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Robotics: From Theory to Practice introduces robotic theories and technologies to audiences, in-
cluding university students, professionals with engineering backgrounds, and even high-school
students interested in building their own robots. We aim to bridge the gap between classic theo-
ries and real-world applications of robotic manipulators, which, to date, have far exceeded the
domain of conventional industry.

The contents are divided into three parts. The first two cover classic theories of robotics, includ-
ing kinematics, dynamics, path planning, control, and programming. Specifically, Part I is an
introduction targeting junior students, featuring more simplistic topics and examples. Part II
provides the senior students and professionals with more in-depth discussions on critical topics
and more comprehensive examples. In Part III, we demonstrate how classic robotics theory can
be extended to more advanced theoretical frameworks and adopted in real-world applications
beyond conventional industries.

This textbook is valuable to broad readers, including those who have limited background in
general engineering and wish to explore non-conventional applications of robotic manipulators.
The scaffolded contents from Part I to Part III are created to lower the prerequisites and smooth
the learning curve.

Chao Chen is the Director of the Laboratory of Motion Generation and Analysis (LMGA), the
Academic Supervisor of the Monash Nova Rover Team, and was the Course Director of Robot-
ics and Mechatronics in the Department of Mechanical and Aerospace Engineering at Monash
University. His research in robotics was well recognised by a number of awards including Excel-
lence Award of Project of Year 2023 for his harvesting robot by Engineers Australia (Victoria).

Wesley Au is a robotics and automation research engineer at Boeing Research and Technology
Australia, designing advanced production systems for the automation of precise and high-rate
manufacturing in the aerospace industry. He has a strong background in robotics, especially in
intelligent path planning within complex and dynamic workspaces.

Shao Liu is a research fellow in the LMGA at Monash University. He has extensive expertise in
robotic design, modelling, and analysis, and has conducted a number of research projects and
industry projects in medical robots, manufacturing robots, and special-purpose robots.
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Preface

Robotics is a fascinating subject, which often triggers our deep curiosity and makes us think
about how to create robots to improve people’s daily lives. Fortunately, I have had the
opportunity to teach robotics in the Discipline of Robotics and Mechatronics at Monash
University since 2008. My students asked many interesting questions, which contributed
significantly to this textbook. For example, a rotation or transformation matrix is described
from frame 1 to frame 2 in some textbooks; however, the exact rotation or transformation
matrix is described from frame 2 to frame 1 in other textbooks. Clear explanations of the
underlying principles to such questions improved the learning of students and enriched this
textbook.

Besides the students in my class of robotics, the Monash Nova Rover team has also
utilised this textbook (earlier version) as a handbook to develop the robotic manipulators
on their rovers. The team is an undergraduate student team founded in 2017, aiming at de-
veloping Mars rovers and Lunar rovers for various competitions. As the academic supervisor
and founder of this student team, I have observed that the team gradually and successfully
developed the robotic manipulators for competitions, by implementing forward kinematics,
inverse kinematics, path planning, and remote control. The team won Second Place in the
2022 and 2023 University Rover Challenges in Utah, and First Place in the 2021, 2022, and
2023 Australian Rover Challenges.

This textbook is co-authored by my former PhD students, Dr Wesley Au and Dr Shao
Liu. Dr Wesley Au has a strong background in robotics and path planning in complex and
dynamic workspaces, and brings his knowledge and expertise in cutting-edge robotic au-
tomation for manufacturing into this textbook in both an academic and industrial setting.
He has worked in both research and industry-led projects, ranging from critical infrastruc-
ture maintenance robots to agricultural robots. He is now an automation research engineer
at Boeing Research and Technology Australia, designing advanced production systems for
the automation of precise and high-rate manufacturing in the aerospace industry. Dr Shao
Liu is a Research Fellow in my lab at Monash University. He has extensive experience
and knowledge in robotic design, modelling, and analysis, and has conducted a number
of research projects and industry projects in medical robots, manufacturing robots, and
special-purpose robots. In particular, Dr Liu’s expertise in soft robots and general under-
actuated systems helps extend the coverage of this textbook beyond classic theories and
applications.

This textbook aims to bridge the gap between theories in robotics and real-world appli-
cations in modelling, analysis, planning, and control of robotic manipulators. The contents
are divided into three parts. The first part targets senior secondary school students and ju-
nior university students, by introducing the basics of kinematics, trajectory planning, and
control. The second part targets senior university students, by introducing the key topics of
robotics, including spatial transformations, kinematics and dynamics, as well as control and
programming, which shall also serve as a valuable source to professionals who are interested
in robotics and have backgrounds in engineering. The third part targets the researchers
in robotics, through the discussions of advanced analysis and case studies in soft robotics,
medical robotics, and agricultural robotics. While there exist a number of classic textbooks
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in robotics to which we pay full respect, the following reasons motivated us to develop this
textbook.

Firstly, there is a growing interest of young students in robotics, with an increased
number of robotics teams and clubs in secondary schools and universities around the world.
However, robotics units or courses are usually taught in the third or fourth year in most
undergraduate curricula, preventing junior students from obtaining the necessary knowledge
to develop their robotics projects. Part I of this textbook attempts to tackle this gap, by
introducing necessary knowledge with minimum prerequisites. Further, completing Part I
will enable a smooth transition to more advanced topics in Part II.

Secondly, robotic systems have been applied to much broader fields such as medicine,
agriculture, and infrastructure, beyond traditional scenarios in factories. Therefore, Part I11
attempts to introduce these advanced applications by extending the classic robotic tech-
nologies of conventional industrial robotic manipulators in Part II.

Thirdly, there are concepts and theorems in robotics that may be difficult to understand
or visualise, particularly those involving three or more dimensions. Therefore, we have in-
cluded comprehensive examples with MATLAB® code, which can assist in the visualisation
and understanding, and also be generalised for various robotic systems. We hope that this
feature will make the fundamental mathematics and algorithms more interesting, insightful,
and engaging for the readers.

The contents of this textbook are summarised as follows.

Part I introduces the basics of planar robots for simple tasks through modelling, plan-
ning, and executing, from Chapters 1-4.

Chapter 1 serves as an introduction to the field of robotics and our textbook. It starts
with a brief history of robots in industrial applications. Next, commonly used robot archi-
tectures are discussed, including their degrees of freedom (DoF'), properties of motion, and
usual applications. This chapter also includes a summary of the topics discussed, along with
their per-chapter allocations in the textbook.

Chapter 2 tackles the problem of modelling a planar robotic manipulator. Theoretical
fundamentals are presented for both the kinematic and the force domains, covering trans-
formations in the planar space, kinematics, velocity analysis, Jacobian, statics, and robot
workspace.

Chapter 3 presents the methods to compute a valid trajectory for the planar robotic
manipulator to execute. Two approaches are presented: polynomial interpolation and cubic
splines. Additionally, trajectory generation in both the joint space and the task space is
discussed.

Chapter 4 introduces the basics of control schemes, including open-loop control, closed-
loop control, and pulse width modulation. Various controllers realising the closed-loop con-
trol schemes are also presented.

Part II covers general transformation, kinematics, dynamics, path planning, program-
ming, and control of spatial robots from Chapters 5-15.

Chapter 5 deals with spatial transformation. The definition of robot pose, i.e., position
and orientation, is given. Commonly adopted kinematic descriptions are introduced, with
fixed angles and Euler angles in the body part of the chapter, and angle-axis and quaternion
in the appendix of this chapter. Both the forward and the inverse problems are discussed
for each description.

Chapter 6 is dedicated to the forward kinematics of serial robotic manipulators based
on the Denavit-Hartenberg method. The step-by-step implementation of the method is
introduced through the analysis of robots with revolute and prismatic joints, a spherical
robot wrist, the PUMA robot, and a cylindrical robot.

Chapter 7 focuses on solving the inverse kinematics problem of serial robotic manipu-
lators. Firstly, trigonometric functions that are commonly used to solve inverse kinematics
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problems are introduced as the foundation. From there, examples with analytical solutions
are given, followed by discussions on univariate polynomials and the dialytic method for
the cases where analytical solutions are infeasible.

Chapter 8 discusses the Jacobian matrix and velocity analysis. On the Jacobian side,
the chapter starts with the definition of a Jacobian matrix, and discusses the end-effector-
to-joint velocity and force mappings based on the Jacobian matrix. Workspace singularity
analysis is also included. Moreover, the chapter extends the discussion on velocity to present
velocity propagation.

Chapter 9 covers the path planning methods and algorithms commonly used in robotics.
The concept of configuration space is first introduced. Three path planners are discussed:
the complete planners, the sample-based planners, and the potential field planners. The
discussion further extends to detailed algorithms belonging to individual planners.

Chapter 10 focuses primarily on the Robot Operating System (ROS). The operating
paradigm and ROS components are discussed, followed by a case study.

Chapter 11 is concerned with the Lagrangian dynamics of serial robotic manipulators.
Inertia tensors and principal moments of inertia are first introduced. The chapter then
presents a step-by-step guide on the implementation of the Lagrangian method.

Chapter 12 is on the Newton-Euler dynamics of serial robotic manipulators. The outward
propagation of velocity and acceleration, and the inner propagation of force and moment
are described, followed by a step-by-step guide on the implementation of the Newton-Euler
method. The chapter also includes an introduction to the twist, wrench, and their corre-
sponding unified transformation matrix.

Chapter 13 covers the basics of actuator control, where a linear controller is derived for
a single actuator. Servo dynamics and the modelling of geared servo are presented. The
chapter then moves on to fixed reference tracking with P, PD, and PID controllers, and
concludes with the discussion on error dynamics.

Chapter 14 focuses on computed torque control that takes into account nonlinearity in
robot dynamics. The first part of the chapter discusses SISO and MIMO controllers, as
well as controllers with gravity compensation, all in the joint space. The second part is on
Lyapunov stability analysis. In the last part of the chapter, motion control in task space is
presented.

Chapter 15 introduces the force control strategy. The chapter starts with single-axis force
control, and takes it one step further to discuss hybrid motion-force control, where natural
and artificial constraints are presented. Finally, an overview of the impedance controller is
provided.

Part III investigates advanced robotic modelling and analysis, and the robotic appli-
cations in various fields, building upon the knowledge in Parts I and II, from Chapters
16-22.

Chapter 16 is concerned with the mobility analysis of mechanisms. The chapter is divided
into two parts. In the first part, the focus is the global mobility of parallel manipulators,
where a method that reveals the mobility, property of motion, and actuation pattern based
on the manipulator’s transformation matrix is presented. In the latter half, the focus is
redirected to the analysis of local mobility based on Taylor’s theorem.

Chapter 17 presents the investigation of the parameterisation of the orientation
workspace of spherical manipulators. An approach based on quaternion is proposed, fol-
lowed by the mapping to convert parameterisation based on other kinematics descriptions,
such as Euler angles and angle-axis, to that based on quaternion to allow like-to-like com-
parisons among manipulators of different designs.

Chapter 18 introduces a framework to conduct kinetostatic analysis of planar underac-
tuated systems. The derivation of core kinetostatic constraints based on generalised coor-
dinates, kinematic constraint equations, and Lagrange multipliers is presented, along with
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selection matrices and the constrained minimisation method to complete the formulation
and obtain the solution. Two case studies are included, on a tendon-driven robot with a
continuum backbone and an adaptive prosthetic finger, respectively.

Chapter 19 covers the modelling of concentric tube robots, a soft robot featuring multiple
concentrically arranged continuum superelastic tubes as the body. The modelling is divided
into two parts: a robot-independent mapping developed based on the model of strands,
and a robot-dependent mapping relating the actuator inputs and the prescribed shapes of
individual tubes to the converged shape of the robot. Variations in the governing equations
are presented, and their computational efficiencies are compared.

Chapter 20 discusses efficient path planning of parallel manipulators. The chapter starts
with the kinematics of parallel manipulators and highlights the challenge in their path plan-
ning due to complex singularity profiles. A path planning method is proposed, which actively
exploits the workspace singularity loci as gates to connect singularity-free workspace regions
for efficient configuration space path planning. A case study based on the 3-RRR manipu-
lator is included and demonstrates successful assembly mode changes of the manipulator.

Chapter 21 presents a novel remote centre of motion mechanism designed for minimally
invasive surgery. Two design variants are discussed, which are hybrid mechanisms of gear-
linkage and cable-linkage, respectively. Mathematical proofs on the remote centre of motion
property are provided, followed by a case study to demonstrate the mechanism’s advantage
in terms of footprint minimisation compared to the commonly used parallelogram-based
designs.

Chapter 22 overviews the design and testing of an edge-cutting robotic apple-harvesting
system. The first part of the chapter covers robot design, the construction of the virtual
workspace environment, the optimisation of the robot harvesting pose, and harvesting path
planning. The second part presents the performance analysis of the robot based on the
outcomes of field tests.

This textbook has been influenced by many outstanding books in robotics, in partic-
ular, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms by
Angeles, Introduction to Robotics by Craig, Introduction to Theoretical Kinematics by Mc-
Carthy, Springer Handbook of Robotics by Siciliano and Khatib, Robot Modeling and Con-
trol by Spong, Hutchinson, and Vidyasagar, Modern Robotics: Mechanics, Planning, and
Control by Lynch and Park, Robot Dynamics Algorithms by Featherstone, Modelling and
Control of Robot Manipulators by Sciavicco and Sicilliano, and Engineering Applications of
Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups by
Chirikjian and Kyatkin.

To keep the contents of teaching and learning concise, we omitted the list of bibliogra-
phies in Parts I and II, where classic theories and well-known technologies are discussed.
Bibliographies are included in Part III for readers who desire to conduct a deeper dive into
these research topics and case studies.

Finally, I would like to express gratitude to all of the teaching assistants in my class
of robotics for their valuable inputs and contributions, especially, Dr Keenan Granland,
Mr Eugene Kok, Mr Dariusz Skoraczynski, Dr Sajeeva Abeywardena, Dr Stanley Ip, Dr
Charles Treoung, Dr Xing Wang, Dr Hugh Zhou, Dr Zijue Chen, and Dr Hanwen Kang.
Moreover, we appreciate the research funds of the Australian Research Council and Per-
petual Philanthropy, for the research projects leading to the case studies in Part III of the
textbook.

Chao Chen
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Introduction

The history of robotics and automation is brief, dating back as recently as the 1960s when
the first wave of industrial robots was introduced in manufacturing lines for the first time.
During this period, concerns over worker safety in manufacturing environments and the
increase in labour costs were becoming significant issues for the manufacturing industry.
The introduction of robots in the manufacturing industry was initially touted as a solution
to alleviate these concerns. However, after some time in the industry, the advantages of
using robots in this sector soon made headlines, as car manufacturers saw an increase
in productivity by more than double. This was in part due to minimal downtime and
comparably high speed and accuracy in performing repetitive tasks to manual labourers.
With the eventual declining costs of industrial robots and general technological advances,
robots are now a common staple in modern manufacturing plants.

While modern technological advances in the manufacturing industry can be attributed
to improvements in circuit design, processing, and computing, leaps in manufacturing tech-
nology can be attributed to advances in mechanical design. These leaps in manufacturing
technology can be observed as a series of industrial revolutions, as shown in Table 1.1, with
an approximate decade of establishment and key advancements of technologies highlighted.
The first industrial revolution in the 1780s saw the use of mechanisms, which were devel-
oped to take full advantage of steam and water power by converting a source of power to
one that was mechanically useful. This ingenuity formed the basis of intelligent mechanical
design that would later bring about further industrial revolutions. Through smart mechan-
ical engineering and the discovery of better power sources, electricity and micro-circuitry,
processing and computing, industrial revolutions have accelerated during the 20th century,
lending to increased manufacturing capabilities and efficiency that we see today.

The Industrial Revolution 3.0 in the 1960s saw the advancement of both mechanical and
electrical circuit design, culminating in the first use of robotics manufacturing in automation.
Perhaps the most well-known robot of this era was called the Unimate. It was a hydraulically
driven four-degree-of-freedom (four-DoF) robot with two actuators at the base representing
the robot’s shoulder, and a prismatic (telescopic) and revolute actuator to control the
extension and one-axis rotation of the working tool. Its initial role was to perform die
casting and welding in the manufacture of cars in an environment that was considered
dangerous for humans due to lead fumes and radiant heat and light. These robots were first
installed in car manufacturing plants in the late 1960s, which saw the manufacturing speed
more than double its existing speed. Other car manufacturers and other industries took note
of this milestone and, in a short period of time, revolutionised the manufacturing industry.
Its success led the manufacturer of the original Unimate robot to develop a successor,
the PUMA robot (Programmable Universal Machine for Assembly). Featuring a similar
architecture to the original Unimate robot but on a smaller scale, it has become a standard
for robots in the manufacturing industry with typical uses in standard pick-and-place tasks,
assembly, and welding, to name a few.

DOI: 10.1201/9781003614319-1 3
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FIGURE 1.1
The original Unimate robot.!

TABLE 1.1
Industrial Revolutions, from First Inception in 1784 to Today with Key Technological

Advances??
Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0
c. 1784 c. 1870 c. 1969 Today
Mechanical First assembly line  Computers and IT  Internet of Things
production Mass production Microcircuits and (IoT)
Steam and water Electricity processors Smart devices
power Discovery of oil and Automated Macroscale
Weaving loom production of production computing
petrol Global supply Real-time data
chains

Although the manufacturing industry has benefited significantly from the use of robots
in the past few decades, it has always met with some resistance. Manufacturing roles that
were previously filled by human workers and considered automatable were eventually re-
placed by robots. However, modern robotics has seen a paradigm shift to more assistive
and collaborative robots in manufacturing, as the industry moves towards adaptive manu-
facturing. Today, we see many robots used in many assistive roles, and they can come in
many shapes and forms, such as vehicles, lifters, and exoskeletons. This new era of assistive
robotics in the industry is called Industry 4.0, where workers and robots can co-exist in
the same workspace, driving up both productivity and manufacturing flexibility. It is the
adopted approach in most wide-scale manufacturing plants in Australia and around the
world. While artificial intelligence is the primary driver of the latest industrial revolution,
in each robot, there is always an aspect of intelligent mechanical design, which, in a literal
sense, serves as the backbone for all robotic systems.

LAly, M.F., Abbas, A.T. and Megahed, S.M., 2010. Robot workspace estimation and base placement
optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing
systems. International Journal of Computer Integrated Manufacturing, 23(12), pp.1133-1148.

2https://www.britannica.com/technology/history-of-technology/The-Industrial-Revolution-
1750-1900 (Retrieved 09.10.2024)

Shttps://en.wikipedia.org/wiki/Industrial_Revolution (Retrieved 09.10.2024)
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Mechanics and Control of Robotics )

This textbook introduces the field of robotics to any aspiring student who may be
interested in this young but ambitious discipline. Each topic in this textbook is introduced
in its own chapter, which covers all the fundamental theorems relating to robot analysis,
design, and control. Although the field of robotics is relatively new, it covers a vast range
of topics, and this textbook simply cannot cover all of them. However, this textbook will
provide the foundations of classical robotics theory, which will pave a clear pathway towards
other exciting fields in robotics that are not covered by this textbook.

1.1 Mechanics and Control of Robotics

The contents in this textbook are arranged in three parts: fundamental topics, advanced
topics, and research and case studies. A summary of the contents is provided below.

1.1.1 Basics of Robotics
Robot Architectures

This topic is covered in this chapter, which introduces the most common robot architectures
used in manufacturing and robotics research. A robot architecture is defined as a specific
configuration of actuators that make up the basic structure of the robot. Each architecture
has its own specific strengths, which are fully utilised in application, and will be described
here. This will provide a basic understanding of common robot designs, which will be used
in many examples and problems to solve throughout this textbook.

Planar Kinematics, Velocity, and Statics

This topic is discussed in Chapter 2 and is relevant to the modelling of robotic systems.
It provides a minimum-viable yet complete set of information to understand the kinematic
and force-domain behaviour of a robotic manipulator in the two-dimensional space: how
do we represent the position and orientation of the “tool”, i.e., the robot’s end-effector in
the space; what is the relation between the position and velocity of the joints and those
of the end-effector; how much force or torque is needed at the joints to resist an external
disturbance; and what is the reachable area of the manipulator. Said analysis is the very
first step in the three-step modelling-planning-execution approach to commanding a robot
to perform a certain task.

Tragectory

With the behaviour of the robotics manipulator understood, we move on to discuss how
the path, i.e., the trajectory, that the robot end-effector is moved within the workspace in
Chapter 3. Trajectory generation is the act of controlling the path of a robot’s end-effector
between two points in a smooth and controlled fashion. In this instance, the goal is simply
to ensure the path from the initial to goal positions is smooth and continuous, with the
key assumption that the path is collision-free. This topic is covered in Chapter 3, and will
describe interpolation methods used to ensure smooth and continuous trajectories between
via points.
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Control

The basic control schemes presented in Chapter 4 fill the last piece of information to-
wards the three-step modelling-planning-execution approach to command a robot in the
application. We provide a brief overview of the open-loop, closed-loop, and pulse width mod-
ulation control schemes, along with various commonly used approaches to realise closed-loop
control.

1.1.2 Key Topics
Spatial Transforms

This topic is covered in Chapter 5, which introduces the systems and notation we use to
describe the position and orientation, or the pose of a body in space. Coordinates or frames
are then attached to each body that represents the robot. The conventions used for spatial
descriptions, and the mathematics of manipulating these quantities will be derived in this
chapter.

Kinematics

The term kinematics is the science of motion with the exclusion of dynamic effects that
cause it. In robotics, an actuator can be represented as a revolute joint (rotation about
a single axis), or a prismatic joint (a sliding mechanism along a single axis). As such, a
robot, or manipulator, is made up of a series of rigid links connected by joints to an
end-effector, which interacts with the environment with a tool attachment. A single chain
of joints and links connecting to a single end-effector is called a serial robot, and is the
primary type of robot analysed in this textbook. Other names for this type of robot include
serial manipulator or serial (kinematic) chain. Multiple serial kinematic chains connecting
to a single end-effector is called a parallel robot, or parallel (kinematic) manipulator, and
will not be covered in this textbook.

In robotics, there are two main spaces in which we perform kinematic analysis: the joint
space contains all possible actuator positions or configurations and maps them to a single
point within this space, and the task space, which in general represents the end-effector’s
workspace in free space. A robot’s degrees of freedom (DoF) represents the number of
independent axes at which the end-effector can move in, and this determines the number of
dimensions of the task space. The task space can be up to six dimensions, three positions
and three orientation axes.

Forward Kinematics

Also known as direct kinematics, forward kinematics is the study of the robot’s pose in
free space when for a given actuator configuration (all actuator positions defined), and is
covered in Chapter 6. We learn how to model a serial robot such that we can fully define the
robot’s pose and determine the exact pose of the end-effector at a given time. In summary,
we are finding the equations of motion of the robot’s end-effector as a function of its joint
positions, i.e., finding a map from the joint space to the task space.

Inverse Kinematics

In forward kinematics, we map the joint space to the task space. In inverse kinematics, we
do the reverse mapping — where for a given end-effector pose, we calculate the actuator
configuration required to achieve this end-effector pose. This topic is covered in Chapter 7,
and will explore the different methods used to perform inverse kinematics. This is a chal-
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lenging but critical topic, as many trajectory and path planning applications in robotics
occur in the task space.

Jacobians and Statics

In addition to kinematics, where we consider static positions, Jacobians or velocity analysis
is the study of the end-effector velocities with respect to actuator velocities. This is an im-
portant tool for workspace analysis, which defines the end-effector’s reachable task space.
This topic is covered in Chapter 8. Another phenomenon velocity analysis can give further
insight into is robot singularities, which will be defined in this chapter. The final analy-
sis we can perform by using Jacobians is statics analysis — finding the required actuator
torques and forces to maintain a static force and torque at the end-effector.

Path Planning

Path planning is a diverse field that has been studied in both robotics and computer science.
It is a primitive yet critical problem to solve in robotics and is by no means a trivial problem
to solve. For a given robot starting pose, suppose we would like the end-effector to pick up
an object in free space. However, the task space has obstacles that inhibit the robot’s ability
to follow a shortest-path trajectory to the target. The goal of a path planner is to solve this
problem by giving the robot a collision-free path between its initial pose and the goal pose,
to allow the robot to pick up the object. Chapter 9 will introduce various path planning
algorithms that are currently used in the manufacturing industry and in robotics in general.

Programming

In Chapter 10, we introduce to the students Robot Operation System (ROS), a framework
that is becoming the gold-standard for robotic research and witnessing ever-increasing use
in real-world applications in the industry. The operating paradigm and ROS components
are discussed, followed by a case study.

Dynamics

Dynamics in robotics is a large field of study, devoted to analysing the forces required to
cause motion. There are two methods for formulating the dynamics of a serial manipulator:
Lagrangian formulation is discussed in Chapter 11, and iterative Newton-Euler, dis-
cussed in Chapter 12. In both methods, we determine the equations of torque and force for
each actuator, based on payload conditions at the end-effector. This analysis is very impor-
tant in manipulator design as it will model torque or force (or effort) required to maintain
a specified motion at the end-effector, and determine the minimum torque requirements for
the servos to drive this load.

Control

Robot control theory is another vast topic in robotics. Chapter 13 covers the basics of
actuator control, where a linear controller is derived for a single actuator. Chapter 14
covers computed torque control in which the non-linear dynamics often observed in robotic
manipulators can be compensated by clever control system design. Finally, Chapter 15
introduces an alternative mode of end-effector control, where the end-effector is constrained
by force rather than position.



8 Introduction

1.1.3 Advanced Analysis and Case Studies

The following topics cover cutting-edge methods for robot analysis in robotics. These meth-
ods are primarily used in the design phase of a robotic manipulator. These topics are ad-
vanced, utilising abstract mathematical theorems to demonstrate the theoretical feasibility
of the design of mechanisms.

Mobility Analysis

This fundamental topic covers the study of mobility, or the degrees of freedom (DoF) of
mechanisms and robotics, and is often the first step in designing a mechanism to fulfil certain
motion requirements. Said study also provides valuable insights regarding the property of
motion of a manipulator, as well as constraints on actuator arrangements. While Part 1T
of this book introduces the concept of degrees of freedom, Chapter 16 introduces a more
comprehensive methodology with a deep dive into the mathematics behind this analysis.

Orientation Workspace

Chapter 17 provides an in-depth introduction to the orientation workspace, which is vital
for the study of manipulators that provide purely rotational output. Instead of representing
the orientation workspace in the Euclidean space, we utilise quaternions and differential
geometry to parameterise an orientation workspace to study its various properties, such as
its volume, i.e., the performance index on the range of motion of a manipulator. With our
approach, we can make meaningful comparisons of the orientation workspace of manipula-
tors that provide spherical motion, which would otherwise be challenging to derive using
traditional methods in Euclidean space.

Constraint Analysis

In Chapter 18, we redirect our focus to soft robots, which are gaining ever-increasing at-
tention in the field of robotics. We tackle the problem of analysing soft robots from the
point of view of generalised underactuated mechanisms. By taking advantage of Lagrange
multipliers, virtual bodies, and pseudo-rigid bodies, we allow the rigid-link kinematic- and
force-domain analysis discussed in the previous part of the textbook to be adopted for
planar underactuated systems with continuum bodies, by means of a unified framework of
kinetostatic analysis.

Concentric Tube Robot

Chapter 19 discusses the modelling of concentric tube robots, a soft continuum soft robot
with a minimalistic mechanical structure of super-elastic tubes. Such a structure, in combi-
nation with the compliance, makes the robot suitable for cannula-based minimally invasive
surgery. To achieve computationally efficient modelling, our tube robot model is based on
a generalised shape model for strands, with a robot-dependent part featuring static equi-
librium equations to map the actuator inputs to the cross-section-wise local curvatures.

Advanced Path Planning

Chapter 20 introduces path planning for a different type of mechanism called parallel ma-
nipulators. Due to their unique kinematic properties, their workspace is often quite complex
and full of singularities. As singularities pose a serious threat to their controllability, path
planning for these types of manipulators can be quite challenging. This work proposes a
method for representing the complexity of a parallel manipulator in a way that path plan-
ning can occur efficiently in the configuration space.
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Remote Centre of Motion Robot

Chapter 21 looks at the manipulators for non-cannula-type minimally invasive surgery. A
new remote centre of motion mechanism is proposed to help surgeons maintain the position
of the insertion ports, hence maximising patient safety. Two design variants, based on a
gear train and a hybrid link-cable system, respectively, are presented, and their capabilities
to rotate around a remote fixed point in the space are proven mathematically.

The Monash Apple Retrieving System

Chapter 22 describes the design and testing of a highly successful apple harvesting robot
developed in Dr Chao Chen’s Laboratory of Motion Generation and Analysis. The robot’s
manipulator, vision system, soft gripper, kinematics, and path planning are described in
this chapter, along with a comprehensive analysis of its harvesting performance in the field.

1.2 Robot Architectures

In this section, we introduce robot architectures commonly utilised in the manufacturing
industry and robotic automation in general.

1.2.1 Cartesian

Cartesian manipulators, e.g., one depicted in Figure 1.2, feature a workspace in which the
end-effector’s orientation is kept constant while articulating in Cartesian directions. While
various mechanical architectures can generate this type of workspace, the simplest form is a
gantry-type architecture. This is made up of orthogonal prismatic actuators, connected from
the base to the end-effector, representing the x, y, and z Cartesian directions. Each prismatic
actuator independently controls the motion along a single axis, which means the forward and
inverse kinematic solution is trivial. The gantry-type architecture is mechanically simple,
thus reinforcing the structure along each axis by adding passive links between the output
and the base is a simple task. The added advantage is that it increases payload strength
and end-effector accuracy.

Cartesian manipulators have seen many applications in the industry, ranging from large-
scale gantry cranes used in construction and assembly tasks to smaller-scale applications
such as printers. Modern-day 3D printers are driven by the aforementioned mechanical
advantages, which have revolutionised the way we conduct rapid prototyping (requires ci-
tation), giving rise to the term additive manufacturing. Latest printing technologies allow
the printing of metallic material, which requires micrometre accuracy.

Cartesian manipulators are not without their flaws. Gantry-type structures with pris-
matic actuators are generally slow, especially in high-precision applications. In addition,
the robot typically envelops the workspace, meaning the robot workspace volume cannot
be increased without also increasing the volume of space occupied by the robot’s structure.
While this is not an issue for small-scale printers, retrofitting a large Cartesian robot in an
industrial workspace can be very challenging if workspace volume is constrained.

1.2.2 Cylindrical

Cylindrical robots have three DoF at the end-effector, forming a cylindrical coordinate
system. The robot is actuated by one revolute joint rotating normal to the base surface,
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FIGURE 1.2
Cartesian robot workspace.

FIGURE 1.3
Cylindrical robot workspace.

and then two linear actuators to control the height and radius of the end-effector’s position.
As a result, this has a much more compact working area compared to Cartesian robots,
albeit at a reduced workspace volume. However, this robot still exhibits high precision and
stiffness at the end-effector.

This robot has common uses in pick-and-place and sorting tasks in smaller environments
such as laboratories, assembly lines, or as a spot-welder on a relatively planar surface. A
sample cylindrical robot and its workspace are illustrated in Figure 1.3.
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1.2.3 Spherical

A spherical robot has three DoF at the end-effector, forming a polar coordinate system. It is
actuated by two revolute joints at the shoulder to control roll and pitch, with a single linear
actuator controlling the radial position of the end-effector. The original Unimate robot,
installed in car manufacturing plants in the 1960s, was a spherical robot. As such, it has
seen many industrial applications in machine tool manipulation, spot-welding, die casting,
and gas and arc welding. A sample spherical robot is shown in Figure 1.4 along with its
workspace.

It should be noted that to make full use of the orientation workspace, one more degree
of freedom is added to the end of the robot, as seen by the Unimate industrial robot. These
additional DoF are known as the wrist of the robot, which will be discussed further in this
chapter.

1.2.4 SCARA

The SCARA architecture (Selective Compliance Assembly Robot Arm, Figure 1.5) consists
of three parallel revolute joints in the main articulated arm, with a prismatic actuator
attached to the end of the arm to make up a four-DoF robot. The revolute joints allow agile
planar manipulation of the prismatic actuator, which controls the height of the end-effector
normal to the workspace plane. The end-effector yields high stiffness, as the three revolute
joints do not carry the robot’s self-weight.

This robot has a workspace profile similar to that of a cylindrical robot. However, it
has an extra degree of freedom to allow planar orientation of the end-effector. Also, it is
mechanically very simple, allowing all actuators to be placed towards the base of the arm.
This allows for planar motion with high stiffness and speed, which is very suitable for high-
precision, quick pick-and-place tasks, such as sorting in a laboratory setting. It can also be
used in applications where the workspace is mostly planar, such as drilling, milling, and
engraving.

FIGURE 1.4
Spherical robot workspace.
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FIGURE 1.5
SCARA architecture.

1.2.5 Articulated

These manipulators consist of two orthogonal shoulder joints at the base, and a middle
elbow joint with a link between the shoulder and elbow joints. The two shoulder actu-
ators at the base control the direction and height of the elbow, and the elbow joint’s
axis of rotation is parallel to the second shoulder joint, which increases the articulated
robot’s reach. This architecture is usually implemented with a three-DoF wrist at the end
of the elbow link, which allows rotational positioning of the end-effector. The result is a
six-dimensional workspace where translational and rotational motion is decoupled, allowing
for a simpler kinematic model. Furthermore, this six-DoF implementation yields multiple
inverse kinematic solutions, allowing the arm a few options to avoid obstacles within the
workspace, thus improving the dexterity of the end-effector under constrained workspaces.
Although these robots lack the mechanical stiffness of Cartesian robots, they require much
less structural space for the same volume of workspace, making them highly suitable for ap-
plications with smaller workspaces and payloads. The articulated architecture is also known
as anthropomorphic architecture, because the kinematic configuration (with a three-DoF
wrist) closely resembles the kinematic configuration of an anthropomorphic human arm.
Figure 1.6 illustrates a sample articulated robot and its workspace.

The PUMA robot (Programmable Universal Machine for Assembly) falls under the
category of articulated robots (Figure 1.7), and has seen many uses in the industry, typically
in pick-and-place tasks, assembly, and welding. It is the spiritual successor of the famous
Unimate robot (Figure 1.1), which revolutionised the manufacturing industry in the 1970s.

Currently, many robotic companies such as ABB, Kuka, and Universal Robots have engi-
neered robotic arms of articulated architecture, and they are popular due to their versatility.
Although each company has its own implementation of the articulated arm structure, the
first three actuators of the arm, consisting of two shoulder and elbow actuators, are always
at the core of each design. The anthropomorphic nature of these arms has put these robots at
the forefront of many human-centred applications due to their naturalistic kinematic config-
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Workspace envelope

End effector

FIGURE 1.6
Articulated robot workspace.

FIGURE 1.7
The PUMA robot.*

uration and workspace. This includes heavy-duty cleaning, painting, condition inspection,
and even climbing applications. This is also the preferred architecture for human-robot col-
laborative environments for the aforementioned reasons and in part due to their naturalistic

4Guzman-Gimenez, J., Valera Fernandez, A., Mata Amela, V. and Diaz-Rodriguez, MA, 2023. Auto-
matic selection of the Groebner Basis’ monomial order employed for the synthesis of the inverse kinematic
model of non-redundant open-chain robotic systems. Mechanics Based Design of Structures and Machines,
51(5), pp. 2458-2480.
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FIGURE 1.8
A spherical wrist with z-axes of rotation, all meeting at a common point O.

aesthetics. Human-robot collaboration is a hot topic in modern robotics research, and has
been successfully trialled and implemented in environments such as weight-lifting assistance,
rehabilitation, and education.

1.2.6 Wrists

While typical robots focus on the translational workspace, wrists are very important in real-
ising the rotational workspace. Wrists are normally three-DoF, where the rotation axes are
orthogonal, which guarantees any orientation of the end-effector can be achieved (assuming
no joint limits). This configuration can be simplified in a two-DoF implementation, but
a complete orientation workspace is no longer guaranteed. Because the revolute axes are
orthogonal, it is very easy to solve the inverse kinematic solutions. Hence, a wrist can be eas-
ily attached to the end of an articulated robot without overly complicating its closed-form
solutions.

A wrist is critical for allowing rotational motion of the end-effector. While the first three
actuators of a robotic arm control the translational positioning of the end-effector, the next
two or three actuators within the wrist control end-effector orientation. This is necessary
for many manufacturing tasks in which the tool is orientation-constrained, such as welding
and assembly.

Because the workspace is mostly rotational, the wrist design is typically more compli-
cated than the rest of the arm. The strength and the number of DoF required at the wrist
heavily influence the mechanical complexity. This can adversely affect joint limits, which are
typically small and very challenging to maximise. For instance, the joint limits of a gimbal-
type wrist are heavily constrained by its internal structure, and require some very clever
engineering for only small gains in the joint limits. Alternative wrist configurations feature
a serial chain arrangement, such as roll-pitch-roll, where all rotational axes still meet at a
single point. This wrist configuration, as shown in Figure 1.8, exhibits an almost infinite
joint limit, but suffers from lower strength and stiffness compared to the gimbal counter-
part, and its home position is singular, which can cause problems with path planning in
this configuration.

Serial chain wrists with non-intersecting rotation axes (non-spherical) can also be im-
plemented. Although they are mechanically simpler with wider joint limits, a closed-form
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solution to its inverse kinematics is no longer guaranteed, which can affect its real-time
performance as numerical solvers must be implemented. This configuration, however, solves
the home position singularity problem. The articulated robotic arm by Universal Robots
features a non-spherical wrist that has a very wide joint angle limit, but is also singularity-
free at its home position and has closed-form solutions. This phenomenon is explained in
further detail in Chapter 7.

1.3 Conclusion

In this chapter, we gave a brief overview of robotics in manufacturing, from its brief his-
tory to its current state, highlighting the importance of intelligent mechanical design in
each industrial revolution. We then introduced the broad field of robotics, focussing on the
mechanics and control of robots, which this textbook will cover. Key robotics terms are
introduced, and each topic covered in this textbook is briefly introduced. Finally, robot
architectures commonly seen in robotics and especially in manufacturing were introduced,
where each architecture’s strengths and common uses were analysed. These architectures
will be consistently referred to in later chapters in problem sets and examples, to link the
fundamental theorems of robotics introduced by this textbook back to the manufacturing
industry.

1.4 Exercises
Problem 1. What is the degree of freedom of Cartesian manipulators?
Problem 2. The SCARA robot is known for its high payload capacity and agile planar

movement. Considering how the joints are configured for this robot, why is the robot capa-
ble of such a high payload compared to an articulated architecture?

Problem 3. Is it possible to replicate a Cartesian manipulator with an articulated struc-
ture?

Problem 4. Referencing the previous question, can an articulated robot with a wrist at-
tachment achieve the same motion as a pure Cartesian robot?
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Planar Kinematics, Velocity, and
Statics

This chapter will introduce the basic skills needed to define a two-dimensional robotic
manipulator in space, analyse its pose and configurations in its workspace, and analyse its
general motion. It will cover four main topics of analysis.

Transformations in Planar Space

To foster an understanding of the mechanics of robotic manipulation of objects in its
workspace, we introduce the fundamental concepts of two-dimensional space, or planar
space free space, that are relevant for robotic analysis. Using linear algebra techniques, we
learn how to define rigid bodies in free space with the introduction of pose (position and
orientation), and how to apply transformations (translation and rotation) on them, as if a
robot were manipulating them.

Kinematics

Kinematics describes the pose of a robot’s links and joints in free space at any given time,
given a set of parameters. These parameters are usually joint angles, whereby a robot’s
kinematic equations allow us to convert a vector of joint angles to an end-effector pose.
These kinematic equations also allow us to determine the joint angles of a robot, given
a target end-effector pose. Deriving these kinematics equations is usually the first step in
robotic modelling.

Velocity

This topic introduces motion into the analysis of the robotic system. It refers to the rate of
change of both joint positions and the end-effector, in which point velocity (how fast a robot
is moving in a straight line) and angular velocity (how fast a robot is rotating or turning)
will be modelled. We will learn to derive the velocity equations of the end-effector from
its position in the planar space. Velocity plays a crucial role in describing the speed and
direction of movement for robots in navigation, manipulation of objects, and interaction
with their environment effectively.

Jacobians and Statics

Deriving the velocity provides us with insight into the Jacobian matrix, which is a useful
tool for static analysis, singularity analysis, and workspace analysis. Static analysis involves
evaluating the external force exerted by the end-effector from the internal force and torque
of the joints. Workspace analysis computes the region a robot can reach and operate within.
Singularity analysis identifies and analyses configurations in a robot’s workspace where the
robot loses certain degrees of freedom or encounters problematic behaviour. This analy-
sis helps engineers and researchers predict and understand how robots will behave under
different conditions, loads, or constraints without physically testing them.

DOI: 10.1201/9781003614319-2 16
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2.1 Two-Dimensional Space

Consider a two-dimensional space with a fixed frame defined at its origin. This frame has
two orthogonal axes, xy and yg, which defines the space’s coordinate system. The subscript
of the x and y-axes indicates that the axes belong to frame {0}. In general convention, we
call the 0 frame the reference frame, base frame, or world frame if this frame represents the
world in which our objects exist. Mathematically, we write this as {0}.

Now let us define a rigid body and attach a frame to it called {1}, which also has
orthogonal axes x; and y;. Finally, let us place the rigid body somewhere in our world
frame {0}. To define where this rigid body is in the world, we ask ourselves: where are x; and
y1, the x and y azxes of our rigid body frame B, in relation to our world coordinate system’s
azes xo and yo? To answer this question, we are looking for %x; and ®y;, which means -
azes and y-azes of {1}, observed in the {0} coordinate system, respectively. Typically, when
we observe a quantity, we usually mean to measure it, so the previous statement could be
reworded to measured in the {0} coordinate system. To calculate the quantities x; and
Yy, we can refer to elementary trigonometry and the dot product.

2.2 Transformations

Let us generalise the frame notation based on the above example, using {i} and {j} as
our adjacent frames such that j = i + 1, getting our original notation if we set i = 0. A
two-dimensional transformation matrix describes the pose of a frame, or a rigid body with a
frame attached, measured in a reference frame. Both a rotation and translation are encoded
into a single 3 x 3 square matrix of the form

; ix; 'y, p; 095(9) —sin(6) ijw

T, = [ 0 0 1 } = |sin(d) cos(d) 'pjy (2.1)
0 0 1

where ipjm and ipjy represent the translation of O;, the origin of {j}, measured along the z;

and y; axes of the {i}, respectively, and 6 is the angular displacement from {i} to {j}. Figure

2.1 shows how each component of the matrix is physically represented. Note that frame {i'}

is parallel to {i}, introduced for the purpose of illustrating the angular displacement 6.

There are two main functions of a transformation matrix. It

e provides a full description of the rigid body’s rotation and position, measured in an
arbitrary coordinate system, and

e allows us to observe any rigid body in another coordinate system, as long as they are
connected in the transformation tree.

The latter point is particularly useful in the analysis of robot motion.

2.2.1 Transforming a Vector

Let us begin with a trivial mechanical system consisting of just one rigid link, driven by a
single motor at one end (Figure 2.2). The link, as it rotates, drives an external load at the
opposite end. Let us define our world coordinate system as {0} and place our motor at the
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General transformation of two frames.

origin of this frame. On our rigid link, we will attach frame {1} to its base where the motor
is attached, where x; points along the length of the link. Therefore, as the motor spins, {1}
will rotate about the origin of {0} by an angle 6;. The transformation matrix between {0}

and {1}, according to (2.1) is

Or]:\1

cos(f1) —sin(fy) ‘x4

sin(ﬁl) COS(91) Y1 (22)

0 0 1

[cos(61) —sin(f;) 0

sin(6y) cos(f1) O (2.3)
0 0 1

This merely tells us that the base of the rigid link is spinning about the motor’s axis,
which is intended! However, it is not particularly useful to us. Instead, we want to know
the whereabouts of the opposite end of the link as the motor is driven. We should define a
point on the rigid link where the load is driven, called E. For simplicity, let us assume the
load is located at the opposite end of the rigid link coordinate system. In other words

e = ||

(2.4)

FIGURE 2.2
One-link planar robot.
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FIGURE 2.3

Transformation tree.

where [ is the length of the rigid link which propagates along x;. To locate point F in the
world frame {0}, we pre-multiply our vector 'pg with the transformation matrix 9T, such
that

T, 'pp = "pp (2.5)
[cos(6y) —sin(6) 0] ry
= |sin(6;) cos(6y) O HE] (2.6)
0 0 1]
[cos(fy) —sin(6;) 0] [I
= [sin(fy) cos(f#1) Of (O (2.7)
L0 o 1 [
[1cos(6y)
[Ofﬂ = lsinl(ﬂl) (2.8)

Note that in Equation (2.6), we append a 1 to the vector to create a homogeneous coordinate.
This is required to be able to multiply the vector with the 2D transformation matrix. The
formal definition of the homogeneous coordinate is out of this scope in Part I, but is formally
introduced in Part II, Section 5.5.

2.2.2 Transformation Trees

Often, we are interested in calculating the pose or position of an object in a reference
coordinate system that is not adjacent to the target frame. However, as long as they are
connected in a transformation tree, then a solution is feasible. A transformation tree is a set
of transformation matrices that are linked in the same system. For example, we are given
three frames, {0}, {1}, {2}, {3}, and {4} with the transformation matrices °T, °T5, T3,
and T,. Figure 2.3 represents this system’s transformation tree.

To observe any frame measured in another frame in this transformation tree, we apply
matrix multiplication, similar to the multiplication of rotation matrices. For example, if we
want to observe {4} in the {0}, we apply

o, =T, 2T5 ?T,. (2.9)
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We can also observe {4} and the {1} coordinate system as they are connected in the
transformation tree. However, the above example implies we need 'Ty, i.e.,

Ty ="T, "Ty *T5 °Ty (2.10)

but we are only given °Ty. Therefore, we need to find the inverse transformation of
'T. The generalised form of the inverse transformation matrix is

_ _ cos(f) sin() —‘w;cos(f) — ‘y;sin(6)
'T; =7T; ' = |—sin(d) cos(f) ‘x;sin(f) —y; cos(d) | . (2.11)
0 0 1

2.3 Planar Robot Kinematics

In this section, we will learn how to describe the position and orientation of a robotic end-
effector in terms of the joint angles in a process called forward kinematics, otherwise known
as direct kinematics. The position and orientation of a robotic end-effector constitute the
task space, while the joint angles constitute the joint space. Hence, the forward kinematics
is a mapping from the joint space to the direct space. Our focus will be on planar systems,
where the robot’s end-effector only moves along a plane with a single-parameter orientation.

2.3.1 Joints

There are two commonly used joints in robotic manipulators: revolute (R) joints and pris-
matic (P) joints, as shown in Figure 2.4. A revolute joint can be simplified into one axis of
rotation, which completely defines the relative motion of these two rigid bodies. This axis of
rotation is a spatial line with its position and direction. A prismatic joint defines the sliding
direction of one body relative to another. A prismatic joint can be replaced by another
parallel prismatic joint at a different position, while the relative motion of the two rigid
bodies remains the same. Therefore, a prismatic joint can be characterised by a directional
vector without a specific position.

In forward kinematics, the shape of a rigid body is of no importance; the only thing
that matters is the types and locations of the joints among the bodies. Although there are

(a) Revolute (b) Prismatic

FIGURE 2.4
Two types of common robotic joints.



Planar Robot Kinematics 21

many types of actuated joints, our discussion will focus on the serial robotic manipulators
with any combination of R and P joints, configured such that the end-effector achieves only
planar movement.

In order to precisely describe the position and orientation of each moving link of a
robotic manipulator, we desire to assign one frame to each link. Each link’s position and
orientation can be fully described by the transformation matrix between the ground frame
{0} and the attached frame to this link. Further, the transformation matrix between two
adjacent links is only affected by a single parameter, either a rotation € for an R joint, or
a displacement d for a P joint between these two links.

2.3.2 Forward Kinematics

The process is similar to the one utilised in Section 2.2.1. For each link:

1. Assign the origin of the link’s frame to its base, where its actuator will be attached.

2. Assign the z-axis of each frame, such that it points towards the origin of the next
frame. If the frame represents a prismatic joint, then the x-axis represents the
direction of motion.

Assign the y-axis to be 90° clockwise from the z-axis.

Assign the base frame, {0} to be coincident with the first link’s frame {1}. This
means that {0} and {1} are coincident when 6; (or d; for prismatic joints) = 0.

The four steps are illustrated in Figure 2.5 (a) to (d), respectively.

Example 2.1 (Forward kinematics — 3R):
A planar robot is shown in Figure 2.6. Find the coordinates of Point P in the fixed frame.
Assuming I; = 0.25 m, ls = 0.30 m, I3 = 0.20 m, 6; = 15°, 62 = 25°, and 65 = 30°.

Solution: The first step is to assign frames to all links, following the convention that the frame’s
origin is placed on the axis of rotation, with the z-axis pointing along the link towards the next
frame’s origin. The base frame, {0} is determined by aligning it with {1} when 6; = 0. Therefore,
the following transformation matrices are

[cos@, —sinf; 0
o, = |sin#, cosf; O (2.12)
| 0 0 1
[cosfy —sinfy 1y
'Ty = |sinf, cosfz 0 (2.13)
| O 0 1
[cosf3 —sinfs o
Ty = |sinf3  cosfz 0 (2.14)
0 0 1
The total transformation matrix is
Oy =0T, ', T (2.15)

For any given point °p on the end-effector, its coordinates {0} are given by

{Oﬂ =07, rﬂ (2.16)
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FIGURE 2.5
Frame assignments for a planar RRP robot.

FIGURE 2.6
A planar RRR robot.
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FIGURE 2.7
A planar RP robot.

with 3p = [lg O]T. Substituting the numerical design parameters yields

0.34 —-0.94 047

Ty = [0.94 034 026 (2.17)
0 0 1
and
o _ |0.54
pP= [0.45:| (2.18)

Example 2.2 (Forward kinematics — RP): A planar robot is shown in Figure 2.7. Find the

coordinates of Point P in the fixed frame with #; = 30°, da = 0.6 mm, and %p = [0 0} " Solution:

Starting from the base frame {0}, assign frame {1} with the z-axis pointing along the link towards
the next frame’s origin located at point P. Therefore, the following transformation matrices are

cosf)y —sinfy O
o, = |sin6; cosfy O (2.19)
0 0 1
1 0 do
'"Th=10 1 0 (2.20)
0 0 1
The total transformation matrix is
oy =T, ' Ty (2.21)

For any given point *p on the end-effector, its coordinates {0} are given by
0 2
P|_o p
R o
Substituting the numerical design parameters yields

0.87 —0.50 0.52
Ty = [0.50  0.87  0.30 (2.23)
0 0 1

and since 2p = [0 O]T, 9p can be extracted from the third column of °Ts, or

’p = [g:ga (2.24)
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2.3.3 Inverse Kinematics

Inverse kinematics is the mathematical process of calculating the configurations of a robot’s
(or mechanism’s) actuators to achieve a particular end-effector pose (position and orien-
tation) relative to a coordinate system attached to the robot’s base. This process is the
reverse of forward kinematics, but it is generally much more challenging to solve.

There are two ways of solving the inverse kinematics of a robot: the algebraic method
and the geometric method. While both methods have their strengths, we will focus on the
geometric method for planar robots, which breaks the challenging problem down into an
intuitive spatial geometry problem. The benefit of this method is that the methodology can
be easily visualised as you are solving the problem, and that the solutions are derived from
simple trigonometric equations.

As an introduction, we will utilise a simple 2R robot as seen in Figure 2.8. End effector
pose is defined by an (z,y) coordinate, which is achieved by driving its two joint angles
(01,02). In the inverse kinematic problem, we wish to solve for joint angles (61, 62), given
any arbitrary end-effector pose (*x,%y) that is within its workspace. Using the geometric
method, we will break this problem down into a simple trigonometry geometry problem
where we can use trigonometric identities to solve for various angles.

First, we can draw a straight line between the base of the robot to point P (Figure
2.8(a)), creating a triangle with [; and l;. We can utilise the cosine rule to calculate the
angle « in Figure 2.8(b):

zp? +yp? =12 + 152 — 21115 cos () (2.25)

By inspection, we can see that

=7 —« (2.26)
and so (2.25) becomes
zp? +yp? =117 4 152 — 20115 cos (180 + 65) (2.27)
Because cos (180 + 05) = — cos (63), rearranging, we have
2 2 —1 2 l 2
cos (62) = 2t 73 ! 2 (2.28)
21115
Therefore,
2 2 _ l2 _ l2
0y = arccos Tty 12 (2.29)
2l

P(xp,yp)
[

(b) Step 2

FIGURE 2.8
Steps in inverse kinematics, using the geometric method.
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FIGURE 2.9
Kinematic configurations of the 2R.

There are three possible solutions to this equation: £6,, or no solution.! In addition,
we must impose the constraint —7m < 03 < 0 such that the triangle in Figure 2.8(a) can
physically exist. To solve for #;, we need to solve for angles 1) and ¢. First, ¢ can be solved
using the two-argument arctangent

¢ = Atan2(yp,zp) (2.30)
then applying the law of cosines again to find v

2 2 2 2

xp”+yp  —hL" =1
CcoSs = 2.31
(¥) SANCEERT (2.31)

Here, the arccosine must be solved such that 0 < ¢ < 7 such that the geometric solution
remains physically viable. Finally, 6; can be solved with the expression

b =9+, (2.32)

where the plus sign is used if 3 < 0, and minus if 5 > 0

2.3.3.1 Kinematic Configurations

In the process of solving the inverse kinematics for a 2R robot, we encountered a situation
where two solutions are physically possible: +65, which leads to two different solutions for
+6,. When there are multiple solutions for the same end-effector position (or pose), we
call each solution a kinematic configuration. In the case of our 2R robot, this represents an
elbow up or elbow down configuration, as seen in Figure 2.9.

Although this makes for a less straightforward exercise in solving the inverse kinematics,
robots do benefit from having multiple kinematic configurations. This feature allows the
robot to reach a target in multiple ways, which is useful when its workspace is cluttered
with obstacles. For example, if a particular end-effector pose causes the robot to collide with
an object, then we can utilise an alternate kinematic configuration to avoid the obstacle
(Figure 2.10).

Example 2.3 (Inverse kinematics — RP): Solve the inverse kinematics of the planar RP robot
of Figure 2.11 using the geometric method; that is, find equations for #; and d2 in terms of the
arbitrary location of the end-effector (x,y).

IWhat conditions are there no solutions to this equation, and what does that physically mean for the
robot?
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FIGURE 2.10
Utilising alternate kinematic configurations to avoid a collision.

Solution: Both 6; and d2 can be solved by applying a red triangle onto the robot as shown in
Figure 2.12, where

0, = arctan 2 (2.33)
T

do = /2% +y? (2.34)

2.4 Velocity Analysis

Thus far, our attention has been focused on static manipulator poses, calculating where
the end-effector is for a given actuator position, and calculating the actuator positions
for a given end-effector pose. Now, we will explore robot motion — the linear and angular
velocities of rigid bodies that make up the manipulator and resultant end-effector velocities,
and use these concepts to determine the static forces of a manipulator.

FIGURE 2.11
A planar RP robot.
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FIGURE 2.12
A planar RP robot (solution).

There are two commonly used methods for calculating the end-effector velocity of a
manipulator for a given pose: time derivative of the end-effector output equations, and
velocity propagation. In this chapter, we will focus on the time derivative method, with the
velocity propagation method to be introduced in Section 8.3.

The study of rigid body motion in robotics is an important precursor to understanding
the mechanical behaviour of a mechanical robot system, including its workspace, mobility,
and dynamics. Once these are understood, we can apply established control methods to
govern the robot’s stable motion.

2.4.1 Linear and Angular End Effector Velocity

In Figure 2.13, we have a two-joint RR planar robot. The position of the end-effector in two-
dimensional space measured in {0}, obtained by performing forward kinematics, is given
as:

(2.35)

[x} _ [lg cos(f1 + 03) + 14 cos by

y 12 sin(91 + 02) + ll sin 01

FIGURE 2.13
A planar RR robot.
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The joint angles (61 and 65) change with time as the joints rotate. Therefore, 61 and 605
can be expressed as functions with respect to time:

01 = 01(t) 02 = 02(t) (2.36)

Since x and y are functions of #; and 6,2, we can compute the derivative of x and y with
respect to time using the chain rule. Putting them into a vector represents the velocity of
the end-effector in the Cartesian space

0; = (2.37)

_ —llél sin(@l) — lg(él + 02) Sin(91 + 92)

Ve m - [119'1 cos(61) + Lo (B + 02) cos(6y + 62) (2:38)

Example 2.4 (Velocity analysis): A planar robot is shown in Figure 2.14. Given that the total
transformation is

c123  —S123  laciz +licy
0T3 = |[S123 cCi123 lasi2 + 1151 (2.39)
0 0 1

where s; = sinf;, ¢; = cos#b;, Sij = sin(@i + 93‘), and Cij = COS(@i + 01) Further, 6; for i = 1,2,3
are joint angles of this robot. Find the velocity of Point P in the fixed frame with the robot design
parameters given in Example 2.1, and joint velocities 61 = 02 = 03 = 10 °/s

Solution: For any given point ®p on the end-effector, its coordinates 0 are given by
b b lzcies + laci2 + lica
{ 1 } =Ty { 1 } = |lssi23 + l2si2 + lis1 (2.40)
1

The velocity is the time derivative of the position. Therefore,

v = op _ |:_(.9'1 + .32 + .9'3)l38123 - (01 + é2)12812 —.9'1l181 (2.41)
(601 + 02 + 03)l3c123 + (01 + 02)l2c12 + O1l1c1 '
Substituting the numerical values results in
o [-0.18
v = {0.16] (2.42)
P
I3
l2

FIGURE 2.14
A planar RRR robot.
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(a) Effect of Jy. (b) Effect of Ja. (c) Effect of J.

FIGURE 2.15
Visualisation of Jacobians on an RR manipulator.

2.4.2 Jacobian

A Jacobian is the matrix equivalent of the derivative that maps the joint velocities to the
velocity of the end-effector. Think of a robot arm with multiple joints; the Jacobian matrix
helps to compute how a small change in each joint’s position or angle affects the overall
movement of the end-effector. It essentially tells us how the speed and direction of each
joint impact the speed and direction of the end of the robot arm. It is also a useful tool
in statics analysis that indirectly maps the motor torque inputs and the force and torque
output of the end-effector.

Consider the end-effector velocity of the RR robot as derived in (2.38). We can see
that the point velocity v is a function of the joint velocity (92)7 thus we can rewrite the
expression as

_ —l151 — las12] 4 —l3812| . . .
v [ licr + lacao } o [ laciz } 02 = J1(@)0r + J2(a)f> (2.43)

where q is a generalised vector comprising all joint variables of the robot (i.e., 8, d). In this
example, q = [01 92]. J1(q) can be visualised as a vector velocity of the end-effector that
is orthogonal to the line connecting from joint 1 to the end-effector when joint 2 is kept
constant as shown in Figure 2.15(a). Similarly, J2(q) can be visualised as a vector velocity
of the end-effector that is orthogonal to the line connecting from joint 2 to the end-effector
when joint 1 is kept constant as shown in Figure 2.15(b).
Furthermore, we can express (2.43) in the form
61

v=[h@ @)}

} = (@) T@)]a=I(@4 (2.44)

where J (q) is the Jacobian matrix, a linear combination of J; (q) and J2(q) that maps the
joint velocities to the velocity of the end-effector. Therefore, the Jacobian matrix for the
RR robot, expressed in the form (2.44), is

_ —lis1 —las12 —las12
Ja) = [ licr +lacrn lac12 (245)
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Example 2.5 (Jacobian): For the same planar robot in Figure 2.14, find the Jacobian matrix in
the fixed frame.

Solution: From Example 2.4, we have found that the velocity is

0y, _ _(.él + .9.2 + .9.3)135123 — (91 + 6.2)52812 —.9.11151} (2.46)
(01 + 02 + 03)l3c123 + (01 + 02)l2c12 + b1l1ca
Now, factor out the joint velocities to obtain a term for each joint
Ov = J161 + J202 + J303 (2.47)
where
L [roetrasing 240

[—l35123 — l2512
J, = 2.49
g | Isci23 + l2c12 ] ( )

[—l35103
Js = 2.
s | lsci2s ] (2:50)

The Jacobian matrix is the linear combination of Ji, J2, and Js,

0.45 —0.38 70.19}

0.54 0.30 0.07 (2:51)

J=[J I Jﬂ:{

2.4.3 Singularity

A singularity in robotics is a condition in which the pose of a robot results in the end-effector
motion being compromised. Such an example can be seen in Figure 2.16, where joint angle
0y = 0, causing alignment of both J; and J,. In this scenario, the robot loses its degree of
freedom where the end-effector can only move in a single vector velocity that is along the
line perpendicular to the arm link. Furthermore, unique solutions for 6, and 65 cannot be
solved because there is an infinite combination of 6; and 65 that can result in a single point
velocity of the end-effector.

Studying (2.45) further, in the singularity configuration, we notice that the columns of
this matrix become scalar multiples of each other. This is known as a rank-deficient matrix,
where two or more columns are scalar multiples of each other. When this happens, the
determinant of the Jacobian matrix is equal to zero (det(J) = 0).

Example 2.6 (Singularity): Find and give a physical interpretation of the singularities (if any)
of the RR robot with the following Jacobian:

—lisin(61) — lasin(61 + 02) —l2sin(01 + 02)

J= l1 cos(01) + l2 cos(01 + 02) l2 cos(01 + 02) (2.52)

Solution: Singularity occurs when the determinant of the Jacobian is zero at a particular config-
uration, such that

det(J) = l1l2(cos(61) sin(6; + 02) — sin(61) cos(61 + 602)) =0 (2.53)

and this happens if and only if 62 is equal to 0 or 7.
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FIGURE 2.16
A planar RR robot with derived velocity.

2.5 Statics Analysis

In addition to the velocity relationship, we are also interested in developing a relationship
between the robot joint torques and forces and the force exerted by the end-effector, which
is known as static. In physics, we know that the power exerted by the end-effector is the
multiplication between the exerted force (f) and its velocity (v). The same power comes
from the torque produced from the joints, which can be expressed as the joint velocity (q)
times the joint torque (7). Therefore, we have

qtr=v"f (2.54)

Since the point velocity can be mapped to the joint velocity with the Jacobian matrix,
we now have

q"r=Jq"f (2.55)

As we further simplify the equation, we can see that the joint torque can be mapped
directly to the force exerted from the end-effector with the transpose of the Jacobian matrix

r=J'f (2.56)

This relationship is useful in force control, as we can design the required torque from
each joint for a desired force at the tip of the end-effector at a particular configuration.

Example 2.7 (Statics): Find the joint torques required by the robot in Figure 2.14 to maintain a

static force vector °f_ [1 1] T, when 61 = 45°,05 = 45°  and 6; = 0°. Adopt the design parameters
l1, l2, and I3 from the previous examples.
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982

580 580

FIGURE 2.17

ABB IRB 120 six-axis industrial robotic arm workspace.?

Solution: From Example 2.5, we found that the Jacobian of the planar robot is

_ |—lssizs —l2s12 —lis1 —l3si23 — l2s12 —l3si2s
l3c123 + l2c12 + L1y l3c123 + l2c12 l3c123
(2.57)
_|—0.68 —0.50 —0.20
~ 1 0.18 0 0

The transpose of the Jacobian can be used to map static force vectors to joint torques, such that

r=J"f (2.58)
Therefore,
—l35123 — l2512 — 1151 l3C123 + l2c12 + l1c1 1
T = —lzs123 — 2812 lsci23 + l2c12 [J (2.59)
—l38123 l3c123
Substituting 6; = 45°,62 = 45°, and 61 = 0°, we get
—l3 — s —0.50
T = —l3 — l2 = —0.50 (2.60)
—l3 —0.20

This means that joint 1 and 2 require a torque of —0.50 Nm, whilst joint 3 requires a torque of
—0.20 Nm.

2.6  Workspace

In robotics, the workspace refers to the specific physical area or region where a robot can
perform its tasks effectively. It is a concept that’s crucially important in designing and
programming robots, especially when considering their movement, range, and capabilities.
Here, Figure 2.17 shows the workspace of the ABB IRB 120 six-axis industrial robotic arm.

2https://library.e.abb.com/public/7aa0711a20fa41c49a8fdf3bbc3d5bb0/IRB120-Rev. J-ROBO149EN_
D.pdf (Retrieved 18.9.2024)
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FIGURE 2.18
Planar RR robot workspace.

The area highlighted in grey represents the reachable area by the end-effector of the robot,
which is defined by the robot’s maximal reach (outer boundary), and self-imposed joint
limits to avoid self-collision (inner boundary). Any points outside the grey area, the end-
effector will not be able to reach, and there should exist no solution for inverse kinematics.

For our planar 2R robot, the workspace is shown in Figure 2.18. The blue circle denotes
the path where the first link is able to move, whilst the red circle centre around the endpoint
of the first link denotes the path where the second link can move. With these two paths
combined, we have the workspace of the robot, illustrated in grey. The maximum boundary
of the workspace is reached when the robotic arm is fully stretched (I3 4 l2). The minimum
boundary of the workspace is achieved by folding the second link inwards, such that both
links are parallel to each other (I3 —1{1). To mathematically express the workspace boundary,
we can say that

(I —lo) <2? +y? < (I3 + 1o) (2.61)

where x and y indicate the position of the end-effector in Cartesian space.

2.7 Conclusion

In this chapter, we learnt about planar kinematics, velocity, and statics for basic robot
analysis. In planar kinematics, we learnt to describe the position and orientation of a frame
or a rigid body from a reference frame using a two-dimensional transformation matrix. The
transformation matrix is used to map a point on a rigid link from one frame to another.
Multiple matrices can form a transformation tree that correlates adjacent frames. We intro-
duced two concepts in planar robot kinematics, which are forward and inverse kinematics,
respectively. Forward kinematics finds the transformation matrix that represents the cumu-
lative effect of all joint movements on the end-effector ’s position and orientation. Inverse
kinematics determines the joint configurations of a robotic system that will result in a
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FIGURE 2.19
RRP manipulator.

specific position and orientation of its end-effector. This chapter focuses on using the geo-
metric method for inverse kinematics.

Following that, we learnt to obtain the velocity of the robot manipulator from its position
using the time derivative method. The joint space and the Cartesian space velocities can be
mapped with the Jacobian matrix. We discussed how to use the Jacobian matrix to perform
static analysis that provides a mapping between the joint load and the load acting on the
end-effector in a stationary position. We introduced the concept of singularity and how to
find singularity in a robotic system using the Jacobian matrix. Lastly, we introduced the
concept of workspace and the basic analysis of the workspace of a robot.

2.8 Exercises

Problem 1. Define °T; that translate 5 units and 10 units along the z and y axes, and ro-
tates by 30° in angular displacement. Then, use T to map a vector [1 2 0] " from 1 to 0.

Problem 2. Find the 'T3 by using the following frame definitions:

0 -1 -10
'Ty=11 0 10
0 0 1

0.5 —0.866 10
3T, = 10.866 0.5 8
0 0 1

Problem 3. A RRP planar robot is shown in Figure 2.19. Solve the inverse kinematics of
the robot using the geometric method; that is, find equations for 0, 5, and ds in terms of
the arbitrary location of the end-effector (z,y).
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Problem 4. Derive the point velocity and angular velocity, represented in {0} (frame 0)
of the end-effector of the three-link manipulator shown in Figure 2.20 by using the time
derivative of the point position.

The transformation matrix °75 is given by:

ci23  —S123 lic1 + lacio
0
T35 = |s123 ci23 l151 + 12512
0 0 1

where ¢ and s represent cosine and sine, respectively, and multi-digit subscripts indicate the
summation of angles.

Problem 5. Derive the Jacobian mapping the joint velocity inputs to the point velocity of
the end-effector tips for the three-link manipulator of Figure 2.20. Represent the Jacobian
in {0} attached to the base.

Problem 6. What happens to the rank of a square Jacobian matrix under singularity
configuration? Under that assumption, would singularities in the force domain exist in the
same configuration as singularities in the position domain? Explain the physical meaning
of a singularity in the force domain.

Problem 7. Find the joint torques required by the robot in Figure 2.20 to maintain a static
T . .
force vector °f = [f, f,] . represent the result as a matrix equation.

Problem 8. Find the symbolic equation which represents the workspace boundary of the
robot in Figure 2.20.

FIGURE 2.20
RRR manipulator.
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Trajectory Generation

In this chapter, we introduce basic methods for computing trajectories to achieve the desired
motion of a manipulator. A trajectory consists of a set of time-stamped instructions for each
actuator in a robot to achieve a certain end-effector motion. However, a trajectory must
also be feasible for a manipulator to execute. The minimum requirements for a smooth and
feasible trajectory include:

e Positional requirements

e Continuous position profile

e Continuous velocity

e Maximum acceleration does not exceed payload ratings on each actuator

Trajectory generation is an essential function in industrial robots used in applications
such as welding, painting, pick-and-place, and assembly. All of these applications require
a degree of speed and precision. Therefore, the robot’s trajectory must be smooth and
continuous to maintain a standard of quality while minimising wear and tear.

Here, we introduce two methods of trajectory generation: polynomial interpolation, and
cubic splines. While both are viable trajectory generation methods, one method may be
favoured over the other, depending on the required trajectory constraints. In both methods,
we treat a trajectory as a continuous time-dependent function that is calculated indepen-
dently for a single actuator. Therefore, to achieve the desired end-effector trajectory, we
execute the trajectory for each actuator simultaneously.

Trajectory generation methods are generalisable for both revolute and prismatic joints;
hence, we will use the generalised variable ¢; to represent the position of the robot’s i-th
joint. Also, note that references to the variable 7" in this chapter represent a time quantity
rather than a transformation matrix.

3.1 Interpolation with Polynomials

Example 3.1 (Cubic splines): Figure 3.1 shows a trivial robot with only one R joint, which
can be called the R robot. We want to command the robot to move the end-effector from a start
joint angle gs at time T to the final joint angle ¢ at time Ty. The desired start and final angular
velocities are ¢s and ¢y, respectively. Find the smooth function to describe the trajectory of this
joint angle, satisfying the above boundary conditions.

Solution: Assume the smooth function we seek is ¢(t). There are infinitely many functions that can
be used to generate this trajectory. Generally, polynomials are convenient for this work because
they are infinitely differentiable. The required order of a polynomial depends on the number of

DOI: 10.1201/9781003614319-3 36
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FIGURE 3.1
A single R robot.

conditions to be satisfied. In this problem, there are four conditions: the desired positions at the
start and final moments, and the desired velocities at the start and final moments

oTs)=qs,  aTy)=gqr, dTs)=4¢s,  4(Ty) =gy (3.1)

Equations in (3.1) represent four constraints, while the variables are the coefficients of the polyno-
mial at hand. To have exact solutions, four coefficients are required, which can be found in cubic
polynomial

q(t) = ao + art + aot® + ast® (3.2)
The time derivative of (3.2) yields the velocity profile, given by
G(t) = a1 + 2aqt + 3azt’ (3.3)

Substituting (3.2) and (3.3) into (3.1) yields four linear equations below

q(Ts) = ao + a1 Ts + a2 T2 + asT? = g5 (3.4)
q(Ty) = ao + a1 Ty + a2TF + asT} = qy (3.5)
Q(Ts) = a1 + 2a9Ts + 3a3T2 = g, (3.6)
Q(Ty) = a1 + 2a2Ty + 3asTF = 4y (3.7)
Equations (3.4)—(3.7) can be further written in a matrix form
1 17, T2 T27 [ao qs
2 3
0 1 27, 3713 az gs
0 1 2Ty 37T7] |as dqy

Solving (3.8) gives the coefficients of the cubic function ¢(t) satisfying all conditions. In general,
the start time 7 is chosen to be zero. Therefore, (3.8) becomes

1 0 0 0 ao qs
1 Tf TJ% T;’ al _ qr (3 9)
01 0 0] |a gs '
0 1 2Ty 37T7] |as qy
Solving (3.9) yields
ao = qs (3.10)

a1 = g (3.11)
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2¢sTy + 45Ty + 3qs — 3qy

as = — Tf (3.12)
isT 1¢ s + 2qs — 2
as = qsly +qf f;'_ q ar (313)
i

With the coefficients given in (3.10)—(3.13), the polynomial ¢(t) = a¢ + a1t + a2t® + ast® satisfies
all four conditions given by (3.1).

One special case of the above problem is that the desired start and final velocities are
zeros. In this case, the solutions can be obtained by substituting ¢s = 0 and ¢ = 0 into
(3.10)—(3.13), such that

ap = (s (3.14)
a1 =0 (3.15)
3(q - qs)
ay = fTi? (3.16)
2(qs —
f

Although the start and final velocities are zeros, the start and final accelerations still present.
Further, the instant transitions between zero acceleration and finite accelerations at the start
and end cause large jerk, which is the time derivative of the acceleration. In order to restrict
the jerk, sometimes, we require the start and final accelerations to be zeros as well. In this
case, the conditions become

q(0) =qs, q(Ty) =qr, 4(0)=0, 4(Tf)=0, ¢0)=0, §(Tf)=0 (3.18)

The six constraints in (3.18) require six variables (coefficients of a polynomial) to get the
exact solutions. Therefore, a fifth-order polynomial of the form

q(t) = ao + art + ast? + agt® + ast* + ast’ (3.19)

is applied here. The velocity and acceleration profiles of the joint angle ¢(¢) can be found
as

q(t) = ay + 2at + 3azt? + dayt® + Sast (3.20)
4(t) = 2as + 6ast + 12a4t* + 20ast> (3.21)

Substituting (3.19)—(3.21) into (3.18) gives six linear equations

q(0) = ao = ¢s (3.22)
q(Ty) = ao + CL1Tf + aoTF + asT} + asT} + asT} = qf (3.23)
4(0) = (3.24)
q(Ty) = a1 + 2a2Tf +3a3T} + 4asT} + 5asT} = 0 (3.25)
4(0) =2a2 =0 (3.26)
i(Ty) = 2az + 6a3Ty + 12a4T7 + 20a5TF = 0 (3.27)

Solving (3.22)—(3.27) gives

ag = qs (3.28)
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a; =0 (3.29)
as =0 (3.30)
as = m@;);‘” (3.31)
ag = 15((];];(]” (3.32)
as = G(quf;qs) (3.33)

In theory, a polynomial can satisfy an arbitrary number of constraints as long as the order
of the polynomial is high enough. However, a high-order polynomial can yield unexpected
and unwanted deviations from the desired path. Therefore, cubic polynomials are most
commonly used in robotic path generation.

In many occasions, the desired path contains not only the start and final positions, but
also some intermediate positions, which are called the wia points. In order to deal with
additional conditions introduced by the via points, more than one cubic polynomial can be
used.

Example 3.2 (Cubic splines with via points): We want to command the R robot in Example
3.1 to move the end-effector from a start joint angle gs at time T to a via position g, at time
T,, and then to the final position g; at time Ty. Use two polynomials to generate a smooth and
continuous trajectory in the joint space, where the desired start and final angular velocities are
Zero.

Solution: Assume the two cubic polynomials are ¢i(¢) and g2(¢). The time periods of ¢i(t) and
q2(t) are [Ts,Ty] and [T, Ty], respectively. For convenience, we want to first derive the trajectories
on the periods of [0, T, —Ts] and [0, Ty — T, ], respectively, such that the equations can be simplified.
This can be done by shifting a function along the time axis, i.e., f(¢t —T) is the function by moving
f(t) along the time axis with a shift distance of T'. Let us first define two polynomials g1 (t1)
and gz2(t2) on their local time periods, [0,71] and [0, Ty2], respectively, with Ty1 = T, — T and
Ty = Ty — T,. After the polynomials are found based on the conditions, the trajectories are then
shifted back to the correct start time.
In this problem, there are eight conditions, given by

@1(0) =qs, ¢(0)=0, @q(Tr2)=gqs, ¢2(Tr2)=0
q

a(Tr) =g, ¢0)=q, @(Tn)=q0), G(Tr) = d(0) (3.34)

where the equations in the first row represent the start and final conditions, while those in the
second represent the conditions at the via position. The two desired cubic functions are assumed
to be

qi(t1) = ao + art1 + asti + ast}

) 3 (3.35)
q2(t2) = bo + bita + bats + bsts
with the time derivative giving the velocity profiles
G1(t1) = a1 + 2a2t1 + 3a3t2
: () ) (3.36)
G2(t2) = by + 2bats + 3bsts
A further time derivative yields the acceleration profiles
G1(t1) = 2az + 6asty (3.37)

G2(t2) = 2b2 + 6bsta
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Substituting (3.35)—(3.37) into the conditions (3.34) yields eight linear equations

q1(0) = ao = ¢s
()—al—qs

q2(Ty2) = bo + b1 Tya + baTiy + bsTFy = g5
d2(Ty2) = b1 + 2b2T2 + 3b3TF, = g5 (3.38)
@1(Tf1) = ao +a1Ts1 + aszl + a3Tfl =qv
q2(0) = bo = qu
Q1(Tf1) = a1 + 2a2T1 + 3a3Tf1 =¢2(0) = b
G1(Ty1) = 2a2 4 6a3Ty1 = G2(0) = 2bs
Solving equations (3.38) gives
ap = qs
ar =0
0y — —3TFAqa + 6Ts1 Tr2Aq1 + 3TFAqy
277, Ty2(Ts1 + Ty2)
o 3T Agz — ATj Tr2Aq1 — THAq
213, Ty2(Ty1 + T2)
bo = qv (8:39)
_ 3(THAG + T Aq)
LT 2T Tya(Ty + Tya)
by — 351802 = TyaAqi)
Ti1Ty2(Tyr + T2)
by —THAG — AT Tr2Aq2 + 317 Aq

2111 T3, (T + Ty2)

where Aq1 = ¢» — ¢s and Ag2 = g5 — gv. With the coefficients given in equations (3.39) and the
time shifts of two cubic functions, the final trajectory can be written as

(t) _ a0+al(t_T9)+a2(t_T§)2+a3(t_T9)57 TS StSTv (3 40)
B = bo+bi(t —To) +ba(t = T)? + ba(t — T0)3, T, <t <Ty '

In many applications, the time intervals throughout the whole period are chosen to be
the same, such that Ty1 = T2 = T. Hence, the linear constraints given by (3.38) can be
readily written in the matrix form

10 0 0 0 0 0 07Tal J[a]
01 0 0 0 0 0 0]« 0
17 7 7 0 0 0 0| |a 0
0 1 27 372 0 -1 0 0 | |as 0
00 2 67 0 0 -2 0 |]b] |0 (3.41)
00 0 0 1 0 0 0]y @
00 0 0 1 T T2 T3] /|b a5
00 0 0 0 1 27 37%] |[bs] [O]

where the square matrix is a tri-diagonal matrix with a bandwidth of 2, which is counted
as the maximum offset of nonzero elements from the diagonal. The inverse of such a matrix
can be computed efficiently by computational software. Solving (3.41) gives

ap = ¢s (3.42)
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ay = 0
ag = —3AQQ + 9Aql
4T?
o — 3Ag2 — 5Aq
s AT3
bo = qu
Aga + Aqq
by =3 T
Agy — A
by = 3 Q22T2 q1
by = —b5Aq2 + 3Aq;
4T3

(3.48)

(3.49)

In practice, a trajectory of one joint contains a large number of via points. Hence, an
adequate number of cubic functions are required to construct the trajectory. The coefficients
of these cubic functions can be found by expanding the matrix equation (3.41) into

_ao_ i qs 1
a1 0
az vl
as 0
bo 0
A bl quv1
: B (3.50)
B V2 Gun
V3 0
wo 0
w1y Qun
wa qf
_wg_ L 0 -
where A and B form a (4n) x (4n) square matrix, such that
1 0 O 0 .
0 1 0 o 0 -
1 T T2 T2 0 0
A= 0 1 2T 372 0 -1 (3.51)
-0 2 6T 0 O
0 0 1 0
and
T2 T3 0 0 .
2T 3T? 0 -1 0 :
2 6I' 0 0 -2 0
B = 0 0 1 0 0 0 (3.52)
. o 1 T T* T8
- 0 1 2T 3717
while ag, aq, ..., ws are the coeflicients of n piecewise cubic functions, which can be obtained

by solving the above equation. The trajectory described by the piecewise cubic functions is

also called a cubic spline.
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3.2 Interpolation with Linear and Parabolic Functions

The simplest interpolation on a set of start, via, and final points over a period of time
is to use linear functions to link these points together. However, at each point, there is
a discontinuity of velocity, which causes infinitely large acceleration. This can be both
dangerous and infeasible for the capability of actuators. In order to handle this issue, a
parabolic function is introduced to each point with a constant acceleration to allow a smooth
transition between two adjacent linear paths.

Consider the single R robot in Example 3.1, where the joint is commanded to move from
the start position gs; at time 0 to the final position g¢ at time ¢, through a number of via
points g; at t;, for i = 1,...,n, in order. The basic concept is to use straight lines to connect
these points and then use parabolic functions to generate smooth transitions based on the
given magnitudes of constant accelerations at all points. Consider three points, (t;_1,¢i—1),
(tiyqi), and (ti41,¢i+1), as shown in Figure 3.2. Using linear interpolation, two linear paths
through these three points are obtained as

gi—1(t) = qim1 + Gi—1(t —tiz1), ti1 <t<t (3.53)
. qi — qi—1 . qi+1 — i . . .
where ¢;_1 = ——— and ¢; = —— . Given the magnitude of the acceleration through
ti —ti—1 tiv1 — 1

Point 4 being |¢;|, this acceleration can be determined upon the adjacent velocities as
i = sign (¢; — ¢i—1) |Gl (3.55)
The time period of transition is then given by

T, = f 0L (3.56)

di
Consider one-half of the transition happens at the end of the first linear path while the
other half happens at the beginning of the second linear path. Therefore, the linear paths

given (3.53) and (3.54) becomes

. T;
gi1(t) = qic1 + i1 (t —tiz1), ti1 <t<t;— 5 (3.57)
q qi

/A‘\Qijﬂ

qi—
7,/2|T; /2

ti—1 t; Lit1 3

FIGURE 3.2

Three via points.
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N

i

ai(t) = ¢; + @i(t — t;), ti+ = <t<tiy (3.58)

v

At the end of the first linear path given by (3.57) and (3.58), the joint position is given by

. T;
Gi1=qi—1+ i1 (ti -5 ti1> (3.59)

Therefore, the parabolic transition is

. T\ | G 7\’
Qe(i—1)(t) = i1 +qia (t—ti + 3) T3 t—1t; + 5 (3.60)

Note that (3.60) is formulated based on the start position ¢;_1. It can be shown readily that

the end position of this parabolic trajectory at trf—é is exactly the same as the start position

of the following linear trajectory given by (3.57)—(3.58) at the same instant. This can be
easily understood in the velocity profile of the joint angle, where the parabolic transition is
a straight line connecting two-step functions. Since the removed and added triangles in the
integration area are the same, the joint travelling distance remains unchanged. Further, the
transition time 7;_; and 71, are also required at ¢;_; and ¢;11, respectively. In summary,
the two linear paths and one parabolic transition can be written as

) T;_ T;
qi—1(t) = qic1 + qic1(t —tiz1), ti—1+ Lt <t — 3 (3.61)
. T;
Qe(i—1)(t) = di1 +qioa [t —t; + 5 +
. 2
Gi T; T; T;
Llp—t,+22) ti— o <t<t+ = 62
L ( + I ) : ; (3.62)
. i Tit1
¢i(t) =aq+ qi(t —ts), t; + ) <t <tiy1— 5 (3.63)

Note that the above trajectory does not pass through via points exactly. In the case of high
acceleration, the deviation of the generated trajectory is close enough to the via points. As
for the start and final points, the robot must start and finish at them exactly. Hence, they
need to be treated slightly differently.

In order to force the trajectory to pass through the start point (0, ¢s), an offset point
(ts + %, gs) is introduced as shown in Figure 3.3. With this offset point, two linear lines
can connect the start point, offset point, and the first via point (¢1,¢1). We also desire to
use a transition time Ty to change the velocity smoothly according to a given |gs|. The
acceleration is

s = sign(q1 — qs)|ds| (3.64)

Consider the R robot starts from stationary with the constant acceleration ¢, for a time
period of T to reach the velocity defined by the second linear path. The relation can be
written as

qsTs = qs (3.65)

where ¢; = tqll_%. Equation (3.65) gives two solutions of T as
2

2
To=t1 £/t — = (g1 — q.) (3.66)

S
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A q q1
qs
Ts/2|Ts/2
' nt
FIGURE 3.3
The start two points.
Since Ts must be less than ¢, the only solution of T is t; — t% — q& (¢1 — gs). Hence, the

trajectory from the start point is

Qs (t) = qs + Gst?/2, 0<t<T, (3.67)
QS(t)ZQI_QS(tl_t)a Ts StStI_Tl/Q (368)

T
Similarly, an offset point (t; — 7f7 qs) is introduced to generate the path at the final

point, as shown in Figure 3.4. Given |§y|, the acceleration is

qr = sign(qr — qn)|drl (3.69)
The continuous velocity at ty — T yields
05Ty = = (3.70)
where ¢,, = tq’};fq”. Solving (3.70) gives
Fm3 b
5 2
Ty = (ty —tn) — |ty —ta)? — @(qn —qy) (3.71)
A g ar
dn,
Ty/4Ty/2
tn ty t
FIGURE 3.4

The final two points.
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FIGURE 3.5
A planar 3R robot.

The trajectory to the final point is

T,

(1) = Gn + gn(t — Tn), ot 5 <t<ty =Ty (3.72)
i

as(t) = ap = 5 (b = )7, ty =Ty <t <t (3.73)

In summary, the complete trajectory is described by (3.67)—(3.68), (3.61)—(3.63), and
(3.72)—(3.73) at the start, via, and final points, respectively. All intermediate parameters
are defined in the above corresponding equations. The advantage of the interpolation based
on linear and quadratic functions is that it does not need to solve a large equation system
and can be obtained efficiently. Further, the capability of the actuators can be considered
to predefine the bending accelerations.

3.3 Trajectory in Joint Space

The previous discussion was about the trajectory generation on a trivial R robot. In general,
a robotic manipulator has more than three DoF. Hence, the trajectories must be created
for all joint angles simultaneously.

Example 3.3 (Joint space trajectory): Given a three-DoF planar robotic manipulator shown
in Figure 3.5, develop a trajectory of the robot such that it starts at a configuration (gis, g2s, ¢3s)
at time 0, and stops at a configuration (qiy, g25, g3y) at time t;. Both initial and final velocities are
ZEros.

Solution: The trajectories can be conveniently developed in the joint space (g1, g2, ¢3). The joint
space of a serial robotic manipulator is also called the configuration space, which is defined as
a set of all configurations for a general robot, which can be a biped robot, robotic vehicle, or
robotic aircraft. Any position and orientation of a robot can be represented as a single point in its
configuration space, which simplifies the complex problem of general path planning.

In this example, the joint space is a three-dimensional space with three axes (qi,¢2,q3).
The trajectories can be independently derived with respect to all axes respectively. Therefore,
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(3.14)—(3.17) can be used to obtain three cubic functions

a0 = (is
;1 = O
Q2 = 73(%22_ :) (3.74)
f
2 is — Y1
a3 = (q 3 QZf)
f

where ¢ = 1,2,3. The polynomials ¢;(t) = a0 + ant + aiot? + a;st® generate a trajectory of the
robot satisfying all boundary conditions.

The approach in Example 3.3 can be applied to a serial robotic manipulator with an
arbitrary DoF. If there are a number of via points, either the polynomial solution given
by (3.50) or the linear and quadratic interpolation given by (3.67)—(3.68), (3.61)—(3.63),
and (3.72)—(3.73) can be used. However, joint space trajectory generation is unsuitable in
instances where the path of the end-effector must be constrained to a specific trajectory,
such as in collision avoidance or for mission-specific tasks. A solution to this is to define via
points in the task space, which are then converted into the joint space before connecting
them into a single trajectory with splines or parabolic blends. However, there is no guarantee
that the end-effector strictly follows the desired task space path, because the trajectory is
still defined in the joint space. To achieve this, the entire trajectory should be defined in
the task space.

3.4 Trajectory in Task Space

Generating trajectories in the task space follows the same principles as joint space tra-
jectory generation, except that motion is generated through control of the end-effector’s
pose. Although trajectories generated in the task space are intuitive, they may not always
be feasible due to kinematic constraints. Task space trajectories are usually converted into
joint space for execution. Hence, an inverse kinematic solution along each point of the
task space must exist for a path to be feasible. Furthermore, there is a risk of the robot
approaching singularities at the workspace limit, lending to potentially dangerous joint
velocities. Therefore, a task space trajectory should always be checked for safety before
execution.

Example 3.4 (Task space trajectory): Given a two-DoF planar 2R robotic manipulator shown
in Figure 3.6, develop a trajectory of the robot such that its end-effector starts at a position
(pzs, Pys) at time 0, and stops at a position (pz¢,pyr) at time ¢f. Both initial and final velocities
are zeros.

Solution: This trajectory can be developed in the task space (pe,py). The trajectories in x
and y axes can be independently derived. Again, (3.14)—(3.17) can be used to obtain two cubic
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FIGURE 3.6
A planar 2R robot.

functions
aio = Pis
a;1 = 0
3(piy — pi
4 = SPes —Pis) Lt :) (3.75)
f
2 is — Pi
Qi3 = (p 5 Pif)
?

where i = x,y. The polynomials p;(t) = aio + a1t + ai2t> 4+ ai3t® generate a trajectory of the robot
satisfying all boundary conditions.

Example 3.5 (Orientation space trajectory): Given a three-DoF spherical robotic wrist shown
in Figure 3.7, develop a trajectory of the robot such that its end-effector starts at an orientation R
at time 0 and stops at another orientation Ry at time ¢;. Both initial and final angular velocities
are zeros.

205 21, T2

Z2, L3

FIGURE 3.7
A spherical robotic wrist.
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Solution: There are three different independent-parameter representations of orientation. If we
use X —Y — Z Euler angles to represent the orientation of the end-effector of this robotic wrist,
the task space is then defined by (¢, ¢y, ¢-). Hence, the start and final orientations can be derived
from R, and Ry as (Qus, Pys, ¢=s) and (dzf, py s, ¢=r), respectively. The trajectories in these three
Euler-angle axes can be independently derived. Again, Equations (3.14)—(3.17) can be used to
obtain three cubic functions

a0 = Pis
a;1 = O
i = M (3.76)
f
2 is — @1
aiz = Hbus — dis) e $is)
f

where ¢ = z,y, z. The polynomial ¢;(t) = a0 + ait + aint® + aist® generates a trajectory of the
robot satisfying all boundary conditions. Notably, if another representation of orientation is used,
the derived trajectory will differ even though the boundary conditions are satisfied.

A trajectory of a robotic manipulator with six-DoF can be developed in a similar way, as
long as six independent parameters are well defined in the task space: three for the position
and the other three for the orientation.

3.5 MATLAB® Examples

Example M3.1 (Cubic splines): For a single actuator, calculate the cubic splines required to
create a single path that starts, visits and ends at the following positions:

Point | Position (°) Time (s)
Qinit 0 0
Qvia 90 2

qfinal 45 5

Solution: We require two cubic splines to connect these three points. Each cubic has a valid
time defined in Table 3.1. Working with normalised variables is preferred because it simplifies the
system using zero-time constraints. It creates many zero entries in the system matrix, cancelling
out variables and simplifying overall equations. The resulting cubic constraint equations are:

TABLE 3.1
Time of each cubic spline
Time
Spline Normalised
Global Variable Value

Cubic1 | 0<t<2 |ty <t <ty |04 <2
Cubic 2 2§t§5 t52§t2§tf2 0§t2§3




MATLAB® Ezamples 49
1. Cubic 1 position at ts1 = Ginit, where ts1 =0
a1 + azts1 + a3t§1 + a4t§1 = Qinit (3.77)
a1 =0 (3.78)
2. Cubic 1 velocity at ts1 =0
az + 2asts1 + 3asts = dinit (3.79)
az =0 (3.80)
3. Cubic 1 position at tf1 = quia, where 51 = 2
a1 + astgr + asty + asth = quia (3.81)
a1 + 2as + 4as + 8aq = 90 (382)
4. Cubic 2 velocity at ts2 = Cubic 1 velocity at ty1, where ty; =2 and ts2 =0
ba + 2bstsz 4 3batly = a2 + astyy + 3aath, (3.83)
as +4az +12a4 — b =0 (384)
5. Cubic 2 acceleration at ts2 = Cubic 1 acceleration at ty1, where ty; =2 and ts2 =0
2bs + 6bstso = 2a3 + 6a4tf1 (385)
2a3 + 12a4 — 2bs = 0 (3.86)
6. Cubic 2 position at ts2 = quia, where tso =0
by + batso + bst2s 4 bty = quia (3.87)
b1 =90 (3.88)
7. Cubic 2 position at ty2 = qfrinal, where tyo =3
b1 + batyo + bstfcg + b4t?c2 = Qfinal (3.89)
b1 + 3ba + 9bs + 27by = 45 (3.90)
8. Cubic 2 velocity at ty2 = 0, where 7o = 2
bo + 203t p2 + 3batFa = Grinai (3.91)
by + 6bs + 27by = 0 (3.92)
These equations can be represented as a linear system in matrix form A x = b
1 0 0 0 0 O 0 07 [a1] (0]
010 0 0 O 0 0 az 0
1 2 4 8 0 0 0 0 as 90
01 4120 -1 0 0 las| |0
00 2 12 0 0 -2 O0f || |0 (3.93)
0O 0 0 0 1 0 0 0 bo 90
00 0 o0 1 3 9 27| |bs 45
0 0 0 0 0 1 6 27| [b4] | 0]

The following inline script generates the system defined in (3.93).
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% Define time vectors
time = [0 2 5]
dtime = diff (time) %

% Initialise variables
n_cubics = 2;

A = zeros(4*n_cubics);
b = zeros (4*n_cubics, 1);

% Define proposed boundary conditions

pos_init = 0;
pos_via = 90;
pos_final = 45;
vel_init = 0;
vel_final = O0;

% Function handles to define coefficients

Normalise time

% Position coefficients
Velocity
% Acceleration

initial time

final time

Cubic 2 initial time

coeff_pos = @(t) [1 t t°2 t~3]1;
coeff_vel = @(t) [O 1 2%t 3xt~2]; %
coeff_acc = @(t) [0 0 2 6xt];

%% Cubic 1 equations

t_s1 = 0; % Cubic 1
A(1,1:4) = coeff_pos(t_sl);

b(1) = pos_init;

A(2,1:4) = coeff_vel(t_s1);

b(2) = vel_init;

t_f1 = dtime (1); % Cubic 1
A(3,1:4) = coeff_pos(t_£f1);

b(3) = pos_via;

%% Cubic 1+2 equations

t_s2 = 0; %

A(4,1:8) = [coeff_vel(t_f1) -coeff_vel(t_s2)];
b(4) = 0;

A(5,1:8) = [coeff_acc(t_f1) -coeff_acc(t_s2)];
b(5) = 0;

%% Cubic 2 equations

A(6,5:8) = coeff_pos(t_s2);

b(6) = pos_viaj;

t_f2 = dtime (2); % Cubic 2 final time
A(7,5:8) = coeff_pos(t_£f2);

b(7) = pos_final;

A(8,5:8) = coeff_vel(t_£f2);

b(8) = vel_final;

%% Solve system

cfs = A \ b; % This is

% Display variables

b

cfs

%% Plot system

tl = t_s1:0.1:t_£f1;

pl = polyval(cfs(4:-1:1), t1);

t2 = t_s2:0.1:t_£f2;

p2 = polyval(cfs(8:-1:5), t2);

plot(tl, pl, ti(end)+t2, p2, ’LineWidth’,

% Always label plots
title (’Cubic Spline Example’)
ylabel (’Position (deg)’)

the fastest solve method

3)

xlabel (’Time (s)’)
grid on
time =

0 2 5
dtime =
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0
51.7500
-14.6250
90.0000
31.5000
-36.0000
6.8333

Therefore, the two cubic splines that will pass through the proposed positions are

—14.63t1% + 51.75t4 2 0<t; <2when0<t<2
q(t)—{ L ; == swen st (3.94)

6.83t2> — 36t2% +31.5t2 +90 0<ty <3when2<t<5

Example M3.2 (Cubic splines for SCARA): A common motion for 3C (Computer, Commu-
nications, and Consumer) product assembly is to translate a part while rotating it by 180 degrees.
The SCARA robot (Figure 3.8) is well-suited to perform this trajectory and task. Assume the
robot’s end-effector is currently at

%ppe = [0.70 0.00 —0.25]m, q2=0 (3.95)
and the next pose in the assembly task for the end-effector in 3 seconds is
'per = [-0.20 030 —0.25|m, qi=n (3.96)

Generate a cubic spline trajectory in the end-effector coordinates that connects these two poses in
a single, smooth transition.

Solution: A trajectory is desired in the end-effector coordinates, or task space coordinates. This
implies that, later, inverse kinematics will be used to translate this task space trajectory into a
joint space trajectory for robot control. In this problem, the task space coordinate consists of a
Cartesian point and a rotation. Therefore, we will define X as the vector of task space co-ordinates,
such that

X=[z y z q] (3.97)

Also
Xinit = [-0.7 0.0 —0.25 0]" (3.98)
Xfinat = [-0.2 03 —0.25 =" (3.99)

Hence, we need only three cubics since only three actuators move between two points, each from
ts = 0 to ty = 3. Therefore, for each dimension, p € X that contains movement, we define the
following constraint equations:




52 Trajectory Generation

Idz

Link 3

Link 0

FIGURE 3.8
A SCARA robot.

1. Cubic for initial position at ts =0

a1 + asts + asts” + asts® = pina (3.100)
a1 = Pinit (3‘101)
2. Cubic for initial velocity at ts =0

az + 2asts + 3asts’ = Pinit (3.102)
az =0 (3.103)

3. Cubic for final position at ¢ty =3
a1 + asty + asty” + asts® = prina (3.104)
a1 + 2a2 + 9as + 27a4 = Pfinal (3105)

4. Cubic for final velocity at ty = 3
as + 2a3tf -+ 3a4tf2 = pfinal (3106)
as + 6asz + 27a4 =0 (3.107)

Notably, there is no mention of acceleration. This is because acceleration constraints are only
applied when transitioning between via points. We do not constrain acceleration at the very start
and very end of the trajectory. The following inline script generates the system of equations for
each cubic. The use of a for..loop construct here will perform this task more efficiently.

% Define time vector
t = [0 3];

% Initialise variables
n_cubics = 2;

A = zeros(4*n_cubics);

b = zeros (4*n_cubics, 1);

N U A W N e

© o

% Define position boundary conditions
X_init = [-0.7, 0.0, -0.25, 0];

=
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X_final = [-0.2, 0.3, -0.25, pil;

% Function handles to define coefficients

coeff_pos = @(t) [1 t t°2 =87 3 % Position coefficients
coeff_vel = @(t) [0 1 2%t 3*t~2]; % Velocity

% This task can be done more efficiently in a for-loop construct

for ¢ = [1 2 4] % Create cubics for 1st, 2nd and 4th vars in X_
A = zeros(4); % Initialise 4x4 matrix
b = zeros(4,1); % Initialise 4x1 vector

% Cubic pos at t = 0
A(1,:) = coeff_pos(t(1));
b(1) = X_init(c);

% Cubic vel at t = 0
A(2,:) = coeff_vel(t(1));
b(2) = 0;

% Cubic pos at t = 3
A(3,:) = coeff_pos(t(2));
b(3) = X_final(c);

% Cubic vel at t = 3
A(4,:) = coeff_vel(t(2));

b(4) = 0;

fprintf (’Cubic data for variable %i\n’, c)
% Display variables

b

% Solve system
coefficients = A \ b % This is the fastest solve method

end

93

Cubic data for variable 1

A =
1 0 0 0
0 1 0 0
1 3 9 27
0 1 6 27
b =
-0.7000
0
-0.2000
0

coefficients =

-0.7000
0.0000
0.1667

-0.0370

Cubic data for variable 2

A =
1 0 0 0
0 1 0 0
1 3 9 27
0 1 6 27
b =
0
0
0.3000
0

coefficients =

0
-0.0000
0.1000
-0.0222
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Cubic data for variable 4

A =

1 0 0 0
0 1 0 0
1 3 9 27
0 1 6 27
b =
0
0
3.1416
0

coefficients =

0
0.0000
1.0472

-0.2327

Therefore, the trajectory of X, generated by cubic splines that satisfies point and time constraints,
is
—0.037¢% 4+ 0.1667t* — 0.7
_ 3 2
X(t) = poz LAt 0<t<3 (3.108)
—0.2327t% 4+ 1.0472¢>

3.6 Conclusion

We investigated two methods for generating trajectories between two or more points: cubic
splines and linear interpolation with parabolic blends. While both are effective in generating
smooth trajectories, cubic splines is the preferred method when there are via points in the
trajectory. The system of equations to solve for the coefficients of the cubic splines was
defined, and MATLAB examples were given to show the method’s simplicity and practicality
in trajectory generation for robotics.

There is a major caveat when performing trajectory planning using splines: We always
assume the trajectory is collision-free and singularity-free. These assumptions may not al-
ways be feasible in practice. However, this will be addressed in the next chapter.

3.7 Exercises

Problem 1. Given an RRR robot moves its end-effector along a cubic spline path through
three waypoints to reach its goal point, how many constraints are required to solve for all
the coefficients of the individual cubics? Name the constraints required for one joint.
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FIGURE 3.9
A two-link RR manipulator.

Problem 2. A single-joint robot performs the following task in sequence:

1. start at a joint angle of 10° at rest.
2. pick up an object at 30° after 1 s.
3. drop the object at 50° after 2 s.

The smooth motion is achieved with two continuous cubic functions. Solve the coeffi-
cients of the cubics by applying appropriate constraints.

Problem 3. Use the linear function with parabolic blends to generate a smooth trajec-
tory from z = 0matt =0s tox =09 matt =1s. The required acceleration in the
blend region is & = 4.8 m/s%. Write the equations for the whole trajectory.

Problem 4. Frame {3} of the two-link manipulator shown in Figure 3.9 is projected to
move to the following locations:

tOZO t1:2
10 I+l 10 Iy L2
o, = |0 1 0 " "Ty= o 1 12
0 0 1 0 0 1
to =4
°T; = ? % l1+12§
0 0 1

l1 and [s being the lengths of the first and the second links, respectively. Based on the
transformation matrices at each point, if [y = [ = 1 m, find the cubic functions that
describe each joint angle as the end-effector moves from rest at its starting point at time
to, to the mid-point at t1, before coming to rest at its end point at ¢5. Ensure the rate of
change of the angles of joints 1 and 2 at ¢; are continuous.
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Control Schemes

This chapter will introduce basic control schemes used in servos and sensors. In addition, we
will focus on fized reference control, whereby we define a static input to the control system,
known as a set point (SP). The SP dictates the desired state in which we want the system
to reach in finite time, e.g., the temperature of an oven or the set speed of a car’s cruise
control. In robotics, this is typically a joint position g4 to which we want the manipulator to
move. Fundamentally, there are two types of control loops: open-loop control (feedforward),
and closed-loop control (feedback).

4.1 Open-Loop Control

An open-loop controller, also known as a non-feedback controller, computes its output based
on a fixed input state. That is, the output of an open-loop control system depends only on
the input it is given.

An open-loop controller is often used in simple processes or systems where feedback is
not critical, thanks to its simplicity and low cost. Devices that utilise open-loop controls
include on-off switching of valves, machinery, lights, heaters, and motors. An example of
an open-loop controlled process is a belt conveyor system that transports materials in a
warehouse. These systems are usually set to a fixed speed, but to maintain this speed,
the conveyor operates under its rated maximum load. In an open-loop control scheme, the
system will not compensate (i.e., attempt to increase power to the conveyor drive system
to maintain speed) if there is a slow-down due to increased load on the conveyor system. In
general, the output of an open-loop controlled process is simple and usually approximately
sufficient under normal conditions without the need for feedback.

The advantage of using open-loop control is the reduction in component count and
complexity, as a predictable output is always assumed. However, when operating outside
of its rated conditions, also known as disturbance, its output may start to deviate from
its intended set point. This is called error, and in an open loop control system, this error
cannot be corrected automatically without manually adjusting its input. In other words, an
open-loop control system cannot correct internal errors or counter external disturbances.

Figure 4.1 shows a block diagram of how different components in a system interact with
each other in an open loop control system.

DOI: 10.1201/9781003614319-4 o6
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FIGURE 4.1
Open loop control system.

4.2 Closed-Loop Control

A closed-loop controller, also known as a feedback controller, is a control system where a
portion of the output signal is fed back into the control system to determine the next output
state.

The goal of the output of the system is to eliminate the difference between the system’s
desired output and actual output, or error. A typical instance of this is a thermostat for
a heater, where the environment’s temperature is fed into the system, compared to the
thermostat’s set temperature, then tells the heater whether to remain on or to turn off once
the target temperature is reached. A cruise control system in a car is also a closed-loop
control system, where the driver sets a target speed, and the vehicle matches said speed. If
the car encounters resistance, such as driving up a hill and slows down, the control system
detects an error between its current speed and set speed and applies an additional input to
compensate for the error.

Closed-loop controllers have many advantages over their open-loop counterparts, the
main advantage being their ability to reject disturbances from external sources. This makes
them much more stable relative to their set points when conditions change (refer to the
cruise control system example). They can also handle unstable inputs such as constant
switching or varying set points. This is particularly useful when the set point of a servo is
constantly varying to achieve path objectives.

There are many types of closed-loop controllers, all varying in performance and com-
plexity. In this section, we will introduce four types of control: bang-bang, proportional
(P), proportional-integral (PI), and proportional-integral-derivative (PID) controller. We
will analyse how they work, analyse their typical out response for a set point input, and
use common-practice tuning techniques to optimise their output response characteristics.

There are many types of closed-loop controllers, all varying in performance and com-
plexity. In this section, we will introduce four types of control: bang-bang, proportional
(P), proportional-integral (PI), and proportional-integral-derivative (PID) controller. We
will analyse how they work, analyse their typical out response for a set point input, and
use common-practice tuning techniques to optimise their output response characteristics.
Figure 4.2 shows a block diagram of how different components in a system interact with
each other in a closed-loop control system.

4.2.1 Bang-Bang Control

A bang-bang control scheme utilises discrete output states to achieve a target setpoint. A
typical use of a bang-bang control algorithm is a thermostat in a heating or cooling system.
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Closed loop control system.

When the temperature is below a target temperature, the heating system will try to heat
the room to that temperature until the room is at the target temperature. If the room
is above the target temperature, the heating system will correspondingly cool the room
until the target temperature is met. To prevent quick oscillations between the heating and
cooling state, hysteresis can be utilised, where a room would be cooled or heated beyond
its setpoint by a fixed amount before switching to an idle state. The disadvantage of this
method is that the system state may exhibit a ”zig-zag” or ”wiggle” behaviour, which might
be unwanted under specific circumstances.

While adequate in some situations, bang-bang control is inadequate for more difficult
tasks like speed control, or where system state oscillations are unsatisfactory. For instance,
one does not want a cruise control system to constantly apply an on-off behaviour (on state,
meaning applying maximum acceleration) to achieve the target speed, as it will make for a
very uncomfortable and unsafe trip!

Example 4.1 (Bang-bang control): A household water heater is a common application of a
bang-bang controller. Given that the heater has a set temperature of 30°C with a hysteresis error
of 1°C, provide an illustration of the measured temperature graph and the corresponding state of
the controller.

Solution: In a closed loop system such as the bang-bang control, the state of the controller depends
on the feedback error, given as

e=qi—q (4.1)

where e is the feedback error, ¢ and gq are the measured and desired temperatures, respectively.
Hysteresis is utilised where the heater would turn on or off when the measured temperature is
beyond its setpoint by has a 1°C, such that

ON if —1.
State = b < (4.2)
OFF, ife>1.

The state of the controller at a given feedback error could translate into an illustration of the
measured temperature and its corresponding controller state, as shown in Figure 4.3.

Explanation: In the beginning, the water is sitting at room temperature (24°C), and the heater
turns on to increase the temperature to its setpoint. The heater will turn off as the temperature
31°C, that is, 1°C beyond the setpoint. The heater will turn back on at 29°C, that is, 1°C below
the setpoint. The cycle continues, which creates a steady state for the controller.
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Measured temperature graph and the corresponding state of the controller.

4.2.2 Proportional Controller

99

One of the simplest forms of feedback controller is the proportional (P) gain controller,

depicted in Figure 4.4. The action of the proportional controller is expressed as follows:

c(t) = Kpe(t) + b,

c(t)

0 — o ) o K,

k.

Process

FIGURE 4.4
Proportional controller.

(4.3)
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Toilet tank.

e(t) = qa —q(t) (4.4)

where ¢(t) is the controller output, K, is the proportional gain, e(t) is the error between
the current (¢(t)) and desired (gq) actuator positions respectively, and b is the bias term
that defines the controller output when the error is zero. Unlike the bang-bang controller,
which operates at either 0% or 100 % depending on the sign of the error, the proportional
controller action is directly proportional to the sign and magnitude of the error. This means
that the correction needed gets smaller as the output of the system approaches closer to the
setpoint, and the fluctuation during steady-state can be minimised. However, fluctuation
still exists, which creates an offset in the system output.

Example 4.2 (Proportional controller): Figure 4.5 shows a flush toilet tank with the ballcock
mechanism design. Explain the correlation between a toilet tank and a proportional controller, and
define the controller output.

Solution: The float ball, lift arm, and fill valve formulate a proportional control system. The error
of the system (e) is the difference between the current (h(t)) and desired (hq) water level, where
the current water level is obtained through the position of the float ball. The controller output
(¢(t)) is the flow rate of water (V(t)) coming into the tank through the opening of the fill valve.
The proportional gain (K}) is inversely proportional to the length of the lift arm (I). When the
arm length decreases, the opening of the fill valve becomes more sensitive to the change in water
level. Since we would like to stop the water from flowing into the tank when it reaches the desired
water level, there will be no bias.

Therefore, the controller output, which is also the water flow rate, can be expressed as follows:

V(t) = # (4.5)

where

e(t) = ha — h(t). (4.6)
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FIGURE 4.6
Integral controller.

4.2.3 Integral Controller

The issue with a proportional controller arises when the proportional gain is too high,
leading to the system generating a consistent error at equilibrium, i.e., the steady-state
error, or even risking instability due to increased gain. Consequently, the integral controller,
illustrated in Figure 4.6, steps in to address this concern. The action of the integral controller
is expressed as follows:

o(t) = K; /O e(t)dt, (@.7)

u(t), K;, and e(t) denoting the integral control action, the integral constant, and the error of
system output, respectively. The integral function measures the cumulative errors over time.
If the error is not zero, the integral function continually builds up its output. Consequently,
this output drives the actuator harder to minimise fluctuations in the system’s output,
thereby reducing the error to zero.

4.2.4 Derivative Controller

Derivative controller, shown in Figure 4.7, functions as a form of feedforward control that
aims to minimise the change of error, thereby maintain the system stability. The signal
output of the controller is determined based on the rate of error change over time, with a
more significant rate of error change resulting in a more pronounced controller response.
This can be achieved by correlating the derivative of the error to the controller output,
where the derivative of the error is taken with respect to time. Thus, the derivative control

+.—  e(t) 4 c(t)

by —o ——d Kul

Process » 0(1)

k.

FIGURE 4.7
Derivative controller.
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is mathematically illustrated as follows:

de(t)

C(t):Kd dt y

(4.8)

where u(t) is the derivative control action, K, is the derivative constant, and e(t) is the
error of the system output.

The primary advantage of the derivative controller is its ability to counteract system
changes, particularly oscillations. In contrast to proportional and integral controllers, deriva-
tive controllers do not lead the system directly to a steady state as it does not know where
the setpoint is. Consequently, D controllers must be combined with P, I, or PI controllers
for effective system regulation.

4.2.5 PI and PD Controller

An effective controller requires combining multiple controllers to achieve different pur-
poses. The common combinations are Proportional-Integral (PI) controller, Proportional-
Derivative (PD) controller, and Proportional-Integral-Derivative (PID) controller. Propor-
tional action is necessary for quickly driving the system to the setpoint. The PI-control is a
feedback control that provides a faster response time than an I-only control. This integral
action helps eliminate fluctuations in a P-only controller. The behaviour of a PI controller
can be mathematically expressed as

c(t) = Kpe(t) + K /O t e(t)dt, (4.9)

where the bias term of the proportional-only controller is replaced with the signal output
of the integral action.

Example 4.3 (PI controller): Figure 4.8 shows a spring-loaded piston, where the piston stroke
length measured along the x axis is controlled by the force F' exerted on the piston surface. Assuming
that the piston surface is massless, design a PI force controller to control the piston stroke length.

Solution:

Let 24 be the desired displacement of the piston, and z(t) be the recorded piston displacement
that is being fed back into our closed-loop system. We can design a block diagram for the PI
controller, as shown in Figure 4.9. The behaviour of the PI force controller can be mathematically
expressed as

F(t) = Kpe(t) + K / t e(t)dt, (4.10)

where e(t) is the difference between z4 and z(t).
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FIGURE 4.9
PI controller for the spring-loaded piston.

Ezplanation: Figure 4.10 shows that the I controller helps to compensate the required force as the
error minimises to drive the piston to the desired position where the forces from both sides(acting
force and the repulsive force from the loaded-spring) reaches equilibrium. Note that this will not
work with a single P-controller, as the force output decreases whilst the spring force increases as the
piston goes closer to the desired position. The result is that the error will not be minimised beyond
xa/2, and thus, a steady state cannot be reached.

PD control is a combination of feedforward and feedback control. The purpose of the
derivative action is to predict future errors to improve the stability of the system. However,
the steady-state error is not minimised without the integral term.

The proportional component is incorporated to accelerate the transient phase based on
the system output, whilst the derivative component predicts the error in order to increase
the stability of the closed-loop system.

The behaviour of a PD-controller can be mathematically expressed as

de(t)
dt ’

c(t) = Kpe(t) + K4 (4.11)

where the bias term of the proportional-only controller is replaced with the signal output
of the integral action.

f(t)

kmd

tg t

P-controller output

FIGURE 4.10

tyg t
I-controller output

Force outputs of P, I, and PI controller.

tg t
PI-controller output
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PID controller.

4.2.6 Proportional-Integral-Derivative (PID) Controller

The Proportional-Integral-Derivative (PID) Controller of Figure 4.11 is the most commonly
used as it combines the best of both worlds. Aside from the inherent advantages of a PD
controller, the addition of the Integral controller continuously integrates errors over time,
eliminating steady-state errors and ensuring the system reaches and maintains the desired
setpoint in a shorter period of time. PID controller can be mathematically expressed as

¢ de(t)
c(t) = Kpe(t) + Ki/ e(t)dt + de, (4.12)
0
where the bias term of the proportional-only controller is replaced with the summation of
the signal outputs from the integral and derivative actions.

Another advantage of a PID controller is its flexibility in tuning parameters to adapt to
specific system requirements — it can be readily transformed into a PI or PD controller by
setting K4 or K; to zero.

The main characteristics that define the system’s response include the Rise time (Tg),
Settling time (Ts), overshoot, and steady-state error. An illustration of these characteristics
can be seen in Figure 4.12. Rise time is the time taken for the response to first reach its

&

Overshoot
eSS

v

r===o=—— Process

FIGURE 4.12
System response characteristics.
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final steady-state value. Settling time is the time required for the system to converge to its
steady state. Overshoot is the amount by which system output goes past the setpoint value.
Steady-state error is the constant deviation from the setpoint value during steady-state.

The system response can be tailored by tuning K, K;, and K,. Increasing K, would
tend to increase the overshoot and decrease rise time and steady-state error. Increasing K;
tends to increase the overshoot and settling time and decrease the rise time and steady-
state error. Increasing K, tends to decrease overshoot and settling time. Nevertheless, while
the PID controller often provides the optimal performance, it is also the most costly. As a
result, it is only employed when the precision and stability offered by the PID controller
are essential for the particular requirements of the process.

4.3 Pulse Width Modulation Control

Load devices are engineered to function efficiently and execute their specific tasks when given
a specific voltage and consuming a particular current. Modifying the parameters of the load
usually involves reducing the voltage. However, said adjustments are often associated with
adverse effects, such as diminishing a motor’s torque or dropping the voltage below the
forward bias level of a transistor or LED series. An alternative approach is necessary to
enable variable control without compromising operational capacity.

A method known as PWM (pulse width modulation) signal is employed to curtail the
electrical power delivered to an electrical device by rapidly switching the signal on and off.
The average voltage of the signal is adjusted by altering the relative on-time of the signal.
This average voltage delivers a reduced power equivalent while ensuring that full voltage is
maintained during the on-state duration of the pulse. One way to regulate the PWM signal
is by controlling the relative duration of the on-time, referred to as the “duty cycle”.

The duty cycle identifies the proportion (in percentage) of active time within a PWM
signal. A 100% duty cycle maintains the signal continuously active, whereas a reduction
to 50% entails the signal being active for half of the pulse duration and inactive for the
remaining half. When managing motors or heaters, we rely on the duty cycle to govern power
output. For instance, if our PWM controller generates a 12-volt DC voltage, a 50% duty
cycle results in delivering an effective power of 6 volts DC to operate the load. Corresponding
graphical representation is shown in Figure 4.13.

4.3.1 Relation to Joint Control

Pulse width modulation is commonly employed in DC motor speed control. However, we
can take a step back and consider the implications of PWM control for an LED. Since
pulse width modulation controls how long a device is turned on, one will observe this as a
flashing LED under low frequencies. However, as frequency increases, this flashing eventually
becomes invisible to the eye and becomes constant in brightness. This brightness is then
controlled by the PWM'’s duty cycle. In the case of DC motors, the brightness of the LED
and the rapid switching of the PWM signal are the analogues of the motor input voltage
and motor speed control, respectively.
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Pulse-width modulation.

4.4 Conclusion

In this chapter, we introduced open-loop and closed-loop systems as the two fundamental
concepts in control schemes. An open-loop system operates on a fixed input state without
actively monitoring the output; a closed-loop system uses the feedback from the system
output to adjust the input so that the system can reach the desired output. We also dis-
cussed some of the most common closed-loop systems, which include bang-bang control,
proportional (P) control, integral (I) control, derivative (D) control, PI control, PD control,
and PID control. We discussed the working principles behind each of these controllers, as
well as their advantages and disadvantages. The applications of some of these controllers
were given as examples in the chapter. Lastly, we talked about Pulse Width Modulation
(PWM) Control and how PWM can be used to modulate the power output through duty
cycles.

4.5 Exercises

Problem 1. What is the difference between an open-loop and a closed-loop system? List
one advantage and disadvantage of each system.

Problem 2. Draw a block diagram that represents the control system of a flush toilet tank.

Problem 3. Figure 4.14 shows the step response of a system. The input step has am-
plitude 1. Use the figure and determine

1. Steady state value
2. Overshoot
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Step response of a system.

3. Rise time
4. Settling time
Problem 4. Given that the output state, ¢(t) = 2c¢t + 4, where ¢ is the controller output

of the proportional controller. Calculate the required proportional gain, K4, to achieve the
desired output state of 4.

Problem 5. Pulse Width Modulation Control is an effective method to control the bright-
ness of an LED. Given an LED that operates at 50 Hz with 75% brightness, what is the
time duration the LED is on within one cycle?
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5

(General Rotations and
Transformations

In Chapter 2, we introduced the concept of position and orientation (pose) in a two-
dimensional space. Here, we will generalise the discussion to describe the position and
orientation of an object in three-dimensional space. These concepts will lay the foundation
for understanding and performing robotic analysis for general spatial robotic manipulators.

5.1 Position and Orientation

A point and a Cartesian coordinate system, frame {0}, is shown in Figure 5.1(a). Its position
can be represented by a vector

Pz
Op = | Py (5'1)
y2Z

where the front upper index A indicates that this position vector is measured in {0}. Since
the positions of the same point in different frames are different, the corresponding frame of
a position vector must be specified.

Consider that a rigid body can rotate around a pivot in all three axes. The position of
this rigid body can be treated as fixed at the pivot. As shown in Figure 5.1(b), where {0} and
{1} located at the pivot are attached to the ground and the moving rigid body, respectively.
The orientation of this rigid body can be described by a rotation matrix between these two
frames

R =["x1 %y1 2] (5.2)

where the indices A and B in "R indicate the orientation is about {1} with respect to {0}.

9%1, %y1, and 9z; are the unit axis-directions of {1} measured in {0}, as position vectors.

Example 5.1 (Rotation matrices): As shown in Figure 5.2, rotations of roll, pitch, and yaw
are around the axes of z, y, and z, respectively. Find the orientations of {1} in {0}.

Solution: According to (5.2), the orientations due to these three types of simple rotations are
given by

1 0 0
Riz(7)= |0 cosy —siny (5.3)
0 siny cosvy
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20
Y1
21 X1 Yo
{1}
{0}
o
(a) A point mass in space (b) A rigid body in space
FIGURE 5.1
Frame definitions.
cosf 0 sinpg
‘Ri,(B)=] 0 1 0 (5.4)
—sinff 0 cospf
cosae —sina 0
‘Ri.(a) = |sina  cosa 0 (5.5)
0 0 1

Rotation matrices consist of a special group of orthonormal matrices with the following
properties:

1. all column vectors and row vectors are unit vectors,

2. all column vectors are orthogonal to each other,
3. all row vectors are orthogonal to each other,
4

the determinant of any rotation matrix is positive 1!, and

L Another group of orthonormal matrices with the determinant of —1 is the reflection matrices.

xo, T1 Yo xo Y1 Yo, Y1

(a) Roll (b) Pitch (¢) Yaw

FIGURE 5.2
Axes of rotation.
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5. the inverse of a rotation matrix is its transpose such that
0 _ 0
R;'='Ry = RT (5.6)

In particular, the last property is advantageous in analytical and numerical computa-
tions, as a transpose-derived inverse is more efficient than generalised square matrix inverse
methods.

5.1.1 Functions of a Rotation Matrix

There are two important physical functions of a rotation matrix. The first is that a rota-
tion matrix “R; maps the coordinates of a position vector measured in {1}, 'p, to the
coordinates of the same vector measured in {0}, °p, where

p =Ry 'p (5.7)

Example 5.2 (Rotation matrix operator — axes): Frames {0} and {1} are initially coincident.
If a rotation is applied to {1} about {0}’s z-axis, find the mapping of x1 to {0}.

Solution: A rotation about the z-axis is applied. Therefore, we can refer to the rotation matrix
(5.5), which provides this operation. Also note that x; refers to {1}’s z-axis relative to its own
frame, such that 1, = [1 0 O]T

to its initial frame {0} is indicated by the first column, which is [cosa sin o O]T. We can also
find this by using the equation

. By inspection, we find that the mapping of the z-axis relative

OX1 = OR1Z(04) 1X1 (58)

The second physical function of a rotation matrix is that “R; maps the position of p
before rotation to its position after rotation, p’, i.e.,

p'="Rip (5.9)

where {0} and {1} represent the orientations of the rigid body before and after rotation,
respectively. Furthermore, p and p’ are both measured in the ground frame.

Consider the same figure, Figure 5.2(c). The x-axis is carried from xg to z; by the
rotation around the z axis. Hence, we have p = [1 0 O]T and p’ = [cosa sin « O]T.
Both vectors are measured in the ground frame {0} while the rotation matrix is exactly the

same as the one in Example 5.2.

5.2 General Orientation

The orientation of one arbitrary frame {1} with respect to another arbitrary frame {0}, as
shown in Figure 5.3, is given by

0 X1-Xp Y1-Xo Z1-Xo
Ri=["x ‘yi ‘zi]=|x1-yo yi-yo 2i-Yo (5.10)
X120 Y1 2o Z1-7Zo
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Three arbitrary frames located at the same point.

20, Y1
21
T~
To, L1, 22
€2

FIGURE 5.4

Three frames with their axes aligned with each other.

Example 5.3 (Rotation matrix operation):
frames shown in Figure 5.4.

Find the rotation matrix 0R1, according to the

Solution: The axes of {0} measured in {0} are given by

0 0
xo = (0], Yo =

The axes of {1} measured in {0} are given by

0
0X1 = 0 s °y1 =
-1
According to (5.10), we have
X1 - Xo Y1 Xo
‘Ri = |x1-yo ¥y1-Yo
X1+ 2o Y1 2o

0 0
0], %zo=|-1 (5.11)
1 0 |
0 1]
1|, %z = |0 (5.12)
0 0]
Z1 - X0 0 0 1
Z1 Yo = |[—1 0 0 (513)
Z1 - Zo 0 -1 0

An orientation can be well represented by a rotation matrix. However, due to the prop-
erty of an orthonormal matrix, six constraints are applied to the nine entries in the matrix,
which means that only three entries are independent. Hence, three-parameter representa-

tions are desired.
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FIGURE 5.5
Fixed angles.

5.3 Fixed Angles

As shown in Figure 5.5, any arbitrary orientation of one object can be obtained by a
sequence of rotations with angles ~, 3, and «, around the fixed axes of {0}, z¢, yo, and 2z,
respectively. These angles are called the X-Y-Z fixed angles. In other words, any arbitrary
orientation can be obtained by a sequence of roll, pitch, and yaw motions.

5.3.1 Forward Problem

The forward problem is to find the rotation matrix represented by three fixed angles. Con-
sider a vector p before all three rotations. According to the second meaning of a rotation
matrix (5.9), the first rotation around x-axis brings p to p’, the second rotation around

y-axis brings p’ to p”, and the third rotation around z-axis brings p” to p’”, i.e.,

p/ _ Rm(’y)p, p/I _ Ry(ﬂ)p', p/// _ Rz(oz)p”

which yields
p/// = Rz(a) Ry(IB) Rz(/y) P

Again, according to the second meaning (5.9) and the above equation, the total rotation
matrix is given by

RXYZ(77 67 a) = RZ(a) RU (B) Rw ('7)
[cosae  —sina 0 cosfB 0 sing| |1 0 0
= |sina cosa 0 0 1 0 0 cosy —sinvy
| 0 0 1| [—sinB 0 cosfB| |0 siny cosvy
[cacB  casPsy — sacy casPBey + sasy
= |sacf sasfsy+ cacy sasfey — casy (5.14)
| —sf cBsy cBey

Example 5.4 (Fixed angle rotation): Given the X-Y-Z fixed angles, v = 90°, 5 = 180°, and
a = 90°, find the corresponding rotation matrix.
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Solution: Substituting the above values into (5.14) yields

0 0 1
R:[—l 0 0] (5.15)

5.3.2 Inverse Problem

The inverse problem in fixed angles is to find the fixed angles, v, 3, and «, to represent an
arbitrary orientation (rotation matrix). The formulation of this problem is given by

'R; = "Rixvz (5.16)
where
i1 Ti2 Ti3 cacl  casfsy — sacy casfey + sasy
Ry = |r1 o2 73|, °Rixyz = |sacB sasfsy+cacy sasfey—casy| (5.17)
31 T32 T33 —sp cBsy cBey

Consider the entry (3,1) of (5.16), we have the solutions of 8 as arcsin(—rs;) or 180° —
arcsin(—rsy). For a unique solution of 3, we restrict § within the range of [—90°,90°].
Hence, the only solution of § is arcsin(—rs;). Using the entries (1,1) and (2,1) of (5.16), we
have

ca=ry/cf
sa =191 /cf (5.18)

We consider (ca, sa) as the coordinates of a point on a unit circle. Therefore, « is the polar
angle uniquely defined by this point. Atan2 is a function that finds the polar angle of an
arbitrary point (except the origin), (x,y), on a plane. It is defined as

[ arctan(y/x) x>0
Atan2(y, z) = { T+ arctan(y/z) x <0 (5.19)

Applying (5.19) to (5.18) yields a unique solution of «, i.e.,
a = Atan2(ray /¢f,111/¢B) (5.20)

Since ¢f3 is positive within the valid range of 8 except for the boundaries and Atan2 does
not require a point to be bounded to a unit circle, the solution can be simplified as

o = Atan2(ray,711) (5.21)
Similarly, v can be obtained by solving the entries (3,2) and (3,3) of (5.16), i.e.,

v = Atan2(rsz, r33) (5.22)
In summary, the solutions are given by

B = arcsin(—rs1) (5.23)
o = Atan2(ray,711) (5.24)
v = Atan2(raz, 733) (5.25)
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Example 5.5 (Fixed angles — inverse problem): Find out the fixed angles for the rotation
matrix
0 0 1
‘Ri=1|-1 0 0 (5.26)
0 -1 0

Solution: Directly applying (5.23) to (5.25) to yields

B = arcsin(—r31) = arcsin(0) = 0°
a = arctan 2(ra1,711) = arctan 2(—1,0) = —90°

~ = arctan 2(r32,733) = arctan 2(—1,0) = —90°

Note that the solutions differ from the fixed angles in Example 5.4 despite being in the same
orientation.

The solutions (5.23) to (5.25) are invalid on the boundaries, 5 = +90° because it is a
singularity. This is caused by the alignment of the first z-axis and the last z-axis resulting
from the right-angle rotation around the y-axis. Therefore, the first and last rotations are
coupled, and only the sum of these two angles of rotation matters. Therefore, there are
infinitely many solutions. In the case of 8 = 90°, (5.14) becomes

0 sin(y—a) cos(y—a)
Rxvz(v,8,a) = | 0 cos(y—a) —sin(y—a) (5.27)
-1 0 0

By assuming a = 0°, the special solutions are given by
B8 =90°
a=0°

¥ = AtaHQ(T12, 7“22)

Similarly, in the case of § = —90°, the special solutions are given by
8 =-90°
a=0°

v = —Atan2(r12, r22)

It should be noted that the X-Y-Z fixed angles is not the only convention in the rep-
resentation of fixed angles. There are in total 12 different conventions: X-Y-X, X-Z-X,
Y-Z-Y,Y-X-Y, Z-X-Z, Z-Y-Z, X-Y-Z,Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, and Y-X-Z.
Each convention has its own solutions to the direct and inverse problems.

5.4 Euler Angles

Any arbitrary orientation of one object can also be obtained by a sequence of rotations
with angles «, 3, and -, around the moving azes, z1, y1, and z1, respectively, as shown in
Figure 5.6. Similarly, we have two problems: direct and inverse problems. The former is to
find a rotation matrix according to the given Euler angles, while the latter is to obtain the
corresponding Euler angles based on a given rotation matrix.
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X0 L1

FIGURE 5.6
The Z-Y-X Euler angles.

5.4.1 Forward Problem

The solution to the forward problem is derived from the first meaning of a rotation matrix
(5.7), which is the mapping between coordinates. As shown in Figure 5.6, {0}, {1}, {2},
and {3} represent the frames before all rotations, after the first rotation around the z-axis,
after the second rotation around the y-axis, and after the third rotation around the z-axis,
respectively. Considering an arbitrary position vector p, we have its coordinates in {0} as

% =R, 'p =R, 'Ry ’p = 'R, 'Ry *R3°p = R, R, R, °p (5.28)
Again, utilising the first meaning (5.7) and the above equation, we have the total rotation

matrix as

Rzyx(a,8,7) = R.(a) Ry(8) Ra(7)

[cosae  —sina 0 cosfB 0 sing| |1 0 0
= |sina cosa O 0 1 0 0 cosy —sinvy
| 0 0 1| [—sinB 0 cosfB| |0 siny cosvy

[cacB  casPsy — sacy casBey + sasy
= |sacB sasBsy+ cacy sasfey — casy
| —sf3 cBsy cBey

Note that this Z-Y-X Euler-angle rotation matrix is the same as the X-Y-Z fixed-angle
rotation matrix. However, the meanings of these rotation angles are entirely different.

Example 5.6 (Euler angles): Find the rotation matrix (orientation) by knowing the Z-Y-X
Euler angles, a = 90°, 8 = 180°, and ~v = 90°.

Solution: The orientation is obtained by applying (5.29):

0 0 1
‘Ri=|-1 0 0 (5.29)
0
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5.4.2 Inverse Problem

The formulation of the inverse problem to find the Z-Y-X Euler angles, «, 3, and ~, from
an arbitrary orientation (rotation matrix) is given by

0 0
R; = Rizvx

11 Ti2 Ti13
= |T21 T22 T23
31 T32 T33 (5'30)

[cacB  casPsy — sacy casPey + sasy

= |sacB sasfBsy+ cacy sasfey — casy

| —sp cBsy cBey

Equation (5.30) is exactly the same as (5.16) in the inverse problem of the fixed angles;
therefore, the solutions must also be the same as below, despite different meanings.

B = arcsin(—r31) (5.31)
o = Atan2(ray,711) (5.32)
v = Atan2(r32,733) (5.33)
Similarly, there are singularities on the boundaries. In case of 5 = 90°, we have
B8 =90°
a=0°

~ = arctan 2(r12, 22)

In case of 5 = —90°, we have
8 =-90°
a=0°
v = — arctan 2(r12, r22)

Example 5.7 (Euler angles): Find the Euler angles for the rotation matrix

0 0 1
Ri=|-1 0 0 (5.34)

0 -1 0

Solution: Equations (5.31) to (5.33) give

B = Atan2(—731, /7%, +r2;) = Atan2(0,1) = 0°
a = Atan2(re1/cB,711/cB) = Atan2(—1,0) = —90°
v = Atan2(rs2/cf3,r33/cf) = Atan2(—1,0) = —90°

Note that these solutions have entirely different meanings to the solution in Example 5.5, although
the values are the same.

Similar to the fixed angles, Euler angles also have 12 conventions: X-Y-X, X-Z-X, Y-
Z-Y,Y-X-Y, 72-X-Z, Z2-Y-Z, X-Y-Z,Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X,and Y — X — Z2.
Euler angles and fixed angles are dual to each other, i.e., the same angles in the opposite
order of rotations yield the same rotation matrix.

2Some texts may distinguish three axes rotations as Bryan-Tait angles, which refer to the last six
conventions in the list.
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(a) Translation (b) Rotation

FIGURE 5.7
Modes of transformation.

5.5 General Transformation

Translation is illustrated in Figure 5.7(a) where {0} and {1} are parallel to each other. The
coordinates of a position vector p are mapped by

p =%, +'p (5.35)

where %oy is the position of the origin of {1} measured in {0}. Rotation has been studied
intensively so far. As shown in Figure 5.7(b), the coordinates of a position vector p are
mapped from {1} to {0} by

% =°R; 'p (5.36)

Regarding two general frames, {0} and {1}, as shown in Figure 5.8. The coordinate
mapping is given by

’p =%; + "Ry 'p (5.37)

which is a combination of rotation and translation in sequence. Equation (5.37) can be more
simply represented by introducing homogeneous coordinates, which is defined as

0
0p = { ﬂ (5.38)
Hence, (5.37) can be written as
p =T, 'p (5.39)
1 1 T
where 'p = [ 9] 1] and

0 0
o, = { R, 01] (5.40)
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Y1 X1

21
P

FIGURE 5.8
General transformation of two frames.
Example 5.8 (Transformations): Find p, given

0 0 1 2 1

‘Ry=|-1 0 o], 'p=|11}, %01=]2 (5.41)
0o -1 0 -1 0

Solution: This can be solved in two ways.
1) Three-dimensional vectors

1 0 0 1
p="0+°Ri'p=|2]+|-1 0 0
0

0

Uy RERUEEE

2) Homogeneous vectors

0 0 1 1 2
0 /-1 0 0 2 |1
T, = 0 -1 0 ol P=1_ (5.43)
0 0 0 1 1 ]
Hence
0 0 1 1 2 [0
o _0om 1. _|—1 0 0 2 11 |0
p="Tip=|, 1 o ol l21| = |21 (5.44)
0 0 0 1 1 |1

The inverse problem of the general mapping is to find the 'p by knowing °p, %0;, and
the rotation matrix “R; between {0} and {1}. According to (5.37), we have

0. _ 0
'p = R; 1(0p - 001) = R?(Op - 001) (5.45)

which can be further understood as a sequence of translation and rotation backward. Using
homogeneous coordinates, we obtain

00—
1p = T1 1Op (546)



82

.‘/

— {0}

FIGURE 5.9
Multiple transformations.

where

0

T;1 =171, = [

General Rotations and Transformations

0T 0nTo
Rl _Rl (oF]

OT

| } (5.47)

Example 5.9 (Transformation matrices): Find Ip, given

0R1 _

Solution: According to (5.46), we have

o 0
— R{ %, =-10
1
0
0\ 0
T, = .
0
Hence,
0 -1
0, 0 O
1p: Tllop: 1 0
0 0

0 0 1 0 1
-1 0 0|, p=|0], %01=|2
0 -1 0 —1 0

(5.48)
1 2
] ” - H 40
0 -1
2
0
o (5.50)
1
270 2
oo 1
S =1 (5.51)
1] [1 1

If multiple transformations are involved, as shown in Figure 5.9, the problem can be
extremely tedious with normal 3D vectors. Homogeneous-vector expression provides an
elegant way to describe such transform, where

°p =T, 'T, °T3 °p

(5.52)



MATLAB® Ezamples 83

Example 5.10 (Application of transformations): A helmet with LEDs is used to determine
the pose of an object. Assume that Frame H is attached to the helmet, and the positions of the
LEDs are known in {H}: p; for i = 1,2,3,4. Frame {C} is the camera-based frame. The LEDs’
positions are measured by cameras in {C'}: p; for i = 1,2,3,4. With this setup, find the rotation
matrix CRH

Solution: According to (5.37), we have

“pi = “on + “R "p; (5.53)

for i = 1,2, 3,4. Subtracting one equation from another in (5.53) yields

“pi — “pit1 = “Ru("pi — "pis1) (5.54)

for ¢ = 1,2,3. The above equations can be written in a matrix form as

A=°RyB (5.55)
where
A = [Cpl —“p2 “p2—“ps “ps— Cp4] (5.56)
B=["p1—"p2 "p2—"ps "ps— "pi] (5.57)
Solving the above matrix equation yields
“Ry=AB" (5.58)

Note that the minimum number of LEDs for the orientation detection is 4. Further, if all LEDs are
on the same plane, B will be singular, which yields no solution.

5.6 MATLAB® Examples
5.6.1 Matrix Arithmetic

MATLAB can be used to perform matrix arithmetic for linear transforms. However, variable
names must be consistent to decrease the chance of computational errors. The examples
in this section follow a logical variable-naming convention that is clear and unambiguous
and recommended for this unit. This will become especially important when submitting
MATLAB code used in any assessments.
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Example M5.1 (Rotation matrices): Find rotation matrices 'Ro and 'R, given,

1 0 0 -1 0 0 00 -1
‘Ri=1{0 0 -1 ‘Ro=1|0 -1 0 Rz3=10 1 0 (5.59)
01 0 0 0 1 10 0

Solution: The following script solves this problem.

% Define rotation matrices
R_0O_1 = [1 0 0; 00 -1; 0 1 0];
R_0_2 = [-1 0 0; O -1 0; 0 O 1];
R_.2.3 = [0 0 -1; 01 0; 1 0 01;
R_1.0 = R_O_1" % R_0_1 inverse
R_1_.2 = R_1_0 * R_0_2 % R_1_2 answer
R_1.3 = R_1_2 *x R_2_3 % R_1_3 answer
>> ch2_1
R_1_0 =
1 0 0
0 0 1
0 -1 0
R_1_2 =
-1 0 0
0 0 1
0 1 0
R_1_3 =
0 0 1
1 0 0
0 1 0

5.6.2 Inverse Transformation Matrix

The following MATLAB code calculates the inverse of a 4 x 4 homogeneous transformation
matrix, according to (5.46). Note that this method cannot be used to calculate the inverse
of general 4 x 4 matrices.

function [ T_B_A ] = invT( T_A_B )
%INVT Transformation matrix inverse

% Input

% T_A_B Transformation matrix of {B} measured in {A}

% Output

% T_B_A Transformation matrix of {A} measured in {B} (inverse)
R_A_B = T_A_B(1:3,1:3); % Rotation matrix

p_B = T_A_B(1:3,4); % Translation vector

T_B_A = [R_A_B’, -R_A_B’*p_B; 0 0 0 1]; % Inverse

end

Example M5.2 (Matrix inverse): Find 'To, given the transformation matrix

0 0 1 1

o |1 0 0 2

T, = 0 -1 0 0 (5.60)
0 0 0 1
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Solution: There are a couple of ways to solve this. One may use the in-built function inv() in
MATLAB, or use invT() as defined in Inline 5.3. The MATLAB command window shows the
output of each result.

> T_A_B=[0011; -1 00 2; 0 -100; 000 1]

T_A_B =

0 0 1 1

-1 0 0 2

0 -1 0 0

0 0 0 1
>> T_B_A1 = invT(T_A_B) % Homog matrix inverse
T_B_Al1l =

0 -1 0 2

0 0 -1 0

1 0 (] -1

0 0 0 1
>> T_B_A2 = inv(T_A_B) % General inverse
T_B_A2 =

0 -1 0 2

0 0 -1 0

1 0 0 -1

0 0 0 1

While we expected the result to be identical, in the application of linear transforms, we always
want to use the homogeneous matrix inverse rather than the general inverse. The calculation of the
general inverse introduces residual errors and is two to three times slower than the homogeneous
matrix inverse operation. For more information, view the MATLAB documentation on inv().

Example M5.3 (Transformation matrices):

In Figure 5.10, a robot is detecting an apple to be picked. Find the position of the detected
apple in the tree relative to the gripper coordinates so that a trajectory for the gripper can be
planned to grasp this apple successfully. In addition, find the position of the apple relative to the
robot arm base frame so that the kinematics can be solved. The following details are known:

FIGURE 5.10
A URS robot inspecting an apple in a tree.
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End-effector frame {E} relative to the robot arm base {0}

Vi B
0 755 7; 0.2

‘=0 —% % 02 (5.61)
1 0 0 03
0o 0 0 1

Gripper frame {G} relative to the end-effector frame {E}

0 0 1 O
Em |1 0 0 O
Te=1o 1 0 02 (5.62)
0 0 0 1
Camera frame {C} relative to the end-effector frame {E}
1 0 0 01
Em_ _ |0 1 0 0
Te=10 0 1 01 (5.63)
0 0 0 1
Apple position in the camera coordinate frame
—0.05
“pa=1| 05 (5.64)
0.4

Solution: The position of the apple in the gripper frame is “p4, and the position of the apple in
the arm base frame is 0p . These vectors can be found by

GpA — GTE ETC CpA
= 1. P Cpa (5.65)
and
0

pPa = OTp PTe CpA (5.66)

The following script solves this problem.

% End-effector frame {E} relative to arm base frame {0}

T_O_E = [ 0 sqrt (2) /2 sqrt (2) /2 0.2;
0 -sqrt (2)/2 sqrt(2)/2 0.2;
1 0 0 0.3;
0 0 0 1]1;

% Camera frame {C} relative to end-effector frame {E}
TEC=[1000.1; 01 00; 0010.1; 00 0 1];

% Gripper frame {G} relative to end-effector frame {E}
T EG=[0010; 1000; 010 0.2; 00 0 1];

% Detected position of the apple in the camera frame
P_.C_A = [-0.05 -0.5 0.4 1]°;

% Apple position in gripper co-ordinates
T_G_E = invT(T_E_G) % T_E_G inverse
P.GA =T GE x T_E.C x P_.C_A % Answer

% Apple position in the arm base frame co-ordinates
P_O_A = T_.O_E * T_E_C * P_C_A % Answer
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T_G_E

0 1.0000 0 0
0 0 1.0000 -0.2000
1.0000 0 0 0
0 0 0 1.0000

P_G_

=
n

.5000
.3000
.0500
.0000

= OOoOo

P_O_A =

0.2000
0.9071
0.3500
1.0000

Therefore, the apple location in gripper coordinates (in metres) is

—0.5
“pa=102 (5.67)
0.05

and

0.2
%pa = [0.9071 (5.68)
0.35

5.7 Conclusion

In this chapter, we described how to define a rigid body’s pose in space. The position
of a rigid body can be described as a three-dimensional vector representing a point in
Cartesian space, and its orientation can be described with a 3 x 3 orthogonal rotation
matrix. Furthermore, with the use of frames and matrix arithmetic, we explored how we
can use these matrices to apply rotational operations to three-dimensional vectors.

The representation for a rotation is not unique, where rotations can be applied relative
to a fixed coordinate system (fized-angle), or relative to its own moving frame (FEuler angle).
In robotics, either mode of applying rotations is valid, and its use is simply dependent on
the convenience of the application. Finally, the general transformation was introduced as a
4 x 4 homogeneous matrix, which encapsulates both the position and orientation of a rigid
body. The transformation matrix is used in frame definitions, and applying translational
and rotational transformations to other frames.

The orthogonal nature of rotation matrices and the homogeneity of transformation ma-
trices make them very intuitive to use mathematically, such as applying rotations or trans-
forms in a sequence, or finding their inverse. Examples of rotation and transformation
matrices were given as MATLAB examples at the end of this chapter.
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5.8 Exercises

Problem 1. Given that vector 'p undergoes two separate cases of rotations in the given
orders:

1. x1 by 6 degrees and is followed by rotation about y; by ¢ degrees.
2. yp by 30° degrees and is followed by rotation about x; by 30° degrees.
Calculate the rotation matrix and the state of the rotation style for each case.
Problem 2. A frame {2} is initially coincident with another frame, {1}. Frame {2} is

rotated about o by 6, and then the resulting frame is rotated about x2 by ¢. What style of
rotation is this? Find the rotation matrix that will change the descriptions of vectors from

2p to 1p.

Problem 3. Find ' T3 by using the following frame definitions:

10 0 -10 0.1268 —0.6124 0.7803 10
ip _ (000 =1 10| 55, _ | 0.9268 03536 01268 8
1o 1 0 0 O~ 1-0.3536  0.7071 0.6124 3
00 0 1 0 0 0 1

Problem 4. Frame {2} is initially coincident with frame {1}. Frame {2} is rotated about
zo by 60°, then about x5 by 45° and then about y2 by 30°. Finally, the origin of {2} is

translated to [z1 1 zl]T: 3 8 76}T.

1. What is the transformation matrix 1T2?

2. What is the transformation matrix 2T;?

3. The position of a point in {2} is ?p = [1 -2 3]T, find the coordinates of this
point in {1}.

4. The position of a point in {1} is 'p = [6 4 —I]T, find the coordinates of this
point in {2}.

Problem 5. An Angle-Axis describes a fixed rotation about a fixed vector. The formula to
generate a transformation matrix using the Angle-Axis representation is given below:

koke(1—cl)+cO0  koky(l—cl) —k.s0  kyk.(1—cO)+ kys0
koky(1 —cO) + k.s0  kyky(1 —cO) +c  kyk.(1 —cl) — kys0
kpk,(1 —cO) — kys®  kyk,(1 —ch) + kys0  k.k.(1—cO) + cb
0 0 0

1T2 —

_— o O o

There are two assumptions made when using this formula:

1. The vector k is a unit vector.

2. The axis of rotation passes through the origin of the current frame.
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Given frame {2} is initially coincident with frame {1}. Frame {2} is rotated by 35° about
a unit vector k, where k passes through the point P. Find the transformation matrix I,
for each of the following circumstances:

1. k=[08018 —0.2673 0.5345]", the position of point P is 'p_ [0 0 0]".
2. k =[0.8018 —0.2673 0.5345]", the position of point P is 'p_ [0 0 3]".

Problem 6. A velocity vector is given by

0

vy =10

10

Given

1 0 0 5
op _ [0 05 0866 1
=10 —0866 05 1
0 0 0 1

Compute 'v. Hint: Consider the properties of velocity.

Problem 7.

1. Two frames: {0} and {1} are related through a transformation matrix given by

V2/2 —V2/2 0 3

op _| 0 0 -1 2
TVZ2 V22 00
0 0 0 1

Find transformation matrix 'T}.
2. Point P is located at 'p = [1 2 4]T with respect to the origin of frame {1},
as shown in Figure 5.11. Frame {1} is related to {0} through the transformation
matrix T given previously. Evaluate the position of point P with respect to the
origin of {0}, i.e., evaluate ’p.

e P

{1}
{0}

FIGURE 5.11
Frame 0, frame 1, and point P.
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Problem 8. A rigid body rotates around a pivot point. Two frames sitting on the pivot
point are assigned: {0} is fixed to the ground, and {1} is attached to the rigid body. Initially,
both frames coincide with each other. Rotate rigid body around the z axis of {0} of 61, and
then rotate the rigid body around the z axis of {0} of f2. Three markers attached to the
rigid body are used to track the rotation. The markers’ positions in {1} are given by

1 1 1
'pi=10],'p2=[1]|,'ps = |0
0 0 1

After the above two rotations, the three markers’ positions in Frame A are recorded as

0.500 —0.250 0.933
Op1 = 0.866| ,%o = | 1.299 | ,%ps = [0.616
0.000 0.500 0.866

Find 91 and 92.
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Forward Kinematics

In this chapter, we will expand the discussion of kinematics from Chapter 2 to cover gener-
alised serial chain manipulators. By using the Denavit-Harternberg notation, we will explore
how it can be used to model the kinematics of general serial chain manipulators.

6.1 Joints

There are two commonly used joints in robotic manipulators: revolute (R) joints and pris-
matic (P) joints, as shown in Figure 6.1. A revolute joint can be simplified into one axis of
rotation, which completely defines the relative motion of these two rigid bodies. This axis of
rotation is a spatial line with its position and direction. A prismatic joint defines the sliding
direction of one body relative to another. A prismatic joint can be replaced by another
parallel prismatic joint at a different position while the relative motion of the two rigid
bodies remains the same. Therefore, a prismatic joint can be characterised by a directional
vector without a specific position.

In the eyes of a kinematician, the shape of a rigid body is of no importance.! The only
thing that matters is the types and locations of the joints among the bodies. There are
typically six types of joints, cylindrical, planar, screw, spherical, and the above two. Our
discussion will focus on the serial robotic manipulators with any combination of R and P
joints. A serial robotic manipulator has an open-loop structure, as shown in Figure 6.2,
where a number (n) of rigid bodies are linked serially together by a number (n—1) of one
degree-of-freedom (DoF) joints. Since each joint removes five-DoF from this robot and one
body (except the ground) has six-DoF, the total DoF of the robot is 6(n—1)—5(n—1) = n—1,
which is simply the number of one-DoF joints the robot has.

In order to precisely describe the position and orientation of each moving link of a robotic
manipulator, we desire to assign one frame to each link. Each link’s position and orientation
can be fully described by the transformation matrix between the ground frame and the
attached frame to this link. Further, the transformation matrix between two adjacent links
is only affected by the joint angle of the R joint between these two links. A technique for
assigning frames effectively to a robotic manipulator is described in the following section.

6.2 Denavit-Hartenberg Notation

The Denavit-Hartenberg (DH) notation is a four-parameter representation between the
relative position and orientation of one link with respect to its adjacent link. Here, we first

LOn the other hand, it is important to a robot designer.
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(a) Revolute (b) Prismatic

FIGURE 6.1
Two types of common robotic joints.

assume a robot with R joints only. Each R joint can be represented by a single spatial line.
One important geometric property of spatial lines is applied here to formulate the relations
among these lines: any two general spatial lines have one unique common perpendicular,
defined as a line intersecting and being perpendicular to both given lines. There are some
special cases with no unique solution, which will be discussed later. The DH notation can
be best described as a procedure.

As shown in Figure 6.3, two links on a serial robotic manipulator with three revolute
joints are depicted. The first step is to assign a z-axis along each joint axis. According
to the above geometric property, there is always a unique common perpendicular between
two adjacent z-axes. The x-axis is defined along this common perpendicular, directed from
the current z-axis to the next z-axis, i.e., x; points from z; to z;41. Once x; and z; are
determined, the frame {i} is fully defined because y; = z; x x;. Note that {i} is attached to
link ¢ between Joint ¢ and Joint ¢ + 1, i.e., the coordinates of any point on link ¢ measured
in {i} are invariant. This frame is called the DH frame on link i.

Since one DH frame is determined by adjacent joint axes, the ground frame {0} and
the end-effector frame {n} cannot be fully determined. We will introduce additional rules
after explaining the DH parameters. Given two DH frames, {i — 1} and {i}, the four DH
parameters are defined according to Figure 6.3.

FIGURE 6.2
A schematic of a serial robotic manipulator.
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Yoz

X
0i—1 ( \\;

FIGURE 6.3
DH notation.

e a;_ 1 is the link length from z;_1 to z; along the positive direction of z;_ 1. a;_1 is a
nonnegative invariant.

e «;_; is the link twist from z;_1 to z; along the positive direction of x;_; (use right-hand
rule). oi;_1 is an invariant between 0 and 272,

e d; is the link offset, measured from x;_1 to x; along the positive direction of z;. d; is
an invariant that can be positive, zero, or negative depending on the positions of the
intersection between z; and x;_1 and the intersection between z; and x;.

e 0, is the joint angle from x;_1 to z; along the positive direction of z; (use right-hand rule).
0; is the only variable among the four DH parameters. Its range is typically between 0
and 2.

The following rules are suggested to achieve the uniqueness and simplicity of the DH
frames in special cases.
1. If z; and z;41 are parallel to each other, z; is chosen to intersect with a;_;.

2. If z; and z;41 intersect with each other, choose the direction of x; such that «; is
between 0 and 7.

3. If z; and z;41 are aligned, locate and direct x; such that the values of the corre-
sponding DH parameters are the simplest.

4. Keep the z-axis of the ground frame {0} align with the first joint z-axis, i.e.,
zZ0 = Z1-

5. Define x,, in the end-effector frame {n} such that it points at the point of interest
on the end-effector.

2You may see negative twist angle somewhere. That does not mean it is wrong. Rather, it is due to the
different definitions of the range of the link twist.
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FIGURE 6.4
Transformation mapping T;_1 between {7 — 1} and {i}.

The transformation matrix between {i — 1} and {i} can be derived by introducing an
auxiliary frame {(¢ — 1)’} consisting of ;1 and z;, as shown in Figure 6.4. The transform
from {i — 1} to {(i — 1)’} is the combination of a translation along z;_; and a rotation
around x;_1, which can be written as

1 0 0 A;—1
i—1 . 0 COS ;1 —sinozi_l 0
Ty = 0 sino;_1  cosoy_q 0 (6.1)
0 0 0 1

Similarly, the transform from {i — 1}’ to {i} is the combination of a translation along
z; and a rotation around z;, i.e.,

cosf; —sinf; 0 O
(Fl)lTi _ sn(l)ﬂi co(s)@i (1) ((1) (6.2)
0 0 0 1

Combining (6.1) and (6.2) yields the transformation matrix between {i} and {i — 1},

’

il — ¢71T(i_1)/ (=)',

cosb; —sin6; 0 ;1
__|sinfjcosa;—1 cosb@jcosa;—qy —sina;—; —sinoy_1d; (6.3)
sinf; sino;_1 cosb;sino;_1  cosay_1 cos aj_1d;
0 0 0 1

The transformation between a robot’s base and its end-effector can be expressed as:
o, =T, 'T,..." T, (6.4)

where n is the DoF of the robotic manipulator.
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FIGURE 6.5
A planar RRR robot.

Example 6.1 (Transformations — frames): The following frames are defined on a robotic
system: the base frame { B}, the workstation frame {S}, the wrist frame {W}, the tool frame {7},
and the goal frame {G}. Given BT (61,...,60,), WTr, BTs, and T, find the position and
orientation of the tool measured in the goal frame.

Solution:
“Tr = “Ts °Tp "Tw "' Tr

St gt Pyt By Wy (6.5)

Any point on the end-effector can be located in the fixed frame by
p =T, "p (6.6)

where "p and ’p are the coordinates of a point on the end-effector, measured in {n} and

{0}

Example 6.2 (Forward kinematics — 3R): A planar robot is shown in Figure 6.5. Find the
coordinates of Point P in the fixed frame, assuming: I; = 0.25 m, l2 = 0.30 m, I3 = 0.20 m, 6;. =
15°, 62, = 25°, and 03, = 30°.

Solution: The first step is to assign z1, 22, and z3 along the axes of three R joints, respectively,
as shown in Figure 6.6. For each axis, there are two possible directions to choose. Since all joints
are parallel, we keep the directions of all z-axes the same. Note that each z-axis is floating along
the axis of rotation without a specific position yet. Following the definition of the x-axis, there are
infinitely many common perpendiculars for =1, since z; and zy are parallel. Here, z; is located at
an arbitrary point along z1, which is the origin of {1}. Similarly, x2 between z» and z3 is chosen
to sit at the intersection between x1 and z2, which is the origin of {2}. 3 is an arbitrary vector
perpendicular to z3. For simplicity, x3 is chosen at the intersection between x2 and 23, which is the
origin of {3}. Finally, {0} is determined by zo aligned with z1 and xo perpendicular to zo at the
origin of {1}, which is also the origin of {0}.

According to Figure 6.6, the DH parameters are derived in Table 6.1. Suppose incremental
encoders are attached to each joint, so joint positions are monitored. If the home position is the
fully stretched-out position along x, we have the joint angles at this home position as

010 =0°, 02 =0° 03 =0° (6.7)
The 6 angles in Table 6.1 can be written as
01 = b1c + 010 = 01+ 0° (6.8)
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FIGURE 6.6
DH frames assigned to the RRR robot.

02 = Oac + a0 = b +0° (6.9)
03 = 03¢ + O30 = 3 +0° (6.10)

If the home positions are along xp, 90°, and 90°, respectively, the 6 angles in Table 6.1 can be
written as

01 = O1e + 010 = 01 +0° (6.11)
02 = e + 20 = Bac + 90° (6.12)
03 = 03¢ + B30 = B3 + 90° (6.13)
Substituting the values in Table 6.1 into Equation (6.3) yields
[cosf; —sinf; 0 O 097 —-026 0 O
o |sin®;  cosér 0 0| 026 097 0 0
Ti=1" 0 1 0l |o 0 1 0 (6.14)
L O 0 0 1 0 0 0 1
[cos@2 —sinfs 0 3] [0.91 —0.42 0 0.25]
1 | sin6s cos 0o 0 0| |042 081 O 0
T2=1" 0 1 o] |o 0 1 0 (6.15)
L0 o o 1] |o o 0 1|
[cosf3 —sinfs 0 o] [0.87 —0.50 0 0.30]
2 _ |sin@3 cosf3 O O [050 087 0 O
Ts=1"9 0 1 ol |o 0 1 0 (6.16)
0 o o 1] |o o 0 1|
The total transformation matrix is
0.34 —-0.94 0 0.47
o Ome 1 2 |0.94 034 0 026
Ty =Ty 'T *Ts = |7 51 o (6.17)
0 0 0 1
TABLE 6.1
DH parameters of the
RRR robot
i a1 a1 di 0
1 0 0 0 0
2 0 I3 0 0O
3 0 ly 0 63
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[0

FIGURE 6.7
A cylindrical robot with z-axes defined.

For any given point *p on the end-effector, its coordinates {0} are given by

’p = T3 °p (6.18)

where °p and ®p are the homogeneous coordinates. With *p = [0.20 0 0 1}T (homogeneous
form), the corresponding numerical solution is

0.54
’p = 0'3‘5 (6.19)

1

6.3 DH Parameters for Prismatic Joints

The previous definitions of the DH parameters work well for revolute joints. In the case of a
prismatic joint, the z-axis is defined in the direction of sliding, which does not have a fixed
position. To fully determine the z-axis, we can choose the location of the z-axis such that it
passes through the origin of the previous or next frame, O;, or O;, for simplicity. The x-axis
is determined the same as before. The transformation matrix (6.3) remains the same.

Example 6.3 (DH parameters — prismatic joints): Assign the DH parameters for the
cylindrical robot shown in Figure 6.7.

Solution: The actuated variables for this robot are revolute 61, and prismatic d» and ds, along
21, 22, and z3 respectively. According to frame assignment rules, the base frame {0}, first frame
{1}, and second frame {2} should all be coincident where the common perpendicular between z2
and z3 intersect (the dotted line). Therefore, zo, z1, and x2 should be pointing along this common
perpendicular. The origin of the final frame {3}, for simplicity, lies at the intersection of z2 and
z3. This means x3 also points along x2. With these frames and axes defined, the DH parameters
for the cylindrical robot in Figure 6.7 are
where as is the length of the common perpendicular between z2 and z3.
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FIGURE 6.8
An RPR robot.

Example 6.4 (Forward kinematics — RPR): An RPR robot is shown in Figure 6.8. Find the
transformation matrix between the base and the end-effector, assuming 61 = 35°, d2 = 0.50 m,
93 = 300, l1 = l2 = 0.30 m.

Solution: The DH frames are assigned to the RPR robotic manipulator as shown in Figure 6.9.
The DH parameters are derived in Table 6.2 where the home positions are 90°, ds, and 180°,
respectively.

a1 a1 di b
0 0 0 6
0 0 dy O

90° as d3 0

W Lo i =

FIGURE 6.9
DH frames assigned to the RPR robot.
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TABLE 6.2

DH parameters of the

RPR robot
R S
1 0 0 I3 0
2 90° 0 dy O
3 0 0 Ilx 05

All transform matrices are given by

[cosf®y —sinf; 0 O 0.82 —057 0 O
0 _|sin6 cos 0 0 0| 057 082 0 0
Ti=1" 0 1 s 0 0 1 030 (6.20)
| 0 0 0 1 0 0 0 1
[1 0 0 0 1 0 0 0
im |0 0 =1 —d2| [0 O -1 —0.50
2=l 1 0 o] jo1 o 0 (6.21)
0 0 0 1 0 0 O 1
[cosfs —sinfs 0 0 0.87 —-0.50 0 O
2 |sinf3  cosfz3 0 0 —-0.50 087 0 O
Ta=1" 0 1 Ll | o0 0 1 0 (6.22)
0 0 0 1 0 0 0 1
The total transformation matrix is
cic3  —c183 81 s1 (2 + d2) 0.71 —-0.41 0.57 0.46
O Om 1m 2m _ |€3S1 —siss —c1 —c1(la+d2)| _ [0.50 —0.29 —0.82 —0.66
To="T1 T2 "Ts = |, cs 0 I3 ~ 1050 087 0 0.30
0 0 0 1 0 0 0 1
(6.23)

Example 6.5 (Forward kinematics — spherical wrist): A spherical wrist of the PUMA robot
is shown in Figure 6.10, where the axes of three joints are concurrent. Further, these joint axes are
mutually perpendicular at the current configuration (home position). Find the total transformation
matrix between the end-effector and the base at the manipulator’s home position where the joints
are at 30°, 90°, and 90°, respectively.

Solution: This is called the spherical wrist because the axes of all R joints interest at a single
point. Since the axis of rotation is invariant for a given rotation, none of the three rotations due
to the R joints can vary the position of this point, i.e., all three axes are geometrically constrained
to interest at this point at any instant. Therefore, the end-effector is restricted to a three-DoF
spherical motion centred at this point, which is called the spherical centre of this wrist.

Axes z1, 22, and z3 are first assigned along the axes of the three R joints, as shown in Figure
6.10. Since the axes of the joints are mutually perpendicular, z; is aligned with z3 to have the link
twist between 0 and m, according to the definition of the x-axis. Similarly, xs is aligned with z;.
Axis x3 can be chosen freely as long as it is perpendicular to z3. Here, 3 is chosen to be aligned
with 2. Finally, zo is aligned with z; while z( is at the spherical centre and has an angle of 45°
from x; as shown in Figure 6.10. One important feature is that all assigned frames are at the same
position, the spherical centre, which indicates that this robotic wrist can only perform rotation
around this centre.

According to the DH frames assigned in Figure 6.10, the DH parameters are derived in Table 6.3,
where the home positions are 30°, 90°, and 90°, respectively. All transform matrices are given by
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205 21, L2

03
0

22, T3

FIGURE 6.10
A spherical wrist with DH frames assigned.

TABLE 6.3
DH parameters of the
spherical wrist

i a1 a1 di 0
1 0 0 0 6
2 90° 0 0 6
3 90° 0 0 03
[cos§; —sinf; 0 O 0.87 —-050 0 O
0 _ |sin6 cosfy 0 0| |-050 —-0.86 0 O
Ti=1" 0 10 0 0 1 0 (6.24)
| O 0 0 1 0 0 0 1
f[cos@s —sinfy 0 0] (0 —1 0 0]
1 0 0 -1 0| _ [0 0 -1 0
T, = sinfs  cosfs 0 ol |1 o0 0 0 (6.25)
| 0 0 0 1] 0 0 0 1
[cosfs —sinfs 0] 0 -1 0 0
2 0 0 -1 0/ _ [0 0 -1 0
Ts=lGno, costs 0 0/~ |1 0 o0 o0 (6.26)
0 0 o 1 [0 o o 1]
The total transformation matrix is then given by
8183 + c1cac3 €381 — C1C383 c1ss 0 0.50 0 087 0
o, — O, ', 2T, = Cc2C351 — €183 —c163 — 25183  S152 0 _ —0.87 0 050 0
C352 —S283 —co2 0 0 -1 0 0
0 0 0 1 0 0 0 1
(6.27)

Example 6.6 (Forward kinematics — PUMA): The PUMA robot represents a significant
milestone in the history of industrial robots. The major advantage is that its position and orienta-
tion are decoupled in inverse kinematics, making analytical solutions possible. As shown in Figure
6.11, the PUMA robot consists of an RRR robot (the first three joint axes) and a robotic spherical
wrist (the last three joint axes intersecting at a single point P). The offsets, ds and d4, in the
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20, 21

FIGURE 6.11
PUMA robot with assigned axes.
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actual PUMA robot, are assumed to be zero. Find DH parameters and compute all the individual
transformation matrices.

Solution:

The DH parameters are shown in Table 6.4. Therefore, the transformation between the frame
attached to the end-effector and the ground frame can be expressed as

where

T = °T1(61) "Ta(62) *T3(03) *Ta(fs) *T5(65) *Ts(6s)

cosfy —sinf; 0 O [ cos 6y
0 _|sinf: cos 01 0 0 1 . 0
Ti=1" 0 1 olr 2T | _gine,
0 0o 0 1] 0
cosfls —sinf3 0 ao [ cosf,
2 sin 03 cos 03 0 0 3 _ 0
Ts=1" 0 1o T4T | _ging,
0 0 0 1) L0
cosfls —sinfs 0 O cos Og
. 0 0 -1 0| s | ©
Ts = sinfs  cosfs 0o of’ To=1_ sin Og
0 0 0 1 0
TABLE 6.4
DH parameters of the PUMA
robot
i a1 (%) ai di 6
1 0 0 0 6,
2 -90 0 0 6o
3 0 as 0 65
4 -90 az 0 04
5 90 0 0 65
6 -90 0 0 b

—sin 02
0

— cos 0>
0

— sin 94
0

— cos 03
0

—sinfg
0

— cos bg
0

oo, O OO O

o o= O

— O O O

—ocoo moof

(6.28)
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i o a1 di b
1 0 0 ls 61
2 90° 0 dy O
3 0 0 lo 03
Iy
=
|
0
Oq !

Lo

FIGURE 6.12
RPR manipulator with DH table.

6.4 MATLAB® Examples

In this chapter, we investigated how to convert a DH table to transformation matrices that
map the pose of each frame along a manipulator. The nature of DH parameters is that
the actuated variables should remain as variables (say, ) within the table, such that the
transformation matrices “~*T; become functions of these variables, “ *T; (). To facilitate
unknown variables in MATLAB when solving forward kinematics problems, we should define
symbolic variables® via MATLAB’s Symbolic Math Toolbox. The following example shows
how MATLAB can be used to obtain symbolic forward kinematics equations for serial
manipulators.

Example M6.1 (Forward kinematics — RPR): Find the transformation matrix of the end-
effector °T'5 for the RPR robot shown in Figure 6.12.

Solution: To do this, we need to convert each row of DH parameters to their respective transforma-
tion matrices, according to Equation (6.3). To code this more efficiently, we can write a MATLAB
function called dh2T () (Inline 6.1) that converts a single row of DH parameters to a transformation
matrix, then calls it for each row in the table.

function T_i_j = dh2T(dh_row)
%DH2T Converts row of DH parameters into a transformation matrix

al = dh_row(1); % alpha rotation

a = dh_row(2); % a displacement

d = dh_row(3); % d displacement

th = dh_row(4); % theta displacement

T_i_j = [
cos (th) -sin(th) 0 aj;
sin(th)*cos (al) cos (th)*cos (al) -sin(al) -sin(al)*d;
sin(th) *sin(al) cos (th)*sin(al) cos (al) cos (al)*d;
0 0 0 1713

5| end

From here, we can use the following script (Inline 6.2) to solve this problem. Note that in line
3, we end the syms definition with the keyword real, which tells MATLAB these variables can only

3https://au.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html
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contain real numbers. If any of these variables involve a transpose operation, the conjugate is not
required, simplifying the resultant symbolic expressions.

% Define symbolic variables
% Add keyword "real" to assume these variables always contain real numbers
syms L1 L2 thl d2 th3 real

% Define DH table (alpha, a, d, theta)
DH_Table = [

0 0 L1 thil;
pi/2 0 a2 0;
0 0 L2 th3]
T_0_1 = dh2T(DH_Table(1,:)) % Get t-matrix from row 1 DH
T_1_2 = dh2T(DH_Table (2,:)) % Get t-matrix from row 2 DH
T_2_3 = dh2T(DH_Table(3,:)) % Get t-matrix from row 3 DH
T_0_.3 = T_0_1 = T_1_2 *x T_2_3 % EE t-matrix measured in base frame
The command window outputs the answers for °T, 'Ts, 2T3, and °Ts from the script.
DH_Table =
[ 0, 0, L1, thi]
[ pi/2, 0, 42, 0]
[ 0, 0, L2, th3]
T_0_1 =
[ cos(thl), -sin(th1l), 0, 0]
[ sin(th1l), cos(th1), O, 0]
L 0, 0, 1, L1]
[ 0, o, 0, 1]
T_1_.2 =
[1, 0o, O, 0]
[ o, 0, -1, -d2]
[o, 1, o, 0]
o, o0, o, 1]
T_2_3 =
[ cos(th3), -sin(th3), 0, 0]
[ sin(th3), cos(th3), 0, 0]
[ 0, 0, 1, L2]
[ 0, 0, 0, 1]
T_0_3 =
[ cos(thl)*cos(th3), -cos(thl)*sin(th3), sin(thl), L2*sin(thl) + d2*sin(th1)]
[ cos(th3)#*sin(thl), -sin(th1l)*sin(th3), -cos(thl), - L2*cos(thl) - d2*cos(thl)]
[ sin(th3), cos (th3), 0, L1]
[ 0, 0, 0, 1]

Note that the expression for °T3 is not fully simplified. Since T3 represents the final answer of
this example, we wish to express it in the most simplified form. We can condense its length by using
the MATLAB function simplify(). This will attempt to group and factorise symbolic variables as
well as utilise simple trigonometric identities to simplify the expression. We recommend the use of
simplify () on final answers only, and not on intermediate variables such as T_0_1 etc.

>> simplify (T_0_3)
ans =

[ cos(thl)*cos(th3), -cos(thl)*sin(th3), sin(thl), sin(th1)*(L2 + d2)]
[ cos(th3)#*sin(thl), -sin(th1)*sin(th3), -cos(thl), -cos(th1)*(L2 + d2)]
[ sin(th3), cos (th3), 0, L1]
[ 0, 0, 0, 1]
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Reading T_0_3 in Inline 6.4, the transformation matrix of the end-effector, relative to its base,

is
cos B cosf3 —cosbsinls sin 64 sin 01 (l2 + d2)
0 sinf; cosfs —sinfysinfs —cosf; —cosbi(lz + d2)
T3 = .
sin 03 cos 03 0 I3
0 0 0 1
Example M6.2 (Forward kinematics — cylindrical robot): In Example 6.3, we showed

that the DH parameters for a cylindrical robot shown in Figure 6.7 were

o1 a1 di 0
0 0 0 61
0 0 dy O
90° as d3 0

SCI IS N

Use MATLAB to find the transformation matrix of the end-effector relative to the base frame
when the joint values are 6; = 90°, d2 = 30 c¢cm, d3 = 10 c¢cm, and offset a3 = 5 cm.

Solution: We need to find °T3 before substituting known values into this transformation matrix.
This can be easily done in MATLAB by finding the symbolic solution for °Ts before converting it
into a function handle to apply the known values.

% Define symbolic variables
% Add keyword "real" to assume these variables always contain real numbers
syms thl d2 d3 a3 real

% Define DH table for cylindrical robot (alpha, a, d, theta)
DH_Table = [

0 0 0 thil;
0 0 d2 03
pi/2 a3 d3 0]
T_0_1 = dh2T(DH_Table(1,:)) % Get t-matrix from row 1 DH
T_1_2 = dh2T(DH_Table(2,:)) % Get t-matrix from row 2 DH
T_2_3 = dh2T(DH_Table (3,:)) % Get t-matrix from row 3 DH
T_0_3 = T_0_1 * T_1_2 * T_2_3 % EE t-matrix measured in base frame

% Define function handle for T_0_3 so we can sub in values
% Note ’Vars’ input, where we can define variables in a specific order
T_0_3_f = matlabFunction(T_0_3, ’Vars’, {thl d2 d3 a3});

% Find T_0_3 with values subbed
T_0_3_v = T_0_3_f(pi/2, 30e-2, 10e-2, 5e-2)

DH_Table =

[ 0, 0, 0, thi]

L 0, 0, 42, 0]

[ pi/2, a3, d3, 0]

T_0_1 =

[ cos(thl), -sin(thl), 0, 0]

[ sin(th1), cos(thl), 0, 0]
0, 0, 1, 0]

[ 0, 0, 0, 1]

T_1_2 =

[1, 0, 0, O]

[o, 1, 0, O]

[ o, 0, 1, d2]

[o, 0, 0, 1]
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T_2_3 =
[ 1, O, 0, a3]
[ o, 0, -1, -43]
[o, 1, o, 0]
[o, 0, o, 1]
T_0_3 =
[ cos(thl), O, sin(thl), a3*cos(thl) + d3*sin(thl)]
[ sin(thl), 0, -cos(thl), a3*sin(thl) - d3*cos(thl)]
[ 0, 1, 0, d2]
L 0, 0, 0, 1]
T_0_3_v =
0.0000 0 1.0000 0.1000
1.0000 0 -0.0000 0.0500
0 1.0000 0 0.3000
0 0 0 1.0000

Therefore, the transformation matrix of the end-effector relative to the base frame is

cosfy O sin 01 as cos 01 + ds sin 01 0 0 1 0.1
0 __|sin6r 0 —cosf1 azsinfy —dscosfi| (1 0O 0O 0.05
Ts=1"0" 1 0 do “1lo 1 0 03 (6.29)
0 0 0 1 0 0 O 1

6.4.1 DH Parameter Summary

Assigning DH parameters follows a strict set of rules to reduce the chance of ambiguity in
the frame assignments. This process is summarised as follows, where 7 is the frame number,
with ¢ = 0 being the base frame. In assigning DH parameters, start from frame 1 (i = 1),
not from the base frame. n is the number of links.

1. Draw a rough sketch of the manipulator under analysis.

2. Define the locations of all z axes from frames 1 to n. If the base frame {0} is not
defined, do not define it here.

3. Link all z axes as follows:

(a) Identify and mark where any z; and z;41 axes intersect, or if they don’t
intersect,

(b) Draw a common perpendicular line between the two z axes. Identify and
mark where these perpendicular lines intersect on both z axes.

4. For each z; axis from frame 1 to n, assign the origin of frame i to an identified
point on the axis. That is either,

a ere your current z; axis intersects wi e next z;41 axis, or
Wh t is intersects with the next z;; axi
(b) Where your z; axis meets the common perpendicular line to the next z;q
axis.

5. Assign the x axis for each frame. The following rules apply:

(a) At frame {i}, if the current z; axis and next z;;; intersect, the z; axis must
point normal to the plane containing the two z axes, or

(b) If there is a common perpendicular line to z;;1, the z; axis is coincident with
this line.
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Assign the remaining y axis to each frame for completion.

7. Assign the base frame {0} to be coincident with frame {1} if the base frame has
not been arbitrarily defined. This is done so that moving from frame {0} to {1}
is purely rotational or translation with no other offsets.

8. Fill out the rows of the DH table as follows. Starting from frame {1} (i = 1):

e a;_1 = the distance from z;_; to z; measured along x; 1; *
e «,_1 = the angle from z;_; to z; measured about z;_1; *
e d; = the distance from x; 1 to x; measured along z;; and

e (; = the angle from x;_; to x; measured about z;.

(*) The index of the rule has been reduced by 1 to avoid confusion.

9. Use Equation (6.3) to convert DH parameters into a transformation matrix, start-

ing with 7 = 1.
ct; —sb; 0 Qi1
i—1lm SeiCOéi_l Ceicai—l —s0_1 _Sai—ldi
T; = sO;sc;_1  clisoi_1 cay_q coy_1d; (6.30)
0 0 0 1
The short-hand notation used is as follows:

Sin@i =s; (631)
cost = c (6.32)

The following trigonometry identities can be used to simplify answers:

6.5 Conclusion

In this chapter, we describe how the forward kinematics of a serial manipulator is solved.
First, frames are systematically assigned to the system of rigid bodies that make up a serial
manipulator. The position of these frames is described using Denavit-Hartenberg notation,
which describes the kinematic configuration of a robot with the least parameters. This
systematic process can be applied to robots with both revolute and prismatic actuators.
From the table of DH parameters, we derived transformation matrices from one link to
another, which fully describes the rigid body motion of a serial robot, thus solving the
forward kinematics of the robot in analytical form.

The definition of a robot using DH parameters is not unique, where the direction of
assigned axes affects the orientation of assigned frames. However, the final transformation
matrix, which maps the pose of the robot’s end-effector to a fixed universal frame, should
remain consistent amongst all combinations of valid DH parameters for the same robot.
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FIGURE 6.13
Planar robot for Problem 1.

6.6 Exercises

Problem 1. The robot is shown in Figure 6.13.

1. Identify the Denavit-Hartenberg parameters and tabulate the results, indicating
the variables which are actuated (Note: You do not need to account for frame
{4} in this part).

2. Compute the individual transformation matrices which relate frame {i} to frame
{i — 1} according to the frames shown in the Figure 6.13. (i.e, °Ty, 'Ty, ?T3)

3. Find the transformation matrix that relates frame {3} to frame {0} (i.e., “T3)
in its simplest form.

4. Find the vector expression that describes the position of the tool tip relative to
{1}. Assume the tool tip position, expressed in {4}, is p = [ e Dy pZ]T

Problem 2. Orthopaedic surgery is concerned with conditions involving the musculoskeletal

system. Often, the mode of treatment involves the insertion of a prosthesis in place of

diseased bone. Cavities need to be created within the bone segment of interest to house
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FIGURE 6.14
Orthopaedic robot for Problem 2.
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this prosthesis. Traditionally, this was achieved by using jigs and mallets to hammer away
at the bone. However, this technique is inherently inaccurate and does not cater for the
variation in bone characteristics, such as size within a set of patients. This could lead to
prosthesis misalignment, which affects the life span of the implant. This led to research
and development into robotic systems for orthopaedic surgery . The philosophy is that a
robot could mill a cavity with superior accuracy and repeatability and allow for variation in
patient bone characteristics compared to manual techniques. In these systems, high-speed
cutting tools are attached to the end-effector. The robot in Figure 6.13 is an example of a
robot that has been used in hip and knee replacement surgery. For this robot:

1. Please identify the Denavit-Hartenberg parameters and tabulate the results, in-
dicating the variables which are actuated (Note: You do not need to account for
frame {5} in this part).

2. Please obtain the individual transformation matrices which relate frame {i} to
frame {i — 1} according to the frames shown in the Figure 6.14. (i.e., Ty, 'T5,
2 3
Ts, °T4)

3. Find the transformation matrix that relates frame {4} to frame {0} (i.e., “Ty)
in its simplest form.

4. Find the inverse of the matrix “T,. What is the physical meaning of this trans-
formation matrix?

5. Consider a drill bit being attached to the wrist. If the length of the drill bit is l4,
find a vector expression which describes the position of the drill bit relative to

{0} (ie., p = [ v Dy pZ}T where p is the origin of the frame {5}).

Problem 3. A serial manipulator with four revolute joints is shown in Figure 6.15. The
initial frame attached to the base is given by zg — yo — zo. The axes of all revolute joints are
given by z1, 22, 23, and z4. At the instant configuration shown in Figure 6.15, these joint axes
are either parallel or perpendicular. Furthermore, 21, 23, and z4 are in the yg — O — zy plane,
while z5 indicated by ® is perpendicular to the yo — O — zg plane. The link frames have been
assigned to all moving links of this manipulator (y axes are not displayed). IMPORTANT:
© indicates a vector pointing out from the sheet plane (upwards), while ® indicates a vector
pointing into the sheet plane (downwards).

1. Construct a table of the Denavit-Hartenberg parameters that describe the se-
rial mechanism, based on the link frames shown in Figure 6.15. Note that the
joint angles 6#,, 05, 03, and 0, are variables, measured around zi, 2o, 23, and 24,
respectively.

2. Based on the DH parameters defined, find the homogeneous transformation ma-
trices between every two adjacent frames, i.e., °Ty, 'Ty, T3, and °Ty.

3. Upon the results of the previous part, derive the analytic expression of the position
of the origin of the 4th frame {4} (attached to the end-effector), given in the initial
frame {0}, by knowing 3 = 0° and 6, = 0°.

4. If the homogeneous coordinates of the origin of {4} in {0} is given by "pos =
[10 10 6 1]T, find the corresponding joint angles 61 and 63, by knowing 6, =
0° and 04 = 0°.

Problem 4. A serial manipulator with three revolute joints is shown in Figure 6.16. The
tool frame T is also given in Figure 6.16.



FExercises 109

)

Z1
Joint 2,~,_72
| =Ca
Joint 4

6 e I n H:I 24

iﬂxﬂt 1 Joint 3 i
H 2:3

T § i Y

°0 5 10 20 ’

FIGURE 6.15
A four-link robot.

FIGURE 6.16
A serial spherical robotic manipulator.

1. Assign the link frames — i.e., attach the frames (you must assign the z and x
axes of each frame) to the moving links of the mechanism.

2. Construct a table of the Denavit-Hartenberg parameters that describe the serial
manipulator in terms of the link lengths as given in Figure 6.16.

3. Find the individual transformation matrices to describe the motion of the links
due to the joint 61, #5, and 3. You do not need to multiply them together.



7

Inverse Kinematics

As discussed in Chapter 2, forward kinematics is the process of mapping the joint space
to the end effector space or task space. The counter problem is known as the inverse kine-
matics, in which we map the end effector task space to the joint space. We know that the
solution to the forward kinematics serves as the starting point of the inverse kinematics.
However, this chapter will cover advanced inverse kinematics techniques applicable to gen-
eral serial manipulators. Inverse kinematics for general serial chain manipulators can be
quite challenging and requires a bit of forward-thinking and experience to be able to handle
all types of transcendental equations that may be encountered in kinematic equations for
robots with revolute joints.

The inverse kinematics problem of serial robotic manipulators was considered one of the
most challenging problems in robotics research in the 1980s, where in some cases, analyt-
ical solutions are impossible. Although we do not discuss these types of manipulators in
this chapter, the advancement of computational power has allowed the inverse kinematic
solutions to be numerically calculated efficiently using gradient-descent methods.

7.1 Basic Techniques

In inverse kinematics, we frequently encounter some forms of trigonometric functions. Know-
ing the solutions to these functions is beneficial for solving the inverse kinematics of many
types of robots.

Example 7.1 (Dual-parameter arc tangent: Atan2()): Given the expressions
cosd = kA, sinf=kB (7.1)
where k, A, B are three constraints, solve for 6.

Solution: Use Atan2 to find the solution:

0 = Atan2(kB, kA) (7.2)

If k is positive, (A, B) and (kA, kB) are in the same quadrant. Hence, the solution can be further
simplified into

0 = Atan2(B, A) (7.3)

Example 7.2 (Solving transcendental equations): Given equation

Acosf + Bsinf =C (7.4)
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where A, B, C are three constants, solve for 6.
Solution: There are different ways to solve (7.4). One method is to divide (7.4) by D, such that

A B . C
Bcos€+ Bsm0 =3 (7.5)

where

D=+\A+ B2 (7.6)

Also, note that

A B .
D= cos ¢ and D= sin ¢ (7.7)
Therefore, (7.5) becomes
. . C
cos ¢ cosf + singsinf = D (7.8)
which is simplified to
C
cos(ﬁ—qﬁ)—ﬁ (7.9)

There are two solutions for (7.9):

6 = + arccos (%) +¢ (7.10)

where ¢ = Atan2(B, A).

Besides the above solutions to some common functions, there are also some tips for
handling functions in inverse kinematics.

Pythagorean Identity

To remove some variables from equations, we can use
sin(a)? + cos(a)? = 1 (7.11)
For example, to simplify the following equations
T =c1+cre, Yy=S8 +S12 (7.12)
they can be written as
Clo=x—c¢1, S12=Y— 81 (7.13)
We can then substitute ¢j2 and s15 into (7.11) to get
(z—c)’+@y-s)=1 (7.14)

The original two functions on #; and 5 are simplified into the above single function on 6,
only, which can be readily solved.
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Equation Balancing

To reduce the entanglement of variables, keep the numbers of variables on both sides of
equations as close as possible. This is typically done by inversing transformation matrices.
Consider a general six-DoF' robotic manipulator has the kinematics relation

T = "T1(61) "Ta(02) *Ts(6s) *Ta(6a) *T5(05) *Ts(0) (7.15)

where °Tg is known in the inverse kinematics. To simplify the process of solving for 6;
with ¢ = 1...6 through these matrices, a better way to arrange the equations to reduce the
entanglement of the variables could be

T30 (05) 'T5 1 (62) "TyH(61) T = *Ta(04) “T5(05) *To(0) (7.16)
3T9(03) *T1(02) *To(61) ° T = *T4(0s) *T5(65) "Ts(6s) (7.17)

This is not the only way to balance the number of variables on both sides of this equation.
Other alternatives can be any of the following

2T (62) "To(61) °Ts OT5(0s) = 2T3(03) *T4(04) *T5(05) (7.18)
"To(61) °T6 °T5(06) "Ta(05) = "Ta(62) *T5(05) *T4(64) (7.19)
0T 5T5(0) "Ta(fs) *T3(04) = "T1(01) 'To(62) >T3(63) (7.20)

Note that these are not randomly balanced equations but have particular meanings in terms
of frame transformations.

7.2 Analytical Solution to Inverse Kinematics

Analytical solutions to inverse kinematics allow fast real-time updates of the joints solu-
tions for any given position and orientation of the end-effector, by simply substituting the
numerical position and orientation into the analytical solutions. Furthermore, analytical
solutions differentiate the different sets of solutions belonging to different regions in the
workspace. On the other hand, analytical solutions to nonlinear equations do not exist in
general. In order to achieve analytical solutions, most industrial robots are designed in such
a way that analytical solutions can be derived. PUMA robot is an outstanding example
of this. In the absence of an analytical solution, we must rely on gradient-based solvers
that do not guarantee solution convergence and can be prone to large errors in problematic
configurations.

Example 7.3 (IK of an RR robot): An RR robot is shown in Figure 7.1, where both link lengths
are 1 m. Find the analytical solutions of joint angles in terms of the position of the end-effector
(zp,yp). Assume [ =l =1 m.

Solution: The forward kinematic solution of this robot is

{I”} = [Cl N C”} (7.21)

Yp S1 + S12
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FIGURE 7.1
An RR robot.

We can use the Pythagorean identity (7.11) to reduce two equations into one equation by removing
02:

(zp — 01)2 + (yp — 51)2 =1

2xper + 2yps1 = o + Yo (7.22)
Equation (7.22) is now is the form of Example 7.2, where A = 2x,, B = 2y,, and C = xi + yz.
According to (7.6), D = 2,/z2 + y2, which yields solutions

0,, = 4 arccos (%) + ¢ (7.23)

where

% _ %, [23 + 42 and 6 = Atan2(y,, z,) (7.24)

Substituting the solutions (7.23) into (7.21) yields

[mp] - {Cls N 012} (7.25)

Yp S1s + S12

where c15s = cos 015 and s1; = sin015. Here, 0;; is used to represent the given solution of 6; to avoid
writing down the full expression given in (7.23). If 015 + 02 is treated as a single variable, (7.23) is
in the form of Example 7.1, where k = 1, A = x, — c1s, and B = y, — s1s. Hence, the solution of
01s + 02 can be readily found as

015 + 02 = Atan2(yp, — s1s,Tp — C1s) (7.26)

which gives the solution for 02

025 = Atan2(yp — s1s,Zp — C15) — O1s (7.27)
In summary, there are two sets of analytical solutions to this problem:
015 = arccos (%) +¢ f2s = Atan2(y, — s1s,Tp — C15) — O1s (7.28)
C
015 = — arccos D + ¢ 025 = Atan2(yp — S1s,Tp — C15) — O1s (7.29)

with variables C, D, and ¢ defined in (7.24).
If we consider a particular position of the end-effector at (1,1), (7.21) yields the root of ; = 0,
02 = /2, and 01 = /2, 62 = 0, as the numeric solutions to the inverse kinematics at this position.



114 Inverse Kinematics

TABLE 7.1
The DH parameters are
defined below in Table 7.1

i a1 (°) a1 di 6
1 0 1 0 6o
2 -45 0 0 6y
3 0 0 V2 63
4 0 V2 0 6y

Example 7.4 (IK of a 4R robot): For a 4R robot, find the numerical solution of joint angles
such that

°py=[07 12 15]7 (7.30)

And the position of the end-effectoris given by

0 O 4
pPs= T4 ps
% (261 + (\/5 — 1) c123 + (1 + \/5) C123 + 2812)
= lc (\/56382 + c2 (*1 + 83)) + 51 (1 + \/50203 + 59 — 8283) (731)

1+ s3

Solution:
One approach is to equate the analytical solution and the given numerical one directly, which
can be complicated. Let us try to balance the number of variables.

Ot Opy = ', 2T5 *py (7.32)
where
0.7c1 + 1.2s7 1+ \/50203 + S92 — 5283
s = |12 =07 and RHS = | V25203 Feal=1+ 53) (7.33)
1.5 1+ s3
1 1

Joint angle 65 can firstly be solved by comparing Elements (3,1) on RHS and LHS.

S§3 = 0.5
05 = +arcsin(0.5) = 30° or 120° (7.34)

When 03 = 30°, by summing the square of Elements (1,1) and (2,1) from RHS,

1.93 = 2.75 + 2.45¢5 + 52 (7.35)
Let
cos ¢ = % and sing = % (7.36)
where
D =+/2.452 + 12 (7.37)
Therefore,

02+ ¢ = 0y — 22.2 = £108.1
0> = 130.3° or — 85.85° (7.38)
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Substituting 03 = 30° and #> = 130.3° into Elements (1,1) and (2,1) from RHS yields two simulta-
neous equations of ¢; and s1. Solving the equations gives

c1 = 0.9955 or s1 = —0.09
0, = —5.149° (7.39)

Substituting 63 = 30° and 6> = —85.85° into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of ¢; and s;1. Solving the equations gives

c1 = —0.568 or s;1 = 0.823
0, =124.6° (7.40)

When 603 = 120°, by summing the square of Elements (1,1) and (2,1) from RHS,

1.93 = 1.518 — v/2¢2 + 0.268s2 (7.41)
Let
cos ¢ = 7D2 and sing = % (7.42)
where
D = 1/(—V/2)? + 0.2682 (7.43)
Therefore,

05 + ¢ = 05 — 169.3 = +73.37
65 = 242.7° or 95.94° (7.44)

Substituting 3 = 120° and 6, = 242.7° into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of ¢; and s1. Solving the equations gives

c1 = 0.866 or s; = 0.499
01 = 29.96° (7.45)

Substituting 05 = 120° and 6> = 95.94° into Elements (1,1) and (2,1) from RHS yields two
simultaneous equations of ¢; and s1. Solving the equations gives

c1 =0.0089 or s1 =1
01 = 89.49° (7.46)

Example 7.5 (IK of PUMA): The PUMA robot shown in Figure 7.2(a) is a milestone in the
history of industrial robots. The major advantage is that its position and orientation are decoupled
in inverse kinematics, making analytical solutions possible. As shown in Figure 7.2(b), the PUMA
robot consists of an RRR robot (the first three joint axes) and a robotic spherical wrist (the last
three joint axes intersecting at a single point P). The DH table is shown in Table 7.2, where the
offsets, ds and d4, in the actual PUMA robot, are assumed to be zeros. The problem here is to find
the solutions to the inverse kinematics of the PUMA robot shown in Figure 7.2, i.e., find the joint
angles in terms of the position and orientation of the end-effector.

Solution: Since the three joints in the wrist only change the orientation of the end-effector and
have no effect on the position of Point P, we can readily use P to represent the position of the
end-effector. Therefore, the position of the end-effector can be first used to solve for the first three
joint angles, while the orientation of the end-effector is then used to solve for the last three joint
angles. This is the feature of the decoupling of the PUMA robot. The total solutions will be derived
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(aj | (b)

FIGURE 7.2
PUMA robot and its kinematic model.
TABLE 7.2
DH parameters of the PUMA
robot
i a1 (°) ai di 6
1 0 0 0 6
2 -90 0 0 6
3 0 az 0 03
4 -90 as 0 94
5 90 0 0 065
6 -90 0 0 6

in two steps: 1) to solve the position of the end-effector for the first three joint angles and 2) to
solve the orientation of the end-effector for the last three joint angles.

According to the DH parameters in Table 7.2, the transformation between the frame attached
to the end-effector and the ground frame can be expressed as

T = °T1(61) "Ta(62) *T3(03) *Ta(0s) *T5(65) *Ts(6s) (7.47)
where

[cosf; —sinf;y 0 0 [ cosfs —sinf 0 O

0 _|sin6 cos 04 0 0 1 _ 0 0 1 0
Ti=1" 0 10 T2=1_Gnoy —cos 0 0
| 0 0 0 1 | 0 0 0 1

[cosfs —sinfz 0 as [ cosy —sinfs 0 a3

2, sin 03 cosfls 0 O 3 0 0 1 0
571 o0 0 1 0 * 7 |—sinfs —cosfs 0 0O

| 0 0 0 1 | 0 0 0 1

[cosfs —sinfs 0 O [ cosOg —sinfg 0 O

dp. 0 0 -1 0 s 0 0 1 0
57 |sinfs  cosOs 0 0 57 | —sinfg —coshs 0 O
0 0 0 1 | 0 0 0 1

LAly, M.F., Abbas, A.T. and Megahed, S.M., 2010. Robot workspace estimation and base placement
optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing
systems. International Journal of Computer Integrated Manufacturing, 23(12), pp. 1133-1148.
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1. Position:
Since Point P is the origin of {4}, {5}, and {6}, its position in {0} is given by

’p = °T1(61) 'T2(02) *T3(63) *Ta(6a) 'p (7.48)

where p = [xp Yp  Zp l]T and ‘p = [0 0 0 1]T while °p is known in the problem of
inverse kinematics. Note that *p = *T4(64) *p = [as 0 0 1]T, which is the origin of {4}
measured in {3} and invariant. Therefore, (7.48) can be simplified as

p = "T1(61) 'T2(02) >T3(63) °p (7.49)

where only three variables present. Applying equation balancing to (7.49) yields

0.
T (61) °p = "Ta(62) *T5(05) °p (7.50)
or
cos b1z, + sin 01y, cos 05 cos O3a3 — sin 0 sin O3a3 + as cos 02
—sin61xp +cosbryp | 0 (7.51)
2p " | —sin 63 cos fzaz — cos Oz sin fz3a3 — asz sin o '
1 1

Applying Example 7.2 to the second row of (7.51) yields
015 = £m/2 + Atan2(—xp, yp) (7.52)

where 015 as the analytical solution of #;. Substituting this solution into the remaining two equations
in (7.51) yields

cos 015y + sin 615y, = cos B2 cos O3az — sin 02 sin Ozas + az cos b2 (7.53)

zp = — sin 02 cos Osaz — cos Oz sin O3a3 — az sin 02 (7.54)

To simplify the expressions of the equations, we introduce a lumped constant, k1 = cos 615z, +
sin 015yp, such that (7.53) can be written as

k1 — azcosfy = COS(92 + 93)(13 (755)
—Zp — a2 sin Oy = sin(92 + 93)(13 (756)

According to the Pythagorean identity, the sum of the squares of the two equations in (7.55) gives
(k1 — az cos02)” + (—zp — azsinba)® = a3 (7.57)

Introducing more lumped constants, we can write (7.57) as
ko cosBz + ks sinOy = ka (7.58)

where k2 = —2k1a2, k3 = —2zpa2, and ks = a3 — ki —a? fzg. Applying the solution of Example 7.2
to (7.58) yields the solution of 02, i.e.,

025 = £arccos(ka/D2) + ¢2 (7.59)

where Dy = \/k2 + k2 and ¢ = Atan2(ks, k2). Substituting the solution back into (7.55) gives the
solution of 03 directly:

03s = Atan2(—zp — az sinfas, k1 — az cosOas) — Oas (7.60)

There are, in total, four solutions for one position of Point P.
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Orientation:

The orientation of the end-effector is given by the orientation part of (7.47)

"Rs = "Ri(61) 'Ra(62) *Ra(63) *Ra(64) *Rs(05) "R (0s) (7.61)
Since 61, 62, 03 have been solved already, (7.61) simplifies into
*Re = *Ru(01) "Rs(05) "Re(66) (7.62)

where

i1 Ti2 T3
*Re = 3R2(93s) 2R1(92s) 1R0(91s) Re = |ra1 722 723 (7.63)

31 T32 T33
To balance the number of variables on both sides, (7.62) can be written as
3
RI (04) *Re = “Rs(05) "R (0s) (7.64)

Substituting the transformation matrices in (7.47) into (7.64) gives

C4T11 — 84731 C4T12 — 54732 C4T13 — S4T'33 C5C6  —C586 —S5
—S84T11 — C4T31  —S4aT12 — CaT32 —S4T13 — CaT3z| = | S6 Ce6 0 (7.65)
T21 22 T23 S5C6  —S586  Cs

Entry (3,3) of (7.65) gives
055 = *arccos(r23) (7.66)
Entries (3,1) and (3,2) of (7.65) give
0ss = Atan2(—raa/ sinOss, 721/ sin ss) (7.67)
Substituting the above solution into Entries (2,1) and (2,2) of (7.65) yields
¢4 = (—sgsT12 + C6s711)/(T12731 — T11732) (7.68)
s4 = (86sT32 — CosT31) /(12731 — T11732) 7.69)
Finally, the solution of 6, is obtained as
045 = Atan2(sesTa2 — CosT31, —S6sT12 + CosT11) (7.70)
All eight solutions are summarised below.
015 = +7/2 + Atan2(—xp, yp)
025 = +arccos(ka/D2) + ¢2
035 = Atan2(—zp — az sinfas, k1 — az cosO2s) — Oas
045 = Atan2(sesT32 — CesT'31, —S6sT12 + CosT11)
055 = +arccos(ra3)
0ss = Atan2(—ra2/ sinOss, 21/ sin Oss) (7.71)
where

k1 = cosO1sxp + sin O15yp
kz = —2]€1CL2
k3 = —ZZpaz

2 2 2 2
k4=a3—k1—a2—zp

Dy = /K3 + k3

¢2 = Atan2(k3, kz)

i1 T12 T13
ro1 T2 T23| = “Ra(03s) 'Ra(fas) "Ri(61s) "Re
r31  T32  T33
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7.3 Univariate Polynomial

It is often impossible to find analytical solutions to the IK of some general high-DoF robotic
manipulators. One approach is to reduce the kinematics equations into a univariant poly-
nomial. Solving this polynomial gives all possible solutions of one variable, which can then
be used to find out all sets of solutions to the IK. The order of the univariant polynomial
varies depending on the complexity of the robot.

In order to derive a univariate polynomial of a robot, the basic kinematics relation based
on the transformation matrices must be written in the form of polynomials. The common
way is to utilise the tangent half-angle formulas given by

2T 1—72

sinf = ——, cosf = ——
1+ 72 1472

(7.72)

where

7= tan (g) (7.73)

Given the range of 6 being [—, ), the range of 7 is (—oo, +00). This feature is convenient
because there is no additional constraint on the value of 7 when polynomials are solved.
Further, since 1 + 72 is always positive, Formulas (7.72) do not have any singularity.

Example 7.6 (Univariate expression): Express the general DH transformation matrix in terms
of polynomials.

Solution: The general transformation matrix is given by (6.3). Applying (7.72) to (6.3), we obtain

B 727'7; 0 AaFl
i1 _ l 21;cosa;—1 Bceosa;—1 —Asino;_1 —Asino;_1d; (7.74)
v A |27 sina;—1  Bsinoa;—1  Acosay—1 Acosa;—1d; '

0 0 0 1

where 7; = tan (%), A=1+7? and B=1— 1.

Example 7.7 (IK of a cylindrical robot): Find all valid joint configurations for a cylindrical
robot defined Figure 7.3 when the end-effector is located at

0.1
%ps = 0.05| m (7.75)
0.3

Solution: Here, we simply equate the position of the end-effector to the analytical solution:

0.05cos 1 + dsz sin 64 0.1
0.05sin0; — dzcosf;| = |0.05 (7.76)
do 0.3
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N
{

r—ﬁ‘"—/}n = 0.05 cos 01 + ds sin 6,
= 0o ds Op3 = |0.05sin6; — ds cos 6,
1 ds

FIGURE 7.3
A cylindrical robot with z-axes defined and end effector position ps.

By inspection, we already see that prismatic extension d2 = 0.3 m. To solve for 6; and ds3, we
must utilise the two upper equations in Equation (7.76). We can try the sum-squared method on
the first two equations to try and isolate the unknown variables:

(0.05 cos 61 + dz sin61) + (0.05sin 61 — dz cos 61) = 0.1° + 0.05°
0.0025 (cos 01 + sin61%) + ds® (cos 01° + sin 01%) = 0.0125
d3® +0.0025 = 0.0125
ds = £0.1 (7.77)
Therefore, prismatic extension ds = 0.1 m. However, we generally only consider positive values
for prismatic actuators. Hence, we will choose to keep only the positive solution d3 = 0.1 m. For the

final variable 01, we choose the first equation from Equation (7.76) and use the tangent half-angle
substitution in variable u (Equation (7.72)) to solve for 6;

0=0.05cosf; +dszsinf; — 0.1

1—? 2u

= (2ds — 0.15)u* — 0.05 (7.78)

Substituting ds = 0.1, therefore,
u==+1 (7.79)
and
01 = 2Atan2(u)
= 2Atan2(+1)
= £ rad (7.80)
Note that there are two solutions for 61 due to the tangent half-angle substitution. It is impor-
tant to validate the solutions found using this method because the roots of a quadratic may not
have any physical meaning in the context of a robotic system. We do this by substituting the inverse

kinematic solution into the forward kinematic solutions as defined in Figure 7.3. Substituting into
forward kinematics “p3 = “p3 (61, da, ds)

0.1 —0.1
Ops (g,0.3,0.1) = [0.05| and “ps (,%0370.1) — |-0.05 (7.81)
0.3 0.3
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As observed, the first solution matches the target solution. Therefore, the inverse kinematic
solution to this problem is

0 = g rad (7.82)
dy = 0.3 m (7.83)
ds =0.1m (7.84)

7.4 Dialytic Method

The dialytic method efficiently reduces the number of polynomials into a simpler form by
removing one or more variables. It can eliminate more than one variable simultaneously.

Example 7.8 (Solving simultaneous equations): Reduce the two equations in (z,y) given by
(7.85) and (7.86) into a univariant polynomial in x.

Y 4+ary+1=0 (7.85)

ny —4=0 (7.86)

Solution: This problem can be readily solved by substituting the expression of y based on (7.86)
into (7.85). Consider a vector of [y* y 1]T containing only y. Then (7.85) is the dot-product

of this vector with [1 = 1]T, while (7.86) is the dot-product of this vector with [0 z” —4]T.
Create a new equation by multiplying (7.86) with y

22y — 4y =0 (7.87)

which is the dot product of [y2 Y 1]T and [JC2 —4 O]T. Therefore, (7.85)—(7.87) can be
written as

1 T 1 Y 0
0 2 —4||yl|=1]0 (7.88)
2 —4 0 1 0

where the square matrix must be singular since [y2 Y 1} " is a non-zero vector. The singularity
of this square matrix yields

2 +42° +16 =0 (7.89)
which is the univariant polynomial we are seeking. The answer can be readily verified.
Example 7.9 (IK of a 6R robot): The solutions to the IK of a general 6R robot are given in
the following four equations,
CiTyTs + 2BiTots + Ais + Fy73 + 2Eima + D; = 0 (7.90)

where i= 1, 2, 3, 4, 72 = tan(62/2), 73 = tan(f3/2), and As,...,F; are quadratic functions in
71 = tan(61/2). Reduce (7.90) into an univariant polynomial in terms of ;.

Solution: Multiplying 72 on both sides of (7.90) gives

CiT37s + 2BiTs 73 + Aiats + Fi75 + 2E;75 + DiTa = 0 (7.91)
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Rewrite (7.90) and (7.91) in a matrix form:

Mx=0 (7.92)
where
i 0 Cl 2B1 0 F1 Al 2E]_ Dl- -7'237'3-
O CQ 232 0 F2 AQ 2E2 D2 7'227'3
0 03 2B3 0 F,?, A3 2E3 D3 T2T3
|0 Cs 2Bs 0O Fi Ay 2E; Dy |7
M = Cl 231 Al F1 2E1 O D1 0 ’ x = 7'22 (793)
CQ 2B> Az Fy 2F> 0 Do 0 T3
03 2B3 A3 F3 2E3 0 D3 0 T2
|Cs 2By Ay Fy 2B, 0 Dy 0 | | 1 ]
Equation (7.92) indicates that M is singular, i.e.,
det(M) =0 (7.94)
Since A,, ..., F; are all quadratic functions in 71, it can be readily shown that
16
det(M) = axrt = (7.95)
k=0

which is the univariant polynomial we are seeking. Solving (7.95) gives all solutions of #;. Once 6;
is obtained, 02 and 03 are to be solved similarly upon (7.90).

MATLAB can be used to solve the inverse kinematics of a serial manipulator alge-
braically, but only on a case-by-case basis as there is no unified method to solve the inverse
kinematics of general serial manipulators.? The method presented here utilises the tangent
half-angle substitution method as expressed in Equation(7.72), which is very useful for solv-
ing transcendental equations normally seen in forward kinematic equations. The rest of the
IK method requires a general understanding of both geometry and algebraic equations, such
as using squared-sum operations to cancel out variables.

Example M7.1 (RR manipulator): Solve for 61 and 0 when given a position P for RR robot
shown in Figure 7.4.

Solution: We are presented with two forward kinematic expressions that describe the end-effector
position as a function of #; and 62, xp and yp. Observing these two equations, we can already see
that 01 can be eliminated by taking their squared-sum:

r= (ll cosby + I COS(91 + 92))2 + (l1 sinf1 + I sin(91 + 92))2
=112 + 20115 cos O + 15° (7.98)

where r = zp2 + pr. Therefore, the obvious answer for 05 is

l12 +l22 *T’)

02 = 7 £ arccos ( ST

(7.99)

Now that 6 is solved, we can solve for 6;. This can be calculated from either xp or yp equations
but is more challenging to solve using the algebraic method because of coupled sine and cosine terms.
However, the tangent half-angle substitution can make light work of this problem for solving 6.

2There are research papers that attempt to generalise the IK for six-DoF serial manipulators, but the
methodology is quite complex and is definitely outside the scope of this textbook.
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xp =1y cosly +lacos(fy +02) (7.96)
yp = l18infy + 1o sin(91 + 92) (797)

FIGURE 7.4
RR manipulator with the forward kinematic equations.

First, choose either xp or yp equations to work with, then expand it. For this example, we will
work with the xp equation,

xp = l1cosby + Iz cos(01 + 02)
= [1 cos B + Iz cos 01 cos O — 1o sin 07 sin 02 (7.100)

Once expanded, we can perform the tangent half-angle substitution

u? —1 . 2u
cos b, = e sin6;, = e (7.101)
where
u = tan % (7.102)

After substituting Equations (7.101) into Equation (7.100), the univariate polynomial for 6:, after
simplification is

(=l — Iz cos 02)u” + (I1 + Iz cos f2)u — 202 sin B2 (7.103)

Notice that Equation (7.103) is a quadratic, made up of all known quantities (s is solved first).
Therefore, we can use the quadratic formula to solve for u. Hence

w— l> cos 02 &= \/2(l12 + 21115 cos 02 + l22)
o l1 4+ 1o cos B

(7.104)

Finally, we can solve for 6; using Equation (7.102). Because Equation (7.104) is a fraction, we
can actually use the two-parameter Atan2(y,z) so that the answer for is reflected in the correct
quadrant:

01 = 2Atan2 (l1 + I3 cos 92, l> cos 02 £ \/2(l12 + 21115 cos 02 + 122)> (7105)

Therefore, our inverse kinematic solution for the RR manipulator, noting the dependent vari-
ables, is:

2 2
hotls T(xP’yP)> (7.106)

02(xzp,yp) = m £ arccos ( SR

0, (92) = 2Atan2 <l1 + l2 cosba, l2 cos Oy £ \/2([12 + 21115 cos O + l22)) (7107)
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Our IK solution has a total of four solutions, two for each angle. Notice that 6; has two solutions
because of the £ in the second parameter because the solution for €; is derived from the single
equation xp. So, although the answer for 0, satisfies the zp constraint, it may not satisfy the yp
constraint. Hence, two solutions (out of four in total) will be invalid because they do not meet the
yp constraint. This is one of the disadvantages of using the tangent half-angle substitution, as it
can result in invalid extra solutions without checks.

The following MATLAB code performs the above steps to solve the inverse kinematics for this
problem, with the ensuing command window output.

N}
S UlA W N =

WWwWwWNNNNNNNR
R~ OO ®m 3

clear

syms 11 12 thl th2 x y r real

% Kinematic equations

x_p = lixcos(thl)+12*cos(thl+th2)

y_p = li¥sin(th1)+12%sin(thi+th2)

% Solve for th2 by squared sum of x and y
% r = x"2 + y°2 (radial length of position)
r_s = simplify(x_p~2+y_p~2)

t2 = solve(r_s == r, th2)

% Use tangent half-angle substitution to solve thi
syms u real
X_S = X_p - X
x_u = subs(expand(x_s),
{cos(thl), sin(th1)}, .
{(1-u"2)/(1+u~2), 2*u/(1+u”~2)});
x_u = simplifyFraction(x_ux(1+u~2))

% Extract coefficients (quadratic, lowest order first)
x_c = coeffs(x_u, u)

% Use quadratic formula to solve for u
a =x_¢c(3); b= x_c(2); ¢ = x_c(1);
ul = [(-b + sqrt(b~2 - 4*ax*c)); (-b - sqrt(b~2 - 4*ax*xc))]

% Convert roots of u into angle
t1 = 2xatan2(ul, 2%*a)

% Create function handles

t2_f = matlabFunction(t2)
t1_f = matlabFunction(t1l)
X_p =

12xcos (thl + th2) + ll*cos(thl)

y-p =
12*xsin(thl + th2) + 1li1*sin(thl)

r_s =
1172 + 2%cos(th2)*11%12 + 1272

t2 =

pi - acos((117°2 + 1272 - r)/(2%11%12))

pi + acos((11°2 + 1272 - r)/(2*11%12))

X_s =

12*cos(thl + th2) - x + lilxcos(thl)

11 - x - 11%*u”2 + 12xcos(th2) - u”2*%x - 2%12*xuxsin(th2) - 12*u”~2*cos(th2)

[ 11 - x + 12%cos(th2), -2*%12*sin(th2), - 11 - x - 12%cos(th2)]
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ul =

2% (((11 - x + 12xcos(th2))*(4*11 + 4xx + 4x12%cos(th2)))/4 + 12°2xsin(th2)°2) " (1/2) +
2%12%sin (th2)

2x12*sin(th2) - 2%(((11 - x + 12*cos(th2))*(4*11 + 4*xx + 4x12*cos(th2)))/4 + 12 2*xsin(
th2) "2) " (1/2)

t1 =

2*xatan2 (2% (((11 - x + 12*cos(th2))*(4*x11 + 4*x + 4*12*cos(th2)))/4 + 12"2*sin(th2)"2)

~(1/2) + 2x12*sin(th2), - 2x11 - 2xx - 2%12xcos(th2))
2*¥atan2 (2*x12*sin(th2) - 2x(((11 - x + 12xcos(th2))*(4*11 + 4xx + 4x12%cos(th2)))/4 + 12
“2%sin(th2)"2) " (1/2), - 2%11 - 2%x - 2%12*cos(th2))

t2_f =
function_handle with value:
@(1l1,12,r) [pi-acos ((-r+11.72+12.72) ./(11.%12.%2.0));pi+tacos ((-r+11.72+12.72)./(11.%
12.%2.0))1
ti_f =
function_handle with value:
@(11,12,th2,x) [atan2(sqrt (((11-x+12.*cos(th2)) .*(11.%4.0+x.%*4.0+12.*xcos(th2).%*4.0))
./4.0+12.72.*%sin(th2) .72) .*2.0+12.*sin(th2) .%2.0,11.%-2.0-x.%2.0-12.*xcos (th2) .*2.0)

.*2.0;atan2(sqrt (((11-x+12.%cos(th2)) .*(11.%4.0+x.%4.0+12.%cos(th2).%4.0))./4.0+12
."2.*%sin(th2).72) . x-2.0+12.*sin(th2) .*%2.0,11.%-2.0-x.%2.0-12.*%cos (th2) .*2.0) .*2.0]

Example M7.2 (RR manipulator): For the same RR manipulator in Example M7.1, solve for
01 and 92 lf P= (]..0,0.5)7 ll = 1.0 and lg = 0.5.

Solution: Use the function handles defined in Example M7.1 to find the four solutions for the
inverse kinematics. The following script solves this problem, assuming script Inline 7.1 was executed
first.

x = 1; y = 0.5; % Define goal position
11 = 1; 12 = 0.5; % Link lengths
r = x"2 + y~2; % Radial length r

% Solve theta_2
t2 = t2_f (11, 12, r)

% Solve theta_1
t1 = t1_f£(l1, 12, t2, x)

% Collate angles

t = [tl1 reshape([t2 t2]°,[]1,1)];

% Wrap angles so that we only get within range [-pi pil
t_all = mod(t+pi, 2*pi) - pi

% Check answers
p_f = matlabFunction([x_p y_pl) % Function handle for EE pos

% Find position of EE for each 4 solutions
pos = cellfun(@(th) p_f(11,12,th(1),th(2)), num2cell(t_all, 2), ’Uni’, 0);
pos = vertcat (pos{:}) % Convert cell to matrix

% Find sum squared error
err = sum((pos - [x yl). 2, 2)

% Remove answers that have EE error > le-4
t_final = t_all(err < 1le-4, :)

t2

1.5708
4.7124

t1
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5.3559

-6.2832

6.2832

-5.3559

t_all =

-0.9273 1.5708
0 1.5708
0 -1.5708

0.9273 -1.5708

p-f =
function_handle with value:

@(11,12,th1,th2) [12.*cos(thl+th2)+11.*cos(thl),12.*sin(thi+th2)+11.*sin(th1)]

pos =
1.0000 -0.5000
1.0000 0.5000
1.0000 -0.5000
1.0000 0.5000
err =
1.0000
0
1.0000
0.0000
t_final =
0 1.5708
0.9273 -1.5708

The variable t_all contains all four IK solutions. However, it is known that two of them are invalid,
hence error-checking is required. By substituting the four solutions into the forward kinematic
equations (line 20), we arrive at the matrix pos, which contains the end-effector positions for the
four IK solutions. By calculating the sum squared error (line 24), we find that IK solutions 1 and
3 are invalid. Hence the two valid IK solutions that remain in t_final (in degrees) are

TABLE 7.3
IK solutions for the RR manipulator
in Figure 7.4 for P = (1.0,0.5).

IK Solution 01 92
1 0° 90°
2 53.13° -90°

7.5 Conclusion

In this chapter, we described the inverse kinematic problem, where, for a serial manipulator,
we find the joint configurations required to achieve a particular end-effector pose. This pose
can be described by a point or transformation matrix. This is an important and highly
practical problem to solve in robotics, as we typically describe the robot’s end-effector pose
in the task space coordinates rather than joint space.

In general, the inverse kinematics problem is difficult to solve compared to the direct
kinematics of serial robotic manipulators, and there is no universal approach to solving such
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problems. However, we have introduced some mathematical techniques which can be used
to solve these difficult problems.

1. Balancing: Keep the numbers of variables on both sides of equations as balanced
as possible.

2. Decoupling: Identify a subset of solvable equations containing fewer variables
and decouple them from the rest of the equations.

3. Lumping: construct lumped constants to simplify the expressions of the equa-
tions.

4. Forming: Form the equations into familiar forms and utilise the given solutions,
such as (7.10).

In addition to these techniques, we also find that the geometric method is a viable
approach to solving the IK problem. This is an intuitive method that requires a geometrical
understanding of the robot’s kinematic motion. Another mathematical method to solve
transcendental expressions is the tangent half-angle substitution method. The advantage of
this method is that it can be somewhat generalised for programming purposes so that it
can be solved in numerical software such as MATLAB.

7.6 Exercises

Problem 1. Derive the inverse kinematics solutions for the three-link manipulator shown
in Figure 7.5, when

1. the target transformation matrix °T; is given

11 Ti2 T3 X
T r T
OT3 _ [T 22 23 Y
r31 T3z T33 Z
0 0 0 1

2. the target position of an end effector positioned *py, = [1 0 O]T in Frame {3}
. . . O T
is given in Frame {0} as "p, = [x Y z]

The DH parameters of the manipulator are as follows

i a1 a1 di 0
1 0 0 0 6
2 90° l1 0 65
3 0 lo 0 03

Problem 2.
For the planar robot shown in Figure 7.6, the transformation matrices between the base
and the tool frames are:

cic —s1 0 0 10 0 l
0 S (&1 0 0 1 _00—1 —dg
Ti=1o 0o 10" =01 0o o
0 0 0 1 00 0 1
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FIGURE 7.5
The RRR manipulator.

s3 ¢cg 0 0 1 0 0 I3
s |00 1 0l s34 010 0
T3_03—5300’T40001
0 0 0 1 00 0 1

Note: Your answers should reflect the use of these transformation matrices, or otherwise
the correct T, generated by the matrices above. Do not reassign frames and use a different
set of matrices, or they will be marked as incorrect.

1. Solve the inverse kinematics of the robot using the algebraic method; that is
find equations for 01, do, and ¢3 in terms of the arbitrary location and orientation
of the end effector shown in °Ty .

1 Ti2 T3 X
21 T22 T2
o, — 3 Y
31 T32 T33 Z
0 0 0 1

Zo, T1
01
Yo, Y1 /f\ )
D)

FIGURE 7.6
Planar robot for Problem 2.
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FIGURE 7.7
A serial spherical robotic manipulator.

2. If the transformation matrix relating the base and tool frames is:

—0.2588  0.9659 0 3.69680

op, — |~0-9659 —0.2588 0 —8.0599
4 0 0 1 0

0

0 0 1

Find all valid solutions for the joint variables, if one exists. Let [y = 2 and I3 = 4, and
assume do > 0.

Problem 3. Counsider a serial manipulator with three revolute joints as shown in Figure
7.7.

1. Frame {B} is defined for the base of this manipulator, as shown in Figure 7.7.
Find the position of the origin of frame T with respect to {B}, i.e., find Ppr,

2. With the forward kinematics found in (a) and link lengths: I = 0.5 m, Iy = 0.2
m, I3 = 0.4 m, and [; = 0.3 m, evaluate the position of the Tool point Tprg when
91 = OO, (92 = 300, and 93 = 90°.

3. Assume that the position of the Tool with respect to {B} is given by

—0.058
Bpr,., = |—0.250
—0.566

Let the link lengths be: 1 = 0.5 m, ls = 0.4 m, I3 = 0.4 m, and 4 = 0.2 m.
It is also known that g3 = 30°. Conduct the inverse kinematics to find the joint
displacements 6; and 05.

Problem 4. Given a robotic manipulator. The position of the end-effector with respect to
the ground frame is given by

Pz c1(laca + l3c03)
py| = |s1(laca + l3c23)
P —lgs3 — l35023

where 0;, for i = 1, 2, 3 are joint angles.
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1. Derive the solution to the inverse kinematics of this manipulator based on the
above formula. Identify how many different solutions in total.

2. Givenly =3, 13 =2, p, =4, p, =2, and p, = 1, find the numerical values of g;,
fori =1, 2, 3.

Problem 5.

The schematic structure, frames, dimensions of links and home positions of joints of the
legs of the Bioloid robot are shown in Figure 7.8. The configuration of the right knee (Joint
ID 13) of the Boiloid robot with respect to a reference frame {ORL} (origin-right-leg, {O}
hereafter for simplicity) on its body is given by the following transformation matrix

o [0
o Ris “pis
T =
w=| o ]
where
—S87 sin(@n — 913) — C7C9 COS(911 — 913) S7 COS(@H — 913) — C7S9 sin(911 — 913) C7C9
OR13 = Cr sin(011 — 013) — 8789 COS(911 — 913) —C7 COS(011 — 913) — S789 sin(911 — 013) C7S89

Co COS(911 — 013) C9 Sin(ell - 915) S9

—76.9857511 — 76.980789011
Opis = | 76.98¢rs1; — 76.98s759c11
12075 + 76.9809611

1. Derive the analytical solution for Joints 7, 9, 11, and 13, so that the right knee
reaches a given position
Pz
Op13 = |Py
Pz

while z13 and z13 are in the same directions as zp and xp, respectively.

dl = 71.75 mm
d2 = 32 mm
d3 = 42.5 mm
d4 = 38.75 mm
d5 = 120.75 mm 11.24°
al = 15 mm L "

a2 = 68 mm
a3 = 106 mm
a4 = 76.98 mm

a5 = 76.93 mm 290
a6 = 33 mm 2 E

\

D18 D17y D15

Z

11.05°
/

FIGURE 7.8
Legs of the Bioloid robot.
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2. From the analytical solution, calculate the numerical solution when

~19.245
Op15 = | 66.667
154.083

Problem 6. In deriving the solution of the inverse kinematics of a general three-DoF robot,
the following equations are formulated

12052 + 30,20 — 40052 +4 =0

o022 + 1120 — 30052 +1=0

Please reduce the above two equations into a univariant polynomial in I';.

Problem 7. The position of the end-effector of the JACO manipulator, with respect to its
proximal joint, is given by

(228.5 — 80.4c5)s4 — 160.7cys5
3pr = 424.8 + 139.2¢5
(228.5 — 80.465)64 + 160.75455

Assuming only 6, and 05 are actuated, determine all sets of numerical solutions (6, and 05)

for the end-effector to reach
0

3p; = [494.4
1
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Jacobian Analysis

In Chapter 2, the time derivative method was used directly on the forward kinematic equa-
tions of a serial robot, which we then used to derive the robot’s Jacobian matrix. However,
we will see that this method becomes more complicated as robots exhibit more degrees
of freedom (DoF). To alleviate the challenge, this chapter will introduce a new method
for velocity analysis called wvelocity propagation, an iterative method that can simplify the
derivation of velocity equations.

We will further expand on Chapter 2 and show that static analysis, singularity analysis,
and workspace analysis of a robotic manipulator are all linked to its Jacobian matrix for
the general serial manipulator case.

8.1 Jacobian Matrix

A Jacobian matriz is defined as a multidimensional form of the derivatives of a set of
functions. For example, given a set of functions

f1 = f1(331,...,.13n)

fm:fm(l‘ly-“axn) (81)

The time derivatives of the above functions are given by
po_ a]01 . 8f1 .
fl—ax1$1+.‘.+8xn$n
fm—aimx1+~-~+%xn
which can be rewritten in a matrix form, i.e.,
f=Jx (8.2)
where f = [f1 fm]T, X = [3’:1 m‘n]T, and
on oh
8x1 o 8xn
I=| (83)
8,f77L afm
8x1 o &cn

DOI: 10.1201/9781003614319-8 132


https://doi.org/10.1201/9781003614319-8

Jacobian Matriz 133

FIGURE 8.1
RR robot.

Here J is the Jacobian matrix of the functions in (8.1). In general, the Jacobian for a
serial robot can be obtained by the definition (8.2) directly. If the functions represent the
position of an end-effector, the time derivatives are its velocity. We will also show that the
Jacobian is quite useful in static and workspace analysis later.

Notation

From this point, unless stated otherwise, these common mathematical symbols represent
the following vectors when handling Jacobians

q Generalised vector of joint space variables
x  Generalised vector of task space variables

Example 8.1 (Linear velocity via differentiation): Find the velocity of the end-effector of
the 2R robot shown in Figure 8.1. Assume I; = Iy = 1 m.

Solution: The forward kinematics of this robot was derived previously as

Tp| _ |1 + 12
UYp S1 + S12
The velocity of the end-effector is obtained by the differentiation as

.fp _ —51 — S12 —S19 él _ —81.91 — 812(91 +92) (8 4)
Up atcaz a2 | |6 c1th + ci2(6h + 62) .

Example 8.2 (Jacobian matrix): Find the Jacobian matrix for the end-effector for the cylindrical
robot shown in Figure 8.2.

Solution: Take the time derivative of the end-effector position vector *pz such that we get
sin 91d3 + cos 91d391 — ag sin 91é1

= Of)E = | — cos O1ds + sin O1d3601 + a3 cos 0164 (8.5)
da
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017 d2

PE = |assinf; — dszcosby
da

CLF:‘/E} = 0 . az cos 6y + dzsin 04

FIGURE 8.2
A cylindrical robot with end-effector position *pg derived from forward kinematics.

Rewrite Equation (8.5) in the following form

“pe = J(@)q (8.6)
d3zcosfy —azsinf; 0 sin 64 9_1

= |azcosf; +d3sinf; 0 —cosfi| |da (8.7)
0 1 0 ds

where the Jacobian is the 3 X 3 matrix J(q) which maps joint velocities § to the end-effector
velocity ®pg for a given joint configuration q.

Example 8.3 (six-DoF Jacobian matrix): Find the general structure of the Jacobian matrix
for the six-DoF PUMA robot with a spherical wrist, as shown in Figure 8.3, that maps joint velocity
to end-effector linear velocity.

Solution: Assume the position of the end-effector is given by point P. Then the position of P in
{0} is given by

op = 0T1(91) 1T2(92) 2T3(93) 3T4(94) 4T5(05) 5T6(06) 6p (88)

where ‘T, 10;41 are derived from forward kinematics as described in Example 6.6. The above

FIGURE 8.3
A six-DoF PUMA (articulated) robot with a spherical wrist.
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equation can then be expanded as

Tp :mp(01,...,06) (89)
Yp = yp(01,...,06) (8.10)
zp = 2p(01,...,06) (8.11)

which describe the position of the end-effector, given all joint positions 61 to 6s. Therefore, the
overall structure of the Jacobian is

Ozp Oy Ozp
g&l geg gHG
Yp Yp Yp
=\ = - T 12
J 001 Q02 006 (812)
9zp 0z 9z
061 90, T 06

which is a 3 X 6 matrix that maps joint velocities to end-effector linear velocities at a given joint
configuration by

'p_ J(0)0 (8.13)
where 0 = [01, e ,HS]T.

Example 8.4 (Linear velocity via Jacobians): Referencing the same PUMA robot in Figure
8.3, find the linear velocity of the wrist frame for any given joint configuration and joint velocity,
where the link lengths are L1 = 0.5 m between 22 and z3, and L2 = 0.4 m between z3 and za.

Solution: To find the linear velocity of the wrist frame, we need to find the Jacobian, which
maps joint velocities to the linear velocity of {4} for any given joint configuration. We know from
Example 6.6 that

[cosf#y —sinf; 0 0O cos 02 —sinf; 0 O
0 | sin6 cos 01 0 0 1 _ 0 0 1 0
Ti=1" 0 10 To= 1 _Ging, —cosl 0 0 (8.14)
| 0 0 0 1 0 0 0 1
[cosf3 —sinf3 0 0.5
20 _ |sinf3 cosfz3 0 O
T3 = 0 0 1 0 (8.15)
| 0 0 0 1
and the position of the wrist relative to {3} is
’ 0.4
3pw = | 0
0
Therefore, the position of the wrist relative to ground Frame 0 is
’pw = "T1 'T2 °Ts °pu (8.16)
0.4 cos 6, cos(02 + 03) + 0.5 cos 02
= |0.4sin 0 cos(02 + 03) + 0.5 cos O2 (8.17)

0.4 Sin(az + 93) + 0.5sin 6>

Find the Jacobian by taking the time derivative of “p,, and rewriting it into the form as follows

Opw = J(G)é
—81(0.4623 + 0.5C2) —C1 (0.4823 + 0.582) —0.4s23¢1 9:1
= c1 (0.4023 -+ 0.562) *81(0.4323 -+ 0.582) 0.482381) 0o (818)

0 —0.4023 — 0.502 —044C23 93

Therefore, the linear velocity of the wrist frame for any given joint configuration and velocity
is given by Equation (8.18), where the Jacobian is represented by the 3 x 3 matrix.
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FIGURE 8.4
Pure translation.

8.2 Velocity in Translation and Rotation

Note: Please refer to the Glossary for notation on linear and angular velocities.

To gain in-depth insight into a robotic system’s velocity, we conduct the analysis in an
alternative way here. Firstly, we derive basic formulas for translation and rotation.

In the case of pure translation, as shown in Figure 8.4, the moving frame {1} is always
parallel to the ground frame {0}. The position of arbitrary point P attached to {1} is given
by

%p="0,+'p (8.19)

where 'p is an invariant vector. The velocity of Point P is obtained by differentiating the
above equation with respect to time, i.e,

0 ="0, (8.20)

its physical meaning is that all points on this body have the same translational velocity.

Angular velocity is associated with a body or a frame with rotation as shown in Fig-
ure 8.5, where a moving frame {1} rotates around a pivot O in the ground frame {0}. The
orientation of {1} in {0} is noted as “R,(t). Further consider a point P attached to {1},
whose position is given by

’p ="Ri(t) 'p = R(t) 'p (8.21)

where 'p is an invariant vector. The velocity of Point P is the time derivative of its position,
ie.,

’p=R()'p (8.22)
Since 'p = R7(t) °p, we have
p =R(t)'p =R(t) R" °p (8.23)
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FIGURE 8.5
Pure rotation.

Define © = R R7 such that the above equation becomes

'p =% (8.24)
It can be shown that Q is skew-symmetric, i.e., QT = — €. The proof is in Ap-
pendix 24.1. Further, a skew-symmetric matrix can always be written as
0 —w, Wy Wy
Q=1 w, 0 —wy | = [wy| X
—Wy Wy 0 W,

where w = [ww Wy wz} " is called the angular velocity, while €2 is called the crossproduct
matrix of the angular velocity. The proof is in Appendix 24.2. Hence, the relation between
a rotation matrix and the corresponding angular velocity is given by

Q=RR" =|wx] (8.25)

where [w x] stands for the crossproduct matrix of w. Imposing the frame indices on the
rotation matrix, (8.25) becomes

0. 0
Oﬂl = Rl R,{ = [gwl X] (826)

where Jw; is the angular velocity of Frame {1} with respect to Frame {0}, and also measured
in Frame {0}. This nomenclature is explained below.

A position vector of a point is defined as the vector from the origin of the frame to this
point. This frame is called the reference frame. The coordinates of this vector are obtained
by projecting this vector onto all axes of the same frame. We call this frame the measuring
frame. Implicitly, the reference frame and the measure frame for a position vector are always
the same. For example, the reference frame and the measuring frame of °p are {0}, while
those of 'p are {1}.

Different from a position vector, a velocity vector may have different reference and
measuring frames.
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I 200 km/h

Yg

{9} .
100 km/h %t

{t}

Yt

FIGURE 8.6
Relative velocities.

Example 8.5 (Velocity frames): As shown in Figure 8.6, there are three observers: one on the
ground using a ground frame {g}, one in a train using a train-attached frame {¢}, and one in a
spaceship using a ship-attached frame {s}. All the frames are illustrated in Figure 8.6. Given that
the train is travelling west at a speed of 100 km/h, while the spaceship is flying upwards at a speed
of 200 km/h. Find the velocity of the train with the reference frame and the measuring frame being
any one or two frames from {g}, {t}, and {s}.

Solution: Let us start with jv,, where s, g, ¢ refer to the measure frame {s}, the reference frame
{9}, and the frame of moving body {t}. The relative speed between the train and the ground is
100 km/h west. Since {s} is the measure frame, this velocity is projected onto the axes of {s} to
obtain jv¢, i.e.,

vy, = {180] (8.27)

The velocities of the train in different frames are summarised in Table 8.1. Note that when the
reference frame is {t}, the train’s speed is always zero. However, if the measuring frame is {t}, the
train’s speed does not have to be zero. If interested, you can try to find the velocity of the spaceship
in different frames.

A general motion consists of simultaneous translation and rotation as shown in Fig-
ure 8.7, where {1} moves with respect to {0}. The position of a point p attached to {1} is
given by

0p =001 + {p
=001+ "Ry {p (8.28)
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TABLE 8.1
Velocities represented in different frames
Ref. / Mea. | {g} {t} {s}
[—100 100] [0
{g} gvt = 0 :| ;Vt = |: 0 :| gVt = 100:|
[0 0 . [0
{t} %Vt = 0] gvt = {O] Ve = O:|
~ [-100] ,. [1o00] ,  [-200
fsb ] ave= _—200} Ve = [200} Ve = 1100 ]

The velocity of point p with respect to ground is obtained by differentiating the above
equation, i.e.,
. 0. 0.
'p= 01+ Riip
0 0 0
= 0+ Ry R{ (l)p
0 -
= 0, + % x%p (8.29)

which is measured in {0}. This velocity can also be measured in {1} by premultiplying the
rotation matrix on (8.29), i.e.,

1I~) _ IRO 1p

'R, 001 +'"Ro (" x Ip)

IR, "0y + 'Ro °91 x 'R Ip

_10, 41, % Ip (8.30)

21 Y1

20

/ :l:l
O1

Oo Yo

Zo

FIGURE 8.7
General motion.
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FIGURE 8.8
Velocities of connected links.

8.3 Velocity Propagation

The idea of velocity propagation is to find the velocity of the origin and the angular velocity
of the i + 1th frame, “*lw,,; and “*'v;, 1, based on the information of the velocity of the
origin and the angular velocity of the ith frame, ‘w; and “v;, and the joint velocity, ¢;11,
as shown in Figure 8.8. Angular velocities are easy to handle, in which the general formula
is given by

"Mwy = w; + jwg (8.31)
where {i}, {j}, {k}, and {m} are four different frames. The meaning of (8.31) is that the
angular velocity of {k} with respect to {i} equals the sum of the angular velocity of {j}
with respect to {i} and the angular velocity of {k} with respect to {j}. This is true for any
uniform measure frame {m}. Applying (8.31) to the system shown in Figure 8.8, we have

iwiJrl = iwi + éwi+1 (832)

where the measure frame is {i}, and the omitted reference frame is {0}. Premultiplying
1R, on both sides of (8.32) yields,

i i+1 i i+1
Z+1wi+1 = RL Zwi + ”‘iwi“ (833)

Note that ”ﬁwiﬂ is the angular velocity of Link ¢ 4+ 1 with respect to Link 4, measured in
{i 4+ 1}. Hence, its direction is along the Z axis of {i + 1}, while its magnitude is the joint
velocity, i.e.,

Mlwin = @i k (8.34)

. Therefore, (8.33) can be further written as

where k = [0 0 1]"

”1wi+1 = i+1RZ‘ iwi + g1 k (835)

which is the formula for the propagation of angular velocities. We can see that the angular
velocity of {i} and the joint velocity 6;,1 are transformed into the angular velocity of {i + 1}
in (8.33).
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Point (origin) velocity propagation is to find v, 1, by knowing ‘w; and “v;. According
to (8.29), the point velocity of the origin O;4; shown in Figure 8.8 can be written as

iVH_l = iVi + iwi X ipH_l (836)

This equation can be described in {i + 1} by multiplying 1R, on both sides of the above
equation, which gives

i+1vi+1 = i+1Ri(iV2‘ + ‘wz X ipi+1) (837)

Equation (8.37) is the formula for the propagation of point velocities.

Example 8.6 (Velocity of 2R via propagation): A 2R robot is shown in Figure 8.9. Use
velocity propagation to find the point velocity of Oz on the end-effector. Assume [; =l = 1 m.

Solution:
According to the previous example on the DK problem of this robot, we have the following
transform matrices.

C1 —S1 0 0 C2 —S2 01 ]. 0 0 ].
om _ |51 ca 0 0] 1 s2 c2 0 0] 2, (O 1 0 O
Ti=to o 10" ™=|o o 10" ™00 10
0 0 0 1 0 0 0 1 00 0 1

According to the formulas (8.35) and (8.37) and the above transformation matrices, we have
velocities in Table 8.2. Note that the point velocity and angular velocity of the end-effector obtained
are measured in the third frame. To get the velocities measured in the ground frame, premultiply
the rotation matrix on them, i.e.,

0 —51.91 — 812(91 +.92)
Ywi = "Ry *w3 = -0, Ovi="Rs’vs = | c16, + c12(01 + 02) (8.38)
01 + 62 0

One can readily compare the obtained results to the solution (8.4) obtained by the Jacobian in
Example 8.1.

Lo

FIGURE 8.9
2R robot, with joint angles 6.
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TABLE 8.2
Velocity propagation of the 2R robot

%

7 w; \Z
0 0 0
100 6] o o o

2 [0 0 91+92]T [8291 6291 O}T

3 [0 0 91+92]T [s201  cafy + (61 + 02) O}T

The formulas of velocity propagation (8.35) and (8.37) can utilise the ground frame as
the measuring frame. Premutiplying R, 1 on (8.35) and (8.37) yields
Owi+1 = O(AJZ‘ + 9.7;+1 Ozi+1 (839)

OVH_l = OVl' + Owi X (?Lpi—i-l (840)
Without ambiguity, we can readily rewrite the above equations as

Wiyl = w; + 9.¢+1 Ziy1 (841)

Vitl = V; + w; X ipi+1 (842)

Example 8.7 (Linear velocity via propagation 2): Find the angular velocity and the point
velocity of the end-effector by using velocity propagation.

Solution:
According to (8.41), we have

w0:0
w1 =wo+0121 =012

wr = w1 + 022> =01 21 + 0> 22 (8.43)

We = Ws +96 Zg :91 Z1 +---+é6 Zg
According to (8.42), we have

6
Vp = W X Pp + Vg

:w6><6pp+w5><5p6+v5
(8.44)

6 5
= wg X Pp+ ws X Ps...+ w1 X P2
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FIGURE 8.10
Velocity propagation through a prismatic joint.

Substituting (8.43) into (8.44) yields

vp:(91z1+...+96z6) xspp+(91 z1+ ...+ 05 Z5) x °pe
...+élzl lez
=2z X (1p2—|—2p3+...—|—6pp) 01 + 22 x (2p3+...+6pp)92 (8.45)
...+z6><6ppée
=271 X lpp91+zQ x2pp92+,..+z6 xﬁppég

The results shown in (8.43) and (8.45) can be written in a matrix form:

01
We _ Z1 Z2 - Z6 .
{VJ B {Zl X pp Z2x2pp ... 26 X GpJ : (8.46)
O
The Jacobian can be extracted from (8.46) as
_ Z Z2 . Z6
J = {ppl X z1 PpsXzs ... Ppgx Z6:| (8.47)

where each column is the Pliicker coordinates of the corresponding joint axis with Point P as the
reference. The Pliicker coordinates are used for uniquely defining a line in Euclidean space. The
6D Pliicker coordinates consist of two 3D vectors: the first one is the direction of the line, while
the second one is the moment of line. (8.46) shows that the velocity of the end-effector is actually
the sum of the joint angular velocities around their own instantaneous axes. These instantaneous
axes are also the screw axes of the joints in the screw theory. An in-depth discussion on the screws
is out of the scope of the content here.

Example 8.8 (Velocity propagation with prismatic joints): Find the formulas for the
velocity propagation through a prismatic joint, as shown in Figure 8.10.

Solution: Since the prismatic joint does not permit a relative rotation between the two connected
links, the two links must have the same angular velocity. From (8.35), we have the propagation
formula of angular velocity for the P joint as

i+1wi+1 = i+1Ri iwi (848)
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On the other hand, a linear velocity along Axis z;4+1 is introduced by the prismatic joint. From
(8.37), we have the propagation formula of point velocity for the P joint as

i+lvi+1 = i+1Ri (ivi + iwi X 2p¢+1) + di+1 k (8.49)

where di+1 is the joint velocity of the prismatic joint.

8.4 Statics

Statics analysis of a serial robot is the study of the mapping between the motor torque
inputs and the force and torque output of the end-effector. Collectively, we can call these
quantities the actuator effort.

8.4.1 Relation between Jacobians and Effort

We will show that the statics of a robot is related to its Jacobian matrix. Let us start with
a simple example without considering the masses of the links.

Example 8.9 (Effort via free-body analysis): Find the required joint torques, 71 and 72, of the
2R robot shown in Figure 8.11 to generate the desired force output, f. and f,, by the end-effector.

Solution: In this example, we will conduct free-body analysis on this 2R robot to find the required
joint torques. Isolating Link 2 as shown in Figure 8.12(a), we can readily find

To = —s12fx + C12fy (8.50)

Note that the directions of two forces are reversed because the desired force is defined as the
action force by the end-effector while the free-body analysis of Link 2 requires the force acting on
the end-effector.

Similarly, using the analysis on Link 1 in Figure 8.12(b), we have

T1=—81fz+cify+1m2=—s1fz +c1fy —s12fz +cr2fy (8.51)

v

FIGURE 8.11
A 2R robot.
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Y 4 fy Y 4

fa
fy
Cx" \ % » g
x x
(a) Forces on end link (b) Forces on base link
FIGURE 8.12
Free-body analysis of 2R robot.
= (—s1—s12)fz + (c1 + c12) fy (8.52)
Write (8.50) and (8.51) in the matrix form as
[7'1:| _ [—81 — 812 €1 +C12] |:f:c:| (8.53)
T2 —512 c12 fy
Recall the velocity mapping (8.4) in Example 8.1 given below:
Tp _|7s1—s12 —s12 9:1 (8.54)
Up c1 + ci2 C12 ) '

From Example 8.9, we find that the relation between the matrices from Equations (8.53)
and (8.4) is a simple transposition. We will show this is always true by analysing a general
case.

Example 8.10 (Effort of a general 6R robot): A general 6R robot is shown in Figure 8.13.
Find the joint torques according to the output effort by the end-effector.

Solution: According to the principle of virtual work, we have
71001 + ... + 76006 = feadde + feaddy + fezdd. + Texdy + Teyd B + Te 0 (8'55)

where 00; is the virtual displacement of 0;, and dd,, dd,,and dd. are the virtual displacements of
dz, dy and d., respectively. 6, 63, and d« are the virtual angular displacements of the end-effector
around the axes in the end-effector attached frame, x, y, and z, respectively. Dividing (8.55) by a
time interval 0t gives the relation in terms of velocities as

I (8.56)

where

‘I'=[T1 T@}T

6 = [66:/5t ... 665/5t]" (8.57)



146 Jacobian Analysis

FIGURE 8.13
A general 6R robot.

fo=[for for Jor]” v = [0d. /5t 6dy/ot 5d./5t] (8.58)
Te = [Tex Tey TeZ]T w = [ov/dt 3p/dt 50‘/5t]T (8:59)

These terms of velocities are obtained directly from the definition of velocity. The angular velocity
term w is proven in Appendix 24.3. The kinematics relation is now known as

w .
{v] =J6 (8.60)
Substituting (8.60) into (8.56) gives
o=t 7r]J6 (8.61)
Since the above equation is valid for an arbitrary joint velocity vector 6, we have
_ T fe
T=1J L_e] (8.62)

Equation (8.62) indicates that the transpose of the Jacobian matrix of a serial robot maps the
output effort by the end-effector to the input joint torques.

Example 8.11 (Static load balancing): A robotic spherical wrist is shown in Figure 8.14, where
the axes of three joints are concurrent. There is a force f. exerted at Point P on the end-effector,
where *p = [0 0 l]T. Find the input torques to balance this load.

Solution: The problem can be solved by free-body static analysis, which can be a bit tedious.
We will use the Jacobian to tackle this problem. According to the assigned DH frames, we derived
previously the transform matrices as

C1 —S1 0 0 C2 —S82 0 0
o _ |1 a 0 0 i-m _ |0 0 -1 0
Ti=lo 0o 10 o=y, & 0 0
| 0 0 0 1 0 0 0 1
-03 —S83 0 0
2 10 0 -1 0
T; = s e 0 0o (8.63)
| 0 0 0 1
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FIGURE 8.14
Spherical wrist.

Given °p = [0 0 1]T, we have

cos 01 sin 0o
sin 91 sin 02
— cos 0y
1

0p _ Or:[\1 1r:[\2 2T3 3p —

Hence

— sin @4 sin 65 91 + cos 01 cos 0292 )
P = | cosfysinfz61 +sinfycosbl | =J 0
sin 9292

0

where 6 = [01 62 93]T, and the Jacobian is given by

—sinf;sinfs cosficosls 0
J =] cosfisinfls  sinfycosf 0
0 sin 65 0

Hence, the joint torques are given by

—sinfysinfs cosfqsin by 0 fex
Tg = JT(f fz)=—| cosbicosfOs sinficosbs sinbsz| | fey
0 0 0 fez

that is

71 = sin 01 sin Oa fep, — cos 01 sin O3 fey
Ty = — cos 01 cos Oz fer — sin by cos by fo — sinbs fe

T3:0

147

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

Note that the required torque on the third joint is always zero because the force is acting on the

axis of the third joint.

The previous statics analysis does not consider the masses of the links of the robotic
manipulator. In the case that the masses of the links are not negligible as compared to
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the loads, the Jacobian matrices for mass centres are required. Considering Example 8.10,
the mass and mass centre of each link are m; and ¢; = Cc;, respectively, for i = 1,...,6.
According to the principle of virtual work, (8.56) becomes

76+ ZmigTéi = [fL =T L“j (8.69)
which can be further written as
™0+ mig" I 0=[f TI]J6 (8.70)

Since the above equation is valid for an arbitrary joint velocity vector 6, we have

6
r=J7 [f_e} —Zmi Jlg (8.71)
€ i=1

which are the total torques required to overcome gravity and produce the desired output
force and torque by the end-effector.

8.5 Workspace

The workspace evaluation of a robotic manipulator is fundamental in the design process and
allows a designer to choose proper design parameters for the optimum workspace. A simple
index can be the volume of the workspace, although the shape of a robotic workspace is
often important to particular applications. Usually, the position workspace other than the
orientation workspace is considered because it is intuitive and relatively simple. Further,
there are different types of position workspace. Here, we will restrict our study to the
mazimum reachable workspace, which is defined as the set of all positions that can be
reached by the end-effector of a robotic manipulator. Here, we introduce a theorem below.

Theorem 8.1. The end-effector of a two-DoF planar or three-DoF spatial robotic manip-
ulator is on the boundary of its mazximum reachable position workspace if its Jacobian is
singular.

The following discussion gives some insight into this theorem instead of providing com-
plete proof of this theorem. Consider a three-DoF spatial robot with the joint space in R>
and the task space in R? as well. In one configuration, the 3 x 3 Jacobian J maps the 3D
joint velocity into the 3D point velocity. If J is singular, the nullspace of J is not empty.
According to the rank-nullity theorem, the null space of J7 is too not empty and is per-
pendicular to the #mage of J. The union of the null space of J” and the image of J is all
possible 3D point velocity at this position in the task space. The null space of J7 and the
image of J are the subspaces of the unreachable point velocities and the reachable point
velocities, respectively. Consider a unit vector n inside the null space of J7 and define the
travel distance of the end-effector in the direction of n as d = p” n, where p is the point
of interest on the end-effector. Then we have

od @)T

Since n inside the null space of J7', we have d/0 6 = 0, which means that the singular
position of the end-effector is at its local extrema (minima or maxima) in the direction of n.
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FIGURE 8.15
A 2R robot.

Hence, the end-effector is on the boundary. Further, the image of J represents the tangent
plane to the boundary surface, while the null space of J7 is normal to the boundary.

Example 8.12 (Workspace boundary analysis): Find the boundary of the workspace of the
2R Robot shown in Figure 8.15. Assume [; = Iz = 1 m.

Solution: From the previous example, we know the Jacobian as

—S1— 812 —S12
J = 8.73
{ c1+ci2 C12 } ( )

whose singular condition is given by det(J) = 0. This is

ToL TS o2 = —(C1281 + S12€1 = S2 = 0 (874)
c1+ ci2 C12
The solutions of the above equation are
02 =0° 02 =180° (8.75)

which means that the end-effector is at its boundary when the second joint is either fully folded or
fully stretched out. This is true for this 2R robot. The position of the end-effector is given by

{"””} = [cl N 012} (8.76)

Yp S1 + S12

Substituting the singular conditions into the above position yields

=) [l =00 o

This represents the workspace boundaries of the robot, which is a circle with a radius of 2 and a
point in the middle. In the singular configuration, a serial manipulator loses mobility and gains
infinitely high stiffness in the direction of the load.*

LA parallel manipulator can also have parallel singularities.



150 Jacobian Analysis

rp =licosby + 1y COS(91 + 92)
yp = l1sinfy + lo sin(91 + 92)

FIGURE 8.16
RR manipulator with the forward kinematic equations.

8.6 MATLAB® Examples

There are two methods in which MATLAB can calculate Jacobians for a serial manipulator:
velocity propagation as introduced in this chapter, and the use of the Jacobian () function
built into the Symbolic Math Toolbox. The examples in this section will cover both methods.
Note that the velocity propagation method will yield velocity equations only, and require
additional code to convert to Jacobian matrix form. However, this method can also be used
to calculate the instantaneous numerical velocity of any defined frame within the robot
iteratively, which is one of the advantages of this method if the closed-form solution to the
velocity equations is unobtainable or complex.

Example M8.1 (Built-in Jacobian function): Using the Jacobian () function in MATLAB,
find the end-effector Jacobian matrix °J for the RR manipulator in Figure 8.16.

Solution: The following MATLAB code performs the above steps to solve the inverse kinematics
for this problem, with the ensuing command window output.

[ S R I,

syms thl th2 11 12 real

x = 1li*xcos(thl) + 12%cos(thl+th2);
y = li*sin(thl) + 12*sin(thl+th2);
po2 = [x; yl

J02 = jacobian(p02, [thl, th2])

p02 =
12*cos (thl + th2) + li*cos(thl)
12*sin(thl + th2) + 1li1*sin(thl)
Jo2 =

[ - 12*%sin(thl + th2) - 1li1*sin(thl), -12*sin(thl + th2)]
[ 12*cos (thl + th2) + 1li*cos(thl), 12*xcos (thl + th2)]

According to variable J, the Jacobian matrix of the end-effector measured at frame {0} is

OJ _ —12 sin(01 +92) — ll sin01 —12 sin(01 +02)

" | lacos(61 4 02) + 11 cos b1 Iz cos(01 + 62) (8.78)
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Example M8.2 (Statics): For the same RR manipulator in Figure 8.16, find the joint torques
required to statically hold a —5Y> N force at the end-effector when the robot is under the pose

s s
0, =" 0y =
1Ty 275

with link lengths
11:: b =0.5m

Solution: The joint torque 7 is calculated by

g =37 °F, (8.79)

where °F is the force applied at the end-effector, measured at the base frame {0}.

% Create function handle for Jacobian matrix J02
£f_J02 = matlabFunction(J02,’Vars’,[thl th2 11 12]);

% Substitute known values for [thl, th2, 11, 12]
v_J02 = f_Jo2(pi/4, pi/6, 0.5, 0.5)

% Calculate static torque
FO02 = [0 -5]’; % Force at end effector {2} wrt {0}
torque = v_J02’*F02

v_J0o2 =
-0.8365 -0.4830
0.4830 0.1294
torque =

-2.4148
-0.6470

Therefore, the torques required for each actuator to maintain the static force of —5Y, N at the
end-effector is

_ [-2au48]
Ta = | _o.6470]

Example M8.3 (Velocity propagation): Use the velocity propagation method to find the
Jacobian matrix *J of an articulated robot represented in Figure 8.17.

Solution: The following MATLAB code performs the above steps to solve the inverse kinematics
for this problem, with the ensuing command window output.

syms thl th2 th3 11 12 real % Joint and constant terms

syms dthl dth2 dth3 real % Joint velocity terms
% Frame definitions
T_0_1 = [
cos (thl) -sin(thl) 0 OF
sin(thl) cos (thl) 0 0;
0 0 1 0;
0 0 0 1]1;
T 1.2 = [
cos (th2) -sin(th2) 0 0;
0 0 1 OF!
-sin(th2) -cos (th2) 0 8
0 0 0 11;
T_2.3 = [
cos (th3) -sin(th3) 0 11;
sin(th3) cos (th3) 0 0;
0 0 1 0;
0 0 0 1]1;
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cos(fy) —sin(61) 0 0
o _ sin(f;) cos(fy) 0 0O
{0}, {1} r= 0 0 10
0 0 01
[ cos(fz) —sin(By) 0 0
. 0 10
27 | —sin(fy) —cos(fz) 0 0
L0 0o 01
[cos(63) —sin(f3) 0 Iy
o, sin(f3) cos(f3) 0 O
PT0 0 1 0
0 0o 0 1
1 0 0 Iy
s |00 1 0
Ta=lo -1 0 0
0 0 0 1

FIGURE 8.17
An articulated manipulator with transformation matrices.

22
23| T_3_4 = [

24 1 0 0 12;

25 0 0 1 0;

26 0 -1 0 0;

27 0 0 0 1]1;

28

20| % Initialise variables

30|w0 = [0 0 0]’ J Base frame zero angular velocity
31|{v0 = [0 0 0]’ J Base frame zero linear velocity
3212 = [0 0 1]°; % Unit vector in Z

34| % Propagation i

= 1 (Frame {0} to {1} via revolute joint 1)
35/ RO1 = T_0_1(1:3,1:3);

% Rotation matrix of {1} measured in {0}

36/ R10 = RO1’; % Rotation matrix of {0} measured in {1}
37| P01 = T_0_1(1:3,4); % Position of {1} measured in {0}

38| wl = R10*wO + dthilxZ % Angular vel of {1} measured in {1}

39| vl = R10*(vO0 + cross(wO, PO1)) % Linear vel of {1} measured in {1}

40
41| % Propagation i

= 2 (Frame {1} to {2} via revolute joint 2)
T_1_2(1e3,183) 3

42| R12 = % Rotation matrix of {2} measured in {1}
43| R21 = R127;

44| P12 = T_1_2(1:3,4); % Position of {2} measured in {1}

45| w2 = R21*wl + dth2x2Z % Angular vel of {2} measured in {2}

46| v2 = R21*(vl + cross(wl, P12)) J Linear vel of {2} measured in {2}

47

48| % Propagation i = 3 (Frame {2} to {3} via revolute joint 3)
49| R23 = T_2_.3(1:3,1:3);
50| R32 = R237;
1| P23 = T_2_.3(1:3,4);
2| w3 = R32*w2 + dth3x*Z % Angular vel of {3} measured in {3}

53| v3 R32*(v2 + cross(w2, P23)) % Linear vel of {3} measured in {3}
54

55| % Propagation i = 4 (Frame {3} to {4} via displacement only)

56| R34 = T_3_.4(1:3,1:3);

57| R43 = R34°;

58| P34 = T_3_4(1:3,4);

59| w4 = R43*w3 % Angular vel of {4} measured in {4}
60| v4 = R43*(v3 + cross(w3, P34)) % Linear vel of {4} measured in {4}

62| % Find Jacobian matrix J44 (Jacobian of {4} measured in {4}
63| % Create function handle of v4
64| f_v4 = matlabFunction(v4); % Input vars: dthl,dth2,dth3,11,12,th2,th3

66| % Eliminate variables using function handle
67| ¢ = {11,12,th2,th3}; % Constants
68| J44 = simplify ([f_v4(1,0,0,c{:}) f_v4(0,1,0,c{:}) £ _v4(0,0,1,c{:})1)
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w0

o oo

vO0

o oo

wl

dthi

vl

o oo

w2 =

-dthl*sin(th2)
-dthl*cos (th2)

dth2
v2 =
0
0
0
w3 =
- dthl*cos(th2)*sin(th3) - dthl*cos(th3)*sin(th2)
dthl*sin(th2)*sin(th3) - dthl*cos(th2)*cos(th3)
dth2 + dth3
v3 =

dth2*11*sin(th3)
dth2*11*cos (th3)
dthi*1l1l*cos (th2)

w4 =
- dthix*cos (th2)*sin(th3) - dthl*cos(th3)#*sin(th2)
- dth2 - dth3
dthl*sin(th2)*sin(th3) - dthlxcos(th2)*cos(th3)
vd =
dth2*11*sin(th3)
- 12x(dthl*cos(th2)*cos(th3) - dthl*sin(th2)*sin(th3)) - dthl*ll*cos(th2)
12%(dth2 + dth3) + dth2*1ll*cos(th3)
Jaa =
[ 0, 11*sin(th3), 0]
[ - 12*cos(th2 + th3) - 1li*cos(th2), 0, 0]
[ 0, 12 + 1ll*cos(th3), 12]

According to variable J44, the Jacobian matrix of the end-effector measured at frame {4} is

0 l1 sin 93 0
13 = [—lacos(B2 + 03) — 1 cos fs 0 0 (8.80)
0 lo + 11 cosbs o
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Example M8.4 (Jacobian matrix): Find the end-effector Jacobian matrix *J for the articulated
manipulator in MATLAB Example M8.3 using the Jacobian () function in MATLAB.

Solution:

% Find EE frame {4} measured in base frame {0}
T_0_4 = T_0_1 * T_1_2 * T_2_3 *x T_3_4;

RO4 = T_0_4(1:3,1:3); % Rotation matrix of {4} wrt {0}
P04 = T_0_4(1:3,4); % Position of {4} wrt {0}

J04 = jacobian(P04,[thl th2 th3]); % Jacobian of EE {4} wrt {0}

R40 = R04°; % Rotation matrix of {0} wrt {4}

% Jacobian of EE {4} wrt {4}
J44 = simplify (R40xJ04)

Ja4 =

[ 0, 11*sin(th3), 0]
[ - 12*cos(th2 + th3) - 1li*cos(th2), 0, 0]
[ 0, 12 + 1l1xcos(th3), 12]

Note that the variable J44 representing *J in this example is exactly the same as the one generated
in Example M8.3 as Equation (8.80), verifying that both the velocity propagation method and
MATLAB Jacobian () functions produce the same answers.

8.7 Conclusion

Velocity analysis of a robot is an important tool for analysing end-effector motion. Two
methods were introduced for deriving the velocity of the end-effector relative to its base
frame.

The time derivative of the analytic forward kinematic equations is the most direct
method for modelling end-effector velocity. The linear velocity can be found by taking
the time derivative of the end-effector position, and the angular velocity can be found by
finding the skew-symmetric matrix, and extracting its z, y, and z components. This method
can be quite difficult for robots with high DoF, because the analytic expressions can be
very complex.

The welocity propagation method is an iterative method for deriving the velocity of the
end-effector. Although the process is less direct, the method is ideal for robots with many
DoF, or when the analytical expression for the forward kinematics is difficult to analyse.

The expression for the end-effector velocity can be represented as a Jacobian matrix J,
which maps the joint velocity in the joint space to the end-effector velocity in the task space.
This matrix can then be used for singularity and workspace analysis, and statics analysis
by taking J7.

8.8 Exercises

Problem 1. Derive the Jacobian for the manipulators mapping the joint velocity inputs
to the point velocity of the end-effector tips for both three-link manipulators from Figure
8.18. Represent the Jacobian in
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FIGURE 8.18
A 3R non-planar robot.

1. {0} attached to the base.
2. {3} attached to the third link.

Problem 2. A simplified model of a personnel lifter mechanism is shown in Figure 8.19 that
has a working platform as the end-effector, which for safety purposes is always oriented in
the direction of Zy. Joints 1, 2, and 4 are revolute, with the first two coincident and the third
joint prismatic, offset from joint 2 by distance [ with variable extension d. You can assume
a load in any direction on the platform translates to a point force in the same direction
coincident at the fourth joint. Hence find equations for the torques, 7y , 72 and prismatic joint
force fs such that the mechanism can support any force °f, = [few Jey [ ez]T7 applied to
the platform. What are the singularities of this system, and what does it physically mean?
Assume the robot is at home position in Figure 8.18, therefore an offset is needed in row
2 of the DH table. Note: The following equations for a prismatic joint can be adopted for
velocity propagation:

il = TR, w,; v, = TR, (ivi e x EPHl) tdi k
Problem 3. For the robot shown in Figure 8.20.

1. Using the propagation method, find the velocity (linear and angular) of the end-
effector in the tool frame, i.e., find *v4 and *wy.

205 21

l d

/ —]
- — %
> .

FIGURE 8.19
Schematic of a four-DoF RRPR mechanism.
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Zo, T1
Yo, Y1

N
=

FIGURE 8.20
Planar robot.

2. Using the results obtained in (a), find the velocity (linear and angular) of the
end-effector in the base frame in its simplest form, i.e. find "v4 & 9wy

3. Find the Jacobian of the end-effector in the tool frame, i.e., *J (include only
linear velocity terms).

4. Find the Jacobian of the end-effector in the base frame, i.e., °J (include only
linear velocity terms).

5. Find the joint torques required to maintain a static force vector of, =

(foo Sy fer]”

The transformation matrices between the base and tool frame for the robot in Figure 8.20
are as follows:

, represent the result as a matrix equation.

(&1 —8100 1 0 0 l1
0 s C1 001 _00*1*d2
Ti=1o o 10 =01 0o o
0 0 0 1 00 0 1
S3 C3 0 0 10013
o |00 1 0 3, |01 0 0
Ts = c3 —s3 0 0 Tsa=10 01 0
0 0 0 1 00 0 1

Note: Your answers should reflect the use of these transformation matrices or otherwise
correct *T( generated by the matrices above. Do not reassign frames and use a different
set of matrices.

Problem 4. The kinematics of a 3R robotic manipulator is given by

CiC23 —C1823 51 2c¢1 +crc2

L S1C23  —81823 —C1 281 + S1C2
593 C23 0 52
0 0 0 1

where s; = sin;, ¢; = cosb;, s;; = sin(6; + 0;), and ¢;; = cos(6; + 6;). Further, 0, for
1 =1,2,3 are joint angles of this robot.

1. The position of the tip of the tool held by this robot is given by [1 0 O} " in the
third frame, {3}. Find the joint angles such that this point can reach a required
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FIGURE 8.21
Wrist and end-effector of Baxter robot.

position [1.75 3.03 0.87]" given in the ground frame, {0}. Here, #; = 60° is
given as the part of the answer to reduce the complexity of calculation.

}T

2. At the above position, a force of 10N is acting at the tip of the tool by a workpiece
in the negative direction of the y-axis of the ground frame. Find the required
torques on each joint in order to balance the robotic arm. If you have multiple
configurations of the robot for this position, choose any one of them to get your
answer.

Problem 5. In a two-DoF planar robot, the position of a point P on the end-effector is
given by
2 = 10 cos 01 sin By — 10sin 6 cos Oy + 10 cos 0,
y = 10sin #; sin 03 + 10 cos 01 cos O3 + 10sin 64
At a static configuration with 6; = 45° and 6, = 90°, an external force f, =

[fex fey]T = [-5v2 10\/ﬂT N is exerted at the point P on the robot. Calculate the
required joint torques, 71 and 7o, to resist this external force.

Problem 6. The orientation of one object with respect to the ground is represented by the
quaternions (a, b, ¢,d) given by

a2+ -2 —d? 2bc — 2ad 2bd + 2ac
R = 2bc + 2ad a2 -+ 2 —d? 2cd — 2ab
2bd — 2ac 2cd + 2ab a? - -2 +d?

At one instant, we detect a = b =c¢ =d = 0.5 and @ = 10, b= 40, ¢ = =20, d = —30.
Please find the instantaneous angular velocity of this object with respect to the ground,
measured in the ground frame. Units are not required.

Problem 7. The wrist of the Baxter robot is illustrated in Figure 8.21. It consists of
two revolute joints, Joints 5 and 6. Link 4 is assumed to be fixed in this question. Frames
F, to Fy; are used to describe the configuration of such wrist and the end-effector. The
overall transformation matrix *T; is given by

cscg —S5  cs586  cs(le + 17S6)
Sg 0 —c —ls—lrce

sscg c5 5556 S5(le + l7sg)
0 0 0 1
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1. Derive the Jacobian, J, mapping the joint velocity to the point velocity of origin
of {7}.

2. Determine the wrist joint loads, 75 and 7g, for the manipulator to reach static
equilibrium under an external load [ fex  fey [ ez]T at the origin of {7}.

3. Calculate the numerical solutions of 75 and 75, when

7T
95:§

71'
96:6
l5 =0.375 m
16:01 m
l7=0.5m

fz:fy:fzle



9
Path Planning

In Chapter 3, we investigated methods for generating trajectories between two points in
both joint space and task space. In longer trajectories, we used via points to link the initial
and goal states of the robot via cubic splines. While the selection of via points seemed
arbitrary in the previous chapter, in application, the selection of via points is not a trivial
task. In addition, it is not always guaranteed that a path exists from the robot’s initial
position to the goal position. In this chapter, we answer two important questions: does a
valid path exist between the robot’s initial state and the goal state? If a path exists, then
how do we move the robot from its initial state to the goal state? The act of path planning
is a critical task in robotics, which attempts to answer these questions, but this is generally
not an easy task with many solutions to the problem.

In this chapter, we will introduce path planning methods and algorithms commonly
used in robotics and path planning in general. Starting with the most basic path-finding
algorithms, each algorithm is introduced with increasing complexity, with the final path
planners introduced representing state-of-the-art algorithms that are commonly used in
manufacturing robotics and mobile field robots.

9.1 Configuration Space

Most path planners are implemented in the discretised C-space. The C-space can be gen-
eralised to identifying the robot’s current state, such positions in 3D space, robot arm
positions or even assembly states. As long as the C-space is non-empty and has connected
states, these path planning algorithms can be implemented. Hence, the goal of a path plan-
ner is to determine a feasible path between the initial state and the goal state as represented
by the C-space. It is important that the elements in the C-space are countable and finite in
the path planning context (i.e., there are a limited number of states a robot can exist in).

In a manipulator context, a configuration space (or C-space) represents the set of all
possible configurations of the robot, which can be mapped one-to-one to the joint space.
This means a single point in the configuration space maps to a single point in the joint
space. Path planning is generally performed in the C-space because, by definition, it fully
describes the configuration of the robot. This is important for:

e Simplifying the path planning scheme,
e Utilising the maximum usable workspace of a robot, and
e Fully defining a robot configuration for collision avoidance in the workspace.

Consider a 2R planar manipulator such as that shown in Figure 9.1, along with sampled
C-space points and the projection of these points into the task space. In the task space,
we have defined obstacles, represented by black dots. This translates to invalid points in
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FIGURE 9.1

The valid joint space and task space with obstacles of a 2R manipulator. Three configura-
tions are represented in both spaces, with proposed paths shown as arrows.

the C-space, which are subsequently removed (as voids in the C-space). Now, we propose to
plan a path from the blue to the green configuration. We have two ways to represent the
C-space: in the joint space variables (6, and 63) or the task space variables (z and y).

Suppose we use the task space variables to represent the C-space, which is a logical step,
given that obstacle definition is usually expressed in task space variables. A task space path
can be easily observed, as represented by the red-arrow trajectory. However, if this trajectory
is followed, then the end configuration will be represented in red, which is infeasible due
to its elbow being in collision. This is a direct result of a C-space not having a one-to-one
mapping with the joint space.

Now, suppose we use the joint space variables to represent the C-space. The goal is
represented in two unique positions in this space — at the green marker, which was the
original goal, and the red marker, which, although it represents the same point in the task
space, is a different configuration to the green. In addition, we also observe the red marker
as not being a valid configuration because it does not lie in the discretised valid region. If
a proposed path, represented in green arrows, is followed, then we are guaranteed to finish
at the green configuration as intended.
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The reason why task space planning is not guaranteed to work for serial robots is that
there may be more than one inverse kinematic solution for each point in this space. There-
fore, to successfully plan a path between these two configurations, we need to apply kine-
matic constraints, which, depending on the manipulator involved, can be quite a complex
problem. However, there may be highly valid reasons why we should perform path planning
in the task space variables. These reasons usually involve path constraints, which are defined
in the task space variables, such as the need to perform linear trajectories in manufacturing
tasks. Therefore, we can conclude the following points.

Case for Task Space Planning

Where the trajectory of the end-effector is critical, such as executing pre-defined linear
paths or task space collision avoidance, then task space planning is desirable.

Case for C-space Planning

If we are only concerned with linking configurations A and B, and the trajectory of the
end-effector does not matter, then planning in a C-space is preferred.

For serial robots, the joint space always fully describes a serial robot’s configuration.
Hence, the C-space of a serial robot is made up of joint space variables. Unless path planning
constraints are required, for the rest of this chapter, any reference to the C-space of a robot
represents the joint space of a serial robot.

The C-space, or any planning space, is generally a continuous space in R"™, where n is
the number of dimensions. For most path planning algorithms, we utilise discrete samples
of the C-space. These samples can be taken from a grid-based discretisation or randomly
sampled.

9.1.1 Grid

In a grid-based discretisation scheme, each dimension of the C-space is discretised uniformly,
such that all states in the C-space are represented in a grid-like structure. This is a basic
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FIGURE 9.2
The discretised C-space and equivalent points in the task space of a planar 2R manipulator.
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FIGURE 9.3

A C-space that is randomly sampled, and equivalent points in the task space of a planar 2R
manipulator.

scheme that is very easy to implement in a programming environment, and is the sim-
plest way to represent the C-space, particularly when visualising important contours of the
workspace. Figure 9.2 shows the grid-based discretisation scheme applied to a planar 2R
manipulator.

An important property of this type of discretisation to consider is the memory usage
associated with saving each element in the C-space. As the dimensionality of the C-space
increases, the memory usage to store this space exponentially grows. In a six-dimensional
C-space, which is quite common in robotics because it represents Cartesian and rotational
co-ordinates, even a coarse discretisation of 30 elements per dimension results in 306 = 729
million elements in the C-space. If each element held a single, double-precision floating-point
variable, which is 8 bytes, then we require 5.83 GB of memory to store the C-space. While
this is a non-issue on dedicated computer systems, it is problematic on embedded systems
where resources are very constrained. Finally, such a large C-space can adversely affect the
speed of complete path planners, as they generally search through the entire C-space for a
feasible solution.

9.1.2 Random Sampling

Random sampling is not necessarily a discretisation method, but it describes how the points
in the C-space are progressively taken for path planning. This method is regularly used by
state-of-the-art sample-based path planners, where the general assumption is that a general
C-space is relatively smooth, even with the presence of obstacles. In this case, a gridded
approach may result in many discretised points that do not represent any critical features
within the C-space. This means a significant amount of memory is wasted by storing trivial
points in the C-space, that could have otherwise been identified by linear interpolation
between two sampled points.
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Random sampling solves this problem by progressively adding randomly sampled points
in the C-space, where the more points are sampled, the better the C-space is represented.
The user defines when to stop sampling, based on measured confidence that the C-space and
potential obstacles are fully defined by these randomly sampled points. If enough points are
sampled, then collision-free paths can be planned effectively and efficiently. This method of
discretisation has been shown to work well in higher-dimensional C-spaces.

As each point is randomly sampled, the chance of sampling exactly the same point is
minimal. Hence, paths will always take different points from start to goal configurations.
Therefore, paths found with this method are non-deterministic in nature. In some cases,
this can be viewed as a limitation where path repeatability is a priority. In addition, the
chance of finding a successful path between two configurations is probabilistically complete,
in that the probability of resolving whether a path exists or not increases as more samples
are taken. This concept will be expanded upon in Section 9.5. Figure 9.3 shows the random
sampling scheme applied to a planar 2R manipulator.

9.2 State Connectivity

For multi-query planners, the randomly sampled states should be connected via a connec-
tivity scheme. These connections define all potential paths between states before they are
validated for obstacles and other constraints. In other words, a connectivity scheme defines
a set of rules in which states in a C-space are considered adjacent and therefore connected
by default.

9.2.1 Grids

In a grid discretisation scheme, we can consider the volume of the C-space being divided into
cells, such that each discretised point is located at the centre of its cell. A cell’s boundaries
along each dimension are called a polytope, which represents the “flat” sides of a cell, such
as the edges of a square in two dimensions, or faces of a box in three dimensions. The
C-space can, therefore, be represented as a volume that is equidistantly filled with these
cells, such that each cell’s polytopes are in contact with an adjacent cell. Based on this
abstract representation, several levels of connectivity can be applied to a cell’s polytopes,
which affect the complexity of the path planning problem.

9.2.1.1 Definition

Consider an R™ C-space, where n is the number of dimensions. Assume that this C-space
is grid-discretised into cells, made up of 2n, (n — 1)-dimensional polytopes. Then, for an
n-dimensional C-space, there is a minimum of n-possible connectivity schemes. Also, each
connectivity scheme defines which adjacent cells are connected via an (n — m)-dimension
polytope of a cell, where {m € Z* : m < n}.

A minimum connectivity scheme allows only (n—1)-dimension polytopes to be connected
to an adjacent cell.

A mazimum connectivity scheme allows all (0,1,..,n — 1)-dimension polytopes to be
connected to an adjacent cell.

Example 9.1 (2D connectivity): Consider a two-dimensional C-space, where n = 2 that has
been grid-discretised with free space and obstacles defined. Define the minimum, maximum, and
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(a) 4-connectivity via 1-D polytopes. (b) 8-connectivity via 1-D and 0-D poly-
topes.

FIGURE 9.4
Connectivity schemes of a two-dimensional C-space.

any other useful connectivity schemes for this C-space.

Solution: By definition, there are two possible connectivity schemes for n = 2, connectivity where
1-D polytopes are connected, and connectivity where both 1-D and 0-D polytopes are connected.
These connectivity schemes can be observed in Figure 9.4.

4-connectivity

This scheme defines that states in the grid should be connected, at most, at their adjacent 1-
dimensional polytope or adjacent edges. It is called 4-connectivity because each cell can transition
to another state in four directions, via the four edges of each cell. This is the minimum connectivity
scheme.

8-connectivity

This scheme defines that states in the grid should be connected at their adjacent edges (1-D
polytope) as well as at their vertices (0-D polytope), essentially allowing diagonal state transitions.
It is called 8-connectivity because each cell can transition to another state in eight directions, via
the four edges and vertices of each cell. This is the maximum connectivity scheme.

Other Connectivity Schemes

A connectivity scheme exists where cells are only connected at their vertices (diagonal state tran-
sitions only), but this is not a very practical scheme for path planning purposes.

Example 9.2 (3d connectivity): Consider a grid-discretised three-dimensional C-space, where
n = 3. Define the minimum, maximum, and any other fundamental connectivity schemes for this
C-space.

Solution: There are a minimum of three possible connectivity schemes for n = 3 as observed in
Figure 9.5:

e Connected 2-D polytopes (faces) — 6-connectivity.

e Connected 2-D and 1-D polytopes (faces and edges) — 18-connectivity.

e Connected 2-D, 1-D, and 0-D polytopes (faces, edges and vertices) — 26-connectivity.
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(a) 6-connectivity. (b) 18-connectivity. (c) 26-connectivity.

FIGURE 9.5
Fundamental connectivity schemes of a three-dimensional C-space.

6-connectivity

This scheme defines that states in the grid should be connected, at most, at their adjacent two-
dimensional polytope, or adjacent faces. This is the minimum connectivity scheme.

18-connectivity

This scheme defines that states in the grid should be connected at their adjacent faces (2-D poly-
tope) as well as at their edges (1-D polytope), essentially allowing a two-variable state transition.
This is a fundamental connectivity scheme.

26-connectivity

This scheme defines that states in the grid should be connected at their adjacent faces, edges, and
vertices (0-D polytope), allowing a three-variable (diagonal) state transition. This is the maximum
connectivity scheme.

Other Connectivity Schemes

A connectivity scheme exists that makes use of any other combination of m-dimensional polytopes.
However, they are not practical for path planning purposes.

9.2.1.2 Obstacle Definition

One thing to consider when deciding which connectivity scheme to use, is how obstacles
are defined in the C-space. As observed in Examples 9.1 and 9.2, we see that introducing
a connectivity of polytopes with dimensions less than n — 1 results in multi-variable state
changes. During these state transitions, we can pass through infinitesimally small areas
of the C-space where obstacles are ill-defined. This can be observed particularly in Figure
9.4(b). Although multi-variable (diagonal) state changes results in smoother paths, obstacle
definitions for these connectivity schemes must be adjusted to avoid unintentionally passing
through them.
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FIGURE 9.6
A 2D randomly sampled C-space connected using Delaunay triangulation.

9.2.2 Random Samples

When the saved states of a C-space are randomly sampled, rather than laid out in a grid,
there is no unified method for determining initial connectivity between states. However, tri-
angulation methods are popular, as they are generally efficient and can minimise the number
of edges needed to connect all random states in the C-space. The Delaunay triangulation
method (Figure 9.6) guarantees that a state is at least connected to its nearest neighbour,
and is commonly used in randomly sampled environments in field robotics. These triangula-
tion methods can be generalised for n-dimensions, hence can work for C-spaces representing
many DoF's of a robot.

9.2.3 Connectivity Matrix

Any n-dimensional C-space can be represented as a connected graph, where each vertex
represents a state, and edges represent linear paths between each state as generated by the
connectivity scheme in a grid discretisation, or triangulation or other numerical methods for
randomly-sampled states. This finite graph can be represented as a connectivity matriz M
(or adjacency matrix in linear algebra), which is a square matrix indicating whether pairs of
vertices are connected or not in the C-space before path validation. The connectivity matrix
M is a fundamental construct in graph theory and has many uses in path planning and
analysis.

Example M9.1 (Connectivity matrix): Generate a connectivity matrix for the connected graph
in Figure 9.7, representing a simple C-space. Verify using MATLAB.

Solution: The connectivity matrix M for the C-space defined in Figure 9.7 is

0

(9.1)

S
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The easiest way to generate this in MATLAB is to define a list of vertex-pair connections. Inline
9.1 shows the command window output, where the vertex-pair connections matrix E is defined. We
then convert this into a connectivity matrix M by using a custom function Edge2CMatrix, as is
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FIGURE 9.7

A graph of connected states in a simple C-space.

shown in Inline 9.2. The initial output of M is in sparse matriz form, where only non-zero elements
of a matrix are stored. This ensures that very large connectivity matrices with many zero-elements
are efficiently stored in memory. To see the full matrix of M, we simply use MATLAB’s full()
function.

> E = [12; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7]

E =

BWONNE P
N OO WN

>> M = Edge2CMatrix (E)
M =

(2,1)
(3,1)
(4,1)
(1,2)
(5,2)
(6,2)
(1,3)
(6,3)
(1,4)
(7,4)
(2,5)
(2,6)
(3,6)
4,7)

[ e e e e e e e N

>> full (M)

ans =

OO KFEFEO
Or P OO0
Or OO0OO0OO
HOOOOOR
[eNeoNeoNeoNoN SN e)
[eNeNeNeN N o)
OO0OOrOOO

function M = Edge2CMatrix (edges)
%EDGE2CMATRIX Convert a list of connections to a sparse matrix

N o=

vl = edges(:,1);
v2 = edges(:,2);

CSE
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if size(edges,2) == 3

cost = edges(:,3);
else

cost = omes(size(vl));
end

% Define the sparse matrix.
% Entries are flipped to ensure connections are bi-directional.
M = sparse([vi;v2], [v2;v1], [cost;cost]);

end

As seen in Inline 9.1, we obtain the connectivity matrix M as shown in Equation (9.1).

9.3 Planning Completeness

There are two types of path planning algorithms that will be mentioned in this review:
complete and sample-based algorithms. The key difference between the two algorithms is
that the former will always return the same result, given the exact same C-space and bound-
ary conditions, whereas the latter result may differ slightly in different runs. Early classical
path planning algorithms go for complete approaches; the entire C-space is analysed, and
the best result is always returned. However, where the C-space is large, complex or multi-
dimensional, handling such a large amount of data is infeasible and results in long running
times and heavy memory usage. More recent sample-based planners accept a weaker notion
of completeness; the path planner will return a valid solution as quickly as possible at the
expense of sampling only a portion of the C-space, but will continue to improve on the
result as more samples of the C-space are taken. With these algorithms, as time approaches
infinity, the solution will converge to the best solution (one that a complete algorithm will
produce). This need for a fast and valid solution is driven by the need for path-planning that
is fast enough for real-time applications. This is one of the benefits of using sample-based
planners, in that there is a degree of flexibility in accuracy versus time performance. The
probabilistic road map (PRM) is one such sample-based algorithm that has been used suc-
cessfully in robotics path planning, and has also served as the basis for further development
for other sample-based algorithms, such as the rapidly exploring random trees (RRT).

9.3.1 Measuring Complexity

The following path planning algorithms are introductory discrete algorithms, general enough
to be applied in any C-space regardless of what quantifiable measure they represent. These
algorithms are well-known in the computer science field and thus can be found in many text-
books. Their relative time performance is measured as order-of-time complexity O(F(n)),
expressed as a function F' of the C-space parameters n. Typically, the lower the time com-
plexity, the better-performing the algorithm is in terms of time for a given C-space.
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9.4 Complete Planning Algorithms

Complete algorithms will systematically work through a connected graph of nodes, such
as Figure 9.7 representing states in the C-space, until the goal is found. These algorithms
typically perform an exhaustive search of the C-space and construct a tree for each visited
state. Many of these algorithms are classical graph theory searches and are well known for
their simplicity.

9.4.1 First-Search Algorithms

One of the most primitive methods for searching a connected tree is to use either a breadth-
first search (BFS) or depth-first search (DFS). Although they are simplistic by nature,
they are worth noting as they form the basis of some more advanced, well-known planning
algorithms. The difference between the two search methods is the order in which each edge
is traversed.

9.4.1.1 Breadth-First Search

The breadth-first search (BFS) algorithm searches the entire state-space in a propagating
wave, resulting in an exhaustive radial search to find the goal (Figure 9.8). It utilises a
first-in-first-out queue @ to track and sample states, and has been successfully used in
determining shortest-distance problems (shortest number of nodes or states visited to goal).
However, it is inefficient in very large graphs and C-spaces, because the order at which
states are traversed is fixed by the queue structure, with minimal opportunity for search
optimisation. However, in whole C-space searches where flood-fill algorithms are necessary,
BFS is a viable traversal method.

The time complexity of this algorithm is O(|V|+ |E|), where V and E are the number of
vertices and edges. Because the number of vertices increases exponentially with dimensions
of the C-space, the time taken for this algorithm to search also increases exponentially with
the number of dimensions.

Example 9.3 (Breadth-first search): Apply breadth-first search on the C-space shown in Figure
9.7 to traverse all states from State 1, known as flood-filling.

Solution: Flood-filling is a useful technique for calculating the overall volume of the C-space.
Figure 9.8 shows the flood-fill result using BFS on the C-space. Starting from State 1, a queue
construct @ is used to keep track of sampled states. As Q behaves like a queue, new states are
pushed to the rear, and items are popped from the head of Q). Hence, states are sampled in the
order that they are pushed into @, and popping @ will remove and sample the state at the head of
the queue. This procedure repeats until all states in the C-space have been visited.

Example M9.2 (Breadth-first search in MATLAB): Use MATLAB to apply breadth-first
search the C-space shown in Figure 9.7 to find a path from State 1 to State 6.

Solution: Inline 9.3 shows the MATLAB command window output on solving this problem. We
can directly use the method used to solve Example M9.1, to provide the inputs required for the
custom MATLAB function bfs (), defined in Inline 9.4. According to the output variable pth, the
BF'S algorithm suggests the path: State 1 — State 2 — State 6. This path is shown in Figure 9.9,
where solid arrows indicate edges that have been pushed onto the queue (dotted arrows were not
observed by the search algorithm).
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o oo

(a) lesh( ) (b) Q.pop(1) (¢) Q-pop(2) (d) Q.pop(3)
(1), Q.push(2,3,4) At (2) Q.push(5, 6) At (3), Q.push()
Q 24—.3«—4 +—4e—oé—6 Q: z1+—56—6
(e) Q.pop(4) ( ) Q.pop(5) g) Q.pop(6 (h) onp(7)
At (4), Q.push(7) At (5), Q.push() At (6), Q.push() At (7), Q.push()
Q:5+ 6«7 Q:6—=7 Q:7 Q : empty
FIGURE 9.8

Breadth-first search expansion of the C-space in Figure 9.7 with a running tally of elements
in queue Q. The arrows point towards the head of the queue.

FIGURE 9.9
Breadth-first search solution with order of states visited.

= [12; 1 3; 14; 25; 26; 3 6; 47];
= Edge2CMatrix (E);
>> pth = bfs(M,1,6)
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Starting BFS from State 1 to State 6.
Added to states to Queue: 2 3 4
Pushed states: 1 2 3 4
Moving to state: 2
Added to states to Queue: 5 6 (goal found)
Pushed states: 1 2 3 4 5 6
Moving to state: 6
Reconstructing path: (Goal) 6 -> 2 -> 1 (Init).
pth =

N =

function StatePath = bfs(M, InitState, GoalState)
%BFS Breadth First Search

fprintf (’Starting BFS from State %i to State %i.\n’, InitState, GoalState);

% Define initial conditions

PushedStates = InitState;

Queue = clsEdge.empty; % Queue construct
CurrentState = InitState;

B = (g

GoalFound = false;

% Loop until the goal state is reached

while CurrentState "= GoalState
% Find all states connected to current state
NextStateAll = find(M(:,CurrentState));

% Remove connected states already pushed to queue previously
NextState = setdiff (NextStateAll, PushedStates);
fprintf (> Added to states to Queue:’);
% Add connected states to queue
for i = NextState(:)’
NewEdge = clsEdge(CurrentState, i, E);
fprintf (> %i’, i);
% SHORTCUT: Terminate if goal state is added to queue
if i == GoalState
fprintf (> (goal found)’);
GoalFound = true;
break
else
% Otherwise, push edge containing next state to queue
Queue = Push(Queue, NewEdge) ;
end
end
if GoalFound
% If goal found by adding to queue, set next edge to newly added edge
E = NewEdge;
else
% Otherwise, get next edge from head of queue. Pop edge off queue.
[E, Queuel] = PopQueue (Queue);
end
% Add pushed states to list of pushed states
fprintf (’\n Pushed states:’);
PushedStates = Push(PushedStates, NextState);
fprintf (’ %i’, PushedStates);
% Set next state as defined by the end of the next edge
CurrentState = E.NextState;
fprintf (’\nMoving to state: %i\n’, CurrentState);
end

% Reconstruct path from goal state to initial state

EdgePath = E;
fprintf (’Reconstructing path: (Goal)’);
while “isempty(E.ParentEdge)
fprintf (’ %i ->’, E.NextState);
EdgePath = Push(EdgePath, E.ParentEdge);
E = E.ParentEdge;
end
fprintf (’ %i -> %i (Init).’, E.NextState, E.ParentState);

% Flip path so it goes from initial to goal state
EdgePath = flipud(EdgePath);
StatePath = [EdgePath.ParentState EdgePath(end).NextState]’;

end

% Implementation of pushing an object to a list
function obj = Push(obj, item)

obj = [obj; item];

end
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% Implementation of popping an object off a queue
function [item, obj]l = PopQueue (obj)

item = obj(1);

obj (1) = [1;

end

This function uses an edge class, c1sEdge in Line 22 so that we can implement object referencing
during path reconstruction (Inline 9.5). This allows us to back-track edges via the ParentEdge field
through object referencing to reconstruct paths when the goal is reached.

classdef clsEdge < handle
%CLSEDGE Edge objects for path planning.

properties (SetAccess = immutable)

ParentState % Node ID of parent state

NextState % Node ID of next state

ParentEdge % clsEdge object which preceeded this edge

% Allows for back-tracking.

Cost % Costs associated with this path (edge)
end
methods

function obj = clsEdge(sl,s2,pe,c)
%CLSEDGE Construct an instance of this class
obj.ParentState = si;
obj.NextState = s2;
obj.ParentEdge = pe;
if nargin < 4

c = 1;

end
obj.Cost = c;

end

end
end

9.4.1.2 Depth-First Search

The depth-first search (DFS) algorithm adopts a depth-first initiative where branches are
searched in-depth first until the end is reached (Figure 9.10). This utilises a first-in-last-out
stack S in a programming sense to systematically build the tree. While the tendency for
this algorithm is to dive in head-first quickly into a graph, this algorithm, in fact, shares
the same time complexity as the breadth-first search of O(|V|+|E|), where n is the number
of dimensions of the C-space. However, this algorithm will not always detect the shortest
path possible between states like the BFS.

Example 9.4 (Depth-first search): Apply depth-first search on the C-space shown in Figure
9.7 to flood-fill all states from State 1.

Solution: Figure 9.10 shows the flood-fill result using DF'S on the C-space. Starting from State 1,
a stack construct S is used to keep track of sampled states. As opposed to a queue in a BFS; in
a stack, new states are pushed to the top of the S, and states are also popped off from the top of
S. Hence, states are sampled in the order that they were last pushed onto S, and popping S will
remove and sample the state at the top of the stack. This procedure repeats until all states in the
C-space have been visited.

Example M9.3 (Depth-first search in MATLAB): Use MATLAB to apply depth-first search
the C-space shown in Figure 9.7 to find a path from State 1 to State 6.

Solution: Inline 9.6 shows the MATLAB command window output on solving this problem. We
follow the same procedure used in Example M9.2, but using the custom MATLAB function dfs()
instead, defined in Inline 9.7. According to the output variable pth, the DFS algorithm suggests
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the path: State 1 — State 3 — State 6. This path is shown in Figure 9.11, where solid arrows
indicate edges that have been pushed onto the queue (dotted arrows were not observed by the
search algorithm). Notice that in this scenario, DFS needed more iterations than BFS to find a

solution.

> E = [1 2; 1 3;

>> M =

>> pth = dfs(M,1,6)

1 4;
Edge2CMatrix (E);

2 5; 2 6; 3 6; 4 7];

Starting DFS from State 1 to State 6.

Added to states to
Pushed states: 1 2
Moving to state: 4
Added to states to
Pushed states: 1 2
Moving to state: 7
Added to states to
Pushed states: 1 2
Moving to state: 3
Added to states to
Pushed states: 1 2
Moving to state: 6
Reconstructing path:
pth =

o W

Stack:
3 4

2 3 4

Stack: 7

347

Stack:
347

Stack:
3476

6 (goal found)

(Goal) 6 -> 3 -> 1 (Init).

function StatePath =

dfs(M, InitState, GoalState)

%DFS Depth First Search

(a) S.push(l)

b

(e) S-pop(3

At(3), S.push(ﬁ)
S:2—6

FIGURE 9.10

A A

(c) S.pop(4)

At (4), S.push(7)
$:2—53-7

(8) S.pop(2)
At (2), S.push(5)
S:5

( ) S.pop(1)

), S.push(2,3,4)
S 2—>3—>4

£) S.pop(6
At (6), S.push()
S:2

(d) S.pop(7)
t (7

At (7), S.push()
S:2—-3

(h) S.pop(5)

At (5), S.push()
S : empty

Depth-first search expansion of the C-space in Figure 9.7 with a running tally of elements
in stack S. The arrows point towards the top of the stack.
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Not travcrscd_,-"‘

FIGURE 9.11
Depth-first search solution with order of states visited.

fprintf (’Starting DFS from State %i to State %i.\n’, InitState, GoalState);

% Define initial conditions

PushedStates = InitState;

Stack = clsEdge.empty; % Stack construct
CurrentState = InitState;

E = [1;

GoalFound = false;

% Loop until the goal state is reached
while CurrentState "= GoalState
% Find all states connected to current state
NextStateAll = find(M(:,CurrentState));
% Remove connected states already pushed to stack previously
NextState = setdiff (NextStateAll, PushedStates);
fprintf (> Added to states to Stack:’);
% Add connected states to stack
for i = NextState(:)’
NewEdge = clsEdge(CurrentState, i, E);
fprintf (> %i’, i);
% SHORTCUT: Terminate if goal state is added to stack
if 1 == GoalState
fprintf (> (goal found)’);
GoalFound = true;
break
else
% Otherwise, push edge containing next state to stack
Stack = Push(Stack, NewEdge) ;
end
end
if GoalFound
% If goal found by adding to stack, set next edge to newly added edge
E = NewEdge;
else
% Otherwise, get next edge from end of stack. Pop edge off stack.
[E, Stack] = PopStack(Stack);
end
% Add pushed states to list of pushed states
fprintf (’\n Pushed states:’);
PushedStates = Push(PushedStates, NextState);
fprintf (’ %i’, PushedStates);
% Set next state as defined by the end of the next edge
CurrentState = E.NextState;
fprintf (’\nMoving to state: %i\n’, CurrentState);
end

% Reconstruct path from goal state to initial state
EdgePath = E;
fprintf (’Reconstructing path: (Goal)’);
while “isempty(E.ParentEdge)
fprintf (’ %i ->’, E.NextState);
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EdgePath = Push(EdgePath, E.ParentEdge);
E = E.ParentEdge;
end
fprintf(’> %i -> %i (Init).’, E.NextState, E.ParentState);

% Flip path so it goes from initial to goal state
EdgePath = flipud(EdgePath);
StatePath = [EdgePath.ParentState EdgePath(end).NextState]’;

end

% Implementation of pushing an object to a list

function obj = Push(obj, item)
obj = [obj; item];
end

% Implementation of popping an object off a stack
function [item, obj] = PopStack(obj)

item = obj(end);

obj(end) = [1;

end

Note that this function also uses an edge class, clsEdge in Line 22 as defined in Inline 9.5.
Finally, the command window output shows how we can use MATLAB to solve this problem.

As you can expect, the way these searchers find the goal is by chance, as the order at
which each edge is traversed is fixed, so there is no chance of optimisation when using these
algorithms. These algorithms should only be used in smaller C-spaces, and are generally only
implemented because they are very simple to implement in any programming language.

9.4.2 Dijkstra’s Algorithm

First conceived by Edsger Dijkstra in 1956, this algorithm implements a cost to go function
for each state transition during its planning. Therefore, each path that is planned by the
algorithm will have an associated overall cost and, at the end of execution, will return the
path with the lowest cost.

The algorithm functions on a best search paradigm, where the states with the lowest
path cost will be visited first, rather than simply searching the next edge in a queue or
stack. This helps directionalise the search towards lowest cost paths, and ensures that the
shortest path is always found when the goal is reached. As a result, the time complexity
becomes O(|V|log(|V|) + |E|). However, more data is needed, as the costs of each state
must be maintained.

Process

1. Initialisation. Starting with an initial state x;,q, goal state Ty0q:, and a finite
space S, set Teyrrent = Tinge and define two lists:
e Next state list V
e Visited states list V'

Add Tinit toV
2. Add next states to N. From x.y,ent, add all of its connected states that are
not in V', to N.

3. Evaluate costs for each connected state. From x.,,rent’s cost, evaluate costs
for all connected states by evaluating state transition costs to the next state h.
Update any previously calculated scores for any states if they were higher.
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4. Find next state in IN. Search for the next state with the lowest cost in list NV,
Tnext-

Move to lowest next state. Set Z.yrrent = Tnezt-

6. Terminate condition. If Z.yrrent = Tg0a1, then the goal is found. Otherwise, go
to Step 2.

The resulting search propagates like a wave-front, similar to the breadth-first search,
but the path costs will directionalise the search in favour of taking shorter paths. This does
not necessarily mean that this will directionalise the search towards the goal. This rapid
exploration outwards from the initial state, rather than towards the goal, is this algorithm’s
weakness.

Example M9.4 (Dijkstra’s algorithm): Find the shortest path from State 1 to State 6 using
Dijkstra’s algorithm, given the following connectivity matrix M with path costs integrated. Use
MATLAB to verify the result.

0512000
5000 1 1 0
1 00006 0

M=1{2 0 0 0 0 0 2 (9.2)
0100000
01 60000
0 00 2 0 0 0

Solution: Connectivity matrix M will yield the following graph with state transition costs.

Figure 9.13 shows the search result for the C-space in Figure 9.12, for each iteration of Dijkstra’s
algorithm. The solution suggests the path: State 1 — State 2 — State 6 with an overall path cost
of 6. We can observe that although the goal node (State 6)’s path cost was initially calculated as
7 from State 3, State 6 was not visited after calculating its cost because there were other states
of lower costs to visit first. When approaching State 6 from State 2, we find that the path cost is
decreased from 7 to 6.

Notice that this algorithm required 6 iterations to solve this problem which is the worst-case
scenario for this algorithm; which is worse than both BFS and DFS searches. This highlights the
main weakness of this search algorithm.

Inline 9.8 shows the MATLAB command window output that verifies the result obtained in
Figure 9.13 for each iteration in detail. The output variable pth verifies the final path in Figure M9.4.

FIGURE 9.12
C-space and state transition costs based on Equation (9.2) for Example M9.4.
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(d) Iteration 4 (f) Iteration 6

(g) Final path

FIGURE 9.13
Dijkstra’s search of the C-space in each iteration as shown in Inline 9.8.

Inline 9.7 shows the MATLAB code to implement Dijkstra’s algorithm for a given connectivity
matrix, used in Inline 9.8.
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>> [pth, cost] = dijkstra(M,1,6)
Starting Dijkstra search from State 1 to State 6.
[Iteration 1]
States that have been visited: 1
States pushed onto the list: (c:)
Added to states to List: 2 (c:5) 3 (c:1) 4 (c:2)
Moving to state with lowest cost: 3 (c:1)
[Iteration 2]
States that have been visited: 1 3
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States pushed onto the list: 2 (c:4) 5 (c:2)

Added to states to List: 6 (c:7)

Moving to state with lowest cost: 4 (c:2)
[Iteration 3]

States that have been visited: 1 3 4

States pushed onto the list: 2 (c:6) 5 (c:7)

Added to states to List: 7 (c:4)

Moving to state with lowest cost: 7 (c:4)
[Iteration 4]

States that have been visited: 1 3 4 7

States pushed onto the list: 2 (c:6) 5 (c:7)

Added to states to List:

Moving to state with lowest cost: 2 (c:5)
[Iteration 5]

States that have been visited: 1 3 4 7 2

States pushed onto the list: 6 (c:7)

Added to states to List: 5 (c:6) 6 (c:7 -> 6)

Moving to state with lowest cost: 5 (c:6)
[Iteration 6]

States that have been visited: 1 3 4 7 2 b5

States pushed onto the list: 6 (c:6)

Added to states to List:

Moving to state with lowest cost: 6 (c:6)
Reconstructing path: (Goal) 6 (6) -> 2 (5) -> 1 (Init).

pth =
1
2
6

cost =
0
5
6

function [StatePath, Cost] = dijkstra(M, InitState, GoalState)
%DIJKSTRA Dijkstra’s search algorithm

fprintf (’Starting Dijkstra search from State %i to State %i.\n’, InitState, GoalState);

% Define initial conditions

VisitedStates = InitState; % States that have been visited
SampledStates = []; % States added to list
List = clsEdge.empty; % Unordered List construct
StateCost = NaN(size(M,1) ,1); % Initialise all costs to NaN
StateCost (InitState) = 0; % Set initial state score as O
CurState = InitState;
E = [1;
iteration = 0;
% Loop until the goal state is reached
while CurState "= GoalState

iteration = iteration + 1;

fprintf (’[Iteration %i]\n’, iteration)

fprintf (’ States that have been visited:’);

fprintf (’ %i’, VisitedStates);

fprintf (’\n States pushed onto the list:’);

fprintf (> %i (c:%i)’, SampledStates, StateCost(SampledStates));
fprintf (’\n’)
% Find all states connected to current state
NxtStateAll = find(M(:,CurState));
% Remove connected states that were visited previously
NxtState = setdiff (NxtStateAll, VisitedStates);
NxtStateCost = StateCost (CurState) + M(NxtState,CurState);
fprintf (’ Added to states to List:’);
% Add connected states to list
for i = 1:length(NxtState)
% Check if next state has been sampled
if ismember (NxtState(i),SampledStates)
% Check if next state has been sampled but at a higher G-score
if NxtStateCost (i) < StateCost(NxtState(i))
% If yes, then update next state cost with the current lower G-score
fprintf (’ %i (c:%i -> %i)’, NxtState(i), StateCost(NxtState(i)),
NxtStateCost (i))
StateCost (NxtState(i)) = NxtStateCost(i);
NewEdge = clsEdge(CurState, NxtState(i), E,
StateCost (NxtState(i)));
List (([List.NxtState]’ == NxtState)) = []; % Remove old edge from list
List = Push(List, NewEdge); % Push edge with lower cost
end
else
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StateCost (NxtState(i)) = NxtStateCost (i);
% Push edge containing next state to list, along with F-score to get there
NewEdge = clsEdge(CurState, NxtState(i), E, StateCost(NxtState(i)));
fprintf (’ %i (c:%i)’, NxtState(i), StateCost(NxtState(i)));
List = Push(List, NewEdge);
SampledStates = Push(SampledStates, NxtState(i));
end
end
fprintf (’\n’)
% Get next edge whose next state F-score is lowest. Pop it from the list.
[E, List] = PopLowest(List);
% Set next state as defined by the end of the next edge
CurState = E.NxtState;
% Added current state to visited state list
VisitedStates = Push(VisitedStates, CurState);
SampledStates = setdiff (SampledStates, CurState);
fprintf (° Moving to state with lowest cost: %i (c:%i)\n’, CurState, E.Cost);
end

% Reconstruct path from goal state to initial state
EdgePath = E;
fprintf (’Reconstructing path: (Goal)’);
while “isempty (E.ParentEdge)
fprintf (’ %i (%i) ->’, E.NxtState, E.Cost);
EdgePath = Push(EdgePath, E.ParentEdge);
E = E.ParentEdge;
end
fprintf (’> %i (%i) -> %i (Init).’, E.NxtState, E.Cost, E.ParentState);

% Flip path so it goes from initial to goal state
EdgePath = flipud(EdgePath);
StatePath = [EdgePath.ParentState EdgePath(end).NxtState]’;

% Set cost as an output variable
Cost = StateCost(StatePath);

end

% Implementation of pushing an object to a list
function obj = Push(obj, item)

obj = [obj; iteml];

end

% Implementation of popping the lowest cost object from a list
function [item, obj]l = PopLowest (obj)

[, il = min([obj.Cost]);

item = obj(i);

obj (i) = [1;

end

Notice that function also uses an edge class, clsEdge in Line 41 as defined in Inline 9.5

9.4.3 A*

The A* search is based on Dijkstra’s algorithm, which further improves performance with
the introduction of heuristics. It has been used in a wide range of applications, but more
importantly, it has applications in robot motion planning for discrete data sets.

The key feature that differentiates the A* search from a greedy best-first search is that
it takes into account both the distance already travelled and the estimated distance to the
goal to determine which state to branch from next. The result is that A* is a best-first
search that finds a lowest-cost path from an initial state to a goal state, building a partial
tree where branches are explored based on minimising the cost function

f(n) = g(n)+h(n) (9-3)

where g(n) is the cumulative path cost from the initial state to state n, h(n) is a heuristic
estimate to get from state n to the goal state, and f(n) is the total score for the state which
is used to determine which state to visit next. This is also called the F-score. In general,
the heuristic function should reliably give an estimate of the distance between state n and
the goal state. A common heuristic implemented in the algorithm is the as-the-crow-flies
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heuristic, which is a straight-line distance heuristic that forces A* to find the shortest path.
Another common heuristic used in grid C-spaces is called the Manhattan heuristic, which
is simply the sum of the distances along each dimension towards the goal state.

This algorithm has a time complexity of O(b?), where d is the length of the shortest
path and b is the average number of adjacent states per state. If a perfect heuristic! is used,
then the time complexity is assumed to be polynomial.

This algorithm is guaranteed to return a pass or fail result, which is a desirable feature
depending on the dimensionality of the problem. Since the algorithm only terminates upon
finding the endpoint, the algorithm can take a significant amount of time to complete in
higher-dimensional space due to its exponential time complexity in the worst case. Further-
more, a heuristic is very difficult to calculate or model in non-homogeneous C-spaces, such
as ones that feature both angular rotations and stroke length from revolute and prismatic
actuators, respectively. Due to these limitations, this algorithm is best used for smaller, less
complicated spaces at lower dimensions.

Process

1. Initialisation. Starting with an initial state x;,s, goal state x404;, and a finite
space S, set Teyrrent = Tinge and define two lists:

o Next state list NV
e Visited states list V'

Add Tinit toV

2. Add next states to N. From Z.yrent, add all of its connected states that are
not in V, to N.

3. Evaluate F-scores for each connected state. From x.y,ent’s G-score, eval-
uate F-scores for all connected states by evaluating state transition costs g and
heuristic at the next state h. Update any previously calculated F-scores for any
states if they were higher.

4. Find next state in N. Search for the next state with the lowest F-score in list
Na Tnext-

Move to lowest next state. Set Teyrrent = Tnewt-

6. Terminate condition. If T yrrent = Tgoat, then the goal is found. Otherwise, go
to Step 2.

Example M9.5 (A-star search): Given the graph in Figure 9.14, find the shortest path between
State 1 and State 6 using A* search. Verify the result in MATLAB.

Solution: Figure 9.15 shows the search result for the C-space in Figure 9.14, for each iteration of
the A* algorithm. The solution suggests the path: State 1 — State 2 — State 6 with an overall
path cost of 6 as shown in Figure M9.5, similar to the result of Dijkstra’s search in Example M9.4.
However, the A* search was able to find the shortest path after three iterations, rather than six,
which highlights the usefulness of heuristics to optimise searches in finite graphs.

Inline 9.10 shows the MATLAB command window output that verifies the result obtained in
Figure 9.15 for each iteration in detail. The output variable pth verifies the final path in Figure
M9.5. To use A* in MATLAB, we need the connectivity matrix M and heuristic information. From
the C-space graph from Figure 9.14, we can define vertex-pair connections as defined by variable E,
and the path costs (PathCost). This is concatenated with E to then convert to a connectivity matrix

Hmplies that the estimation of the distance between the sampled node and the goal node is exact.



Complete Planning Algorithms 181

FIGURE 9.14
C-space, state transition costs and distance heuristic h from goal State 6, for Example M9.5.

M via function Edge2CMatrix (). We also define the heuristic for each state as variable Heuristic.
This, matrix M, initial and goal states, are all required inputs to the astar() function.

Inline 9.11 shows the MATLAB code to implement the A* algorithm as the function astar()
for a given connectivity matrix, used in Inline 9.10.

>> PathCost = [6 1 2 1 1 6 2]
PathCost =
5 1 2 1 1 6 2

> E = [[1 2; 1 3; 1 4; 2 5; 2 6; 3 6; 4 7] PathCost’]

B WNNRE P
~NO OO WN
N R~ NFO

>> M = Edge2CMatrix (E)
M =

(2,1)
(3,1)
(4,1)
(1,2)
(5,2)
(6,2)
(1,3)
(6,3)
(1,4)
(7,4)
(2,5)
(2,6)
(3,6)
(4,7)

NOFRFEFNNOOR RN O

>> Heuristic = [0 2 7 4 5 0 8]
Heuristic =
0 2 7 4 5 0 8

>> [pth, c] = astar(M,1,6,Heuristic)
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Starting A* search from State 1 to State 6.
[Iteration 1]
States that have been visited: 1
States pushed onto the list: (f:)
Added to states to List: 2 (f:7 g:5 h:2) 3 (f:8 g:1 h:7) 4 (f:6 g:2 h:4)
Moving to state with lowest F-score: 4 (f:6)
[Iteration 2]
States that have been visited: 1 4
States pushed onto the list: 2 (£:3) 7 (£:8)
Added to states to List: 7 (f:12 g:4 h:8)
Moving to state with lowest F-score: 2 (f:7)
[Iteration 3]
States that have been visited: 1 4 2
States pushed onto the list: 3 (f:7) 8 (f:12)
Added to states to List: 5 (f:11 g:6 h:5) 6 (£f:6 g:6 h:0)
Moving to state with lowest F-score: 6 (f:6)
Reconstructing path: (Goal) 6 (6) -> 2 (5) -> 1 (Init).
pth =

N =

5, 1 2
ID:2 1D:3 1D:4
7T:5:2 8:1:7 6:2:4
1 1 6 2
ID:5 ID:6 ID:7 ID:5 ID:6 ID:7
?7:7:2 ?7:7:0 ?7:7:8 ?7:7:2 ?7:7:0 12:4:8
(a) Iteration 1 (b) Iteration 2

(c) Tteration 3 (d) Final path

FIGURE 9.15
A* search of the C-space in each iteration. Refer to the output in Inline 9.8 for list and score
details.
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function [StatePath, Cost] = astar(M, InitState, GoalState, StateHeuristic)
%ASTAR A* search algorithm

fprintf (’Starting A*x search from State %i to State %i.\n’, InitState, GoalState);

% Define initial conditions

VisitedStates = InitState; % States that have been visited
SampledStates = []; % States added to list
List = clsEdge.empty; % Unordered List construct

% F, G, and H scores for each state
StateScore = struct(’F’, 0, ’G’, NaN, ’H’, num2cell(StateHeuristic));

StateScore(InitState) .G = 0; % Set initial state score as O
CurState = InitState; % Current state
E = [1;
iteration = 0;
% Loop until the goal state is reached
while CurState "= GoalState
iteration = iteration + 1;
fprintf (’[Iteration %i]\n’, iteration)
fprintf (° States that have been visited:’);
fprintf (’ %i’, VisitedStates);
fprintf (’\n States pushed onto the list:’);

fprintf (> %i (f:%i)’, SampledStates, [StateScore(SampledStates).F]);
fprintf (’\n’)
% Find all states connected to current state
NxtStateAll = find(M(:,CurState));
% Remove connected states that were visited previously
NxtState = setdiff (NxtStateAll, VisitedStates);
NxtStateG = StateScore(CurState).G + M(NxtState, CurState);
fprintf (° Added to states to List:’);
% Add connected states to list
for i = 1:length(NxtState)
% Check if next state has been sampled
if ismember (NxtState(i),SampledStates)
% Check if next state has been sampled but at a higher G-score
if NxtStateG(i) < StateScore(NxtState(i)).G
% If yes, then update next state cost with the current lower G-score
StateScore (NxtState(i)).G = NxtStateG(i);
% Update next state F-score
StateScore (NxtState(i)).F = StateScore(NxtState(i)).G +
StateScore (NxtState(i)) .H;
NewEdge = clsEdge(CurState, NxtState(i), E,
StateScore (NxtState(i)).F);

List (([List.NxtState]’ == NxtState)) = []; % Remove old edge from list
List = Push(List, NewEdge); % Push edge with lower cost
end
else
StateScore (NxtState(i)) .G = NxtStateG(i);
% Update next state F-score
StateScore (NxtState(i)).F = StateScore(NxtState(i)).G +
StateScore (NxtState(i)) .H;
% Push edge containing next state to list, along with F-score to get there
NewEdge = clsEdge (CurState, NxtState(i), E, StateScore(NxtState(i)).F);
fprintf (’ %i (f:%i g:%i h:%i)’, NxtState(i), StateScore(NxtState(i)).F,
StateScore (NxtState(i)) .G, StateScore(NxtState(i)).H);
List = Push(List, NewEdge);
SampledStates = Push(SampledStates, NxtState(i));
end

end

fprintf (’\n’)

% Get next edge whose next state F-score is lowest. Pop it from the list.

[E, List] = PopLowest(List);

% Set next state as defined by the end of the next edge

CurState = E.NxtState;

% Added current state to visited state list

VisitedStates = Push(VisitedStates, CurState);

SampledStates = setdiff (SampledStates, CurState);

fprintf (’ Moving to state with lowest F-score: %i (f:%i)\n’, CurState, E.Cost);
end

% Reconstruct path from goal state to initial state
EdgePath = E;
fprintf (’Reconstructing path: (Goal)’);
while “isempty(E.ParentEdge)
fprintf (> %i (%i) ->’, E.NxtState, StateScore(E.NxtState).G);
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EdgePath = Push(EdgePath, E.ParentEdge);
E = E.ParentEdge;
end
fprintf (’ %i (%i) -> %i (Init).’, E.NxtState, StateScore(E.NxtState).G, E.ParentState);

2% Flip path so it goes from initial to goal state

EdgePath = flipud(EdgePath);
StatePath = [EdgePath.ParentState EdgePath(end).NxtState]’;

% Set cost as an output variable
Cost = [StateScore(StatePath).G]’;
end

% Implementation of pushing an object to a list
function obj = Push(obj, item)

obj = [obj; item];

end

% Implementation of popping the lowest cost object from a list
function [item, obj]l = PopLowest (obj)

[, i] = min([obj.Cost]);

item = obj(i);

obj (i) = [1;

end

Notice that function also uses an edge class, clsEdge in Line 43 as defined in Inline 9.5

9.5 Sample-Based Planning Algorithms

As the name suggests, sample-based algorithms will take random samples from the discre-
tised space to create a connected roadmap structured like a tree. Where a path is found
in the network of branches between the initial and goal nodes, then the path is returned.
Due to the randomness in the sampling, a different tree will be generated every time, which
is why solutions will differ on repeated runs on the same problem. The main concept of
sample-based planning is to avoid mapping the entire discretised space, but rather to take
samples of this black box to obtain the overall characteristic of the C-space progressively.

There are two goal paradigms when it comes to sample-based algorithms: single and
multiple query algorithms. For single query algorithms, the goal is to find a path between two
states as quickly as possible, disregarding the potential for better solutions if one exists. No
C-space pre-processing is performed for single-query algorithms. Multiple query algorithms
assume that the same space will be sampled regularly, and so the process involves pre-
processing of the C-space to obtain better solutions over multiple queries. While this is
beneficial for a static C-space, it becomes challenging in dynamic environments, where single-
query algorithms may perform better.

In the last decade, the most prominent sample-based algorithms are the PRM and
the RRT. Both algorithms have seen industry use and possess a theoretical guarantee of
probabilistic completeness. The PRM is a multiple-query algorithm, while RRT is considered
the single-query counterpart.

9.5.1 Probabilistic Road Map (PRM)

As the number of dimensions in a map increases, the time it takes for a graph-based search to
execute grows exponentially. In recent years, PRM has been the go-to method for pathfind-
ing in robotics as it performs relatively well in higher-dimensional workspaces. The PRM
algorithm is a sampling-based multiple-query path planning scheme that samples random
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points within a connected set of points and builds a tree based on collision-free straight-line
trajectories between these sampled points. Sampling-based path planners have the advan-
tage of speed over complete algorithms in that weaker notions of completeness are tolerated
(resolution and probabilistic completeness). Where higher dimensions are considered (such
as a manipulator with a high DOF), complete algorithms will take a long time to find a
solution, due to time complexity and the large memory footprint required to visit and store
every single state visited. Sampling-based planners are iteration-based, and in general, the
probability of finding a solution converges to zero as the number of samples approaches
infinity. As such, it was shown that PRM planners work well in solving difficult motion
planning problems. This algorithm has a time complexity of O(nlogn), and was shown to
be probabilistically complete, but not asymptotically optimal.

The PRM algorithm has seen widespread use in robotics, in both vision and actuator
based planning. It is capable of handling higher dimensional configuration spaces which
is important for high degree-of-freedom serial robot structures. It has also been regularly
applied in a research setting, such as gait generation for climbing robots, and complex
singularity avoidance for higher degree-of-freedom parallel mechanisms.

Process

This can be visualised in Figure 9.16.

1. Initialisation. Start with an initial state @i, goal state x 4041, and a finite space
Crree with obstacles Cops defined. Set Zpew = Tinit-

2. Connect to existing states. Find linear paths between z,., and all existing
states in C freez that do not intersect C,p5. Valid paths between states are marked
as connected on a connectivity matrix M.

3. Check for path between z;,;;, goal state x,,,. Evaluate M for connectivity
between X, goal state x404:. If a path exists and other constraints are met, the
algorithm stops. Otherwise, go to the next step.

4. Sample new state. Randomly sample a new state ., anywhere in C¢y¢e. Loop
back to Step 2.

As more points are sampled in the discretised space, the solution will converge to a
shortest-path solution. Although feasible paths are normally found in a matter of millisec-
onds in smooth and well-conditioned data sets, the execution of the PRM algorithm is
generally allowed to continue to smooth out the path. If weighting is factored into the
connectivity matrix, then the quality of the solution depends on the cost criteria of the
solutions found in the connectivity/weighting matrix. For example, if paths are weighted
to avoid boundaries of workspace patches, then the lowest-scoring solution will contain the
path that is optimised in both path length and boundary avoidance. The simplest way to
cost each linear path is to associate a cost based on distance from an obstacle for each
cell within the connected map, also known as adding a heuristic function to the planner.
Heuristics is regularly used to help the path planner generate better-conditioned paths in
the workspace in addition to obstacle avoidance. While this has no implication on the time
taken to find a valid path in the connected space, with continuing iterations beyond the
path-existence termination condition, the path found will eventually converge to a balanced
solution regarding path cost and path length. This will generally smooth out trajectories
generated by the PRM.

20ptional: within a radius r.
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Tinit Cobs Lgoal Tinit Cobs ZTgoal
O Invali O OIHV

Cfree Cfree

(a) Initialise and try to connect @jnit (b) Sample new point zi, find connec-

and Tg0q7- tions to all other states.

Linit Cobs L goal Tinit Cobs Zgoal

1
€2

Cfree Cfree

(c) Sample new point x2, find connec-
tions to all other states.

(d) Final connected states.

FIGURE 9.16

Connecting states Zinit t0 Tgoqr using PRM in finite free space Cyre. with obstacle Cops.
New randomly sampled states are added to Cy,.. and paths that avoid Cops are connected
to existing states to find a collision-free path.

9.5.2 Rapidly Exploring Random Trees (RRT)

PRMs are considered to be efficient in planning in higher dimensional C-spaces that are
time-invariant and holonomic. However, there are many path planning problems that are
non-holonomic, that involve kinodynamics, which by nature is used in mobile vehicles and
some robotic trajectory planning. Non-holonomic problems® involve the constant changing
of the C-space, either through the system itself or driven by external means.

Let us consider a vehicle with a two-DoF input — acceleration and orientation as con-
trolled by a steering wheel. The motion, or state of the vehicle, will be controlled through
these inputs. However, we observe that the vehicle output state has three DoF — the z —y
position on a plane, and vehicle orientation ¢. Path planning for this vehicle is a standard
non-holonomic problem because the vehicle’s state involves some form of integration of its
input. Hence, checking for valid connections between states during path planning, consider-
ing collisions, can be computationally expensive. The rapidly-exploring random tree method
aims to solve this problem by constructing state trees sequentially, such that it derives a
new state from a previously known state.

Because the C-space of a non-holonomic problem is not static, the states sampled within
the tree are only valid for a given initial state. Once a new planning query is called, if the
initial state is different from the previous plan, then the old sample states are no longer
valid and should be discarded. This routine is called a single-query planner because a new
tree is constructed every time a new path is planned. Although this may seem inefficient,
the core idea of RRT is that speed is favoured over quality; that results should be generated
as quickly as possible without any prior knowledge of the C-space. As the C-space is not

3Problems of the form ¢ = f(g,u) (the classical C-space function) are non-holonomic problems.
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() bms_bample

Lgoal

Cfree

(a) Repeat for new sqmpie. Since it is
within 7 of Zypeqr, add it directly as x3
to T

Linit

x
Cfree !

(¢) Repeat the process for zs.

FIGURE 9.17
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(b) Repeat the process for 4.
7/. .
3 s
Linit .
xgodl

Cfree

(d) Since x5 is within r of 2444, connect
them. A path from z;ni¢ t0 Zgoq is found.

RRT expansion from states Zinit t0 Zgoar, in finite free space Cfree With obstacle Cops.

constructed at all, the memory footprint of RRT planning is minimal, which is ideal for
embedded systems where processing power is limited.

Process

The process of generating an RRT for path planning is similar to the PRM. However, there
is one key difference — each new sampled state is connected to only one existing sampled
state to ensure that states are connected sequentially between one another. This can be

visualised in Figure 9.17.

1. Initialisation. Start with an initial state ;,, goal state z404; and a finite space
Cfree With obstacles Cops. Define a connected tree of states T', and add 24,4 to it.
Set a growth radius 7 for the tree 1. Set Zsqmple = Zgoal

2. Find 4. Find the nearest state in 7' that is closest to Zsgmpie that is not

Tgoal- et this state as Tyeqr-

3. Define z,,,. If distance between g qmpie and Z,cqr exceeds growth radius 7,
then define a linear path from z;,cqr and Zsgmpie, and set x,,c,, to be on this path
at distance r from Zpeqr. Otherwise, set Tnew = Tsample-
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4. Connect T, tree T. Verify that the linear path between x,¢,, and x,eq, does
not intersect Cops. If it does, discard xjeq, and go to Step 6. If there is a valid
connection, add Xy to the tree T' via a branch from z,,cqr.

5. Comnnect to Zgoqi- From x,.,, if distance to xg0q; is less than radius r, find a
collision-free path from . t0 Tg40q- If n0O path exists, move to the next step. If
a path exists, add a branch to 7', from Z,ew t0 T40q1 and a path from x4, goal

state 4001 is found. Stop.

6. Sample new state T 4mpic. Randomly sample a new state Tsqmpie anywhere in

Cfree- Loop back to Step 2.

Due to RRT’s ability to handle non-holonomic problems, it is very popular amongst the
robotics community as the initial go-to planner for unknown C-spaces. Its ability to handle
planning almost any C-space makes it very suitable for use in field robotics, but it also has
uses in robotics research where robot prototyping can continuously change its C-space. It
is also used in some manufacturing plants that adopt human-robot collaboration, where
collision objects (such as the human) are time-variant within the C-space. However, in cases
where the C-space is predictable and time-invariant, such as plants utilising robots in trivial
pick-and-place and assembly tasks, a multiple-query planner is preferred for its efficiency
and deterministic plans. In such a scenario, A* or PRM in a predefined C-space would be

suitable candidates.

Tinit Cobs Lgoal

@) @)

Cfree

(a) Initialise with Zini and xgeq; in
Cree with obstacle Cops.

Tinit zp  Cobs'  Tgoal

Tnear

Cfree O

Tsample

(c) Sample new state Tsqmpie, find the
nearest state Tpeqr at x1, and find
Tnew at radius 7. Tpew is invalid due
to collision with C,ps-

Tinit Iﬁew Cobs Lgoal

& @
Tnear Lsample
Cf’ree

(b) Set 24041 as new sample state sgmpie, find
the nearest state Tnear at Tinit, and find Tpew
at radius r. Add xnew as 1 to tree T'.

Tirit ap Cobs  Tgoar

@)

Cfree O

Tsample

(d) Repeat process for new state
ZTsample, adding it as x2 to T'.
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9.6 Potential Field Planners

Potential field algorithms represent a more mathematical solution to the path planning
problem. Before planning begins in the C-space, the potential field is constructed over the
entire C-space whereby weights are applied to discourage paths in problematic areas (such
as collision objects). Initially, the entire space is discretised coarsely, and the potential field
is constructed. If a solution cannot be found, the space is discretised further, potential
fields re-evaluated, and the algorithm is run again. The algorithm will stop when the goal
state is met (success), or the maximum resolution has been attained (failure). This is a
single-query planner, where the main advantage of this method is that the potential field
(known as the heuristic function or guiding function) can be calculated very quickly, and
adapted for specific problems. Potential field planners for robots with up to 8 DoF have
been successfully implemented for the inspection of buildings but have seen limited use in
modern industry with the advancements of sample-based planners.

For guaranteed convergence, the potential field must be perfect in that no local min-
ima should exist except for one located at the goal state. This is typically very difficult
to achieve. Hence, many applications of this planner are prone to local minima problems
without assistance, such as introducing random walks. Calculating the overall path cost
from gradients is also expensive to implement over spaces of high dimensions.

9.7 Conclusion

In this chapter, we defined how to set up a path planning problem for manipulator path
planning. The concept of the configuration space (C-space) is used to fully describe the pose
or configuration of a robot at a given time. This space can be built using either the task
space or joint space variables, depending on the proposed path planning constraints. We
observed that for serial manipulators, the joint space always fully describes the configuration
of the robot, hence a C-space derived from joint space variables is a viable candidate for
path planning. In addition, the C-space can be discretised in two ways, grid or random
sampling, with connectivity schemes initially defining all possible state transitions within
the C-space. Selecting an effective connectivity scheme is critically important for planning
efficiency, as it directly affects the complexity of the path planning problem.

Two main types of planning algorithms were introduced to perform path planning in the
C-space: complete planners and sample-based planners. Complete planners include depth-
first and breadth-first searches, which are primitive but easy to implement for simple plan-
ning problems, and Dijkstra’s algorithm and A*, which are more advanced planners that
implement path costings and heuristics for solving shortest path problems. Complete plan-
ners work very well in C-spaces defined as finite graphs, but are limited to problems of lower
dimensions. Sample-based planners solve the problem of higher dimensionality by taking
random samples of the C-space to formulate a problem such that a solution is probabilisti-
cally complete. Probabilistic road maps (PRM) and rapidly-exploring random trees (RRT)
fall under this category, and are introduced in this chapter.

MATLAB implementations for many these planning algorithms were given in the form
of path planning examples. The supplied code, which is commented in detail, supplements
the brief descriptions of the process of each planning algorithm.
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Programming

In this chapter, we introduce programming methods to model, simulate, and control serial
chain manipulators. Many development environments and programming languages are used
in the industry, research, and broader hobby and enthusiast environments. However, in the
context of introductory robotics, we will focus on software and programming languages that
are already familiar to undergraduate students: MATLAB, C++, and Python. Furthermore,
we introduce the Robot Operating System (ROS), which is a commonly used middleware
for programming and controlling a physical robot.

10.1 Modelling

Throughout this textbook, we used a variety of MATLAB functions and features to model
various aspects of a serial robot. MATLAB provides the perfect environment for learning
robotics, not only to model the kinematics and dynamics of a robot but also to provide
visualisations using MATLAB’s built-in graphical functions. This chapter will demonstrate
how to use these tools to assist in the modelling and visualisation of robots.

10.1.1 Symbolic Functions and Handles

In Chapter 6, we utilised the Denavit-Hartenberg parameters set in tables to model the
forward kinematics of a serial manipulator. Although the link lengths and offsets can be
predefined by numerical values within the table, rows that contain an actuated variable,
either in the ¢ column for revolute or d column for prismatic actuators, will always remain
variable. Hence, our forward kinematic modelling will be a function of symbolic variables ¢
or d, collectively known as joint space vector q. In MATLAB, we can define joint variables
as symbolic variables. For example, if a RP robot of length L; is made up of a revolute and
prismatic actuator in sequence, then we can define variables ¢; and do and unknown L; in
MATLAB by

syms theta_1 d_2 L_1 real

Note that we include the keyword real, which forces MATLAB to assume these variables
will always contain real numbers. This means MATLAB will not calculate a complex con-
jugate for these variables when applying transpose operations to them. If we assume the
DH parameters for this robot are
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and apply Equation (6.3) (defined as a MATLAB function dh2T() in Inline 6.1), then we
obtain the forward kinematic equations *Ty in MATLAB in symbolic form.

>> T_0_1 = dh2T( [0, O, L_1, theta_1] );

>> T_1_2 = dh2T( [0, O, d_2, 0] );

>> T_0_2 = T_0_1 * T_1_2

T_0_2 =

[ cos(theta_1), -sin(theta_1), O, 0]
[ sin(theta_1), cos(theta_1), O, 0]
[ 0, 0, 1, L_1 + d_2]
[ 0, 0, 0, 1]

While this clearly demonstrates MATLAB'’s ability to generate analytic solutions effort-
lessly for simple serial chains, it is not particularly useful if we want fast numerical solutions.
To get a numerical answer from MATLAB’s symbolic equation, one simple solution is to
copy and paste the analytic expression for T_0_2 into the command window and replace all
variables with known values. However, this is inefficient if we evaluate over multiple points
in the joint space, especially for long analytic expressions seen in manipulators of more than
three DoF. To efficiently substitute values into T_0_2, we can convert it into a function han-
dle using matlabFunction() which effectively converts it to MATLAB a function, similar
to sin() or cos().

>> T_0_2_function = matlabFunction(T_0_2)
T_0_2_function =
function_handle with value:

@(L_1,d_2,theta_1)reshape([cos(theta_1),sin(theta_1),0.0,0.0,-sin(theta_1),cos(theta_1
),0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,L_1+d_2,1.0]1,[4,4]1)

The function handle T_0_2_function is used like any other function in MATLAB, but has
three inputs, Ly, do, and ¢; in that order. To find °T5 at ¢; = T, d2 = 0.2, with L; = 0.1
simply call T_.0_2_function() with these known inputs.

>> T_0_2_function (0.1, 0.2, pi/4)

ans =

0.7071 -0.7071 0 0
0.7071 0.7071 0 0
0 0 1.0000 0.3000
0 0 0 1.0000

By utilising matlabFunction() to convert symbolic expressions into function handles,
we now have a fully programmatic way to numerically model the forward kinematics of any
robotic manipulator from its DH parameters.

10.2 Robot Operating System

The field of robotics has made impressive gains in recent years, both in hardware and soft-
ware, and the algorithms that help these robots run with increasing levels of intelligence
and autonomy. However, the increasing availability of inexpensive robotic components, each
with its own hardware implementation and communications interface, is causing some sig-
nificant challenges for software developers — which is to write software for a robotic system
that allows seamless communication between any low-level hardware with higher-level con-
trol and decision-making algorithms. To add to the wish list, the flexibility of using multiple
programming languages, ease of code expandability and portability, and a robust debugging
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platform may seem like a pipe dream. However, the introduction of the Robot Operating
System, or ROS, is intended to address many of these challenges.
The official description of ROS is as follows:

ROS is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-level
device control, implementation of commonly used functionality, message-passing between
processes, and package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

More succinctly, ROS is known as a middleware, which serves to provide a standardised
framework for the communications between hardware and software, to promote collabo-
ration, expansion, and robust debugging through distributed computing, and to encourage
code sharing through package management. Let us take a look at the first two benefits more
closely.

Standardised Communication

This is one of the main benefits of ROS, as it provides a standardised platform for communi-
cation between all components within the robotic system via the ROS messaging interface,
implemented on an Ethernet/IP protocol. This means the messaging system can function in-
ternally in a standalone computer system, utilising a network in a local host, or distributed
across multiple devices on a network with messages transferred through an Ethernet cable
or WiFi.

Distributed Computation

By allowing a ROS network to expand through the Ethernet infrastructure, we allow the
natural expansion of a robotic system, similar to a plug and play implementation. This
is particularly useful if we are adding new hardware, such as additional sensors, or if one
were to run multiple computing systems that host their own subset of code, algorithms or
hardware.

10.2.1 Operating Paradigm

Before describing the fundamental components of ROS, it is important to know the core
mechanics, or paradigm of how ROS operates. Although ROS programs are generally writ-
ten in C++ or Python, which are object-oriented programming languages, ROS functions
primarily through an event-driven framework.

The flow of an event-driven program is determined by events that are raised outside
the program loop. Examples of events can be sensor readings, a user clicking an element
on the user interface, or even a physical switch changing states. The main program loop
listens for raised events, where each loop iteration is of very low computational cost. When
the program detects a raised event, it triggers a callback function' that is assigned with the
event. The callback function handles the event along with any associated data, processes it,
and then releases its resources back to the main program loop.

The main advantage of an event-driven paradigm is that functions are only called upon
a change of state, or when new data becomes available. This means that the event handling
process will always capture raised events that are non-periodic, and that polling rates do
not have to be configured to match the refresh rate of incoming data. Also, if events are

LA callback function is also known as an event handler.
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raised faster than event handlers can process them, they are simply placed in a finite queue
to be processed when resources become available. Examples of non-periodic raised events
include

e Non-periodic sensors, such as velocity sensors that raises an event for every “tick” that
they are moving, but stop when stationary.

e New-data triggers, such as when a thread has finished analysing complex vision data.

e Hardware triggers, such as pressing a button to detect when a gripper has successfully
closed.

By not processing computationally expensive code at each program loop, program effi-
ciency is increased, and processing power requirements can be lowered.

10.2.2 ROS Components

ROS is not a traditional operating system that replaces another, nor is it a new programming
language. It is a framework designed to standardise communications between devices and
programs that may exist in a single standalone system or be interconnected through an
Ethernet/IP network topology. This is achieved through a messaging system, where data
packages in the form of messages are relayed between devices in a ROS network. Although
this seems abstract, it is quite analogous to a traditional standalone monolith program.

A typical computer program may consist of the following components

e Variables that store data within a program, such as a counter.
e Functions that process raw input data, and outputs it as useful data.
e Methods that execute tasks in relation to the program, such as saving data to a file.

A simple way to understand the fundamental components of ROS is to find direct
comparisons of these components to those of a computer program.

Nodes

Nodes are analogous to traditional computer programs that contain all the code, algorithms,
and ROS components to function and communicate. For instance, a node can be setup to
keep track of all sensor information and update the readings for the entire ROS system to
see. Another node can be to solve the inverse kinematics of a robot. A node communicates
to other nodes through a messaging system, in which the ROS master keeps track of where
relevant messages should go. When a node starts, it advertises its topics and services,
which the master will make available for all other connected nodes. These components will
be explained further in this section.

Master

The ROS master is the server for the entire ROS system. Whenever new nodes connect to
the ROS network, they will always connect to the ROS master. The master will keep track
of all ROS components and forward messages to the right nodes. Only one ROS master can
exist per ROS network.
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Messages

All data transmission between nodes and devices is implemented through messages. Al-
though this kind of abstract data transmission does not occur in a normal computer pro-
gram, comparisons can still be made whenever we write a value to a variable, or call a
function in a program with an input value. In each of these cases, we are providing a copy
(or reference) of the data and storing it in the variable, or passing it to the function to
then process. In ROS, a definite copy of the data is made, encapsulated as a ROS message,
and then transmitted through the ROS network to the relevant receiver, such as a topic or
service. Furthermore, a message can be made up of a single data type such as a float or an
array of uint8, or multiple data types such as a bool, int32, and an array of float. Each
message is defined as its own type, and senders and receivers must use the same message
type to communicate.

Topics

Topics are analogous to global variables in a computer program. It is a mechanism for
sharing data amongst all nodes within the ROS network. For instance, the /joint_state
topic may contain the latest information on the joint states of a robot. A topic is created
by a node and maintained and advertised by the ROS master. A ROS topic is updated by
publishing a message to the topic with a publisher created from any node. However, for
a node to receive updates from a topic, it must create a subscriber handle to the topic.
The subscriber listens to the topic, and will only receive updates when a new message is
published to the topic.

Publishers

A publisher publishes to a topic by sending a message (of the correct message type) to
the topic. For instance, a thread may update the joint configuration of a robot at 10 Hz,
so the rest of the nodes who may be subscribed to the topic can get the most up-to-date
information.

Subscribers

A subscriber subscribes to a topic by creating an event handler and an associated callback
function. When a publisher publishes a new message to the topic, all subscribers to the
node are notified, and their respective callback functions are triggered. This ensures that
code is only executed on new data, promoting program efficiency. Sometimes, a topic is
updated while a subscriber’s callback code is still executing. If this happens, later callbacks
are queued (finitely) so that new information is not missed.

Services

A ROS service is analogous to a function call or method in a computer program. A service
is created by starting a service server on the hosting node, which is then advertised by the
ROS master. To call a ROS service, a service client is created from the client node, which
allows calling of the service by sending it a service message. Service messages work on the
same principle as regular messages but exist only to transfer messages between the service
server and the client. When a service is called, execution on the calling node is blocked
until a return message from the hosting service is received. This is known as a blocking
call, whereby code execution is paused while waiting for a routine to finish. While this
behaviour is common among single-threaded programs, there are scenarios where this can
cause problems. For instance, on services that require long processing times, this can cause
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ROS programs to become unresponsive and cause unnecessary delays in other critical tasks
such as driving actuators or reading sensors. If a blocking service call is undesirable, then
service implementation through an action service is recommended.

Action Service

An action service is the same as a regular ROS service, with the key exception that action
service calls are non-blocking to the client node. Action services are implemented on servo-
control routines so that a ROS program does not have to wait while the robot is moving.
This is an example of asynchronous programming. While asynchronous execution of services
seems desirable in all cases, it unnecessarily complicates the ROS program, especially when
determining the state of the program.?

10.2.3 ROS System: Case Study

Consider the following robotic system, whose task is to autonomously sort recyclable waste
that is randomly stored in a bin. The system comprises three main subsystems:

e a vision system to identify and locate objects in the bin,
e a gripper to grasp onto objects, and
e a robotic manipulator to manipulate the gripper during the sorting process.

Figure 10.1 shows a possible ROS implementation of this robotic system. There are four
main processors (computers or control boxes) that handle each subsystem of the robot. This
is called distributed computing, whereby each processor is configured to handle a task as
efficiently as possible. There are many advantages of this setup.

e Each subsystem, in hardware or code, can be developed individually without affecting
other subsystems

— This feature significantly simplifies collaboration among programmers

— Debugging can be performed without shutting down the entire system
e If a subsystem or individual node fails or crashes, it will not bring down the entire system

e The system is easily expandable, simply by adding additional processors to the ROS
network

In addition, each computer can host multiple nodes that specialise in a particular task,
such as solving robot kinematics, communicating with sensors, or detecting objects using
convoluted neural network algorithms. Each node can also be launched independently on
separate threads of a processor to improve performance through parallel processing.

Finally, the hardware peripherals associated with each computer and subsystem are
usually connected via USB or other high-bandwidth connections, and certain nodes are
dedicated to communications to these devices. For example, on Computer B, the camera
node allows communication to the camera via USB, and exposes two topics to the ROS
network: /camera/point_cloud and /camera/image RGB. These topics will be updated by
the camera node at a constant rate, such as 10 Hz, for example.

2Determining the state of a program is critical for the implementation of a state machine. A state
machine is a behavioural model, which dictates a finite number of connected states of a program. Based on
the program’s current state and input, the machine performs state transitions to produce the next output
and move to the next state. Because asynchronous threads are difficult to manage due to their parallel
execution, state machines are difficult to implement on such programs.
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-

A ROS implementation of a waste-sorting robot.

ROS Processors

Computer A

hosts the ROS master node as well as the gripper and main program nodes. The gripper
node handles all communications with the gripper via the USB interface and exposes the
following ROS components.

e Topics

— /gripper/current_state. Any subscribers to this topic will receive updates on the

current state of the gripper, whether it is open, closed, or grasping an object.
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e Services
— /gripper/open, /gripper/close. Calling these services opens or closes the gripper.

The main node controls the state of the program and generates a user interface to allow
interaction with the user and robot. It also contains the main program loop, and exposes
a single ROS service /UI/current_state. This service is called only when a user presses
“Start” on the user interface, for example.

Robotic Manipulator: Control Box

Control Box contains all the hardware relating to the control of the robotic manipulator,
as well as having an onboard processor that hosts the robot-control node. This node
handles all low-level communications with the robot’s actuators, as well as provides the
current status of the robot’s joints and end effector positions through the following ROS
components.

e Topics

— /joint_states, /end effector_position. Any subscribers to these topics will re-
ceive updates on the joint positions (as a vector), or end effector position (as a trans-
formation matrix), respectively.

e Action services

— /execute_joint_trajectory. Calling this action service with a given list of joint
velocities and positions will actuate the robot’s joints accordingly. This is a non-
blocking call, which will allow the calling node to continue executing while the robot
is moving.

Computer B

Computer B hosts two nodes. The camera node communicates with the camera via the USB
interface and exposes the following ROS topics.

e /camera/point_cloud, /camera/image _RGB. Subscribers to these topics will receive point
cloud data or an RGB image from the camera at a fixed rate. Note that the messages
sent and received from these topics can be quite large, depending on the image resolution.
Hence, only nodes requiring this information should subscribe to it.

Running in parallel, the vision-algorithms node implements object-segmentation algo-
rithms to detect and categorise objects, and returns data based on the service called. This
node exposes the following ROS services.

e /vision/get_camera data returns the camera’s point cloud data and RGB image on
demand. Because subscribing to a stream of RGB and point cloud data can be compu-
tationally expensive and utilise unnecessary bandwidth within the ROS network, using a
service to get one-off data from each topic can be more efficient.

e /vision/segment_object returns a list of transformation matrices of all objects and their
type (as an integer) based on given camera sensor data.
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Computer C

Computer C hosts two nodes. The kinematics node calculates the kinematics of the robotic
manipulator by hosting the following ROS services.

e /kinematics/inverse. This service solves the inverse kinematics of the robot, given a
transformation matrix of the gripper. It will return a message containing a list of joint
states that satisfy the gripper’s pose.

e /kinematics/collision_check. Calling this service, given a joint space point, will cal-
culate whether the robotic manipulator is in collision with itself.

The planning node implements path planners for the robotic manipulator by exposing the
following ROS services.

e /plan/path_joint_space. Calling this service, given an initial and goal joint state, will
calculate a collision-free trajectory and return a list of joint velocities and positions that
link the initial and goal positions.

e /plan/path_execute. Calling this service will call the action service to execute the given
list of joint velocities and positions.

Robot operation: Autonomous Trash Sorting

Assume the system is ready to start autonomous trash sorting and is in the home position
qo with the camera facing inside the box of trash.

1. Wait for user interface trigger

The ROS program begins at the main ROS node, which polls for any /UI/start_process
calls. This is triggered whenever the “Start” button is pressed on the user interface generated
by the node. Once the /UI/start_process service is called, the main routine begins from
the next step.

2. Get camera data

The first service called within the /UI/start_process service is /vision/get_camera data
the service. Within this service, subscribers are made to the /camera/point_cloud
and /camera/image RGB to get the latest camera data. When execution of the
/vision/get_camera data service finishes, point cloud data and its associated RGB image
are returned, and the subscribers are destroyed to save resources. Flow returns back to the
/UIl/start_process service.

3. Identify objects

Next, the /vision/segment_object service is called by sending it a service message with
point cloud and RGB image data retrieved in Step 2. The service will run object-detection
algorithms to identify all objects in the box (if any exist). Any items identified and classified
are returned as a list of transformation matrices BTII, BTIQ,...7 BT[n where B is the
robot base frame and I, is the n-th item’s frame. In addition, a list of integers is also
returned, which identifies how the item should be sorted. If there are no objects detected, the
/UI/start_process service terminates, and we return to Step 1 where control is returned

to the main program loop in the main ROS node.
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4. Verify reachability of Item 1

Once a list of items’ transformation matrices is obtained, the robot will attempt to move
the gripper to the first object to grasp (we will call this Item 1). The /kinematics/inverse
service is called by sending a service message with the proposed transformation matrix of
the gripper to grasp Item 1, called PT¢. In a grasp scenario, ?T¢ = 5T 1, - The return
message will be a list of joint space configurations, @ = {q1, g2, ...q» }, that satisfies B,
The /kinematics/collision_check service is called by sending a service message with the
list of configurations @, to check whether any of these joint space configurations result in
robot self-collisions. The return service message will be the list of joint space configurations,
Q' C @ that are collision-free.

5. Plan to grasp Item 1

The main node has a subscriber to the /joint_states topic, which continuously updates
the current joint position of the robot, and stores it in a variable js. With a list of joint
configurations @’ ready from Step 4, a path from the robot’s initial state js to the first
configuration in @’ (¢1) can be planned. The /plan/path_joint_space service is called by
sending it a service message with the initial joint state js to the goal joint state ¢;. The path
planner within the service will calculate the joint trajectories required to link the initial and
goal states. If a path to ¢; is found, a list of joint velocities and joint positions (Q,, @) is
returned. If a path is not found, the next goal position in Q" (¢2) is planned instead, and
the process continues for each failed path plan. If no paths are found among all elements in
@', then Ttem 1 cannot be grasped, and we return to Step 1.

6. Fxecute plan to grasp Item 1

Before execution of the planned path from Step 5 to reach ¢;, the /gripper/open service is
called to open the gripper. Then /plan/path_execute is called with (Q,, @) included in the
service message. Within the /plan/plan_execute service, the /execute_joint_trajectory
action service is called, which will directly communicate with the robot in executing the
(Qu, Q) trajectory. Note that this is a non-blocking call within the /plan/plan_execute
service. Hence, this service will continue to execute while the robot is moving. However, the
parent service, /UI/start_process, is blocked from continuing until the robot has finished
moving to g;. This will ensure the robot has reached its final position before continuing,
especially when the next step is to grasp Item Al

7. Depositing Item 1

Once /plan/plan_execute has finished executing, the robot should be at ¢;. The
/gripper/close service is called to close the gripper to grasp Item 1. A temporary sub-
scriber to the /gripper/current_state topic is created to check whether the grasp is
successful. From here, there are two possible outcomes.

1. If the grasp is not successful, the gripper is opened (by calling /gripper/open)
in case an object was grasped, but incorrectly.

2. If the grasp is successful, a path is planned from ¢; to ¢, where ¢, is the joint state
of the robot that places the gripper over the correct depositing box, as defined by
the object’s sorting criteria defined in Step 3. The /plan/plan_execute service
is called to move the robot to g, and finally, the gripper is opened by calling
/gripper/open to drop Item 1 into the deposit box.
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8. Returning home

The /plan/path_joint_space and /plan/plan_execute services are called to move the
robot from its current position defined by js (which should be updated by the topic
/joint_states) to the home position gyg. The /UI/start_process service loops back to
Step 2.

10.3 Conclusion

In this chapter, we discussed how to model robotic systems efficiently in MATLAB, utilising
symbolic equations and function handles to effortlessly calculate the forward kinematics of
a general serial manipulator. The functions and techniques discussed in modelling can be
generalised to any system that requires the modelling of frames, given the system’s current
state.

Also, ROS or Robot Operating System was introduced. It is an open source middleware
that provides the framework to standardise communcation between hardware and software
components of a robotic system using the Ethernet/IP protocol. Its operating paradigm
was discussed, and each component of what makes ROS function were described in detail.
Finally, a realistic case study was used to demonstrate how all of the ROS concepts and
components work together to create a functional robotic system.
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Lagrangian Dynamics

In Chapter 8, we studied how to use Jacobians to calculate a robot’s joint torques and
forces under a static load at the end-effector. However, when a robot begins to accelerate,
the dynamics of the rigid links and their effects on the actuators come into play.

Dynamics is the study of the relation between the force and the motion of an object.
When the study is applied to a robotic system, we investigate how the torques and forces
exerted on its rigid links (such as from end-effector payload, self-inertia, and gravity) affect
the robot’s motion via its actuators. This analysis is very important for all robots, and
especially for agile robots or those that carry significant payloads, as dynamic torques
and forces can be significant relative to static loading. Suppose a robot’s dynamics are
not factored into its control system. In that case, it can introduce unwanted vibrations
or oscillations, destabilising the robot’s motion and causing the loss of control of the end-
effector.

This chapter will introduce the dynamic analysis of robotics through Lagrangian me-
chanics. It is centred around the Lagrangian, which is a single equation that encapsulates the
dynamics of the entire robotic system as the sum of all kinetic and potential energies. The
resultant equations of motion, which model the torques and forces as seen by the actuators
from the robot’s dynamics, is solved by using the Lagrange equation.

11.1 Rigid Body Dynamics

The mass of one rigid body is its intrinsic dynamic parameter, which links the movement
of the body and the force applied to the body. According to Newton’s second law

f=ma (11.1)

f is the inertial force applied by a body with mass m accelerates at a. Note here that mass
m is assumed to be a point mass, such as that shown in Figure 11.1.

Because rigid bodies such as robotic links are too big to be considered as a point, the
total mass of the body can be condensed to a single point called the centre of mass (CoM).
The CoM of a rigid body is the mass-weighted geometric centre of the distributed mass in
space, which is given by
o Jglrdm  [;°rdm

c= [am ~ (11.2)
B

where “c is the position of the CoM measured in a universal fixed frame {0}, r is the
position vector measured in {0}, B is the rigid body region, dm is an infinitesimally small
mass element, and M is the total mass of the rigid body.

This calculation can be simplified by attaching the fixed frame to the rigid body such
that the vector components are constant, i.e., frame {0'}, resulting in an invariant vector
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{0}

FIGURE 11.1
A point mass.

0"c. Further, if the attached frame is located at the CoM of this body, we must have e =0.
According to Equation (11.2), we have

/ Ordm =0 (11.3)
B

In many cases, the mass of a rigid body is condensed into a point mass located at the
CoM such that the behaviour of the point mass is governed by Equation (11.1). In the case
that the distributed masses cannot be neglected, the inertia tensor describing the mass
distribution of the rigid body is required.

11.2 Inertia Tensors

Consider a rigid body rotating around a pivot point with an angular velocity a under a
torque 7, as shown in Figure 11.2. With all vectors measured in the ground frame, Newton’s
second law can be applied to an arbitrary infinitesimal mass dm

df =dm a (11.4)

FIGURE 11.2
A rigid body.
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where d f and a are the equivalent force applied on this point mass and its acceleration,
respectively. Combining the following relations

dT=rxdf a=axr (11.5)
with Equation (11.4) yields

dT =—dm r x(
— —dm [x][x]
= —dm [r]? (11.6)

where [r] is the cross product of r. Hence, the total torque acting on the rigid body is given

by
T :/dr = —/[r]Qdm « (11.7)

which is the dynamic relation between 7 and c. The term — [ [r]?dm is a 3 x 3 matrix
and is known as the inertia tensor, or

I= —/[r]%zm (11.8)

We can further expand I to define its individual elements. Assuming r = [a: Y z}T
then Equation (11.8) becomes

)

y2 + 22 —xy —xz
1= / —xy a4 22 —yz
—Tz —Yz z? + y2
[[(y? + 2%)dm  — [xydm — [xzdm
=| —[aydm  [(2®+2z%)dm - [yzdm
| — [xzdm — [yzdm [ (z*+y*)dm
[ Ixz *Izy *Imz
= |—lpy Ly, —Iy: (11.9)
__IZL’Z _Iyz Izz

where I, Iyy, and I, are the mass moments of inertia, while I, I.., and I,. are the
mass products of inertia. Typically, the larger the moment of inertia around a given axis,
the more torque is required to accelerate or decelerate the rotation of a body about this
axis.

Example 11.1 (Inertia tensor): Find the inertia tensor of a robotic link in the frame shown in

Figure 11.3. Assume it has a mass of m = 1 kg and a corresponding density of p = 0.125 kg/m?.

Solution: According to Equation (11.9), the mass moment I, of inertia of the block is given by

0.1 0.8 0.1
Iow = / / / (v° + 2%)pdadydz = 0.217 (11.10)
0 0 0

Similarly, we have I,,, = 0.007 and I... = 0.217. According to Equation (11.9), the mass product

of inertia, Iy, is given by
0.1 0.8 (0.1
Iy = / / / rydzdydz = 0.020 (11.11)
0 0 0
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FIGURE 11.3
A robotic link.

Similarly, we have I,. = 0.003 and I,. = 0.020. Therefore in this reference frame {A}, the inertia
tensor is given by

0.217  —0.020 —0.003
AT = [—0.020 0.007 —0.020 (11.12)
—0.003 —0.020 0.217

11.3 Principal Moments of Inertia

The values of the inertia tensor for a rigid body depend on the frame in which it is measured.
Therefore, it is possible to select a measurement frame such that all mass products in the
upper and lower triangle of the inertia tensor vanish. The axes of this frame are called the
principal azes of this body, and the mass moments are the principal moments of the inertia,
where

L. 0 0
AT=10 I, 0 (11.13)
0 0 I.

The eigenvalues of an inertia tensor are the principal moments for the body. The as-
sociated eigenvectors are orthogonal to each other due to the symmetric inertia tensor, as
proven in Appendix 25.1. Hence, these eigenvectors are called the principal axes, which
constitute the principal frame.

Example 11.2 (Principal moment and frame): For the robot link in Figure 11.4, find its
principal moments and the corresponding principal frame {P} at the origin of the given frame

{A}.
Solution: Based on Equation (11.12), the eigenvalues are

A1 = 0.003 A2 = 0.218 As = 0.219 (11.14)

and associated eigenvectors are

¢ =[-0.094 —0.991 —0.094]"

(11.15)
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FIGURE 11.4
A robot link with an indicative principal frame {P} located at its origin frame {A}.

c2 = [-0.701 0.133 —0.701]" (11.16)
cs = [0707 0 0.707]" (11.17)

If we set eigenvectors ci1, ¢z, and c3 as the x, y, and z axes of the principal frame {P}, then we
have the inertia tensor measured in the {P} as

0.003 0 0
Pi=] 0 0218 0 (11.18)

0 0 0.219

and the orientation of { P} measured {A} is

—0.094 —0.701 0.707
ARp = |-0.991 0.133 0

—-0.094 —-0.701 —0.707

(11.19)

You can check the validity of the rotation matrix ARP by ensuring det(ARp) = 1and ARp ART =
Is.

The relation of the inertia tensors of the same rigid body measured in two different
frames with the same origin can be expressed by the similarity transformation,

A1 = ARy 51 “RY, (11.20)

For example, the inertia tensor in the frame {P} consisting of the eigenvectors in Exam-
ple 11.2 can be derived as

Py = PR, 41 "R,
(0094 —0.991 —0.094] [ 0217 —0.020 —0.003] [—0.094 —0.701 0.707
= |-0701 0133 —0.701| |—0.020 0.007 —0.020] [-0.991 0133 0

| 0.707 0  —0.707] [-0.003 —0.020 0.217 | [—0.094 —0.701 —0.707
[0.003 0 0
=l 0 0218 0 (11.21)

0 0 0.219
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FIGURE 11.5
Two parallel frames associated with a rigid body.

11.3.1 Parallel Axis Theorem

The parallel-axis theorem relates the inertia tensors of the same body measured in two
parallel frames with different locations, as shown in Figure 11.5. It is expressed as

T="T—mc]?="T+m (c"c13—-cch) (11.22)

where m, 13, and c are the total mass, the 3 x 3 identity matrix and the vector from the
origin of {0} to that of {1}, respectively. Further, {0} and {1} are parallel, while {1} sits
at the mass centre. The proof of this theorem is given in Appendix 25.3.

Example 11.3 (Parallel axis theorem): Find the inertia tensor of the block shown in Figure
11.3 in a frame {1} at the mass centre and parallel to {0}.

Solution: In Example 11.1, the inertia tensor in {0} is derived as

0.217  —0.020 —0.003
°T = |—0.020 0.007 —0.020 (11.23)
—0.003 —0.020 0.217
The mass centre in {0} is given by ¢ = [0.05 0.40 0.05]T
have

. According to Equation (11.22), we

MT="T-m(c"c13-cc")

0217 —0.020 —0.003 0.165 0 0 0.003 0.020 0.003
= |-0.020 0.007 —0.020| — 0 0165 0 |—|0020 0.160 0.020
—0.003 —0.020 0.217 0 0  0.165 0.003 0.020 0.003
0.054 0 0
=| 0 0002 0 (11.24)
0 0 0054

In this case, all mass products vanish. Hence, {1} is the principal frame, while the mass moments
are the principal moments of the inertia at the CoM.
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FIGURE 11.6
Two general frames associated with a rigid body.

Combining the similarity transformation and the parallel-axis theorem, one can obtain
the inertia tensor of a rigid body measured in an arbitrary frame based on the inertia tensor
measured in a frame located at the CoM. As shown in Figure 11.6, {0} is not parallel to
{1} that sits at the CoM of the body. By introducing an auxiliary frame {0’} parallel to
{0} and sitting at the CoM, we can readily have

0
T = °R; 'T RT —m[%]? (11.25)
Inertia tensors also have other important properties.

e Where a plane of symmetrical mass distribution can be identified, and that two reference
frame axes are on said plane, the inertia or mass product relevant to the axes the will
vanish.

e Moments of inertia must be positive.

e The sum of the three moments of inertia, the trace of the inertia tensor, is invariant under
orientation changes in the reference frame.

11.4 The Lagrangian Method

Consider a system consisting of n rigid bodies. The mass and inertia tensor of each body
are m; and I;, respectively, where ¢ = 1,...,n. Note that m; is frame-invariant while I, is
frame-variant. The Lagrangian of the system is defined as the difference between the total
kinetic energy and the total potential energy

L=K-V. (11.26)

The Lagrange equation is

d (oL oL
_ — = = =1,... 11.2
dt (8(}1) aqz f’H 1 ’ )n ( 7)
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where ¢; and f; are the generalised coordinate and force applied along ¢;, respectively.
In robotic applications that utilise only revolute actuators, we typically choose ¢; as joint

angles
d (0L oL
— | —= = =7 L =1,... 11.
pr <89i> 90, =T i=1,...,n (11.28)

where 6; and 7; are the input joint angle and input torque of the i-th actuator, respectively.

Kinetic Energy K
The kinetic energy of the system is given by

n n
1 1
K=Y K=Y <2mi VEve bl T w,) (11.20)
1 1

where K;, v.;, and w; are the kinetic energy, velocity at mass centre, and angular velocity,
respectively, of Body i. Note that I; and w; must be measured in the same frame. The
velocity of the mass centre is given by

0 d(Qpei)  d(°T1(61)..." " Ti(6;) ipei)

ci — ci — = 11.30
v ov dt dt ( )

The angular velocity is given by
“’1wi+1 = i+1Ri(9i+1) iwi + éi+1 H_1Zi_~_1 (11.31)
with the initial condition ®wq = 0. If we choose the frame of the inertia tensor I, is parallel
to the {i}, we have
1 T Ly 1y i
K, = §m1 Vo Vei + 5 w; 'L 'w; (11.32)

If we choose the principle frame to measure the inertia tensor I;, which is not parallel to
the {i}, we have

Puw; = PR, 'w; (11.33)

which yields

1

Ki = §ml VT

1
T
ci Vi T3 Pw; PT; Pw;

. VZ; Vi + % (pRi iwi)T PY, (pRi iwi)

1. )
i Ve Vei t 5 W] "R P PR, ‘w; (11.34)

1
-m
2
1
=—-m
2
Another way to interpret the term %iwiT pRzT P, PR, "w; is that the inertia tensor is

mapped from {p} to {i}, i.e.,
L

9 lwIT (pRZT pIi pRi) iwi (11.35)

DN | =

where
1, = "R PI, PR, (11.36)

which is called the similarity transformation of the inertia tensor.
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n

FIGURE 11.7
A RP robot.

Potential Energy V
The potential energy of the system is given by

n

V= zn: Vi=> (-m;"g" °pu;) (11.37)
1

1

where V;, and %p.; are the potential energy and position vector of the mass centre of Body
i, respectively, while g is the vector of gravity acceleration.

Example 11.4 (PR robot): Given a two-DoF PR robotic manipulator with assigned reference
frames shown in Figure 11.7, derive the dynamic equations governing this system. Assume that the
inertia tensor of each link in the attached frame is given by, respectively,

Iw 0 0 La 0 0
Plyy =10 Ly 0, PL=|0 I, 0 (11.38)
0 0 Izzl 0 0 IzzQ

Solution:

Step 1: Transformation matrices

According to the frames assigned to the RP robot as shown in Figure 11.7, the DH parameters in
Table 11.1 can be derived. Hence, the transformation matrices are given by

TABLE 11.1
DH parameters of the RP
robot

i o1 a1 di 0
1 0 0 0 6
2 90 0 dy O
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cosf)y —sinfy 0 O 1 0 O 0

0 _|sinfy cosfy 0 O 1 0 0 -1 —ds
Ti=1"9 0 10 T2=1g 1 0 o
0 0 0 1 0 0 O 1

Step 2: Angular velocities

The angular velocities of two links, measured in their own frames, are derived by using velocity
propagation as

[o] o o] o
1(4)1 = 1R0 Owo —+ 01 0 = 0 2(.4)2 = 2R1 1(4)1 —+ 92 O = 01 (1139)
1 01 1 0

where ég = 0 because 2 = 0. As shown in Figure 11.7, the rotation matrices between the DH
frames and the corresponding principle frames are given by

10 0 1 00
"Rp1 =0 0 -1 Rpa= [0 1 0 (11.40)
01 0 00 1

Therefore, the angular velocities in the principle frames are given by

0
Pl =Ry twr = |6, P20 = 2w, (11.41)
0

Step 3: Velocities at mass centres

The positional homogeneous coordinates of the mass centres of the two links measured in their own
frames are given by

(11.42)

H
|
~
=
-0 oo

Hence, the positional homogeneous coordinates of the mass centres of the two links measured in
the ground frame are

S1 S1
001 = 0T1 1C1 = ll _001 002 = 0T2 2C2 = d2 _001 (11,43)
1 1
The velocities of mass centers are found by using the time derivatives of the positions
. Cl . 81 . Cl
%¢r =161 |s1 Oy =dy |—c1| + daby |51 (11.44)
0 0 0
Step 4: Kinetic energy
The kinetic energies of the two links are given by
R T 1pi 7Py P1
Ky = 3mici €1 + 5 wi I " w
_ 1 242 1 52
= iml 1191 + ifyw@l (11.45)
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1 T . 1 p2 1 P2y P2
Ko=_-macy; ¢2+ - “wy I

2 2 w2
1 . . 1 .
= 5ma (d§ T dgef) + 5 Luy20? (11.46)

Step 5: Potential energy
According to Figure 11.7, the gravity can be written as °g = [0 —g O}T where g = 9.8 m/s%.

Therefore, the potential energies of the two bodies are given are

Vi = —m1 %7 Ocy
= —magli cos(61) (11.47)
Vo = —ms %7 %c,
= —magds cos(61) (11.48)
Step 6: Lagrangian formula
The Lagrangian is
L=K-V
=K1+ K;— (Vi+ W) (11.49)

Therefore, the dynamics of the RP robot through the Lagrangian method is

d (8L oL
o (aéi) ~ 50 =7 (11.50)

for actuators i = 1, 2. Because ¢ = 1 is a revolute actuator and ¢ = 2 is prismatic, 7 and 75 represents
actuator torque and force, respectively. Substituting the derived Lagrangian into Equation (11.50),
the dynamic equations for the RP robot are

T = (m1lf + Iyyl +4 Iyyg 4 mgd%)é1 + 2m2d291d2 + (m1l1 + deg)g sin 01 (11.51)
fQ = mQCZQ — mzdzé% — Mmag CoSs 01 (11.52)

The dynamic equations found in Example 11.4 have explicit physical meanings. The
force terms of the prismatic actuator defined in Equation (11.52): fs, mgdig, mgdgéf, and
mag cos f1 represent the actuating force, inertia force, centrifugal force, and gravity force
along the direction of ds, respectively, as shown in Figure 11.8. One can derive this equation
simply by adding all these terms. Equation (11.52) can be further rewritten in matrix form

T=M(0)8+V(0,0)+G(0) (11.53)
where T = [Tl fg]T, 6 = [91 dg]T, 0, and 6 are the vectors of the input torques,
joint angles, joint velocities, and joint accelerations, respectively. M, V, and G are the
mass matrix, the centrifugal and Coriolis term, and the gravity term, respectively, which

are given by

2 2
M = [(mll1 + Iy ‘g Lyy2 + mads) 732 (11.54)
2m2d291d2
V = . 11.55
|: —m2d29% :| ( )
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FIGURE 11.8
Force analysis of the end-effector along the prismatic joint of the PR robot.

(mly + mads)gsin 6,

G = —mag cos 0y

(11.56)
The Lagrangian method is valid for any arbitrary serial robot, such as the six-DoF robot

shown in Figure 11.9. Further, the governing dynamics of a general robot can always be
written in the form of Equation (11.53).

Example 11.5 (Cylindrical robot): Calculate the joint torques and forces for the cylindrical
robot shown in Figure 11.10. Assume all masses are point masses and are located at the origin of
each frame in homogeneous coordinates

Ci = C2 = C3 =

(11.57)

=
o
©w

— o O O

FIGURE 11.9
A six-DOF manipulator.
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C1 —S1 0 0
o op, — |50 e 00 (11.58)
== Yloo0 10 '
0 0 0 1
£ 1 0 0 0
— ! = 1 010 0
: ¢ d —
LL___.L‘V | 3 T, 00 1 d (11.59)
0 0 0 1
[1 0 0 005
— 2 _ 0 O _1 —d3
= Ts=10 1 o o0 (11.60)
00 0o 1

FIGURE 11.10
A cylindrical robot with transformation matrices derived from forward kinematics.

Solution: Note that we have point masses in this example. This results in a [0} mass moment
of inertia matrix, and therefore the kinetic energy terms to do with angular velocities equal zero.
Hence, we do not need to find the angular velocities of the mass centres in this example.

Step 1:

Start by finding the mass centres relative to the base frame.

0 0
% =T 'e; = 0 %y = T 'Ty %c = 0
0 da
1 1
0.05¢1 + d3s
%c; = °T1 'T >3 %c3 = 0'0531d’ dsc1 (11.61)
2
1

Step 2:

Take the time derivative of Equation (11.61) to find centre of mass linear velocities.

0 0 51d3 — 0.058191 + Cldgél
Oél = |0 0(32 = O 0é3 = *Cldg —+ 0.056191 + 81d301 (1162)
0 da da

Step 3:
1 0,7 0

Find kinetic energies using K; = 3m; "v; v;. In this example, Ov; is equal to the CoM velocity
9¢; defined in Equation (11.62).

Ki=0
1 .
K2 = §m2d§

1 " . . N2
K3 = 5777,3 ds + (81d3 —0.055161 + Cld391)

. . . 2
-+ (—Cld3 +0.05¢161 + 51d301) ) (11.63)
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Step 4:
Find potential energies using Vi = m; °g” %c;, where °c; is the position of the CoM in the ground

frame in Equation (11.61), and g = [0 0 fg]T, the direction of gravity also in the ground
frame. Remember to multiply using the 3 X 1 non-homogeneous position vectors (ignore the trailing

).
Vi=0
1 .
V2 = §m2d§
1 " . . N2
V3 = 5777,3 d2 —+ (81d3 — 0.05s8101 + Cld301)
. . . 2
+ (—C1d3 + 0.05¢161 + 81d391) ) (11.64)
Step 5:

Find the Lagrangian function, using £(q,q) = >_ K(q,¢)—>_ V(q), where ¢ is the joint space vector
q=[00 d» ds].

L=Ki+Ks+Ks-Vi—-Vo—-13

1/. . . SN2
= = (dg (m2 + m3) “+ ms3 (31d3 —0.05s51601 + C1d391)

2
. . .\ 2
—+ ms3 (—C1d3 — 0.05¢1601 + Sldgel) ) — gd2 (mz + mg) (11.65)
Step 6:
Find joint torque and forces (effort), using %% — %
Joint torque 71:
L _[aac) Toc
YT dt 9d, 96,
= ms [0.002551 — d“3 =+ d32é1 + 2de3d391 — [0] (11.66)

Joint force fa:
(2] 1]
dt 9dy Jdy
= sz [m2 4+ ms] + g [m2 + ms]
= (ma + ma) (g+d'2) (11.67)

Joint force fs:

d dL oL
fs= {% ang] - {a@]
— ms [dg - 0.050'1] + [madséﬂ

= ms (d3 —0.050; — dgo'%) (11.68)
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C1 —S1 O O

0 o S1 C1 0 0

Ti=|0 o 1 o (11.70)
0 0 0 1
-CQ —S92 0 O

1 0 0 -1 0

To=| o 0 o (11.71)
0o 0 0 1
1 0 o0 0

2 0 0 —1 —ds

Ts=o 1 o o (11.72)
00 0 1

FIGURE 11.11
A spherical robot with transformation matrices derived from forward kinematics.

Example 11.6 (Spherical robot): Calculate the joint torques and forces for the spherical robot
shown in Figure 11.11. Assume all masses are point masses and are located at the following positions
in homogeneous coordinates

0 0
0 0

lcl = 2C2 = 0 C3 = 025 (1169)
1 1

Solution: Note that we have point masses in this example. This results in a [0} mass moment
of inertia matrix, and therefore the kinetic energy terms to do with angular velocities equal zero.
Hence, we do not need to find the angular velocities of the mass centres in this example.

Step 1:
Start by finding the mass centres relative to the base frame.
0 0
% =T 'e; = 0 Yy = T 'Ty %c = 0
0 0
1 1
cis2(ds + i)
0 Om 1m 2m 3 s182(ds + 1)
="T; T2 T = ¢ 11.73
C3 1 T2 "T37c3 —ea(ds + 1) ( )
1

Step 2:

Take the time derivative of Equation (11.73) to find centre of mass linear velocities.

0 0

%, =10 %, = {0

0 0
—515201 4 c1c26a + dersads + Acicadsfs — 4s152d30,

OCS = — 015291 + 018292 + 48152d3 + 40182d30'1 + 48162d392 (11.74)
4 . : :
8292 — 462d3 —+ 82d392
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Step 3:

Find kinetic energies using K; = Im; ©

2
in Equation (11.74).

vl Ov,;. Again, %v; is equal to the CoM velocity °¢; defined

Ki=Ky=0
1 . . N2
K3 = 3—2m3 ((8202 — 4eods + 482d302)
. . . . L\ 2
+ (616292 + 4cisods — s15201 + 4eicadsfs — 45182d391)

. . . . . 2
+4 (618261 + s1¢202 + 4s152d3 + 4c1s2d361 + 48102d392) ) (11.75)

Step 4:

Find potential energies using Vi = m; °g” c;, where “c; is the position of the CoM in the ground

frame in Equation (11.61), and Vg = [O 0 —g]T, the direction of gravity also in the ground
frame.
Vi=Va=0
1
V3 = —nggCQ (1 + d3) (11.76)
Step 5:

Find the Lagrangian function, using £(q,q) = >_ K(q,¢) —>_ V(q), where ¢ is the joint space vector
q = [91 (92 dg] .

L=FKi+Ks+K3s-Vi—-Vo—-V3

. . L\ 2
= 3*12777,3 ((8202 — 462d3 =+ 482d502)

. . . . N2
+ (016292 + 4e182ds — s18201 + 4ercadsfs — 4S1S2d391)

. . . . N2
+ (618291 + s1c202 + 4s152d3 + 4c152d3b1 + 48102d392) )

1
+ nggCQ (1 + ds) (11.77)

Step 6:

dd
Find joint torque and forces (effort), using ——L. - 8—£

ddLy) oL

dt 96, 90,

= Tﬁ |:m3522(4d3 + 1)91 =+ 2029102 + 452d391 + 852d301

+8cadsfif) — [0 (11.78)

Joint torque 71:

T1

Joint torque Ta:

R R
> | dt 9, 905
ms3

E (4d3 + 1) (92 + 4d3é2 —+ 8d39.2 =+ 4982 -

sin(202)03
2
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) sin(292)d39'§) (11.79)
Joint force fs:
o [dac) _foc
> 7 L dt ods dds
B 1/ 9.9 5 o . . .
= my (7 (e2767 = 67 = 63) + do — ds6? — ds63
4

+022d30‘§ — ng) (11.80)

11.4.1 Mass Matrix

The kinetic energy of a robot can be expressed in terms of the mass matrix
1. .
K:§0TM(0)0 (11.81)

Meanwhile, the kinetic energy is also given by Equation (11.29). Given the position of the
CoM of Link i, we have

Pci
Ve = dt

=J., 0 (11.82)

As discussed in Chapter 8, the angular velocity of Link ¢ is given by

Jj=1

where 6; = 0 if Joint j is a prismatic joint. Substituting Equations (11.82) and (11.83) into
(11.29) yields

=
[

1 . . 1 .04 L .
Z(imi [0 B O 5 6T "IT 1,3, 0)
1 T T T i i .
=50 > (mi I T+ 35T 130) 6 (11.84)
Comparing Equation (11.81) with (11.84) gives

M(0) =) (m; I; Joi+ 301, 13.) (11.85)

Example 11.7 (RP robot mass matrix): Consider the RP robot in Example 11.4. Find its
mass matrix without deriving the complete dynamics equations.

Solution: According to the CoM of Links 1 and 2, c; and c2, we have

l101 O d2C1 S1
Jcl = l1S1 0 JCQ = d281 —C1 (11.86)
0 0 0 0

The angular velocities are given by

1(4)1 = 1Z191 2(4)2 = 2Z1é1 (1187)
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which yields
0 0 0 0
Ja=10 0 Jo=1|1 0 (11.88)
1 0 0 0

Furthermore, 'I; and I, can be obtained from the inertia tensors in their principal frames by
the similarity transformation. Substituting the above Jacobian matrices and inertia tensors into
Equation (11.85), we have

mll% + [yy1 =+ Iyyz + mgd% 0

M: 0 mo

(11.89)

which is the same as the result in Example 11.4.

11.4.2 Gravity Term

The gravity term that appears in Equation (11.53) is the joint torques required to resist
the gravity forces on the links of the robot. According to statics analysis, the required joint
torque to resist the gravity at the CoM of Link i can be written as

Tgi = — Jgmi g (11.90)

where J.; is the Jacobian matrix between the CoM and the joint angles, i.e., J,; = 0¢c;080.
Hence, the overall gravity term is given by

GO)=Y 7=~ (Ihm)e (11.91)

Example 11.8 (RP robot gravity term): Consider the RP robot in Example 11.4. Find its
gravity term in joint space without deriving the complete dynamics equations.

Solution: According to the CoM of Links 1 and 2, ¢; and c3, we have

l101 O d201 S1
Jcl = l151 0 JCQ = d251 —C1 (11.92)
0 0 0 0

Substituting the above Jacobian matrices and g = [O -9 O]T into Equation (11.91), we have

(m111 + mzdz)g sin 91
—mag cos 01

G = (11.93)

which is exactly the same as the result in Example 11.4.

11.4.3 Friction Term

Friction forces and torques typically appear in the joint space, since they are caused by the
relative movements. The friction forces are usually modelled in terms of joint positions and
velocities, such as F(0, 0) The friction forces are position-dependent because the contact
forces at joints and meshing gears vary in different configurations.
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11.4.4 Load Term

The load or external torques and forces acting on the body of the robot can be modelled
similarly to the gravity term. The load can be mapped into joint torques, which are then
resisted by the actuator torques. The required joint torques to resist the load is given by

L(O)=-JTw (11.94)

where Jy, is the Jacobian matrix between the twist of the link where the load is applied to
and the joint velocities while w is the load expressed in terms of wrench. Therefore, the
complete dynamics of a robot under the assumption of rigid body can be written as

T=M(0)0+V(0,0)+G(0)+F(0,0)+1L(0) (11.95)

11.4.5 MATLAB Example

Example M11.1 (Lagrangian dynamics): Find the torques and forces exerted on each joint for
the cylindrical robot in Example 11.5 under the following conditions in SI units (radians, metres,
seconds):

z 0.5 0
g= 102 g=|-0.05 G=|-2 (11.96)
0.1 0.05 1
with masses
m1 = 0.5 kg mo =1 kg m3 = 0.5 kg (11.97)

Solution: The following MATLAB code solves the problem, with the ensuing command window
output.

5| ml

SRR IR e

W W WWwWWNNNNNNNNND N
[Cpe R > <

QR W

% Symbolic variables
syms thl dthl ddthl d2 dd2 ddd2 d3 dd3 ddd3 real

% Masses (kg)

= 0.5;
m2 = 1;
m3 = 0.5;

% Gravity (m/s~2)
g = 9.81;

% Dynamic equations for each actuator

torquel = (m3*ddth1)/400 - (m3*ddd3)/20 + m3*d3°2*ddthl + 2*m3*d3*dd3*dthi;
force2 = (m2 + m3)*(g + ddd2);

force3 = m3*ddd3 - (m3*ddth1)/20 - m3*d3*dthl~2;

% Define effort vector
effort = [torquel; force2; force3];

% Group symbolic vectors based on time diff
vars = [thl d2 d3];

dvars = [dthl dd2 dd43];

ddvars = [ddthl ddd2 ddd3];

% Create a function handle with the following inputs
% E_f(vars, dvars, ddvars)
E_f = matlabFunction(effort, ’Vars’, {vars, dvars, ddvars});

% Defined conditions

vars = [pi/2, 0.2, 0.1];
dvars = [0.5, -0.05, 0.05];
ddvars = [0, -2, 1];

% Calculate effort
Effort = E_f(vars, dvars, ddvars)
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Effort =

-0.0225
11.7150
0.4875

According to the output, the effort seen in each joint is

m —0.0225 N/m
fol =] 11.715N (11.98)
fs 0.4875 N

11.5 Conclusion

In this chapter, we introduced dynamics analysis of robotic systems through Lagrangian
mechanics. This is an energy-based method, where the entire dynamics of a robot is en-
capsulated in the Lagrangian. This is a function that is made up of the summation of all
kinetic energy terms minus the sum of all potential energy terms. With the Lagrangian, we
apply Lagrange’s equation to solve for the equations of motion, which yields the analytical
expression of the torques and forces exerted on the robot’s actuators by these dynamic
effects.

Dynamics analysis of a robotic system is vital from both a robot design perspective and
in motion control. With the equations of motion, we can model the joint torques and forces
exerted at the actuators, and use it directly in the robot’s control system. By knowing the
dynamic effects of the robot, its control system can be adequately tuned to keep the robot
stable in all modes of operation. Further information on this topic is provided in Chapters
13 and 14.

11.6 Exercises

Problem 1. Derive the dynamic equations for the two-link manipulators shown in Figure
11.12 by means of the Lagrangian formulation. Assume only point masses (no inertia tensors,
therefore no angular velocity component of K), m; and mo, lie at the middle-point of each
link.

Problem 2. Find the inertia tensor of a cylinder of homogeneous density, with respect to a
frame attached to the centre of its bottom face. Hints: Convert coordinates from a Cartesian
system (2yz) into a cylindrical system (rfz). Formulas for changing the integration between
sets of variables will be required.

Problem 3. For the robot in Figure 11.13, obtain the dynamics of the system using the
Lagrangian method. Represent the dynamic equations in state-space (i.e., matrix) form.
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FIGURE 11.12
Planar RR robot.

FIGURE 11.13
Planar RP robot.
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Assume that the centres of masses are point masses located midway along each link. Use
the following transformation matrices:

op, —

C1
S1
0
0

—S1 0
C1 0
0 1
0 0

= O O O

1T2 —

o oo

o= OO

0
-1

0

0

Ly
—dy
0
1



12

Newton-Euler Dynamics

Historically, the Newton-Euler formulation was developed in parallel with the Lagrangian
formulation for robotic dynamics. Newton-Euler formulation utilises the outward kinematics
propagation and inward force/torque propagation to obtain the final dynamic governing
equations. During the derivation, the terms of the internal states of the robot, such as
velocity, acceleration, and constraint forces, are all developed. Further, the Newton-Euler
method was reported to be more efficient than the Lagrangian formulation with respect to
high-DoF robotic systems. Therefore, the Newton-Euler method is equivalently important
as the Lagrangian formulation in robotic analysis.

Our following discussion will be in the order of the outward kinematics propagation, the
inward force/torque propagation, and the derivation of the inverse dynamics equations.

12.1 Newton’s and Euler’s Equations

These two equations form the basis of Newton-Euler dynamics formulation. Assuming we
know the centre of mass of each link of a robot and its inertia tensor, then its dynamic
properties are fully described. In order to move these links, we apply forces and torques
to accelerate and decelerate them, such as through its actuators. Therefore, all forces and
torques acting on this body can be reduced to a resultant force f acting at the mass centre
and a resultant moment n acting on the body.

Newton’s Equation

Consider a rigid body depicted in Figure 12.1. Newton’s second law can be expressed as:
f=mv, (12.1)

where m and v, are the mass and the velocity at the mass centre of this body measured in
{c}, respectively.

FEuler’s Equation
Euler’s second law governing the rotation of the rigid body is given by
n=I.w+wxI w (12.2)

where I. is the moment of inertia measured in {c}, w and w are angular velocity and
acceleration, both also measured in {c}, and n is the moment acting on the rotating body.
Euler’s law is derived in Appendix 25.2.
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FIGURE 12.1
A rigid body under the resultant force and torque.

12.1.1 Rigid Body Rotation

In Section 11.3, we introduced the concept of the principal azes and its associated principal
moments of inertia for a rigid body. To understand how the principal moments of inertia
affects the rotation of a rigid body, we apply Euler’s second law in Equation 12.2.

Example 12.1 (Rigid body rotation): Consider a rigid body with the inertia tensor measured
in its principal frame “I. Assume the rigid body is rotating around its mass centre at a constant
angular velocity w. Find the moment required to maintain this rotation.

Solution:

Assume {0} and {1} as the ground frame and moving frame to the body at the mass centre.
Initially, {0} and {1} are coincident with each other. Since the constant angular velocity w must
be along the axis of rotation between {0} and {1}, we must have °w = 'w. According to the
Euler formula, we have the required moment expressed in {1} as:

Way I. 0 O Wy (I — Iy)w.wy
m="wox'L'w=|w|x |0 I, 0| |w]|=]|—L)wyw. (12.3)
w, 0 0 L| |w. (Iy — Ip)wywg

where I, I, and I, are the principal moments of inertia. If the body is a sphere or cube with a
uniform density, I, = I, = I, which leads to zero moment required. If 'n is a nonzero vector, the
direction of moment spins at the angular velocity w, which is the source of vibration.

Example 12.2 (Wheel dynamics): Wheels on a vehicle must be dynamically balanced along
its spinning axis to reduce the vibration on the road. A wheel on the balance-test machine is
shown in Figure 12.2. {0} and {1} are the stationary frame and the moving frame attached to
the wheel, respectively. Both frames are located at the geometric centre of the wheel, which can
be approximated as the mass centre. Force sensors are mounted on the shafts to measure *f; and
1f,. when the wheel spins at a constant angular velocity along the z-axis. Find the unbalanced
components of the wheel’s inertia tensor.

Solution:
Ideally, {1} should be the principal frame of the inertia tensor of a dynamically balanced wheel.
In general, we assume

Iz 7Izy 71’12

.= |-IL, I, —I,. (12.4)
_Iacz _Iyz [z
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i ~0

FIGURE 12.2
A wheel under the balance test.

where I, and I,. are the unbalanced components we are looking for. I,. does not yield vibration
along the wheel axis because it represents the asymmetric mass distribution with respect to the
y-z plane. According to the Euler’s formula, we have

Wy I, —Izy —Ipz| |We 0
m="ox'TL'w=|0|x|-Ly I, —IL.||0]|=]L.]|w (12.5)
0 —I. —I,. I 0 — Iy

On the other hand, the moments around the mass centre caused by the constraint forces 'f;
and 'f, are given by, respectively,

-1 fix 0

lnl = 0 X fly = lflz (12.6)
0 flz *lfly
l fra 0

.= 0| X | frg| = | —~1frs (12.7)

0 e Ufry

The moment balance at the mass centre gives

0
'n+tn, +tn, = I.w? + Ufiz—1Ufr | =0 (12.8)
- wyw?n — Uiy +1fry

which yields the solution

Loz = (=Ufi + Ufrz) Jws, Loy = (—Ufiy + Ufry) /03 (12.9)
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FIGURE 12.3
A tennis racquet with three principal axes.

12.1.2 Intermediate Axis Theorem

Commonly known as the tennis racquet theorem, this theorem states that the rotation about
the first and third principal axes is stable, while that about the second, or intermediate axis
is unstable. This theorem can be demonstrated physically with a tennis racquet. The racquet
has three principal axes as shown in Figure 12.3 and that for each axis, assume its principal
moment of inertia has the relation I; < Iy < I3. Therefore under torque-free conditions
(n = 0), the equations of motion as derived from Equation (12.2) are

Loy = (I2 — I3) wows (12.10)
Ity = (I3 — I1) wawy (12.11)
Iyws = (I = Iy) wiws (12.12)

Note that one can perform this experiment on any object that has three different mo-
ments of inertia, such as a remote control, a book, or even a smartphone (please be careful!).
For any rectangular object of uniform mass, é; is parallel with the long edge, é5 is parallel
with the short edge, and é3 is normal to the plane of the object.

Stable Rotation About First and Third Principal Azxes

To demonstrate stable rotation about the first principal axis €1, first hold the racquet with
the face horizontal to the ground. Now attempt to throw the racquet while twisting the
handle, such that when one catches the racquet, its face has rotated 360°. This should be
fairly easy to achieve because this is a stable axis of rotation, resulting in little residual
rotation about any other axes.

To analyse the stability of this rotation, we utilise Equations (12.10)—(12.12). Under this
scenario, we assume that the applied angular velocity about és and és is small, such that
we ~ ws ~ 0. Evaluating Equation (12.10) with these two angular velocities implies that
w1 ~ 0. Therefore, under equilibrium conditions of this scenario, angular acceleration w; is
small and therefore w; is relatively constant.
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To analyse the stability of this rotation, take the time derivative of Equation (12.11)

I~ 1
o = 31721 (s + waan) (12.13)

provided that wy & 0, substitute Equation (12.12) into the above equation leads to

o 213—11 I — I
° I, I3

Is— LI — T
- 312 L 113 2 012w, (12.14)

wlwg] w1

the two fractions being positive and negative, respectively, which further gives the second-
order ordinary differential equation

Wy = _)\OJQ, AeRT (1215)

Due to the I} < I < I3 relation, the first fractional term in Equation (12.14) is always
positive, and the second fraction term is always negative, resulting in Equation (12.15).
This ODE has the general solution

wa = ¢1 sin(VAE) + ¢o cos(VAL) (12.16)

which represents a stable oscillatory motion over time. The conclusion is that any pertur-
bation of wy during rotation about the principal axis é¢; will not cause further rotations
about the é; axis. The same relation for ws can be found, starting with the time derivative
Equation (12.12) instead.

Unstable Rotation About the Second Principal Axes

This time, to demonstrate unstable rotation about the second principal axis és, first hold
the racquet with the face horizontal to the ground as previously. Now throw the racquet
such that it flips about the horizontal axis 360°, catching it at the handle. One may also
notice that the racquet will perform a 180° flip about the handle, or first principal axis é;.
This residual rotation about é; is very difficult to suppress because rotation about the é;
axis is unstable.

We can prove its instability by again utilising Equations (12.10)—(12.12). In this scenario,
we assume that the applied angular velocity about é; and és is small, such that w; ~ ws =~ 0.
Evaluating Equation (12.11) with these two angular velocities implies that ws & 0, removing
the time dependence on ws (constant over time) under equilibrium. Now take the time
derivative of Equation (12.10)

_L—-13
= Il

(I)l (d)g&)g +W2d}3) (1217)

with ws vanishes according to the assumption, substitute Equation (12.12) into the above
equation results in

. Iy — I3 {11—12
w1 =

I

Iy —I3L -1, ,
= 12.18
I I, wew ( )

which gives the second-order ODE
= )\wl, A€ R (12.19)
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Due to the I} < Iy < I3 relation, all fractional terms in Equation (12.14) are always negative,
yielding a positive product in Equation (12.19). This ODE has the general solution

wy = cleﬁt + 026‘5'f (12.20)
which shows unstable rotation due to exponential growth over time. The conclusion in this
scenario is that any perturbation of wy during rotation about intermediate axis é; will cause
increasing residual rotations about the é; axis, causing the almost-unavoidable “flip” around
the handle. Similarly, the same relation for instability of w3 can be found by repeating the
above steps, but starting with the time derivative Equation (12.12) instead.

According to Equation (12.20), it is possible to achieve rotation about the intermediate
axis without residual rotations in the principal axes, but only by keeping w; and ws as
close to zero as possible. However, this is very difficult to achieve in the tennis racquet
experiment.

Finally, one may notice in this experiment that the racquet tends to favour residual
rotation about é; (the handle axis) rather than é;. This is because I3 > Iy, hence less
torque is required to rotate the racquet about the handle than about the racquet face
normal é3. This means w; > w3, resulting in higher angular acceleration about é; than és.

12.2 Outward Propagation

Assume {1} translates and rotates with respect to {0} simultaneously, as shown in Fig-
ure 12.4. According to our previous discussion, the position and velocity of Point P are
given by the following equations

¢p =001 +p = j01 + °Ry |p (12.21)

. 0 . . 0 -
0P = 001 + b = (01 + Jw1 x Ip (12.22)

Taking the time derivative of the above velocity, we have the acceleration of Point P given
by

0. _ 0 0 0 0 0.
oP = 01 + gw1 X |p + gw1 X P

z1 P Y1

T

Lo

FIGURE 124
{1} moves with respect to {0}.
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{1}

{2}
{0}

FIGURE 12.5
Frame {1} ({2}) moves with respect to {0} ({1}).

0 -
=001 + jwi x Ip + jwi x (Jw1 x Ip) (12.23)

Consider the reference frame {0}, measure frame {0}, moving frame {1}, and Point P in
(12.23) become the ground frame {0}, the frame attached to Link i-1 {i — 1}, the frame
attached to Link i {7}, and the origin of the frame attached to Link i+1 {i 4+ 1}, respectively.
(12.23) becomes

i—1 - i—1 - . . . . .

00 = 00 + T hws x 0 + Thwi x (Thwi x TTE044) (12.24)
Premultiplying “"'R;_; on (12.24) yields

i+l i @ i i i i i
00i+1 = +1Ri (001 + owi X ioi+1 + owi X (Owi X ioi+1)) (1225)

Note that the front-lower index of zero of all velocities of accelerations can be safely
removed in (12.25), since the reference frames of velocity and acceleration are defined as
the ground frame by default. That is

H—l('jiﬂ = i+1Ri (101 + 10)1 X Z:Oi"rl + iwi X (Zwl X 201_,_1)) (12.26)

which serves as the point velocity and acceleration propagation on a robot.
Assume {1} ({2}) translates and rotates with respect to {0} ({1}) simultaneously, as
shown in Figure 12.5. The relation among angular velocities is given by

8&)2 = 8(4)1 + (1)(4)2 = 8&)1 -+ ORl %(4)2 (1227)
The time derivative of the above velocity yields the angular acceleration given by
. 0 . .
8&)2 = 8(411 —+ Rl %WQ —+ 0R1 %wg = 8&)1 + 8(.01 X (1)(.02 —+ ?(JJQ (1228)

Replace the measure frame {0}, and the moving frames {1} and {2} in (12.28) with the
frame attached Link i-1 {i — 1}, the frame attached to Link i {7}, and the frame attached
to Link i+1 {i + 1}, respectively. (12.28) becomes

i_(l)d}H,l = i_(l)wi + iféwi X iiliwlqu + i_liwlqu (1229)
Premultiplying “T'R;_; on (12.29) yields

irl e gl i i i i
Wit = TR (fwi 4 jwi X jwit1 + jwit1)
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= "Ry g + (TR qwi) x Twign + Wi
= IR, bw; + (i-‘rlRi gwi) X (éiﬂ k) +0;1 k (12.30)
Recall the angular velocity propagation we derived previously as
i+(1)wi+1 = IR, 8601' + i+1iwi+1 = IR, gwi + 6.’1-4_1 k (12.31)

Note again that the reference frames for velocity and acceleration are {0} by default. Hence,
we can write (12.31) and (12.30) as

i+1wi+1 —_ i+1Ri iwi 4 ’L+twl+1 — i+1Ri iwi + éi—i—l k (1232)

gy = TR, o, + (IR, Tw;) x (ei+1 k) i k (12.33)

Equations (12.32) and (12.33) serve as the angular velocity and acceleration propagation
formulas for a robot.

The outward velocity and acceleration propagation utilises the following equations as
derived previously

Hloi = MR, 'w; + 0,1 k (12.34)
o = TR, s + (TR, fw;) x (éiﬂ k) +0,41 k (12.35)
O = IR, (ioi + %0, X 10,10 + fwi x (fw; x ;iom)) (12.36)
For prismatic joints, the propagation formulas are given by

i+l = IR, o, (12.37)

i+1 i @ i i i i i
O;y1 = +1Ri ( O, + .wi X iofﬂ + 'w; X ( w; X ¢Oi+1)) + (12.38)

2 ini—&-l Xdig1 2+ dit1 2

The acceleration of the mass centre of a link can be readily derived from (12.26) as
Pei = ‘0, + 'w; x Pei + 'wi x (iwi X ﬁpci) (12.39)

where ;p.; is the position vector from the origin of {i} to the mass centre of Link i. The
boundary conditions of angular velocity and acceleration for the outward propagation are
given by

Oy =% =0 (12.40)

i IR T
Outward Wi, ‘Wi, Vi, V¢

Inward i, g, ' j; >
FIGURE 12.6

Propagation of velocities, accelerations, forces, and torques of a serial robotic manipulator.



230 Newton-FEuler Dynamics

Lo

FIGURE 12.7
2R robot.

Regarding the point acceleration for the outward propagation, we adopt the boundary
condition

0 -
7100 =—g (1241)

where {—1} is an artificial frame being absolutely stationary and parallel to {0} while g
is the vector of gravity. We can imagine that the robot is positioned in an elevator {0}
which is translating with respect to {—1} with an acceleration of — g in a zero-gravity
environment. The purpose of this boundary condition is to simplify the force and torque
computations by excluding gravity terms in the ensuing analysis because the boundary
condition automatically considers gravity.

Example 12.3 (2R robot kinetics):

Consider a 2R robot shown in Figure 12.7, where the mass centres are at the tips of the links.
Find the angular velocity, angular acceleration, and acceleration of each link using the outward
propagation. Assume [; = [ = 1 m.

Solution:

Step 1: Initialisation
The mass centres of the two links are given by

T

'pa=[1 0 0]" pa=[1 0 0 (12.42)
The boundary conditions in Frame 0 are
0wy = %o =0, ‘0o=100 g 0" (12.43)

where g = 9.8 m/s?. Tt is known from previous examples that the transform matrices of the frames
(i=1,2) are

_ cosf; —sinf; 0
IR, = |sin®; cos®; O (12.44)
0 0 1
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Step 2: Frame 1

231

According to the propagation formula and the conditions on Frame 0, we have angular velocity
and acceleration, point acceleration, and the acceleration at the mass centre of Link 1:

Step 3: Frame 2

0
11:{() Owo + 91 1Z1 = 0 (12.45)
01
. . O
111() 0(.;)() -+ (1R0 Ow()) X (01 lzl) + 61 lzl = 0 (12.46)
01

= 1Ro (Ooo + Od)o X 801 + 0(-u’o X (Owo X 801))

cosfy sinf; 0| [0 gs1
—sinf; cosbr 0| |g| = |g9a (12.47)
0 0 1] 10 0
—9% + gs1
1 1. 1 1 1 1 5
O1 +'w1 X 1pe1 + ‘w1 x (‘w1 X 1pe1) = | 61 +ger (12.48)
0

According to the results in Frame 1, we have the angular velocity, angular acceleration, point
acceleration, and acceleration at the mass centre of Link 2, given by, respectively,

0
wo =Ry ‘w1 + 6222 =| 0 (12.49)
01 + 6
. . O
%Wy = *Ry 'w1 + (PR 'wi) x (92 222) + 05 %25 = 0 (12.50)
01+ 02
’0, = °R, (101 + 01 x 102 + 'wy x (lwl X 102))
-é152 - 6?%02 + gsi12
= |fica + 0352 + g2 (12.51)

- (6‘1 + 92) +61co + 9%52 + gciz

0

.. 2 2. 2 2 2 2
Pe2 = O2 + “w2 X 7pe2 + w2><(w2><2pc2)

-, N2 . .
— (91 + 92) + 0152 — OFca + gsi2
(12.52)

0

12.3 Inward Propagation

The essential problem in the inward force/torque propagation is to derive the equilibrium
equation of an isolated link in a robotic manipulator. Referencing the robotic in Figure 12.6,
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the force and torque equilibrium equations are given by

4 f — i1 =0 (12.53)

ini + il’lci — ini+1 + ipci X ifm' + iOiH X (7 ifi+1) =0 (1254)

where f;, f;11, n;, n;y1, £, and n, are the joint force by Link ¢ — 1 on Link ¢, joint

force by Link ¢ on Link ¢ + 1, joint torque by Link ¢ — 1 on Link ¢, joint torque by Link i

on Link ¢ + 1, inertia force at mass centre, and inertia moment, respectively. All forces and

torques are expressed in {i}. With proper transformations, the equilibrium equations can
be written in the form of propagation

= —"fo + Rip1 i (12.55)
ini = - inci + iRi+1 i+1ni+1 — ipci X ifcz' + i0i+1 X iRi_H i+1fi+1 (12.56)
where the inertia force and torque are obtained by using Newton and Euler equations

fo; = —m; ‘Pei (12.57)

my = —"I; 'w; — 'w; x 'L 'w; (12.58)

(12.55) and (12.56) are utilised to obtain the joint forces ‘f; and torques ‘n; from the
end-effector to the base, as shown in Figure 12.6. For a revolute joint, the joint torque
consists of the joint constraint torque and motor input torque. The latter is along the axis
of rotation, which is expressed as k in {i}. Therefore, the motor’s torque input is given by

7 ='"m;7T k (12.59)

Example 12.4 (Dynamic propagation): Consider a 2R robot shown in Figure 12.7 in Exam-
ple 12.3. Derive the dynamic equations by propagation. Assume point mass for the links.

Solution:
The outward kinematics propagation was done in Example 12.3. We utilise the results in Ex-
ample 12.3 to conduct the inward propagation here.

Step 1: Inertia forces and torques

According to the kinematics, the inertia forces of Link 1 and Link 2 are

—m10} + migs

Yoo = —m1 P =— | mibi +miga (12.60)
0
77712(?1 + ?2)2 + mgé152 — m?é%CQ + magsi2
*feo = —ma "Pe2 = — | ma(1 + 62) + mabica + mabisy + magers (12.61)
0

and the torques for Link 1 and 2 are

"ng =~ T twr — twr x 'L 'wr =0 (12.62)

ey = — Lp 2wy — *wa x “Iex *wy =0 (12.63)

where the inertia tensors are zero matrices due to the assumption of point masses.
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Step 2: Link 2
Force and torque propagations are given by

*fy = — *foo + "Ry °f3 = — *feo

. N2 .. .
—ma (91 + 92) + mabis2 — mabico + magsiz
- ma (91 + 92) + mabfico + m29%52 + magciz
L 0
n; = — “ne + “Rs *n3 — pea x *fe2 + °03 x *Ra °fy
i 0
_ 0
ma ((91 + 92) + 5102 + 9%82 + 9012)

Therefore, the motor’s torque input to Link 2 is given by

T ="nj ‘7z = mo ((91 + 92) + 61co + 0752 + 9012)

Step 3: Link 1
Since Link 1 is the first link, only torque propagation is required here, i.e.,
'ni = —"na + 'R "n2 — 'per x 'fo + 102 x 'R °f2

Therefore, the motor’s torque input to Link 1 is

1.T1
T = N7 Z1

=mj (91 + 92) + mace (2é1 + 92) + (m1+ mz)él—

ma03s5 — 2ma0102s> + magerz + (m1 + ma)ger

Step 4: Final Dynamics

The final dynamic equations are

= ma (él + 9'2) + maca (2[9'1 + éz) + (ma + ma)f—
mab3s5 — 2mabi62s2 + magerz + (m1 +ma2)ger
To = Mo ((91 + 92) + 5102 + 9%82 + g012>
which can be written in the matrix form:

T=M(0)0+V(0,0)+G(9)
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(12.64)

(12.65)

(12.66)

(12.67)

(12.68)

(12.69)

(12.70)

(12.71)

where M (8) is the mass matrix, V (8, 0) is the centrifugal and Coriolis term, and G (8) is the
gravity term expressed in the joint space. Leave it as an exercise to find all these terms in this

example.

12.4 Procedure

The procedure to derive the dynamic equations governing a general robotic manipulator

such as Figure 12.8 by dynamic propagation is summarised here.
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FIGURE 12.8
A general robotic manipulator.

Step 1

Prepare all quantities for each i-th link, for an n-link manipulator:

Inertia tensor of each link in its principal frame I,
Mass of the link m;
Location of the link’s mass centre ic;
Force applied by the end-effector "f,
Torque applied by the end-effector "n,

Transformation matrices via forward kinematics "T;y1

Step 2
Perform outward propagation of link kinematics, where Frame 0 is stationary
Owo =%y =0 (12.72)

but has a nonzero linear acceleration due to gravity

°Op=—¢g (12.73)

Then, for each subsequent Frame i+1, propagate the link kinematics with the generalised
equations (for revolute or prismatic joints):

i+éwi+1 = i+1Ri 60)1 + él‘+1 k (1274)
Fhnn = TR s + (TR fwi x 041 k) + iy K (12.75)
+ooz'+1 = ""IR, <Ooi + gwi X O + gw; x (jwi x Ooi)> (12.76)

Step 3

Inertia force and torque on each Link i from its own mass can now be found with known
link velocities and accelerations:

fei = —m; "Pei (12.77)
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il’lci = — iICi lwl — iwi X iICi iwi (1278)
where the point acceleration at the mass centre is

oPei = 00 + (Wi X iPei + (wi X ({wi X iPei) (12.79)

Step 4

Perform inward propagation to find the force and torque exerted by each link, where the
n-th frame represents force and torque exerted by the end-effector to the environment. The
equations for force and torque, respectively are

;= —"fo + Rip1 i (12.80)

%

n; = —'ng + ‘Ript o — pei X fei + 01 x Rypr T (12.81)

Step 5

The resulting servo effort is

Ti='n] k (12.82)
for revolute joints, or

fi = if;r k (12.83)
for prismatic actuators, where k is the axis of actuation, usually z as defined in DH notation.

Effects of friction

Two types of friction can affect servos. Viscous friction 7¢, for revolute actuators is modelled
as

Ty = 10 (12.84)

and Coulomb friction 7¢. for prismatic actuators, which is modelled by

Tfe = csgn(6) (12.85)

Constants v and ¢, are the viscous friction and Coulomb friction coefficients, respectively.
If the friction is modelled, the final dynamic equations become

T=M(0)0+V(0,0)+G(0)+F(0,0) (12.86)

where F is the term of frictions projected into the joint space. Equation (12.86) is called
the inverse dynamics of the given robot. If the desired trajectory is known, substituting all
information of joint positions, velocities, and accelerations into the inverse dynamics, the
desired torques can be computed. If the dynamics model is perfect, the torque commands
according to the computed torques will drive the robot to follow the desired trajectory
precisely. Such a strategy is called the open-loop control. Apparently, it is naive because
the derived dynamic model cannot be perfect. However, the inverse dynamics serves as the
building block for more advanced control strategies.
Equation (12.86) can be written differently as

6 =M-1(0) T_V(a,é)_(;(e))_F(e,é)} (12.87)
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which is called the direct dynamics of the given robot. It can be used to generate a simulation
according to a set of torque inputs from initial conditions 6(0) and 0 (0), to predict the
motion of the robotic system offline. Euler integration formulas can be applied, such as

O(t+At) = 0(t)+ 6(t)At (12.88)
. 1 .
O(t+ At)=6(t) + 0(t)At + 3 0 (t)At? (12.89)
where At is the time step. Other numerical integration techniques such as midpoint, Heun’s,
or Runge-Kutta methods can be applied for better accuracy. Furthermore, the simulation

will depend on the selection of the time step. Generally, a smaller time step yields higher
accuracy, while the computational cost is increased.

12.5 Twist, Wrench, and 6 x 6 Transformation Matrix

So far in the textbook, we always discussed the velocity- and force-domain information with
two equations, i.e., linear and angular velocities, respectively, for the velocity domain, and
force and moment, respectively, for the force domain. On the other hand, it may be more
elegant and beneficial to express the transformation with a unified equation. This could be
achieved by adopting the concept of twist (velocity-domain) and wrench (force-domain),
whose transformations are presented in the ensuing subsections.

12.5.1 Transformation of Twist

Consider two arbitrary frames, {1} and {2}, where {1} is an arbitrary reference frame, and
{2} is attached to a point on a moving rigid body, such as a link of a robotic manipulator.
A twist is used to fully describe the velocity of the rigid body, which comprises angular and
linear components. The angular velocity applies to the entire rigid body. The linear velocity
is the velocity of a point that is attached to the rigid body and instantaneously coincident
with the origin of the frame, where the twist is represented.

Following such a definition, the twist is represented in {2} as

2
2V, = [2“’2] (12.90)

Vo
where vy is the linear velocity of the origin of {2}. To represent the twist in {1}, the linear
velocity of Point 1’, which is attached to the rigid body and instantaneously coincident with

the origin of {1} is used. Such linear velocity, represented in {2}, is
2V1/ = 2V2 + 2(.02 X %I‘l/ = 2V2 + 2(.02 X %I‘l

= 2vy + 71y x %wy (12.91)

where the r terms are position vectors. ,ry is identical to 5r;, as Point 17 is instantaneously
coincident with Point 1 (origin of {1}). Furthermore, representing such linear velocity in

{1} is
vir = "Ry 2va + 'Ry (3r2 x 2w2) (12.92)
Angular velocity can be readily transformed with a rotation matrix

Lws = 'Ry 2wy (12.93)
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Therefore, twist Vo represented in {1} is written as

1 Ip. 2
1 w2 Ry “wo
= = 12. 4
\E |:1V1/:| |:1R2 2V2 -+ 1R2 (%I‘Q X 2LU2):| ( ) )
Rearranging the expression into matrix form yields
1 1 2
1 M twe| R 0 Wa| 1 2
N 1 . SO | PR MRt

Alternatively, given
1R2 %I‘QX = 1R2 (2R1 %I’Q) X = 1R2 1R2 %I’g X 1R2

=1lr, x 'Ry (12.96)

!X, can be equivalently expressed as

1
1 _ R, 0
X, = [%rz <R, IR, (12.97)

12.5.2 Inverse Transformation of Twist

Consider the same physical system as described in the derivation of 'X,. Given the twist
represented in {1} as

v, = [11“’2} (12.98)

vy
it is desired that the inverse transformation X, is derived. The linear velocity of the origin
of {2}, represented in {1}, is given by
Yo =tvy +lwg x ey = v+ twy x g = vy 43 x tws (12.99)
Furthermore, representing such linear velocity in {2} yields
2vo = 2Ry 'vi 4+ *Ri(3r; x 'wy)
=Ry v + 2Ry iry x twy (12.100)
The angular velocity can be readily transformed with a rotation matrix
2wy = 2Ry twy (12.101)
The twist 'V represented in {2} is written as
2V2 = FQWQ] = {2 1 2%1IWQ1 1 :|
Vo Ri ‘vii + "Ry 511 X "wo
[ Ry 0 ] [tws
B [2R1 I x ZRJ {w—l,]

X, 'V, (12.102)

Given
2R1 %rlx = 2R1(1R22 21‘1))( = 2R1 1R2 %I‘l X 2R1
=2r; x "Ry (12.103)
2X, can be equivalently expressed as

2
R 0
2X, = , 1

2 % 'R, °R, (12.104)
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12.5.3 Transformation of Wrench

Similar to the relation between velocities and a twist, effort (force and moment) can be
represented by a 6x1 wrench. Consider an arbitrary wrench at the origin of Frame {2}
represented as

S e (12.105)
2 — 2m2 .

where ?n, and >my are arbitrary force and moment (dimensions 3x 1) applied at the origin
of {2}. To represent said wrench in frame {1}, the transformation matrix must be written in
such a way that the physical effect of the wrench stays unchanged during the transformation,
thus

L