in artificial intelligence (AI) [14,61, 71] will be examined.In this book, the key concepts, methods, and algorithms areintroduced. The content is based on pixel-level digital images, witha focus on robotic vision, including camera properties andcalibration [93]. The methods are further explored to extractedges, blobs, motif, silhouette, contour, or shape of visual objects[38]. Thus, the focus of this chapter is on object segmentation,object detection and recognition, and object tracking in roboticvision.Typically, mobile cameras are considered. Modern mobilephones allow effortless image capture; unlike analog-era mediarequiring digital conversion with a simple tap on the screen, animage or video can be taken. But previously we have many photoson newspapers or images from analog videos, and the images andvideos were analogy-based in cassette. Thus, a digital-to-analogconverter (DA converter) is needed for the purpose of conversionfor these images and videos.Unlike mobile cameras, surveillance cameras are usually fixed inplace [58, 86]. Usually, object detection and recognition, as well asobject tracking [2, 3, 49], in surveillance are implemented throughcamera panning, tilting, and zooming (PTZ). However, mobilecameras can be moved to anywhere, operating with translation androtation, etc.While early digital cameras were costly, modern ubiquitoussensors enable everyone to take pictures. Nowadays, everyone hasvery small cameras mounted on mobile phones. The cameraspecifications are beyond 20 years ago, which are availablethrough metadata such as EXIF. Given an image from mobilecamera, what we would like is to understand that how good thiscamera is and what function could be applied to which purpose.Recently, Tesla conducted FSD (Full Self-Driving) testing. In thetesting, the entire system is completely camera-based. This is aninnovation for robotic vision and control without any LiDARsupport. We should take the step and follow up this change withour knowledge in deep learning and computer vision [37, 87].In camera calibration, the distance based on grid board iscalculated with black and white grid patterns. Regarding the



cameras with mega pixels, camera calibration or sensor calibrationis always needed in scene understanding of this real world so as tocorrect the distortion and measure the distance from sensors to thetargeted objects [93]. Camera calibration is called geometriccamera calibration, and the term also refers to photometric cameracalibration or is restricted for the estimation of intrinsicparameters only. Exterior orientation and interior orientation meanthe determination of the extrinsic and intrinsic parameters,respectively. Through digital images with pixels for cameracalibration, we are able to reconstruct 3D objects. Cameras canreconstruct the 3D space, including the origin and spatialdimensions.The cameras reflect the positions located in 3D space. Thelocations are offered by using two cameras so that they quicklyconvert the pixel space to the corresponding real 3D space,bridging the gap between them. Due to various conditions andscenarios, we may get an image with visual artifacts that may betoo dark, too bright, or too blurry. In image processing, if theimage is too blurry, that means the camera is moving too fast orzooming operation is very rapid. Hence, how to remove blurs ischallenging work in image processing [88, 89].If a car is being driven in motorway with the speed of 100kilometers per hour, the car is a fast-moving robot. For example,when a traffic sign appears beside the road, a key challenge iswhether the robot can recognize it clearly [85, 96]. It means acamera is needed to be mounted on the moving vehicle to captureimages [43]. How to capture the image of this traffic sign [65]timely and visibly with the cameras on high-speed car is a realproblem. The task is relevant to the speed of our algorithms forimage processing and object detection and recognition. Anotherexample is that, after landed on the Mars, robots need to facilitatewith an unmanned vehicle, and the car is required to be controlledremotely. The photographs will be taken by using digital camerason the vehicle to explore the lands from the Earth. The outcomes ofimage processing and analysis are employed for furtherexploration.Stereo vision is built on 3D reconstruction. Computer vision isrelated to the 3D information from digital images. By comparingvisual information related to a scene from two vanishing points asshown in Fig. 1.1, the 3D information can be reconstructed by



examining the relative positions of visual objects. This is similar tothe biological process of stereopsis.

Fig. 1.1 Three vanishing points in 3D spaceStereo vision uses two cameras at least to estimate depth. Bycomparing horizontal offsets (disparity), it generates a depth mapwhere larger disparities indicate closer objects. The values in thisdisparity map are inversely proportional to the scene depth at thecorresponding pixel locations. For example, in cinema, 3D trainscan be seen on screen. All of these are based on 3D vision. Whenwe watch the movie through a pair of special glasses, 3D scene willbe generated in our mind. That is applied to movie industry. In 3Dobject reconstruction, for example, if we take a slew ofphotographs, the 3D objects will be rebuilt.Stereo vision is highly significant in fields such as robotics tolocate the relative position of 3D objects in the vicinity ofautonomous systems [53]. Other applications for robotics includevisual object recognition, where depth information allows for thesystem to separate occluding image components.
1.2 Importance and Applications of
Robotic Vision



Having established camera basics, we now discuss robotic vision.Robotic vision plays a crucial role in enabling robots to perceive,interpret, and respond to our surrounding environment [94]. Withmultiple images from a group of cameras working together, therobot is able to understand scenes deeply. Robots with fullintelligence, namely agents, have the ability to make decisionindependently after observed the 3D world. Robots equipped withcomputer vision systems can understand the surroundings andmake smart decisions without human intervention.Digital cameras have been designed with very high resolutions.Assisted with GPS information, vision-based systems improve theaccuracy of robotic operations and manipulations, such as pick andplace, assembly, inspection, and navigation. Vision-based robotsenhance the safety in industries by detecting hazards and avoidingcollisions. With the well-trained deep learning models, vision-basedrobots can be operated within the given work envelop, understandthe scene depth, and predict what will happen from the pastdisasters [72]. Robots with vision systems are adaptive to dynamicenvironments. Vision-equipped robots are adaptive to any changingconditions in real time based on scene understanding from theacquired visual information. We thus have the special feature toshowcase that robot perception directly determines the operationaldecisions.Vision systems reduce the needs for complex guides andsensors, thus lower operational costs. Multiple sensors equipped onrobots will fuse the information and avoid to generatemisunderstandings due to errors [86, 87]. The images and videosfrom digital cameras will provide accurate blobs, edges, silhouette,skeleton, and textures. However, the point cloud systems acquiredfrom a LiDAR (Light Detection and Ranging) system could not [54]provide the relevant information. LiDAR systems use a laser tomeasure distance and object depth.
1.3 Key Challenges in Robotic VisionRobotic vision faces the key challenges that impact theeffectiveness and reliability of robots in real-world applications.Visual object detection and recognition are the predominant tasksof robotic vision. Accurately identifying and classifying objects froma camera in diverse environments are tough due to variations in



lighting, view angles, object occlusions, object appearance, etc.Vision models to handle these variations robustly remain asignificant challenge.Another challenge is real-time image processing in roboticvision. Robotics, especially in mobile or autonomous systems, iswaiting for real-time results of vision processing to take the nextstep. This places high demands on computing power and lowercomplexity of algorithms to accelerate the process of visual objectclassification and make decisions instantly. Compared to audio andimages, video processing is much slower and needs GPUassistance, as well as parallel computing facilities to support theprocess based on pixel arrays.Robots are operating with a real-time system. The changes oflighting in indoor and weather conditions in outdoor environmentssignificantly affect the robots to perceive the scenes. Developingvision systems in real world requests the robustness of algorithmsto observe the environmental variability. This makes sure thatrobots can get correct information.In dynamic environments, keeping correct track of movingobjects while maintaining an accurate map of the environment is amust. Tracking moving objects across video frames without losingthe identity is computationally expensive and error-prone. Visualobjects may be partially obscured by other objects, making itexigent for the system to deeply understand holistic scene.Designing the vision algorithms that can handle partial occlusions[78, 79], accurately identify objects, and friendly interact withrobots is important for the tasks like grasping and manipulation.Pertaining to depth perception, understanding 3D environmentfrom 2D images remains a significant gap, especially for the taskslike manipulation and navigation. Depth sensors, stereo vision, andstructure-from-motion (SfM) techniques are often adopted, butthey all have limitations such as accuracy or robustness on specifichardware. Regarding sensor fusion, integrating data from multiplesensors (e.g., cameras, LiDAR, etc.) to create a coherentunderstanding of 3D scene is complicated. The fusion process isaccurate and efficient for the tasks like navigation and autonomousdecision-making.Robots are controlled from human and machine interactions(HMIs) through robot operating system (ROS). As robotic vision isincreasingly harnessed to real-world applications, we need to



ensure the safety of both robots and humans interactions andguarantee the requirements of ethics in decision-making.Implementing robotic vision systems that perform well in outdoorconditions as opposed to controlled indoor environments involvesdealing with noise in sensor data, unpredictable object movements,and unexpected environmental changes.Chatbots using Large Language Models (LLMs) integrated withOpen WebUI, Dify, CompfyUI, and Ollama models have beensuccessfully deployed to robotic control [63, 92]. The input andoutput of LLMs are challenges of modern computing. The promptsfor inputs and outputs of LLM models should be filtered, especiallyvisual information from generative models such as GenerativeAdversarial Networks (GANs), autoencoders, and diffusion models[87]. The hallucination outputs generated from the LLMs due tounexpected changes should be treated seriously in case of violationof ethics regulations. Retrieval-Augmented Generation (RAG) andModel Context Protocol (MCP) are thought as the solutions toresolve these problems, accompanying with Agent-to-Agent (A2A)technology [40, 61, 81, 92].
1.4 Foundational in Machine Learning and
Deep LearningIn deep learning (DL), because of new development, all computervision textbooks have to be updated at present. For example,conventional algorithms in face detection and recognition arebased on Viola-Jones object detection framework and PrincipalComponent Analysis (PCA) algorithms, and the algorithms basedon CNN and RNN models are popular at present. In computervision, we have developed a plethora of algorithms from deeplearning for object segmentation, object detection and recognition,object tracking [2, 3, 49, 71], etc.Deep learning algorithms are relevant to datasets and groundtruth. The ground truth refers to labels of visual data. Given thedata as samples, we have the labeling process, and also we haveannotations, labels, or tags. After trained our models by takingadvantage of the datasets, the algorithms can output results [20,21]. We evaluate the performance, and this evaluation should bequantitative and reflected in computational way.



Why deep learning algorithms are better than those generalmachine learning methods? Because deep learning is end to end-based which can bring various results for us that are able to givebetter measurements and comparisons. The previous algorithmsmay only conduct face detection and recognition from the frontview; now the new methods can conduct human face detection andrecognition from side views [1, 22, 78, 79].Deep learning (DL) uses multilayered artificial neural networks(ANNs). Inspired by biological neurons, these networks processdata hierarchically—extracting features from raw pixels to high-level semantics [13, 52]. Artificial neural networks (ANNs) workslike our human brain [61, 80]. The neurons in human brain can beconnected together [35, 56]. We assume a full connection is thatany neurons can establish connections mutually [56]. But thesituation is not true. A few old neurons will be died, and a largenumber of new neurons will be grown up. The neurons will beenlarged or shrunken during its life.If neurons are connected with each other [56], they will bedeployed with layers. The layer-based structure has been employedfor deep learning algorithms. Hence, multiple layers of neurons areconnected together. Deep learning refers to the depth of whatneural networks were constructed [35]. The deep learning is asimple change; however, it is powerful, based on the work ofProfessor Geoffrey Hinton from Canada, who created the realm ofdeep learning, especially for his great contributions in RestrictedBoltzmann Machine, Capsule Neural Networks (CapsNets), andDeep Belief Nets [29, 33, 45, 70]. Professor Hinton received ACMTuring Award 2018 in 2019 and Nobel Prize in physics in 2024.In 2024, OpenAI created the Sora, a text-to-video model. Themodel generates short video clips based on user prompts, whichcan extend the existing short videos [62]. The model is a diffusiontransformer: a denoising latent diffusion model with onetransformer as the denoiser. A video is generated in latent space bydenoising 3D patches. A video-to-text model was applied to createdetailed captions on videos. This is a great advance. Furthermore,OpenAI ChatGPT and DeepSeek are red-hot currently. How toembed the deep learning algorithms into chatbots to develop ourown interface and applications is an interesting topic.If we look at the history of modern computers, it is easy to findhow this technology was developed. In 1945, the first electronic



computer ENIAC (i.e., Electronic Numerical Integrator andComputer) was developed. ENIAC was the first programmable,electronic, general-purpose digital computer, completed in 1945. In1957, this world saw a perceptual IBM computer. We saw the chainrule in 1974 as shown in the Appendix of this chapter. Later, wehave the multilayer perceptron.From 1995 to 2015, Support Vector Machine (SVM) was takeninto dominant consideration. The SVM algorithm was the primarilypart of machine learning. In machine learning, SVMs aresupervised max-margin models that analyze data for patternclassification [1, 14, 24, 64].Pertaining to deep learning, the state-of-the-art (SOTA) model istransformer [12, 29]. Transformer models have the advantagewithout recurrent units and require less training time than earlierrecurrent neural architectures (RNNs) such as long short-termmemory (LSTM). Later variations have been widely adopted fortraining Large Language Models (LLMs) on large datasets [4, 6].While CNNs and RNNs dominated early deep learning, newerarchitectures like transformers now offer advantages in speed andscalability. Reinforcement learning [9, 57], transfer learning [60],etc. further expand capabilities. With these algorithms, robots nowcan clean floors, charge batteries, etc. When the robots startworking, they will avoid obstacles [74]. Figure 1.2 shows a mobilerobot is working.

Fig. 1.2 A mobile robot is working



Reinforcement learning is based on agent interactions with anenvironment [9, 57]. Given ample data for the algorithms to betrained, the reinforcement learning models are spirally becomingbetter through iterative interactions, namely updating states,actions, and rewards; these elements follow the episode sequenceof reinforcement learning [73].In deep learning, the existing models are harnessed to conductclassification with unknown classes of samples. The accuracy is notso high at very beginning, but if more samples are fed up, theaccuracy rate of this model will be beefed, and this is calledtransfer learning [60].We have a deep learning playground prototype which wasdeveloped by Google based on TensorFlow. On the interface, weadd layers and neurons of neural networks and operate the neuronconnections [56, 87]. Most of beginners started studying deeplearning from this software. While increasing the number of layersand the number of neurons on each layer, the classificationaccuracy will be increased.A second part of deep learning models is called RNN (recurrentneural network). In RNNs, we have the input layer, hidden layersor invisible layers, and output layer. The input layer and outputlayer are called visible layers, and the invisible layers are named aslatent layers. Through using LSTM, we are able to predict the statechanges, like weather changes, changes of exchange rates,changes of housing markets, stock markets, or share markets.RNNs are seen as very deep feedforward networks (DFNs) inwhich all the layers share the same weights [35]. RNNs process aninput sequence maintaining in the hidden units that implicitlycontains information about the history of all the past elements ofsequence [13]. Most Natural Language Processing (NLP) systemsrely on gated RNNs [6], such as LSTMs and gated recurrent units(GRUs), with added attention mechanisms [34, 75, 95]. RNNs(LSTM, GRU, etc.) have been firmly established in sequencemodeling and transduction problems such as language modeling[44, 50] and machine translation [6].RNNs follow the mechanism of Turing machine. Turing machineis an idealized model of a central processing unit (CPU) thatcontrols all data manipulation throughout a computer. Turingmachines (e.g., FSM) and memory networks are being employed



for the tasks that would normally require reasoning [24, 61] andsymbol manipulations [5, 61].Transformer is based solely on attention mechanisms [34, 75,95], dispensing on recurrence and convolutions entirely [44, 50].Transformers are the state-of-the-art (SOTA) deep learning modelfor dealing with sequences [48], e.g., in text processing [6],machine translation [36], etc. Transformers were invented in 2017by Google Brain for NLP problems, replacing RNN models (e.g.,LSTM) [83].Transformer models are trained with large datasets.Transformer is a deep learning model that adopts the mechanismof self-attention [75, 95], deferentially weighting the significance ofeach part of the input data. Like RNNs, transformers weredesigned to handle sequential input data. Unlike RNNs,transformers do not necessarily process the data in order [48]. Theattention mechanism [34, 75, 95] provides context for any positionin the input sequence.Transformers were previously employed for English and Frenchtranslation. English has its grammar, and correspondingly, Frenchhas the relevant grammar. While speaking English, the speech canautomatically be translated to French by using machine translation[41, 42]. Now, this has been implemented in Microsoft Officesoftware like Microsoft PowerPoint and Microsoft Teams. If we playa PowerPoint file, the captions between two languages could betoggled in real time [6]. In transformer models, token pairs aretaken into consideration. If we translate English to other languages[44, 50], another corresponding set of tokens should be alreadythere. For example, there is a set in Chinese around 10,000 tokens.Hence, the transformers will search for a high probability matchingbetween the two languages for translating.Supercomputing can serve us in computing acceleration; thetypical one is NVIDIA GPU. GPUs are thought as the computingpower. We need these chips because transformer is parallelcomputation-based. In parallel algebra, if two vectors are addedtogether, GPU computing is much faster than that of CPUs. WithGPUs, all the results will be popped up at the same time, and wetake advantage of parallel computing. Currently, the multicoreprogramming and multi-thread computing are adopted to carry outthese tasks. Figure 1.3 shows a GPU laptop is working for objectdetection and recognition.



Fig. 1.3 A GPU laptop is workingAs well known, Tesla has developed and adopted the ASDsystem, which is completely computer vision-based. This newsolution for robotic vision and visual control tasks is characterizedby using the strengths and specifics of image data and deeplearning algorithms, as well as scene understanding for vehiclecontrol. Visual control means we make use of digital cameras tounderstand the scene and control the mobile robot. Previously, wemade use of sensors and computers to control robots. Nowadays, ahigh-resolution and high-speed camera is mounted on anunmanned vehicle to control the car. Consequently, visual servoingand ROS through wireless communications in robotics play thedecisive role in operating unmanned vehicles. Hence, this is thereason why we make use of robotic vision as the key part ofautonomous systems.Robots assist human in waste classification and fruit pick andplace [18, 19, 55, 82–84], serving the industry like moving bagswith milk power, beef and lamb, or other agricultural products.Especially for the countries that have not so much population,robots are an effective tool to save human labor and resolve thelack of professionals, such as for cleaning high buildings andpainting on the surface of cars. The toxic work is very hazardous,which is not beneficial for human health and safe. But robots havenot these constraints and limitations. While cleaning our floor, ifwe have a robot to vacuum and mop the ground, it works for uswithout stopping. Even if it runs out of battery, it can go back tothe charging station and charge itself. After charged, the robotcontinues the cleaning work. This is a typical kind of applications.



Robotics is a typical application of deep learning [7, 51]. Forexample, while walking, if we close our eyes, we cannot walk toofar. Compared with human hearing system, human vision system(HVS) is much crucial, which occupied 75% information intake [8,10]. From this point of view, lost vision is a real troublesome issue.Robots are facilitated with sensors and digital cameras. BostonDynamics is good at computer vision. All of vision systems arerelevant to computable methods or algorithms, no matter whetherour computers are fast or slow, because a computer is robot’sbrain, we thus process information in multiple ways [52, 80].Generally, CPU is a bottleneck in modern computers, and wecannot take breakthrough for a few of years. The limited spacecould hold too many adders in a CPU; it is called bottleneck forcomputing power. Fundamentally, this problem could be resolvedby using advanced algorithms like DeepSeek, from software pointof view the GPU (Graphics Processing Unit), TPU (TensorProcessing Unit), and NPU (Neuron Processing Unit) can resolvethe problems from hardware point of view. Under GPU support, themoving speed of a robot will be much faster than our human body.In these cases, the urgent issue is computing power. Computingpower is the essence of supercomputing. After read this book, ourreaders are expected to create the fastest robots by using GPUchips at hand, which will accelerate resolving these problems inthe real world.MATLAB software was designed for numerical analysis andsimulation which is applied to scientific research, like robotnavigation and control because MATLAB software is robust,reliable, and stable [76]. The arm-type robots could be controlledby using MATLAB software collaborating with Robot OperatingSystem (ROS). ROS is a set of middle software (Middleware) withmultiple libraries and tools that assists us to explore and exploitrobotic applications. If a robot is required to be operated, it will bestarted or halted immediately under the control, independent ofother hardware. MATLAB ROS is excellent in robotic control, whichprovides the standard interface, which is the reason why industrysector likes using MATLAB software.
1.5 Mathematics Background



A Bézier curve [16] is presented as a parametric curve in computergraphics [17]. The curve is defined by a set of control pointsP
0through P

n

, where n is the order of curve (n = 1 for linear, n = 2for quadratic, n = 3 for cubic, etc.). The first and last control pointsare always the end points of the curve. This set of discrete pointsdefines a smooth and continuous curve [66, 91] as shown in Fig.1.4.

Fig. 1.4 The control polygon and Bézier curve
Typically, a Bézier curve with a control polygon was developedfor designing curves in car industry. The algorithm is based on De

Casteljau’s algorithm. The pseudocode is shown in Algorithm 1. Innumerical analysis [59], De Casteljau’s algorithm is a recursivemethod to implement polynomials in Bernstein form or Béziercurves [15, 16]. De Casteljau’s algorithm is employed by splitting asingle Bézier curve into two with an arbitrary parameter. Thealgorithm is numerically stable compared to direct evaluation of



polynomials. Figure 1.4 shows a Bézier curve which wasimplemented by using De Casteljau’s algorithm [17]. Thecorresponding source code in Python is shown in Fig. 1.5.

Fig. 1.5 The source code for implementing a Bézier curve in Python
Algorithm 1: The algorithm for Bézier curve
implementation

The polygon formed by connecting the control points with straightlines is called control polygon. The convex hull of control polygoncontains the Bézier curve. A quadratic Bézier curve is the pathtraced by the function B(t), given points P
0

, P
1

, and P
2

.



(1.1)The first derivative of Bézier curve with respect to t is (1.2)The second derivative of Bézier curve with respect to t is (1.3)A quadratic Bézier curve is a segment of a parabola. The cubiccurve is defined as a linear combination of two quadratic Béziercurves (1.4)Hence, the Bézier curve of degree n is recursively implementedby using a linear interpolation of a pair of corresponding points intwo Bézier curves. Hence, we have (1.5)
where the points P

i

, i = 0,n,n ∈ N , are called control points.The polynomial 
b

i
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 is the Bernstein basis of degree n. (1.6)where i = 0,n,n ∈ Z

+. (1.7)The derivative for a curve is (1.8)Given n+ 1 control points P
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, the rational Béziercurve is given by (1.9)where (1.10)More generally, we have nonuniform rational B-spline curves(NURBS) [11, 90, 91] (1.11)where N i

n

(t) is the basis function of a B-spline curve.This algorithm is applied to the smooth trajectories in robotics[51]. Because the control polygon allows to show whether or notthe path collides with any obstacles [74], Bézier curves are

B(t) = (1 − t)

2

P

0

+ t(1 − t)P

1

+ t

2

P

2

, t ∈ [0, 1]

B′(t) = 2(1 − t)(P

1

−P

0

) + +2t(P

2

−P

1

), t ∈ [0, 1]

B′′(t) = 2(P

2

−2P

1

+P

0

), t ∈ [0, 1]

B(t) = tB

P

0

,P

1

,P

2

(t) + (1 − t)B

P

1

,P

2

,P

3

(t), t ∈ [0, 1]

B(t) =∑

n

i=0

b

i

n

(t)P

i

(t), t ∈ [0, 1]

¯

b

i

n

(t) = C

i

n

(1 − t)

i

t

(n−i)

, t ∈ [0, 1]

¯

C

i

n

=

n!

i!(n−i)!

,n ≥ i, i,n ∈ Z

+

B′(t) = n∑

n−1

i=0

b

i

n−1

(t)(P

i+1

−P

i

), t ∈ [0, 1]

C(t) =

∑

n

i=0

b

i

n

(t)w

i

P

i

∑

n

i=0

b

i

n

(t)w

i

=∑

n

i=0

R

i

n

(t)P

i

, t ∈ [0, 1], 0 ≤ w

i

∈ R

+

R

i

n

(t) =

b

i

n

(t)w

i

∑

n

i=0

b

i

n

(t)w

i

, t ∈ [0, 1], 0 ≤ w

i

∈ R

+

C(t) =

∑

n

i=0

N

i

n

(t)w

i

P

i

∑

n

i=0

N

i

n

(t)w

i

=∑

n

i=0

R

i

n

(t)P

i

, t ∈ [0, 1], 0 ≤ w

i

∈ R

+



harnessed in producing robot trajectories [91]. The derivatives areutilized in calculation of dynamics and control effort (torqueprofiles) of the robotic manipulator.
1.6 Prerequisite Mathematics for Robotic
Vision
1.6.1 Linear AlgebraIn image processing, as well known, images are stored as an arrayof pixel values. Correspondingly, linear algebra is needed,especially vectors and matrices like what we have developed inMATLAB. Vectors and matrices in linear algebra combine separatescalar data into a single, multidimensional group, which are toform finite sequences of numbers with a fixed length, such asvector V and matrix M. (1.12)where the dimension of vectors is n, v

i

, i = 1, 2,… ,n, and n ∈ N  isthe element of vector V. Similarly, we have matrix M withdimension n× n

(1.13)
where m

i,j

∈ R, i = 1,… ,n and j = 1,… ,n, is the element ofmatrix M
n×n

. In linear algebra, matrix M has its determinant
det(M)

, eigenvalues, and eigenvectors which has been applied toresolve various mathematical problems such as solving linearsystems. MATLAB can assist us to resolve these problems quickly.In image processing, image manipulations (e.g., rotation,scaling, and translation) and image analysis in frequency domainneed the transformation matrices T
3×3

.
(1.14)
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where 
(x, y)

 and 
(x′, y′)

 are the locations of a pixel on the imagebefore and after the transformation.
(1.15)

where α is the angle of rotation along z-axis, and β and γ arescaling factors along x and y directions, respectively. Δx and Δyare the shifts along x, y, directions, respectively. Hence, det(T) ≠ 0. More broadly, the matrix T is employed to represent geometrictransformations in 3D space. The matrix could be generalized forAffine transformation and projective transformations. An affinetransformation is
(1.16)
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, 
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.Regarding rotation, given two angles α ∈ R and β ∈ R, we have(1.17)(1.18)By using rotation matrices (orthogonal matrices), thedeterminant equals 1.
(1.19)

where α is the angle of clockwise rotation. Regardingcounterclockwise rotation, (1.20)Regarding translation using a shift matrix for translation,
(1.21)
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where Δx and Δy are the shifts along x and y directions,respectively. If rotation and translation are combined in ahomogeneous transformation matrix, then
(1.22)

The homogeneous transformationH is operated in this way
(1.23)

A perspective transformation is a linear transformation thatchanges the appearance of lines and objects. The perspectivetransformation is
(1.24)

where (x, y, z) ∈ R

3 is a point in 3D space, and f is the focal lengthof the camera.
1.6.2 GeometryIn geometry, a straight line is (1.25)where 
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2. Typically, thisequation is applied to pattern classification. We denote the straightline in parametric form (1.26)where (x
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) are starting point and end points of astraight line, respectively, and t ∈ R is the parameter. If the slop isdenoted as k, (1.27)We have (1.28)where k is the slope rate. The slope of a straight line is a measureof its steepness. Mathematically, the slope is calculated as the
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change in y divided by change in x. Hence, (1.29)where b and k are constants. Furthermore, we denote conic curvesor quadratic curve as (1.30)where 
A ≠ 0,A,B,C,D,E,F ∈ R

 are the constants. 
(x, y)

 is thepoint in 2D space. Hence, the quadratic curve is (1.31)where M
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 is a matrix
(1.32)Hence, any quadratic curves are possible to be converted to itsstandard form after a series of transformations (1.33)where 
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 is the matrix consisting of eigenvectors, 
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Thus, we obtain function F ′(x, y) after a series oftransformations from function 
F(x, y) (1.35)Given a polynomial, (1.36)where x ∈ R. We denote it in the way of matrix (1.37)Generally, if we have a general polynomial, (1.38)where a
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(1.39)
where s+ t = n, n, s, t ∈ N . If a curve is smooth, the derivativesexist 

f(x) ∈ C

n

[a, b],n ∈ N

. If 
n = 0

, the function 
f(x)

 iscontinuous.A curvature is the reciprocal of radius of curvature, that is,(1.40)where R is the radius of the osculating circle. A parametricallydefined curve in three dimensions is given in Cartesian coordinatesby using 
γ(t) = (x(t), y(t), z(t))

⊤, and the curvature is (1.41)where × denotes the vector cross product.In geometry, a geodesic is a curve that is the locally shortestpath (arc) between two points in a surface or more generally in aRiemannian manifold [39]. The international nautical mile isdefined as exactly 1,852 meters. The derived unit of speed is knot,namely one nautical mile per hour.In this section, we denote all elements of linear algebra in thematrix way. The reason is that we expect to easily compute thevalues on computers for various programming.
1.6.3 ProbabilityStarting from Bayes’ theorem, Bayes’ law or Bayes’ rule is (1.42)where p(x|y) ∈ [0, 1] is the conditional probability of p(x) ∈ [0, 1],given 

p(y) ∈ [0, 1]

. 
p(x, y) ∈ [0, 1]

 is the joint probability. (1.43)If 
p(x, y)

 is independent, we have (1.44)Entropy is the measure of missing information before reception.The definition of information entropy is expressed in terms of adiscrete set of probabilities
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(1.45)where 
X = {x

i

, i = 1,… ,n,n ∈ N}

. Mutual entropy is based onBayes’ theorem. (1.46)where 
Y = {y

i

, i = 1,… ,n,n ∈ N}

.Hence, (1.47)(1.48)Relative entropy is called Kullback-Leibler (KL) divergence or I-divergence, which is a type of statistical distances, a measure ofhow much a model probability distributionQ is different from a trueprobability distribution P. (1.49)where 
H
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.
1.7 Structure of the BookThis book is organized in a natural order that aligns with ourunderstanding of robotics. We first explore what robots are andhow they function. Then, we delve into image processing andcomputer vision for robotic scene understanding, with a particularfocus on stereo vision and 3D surface reconstruction.Rather than relying on traditional machine learning methods, wedirectly utilize deep learning for object detection and recognition inrobotic vision. We investigate how deep learning can be applied torobot control and navigation. Additionally, we introduce RobotOperating System (ROS), parallel computing (e.g., GPU, FPGA,etc.), and mobile computing for human and robot interactions(HRIs). Through our design and analysis of robotic systems, we aimto expand the application of robots into broader research areas,including manufacturing, industrial automation, autonomousvehicles, and various applications. Finally, we discuss the emergingtrends and urgent applications in the field.
1.8 Lab Session: Introduction to Tools and
Platforms
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At the end of this chapter, all readers are recommended tocomplete the lab report. Please fill in the form shown in Table 1.1after each lab session (2 hours).
Table 1.1 Lab report for robotic vision

Appendix: <Source codes with comments and line numbers>
1.9 Exercises
Question 1.1 In robotics, why the position and orientation ofrobots are so important?
Question 1.2 In robotics, how to understand the trajectory of amoving object?
Question 1.3 Why De Casteljau’s algorithm for implementingBézier curves is independent on device resolution?
Question 1.4 What are the challenges of robotic vision?



Question 1.5 What are the differences between machine learningand deep learning?
Question 1.6 In deep learning, what is the relationship betweenRNNs and Transformers?
Question 1.7 What is NURBS curve in Computer-Aided GeometryDesign (CAGD)?
Appendix: History of Computing2025: ACM Turing Award 2024 (Andrew Barto and RichardSutton)2025: Qwen3, YOLOv132024: Nobel Prize in Physics (J. Hopfield and G. Hinton) andChemistry (D. Hassabis)2024: OpenAI Sora, YOLOv9, YOLOv10, YOLO112023: YOLOv8, Diffusion Transformer(DiT), DALL⋅E2022: ChatGPT, YOLOv7 [23, 46] and YOLOv62021: Vision Transformer (ViT)2020: YOLOv4 and YOLOv5, GPT-32019: ACM Turing Award 20182018: YOLOv3 and Mask R-CNN [32]2017: CapsNets and YOLO9000 [47, 49]2016: You Only Look Once (YOLO) [67]2015: ResNet [30, 31, 77], GoogLeNet, and Fast/Faster R-CNN[25, 68]2014: GAN and VGG [28], AlphaGo (DeepMind)2013: Region-Based CNN(R-CNN) [26, 27]2012: AlexNet (ImageNet) [69]1997: Long Short-Term Memory [4] (LSTM)1990: Convolutional Neural Networks (CNNs or ConvNets)1986: Restricted Boltzmann Machine (RBM)1986: Iterative Dichotomiser 3 (ID3)1974: Multilayer Perceptron (MLP)1970: Automatic Differentiation (AD, e.g., Chain rule)1969: XOR Logic Function1960: Least Mean Squares (LMS)1957: Perceptron (IBM 704)1945: ENIAC (Electronic Numerical Integrator and Computer)
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2. Robotics
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, NewZealand 
AbstractIn this chapter, a variety of robots and their operations will bedetailed. This includes mobile robots and humanoid robots aswell as robotic navigation and localization. Correspondingly,MATLAB automatic driving toolbox will be illustrated. Ourgoal is to equip cameras on mobile robots and acquire thedynamic images reflecting the scene. In this chapter, avariety of robots such as arm-type robots, robotic kinetics,robotic dynamics, and robotic control are taken into account.The significance of this chapter is that the problems of roboticcontrol are resolved by using the available visual informationand knowledge. The manipulator and the end-effector(s) ofrobots are controlled within 3D space.
2.1 Mobile VehiclesMobile robots are a class of automobile machines, and theyare able to move through the designated space [20]. Therobots will select the best path [26, 28] to reach itsdestination, and it may encounter challenges such asobstacles that might block its way or having an incompletemap or no map at all [68]. The necessary maps will bedynamically created or updated when the environment
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changes. The generated maps will be applied to direct therobots where to go. One straightforward strategy is to havesimplified perception of the world and react to what issensed.Sensing means we make active use of sensors. Once therobots with sensors move from side to side, it quicklyacquires information about its surroundings. That is the wayhow robots acquire the environmental information. Analternative way is to create a map of its environment and plana path from the starting point to the destination. This spacewill be scanned with SLAM algorithm (i.e., SimultaneousLocalization and Mapping [52, 58]). Based on the map withscene understanding, a path is needed to be planned. Thus,we choose which path is the best and the shortest one for therobot to reach the destination.The free-range mobile robots and wheeled robots typicallymake use of the fixed infrastructure for guidance, such asbicycle. Bicycles have pedal and handlebar basically as shownin Fig. 2.1. Generally, the robot’s velocity is controlled like abicycle to be proportional to the distance from the point
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With the relative angle, (2.2)By using a proportional controller as shown in Fig. 2.2,(2.3)where K
v

 and K
h

 are the constants.

Fig. 2.2 A proportional controller and its radii
Most people have the experience of riding a bicycle orknow how it operates. The pedals of a bike are the sourcewhere the power is from. The handlebar is adapted to controlwhere the direction will be. While moving slowly, thehandlebar of bike should have an angle to support themoving. Especially, the direction is altered. At this time, thehandlebar and the pedals should keep the angle. Given a fixedangle, the bicycle will remain the balance and keep goingfurther. Hence, the unmanned bicycle was designed andimplemented, and the bicycle can be run automatically. Thegyroscope is installed on the robot to keep the balance anddirection. If the bicycle is working in the proper direction, itcan be driven smoothly and stably. Thus, the bike is possible
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to be controlled remotely, and batteries will provide energyand power. A simple proportional controller turns thesteering wheel so as to drive the robot toward the destination.The proportional controller adjusts the steering angle, whichdrives the robot following the straight line: (2.4)where K
d

 is a constant. (2.5)This proportional controller is distinct from the mechanicalsystem of bicycle. Basically, a bicycle has two wheels: one isin front, and the other is at the back. But for this pair ofcontrollers, which has four wheels, if the direction is changed,the four wheels will be turned in various directions. Hence,mobile robots follow the two radii. Following a straight line,two controllers are required to adjust the steering. Onecontroller steers the robot to minimize the robot’s normaldistance from the straight line. Two controllers are requiredto adjust steering. One controller steered the robots to keepthe balance and distance from the straight line. This trailerwill be operated and run along the straight line [42]. Thesecond controller adjusts the heading angle or orientationand controls the vehicle to be parallel to the straight line. Thetwo controllers must jointly work together and control therobots to move forward. But the problem is how to make useof computers to guide robots from the starting point to theend point. (2.6)where a, b, c ∈ R are constants. (2.7)The Ackermann steering geometry [34] is a geometricarrangement of linkages in the steering of a car or othervehicles designed to solve the problem of wheels on insideand outside of a turn needing to trace out circles of differentradii. Exact Ackermann geometry is only valid at low speedsor tight turns. At high speeds, tire slip angles must be
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considered; therefore, approximate Ackermann geometry ordynamic steering models are employed.
2.2 Humanoid RobotsA humanoid robot as shown in Fig. 2.3 is a robot resemblinghuman body in shape. In general, humanoid robots have atorso as shown in Fig. 2.4, including a head, two arms, andtwo legs, though a few humanoid robots may replicate only apart of human body. Androids are humanoid robots toaesthetically resemble humans. A few robots have wheels,and the feet are wheeled [80]. A logo of Android mobilesystem is a robot. The android, the original name or originalmeaning refers to a robot.



Fig. 2.3 A humanoid robot

Fig. 2.4 A torso of human body and its jointsSensors sense the position, orientation, and speed ofhumanoid’s body and joints, along with internal values.Actuators are the motors responsible for motion in robots. Inrobots, most of the joints are equipped with motors. Themotors take advantage of torque to control arms, allowingthem to raise or lower, so do the legs. For example, if we holda weighty object on air, a group of motors is working togetherto keep pose of the object. By using motors, the controllergives a force to control the pose, which is called payload. Inrobots, the motors control the position and orientation of anarm. In total, a torso has 24 degrees of freedom (DoF) afteradded all dimensions of axes together. Pertaining to thenumber of axes, a torso has multiple rotational axes andtranslational axes. If a computer is employed for controllingrobots, the motors in each joint should be exactly controlledfor rotational and translational operations.Google MediaPipe is a computer vision software that isable to capture 33 key points of human body as shown in Fig.2.5. Our human body includes head, arms, legs, and feet



before a camera, and the 33 points could be detected in realtime [16, 23, 74, 76]. Correspondingly, the angles betweenany two links could be utilized to control the torso of robots.Hence, we take use of these features for robotic control viahuman pose detection and recognition. Therefore, the keyissue is how to automatically map these points to a humanoidrobot so as to save our operating time. The robotic visionshould have the ability to resolve this mapping problemthrough robot operating system (ROS) and visual servoing.



Fig. 2.5 An example of Google MediaPipe software for capturing human pose
2.3 Navigation
2.3.1 AutomataA robot is a goal-oriented machine that is able to sense, plan,and act, like insects [46]. Insects, such as moth, butterfly, andbird, follow Charles Darwin’s theory of evolution. Particularlyin winter time, birds usually fly to the north because the northin the southern hemisphere is warm [29] and vice versa. Thismovement is triggered by factors like changing day length,temperature, and food availability. Birds fully take advantageof a plethora of cues to navigate, including the Sun, theMoon, stars, the Earth’s magnetic field, and landmarks.Robots are inspired and learned from this bird migration orseasonal movements. The simple class of robots is known asBrandenburg robots. That is a class of goal-oriented robots,and they are characterized by using direct connectionsbetween sensors and motors.When light rays are emitted from the Sun or the Moon andwhen human moves from one place to another at night, thelocation of the Moon or stars in sky is utilized for positioning.Most of insects also need position of the Moon in night. Whilethe insects are moving toward the destination, they alwaysretain and withhold the angle toward the direction of lightrays like moths. Hence, the path is called moth curve [73](Fig. 2.6).



Fig. 2.6 A moth would like to fly along a curve that is perpendicular to raydirection; thus, it is called moth curve. A Braitenberg robot is to move along themoth curveBecause robots need take actions, they have their ownbehaviors. The behavioral robots essentially are automata[12]. In computer science, automaton is called Finite StateMachine (FSM). The automata [32] is a system which servesus well. For example, the simple automaton is a computeroperating system, like Microsoft Windows, Linux, or MacOS.In computer control or machine intelligence, the automataare always needed. The reason why the robot is muchintelligent is that automaton is smart, and it simply reacts tothe actions within the environment. A simple automatonshares the ability to sense when they are in proximity to anobstacle. The automaton [32] includes an FSM and otherlogic between sensors and motors. The simple robot performsgoal seeking in the presence of non-drivable areas orobstacles [68].Initially, robots do not know the environment well, butafter iterative interactions, they acquire the lore fromenvironment and understand the surroundings; they graduallybecome familiar with the scene. If robots deeply understandlogical relationships in the scene, the robots cannot movefrom one place to another due to the existing obstacles.Hence, robots have the ability to avoid obstacles [11]. Ifrobots understand the updated maps well, they move towardthe correct direction. Automata have memory, and a robot isable to be operated in correct way like the automata.The central issue of robot navigation is path planning [44].If such a map is available, robots need to make a reasonableplan of how to leave current place or how to return startingplace. The key to achieve the best path is to explore this map.The Google map for navigation needs the starting point in aplan to get the destination. The best way is to have a Googlemap, which instructs us the orientation of roads, trafficcongestion, bridges, obstacles, etc.A simple and computer-friendly representation is theoccupancy grid [24]; the memory is required to hold the



occupancy. We segment a map into regions. The memory isrequired, which stores the grids. The robot is operated in agrid world which occupies one grid cell. The robot does nothave any non-holonomic constraints that can move to anyneighboring grid cells each time. It is able to determine theposition of a robot on the plane. The robot is able to computethe path it will take. The holonomic way of robots is based onglobal view. A sophisticated planner might considerkinematics and dynamics of a robot and avoid paths thatinvolve turns. In a map, the derivable regions or obstacles arepresented as polygons, comprising a list of vertices or edges.This is potentially a compact format, but determiningpotential collisions between robots and obstacles [68]. Thisnavigation algorithm has exploited its global view of theworld, through exhaustive computations so as to find theshortest path. Like riding bus or train, we need to pay thefare within one zone as shown in Fig. 2.7. The robot does nothave any holistic constraints to arrive any neighboring gridcells. That is the reason why robots need to understand thescene so that the robots can travel from one cell to another.

Fig. 2.7 A bus and train fare zoneIn a plan, if a robot already occupies one place or cell, therobot is able to follow the map and compute the path it will



follow. This is called holistic plan. A robot can proceedmoving from any places to where it decides to go by followinginstructions, and the navigation algorithm has explored globalview of this world. If a robot would like to seek the shortestpath by using a map, the map keeps offering optimal solutionsfor the robot. The traffic on the dynamic map is beingupdated in real time. Robots have the ability to quickly findthe states of the planned roads [51]. The best part of thisalgorithm is the computational cost from the starting point tothe destination. The cost is the crucial factor for makingholistic decision for a robot.A fairly complex planning problem has been converted intoone that can be handled by using a Braitenberg-class robot.This makes local decisions based on the distance to the goal[44]. Brandenburg robot is an elemental one; a local decisionis needed to make. A robot thus needs to think of theneighbors and reach to the next grid cell. The penalty forachieving the optimal path is the computational cost. Theroadmap methods provide an effective means to find thepaths in large maps that greatly reduce computational costs.Suppose a robot has a slew of ways to leave, firstly it needs tomake local decision. The mobile robots have equipped withfeet or wheels. Along with the well-designed direction, therobot can quickly attain the destination [15].
2.3.2 D* AlgorithmD* algorithm (pronounced “D star”) was designed forresolving path planning problems [31, 66], where a robot willbe navigated to the given destination in unknown terrain [62].D* algorithm and its variants have been widely employed formobile robot and autonomous vehicle navigation [42]. Thealgorithm supports computationally cheap and incrementalreplanning ways for small changes in a map [63]. Itgeneralizes the occupancy grid to a cost map, and the maprepresents the cost of traversing each cell in the horizontal orvertical direction [24].



Algorithm 2: D* path planning algorithm

D* algorithm was designed for planning with a minor change[44]. If the given map has a puny change, the robot canquickly react to the change. This is a responsible way tominimize the total cost of a travel. The algorithm supportsincremental replanning. That means it is possible to have a



new plan because of environmental changes. D* algorithmallows updates to the map at any time, while a robot ismoving. After replanning, the robot simply positions to anadjacent cell with the lowest cost which ensures thecontinuity of motions. The pseudocode is shown in Algorithm2. While a robot is shifting, the map will be dynamicallyupdated as we are driving a car using Google road map.Google road map will automatically present the dynamicroutine path for a driver. Similarly, if a robot deviates to awrong way, the navigation map could quickly check theroutine; if the robot averts somewhere nearby, the map canquickly guide the bot to go back. After replanning, the botsimply adjusts the cell with the lowest cost, which ensuresthat the continuity holds even if the plan has been changed.The plan change will not impact the final destination. Thus,the cost should be reduced as much as possible.
2.3.3 Voronoi DiagramIn mathematics, a Voronoi diagram is a partition of a planeinto regions close to each of a given set of objects [10]. Themap is segmented into multiple regions. Subsequently, arobot needs to decide where the best direction is and how thebot will move to the next region in the created Voronoiroadmap. In MATLAB, a Voronoi diagram is based on distanceto a specific set of points. An example of Voronoi diagram isshown in Fig. 2.8.



Fig. 2.8 An example of Voronoi diagram and Delaunay triangulationThe skeleton of this free space is a network of adjacentcells, no more than one cell thick. The skeleton is a freespace, indicated by using white cells. The white markers showthat the skeleton of free space is networked. The skeletonwith obstacles is overlaid in red, and the junction points aremarked in blue. Regarding the distance of obstacles, pixelvalues correspond to the distance of the nearest obstacle.Usually, the Voronoi diagram is triangle-based. Because thetriangle is basic, once all of them are obtained, the centersare connected together. Thus, a graph is created. The graphbasically shows the information of links. The roadmap withjunctions will be marked in blue. If a region has an obstacle, itis marked in red. If there is a junction between two regions, itis marked in blue. Regarding the distance between the tworegions, the Voronoi diagram can save calculations. Forcalculating the distance, norms L
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 (Euclidean distance), whichindicate the distance from one place to another as shown inEq. (2.9).
(2.9)

An interesting distance is Manhattan distance which isblock-based. Manhattan distance, Taxicab distance, or blockdistance is an (L
1

) metric applied to determine the distancebetween two points in a grid-like path [47] as shown in Eq.(2.10). (2.10)An example of Voronoi-based robot path planning [21] isshown in Algorithm (3), the corresponding result is shown inFig. 2.9.
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Fig. 2.9 An example of Voronoi-based path planning in Python. The dash line ingreen shows the path for robot navigation
Algorithm 3: Voronoi-based robot path planning



2.3.4 PRM: Probability-Based MethodA probabilistic roadmap (PRM) [36] is a network of possiblepaths in a given roadmap based on free and occupied spaces.This probability-based method reduces computational costsby using probability sampling. Sampling means only a portionof samples are selected randomly.The PRM algorithm takes advantage of a network ofconnected nodes to find an obstacle-free path from a startingpoint to the end. Increasing the nodes allows for more directand correct path but adds more computational time orexecution time. Because of the random placement of points,the path is not always direct or efficient. Using a smallnumber of nodes can make paths worse and restricts theability to find a complete path. The advantage of PRM is thata few of relative points need to be tested to affirm that thepoints and the paths between them are obstacle free. Eachedge of the graph has an associated cost which is the distancebetween the two nodes. The color of a node indicates whichcomponent it belongs to and which component is assigned aunique color. The pseudocode of PRM algorithm is shown inAlgorithm 4.



Algorithm 4: Probabilistic roadmap (PRM) for robot
navigation

Traversal across the roadmap involves searching toward theneighboring node which has the lowest cost, which is theclosest to the goal. The process is repeated till the node in agraph closest to the goal is reached. The important trade-offin achieving computational efficiency is to use randomsampling. Each graph has an associated cost. The color nodeindicates which component it belongs to. If the distance fromtwo different places is calculated, the planner can selectsamples and create a network consisting of disjoints.The underlying random sampling of free space means thata distinct graph is created each time, while the planner isbeing started up, resulting in various paths and lengths. Theplanner can fail by creating a network consisting of disjointcomponents. The long narrow gaps between the obstacles areunlikely to be exploited because the probability of randomly



chosen points that lie along the gaps is extremely low. Weneed multiple samples along these long narrow gaps.MATLAB provides an example for PRM algorithm as shownin Fig. 2.10. In MATLAB, a probabilistic roadmap (PRM) is anetwork graph of possible paths in a given map based on freeand occupied spaces. The algorithm takes advantage of thenetwork with the connected nodes to find an obstacle-freepath from the start to an end location. In this MATLABexample, a small number of nodes are created in roadmap.Increasing the number of nodes will enhance the efficiency ofpath by giving more feasible paths. The PRM algorithmrecalculates the node placement and generates a newnetwork of nodes.

Fig. 2.10 An example of PRM algorithm



2.3.5 RRT: Rapid-Exploring Random TreeAnother algorithm for this map planning is to rapid-exploringrandom tree (RRT) [1]. The RRT algorithm easily deals withvarious obstacles and differential constraints. Compared withother algorithms, RRT method works fast, which has less cost.This is feasible to control orientation of a robot, where it ispositioned [35]. The pseudocode is shown in Algorithm 5. Ifwe start seeking the initial parameters, this is computed withthe inputs that move the robot from the existing points toothers. Given a starting point, robots quickly walk along themap to get another point. This is a repeated process withmultiple attempts, and the inputs with the best performanceare chosen.
Algorithm 5: Rapidly exploring random tree (RRT)

The RRT algorithm is computed for the model with a velocity,steering angle, integration period, and initial configuration.The algorithm is to compute the control input that moves therobot from an existing point in the graph. The RRT algorithmmakes use of a kinematic model to create paths that arefeasible to move. The algorithm takes into account of theorientation of the robot and its position. An example is shownin Fig. 2.11. The random number generator is reset to ensure



reproducible results. The path is planned from the startingpoint to the destination.

Fig. 2.11 An example of RRT algorithm
2.3.6 Dead ReckoningIn navigation, dead reckoning is the process of calculating thecurrent position of a moving object by using a previouslydetermined position and incorporating estimates of speed,heading angles (or direction or course), and elapsed time.The estimation of current ship location is based on previousspeed, direction, and time of travel, in case a ship misses itsdirection during voyage on sea [56].Location estimation by using dead reckoning is based onrobot position and the estimated distance traveled. Sectioningis the way of estimation of position by measuring the bearingangles of known landmarks. Triangulation (surveying) is theestimation of position by measuring the bearing angles to the



unknown point from each of the landmarks [19]. Figure 2.12shows triangulation for surveying calculation. When a shippassed location points A, B, and C, we are able to calculatethe distance h from the object point O to the directed straightline →

AC. (2.11)where l, l
1

, l

2

∈ R (2.12)(2.13)(2.14)(2.15)

Fig. 2.12 A triangulation for surveyingIn computer science, dead reckoning refers to navigatingan array of data by using indexes based on location.Computer vision is employed to visual odometry withobservations of the world. Most platforms have proprietarymotion control systems that accept motion commands fromusers (speed and direction) and report odometry information.An odometer is a sensor that is able to measure the distancetraveled, typically by measuring the angular rotation of robotwheels. The direction of traveling can be measured by usingan electronic compass, and the change in heading angles canbe calculated by using a gyroscope or differential odometry.Originally, dead reckoning is a method to estimate locationthat is for the ship voyage. The dead reckoning is an
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estimation based on a coastline to speed up the action attime. From a voyage perspective, previously estimated GPSsignals are not reliable. GPS signals are extremely weaksometimes which can lead to jam. Suppose a ship is travelingalong seashore, the ship captain needs to calculate thedistance from the reckon. Given a fixed distance, the captainshould keep the bearing angle. Thus, the ship will make anexcursion and cannot loss its way.The dead reckoning calculates the new position
(x′, y′) ∈ R

2 by using the current position 
(x, y) ∈ R

2, velocity
v, heading angle θ, and time step Δt. This assumes the robotmoves in a straight line with a constant speed and direction.The pseudoscope for dead reckoning algorithm is shown inAlgorithm 6. The code in Python and the correspondingresults are shown in Figs. 2.13 and 2.14. (2.16)where x, y,x′, y′, θ,Δt ∈ R.{

x′ = x+ v⋅ cos (θ)Δt

y′ = y+ v⋅ cos (θ)Δt



Fig. 2.13 The code in Python for dead reckoning algorithm



Fig. 2.14 The results of dead reckoning algorithm in Python
Algorithm 6: Dead reckoning for robot localization



2.4 Mathematics BackgroundKalman filtering [77] is an iterative algorithm that updates, ateach time step, the optimal estimate of the unknown trueconfiguration and the uncertainty associated with thatestimate based on the previous estimate and noisymeasurement. Pertaining to Kalman filtering [33, 41], thesignals follow zero mean. That means the optimality ofKalman filter algorithm regards that errors have a normal(Gaussian) distribution.Kalman filtering is an iterative algorithm, which keepsupdating and what each step estimate is known. The state isassociated with previous states and noise measurements. Thenext is that how it can be implemented based on previoussteps [41]. Kalman filtering allows data from various sensorsto update the state [82]. Kalman filtering provides the bestestimate of where robots are. A map of locations is created,while the robot is in its expedition with landmarks. A statevector comprises estimated coordinates of the landmarks thathave been observed as 
x̂

. The corresponding estimatedcovariance is P (2.17)and (2.18)The prediction equation is (2.19)While the covariance matrix is (2.20)the updated state estimate is (2.21)and (2.22)The invariant of expectation is (2.23)That means all estimates have a mean error of zero. Thisprocess is called prediction. Given k−1 step, the state vector

P(k|k) = cov[x(k) −

ˆ

x(k|k)]

P(k|k−1) = cov[x(k) − x̂(k|k−1)]

x̂(k+ 1|k) ← x̂(k|k)

P(k+ 1|k) ← P(k|k)

x̂(k+ 1|k+ 1) ← x̂(k+ 1|k)

P(k+ 1|k+ 1) ← P(k+ 1|k)

E[x(k) − x̂(k|k)] = E[x(k) − x̂(k|k−1)] = 0



is expressed as what it was estimated, the coordinates oflandmarks have been observed. The corresponding estimatesare called covariance. The covariance is square root sum. Theprediction equation is like this; one gets x
k|k

. We predict
x

k+1|k

. The coherence matrix will be calculatedcorrespondingly. We update the states by using x
k+1|k+1

,given x
k|k+1

 to get this X
k+1|k+1

. Meanwhile, this prediction isthe covariance matrix which has been updated. The means ofthe expectation of x
k|k

 and expectation of x
k|k−1

 are all zero.This expectation is the sum that all the variables are addedtogether and divided by using number k, namely the average.Given the signals with noise, after Kalman filtering, thesignals usually have not so many changes. Figure 2.15 is anexample of Kalman filtering in 1D by using Python coding.The Python code is shown in Fig. 2.16. If the algorithm issimplified, the algorithm is able to be written by usingpseudocode as shown in Algorithm 7.



Fig. 2.15 The implementation of Kalman filtering algorithm

Fig. 2.16 The code in Python for implementing Kalman filtering algorithm



Algorithm 7: Kalman filtering algorithm (pseudocode)

2.5 Robot Arm KinematicsGiven a robot, the robot is navigated to the destination with awell-planned path [26, 62]. The joints of a robot inherentlystand on its body [46]. If there is a bottle on table, the camerainstalled on the arm needs to find where the bottle is. Theend-effector will grasp this bottle and pick up the bottle andthen place to another location. Hence, the robot can pick andplace the bottle from one place to another. This operation iswithin robot’s payload. A small robot showcases the effectsfor cooking and cleaning in 3D space. Because the givenspace is limited, the robot is able to use its end-effector forfood security and safety [3–8]. The arm-type robots or robotmanipulators have a static base and therefore are possible tobe operated within the workspace. Usually, the robot will beenclosed within a forbidden fence. As we know, the premise iscalled work envelop (Fig. 2.17).



Fig. 2.17 A wheeled robot is within the “envelop”A robot manipulates objects by using its end-effector. Wemake use of end-effector to find visual object and moveobjects [37, 72]. A serial-link manipulator comprises a chainof mechanical links and joints. Our human arm is working asa joint chain. Each joint can move its outward neighboringlink with respect to its inward neighbor. One end of the chain,the base, is generally fixed, and the other is free to move inthe space and holds a tool as the end-effector. A serial-linkmanipulator comprises a set of bodies, called links, in a chainand connected by joints [20]. Each joint has one degree offreedom (DoF) [53], either translational joint (a sliding jointor prismatic joint) or rotational joint (a revolute joint). Themotion of a joint alters the relative angle or position of itsneighboring links [19]. The joints of most robots are revolutebecause we have motors inside to take effects. Meanwhile,the prismatic joint is moving along the straight line.



Between two joints, there is a link. A link is considered asa rigid body that defines the spatial relationship between twoneighboring joints. The link can be specified by twoparameters: length and twist. The link offset is the distancefrom one link coordinate frame to the next along an axis ofthe joint. The joint angle is the rotation of one link withrespect to the next joint. The truly useful robots have a taskspace enabling arbitrary position and attitude of the end-effector. Hereinafter, the attitude refers to orientation. Thetask space has six spatial degrees of freedom (DoF): threetranslational and three rotational. At present, this 3+3 DoF isthe standard configuration.In robotics, robotic kinematics applies geometry to themovement of multi-DoF kinematic chains that form thestructure of robotic systems. Robotic kinematics offers forceto kinematic chains. The force is governed by Newton’ssecond law of motion. The relationship between thedimensions, connectivity of kinematic chains, the position,velocity, and acceleration of each link in the robotic system.Robotic kinematics is explored and exploded (EE), in order toplan and control movement and to compute actuator forcesand torques. The actuator is the “muscle” of robots. There aretwo broad classes of robots: serial manipulators and parallelmanipulators. The time derivative of the kinematics yieldsJacobian matrix of robots, which relates to linear velocity andangular velocity of the end-effector [20].
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, j = 1, 2,… ,n.The forward kinematics (FK) is often expressed infunctional form with the end-effector pose as a function ofjoint coordinates. The kinematics can be computed for anyserial-link manipulator irrespective of the number of joints orthe types of joints. The simple two-link robot is limited in theposes that it can achieve.Forward kinematics makes use of joint parameters tocompute the configuration of chain. Pertaining to humanbody, for example, if we touch an object [72], to determinethe links starting from our feet to fingers, it is called FK.Inverse kinematics reverses this calculation to determine thejoint parameters that achieve a desired configuration [64,79]. The comparison between IK and FK is shown in Fig. 2.18.

Fig. 2.18 The comparison between FK and IK
A pose may be unachievable due to singularity where thealignment of axes reduces the effective degrees of freedom[53]. Hence, a trajectory is chosen, which moves through arobot singularity. The singularity point could not be reached.Thus, simulation can assist us to resolve the singularityproblem. In robotics, the singularity point problem refers toconfigurations of a robotic system where its mathematicalmodels, particularly the kinematic or dynamic equations,become undefined or degenerate [20]. These points trigger



problems such as loss of control or infinite joint velocities,which severely limit the robot’s ability to move or performtasks. Singularity problems are especially important inrobotic manipulators and robotic arms in precision tasks, asthey disrupt the robot’s ability to perform tasks accuratelyand safely.Kinematics [13] is the study of motion without consideringthe cause of motion. Inverse kinematics (IK) is an example ofthe kinematic analysis of a constrained system of rigid bodiesor kinematic chain. IK makes use of kinematics to determinethe motion of a robot to reach a desired position [64, 79].The grasping end of a robot arm is designated as the end-effector. The robot configuration is a list of joint positionswithin the position limits of the robot model that do notviolate any constraints. Given the desired end-effectorpositions, inverse kinematics (IK) is able to determine anappropriate joint configuration for which the end-effectorsmove to the target pose [64, 79].
Algorithm 8: Closed-form IK for a two-link planar arm

Algorithm 8 shows the pseudocode of IK algorithm. Figure2.19 displays an example of MATLAB inverse kinematics forthe simple 2D manipulator by using inverse kinematics (IK).The manipulator of a robot is a simple 2-DoF planarmanipulator with revolute joints. A circular trajectory is



created in a 2D plane which provides points to the inversekinematics solver. The solver calculates the joint positions toachieve this trajectory. The robot is animated to show therobot configurations that achieve the circular trajectory.

Fig. 2.19 MATLAB 2D path tracing with inverse kinematics (IK)Figure 2.20 shows a demonstration of inverse kinematicsin Python with three links. The source code is given in Fig.2.21.



Fig. 2.20 A demo of inverse kinematics (IK) using Google Colab

Fig. 2.21 The inverse kinematics in Python



2.6 Dynamics and ControlRobot dynamics are the relationship between the forcesacting on a robot and the motion of the robot [20]. Roboticsusually combines three aspects of design work to create robotsystems:
Mechanical construction: A frame, form, or shape whichwas designed to achieve a particular task. The payload,gravity, weights, and materials are taken into consideration,correspondingly. The forces and torques are the sources foreach link with the purpose of supporting robot working.
Electrical components: The components encapsulatepower to control the machinery. Electrical motors (DC orAC) are thought as the most important component forcontrol the robots and provide power to drive the robotworking.
Software: a program for a robot to decide when or how toconduct actions. The important software for robot workingis ROS, no matter for one robot or a swarm of robots tocoordinate working together.Dynamics for robot control are related to thesefundamental components:
Electric motors: DC motors in portable robots or ACmotors in industrial robots, where electric current flows intwo ways as an alternating current (AC) or direct current(DC).
Actuators: Actuator converts stored energy intomovement, in most of the time, we make use of electricmotors as the “muscle” to drive robots working.
Sensors: Sensors provide real-time information to indicatethe states of robots. The sensors are not only applied tolocalization, positioning, and navigation but also providetemperature, air humanity, and battery states.
Manipulation: Manipulation is the control of robot’senvironment through selective touch or contact.



The operation: Pick and place is the typical one ofmanipulations; basically the pick-and-place operation isbased on translations and rotations of robot components in3D space.
End-effector: The device is located at the end of a roboticarm. The end-effector was designed to interact with theenvironment, and most of the time, it will replace humanhands and fingers. Although the design is not perfect, theend-effector will be taken great values in the operation.The interaction between human control and machinemotions in the incremental HRI (i.e., human and robotInteractions) is listed as follows:
Teleoperation: A human controls each component andmovement, and the corresponding machine actuator isspecified by the operator through wireless communicationsor mobile computing. The instructions will be understoodand analyzed for robot moving or working.
Supervisory: A human specifies general moves or positionchanges, and the machine understands the instructions anddecides specific movements of its actuators to get thedestination or location with the specified states.
Autonomy: The operator specifies only the task, and therobot manages itself to completion [12]. Usually, a series ofinstructions of these tasks will be thought as one unit orpackage, and the batch instructions will be executed till theend of these tasks. Robots have the ability to deal witherrors or mistakes during the execution.
Full autonomy: The machine will create and complete allthe tasks without human interactions [32]. The robots havethe ability to deal with any problems during the execution.In dynamics and control of a serial-link manipulator, eachlink is supported by using a reaction force and torque fromthe preceding link, which is subject to its own weight, as wellas the reaction forces and torques from the links. We have thejoint torques and joint forces applied directly as a vector toeach joint [46].



(2.25)where G(q) is the gravity term, M(q)q̈ is the inertia matrix,
C(q, q̇)q̇ is centrifugal torques, J(q)⊤ ⋅ F

Ext

 is the externalforce, and J is the Jacobian matrix of the end-effector [19]. Ininverse dynamics, given the pose q, velocity q̇, andacceleration q̈, Eq. (2.25) is applied to compute the requiredjoint forces or joint torques.
2.7 Applications of RoboticsRobotics [20] encompasses robotic vision and robotic control.Robotic vision usually encapsulates camera collaboration,image formation, image processing, stereo vision, and 3Dreconstruction. The relevant content was depicted in theprevious sections of this book. Robotic control takes effectthrough the research areas such as machine intelligence [14,25, 49], genetic algorithm (GA), reinforcement learning [22,45], visual servoing, and imitation learning.Visual servoing is quite advanced. Given a robot with itsspecifications and configuration, the robot is expected towork effectively. Payload refers to the amount that a robotcan be lifted and carried. In the family of human robots, themembers include Android (male) and Gynoid (female); humanrobot has two kinds, one is male, and the other is female.Furthermore, the robot family has other members such asmobile robots, arm-type robots, and flying robots that refer todrones [9, 54, 55].Pertaining to arm-type robots, the Cartesian robot’s armhas three axes with Cartesian coordinates. The tiny robots arepossible to be installed in kitchens for the facilitation ofcutting fruits and preparing for a cup of coffee which maytake account of nutrition estimation [65, 69, 70].The Cartesian/Gantry robot’s arm has three prismaticjoints, and the axes are coincident with a Cartesiancoordinator. It has 3D prismatic, which means the arms areworking along X, Y , and Z axes [9, 54, 55], the joints can
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move up and down and back and forth, and the arm-typerobot is famous for its six degrees of freedom (DoF).Regarding the number of axes, roll, pitch, and yaw operationsare required for full control of manipulator or end-effector asshown in Fig. 2.22. In robotics [40], regarding airplanes ordrone systems [43], there are three rotations: pitch, yaw, androll around the axes. The degree of freedom (DoF) and thenumber of joint points of robots are not the same [40].

Fig. 2.22 An airplane and a helicopter. (a) The position of all three axes: roll,pitch, and yaw, with the right-hand rule for describing its rotations. (b) The workenvelope of a helicopterThe work envelope [60] refers to the region of space wherea robot can work or layout. Suppose these robots have a 3Dwork envelope, and because a robot is made of iron and steel,we need to limit the motion of robots. In the work envelop,the robots are moving within the limited premise.Robot kinematics is the study of how a robot’s joints areconnected and how they relate to the robot’s spatial layout. Itis a fundamental topic in robotics [40] that takes use ofgeometry to model the robot’s links of rigid bodies [20].Kinematics is related to the types of joints. Figure 2.23 showsa pick-and-place robot to pick up ping-pong balls [38, 50, 74–76, 78, 81] in our building.



Fig. 2.23 A wheeled robot is picking up table tennis balls with two cameras andone end-effectorThe compliance refers to the measure of distance or angleof a robot joint. The speed includes angular or linear velocity.That means the robot moves not only transitional but alsorotational. While moving from this angle to that angle like aspace shuttle, there are velocity and acceleration limits, themaximum speed over short distance starts from zero. Thisprocess is called acceleration.The power source includes electronic motors andhydraulics, i.e., two types of powers. Nowadays, it iscompletely electronic motor-based. One of the advantages isthat electronic motors are quiet without noise.Regarding robotic mapping, robots need a map and drawthe map of the working place automatically. Roboticnavigation leads the robots from one place to another byusing map. When human communicates with robots, the



robots can understand human intentions [30]. As well known,OpenAI ChatGPT is a multimodal model software, whichshowcases how many steps are needed if a task is expected tobe completed.Robots exactly follow human instructions. The wholeprocess may be given through voices or talks. Given a prompt,a task or a job is completed on time. Currently, all robots arebased on imitation learning. If robots learn from human’sperformance and experience, the operation will be muchstandard. If there has a competition contest whether humancompletes with robots, the outcome is that human cannotguarantee always beating robots in future. But the robots canensure they will win our human sooner or later. ThroughGoogle software MediaPipe, it shows that robots canrecognize human poses [17, 18, 67, 76] and reflect the keypoints from human body to the joint points of robots. Humanfacial emotion recognition [61, 71] can be implemented byusing software. Human expression of emotions enclosesangry, happy, and others [2, 48, 71].The fundamental requirement in robotic vision [20] is torepresent position and orientation of robots in anenvironment. Basically, the position and orientation aredescribed by using its coordinate systems as shown in Fig.2.24. A coordinate frame, or a Cartesian coordinate system, isa set of orthogonal axes that intersect at a point known as theorigin. The position and the orientation of a coordinate frameare known as its pose which has shown graphically as acoordinate system [18]. A Cartesian coordinate system is aset of axes that intersect at support node as an origin. Theorigin is at the base of arm-type robots. If the system isinitialized, the position and the orientation based on theorigin of the coordinate frame are known, as shown in Fig.2.25. That is the reason why the coordinate system is defined,and the important characteristics of relevant tools should beconsidered. These characteristics are possible to becomposed or compounded together. The world coordinateswill be defined by using affine transformation in Eq. (2.26).



Fig. 2.24 The coordinate frame of robots in a scene. C
0

, C
1

, and C
2

 are cameracoordinate frames; R
1

 and R
2

 are robotic ordinate system

Fig. 2.25 Arm-type robots and the coordinate frames, where R
0

 and R
1

 arerobotic coordinate frames on the bases
(2.26)

where (ΔX,ΔY ,ΔZ) ∈ R

3 is the shift, θ ∈ R is the rotationalangle, and α ∈ R, β ∈ R, and γ ∈ R are the scaling factorsbetween two coordinate systems. This equation transformsthe 3D point 
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the identity matrix, and 
det (A) ≠ 0

. The affinetransformations are shown in Fig. 2.26.

Fig. 2.26 Affine transformation for the point P in two different coordinatesystems O
1

 and O
2If a camera on the robot is fixed, this forms a basicrelationship between the robot and the camera. A robotsystem must be kept in our mind fundamentally. There aremany robots, cameras, and objects in the same environment.The occlusion of obstacles needs to be avoided in case thatone blocks another [68], the position and orientation of thespatial object are related to a directed graph.An alternative representation of spatial relationships is adirected graph. In an environment, we need to understandthat there is a relationship between translation andorientation. Translation means shift from one place toanother, rotation refers to rotations along X, Y , or Z axis, andit is 3D-based. Between the spaces, we have a transitionmatrix.The object pose is varying as a function of time. With thedifference, object pose will have different trajectory.Trajectory, the temporal sequence of poses, smoothly changesfrom an initial pose to a final pose. The trajectory is atemporary sequence of poses from one place to another, mostchanges from the initial pose to the final pose. Given astarting point and the end point, between them, the rate ofchange of positions is temporal derivative



(2.27)
(2.28)The linear velocity is v

l

, and the angular velocity is v
a

.Correspondingly, we have linear acceleration a
l

 and angularacceleration a
a

. (2.29)(2.30)where s and w are the changes of positional translation androtational angle.We estimate the pose of moving objects. While the object ismoving, the key issue is that this object has velocities oftranslation and rotation instead of only one kind of velocities.The velocity of a linear segment increases its duration time.Given measurements from linear velocity and angular velocitysensors, the pose for a moving object is estimated. As thevelocity of linear segment increases, its duration decreases,and ultimately its duration would be zero. In fact, too high ortoo low speed, the maximum velocity will result in aninfeasible trajectory. A path is a locus in space that leads froman initial pose to a final pose [27]. A trajectory is a path withspecified timing. An important characteristic of a trajectory inrobotics is smooth [57].The trajectory has defined boundary conditions forposition, velocity, and acceleration. Smoothness means thatits first few temporal derivatives are continuous. Polynomialsare simple to be computed that can easily provide therequired smoothness and boundary conditions. There is aneed to move smoothly along a path through one or moreintermediates or via points without stopping. The trajectoryhas defined the boundary conditions for position, velocity, andacceleration. That means everything is under control.Fundamentally, smoothness reflects that the firstderivatives are existence and continuous. Polynomials aresimple to be computed that can easily unveil the required
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smoothness and boundary conditions [57]. The simple way tocontrol a robot is to harness polynomials. However,polynomials are hard to be controlled after degree 3 forinterpolating purpose [40]. (2.31)where a
n

≠ 0, a

i

,x ∈ R, n ∈ N . There is often a need to movesmoothly along a path through one or more intermediates orvia points without stopping. A trajectory is a piecewise curve[27, 73]. These points can control the curve, and the degreecannot be greater than four.
2.8 Lab Session: Mobile Arm with
MATLABInteractive design for a mobile manipulator with fouromnidirectional wheels [59] is split into four sections:Define a robot and environmentCreate a task and trajectory schedulerAdd core manipulator dynamics and design a controllerVerify complete workflow of the robot and environmentMATLAB provides the interactive design for mobilemanipulator. The manipulator provides Link1, Link2, andLink3. In most of the factories, we use robots to move theobject from one place to another. MATLAB has provided sucha robot, and the basic operations include:The first move position and the open gripsClose the ribs, and move the position to the placeApproach the position, and move to the place positionOpen the grip, and start from hereThe robot arms move to the designed position first, openthe gripper, and close the grip. This is a standard operation ofMATLAB examples, which has eight states. The last one wasto verify the completed work for a robot.
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At the end of this chapter, all readers are recommended tocomplete the lab report. Please fill in the form shown in Table2.1 after each lab session (2 hours).
Table 2.1 Lab report for robotic vision

Appendix: <Source codes with comments and line numbers>
An example of this lab report is:

Project title: Build basic rigid body tree models.
Project objectives: In order to demonstrate how toconstruct a simple robot arm with five degrees of freedom(DoF) by using the components of the rigid body tree robotmodel. The model constructed in this example is a typicalrobot arm.
Configurations and settings: MATLAB Online



Methods: (1) Create a rigid Body Tree robot model. (2)Create a series of linkages as rigid body objects. (3) Createcollision objects for each rigid body with different shapesand dimensions. (4) Add the collision bodies to the rigidbody objects. (5) Set transformations of the jointattachment between bodies. (6) Create an object array forboth the bodies and joints. (7) Visualize the robot model toconfirm the dimensions. (8) Use the interactive GUI to movethe model around. (9) View a list of the final treeinformation. (10) Move the interactive marker around totest different desired gripper positions.
Implementation steps:1. Create Rigid Body Elements 2. Attach Joints  3. Assemble Robot  4. Interact With Robot Model  
Testing steps:1. Verify Rigid Body Elements  2. Test Joint Connections  3. Validate Robot Assembly  4. Interact with the Robot Model  5. Simulation and Performance Testing 



Result analysis: The output images visually validate thecreation, assembly, and interactive capabilities of the robotarm, enhancing the written descriptions and confirming theproject’s objectives have been met.
Conclusion/reflection: The development of a basic rigidbody tree model of a robot arm is shown by using MATLAB.The detailed step-by-step implementation and testingprocedures highlight MATLAB’s capabilities for roboticmodeling and simulation. The absence of bugs or issuesindicates a robust and well-executed experiment.Additionally, the integration of a GUI for interactionsignificantly enhances the model’s practical applicability inreal-world scenarios.
Readings: https:// au. mathworks. com/ help/ robotics/ ug/ build-basic-rigid-body-tree-models. html

2.9 Exercises
Question 2.1 Why the Braitenberg vehicle is the simplestrobot? What are the features of Braitenberg vehicle?
Question 2.2 What is automaton in computer science?
Question 2.3 What are the differences betweenprobabilistic road map and Voronoi road map?
Question 2.4 Why dead reckoning algorithm is stilleffective in the navigation for mobile robots?
Question 2.5 What is the full autonomy in robotics?
Question 2.6 Regarding robotic arm, how many degrees offreedom (DoF) of each joint at most has?
Question 2.7 What is the relationship between ForwardKinematics (FK) and Inverse Kinematics (IK)?

https://au.mathworks.com/help/robotics/ug/build-basic-rigid-body-tree-models.html


Question 2.8 How many numbers of axes is suitable for ahumanoid robot?
Question 2.9 What are the differences between the numberof axes and degree of freedom (DoF)?
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3. Image Processing for Robotics
Wei Qi Yan1  Department of Computer and Information Sciences, AucklandUniversity of Technology, Auckland, New Zealand 
AbstractIn this chapter, robotic vision is elucidated from the aspects of cameracalibration, digital image formation, and image processing. Starting fromimage formation of digital cameras, we form the images and exploretheir properties, and finally image processing at semantic level isdetailed. The significance of this chapter is that we depict computervision with image processing for robotics.

3.1 Fundamentals of Image FormationIn human vision, our eyes are a type of effective sensors for objectdetection and recognition, robotic navigation, obstacle avoidance, etc.[16]. Compared to our ears, our human eyes are more critical organwhich can receive over 75% information. Cameras mimic the function ofhuman eyes. In robotics, digital cameras are harnessed as robotic eyes[10], and cameras are taken into account to create vision-basedcompetencies for robots [16]. We take into consideration of digitalimages to detect and recognize objects and navigate robots within thegiven real world. While robots are moving around world [27], the worldis sensed by using robotic vision [16] to obtain real reality, and visualobjects are sought on the images [19]. Robots armed with vision andintelligence could greatly reduce our human labors [22], such as theoperation: pick and place. The technological development has made thisfeasible for robots to facilitate with cameras. A group of new emergingalgorithms, cheap sensors, and plentiful computing power make camerasas a practical and applicable sensor.Vision takes its effect through natural light. Generally,electromagnetic radiation (EMR) is classified by wavelength into radiowaves, microwaves, infrared, the visible spectrum that our eyes perceiveas light, ultraviolet, X-rays, and gamma rays. The light spans the visible
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spectrum which is usually defined as having wavelengths in the range of400–700 nanometers (nm) as shown in Fig. 3.1. The frequencies ofinfrared rays are up to 1,050 nm; children and young adults mayperceive ultraviolet wavelengths down to about 310–313 nm.

Fig. 3.1 The visible spectrumOur human eyes see colors in the limited range of wavelength withvisible reflection light and visible object. If ultraviolet (UV) and infraredrays could not be viewed by digital cameras or robotic vision, the imagewill be rendered by using visualization [28, 32]. In robot and humanperception, the information such as size, shape, and position of visualobjects, as well as other characteristics such as color and texture [10], isdeduced. The colors enclose binary color, grayscale color, and real color.Binary color only has two colors: black and white [23–25]. In grayscaleimages, the intensities of red color, green color, and blue color are thesame or similar. Color and texture are thought as visual features ofdigital images. Nowadays, the images from digital cameras are with realcolors at retina level.A simple pinhole is able to create an inverted image on the wall of adarkened room. When the sun rays pass through a hole, it will form animage on wall. In a digital camera, a glass or a plastic lens forms animage by using its semiconductor chip with an array of light-sensitivedevices to convert light to an image. The chips are valuable, and thereare challenges to develop new chips. The process of image formationinvolves a projection of the 3D world onto a 2D surface. In the real world,all objects are three-dimensional, but on images, the objects are two-dimensional only. On the given images, the depth information isdisappeared. It is not possible to observe from the image whether theobject is a large one in distance or a small one which is closer to the realobject. From optic physics, z coordinate of an object and its image areformed by using the lens law as shown in Fig. 3.2.



Fig. 3.2 The formation of images in geometry optics (3.1)where z
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2, after taken a photograph byusing Eq. (3.2).
(3.2)

where 
(x, y)

 is the pixel location on the given image, 
(X,Y ,Z)

 is a pointof visual object in 3D space, and Z ≠ 0 is the depth.
3.2 Camera CalibrationRegarding robotic vision [16], we set up a group of cameras and gaugethe 3D space [10]. Camera calibration is a conventional way to sense andmeasure the 3D world. The calibration is the process of determining thecamera’s intrinsic parameters and the extrinsic parameters with respectto the world coordinate system. It relies on a set of world points whoserelative coordinates are obtained and whose corresponding image planecoordinates are also gained. Camera calibration establishes acorrespondence between real-world space and image space. The intrinsicparameters, including distortion parameters, can be harnessed toestimate the relative pose of chessboard in each image. However,classical calibration demands a 3D target or 3D object. Hence, (3.3)(3.4)
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(3.5)where 
R

 is the rotation matrix, 
T

 is the translation matrix, and 
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 iscalled the rotation-translation matrix. Hence, (3.6)where 
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2 is the focallengths expressed in pixel-related units; and A is a camera matrix or amatrix of intrinsic parameters. The joint rotation-translation matrix[R|T]is named as a matrix of extrinsic parameters. The steps of cameracalibration for correcting image distortion are listed as follows:Corner extractionPoint orderingPoint correspondencesBundle adjustmentsIf we have four images from four cameras, namely images I
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, respectively, the problem isstill about how to find the parameters of cameras and parameters of 3Dobjects.In the environment as shown in Fig. 3.3, no matter how the objectsmove or no matter how the cameras shift, the locations are promptlyacquired from the environment. Especially in camera calibration, weshould have a chessboard with a grid layout as shown in Fig. 3.4.

Fig. 3.3 A multiple cameras environment for camera calibration
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Fig. 3.4 Our chessboard for camera calibrationIn camera calibration, the first step is for corner extraction. Thecorners are the intersection between edges. A corner in an image isdetected at a pixel location where two edges of different directionsintersect [17]. Corners usually lie on high-contrast regions of image. Acorner pixel has surroundings varying from all of its near neighbors inomni-directions. If the corners are attained, the points are sorted in aproper sequence. Thus, the correspondences of these corners areearned. From a robot’s view, what our human sees is not matched withwhat the camera captured [29]. As the summery, the camera calibrationin pseudocode is shown in Algorithm 9.
Algorithm 9: Camera calibration

3.3 Essentials of Image Processing



After camera calibration, image processing [10] will be conducted. Adigital image is a rectangular array of picture pixels. Robots alwaysgather imperfect images of the world with artifacts due to noise, shadow,reflection, uneven illumination [22], etc. The image processingalgorithms operate pixelwise on a single image or a pair of images or ona group of pixels within an image [21, 31, 33]. The image processing hastwo categories:
Monadic operations: Each output pixel is based on a function ofcorresponding input pixel. For example, histogram normalization onlytakes pixel intensities into consideration, the results of statistics showhow the values of pixels are distributed on the range from 0 to 255,and the number with the same values of pixels will be counted. Inhistogram normalization, all the values of histograms will be mapped tothe interval 

[0, 1]

.
Spatial operations: Each pixel in the output image is a function of allpixels in a region surrounding the corresponding pixel in the inputimage; a typical example is convolution operation [30]. The convolutionis a linear spatial operation, and the kernel of convolution operationusually is a standard Gaussian distribution.

(3.7)where K is the convolution kernel, and W is the image window. Hence,(3.8)where ⊗ is the convolution operator. Gaussian kernel is symmetric: (3.9)where σ ∈ R is the parameters of standard deviation.Filters are designed to respond to a variety of edges at any arbitraryangle of digital images. For example, Sobel kernel is considered as animage edge detector.
(3.10)
(3.11)

where I is the source image, G
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y

 are two matrices which ateach point contain the horizontal and vertical derivative approximations,respectively, and “∗” denotes the 2D convolution operation.Canny edge detector [9] is an edge detection operator that takes useof a multistage algorithm to detect a wide range of edges in images
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which was developed in 1986 [18]. The advantages of Canny edgedetector are (1) detection of edge with low error rate, (2) the pointdetected from the operator could accurately localize on the center ofedges, and (3) the image noise should not create false edges. Gaussianfilter is employed to smooth the image in order to remove noise. A 5 × 5Gaussian filter is given as
(3.12)

Hence, the gradient and the direction of edges are determined byusing Eqs. (3.13) and (3.14). (3.13)where ▽G = (G
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atan2(⋅)

 is the arctangent function for calculating theedge direction angle θ which is rounded to one of the four anglesrepresenting vertical, horizontal, and two diagonals, namely 0∘, 45∘, 90∘,and 135∘. The Canny detector [9] applies double threshold to determinepotential edges and finalizes the detection of edges by suppressing allother edges that are weak and not connected to strong edges.In computer vision and image processing, blob detection methods aimat detecting regions in a digital image that differ in properties, such asbrightness or color, compared to surrounding regions [20]. The mostpopular method for blob detection is implemented by using convolutionoperations. There are two main classes of blob detectors: (1) thedifferential methods based on derivatives of the function with respect toposition and (2) the local extrema methods based on finding the localmaxima and minima of the function. Blob detection is often employed inobject detection and recognition, medical imaging, and key pointdetection.A silhouette refers to a solid and shape-based representation of anobject or subject, typically shown as a dark shape on a lighterbackground. A silhouette image is represented as a solid shape of asingle color which is related to image binarization in image processing[14]. The interior of a silhouette is featureless. Silhouette sequences are
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applied to object tracking, shape matching, 3D reconstruction, andaction classification.In image template matching, it is easy to find which parts of the inputimage are most similar to the template [34]. Each pixel in the outputimage is rendered by using (3.15)where T is the template, and W is the window centered at
(u, v) ∈ R

2

,u, v ∈ R, in the input image I. The function s(I
1

, I

2

) is ascalar measure that describes the similarity of two equally sized images
I

1

 and I
2

. The difference between two images is the sum of absolutedifferences (SADs) as shown in Eq. (3.16) or the sum of squareddifferences (SSDs) as shown in Eq. (3.17). These metrics are zero if theimages are identical. The similarity NCC (Normalized Cross-Correlation)is calculated by using Eq. (3.18). (3.16)
(3.17)
(3.18)

3.4 Image MorphologyImage morphology is concerned with the form or shape of visual objectsin an image (binary color) [8]. In morphological operations, erodedimage is marked in blue as shown in Fig. 3.5. If B (Green) is completelycontained by A (Red), the pixel is retained or else deleted.

Fig. 3.5 The erosion operation of images
In morphological operations [8], the dilated image is marked in blue.Each pixel in A (red) with “1” will be superimposed with B (Green). All
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pixels after superimposed with B (green) are encapsulated in the dilation(blue) (Fig. 3.6).

Fig. 3.6 The dilation operation of imagesIn morphological operations, the sequence of operations, namelyerosion then dilation, is known as opening. The sequence in the inverseorder, dilation and then erosion, is the closing procedure as shown inFig. 3.7.

Fig. 3.7 The closing operation of images
Image skeletonization extracts the center line while preserving thetopology of visual objects, as shown in Fig. 3.8. Image transformation isemployed iteratively with a variety of structuring elements to conductoperations such as skeletonization and linear feature detection.



Fig. 3.8 The skeletonization operation of imagesImage warping is a transformation of pixel coordinates as shown inFig. 3.9. Mathematically, the image warping is based on bilinearinterpolation. The interpolation as a whole is not linear but ratherquadratic in the sample location.

Fig. 3.9 The warping operation of images
In image processing, bilinear interpolation [13] is employed toresample images and textures. The algorithm is applied to map an imagepixel location to a corresponding point on the texture map. Assume wehave the four points (i.e., top-left point, bottom-left point, top-right point,and bottom-right point) of image I

1

: P
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, and theother image I
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 has the corresponding points: P′
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BL
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, and P′

BR

.Hence, the correspondences are established. (3.19)and (3.20)where 
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 and 
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 are the corresponding points on the two images,respectively, 
s ∈ [0, 1]

, 
t ∈ [0, 1]

. Thus, we render a pixel based on thecolor of the other image. The corresponding pseudocode is shown inAlgorithm 10.
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Algorithm 10: Bilinear interpolation for image pixel mapping

3.5 Feature Extraction for Object Detection
and RecognitionIn terms of visual features such as object size, position, and shaperelated to robotics, all features could be written in vectors for computing[10], and thus we have the following:

Bounding Box is the smallest rectangle that encloses the region andthe position of visual object. Intersection over Union (IoU), also known asJaccard index, is a metric to evaluate the accuracy of object detectionand recognition, as well as image segmentation algorithms by measuringthe overlap between predicted and ground truth regions.
Moment is a computationally cheap class of image features thatdescribe region size and location as well as shape in invariant way. In agrayscale image with pixel intensity 
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 are calculated by (3.21)
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The moments are well known for applications in image analysis, sincethey are employed to derive invariants with respect to specifictransformations [14]. The invariance is that the shape of an object isinvariant to image operations such as image translation, image rotation,and image scaling.The typical examples of invariance are interest points and corners ofimages. An interest point of image is the intersection of edges that has ahigh gradient in orthogonal directions. Corners are computed fromimage gradients and robust to offsets in illumination, and the structure isinvariant to the rotation of visual objects. Relative positions betweencorners in the scenes should not change. Corners are invariant toscaling, orientation, and distortions. They are robust and scarcelyaffected in computer vision [19].Hough transform estimates the direction of lines by fitting the lines tothe edge pixels [11]. There are numerous lines passing through thatpoint. If the points could vote for these lines [12], then each possible linepassing through the point would receive one vote [7]. In Fig. 3.10, thedistance is calculated from the origin to the straight line, and the slope iscalculated because the two lines are perpendicular. MATLAB providesthe Hough transform algorithm [15].

Fig. 3.10 Hough transform



Algorithm 11: Hough transform for line detection

Figure 3.11 shows the algorithm for line detection by using Houghtransform in the platform OpenCV. More generally, the Hough transformalgorithm for line detection is depicted in Algorithm 11. Figure 3.13shows the algorithm for circle detection [7]. The source code in Pythonfor implementing the circle detection by using Hough transform is shownin Fig. 3.12.

Fig. 3.11 Line detection using Hough transform in OpenCV



Fig. 3.12 The source code in Python for circle detection using Hough transform in OpenCV

Fig. 3.13 Circle detection using Hough transform in OpenCV
3.6 Image Processing with MATLABMATLAB image processing is a set of techniques for manipulating andanalyzing 2D images and 3D volumes [15]. It is employed in variousindustries, such as photography, medicine, robotics, and remote sensing.MATLAB Image Processing Toolbox assists us to enhance, filter, denoise,register, and segment images and volumes with cloud computing



supports. MATLAB Online is cloud-based software, and it has no suchproblems as system configurations, script files copying, and datasetsmoving.In binary images, image data is stored as logical matrix, and its values0 and 1 are interpreted as colors black and white, respectively. Inindexed images, image data is stored as numeric matrix, and theelements are direct indices in a color map. In grayscale images, imagedata are stored as a numeric matrix, and its elements specify intensityvalues. In true color images, image data are stored as numeric arraywhose elements are from the intensity values of one of the three colorchannels, i.e., red (R), green (G), and blue (B).In multispectral images and hyperspectral images [1–6, 26], imagedata is stored as an m× n× c numeric array, where c is the number ofcolor channels. In labeled images, the image data are stored as thenumeric matrix of nonnegative integers.Regarding image dilation in MATLAB, with respect to a binary image,a pixel is set to 1 if any of the neighboring pixels have the value 1.Pertaining to image erosion, in a binary image, a pixel is set to 0 if any ofthe neighboring pixels have the value 0. In image opening, the openingoperation erodes an image and then dilates the eroded image by usingthe same structuring element for both operations. In image closing, theclosing operation dilates an image and then erodes the dilated image byusing the same structuring element for both operations.In MATLAB, camera calibration is the process of estimating cameraparameters by using images that contain a calibration pattern. Thecamera parameters are applied to remove distortion effects from animage, measure planar objects, reconstruct 3D scenes from multiplecameras, etc. The steps for camera calibration in MATLAB include:Prepare camera and capture images for camera calibration [29].Add image pairs and select camera model.Calibrate multiple cameras.Evaluate the calibration results.Improve the calibration if necessary.Export the camera parameters.
3.7 Lab Session: Implmenting Camera
Calibration with MATLABAt the end of this chapter, we would like to recommend all readerscomplete the lab report. Please fill in the form shown in Table 3.1 aftereach lab session (2 hours).
Table 3.1 Lab report for robotic vision



Appendix: <Source codes with comments and line numbers>An example of this lab report is:
Project title: Assessing and Enhancing Camera Calibration Accuracy
Project objectives: (1) Plot the relative locations of the camera andthe calibration pattern. (2) Calculate the re-projection errors. (3)Calculate the parameter estimation errors.
Configurations and settings: (1) Modify calibration settings. (2)Exclude images that have high re-projection errors and recalibrate. (3)Modify calibration settings.
Methods: Camera calibration is the process of estimating parametersof the camera by using the images of a special calibration pattern. Theparameters include camera intrinsics, distortion coefficients, andcamera extrinsics. Once a camera is calibrated, there are multipleways to evaluate the accuracy of the estimated parameters: (1) Plot therelative locations of the camera and the calibration pattern. (2)Calculate the re-projection errors. (3) Calculate the parameterestimation errors.
Implementation steps:1. Capture calibration images.  



2. Detect calibration pattern.  3. Generate world coordinates.  4. Estimate camera parameters.  5. Evaluate calibration accuracy. 6. Re-projection errors.  7. Estimation errors.  8. Improve calibration.  
Testing steps:1. Check Extrinsics: looking for logical camera and pattern positions  2. Analyze Re-projection Errors: ensuring errors; exclude images withhigh errors  
3. Review Estimation Errors: confirming errors within acceptablelimits  
Result analysis: We improve calibration accuracy; whether or not aparticular re-projection or estimation error is acceptable depends onthe precision requirements of particular application. (1) Modifycalibration settings. (2) Take more calibration images. (3) Excludeimages that have high re-projection errors and recalibrate.
Conclusion/reflection: Accurate camera calibration is vital forreliable measurements; regular evaluation and refinement ensureprecision in computer vision tasks.
Readings: https:// au. mathworks. com/ help/ vision/ ug/ evaluating-the-accuracy-of-single-camera-calibration. html.

3.8 Exercises
Question 3.1 What is the relationship between camera calibration andstereo vision?

https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html


Question 3.2 Why do we study image morphology?
Question 3.3 Why robots cannot always gather imperfect images fromthe real world?
Question 3.4 Why Kalman filtering essentially is a linear algorithm?
Question 3.5 In camera calibration, how many images at least we needto collect?
References1. Al-Sarayreha M (2020) Hyperspectral imaging and deep learning for food safety. PhD Thesis.Auckland University of Technology, New Zealand2. Al-Sarayreh M, Reis M, Yan W, Klette R (2017) Detection of adulteration in red meat speciesusing hyperspectral imaging. In: Pacific-rim symposium on image and video technology, pp182–1963. Al-Sarayreh M, Reis M, Yan W, Klette R (2018) Detection of red-meat adulteration by deepspectral–spatial features in hyperspectral images. J Imag 4(5):63[Crossref]4. Al-Sarayreh M, Reis M, Yan W, Klette R (2019) Deep spectral-spatial features of snapshothyperspectral images for red-meat classification. In: International conference on image andvision computing new Zealand5. Al-Sarayreh M, Reis M, Yan W, Klette R (2019) A sequential CNN approach for foreign objectdetection in hyperspectral images. In: International conference on computer analysis ofimages and patterns, pp 271–2836. Al-Sarayreha M, Reis M, Yan W, Klette R (2020) Potential of deep learning and snapshothyperspectral imaging for classification of species in meat. Food Control 117:107332[Crossref]7. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. PatternRecog 13(2):111–122[Crossref]8. Boomgaard R, van Balen R (1992) Methods for fast morphological image transforms usingbitmapped binary images. Graph Models Image Process 54(3):252–258[Crossref]9. Canny JA (1986) Computational approach to edge detection, IEEE Trans Pattern Analy MachIntell 8(6):679–698[Crossref]10. Corke P (2017) Robotics, vision and control, 2nd edn. Springer Nature, Berlin[Crossref]11. Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves inpictures. Comm ACM 15:11–15[Crossref]12. Fernandes F, Oliveira M (2008) Real-time line detection through an improved Houghtransform voting scheme. Pattern Recogn 41(1):299–314

https://doi.org/10.3390/jimaging4050063
https://doi.org/10.1016/j.foodcont.2020.107332
https://doi.org/10.1016/0031-3203(81)90009-1
https://doi.org/10.1016/1049-9652(92)90055-3
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1145/361237.361242


[Crossref]13. Foley van D (1996) Computer graphics: principles and practice, 2nd edn. Addison-Wesley,Boston14. Gonzalez R, Woods R (2001) Digital image processing. Prentice Hall, Upper Saddle River15. Gonzalez R, Woods R, Eddins S (2020) Digital image processing using MATLAB. GatesmarkPublishing, Knoxville16. Haralick RM, Shapiro L (1992) Computer and robot vision. Addison-Wesley Longman, London17. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the4th Alvey vision conference, pp 147–15118. Hu X (2017) Frequency based texture feature descriptors. PhD Thesis, Auckland University ofTechnology, New Zealand19. Klette R (2014) Concise computer vision: an introduction into theory and algorithms.Springer-Verlag London, London[Crossref]20. Lindeberg T (1993) Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int J Comput Vision 11(3):283–318[Crossref]21. Liu Z, Yan W, Yang B (2018) Image denoising based on a CNN model. In: Internationalconference on control, automation and robotics22. Murphy R (2019) Introduction to AI robotics, 2nd edn. Bradford Books, Bradford23. Pan C, Yan W (2018) A learning-based positive feedback in salient object detection. In:International conference on image and vision computing New Zealand.24. Pan C, Yan W (2020) Object detection based on saturation of visual perception. MultimediaTools Appl 79(27–28):19925–19944[Crossref]25. Pan C, Liu J, Yan W, Zhou Y (2021) Salient object detection based on visual perceptualsaturation and two-stream hybrid networks. IEEE Trans Image Process 30:4773–4787[Crossref]26. Reisa M, Beersd R, Al-Sarayreh R, Shortenb R, Yan W, Saeysd W (2018) Chemometrics andhyperspectral imaging applied to assessment of chemical, textural and structuralcharacteristics of meat. Meat Sci 144:100–109[Crossref]27. Siegwart R, Nourbakhsh I, Scaramuzza D (2004) Introduction to autonomous mobile robots.MIT Press, Cambridge28. Wang Y, Yan W (2022) Colorising grayscale CT images of human lungs using deep learningmethods. Springer Multimedia Tools Appl 81:37805–37819[Crossref]29. Yan WQ (2019) Introduction to intelligent surveillance: surveillance data capture,transmission, and analytics. Springer, Berlin[Crossref]30. Yan WQ (2023) Computational methods for deep learning: theory, algorithms, andimplementations, 2nd edn. Springer, Berlin[Crossref]

https://doi.org/10.1016/j.patcog.2007.04.003
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.1007/BF01469346
https://doi.org/10.1007/s11042-020-08866-x
https://doi.org/10.1109/TIP.2021.3074796
https://doi.org/10.1016/j.meatsci.2018.05.020
https://doi.org/10.1007/s11042-022-13062-0
https://doi.org/10.1007/978-3-030-10713-0
https://doi.org/10.1007/978-981-99-4823-9


31. Yan W, Kankanhalli M (2002) Detection and removal of lighting & shaking artifacts in homevideos. In: ACM international conference on multimedia, pp 107–11632. Yan W, Kankanhalli M (2003) Colorizing infrared home videos. In: International conferenceon multimedia and expo, pp 97–10033. Yan W, Kankanhalli M, Wang J (2005) Analogies-based video editing. Multimedia Syst11(1):3–18[Crossref]34. Zhao H, Xu S, Yan W, Xu D (2025) Design and optimization of target detection and 3Dlocalization models for intelligent muskmelon pollination robots. Horticulturae 11(8):905[Crossref]

https://doi.org/10.1007/s00530-005-0186-3
https://doi.org/10.3390/horticulturae11080905


(1)

© The Author(s), under exclusive license to Springer Nature Singapore PteLtd. 2026W. Q. Yan, Robotic Vision, Advances in Computer Vision and PatternRecognitionhttps://doi.org/10.1007/978-981-95-4360-1_4
4. Stereo Vision and 3D
Reconstruction
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, NewZealand 
AbstractOur living world is 3D naturally, and our human beings useeyes to percept this world, which are equivalent to stereocameras in cyberspace. In this chapter, three concepts areintroduced with the fundamental knowledge: stereo camera,stereo vision, and 3D reconstruction. Finally, the 3D sceneis constructed by using sensors to observe this environment.The significance of this chapter is that we reconstruct the3D scene and take advantage of stereo vision for probingrobotic view.
4.1 Stereo Camera and Stereo VisionIn this section, we see how cameras are applied to captureimages [31, 32], how 3D space is understood through theseimages, how our human eyes watch the world, and how therobots sense the environment using visual sensors [4].Figure 4.1 shows a 3D stereo camera made by Fuji film.The first digital camera was manufactured by SonyCooperation in 1981. It is called CCD camera, namely

https://doi.org/10.1007/978-981-95-4360-1_4


charge-coupled device. By using this digital camera, the keyfunction is to convert natural light to pixel signals. That isthe reason why CCD cameras can capture the image fromour real world. Then, it has been designed and made withcolor accuracy. A right color is sensed with the CCD chips,and it has no or has less coloring bias or mistakes.

Fig. 4.1 Fuji film stereo cameraDigital camera lens has not distortion problem. Like ourmobile phones, usually our photographs are taken with anaspect ratio, usually 4:3 or 16:9. The aspect ratio is the ratiobetween the width and the height of a given image [36].This aspect ratio is closely related to image resolution.Currently, a video resolution is 1,080 lines, which is thestandard 1K resolution. With the development of videotechnology, we have 4K and 8K display technology becausethe screen size is large enough. A large screen can displayimages clearly. If the resolution is low, the details of imageswill be lost. Previously, our TV sets are 18 inches or 24inches, and up to date, most of them are more than 100inches.In color expression, the concept “bit depth” shows howmany bits are adopted to store the color values of one pixel.A pixel color usually has 256 options, and the bit depth is 8,i.e., 28 = 256. That means we have 256 colors to be shown



on an image concurrently. Thus, the bit depth indicates thedisplay capability of a screen [41].Dynamic range refers to our cameras which can displayvarious colors in a short time. In one image, the colors maybe completely white; in another image, the colors may becompletely dark. Thus, no matter how an image iscompletely white or dark [42], the dynamic range colors canbe displayed by using spectrum wave length.A digital camera may have the functions: pan, tilt, andzoom, and we call the camera as pan–tilt–zoom camera orPTZ camera. Panning means the direction of our camera canpoint from left to right or from right to left. Naturally, thedirection of our camera can scan up or down. Insurveillance, the cameras are automatically controlled byusing panning and zooming; zooming encapsulates zoomingin and zooming out. The functions of cameras areimplemented in hardware [40, 41].Digital cameras can sense the colors ranging from thevisible wave length. Our human eyes cannot see infraredrays and ultraviolet (UV) light. The images from the UV andinfrared rays can be visualized by using specific algorithms.No matter which digital camera is utilized to take aphotograph, the central projection must be followed. If acamera is utilized to take a photograph, the pixel location onthe image will have the corresponding point in 3D space. Incentral projection, (4.1)where (X
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image, and the other is the right one as shown in Fig. 4.2.The two images have identical size and parallel optic axes.The two optic axes are pointed in the same direction. Thetwo coplanar images have the identical size, and the twolenses in stereo camera have the parallel optic axes. Theangle between the two axes is zero. The two lenses have theidentical focal length. The two images have the collinearimage rows, which means the y coordinate of twocorresponding pixels in the two images should be the same.(4.2)and (4.3)where b ∈ R is the base distance of the stereo system,
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Fig. 4.2 The stereo vision from stereo camerasIntrinsic (internal) parameters enclose focal length,aspect ratio, radial distortion parameters, scaling factors,coordinates of the principal point, etc. Extrinsic parametersencompass poses of camera [6], such as location anddirection. In camera calibration [2, 39, 42], epipolargeometry indicates the two cameras with associatedcoordinate frames and image planes. It represents the caseof two cameras simultaneously by viewing the same scene[40]. In the epipolar plane, a world point is projected ontothe image planes of the two cameras at two pixelcoordinates, respectively, known as conjugate pixels. Givena point in one image, the conjugate pixels are constrained tolie along a line in the other image.Stereo vision is employed for estimating 3D structurefrom two images by using two different viewpoints withapproaches: sparse stereo and dense stereo [15]. Sparsestereo is a natural extension about feature matching andrecovers the world coordinate for each corresponding pointpair. Dense stereo recovers the world coordinate for everypixel in the image. A stereo pair is taken by using twocameras, generally with parallel optical axes, and separatedby using a known distance referred to the camera baseline.The camera baseline means that there is a distance betweenthe two cameras.For the parallel-axis camera geometry, the epipolar linesare parallel and horizontal, and the conjugate pixels havethe same vertical coordinate. The displacement along the



horizontal epipolar line is called disparity. The disparity isan important concept in stereo vision [37]. The epipolarconstraint means that only 1D search is needed for thecorresponding point. Our search is limited in x-axisdirection with the fixed y. The design of a stereo visionsystem [37] has three constraints: (1) baseline distance, (2)disparity search range, and (3) template size.In anaglyphs, human stereo perception of depth workswell because each eye views the scene from a uniqueviewpoint. The key in all 3D display is to take the imagesfrom two cameras, with a similar baseline to human eyesand present those images to the corresponding eyes. Theadvantage of anaglyphs is that the images can be printed onpaper or projected onto ordinary movie film, while beingviewed with simple and cheap glasses. Stereo cameras arebuilt accurately to ensure that the optical axes of thecameras are parallel.In robotic vision [10], a robot moves on a plane. Aparticular feature point lies on the ground or the top of adoorway, such as a vacuum robot. The view is upward [4,29]. The magnitude of camera translational motion, at eachtime, is estimated from essential matrix and the groundtruth. In a camera coordinate system, the unknown visiblepoint (X
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Stereo pairs are already geometrically rectified andpreprocessed for reducing brightness issues. Correspondingpixels are expected to be in the left and right images at thesame image row. Regarding a pixel 
(x, y) ∈ R

2 in a baseimage B, we search for a corresponding pixel
(x+ d, y), d ∈ R

, in the match image 
M

, based on the sameepipolar line identified by row y. The two pixels arecorresponding if they are projections of the same point
(X,Y ,Z)

⊤, where d > 0 is the disparity. We initiate asearch by selecting the point 
(x, y)

 in 
B

. This defines thesearch interval of point (x+ d, y) in M with
max (x− d, 1) ≤ x+ d

. With regard to identifycorresponding points, a straightforward idea is to compareneighborhoods, namely rectangular windows for simplicity,such as 8 × 8 or 16 × 16 around a pixel p in the image I.Global matching (GM): An area is approximated by usingtime-expensive control structure of a stereo matcher.Local matching (LM): An area of influence is bounded byusing fixed constant.Semi-global matching: We take more pixels into accountthan the local approach, but not yet as much as a globalapproach.The complexity of semi-global matching is betweenglobal matching and local matching [38], The third-eyemethod includes mapping a reference image of a pair ofstereo camera into the pose of a third camera, measuringthe similarity between created virtual image and theactually recorded third image. The outline of the third-eyemethod is as follows:Record stereo data with two cameras, and calculatedisparities.Have a third calibrated camera looking into the samespace as the other two cameras [13].



Use the calculated disparities for mapping the recordedimage of the left camera into the image plane of the thirdcamera, and create a virtual image.Compare the virtual image with the image recorded byusing the third camera.If the virtual images from the third camera basicallycoincide, then the stereo matcher provides “useful”disparities [13].By using the third-eye method, the disparity map and thedepth map of the given scene are calculated and shown inAlgorithm 12.
Algorithm 12: The third-eye stereo vision algorithm
for depth estimation
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∈ R [11]. The base distance
b ∈ R, the focal length f

T

∈ R, and the disparity d > 0 areprovided by using the given stereo matcher:



(4.15)and (4.16)Therefore, (4.17)If X =

b⋅x

d

, Y =

b⋅y

d

, Z = f ⋅

b

d

, d ≠ 0, then (4.18)and (4.19)where f ⋅ b− d ⋅ t

Z

≠ 0.Let Ω
t

∈ R be the set of pixels that are employed for thecomparison with regard to video frames at time t ∈ R. Themeans are μ
V

 and μ
T

, respectively, and the standardvariations are σ
V

 and σ
T

 for the virtual V (p) and the thirdimage T (p) at time t, respectively. Hence, the NormalizedCross-Correlation (NCC) is calculated as shown in Eq.(4.20). The NCC is employed to compare the performance ofstereo matches based on long sequences. (4.20)
4.2 3D ReconstructionThe surface S is known as border of the existing 3D objectin the real world; we usually have two kinds of gap-freesmooth surfaces: (1) Continuous derivatives exist and (2)the existence of a neighborhood in S. The typical one is theMöbius strip as shown in Fig. 4.3, and the derivatives existeverywhere.
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Fig. 4.3 The smooth surface: Möbius stripGap-free polyhedral surfaces have two groups: (1)discontinuities at edges and (2) the existence of aneighborhood in S. The typical one is the tetrahedron. Theexplicit representation of function 
F(⋅)

 is 
Z = F(X,Y )

,
X,Y ,Z ∈ R. The equation of a straight line is y = ax+ b,
a, b ∈ R. The implicit representation is F(X,Y ,Z) = 0, forthe straight line, and the equation is Ax+By+ C = 0,
A,B,C ∈ R

. The gradient of a surface 
Z = F(X,Y )

 is thevector given by (4.21)In the case of plane aX + bY + Z = c, (4.22)The normalized vector is
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(4.23)Let P = (a, b, 1)

⊤ be the surface normal vector of avisible and illuminated surface at point P (4.24)On one surface [7], there are numerous norm vectors.The emitted light at the point P is scaled by (4.25)where E
L

∈ R was defined as a light source energy, whichis reflected at P uniformly into all directions of ahemisphere. (4.26)where R(P) ≥ 0 is the reflectance function.Lambert’s cosine law is employed to render a geometricmodel as shown in Fig. 4.4. In this law, only norms areconsidered in this model [8]. There are two kinds ofsurfaces, i.e., mirror surface and rough surface. Thesesurfaces are related to surface materials. The source code inPython for generating Fig. 4.4 is shown in Fig. 4.5. Thecorresponding pseudocode is shown in Algorithm 13.
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Fig. 4.4 A sphere rendered by using Lambert cosine law in Python

Fig. 4.5 The source code of Lambert cosine law in PythonFor an example, if the light color is C = (255, 255, 255),computing with Lambert’s cosine law, α =

π

3

, thereflectance 
C

R

= C⋅ cos (

π

3

)

 is obtained. The light intensityis 
C

R

= (127.5, 127.5, 127.5)

 if 
η(P) = 1.0

.
Algorithm 13: Lambertian reflectance for diffuse
shading



4.3 Applications of Stereo VisionStereo vision plays a crucial role in robotic navigation[16],robotic planning, and scene understanding, offering depthperception and 3D spatial awareness [46]. The applicationsin these fields are listed as below.
4.3.1 Applications of Robot NavigationStereo vision [30, 31] provides depth information that helpsrobots deeply understand the environment, make plans,design routines, and navigate effectively. The keyapplications include:In obstacle avoidance, robots can detect obstacles andestimate their distance, allowing for real-time path planningin cluttered environment [28]. If a map has been generated,the obstacle avoidance is assumed to be relatively easy. Byusing localization and mapping (SLAM), stereo camerascontribute to 3D map generation and aid autonomousnavigation. In outdoor environments, based on sceneunderstanding, for example, stereo vision assists us toestimate road surface for safe travel.In stereo vision [31–34], the problem is human-robotinteraction, it needs to detect humans actions and theirmovements, and it enables the interaction in shared spaces.The principle of human-robot interaction (HRI) revolves the



designing issues that can effectively and safely collaboratewith humans.
4.3.2 Applications in Deep Scene
UnderstandingThe interfaces of ChatGPT (OpenAI) and Gemini (Google)have extremely attracted our eyeballs. In the latest design,how to make use of chatbot software to control robots is aninteresting research direction. In scene understanding, thestereo vision will set a knowledge base, and it conveysrobots what the environment is and how can set up such aconversion environment by using chatbots such as Geminior ChatGPT. The corresponding Chain-of-Thought (CoT) isestablished. The outputs of chatbots could be filtered andutilized to control agents. Furthermore, the unknown worldwill be explored and understood by using conversations.Figure 4.6 shows the interface of Google Gemini. FromGoogle image search, we obtain the results as shown in Fig.4.7. This example shows chatbots have the ability to exploremuch broader content based on visual information, whilesearch engines could not completely understand theassigned tasks.



Fig. 4.6 The interface of chatbot: Google Gemini



Fig. 4.7 The interface of Google image searchChatbots are distinctive from soft robots [5, 35, 43]. Softrobotics, inspired by biology [12], concerns the design,control, and fabrication of robots composed of compliantmaterials [14]. The goal of soft robotics is the design andconstruction of robots with physically flexible bodies andelectronics. All soft robots facilitate an actuation system togenerate reaction forces, and it is admitted for movementand interaction with its environment. Soft robots are muchsafer for human and robot interaction and for internaldeployment inside a human body [1, 3] for medicalapplications [44, 45].
4.3.3 Applications in Visual Object RecognitionStereo vision enhances visual object recognition byproviding 3D shape and depth information [9], improvingaccuracy over 2D image processing from all aspects ormultiple views. The basic applications should include 3Dobject detection and recognition [17–20]. The depth assistsus to differentiate objects from the background and classifythem more reliably [21–23]. An example of 3D vehicle scene[24–27] is shown in Fig. 4.8.

Fig. 4.8 The scene of 3D vehicles with depth
Another application is robotic path planning, grasping,and manipulation [28]. Robots make use of stereo vision toestimate visual distance, position, and shape for accuratepick-and-place tasks. In autonomous vehicles, stereo visionis applied to detect pedestrians, vehicles, and roadobstacles outside of the moving robots.



In augmented reality and robotics [31–34], stereo visiontransfers human experience and spatial understanding tointeractive AR/VR applications in real time with theunknown world. By merging with 3D animations having thesame view angle, robotic vision will combine the real worldand virtual one together.
4.4 Lab Session: Implementing Stereo
Vision Systems with MATLABAt the end of this chapter, we would like to recommend allreaders complete the lab report. Please fill in the formshown in Table 4.1 after each lab session (2 hours). Anexample of this lab report is:

Project title: Depth Estimation from Stereo Video
Table 4.1 Lab report for robotic vision



Appendix: <Source codes with comments and linenumbers>
Project objectives: The objective is to detect people andthe distance to the camera from a video taken with acalibrated stereo camera.
Configurations and settings: MATLAB Online
Methods: Use of disparity map to determine 3D corecoordinates corresponding to each pixel.
Implementation steps:1. Stereo Camera Setup: Calibrate the camera pair.  2. Rectify Video Frames: Correct video frames forparallel alignment.  
3. Compute Disparity Map: Calculate pixel disparities.  4. 3D Reconstruction: Reconstruct the scene in 3D.  5. Object Detection and Recognition: Identify objectsand measure distances.  
Testing steps:1. Load the parameters of the stereo camera.  2. Create video file readers and the video player.  3. Read and rectify video frames.  4. Compute disparity.  5. Reconstruct the 3D scene.  



6. Detect people in the left image.  7. Determine the distance of each person to the camera. 8. Process the rest of the video.  
Result analysis: (1) Accuracy: The system accuratelyestimates depth based on the quality of the disparity map.(2) 3D Reconstruction: The 3D scene reconstructionclosely matches the real scene. (3) Object Detection andRecognition: The system reliably detects objects andmeasures distances. (4) Performance: The system’srobustness varies under various conditions (lighting,camera angles, and textures).
Conclusion/reflection: The project demonstrateseffective depth estimation, though performance may varybased on environmental factors.
Readings:https:// au. mathworks. com/ help/ vision/ ug/ depth-estimation-from-stereo-video. html

4.5 Exercises
Question 4.1 How to accelerate stereo matching?
Question 4.2 What are the differences by using LiDARand computer vision for 3D reconstruction?
Question 4.3 What is image disparity? How to calculatethe disparity?
Question 4.4 In Lambert cosine model, how can we makethe algorithm more perfect?

https://au.mathworks.com/help/vision/ug/depth-estimation-from-stereo-video.html


Question 4.5 What are the relationships betweencomputer graphics and computer vision?
Question 4.6 How to verify the depth available from the3D reconstruction in stereo Vision?
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5. Deep Learning for Robotic
Vision
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, New Zealand 
AbstractDeep learning is related to a series of the state-of-the-artmethods in contemporary artificial intelligence. In this chapter,our deep learning methods mainly include CNN and RNNmodels. In CNN models, YOLO models are especiallyemphasized, while in RNN models, we stress on transformermodels for time series analysis along with LSTM. Thetransformer models are still large, active, and effective in ourresearch projects, especially the diffusion transformer modelsfor generative AI (GenAI). In this chapter, our focus is on visiontransformer (ViT) for robotic scene understanding. Thesignificance of this chapter is that the state-of-the-art knowledgein deep learning is mingled with the knowledge of robotic visionfor developing autonomous systems.
5.1 Overview of Deep Learning
Architectures for VisionDeep learning offers a new way for exploring robotic vision byusing the state-of-the-art (SOTA) models such as YOLO seriesand transformer models [61]. The robotic vision is not limited toobject detection and recognition and object tracking. The movingcameras mounted on mobile robots are able to freely selectviewpoints and sense much broader world. Hence, robots are

https://doi.org/10.1007/978-981-95-4360-1_5


able to understand holistic scenes naturally. The latestdeveloped chatbots such as ChatGPT (OpenAI), DeepSeek(DeepSeek), Gemini (Google), Copilot (Microsoft), Qwen(Alibaba), etc. are beyond the limitations. They inspire deepscene understanding based on visual data.Therefore, YOLO models and transformer models onlyaccommodate visual information and knowledge for chatbots.We thus fuse visual information and knowledge for deep sceneunderstanding. The cameras on tripods only capture a limitedscene from one view. Hence, we need to move tripods andcameras back and forth for capturing holistic view. Thus, thecameras on mobile robots overcome these shortcomings, andthey are able to deeply understand much wider field of view(FoV).The chain of thought (CoT) is a method that allows largelanguage models (LLMs) to resolve a complicated problem as aseries of intermediate steps before offering the final answer[49]. The CoT method improves reasoning ability by inducing themodel to answer a multistep question with a series of steps ofreasoning. Tree of thoughts (ToT) generalizes the CoT togenerate one or more “possible next steps” and executes themodel on each of the possible steps by using breadth-first search[53] or other methods of tree search.Dify (https:// docs. dify. ai/ ) is an open-source platform fordocking AI applications to streamline the development ofgenerative AI solutions. Dify can create innovative AIapplications that solve CoT problems. ComfyUI (www. comfy. org)is an open-source and node-based program to generate imagesfrom a series of text prompts. It makes use of free diffusionmodels [13] as the base with each tool being represented byusing a node. Each node has a function. The function can beapplied to calculate the confidence score of LLM outputs, hencecontrolling the ethics problems. ComfyUI supports multiple text-to-image models.Ollama, short for Omni-Layer Learning Language AcquisitionModel, is a cutting-edge platform designed to simplify theprocess of running large language models (LLMs) on localmachines. The transcripts generated from deep learning andcomputer vision models, such as YOLO models and transformer

https://docs.dify.ai/
http://www.comfy.org/


models, will be added into the Ollama for conversation. In theinitialization stage, a group of designated prompts will assist thesystem to avoid any problems related to ethics.The LLM interface, like OpenAI ChatGPT, Google Gemini, andMicrosoft Copilot, escapes the simple phrase matching, and italso avoids the difficulties of Google search without properkeywords. The chatbot systems, like Qwen and DeepSeek,accommodate a solution for answering questions and reasoningthe information from deep scene understanding from knowledgebase.Retrieval-Augmented Generation (RAG) is a method thatallows large language models (LLMs) to retrieve and incorporateadditional information before generating responses [27], and itminimizes the hallucination problem. RAG allows LLMs forinformation indexing, information retrieval, informationaugmentation, and new information generation. RAG can besimply deployed and integrated with open-source models such asDeepSeek and Ollama on web pages. Furthermore, RAG canlower the computational costs for running LLM-poweredchatbots.
5.2 Convolutional Neural Networks
(CNNs) and YOLO Models
5.2.1 CNN ModelsOpenAI ChatGPT was developed based on transformer models.GPT means generative pretrained transformer. “T” refers totransformer. In this chapter, we emphasize on VisionTransformer (ViT) and Diffusion Transformer (DiT) [20].Deep learning is a type of machine learning approaches inwhich a deep learning model is trained to perform patternclassification from the end-to-end point of view. In deep truth,deep learning is a probability-based classification method, andits performance has surpassed our human’s ability [41]. Deeplearning is usually implemented by using neural networkarchitecture. Previous artificial neural networks are neurons-based, which were fully connected networks; now the neuralnetworks are layer-based. The multiple layer networks are called



deep neural networks or deep nets. The term “deep” refers tothe number of layers in the layered neural networks, while thesimple neural networks with few number of layers are called“shallow” nets.Conventional neural networks or ConvNets contain only a fewlayers; now deep learning or deep nets can have more and many.The state-of-the-art (SOTA) methods are to access massive setsof labeled data [3]. Because there are sufficient labeled datasets,deep learning algorithms are easy to implement. Another reasonis the increased computing power (e.g., GPU, FPGA, etc.). GPUis a hardware unit for graphics processing, e.g., NVIDIA GPUs.In matrix multiplications and vector computations, GPUsaccelerate the computations by operating on the correspondingelements simultaneously. Parallel computing acceleratesarithmetic operations in infrastructure. A famous demo is thatthe picture Mona Lisa was displayed on a big screen within 1second by using GPU computing. Pretrained models werecreated by experts. Transfer learning [34] transfers parametersfrom one model to another [32]. With more data samples to beadded, the deep learning models will be better regardingprecision and recall in pattern classifications.In deep learning, the end-to-end methods have been adopted.The feature map from convolution and pooling operations withhierarchical structure has been utilized. Softmax function hasbeen deployed to the final stage of the classification. Theclassification is based on probabilities; the one with the highestprobability is selected as the output of this net. (5.1)where σ ∈ [0, 1]
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Pooling simplifies the output through nonlinear downsamplingto reduce the number of parameters that the network needs tobe trained.
ReLU (Rectified Linear Unit) is associated with fast andeffective training by mapping negative values to zero andmaintaining positive ones.A fully connected layer (FC) outputs a vector of k dimensionswhere k is the number of classes that the deep net is able topredict. The vector contains the probabilities for each class ofany images being classified. The final layer of CNN architecturemakes use of a softmax function to generate the classificationoutput. ConvNets are inspired from the biological structure of avisual cortex or human vision system, and it containsarrangements of simple and complex neurons. In order tosimulate a neuron, there is an activation function between inputand output of each neuron. The input and output of the neuronmay be a scalar or a vector. The transfer function is thecomposition of activation functions by using the output of thelast layer as the input of the next layer in deep nets.Deep learning work was awarded Nobel Prize in Physics.Professor Geoffrey Hinton received the ACM Turing Award 2018in 2019 and Novel Prize in Physics in 2024. This work simulatedthe mechanism of human visual system. A light ray travels andpasses through our iris and left the impression on our retina.These cells are stimulated based on the subregions of a visualfield, i.e., receptive field. Receptive field is a region of theoriginal image corresponding to a pixel on the feature map. Ourleft eye is linked to right half brain; meanwhile, our right eye isconnected to the left half brain.Feature map is the output of convolution operations inhierarchical structure [21]. A ConvNet reduces a number ofparameters with the number of connections and shared weights.A ConvNet consists of multiple layers, such as convolutionallayers, max pooling layers or average pooling layers, and fullyconnected layers [21].The input layer defines the size of inputs of a convolutionalneural network and contains raw values of the input. Among alldeep learning models, we have visible layer (input layer or



output layer), invisible layers, or latent layers. A convolutionallayer consists of neurons that connect to subregions of theinputs or the outputs of the layer; it extracts the featureslocalized by these regions. A set of weights is related to a filteror a kernel, and the filter moves along the input image verticallyand horizontally and repeats the same computation. Batchnormalization normalizes the activation and gradientspropagating through a neural network, and it makes networktraining as an easier optimization problem [11, 28]. Basically, itrefers to normalization of output between 0 and 1 [23]. In thecontext of artificial neural networks [16, 30], a ReLU function isa typical activation function [11]. The ReLU function performs athreshold operation to each element. (5.2)where x, y ∈ R, x is the input to a neuron, and y is the output.Leaky ReLUs have a small and positive gradient [28] whenthe unit is not active. A leaky ReLU layer multiplies input values,and it allows negative inputs to “leak” into the output. (5.3)where x, y,α ∈ R, 0 ≤ α, is a constant.Pooling operations are grouped in two categories: maxpooling and average pooling. The max pooling layer returns themaximum pixel intensity of the given rectangular regions. Theaverage pooling layer outputs the average pixel intensity of thegiven rectangular regions. All neurons in a fully connected layerconnect to all the neurons in the previous layer [37]. This layercombines all of the features extracted by the previous layersacross the image to identify the larger patterns.The softmax function after normalization, i.e., normalizedexponential function, is the output function. A regression outputlayer must follow the fully connected layer. The default lossfunction for a regression layer is Mean Squared Error (MSE). Afull pass through the whole dataset is called epoch. The iterationin deep learning is the number of batches needed to completeone epoch. What a larger learning rate is gradually reduced
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during the optimization time enables smaller steps toward theoptimum value [38]. The decay function is (5.4)where w
i

∈ R

n is the weight at step i ∈ Z

+, η ∈ R is thelearning rate of this decay function, and 
f(⋅)

 is the cost functionor loss function [40].Performing validation check at regular intervals during modeltraining can determine whether the network is overfitting overthe training data. Hence, training loss and accuracy arecompared. The most important concept in deep learning isaccuracy. Along with the number of iterations, accuracy hasbeen applied as the termination condition. The terminationcondition is to check whether the computations are converge ornot and decide when the iterations should be halted.
5.2.2 YOLO ModelsYOLO is a single neural network that predicts bounding boxesand class probabilities directly from full images [39]. Thebounding boxes refer to object position. YOLO is trained basedon full images which directly optimizes model performance. Theclass probabilities refer to the output class label. YOLO modelsadopt the entire image during training and testing time so that itencodes contextual information of all classes. YOLO modelssegment the input image into grids [6], typically 3 × 3 or 5 × 5.Each grid cell predicts the bounding boxes and confidencescores for those objects. The confidence scores refer to the testprocess with ground truth. Each bounding box consists of fiveparameters x, y,w,h ∈ R and confidence c ∈ R in percentage.Each grid cell is harnessed to predict conditional classprobabilities, usually 3 × 3 or 5 × 5. YOLO predicts what objectspresent and where they are. A single convolutional networksimultaneously estimates multiple bounding boxes and classprobabilities for those boxes.YOLO is highly generalizable which is less likely to breakdown when applied to new domains or unexpected inputs. It isfast and makes use of regression with 45 frames per second. Inthe YOLO model, a picture is segmented into 7 × 7 blocks; visualobjects with confidence and coordinates are detected in each
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block. YOLOv2 makes use of anchor boxes to detect visualobjects in an image. In order to find anchor boxes, Intersectionover Union (IoU) is harnessed to predict the objectiveness scorewhich is calculated by using (5.5)where A is the region of ground truth and B is the detectedregion of visual object. A ∩B is the intersection between region
A and region B. A ∪B is the union of region A and region B. |⋅| isthe area of the region of the given image.Anchor box offset is to refine the anchor box. Classprobability is to predict the class label assigned to each anchorbox. Anchor boxes are a set of predefined bounding boxes. Eachanchor box is tiled across the image. The use of anchor boxesenables a network to detect multiple objects, visual objects withmultiple scales, and the overlapping objects. The advantages ofusing anchor boxes are that anchor boxes eliminate the need toscan an image with a sliding window, and it computes aprediction at every potential position. The use of anchor boxesreplaces and drastically reduces the cost of the sliding windows.Through anchor boxes, visual object detectors are designed withthree stages, namely object detection, feature encoding, andpattern classification.YOLOv3 improves upon YOLOv2 by adding object detection atmultiple scales so as to detect smaller objects. The loss functionof YOLOv3 is separated into mean squared error for boundingbox regression, while binary cross-entropy is employed for visualobject classification, and it improves the detection accuracy [8].YOLOv3 detector utilizes anchor boxes to have better initialpriors and predict the boxes accurately.YOLOv4 is a one-stage object detection network that iscomposed of three parts: backbone, neck, and head. Thebackbone of YOLOv4 network acts as the feature extractionnetwork that computes feature maps from the input images. Theneck connects the backbone and the head, and it is composed ofa spatial pyramid pooling (SPP) module and a path aggregationnetwork (PAN). The head processes the aggregated features andpredicts the bounding boxes, objectness scores, andclassification scores. MATLAB provides the Deep Learning

IoU =

|A∩B|

|A∪B|

∈ [0, 1]



Toolbox including YOLOv1 to YOLOv4 models with source codes[47].YOLOv5 [56] was developed in the base framework with theobjective of reducing the complexity and improving theperformance of the network. This constitutes a benchmark withthe aim of improving the implementability. The YOLO networkpartitions the input image into a grid of cells. The grid cells areemployed to predict bounding boxes; each of the cells contains atarget. In essence, the output of YOLOv5 comprises predictiveinformation for each grid cell. This encompasses the parameterslike class predictions with the bounding boxes of each grid cell.During the evolution of YOLO series [50], YOLOv6 [12],YOLOv7 [48], and YOLOv8 [19] have promoted industrialapplications. YOLOv6 combines processes such as EfficientRep,self-distillation [60], and advanced quantification. It provides adeployable network with customizable architecture andeffectively balances computing accuracy and speed. YOLOv7 isan enhanced version of YOLOv6. YOLOv7 [48] focuses on thetraining process and introduces strategies such asreparameterization modules and model scaling. YOLOv8 [19]was evolved from YOLOv5. Together, these releases showcasesignificant advances in the performance and efficiency of objectdetection.YOLOv9 [33] has taken significant advances in the field ofobject detection by using deep learning. The proposed conceptof programmable gradient information (PGI) was employed tocope with the variations required for deep neural networks withmultiple goals. YOLOv10 introduces an approach to real-timeobject detection, addressing both the post-processing and modelarchitecture deficiencies found in previous YOLO versions. Byeliminating non-maximum suppression (NMS) and optimizingvarious model components, YOLOv10 achieves the performancewith significantly reduced computational overhead. YOLOv11 [4,55, 57] was selected for its high efficiency in detecting small andfast-moving objects, and it is suitable for identifying a smallobject in each frame. In order to optimize YOLOv11 for thespecific challenges, a plethora of modifications wereimplemented to improve its accuracy in detecting small objects.YOLOv12 is based on the attention-centric YOLO framework that



matches the speed of previous CNN-based ones while harnessingthe performance benefits of attention mechanisms [44].YOLOv13 is an accurate and lightweight object detector with ahypergraph-based Adaptive correlation Enhancement(HyperACE) mechanism that achieves efficient global cross-location and cross-scale feature fusion.In CNNs [43], there are the exploding gradient problems andthe vanishing gradient problems [5, 14] due to the uncertainexistence of gradients or derivatives of the loss surfaces [17, 28].RNNs including LSTM and transformer models are thought asone of the solutions to resolve these problems.
5.3 RNNs, Transformers, and
Multimodal Approaches
5.3.1 RNNsRNNs are a family of artificial neural networks for processingsequential data, which is a dynamical system [7]. It is possible touse the same transition function with the same parameters atevery time step. LSTM is a model for long short-term memory,and the model can be lasted for a long period of time [43]. AnLSTM unit consists of four gates: input gate, cell, forget gate,and output gate. LSTM is well suited to classify, process, andpredict time series given time lags of unknown size and durationbetween important events. It is the same with CNNs, but it hasmemory cells. The cells store a value of state, for either long orshort time periods. LSTM gates compute an output by using thelogistic function, see Eq. (5.6). (5.6)The advantage of LSTM model is that LSTM was developed todeal with the exploding and vanishing gradient problems [5, 23].An LSTM network is a type of RNN models that can learn long-term dependencies between time steps of sequence data. Asequence input layer inputs sequence or time series data intothe network. An LSTM layer learns long-term dependenciesbetween time steps of sequence data. To predict class labels, thenetwork ends with a fully connected layer, a softmax layer, and a

f(x) =

1

1+e

x
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classification output layer. It is the same as CNN models, but ithas memory.OpenAI GPT models refer to Generative PretrainedTransformer (GPT), and GPT shows how a generative model oflanguage is able to acquire knowledge and process long-rangedependencies by pretraining on a diverse corpus with longstretches of contiguous text [9, 36, 51, 52]. The famous softwaresuch as Microsoft PowerPoint provided real-time translationbetween two languages by using transformer models [29, 42].Transformer is a deep learning model, and it makes use of themechanism of self-attention, deferentially weighting thesignificance of each part of the input data. Transformer is basedsolely on attention mechanisms, dispensing with recurrence andconvolutions entirely [46]. Transformers were introduced in2017 by Google Brain for NLP problems, so as to replace RNNmodels (LSTM). The Google BERT model refers to BidirectionalEncoder Representations from Transformers (BERT), and BERTwas pretrained based on two tasks: (1) language modeling and(2) the next sentence prediction [54].Recently, DeepSeek [1] has been developed, which wasfunded by the Chinese hedge fund High-Flyer in 2023.DeepSeek’s success has been described as “upending AI.”DeepSeek-R1 provides responses comparable to othercontemporary large language models. The training cost wasreported to be significantly lower than other LLMs. Thisbreakthrough in reducing expenses while increasing efficiencyand maintaining the model’s performance in AI industry sent“shockwaves” through the market. The release history ofDeepSeek is listed as:
January 2025: DeepSeek chatbot
December 2024: the base model DeepSeek-V3-Base and thechat model DeepSeek-V3
June 2024: DeepSeek Coder V2
April 2024: DeepSeek-Math models: Base, Instruct, and RL
January 2024: DeepSeek-MoE models (Base and Chat)
November 2023: DeepSeek-LLM
November 2023: DeepSeek Coder



DeepSeek-R1 improves model reasoning capabilities by usingpure reinforcement learning (RL). It explores the potential ofLLMs without any supervised data, focusing on the self-evolutionthrough a pure reinforcement learning process. DeepSeek-R1incorporates a small amount of cold-start data and a multistagetraining pipeline, after collecting thousands of cold-start data toconduct fine-tuning operations on the DeepSeek-V3-Base model.After the fine-tuning operations, the checkbot underwent anadditional reinforcement learning process by taking into accountof prompts from all scenarios [59]. DeepSeek directly appliesreinforcement learning to the base model without relying onsupervised fine-tuning operations (SFT).In deep learning, fine-tuning is a method of transferringknowledge [54], and the parameters of a pretrained neuralnetwork model are trained based on new data. Low-rankadaptation (LoRA) algorithm is an adapter-based method forefficiently compressing large models. If a matrix A
n×n

 has n× nelements, n ∈ N , it will be decomposed into the multiplication oftwo smaller matrices B
n×m

 and C
m×n

, m ∈ N , (5.7)where m satisfies n× n ≥ n×m+m× n, matrix B and matrix
C are expected to have less elements in total than that of matrix
A. Therefore, matrix A is replaced in fine-tuning process byusing B ⋅C. The pseudocode of LoRA method is shown inAlgorithm 14.
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= B

n×m
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m×n



Algorithm 14: Low-rank adaptation (LoRA) for
compressing large models

The reasoning patterns of larger models can be distilled intosmaller models [1, 60]. DeepSeek conducted compressingoperations on a few dense models, and the distilled smallerdense models perform exceptionally well. DeepSeek-R1 appliesreinforcement learning method starting from a checkpoint fine-tuned with thousands of long chain-of-thought (CoT) examples[45]. It distills the reasoning capability from a large spare modelto small dense models. The reasoning capabilities aresignificantly improved through large-scale reinforcementlearning. The performance is further enhanced with theinclusion of a small amount of cold-start data.In DeepSeek, the integration of reward signals and diversedata enables us to train a model that excels in reasoning. Inmachine learning, distillation is the process of transferringknowledge from a large model or a teacher model to a smallerone [60] or a student model. Distilling more powerful modelsinto smaller ones yields excellent results. The distillationstrategies are both economical and effective.The strategies in deep learning for model simplificationsusually comprise model pruning and model quantizationincluding model distillation. The main task of model quantizationis to convert high-precision floating-point numbers of theparameters of neural networks into low-precision numbers. The



quantization methods reduce the size of the given models;thereby they diminish memory consumption. The increase of thespeed on processors is capable of performing faster low-precision calculations.
5.3.2 Vision TransformersVision transformer models are trained for image classification insupervised learning with labels. The labels are related to imagesequence. Transformers could not be generalized well whentrained on insufficient amounts of data. In vision transformer(ViT), an image is treated as a sequence of patches, and it isprocessed by using a standard transformer encoder. The firstlayer of ViT projects the flattened patches into a lowerdimensional space. Flattened means the rows will be linkedtogether. After the projection, a position embedding is added topatch representations. Self-attention allows ViT to integrateinformation across the entire image in the lowest layers.Transformers show impressive performance from the scalabilityand self-supervised pretraining. Image inpainting and imageoutpainting are two examples of the scalability. ViT matches orexceeds the state of the art on image datasets, but relativelycheap to be pretrained. MATLAB has developed the ViT example.In the field of machine learning [2, 18], a confusion matrix isa specific table layout that allows visualization of theperformance of an algorithm, typically a supervised learningone; in unsupervised learning, it is usually called as a matchingmatrix.
5.3.3 Diffusion TransformersIn machine learning, diffusion models [15] are a class of latentvariable generative models. The goal of diffusion models is tolearn a diffusion process, and it generates the probabilitydistribution of a given dataset. The diffusion models areemployed to image denoising, inpainting, superresolution, andimage generation.Diffusion models train a neural network to sequentiallydenoise images blurred with Gaussian noise. The model istrained to reverse the process of adding noise to an image. Afterthe training, the diffusion models are employed for image



generation by starting with an image composed of random noise.Diffusion models can be applied to perform upscaling. Cascadingdiffusion model stacks multiple diffusion models one afteranother. The famous software DALL⋅E 2 is a cascaded diffusionmodel; it generates images from text.A new group of diffusion models is explored based ontransformer architecture. The scalability of Diffusiontransformers (DiT) is analyzed through the lens of forward passcomplexity as measured by using Gflops. DiTs with higher Gflopsconsistently have lower FID (Fréchet Inception Distance) [10],through increasing transformer depth/width or increasing thenumber of input tokens. The diffusion models are well-poised tobenefit by inheriting best practices and training recipes fromother domains, as well as retaining favorable properties. Theattributes include scalability, robustness, and efficiency. DiTs[35] adhere to the best practices of Vision Transformers (ViTs).They are more effective for visual recognition than traditionalconvolutional neural networks. There is a strong correlationbetween the network complexity (measured by Gflops) andsample quality (measured by FID [10]).Transformers have replaced domain-specific architecturesacross natural language, machine vision, reinforcement learning[59], and metalearning [26]. Transformers have been explored inDenoising Diffusion Probabilistic Models (DDPMs ) to synthesizenonspatial data, e.g., to generate CLIP image embeddings inDALL⋅E 2. The Gaussian diffusion model adopts a forwardnoising process, and it gradually applies noise to real data
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. Byinterpreting the output of diffusion models as the score function,the DDPM sampling procedure is guided to sample x with
p(x|c) ∈ [0, 1] by using (5.12)where (5.13)and (5.14)Hence, (5.15)The DDPM sampling procedure is guided to sample x with
p(x|c) ∈ [0, 1] ∈ R

+ by using (5.16)Simply, (5.17)(5.18)
(5.19)

A diffusion model is trained with the representations z = E(x). New images can be generated by sampling a representation zand subsequently decoding it to an image 
x = D(z)

. DiT is basedon Vision Transformer (ViT) architecture, and it is operated onsequences of patches. A smaller patch size results in a longersequence length. “Patchify” converts the spatial input into asequence of tokens. The number of tokens created by patchify isdetermined by the patch size. The input tokens are processed byusing a sequence of transformer blocks. The transformer block ismodified to include an additional multi-head cross attentionlayer following the multi-head self-attention block. The complete
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DiT design space is patch size, transformer block architecture,and model size. Scaling the transformer backbone yields bettergenerative models across all model sizes and patch sizes. Thescaling performance is measured by using Fréchet InceptionDistance (FID), the standard metric for evaluating generativemodels of images. In mathematics, Fréchet distance [10] is ameasure of similarity between curves that takes into account thelocation and ordering of the points along the curves. FID is ametric to assess the quality of images created by using agenerative model. For two multidimensional Gaussiandistributions 
N(μ,Σ)

 and 
N(μ′,Σ′)

, (5.20)Inception Score (IS) is an algorithm to assess the quality ofimages created by using a generative image model. Inceptionscore only evaluates the distribution of generated images, andthe FID compares the distribution of generated images with thedistribution of a set of real images (“ground truth”). (5.21)(5.22)Scaling the transformer backbone yields better generativemodels across all model sizes and patch sizes. Increasing modelsize and decreasing patch size yield considerably improveddiffusion models. Larger DiT models take use of large computesmore efficiently. Scaling both model size and the number oftokens yields notable improvements in visual quality. Diffusiontransformers (DiTs) inherit the excellent scaling properties ofthe transformer model [31, 58], and the DiT model can bedistilled by using the pseudocode supplied in Algorithm 15.
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Algorithm 15: Distillation algorithm for DiT model

5.4 Lab Session: Training a Vision Model
with MATLABAt the end of this chapter, we would like to recommend allreaders complete the lab report. Please fill in the form shown inTable 5.1 and submit it timely after each lab session (2 hours).
Table 5.1 Lab report for robotic vision
Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>



Project title Vision Transformer for Image Classification
Lab objectives The objective is to detect people and the distance to thecamera
  from a video with a calibrated stereo camera
Configurations and
settings

<The preferences, software, hardware, platforms, tools,etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional and non-functional testing methods step bystep>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/reflection <The strengths and weaknesses, or learned from thisproject >
References https:// au. mathworks. com/ help/ vision/ ug/ evaluating-the-accuracy-of-single-camera-calibration. html
Appendix: <Source codes with comments and line numbers>An example of this lab report is:

Project title: Vision Transformer for Image Classification
Project objectives: The objective of using transfer learningwith a pretrained Vision Transformer (ViT) is to enhanceimage classification by adapting a model trained on largedatasets to a new task, improving accuracy, and reducingtraining time through fine-tuning on specific data.
Configurations and settings: MATLAB OnlineMethods: ViT is a neural network model that uses thetransformer architecture to encode image inputs into featurevectors. The network consists of two main components:backbone and head. The pretrained ViT network has learned astrong feature representation for images.
Datasets: The flowers dataset has a size of about 218 MB andcontains 3670 images of flowers belonging to five classes:Daisy, Dandelion, Rose, Sunflower, and Tulip.
Implementation steps:

https://au.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html


1. Load a pretrained ViT network by using the visiontransformer function.  
2. Download and extract the training data.  3. Replace the classification head with a new one that mapsthe extracted features to prediction scores for the new setof classes in order to train the neural network to classifyimages across those classes.

 
4. Specify the training options.  5. Train the neural network by using the trainnet function.  6. Evaluate the accuracy of the network by using the testdata.  
7. Make predictions using the test data.  8. Use the trained neural network to make a prediction usingthe first image in the test data.  
Testing steps:1. Make predictions using the test data.  2. To convert the prediction scores to class labels, use theonehotdecode function.  
3. Use the trained neural network to make a prediction byusing the first image in the test data.  
Result analysis: The output images visually validate thecreation, assembly, and interactive capabilities of the robotarm, enhancing the written descriptions and confirming theproject’s objectives have been met.
Conclusion/reflection: The ViT model demonstrates efficientadaptation for image classification tasks with reduced training



time and improved accuracy, proving effective for complexvision applications through transfer learning and dataaugmentation. Readings: https:// au. mathworks. com/ help/ vision/ ug/ transfer-learning-using-pretrained-vit-network. html.
5.5 Exercises
Question 5.1 Can YOLOs detect small visual objects?
Question 5.2 In deep learning, how to select a suitablealgorithm for object detection? What balance should we take intoconsideration?
Question 5.3 Why transformers are better than other deeplearning methods?
Question 5.4 How to simplify a large transformer model indeep learning?
Question 5.5 What are the differences between model pruningand model distillation in deep learning?
References1. An W, Bi X, Chen G et al (2024) Fire-flyer AI-HPC: A cost-effective software-hardware co-design for deep learning. In: International conference for highperformance computing, networking, storage and analysis. IEEE, pp 1–232. Alpaydin E (2009) Introduction to machine learning. MIT Press, Cambridge3. Badrinarayanan V, Handa A, Cipolla R (2017) SegNet: a deep convolutionalencoder-decoder architecture for robust semantic pixel-wise labelling. IEEE TransPattern Analy Mach Intell 39(12):2481–2495[Crossref]4. Çabuk VU, Kubilay Şavkan A, Kahraman R, Karaduman F, Kırıl O, Sezer V (2018)Design and control of a tennis ball collector robot. In: International conference oncontrol engineering and information technology (CEIT)5. Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets:backpropagation, conjugate gradient, and early stopping. In: Advances in neuralinformation processing systems, pp 402–4086. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution,

https://au.mathworks.com/help/vision/ug/transfer-learning-using-pretrained-vit-network.html
https://doi.org/10.1109/TPAMI.2016.2644615
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6. Robotic Perception and
Intelligence
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, NewZealand 
AbstractIn this chapter, starting from machine intelligence andgenetic algorithm (GA), our depiction expounds how tomeasure the intelligence of robots by using Turing test.Following this, our focus is on reinforcement learning,especially deep Q-learning and imitation learning such asinverse reinforcement learning (IRL) for robotic perceptionand autonomous systems. The significance of this chapter isto measure the intelligence of robots and deliver theknowledge of how to train robots in operations to reach thelevel of human intelligence.
6.1 PerceptionIn robotics, we acquire visual information of holistic scenesfrom our perception [50] by using sensors. The sensorsinclude digital cameras, microphones, and otherinstruments, and the data is collected from our perceptibleenvironment. With fusing information from multiplechannels of sensors on robots, our observations are
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employed for robotic path planning [28], navigation, sceneunderstanding, and obstacle avoidance [62].LiDAR, namely, Light Detection and Ranging, or LaserImaging, Detection, and Ranging, is a method fordetermining ranges by targeting an object or a surface witha laser, measuring the time for the reflected light to thereceiver [22, 27]. LiDAR harnesses ultraviolet, visible, ornear infrared light to image objects. The method isemployed for measuring distances by using a laser on atarget and measuring its reflection with a sensor. A LiDARdetermines the distance of an object or a surface by using(6.1)where c ∈ R is the speed of light, d ∈ R is the distancebetween a sensor and an object, and t ∈ R is the time spentfor the laser light to pass and then travel back to thedetector.A mobile robot uses its LiDAR system to percept ourenvironment, understand surrounding scene, construct amap, and avoid obstacles [27]. LiDAR sensors are mountedon mobile platform, and they require instrumentation todetermine the resolution, absolute position, and orientationof robots such as Global Positioning System (GPS) receiverand an Inertial Measurement Unit (IMU). LiDAR couldprovide the scanned 3D maps for robotic navigation andpath planning [28].Cameras provide image data to the robots for visualobject detection and recognition, tracking, andmanipulation. Different from LiDAR systems that onlyprovide point clouds and shape information, digital camerasoffer the details of visual objects, such as texture, color, androtations, especially for rotating objects. Recently, Teslacars discarded LiDAR sensors on the autonomous cars, andonly digital cameras are adopted for obstacle avoidance,path planning, and driving navigation [28]. All Teslavehicles are equipped with computers and cameras. Hence,

d =

c⋅t

2



digital cameras on robots are playing decisive roles in visualscene understanding and visual information processing.An Inertial Measurement Unit (IMU) is an electronicdevice, and it measures and reports a robot’s force, angularrate, and orientation of robot, by using a combination ofaccelerometers, gyroscopes, and magnetometers. IMUs areincorporated into Inertial Navigation Systems (INS), andthey utilize the raw IMU measurements to calculateattitude, angular rates, linear velocity, and position relatedto a global reference frame. In robotics, an IMU can beintegrated into GPS-based automotive navigation systems orrobot tracking systems for the purposes of traffic collisionanalysis [36, 37]. An IMU sensor adopts information fusionto control robots.
6.2 Robotic IntelligenceRobots have intelligence. Firstly, we shed light on logic [3],which refers to Boolean logic in algebra. Logic only has twostates: True and False or “1” and “0.” The family of logicconcepts includes first-order logic, fuzzy logic, predicativelogic, propositional logic, etc. Computers have the ability tomake smart decision [20] fundamentally.Fuzzy logic is a form of many-valued logic in which thetruth value of variables may be any real number between 0and 1. By contrast, in Boolean logic, the truth values ofvariables may only be the integer value 0 or 1. Fuzzy logic isemployed in control systems to allow experts to contributevague rules [29].AI consists of the parts like perception or observation[33–35], learning, presentation, and reasoning or inference.AI covers the fields of search, retrieval, mining, andreasoning and path planning [28]. In AI, the topics includeuninformed search, informed (heuristic) search, adversarialsearch, etc. Robots can find the shortest path because ofsearching on maps.



Reasoning [57] is a verb, which conveys theunderstandings from the knowledge what we know to inferwhat we do not know. Reasoning has the approaches-basedforward/backward chaining, probabilistic reasoning, Bayes’rule, dynamic Bayesian networks, etc. Bayes’ rule, namelyBayes’ theorem, is related to the prior, posterior, likelihood,and evidence. It is the base knowledge of modern machinelearning [1, 18]. (6.2)where x ∈ R and y ∈ R are events, p(x, y) ∈ [0, 1] is thejoint probability, and 
p(x|y) ∈ [0, 1]

 and 
p(y|x) ∈ [0, 1]

 areconditional probabilities.There are a number of ways to make decision [20], suchas decision trees, decision networks, expert systems,sequential decision, game theory, etc. Decision tree is atypical method to make smart decision. Typically, thedecision tree is a binary tree. The tree as one of the datastructures already sorted data in order; thus the decisiontree will save our time. Based on decision trees, decisionforest [20] is considered to develop much complicatedapproaches for decision-making.Expert system fully harnesses or clones our humanexperience [29]. In robotics, an expert system is a computersystem emulating the decision-making ability of a humanexpert. An expert system is divided into two subsystems:knowledge base, which represents facts and rules, andinference engine that applies the rules to the known facts.The nature-inspired computing refers to cellularautomata, neural computations, and evolutionarycomputation. More recent computations include swarmintelligence [10], artificial immune systems, membranecomputing, and amorphous computing. In machineintelligence [9, 47, 48], there are three types of algorithms.Physics-inspired algorithms employ basic principles ofphysics based on deterministic principles, for example,Newton’s laws and simulated annealing (SA) algorithm.

p(x, y) = p(x|y)p(y) = p(y|x)p(x) ∈ [0, 1]



Physics-inspired machine learning takes advantage of theobtained prior knowledge to train machine learning models.This means it will need fewer samples to train the model ormake the training outcomes more accurate.In chemistry, chemical reactions are written in the formof chemical formulas by using symbols representingchemical elements and molecules. The mechanisms ofchemical reactions are quite similar to the mechanisms ofselection and variation in evolutionary algorithms, and thealgorithms lead to new concepts of search and optimizationalgorithms.Bioinspired computing, short for biologically inspiredcomputing, is a field of study which seeks to solve computerscience problems by using models of biology [8, 52].Bioinspired computing is employed to train a robot. A robotis navigated in an unknown terrain. Biology-basedalgorithms (BBAs) are classified into three groups:evolutionary algorithms (EA), brain-inspired algorithms(BIA), and swarm intelligence-based algorithms (SIA) [9].Swarm intelligence is the collective behavior ofdecentralized and self-organized systems. A swarm is madeup of multiple agents [32]. The agents are able to exchangeheuristic information in the form of local interactions.The fundamental idea of evolutionary algorithms is basedon Darwin’s theory of evolution; it gained momentum in thelate 1950s after the publication of the book “Origin ofSpecies” [4].Brain-inspired computing refers to computational modelsand methods based on the mechanism of human brain [21].The goal is to enable the machine to realize variouscognitive abilities and coordination mechanisms of humanbeings in a brain-inspired manner and finally achieve orexceed human intelligence. Brain-inspired computing hasbeen applied to deep learning [15, 23, 41], and themechanism of our human brain is partially harnessed inartificial neural networks [26].



A genetic algorithm (GA) is a metaheuristic inspired byusing the process of natural selection, and GA belongs tothe larger class of evolutionary algorithms (EAs). A gene isdevitalized in allele. An allele is a form of genes at aparticular position (locus) on a chromosome. It is the bit ofcoding DNA at that place. Hence, we take advantage ofgenetic algorithms in logic way to process gene information.A typical genetic algorithm requires (1) a geneticrepresentation of the solution domain and (2) a fitnessfunction to evaluate the solution domain. The geneticalgorithm (GA) has the following steps:
Initialization: Create an initial population.
Evaluation: Evaluate each member of the population, andcalculate a “fitness” for the individual.
Selection: Constantly improve populations’ overallfitness.
Crossover: Create new individuals by combining aspectsof the selected individuals.
Mutation: Add randomness into populations’ genetics.
Repeat: Start again until a termination condition isreached.When we repeat this process, the termination conditionsare:A solution is found that satisfies the minimum criteria.A fixed number of generations reached.An allocated budget (e.g., computational time, etc.)reached.The highest ranking solution’s fitness has reached.A plateau no longer produces better results.Combinations of the above.



Algorithm 16: Genetic algorithm

The pseudocode for the GA algorithm is shown in Algorithm16. The Python code for GA algorithm is shown in Fig 6.1.The advantages of using the GA algorithm are globaloptimum, without continuity requirements, withoutderivatives, and without linearity limitation, etc. Based on



GA algorithms, we are able to solve the optimizationproblems of the weights of an artificial neural network byusing loss surfaces in deep learning [15, 23, 41]. Throughusing GA algorithm, it is possible to get rid of the vanishinggradient problem and the exploding gradient problem.Traditionally, RNNs such as LSTM [5] and GRU [49] havebeen applied to solve this weight optimization problem asshown in Fig. 6.2.

Fig. 6.1 The Python code for GA algorithm



Fig. 6.2 The GA algorithm is employed for resolving optimization problems indeep learningHuman has IQ (i.e., Intelligence Quotient) and EQ (i.e.,Emotional Quotient) [42]. An IQ is a total score derivedfrom a set of standardized tests or subtests designed toassess human intelligence [32]. Raven’s progressivematrices [40] have been applied to evaluate the IQ of anindividual as shown in Fig. 6.3. Recent tests are based onWAIS-II (Wechsler Adult Intelligence Scale). In WAIS-II, twogroups of tests will be conducted: Verbal IQ andPerformance IQ.



Fig. 6.3 An IQ test item in the style of a Raven’s progressive matrices testIQ classification is the practice of categorizing humanintelligence, as measured by intelligence quotient (IQ) tests.The Wechsler Adult Intelligence Scale (WAIS) [53] is an IQtest designed to measure intelligence and cognitive abilityin adults and older adolescents. In the latest WAIS 5 (2024)test, the FSIQ (i.e., Full Scale IQ) is generated from sevensubtests: similarities, vocabulary, block design, matrixreasoning, figure weights, digit span sequencing, andcoding. The 15 ancillary index scores include general abilityindex. The test may be administered in the classic physicalformat or on a digital platform.Turing test [7, 11] is a test of machine’s ability to exhibitintelligent behavior, and it is equivalent to, orindistinguishable from, that of a human [16]. ChatGPT-4passes a rigorous Turing test, diverging from averagehuman behavior chiefly to be more cooperative [29].ChatGPT is able to recognize CAPTCHA characters now,and CAPTCHA [14] stands for “Completely AutomatedPublic Turing test to tell Computers and Humans Apart.”Figure 6.4 provides an example of CAPTCHA characterrecognition by using ChatGPT.



Fig. 6.4 CAPTCHA characters recognition using ChatGPTThus, robotic intelligence is realistic [9], it is one of thenew research directions, and robotic intelligence is possibleto be measured by using computational methods. We areable to use text and image pairs to measure the intelligencein multimodal way through deep learning models [11, 56].
6.3 Reinforcement Learning for
Visual ControlIn 2025, Professor Andrew Barto and Professor RichardSutton received ACM Turing Award 2024 for theircontributions to Reinforcement Learning, especially fordeveloping the conceptual and algorithmic foundations ofreinforcement learning. Professor Barto and ProfessorSutton have published the famous book [45] as the pioneersof Reinforcement Learning. Reinforcement learning isregarded as the cornerstone of contemporary AI such asOpenAI ChatGPT software, Qwen, and DeepSeek software[58].In Fig. 6.5, a vacuum robot is moving on a table, and therobot can be facilitated with various sensors without fallingdown from the table. In this section, the explanationregarding how to control a robot to fulfill our tasks by usingreinforcement learning will be elucidated [29, 45].



Fig. 6.5 A robotic vision systemReinforcement learning is a goal-directed computationalapproach where a computer learns to perform a task byinteracting with an unknown dynamic environment [31, 45].Reinforcement learning has been applied to AlphaGo.AlphaGo is a computer program that plays the game Go [29,43].The reinforcement learning approach [6, 15] enablescomputers to make a series of decisions and maximizescumulative reward for the task without human intervention,without being explicitly programmed to achieve the tasks[23]. The aim of reinforcement learning [24] is to train anagent to complete a task. An agent is a robot or algorithm.Reinforcement learning [45] is working for an unknowndynamic environment [31].The agent receives a sequence of observations andcorresponding rewards from the environment and sendsactions to the environment. The reward is a measure of howsuccessful an action is with respect to completing the task.The agent contains two components: a policy and a learning



algorithm or state estimator. The policy is a mapping thatselects actions based on observations from the environment.Typically, the policy is a function approximator with tunableparameters, such as the weights of a deep neural network.The algorithm continuously updates the policy parametersbased on action, observations, and reward. The goal ofreinforcement learning algorithm is to find an optimal policythat maximizes the cumulative reward received [24, 45].The pseudocode of PPO algorithm in reinforcement learningis shown in Algorithm 17. In summary, reinforcementlearning [45] refers to an agent learning the optimalbehavior through repeated trial-and-error interactions withthe environment without human involvement [24]. Thegeneral workflow for training an agent throughreinforcement learning [45] is comprised of the followingsteps:
Formulate Problem: Define the task for the agent tolearn.
Create Environment: Define the environment withinwhich the agent operates.
Define Reward: Specify the reward signal that the agentuses to measure its performance.
Create Agent: Create the agent.
Train Agent: Train the agent policy representation.
Validate Agent: Evaluate the performance of the trainedagent.
Deploy Policy: Deploy the trained policy representation.Reinforcement learning is to learn what to do—how tomap situations to actions—so as to maximize a numericalreward [24]. Reinforcement learning receives reward,penalty, or trial error for its actions to resolve a problem.Reinforcement learning is able to learn the best policy andmaximize the total reward [58]. The sequence of actions hasthe maximum cumulative reward. For each policy π ∈ Π,
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Figure 6.6 shows a MATLAB example by usingreinforcement learning to develop a strategy for a mobilerobot to avoid obstacles. The objective of reinforcementlearning is that the robot should avoid colliding intoobstacles. This example shows an occupancy map of aknown environment to detect obstacles and check collisionsthat the robot may make. The range sensor readings areobservations, and linear and angular velocity controls arefrom the action [29].

Fig. 6.6 A mobile robot to avoid obstacles in MATLAB
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Algorithm 17: PPO algorithm

6.4 Imitation Learning and Inverse
Reinforcement LearningIn imitation learning, the agent aims to mimic humanbehaviors [29]. The agent learns from a dataset ofdemonstrations by an expert, typically a human. The goal isto replicate the expert’s behavior in similar situations. Whena human hand shows sign languages, the landmarks willlead the joint motion of machine hand [46]. Likereinforcement learning, imitation learning involves



observing an expert performing a task and learning toimitate those actions. The three steps of implementing thisalgorithm are:
Data Collection: An expert demonstrates the task to belearned. The actions and decisions of the expert arerecorded as data.
Learning: The collected data is employed to train a deeplearning model [1]. The model learns a policy—a mappingfrom observations of the environment to actions.
Evaluation: The trained model is tested in theenvironment to assess how well it conducts compared toan expert. The goal is to minimize the differences betweenexpert’s performance and agent’s performance.Basically, there are two approaches in imitation learning:
Behavioral Cloning: The model is trained in a supervisedlearning fashion by using state-action pairs from expert’sdemonstrations. The pseudocode of behavioral cloning isshown in Algorithm 18.
Inverse Reinforcement Learning (IRL): It aims to learn theunderlying reward function that the expert seems to bemaximizing. This approach can generalize better tounseen states. The pseudocode is shown in Algorithm 19.The challenges in imitation learning include:
Data Quality: The quality of policy is highly dependent onthe quality of demonstrations.
Distribution Shift Problem: The agent may encounterstates that were not covered in the demonstrations,leading to uncertain behavior.
Scalability: Collecting expert demonstrations can beexpensive and time-consuming, especially for complextasks.
Generalization: The ability for the agent to generalize thelearned behaviors is a challenge, especially in dynamicand unpredictable environments [31].



MATLAB provides two examples for imitation learning.One is mobile vehicle lane keeping, and another is for flyingrobot control. In MATLAB, the deep neural networksuccessfully imitates the behavior of Model PredictiveController (MPC). The vehicle state and control trajectoriesfor the controller and the deep neural network closely align.Figure 6.7 shows a MATLAB example of flying robot control.

Fig. 6.7 Flying robot control using imitation learning



Algorithm 18: Behavior cloning algorithm in imitation
learning

Algorithm 19: Inverse reinforcement learning using
maximum entropy

6.5 Federated Learning and
Distributed ModelsFederated learning or collaborative learning [54] is asubfield of machine learning [18], and it collaborates with



multiple entities or clients to train a model while ensuringthat the data remains decentralized [1]. A server sends adistributed model to each client. Each individual clientutilizes this distributed model to train a local model with itsown dataset. Updates to the model are sent back to theserver, and the shared model is improved during thecollaborative process. Due to the decentralized nature ofclients’ data, there is no guarantee that data samples heldby each client are independently and identically distributed.Federated learning is generally concerned with andmotivated by issues such as data privacy, data minimization,and data access rights [57]. The objective function forfederated learning [19] is (6.3)where K ∈ N  is the number of nodes, x
i

∈ R are theweights of model as viewed by node i ∈ N , and f(⋅) is node i’s local objective function; it describes how model weights
x

i

 conform to node i’s local dataset. The goal of federatedlearning is to train a model on all of the nodes, optimize theobjective function, and achieve consensus on x
i

.The distributed learning aims at training a single modelon multiple servers, and an underlying assumption is thatthe local datasets are independent and identicallydistributed. The difference between federated learning anddistributed learning lies in the properties of the localdatasets. Federated learning originally aims at training onheterogeneous datasets.In robotics, mobile robots learned navigation overdiverse environments by using the federated learning-basedmethod [25, 30, 61]. Federated learning is applied toimprove multi-robot navigation under limited bandwidth,assisting better sim-to-real transfer. The pseudocode offederated learning algorithm is shown in Algorithm 20.
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Algorithm 20: Federated averaging algorithm

Ensemble methods [12, 51, 55, 59, 60] use multiple learningto obtain better predictive performance. Ensemble learning[2] typically refers to bagging (bootstrap aggregating),boosting [39], or stacking/blending methods to induce highvariance among the base models [17]. Ensemble learningtrains two or more machine learning algorithms [18] byusing specific classification or regression [13, 39]. Thealgorithms are generally referred to as “base models,” “baselearners,” or “weak learners.” Empirically, the ensemblesyield better results if there is a significant diversity amongthe models [38, 44].Mixture of Experts (MoE) represents a form of ensemblelearning. Each expert f
i

, i = 1, 2⋯ ,N , takes the sameinput x and produces output f
i

(x). Each weighting functionor gating function w takes input x and produces a vector ofoutputs w(x)
i

, i = 1, 2⋯ ,N . Given an input x, the MoEproduces a single output: f(x) =∑
i

w(x)

i

f

i

(x),



i = 1, 2⋯ ,N . Both the experts and the weighting functionare trained by minimizing loss function, generally viagradient descent. The model is trained by performinggradient descent on the mean-squared error loss
L =

1

N

∑

k

∥ y

k

− f(x

k

) ∥

2, 
k = 1, 2⋯ ,N

.In deep learning, the critical goal is to reduce thecomputing cost. In deep learning, the output of MoE foreach query may involve a few experts’ outputs. Each expert
i has an extra “expert bias” b

i

, i = 1, 2,⋯ ,N . If an expertis being neglected, then the bias increases and vice versa.During token assignment, each token picks the top-kexperts, but with the bias added in. The expert bias mattersfor picking the experts, but not in adding up the responsesfrom the experts.
6.6 Lab Session: Implementing
Perception Algorithms with MATLABAt the end of this chapter, we would like to recommend allreaders complete the lab report. Please fill in the formshown in Table 6.1 after each lab session (2 hours).
Table 6.1 Lab report for robotic vision



Appendix: <Source codes with comments and line numbers
> An example of this lab report is:

Project title: Avoid Obstacles Using ReinforcementLearning for Mobile Robots.
Project objectives: The objective is to train a mobilerobot using a reinforcement learning algorithm to avoidobstacles. By interpreting range sensor readings, therobot learns to control its linear and angular velocities tonavigate without colliding in a known environment.
Configurations and settings: MATLAB Online
Methods: An occupancy map of a known environmentwas employed to generate range sensor readings, detectobstacles, and check collisions the robot may make. TheDDPG (Deep Deterministic Policy Gradient) agentobserved range sensor readings, the linear and angular



velocity controlled by using the DDPG-basedreinforcement learning algorithm.
Implementation steps:1. Load a map matrix representing the environment.  2. Set up the range sensor and robot parameters.  3. Visualize the map and robot positions.  4. Create the environment model for actions,observations, and rewards.  
5. Define observation and action specifications.  6. Build and configure the DDPG agent.  7. Define the reward function.  8. Train the agent.  9. Simulate and visualize the agent’s performance.  10. Extend the model to simulate in new environments.  
Testing steps:1. Verify rigid body elements.  2. Test joint connections.  



3. Validate robot assembly.  4. Interact with the robot model.  5. Simulation and performance testing. 
Result analysis: The result analysis of the trained DDPG-based mobile robot focuses on the robot’s ability tonavigate the environment efficiently, avoid obstacles, andadapt to new scenarios. Key metrics include success ratein avoiding collisions, path efficiency, and adaptability tovaried environments. Visual representations such astrajectory plots are employed to assess performance. Theoverall goal is to ensure that the robot learns optimalcontrol strategies to avoid obstacles.
Conclusion/reflection: The DDPG-based reinforcementlearning model successfully enables a mobile robot toavoid obstacles by learning optimal control actions basedon sensor readings. Through model training, the robotimproves its navigation efficiency and adaptability. Themodel’s performance is validated through simulations,which showcase its ability to navigate while minimizingcollisions; this makes it as a practical solution forautonomous navigation tasks in dynamic environments.
Readings: https:// au. mathworks. com/ help/ robotics/ ug/ avoid-obstacles-using-reinforcement-learning-formobile-robots. html

6.7 Exercises
Question 6.1 How to measure human IQ (IntelligenceQuotient)?

https://au.mathworks.com/help/robotics/ug/avoid-obstacles-using-reinforcement-learning-formobile-robots.html


Question 6.2 What are the characters of ReinforcementLearning? What is the relationship between ReinforcementLearning (RL) and Finite State Machine (FSM)?
Question 6.3 How to implement imitation learning? Whatis the relationship between Reinforcement Learning (RL)and Imitation Learning (IL)?
Question 6.4 How to implement inverse reinforcementlearning?
Question 6.5 Why GA algorithm can always find the rightsolution of a given optimization problem?
Question 6.6 What are the differences between behaviorcloning and behavior analogy?
Question 6.7 How to ensure the security of datasetsduring model training by using distributed models in deeplearning?
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7. Vision-Based Robotic Control
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, NewZealand 
AbstractRobot manipulators (i.e., robot arms) are extensivelydeployed in manufacturing, packaging, and processingfactories. The robot arm is linked with end-effector Zhao etal (Horticulturae 11(8):905, 2025). In this chapter, visualservoing is brought into vision-based robot control,especially camera retreat will lead the robot to get thedestination based on the acquired images. The significanceof this chapter is to implement robot control via roboticvision.
7.1 Basics of Visual ServoingVisual servoing [5, 10] is the method of controlling a robot’smotion using real-time feedback [20] from vision sensors toexecute tasks [15, 17]. The real-time information [8] fromvision sensors like cameras [12] will control robots. Visualservoing is a model-free approach to actuate the robotbased on high-level task to be executed. In visual servoing,the robot is instructed to move in order to align its currenttask progress with the desired task and gradually reduce

https://doi.org/10.1007/978-981-95-4360-1_7


the errors between the two. We have target matrix andcurrent matrix, and visual servoing is implemented by usingcameras [1, 5, 27] to control robots. Mathematically, visualservoing is to minimize the error [10]: (7.1)where e(⋅) ∈ R is the error, t ∈ R is the time, m(⋅) ∈ R isthe collection of regions of interest in the image, and a isthe collection of camera intrinsic parameters and extrinsicparameters. The function [14] 
f

∗

(⋅) ∈ R

 represents thedesired set of visual features, while f(⋅) ∈ R reflects theactual features [12].Visual features are computable vectors extracted fromdigital images [29], such as corner, edge, blob, contour[28], motif, etc. Depending on the positioning of cameras[12], visual servoing [4, 7] has two paradigms: eye-in-handand eye-to-hand [18]. The eye-in-hand camera is the visualsensor mounted on a robot, and the eye-to-hand camera isapplied to monitor our environment [25, 33, 34] as shown inFig. 7.1. From the view angles of the two cameras, thevisual objects and field of view (FoV) [26] are different.What we should know is that visual information is reliablefor robot locating. However, GPS information is not reliableor weak because in a tunnel, GPS information will be lost.

e(t) = f(m(t),a) − f

∗

(m(t), a)



Fig. 7.1 The eye-to-hand camera and eye-in-hand camera on a wheeled robotVisual servoing [3] is to control the pose of robot’s end-effector by using visual features extracted from the imagewhich contains two approaches [24]: Position/Pose-BasedVisual Servo (PBVS) and Image-Based Visual Servo (IBVS).PBVS takes use of observed visual features, a calibratedcamera and a known geometric model of the target todetermine the pose of target with respect to the cameras [1,12, 27]. 3D cameras are employed to detect object depth[26]. LiDAR system is too expensive and may loss the detailsof visual information. IBVS omits the pose estimation step,and it adopts the image features directly. That means thesystem has data conversation from image to image. Thedesired camera pose with respect to the target is definedimplicitly by using the image features at the goal pose [1,27].PBVS usually makes use of depth cameras to obtain 3Dpose/position and orientation of the regions/objects ofinterest [26]. The error term is the Cartesian posedifference between the two. The servoing scheme [3, 22] isto minimize it by moving the robot around, ideally towardthe final desired pose [11]. Based on the location of visual



object [26] in the image, the scheme generates the idealgrasp pose for the end-effector and converges the robot to it[36]. PBVS works with real-world poses which needs at leasta 6-DoF robot arm to successfully implement the solutionwithout getting stuck in local minima. Six DoF is theminimum degrees of freedom with low risk to reach objectwithout singularity; our human body has 7-DOF at least.PBVS makes use of robot inverse kinematics (IK) to convertCartesian control instructions into joint angles of the robot[9]. The inverse kinematics means that the end-effectorneeds to be moved to a position first if the manipulator isrequired to be moved. Other joints will be moved near to theobject. Controversially, the forward kinematics (FK) refersto that the foot of robots is required to move first, and thenthe joints will be followed to the end-effector. The differencebetween inverse kinematics and forward kinematics is thecomputing costs and time. The inverse kinematics needs tocompute the joint chain; thus its computing is slow [29].Since obtaining the information regards 3D posecomprehends of the conversion from camera frame to robotframe, camera calibration [11, 12] plays a critical role inPBVS process [12]. The intrinsic parameters and extrinsicparameters of the given cameras are related to cameracalibration. Camera calibration bridges the gap betweenimage space and 3D object space in the real world.Compared to PBVS [24], IBVS is to omit the poseestimation. The camera in hand, joint controller [9],feedback, and feature extraction are the same. Theinformation fusion step is also the same [1, 27]. IBVSextracts visual features and formulates the errors in imageplane. The desired image and the current image arecompared, and the differences will be calculated. The visualservoing converges visual feature to the desired coordinatesand moves the robot accordingly in image space [22].Visual feature extraction in IBVS is prone to cameraperformance, synchronization issues, and computational



requirements [29]. Cameras [12] usually have highdefinition (HD) or high resolution and high speed (i.e.,frames per second). Computational requirements refer tosoftware and hardware. Hereinafter, the hardware refers toGPUs and FPGAs, and the software links to the algorithmsfor extracting visual features. The synchronization meansthat two or many cameras [1, 27] are working togetherwithin the same pace, and they will acquire and process theimages from the same scene [21].The first step of IBVS is the projection of 3D object on a2D image plane. Mathematically, the mapping from 3Dspace to 2D space is based on transformation:
x = X / Z ∈ R

 and 
y = Y / Z ∈ R

, where 
Z ≠ 0

,
(X,Y ,Z) ∈ R

3 is a point location on a 3D object, and
(x, y) ∈ R

2 is a pixel location on an image. The depth hasbeen disappeared on the image. IBVS differs fundamentallyfrom PBVS by not estimating the relative pose of the target.The relative pose is implicit in the image features. The poseis hidden or stored in the 2D images. IBVS is an image-to-image approach, a kind of end-to-end approach. IBVS isremarkably robust to vision-based robot control [15]. IBVSis formulated to work with other image features such ascorner, straight line, circle, rectangle, etc.
7.2 Advanced Visual ServoingA number of autonomous robot operations [16] areemployed to relieve the lack of labor problems [35]. Robotswith sufficient electric power have no errors, and they canwork without rests and save a vast of costs [16]. Hence,human labors could be employed to other business or work.Visual servoing [3] is one of the most importanttechnologies. Industries often need robots to be running atlightning-fast speeds, and visual servoing is far fromachieving speedy performances [35]. Currently, our



hardware and software tools are still working slowly evenwith supercomputing.Computational bottlenecks in image processing andinverse kinematics (IK) are on using GPUs and parallelprogramming [4, 29]. In visual servoing [37], cameraretreat [6] refers to the cameras that need to be movedback (or “retreated”) so as to capture an entire scene [21]or visual object [26] within the viewing frustum. Thefrustum is a visible area of visual scene [13, 30]. Theproblem of camera retreat (moving back) is happened in anIBVS system because the object is too large or too close.The pseudocode of camera retreat algorithm is shown inAlgorithm 21.
Algorithm 21: Camera retreat algorithm

The camera position in 3D space is adjusted through affinetransformation such as rotation, scaling, and translation.Relatively, the object could be moved or scaled to match theclipping window of the image. The clipping operation refersto select regions of an image to display. A clipped image isshown in Fig. 7.2.



Fig. 7.2 An example of camera retreat. (a) The full image and (b) the clippedimageThe scaling change is achieved by Z-axis translation. The
XY / Z hybrid schemes take into account of X-axis and Y -axis as one group and Z-axis as another group. Thus, if themovement of a robot is planned, we are able to fully utilizethe two groups to reach the destination. 

XY / Z

-partitionedmethods eliminate camera retreat [6] by using IBVS tocontrol the degrees of freedom (DoF) while taking adifferent controller for the remaining degrees of freedom[9]. It is advantageous to select the longest line segment oftrajectory or path. The longest line segment in robot movingwill save our time and energy.For a rotated camera, the points will naturally be movedalong circular arcs with the assigned radius. The edges andcorners of an object will be rotated correspondingly. Thedesired rotational rate is obtained by using a simple



proportional control law. The proportional control law hasbeen harnessed in the control of a bicycle or a car with fourwheels. The simplest example is a bicycle with two wheels.When a car or a bicycle is moving, all wheels should followthe proportional control law with different radii.If a robot is armed with cameras, visual features areprojected from one or more images [12] onto sphericalimage plane and compute the control law in terms ofspherical coordinates. The spherical plane refers to thesurface of 3D sphere.In polar coordinates, image point is denoted as
(r,ϕ) ∈ R

2, r ∈ R is the distance, r = √

u

2

+ v

2

,u, v ∈ R,and u-axis and v-axis are the image coordinates. The anglefrom u-axis to a line is 
ϕ = tan

−1

(

v

u

) ∈ R

, 
u ≠ 0

. The twocoordinate representations are related to u = r cos (ϕ) ∈ Rand 
v = r sin (ϕ) ∈ R

. The world point
(X,Y ,Z)

⊤

,X,Y ,Z ∈ R in the camera frame is projectedonto the surface of sphere at the point (x, y, z)⊤,x, y, z ∈ R,
x = X /R, y = Y /R, z = Z /R

, 
R ∈ R

, 
R ≠ 0

 is thedistance from the camera origin to the world point. Aminimal spherical coordinate system comprises the angle ofcolatitude θ =sin−1 (y / r) ∈ R, θ ∈ [0,π] ∈ R,
r =

√

x

2

+ y

2

∈ R, r ≠ 0. Thus, the feature vector is
p = (θ,ϕ), ϕ = sin

−1

(

z

r

) ∈ R. Hence, X = R⋅ cos (θ) cos (ϕ), Y = R⋅ cos (θ) sin (ϕ), Z = R⋅ sin (θ),
R =

√
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2
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2

+ Z

2.The space of spherical images and the space of 2Dimages can be transformed mutually. The spherical mappingprojects our images onto the standard sphere as shown inFig. 7.3. A spherical camera eliminates the need to explicitlykeep visual features in the field of view (FoV) with bothposition-based visual servoing and hybrid schemes [37]. Fora spherical camera, this ambiguity is reduced. The spherical



cameras are independent on the FoV. In six-axis arm-typerobot, a perspective camera with default parameters ismounted on the robot’s end-effector, and its axes arealigned with the coordinate frame. This system drives therobot to the desired pose. In a mobile robot [2], a camera ismounted on a mobile robot that can be moved in a planarenvironment, and the visual servo controller will drive therobot until its view of landmarks matches the desired view[3, 37].

Fig. 7.3 From cube to sphere
7.3 Vision-Based Navigation and Path
Planning AlgorithmsRobot navigation is defined as the combination of threefundamental competences: (1) self-localization, (2) pathplanning,[23] and (3) map building and map interpretation.Vision-based navigation or optical navigation makes use ofcomputer vision algorithms and optical sensors, thisincludes laser-based range finder and photometric cameras,and it extracts the visual information required to thelocalization in the surrounding environment [33, 34].Google and Apple have provided precise navigation andlocating service in outdoor environment [32]. Image-basednavigation methods attract much attention as a powerfulalternative to traditional map-based navigation. The GoogleStreet View is a method featured in Google Map that allows



users to navigate through large-scale outdoor environmentwith 360 degree imagery. However, Google Street Viewcannot provide timely updates because it requires immensedata; this method involving a panoramic camera has notbeen extended due to its data collection permission.Our early prototype [32] was able to locate currentposition by matching query image in the database as shownin Fig. 7.4. If a match is found, the system roughly figuresout the position of query image based on position by usingSIFT feature detection. It can roughly locate a query imageon the map by using IPM (Inverse Perspective Mapping).Thus, it enables interactive navigation and knowledgesharing among users [31]. By using QR codes with thenavigation, the current location and the shortest path to thedestination are available [19].

Fig. 7.4 Precise indoor navigation without GPS information within a building



Robot localization denotes the robot’s ability to establishits own position and orientation. Path planning [23] iseffectively an extension of localization; it requires thedetermination of robot’s current position and a position of agoal location, both within the same frame of reference orcoordinates system.Self-driving vehicles will firstly make use of global pathplanning [23] to decide which roads to be taken to arrivethe destination. When these vehicles are on the road, theyhave to be constantly adaptive to the changing environment.This is where local path planning methods allow the vehicleto plan a safe and fast path to the target location.
7.4 Lab Session: Visual Servoing with
MATLABAt the end of this chapter, we would like to recommend allreaders complete the lab report. Please fill in the formshown in Table 7.1 after each lab session (2 hours). Anexample of this lab report is:

Project title: Automated Parking Valet with ROS 2
Table 7.1 Lab report for robotic vision
Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Automated Parking Valet with ROS 2
Lab objectives The objective is to simulate an autonomousparking system
  by using ROS
Configurations and
settings

<The preferences, software, hardware,platforms, tools, etc.>
Methods <The relevant scientific theories or concepts >



Name <First Name Last Name>
Workflow <The step-by-step procedure for theexperiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methodsstep by step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/reflection <The strengths and weaknesses, or learnedfrom this project >
References https:// au. mathworks. com/ help/ ros/ ug/ automated-
  valet-using-ros2-matlab. html
Appendix: <Source codes with comments and linenumbers>
Project objectives: The goal of this experiment is tosimulate an autonomous parking system by using ROS(Robot Operating System) to achieve automatic vehiclenavigation, path planning, and parking operations.
Configurations and settings:1. MATLAB Online  2. ROS node configuration  3. ROS message topics  4. Callback function setup  5. Simulated vehicle configuration  

https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html
https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html


6. Path planning and control strategy 
Methods: Initially, we upload a route plan and thespecified cost map by using the behavior planner and pathanalyzer. The control node is responsible for longitudinaland lateral controllers. We initialize the simulation bysending the first velocity message and current posemessage. This message causes the planner to start theplanning loop. The main loop waits for the behavioralplanner to say the vehicle reached the park position. Theparking maneuver callbacks are slightly different from thenormal driving maneuver.
Implementation steps:1. Load a route plan and a given cost map 2. ROS initialization  3. Publisher and subscriber creation  4. Callback functions  5. Vehicle status update  6. Goal reach check  7. Visualization and simulation shutdown  8. ROS network shutdown  
Testing steps:



1. Functional testing 2. Simulation testing 3. Edge case testing  4. Parking maneuver 
Result analysis: Through visualization, the vehiclefollows the planned path without deviating or collidingwith any obstacles. The path planning successfully guidedthe vehicle from the starting point to the target spot.
Conclusion/reflection: The autonomous parking systemsuccessfully achieved vehicle self-parking in thesimulation, its effectiveness in path planning, vehiclecontrol, and real-time feedback is demonstrated. Throughaccurate path planning and precise control commands,the vehicle was able to smoothly travel from the startingpoint to the destination spot and safely stop upon arrival.
Readings: https:// au. mathworks. com/ help/ ros/ ug/ automated-valet-using-ros2-matlab. html.

7.5 Exercises
Question 7.1 What is visual servoing?
Question 7.2 What is advanced visual servoing?
Question 7.3 How to implement camera retreat?
Question 7.4 How do the current algorithms play theirroles in robotic navigation, planning, and sceneunderstanding?

https://au.mathworks.com/help/ros/ug/automated-valet-using-ros2-matlab.html
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8. Computational Tools for
Robotic Vision
Wei Qi Yan1  Department of Computer and Information Sciences,Auckland University of Technology, Auckland, NewZealand 
AbstractIn this chapter, we embark on Robot Operating System (ROS),and it was designed as middleware for robot instruction. Thechallenges of modern computing will be spelt out, and themulticore computing and multithread computing areexpounded. GPUs are utilized to accelerate our computing forrobotic vision and robotic control for autonomous systems.Python programming is taken into account as the example tospecify the supercomputing. Another is mobile computing, andthe sensor data is gained by using MATLAB. The significanceof this chapter is to implement robotic vision through mobilecomputing and supercomputing.
8.1 Robot Operating System (ROS)Robot Operating System (ROS) [3, 19] is a framework or acollection of software libraries, and it assists developers tocreate robotic applications. With our application development,our data will be exported to the ROS system, and ROS will belinked to hardware automatically. ROS was designed asmiddleware, and it provides services such as hardware

https://doi.org/10.1007/978-981-95-4360-1_8


abstraction, device control, message passing betweenprocesses, and package management.Pertaining to modularity, ROS breaks down a complexrobotic system into manageable components, called as nodes.Each node performs a specific task and communicates withother nodes. Moreover, ROS provides a layer of abstractionbetween hardware and software, and our developers have notto care about the underlying hardware specifics. Incommunications, ROS offers a flexible and efficientcommunication infrastructure within the same machine oracross multiple machines on a network. Regarding tools, ROScomes with a suite of powerful tools for debugging,visualization, and simulation. With regard to packagemanagement, ROS organizes code into packages, and the codecan be easily shared and reused, conveniently integrated intothe third-party software.ROS 2 [25] is the second generation of the Robot OperatingSystem (ROS), and it was designed with real-timeperformance. It utilizes Data Distribution Service (DDS) as thecommunication framework that enables reliable, real-time, andscalable communications between distributed systems. ROS 2puts forward the enhanced security features, including securecommunications and data encryption. The feature avoids therisk of attacks such as man-in-the-middle, the attacks arepossible to exist between ROS and robots, and it ensuresinformation security [4]. ROS 2 is better suited forcoordinating multiple robots working together (co-work). ROSaccommodates better support for multiple operating systems,including Microsoft Windows and Apple macOS. The operatingsystem supplies with the improved tools for testing, debugging,and monitoring robotic systems [20, 23, 24].MATLAB released two versions each year, namely a and bversions. The ROS Toolbox showcases an interface connectingMATLAB and Simulink with the Robot Operating System (ROSand ROS 2). MATLAB has links and interface with ROS. Withthe toolbox, our users are able to design a network of ROSnodes; typically, we combine MATLAB or Simulink together togenerate ROS nodes with the existing ROS network. The



toolbox includes MATLAB functions to visualize and analyzeROS data by recording, importing, and playing back ROS files.ROS files have been employed to multiple purposes. Thetoolbox verifies ROS nodes via simulation by connecting toexternal robot simulators.MATLAB accommodates an example of how to park a car byusing ROS, and it is called car valet. The example consists oflocalization, perception, planning, and inference [5, 13, 14],and vehicles [1, 2]. The planning method encompassesbehavior planning [16], decision-making [12, 13], goal check,path planner, path smoother, velocity profiler, etc. All robots[1, 15] are the same in operations no matter flying in sky,moving on ground, or swimming under water, and they need tobe linked to ROS system.
8.2 Modern Computing for Robotics
8.2.1 SupercomputingSupercomputing refers to historically vector computers, butnow parallel vector. Vector computation is based on vectors inlinear order. All elements of a vector could be calculatedsimultaneously. MATLAB computing is based on vectoroperations. A master computer can get all information from thedistributed ones [18].High-Performance Computing (HPC) is to resolve problemsvia supercomputers with fast networks and data visualization.Every year, the world top 500 computer list, namely TOP500list, has been updated twice since 1993. In sequentialcomputing or serial computing, the components of a programare executed step by step to produce correct results. Forinstance, arithmetic operations, such as addition, subtraction,multiplication, and division, will be executed in the same time,no matter which operation will be executed, and the finaloperations are all addition-based. Parallelism is a conditionwherein multiple tasks or distributed parts of a task runindependently and simultaneously on multiple processors. As



we know, OpenAI needs a vast number of GPUs to train theirGPT models.A process is a program in execution with its own addressspace, memory, data stack, etc. under one operating system.Multithread computing means there are a number of threads,while the threads are employed for various purposes such asmatrix addition, subtraction, multiplication, etc. The multiplethreads execute within the same process and share the samecontext.The multithreading in Python is listed in Fig. 8.1. Forexample, Python programming is conducted to implement fork-join model for parallel programming. In this example, we loadthe libraries: threading and time, and we define the twothreads: cube and rectangle; we join them together. Theexecutive time is obtained after the two threads are workingtogether. In Fig. 8.2, the fork model is needed, after completedeach thread, the master thread will join them together.Previously, it was manually assigned in programming time;now MATLAB system automatically finds GPU resources in runtime.



Fig. 8.1 Multithreading in Python

Fig. 8.2 Fork-join modelIn Fig. 8.3, multithreading for matrix multiplication is takeninto account. In the beginning, Python libraries, NumPy andmultiprocessing, are loaded, and two matrices are multipliedby using inner product of vectors. The given matrix issegmented to 4 × 4 blocks, and they are multiplied together,respectively. Finally, the results are generated as the output.



The matrix multiplication is based on operation addition. Nomatter how complicated the multiplication of matrices is, allarithmetic multiplications are based on hardware adders. Theyare operating with binary numbers in circuits of a computersystem. In 1 second, how many addition operations can becarried out for the binary digits is applied to measure thecomputing speed of the processor.

Fig. 8.3 Parallel computing for matrix multiplication in PythonRegarding matrix multiplications, two matrices
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8.2.2 GPU AccelerationIn robotics, we have the challenges in computing accelerationfrom CPUs and GPUs. CPUs are slower, and GPUs are faster.Regarding CPUs, we have multicore computing or multithreadcomputing. Graphics Processing Unit (GPU) is a rapid way forus to train Large Language Models (LLMs). Pertaining to thegames like Minecraft, GPUs will accelerate the game play.A GPU is a specialized electronic circuit to accelerate thecreation of images in a frame buffer for output to a displaydevice. Modern GPUs are efficient at manipulating computergraphics and image processing. In a personal computer, a GPUcan be presented on a video card or embedded on themotherboard. Previously, a picture was drawn in scan lineorder of pixels, which needs long time. Now GPUs render thepicture in the same time for all pixels. GPU computing ispowerful for supercomputing. Regarding the architecture ofGPUs, we have graphics memory control, graphics andcomputer array, unit, bus interface for communication, videoprocessing unit, display interface, etc.MATLAB supports for CUDA-empowered NVIDIA GPUs, andit has the ability to run workers locally on a desktop. CUDA(i.e., Compute Unified Device Architecture) was created byNvidia in 2006; it is a parallel computing platform andapplication programming interface (API) that allows softwareto facilitate with GPUs. CUDA can accelerate general-purposeprocessing.MATLAB offers computer cluster and grid support withMATLAB Distributed Computing Server. MATLAB provides theinteractive and batch execution of parallel applications. Thedistributed arrays and Single Program Multiple Data (SPMD)are constructed for large dataset handling and data-parallelalgorithms.Google Colaboratory or Google Colab allows us to write andexecute Python codes in a web browser. Google Colab isadopted extensively in the machine learning community withapplications [10]. In deep learning and robotic intelligence[17], transfer learning and ensemble learning as well as



federated learning and distributed learning are employed toenhance the classification ability of deep learning models. Allthe models need parallel computing and GPU computing.
8.2.3 Mobile Computing for RoboticsMobile computing means we conduct programming for mobiledevices, while robots are moving around from one place toanother by using mobile communications based on roboticvision [26]. Cloud computing for robotics is associated withmobile computing. We archived data in the cloud. Multicoreprocessors are multiple processors (cores) based on a singlechip, such as CPUs. With regard to programming, we allocateone thread for each core. The comparisons of two laptops withand without GPUs are shown in Figs. 8.4 and 8.5. Parallelcomputing is simultaneous adoption of multiple processors.The cables are needed to link different computers together.The CPU workstation cannot move around, but laptops can.Cluster computing is a hierarchical combination of commodityunits to build parallel system within a tree structure.

Fig. 8.4 A GPU computer



Fig. 8.5 A multicore computerWireless communications like Wi-Fi are the must for movingrobots. The cabled connections to mobile robots are notpossible. Robots need cordless communications. MATLABoffers hardware infrastructure for parallel computing as shownin Figs. 8.6 and 8.7. Thus, the mobile computing has:
Connection: Connect to a MATLAB session running onMathWorks Cloud. Cloud can save a huge amount of data.

Fig. 8.6 MATLAB hardware configuration for GPUs



Fig. 8.7 MATLAB hardware configuration for clusters
Acquisition: Acquire data from device sensors—like theaccelerometer and GPS—and analyze the data in MATLAB.GPS can locate robots in real time.
Capturing: Take pictures and record video/audio for furtherprocessing and analysis [22]. We upload multimodal data tothe Internet [6].
Teaching and Learning: Mobile device is powerful andflexible for teaching purposes [17].MATLAB acquires data from built-in sensors [9] on mobiledevice and stream sensor data directly to the MathWorksCloud. The data includes:Acceleration on three axes 

(x, y, z ∈ R)Angular velocity on three axes (x, y, z ∈ R)Magnetic field on three axes 
(x, y, z ∈ R)Orientation (azimuth, pitch, and roll) (α

x

,α

y

,α

z

∈ R)Position (latitude, longitude, altitude, horizontal accuracy,speed, and course). The concept course refers to bearingangle.MATLAB Mobile sends all commands that were entered onthe device to the cloud for evaluations. Autocomplete inMATLAB Mobile makes typing easier. MATLAB Mobile displays



thumbnails and larger previews when figures are created orupdated with MATLAB commands. MATLAB Mobile deletesunwanted commands to improve scrolling performance inhistory.In Fig. 8.8, we list the functions of MATLAB Mobile asshown in Fig. 8.8a, the commands windows in Fig. 8.8b, thesensors in Fig. 8.8c, the examples in Fig. 8.8d, and the settingsin Fig. 8.8e. The example in Fig. 8.9 shows LoggingAccelerometer data from MATLAB Mobile by using MATLABOnline. It indicates how to manipulate and visualize data froma smartphone or tablet accelerometer.

Fig. 8.8 MATLAB Mobile interface



Fig. 8.9 MATLAB Mobile example
8.3 Tools for Parallel Computing in
RoboticsThe key topics and concepts in parallel algebra [8] include:
Matrix Multiplication Parallelizing matrix operations oftenuses the methods like block decomposition, to distribute partsof the matrices across processors. The pseudocode is shown inAlgorithm 22.Algorithm 22: Parallel matrix multiplication

LU Decomposition Parallel algorithms for matrixfactorization methods in solving linear systems of equations.The LU decomposition algorithm in parallel is shown inAlgorithm 23.Algorithm 23: Parallel LU decomposition to solve linearsystems



Eigenvalue Computations The parallelizing computations ofeigenvalues and eigenvectors are computationally intensive forlarge matrices. The pseudocode for QR iteration algorithm isshown in Algorithm 24.Algorithm 24: Parallel QR iteration to compute eigenvalues

Data Distribution Efficiently distributing data (e.g.,matrices, vectors) across multiple processors to minimizecommunication overhead and maximize parallel efficiency.



Sparse Matrix Operations Specialize parallel algorithms tohandle sparse matrices, which have large dimensions but fewnonzero elements.
Parallel Solvers Iterative methods such as conjugategradient or generalized minimal residual (GMRES). A parallelGMRES (Generalized Minimal Residual) method is an approachfor solving large linear systems by using a multicore CPUcluster.BLAS (i.e., CUDA Basic Linear Algebra Subprograms)supports operations like matrix-vector multiplication, matrix-matrix multiplication, vector addition, scalar products, andoptimization [11, 21] for dense matrices.SOLVER provides high-performance solvers for linearsystems, eigenvalue problems, and singular valuedecomposition (SVD) on GPUs.FFT (Fast Fourier Transform) offers routines for computing1D, 2D, and 3D FFTs (Fast Fourier Transforms) on GPUs.GPU-accelerated RNG libraryDNN (i.e., deep neural network library) is applied toframeworks like TensorFlow and PyTorch to acceleratetraining and inference of neural networks.SPARSE (i.e., sparse matrix library) accommodates routinesfor sparse matrix computations, optimized for the efficientuse of GPU memory and performance [11].Tensor is a library for efficient tensor algebra [7]computations, primarily in deep learning, physicssimulations, and scientific computing.
8.4 Lab Session: Working with MATLAB
for ROS and GPU-Accelerated
AlgorithmsAt the end of this chapter, we would like to recommend allreaders complete the lab report. Please fill in the form shownin Table 8.1 after each lab session (2 hours).



Table 8.1 Lab report for robotic vision
Name <First Name Last Name>
Email <firstname.lastname@mailbox>
Lab date <dd-mm-yy>
Submitted date <dd-mm-yy>
Project title Supercomputing and mobile computing for robotics
Lab objectives The objective is to enhance the performance of
  robotics by leveraging multicore processors andGPUs
Configurations and
settings

<The preferences, software, hardware, platforms,tools, etc.>
Methods <The relevant scientific theories or concepts >
Workflow <The step-by-step procedure for the experiment>
Datasets <The data and materials for your experiments>
Input <image filename, size, resolution >
Output <image filename, size, resolution>
Testing steps <Functional & non-functional testing methods stepby step>
Bugs or problems <The system error code, lines of the code>
Result analysis <The tables, graphs, and figures, etc.>
Conclusion/reflection <The strengths and weaknesses, or learned from thisproject >
References https:// au. mathworks. com/ help/ matlabmobile/ ug/ logging-
  accelerometer-data. html
Appendix: <Source codes with comments and line numbers>An example of this lab report is:

Project title: Supercomputing and mobile computing forrobotics
Project objectives: The objective of this project is to utilizethe parallel computing toolbox to enhance the performanceof robots by leveraging multicore processors, GPUs, andcomputer clusters.
Configurations and settings:

https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-data.html
https://au.mathworks.com/help/matlabmobile/ug/logging-accelerometer-data.html


1. Install Python and necessary libraries (e.g., OpenCV,NumPy, TensorFlow).  
2. Install MATLAB and configure MATLAB Mobile for datalogging.  
3. Set up Google Colab for GPU access.  
Methods: Performance can be improved by processing datasimultaneously. Machines can now comprehend and analyzevisual data.
Implementation steps:1. Use MATLAB Mobile to capture images with the mobiledevice camera.  
2. Save images in a predefined format (e.g., JPEG).  3. Use MATLAB Mobile to log accelerometer data.  4. Save data in .CSV format for further analysis.  5. Write a Python script by using OpenCV to process, andanalyze captured images.  
6. Utilize GPU acceleration to enhance processing speed.  7. Employ MATLAB Parallel Computing Toolbox to runmultiple processes concurrently, improving efficiency.  
Testing steps:1. Run GPU Code: Measure execution time to assess GPUperformance.  
2. Benchmark GPU vs. CPU: Run the same code on theCPU, and compare execution times.  



3. Profile GPU Usage: Monitor GPU resource usageduring execution.  
4. Test with Different Dataset Sizes: Evaluate thesystem’s performance by using small, medium, and largedatasets.  
5. Validate Output: Ensure GPU-based outputs matchexpected results and refine code for efficiency.  
Result analysis: Parallel computing and GPU accelerationsignificantly improved real-time data processing and matrixoperations; they enhance efficiency for robotic control.
Conclusion/reflection: The integration of parallelcomputing, GPU acceleration, and mobile data acquisitionproved effective for real-time robotics.
Readings: https:// au. mathworks. com/ help/ matlabmobile/ ug/ logging-accelerome ter-data. html.

8.5 Exercises
Question 8.1. What are the differences between ROS 1 andROS 2?
Question 8.2. What is multicore programming? How is itrelated to CPUs and GPUs?
Question 8.3. Why mobile computing is closely related torobotics?
Question 8.4. Why GPUs are important in moderncomputing?
Question 8.5. How are programming languages takingeffects in supercomputing?
Question 8.6. What is the effective way to reduce thecomplexity of matrix multiplications?
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Key Points of This BookThis book symmetrically delivers the content of roboticvision associated with deep learning and roboticintelligence, in the core area of contemporary AIknowledge. The research scientists and computerengineers will benefit from this book.This book exactly matches with the postgraduatestudents’ needs in universities. The book provides the first-hand experience of higher education teaching with thecontent selected from the student’s reactions in the classes.The PG students will benefit from the textbook withoutdifficulties.The peer colleagues and teachers in universities andresearch institutions will benefit from the textbook, andthey will find the suitable teaching materials andpedagogies in the knowledge delivery and example labreports of lab sessions from this book.



3D reconstruction

Activation function

Camera resectioning

Camera retreat

Dead reckoning

Depth perception

Distillation

Emotional quotient

Federated learning

Forward kinematics

Glossary In computer vision, the creation ofthree-dimensional models from a set of digital imagesIn artificial neural networks, theactivation function of a node defines the output of that nodegiven an input or a set of inputs.In camera calibration, the processof estimating the parameters of a pinhole camera modelapproximating the camera that produced a givenphotograph or videoCamera retreat is a phenomenon thatoccurs in visual servoing when a camera moves away froma target and then returns. It can cause problems with visualservoing control tasks, such as those involving multi-jointmanipulators. In navigation, dead reckoning is theprocess of calculating the current position of a movingobject by using a previously determined position, or fix, andincorporating estimates of speed, heading (or direction orcourse), and elapsed time.It is the ability to perceive distance tovisual objects in the world by using the visual system andvisual perception.In machine learning, distillation is the processof transferring knowledge from a large model to a smallerone. It is the ability to perceive, use,understand, manage, and handle emotions.is a subfield of machine learning withmultiple entities collaboratively to train a model whileensuring that the data remains decentralized.The use of kinematic equations of arobot to compute the position of end-effector from specifiedvalues for joint parameters



Image skeletonization

Imitation learning

Intelligence quotient

Inverse reinforcement learning

Inverse kinematics

Mobile computing

Path planning

Reinforcement learning

Robotic control

Robot end-effector

Robot operating systems

Robot manipulator

Robotic olfaction

A skeleton (or medial axis)representation of a shape or binary image, computed bymeans of morphological operatorsA paradigm in reinforcement learning,where an agent learns to perform a task by supervisedlearning from expert demonstrationsA total score derived from a set ofstandardized tests or subtests designed to assess humanintelligence is to learn theunderlying reward function that the expert seems to bemaximizing. The mathematical process ofcalculating variable joint parameters needed to place theend of a kinematic chainIn human-computer interaction, acomputer is expected to be transported during normalusage and allow for transmission of data, which can includevoice and video transmissions.A computational problem to find asequence of valid configurations that moves the object fromsource to destination An interdisciplinary area ofmachine learning and optimal control concerned with howan intelligent agent should take actions in a dynamicenvironment in order to maximize a reward signalThe system contributes to movement ofrobots. The device at the end of a roboticarm, designed to interact with the environmentROS is an open-source roboticsmiddleware suite. A device used to manipulate materialswithout direct physical contact by the operatorThe automated simulation of the senseof smell



Spline curve

Stereo imaging

Third-eye method

Triangulation

Turing test

Visual servoing

In mathematics, a spline is a functiondefined piecewise by polynomials.A technique for creating or enhancing theillusion of depth in an image by means of stereopsis forbinocular vision Third-eye method maps a referenceimage of a pair of stereo camera into the pose of a thirdcamera, measuring the similarity between created virtualimage and the actually recorded third image.In trigonometry and geometry,triangulation is the process of determining the location of apoint by forming triangles to the point from known points.A test of a machine’s ability to exhibitintelligent behavior equivalent to, or indistinguishablefrom, that of a humanA method that makes use of feedbackinformation extracted from a vision sensor to control themotion of a robot
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