

Robotics

Robotics: From Theory to Practice introduces robotic theories and technologies to audiences, in-
cluding university students, professionals with engineering backgrounds, and even high-school
students interested in building their own robots. We aim to bridge the gap between classic theo-
ries and real-world applications of robotic manipulators, which, to date, have far exceeded the
domain of conventional industry.

The contents are divided into three parts. The first two cover classic theories of robotics, includ-
ing kinematics, dynamics, path planning, control, and programming. Specifically, Part I is an
introduction targeting junior students, featuring more simplistic topics and examples. Part II
provides the senior students and professionals with more in-depth discussions on critical topics
and more comprehensive examples. In Part III, we demonstrate how classic robotics theory can
be extended to more advanced theoretical frameworks and adopted in real-world applications
beyond conventional industries.

This textbook is valuable to broad readers, including those who have limited background in
general engineering and wish to explore non-conventional applications of robotic manipulators.
The scaffolded contents from Part I to Part III are created to lower the prerequisites and smooth
the learning curve.

Chao Chen is the Director of the Laboratory of Motion Generation and Analysis (LMGA), the
Academic Supervisor of the Monash Nova Rover Team, and was the Course Director of Robot-
ics and Mechatronics in the Department of Mechanical and Aerospace Engineering at Monash
University. His research in robotics was well recognised by a number of awards including Excel-
lence Award of Project of Year 2023 for his harvesting robot by Engineers Australia (Victoria).

Wesley Au is a robotics and automation research engineer at Boeing Research and Technology
Australia, designing advanced production systems for the automation of precise and high-rate
manufacturing in the aerospace industry. He has a strong background in robotics, especially in
intelligent path planning within complex and dynamic workspaces.

Shao Liu is a research fellow in the LMGA at Monash University. He has extensive expertise in
robotic design, modelling, and analysis, and has conducted a number of research projects and
industry projects in medical robots, manufacturing robots, and special-purpose robots.

http://taylorandfrancis.com

Robotics
From Theory to Practice

Chao Chen, Wesley Au, and Shao Liu

https://www.crcpress.com

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does

not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® or Simulink®

software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular peda-

gogical approach or particular use of the MATLAB® and Simulink® software.

First edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Chao Chen, Wesley Au and Shao Liu

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-

sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have

attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders

if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please

write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or

utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-

tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission

from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the

Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are

not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-

tification and explanation without intent to infringe.

ISBN: 978-1-041-01359-4 (hbk)

ISBN: 978-1-041-01323-5 (pbk)

ISBN: 978-1-003-61431-9 (ebk)

DOI: 10.1201/9781003614319

Typeset in CMR10 font

by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Instructor and Student Resources: www.routledge.com/9781041013235.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003614319
https://www.routledge.com/9781041013235

To Helen, Jeffrey, Xiaoling, and my parents,

Chao Chen

To Lily, Matthew, Ethan, Jasper, Keith, and Clara,

Wesley Au

To Shuying, my son, Xianjun, and Xiaoyi,

Shao Liu

http://taylorandfrancis.com

Contents

Preface xv

Glossary xix

I Basics of Robotics 1

1 Introduction 3

1.1 Mechanics and Control of Robotics . 5

1.1.1 Basics of Robotics . 5

1.1.2 Key Topics . 6

1.1.3 Advanced Analysis and Case Studies 8

1.2 Robot Architectures . 9

1.2.1 Cartesian . 9

1.2.2 Cylindrical . 9

1.2.3 Spherical . 11

1.2.4 SCARA . 11

1.2.5 Articulated . 12

1.2.6 Wrists . 14

1.3 Conclusion . 15

1.4 Exercises . 15

2 Planar Kinematics, Velocity, and Statics 16

2.1 Two-Dimensional Space . 17

2.2 Transformations . 17

2.2.1 Transforming a Vector . 17

2.2.2 Transformation Trees . 19

2.3 Planar Robot Kinematics . 20

2.3.1 Joints . 20

2.3.2 Forward Kinematics . 21

2.3.3 Inverse Kinematics . 24

2.4 Velocity Analysis . 26

2.4.1 Linear and Angular End Effector Velocity 27

2.4.2 Jacobian . 29

2.4.3 Singularity . 30

2.5 Statics Analysis . 31

2.6 Workspace . 32

2.7 Conclusion . 33

2.8 Exercises . 34

3 Trajectory Generation 36

3.1 Interpolation with Polynomials . 36

vii

viii Contents

3.2 Interpolation with Linear and Parabolic Functions 42
3.3 Trajectory in Joint Space . 45
3.4 Trajectory in Task Space . 46
3.5 MATLAB® Examples . 48
3.6 Conclusion . 54
3.7 Exercises . 54

4 Control Schemes 56

4.1 Open-Loop Control . 56
4.2 Closed-Loop Control . 57

4.2.1 Bang-Bang Control . 57
4.2.2 Proportional Controller . 59
4.2.3 Integral Controller . 61
4.2.4 Derivative Controller . 61
4.2.5 PI and PD Controller . 62
4.2.6 Proportional-Integral-Derivative (PID) Controller 64

4.3 Pulse Width Modulation Control . 65
4.3.1 Relation to Joint Control . 65

4.4 Conclusion . 66
4.5 Exercises . 66

II Key Topics 69

5 General Rotations and Transformations 71

5.1 Position and Orientation . 71
5.1.1 Functions of a Rotation Matrix . 73

5.2 General Orientation . 73
5.3 Fixed Angles . 75

5.3.1 Forward Problem . 75
5.3.2 Inverse Problem . 76

5.4 Euler Angles . 77
5.4.1 Forward Problem . 78
5.4.2 Inverse Problem . 79

5.5 General Transformation . 80
5.6 MATLAB® Examples . 83

5.6.1 Matrix Arithmetic . 83
5.6.2 Inverse Transformation Matrix . 84

5.7 Conclusion . 87
5.8 Exercises . 88

6 Forward Kinematics 91

6.1 Joints . 91
6.2 Denavit-Hartenberg Notation . 91
6.3 DH Parameters for Prismatic Joints . 97
6.4 MATLAB® Examples . 102

6.4.1 DH Parameter Summary . 105
6.5 Conclusion . 106
6.6 Exercises . 107

Contents ix

7 Inverse Kinematics 110

7.1 Basic Techniques . 110
7.2 Analytical Solution to Inverse Kinematics 112
7.3 Univariate Polynomial . 119
7.4 Dialytic Method . 121
7.5 Conclusion . 126
7.6 Exercises . 127

8 Jacobian Analysis 132

8.1 Jacobian Matrix . 132
8.2 Velocity in Translation and Rotation . 136
8.3 Velocity Propagation . 140
8.4 Statics . 144

8.4.1 Relation between Jacobians and Effort 144
8.5 Workspace . 148
8.6 MATLAB® Examples . 150
8.7 Conclusion . 154
8.8 Exercises . 154

9 Path Planning 159

9.1 Configuration Space . 159
9.1.1 Grid . 161
9.1.2 Random Sampling . 162

9.2 State Connectivity . 163
9.2.1 Grids . 163
9.2.2 Random Samples . 166
9.2.3 Connectivity Matrix . 166

9.3 Planning Completeness . 168
9.3.1 Measuring Complexity . 168

9.4 Complete Planning Algorithms . 169
9.4.1 First-Search Algorithms . 169
9.4.2 Dijkstra’s Algorithm . 175
9.4.3 A* . 179

9.5 Sample-Based Planning Algorithms . 184
9.5.1 Probabilistic Road Map (PRM) . 184
9.5.2 Rapidly Exploring Random Trees (RRT) 186

9.6 Potential Field Planners . 189
9.7 Conclusion . 189

10 Programming 190

10.1 Modelling . 190
10.1.1 Symbolic Functions and Handles . 190

10.2 Robot Operating System . 191
10.2.1 Operating Paradigm . 192
10.2.2 ROS Components . 193
10.2.3 ROS System: Case Study . 195

10.3 Conclusion . 200

11 Lagrangian Dynamics 201

11.1 Rigid Body Dynamics . 201
11.2 Inertia Tensors . 202

x Contents

11.3 Principal Moments of Inertia . 204

11.3.1 Parallel Axis Theorem . 206

11.4 The Lagrangian Method . 207

11.4.1 Mass Matrix . 217

11.4.2 Gravity Term . 218

11.4.3 Friction Term . 218

11.4.4 Load Term . 219

11.4.5 MATLAB Example . 219

11.5 Conclusion . 220

11.6 Exercises . 220

12 Newton-Euler Dynamics 222

12.1 Newton’s and Euler’s Equations . 222

12.1.1 Rigid Body Rotation . 223

12.1.2 Intermediate Axis Theorem . 225

12.2 Outward Propagation . 227

12.3 Inward Propagation . 231

12.4 Procedure . 233

12.5 Twist, Wrench, and 6× 6 Transformation Matrix 236

12.5.1 Transformation of Twist . 236

12.5.2 Inverse Transformation of Twist . 237

12.5.3 Transformation of Wrench . 238

12.5.4 Derivative of 0X0 Matrix . 238

12.5.5 Physical Interpretation . 241

12.6 Applications in Computing . 241

12.6.1 Computing Efficiency . 241

12.7 Conclusion . 248

12.8 Exercises . 248

13 Joint Control 252

13.1 Servo Dynamics . 252

13.2 Modelling Servos with a Gear Transmission 255

13.3 Fixed Reference Tracking . 261

13.3.1 P Controller . 261

13.3.2 PD Controller . 264

13.3.3 PID Controller . 269

13.4 Error Dynamics . 272

13.4.1 First-Order Error Dynamics . 273

13.4.2 Second-Order Error Dynamics . 273

13.4.3 Velocity Control . 275

13.5 Conclusion . 276

13.6 Exercises . 276

14 Computed Torque Control 278

14.1 SISO Computed Torque Control . 278

14.2 MIMO Computed Torque Control . 279

14.3 Controller with Gravity Compensation . 282

14.4 Lyapunov Stability . 283

14.4.1 Basic Definition . 283

14.4.2 Lyapunov’s Direct Method . 285

14.5 Dynamic Relation . 286

Contents xi

14.6 Stability Analysis of Nonlinear Robotic Controllers 288
14.7 Motion Control in Task Space . 289

14.7.1 Dynamics in Task Space . 290
14.7.2 Task Space Dynamics Partitioning 291
14.7.3 Error Dynamics . 291

14.8 Conclusion . 292
14.9 Exercises . 293

15 Force Control 295

15.1 Single Axis Control in Task Space . 295
15.2 Hybrid Motion-Force Control . 297

15.2.1 Natural Constraints . 297
15.2.2 Artificial Constraints . 298

15.3 Impedance Control . 300
15.3.1 Single Axis Control . 300
15.3.2 Task Space Control . 301
15.3.3 Control with Environmental Dynamics 301
15.3.4 Dynamic Relations . 302

15.4 Conclusion . 304
15.5 Exercises . 304

III Advanced Analysis and Case Studies 307

16 Mobility Analysis 309

16.1 Mobility Analysis Based on the Pattern of Transformation Matrix 309
16.1.1 Pattern of Transformation Matrix 309
16.1.2 Case Study—3-UPU Parallel Manipulator 311
16.1.3 Case Study—3R2T Parallel Manipulator 313
16.1.4 Case Study—3R1T Parallel Manipulator 314
16.1.5 Case Study—2-RPS-UPS Parallel Manipulator 315

16.2 The Order of Mobility . 316
16.2.1 Local Mobility . 317
16.2.2 Case Study—A Novel Spatial Four-Bar Linkage 318

16.3 Conclusion . 322
Bibliography . 322

17 Orientation Workspace 324

17.1 Measurement Principles and Quaternions 324
17.2 Generalised Volume of Orientation Workspace 325
17.3 Orientation Workspace Volume of Various Kinematic Descriptions 327

17.3.1 Euler Angles . 327
17.3.2 Angle-Axis Representation . 328

17.4 Case Study . 328
17.5 Conclusion . 330
Bibliography . 330

18 Constraint Analysis for Underactuated Systems 332

18.1 Constrained Minimisation . 333
18.2 Kinetostatic Constraints . 333

18.2.1 Generalised Coordinates and Generalised External Forces 333

xii Contents

18.2.2 General-Form Kinematic Constraint Equations and Lagrange Multi-
pliers . 334

18.2.3 Force Constraint Equations . 335
18.2.4 Hooke Constitutive Equations . 335
18.2.5 Selection Matrices . 335
18.2.6 Array of Unknowns . 336
18.2.7 Kinetostatic Constraints . 336

18.3 Case Study — Soft Robots with Pseudo-Rigid Bodies 337
18.3.1 3R-PRB Model of Backbone Sub-Segments 338
18.3.2 Generalised Coordinates and Generalised External Forces 338
18.3.3 Kinematic Constraint Equations and Lagrange Multipliers 339
18.3.4 Hooke Constitutive Equations . 340
18.3.5 Constraint Inequalities . 341
18.3.6 Constrained Minimisation . 341
18.3.7 Experimental Verification . 342

18.4 Case Study — The Compliant Five-Link Epicyclic Finger 343
18.4.1 Generalised Coordinates and Generalised External Forces 344
18.4.2 Kinematic Constraint Equations and Lagrange Multipliers 346
18.4.3 Hooke Constitutive Equations . 347
18.4.4 Force Constraints of Contacts . 348
18.4.5 Selection Matrices . 348
18.4.6 Constrained Minimisation . 349
18.4.7 Experimental Verification . 350

18.5 Conclusion . 351
Bibliography . 351

19 Concentric Tube Robot 353

19.1 Overview of Concentric Tube Robot . 353
19.2 Robot-Independent Mapping . 354
19.3 Robot-Dependent Mapping . 356

19.3.1 Constitutive Equation . 356
19.3.2 Static Equilibrium . 357
19.3.3 Variations of the Governing Equation 358

19.4 Iteration . 360
19.5 Case Studies for Computational Efficiency 361
19.6 Conclusion . 363
Bibliography . 363

20 Path Planning of Parallel Manipulators 364

20.1 Parallel Manipulator Kinematics . 364
20.1.1 Singularities . 365
20.1.2 Example: A 5R Parallel Manipulator 366

20.2 The Path Planning Problem . 368
20.3 Methodology . 369
20.4 Generating Charts . 370

20.4.1 Singularity Locus . 370
20.4.2 Identifying a Chart . 370
20.4.3 Constructing a Chart’s C-space . 372

20.5 Constructing the Atlas . 373
20.6 Case Study: A 3-RRR Parallel Manipulator 374

20.6.1 Forward Kinematics . 375

Contents xiii

20.6.2 Continuity Conditions . 378
20.6.3 Singularity Analysis . 378
20.6.4 Path Planning . 380
20.6.5 Performance . 383

20.7 Conclusion . 383
Bibliography . 384

21 Minimally-Invasive Surgical Robot with Remote Centre of Motion 387

21.1 Minimally Invasive Surgery and MIS Robots 387
21.2 The Dual-Triangular Linkage . 389

21.2.1 The Design . 389
21.2.2 Proof of Remote Centre of Motion 390
21.2.3 The Gear-Constrained Dual-Triangular Linkage 391
21.2.4 The 2R1T RCM Mechanism Based on the DT Linkage 392

21.3 The Cable-Constrained Linkage with Remote Centre of Motion 393
21.3.1 The Design . 393
21.3.2 Proof of Functioning . 394

21.4 Advantage of DT/CC Linkage over Parallelogram RCM Mechanism 399
21.5 Conclusion . 401
Bibliography . 401

22 MARS: The Monash Apple Retrieving System 402

22.1 Background and Motivation . 402
22.2 Virtual Environment Construction . 403

22.2.1 Kinematics . 404
22.2.2 Auxiliary Frame Assignments . 406

22.3 Pose Optimisation . 406
22.3.1 Objective Function . 408
22.3.2 Kinematic Constraints . 408
22.3.3 Collision Constraints . 409
22.3.4 Kinematic Configuration Constraint 410

22.4 Path Planning . 410
22.4.1 Planning Algorithm . 410
22.4.2 Harvesting Sequence . 411

22.5 Results . 415
22.5.1 Harvest Success Rate . 415
22.5.2 Cycle Time . 417

22.6 Conclusion . 417
Bibliography . 418

IV Appendix 421

23 Appendices for Chapter 5 423

23.1 Angle-Axis . 423
23.1.1 Forward Problem . 423
23.1.2 Inverse Problem . 424

23.2 Quaternion . 425
23.3 Alternate Expression of Rodrigues’ Formula 427

xiv Contents

24 Appendices for Chapter 8 428

24.1 Proof of Q QT Being Screw-Symmetric . 428
24.2 Proof of a Screw-Symmetric Matrix Being the Crossproduct Matrix of a

Vector . 428
24.3 Proof of ω . 429

25 Appendices for Chapter 11 430

25.1 Inertia Tensor . 430
25.2 Euler’s Law . 430
25.3 Proof of Parallel-Axis Theorem . 431

Index 433

Preface

Robotics is a fascinating subject, which often triggers our deep curiosity and makes us think
about how to create robots to improve people’s daily lives. Fortunately, I have had the
opportunity to teach robotics in the Discipline of Robotics and Mechatronics at Monash
University since 2008. My students asked many interesting questions, which contributed
significantly to this textbook. For example, a rotation or transformation matrix is described
from frame 1 to frame 2 in some textbooks; however, the exact rotation or transformation
matrix is described from frame 2 to frame 1 in other textbooks. Clear explanations of the
underlying principles to such questions improved the learning of students and enriched this
textbook.

Besides the students in my class of robotics, the Monash Nova Rover team has also
utilised this textbook (earlier version) as a handbook to develop the robotic manipulators
on their rovers. The team is an undergraduate student team founded in 2017, aiming at de-
veloping Mars rovers and Lunar rovers for various competitions. As the academic supervisor
and founder of this student team, I have observed that the team gradually and successfully
developed the robotic manipulators for competitions, by implementing forward kinematics,
inverse kinematics, path planning, and remote control. The team won Second Place in the
2022 and 2023 University Rover Challenges in Utah, and First Place in the 2021, 2022, and
2023 Australian Rover Challenges.

This textbook is co-authored by my former PhD students, Dr Wesley Au and Dr Shao
Liu. Dr Wesley Au has a strong background in robotics and path planning in complex and
dynamic workspaces, and brings his knowledge and expertise in cutting-edge robotic au-
tomation for manufacturing into this textbook in both an academic and industrial setting.
He has worked in both research and industry-led projects, ranging from critical infrastruc-
ture maintenance robots to agricultural robots. He is now an automation research engineer
at Boeing Research and Technology Australia, designing advanced production systems for
the automation of precise and high-rate manufacturing in the aerospace industry. Dr Shao
Liu is a Research Fellow in my lab at Monash University. He has extensive experience
and knowledge in robotic design, modelling, and analysis, and has conducted a number
of research projects and industry projects in medical robots, manufacturing robots, and
special-purpose robots. In particular, Dr Liu’s expertise in soft robots and general under-
actuated systems helps extend the coverage of this textbook beyond classic theories and
applications.

This textbook aims to bridge the gap between theories in robotics and real-world appli-
cations in modelling, analysis, planning, and control of robotic manipulators. The contents
are divided into three parts. The first part targets senior secondary school students and ju-
nior university students, by introducing the basics of kinematics, trajectory planning, and
control. The second part targets senior university students, by introducing the key topics of
robotics, including spatial transformations, kinematics and dynamics, as well as control and
programming, which shall also serve as a valuable source to professionals who are interested
in robotics and have backgrounds in engineering. The third part targets the researchers
in robotics, through the discussions of advanced analysis and case studies in soft robotics,
medical robotics, and agricultural robotics. While there exist a number of classic textbooks

xv

xvi Preface

in robotics to which we pay full respect, the following reasons motivated us to develop this
textbook.

Firstly, there is a growing interest of young students in robotics, with an increased
number of robotics teams and clubs in secondary schools and universities around the world.
However, robotics units or courses are usually taught in the third or fourth year in most
undergraduate curricula, preventing junior students from obtaining the necessary knowledge
to develop their robotics projects. Part I of this textbook attempts to tackle this gap, by
introducing necessary knowledge with minimum prerequisites. Further, completing Part I
will enable a smooth transition to more advanced topics in Part II.

Secondly, robotic systems have been applied to much broader fields such as medicine,
agriculture, and infrastructure, beyond traditional scenarios in factories. Therefore, Part III
attempts to introduce these advanced applications by extending the classic robotic tech-
nologies of conventional industrial robotic manipulators in Part II.

Thirdly, there are concepts and theorems in robotics that may be difficult to understand
or visualise, particularly those involving three or more dimensions. Therefore, we have in-
cluded comprehensive examples with MATLAB® code, which can assist in the visualisation
and understanding, and also be generalised for various robotic systems. We hope that this
feature will make the fundamental mathematics and algorithms more interesting, insightful,
and engaging for the readers.

The contents of this textbook are summarised as follows.
Part I introduces the basics of planar robots for simple tasks through modelling, plan-

ning, and executing, from Chapters 1–4.
Chapter 1 serves as an introduction to the field of robotics and our textbook. It starts

with a brief history of robots in industrial applications. Next, commonly used robot archi-
tectures are discussed, including their degrees of freedom (DoF), properties of motion, and
usual applications. This chapter also includes a summary of the topics discussed, along with
their per-chapter allocations in the textbook.

Chapter 2 tackles the problem of modelling a planar robotic manipulator. Theoretical
fundamentals are presented for both the kinematic and the force domains, covering trans-
formations in the planar space, kinematics, velocity analysis, Jacobian, statics, and robot
workspace.

Chapter 3 presents the methods to compute a valid trajectory for the planar robotic
manipulator to execute. Two approaches are presented: polynomial interpolation and cubic
splines. Additionally, trajectory generation in both the joint space and the task space is
discussed.

Chapter 4 introduces the basics of control schemes, including open-loop control, closed-
loop control, and pulse width modulation. Various controllers realising the closed-loop con-
trol schemes are also presented.

Part II covers general transformation, kinematics, dynamics, path planning, program-
ming, and control of spatial robots from Chapters 5–15.

Chapter 5 deals with spatial transformation. The definition of robot pose, i.e., position
and orientation, is given. Commonly adopted kinematic descriptions are introduced, with
fixed angles and Euler angles in the body part of the chapter, and angle-axis and quaternion
in the appendix of this chapter. Both the forward and the inverse problems are discussed
for each description.

Chapter 6 is dedicated to the forward kinematics of serial robotic manipulators based
on the Denavit-Hartenberg method. The step-by-step implementation of the method is
introduced through the analysis of robots with revolute and prismatic joints, a spherical
robot wrist, the PUMA robot, and a cylindrical robot.

Chapter 7 focuses on solving the inverse kinematics problem of serial robotic manipu-
lators. Firstly, trigonometric functions that are commonly used to solve inverse kinematics

Preface xvii

problems are introduced as the foundation. From there, examples with analytical solutions
are given, followed by discussions on univariate polynomials and the dialytic method for
the cases where analytical solutions are infeasible.

Chapter 8 discusses the Jacobian matrix and velocity analysis. On the Jacobian side,
the chapter starts with the definition of a Jacobian matrix, and discusses the end-effector-
to-joint velocity and force mappings based on the Jacobian matrix. Workspace singularity
analysis is also included. Moreover, the chapter extends the discussion on velocity to present
velocity propagation.

Chapter 9 covers the path planning methods and algorithms commonly used in robotics.
The concept of configuration space is first introduced. Three path planners are discussed:
the complete planners, the sample-based planners, and the potential field planners. The
discussion further extends to detailed algorithms belonging to individual planners.

Chapter 10 focuses primarily on the Robot Operating System (ROS). The operating
paradigm and ROS components are discussed, followed by a case study.

Chapter 11 is concerned with the Lagrangian dynamics of serial robotic manipulators.
Inertia tensors and principal moments of inertia are first introduced. The chapter then
presents a step-by-step guide on the implementation of the Lagrangian method.

Chapter 12 is on the Newton-Euler dynamics of serial robotic manipulators. The outward
propagation of velocity and acceleration, and the inner propagation of force and moment
are described, followed by a step-by-step guide on the implementation of the Newton-Euler
method. The chapter also includes an introduction to the twist, wrench, and their corre-
sponding unified transformation matrix.

Chapter 13 covers the basics of actuator control, where a linear controller is derived for
a single actuator. Servo dynamics and the modelling of geared servo are presented. The
chapter then moves on to fixed reference tracking with P, PD, and PID controllers, and
concludes with the discussion on error dynamics.

Chapter 14 focuses on computed torque control that takes into account nonlinearity in
robot dynamics. The first part of the chapter discusses SISO and MIMO controllers, as
well as controllers with gravity compensation, all in the joint space. The second part is on
Lyapunov stability analysis. In the last part of the chapter, motion control in task space is
presented.

Chapter 15 introduces the force control strategy. The chapter starts with single-axis force
control, and takes it one step further to discuss hybrid motion-force control, where natural
and artificial constraints are presented. Finally, an overview of the impedance controller is
provided.

Part III investigates advanced robotic modelling and analysis, and the robotic appli-
cations in various fields, building upon the knowledge in Parts I and II, from Chapters
16–22.

Chapter 16 is concerned with the mobility analysis of mechanisms. The chapter is divided
into two parts. In the first part, the focus is the global mobility of parallel manipulators,
where a method that reveals the mobility, property of motion, and actuation pattern based
on the manipulator’s transformation matrix is presented. In the latter half, the focus is
redirected to the analysis of local mobility based on Taylor’s theorem.

Chapter 17 presents the investigation of the parameterisation of the orientation
workspace of spherical manipulators. An approach based on quaternion is proposed, fol-
lowed by the mapping to convert parameterisation based on other kinematics descriptions,
such as Euler angles and angle-axis, to that based on quaternion to allow like-to-like com-
parisons among manipulators of different designs.

Chapter 18 introduces a framework to conduct kinetostatic analysis of planar underac-
tuated systems. The derivation of core kinetostatic constraints based on generalised coor-
dinates, kinematic constraint equations, and Lagrange multipliers is presented, along with

xviii Preface

selection matrices and the constrained minimisation method to complete the formulation

and obtain the solution. Two case studies are included, on a tendon-driven robot with a

continuum backbone and an adaptive prosthetic finger, respectively.

Chapter 19 covers the modelling of concentric tube robots, a soft robot featuring multiple

concentrically arranged continuum superelastic tubes as the body. The modelling is divided

into two parts: a robot-independent mapping developed based on the model of strands,

and a robot-dependent mapping relating the actuator inputs and the prescribed shapes of

individual tubes to the converged shape of the robot. Variations in the governing equations

are presented, and their computational efficiencies are compared.

Chapter 20 discusses efficient path planning of parallel manipulators. The chapter starts

with the kinematics of parallel manipulators and highlights the challenge in their path plan-

ning due to complex singularity profiles. A path planning method is proposed, which actively

exploits the workspace singularity loci as gates to connect singularity-free workspace regions

for efficient configuration space path planning. A case study based on the 3-RRR manipu-

lator is included and demonstrates successful assembly mode changes of the manipulator.

Chapter 21 presents a novel remote centre of motion mechanism designed for minimally

invasive surgery. Two design variants are discussed, which are hybrid mechanisms of gear-

linkage and cable-linkage, respectively. Mathematical proofs on the remote centre of motion

property are provided, followed by a case study to demonstrate the mechanism’s advantage

in terms of footprint minimisation compared to the commonly used parallelogram-based

designs.

Chapter 22 overviews the design and testing of an edge-cutting robotic apple-harvesting

system. The first part of the chapter covers robot design, the construction of the virtual

workspace environment, the optimisation of the robot harvesting pose, and harvesting path

planning. The second part presents the performance analysis of the robot based on the

outcomes of field tests.

This textbook has been influenced by many outstanding books in robotics, in partic-

ular, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms by

Angeles, Introduction to Robotics by Craig, Introduction to Theoretical Kinematics by Mc-

Carthy, Springer Handbook of Robotics by Siciliano and Khatib, Robot Modeling and Con-

trol by Spong, Hutchinson, and Vidyasagar, Modern Robotics: Mechanics, Planning, and

Control by Lynch and Park, Robot Dynamics Algorithms by Featherstone, Modelling and

Control of Robot Manipulators by Sciavicco and Sicilliano, and Engineering Applications of

Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups by

Chirikjian and Kyatkin.

To keep the contents of teaching and learning concise, we omitted the list of bibliogra-

phies in Parts I and II, where classic theories and well-known technologies are discussed.

Bibliographies are included in Part III for readers who desire to conduct a deeper dive into

these research topics and case studies.

Finally, I would like to express gratitude to all of the teaching assistants in my class

of robotics for their valuable inputs and contributions, especially, Dr Keenan Granland,

Mr Eugene Kok, Mr Dariusz Skoraczynski, Dr Sajeeva Abeywardena, Dr Stanley Ip, Dr

Charles Treoung, Dr Xing Wang, Dr Hugh Zhou, Dr Zijue Chen, and Dr Hanwen Kang.

Moreover, we appreciate the research funds of the Australian Research Council and Per-

petual Philanthropy, for the research projects leading to the case studies in Part III of the

textbook.

Chao Chen

Glossary

Notations and symbols

{0} Ground frame

{i} i-th frame

{j} j-th frame (following {i})

qi i-th joint position
iTj Homogeneous transformation matrix mapping coordinates from {j} to {i}
iRj Rotation matrix mapping coordinates from {j} to {i}
k
ipj Position vector pointing from the origin of {j} to the origin of {i}, measured in {k}

ipj ≡ i
ipj Position vector pointing from the origin of {j} to the origin of {i}, measured in {i}

i
ωj ≡ i

0
ωj Angular velocity of {j} with respect to ground, measured in {i}

i
jωC Angular velocity of {C} with respect {j}, measured in {i}
izi z axis of frame {i}, measured in {i} (time invariant)
k
ivj Linear velocity of {j} with respect to {i}, measured in {k}

ivj ≡ i
ivj Linear velocity of {j} (with respect to {i}), measured in {i}

iI Inertia tensor of link A, measured in {i}
iIj Inertia tensor of link B, measured in {i}

i
ω̇j ≡ i

0
ω̇j Angular acceleration of {j} with respect to ground, measured in {i}

ip̈j ≡ i
0
p̈j Linear acceleration of frame j with respect to ground, measured in {i}

if j Force acting on link j by link j − 1 at joint j, measured in {i}
ifcj Inertia force acting on link j at its mass centre, measured in {i}
inj Torque acting on link j by link j − 1 at joint j, measured in {i}
incj Torque acting on link j, measured in {i}

L Lagrangian

C Configuration

V Twist

F Wrench

xix

http://taylorandfrancis.com

Part I

Basics of Robotics

http://taylorandfrancis.com

1

Introduction

The history of robotics and automation is brief, dating back as recently as the 1960s when
the first wave of industrial robots was introduced in manufacturing lines for the first time.
During this period, concerns over worker safety in manufacturing environments and the
increase in labour costs were becoming significant issues for the manufacturing industry.
The introduction of robots in the manufacturing industry was initially touted as a solution
to alleviate these concerns. However, after some time in the industry, the advantages of
using robots in this sector soon made headlines, as car manufacturers saw an increase
in productivity by more than double. This was in part due to minimal downtime and
comparably high speed and accuracy in performing repetitive tasks to manual labourers.
With the eventual declining costs of industrial robots and general technological advances,
robots are now a common staple in modern manufacturing plants.

While modern technological advances in the manufacturing industry can be attributed
to improvements in circuit design, processing, and computing, leaps in manufacturing tech-
nology can be attributed to advances in mechanical design. These leaps in manufacturing
technology can be observed as a series of industrial revolutions, as shown in Table 1.1, with
an approximate decade of establishment and key advancements of technologies highlighted.
The first industrial revolution in the 1780s saw the use of mechanisms, which were devel-
oped to take full advantage of steam and water power by converting a source of power to
one that was mechanically useful. This ingenuity formed the basis of intelligent mechanical
design that would later bring about further industrial revolutions. Through smart mechan-
ical engineering and the discovery of better power sources, electricity and micro-circuitry,
processing and computing, industrial revolutions have accelerated during the 20th century,
lending to increased manufacturing capabilities and efficiency that we see today.

The Industrial Revolution 3.0 in the 1960s saw the advancement of both mechanical and
electrical circuit design, culminating in the first use of robotics manufacturing in automation.
Perhaps the most well-known robot of this era was called the Unimate. It was a hydraulically
driven four-degree-of-freedom (four-DoF) robot with two actuators at the base representing
the robot’s shoulder, and a prismatic (telescopic) and revolute actuator to control the
extension and one-axis rotation of the working tool. Its initial role was to perform die
casting and welding in the manufacture of cars in an environment that was considered
dangerous for humans due to lead fumes and radiant heat and light. These robots were first
installed in car manufacturing plants in the late 1960s, which saw the manufacturing speed
more than double its existing speed. Other car manufacturers and other industries took note
of this milestone and, in a short period of time, revolutionised the manufacturing industry.
Its success led the manufacturer of the original Unimate robot to develop a successor,
the PUMA robot (Programmable Universal Machine for Assembly). Featuring a similar
architecture to the original Unimate robot but on a smaller scale, it has become a standard
for robots in the manufacturing industry with typical uses in standard pick-and-place tasks,
assembly, and welding, to name a few.

DOI: 10.1201/9781003614319-1 3

https://doi.org/10.1201/9781003614319-1

4 Introduction

FIGURE 1.1

The original Unimate robot.1

TABLE 1.1
Industrial Revolutions, from First Inception in 1784 to Today with Key Technological
Advances2,3

Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0
c. 1784 c. 1870 c. 1969 Today

Mechanical
production

Steam and water
power

Weaving loom

First assembly line
Mass production
Electricity
Discovery of oil and
production of
petrol

Computers and IT
Microcircuits and
processors

Automated
production

Global supply
chains

Internet of Things
(IoT)

Smart devices
Macroscale
computing

Real-time data

Although the manufacturing industry has benefited significantly from the use of robots
in the past few decades, it has always met with some resistance. Manufacturing roles that
were previously filled by human workers and considered automatable were eventually re-
placed by robots. However, modern robotics has seen a paradigm shift to more assistive
and collaborative robots in manufacturing, as the industry moves towards adaptive manu-
facturing. Today, we see many robots used in many assistive roles, and they can come in
many shapes and forms, such as vehicles, lifters, and exoskeletons. This new era of assistive
robotics in the industry is called Industry 4.0, where workers and robots can co-exist in
the same workspace, driving up both productivity and manufacturing flexibility. It is the
adopted approach in most wide-scale manufacturing plants in Australia and around the
world. While artificial intelligence is the primary driver of the latest industrial revolution,
in each robot, there is always an aspect of intelligent mechanical design, which, in a literal
sense, serves as the backbone for all robotic systems.

1Aly, M.F., Abbas, A.T. and Megahed, S.M., 2010. Robot workspace estimation and base placement
optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing
systems. International Journal of Computer Integrated Manufacturing, 23(12), pp.1133–1148.

2https://www.britannica.com/technology/history-of-technology/The-Industrial-Revolution-

1750-1900 (Retrieved 09.10.2024)
3https://en.wikipedia.org/wiki/Industrial_Revolution (Retrieved 09.10.2024)

https://www.britannica.com/technology/history-of-technology/The-Industrial-Revolution-1750-1900
https://en.wikipedia.org/wiki/Industrial_Revolution
https://www.britannica.com/technology/history-of-technology/The-Industrial-Revolution-1750-1900

Mechanics and Control of Robotics 5

This textbook introduces the field of robotics to any aspiring student who may be

interested in this young but ambitious discipline. Each topic in this textbook is introduced

in its own chapter, which covers all the fundamental theorems relating to robot analysis,

design, and control. Although the field of robotics is relatively new, it covers a vast range

of topics, and this textbook simply cannot cover all of them. However, this textbook will

provide the foundations of classical robotics theory, which will pave a clear pathway towards

other exciting fields in robotics that are not covered by this textbook.

1.1 Mechanics and Control of Robotics

The contents in this textbook are arranged in three parts: fundamental topics, advanced

topics, and research and case studies. A summary of the contents is provided below.

1.1.1 Basics of Robotics

Robot Architectures

This topic is covered in this chapter, which introduces the most common robot architectures

used in manufacturing and robotics research. A robot architecture is defined as a specific

configuration of actuators that make up the basic structure of the robot. Each architecture

has its own specific strengths, which are fully utilised in application, and will be described

here. This will provide a basic understanding of common robot designs, which will be used

in many examples and problems to solve throughout this textbook.

Planar Kinematics, Velocity, and Statics

This topic is discussed in Chapter 2 and is relevant to the modelling of robotic systems.

It provides a minimum-viable yet complete set of information to understand the kinematic

and force-domain behaviour of a robotic manipulator in the two-dimensional space: how

do we represent the position and orientation of the “tool”, i.e., the robot’s end-effector in

the space; what is the relation between the position and velocity of the joints and those

of the end-effector; how much force or torque is needed at the joints to resist an external

disturbance; and what is the reachable area of the manipulator. Said analysis is the very

first step in the three-step modelling-planning-execution approach to commanding a robot

to perform a certain task.

Trajectory

With the behaviour of the robotics manipulator understood, we move on to discuss how

the path, i.e., the trajectory, that the robot end-effector is moved within the workspace in

Chapter 3. Trajectory generation is the act of controlling the path of a robot’s end-effector

between two points in a smooth and controlled fashion. In this instance, the goal is simply

to ensure the path from the initial to goal positions is smooth and continuous, with the

key assumption that the path is collision-free. This topic is covered in Chapter 3, and will

describe interpolation methods used to ensure smooth and continuous trajectories between

via points.

6 Introduction

Control

The basic control schemes presented in Chapter 4 fill the last piece of information to-
wards the three-step modelling-planning-execution approach to command a robot in the
application. We provide a brief overview of the open-loop, closed-loop, and pulse width mod-
ulation control schemes, along with various commonly used approaches to realise closed-loop
control.

1.1.2 Key Topics

Spatial Transforms

This topic is covered in Chapter 5, which introduces the systems and notation we use to
describe the position and orientation, or the pose of a body in space. Coordinates or frames

are then attached to each body that represents the robot. The conventions used for spatial
descriptions, and the mathematics of manipulating these quantities will be derived in this
chapter.

Kinematics

The term kinematics is the science of motion with the exclusion of dynamic effects that
cause it. In robotics, an actuator can be represented as a revolute joint (rotation about
a single axis), or a prismatic joint (a sliding mechanism along a single axis). As such, a
robot, or manipulator, is made up of a series of rigid links connected by joints to an
end-effector, which interacts with the environment with a tool attachment. A single chain
of joints and links connecting to a single end-effector is called a serial robot, and is the
primary type of robot analysed in this textbook. Other names for this type of robot include
serial manipulator or serial (kinematic) chain. Multiple serial kinematic chains connecting
to a single end-effector is called a parallel robot, or parallel (kinematic) manipulator, and
will not be covered in this textbook.

In robotics, there are two main spaces in which we perform kinematic analysis: the joint
space contains all possible actuator positions or configurations and maps them to a single
point within this space, and the task space, which in general represents the end-effector’s
workspace in free space. A robot’s degrees of freedom (DoF) represents the number of
independent axes at which the end-effector can move in, and this determines the number of
dimensions of the task space. The task space can be up to six dimensions, three positions
and three orientation axes.

Forward Kinematics

Also known as direct kinematics, forward kinematics is the study of the robot’s pose in
free space when for a given actuator configuration (all actuator positions defined), and is
covered in Chapter 6. We learn how to model a serial robot such that we can fully define the
robot’s pose and determine the exact pose of the end-effector at a given time. In summary,
we are finding the equations of motion of the robot’s end-effector as a function of its joint
positions, i.e., finding a map from the joint space to the task space.

Inverse Kinematics

In forward kinematics, we map the joint space to the task space. In inverse kinematics, we
do the reverse mapping — where for a given end-effector pose, we calculate the actuator
configuration required to achieve this end-effector pose. This topic is covered in Chapter 7,
and will explore the different methods used to perform inverse kinematics. This is a chal-

Mechanics and Control of Robotics 7

lenging but critical topic, as many trajectory and path planning applications in robotics
occur in the task space.

Jacobians and Statics

In addition to kinematics, where we consider static positions, Jacobians or velocity analysis

is the study of the end-effector velocities with respect to actuator velocities. This is an im-
portant tool for workspace analysis, which defines the end-effector’s reachable task space.
This topic is covered in Chapter 8. Another phenomenon velocity analysis can give further
insight into is robot singularities, which will be defined in this chapter. The final analy-
sis we can perform by using Jacobians is statics analysis — finding the required actuator
torques and forces to maintain a static force and torque at the end-effector.

Path Planning

Path planning is a diverse field that has been studied in both robotics and computer science.
It is a primitive yet critical problem to solve in robotics and is by no means a trivial problem
to solve. For a given robot starting pose, suppose we would like the end-effector to pick up
an object in free space. However, the task space has obstacles that inhibit the robot’s ability
to follow a shortest-path trajectory to the target. The goal of a path planner is to solve this
problem by giving the robot a collision-free path between its initial pose and the goal pose,
to allow the robot to pick up the object. Chapter 9 will introduce various path planning
algorithms that are currently used in the manufacturing industry and in robotics in general.

Programming

In Chapter 10, we introduce to the students Robot Operation System (ROS), a framework
that is becoming the gold-standard for robotic research and witnessing ever-increasing use
in real-world applications in the industry. The operating paradigm and ROS components
are discussed, followed by a case study.

Dynamics

Dynamics in robotics is a large field of study, devoted to analysing the forces required to
cause motion. There are two methods for formulating the dynamics of a serial manipulator:
Lagrangian formulation is discussed in Chapter 11, and iterative Newton-Euler, dis-
cussed in Chapter 12. In both methods, we determine the equations of torque and force for
each actuator, based on payload conditions at the end-effector. This analysis is very impor-
tant in manipulator design as it will model torque or force (or effort) required to maintain
a specified motion at the end-effector, and determine the minimum torque requirements for
the servos to drive this load.

Control

Robot control theory is another vast topic in robotics. Chapter 13 covers the basics of
actuator control, where a linear controller is derived for a single actuator. Chapter 14
covers computed torque control in which the non-linear dynamics often observed in robotic
manipulators can be compensated by clever control system design. Finally, Chapter 15
introduces an alternative mode of end-effector control, where the end-effector is constrained
by force rather than position.

8 Introduction

1.1.3 Advanced Analysis and Case Studies

The following topics cover cutting-edge methods for robot analysis in robotics. These meth-
ods are primarily used in the design phase of a robotic manipulator. These topics are ad-
vanced, utilising abstract mathematical theorems to demonstrate the theoretical feasibility
of the design of mechanisms.

Mobility Analysis

This fundamental topic covers the study of mobility, or the degrees of freedom (DoF) of
mechanisms and robotics, and is often the first step in designing a mechanism to fulfil certain
motion requirements. Said study also provides valuable insights regarding the property of
motion of a manipulator, as well as constraints on actuator arrangements. While Part II
of this book introduces the concept of degrees of freedom, Chapter 16 introduces a more
comprehensive methodology with a deep dive into the mathematics behind this analysis.

Orientation Workspace

Chapter 17 provides an in-depth introduction to the orientation workspace, which is vital
for the study of manipulators that provide purely rotational output. Instead of representing
the orientation workspace in the Euclidean space, we utilise quaternions and differential
geometry to parameterise an orientation workspace to study its various properties, such as
its volume, i.e., the performance index on the range of motion of a manipulator. With our
approach, we can make meaningful comparisons of the orientation workspace of manipula-
tors that provide spherical motion, which would otherwise be challenging to derive using
traditional methods in Euclidean space.

Constraint Analysis

In Chapter 18, we redirect our focus to soft robots, which are gaining ever-increasing at-
tention in the field of robotics. We tackle the problem of analysing soft robots from the
point of view of generalised underactuated mechanisms. By taking advantage of Lagrange
multipliers, virtual bodies, and pseudo-rigid bodies, we allow the rigid-link kinematic- and
force-domain analysis discussed in the previous part of the textbook to be adopted for
planar underactuated systems with continuum bodies, by means of a unified framework of
kinetostatic analysis.

Concentric Tube Robot

Chapter 19 discusses the modelling of concentric tube robots, a soft continuum soft robot
with a minimalistic mechanical structure of super-elastic tubes. Such a structure, in combi-
nation with the compliance, makes the robot suitable for cannula-based minimally invasive
surgery. To achieve computationally efficient modelling, our tube robot model is based on
a generalised shape model for strands, with a robot-dependent part featuring static equi-
librium equations to map the actuator inputs to the cross-section-wise local curvatures.

Advanced Path Planning

Chapter 20 introduces path planning for a different type of mechanism called parallel ma-

nipulators. Due to their unique kinematic properties, their workspace is often quite complex
and full of singularities. As singularities pose a serious threat to their controllability, path
planning for these types of manipulators can be quite challenging. This work proposes a
method for representing the complexity of a parallel manipulator in a way that path plan-
ning can occur efficiently in the configuration space.

Robot Architectures 9

Remote Centre of Motion Robot

Chapter 21 looks at the manipulators for non-cannula-type minimally invasive surgery. A
new remote centre of motion mechanism is proposed to help surgeons maintain the position
of the insertion ports, hence maximising patient safety. Two design variants, based on a
gear train and a hybrid link-cable system, respectively, are presented, and their capabilities
to rotate around a remote fixed point in the space are proven mathematically.

The Monash Apple Retrieving System

Chapter 22 describes the design and testing of a highly successful apple harvesting robot
developed in Dr Chao Chen’s Laboratory of Motion Generation and Analysis. The robot’s
manipulator, vision system, soft gripper, kinematics, and path planning are described in
this chapter, along with a comprehensive analysis of its harvesting performance in the field.

1.2 Robot Architectures

In this section, we introduce robot architectures commonly utilised in the manufacturing
industry and robotic automation in general.

1.2.1 Cartesian

Cartesian manipulators, e.g., one depicted in Figure 1.2, feature a workspace in which the
end-effector’s orientation is kept constant while articulating in Cartesian directions. While
various mechanical architectures can generate this type of workspace, the simplest form is a
gantry-type architecture. This is made up of orthogonal prismatic actuators, connected from
the base to the end-effector, representing the x, y, and z Cartesian directions. Each prismatic
actuator independently controls the motion along a single axis, which means the forward and
inverse kinematic solution is trivial. The gantry-type architecture is mechanically simple,
thus reinforcing the structure along each axis by adding passive links between the output
and the base is a simple task. The added advantage is that it increases payload strength
and end-effector accuracy.

Cartesian manipulators have seen many applications in the industry, ranging from large-
scale gantry cranes used in construction and assembly tasks to smaller-scale applications
such as printers. Modern-day 3D printers are driven by the aforementioned mechanical
advantages, which have revolutionised the way we conduct rapid prototyping (requires ci-
tation), giving rise to the term additive manufacturing . Latest printing technologies allow
the printing of metallic material, which requires micrometre accuracy.

Cartesian manipulators are not without their flaws. Gantry-type structures with pris-
matic actuators are generally slow, especially in high-precision applications. In addition,
the robot typically envelops the workspace, meaning the robot workspace volume cannot
be increased without also increasing the volume of space occupied by the robot’s structure.
While this is not an issue for small-scale printers, retrofitting a large Cartesian robot in an
industrial workspace can be very challenging if workspace volume is constrained.

1.2.2 Cylindrical

Cylindrical robots have three DoF at the end-effector, forming a cylindrical coordinate
system. The robot is actuated by one revolute joint rotating normal to the base surface,

10 Introduction

z

x

y

FIGURE 1.2

Cartesian robot workspace.

z

θ

y

FIGURE 1.3

Cylindrical robot workspace.

and then two linear actuators to control the height and radius of the end-effector’s position.

As a result, this has a much more compact working area compared to Cartesian robots,

albeit at a reduced workspace volume. However, this robot still exhibits high precision and

stiffness at the end-effector.

This robot has common uses in pick-and-place and sorting tasks in smaller environments

such as laboratories, assembly lines, or as a spot-welder on a relatively planar surface. A

sample cylindrical robot and its workspace are illustrated in Figure 1.3.

Robot Architectures 11

1.2.3 Spherical

A spherical robot has three DoF at the end-effector, forming a polar coordinate system. It is
actuated by two revolute joints at the shoulder to control roll and pitch, with a single linear
actuator controlling the radial position of the end-effector. The original Unimate robot,
installed in car manufacturing plants in the 1960s, was a spherical robot. As such, it has
seen many industrial applications in machine tool manipulation, spot-welding, die casting,
and gas and arc welding. A sample spherical robot is shown in Figure 1.4 along with its
workspace.

It should be noted that to make full use of the orientation workspace, one more degree
of freedom is added to the end of the robot, as seen by the Unimate industrial robot. These
additional DoF are known as the wrist of the robot, which will be discussed further in this
chapter.

1.2.4 SCARA

The SCARA architecture (Selective Compliance Assembly Robot Arm, Figure 1.5) consists
of three parallel revolute joints in the main articulated arm, with a prismatic actuator
attached to the end of the arm to make up a four-DoF robot. The revolute joints allow agile
planar manipulation of the prismatic actuator, which controls the height of the end-effector
normal to the workspace plane. The end-effector yields high stiffness, as the three revolute
joints do not carry the robot’s self-weight.

This robot has a workspace profile similar to that of a cylindrical robot. However, it
has an extra degree of freedom to allow planar orientation of the end-effector. Also, it is
mechanically very simple, allowing all actuators to be placed towards the base of the arm.
This allows for planar motion with high stiffness and speed, which is very suitable for high-
precision, quick pick-and-place tasks, such as sorting in a laboratory setting. It can also be
used in applications where the workspace is mostly planar, such as drilling, milling, and
engraving.

θ

y
φ

FIGURE 1.4

Spherical robot workspace.

12 Introduction

Link 0

θ1

Link 1

θ2

Link 2

Link 3

d3

θ4

Link 4 (end-effector)

FIGURE 1.5

SCARA architecture.

1.2.5 Articulated

These manipulators consist of two orthogonal shoulder joints at the base, and a middle
elbow joint with a link between the shoulder and elbow joints. The two shoulder actu-
ators at the base control the direction and height of the elbow, and the elbow joint’s
axis of rotation is parallel to the second shoulder joint, which increases the articulated
robot’s reach. This architecture is usually implemented with a three-DoF wrist at the end
of the elbow link, which allows rotational positioning of the end-effector. The result is a
six-dimensional workspace where translational and rotational motion is decoupled, allowing
for a simpler kinematic model. Furthermore, this six-DoF implementation yields multiple
inverse kinematic solutions, allowing the arm a few options to avoid obstacles within the
workspace, thus improving the dexterity of the end-effector under constrained workspaces.
Although these robots lack the mechanical stiffness of Cartesian robots, they require much
less structural space for the same volume of workspace, making them highly suitable for ap-
plications with smaller workspaces and payloads. The articulated architecture is also known
as anthropomorphic architecture, because the kinematic configuration (with a three-DoF
wrist) closely resembles the kinematic configuration of an anthropomorphic human arm.
Figure 1.6 illustrates a sample articulated robot and its workspace.

The PUMA robot (Programmable Universal Machine for Assembly) falls under the
category of articulated robots (Figure 1.7), and has seen many uses in the industry, typically
in pick-and-place tasks, assembly, and welding. It is the spiritual successor of the famous
Unimate robot (Figure 1.1), which revolutionised the manufacturing industry in the 1970s.

Currently, many robotic companies such as ABB, Kuka, and Universal Robots have engi-
neered robotic arms of articulated architecture, and they are popular due to their versatility.
Although each company has its own implementation of the articulated arm structure, the
first three actuators of the arm, consisting of two shoulder and elbow actuators, are always
at the core of each design. The anthropomorphic nature of these arms has put these robots at
the forefront of many human-centred applications due to their naturalistic kinematic config-

Robot Architectures 13

End effector

Workspace envelope

FIGURE 1.6

Articulated robot workspace.

FIGURE 1.7

The PUMA robot.4

uration and workspace. This includes heavy-duty cleaning, painting, condition inspection,

and even climbing applications. This is also the preferred architecture for human-robot col-

laborative environments for the aforementioned reasons and in part due to their naturalistic

4Guzman-Gimenez, J., Valera Fernandez, A., Mata Amela, V. and Dı́az-Rodŕıguez, M.Á., 2023. Auto-
matic selection of the Groebner Basis’ monomial order employed for the synthesis of the inverse kinematic
model of non-redundant open-chain robotic systems. Mechanics Based Design of Structures and Machines,
51(5), pp. 2458–2480.

14 Introduction

z0, z1, x2

θ3 θ2

O

z2, x3 θ1
x1, z2

x0

FIGURE 1.8

A spherical wrist with z-axes of rotation, all meeting at a common point O.

aesthetics. Human-robot collaboration is a hot topic in modern robotics research, and has
been successfully trialled and implemented in environments such as weight-lifting assistance,
rehabilitation, and education.

1.2.6 Wrists

While typical robots focus on the translational workspace, wrists are very important in real-
ising the rotational workspace. Wrists are normally three-DoF, where the rotation axes are
orthogonal, which guarantees any orientation of the end-effector can be achieved (assuming
no joint limits). This configuration can be simplified in a two-DoF implementation, but
a complete orientation workspace is no longer guaranteed. Because the revolute axes are
orthogonal, it is very easy to solve the inverse kinematic solutions. Hence, a wrist can be eas-
ily attached to the end of an articulated robot without overly complicating its closed-form
solutions.

A wrist is critical for allowing rotational motion of the end-effector. While the first three
actuators of a robotic arm control the translational positioning of the end-effector, the next
two or three actuators within the wrist control end-effector orientation. This is necessary
for many manufacturing tasks in which the tool is orientation-constrained, such as welding
and assembly.

Because the workspace is mostly rotational, the wrist design is typically more compli-
cated than the rest of the arm. The strength and the number of DoF required at the wrist
heavily influence the mechanical complexity. This can adversely affect joint limits, which are
typically small and very challenging to maximise. For instance, the joint limits of a gimbal-
type wrist are heavily constrained by its internal structure, and require some very clever
engineering for only small gains in the joint limits. Alternative wrist configurations feature
a serial chain arrangement, such as roll-pitch-roll, where all rotational axes still meet at a
single point. This wrist configuration, as shown in Figure 1.8, exhibits an almost infinite
joint limit, but suffers from lower strength and stiffness compared to the gimbal counter-
part, and its home position is singular, which can cause problems with path planning in
this configuration.

Serial chain wrists with non-intersecting rotation axes (non-spherical) can also be im-
plemented. Although they are mechanically simpler with wider joint limits, a closed-form

Conclusion 15

solution to its inverse kinematics is no longer guaranteed, which can affect its real-time

performance as numerical solvers must be implemented. This configuration, however, solves

the home position singularity problem. The articulated robotic arm by Universal Robots

features a non-spherical wrist that has a very wide joint angle limit, but is also singularity-

free at its home position and has closed-form solutions. This phenomenon is explained in

further detail in Chapter 7.

1.3 Conclusion

In this chapter, we gave a brief overview of robotics in manufacturing, from its brief his-

tory to its current state, highlighting the importance of intelligent mechanical design in

each industrial revolution. We then introduced the broad field of robotics, focussing on the

mechanics and control of robots, which this textbook will cover. Key robotics terms are

introduced, and each topic covered in this textbook is briefly introduced. Finally, robot

architectures commonly seen in robotics and especially in manufacturing were introduced,

where each architecture’s strengths and common uses were analysed. These architectures

will be consistently referred to in later chapters in problem sets and examples, to link the

fundamental theorems of robotics introduced by this textbook back to the manufacturing

industry.

1.4 Exercises

Problem 1. What is the degree of freedom of Cartesian manipulators?

Problem 2. The SCARA robot is known for its high payload capacity and agile planar

movement. Considering how the joints are configured for this robot, why is the robot capa-

ble of such a high payload compared to an articulated architecture?

Problem 3. Is it possible to replicate a Cartesian manipulator with an articulated struc-

ture?

Problem 4. Referencing the previous question, can an articulated robot with a wrist at-

tachment achieve the same motion as a pure Cartesian robot?

2

Planar Kinematics, Velocity, and
Statics

This chapter will introduce the basic skills needed to define a two-dimensional robotic
manipulator in space, analyse its pose and configurations in its workspace, and analyse its
general motion. It will cover four main topics of analysis.

Transformations in Planar Space

To foster an understanding of the mechanics of robotic manipulation of objects in its
workspace, we introduce the fundamental concepts of two-dimensional space, or planar

space free space, that are relevant for robotic analysis. Using linear algebra techniques, we
learn how to define rigid bodies in free space with the introduction of pose (position and
orientation), and how to apply transformations (translation and rotation) on them, as if a
robot were manipulating them.

Kinematics

Kinematics describes the pose of a robot’s links and joints in free space at any given time,
given a set of parameters. These parameters are usually joint angles, whereby a robot’s
kinematic equations allow us to convert a vector of joint angles to an end-effector pose.
These kinematic equations also allow us to determine the joint angles of a robot, given
a target end-effector pose. Deriving these kinematics equations is usually the first step in
robotic modelling.

Velocity

This topic introduces motion into the analysis of the robotic system. It refers to the rate of
change of both joint positions and the end-effector, in which point velocity (how fast a robot
is moving in a straight line) and angular velocity (how fast a robot is rotating or turning)
will be modelled. We will learn to derive the velocity equations of the end-effector from
its position in the planar space. Velocity plays a crucial role in describing the speed and
direction of movement for robots in navigation, manipulation of objects, and interaction
with their environment effectively.

Jacobians and Statics

Deriving the velocity provides us with insight into the Jacobian matrix, which is a useful
tool for static analysis, singularity analysis, and workspace analysis. Static analysis involves
evaluating the external force exerted by the end-effector from the internal force and torque
of the joints. Workspace analysis computes the region a robot can reach and operate within.
Singularity analysis identifies and analyses configurations in a robot’s workspace where the
robot loses certain degrees of freedom or encounters problematic behaviour. This analy-
sis helps engineers and researchers predict and understand how robots will behave under
different conditions, loads, or constraints without physically testing them.

DOI: 10.1201/9781003614319-2 16

https://doi.org/10.1201/9781003614319-2

Two-Dimensional Space 17

2.1 Two-Dimensional Space

Consider a two-dimensional space with a fixed frame defined at its origin. This frame has
two orthogonal axes, x0 and y0 , which defines the space’s coordinate system. The subscript
of the x and y-axes indicates that the axes belong to frame {0}. In general convention, we
call the 0 frame the reference frame, base frame, or world frame if this frame represents the
world in which our objects exist. Mathematically, we write this as {0}.

Now let us define a rigid body and attach a frame to it called {1}, which also has
orthogonal axes x1 and y1 . Finally, let us place the rigid body somewhere in our world
frame {0}. To define where this rigid body is in the world, we ask ourselves: where are x1 and

y1 , the x and y axes of our rigid body frame B, in relation to our world coordinate system’s

axes x0 and y0? To answer this question, we are looking for 0x1 and 0y1 , which means x-
axes and y-axes of {1}, observed in the {0} coordinate system, respectively. Typically, when
we observe a quantity, we usually mean to measure it, so the previous statement could be
reworded to measured in the {0} coordinate system. To calculate the quantities 0x1 and
0y1 , we can refer to elementary trigonometry and the dot product.

2.2 Transformations

Let us generalise the frame notation based on the above example, using {i} and {j} as
our adjacent frames such that j = i + 1, getting our original notation if we set i = 0. A
two-dimensional transformation matrix describes the pose of a frame, or a rigid body with a
frame attached, measured in a reference frame. Both a rotation and translation are encoded
into a single 3× 3 square matrix of the form

iTj =



ixj
iyj

ipj

0 0 1



=





cos(θ) − sin(θ) ipjx
sin(θ) cos(θ) ipjy

0 0 1



 (2.1)

where ipjx and ipjy represent the translation of Oj , the origin of {j}, measured along the xi

and yi axes of the {i}, respectively, and θ is the angular displacement from {i} to {j}. Figure
2.1 shows how each component of the matrix is physically represented. Note that frame {i′}
is parallel to {i}, introduced for the purpose of illustrating the angular displacement θ.

There are two main functions of a transformation matrix. It

• provides a full description of the rigid body’s rotation and position, measured in an
arbitrary coordinate system, and

• allows us to observe any rigid body in another coordinate system, as long as they are
connected in the transformation tree.

The latter point is particularly useful in the analysis of robot motion.

2.2.1 Transforming a Vector

Let us begin with a trivial mechanical system consisting of just one rigid link, driven by a
single motor at one end (Figure 2.2). The link, as it rotates, drives an external load at the
opposite end. Let us define our world coordinate system as {0} and place our motor at the

18 Planar Kinematics, Velocity, and Statics

xi

yi

{i}

{j}

ipj

Oj

{i′}

θ
xj ,

ixj

yj ,
iyj

FIGURE 2.1

General transformation of two frames.

origin of this frame. On our rigid link, we will attach frame {1} to its base where the motor
is attached, where x1 points along the length of the link. Therefore, as the motor spins, {1}
will rotate about the origin of {0} by an angle θ1. The transformation matrix between {0}
and {1}, according to (2.1) is

0T1 =





cos(θ1) − sin(θ1)
0x1

sin(θ1) cos(θ1)
0y1

0 0 1



 (2.2)

=





cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1



 . (2.3)

This merely tells us that the base of the rigid link is spinning about the motor’s axis,
which is intended! However, it is not particularly useful to us. Instead, we want to know
the whereabouts of the opposite end of the link as the motor is driven. We should define a
point on the rigid link where the load is driven, called E. For simplicity, let us assume the
load is located at the opposite end of the rigid link coordinate system. In other words

1pE =



l

0



(2.4)

θ1

x0

y0

x1

y1

l

E

FIGURE 2.2

One-link planar robot.

Transformations 19

P

x0

y0
x1

y1

x2

y2

x3

y3

FIGURE 2.3

Transformation tree.

where l is the length of the rigid link which propagates along x1 . To locate point E in the
world frame {0}, we pre-multiply our vector 1pE with the transformation matrix 0T1 , such
that

0T1
1pE = 0pE (2.5)

=





cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1







1pE

1



(2.6)

=





cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1









l

0
1



 (2.7)



0pE

1



=





l cos(θ1)
l sin(θ1)

1



 (2.8)

Note that in Equation (2.6), we append a 1 to the vector to create a homogeneous coordinate.
This is required to be able to multiply the vector with the 2D transformation matrix. The
formal definition of the homogeneous coordinate is out of this scope in Part I, but is formally
introduced in Part II, Section 5.5.

2.2.2 Transformation Trees

Often, we are interested in calculating the pose or position of an object in a reference
coordinate system that is not adjacent to the target frame. However, as long as they are
connected in a transformation tree, then a solution is feasible. A transformation tree is a set
of transformation matrices that are linked in the same system. For example, we are given
three frames, {0}, {1}, {2}, {3}, and {4} with the transformation matrices 0T1 ,

0T2 ,
2T3 ,

and 3T4 . Figure 2.3 represents this system’s transformation tree.
To observe any frame measured in another frame in this transformation tree, we apply

matrix multiplication, similar to the multiplication of rotation matrices. For example, if we
want to observe {4} in the {0}, we apply

0T4 = 0T2
2T3

2T4 . (2.9)

20 Planar Kinematics, Velocity, and Statics

We can also observe {4} and the {1} coordinate system as they are connected in the
transformation tree. However, the above example implies we need 1T0 , i.e.,

1T4 = 1T0
0T2

2T3
2T4 (2.10)

but we are only given 0T1 . Therefore, we need to find the inverse transformation of
1T0 . The generalised form of the inverse transformation matrix is

iTj = jTi
−1 =





cos(θ) sin(θ) −ixj cos(θ)−
iyj sin(θ)

− sin(θ) cos(θ) ixj sin(θ)−
iyj cos(θ)

0 0 1



 . (2.11)

2.3 Planar Robot Kinematics

In this section, we will learn how to describe the position and orientation of a robotic end-
effector in terms of the joint angles in a process called forward kinematics, otherwise known
as direct kinematics. The position and orientation of a robotic end-effector constitute the
task space, while the joint angles constitute the joint space. Hence, the forward kinematics
is a mapping from the joint space to the direct space. Our focus will be on planar systems,
where the robot’s end-effector only moves along a plane with a single-parameter orientation.

2.3.1 Joints

There are two commonly used joints in robotic manipulators: revolute (R) joints and pris-
matic (P) joints, as shown in Figure 2.4. A revolute joint can be simplified into one axis of
rotation, which completely defines the relative motion of these two rigid bodies. This axis of
rotation is a spatial line with its position and direction. A prismatic joint defines the sliding
direction of one body relative to another. A prismatic joint can be replaced by another
parallel prismatic joint at a different position, while the relative motion of the two rigid
bodies remains the same. Therefore, a prismatic joint can be characterised by a directional
vector without a specific position.

In forward kinematics, the shape of a rigid body is of no importance; the only thing
that matters is the types and locations of the joints among the bodies. Although there are

(a) Revolute (b) Prismatic

FIGURE 2.4

Two types of common robotic joints.

Planar Robot Kinematics 21

many types of actuated joints, our discussion will focus on the serial robotic manipulators
with any combination of R and P joints, configured such that the end-effector achieves only
planar movement.

In order to precisely describe the position and orientation of each moving link of a
robotic manipulator, we desire to assign one frame to each link. Each link’s position and
orientation can be fully described by the transformation matrix between the ground frame
{0} and the attached frame to this link. Further, the transformation matrix between two
adjacent links is only affected by a single parameter, either a rotation θ for an R joint, or
a displacement d for a P joint between these two links.

2.3.2 Forward Kinematics

The process is similar to the one utilised in Section 2.2.1. For each link:

1. Assign the origin of the link’s frame to its base, where its actuator will be attached.

2. Assign the x-axis of each frame, such that it points towards the origin of the next
frame. If the frame represents a prismatic joint, then the x-axis represents the
direction of motion.

3. Assign the y-axis to be 90◦ clockwise from the x-axis.

4. Assign the base frame, {0} to be coincident with the first link’s frame {1}. This
means that {0} and {1} are coincident when θ1 (or d1 for prismatic joints) = 0.

The four steps are illustrated in Figure 2.5 (a) to (d), respectively.

Example 2.1 (Forward kinematics — 3R):
A planar robot is shown in Figure 2.6. Find the coordinates of Point P in the fixed frame.

Assuming l1 = 0.25 m, l2 = 0.30 m, l3 = 0.20 m, θ1 = 15◦, θ2 = 25◦, and θ3 = 30◦.

Solution: The first step is to assign frames to all links, following the convention that the frame’s
origin is placed on the axis of rotation, with the x-axis pointing along the link towards the next
frame’s origin. The base frame, {0} is determined by aligning it with {1} when θ1 = 0. Therefore,
the following transformation matrices are

0T1 =





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1



 (2.12)

1T2 =





cos θ2 − sin θ2 l1
sin θ2 cos θ2 0
0 0 1



 (2.13)

2T3 =





cos θ3 − sin θ3 l2
sin θ3 cos θ3 0
0 0 1



 (2.14)

The total transformation matrix is

0T3 = 0T1

1T2

2T3 (2.15)

For any given point 3p on the end-effector, its coordinates {0} are given by



0p
1



= 0T3



3p
1



(2.16)

22 Planar Kinematics, Velocity, and Statics

O1

O2

O3

(a) Step 1

O1

O2

O3

(b) Step 2

O1

O2

O3

(c) Step 3

O0

O1

O2

O3

(d) Step 4

FIGURE 2.5

Frame assignments for a planar RRP robot.

l1

l2

l3

P

FIGURE 2.6

A planar RRR robot.

Planar Robot Kinematics 23

θ1
x0

y0

d2 P (x, y)

FIGURE 2.7

A planar RP robot.

with 3p =


l3 0
T

. Substituting the numerical design parameters yields

0T3 =





0.34 −0.94 0.47
0.94 0.34 0.26
0 0 1



 (2.17)

and

0p =



0.54
0.45



(2.18)

Example 2.2 (Forward kinematics — RP): A planar robot is shown in Figure 2.7. Find the

coordinates of Point P in the fixed frame with θ1 = 30◦, d2 = 0.6 mm, and 2p =


0 0
T

. Solution:

Starting from the base frame {0}, assign frame {1} with the x-axis pointing along the link towards
the next frame’s origin located at point P. Therefore, the following transformation matrices are

0T1 =





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1



 (2.19)

1T2 =





1 0 d2
0 1 0
0 0 1



 (2.20)

The total transformation matrix is

0T2 = 0T1

1T2 (2.21)

For any given point 2p on the end-effector, its coordinates {0} are given by


0p
1



= 0T2



2p
1



(2.22)

Substituting the numerical design parameters yields

0T3 =





0.87 −0.50 0.52
0.50 0.87 0.30
0 0 1



 (2.23)

and since 2p =


0 0
T

, 0p can be extracted from the third column of 0T3 , or

0p =



0.52
0.30



(2.24)

24 Planar Kinematics, Velocity, and Statics

2.3.3 Inverse Kinematics

Inverse kinematics is the mathematical process of calculating the configurations of a robot’s
(or mechanism’s) actuators to achieve a particular end-effector pose (position and orien-
tation) relative to a coordinate system attached to the robot’s base. This process is the
reverse of forward kinematics, but it is generally much more challenging to solve.

There are two ways of solving the inverse kinematics of a robot: the algebraic method
and the geometric method. While both methods have their strengths, we will focus on the
geometric method for planar robots, which breaks the challenging problem down into an
intuitive spatial geometry problem. The benefit of this method is that the methodology can
be easily visualised as you are solving the problem, and that the solutions are derived from
simple trigonometric equations.

As an introduction, we will utilise a simple 2R robot as seen in Figure 2.8. End effector
pose is defined by an (x, y) coordinate, which is achieved by driving its two joint angles
(θ1, θ2). In the inverse kinematic problem, we wish to solve for joint angles (θ1, θ2), given
any arbitrary end-effector pose (0x, 0y) that is within its workspace. Using the geometric
method, we will break this problem down into a simple trigonometry geometry problem
where we can use trigonometric identities to solve for various angles.

First, we can draw a straight line between the base of the robot to point P (Figure
2.8(a)), creating a triangle with l1 and l2. We can utilise the cosine rule to calculate the
angle α in Figure 2.8(b):

xP
2 + yP

2 = l1
2 + l2

2
− 2l1l2 cos (α) (2.25)

By inspection, we can see that

θ2 = π − α (2.26)

and so (2.25) becomes

xP
2 + yP

2 = l1
2 + l2

2
− 2l1l2 cos (180 + θ2) (2.27)

Because cos (180 + θ2) = − cos (θ2), rearranging, we have

cos (θ2) =
xP

2 + yP
2 − l1

2
− l2

2

2l1l2
(2.28)

Therefore,

θ2 = arccos

(

x2 + y2 − l2
1
− l2

2

2l1l2

)

(2.29)

θ1

θ2

P (xP , yP)

(a) Step 1

θ1

θ2

l1

l2

α

P (xP , yP)

(b) Step 2

θ1

θ2

l1

l2φ
ψ

P (xP , yP)

(c) Step 3

FIGURE 2.8

Steps in inverse kinematics, using the geometric method.

Planar Robot Kinematics 25

−θ2

θ2

FIGURE 2.9

Kinematic configurations of the 2R.

There are three possible solutions to this equation: ±θ2, or no solution.1 In addition,
we must impose the constraint −π ≤ θ2 ≤ 0 such that the triangle in Figure 2.8(a) can
physically exist. To solve for θ1, we need to solve for angles ψ and φ. First, φ can be solved
using the two-argument arctangent

φ = Atan2(yP , xP) (2.30)

then applying the law of cosines again to find ψ

cos (ψ) =
xP

2 + yP
2 − l1

2
− l2

2

2l1
√

xP
2 + yP 2

(2.31)

Here, the arccosine must be solved such that 0 ≤ ψ ≤ π such that the geometric solution
remains physically viable. Finally, θ1 can be solved with the expression

θ1 = φ± ψ, (2.32)

where the plus sign is used if θ2 < 0, and minus if θ2 > 0

2.3.3.1 Kinematic Configurations

In the process of solving the inverse kinematics for a 2R robot, we encountered a situation
where two solutions are physically possible: ±θ2, which leads to two different solutions for
±θ1. When there are multiple solutions for the same end-effector position (or pose), we
call each solution a kinematic configuration. In the case of our 2R robot, this represents an
elbow up or elbow down configuration, as seen in Figure 2.9.

Although this makes for a less straightforward exercise in solving the inverse kinematics,
robots do benefit from having multiple kinematic configurations. This feature allows the
robot to reach a target in multiple ways, which is useful when its workspace is cluttered
with obstacles. For example, if a particular end-effector pose causes the robot to collide with
an object, then we can utilise an alternate kinematic configuration to avoid the obstacle
(Figure 2.10).

Example 2.3 (Inverse kinematics — RP): Solve the inverse kinematics of the planar RP robot
of Figure 2.11 using the geometric method; that is, find equations for θ1 and d2 in terms of the
arbitrary location of the end-effector (x,y).

1What conditions are there no solutions to this equation, and what does that physically mean for the

robot?

26 Planar Kinematics, Velocity, and Statics

FIGURE 2.10

Utilising alternate kinematic configurations to avoid a collision.

Solution: Both θ1 and d2 can be solved by applying a red triangle onto the robot as shown in
Figure 2.12, where

θ1 = arctan
y

x
(2.33)

d2 =
√

x2 + y2 (2.34)

2.4 Velocity Analysis

Thus far, our attention has been focused on static manipulator poses, calculating where
the end-effector is for a given actuator position, and calculating the actuator positions
for a given end-effector pose. Now, we will explore robot motion — the linear and angular
velocities of rigid bodies that make up the manipulator and resultant end-effector velocities,
and use these concepts to determine the static forces of a manipulator.

θ1
x0

y0

d2 P (x, y)

FIGURE 2.11

A planar RP robot.

Velocity Analysis 27

θ1

x0

y0

d2 P (x, y)

FIGURE 2.12

A planar RP robot (solution).

There are two commonly used methods for calculating the end-effector velocity of a
manipulator for a given pose: time derivative of the end-effector output equations, and
velocity propagation. In this chapter, we will focus on the time derivative method, with the
velocity propagation method to be introduced in Section 8.3.

The study of rigid body motion in robotics is an important precursor to understanding
the mechanical behaviour of a mechanical robot system, including its workspace, mobility,
and dynamics. Once these are understood, we can apply established control methods to
govern the robot’s stable motion.

2.4.1 Linear and Angular End Effector Velocity

In Figure 2.13, we have a two-joint RR planar robot. The position of the end-effector in two-
dimensional space measured in {0}, obtained by performing forward kinematics, is given
as:



x

y



=



l2 cos(θ1 + θ2) + l1 cos θ1
l2 sin(θ1 + θ2) + l1 sin θ1



(2.35)

θ1

θ2

l1

l2

P (x, y)

FIGURE 2.13

A planar RR robot.

28 Planar Kinematics, Velocity, and Statics

The joint angles (θ1 and θ2) change with time as the joints rotate. Therefore, θ1 and θ2
can be expressed as functions with respect to time:

θ1 = θ1(t) θ2 = θ2(t) (2.36)

Since x and y are functions of θ1 and θ2, we can compute the derivative of x and y with
respect to time using the chain rule. Putting them into a vector represents the velocity of
the end-effector in the Cartesian space

θ̇i =
d(θi)

dt
(2.37)

v =



ẋ

ẏ



=



−l1θ̇1 sin(θ1)− l2(θ̇1 + θ̇2) sin(θ1 + θ2)

l1θ̇1 cos(θ1) + l2(θ̇1 + θ̇2) cos(θ1 + θ2)



(2.38)

Example 2.4 (Velocity analysis): A planar robot is shown in Figure 2.14. Given that the total
transformation is

0T3 =





c123 −s123 l2c12 + l1c1
s123 c123 l2s12 + l1s1
0 0 1



 (2.39)

where si = sin θi, ci = cos θi, sij = sin(θi + θj), and cij = cos(θi + θj). Further, θi for i = 1, 2, 3
are joint angles of this robot. Find the velocity of Point P in the fixed frame with the robot design
parameters given in Example 2.1, and joint velocities θ̇1 = θ̇2 = θ̇3 = 10 ◦/s

Solution: For any given point 3p on the end-effector, its coordinates 0 are given by



0p
1



= 0T3



3p
1



=





l3c123 + l2c12 + l1c1
l3s123 + l2s12 + l1s1

1



 (2.40)

The velocity is the time derivative of the position. Therefore,

0v = 0ṗ =



−(θ̇1 + θ̇2 + θ̇3)l3s123 − (θ̇1 + θ̇2)l2s12 − θ̇1l1s1
(θ̇1 + θ̇2 + θ̇3)l3c123 + (θ̇1 + θ̇2)l2c12 + θ̇1l1c1



(2.41)

Substituting the numerical values results in

0v =



−0.18
0.16



(2.42)

l1

l2

l3

P

FIGURE 2.14

A planar RRR robot.

Velocity Analysis 29

θ̇1

J1

(a) Effect of J1 .

θ̇2

J2

(b) Effect of J2 .

J

J1

J2

(c) Effect of J .

FIGURE 2.15

Visualisation of Jacobians on an RR manipulator.

2.4.2 Jacobian

A Jacobian is the matrix equivalent of the derivative that maps the joint velocities to the
velocity of the end-effector. Think of a robot arm with multiple joints; the Jacobian matrix
helps to compute how a small change in each joint’s position or angle affects the overall
movement of the end-effector. It essentially tells us how the speed and direction of each
joint impact the speed and direction of the end of the robot arm. It is also a useful tool
in statics analysis that indirectly maps the motor torque inputs and the force and torque
output of the end-effector.

Consider the end-effector velocity of the RR robot as derived in (2.38). We can see
that the point velocity v is a function of the joint velocity (θ̇i), thus we can rewrite the
expression as

v =



−l1s1 − l2s12

l1c1 + l2c12



θ̇1 +



−l2s12

l2c12



θ̇2 = J1(q)θ̇1 + J2(q)θ̇2 (2.43)

where q is a generalised vector comprising all joint variables of the robot (i.e., θ, d). In this
example, q =

[

θ1 θ2

]

. J1(q) can be visualised as a vector velocity of the end-effector that
is orthogonal to the line connecting from joint 1 to the end-effector when joint 2 is kept
constant as shown in Figure 2.15(a). Similarly, J2(q) can be visualised as a vector velocity
of the end-effector that is orthogonal to the line connecting from joint 2 to the end-effector
when joint 1 is kept constant as shown in Figure 2.15(b).

Furthermore, we can express (2.43) in the form

v =
[

J1(q) J2(q)
]



θ̇1

θ̇2



=
[

J1(q) J2(q)
]

q̇ = J(q)q̇ (2.44)

where J(q) is the Jacobian matrix, a linear combination of J1(q) and J2(q) that maps the
joint velocities to the velocity of the end-effector. Therefore, the Jacobian matrix for the
RR robot, expressed in the form (2.44), is

J(q) =



−l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12



(2.45)

30 Planar Kinematics, Velocity, and Statics

Example 2.5 (Jacobian): For the same planar robot in Figure 2.14, find the Jacobian matrix in
the fixed frame.

Solution: From Example 2.4, we have found that the velocity is

0v =

[

−(θ̇1 + θ̇2 + θ̇3)l3s123 − (θ̇1 + θ̇2)l2s12 − θ̇1l1s1

(θ̇1 + θ̇2 + θ̇3)l3c123 + (θ̇1 + θ̇2)l2c12 + θ̇1l1c1

]

(2.46)

Now, factor out the joint velocities to obtain a term for each joint

0v = J1 θ̇1 + J2 θ̇2 + J3 θ̇3 (2.47)

where

J1 =

[

−l3s123 − l2s12 − l1s1
l3c123 + l2c12 + l1c1

]

(2.48)

J2 =

[

−l3s123 − l2s12
l3c123 + l2c12

]

(2.49)

J3 =

[

−l3s123
l3c123

]

(2.50)

The Jacobian matrix is the linear combination of J1 , J2 , and J3 ,

J =
[

J1 J2 J3

]

=

[

0.45 −0.38 −0.19
0.54 0.30 0.07

]

(2.51)

2.4.3 Singularity

A singularity in robotics is a condition in which the pose of a robot results in the end-effector
motion being compromised. Such an example can be seen in Figure 2.16, where joint angle
θ2 = 0, causing alignment of both J1 and J2 . In this scenario, the robot loses its degree of
freedom where the end-effector can only move in a single vector velocity that is along the
line perpendicular to the arm link. Furthermore, unique solutions for θ̇1 and θ̇2 cannot be
solved because there is an infinite combination of θ̇1 and θ̇2 that can result in a single point
velocity of the end-effector.

Studying (2.45) further, in the singularity configuration, we notice that the columns of
this matrix become scalar multiples of each other. This is known as a rank-deficient matrix,
where two or more columns are scalar multiples of each other. When this happens, the
determinant of the Jacobian matrix is equal to zero (det(J) = 0).

Example 2.6 (Singularity): Find and give a physical interpretation of the singularities (if any)
of the RR robot with the following Jacobian:

J =

[

−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]

(2.52)

Solution: Singularity occurs when the determinant of the Jacobian is zero at a particular config-
uration, such that

det(J) = l1l2(cos(θ1) sin(θ1 + θ2)− sin(θ1) cos(θ1 + θ2)) = 0 (2.53)

and this happens if and only if θ2 is equal to 0 or π.

Statics Analysis 31

J1

J2

FIGURE 2.16

A planar RR robot with derived velocity.

2.5 Statics Analysis

In addition to the velocity relationship, we are also interested in developing a relationship
between the robot joint torques and forces and the force exerted by the end-effector, which
is known as static. In physics, we know that the power exerted by the end-effector is the
multiplication between the exerted force (f) and its velocity (v). The same power comes
from the torque produced from the joints, which can be expressed as the joint velocity (q̇)
times the joint torque (τ). Therefore, we have

q̇T
τ = vT f (2.54)

Since the point velocity can be mapped to the joint velocity with the Jacobian matrix,
we now have

q̇T
τ = (J q̇)T f (2.55)

As we further simplify the equation, we can see that the joint torque can be mapped
directly to the force exerted from the end-effector with the transpose of the Jacobian matrix

τ = JT f (2.56)

This relationship is useful in force control, as we can design the required torque from
each joint for a desired force at the tip of the end-effector at a particular configuration.

Example 2.7 (Statics): Find the joint torques required by the robot in Figure 2.14 to maintain a

static force vector 0f=


1 1
T

, when θ1 = 45◦, θ2 = 45◦, and θ1 = 0◦. Adopt the design parameters

l1, l2, and l3 from the previous examples.

32 Planar Kinematics, Velocity, and Statics

580 580

9
8
2

411

1
1
2

FIGURE 2.17

ABB IRB 120 six-axis industrial robotic arm workspace.2

Solution: From Example 2.5, we found that the Jacobian of the planar robot is

J =

[

−l3s123 − l2s12 − l1s1 −l3s123 − l2s12 −l3s123
l3c123 + l2c12 + l1c1 l3c123 + l2c12 l3c123

]

=

[

−0.68 −0.50 −0.20
0.18 0 0

] (2.57)

The transpose of the Jacobian can be used to map static force vectors to joint torques, such that

τ = JT f (2.58)

Therefore,

τ =





−l3s123 − l2s12 − l1s1 l3c123 + l2c12 + l1c1
−l3s123 − l2s12 l3c123 + l2c12

−l3s123 l3c123





[

1
1

]

(2.59)

Substituting θ1 = 45◦, θ2 = 45◦, and θ1 = 0◦, we get

τ =





−l3 − l2
−l3 − l2

−l3



 =





−0.50
−0.50
−0.20



 (2.60)

This means that joint 1 and 2 require a torque of −0.50 Nm, whilst joint 3 requires a torque of
−0.20 Nm.

2.6 Workspace

In robotics, the workspace refers to the specific physical area or region where a robot can

perform its tasks effectively. It is a concept that’s crucially important in designing and

programming robots, especially when considering their movement, range, and capabilities.

Here, Figure 2.17 shows the workspace of the ABB IRB 120 six-axis industrial robotic arm.

2https://library.e.abb.com/public/7aa0711a20fa41c49a8fdf3bbc3d5bb0/IRB120-Rev.J-ROBO149EN_

D.pdf (Retrieved 18.9.2024)

https://library.e.abb.com/public/7aa0711a20fa41c49a8fdf3bbc3d5bb0/IRB120-Rev.J-ROBO149EN_D.pdf
https://library.e.abb.com/public/7aa0711a20fa41c49a8fdf3bbc3d5bb0/IRB120-Rev.J-ROBO149EN_D.pdf

Conclusion 33

l1

l2

l1 − l2

l1 + l2

FIGURE 2.18

Planar RR robot workspace.

The area highlighted in grey represents the reachable area by the end-effector of the robot,
which is defined by the robot’s maximal reach (outer boundary), and self-imposed joint
limits to avoid self-collision (inner boundary). Any points outside the grey area, the end-
effector will not be able to reach, and there should exist no solution for inverse kinematics.

For our planar 2R robot, the workspace is shown in Figure 2.18. The blue circle denotes
the path where the first link is able to move, whilst the red circle centre around the endpoint
of the first link denotes the path where the second link can move. With these two paths
combined, we have the workspace of the robot, illustrated in grey. The maximum boundary
of the workspace is reached when the robotic arm is fully stretched (l1 + l2). The minimum
boundary of the workspace is achieved by folding the second link inwards, such that both
links are parallel to each other (l2−l1). To mathematically express the workspace boundary,
we can say that

(l1 − l2) ≤ x2 + y2 ≤ (l1 + l2) (2.61)

where x and y indicate the position of the end-effector in Cartesian space.

2.7 Conclusion

In this chapter, we learnt about planar kinematics, velocity, and statics for basic robot
analysis. In planar kinematics, we learnt to describe the position and orientation of a frame
or a rigid body from a reference frame using a two-dimensional transformation matrix. The
transformation matrix is used to map a point on a rigid link from one frame to another.
Multiple matrices can form a transformation tree that correlates adjacent frames. We intro-
duced two concepts in planar robot kinematics, which are forward and inverse kinematics,
respectively. Forward kinematics finds the transformation matrix that represents the cumu-
lative effect of all joint movements on the end-effector ’s position and orientation. Inverse
kinematics determines the joint configurations of a robotic system that will result in a

34 Planar Kinematics, Velocity, and Statics

θ1

l1

θ3

d3

FIGURE 2.19

RRP manipulator.

specific position and orientation of its end-effector. This chapter focuses on using the geo-
metric method for inverse kinematics.

Following that, we learnt to obtain the velocity of the robot manipulator from its position
using the time derivative method. The joint space and the Cartesian space velocities can be
mapped with the Jacobian matrix. We discussed how to use the Jacobian matrix to perform
static analysis that provides a mapping between the joint load and the load acting on the
end-effector in a stationary position. We introduced the concept of singularity and how to
find singularity in a robotic system using the Jacobian matrix. Lastly, we introduced the
concept of workspace and the basic analysis of the workspace of a robot.

2.8 Exercises

Problem 1. Define 0
T1 that translate 5 units and 10 units along the x and y axes, and ro-

tates by 30◦ in angular displacement. Then, use 0
T1 to map a vector



1 2 0
T

from 1 to 0.

Problem 2. Find the 1
T3 by using the following frame definitions:

1
T0 =





0 −1 −10
1 0 10
0 0 1





3
T0 =





0.5 −0.866 10
0.866 0.5 8
0 0 1





Problem 3. A RRP planar robot is shown in Figure 2.19. Solve the inverse kinematics of
the robot using the geometric method; that is, find equations for θ1, θ2, and d3 in terms of
the arbitrary location of the end-effector (x, y).

Exercises 35

Problem 4. Derive the point velocity and angular velocity, represented in {0} (frame 0)
of the end-effector of the three-link manipulator shown in Figure 2.20 by using the time

derivative of the point position.

The transformation matrix 0T3 is given by:

0T3 =





c123 −s123 l1c1 + l2c12
s123 c123 l1s1 + l2s12
0 0 1





where c and s represent cosine and sine, respectively, and multi-digit subscripts indicate the
summation of angles.
Problem 5. Derive the Jacobian mapping the joint velocity inputs to the point velocity of
the end-effector tips for the three-link manipulator of Figure 2.20. Represent the Jacobian
in {0} attached to the base.

Problem 6. What happens to the rank of a square Jacobian matrix under singularity
configuration? Under that assumption, would singularities in the force domain exist in the
same configuration as singularities in the position domain? Explain the physical meaning
of a singularity in the force domain.

Problem 7. Find the joint torques required by the robot in Figure 2.20 to maintain a static

force vector 0
f =



fx fy
T

, represent the result as a matrix equation.

Problem 8. Find the symbolic equation which represents the workspace boundary of the
robot in Figure 2.20.

θ1

l1

θ2
l2

θ3
l3

FIGURE 2.20

RRR manipulator.

3

Trajectory Generation

In this chapter, we introduce basic methods for computing trajectories to achieve the desired
motion of a manipulator. A trajectory consists of a set of time-stamped instructions for each
actuator in a robot to achieve a certain end-effector motion. However, a trajectory must
also be feasible for a manipulator to execute. The minimum requirements for a smooth and
feasible trajectory include:

• Positional requirements

• Continuous position profile

• Continuous velocity

• Maximum acceleration does not exceed payload ratings on each actuator

Trajectory generation is an essential function in industrial robots used in applications
such as welding, painting, pick-and-place, and assembly. All of these applications require
a degree of speed and precision. Therefore, the robot’s trajectory must be smooth and
continuous to maintain a standard of quality while minimising wear and tear.

Here, we introduce two methods of trajectory generation: polynomial interpolation, and
cubic splines. While both are viable trajectory generation methods, one method may be
favoured over the other, depending on the required trajectory constraints. In both methods,
we treat a trajectory as a continuous time-dependent function that is calculated indepen-
dently for a single actuator. Therefore, to achieve the desired end-effector trajectory, we
execute the trajectory for each actuator simultaneously.

Trajectory generation methods are generalisable for both revolute and prismatic joints;
hence, we will use the generalised variable qi to represent the position of the robot’s i-th
joint. Also, note that references to the variable T in this chapter represent a time quantity
rather than a transformation matrix.

3.1 Interpolation with Polynomials

Example 3.1 (Cubic splines): Figure 3.1 shows a trivial robot with only one R joint, which
can be called the R robot. We want to command the robot to move the end-effector from a start
joint angle qs at time Ts to the final joint angle qf at time Tf . The desired start and final angular
velocities are q̇s and q̇f , respectively. Find the smooth function to describe the trajectory of this
joint angle, satisfying the above boundary conditions.

Solution: Assume the smooth function we seek is q(t). There are infinitely many functions that can
be used to generate this trajectory. Generally, polynomials are convenient for this work because
they are infinitely differentiable. The required order of a polynomial depends on the number of

DOI: 10.1201/9781003614319-3 36

https://doi.org/10.1201/9781003614319-3

Interpolation with Polynomials 37

z0, z1

x0

x1

q0

FIGURE 3.1

A single R robot.

conditions to be satisfied. In this problem, there are four conditions: the desired positions at the
start and final moments, and the desired velocities at the start and final moments

q(Ts) = qs, q(Tf) = qf , q̇(Ts) = q̇s, q̇(Tf) = q̇f (3.1)

Equations in (3.1) represent four constraints, while the variables are the coefficients of the polyno-
mial at hand. To have exact solutions, four coefficients are required, which can be found in cubic
polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 (3.2)

The time derivative of (3.2) yields the velocity profile, given by

q̇(t) = a1 + 2a2t+ 3a3t
2 (3.3)

Substituting (3.2) and (3.3) into (3.1) yields four linear equations below

q(Ts) = a0 + a1Ts + a2T
2

s + a3T
3

s = qs (3.4)

q(Tf) = a0 + a1Tf + a2T
2

f + a3T
3

f = qf (3.5)

q̇(Ts) = a1 + 2a2Ts + 3a3T
2

s = q̇s (3.6)

q̇(Tf) = a1 + 2a2Tf + 3a3T
2

f = q̇f (3.7)

Equations (3.4)–(3.7) can be further written in a matrix form









1 Ts T 2

s T 3

s

1 Tf T 2

f T 3

f

0 1 2Ts 3T 2

s

0 1 2Tf 3T 2

f

















a0

a1

a2

a3









=









qs
qf
q̇s
q̇f









(3.8)

Solving (3.8) gives the coefficients of the cubic function q(t) satisfying all conditions. In general,
the start time Ts is chosen to be zero. Therefore, (3.8) becomes









1 0 0 0
1 Tf T 2

f T 3

f

0 1 0 0
0 1 2Tf 3T 2

f

















a0

a1

a2

a3









=









qs
qf
q̇s
q̇f









(3.9)

Solving (3.9) yields

a0 = qs (3.10)

a1 = q̇s (3.11)

38 Trajectory Generation

a2 = −
2q̇sTf + q̇fTf + 3qs − 3qf

T 2

f

(3.12)

a3 =
q̇sTf + q̇fTf + 2qs − 2qf

T 3

f

(3.13)

With the coefficients given in (3.10)–(3.13), the polynomial q(t) = a0 + a1t + a2t
2 + a3t

3 satisfies
all four conditions given by (3.1).

One special case of the above problem is that the desired start and final velocities are
zeros. In this case, the solutions can be obtained by substituting q̇s = 0 and q̇f = 0 into
(3.10)–(3.13), such that

a0 = qs (3.14)

a1 = 0 (3.15)

a2 =
3(qf − qs)

T 2

f

(3.16)

a3 =
2(qs − qf)

T 3

f

(3.17)

Although the start and final velocities are zeros, the start and final accelerations still present.
Further, the instant transitions between zero acceleration and finite accelerations at the start
and end cause large jerk, which is the time derivative of the acceleration. In order to restrict
the jerk, sometimes, we require the start and final accelerations to be zeros as well. In this
case, the conditions become

q(0) = qs, q(Tf) = qf , q̇(0) = 0, q̇(Tf) = 0, q̈(0) = 0, q̈(Tf) = 0 (3.18)

The six constraints in (3.18) require six variables (coefficients of a polynomial) to get the
exact solutions. Therefore, a fifth-order polynomial of the form

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.19)

is applied here. The velocity and acceleration profiles of the joint angle q(t) can be found
as

q̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3.20)

q̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (3.21)

Substituting (3.19)–(3.21) into (3.18) gives six linear equations

q(0) = a0 = qs (3.22)

q(Tf) = a0 + a1Tf + a2T
2

f + a3T
3

f + a4T
4

f + a5T
5

f = qf (3.23)

q̇(0) = a1 = 0 (3.24)

q̇(Tf) = a1 + 2a2Tf + 3a3T
2

f + 4a4T
3

f + 5a5T
4

f = 0 (3.25)

q̈(0) = 2a2 = 0 (3.26)

q̈(Tf) = 2a2 + 6a3Tf + 12a4T
2

f + 20a5T
3

f = 0 (3.27)

Solving (3.22)–(3.27) gives

a0 = qs (3.28)

Interpolation with Polynomials 39

a1 = 0 (3.29)

a2 = 0 (3.30)

a3 =
10(qf − qs)

T 3

f

(3.31)

a4 =
15(qs − qf)

T 4

f

(3.32)

a5 =
6(qf − qs)

T 5

f

(3.33)

In theory, a polynomial can satisfy an arbitrary number of constraints as long as the order
of the polynomial is high enough. However, a high-order polynomial can yield unexpected
and unwanted deviations from the desired path. Therefore, cubic polynomials are most
commonly used in robotic path generation.

In many occasions, the desired path contains not only the start and final positions, but
also some intermediate positions, which are called the via points. In order to deal with
additional conditions introduced by the via points, more than one cubic polynomial can be
used.

Example 3.2 (Cubic splines with via points): We want to command the R robot in Example
3.1 to move the end-effector from a start joint angle qs at time Ts to a via position qv at time
Tv, and then to the final position qf at time Tf . Use two polynomials to generate a smooth and
continuous trajectory in the joint space, where the desired start and final angular velocities are
zero.

Solution: Assume the two cubic polynomials are q1(t) and q2(t). The time periods of q1(t) and
q2(t) are [Ts, Tv] and [Tv, Tf], respectively. For convenience, we want to first derive the trajectories
on the periods of [0, Tv−Ts] and [0, Tf −Tv], respectively, such that the equations can be simplified.
This can be done by shifting a function along the time axis, i.e., f(t−T) is the function by moving
f(t) along the time axis with a shift distance of T . Let us first define two polynomials q1(t1)
and q2(t2) on their local time periods, [0, Tf1] and [0, Tf2], respectively, with Tf1 = Tv − Ts and
Tf2 = Tf − Tv. After the polynomials are found based on the conditions, the trajectories are then
shifted back to the correct start time.

In this problem, there are eight conditions, given by

q1(0) = qs, q̇1(0) = 0, q2(Tf2) = qf , q̇2(Tf2) = 0

q1(Tf1) = qv, q2(0) = qv, q̇1(Tf1) = q̇2(0), q̈1(Tf1) = q̈2(0)
(3.34)

where the equations in the first row represent the start and final conditions, while those in the
second represent the conditions at the via position. The two desired cubic functions are assumed
to be

q1(t1) = a0 + a1t1 + a2t
2

1 + a3t
3

1

q2(t2) = b0 + b1t2 + b2t
2

2 + b3t
3

2

(3.35)

with the time derivative giving the velocity profiles

q̇1(t1) = a1 + 2a2t1 + 3a3t
2

1

q̇2(t2) = b1 + 2b2t2 + 3b3t
2

2

(3.36)

A further time derivative yields the acceleration profiles

q̈1(t1) = 2a2 + 6a3t1

q̈2(t2) = 2b2 + 6b3t2
(3.37)

40 Trajectory Generation

Substituting (3.35)–(3.37) into the conditions (3.34) yields eight linear equations

q1(0) = a0 = qs

q̇1(0) = a1 = q̇s

q2(Tf2) = b0 + b1Tf2 + b2T
2

f2 + b3T
3

f2 = qf

q̇2(Tf2) = b1 + 2b2Tf2 + 3b3T
2

f2 = q̇f

q1(Tf1) = a0 + a1Tf1 + a2T
2

f1 + a3T
3

f1 = qv

q2(0) = b0 = qv

q̇1(Tf1) = a1 + 2a2Tf1 + 3a3T
2

f1 = q̇2(0) = b1

q̈1(Tf1) = 2a2 + 6a3Tf1 = q̈2(0) = 2b2

(3.38)

Solving equations (3.38) gives

a0 = qs

a1 = 0

a2 =
−3T 2

f1∆q2 + 6Tf1Tf2∆q1 + 3T 2

f2∆q1

2T 2

f1Tf2(Tf1 + Tf2)

a3 =
3T 2

f1∆q2 − 4Tf1Tf2∆q1 − T 2

f2∆q1

2T 3

f1Tf2(Tf1 + Tf2)

b0 = qv

b1 =
3(T 2

f1∆q2 + T 2

f2∆q1)

2Tf1Tf2(Tf1 + Tf2)

b2 =
3(Tf1∆q2 − Tf2∆q1)

Tf1Tf2(Tf1 + Tf2)

b3 =
−T 2

f1∆q2 − 4Tf1Tf2∆q2 + 3T 2

f2∆q1

2Tf1T
3

f2(Tf1 + Tf2)

(3.39)

where ∆q1 = qv − qs and ∆q2 = qf − qv. With the coefficients given in equations (3.39) and the
time shifts of two cubic functions, the final trajectory can be written as

q(t) =

{

a0 + a1(t− Ts) + a2(t− Ts)
2 + a3(t− Ts)

3, Ts ≤ t ≤ Tv

b0 + b1(t− Tv) + b2(t− Tv)
2 + b3(t− Tv)

3, Tv ≤ t ≤ Tf
(3.40)

In many applications, the time intervals throughout the whole period are chosen to be
the same, such that Tf1 = Tf2 = T . Hence, the linear constraints given by (3.38) can be
readily written in the matrix form

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 −1 0 0
0 0 2 6T 0 0 −2 0
0 0 0 0 1 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2

















































a0
a1
a2
a3
b0
b1
b2
b3

























=

























qs
0
qv
0
0
qv
qf
0

























(3.41)

where the square matrix is a tri-diagonal matrix with a bandwidth of 2, which is counted
as the maximum offset of nonzero elements from the diagonal. The inverse of such a matrix
can be computed efficiently by computational software. Solving (3.41) gives

a0 = qs (3.42)

Interpolation with Polynomials 41

a1 = 0 (3.43)

a2 =
−3∆q2 + 9∆q1

4T 2
(3.44)

a3 =
3∆q2 − 5∆q1

4T 3
(3.45)

b0 = qv (3.46)

b1 = 3
∆q2 +∆q1

4T
(3.47)

b2 = 3
∆q2 −∆q1

2T 2
(3.48)

b3 =
−5∆q2 + 3∆q1

4T 3
(3.49)

In practice, a trajectory of one joint contains a large number of via points. Hence, an
adequate number of cubic functions are required to construct the trajectory. The coefficients
of these cubic functions can be found by expanding the matrix equation (3.41) into







A . . . ·

...
. . .

...
· . . . B





















































a0
a1
a2
a3
b0
b1
...
v2
v3
w0

w1

w2

w3















































=















































qs
0
qv1
0
0
qv1
...

qvn
0
0
qvn
qf
0















































(3.50)

where A and B form a (4n)× (4n) square matrix, such that

A =

















1 0 0 0 · ·

0 1 0 0 0 ·

1 T T 2 T 3 0 0
0 1 2T 3T 2 0 −1
· 0 2 6T 0 0
· · 0 0 1 0

















(3.51)

and

B =

















T 2 T 3 0 0 · ·

2T 3T 2 0 −1 0 ·

2 6T 0 0 −2 0
0 0 1 0 0 0
· 0 1 T T 2 T 3

· · 0 1 2T 3T 2

















(3.52)

while a0, a1, . . . , w3 are the coefficients of n piecewise cubic functions, which can be obtained
by solving the above equation. The trajectory described by the piecewise cubic functions is
also called a cubic spline.

42 Trajectory Generation

3.2 Interpolation with Linear and Parabolic Functions

The simplest interpolation on a set of start, via, and final points over a period of time
is to use linear functions to link these points together. However, at each point, there is
a discontinuity of velocity, which causes infinitely large acceleration. This can be both
dangerous and infeasible for the capability of actuators. In order to handle this issue, a
parabolic function is introduced to each point with a constant acceleration to allow a smooth
transition between two adjacent linear paths.

Consider the single R robot in Example 3.1, where the joint is commanded to move from
the start position qs at time 0 to the final position qf at time tf , through a number of via
points qi at ti, for i = 1, . . . , n, in order. The basic concept is to use straight lines to connect
these points and then use parabolic functions to generate smooth transitions based on the
given magnitudes of constant accelerations at all points. Consider three points, (ti−1, qi−1),
(ti, qi), and (ti+1, qi+1), as shown in Figure 3.2. Using linear interpolation, two linear paths
through these three points are obtained as

qi−1(t) = qi−1 + q̇i−1(t− ti−1), ti−1 ≤ t ≤ ti (3.53)

qi(t) = qi + q̇i(t− ti), ti ≤ t ≤ ti+1 (3.54)

where q̇i−1 =
qi − qi−1

ti − ti−1

and q̇i =
qi+1 − qi
ti+1 − ti

. Given the magnitude of the acceleration through

Point i being |q̈i|, this acceleration can be determined upon the adjacent velocities as

q̈i = sign (q̇i − q̇i−1) |q̈i| (3.55)

The time period of transition is then given by

Ti =
q̇i − q̇i−1

q̈i
(3.56)

Consider one-half of the transition happens at the end of the first linear path while the
other half happens at the beginning of the second linear path. Therefore, the linear paths
given (3.53) and (3.54) becomes

qi−1(t) = qi−1 + q̇i−1(t− ti−1), ti−1 ≤ t ≤ ti −
Ti

2
(3.57)

𝑞𝑞𝑖𝑖−1

𝑞𝑞𝑖𝑖
𝑞𝑞𝑖𝑖+1

q

qi−1

qi

qi+1

Ti/2Ti/2

ti−1 ti ti+1 t

FIGURE 3.2

Three via points.

Interpolation with Linear and Parabolic Functions 43

qi(t) = qi + q̇i(t− ti), ti +
Ti

2
≤ t ≤ ti+1 (3.58)

At the end of the first linear path given by (3.57) and (3.58), the joint position is given by

φi−1 = qi−1 + q̇i−1

(

ti −
Ti

2
− ti−1

)

(3.59)

Therefore, the parabolic transition is

qt(i−1)(t) = φi−1 + q̇i−1

(

t− ti +
Ti

2

)

+
q̈i

2

(

t− ti +
Ti

2

)2

(3.60)

Note that (3.60) is formulated based on the start position φi−1. It can be shown readily that

the end position of this parabolic trajectory at ti+
Ti

2
is exactly the same as the start position

of the following linear trajectory given by (3.57)–(3.58) at the same instant. This can be
easily understood in the velocity profile of the joint angle, where the parabolic transition is
a straight line connecting two-step functions. Since the removed and added triangles in the
integration area are the same, the joint travelling distance remains unchanged. Further, the
transition time Ti−1 and Ti+1 are also required at ti−1 and ti+1, respectively. In summary,
the two linear paths and one parabolic transition can be written as

qi−1(t) = qi−1 + q̇i−1(t− ti−1), ti−1 +
Ti−1

2
≤ t ≤ ti −

Ti

2
(3.61)

qt(i−1)(t) = φi−1 + q̇i−1

(

t− ti +
Ti

2

)

+

q̈i

2

(

t− ti +
Ti

2

)2

, ti −
Ti

2
≤ t ≤ ti +

Ti

2
(3.62)

qi(t) = qi + q̇i(t− ti), ti +
Ti

2
≤ t ≤ ti+1 −

Ti+1

2
(3.63)

Note that the above trajectory does not pass through via points exactly. In the case of high
acceleration, the deviation of the generated trajectory is close enough to the via points. As
for the start and final points, the robot must start and finish at them exactly. Hence, they
need to be treated slightly differently.

In order to force the trajectory to pass through the start point (0, qs), an offset point
(ts +

Ts

2 , qs) is introduced as shown in Figure 3.3. With this offset point, two linear lines
can connect the start point, offset point, and the first via point (t1, q1). We also desire to
use a transition time Ts to change the velocity smoothly according to a given |q̈s|. The
acceleration is

q̈s = sign(q1 − qs)|q̈s| (3.64)

Consider the R robot starts from stationary with the constant acceleration q̈s for a time
period of Ts to reach the velocity defined by the second linear path. The relation can be
written as

q̈sTs = q̇s (3.65)

where q̇s =
q1−qs

t1−
Ts

2

. Equation (3.65) gives two solutions of Ts as

Ts = t1 ±

√

t21 −
2

q̈s
(q1 − qs) (3.66)

44 Trajectory Generation

Type equation here.

q

qs

q1

Ts/2Ts/2

ts t1 t

FIGURE 3.3

The start two points.

Since Ts must be less than t1, the only solution of Ts is t1 −
√

t2
1
− 2

q̈s
(q1 − qs). Hence, the

trajectory from the start point is

qts(t) = qs + q̈st
2/2, 0 ≤ t ≤ Ts (3.67)

qs(t) = q1 − q̇s(t1 − t), Ts ≤ t ≤ t1 − T1/2 (3.68)

Similarly, an offset point (tf −
Tf

2
, qf) is introduced to generate the path at the final

point, as shown in Figure 3.4. Given |q̈f |, the acceleration is

q̈f = sign(qf − qn)|q̈f | (3.69)

The continuous velocity at tf − Tf yields

q̈fTf = −q̇n (3.70)

where q̇n =
qf−qn

tf−
Tf
2

−tn
. Solving (3.70) gives

Tf = (tf − tn)−

√

(tf − tn)2 −
2

q̈f
(qn − qf) (3.71)

q

qn

qf

Tf/2Tf/2

tn tf t

FIGURE 3.4

The final two points.

Trajectory in Joint Space 45

l1

l2

l3

P

FIGURE 3.5

A planar 3R robot.

The trajectory to the final point is

qn(t) = qn + q̇n(t− Tn), tn +
Tn

2
≤ t ≤ tf − Tf (3.72)

qtf (t) = qf −
q̈f

2
(tf − t)2, tf − Tf ≤ t ≤ tf (3.73)

In summary, the complete trajectory is described by (3.67)–(3.68), (3.61)–(3.63), and
(3.72)–(3.73) at the start, via, and final points, respectively. All intermediate parameters
are defined in the above corresponding equations. The advantage of the interpolation based
on linear and quadratic functions is that it does not need to solve a large equation system
and can be obtained efficiently. Further, the capability of the actuators can be considered
to predefine the bending accelerations.

3.3 Trajectory in Joint Space

The previous discussion was about the trajectory generation on a trivial R robot. In general,
a robotic manipulator has more than three DoF. Hence, the trajectories must be created
for all joint angles simultaneously.

Example 3.3 (Joint space trajectory): Given a three-DoF planar robotic manipulator shown
in Figure 3.5, develop a trajectory of the robot such that it starts at a configuration (q1s, q2s, q3s)
at time 0, and stops at a configuration (q1f , q2f , q3f) at time tf . Both initial and final velocities are
zeros.

Solution: The trajectories can be conveniently developed in the joint space (q1, q2, q3). The joint
space of a serial robotic manipulator is also called the configuration space, which is defined as
a set of all configurations for a general robot, which can be a biped robot, robotic vehicle, or
robotic aircraft. Any position and orientation of a robot can be represented as a single point in its
configuration space, which simplifies the complex problem of general path planning.

In this example, the joint space is a three-dimensional space with three axes (q1, q2, q3).
The trajectories can be independently derived with respect to all axes respectively. Therefore,

46 Trajectory Generation

(3.14)–(3.17) can be used to obtain three cubic functions

ai0 = qis

ai1 = 0

ai2 =
3(qif − qis)

t2f

ai3 =
2(qis − qif)

t3f

(3.74)

where i = 1, 2, 3. The polynomials qi(t) = ai0 + ai1t + ai2t
2 + ai3t

3 generate a trajectory of the
robot satisfying all boundary conditions.

The approach in Example 3.3 can be applied to a serial robotic manipulator with an
arbitrary DoF. If there are a number of via points, either the polynomial solution given
by (3.50) or the linear and quadratic interpolation given by (3.67)–(3.68), (3.61)–(3.63),
and (3.72)–(3.73) can be used. However, joint space trajectory generation is unsuitable in
instances where the path of the end-effector must be constrained to a specific trajectory,
such as in collision avoidance or for mission-specific tasks. A solution to this is to define via
points in the task space, which are then converted into the joint space before connecting
them into a single trajectory with splines or parabolic blends. However, there is no guarantee
that the end-effector strictly follows the desired task space path, because the trajectory is
still defined in the joint space. To achieve this, the entire trajectory should be defined in
the task space.

3.4 Trajectory in Task Space

Generating trajectories in the task space follows the same principles as joint space tra-
jectory generation, except that motion is generated through control of the end-effector’s
pose. Although trajectories generated in the task space are intuitive, they may not always
be feasible due to kinematic constraints. Task space trajectories are usually converted into
joint space for execution. Hence, an inverse kinematic solution along each point of the
task space must exist for a path to be feasible. Furthermore, there is a risk of the robot
approaching singularities at the workspace limit, lending to potentially dangerous joint
velocities. Therefore, a task space trajectory should always be checked for safety before
execution.

Example 3.4 (Task space trajectory): Given a two-DoF planar 2R robotic manipulator shown
in Figure 3.6, develop a trajectory of the robot such that its end-effector starts at a position
(pxs, pys) at time 0, and stops at a position (pxf , pyf) at time tf . Both initial and final velocities
are zeros.

Solution: This trajectory can be developed in the task space (px, py). The trajectories in x

and y axes can be independently derived. Again, (3.14)–(3.17) can be used to obtain two cubic

Trajectory in Task Space 47

θ1

θ2

P (px, py)

x

y

l1

l2

FIGURE 3.6

A planar 2R robot.

functions

ai0 = pis

ai1 = 0

ai2 =
3(pif − pis)

t2f

ai3 =
2(pis − pif)

t3f

(3.75)

where i = x, y. The polynomials pi(t) = ai0 + ai1t+ ai2t
2 + ai3t

3 generate a trajectory of the robot
satisfying all boundary conditions.

Example 3.5 (Orientation space trajectory): Given a three-DoF spherical robotic wrist shown
in Figure 3.7, develop a trajectory of the robot such that its end-effector starts at an orientation Rs

at time 0 and stops at another orientation Rf at time tf . Both initial and final angular velocities
are zeros.

z0, z1, x2

θ3 θ2

O

z2, x3 θ1
x1, z2

x0

FIGURE 3.7

A spherical robotic wrist.

48 Trajectory Generation

Solution: There are three different independent-parameter representations of orientation. If we
use X − Y − Z Euler angles to represent the orientation of the end-effector of this robotic wrist,
the task space is then defined by (φx, φy, φz). Hence, the start and final orientations can be derived
from Rs and Rf as (φxs, φys, φzs) and (φxf , φyf , φzf), respectively. The trajectories in these three
Euler-angle axes can be independently derived. Again, Equations (3.14)–(3.17) can be used to
obtain three cubic functions

ai0 = φis

ai1 = 0

ai2 =
3(φif − φis)

t2f

ai3 =
2(φis − φif)

t3f

(3.76)

where i = x, y, z. The polynomial φi(t) = ai0 + ai1t + ai2t
2 + ai3t

3 generates a trajectory of the
robot satisfying all boundary conditions. Notably, if another representation of orientation is used,
the derived trajectory will differ even though the boundary conditions are satisfied.

A trajectory of a robotic manipulator with six-DoF can be developed in a similar way, as
long as six independent parameters are well defined in the task space: three for the position
and the other three for the orientation.

3.5 MATLAB® Examples

Example M3.1 (Cubic splines): For a single actuator, calculate the cubic splines required to
create a single path that starts, visits and ends at the following positions:

Point Position (◦) Time (s)
qinit 0 0
qvia 90 2
qfinal 45 5

Solution: We require two cubic splines to connect these three points. Each cubic has a valid
time defined in Table 3.1. Working with normalised variables is preferred because it simplifies the
system using zero-time constraints. It creates many zero entries in the system matrix, cancelling
out variables and simplifying overall equations. The resulting cubic constraint equations are:

TABLE 3.1
Time of each cubic spline

Spline
Time

Global
Normalised

Variable Value
Cubic 1 0 ≤ t ≤ 2 ts1 ≤ t1 ≤ tf1 0 ≤ t1 ≤ 2
Cubic 2 2 ≤ t ≤ 5 ts2 ≤ t2 ≤ tf2 0 ≤ t2 ≤ 3

MATLAB® Examples 49

1. Cubic 1 position at ts1 = qinit, where ts1 = 0

a1 + a2ts1 + a3t
2

s1 + a4t
3

s1 = qinit (3.77)

a1 = 0 (3.78)

2. Cubic 1 velocity at ts1 = 0

a2 + 2a3ts1 + 3a4t
2

s1 = q̇init (3.79)

a2 = 0 (3.80)

3. Cubic 1 position at tf1 = qvia, where tf1 = 2

a1 + a2tf1 + a3t
2

f1 + a4t
3

f1 = qvia (3.81)

a1 + 2a2 + 4a3 + 8a4 = 90 (3.82)

4. Cubic 2 velocity at ts2 = Cubic 1 velocity at tf1, where tf1 = 2 and ts2 = 0

b2 + 2b3ts2 + 3b4t
2

s2 = a2 + a3tf1 + 3a4t
2

f1 (3.83)

a2 + 4a3 + 12a4 − b2 = 0 (3.84)

5. Cubic 2 acceleration at ts2 = Cubic 1 acceleration at tf1, where tf1 = 2 and ts2 = 0

2b3 + 6b4ts2 = 2a3 + 6a4tf1 (3.85)

2a3 + 12a4 − 2b3 = 0 (3.86)

6. Cubic 2 position at ts2 = qvia, where ts2 = 0

b1 + b2ts2 + b3t
2

s2 + b4t
3

s2 = qvia (3.87)

b1 = 90 (3.88)

7. Cubic 2 position at tf2 = qfinal, where tf2 = 3

b1 + b2tf2 + b3t
2

f2 + b4t
3

f2 = qfinal (3.89)

b1 + 3b2 + 9b3 + 27b4 = 45 (3.90)

8. Cubic 2 velocity at tf2 = 0, where tf2 = 2

b2 + 2b3tf2 + 3b4t
2

f2 = q̇final (3.91)

b2 + 6b3 + 27b4 = 0 (3.92)

These equations can be represented as a linear system in matrix form A x = b

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 2 4 8 0 0 0 0
0 1 4 12 0 −1 0 0
0 0 2 12 0 0 −2 0
0 0 0 0 1 0 0 0
0 0 0 0 1 3 9 27
0 0 0 0 0 1 6 27

















































a1

a2

a3

a4

b1

b2

b3

b4

























=

























0
0
90
0
0
90
45
0

























(3.93)

The following inline script generates the system defined in (3.93).

50 Trajectory Generation

1 % Define time vectors
2 time = [0 2 5]
3 dtime = diff(time) % Normalise time
4

5 % Initialise variables
6 n_cubics = 2;
7 A = zeros (4* n_cubics);
8 b = zeros (4* n_cubics , 1);
9

10 % Define proposed boundary conditions
11 pos_init = 0;
12 pos_via = 90;
13 pos_final = 45;
14 vel_init = 0;
15 vel_final = 0;
16

17 % Function handles to define coefficients
18 coeff_pos = @(t) [1 t t^2 t^3]; % Position coefficients
19 coeff_vel = @(t) [0 1 2*t 3*t^2]; % Velocity
20 coeff_acc = @(t) [0 0 2 6*t]; % Acceleration
21

22 %% Cubic 1 equations
23 t_s1 = 0; % Cubic 1 initial time
24 A(1 ,1:4) = coeff_pos(t_s1);
25 b(1) = pos_init;
26

27 A(2 ,1:4) = coeff_vel(t_s1);
28 b(2) = vel_init;
29

30 t_f1 = dtime (1); % Cubic 1 final time
31 A(3 ,1:4) = coeff_pos(t_f1);
32 b(3) = pos_via;
33

34 %% Cubic 1+2 equations
35 t_s2 = 0; % Cubic 2 initial time
36 A(4 ,1:8) = [coeff_vel(t_f1) -coeff_vel(t_s2)];
37 b(4) = 0;
38

39 A(5 ,1:8) = [coeff_acc(t_f1) -coeff_acc(t_s2)];
40 b(5) = 0;
41

42 %% Cubic 2 equations
43 A(6 ,5:8) = coeff_pos(t_s2);
44 b(6) = pos_via;
45

46 t_f2 = dtime (2); % Cubic 2 final time
47 A(7 ,5:8) = coeff_pos(t_f2);
48 b(7) = pos_final;
49

50 A(8 ,5:8) = coeff_vel(t_f2);
51 b(8) = vel_final;
52

53 %% Solve system
54 cfs = A \ b; % This is the fastest solve method
55

56 % Display variables
57 A
58 b
59 cfs
60

61 %% Plot system
62 t1 = t_s1 :0.1: t_f1;
63 p1 = polyval(cfs (4: -1:1), t1);
64 t2 = t_s2 :0.1: t_f2;
65 p2 = polyval(cfs (8: -1:5), t2);
66 plot(t1 , p1 , t1(end)+t2 , p2, ’LineWidth ’, 3)
67

68 % Always label plots
69 title(’Cubic Spline Example ’)
70 ylabel(’Position (deg)’)
71 xlabel(’Time (s)’)
72 grid on

time =

0 2 5

dtime =

2 3

MATLAB® Examples 51

A =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 2 4 8 0 0 0 0
0 1 4 12 0 -1 0 0
0 0 2 12 0 0 -2 0
0 0 0 0 1 0 0 0
0 0 0 0 1 3 9 27
0 0 0 0 0 1 6 27

b =

0
0

90
0
0

90
45
0

cfs =

0
0

51.7500
-14.6250
90.0000
31.5000

-36.0000
6.8333

Therefore, the two cubic splines that will pass through the proposed positions are

q(t) =

{

−14.63t1
3 + 51.75t1

2 0 ≤ t1 ≤ 2 when 0 ≤ t ≤ 2

6.83t2
3
− 36t2

2 + 31.5t2 + 90 0 ≤ t2 ≤ 3 when 2 ≤ t ≤ 5
(3.94)

Example M3.2 (Cubic splines for SCARA): A common motion for 3C (Computer, Commu-
nications, and Consumer) product assembly is to translate a part while rotating it by 180 degrees.
The SCARA robot (Figure 3.8) is well-suited to perform this trajectory and task. Assume the
robot’s end-effector is currently at

0pEE =
[

0.70 0.00 −0.25
]

m, q4 = 0 (3.95)

and the next pose in the assembly task for the end-effector in 3 seconds is

0pEE =
[

−0.20 0.30 −0.25
]

m, q4 = π (3.96)

Generate a cubic spline trajectory in the end-effector coordinates that connects these two poses in
a single, smooth transition.

Solution: A trajectory is desired in the end-effector coordinates, or task space coordinates. This
implies that, later, inverse kinematics will be used to translate this task space trajectory into a
joint space trajectory for robot control. In this problem, the task space coordinate consists of a
Cartesian point and a rotation. Therefore, we will define X as the vector of task space co-ordinates,
such that

X =
[

x y z q4
]T

(3.97)

Also

Xinit =
[

−0.7 0.0 −0.25 0
]T

(3.98)

Xfinal =
[

−0.2 0.3 −0.25 π
]T

(3.99)

Hence, we need only three cubics since only three actuators move between two points, each from
ts = 0 to tf = 3. Therefore, for each dimension, p ∈ X that contains movement, we define the
following constraint equations:

52 Trajectory Generation

Link 0

θ1

Link 1

θ2

Link 2

Link 3

d3

θ4

Link 4 (end-effector)

FIGURE 3.8

A SCARA robot.

1. Cubic for initial position at ts = 0

a1 + a2ts + a3ts
2 + a4ts

3 = pinit (3.100)

a1 = pinit (3.101)

2. Cubic for initial velocity at ts = 0

a2 + 2a3ts + 3a4ts
2 = ṗinit (3.102)

a2 = 0 (3.103)

3. Cubic for final position at tf = 3

a1 + a2tf + a3tf
2 + a4tf

3 = pfinal (3.104)

a1 + 2a2 + 9a3 + 27a4 = pfinal (3.105)

4. Cubic for final velocity at tf = 3

a2 + 2a3tf + 3a4tf
2 = ṗfinal (3.106)

a2 + 6a3 + 27a4 = 0 (3.107)

Notably, there is no mention of acceleration. This is because acceleration constraints are only
applied when transitioning between via points. We do not constrain acceleration at the very start
and very end of the trajectory. The following inline script generates the system of equations for
each cubic. The use of a for..loop construct here will perform this task more efficiently.

1 % Define time vector
2 t = [0 3];
3

4 % Initialise variables
5 n_cubics = 2;
6 A = zeros (4* n_cubics);
7 b = zeros (4* n_cubics , 1);
8

9 % Define position boundary conditions
10 X_init = [-0.7, 0.0, -0.25, 0];

MATLAB® Examples 53

11 X_final = [-0.2, 0.3, -0.25, pi];
12

13 % Function handles to define coefficients
14 coeff_pos = @(t) [1 t t^2 t^3]; % Position coefficients
15 coeff_vel = @(t) [0 1 2*t 3*t^2]; % Velocity
16

17 % This task can be done more efficiently in a for -loop construct
18 for c = [1 2 4] % Create cubics for 1st , 2nd and 4th vars in X_
19 A = zeros (4); % Initialise 4x4 matrix
20 b = zeros (4,1); % Initialise 4x1 vector
21 % Cubic pos at t = 0
22 A(1,:) = coeff_pos(t(1));
23 b(1) = X_init(c);
24 % Cubic vel at t = 0
25 A(2,:) = coeff_vel(t(1));
26 b(2) = 0;
27 % Cubic pos at t = 3
28 A(3,:) = coeff_pos(t(2));
29 b(3) = X_final(c);
30 % Cubic vel at t = 3
31 A(4,:) = coeff_vel(t(2));
32 b(4) = 0;
33

34 fprintf(’Cubic data for variable %i\n’, c)
35 % Display variables
36 A
37 b
38

39 % Solve system
40 coefficients = A \ b % This is the fastest solve method
41

42 end

Cubic data for variable 1

A =

1 0 0 0
0 1 0 0
1 3 9 27
0 1 6 27

b =

-0.7000
0

-0.2000
0

coefficients =

-0.7000
0.0000
0.1667

-0.0370

Cubic data for variable 2

A =

1 0 0 0
0 1 0 0
1 3 9 27
0 1 6 27

b =

0
0

0.3000
0

coefficients =

0
-0.0000
0.1000

-0.0222

54 Trajectory Generation

Cubic data for variable 4

A =

1 0 0 0

0 1 0 0

1 3 9 27

0 1 6 27

b =

0

0

3.1416

0

coefficients =

0

0.0000

1.0472

-0.2327

Therefore, the trajectory of X , generated by cubic splines that satisfies point and time constraints,
is

X(t) =









−0.037t3 + 0.1667t2 − 0.7
−0.022t3 + 0.1t2

−0.25
−0.2327t3 + 1.0472t2









0 ≤ t ≤ 3 (3.108)

3.6 Conclusion

We investigated two methods for generating trajectories between two or more points: cubic

splines and linear interpolation with parabolic blends. While both are effective in generating

smooth trajectories, cubic splines is the preferred method when there are via points in the

trajectory. The system of equations to solve for the coefficients of the cubic splines was

defined, and MATLAB examples were given to show the method’s simplicity and practicality

in trajectory generation for robotics.

There is a major caveat when performing trajectory planning using splines: We always

assume the trajectory is collision-free and singularity-free. These assumptions may not al-

ways be feasible in practice. However, this will be addressed in the next chapter.

3.7 Exercises

Problem 1. Given an RRR robot moves its end-effector along a cubic spline path through

three waypoints to reach its goal point, how many constraints are required to solve for all

the coefficients of the individual cubics? Name the constraints required for one joint.

Exercises 55

y0

x0

y1 x1

θ1

y2

x2

θ2y2

x2

P (x, y)

FIGURE 3.9
A two-link RR manipulator.

Problem 2. A single-joint robot performs the following task in sequence:

1. start at a joint angle of 10◦ at rest.

2. pick up an object at 30◦ after 1 s.

3. drop the object at 50◦ after 2 s.

The smooth motion is achieved with two continuous cubic functions. Solve the coeffi-
cients of the cubics by applying appropriate constraints.

Problem 3. Use the linear function with parabolic blends to generate a smooth trajec-
tory from x = 0 m at t = 0 s to x = 0.9 m at t = 1 s. The required acceleration in the
blend region is ẍ = 4.8 m/s2. Write the equations for the whole trajectory.

Problem 4. Frame {3} of the two-link manipulator shown in Figure 3.9 is projected to
move to the following locations:

t0 = 0

0T3 =





1 0 l1 + l2
0 1 0
0 0 1





,

t1 = 2

0T3 =







1 0 l2 − l1
√
2

2

0 1 l1
√
2

2

0 0 1







t2 = 4

0T3 =







√
2

2

−
√
2

2
l2

√
2

2√
2

2

√
2

2
l1 + l2

√
2

2

0 0 1







l1 and l2 being the lengths of the first and the second links, respectively. Based on the
transformation matrices at each point, if l1 = l2 = 1 m, find the cubic functions that
describe each joint angle as the end-effector moves from rest at its starting point at time
t0, to the mid-point at t1, before coming to rest at its end point at t2. Ensure the rate of
change of the angles of joints 1 and 2 at t1 are continuous.

4

Control Schemes

This chapter will introduce basic control schemes used in servos and sensors. In addition, we
will focus on fixed reference control , whereby we define a static input to the control system,
known as a set point (SP). The SP dictates the desired state in which we want the system
to reach in finite time, e.g., the temperature of an oven or the set speed of a car’s cruise
control. In robotics, this is typically a joint position qd to which we want the manipulator to
move. Fundamentally, there are two types of control loops: open-loop control (feedforward),
and closed-loop control (feedback).

4.1 Open-Loop Control

An open-loop controller, also known as a non-feedback controller, computes its output based
on a fixed input state. That is, the output of an open-loop control system depends only on
the input it is given.

An open-loop controller is often used in simple processes or systems where feedback is
not critical, thanks to its simplicity and low cost. Devices that utilise open-loop controls
include on-off switching of valves, machinery, lights, heaters, and motors. An example of
an open-loop controlled process is a belt conveyor system that transports materials in a
warehouse. These systems are usually set to a fixed speed, but to maintain this speed,
the conveyor operates under its rated maximum load. In an open-loop control scheme, the
system will not compensate (i.e., attempt to increase power to the conveyor drive system
to maintain speed) if there is a slow-down due to increased load on the conveyor system. In
general, the output of an open-loop controlled process is simple and usually approximately
sufficient under normal conditions without the need for feedback.

The advantage of using open-loop control is the reduction in component count and
complexity, as a predictable output is always assumed. However, when operating outside
of its rated conditions, also known as disturbance, its output may start to deviate from
its intended set point. This is called error, and in an open loop control system, this error
cannot be corrected automatically without manually adjusting its input. In other words, an
open-loop control system cannot correct internal errors or counter external disturbances.

Figure 4.1 shows a block diagram of how different components in a system interact with
each other in an open loop control system.

DOI: 10.1201/9781003614319-4 56

https://doi.org/10.1201/9781003614319-4

Closed-Loop Control 57

ON/OFF

(Input)
Switch

(Controller)

Lamp
Filament

(Process)

Electrical Energy

Ambient
Lighting
(Output)

FIGURE 4.1
Open loop control system.

4.2 Closed-Loop Control

A closed-loop controller, also known as a feedback controller, is a control system where a
portion of the output signal is fed back into the control system to determine the next output
state.

The goal of the output of the system is to eliminate the difference between the system’s
desired output and actual output, or error. A typical instance of this is a thermostat for
a heater, where the environment’s temperature is fed into the system, compared to the
thermostat’s set temperature, then tells the heater whether to remain on or to turn off once
the target temperature is reached. A cruise control system in a car is also a closed-loop
control system, where the driver sets a target speed, and the vehicle matches said speed. If
the car encounters resistance, such as driving up a hill and slows down, the control system
detects an error between its current speed and set speed and applies an additional input to
compensate for the error.

Closed-loop controllers have many advantages over their open-loop counterparts, the
main advantage being their ability to reject disturbances from external sources. This makes
them much more stable relative to their set points when conditions change (refer to the
cruise control system example). They can also handle unstable inputs such as constant
switching or varying set points. This is particularly useful when the set point of a servo is
constantly varying to achieve path objectives.

There are many types of closed-loop controllers, all varying in performance and com-
plexity. In this section, we will introduce four types of control: bang-bang, proportional
(P), proportional-integral (PI), and proportional-integral-derivative (PID) controller. We
will analyse how they work, analyse their typical out response for a set point input, and
use common-practice tuning techniques to optimise their output response characteristics.

There are many types of closed-loop controllers, all varying in performance and com-
plexity. In this section, we will introduce four types of control: bang-bang, proportional
(P), proportional-integral (PI), and proportional-integral-derivative (PID) controller. We
will analyse how they work, analyse their typical out response for a set point input, and
use common-practice tuning techniques to optimise their output response characteristics.
Figure 4.2 shows a block diagram of how different components in a system interact with
each other in a closed-loop control system.

4.2.1 Bang-Bang Control

A bang-bang control scheme utilises discrete output states to achieve a target setpoint. A
typical use of a bang-bang control algorithm is a thermostat in a heating or cooling system.

58 Control Schemes

ON/OFF

(Input)
Switch

(Controller)

Lamp
Filament

(Process)

Electrical Energy

Ambient
Lighting
(Output)

Photosensor

(Feedback)

FIGURE 4.2

Closed loop control system.

When the temperature is below a target temperature, the heating system will try to heat
the room to that temperature until the room is at the target temperature. If the room
is above the target temperature, the heating system will correspondingly cool the room
until the target temperature is met. To prevent quick oscillations between the heating and
cooling state, hysteresis can be utilised, where a room would be cooled or heated beyond
its setpoint by a fixed amount before switching to an idle state. The disadvantage of this
method is that the system state may exhibit a ”zig-zag” or ”wiggle” behaviour, which might
be unwanted under specific circumstances.

While adequate in some situations, bang-bang control is inadequate for more difficult
tasks like speed control, or where system state oscillations are unsatisfactory. For instance,
one does not want a cruise control system to constantly apply an on-off behaviour (on state,
meaning applying maximum acceleration) to achieve the target speed, as it will make for a
very uncomfortable and unsafe trip!

Example 4.1 (Bang-bang control): A household water heater is a common application of a
bang-bang controller. Given that the heater has a set temperature of 30◦C with a hysteresis error
of 1◦C, provide an illustration of the measured temperature graph and the corresponding state of
the controller.

Solution: In a closed loop system such as the bang-bang control, the state of the controller depends
on the feedback error, given as

e = qd − q, (4.1)

where e is the feedback error, q and qd are the measured and desired temperatures, respectively.
Hysteresis is utilised where the heater would turn on or off when the measured temperature is

beyond its setpoint by has a 1◦C, such that

State =

{

ON, if e < −1.

OFF, if e > 1.
(4.2)

The state of the controller at a given feedback error could translate into an illustration of the
measured temperature and its corresponding controller state, as shown in Figure 4.3.

Explanation: In the beginning, the water is sitting at room temperature (24◦C), and the heater
turns on to increase the temperature to its setpoint. The heater will turn off as the temperature
31◦C, that is, 1◦C beyond the setpoint. The heater will turn back on at 29◦C, that is, 1◦C below
the setpoint. The cycle continues, which creates a steady state for the controller.

Closed-Loop Control 59

Measured Temperature

Controller State

31◦C

30◦C(Set temperature)

29◦C

24◦C

On

Off

Time

Time

FIGURE 4.3

Measured temperature graph and the corresponding state of the controller.

4.2.2 Proportional Controller

One of the simplest forms of feedback controller is the proportional (P) gain controller,
depicted in Figure 4.4. The action of the proportional controller is expressed as follows:

c(t) = Kpe(t) + b, (4.3)

θd Kp Process θ(t)
e(t) c(t)

FIGURE 4.4

Proportional controller.

60 Control Schemes

Refill tube

Ballcock-type
fill valve

Float ball

Overflow
pipe

Flapper

FIGURE 4.5

Toilet tank.

e(t) = qd − q(t) (4.4)

where c(t) is the controller output, Kp is the proportional gain, e(t) is the error between
the current (q(t)) and desired (qd) actuator positions respectively, and b is the bias term
that defines the controller output when the error is zero. Unlike the bang-bang controller,
which operates at either 0% or 100 % depending on the sign of the error, the proportional
controller action is directly proportional to the sign and magnitude of the error. This means
that the correction needed gets smaller as the output of the system approaches closer to the
setpoint, and the fluctuation during steady-state can be minimised. However, fluctuation
still exists, which creates an offset in the system output.

Example 4.2 (Proportional controller): Figure 4.5 shows a flush toilet tank with the ballcock
mechanism design. Explain the correlation between a toilet tank and a proportional controller, and
define the controller output.

Solution: The float ball, lift arm, and fill valve formulate a proportional control system. The error
of the system (e) is the difference between the current (h(t)) and desired (hd) water level, where
the current water level is obtained through the position of the float ball. The controller output
(c(t)) is the flow rate of water (V̇ (t)) coming into the tank through the opening of the fill valve.
The proportional gain (Kp) is inversely proportional to the length of the lift arm (l). When the
arm length decreases, the opening of the fill valve becomes more sensitive to the change in water
level. Since we would like to stop the water from flowing into the tank when it reaches the desired
water level, there will be no bias.

Therefore, the controller output, which is also the water flow rate, can be expressed as follows:

V̇ (t) =
e(t)

l
, (4.5)

where

e(t) = hd − h(t). (4.6)

Closed-Loop Control 61

θd Ki

∫

dt Process θ(t)
e(t) c(t)

FIGURE 4.6

Integral controller.

4.2.3 Integral Controller

The issue with a proportional controller arises when the proportional gain is too high,
leading to the system generating a consistent error at equilibrium, i.e., the steady-state
error, or even risking instability due to increased gain. Consequently, the integral controller,
illustrated in Figure 4.6, steps in to address this concern. The action of the integral controller
is expressed as follows:

c(t) = Ki

∫

t

0

e(t)dt, (4.7)

u(t), Ki, and e(t) denoting the integral control action, the integral constant, and the error of
system output, respectively. The integral function measures the cumulative errors over time.
If the error is not zero, the integral function continually builds up its output. Consequently,
this output drives the actuator harder to minimise fluctuations in the system’s output,
thereby reducing the error to zero.

4.2.4 Derivative Controller

Derivative controller, shown in Figure 4.7, functions as a form of feedforward control that
aims to minimise the change of error, thereby maintain the system stability. The signal
output of the controller is determined based on the rate of error change over time, with a
more significant rate of error change resulting in a more pronounced controller response.
This can be achieved by correlating the derivative of the error to the controller output,
where the derivative of the error is taken with respect to time. Thus, the derivative control

θd Kd
d
dt Process θ(t)

e(t) c(t)

FIGURE 4.7

Derivative controller.

62 Control Schemes

k x

f

FIGURE 4.8

Spring loaded piston.

is mathematically illustrated as follows:

c(t) = Kd

de(t)

dt
, (4.8)

where u(t) is the derivative control action, Kd is the derivative constant, and e(t) is the
error of the system output.

The primary advantage of the derivative controller is its ability to counteract system
changes, particularly oscillations. In contrast to proportional and integral controllers, deriva-
tive controllers do not lead the system directly to a steady state as it does not know where
the setpoint is. Consequently, D controllers must be combined with P, I, or PI controllers
for effective system regulation.

4.2.5 PI and PD Controller

An effective controller requires combining multiple controllers to achieve different pur-
poses. The common combinations are Proportional-Integral (PI) controller, Proportional-
Derivative (PD) controller, and Proportional-Integral-Derivative (PID) controller. Propor-
tional action is necessary for quickly driving the system to the setpoint. The PI-control is a
feedback control that provides a faster response time than an I-only control. This integral
action helps eliminate fluctuations in a P-only controller. The behaviour of a PI controller
can be mathematically expressed as

c(t) = Kpe(t) +Ki

∫ t

0

e(t)dt, (4.9)

where the bias term of the proportional-only controller is replaced with the signal output
of the integral action.

Example 4.3 (PI controller): Figure 4.8 shows a spring-loaded piston, where the piston stroke
length measured along the x axis is controlled by the force F exerted on the piston surface. Assuming
that the piston surface is massless, design a PI force controller to control the piston stroke length.

Solution:
Let xd be the desired displacement of the piston, and x(t) be the recorded piston displacement

that is being fed back into our closed-loop system. We can design a block diagram for the PI
controller, as shown in Figure 4.9. The behaviour of the PI force controller can be mathematically
expressed as

F (t) = Kpe(t) +Ki

∫ t

0

e(t)dt, (4.10)

where e(t) is the difference between xd and x(t).

Closed-Loop Control 63

θd

Ki

∫

dt

Kp

Process x(t)
e(t) f

FIGURE 4.9

PI controller for the spring-loaded piston.

Explanation: Figure 4.10 shows that the I controller helps to compensate the required force as the
error minimises to drive the piston to the desired position where the forces from both sides(acting
force and the repulsive force from the loaded-spring) reaches equilibrium. Note that this will not
work with a single P-controller, as the force output decreases whilst the spring force increases as the
piston goes closer to the desired position. The result is that the error will not be minimised beyond
xd/2, and thus, a steady state cannot be reached.

PD control is a combination of feedforward and feedback control. The purpose of the
derivative action is to predict future errors to improve the stability of the system. However,
the steady-state error is not minimised without the integral term.

The proportional component is incorporated to accelerate the transient phase based on
the system output, whilst the derivative component predicts the error in order to increase
the stability of the closed-loop system.

The behaviour of a PD-controller can be mathematically expressed as

c(t) = Kpe(t) +Kd

de(t)

dt
, (4.11)

where the bias term of the proportional-only controller is replaced with the signal output
of the integral action.

kxd kxd kxd

f(t) f(t) f(t)

t t ttd td td
P-controller output I-controller output PI-controller output

FIGURE 4.10

Force outputs of P, I, and PI controller.

64 Control Schemes

θd

PID Controller

P-action

I-action

D-action

Process θ(t)
e(t) c(t)

FIGURE 4.11
PID controller.

4.2.6 Proportional-Integral-Derivative (PID) Controller

The Proportional-Integral-Derivative (PID) Controller of Figure 4.11 is the most commonly
used as it combines the best of both worlds. Aside from the inherent advantages of a PD
controller, the addition of the Integral controller continuously integrates errors over time,
eliminating steady-state errors and ensuring the system reaches and maintains the desired
setpoint in a shorter period of time. PID controller can be mathematically expressed as

c(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd

de(t)

dt
, (4.12)

where the bias term of the proportional-only controller is replaced with the summation of
the signal outputs from the integral and derivative actions.

Another advantage of a PID controller is its flexibility in tuning parameters to adapt to
specific system requirements — it can be readily transformed into a PI or PD controller by
setting Kd or Ki to zero.

The main characteristics that define the system’s response include the Rise time (TR),
Settling time (TS), overshoot, and steady-state error. An illustration of these characteristics
can be seen in Figure 4.12. Rise time is the time taken for the response to first reach its

Overshoot

TsTR

Process

t

c(t)

ess

FIGURE 4.12
System response characteristics.

Pulse Width Modulation Control 65

final steady-state value. Settling time is the time required for the system to converge to its
steady state. Overshoot is the amount by which system output goes past the setpoint value.
Steady-state error is the constant deviation from the setpoint value during steady-state.

The system response can be tailored by tuning Kp, Ki, and Kd. Increasing Kp would
tend to increase the overshoot and decrease rise time and steady-state error. Increasing Ki

tends to increase the overshoot and settling time and decrease the rise time and steady-
state error. Increasing Kd tends to decrease overshoot and settling time. Nevertheless, while
the PID controller often provides the optimal performance, it is also the most costly. As a
result, it is only employed when the precision and stability offered by the PID controller
are essential for the particular requirements of the process.

4.3 Pulse Width Modulation Control

Load devices are engineered to function efficiently and execute their specific tasks when given
a specific voltage and consuming a particular current. Modifying the parameters of the load
usually involves reducing the voltage. However, said adjustments are often associated with
adverse effects, such as diminishing a motor’s torque or dropping the voltage below the
forward bias level of a transistor or LED series. An alternative approach is necessary to
enable variable control without compromising operational capacity.

A method known as PWM (pulse width modulation) signal is employed to curtail the
electrical power delivered to an electrical device by rapidly switching the signal on and off.
The average voltage of the signal is adjusted by altering the relative on-time of the signal.
This average voltage delivers a reduced power equivalent while ensuring that full voltage is
maintained during the on-state duration of the pulse. One way to regulate the PWM signal
is by controlling the relative duration of the on-time, referred to as the “duty cycle”.

The duty cycle identifies the proportion (in percentage) of active time within a PWM
signal. A 100% duty cycle maintains the signal continuously active, whereas a reduction
to 50% entails the signal being active for half of the pulse duration and inactive for the
remaining half. When managing motors or heaters, we rely on the duty cycle to govern power
output. For instance, if our PWM controller generates a 12-volt DC voltage, a 50% duty
cycle results in delivering an effective power of 6 volts DC to operate the load. Corresponding
graphical representation is shown in Figure 4.13.

4.3.1 Relation to Joint Control

Pulse width modulation is commonly employed in DC motor speed control. However, we
can take a step back and consider the implications of PWM control for an LED. Since
pulse width modulation controls how long a device is turned on, one will observe this as a
flashing LED under low frequencies. However, as frequency increases, this flashing eventually
becomes invisible to the eye and becomes constant in brightness. This brightness is then
controlled by the PWM’s duty cycle. In the case of DC motors, the brightness of the LED
and the rapid switching of the PWM signal are the analogues of the motor input voltage
and motor speed control, respectively.

66 Control Schemes

25% Duty Cycle

25%
On

75%
Off

25%
On

75%
Off

50% Duty Cycle

50%
On

50%
Off

50%
On

50%
Off

75% Duty Cycle

75%
On

25%
Off

75%
On

25%
Off

FIGURE 4.13

Pulse-width modulation.

4.4 Conclusion

In this chapter, we introduced open-loop and closed-loop systems as the two fundamental
concepts in control schemes. An open-loop system operates on a fixed input state without
actively monitoring the output; a closed-loop system uses the feedback from the system
output to adjust the input so that the system can reach the desired output. We also dis-
cussed some of the most common closed-loop systems, which include bang-bang control,
proportional (P) control, integral (I) control, derivative (D) control, PI control, PD control,
and PID control. We discussed the working principles behind each of these controllers, as
well as their advantages and disadvantages. The applications of some of these controllers
were given as examples in the chapter. Lastly, we talked about Pulse Width Modulation
(PWM) Control and how PWM can be used to modulate the power output through duty
cycles.

4.5 Exercises

Problem 1. What is the difference between an open-loop and a closed-loop system? List
one advantage and disadvantage of each system.

Problem 2. Draw a block diagram that represents the control system of a flush toilet tank.

Problem 3. Figure 4.14 shows the step response of a system. The input step has am-
plitude 1. Use the figure and determine

1. Steady state value

2. Overshoot

Exercises 67

FIGURE 4.14
Step response of a system.

3. Rise time

4. Settling time

Problem 4. Given that the output state, q(t) = 2ct + 4, where c is the controller output
of the proportional controller. Calculate the required proportional gain, Kd, to achieve the
desired output state of 4.

Problem 5. Pulse Width Modulation Control is an effective method to control the bright-
ness of an LED. Given an LED that operates at 50 Hz with 75% brightness, what is the
time duration the LED is on within one cycle?

http://taylorandfrancis.com

Part II

Key Topics

http://taylorandfrancis.com

5

General Rotations and

Transformations

In Chapter 2, we introduced the concept of position and orientation (pose) in a two-
dimensional space. Here, we will generalise the discussion to describe the position and
orientation of an object in three-dimensional space. These concepts will lay the foundation
for understanding and performing robotic analysis for general spatial robotic manipulators.

5.1 Position and Orientation

A point and a Cartesian coordinate system, frame {0}, is shown in Figure 5.1(a). Its position
can be represented by a vector

0p =





px
py
pz



 (5.1)

where the front upper index A indicates that this position vector is measured in {0}. Since
the positions of the same point in different frames are different, the corresponding frame of
a position vector must be specified.

Consider that a rigid body can rotate around a pivot in all three axes. The position of
this rigid body can be treated as fixed at the pivot. As shown in Figure 5.1(b), where {0} and
{1} located at the pivot are attached to the ground and the moving rigid body, respectively.
The orientation of this rigid body can be described by a rotation matrix between these two
frames

0
R1 =



0
x1

0y1
0z1



(5.2)

where the indices A and B in 0
R1 indicate the orientation is about {1} with respect to {0}.

0
x1 ,

0y1 , and
0z1 are the unit axis-directions of {1} measured in {0}, as position vectors.

Example 5.1 (Rotation matrices): As shown in Figure 5.2, rotations of roll, pitch, and yaw
are around the axes of x, y, and z, respectively. Find the orientations of {1} in {0}.

Solution: According to (5.2), the orientations due to these three types of simple rotations are
given by

0R1x(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 (5.3)

DOI: 10.1201/9781003614319-5 71

https://doi.org/10.1201/9781003614319-5

72 General Rotations and Transformations𝑧𝑧0
𝑦𝑦0
𝑥𝑥0

𝑜𝑜0 𝐹𝐹0O0

z0

x0

y0

P

{0}

(a) A point mass in space

𝑧𝑧0
𝑦𝑦0
𝑥𝑥0

𝑧𝑧1 𝑦𝑦1 𝑥𝑥1𝐹𝐹1 𝐹𝐹0

z0

x0

y0

{0}

z1

y1

x1

{1}

(b) A rigid body in space

FIGURE 5.1

Frame definitions.

0R1y (β) =





cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



 (5.4)

0R1z (α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 (5.5)

Rotation matrices consist of a special group of orthonormal matrices with the following

properties:

1. all column vectors and row vectors are unit vectors,

2. all column vectors are orthogonal to each other,

3. all row vectors are orthogonal to each other,

4. the determinant of any rotation matrix is positive 11, and

1Another group of orthonormal matrices with the determinant of −1 is the reflection matrices.

z0

y0x0, x1

z1

y1γ

(a) Roll

z0

y0, y1x0

z1

x1

β

(b) Pitch

z0, z1

y0x0

y1

x1

α

(c) Yaw

FIGURE 5.2

Axes of rotation.

General Orientation 73

5. the inverse of a rotation matrix is its transpose such that

0

R
−1

1
= 1

R0 =
0

R
T
1

(5.6)

In particular, the last property is advantageous in analytical and numerical computa-
tions, as a transpose-derived inverse is more efficient than generalised square matrix inverse
methods.

5.1.1 Functions of a Rotation Matrix

There are two important physical functions of a rotation matrix. The first is that a rota-
tion matrix 0R1 maps the coordinates of a position vector measured in {1}, 1p , to the
coordinates of the same vector measured in {0}, 0p , where

0p = 0R1
1p (5.7)

Example 5.2 (Rotation matrix operator — axes): Frames {0} and {1} are initially coincident.
If a rotation is applied to {1} about {0}’s z-axis, find the mapping of x1 to {0}.

Solution: A rotation about the z-axis is applied. Therefore, we can refer to the rotation matrix
(5.5), which provides this operation. Also note that x1 refers to {1}’s x-axis relative to its own

frame, such that 1x1 =


1 0 0
T

. By inspection, we find that the mapping of the x-axis relative

to its initial frame {0} is indicated by the first column, which is


cosα sinα 0
T

. We can also
find this by using the equation

0x1 = 0R1z(α)
1x1 (5.8)

The second physical function of a rotation matrix is that 0R1 maps the position of p

before rotation to its position after rotation, p ′, i.e.,

p ′ = 0R1 p (5.9)

where {0} and {1} represent the orientations of the rigid body before and after rotation,
respectively. Furthermore, p and p ′ are both measured in the ground frame.

Consider the same figure, Figure 5.2(c). The x-axis is carried from x0 to x1 by the

rotation around the z axis. Hence, we have p =


1 0 0
T

and p ′ =


cosα sinα 0
T

.
Both vectors are measured in the ground frame {0} while the rotation matrix is exactly the
same as the one in Example 5.2.

5.2 General Orientation

The orientation of one arbitrary frame {1} with respect to another arbitrary frame {0}, as
shown in Figure 5.3, is given by

0R1 =


0x1
0y1

0z1


=





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0



 (5.10)

74 General Rotations and Transformations

z0

y0
x0

z1

y1

x1 z2

y2

x2

FIGURE 5.3

Three arbitrary frames located at the same point.

z0, y1

x0, x1, z2

z1

y0, y2

x2

FIGURE 5.4

Three frames with their axes aligned with each other.

Example 5.3 (Rotation matrix operation): Find the rotation matrix 0R1 , according to the
frames shown in Figure 5.4.

Solution: The axes of {0} measured in {0} are given by

0x0 =





1
0
0



 ,
0y0 =





0
0
1



 ,
0z0 =





0
−1
0



 (5.11)

The axes of {1} measured in {0} are given by

0x1 =





0
0
−1



 ,
0y1 =





0
1
0



 ,
0z1 =





1
0
0



 (5.12)

According to (5.10), we have

0R1 =





x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0



 =





0 0 1
−1 0 0
0 −1 0



 (5.13)

An orientation can be well represented by a rotation matrix. However, due to the prop-

erty of an orthonormal matrix, six constraints are applied to the nine entries in the matrix,

which means that only three entries are independent. Hence, three-parameter representa-

tions are desired.

Fixed Angles 75

z0

x0

y0

z0

x0

y0

z0

x0

y0

P

P ′ P ′

P ′′

P ′′

P ′′′

γ

β

α

FIGURE 5.5

Fixed angles.

5.3 Fixed Angles

As shown in Figure 5.5, any arbitrary orientation of one object can be obtained by a
sequence of rotations with angles γ, β, and α, around the fixed axes of {0}, x0, y0, and z0,
respectively. These angles are called the X-Y -Z fixed angles. In other words, any arbitrary
orientation can be obtained by a sequence of roll, pitch, and yaw motions.

5.3.1 Forward Problem

The forward problem is to find the rotation matrix represented by three fixed angles. Con-
sider a vector p before all three rotations. According to the second meaning of a rotation
matrix (5.9), the first rotation around x-axis brings p to p ′, the second rotation around
y-axis brings p ′ to p ′′, and the third rotation around z-axis brings p ′′ to p ′′′, i.e.,

p ′ = Rx(γ)p , p ′′ = Ry(β)p
′, p ′′′ = Rz(α)p

′′

which yields
p ′′′ = Rz(α) Ry(β) Rx(γ)p

Again, according to the second meaning (5.9) and the above equation, the total rotation
matrix is given by

RXY Z(γ, β, α) = Rz(α) Ry(β) Rx(γ)

=





cosα − sinα 0
sinα cosα 0
0 0 1









cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ









1 0 0
0 cos γ − sin γ
0 sin γ cos γ





=





cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ



 (5.14)

Example 5.4 (Fixed angle rotation): Given the X-Y -Z fixed angles, γ = 90◦, β = 180◦, and

α = 90◦, find the corresponding rotation matrix.

76 General Rotations and Transformations

Solution: Substituting the above values into (5.14) yields

R =





0 0 1
−1 0 0
0 −1 0



 (5.15)

5.3.2 Inverse Problem

The inverse problem in fixed angles is to find the fixed angles, γ, β, and α, to represent an
arbitrary orientation (rotation matrix). The formulation of this problem is given by

0
R1 = 0

R1XY Z (5.16)

where

0
R1 =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 , 0
R1XY Z =





cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ



 (5.17)

Consider the entry (3,1) of (5.16), we have the solutions of β as arcsin(−r31) or 180◦ −
arcsin(−r31). For a unique solution of β, we restrict β within the range of [−90◦, 90◦].
Hence, the only solution of β is arcsin(−r31). Using the entries (1,1) and (2,1) of (5.16), we
have

cα = r11/cβ

sα = r21/cβ (5.18)

We consider (cα, sα) as the coordinates of a point on a unit circle. Therefore, α is the polar
angle uniquely defined by this point. Atan2 is a function that finds the polar angle of an
arbitrary point (except the origin), (x, y), on a plane. It is defined as

Atan2(y, x) =



arctan(y/x) x ≥ 0
π + arctan(y/x) x < 0

(5.19)

Applying (5.19) to (5.18) yields a unique solution of α, i.e.,

α = Atan2(r21/cβ, r11/cβ) (5.20)

Since cβ is positive within the valid range of β except for the boundaries and Atan2 does
not require a point to be bounded to a unit circle, the solution can be simplified as

α = Atan2(r21, r11) (5.21)

Similarly, γ can be obtained by solving the entries (3,2) and (3,3) of (5.16), i.e.,

γ = Atan2(r32, r33) (5.22)

In summary, the solutions are given by

β = arcsin(−r31) (5.23)

α = Atan2(r21, r11) (5.24)

γ = Atan2(r32, r33) (5.25)

Euler Angles 77

Example 5.5 (Fixed angles — inverse problem): Find out the fixed angles for the rotation
matrix

0R1 =





0 0 1
−1 0 0
0 −1 0



 (5.26)

Solution: Directly applying (5.23) to (5.25) to yields

β = arcsin(−r31) = arcsin(0) = 0◦

α = arctan 2(r21, r11) = arctan 2(−1, 0) = −90◦

γ = arctan 2(r32, r33) = arctan 2(−1, 0) = −90◦

Note that the solutions differ from the fixed angles in Example 5.4 despite being in the same
orientation.

The solutions (5.23) to (5.25) are invalid on the boundaries, β = ±90◦ because it is a
singularity. This is caused by the alignment of the first x-axis and the last z-axis resulting
from the right-angle rotation around the y-axis. Therefore, the first and last rotations are
coupled, and only the sum of these two angles of rotation matters. Therefore, there are
infinitely many solutions. In the case of β = 90◦, (5.14) becomes

RXY Z(γ, β, α) =





0 sin(γ − α) cos(γ − α)
0 cos(γ − α) − sin(γ − α)
−1 0 0



 (5.27)

By assuming α = 0◦, the special solutions are given by

β = 90◦

α = 0◦

γ = Atan2(r12, r22)

Similarly, in the case of β = −90◦, the special solutions are given by

β = −90◦

α = 0◦

γ = −Atan2(r12, r22)

It should be noted that the X-Y -Z fixed angles is not the only convention in the rep-
resentation of fixed angles. There are in total 12 different conventions: X-Y -X, X-Z-X,
Y -Z-Y , Y -X-Y , Z-X-Z, Z-Y -Z, X-Y -Z, Y -Z-X, Z-X-Y , X-Z-Y , Z-Y -X, and Y -X-Z.
Each convention has its own solutions to the direct and inverse problems.

5.4 Euler Angles

Any arbitrary orientation of one object can also be obtained by a sequence of rotations
with angles α, β, and γ, around the moving axes, z1, y1, and x1, respectively, as shown in
Figure 5.6. Similarly, we have two problems: direct and inverse problems. The former is to
find a rotation matrix according to the given Euler angles, while the latter is to obtain the
corresponding Euler angles based on a given rotation matrix.

78 General Rotations and Transformations

z0, z1

x0

y0

x1

y1

z1

x1

y1, y2

z2

x2

z2

x2, x3

y2

z3

y3α

β

α

FIGURE 5.6

The Z-Y -X Euler angles.

5.4.1 Forward Problem

The solution to the forward problem is derived from the first meaning of a rotation matrix
(5.7), which is the mapping between coordinates. As shown in Figure 5.6, {0}, {1}, {2},
and {3} represent the frames before all rotations, after the first rotation around the z-axis,
after the second rotation around the y-axis, and after the third rotation around the z-axis,
respectively. Considering an arbitrary position vector p , we have its coordinates in {0} as

0p = 0R1
1p = 0R1

1R2
2p = 0R1

1R2
2R3

3p = Rz Ry Rx
3p (5.28)

Again, utilising the first meaning (5.7) and the above equation, we have the total rotation
matrix as

RZYX(α, β, γ) = Rz(α) Ry(β) Rx(γ)

=





cosα − sinα 0
sinα cosα 0
0 0 1









cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ









1 0 0
0 cos γ − sin γ
0 sin γ cos γ





=





cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ





Note that this Z-Y -X Euler-angle rotation matrix is the same as the X-Y -Z fixed-angle
rotation matrix. However, the meanings of these rotation angles are entirely different.

Example 5.6 (Euler angles): Find the rotation matrix (orientation) by knowing the Z-Y -X
Euler angles, α = 90◦, β = 180◦, and γ = 90◦.

Solution: The orientation is obtained by applying (5.29):

0R1 =





0 0 1
−1 0 0
0 −1 0



 (5.29)

Euler Angles 79

5.4.2 Inverse Problem

The formulation of the inverse problem to find the Z-Y -X Euler angles, α, β, and γ, from
an arbitrary orientation (rotation matrix) is given by

0
R1 = 0

R1ZYX

=





r11 r12 r13
r21 r22 r23
r31 r32 r33





=





cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ





(5.30)

Equation (5.30) is exactly the same as (5.16) in the inverse problem of the fixed angles;
therefore, the solutions must also be the same as below, despite different meanings.

β = arcsin(−r31) (5.31)

α = Atan2(r21, r11) (5.32)

γ = Atan2(r32, r33) (5.33)

Similarly, there are singularities on the boundaries. In case of β = 90◦, we have

β = 90◦

α = 0◦

γ = arctan 2(r12, r22)

In case of β = −90◦, we have

β = −90◦

α = 0◦

γ = − arctan 2(r12, r22)

Example 5.7 (Euler angles): Find the Euler angles for the rotation matrix

0R1 =





0 0 1
−1 0 0
0 −1 0



 (5.34)

Solution: Equations (5.31) to (5.33) give

β = Atan2(−r31,



r2
11

+ r2
21
) = Atan2(0, 1) = 0◦

α = Atan2(r21/cβ, r11/cβ) = Atan2(−1, 0) = −90◦

γ = Atan2(r32/cβ, r33/cβ) = Atan2(−1, 0) = −90◦

Note that these solutions have entirely different meanings to the solution in Example 5.5, although
the values are the same.

Similar to the fixed angles, Euler angles also have 12 conventions: X-Y -X, X-Z-X, Y -
Z-Y , Y -X-Y , Z-X-Z, Z-Y -Z, X-Y -Z, Y -Z-X, Z-X-Y , X-Z-Y , Z-Y -X, and Y −X −Z2.
Euler angles and fixed angles are dual to each other, i.e., the same angles in the opposite
order of rotations yield the same rotation matrix.

2Some texts may distinguish three axes rotations as Bryan-Tait angles, which refer to the last six

conventions in the list.

80 General Rotations and Transformations

z0

x0

y0

z1

x1

y1

P

(a) Translation

z0

x1

y0

z1
x1

y1
P

(b) Rotation

FIGURE 5.7

Modes of transformation.

5.5 General Transformation

Translation is illustrated in Figure 5.7(a) where {0} and {1} are parallel to each other. The
coordinates of a position vector p are mapped by

0p = 0o1 + 1p (5.35)

where 0o1 is the position of the origin of {1} measured in {0}. Rotation has been studied
intensively so far. As shown in Figure 5.7(b), the coordinates of a position vector p are
mapped from {1} to {0} by

0p = 0R1
1p (5.36)

Regarding two general frames, {0} and {1}, as shown in Figure 5.8. The coordinate
mapping is given by

0p = 0o1 + 0R1
1p (5.37)

which is a combination of rotation and translation in sequence. Equation (5.37) can be more
simply represented by introducing homogeneous coordinates, which is defined as

0p =



0p

1



(5.38)

Hence, (5.37) can be written as

0p = 0T1
1p (5.39)

where 1p =
[

1p 1
]T

and

0T1 =



0R1
0o1

0T 1



(5.40)

General Transformation 81

z0

x0

y0

z1

x1y1

P

FIGURE 5.8

General transformation of two frames.

Example 5.8 (Transformations): Find 0p , given

0R1 =





0 0 1
−1 0 0
0 −1 0



 ,
1p =





2
1
−1



 ,
0o1 =





1
2
0



 (5.41)

Solution: This can be solved in two ways.

1) Three-dimensional vectors

0p = 0o1 + 0R1

1p =





1
2
0



+





0 0 1
−1 0 0
0 −1 0









2
1
−1



 =





1
2
0



+





−1
−2
−1



 =





0
0
−1



 (5.42)

2) Homogeneous vectors

0T1 =









0 0 1 1
−1 0 0 2
0 −1 0 0
0 0 0 1









,
1p =









2
1
−1
1









(5.43)

Hence

0p = 0T1

1p =









0 0 1 1
−1 0 0 2
0 −1 0 0
0 0 0 1

















2
1
−1
1









=









0
0
−1
1









(5.44)

The inverse problem of the general mapping is to find the 1p by knowing 0p , 0o1 , and
the rotation matrix 0R1 between {0} and {1}. According to (5.37), we have

1p =
0

R−1

1
(0p − 0o1) =

0

RT
1
(0p − 0o1) (5.45)

which can be further understood as a sequence of translation and rotation backward. Using
homogeneous coordinates, we obtain

1p =
0

T−1

1

0p (5.46)

82 General Rotations and Transformations

{0}

{1}

{2}

{3}

P

FIGURE 5.9

Multiple transformations.

where

0

T−1

1
= 1T0 =



0
RT

1
−0

RT
1

0o1

0T 1



(5.47)

Example 5.9 (Transformation matrices): Find 1p , given

0R1 =





0 0 1
−1 0 0
0 −1 0



 ,
0p =





0
0
−1



 ,
0o1 =





1
2
0



 (5.48)

Solution: According to (5.46), we have

−
0

RT
1

0o1 = −





0 −1 0
0 0 −1
1 0 0









1
2
0



 =





2
0
−1



 (5.49)

0

T−1

1 =









0 −1 0 2
0 0 −1 0
1 0 0 −1
0 0 0 1









(5.50)

Hence,

1p =
0

T−1

1

0p =









0 −1 0 2
0 0 −1 0
1 0 0 −1
0 0 0 1

















0
0
−1
1









=









2
1
−1
1









(5.51)

If multiple transformations are involved, as shown in Figure 5.9, the problem can be
extremely tedious with normal 3D vectors. Homogeneous-vector expression provides an
elegant way to describe such transform, where

0p = 0T1
1T2

2T3
3p (5.52)

MATLAB® Examples 83

Example 5.10 (Application of transformations): A helmet with LEDs is used to determine
the pose of an object. Assume that Frame H is attached to the helmet, and the positions of the
LEDs are known in {H}: Hpi for i = 1, 2, 3, 4. Frame {C} is the camera-based frame. The LEDs’
positions are measured by cameras in {C}: Cpi for i = 1, 2, 3, 4. With this setup, find the rotation
matrix CRH

Solution: According to (5.37), we have

Cpi =
CoH + CRH

Hpi (5.53)

for i = 1, 2, 3, 4. Subtracting one equation from another in (5.53) yields

Cpi −
Cpi+1 = CRH (Hpi −

Hpi+1) (5.54)

for i = 1, 2, 3. The above equations can be written in a matrix form as

A = CRH B (5.55)

where

A =


Cp1 − Cp2
Cp2 − Cp3

Cp3 − Cp4



(5.56)

B =


Hp1 − Hp2
Hp2 − Hp3

Hp3 − Hp4



(5.57)

Solving the above matrix equation yields

CRH = A B−1 (5.58)

Note that the minimum number of LEDs for the orientation detection is 4. Further, if all LEDs are
on the same plane, B will be singular, which yields no solution.

5.6 MATLAB® Examples

5.6.1 Matrix Arithmetic

MATLAB can be used to perform matrix arithmetic for linear transforms. However, variable

names must be consistent to decrease the chance of computational errors. The examples

in this section follow a logical variable-naming convention that is clear and unambiguous

and recommended for this unit. This will become especially important when submitting

MATLAB code used in any assessments.

84 General Rotations and Transformations

Example M5.1 (Rotation matrices): Find rotation matrices 1R2 and 1R3 , given,

0R1 =





1 0 0
0 0 −1
0 1 0





0R2 =





−1 0 0
0 −1 0
0 0 1





2R3 =





0 0 −1
0 1 0
1 0 0



 (5.59)

Solution: The following script solves this problem.

1 % Define rotation matrices
2 R_0_1 = [1 0 0; 0 0 -1; 0 1 0];
3 R_0_2 = [-1 0 0; 0 -1 0; 0 0 1];
4 R_2_3 = [0 0 -1; 0 1 0; 1 0 0];
5

6 R_1_0 = R_0_1 ’ % R_0_1 inverse
7 R_1_2 = R_1_0 * R_0_2 % R_1_2 answer
8

9 R_1_3 = R_1_2 * R_2_3 % R_1_3 answer

>> ch2_1

R_1_0 =

1 0 0
0 0 1
0 -1 0

R_1_2 =

-1 0 0
0 0 1
0 1 0

R_1_3 =

0 0 1
1 0 0
0 1 0

5.6.2 Inverse Transformation Matrix

The following MATLAB code calculates the inverse of a 4× 4 homogeneous transformation
matrix, according to (5.46). Note that this method cannot be used to calculate the inverse
of general 4× 4 matrices.

1 function [T_B_A] = invT(T_A_B)
2 %INVT Transformation matrix inverse
3 % Input
4 % T_A_B Transformation matrix of {B} measured in {A}
5 % Output
6 % T_B_A Transformation matrix of {A} measured in {B} (inverse)
7

8 R_A_B = T_A_B (1:3 ,1:3); % Rotation matrix
9 p_B = T_A_B (1:3 ,4); % Translation vector

10 T_B_A = [R_A_B ’, -R_A_B ’*p_B; 0 0 0 1]; % Inverse
11

12 end

Example M5.2 (Matrix inverse): Find 1T0 , given the transformation matrix

0T1 =









0 0 1 1
−1 0 0 2
0 −1 0 0
0 0 0 1









(5.60)

MATLAB® Examples 85

Solution: There are a couple of ways to solve this. One may use the in-built function inv() in

MATLAB, or use invT() as defined in Inline 5.3. The MATLAB command window shows the

output of each result.

>> T_A_B = [0 0 1 1; -1 0 0 2; 0 -1 0 0; 0 0 0 1]

T_A_B =

0 0 1 1
-1 0 0 2
0 -1 0 0
0 0 0 1

>> T_B_A1 = invT(T_A_B) % Homog matrix inverse

T_B_A1 =

0 -1 0 2
0 0 -1 0
1 0 0 -1
0 0 0 1

>> T_B_A2 = inv(T_A_B) % General inverse

T_B_A2 =

0 -1 0 2
0 0 -1 0
1 0 0 -1
0 0 0 1

While we expected the result to be identical, in the application of linear transforms, we always
want to use the homogeneous matrix inverse rather than the general inverse. The calculation of the

general inverse introduces residual errors and is two to three times slower than the homogeneous

matrix inverse operation. For more information, view the MATLAB documentation on inv().

Example M5.3 (Transformation matrices):
In Figure 5.10, a robot is detecting an apple to be picked. Find the position of the detected

apple in the tree relative to the gripper coordinates so that a trajectory for the gripper can be

planned to grasp this apple successfully. In addition, find the position of the apple relative to the

robot arm base frame so that the kinematics can be solved. The following details are known:

FIGURE 5.10

A UR5 robot inspecting an apple in a tree.

86 General Rotations and Transformations

End-effector frame {E} relative to the robot arm base {0}

0TE =









0
√

2

2

√

2

2
0.2

0 −
√

2

2

√

2

2
0.2

1 0 0 0.3
0 0 0 1









(5.61)

Gripper frame {G} relative to the end-effector frame {E}

ETG =









0 0 1 0
1 0 0 0
0 1 0 0.2
0 0 0 1









(5.62)

Camera frame {C} relative to the end-effector frame {E}

ETC =









1 0 0 0.1
0 1 0 0
0 0 1 0.1
0 0 0 1









(5.63)

Apple position in the camera coordinate frame

CpA =





−0.05
0.5
0.4



 (5.64)

Solution: The position of the apple in the gripper frame is GpA , and the position of the apple in
the arm base frame is 0pA . These vectors can be found by

GpA = GTE
ETC

CpA

=
E

T−1

G

ETC
CpA (5.65)

and

0pA = 0TE
ETC

CpA (5.66)

The following script solves this problem.

1 % End -effector frame {E} relative to arm base frame {0}
2 T_0_E = [0 sqrt (2)/2 sqrt (2)/2 0.2;
3 0 -sqrt (2)/2 sqrt (2)/2 0.2;
4 1 0 0 0.3;
5 0 0 0 1];
6

7 % Camera frame {C} relative to end -effector frame {E}
8 T_E_C = [1 0 0 0.1; 0 1 0 0; 0 0 1 0.1; 0 0 0 1];
9

10 % Gripper frame {G} relative to end -effector frame {E}
11 T_E_G = [0 0 1 0; 1 0 0 0; 0 1 0 0.2; 0 0 0 1];
12

13 % Detected position of the apple in the camera frame
14 P_C_A = [-0.05 -0.5 0.4 1]’;
15

16 % Apple position in gripper co -ordinates
17 T_G_E = invT(T_E_G) % T_E_G inverse
18 P_G_A = T_G_E * T_E_C * P_C_A % Answer
19

20 % Apple position in the arm base frame co -ordinates
21 P_0_A = T_0_E * T_E_C * P_C_A % Answer

Conclusion 87

T_G_E =

0 1.0000 0 0
0 0 1.0000 -0.2000

1.0000 0 0 0
0 0 0 1.0000

P_G_A =

-0.5000
0.3000
0.0500
1.0000

P_0_A =

0.2000
0.9071
0.3500
1.0000

Therefore, the apple location in gripper coordinates (in metres) is

GpA =





−0.5
0.2
0.05



 (5.67)

and

0pA =





0.2
0.9071
0.35



 (5.68)

5.7 Conclusion

In this chapter, we described how to define a rigid body’s pose in space. The position
of a rigid body can be described as a three-dimensional vector representing a point in
Cartesian space, and its orientation can be described with a 3 × 3 orthogonal rotation

matrix. Furthermore, with the use of frames and matrix arithmetic, we explored how we
can use these matrices to apply rotational operations to three-dimensional vectors.

The representation for a rotation is not unique, where rotations can be applied relative
to a fixed coordinate system (fixed-angle), or relative to its own moving frame (Euler angle).
In robotics, either mode of applying rotations is valid, and its use is simply dependent on
the convenience of the application. Finally, the general transformation was introduced as a
4× 4 homogeneous matrix, which encapsulates both the position and orientation of a rigid
body. The transformation matrix is used in frame definitions, and applying translational
and rotational transformations to other frames.

The orthogonal nature of rotation matrices and the homogeneity of transformation ma-
trices make them very intuitive to use mathematically, such as applying rotations or trans-
forms in a sequence, or finding their inverse. Examples of rotation and transformation
matrices were given as MATLAB examples at the end of this chapter.

88 General Rotations and Transformations

5.8 Exercises

Problem 1. Given that vector 1p undergoes two separate cases of rotations in the given
orders:

1. x1 by θ degrees and is followed by rotation about y1 by φ degrees.

2. y1 by 30◦ degrees and is followed by rotation about x1 by 30◦ degrees.

Calculate the rotation matrix and the state of the rotation style for each case.

Problem 2. A frame {2} is initially coincident with another frame, {1}. Frame {2} is
rotated about x2 by θ, and then the resulting frame is rotated about x2 by φ. What style of
rotation is this? Find the rotation matrix that will change the descriptions of vectors from
2p to 1p .

Problem 3. Find 1T3 by using the following frame definitions:

1T0 =









1 0 0 −10
0 0 −1 10
0 1 0 0
0 0 0 1









3T0 =









0.1268 −0.6124 0.7803 10
0.9268 0.3536 0.1268 8
−0.3536 0.7071 0.6124 3

0 0 0 1









Problem 4. Frame {2} is initially coincident with frame {1}. Frame {2} is rotated about
z2 by 60◦, then about x2 by 45◦ and then about y2 by 30◦. Finally, the origin of {2} is

translated to


x1 y1 z1
T

=


3 8 −6
T

.

1. What is the transformation matrix 1T2?

2. What is the transformation matrix 2T1?

3. The position of a point in {2} is 2p =


1 −2 3
T

, find the coordinates of this
point in {1}.

4. The position of a point in {1} is 1p =


6 4 −1
T

, find the coordinates of this
point in {2}.

Problem 5. An Angle-Axis describes a fixed rotation about a fixed vector. The formula to
generate a transformation matrix using the Angle-Axis representation is given below:

1T2 =









kxkx(1− cθ) + cθ kxky(1− cθ)− kzsθ kxkz(1− cθ) + kysθ 0
kxky(1− cθ) + kzsθ kyky(1− cθ) + cθ kykz(1− cθ)− kxsθ 0
kxkz(1− cθ)− kysθ kykz(1− cθ) + kxsθ kzkz(1− cθ) + cθ 0

0 0 0 1









There are two assumptions made when using this formula:

1. The vector k is a unit vector.

2. The axis of rotation passes through the origin of the current frame.

Exercises 89

Given frame {2} is initially coincident with frame {1}. Frame {2} is rotated by 35◦ about

a unit vector k , where k passes through the point P. Find the transformation matrix 1T2

for each of the following circumstances:

1. k =


0.8018 −0.2673 0.5345
T

, the position of point P is 1p=



0 0 0
T

.

2. k =


0.8018 −0.2673 0.5345
T

, the position of point P is 1p=



0 0 3
T

.

Problem 6. A velocity vector is given by

0v =





0

0

10





Given

0T1 =









1 0 0 5

0 0.5 −0.866 1

0 −0.866 0.5 1

0 0 0 1









Compute 1v . Hint: Consider the properties of velocity.

Problem 7.

1. Two frames: {0} and {1} are related through a transformation matrix given by

0T1 =









√
2/2 −

√
2/2 0 3

0 0 −1 2√
2/2

√
2/2 0 0

0 0 0 1









Find transformation matrix 1T0 .

2. Point P is located at 1p =


1 2 4
T

with respect to the origin of frame {1},
as shown in Figure 5.11. Frame {1} is related to {0} through the transformation

matrix 0T1 given previously. Evaluate the position of point P with respect to the

origin of {0}, i.e., evaluate 0p .

{0}

{1}

1p

P

FIGURE 5.11

Frame 0, frame 1, and point P.

90 General Rotations and Transformations

Problem 8. A rigid body rotates around a pivot point. Two frames sitting on the pivot

point are assigned: {0} is fixed to the ground, and {1} is attached to the rigid body. Initially,

both frames coincide with each other. Rotate rigid body around the x axis of {0} of θ1, and

then rotate the rigid body around the z axis of {0} of θ2. Three markers attached to the

rigid body are used to track the rotation. The markers’ positions in {1} are given by

1p1 =





1

0

0



 , 1p2 =





1

1

0



 , 1p3 =





1

0

1





After the above two rotations, the three markers’ positions in Frame A are recorded as

0p1 =





0.500

0.866

0.000



 , 0p2 =





−0.250

1.299

0.500



 , 0p3 =





0.933

0.616

0.866





Find θ1 and θ2.

6

Forward Kinematics

In this chapter, we will expand the discussion of kinematics from Chapter 2 to cover gener-
alised serial chain manipulators. By using the Denavit-Harternberg notation, we will explore
how it can be used to model the kinematics of general serial chain manipulators.

6.1 Joints

There are two commonly used joints in robotic manipulators: revolute (R) joints and pris-
matic (P) joints, as shown in Figure 6.1. A revolute joint can be simplified into one axis of
rotation, which completely defines the relative motion of these two rigid bodies. This axis of
rotation is a spatial line with its position and direction. A prismatic joint defines the sliding
direction of one body relative to another. A prismatic joint can be replaced by another
parallel prismatic joint at a different position while the relative motion of the two rigid
bodies remains the same. Therefore, a prismatic joint can be characterised by a directional
vector without a specific position.

In the eyes of a kinematician, the shape of a rigid body is of no importance.1 The only
thing that matters is the types and locations of the joints among the bodies. There are
typically six types of joints, cylindrical, planar, screw, spherical, and the above two. Our
discussion will focus on the serial robotic manipulators with any combination of R and P
joints. A serial robotic manipulator has an open-loop structure, as shown in Figure 6.2,
where a number (n) of rigid bodies are linked serially together by a number (n−1) of one
degree-of-freedom (DoF) joints. Since each joint removes five-DoF from this robot and one
body (except the ground) has six-DoF, the total DoF of the robot is 6(n−1)−5(n−1) = n−1,
which is simply the number of one-DoF joints the robot has.

In order to precisely describe the position and orientation of each moving link of a robotic
manipulator, we desire to assign one frame to each link. Each link’s position and orientation
can be fully described by the transformation matrix between the ground frame and the
attached frame to this link. Further, the transformation matrix between two adjacent links
is only affected by the joint angle of the R joint between these two links. A technique for
assigning frames effectively to a robotic manipulator is described in the following section.

6.2 Denavit-Hartenberg Notation

The Denavit-Hartenberg (DH) notation is a four-parameter representation between the
relative position and orientation of one link with respect to its adjacent link. Here, we first

1On the other hand, it is important to a robot designer.

DOI: 10.1201/9781003614319-6 91

https://doi.org/10.1201/9781003614319-6

92 Forward Kinematics

(a) Revolute (b) Prismatic

FIGURE 6.1

Two types of common robotic joints.

assume a robot with R joints only. Each R joint can be represented by a single spatial line.

One important geometric property of spatial lines is applied here to formulate the relations

among these lines: any two general spatial lines have one unique common perpendicular,

defined as a line intersecting and being perpendicular to both given lines. There are some

special cases with no unique solution, which will be discussed later. The DH notation can

be best described as a procedure.

As shown in Figure 6.3, two links on a serial robotic manipulator with three revolute

joints are depicted. The first step is to assign a z-axis along each joint axis. According

to the above geometric property, there is always a unique common perpendicular between

two adjacent z-axes. The x-axis is defined along this common perpendicular, directed from

the current z-axis to the next z-axis, i.e., xi points from zi to zi+1. Once xi and zi are

determined, the frame {i} is fully defined because yi = zi ×xi. Note that {i} is attached to

link i between Joint i and Joint i+ 1, i.e., the coordinates of any point on link i measured

in {i} are invariant. This frame is called the DH frame on link i.

Since one DH frame is determined by adjacent joint axes, the ground frame {0} and

the end-effector frame {n} cannot be fully determined. We will introduce additional rules

after explaining the DH parameters. Given two DH frames, {i− 1} and {i}, the four DH

parameters are defined according to Figure 6.3.

FIGURE 6.2

A schematic of a serial robotic manipulator.

Denavit-Hartenberg Notation 93

θi−1

zi−1

Oi−1 ai−1

xi−1

αi−1

θi

zi

di

Oi

ai

xi

θi

θi+1

zi+1

FIGURE 6.3

DH notation.

• ai−1 is the link length from zi−1 to zi along the positive direction of xi−1. ai−1 is a
nonnegative invariant.

• αi−1 is the link twist from zi−1 to zi along the positive direction of xi−1 (use right-hand
rule). αi−1 is an invariant between 0 and 2π2.

• di is the link offset, measured from xi−1 to xi along the positive direction of zi. di is
an invariant that can be positive, zero, or negative depending on the positions of the
intersection between zi and xi−1 and the intersection between zi and xi.

• θi is the joint angle from xi−1 to xi along the positive direction of zi (use right-hand rule).
θi is the only variable among the four DH parameters. Its range is typically between 0
and 2π.

The following rules are suggested to achieve the uniqueness and simplicity of the DH
frames in special cases.

1. If zi and zi+1 are parallel to each other, xi is chosen to intersect with xi−1.

2. If zi and zi+1 intersect with each other, choose the direction of xi such that αi is
between 0 and π.

3. If zi and zi+1 are aligned, locate and direct xi such that the values of the corre-
sponding DH parameters are the simplest.

4. Keep the z-axis of the ground frame {0} align with the first joint z-axis, i.e.,
z0 = z1.

5. Define xn in the end-effector frame {n} such that it points at the point of interest
on the end-effector.

2You may see negative twist angle somewhere. That does not mean it is wrong. Rather, it is due to the

different definitions of the range of the link twist.

94 Forward Kinematics

yi−1

zi−1

Oi−1
{i− 1}

ai−1

xi−1

αi−1

O(i−1)′

{(i− 1)′}

z(i−1)′

x(i−1)′ θi

zi

di

Oi

{i}

yi+1

zi+1

FIGURE 6.4

Transformation mapping Ti−1 between {i− 1} and {i}.

The transformation matrix between {i− 1} and {i} can be derived by introducing an
auxiliary frame {(i− 1)′} consisting of xi−1 and zi, as shown in Figure 6.4. The transform
from {i− 1} to {(i− 1)′} is the combination of a translation along xi−1 and a rotation
around xi−1, which can be written as

i−1T(i−1)′ =









1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1









(6.1)

Similarly, the transform from {i− 1}′ to {i} is the combination of a translation along
zi and a rotation around zi, i.e.,

(i−1)′Ti =









cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1









(6.2)

Combining (6.1) and (6.2) yields the transformation matrix between {i} and {i− 1},

i−1Ti =
i−1T(i−1)′

(i−1)′Ti

=









cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1









(6.3)

The transformation between a robot’s base and its end-effector can be expressed as:

0Tn = 0T1
1T2 . . .

n−1Tn (6.4)

where n is the DoF of the robotic manipulator.

Denavit-Hartenberg Notation 95

l1

l2

l3

P

FIGURE 6.5

A planar RRR robot.

Example 6.1 (Transformations — frames): The following frames are defined on a robotic
system: the base frame {B}, the workstation frame {S}, the wrist frame {W}, the tool frame {T},
and the goal frame {G}. Given BTW (θ1, . . . , θn),

WTT ,
BTS , and

STG , find the position and
orientation of the tool measured in the goal frame.

Solution:

GTT = GTS
STB

BTW
WTT

=
S

T−1

G

S

T−1

G

B

T−1

S

BTW
WTT (6.5)

Any point on the end-effector can be located in the fixed frame by

0p = 0Tn
np (6.6)

where np and 0p are the coordinates of a point on the end-effector, measured in {n} and
{0}.

Example 6.2 (Forward kinematics — 3R): A planar robot is shown in Figure 6.5. Find the
coordinates of Point P in the fixed frame, assuming: l1 = 0.25 m, l2 = 0.30 m, l3 = 0.20 m, θ1e =
15◦, θ2e = 25◦, and θ3e = 30◦.

Solution: The first step is to assign z1, z2, and z3 along the axes of three R joints, respectively,
as shown in Figure 6.6. For each axis, there are two possible directions to choose. Since all joints
are parallel, we keep the directions of all z-axes the same. Note that each z-axis is floating along
the axis of rotation without a specific position yet. Following the definition of the x-axis, there are
infinitely many common perpendiculars for x1, since z1 and z2 are parallel. Here, x1 is located at
an arbitrary point along z1, which is the origin of {1}. Similarly, x2 between z2 and z3 is chosen
to sit at the intersection between x1 and z2, which is the origin of {2}. x3 is an arbitrary vector
perpendicular to z3. For simplicity, x3 is chosen at the intersection between x2 and z3, which is the
origin of {3}. Finally, {0} is determined by z0 aligned with z1 and x0 perpendicular to z0 at the
origin of {1}, which is also the origin of {0}.

According to Figure 6.6, the DH parameters are derived in Table 6.1. Suppose incremental
encoders are attached to each joint, so joint positions are monitored. If the home position is the
fully stretched-out position along x0, we have the joint angles at this home position as

θ10 = 0◦, θ20 = 0◦, θ30 = 0◦ (6.7)

The θ angles in Table 6.1 can be written as

θ1 = θ1e + θ10 = θ1e + 0◦ (6.8)

96 Forward Kinematics

z0, z1

x0

θ1
z2

x1

θ2

z3

x2

x3

θ3

FIGURE 6.6

DH frames assigned to the RRR robot.

θ2 = θ2e + θ20 = θ2e + 0◦ (6.9)

θ3 = θ3e + θ30 = θ3e + 0◦ (6.10)

If the home positions are along x0, 90
◦, and 90◦, respectively, the θ angles in Table 6.1 can be

written as

θ1 = θ1e + θ10 = θ1e + 0◦ (6.11)

θ2 = θ2e + θ20 = θ2e + 90◦ (6.12)

θ3 = θ3e + θ30 = θ3e + 90◦ (6.13)

Substituting the values in Table 6.1 into Equation (6.3) yields

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









=









0.97 −0.26 0 0
0.26 0.97 0 0
0 0 1 0
0 0 0 1









(6.14)

1T2 =









cos θ2 − sin θ2 0 l3

sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1









=









0.91 −0.42 0 0.25
0.42 0.81 0 0
0 0 1 0
0 0 0 1









(6.15)

2T3 =









cos θ3 − sin θ3 0 l2

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1









=









0.87 −0.50 0 0.30
0.50 0.87 0 0
0 0 1 0
0 0 0 1









(6.16)

The total transformation matrix is

0T3 = 0T1

1T2

2T3 =









0.34 −0.94 0 0.47
0.94 0.34 0 0.26
0 0 1 0
0 0 0 1









(6.17)

TABLE 6.1

DH parameters of the

RRR robot

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l3 0 θ2
3 0 l2 0 θ3

DH Parameters for Prismatic Joints 97

θ1, d2

d3

FIGURE 6.7

A cylindrical robot with z-axes defined.

For any given point 3p on the end-effector, its coordinates {0} are given by

0p = 0T3

3p (6.18)

where 0p and 3p are the homogeneous coordinates. With 3p =


0.20 0 0 1
T

(homogeneous
form), the corresponding numerical solution is

0p =









0.54
0.45
0
1









(6.19)

6.3 DH Parameters for Prismatic Joints

The previous definitions of the DH parameters work well for revolute joints. In the case of a
prismatic joint, the z-axis is defined in the direction of sliding, which does not have a fixed
position. To fully determine the z-axis, we can choose the location of the z-axis such that it
passes through the origin of the previous or next frame, Oi1 or Oi, for simplicity. The x-axis
is determined the same as before. The transformation matrix (6.3) remains the same.

Example 6.3 (DH parameters — prismatic joints): Assign the DH parameters for the
cylindrical robot shown in Figure 6.7.

Solution: The actuated variables for this robot are revolute θ1, and prismatic d2 and d3, along
z1, z2, and z3 respectively. According to frame assignment rules, the base frame {0}, first frame
{1}, and second frame {2} should all be coincident where the common perpendicular between z2

and z3 intersect (the dotted line). Therefore, x0, x1, and x2 should be pointing along this common
perpendicular. The origin of the final frame {3}, for simplicity, lies at the intersection of x2 and
z3. This means x3 also points along x2. With these frames and axes defined, the DH parameters
for the cylindrical robot in Figure 6.7 are

where a3 is the length of the common perpendicular between z2 and z3.

98 Forward Kinematics

FIGURE 6.8

An RPR robot.

Example 6.4 (Forward kinematics — RPR): An RPR robot is shown in Figure 6.8. Find the

transformation matrix between the base and the end-effector, assuming θ1 = 35◦, d2 = 0.50 m,

θ3 = 30◦, l1 = l2 = 0.30 m.

Solution: The DH frames are assigned to the RPR robotic manipulator as shown in Figure 6.9.

The DH parameters are derived in Table 6.2 where the home positions are 90◦, d2, and 180◦,

respectively.

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 0 0 d2 0
3 90◦ a3 d3 0

O0

θ1

x0

z0, z1

O1

l1

x1

θ3

O2

d2
x2

O3

z3
x3

l3

FIGURE 6.9

DH frames assigned to the RPR robot.

DH Parameters for Prismatic Joints 99

TABLE 6.2

DH parameters of the

RPR robot

i αi−1 ai−1 di θi

1 0 0 l3 θ1

2 90◦ 0 d2 0
3 0 0 l2 θ3

All transform matrices are given by

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 l3
0 0 0 1









=









0.82 −0.57 0 0
0.57 0.82 0 0
0 0 1 0.30
0 0 0 1









(6.20)

1T2 =









1 0 0 0
0 0 −1 −d2
0 1 0 0
0 0 0 1









=









1 0 0 0
0 0 −1 −0.50
0 1 0 0
0 0 0 1









(6.21)

2T3 =









cos θ3 − sin θ3 0 0
sin θ3 cos θ3 0 0
0 0 1 l2
0 0 0 1









=









0.87 −0.50 0 0
−0.50 0.87 0 0

0 0 1 0
0 0 0 1









(6.22)

The total transformation matrix is

0T3 = 0T1

1T2

2T3 =









c1c3 −c1s3 s1 s1 (l2 + d2)
c3s1 −s1s3 −c1 −c1 (l2 + d2)
s3 c3 0 l3
0 0 0 1









=









0.71 −0.41 0.57 0.46
0.50 −0.29 −0.82 −0.66
0.50 0.87 0 0.30
0 0 0 1









(6.23)

Example 6.5 (Forward kinematics — spherical wrist): A spherical wrist of the PUMA robot
is shown in Figure 6.10, where the axes of three joints are concurrent. Further, these joint axes are
mutually perpendicular at the current configuration (home position). Find the total transformation
matrix between the end-effector and the base at the manipulator’s home position where the joints
are at 30◦, 90◦, and 90◦, respectively.

Solution: This is called the spherical wrist because the axes of all R joints interest at a single
point. Since the axis of rotation is invariant for a given rotation, none of the three rotations due
to the R joints can vary the position of this point, i.e., all three axes are geometrically constrained
to interest at this point at any instant. Therefore, the end-effector is restricted to a three-DoF
spherical motion centred at this point, which is called the spherical centre of this wrist.

Axes z1, z2, and z3 are first assigned along the axes of the three R joints, as shown in Figure
6.10. Since the axes of the joints are mutually perpendicular, x1 is aligned with z3 to have the link
twist between 0 and π, according to the definition of the x-axis. Similarly, x2 is aligned with z1.
Axis x3 can be chosen freely as long as it is perpendicular to z3. Here, x3 is chosen to be aligned
with z2. Finally, z0 is aligned with z1 while x0 is at the spherical centre and has an angle of 45◦

from x1 as shown in Figure 6.10. One important feature is that all assigned frames are at the same
position, the spherical centre, which indicates that this robotic wrist can only perform rotation
around this centre.

According to the DH frames assigned in Figure 6.10, the DH parameters are derived in Table 6.3,
where the home positions are 30◦, 90◦, and 90◦, respectively. All transform matrices are given by

100 Forward Kinematics

z0, z1, x2

θ3 θ2

O

z2, x3 θ1
x1, z2

x0

FIGURE 6.10

A spherical wrist with DH frames assigned.

TABLE 6.3

DH parameters of the

spherical wrist

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 90◦ 0 0 θ2
3 90◦ 0 0 θ3

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









=









0.87 −0.50 0 0
−0.50 −0.86 0 0

0 0 1 0
0 0 0 1









(6.24)

1T2 =









cos θ2 − sin θ2 0 0
0 0 −1 0

sin θ2 cos θ2 0 0
0 0 0 1









=









0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1









(6.25)

2T3 =









cos θ3 − sin θ3 0 0
0 0 −1 0

sin θ3 cos θ3 0 0
0 0 0 1









=









0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1









(6.26)

The total transformation matrix is then given by

0T3 = 0T1

1T2

2T3 =









s1s3 + c1c2c3 c3s1 − c1c3s3 c1s2 0
c2c3s1 − c1s3 −c1c3 − c2s1s3 s1s2 0

c3s2 −s2s3 −c2 0
0 0 0 1









=









0.50 0 0.87 0
−0.87 0 0.50 0

0 −1 0 0
0 0 0 1









(6.27)

Example 6.6 (Forward kinematics — PUMA): The PUMA robot represents a significant
milestone in the history of industrial robots. The major advantage is that its position and orienta-
tion are decoupled in inverse kinematics, making analytical solutions possible. As shown in Figure
6.11, the PUMA robot consists of an RRR robot (the first three joint axes) and a robotic spherical
wrist (the last three joint axes intersecting at a single point P). The offsets, d3 and d4, in the

DH Parameters for Prismatic Joints 101

z0, z1

x0

x1

θ1

z2

x2

θ2 z3

x3

θ3
z4

θ4

x4

z5
x5

θ5

z6

x6 θ6

P

FIGURE 6.11

PUMA robot with assigned axes.

actual PUMA robot, are assumed to be zero. Find DH parameters and compute all the individual
transformation matrices.

Solution:
The DH parameters are shown in Table 6.4. Therefore, the transformation between the frame

attached to the end-effector and the ground frame can be expressed as

0T6 = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3T4(θ4)

4T5(θ5)
5T6(θ6) (6.28)

where

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









,
1T2 =









cos θ2 − sin θ2 0 0
0 0 1 0

− sin θ2 − cos θ2 0 0
0 0 0 1









2T3 =









cos θ3 − sin θ3 0 a2

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1









,
3T4 =









cos θ4 − sin θ4 0 a3

0 0 1 0
− sin θ3 − cos θ3 0 0

0 0 0 1









4T5 =









cos θ5 − sin θ5 0 0
0 0 −1 0

sin θ5 cos θ5 0 0
0 0 0 1









,
5T6 =









cos θ6 − sin θ6 0 0
0 0 1 0

− sin θ6 − cos θ6 0 0
0 0 0 1









TABLE 6.4
DH parameters of the PUMA
robot

i αi−1 (◦) ai−1 di θi
1 0 0 0 θ1
2 -90 0 0 θ2
3 0 a2 0 θ3
4 -90 a3 0 θ4
5 90 0 0 θ5
6 -90 0 0 θ6

102 Forward Kinematics

O0

θ1

x0

z0, z1

O1

l1

x1

θ3

O2

d2
x2

O3

z3
x3

l3

i αi−1 ai−1 di θi

1 0 0 l3 θ1

2 90◦ 0 d2 0
3 0 0 l2 θ3

FIGURE 6.12

RPR manipulator with DH table.

6.4 MATLAB® Examples

In this chapter, we investigated how to convert a DH table to transformation matrices that
map the pose of each frame along a manipulator. The nature of DH parameters is that
the actuated variables should remain as variables (say, θ) within the table, such that the
transformation matrices i−1

Ti become functions of these variables, i−1
Ti(θ). To facilitate

unknown variables in MATLAB when solving forward kinematics problems, we should define
symbolic variables3 via MATLAB’s Symbolic Math Toolbox. The following example shows
how MATLAB can be used to obtain symbolic forward kinematics equations for serial
manipulators.

Example M6.1 (Forward kinematics — RPR): Find the transformation matrix of the end-
effector 0T3 for the RPR robot shown in Figure 6.12.

Solution: To do this, we need to convert each row of DH parameters to their respective transforma-
tion matrices, according to Equation (6.3). To code this more efficiently, we can write a MATLAB
function called dh2T() (Inline 6.1) that converts a single row of DH parameters to a transformation
matrix, then calls it for each row in the table.

1 function T_i_j = dh2T(dh_row)
2 %DH2T Converts row of DH parameters into a transformation matrix
3

4 al = dh_row (1); % alpha rotation
5 a = dh_row (2); % a displacement
6 d = dh_row (3); % d displacement
7 th = dh_row (4); % theta displacement
8

9 T_i_j = [
10 cos(th) -sin(th) 0 a;
11 sin(th)*cos(al) cos(th)*cos(al) -sin(al) -sin(al)*d;
12 sin(th)*sin(al) cos(th)*sin(al) cos(al) cos(al)*d;
13 0 0 0 1];
14

15 end

From here, we can use the following script (Inline 6.2) to solve this problem. Note that in line
3, we end the syms definition with the keyword real, which tells MATLAB these variables can only

3https://au.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html

https://au.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html

MATLAB® Examples 103

contain real numbers. If any of these variables involve a transpose operation, the conjugate is not

required, simplifying the resultant symbolic expressions.

1 % Define symbolic variables
2 % Add keyword "real" to assume these variables always contain real numbers
3 syms L1 L2 th1 d2 th3 real
4

5 % Define DH table (alpha , a, d, theta)
6 DH_Table = [
7 0 0 L1 th1;
8 pi/2 0 d2 0;
9 0 0 L2 th3]

10

11 T_0_1 = dh2T(DH_Table (1,:)) % Get t-matrix from row 1 DH
12 T_1_2 = dh2T(DH_Table (2,:)) % Get t-matrix from row 2 DH
13 T_2_3 = dh2T(DH_Table (3,:)) % Get t-matrix from row 3 DH
14

15 T_0_3 = T_0_1 * T_1_2 * T_2_3 % EE t-matrix measured in base frame

The command window outputs the answers for 0T1 ,
1T2 ,

2T3 , and
0T3 from the script.

DH_Table =

[0, 0, L1 , th1]
[pi/2, 0, d2 , 0]
[0, 0, L2 , th3]

T_0_1 =

[cos(th1), -sin(th1), 0, 0]
[sin(th1), cos(th1), 0, 0]
[0, 0, 1, L1]
[0, 0, 0, 1]

T_1_2 =

[1, 0, 0, 0]
[0, 0, -1, -d2]
[0, 1, 0, 0]
[0, 0, 0, 1]

T_2_3 =

[cos(th3), -sin(th3), 0, 0]
[sin(th3), cos(th3), 0, 0]
[0, 0, 1, L2]
[0, 0, 0, 1]

T_0_3 =

[cos(th1)*cos(th3), -cos(th1)*sin(th3), sin(th1), L2*sin(th1) + d2*sin(th1)]
[cos(th3)*sin(th1), -sin(th1)*sin(th3), -cos(th1), - L2*cos(th1) - d2*cos(th1)]
[sin(th3), cos(th3), 0, L1]
[0, 0, 0, 1]

Note that the expression for 0T3 is not fully simplified. Since 0T3 represents the final answer of

this example, we wish to express it in the most simplified form. We can condense its length by using

the MATLAB function simplify(). This will attempt to group and factorise symbolic variables as

well as utilise simple trigonometric identities to simplify the expression. We recommend the use of

simplify() on final answers only, and not on intermediate variables such as T 0 1 etc.

>> simplify(T_0_3)

ans =

[cos(th1)*cos(th3), -cos(th1)*sin(th3), sin(th1), sin(th1)*(L2 + d2)]
[cos(th3)*sin(th1), -sin(th1)*sin(th3), -cos(th1), -cos(th1)*(L2 + d2)]
[sin(th3), cos(th3), 0, L1]
[0, 0, 0, 1]

104 Forward Kinematics

Reading T 0 3 in Inline 6.4, the transformation matrix of the end-effector, relative to its base,
is

0T3 =









cos θ1 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ1(l2 + d2)
sin θ1 cos θ3 − sin θ1 sin θ3 − cos θ1 − cos θ1(l2 + d2)

sin θ3 cos θ3 0 l3
0 0 0 1









Example M6.2 (Forward kinematics — cylindrical robot): In Example 6.3, we showed
that the DH parameters for a cylindrical robot shown in Figure 6.7 were

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 0 0 d2 0
3 90◦ a3 d3 0

Use MATLAB to find the transformation matrix of the end-effector relative to the base frame
when the joint values are θ1 = 90◦, d2 = 30 cm, d3 = 10 cm, and offset a3 = 5 cm.

Solution: We need to find 0T3 before substituting known values into this transformation matrix.
This can be easily done in MATLAB by finding the symbolic solution for 0T3 before converting it
into a function handle to apply the known values.

1 % Define symbolic variables
2 % Add keyword "real" to assume these variables always contain real numbers
3 syms th1 d2 d3 a3 real
4

5 % Define DH table for cylindrical robot (alpha , a, d, theta)
6 DH_Table = [
7 0 0 0 th1;
8 0 0 d2 0;
9 pi/2 a3 d3 0]

10

11 T_0_1 = dh2T(DH_Table (1,:)) % Get t-matrix from row 1 DH
12 T_1_2 = dh2T(DH_Table (2,:)) % Get t-matrix from row 2 DH
13 T_2_3 = dh2T(DH_Table (3,:)) % Get t-matrix from row 3 DH
14

15 T_0_3 = T_0_1 * T_1_2 * T_2_3 % EE t-matrix measured in base frame
16

17 % Define function handle for T_0_3 so we can sub in values
18 % Note ’Vars ’ input , where we can define variables in a specific order
19 T_0_3_f = matlabFunction(T_0_3 , ’Vars’, {th1 d2 d3 a3});
20

21 % Find T_0_3 with values subbed
22 T_0_3_v = T_0_3_f(pi/2, 30e-2, 10e-2, 5e-2)

DH_Table =

[0, 0, 0, th1]
[0, 0, d2 , 0]
[pi/2, a3 , d3 , 0]

T_0_1 =

[cos(th1), -sin(th1), 0, 0]
[sin(th1), cos(th1), 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

T_1_2 =

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, d2]
[0, 0, 0, 1]

MATLAB® Examples 105

T_2_3 =

[1, 0, 0, a3]
[0, 0, -1, -d3]
[0, 1, 0, 0]
[0, 0, 0, 1]

T_0_3 =

[cos(th1), 0, sin(th1), a3*cos(th1) + d3*sin(th1)]
[sin(th1), 0, -cos(th1), a3*sin(th1) - d3*cos(th1)]
[0, 1, 0, d2]
[0, 0, 0, 1]

T_0_3_v =

0.0000 0 1.0000 0.1000
1.0000 0 -0.0000 0.0500

0 1.0000 0 0.3000
0 0 0 1.0000

Therefore, the transformation matrix of the end-effector relative to the base frame is

0T3 =









cos θ1 0 sin θ1 a3 cos θ1 + d3 sin θ1
sin θ1 0 − cos θ1 a3 sin θ1 − d3 cos θ1
0 1 0 d2

0 0 0 1









=









0 0 1 0.1
1 0 0 0.05
0 1 0 0.3
0 0 0 1









(6.29)

6.4.1 DH Parameter Summary

Assigning DH parameters follows a strict set of rules to reduce the chance of ambiguity in
the frame assignments. This process is summarised as follows, where i is the frame number,
with i = 0 being the base frame. In assigning DH parameters, start from frame 1 (i = 1),
not from the base frame. n is the number of links.

1. Draw a rough sketch of the manipulator under analysis.

2. Define the locations of all z axes from frames 1 to n. If the base frame {0} is not
defined, do not define it here.

3. Link all z axes as follows:

(a) Identify and mark where any zi and zi+1 axes intersect, or if they don’t
intersect,

(b) Draw a common perpendicular line between the two z axes. Identify and
mark where these perpendicular lines intersect on both z axes.

4. For each zi axis from frame 1 to n, assign the origin of frame i to an identified
point on the axis. That is either,

(a) Where your current zi axis intersects with the next zi+1 axis, or

(b) Where your zi axis meets the common perpendicular line to the next zi+1

axis.

5. Assign the x axis for each frame. The following rules apply:

(a) At frame {i}, if the current zi axis and next zi+1 intersect, the xi axis must
point normal to the plane containing the two z axes, or

(b) If there is a common perpendicular line to zi+1, the xi axis is coincident with
this line.

106 Forward Kinematics

6. Assign the remaining y axis to each frame for completion.

7. Assign the base frame {0} to be coincident with frame {1} if the base frame has
not been arbitrarily defined. This is done so that moving from frame {0} to {1}
is purely rotational or translation with no other offsets.

8. Fill out the rows of the DH table as follows. Starting from frame {1} (i = 1):

• ai−1 = the distance from zi−1 to zi measured along xi−1; *

• αi−1 = the angle from zi−1 to zi measured about xi−1; *

• di = the distance from xi−1 to xi measured along zi; and

• θi = the angle from xi−1 to xi measured about zi.
(*) The index of the rule has been reduced by 1 to avoid confusion.

9. Use Equation (6.3) to convert DH parameters into a transformation matrix, start-
ing with i = 1.

i−1Ti =









cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1









(6.30)

The short-hand notation used is as follows:

sin θi = si (6.31)

cos θi = ci (6.32)

The following trigonometry identities can be used to simplify answers:

cos(θ1 + θ2) = c12 = c1c2 − s1s2 (6.33)

sin(θ1 + θ2) = s12 = c1s2 + s1c2 (6.34)

cos(θ1 − θ2) = c1c2 + s2s2 (6.35)

sin(θ1 − θ2) = s1c2 − c1s2 (6.36)

6.5 Conclusion

In this chapter, we describe how the forward kinematics of a serial manipulator is solved.
First, frames are systematically assigned to the system of rigid bodies that make up a serial
manipulator. The position of these frames is described using Denavit-Hartenberg notation,
which describes the kinematic configuration of a robot with the least parameters. This
systematic process can be applied to robots with both revolute and prismatic actuators.
From the table of DH parameters, we derived transformation matrices from one link to
another, which fully describes the rigid body motion of a serial robot, thus solving the
forward kinematics of the robot in analytical form.

The definition of a robot using DH parameters is not unique, where the direction of
assigned axes affects the orientation of assigned frames. However, the final transformation
matrix, which maps the pose of the robot’s end-effector to a fixed universal frame, should
remain consistent amongst all combinations of valid DH parameters for the same robot.

Exercises 107

x0, x1

y0, y1

l1
θ1

z2

x2d2
y3

x3

θ3
y4

x4

l3

FIGURE 6.13

Planar robot for Problem 1.

6.6 Exercises

Problem 1. The robot is shown in Figure 6.13.

1. Identify the Denavit-Hartenberg parameters and tabulate the results, indicating
the variables which are actuated (Note: You do not need to account for frame
{4} in this part).

2. Compute the individual transformation matrices which relate frame {i} to frame
{i− 1} according to the frames shown in the Figure 6.13. (i.e, 0T1 ,

1T2 ,
2T3)

3. Find the transformation matrix that relates frame {3} to frame {0} (i.e., 0T3)
in its simplest form.

4. Find the vector expression that describes the position of the tool tip relative to

{1}. Assume the tool tip position, expressed in {4}, is p =


px py pz
T

.

Problem 2.Orthopaedic surgery is concerned with conditions involving the musculoskeletal
system. Often, the mode of treatment involves the insertion of a prosthesis in place of
diseased bone. Cavities need to be created within the bone segment of interest to house

z0, z1

x0, x1

l0

θ1

l1

x2

z2

d2

θ2

l2

z3

x3, x4

z4
d3

θ4

l4

z5

x5

FIGURE 6.14

Orthopaedic robot for Problem 2.

108 Forward Kinematics

this prosthesis. Traditionally, this was achieved by using jigs and mallets to hammer away
at the bone. However, this technique is inherently inaccurate and does not cater for the
variation in bone characteristics, such as size within a set of patients. This could lead to
prosthesis misalignment, which affects the life span of the implant. This led to research
and development into robotic systems for orthopaedic surgery . The philosophy is that a
robot could mill a cavity with superior accuracy and repeatability and allow for variation in
patient bone characteristics compared to manual techniques. In these systems, high-speed
cutting tools are attached to the end-effector. The robot in Figure 6.13 is an example of a
robot that has been used in hip and knee replacement surgery. For this robot:

1. Please identify the Denavit-Hartenberg parameters and tabulate the results, in-
dicating the variables which are actuated (Note: You do not need to account for
frame {5} in this part).

2. Please obtain the individual transformation matrices which relate frame {i} to
frame {i− 1} according to the frames shown in the Figure 6.14. (i.e., 0T1 ,

1T2 ,
2T3 ,

3T4)

3. Find the transformation matrix that relates frame {4} to frame {0} (i.e., 0T4)
in its simplest form.

4. Find the inverse of the matrix 0T4 . What is the physical meaning of this trans-
formation matrix?

5. Consider a drill bit being attached to the wrist. If the length of the drill bit is l4,
find a vector expression which describes the position of the drill bit relative to

{0} (i.e., p =


px py pz
T

where p is the origin of the frame {5}).

Problem 3. A serial manipulator with four revolute joints is shown in Figure 6.15. The
initial frame attached to the base is given by x0−y0− z0. The axes of all revolute joints are
given by z1, z2, z3, and z4. At the instant configuration shown in Figure 6.15, these joint axes
are either parallel or perpendicular. Furthermore, z1, z3, and z4 are in the y0−O−z0 plane,
while z2 indicated by ⊙ is perpendicular to the y0−O−z0 plane. The link frames have been
assigned to all moving links of this manipulator (y axes are not displayed). IMPORTANT:
⊙ indicates a vector pointing out from the sheet plane (upwards), while ⊗ indicates a vector
pointing into the sheet plane (downwards).

1. Construct a table of the Denavit-Hartenberg parameters that describe the se-
rial mechanism, based on the link frames shown in Figure 6.15. Note that the
joint angles θ1, θ2, θ3, and θ4 are variables, measured around z1, z2, z3, and z4,
respectively.

2. Based on the DH parameters defined, find the homogeneous transformation ma-
trices between every two adjacent frames, i.e., 0T1 ,

1T2 ,
2T3 , and

3T4 .

3. Upon the results of the previous part, derive the analytic expression of the position
of the origin of the 4th frame {4} (attached to the end-effector), given in the initial
frame {0}, by knowing θ2 = 0◦ and θ4 = 0◦.

4. If the homogeneous coordinates of the origin of {4} in {0} is given by 0pO4 =


10 10 6 1
T

, find the corresponding joint angles θ1 and θ3, by knowing θ2 =
0◦ and θ4 = 0◦.

Problem 4. A serial manipulator with three revolute joints is shown in Figure 6.16. The
tool frame T is also given in Figure 6.16.

Exercises 109

z0

z1

8

6

x0

0 5 10 20
y0

z2

z3

z4

Joint 1

Joint 2

Joint 3

Joint 4

FIGURE 6.15

A four-link robot.

l1

θ1

l2
θ2

l3

θ3
l4 xT

zT

yT

FIGURE 6.16

A serial spherical robotic manipulator.

1. Assign the link frames — i.e., attach the frames (you must assign the z and x

axes of each frame) to the moving links of the mechanism.

2. Construct a table of the Denavit-Hartenberg parameters that describe the serial
manipulator in terms of the link lengths as given in Figure 6.16.

3. Find the individual transformation matrices to describe the motion of the links
due to the joint θ1, θ2, and θ3. You do not need to multiply them together.

7

Inverse Kinematics

As discussed in Chapter 2, forward kinematics is the process of mapping the joint space
to the end effector space or task space. The counter problem is known as the inverse kine-
matics, in which we map the end effector task space to the joint space. We know that the
solution to the forward kinematics serves as the starting point of the inverse kinematics.
However, this chapter will cover advanced inverse kinematics techniques applicable to gen-
eral serial manipulators. Inverse kinematics for general serial chain manipulators can be
quite challenging and requires a bit of forward-thinking and experience to be able to handle
all types of transcendental equations that may be encountered in kinematic equations for
robots with revolute joints.

The inverse kinematics problem of serial robotic manipulators was considered one of the
most challenging problems in robotics research in the 1980s, where in some cases, analyt-
ical solutions are impossible. Although we do not discuss these types of manipulators in
this chapter, the advancement of computational power has allowed the inverse kinematic
solutions to be numerically calculated efficiently using gradient-descent methods.

7.1 Basic Techniques

In inverse kinematics, we frequently encounter some forms of trigonometric functions. Know-
ing the solutions to these functions is beneficial for solving the inverse kinematics of many
types of robots.

Example 7.1 (Dual-parameter arc tangent: Atan2()): Given the expressions

cos θ = kA, sin θ = kB (7.1)

where k,A,B are three constraints, solve for θ.

Solution: Use Atan2 to find the solution:

θ = Atan2(kB, kA) (7.2)

If k is positive, (A,B) and (kA, kB) are in the same quadrant. Hence, the solution can be further
simplified into

θ = Atan2(B,A) (7.3)

Example 7.2 (Solving transcendental equations): Given equation

A cos θ +B sin θ = C (7.4)

DOI: 10.1201/9781003614319-7 110

https://doi.org/10.1201/9781003614319-7

Basic Techniques 111

where A, B, C are three constants, solve for θ.

Solution: There are different ways to solve (7.4). One method is to divide (7.4) by D, such that

A

D
cos θ +

B

D
sin θ =

C

D
(7.5)

where

D =
√

A2 +B2 (7.6)

Also, note that

A

D
= cosφ and

B

D
= sinφ (7.7)

Therefore, (7.5) becomes

cosφ cos θ + sinφ sin θ =
C

D
(7.8)

which is simplified to

cos (θ − φ) =
C

D
(7.9)

There are two solutions for (7.9):

θ = ± arccos

(

C

D

)

+ φ (7.10)

where φ = Atan2(B,A).

Besides the above solutions to some common functions, there are also some tips for
handling functions in inverse kinematics.

Pythagorean Identity

To remove some variables from equations, we can use

sin(α)2 + cos(α)2 = 1 (7.11)

For example, to simplify the following equations

x = c1 + c12, y = s1 + s12 (7.12)

they can be written as

c12 = x− c1, s12 = y − s1 (7.13)

We can then substitute c12 and s12 into (7.11) to get

(x− c1)
2 + (y − s1)

2 = 1 (7.14)

The original two functions on θ1 and θ2 are simplified into the above single function on θ1
only, which can be readily solved.

112 Inverse Kinematics

Equation Balancing

To reduce the entanglement of variables, keep the numbers of variables on both sides of
equations as close as possible. This is typically done by inversing transformation matrices.
Consider a general six-DoF robotic manipulator has the kinematics relation

0T6 = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3T4(θ4)

4T5(θ5)
5T6(θ6) (7.15)

where 0T6 is known in the inverse kinematics. To simplify the process of solving for θi
with i = 1 . . . 6 through these matrices, a better way to arrange the equations to reduce the
entanglement of the variables could be

2

T−1

3
(θ3)

1

T−1

2
(θ2)

0

T−1

1
(θ1)

0T6 = 3T4(θ4)
4T5(θ5)

5T6(θ6) (7.16)

or

3T2(θ3)
2T1(θ2)

1T0(θ1)
0T6 = 3T4(θ4)

4T5(θ5)
5T6(θ6) (7.17)

This is not the only way to balance the number of variables on both sides of this equation.
Other alternatives can be any of the following

2T1(θ2)
1T0(θ1)

0T6
6T5(θ6) =

2T3(θ3)
3T4(θ4)

4T5(θ5) (7.18)
1T0(θ1)

0T6
6T5(θ6)

5T4(θ5) =
1T2(θ2)

2T3(θ3)
3T4(θ4) (7.19)

0T6
6T5(θ6)

5T4(θ5)
4T3(θ4) =

0T1(θ1)
1T2(θ2)

2T3(θ3) (7.20)

Note that these are not randomly balanced equations but have particular meanings in terms
of frame transformations.

7.2 Analytical Solution to Inverse Kinematics

Analytical solutions to inverse kinematics allow fast real-time updates of the joints solu-
tions for any given position and orientation of the end-effector, by simply substituting the
numerical position and orientation into the analytical solutions. Furthermore, analytical
solutions differentiate the different sets of solutions belonging to different regions in the
workspace. On the other hand, analytical solutions to nonlinear equations do not exist in
general. In order to achieve analytical solutions, most industrial robots are designed in such
a way that analytical solutions can be derived. PUMA robot is an outstanding example
of this. In the absence of an analytical solution, we must rely on gradient-based solvers
that do not guarantee solution convergence and can be prone to large errors in problematic
configurations.

Example 7.3 (IK of an RR robot): An RR robot is shown in Figure 7.1, where both link lengths
are 1 m. Find the analytical solutions of joint angles in terms of the position of the end-effector
(xp, yp). Assume l1 = l2 = 1 m.

Solution: The forward kinematic solution of this robot is
[

xp

yp

]

=

[

c1 + c12
s1 + s12

]

(7.21)

Analytical Solution to Inverse Kinematics 113

θ1

θ2

P (xp, yp)

x

y

l1

l2

FIGURE 7.1

An RR robot.

We can use the Pythagorean identity (7.11) to reduce two equations into one equation by removing
θ2:

(xp − c1)
2 + (yp − s1)

2 = 1

2xpc1 + 2yps1 = x
2

p + y
2

p (7.22)

Equation (7.22) is now is the form of Example 7.2, where A = 2xp, B = 2yp, and C = x2

p + y2

p.
According to (7.6), D = 2

√

x2
p + y2

p, which yields solutions

θ1s = ± arccos

(

C

D

)

+ φ (7.23)

where

C

D
=

1

2

√

x2
p + y2

p and φ = Atan2(yp,xp) (7.24)

Substituting the solutions (7.23) into (7.21) yields
[

xp

yp

]

=

[

c1s + c12
s1s + s12

]

(7.25)

where c1s = cos θ1s and s1s = sin θ1s. Here, θ1s is used to represent the given solution of θ1 to avoid
writing down the full expression given in (7.23). If θ1s + θ2 is treated as a single variable, (7.23) is
in the form of Example 7.1, where k = 1, A = xp − c1s, and B = yp − s1s. Hence, the solution of
θ1s + θ2 can be readily found as

θ1s + θ2 = Atan2(yp − s1s,xp − c1s) (7.26)

which gives the solution for θ2

θ2s = Atan2(yp − s1s,xp − c1s)− θ1s (7.27)

In summary, there are two sets of analytical solutions to this problem:

θ1s = arccos

(

C

D

)

+ φ θ2s = Atan2(yp − s1s,xp − c1s)− θ1s (7.28)

θ1s = − arccos

(

C

D

)

+ φ θ2s = Atan2(yp − s1s,xp − c1s)− θ1s (7.29)

with variables C, D, and φ defined in (7.24).
If we consider a particular position of the end-effector at (1, 1), (7.21) yields the root of θ1 = 0,

θ2 = π/2, and θ1 = π/2, θ2 = 0, as the numeric solutions to the inverse kinematics at this position.

114 Inverse Kinematics

TABLE 7.1
The DH parameters are
defined below in Table 7.1

i αi−1 (◦) ai−1 di θi
1 0 1 0 θ1
2 -45 0 0 θ2
3 0 0

√
2 θ3

4 0
√
2 0 θ4

Example 7.4 (IK of a 4R robot): For a 4R robot, find the numerical solution of joint angles
such that

0p4 =
[

0.7 1.2 1.5
]T

(7.30)

And the position of the end-effectoris given by

0p4 = 0T4

4p4

=





1

2

(

2c1 +
(√

2− 1
)

c123 +
(

1 +
√
2
)

c123 + 2s12
)

c1
(√

2c3s2 + c2 (−1 + s3)
)

+ s1
(

1 +
√
2c2c3 + s2 − s2s3

)

1 + s3



 (7.31)

Solution:
One approach is to equate the analytical solution and the given numerical one directly, which

can be complicated. Let us try to balance the number of variables.

0

T−1

1

0p4 = 1T2

2T3

3p4 (7.32)

where

LHS =









0.7c1 + 1.2s1
1.2c1 − 0.7s1

1.5
1









and RHS =









1 +
√
2c2c3 + s2 − s2s3√

2s2c3 + c2(−1 + s3)
1 + s3

1









(7.33)

Joint angle θ3 can firstly be solved by comparing Elements (3,1) on RHS and LHS.

s3 = 0.5

θ3 = ± arcsin(0.5) = 30◦ or 120◦ (7.34)

When θ3 = 30◦, by summing the square of Elements (1,1) and (2,1) from RHS,

1.93 = 2.75 + 2.45c2 + s2 (7.35)

Let

cosφ =
2.45

D
and sinφ =

1

D
(7.36)

where

D =
√

2.452 + 12 (7.37)

Therefore,

θ2 + φ = θ2 − 22.2 = ±108.1

θ2 = 130.3◦ or − 85.85◦ (7.38)

Analytical Solution to Inverse Kinematics 115

Substituting θ3 = 30◦ and θ2 = 130.3◦ into Elements (1,1) and (2,1) from RHS yields two simulta-
neous equations of c1 and s1. Solving the equations gives

c1 = 0.9955 or s1 = −0.09

θ1 = −5.149◦ (7.39)

Substituting θ3 = 30◦ and θ2 = −85.85◦ into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of c1 and s1. Solving the equations gives

c1 = −0.568 or s1 = 0.823

θ1 = 124.6◦ (7.40)

When θ3 = 120◦, by summing the square of Elements (1,1) and (2,1) from RHS,

1.93 = 1.518−
√
2c2 + 0.268s2 (7.41)

Let

cosφ =
−
√
2

D
and sinφ =

0.268

D
(7.42)

where

D =

√

(−
√
2)2 + 0.2682 (7.43)

Therefore,

θ2 + φ = θ2 − 169.3 = ±73.37

θ2 = 242.7◦ or 95.94◦ (7.44)

Substituting θ3 = 120◦ and θ2 = 242.7◦ into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of c1 and s1. Solving the equations gives

c1 = 0.866 or s1 = 0.499

θ1 = 29.96◦ (7.45)

Substituting θ3 = 120◦ and θ2 = 95.94◦ into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of c1 and s1. Solving the equations gives

c1 = 0.0089 or s1 = 1

θ1 = 89.49◦ (7.46)

Example 7.5 (IK of PUMA): The PUMA robot shown in Figure 7.2(a) is a milestone in the
history of industrial robots. The major advantage is that its position and orientation are decoupled
in inverse kinematics, making analytical solutions possible. As shown in Figure 7.2(b), the PUMA
robot consists of an RRR robot (the first three joint axes) and a robotic spherical wrist (the last
three joint axes intersecting at a single point P). The DH table is shown in Table 7.2, where the
offsets, d3 and d4, in the actual PUMA robot, are assumed to be zeros. The problem here is to find
the solutions to the inverse kinematics of the PUMA robot shown in Figure 7.2, i.e., find the joint
angles in terms of the position and orientation of the end-effector.

Solution: Since the three joints in the wrist only change the orientation of the end-effector and
have no effect on the position of Point P, we can readily use P to represent the position of the
end-effector. Therefore, the position of the end-effector can be first used to solve for the first three
joint angles, while the orientation of the end-effector is then used to solve for the last three joint
angles. This is the feature of the decoupling of the PUMA robot. The total solutions will be derived

116 Inverse Kinematics

(a)

z0, z1

x0

x1

θ1

z2

x2

θ2 z3

x3

θ3
z4

θ4

x4

z5
x5

θ5

z6

x6 θ6

P

(b)

FIGURE 7.2

PUMA robot and its kinematic model.1

TABLE 7.2

DH parameters of the PUMA
robot

i αi−1 (◦) ai−1 di θi
1 0 0 0 θ1
2 -90 0 0 θ2
3 0 a2 0 θ3
4 -90 a3 0 θ4
5 90 0 0 θ5
6 -90 0 0 θ6

in two steps: 1) to solve the position of the end-effector for the first three joint angles and 2) to
solve the orientation of the end-effector for the last three joint angles.

According to the DH parameters in Table 7.2, the transformation between the frame attached
to the end-effector and the ground frame can be expressed as

0T6 = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3T4(θ4)

4T5(θ5)
5T6(θ6) (7.47)

where

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









1T2 =









cos θ2 − sin θ2 0 0
0 0 1 0

− sin θ2 − cos θ2 0 0
0 0 0 1









2T3 =









cos θ3 − sin θ3 0 a2

sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1









3T4 =









cos θ4 − sin θ4 0 a3

0 0 1 0
− sin θ3 − cos θ3 0 0

0 0 0 1









4T5 =









cos θ5 − sin θ5 0 0
0 0 −1 0

sin θ5 cos θ5 0 0
0 0 0 1









5T6 =









cos θ6 − sin θ6 0 0
0 0 1 0

− sin θ6 − cos θ6 0 0
0 0 0 1









1Aly, M.F., Abbas, A.T. and Megahed, S.M., 2010. Robot workspace estimation and base placement
optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing
systems. International Journal of Computer Integrated Manufacturing, 23(12), pp. 1133–1148.

Analytical Solution to Inverse Kinematics 117

1. Position:

Since Point P is the origin of {4}, {5}, and {6}, its position in {0} is given by

0p = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3T4(θ4)

4p (7.48)

where 0p =


xp yp zp 1
T

and 4p =


0 0 0 1
T

while 0p is known in the problem of

inverse kinematics. Note that 3p = 3T4(θ4)
4p =



a3 0 0 1
T

, which is the origin of {4}
measured in {3} and invariant. Therefore, (7.48) can be simplified as

0p = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3p (7.49)

where only three variables present. Applying equation balancing to (7.49) yields

0

T−1

1 (θ1)
0p = 1T2(θ2)

2T3(θ3)
3p (7.50)

or








cos θ1xp + sin θ1yp
− sin θ1xp + cos θ1yp

zp
1









=









cos θ2 cos θ3a3 − sin θ2 sin θ3a3 + a2 cos θ2
0

− sin θ2 cos θ3a3 − cos θ2 sin θ3a3 − a2 sin θ2
1









(7.51)

Applying Example 7.2 to the second row of (7.51) yields

θ1s = ±π/2 + Atan2(−xp, yp) (7.52)

where θ1s as the analytical solution of θ1. Substituting this solution into the remaining two equations
in (7.51) yields

cos θ1sxp + sin θ1syp = cos θ2 cos θ3a3 − sin θ2 sin θ3a3 + a2 cos θ2 (7.53)

zp = − sin θ2 cos θ3a3 − cos θ2 sin θ3a3 − a2 sin θ2 (7.54)

To simplify the expressions of the equations, we introduce a lumped constant, k1 = cos θ1sxp +
sin θ1syp, such that (7.53) can be written as

k1 − a2 cos θ2 = cos(θ2 + θ3)a3 (7.55)

−zp − a2 sin θ2 = sin(θ2 + θ3)a3 (7.56)

According to the Pythagorean identity, the sum of the squares of the two equations in (7.55) gives

(k1 − a2 cos θ2)
2 + (−zp − a2 sin θ2)

2 = a2

3 (7.57)

Introducing more lumped constants, we can write (7.57) as

k2 cos θ2 + k3 sin θ2 = k4 (7.58)

where k2 = −2k1a2, k3 = −2zpa2, and k4 = a2

3−k2

1−a2

2−z2p. Applying the solution of Example 7.2
to (7.58) yields the solution of θ2, i.e.,

θ2s = ± arccos(k4/D2) + φ2 (7.59)

where D2 =


k2

2
+ k2

3
and φ2 = Atan2(k3, k2). Substituting the solution back into (7.55) gives the

solution of θ3 directly:

θ3s = Atan2(−zp − a2 sin θ2s, k1 − a2 cos θ2s)− θ2s (7.60)

There are, in total, four solutions for one position of Point P .

118 Inverse Kinematics

Orientation:

The orientation of the end-effector is given by the orientation part of (7.47)
0R6 = 0R1(θ1)

1R2(θ2)
2R3(θ3)

3R4(θ4)
4R5(θ5)

5R6(θ6) (7.61)

Since θ1, θ2, θ3 have been solved already, (7.61) simplifies into
3R6 = 3R4(θ4)

4R5(θ5)
5R6(θ6) (7.62)

where

3R6 = 3R2(θ3s)
2R1(θ2s)

1R0(θ1s)
0R6 =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (7.63)

To balance the number of variables on both sides, (7.62) can be written as

3

RT

4 (θ4)
3R6 = 4R5(θ5)

5R6(θ6) (7.64)

Substituting the transformation matrices in (7.47) into (7.64) gives




c4r11 − s4r31 c4r12 − s4r32 c4r13 − s4r33
−s4r11 − c4r31 −s4r12 − c4r32 −s4r13 − c4r33

r21 r22 r23



 =





c5c6 −c5s6 −s5
s6 c6 0
s5c6 −s5s6 c5



 (7.65)

Entry (3,3) of (7.65) gives

θ5s = ± arccos(r23) (7.66)

Entries (3,1) and (3,2) of (7.65) give

θ6s = Atan2(−r22/ sin θ5s, r21/ sin θ5s) (7.67)

Substituting the above solution into Entries (2,1) and (2,2) of (7.65) yields

c4 = (−s6sr12 + c6sr11)/(r12r31 − r11r32) (7.68)

s4 = (s6sr32 − c6sr31)/(r12r31 − r11r32) (7.69)

Finally, the solution of θ4 is obtained as

θ4s = Atan2(s6sr32 − c6sr31,−s6sr12 + c6sr11) (7.70)

All eight solutions are summarised below.

θ1s = ±π/2 + Atan2(−xp, yp)

θ2s = ± arccos(k4/D2) + φ2

θ3s = Atan2(−zp − a2 sin θ2s, k1 − a2 cos θ2s)− θ2s

θ4s = Atan2(s6sr32 − c6sr31,−s6sr12 + c6sr11)

θ5s = ± arccos(r23)

θ6s = Atan2(−r22/ sin θ5s, r21/ sin θ5s) (7.71)

where

k1 = cos θ1sxp + sin θ1syp

k2 = −2k1a2

k3 = −2zpa2

k4 = a2

3 − k2

1 − a2

2 − z2p

D2 =


k2

2
+ k2

3

φ2 = Atan2(k3, k2)




r11 r12 r13
r21 r22 r23
r31 r32 r33



 = 2R3(θ3s)
1R2(θ2s)

0R1(θ1s)
0R6

Univariate Polynomial 119

7.3 Univariate Polynomial

It is often impossible to find analytical solutions to the IK of some general high-DoF robotic
manipulators. One approach is to reduce the kinematics equations into a univariant poly-

nomial. Solving this polynomial gives all possible solutions of one variable, which can then
be used to find out all sets of solutions to the IK. The order of the univariant polynomial
varies depending on the complexity of the robot.

In order to derive a univariate polynomial of a robot, the basic kinematics relation based
on the transformation matrices must be written in the form of polynomials. The common
way is to utilise the tangent half-angle formulas given by

sin θ =
2τ

1 + τ2
, cos θ =

1− τ2

1 + τ2
(7.72)

where

τ = tan

(

θ

2

)

(7.73)

Given the range of θ being [−π, π), the range of τ is (−∞,+∞). This feature is convenient
because there is no additional constraint on the value of τ when polynomials are solved.
Further, since 1 + τ2 is always positive, Formulas (7.72) do not have any singularity.

Example 7.6 (Univariate expression): Express the general DH transformation matrix in terms
of polynomials.

Solution: The general transformation matrix is given by (6.3). Applying (7.72) to (6.3), we obtain

i−1

i T =
1

A









B −2τi 0 Aai−1

2τi cosαi−1 B cosαi−1 −A sinαi−1 −A sinαi−1di

2τi sinαi−1 B sinαi−1 A cosαi−1 A cosαi−1di

0 0 0 1









(7.74)

where τi = tan



θi

2



, A = 1 + τ
2

i , and B = 1− τ
2

i .

Example 7.7 (IK of a cylindrical robot): Find all valid joint configurations for a cylindrical
robot defined Figure 7.3 when the end-effector is located at

0p3 =





0.1
0.05
0.3



m (7.75)

Solution: Here, we simply equate the position of the end-effector to the analytical solution:





0.05 cos θ1 + d3 sin θ1
0.05 sin θ1 − d3 cos θ1

d2



 =





0.1
0.05
0.3



 (7.76)

120 Inverse Kinematics

θ1, d2

d3 0p3 =





0.05 cos θ1 + d3 sin θ1
0.05 sin θ1 − d3 cos θ1

d2





FIGURE 7.3

A cylindrical robot with z-axes defined and end effector position 0p3 .

By inspection, we already see that prismatic extension d2 = 0.3 m. To solve for θ1 and d3, we
must utilise the two upper equations in Equation (7.76). We can try the sum-squared method on
the first two equations to try and isolate the unknown variables:

(0.05 cos θ1 + d3 sin θ1) + (0.05 sin θ1 − d3 cos θ1) = 0.12 + 0.052

0.0025
�

cos θ1
2 + sin θ1

2


+ d3
2
�

cos θ1
2 + sin θ1

2


= 0.0125

d3
2 + 0.0025 = 0.0125

d3 = ±0.1 (7.77)

Therefore, prismatic extension d3 = ±0.1 m. However, we generally only consider positive values
for prismatic actuators. Hence, we will choose to keep only the positive solution d3 = 0.1 m. For the
final variable θ1, we choose the first equation from Equation (7.76) and use the tangent half-angle
substitution in variable u (Equation (7.72)) to solve for θ1

0 = 0.05 cos θ1 + d3 sin θ1 − 0.1

= 0.05



1− u2

1 + u2



+



d3
2u

1 + u2



− 0.1

= (2d3 − 0.15)u2
− 0.05 (7.78)

Substituting d3 = 0.1, therefore,

u = ±1 (7.79)

and

θ1 = 2Atan2(u)

= 2Atan2(±1)

= ±
π

2
rad (7.80)

Note that there are two solutions for θ1 due to the tangent half-angle substitution. It is impor-
tant to validate the solutions found using this method because the roots of a quadratic may not
have any physical meaning in the context of a robotic system. We do this by substituting the inverse
kinematic solution into the forward kinematic solutions as defined in Figure 7.3. Substituting into
forward kinematics 0p3 = 0p3(θ1, d2, d3)

0p3



π

2
, 0.3, 0.1



=





0.1
0.05
0.3



 and 0p3



−
π

2
, 0.3, 0.1



=





−0.1
−0.05
0.3



 (7.81)

Dialytic Method 121

As observed, the first solution matches the target solution. Therefore, the inverse kinematic
solution to this problem is

θ1 =
π

2
rad (7.82)

d2 = 0.3 m (7.83)

d3 = 0.1 m (7.84)

7.4 Dialytic Method

The dialytic method efficiently reduces the number of polynomials into a simpler form by

removing one or more variables. It can eliminate more than one variable simultaneously.

Example 7.8 (Solving simultaneous equations): Reduce the two equations in (x, y) given by
(7.85) and (7.86) into a univariant polynomial in x.

y2 + xy + 1 = 0 (7.85)

x2y − 4 = 0 (7.86)

Solution: This problem can be readily solved by substituting the expression of y based on (7.86)

into (7.85). Consider a vector of


y2 y 1
T

containing only y. Then (7.85) is the dot-product

of this vector with


1 x 1
T

, while (7.86) is the dot-product of this vector with


0 x2 −4
T

.
Create a new equation by multiplying (7.86) with y

x2y2 − 4y = 0 (7.87)

which is the dot product of


y2 y 1
T

and


x2 −4 0
T

. Therefore, (7.85)–(7.87) can be
written as





1 x 1
0 x2 −4
x2 −4 0









y2

y
1



 =





0
0
0



 (7.88)

where the square matrix must be singular since


y2 y 1
T

is a non-zero vector. The singularity
of this square matrix yields

x4 + 4x3 + 16 = 0 (7.89)

which is the univariant polynomial we are seeking. The answer can be readily verified.

Example 7.9 (IK of a 6R robot): The solutions to the IK of a general 6R robot are given in
the following four equations,

Ciτ
2

2 τ3 + 2Biτ2τ3 +Aiτ3 + Fiτ
2

2 + 2Eiτ2 +Di = 0 (7.90)

where i= 1, 2, 3, 4, τ2 = tan(θ2/2), τ3 = tan(θ3/2), and Ai, . . . , Fi are quadratic functions in
τ1 = tan(θ1/2). Reduce (7.90) into an univariant polynomial in terms of τ1.

Solution: Multiplying τ2 on both sides of (7.90) gives

Ciτ
3

2 τ3 + 2Biτ
2

2 τ3 +Aiτ2τ3 + Fiτ
3

2 + 2Eiτ
2

2 +Diτ2 = 0 (7.91)

122 Inverse Kinematics

Rewrite (7.90) and (7.91) in a matrix form:

M x = 0 (7.92)

where

M =

























0 C1 2B1 0 F1 A1 2E1 D1

0 C2 2B2 0 F2 A2 2E2 D2

0 C3 2B3 0 F3 A3 2E3 D3

0 C4 2B4 0 F4 A4 2E4 D4

C1 2B1 A1 F1 2E1 0 D1 0
C2 2B2 A2 F2 2E2 0 D2 0
C3 2B3 A3 F3 2E3 0 D3 0
C4 2B4 A4 F4 2E4 0 D4 0

























, x =

























τ3

2 τ3
τ2

2 τ3
τ2τ3
τ3

2

τ2

2

τ3
τ2
1

























(7.93)

Equation (7.92) indicates that M is singular, i.e.,

det(M) = 0 (7.94)

Since Ai, . . . , Fi are all quadratic functions in τ1, it can be readily shown that

det(M) =

16


k=0

akτ
k

1 = 0 (7.95)

which is the univariant polynomial we are seeking. Solving (7.95) gives all solutions of θ1. Once θ1
is obtained, θ2 and θ3 are to be solved similarly upon (7.90).

MATLAB can be used to solve the inverse kinematics of a serial manipulator alge-
braically, but only on a case-by-case basis as there is no unified method to solve the inverse
kinematics of general serial manipulators.2 The method presented here utilises the tangent

half-angle substitution method as expressed in Equation(7.72), which is very useful for solv-
ing transcendental equations normally seen in forward kinematic equations. The rest of the
IK method requires a general understanding of both geometry and algebraic equations, such
as using squared-sum operations to cancel out variables.

Example M7.1 (RR manipulator): Solve for θ1 and θ2 when given a position P for RR robot
shown in Figure 7.4.

Solution: We are presented with two forward kinematic expressions that describe the end-effector
position as a function of θ1 and θ2, xP and yP . Observing these two equations, we can already see
that θ1 can be eliminated by taking their squared-sum:

r = (l1 cos θ1 + l2 cos(θ1 + θ2))
2 + (l1 sin θ1 + l2 sin(θ1 + θ2))

2

= l1
2 + 2l1l2 cos θ2 + l2

2 (7.98)

where r = xP
2 + yP

2. Therefore, the obvious answer for θ2 is

θ2 = π ± arccos



l1
2 + l2

2
− r

2l1l2



(7.99)

Now that θ2 is solved, we can solve for θ1. This can be calculated from either xP or yP equations
but is more challenging to solve using the algebraic method because of coupled sine and cosine terms.
However, the tangent half-angle substitution can make light work of this problem for solving θ1.

2There are research papers that attempt to generalise the IK for six-DoF serial manipulators, but the

methodology is quite complex and is definitely outside the scope of this textbook.

Dialytic Method 123

θ1

θ2

P (xP , yP)

x

y

l1

l2

xP = l1 cos θ1 + l2 cos(θ1 + θ2) (7.96)

yP = l1 sin θ1 + l2 sin(θ1 + θ2) (7.97)

FIGURE 7.4

RR manipulator with the forward kinematic equations.

First, choose either xP or yP equations to work with, then expand it. For this example, we will
work with the xP equation,

xP = l1 cos θ1 + l2 cos(θ1 + θ2)

= l1 cos θ1 + l2 cos θ1 cos θ2 − l2 sin θ1 sin θ2 (7.100)

Once expanded, we can perform the tangent half-angle substitution

cos θ1 =
u2 − 1

u2 + 1
sin θ1 =

2u

u2 + 1
(7.101)

where

u = tan
θ1

2
(7.102)

After substituting Equations (7.101) into Equation (7.100), the univariate polynomial for θ1, after
simplification is

(−l1 − l2 cos θ2)u
2 + (l1 + l2 cos θ2)u− 2l2 sin θ2 (7.103)

Notice that Equation (7.103) is a quadratic, made up of all known quantities (θ2 is solved first).
Therefore, we can use the quadratic formula to solve for u. Hence

u =
l2 cos θ2 ±

√

2(l1
2 + 2l1l2 cos θ2 + l2

2)

l1 + l2 cos θ2
(7.104)

Finally, we can solve for θ1 using Equation (7.102). Because Equation (7.104) is a fraction, we
can actually use the two-parameter Atan2(y, x) so that the answer for is reflected in the correct
quadrant:

θ1 = 2Atan2

(

l1 + l2 cos θ2, l2 cos θ2 ±

√

2(l1
2 + 2l1l2 cos θ2 + l2

2)

)

(7.105)

Therefore, our inverse kinematic solution for the RR manipulator, noting the dependent vari-
ables, is:

θ2(xP , yP) = π ± arccos

(

l1
2 + l2

2
− r(xP , yP)

2l1l2

)

(7.106)

θ1(θ2) = 2Atan2

(

l1 + l2 cos θ2, l2 cos θ2 ±

√

2(l1
2 + 2l1l2 cos θ2 + l2

2)

)

(7.107)

124 Inverse Kinematics

Our IK solution has a total of four solutions, two for each angle. Notice that θ1 has two solutions
because of the ± in the second parameter because the solution for θ1 is derived from the single
equation xP . So, although the answer for θ1 satisfies the xP constraint, it may not satisfy the yP
constraint. Hence, two solutions (out of four in total) will be invalid because they do not meet the
yP constraint. This is one of the disadvantages of using the tangent half-angle substitution, as it
can result in invalid extra solutions without checks.

The following MATLAB code performs the above steps to solve the inverse kinematics for this
problem, with the ensuing command window output.

1 clear
2 syms l1 l2 th1 th2 x y r real
3

4 % Kinematic equations
5 x_p = l1*cos(th1)+l2*cos(th1+th2)
6 y_p = l1*sin(th1)+l2*sin(th1+th2)
7

8 % Solve for th2 by squared sum of x and y
9 % r = x^2 + y^2 (radial length of position)

10 r_s = simplify(x_p ^2+y_p^2)
11 t2 = solve(r_s == r, th2)
12

13 % Use tangent half -angle substitution to solve th1
14 syms u real
15 x_s = x_p - x
16 x_u = subs(expand(x_s), ...
17 {cos(th1), sin(th1)}, ...
18 {(1-u^2) /(1+u^2), 2*u/(1+u^2)});
19 x_u = simplifyFraction(x_u *(1+u^2))
20

21 % Extract coefficients (quadratic , lowest order first)
22 x_c = coeffs(x_u , u)
23

24 % Use quadratic formula to solve for u
25 a = x_c (3); b = x_c(2); c = x_c (1);
26 u1 = [(-b + sqrt(b^2 - 4*a*c)); (-b - sqrt(b^2 - 4*a*c))]
27

28 % Convert roots of u into angle
29 t1 = 2* atan2(u1 , 2*a)
30

31 % Create function handles
32 t2_f = matlabFunction(t2)
33 t1_f = matlabFunction(t1)

x_p =

l2*cos(th1 + th2) + l1*cos(th1)

y_p =

l2*sin(th1 + th2) + l1*sin(th1)

r_s =

l1^2 + 2*cos(th2)*l1*l2 + l2^2

t2 =

pi - acos((l1^2 + l2^2 - r)/(2*l1*l2))
pi + acos((l1^2 + l2^2 - r)/(2*l1*l2))

x_s =

l2*cos(th1 + th2) - x + l1*cos(th1)

x_u =

l1 - x - l1*u^2 + l2*cos(th2) - u^2*x - 2*l2*u*sin(th2) - l2*u^2* cos(th2)

x_c =

[l1 - x + l2*cos(th2), -2*l2*sin(th2), - l1 - x - l2*cos(th2)]

Dialytic Method 125

u1 =

2*(((l1 - x + l2*cos(th2))*(4*l1 + 4*x + 4*l2*cos(th2)))/4 + l2^2* sin(th2)^2) ^(1/2) +
2*l2*sin(th2)

2*l2*sin(th2) - 2*(((l1 - x + l2*cos(th2))*(4*l1 + 4*x + 4*l2*cos(th2)))/4 + l2^2* sin(
th2)^2) ^(1/2)

t1 =

2* atan2 (2*(((l1 - x + l2*cos(th2))*(4*l1 + 4*x + 4*l2*cos(th2)))/4 + l2^2* sin(th2)^2)
^(1/2) + 2*l2*sin(th2), - 2*l1 - 2*x - 2*l2*cos(th2))

2* atan2 (2*l2*sin(th2) - 2*(((l1 - x + l2*cos(th2))*(4*l1 + 4*x + 4*l2*cos(th2)))/4 + l2
^2* sin(th2)^2) ^(1/2) , - 2*l1 - 2*x - 2*l2*cos(th2))

t2_f =

function_handle with value:

@(l1 ,l2 ,r)[pi -acos((-r+l1.^2+l2.^2) ./(l1.*l2 .*2.0));pi+acos((-r+l1.^2+l2.^2) ./(l1.*
l2 .*2.0))]

t1_f =

function_handle with value:

@(l1 ,l2 ,th2 ,x)[atan2(sqrt (((l1 -x+l2.*cos(th2)).*(l1 .*4.0+x.*4.0+ l2.*cos(th2).*4.0))
./4.0+ l2 .^2.* sin(th2).^2) .*2.0+ l2.*sin(th2).*2.0,l1.*-2.0-x.*2.0 -l2.*cos(th2).*2.0)
.*2.0; atan2(sqrt (((l1 -x+l2.*cos(th2)).*(l1 .*4.0+x.*4.0+ l2.*cos(th2).*4.0))./4.0+ l2
.^2.* sin(th2).^2) .* -2.0+l2.*sin(th2).*2.0,l1.*-2.0-x.*2.0 -l2.*cos(th2).*2.0) .*2.0]

Example M7.2 (RR manipulator): For the same RR manipulator in Example M7.1, solve for
θ1 and θ2 if P = (1.0, 0.5), l1 = 1.0 and l2 = 0.5.

Solution: Use the function handles defined in Example M7.1 to find the four solutions for the
inverse kinematics. The following script solves this problem, assuming script Inline 7.1 was executed
first.

1 x = 1; y = 0.5; % Define goal position
2 l1 = 1; l2 = 0.5; % Link lengths
3 r = x^2 + y^2; % Radial length r
4

5 % Solve theta_2
6 t2 = t2_f(l1 , l2 , r)
7

8 % Solve theta_1
9 t1 = t1_f(l1 , l2 , t2 , x)

10

11 % Collate angles
12 t = [t1 reshape ([t2 t2]’,[],1)];
13 % Wrap angles so that we only get within range [-pi pi]
14 t_all = mod(t+pi , 2*pi) - pi
15

16 % Check answers
17 p_f = matlabFunction ([x_p y_p]) % Function handle for EE pos
18

19 % Find position of EE for each 4 solutions
20 pos = cellfun(@(th) p_f(l1 ,l2 ,th(1),th(2)), num2cell(t_all , 2), ’Uni’, 0);
21 pos = vertcat(pos {:}) % Convert cell to matrix
22

23 % Find sum squared error
24 err = sum((pos - [x y]).^2, 2)
25

26 % Remove answers that have EE error > 1e-4
27 t_final = t_all(err < 1e-4, :)

t2 =

1.5708
4.7124

t1 =

126 Inverse Kinematics

5.3559
-6.2832
6.2832

-5.3559

t_all =

-0.9273 1.5708
0 1.5708
0 -1.5708

0.9273 -1.5708

p_f =

function_handle with value:

@(l1 ,l2 ,th1 ,th2)[l2.*cos(th1+th2)+l1.*cos(th1),l2.*sin(th1+th2)+l1.*sin(th1)]

pos =

1.0000 -0.5000
1.0000 0.5000
1.0000 -0.5000
1.0000 0.5000

err =

1.0000
0

1.0000
0.0000

t_final =

0 1.5708
0.9273 -1.5708

The variable t all contains all four IK solutions. However, it is known that two of them are invalid,
hence error-checking is required. By substituting the four solutions into the forward kinematic
equations (line 20), we arrive at the matrix pos, which contains the end-effector positions for the
four IK solutions. By calculating the sum squared error (line 24), we find that IK solutions 1 and
3 are invalid. Hence the two valid IK solutions that remain in t final (in degrees) are

TABLE 7.3
IK solutions for the RR manipulator
in Figure 7.4 for P = (1.0, 0.5).

IK Solution θ1 θ2
1 0◦ 90◦

2 53.13◦ −90◦

7.5 Conclusion

In this chapter, we described the inverse kinematic problem, where, for a serial manipulator,
we find the joint configurations required to achieve a particular end-effector pose. This pose
can be described by a point or transformation matrix. This is an important and highly
practical problem to solve in robotics, as we typically describe the robot’s end-effector pose
in the task space coordinates rather than joint space.

In general, the inverse kinematics problem is difficult to solve compared to the direct
kinematics of serial robotic manipulators, and there is no universal approach to solving such

Exercises 127

problems. However, we have introduced some mathematical techniques which can be used
to solve these difficult problems.

1. Balancing: Keep the numbers of variables on both sides of equations as balanced
as possible.

2. Decoupling: Identify a subset of solvable equations containing fewer variables
and decouple them from the rest of the equations.

3. Lumping: construct lumped constants to simplify the expressions of the equa-
tions.

4. Forming: Form the equations into familiar forms and utilise the given solutions,
such as (7.10).

In addition to these techniques, we also find that the geometric method is a viable
approach to solving the IK problem. This is an intuitive method that requires a geometrical
understanding of the robot’s kinematic motion. Another mathematical method to solve
transcendental expressions is the tangent half-angle substitution method. The advantage of
this method is that it can be somewhat generalised for programming purposes so that it
can be solved in numerical software such as MATLAB.

7.6 Exercises

Problem 1. Derive the inverse kinematics solutions for the three-link manipulator shown
in Figure 7.5, when

1. the target transformation matrix 0T3 is given

0T3 =









r11 r12 r13 x

r21 r22 r23 y

r31 r32 r33 z

0 0 0 1









2. the target position of an end effector positioned 3pg =


1 0 0
T

in Frame {3}

is given in Frame {0} as 0pg =


x y z
T

The DH parameters of the manipulator are as follows

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 90◦ l1 0 θ2
3 0 l2 0 θ3

Problem 2.

For the planar robot shown in Figure 7.6, the transformation matrices between the base
and the tool frames are:

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









, 1T2 =









1 0 0 l1
0 0 −1 −d2
0 1 0 0
0 0 0 1









128 Inverse Kinematics

l1

θ1

l2
θ2

l3

θ3

FIGURE 7.5

The RRR manipulator.

2T3 =









s3 c3 0 0

0 0 1 0

c3 −s3 0 0

0 0 0 1









, 3T4 =









1 0 0 l3
0 1 0 0

0 0 0 1

0 0 0 1









Note: Your answers should reflect the use of these transformation matrices, or otherwise

the correct 0T4 generated by the matrices above. Do not reassign frames and use a different

set of matrices, or they will be marked as incorrect.

1. Solve the inverse kinematics of the robot using the algebraic method; that is

find equations for θ1, d2, and q3 in terms of the arbitrary location and orientation

of the end effector shown in 0T4 .

0T4 =









r11 r12 r13 x

r21 r22 r23 y

r31 r32 r33 z

0 0 0 1









x0, x1

y0, y1

l1
θ1

z2

x2d2
y3

x3

θ3
y4

x4

l4

FIGURE 7.6

Planar robot for Problem 2.

Exercises 129

l1

θ1

l2
θ2

l3

θ3
l4 xT

zT

yT

zB

yB

xB

FIGURE 7.7

A serial spherical robotic manipulator.

2. If the transformation matrix relating the base and tool frames is:

0
T4 =









−0.2588 0.9659 0 3.69680
−0.9659 −0.2588 0 −8.0599

0 0 1 0
0 0 0 1









Find all valid solutions for the joint variables, if one exists. Let l1 = 2 and l3 = 4, and
assume d2 ≥ 0.

Problem 3. Consider a serial manipulator with three revolute joints as shown in Figure
7.7.

1. Frame {B} is defined for the base of this manipulator, as shown in Figure 7.7.
Find the position of the origin of frame T with respect to {B}, i.e., find BpTorg

.

2. With the forward kinematics found in (a) and link lengths: l1 = 0.5 m, l2 = 0.2
m, l3 = 0.4 m, and l4 = 0.3 m, evaluate the position of the Tool point TORG when
θ1 = 0◦, θ2 = 30◦, and θ3 = 90◦.

3. Assume that the position of the Tool with respect to {B} is given by

BpTorg
=





−0.058
−0.250
−0.566





Let the link lengths be: l1 = 0.5 m, l2 = 0.4 m, l3 = 0.4 m, and l4 = 0.2 m.
It is also known that q3 = 30◦. Conduct the inverse kinematics to find the joint
displacements θ1 and θ2.

Problem 4. Given a robotic manipulator. The position of the end-effector with respect to
the ground frame is given by





px
py
pz



 =





c1(l2c2 + l3c23)
s1(l2c2 + l3c23)
−l2s2 − l3s23





where θi, for i = 1, 2, 3 are joint angles.

130 Inverse Kinematics

1. Derive the solution to the inverse kinematics of this manipulator based on the
above formula. Identify how many different solutions in total.

2. Given l2 = 3, l3 = 2, px = 4, py = 2, and pz = 1, find the numerical values of qi,
for i = 1, 2, 3.

Problem 5.

The schematic structure, frames, dimensions of links and home positions of joints of the
legs of the Bioloid robot are shown in Figure 7.8. The configuration of the right knee (Joint
ID 13) of the Boiloid robot with respect to a reference frame {ORL} (origin-right-leg, {O}
hereafter for simplicity) on its body is given by the following transformation matrix

OT13 =



OR13
Op13

0 1



where

OR13 =

−s7 sin(θ11 − θ13)− c7c9 cos(θ11 − θ13) s7 cos(θ11 − θ13)− c7s9 sin(θ11 − θ13) c7c9
c7 sin(θ11 − θ13)− s7s9 cos(θ11 − θ13) −c7 cos(θ11 − θ13)− s7s9 sin(θ11 − θ13) c7s9

c9 cos(θ11 − θ13) c9 sin(θ11 − θ13) s9



Op13 =





−76.98s7s11 − 76.98c7s9c11
76.98c7s11 − 76.98s7s9c11

120.75 + 76.98c9c11





1. Derive the analytical solution for Joints 7, 9, 11, and 13, so that the right knee
reaches a given position

Op13 =





px
py
pz





while x13 and z13 are in the same directions as zO and xO, respectively.

(a) (b)

FIGURE 7.8

Legs of the Bioloid robot.

Exercises 131

2. From the analytical solution, calculate the numerical solution when

Op13 =





−19.245
66.667
154.083





Problem 6. In deriving the solution of the inverse kinematics of a general three-DoF robot,
the following equations are formulated

Γ1
2Γ2

2 + 3Γ1
2Γ2 − 4Γ1Γ2

2 + 4 = 0

2Γ1
2Γ2

2 + Γ1
2Γ2 − 3Γ1Γ2

2 + 1 = 0

Please reduce the above two equations into a univariant polynomial in Γ1.

Problem 7. The position of the end-effector of the JACO manipulator, with respect to its
proximal joint, is given by

3p7 =





(228.5− 80.4c5)s4 − 160.7c4s5
424.8 + 139.2c5

(228.5− 80.4c5)c4 + 160.7s4s5





Assuming only θ4 and θ5 are actuated, determine all sets of numerical solutions (θ4 and θ5)
for the end-effector to reach

3p7 =





0
494.4
1





8

Jacobian Analysis

In Chapter 2, the time derivative method was used directly on the forward kinematic equa-
tions of a serial robot, which we then used to derive the robot’s Jacobian matrix. However,
we will see that this method becomes more complicated as robots exhibit more degrees
of freedom (DoF). To alleviate the challenge, this chapter will introduce a new method
for velocity analysis called velocity propagation, an iterative method that can simplify the
derivation of velocity equations.

We will further expand on Chapter 2 and show that static analysis, singularity analysis,
and workspace analysis of a robotic manipulator are all linked to its Jacobian matrix for
the general serial manipulator case.

8.1 Jacobian Matrix

A Jacobian matrix is defined as a multidimensional form of the derivatives of a set of
functions. For example, given a set of functions

f1 = f1(x1, . . . , xn)

...

fm = fm(x1, . . . , xn) (8.1)

The time derivatives of the above functions are given by

ḟ1 =
∂f1

∂x1

ẋ1 + . . .+
∂f1

∂xn

ẋn

...

ḟm =
∂fm

∂x1

ẋ1 + . . .+
∂fm

∂xn

ẋn

which can be rewritten in a matrix form, i.e.,

ḟ = J ẋ (8.2)

where ḟ =


ḟ1 . . . ḟm
T

, ẋ =


ẋ1 . . . ẋn

T
, and

J =













∂f1

∂x1

. . .
∂f1

∂xn
...

. . .
...

∂fm

∂x1

. . .
∂fm

∂xn













(8.3)

DOI: 10.1201/9781003614319-8 132

https://doi.org/10.1201/9781003614319-8

Jacobian Matrix 133

θ1

θ2

P (xp, yp)

x

y

l1

l2

FIGURE 8.1

RR robot.

Here J is the Jacobian matrix of the functions in (8.1). In general, the Jacobian for a
serial robot can be obtained by the definition (8.2) directly. If the functions represent the
position of an end-effector, the time derivatives are its velocity. We will also show that the
Jacobian is quite useful in static and workspace analysis later.

Notation

From this point, unless stated otherwise, these common mathematical symbols represent
the following vectors when handling Jacobians

q Generalised vector of joint space variables
x Generalised vector of task space variables

Example 8.1 (Linear velocity via differentiation): Find the velocity of the end-effector of
the 2R robot shown in Figure 8.1. Assume l1 = l2 = 1 m.

Solution: The forward kinematics of this robot was derived previously as



xp

yp

]

=

[

c1 + c12
s1 + s12

]

The velocity of the end-effector is obtained by the differentiation as

[

ẋp

ẏp

]

=

[

−s1 − s12 −s12
c1 + c12 c12

] [

θ̇1

θ̇2

]

=

[

−s1θ̇1 − s12(θ̇1 + θ̇2)

c1θ̇1 + c12(θ̇1 + θ̇2)

]

(8.4)

Example 8.2 (Jacobian matrix): Find the Jacobian matrix for the end-effector for the cylindrical
robot shown in Figure 8.2.

Solution: Take the time derivative of the end-effector position vector 0pE such that we get

d(0pE)

dt
= 0ṗE =





sin θ1ḋ3 + cos θ1d3θ̇1 − a3 sin θ1θ̇1
− cos θ1ḋ3 + sin θ1d3θ̇1 + a3 cos θ1θ̇1

ḋ2



 (8.5)

134 Jacobian Analysis

θ1, d2

d3 0pE =





a3 cos θ1 + d3 sin θ1
a3 sin θ1 − d3 cos θ1

d2





FIGURE 8.2

A cylindrical robot with end-effector position 0pE derived from forward kinematics.

Rewrite Equation (8.5) in the following form

0ṗE = J(q)q̇ (8.6)

=





d3 cos θ1 − a3 sin θ1 0 sin θ1
a3 cos θ1 + d3 sin θ1 0 − cos θ1

0 1 0









θ̇1
ḋ2

ḋ3



 (8.7)

where the Jacobian is the 3 × 3 matrix J(q) which maps joint velocities q̇ to the end-effector
velocity 0ṗE for a given joint configuration q.

Example 8.3 (six-DoF Jacobian matrix): Find the general structure of the Jacobian matrix
for the six-DoF PUMA robot with a spherical wrist, as shown in Figure 8.3, that maps joint velocity
to end-effector linear velocity.

Solution: Assume the position of the end-effector is given by point P . Then the position of P in
{0} is given by

0p = 0T1(θ1)
1T2(θ2)

2T3(θ3)
3T4(θ4)

4T5(θ5)
5T6(θ6)

6p (8.8)

where iTi+1θi+1 are derived from forward kinematics as described in Example 6.6. The above

z0, z1

x0

x1

θ1

z2

x2

θ2 z3

x3

θ3
z4

θ4

x4

z5
x5

θ5

z6

x6 θ6

P

FIGURE 8.3

A six-DoF PUMA (articulated) robot with a spherical wrist.

Jacobian Matrix 135

equation can then be expanded as

xp = xp(θ1, . . . , θ6) (8.9)

yp = yp(θ1, . . . , θ6) (8.10)

zp = zp(θ1, . . . , θ6) (8.11)

which describe the position of the end-effector, given all joint positions θ1 to θ6. Therefore, the
overall structure of the Jacobian is

J =













∂xp

∂θ1

∂xp

∂θ2
. . .

∂xp

∂θ6
∂yp

∂θ1

∂yp

∂θ2
. . .

∂yp

∂θ6
∂zp

∂θ1

∂zp

∂θ2
. . .

∂zp

∂θ6













(8.12)

which is a 3 × 6 matrix that maps joint velocities to end-effector linear velocities at a given joint
configuration by

0ṗ= J(θ)θ̇ (8.13)

where θ =


θ1, . . . , θ6
T

.

Example 8.4 (Linear velocity via Jacobians): Referencing the same PUMA robot in Figure
8.3, find the linear velocity of the wrist frame for any given joint configuration and joint velocity,
where the link lengths are L1 = 0.5 m between z2 and z3, and L2 = 0.4 m between z3 and z4.

Solution: To find the linear velocity of the wrist frame, we need to find the Jacobian, which
maps joint velocities to the linear velocity of {4} for any given joint configuration. We know from
Example 6.6 that

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









1T2 =









cos θ2 − sin θ2 0 0
0 0 1 0

− sin θ2 − cos θ2 0 0
0 0 0 1









(8.14)

2T3 =









cos θ3 − sin θ3 0 0.5
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1









(8.15)

and the position of the wrist relative to {3} is

3pw =





0.4
0
0





Therefore, the position of the wrist relative to ground Frame 0 is

0pw = 0T1

1T2

2T3

3pw (8.16)

=





0.4 cos θ1 cos(θ2 + θ3) + 0.5 cos θ2
0.4 sin θ1 cos(θ2 + θ3) + 0.5 cos θ2

0.4 sin(θ2 + θ3) + 0.5 sin θ2



 (8.17)

Find the Jacobian by taking the time derivative of 0pw and rewriting it into the form as follows

0ṗw = J(θ)θ̇

=





−s1(0.4c23 + 0.5c2) −c1(0.4s23 + 0.5s2) −0.4s23c1
c1(0.4c23 + 0.5c2) −s1(0.4s23 + 0.5s2) 0.4s23s1)

0 −0.4c23 − 0.5c2 −0.4c23









θ̇1

θ̇2

θ̇3



 (8.18)

Therefore, the linear velocity of the wrist frame for any given joint configuration and velocity
is given by Equation (8.18), where the Jacobian is represented by the 3× 3 matrix.

136 Jacobian Analysis

z0

x0

y0

z1

x1

y1

P

0p

0O1

1p

FIGURE 8.4

Pure translation.

8.2 Velocity in Translation and Rotation

Note: Please refer to the Glossary for notation on linear and angular velocities.
To gain in-depth insight into a robotic system’s velocity, we conduct the analysis in an

alternative way here. Firstly, we derive basic formulas for translation and rotation.
In the case of pure translation, as shown in Figure 8.4, the moving frame {1} is always

parallel to the ground frame {0}. The position of arbitrary point P attached to {1} is given
by

0p = 0O1 + 1p (8.19)

where 1p is an invariant vector. The velocity of Point P is obtained by differentiating the
above equation with respect to time, i.e,

0ṗ =
0

Ȯ1 (8.20)

its physical meaning is that all points on this body have the same translational velocity.
Angular velocity is associated with a body or a frame with rotation as shown in Fig-

ure 8.5, where a moving frame {1} rotates around a pivot O in the ground frame {0}. The
orientation of {1} in {0} is noted as 0R1(t). Further consider a point P attached to {1},
whose position is given by

0p = 0R1(t)
1p ≡ R(t) 1p (8.21)

where 1p is an invariant vector. The velocity of Point P is the time derivative of its position,
i.e.,

0ṗ = Ṙ(t) 1p (8.22)

Since 1p = RT (t) 0p , we have

0ṗ = Ṙ(t) 1p = Ṙ(t) RT 0p (8.23)

Velocity in Translation and Rotation 137

z0

x0

y0

z1

x1

y1

O0

vP

FIGURE 8.5

Pure rotation.

Define Ω ≡ Ṙ RT such that the above equation becomes

0ṗ = Ω 0p (8.24)

It can be shown that Ω is skew-symmetric, i.e., ΩT = − Ω . The proof is in Ap-
pendix 24.1. Further, a skew-symmetric matrix can always be written as

Ω =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 =





ωx

ωy

ωz



×

where ω =


ωx ωy ωz

T
is called the angular velocity, while Ω is called the crossproduct

matrix of the angular velocity. The proof is in Appendix 24.2. Hence, the relation between
a rotation matrix and the corresponding angular velocity is given by

Ω ≡ Ṙ RT = [ω×] (8.25)

where [ω×] stands for the crossproduct matrix of ω . Imposing the frame indices on the
rotation matrix, (8.25) becomes

0Ω1 ≡

0

Ṙ1
0

RT
1 = [0

0
ω1×] (8.26)

where 0

0
ω1 is the angular velocity of Frame {1} with respect to Frame {0}, and also measured

in Frame {0}. This nomenclature is explained below.
A position vector of a point is defined as the vector from the origin of the frame to this

point. This frame is called the reference frame. The coordinates of this vector are obtained
by projecting this vector onto all axes of the same frame. We call this frame the measuring
frame. Implicitly, the reference frame and the measure frame for a position vector are always
the same. For example, the reference frame and the measuring frame of 0p are {0}, while
those of 1p are {1}.

Different from a position vector, a velocity vector may have different reference and
measuring frames.

138 Jacobian Analysis

{s}

ys

xs

200 km/h

{g}

yg

xg

{t}

xt

yt

100 km/h

FIGURE 8.6

Relative velocities.

Example 8.5 (Velocity frames): As shown in Figure 8.6, there are three observers: one on the
ground using a ground frame {g}, one in a train using a train-attached frame {t}, and one in a
spaceship using a ship-attached frame {s}. All the frames are illustrated in Figure 8.6. Given that
the train is travelling west at a speed of 100 km/h, while the spaceship is flying upwards at a speed
of 200 km/h. Find the velocity of the train with the reference frame and the measuring frame being
any one or two frames from {g}, {t}, and {s}.

Solution: Let us start with s
gvt , where s, g, t refer to the measure frame {s}, the reference frame

{g}, and the frame of moving body {t}. The relative speed between the train and the ground is
100 km/h west. Since {s} is the measure frame, this velocity is projected onto the axes of {s} to
obtain s

gvt , i.e.,

s
gvt =



0
100

]

(8.27)

The velocities of the train in different frames are summarised in Table 8.1. Note that when the
reference frame is {t}, the train’s speed is always zero. However, if the measuring frame is {t}, the
train’s speed does not have to be zero. If interested, you can try to find the velocity of the spaceship
in different frames.

A general motion consists of simultaneous translation and rotation as shown in Fig-
ure 8.7, where {1} moves with respect to {0}. The position of a point p attached to {1} is
given by

0

0
p = 0

0
O1 + 0

1p

= 0

0
O1 + 0R1

1
1p (8.28)

Velocity in Translation and Rotation 139

TABLE 8.1
Velocities represented in different frames

Ref. / Mea. {g} {t} {s}

{g} g
gvt =



−100
0



t
gvt =



100
0



s
gvt =



0
100



{t} g
tvt =



0
0



t
tvt =



0
0



s
tvt =



0
0



{s} g
svt =



−100
−200



t
svt =



100
200



s
svt =



−200
100



The velocity of point p with respect to ground is obtained by differentiating the above
equation, i.e.,

1ṗ =
0

Ȯ1 +
0

Ṙ1
1

1
p

=
0

Ȯ1 +
0

Ṙ1

0

RT
1

0

1
p

=
0

Ȯ1 + 0
ω1 ×

0

1
p (8.29)

which is measured in {0}. This velocity can also be measured in {1} by premultiplying the
rotation matrix on (8.29), i.e.,

1ṗ = 1R0
1ṗ

= 1R0

0

Ȯ1 + 1R0(
0Ω1 ×

0

1
p)

= 1R0

0

Ȯ1 + 1R0
0Ω1 ×

1R0
0

1
p

= 1Ȯ1 +
1Ω1 ×

1

1
p (8.30)

z0

x0

y0O0

Pz1

x1

y1

O1

FIGURE 8.7

General motion.

140 Jacobian Analysis

zi

xi

θ̇i

Oi

ipi+1

zi+1

xi+1

Oi+1

θ̇i+1

zi+2

θ̇i+2

i
ωi

ivi

i+1
ωi+1

i+1vi+1

FIGURE 8.8

Velocities of connected links.

8.3 Velocity Propagation

The idea of velocity propagation is to find the velocity of the origin and the angular velocity
of the i+ 1th frame, i+1

ωi+1 and i+1vi+1 , based on the information of the velocity of the
origin and the angular velocity of the ith frame, i

ωi and ivi , and the joint velocity, q̇i+1,
as shown in Figure 8.8. Angular velocities are easy to handle, in which the general formula
is given by

m
ωk = m

iωj +
m
jωk (8.31)

where {i}, {j}, {k}, and {m} are four different frames. The meaning of (8.31) is that the
angular velocity of {k} with respect to {i} equals the sum of the angular velocity of {j}
with respect to {i} and the angular velocity of {k} with respect to {j}. This is true for any
uniform measure frame {m}. Applying (8.31) to the system shown in Figure 8.8, we have

i
ωi+1 = i

ωi +
i
iωi+1 (8.32)

where the measure frame is {i}, and the omitted reference frame is {0}. Premultiplying
i+1Ri on both sides of (8.32) yields,

i+1
ωi+1 = i+1Ri

i
ωi +

i+1

iωi+1 (8.33)

Note that i+1

iωi+1 is the angular velocity of Link i+ 1 with respect to Link i, measured in
{i+ 1}. Hence, its direction is along the Z axis of {i+ 1}, while its magnitude is the joint
velocity, i.e.,

i+1

iωi+1 = q̇i+1 k (8.34)

where k =
[

0 0 1
]T

. Therefore, (8.33) can be further written as

i+1
ωi+1 = i+1Ri

i
ωi + q̇i+1 k (8.35)

which is the formula for the propagation of angular velocities. We can see that the angular
velocity of {i} and the joint velocity θ̇i+1 are transformed into the angular velocity of {i+ 1}
in (8.33).

Velocity Propagation 141

Point (origin) velocity propagation is to find i+1vi+1 , by knowing i
ωi and

ivi . According
to (8.29), the point velocity of the origin Oi+1 shown in Figure 8.8 can be written as

ivi+1 = ivi +
i
ωi ×

ipi+1 (8.36)

This equation can be described in {i+ 1} by multiplying i+1Ri on both sides of the above
equation, which gives

i+1vi+1 = i+1Ri(
ivi +

i
ωi ×

ipi+1) (8.37)

Equation (8.37) is the formula for the propagation of point velocities.

Example 8.6 (Velocity of 2R via propagation): A 2R robot is shown in Figure 8.9. Use
velocity propagation to find the point velocity of O3 on the end-effector. Assume l1 = l2 = 1 m.

Solution:
According to the previous example on the DK problem of this robot, we have the following

transform matrices.

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









,
1T2 =









c2 −s2 0 1
s2 c2 0 0
0 0 1 0
0 0 0 1









,
2T3 =









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1









According to the formulas (8.35) and (8.37) and the above transformation matrices, we have
velocities in Table 8.2. Note that the point velocity and angular velocity of the end-effector obtained
are measured in the third frame. To get the velocities measured in the ground frame, premultiply
the rotation matrix on them, i.e.,

0
ω3 = 0R3

3
ω3 =





0
0

θ̇1 + θ̇2



 ,
0v3 = 0R3

3v3 =





−s1θ̇1 − s12(θ̇1 + θ̇2)

c1θ̇1 + c12(θ̇1 + θ̇2)
0



 (8.38)

One can readily compare the obtained results to the solution (8.4) obtained by the Jacobian in
Example 8.1.

θ1

θ2

x0

y0

l1

l2

O1

x1

y1

y2

x2

y3

x3

Oo

O3

FIGURE 8.9

2R robot, with joint angles θ.

142 Jacobian Analysis

TABLE 8.2
Velocity propagation of the 2R robot

i i
ωi

ivi

0 0 0

1
[

0 0 θ̇1
]T

[0 0 0]
T

2
[

0 0 θ̇1 + θ̇2
]T [

s2θ̇1 c2θ̇1 0
]T

3
[

0 0 θ̇1 + θ̇2
]T [

s2θ̇1 c2θ̇1 + (θ̇1 + θ̇2) 0
]T

The formulas of velocity propagation (8.35) and (8.37) can utilise the ground frame as
the measuring frame. Premutiplying 0

Ri+1 on (8.35) and (8.37) yields

0
ωi+1 = 0

ωi + θ̇i+1
0
zi+1 (8.39)

0vi+1 = 0vi +
0
ωi ×

0

ipi+1 (8.40)

Without ambiguity, we can readily rewrite the above equations as

ωi+1 = ωi + θ̇i+1 zi+1 (8.41)

vi+1 = vi + ωi ×
ipi+1 (8.42)

Example 8.7 (Linear velocity via propagation 2): Find the angular velocity and the point
velocity of the end-effector by using velocity propagation.

Solution:
According to (8.41), we have

ω0 = 0

ω1 = ω0 + θ̇1 z1 = θ̇1 z1

ω2 = ω1 + θ̇2 z2 = θ̇1 z1 + θ̇2 z2

... =
...

ω6 = ω5 + θ̇6 z6 = θ̇1 z1 + . . .+ θ̇6 z6

(8.43)

According to (8.42), we have

vp = ω6 × 6pp + v6

= ω6 × 6pp + ω5 × 5p6 + v5

=
...

= ω6 × 6pp + ω5 × 5p6 . . .+ ω1 ×
1
p2

(8.44)

Velocity Propagation 143

zi

xi

yi

Oi

R

P

di+1

zi+1

xi+1

yi+1

Oi+1

FIGURE 8.10

Velocity propagation through a prismatic joint.

Substituting (8.43) into (8.44) yields

vp =


θ̇1 z1 + . . .+ θ̇6 z6


× 6pp +


θ̇1 z1 + . . .+ θ̇5 z5


× 5p6

. . .+ θ̇1 z1 × 1p2

= z1 ×
�

1p2 + 2p3 + . . .+ 6pp



θ̇1 + z2 × (2p3 + . . .+ 6pp)θ̇2

. . .+ z6 × 6pp θ̇6

= z1 × 1pp θ̇1 + z2 × 2pp θ̇2 + . . .+ z6 × 6pp θ̇6

(8.45)

The results shown in (8.43) and (8.45) can be written in a matrix form:



ω6

vp



=



z1 z2 . . . z6
z1 × 1pp z2 × 2pp . . . z6 × 6pp









θ̇1
...

θ̇6






(8.46)

The Jacobian can be extracted from (8.46) as

J =



z1 z2 . . . z6
pp1 × z1

pp2 × z2 . . . pp6 × z6



(8.47)

where each column is the Plücker coordinates of the corresponding joint axis with Point P as the
reference. The Plücker coordinates are used for uniquely defining a line in Euclidean space. The
6D Plücker coordinates consist of two 3D vectors: the first one is the direction of the line, while
the second one is the moment of line. (8.46) shows that the velocity of the end-effector is actually
the sum of the joint angular velocities around their own instantaneous axes. These instantaneous
axes are also the screw axes of the joints in the screw theory. An in-depth discussion on the screws
is out of the scope of the content here.

Example 8.8 (Velocity propagation with prismatic joints): Find the formulas for the
velocity propagation through a prismatic joint, as shown in Figure 8.10.

Solution: Since the prismatic joint does not permit a relative rotation between the two connected
links, the two links must have the same angular velocity. From (8.35), we have the propagation
formula of angular velocity for the P joint as

i+1
ωi+1 = i+1Ri

i
ωi (8.48)

144 Jacobian Analysis

On the other hand, a linear velocity along Axis zi+1 is introduced by the prismatic joint. From
(8.37), we have the propagation formula of point velocity for the P joint as

i+1vi+1 = i+1Ri



ivi +
i
ωi ×

i
ipi+1



+ ḋi+1 k (8.49)

where ḋi+1 is the joint velocity of the prismatic joint.

8.4 Statics

Statics analysis of a serial robot is the study of the mapping between the motor torque

inputs and the force and torque output of the end-effector. Collectively, we can call these

quantities the actuator effort .

8.4.1 Relation between Jacobians and Effort

We will show that the statics of a robot is related to its Jacobian matrix. Let us start with

a simple example without considering the masses of the links.

Example 8.9 (Effort via free-body analysis): Find the required joint torques, τ1 and τ2, of the
2R robot shown in Figure 8.11 to generate the desired force output, fx and fy, by the end-effector.

Solution: In this example, we will conduct free-body analysis on this 2R robot to find the required
joint torques. Isolating Link 2 as shown in Figure 8.12(a), we can readily find

τ2 = −s12fx + c12fy (8.50)

Note that the directions of two forces are reversed because the desired force is defined as the
action force by the end-effector while the free-body analysis of Link 2 requires the force acting on

the end-effector.
Similarly, using the analysis on Link 1 in Figure 8.12(b), we have

τ1 = −s1fx + c1fy + τ2 = −s1fx + c1fy − s12fx + c12fy (8.51)

θ1

θ2

x

y

l1

l2

τ1

τ2

fx

fy

P

FIGURE 8.11

A 2R robot.

Statics 145

θ1

θ2

x

y

l2
τ2

fx

fy

fx

fy

(a) Forces on end link

θ1

x

y

fx

fy

l1

τ1

τ2

(b) Forces on base link

FIGURE 8.12

Free-body analysis of 2R robot.

= (−s1 − s12)fx + (c1 + c12)fy (8.52)

Write (8.50) and (8.51) in the matrix form as



τ1

τ2

]

=

[

−s1 − s12 c1 + c12
−s12 c12

] [

fx
fy

]

(8.53)

Recall the velocity mapping (8.4) in Example 8.1 given below:

[

ẋp

ẏp

]

=

[

−s1 − s12 −s12
c1 + c12 c12

] [

θ̇1

θ̇2

]

(8.54)

From Example 8.9, we find that the relation between the matrices from Equations (8.53)
and (8.4) is a simple transposition. We will show this is always true by analysing a general
case.

Example 8.10 (Effort of a general 6R robot): A general 6R robot is shown in Figure 8.13.
Find the joint torques according to the output effort by the end-effector.

Solution: According to the principle of virtual work, we have

τ1δθ1 + . . .+ τ6δθ6 = fexδdx + fexδdy + fezδdz + τexδγ + τeyδβ + τezδα (8.55)

where δθi is the virtual displacement of θi, and δdx, δdy, and δdz are the virtual displacements of
dx, dy and dz, respectively. δγ, δβ, and δα are the virtual angular displacements of the end-effector
around the axes in the end-effector attached frame, x, y, and z, respectively. Dividing (8.55) by a
time interval δt gives the relation in terms of velocities as

τ
T
θ̇ = fTe v + τ

T
e ω =

[

fTe τ
T
e

]

[

v
ω

]

(8.56)

where

τ =
[

τ1 . . . τ6

]T
θ̇ =

[

δθ1/δt . . . δθ6/δt
]T

(8.57)

146 Jacobian Analysis

z1
x1θ̇1

τ1

z2

x2θ̇2 τ2

z3

x3

θ̇3

τ3

z6

θ̇6

x6

τ6

v

ω

τ e

fe

P

z0

x0
y0

FIGURE 8.13

A general 6R robot.

fe =


fex fey fez
T

v =


δdx/δt δdy/δt δdz/δt


(8.58)

τ e =


τex τey τez
T

ω =


δγ/δt δβ/δt δα/δt
T

(8.59)

These terms of velocities are obtained directly from the definition of velocity. The angular velocity
term ω is proven in Appendix 24.3. The kinematics relation is now known as



ω

v



= J θ̇ (8.60)

Substituting (8.60) into (8.56) gives

τ
T
θ̇ =



fTe τ
T
e



J θ̇ (8.61)

Since the above equation is valid for an arbitrary joint velocity vector θ̇ , we have

τ = JT



fe
τ e



(8.62)

Equation (8.62) indicates that the transpose of the Jacobian matrix of a serial robot maps the
output effort by the end-effector to the input joint torques.

Example 8.11 (Static load balancing): A robotic spherical wrist is shown in Figure 8.14, where
the axes of three joints are concurrent. There is a force fe exerted at Point P on the end-effector,

where 3p =


0 0 1
T

. Find the input torques to balance this load.

Solution: The problem can be solved by free-body static analysis, which can be a bit tedious.
We will use the Jacobian to tackle this problem. According to the assigned DH frames, we derived
previously the transform matrices as

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









1T2 =









c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1









2T3 =









c3 −s3 0 0
0 0 −1 0
s3 c3 0 0
0 0 0 1









(8.63)

Statics 147

z0, z1, x2

θ3 θ2

O

z2, x3 θ1
x1, z2

x0

FIGURE 8.14

Spherical wrist.

Given 3p =


0 0 1
T

, we have

0p = 0T1

1T2

2T3

3p =









cos θ1 sin θ2
sin θ1 sin θ2
− cos θ2

1









(8.64)

Hence

0ṗ =





− sin θ1 sin θ2θ̇1 + cos θ1 cos θ2θ̇2
cos θ1 sin θ2θ̇1 + sin θ1 cos θ2θ̇2

sin θ2θ̇2



 = J θ̇ (8.65)

where θ̇ =


θ̇1 θ̇2 θ̇3
T

, and the Jacobian is given by

J =





− sin θ1 sin θ2 cos θ1 cos θ2 0
cos θ1 sin θ2 sin θ1 cos θ2 0

0 sin θ2 0



 (8.66)

Hence, the joint torques are given by

τ q = JT (− fx) = −





− sin θ1 sin θ2 cos θ1 sin θ2 0
cos θ1 cos θ2 sin θ1 cos θ2 sin θ2

0 0 0









fex
fey
fez



 (8.67)

that is

τ1 = sin θ1 sin θ2fex − cos θ1 sin θ2fey

τ2 = − cos θ1 cos θ2fex − sin θ1 cos θ2fey − sin θ2fez

τ3 = 0 (8.68)

Note that the required torque on the third joint is always zero because the force is acting on the
axis of the third joint.

The previous statics analysis does not consider the masses of the links of the robotic

manipulator. In the case that the masses of the links are not negligible as compared to

148 Jacobian Analysis

the loads, the Jacobian matrices for mass centres are required. Considering Example 8.10,
the mass and mass centre of each link are mi and ci ≡

0ci, respectively, for i = 1, . . . , 6.
According to the principle of virtual work, (8.56) becomes

τ
T
θ̇ +

∑

mig
T ċi =

[

fTe τ
T
e

]

[

v

ω

]

(8.69)

which can be further written as

τ
T
θ̇ +

∑

mig
T Jci θ̇ =

[

fTe τ
T
e

]

J θ̇ (8.70)

Since the above equation is valid for an arbitrary joint velocity vector θ̇ , we have

τ = JT

[

fe
τ e

]

−

6
∑

i=1

mi J
T
cig (8.71)

which are the total torques required to overcome gravity and produce the desired output
force and torque by the end-effector.

8.5 Workspace

The workspace evaluation of a robotic manipulator is fundamental in the design process and
allows a designer to choose proper design parameters for the optimum workspace. A simple
index can be the volume of the workspace, although the shape of a robotic workspace is
often important to particular applications. Usually, the position workspace other than the
orientation workspace is considered because it is intuitive and relatively simple. Further,
there are different types of position workspace. Here, we will restrict our study to the
maximum reachable workspace, which is defined as the set of all positions that can be
reached by the end-effector of a robotic manipulator. Here, we introduce a theorem below.

Theorem 8.1. The end-effector of a two-DoF planar or three-DoF spatial robotic manip-

ulator is on the boundary of its maximum reachable position workspace if its Jacobian is

singular.

The following discussion gives some insight into this theorem instead of providing com-
plete proof of this theorem. Consider a three-DoF spatial robot with the joint space in R3

and the task space in R3 as well. In one configuration, the 3× 3 Jacobian J maps the 3D
joint velocity into the 3D point velocity. If J is singular, the nullspace of J is not empty.
According to the rank-nullity theorem, the null space of JT is too not empty and is per-
pendicular to the image of J . The union of the null space of JT and the image of J is all
possible 3D point velocity at this position in the task space. The null space of JT and the
image of J are the subspaces of the unreachable point velocities and the reachable point
velocities, respectively. Consider a unit vector n inside the null space of JT and define the
travel distance of the end-effector in the direction of n as d = pT n , where p is the point
of interest on the end-effector. Then we have

∂d

∂ θ
= (

∂p

∂ θ
)T n = JT n (8.72)

Since n inside the null space of JT , we have ∂d/∂ θ = 0, which means that the singular
position of the end-effector is at its local extrema (minima or maxima) in the direction of n .

Workspace 149

θ1

θ2

P (xp, yp)

x

y

FIGURE 8.15

A 2R robot.

Hence, the end-effector is on the boundary. Further, the image of J represents the tangent
plane to the boundary surface, while the null space of JT is normal to the boundary.

Example 8.12 (Workspace boundary analysis): Find the boundary of the workspace of the
2R Robot shown in Figure 8.15. Assume l1 = l2 = 1 m.

Solution: From the previous example, we know the Jacobian as

J =



−s1 − s12 −s12
c1 + c12 c12

]

(8.73)

whose singular condition is given by det(J) = 0. This is

∣

∣

∣

∣

−s1 − s12 −s12
c1 + c12 c12

∣

∣

∣

∣

= −c12s1 + s12c1 = s2 = 0 (8.74)

The solutions of the above equation are

θ2 = 0◦, θ2 = 180◦ (8.75)

which means that the end-effector is at its boundary when the second joint is either fully folded or
fully stretched out. This is true for this 2R robot. The position of the end-effector is given by

[

xp

yp

]

=

[

c1 + c12
s1 + s12

]

(8.76)

Substituting the singular conditions into the above position yields

[

xp

yp

]

=

[

2c1
2s1

]

,

[

xp

yp

]

=

[

0
0

]

(8.77)

This represents the workspace boundaries of the robot, which is a circle with a radius of 2 and a
point in the middle. In the singular configuration, a serial manipulator loses mobility and gains
infinitely high stiffness in the direction of the load.1

1A parallel manipulator can also have parallel singularities.

150 Jacobian Analysis

θ1

θ2

P (xP , yP)

x

y

l1

l2

xP = l1 cos θ1 + l2 cos(θ1 + θ2)

yP = l1 sin θ1 + l2 sin(θ1 + θ2)

FIGURE 8.16

RR manipulator with the forward kinematic equations.

8.6 MATLAB® Examples

There are two methods in which MATLAB can calculate Jacobians for a serial manipulator:
velocity propagation as introduced in this chapter, and the use of the Jacobian () function
built into the Symbolic Math Toolbox. The examples in this section will cover both methods.
Note that the velocity propagation method will yield velocity equations only, and require
additional code to convert to Jacobian matrix form. However, this method can also be used
to calculate the instantaneous numerical velocity of any defined frame within the robot
iteratively, which is one of the advantages of this method if the closed-form solution to the
velocity equations is unobtainable or complex.

Example M8.1 (Built-in Jacobian function): Using the Jacobian () function in MATLAB,
find the end-effector Jacobian matrix 0J for the RR manipulator in Figure 8.16.

Solution: The following MATLAB code performs the above steps to solve the inverse kinematics
for this problem, with the ensuing command window output.

1 syms th1 th2 l1 l2 real
2 x = l1*cos(th1) + l2*cos(th1+th2);
3 y = l1*sin(th1) + l2*sin(th1+th2);
4

5 p02 = [x; y]
6

7 J02 = jacobian(p02 , [th1 , th2])

p02 =

l2*cos(th1 + th2) + l1*cos(th1)
l2*sin(th1 + th2) + l1*sin(th1)

J02 =

[- l2*sin(th1 + th2) - l1*sin(th1), -l2*sin(th1 + th2)]
[l2*cos(th1 + th2) + l1*cos(th1), l2*cos(th1 + th2)]

According to variable J, the Jacobian matrix of the end-effector measured at frame {0} is

0J =



−l2 sin(θ1 + θ2)− l1 sin θ1 −l2 sin(θ1 + θ2)
l2 cos(θ1 + θ2) + l1 cos θ1 l2 cos(θ1 + θ2)

]

(8.78)

MATLAB® Examples 151

Example M8.2 (Statics): For the same RR manipulator in Figure 8.16, find the joint torques
required to statically hold a −5Ŷ2 N force at the end-effector when the robot is under the pose

θ1 =
π

4
θ2 =

π

5

with link lengths

l1 = l2 = 0.5 m

Solution: The joint torque τ is calculated by

τ q =
0

JT 0fx (8.79)

where 0F is the force applied at the end-effector, measured at the base frame {0}.

1 % Create function handle for Jacobian matrix J02
2 f_J02 = matlabFunction(J02 ,’Vars’,[th1 th2 l1 l2]);
3

4 % Substitute known values for [th1 , th2 , l1 , l2]
5 v_J02 = f_J02(pi/4, pi/6, 0.5, 0.5)
6

7 % Calculate static torque
8 F02 = [0 -5]’; % Force at end effector {2} wrt {0}
9 torque = v_J02 ’*F02

v_J02 =

-0.8365 -0.4830
0.4830 0.1294

torque =

-2.4148
-0.6470

Therefore, the torques required for each actuator to maintain the static force of −5Ŷ0 N at the
end-effector is

τ q =



−2.4148
−0.6470

]

Nm

Example M8.3 (Velocity propagation): Use the velocity propagation method to find the
Jacobian matrix 4J of an articulated robot represented in Figure 8.17.

Solution: The following MATLAB code performs the above steps to solve the inverse kinematics
for this problem, with the ensuing command window output.

1 syms th1 th2 th3 l1 l2 real % Joint and constant terms
2 syms dth1 dth2 dth3 real % Joint velocity terms
3

4 % Frame definitions
5 T_0_1 = [
6 cos(th1) -sin(th1) 0 0;
7 sin(th1) cos(th1) 0 0;
8 0 0 1 0;
9 0 0 0 1];

10

11 T_1_2 = [
12 cos(th2) -sin(th2) 0 0;
13 0 0 1 0;
14 -sin(th2) -cos(th2) 0 0;
15 0 0 0 1];
16

17 T_2_3 = [
18 cos(th3) -sin(th3) 0 l1;
19 sin(th3) cos(th3) 0 0;
20 0 0 1 0;
21 0 0 0 1];

152 Jacobian Analysis

{0}, {1}

{2}

{3}

{4}

0T1 =









cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1









1T2 =









cos(θ2) − sin(θ2) 0 0
0 0 1 0

− sin(θ2) − cos(θ2) 0 0
0 0 0 1









2T3 =









cos(θ3) − sin(θ3) 0 l1
sin(θ3) cos(θ3) 0 0

0 0 1 0
0 0 0 1









3T4 =









1 0 0 l2
0 0 1 0
0 −1 0 0
0 0 0 1









FIGURE 8.17

An articulated manipulator with transformation matrices.

22

23 T_3_4 = [
24 1 0 0 l2;
25 0 0 1 0;
26 0 -1 0 0;
27 0 0 0 1];
28

29 % Initialise variables
30 w0 = [0 0 0]’ % Base frame zero angular velocity
31 v0 = [0 0 0]’ % Base frame zero linear velocity
32 Z = [0 0 1]’; % Unit vector in Z
33

34 % Propagation i = 1 (Frame {0} to {1} via revolute joint 1)
35 R01 = T_0_1 (1:3 ,1:3); % Rotation matrix of {1} measured in {0}
36 R10 = R01 ’; % Rotation matrix of {0} measured in {1}
37 P01 = T_0_1 (1:3 ,4); % Position of {1} measured in {0}
38 w1 = R10*w0 + dth1*Z % Angular vel of {1} measured in {1}
39 v1 = R10*(v0 + cross(w0 , P01)) % Linear vel of {1} measured in {1}
40

41 % Propagation i = 2 (Frame {1} to {2} via revolute joint 2)
42 R12 = T_1_2 (1:3 ,1:3); % Rotation matrix of {2} measured in {1}
43 R21 = R12 ’;
44 P12 = T_1_2 (1:3 ,4); % Position of {2} measured in {1}
45 w2 = R21*w1 + dth2*Z % Angular vel of {2} measured in {2}
46 v2 = R21*(v1 + cross(w1 , P12)) % Linear vel of {2} measured in {2}
47

48 % Propagation i = 3 (Frame {2} to {3} via revolute joint 3)
49 R23 = T_2_3 (1:3 ,1:3);
50 R32 = R23 ’;
51 P23 = T_2_3 (1:3 ,4);
52 w3 = R32*w2 + dth3*Z % Angular vel of {3} measured in {3}
53 v3 = R32*(v2 + cross(w2 , P23)) % Linear vel of {3} measured in {3}
54

55 % Propagation i = 4 (Frame {3} to {4} via displacement only)
56 R34 = T_3_4 (1:3 ,1:3);
57 R43 = R34 ’;
58 P34 = T_3_4 (1:3 ,4);
59 w4 = R43*w3 % Angular vel of {4} measured in {4}
60 v4 = R43*(v3 + cross(w3 , P34)) % Linear vel of {4} measured in {4}
61

62 % Find Jacobian matrix J44 (Jacobian of {4} measured in {4}
63 % Create function handle of v4
64 f_v4 = matlabFunction(v4); % Input vars: dth1 ,dth2 ,dth3 ,l1 ,l2 ,th2 ,th3
65

66 % Eliminate variables using function handle
67 c = {l1 ,l2 ,th2 ,th3}; % Constants
68 J44 = simplify ([f_v4(1,0,0,c{:}) f_v4(0,1,0,c{:}) f_v4(0,0,1,c{:})])

MATLAB® Examples 153

w0 =

0
0
0

v0 =

0
0
0

w1 =

0
0

dth1

v1 =

0
0
0

w2 =

-dth1*sin(th2)
-dth1*cos(th2)

dth2

v2 =

0
0
0

w3 =

- dth1*cos(th2)*sin(th3) - dth1*cos(th3)*sin(th2)
dth1*sin(th2)*sin(th3) - dth1*cos(th2)*cos(th3)

dth2 + dth3

v3 =

dth2*l1*sin(th3)
dth2*l1*cos(th3)
dth1*l1*cos(th2)

w4 =

- dth1*cos(th2)*sin(th3) - dth1*cos(th3)*sin(th2)
- dth2 - dth3

dth1*sin(th2)*sin(th3) - dth1*cos(th2)*cos(th3)

v4 =

dth2*l1*sin(th3)
- l2*(dth1*cos(th2)*cos(th3) - dth1*sin(th2)*sin(th3)) - dth1*l1*cos(th2)

l2*(dth2 + dth3) + dth2*l1*cos(th3)

J44 =

[0, l1*sin(th3), 0]
[- l2*cos(th2 + th3) - l1*cos(th2), 0, 0]
[0, l2 + l1*cos(th3), l2]

According to variable J44, the Jacobian matrix of the end-effector measured at frame {4} is

4J =





0 l1 sin θ3 0
−l2 cos(θ2 + θ3)− l1 cos θ2 0 0

0 l2 + l1 cos θ3 l2



 (8.80)

154 Jacobian Analysis

Example M8.4 (Jacobian matrix): Find the end-effector Jacobian matrix 4J for the articulated
manipulator in MATLAB Example M8.3 using the Jacobian () function in MATLAB.

Solution:

1 % Find EE frame {4} measured in base frame {0}
2 T_0_4 = T_0_1 * T_1_2 * T_2_3 * T_3_4;
3 R04 = T_0_4 (1:3 ,1:3); % Rotation matrix of {4} wrt {0}
4 P04 = T_0_4 (1:3 ,4); % Position of {4} wrt {0}
5 J04 = jacobian(P04 ,[th1 th2 th3]); % Jacobian of EE {4} wrt {0}
6 R40 = R04 ’; % Rotation matrix of {0} wrt {4}
7

8 % Jacobian of EE {4} wrt {4}
9 J44 = simplify(R40*J04)

J44 =

[0, l1*sin(th3), 0]
[- l2*cos(th2 + th3) - l1*cos(th2), 0, 0]
[0, l2 + l1*cos(th3), l2]

Note that the variable J44 representing 4J in this example is exactly the same as the one generated
in Example M8.3 as Equation (8.80), verifying that both the velocity propagation method and
MATLAB Jacobian () functions produce the same answers.

8.7 Conclusion

Velocity analysis of a robot is an important tool for analysing end-effector motion. Two

methods were introduced for deriving the velocity of the end-effector relative to its base

frame.

The time derivative of the analytic forward kinematic equations is the most direct

method for modelling end-effector velocity. The linear velocity can be found by taking

the time derivative of the end-effector position, and the angular velocity can be found by

finding the skew-symmetric matrix, and extracting its x, y, and z components. This method

can be quite difficult for robots with high DoF, because the analytic expressions can be

very complex.

The velocity propagation method is an iterative method for deriving the velocity of the

end-effector. Although the process is less direct, the method is ideal for robots with many

DoF, or when the analytical expression for the forward kinematics is difficult to analyse.

The expression for the end-effector velocity can be represented as a Jacobian matrix J ,

which maps the joint velocity in the joint space to the end-effector velocity in the task space.

This matrix can then be used for singularity and workspace analysis, and statics analysis

by taking JT .

8.8 Exercises

Problem 1. Derive the Jacobian for the manipulators mapping the joint velocity inputs

to the point velocity of the end-effector tips for both three-link manipulators from Figure

8.18. Represent the Jacobian in

Exercises 155

l1

θ1

l2
θ2

l3

θ3

FIGURE 8.18

A 3R non-planar robot.

1. {0} attached to the base.

2. {3} attached to the third link.

Problem 2. A simplified model of a personnel lifter mechanism is shown in Figure 8.19 that
has a working platform as the end-effector, which for safety purposes is always oriented in
the direction of ẑ0. Joints 1, 2, and 4 are revolute, with the first two coincident and the third
joint prismatic, offset from joint 2 by distance l with variable extension d. You can assume
a load in any direction on the platform translates to a point force in the same direction
coincident at the fourth joint. Hence find equations for the torques, τ1 , τ2 and prismatic joint

force f3 such that the mechanism can support any force 0fe =
[

fex fey fez
]T

, applied to
the platform. What are the singularities of this system, and what does it physically mean?
Assume the robot is at home position in Figure 8.18, therefore an offset is needed in row
2 of the DH table. Note: The following equations for a prismatic joint can be adopted for
velocity propagation:

i+1
ωi+1 = i+1Ri

i
ωi

i+1vi+1 = i+1Ri

(

ivi +
i
ωi ×

i
ipi+1

)

+ ḋi+1 k

Problem 3. For the robot shown in Figure 8.20.

1. Using the propagation method, find the velocity (linear and angular) of the end-
effector in the tool frame, i.e., find 4v4 and 4

ω4 .

z0, z1

z2

z3

z4

l d

FIGURE 8.19

Schematic of a four-DoF RRPR mechanism.

156 Jacobian Analysis

x0, x1

y0, y1

l1
θ1

z2

x2d2
y3

x3

θ3
y4

x4

l4

FIGURE 8.20

Planar robot.

2. Using the results obtained in (a), find the velocity (linear and angular) of the
end-effector in the base frame in its simplest form, i.e. find 0

v4 & 0
ω4

3. Find the Jacobian of the end-effector in the tool frame, i.e., 4
J (include only

linear velocity terms).

4. Find the Jacobian of the end-effector in the base frame, i.e., 0
J (include only

linear velocity terms).

5. Find the joint torques required to maintain a static force vector 0
fe =



fex fey fez
T

, represent the result as a matrix equation.

The transformation matrices between the base and tool frame for the robot in Figure 8.20
are as follows:

0
T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









1
T2 =









1 0 0 l1
0 0 −1 −d2
0 1 0 0
0 0 0 1









2
T3 =









s3 c3 0 0
0 0 1 0
c3 −s3 0 0
0 0 0 1









3
T4 =









1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1









Note: Your answers should reflect the use of these transformation matrices or otherwise
correct 4

T0 generated by the matrices above. Do not reassign frames and use a different
set of matrices.
Problem 4. The kinematics of a 3R robotic manipulator is given by

0
T3 =









c1c23 −c1s23 s1 2c1 + c1c2
s1c23 −s1s23 −c1 2s1 + s1c2
s23 c23 0 s2
0 0 0 1









where si = sin θi, ci = cos θi, sij = sin(θi + θj), and cij = cos(θi + θj). Further, θi for
i = 1, 2, 3 are joint angles of this robot.

1. The position of the tip of the tool held by this robot is given by
[

1 0 0
]T

in the
third frame, {3}. Find the joint angles such that this point can reach a required

Exercises 157

Joint 4 z4

x4

l5

Joint 5

Joint 6

z5

z6

x5, x6l6
z7

x7

l7

FIGURE 8.21

Wrist and end-effector of Baxter robot.

position


1.75 3.03 0.87
T

given in the ground frame, {0}. Here, θ1 = 60◦ is
given as the part of the answer to reduce the complexity of calculation.

2. At the above position, a force of 10N is acting at the tip of the tool by a workpiece
in the negative direction of the y-axis of the ground frame. Find the required
torques on each joint in order to balance the robotic arm. If you have multiple
configurations of the robot for this position, choose any one of them to get your
answer.

Problem 5. In a two-DoF planar robot, the position of a point P on the end-effector is
given by

x = 10 cos θ1 sin θ2 − 10 sin θ1 cos θ2 + 10 cos θ1

y = 10 sin θ1 sin θ2 + 10 cos θ1 cos θ2 + 10 sin θ1

At a static configuration with θ1 = 45◦ and θ2 = 90◦, an external force fe =


fex fey
T

=


−5
√
2 10

√
2
T

N is exerted at the point P on the robot. Calculate the
required joint torques, τ1 and τ2, to resist this external force.

Problem 6. The orientation of one object with respect to the ground is represented by the
quaternions (a, b, c, d) given by

R =





a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2





At one instant, we detect a = b = c = d = 0.5 and ȧ = 10, ḃ = 40, ċ = −20, ḋ = −30.
Please find the instantaneous angular velocity of this object with respect to the ground,
measured in the ground frame. Units are not required.

Problem 7. The wrist of the Baxter robot is illustrated in Figure 8.21. It consists of
two revolute joints, Joints 5 and 6. Link 4 is assumed to be fixed in this question. Frames
F4 to F7 are used to describe the configuration of such wrist and the end-effector. The
overall transformation matrix 4T7 is given by

4T7 =









c5c6 −s5 c5s6 c5(l6 + l7s6)
s6 0 −c6 −l5 − l7c6
s5c6 c5 s5s6 s5(l6 + l7s6)
0 0 0 1









158 Jacobian Analysis

1. Derive the Jacobian, J , mapping the joint velocity to the point velocity of origin

of {7}.

2. Determine the wrist joint loads, τ5 and τ6, for the manipulator to reach static

equilibrium under an external load


fex fey fez
T

at the origin of {7}.

3. Calculate the numerical solutions of τ5 and τ6, when

θ5 =
π

3

θ6 =
π

6

l5 = 0.375 m

l6 = 0.1 m

l7 = 0.5 m

fx = fy = fz = 1 N

9

Path Planning

In Chapter 3, we investigated methods for generating trajectories between two points in
both joint space and task space. In longer trajectories, we used via points to link the initial
and goal states of the robot via cubic splines. While the selection of via points seemed
arbitrary in the previous chapter, in application, the selection of via points is not a trivial
task. In addition, it is not always guaranteed that a path exists from the robot’s initial
position to the goal position. In this chapter, we answer two important questions: does a

valid path exist between the robot’s initial state and the goal state? If a path exists, then
how do we move the robot from its initial state to the goal state? The act of path planning
is a critical task in robotics, which attempts to answer these questions, but this is generally
not an easy task with many solutions to the problem.

In this chapter, we will introduce path planning methods and algorithms commonly
used in robotics and path planning in general. Starting with the most basic path-finding
algorithms, each algorithm is introduced with increasing complexity, with the final path
planners introduced representing state-of-the-art algorithms that are commonly used in
manufacturing robotics and mobile field robots.

9.1 Configuration Space

Most path planners are implemented in the discretised C-space. The C-space can be gen-
eralised to identifying the robot’s current state, such positions in 3D space, robot arm
positions or even assembly states. As long as the C-space is non-empty and has connected
states, these path planning algorithms can be implemented. Hence, the goal of a path plan-
ner is to determine a feasible path between the initial state and the goal state as represented
by the C-space. It is important that the elements in the C-space are countable and finite in
the path planning context (i.e., there are a limited number of states a robot can exist in).

In a manipulator context, a configuration space (or C-space) represents the set of all
possible configurations of the robot, which can be mapped one-to-one to the joint space.
This means a single point in the configuration space maps to a single point in the joint
space. Path planning is generally performed in the C-space because, by definition, it fully
describes the configuration of the robot. This is important for:

• Simplifying the path planning scheme,

• Utilising the maximum usable workspace of a robot, and

• Fully defining a robot configuration for collision avoidance in the workspace.

Consider a 2R planar manipulator such as that shown in Figure 9.1, along with sampled
C-space points and the projection of these points into the task space. In the task space,
we have defined obstacles, represented by black dots. This translates to invalid points in

DOI: 10.1201/9781003614319-9 159

https://doi.org/10.1201/9781003614319-9

160 Path Planning

θ1

θ2

P (xp, yp)

x

y

l1

l2

-2 0 2

1

-3

-2

-1

0

1

2

3

2

Joint Space

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Task Space

FIGURE 9.1

The valid joint space and task space with obstacles of a 2R manipulator. Three configura-
tions are represented in both spaces, with proposed paths shown as arrows.

the C-space, which are subsequently removed (as voids in the C-space). Now, we propose to
plan a path from the blue to the green configuration. We have two ways to represent the
C-space: in the joint space variables (θ1 and θ2) or the task space variables (x and y).

Suppose we use the task space variables to represent the C-space, which is a logical step,
given that obstacle definition is usually expressed in task space variables. A task space path
can be easily observed, as represented by the red-arrow trajectory. However, if this trajectory
is followed, then the end configuration will be represented in red, which is infeasible due
to its elbow being in collision. This is a direct result of a C-space not having a one-to-one
mapping with the joint space.

Now, suppose we use the joint space variables to represent the C-space. The goal is
represented in two unique positions in this space — at the green marker, which was the
original goal, and the red marker, which, although it represents the same point in the task
space, is a different configuration to the green. In addition, we also observe the red marker
as not being a valid configuration because it does not lie in the discretised valid region. If
a proposed path, represented in green arrows, is followed, then we are guaranteed to finish
at the green configuration as intended.

Configuration Space 161

The reason why task space planning is not guaranteed to work for serial robots is that

there may be more than one inverse kinematic solution for each point in this space. There-

fore, to successfully plan a path between these two configurations, we need to apply kine-

matic constraints, which, depending on the manipulator involved, can be quite a complex

problem. However, there may be highly valid reasons why we should perform path planning

in the task space variables. These reasons usually involve path constraints, which are defined

in the task space variables, such as the need to perform linear trajectories in manufacturing

tasks. Therefore, we can conclude the following points.

Case for Task Space Planning

Where the trajectory of the end-effector is critical, such as executing pre-defined linear

paths or task space collision avoidance, then task space planning is desirable.

Case for C-space Planning

If we are only concerned with linking configurations A and B, and the trajectory of the

end-effector does not matter, then planning in a C-space is preferred.

For serial robots, the joint space always fully describes a serial robot’s configuration.

Hence, the C-space of a serial robot is made up of joint space variables. Unless path planning

constraints are required, for the rest of this chapter, any reference to the C-space of a robot

represents the joint space of a serial robot.

The C-space, or any planning space, is generally a continuous space in R
n, where n is

the number of dimensions. For most path planning algorithms, we utilise discrete samples

of the C-space. These samples can be taken from a grid-based discretisation or randomly

sampled.

9.1.1 Grid

In a grid-based discretisation scheme, each dimension of the C-space is discretised uniformly,

such that all states in the C-space are represented in a grid-like structure. This is a basic

-2 0 2

1

-3

-2

-1

0

1

2

3

2

C-space

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Task Space

FIGURE 9.2

The discretised C-space and equivalent points in the task space of a planar 2R manipulator.

162 Path Planning

-2 0 2

1

-3

-2

-1

0

1

2

3

2

C-space

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Task Space

FIGURE 9.3

A C-space that is randomly sampled, and equivalent points in the task space of a planar 2R

manipulator.

scheme that is very easy to implement in a programming environment, and is the sim-

plest way to represent the C-space, particularly when visualising important contours of the

workspace. Figure 9.2 shows the grid-based discretisation scheme applied to a planar 2R

manipulator.

An important property of this type of discretisation to consider is the memory usage

associated with saving each element in the C-space. As the dimensionality of the C-space

increases, the memory usage to store this space exponentially grows. In a six-dimensional

C-space, which is quite common in robotics because it represents Cartesian and rotational

co-ordinates, even a coarse discretisation of 30 elements per dimension results in 306 = 729

million elements in the C-space. If each element held a single, double-precision floating-point

variable, which is 8 bytes, then we require 5.83 GB of memory to store the C-space. While

this is a non-issue on dedicated computer systems, it is problematic on embedded systems

where resources are very constrained. Finally, such a large C-space can adversely affect the

speed of complete path planners, as they generally search through the entire C-space for a

feasible solution.

9.1.2 Random Sampling

Random sampling is not necessarily a discretisation method, but it describes how the points

in the C-space are progressively taken for path planning. This method is regularly used by

state-of-the-art sample-based path planners, where the general assumption is that a general

C-space is relatively smooth, even with the presence of obstacles. In this case, a gridded

approach may result in many discretised points that do not represent any critical features

within the C-space. This means a significant amount of memory is wasted by storing trivial

points in the C-space, that could have otherwise been identified by linear interpolation

between two sampled points.

State Connectivity 163

Random sampling solves this problem by progressively adding randomly sampled points
in the C-space, where the more points are sampled, the better the C-space is represented.
The user defines when to stop sampling, based on measured confidence that the C-space and
potential obstacles are fully defined by these randomly sampled points. If enough points are
sampled, then collision-free paths can be planned effectively and efficiently. This method of
discretisation has been shown to work well in higher-dimensional C-spaces.

As each point is randomly sampled, the chance of sampling exactly the same point is
minimal. Hence, paths will always take different points from start to goal configurations.
Therefore, paths found with this method are non-deterministic in nature. In some cases,
this can be viewed as a limitation where path repeatability is a priority. In addition, the
chance of finding a successful path between two configurations is probabilistically complete,
in that the probability of resolving whether a path exists or not increases as more samples
are taken. This concept will be expanded upon in Section 9.5. Figure 9.3 shows the random
sampling scheme applied to a planar 2R manipulator.

9.2 State Connectivity

For multi-query planners, the randomly sampled states should be connected via a connec-

tivity scheme. These connections define all potential paths between states before they are
validated for obstacles and other constraints. In other words, a connectivity scheme defines
a set of rules in which states in a C-space are considered adjacent and therefore connected
by default.

9.2.1 Grids

In a grid discretisation scheme, we can consider the volume of the C-space being divided into
cells, such that each discretised point is located at the centre of its cell. A cell’s boundaries
along each dimension are called a polytope, which represents the “flat” sides of a cell, such
as the edges of a square in two dimensions, or faces of a box in three dimensions. The
C-space can, therefore, be represented as a volume that is equidistantly filled with these
cells, such that each cell’s polytopes are in contact with an adjacent cell. Based on this
abstract representation, several levels of connectivity can be applied to a cell’s polytopes,
which affect the complexity of the path planning problem.

9.2.1.1 Definition

Consider an R
n C-space, where n is the number of dimensions. Assume that this C-space

is grid-discretised into cells, made up of 2n, (n − 1)-dimensional polytopes. Then, for an
n-dimensional C-space, there is a minimum of n-possible connectivity schemes. Also, each
connectivity scheme defines which adjacent cells are connected via an (n − m)-dimension
polytope of a cell, where {m ∈ Z

+ : m ≤ n}.
Aminimum connectivity scheme allows only (n−1)-dimension polytopes to be connected

to an adjacent cell.
A maximum connectivity scheme allows all (0, 1, .., n − 1)-dimension polytopes to be

connected to an adjacent cell.

Example 9.1 (2D connectivity): Consider a two-dimensional C-space, where n = 2 that has

been grid-discretised with free space and obstacles defined. Define the minimum, maximum, and

164 Path Planning

(a) 4-connectivity via 1-D polytopes.

(b) 8-connectivity via 1-D and 0-D poly-
topes.

FIGURE 9.4

Connectivity schemes of a two-dimensional C-space.

any other useful connectivity schemes for this C-space.

Solution: By definition, there are two possible connectivity schemes for n = 2, connectivity where
1-D polytopes are connected, and connectivity where both 1-D and 0-D polytopes are connected.
These connectivity schemes can be observed in Figure 9.4.

4-connectivity

This scheme defines that states in the grid should be connected, at most, at their adjacent 1-
dimensional polytope or adjacent edges. It is called 4-connectivity because each cell can transition
to another state in four directions, via the four edges of each cell. This is the minimum connectivity
scheme.

8-connectivity

This scheme defines that states in the grid should be connected at their adjacent edges (1-D
polytope) as well as at their vertices (0-D polytope), essentially allowing diagonal state transitions.
It is called 8-connectivity because each cell can transition to another state in eight directions, via
the four edges and vertices of each cell. This is the maximum connectivity scheme.

Other Connectivity Schemes

A connectivity scheme exists where cells are only connected at their vertices (diagonal state tran-
sitions only), but this is not a very practical scheme for path planning purposes.

Example 9.2 (3d connectivity): Consider a grid-discretised three-dimensional C-space, where
n = 3. Define the minimum, maximum, and any other fundamental connectivity schemes for this
C-space.

Solution: There are a minimum of three possible connectivity schemes for n = 3 as observed in
Figure 9.5:

• Connected 2-D polytopes (faces) — 6-connectivity.

• Connected 2-D and 1-D polytopes (faces and edges) — 18-connectivity.

• Connected 2-D, 1-D, and 0-D polytopes (faces, edges and vertices) — 26-connectivity.

State Connectivity 165

 (a) 6-connectivity. (b) 18-connectivity. (c) 26-connectivity.

FIGURE 9.5

Fundamental connectivity schemes of a three-dimensional C-space.

6-connectivity

This scheme defines that states in the grid should be connected, at most, at their adjacent two-
dimensional polytope, or adjacent faces. This is the minimum connectivity scheme.

18-connectivity

This scheme defines that states in the grid should be connected at their adjacent faces (2-D poly-
tope) as well as at their edges (1-D polytope), essentially allowing a two-variable state transition.
This is a fundamental connectivity scheme.

26-connectivity

This scheme defines that states in the grid should be connected at their adjacent faces, edges, and
vertices (0-D polytope), allowing a three-variable (diagonal) state transition. This is the maximum
connectivity scheme.

Other Connectivity Schemes

A connectivity scheme exists that makes use of any other combination of m-dimensional polytopes.
However, they are not practical for path planning purposes.

9.2.1.2 Obstacle Definition

One thing to consider when deciding which connectivity scheme to use, is how obstacles
are defined in the C-space. As observed in Examples 9.1 and 9.2, we see that introducing
a connectivity of polytopes with dimensions less than n − 1 results in multi-variable state
changes. During these state transitions, we can pass through infinitesimally small areas
of the C-space where obstacles are ill-defined. This can be observed particularly in Figure
9.4(b). Although multi-variable (diagonal) state changes results in smoother paths, obstacle
definitions for these connectivity schemes must be adjusted to avoid unintentionally passing
through them.

166 Path Planning

FIGURE 9.6

A 2D randomly sampled C-space connected using Delaunay triangulation.

9.2.2 Random Samples

When the saved states of a C-space are randomly sampled, rather than laid out in a grid,
there is no unified method for determining initial connectivity between states. However, tri-
angulation methods are popular, as they are generally efficient and can minimise the number
of edges needed to connect all random states in the C-space. The Delaunay triangulation
method (Figure 9.6) guarantees that a state is at least connected to its nearest neighbour,
and is commonly used in randomly sampled environments in field robotics. These triangula-
tion methods can be generalised for n-dimensions, hence can work for C-spaces representing
many DoFs of a robot.

9.2.3 Connectivity Matrix

Any n-dimensional C-space can be represented as a connected graph, where each vertex
represents a state, and edges represent linear paths between each state as generated by the
connectivity scheme in a grid discretisation, or triangulation or other numerical methods for
randomly-sampled states. This finite graph can be represented as a connectivity matrix M

(or adjacency matrix in linear algebra), which is a square matrix indicating whether pairs of
vertices are connected or not in the C-space before path validation. The connectivity matrix
M is a fundamental construct in graph theory and has many uses in path planning and
analysis.

Example M9.1 (Connectivity matrix): Generate a connectivity matrix for the connected graph
in Figure 9.7, representing a simple C-space. Verify using MATLAB.

Solution: The connectivity matrix M for the C-space defined in Figure 9.7 is

M =





















0 1 1 1 0 0 0
1 0 0 0 1 1 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0





















. (9.1)

The easiest way to generate this in MATLAB is to define a list of vertex-pair connections. Inline
9.1 shows the command window output, where the vertex-pair connections matrix E is defined. We
then convert this into a connectivity matrix M by using a custom function Edge2CMatrix, as is

State Connectivity 167

1

2 3 4

5 6 7

FIGURE 9.7

A graph of connected states in a simple C-space.

shown in Inline 9.2. The initial output of M is in sparse matrix form, where only non-zero elements

of a matrix are stored. This ensures that very large connectivity matrices with many zero-elements

are efficiently stored in memory. To see the full matrix of M, we simply use MATLAB’s full()

function.

>> E = [1 2; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7]

E =

1 2
1 3
1 4
2 5
2 6
3 6
4 7

>> M = Edge2CMatrix(E)

M =

(2,1) 1
(3,1) 1
(4,1) 1
(1,2) 1
(5,2) 1
(6,2) 1
(1,3) 1
(6,3) 1
(1,4) 1
(7,4) 1
(2,5) 1
(2,6) 1
(3,6) 1
(4,7) 1

>> full(M)

ans =

0 1 1 1 0 0 0
1 0 0 0 1 1 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0

1 function M = Edge2CMatrix(edges)
2 %EDGE2CMATRIX Convert a list of connections to a sparse matrix
3

4 v1 = edges (:,1);
5 v2 = edges (:,2);

168 Path Planning

6 if size(edges ,2) == 3
7 cost = edges (:,3);
8 else
9 cost = ones(size(v1));

10 end
11

12 % Define the sparse matrix.
13 % Entries are flipped to ensure connections are bi -directional.
14 M = sparse ([v1;v2], [v2;v1], [cost;cost]);
15

16 end

As seen in Inline 9.1, we obtain the connectivity matrix M as shown in Equation (9.1).

9.3 Planning Completeness

There are two types of path planning algorithms that will be mentioned in this review:
complete and sample-based algorithms. The key difference between the two algorithms is
that the former will always return the same result, given the exact same C-space and bound-
ary conditions, whereas the latter result may differ slightly in different runs. Early classical
path planning algorithms go for complete approaches; the entire C-space is analysed, and
the best result is always returned. However, where the C-space is large, complex or multi-
dimensional, handling such a large amount of data is infeasible and results in long running
times and heavy memory usage. More recent sample-based planners accept a weaker notion
of completeness; the path planner will return a valid solution as quickly as possible at the
expense of sampling only a portion of the C-space, but will continue to improve on the
result as more samples of the C-space are taken. With these algorithms, as time approaches
infinity, the solution will converge to the best solution (one that a complete algorithm will
produce). This need for a fast and valid solution is driven by the need for path-planning that
is fast enough for real-time applications. This is one of the benefits of using sample-based
planners, in that there is a degree of flexibility in accuracy versus time performance. The
probabilistic road map (PRM) is one such sample-based algorithm that has been used suc-
cessfully in robotics path planning, and has also served as the basis for further development
for other sample-based algorithms, such as the rapidly exploring random trees (RRT).

9.3.1 Measuring Complexity

The following path planning algorithms are introductory discrete algorithms, general enough
to be applied in any C-space regardless of what quantifiable measure they represent. These
algorithms are well-known in the computer science field and thus can be found in many text-
books. Their relative time performance is measured as order-of-time complexity O(F (n)),
expressed as a function F of the C-space parameters n. Typically, the lower the time com-
plexity, the better-performing the algorithm is in terms of time for a given C-space.

Complete Planning Algorithms 169

9.4 Complete Planning Algorithms

Complete algorithms will systematically work through a connected graph of nodes, such
as Figure 9.7 representing states in the C-space, until the goal is found. These algorithms
typically perform an exhaustive search of the C-space and construct a tree for each visited
state. Many of these algorithms are classical graph theory searches and are well known for
their simplicity.

9.4.1 First-Search Algorithms

One of the most primitive methods for searching a connected tree is to use either a breadth-

first search (BFS) or depth-first search (DFS). Although they are simplistic by nature,
they are worth noting as they form the basis of some more advanced, well-known planning
algorithms. The difference between the two search methods is the order in which each edge
is traversed.

9.4.1.1 Breadth-First Search

The breadth-first search (BFS) algorithm searches the entire state-space in a propagating
wave, resulting in an exhaustive radial search to find the goal (Figure 9.8). It utilises a
first-in-first-out queue Q to track and sample states, and has been successfully used in
determining shortest-distance problems (shortest number of nodes or states visited to goal).
However, it is inefficient in very large graphs and C-spaces, because the order at which
states are traversed is fixed by the queue structure, with minimal opportunity for search
optimisation. However, in whole C-space searches where flood-fill algorithms are necessary,
BFS is a viable traversal method.

The time complexity of this algorithm is O(|V |+ |E|), where V and E are the number of
vertices and edges. Because the number of vertices increases exponentially with dimensions
of the C-space, the time taken for this algorithm to search also increases exponentially with
the number of dimensions.

Example 9.3 (Breadth-first search): Apply breadth-first search on the C-space shown in Figure
9.7 to traverse all states from State 1, known as flood-filling.

Solution: Flood-filling is a useful technique for calculating the overall volume of the C-space.
Figure 9.8 shows the flood-fill result using BFS on the C-space. Starting from State 1, a queue
construct Q is used to keep track of sampled states. As Q behaves like a queue, new states are
pushed to the rear, and items are popped from the head of Q. Hence, states are sampled in the
order that they are pushed into Q, and popping Q will remove and sample the state at the head of
the queue. This procedure repeats until all states in the C-space have been visited.

Example M9.2 (Breadth-first search in MATLAB): Use MATLAB to apply breadth-first
search the C-space shown in Figure 9.7 to find a path from State 1 to State 6.

Solution: Inline 9.3 shows the MATLAB command window output on solving this problem. We
can directly use the method used to solve Example M9.1, to provide the inputs required for the
custom MATLAB function bfs(), defined in Inline 9.4. According to the output variable pth, the
BFS algorithm suggests the path: State 1 → State 2 → State 6. This path is shown in Figure 9.9,
where solid arrows indicate edges that have been pushed onto the queue (dotted arrows were not
observed by the search algorithm).

170 Path Planning

1

2 3 4

5 6 7

(a) Q.push(1)

Q : 1

1

2 3 4

5 6 7

(b) Q.pop(1)

At (1), Q.push(2, 3, 4)
Q : 2 ← 3 ← 4

1

2 3 4

5 6 7

(c) Q.pop(2)

At (2), Q.push(5, 6)
Q : 3 ← 4 ← 5 ← 6

1

2 3 4

5 6 7

(d) Q.pop(3)

At (3), Q.push()
Q : 4 ← 5 ← 6

1

2 3 4

5 6 7

(e) Q.pop(4)

At (4), Q.push(7)
Q : 5 ← 6 ← 7

1

2 3 4

5 6 7

(f) Q.pop(5)

At (5), Q.push()
Q : 6 → 7

1

2 3 4

5 6 7

(g) Q.pop(6)

At (6), Q.push()
Q : 7

1

2 3 4

5 6 7

(h) Q.pop(7)

At (7), Q.push()
Q : empty

FIGURE 9.8

Breadth-first search expansion of the C-space in Figure 9.7 with a running tally of elements

in queue Q. The arrows point towards the head of the queue.

ID:1

1

ID:2

2
ID:3 - ID:4 -

ID:5 -
ID:6

3
ID:7 -

Not traversed

FIGURE 9.9

Breadth-first search solution with order of states visited.

>> E = [1 2; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7];
>> M = Edge2CMatrix(E);
>> pth = bfs(M,1,6)

Complete Planning Algorithms 171

Starting BFS from State 1 to State 6.
Added to states to Queue: 2 3 4
Pushed states: 1 2 3 4

Moving to state: 2
Added to states to Queue: 5 6 (goal found)
Pushed states: 1 2 3 4 5 6

Moving to state: 6
Reconstructing path: (Goal) 6 -> 2 -> 1 (Init).
pth =

1
2
6

1 function StatePath = bfs(M, InitState , GoalState)
2 %BFS Breadth First Search
3

4 fprintf(’Starting BFS from State %i to State %i.\n’, InitState , GoalState);
5

6 % Define initial conditions
7 PushedStates = InitState;
8 Queue = clsEdge.empty; % Queue construct
9 CurrentState = InitState;

10 E = [];
11 GoalFound = false;
12

13 % Loop until the goal state is reached
14 while CurrentState ~= GoalState
15 % Find all states connected to current state
16 NextStateAll = find(M(:, CurrentState));
17 % Remove connected states already pushed to queue previously
18 NextState = setdiff(NextStateAll , PushedStates);
19 fprintf(’ Added to states to Queue:’);
20 % Add connected states to queue
21 for i = NextState (:)’
22 NewEdge = clsEdge(CurrentState , i, E);
23 fprintf(’ %i’, i);
24 % SHORTCUT: Terminate if goal state is added to queue
25 if i == GoalState
26 fprintf(’ (goal found)’);
27 GoalFound = true;
28 break
29 else
30 % Otherwise , push edge containing next state to queue
31 Queue = Push(Queue , NewEdge);
32 end
33 end
34 if GoalFound
35 % If goal found by adding to queue , set next edge to newly added edge
36 E = NewEdge;
37 else
38 % Otherwise , get next edge from head of queue. Pop edge off queue.
39 [E, Queue] = PopQueue(Queue);
40 end
41 % Add pushed states to list of pushed states
42 fprintf(’\n Pushed states:’);
43 PushedStates = Push(PushedStates , NextState);
44 fprintf(’ %i’, PushedStates);
45 % Set next state as defined by the end of the next edge
46 CurrentState = E.NextState;
47 fprintf(’\nMoving to state: %i\n’, CurrentState);
48 end
49

50 % Reconstruct path from goal state to initial state
51 EdgePath = E;
52 fprintf(’Reconstructing path: (Goal)’);
53 while ~isempty(E.ParentEdge)
54 fprintf(’ %i ->’, E.NextState);
55 EdgePath = Push(EdgePath , E.ParentEdge);
56 E = E.ParentEdge;
57 end
58 fprintf(’ %i -> %i (Init).’, E.NextState , E.ParentState);
59

60 % Flip path so it goes from initial to goal state
61 EdgePath = flipud(EdgePath);
62 StatePath = [EdgePath.ParentState EdgePath(end).NextState]’;
63

64 end
65

66 % Implementation of pushing an object to a list
67 function obj = Push(obj , item)
68 obj = [obj; item];
69 end

172 Path Planning

70

71 % Implementation of popping an object off a queue
72 function [item , obj] = PopQueue(obj)
73 item = obj (1);
74 obj (1) = [];
75 end

This function uses an edge class, clsEdge in Line 22 so that we can implement object referencing
during path reconstruction (Inline 9.5). This allows us to back-track edges via the ParentEdge field
through object referencing to reconstruct paths when the goal is reached.

1 classdef clsEdge < handle
2 %CLSEDGE Edge objects for path planning.
3

4 properties (SetAccess = immutable)
5 ParentState % Node ID of parent state
6 NextState % Node ID of next state
7 ParentEdge % clsEdge object which preceeded this edge
8 % Allows for back -tracking.
9 Cost % Costs associated with this path (edge)

10 end
11

12 methods
13 function obj = clsEdge(s1 ,s2 ,pe ,c)
14 %CLSEDGE Construct an instance of this class
15 obj.ParentState = s1;
16 obj.NextState = s2;
17 obj.ParentEdge = pe;
18 if nargin < 4
19 c = 1;
20 end
21 obj.Cost = c;
22 end
23 end
24 end

9.4.1.2 Depth-First Search

The depth-first search (DFS) algorithm adopts a depth-first initiative where branches are
searched in-depth first until the end is reached (Figure 9.10). This utilises a first-in-last-out
stack S in a programming sense to systematically build the tree. While the tendency for
this algorithm is to dive in head-first quickly into a graph, this algorithm, in fact, shares
the same time complexity as the breadth-first search of O(|V |+ |E|), where n is the number
of dimensions of the C-space. However, this algorithm will not always detect the shortest
path possible between states like the BFS.

Example 9.4 (Depth-first search): Apply depth-first search on the C-space shown in Figure
9.7 to flood-fill all states from State 1.

Solution: Figure 9.10 shows the flood-fill result using DFS on the C-space. Starting from State 1,
a stack construct S is used to keep track of sampled states. As opposed to a queue in a BFS, in
a stack, new states are pushed to the top of the S, and states are also popped off from the top of
S. Hence, states are sampled in the order that they were last pushed onto S, and popping S will
remove and sample the state at the top of the stack. This procedure repeats until all states in the
C-space have been visited.

Example M9.3 (Depth-first search in MATLAB): Use MATLAB to apply depth-first search
the C-space shown in Figure 9.7 to find a path from State 1 to State 6.

Solution: Inline 9.6 shows the MATLAB command window output on solving this problem. We
follow the same procedure used in Example M9.2, but using the custom MATLAB function dfs()

instead, defined in Inline 9.7. According to the output variable pth, the DFS algorithm suggests

Complete Planning Algorithms 173

the path: State 1 → State 3 → State 6. This path is shown in Figure 9.11, where solid arrows
indicate edges that have been pushed onto the queue (dotted arrows were not observed by the
search algorithm). Notice that in this scenario, DFS needed more iterations than BFS to find a
solution.

>> E = [1 2; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7];
>> M = Edge2CMatrix(E);
>> pth = dfs(M,1,6)
Starting DFS from State 1 to State 6.

Added to states to Stack: 2 3 4
Pushed states: 1 2 3 4

Moving to state: 4
Added to states to Stack: 7
Pushed states: 1 2 3 4 7

Moving to state: 7
Added to states to Stack:
Pushed states: 1 2 3 4 7

Moving to state: 3
Added to states to Stack: 6 (goal found)
Pushed states: 1 2 3 4 7 6

Moving to state: 6
Reconstructing path: (Goal) 6 -> 3 -> 1 (Init).
pth =

1
3
6

1 function StatePath = dfs(M, InitState , GoalState)
2 %DFS Depth First Search
3

1

2 3 4

5 6 7

(a) S.push(1)

S : 1

1

2 3 4

5 6 7

(b) S.pop(1)

At (1), S.push(2, 3, 4)
S : 2 → 3 → 4

1

2 3 4

5 6 7

(c) S.pop(4)

At (4), S.push(7)
S : 2 → 3 → 7

1

2 3 4

5 6 7

(d) S.pop(7)

At (7), S.push()
S : 2 → 3

1

2 3 4

5 6 7

(e) S.pop(3)

At(3), S.push(6)
S : 2 → 6

1

2 3 4

5 6 7

(f) S.pop(6)

At (6), S.push()
S : 2

1

2 3 4

5 6 7

(g) S.pop(2)

At (2), S.push(5)
S : 5

1

2 3 4

5 6 7

(h) S.pop(5)

At (5), S.push()
S : empty

FIGURE 9.10

Depth-first search expansion of the C-space in Figure 9.7 with a running tally of elements

in stack S. The arrows point towards the top of the stack.

174 Path Planning

ID:1

1

ID:2 -
ID:3

4

ID:4

2

ID:5 -
ID:6

5

ID:7

3

Not traversed

FIGURE 9.11

Depth-first search solution with order of states visited.

4 fprintf(’Starting DFS from State %i to State %i.\n’, InitState , GoalState);
5

6 % Define initial conditions
7 PushedStates = InitState;
8 Stack = clsEdge.empty; % Stack construct
9 CurrentState = InitState;

10 E = [];
11 GoalFound = false;
12

13 % Loop until the goal state is reached
14 while CurrentState ~= GoalState
15 % Find all states connected to current state
16 NextStateAll = find(M(:, CurrentState));
17 % Remove connected states already pushed to stack previously
18 NextState = setdiff(NextStateAll , PushedStates);
19 fprintf(’ Added to states to Stack:’);
20 % Add connected states to stack
21 for i = NextState (:)’
22 NewEdge = clsEdge(CurrentState , i, E);
23 fprintf(’ %i’, i);
24 % SHORTCUT: Terminate if goal state is added to stack
25 if i == GoalState
26 fprintf(’ (goal found)’);
27 GoalFound = true;
28 break
29 else
30 % Otherwise , push edge containing next state to stack
31 Stack = Push(Stack , NewEdge);
32 end
33 end
34 if GoalFound
35 % If goal found by adding to stack , set next edge to newly added edge
36 E = NewEdge;
37 else
38 % Otherwise , get next edge from end of stack. Pop edge off stack.
39 [E, Stack] = PopStack(Stack);
40 end
41 % Add pushed states to list of pushed states
42 fprintf(’\n Pushed states:’);
43 PushedStates = Push(PushedStates , NextState);
44 fprintf(’ %i’, PushedStates);
45 % Set next state as defined by the end of the next edge
46 CurrentState = E.NextState;
47 fprintf(’\nMoving to state: %i\n’, CurrentState);
48 end
49

50 % Reconstruct path from goal state to initial state
51 EdgePath = E;
52 fprintf(’Reconstructing path: (Goal)’);
53 while ~isempty(E.ParentEdge)
54 fprintf(’ %i ->’, E.NextState);

Complete Planning Algorithms 175

55 EdgePath = Push(EdgePath , E.ParentEdge);
56 E = E.ParentEdge;
57 end
58 fprintf(’ %i -> %i (Init).’, E.NextState , E.ParentState);
59

60 % Flip path so it goes from initial to goal state
61 EdgePath = flipud(EdgePath);
62 StatePath = [EdgePath.ParentState EdgePath(end).NextState]’;
63

64 end
65

66 % Implementation of pushing an object to a list
67 function obj = Push(obj , item)
68 obj = [obj; item];
69 end
70

71 % Implementation of popping an object off a stack
72 function [item , obj] = PopStack(obj)
73 item = obj(end);
74 obj(end) = [];
75 end

Note that this function also uses an edge class, clsEdge in Line 22 as defined in Inline 9.5.

Finally, the command window output shows how we can use MATLAB to solve this problem.

As you can expect, the way these searchers find the goal is by chance, as the order at
which each edge is traversed is fixed, so there is no chance of optimisation when using these
algorithms. These algorithms should only be used in smaller C-spaces, and are generally only
implemented because they are very simple to implement in any programming language.

9.4.2 Dijkstra’s Algorithm

First conceived by Edsger Dijkstra in 1956, this algorithm implements a cost to go function
for each state transition during its planning. Therefore, each path that is planned by the
algorithm will have an associated overall cost and, at the end of execution, will return the
path with the lowest cost.

The algorithm functions on a best search paradigm, where the states with the lowest
path cost will be visited first, rather than simply searching the next edge in a queue or
stack. This helps directionalise the search towards lowest cost paths, and ensures that the
shortest path is always found when the goal is reached. As a result, the time complexity
becomes O(|V | log(|V |) + |E|). However, more data is needed, as the costs of each state
must be maintained.

Process

1. Initialisation. Starting with an initial state xinit, goal state xgoal, and a finite
space S, set xcurrent = xinit and define two lists:

• Next state list N

• Visited states list V

Add xinit to V

2. Add next states to N . From xcurrent, add all of its connected states that are
not in V , to N .

3. Evaluate costs for each connected state. From xcurrent’s cost, evaluate costs
for all connected states by evaluating state transition costs to the next state h.
Update any previously calculated scores for any states if they were higher.

176 Path Planning

4. Find next state in N . Search for the next state with the lowest cost in list N ,
xnext.

5. Move to lowest next state. Set xcurrent = xnext.

6. Terminate condition. If xcurrent = xgoal, then the goal is found. Otherwise, go
to Step 2.

The resulting search propagates like a wave-front, similar to the breadth-first search,
but the path costs will directionalise the search in favour of taking shorter paths. This does
not necessarily mean that this will directionalise the search towards the goal. This rapid
exploration outwards from the initial state, rather than towards the goal, is this algorithm’s
weakness.

Example M9.4 (Dijkstra’s algorithm): Find the shortest path from State 1 to State 6 using
Dijkstra’s algorithm, given the following connectivity matrix M with path costs integrated. Use
MATLAB to verify the result.

M =





















0 5 1 2 0 0 0
5 0 0 0 1 1 0
1 0 0 0 0 6 0
2 0 0 0 0 0 2
0 1 0 0 0 0 0
0 1 6 0 0 0 0
0 0 0 2 0 0 0





















(9.2)

Solution: Connectivity matrix M will yield the following graph with state transition costs.
Figure 9.13 shows the search result for the C-space in Figure 9.12, for each iteration of Dijkstra’s

algorithm. The solution suggests the path: State 1 → State 2 → State 6 with an overall path cost
of 6. We can observe that although the goal node (State 6)’s path cost was initially calculated as
7 from State 3, State 6 was not visited after calculating its cost because there were other states
of lower costs to visit first. When approaching State 6 from State 2, we find that the path cost is
decreased from 7 to 6.

Notice that this algorithm required 6 iterations to solve this problem which is the worst-case
scenario for this algorithm; which is worse than both BFS and DFS searches. This highlights the
main weakness of this search algorithm.

Inline 9.8 shows the MATLAB command window output that verifies the result obtained in
Figure 9.13 for each iteration in detail. The output variable pth verifies the final path in Figure M9.4.

1

2 3 4

5 6 7

5 1 2

1 1 26

FIGURE 9.12

C-space and state transition costs based on Equation (9.2) for Example M9.4.

Complete Planning Algorithms 177

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c :?

ID:6

c :?

ID:7

c :?

5 1 2

1 1 26

(a) Iteration 1

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c :?

ID:6

c : 7

ID:7

c :?

5 1 2

1 1 26

(b) Iteration 2

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c :?

ID:6

c : 7

ID:7

c : 4

5 1 2

1 1 26

(c) Iteration 3

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c :?

ID:6

c : 7

ID:7

c : 4

5 1 2

1 1 26

(d) Iteration 4

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c : 6

ID:6

c : 6

ID:7

c : 4

5 1 2

1 1 26

(e) Iteration 5

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c : 6

ID:6

c : 6

ID:7

c : 4

5 1 2

1 1 26

(f) Iteration 6

ID:1

c : 0

ID:2

c : 5

ID:3

c : 1

ID:4

c : 2

ID:5

c : 6

ID:6

c : 6

ID:7

c : 4

5 1 2

1 1 26

(g) Final path

FIGURE 9.13

Dijkstra’s search of the C-space in each iteration as shown in Inline 9.8.

Inline 9.7 shows the MATLAB code to implement Dijkstra’s algorithm for a given connectivity

matrix, used in Inline 9.8.

M = [
0 5 1 2 0 0 0
5 0 0 0 1 1 0
1 0 0 0 0 6 0
2 0 0 0 0 0 2
0 1 0 0 0 0 0
0 1 6 0 0 0 0
0 0 0 2 0 0 0];

>> [pth , cost] = dijkstra(M,1,6)
Starting Dijkstra search from State 1 to State 6.
[Iteration 1]

States that have been visited: 1
States pushed onto the list: (c:)
Added to states to List: 2 (c:5) 3 (c:1) 4 (c:2)
Moving to state with lowest cost: 3 (c:1)

[Iteration 2]
States that have been visited: 1 3

178 Path Planning

States pushed onto the list: 2 (c:4) 5 (c:2)
Added to states to List: 6 (c:7)
Moving to state with lowest cost: 4 (c:2)

[Iteration 3]
States that have been visited: 1 3 4
States pushed onto the list: 2 (c:6) 5 (c:7)
Added to states to List: 7 (c:4)
Moving to state with lowest cost: 7 (c:4)

[Iteration 4]
States that have been visited: 1 3 4 7
States pushed onto the list: 2 (c:6) 5 (c:7)
Added to states to List:
Moving to state with lowest cost: 2 (c:5)

[Iteration 5]
States that have been visited: 1 3 4 7 2
States pushed onto the list: 6 (c:7)
Added to states to List: 5 (c:6) 6 (c:7 -> 6)
Moving to state with lowest cost: 5 (c:6)

[Iteration 6]
States that have been visited: 1 3 4 7 2 5
States pushed onto the list: 6 (c:6)
Added to states to List:
Moving to state with lowest cost: 6 (c:6)

Reconstructing path: (Goal) 6 (6) -> 2 (5) -> 1 (Init).
pth =

1
2
6

cost =

0
5
6

1 function [StatePath , Cost] = dijkstra(M, InitState , GoalState)
2 %DIJKSTRA Dijkstra ’s search algorithm
3

4 fprintf(’Starting Dijkstra search from State %i to State %i.\n’, InitState , GoalState);
5

6 % Define initial conditions
7 VisitedStates = InitState; % States that have been visited
8 SampledStates = []; % States added to list
9 List = clsEdge.empty; % Unordered List construct

10 StateCost = NaN(size(M,1) ,1); % Initialise all costs to NaN
11 StateCost(InitState) = 0; % Set initial state score as 0
12 CurState = InitState;
13 E = [];
14

15 iteration = 0;
16 % Loop until the goal state is reached
17 while CurState ~= GoalState
18 iteration = iteration + 1;
19 fprintf(’[Iteration %i]\n’, iteration)
20 fprintf(’ States that have been visited:’);
21 fprintf(’ %i’, VisitedStates);
22 fprintf(’\n States pushed onto the list:’);
23 fprintf(’ %i (c:%i)’, SampledStates , StateCost(SampledStates));
24 fprintf(’\n’)
25 % Find all states connected to current state
26 NxtStateAll = find(M(:, CurState));
27 % Remove connected states that were visited previously
28 NxtState = setdiff(NxtStateAll , VisitedStates);
29 NxtStateCost = StateCost(CurState) + M(NxtState ,CurState);
30 fprintf(’ Added to states to List:’);
31 % Add connected states to list
32 for i = 1: length(NxtState)
33 % Check if next state has been sampled
34 if ismember(NxtState(i),SampledStates)
35 % Check if next state has been sampled but at a higher G-score
36 if NxtStateCost(i) < StateCost(NxtState(i))
37 % If yes , then update next state cost with the current lower G-score
38 fprintf(’ %i (c:%i -> %i)’, NxtState(i), StateCost(NxtState(i)), ...
39 NxtStateCost(i))
40 StateCost(NxtState(i)) = NxtStateCost(i);
41 NewEdge = clsEdge(CurState , NxtState(i), E, ...
42 StateCost(NxtState(i)));
43 List (([List.NxtState]’ == NxtState)) = []; % Remove old edge from list
44 List = Push(List , NewEdge); % Push edge with lower cost
45 end
46 else

Complete Planning Algorithms 179

47 StateCost(NxtState(i)) = NxtStateCost(i);
48 % Push edge containing next state to list , along with F-score to get there
49 NewEdge = clsEdge(CurState , NxtState(i), E, StateCost(NxtState(i)));
50 fprintf(’ %i (c:%i)’, NxtState(i), StateCost(NxtState(i)));
51 List = Push(List , NewEdge);
52 SampledStates = Push(SampledStates , NxtState(i));
53 end
54 end
55 fprintf(’\n’)
56 % Get next edge whose next state F-score is lowest. Pop it from the list.
57 [E, List] = PopLowest(List);
58 % Set next state as defined by the end of the next edge
59 CurState = E.NxtState;
60 % Added current state to visited state list
61 VisitedStates = Push(VisitedStates , CurState);
62 SampledStates = setdiff(SampledStates , CurState);
63 fprintf(’ Moving to state with lowest cost: %i (c:%i)\n’, CurState , E.Cost);
64 end
65

66 % Reconstruct path from goal state to initial state
67 EdgePath = E;
68 fprintf(’Reconstructing path: (Goal)’);
69 while ~isempty(E.ParentEdge)
70 fprintf(’ %i (%i) ->’, E.NxtState , E.Cost);
71 EdgePath = Push(EdgePath , E.ParentEdge);
72 E = E.ParentEdge;
73 end
74 fprintf(’ %i (%i) -> %i (Init).’, E.NxtState , E.Cost , E.ParentState);
75

76 % Flip path so it goes from initial to goal state
77 EdgePath = flipud(EdgePath);
78 StatePath = [EdgePath.ParentState EdgePath(end).NxtState]’;
79

80 % Set cost as an output variable
81 Cost = StateCost(StatePath);
82 end
83

84 % Implementation of pushing an object to a list
85 function obj = Push(obj , item)
86 obj = [obj; item];
87 end
88

89 % Implementation of popping the lowest cost object from a list
90 function [item , obj] = PopLowest(obj)
91 [~, i] = min([obj.Cost]);
92 item = obj(i);
93 obj(i) = [];
94 end

Notice that function also uses an edge class, clsEdge in Line 41 as defined in Inline 9.5

9.4.3 A*

The A* search is based on Dijkstra’s algorithm, which further improves performance with
the introduction of heuristics. It has been used in a wide range of applications, but more
importantly, it has applications in robot motion planning for discrete data sets.

The key feature that differentiates the A* search from a greedy best-first search is that
it takes into account both the distance already travelled and the estimated distance to the
goal to determine which state to branch from next. The result is that A* is a best-first

search that finds a lowest-cost path from an initial state to a goal state, building a partial
tree where branches are explored based on minimising the cost function

f(n) = g(n) + h(n) (9.3)

where g(n) is the cumulative path cost from the initial state to state n, h(n) is a heuristic
estimate to get from state n to the goal state, and f(n) is the total score for the state which
is used to determine which state to visit next. This is also called the F-score. In general,
the heuristic function should reliably give an estimate of the distance between state n and
the goal state. A common heuristic implemented in the algorithm is the as-the-crow-flies

180 Path Planning

heuristic, which is a straight-line distance heuristic that forces A* to find the shortest path.
Another common heuristic used in grid C-spaces is called the Manhattan heuristic, which
is simply the sum of the distances along each dimension towards the goal state.

This algorithm has a time complexity of O(bd), where d is the length of the shortest
path and b is the average number of adjacent states per state. If a perfect heuristic1 is used,
then the time complexity is assumed to be polynomial.

This algorithm is guaranteed to return a pass or fail result, which is a desirable feature
depending on the dimensionality of the problem. Since the algorithm only terminates upon
finding the endpoint, the algorithm can take a significant amount of time to complete in
higher-dimensional space due to its exponential time complexity in the worst case. Further-
more, a heuristic is very difficult to calculate or model in non-homogeneous C-spaces, such
as ones that feature both angular rotations and stroke length from revolute and prismatic
actuators, respectively. Due to these limitations, this algorithm is best used for smaller, less
complicated spaces at lower dimensions.

Process

1. Initialisation. Starting with an initial state xinit, goal state xgoal, and a finite
space S, set xcurrent = xinit and define two lists:

• Next state list N

• Visited states list V

Add xinit to V

2. Add next states to N . From xcurrent, add all of its connected states that are
not in V , to N .

3. Evaluate F-scores for each connected state. From xcurrent’s G-score, eval-
uate F-scores for all connected states by evaluating state transition costs g and
heuristic at the next state h. Update any previously calculated F-scores for any
states if they were higher.

4. Find next state in N . Search for the next state with the lowest F-score in list
N , xnext.

5. Move to lowest next state. Set xcurrent = xnext.

6. Terminate condition. If xcurrent = xgoal, then the goal is found. Otherwise, go
to Step 2.

Example M9.5 (A-star search): Given the graph in Figure 9.14, find the shortest path between
State 1 and State 6 using A* search. Verify the result in MATLAB.

Solution: Figure 9.15 shows the search result for the C-space in Figure 9.14, for each iteration of
the A* algorithm. The solution suggests the path: State 1 → State 2 → State 6 with an overall
path cost of 6 as shown in Figure M9.5, similar to the result of Dijkstra’s search in Example M9.4.
However, the A* search was able to find the shortest path after three iterations, rather than six,
which highlights the usefulness of heuristics to optimise searches in finite graphs.

Inline 9.10 shows the MATLAB command window output that verifies the result obtained in
Figure 9.15 for each iteration in detail. The output variable pth verifies the final path in Figure
M9.5. To use A* in MATLAB, we need the connectivity matrix M and heuristic information. From
the C-space graph from Figure 9.14, we can define vertex-pair connections as defined by variable E,
and the path costs (PathCost). This is concatenated with E to then convert to a connectivity matrix

1Implies that the estimation of the distance between the sampled node and the goal node is exact.

Complete Planning Algorithms 181

ID:1

h : −

ID:2

h : 2

ID:3

h : 7

ID:4

h : 4

ID:5

h : 5

ID:6

h : 0

ID:7

h : 8

g = 5 1 2

1 1 26

FIGURE 9.14

C-space, state transition costs and distance heuristic h from goal State 6, for Example M9.5.

M via function Edge2CMatrix(). We also define the heuristic for each state as variable Heuristic.

This, matrix M , initial and goal states, are all required inputs to the astar() function.

Inline 9.11 shows the MATLAB code to implement the A* algorithm as the function astar()

for a given connectivity matrix, used in Inline 9.10.

>> PathCost = [5 1 2 1 1 6 2]

PathCost =

5 1 2 1 1 6 2

>> E = [[1 2; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7] PathCost ’]

E =

1 2 5
1 3 1
1 4 2
2 5 1
2 6 1
3 6 6
4 7 2

>> M = Edge2CMatrix(E)

M =

(2,1) 5
(3,1) 1
(4,1) 2
(1,2) 5
(5,2) 1
(6,2) 1
(1,3) 1
(6,3) 6
(1,4) 2
(7,4) 2
(2,5) 1
(2,6) 1
(3,6) 6
(4,7) 2

>> Heuristic = [0 2 7 4 5 0 8]

Heuristic =

0 2 7 4 5 0 8

>> [pth , c] = astar(M,1,6, Heuristic)

182 Path Planning

Starting A* search from State 1 to State 6.
[Iteration 1]

States that have been visited: 1
States pushed onto the list: (f:)
Added to states to List: 2 (f:7 g:5 h:2) 3 (f:8 g:1 h:7) 4 (f:6 g:2 h:4)
Moving to state with lowest F-score: 4 (f:6)

[Iteration 2]
States that have been visited: 1 4
States pushed onto the list: 2 (f:3) 7 (f:8)
Added to states to List: 7 (f:12 g:4 h:8)
Moving to state with lowest F-score: 2 (f:7)

[Iteration 3]
States that have been visited: 1 4 2
States pushed onto the list: 3 (f:7) 8 (f:12)
Added to states to List: 5 (f:11 g:6 h:5) 6 (f:6 g:6 h:0)
Moving to state with lowest F-score: 6 (f:6)

Reconstructing path: (Goal) 6 (6) -> 2 (5) -> 1 (Init).
pth =

1
2
6

ID:1

f : g : h

ID:2

7 : 5 : 2

ID:3

8 : 1 : 7

ID:4

6 : 2 : 4

ID:5

? :? : 2

ID:6

? :? : 0

ID:7

? :? : 8

5 1 2

1 1 26

(a) Iteration 1

ID:1

f : g : h

ID:2

7 : 5 : 2

ID:3

8 : 1 : 7

ID:4

6 : 2 : 4

ID:5

? :? : 2

ID:6

? :? : 0

ID:7

12 : 4 : 8

5 1 2

1 1 26

(b) Iteration 2

ID:1

f : g : h

ID:2

7 : 5 : 2

ID:3

8 : 1 : 7

ID:4

6 : 2 : 4

ID:5

11 : 6 : 5

ID:6

6 : 6 : 0

ID:7

12 : 4 : 8

5 1 2

1 1 26

(c) Iteration 3

ID:1

f : g : h

ID:2

7 : 5 : 2

ID:3

8 : 1 : 7

ID:4

6 : 2 : 4

ID:5

11 : 6 : 5

ID:6

6 : 6 : 0

ID:7

12 : 4 : 8

5 1 2

1 1 26

(d) Final path

FIGURE 9.15

A* search of the C-space in each iteration. Refer to the output in Inline 9.8 for list and score

details.

Complete Planning Algorithms 183

c =

0
5
6

1 function [StatePath , Cost] = astar(M, InitState , GoalState , StateHeuristic)
2 %ASTAR A* search algorithm
3

4 fprintf(’Starting A* search from State %i to State %i.\n’, InitState , GoalState);
5

6 % Define initial conditions
7 VisitedStates = InitState; % States that have been visited
8 SampledStates = []; % States added to list
9 List = clsEdge.empty; % Unordered List construct

10 % F, G, and H scores for each state
11 StateScore = struct(’F’, 0, ’G’, NaN , ’H’, num2cell(StateHeuristic));
12 StateScore(InitState).G = 0; % Set initial state score as 0
13 CurState = InitState; % Current state
14 E = [];
15

16 iteration = 0;
17 % Loop until the goal state is reached
18 while CurState ~= GoalState
19 iteration = iteration + 1;
20 fprintf(’[Iteration %i]\n’, iteration)
21 fprintf(’ States that have been visited:’);
22 fprintf(’ %i’, VisitedStates);
23 fprintf(’\n States pushed onto the list:’);
24 fprintf(’ %i (f:%i)’, SampledStates , [StateScore(SampledStates).F]);
25 fprintf(’\n’)
26 % Find all states connected to current state
27 NxtStateAll = find(M(:, CurState));
28 % Remove connected states that were visited previously
29 NxtState = setdiff(NxtStateAll , VisitedStates);
30 NxtStateG = StateScore(CurState).G + M(NxtState ,CurState);
31 fprintf(’ Added to states to List:’);
32 % Add connected states to list
33 for i = 1: length(NxtState)
34 % Check if next state has been sampled
35 if ismember(NxtState(i),SampledStates)
36 % Check if next state has been sampled but at a higher G-score
37 if NxtStateG(i) < StateScore(NxtState(i)).G
38 % If yes , then update next state cost with the current lower G-score
39 StateScore(NxtState(i)).G = NxtStateG(i);
40 % Update next state F-score
41 StateScore(NxtState(i)).F = StateScore(NxtState(i)).G + ...
42 StateScore(NxtState(i)).H;
43 NewEdge = clsEdge(CurState , NxtState(i), E, ...
44 StateScore(NxtState(i)).F);
45 List (([List.NxtState]’ == NxtState)) = []; % Remove old edge from list
46 List = Push(List , NewEdge); % Push edge with lower cost
47 end
48 else
49 StateScore(NxtState(i)).G = NxtStateG(i);
50 % Update next state F-score
51 StateScore(NxtState(i)).F = StateScore(NxtState(i)).G + ...
52 StateScore(NxtState(i)).H;
53 % Push edge containing next state to list , along with F-score to get there
54 NewEdge = clsEdge(CurState , NxtState(i), E, StateScore(NxtState(i)).F);
55 fprintf(’ %i (f:%i g:%i h:%i)’, NxtState(i), StateScore(NxtState(i)).F, ...
56 StateScore(NxtState(i)).G, StateScore(NxtState(i)).H);
57 List = Push(List , NewEdge);
58 SampledStates = Push(SampledStates , NxtState(i));
59 end
60 end
61 fprintf(’\n’)
62 % Get next edge whose next state F-score is lowest. Pop it from the list.
63 [E, List] = PopLowest(List);
64 % Set next state as defined by the end of the next edge
65 CurState = E.NxtState;
66 % Added current state to visited state list
67 VisitedStates = Push(VisitedStates , CurState);
68 SampledStates = setdiff(SampledStates , CurState);
69 fprintf(’ Moving to state with lowest F-score: %i (f:%i)\n’, CurState , E.Cost);
70 end
71

72 % Reconstruct path from goal state to initial state
73 EdgePath = E;
74 fprintf(’Reconstructing path: (Goal)’);
75 while ~isempty(E.ParentEdge)
76 fprintf(’ %i (%i) ->’, E.NxtState , StateScore(E.NxtState).G);

184 Path Planning

77 EdgePath = Push(EdgePath , E.ParentEdge);
78 E = E.ParentEdge;
79 end
80 fprintf(’ %i (%i) -> %i (Init).’, E.NxtState , StateScore(E.NxtState).G, E.ParentState);
81

82 % Flip path so it goes from initial to goal state
83 EdgePath = flipud(EdgePath);
84 StatePath = [EdgePath.ParentState EdgePath(end).NxtState]’;
85

86 % Set cost as an output variable
87 Cost = [StateScore(StatePath).G]’;
88 end
89

90 % Implementation of pushing an object to a list
91 function obj = Push(obj , item)
92 obj = [obj; item];
93 end
94

95 % Implementation of popping the lowest cost object from a list
96 function [item , obj] = PopLowest(obj)
97 [~, i] = min([obj.Cost]);
98 item = obj(i);
99 obj(i) = [];

100 end

Notice that function also uses an edge class, clsEdge in Line 43 as defined in Inline 9.5

9.5 Sample-Based Planning Algorithms

As the name suggests, sample-based algorithms will take random samples from the discre-

tised space to create a connected roadmap structured like a tree. Where a path is found

in the network of branches between the initial and goal nodes, then the path is returned.

Due to the randomness in the sampling, a different tree will be generated every time, which

is why solutions will differ on repeated runs on the same problem. The main concept of

sample-based planning is to avoid mapping the entire discretised space, but rather to take

samples of this black box to obtain the overall characteristic of the C-space progressively.

There are two goal paradigms when it comes to sample-based algorithms: single and

multiple query algorithms. For single query algorithms, the goal is to find a path between two

states as quickly as possible, disregarding the potential for better solutions if one exists. No

C-space pre-processing is performed for single-query algorithms. Multiple query algorithms

assume that the same space will be sampled regularly, and so the process involves pre-

processing of the C-space to obtain better solutions over multiple queries. While this is

beneficial for a static C-space, it becomes challenging in dynamic environments, where single-

query algorithms may perform better.

In the last decade, the most prominent sample-based algorithms are the PRM and

the RRT. Both algorithms have seen industry use and possess a theoretical guarantee of

probabilistic completeness. The PRM is a multiple-query algorithm, while RRT is considered

the single-query counterpart.

9.5.1 Probabilistic Road Map (PRM)

As the number of dimensions in a map increases, the time it takes for a graph-based search to

execute grows exponentially. In recent years, PRM has been the go-to method for pathfind-

ing in robotics as it performs relatively well in higher-dimensional workspaces. The PRM

algorithm is a sampling-based multiple-query path planning scheme that samples random

Sample-Based Planning Algorithms 185

points within a connected set of points and builds a tree based on collision-free straight-line
trajectories between these sampled points. Sampling-based path planners have the advan-
tage of speed over complete algorithms in that weaker notions of completeness are tolerated
(resolution and probabilistic completeness). Where higher dimensions are considered (such
as a manipulator with a high DOF), complete algorithms will take a long time to find a
solution, due to time complexity and the large memory footprint required to visit and store
every single state visited. Sampling-based planners are iteration-based, and in general, the
probability of finding a solution converges to zero as the number of samples approaches
infinity. As such, it was shown that PRM planners work well in solving difficult motion
planning problems. This algorithm has a time complexity of O(n log n), and was shown to
be probabilistically complete, but not asymptotically optimal.

The PRM algorithm has seen widespread use in robotics, in both vision and actuator
based planning. It is capable of handling higher dimensional configuration spaces which
is important for high degree-of-freedom serial robot structures. It has also been regularly
applied in a research setting, such as gait generation for climbing robots, and complex
singularity avoidance for higher degree-of-freedom parallel mechanisms.

Process

This can be visualised in Figure 9.16.

1. Initialisation. Start with an initial state xinit, goal state xgoal, and a finite space
Cfree with obstacles Cobs defined. Set xnew = xinit.

2. Connect to existing states. Find linear paths between xnew and all existing
states in Cfree

2 that do not intersect Cobs. Valid paths between states are marked
as connected on a connectivity matrix M .

3. Check for path between xinit, goal state xgoal. Evaluate M for connectivity
between xinit, goal state xgoal. If a path exists and other constraints are met, the
algorithm stops. Otherwise, go to the next step.

4. Sample new state. Randomly sample a new state xnew anywhere in Cfree. Loop
back to Step 2.

As more points are sampled in the discretised space, the solution will converge to a
shortest-path solution. Although feasible paths are normally found in a matter of millisec-
onds in smooth and well-conditioned data sets, the execution of the PRM algorithm is
generally allowed to continue to smooth out the path. If weighting is factored into the
connectivity matrix, then the quality of the solution depends on the cost criteria of the
solutions found in the connectivity/weighting matrix. For example, if paths are weighted
to avoid boundaries of workspace patches, then the lowest-scoring solution will contain the
path that is optimised in both path length and boundary avoidance. The simplest way to
cost each linear path is to associate a cost based on distance from an obstacle for each
cell within the connected map, also known as adding a heuristic function to the planner.
Heuristics is regularly used to help the path planner generate better-conditioned paths in
the workspace in addition to obstacle avoidance. While this has no implication on the time
taken to find a valid path in the connected space, with continuing iterations beyond the
path-existence termination condition, the path found will eventually converge to a balanced
solution regarding path cost and path length. This will generally smooth out trajectories
generated by the PRM.

2Optional: within a radius r.

186 Path Planning

Cobsxinit xgoal

Cfree

Invalid path

(a) Initialise and try to connect xinit

and xgoal.

Cobsxinit

x1

xgoal

Cfree

Invalid path

(b) Sample new point x1, find connec-
tions to all other states.

Cobsxinit

x1

x2

xgoal

Cfree

In
va
li
d
p
at
h

(c) Sample new point x2, find connec-
tions to all other states.

Cobsxinit

x1

x2

xgoal

Cfree

(d) Final connected states.

FIGURE 9.16
Connecting states xinit to xgoal using PRM in finite free space Cfree with obstacle Cobs.

New randomly sampled states are added to Cfree and paths that avoid Cobs are connected

to existing states to find a collision-free path.

9.5.2 Rapidly Exploring Random Trees (RRT)

PRMs are considered to be efficient in planning in higher dimensional C-spaces that are

time-invariant and holonomic. However, there are many path planning problems that are

non-holonomic, that involve kinodynamics, which by nature is used in mobile vehicles and

some robotic trajectory planning. Non-holonomic problems3 involve the constant changing

of the C-space, either through the system itself or driven by external means.

Let us consider a vehicle with a two-DoF input — acceleration and orientation as con-

trolled by a steering wheel. The motion, or state of the vehicle, will be controlled through

these inputs. However, we observe that the vehicle output state has three DoF — the x− y

position on a plane, and vehicle orientation φ. Path planning for this vehicle is a standard

non-holonomic problem because the vehicle’s state involves some form of integration of its

input. Hence, checking for valid connections between states during path planning, consider-

ing collisions, can be computationally expensive. The rapidly-exploring random tree method

aims to solve this problem by constructing state trees sequentially, such that it derives a

new state from a previously known state.

Because the C-space of a non-holonomic problem is not static, the states sampled within

the tree are only valid for a given initial state. Once a new planning query is called, if the

initial state is different from the previous plan, then the old sample states are no longer

valid and should be discarded. This routine is called a single-query planner because a new

tree is constructed every time a new path is planned. Although this may seem inefficient,

the core idea of RRT is that speed is favoured over quality; that results should be generated

as quickly as possible without any prior knowledge of the C-space. As the C-space is not

3Problems of the form q̇ = f(q, u) (the classical C-space function) are non-holonomic problems.

Sample-Based Planning Algorithms 187

Cobs

xinit xgoalx1

x2

xsample

xnear

r
xnew

Cfree

(a) Repeat for new xsample. Since it is
within r of xnear, add it directly as x3

to T .

Cobs

xinit xgoalx1

x2

x3

xsample

xnear

r

xnew
Cfree

(b) Repeat the process for x4.

Cobs

xinit

xgoal

x1

x2

x3

x4

xsamplexnear

r

xnew

Cfree

(c) Repeat the process for x5.

Cobs

xinit

xgoal

x1

x2

x3

x4

x5

r

Cfree

(d) Since x5 is within r of xgoal, connect
them. A path from xinit to xgoal is found.

FIGURE 9.17

RRT expansion from states xinit to xgoal, in finite free space Cfree with obstacle Cobs.

.

constructed at all, the memory footprint of RRT planning is minimal, which is ideal for

embedded systems where processing power is limited.

Process

The process of generating an RRT for path planning is similar to the PRM. However, there

is one key difference — each new sampled state is connected to only one existing sampled

state to ensure that states are connected sequentially between one another. This can be

visualised in Figure 9.17.

1. Initialisation. Start with an initial state xinit, goal state xgoal and a finite space

Cfree with obstacles Cobs. Define a connected tree of states T , and add xinit to it.

Set a growth radius r for the tree T . Set xsample = xgoal

2. Find xnear. Find the nearest state in T that is closest to xsample that is not

xgoal. Set this state as xnear.

3. Define xnew. If distance between xsample and xnear exceeds growth radius r,

then define a linear path from xnear and xsample, and set xnew to be on this path

at distance r from xnear. Otherwise, set xnew = xsample.

188 Path Planning

4. Connect xnew tree T . Verify that the linear path between xnew and xnear does
not intersect Cobs. If it does, discard xnew, and go to Step 6. If there is a valid
connection, add xnew to the tree T via a branch from xnear.

5. Connect to xgoal. From xnew, if distance to xgoal is less than radius r, find a
collision-free path from xnew to xgoal. If no path exists, move to the next step. If
a path exists, add a branch to T , from xnew to xgoal and a path from xinit, goal
state xgoal is found. Stop.

6. Sample new state xsample. Randomly sample a new state xsample anywhere in
Cfree. Loop back to Step 2.

Due to RRT’s ability to handle non-holonomic problems, it is very popular amongst the
robotics community as the initial go-to planner for unknown C-spaces. Its ability to handle
planning almost any C-space makes it very suitable for use in field robotics, but it also has
uses in robotics research where robot prototyping can continuously change its C-space. It
is also used in some manufacturing plants that adopt human-robot collaboration, where
collision objects (such as the human) are time-variant within the C-space. However, in cases
where the C-space is predictable and time-invariant, such as plants utilising robots in trivial
pick-and-place and assembly tasks, a multiple-query planner is preferred for its efficiency
and deterministic plans. In such a scenario, A* or PRM in a predefined C-space would be
suitable candidates.

Cobsxinit xgoal

Cfree

(a) Initialise with xinit and xgoal in
Cfree with obstacle Cobs.

Cobsxinit

r

xnear

xgoal

xsample

xnew

Cfree

(b) Set xgoal as new sample state xsample, find
the nearest state xnear at xinit, and find xnew

at radius r. Add xnew as x1 to tree T .

Cobsxinit xgoal

xsample

x1

xnear

r

xnew

Cfree

(c) Sample new state xsample, find the
nearest state xnear at x1, and find
xnew at radius r. xnew is invalid due
to collision with Cobs.

Cobsxinit xgoalx1

xnear

r

xnew

xsample

Cfree

(d) Repeat process for new state
xsample, adding it as x2 to T .

Potential Field Planners 189

9.6 Potential Field Planners

Potential field algorithms represent a more mathematical solution to the path planning
problem. Before planning begins in the C-space, the potential field is constructed over the
entire C-space whereby weights are applied to discourage paths in problematic areas (such
as collision objects). Initially, the entire space is discretised coarsely, and the potential field
is constructed. If a solution cannot be found, the space is discretised further, potential
fields re-evaluated, and the algorithm is run again. The algorithm will stop when the goal
state is met (success), or the maximum resolution has been attained (failure). This is a
single-query planner, where the main advantage of this method is that the potential field
(known as the heuristic function or guiding function) can be calculated very quickly, and
adapted for specific problems. Potential field planners for robots with up to 8 DoF have
been successfully implemented for the inspection of buildings but have seen limited use in
modern industry with the advancements of sample-based planners.

For guaranteed convergence, the potential field must be perfect in that no local min-
ima should exist except for one located at the goal state. This is typically very difficult
to achieve. Hence, many applications of this planner are prone to local minima problems
without assistance, such as introducing random walks. Calculating the overall path cost
from gradients is also expensive to implement over spaces of high dimensions.

9.7 Conclusion

In this chapter, we defined how to set up a path planning problem for manipulator path
planning. The concept of the configuration space (C-space) is used to fully describe the pose
or configuration of a robot at a given time. This space can be built using either the task
space or joint space variables, depending on the proposed path planning constraints. We
observed that for serial manipulators, the joint space always fully describes the configuration
of the robot, hence a C-space derived from joint space variables is a viable candidate for
path planning. In addition, the C-space can be discretised in two ways, grid or random
sampling, with connectivity schemes initially defining all possible state transitions within
the C-space. Selecting an effective connectivity scheme is critically important for planning
efficiency, as it directly affects the complexity of the path planning problem.

Two main types of planning algorithms were introduced to perform path planning in the
C-space: complete planners and sample-based planners. Complete planners include depth-
first and breadth-first searches, which are primitive but easy to implement for simple plan-
ning problems, and Dijkstra’s algorithm and A*, which are more advanced planners that
implement path costings and heuristics for solving shortest path problems. Complete plan-
ners work very well in C-spaces defined as finite graphs, but are limited to problems of lower
dimensions. Sample-based planners solve the problem of higher dimensionality by taking
random samples of the C-space to formulate a problem such that a solution is probabilisti-
cally complete. Probabilistic road maps (PRM) and rapidly-exploring random trees (RRT)
fall under this category, and are introduced in this chapter.

MATLAB implementations for many these planning algorithms were given in the form
of path planning examples. The supplied code, which is commented in detail, supplements
the brief descriptions of the process of each planning algorithm.

10

Programming

In this chapter, we introduce programming methods to model, simulate, and control serial
chain manipulators. Many development environments and programming languages are used
in the industry, research, and broader hobby and enthusiast environments. However, in the
context of introductory robotics, we will focus on software and programming languages that
are already familiar to undergraduate students: MATLAB, C++, and Python. Furthermore,
we introduce the Robot Operating System (ROS), which is a commonly used middleware
for programming and controlling a physical robot.

10.1 Modelling

Throughout this textbook, we used a variety of MATLAB functions and features to model
various aspects of a serial robot. MATLAB provides the perfect environment for learning
robotics, not only to model the kinematics and dynamics of a robot but also to provide
visualisations using MATLAB’s built-in graphical functions. This chapter will demonstrate
how to use these tools to assist in the modelling and visualisation of robots.

10.1.1 Symbolic Functions and Handles

In Chapter 6, we utilised the Denavit-Hartenberg parameters set in tables to model the
forward kinematics of a serial manipulator. Although the link lengths and offsets can be
predefined by numerical values within the table, rows that contain an actuated variable,
either in the q column for revolute or d column for prismatic actuators, will always remain
variable. Hence, our forward kinematic modelling will be a function of symbolic variables q
or d, collectively known as joint space vector q. In MATLAB, we can define joint variables
as symbolic variables. For example, if a RP robot of length L1 is made up of a revolute and
prismatic actuator in sequence, then we can define variables q1 and d2 and unknown L1 in
MATLAB by

syms theta_1 d_2 L_1 real

Note that we include the keyword real, which forces MATLAB to assume these variables
will always contain real numbers. This means MATLAB will not calculate a complex con-
jugate for these variables when applying transpose operations to them. If we assume the
DH parameters for this robot are

i αi−1 ai−1 di qi
1 0 0 L1 q1
2 0 0 d2 0

DOI: 10.1201/9781003614319-10 190

https://doi.org/10.1201/9781003614319-10

Robot Operating System 191

and apply Equation (6.3) (defined as a MATLAB function dh2T() in Inline 6.1), then we
obtain the forward kinematic equations 0T2 in MATLAB in symbolic form.

>> T_0_1 = dh2T([0, 0, L_1 , theta_1]);
>> T_1_2 = dh2T([0, 0, d_2 , 0]);
>> T_0_2 = T_0_1 * T_1_2

T_0_2 =

[cos(theta_1), -sin(theta_1), 0, 0]
[sin(theta_1), cos(theta_1), 0, 0]
[0, 0, 1, L_1 + d_2]
[0, 0, 0, 1]

While this clearly demonstrates MATLAB’s ability to generate analytic solutions effort-
lessly for simple serial chains, it is not particularly useful if we want fast numerical solutions.
To get a numerical answer from MATLAB’s symbolic equation, one simple solution is to
copy and paste the analytic expression for T 0 2 into the command window and replace all
variables with known values. However, this is inefficient if we evaluate over multiple points
in the joint space, especially for long analytic expressions seen in manipulators of more than
three DoF. To efficiently substitute values into T 0 2, we can convert it into a function han-

dle using matlabFunction() which effectively converts it to MATLAB a function, similar
to sin() or cos().

>> T_0_2_function = matlabFunction(T_0_2)

T_0_2_function =

function_handle with value:

@(L_1 ,d_2 ,theta_1)reshape ([cos(theta_1),sin(theta_1) ,0.0,0.0,-sin(theta_1),cos(theta_1
) ,0.0 ,0.0 ,0.0 ,0.0 ,1.0 ,0.0 ,0.0 ,0.0 , L_1+d_2 ,1.0] ,[4 ,4])

The function handle T 0 2 function is used like any other function in MATLAB, but has
three inputs, L1, d2, and q1 in that order. To find 0T2 at q1 = π

4
, d2 = 0.2, with L1 = 0.1

simply call T 0 2 function() with these known inputs.

>> T_0_2_function (0.1, 0.2, pi/4)

ans =

0.7071 -0.7071 0 0
0.7071 0.7071 0 0
0 0 1.0000 0.3000
0 0 0 1.0000

By utilising matlabFunction() to convert symbolic expressions into function handles,
we now have a fully programmatic way to numerically model the forward kinematics of any
robotic manipulator from its DH parameters.

10.2 Robot Operating System

The field of robotics has made impressive gains in recent years, both in hardware and soft-
ware, and the algorithms that help these robots run with increasing levels of intelligence
and autonomy. However, the increasing availability of inexpensive robotic components, each
with its own hardware implementation and communications interface, is causing some sig-
nificant challenges for software developers — which is to write software for a robotic system
that allows seamless communication between any low-level hardware with higher-level con-
trol and decision-making algorithms. To add to the wish list, the flexibility of using multiple
programming languages, ease of code expandability and portability, and a robust debugging

192 Programming

platform may seem like a pipe dream. However, the introduction of the Robot Operating
System, or ROS, is intended to address many of these challenges.

The official description of ROS is as follows:

ROS is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-level
device control, implementation of commonly used functionality, message-passing between
processes, and package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

More succinctly, ROS is known as a middleware, which serves to provide a standardised

framework for the communications between hardware and software, to promote collabo-

ration, expansion, and robust debugging through distributed computing, and to encourage

code sharing through package management. Let us take a look at the first two benefits more

closely.

Standardised Communication

This is one of the main benefits of ROS, as it provides a standardised platform for communi-

cation between all components within the robotic system via the ROS messaging interface,

implemented on an Ethernet/IP protocol. This means the messaging system can function in-

ternally in a standalone computer system, utilising a network in a local host, or distributed

across multiple devices on a network with messages transferred through an Ethernet cable

or WiFi.

Distributed Computation

By allowing a ROS network to expand through the Ethernet infrastructure, we allow the

natural expansion of a robotic system, similar to a plug and play implementation. This

is particularly useful if we are adding new hardware, such as additional sensors, or if one

were to run multiple computing systems that host their own subset of code, algorithms or

hardware.

10.2.1 Operating Paradigm

Before describing the fundamental components of ROS, it is important to know the core

mechanics, or paradigm of how ROS operates. Although ROS programs are generally writ-

ten in C++ or Python, which are object-oriented programming languages, ROS functions

primarily through an event-driven framework.

The flow of an event-driven program is determined by events that are raised outside

the program loop. Examples of events can be sensor readings, a user clicking an element

on the user interface, or even a physical switch changing states. The main program loop

listens for raised events, where each loop iteration is of very low computational cost. When

the program detects a raised event, it triggers a callback function1 that is assigned with the

event. The callback function handles the event along with any associated data, processes it,

and then releases its resources back to the main program loop.

The main advantage of an event-driven paradigm is that functions are only called upon

a change of state, or when new data becomes available. This means that the event handling

process will always capture raised events that are non-periodic, and that polling rates do

not have to be configured to match the refresh rate of incoming data. Also, if events are

1A callback function is also known as an event handler.

Robot Operating System 193

raised faster than event handlers can process them, they are simply placed in a finite queue
to be processed when resources become available. Examples of non-periodic raised events
include

• Non-periodic sensors, such as velocity sensors that raises an event for every “tick” that
they are moving, but stop when stationary.

• New-data triggers, such as when a thread has finished analysing complex vision data.

• Hardware triggers, such as pressing a button to detect when a gripper has successfully
closed.

By not processing computationally expensive code at each program loop, program effi-
ciency is increased, and processing power requirements can be lowered.

10.2.2 ROS Components

ROS is not a traditional operating system that replaces another, nor is it a new programming
language. It is a framework designed to standardise communications between devices and
programs that may exist in a single standalone system or be interconnected through an
Ethernet/IP network topology. This is achieved through a messaging system, where data
packages in the form of messages are relayed between devices in a ROS network. Although
this seems abstract, it is quite analogous to a traditional standalone monolith program.

A typical computer program may consist of the following components

• Variables that store data within a program, such as a counter.

• Functions that process raw input data, and outputs it as useful data.

• Methods that execute tasks in relation to the program, such as saving data to a file.

A simple way to understand the fundamental components of ROS is to find direct
comparisons of these components to those of a computer program.

Nodes

Nodes are analogous to traditional computer programs that contain all the code, algorithms,
and ROS components to function and communicate. For instance, a node can be setup to
keep track of all sensor information and update the readings for the entire ROS system to
see. Another node can be to solve the inverse kinematics of a robot. A node communicates
to other nodes through a messaging system, in which the ROS master keeps track of where
relevant messages should go. When a node starts, it advertises its topics and services,
which the master will make available for all other connected nodes. These components will
be explained further in this section.

Master

The ROS master is the server for the entire ROS system. Whenever new nodes connect to
the ROS network, they will always connect to the ROS master. The master will keep track
of all ROS components and forward messages to the right nodes. Only one ROS master can
exist per ROS network.

194 Programming

Messages

All data transmission between nodes and devices is implemented through messages. Al-
though this kind of abstract data transmission does not occur in a normal computer pro-
gram, comparisons can still be made whenever we write a value to a variable, or call a
function in a program with an input value. In each of these cases, we are providing a copy
(or reference) of the data and storing it in the variable, or passing it to the function to
then process. In ROS, a definite copy of the data is made, encapsulated as a ROS message,
and then transmitted through the ROS network to the relevant receiver, such as a topic or
service. Furthermore, a message can be made up of a single data type such as a float or an
array of uint8, or multiple data types such as a bool, int32, and an array of float. Each
message is defined as its own type, and senders and receivers must use the same message
type to communicate.

Topics

Topics are analogous to global variables in a computer program. It is a mechanism for
sharing data amongst all nodes within the ROS network. For instance, the /joint state

topic may contain the latest information on the joint states of a robot. A topic is created
by a node and maintained and advertised by the ROS master. A ROS topic is updated by
publishing a message to the topic with a publisher created from any node. However, for
a node to receive updates from a topic, it must create a subscriber handle to the topic.
The subscriber listens to the topic, and will only receive updates when a new message is
published to the topic.

Publishers

A publisher publishes to a topic by sending a message (of the correct message type) to
the topic. For instance, a thread may update the joint configuration of a robot at 10 Hz,
so the rest of the nodes who may be subscribed to the topic can get the most up-to-date
information.

Subscribers

A subscriber subscribes to a topic by creating an event handler and an associated callback
function. When a publisher publishes a new message to the topic, all subscribers to the
node are notified, and their respective callback functions are triggered. This ensures that
code is only executed on new data, promoting program efficiency. Sometimes, a topic is
updated while a subscriber’s callback code is still executing. If this happens, later callbacks
are queued (finitely) so that new information is not missed.

Services

A ROS service is analogous to a function call or method in a computer program. A service
is created by starting a service server on the hosting node, which is then advertised by the
ROS master. To call a ROS service, a service client is created from the client node, which
allows calling of the service by sending it a service message. Service messages work on the
same principle as regular messages but exist only to transfer messages between the service
server and the client. When a service is called, execution on the calling node is blocked
until a return message from the hosting service is received. This is known as a blocking

call, whereby code execution is paused while waiting for a routine to finish. While this
behaviour is common among single-threaded programs, there are scenarios where this can
cause problems. For instance, on services that require long processing times, this can cause

Robot Operating System 195

ROS programs to become unresponsive and cause unnecessary delays in other critical tasks
such as driving actuators or reading sensors. If a blocking service call is undesirable, then
service implementation through an action service is recommended.

Action Service

An action service is the same as a regular ROS service, with the key exception that action
service calls are non-blocking to the client node. Action services are implemented on servo-
control routines so that a ROS program does not have to wait while the robot is moving.
This is an example of asynchronous programming. While asynchronous execution of services
seems desirable in all cases, it unnecessarily complicates the ROS program, especially when
determining the state of the program.2

10.2.3 ROS System: Case Study

Consider the following robotic system, whose task is to autonomously sort recyclable waste
that is randomly stored in a bin. The system comprises three main subsystems:

• a vision system to identify and locate objects in the bin,

• a gripper to grasp onto objects, and

• a robotic manipulator to manipulate the gripper during the sorting process.

Figure 10.1 shows a possible ROS implementation of this robotic system. There are four
main processors (computers or control boxes) that handle each subsystem of the robot. This
is called distributed computing, whereby each processor is configured to handle a task as
efficiently as possible. There are many advantages of this setup.

• Each subsystem, in hardware or code, can be developed individually without affecting
other subsystems

– This feature significantly simplifies collaboration among programmers

– Debugging can be performed without shutting down the entire system

• If a subsystem or individual node fails or crashes, it will not bring down the entire system

• The system is easily expandable, simply by adding additional processors to the ROS
network

In addition, each computer can host multiple nodes that specialise in a particular task,
such as solving robot kinematics, communicating with sensors, or detecting objects using
convoluted neural network algorithms. Each node can also be launched independently on
separate threads of a processor to improve performance through parallel processing.

Finally, the hardware peripherals associated with each computer and subsystem are
usually connected via USB or other high-bandwidth connections, and certain nodes are
dedicated to communications to these devices. For example, on Computer B, the camera

node allows communication to the camera via USB, and exposes two topics to the ROS
network: /camera/point cloud and /camera/image RGB. These topics will be updated by
the camera node at a constant rate, such as 10 Hz, for example.

2Determining the state of a program is critical for the implementation of a state machine. A state

machine is a behavioural model, which dictates a finite number of connected states of a program. Based on

the program’s current state and input, the machine performs state transitions to produce the next output

and move to the next state. Because asynchronous threads are difficult to manage due to their parallel

execution, state machines are difficult to implement on such programs.

196 Programming

Computer B

Vision Subsystem
IP: 10.0.0.2

Topics

/camera/point_cloud

/camera/image_RGB

Services

/vision/get_camera_data

/vision/segment_object

Computer A

ROS Master
IP: 10.0.0.254

Topics

/gripper/current_state

Services

/gripper/open

/gripper/close

Services

/UI/start_process

Robotic Manipulator

Control Box
IP: 10.0.0.1

Topics

/joint_states

/end_effector_position

Action Services

/execute_joint_trajectory

Computer C

Planning Subsystem
IP: 10.0.0.3

Services

/kinematics/inverse

/kinematics/collision_check

Services

/plan/path_joint_space

/plan/path_execute

Topics

gripper/current_state

Services

/gripper/open

/gripper/close

Node: gripper

Topics

/end_effector_position

Action Services

execute_joint_trajectory

Node: robot-control Topics Node: camera

Services

get_camera_data

_object

Node: vision-algorithms

Services

/kinematics/collision_check

Node: kinematics

Services

joint_spacejoint_space

execute

Node: planning

Services

ocess

Node: main

Network switch

FIGURE 10.1

A ROS implementation of a waste-sorting robot.

ROS Processors

Computer A

hosts the ROS master node as well as the gripper and main program nodes. The gripper

node handles all communications with the gripper via the USB interface and exposes the

following ROS components.

• Topics

– /gripper/current state. Any subscribers to this topic will receive updates on the

current state of the gripper, whether it is open, closed, or grasping an object.

Robot Operating System 197

• Services

– /gripper/open, /gripper/close. Calling these services opens or closes the gripper.

The main node controls the state of the program and generates a user interface to allow
interaction with the user and robot. It also contains the main program loop, and exposes
a single ROS service /UI/current state. This service is called only when a user presses
“Start” on the user interface, for example.

Robotic Manipulator: Control Box

Control Box contains all the hardware relating to the control of the robotic manipulator,
as well as having an onboard processor that hosts the robot-control node. This node
handles all low-level communications with the robot’s actuators, as well as provides the
current status of the robot’s joints and end effector positions through the following ROS
components.

• Topics

– /joint states, /end effector position. Any subscribers to these topics will re-
ceive updates on the joint positions (as a vector), or end effector position (as a trans-
formation matrix), respectively.

• Action services

– /execute joint trajectory. Calling this action service with a given list of joint
velocities and positions will actuate the robot’s joints accordingly. This is a non-
blocking call, which will allow the calling node to continue executing while the robot
is moving.

Computer B

Computer B hosts two nodes. The camera node communicates with the camera via the USB
interface and exposes the following ROS topics.

• /camera/point cloud, /camera/image RGB. Subscribers to these topics will receive point
cloud data or an RGB image from the camera at a fixed rate. Note that the messages
sent and received from these topics can be quite large, depending on the image resolution.
Hence, only nodes requiring this information should subscribe to it.

Running in parallel, the vision-algorithms node implements object-segmentation algo-
rithms to detect and categorise objects, and returns data based on the service called. This
node exposes the following ROS services.

• /vision/get camera data returns the camera’s point cloud data and RGB image on
demand. Because subscribing to a stream of RGB and point cloud data can be compu-
tationally expensive and utilise unnecessary bandwidth within the ROS network, using a
service to get one-off data from each topic can be more efficient.

• /vision/segment object returns a list of transformation matrices of all objects and their
type (as an integer) based on given camera sensor data.

198 Programming

Computer C

Computer C hosts two nodes. The kinematics node calculates the kinematics of the robotic
manipulator by hosting the following ROS services.

• /kinematics/inverse. This service solves the inverse kinematics of the robot, given a
transformation matrix of the gripper. It will return a message containing a list of joint
states that satisfy the gripper’s pose.

• /kinematics/collision check. Calling this service, given a joint space point, will cal-
culate whether the robotic manipulator is in collision with itself.

The planning node implements path planners for the robotic manipulator by exposing the
following ROS services.

• /plan/path joint space. Calling this service, given an initial and goal joint state, will
calculate a collision-free trajectory and return a list of joint velocities and positions that
link the initial and goal positions.

• /plan/path execute. Calling this service will call the action service to execute the given
list of joint velocities and positions.

Robot operation: Autonomous Trash Sorting

Assume the system is ready to start autonomous trash sorting and is in the home position
q0 with the camera facing inside the box of trash.

1. Wait for user interface trigger

The ROS program begins at the main ROS node, which polls for any /UI/start process

calls. This is triggered whenever the “Start” button is pressed on the user interface generated
by the node. Once the /UI/start process service is called, the main routine begins from
the next step.

2. Get camera data

The first service called within the /UI/start process service is /vision/get camera data

the service. Within this service, subscribers are made to the /camera/point cloud

and /camera/image RGB to get the latest camera data. When execution of the
/vision/get camera data service finishes, point cloud data and its associated RGB image
are returned, and the subscribers are destroyed to save resources. Flow returns back to the
/UI/start process service.

3. Identify objects

Next, the /vision/segment object service is called by sending it a service message with
point cloud and RGB image data retrieved in Step 2. The service will run object-detection
algorithms to identify all objects in the box (if any exist). Any items identified and classified
are returned as a list of transformation matrices BTI1 ,

BTI2 , ...,
BTIn where B is the

robot base frame and In is the n-th item’s frame. In addition, a list of integers is also
returned, which identifies how the item should be sorted. If there are no objects detected, the
/UI/start process service terminates, and we return to Step 1 where control is returned
to the main program loop in the main ROS node.

Robot Operating System 199

4. Verify reachability of Item 1

Once a list of items’ transformation matrices is obtained, the robot will attempt to move
the gripper to the first object to grasp (we will call this Item 1). The /kinematics/inverse
service is called by sending a service message with the proposed transformation matrix of
the gripper to grasp Item 1, called BTG . In a grasp scenario, BTG = BTI1 . The return

message will be a list of joint space configurations, Q = {q1, q2, ...qn}, that satisfies BTG .
The /kinematics/collision check service is called by sending a service message with the
list of configurations Q, to check whether any of these joint space configurations result in
robot self-collisions. The return service message will be the list of joint space configurations,
Q′ ⊆ Q that are collision-free.

5. Plan to grasp Item 1

The main node has a subscriber to the /joint states topic, which continuously updates
the current joint position of the robot, and stores it in a variable js. With a list of joint
configurations Q′ ready from Step 4, a path from the robot’s initial state js to the first
configuration in Q′ (q1) can be planned. The /plan/path joint space service is called by
sending it a service message with the initial joint state js to the goal joint state q1. The path
planner within the service will calculate the joint trajectories required to link the initial and
goal states. If a path to q1 is found, a list of joint velocities and joint positions (Qv, Qp) is
returned. If a path is not found, the next goal position in Q′ (q2) is planned instead, and
the process continues for each failed path plan. If no paths are found among all elements in
Q′, then Item 1 cannot be grasped, and we return to Step 1.

6. Execute plan to grasp Item 1

Before execution of the planned path from Step 5 to reach q1, the /gripper/open service is
called to open the gripper. Then /plan/path execute is called with (Qv, Qp) included in the
service message. Within the /plan/plan execute service, the /execute joint trajectory

action service is called, which will directly communicate with the robot in executing the
(Qv, Qp) trajectory. Note that this is a non-blocking call within the /plan/plan execute

service. Hence, this service will continue to execute while the robot is moving. However, the
parent service, /UI/start process, is blocked from continuing until the robot has finished
moving to q1. This will ensure the robot has reached its final position before continuing,
especially when the next step is to grasp Item A!

7. Depositing Item 1

Once /plan/plan execute has finished executing, the robot should be at q1. The
/gripper/close service is called to close the gripper to grasp Item 1. A temporary sub-
scriber to the /gripper/current state topic is created to check whether the grasp is
successful. From here, there are two possible outcomes.

1. If the grasp is not successful, the gripper is opened (by calling /gripper/open)
in case an object was grasped, but incorrectly.

2. If the grasp is successful, a path is planned from q1 to qb, where qb is the joint state
of the robot that places the gripper over the correct depositing box, as defined by
the object’s sorting criteria defined in Step 3. The /plan/plan execute service
is called to move the robot to qb, and finally, the gripper is opened by calling
/gripper/open to drop Item 1 into the deposit box.

200 Programming

8. Returning home

The /plan/path joint space and /plan/plan execute services are called to move the
robot from its current position defined by js (which should be updated by the topic
/joint states) to the home position q0. The /UI/start process service loops back to
Step 2.

10.3 Conclusion

In this chapter, we discussed how to model robotic systems efficiently in MATLAB, utilising
symbolic equations and function handles to effortlessly calculate the forward kinematics of
a general serial manipulator. The functions and techniques discussed in modelling can be
generalised to any system that requires the modelling of frames, given the system’s current
state.

Also, ROS or Robot Operating System was introduced. It is an open source middleware
that provides the framework to standardise communcation between hardware and software
components of a robotic system using the Ethernet/IP protocol. Its operating paradigm
was discussed, and each component of what makes ROS function were described in detail.
Finally, a realistic case study was used to demonstrate how all of the ROS concepts and
components work together to create a functional robotic system.

11

Lagrangian Dynamics

In Chapter 8, we studied how to use Jacobians to calculate a robot’s joint torques and
forces under a static load at the end-effector. However, when a robot begins to accelerate,
the dynamics of the rigid links and their effects on the actuators come into play.

Dynamics is the study of the relation between the force and the motion of an object.
When the study is applied to a robotic system, we investigate how the torques and forces
exerted on its rigid links (such as from end-effector payload, self-inertia, and gravity) affect
the robot’s motion via its actuators. This analysis is very important for all robots, and
especially for agile robots or those that carry significant payloads, as dynamic torques
and forces can be significant relative to static loading. Suppose a robot’s dynamics are
not factored into its control system. In that case, it can introduce unwanted vibrations
or oscillations, destabilising the robot’s motion and causing the loss of control of the end-
effector.

This chapter will introduce the dynamic analysis of robotics through Lagrangian me-
chanics. It is centred around the Lagrangian, which is a single equation that encapsulates the
dynamics of the entire robotic system as the sum of all kinetic and potential energies. The
resultant equations of motion, which model the torques and forces as seen by the actuators
from the robot’s dynamics, is solved by using the Lagrange equation.

11.1 Rigid Body Dynamics

The mass of one rigid body is its intrinsic dynamic parameter, which links the movement
of the body and the force applied to the body. According to Newton’s second law

f = m a (11.1)

f is the inertial force applied by a body with mass m accelerates at a . Note here that mass
m is assumed to be a point mass, such as that shown in Figure 11.1.

Because rigid bodies such as robotic links are too big to be considered as a point, the
total mass of the body can be condensed to a single point called the centre of mass (CoM).
The CoM of a rigid body is the mass-weighted geometric centre of the distributed mass in
space, which is given by

0c =

∫

B
0rdm

∫

B
dm

=

∫

B
0rdm

M
(11.2)

where 0c is the position of the CoM measured in a universal fixed frame {0}, 0r is the
position vector measured in {0}, B is the rigid body region, dm is an infinitesimally small
mass element, and M is the total mass of the rigid body.

This calculation can be simplified by attaching the fixed frame to the rigid body such
that the vector components are constant, i.e., frame {0′}, resulting in an invariant vector

DOI: 10.1201/9781003614319-11 201

https://doi.org/10.1201/9781003614319-11

202 Lagrangian Dynamics

r

m
a

f

{0}

FIGURE 11.1

A point mass.

0
′

c . Further, if the attached frame is located at the CoM of this body, we must have 0
′

c = 0.
According to Equation (11.2), we have

∫

B

0
′

rdm = 0 (11.3)

In many cases, the mass of a rigid body is condensed into a point mass located at the
CoM such that the behaviour of the point mass is governed by Equation (11.1). In the case
that the distributed masses cannot be neglected, the inertia tensor describing the mass
distribution of the rigid body is required.

11.2 Inertia Tensors

Consider a rigid body rotating around a pivot point with an angular velocity α under a
torque τ , as shown in Figure 11.2. With all vectors measured in the ground frame, Newton’s
second law can be applied to an arbitrary infinitesimal mass dm

d f = dm a (11.4)

α

r
dm

a

df

τ
{0}

FIGURE 11.2

A rigid body.

Inertia Tensors 203

where d f and a are the equivalent force applied on this point mass and its acceleration,
respectively. Combining the following relations

d τ = r × d f a = α × r (11.5)

with Equation (11.4) yields

d τ = −dm r × (r × α)

= −dm [r][r] α

= −dm [r]2 α (11.6)

where [r] is the cross product of r . Hence, the total torque acting on the rigid body is given
by

τ =

∫

d τ = −

∫

[r]2dm α (11.7)

which is the dynamic relation between τ and α . The term −


[r]2dm is a 3 × 3 matrix
and is known as the inertia tensor, or

I = −

∫

[r]2dm (11.8)

We can further expand I to define its individual elements. Assuming r =
[

x y z
]T

,
then Equation (11.8) becomes

I =

∫





y2 + z2 −xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2





=







(y2 + z2)dm −


xydm −


xzdm

−


xydm


(x2 + z2)dm −


yzdm

−


xzdm −


yzdm


(x2 + y2)dm





=





Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz



 (11.9)

where Ixx, Iyy, and Izz are the mass moments of inertia, while Ixy, Ixz, and Iyz are the
mass products of inertia. Typically, the larger the moment of inertia around a given axis,
the more torque is required to accelerate or decelerate the rotation of a body about this
axis.

Example 11.1 (Inertia tensor): Find the inertia tensor of a robotic link in the frame shown in
Figure 11.3. Assume it has a mass of m = 1 kg and a corresponding density of ρ = 0.125 kg/m3.

Solution: According to Equation (11.9), the mass moment Ixx of inertia of the block is given by

Ixx =

∫

0.1

0

∫

0.8

0

∫

0.1

0

(y2 + z
2)ρdxdydz = 0.217 (11.10)

Similarly, we have Iyy = 0.007 and Izz = 0.217. According to Equation (11.9), the mass product
of inertia, Ixy, is given by

Ixy =

∫

0.1

0

∫

0.8

0

∫

0.1

0

xydxdydz = 0.020 (11.11)

204 Lagrangian Dynamics

z

x

y

9

1

1

FIGURE 11.3

A robotic link.

Similarly, we have Ixz = 0.003 and Iyz = 0.020. Therefore in this reference frame {A}, the inertia
tensor is given by

AI =





0.217 −0.020 −0.003
−0.020 0.007 −0.020
−0.003 −0.020 0.217



 (11.12)

11.3 Principal Moments of Inertia

The values of the inertia tensor for a rigid body depend on the frame in which it is measured.
Therefore, it is possible to select a measurement frame such that all mass products in the
upper and lower triangle of the inertia tensor vanish. The axes of this frame are called the
principal axes of this body, and the mass moments are the principal moments of the inertia,
where

A
I =





Ixx 0 0
0 Iyy 0
0 0 Izz



 (11.13)

The eigenvalues of an inertia tensor are the principal moments for the body. The as-
sociated eigenvectors are orthogonal to each other due to the symmetric inertia tensor, as
proven in Appendix 25.1. Hence, these eigenvectors are called the principal axes, which
constitute the principal frame.

Example 11.2 (Principal moment and frame): For the robot link in Figure 11.4, find its
principal moments and the corresponding principal frame {P} at the origin of the given frame
{A}.

Solution: Based on Equation (11.12), the eigenvalues are

λ1 = 0.003 λ2 = 0.218 λ3 = 0.219 (11.14)

and associated eigenvectors are

c1 =


−0.094 −0.991 −0.094
T

(11.15)

Principal Moments of Inertia 205

e1

e2

e3

z

x

y

l

w

h

FIGURE 11.4

A robot link with an indicative principal frame {P} located at its origin frame {A}.

c2 =


−0.701 0.133 −0.701
T

(11.16)

c3 =


0.707 0 0.707
T

(11.17)

If we set eigenvectors c1 , c2 , and c3 as the x, y, and z axes of the principal frame {P}, then we
have the inertia tensor measured in the {P} as

P I =





0.003 0 0
0 0.218 0
0 0 0.219



 (11.18)

and the orientation of {P} measured {A} is

ARP =





−0.094 −0.701 0.707
−0.991 0.133 0
−0.094 −0.701 −0.707



 (11.19)

You can check the validity of the rotation matrix ARP by ensuring det(ARP) = 1 and ARP

A

RT

P =
I3.

The relation of the inertia tensors of the same rigid body measured in two different
frames with the same origin can be expressed by the similarity transformation,

A
I = A

RB
B
I

A
R

T
B (11.20)

For example, the inertia tensor in the frame {P} consisting of the eigenvectors in Exam-
ple 11.2 can be derived as

P
I = P

RA
A
I

P
R

T
A

=





0.094 −0.991 −0.094
−0.701 0.133 −0.701
0.707 0 −0.707









0.217 −0.020 −0.003
−0.020 0.007 −0.020
−0.003 −0.020 0.217









−0.094 −0.701 0.707
−0.991 0.133 0
−0.094 −0.701 −0.707





=





0.003 0 0
0 0.218 0
0 0 0.219



 (11.21)

206 Lagrangian Dynamics

{0}

r

d

c

C

{1}

dm

FIGURE 11.5

Two parallel frames associated with a rigid body.

11.3.1 Parallel Axis Theorem

The parallel-axis theorem relates the inertia tensors of the same body measured in two
parallel frames with different locations, as shown in Figure 11.5. It is expressed as

0
I = 1

I −m[c]2 = 1
I +m

(

c
T
c 13 − c c

T
)

(11.22)

where m, 13 , and c are the total mass, the 3× 3 identity matrix and the vector from the
origin of {0} to that of {1}, respectively. Further, {0} and {1} are parallel, while {1} sits
at the mass centre. The proof of this theorem is given in Appendix 25.3.

Example 11.3 (Parallel axis theorem): Find the inertia tensor of the block shown in Figure
11.3 in a frame {1} at the mass centre and parallel to {0}.

Solution: In Example 11.1, the inertia tensor in {0} is derived as

0I =





0.217 −0.020 −0.003
−0.020 0.007 −0.020
−0.003 −0.020 0.217



 (11.23)

The mass centre in {0} is given by c =


0.05 0.40 0.05
T

. According to Equation (11.22), we
have

1I = 0I −m(cT c 13 − c cT)

=





0.217 −0.020 −0.003
−0.020 0.007 −0.020
−0.003 −0.020 0.217



−









0.165 0 0
0 0.165 0
0 0 0.165



−





0.003 0.020 0.003
0.020 0.160 0.020
0.003 0.020 0.003









=





0.054 0 0
0 0.002 0
0 0 0.054



 (11.24)

In this case, all mass products vanish. Hence, {1} is the principal frame, while the mass moments
are the principal moments of the inertia at the CoM.

The Lagrangian Method 207

{0}

{0′}

{1}

0c
C

FIGURE 11.6

Two general frames associated with a rigid body.

Combining the similarity transformation and the parallel-axis theorem, one can obtain
the inertia tensor of a rigid body measured in an arbitrary frame based on the inertia tensor
measured in a frame located at the CoM. As shown in Figure 11.6, {0} is not parallel to
{1} that sits at the CoM of the body. By introducing an auxiliary frame {0′} parallel to
{0} and sitting at the CoM, we can readily have

0I = 0R1
1I

0

RT
1 −m[0c]2 (11.25)

Inertia tensors also have other important properties.

• Where a plane of symmetrical mass distribution can be identified, and that two reference
frame axes are on said plane, the inertia or mass product relevant to the axes the will
vanish.

• Moments of inertia must be positive.

• The sum of the three moments of inertia, the trace of the inertia tensor, is invariant under
orientation changes in the reference frame.

11.4 The Lagrangian Method

Consider a system consisting of n rigid bodies. The mass and inertia tensor of each body
are mi and Ii , respectively, where i = 1, . . . ,n. Note that mi is frame-invariant while Ii is
frame-variant. The Lagrangian of the system is defined as the difference between the total
kinetic energy and the total potential energy

L = K − V. (11.26)

The Lagrange equation is

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= fi, i = 1, . . . ,n (11.27)

208 Lagrangian Dynamics

where qi and fi are the generalised coordinate and force applied along qi, respectively.
In robotic applications that utilise only revolute actuators, we typically choose qi as joint
angles

d

dt

(

∂L

∂θ̇i

)

−
∂L

∂θi
= τi, i = 1, . . . , n (11.28)

where θi and τi are the input joint angle and input torque of the i-th actuator, respectively.

Kinetic Energy K

The kinetic energy of the system is given by

K =
n
∑

1

Ki =

n
∑

1

(

1

2
mi v

T
ci vci +

1

2
ω

T
i Ii ωi

)

(11.29)

where Ki, vci , and ωi are the kinetic energy, velocity at mass centre, and angular velocity,
respectively, of Body i. Note that Ii and ωi must be measured in the same frame. The
velocity of the mass centre is given by

vci =
0
0vci =

d
(

0
0pci

)

dt
=

d
(

0T1(θ1) . . .
i−1Ti(θi)

i
ipci

)

dt
(11.30)

The angular velocity is given by

i+1
ωi+1 = i+1Ri(θi+1)

i
ωi + θ̇i+1

i+1zi+1 (11.31)

with the initial condition 0
ω0 = 0. If we choose the frame of the inertia tensor Ii is parallel

to the {i}, we have

Ki =
1

2
mi v

T
ci vci +

1

2
i
ω

T
i

iIi
i
ωi (11.32)

If we choose the principle frame to measure the inertia tensor pIi , which is not parallel to
the {i}, we have

p
ωi =

pRi
i
ωi (11.33)

which yields

Ki =
1

2
mi v

T
ci vci +

1

2
p
ω

T
i

pIi
p
ωi

=
1

2
mi v

T
ci vci +

1

2

(

pRi
i
ωi

)T pIi
(

pRi
i
ωi

)

=
1

2
mi v

T
ci vci +

1

2
i
ω

T
i

p
RT

i
pIi

pRi
i
ωi (11.34)

Another way to interpret the term 1

2

i
ω

T
i

p
RT

i
pIi

pRi
i
ωi is that the inertia tensor is

mapped from {p} to {i}, i.e.,

1

2
i
ω

T
i

iIi
i
ωi =

1

2
i
ω

T
i

(

p
RT

i
pIi

pRi

)

i
ωi (11.35)

where

iIi =
p
RT

i
pIi

pRi (11.36)

which is called the similarity transformation of the inertia tensor.

The Lagrangian Method 209

z0, z1 x0

y0

x1

y1

θ1

xP1

zP1

xP2

zP2

x2

z2

l1

d2

m1

m2

FIGURE 11.7

A RP robot.

Potential Energy V

The potential energy of the system is given by

V =

n
∑

1

Vi =
n
∑

1

(−mi
0gT 0pci) (11.37)

where Vi, and
0pci are the potential energy and position vector of the mass centre of Body

i, respectively, while 0g is the vector of gravity acceleration.

Example 11.4 (PR robot): Given a two-DoF PR robotic manipulator with assigned reference
frames shown in Figure 11.7, derive the dynamic equations governing this system. Assume that the
inertia tensor of each link in the attached frame is given by, respectively,

P1I1 =





Ixx1 0 0
0 Iyy1 0
0 0 Izz1



 ,
P2I2 =





Ixx2 0 0
0 Iyy2 0
0 0 Izz2



 (11.38)

Solution:

Step 1: Transformation matrices

According to the frames assigned to the RP robot as shown in Figure 11.7, the DH parameters in
Table 11.1 can be derived. Hence, the transformation matrices are given by

TABLE 11.1
DH parameters of the RP
robot

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 90 0 d2 0

210 Lagrangian Dynamics

0T1 =









cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1









1T2 =









1 0 0 0
0 0 −1 −d2
0 1 0 0
0 0 0 1









Step 2: Angular velocities

The angular velocities of two links, measured in their own frames, are derived by using velocity
propagation as

1
ω1 = 1R0

0
ω0 + θ̇1





0
0
1



 =





0
0

θ̇1





2
ω2 = 2R1

1
ω1 + θ̇2





0
0
1



 =





0

θ̇1
0



 (11.39)

where θ̇2 = 0 because θ2 = 0. As shown in Figure 11.7, the rotation matrices between the DH
frames and the corresponding principle frames are given by

1RP1 =





1 0 0
0 0 −1
0 1 0





2RP2 =





1 0 0
0 1 0
0 0 1



 (11.40)

Therefore, the angular velocities in the principle frames are given by

P1
ω1 = P1R1

1
ω1 =





0

θ̇1
0





P2
ω2 = 2

ω2 (11.41)

Step 3: Velocities at mass centres

The positional homogeneous coordinates of the mass centres of the two links measured in their own
frames are given by

1c1 =









0
−l1

0
1









2c2 =









0
0
0
1









(11.42)

Hence, the positional homogeneous coordinates of the mass centres of the two links measured in
the ground frame are

0c1 = 0T1

1c1 = l1









s1

−c1

0
1









0c2 = 0T2

2c2 = d2









s1

−c1

0
1









(11.43)

The velocities of mass centers are found by using the time derivatives of the positions

0ċ1 = l1θ̇1





c1

s1

0





0ċ2 = ḋ2





s1

−c1

0



+ d2θ̇1





c1
s1

0



 (11.44)

Step 4: Kinetic energy

The kinetic energies of the two links are given by

K1 =
1

2
m1 ċT1 ċ1 +

1

2
P1

ω
T

1

P1I1
P1

ω1

=
1

2
m1



l
2

1θ̇
2

1



+
1

2
Iyy1θ̇

2

1 (11.45)

The Lagrangian Method 211

K2 =
1

2
m2 ċT2 ċ2 +

1

2
P2

ω
T

2

P2I2
P2

ω2

=
1

2
m2



ḋ
2

2 + d
2

2θ̇
2

1



+
1

2
Iyy2θ̇

2

1 (11.46)

Step 5: Potential energy

According to Figure 11.7, the gravity can be written as 0g =
[

0 −g 0
]T

where g = 9.8 m/s2.
Therefore, the potential energies of the two bodies are given are

V1 = −m1

0gT 0c1

= −m1gl1 cos(θ1) (11.47)

V2 = −m2

0gT 0c2

= −m2gd2 cos(θ1) (11.48)

Step 6: Lagrangian formula

The Lagrangian is

L = K − V

= K1 +K2 − (V1 + V2) (11.49)

Therefore, the dynamics of the RP robot through the Lagrangian method is

d

dt

(

∂L

∂θ̇i

)

−
∂L

∂θi
= τi (11.50)

for actuators i = 1, 2. Because i = 1 is a revolute actuator and i = 2 is prismatic, τ1 and τ2 represents
actuator torque and force, respectively. Substituting the derived Lagrangian into Equation (11.50),
the dynamic equations for the RP robot are

τ1 = (m1l
2

1 + Iyy1 + Iyy2 +m2d
2

2)θ̈1 + 2m2d2θ̇1ḋ2 + (m1l1 +m2d2)g sin θ1 (11.51)

f2 = m2d̈2 −m2d2θ̇
2

1 −m2g cos θ1 (11.52)

The dynamic equations found in Example 11.4 have explicit physical meanings. The
force terms of the prismatic actuator defined in Equation (11.52): f2, m2d̈2, m2d2θ̇

2

1
, and

m2g cos θ1 represent the actuating force, inertia force, centrifugal force, and gravity force
along the direction of d2, respectively, as shown in Figure 11.8. One can derive this equation
simply by adding all these terms. Equation (11.52) can be further rewritten in matrix form

τ = M(θ) θ̈ + V (θ, θ̇) + G(θ) (11.53)

where τ =


τ1 f2
T

, θ =


θ1 d2
T

, θ̇ , and θ̈ are the vectors of the input torques,
joint angles, joint velocities, and joint accelerations, respectively. M , V , and G are the
mass matrix, the centrifugal and Coriolis term, and the gravity term, respectively, which
are given by

M =

[

(m1l
2

1
+ Iyy1 + Iyy2 +m2d

2

2
) 0

0 m2

]

(11.54)

V =

[

2m2d2θ̇1ḋ2

−m2d2θ̇
2

1

]

(11.55)

212 Lagrangian Dynamics

z0, z1 x0

y0

x1

y1

θ1

θ′1

d2

θ′1
m2g

m2g sin θ
′

1

−m2d̈2

f2

m2θ̇1
2

d2

FIGURE 11.8

Force analysis of the end-effector along the prismatic joint of the PR robot.

G =



(m1l1 +m2d2)g sin θ1
−m2g cos θ1



(11.56)

The Lagrangian method is valid for any arbitrary serial robot, such as the six-DoF robot
shown in Figure 11.9. Further, the governing dynamics of a general robot can always be
written in the form of Equation (11.53).

Example 11.5 (Cylindrical robot): Calculate the joint torques and forces for the cylindrical
robot shown in Figure 11.10. Assume all masses are point masses and are located at the origin of
each frame in homogeneous coordinates

1c1 = 2c2 = 3c3 =









0
0
0
1









(11.57)

e1
θ1

O1

e2 θ2

O2

e3

θ3

O3

e4

θ4

O4

e5

θ5

O5, O6

C

e6

θ6

P (x, y, z)

FIGURE 11.9

A six-DOF manipulator.

The Lagrangian Method 213

θ1, d2

d3

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









(11.58)

1T2 =









1 0 0 0
0 1 0 0
0 0 1 d2
0 0 0 1









(11.59)

2T3 =









1 0 0 0.05
0 0 −1 −d3
0 1 0 0
0 0 0 1









(11.60)

FIGURE 11.10

A cylindrical robot with transformation matrices derived from forward kinematics.

Solution: Note that we have point masses in this example. This results in a


0


mass moment
of inertia matrix, and therefore the kinetic energy terms to do with angular velocities equal zero.
Hence, we do not need to find the angular velocities of the mass centres in this example.

Step 1:

Start by finding the mass centres relative to the base frame.

0c1 = 0T1

1c1 =









0
0
0
1









0c2 = 0T1

1T2

2c2 =









0
0
d2
1









0c3 = 0T1

1T2

2T3

3c3 =









0.05c1 + d3s1
0.05s1 − d3c1

d2
1









(11.61)

Step 2:

Take the time derivative of Equation (11.61) to find centre of mass linear velocities.

0ċ1 =





0
0
0





0ċ2 =





0
0

ḋ2





0ċ3 =





s1ḋ3 − 0.05s1θ̇1 + c1d3θ̇1

−c1ḋ3 + 0.05c1θ̇1 + s1d3θ̇1

ḋ2



 (11.62)

Step 3:

Find kinetic energies using Ki =
1

2
mi

0vT

i
0vi . In this example, 0vi is equal to the CoM velocity

0ċi defined in Equation (11.62).

K1 = 0

K2 =
1

2
m2ḋ

2

2

K3 =
1

2
m3



ḋ
2

2 +


s1ḋ3 − 0.05s1θ̇1 + c1d3θ̇1



2

+


−c1ḋ3 + 0.05c1θ̇1 + s1d3θ̇1



2


(11.63)

214 Lagrangian Dynamics

Step 4:

Find potential energies using Vi = mi
0gT 0ci , where

0ci is the position of the CoM in the ground

frame in Equation (11.61), and 0g =


0 0 −g
T

, the direction of gravity also in the ground
frame. Remember to multiply using the 3×1 non-homogeneous position vectors (ignore the trailing
1).

V1 = 0

V2 =
1

2
m2ḋ

2

2

V3 =
1

2
m3



ḋ
2

2 +
(

s1ḋ3 − 0.05s1θ̇1 + c1d3θ̇1

)

2

+
(

−c1ḋ3 + 0.05c1θ̇1 + s1d3θ̇1

)

2
)

(11.64)

Step 5:

Find the Lagrangian function, using L(q, q̇) =
∑

K(q, q̇)−
∑

V (q), where q is the joint space vector
q =

[

θ1 d2 d3
]

.

L = K1 +K3 +K3 − V1 − V2 − V3

=
1

2

(

ḋ2 (m2 +m3) +m3

(

s1ḋ3 − 0.05s1θ̇1 + c1d3θ̇1

)

2

+ m3

(

−c1ḋ3 − 0.05c1θ̇1 + s1d3θ̇1

)

2
)

− gd2 (m2 +m3) (11.65)

Step 6:

Find joint torque and forces (effort), using
d

dt

dL

∂q̇
−

∂L

∂q
.

Joint torque τ1:

τ1 =

[

d

dt

dL

∂θ̇1

]

−

[

∂L

∂θ1

]

= m3

[

0.0025θ̈1 − d̈3 + d3
2
θ̈1 + 2m3d3ḋ3θ̇1

]

− [0] (11.66)

Joint force f2:

f2 =

[

d

dt

dL

∂ḋ2

]

−

[

∂L

∂d2

]

= d̈2 [m2 +m3] + g [m2 +m3]

= (m2 +m3)
(

g + d̈2

)

(11.67)

Joint force f3:

f3 =

[

d

dt

dL

∂ḋ3

]

−

[

∂L

∂d3

]

= m3

[

d̈3 − 0.05θ̇1
]

+
[

m3d3θ̇
2

1

]

= m3

(

d̈3 − 0.05θ̇1 − d3θ̇
2

1

)

(11.68)

The Lagrangian Method 215

θ

y

φ

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1









(11.70)

1T2 =









c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1









(11.71)

2T3 =









1 0 0 0
0 0 −1 −d3
0 1 0 0
0 0 0 1









(11.72)

FIGURE 11.11

A spherical robot with transformation matrices derived from forward kinematics.

Example 11.6 (Spherical robot): Calculate the joint torques and forces for the spherical robot
shown in Figure 11.11. Assume all masses are point masses and are located at the following positions
in homogeneous coordinates

1c1 = 2c2 =









0
0
0
1









3c3 =









0
0

0.25
1









(11.69)

Solution: Note that we have point masses in this example. This results in a


0


mass moment
of inertia matrix, and therefore the kinetic energy terms to do with angular velocities equal zero.
Hence, we do not need to find the angular velocities of the mass centres in this example.

Step 1:

Start by finding the mass centres relative to the base frame.

0c1 = 0T1

1c1 =









0
0
0
1









0c2 = 0T1

1T2

2c2 =









0
0
0
1









0c3 = 0T1

1T2

2T3

3c3 =









c1s2(d3 +
1

4
)

s1s2(d3 +
1

4
)

−c2(d3 +
1

4
)

1









(11.73)

Step 2:

Take the time derivative of Equation (11.73) to find centre of mass linear velocities.

0ċ1 =





0
0
0





0ċ2 =





0
0
0





0ċ3 =
1

4





−s1s2θ̇1 + c1c2θ̇2 + 4c1s2ḋ3 + 4c1c2d3θ̇2 − 4s1s2d3θ̇1
c1s2θ̇1 + c1s2θ̇2 + 4s1s2ḋ3 + 4c1s2d3θ̇1 + 4s1c2d3θ̇2

s2θ̇2 − 4c2ḋ3 + s2d3θ̇2



 (11.74)

216 Lagrangian Dynamics

Step 3:

Find kinetic energies using Ki =
1

2
mi

0vT

i
0vi . Again, 0vi is equal to the CoM velocity 0ċi defined

in Equation (11.74).

K1 = K2 = 0

K3 =
1

32
m3

(

(

s2θ̇2 − 4c2ḋ3 + 4s2d3θ̇2
)

2

+
(

c1c2θ̇2 + 4c1s2ḋ3 − s1s2θ̇1 + 4c1c2d3θ̇2 − 4s1s2d3θ̇1
)

2

+
(

c1s2θ̇1 + s1c2θ̇2 + 4s1s2ḋ3 + 4c1s2d3θ̇1 + 4s1c2d3θ̇2
)

2
)

(11.75)

Step 4:

Find potential energies using Vi = mi
0gT 0ci , where

0ci is the position of the CoM in the ground

frame in Equation (11.61), and 0g =
[

0 0 −g
]T

, the direction of gravity also in the ground
frame.

V1 = V2 = 0

V3 = −1

4
m3gc2 (1 + d3) (11.76)

Step 5:

Find the Lagrangian function, using L(q, q̇) =
∑

K(q, q̇)−
∑

V (q), where q is the joint space vector
q =

[

θ1 θ2 d3
]

.

L = K1 +K3 +K3 − V1 − V2 − V3

=
1

32
m3

(

(

s2θ̇2 − 4c2ḋ3 + 4s2d3θ̇2
)

2

+
(

c1c2θ̇2 + 4c1s2ḋ3 − s1s2θ̇1 + 4c1c2d3θ̇2 − 4s1s2d3θ̇1
)

2

+
(

c1s2θ̇1 + s1c2θ̇2 + 4s1s2ḋ3 + 4c1s2d3θ̇1 + 4s1c2d3θ̇2
)

2
)

+
1

4
m3gc2 (1 + d3) (11.77)

Step 6:

Find joint torque and forces (effort), using
d

dt

dL

∂q̇
−

∂L

∂q
.

Joint torque τ1:

τ1 =

[

d

dt

dL

∂θ̇1

]

−

[

∂L

∂θ1

]

=
1

16

[

m3s2
2(4d3 + 1)θ̈1 + 2c2θ̇1θ̇2 + 4s2d3θ̈1 + 8s2ḋ3θ̇1

+8c2d3θ̇1θ̇2
]

− [0] (11.78)

Joint torque τ2:

τ2 =

[

d

dt

dL

∂θ̇2

]

−

[

∂L

∂θ2

]

=
m3

16
(4d3 + 1)

(

θ̈2 + 4d3θ̈2 + 8ḋ3θ̇2 + 4gs2 −
sin(2θ2)θ̇

2

1

2

The Lagrangian Method 217

−2 sin(2θ2)d3θ̇
2

1



(11.79)

Joint force f3:

f3 =



d

dt

dL

∂ḋ3



−



∂L

∂d3



= m3



1

4



c2
2
θ̇
2

1 − θ̇
2

1 − θ̇
2

2



+ d̈3 − d3θ̇
2

1 − d3θ̇
2

2

+c2
2
d3θ̇

2

1 − gc2



(11.80)

11.4.1 Mass Matrix

The kinetic energy of a robot can be expressed in terms of the mass matrix

K =
1

2
θ̇
T M(θ) θ̇ (11.81)

Meanwhile, the kinetic energy is also given by Equation (11.29). Given the position of the
CoM of Link i, we have

vci =
pci

dt
= Jci θ̇ (11.82)

As discussed in Chapter 8, the angular velocity of Link i is given by

i
ωi =

i
∑

j=1

izj θ̇j =
iJzi θ̇ (11.83)

where θ̇j = 0 if Joint j is a prismatic joint. Substituting Equations (11.82) and (11.83) into
(11.29) yields

K =
∑

(
1

2
mi θ̇

T JT
ci Jci θ̇ +

1

2
θ̇
T i

JT
zi

iIi
iJzi θ̇)

=
1

2
θ̇
T
∑

(mi J
T
ci Jci +

i
JT
zi

iIi
iJzi) θ̇ (11.84)

Comparing Equation (11.81) with (11.84) gives

M(θ) =
∑

(mi J
T
ci Jci +

i
JT
zi

iIi
iJzi) (11.85)

Example 11.7 (RP robot mass matrix): Consider the RP robot in Example 11.4. Find its
mass matrix without deriving the complete dynamics equations.

Solution: According to the CoM of Links 1 and 2, c1 and c2, we have

Jc1 =





l1c1 0
l1s1 0
0 0



 Jc2 =





d2c1 s1
d2s1 −c1
0 0



 (11.86)

The angular velocities are given by

1
ω1 = 1z1 θ̇1

2
ω2 = 2z1 θ̇1 (11.87)

218 Lagrangian Dynamics

which yields

Jz1 =





0 0
0 0
1 0



 Jz2 =





0 0
1 0
0 0



 (11.88)

Furthermore, 1I1 and 2I2 can be obtained from the inertia tensors in their principal frames by
the similarity transformation. Substituting the above Jacobian matrices and inertia tensors into
Equation (11.85), we have

M =

[

m1l
2

1 + Iyy1 + Iyy2 +m2d
2

2 0
0 m2

]

(11.89)

which is the same as the result in Example 11.4.

11.4.2 Gravity Term

The gravity term that appears in Equation (11.53) is the joint torques required to resist
the gravity forces on the links of the robot. According to statics analysis, the required joint
torque to resist the gravity at the CoM of Link i can be written as

τ gi = − JT
cimi g (11.90)

where Jci is the Jacobian matrix between the CoM and the joint angles, i.e., Jci = ∂ ci∂θ .
Hence, the overall gravity term is given by

G(θ) =
∑

τ gi = −
∑

(JT
cimi) g (11.91)

Example 11.8 (RP robot gravity term): Consider the RP robot in Example 11.4. Find its
gravity term in joint space without deriving the complete dynamics equations.

Solution: According to the CoM of Links 1 and 2, c1 and c2, we have

Jc1 =





l1c1 0
l1s1 0
0 0



 Jc2 =





d2c1 s1
d2s1 −c1

0 0



 (11.92)

Substituting the above Jacobian matrices and g =


0 −g 0
T

into Equation (11.91), we have

G =

[

(m1l1 +m2d2)g sin θ1
−m2g cos θ1

]

(11.93)

which is exactly the same as the result in Example 11.4.

11.4.3 Friction Term

Friction forces and torques typically appear in the joint space, since they are caused by the
relative movements. The friction forces are usually modelled in terms of joint positions and
velocities, such as F(θ, θ̇). The friction forces are position-dependent because the contact
forces at joints and meshing gears vary in different configurations.

The Lagrangian Method 219

11.4.4 Load Term

The load or external torques and forces acting on the body of the robot can be modelled
similarly to the gravity term. The load can be mapped into joint torques, which are then
resisted by the actuator torques. The required joint torques to resist the load is given by

L(θ) = − JT
L w (11.94)

where JL is the Jacobian matrix between the twist of the link where the load is applied to
and the joint velocities while w is the load expressed in terms of wrench. Therefore, the
complete dynamics of a robot under the assumption of rigid body can be written as

τ = M(θ) θ̈ + V (θ, θ̇) + G(θ) + F(θ, θ̇) + L(θ) (11.95)

11.4.5 MATLAB Example

Example M11.1 (Lagrangian dynamics): Find the torques and forces exerted on each joint for
the cylindrical robot in Example 11.5 under the following conditions in SI units (radians, metres,
seconds):

q =





π
2

0.2
0.1



 q̇ =





0.5
−0.05
0.05



 q̈ =





0
−2
1



 (11.96)

with masses

m1 = 0.5 kg m2 = 1 kg m3 = 0.5 kg (11.97)

.

Solution: The following MATLAB code solves the problem, with the ensuing command window
output.

1 % Symbolic variables
2 syms th1 dth1 ddth1 d2 dd2 ddd2 d3 dd3 ddd3 real
3

4 % Masses (kg)
5 m1 = 0.5;
6 m2 = 1;
7 m3 = 0.5;
8

9 % Gravity (m/s^2)
10 g = 9.81;
11

12 % Dynamic equations for each actuator
13 torque1 = (m3*ddth1)/400 - (m3*ddd3)/20 + m3*d3^2* ddth1 + 2*m3*d3*dd3*dth1;
14 force2 = (m2 + m3)*(g + ddd2);
15 force3 = m3*ddd3 - (m3*ddth1)/20 - m3*d3*dth1 ^2;
16

17 % Define effort vector
18 effort = [torque1; force2; force3];
19

20 % Group symbolic vectors based on time diff
21 vars = [th1 d2 d3];
22 dvars = [dth1 dd2 dd3];
23 ddvars = [ddth1 ddd2 ddd3];
24

25 % Create a function handle with the following inputs
26 % E_f(vars , dvars , ddvars)
27 E_f = matlabFunction(effort , ’Vars’, {vars , dvars , ddvars });
28

29 % Defined conditions
30 vars = [pi/2, 0.2, 0.1];
31 dvars = [0.5, -0.05, 0.05];
32 ddvars = [0, -2, 1];
33

34 % Calculate effort
35 Effort = E_f(vars , dvars , ddvars)

220 Lagrangian Dynamics

Effort =

-0.0225
11.7150
0.4875

According to the output, the effort seen in each joint is





τ1

f2
f3



 =





−0.0225 N/m
11.715 N
0.4875 N



 (11.98)

11.5 Conclusion

In this chapter, we introduced dynamics analysis of robotic systems through Lagrangian
mechanics. This is an energy-based method, where the entire dynamics of a robot is en-
capsulated in the Lagrangian. This is a function that is made up of the summation of all
kinetic energy terms minus the sum of all potential energy terms. With the Lagrangian, we
apply Lagrange’s equation to solve for the equations of motion, which yields the analytical
expression of the torques and forces exerted on the robot’s actuators by these dynamic
effects.

Dynamics analysis of a robotic system is vital from both a robot design perspective and
in motion control. With the equations of motion, we can model the joint torques and forces
exerted at the actuators, and use it directly in the robot’s control system. By knowing the
dynamic effects of the robot, its control system can be adequately tuned to keep the robot
stable in all modes of operation. Further information on this topic is provided in Chapters
13 and 14.

11.6 Exercises

Problem 1. Derive the dynamic equations for the two-link manipulators shown in Figure
11.12 by means of the Lagrangian formulation. Assume only point masses (no inertia tensors,
therefore no angular velocity component of K), m1 and m2, lie at the middle-point of each
link.
Problem 2. Find the inertia tensor of a cylinder of homogeneous density, with respect to a
frame attached to the centre of its bottom face. Hints: Convert coordinates from a Cartesian
system (xyz) into a cylindrical system (rθz). Formulas for changing the integration between
sets of variables will be required.

Problem 3. For the robot in Figure 11.13, obtain the dynamics of the system using the
Lagrangian method. Represent the dynamic equations in state-space (i.e., matrix) form.

Exercises 221

θ1

θ2

l1

l2

P (x, y)

FIGURE 11.12

Planar RR robot.

x1y1

l1
y0, x1

z2

x2
d2

l2

FIGURE 11.13

Planar RP robot.

Assume that the centres of masses are point masses located midway along each link. Use

the following transformation matrices:

0T1 =









c1 −s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1









1T2 =









1 0 0 L1

0 0 −1 −d2
0 1 0 0

0 0 0 1









12

Newton-Euler Dynamics

Historically, the Newton-Euler formulation was developed in parallel with the Lagrangian
formulation for robotic dynamics. Newton-Euler formulation utilises the outward kinematics
propagation and inward force/torque propagation to obtain the final dynamic governing
equations. During the derivation, the terms of the internal states of the robot, such as
velocity, acceleration, and constraint forces, are all developed. Further, the Newton-Euler
method was reported to be more efficient than the Lagrangian formulation with respect to
high-DoF robotic systems. Therefore, the Newton-Euler method is equivalently important
as the Lagrangian formulation in robotic analysis.

Our following discussion will be in the order of the outward kinematics propagation, the
inward force/torque propagation, and the derivation of the inverse dynamics equations.

12.1 Newton’s and Euler’s Equations

These two equations form the basis of Newton-Euler dynamics formulation. Assuming we
know the centre of mass of each link of a robot and its inertia tensor, then its dynamic
properties are fully described. In order to move these links, we apply forces and torques
to accelerate and decelerate them, such as through its actuators. Therefore, all forces and
torques acting on this body can be reduced to a resultant force f acting at the mass centre
and a resultant moment n acting on the body.

Newton’s Equation

Consider a rigid body depicted in Figure 12.1. Newton’s second law can be expressed as:

f = m v̇c (12.1)

where m and vc are the mass and the velocity at the mass centre of this body measured in
{c}, respectively.

Euler’s Equation

Euler’s second law governing the rotation of the rigid body is given by

n = Ic ω̇ + ω × Ic ω (12.2)

where Ic is the moment of inertia measured in {c}, ω and ω̇ are angular velocity and
acceleration, both also measured in {c}, and n is the moment acting on the rotating body.
Euler’s law is derived in Appendix 25.2.

DOI: 10.1201/9781003614319-12 222

https://doi.org/10.1201/9781003614319-12

Newton’s and Euler’s Equations 223

f

vc

ω

n

FIGURE 12.1

A rigid body under the resultant force and torque.

12.1.1 Rigid Body Rotation

In Section 11.3, we introduced the concept of the principal axes and its associated principal

moments of inertia for a rigid body. To understand how the principal moments of inertia

affects the rotation of a rigid body, we apply Euler’s second law in Equation 12.2.

Example 12.1 (Rigid body rotation): Consider a rigid body with the inertia tensor measured
in its principal frame P I . Assume the rigid body is rotating around its mass centre at a constant
angular velocity ω . Find the moment required to maintain this rotation.

Solution:
Assume {0} and {1} as the ground frame and moving frame to the body at the mass centre.

Initially, {0} and {1} are coincident with each other. Since the constant angular velocity ω must
be along the axis of rotation between {0} and {1}, we must have 0

ω = 1
ω . According to the

Euler formula, we have the required moment expressed in {1} as:

1n = 1
ω ×

1Ic
1
ω =





wx

wy

wz



×





Ix 0 0
0 Iy 0
0 0 Iz









wx

wy

wz



 =





(Iz − Iy)wzwy

(Ix − Iz)wxwz

(Iy − Ix)wywx



 (12.3)

where Ix, Iy, and Iz are the principal moments of inertia. If the body is a sphere or cube with a
uniform density, Ix = Iy = Iz, which leads to zero moment required. If 1n is a nonzero vector, the
direction of moment spins at the angular velocity ω , which is the source of vibration.

Example 12.2 (Wheel dynamics): Wheels on a vehicle must be dynamically balanced along
its spinning axis to reduce the vibration on the road. A wheel on the balance-test machine is
shown in Figure 12.2. {0} and {1} are the stationary frame and the moving frame attached to
the wheel, respectively. Both frames are located at the geometric centre of the wheel, which can
be approximated as the mass centre. Force sensors are mounted on the shafts to measure 1f l and
1fr when the wheel spins at a constant angular velocity along the x-axis. Find the unbalanced
components of the wheel’s inertia tensor.

Solution:
Ideally, {1} should be the principal frame of the inertia tensor of a dynamically balanced wheel.

In general, we assume

1I c =





Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz



 (12.4)

224 Newton-Euler Dynamics

z0

x0

y0

z1

x1

y1

f l

fr

θ

n

ll

FIGURE 12.2

A wheel under the balance test.

where Ixy and Ixz are the unbalanced components we are looking for. Iyz does not yield vibration
along the wheel axis because it represents the asymmetric mass distribution with respect to the
y-z plane. According to the Euler’s formula, we have

1n = 1
ω × 1Ic

1
ω =





wx

0
0



×





Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz









wx

0
0



 =





0
Ixz
−Ixy



w2

x (12.5)

On the other hand, the moments around the mass centre caused by the constraint forces 1fl
and 1fr are given by, respectively,

1nl =





−l
0
0



×





flx
fly
flz



 =





0
lflz
−lfly



 (12.6)

1nr =





l
0
0



×





frx
fry
frz



 =





0
−lfrz
lfry



 (12.7)

The moment balance at the mass centre gives

1n + 1nl +
1nr =





0
Ixzw

2

x + lflz − lfrz
−Ixyw

2

x − lfly + lfry



 = 0 (12.8)

which yields the solution

Ixz = (−lflz + lfrz)/w
2

x, Ixy = (−lfly + lfry)/w
2

x (12.9)

Newton’s and Euler’s Equations 225

FIGURE 12.3

A tennis racquet with three principal axes.

12.1.2 Intermediate Axis Theorem

Commonly known as the tennis racquet theorem, this theorem states that the rotation about
the first and third principal axes is stable, while that about the second, or intermediate axis

is unstable. This theorem can be demonstrated physically with a tennis racquet. The racquet
has three principal axes as shown in Figure 12.3 and that for each axis, assume its principal
moment of inertia has the relation I1 < I2 < I3. Therefore under torque-free conditions
(n = 0), the equations of motion as derived from Equation (12.2) are

I1ω̇1 = (I2 − I3)ω2ω3 (12.10)

I2ω̇2 = (I3 − I1)ω3ω1 (12.11)

I3ω̇3 = (I1 − I2)ω1ω2 (12.12)

Note that one can perform this experiment on any object that has three different mo-
ments of inertia, such as a remote control, a book, or even a smartphone (please be careful!).
For any rectangular object of uniform mass, ê1 is parallel with the long edge, ê2 is parallel
with the short edge, and ê3 is normal to the plane of the object.

Stable Rotation About First and Third Principal Axes

To demonstrate stable rotation about the first principal axis ê1, first hold the racquet with
the face horizontal to the ground. Now attempt to throw the racquet while twisting the
handle, such that when one catches the racquet, its face has rotated 360◦. This should be
fairly easy to achieve because this is a stable axis of rotation, resulting in little residual
rotation about any other axes.

To analyse the stability of this rotation, we utilise Equations (12.10)–(12.12). Under this
scenario, we assume that the applied angular velocity about ê2 and ê3 is small, such that
ω2 ≈ ω3 ≈ 0. Evaluating Equation (12.10) with these two angular velocities implies that
ω̇1 ≈ 0. Therefore, under equilibrium conditions of this scenario, angular acceleration ω̇1 is
small and therefore ω1 is relatively constant.

226 Newton-Euler Dynamics

To analyse the stability of this rotation, take the time derivative of Equation (12.11)

ω̈2 =
I3 − I1

I2
(ω̇3ω1 + ω3ω̇1) (12.13)

provided that ω̇1 ≈ 0, substitute Equation (12.12) into the above equation leads to

ω̈2 =
I3 − I1

I2



I1 − I2

I3
ω1ω2



ω1

=
I3 − I1

I2

I1 − I2

I3
ω1

2ω2 (12.14)

the two fractions being positive and negative, respectively, which further gives the second-
order ordinary differential equation

ω̈2 = −λω2, λ ∈ R
+ (12.15)

Due to the I1 < I2 < I3 relation, the first fractional term in Equation (12.14) is always
positive, and the second fraction term is always negative, resulting in Equation (12.15).
This ODE has the general solution

ω2 = c1 sin(
√
λt) + c2 cos(

√
λt) (12.16)

which represents a stable oscillatory motion over time. The conclusion is that any pertur-
bation of ω2 during rotation about the principal axis ê1 will not cause further rotations
about the ê2 axis. The same relation for ω3 can be found, starting with the time derivative
Equation (12.12) instead.

Unstable Rotation About the Second Principal Axes

This time, to demonstrate unstable rotation about the second principal axis ê2, first hold
the racquet with the face horizontal to the ground as previously. Now throw the racquet
such that it flips about the horizontal axis 360◦, catching it at the handle. One may also
notice that the racquet will perform a 180◦ flip about the handle, or first principal axis ê1.
This residual rotation about ê1 is very difficult to suppress because rotation about the ê2
axis is unstable.

We can prove its instability by again utilising Equations (12.10)–(12.12). In this scenario,
we assume that the applied angular velocity about ê1 and ê3 is small, such that ω1 ≈ ω3 ≈ 0.
Evaluating Equation (12.11) with these two angular velocities implies that ω̇2 ≈ 0, removing
the time dependence on ω2 (constant over time) under equilibrium. Now take the time
derivative of Equation (12.10)

ω̈1 =
I2 − I3

I1
(ω̇2ω3 + ω2ω̇3) (12.17)

with ω̇3 vanishes according to the assumption, substitute Equation (12.12) into the above
equation results in

ω̈1 =
I2 − I3

I1



I1 − I2

I3
ω1ω2



ω2

=
I2 − I3

I1

I1 − I2

I3
ω2

2ω1 (12.18)

which gives the second-order ODE

ω̈1 = λω1, λ ∈ R
+ (12.19)

Outward Propagation 227

Due to the I1 < I2 < I3 relation, all fractional terms in Equation (12.14) are always negative,
yielding a positive product in Equation (12.19). This ODE has the general solution

ω1 = c1e
√

λt + c2e
√

λt (12.20)

which shows unstable rotation due to exponential growth over time. The conclusion in this
scenario is that any perturbation of ω1 during rotation about intermediate axis ê2 will cause
increasing residual rotations about the ê1 axis, causing the almost-unavoidable “flip” around
the handle. Similarly, the same relation for instability of ω3 can be found by repeating the
above steps, but starting with the time derivative Equation (12.12) instead.

According to Equation (12.20), it is possible to achieve rotation about the intermediate
axis without residual rotations in the principal axes, but only by keeping ω1 and ω3 as
close to zero as possible. However, this is very difficult to achieve in the tennis racquet
experiment.

Finally, one may notice in this experiment that the racquet tends to favour residual
rotation about ê1 (the handle axis) rather than ê3. This is because I3 > I1, hence less
torque is required to rotate the racquet about the handle than about the racquet face
normal ê3. This means ω̇1 > ω̇3, resulting in higher angular acceleration about ê1 than ê3.

12.2 Outward Propagation

Assume {1} translates and rotates with respect to {0} simultaneously, as shown in Fig-
ure 12.4. According to our previous discussion, the position and velocity of Point P are
given by the following equations

0

0
p = 0

0
O1 + 0

1
p = 0

0
O1 + 0R1

1

1
p (12.21)

0

0
ṗ =

0

0
Ȯ1 + 0

1
ṗ =

0

0
Ȯ1 + 0

0
ω1 × 0

1
p (12.22)

Taking the time derivative of the above velocity, we have the acceleration of Point P given
by

0

0
p̈ =

0

0
Ö1 + 0

0
ω1 × 0

1
p + 0

0
ω1 × 0

1
ṗ

z1

x1

y1P

O1

z0

x0

y0
O0

FIGURE 12.4

{1} moves with respect to {0}.

228 Newton-Euler Dynamics

{0}

{1}

{2}

FIGURE 12.5

Frame {1} ({2}) moves with respect to {0} ({1}).

=
0

0
Ö1 + 0

0
ω1 × 0

1p + 0

0
ω1 ×

(

0

0
ω1 × 0

1p
)

(12.23)

Consider the reference frame {0}, measure frame {0}, moving frame {1}, and Point P in
(12.23) become the ground frame {0}, the frame attached to Link i-1 {i− 1}, the frame
attached to Link i {i}, and the origin of the frame attached to Link i+1 {i+ 1}, respectively.
(12.23) becomes

i−1

0
Öi+1 =

i−1

0
Öi +

i−1
0
ωi ×

i−1
iOi+1 + i−1

0
ωi ×

(

i−1
0
ωi ×

i−1
iOi+1

)

(12.24)

Premultiplying i+1Ri−1 on (12.24) yields

i+1

0
Öi+1 = i+1Ri

(

i

0
Öi +

i
0
ω̇i ×

i
iOi+1 + i

0
ωi ×

(

i
0
ωi ×

i
iOi+1

)

)

(12.25)

Note that the front-lower index of zero of all velocities of accelerations can be safely
removed in (12.25), since the reference frames of velocity and acceleration are defined as
the ground frame by default. That is

i+1
Öi+1 = i+1Ri

(

i
Öi +

i
ω̇i ×

i
iOi+1 + i

ωi ×
(

i
ωi ×

i
iOi+1

)

)

(12.26)

which serves as the point velocity and acceleration propagation on a robot.
Assume {1} ({2}) translates and rotates with respect to {0} ({1}) simultaneously, as

shown in Figure 12.5. The relation among angular velocities is given by

0

0
ω2 = 0

0
ω1 + 0

1ω2 = 0

0
ω1 + 0R1

1
1ω2 (12.27)

The time derivative of the above velocity yields the angular acceleration given by

0

0
ω̇2 = 0

0
ω1 +

0

Ṙ1
1
1ω2 + 0R1

1
1ω̇2 = 0

0
ω1 + 0

0
ω1 × 0

1ω2 + 0

1ω̇2 (12.28)

Replace the measure frame {0}, and the moving frames {1} and {2} in (12.28) with the
frame attached Link i-1 {i− 1}, the frame attached to Link i {i}, and the frame attached
to Link i+1 {i+ 1}, respectively. (12.28) becomes

i−1
0
ω̇i+1 = i−1

0
ω̇i +

i−1
0
ωi ×

i−1
iωi+1 + i−1

iω̇i+1 (12.29)

Premultiplying i+1Ri−1 on (12.29) yields

i+1

0
ω̇i+1 = i+1Ri

(

i
0
ω̇i +

i
0
ωi ×

i
iωi+1 + i

iω̇i+1

)

Outward Propagation 229

= i+1Ri
i
0
ω̇i +

(

i+1Ri
i
0
ωi

)

× i+1
iωi+1 + i+1

iω̇i+1

= i+1Ri
i
0
ω̇i +

(

i+1Ri
i
0
ωi

)

×
(

θ̇i+1 k
)

+ θ̈i+1 k (12.30)

Recall the angular velocity propagation we derived previously as

i+1
0
ωi+1 = i+1Ri

i
0
ωi +

i+1
iωi+1 = i+1Ri

i
0
ωi + θ̇i+1 k (12.31)

Note again that the reference frames for velocity and acceleration are {0} by default. Hence,
we can write (12.31) and (12.30) as

i+1
ωi+1 = i+1Ri

i
ωi +

i+1
iωi+1 = i+1Ri

i
ωi + θ̇i+1 k (12.32)

i+1
ω̇i+1 = i+1Ri

i
ω̇i +

(

i+1Ri
i
ωi

)

×
(

θ̇i+1 k
)

+ θ̈i+1 k (12.33)

Equations (12.32) and (12.33) serve as the angular velocity and acceleration propagation
formulas for a robot.

The outward velocity and acceleration propagation utilises the following equations as
derived previously

i+1
ωi+1 = i+1Ri

i
ωi + θ̇i+1 k (12.34)

i+1
ω̇i+1 = i+1Ri

i
ω̇i +

(

i+1Ri
i
ωi

)

×
(

θ̇i+1 k
)

+ θ̈i+1 k (12.35)

i+1
Öi+1 = i+1Ri

(

i
Öi +

i
ω̇i ×

i
iOi+1 + i

ωi ×
(

i
ωi ×

i
iOi+1

)

)

(12.36)

For prismatic joints, the propagation formulas are given by

i+1
ω̇i+1 = i+1Ri

i
ω̇i (12.37)

i+1
Öi+1 = i+1Ri

(

i
Öi +

i
ω̇i ×

i
iOi+1 + i

ωi ×
(

i
ωi ×

i
iOi+1

)

)

+

2 i+1
ωi+1 × ḋi+1 z + d̈i+1 z

(12.38)

The acceleration of the mass centre of a link can be readily derived from (12.26) as

ip̈ci =
i
Öi +

i
ω̇i ×

i
ipci +

i
ωi ×

(

i
ωi ×

i
ipci

)

(12.39)

where ipci is the position vector from the origin of {i} to the mass centre of Link i. The
boundary conditions of angular velocity and acceleration for the outward propagation are
given by

0
ω0 = 0

ω̇0 = 0 (12.40)

Inward
ifi,

ini,
iτi

Outward
iωi,

iω̇i,
ivi,

iv̇ci

FIGURE 12.6

Propagation of velocities, accelerations, forces, and torques of a serial robotic manipulator.

230 Newton-Euler Dynamics

θ1

θ2

x0

y0

l1

l2

O1

x1

y1

y2

x2

y3

x3

Oo

O3

FIGURE 12.7

2R robot.

Regarding the point acceleration for the outward propagation, we adopt the boundary
condition

0

−1
Ö0 = − g (12.41)

where {−1} is an artificial frame being absolutely stationary and parallel to {0} while g

is the vector of gravity. We can imagine that the robot is positioned in an elevator {0}
which is translating with respect to {−1} with an acceleration of − g in a zero-gravity
environment. The purpose of this boundary condition is to simplify the force and torque
computations by excluding gravity terms in the ensuing analysis because the boundary
condition automatically considers gravity.

Example 12.3 (2R robot kinetics):
Consider a 2R robot shown in Figure 12.7, where the mass centres are at the tips of the links.

Find the angular velocity, angular acceleration, and acceleration of each link using the outward
propagation. Assume l1 = l2 = 1 m.

Solution:

Step 1: Initialisation

The mass centres of the two links are given by

1pc1 =


1 0 0
T 2pc2 =



1 0 0
T

(12.42)

The boundary conditions in Frame 0 are

0
ω0 = 0

ω̇0 = 0,
0

Ö0 =


0 g 0
T

(12.43)

where g = 9.8 m/s2. It is known from previous examples that the transform matrices of the frames
(i = 1, 2) are

i−1Ri =





cos θi − sin θi 0
sin θi cos θi 0
0 0 1



 (12.44)

Inward Propagation 231

Step 2: Frame 1

According to the propagation formula and the conditions on Frame 0, we have angular velocity
and acceleration, point acceleration, and the acceleration at the mass centre of Link 1:

1
ω1 = 1R0

0
ω0 + θ̇1

1z1 =





0
0

θ̇1



 (12.45)

1
ω̇1 = 1R0

0
ω̇0 +

�

1R0

0
ω0



×


θ̇1
1z1



+ θ̈1
1z1 =





0
0

θ̈1



 (12.46)

1

Ö1 = 1R0



0

Ö0 + 0
ω̇0 × 0

0O1 + 0
ω0 ×

�

0
ω0 × 0

0O1





=





cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1









0
g

0



 =





gs1
gc1
0



 (12.47)

1p̈c1 =
1

Ö1 + 1
ω̇1 × 1

1
pc1 + 1

ω1 ×
�

1
ω1 × 1

1
pc1



=





−θ̇21 + gs1

θ̈1 + gc1
0



 (12.48)

Step 3: Frame 2

According to the results in Frame 1, we have the angular velocity, angular acceleration, point
acceleration, and acceleration at the mass centre of Link 2, given by, respectively,

2
ω2 = 2R1

1
ω1 + θ̇2

2z2 =





0
0

θ̇1 + θ̇2



 (12.49)

2
ω̇2 = 2R1

1
ω̇1 +

�

2R1

1
ω1



×


θ̇2
2z2



+ θ̈2
2z2 =





0
0

θ̈1 + θ̈2



 (12.50)

2

Ö2 = 2R1



1

Ö1 + 1
ω̇1 × 1

1O2 + 1
ω1 ×

�

1
ω1 × 1

1O2





=





θ̈1s2 − θ̇21c2 + gs12

θ̈1c2 + θ̇21s2 + gc12
0



 (12.51)

2p̈c2 =
2

Ö2 + 2
ω̇2 × 2

2
pc2 + 2

ω2 ×
�

2
ω2 × 2

2
pc2



=









−



θ̇1 + θ̇2



2

+ θ̈1s2 − θ̇21c2 + gs12


θ̈1 + θ̈2



+ θ̈1c2 + θ̇21s2 + gc12

0









(12.52)

12.3 Inward Propagation

The essential problem in the inward force/torque propagation is to derive the equilibrium
equation of an isolated link in a robotic manipulator. Referencing the robotic in Figure 12.6,

232 Newton-Euler Dynamics

the force and torque equilibrium equations are given by

if i +
if ci −

if i+1 = 0 (12.53)

ini +
inci −

ini+1 + ipci ×
if ci +

iOi+1 ×
(

− if i+1

)

= 0 (12.54)

where f i , f i+1 , ni , ni+1 , f ci , and nci are the joint force by Link i − 1 on Link i, joint
force by Link i on Link i + 1, joint torque by Link i − 1 on Link i, joint torque by Link i

on Link i+ 1, inertia force at mass centre, and inertia moment, respectively. All forces and
torques are expressed in {i}. With proper transformations, the equilibrium equations can
be written in the form of propagation

if i = − if ci +
iRi+1

i+1f i+1 (12.55)

ini = − inci +
iRi+1

i+1ni+1 − ipci ×
if ci +

iOi+1 × iRi+1
i+1f i+1 (12.56)

where the inertia force and torque are obtained by using Newton and Euler equations

if ci = −mi
ip̈ci (12.57)

inci = − i
Ici

i
ω̇i −

i
ωi ×

i
Ici

i
ωi (12.58)

(12.55) and (12.56) are utilised to obtain the joint forces if i and torques ini from the
end-effector to the base, as shown in Figure 12.6. For a revolute joint, the joint torque
consists of the joint constraint torque and motor input torque. The latter is along the axis
of rotation, which is expressed as k in {i}. Therefore, the motor’s torque input is given by

τi =
i
ni

T
k (12.59)

Example 12.4 (Dynamic propagation): Consider a 2R robot shown in Figure 12.7 in Exam-
ple 12.3. Derive the dynamic equations by propagation. Assume point mass for the links.

Solution:
The outward kinematics propagation was done in Example 12.3. We utilise the results in Ex-

ample 12.3 to conduct the inward propagation here.

Step 1: Inertia forces and torques

According to the kinematics, the inertia forces of Link 1 and Link 2 are

1f c1 = −m1

1p̈c1 = −





−m1θ̇
2

1 +m1gs1

m1θ̈1 +m1gc1
0



 (12.60)

2f c2 = −m2

2p̈c2 = −





−m2(θ̇1 + θ̇2)
2 +m2θ̈1s2 −m2θ̇

2

1c2 +m2gs12

m2(θ̈1 + θ̈2) +m2θ̈1c2 +m2θ̇
2

1s2 +m2gc12
0



 (12.61)

and the torques for Link 1 and 2 are

1nc1 = − 1Ic1
1
ω̇1 − 1

ω1 × 1Ic1
1
ω1 = 0 (12.62)

2nc2 = − 2Ic2
2
ω̇2 − 2

ω2 × 2Ic2
2
ω2 = 0 (12.63)

where the inertia tensors are zero matrices due to the assumption of point masses.

Procedure 233

Step 2: Link 2

Force and torque propagations are given by

2f2 = − 2f c2 + 2R3
3f3 = − 2f c2

=









−m2

(

θ̇1 + θ̇2

)

2

+m2θ̈1s2 −m2θ̇
2

1c2 +m2gs12

m2

(

θ̈1 + θ̈2

)

+m2θ̈1c2 +m2θ̇
2

1s2 +m2gc12

0









(12.64)

2n2 = − 2nc2 + 2R3
3n3 − 2pc2 × 2f c2 + 2O3 × 2R3

3f3

=







0
0

m2

((

θ̈1 + θ̈2

)

+ θ̈1c2 + θ̇21s2 + gc12

)






(12.65)

Therefore, the motor’s torque input to Link 2 is given by

τ2 = 2nT

2

2z2 = m2

((

θ̈1 + θ̈2

)

+ θ̈1c2 + θ̇
2

1s2 + gc12

)

(12.66)

Step 3: Link 1

Since Link 1 is the first link, only torque propagation is required here, i.e.,

1n1 = − 1nc1 + 1R2

2n2 − 1pc1 × 1f c1 + 1O2 × 1R2

2f2 (12.67)

Therefore, the motor’s torque input to Link 1 is

τ1 = 1nT

1

1z1

= m
2

2

(

θ̈1 + θ̈2

)

+m2c2
(

2θ̈1 + θ̈2

)

+ (m1 +m2)θ̈1−

m2θ̇
2

2s2 − 2m2θ̇1θ̇2s2 +m2gc12 + (m1 +m2)gc1

(12.68)

Step 4: Final Dynamics

The final dynamic equations are

τ1 = m2

(

θ̈1 + θ̈2

)

+m2c2
(

2θ̈1 + θ̈2

)

+ (m1 +m2)θ̈1−

m2θ̇
2

2s2 − 2m2θ̇1θ̇2s2 +m2gc12 + (m1 +m2)gc1

(12.69)

τ2 = m2

((

θ̈1 + θ̈2

)

+ θ̈1c2 + θ̇
2

1s2 + gc12

)

(12.70)

which can be written in the matrix form:

τ = M(θ) θ̈ + V (θ , θ̇) + G(θ) (12.71)

where M(θ) is the mass matrix, V (θ , θ̇) is the centrifugal and Coriolis term, and G(θ) is the
gravity term expressed in the joint space. Leave it as an exercise to find all these terms in this
example.

12.4 Procedure

The procedure to derive the dynamic equations governing a general robotic manipulator

such as Figure 12.8 by dynamic propagation is summarised here.

234 Newton-Euler Dynamics

e1

θ1

O1

e2 θ2

O2

e3

θ3

O3

e4

θ4

O4

e5

θ5

O5, O6

C

e6

θ6

P (x, y, z)

FIGURE 12.8

A general robotic manipulator.

Step 1

Prepare all quantities for each i-th link, for an n-link manipulator:

Inertia tensor of each link in its principal frame PiIi
Mass of the link mi

Location of the link’s mass centre ici
Force applied by the end-effector nfn
Torque applied by the end-effector nnn

Transformation matrices via forward kinematics iTi+1

Step 2

Perform outward propagation of link kinematics, where Frame 0 is stationary

0
ω0 = 0

ω̇0 = 0 (12.72)

but has a nonzero linear acceleration due to gravity

0
Ö0 = − g (12.73)

Then, for each subsequent Frame i+1, propagate the link kinematics with the generalised
equations (for revolute or prismatic joints):

i+1

0ωi+1 = i+1Ri
i
0ωi + θ̇i+1 k (12.74)

i+1

0ω̇i+1 = i+1Ri
i
0ω̇i +

(

i+1Ri
i
0ωi × θ̇i+1 k

)

+ θ̈i+1 k (12.75)

i+1

0Öi+1 = i+1Ri

(

i

0Öi +
i
0ω̇i ×

i
0 Oi +

i
0ωi ×

(

i
0ωi ×

i
0Oi

)

)

(12.76)

Step 3

Inertia force and torque on each Link i from its own mass can now be found with known
link velocities and accelerations:

if ci = −mi
ip̈ci (12.77)

Procedure 235

inci = − iIci
i
ω̇i −

i
ωi ×

iIci
i
ωi (12.78)

where the point acceleration at the mass centre is

i
0
p̈ci =

i

0
Öi +

i
0
ω̇i ×

i
ipci +

i
0
ωi ×

(

i
0
ωi ×

i
ipci

)

(12.79)

Step 4

Perform inward propagation to find the force and torque exerted by each link, where the
n-th frame represents force and torque exerted by the end-effector to the environment. The
equations for force and torque, respectively are

i
f i = − i

f ci +
iRi+1

i+1
f i+1 (12.80)

ini = − inci +
iRi+1

i+1ni+1 − ipci ×
if ci +

iOi+1 × iRi+1
i+1

f i+1 (12.81)

Step 5

The resulting servo effort is

τi =
inT

i k (12.82)

for revolute joints, or

fi =
i
f
T

i k (12.83)

for prismatic actuators, where k is the axis of actuation, usually z as defined in DH notation.

Effects of friction

Two types of friction can affect servos. Viscous friction τfv for revolute actuators is modelled
as

τfv = νθ̇ (12.84)

and Coulomb friction τfc for prismatic actuators, which is modelled by

τfc = c sgn(θ̇) (12.85)

Constants ν and c, are the viscous friction and Coulomb friction coefficients, respectively.
If the friction is modelled, the final dynamic equations become

τ = M(θ) θ̈ + V (θ , θ̇) + G(θ) + F(θ , θ̇) (12.86)

where F is the term of frictions projected into the joint space. Equation (12.86) is called
the inverse dynamics of the given robot. If the desired trajectory is known, substituting all
information of joint positions, velocities, and accelerations into the inverse dynamics, the
desired torques can be computed. If the dynamics model is perfect, the torque commands
according to the computed torques will drive the robot to follow the desired trajectory
precisely. Such a strategy is called the open-loop control. Apparently, it is naive because
the derived dynamic model cannot be perfect. However, the inverse dynamics serves as the
building block for more advanced control strategies.

Equation (12.86) can be written differently as

θ̈ = M−1(θ)
[

τ − V (θ , θ̇)− G(θ)− F(θ , θ̇)
]

(12.87)

236 Newton-Euler Dynamics

which is called the direct dynamics of the given robot. It can be used to generate a simulation
according to a set of torque inputs from initial conditions θ (0) and θ̇ (0), to predict the
motion of the robotic system offline. Euler integration formulas can be applied, such as

θ̇ (t+∆t) = θ̇ (t) + θ̈ (t)∆t (12.88)

θ (t+∆t) = θ (t) + θ̇ (t)∆t+
1

2
θ̈ (t)∆t2 (12.89)

where ∆t is the time step. Other numerical integration techniques such as midpoint, Heun’s,
or Runge-Kutta methods can be applied for better accuracy. Furthermore, the simulation
will depend on the selection of the time step. Generally, a smaller time step yields higher
accuracy, while the computational cost is increased.

12.5 Twist, Wrench, and 6× 6 Transformation Matrix

So far in the textbook, we always discussed the velocity- and force-domain information with
two equations, i.e., linear and angular velocities, respectively, for the velocity domain, and
force and moment, respectively, for the force domain. On the other hand, it may be more
elegant and beneficial to express the transformation with a unified equation. This could be
achieved by adopting the concept of twist (velocity-domain) and wrench (force-domain),
whose transformations are presented in the ensuing subsections.

12.5.1 Transformation of Twist

Consider two arbitrary frames, {1} and {2}, where {1} is an arbitrary reference frame, and
{2} is attached to a point on a moving rigid body, such as a link of a robotic manipulator.
A twist is used to fully describe the velocity of the rigid body, which comprises angular and
linear components. The angular velocity applies to the entire rigid body. The linear velocity
is the velocity of a point that is attached to the rigid body and instantaneously coincident
with the origin of the frame, where the twist is represented.

Following such a definition, the twist is represented in {2} as

2V2 =



2
ω2

2v2



(12.90)

where 2v2 is the linear velocity of the origin of {2}. To represent the twist in {1}, the linear
velocity of Point 1’, which is attached to the rigid body and instantaneously coincident with
the origin of {1} is used. Such linear velocity, represented in {2}, is

2v1′ =
2v2 + 2

ω2 × 2
2r1′ =

2v2 + 2
ω2 × 2

2r1

= 2v2 + 2
1r2 × 2

ω2 (12.91)

where the r terms are position vectors. 2r1′ is identical to 2r1 , as Point 1’ is instantaneously
coincident with Point 1 (origin of {1}). Furthermore, representing such linear velocity in
{1} is

1v1′ =
1R2

2v2 + 1R2

(

2
1r2 × 2

ω2

)

(12.92)

Angular velocity can be readily transformed with a rotation matrix

1
ω2 = 1R2

2
ω2 (12.93)

Twist, Wrench, and 6× 6 Transformation Matrix 237

Therefore, twist V2 represented in {1} is written as

1
V2 =



1
ω2

1v1′



=



1R2
2
ω2

1R2
2v2 + 1R2

(

2
1r2 × 2

ω2

)



(12.94)

Rearranging the expression into matrix form yields

1
V2 =



1
ω2

1v1′



=



1R2 0
1R2

2
1r2×

1R2

 

2
ω2

2v2



= 1X2
2
V2 (12.95)

Alternatively, given

1
R2

2
1r2× = 1R2

(

2R1
1
1r2

)

× = 1R2
1R2

1
1r2 × 1R2

= 1
1r2 × 1R2 (12.96)

1X2 can be equivalently expressed as

1X2 =



1R2 0
1
1r2 × 1R2

1R2



(12.97)

12.5.2 Inverse Transformation of Twist

Consider the same physical system as described in the derivation of 1
X2 . Given the twist

represented in {1} as

1
V2 =



1
ω2

1
v1′



(12.98)

it is desired that the inverse transformation 2
X1 is derived. The linear velocity of the origin

of {2}, represented in {1}, is given by

1
v2 = 1

v1′ +
1
ω2 × 1

r2 = 1
v1′ +

1
ω2 × 1

1r2 = 1
v1′ +

1
2r1 × 1

ω2 (12.99)

Furthermore, representing such linear velocity in {2} yields

2
v2 = 2

R1
1
v1′ +

2
R1(

1
2r1 × 1

ω2)

= 2
R1

1
v1′ +

2
R1

1
2r1 × 1

ω2 (12.100)

The angular velocity can be readily transformed with a rotation matrix

2
ω2 = 2

R1
1ω2 (12.101)

The twist V2 represented in {2} is written as

2
V2 =



2
ω2

2
v2



=



2
R1

1ω2
2
R1

1
v1′ +

2
R1

1
2r1 × 1

ω2



=



2
R1 0

2
R1

1
2r1×

2
R1

 

1
ω2

1
v1′



= 2
X1

1
V2 (12.102)

Given

2
R1

1
2r1× = 2

R1(
1
R2

2
2r1)× = 2

R1
1
R2

2
2r1 × 2

R1

= 2
2r1 × 2

R1 (12.103)

2
X1 can be equivalently expressed as

2
X1 =



2
R1 0

2
2r1 × 2

R1
2
R1



(12.104)

238 Newton-Euler Dynamics

12.5.3 Transformation of Wrench

Similar to the relation between velocities and a twist, effort (force and moment) can be
represented by a 6×1 wrench. Consider an arbitrary wrench at the origin of Frame {2}
represented as

2
L2 =



2
n2

2
m2



(12.105)

where 2
n2 and 2

m2 are arbitrary force and moment (dimensions 3×1) applied at the origin
of {2}. To represent said wrench in frame {1}, the transformation matrix must be written in
such a way that the physical effect of the wrench stays unchanged during the transformation,
thus

1
L2 =



1
R2

2
n2

1
R2

2
m2 + 1

R2

(

2
1r2 × 2

n2

)



(12.106)

given

1
R2

(

2
1r2 × 2

n2

)

=
(

1
R2

2
1r2

)

×
(

1
R2

2
n2

)

= 1
R2

2
1r2 × 2

R1
1
R2

2
n2

= 1
R2

2
1r2 × 2

n2 (12.107)

1
L2 can be rearranged into matrix form

1
L2 =



1
R2 0

1
R2

2
1r2×

1
R2

 

2
n2

2
m2



= 1
X2

2
L2 (12.108)

where 1
X2 is a 6× 6 transformation matrix for the wrench. Alternatively, given

1
R2

2
1r2× = 1

R2(
2
R1

1
1r2)×

= 1
R2

2
R1

1
1r2 × 1

R2 (12.109)

1
X2 can be written as

1
X2 =



1
R2 0

1
1r2 × 1

R2
1
R2



(12.110)

12.5.4 Derivative of
0
X0 Matrix

Consider the physical system used in the previous derivation, with an additional arbitrary
stationary reference frame {0}, where the transformation matrix between {0} and {2} is

0
X2 =



0
R2 0

0

0
r2 × 0

R2
0
R2



(12.111)

Taking the time derivative of an X matrix gives

d

dt
0
X2 =



d
dt

0
R2 0

d

dt
(0
0
r2)×

0
R2 + 0

0
r2 × d

dt
(0R2)

d

dt

0
R2



(12.112)

Given

d

dt
(0R2)

0

R
T

2 = 0
ω2× (12.113)

Twist, Wrench, and 6× 6 Transformation Matrix 239

the derivative of the rotation matrix is

d

dt
0R2 = 0

ω2 × 0R2 (12.114)

The derivative of r is the linear velocity of the origin of {2} with respect to the origin of
F0. Knowing that,

0
v0′ =

0
v2 + 0

ω2 × 0

2r0′

= 0
v2 + 0

ω2 × 0

2r0 (12.115)

where 0′ is a point that moves with the rigid body and is instantaneously coincident with
Point 0. Element (2, 1) in the derivative of X can be written as

d

dt
(0
0
r2)×

0R2 + 0

0
r2 ×

d

dt
(0R2)

= 0
v2 × 0R2 + 0

0
r2 × (0ω2 × 0R2)

= (0v0′ −
0
ω2 × 0

2r0)×
0R2 + 0

0
r2 × (0ω2 × 0R2)

= 0
v0′ ×

0R2 − (0ω2 × 0

2r0)×
0R2 + 0

0
r2 × (0ω2 × 0R2)

= 0
v0′ ×

0R2 + 0R2 × (0ω2 × 0

2r0) +
0

0
r2 × (0ω2 × 0R2)

= 0
v0′ ×

0R2 + 0R2 × (0
0
r2 × 0

ω2) +
0

0
r2 × (0ω2 × 0R2) (12.116)

The last two terms in the last line of the expression can be simplified using Jacobi identity
as

0R2 × (0
0
r2 × 0

ω2) +
0

0
r2 × (0ω2 × 0R2) = − 0

ω2 × (0R2 × 0

0
r2) (12.117)

Thus

d

dt
(0
0
r2)×

0R2 + 0

0
r2 ×

d

dt
(0R2) =

0
v0′ ×

0R2 − 0
ω2 × (0R2 × 0

0
r2)

= 0
v0′ ×

0R2 + 0
ω2 × (0

0
r2 × 0R2) (12.118)

Rearranging the derivative of 0X2 into matrix form yields

d

dt
0X2 =



0
ω2× 0

0
v0′×

0
ω2×

 

0R2 0
0

0
r2 × 0R2

0R2



=



0
ω2× 0

0
v0′×

0
ω2×



0X2 (12.119)

Borrowing the operation between ω and ω×, the 6×6 matrix in the equation above, which
contains the cross-product of the velocities, can be represented as



0
ω2× 0

0
v0′×

0
ω2×



=



0
ω2

2
v0′



× (12.120)

Alternatively, given

d

dt
0R2 = 0

ω2 × 0R2 = 0R2
2
ω2× (12.121)

and

d

dt
(0
0
r2)×

0R2 + 0

0
r2 ×

d

dt
(0R2)

240 Newton-Euler Dynamics

= 0v0′ ×
0
R2 + 0

ω2 × (0
0
r2 × 0

R2)

= 0v2 × 0
R2 + 0

0
r2 × 0

R2
2
ω2×

= (0R2
2v2)×

0
R2 + (0R2

2
0
r2)×

0
R2

2
ω2×

= (0R2
2v2)×

0
R2 + 0

R2
2
0
r2 ×

2
ω2× (12.122)

the derivative of 0X2 can be equivalently expressed as

d

dt
0X2 =



0
R2 0

0
R2

2
0
r2×

0
R2

 

2
ω2× 0

2v2×
2
ω2×



= 0X2



2
ω2× 0

2v2×
2
ω2×



= 0X2



2
ω2

2v2



× (12.123)

Now consider the case where {1} is not stationary, e.g., being the frame of the previous
link of {2} on a robotic manipulator. The derivative of 1X2 is

d

dt
1X2 =



d
dt

1
R2 0

d

dt
(1
1
r2)×

1
R2 + 1

1
r2 × d

dt
(1R2)

d

dt

1
R2



(12.124)

For the case where the joint (Joint 2) is revolute, r is a constant. Therefore

2X1

d

dt
1X2 =



2
R1 0

2
R1

1

2r1×
2
R1

 

d

dt

1
R2 0

1

1
r2 × d

dt

1
R2

d

dt

1
R2



(12.125)

Since

d

dt
1
R2 = 1

1
ω2 × 1

R2 (12.126)

where 1

1
ω2 is the angular velocity of Joint 2 with respect {1}, the equation becomes

2X1

d

dt
1X2 =



2
R1

1

1
ω2 × 1

R2 0
2
R1

1

2r1 ×
(

1

1
ω2 × 1

R2

)

+ 2
R1

1

1
r2 ×

(

1

1
ω2 × 1

R2

)

2
R1

1

1
ω2 × 1

R2



(12.127)

It can be readily seen that Element (3, 1) is zero, as 1r2 and 2r1 cancel out with each other.
Thus

2X1

d

dt
1X2 =



2
R1

1

1
ω2 × 1

R2 0

0 2
R1

1

1
ω2 × 1

R2



=



2
1
ω2× 0
0 2

1
ω2×



=



2
1
ω2

0



× (12.128)

For the case where the joint is a prismatic joint, 1
R2 is a constant. Therefore

2X1

d

dt
1X2 =



2
R1 0

2
R1

1

2r1×
2
R1

 

0 0
d

dt
(1
1
r2)×

1
R2 0



(12.129)

Applications in Computing 241

Since the derivative of 1
1r2 is merely the linear velocity of the joint with respect to {1}

2X1

d

dt
1X2 =



2
R1 0

2
R1

1
2r1×

2
R1

 

0 0
1
1v2 × 1

R2 0



=



0 0
2
1v2× 0



=



0
2
1v2



× (12.130)

12.5.5 Physical Interpretation

An important aspect relevant to the physical interpretation of a twist or a wrench is that
they can use one physical quantity to fully represent the velocity or force domain information
of an entire rigid body. Given a twist or a wrench of a point on a rigid body, the angular
velocity or force applies to the entire rigid body, while the linear velocity or moment is
dedicated to said point. From there, given an arbitrary point with a prescribed relative
position (r in the previous part of this section), the velocity and effective force/moment
at the point can be conveniently computed by means of the X transformation matrix. We
will showcase the use of this characteristic in Chapter 19, where we project the forces and
moments at different parts of a soft continuum robot to establish the static equilibrium
equations.

12.6 Applications in Computing

The dynamics of a serial manipulator can be quite complex, especially for manipulators
of six or more DoF, where closed-form equations are observed to be highly complex and
non-linear. In a robotic control system that utilises dynamics, the computational costs for
real-time performance must be considered. As the dynamics discussed so far covers the joint
space, we will restrict our attention to this space.

12.6.1 Computing Efficiency

The Newton-Euler method for calculating dynamics is tailor-made for numerical computing
due to its iterative nature. In addition, variables can be substituted as symbolic quantities
in MATLAB, such that we obtain analytical expressions for the dynamic equations. Com-
pared to the Lagrangian formulation, the Newton-Euler method is more efficient, as fewer
computational steps are required to obtain dynamic equations in symbolic form.

Example M12.1 (Newton-Euler dynamics): Compute the torque and force equations for

the RP manipulator in Figure 12.9. Assume m1 and m2 are point masses, there are no external

forces applied at the end-effector, the robot base is stationary, and gravity is applied in the y0
direction. Calculate the required numerical actuator input force and torque when the manipulator

is stationary at θ1 = 30◦ and d2 = 0.40 m. Assume l1 = 0.15 m, and m1 and m2 are 4.0 kg and

3.0 kg, respectively.

Solution: The following script sets up the problem to solve via the Newton-Euler method. To

convert the DH table to transformation matrices 0T1 ,
1T2 , and

2T3 , we make use of dh2T() as

defined in Inline 6.1. Notice that the last line of the DH table is made of zeroes to indicate the end-

242 Newton-Euler Dynamics

z0, z1 x0

y0

x1

y1

θ1

xP1

zP1

xP2

zP2

x2

z2

l1

d2

m1

m2

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 90◦ 0 d2 0
3 0 0 0 0

FIGURE 12.9

RP manipulator with DH table.

effector frame is coincident with Frame 2, and is where an external force will be applied if one exists.
The variables defined in this script are Q 1 and Q 2, which represent θ1 and d2, respectively. Variables
dQ and ddQ represent the variable’s time and double-time derivatives (velocity and acceleration).

The setup of this problem can be quite long, as indicated by 58 lines and the Newton-Euler code
does not begin until line 60. In this example, the problem is solved without a for-loop construct so
that each step can be inspected. However, in application, a for-loop solution is highly recommended
to shorten code and minimise errors.

1 % Vector definition
2 X = [1 0 0]’;
3 Y = [0 1 0]’;
4 Z = [0 0 1]’;
5

6 %Symbolic definitions
7 syms l_1 g t real
8

9 % Mass definition
10 m = sym(’m_’ ,[1 2],’real’);
11

12 % Time -dependent variables
13 Q = sym(’Q_’ ,[1 2],’real’);
14 dQ = sym(’dQ_’ ,[1 2],’real’);
15 ddQ = sym(’ddQ_’ ,[1 2],’real’);
16

17 % Centre of mass location
18 P1_C1 = l_1 * -Y;
19 P2_C2 = [0 0 0]’;
20

21 % Inertia tensors (point masses)
22 I_C1_1 = zeros (3);
23 I_C2_2 = zeros (3);
24

25 % End -effector forces and torques
26 f33 = [0 0 0]’;
27 n33 = [0 0 0]’;
28

29 % No ang velocity or accel at robot base
30 w00 = [0 0 0]’;
31 dw00 = [0 0 0]’;
32 % Linear accel at robot base (due to gravity)
33 dv00 = g * Y;
34

35 % DH table
36 dh_table = [
37 0 0 0 Q(1);
38 pi/2 0 Q(2) 0;
39 0 0 0 0] % End effector frame (to apply external force)
40

41 % Transformation matrices
42 T01 = dh2T(dh_table (1,:));

Applications in Computing 243

43 T12 = dh2T(dh_table (2,:));
44 T23 = dh2T(dh_table (3,:));
45

46 % Rotation matrices
47 R01 = T01 (1:3 ,1:3);
48 R12 = T12 (1:3 ,1:3);
49 R23 = T23 (1:3 ,1:3);
50 R10 = R01 ’;
51 R21 = R12 ’;
52 R32 = R23 ’;
53

54 % Positions
55 P01 = T01 (1:3 ,4);
56 P12 = T12 (1:3 ,4);
57 P23 = T23 (1:3 ,4);
58

59 %% ======================================
60 % OUTWARD ITERATIONS (i = 0, 1)
61 % Calculate forces and torques exerted on each link due to the linear accel
62 % of the centre of mass.
63 % ==========
64 % i = 0
65 % Velocities and accels
66

67 % Propagate ang velocity of frame 1 from base , relative to frame 1
68 w11 = R10*w00 + dQ(1)*Z
69

70 % Propagate ang accel of frame 1 from base , relative to frame 1
71 dw11 = R10*dw00 + cross(R10*w00 , dQ(1)*Z) + ddQ(1)*Z
72

73 % Propagate linear accel at frame 1 from base , relative to frame 1
74 dv11 = R10*(cross(dw00 , P01) + cross(w00 , cross(w00 , P01)) + dv00)
75

76 % Propagate linear accel at centre of mass 1 from frame 1, relative to frame 1
77 dvc11 = cross(dw11 , P1_C1) + cross(w11 , cross(w11 , P1_C1)) + dv11
78

79 % =====
80 % Force and torque acting on link 1 from CoM 1
81 % Find inertial force from CoM 1 acting on link 1, relative to frame 1
82 F11 = m(1)*dvc11
83

84 % Find inertial torque from CoM 1 acting on link 1, relative to frame 1
85 N11 = I_C1_1*dw11 + cross(w11 , I_C1_1*w11)
86

87 % ==========
88 % i = 1
89 % Velocities and accels
90 % Propagate ang vel of frame 2 from frame 1, relative to frame 2 (prismatic joint)
91 w22 = R21*w11
92

93 % Propagate ang accel of frame 2 from frame 1, relative to frame 2 (prismatic joint)
94 dw22 = R21*dw11
95

96 % Propagate linear accel at frame 2 from frame 1, relative to frame 2 (prismatic j)
97 dv22 = R21*(cross(dw11 , P12) + cross(w11 , cross(w11 , P12)) + dv11) ...
98 + 2* cross(w22 , dQ(2)*Z) + ddQ (2)*Z
99

100 % Propagate linear accel at centre of mass 2 from frame 2, relative to frame 2
101 dvc22 = cross(dw22 , P2_C2) + cross(w22 , cross(w22 , P2_C2)) + dv22
102

103 % =====
104 % Force and torque acting on link 2 from CoM 2
105 % Find inertial force from CoM 2 acting on link 2, relative to frame 2
106 F22 = m(2)*dvc22
107

108 % Find inertial torque from CoM 2 acting on link 2, relative to frame 2
109 N22 = I_C2_2*dw22 + cross(w22 , I_C2_2*w22)
110

111 %% ======================================
112 % INWARD ITERATIONS (i = 2, 1)
113 % Calculate forces and torques exerted on each link due to forces and torques
114 % exerted by the neighbouring link.
115 % i = 2
116 %Force exerted on link 2 by CoM 2 and external force
117 f22 = R23*f33 + F22
118

119 %Torque exerted on link 2 by CoM 2 external torque
120 n22 = N22 + R23*n33 + cross(P2_C2 , F22) + cross(P23 , R23*f33)
121

122 % i = 1
123 %Force exerted on link 1 by CoM 1 and link 2
124 f11 = R12*f22 + F11
125

126 %Torque exerted on link 1 by CoM 1 and link 2

244 Newton-Euler Dynamics

127 n11 = N11 + R12*n22 + cross(P1_C1 , F11) + cross(P12 , R12*f22)
128

129 %% ======================================
130 % Actuator Effort
131 %Torque on actuator (i = 1)
132 E(1,1) = n11 ’*Z;
133 %Force on actuator (i = 2)
134 E(2,1) = f22 ’*Z

dh_table =

[0, 0, 0, Q_1]
[pi/2, 0, Q_2 , 0]
[0, 0, 0, 0]

w11 =

0
0

dQ_1

dw11 =

0
0

ddQ_1

dv11 =

g*sin(Q_1)
g*cos(Q_1)

0

dvc11 =

ddQ_1*l_1 + g*sin(Q_1)
l_1*dQ_1^2 + g*cos(Q_1)

0

F11 =

m_1*(ddQ_1*l_1 + g*sin(Q_1))
m_1*(l_1*dQ_1^2 + g*cos(Q_1))

0

N11 =

0
0
0

w22 =

0
dQ_1

0

dw22 =

0
ddQ_1

0

dv22 =

Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1)
0

- Q_2*dQ_1^2 + ddQ_2 - g*cos(Q_1)

dvc22 =

Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1)
0

Applications in Computing 245

- Q_2*dQ_1^2 + ddQ_2 - g*cos(Q_1)

F22 =

m_2*(Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1))
0

-m_2*(Q_2*dQ_1^2 - ddQ_2 + g*cos(Q_1))

N22 =

0
0
0

f22 =

m_2*(Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1))
0

-m_2*(Q_2*dQ_1^2 - ddQ_2 + g*cos(Q_1))

n22 =

0
0
0

f11 =

m_1*(ddQ_1*l_1 + g*sin(Q_1)) + m_2*(Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1))
m_1*(l_1*dQ_1^2 + g*cos(Q_1)) + m_2*(Q_2*dQ_1^2 - ddQ_2 + g*cos(Q_1))

0

n11 =

0
0

Q_2*m_2*(Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1)) + l_1*m_1*(ddQ_1*l_1 + g*sin(Q_1))

E =

Q_2*m_2*(Q_2*ddQ_1 + 2*dQ_1*dQ_2 + g*sin(Q_1)) + l_1*m_1*(ddQ_1*l_1 + g*sin(Q_1))
-m_2*(Q_2*dQ_1^2 - ddQ_2 + g*cos(Q_1))

Remembering that Q 1 and Q 2 represent θ1 and d2, respectively, according to effort variable E, the
dynamic equations for the revolute and prismatic actuators, respectively, are

τ1 = d2m2(d2θ̈1 + 2θ̇1ḋ2 + g sin θ1) + l1m1(θ̈1l1 + g sin θ1) (12.131)

f2 = −m2(d2θ̇1
2 − d̈2 + g cos θ1) (12.132)

Appending the code below to the end of the previous script conducts the substitution for the
numerical solution:

1 % NUMERICAL SUBSTITUTION
2 %Insert numerical parameters
3 Qn = [deg2rad (30), 0.40]; % joint position Q_1 = theta_1 and Q_2 = d_2
4 dQn = [0, 0]; % joint velocity dQ_1 = dQ_2 = 0
5 ddQn = [0, 0]; % joint acceleration ddQ_1 = ddQ_2 = 0
6 mn = [4.0 3.0]; % mass m_1 = 4.0 kg and m_2 = 3.0 kg
7 gn = -9.8; % g acceleration
8 l_1n = 0.15; % CoM 1 position l_1
9

10 % Compute numerical joint force and torque
11 w11n = eval(subs(w11 , ...
12 [Q, dQ , ddQ , m, g, l_1], ...
13 [Qn , dQn , ddQn , mn , gn , l_1n]))
14

15 dw11n = eval(subs(dw11 , ...
16 [Q, dQ , ddQ , m, g, l_1], ...
17 [Qn , dQn , ddQn , mn , gn , l_1n]))
18

19 dv11n = eval(subs(dv11 , ...
20 [Q, dQ , ddQ , m, g, l_1], ...

246 Newton-Euler Dynamics

21 [Qn , dQn , ddQn , mn , gn , l_1n]))
22

23 dvc11n = eval(subs(dvc11 , ...
24 [Q, dQ , ddQ , m, g, l_1], ...
25 [Qn , dQn , ddQn , mn , gn , l_1n]))
26

27 F11n = eval(subs(F11 , ...
28 [Q, dQ , ddQ , m, g, l_1], ...
29 [Qn , dQn , ddQn , mn , gn , l_1n]))
30

31 N11n = eval(subs(N11 , ...
32 [Q, dQ , ddQ , m, g, l_1], ...
33 [Qn , dQn , ddQn , mn , gn , l_1n]))
34

35 w22n = eval(subs(w22 , ...
36 [Q, dQ , ddQ , m, g, l_1], ...
37 [Qn , dQn , ddQn , mn , gn , l_1n]))
38

39 dw22n = eval(subs(dw22 , ...
40 [Q, dQ , ddQ , m, g, l_1], ...
41 [Qn , dQn , ddQn , mn , gn , l_1n]))
42

43 dv22n = eval(subs(dv22 , ...
44 [Q, dQ , ddQ , m, g, l_1], ...
45 [Qn , dQn , ddQn , mn , gn , l_1n]))
46

47 dvc22n = eval(subs(dvc22 , ...
48 [Q, dQ , ddQ , m, g, l_1], ...
49 [Qn , dQn , ddQn , mn , gn , l_1n]))
50

51 F22n = eval(subs(F22 , ...
52 [Q, dQ , ddQ , m, g, l_1], ...
53 [Qn , dQn , ddQn , mn , gn , l_1n]))
54

55 N22n = eval(subs(N22 , ...
56 [Q, dQ , ddQ , m, g, l_1], ...
57 [Qn , dQn , ddQn , mn , gn , l_1n]))
58

59 f22n = eval(subs(f22 , ...
60 [Q, dQ , ddQ , m, g, l_1], ...
61 [Qn , dQn , ddQn , mn , gn , l_1n]))
62

63 n22n = eval(subs(n22 , ...
64 [Q, dQ , ddQ , m, g, l_1], ...
65 [Qn , dQn , ddQn , mn , gn , l_1n]))
66

67 f11n = eval(subs(f11 , ...
68 [Q, dQ , ddQ , m, g, l_1], ...
69 [Qn , dQn , ddQn , mn , gn , l_1n]))
70

71 n11n = eval(subs(n11 , ...
72 [Q, dQ , ddQ , m, g, l_1], ...
73 [Qn , dQn , ddQn , mn , gn , l_1n]))
74

75 En = eval(subs(E, ...
76 [Q, dQ , ddQ , m, g, l_1], ...
77 [Qn , dQn , ddQn , mn , gn , l_1n]))

w11n =

0
0
0

dw11n =

0
0
0

dv11n =

-4.9000
-8.4870

0

dvc11n =

-4.9000
-8.4870

Applications in Computing 247

0

F11n =

-19.6000

-33.9482

0

N11n =

0

0

0

w22n =

0

0

0

dw22n =

0

0

0

dv22n =

-4.9000

0

8.4870

dvc22n =

-4.9000

0

8.4870

F22n =

-14.7000

0

25.4611

N22n =

0

0

0

f22n =

-14.7000

0

25.4611

n22n =

0

0

0

f11n =

-34.3000

-59.4093

0

n11n =

0

0

248 Newton-Euler Dynamics

-8.8200

En =

-8.8200

25.4611

12.7 Conclusion

In this chapter, we derived Newton-Euler’s equations to formulate an iterative method for
analysing the dynamics of robotic systems. It consists of two phases: outward and inward
propagation. In the outward propagation, the torque and force acting on the centre of
mass of each link as a result of inertia are calculated based on the link’s velocities and
accelerations from its actuators and gravity. The inward propagation resolves the torque
and force acting upon each link as a result of external forces from the end-effector. The
torque and force seen at each actuator is the sum of all forces and torques as calculated on
each link after each iteration.

Due to the iterative nature of this method, it is more efficient to apply this method
for dynamic analysis in a computational setting, rather than using Lagrangian dynamics,
which focuses on deriving the analytical equations of motion. As seen in the MATLAB
example, although setting up the system can be a long process, the process of calculating
the equations of motion is quite efficient, especially when combined with loop constructs.
The Newton-Euler method can also be used to calculate direct numerical values, if all
quantities are known at a particular time.

12.8 Exercises

Problem 1. Compute the joint torque and force of the system defined in Figure 12.10
using the iterative Newton-Euler algorithm. Note that z2 and z3 point out of the paper, as
indicated by the ⊙ marks at the respective joint locations. Assume zero initial conditions,
but include the gravity term g in the −z0 direction. Also assume point masses m1 and m2

located at the midpoints of the links.

Problem 2. Using MATLAB, form the symbolic derivation of the dynamic equations to the
plotting of the trajectory and torque profiles, for the three-DoF robot (assume {4} is locked)
shown in Figure 12.11. Using the Newton-Euler method, obtain the dynamics equations of
the system. Assume no forces or moments are acting on the end-effector.

0T1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 l0
0 0 0 1









, 1T2 =









c1 −s1 0 l1
s1 c1 0 0
0 0 1 d2
0 0 0 1









, 2T3 =









1 0 0 l2
0 −1 0 0
0 0 −1 −d3
0 0 0 1









Assume the centre of mass of each link is located at the centre of the link. The inertia of

Exercises 249

z0

x0

θ2

d1

z1

x1z2

x2

l2

z3

x3

FIGURE 12.10

Two-DOF PR manipulator.

each link is given as:

c1
I1 =

1

12
m1l

2
1





0 0 0
0 1 0
0 0 1



 , c2
I2 =

1

12
m2l

2
2





0 0 0
0 1 0
0 0 1



 , c3
I3 =

1

12
m3l

2
3





1 0 0
0 1 0
0 0 0





Problem 3. The schematic structure, frames and home positions of joints of the legs of
the Bioloid robot are shown in Figure 12.12.

Consider the right leg of the robot. The hip joints (ID7, 9 and 11) and one of the
ankle joints (ID17) are assumed stationary, while the knee (ID13) and the ankle (ID15) are
manipulated. The transformation matrices are given by (neglecting the home positions of
Joints 11 and 13 as shown in the figure, assuming x11 and x13 point vertically down at the

z0, z1

x0, x1

l0

θ1

l1

x2

z2

d2

θ2

l2

z3

x3, x4

z4
d3

θ4

l4

z5

x5

FIGURE 12.11

A 3R non-planar robot.

250 Newton-Euler Dynamics

FIGURE 12.12

Legs of Bioloid robot.

home position to simplify calculation)

11
T13 =









c13 −s13 0 a4
−s13 −c13 0 0
0 0 −1 0
0 0 0 1









11
T15 =









c1315 −s1315 0 a4 + a5c13
−s1315 −c1315 0 −a5s13

0 0 0 0
0 0 0 1









where the subscripts c1315 and s1315 stand for the cosine and sine of (θ13+θ15), respectively.
The mass of the lower leg and foot, mA and mB , is assumed to be point mass, located

at the origins of frames {15} and {RL}, respectively. The two point masses are represented
as

13CA =


a5 0 0 1
T

15CB =


a6 0 0 1
T

Use the following physical quantities to construct the dynamics equations of the system.

mA = 0.1 kg

mB = 0.1 kg

q13 =
π

3

q15 =
π

4
a4 = 0.07698 m

a5 = 0.07693 m

a6 = 0.033 m

g = 10 m/s2

Exercises 251

z0

x0

θ0

θ3

l1

d2
l3

m1

m2

m3

FIGURE 12.13

RPR manipulator.

Problem 4. A RPR manipulator is shown in Figure 12.13.

1. Using the Newton-Euler method, derive the dynamics of this robot. Show the
equation used and the analytic solution for each outward iteration. Show the
final dynamic equations in matrix format.

2. Give an example of when you would use:

(a) Newton Euler Method

(b) Lagrangian Method

13

Joint Control

The purpose of robotic control is to drive the joint servos such that the end-effector follows
a prescribed path. Typically, the desired trajectory is given in the task space, as it is simpler
to associate a path to the task’s coordinate system. The task space path is then mapped
back into the joint space via inverse kinematics, which yields a path in the joint space that
the joint controllers should follow. If each servo follows its desired trajectory in joint space,
then the end-effector should pass through all desired points in the task space.

In Chapter 4, we discussed some simple control schemes suitable for implementation on
simple servos. This chapter will expand on these control schemes, which include detailed
analyses of their response to different input signals, their stability, and steady-state errors.
These analyses are performed in the frequency domain.

A typical single-input/single-output feedback (closed-loop) control system is shown in
Figure 13.1, where there are a summing point, compensator, amplifier, plant, and sensor.
The reference signal serves as the input to this control system, while the plant generates the
output, which is measured by the sensor. The reference signal and the sensed output are
compared to create the error. The compensator produces signals that intend to eliminate
the error. These signals are amplified by the amplifier to drive the plant. The input signals
to the plant may be different from the output signals from the amplifier due to disturbances.

Generally, the compensator, together with the amplifier, is called a controller. The key
objectives of the controller design are 1) to allow the output to track the reference input, and
2) to reject the effects of the disturbances on the plant. The former is called the tracking

while the latter is called the disturbance rejection. However, a closed-loop control system
can become unstable (oscillating violently), potentially leading to disastrous consequences.
Therefore, checking stability is the first task of any controller design.

13.1 Servo Dynamics

Most actuators, or servos, in a robotic system, are based on a DC motor (Figure 13.2),
where torque is generated at the rotor based on the voltage applied to the armature circuit.
By constructing a voltage balance equation around the armature circuit, we can model
the torque provided by the rotor and, thus, the rotor position as a function of the voltage
applied to the armature circuit.

The voltage loop equation for the armature circuit is

Va = Raia + Lai̇a + Vb (13.1)

where Va is the voltage applied at the armature circuit, Ra is the armature wire resistance,
La is the coil inductance, ia is the armature current, and Vb is the back-EMF induced by
the rotor. The back-EMF voltage is produced as the rotor coils pass the fixed magnetic
field. Hence, at steady-state stall conditions (when the rotor is stationary), Vb = 0, which

DOI: 10.1201/9781003614319-13 252

https://doi.org/10.1201/9781003614319-13

Servo Dynamics 253

Compensator Amplifier Plant

Disturbance

Reference Output

Sensor

FIGURE 13.1

Linear closed-loop control.

Ra La

vb(t) Tm(t), qm(t)ea(t)

ia(t)

FIGURE 13.2

Armature circuit of a DC motor.

means ia is maximum, and the magnetic field produced in the rotor is the highest strength,
producing maximum torque.1 The torque produced at the rotor is linearly proportional to
the current flow in the armature

τm = Ktia (13.2)

where Kt is a torque constant. This torque causes the rotor to rotate, producing back-
EMF voltage as the rotor coil passes the fixed magnetic field. The back-EMF voltage is
proportional to the speed of the rotor, given by

Vb = Kbq̇m (13.3)

where Kb is the EMF constant. We know that the dynamics of a multi-link robot comes in
the form of

τ = M(q)q̈ + V (q̇, q) +B(q̇, q)q̇ +G(q) (13.4)

where M is the manipulator mass matrix, V is the torque exerted from velocity and Coriolis
effects, B is the internal torque due to friction of the actuators, and G is the torque exerted
due to gravity. Further, we can identify the torque on each i-th actuator as

τi = Mi(q)q̈ + Vi(q̇, q) +Bi(q̇, q)q̇i +Gi(q) (13.5)

1This is why DC motors typically burn out if they experience stall conditions for extended periods of

time, due to increased current flow in the armature coil.

254 Joint Control

where Mi is a mass vector for the i-th link. Let j be the index along vector Mi, such that
the element j = i (i.e., the diagonal element of M , Mii) represents the total inertia as seen
at link i from itself and inertia from subsequent links. Therefore, we can rewrite the torque
equations as a summation of torque exerted by its own link inertia and actuator friction
and define the rest of the torques as disturbance torques

τi = Mii(q)q̈i +

n
∑

j=1,j ̸=i

Mij q̈j + Vi +Gi +Bi(q̇, q)q̇i

= Mii(q)q̈i +Di(q̇, q) +Bi(q̇, q)q̇i (13.6)

By combining (13.6) with (13.2), we find armature current for actuator ia

ia =
1

Kt

(Mii(q)q̈i +Di(q̇, q) +Bi(q̇, q)q̇i) (13.7)

which we can substitute into (13.1) along with (13.3)

Va = Raia + Lai̇a + Vb (13.8)

=
Ra

Kt

(Mii(q)q̈i +Di(q̇, q) +Bi(q̇, q)q̇i) + Lai̇a +Kbq̇m

Lai̇a being zero. Noting that the term Lai̇a is negligible as coil inductance is usually very
small. In direct drive systems, we set τm = τi and qm = qi. Therefore, the governing equation
of motion modelled as a function of armature voltage Va is

Va =
Ra

Kt

Mii(q)q̈m +

(

Ra

Kt

Bi(q̇, q) +Kb

)

q̇m +
Ra

Kt

Di(q̇, q)

= J(q)q̈m +B(q̇, q)q̇m +
Ra

Kt

Di(q̇, q) (13.9)

where J is the inertia function of the link as seen by the driving actuator, B represents the
friction functions and EMF constant, and Di is the disturbance due to the motion of other
actuators and links along the manipulator.

Example 13.1 (Inertia contribution): Consider a two-DoF RP robotic manipulator with
assigned reference frames shown in Figure 13.3. The dynamic equations governing this system were
derived previously. Assume: mi = 1, l1 = 1, and Ixxi = Iyyi = Izzi = 1, for i = 1, 2. Find the
contributions of the robotic arm to the inertia and coefficient at the first motor’s output.
Solution: Dynamic equation at the first joint was derived as

τ1 = (m1l
2

1 + Iyy1 + Iyy2 +m2d
2

2)q̈1 + 2m2d2q̇1ḋ2 + (m1l1 +m2d2)g sin q1 (13.10)

Substituting the dynamic parameters into the above equation yields

τ1 = (3 + d
2

2)q̈1 + (2d2ḋ2)q̇1 + (1 + d2)g sin q1 (13.11)

Therefore, contributions of the robotic arm to the total inertia and the total damping coefficient of
joint 1 are Jr = (3+d22) and Br = (2d2ḋ2), respectively. The results are illustrated in the following
table.

Given the dynamic parameters Ja and Ba at armature, the lumped dynamic parameters are
given by J = Ja + Jr and B = Ba +Br, respectively. Considering Ja = 1 and Ba = 1, the induced
changes by the robotic arm in J and B are significant, as indicated in Table 13.1.

Modelling Servos with a Gear Transmission 255

z0, z1 x0

y0

x1

y1

q1

xP1

zP1

xP2

zP2

x2

z2

l1

d2

m1

m2

FIGURE 13.3

An RP robot.

13.2 Modelling Servos with a Gear Transmission

A gear transmission can improve the robustness of the control system. Not only will this
amplify the torque output of the motor, but it will also increase the precision of sensing
and suppress the dynamic disturbance in control (Figure 13.4). The effective inertia and
damping factors in this scenario can be derived from the dynamic equations. The torque
exerted by the motor behind Gear 1 is

τm = Jmq̈m +Bmq̇m + fr1 (13.12)

and the torque after Gear 2 is

fr2 = Jr q̈r +Br q̇r (13.13)

combining the aforementioned two equations yields a torque equation

τm = Jemq̈m +Bemq̇m (13.14)

where the effective inertia Jem from the motor’s perspective is defined as

Jem = Jm +
Jr

η2
(13.15)

TABLE 13.1

The lumped dynamic parameters of the RP robot

d2 = 0.6 d2 = 0.8 d2 = 1.0 d2 = 1.2

ḋ2 = −0.1 Jr = 3.36 Jr = 3.64 Jr = 4 Jr = 4
Br = −0.12 Br = −0.16 Br = −0.2 Br = −0.24

ḋ2 = 0 Jr = 3.36 Jr = 3.64 Jr = 4 Jr = 4
Br = 0 Br = 0 Br = 0 Br = 0

ḋ2 = 0.1 Jr = 3.36 Jr = 3.64 Jr = 4 Jr = 4
Br = 0.12 Br = 0.16 Br = 0.2 Br = 0.24

256 Joint Control

τm

Motor

Jm

Bm qm τ1

ff

Br

τ2, qr Jr

Robotic Link

Gear 1

Gear 2

FIGURE 13.4

Robotic link driven by a geared motor.

and the corresponding effective damping factor given by

Bem = Bm +
Br

η2
(13.16)

where η denoting the gear ratio

η =
r1

r2
> 1 (13.17)

r1 and r2 identify the gear radii, respectively. Considering the output torque of the trans-
mission, τ = ητm, we have

τ

η
= (Jm +

Jr

η2
)q̈η + (Bm +

Br

η2
)q̇η (13.18)

which can be written as

τ = (η2Jm + Jr)q̈ + (η2Bm +Br)q̇ (13.19)

This equation can be further written as

τ = Jeq̈ +Beq̇ (13.20)

where Je and Be are the effective inertia and the effective damping factor, respectively,
given by

Je = η2Jm + Jr (13.21)

and

Be = η2Bm +Br (13.22)

Example 13.2 (Geared servo dynamics — RP manipulator): Referring to the RP robot in
Figure 13.3, plot the torque experienced by the base motor with the following joint trajectories:

q1 =
π

2
sin (2t) d2 = 0.1 cos (2t+ 1) (13.23)

Modelling Servos with a Gear Transmission 257

for time t such that 0 ≥ t ≥ 3. The system parameters are:

l1 = 0.5 m1 = 2 m2 = 1

Jm = 1.0× 10−3
Bm = 0.1 g = 9.81 (13.24)

Assume point masses. Perform this task for gear ratios η = 1 and η = 3 for no load and 5 kg load
cases.

Solution: The dynamic equation of the first joint, as seen at the end of the gear transmission, is

τ1 = Jr q̈1 +Br q̇1 + (m1l1 +m2d2) g sin q1 (13.25)

where

Jr = m1l
2

1 +m2d
2

2 and Br = 2m2d2ḋ2 (13.26)

Using the servo dynamics equation (13.19), the torque exerted on the motor behind the gear
transmission is

τ = (η2
Jm + Jr)q̈ + (η2

Bm +Br)q̇ +
1

η
(m1l1 +m2d2) g sin q1 (13.27)

To determine the torque profile, we need the joint velocities and accelerations. We can simply use
the time differential of the proposed joint trajectories:

q̇1 =
3π

2
cos (3t) q̈1 = −

9π

2
sin (3t)

ḋ2 = 0.3 cos (3t+ 1) d̈2 = −0.9 sin (3t+ 1) (13.28)

1 % Define symbolic variables
2 syms l_1 m_1 m_2 x_1 x_2 dx_1 dx_2 ddx_1 ddx_2 g real
3 vars = [x_1 dx_1 ddx_1 x_2 dx_2 ddx_2];
4 consts = [l_1 m_1 m_2 g];
5

6 % System parameters
7 n = 3; % Gear ratio
8 J_m = 1.0e-3;
9 B_m = 0.1;

10 J_r = m_1*l_1^2 + m_2*x_2 ^2;
11 B_r = 2*m_2*dx_1*x_2*dx_2;
12

13 % Convert symbolic to useable functions
14 J_r_f = matlabFunction(J_r ,’Vars’,{vars ,consts });
15 B_r_f = matlabFunction(B_r ,’Vars’,{vars ,consts });
16 D_f_ = matlabFunction ((m_1*l_1 + m_2*x_2)*g*sin(x_1), ...
17 ’Vars’,{vars ,consts });
18

19 % Sub in values
20 l_1 = 0.5;
21 m_1 = 2;
22 m_2 = 1; % Add 5 to this for 5kg load
23 g = 9.81;
24 consts = [l_1 m_1 m_2 g];
25

26 % Redefine functions with const values
27 J_e = @(x) n^2* J_m + J_r_f(x,consts);
28 B_e = @(x) n^2* B_m + B_r_f(x,consts);
29 D_f = @(x) D_f_(x,consts);
30

31 % Servo dynamics equation
32 t_1 = @(x,J,B) D_f(x)/n + B_e(x).*x(:,2) + J_e(x).*x(:,3);
33

34 % Generate time , velocity and acceleration vectors
35 t = linspace(0, 5, 101) ’;
36 s = 2;
37 x_1 = pi/2 * sin(s*t);
38 dx_1 = pi/2 * s * cos(s*t);
39 ddx_1 = pi/2 * -s^2 * sin(s*t);
40

41 x_2 = 0.1 * sin(s*t + 1);
42 dx_2 = 0.1 * s * cos(s*t + 1);
43 ddx_2 = 0.1 * -s^2 * sin(s*t + 1);
44

258 Joint Control

(a) η = 1, m2 = 1 kg

T
o
rq

u
e
(N

m
)

Time (s)

(b) η = 3, m2 = 1 kg

T
o
rq

u
e
(N

m
)

Time (s)

(c) η = 1, m2 = 6 kg

T
o
rq

u
e
(N

m
)

Time (s)

(d) η = 3, m2 = 6 kg

T
o
rq

u
e
(N

m
)

Time (s)

FIGURE 13.5

Servo motor torque profiles.

45 % Plot
46 x = [x_1 dx_1 ddx_1 x_2 dx_2 ddx_2];
47 plot(t,t_1(x))
48 xlabel(’Time (s)’)
49 ylabel(’Torque (Nm)’)

The resultant torques experienced by the servo motor are shown in Figure 13.5, which are
generated by MATLAB script 13.1. We find that in a no-load scenario, a gear transmission with a
ratio of η = 3 lowers driving torque from approximately 8 Nm to 3.5 Nm peak, or a reduction of
around 44%. The load reduction is not quite 1

3
, due to the driving motor’s dynamics caused by self-

inertia and damping. However, with a 5 kg load (by adding 5 to m2’s mass), the gear transmission
lowers driving torque from approximately 12 Nm to 4.5 Nm peak, or a reduction of around 37%.
We see a greater reduction in torque due to the load having a greater effect on system dynamics
than the servo motor.

Example 13.3 (Geared servo dynamics — RR manipulator): Consider an RR manipulator
whose dynamic equation for the first joint is

τ1 = m2l
2

2 (q̈1 + q̈2) +m2l1l2 cos q2 (2q̈1 + q̈2) + (m1 +m2) l
2

1 q̈1−

m2l1l2 sin (q2) q̇
2

2 − 2m2l1l2 sin (q2) q̇1q̇2 +m2l2g cos (q1 + q2)+

(m1 +m2) l1g cos q1 (13.29)

Modelling Servos with a Gear Transmission 259

J
o
in
t
P
o
si
ti
o
n

(θ
)

Time (s)

FIGURE 13.6

Joint trajectory for this example.

For the following trajectories over time 0 ≤ t ≤ 3.14 seconds,

q1 =
π

2
sin (2t) and q2 =

π

2
sin (4t) (13.30)

plot the servo motor load at the first joint for gear ratios η = 1 and 50. Note the peak torque and
general characteristics of each profile. Assume the following servo parameters:

l1 = 0.5 l2 = 0.3 m1 = 2 m2 = 1

Jm = 1.0× 10−3
Bm = 0.01 g = 9.81 (13.31)

where each mass is a point load.

Solution: For reference, Figure 13.6 shows the joint positions over the proposed time period.
First, determine inertia and friction coefficients of the robotic link load by collecting q̈1 and q̇1

terms from the dynamic equation (13.29). We find that

Jr = l
2

1 (m1 +m2) + l
2

2m2 + 2l1l2m2 cos q2 (13.32)

and

Br = −2q̇2l1l2m2 sin q2 (13.33)

Using the servo dynamics equation (13.19), the torque exerted on the motor behind the gear
transmission for the first joint is

τ = Jeq̈ +Beq̇ +
1

η
Dr (13.34)

where

Dr = m2l
2

2 q̈2 +m2l2g cos (q1 + q2) + l1g (m1 +m2) cos q1 −m2l2
�

q̇
2

2 sin q2 + q̈2 cos q2


(13.35)

Furthermore, the joint velocities and accelerations are

q̇1 = π cos (2t) q̈1 = −2π sin (2t)

q̇2 = 2π cos (4t) q̈2 = −8 sin (2t) (13.36)

The servo motor torques as generated by MATLAB script 13.2 are shown in Figure 13.7.

260 Joint Control

T
o
rq

u
e
(N

m
)

Time (s)

(a) η = 1

T
o
rq

u
e
(N

m
)

Time (s)

(b) η = 5

FIGURE 13.7

Servo motor torque profiles.

1 % NOTE: This script uses functions introduced in previous chapters!
2 % Define symbolic variables
3 syms l_1 l_2 m_1 m_2 x_1 x_2 dx_1 dx_2 ddx_1 ddx_2 g real
4 vars = [x_1 dx_1 ddx_1 x_2 dx_2 ddx_2];
5 consts = [l_1 l_2 m_1 m_2 g];
6

7 % Forward kinematics of RR
8 dht = [0 0 0 x_1; 0 l_1 0 x_2; 0 l_2 0 0]; % DH params
9 Tij = dh(dht); % Find T matrices

10

11 % Newton -Euler dynamics to find torque equations
12 E = DynamicsNE(Tij ,[dx_1 dx_2],[ddx_1 ddx_2],[l_1 0 0; l_2 0 0]’,[m_1 m_2],[0 g 0]’);
13 t_1 = expand(E(1)); % Torque of first joint
14

15 % Find link inertia , damping and other loads
16 J_r = simplify(subs(t_1 -D_r , [dx_1 ddx_1], [0 1]));
17 B_r = simplify(subs(t_1 -D_r , [dx_1 ddx_1], [1 0]));
18 D_r = simplify(subs(t_1 ,[dx_1 ddx_1], [0 0]));
19

20 % Define function handles with constants
21 J_r_f = matlabFunction(J_r ,’Vars’,{vars ,consts });
22 B_r_f = matlabFunction(B_r ,’Vars’,{vars ,consts });
23 D_f_ = matlabFunction(D_r ,’Vars’,{vars ,consts });
24

25 % Sub in values
26 n = 50; % Gear ratio 1, 5, or 50
27 J_m = 1.0e-3;
28 B_m = 0.01;
29 l_1 = 0.5;
30 l_2 = 0.3;
31 m_1 = 2;
32 m_2 = 1;
33 g = 9.81;
34 consts = [l_1 l_2 m_1 m_2 g];
35

36 % Redefine functions with these consts
37 J_e = @(x) n^2* J_m + J_r_f(x,consts);
38 B_e = @(x) n^2* B_m + B_r_f(x,consts);
39 D_f = @(x) D_f_(x,consts);
40

41 % Servo dynamics equation for first joint
42 t_1 = @(x,J,B) D_f(x)/n + B_e(x).*x(:,2) + J_e(x).*x(:,3);
43

44 % Generate time , velocity and acceleration profiles
45 s = 2;
46 t = linspace(0, pi*s/2, 101) ’;
47 x_1 = pi/2 * sin(s*t);
48 dx_1 = pi/2 * s * cos(s*t);
49 ddx_1 = pi/2 * -s^2 * sin(s*t);
50

51 s = s*2;
52 x_2 = pi/2 * sin(s*t);

Fixed Reference Tracking 261

53 dx_2 = pi/2 * s * cos(s*t);
54 ddx_2 = pi/2 * -s^2 * sin(s*t);
55

56 % Plot
57 x = [x_1 dx_1 ddx_1 x_2 dx_2 ddx_2];
58 plot(t,t_1(x))
59 xlabel(’Time (s)’)
60 ylabel(’Torque (Nm)’)
61

62 figure
63 plot(t,x(:,[1 4]))
64 legend(’\theta_1 ’,’\theta_2 ’)
65 ylabel(’Joint Position (rad)’)
66 xlabel(’Time (s)’)

According to Figures 13.7(a) and 13.7(b), the gear reduction of 5 reduced peak torques from
approximately 25 Nm to 10 Nm, or by a factor of 2.5. Again, the effect of gearing down is mitigated
by the increased dynamic effects of the faster-spinning rotor, which cannot be mitigated behind
the gear transmission.

13.3 Fixed Reference Tracking

In fixed reference tracking, we define a static reference point that defines the desired state

in which we want the system to reach in finite time. In robot control, this is typically a

joint position qd to which we want the manipulator to move. This is known as a step input

to the control system, which in the frequency domain is defined as
R

s
. There are many

types of controllers that can achieve this, all varying in performance and complexity. In this

section, we will analyse the output characteristics of three types of control systems whose

servo dynamics are defined in (13.19): the proportional (P), proportional-derivative (PD),
and proportional-integral-derivative (PID) controller. To simplify this analysis, we will use
the frequency domain.

13.3.1 P Controller

One of the simplest forms of feedback controller is the proportional (P) gain controller. For
a given input U(s),

U(s) = K(qd(s)− q(s)) +D(s) (13.37)

where K is the proportional gain, q and qd are the current and desired actuator posi-
tions, respectively, and D(s) is some input disturbance due to the nonlinear effects of the
manipulator. The open loop transfer function is

q(s) =
Kqd(s) +D(s)

Js2 +Bs
(13.38)

and therefore, the closed-loop output transfer function is

q(s) =
K

p(s)
qd +

1

p(s)
D(s) (13.39)

where

p(s) = Js2 +Bs+K (13.40)

262 Joint Control

which is the closed-loop characteristic equation of the P controller. By analysing the coeffi-
cients of this polynomial, we can analyse the stability of the output (servo position) relative
to different types of input, and determine the steady-state error (tracking performance) and
transient response (disturbance rejection).

Stability Analysis

In order to have a stable closed-loop system, the closed-loop poles (the roots of the closed-
loop characteristic polynomial) must be kept on the left-hand side of the s plane. That is,
the real parts of the closed-loop poles must be negative. Assume that the closed-loop poles
are a + ib and a − ib, which are conjugate to each other. The closed-loop characteristic
polynomial can be written in factorised form as

p(s) = J(s− a− ib)(s− a+ ib) = Js2 − 2Jas+ J(a2 + b2) (13.41)

To maintain stability, a < 0. Comparing (13.40) and (13.41), we find that

B = −2Ja (13.42)

and upon rearranging,

a = −
B

2J
(13.43)

Because a valid system must contain positive parameters, J > 0 and B > 0, we find that a
will always be negative. That means the output of a P controller is always stable, regardless
of the proportional gain value K!

Steady-State Error

To analyse the steady-state error, we use the final value theorem, which is determined by
the equation

ess = lim
s→0

sE(s) (13.44)

To analyse the steady-state error, we use the final value theorem, which is determined by
the equation

E(s) = qd(s)− q(s) (13.45)

Referring to the output transfer function (13.39), substituting in (13.45) and rearranging
for E(s) we obtain the error transfer function

E(s) =
Js2 +Bs

p(s)
qd(s)−

1

p(s)
D(s) (13.46)

noting the characteristic polynomial defined in (13.40). In a non-ideal system, for a given

step input U(s) =
R

s
, we assume a disturbance step input is also generated D(s) =

D

s
.

Finally, using (13.44), the steady-state error for a P controller is

ess = lim
s→0

sE(s) = s



Js2 +Bs

p(s)

R

s
−

1

p(s)

D

s



= R
Js2 +Bs

p(s)
−

D

p(s)

Fixed Reference Tracking 263

= −
D

K
(13.47)

which implies that steady-state error is nonzero for systems with input disturbance but can
be reduced by increasing proportional gain K.

At this point, it seems that there are no implications of setting K >> 0 to minimise
steady state error, as it does not affect the system’s stability. However, the output transient
response is also important to a well-functioning control system.

Transient Response

The P controller’s characteristic equation (13.40) is of second-order. Therefore, we can
analyse the system’s response using the second-order equation

s2 + 2ζωs+ ω2 = 0 (13.48)

where ω and ζ are the natural frequency and damping ratio, respectively. There are three
types of stable transient responses governed by this characteristic equation.

• Overdamped response ζ > 1, where the output response is slow to reach a steady state.

• Underdamped response 0 < ζ < 1, where the output reaches the reference point quickly,
but with overshoot and oscillations.

• Critically damped response ζ = 1, where the output reaches a steady state at the fastest
speed without any of the features above.

In the control of robotic manipulators, a critically damped response is generally desired.
Therefore, when gains are chosen, we like to set ζ = 1. Comparing the P controller’s char-
acteristic equation (13.40) with the standard second-order characteristic equation (13.48),
we find that

B

J
= 2ζω (13.49)

and

K

J
= ω2 (13.50)

Therefore, the relation of K on the damping ratio ζ is

ζ =
B

2
√
KJ

(13.51)

Here, we see the implications of increasing K in a proportional controller. Even though
it decreases steady-state error, large values of K will likely drive the system into an under-
damped response, which is highly undesirable in many robotic applications. To determine
the maximum value of K that will yield up to a critically damped response, we solve for K
after setting ζ ≥ 1 in equation (13.51). This yields

K ≤ B2

4J
(13.52)

where K must be less than this value to keep the system overdamped or equal to be
critically damped. That means a P controller will always yield a high steady-state error if a
critically damped response is still desired for systems where mechanical parameters are not
favourable, such as for large inertial loads with low effective damping. Hence, a P controller
would not be ideal for this scenario.

264 Joint Control

Example 13.4 (P controller): Consider a 0.3 m length rigid link of negligible mass. One end
is attached to a revolute servo, which has a magnetic rotor field of 0.5 T, and the other end has
a free-hanging mass of 2 kg. If the servo is at 0 rad when the rigid link is pointing downwards,
determine the type of response to a step input of π

2
radians when K = 0.1, 0.347, and 3.47, and

plot the first 10 seconds of the output. Assume there is no disturbance input.

Solution: The dynamic equation for the system is

τ = ml
2
q̈ + bq̇ +mlg sin q (13.53)

where m = 2, l = 0.3, b = 0.5, and g = −9.81. Therefore, J = ml2 = 0.18 and B = 0.5. Referring
to (13.38), for a step input and no disturbance input, the open loop transfer function is

G(s) =
K

0.18s2 + 0.5s
(13.54)

The response characteristic is governed by Equation 13.51. We will use MATLAB to calculate ζ

and generate the system response plots. The following script solves this problem.

1 l = 0.3;
2 m = 2;
3 B = 0.5;
4 J = m*l^2;
5 K = [0.1 0.347 3.47];
6 t = linspace(0, 10, 101); % Time vector 10s over 101 samples
7 u = ones (1 ,101) * pi/2; % Step input
8

9 for i = 1:3
10 k = K(i);
11 z(i) = B / (2* sqrt(k*J)); % Solve damping coeff , store in z
12 % Display damping coefficient
13 fprintf ("For K = %5.3f, damping = %.3f.\n", k, z(i));
14 w = sqrt(k/J);
15 % Plot
16 G = tf(k, [J B 0]);
17 CLTF = feedback(G, 1);
18 lsim(CLTF ,u,t);
19 hold on
20 end
21

22 % Generate legend
23 legend(arrayfun(@(x,y) ...
24 sprintf(’K = %5.3f, \\zeta = %.3f’, x, y), K, z, ’Uni’, 0))

For K = 0.100 , damping = 1.863.
For K = 0.347 , damping = 1.000.
For K = 3.470 , damping = 0.316.

The output plot is shown in Figure 13.8.
We find that for K = 0.1, 0.347, and 3.47, the system results in an overdamped, critically

damped, and underdamped response, respectively. Also note that with increasing K, the time to
steady state does not significantly improve beyond K = 0.347, highlighting the limitations of P
control in this scenario. We expect steady-state error to be zero due to a zero disturbance input.

13.3.2 PD Controller

A PD controller (Figure 13.9) utilises the sum of two signals to compensate for the error.
The first one is proportional to the error utilised by the P controller, while the other
is proportional to the derivative of the error. The ideal result is that this controller can
compensate for current and future error. Consider the input U(s) in the transfer function
of the single joint; the input to the system due to a PD controller is given by

U(s) = (KP +KDs)(qd(s)− q(s)) +D(s) (13.55)

Fixed Reference Tracking 265

A
m
p
li
tu

d
e

Time (s)

FIGURE 13.8

System response to K = 0.1, 0.347, and 3.47.

where KP and KD are the proportional gains and derivative gains, and D(s) is the input
disturbance due to the nonlinear effects of the manipulator. The closed-loop system with
this PD controller is

q(s) =
KP +KDs

p(s)
qd(s) +

1

p(s)
D(s) (13.56)

where p(s) is the closed-loop characteristic polynomial, given by

p(s) = Js2 + (B +KD)s+KP (13.57)

This is similar to the characteristic polynomial observed in the P controller, but notice now
the dependence of differential gain KD on the s coefficient. This allows us greater flexibility
in controlling the output characteristics than a plain P controller. This becomes apparent
by utilising the same methodology for the analysis of the P controller here.

KP +KDs 1
Js2+Bs

D

qD q

FIGURE 13.9

PD controller for a single joint.

266 Joint Control

Stability Analysis

Referencing (13.57) with the general factorised characteristic polynomial (13.41), we find
two constraints that enforce output stability:

a = −
B +KD

2J
(13.58)

and

a2 + b2 =
KP

J
(13.59)

For stability, a > 0 for both constraints. In (13.58), applying this condition yields

B +KD

2J
> 0 (13.60)

Since the inertia J and damping coefficient B of a physical system must be positive, we have
a stable system as long as KD > 0. Applying the same condition to the second constraint
equation (13.59), and substituting in (13.58), solving for KP we obtain

KP ≥ a2J =
(B +KD)2

4J
(13.61)

The above two inequalities on KD and KP are the stability conditions for a PD controller
on a single joint.

Stability via Routh Array

An alternative analysis for stability is to use Routh’s stability criterion. Consider a general
quadratic which represents the characteristic equation of a second-order control system

a0s
2 + a1s+ a2 = 0 (13.62)

Then, the Routh array becomes

s2 a0 a2
s1 a1 0
s0 a2

According to the stability criterion, all coefficients on the first column of the array should
be of the same sign. Because a0 is generally positive, then for stability, coefficients a1 and
a2 should also be positive. Referring to (13.57) where a0 = J , a1 = B +KD, and a2 = KP ,
we find the gain conditions for stability are

KD ≥ −B (13.63)

and

KP ≥ 0 (13.64)

Steady-State Error

The closed-loop error transfer function, based on (13.56) is

E(s) = qd(s)− q(s) =
Js2 +Bs

p(s)
qd(s)−

1

p(s)
D(s) (13.65)

Fixed Reference Tracking 267

By applying a step qd(s) =
R
s
and a residual step disturbance input D(s) = D

s
, we apply

the final value theorem by using (13.44) on (13.65) yields

ess = lim
s→0

sE(s) = −
D

KP

(13.66)

Therefore, the PD controller has the same steady state error characteristics as a P controller,
which is only caused by disturbance due to nonlinear actuator characteristics. This is of no
improvement to the P controller, but is to be expected in this analysis due to the differential
controller having no effect in steady-state conditions.

At this point, there seems to be no benefit in introducing a differential term on top
of the P controller. However, as hinted in the characteristic equation of the PD controller
(13.57), there is a dependence of KD on the s-coefficient, which largely affects the transient
response of the controller.

Transient Response

Comparing the characteristic equation of the PD controller (13.57) with the general form
(13.48), we obtain two equations:

KP = ω2J (13.67)

and

KD = 2ζωJ −B (13.68)

Combining these two equations, we get

ζ =
KD +B

2
√
KPJ

(13.69)

where for a critically damped system, we desire ζ = 1. This equation indicates that the
transient response is dependent on both gains, with KD on the numerator and KP at the
denominator. This adds greater flexibility in tuning gains to achieve a low steady-state error
whilst maintaining a critically damped system. For instance, if KP is increased to reduce
steady-state error, then KD can be increased appropriately to bring the system back to a
critically damped response.

Example 13.5 (PD controller design): Consider a servo with a rotor inertia of 1×10−3 kg.m2,
and a magnetic rotor field of 0.5 T. Assuming no disturbance input, then design a PD controller
for this servo that achieves minimal settling time with a natural frequency of 500 rad/s. Plot the
servo’s response to a unit step input.

Solution: To minimise the settling time for a second-order system, we set ζ = 1 and ω = 500 for
a natural frequency of 500 rad/s. With J = 1× 10−3 and B = 0.5, according to (13.67),

KP = 250 and KD = 0.5 (13.70)

To plot the system, we need to find the closed-loop transfer function for Figure 13.9. Given
that there is no disturbance input, the open loop transfer function G simplifies to

G(s) =
KP +KDs

Js2 +Bs
(13.71)

The closed-loop transfer function is then

q(s)

qd(s)
=

G(s)

1 +G(s)

268 Joint Control

A
m
p
li
tu

d
e

Time (s)

FIGURE 13.10

Servo response to a fixed reference input under PD control.

=
KDs+KP

Js2 + (KD +B)s+KP

=
0.5s+ 250

0.001s2 + s+ 250
(13.72)

We can then plot this transfer function in MATLAB using the following code, which represents
the system response to a step (fixed reference) input (Figure 13.10).

1 sys = tf([0.5 250], [0.001 1 250])
2 step(sys)

Although the goal is to achieve a critically damped response, the output response will not reflect
this due to the presence of a first-order zero.

Example 13.6 (Steady state error): Suppose that steady-state conditions for the same system
are achieved for a unit step input. After t = 0.025 s, there is a 50-unit step disturbance input.
Find the steady-state error and plot the output response under the same gain values to verify the
answer.

Solution: The steady-state error from a disturbance input is found by evaluating (13.66), which
is

− D

KP

= − 50

250
= −0.2 (13.73)

which means that with disturbance, the output should exceed the input qd by 0.2 units.
To plot the response, we utilise the closed-loop transfer function from (13.72), which is a

multi-input single-output system. Note that the disturbance input portion of the CLTF is a simple
second-order system with no zeros. Therefore, we expect a standard, critically-damped second-order
response for the gains chosen in the previous example. We can then plot this transfer function in
MATLAB using the following code representing the system response to a step disturbance input.

1 CLTF = tf({[Kd Kp], 1},[J B+Kd Kp]) % Create two -input system
2 t = linspace (0 ,0.05 ,100) % Define time vector
3 u = [ones (100 ,1) zeros ([100 1])] % Create input matrix
4 % Input 1: theta_d
5 % Input 2: disturbance
6 u(t>0.025 ,2) = 50; % Set input 2 = 50 after t >0.025
7 lsim(CLTF ,u,t) % Generate plot
8 slim ([0 1.2]) % Adjust y-axis
9

Fixed Reference Tracking 269

A
m
p
li
tu

d
e

Time (s)

FIGURE 13.11

Servo response to a 50-unit step disturbance at t = 0.025 s at initial steady-state conditions.

From Figure 13.11, we can identify that the steady-state error is 0.2 units above the reference

level once the final steady state is achieved. A nonzero steady-state error from a disturbance means

that the PD controller has poor disturbance rejection.

13.3.3 PID Controller

As shown in (13.65) and from the examples, a PD controller has poor disturbance rejec-
tion due to a nonzero steady-state error to a nonzero disturbance. To reduce this error,
we introduce the PID controller (Figure 13.12), which adds an integral signal to the PD
controller. This signal is proportional to the integral of previous errors, which is expected to
compensate for the historical accumulation of past errors. Due to its flexibility in controlling
many types of signals, the PID controller finds many applications in the industry.

Consider the input U(s) in the transfer function of the single joint; the input to the
system due to a PID controller is given by

U(s) = (KP +KDs+
KI

s
)(qd(s)− q(s)) +D(s) (13.74)

KP +KDs+ KI

s

1
Js2+Bs

D

qD q

FIGURE 13.12

Block diagram of a PID controller.

270 Joint Control

where KI is the newly introduced integral gain. The closed-loop system with this PID
controller is shown in Figure 13.12. The output of this system can be readily derived as

q(s) =
KDs2 +KP s+KI

p(s)
qd(s) +

s

p(s)
D(s) (13.75)

where p(s) is the closed-loop characteristic polynomial

p(s) = Js3 + (B +KD)s2 +KP s+KI (13.76)

Stability Analysis

To find the stability of this third-order closed-loop system without solving the closed-loop
characteristic polynomial, we utilise Routh’s stability criterion. The Routh array of (13.76)
is shown below.

s3 J KP

s2 B +KD KI

s1 KP − J
KI

B +KD

s0 KI

According to the Routh criterion, the entries in the second column must have the same

sign for a stable system, i.e., KD > −B, KI > 0, and KP > J
KI

B +KD

. Typically, all gains

should be positive, so the only remaining criterion that governs the stability of the PID
controller is

KI <
(B +KD)KP

J
(13.77)

Steady-State Analysis

The steady-state error can be found in the frequency domain with respect to a step reference

input
R

s
and a step disturbance

D

s
as the time approaches infinity.

ess = lim
s→0

s (qd(s)− q(s))

= lim
s→0

s

(

Js3 +Bs2

p(s)
qd(s)−

s

p(s)
D(s)

)

= lim
s→0

s

(

Js3 +Bs2

p(s)

R

s
−

s

p(s)

D

s

)

= lim
s→0

s

(

JRs2 +BRs

p(s)
−

D

p(s)

)

= 0 (13.78)

We can now see that the PID can eliminate the error caused by a step disturbance. The
conclusion can also be drawn from the fact that the control system shown in Figure 13.14
is Type 1, with one open-loop pole at zero. It is known that Type 1 systems have no steady-
state error with respect to a step input.

Tuning Gains

Tuning PID gains can be difficult, as transient response and overshoot performance must
be balanced while maintaining the stability of the system. A common strategy is to tune

Fixed Reference Tracking 271

I
m
a
g
in
a
ry

A
x
is

(s
-
1
)

Real Axis (s-1)

FIGURE 13.13

PID root locus.

S
te
p

R
e
sp

o
n
se

Time

FIGURE 13.14

The response of the PID controlled single joint.

KP and KD to achieve the desired transient response first, then tune Ki so that it reduces

or eliminates steady-state error without affecting stability. Due to its negative effects on

transient response, Ki = 0 in many robot controllers, but if the integral term is absolutely

needed to control steady-state error, then an integrator anti-windup could be used that

limits the maximum integral error. The effects of KI can be seen on the PID root locus plot

in Figure 13.13, where J = 1 and gains are initially set to KD +B = 3 and KP = 2.

When KI = 0, two roots lie on the negative real axis, and one root lies at zero, which

indicates a fairly ideal transient response with no oscillations in the output. However, as

KI increases, the leftmost root heads towards negative infinity, while the other two roots

move towards each other, eventually meeting and breaking away from the real axis. Once

this happens, oscillations occur at the output that progressively worsens with increasing

KI . Once the imaginary roots cross to the right half of the plane, then the system becomes

unstable.

272 Joint Control

Example 13.7 (PID tuning): Consider a single joint dynamics with J=1 and B=1. Find the
PID controller gains to achieve the natural frequency of ω = 8.

Solution: The best practice is to tune the PD portion of the controller before introducing I to
remove the steady-state error. Based on Example 13.5, the desired PD gains to achieve ω=8 are
KP=64 and KD=15. Then according to (13.77), to maintain stability, the condition for KI must
satisfy

KI <
(B +KD)KP

J
=

16× 64

1
= 1024 (13.79)

Therefore, we can safely select KI = 500. The response of the PID-controlled single joint with
respect to a unit step input is approximated in Figure 13.14.

13.4 Error Dynamics

So far, we have analysed the output signal properties of the P, PD, and PID controllers
to a fixed reference (step) input. While we have derived the output transient response and
steady-state error of each of these systems based on its second-order characteristic equation,
the response is only relative to a constant input signal. In this section, we will generalise the
discussion of output transient response and signal error to time-variant reference signals.
The error within a control law is defined as

e(t) = qd(t)− q(t) (13.80)

where e(t) is the difference between the desired input qd(t) and the actual output signal
q(t). The quantity q usually represents a servo angle, but this concept can be generalised to
other signals. Furthermore, we can further extend this concept to the evolution or change
in error, as described by a linear ordinary different equation of the form

ape
(p) + ap−1e

(p−1) + ...+ a2ë+ a1ė+ a0e = c (13.81)

where a are coefficients of the (p)-th order differential of the error qe. This equation repre-
sents the error dynamics of a control law. In this section, we will study the error dynamics
of a closed-loop control system for a single-DoF joint and up to the second order. We will
base the error modelling on a linear mass-spring-damper system, where the second-order
error can be written as

më(t) + bė(t) + ke(t) = 0 (13.82)

where m, b, and k are the mass, damping coefficient, and spring constants, respectively.

Error Dynamics 273

E
r
r
o
r

Time

FIGURE 13.15

Over-damped, under-damped, and critical-damped error dynamics.

13.4.1 First-Order Error Dynamics

The first-order error dynamics, based on (13.82), can be written in the form

bė(t) + ke(t) = 0 (13.83)

which can be rearranged to

ė(t) +
1

T
e(t) = 0 (13.84)

with T = b

k
, and is the time constant of the first order ODE. It has a solution

e(t) = e(0) exp

(

−
t

T

)

(13.85)

where e(0) is the initial error of the system. The time constant T determines the time for
error to decay 37% of initial error e(0).

13.4.2 Second-Order Error Dynamics

The second-order dynamics

ë+
b

m
ė+

k

m
e = 0 (13.86)

can be written in the form

ë(t) + 2ζωė(t) + ω2e(t) + d(t) = 0 (13.87)

where ω and ζ are the natural frequency and damping ratio, respectively, and d(t) is the
disturbance in the time domain. The second-order error dynamics can be over-damped,
under-damped, and critical-damped systems, as shown in Figure 13.15.

A critically damped system is desired in robotic applications (ζ = 0). Therefore, we have

ë(t) + 2ωė(t) + ω2e(t) + d(t) = 0 (13.88)

274 Joint Control

F (s)

H(s) G(s)

D

qD q

FIGURE 13.16

Feedforward control scheme.

With such critically damped error dynamics, the error is suppressed within a minimum time
period without triggering oscillations. Without considering the disturbance, the above error
dynamics can be written in the s domain as

E(s)(s2 + 2ωs+ ω2) = 0 (13.89)

Since E(s) = qd(s)− q(s), we have

q(s)

qd(s)
= 1 (13.90)

which means that the desired closed-loop transfer function is 1. However, any control system
has disturbances. One objective in designing a controller is to minimise the disturbance
in the error dynamics. For example, the error dynamics of the PD controller shown in
Figure 13.9 is given by (13.56), i.e.,

E(s)(Js2 + (B +KD)s+KP) = (Js2 +Bs)qd(s)−D(s) (13.91)

where the RHS appears as the disturbance including the modelled term (Js2 + Bs)qd(s).
One way to eliminate this term from the disturbance in (13.91) is to use the feedforward
control scheme, as shown in Figure 13.16. The closed-loop transfer function is

T =
q(s)

qd(s)
=

G(s)F (s) +G(s)H(s)

1 +G(s)H(s)
(13.92)

where F (s) is the feedforward transfer function. Using the condition of the unity transfer
function, we have

F (s) =
1

G(s)
(13.93)

This control law can be written as

V (s) = F (s)qd +H(s)(qd − q) (13.94)

Apply the feedforward control to a single robotic joint as shown in Figure 13.17. The control
law in time domain is given by

v(t) = Jq̈d +Bq̇d +KD(q̇d − q̇) +Kp(qd − q) (13.95)

Error Dynamics 275

Js2 +Bs

KP +KDs 1
Js2+Bs

D

qD q

FIGURE 13.17

The PD and feedforward control on a single joint.

The closed-loop dynamics is derived as

Jq̈ +Bq̇ = v(t) + d(t) (13.96)

which yields the error dynamics:

Jë(t) + (B +KD)ė(t) +KP e(t) + d(t) = 0 (13.97)

where e(t) = qd(t)− q(t) and d(t) is the disturbance. According to (13.88), we have

B +KD

J
= 2ω,

KP

J
= ω2 (13.98)

leading to

KD = 2Jω −B, KP = Jω2 (13.99)

13.4.3 Velocity Control

We can extend the error dynamics to joint velocity control. Beginning with the desired error
dynamics

ë+ 2ωė+ ω2e = 0 (13.100)

we can define the error as

ë = q̈d − q̈ (13.101)

which yields

q̈ = q̈d + 2ωė+ ω2e (13.102)

Taking the time integral yields the output equation

q̇ = q̇d + 2ωe+ ω2

∫

edt (13.103)

where q̇d is a feedforward signal, KP = 2ω, and KI = ω2, which are feedback signals in a
PI controller. Equation (13.103) will yield the desired error dynamics defined in (13.100).

If no feedforward signal is available (qd = 0), then (13.103) becomes

q̇ = 2ωe+ ω2

∫

edt (13.104)

276 Joint Control

in which

q̈ = 2ωė+ ω2e (13.105)

where after substituting the error definition (13.101), yields

q̈d = ë+ 2ωė+ ω2e (13.106)

13.5 Conclusion

In this chapter, we introduced PD and PID controllers that can be used to control the
servos in a robotic system. Firstly, we derived the dynamics of a servo by utilising the
common laws of physics to create a transfer function that relates servo output position with
input voltage. With this transfer function, we are then able to derive a control system in a
negative feedback loop to control this servo, and analyse it using control theory.

The PD controller compensates for errors between input and output servo positions
by utilising the sum of proportional and differential errors. This control scheme seeks to
minimise proportional error and suppress future error by measuring differential error. The
resulting control scheme is of second order with two parameters to tune, which affects
stability, steady-state error and transient response. For a fixed reference input (step servo
position input), this control system can never reach a fixed input reference, as it has a
constant, nonzero, steady-state error.

The PID controller utilises the integral of the measured error to compensate for the error,
as well as proportional and differential error terms, as with the PD controller. Although
this results in a third-order control system in which transient analysis is no longer trivial,
stability analysis can be performed using the Routh array, and steady-state error can still
be calculated in the Laplace domain. For a fixed reference input (step servo position input),
the steady-state error for a PID controller is found to be zero for all stable cases. However,
due to the system being of third order, PID tuning to achieve a stable output with a desired
transient response can be difficult without experience or following a set procedure.

Although fixed reference (constant) inputs are easy to analyse, they are not practical, as
desired trajectories in robotics are usually time-variant. In this scenario, we wish to track a
changing reference input. To analyse system stability, and transient and steady-state errors
of this type of input, we analyse the error dynamics as a result of time-varying inputs,
generated by the control law. To ensure the control system can handle disturbances in a
changing reference input, we model this as a second input into the control system and
introduce a feedforward transfer function to eliminate this input from the final transfer
function. This was demonstrated for the PD controller.

13.6 Exercises

Problem 1. Prove that the torque equation for the mechanism shown in Figure 13.18 is

T =



(Ja + Jg1) +
(JL + Jg2)

r2



q̈m +



bm +
b

r2



q̇m

Exercises 277

τm q̇m

Ja

Jg2, r2

qm
ff

Link

Jg1, r1

Jl

bm

b

FIGURE 13.18

Mechanism for Problem 1.

where gear ratio r = R2

R1

= qm
q
. What are the effective inertia and effecting damping terms

of the system?
Problem 2. In a system like that shown in Figure 13.19, find the criteria for KD and KP

of a PD controller such that the system is never unstable and never underdamped. Design
the PD control to control τ (solve the torque balance equations for τ , rather than τm).
The system possesses an un-modelled resonance due to an end-point stiffness K (on the
non-motor side, not shown in the figure). Any damping terms in the system are negligible.
Also, η = R2

R1

> 1.
Problem 3. Design a trajectory-following controller for a system with dynamics given by

f = a(x+ 10)2ẍ+ bẋ2 + cẋ+ d sin(x)

where f and x are the input force and output displacement, respectively, while a, b, c, d are
nonzero. The requirement is that errors are suppressed in a critically damped fashion over
all configurations.

Problem 4. Consider a robotic system with the dynamic equation given by

τ = M(q)q̈ + V (q, q̇) +G(q)

1. Construct the partitioned controller scheme to control this robot, based on its
dynamic equation, so that the robot can be critically damped over the whole
workspace. Here, we assume that all dynamic parameters are perfectly known.

2. Draw a block diagram showing this controller scheme. Show the corresponding
equations inside the blocks of the block diagram.

τm

Im

q̇m

I

q̇

τ

η

FIGURE 13.19

A geared system.

14

Computed Torque Control

In Chapter 13, we discussed the controllers to handle the computed torque control of a
single joint. However, it is far from sufficient to assume linear system behaviour, especially
when robot dynamics is factored in. This chapter aims to fill the gap by introducing the
two-part inner-outer control loop to achieve stable non-linear computed torque control.

14.1 SISO Computed Torque Control

Consider a single-DoF system with open-loop dynamics given by

f = h1(x)ẍ+ h2(x, ẋ) (14.1)

where f and x are the force input and displacement output, respectively, while h1(x) and
h2(x, ẋ) are nonlinear functions in general. We will not be able to use a linear controller
to force this system to follow a given trajectory precisely, because the same gains cannot
handle varying h1(x) and h2(x, ẋ). One strategy is to linearise the system first by utilising
the known dynamics of the system. We define the first control law as

f = h1(x)f
′ + h2(x, ẋ) (14.2)

where f ′ is a new artificial input. With this control law, the original dynamics becomes

f ′ = ẍ (14.3)

which is the dynamics of a unit-mass-only system. The desired critically damped error
dynamics is given by

ë+KD ė+KP e = 0 (14.4)

where error e = xd(t)−x(t), and xd(t) is the desired trajectory. Further, we have KD = 2ω
and KP = ω2. Substituting the new dynamics (14.3) based on the first control law into
(14.4), we have

f ′ = ẍd +KD ė+KP e (14.5)

which is the second control law to achieve the desired error dynamics. Combining two control
laws together, we have the complete computed controller as

f = h1(x)(ẍd +KD ė+KP e) + h2(x, ẋ) (14.6)

The controller is shown in Figure 14.1.

DOI: 10.1201/9781003614319-14 278

https://doi.org/10.1201/9781003614319-14

MIMO Computed Torque Control 279

ẍd

ẋd

xd

ẋ

x

KP KD

h1 f = h1ẍ+ h2

h2

f ′

FIGURE 14.1

Computed torque controller for SISO.

Example 14.1 (Non-linear PD controller): Consider a system with the following dynamics

τ1 = (3 + d
2

2)q̈1 + 2d2ḋ2q̇1 + (1 + d2)g sin q1 (14.7)

where τ1, q1, and d2 are the first joint torque, the first joint angle, and the second joint distance,
respectively. Design a PD controller to track a changing reference.
Solution: The first law is given by

τ1 = h1τ
′

1 + h2 (14.8)

where

h1 = (3 + d
2

2) (14.9)

h2 = 2d2ḋ2q̇1 + (1 + d2)g sin q1 (14.10)

For a PD controller, the second law is given by

τ
′

1 = q̈1d +KD ė1 +KP e1 (14.11)

Substituting τ
′

1 into the first law gives

τ1 = (3 + d
2

2)(q̈1d +KD ė1 +KP e1) +


2d2ḋ2q̇1 + (1 + d2)g sin q1


(14.12)

14.2 MIMO Computed Torque Control

The dynamic equations of a robotic system are given by

τ = M(q) q̈ + V (q , q̇) + F(q , q̇) + G(q) (14.13)

which can be written as

u = M(q) q̈ + C(q , q̇) q̇ + B q̇ + G(q) (14.14)

where u and q are used to represent the control input vector τ and general coordinate
vector q of the control system. C(q , q̇) and B(q) are the centrifugal and Coriolis matrix

280 Computed Torque Control

and damping coefficient matrix, respectively, which are highly nonlinear in general. We can
use a similar law to the first law in the SISO controller (14.2) to linearise the dynamics:

u = M(q) a + C(q , q̇) q̇ + B q̇ + G(q) (14.15)

where a is an artificially introduced new input. The linearised dynamics under this control
law is given by

a = q̈ (14.16)

where all nonlinear dynamic terms are cancelled out if the model is perfect. In order to
achieve the desired error dynamics, a PD controller is designed by

a = q̈d + KD ė + KP e (14.17)

with e = q̇d − q , and q̇d is the desired joint trajectories. The resulting error dynamics
under this control law is

ë + KD ė + KP e = 0 (14.18)

which is the final error dynamics. Since KD and KP are diagonal gain matrices, the error
dynamics equations can be further decoupled as

ëi +KDiėi +KPiei = 0 (14.19)

which determines the performance of the system with respect to the initial errors and
disturbances. Again, we prefer a critically-damped system by selecting KDi = 2ωi and
KPi = ω2

i
, where ωi is the natural frequency that determines the speed of response or the

rate of decay of tracking error. Hence, the gains become

KD =











2ω1 0 · · · 0
0 2ω2 · · · 0
...

...
. . .

...
0 0 · · · 2ωn











, KP =











ω2
1 0 · · · 0
0 ω2

2 · · · 0
...

...
. . .

...
0 0 · · · ω2

n











(14.20)

Control laws (14.15) and (14.17) are usually called the inner loop and the outer loop
control, respectively, as illustrated in Figure 14.2. The total control law is then obtained by
combining these two laws together:

u = M(q)(q̈d + KD ė + KP e) + C(q , q̇) q̇ + B q̇ + G(q) (14.21)

Example 14.2 (2R non-linear PD control): The system shown in Figure 14.3 has the following
dynamics:

τ1 = m2l
2

2(q̈1 + q̈2) +m2l1l2c2(2q̈1 + q̈2) + (m1 +m2)l
2

1 q̈1

−m2l1l2q̇
2

2s2 − 2m2l1l2q̇1q̇2s2 +m2l2gc12 + (m1 +m2)l1gc1 (14.22)

τ2 = m2l2


l2(q̈1 + q̈2) + l1q̈1c2 + l1q̇
2

1s2 + gc12


(14.23)

where τ1, q1, and q2 are the first joint torque, its angle, and the second joint angle, respectively.
Design a PD controller for this manipulator to track a changing reference.
Solution: Rearrange the dynamics equations to find the mass matrix M , centrifugal and Coriolis
matrix C , and gravity matrix G :

M =



m2l
2

2 + 2m2l1l2c2 +m1l
2

1 m2l
2

2 +m2l1l2c2 +m2l
2

1

m2l
2

2 +m2l1l2c2 m2l
2

2



(14.24)

MIMO Computed Torque Control 281

q̈d

q̇d

qd

q̇
q

KP KD

M(q) Robot

C q̇ +Bq̇ +G

a u

FIGURE 14.2

PD controller for a robotic manipulator.

C =



−2m2l1l2s2q̇2 −m2l1l2s2q̇2
m2l2l1q̇1s2 0

]

(14.25)

G =

[

(m1 +m2)l1gc1
m2l2gc12

]

(14.26)

Linearising the dynamics yields

τ = M a + C q̇ + G (14.27)

where for a PD controller

a = q̈d + KD ė + KP e (14.28)

Substituting a into the linearised dynamics gives

τ = M(q̈d + KD ė + KP e) + C q̇ + G (14.29)

q1

q2

x0

y0

l1

l2

O1

x1

y1

y2

x2

y3

x3

Oo

O3

FIGURE 14.3

A 2R manipulator.

282 Computed Torque Control

qd

q̇
q

KP KD

Robot

G(q)

u

FIGURE 14.4

The control scheme of the PD controller with gravity compensation.

14.3 Controller with Gravity Compensation

The compensation of the complete nonlinear dynamics of a robotic manipulator requires
accurate modelling, which is difficult or even impossible to achieve due to the lack of knowl-
edge. Furthermore, the model requires high computation power to calculate in real time,
which may not be possible in embedded systems with power constraints. The purpose of
gravity compensation is to cancel the nonlinear effects of the gravity term in the original
robotic dynamics, allowing the use of simpler PD or PID controllers.

A PD controller with gravity compensation for a changing reference is given by

u(t) = q̈d + KP e + KD ė + G(q) (14.30)

where KP = Diag(KP1, . . . ,KPn) and KD = Diag(KD1, . . . ,KDn). Here Diag stands for
a diagonal matrix. If the reference is fixed, the controller becomes:

u(t) = KP e − KD q̇ + G(q) (14.31)

which is shown in Figure 14.4. Further, a PID controller with gravity compensation for a
changing reference can be defined similarly as

u(t) = q̈d + KP e + KD ė + KI

∫

e + G(q) (14.32)

where KI = Diag(KI1, . . . ,KIn). If the reference is fixed, the controller becomes

u(t) = KP e − KD q̇ + KI

∫

e + G(q) (14.33)

Lyapunov Stability 283

Example 14.3 (PD controller with gravity compensation): Consider the system used in the
previous Example 14.2. Design a PD controller with gravity compensation for position regulation.
Solution: The PD controller with gravitational compensation is given by



τ1
τ2

]

= KP e − KD q̇ + G (14.34)

=

[

KP1 0
0 KP2

] [

q1d − q1
q2d − q2

]

−
[

KD1 0
0 KD2

] [

q̇1
q̇2

]

+

[

(m1 +m2)l1gc1
m2l2gc12

]

(14.35)

=

[

KP1(q1d − q1)−KD1q̇1 + (m1 +m2)l1gc1
KP2(q2d − q2)−KD2q̇2 +m2l2gc12

]

(14.36)

14.4 Lyapunov Stability

To analyse the stability of the nonlinear controllers defined in Section 14.3, we can utilise
the Lyapunov stability criterion, which is a powerful tool in control theory. Consider a
nonlinear system that satisfies

ẋ = f(x) x(t0) = x0 x ∈ R
n (14.37)

where f(x) is a vector field on R
n, and suppose that f(0) = 0. Then, the origin in R

n is
said to be an equilibrium point for ẋ = f(x). A trivial solution to this nonlinear system is
x(t) = 0, where the state of the system stays at the equilibrium point forever, which is also
called the null solution.

14.4.1 Basic Definition

The stability of an equilibrium point of a dynamical system can be defined using the ϵ− δ

definition of limits.

Definition 14.1. The null solution x(t) = 0 is stable if and only if, for any ϵ > 0, there
exists δ(ϵ) > 0 such that ∥x(t0)∥ < δ implies ∥x(t)∥ < ϵ for all t > t0. The solution x(t) = 0
is unstable if it is not stable.

Definition 14.2. The null solution x(t) = 0 is asymptotically stable if and only if 1)
it is stable, and 2) there exists δ > 0 such that ∥x(t0)∥ < δ implies ∥x(t)∥ → 0 as t → ∞.

Example 14.4 (Lyapunov stability analysis): Assume a mass-spring system with m = 1 and
k = 1, as shown in Figure 14.5. Find the equilibrium point of this system and determine stability.
Solution: Its dynamics is ÿ = −y. Define the states of the system as x1 = y and x2 = ẏ. The state
space equations can be written as

ẋ =

[

ẋ1

ẋ2

]

=

[

ẏ

ÿ

]

=

[

x2

−x1

]

(14.38)

For an equilibrium point, we must have

f (x) =

[

x2

−x1

]

= 0 (14.39)

284 Computed Torque Control

y

m

k

FIGURE 14.5

The mass-spring system.

which yields x1 = x2 = 0. Hence, the origin is the equilibrium point of the system. The time
derivative of the state of this system is a vector field on R2 as shown in Figure 14.6, which is also
called the phase portrait of the system.

To determine system stability, first define a circle at the origin with an arbitrarily small radius
ϵ > 0. Also, define a larger circle with a radius being δ(ϵ) = 0.9ϵ. Within the larger circle, select an
initial state x(t0), which yields a circular orbit with a radius r smaller than δ(ϵ) under the governing
dynamics. Since δ(ϵ) < ϵ, we have ∥x(t)∥ = r < ϵ for all t > t0. Therefore, the mass-spring system
is stable. However, since x(t) is always on the circular orbit with a constant radius of r, ∥x(t)∥ is
never zero. Therefore, this system is not asymptotically stable.

Example 14.5 (Lyapunov stability analysis — mass-spring-damper system): Consider
a mass-spring-damper system with m = 1, k = 1, and b = 1, as shown in Figure 14.7. Use the
Lyapunov stability criterion to determine the stability of the system.
Solution: Its dynamics is ÿ = −y − ẏ. Define the states of the system as x1 = y and x2 = ẏ. The
state space equations can be written as

ẋ =



ẋ1

ẋ2

]

=

[

ẏ

ÿ

]

=

[

x2

−x1 − x2

]

(14.40)

Hence, we have f(x) =
[

x2 −x1 − x2

]T
. The time derivative of the state of this system is shown

in Figure 14.8, from which we can observe that x(t) is always approaching the origin and will fall

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

x1

x
2

x
2

x1

FIGURE 14.6

Phase portrait of the mass-spring system.

Lyapunov Stability 285

y

m

k

b

FIGURE 14.7

The mass-spring-damper system.

within a circle at the origin with an arbitrarily small radius, as long as sufficient time is given.

Therefore, the mass-spring-damper system is asymptotically stable.

14.4.2 Lyapunov’s Direct Method

Lyapunov’s direct method, also known as the second method of Lyapunov, allows the deter-
mination of stability of a dynamical system without the need for integrating the system’s
differential equations (14.37). This is a generalised method that makes use of the Lyapunov
function, V (x), which, in a way, represents the system’s potential energy. By studying the
change in potential energy, we can ascertain the system’s stability.

Definition 14.3. Let V (x) be a continuous function with continuous first partial derivatives
in a neighbourhood of the origin in Rn. Furthermore, suppose that V (x) is positive definite,

that is, V (0) = 0 and V (x) > 0 for x ̸= 0. Then V (x) is the Lyapunov function for the

system given by ẋ = f(x).

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

x1

x
2

x
2

x1

FIGURE 14.8

Phase portrait of the mass-spring-damper system.

286 Computed Torque Control

Theorem 14.1. The null solution x(t) = 0 of ẋ = f(x) is stable, if there exists a Lyapunov

function candidate V , such that V̇ is negative semi-definite along solution trajectories of

ẋ = f(x), i.e.,

V̇ =
∂V

∂x
f(x) ≤ 0 (14.41)

Theorem 14.2. The null solution x(t) = 0 of ẋ = f(x) is asymptotically stable, if there

exists a Lyapunov function candidate V such that V̇ is strictly negative along solution tra-

jectories of ẋ = f(x), i.e.,

V̇ =
∂V

∂x
f(x) < 0 (14.42)

Example 14.6 (Lyapunov’s direct method — mass-spring system): Find the Lyapunov
function for the mass-spring system in Example 14.4. Determine the system’s stability using Lya-
punov’s direct method.
Solution: The Lyapunov function is V = x2

1 + x2

2, which is positive definite. The time derivative
of the Lyapunov function is derived as

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 = 2x1ẋ1 + 2x2ẋ2

= 2


x1 x2





ẋ1

ẋ2



= 2


x1 x2





x2

−x1



= 0 (14.43)

According to Theorem 14.1, this system is stable, which agrees with the conclusion in Exam-
ple 14.4. On the other hand, according to Theorem 14.2, this system is not asymptotically stable,
which also agrees with the conclusion in Example 14.4.

Example 14.7 (Lyapunov’s direct method — mass-spring-damper system): Find the
Lyapunov function for the mass-spring-damper system in Example 14.5. Determine the system’s
stability using Lyapunov’s direct method.
Solution: The Lyapunov function is V = x2

1 + x2

2 as well. The time derivative of this Lyapunov
function is derived as

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 = 2x1ẋ1 + 2x2ẋ2

= 2


x1 x2





ẋ1

ẋ2



= 2


x1 x2





x2

−x1 − x2



= −x
2

2 < 0 (14.44)

for any x2 ̸= 0. According to Theorem 14.2, this system is asymptotically stable, which agrees with
the conclusion in Example 14.5.

14.5 Dynamic Relation

In order to utilise the Lyapunov criterion to analyse the nonlinear controllers with only
gravity compensation, we need to understand a spherical dynamic relation in the robotic
dynamics given by (14.14). From the point of view of the energy balance, the input power
from the environment into the robot must equal the sum of the output power from the

Dynamic Relation 287

robot to the environment and the change rate of the total energy of the robot. The input
power due to motors is given by

Pi = q̇T u (14.45)

The output power is the dissipated power due to friction, given by

Po = q̇T B q̇ (14.46)

where B q̇ is the friction projected into the joint space. Since the total energy is the sum
of the potential energy and the kinetic energy, the rate of change of the total energy is
discussed accordingly. The rate of change of the potential energy equals the product of the
velocity and the force overcoming the gravity, which is given by, in joint space,

Ėp = q̇T G(q) (14.47)

The change rate of the kinetic energy is obtained by the time derivative of the kinetic energy
as

d

dt
(
1

2
q̇T M(q) q̇) = q̇T M(q) q̈ +

1

2
q̇T Ṁ(q) q̇ (14.48)

Hence, the energy balance yields

q̇T u − q̇T B q̇ = q̇T M(q) q̈ +
1

2
q̇T Ṁ(q) q̇ + q̇T G(q) (14.49)

Substituting (14.14) into (14.49) gives

q̇T C(q , q̇) q̇ =
1

2
q̇T Ṁ(q) q̇ (14.50)

Example 14.8 (Lyapunov criterion — dynamic relation): Consider the RP robotic manip-
ulator as shown in Figure 14.9. The dynamics is given by

τ = M(q) q̈ + c(q , q̇) q̇ + B q̇ + G(q) (14.51)

where

M(q) =



m1l
2

1 + Iy1 + Iy2 +m2d
2

2 0
0 M2

]

(14.52)

C(q , q̇) q̇ =

[

2m2d2q̇1ḋ2
−m2d2q̇1

2

]

(14.53)

G(q) =

[

(m1l1 +m2d2)g sin q1
−m2g cos q1

]

(14.54)

Verify that

q̇T C q̇ =
1

2
q̇T Ṁ q̇ (14.55)

Solution:

q̇T C q̇ =
[

q̇1 ḋ2
]

[

2m2d2q̇1ḋ2
−m2d2q̇1

2

]

(14.56)

= 2m2d2q̇1
2
ḋ2 −m2d2q̇1

2
ḋ2 (14.57)

= m2d2q̇1
2
ḋ2 (14.58)

288 Computed Torque Control

z0, z1 x0

y0

x1

y1

θ1

xP1

zP1

xP2

zP2

x2

z2

l1

d2

m1

m2

FIGURE 14.9

RP robotic manipulator.

Ṁ =



2m2ḋ2d2 0
0 0

]

(14.59)

1

2
q̇T Ṁ q̇ =

1

2

[

q̇1 ḋ2
]

[

2m2ḋ2d2 0
0 0

] [

q̇1

ḋ2

]

= m2d2q̇1
2
ḋ2 (14.60)

Thus, the equation is verified.

14.6 Stability Analysis of Nonlinear Robotic Controllers

Consider the PD controller with gravity compensation given by (14.31). Under this control
scheme, the dynamics of this closed-loop system is obtained by substituting (14.31) into
(14.14),

M(q) q̈ + C(q , q̇) q̇ + B q̇ − KP (q̇d − q) + KD q̇ = 0 (14.61)

We can use the Lyapunov theorem to determine if this control scheme is stable. Firstly,
define the Lyapunov function candidate V 1 as

V =
1

2
q̇T M(q) q̇ +

1

2
eT KD e (14.62)

where e = q̇d − q . The time derivative of V is

V̇ = q̇T M(q) q̈ +
1

2
q̇T Ṁ(q) q̇ + ėT KP e

= q̇T M(q) q̈ +
1

2
q̇T Ṁ(q) q̇ − q̇T KP e (14.63)

1Finding a proper Lyapunov function candidate is a nontrivial task itself.

Motion Control in Task Space 289

Substituting (14.14) into (14.63) yields

V̇ = − q̇T (C(q , q̇) q̇ + B q̇ − KP e + KD q̇) +
1

2
q̇T Ṁ(q) q̇ − q̇T KP e

= − q̇T C(q , q̇) q̇ − q̇T B q̇ − q̇T KD q̇ +
1

2
q̇T Ṁ(q) q̇ (14.64)

In robotic dynamics, there is a relation between the Centrifugal/Coriolis matrix and the
inertia matrix given by

q̇T C(q , q̇) q̇ =
1

2
q̇T Ṁ(q) q̇ (14.65)

Substituting (14.65) into (14.64) yields

V̇ = − q̇T B q̇ − q̇T KD q̇ (14.66)

Both B and KD are positive-definite, therefore V̇ is negative for any nonzero q and q̇ .
According to the theorem of Lyapunov stability, this closed-loop system is asymptotically
stable. Therefore, PD control with gravity compensation is widely used in industrial robots.

Example 14.9 (Stability — PD control with gravity compensation): Consider a position-
regulation system that (without loss of generality) attempts to maintain qd = 0. Prove that the
control law

τ = − KP q − M(q) KV q̇ + G(q) (14.67)

yields an asymptotically stable nonlinear system. You may take KV to be of the form KV = kV In
where kV is a scalar, and In is the n× n identity matrix.
Solution: The closed-loop system is given by

M(q) q̈ + VM (q , q̇) + G(q) = − KP q − M(q)KV q̇ + G(q) (14.68)

The Lyapunov equation and its time derivative are

V =
1

2
q̇T M(q) q̇ +

1

2
qT KP q (14.69)

V̇ =
1

2
q̇T Ṁ(q) q̇ + q̇T M(q) q̈ + q̇T KP q

=
1

2
q̇T Ṁ(q) q̇ + q̇T

�

− VM (q , q̇)− G(q)− KP q − M(q) KV q̇ + G(q)


+ q̇T KP q

= − q̇T M(q) KV q̇ (14.70)

Because V̇ is always negative for any nonzero q̇, the system is asymptotically stable, according to
Lyapunov’s stability theorem.

14.7 Motion Control in Task Space

The discussion of motion control thus far has focused on joint space variables. This is
convenient when considering joint-related constraints, such as range-of-motion or velocity

290 Computed Torque Control

limits. A trajectory described in the joint space also avoids issues like singularities and
redundancy. However, there are situations where the end-effector is required to interact
with the environment. In this case, it is more convenient to express manipulator motion in
the environment frame, or task space.

14.7.1 Dynamics in Task Space

To regulate torque and force interaction of the end-effector with the environment, the dy-
namics of the robotic system should be intuitively expressed in the task space. The inter-
active torque and force between the robot and its environment, Fe , can be written as

u = M(q) q̈ + C(q , q̇) q̇ + B q̇ + G(q) + JT (q) Fe (14.71)

where J is the Jacobian matrix mapping the joint velocities to the velocity of the end-
effector at the contact, i.e.,

ẋ = J q̇ (14.72)

The time derivative of (14.72) gives

ẍ = J q̈ + J̇ q̇ (14.73)

Hence, we have

q̇ = J−1 ẋ (14.74)

and

q̈ = J−1 ẍ − J−1 J̇ J−1 ẋ (14.75)

Further, the joint motor torques and their projection onto the end-effector at the contact
have the relation

u = JT Ft (14.76)

Substituting (14.74), (14.75), and (14.76) into the dynamics in joint space (14.71) yields

JT Ft = M(q)(J−1 ẍ − J−1 J̇ J−1 ẋ) + [C(q , q̇) + B] J−1 ẋ+

G(q) + JT Fe (14.77)

which is equivalent to

Ft = (JT)−1 M(q)(J−1 ẍ − J−1 J̇ J−1 ẋ) + (JT)−1(C(q , q̇) + B) J−1 ẋ+

(JT)−1 G(q) + Fe (14.78)

and can further be written as

F t = M t ẍ + C t ẋ + B t ẋ + G t + Fe (14.79)

where M t, C t, B t, G t are the equivalent mass matrix, centrifugal and Coriolis matrix,
damping matrix, and gravity term, respectively. These quantities are defined as

F t = (JT)−1 u (14.80)

M t = (JT)−1 M(q) J−1 (14.81)

C t = (JT)−1 C(q , q̇) J−1 − M t J̇ J−1 (14.82)

B t = (JT)−1 B J−1 (14.83)

G t = (JT)−1 G(q) (14.84)

Motion Control in Task Space 291

aq

af

Fe

q̇

q

M(q) Robot

Cq̇ +Bq̇ +GJT (q)

u

FIGURE 14.10

Block diagram for first inner law of system.

14.7.2 Task Space Dynamics Partitioning

The dynamics of the robot in task space allows us to observe the behaviour of a robot from
the point of view of the end-effector. It can be further used to partition the nonlinear terms
in task space, which is called dynamics partitioning in task space. One can use (14.79) to
directly compensate for those nonlinear terms. However, it appears that the computational
cost is too high. Since only the result dynamics in the task space is of our interests, the
compensation can be first done in the joint space, i.e., define a control law given by

u = M(q) aq + C(q , q̇) q̇ + B q̇ + G(q) + JT (q) Fe (14.85)

which is illustrated in Figure 14.10. Substituting this law into the dynamics given by (14.71)
gives the closed-loop dynamics as

aq = q̈ (14.86)

which can be represented in task space by using (14.75) as

aq = J−1 ẍ − J−1 J̇ q̇ (14.87)

In order to linearise the above dynamics, the second control is defined as

aq = J−1 ax − J−1 J̇ q̇ (14.88)

which yields the resulting closed-loop dynamics given by

ax = ẍ (14.89)

The first and second partitioning laws are illustrated in Figure 14.11. The robotic manipula-
tor is partitioned or decoupled into six independent linear systems along the six task-space
axes, respectively.

14.7.3 Error Dynamics

To derive the error dynamics of motion control in the task space, again, we begin with the
equation

ëx + 2ζωėx + ω2ex = 0 (14.90)

292 Computed Torque Control

ax
Fe

q̇

q

M(q)J−1

J−1J̇ q̇

Robot

C q̇ +Bq̇ +GJT (q)

u

FIGURE 14.11

Block diagram for second inner law of system.

which represents the damped second-order error response. Furthermore, the error based on
the closed-loop task space dynamics (14.89) is

ë = ẍd − ẍ (14.91)

Substituting into the error dynamics equation yields

ẍ = ẍd + 2ζωėx + ω2ex (14.92)

We desire a critically-damped error response by setting ζ = 0. Therefore, the control law
that yields the error dynamics is

a = ẍd + 2ωėx + ω2ex (14.93)

14.8 Conclusion

The computed torque control was introduced to fully linearise the robotic dynamics and
achieve the desired stability and performance. By using the control laws, we defined an
inner and outer control loop. The inner control loop encapsulates the robot dynamics,
which are linearised under the assumption that the model is perfect. The outer control
law then controls the inner loop, such that it drives a unit mass under a linear controller.
The linear properties of the outer loop allow us to control the gains to achieve a critically
damped system. In practice, relatively simple controllers with gravity compensation are
typically used. Lyapunov’s stability criterion was used to investigate both the stability and
asymptotic stability of these nonlinear controllers.

We introduced task space motion planning, which provides an intuitive control strategy
where the end-effector motion is required under environmental constraints. This has appli-
cations where the end-effector is required to interact with its environment. The dynamics
of the robot were derived and expressed in the task space and partitioned into an inner
control law and an outer control law. Finally, the error dynamics of motion control in the
task space were derived.

Exercises 293

14.9 Exercises

Problem 1. Derive the computer-torque-control (CTC) scheme and write the control law
of a RP robot, whose dynamics is given by (assume point mass):

τ =



(l21m1 +m2d
2
2)θ̈1 + 2m2d2θ̇1ḋ2 + g(l1m1 +m2d2) sin θ1
m2d̈2 −m2g cos θ1 −m2d2θ̇

2
1



Specify the feedforward and feedback components of the CTC law and explain their roles.

Problem 2. Consider a linear control law (PD controller) based on the linearisation of
the system about an equilibrium point is directly used for a robotic manipulator.

τ = −Kv ė−Kpe

where Kv and Kp are positive definite matrices and e = q − q̇d.

Prove that if q̇d, the control law applied to the system renders the equilibrium point q̇d = 0
globally asymptotically stable.
The Lyapunov function is defined as:

V (q, q̇) =
1

2
q̇TMq̇ +

1

2
qTKpq + P

where P is the potential energy.

Problem 3. Suppose a PID computed torque controller law is applied to eliminate nonzero
steady-state error, and the error is defined as:

e = qd − q

The error dynamics is given by

ë+Kv ė+Kpe+Kiε = 0

ε̇ = e

Draw the block diagram of the proposed PID-CTC law and derive the system dynamics
equation with PID-CTC law, using the parameters below:

m1 = m2 = 1 kg, l1 = l2 = 1 m

The dynamics of the system Figure 14.12 is given by

τ1 =
1

4
(2gc1 (l1m1 + 2l1m2 + l2m2c2)− 2l2m2 (2l1 + l2c2) s2q̇1q̇2

+
(

l21 (m1 + 4m2) + l2m2c2 (4l1 + l2c2)
)

q̈1
)

τ2 =
1

4
l2m2

(

s2
(

−2gs1 + (2l1 + l2c2) q̇
2
1

)

+ l2q̈2
)

294 Computed Torque Control

l1

θ1

l2
θ2

FIGURE 14.12

An RR manipulator.

Problem 4. Since we have proved that the PD control law is asymptotically stable at the
equilibrium point q = 0, when q̇d = 0. Now, let us consider a modified version of the PD
control law:

τ = Mq̈d + Cq̇d +G−Kv ė−Kpe

We call it augmented PD control law. Prove that the control law applied to the system
is asymptotically stable if, Kv > 0, Kp > 0, and explain how you would choose ϵ. The
Lyapunov function candidate is chosen as:

V =
1

2
ėTM ė+

1

2
eTKpe+ ϵėTM ė

Problem 5. The dynamics of a robot in joint space is given by

u = M(q) q̈ + C(q , q̇) q̇ + B q̇ + G(q) + JT (q) Fe

where J is the Jacobian matrix. u and Fe are joint torques and force on the end-effector,
respectively. Derive the dynamics of this robot in task space.

Problem 6. Design a PID controller with gravity compensation.

1. Define the fixed-reference equation u(t).

2. Illustrate the complete block diagram of your control system assuming a fixed
reference.

3. Indicate the feedforward and feedback components of the Computer Torque Con-
trol (CTC) law and explain their roles.

15

Force Control

Force control is a control strategy in which the robot applies a wrench (forces and torques)
to the environment without controlling motion. This has some industrial applications such
as grinding, deburring, or stamping where the motion of the end-effector is constrained in
the direction of the applied wrench. Wrench is defined as

F =


fx fy fz τx τy τz
T

(15.1)

where each element of f is the force applied on each axis, and τ is each axis of torque about
each axis.

Consider the manipulator dynamics equation

τ = M(q) q̈ + C(q , q̇) q̇ + B q̇ + G(q) + J(q)TF (15.2)

where F is the wrench applied by the end-effector to the environment and J is the Jacobian
defined in the same frame as F . Since the motion of the end-effector is highly constrained
in the direction of the wrench, joint velocity and acceleration can be ignored to get

τ = G(q) + J(q)TF (15.3)

In the absence of direct measurement of the wrench at the end-effector, joint-angle
feedback is sufficient to implement the force control law

τ = G ′(q) + J(q)TFd (15.4)

where G ′(q) is a model of joint torque caused by gravity, and Fd is the desired wrench.
However, control strategy requires a highly accurate gravity compensation model and precise
torque control at each joint. Alternatively, a six-axis force-torque sensor can be installed
between the final link of the manipulator and the end-effector to measure the wrench. These
are readily available and easy to install with very high precision, but can be very expensive.

15.1 Single Axis Control in Task Space

The simplest application of force control is the manipulator applying a force to the envi-
ronment along a single axis in the task space. To develop a control law to implement this,
we can represent the scenario as a generalised mass-spring system as shown in Figure 15.1,
where the mass is according to the partitioned linear dynamics given by (14.86) while the
spring is used to model the stiffness of the environment in contact.

The interaction dynamics of the system is given by

f + fg = M z̈ +Kez + fδ (15.5)

DOI: 10.1201/9781003614319-15 295

https://doi.org/10.1201/9781003614319-15

296 Force Control

M

Ke

z

fδ

f

FIGURE 15.1

Mass-spring system.

where f , fg, fδ, and Ke are the driving force, the gravity of the object, the disturbance
force, and the stiffness of the environment, respectively. The actual contact force is given
by

fe = Kez (15.6)

since the contact force fe is to be controlled, we can rewrite equation (15.5) as

f + fg = M
Ke

f̈e + fe + fδ (15.7)

The control law I can be proposed as

f + fg = M
Ke

f
′

+ fe (15.8)

where f
′

is considered a virtual control input. Thus, the control objective now becomes de-
signing a virtual control input f

′

to make sure the system dynamics I described by equation
(15.7) is satisfied. Combining equation (15.7) with (15.8) yields the system dynamics II

f̈e − f
′

+ Ke

M
fδ = 0 (15.9)

The error dynamics of the contact force is given as

ëf +KD ėf +KP ef = Ke

M
fδ (15.10)

where ef = fd−fe, KD, and KP are the derivative gain and proportional gain, respectively.
Then, substituting the error dynamics into the system dynamics II yields the control law

II

f
′

= f̈d +KD ėf +KP ef (15.11)

We can derive the final control input by combining the control law I and the control law II,
described by equations (15.8) and (15.11). The final control input is given as

f = M
Ke

(f̈d +KD ėf +KP ef) + fe − fg (15.12)

In practice, the desired contact force is typically required to be a constant (i.e., f̈d = 0);
therefore, the force controller can be simplified as

f = M
Ke

(KD ėf +KP ef) + fe − fg (15.13)

Hybrid Motion-Force Control 297

15.2 Hybrid Motion-Force Control

As typical with most industrial applications for robots, most tasks that require force control
also require some control of motion. For instance, we previously mentioned grinding and
deburring as common applications for force control. However, this task is quite limited if
the tool remains stationary, and often, it is easier to manipulate the tool rather than to
manipulate the entire workpiece. Hybrid motion-force control can be used to enable control
of both force and motion. To fully illustrate the point, we need to define two types of
constraints, natural and artificial, in two different types of spaces, motion-type and force-
type.

15.2.1 Natural Constraints

There are six DoF of any rigid body in the 3D space, in which three DoF represent axes
of translations, vx, vy, and vz, and three DoF representing axes rotations, ωx, ωy, and ωz.
When concatenated, the resultant vector is

V =


vx vy vz ωx ωy ωz

T
(15.14)

where V is known as twist.
In the motion-type space, contacts are specified by means of degeneration of mobility.

If the motion in one direction is constrained, the corresponding item is assigned with zero,
which is called the natural constraint. In force-type space, contacts are specified by the
presence of a wrench as defined in (15.1). If no force is present in one direction, it implies
no contact and the corresponding item is assigned with zero. We call this axis naturally

constrained in the force-type space.
It is interesting to observe that any axis of an object must be constrained in either

motion-type space or force-type space. The mathematical expression of this relation is given
by

vxfx + vyfy + vzfz + ωxτx + ωyτy + ωzτz = 0 (15.15)

which is called the reciprocal relationship between the naturally constrained motion and
the naturally constrained force. The form of the reciprocal relation is called the Klein form,
and plays an important role in the screw theory.

Example 15.1 (Natural constraints — static workpiece): Find the natural constraints in

both motion-type and force-type spaces of the contact for the scenario in Figure 15.2.

FIGURE 15.2

Tool interacting with a static workpiece.

298 Force Control

Solution: The resulting natural constraints table is

M-Space F-Space

vx: U fx: 0
vy: U fy: 0
vz: 0 fz: U
ωx: U τx: 0
ωy: U τy: 0
ωz: U τz: 0

vz = 0 is the natural motion-type constraint preventing the tool from penetrating the workpiece;

with rigid force assumption, the tool is also subjected to a non-zero interacting force, i.e., fz
becomes unconstrained.

15.2.2 Artificial Constraints

The unconstrained items in the motion space and the force space can be controlled since

they are free. The artificial constraints are introduced to be complementary to the natural

constraints in both spaces. The artificial constraints in the motion-type space are va
x
, vay ,

vaz , ω
a
x
, ωa

y , and ωa
z , while the artificial constraints in the force-type space are fa

x
, fa

y , f
a
z ,

τa
x
, τay , and τaz .

In the same type of space, any axis of an object in contact must be constrained either

naturally or artificially. Neither under-constrained contact nor over-constrained contact is

allowed in this type of contact.

Example 15.2 (Artificial constraints — static workpiece): Find the artificial constraints

in both motion-type and force-type spaces of the contact for the scenario in Figure 15.2.

Solution:

M-Space F-Space

va
x
: vx fa

x
: U

vay : vy fa
y : U

vaz : U fa
z : fz

ωa
x
: 0 τa

x
: U

ωa
y : 0 τay : U

ωa
z : 0 τaz : U

The presence of non-zero vax and vay indicates that the speed at which the tool sweeps over the

workpiece surface is artificially controlled as per the task requirement. Meanwhile, the rotation of

the tool is limited. In the force domain, the contact force fz is artificially controlled to prevent

damage to the tool and the workpiece.

Example 15.3 (Constraints — Lock and Key): Describe the steps required to open a lock

mechanism using a key as shown in Figure 15.3 and show the artificial and natural constraints for

each step.

Hybrid Motion-Force Control 299

TABLE 15.1
Insert the Key into the Lock

N-Constraints N-Constraints A-Constraints A-Constraints
M-Space F-Space M-Space F-Space
vx: 0 fx: U va

x
: U fa

x
: 0

vy: 0 fy: U vay : U fa
y : 0

vz: U fz: 0 vaz : vin fa
z : U

ωx: U τx: 0 ωa
x
: 0 τa

x
: U

ωy: 0 τy: U ωa
y : U τay : 0

ωz: 0 τz: U ωa
z : U τaz : 0

FIGURE 15.3

A key and lock mechanism.

Solution:

Step 1: Insert the key into the lock. In this process, the fit between the key and the key-
hole prevents the key from linear movement along x and y axes, as well as rotation around y and z

axes, hence the 0 natural motion-type constraints and unconstrained natural force-type constraints.
On the other hand, the operator holding the key controls the linear velocity of the insertion vin

along the z axis and prevents key rotation around the x axis. Correspondingly, unconstrained force
and moment on the corresponding axes are supplied to realise the motion. The constraints are
summarised below in Table 15.1/15.2.

Step 2: Turn the key. With the key fully inserted, the keyhole prevents the key from movement
along the x and the y axes, while allowing the key to be either extracted or turned, leading to
0 force-type natural constraints. On the operator side, turning the key requires the linear motion
along the z axis to be zero to not have it extracted, and the rotation to be a non-zero ωturn, as
well as unconstrained force and moment supplied to achieve the desired motion, hence the artificial
constraints presented. The constraints are summarised below in Table 15.2.

TABLE 15.2
Turn the Key

N-Constraints N-Constraints A-Constraints A-Constraints
M-Space F-Space M-Space F-Space
vx: 0 fx: U va

x
: U fa

x
: 0

vy: 0 fy: U vay : U fa
y : 0

vz: U fz: 0 vaz : 0 fa
z : U

ωx: 0 τx: U ωa
x
: U τa

x
: 0

ωy: 0 τy: U ωa
y : U τay : 0

ωz: U τz: 0 ωa
z : ωturn τaz : U

300 Force Control

x

m
u F

FIGURE 15.4

Single mass system.

15.3 Impedance Control

In ideal hybrid-motion control, we assume the environment to be relatively rigid. This de-
mands two extremes of robot impedance. For motion control, we wish to achieve end-effector
motion while rejecting external force disturbance, characterised by high robot impedance.
On the other hand, force control demands low robot impedance, where we want to minimise
the change in force due to motion disturbance. Realistically, there are limits to the levels of
impedance that a robot can achieve.

In this section, we consider the problem of impedance control, where the robot end-
effector is required to manipulate an object or its environment that has similar properties
to a mass-spring-damper system. This has applications in haptic feedback, especially where
there is consistent contact between a robotic end-effector and the environment, such as in
a surgical environment.

15.3.1 Single Axis Control

Consider the single mass (M) system shown in Figure 15.4, where u, x, and F are the input
force, displacement, and contact force, respectively. The idea here is to use a control law
to modify the mass from the point of view of the contact interaction. The dynamics of the
mass system is given by

u− F = Mẍ (15.16)

We can design a control law as u = −mF , where m is a positive scalar. The resulting
dynamics is

−F =
M

1 +m
ẍ (15.17)

where M
1+m

is called the apparent inertia of the system under the force feedback. If m >> 1,
the inertia of the system is effectively removed from the contact dynamics. We can further
change the stiffness and damping by a control law given by

u = M ẍd +Bė+Ke−mF (15.18)

where e = xd − x. The resulting dynamics is

M

m+ 1
ë+

B

m+ 1
ė+

K

m+ 1
e = −F (15.19)

which yields the desired artificial compliance of the robot. If there is no contact force, this
control simply performs motion tracking.

Impedance Control 301

af

Fe

q̇

q

M(q)J−1

J−1J̇ q̇

Robot

C q̇ +Bq̇ +GJT (q)

M−1(Bė+Ke+ F)

u

ẍd

FIGURE 15.5

Impedance control in task space.

15.3.2 Task Space Control

A similar idea can be applied to a robotic system (Figure 15.5). The partitioned dynamics
in task space is

ax = ẍ (15.20)

Consider an outer control law given by

ax = ẍd + Md
−1(Bd ė + Kd e + F) (15.21)

The resulting system is

M ë + B ė + K e = − F (15.22)

which will track the motion and regulate the contact forces simultaneously.

15.3.3 Control with Environmental Dynamics

When a robotic manipulator is interacting with the environment, as illustrated in Fig-
ure 15.6, it is modelled as a second-order system, given by

F = ZrV (15.23)

F and V denoting the force and velocity, respectively; the impedance Zr is defined as

Zr = Mrs+Br +
Kr

s
(15.24)

Similarly, we have for the environment:

F = ZrV (15.25)

302 Force Control

where

Ze = Mes+Be +
Ke

s
(15.26)

The output transfer function with force feedback is defined as

F

Fd

=
Ze

Zr

1 + Ze

Zr

=
Ze

Zr + Ze

(15.27)

whose error transfer function is

E = Fd − F = Fd −
Ze

Zr + Ze

Fd =
Zr

Zr + Ze

Fd (15.28)

and the steady-state error

ess = lim
s→0

s
Zr

Zr + Ze

fd

s
(15.29)

Substituting Zr and Ze of Equations (15.24) and (15.26) into (15.29), and multiply both
the numerator and the denominator by s yields

ess = lim
s→0

Mrs
2 +Brs+Kr

Mrs2 +Brs+Kr +Mes2 +Bes+Ke

fd =
Kr

Kr +Ke

fd (15.30)

or equivalently

ess =
Kr/Ke

1 +Kr/Ke

fd (15.31)

It can be readily seen that Kr/Ke should approach zero, i.e., robot stiffness much lower
than the environment stiffness, for the steady state error to vanish.

15.3.4 Dynamic Relations

This analysis focuses on imposing a desired dynamic behaviour to the interaction between
the end-effector and the environment, assuming the environment undergoes some small
deflections (low contact forces) during the interaction. To do this, the generalised contact
dynamics of a robot are used. The dynamics of a robot with the contact force in joint space
are

Mq q̈ + Cq q̇ + Bq q̇ + Gq = u − JT Fe (15.32)

Fd F V FeRobot

1/Zr

Environment

Ze

FIGURE 15.6

Block diagram of the system.

Impedance Control 303

where Mq , Cq , Gq are the equivalent mass matrix, centrifugal and Coriolis matrix, and
gravity term, respectively. Fe is an interaction between the end-effector and its environment,
and the Jacobian of the system, J is used to project this force to the joint forces and torques.
Additionally, the dynamics of a robot with contact force in task space is described in (14.79).
By modelling the dynamics in the task space, the transformation of the end-effector forces
is not required but instead requires the conversion of M , C , G matrices (14.79).

The design of the control law is completed in two steps: linearisation and decoupling
of the system. Here we describe feedback linearisation in joint space, and is derived from
Equations (14.85) and (14.88)

u = Mq ax + Cq q̇ + Bq + Gq + JT Fe (15.33)

where

q̈ = J−1 ax − J−1 J̇ q̇ (15.34)

and

ax = J q̈ + J q̇ = ẍ (15.35)

The dynamic impedance model is described as

Mm(ẍ − ẍd) + Dm(ẍ − ẍd) + Km(ẍ − ẍd) = − Fa (15.36)

where Mm , Dm , Km are the desired inertia, damping, and stiffness matrices of the system,
respectively, y and Fa is the external forces from the environment. To apply this controller
to our robotic system, substitute the term ẍ with ax , which yields

ax = ẍd + Mm
−1 {Dm(ẍ − ẍd) + Km(ẍ − ẍd) + Fa} (15.37)

where xd is the desired motion, which typically interacts with a compliant environment, gen-
erating contact forces. Combining equations (15.33) and (15.37), we get our final impedance
model (the desired error dynamics)

u = Mq J−1
(

ẍd + Mm
−1 {Dm (ẍ − ẍd) + Km(ẍ − ẍd) + Fa}

)

+ Cq q̇ + B q + Gq + JT Fe (15.38)

which can be simplified to

u = Mq J−1 ẍd + Mq J−1 Mm
−1 {Dm(ẍd − ẍ) + Km(ẍd − ẍ)}

+ Mq J−1 Mm
−1 Fa − Mq J−1 J̇ q̇ + Cq q̇ + B q + Gq + JT Fe (15.39)

where Fa and Fe are defined as equal and opposite to each other, i.e., Fe = − Fa . To
further reduce the final impedance model, a simplification to remove force feedback is made.
To do this we desire the following

Mq J−1 M−1
m = J−1 (15.40)

where

J−T Mq J−1 = Mm (15.41)

and

Mx = J−T Mq J−1 (15.42)

304 Force Control

Therefore we choose the apparent inertia (Mx) to equal the natural inertia (Mm) of the
robot and Equation (15.39) simplifies to

u = Mq J−1 ẍd + Mq J−1 Mm
−1 {Dm(ẍd − ẍ) + Km(ẍd − ẍ)}

− Mq J−1 J̇ q̇ + Cq q̇ + B q̇ + Gq (15.43)

where Fa and Fe are removed from the control law. Further combining equations (15.40)
and (15.43) results in our final simplified impedance control law where a force and torque
sensor at the end-effector are no longer needed:

u = Mq J−1 ẍd + JT
Dm(ẍd − ẍ) + JT Km(ẍd − ẍ)

− Mq J−1 J̇ q̇ + Cq q̇ + B q̇ + Gq (15.44)

15.4 Conclusion

In this chapter, we reviewed some basic force control concepts, which are applicable where
a manipulator is required to interact with the environment through its end-effector. The
most basic mode of force control handles control of the end-effector interaction with the
environment, where the environment is assumed to be relatively stiff. However, this mode
of control does not allow control of motion in the same direction of force application. The
hybrid motion-force control introduces natural and artificial constraints that allow motion
to be controlled in the unconstrained directions of the end-effector workspace. This has
applications in manufacturing and assembly.

Impedance control allows force control of the end-effector in which the object or environ-
ment behaves like a mass-spring-damper system. This has applications in scenarios where
the end-effector is in constant contact with the environment, such as in surgical scenarios.

15.5 Exercises

Problem 1. Given

0T1 =









0.866 −0.5 0 10
0.5 0.866 0 0
0 0 1 5
0 0 0 1









If the wrench at the origin of {0} is

0F =


0 2 −3 0 0 4
T

Find the wrench with a reference point at the origin of {1}.



0f1
0n1



=



0R1 0
0p1 × 0R1

0R1

 

1f1
1n1



Exercises 305

Problem 2. Give the natural and artificial constraints for the motion of uncorking a bot-

tle of wine using a corkscrew. Assume the corkscrew is already inserted and no friction or

pressure forces present. Sketch the definition of the frame corresponding to the constraints.

Problem 3. Re-attempt the previous problem but without the simplistic force-domain

assumptions, i.e., assume non-zero friction between the cork and the bottle, along with

forces due to the pressure inside the bottle. Observe the difference between the resultant

constraints and those of the previous problem.

http://taylorandfrancis.com

Part III

Advanced Analysis and Case

Studies

http://taylorandfrancis.com

16

Mobility Analysis

The study of mobility or degree of freedom is often the very first step in designing a mech-
anism to fulfil specific tasks. In the previous parts of this book, we discussed serial robotic
manipulators and planar kinematic chains, whose mobility can be readily identified through
the Chebychev–Grübler–Kutzbach (CGK) criterion [1, 2, 3]. However, this method is asso-
ciated with the following demerits:

• The analysis of parallel manipulators (a more in-depth discussion on parallel manipulators
can be found in Chapter 20) is tedious due to the large number of links, multi-DoF joints,
and closed-loop kinematic chains.

• The outcome of the analysis does not provide information on other critical aspects of
the parallel manipulator of interest, e.g., the property of the motion and the actuation
pattern.

• The method encounters limitations in handling special cases where the kinematic chain
gains or loses mobility upon certain geometrical relationships or configurations.

We aim to provide more insights into solving the aforementioned limitations in this
chapter. Specifically, an approach [4] based on the pattern of transformation matrix tackles
the former two, and another method [5] featuring Taylor’s theorem of constraint equations
addresses the latter.

16.1 Mobility Analysis Based on the Pattern of Transformation

Matrix

16.1.1 Pattern of Transformation Matrix

Based on the International Federation for the Promotion of Mechanism and Machine Sci-
ence (IFToMM) definition [6], mobility is defined as the number of independent coordinates

needed to define the configuration of a kinematic chain or mechanism. Following this def-
inition, when joint variables are used to construct the array of generalised coordinates,
unconstrained joint variables form its independent subset. As such, the mobility can be
equivalently expressed as n − c, where n and c identify the numbers of joint variables and
independent constraint equations, respectively.

The joint variables of actuated and passive joints of a robotic manipulator are embedded
in the transformation matrices, which, in turn, describe the configurations of its end-effector.
This feature provides a convenient pathway to study the mobility of a parallel manipulator
based on the pattern of the transformation matrices.

Before diving specifically into parallel manipulators, it is essential to interpret the infor-
mation provided by a transformation matrix in the general case. The positional entries are

DOI: 10.1201/9781003614319-16 309

https://doi.org/10.1201/9781003614319-16

310 Mobility Analysis

generally unconstrained, leading to three independent entries. The orientational ones, i.e.,
those from the rotation matrix, belong to a special orthonormal subgroup SO(3). Three of
the nine entries are independent, as six constraints are derived from the orthogonal proper-
ties and normal conditions. On the other hand, the number of independent entries is often
smaller than six (three positional + three orientational) for real-world kinematic chains,
rendering it necessary to observe the pattern of the transformation matrix in the mobility
analysis.

The pattern of a transformation matrix is defined based on the positions/indices (row-
column) of non-zero entries with joint variables and the number of all independent entries
[4]. Taking a generalised transformation matrix of an unconstrained body as an example:

T (θ) =









t11 t12 t13 px
t21 t22 t23 py
t31 t32 t33 pz
0 0 0 1









Its non-zero entries are (11,12,· · · ,34), and we know from the previous discussion that SO(3)
provides six constraints despite having 12 non-zero matrix entries, i.e., k = 6 matching the
six DoF of a free-moving spatial body.

The patterns of commonly used motion subgroups are summarised in Table 16.1. The
complete table exhausting all 12 motion subgroups can be found in our previous work [4].

For parallel manipulators, the loop-closure equation connects transformation matrices
of the end-effector derived from individual legs, or

0Tn1 (q1
) = 0Tn2 (q2

) = · · · = 0Tnj

�

qj



= · · · = 0Tnjmax

�

qjmax



(16.1)

0Tnj

�

qj



denoting the transformation matrix of the end-effector (body n) expressed using
the joint variables qj of leg j; jmax identifying the number of legs. The number of individual

entries can then be determined by comparing the joint-variable-embedded entries of 0Tnj

at matching positions.
In the ensuing subsections, we analyse example parallel mechanisms based on the con-

straints derived from Equation (16.1) and the transformation matrix patterns. We will focus
on the following:

1. Mobility — what is the DoF of the manipulator;

2. Property of motion — which of the DoF are unconstrained and which are con-
strained;

3. Actuation pattern — what are the constraints on the assignment of actuators to
the legs.

Moreover, we establish the criteria below for the actuation pattern:

1. Criterion 1 — The number of actuators must match the DoF to realise a fully-
constrained system.

2. Criterion 2 — Independent joint variables must be distributed in such a way, that
the number of dependent joint variables match that of the independent constraints
in both the orientation and the position aspects.

3. Criterion 3 — For the selection of independent joint variables, the number of
dependent joint variables shall match that of the independent constraints leg-
wise.

Mobility Analysis Based on the Pattern of Transformation Matrix 311

TABLE 16.1

Transformation Matrix Patterns of Motion Subgroups

Subgroup DoF or k T Pattern

Zero motion group 0







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






n/a

Linear translation 1







1 0 0 px
0 1 0 0
0 0 1 0
0 0 0 1






(14)

Single-axis rotation 1







cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1






(11,12,21,22)

Planar translation 2







1 0 0 px
0 1 0 py
0 0 1 0
0 0 0 1






(14,24)

Planar motion 3







cθ −sθ 0 px
sθ cθ 0 py
0 0 1 0
0 0 0 1






(11,12,14,21,22,24)

Spatial translation 3







1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1






(14,24,34)

Spherical motion 3







t11 t12 t13 0
t21 t22 t23 0
t31 t32 t33 0
0 0 0 1






(11,12,· · · ,33)

Complete spatial motion 6







t11 t12 t13 px
t21 t22 t23 py
t31 t32 t33 pz
0 0 0 1






(11,12,· · · ,34)

16.1.2 Case Study—3-UPU Parallel Manipulator

With this case study, we demonstrate the process of mobility analysis based on simplified
transformation matrices upon loop closure. A 3-UPU parallel manipulator [10] is shown in
Figure 16.1, whose and the corresponding leg transformation matrix is (with leg 1 as the
example):

0T61 =









c1c6c25 + s1s6 −c1c6c25 + s1c6 −c1s25 a5c1c25 + a3 (c1c2c3 + s1s3) + a1c1
s1c6c25 − c1s6 −s1s6c25 − c1c6 −s1s25 a5s1c25 + a3 (s1c2c3 − c1c3) + a1s1

−c6s25 s6s25 −c25 −a5s25 − a3s2c3
0 0 0 1









(16.2)
with c and s representing the cosine and sine of the angles, respectively, and multi-digit
subscripts identifying the summation of angles. a1, a3, and a5 are DH parameters.

312 Mobility Analysis

z0, z1

x0

x1

z2

x2

z3 x3

z4
x4

z5

x5

z6

x6

FIGURE 16.1

Schematics of the 3-UPU parallel manipulator.

Loop-closure based on Equation (16.1) leads to the following relation:

c6s25 = c′
6
s′
25

= c′′
6
s′′
25

s6s25 = s′
6
s′
25

= s′′
6
s′′
25

c25 = c′
25

= c′′
25

(16.3)

It can be readily seen that θ2 + θ5 = θ′
2
+ θ′

5
= θ′′

2
+ θ′′

5
. Moreover, since θ6, θ

′

6
, and θ′′

6

are not mutually equal, θ2 + θ5, θ
′

2
+ θ′

5
, and θ′′

2
+ θ′′

5
must be either 0 or π. Assuming π,

back-substitution into the transformation matrix of Equation (16.2) yields

0T61 =









−c16 s16 0 t14 (a3, θ2, θ3)
s16 −c16 0 t24 (a3, θ2, θ3)
0 0 1 t34 (a3, θ2, θ3)
0 0 0 1









(16.4)

Applying loop-closure for the second time further leads to θ1 + θ6 = θ′1 + θ′6 = θ′′1 + θ′′6 .
Furthermore, since these are all fixed angles dependent on the design of the base plate
and the moving platform, while the base plate and the moving platform are rotational
symmetry, we can conveniently rotate {1} and {6} around their z axes such that θ1+θ6 = π,
θ′1 + θ′6 = π, and θ′′1 + θ′′6 = π. From there, the second back-substitution further simplifies
the transformation matrix into

0T61 =



1 p (a3, θ2, θ3)
0 1



(16.5)

p (a3, θ2, θ3) is the position vector of leg 1, and p ′ and p ′′ of legs 2 and 3 shares a similar
form.

Upon simplification, we can base the mobility analysis upon (16.5).

Mobility

Six positional independent constraints can be obtained upon loop-closure: three scalar equa-
tions each from p = p ′ and p = p ′′. With nine joint variables and six independent
constraints, the 3-UPU manipulator is of three DoF.

Mobility Analysis Based on the Pattern of Transformation Matrix 313

{0}

{1}

{2}

{3} {4} x5

z5

z6

x6

FIGURE 16.2

Schematics of the 3R2T mechanism.

Property of Motion

The 3-UPU is a translational parallel manipulator, as shown by the identity rotation matrix.

Actuation Pattern

Criteria 1 to 3 pose no limitation on the selection and allocation of actuated joints. Any
combination of three joint variables will make the 3-UPU manipulator fully-actuated.

16.1.3 Case Study—3R2T Parallel Manipulator

With this case study, we move one step further to demonstrate that our method can be
extended and remains valid without explicit expression of the transformation matrices, if
the kinematic chain is not subject to special geometric conditions and the end-effector has
no special motion property. This case study focuses on a 3R2T parallel manipulator [8]
illustrated in Figure 16.2. It adopts a 3-RRTR architecture where the three legs all feature
two proximal revolute joints, one prismatic joint and the distal revolute joint, from the base
plate to the mobile platform. Frames {0} and {1} are on the base plate. The joint axes
of the distal revolute joints intersect at a point offset from the mobile platform, where the
origins of {5} and {6} are located.

The leg transformation matrix is given by:

0T61 =









t11 (θ2, θ3, θ4, θ5) t12 (θ2, θ3, θ4, θ5) t13 (θ2, θ3, θ4, θ5) t14 (θ2, θ3, d4)
t21 (θ2, θ3, θ4, θ5) t22 (θ2, θ3, θ4, θ5) t23 (θ2, θ3, θ4, θ5) t24 (θ2, θ3, d4)

t31 (θ4, θ5) t32 (θ4, θ5) t33 (θ4, θ5) 0
0 0 0 1









(16.6)

While all three legs bear transformation matrices of the same form, we distinguish the
entries and joint variables of legs 1 to 3 by tpq (q), t

′

pq (q
′), and t′′pq (q

′′), respectively. This
notation is adopted in all the ensuing case studies. The transformation matrices are fed into
Equation (16.1) for further analysis. It should be noted that the detailed expressions of tpq
are not always required in this process.

314 Mobility Analysis

Mobility

The comparison between 0T61 -
0T62 and 0T61 -

0T63 each yields five sets of independent con-
straints: two from non-zero position entries, and three from the orientation ones, rendering
ten independent constraints. Note that while the comparison between orientation entries of
two transformation matrices provides nine sets of constraints, only three are independent
due to being SO(3). With 15 joint variables, the mechanism is of five DoF.

Property of Motion

Position-wise, t14 and t24 are non-zero while t34 is zero, indicating two-DoF translation
along the x- and y-axes.

Actuation Pattern

Based on Criterion 2, the independent joint variables must be selected from those embedded
in the positional constraints, i.e., θ2, θ3, d4, θ

′

2
, θ′

3
, d′

4
, θ′′

2
, θ′′

3
, and d′′

4
. This way, the four

dependent joint variables can be solved using the four positional independent constraints.
Additionally, once all the positional joint variables are determined, there are six dependent
joint variables (θ4, θ5, θ

′

4
, θ′

5
, θ′′

4
, and θ′′

5
) and a matching number of independent constraints

from the orientational side, i.e., all joint variables are solvable. Moreover, following Criterion
3, at least one joint variable from each leg must be independent, i.e., a 2-2-1 arrangement
among the legs. In the opposite case where, for example, all five independent joint variables
were selected from those of legs 1 and 2, there will be three dependent joint variables θ′′

2
, θ′′

3
,

and d′′
4
with two independent constraints t14 = t′′

14
, and t24 = t′′

24
, leaving the joint variables

under-determined.

16.1.4 Case Study—3R1T Parallel Manipulator

The 2-URRH (universal-revolute-revolute-helical) parallel manipulator [11], depicted in Fig-
ure 16.3, is included as another example to showcase the motion analysis without explicit
equations of transformation matrix entries. On the other hand, it also demonstrates the lim-
itation in our method in revealing specific motion characteristics, which we will elaborate
when discussing the property of motion.

The 3R1T mechanism comprises two identical legs of URRH kinematic chains. To clarify

{0} Origin and
Remote Centre

Helical
Joint

FIGURE 16.3

Schematics of the 2-URRH parallel manipulator.

Mobility Analysis Based on the Pattern of Transformation Matrix 315

the kinematics, we refer to the leg architecture as RRRRH, where the universal joint is
replaced with two revolute ones. The leg transformation matrix is given by (leg 1 with
subscript 1 as the example):

0TE1 (α1, β1, x1, z1, γ1) = T (α1) T (β1, x1, z1) T (γ1)

=





t11 (α1, β1, γ1) t12 (α1, β1, γ1) t13 (α1, β1, γ1) t14 (β1, x1, γ1)
t21 (α1, β1, γ1) t22 (α1, β1, γ1) t23 (α1, β1, γ1) t24 (α1, β1, z1, γ1)
t31 (α1, β1, γ1) t32 (α1, β1, γ1) t33 (α1, β1, γ1) t34 (α1, β1, z1, γ1)





(16.7)

subscript E identifying the frame attached to the end-effector. Of the three transformation
matrices, T (α1) is resultant from the rotation of the first revolute joint, which defines
the plane in which the leg moves; T (β1, x1, z1) defines in-plane position and orientation
of the end-effector; and T (γ1) controls the axial rotation and longitudinal translation of
the end-effector through a helical joint. Additionally, for the second transformation ma-
trix T (β1, x1, z1), we adopted two positional and one orientational joint variable as op-
posed to three joint angles. This is achievable since the second and the third revolute
joints merely define the in-plane position of the fourth revolute joint. The transformation
matrix of leg 2 shows a similar pattern, except joint variable x1 is replaced by y2, i.e.,
0TE2 (α2, β2, y2, z2, γ2).

Property of Motion

In the leg rotation matrices, the 2-URRH mechanism has three independent orientational
constraints and six variables (α1, β1, γ1, α2, β2, and γ2), which means it is of 3R. Once
the orientational joint variables have been determined, the leg position vectors feature four
unknown variables, x1, z1, y2, and z2, but three independent constraint equations. As such,
there is one remaining translational DoF, i.e., the 2-URRH parallel manipulator is of 3R1T.

On another note, this mechanism is a remote center of motion mechanism where the
end-effector pivots around and translates through a fixed point in the space. Such a char-
acteristic can be readily observed, as the two planes in which the legs move always create
an intersection, and the origin of the global frame, [0, 0, 0]T , is a particular solution on the
line of intersection. However, without their explicit expressions, such a characteristic is not
directly visible from the pattern of leg transformation matrices.

Mobility

As described previously, the mechanism is of 3R1T.

Actuation Pattern

Criterion 2 demands at least one orientational joint variable to be selected indepen-
dently; otherwise, the position will be over-constrained, but the orientation will be under-
constrained. Additionally, criterion 3 requires both legs to have at least one independent
joint variable so that the legs are not overly- or under-constrained. All other actuation pat-
terns are valid. In [11], α1, β1, α2, and β2 are chosen for the convenience of actuation from
the base.

16.1.5 Case Study—2-RPS-UPS Parallel Manipulator

The manipulator of interest here is the 2-RPS-UPS one displayed in Figure 16.4. We move
one step further to demonstrate that our method may be extended to the cases where
transformation matrices can be omitted.

316 Mobility Analysis

FIGURE 16.4

Schematics of the 2-RPS-UPS parallel manipulator.

It can be readily seen that the positions of the spherical joints are p (θ1, d1), p
′ (θ2, d2),

and p ′′ (γ1, γ2, d3), respectively, for three legs. θ1 and θ2 are the angles of the revolute joints,
γ1 and γ2 represent the rotation of the two revolute joints forming the universal joint, and
the ds denote the positions of the prismatic joints. We take advantage of the distances
between adjacent spherical joints to express three independent kinematic constraints:

g1 (θ1, d1, θ2, d2) = || p − p ′||− l2
1

g2 (θ2, d2, γ1, γ2, d3) = || p ′ − p ′′||− l2
2

g3 (θ1, d1, γ1, γ2, d3) = || p − p ′′||− l2
3

(16.8)

where l1, l2, and l3 are the distance between adjacent spherical joints, i.e., design parameters
of the end-effector.

Mobility

With three independent constraints of (16.8) and seven joint variables, the 2-RPS-UPS
manipulator is of four DoF.

Property of Motion

No special condition.

Actuation Pattern

Criterion 3 requires at least one joint variable of leg 3, i.e., one of φ1, φ2, or d3, to be
independent, otherwise leg 3 will become under-determined. All other actuation patterns
are valid.

16.2 The Order of Mobility

The CGK criterion and our pattern-based method described previously focus on the global
mobility of mechanisms. However, when special geometrical conditions are satisfied, a mech-
anism may gain or lose DoF. An example demonstrating such a phenomenon is the Bennett

The Order of Mobility 317

linkage [12]. By having four links (including ground) connected by four revolute joints, the
Bennett linkage is, on paper, an over-constrained mechanism despite having one DoF in
reality. In this section, we discuss a method that takes advantage of the Taylor expansion
of constraint equations to reveal the local mobility of mechanisms. A novel spatial four-bar
linkage with second-order local mobility is used as the case study.

16.2.1 Local Mobility

The kinematically-valid mechanism, described by array q of the generalised coordinates,
must satisfy the following kinematic constraints:

φ (q) = 0 (16.9)

where scalar constraint equations φj (j ∈ [1, m]) and entries q of the generalised coor-
dinates are not necessarily independent. Suppose two distinct solutions exist that satisfy
Equation (16.9), and we refer to one as q1 = p and the other q2 = p + δp, any scalar
constraint equation φj of the latter can be expressed in terms of that of the former and
Taylor expansion as

φj (p + δp) =φj (p) +

n
∑

i=1

δpi
∂φj (q)

∂qi









q=p

+
1

2!



n


i=1

δpi
∂

∂qi

2

φ (q)









q=p

+ · · ·+
1

k!



n


i=1

δpi
∂

∂qi

k

φ (q)









q=p

+ · · · = 0, j = 1, 2, · · · ,m

(16.10)

qi and δpi identifying the generalised coordinates and the scalar displacements of δp, re-
spectively, and q ∈ R

n×1. Note that φj (p) vanishes as per Equation (16.9).
In Equation (16.10), if δp is infinitesimal and all components with exponents greater

than 1 are negligible, the equation can be re-expressed as

1φj (p + δp) =

n


i=1

δpi
∂φj (q)

∂qi









q=p

= 0, j = 1, 2, · · · ,m (16.11)

superscript 1 identifying the first-order approximation. Correspondingly, the first-order local
mobility of a mechanism around configuration p is determined by the number of δpi that
can be selected freely and satisfy Equation (16.11). Said equation can also be written with
Jacobian matrix J as

1φj (p + δp) =









∂φ1(q)
∂q1

· · ·
∂φ1(q)
∂qn

...
. . .

...
∂φm(q)

∂q1
· · ·

∂φm(q)
∂qn















δp1
...

δpn






= 0 = Jδp (16.12)

Assuming J has a rank of r, the mobility of the mechanism is n− r, which agrees with the
definition of mobility reported in [6].

Suppose all components with exponents greater than 2 are now neglected, Equa-
tion (16.10) becomes

2φj (p + δp) =
n


i=1

δpi
∂φj (q)

∂qi









q=p

+
1

2!



n


i=1

δpi
∂

∂qi

2

φ (q)









q=p

= 0 (16.13)

318 Mobility Analysis

superscript 2 indicating the second-order approximation. Similar to that of Equation (16.12),
we refer the number of δpi that can be selected freely and satisfy Equation (16.13) to the
second-order local mobility of the mechanism.

If δp is further increased until all components with exponents greater than s may be
neglected, we obtain the s-th order approximation of Equation (16.10) and the resultant
local mobility is of s-th order. Moreover, the ∞-order local mobility is equivalent to the
global mobility. Notably, a higher-order local mobility must also be a lower-order one,
and global mobility is any-order local mobility since the higher-order approximation of
Equation (16.10) contains all the components of its lower-order counterparts.

For the first-order local mobility, the approximation displayed in Equation (16.11) forms
a set of hyper-surfaces generating a common sub-manifold, who is, in turn, tangent to all
the hyper-surfaces. A point representing the configuration of the mechanism can move freely
within the sub-manifold, satisfying the kinematic constraints. Additionally, the dimension
of the sub-manifold is the first-order mobility. Similarly, the second-order approximation
of Equation (16.10) also produces a set of hyper-surfaces and generates a sub-manifold for
the configuration point to move within. Moreover, a mechanism can move more smoothly
near configuration p with the second-order local mobility than its counterpart with only
the first-order.

16.2.2 Case Study—A Novel Spatial Four-Bar Linkage

We analyse the mobility of the special four-bar linkage as the case study [5]. As mentioned
at the start of this section, a spatial four-bar linkage should feature zero DoF, i.e., it is a
structure, not a mechanism. On the other hand, we will also demonstrate that our linkage
has one-DoF local mobility.

To start with, the constraints for a generalised spatial four-bar linkage (Figure 16.5) are
derived based on loop-closure equations. We borrow the concept of DH notation here, where
zi and xi represent the joint axes and the common perpendicular lines, respectively, and
DH parameters ai and di are obtained correspondingly. The loop-closure equation is given
by:

a1 x1 + d1 z1 + a2 x2 + d2 z2 + a3 x3 + d3 z3 + a4 x4 + d4 z4 = 0 (16.14)

z1

z2

z3

z4

a1

a2

a3a4

d1

d2

d3

d4

x1

x2

x3

x4

FIGURE 16.5

Schematics of the spatial four-bar linkage.

The Order of Mobility 319

For simplicity, we assume all d are zero, rendering

a1 x1 + a2 x2 + a3 x3 + a4 x4 = 0 (16.15)

or equivalently
a1 x1 + a2 x2 = −a3 x3 − a4 x4

a1 x1 + a4 x4 = −a2 x2 − a3 x3

(16.16)

Dot-producting the left-hand and right-hand sides of Equation (16.16) with themselves,
respectively, leads to

a2
1
+ a2

2
+ 2a1a2 xT

1
x2 = a2

3
+ a2

4
+ 2a3a4 xT

3
x4

a2
1
+ a2

4
+ 2a1a4 xT

1
x2 = a2

2
+ a2

3
+ 2a2a3 xT

2
x3

(16.17)

On the other hand, dot-producting Equation (16.15) with z1 to z4 and x1 to x4 , respec-
tively, yields

a1 zT
1
x1 + a2 zT

1
x2 + a3 zT

1
x3 + a4 zT

1
x4 = 0

a1 zT
2
x1 + a2 zT

2
x2 + a3 zT

2
x3 + a4 zT

2
x4 = 0

a1 zT
3
x1 + a2 zT

3
x2 + a3 zT

3
x3 + a4 zT

3
x4 = 0

a1 zT
4
x1 + a2 zT

4
x2 + a3 zT

4
x3 + a4 zT

4
x4 = 0

(16.18)

and
a1 xT

1
x1 + a2 xT

1
x2 + a3 xT

1
x3 + a4 xT

1
x4 = 0

a1 xT
2
x1 + a2 xT

2
x2 + a3 xT

2
x3 + a4 xT

2
x4 = 0

a1 xT
3
x1 + a2 xT

3
x2 + a3 xT

3
x3 + a4 xT

3
x4 = 0

a1 xT
4
x1 + a2 xT

4
x2 + a3 xT

4
x3 + a4 xT

4
x4 = 0

(16.19)

Equations (16.17), (16.18), and (16.19) combined serve as the complete set of scalar kine-
matic constraints derived from (16.14) [5]. Upon further simplification [5], said set becomes:

a2
1
+ a2

2
+ 2a1a2 cos θ1 = a2

3
+ a2

4
+ 2a3a4 cos θ3

a2
1
+ a2

4
+ 2a1a4 cos θ4 = a2

2
+ a2

3
+ 2a2a3 cos θ2

a3 sinα2 sin θ2 + a4 sinα1 sin θ4 = 0

a4 sinα4 sin θ4 + a1 sinα2 sin θ1 = 0

a1 sinα4 sin θ4 + a2 sinα3 sin θ2 = 0

a2 sinα1 sin θ1 + a3 sinα4 sin θ3 = 0

a1 + a2 cos θ1 + a3 (cos θ3 cos θ4 − sin θ3 sin θ4 cosα4) + a4 cos θ4 = 0

a2 + a3 cos θ2 + a4 (cos θ4 cos θ1 − sin θ4 sin θ1 cosα1) + a1 cos θ1 = 0

a3 + a4 cos θ3 + a1 (cos θ1 cos θ2 − sin θ1 sin θ2 cosα2) + a2 cos θ2 = 0

a4 + a1 cos θ4 + a2 (cos θ2 cos θ3 − sin θ2 sin θ3 cosα3) + a3 cos θ3 = 0

(16.20)

where θi and αi are defined following the DH notation, and cos θi and cosαi are the results
of dot product between adjacent xi and adjacent zi , respectively.

Our special four-bar linkage has the following geometrical features:

a1 = a2

a3 = a4

a2 ̸= a4

α1 = −α2 = α3 = −α4

(16.21)

320 Mobility Analysis

Substituting these conditions into the generalised constraints of (16.20) and removing the
duplicated scalar equations results in

a22 (1 + cos θ1) = a2
4
(1 + cos θ3) (16.22)

cos θ2 = cos θ4 (16.23)

sin θ2 = sin θ4 (16.24)

a2 sin θ1 = a4 sin θ3 (16.25)

a2 + a2 cos θ1 + a4 (cos θ3 cos θ4 − sin θ3 sin θ4 cosα4) + a4 cos θ4 = 0 (16.26)

a2 + a4 cos θ2 + a4 (cos θ4 cos θ1 − sin θ4 sin θ1 cosα1) + a2 cos θ1 = 0 (16.27)

a2 + a4 cos θ3 + a2 (cos θ1 cos θ2 − sin θ1 sin θ2 cosα4) + a2 cos θ2 = 0 (16.28)

a2 + a2 cos θ4 + a2 (cos θ2 cos θ3 − sin θ2 sin θ3 cosα4) + a4 cos θ3 = 0 (16.29)

Equations (16.23) and (16.24) essentially indicate θ2 = θ4. Substituting said condition into
Equations (16.26) to (16.29) yields

a2 + a2 cos θ1 + a4 (cos θ3 cos θ4 − sin θ3 sin θ4 cosα4) + a4 cos θ4 = 0 (16.30)

a2 + a4 cos θ4 + a4 (cos θ4 cos θ1 − sin θ4 sin θ1 cosα4) + a2 cos θ1 = 0 (16.31)

a4 + a4 cos θ3 + a2 (cos θ1 cos θ4 − sin θ1 sin θ4 cosα4) + a4 cos θ4 = 0 (16.32)

a4 + a2 cos θ4 + a4 (cos θ4 cos θ3 − sin θ4 sin θ3 cosα4) + a4 cos θ3 = 0 (16.33)

Pre-multiplying Equation (16.30) and (16.33) with a2 and a4, respectively, and equaling the
two equations returns (16.22). The same conclusion could be reached upon pre-multiplying
Equation (16.31) and (16.32) with a2 and a4, respectively. Additionally, subtracting Equa-
tion (16.31) from (16.30), or equivalently Equation (16.32) from (16.33) gives identical
expression of

cos θ3 cos θ4 − sin θ3 sin θ4 cosα4 = cos θ4 cos θ1 − sin θ4 sin θ1 cosα4 (16.34)

Therefore, the set of 10 scalar constraint equations can be reduced to one with four
equations, namely [5],

a22 (1 + cos θ1) = a2
4
(1 + cos θ3) (16.35)

a2 sin θ1 = a4 sin θ3 (16.36)

θ2 = θ4 (16.37)

cos θ3 cos θ4 − sin θ3 sin θ4 cosα4 = cos θ4 cos θ1 − sin θ4 sin θ1 cosα4 (16.38)

It can be readily observed that θ1 and θ3 are fully determined/determined upon solving
Equations (16.35) and (16.36) and cannot be freely chosen. Furthermore, once θ1 and θ3
have been determined, θ2 and θ4 can be solved accordingly through Equations (16.37) and
(16.38). As such, independent generalised coordinates cannot be chosen freely, and the
special four-bar linkage has no global mobility. However, we will demonstrate below that it
has local mobility based on Equations (16.35) and (16.36), and around a feasible solution
θ1 = θ3 = π.

The first-order approximation of the constraints is derived based on Equation (16.11) as

1φ1 (p + δp) = a2δθ1 − a4δθ3 = 0
1φ2 (p + δp) = 0

(16.39)

The Order of Mobility 321

where φ1 and φ2 represent the constraints in Equations (16.35) and (16.36), respectively.
With two variables and one constraint, either θ1 or θ3 can be freely selected, and the special

four-bar linkage has the first-order mobility of one around p =


π π
T

.
The second-order approximation of the constraints is derived based on Equation (16.13)

as
2φ1 (p + δp) = a2δθ1 − a4δθ3 = 0

2φ2 (p + δp) =
1

2
(a2δθ1 − a4δθ3) (a2δθ1 + a4δθ3) = 0

(16.40)

which essentially points to a2δθ1−a4δθ3 = 0. Again, with two variables and one constraint,

the special four-bar linkage has the second-order mobility of one around p =


π π
T

.
The third-order approximation of the constraints is given by

3φ1 (p + δp) = a2δθ1 − a4δθ3 −
1

6
a2δθ

3

1
+

1

6
a4δθ

3

3
= 0

3φ2 (p + δp) =
1

2
a2
2
δθ2

1
−

1

2
a2
4
δθ2

3
= 0

(16.41)

upon simplification, 3φ2 (p + δp) gives two solutions δθ1 = ±a4/a2δθ3. Substituting these
solutions into 3φ1 (p + δp) returns

a4 (a2 − a4) (a2 + a4)
3
δθ2

3
= 0 (16.42)

for δθ1 = a4/a2δθ3, and
12a2

2
a4δθ3 − a4

(

a2
2
+ a2

4

)

δθ2
3
= 0 (16.43)

for δθ1 = −a4/a2δθ3. Either way, with condition a2 ̸= a4, δθ1 and δθ3 must both be zero
for the constraints to be valid, i.e., they cannot be freely chosen and our special four-bar
linkage has no local mobility for third-order or above.

A prototype was constructed to demonstrate the mobility. Its design parameters are
a1 = a2 = 246 mm; a3 = a4 = 206 mm, and α1 = α2 = α3 = α4 = −60◦. As shown in
Figure 16.6, the prototype was able to move smoothly between the folded and the deployed
configurations, which is consistent with the theoretical prediction.

FIGURE 16.6

Prototype four-bar linkage with local mobility at folded (LHS) and deployed (RHS) config-
uration.

322 Mobility Analysis

16.3 Conclusion

In this chapter, we introduced twomethods for themobility analysis of complex mechanisms.
For parallel manipulators, analysis based on transformation matrices offers an easier-to-
implement approach to determine the number of DoF of the system. More importantly,
our method reveals the type of DoF, i.e., the property of motion, alongside constraints in
the actuator arrangements. Furthermore, we demonstrated that the method could, in some
cases, be applied without the explicit expressions of the transformation matrices. Another
aspect we investigated is the analysis of local mobility, where we showcased the successful
prediction of the conditions under which a structure gains local mobility and turns into
a mechanism. The two methods discussed shall serve as powerful tools for the fast and
thorough analysis of prescribed mechanisms in the design phase.

Bibliography

[1] P. L. Chebyshev, Théorie des mécanismes connus sous le nom de parallélogrammes.
Imprimerie de l’Académie impériale des sciences, 1853.

[2] M. Grübler, Allgemeine Eigenschaften der zwangläufigen ebenen kinematischen Ketten.
L. Simion, 1884.

[3] K. Kutzbach, “Mechanische leitungsverzweigung, ihre gesetze und anwendungen,”
Maschinenbau, vol. 8, no. 21, pp. 710–716, 1929.

[4] C. Chen, “Mobility analysis of parallel manipulators and pattern of transform matrix,”
Journal of Mechanisms and Robotics, vol. 2, no. 4, pp. 1–11, 2010.

[5] C. Chen, “The order of local mobility of mechanisms,” Mechanism and machine theory,
vol. 46, no. 9, pp. 1251–1264, 2011.

[6] T. G. Ionescu, P. Antonescu, I. Biro, G. Bögelsack, and A. K. Breteler, “Terminology for
the mechanism and machine science: Chapter 0-13,” Mechanism and Machine Theory,
vol. 38, pp. 767–901, 2003.

[7] J. M. Hervé, “The lie group of rigid body displacements, a fundamental tool for mech-
anism design,” Mechanism and Machine theory, vol. 34, no. 5, pp. 719–730, 1999.

[8] Q. Li, Z. Huang, and J. M. Hervé, “Type synthesis of 3r2t 5-dof parallel mechanisms
using the lie group of displacements,” IEEE transactions on robotics and automation,
vol. 20, no. 2, pp. 173–180, 2004.

[9] A. Morozov and J. Angeles, “The mechanical design of a novel schönflies-motion gen-
erator,” Robotics and Computer-Integrated Manufacturing, vol. 23, no. 1, pp. 82–93,
2007.

[10] L.-W. Tsai and S. Joshi, “Kinematics and optimization of a spatial 3-upu parallel
manipulator,” J. Mech. Des., vol. 122, no. 4, pp. 439–446, 2000.

Bibliography 323

[11] G. Chen, J. Wang, H. Wang, C. Chen, V. Parenti-Castelli, and J. Angeles, “Design
and validation of a spatial two-limb 3r1t parallel manipulator with remote center-of-
motion,” Mechanism and Machine Theory, vol. 149, p. 103807, 2020.

[12] G. T. Bennett, “A new mechanism,” Engineering, vol. 76, p. 777, 1903.

17

Orientation Workspace

In the previous chapter, we discussed the analysis of the degree of freedom and the property
of motion of parallel manipulators. In this chapter, we direct our focus on a similar study
on three-DoF spherical motion robots, namely, the study on orientation workspace. The
parameterisation of such workspace, e.g., by means of volume, is critical in the design
process, as it allows the performance of different spherical motion robot designs to be
quantified and compared. On the other hand, representing the orientation workspace in
the Euclidean space is challenging. In the sub-sections below, we present our method of
parameterisation based on quaternions and differential geometry [1].

17.1 Measurement Principles and Quaternions

Regardless of the method taken, the parameterisation of orientation workspace based on
volume shall follow two principles of invariant [1]. Firstly, the performance index, i.e., the
volume of an orientation workspace, must be invariant with respect to the selection of
reference frames. Secondly, the volume of an orientation workspace must be invariant with
respect to the description of the workspace. These principles render quaternion a suitable
tool for the parameterisation of the volume of the orientation workspace, as explained below.

A unit quaternion is defined as

qQ = a+ bi+ cj + dk (17.1)

subject to
a2 + b2 + c2 + d2 = 1 (17.2)

Moreover, the rotation matrix associated with qQ is given by

R =





a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2



 (17.3)

More details on quaternion can be found in the Appendix for Chapter 5. The physical

interpretation of the unit quaternion is a point qQ =


a b c d
T

on a unit 3-sphere S
3.

The latter is, in turn, the analogy of a unit sphere in the four-dimensional space. Notably, the
surface points of a sphere 1) each have their corresponding unique orientations, and 2) are
equally weighted by having equal distance to the centre. As such, the volume corresponding
to the collection of these workspace-representing surface points is our volume measurement
of interest.

DOI: 10.1201/9781003614319-17 324

https://doi.org/10.1201/9781003614319-17

Generalised Volume of Orientation Workspace 325

We adopt the spherical polar coordinates to parameterise the S3 and quantify its volume.
For a 3-sphere, the quaternion can be expressed in the polar coordinates as

a = cosψ

b = sinψ cosφ

c = sinψ sinφ cos θ

d = sinψ sinφ sin θ

(17.4)

where the angles are, in turn, within the following range to fully cover the 3-sphere:

0 < ψ <
π

2
0 < φ < π

0 < θ < 2π

(17.5)

where the range of ψ is limited to π/2 from the original π, since only half of the S3 is needed
to represent the orientations. Furthermore, < replaces ≤ to enable the use of differential
geometry. The added benefit of adopting an open set is that the singular positions of the
coordinate systems at ψ = 0, π, and φ = 0, π are now excluded.

The metric for volume measurement is a tensor [2, 5], Qg , given by

Qg =















∂qQ

∂ψ

T ∂qQ

∂ψ



∂qQ

∂ψ

T ∂qQ

∂φ



∂qQ

∂ψ

T ∂qQ

∂θ


∂qQ

∂φ

T ∂qQ

∂ψ



∂qQ

∂φ

T ∂qQ

∂φ



∂qQ

∂φ

T ∂qQ

∂θ


∂qQ

∂θ

T ∂qQ

∂ψ



∂qQ

∂θ

T ∂qQ

∂φ



∂qQ

∂θ

T ∂qQ

∂θ













=





1 0 0
0 sin2 ψ 0
0 0 sin2 ψ sin2 φ



 (17.6)

and the corresponding weighted volume of a subset U of S3 is defined as

QV =



U



det (Qg)dψdφdθ =



U

sin2 ψ sinφdψdφdθ (17.7)

with the ranges of angles given in Equation (17.5). Note that we term


det (Qg)dψdφdθ
the volume element [2, 3] hereafter.

17.2 Generalised Volume of Orientation Workspace

The orientation workspace volume defined in Equation (17.7) can be generalised to suit other
kinematic descriptions of a spherical motion generator. In this sub-section, we demonstrate
that the parameterised volume derived from a generalised rotation matrix R is 1/16

√
2

times of that derived from the quaternion qQ. To avoid confusion, we distinguish relevant
terms, i.e., metric tensor g and the corresponding volume V , derived from a quaternion and
a rotation matrix by superscripts Q and R, respectively.

Consider an arbitrary kinematic representation q =


q1 q2 q3
T

. The entries of the
metric tensors Qg and Rg are given, correspondingly, by

Qg =















∂qQ

∂q1

T ∂qQ

∂q1



∂qQ

∂q1

T ∂qQ

∂q2



∂qQ

∂q1

T ∂qQ

∂q3


∂qQ

∂q2

T ∂qQ

∂q1



∂qQ

∂q2

T ∂qQ

∂q2



∂qQ

∂q2

T ∂qQ

∂q3


∂qQ

∂q3

T ∂qQ

∂q1



∂qQ

∂q3

T ∂qQ

∂q2



∂qQ

∂q3

T ∂qQ

∂q3













(17.8)

326 Orientation Workspace

and

Rg =















∂ r

∂q1

T
∂ r

∂q1



∂ r

∂q1

T
∂ r

∂q2



∂ r

∂q1

T
∂ r

∂q3


∂ r

∂q2

T
∂ r

∂q1



∂ r

∂q2

T
∂ r

∂q2



∂ r

∂q2

T
∂ r

∂q3


∂ r

∂q3

T
∂ r

∂q1



∂ r

∂q3

T
∂ r

∂q2



∂ r

∂q3

T
∂ r

∂q3













(17.9)

with r collecting the entries of rotation matrix R

r =


r11 r12 r13 r21 r22 r23 r31 r32 r33


(17.10)

the two digits of the subscripts identifying the rows and columns of the scalar entries,
respectively. We’ll show in the balance of the sub-section the following ratio of the volume
elements:

Rg = 8 Qg (17.11)

which further leads to the 1/16
√
2 ratio of interest for the orientation workspace volume.

In Equation (17.9), scalar entry Rgij can be expanded following the chain rule as

Rgij =



∂ r

∂qi

T
∂ r

∂qj
=



∂qQ

∂qi

T 

∂ r

∂qQ

T
∂ r

∂qQ

∂qQ

∂qj
(17.12)

The two terms in the middle, i.e.,
∂ r

∂qQ
and its transpose, in fact, satisfies



∂ r

∂qQ

T
∂ r

∂qQ

= 8 1 + 4qQq
T
Q (17.13)

1 being the identity matrix. Upon substitution of (17.13), (17.12) becomes

Rgij = 8



∂qQ

∂qi

T ∂qQ

∂qj
+ 4



∂qQ

∂qi

T

qQq
T
Q

∂qQ

∂qj
(17.14)

Additionally, we note that the partial derivatives of qQ are essentially tangent vectors to
the coordinate curves on their respective manifolds, rendering

qT
Q

∂qQ

∂xj

= 0 (17.15)

The latter term of summation of Equation (17.14) hence vanishes:

Rgij = 8



∂qQ

∂qi

T ∂qQ

∂qj
= 8Qgij (17.16)

Equation (17.11) is thus proven. From there, the corresponding volume of the orientation
workspace is calculated based on Equation (17.7) as

RV =



U



det (Rg)dq1dq2dq3

=



U



83 det (Qg)dq1dq2dq3

= 16
√
2



U



det (Qg)dq1dq2dq3 = 16
√
2
Q
V

(17.17)

The parameterisation of the orientation workspace volume based on an arbitrary kine-
matic description can thus be completed for comparison with others through the following
steps:

Orientation Workspace Volume of Various Kinematic Descriptions 327

1. Compute r according to Equation (17.10).

2. Structure Rg , the metric tensor, by computing the dot products of the partial
derivatives, according to Equation (17.6).

3. Apply the ratio of 8 based on the rotation-matrix tensor Rg to obtain the quater-
nion matrix tensor Qg , according to Equation (17.11).

4. An equivalent to the previous step is to compute the volume RV based on Equa-
tion (17.7), and apply the ratio of 16

√
2 to obtain its quaternion counterpart

QV .

17.3 Orientation Workspace Volume of Various Kinematic De-

scriptions

Given Equation (17.17) and the three-step procedure described previously, we can now show
the derivation of orientation workspace volume based on different kinematic descriptions.
Below, we will show the derivations of the Euler angles and the angle-axis representations
used in this book.

17.3.1 Euler Angles

Step 1: Based on the rotation matrix under ZYX Euler angle, array r is defined following
Equation (17.10) as

r =





























cosα cosβ
cosα sinβ sin γ − sinα cos γ
cosα sinβ cos γ + sinα sin γ

sinα cosβ
sinα sinβ sin γ + cosα cos γ
sinα sinβ cos γ − cosα sin γ

− sinβ
cosβ sin γ
cosβ cos γ





























(17.18)

α, β, and γ denoting the rotation around z, y, and x, respectively.
Step 2: According to Equation (17.6), the expression of the metric tensor is:

Rg =





2 0 −2 sinβ
0 2 0

−2 sinβ 0 2



 (17.19)

the resultant volume element is derived from Equation (17.7)



det (Rg) = 2
√
2 cosβdαdβdγ (17.20)

Step 3: From there, applying the coefficient of Equation (17.12) gives



det (Qg) =
1

8
cosβdαdβdγ (17.21)

Likewise, the orientation workspace volumes of other Euler angle representations can
be obtained. For XYZ, XZY, YXZ, YZX, ZXY, and ZYX, the volume element is given by

328 Orientation Workspace

1

8
cosβdαdβdγ. For XYX, XZX, YXY, YZY, ZXZ, and ZYZ, the volume element is derived

as 1

8
sinβdαdβdγ. The corresponding ranges of β for the two groups of Euler angles are

(

−π
2
, π

2

)

and (0, π), respectively.

17.3.2 Angle-Axis Representation

The four-element angle-axis representation can be expressed using the standard three-
element spherical polar coordinates, where the axis of rotation becomes

qA =





qA1

qA2

qA3



 =





sinψ1 cosψ2

sinψ1 sinψ2

cosψ1



 (17.22)

and the rotation angle θ = ψ3.
Step 1: The rotation matrix can be written according to Equation (23.8), and the resultant
array r is given by

r =





























sin2 ψ1 cos
2 ψ2 (1− cosψ3) + cosψ3

sin2 ψ2 cosψ2 sinψ2 (1− cosψ3) + cosψ1 sinψ3

sinψ1 cosψ2 cosψ1 (1− cosψ3)− sinψ1 sinψ2 sinψ3

sin2 ψ1 cosψ2 sinψ2 (1− cosψ3)− cosψ1 sinψ3

sin2 ψ2 sin
2 ψ2 (1− cosψ3) + cosψ3

sinψ1 sinψ2 cosψ1 (1− cosψ3) + sinψ1 cosψ2 sinψ3

sinψ1 cosψ2 cosψ1 (1− cosψ3) + sinψ1 sinψ2 sinψ3

sinψ1 sinψ2 cosψ1 (1− cosψ3)− sinψ1 cosψ2 sinψ3

cos2 ψ1 (1− cosψ3) + cosψ3





























(17.23)

Step 2: Based on Equation (17.6), the expression of the metric tensor is:

Rg =





sin2 ψ3

2
0 0

0 sin2 ψ1 sin
2 ψ3

2
0

0 0 1

4



 (17.24)

and the corresponding volume element is



det (Rg)dψ1dψ2dψ3 =
1

2
sinψ1 sin

2



ψ3

2



dψ1dψ2dψ3 (17.25)

Step 3: Applying the ratio of Equation (17.12) leads to



det (Qg)dψ1dψ2dψ3 =
1

16
sinψ1 sin

2



ψ3

2



dψ1dψ2dψ3 (17.26)

17.4 Case Study

In this section, we present the orientation workspace analysis of a spherical manipulator
(Figure 17.1) [1]. With two different ground frames, {0} and {1}, and different parame-
terisation methods, we demonstrate that the weighted orientation workspace volume is an
invariant as per required by the two principles. Additionally, the results are compared to
those derived from the conventional methods for the demonstration of advantages.

Case Study 329

z0

x0
z1

x1

θ1

θ2

θ3

FIGURE 17.1

Schematic diagram of the spherical manipulator.

The spherical manipulator has three joints, identified by θ1, θ2, and θ3, respectively.
Their ranges are, correspondingly,

0 ≤ θ1 ≤
π

6

− π

12
≤ θ2 ≤

π

12

0 ≤ θ3 ≤
π

6

To demonstrate that the weight volume is invariant with respect to the ground frame,

we consider two ground frames: the genuine ground frame {1}, and an artificially defined

{0} that is related to {1} via ZYX Euler angles:

0R1 =





cosα′ cosβ′ cosα′ sinβ′ sin γ′ − sinα′ cos γ′ cosα′ sinβ′ cos γ′ + sinα′ sin γ′

sinα′ cosβ′ sinα′ sinβ′ sin γ′ + cosα′ cos γ′ sinα′ sinβ′ cos γ′ − cosα′ sin γ′

− sinβ′ cosβ′ sin γ′ cosβ′ sin γ′





with α′ = 5π
6
, β′ = −π

3
, and γ′ = π

4
.

For the purpose of comparison, we also conducted the workspace space analysis based

on the conventional method, which comprises the following steps:

1. Identify a kinematic description for the parameterisation of the orientational

workspace.

2. Create an equispaced grid in the space of the corresponding parameters.

3. Identify the grid points that are within the workspace, taking into account the

range, singularities, and mechanical interference.

4. Integrate those grip points within the workspace, then multiply their correspond-

ing volume elements to compute the workspace volume.

Table 17.1 summarises the comparison between the orientational workspace volume de-

termined by the conventional method and our proposed method based on the 3-sphere, and

330 Orientation Workspace

TABLE 17.1
Comparison of workspace volumes.

Convention Frame Direct volume Weighted volume

Quaternions
{1} 0.0182 0.0176
{0} 0.0536 0.0176

ZYX Euler
{1} 0.1435 0.0177
{0} 0.4179 0.0178

XZX Euler
{1} 0.6653 0.0177
{0} 0.1553 0.0178

Angle-axis
{1} 2.4875 0.0178
{0} 0.0198 0.0177

with {0} and {1} under different kinematic descriptions. The workspace volume computed
through the two methods are labelled “direct volume” and “weighted volume”, respectively.

It can be readily observed that the approach based on weighted volume yielded con-
sistent measurement that is invariant with respect to the kinematic description and the
frames, satisfying the two measurement principles; the small errors are the result of nu-
merical computation. In contrast, the conventional method yielded significant variation in
the measurement, both across different kinematic descriptions and between the two frames
within the same parameterisation method.

17.5 Conclusion

The method presented in this chapter complements those in Chapter 16, to provide a uni-
form and cross-comparable way to evaluate the orientation workspace of mechanisms. The
method takes advantage of the physical interpretation of quaternion for being a point on
the surface of a 4D sphere to quantify the orientation workspace of a manipulator. To pro-
mote the compatibility of this method, we derived the mapping between other commonly
used orientation parameterisation methods and quaternion, which significantly widens the
application of the quaternion-based analysis.

Bibliography

[1] C. Chen and D. Jackson, “Parameterisation and evaluation of robotic orientation
workspace: A geometric treatment,” IEEE Transactions on Robotics, vol. 27, no. 4,
pp. 656–663, 2011.

[2] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, vol. 6. Springer, 1992.

[3] J. Jost, Riemannian geometry and geometric analysis, vol. 42005. Springer.

[4] G. Yang, “A differential geometry approach for the workspace analysis of spherical
parallel manipulators,” Proc. 11th World Cong. in Mechanism and Machine Science,

Tianjin, 2004, pp. 2060–2065, 2004.

Bibliography 331

[5] J. Angeles, Fundamentals of robotic mechanical systems: theory, methods, and algo-
rithms. Springer, 2003.

[6] I. A. Bonev and C. M. Gosselin, “Analytical determination of the workspace of sym-
metrical spherical parallel mechanisms,” IEEE Transactions on Robotics, vol. 22, no. 5,
pp. 1011–1017, 2006.

[7] J. S. Dai, “An historical review of the theoretical development of rigid body displace-
ments from rodrigues parameters to the finite twist,” Mechanism and Machine Theory,
vol. 41, no. 1, pp. 41–52, 2006.

[8] A. Cayley, “Sur quelques propriétés des déterminants gauches.,” 1846.

[9] G. S. Chirikjian and A. B. Kyatkin, Engineering applications of noncommutative har-
monic analysis: with emphasis on rotation and motion groups. CRC press, 2000.

[10] G. Yang, W. Lin, S. K. Mustafa, I.-m. Chen, and S. H. Yeo, “Numerical orientation
workspace analysis with different parameterisation methods,” in 2006 IEEE Conference
on Robotics, Automation and Mechatronics, pp. 1–6, IEEE, 2006.

[11] F. C. Park and B. Ravani, “Smooth invariant interpolation of rotations,” ACM Trans-
actions on Graphics (TOG), vol. 16, no. 3, pp. 277–295, 1997.

18

Constraint Analysis for
Underactuated Systems

In the previous parts, we limited the scope of our discussion to fully-actuated, rigid-link
robotic manipulators. On the other hand, soft robots are increasingly being used in appli-
cations to replace their rigid-link counterparts. These robots are favoured for their inherent
safety — the compliance allows them to deform upon contact with obstacles. Soft robots
are a typical example of underactuated systems whose mechanical degrees of freedom (DoF)
exceed the number of actuator inputs. Underactuated robotic grippers are another exam-
ple of systems of this kind. Compared to their fully-actuated counterparts, underactuated
grippers conform to the shape of the target object, rendering improved grasping capability.

Despite their favourable features, modelling the underactuated systems is a complex pro-
cess. In static or quasi-static studies, the configuration of an underactuated system, as well
as the internal and actuator input forces and moments, are determined by minimum energy

theory . In addition, both the kinematic constraints and the force and moment equilibrium
(“force constraints” hereafter) must be satisfied. Correspondingly, multibody systems can
be analysed by solving a constrained minimisation problem. The objective function is re-
lated to the potential energy of the system, while the kinetostatic constraints are derived
in both the kinematic and the force domains. Such derivation, involving two domains, is
inherently tedious. Worse, the constraints can vary depending on the system’s status. For
example, as an underactuated gripper grasps the objects, the contacting finger segments
can differ case by case with respect to the size of the object and the actuator inputs, leading
to the necessity to re-derive the constraint equations corresponding to each contact case.

Constraint analysis with Lagrange multipliers can be exploited to tackle the issue and
significantly simplify the modelling of underactuated systems. This approach takes advan-
tage of the one-to-one correspondence among 1) a mechanical constraint of interest, 2) the
kinematic constraint equation derived from said mechanical constraint, expressed in a uni-
fied format, 3) the Lagrange multiplier resulting from the kinematic constraint equation,
and 4) the force and moment transmitted through the mechanical constraint. The force con-
straints can now be generated automatically from their kinematic counterparts. As such,
only the kinematic-domain derivation is required, and the force-domain derivation is obvi-
ated. In addition, selection matrices can be used to identify the active kinematic constraint
equations and Lagrange multipliers. In this case, a master set of kinetostatic constraints
with kinematic constraints active can be expressed, and the re-derivation for individual
cases is reduced into the derivation of corresponding selection matrices.

In this chapter, we present the modelling of planar underactuated systems based on the
framework of constraint analysis, along with two case studies featuring a tendon-driven soft
robot [2] and an underactuated prosthetic finger [10], respectively.

DOI: 10.1201/9781003614319-18 332

https://doi.org/10.1201/9781003614319-18

Constrained Minimisation 333

18.1 Constrained Minimisation

Assuming massless bodies, i.e., no gravitational potential energy, the constrained minimi-
sation problem is defined as [1]:

min V (qu)

subject to φ1 (qu) = 0

φ2 (qu) ≤ 0

(18.1)

V (qu) denoting the objective function of the potential energy expressed in the unknowns
qu of the system, whose general-form expression is given by:

V (qu) =

v=vmax
∑

v=1

1

2
kvδqv

2 (18.2)

subscript v identifying the compliant bodies with stiffness kv and deformation δqv. The
constraint minimisation problem can be solved through software packages, e.g., MATLAB
fmincon.

In Equation (18.1), φ1 and φ2 are the kinetostatic constraint equations and the con-
straint inequalities, respectively. In the ensuing subsection, we will discuss the derivation of
these constraints based on the framework of planar constraint analysis.

18.2 Kinetostatic Constraints

18.2.1 Generalised Coordinates and Generalised External Forces

In the planar case, the configuration of a rigid body i can be fully described by three
independent generalised coordinates: xi and yi representing the position, and θi or θ(i−1)i

for the orientation, where θi is the absolute angular position and θ(i−1)i denotes the angular
position of i with respect to the previous body i− 1. Array q containing all the generalised
coordinates shall fully represent the configuration of a system:

q =
[

qT
1 qT

2 · · · qT
imax

]T
(18.3)

qi (i ∈ [1, imax]) identifying the sub-array collecting the generalised coordinates of body i.
Furthermore, in some cases, it is possible to neglect certain generalised coordinates to

simplify the formulation. Once the free-floating bodies are assembled into kinematic chains,
most of the generalised coordinates are dependent on the input of the system, and those
relevant to mechanical constraints that are beyond the interest of the analysis may be
expressed implicitly. We will demonstrate this type of simplification in the case study of the
tendon-driven soft robot.

It should be noted that the rigid body herein, in fact, covers three types of bodies: the
generic rigid bodies, the pseudo-rigid bodies, and the virtual bodies. Pseudo-rigid bodies
[2] are used to model compliant continuum bodies, e.g., the backbone of a soft robot or a
compliant link of an underactuated gripper. In these cases, a continuum body is treated
as a sub-kinematic chain comprising multiple pseudo-rigid bodies and spring-loaded virtual
joints. Virtual bodies can be regarded as those rigidly attached to prescribed locations

334 Constraint Analysis for Underactuated Systems

along the kinematic chain, where an external force or moment is applied to a body without
having an already-assigned generalised coordinate. Virtual bodies are introduced since q

the generalised coordinates and fe the generalised external forces, i.e., forces and moments,
must be in a one-to-one correspondence:

fe =


fTe1 fTe2 · · · fT
eimax

T
(18.4)

where positional and orientational qi of (18.3) have matching scalar entries of forces and
moments in fe , respectively, for the external forces and moments applied at the tip or along
the kinematic chain of a system, as well as the actuator input forces and moments. For
convenience, we refer to moment as the external or constraining moment and torque as the
actuator input.

For underactuated systems, fe also contains scalar entries for the forces and moments
generated by the spring-loaded virtual joints of the pseudo-rigid bodies. Despite being inter-
nal in the physical system, these forces and moments can be interpreted as virtual actuator
input forces and torques, whose magnitudes correspond to the displacements of the joints.
The relationship is described through additional Hooke constitutive equations, discussed
in the later subsection. Assuming prescribed external forces and moments, the unknown
actuator input forces and torques of fe form array feu of the unknown generalised external
forces:

feu =


fea1 fea2 · · · feamax
fev1 fev2 · · · fevmax

T
(18.5)

subscripts a and v distinguishing the physical and virtual actuators, respectively.

18.2.2 General-Form Kinematic Constraint Equations and Lagrange

Multipliers

In the framework of constraint analysis, kinematic constraint equations are expressed in
a specific form to achieve the desired one-to-one correspondence between the Lagrange
multipliers and the forces and moments transmitted through mechanical constraints. The
general-form kinematic constraint equation φk (qa,qb) between two connected bodies, a
and b, is written as [3, 4, 5]:

φk (qa,qb) = p (qa)− p (qb) = 0 (18.6)

p representing the shared physical quantity of the two bodies, e.g., the position of a joint,
and expressed using the generalised coordinates of the two bodies, respectively. It is note-
worthy that (18.6) is directional, i.e., the resultant forces and moments are applied by body
a on body b. The graphical representation of (18.6) is depicted in Figure 18.1. In the ensu-
ing case studies, we discuss the kinematic constraint equations derived from position and

p = p (qa) p = p (qb)

λb→a(f b→a)

λa→b(fa→b)

Body a

Body b

FIGURE 18.1

Graphical representation of constraint equation.

Kinetostatic Constraints 335

orientation – revolute joints; “fixed” joints of virtual bodies, attachment points of actuation
tendons, contact points between a gripper link and the external object, and gear meshing.

The collection of kinematic constraint equations of a system is represented by array φk :

φk =


φT
k1 φT

k2 · · · φT
kjmax

T
(18.7)

φkj (j ∈ [1, jmax]) identifies the sub-array of scalar kinematic constraint equations of the
j-th mechanical constraint. The corresponding forces and moments are collected in array
λ of the Lagrange multipliers:

λ =


λT
1 λT

2 · · · λT
jmax

T
(18.8)

18.2.3 Force Constraint Equations

For a constrained system satisfying φk (q) = 0 , the governing force constraint equation is
given by [6]:

f i = f c + fe (18.9)

where f i , f c , and fe are the generalised inertia forces, generalised constraint forces, and
generalised external forces, respectively. Among them, f i vanishes under the static/quasi-
static assumption, and fe is defined in (18.4). Furthermore, f c can be related to q, φk , and
λ of (18.3), (18.7), and (18.8), respectively, as

f c = −

(

∂ φk

∂q

)T

λ (18.10)

Equation (18.9) thus becomes:

(

∂ φk

∂q

)T

λ − fe = 0 (18.11)

which is the force constraint of equilibrium of the system.

18.2.4 Hooke Constitutive Equations

As discussed previously, the Hooke constitutive equation relates the displacement of a
pseudo-rigid joint and the input force or torque of this virtual actuator. Under the lin-
ear assumption, the relationship is defined as

φsv = fev + kvδqv = 0 (18.12)

fev, kv, and δqv identifying the input force or torque of joint v, the stiffness, and the
deformation/joint displacement, respectively. Among them, fev is a scalar entry of (18.4).
In addition, kv and δqv are also used to write (18.2), and δqv is expressed using q of (18.3).
The scalar Hooke constitutive equations φsv are collected in array φs to form part of the
kinetostatic constraints.

φs =
[

φT
s1 φT

s2 · · · φT
svmax

]T
(18.13)

18.2.5 Selection Matrices

In case some kinematic constraints of the system are inactive, e.g., the finger-object contact
constraints of non-contacting phalanges in the analysis of underactuated grippers, relevant

336 Constraint Analysis for Underactuated Systems

unknowns and constraints shall be removed from the master kinetostatic constraints. Such
a process can be done efficiently through selection matrices, which identify relevant scalar
entries from arrays of variables or constraint equations and inequalities. As such, the re-
derivation of the kinetostatic constraints is reduced to the derivation of selection matrices,
and the modelling process is simplified.

For an arbitrary array q ∈ R
n, its full-selection matrix Sq ∈ R

n×n is the identity
matrix. Each column si of Sq is in a one-to-one correspondence with a scalar entry qi of q.

Therefore, selection matrix S′

q ∈ R
n×n′

, containing n′ columns, can be used to extract an
n′-entry subset {q′} ⊆ {q} with the corresponding scalar entries [1]:

q′ = S′

q
Tq (18.14)

where the columns of S′

q belong to a set {s′q} that satisfies

{sq
′} ∪ {sq

∗} = {sq}

{sq
′} ∩ {sq

∗} = ∅

{sq} is a subset collecting all si of Sq , and entries of {sq
∗} correspond to {q∗}, which is,

in turn, defined as:
{q′} ∪ {q∗} = {q}

{q′} ∩ {q∗} = ∅

In our case studies, we derive S′

q by means of identifying and removing entries of {q∗}. The
use of selection matrices is detailed in the ensuing subsection.

18.2.6 Array of Unknowns

Array qu of the unknown variables in the constrained minimisation problem (18.1) is defined
as [1]:

qu =
[

(

S′

q
Tq

)T (

S′

r
Tqr

)T (

S′

eu
T feu

)T (

S′

λ
T λ

)T
]T

(18.15)

where array q of the generalised coordinates is presented in (18.3), array feu of the unknown
generalised external forces is defined in (18.5), and array λ of the Lagrange multipliers is
given in (18.8). In addition, qr incorporates the unknown variables not already included in
q, e.g., those of the contact geometry. Selection matrices S ′ of the corresponding arrays
identify the relevant active variables. Notably, a selection matrix is applied to q since some
of the generalised coordinates can be prescribed, e.g., the actuator input displacement in
the forward kinetostatic problem and the end-effector position and orientation in the inverse
kinetostatic problem.

18.2.7 Kinetostatic Constraints

The equation part of the master kinetostatic constraints, i.e., φ1 of (18.1), contains φk of
(18.7), φf of (18.11), and φs of (18.12). Factoring in the selection matrices, φ1 is given
by [1]:

φ1 =

[

(

S′

λ
T φk

)T

(

(

S′

λ
T
(

∂ φk

∂q

))T
(

S′

λ
T λ

)

− fe

)T
(

S′

s
T φs

)T

]T

= 0 (18.16)

where φk and φf both adopt S′

λ as the selection matrix, since φk and λ are in a one-to-one
correspondence.

Case Study — Soft Robots with Pseudo-Rigid Bodies 337

Tendon 1

Spacer 1-4

Input disp. 1 Tendon 1

Spacer 1-4

Input force 1

Input force 2

Tendon 2

FIGURE 18.2

Tendon-driven soft robot under prescribed input displacement (left) and forces (right).

Similarly, array φ2 of the inequalities of the master kinetostatic constraints is expressed
as [1]:

φ2 = S
′

2
T φ2

∗
≤ 0 (18.17)

φ2
∗ denoting the full set of kinetostatic constraint inequalities. Examples of constraint

inequalities include positive tendon force constraint for the actuation tendon of tendon-
driven soft robots, and positive normal contact force constraint for finger-object contacts
of underactuated grippers, which are relevant to the ensuing case studies.

18.3 Case Study — Soft Robots with Pseudo-Rigid Bodies

This case study analyses a planar tendon-driven soft robot [2]. In its most simplified
form, a robot of this kind comprises a continuous compliant backbone and two actuation
tendons routed through spacers that are, in turn, rigidly attached to the backbone. We
aim to showcase with this case study the use of the pseudo-rigid body approach, where a
continuum section is modelled as four pseudo-rigid links connected by three spring-loaded
revolute joints (the 3R-PRB method [7]).

A prototype of the robot of interest is illustrated in Figure 18.2. This robot comprises
two segments, each comprising two sub-segments, and is actuated by two tendons. The
tendons are, in turn, connected to the distal and middle spacers, respectively, and routed
through their corresponding proximal spacers. Additionally, the backbone of the robot is a
piece of thin spring steel sheet of a rectangular cross-sectional shape. The design parameters
of the robot are listed as follows.
Note that w the widths of the spacers are measured from the backbone to the tendon
pass-through or attachment points.

On a two DoF robot, two actuator inputs or tip position/orientation parameters can be
prescribed, leading to two cases in the forward kinetostatic problem and three in the inverse
one:

• Forward problem 1 — prescribe actuator input displacements.

• Forward problem 2 — prescribe actuator input forces.

• Inverse problem 1 — prescribe tip x and y position.

338 Constraint Analysis for Underactuated Systems

• Inverse problem 2 — prescribe tip x position and tip orientation.

• Inverse problem 3 — prescribe tip y position and tip orientation.

This case study focuses on the forward kinetostatic problem with a prescribed input force.
It should be noted that the unknowns and kinetostatic constraints of all five cases can
be related to a master set of unknowns and constraints by means of pertinent selection
matrices. However, we choose to direct our attention to the 3R-PRB approach herein, and
selection matrices are detailed in the next case study.

18.3.1 3R-PRB Model of Backbone Sub-Segments

Each sub-segment of the continuous backbone is modelled via the 3R-PRB approach [7]
as four pseudo-rigid links connected by three spring-loaded virtual revolute joints. The
proximal and distal pseudo-rigid links are rigidly connected to the spacers that are, in turn,
attached to the previous and the next sub-segment, respectively.

Within a sub-segment of length lo, the lengths of the pseudo-rigid links are 0.125lo,
0.35lo, 0.388lo, and 0.136lo, respectively, from the proximal to the distal end, where the
coefficients are defined in the 3R-PRB model. The stiffness of the proximal, middle, and
distal spring-loaded virtual revolute joints are, correspondingly, 3.25EI/lo, 2.84EI/lo, and
2.95EI/lo, where I is the second moment of area of the cross-section calculated from design
parameters h and b.

18.3.2 Generalised Coordinates and Generalised External Forces

According to (18.3), four types of bodies are incorporated to derive array q of the generalised
coordinates:

• The rigid links of spacer disks.

• The rigid links to model tendon.

• The pseudo-rigid bodies of the continuum backbone, from the 3R-PRB model.

• Scalar variables to describe the actuator input displacements.

The inter-spacer tendon sections are treated as rigid bodies whose lengths can vary. They
can be interpreted as sub-kinematic chains with embedded prismatic joints. Additional
geometrical parameters are hence needed, representing the lengths of inter-space tendon
sections and tendon elongation. The latter belong to qr of (18.15). Kinematic constraint
equations of overall tendon length and inequalities for zero/positive internal force, i.e.,
tension, are also required to make physical-meaningful tendons. Array q of the generalised
coordinates is given by:

q =


d1 d2 qT

b1 qT

b2 qT

b3 qT

b4 qT
t11 qT

t12 qT
t13 qT

t14 qT
t21 qT

t22

T
(18.18)

where d1 and d2 are the actuator input displacements of the actuation tendons. In addition,
qbi (i ∈ [1, 4]) denoting the sub-array of generalised coordinates of backbone sub-segment i

qbi =


θi1 θi2 θi3 xi4 yi4 θi4
T

subscripts 1 to 4 correspond to the four pseudo-rigid bodies, respectively; among them, 4 is
rigidly connected to and hence presents the configuration of the spacer plate attached to the
distal end of the sub-segment. It is noteworthy that θi1, θi2, and θi3 are joint displacements

Case Study — Soft Robots with Pseudo-Rigid Bodies 339

with respect to the previous pseudo-rigid link, while θi4 is absolute orientation. The former
is expressed in a relative manner for the convenience of writing the Hooke constitutive
equations. Moreover, the positional generalised coordinates for the first three pseudo-rigid
bodies are omitted since they can be embedded implicitly in the kinematic constraints, as
shown in the ensuing sub-section. Similarly, sub-array qtai (a ∈ [1, 2]) collects the generalised
coordinates of the section of actuation tendon a at backbone sub-segment i

qtai =


θtai dtai
T

θtai and dtai indicating the orientation and the length of the tendon section ai, respectively.
Again, positional generalised coordinates of the tendon sections are omitted.

Array fe corresponding to the (18.18) is defined as:

fe =


fe1 fe2 fTeb1 fTeb2 fTeb3 fTeb4 0T
T

(18.19)

where fe1 and fe2 are the actuator input forces applied on the tendons. Non-zero sub-arrays
febi and the zero sub-array correspond to qbi and qtai, respectively. The former is defined
as

febi =


τei1 τei2 τei3 fei4x fei4y 0
T

the torques of the spring-loaded virtual revolute joints are represented by τei1, τei2, and
τei3. The prescribed external forces applied onto the spacer plates are incorporated through
fei4x and fei4y, while the external moment is assumed zero. Notice that fe44x and fe44y
are the tip force of the robot. The virtual actuator torques form array feu of the unknown
generalised external forces:

feu =


τe11 τe12 τe13 · · · τe41 τe42 τe43
T

(18.20)

18.3.3 Kinematic Constraint Equations and Lagrange Multipliers

We consider three types of kinematic constraints: those derived from the fixed joints between
the spacer plates and sub-segments of the backbone, those describing the spacer-tendon con-
nections, and those based on the overall length of the actuation tendon. We also demonstrate
the implicit positional kinematic constraints.

The kinematic constraint of a fixed joint of spacer i is expressed as:

φkpi =





x(i−1)4

y(i−1)4

θ(i−1)4



+





m=4
m=1 lm cos

�

θ(i−1)4 +
n=m

n=1 θin


m=4
m=1 lm sin

�

θ(i−1)4 +
n=m

n=1 θin


m=4
m=1 θim



−





xi4

yi4
θi4



 = 0 (18.21)

subscript m (m ∈ [1, 4]) identifying the proximal to distal pseudo-rigid links, respectively,
and lm representing the link length. In the case of the first backbone sub-segment, x04 and
y04 are zero. Furthermore, the positional constraint relating the nodal position of two spacers
is based on the propagation of pseudo-rigid links of the current backbone sub-segment. Four
φkpi , or 12 scalar equations, can be derived from the four backbone-spacer connections.

On the other hand, the kinematic constraint for the spacer-tendon connections is derived
from the position of the tendon pass-through or attachment points of spacer plates:

φktai =



x(i−1)4

y(i−1)4



+ w(i−1)4



cos
�

θ(i−1)4 ± π/2


sin
�

θ(i−1)4 ± π/2




+ dtai



cos θtai
sin θtai



−



xi4

y(i4



+ wi4



cos (θi4 ± π/2)
sin (θi4 ± π/2)



= 0

(18.22)

340 Constraint Analysis for Underactuated Systems

TABLE 18.1
Design parameters of the soft robot.

Parameter Description Value & Unit

lo Length of sub-segments 70 mm
E Young modulus of the backbone 231.1 GPa
h Cross-sectional height of the backbone 12.7 mm
b Cross-sectional width of the backbone 0.3 mm
w0 Width of the ground spacer 160 mm
w1 Width of the first spacer 160 mm
w2 Width of the second spacer 120 mm
w3 Width of the third spacer 80 mm
w4 Width of the fourth spacer 40 mm
kc Stiffness of the actuation tendon 185 N/mm/mm

where the sine and cosine terms have positive and negative signs for tendons 1 (a = 1) and
2 (a = 2), respectively. Design parameter w is as listed in Table 18.1. The expressions in the
first and the second brackets are the position of tendon pass-through or attachment points
of spacer i, represented using the generalised coordinates of the previous spacer plate (i−1)
and the current tendon section, and those of the current space plate i, respectively. The
numbers of sub-arrays are four and two, correspondingly, for tendons 1 and 2.

Lastly, the overall lengths of two actuation tendons need to be constrained:

φkla = (la + δla)−
(

ua +
∑

dtai

)

= 0 (18.23)

la and δla representing the overall length of the unstretched tendon and the tendon elon-
gation. The expression in the first bracket is thus the overall length of the tendon under
the actuator input force. The expression in the second bracket, on the other hand, is the
same tendon length but written in terms of ua the actuator input and the sum of sectional
lengths dtai. As well, φkla introduces additional unknowns of tendon elongation:

δla =
[

δl1 δl2
]T

(18.24)

Array φk of the kinematic constraint equations collects those derived based on (18.21),
(18.22), and (18.23), and is given by:

φk =
[

φT
kp1 φT

kp2 φT
kp3 φT

kp4

φT
kt11 φT

kt12 φT
kt13 φT

kt14 φT
kt21 φT

kt22 φkl1 φkl2

]T
(18.25)

Furthermore, according to (18.25), array λ of the Lagrange multipliers is defined as:

λ =
[

λT
kp1 λT

kp2 λT
kp3 λT

kp4

[

λT
kt11 λT

kt12 λT
kt13 λT

kt14 λT
kt21 λT

kt22 fkl1 fkl2
]T

(18.26)

where its entries represent the constraining forces and moments transmitted through the
fixed joints (for φkpi), the interaction forces between the tendon and the spacer plate
expressed as x- and y- components (for φktai), and the input force transmitted between
the actuator and the tendon (for φkli).

18.3.4 Hooke Constitutive Equations

Hooke constitutive equations can be derived from two compliant elements: the virtual
torsional springs from the 3R-PRB model and the elastic actuation tendon. Under the

Case Study — Soft Robots with Pseudo-Rigid Bodies 341

assumption of linear elasticity, the former can be written (18.12) as:

φsim = feim + kmθim = 0 (18.27)

for the torsional springs of backbone sub-segment i. Subscripts m (m ∈ [1, 3]) corresponds
to the proximal, middle, and distal virtual revolute joints, respectively. The joint stiffness
km is defined by the 3R-PRB model, the joint displacement θim is a generalised coordinate,
and feim is the unknown input torque of the virtual actuator, contained in both fe of (18.4)
and feu of (18.5).

On the other hand, the tendon elongation is related to the input force f ea as

φsa = fea − kcδla = 0 (18.28)

for the elastic tendon. Tendon stiffness kc is a design parameter listed in Table 18.1, fea the
actuator input force of tendon a is presented in fe , and the tendon elongation from δla of
(18.24). Note that the (18.27) and (18.28) have opposite signs — feim is internal (virtual
external) while fea is external.

Array φs of the Hooke constitutive equation is hence given by

φs =
[

φs11 · · · φs43 φs1 φs2

T
(18.29)

which contains 12 equations of the virtual revolute joints and two equations of the tendons.

18.3.5 Constraint Inequalities

As discussed previously, the internal forces of the tendon rigid bodies must be zero or positive
for physically meaningful tendons. Corresponding constraint inequalities are written as:

φkla = 0− fkla ≤ 0 (18.30)

λfla is the tendon force involved in (18.25). The system requires two scalar inequalities for
the actuation tendons.

18.3.6 Constrained Minimisation

According to (18.1), the constrained minimisation problem of the robot is formulated as:

min V (qu)

subject to φ1 (qu) = 0

φ2 (qu) ≤ 0

(18.31)

with

V (qu) =

i=4
∑

i=1

m=3
∑

m=1

1

2
kmθ2im +

a=2
∑

a=1

1

2
kcδl

2

a

as the objective function, and

φ1 (qu) =

[

φT
k

(

(

∂ φk

∂q

)T

λ − fe

)T

φT
s

]T

= 0 (18.32)

for the constraint equations. Arrays q, fe , φk , λ , and φs are defined in (18.18), (18.19),
(18.25), (18.26), and (18.29), respectively. No selection matrix is used, as all the constraints
are valid at all times. Furthermore,

φ2 (qu) =
[

φkl1 φkl2

T
(18.33)

representing the constraint inequalities.

342 Constraint Analysis for Underactuated Systems

The unknowns, qu, are defined as following (18.15) as

qu =
[

qT δlTa fTeu λT
T

(18.34)

where q and feu are displayed in (18.18) and (18.20), respectively. Array λ is defined in
(18.26), and δla , i.e., array qr, of (18.24).

18.3.7 Experimental Verification

The experiment setup for verification is illustrated in Figure 18.2, where two weights were
connected to the tendons to apply the prescribed input forces. The external force applied
on the backbone was also varied. The following table summarises the prescribed input and
external forces for each experiment case.

Config. fe1 (N) fe2 (N) External force (N)

1 0.9830 0 0
2 0.7828 0 0
3 0.9830 0 fe34y = -0.1962 (penultimate spacer)
4 0.9830 0.4905 0
5 0.9830 0.4905 fe34y = -0.1962 (penultimate spacer)
6 0 0.1962 0
7 0 0.4905 0

Figure 18.3 illustrates the comparison between the experimental measurements of the
spacer locations (“EXP”) and their predictions (“CA”). A close alignment between the two
results can be observed. Sources of errors include the friction between the tendons and the
spacers at the pass-through holes, and the deviation in the tendon routing brought about
by the clearance of these holes.

Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Config 7

EXP
CA

x

y

FIGURE 18.3

Comparison between experimental measurements and predictions.

Case Study — The Compliant Five-Link Epicyclic Finger 343

18.4 Case Study — The Compliant Five-Link Epicyclic Finger

In this case study, we apply the framework to model a planar grasping case involving an
underactuated prosthetic finger and circular objects [10]. The aim is to demonstrate:

• The use of selection matrices to derive pertinent kinetostatic constraints of a partial-
contact grasping case, based on the master kinetostatic constraints of the full-contact
case.

• The kinetostatic constraints of contacts, and the formulation of tangential and normal
contact forces.

The prosthetic finger of interest is illustrated in Figure 18.4. It is an articulated finger,
named the compliant five-bar epicyclic finger (the CFLE finger) [8, 9, 10]. The prosthetic
finger adopts three phalanges, whose motion is constrained by an auxiliary link and a pair
of epicyclic gears to mimic the freehand flexion trajectory of a human finger. Such an
anthropomorphic motion is, in turn, beneficial in both increasing the chance of establishing
successful grasping of objects and mitigating the psychological issue associated with hand
loss. Furthermore, the CFLE finger offers grasping adaptability, where the spring steel rod
embedded in the auxiliary link deforms to allow the finger to conform to the shape of the
object.

The kinematic structure of the CFLE finger is now described, with nodes and key gener-
alised coordinates highlighted in Figure 18.5. Links AB (red), BC (blue), and CD (red) are
the proximal, middle, and distal phalanges. The sun gear is attached to the base at O, and
the planet to the auxiliary link EF at E. Said auxiliary link comprises three sub-segments:
the rigid proximal sub-segment EE1 (solid blue), the rigid distal sub-segment F1F (solid
blue), and a compliant middle sub-segment E1F1 (dashed). Based on the 3R-PRB model,
the compliant sub-segment is further modelled as four pseudo-rigid links E1G, GH, HI, and
IF1, connected by spring-loaded virtual revolute joints G, H, and I. The design parameters
of an adult-size CFLE index finger are listed below.

Palm

Thumb

Object

Dist.
Phalanx

Input via
Pulley

Prox.
Phalanx

Aux.
Link

Mid.
Pha-
lanx

FIGURE 18.4

The finger-object system with a CFLE finger.

344 Constraint Analysis for Underactuated Systems

xA, yA, θ1

xB , yB

θ2

xC , yC , θ3
D

xz,

yz,
θ8

Spring
Steel

E

F

F1

xE , yE , θ4

xG, yG, θ5

xH , yH , θ6

xI , yI , θ7

FIGURE 18.5

Nodes and key generalised coordinates of the finger-object system, on the main body of the
body and the object (left) and the auxiliary link (right).

Parameter Description Value & Unit

lAB Length of proximal phalanx 44.7 mm
lBC Length of mid phalanx 26.1 mm
lCD Length of distal phalanx 17.7 mm
lCF Length of CF on distal phalanx 12.0 mm
α3 ∠DCF 135.0 deg
r0 Radius of the sun gear 8.6 mm
r4 Radius of the planetary gear 11.4 mm
lEF Distance between joints E and F 43.0 mm
lE1F1

Length of PRB-3R sub-kinematic chain 28.4 mm
lEE1

Length proximal extension of E1F1 8.6 mm
lF1F Length of distal extension of E1F1 9.3 mm
θ40 Angle between EF and x axis at home position 10.0 deg
α4 ∠FEE1 42.43 deg
α5 ∠EE1G 134.6 deg
α7 ∠IF1F 155.7 deg
E Young modulus of compliant rod 202.9 GPa
d4 Diameter of compliant rod 1.0 mm
kj Stiffness of joints B and C 0.0033 Nm/rad
lkn Thickness of finger segments 8.0 mm

According to the 3R-PRB model, the lengths of the pseudo-rigid links are 0.125lE1F1
,

0.35lE1F1
, 0.388lE1F1

, and 0.136lE1F1
, respectively, and the stiffness of the virtual revo-

lute joints are, 3.25EI/lE1F1
, 2.84EI/lE1F1

, and 2.95EI/lE1F1
, respectively, where I is

calculated based on the d4 the diameter of the spring steel rod.

18.4.1 Generalised Coordinates and Generalised External Forces

According to (18.3), three types of bodies are incorporated to derive array q of the gener-
alised coordinates:

• The rigid object.

• The rigid links of the phalanges.

• The pseudo-rigid bodies of the auxiliary links.

The resultant array q of the generalised coordinates is thus written as:

q =
[

qT
Z qT

A qT
B qT

C qT
E qT

G qT
H qT

I

T
(18.35)

Case Study — The Compliant Five-Link Epicyclic Finger 345

TABLE 18.2
Generalised coordinates of the system.

Positional q Description Orientational q Description

xZ , yZ Position of the object θ8 Orientation of the object
xA, yA Position of AB θ1 Orientation of AB
xB , yB Position of BC θ2 Orientation of AB

θ12 Angle of joint B
xC , yC Position of CD θ3 Orientation of CD

θ23 Angle of joint C
xE , yE Position of EE1G θ4 Orientation of EE1G
xG, yG Position of GH θ5 Orientation of GH

θ45 Angle of joint G
xH , yH Position of HI θ6 Orientation of HI

θ56 Angle of joint H
xI , yI Position of IF1F θ7 Orientation of IF1F

θ67 Angle of joint I

sub-array qZ containing the position and orientation of the object, and qA, qB , and qC are
those of three phalanges, respectively. Scalar entries of the generalised coordinates of the
pseudo-rigid bodies are collected in qE to qI . The rigid sections of the auxiliary link EE1

and F1F are modelled as proximal and distal extensions of the pseudo-rigid bodies E1G and
IF1, respectively. The list of scalar generalised coordinates is shown in Table 18.2, along
with a graphical representation in Figure 18.5. It is noteworthy that for the convenience of
expressing Hooke constitutive equations, we introduced joint angles θ(i−1)i for the physical
(B and C) and virtual (G,H, and I) spring-loaded revolute joints in addition to the absolute
joint orientation θi (i ∈ [1, 8]), which require additional orientational kinematic constraints.

For simplification, we take advantage of the a priori conditions to reduce the number of
unknown generalised coordinates:

• The orientation θ8 of the object is treated as zero since it is circular.

• The position xA and yA of the proximal phalanx at joint A are zero.

• The orientation θ4 of the pseudo-rigid body EE1G can be calculated based on θ1 and the
gear ratio.

Array qqu of the unknown generalised coordinates thus becomes:

qqu =
[

pT
Z θ1 qT

B qT
C pT

E qT
G qT

H qT
I

T
(18.36)

with sub-arrays pZ and pE identifying the position of the object and EE1G, respectively.
Assuming no external load applied on the object, array fe corresponding to the (18.18)

is defined as:

fe =


02 τeA 03 τeB 03 τeC 09 τeG 03 τeH 03 τeI
T

(18.37)

among them, τeA is the prescribed actuator input torque at joint A. All other scalar τe are
the actuator torques applied by the virtual spring-loaded revolute joints, forming array feu
of the unknown generalised external forces:

feu =


τeB τeC τeG τeH τeI
T

(18.38)

346 Constraint Analysis for Underactuated Systems

18.4.2 Kinematic Constraint Equations and Lagrange Multipliers

We consider three types of kinematic constraints: those brought about by the joints, the
gear meshing between the sun and the planet gears, and the contacts between the phalanges
and the object. It is worth noting that for simplicity, we omit the fingertip contact and only
consider palmar contact on the distal phalanx.

Kinematic constraint φkpi derived from joint i is similar to that presented in (18.21) of
the previous case study:

φkpi =









xi−1

yi−1

θi−1



+





l(i−1)i cos θi−1

l(i−1)i sin θi−1

θ(i−1)i







−





xi

yi
θi



 = 0 (18.39)

l(i−1)i denoting the length of the link listed. As well, angular offsets α from the table are also
embedded. It should be noted that φkpA, φkpE , and φkpF only comprise the positional
scalar equations. The reason for the former two is that no joint angle is assigned to their
corresponding links. As for φkpF , the orientational scalar equation is omitted since the joint
is passive, providing no orientational constraint. Eight sets of joint constraint equations can
be derived based on the joints of the CFLE finger.

The gear mesh constraint φkm is expressed in terms of the position of the meshing point
that is always coincident with link AB:

φkm = r0



cos δθ0
sin δθ0



−



xE

yE



+ r4



cos (θ4 + δθ4 + π)
cos (θ4 + δθ4 + π)



= 0 (18.40)

where δθ0 = θ1 and δθ4 = θ40 − (r0/r4) θ1 represent the rotation of the sun and the
planet gears, respectively. It is noteworthy that these conditions, along with those of the
prescribed generalised coordinates, are only substituted into φ1 of (18.1) once the partial

derivative
∂ φk

∂q
has been taken, in order to obtain the correct paths of internal force/moment

transmission and the resultant Lagrange multipliers. The resultant Lagrange multipliers of
(18.40) correspond to the force transmitted through the gear mesh.

Contact kinematic constraints φkk are written in the form of positional constraint equa-
tions of the contact points. For a stable grasp to be established, we introduce two additional
contact surfaces in addition to the phalanges: the palm and the thumb. Both are assumed
stationary in our case study and thus represented by rigid links. For contact surface r
(r = [0, 4] for the palm, three phalanges, and the thumb), the expressions are given by:

φkkr =



xr

yr



+ 0Rr



lktr
lknr



xZ

yZ



+ rZ



cos (θ8 + βr)
sin (θ8 + βr)



= 0 (18.41)

design parameter lknr representing the distance between the center line of link r to the
contact surface, i.e., the thickness. In the case study, we adopt the same thickness, lkn, for
all the contacting links. Contact variable lktr identifies the distance from the origin of the
contacting link to the contact point. They belong to the qr of (18.15). For the convenience of
applying selection matrices, we collect them into array qkk of the unknown contact variables:

qkk =


lkt0 lkt1 lkt2 lkt3 lkt4
T

(18.42)

The last contact variable βr is a temporary one, introduced such that the expression in the
second bracket of (18.41) can be written without using the generalised coordinates of the
contacting body r. Essentially, βr are given by:

βr =











π/2− θ8 r = 0

θr + π/2− θ8 r = 1, 2, 3

π − θ8 r = 4

Case Study — The Compliant Five-Link Epicyclic Finger 347

which represents the angle of the vector directing from the centre of the object to the
contact point, measured with respect to θ8. Similar to other a priori conditions, βr are
not substituted into φ1 for simplification until the partial derivative

∂ φk

∂q
has been taken.

Lastly, 0Rr of (18.41) is the 2× 2 z-axis rotation matrix of link r, written as:

0Rr =











Rz (0) r = 0

Rz (θr) r = 1, 2, 3

Rz (−π/2) r = 4

Array φk of the kinematic constraints collects the constraint equations of the three
types:

φk =


φT
kp φT

km φT
kk



(18.43)

each sub-array further comprising scalar kinematic constraint equations of their correspond-
ing types. Array λ∗ of the Lagrange multipliers is hence defined as:

λ∗ =


λT
p λT

m λ∗

k
T


(18.44)

Notably, λ∗

k represents the contact forces written as x- and y-components. On the other
hand, it is more intuitive to express them as tangential and normal components, whose
benefits are two-fold. Firstly, constraint inequalities are required to avoid negative normal
contact force, making physically meaningful contacts. Secondly, dedicated tangential contact
forces allow frictionless contact force equations or frictional contact force inequalities to be
conveniently expressed. For this purpose, we introduce additional mapping between the x-
and y-components of the contact forces and their tangential and normal counterparts:



fkrx
fkry



= 0Rr
′



fkrt
fkrn



(18.45)

upon substitution, λ∗

k becomes λk , comprising fkrt the scalar entry of tangential contact
force and fkrn the normal contact force. The z-axis rotation matrix 0Rr

′ in λk is defined
as

0Rr
′ =











Rz (π) r = 0

Rz (θr + π) r = 1, 2, 3

Rz (−π/2) r = 4

(18.46)

the rotation matrices are defined in such a way that the positive normal contact forces are
in their respective positive y directions. Furthermore, array λ∗ of the Lagrange multipliers
is modified into:

λ =


λT
p λT

m λT
k



(18.47)

For the convenience of expressing the array of unknown variables, we also assign λku to
collect the unknown contact forces:

λku =


fk0t fk0n fk1t fk1n fk2t fk2n fk3t fk3n fk4t fk4n
T

(18.48)

18.4.3 Hooke Constitutive Equations

The Hooke constitutive equations of the CFLE finger are derived from the spring-loaded
virtual revolute joints. The expression is similar to (18.27) of the previous case study:

φsv = τev + kvθ(v−1)v = 0 (18.49)

348 Constraint Analysis for Underactuated Systems

where kB and kC the stiffness of the physical joints, and kG, kH , and kI are determined
based on the 3R-PRB model. Their corresponding joint angles, θ12, θ23, θ45, θ56, and θ67
are in q. Array φs collects all five scalar equations:

φs =
[

φsB φsC φsG φsH φsI

T
(18.50)

18.4.4 Force Constraints of Contacts

As mentioned previously, additional force constraints are required to 1) ensure positive
normal contact force and 2) relate tangential contact forces to the normal ones based on
the friction conditions.

The force constraint inequality for normal contact force is defined below:

φfnr = 0− fkrn ≤ 0 (18.51)

In the frictionless case, the force constraint equation is written as:

φftr = fkrt − µfkrn = 0 (18.52)

where µ the friction coefficient is zero. On the other hand, the frictional contact assumption
leads to force constraint inequalities:

φftr = ||fkrt|| − µfkrn ≤ 0 (18.53)

18.4.5 Selection Matrices

Given five possible contact surfaces, there are 32 contact cases overall. Each contact case
is identified by a set of five binary numbers, each digit corresponding to a contact sur-
face. Furthermore, 0 and 1 refer to the no-contact condition and an established contact,
respectively.

Selection matrices are applied to contact-related variables and constraints:

• Array qkk of the contact variables of (18.42).

• Contact kinematic constraints φkk of (18.43) and Lagrange multipliers λku in (18.48).

• Normal contact force constraints φfn, collecting force constraint inequalities (18.51).

• Tangential contact force equations or inequalities φft with scalar entries of (18.52) or
(18.53), respectively.

Notice that qkk ∈ R
5 and the rest of the arrays are of R

10 since each contact has two
components, we only need two selection matrices. Their full-selection matrices are Sk1 ∈

R
5×5 and Sk2 ∈ R

10×10. The columns s corresponding to individual contacts are listed
below.

Contact Relevant s of Sk1 Relevant s of Sk2

Palm contact s1 s1 , s2
Prox. phalanx contact s2 s3 , s4
Middle phalanx contact s3 s5 , s6
Dist. phalanx contact s4 s7 , s8

Thumb contact s5 s9 , s10

The subscripts represent pertinent columns. As well, for columns of Sk2 , the odd- and even-
number subscripts correspond to the tangential and the normal contacts, respectively. The
arrays of variables or scalar equations/inequalities of a contact case can thus be determined
based on S′

k1 and S′

k2 following (18.14).

Case Study — The Compliant Five-Link Epicyclic Finger 349

18.4.6 Constrained Minimisation

According to (18.1), the constrained minimisation problem of the finger-object system is
formulated as:

min V (qu)

subject to φ1 (qu) = 0

φ2 (qu) ≤ 0

(18.54)

with

V (qu) =

v=5
∑

v=1

1

2
kvθ

2
(v−1)v

as the objective function describing the elastic potential energy of joints B, C, G, H, and
I.

In a prescribed contact case, the kinetostatic constraint equations are given below for
the frictionless and frictional contact conditions, respectively:

φ1 (qu) =

[

φ′

k
T

(

(

∂ φ′

k

∂q

)T

λ′ − fe

)T
(

S′

k2
T φft

)T
φT

s

]T

= 0 (18.55)

and

φ1 (qu) =

[

φ′

k
T

(

(

∂ φ′

k

∂q

)T

λ′ − fe

)T

φT
s

]T

= 0 (18.56)

arrays q, fe , and φs are defined in (18.36), (18.37), and (18.49), respectively. The tangential
contact force equation φft contains scalar entries of (18.52), and S′

k2 is formulated upon
removal of relevant columns of Sk2 from the previous sub-section. As well, arrays φk

′ and
λ ′ now have selection matrix S′

k2 embedded:

φk
′ =

[

φT
kp φT

km

(

S′

k2
T φkk

)T
]T

and

λ ′ =
[

λT
p λT

m

(

S′

k2
T λk

)T
]T

relevant arrays are defined as follows: φkp , φkm , and φkk in (18.43); λp , λm , and λk in
(18.47). Once φ1 with the correct force constraint equations has been obtained, the a priori
conditions can be substituted for simplification.

The kinetostatic constraint inequalities corresponding to the frictionless and frictional
contact conditions, respectively, are defined as:

φ2 (qu) =
(

S′

k2
T φfn

)T
(18.57)

and

φ2 (qu) =
[

(

S′

k2
T φft

)T (

S′

k2
T φfn

)T
]T

(18.58)

arrays φfn and φft of the tangential and normal contact force inequalities contain scalar
entries of (18.51) and (18.53), respectively.

The unknowns, qu, are defined as following (18.15) as

qu =
[

qT
qu

(

S′

k1
Tqkk

)T
fTeu λT

p λT
m

(

S′

k2
T λku

)T
]T

(18.59)

where qqu, feu qkk, and λku are defined in (18.36), (18.38), (18.42), and (18.48), respec-
tively. In addition, S′

k1 is derived by removing the relevant columns of Sk1 of the previous
sub-section, according to the contact case.

350 Constraint Analysis for Underactuated Systems

FIGURE 18.6

Input displacements (left) and distal phalanx angles (right) under small prescribed input
forces.

Solving (18.54) reveals the configuration and force information for the prescribed contact
case. On the other hand, while not all contact cases will converge to feasible solutions, it
is possible to find multiple valid contact cases. In this case, the genuine solution V ∗ is the
one corresponding to the lowest elastic potential energy of all n valid solutions:

V ∗ (qu) = min
(

V1 V2 · · · Vn

)

(18.60)

18.4.7 Experimental Verification

The formulation was verified through grasping experiments based on the prototype displayed
in Figure 18.4. We prescribed the input force by gradually increasing the input displacement
(via a pulley with 10 mm diameter), until said force magnitude has been reached. The
corresponding input displacement, orientation of the distal phalanx, and contact case are
recorded for each combination of object diameter and prescribed input force. The circular
objects tested were 25 mm to 65 mm in diameter, with a 10 mm interval. In addition, each
object was tested under two prescribed input forces.

The results are illustrated in Figures 18.6 and 18.7, for small and large prescribed input
forces, respectively. In the former, all objects adopted the same input force of 10 N. As for

FIGURE 18.7

Input displacements (left) and distal phalanx angles (right) under large prescribed input
forces.

Conclusion 351

the latter case, the 45 mm object used 50 N so that a change in the contact case could be
observed, while 30 N was applied to the other objects. The legends, EXP and CA, identify
the experimental measurements and the predictions, respectively. The horizontal axes mark
the diameters of the object, whereas the vertical axes are the input displacements in mm
or the angles of the distal phalanges. Also, the contact case is labelled with a five-digit
binary number for each combination of the prescribed input force and object diameter.

These results show that our formulation based on constraint analysis was verified, as
indicated by the consistency between the predictions and the experimental measurements:

• The maximum errors in the input displacement and distal phalanx angle are 6.9% and
4.3%, respectively.

• All predicted contact cases agreed with the experimental ground truth, i.e., our approach
has captured the change in contact case with respect to the variation in both object size
and input force.

• Internal friction, e.g., that from the joints and finger-object contact, is likely the major
source of error since the experimental input displacements were constantly larger than the
predictions.

18.5 Conclusion

In this chapter, we discussed the kinematic- and force-domain analysis of planar underac-
tuated systems, which paves the way for the investigation of soft robotics. The proposed
method takes advantage of Lagrange multipliers and pseudo-rigid bodies to bridge the gap
between underactuated and ordinary fully actuated mechanisms. It allows the knowledge
accumulated from the analysis of conventional rigid-body mechanisms to be exploited to
conduct a unified kineto-static analysis of the soft and underactuated mechanisms, and shall
provide opportunities for future in-depth investigations to advance the theoretical founda-
tion of soft robotics. We completed the discussion with two case studies, where the proposed
method was applied to analyse a tendon-driven robot and a finger prosthesis, respectively.

Bibliography

[1] S. Liu, C. Chen, and J. Angeles, “A novel framework for the analysis of underactuated
fingers,” Mechanism and Machine Theory, vol. 182, p. 105238, 2023.

[2] C. Troeung, S. Liu, and C. Chen, “Modelling of tendon-driven continuum robot based
on constraint analysis and pseudo-rigid body model,” IEEE Robotics and Automation

Letters, vol. 8, no. 2, pp. 989–996, 2023.

[3] C. Chen, “Power analysis of epicyclic transmissions based on constraints,” Journal of

Mechanisms and Robotics, vol. 4, no. 4, pp. 1–11, 2012.

[4] C. Chen and J. Chen, “Efficiency analysis of two degrees of freedom epicyclic gear
transmission and experimental validation,” Mechanism and Machine Theory, vol. 87,
pp. 115–130, 2015.

352 Constraint Analysis for Underactuated Systems

[5] N. Hu, S. Liu, D. Zhao, and C. Chen, “Power analysis of epicyclic gear transmission for
wind farm,” in Robotics and Mechatronics: Proceedings of the Fifth IFToMM Interna-
tional Symposium on Robotics & Mechatronics (ISRM 2017) 5, pp. 251–262, Springer,
2019.

[6] A. A. Shabana, Computational dynamics. John Wiley & Sons, 2009.

[7] S. Huang, D. Meng, Y. She, X. Wang, B. Liang, and B. Yuan, “Statics of continuum
space manipulators with nonconstant curvature via pseudorigid-body 3r model,” IEEE
Access, vol. 6, pp. 70854–70865, 2018.

[8] S. Liu, M. Van, Z. Chen, and C. Chen, “Theoretical joint load analysis of a novel
prosthetic digit design,” in Advances in Mechanism and Machine Science: Proceedings
of the 15th IFToMM World Congress on Mechanism and Machine Science 15, pp. 113–
122, Springer, 2019.

[9] S. Liu, M. Van, Z. Chen, J. Angeles, and C. Chen, “A novel prosthetic finger design
with high load-carrying capacity,”Mechanism and Machine Theory, vol. 156, p. 104121,
2021.

[10] S. Liu, J. Angeles, and C. Chen, “A novel adaptive prosthetic finger design with scal-
ability,” in IFToMM World Congress on Mechanism and Machine Science, pp. 85–95,
Springer, 2023.

19

Concentric Tube Robot

Robotic manipulators are seeing ever-increasing applications in minimally invasive surgery
(MIS) by virtue of their increased accuracy and repeatability, reduced size, the capability
to restore lost manipulation degrees of freedom (DoF) inside the patient’s body, and the
potential for teleoperation. Minimally invasive surgery refers to surgical procedures in which
the sites are accessed through small incision ports rather than big openings [1]. The advan-
tages of adopting small incision ports include less damage to healthy tissues, reduced blood
loss, decreased level of pain, and faster post-operative recovery and hospital stay. MIS pro-
cedures can be broadly categorised into two classes: the cannula type and the laparoscopic
type. The cannula type often involves sending a surgical tool, e.g., a heart stent, through
a cannula that navigates via blood vessels to reach the surgical site. In this chapter, we
discuss concentric tube robots, a class of continuum robots particularly suitable for cannula
applications.

19.1 Overview of Concentric Tube Robot

We have established that a cannula is required to deploy the surgical end-effector to the
lesion in the surgical process of interest. A critical feature needed to achieve this objective
is navigation, such that the cannula could advance along the correct body vessels. Further-
more, it is also desirable that the navigation is achieved actively, independent of the off-axis
force provided upon contacting anatomical structures. Concentric tube robots (CTR) [2, 3],
by virtue of their inherent compliance, mechanical simplicity, and active navigation capa-
bility, are highly suitable to be used as active cannulae for minimally invasive procedures.

A concentric tube robot comprises several super-elastic tubes arranged in a concentric
manner. Each of these tubes features pre-curved sections of various curvatures at different
locations along their arc lengths, whereby relative rotation and translation among the tubes
dictates the final shape of the CTR upon static equilibrium, as shown in Figure 19.1. The
relative rotation and translation of the tubes thus serve as the required actuator inputs. The
simplified analogy of a CTR in the planar case is a system of two extension or compression
springs, where the position of the connection point can be controlled by altering the lengths
of the springs via translational inputs.

The benefits brought about by the unique mechanical structure and working principle
of the CTR are now detailed. Firstly, by adopting super-elastic tubes as their bodies, CTR
are compliant and will deform upon contact with anatomical structures, maximising pa-
tient safety during the procedures. Secondly, since the super-elastic tubes serve as both the
backbone and the transmission while all the actuators are located at the proximal end, the
diameter of a CTR could be small, allowing it to advance through body vessels not accessi-
ble by other soft robots or active cannulae. Lastly, the CTR inherently has a hollow centre

DOI: 10.1201/9781003614319-19 353

https://doi.org/10.1201/9781003614319-19

354 Concentric Tube Robot

Tube 1

Tube 2

Combined CTR
(converged)

Pre-curved 2

Straight 2

Pre-curved 1

Straight 1

FIGURE 19.1

A CTR comprising two super-elastic tubes.

that may be used to deliver surgical devices, extract removed tissues, or run the actuation
cable of a surgical end-effector through.

Despite the advantages, modelling a CTR remains a challenging task. Unlike the robotic
manipulators described in earlier parts of the book, which are modelled through connected
rigid or pseudo-rigid bodies, a CTR is formulated as a continuum body through the Cosserat
rod theory. Following this method, the description of the configuration of a CTR can be
interpreted by means of the trajectory of a moving frame travelling along the arc length of
the CTR, from its proximal to the distal end. Herein, the shear and axial elongation, and the
bending and twisting, are the equivalent of linear and angular velocities of the moving frame
(with respect to the arc length), respectively. The formulation of CTR thus comprises two
mappings: the robot-independent (RI) that integrates the velocity to obtain the position
and orientation of the robot cross-sections and the robot-dependent (RD) mapping that
computes the velocity or local curvatures based on static equilibrium and constitutive law.
The two mappings are detailed in the two ensuing sections.

It is noteworthy that the formulation based on the Cosserat rod yields no closed-form
solution, and propagation from one end of the robot is needed to compute its configuration.
Moreover, the prescribed actuator inputs and external loads are at two ends of the CTR,
rending a boundary value problem with split boundary conditions and the necessity to use
the shooting method to obtain the solution. Therefore, the ways in which the governing
equation, i.e., the combination of static equilibrium and constitutive law, is expressed in
the RD mapping significantly impact the computational efficiency, and we will demonstrate
such a variation in the corresponding section.

19.2 Robot-Independent Mapping

The robot-independent mapping relates the velocity of the moving frame and its trajectory
and is, namely, irrelevant to the mechanical structure of the robot. Thanks to the similarity
between a CTR and a strand, i.e., both being elongated structures that can bend and twist,
we can take advantage of a strand model [4] to describe the robot-independent mapping.
Its key equations are summarised below.

For an arbitrary continuum body, frame {s} assigned to a cross-section s can be re-
garded as the instantaneous configurations of the moving frame. In Cosserat rod theory,

Robot-Independent Mapping 355

the transformation matrix T between adjacent frames {s} and {s+ h}, h being the distance
between the cross-sections, is defined as

s+hTs

d

ds
sTs+h =



sus×
svs

0 0



(19.1)

sus and svs denote the angular and the linear velocities of frame {s} with respect to the
ground and expressed in {s}, respectively. Additionally, sus× is the cross-product of the
velocity. In sus , the x- and y-components correspond to the scalar bending curvatures, while
the z-component represents the torsional curvature. Similarly, the first two scalar entries of
svs are for shear, and the last one is the axial elongation.

Equation (19.1) is expressed in the discretised form, for numerical integration, as

sTs+h =



eun×hn (13 − eun×hn) un × vn + unu
T
n vnhn

0 1



(19.2)

with
eun×hn = 13 + un × sinhn + un × un × (1− coshn) (19.3)

which is, in turn, written with normalised velocities and step size:

un =
s
us

∥sus∥

vn =
s
vs

∥sus∥

hn = h∥sus∥

(19.4)

Provided that the external disturbances in the intended application of the CTR are small,
we can neglect the shear ϵxx and ϵyy and the axial elongation ϵzz, leading to simplified linear
velocity:

svs =
[

ϵxx ϵyy 1 + ϵzz
]T

=
[

0 0 1
]T

(19.5)

On the other hand, the local curvatures sus of the CTR are further described through
two arrays: 0su0s of the CTR, and isuis of super-elastic tube i. The former contains ex-
clusively scalar bending curvatures. The latter also carries a z-component representing the
torsional curvature. Such a description finds its root in the mechanical structure of the CTR:
while all the super-elastic tubes converge to a common bending shape, they also feature their
respective axial twists. Said mechanical relationship can be described mathematically as

isuis = isR0s
0su0s +

isuisz (19.6)

isR0s is the 3×3 rotation matrix of the i-th super-elastic tube at cross-section s, essentially
a z-axis rotation matrix of θis. The z-axis is, in turn, perpendicular to cross-section s or
tangential to the CTR. isuisz is the array of torsional curvature, carrying zero x- and y-
components and a non-zero z-component isuisz. Additionally, the scalar torsional curvature
isuisz is the spatial derivative of the axial rotation θis contained in isR0s , i.e.,

d

ds
θis =

isuisz (19.7)

Based on the description of curvature, we assign {0s} and {is} to cross-section s of the
CTR and the i-th super-elastic tube. Figure 19.2 depicts the graphical representation of the
frames.

356 Concentric Tube Robot

θ2l
x2l

x1lθ1l
z0l, z1l, z2l

x0l

zG, z0l, z1l, z2l

θ20

x20

xG, x00 θ10
x10

Concentrated
Disturbance
00f00 ,

00n00

Concentrated
Disturbance
0lf0l ,

0ln0l

Distributed Disturbance
0sf ′

0s ,
0sn′

0s ,
Gf ′′

0s ,
Gn′′

0s

FIGURE 19.2

Frames and external disturbances of a CTR.

19.3 Robot-Dependent Mapping

In the robot-dependent mapping , the angular velocity of the moving frame, i.e., the bend-
ing and torsional curvature, is computed by means of static equilibrium and constitutive
equation based on the actuator inputs, the pre-defined curvatures of the super-elastic tubes,
and the external disturbances.

In the formulation targeting minimally invasive procedures, we consider the following
external disturbances distributed along the body of the CTR: the local frame force f

′ and
moment n′ ; and global frame force f

′′ and moment n′′ . On the other hand, the concentrated
external disturbances, e.g., those applied by the actuators at the proximal end and the
surgical forces and moments at the distal end, are incorporated in f and n at the cross-
sections of the CTR. The aforementioned external forces and moments are also illustrated
in Figure 19.2. We further assume all the external disturbances are known, requiring force
sensing measurements to be deployed in the application, e.g., tip-mounted and actuator-
attached force-torque sensors or an array of fibre Bragg grating sensors.

19.3.1 Constitutive Equation

Hooke’s constitutive law incorporates the bending and torsional curvatures into the model
by converting the curvatures to moments for the static equilibrium equations. To achieve
this, the constitutive equation is expressed in the local frame {is}. Under the assumption
of linear elasticity, we have at cross-section s:

is
nis = Kis

(

is
uis −

is
u
∗
is

)

(19.8)

is
u
∗
is denoting the prescribed curvature before deformation, and the stiffness matrix Kis is

defined as

Kis =





EixIixx 0 0
0 EiyIiyy 0
0 0 GizIizz





Robot-Dependent Mapping 357

E, G, and I identifying the Young’s modulus, the shear modulus, and the second moment
of area, respectively. Furthermore, since super-elastic tubes are often made homogeneously
with uniform cross-sectional shapes along the arc length, we assume Eix = Eiy = Ei,
Iixx = Iiyy = Ii, and Kis = Ki for simplicity of derivation.

The moment associated with the deformation of the super-elastic tubes, i.e., Equa-
tion (19.8), is expressed in {is} since the pre-defined curvatures are too represented in the
local frame. However, it must be expressed in the CTR’s frame {0s} to be incorporated into
the static equilibrium equation. Substituting Equation (19.6) into (19.8) yields the moment
in {0s}:

0sn is =
0sRis Ki

(

isR0s
0su0s +

isuisz − isu∗

is

)

(19.9)

As well, considering a CTR of m super-elastic tubes, the overall moment generated by the
deformation of all super-elastic tubes is defined below:

0sn0s =

i=m
∑

i=1

0sRis Ki

(

isR0s
0su0s +

isuisz − isu∗

is

)

(19.10)

19.3.2 Static Equilibrium

For a finite CTR section, the static equilibrium expressed in the global frame {G} is given
by:

− GR0a
0a
f0a + GR0b

0b
f0b +

∫ b

a

GR0s
0s
f ′
0s +

G
f ′′
0sds = 0 (19.11)

for the force equation, and

− GpGA ×
GR0a

0a
f0a + GpGB ×

GR0b
0b
f0b −

GR0a
0an0a + GR0b

0bn0b

+

∫ b

a

GpGS ×

(

GR0s
0s
f ′
0s +

G
f ′′
0s

)

ds+

∫ b

a

GR0s
0sn′

0s +
Gn′′

0sds = 0
(19.12)

for the moment equation around the origin of {G}. 0an0a and 0bn0b are the concentrated
moments transmitted through the boundary cross-sections a and b, respectively. They can
be related to the bending and torsional curvatures of their respective CTR finite sections
following Equation (19.10). Their force counterparts, 0a

f0a and 0b
f0b , are the collection of

forces transmitted through individual super-elastic tubes, namely,

0s
f0s =

i=m
∑

i=1

0sRis
is
f is (19.13)

In the static equilibrium equation, R are the 3×3 rotation matrices. Additionally,
GpGS/

GpGA/
GpGB denote the position vectors directed from the origin of the global frame

to cross-sections s, a, and b, respectively, and represented in the global frame. It is also note-
worthy that the external disturbance may be given in either a global or local frame. For
example, the interaction force between the surgical end-effector and the tissue could be a
local frame concentrated force, while the weight of the CTR is expressed as a distributed
force in the global frame. Regardless, all the external disturbances must be mapped into
the same frame, in this case {G}, to be incorporated into the static equilibrium equation.

Equations (19.11) and (19.12) can be equivalently expressed into a unified equation as

∫ b

a

d

ds

(

GX0a

[

0a
f0a

0an0a

])

ds+

∫ b

a

GX0s

[

0s
f ′
0s

0sn′

0s

]

+

[

G
f ′′
0s

GpGS ×
G
f ′′
0s +

Gn′

0s

]

ds = 0 (19.14)

358 Concentric Tube Robot

where the 6×6 transformation matrix is discussed previously in Chapter 12:

GX0s =



G
R0s 0

G
R0s

0spGS×
G
R0s



=



G
R0s 0

GpGS × G
R0s

G
R0s



(19.15)

Taking the derivative of (19.14) leads to the relation between the change in cross-
sectional force and moment with respect to the external disturbances:

d

ds

(

GX0a



0a
f0a

0a
n0a

])

+ GX0a

[

0a
f ′
0a

0a
n
′

0a

]

+

[

1 0
GpGA× 1

] [

G
f ′′
0a

G
n
′′

0a

]

= 0 (19.16)

1 being the 3×3 identity matrix. We can further express Equation (19.16) into the local
frame {0a} through the inverse transformation matrix 0a

XG:

d

ds

[

0a
f0a

0a
n0a

]

= −

[

0a
u0a× 0

v× 0a
u0a×

] [

0a
f0a

0a
n0a

]

−

[

0a
f ′
0a

0a
n
′

0a

]

−

[

0a
RG 0

0 0a
RG

] [

G
f ′′
0a

G
n
′′

0a

]

(19.17)
allowing the cross-sectional forces and moments of the CTR to be propagated. However,
Equation (19.17) is written based on 0a

u0a for the combined CTR, and the torsional cur-
vatures of individual super-elastic tubes are not captured. Additional z-axis equations are
needed for this purpose.

For a super-elastic tube, the equivalent of the moment equilibrium of Equation (19.17)
can be derived through a similar process as:

d

ds
ia
nia = − v × ia

f ia − ia
uia × ia

nia − ia
n
′

ia − ia
RG

G
n
′′

ia (19.18)

where all the variables on the right-hand side of the equation, aside from ia
nia , are unknown.

However, since our interest is on the z-component, assumptions could be made according to
the application in minimally invasive procedures, such that the equation is solvable. Firstly,
the effect of ia

f ia vanishes in the cross-product, as the x- and y-components of v are assumed
zero. Secondly, the only source of z-axis local frame concentrated moment, ian′

iaz, is the
inter-super-elastic-tube friction, which could be assumed zero. Finally, the z-component of
global frame distributed moment, Gn′′

iaz, could also be assumed zero since disturbances of
this kind rarely present in the target application. The z-axis scalar Equation (19.18) can
thus be simplified into:

d

ds
ianiaz = −EiIi

(

−iauiax
iau∗

iay +
iauiay

iau∗
iax

)

, (19.19)

iauiax and iauiay denoting the x- and y-components of the bending curvature, their pre-
defined counterparts identified by the asterisks. Additionally, Equation (19.9) could be
substituted into (19.19) for direct propagation of the torsional curvature, namely,

d

ds
iauiaz = −

EiIi

GizIizz

(

−iauiax
iau∗

iay +
iauiay

iau∗
iax

)

(19.20)

19.3.3 Variations of the Governing Equation

We have now established that the governing set of equations, comprising (19.10), (19.17),
and (19.20), to solve for the local curvatures of the RD mapping. However, the governing
equation may be expressed in different forms, leading to variation in the computational
efficiency.

Robot-Dependent Mapping 359

The first variation is the direct implementation of the governing equations, except that
the constitutive equation is rearranged into the form below to provide the bending curvature
explicitly:

0au0a |xy =

(

i=m
∑

i=1

Ki

)−1 (

0an0a +

i=m
∑

i=1

0aRia Ki
iau∗

ia

)

∣

∣

∣

∣

xy

(19.21)

with subscripts xy denoting the scalar x and y equations, while the z-component of 0au0a is
by definition zero. It is noteworthy that the inverse stiffness term is, in fact, 0aRia Ki

iaR0a ,
and the simplification to Ki is feasible due to the assumption of equal stiffness in x- and
y-directions.

In the second variation, the number of scalar equations is reduced upon eliminating force
scalar equations in (19.17). This is achieved by integrating the forces from cross-section a

to the distal end of the CTR l and substituting into the moment scalar equations, namely,

d

ds
0an0a =− 0au0a × 0an0a − 0an′

0a − 0aRG
Gn′′

0a

− v ×

(

0aR0l
0l
f0l +

0aRG

∫ l

a

GR0s
0s
f ′
0s +

G
f ′′
0sds

)

However, said simplification comes with a cost. Since rotation matrices of the farther cross-
sections, 0aR0l and GR0s , are unknown, this equation is applicable when only the global
frame distributed force G

f ′′
0s presents. In this case, said equation is essentially

d

ds
0an0a = − 0au0a × 0an0a − 0an′

0a − 0aRG
Gn′′

0a − v × 0aRG

∫ l

a

G
f ′′
0sds (19.22)

It is also noteworthy that the global frame concentrated external force G
f0l applied at

the distal end of the CTR can be incorporated into (19.22) by means of the Dirac Delta
function, defined as:

G
f ′′
0s =

{

G
f ′′
0s +

G
f ′′
0l l − h ≤ s < l

G
f ′′
0s 0 ≤ s < l − h

i.e., the concentrated external force is treated as a distributed one applied at the last finite
section of the CTR.

Alternatively, the reduction in the number of scalar equations can be achieved by mak-
ing the constitutive law implicit, resulting in the third variation. The substitution of the
Equation (19.10) into the moment component of (19.17) gives

d

ds
0au0a |xy =−

(

i=m
∑

i=1

Ki

)−1

×

(

i=m
∑

i=1

0aRia

(

iauia × Ki

) (

iaR0a
0au0a − iau∗

ia + iauiaz

)

+
i=m
∑

i=1

(

− Ki
0a
uiaz ×

0au0a − 0aRia Ki

d

ds
iau∗

ia + 0aRia Ki

d

ds
iauiaz

)

+ v × 0a
f0a + 0a

f
′
0a + 0aRG

G
f ′′
0a

)
∣

∣

∣

∣

∣

xy

(19.23)
Again, the z-component of the rate of change of 0su0s is by definition zero. A limitation of
this method is that it requires the pre-defined curvature is

u
∗
is to be continuous. However,

this is often not the case in the application. A piece-wise approach (within segments of
continuous pre-defined curvatures) must be taken in the propagation.

360 Concentric Tube Robot

The last variation has the least number of equations by adopting the simplification of
the previous two, i.e., to eliminate the force part in the last row of Equation (19.23) through
the integration of forces from cross-section a to l. The expression is given by:

d

ds
0au0a |xy =−

(

i=m
∑

i=1

Ki

)−1

×

(

i=m
∑

i=1

0a
Ria

(

iauia × Ki

) (

ia
R0a

0au0a − iau∗
ia + iauiaz

)

+
i=m
∑

i=1

(

− Ki
0a
uiaz ×

0au0a − 0a
Ria Ki

d

ds
iau∗

ia + 0a
Ria Ki

d

ds
iauiaz

)

+ v ×

(

0a
R0l

0l
f0l +

0a
RG

∫ l

a

G
R0s

0s
f ′
0s +

G
f ′′
0sds

)

+ 0a
f ′
0a + 0a

RG
G
f ′′
0a

)∣

∣

∣

∣

∣

xy

(19.24)
The presence of the derivative of pre-defined curvatures requires the propagation based on
Equation (19.24) to adopt a piece-wise method similar to that of (19.23).

In summary, the four variations of the governing equation in the RD mapping are:

• Variation 1 — Equations (19.17), (19.20), and (19.21), similar to [5]

• Variation 2 — Equations (19.10), (19.20), and (19.22), reported in the authors’ work [6]

• Variation 3 — the force scalar equation of (19.17), along with Equations (19.20) and
(19.23), reported in the authors’ work [6]

• Variation 4 — Equations (19.20) and (19.24), similar to [7]

We will demonstrate the deviation in the computational efficiency through numerical case
studies in the later section.

19.4 Iteration

As established in the previous sections, the kinetostatic formulation of the CTR is a bound-
ary value problem with split boundary conditions. On the proximal end, the actuator input
displacements are prescribed, which can be used to identify the pre-defined curvatures isu∗

is

at each cross-section s of the CTR. Additionally, the axial rotation, θi0, of the super-elastic
tubes at the proximal end of the CTR are known. On the distal ends of the CTR and
individual super-elastic tubes, the boundary conditions can be expressed as:

0l
f0l =

0l
f
†
0l

0l
n0l |xy = 0l

n
†
0l |xy

0mnimz = 0l
n
†
0l |z

il′uil′z = 0 i = 1, 2, · · · , m− 1

(19.25)

superscript † denoting the prescribed boundary conditions. Cross-sections l and l′, corre-
spondingly, identify the distal ends of the CTR and the rest of the super-elastic tubes. In
Equation (19.25), the first and second conditions state that the force and bending moment

Case Studies for Computational Efficiency 361

equilibrium, respectively. The latter two conditions assume the external torsional moments
at the distal end are all applied onto the innermost tube m, rendering zero torsional curva-
ture on the rest of the super-elastic tubes.

The shooting method is used to solve the boundary value problem. Since 0aRG presents
the equations of RD mapping, the propagation starts from the proximal end of the CTR,
and the initial guesses comprise the missing force-domain information and/or the curva-
tures. Furthermore, the RD mapping may require continuous tube stiffness and pre-defined
curvature. In this case, the CTR is segmented for section-wise propagation, where terminals
separating two CTR sections are placed according to the following rules: 1) at the junction
where one of the super-elastic tubes has discontinuous pre-defined curvatures on two sides
and 2) at the distal end of a super-elastic tube due to discontinuous stiffness. During the
propagation, Equation (19.10) may be used at the start of a CTR section to recover the
moment.

19.5 Case Studies for Computational Efficiency

In case studies, we considered three CTRs whose design parameters are listed as follows:

Design parameters CTR 1 [8] CTR 2 [7] CTR 3 [9]

Tube 1 Tube 2 Tube 1 Tube 2 Tube 1 Tube 2
Outer diameter (mm) 2.77 2.41 2.37 1.75 2.29 1.60
Inner diameter (mm) 2.55 1.98 2.00 1.25 2.00 1.20

Length straight section (mm) 0 18 30.7 122.7 40 100
Length curved section (mm) 150 150 102.5 206.9 80 100

Radius of curved section (mm) 233 248 125 200 236 293
Direction of curvature x x −x −x −x −x

For a comprehensive evaluation of the computational efficiency, the CTRs were loaded
with concentrated and distributed forces, respectively, and the average time taken to solve
with respect to a set of prescribed actuator inputs was recorded for comparison. The external
loads and actuator inputs adopted are summarised below, where the CTRs were subject to
concentrated or distributed force.

Parameters CTR1 CTR2 CTR3

Input rotation θ20 (deg) 0–315 0–315 0–315
Input rotation θ20 interval (deg) 45 45 45

Input translation d10 (mm) 0 −30.7 0
Input translation d20 (mm) −18 −233.7–−141.7 −80–0

Input translation d20 interval (mm) n/a 23 40

Tip force G
f0l (N) 0–2 0–2 0–2

Tip force G
f0l interval (N) 0.2 0.2 0.2

Tip force direction +y +x/y/z +x/y/z
Distributed force G f ′′0s (N/m) 0–4 0–2.9 0–3

Distributed force G f ′′0s interval (N/m) 0.67 0.48 0.50
Distributed force direction +x +x +x

As well, in the experiment, the relative translation and rotation between the super-elastic
tubes were generated by means of actuating Tube 2, i.e., the inner tube.

362 Concentric Tube Robot

TABLE 19.1

Average Computation Time (s) of
CTR under Concentrated Tip Force

Variations CTR1 CTR2 CTR3

1 22.6 37.9 19.5
2 16.7 30.8 13.8
3 28.7 49.7 24.3
4 21.3 36.5 17.2

Notably, the actuator input translation d10 and d20 at the proximal ends of the super-
elastic tubes were measured from the proximal end of the combined CTR; hence, the mag-
nitudes could be negative. Furthermore, a sole prescribed value refers to a fixed actuator
position, whereas a range indicates the use of several discretised positions. Moreover, in the
simulation, +x/y/z of “tip force direction” means that the x-, y-, and z- components of the
force are identical, and the norm of said force is prescribed.

To implement the shooting method for a solution, we adopted the Runge-Kutta 4 method
in the iteration with a step size h of 1 mm and an accuracy of 1×10−5 (N or Nm). Addi-
tionally, the correction on the initial guesses is defined as:

qj+1 = qj − 0.5
(

f − f†
)

(19.26)

qj and qj+1 denoting the initial guesses of iteration j and j + 1, and the correction is
made based on the difference between the iterated boundary condition f and its prescribed
counterpart f† . Such a relation is established since it is intuitive that excessive/insufficient
actuator inputs will result in excessive/insufficient outputs on the distal end of the CTR.

The comparison in average iteration time is illustrated in Tables 19.1 and 19.2. It can
be observed that the two variations, Equations (19.22) and (19.24), where the propagation
of force is omitted, yield faster computation subject to concentrated tip force but are slower
upon the presence of the distributed force. The degraded performance in the latter case is
clearly due to the operation of integrating the distributed force from the cross-section s to
the distal end of the CTR. On the other hand, in variations 1 and 4 where the propagation of
force is retained, variation 1 seems to be the more computationally efficient despite having
more scalar equations (explicit constitutive and moment equilibrium equations vs implicit
constitutive equation and explicit moment equilibrium).

TABLE 19.2
Average Computation Time (s) of
CTR under Distributed Tip Force

Variations CTR1 CTR2 CTR3

1 12.2 22.9 9.03
2 16.2 65.9 12.6
3 15.6 41.0 11.6
4 20.5 51.2 15.2

Conclusion 363

19.6 Conclusion

The work described in this chapter concerns an alternative (vs. that in Chapter 18) method
to model a soft robot, this time with continuum bodies that may be too long or too com-
plex for the use of the pseudo-rigid body approach. The method splits the model into two
parts: the robot-independent mapping universal to all soft continuum robots and the robot-
dependent mapping specifically related to the mechanical designs and actuation schemes on
individual robots — the latter centres around static equilibrium, with the kinematic-domain
constraints embedded implicitly in the force-domain equations. Unlike the previous method
that yields a closed-form analytical solution, the model described herein must be solved
iteratively through numerical integration. As such, we further derive the variations of the
force domain equations to investigate the deviation in computational efficiency.

Bibliography

[1] C.-H. Kuo, J. S. Dai, and P. Dasgupta, “Kinematic design considerations for minimally
invasive surgical robots: an overview,” The International Journal of Medical Robotics
and Computer Assisted Surgery, vol. 8, no. 2, pp. 127–145, 2012.

[2] P. Sears and P. Dupont, “A steerable needle technology using curved concentric tubes,”
in 2006 IEEE/RSJ international conference on intelligent robots and systems, pp. 2850–
2856, IEEE, 2006.

[3] R. J. Webster, A. M. Okamura, and N. J. Cowan, “Toward active cannulas: Miniature
snake-like surgical robots,” in 2006 IEEE/RSJ international conference on intelligent
robots and systems, pp. 2857–2863, IEEE, 2006.

[4] D. K. Pai, “Strands: Interactive simulation of thin solids using Cosserat models,” Com-
puter graphics forum, vol. 21, no. 3, pp. 347–352, 2002.

[5] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of concentric-
tube robots,” IEEE Transactions on Robotics, vol. 26, no. 2, pp. 209–225, 2009.

[6] S. T. Liu and C. Chen, “Framework of modelling concentric tube robot and comparison
on computational efficiency,” Meccanica, vol. 52, pp. 2201–2217, 2017.

[7] D. C. Rucker, B. A. Jones, and R. J. Webster III, “A geometrically exact model for
externally loaded concentric-tube continuum robots,” IEEE transactions on robotics,
vol. 26, no. 5, pp. 769–780, 2010.

[8] J. Lock, G. Laing, M. Mahvash, and P. E. Dupont, , “Quasistatic modeling of con-
centric tube robots with external loads,” 2010 IEEE/RSJ international conference on
intelligent robots and systems, pp. 2325–2332, 2010.

[9] S. Bai, and C. Xing, “Shape modeling of a concentric-tube continuum robot,” 2012
IEEE international conference on robotics and biomimetics (ROBIO), pp. 116–121,
2012.

20

Path Planning of Parallel
Manipulators

Our previous discussions are mostly limited to serial (single-chain) manipulators. That is, a
robot consisting of a single chain of links and actuators with one end connected to a base,
and the other manipulating an end effector. In this chapter, we will briefly introduce parallel
manipulators . This type of manipulator consists of multiple serial manipulators, but con-
nected in parallel to drive the same payload. There are many advantages to this topology,
such as enhanced payload capacity, stiffness, and precision. However, they also bring about
many challenges and unique characteristics that have fascinated kinematicians, robotics
researchers, and even mathematicians over the last five decades. One of these unique char-
acteristics is their complicated workspaces, which can be represented as complex surfaces
or manifolds. Due to their parallel structure, they often feature complex singularity profiles
that make path planning queries difficult, especially for longer paths in certain configuration
spaces. This chapter will describe a generalised method for generating configuration spaces
for parallel mechanisms, that can enhance the efficiency of path planning queries.

20.1 Parallel Manipulator Kinematics

The equations that describe the kinematics of a parallel mechanism are often known as
closure loop equations because these are equations that describe the kinematic loop that is
featured in parallel manipulators. We express this equation in the generalised form,

F(x,q) = 0 (20.1)

where F is a set of non-linear equations that describe the relationship between task space
variables x and joint space variables q. The path planning variables of parallel manipulators
can consist of both joint and task space variables, depending on the manipulator’s task and
complexity. As these variables are used to fully define the configuration of the parallel
manipulator, we can call this the C-space. But while planning occurs in the C-space, the
control of a parallel manipulator still fundamentally occurs in the joint space. Therefore, we
then require a mapping of the joint space variables to the C-space in a one-to-one relation,
in other words, a set of equations that can convert joint space variables to a unique point in
C-space where planning occurs. If a one-to-one mapping is guaranteed, then path planning
in the C-space can be greatly simplified.

Let Q ⊂ R
n be the set of all possible joint configurations for a parallel mechanism. Then

we seek a set of functions G such that any joint configuration q ∈ Q can be mapped to a
unique point in the C-space, defined as set C ⊂ R

n. Therefore

x = G(q) (20.2)

DOI: 10.1201/9781003614319-20 364

https://doi.org/10.1201/9781003614319-20

Parallel Manipulator Kinematics 365

and

G : Q → C (20.3)

in which G can be described as the forward kinematics of a parallel manipulator.
The set of functions G, in general, is highly non-linear and very difficult to find closed-

loop solutions, especially for parallel manipulators greater than 3 DoF such as the gen-
eralised Stewart-Gough platform [25]. A common technique to solve this problem is to
represent the closed loop as a univariate polynomial, such that the roots of the polynomial
represent the forward kinematic solution

P (u,q) = 0 (20.4)

where P is a univariate polynomial in u ∈ C, whose coefficients are a function of joint
space variables q. Let U ⊂ R be the set of real roots that satisfy Equation (20.4). Then by
applying kinematic mapping X, such that

X : U → C (20.5)

the roots of Equation (20.4) are mapped back into the C-space, represented by the set C.
The univariate polynomial expression of the forward kinematics is very useful in that

the real roots represent the forward kinematic solution. Numerical root-finding algorithms
are quite established, and can find roots of polynomials of very high degree very efficiently.
Furthermore, we find that this property can be exploited to significantly enhance C-space
generation speed, which is important for applications in higher dimensions.

20.1.1 Singularities

Given the general form of the kinematic constraints of a parallel robotic mechanism in
(20.1), differentiating this with respect to time gives the relationship between the joint and
end effector velocities

Jx(x)ẋ = Jq(q)q̇ (20.6)

where Jx and Jq are parallel and serial Jacobians, respectively. Singularities occur when
the determinant of either or both Jacobian matrices Jx and Jx equate to 0, and confine
the mechanism to a single operating configuration where each configuration can be classed
as a mode of operation. The types of singularities separating each configuration are inverse
kinematic and forward kinematic singularities [3].

20.1.1.1 Type I Singularities: Working Modes

Under Type I parallel singularities [9], detJx = 0, where Jx becomes rank-deficient. Under
this condition, the end-effector gains a degree of freedom (zero q̇ maps to a non-zero ẋ),
resulting in its loss of control. In terms of kinematics, multiple points in joint space relate to a
single point in the task space under this condition. Under näıve path planning schemes that
utilise only task space variables, type I singularities fragment the parallel manipulator’s
workspace into smaller segments called working modes. These working modes cannot be
changed, unless starting conditions are changed, or direct drive of the actuators is utilised.

20.1.1.2 Type II Singularities: Assembly Modes

These exist as a result of multiple points in task space relating to a single point in joint
space. In encountering the change in assembly mode boundary, det(Jx) = 0 (type II direct

366 Path Planning of Parallel Manipulators

kinematic singularity), a zero q̇ vector equates to a non-zero ẋ. The loss in stiffness in the end
effector is highly undesirable and so must be avoided when path planning. Again, under
näıive path planning schemes, type II singularities fragment the workspace into smaller
segments called assembly modes, meaning only a small portion of a parallel manipulator’s
workspace can be used unless there is user intervention (change in initial conditions), or
advanced path planning methods are utilised.

This latter point was a hot topic of research for many roboticists, as workspace frag-
mentation of parallel manipulators results in limited useful workspace, which eventually
restricts their usefulness to very niche applications. This problem was a significant chal-
lenge to overcome, but there were certain methods one could implement to enhance their
workspace. This chapter introduces one such method.

20.1.2 Example: A 5R Parallel Manipulator

To better understand the problem, we begin with a simple parallel manipulator called the
5R, or five-bar manipulator, as shown in Figure 20.1. It features two kinematic chains,
A1B1P and A2B2P , respectively, attached to a rigid base A1A2. Point Ai is an active
(driven) joint for kinematic chain i, point Bi is a passive joint, and point P is the payload,
which is also a passive joint. The output position of P is planar and is purely driven by A1

and A2, whose actuator position is defined as θ1 and θ2, relative to the y-axis. The bolded
links L1 and L2 represent the links that are driven by these actuators respectively.

For the 5R manipulator, vectors q and x are

x =
[

x y
]

(20.7)

and

q =
[

θ1 θ2
]

(20.8)

Therefore, the kinematic constraint equations in the form of (20.1) are

(x− L1 cos θ1)
2 + (y − L1 sin θ1)

2 − l1
2 = 0 (20.9)

(x− dx − L2 cos θ2)
2 + (y − dy − L2 sin θ2)

2 − l2
2 = 0 (20.10)

Referring to our 5R parallel manipulator example, taking the time derivative of time-
dependent variables x, y, θ1, and θ2 we obtain Jacobian matrices

𝐿1

𝐿2

𝑙1

𝑙2

𝑑

𝑃(𝑥, 𝑦)

𝐵1

𝐵2

𝐴2 𝐴1

𝑥 𝑦
𝜃1 𝜃2

FIGURE 20.1

A 5R manipulator.

Parallel Manipulator Kinematics 367

Jx =

[

x− L1 cos θ1 y − L1 sin θ1
x− dx − L2 cos θ2 y − dy − L2 sin θ2

]

(20.11)

Jq =

[

L1(x sin θ1 − y cos θ1) 0
0 L2(sin θ2(x− dx)− cos θ2(y − dy))

]

(20.12)

20.1.2.1 Assembly Modes

These exist as a result of multiple points in task space relating to a single point in joint space
(Figure 20.2(a)). The workspace boundary of an assembly mode is defined at det(Jx) = 0,
in which a zero q vector equates to a non-zero x. This indicates a loss of control at the end
effector, and should be avoided when path planning. Because of this, the 5R mechanism
cannot change assembly modes during operation without special actuation strategies, such
as the use of dynamics or momentum to drive the end effector beyond its singularity re-
gion. However, we find later than more complex parallel manipulators can, in fact, change
assembly modes.

Because the determinant of a configuration can be positive or negative, we can class a
configuration as being in the positive or negative aspect, or ⊕ and ⊖ for short, respectively.
A singularity-free path between configurations in differing aspects cannot exist because this
will result in a sign change in det(Jx), i.e., passing zero.

20.1.2.2 Working Modes

These exist as a result of multiple points in joint space relating to a single point in the
task space (Figure 20.2(b)). The workspace boundary of a working mode is defined at
det(Jq) = 0, in which case for some non-zero q, results in a zero x vector, indicating loss
of one or more degrees of freedom (DoF). Although the mechanism cannot be actuated
by means of inverse kinematics, control can still be achieved using direct drive. Passing
this kind of singularity in this control scheme results in the reconfiguration of the parallel
mechanism.

(a) Assembly modes (b) Working modes

FIGURE 20.2

5R kinematic configurations.

368 Path Planning of Parallel Manipulators

20.2 The Path Planning Problem

Path planning between two configurations of a manipulator in the configuration space (C-
space) is a fundamental task in robotics, with varying degrees of difficulty depending on
C-space complexity [1]. The subject received much attention with advances in robot archi-
tecture such as parallel mechanisms, highly-redundant robots, and applications in mobile
robotics, creating more complex and dynamically changing C-space topologies [2]. Sampling-
based planning methods such as rapidly exploring random trees (RRT) [4] and probabilistic
road maps (PRM) [5] were developed as a solution to handle complex C-spaces [6]. However,
planners of this nature are probabilistically complete, meaning a valid solution is not guar-
anteed ahead of time. Highly complex or higher dimensional C-space manifolds can contain
narrow channels which typically reduce the chance of valid connectivity through that region.
This can result in very high path planning times with little chance of a successful plan.

Path planning for parallel manipulators is a challenging task, due to non-linear con-
straints imposed by closed-loop kinematic chains [7]. This creates a C-space manifold that
is highly complex in nature due to the existence of singularities [8]. In addition, parallel
manipulators have two types of singularities, called serial singularities, and parallel sin-
gularities. Serial singularities are analogous to those encountered earlier in this textbook.
Parallel singularities, on the other hand, pose a significant threat to the controllability of a
parallel manipulator, as encountering them results in total loss of control of the end effector.
In some texts, this is called a Type II singularity [9], with serial singularities being Type I.
This places further emphasis on planners to avoid Type II singularities at all costs, which
is a non-trivial problem in C-space planning for parallel manipulators.

Several works confront the Type II singularity problem in the C-space, with the 3-RPR
parallel mechanism becoming the focus for many researchers for its unique C-space manifold
[10, 11, 12, 13, 14, 15]. These path planning strategies focus on unique features of the C-
space that allow singularity-free path planning in the joint space, which trivialises the Type
I singularity problem [16]. While completely singularity-free path planning was validated
in the joint space-generated C-space, it required significant knowledge of specific features
in the C-space manifold called cusp points [17], which were the main focus and mechanism
for singularity-free path planning in these works. Therefore, these path planning schemes
cannot be generalised for all C-spaces.

A few sampling-based strategies have been proposed for the general path planning of
parallel manipulators [18, 19, 6, 20, 21], which verify the feasibility of this type of planner
in complex and higher dimensional C-spaces, but do not to account for any singularities.
Other planners that consider the C-space in task variables were proposed in [7, 22], where
Type I singularities were assumed to be controllable. However, path planning in this C-
space becomes complicated in the presence of multiple inverse kinematic solutions, where
the manipulator’s working modes introduce extra layers and internal boundaries in the C-
space. There is no unified method of how to handle Type I singularities in this type of
C-space [23].

The method of C-space decomposition plays a large role in the efficiency of path plan-
ning, especially when considering the applicability in online or offline multi-query planning.
In [7, 15], the C-space is constructed in its entirety and deterministically. This method of
C-space generation breaks the problem into smaller spaces called charts, where it is assumed
the set of configurations it contains are connected. Chart interconnectivity is represented as
a graph called an atlas, and global planning utilises the atlas to find a path between charts
that contain the start and goal positions, creating a hierarchical path planning scheme.
In addition, [7] does not require closed-form parametrisation of the C-space, which can

Methodology 369

significantly reduce the computational intensity if the singularity profile is complex. While
full C-space construction allows the use of complete planners for deterministic path queries,
these works suffer from higher dimensionality problems as the number of discretised ele-
ments grows exponentially. Other works [20, 21] randomly sample and grow parts of the
C-space using its tangent space to avoid its full reconstruction through RRTmethods (known
as AtlasRRT). While this method is suitable for higher dimensional cases, path planning
is no longer deterministic, which can lower planning efficiency in highly complex higher
dimensional C-spaces such as that found in [24].

With these problems in mind, we introduce a novel C-space construction method for gen-
eral non-redundant parallel mechanisms that is fast and leaves a small memory footprint,
even in higher-dimensional spaces. This C-space allows for deterministic path planning,
which carries significant advantages in speed and completeness. In this method, the C-space
is constructed with joint space variables to eliminate the complexities of handling Type I
singularities. Points are randomly sampled in the C-space and connected using Delaunay
triangulation (DT), which will mitigate problems associated with planning in higher di-
mensions compared to grid discretisation. DT also ensures points are connected to their
nearest neighbour, increasing the likelihood of connectivity between points in the C-space.
Singularities in the C-space are found using root counting algorithms on the closed-form for-
ward kinematic equations in univariate polynomial form, which is significantly faster than
numerically solving the root of the determinant of a Jacobian matrix. Using a method sim-
ilar to [15], the C-space is broken down into charts based on the location of the singularity
locus. Finally, using simple iterative connectivity algorithms, the charts are connected to
form a chart, representing the atlas of the C-space. With the atlas (graph) showing global
connectivity amongst charts, global path planning queries are very efficient but, more im-
portantly, deterministic so that no time is wasted waiting for an improbable path query to
fail. Examples of C-space construction using this method are provided for the three-DoF
3-RRR parallel manipulator.

20.3 Methodology

Because a parallel manipulator’s workspace is so complex due to its complicated singu-
larity profile, blindly applying a sample-based path planning algorithm will not yield a
time-feasible result. An algorithm like RRT will perform many checks for path validity to
construct its tree, and if its search resolution is not fine enough to capture parallel singu-
larities, some paths may actually contain singularities, resulting in disastrous results for
the robot when the path is executed. To completely eliminate this, we desire workspace
definitions that are singularity-free. Thus, we propose the following methodology to ensure
efficient and successful path planning for parallel manipulators:

Setup Phase

This phase only needs to occur once, with the goal of simplifying the path planning proce-
dure.

1. Separate the manipulator’s complicated workspace into unique, singularity-free
workspace regions called charts

2. Find singularity-free paths between these charts called links

3. Represent the workspace in a connected chart called an atlas, where charts are
represented as nodes with links representing singularity-free paths between them.

370 Path Planning of Parallel Manipulators

Path Planning Phase

For a path defining our initial and goal manipulator configurations, determine path feasi-
bility and create a safe, singularity-free path for the end effector.

1. Determine which charts contain our initial and goal configurations.

2. If the two configurations exist but are on two separate charts, determine if they
are connected on the atlas.

3. If they are connected, perform path planning in each chart, utilising the
singularity-free links as defined in the atlas.

4. Once complete, a complete path plan consists of:

(a) A path from the initial configuration to the link to the next chart;

(b) From the link in the next chart, a path to the next link to the next chart,
repeating this until the chart containing the goal configuration is found; and

(c) A path from the last link to the goal configuration.

20.4 Generating Charts

The goal is to develop an efficient planning strategy to generate singularity-free paths for
parallel manipulators. To ensure singularity-free paths, we should evaluate the mechanism’s
singularity locus. Once found, we can determine regions of the manipulator’s reachable
workspace that are fully connected and singularity-free, which we call a graph. These charts
are critical for the efficiency of parallel manipulator path planning in higher dimensional
spaces, as they allow the planner to determine path feasibility in advance.

20.4.1 Singularity Locus

Figure 20.3 shows a plot of det(Jx) of a parallel manipulator along a linear path between
two points in the configuration space. To the left of the chart, the manipulator has four
kinematic solutions (assembly modes). However, as we traverse along the path, we find that
two of those solutions approach a parallel singularity, then eventually disappear. The point
at which this happens is called a parallel singularity. However, we also observe that two
assembly modes remain singularity-free along the path. Therefore, we refer to this point as
a singularity locus, because a parallel singularity exists for certain configurations along the
path, but not for others.

The formal definition of a singularity locus describes the possible location of a singularity
in an n-dimensional C-space. Because det Jx = 0 is a projection onto the n-dimensional C-
space, it is reduced by one dimension, i.e., the singularity locus of a two-dimensional C-space
is represented by a line (Figure 20.4), or a surface when considering a three-dimensional
C-space.

20.4.2 Identifying a Chart

We define a graph as a region of workspace that is guaranteed to be singularity-free. Because
the singularity locus defines regions of the workspace in which a singularity may exist,
implicitly, a chart will be bounded by a singularity locus.

Generating Charts 371

If we inspect further, a singularity locus also indicates where kinematic solutions (as-
sembly modes) disappear or reappear. With this information, we can draw the conclusion
that the singularity locus exists where the number of forward kinematic solutions changes.
We can determine the number of kinematic solutions by counting the real roots of the
forward kinematics univariate polynomial (20.4). Therefore, we can reduce this problem
to a simple root-counting exercise, thus avoiding the computational costs of finding the
roots of det Jx = 0. Furthermore, we can avoid explicitly solving the roots by utilising fast
root-counting algorithms, such as Sturm’s theorem to count the real roots of a univariate
polynomial within an interval. For example, using a bisection method can pinpoint exactly
where a change in the number of real solutions occurs, finding the exact location of the
singularity locus in the process.

Using Sturm’s theorem with the bisection method for precise root counting, we can
generate maps of kinematic solutions such as Figure 20.5. This shows the number of assembly
modes for a 3-RRR parallel manipulator over a two-dimensional discretised grid (θ2, θ3),
and with θ1 held constant at 36°. We observe that there are clear continuous boundaries
between regions of differing numbers of assembly modes, which we mark as the singularity
locus. Again, we assume that within these boundaries, the workspace is singularity-free by

FIGURE 20.3

Plot of det Jx of a linear path between 4-solution and 2-solution vertices. The bisection
method is used for finding the location of the singularity locus.

372 Path Planning of Parallel Manipulators

4 solutions 2 solutions

Singularity locus
(planar projection)

3 solutions

Singularity

Non-singular loci
(Gates)

Workspace patch
surface

FIGURE 20.4

The C-space manifolds that satisfy F(x,q) = 0 of a two-dimensional joint space q, with
projection of the singularity locus.

the definition of an assembly mode.

20.4.3 Constructing a Chart’s C-space

There are two possible methods to build the connected region within a chart: grid dis-
cretisation and random sampling. We will utilise random sampling here, because parallel
manipulators usually operate in higher dimensional workspaces, which makes grid discreti-
sation highly inefficient.

Random-sampling the joint space variables used in this method of C-space generation
shares some similarities with generating a probabilistic roadmap [18], where the more sam-
ples are taken, the clearer the C-space becomes in identifying features and obstacles (sin-
gularities). This paradigm allows this method of C-space generation to remain viable in
higher-dimensional spaces, as the number of samples in this space is user-defined, rather
than exponentially increasing with each additional dimension. Increasing the number of
samples of the joint space increases the resolution of the C-space, at the expense of compu-
tation speed and memory footprint.

Each point sampled in the joint space is projected to a single in the C-space is called
a vertex, ignoring the presence of multiple assembly modes for generality for the time be-
ing. Then each vertex is initially connected via edges using Delaunay triangulation. This
guarantees that all vertices are connected, and that a vertex is connected to at least its
closest neighbour. Each edge in the C-space represents a path between two points; a linear
interpolation in the joint space coordinates, which will be checked later for path validity.

Constructing the Atlas 373

FIGURE 20.5

Number of assembly modes of a 3-RRR parallel manipulator in the configuration space,
where θ1 is held constant.

20.5 Constructing the Atlas

Recall that only some assembly modes will encounter singularity across a singularity locus.
Using the continuity condition as defined in Section 20.6.2, we can verify which kinematic
configurations allow passage across a singularity locus. This process can be visualised in
Figure 20.8. The sampled points along the boundary of a chart (same coloured regions) are
called gates. They are coloured dark blue for the cyan region (two kinematic solutions),
cyan in the dark blue regions (four kinematic solutions), and yellow in the grey regions (six
kinematic solutions). For each gate that is adjacent to another gate with increasing number
of kinematic solutions, their paths are checked for singularity-free connectivity.

As we find connections between charts, we can represent this as a map of nodes and
links, where a node is a chart, and links are the feasible paths between them. This map of
connected charts is called an atlas, which represents the overall reachable workspace of a
parallel manipulator as a chart of connected nodes. An example of this is shown in Figure
20.6, where each patch follows the naming convention

±x.y.z

where

• ± indicates the positive or negative aspect,

• x indicates the number of DK solutions (assembly modes) associated with this chart,

(20.13)

374 Path Planning of Parallel Manipulators

FIGURE 20.6

An example atlas in the negative aspect only.

• y indicates the unique chart ID for x, ordered descending of the number of vertices the
chart contains, and

• z indicates the assembly mode ID for the particular chart associated with y.

If one were to determine whether a path between points in configuration space exists,
we must perform the following steps:

1. Determine which charts contain starting and ending configurations.

2. Determine the location of the nodes in the atlas associated with these charts.

3. Perform a search to see if a path exists between the two nodes.

4. If a path is found in the atlas, we know a path between these configurations exists.

For example, we want to perform an assembly mode change with a starting configuration
contained in chart −3.1.1 . This means the ending configuration is contained in chart

−3.1.3 , as this refers to the same chart ID y, but in differing assembly mode ID z. Because

these two charts are connected in the atlas, (e.g., via −2.2.2 , −1.1.1 , and −2.2.1), then
we know a singularity-free path can exist. The advantage of utilising this atlas is that
it determines path feasibility before computation can actually begin very efficiently. If a
proposed path plan contained starting and ending configurations that were not connected
by the atlas, the planning is immediately forfeited. This is incredibly useful for sample-based
planners, as they will continuously search for a path that does not exist until a timeout
condition is reached.

20.6 Case Study: A 3-RRR Parallel Manipulator

To demonstrate the efficiency of this planning method, we apply it to the 3-RRR parallel
manipulator (Figure 20.7). The variable parameters that define the manipulator are:

OB = (OBx, OBy) OC = (OCx, OCy) MB = (MBx, 0) MC = (MCx,MCy)
(20.14)

Case Study: A 3-RRR Parallel Manipulator 375

𝑅𝑅1
𝑅𝑅2

𝑅𝑅3

𝑟𝑟1 𝑟𝑟2

𝑟𝑟3

𝜃𝜃3

𝜃𝜃1 𝜃𝜃2

𝜙𝜙

{𝑶𝑶}

{𝑴𝑴}
{𝑭𝑭} 𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦,𝜙𝜙)

𝑀𝑀𝐵𝐵

𝑀𝑀𝐶𝐶
𝐹𝐹𝐶𝐶

𝐹𝐹𝐵𝐵

𝐹𝐹𝑀𝑀

𝑂𝑂𝑀𝑀 𝑂𝑂𝐵𝐵

𝑂𝑂𝐶𝐶

𝛼𝛼

𝑥𝑥

𝑦𝑦

𝛽𝛽

FIGURE 20.7

A 3-RRR parallel mechanism.

where the origin of the base frame {O} is OA = (0, 0). The orientation of the base frame
is arbitrary, but it is usually aligned such that the parameter OBx = 0. The dimensions of
the moving platform are fully defined by MB and MC.

A secondary frame {F} is defined at the passive joint of the first chain FA. This frame is
located at position (xFA, yFA, α), relative to the base frame {O}. Frame {M} is positioned
on the moving platform such that MB = (xMB , 0) and MC = (xMC , yMC) in {M}. This
frame is located at position (xMA, xMA, β), relative to frame {F}.

The end-effector is described by point OMA(x, y, φ), where x = x(x, y, φ) gives the
description of MA in planar position and rotation with respect to the base frame at whose
origin is at OA.

Parameters R and r describe the active and passive link lengths, respectively.

20.6.1 Forward Kinematics

In general, there are up to six forward kinematic solutions for this class of manipulator [10],
which is solvable in univariate polynomial form with the assistance of kinematic mapping
[28]. Using kinematic mapping, we can avoid working with non-linear simultaneous equations
generated by forward kinematics for each leg. Instead, the coefficients of the univariate
polynomial can be generated straight from the co-ordinates of MB and MC in {M} (which
are constant), FB and FC in {F} and q = (θ1, θ2, θ3). The univariate polynomial in the
mapping variable X3 [28] is given as

A6X
6
3
+A5X

5

3
+A4X

4

3
+A2X

2

3
+A1X3 +A0 = 0

where

A6 = e21 + a6d
2
5
+ d21

A5 = 2d1d2 + 2a6d5d6 + 2e1e2

(20.15)

(20.16)

(20.17)

376 Path Planning of Parallel Manipulators

A4 = a6d
2
5
+ 2d1d3 + e22 + 2e1e3 + d22 + 2a6d5d7 + a6d

2
6

A3 = 2d1d4 + 2e2e3 + 2a6d6d7 + 2a6d5d6 + 2d2d3 + 2e1e4

A2 = 2e2e4 + e2
3
+ d2

3
+ a6d

2
7
+ 2d2d4 + 2a6d5d7 + a6d

2
6

A1 = 2e3e4 + 2d3d4 + 2a6d6d7

A0 = a6d
2
7
+ e24 + d24

Ka = −r2a

Kb = XFB
2 − r2b

Kc = XFC
2 + YFC

2 − r2c

a6 = 1
4Ka

b1 = −XFB −XMB

b4 = −XFB +XMB

b6 = 1
42XFBXMB +Kb +XMB

2

b7 = 1
4XMB

2 − 2XFBXMB +Kb

c1 = −XFC −XMC

c2 = −YFC − YMC

c3 = −YMC + YFC

c4 = −XFC +XMC

c5 = XFCYMC − YFCXMC

c6 = 1
4

(

2YFCYMC + 2XFCXMC +Kc + YMC
2 +XMC

2
)

c7 = 1
4

(

XMC
2 + YMC

2 − 2XFCXMC +Kc − 2YFCYMC

)

d1 = −c2b6 + c2a6

d2 = c4a6 − c4b6 + c6b4 − a6b4

d3 = c5b4 − c2b7 + c2a6

d4 = −a6b4 − c4b7 + c7b4 + c4a6

d5 = c2b1

d6 = −c1b4 + c4b1

d7 = −c3b4

e1 = b6c1 − b1c6 + b1a6 − a6c1

e2 = b6c3 − a6c3 − b1c5

e3 = −b1c7 + b1a6 − a6c1 + b7c1

e4 = b7c3 − a6c3

Note that

MB = [XMB , 0] MC = [XMC , YMC]

are constant quantities with respect to frame {M} while

FB = [XFB , 0] FC = [XFC , YFC]

are variables with respect to {F}. In order to find these quantities, some linear algebra work
is required.

(20.18)

(20.19)

(20.20)

(20.21)

(20.22)

(20.23)

(20.24)

(20.25)

(20.26)

(20.27)

(20.28)

(20.29)

(20.30)

(20.31)

(20.32)

(20.33)

(20.34)

(20.35)

(20.36)

(20.37)

(20.38)

(20.39)

(20.40)

(20.41)

(20.42)

(20.43)

(20.44)

(20.45)

(20.46)

(20.47)

(20.48)

(20.49)

(20.50)

Case Study: A 3-RRR Parallel Manipulator 377

Let’s define the following F coordinates with respect to the base frame:

OFA = [OXFA,
O YFA]

OFB = [OXFB ,
O YFB]

OFC = [OXFC ,
O YFC]

Therefore OFA, OFB, and OFC are calculated by

OXFA = R3 cos θ1
OXFA = R3 cos θ1
OXFB = R3 cos θ2 +OBx

OYFB = R2 sin θ2 +OBy

OXFC = R3 cos θ3 +OCx

OYFC = R3 sin θ3 +OCy

The transformation matrix from frame {O} to frame {F} is

OTF =





cos(α) − sin(α) OXFA

sin(α) cos(α) OYFA

0 0 1





where

α = Atan2
(

OYFB −O YFA,
O XFB −O XFA

)

XFB =


(OYFB −O YFA)2 + (OXFB −O XFA)2

and

FC = FTO
OFC

∴





XFC

YFC

1



 = OTF T−1





OXFC
OYFC

1





We now have all the parameters required to find the coefficients for the univariate

X3. The conversion of variableX3 to output variables (
FXMA,

F YMA, β) in {F} is performed
by

β = 2 Atan2(X3, 1)

FXMA = 2



X1X3 +X2

X3
2 + 1



FYMA = 2



X2X3 −X1

X3
2 + 1



where

X1 =
d1X

3
3 + d2X

2
3 + d3X3 + d4

d5X
2
3 + d6X3 + d7

X2 =
e1X

3
3 + e2X

2
3 + e3X3 + e4

d5X
2
3 + d6X3 + d7

(20.51)

(20.52)

(20.53)

(20.54)

(20.55)

(20.56)

(20.57)

(20.58)

(20.59)

(20.60)

(20.61)

(20.62)

(20.63)

(20.64)

(20.65)

(20.66)

We can now calculate the parameters in (20.50).

polynomial (20.15). We will find up to six roots in the 6th-order polynomial for the variable

378 Path Planning of Parallel Manipulators

Hence

FTM =





cos(β) − sin(β) FXMA

sin(β) cos(β) FYMA

0 0 1





OTM = OTF
FTM

The parameters for the 3-RRR used in this example are OA(x, y) = (0, 0), OB = (6, 0),
OC = (3, 2), XMB = 4, XMC = 1 and YMC = 5, where leg lengths R = (3, 3, 3) and
r = (3, 4, 5) arbitrary unit lengths.

20.6.2 Continuity Conditions

Determining the continuity of adjacent vertex accurately in multiple-solution situations
is very important in this path planning application. Not only is it necessary for chart
construction, but it also determines which charts are continuous across a singularity locus,
which forms the basis of atlas construction. Because there are multiple forward kinematics
solutions, we must define a continuity condition that accurately selects the correct solution,
given any number of DK solutions between postures.

Because the moving platform of the 3-RRR is defined by three passive joints defined
in frame {M}, i.e., MA, MB, and MC, (Figure 20.7), due to their dependence on spatial
coordinates only, we can set our continuity conditions based on the delta of passive joints
M . That is, we can condense the continuity condition into a comparison of a single number
between the original configuration O, and the next configuration n, where n denotes the
n-th solution in the adjacent cell by the following equation:

(20.67)

(20.68)

(20.69)∆n = |MAn −MAO|+ |MBn −MBO|+ |MCn −MCO|

The continuity conditions between configurations O and n is therefore

min(∆n) (20.70)

where n denotes the best forward kinematic solution in the next posture. An example
of random sampling over a 3-RRR parallel manipulator C-space with connected vertices
is shown in Figure 20.8. The black circles indicate sampled vertices, black edges indicate
connected paths within a chart, and solid dots indicate the precise location of the singularity
locus using the bisection method.

20.6.3 Singularity Analysis

Researchers have shown that the 3-RRR manipulator is in singularity configuration when
the vectors formed by passive links coincide in a single point (Figure 20.9)[12]. Knowing this,
we can conduct singularity analysis with the geometric method. This can result in a closed-
form solution that is simpler than the traditional Jacobian and determinant method in that
it does not involve very complicated algebraic equations. Derived from the kinematic and
straight-line equations, a parallel singularity occurs when the following equation is satisfied:

Now that we have two transformation matrices OTF and FTM in Equations (20.58)
and (20.67), respectively, we can find OMA and its given angle φ from the resulting trans-
formation matrix (20.68)

Case Study: A 3-RRR Parallel Manipulator 379

FIGURE 20.8

A small segment of 3-RRR two-dimensional C-space with randomly sampled vertices and
connected edges.

YFB cos(θ2) sin(θ1 − θ3) + cos(θ1) sin(θ2)(YFC cos(θ3)

+ (XFB −XFC) sin(θ3))− sin(θ1)(XFB cos(θ3) sin(θ2)

(a) Three axes coinciding. (b) Three axes parallel.

FIGURE 20.9

Geometric singularities of the 3RRR parallel manipulator.

+ cos(θ2)(YFC cos(θ3)−XFC sin(θ3))) = 0 (20.71)

380 Path Planning of Parallel Manipulators

We know that parallel singularities result in the loss of control of the end effector in
a parallel manipulator. This has implications for the connectivity of its assembly modes.
Figure 20.10 shows the six assembly modes for a particular joint space configuration. We
observe that the sign of det(Jx) for each of these assembly modes defines its aspect, in which
there are three in each aspect. While not mathematically proven, we observe that for an
even number of assembly modes, there are always an even number of assembly modes in
the positive and negative aspects.

20.6.4 Path Planning

We wish to plan a path for the 3-RRR manipulator, such that we achieve a change in
the assembly mode. That is, a path in which the starting and ending joint configuration
remains the same, but the platform pose (task space point) is different. In addition, we will
constrain joint θ1 to be constant, but the other joints are unconstrained and free to rotate
continuously. The chosen joint configuration to start and end the path is

q =
[

θ1 θ2 θ3


=


0.6283 3.3671 3.3382


with the platform pose for assembly mode 1 defined as




MA1

MB1

MC1



 =





2.9869 −1.1839
6.9641 −1.6105
4.5144 3.6809





and assembly mode 2 defined as




MA2

MB2

MC2



 =





2.3247 −1.2349
0.3156 2.2240
−2.5012 −2.8815





These two configurations are shown in Figure 20.10 as assembly modes 3 and 2, respec-
tively.

20.6.4.1 Charts and Atlas for θ1 = 36°

The randomly sampled joint space variables (as vertices), connected paths (as edges), links
and gates are shown in Figure 20.11. Approximately 1000 points in the joint space were
sampled. The colour of the map indicates the number of assembly modes (forward kinematic
solutions) in that region, with white, cyan, blue, and grey indicating 0, 1, 2 and 3 forward
kinematic solutions, respectively.

Figure 20.12 shows the 3-RRR atlas that make up the overall C-space when θ1 is con-
strained to 36°. The size of each chart (indicated by dots) represents how many connected
sampled points it contains. This is indicative of chart size, but is not an accurate measure
of the true size of the chart’s reachable workspace. The thickness of each edge indicates
how many valid paths connect to the adjacent chart. This is indicative of the safety of the
transition between charts, as narrower paths tend to indicate closer proximity to a parallel
singularity.

20.6.4.2 Path Plan

The first step is to identify the charts that contain configurations 1 and 2 that correspond
to the starting pose q . In this example, configuration 1 is contained in +3.2.2 and config-

uration 2 is contained in +3.2.1 . According to the atlas in Figure 20.12, we can link the

(20.72)

(20.73)

(20.74)

Case Study: A 3-RRR Parallel Manipulator 381

(a) Assembly mode 1 (⊖ aspect) (b) Assembly mode 2 (⊕ aspect)

(c) Assembly mode 3 (⊕ aspect) (d) Assembly mode 4 (⊖ aspect)

(e) Assembly mode 5 (⊕ aspect) (f) Assembly mode 6 (⊖ aspect)

FIGURE 20.10

Six assembly mode configurations for the same joint position.

382 Path Planning of Parallel Manipulators

θ2

θ
3

FIGURE 20.11

Chart visualisation in the 3-RRR in the 2D joint space.

two charts together with the following path:

+3.2.2 → +2.1.2 → +1.5.1 → +2.1.1 → +3.2.1

With this information, localised paths in these charts can be planned, ensuring that the
starting and ending points in each via chart correspond to the preceding and succeeding
charts associated with their gates. Figure 20.13 shows the proposed path to be taken to
perform the assembly mode change as represented as a joint space map, based on the chain
of charts suggested by the atlas. Notice the starting and ending vertex are the same because
assembly modes are configurations where multiple task space coordinates map to the same
joint space coordinates. The colour of each region again represents the number of direct
kinematic solutions (same as Figure 20.11). The IDs in the white boxes indicate the names
of each chart, which can be considered as individual layers in the joint space map.

The path to be followed is in red and follows a loop in an anti-clockwise direction. The
starting direction of the path is indicated by the orange arrow, and the return path is in

(20.75)

Conclusion 383

(a) ⊖ aspect. (b) ⊕ aspect.

FIGURE 20.12

Atlas of connected charts for the 3-RRR when θ1 = 36°.

yellow. We can see that this path takes the manipulator through the different layers in

this map in a spiral, eventually finishing at its original position but in a different layer

representing a different assembly mode. Traditional path planning algorithms may have

difficulty handling this type of C-space.

20.6.5 Performance

With approximately 1000 randomly sampled points in the C-space, the atlas took approxi-

mately 30 seconds to generate on a system running MATLAB 2022b on Windows 10 with

an Intel i7 2600K processor with 24 GB of RAM. Path planning queries are instantaneous

with minimal memory footprint.

20.7 Conclusion

Path planning with the atlas and charts method was successfully demonstrated on the 3-

RRR parallel manipulator. We showed that by randomly sampling the C-space, memory

footprint remains small, yet planning becomes probabilistically complete if additional re-

sources are available. The atlas is highly efficient in guiding local path planning through

connected charts, resulting in extremely quick and efficient planning queries. This plan-

384 Path Planning of Parallel Manipulators

θ2

θ
3

(3.37, 3.34)

1) Start +3.2.26) End +3.2.1

2) +3.2.2 to +2.1.2

3) +2.1.2 to +1.5.1

4) +1.5.1 to +2.1.1

5) +2.1.1 to +3.2.1

+3.2.1
+3.2.2
+3.2.3

+2.1.1
+2.1.2

+1.5.1

FIGURE 20.13

Proposed path for an assembly mode change as a joint space map. It follows an anti-clockwise
direction, as indicated by the red edges.

ning method can handle complex path planning queries such as assembly mode changes, in
which traditional sample-based planners may have trouble finding paths for due to complex
parallel singularity profiles.

Bibliography

[1] J.-C. Latombe, Robot Motion Planning. Springer, 1991.

[2] S. M. LaValle, Planning Algorithms. Cambridge, 2006.

[3] L. Tsai, Robot Analysis. Wiley, 1999.

Bibliography 385

[4] I. A. Sucan and L. E. Kavraki, “A Sampling-Based Tree Planner for Systems with
Complex Dynamics,” IEEE Transactions on Robotics, vol. 28, pp. 116–131, 2012.

[5] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the Probabilistic Foundations of Prob-
abilistic Roadmap Planning,” The International Journal of Robotics Research, vol. 25,
pp. 627–643, July 2006.

[6] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-Based Path Planning on Configuration-
Space Costmaps,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, 2010.

[7] O. Bohigas, M. E. Henderson, L. Ros, M. Manubens, and J. M. Porta, “Planning
singularity-free paths on closed-chain manipulators,” IEEE Transactions on Robotics,
vol. 29, no. 4, pp. 888–898, 2013.

[8] O. Bohigas, D. Zlatanov, L. Ros, M. Manubens, and J. M. Porta, “A General Method
for the Numerical Computation of Manipulator Singularity Sets,” IEEE Transactions

on Robotics, vol. 30, pp. 340–351, April 2014.

[9] C. Gosselin and J. Angeles, “Singularity Analysis of Closed-loop Kinematic Chains,”
IEEE Transactions on Robotics and Automation, vol. 6, pp. 281–290, June 1990.

[10] M. Hayes and M. Husty, “On the kinematic constraint surfaces of general three-legged
planar robot platforms,” Mechanism and Machine Theory, vol. 38, pp. 379–394, 2003.

[11] M. Hayes, P. Zsombor-Murray, and C. Chen, “Unified Kinematic Analysis of General
Planar Parallel Manipulators,” Journal of Mechanical Design, vol. 126, pp. 866–874,
September 2004.

[12] M. Zein, P. Wenger, and D. Chablat, “Non-singular assembly-mode changing motions
for 3-RPR parallel manipulators,” Mechanism and Machine Theory, vol. 43, pp. 480–
490, 2008.

[13] E. Macho, O. Alturazza, C. Pinto, and A. Hernandez, “Transitions between Multiple
Solutions of the Direct Kinematic Problem,” inAdvances in Robot Kinematics: Analysis

and Design (J. Lenarc̆ic̆ and P. Wenger, eds.), pp. 301–310, Springer Science+Business
Media B.V. 2008, 2008.

[14] M. Uŕızar, V. Petuya, O. Alturazza, E. Macho, and A. Hernández, “Assembly Mode
Changing in the Cuspidal Analytic 3-RPR,” IEEE Transactions on Robotics, vol. 28,
pp. 506–513, April 2012.

[15] W. Au, H. Chung, and C. Chen, “Generation of the Global Workspace Roadmap of the
3-RPR using rotary disk search,” Mechanism and Machine Theory, vol. 78, pp. 248–
262, 2014.

[16] E. Macho, O. Altuzarra, C. Pinto, and A. Hernandez, “Workspaces associated to as-
sembly modes of the 5R planar parallel manipulator,” Robotica, vol. 26, pp. 395–403,
2008.

[17] G. Moroz, F. Rouiller, D. Chablat, and P. Wenger, “On the determination of cusp
points of the 3-RPR parallel manipulators,” Mechanism and Machine Theory, vol. 45,
no. 11, pp. 1555–1567, 2010.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces,” IEEE Trans-

actions on Robotics and Autonomation, vol. 12, pp. 566–580, August 1996.

386 Path Planning of Parallel Manipulators

[19] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path planning for linkages
with closed kinematic chains,” IEEE Transactions on Robotics and Autonomation,
vol. 17, no. 6, pp. 951–958, 2001.

[20] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by rapidly
exploring manifolds,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 105–117,
2013.

[21] B. Kim, T. T. Um, C. Suh, and F. C. Park, “Tangent bundle RRT: A randomized
algorithm for constrained motion planning,” Robotica, vol. 34, no. 1, pp. 202–225,
2016.

[22] W. Au, H. Chung, and C. Chen, “Path planning and assembly mode-changes of 6-DoF
stewart-gough-type parallel manipulators,” Mechanism and Machine Theory, vol. 106,
pp. 30–49, 2016.

[23] A. Sintov, A. Borum, and T. Bretl, “Motion planning of fully actuated closed kinematic
chains with revolute joints: A comparative analysis,” IEEE Robotics and Automation

Letters, vol. 3, no. 4, pp. 2886–2893, 2018.

[24] F. Pernkopf and M. L. Husty, “Workspace analysis of Stewart-Gough-type parallel
manpulators,” Journal of Mechanical Engineering Science, vol. 220, no. 7, pp. 1019–
1032, 2006.

[25] M. L. Husty, “An algorithm for solving the direct kinematics of the general Stewart-
Gough platforms,” Mechanism and Machine Theory, vol. 31, no. 4, pp. 365–380, 1996.

[26] G. Alici, “Determination of singularity contours for five-bar planar parallel manipula-
tors,” Robotica, vol. 18, pp. 569–575, 2000.

[27] W. Au, H. Chung, and C. Chen, “Path Planning of Planar Parallel Mechanisms Us-
ing Global Workspace Road Maps,” in ASME 2012 International Design Engineering

Technical Conferences and CIE, (Chicago IL, USA), 2012.

[28] M. Hayes, P. Zsombor-Murray, and C. Chen, “Unified Kinematic Analysis of General
Parallel Manipulators,” ASME Journal of Mechanical Design, vol. 126, no. 5, pp. 866–
874, 2004.

[29] M. Griffis and J. Duffy, “A forward displacement analysis of a class of stewart plat-
forms,” Journal of Robotic Systems, vol. 6, no. 6, pp. 703–720, 1989.

[30] C. Innocenti, “Forward Kinematics in Polynomial Form of the General Stewart Plat-
form,” Transactions of the ASME, vol. 123, pp. 254–260, June 2001.

21

Minimally-Invasive Surgical Robot
with Remote Centre of Motion

In Chapter 19, we discussed a manipulator for cannula-type minimally invasive surgery
(MIS). In this chapter, we direct our focus to the non-cannula type to discuss a remote
centre of motion mechanism designed for minimally invasive surgical robots.

21.1 Minimally Invasive Surgery and MIS Robots

Laparoscopic minimally invasive surgery can be regarded as replications of their open-form
counterparts. The surgical manipulations are executed via long and rigid surgical tools with
end-effector mounted at their distal ends, while the visual guidance is provided through
laparoscopic approaches. The most well-known example is the da Vinci prostatectomy, where
the da Vinci surgical robot manoeuvres one laparoscope and up to three surgical tools to
conduct surgical tasks on the patient’s prostate. In this chapter, we limit the scope to the
laparoscopic MIS robots.

Robotic manipulators address two fundamental issues encountered in the manual laparo-
scopic MIS process. Firstly, surgical tools must pivot around the incision port, or they could
tear the surrounding skin during translational motion. Secondly, the DoF of the surgical
tools is limited to four, as shown in Figure 21.1, while the translation of the end-effector
due to the non-axial rotation (around axes 1 and 2) of the surgical tool is pivoted. The solu-
tion to the first issue is remote centre of motion (RCM), virtually or mechanically, and the
second is readily addressable by means of an input-output mapping in the robots’ control
algorithms.

Remote centre of motion refers to the capability of a manipulator to rotate its output link
around a fixed spatial point without having a physical joint at said point [1]. To maximise
patient safety, surgical robots adopt RCM mechanisms to achieve mechanically constrained
remote centres. Figures 21.2, 21.3, and 21.4 show examples of two-DoF RCM mechanisms.
Furthermore, adding a mechanism for the axial translation and another for axial rotation
onto the output link of the two-DoF RCM mechanisms achieves all four required DoF in
the MIS surgical application.

It should be noted that among the three examples, the former two represent a typi-
cal way to synthesise a multi-DoF RCM mechanism: to connect multiple lower-DoF RCM
mechanisms in a serial configuration, where their axes of rotation intersect to define the
remote centre. In fact, the combination depicted in Figure 21.3 is adopted by da Vinci sur-
gical robot. Following such synthesis, the parallelogram and its derivatives further represent
the most widely used planar (1R) RCM mechanism, as seen on numerous medical robots
within and beyond the scope of laparoscopic MIS.

DOI: 10.1201/9781003614319-21 387

https://doi.org/10.1201/9781003614319-21

388 Minimally-Invasive Surgical Robot with Remote Centre of Motion

Skin

Axis of Ro-
tation 1

Axis of Ro-
tation 2

Axis of Ro-
tation 3

Tool
Insertion
Depth
Control

FIGURE 21.1

DoFs of a surgical tool through an incision port.

One limitation of the parallelogram-based RCM mechanisms is the device footprint, i.e.,
the space swept through by a robotic manipulator as it conducts surgical manoeuvres. In
fact, it is not uncommon to observe inter-robotic-arm collisions of the da Vinci system in
prostatectomy procedures. Having a large device footprint near the remote centre further
prevents immediate access of human surgeons to the patient, which is, in turn, another crit-
ical aspect of ensuring patient safety in an emergency. To tackle this issue, we investigated a
planar remote centre of motion mechanism, the dual-triangular linkage, and demonstrated
its advantages through skeletal prototypes of MIS surgical robots [2, 3, 4].

Arc Track 1

Axis of Ro-
tation 2

Axis of Ro-
tation 1

Remote
Centre

Arc Track 2

FIGURE 21.2

Two-DoF RCM mechanism based on two arc tracks.

The Dual-Triangular Linkage 389

Revolute Joint
Axis of Ro-
tation 2

Axis of Rotation 1

Remote Centre

Parallelogram

FIGURE 21.3

Two-DoF RCM mechanism based on revolute joint and parallelogram.

21.2 The Dual-Triangular Linkage

21.2.1 The Design

The schematic diagram of the dual-triangular linkage (“DT linkage” hereafter) is illustrated
in Figure 21.5(a). Link AC is the input, and EH is the output. Additionally, a cantilever
can be connected rigidly to EH as an extension, whose shape can be designed freely to suit
surgical requirements. The DT linkage comprises two pairs of similar triangles (hence “dual-
triangular”), OCA and OGF , and OCE and OGH, respectively, satisfying the following
kinematic constraint [2]:

a1 + a2

a1
=

b1 + b2

b2

a1 = b1

a2 = b2

(21.1)

Axis of
Rota-
tion 2

Axis of Rotation 1 Remote Centre

FIGURE 21.4

Two-DoF RCM mechanism based on spherical linkage.

390 Minimally-Invasive Surgical Robot with Remote Centre of Motion

B

OA

B

C

D

E

F

G

H

J

a1

a2

b1

b2

c2

c1

d1d2

θi θo

Cantilever

(a) Schematics of the Dual-Triangular Linkage

O∗A∗

B∗

C∗

D∗

E∗

F ∗

G∗

H∗

a∗1

a∗2

b∗1

b∗2

c∗1

c∗2

d∗1d∗2

(b) Schematics of the Kempe focal linkage

FIGURE 21.5

The comparison between dual-triangular linkage [4] and Kempe focal linkage [5].

a1, a2, b1, and b2 denoting the lengths of AB (GF), BC, DE (GH), and CD, respectively.
Moreover, the input-output relation is defined as:

θo = π − tan−1 lCJ

lJO
= π − 2 tan−1 lAC sin θi

lAO − lAC sin θi
(21.2)

where θi and θo are the input and output angles, respectively.
The upper limit in the range of motion of the DT linkage corresponds to the configuration

where AC and CE are collinear, and OCA and OCE become right-angle triangles. Starting
from the home configuration, where all the links fold and overlap with the ground, the range
of motion of the DT linkage is defined by

θr = 2 sin−1 lAC

lAO

(21.3)

The DT linkage can also be interpreted as the combination of four-bar linkage BCDG

and parallelograms ABGF and DEHG. It should be noted that the virtual four-bar link-
age ACEO, corresponding to the outer shape of the DT linkage, forms a pair of similar
parallelograms with BCEG. Four-bar linkage ACEO adopts the 2K-SLLS architecture to
maximise the clearance between the kinematic chain and the remote centre. 2K stands for
symmetrical kite shape with two link lengths, and SLLS (short-long-long-short) refers to
the link configuration, where the input (AC) and the connector (CE) are shorter than the
ground (AO) and the output (EO). Such an interpretation allows the proof of remote centre
of motion based on a comparison with the Kempe focal linkage, detailed in the subsection
below.

21.2.2 Proof of Remote Centre of Motion

Figure 21.5(b) shows the schematic structure of a generalised Kempe focal linkage [5]. For
convenience of comparison, we mark the matching nodes and link lengths on the Kempe
linkage with starts. It can be readily seen that the major difference between the DT and
the Kempe linkages is that FO and HO are virtual extensions, while F ∗O∗ and H∗O∗ are
physical links.

The Dual-Triangular Linkage 391

The mobility condition of the Kempe linkage is expressed as [6]

a∗1

a∗2
=

c∗2
c∗1

b∗1
b∗2

=
d∗2
d∗1

(21.4)

Its equivalent of the DT linkage is given by

lAB

lBC

=
lHO

lEH

lCD

lDE

=
lAF

lFO

(21.5)

On the other hand, (21.1) yields

lAF

lFO

=
lBG

lFO

=
lEH

lHO

=
lDG

lHO

=
lBC

lAB

=
lBC

lFG

=
lCD

lDE

=
lCD

lGH

(21.6)

comparing (21.5) and (21.6) shows that the DT linkage is a special case of the Kempe linkage,
and that the EH will rotate around O despite O now being a virtual node, verifying the
remote centre of motion.

21.2.3 The Gear-Constrained Dual-Triangular Linkage

The range of motion defined in (21.3) is between the overlap/home position and the max-
imum extension. The former is a singular configuration, where the singularity is brought
about by both four-bar linkage BCDG and parallelograms ABGF and DEHG. Upon cross-
ing the home position, the four-bar linkage could fall into an undesired overlap configuration,
where the input and the connector remain overlapped, and the output stays collinear with
the ground, i.e., the change in the input angle corresponds to no change in the output. On
the other hand, the parallelogram also has two possible configurations upon crossing the
home position: the desired parallelogram or the undesired crossed four-bar linkage.

In the singularity-free case, the DT linkage could move between the maximum extension
positions above and below the ground, i.e., θ′r = 2θr. Auxiliary mechanisms are introduced
for the four-bar linkage and the parallelograms, respectively, for singularity removal and
range of motion extension.

The auxiliary mechanism for the four-bar linkage, illustrated in Figure 21.6, comprises a
sub-kinematic chain CIG and a gear train. Said sub-kinematic chain always aligns with the
centre line CG of the four-bar linkage, and a prismatic joint I permits the distance between
C and G to change with respect to the input angle. This sub-kinematic chain serves as the
reference line for ∠GCA and ∠GCE to be synchronised via the gear train. The input gear
1 and the output gear 4 are rigidly attached to and rotate with AC and CE, respectively.
Intermediate gears 2 and 3 rotate on CI and are symmetrical around the centre line (2 above
and 3 below) to ensure gear 4 rotates in the reverse direction of gear 1. An additional gear,
2′, rotates with 2 to mesh with 3. Notably, the auxiliary mechanism serves as a redundant
constraint when the DT linkage is not in the singular position. As such, the DT linkage
becomes fully constrained at the singular position and is over-constrained otherwise.

The auxiliary mechanism for the parallelograms is displayed in Figure 21.7. Two auxil-
iary parallelograms, AA′F ′F and DD′G′G, are rigidly attached to the main parallelograms,
ABGF and DEHG, respectively, with angular offsets. Said offset allows the main and the
auxiliary parallelograms to not be in the singular position simultaneously, mutually con-
straining each other to ensure the integrated sub-kinematic chain is singularity-free.

392 Minimally-Invasive Surgical Robot with Remote Centre of Motion

Gear 1
Gear 2

AC

CIG

CE

Gear 2’ Gear 4

Gear 3

CIG

AC

CE

FIGURE 21.6

The auxiliary mechanism for four-bar linkage.

A prototype was constructed for demonstration based on the DT linkage. The prototype
adopts a two-DoF remote centre of motion mechanism. A revolute joint provides the first
DoF and defines the rotation plane for the DT linkage. The DT linkage, in turn, provides
the second DoF through in-plane rotation by aligning its ground link AF with the revolute
joint axis. The remote centre is thus created at the intersection of the revolute joint axis and
the output axis of the DT linkage. In addition, a SCARA arm and a z-axis linear motion
stage define the position of the remote centre in the free space. A photo of our prototype is
shown in Figure 21.8.

21.2.4 The 2R1T RCM Mechanism Based on the DT Linkage

Another research interest of the DT linkage is the inclusion of the axial rotation and the
longitudinal translation of the end-effector to achieve the 3R1T required for minimally
invasive surgery. Figure 21.9 [7] depicts an example linkage of such kind.

The additional 1R1T is achieved by mounting two Peaucellier-Lipkin straight-line link-
ages (coloured blue and red in Figure 21.9, respectively) onto the output link of the DT
linkage. The two straight-line linkages connect to the end-effector through their respective

A

A′

B
G

F

F ′

D
D′

E

H

G′

FIGURE 21.7

The auxiliary mechanisms for the two parallelograms.

The Cable-Constrained Linkage with Remote Centre of Motion 393

FIGURE 21.8

The two-DoF prototype at the upper (LHS) and lower (RHS) limits.

helical joints. These two joints, in turn, feature right-hand and left-hand screws, respectively.
The trajectories of their output nodes are coincident, both passing through the remote cen-
tre of the DT linkage. The axial rotation of the end-effector is thus achieved by the relative
translation between the output nodes of the straight-line linkages, whereas the simultaneous
translation of the nodes realises the longitudinal translation.

Helical
Joints

FIGURE 21.9

The 2R1T planar RCM mechanism based on DT linkage.

21.3 The Cable-Constrained Linkage with Remote Centre of

Motion

21.3.1 The Design

The design described previously has two areas for improvement. Firstly, the gear train
introduces backlash. Secondly, the auxiliary parallelograms increase the thickness of the

394 Minimally-Invasive Surgical Robot with Remote Centre of Motion

OA, P1

B, P2

C, P3, P5
I, P4

G

D, P6

E, P7

F

H

FIGURE 21.10

The schematic structure of the cable-constrained linkage.

mechanism in the transverse plane, enlarging the device footprint during surgical manipu-
lation. To address these issues, a new design based on cable loops is proposed, illustrated
in Figure 21.10.

On the cable-constrained dual-triangular linkage (“CC linkage” hereafter) [8], two cable
loops replace parallelograms ABGF and DEHG, respectively. Links GF and GH have
hence been removed. Each cable loop comprises two pulleys: P1 and P2, and P6 and P7,
respectively, where the pulleys, correspondingly, are rigidly connected to AF , BG, DG, and
EH. As for the four-bar linkage BCDG, the gear train in the articulated design is replaced
with a cable loop connecting three pulleys. Both the input (P3) and the output (P5) pulleys
rotate around C, and are, correspondingly, connected toAC and CE. The intermediate/idler
pulley P4 is mounted on sub-kinematic chain CIG. As well, in the first cable section that
retains tension while θi decreases (i.e., linkage moving towards the upper limit), the cable
runs parallel to CIG from P3 to P4, then reaches P5 in a crossed configuration. In the
opposing cable section, the cable is parallel and crossed, between P5 and P4 and P4 and P3,
respectively.

21.3.2 Proof of Functioning

Provided the proof of functioning of the DT linkage in the previous section, the CC linkage
can too be proven an RCM mechanism, given that:

• The cable loop constraining four-bar linkage BCDG does not obstruct the motion of the
mechanism.

• The pertinent cable sections are in tension in the designed direction of motion.

The rest of the subsection focuses on demonstrating the conditions mentioned above based
on the framework of constraint analysis discussed in Chapter 18.

The Cable-Constrained Linkage with Remote Centre of Motion 395

The following generalised coordinates are used in the analysis:

Generalised coordinates Definition Reference

θ1 Input angle, angle of
−→
AC

−→
AF

θ2 Angle of
−−→
BG and P2

−→
AC

θ3 Angle of
−−→
CG

−→
AC

θ4 Angle of P4

−−→
CG

θ5 Angle of
−−→
CE

−−→
GC

θ6 Angle of
−−→
DG

−−→
CE

θ7 Angle of
−−→
EH

−−→
CE

lCG Length of sub-kinematic chain CIG n/a
xH x-position of H A
yH y-position of H A

which are collected in array q of the generalised coordinates

q =
[

θ1 θ2 θ3 θ4 θ5 θ6 θ7 lCG xH yH
T

∈ R
10 (21.7)

Furthermore, array fe of the generalised external force is given by

fe =


τe1 0 0 0 0 0 0 0 0 feHy

T
∈ R

10 (21.8)

where τe1 represents the required input torque when the mechanism is under a y-axis ex-
ternal force feHy.

The kinematic constraint equations of the CC linkage comprise those derived from joint
positions and cable loops. For the former, three sets of constraint equations can be derived
from the revolute joint G and the fixed joint connecting a virtual node E with the kinematic
chain, as given below

φG1 =

(

l1

[

cos θ1
sin θ1

]

+ lCG

[

cos (θ1 + θ3)
sin (θ1 + θ3)

])

−

(

l2

[

cos θ1
sin θ1

]

+ l3

[

cos (θ1 + θ2)
sin (θ1 + θ2)

])

= 0

(21.9)

for joint G following paths A− C −G and A−B −G, respectively; and

φG2 =

(

l1

[

cos θ1
sin θ1

]

+ (l1 − l2)

[

cos (θ1 + θ3 + π + θ5)
sin (θ1 + θ3 + π + θ5)

]

+ l3

[

cos (θ1 + θ3 + π + θ5 + θ6)
sin (θ1 + θ3 + π + θ5 + θ6)

])

−

(

l2

[

cos θ1
sin θ1

]

+ l3

[

cos (θ1 + θ2)
sin (θ1 + θ2)

])

= 0

(21.10)
for joint G following paths A− C −D −G and A− B −G, respectively; and for the fixed
joint E

φE =

(

l1

[

cos θ1
sin θ1

]

+ l1

[

cos (θ1 + θ3 + π + θ5)
sin (θ1 + θ3 + π + θ5)

]

+ l3

[

cos (θ1 + θ3 + π + θ5 + θ7)
sin (θ1 + θ3 + π + θ5 + θ7)

])

−

[

xE

yE

]

= 0

(21.11)

396 Minimally-Invasive Surgical Robot with Remote Centre of Motion

the path described in the first bracket being A − C − E −H. Furthermore, for simplicity,
the distances l1, l2, and l3 between nodes are defined as:

l1 = lAC = lCE = νlAO

l2 = lAB = lDE =
lAC

ρ
=

νlAO

ρ

l3 = lAF = lBG = lDG = lEH =

(

1−
1

ρ

)

lAO

coefficients ν and ρ are design parameters of the CC linkage.
The kinematic constraints of cable loop relate the rotations of connected pulleys through

prescribed (and constant) lengths of cable sections. We use the generalised expressions below
to describe the length of cable wrapped on a pulley:

lcw1 = r (θji − θj)

lcw2 = r (θj − θjo)
(21.12)

lccw1 = r (θj − θji)

lccw2 = r (θjo − θj)
(21.13)

subscripts cw and ccw identify the directions of the cables, i.e., clockwise and counter-
clockwise, respectively. Furthermore, subscripts 1 and 2 denote two halves of the cable
loop, each tensioned in one direction of motion of the CC linkage. Angle θj (j ∈ [1, 7])
indicates the angle of pulley j. It can also be interpreted as the angle of the vector directed
from the centre to the cable attachment point on the pulley. On the other hand, θji and
θjo, correspondingly, are the cable inlet and outlet angles.

For each direction of motion, four constraint equations can be derived following Equa-
tions (21.12) and (21.12), corresponding to the cable sections between P1 and P2, P3 and
P4, P4 and P5, and P6 and P7, respectively. For the upward motion where θ1 decreases, the
corresponding equations are:

φc11 = r (0− (θ1 + π/2)) + r (π/2− θ2)− lc11 = 0

φc21 = r ((θ3 − π/2)− 0) + r (θ4 − (0− π/2))− lc21 = 0

φc31 = r ((0 + π/2 + β)− θ4) + r ((0 + π/2 + β)− θ5)− lc31 = 0

φc41 = r (θ6 − (0 + π/2)) + r ((0 + π/2)− θ7)− lc41 = 0

(21.14)

where rβ describes the extra on-pulley cable length associated with the crossed cable con-
figuration and is a constant. As well, lc11 to lc41 identify the prescribed lengths of the cable
sections for the half cable loops. Moreover, the equivalent of (21.14) for the downward
motion is given by

φc12 = r ((θ1 − π/2)− 0) + r (θ2 − (0− π/2))− lc12 = 0

φc22 = r (0− (θ3 + π/2)) + r ((0 + π/2)− θ4)− lc22 = 0

φc32 = r (θ4 − (0− π/2− β)) + r (θ5 − (0 + π/2 + β))− lc32 = 0

φc42 = r ((0− π/2)− θ6) + r (θ7 − (0− π/2))− lc42 = 0

(21.15)

similarly, lc12 to lc42 are the prescribed lengths of cable sections for the half cable loops.
In Equations (21.14) and (21.15), φc21, φc31, φc22, and φc32 are derived from the cable

loop constraining four-bar linkage BCDG. Summing φc21 and φc31 leads to

r (π + θ3 − θ4 + 2β) = lc21 + lc31

The Cable-Constrained Linkage with Remote Centre of Motion 397

As such, θ3 = θ4 is unconditionally valid. A similar conclusion can be drawn upon the
summation of φc22 and φc32. Therefore, ∠OCA always equals ∠OCE, and four-bar linkage
BCDG is singularity-free at the overlap configuration. Moreover, the cable loop connecting
pulleys P3, P4, and P5 does not obstruct the motion of the four-bar linkage, and the first
condition for RCM is satisfied.

Combining the kinematic constraint equations of joints Equations (21.9), (21.10), and
(21.11) with cable constraints of the pertinent direction (21.14) or (21.15) yields the array
of constraint equations for one direction of motion:

φ1 =
[

φT
G1 φT

G2 φT
H φc11 φc21 φc31 φc41

T ∈ R
10 (21.16)

and
φ2 =



φT
G1 φT

G2 φT
H φc12 φc22 φc32 φc42

T ∈ R
10 (21.17)

the former is for upward motion, the latter downward. Additionally, their corresponding
array of Lagrange multipliers are:

λ1 =


λT
G1 λT

G2 λT
H

T λc11 λc21 λc31 λc41

T
(21.18)

and
λ2 =



λT
G1 λT

G2 λT
H

T λc12 λc22 λc32 λc42

T
(21.19)

where scalar Lagrange multipliers λc are the forces transmitted through the cable sections
and must be zero or positive to satisfy the second condition for the CC linkage to be an
RCM mechanism.

The static equilibrium equation of the CC linkage is expressed based on Equation (18.11).
However, since the input torque τe1 of fe , displayed in (21.8), is unknown, (18.11) is split
into two equations by means of selection matrices, such that the Lagrange multipliers can be
solved with the prescribed feHy. The two-component static equilibrium equation is defined
as:

(

∂ φk

∂q
S1

)T

λk − ST
1 fe = 0 (21.20)

and
(

∂ φk

∂q
S2

)T

λk − ST
2 fe = 0 (21.21)

where k = [1, 2], correspondingly, identifies the upward and downward motion. Arrays q,
fe , φ, and λ are defined in Equations (21.7), (21.8), (21.16), or (21.17), and (21.18) or
(21.18), respectively. Moreover, S1 and S2 are the selection matrices of the input (θ1) and
other generalised coordinates, respectively, defined as:

S1 = s1 (21.22)

and
S2 =

[

s2 s3 · · · s9 s10
]

(21.23)

where
S =

[

S1 S2

]

= 110

full-selection matrix S is the 10× 10 identity matrix 110 , and each column corresponds to
one sm (m ∈ [1, 10]).

In Equation (21.21),
∂ φk

∂q
S2 has the dimension of 10 × 9, i.e., a non-square constraint

Jacobian of an over-constrained mechanism. It should be noted that at the singular pose,

398 Minimally-Invasive Surgical Robot with Remote Centre of Motion

the x-component of φG2 vanishes, effectively rending a fully constrained system. The non-
square constraint Jacobian can be solved by means of pseudo-inverse, or

λk =

(

(

∂ φk

∂q
S2

)T
†

(

ST

2 fe
)

(21.24)

with † indicating a pseudo-inverse operation. A set of numerical cable forces is presented
below in Figure 21.11 to verify the cable tension condition. The horizontal and vertical
axes identify the cable forces and θ1 the input angle, respectively. The corresponding design
parameters are listed below.

Parameters Value Unit

lAO 400 mm
ν 0.3 n/a
ρ 1.22 n/a
r 15 mm

feHy ∓8 N

For the external force feHy, the negative value is for the upward motion and its positive
counterpart is for the downward.

The results are presented in Figure 21.11, where 12, 67, and 345 denote the cable sections
between pulleys P1 and P2, P6 and P7, and among P3 to P5, respectively. Additionally, cable
sections belonging to the same cable loop demonstrate identical tension during the upward
and downward movements. The results show that all the cable sections are in tension in
their designed range of motion. Therefore, the force condition for the CC linkage to be an
RCM mechanism is verified.

FIGURE 21.11

The cable tension during linkage motion.

Advantage of DT/CC Linkage over Parallelogram RCM Mechanism 399

Remote
Centre

CC
Linkage

Parallelogram

Radius
based on rc

ClearanceRCM
Contour

FIGURE 21.12

Footprint comparison of the planar RCM mechanisms.

21.4 Advantage of DT/CC Linkage over Parallelogram RCM
Mechanism

To demonstrate the advantage, the device footprint of the manipulator based on the CC
linkage is compared to its parallelogram-based counterpart. This device footprint is defined
as the volume swept by the maneuver of the two-DoF RCM mechanism, and the difference
is, in turn, dictated solely by the area bounded by the outer contour of the planar CC
linkage or parallelogram.

Figure 21.12 illustrates the setup of the comparison. The clearance represented by the
dashed circle refers to the space where the kinematic chains shall not enter, emulating the
workspace that human surgeons can occupy to access the patient. The red dashed lines
indicate the footprint of the planar mechanism. Two design parameters are considered: the
dimensionless ratio rc resultant from the clearance radius and the distance from the input
joint to the remote centre, and the required range of motion θr. Also, with a prescribed set of
design parameters, the device footprint is a normalised value obtained upon the summation
of the bounded areas at two positions: the upper limit where output angle θo equals θr/2 and
the upper-mid position where θo is θr/4. Notably, the positions where input angle θi ≥ π
are not considered, as both planar RCM mechanisms are symmetrical around the ground
axis.

The percentage difference in the device footprint is presented in Figure 21.13, with the
footprint of the parallelogram serving as the reference values. It has been demonstrated that
the CC linkage has the advantage in cases where the required range of motion is small, and
the clearance needs to be large. Moreover, Figure 21.14 compares the spatial footprints of
RCM surgical manipulators based on the CC linkage and parallelogram under an emulated
minimally invasive surgery setup. The volumes swept by the RCM mechanisms are coloured
red; the clearances of the CC linkage and the parallelogram are represented by the blue and
the orange spheres, respectively.

Four volumes of interest are highlighted in Figure 21.14:

• The volume swept by the output joint (E) of the CC linkage and a straight output link
in a two-DoF manipulation, coloured in red in the LHS figure.

400 Minimally-Invasive Surgical Robot with Remote Centre of Motion

FIGURE 21.13

Percentage difference of CC linkage footprint over parallelogram.

• The volume swept by the output joint of a parallelogram and a straight output link in a
two-DoF manipulation, coloured in red in the RHS figure.

• The clearance between the incision port and the kinematic chain that generates the RCM
for the CC linkage, represented by the blue sphere.

• The clearance between the incision port and the kinematic chain that generates the RCM
for the parallelogram, represented by the orange sphere.

It can be observed that clearance is larger for the CC linkage case, leading to additional room
for easier access of human surgeons to the patient, benefiting the planning and execution
of the minimally invasive surgical process.

FIGURE 21.14

Comparison of surgical manipulator footprints for CC linkage (LHS) and parallelogram
(RHS).

Conclusion 401

21.5 Conclusion

In this chapter, we presented our novel remote centre of motion mechanism, with the aim
of tackling the bulkiness of its conventional parallelogram-based counterparts. Two design
variations were introduced, and our focus is on the proof of the property of motion. For
the base design that features a compound gear-linkage kinematic chain, we proved that it
is indeed a remote centre of motion mechanism. From there, the improved design adopts a
hybrid cable-linkage system, and our deviation showcased that the newly-introduced cable
system could maintain necessary tension and hence enforce the kinematic constraints to
achieve the remote centre of motion. For the completeness of the work, we conducted a
comparison between the sweeping volumes of our invention and the parallelogram structure
to quantify the advantage.

Bibliography

[1] C.-H. Kuo and J. S. Dai, “Robotics for minimally invasive surgery: a historical re-
view from the perspective of kinematics,” in International Symposium on History of
Machines and Mechanisms: Proceedings of HMM 2008, pp. 337–354, Springer, 2009.

[2] C. Chen and M. Pamieta, “Novel linkage with remote centre of motion,” in IFToMM
International Symposium on Robotics and Mechatronics 2013, pp. 139–147, Research
Publishing Services, 2013.

[3] S. Liu, B. Chen, S. Caro, S. Briot, and C. Chen, “Dual-triangular remote centre of
motion mechanism with cable transmission,” in 4th Joint International Conference on
Multibody System Dynamics (IMSD2016), 2016.

[4] S. T. Liu, L. Harewood, B. Chen, and C. Chen, “A skeletal prototype of surgical arm
based on dual-triangular mechanism,” Journal of Mechanisms and Robotics, vol. 8,
no. 4, p. 041015, 2016.

[5] A. B. Kempe, “On conjugate four-piece linkages,” Proceedings of the London Mathe-
matical Society, vol. 1, no. 1, pp. 133–149, 1877.

[6] J. E. Baker, and H. C. Yu, “Re-examination of a Kempe linkage,” Mechanism and
Machine Theory, vol. 18, no. 1, pp. 7–22, 1983.

[7] G. Chen, Y. Xun, Y. Chai, S. Yao, C. Chen, and H. Wang, “Design and validation of
a novel planar 2r1t remote centre-of-motion mechanism composing of dual-triangular
and straight-line linkages,” Journal of Mechanisms and Robotics, pp. 1–11, 2021.

[8] S. Liu, B. Chen, S. Caro, S. Briot, L. Harewood, and C. Chen, “A cable linkage with
remote centre of motion,”Mechanism and Machine Theory, vol. 105, pp. 583–605, 2016.

22

MARS: The Monash Apple
Retrieving System

The Monash Apple Retrieving System (MARS) is a selective apple harvesting platform,
developed in A/Prof Chao Chen’s Laboratory of Motion Generation and Analysis (Figure
22.1). It features a 6 degree of freedom (DoF) UR5 manipulator, a four-fingered soft gripper
for grasping apples while minimising fruit and canopy damage, and a sensing suite consisting
of a Livox Mid70 Lidar and an Intel RealSense D455 RGB-D camera. A one-stage instance
segmentation neural network is used to identify apples in the canopy, obtained from the
fused point cloud and RGB information from the sensor suite. The system runs on a ROS
(Robot Operating System) backbone, hosted by an nVidia Jetson TX2, which integrates
and manages the communication between all components using a standardised messaging
protocol. An onboard WiFi router enabled wireless communications with the ROS master,
allowing multiple computers that host task-specific nodes to connect to the robot to create
a distributed computing system.

MARS is a culmination of many fields of robotics, some of which have been introduced in
this textbook. It makes use of forward and inverse kinematics, path planning and trajectory
generation, and aspects of mechanical and electrical engineering, soft robotics, and artificial
intelligence. And last but not least, the software that integrates all components (ROS and
programming), and the intelligent algorithms that control its decision-making processes.

Extensive trials were conducted over the 2021 and 2022 apple harvesting seasons in
Australia, where with all these components integrated, MARS was able to generate gentle,
collision-free harvesting trajectories in complex and unstructured canopies. It achieved a
harvesting success rate of 62.8% at a cycle time of 9.18 seconds per apple, with negligible
damage to the fruit. Performance increased to 70.8% success rate and 7.91 seconds of cycle
time under ideal visibility conditions.

22.1 Background and Motivation

The use of robotics and intelligent machines in agriculture is touted as a long-term solution
for the manual labour shortage experienced by the industry. Currently, selective harvesting is
carried out mainly by humans on high-value crops such as apples, citrus, and tomatoes, and
is regarded as the most labour-intensive and expensive agricultural task [1]. As such, there
has been a significant drive towards the development of selective harvesting robots in the
past two decades, which was made possible due to advances in machine vision and artificial
intelligence in identifying fruit in the canopy [4, 5, 6] and different grasping technologies
[7, 8].

DOI: 10.1201/9781003614319-22 402

https://doi.org/10.1201/9781003614319-22

Virtual Environment Construction 403

Soft gripper

6 DoF manipulator

Vision system

Mobile base

Power system trailer

2 HP compressor

7 kW generator

FIGURE 22.1

The Monash Apple Retrieving System.

Despite advancements in automated harvesting technologies, they have yet to achieve
the level of productivity required to see widespread adoption [14] because of technical chal-
lenges encountered by robots in a highly dynamic and unpredictable canopy environment. A
common theme amongst these challenges is the lack of accurate perception [3, 15] to handle
such a complicated environment like an apple canopy. Other technical challenges include
the lack of reliability, where precision servos and sensitive electronics are not designed for
operation in harsh environments such as farms. Although many of these problems could be
solved by simplifying the environment, farmers felt that delivering well-manicured canopies
that are free of leaf and branch occlusions for minimally satisfactory robotic harvesting per-
formance is an unrealistic expectation [16]. Without a solution to these problems, robotic
fruit harvesting performance remains unsatisfactory which results in long cycle (harvesting)
times, reduced harvest success rates, and increased potential to cause damage to fruit and
canopies.

The MARS was developed with a focus on intelligent decision-making and planning
algorithms, which was identified as one of the key fundamental issues holding automated
selective fruit harvesters back from mass adoption. The centrepiece of this research was the
planning algorithm, which enhances harvesting speed and success rate. This consists of a
three-step process that utilises many topics introduced in this textbook so far.

1. Virtual environment construction with the vision sensor suite to identify apples
and create a collision profile for collision-free planning,

2. Optimisation of the fruit’s pose to enhance grasping success, and

3. Path generation for collision-free harvesting trajectories with kinematic Optimi-
sation to reduce cycle time.

22.2 Virtual Environment Construction

All motion planning activities of MARS happen in the virtual canopy environment. There-
fore, we require the following components to be known in the model:

404 MARS: The Monash Apple Retrieving System

• The kinematics model of the robot

• The position of all apples in the canopy

• Constraints in the configuration space, such as collisions

• The grasping pose of all reachable apples

22.2.1 Kinematics

Here, the frames of the robot, as well as forward and inverse kinematics, are defined.

22.2.1.1 Forward Kinematics

MARS consists of a UR5, which is a six-DoF robot in an articulated configuration with a
non-spherical wrist. The modified Denavit-Hartenberg parameters of the UR5 are given
in Table 22.1. Using forward kinematics, we can obtain the transformation matrices
0

1T (θ1),
1
2T (θ2), . . . ,

5

6T (θ6).

22.2.1.2 Inverse Kinematics

Due to the UR5’s articulated structure with a non-spherical wrist, there are up to 8 inverse
kinematic solutions. While this improves the UR5’s ability to reach a target in a collision-
free configuration [36], it also implies a complex singularity profile and configuration space,
which negatively affects the robustness of numerical solutions involving inverse kinematics.
Therefore, the inverse kinematics should be solved algebraically. To further improve the
chances of successful grasping of an apple, the final end-effector twist can be treated as
arbitrary about the arm’s final z-axis (gripper’s x-axis). This removes the dependence of θ6
in the inverse-kinematic solution, i.e., we only need to find θ1, . . . , θ5 for a given position
0p6 and end-effector z-axis 0Ẑ6. This also simplifies path planning queries, as there is one
less DoF to handle.

First, we define a balanced equation position,

3
T2

2
T1

1
T0

0p6 = 3
T4

4
T5

5
T6

6p6 (22.1)

where 0p6 =
[

px py pz 1
T

and 6p6 =


0 0 0 1
T

. We also define a balanced equa-
tion to constrain the z-axis

3
R2

2
R1

1
R0

0Ẑ6 = 3
R4

4
R5

5
R6

6Ẑ6 (22.2)

TABLE 22.1

DH parameters of the UR5
robot

Link αi−1 ai−1 di θi

1 0 0 0 θ1

2 π
2 0 0 θ2

3 0 a2 0 θ3

4 0 a3 d4 θ4

5 π
2 0 d5 θ5

6 −π
2 0 d6 θ6

Virtual Environment Construction 405

where 0Ẑ6 =
[

zu zv zw 1
T

and 6Ẑ6 =


0 0 0 1
T

. Expanding Equations (22.1)
and (22.2) yields six equations

pzs23 − d1s23 − a2c3 + pxc23c1 + pyc23s1 = a3 + d5s4 − d6c4s5 (22.3)

pzc23 − d1c23 + a2s3 − pxs23c1 − pys23s1 = −d5c4 − d6s4s5 (22.4)

pxs1 − pyc1 = d4 + d6c5 (22.5)

zws23 + zuc23c1 + zvc23s1 = −c4s5 (22.6)

zwc23 − zus23c1 − zvs23s1 = −s4s5 (22.7)

zus1 − zvc1 = c5 (22.8)

where cij = cos (θi + θj) and sij = sin (θi + θj).
We can solve for θ1 by substituting (22.8) into (22.5) to eliminate c5. Using tangent

half-angle substitution,

θ1 = 2arctan



B ±

√

B2 − 2AC

2A

)

(22.9)

where

A = py − d4 − d6zv (22.10)

B = 2px − 2d6zu (22.11)

C = d6zv − py − d4 (22.12)

We can then solve θ5 using (22.5), where

θ5 = π ± arccos

(

d4 + pyc1 − pxs1

d6

)

(22.13)

With θ1 and θ5 known, we can find θ3. We eliminate θ4 from (22.3) and (22.4) by substituting
(22.6) and (22.7) into them. The resultant equations can be expressed in the form

Ds23 + Ec23 = a3 + a2c3 (22.14)

Ec23 −Ds23 = −a2s3 (22.15)

where

D = pz − d1 − d6zw −
d5 (zuc1 + zvs1)

s5
(22.16)

E = pxc1 − d6 (zuc1 + zvs1) + pys1 +
d5zw

s5
(22.17)

By taking the squared sum of (22.14) and (22.15), we can solve for θ3, such that

θ3 = ± arccos

(

D2 + E2 − a2
2 − a3

2

2a2a3

)

(22.18)

Joint angle θ2 can be solved from (22.15) by via tangent half-angle substitution, such that

θ2 = 2arctan

(

G−
√
G2 − FH

2F

)

(22.19)

406 MARS: The Monash Apple Retrieving System

where

F =
1

s5
(d5zws3 + d1c3s5 − pzc3s5 + a2s3s5 + pxc1s3s5 + pys1s3s5 + d5zuc1c3 + d5c3s1

+d6zwc3s5 − d6zuc1s3s5 − d6zvs1s3s5) (22.20)

G =
2

s5
(d1s3s5 − d5zwc3 − pzs3s5 + d5zvs1s3 + d6zws3s5 − pxc1c3s5 − pyc3s1s5

+d5zuc1s3 + d6zuc1c3s5 + d6zvc3s1s5) (22.21)

H =−
1

s5
(d5zws3 + d1c3s5 − pzc3s5 − a2s3s5 + pxc1s3s5 + pys1s3s5 + d5zuc1c3

+d5zvc3s1 + d6zwc3s5 − d6zuc1s3s5 − d6zvs1s3s5) (22.22)

Finally, θ4 can be solved from (22.4) using tangent half-angle substitution. We find

θ4 = −2 arctan

(

J ±
√
J2 − 4IK

2I

)

(22.23)

where

I = pzc23 − d1c23 − d5 + a2s3 − pxs23c1 − pys23s1 (22.24)

J = 2d6s5 (22.25)

K = d5 − d1c23 + pzc23 + a2s3 − pxs23c1 − pys23s1 (22.26)

Due to each angle yielding two possible answers, mathematically there are up to 32 com-
plete sets of solutions, based on this algebraic method. However, only eight of these sets of
solutions are valid, which can be cross-checked using forward kinematics to ensure the end
effector is in its intended pose. There are no performance implications in using an algebraic
method for inverse kinematics on MARS, which is favoured due to its robustness compared
to gradient-based numerical solutions.

22.2.2 Auxiliary Frame Assignments

The gripper frame {G} is attached at a fixed distance to the robot’s final frame and is
defined in Figure 22.2(a), where its origin is coincident with the optimal position of the
grasped object within the gripper. The x-axis represents the gripper’s twisting axis, with
the z-axis pointing upwards to the direction of gravity at zero-twist. The accompanying
apple frame {A} is defined in Figure 22.2(b). In general, y − z axes represent the plane of
the canopy, with the x-axis pointing inwards of the canopy. In an ideal grasping scenario,
{G} is coincident with {A} before the fingers are closed, but these constraints can be relaxed
to enhance the apple’s reachability further.

22.3 Pose Optimisation

Pose Optimisation applies additional transformations to the fruit’s initial frame such that
the manipulator will approach the fruit at an optimised angle [29, 4]. Assuming that the
vision system is capable of identifying the position of the apples in the canopy, a numerical
optimisation approach is utilised to calculate the fruit approach and grasping angles. This

Pose Optimisation 407

(a) Gripper frame {G}, with the x-axis parallel with the
fingers in the direction of grasp.

(b) Apple frame {A}, with z-axis
coincident with the stem and x-
axis representing the front face of
the apple.

FIGURE 22.2

Frame definitions. During a grasp, the origins of {G} and {A} are coincident, and XG and
XA are parallel.

takes into account the robot’s workspace, singularities, and occlusions or collisions with the
canopy. An example of the final result is shown in Figure 22.3, where the apple’s frame is
adjusted such that the robot can grasp the apple at the manipulator’s workspace boundary.

We begin with the standard optimisation problem

minimise
x

f(x) (22.27)

subject to gi(x) ≤ 0, i = 1, . . . ,m (22.28)

hj(x) = 0, j = 1, . . . , n (22.29)

Then for a single fruit, we define function f(x) such that when it is minimised with con-
straints gi ≤ 0 and hj = 0, the optimum approach angle for the apple is found, satisfying
kinematic, path, and collision constraints.

FIGURE 22.3

An optimised approach angle.

408 MARS: The Monash Apple Retrieving System

22.3.1 Objective Function

The goal of the objective function is to optimise the rotation of the fruit frame, such that
only the minimum amount of frame rotation is required to ensure the fruit can be grasped
whilst meeting other constraints, such as being collision-free and ensuring a valid path
exists. In many cases, the final gripper twist position is arbitrary; hence, the optimisation
problem can omit twist around XG , hence the objective function can be defined as

f(x) = γ2 + β2 (22.30)

where x =
[

γ β
T

, and γ and β are the rotations about the fruit’s z and y-axes respectively,
applied in that order to the moving frame (Figure 22.2(b)).

22.3.2 Kinematic Constraints

Let BpA0
and BRA0

be the position and rotation of the initial apple frame {A0} relative
to the robot base frame {B}. The Optimisation seeks to find the rotation

A0RA = R(γ)R(β) (22.31)

to apply on {A0} such that the grasp is optimised while satisfying kinematic and other
constraints. Therefore the rotation matrix of the new apple grasping frame {A} is

BRA = BRA0

A0RA (22.32)

The position of the end-effector, given {A0} and its applied rotation A0RA , is

BpE = BRA0

A0RA
ApE (22.33)

where ApE = GpE in a grasping scenario. The position of the end-effector BpE will be used
to constrain the kinematics. Assume that the inner and outer workspace boundaries of the
robotic manipulator can be represented as spheres whose radii are r and R, respectively.
Also, assume that the robot’s workspace is relatively uniform such that if the robot’s end
effector frame {E} is within the workspace boundary, then at least one inverse kinematic
solution exists. Note that the end-effector frame {E} is not coincident with the gripper
frame {G}, hence the transformation ETG is non-identity. Therefore, we can write the
inequality constraints

g(1,1)(x) = |BpE(x)| −R (22.34)

g(1,2)(x) = r − |BpE(x)| (22.35)

where a kinematic solution is guaranteed to exist if (22.27) is optimised, and (22.34) and
(22.35) satisfy (22.28).

A grasping trajectory can follow a series of via frames

pV1
= pA → pG = pA → pV2

= pA (22.36)

where pV1
and pV2

are via frames attached to the gripper relative to {G}. Then further
constraints are defined as

g(2,2n−1)(x) = |BpVn
(x)| −R (22.37)

g(2,2n)(x) = r − |BpVn
(x)| (22.38)

such that n via points remain in the manipulator workspace when (22.27) is optimised, and
(22.37) and (22.38) satisfy (22.28).

Pose Optimisation 409

FIGURE 22.4

Gripper frames and collision cylinder (in dashed lines).

22.3.3 Collision Constraints

Collisions with the environment are considered during Optimisation, as poor pose estima-
tion can cause the gripper to collide with the canopy, causing damage to both the environ-
ment and the gripper. A sensor providing cloud data for generating collision information is
assumed to be available.

Let c ∈ R
3 be a point defined in set C, known as the point cloud of the immediate

environment. In addition, let set CB ⊂ C be the set of points such that it represents all
inadmissible collision objects, such as trunks and branches as identified by some segmenta-
tion routine. All points in CB will, therefore, be checked for collisions with the gripper. Let
RG be the collision radius surrounding the gripper. Finally, assume the gripper’s base frame
{E} is at BpE , and the gripper tip frame {G} is at BpG, hence the collision object for the
gripper is a cylinder of radius RG between these two points, along XE (Figure 22.4).

Point c ∈ CB , lies within the collision cylinder if

0 ≤ r ≤ 1 (22.39)

where

r =
(pE − pG) · (pE − c)

|pG − pE |
(22.40)

and if

d ≤ RG (22.41)

where

d = |(pG − pE) r + pE − c| (22.42)

noting that pG and pE are all derived from x. We can now express (22.39) and (22.41) as
inequality constraints,

g(3,3n−2)(x) = −r(x) (22.43)

g(3,3n−1)(x) = r(x)− 1 (22.44)

g(3,3n)(x) = d(x)−RG (22.45)

for every n-th point c ∈ CB . Therefore point c is within the collision cylinder (in collision
with the gripper) if any of (22.43)–(22.45) do not satisfy the condition in (22.28). All points
in CB must be outside of the collision cylinder for the collision-free constraint to be satisfied.

410 MARS: The Monash Apple Retrieving System

22.3.4 Kinematic Configuration Constraint

We can generalise the configuration matching constraint for all non-redundant serial ma-
nipulators that exhibit more than one working mode. Let S = {1, 2, ...n}, which represents
n-kinematic solutions of a robotic manipulator, where each integer represents a unique class
of configuration of the robot (i.e., working mode [34, 35]). Then let P = {S1, S2, ..., Sm},
which represents a path for the gripper to follow along m points, and Si ∈ P, Si ⊆ S repre-
sents the valid kinematic solutions at point i along path P . Then, the goal of manipulator
planning is to maintain the same class of configuration through all points in P , such that

∣

∣

∣

⋂

P

∣

∣

∣
> 0 (22.46)

In task space path planning such as that executed in grasping trajectories, (22.46) must
be true in order to avoid serial singularities. Otherwise, the plan is immediately forfeited
as infeasible. However, in joint space path planning, if (22.46) is true, then the shortest
path in the joint space can exists in the absence of environmental and self-collisions. Oth-
erwise if false, any path found along P will require the manipulator to change kinematic
configurations, increasing cycle time.

22.4 Path Planning

Path planning involves generating the harvesting sequence for a single apple, which is an
amalgamation of trajectories defined either in the task space or in the configuration space.
Configuration space planning allows the full utilisation of the configuration space in mo-
tion generation, where planning algorithms generate collision-free trajectories in higher-
dimensional spaces in a feasible time [36]. In the context of path planning for a non-
redundant serial robot, the configuration space is identical to the joint space [35]. Task
space planning generates motion relative to the manipulator’s end-effector frame and is
well-suited for trajectories that require linear motion, such as reaching, inspection, pulling
and twisting trajectories.

22.4.1 Planning Algorithm

MARS utilises ROS’s MoveIt motion planning framework to implement constrained task
space motion and configuration space trajectories. The planning algorithm for configuration
space trajectories uses a combination of RRT-Connect and PRM*. While RRT-Connect
works very efficiently in configuration spaces where the collision object is complex or free
space is limited [37], PRM* offers smoother or shorter configuration space trajectories where
processing speed is non-critical [38].

In general, MoveIt works out-of-the-box for most serial manipulators utilising numerical
kinematic solvers [23]. However, path planning performance can be significantly enhanced
by directly utilising configuration space coordinates from an external inverse kinematics
solver. This bypasses ROS (Melodic) MoveIt’s limitations on linear trajectories by checking
for serial singularities in advance, significantly improving the robustness of this mode of
trajectory generation. The same advantage also applies to configuration space planning,
where trajectories within the same working mode can reduce actuator travel, reducing
execution times and speeding up the harvesting process.

Figure 22.5 shows an example of how RRT finds a path for the gripper to grasp a fruit
while avoiding obstacles represented by the quadtree structure. The final path is shown in

Path Planning 411

FIGURE 22.5

RRT finding a collision-free path between {G} and {A}.

blue. While randomised forward propagation of the path results in a tree-like structure that
can produce indirect paths and long branch spurs, the generation of this tree is extremely
quick.

22.4.2 Harvesting Sequence

In Figure 22.6, two gripper frames are defined: {apple approach} and {gripper grasp},
which are attached to the end effector frame {ee link} at a static offset. A grasping tra-
jectory can be defined by first manipulating the gripper such that {apple approach} is
coincident with the apple frame {apple 0} ({apple} for brevity). Once this is achieved, the
robot can then grasp the apple by manipulating the gripper such that {gripper grasp} is
now coincident with {apple}. This concept is carried through the entire harvesting sequence
for a single apple.

MARS utilises a five-step harvesting sequence that combines both configuration space
and task space trajectories. This sequence was determined through experiments and field
trials, and was found to be the most effective based on the current gripper hardware.
To ensure a path for the harvesting sequence exists, and the effects of singularities are
minimised, the apple frame’s orientation can be optimised, as discussed in Section 22.3.
This is essential for apples located at the boundary of the manipulator’s workspace, as it
ensures the existence of at least one kinematic solution for all via points in the harvesting
sequence. Details of the harvesting sequence are as follows.

1. Approach

The robot approaches the apple by manipulating the end effector such that
{apple approach} is coincident with {apple}, where {apple approach} is attached to
{ee link} at a constant offset (Figure 22.7). This path is planned in the configuration
space from the robot’s initial state to the apple approach pose as determined by inverse

412 MARS: The Monash Apple Retrieving System

FIGURE 22.6

{gripper home} coincident with {apple}.

kinematics. This step determines the robot’s working mode for the rest of the harvesting
sequence.

2. Reach

The robot reaches for the apple by manipulating {gripper grasp} to be coincident with
{apple} (Figure 22.8. A linear trajectory is generated in the task space and executed with
the gripper’s fingers in the open position. Once the frames are coincident, the fingers will
close to envelop the apple. The manipulator working mode between the initial and final
pose must be identical to minimise the chance of encountering singularities during motion.

3. Twist

The robot applies a twisting motion to detach the apple from the canopy using a task
space trajectory. There are two modes of twisting that can be implemented based on the

FIGURE 22.7

{gripper approach} coincident with {apple}.

Path Planning 413

FIGURE 22.8

{gripper grasp} coincident with {apple}.

gripper hardware. By default, a purely twisting motion of approximately 270◦ is applied to
the apple, which is sufficient to detach most apples. This is achieved when {gripper twist}
coincident with {apple} (Figure 22.9(a)). An alternate method is to apply a pendulum
motion, where the trajectory is defined as via points attached to the {ee link} (Figure
22.9(b)). This motion allows for the detachment of apples at lower forces. However, it
increases translational movement, which can be problematic for apples that lie in clusters
or are heavily occluded by branches.

4. Extract

The robot extracts the apple from the canopy with a linear motion generated in the task
space, and is mostly a pulling motion with a slight twist. This allows the apple to detach
from the canopy if the previous twisting motion was insufficient to break the stem. In this
pose, it is assumed that the apple is inside the gripper’s fingers. Therefore {apple withdraw}

(a) {gripper twist} coincident with {apple} (b) Ordered pendulum via-frames to apply pendulum
motion

FIGURE 22.9

Twisting motions applied to the apple.

414 MARS: The Monash Apple Retrieving System

FIGURE 22.10

{apple withdraw} coincident with {apple}.

is coincident with the original location of {apple} (Figure 22.10). The manipulator working
mode between the initial and final pose, again must be identical to avoid problems with
singularities.

5. Deposit

The robot moves to the deposit pose by aligning the gripper’s {gripper tip} with the
{apple deposit}, located above the apple’s depositing location (Figure 22.11). This path is
generated in the configuration space to utilise the maximal workspace, reducing the chance
of collisions with the canopy. In this step, the working mode is unconstrained, allowing
the robot to utilise the full configuration space to avoid collisions as necessary. However,
if the same working mode is maintained from extraction to deposit, the overall depositing
trajectory is optimised, reducing overall cycle time.

FIGURE 22.11

{gripper tip} coincident with {apple deposit}.

Results 415

22.5 Results

The goal of the trials was to obtain a realistic representation of harvesting performance in
typical canopy settings. For all experiments, the only assistance given to MARS was the
removal of some leaves to allow the vision system to see completely occluded apples and
remove apples from the harvesting cycle that would be dangerous for the robot to pick, such
as those behind trellis wires. Given that this assistance was a minimal effort for the robot’s
operator, MARS’ performance values, as shown in Tables 22.2 and 22.3, offer a reasonable
insight into selective robotic harvesting performance for minimally-modified Tatura-trellis
(V) canopies, if farmers had utilised this technology as state-of-the-art in 2022.

Overall, MARS achieved a harvest success rate of 62.8% at a median speed of 9.18
seconds per apple (approximately 6.5 apples per minute) at up to 80% of the manipulator’s
rated speed. In optimal settings, MARS was capable of higher successful grasping rates,
70.8% when not considering occluded vision, and achieved a faster cycle time where 25% of
apples were harvested in less than 8 seconds.

22.5.1 Harvest Success Rate

Table 22.2 shows the unsuccessful apple extraction data for all trials combined. Each mode
of failure can be classed into five categories.

• User failure mode indicates apples that were incorrectly identified by the user as feasible
for harvest, but extraction was still attempted. Unsighted occlusions such as branches and
trellis wires were common problems. In addition, system stop problems usually occurred
when the gripper’s fingers interacted forcibly with unseen branches, or due to pneumatic
cable entanglements.

TABLE 22.2

Overall Unsuccessful Apple Extractions in the 2021–2022 Trials

Failure Mode

A
p
p
les

A
ttem

p
ted

D
rop

p
ed

d
u
e
to

overrip
en

ess

U
ser

fau
lt

A
p
p
le

sh
ift

V
isio

n
in
accu

racy

G
ra
sp

in
terferen

ce

E
x
tra

ction

806 3 31 39 48 40 160

Visible 803 Excluded
3.86 % 4.86 % 5.98 % 4.98 % 19.93 %

39.60 % (60.40 % success)

Reachable 772 Excluded
5.05 % 6.22 % 5.18 % 20.73 %

37.18 % (62.82 % success)

Graspable 685 Excluded
5.84 % 23.36 %
29.20 % (70.80 % success)

416 MARS: The Monash Apple Retrieving System

TABLE 22.3
MARS Timing Data for Each Task During Harvesting
for Each Apple

Task
Quartile Time (s)

Qtr 1 Qtr 2 Qtr 3

Plan

Optimisation 0.63 0.67 0.75
Grasp Sequence 1.06 1.14 1.20

Approach 0.10 0.20 0.30
Grasp 0.30 0.30 0.30

Deposit 0.20 0.30 0.30

Execution

Approach 2.28 3.13 3.84
Grasp 1.08 1.08 1.09

Deposit 3.19 3.65 4.03
Gripper 0.94 1.01 1.11

Cycle Time 7.91 9.18 10.31

• Apple shift failures occur when the target apple’s position shifts in the canopy. MARS
currently assumes the positions of the apples stay relatively static through the harvesting
process, and will not update its map even if apples change positions due to the robot’s
interaction with the canopy. During harvest, the robot can accidentally knock an adjacent
apple off its branch, or shift its parent branch, causing all other child apples to move in
the process. Over-compliant branches are also problematic, as extraction causes them to
oscillate for an extended period of time.

• Vision inaccuracy problems cause the robot to partially grasp or completely miss the
target fruit. Due to the dependence of the point cloud in the localisation process, any
stray leaves and branches in front of a targeted fruit can affect its depth perception.
Other sources of problems include clustering and extreme lighting conditions. They cause
localisation errors that affect translational accuracy, and are classed as “Planar” inaccu-
racies.

• Grasp interference failures occur when the gripper’s accuracy is ideal, but the grasping
process is interfered with, resulting in a failed grasp. This usually involves physical inter-
ference during the grasping process, such as from branches, other apples, or even parts of
the gripper hardware.

• Extraction failures occur where upon successful grasp, the gripper trajectory executed
by the manipulator fails to detach the apple from the canopy. There are many causes of
extraction failure, involving both hardware and software aspects.

Further to these categories, apples can be grouped under differing assumptions that
allow further evaluation of MARS’ harvest success rates. These are displayed as three main
rows in Table 22.2, which are labelled as Visible, Reachable, and Graspable apples.

• Visible apples represents all apples that were detected by MARS that were selected to
be harvested by the robot, excluding the apples that were unsuccessfully harvested due
to apples prematurely detaching from the canopy naturalistically as part of their ripening
process. This resulted in MARS having a 60.4% harvest success rate, when including all
sources of unsuccessful grasps.

• Reachable apples represent the same sample as visible apples, but exclude all sources
of unsuccessful grasps that were caused by the user. During the manual selection process,
the user may unintentionally allow an apple that lies behind a trellis wire or situated next

Conclusion 417

to a hidden branch to be harvested. In these scenarios, finger interference is highly likely,
resulting in an unsuccessful grasp. Other reasons include attempts at grasping apples that
are too small for the designed gripper, or if the robot halts unexpectedly due to software
faults or protective stops, regardless of whether an apple was successfully grasped or not.
The resultant calculated harvest success rate in this category represents MARS’ entire
system performance, which is 62.82% out of 772 potentially reachable apples.

• Graspable apples represent the same apples as the reachable set, but further exclude
all sources of unsuccessful grasps caused by the vision system, such as localisation errors
and unexpected shifting of apples caused by the robot interacting with the canopy. These
results best indicate MARS’ fruit-picking performance on the assumption that the vision
system and user operation are perfect. The resultant harvest success rate under this
assumption is 70.8%.

22.5.2 Cycle Time

In addition to the logged unsuccessful grasps, a further number of apples had their cycle
times thoroughly analysed. The definition of cycle time is the time it takes for the robot
to approach an apple from any resting position, grasp, extract, and then deposit the apple
at a designated position. It is not assumed that the depositing condition is simply drop-
ping the apple after extracting it from the canopy. This cycle can be grouped into two
categories for timing purposes: planning and execution. Planning largely occurs while the
robot is in transit (during the approach and deposit phases); hence, planning tasks have
minimal impact on the overall cycle time. Therefore, the summed time of execution tasks
should be approximately equal to the cycle time, with any time discrepancies caused by the
communication delays between ROS and the robot’s hardware.

A summary of time spent on tasks during the harvesting process is shown in Table
22.3. The times are expressed as lower (Qtr 1) and upper (Qtr 3) quartiles (25th and
75th percentile), and middle quartile (Qtr 2), which represents median time. Based on
this, MARS achieved a median harvesting cycle time of 9.18 seconds for Tatura-structured
canopies with very minimal leaf or branch thinning to assist in robotic harvesting, with the
manipulator operating at up to 80% of the rated maximum joint speed.

22.6 Conclusion

The significance of these results is that it is a realistic representation of selective apple
harvesting performance under typical apple canopy conditions, where minimal attempts
were made to modify the existing canopy to assist in robotic harvesting. These results are
promising, even at the prototyping stage, and show that the planning methods implemented
are a step in the right direction for enhancing the reliability of selective apple harvesting
robots in challenging canopy environments. In application, this will reduce the labour burden
on farmers who are willing to adopt robotic harvesting, but may not have the resources to
prepare idealistic canopy conditions for a robot to operate efficiently.

MARS was shown to be particularly gentle in harvesting apples from the canopy with
negligible fruit and canopy damage. This sort of finesse is typical of a robot that operates
under the paradigm of accuracy and efficiency that is not commonly observed in agricultural
robots, but is a trait that is demanded by farmers from their workers. By focusing on this
paradigm for selective harvesting robots and enhancing their intelligence and reliability in

418 MARS: The Monash Apple Retrieving System

typical canopy conditions, it is hoped that farmers will begin to change their perception of
these robots, from being expensive farming machinery that requires constant maintenance
and attention, to a platform they can rely on to supplement their harvesting capacity.

Bibliography

[1] S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, and E. Pekkeriet,
“Agricultural robotics for field operations,” Sensors, vol. 20, no. 9, p. 2672, 2020.

[2] T. L. Robinson, “Apple-orchard planting systems.,” in Apples: Botany, Production and

Uses, pp. 345–407, CABI publishing Wallingford UK, 2003.

[3] G. Kootstra, X. Wang, P. M. Blok, J. Hemming, and E. Van Henten, “Selective harvest-
ing robotics: current research, trends, and future directions,” Current Robotics Reports,
pp. 1–10, 2021.

[4] H. Kang and C. Chen, “Fruit detection and segmentation for apple harvesting using
visual sensor in orchards,” Sensors, vol. 19, no. 20, p. 4599, 2019.

[5] H. Kang and C. Chen, “Fast implementation of real-time fruit detection in apple
orchards using deep learning,” Computers and Electronics in Agriculture, vol. 168,
p. 105108, 2020.

[6] H. Kang, H. Zhou, and C. Chen, “Visual perception and modeling for autonomous
apple harvesting,” IEEE Access, vol. 8, pp. 62151–62163, 2020.

[7] X. Wang, H. Zhou, H. Kang, W. Au, and C. Chen, “Bio-inspired soft bistable actuator
with dual actuations,” Smart Materials and Structures, vol. 30, no. 12, p. 125001, 2021.

[8] X. Wang, H. Kang, H. Zhou, W. Au, and C. Chen, “Geometry-aware fruit grasping
estimation for robotic harvesting in apple orchards,” Computers and Electronics in
Agriculture, vol. 193, p. 106716, 2022.

[9] J. Baeten, K. Donné, S. Boedrij, W. Beckers, and E. Claesen, “Autonomous fruit
picking machine: A robotic apple harvester,” in Field and service robotics, pp. 531–
539, Springer, 2008.

[10] Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu, “Design and control of an apple
harvesting robot,” Biosystems engineering, vol. 110, no. 2, pp. 112–122, 2011.

[11] J. R. Davidson, A. Silwal, C. J. Hohimer, M. Karkee, C. Mo, and Q. Zhang, “Proof-
of-concept of a robotic apple harvester,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 634–639, IEEE, 2016.

[12] A. Silwal, J. R. Davidson, M. Karkee, C. Mo, Q. Zhang, and K. Lewis, “Design, inte-
gration, and field evaluation of a robotic apple harvester,” Journal of Field Robotics,
vol. 34, no. 6, pp. 1140–1159, 2017.

[13] E. A. Smith, R. L. Bettinger, C. A. Bishop, V. Blundell, E. Cashdan, M. J. Casimir,
A. L. Christenson, B. Cox, R. Dyson-Hudson, B. Hayden, et al., “Anthropological
applications of optimal foraging theory: a critical review [and comments and reply],”
Current Anthropology, vol. 24, no. 5, pp. 625–651, 1983.

Bibliography 419

[14] H. Zhou, X. Wang, W. Au, H. Kang, and C. Chen, “Intelligent robots for fruit har-
vesting: Recent developments and future challenges,” Precision Agriculture, pp. 1–52,
2022.

[15] L. F. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in agriculture robotics: A
state-of-the-art review and challenges ahead,” Robotics, vol. 10, no. 2, p. 52, 2021.

[16] K. Legun and K. Burch, “Robot-ready: How apple producers are assembling in antici-
pation of new ai robotics,” Journal of Rural Studies, vol. 82, pp. 380–390, 2021.

[17] S. K. Devitt, “Cognitive factors that affect the adoption of autonomous agriculture,”
arXiv preprint arXiv:2111.14092, 2021.

[18] R. R Shamshiri, C. Weltzien, I. A. Hameed, I. J Yule, T. E Grift, S. K. Balasundram,
L. Pitonakova, D. Ahmad, and G. Chowdhary, “Research and development in agricul-
tural robotics: A perspective of digital farming,” International Journal of Agricultural

and Biological Engineering, 2018.

[19] K. Zhang, K. Lammers, P. Chu, Z. Li, and R. Lu, “System design and control of an
apple harvesting robot,” Mechatronics, vol. 79, p. 102644, 2021.

[20] X. Yu, Z. Fan, X. Wang, H. Wan, P. Wang, X. Zeng, and F. Jia, “A lab-customized
autonomous humanoid apple harvesting robot,” Computers & Electrical Engineering,
vol. 96, p. 107459, 2021.

[21] Z. Zhang, P. H. Heinemann, J. Liu, T. A. Baugher, and J. R. Schupp, “The development
of mechanical apple harvesting technology: A review,” Transactions of the ASABE,
vol. 59, no. 5, pp. 1165–1180, 2016.

[22] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[23] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE

Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[24] B. Chen, “Design and simulation of path research for fruit picking robot based on data
mining,” Agronomia, vol. 37, no. 1, 2020.

[25] Y. Edan, T. Flash, U. M. Peiper, I. Shmulevich, and Y. Sarig, “Near-minimum-time
task planning for fruit-picking robots,” IEEE transactions on robotics and automation,
vol. 7, no. 1, pp. 48–56, 1991.

[26] P. Kurtser and Y. Edan, “Planning the sequence of tasks for harvesting robots,”
Robotics and Autonomous Systems, vol. 131, p. 103591, 2020.

[27] M. Leighton and D. R. Leighton, “The relationship of size of feeding aggregate to size
of food patch: howler monkeys (alouatta palliata) feeding in trichilia cipo fruit trees
on barro colorado island,” Biotropica, pp. 81–90, 1982.

[28] J. F. Aristizabal, S. Negrete-Yankelevich, R. Maćıas-Ordóñez, C. A. Chapman, and
J. C. Serio-Silva, “Spatial aggregation of fruits explains food selection in a neotropical
primate (alouatta pigra),” Scientific reports, vol. 9, no. 1, pp. 1–13, 2019.

[29] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning–method overview
and review of use for fruit detection and yield estimation,” Computers and electronics

in agriculture, vol. 162, pp. 219–234, 2019.

420 MARS: The Monash Apple Retrieving System

[30] H. Kang, H. Zhou, X. Wang, and C. Chen, “Real-time fruit recognition and grasping
estimation for robotic apple harvesting,” Sensors, vol. 20, no. 19, p. 5670, 2020.

[31] P. Eizentals and K. Oka, “3D pose estimation of green pepper fruit for automated
harvesting,” Computers and Electronics in Agriculture, vol. 128, pp. 127–140, 2016.

[32] C. W. Bac, J. Hemming, B. Van Tuijl, R. Barth, E. Wais, and E. J. van Henten,
“Performance evaluation of a harvesting robot for sweet pepper,” Journal of Field
Robotics, vol. 34, no. 6, pp. 1123–1139, 2017.

[33] Y. Xiong, Y. Ge, L. Grimstad, and P. J. From, “An autonomous strawberry-
harvesting robot: Design, development, integration, and field evaluation,” Journal of

Field Robotics, vol. 37, no. 2, pp. 202–224, 2020.

[34] K. P. Hawkins, “Analytic inverse kinematics for the Universal Robots UR5/UR10
arms,” tech. rep., Georgia Institute of Technology, 2013.

[35] W. Au, H. Chung, and C. Chen, “Generation of the global workspace roadmap of the 3-
RPR using rotary disk search,” Mechanism and Machine Theory, vol. 78, pp. 248–262,
2014.

[36] W. Au, H. Chung, and C. Chen, “Path planning and assembly mode-changes of 6-DoF
stewart-gough-type parallel manipulators,” Mechanism and Machine Theory, vol. 106,
pp. 30–49, 2016.

[37] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), vol. 2, pp. 995–1001, IEEE, 2000.

[38] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proceedings 2000
ICRA. Millennium conference. IEEE international conference on robotics and automa-
tion. Symposia proceedings (Cat. No. 00CH37065), vol. 1, pp. 521–528, IEEE, 2000.

[39] R. Pentreath, “AP13035 Final Report - Apple and pear industry data collection,” tech.
rep., Horticulture Innovation Australia, 2015.

[40] H. Zhou, J. Xiao, H. Kang, X. Wang, W. Au, and C. Chen, “Learning-based slip
detection for robotic fruit grasping and manipulation under leaf interference,” Sensors,
vol. 22, no. 15, p. 5483, 2022.

Part IV

Appendix

http://taylorandfrancis.com

23

Appendices for Chapter 5

23.1 Angle-Axis

It is known that any two arbitrary orientations can be linked by a rotation around a fixed
axis with an angle. Such a phenomenon yields the representation of orientation by using the
fixed axis and angle, which is called the angle-axis representation. Again, we will discuss
the direct and inverse problems separately.

23.1.1 Forward Problem

Consider a rotation axis being a unit vector k =
[

kx, ky, kz
T

and the rotation angle being
θ. The rotation matrix is given by

Rk = kkT + cos θ(1− kkT) + sin θK (23.1)

where K is the cross-product matrix of k, such that

K = [k×] =





0 −kz ky
kz 0 −kx
−ky kx 0



 (23.2)

Proof: consider a vector p and p ′ that are the same vector before and after rotation,
as shown in Figure 23.1(a). Using the second meaning of rotation matrix, we have

p ′ = Rk p (23.3)

where Rk is the matrix we are seeking. According to Figure 23.1(a), we have the following
relations:

p ′ = l+ R′ = (kT p)k+ R′ = kkT p + R′ (23.4)

R = p − l = (1− kkT)p (23.5)

where 1 is a 3 × 3 identity matrix. On the other hand, R′ can be represented in terms of
R and R′′ , as shown in Figure 23.1(b), such that

R′ = cθR + sθ R′′ (23.6)

where R′′ = k× p . Combining the above equations together yields

p ′ = kkT p + cos θ(1− kkT)p + sin θk× p (23.7)

which is called Rodrigues’s rotation formula. Comparing (23.3) and (23.7) yields (23.1).

DOI: 10.1201/9781003614319-23 423

https://doi.org/10.1201/9781003614319-23

424 Appendices for Chapter 5

k

θ

r r′
r′′

p p′

P P ′

P ′′

(a) Side view

r
P

r′

P ′

θ

r′′
P ′′

(b) Top planar view

FIGURE 23.1

A vector is rotated from its original position to the final position.

□

Expanding (23.1) gives

Rk =





kxkx(1− cθ) + cθ kxky(1− cθ)− kzsθ kxkz(1− cθ) + kysθ

kxky(1− cθ) + kzsθ kyky(1− cθ) + cθ kykz(1− cθ)− kxsθ

kxkz(1− cθ)− kysθ kykz(1− cθ) + kxsθ kzkz(1− cθ) + cθ



 (23.8)

In linear algebra, we have

kkT = 1+K
2 (23.9)

where K is the cross product of matrix k. By means of (23.9), Rodrigues’ formula (23.1)
can also be written as

Rk = kkT + cos θ(1− kkT) + sin θ K

= 1+K
2 − cos θ K

2 + sin θ K

= 1+ (1− cos θ)K2 − sin θ K (23.10)

For further details on deriving (23.10), please refer to Appendix 23.3.

23.1.2 Inverse Problem

Inverse problem is again to the rotation axis and the angle of rotation upon a given matrix,

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (23.11)

The solution can be readily obtained as

k =
1

2 sin θ





r32 − r23
r13 − r31
r21 − r12





θ = arccos
r11 + r22 + r33 − 1

2
(23.12)

Quaternion 425

where k can be obtained by normalising the vector

[

r32 − r23 r13 − r31 r21 − r12
T

(23.13)

without acquiring the information of θ. Note that the solution is valid for θ ∈ (0◦, 180◦).
When θ = 0◦, the rigid body remains stationary, and any axis is possible. When θ = 180◦,
the axis has two opposite choices.

Example 23.1 (Angle-axis rotation): Find out the axis and angle of rotation of the rotation
matrix below.

0R1 =





0 0 1
−1 0 0
0 −1 0



 (23.14)

Solution: According to (23.12), we have

k =
1

∥
[

−1 1 −1
]T

∥





−1
1
−1



 =

√
3

3





−1
1
−1





θ = arccos
−1

2
= 120◦

23.2 Quaternion

An orientation can be best represented by a point on a 3-sphere in R
4,

a2 + b2 + c2 + d2 = 1 (23.15)

where a, b, c, d are called the quaternion. The corresponding rotation matrix is given by

R =





a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2



 (23.16)

The inverse problem involves finding the quaternion based on a given rotation matrix

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (23.17)

where the solution can be readily found as

a =
1

2

√
r11 + r22 + r33 + 1 (23.18)

b =
r32 − r23

4a
(23.19)

c =
r13 − r31

4a
(23.20)

d =
r21 − r12

4a
(23.21)

426 Appendices for Chapter 5

The quaternion is a powerful representation of the orientation, because two rotations can
be combined as a linear operation defined by one quaternion on the other quaternion.

Consider two rotations represented by two quaternions, q1 =
[

a1 b1 c1 d1
T

and

q2 =


a2 b2 c2 d2
T

, respectively. The combined rotation can be represented by a
new quaternion q12 given by

q12 = q1 ◦ q2 =









a1 b1 c1 d1
−b1 a1 −d1 c1
−c1 d1 a1 −b1

−d1 −c1 b1 a1

















a2
b2

c2
d2









(23.22)

which requires minimum computations and storage of the orientations. The relation between
the quaternion and the angle-axis representation is given by

a = cos(θ/2) (23.23)

b = kx sin(θ/2) (23.24)

c = ky sin(θ/2) (23.25)

d = kz sin(θ/2) (23.26)

which are called the Euler parameters as well. This relation can be used to visualise the
rotation by converting a given quaternion into the angle and axis of the rotation.

Example 23.2 (Quaternion rotations): An inertial measurement unit (IMU) shown in Fig-
ure 23.2(a) is an electronic device that measures and reports on its velocity, orientation, and
gravitational forces, using a combination of accelerometers and gyroscopes. These information can
be used to assist a SCUBA diver to map underwater caves, as shown in Figure 23.2(b). In one
experiment, the angular velocities ωx(ti), ωy(ti), ωz(ti), around the on-board x, y, and z axes, are
recorded, respectively, for i = 0, . . . , n. The sampling time ∆t is constant and known. Find the
trajectory of the orientation of IMU with respect to its initial orientation R(t0).

Solution: Let

ω(ti) =
√

ωx(ti)2 + ωy(ti)2 + ωz(ti)2 (23.27)

where ω is the magnitude of angular velocity, and ωx(ti), ωy(ti), and ωz(ti) refer to the x, y,
and z components of angular velocity, respectively, at time ti. According to the representation of

(a) An IMU (b) Mapping an underwater cave

FIGURE 23.2

A SCUBA driver mapping a underwater cave.

Alternate Expression of Rodrigues’ Formula 427

angle-axis (Section 23.1), k =


kx ky kz
T

. Its cross product matrix K is given by

K(ti) =
1

ω(ti)





0 −ωz(ti) ωy(ti)
ωz(ti) 0 −ωx(ti)
−ωy(ti) ωx(ti) 0



 (23.28)

where δt is the time step. We can then apply Rodrigues’ formula (23.10) to calculate the rotation
matrix between the initial orientation and orientation at the next time step ti+1,

i−1

i
R

i−1Ri = 1 + (1− cos(ω(ti)δt)) K
2 − K(t) sin(ω(ti)δt) (23.29)

Finally, we can calculate the rotation matrix between initial orientation and orientation at time ti

by

0Ri =
0R1 ...

i−1Ri

= 0Ri−1

i−1Ri (23.30)

23.3 Alternate Expression of Rodrigues’ Formula





kx
ky
kz







kx ky kz


=





kx
2 kxky kxkz

kxky ky
2 kykz

kxkz kykz kz
2



 = k kT (23.31)

K2 =





0 −kz ky
kz 0 −kx
−ky kx 0









0 −kz ky
kz 0 −kx
−ky kx 0





=





−kz
2 − ky

2 kxky kxkz
kxky −kz

2 − kx
2 kykz

kxkz kykz −ky
2 − kx

2



 (23.32)

k kT − K2 =





kx
2 + ky

2 + kz
2 0 0

0 kx
2 + ky

2 + kz
2 0

0 0 kx
2 + ky

2 + kz
2



 = 1 (23.33)

∴ k kT = 1+ K2 (23.34)

24

Appendices for Chapter 8

24.1 Proof of Q QT Being Screw-Symmetric

Q QT = 1 ⇒ d(Q QT)/dt = 0 ⇒ Q̇ QT + Q Q̇T = 0 ⇒ Ω + ΩT = 0 □

24.2 Proof of a Screw-Symmetric Matrix Being the Crossproduct

Matrix of a Vector

Assume Ω given below being scew-symmetric.

Ω =





w11 w12 w13

w21 w22 w23

w31 w32 w33





According to the skew-symmetric property, we have

Ω + ΩT =





2w11 w12 + w21 w13 + w31

w21 + w12 2w22 w23 + w32

w31 + w13 w32 + w23 2w33



 =





0 0 0
0 0 0
0 0 0





which yields zero diagonals and w12 = −w21, w13 = −w31, w23 = −w32. Therefore, Ω
can be further written as

Ω =





0 −w21 w13

w21 0 −w32

−w13 w32 0



 (24.1)

(24.1) is called crossproduct matrix of ω =


w32 w13 w21

T
, because of the relation

below:

Ω q = ω × q

where q is an arbitrary 3D vector. This relation can be readily verified.

Finally, define ωx = w32, ωy = w13, ωz = w21 such that ω =


wx wy wz

T

□

DOI: 10.1201/9781003614319-24 428

https://doi.org/10.1201/9781003614319-24

Proof of ω 429

24.3 Proof of ω

We will show ω =
[

δγ/δt δβ/δt δα/δt
T

. Without loss of generality, we can assume that

the instantaneous orientation of the end-effector is R0 = 1 , where 1 is an identity matrix.

The orientation caused by the small derivations of the fixed angles was shown previously as

R1 =





1 −δα δβ
δα 1 −δγ
−δβ δγ 1





Hence, we have the crossproduct matrix of the angular velocity as

Ω = Ṙ0 R0
T =

R1 − R0

δt
R0

T =





0 −δα/δt δβ/δt
δα/δt 0 −δγ/δt
−δβ/δt δγ/δt 0





Therefore, the angular velocity is obtained as

ω =





δγ/δt
δβ/δt
δα/δt





25

Appendices for Chapter 11

ppendices for Chapter 11]Appendices for Chapter 11

λ1 eT1 e2 = (λ1 e1)
T e2 = (I e1)

T e2 = eT1 IT e2

Since I is symmetric, we have

λ1 eT1 e2 = eT1 I e2 = λ2 eT1 e2

which yields

(λ1 − λ2) e
T
1 e2 = 0

Since λ1 and λ2 are distinct, we have eT1 e2 = 0.

□

25.2 Proof of Euler’s Law

The proof starts from the following relation

Fn =
F

ḣc

where n and hc are the moment on a rigid body and the angular momentum around its
mass center, respectively. Both quantities are measured in the ground frame {F}. Since
hc = F

Ic
F
ω , we have

Fn =
F

İcω + F
Ic

F
ω̇

According to the similarity transformation of the inertia tensor, F Ic = F
RM

M
Ic

F
RM

T ,
where {M} is attached to the body and M

Ic is invariant. Therefore,

DOI: 10.1201/9781003614319-25 430

25.1 Proof of the Orthogonality of Eigenvectors of an Inertia

Tensor

According to (11.9), the inertia tensor is symmetric, i.e., IT = I .
Assume two eigenvectors e1 and e2 of I are associated with two distinct eigenvalues λ1

and λ2, respectively. We want to show e
1

T e2 = 0. Start with

https://doi.org/10.1201/9781003614319-25

Proof of Parallel-Axis Theorem 431

Fn = [
F ˙RM

MIc
F
RM

T + F
RM

MIc
F ˙RM

T]Fω + F Ic
F
ω̇

= [Fω × F Ic +
F Ic(− F

ω×)]Fω + F Ic
F
ω̇

= F Ic
F
ω̇ + F

ω × F Ic
F
ω (25.1)

Further, (25.1) is valid in any measure frame. Hence, it can be written as

n = Ic ω̇ + ω × Icω (25.2)

□

25.3 Proof of Parallel-Axis Theorem

Two parallel frames, {0} and {1}, are shown in Figure 25.1, where {1} sits at the CoM of
the rigid body. The position vector r, c , and d shown in Figure 25.1 have the geometric
relation: r = c + d . According to Formula (e6-1-7), we have

0I = −
∫

[r]2dm

1I = −
∫

[d]2dm

Substituting the geometric relation into 0I yields

{0}

r

d

c

C

{1}

dm

FIGURE 25.1

Two parallel frames associated with a rigid body.

432

0I = −

∫
[c + d]2dm

= −

∫
([c] + [d])2dm

= −

∫
([c]2 + [d]2 + [c][d] + [d][c])dm

= −[c]2
∫

dm−

∫
[d]2dm− [c]

∫
[d]dm−

∫
[d]dm [c] (25.3)

Since {1} sits at the CoM of the body, we have
∫
[d]dm = 0 . Hence,

0I = −[c]2M −

∫
[d]2dm

= −[c]2M + C I (25.4)

One can readily show [c]2 = − cT c 13 + c cT by simplifying and expanding this
formula. Hence,

0I = (cT c 13 − c cT)M + 1I (25.5)

�

Appendices for Chapter 11

Index

3-RRR robot, 374
3-sphere, 324
3R-PRB model, 338

A* (A star) algorithm, 179
MATLAB function, 180

Acceleration
angular, 229
linear, 229

Actuation pattern, 310
Additive manufacturing, 9
Amplifier, 252
Angle axis rotation, 423

forward problem, 423
inverse problem, 424

Angle-axis representation, 328
Angular acceleration, 229
Angular velocity, 28, 137, 228
Articulated robot, 12
Assembly mode, 365
Atlas (path planning), 373

Balancing equations, 112
Bang-bang controller, 57
Body

pseudo-rigid, 333
rigid, 333
virtual, 333

Boundary value problem, 360
shooting method, 361
split boundary conditions, 360

Breadth first search, 169
MATLAB function, 169

Cable loop, 394
Cartesian robot, 9
Centre of mass, 201
Centrifugal force, 211
Chart (path planning), 370
Chebychev–Grübler–Kutzbach (CGK)

criterion, 309
Closed-loop control, 57

Compensator, 252
Complete planning algorithm, 169
Computed torque control, 278

multi-input/multi-output (MIMO),
279

non-linear, 278
single-input/single-output (SISO),

278
Concentric tube robot, 353
Configuration, 159
Configuration space, 159
Connectivity, 163
Constrained minimisation, 333

MATLAB function, 333
Constraint

cable length, 340, 396
cable loop, 396
equation, 334
force, 335
gear mesh, 346
inequality, 337
joint position, 339, 395
kinematic, 317, 334, 395
kinetostatic, 336
pulley, 396
tendon-spacer, 339

Constraint (control)
artificial, 298
force-type, 297
motion-type, 297
natural, 297

Constraint analysis, 332, 394
Contact force

normal, 347
tangential, 347

Control
disturbance rejection, 252
error, 272
force, 295
hybrid motion-force, 297
set point, 56

433

434 Index

steady-state error, 262
task space (force), 295
task space (motion), 289
transient response, 262

Control law
decoupling, 291
error, 272
error dynamics, 272
first, 278
first partitioning, 291
inner loop, 280
outer loop, 280
partitioning, 291
second, 278
second partitioning, 291

Controller, 252
bang-bang, 57
closed-loop, 57
derivative, 61
feedback, 57
feedforward, 56
gravity compensation, 282
impedance, 300
integral, 61
linearisation, 278, 303
non-feedback, 56
open-loop, 56
proportional (P), 59, 261
proportional-derivative (PD), 62,

264
proportional-integral (PI), 62
proportional-integral-derivative

(PID), 64, 269
pulse width modulation (PWM), 65

Coriolis force, 211
Cosserat rod theory, 354
Cubic splines, 36
Cylindrical robot, 9

da Vinci surgical robot, 387
Decoupling (control), 291
Degrees of freedom, 6, 309
Depth first search, 172

MATLAB function, 172
Device footprint, 388
DH notation, 91, 105

joint angle, 93
link length, 93
link offset, 93
link twist, 93
MATLAB function, 102

parameter, 92
prismatic joint, 97

Dialytic method, 121
Dijkstra’s algorithm, 175

MATLAB function, 176
Discretisation

grid, 163
quadtree, 410
random sampling, 166, 372

Disturbance, 252
Disturbance rejection, 252
Dynamics, 201

centrifugal force, 211
Coriolis force, 211
friction term, 218
gravity term, 211, 218
Lagrangian, 207
load term, 219
mass matrix, 217
Newton-Euler, 222

Effective damping factor, 256
Effective inertia, 255
Effort, 144
Eigenvalue, 204
Eigenvector, 204
End effector, 6
Error dynamics, 272

first-order, 273
joint velocity, 275
second-order, 273
task space, 291

Euler angle rotation, 77, 327
Z-Y -X, 77
forward problem, 78
inverse problem, 79

Euler parameters, 426
Euler’s equation, see Euler’s second law
Euler’s second law, 222

First search algorithm, 169
Five-bar manipulator, 366
Fixed angle rotation, 75

X-Y -Z, 75
forward problem, 75
inverse problem, 76

Fixed reference tracking, 261
Force control, 295
Forward kinematics, 91

of a 3-RRR, 375
of a 3R, 21, 95

Index 435

of a cylindrical robot, 104
of a five-bar manipulator, 366
of a PUMA, 100
of a spherical wrist, 99
of a UR5, 404
of an RP manipulator, 23
of an RPR, 98, 102
planar, 21

Four-bar linkage, 390
Four-dimensional space, 324
Frame

base, 17
measuring, 137
reference, 17, 137
world, 17

Function handle, 190

Gear ratio, 256
Gear train, 391
Gear transmission, 255
Geared motor, 256
Geared servo, 256
Generalised coordinates, 317, 333, 395
Generalised external force, 334, 395
Geometric method, 24
Gravity compensation, 282
Grid discretisation, 163
Gripper

MARS, 402
underactuated, 332

Hooke constitutive equation, 335, 356
Hybrid motion-force control, 297

Impedance control, 300
contact dynamics, 302
impedance, 301
single-axis, 300
task-space, 301

IMU, 426
Industry 4.0, 4
Inertia tensor, 202

eigenvalue, 204
eigenvector, 204
parallel-axis theorem, 206
principal axes, 204
principal axis, 204
principal frame, 204
principal moment, 204
similarity transformation, 205

Intermediate axis theorem, 225

Inverse kinematics, 110
analytical method, 112
geometric method, 24
of a 2R, 24, 25, 112, 122
of a 4R, 114
of a 6R, 121
of a cylindrical robot, 119
of a UR5, 404
of PUMA, 115
planar, 24

Inward propagation, 231

Jacobian, 29, 132, 317
MATLAB function, 150
non-square, 397
parallel, 365
serial, 7

Joint angle, 93
Joint space, 6, 20

Kinematic chain, 6
Kinematics

forward, 91
inverse, 110
parallel manipulator, 364
planar, 20

Kinetic energy, 208
Klein form, 297

Lagrange equation, 207
Lagrange multiplier, 335, 397
Lagrangian, 207
Lagrangian dynamics, 207

centrifugal force, 211
Coriolis force, 211
friction term, 218
gravity term, 211, 218
kinetic energy, 208
load term, 219
mass matrix, 217
potential energy, 209

Linear velocity, 28, 136, 227
Linearisation (control), 278, 303
Liner acceleration, 229
Link length, 93
Link offset, 93
Link twist, 93
Linkage

arc track, 388
Bennett, 317
cable-constrained, 394

436 Index

dual-triangular, 389
four-bar, 390
Kempe focal, 390
parallelogram, 389
Peaucellier-Lipkin straight-line, 392
spatial four-bar, 318
spherical, 389

Links, 6
Local mobility, 317

first-order, 317
second-order, 318

Loop-closure equation, 310
Lyapunov

direct method, 285
second method, 285

Lyapunov function, 285
Lyapunov stability, 283

asymptotically stable, 283
criterion, 283
equilibrium point, 283
null solution, 283
phase portrait, 284
stable, 283
vector field, 283

Mapping
robot-dependent, 356
robot-independent, 354

Mass matrix, 217
Mass moment of inertia, 203
Mass product of inertia, 203
MATLAB function

A* (A star) algorithm, 180
breadth first search, 169
constrained minimisation, 333
depth first search, 172
DH notation, 102
Dijkstra’s algorithm, 176
Jacobian, 150
Newton-Euler dynamics, 241

Minimally Invasive Surgery, 353
cannula type, 353
laparoscopic type, 353, 387
robot, 353, 387
tool, 387

Minimum energy theory, 332
Mobility, 309

actuation pattern, 310
global, 316
independent constraint equation,

309

joint variables, 309
local, 317
property of motion, 310

Monash Apple Retrieving System, 402
Motion subgroups, 310
Motor

armature circuit, 252
armature current, 252
armature wire resistance, 252
back-EMF voltage, 252
coil inductance, 252
DC, 252
disturbance torque, 254
EMF constant, 253
torque constant, 253
voltage loop equation, 252

Newton’s second law, 201
Newton-Euler dynamics, 222

acceleration propagation, 229
Euler’s equation, 222
inward propagation, 231
MATLAB function, 241
outward propagation, 227
prismatic joint, 229
velocity propagation, 229

Non-linear computed torque control, 278
Numerical integration, 355

discretised form, 355

Open-loop control, 56
Orientation, 73
Orientation workspace, 324

principles of invariant, 324
tensor, 325
volume, 324
volume element, 325

Outward propagation, 227

Parabolic blends, 42
Parallel axis theorem, 206
Parallel robot, 6, 309, 364
Parallelogram, 389
Partitioning (control), 291
Path planning, 159

atlas, 373
chart, 370
complete algorithms, 169
completeness, 168
complexity, 168
potential fields, 189

Index 437

sample-based algorithms, 184
trajectory generation, 36

Plücker coordinates, 143
Planning algorithm

RRT-Connect, 410
Planning algorithms

A* (A star), 179
breadth first search, 169
complete algorithms, 169
depth first search, 172
Dijkstra, 175
first search, 169
potential fields, 189
probabilistic road map (PRM), 184
Rapidly-exploring random tree

(RRT), 186
sample-based algorithms, 184

Plant, 252
Polynomial simplification, see Dialytic

method
Pose, 6, 17
Position and orientation, 16, 71
Position vector, 137, 227
Potential energy, 209, 333
Potential fields, 189
Principal axis, 204
Principal frame, 204
Principal moment, 204
Principle of virtual work, 145, 148
Prismatic joint, 6
Probabilistic road map (PRM), 184
Programming

function handle, 190
ROS, 191
symbolic, 190

Property of motion, 310
Proportional (P) controller, 59, 261
Proportional-derivative (PD) controller,

62, 264
gravity compensation, 282

Proportional-integral (PI) controller, 62
Proportional-integral-derivative (PID)

controller, 64, 269
gravity compensation, 282

Prosthesis, 343
Pseudo inverse, 398
Pseudo-rigid body, 333
Pulse width modulation (PWM)

controller, 65
PUMA, 3

Quadtree, 410
Quaternion, 324, 425

Random sampling, 166, 372
Rapidly-exploring random tree (RRT),

186
Reference

fixed, 56, 261
time-variant, 272

Remote centre, 387
Remote centre of motion, 387
Revolute joint, 6
Rigid body, 333
Rigid body dynamics, 201
Robot

2-RPS-UPS, 315
2-URRH, 314
3-RRR, 374
3-RRTR, 313
3-UPU, 311
articulated, 12
Cartesian, 9
concentric tube, 353
cylindrical, 9
five-bar manipulator, 366
MARS, 402
PUMA, 3
SCARA, 11
sphere, 11
spherical, 328
tendon-driven, 337
Unimate, 3
UR5, 85, 404

Robot architectures, 5
Robot operating system, see ROS
ROS, 191

action service, 195
master, 193
message, 194
MoveIt, 410
node, 193
publisher, 194
service, 194
subscriber, 194
topic, 194

Rotation matrix, 71
RRT-Connect, 410
Runge-Kutta 4, 362

Sample-based path planning, 184
SCARA, 11

438 Index

Screw theory, 143, 297
Selection matrix, 336, 397
Sensor, 252
Serial robot, 6
Servo, 252
Set point, 56
Shooting method, 361
Similarity transformation, 205
Single-input/single-output (SISO)

control system, 252
Singularity, 30, 148

four-bar linkage, 391
locus, 370
parallelogram, 391
Type I parallel, 365
Type II parallel, 365

Singularity analysis
of a 3-RRR, 378

Singularity locus, 370
Skew-symmetric matrix, 137
Soft robot, 332

concentric tube, 353
tendon-driven, 337

Special orthonormal subgroup SO(3), 72,
310

Spherical polar coordinates, 325, 328
Spherical robot, 11, 328
Stability, 252
Static equilibrium, 357
Statics, 31, 144
Steady-state error, 262
Step input, 261
Strand model, 354
Surgical robot, 353, 387
Symbolic function, 190
Synthesise, 387
System

fully-constrained, 398
over-constrained, 317, 391
underactuated, 332

Tangent half-angle substitution, see
Univariate polynomial

Task space, 6, 20
Task space control

dynamics, 290
motion, 289
single-axis force, 295

Taylor expansion, 317
Tennis racquet theorem, see

Intermediate axis theorem
Tracking, 252
Trajectory generation, 36

cubic splines, 36
parabolic blends, 42

Transcendental equation, solving, 110
Transformation, 80

inverse matrix, 82
matrix, 80
of twist and wrench, 236, 358
pattern, 310
planar, 17
tree, 19

Transient response, 262
Twist, 219, 297

inverse transformation, 237
transformation, 236

Two-dimensional space, 17

Unimate, 3
Univariate polynomial, 119, 365
UR5, 85, 404

Variable
joint space, 133
task space, 133

Velocity, 26, 136
angular, 28, 137, 228
linear, 28, 136, 227
skew-symmetric matrix, 137

Velocity propagation, 140
prismatic joint, 143

Virtual body, 333
Virtual work, 145, 148

Weierstrauss substitution, see Univariate
polynomial

Working mode, 365
Workspace, 32, 148

boundary, 149
configuration space, 159
joint space, 20
task space, 20
volume, 9

Wrench, 219, 295
transformation, 238

Wrist, 14

of a 5R, 366

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Glossary
	I. Basics of Robotics
	1. Introduction
	1.1. Mechanics and Control of Robotics
	1.1.1. Basics of Robotics
	1.1.2. Key Topics
	1.1.3. Advanced Analysis and Case Studies

	1.2. Robot Architectures
	1.2.1. Cartesian
	1.2.2. Cylindrical
	1.2.3. Spherical
	1.2.4. SCARA
	1.2.5. Articulated
	1.2.6. Wrists

	1.3. Conclusion
	1.4. Exercises

	2. Planar Kinematics, Velocity, and Statics
	2.1. Two-Dimensional Space
	2.2. Transformations
	2.2.1. Transforming a Vector
	2.2.2. Transformation Trees

	2.3. Planar Robot Kinematics
	2.3.1. Joints
	2.3.2. Forward Kinematics
	2.3.3. Inverse Kinematics

	2.4. Velocity Analysis
	2.4.1. Linear and Angular End Effector Velocity
	2.4.2. Jacobian
	2.4.3. Singularity

	2.5. Statics Analysis
	2.6. Workspace
	2.7. Conclusion
	2.8. Exercises

	3. Trajectory Generation
	3.1. Interpolation with Polynomials
	3.2. Interpolation with Linear and Parabolic Functions
	3.3. Trajectory in Joint Space
	3.4. Trajectory in Task Space
	3.5. MATLAB® Examples
	3.6. Conclusion
	3.7. Exercises

	4. Control Schemes
	4.1. Open-Loop Control
	4.2. Closed-Loop Control
	4.2.1. Bang-Bang Control
	4.2.2. Proportional Controller
	4.2.3. Integral Controller
	4.2.4. Derivative Controller
	4.2.5. PI and PD Controller
	4.2.6. Proportional-Integral-Derivative (PID) Controller

	4.3. Pulse Width Modulation Control
	4.3.1. Relation to Joint Control

	4.4. Conclusion
	4.5. Exercises

	II. Key Topics
	5. General Rotations and Transformations
	5.1. Position and Orientation
	5.1.1. Functions of a Rotation Matrix

	5.2. General Orientation
	5.3. Fixed Angles
	5.3.1. Forward Problem
	5.3.2. Inverse Problem

	5.4. Euler Angles
	5.4.1. Forward Problem
	5.4.2. Inverse Problem

	5.5. General Transformation
	5.6. MATLAB® Examples
	5.6.1. Matrix Arithmetic
	5.6.2. Inverse Transformation Matrix

	5.7. Conclusion
	5.8. Exercises

	6. Forward Kinematics
	6.1. Joints
	6.2. Denavit-Hartenberg Notation
	6.3. DH Parameters for Prismatic Joints
	6.4. MATLAB® Examples
	6.4.1. DH Parameter Summary

	6.5. Conclusion
	6.6. Exercises

	7. Inverse Kinematics
	7.1. Basic Techniques
	7.2. Analytical Solution to Inverse Kinematics
	7.3. Univariate Polynomial
	7.4. Dialytic Method
	7.5. Conclusion
	7.6. Exercises

	8. Jacobian Analysis
	8.1. Jacobian Matrix
	8.2. Velocity in Translation and Rotation
	8.3. Velocity Propagation
	8.4. Statics
	8.4.1. Relation between Jacobians and Effort

	8.5. Workspace
	8.6. MATLAB® Examples
	8.7. Conclusion
	8.8. Exercises

	9. Path Planning
	9.1. Configuration Space
	9.1.1. Grid
	9.1.2. Random Sampling

	9.2. State Connectivity
	9.2.1. Grids
	9.2.2. Random Samples
	9.2.3. Connectivity Matrix

	9.3. Planning Completeness
	9.3.1. Measuring Complexity

	9.4. Complete Planning Algorithms
	9.4.1. First-Search Algorithms
	9.4.2. Dijkstra’s Algorithm
	9.4.3. A*

	9.5. Sample-Based Planning Algorithms
	9.5.1. Probabilistic Road Map (PRM)
	9.5.2. Rapidly Exploring Random Trees (RRT)

	9.6. Potential Field Planners
	9.7. Conclusion

	10. Programming
	10.1. Modelling
	10.1.1. Symbolic Functions and Handles

	10.2. Robot Operating System
	10.2.1. Operating Paradigm
	10.2.2. ROS Components
	10.2.3. ROS System: Case Study

	10.3. Conclusion

	11. Lagrangian Dynamics
	11.1. Rigid Body Dynamics
	11.2. Inertia Tensors
	11.3. Principal Moments of Inertia
	11.3.1. Parallel Axis Theorem

	11.4. The Lagrangian Method
	11.4.1. Mass Matrix
	11.4.2. Gravity Term
	11.4.3. Friction Term
	11.4.4. Load Term
	11.4.5. MATLAB Example

	11.5. Conclusion
	11.6. Exercises

	12. Newton-Euler Dynamics
	12.1. Newton’s and Euler’s Equations
	12.1.1. Rigid Body Rotation
	12.1.2. Intermediate Axis Theorem

	12.2. Outward Propagation
	12.3. Inward Propagation
	12.4. Procedure
	12.5. Twist, Wrench, and 6 ×6 Transformation Matrix
	12.5.1. Transformation of Twist
	12.5.2. Inverse Transformation of Twist
	12.5.3. Transformation of Wrench
	12.5.4. Derivative of 0X0 Matrix
	12.5.5. Physical Interpretation

	12.6. Applications in Computing
	12.6.1. Computing Efficiency

	12.7. Conclusion
	12.8. Exercises

	13. Joint Control
	13.1. Servo Dynamics
	13.2. Modelling Servos with a Gear Transmission
	13.3. Fixed Reference Tracking
	13.3.1. P Controller
	13.3.2. PD Controller
	13.3.3. PID Controller

	13.4. Error Dynamics
	13.4.1. First-Order Error Dynamics
	13.4.2. Second-Order Error Dynamics
	13.4.3. Velocity Control

	13.5. Conclusion
	13.6. Exercises

	14. Computed Torque Control
	14.1. SISO Computed Torque Control
	14.2. MIMO Computed Torque Control
	14.3. Controller with Gravity Compensation
	14.4. Lyapunov Stability
	14.4.1. Basic Definition
	14.4.2. Lyapunov’s Direct Method

	14.5. Dynamic Relation
	14.6. Stability Analysis of Nonlinear Robotic Controllers
	14.7. Motion Control in Task Space
	14.7.1. Dynamics in Task Space
	14.7.2. Task Space Dynamics Partitioning
	14.7.3. Error Dynamics

	14.8. Conclusion
	14.9. Exercises

	15. Force Control
	15.1. Single Axis Control in Task Space
	15.2. Hybrid Motion-Force Control
	15.2.1. Natural Constraints
	15.2.2. Artificial Constraints

	15.3. Impedance Control
	15.3.1. Single Axis Control
	15.3.2. Task Space Control
	15.3.3. Control with Environmental Dynamics
	15.3.4. Dynamic Relations

	15.4. Conclusion
	15.5. Exercises

	III. Advanced Analysis and Case Studies
	16. Mobility Analysis
	16.1. Mobility Analysis Based on the Pattern of Transformation Matrix
	16.1.1. Pattern of Transformation Matrix
	16.1.2. Case Study—3-UPU Parallel Manipulator
	16.1.3. Case Study—3R2T Parallel Manipulator
	16.1.4. Case Study—3R1T Parallel Manipulator
	16.1.5. Case Study—2-RPS-UPS Parallel Manipulator

	16.2. The Order of Mobility
	16.2.1. Local Mobility
	16.2.2. Case Study—A Novel Spatial Four-Bar Linkage

	16.3. Conclusion
	Bibliopgraphy

	17. Orientation Workspace
	17.1. Measurement Principles and Quaternions
	17.2. Generalised Volume of Orientation Workspace
	17.3. Orientation Workspace Volume of Various Kinematic Descriptions
	17.3.1. Euler Angles
	17.3.2. Angle-Axis Representation

	17.4. Case Study
	17.5. Conclusion
	Bibliography

	18. Constraint Analysis for Underactuated Systems
	18.1. Constrained Minimisation
	18.2. Kinetostatic Constraints
	18.2.1. Generalised Coordinates and Generalised External Forces
	18.2.2. General-Form Kinematic Constraint Equations and Lagrange Multipliers
	18.2.3. Force Constraint Equations
	18.2.4. Hooke Constitutive Equations
	18.2.5. Selection Matrices
	18.2.6. Array of Unknowns
	18.2.7. Kinetostatic Constraints

	18.3. Case Study — Soft Robots with Pseudo-Rigid Bodies
	18.3.1. 3R-PRB Model of Backbone Sub-Segments
	18.3.2. Generalised Coordinates and Generalised External Forces
	18.3.3. Kinematic Constraint Equations and Lagrange Multipliers
	18.3.4. Hooke Constitutive Equations
	18.3.5. Constraint Inequalities
	18.3.6. Constrained Minimisation
	18.3.7. Experimental Verification

	18.4. Case Study — The Compliant Five-Link Epicyclic Finger
	18.4.1. Generalised Coordinates and Generalised External Forces
	18.4.2. Kinematic Constraint Equations and Lagrange Multipliers
	18.4.3. Hooke Constitutive Equations
	18.4.4. Force Constraints of Contacts
	18.4.5. Selection Matrices
	18.4.6. Constrained Minimisation
	18.4.7. Experimental Verification

	18.5. Conclusion
	Bibliography

	19. Concentric Tube Robot
	19.1. Overview of Concentric Tube Robot
	19.2. Robot-Independent Mapping
	19.3. Robot-Dependent Mapping
	19.3.1. Constitutive Equation
	19.3.2. Static Equilibrium
	19.3.3. Variations of the Governing Equation

	19.4. Iteration
	19.5. Case Studies for Computational Efficiency
	19.6. Conclusion
	Bibliography

	20. Path Planning of Parallel Manipulators
	20.1. Parallel Manipulator Kinematics
	20.1.1. Singularities
	20.1.2. Example: A 5R Parallel Manipulator

	20.2. The Path Planning Problem
	20.3. Methodology
	20.4. Generating Charts
	20.4.1. Singularity Locus
	20.4.2. Identifying a Chart
	20.4.3. Constructing a Chart’s C-space

	20.5. Constructing the Atlas
	20.6. Case Study: A 3-RRR Parallel Manipulator
	20.6.1. Forward Kinematics
	20.6.2. Continuity Conditions
	20.6.3. Singularity Analysis
	20.6.4. Path Planning
	20.6.5. Performance

	20.7. Conclusion
	Bibliography

	21. Minimally-Invasive Surgical Robot with Remote Centre of Motion
	21.1. Minimally Invasive Surgery and MIS Robots
	21.2. The Dual-Triangular Linkage
	21.2.1. The Design
	21.2.2. Proof of Remote Centre of Motion
	21.2.3. The Gear-Constrained Dual-Triangular Linkage
	21.2.4. The 2R1T RCM Mechanism Based on the DT Linkage

	21.3. The Cable-Constrained Linkage with Remote Centre of Motion
	21.3.1. The Design
	21.3.2. Proof of Functioning

	21.4. Advantage of DT/CC Linkage over Parallelogram RCM Mechanism
	21.5. Conclusion
	Bibliography

	22. MARS: The Monash Apple Retrieving System
	22.1. Background and Motivation
	22.2. Virtual Environment Construction
	22.2.1. Kinematics
	22.2.2. Auxiliary Frame Assignments

	22.3. Pose Optimisation
	22.3.1. Objective Function
	22.3.2. Kinematic Constraints
	22.3.3. Collision Constraints
	22.3.4. Kinematic Configuration Constraint

	22.4. Path Planning
	22.4.1. Planning Algorithm
	22.4.2. Harvesting Sequence

	22.5. Results
	22.5.1. Harvest Success Rate
	22.5.2. Cycle Time

	22.6. Conclusion
	Bibliography

	IV. Appendix
	23. Appendices for Chapter 5
	23.1. Angle-Axis
	23.1.1. Forward Problem
	23.1.2. Inverse Problem

	23.2. Quaternion
	23.3. Alternate Expression of Rodrigues’ Formula

	24. Appendices for Chapter 8
	24.1. Proof of Q QT Being Screw-Symmetric
	24.2. Proof of a Screw-Symmetric Matrix Being the Crossproduct Matrix of a Vector
	24.3. Proof of ω

	25. Appendices for Chapter 11
	25.1. Inertia Tensor
	25.2. Euler’s Law
	25.3. Proof of Parallel-Axis Theorem

	Index

