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Preface
 

This book, Brain and Cognitive Intelligence: Control in Robotics, 
will focus on the topics of cognitive and learning based intelligent 
control and its applications in robotics. 

I would like to thank all the authors for their contributions to the 
book. I am also grateful to the publisher for supporting this project. I 
hope the readers find this book informative and useful. 

This book consists of 5 chapters. Chapter 1 presents a real-time 
kinodynamic motion planning technique for linear systems with 
completely unknown dynamics in environments with unpredictable 
obstacles. The methodology incorporates: (i) a sampling-based 
algorithm for path planning and fast re-planning; and (ii) continuous-
time Q-learning for the solution of finite-horizon optimal control 
problems in real-time. Chapter 2 present a semi-automated seed 
delivery and tracking scheme for precise seed placement, to allow 
for more conformal treatment of localized prostate cancer. Standard 
seed-carrying needles are connected to a hand-held apparatus that 
the surgeon holds to steer the needle automatically as the surgeon 
manually inserts it. The apparatus is equipped with force sensors that 
are used to estimate the tissue properties during insertion. A needle 
steering controller employs ultrasound images of the needle in tissue 
to calculate the optimal steering manoeuvres online. A method is 
derived to track the position of the implanted seeds after the needle 
is withdrawn, allowing the surgeon to monitor the implant quality 
online. Chapter 3 presents team cognition assessment: from concept 
to practice. It talked about the concepts of team and team composition, 
team cognition, and team cognition assessment, also the pieces of 
evidence presented in this chapter were collected from healthcare, 
results can be applied to other industries that are heavily dependent 
on team works. As new tracking technologies will be available for 
studying team collaboration, it is anticipated that more behavioral 
pieces of evidence will be produced to the goal of assessing team 
performance and cognition with objective methods. In Chapter 4, it is 
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found that people’s decisions are based on bounded rationality: since 
we cannot compute an optimal solution for all possible situations, we 
divide situations into groups and come up with a solution appropriate 
for each group. What is optimal here is the division into groups. It 
is therefore desirable to implement a similar algorithm for robots. 
To help with such algorithms, we provide techniques that help 
optimally divide situations into groups. Chapter 5 presented the 
neural-computer interfaces, Embodied cultured networks, cybernetic 
organisms, bioengineering mini brain hybrots, applications for 
minimal cognition research and ethical and legal considerations. 

Finally, the editor would like to acknowledge all the friends and 
colleagues who have contributed to this book. 

Bin Wei 
September 24, 2021 Sault Ste Marie, Ontario, Canada 
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Chapter 1 

RRT-QX 
Real-Time Kinodynamic Motion 
Planning in Dynamic Environments with 
Continuous-Time Reinforcement Learning 
George P Kontoudis,a,* Kyriakos G Vamvoudakisb 
and Zirui Xuc 

1. Introduction 
Substantial improvements in artificial intelligence, computing re­
sources, and software tools have enabled tremendous capabilities to 
mobile robots and autonomous systems. The problem of navigation 
is a core topic in robotics and autonomous vehicles, as the major­
ity of robotic applications require safe path planning and obstacle 
avoidance (Yang et al., 2018). Ideally, a solution to this problem 
considers collision-free navigation in dynamic environments, com­
putationally affordable algorithms for real-time implementation, 
and optimal control strategies. Such a challenging problem should 
be addressed in the continuous-time domain, as naive discretiza­
tion of the system dynamics and the policy space, disregards crit­
ical information and leads to discretization errors (Lillicrap et al., 
2015). In addition, dynamic environments impose time constraints 
to the motion planning problem, because collision-free navigation 
is only ensured for limited time frames (Nägeli et al., 2017). The 
latter necessitates a finite-horizon formulation to the optimal con­
trol problem. Moreover, system modeling is a challenging task with 

a Maryland Robotics Center, University of Maryland, College Park, MD, USA. 
b Guggenheim Sch. of Aerospace Eng., Georgia Institute of Technology, Atlanta, GA, USA. 
c Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA. 
* Corresponding author: gpkont@vt.edu 
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inevitable model simplifications and inaccuracies (Berkenkamp and 
Schoellig, 2015). Thus, a combination of optimal and adaptive con­
trol is needed. Finally, even if the system dynamics are assumed to 
be known, the finite-horizon optimal control problem requires ex­
tensive offline computations to solve the Hamilton-Jacobi-Bellman 
equation (Lewis et al., 2012). 

Our aim in this work is to present a real-time kinodynamic 
motion planning technique for dynamic environments with unpre­
dictably appearing obstacles. We address the finite-horizon optimal 
control problem with completely unknown system dynamics. The 
unknown model is considered to be continuous-time linear time-
invariant. 

Motion planning in high-dimensions has been addressed with 
probabilistic road-maps (PRM) (Kavraki et al., 1996) and rapidly-
exploring random trees (RRT) (Kuffner and LaValle, 2000; LaValle, 
1998). These algorithms are probabilistically complete, but not op­
timal. The work of Karaman and Frazzoli (2011) proposed a vari­
ation of RRT based on rewiring, namely RRT⋆ . The latter was 
proved to be probabilistically complete and asymptotically opti­
mal. These methods do not incorporate realistic system dynamics 
and instead use simple dynamics. 

The problem of kinodynamic motion planning is introduced in 
(Donald et al., 1993). Kinodynamic RRT (LaValle and Kuffner, 
2001) employs the dynamical model of the system, but the pro­
posed control strategy is selected either randomly or by testing 
multiple controls and selecting the best. LQR-trees (Tedrake et al., 
2010) is a feedback motion planning algorithm that utilizes opti­
mization tools. This method requires significant computations to 
solve the Riccati equation. A combination of linear quadratic reg­
ulator (LQR) and RRT⋆ is proposed in (Perez et al., 2010). In 
particular, the authors formulate a free-final-state, infinite-horizon 
optimal control problem with minimum energy cost and a heuristic 
extension of the RRT⋆. This algorithm incorporates the system dy­
namics and enforces extensive offline computations. Kinodynamic 
RRT⋆ (Webb and Van Den Berg, 2013) is an asymptotically opti­
mal motion planner for known linear time-invariant systems. The 
authors formulate a finite-horizon optimal control problem of fixed-
final-state and free-final-time with minimum fuel-time performance. 
However, kinodynamic RRT⋆ yields an open-loop controller and 
the computation of the continuous reachability Gramian requires 
significant offline computation. The authors in (Li et al., 2018) 
proposed a near optimal kinodynamic motion planning technique, 
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that is named NoD-RRT. The methodology utilizes neural network 
approximation and RRT. NoD-RRT achieved reduced computa­
tional complexity and enhanced performance for nonlinear systems, 
comparing to RRT and kinodynamic RRT⋆. Yet, their framework 
is model-based and requires offline computations. In (Kontoudis 
and Vamvoudakis, 2019a), the authors presented RRT-Q⋆ , an on­
line, model-free kinodynamic motion planning framework which 
computes approximately optimal control policies for motion plan­
ning in static environments. RRT-Q⋆ combines continuous-time Q-
learning, RRT⋆, and local replanning in relatively small spaces. The 
latter has been robustified in (Kontoudis and Vamvoudakis, 2019b). 
In (Chiang et al., 2019), the authors combined reinforcement learn­
ing (RL) and RRT for kinodynamic motion planning. RL is used 
to learn obstacle avoiding policies and supervised learning to pre­
dict the time to reach a state and guide the growth of the tree. 
However, this algorithm requires significant offline computations. 
All the aforementioned motion planning techniques can only deal 
with static environments. 

Randomized kinodynamic motion planning in dynamic environ­
ments is introduced in (Hsu et al., 2002). In (Bruce and Veloso, 
2002), the execution-extended RRT is presented for real-time re­
planning. This algorithm stores selective nodes in a waypoint cache 
and performs an iterative, adaptive cost search on the forward 
tree, towards efficient replanning in dynamic domains. Dynamic 
RRT (Ferguson et al., 2006) trims the invalid leafs of the tree 
when a collision occurs due to a new obstacle configuration and 
grows the rest tree from the goal to the current configuration of 
the robot. The authors in (Otte and Frazzoli, 2014, 2016) present 
the RRTX, an asymptotically optimal motion planning algorithm 
for both static and dynamic environments. RRTX has the ability 
to perform quick online replanning. In (Allen and Pavone, 2019), 
the authors proposed an online kinodynamic motion planning al­
gorithm which was experimentally validated in dynamic indoor en­
vironments. The technique requires the model of the system and 
its efficiency depends on the offline training of reachability sets. 
Kontoudis et al. (2020) combined event-triggered Q-learning and 
RRTX to address the kinodynamic motion planning problem in dy­
namic domains. In addition, cognitive hierarchy along with RRTX 

and Q-learning has been used to multi-robot motion planning in 
human-crowded environments Netter et al. (2021). 

Optimal control (Lewis et al., 2012) can be efficiently merged 
with adaptive control (Ioannou and Sun, 2012) by employing prin­
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ciples of reinforcement learning (Sutton and Barto, 2018), and ap­
proximate dynamic programming (Busoniu et al., 2010; Lewis et al., 
2012; Powell, 2007; Vrabie et al., 2013). In (Watkins and Dayan, 
1992), a solution to Markovian systems was proposed with the 
use of discrete-time Q-learning. The authors in (Mehta and Meyn, 
2009), presented a connection of Q-learning with nonlinear con­
trol based on the observation that the Q-function is related to the 
Hamiltonian. A solution to the model-free, infinite horizon optimal 
control problem for continuous-time linear time-invariant systems 
is presented in (Vamvoudakis, 2017). 

The remainder of this paper is organized as follows. In Section 2 
we formulate the problem, Section 3 discusses the optimal control 
problem, Section 4 provides a model-free formulation based on Q-
learning, and Section 5 presents the structure of RRT-Q⋆. Section 6 
illustartes the efficiency of our method through simulations and 
Section 7 concludes the chapter. 

The notation here is standard. The set of real numbers is de­
noted R, the set of all positive real numbers R+, the set of n×m real 
matrices Rn×m, and the set of natural numbers N. The notation (·)⊺ 

and (·)−1 denote the transpose and inverse operator respectively. 
The superscript ⋆ denotes the optimal solutions of a minimiza­
tion problem. The notations λ(A) and λ(A) denote the minimum 
and maximum eigenvalues of the matrix A respectively. We denote 
vech(A), vec(A), and mat(A) the half-vectorization, vectorization, 
and matrization of a matrix A respectively. The Minkowski sum 
of two sets is denoted ⊕ . A positive and semi-positive definite A 
matrix is denoted by A ≻ 0 and A ⪰ 0 respectively. The nota­
tion U ⊗ V denotes the Kronecker product of two vectors and ∥ · ∥ 
denotes the L2 norm. 

2. Problem Formulation 

Let a linear time-invariant continuous-time system, 

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0, 

where x(t) ∈ X ⊆ Rn is the state vector, u(t) ∈ Rm is the control 
input, and A ∈ Rn×n , B ∈ Rn×m are the unknown plant and input 
matrices respectively. To drive our system from an initial state x0 

to a final state x(T ) = xr, we define the difference between the 
state x(t) and the state xr, as our new state x̄(t) := x(t) − xr. The 
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final time is denoted by T ∈ R+. The new system yields, 

ẋ̄(t) = Ax̄(t) + Bu(t), x̄0 = x0 − xr, t ≥ 0. (1) 

Consider an energy cost function, 

1 
J(x̄; u; t0, T ) = ϕ(T ) + 

2

 T 

(x̄⊺ M x̄ + u⊺ Ru) dτ, ∀t0, (2) 
t0 

where ϕ(T ) = 1 x̄⊺(T )P (T  )x̄(T ) is the terminal cost with P (T ) = 2
P ∈ Rn×n  Riccati matrix, M ∈ Rn×n 
T 

m 
≻ 0 the final  

m
⪰ 0 and 

R ∈ R × ≻ 0 user defined matrices that penalize the states and 
the control input respectively. 

 
Assumption 1 The unknown pairs (A,B) and (

√
 M , A) are con­

trollable and detectable respectively. 

We are interested in finding an optimal control u⋆  such 
that it satisfies J(x̄; u ⋆; t0, T ) ≤ J(x̄; u; t0, T ), ∀x,¯  u, which 
can be described by the minimization problem J(x̄; u ⋆ ; t0, T ) = 
minu J(x̄; u; t0, T ) subject to (1). In other words, we want to ob­
tain the optimal value function V ⋆ that is defined by,  

1 
 T 

V ⋆ (x̄; t0, T ) := min ϕ(T ) + (x̄⊺ Mx̄+ u⊺ Ru) dτ , (3) 
u 2 t0 

 
but without any information about the system dynamics. 

Consider the known obstacle closed space Xobs ⊂ X . For mul­
N

tiple obstacles, the obstacle space is defined Xobs := o

l=1 Xobs,l,
where No ∈ N is the total number of obstacles. Thus, the free 
space is an open space Xfree = ( ∁

obs

�
X )  = X \Xobs. In dynamic en­

vironments, the obstacle space Xobs and the free space Xfree evolve 
in time. We define the unpredictable variation of the obstacle space 
as ∆Xobs := f(Xobs; t), where f(·) is unknown, and ∆Xobs = {∅}
indicates no obstacle changes in the environment. We use RRTX 

for path planning. RRTX constructs a graph G = (V, E), where V 
is the set of nodes and E is the set of edges. As a slight abuse of 
notation, we will refer to nodes v ∈ V as states x ∈ X . The plan­
ner provides an optimal sub-tree that contains the planned path 
π(x0,k, xr,k; t) ∈ R2(K×n), where k = 1, . . . ,K, K ∈ N is the num­
ber of boundary value problems (BVPs). Each BVP is described 
by the initial and desired state (x0,k, xr,k). Since the obstacle space 
Xobs evolves in time, π is also a function of time, and thus K also 
change accordingly. 
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We seek to drive the system to a desired state, without any 
knowledge of the system dynamics. For the k-th BVP, let us define 
the initial distance as the distance from the initial state x0,k to the 
desired state xr,k, 

D0(x̄0,k) := ∥x0,k − xr,k∥ = ∥x̄0,k∥, ∀x̄0 ∈   Rn (4), 

and the relative distance to xr,k, 

D(x̄) := ∥x − xr,k∥ = ∥x̄∥, ∀x̄ ∈ Rn . (5) 

Since we address the free-final state finite-horizon optimal control 
problem, the controller at final time T approximates the desired 
state xr, i.e., x(T ) converges to a close neighborhood around xr 

(Bryson, 1975; Lewis et al., 2012). In order to reduce the naviga­
tion time, we assume that the desired state is reached when the 
system enters the close neighborhood of the desired final state xr. 
That is to say, when D(x̄) ≤ ρD0(x̄0,k), where ρ is the user-defined 
admissible window, the robot is considered to have reached the 
desired state xr,k. Subsequently, the system proceeds to the next 
(k + 1)-th problem. 

Moreover, since the system dynamics are unknown, when RRTX 

calculates the collision-free path π, it can only adopt straight lines 
as edges in E. However, the actual trajectory of the robot is curved 
due to the kinodynamic constraints (1) and the optimal perfor­
mance (2). Thus, the actual trajectory deviates from the nominal 
trajectory provided by the RRTX, and collisions may occur in near­
to-obstacle areas. To address this issue, we introduce an obstacle 
augmentation strategy. More specifically, the algorithm computes 
at every time instance the kinodynamic distance, 

x̄0,k  x̄
Drob(x̄) := 

| × |
, (6)

D0,k 

which represents the present current deviation of the robot’s current 
position from the nominal trajectory, i.e., corresponding straight 
path determined by (x0,k, xr,k). Then, an augmented obstacle space 
X aug 

obs is obtained from, 

X aug 
obs := Xobs ⊕Xkin, (7)

where Xkin is the space of a compact set bounded by a circle with 
radius equal to the maximum kinodynamic distance Dkin 

rob. When
the maximum kinodynamic distance is updated, RRTX provides a 
new path based on the the newest augmented obstacle space (7). 
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3. Finite-Horizon Boundary Value Problem 

Let us define the Hamiltonian with respect to (1) and (3) as, 

1 H(x̄; u; λ) := (x̄⊺Mx̄+ u ⊺Ru) + λ⊺(Ax̄+ Bu), x,¯  u, λ. 
2 

∀

In order to solve the finite-horizon optimal control problem (3), we
   

use the 
⋆

sweep method (Bryson, 1975) and we set λ = ∂V .  Thus, ∂x̄
the Hamilton-Jacobi-Bellman (HJB) equation yields, 

 ⋆ ⊺∂V ⋆ 1 ∂V  

− = (x̄⊺Mx̄+ u ⊺Ru) + (Ax̄+ Bu), x.¯
∂t 2 ∂x̄ 

∀

Since our system (1) is linear, we write the value function in a 
quadratic form as, 

⋆ 1 
V (x̄; t) = x̄⊺P (t)x,¯  

2 
∀x,¯  t ≥ t0, (8)

where P (t) ∈ Rn×n ≻ 0 is the Riccati matrix that solves the differ­
ential Riccati equation, 

− ˙ P (t) = M + P (t)A + A⊺P (t) − P (t)BR−1B⊺P (t). (9) 

Hence, the optimal control gets the form of, 

u⋆  (x̄; t) = −R−1B⊺P (t)x,¯  ∀x,¯  t. (10) 

Theorem 3.1 
Suppose that there exists a P (t) ≻ 0 that satisfies the Riccati equa­
tion (9) with a final condition given by PT, and the control obtained 
by, 

u(x̄; t) = −R−1B⊺P (t)x.¯  (11) 

Then, the control input (11) minimizes the cost given in (3), and 
the origin is a globally uniformly asymptotically stable equilibrium 
point of the closed-loop system. 

Proof The proof follows from (Kontoudis and Vamvoudakis, 2019a). 

2 



8 ■ Brain and Cognitive Intelligence: Control in Robotics 

� � 

� � 

2 

4. Model-Free Formulation 
Let us now define the following Q-function as, 

∂V ⋆ ∂V ⋆ 

Q(x̄; u; t) :=V ⋆ (x̄; t) + H(x̄; u; , )
∂t ∂x̄ 

1 1 1 
=V ⋆ (x̄; t) + x̄⊺Mx̄+ u ⊺Ru + x̄⊺P (t)(Ax̄+ Bu) + x̄⊺Ṗ (t)x̄, 

2 2 2 
(12) 

where Q(x̄; u; t) ∈ R is an action-dependent value. 
Next, we define the augmented state U := [x̄⊺ u⊺]⊺ ∈ R(n+m) 

to express the Q-function (12) in a compact form as, 

1 Qxx(t) Qxu(t) 1 Q(x̄; u; t) = U⊺ U =: U⊺Q̄(t)U, (13)
2 Qux(t) Quu 2 

where Qxx(t) = Ṗ (t) + P (t) + M + P (t)A + A⊺P (t), Qxu(t) = 
Q⊺ (t) = P (t)B, and Quu = R, with Q : Rn+m × R(n+m)×(n+m) →ux

R. Using the stationarity condition ∂Q(x̄; u; t)/∂u = 0, we find a 
⋆model-free expression of the optimal control u (10) as, 

u ⋆ (x̄; t) = arg min Q(x̄; u; t) = −Q− (t)x̄. (14)uu
1Qux

u 

Lemma 4.1 
⋆The value of the minimization Q⋆(x̄; u ; t) := minu Q(x̄; u; t) is the 

same with the optimal value V ⋆ in (8) of the minimization prob­
lem (3), where P (t) ≻ 0 is the Riccati matrix found from (9). 

Proof The proof follows from (Kontoudis and Vamvoudakis, 2019a). 

4.1 Actor/Critic Network 
A critic approximator is designed to approximate the Q-function 
in (13) as, 

⋆ 1 Qxx(t) Qxu(t) 1 Q ⋆ (x̄; u ; t) = U⊺ U := vech(Q̄(t))⊺(U ⊗ U),
2 Qux(t) Quu 2 

(n+m)(n+m+1)¯ 2where vech(Q(t)) ∈ R . The half-vectorization opera­
¯tion exploits the symmetric properties of the Q matrix to reduce 

the computations. Then, by setting ν(t)⊺Wc := 1/2vech(Q̄(t)) we 
obtain, 

⋆Q⋆ (x̄; u ; t) = W ⊺ν(t)(U ⊗ U),c 
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(n+m)(n+m+1) 
2where Wc ∈ R is the critic weight estimator vector, 

(n+m)(n+m+1) (n+m)(n+m+1)×2 2and ν(t) ∈ R is a radial basis function 
of appropriate dimensions that depends explicitly on time. Since 
the ideal weight estimates are unknown, we employ an adaptive 
estimation technique (Ioannou and Sun, 2012) to approximate the 
Q-function, 

Q̂(x̄; u; t) = Ŵ ⊺ν(t)(U ⊗ U), (15)c 

1 ˆwhere Ŵ 
cν(t) := vech(Q̄(t)).2 

By using a similar way of thinking for the actor we assign 
µ(t)⊺Wa := −Q− (t) to write, uu

1Qux

u ⋆ (x̄; t) = W ⊺ µ(t)x̄,a 

∈ Rn×m 

Rn×n 
where Wa is the actor weight estimator vector, µ(t) ∈ 

is a radial basis function of appropriate dimensions that de­
pends explicitly on time. The actor by using current weight esti­
mates yields, 

û(x̄; t) = Ŵ ⊺ µ(t)x̄. (16)a 

Remark 1. The approximation errors of the critic and the actor 
approximators described in (15) and (16) respectively, vanish as the 
system (1) is linear. To this end, we exploit the whole space and 
not just a compact set. With this structure, the approximations will 
converge to the optimal policies, and hence the superscript ⋆, that 
denotes the ideal values of the adaptive weight estimation, render 
similarly with the optimal solutions. 

Next, we adopt an integral reinforcement learning approach 
(Vrabie et al., 2013) that lets us express the Bellman equation as,  t

1⋆ ⋆ ⊺ ⋆⊺ ⋆ V (x̄(t); t) = V (x̄(t − ∆t); t − ∆t) − (x̄ Mx̄+ u Ru ) dτ, 
2 t−∆t 

(17) 

⋆ 1 ⊺V (x̄(T ); T ) = x̄ (T )P (T )x̄(T ), (18)
2 

where ∆t ∈ R+ is a small fixed value, i.e., resolution. By following 
⋆Lemma 4.1, where we proved that Q⋆(x̄; u ; t) = V ⋆(x̄; t), we can 

write (17) and (18) as, 

1 
 t 

Q ⋆ (x̄(t); u ⋆ (t); t) = Q ⋆ (x̄(t − ∆t); u ⋆ (t − ∆t); t − ∆t) − (x̄⊺Mx̄+ u ⋆⊺Ru ⋆ ) dτ, 
2 t−∆t 

1 ⊺Q ⋆ (x̄(T ); T ) = x̄ (T )P (T )x̄(T ). 
2 
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Next, we define the errors ec1 , ec2 ∈ R, that we seek to drive to 
zero by appropriately tuning the critic weights of (15). Define the 
first critic error ec1 as, 

ˆec1 
:= Q(x̄(t); û(t); t) − Q̂(x̄(t − ∆t); û(t − ∆t); t − ∆t)  

+
1 t 

(x̄ ⊺Mx̄+ û ⊺Rû) dτ 
2 t−∆t  

= Ŵ ⊺ ν(t)(U(t) ⊗ U(t)) − ν(t − T )(U(t − ∆t) ⊗ U(t − ∆t)c  t1 
+ (x̄ ⊺Mx̄+ û ⊺Rû) dτ, (19)

2 t−∆t 

Intrinsic dynamics are included in (19), which can be evaluated by 
taking the time derivative, 

ṗ = x̄⊺(t)Mx̄(t) − x̄⊺(t − ∆t)Mx̄(t − ∆t) + û ⊺(t)Rû(t) − û⊺(t − ∆t)Rû(t − ∆t). 

The second critic error is defined by, 

1 
ec2 

:= x̄⊺(t)P (T )x̄(t) − Ŵ ⊺ν(t)(U(t) ⊗ U(t)).c2 

The actor approximator error ea ∈ Rm is defined by, 

= Ŵ ⊺ µ(t)x̄ + Q̂−1Q̂ux x,ea : a uu (t)¯

ˆ ˆwhere Quu, Qux will be obtained from the critic weight matrix 
ˆestimation Wc. By employing adaptive control techniques (Ioannou 

and Sun, 2012), we formulate the squared-norm of errors as, 

K1(Ŵc, Ŵc(T )) = 
1 ∥ec1 ∥2 +

1 ∥ec2 ∥2 , (20)
2 2 

K2(Ŵa) = 
1 ∥ea∥2 . (21)
2 

4.2 Learning Methodology 

The weights of the critic estimation matrix are obtained by applying 
a normalized gradient descent algorithm in (20),   

˙ ∂K1 1 1
Ŵc = −αc = −αc σec1 + ⊺ σfec2 , 

∂ ˆ (1 + σ⊺σ)2 (1 + σ σf)2Wc f 

(22) 
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where σ(t) := ν(t)(U(t) ⊗ U(t) − U(t − ∆t) ⊗ U(t − ∆t)), σf(t) = 
ν(t)(U(t) ⊗ U (t)), and αc ∈ R+ is a constant gain that specifies the 
convergence rate. The critic tuning (22) guarantees that as ec1 → 0 

ˆ ˆand ec2 → 0 then Wc → Wc and Wc(T ) → Wc(T ). 
ˆSimilarly, the weights of the actor estimation matrix Wa by 

applying a gradient descent algorithm in (21) yield, 

˙ ∂K2 ⊺ˆ = −αa = −αaxe (23)¯ ,Wa aˆ∂Wa 

where αa ∈ R+ is a constant gain that specifies the convergence 
rate. The actor estimation algorithm (23) guarantees that as ea → 0 

ˆthen Wa → Wa. 
For the theoretical analysis we introduce the weight estima­

˜ ˆtion error for the critic Wc := Wc − Wc and for the actor 
(n+m)(n+m+1)˜ ˆ ˜ ˜Wa := Wa − Wa, with Wc ∈ R 2 , Wa ∈ Rn×m . The 

estimation error dynamics of the critic yields, 

1˙̃ ˜Wc = −αc σσ⊺Wc,
(1 + σ⊺σ)2 

and the estimation error dynamics of the actor becomes, 

˜ R−1
˙ µ(t)Qxu˜ ˜Wa = −αax̄x̄

⊺ µ(t)⊺Wa − αax̄x̄
⊺ , (24)
∥1 + µ(t)⊺µ(t)∥2 

˜ ˜ [ n(n+1) n(n+1)where Qxu := mat(Wc + 1 : + nm]).2 2 

Lemma 4.2 
For any given control input u(t) ∈ U the estimation error dynamics 
of the critic (24) have an exponentially stable equilibrium point at 
the origin as follows, 

˜ ˜ −κ2 (t−t0)∥Wc∥ ≤ ∥Wc(t0)∥κ1e , 

where κ1, κ2 ∈ R+ . In order to establish exponential stability, we 
σ(t)require the signal ∆(t) := to be persistently exciting 1+σ(t)⊺σ(t)) 

+(PE) at [t, t + TPE], where TPE ∈ R the excitation period, if there 
t+TPEexists a β ∈ R+ such that βI ≤ ∆(τ )∆⊺(τ)dτ , where I is 
t 

an identity matrix of appropriate dimensions. 

Proof The proof follows from (Vamvoudakis, 2017). 
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The main stability theorem for the Q-learning framework is pro­
vided below. 

Theorem 4.3 
Consider the linear time-invariant continuous-time system (1), 
the critic, and the actor approximators given by (15), and (16) 
respectively. The weights of the critic, and the actor estimators 
are tuned by (22), and (23) respectively. The origin with state 

⊺ψ = [x̄ W̃ ⊺ W̃ ⊺]⊺ is a globally uniformly asymptotically stable c a 
equilibrium point of the closed-loop system and for all initial con­
ditions ψ(0), given that the critic gain αc is sufficiently larger than 
the actor gain αa and the following inequality holds, 

2λ(M + QxuR
−1Qxu

⊺ ) − λ(QxuQxu
⊺ )

0 < αa < ( ) , (25) 
µ(t)R−1 

δλ ∥1+µ(t)⊺µ(t)∥2 

with δ a constant of unity order. 

Proof The proof follows from (Kontoudis and Vamvoudakis, 2019a). 

5. Kinodynamic Motion Planning Framework 

The motion planning structure comprises of four stages: (i) dy­
namic planning; (ii) Q-learning; (iii) terminal state evaluation; and 
(iv) obstacle augmentation, as shown in Fig. 1. The path planning 
is assigned to RRTX which provides all the waypoints for navi­
gation in a dynamic environment. Next, the online Q-learning and 
the terminal state evaluation are implemented. In parallel, we mon­
itor the kinodynamic distance to augment the obstacle space. The 
implementation is presented in Algorithm 1. 

Dynamic Planning : The RRTX contains not only the sub-tree— 
which stores the desired path—but also the search-graph of the 
initial planning process. In this way, the algorithm reuses the 
search-graph for a rewiring cascade whenever the domain changes. 
Consequently, information is transferred rapidly throughout the 
tree in the modified environment. Moreover, RRTX maintains an 
ϵ-consistent1 graph, which guarantees the quality of existing paths 

1ϵ-consistency means that the cost-to-goal value is within ϵ of the minimum 
of sum distance-to-neighbor and the neighbor’s cost-to-go. 
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Figure 1: The motion planning structure consists of four stages. The 
algorithm runs clockwise, starting from the dynamic planning. 

and allows for quick replanning. The neighborhood size at each 
node remains constant by selecting neighbors to maintain the run­
time at each iteration. Therefore, RRTX can provide a quick reac­
tion in unpredictable dynamic environments as well as high-quality 
new paths. 

Obstacle Augmentation: Since the model of the system is unknown, 
it is assumed that the robot traverses straight paths, given the way-
points from the RRTX . In addition, optimality in terms of path 
planning usually indicates narrow distance between the obstacles 
and the path. In our case, kinodynamic constraints (1) as well as the 
optimal performance (2) result in traversing curved paths, instead 
of the assumed straight-line paths. Thus, there exists a deviation 
from the assumed straight-line path and the traversed path of the 
robot. This deviation of paths may result in unsafe navigation with 
collisions. To address this problem, we introduce the concept of 
kinodynamic distance and follow an obstacle augmentation strat­
egy (Kontoudis and Vamvoudakis, 2019a,b). Therefore, instead of 
considering the physical shape of the obstacles, their augmented 
shape is taken into account. The augmented obstacle space X aug isobs 
computed trough the Minkowski sum (7) based on the maximum 
kinodynamic distance Dkin . Whenever new obstacles are detected, rob

the obstacle augmentation precedes the replanning process to avoid 
collision. 

Q-Learning : At every k-pair of waypoints (x0,k, xr,k) of the planned 
path π, the proposed control law (16) is implemented to drive the 
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Algorithm 1  RRT-QX

Input: T - finite horizon; ∆t - resolution; M , R - cost weight matrices;
 
P (T ) - fixed Riccati matrix; ρ - admissible window; xgoal - goal state;
 
xstart - start state; Xobs - obstacle space; X - state space
 
Output: û - control
 

1: αa, αc ← Stability(M, R) (25); 
aug

2: X  obs ← Xobs;
 3: Drob, D

kin
rob ← 0; k ← 1; 

4: while xgoal = x do 
5: while NoCollision do 
6: D0 ←InitialDistance(x0) (4); 
7: for t ∈ T do 

> Dkin 8: if Drob rob
 then ▷ Obstacle augmentation 
Dkin
9:	 rob ← Drob;
 

aug
  10: X ← Augment(Xobs, D
kin  rob) (7); obs 

11: end if 
ˆ12: Wc	 ← Critic(M, R, ∆t, αc, x,¯  û) (22); ▷ Q-learning
ˆ13: Q ← EstimateQ(Ŵc, x,¯  û) (15); 
ˆ ˆ14: Wa ← Actor(Q, αa, x̄) (23); 

ˆ15: û← Control(Wa, x̄) (16); 
16: return û; 
17: Drob ← KinodynamicDistance(x0,k, x̄, D0) (6); 
18: if D ≤ ρD0 then ▷ Terminal state evaluation 
19: x0,k ← x(t); 
20: k ← k + 1; 
21: break; 
22: end if 
23: end for 
24: end while 

aug
25: G, π ← RRTX(X , X  , xstart, xgoal); ▷ Dynamic planning obs 

26: end while 

̸

system. The critic is used to assess the policy, and the actor to 
perform the policy update. The critic approximates the Q-function 

ˆaccording to (15), where Wc are the critic parameters that can 
be computed online by (22). The actor approximates the optimal 

ˆcontrol policy according to (16), where Wa are the actor parameters 
following the tuning law (23). 

Terminal State Evaluation: A distance metric is employed to eval­
uate the terminal condition. At every ∆t we compute the initial 
distance D0 (4) and the relative distance D (5). When the relative 
distance drops below an admissible portion of the initial distance 
D ≤ ρD0, then the algorithm assigns the current state as the new 
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initial state x0,k+1 = x(t) and proceeds to the next (k + 1)-pair of 
waypoints. 

Remark 2. The obstacle augmentation is a conservative strat­
egy, because we are using the maximum kinodynamic distance to 
limit the free space. This means we are reserving space based on the 
worst case scenario that may appear only few times during the nav­
igation. However, since we tackle the model-free problem without 
offline trials, that is a feasible methodology to ensure collision-free 
navigation. 

6. Simulations and Results 

In this section, we demonstrate the efficiency of the proposed mo­
tion planning technique in a dynamic environment with unpre­
dictably appearing obstacles. We consider the continuous-time lin­
ear time-invariant system,    
ẋ 0 0 1 0 x 0 0  
 = 

 0 0 0 1 
−.5 0 −1.125 0 

 
 

y 
ẋ 

+ 
 

0 0 
.025 0 

 
ẏ 
¨ 

f1 , 
x f2 

ÿ 0 −.5 0 −1.125 ẏ 0 .025 
(26) 

where x, y is the translation, ẋ, ẏ the velocities, and ẍ, ÿ  the ac­
celeration along the x and y axes respectively. The inputs forces 
are denoted f1, f2. The system in (26) represents an autonomous 
rover. More details about the parameters of (26) are discussed in 
(Kontoudis and Vamvoudakis, 2019a). 

The autonomous rover has full state feedback and limited per­
ception range. Thus, an accurate configuration of the obstacles can 
be detected only in the perception range. The environment is com­
pletely unknown and consists of obstacles that appear throughout 
the navigation. Since the environment is unknown, we suppose there 
are no obstacles other than the obstacles detected in the perception 
range. The proposed method measures the kinodynamic distance 
Drob and aug updates the augmented obstacle space X obs at every time 
instance ∆t. We set the finite horizon as T = 10 s for every run and 
the admissible window ρ = 0.15. The user-defined matrices are 
M = 10I4, and R = 2I2. The final Riccati matrix is P (T ) = 0.5I4. 
We set the actor and critic gains as αc = 90, and αa = 1.2 re­
spectively, by following (25). The resolution is ∆t = 0.05 s. The 

ˆinitial values of the critic estimator vector Wc and the actor esti­
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Figure 2: Various time frames of the autonomous rover collision-free 
navigation in an unpredictable dynamic environment. 

ˆmator vector Wa are randomly selected, except the last three el­
ˆements of Wc that need to be non-zero. These elements are the 

{Ŵc}19:21 = Quu values that are inverted in (14). Note that there 
are three elements, because the user defined matrix R is symmetric 
and we are also employing the half-vectorization operation in (15). 
For the implementation of the RRTX we use the package in (Otte, 
2016). 

The simulation is shown in Fig. 2, and a demonstrating 
video is available online2 . The environment is a square with 
corners (−20, −20) and (20, 20) in meters. The start state is 
xstart = (−15, −15, 0, 0) and the goal state xgoal = (17, 17, 0, 0). 
The perception range is omnidirectional with a radius of 8 m and is 
illustrated with a dashed circle. The traversed path of the rover is 
shown in a solid line and the RRTX path in a white line. The gray 
solid lines represent the search-tree of RRTX . In every BVP, the 
rover moves toward the goal state. The initial shape of the obsta­
cles is denoted by polygons and the corresponding augmentation in 

2https://youtu.be/vNvOMTzxd0c. 
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light gray. The colored background represents the cost-to-go from 
every location to the final goal. Note that the cost-to-go is an un­
derestimated value, as it is calculated with respect to straight-line 
paths. The maximum kinodynamic distance Dkin , the current kin-rob

odynamic distance Drob, and the cost-to-go of RRTX are shown 
in the left, right and bottom bars, respectively. The autonomous 
rover successfully avoids the obstacles throughout the navigation 
in an unpredictable dynamic environment using the proposed kin­
odynamic motion planning technique. 

7. Conclusion 

This paper proposed a real-time kinodynamic motion planning 
methodology for unpredictable dynamic environments. More pre­
cisely, we introduced a Q-learning control law to approximate the 
optimal policy of a continuous-time linear time-invariant system 
and we used a terminal state evaluation and an obstacle augmenta­
tion technique. We rigorously derived the Q-learning controller, so 
that global asymptotic stability of the equilibrium point is ensured. 
The simulations reveal that the autonomous rover can efficiently 
perform safe navigation with no collisions in an unknown dynamic 
domain. Our methodology is completely model-free without offline 
training and requires insignificant computations that facilitate the 
execution of the algorithm in real-time. 
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Chapter 2 

An Ultrasound-Guided Mechatronics-
Assisted System for Semi-Automated 
Seed Implantation and Tracking  
in Prostate Brachytherapy 
Carlos Rossa,1,* Jay Carriere,2 Mohsen Khadem,3 

Ronald Sloboda,4 Nawaid Usmani4 and Mahdi Tavakoli5 

1. Introduction 

Prostate cancer is the most prevalent non-skin malignancy in men 
worldwide. Among the various treatment options that are avail­
able including surgery, external beam radiotherapy, and hormone 
therapy, transperineal interstitial permanent prostate brachyther­
apy (TIPPB) using radioactive seeds has emerged as an effica­
cious, minimally-invasive, patient-friendly, and cost-effective treat­
ment option for localized prostate cancer. The robust clinical out­
comes reported in the prostate brachytherapy literature highlight 
the great efficacy of this treatment modality when employed at cen­
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tres performing high quality implants. However, brachytherapy is a 
technical procedure that relies on surgeons with sufficient expertise 
and case volume to maintain the quality of implants required to 
achieve these results. 

Close scrutiny of TIPPB’s technical aspects indicates room 
for considerable improvement. Contemporary brachytherapy tech­
niques treat the whole prostate and involve the insertion of nee­
dles through the perineum using a template grid under ultrasound 
guidance. These seed-carrying needles are manually guided toward 
planned locations in the prostate, where the seeds are deposited, as­
suming that the needles will remain parallel across the entire length 
of their insertion. However, in practice, this assumption does not 
hold particularly well, causing the actual needle trajectories to not 
pass through the planned locations. Contributing to this error are 
prostate deformation/motion during needle insertion, imaging lim­
itations, needle placement uncertainty Nath et al. (2000); Webster 
et al. (2006); Khadem et al. (2016), prostate swelling during im­
plantation Sloboda et al. (2010), and seed migration Usmani et al. 
(2011). Experienced physicians can place seeds with an average ab­
solute accuracy of no better than 5 mm, a substantial error of more 
than 10% of the average prostate diameter Taschereau et al. (2000). 

Due to the currently limited accuracy of delivering seeds, 
brachytherapy has been limited to primarily treating the entire 
prostate gland for patients with localized prostate cancer. Treating 
the whole gland may result in side-effects such as urinary and rectal 
toxicity due to the effects on the adjacent structures. In the near fu­
ture, anticipated focal treatment of dominant intraprostatic lesions 
identified by cancer-specific Magnetic Resonance Imaging (MRI) 
and Positron Emission Tomography (PET) imaging will require 
that seed placement accuracy must improve substantially. Improv­
ing source placement can result in enhanced treatment of localized 
prostate cancer by brachytherapy, and in addition will make this 
treatment modality applicable to other clinical situations. It has 
been estimated that between one-half to two-thirds of men with 
early stages of prostate cancer may be amenable to focal therapy 
Karavitakis et al. (2011); Bott et al. (2010). 

To improve seed placement accuracy, robotics assisted needle 
steering and seed implantation have been proposed Podder et al. 
(2014); Muntener et al. (2006); Patriciu et al. (2007); Cowan et al. 
(2011); Rossa et al. (2016); Phee et al. (2006); Salcudean et al. 
(2008); Wei et al. (2004). To steer the seed-carrying needles, these 
systems either rotate the needle base on a measured basis during 
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insertion, or apply forces at the base in order to control the needle
tip’s trajectory. The needle insertion can be performed manually
Schneider et al. (2004) or automatically Muntener et al. (2006);
Patriciu et al. (2007) while the robot orients the needle inside the
tissue Schneider et al. (2004). In term of the degree of automation,
these systems can essentially be classified into three main cate-
gories:

■ Fully automated steering : The system automatically per-
forms the needle insertion and the seed deposition in tissue
Patriciu et al. (2007); Muntener et al. (2006); Phee et al.
(2006); Meltsner et al. (2007); Adebar et al. (2011); Hungr
et al. (2012); Yu et al. (2006); Phee et al. (2006). Although
high accuracy can be achieved, integrating these systems
with current clinical practice is challenging and most often,
several modifications to the clinical setting are necessary.

■ Semi-automated steering : The robotic system acts as a nee-
dle holder that either rotates the needle axially or manip-
ulates the needle shaft Wei et al. (2004); Fichtinger et al.
(2008); Schneider et al. (2004); Salcudean et al. (2008) with
the physician being in charge of the insertion procedure.
This category includes teleoperated needle insertion schemes
Seifabadi et al. (2012).

■ Fully manual steering : This class comprises technologies de-
signed to provide the physician with relevant information
about the necessary manoeuvres and keeps her/him in con-
trol of both insertion and steering procedures, such as visual
and tactile feedback devices Rossa et al. (2016); Magee et al.
(2007); Basu et al. (2016).

The first two categories often make use of complex structures
that need to be integrated with the current clinical setting. In the
third category, the implant outcomes still depend on the surgeon’s
ability to perform the necessary steering actions.

In Rossa et al. (2016), we introduced a new twist on robotic-
assisted needle steering that uses a fully hand-held apparatus for
accurate needle steering (see Fig. 1(a)). The device automatically
rotates the needle at appropriate insertion depths as the surgeon
manually inserts it. The system was designed to be entirely com-
patible with the current operating room setting, and hence, does
not rely on any complex structures. In this paper, we extend this
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new framework to accurate seed implantation and tracking using
ultrasound images in focal low dose rate brachytherapy.

Contributions of this paper include: (i) The device is modified
to incorporate a miniature force sensor that measures the tissue
parameters required in the needle steering controller online. (ii)
A new needle steering controller based on the Rapidly Exploring
Random Tree algorithm is implemented, and (iii) a method is de-
vised to track the position of each implanted seed on-line. The
concept is validated by implanting dummy seeds in biological and
synthetic tissue samples in order to achieve a hypothetical desired
seed distribution. Experimental results obtained from 90 seed im-
plants indicate an accuracy of 0.46 mm in delivering the seeds. This
is the first implementation of a fully hand-held seed implantation
and tracking system for the emerging modality of focal prostate
cancer treatment.

2. The Hand-Held Apparatus for Seed Implant

In order to perform needle insertion and seed deposition, we
modified the needle steering device previously presented in Rossa
et al. (2016) (for a video please see https://goo.gl/Z7jJp5) (see
Fig. 1(a)). Standard brachytherapy needles are connected to the
apparatus, which can rotate the needle base axially (see Fig. 1(b)).
As the surgeon uses the device to insert the needle, the 3D posi-
tion of the apparatus is measured in real time by an optical mo-
tion tracker that follows markers placed on the side of the device
(not visible in Fig. 1(a)). An important difference compared to the
device presented in Rossa et al. (2016) is that in this paper, a
compression/traction sensor (model LSB200 S-Beam from Futek,
Irvine, USA) is embedded in the device in order to measure the
axial force applied to the needle base during insertion and with-
drawal. The goal is to employ the force measurements from the
two 1-DOF force sensors during needle insertion and withdrawal to
estimate the forces applied by the tissue onto the needle tip, such
that future needle deflection can be predicted by a mechanics-based
model and the necessary corrective action taken by the hand-held
apparatus.

To simulate radioactive brachytherapy seeds, the dummy seeds
made of 5 mm long, 1 mm in diameter, stainless steel cylinders,
shown in Fig. 1(c), were fabricated. A single seed and a stylet are
loaded in the needle. Once the needle reaches the desired depth, the

https://www.goo.gl
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(a) The neele steering device

(b) Actuation unit (c) Dummy seeds

Figure 1: In (a), the needle steering device introduced in Rossa et al.
(2016) is shown. (b) presents the upgraded actuation unit that comprises
a 1-DOF force sensor that measures the needle insertion and withdrawal
forces. The device steers the needle and is used to deposit the dummy
seeds shown in (c).

surgeon holds the stylet in place and withdraws the needle (with
the device) such that the stylet removes the seed from the needle
shaft for deposition in tissue.

3. Needle Steering Controller

This section presents the model and steering algorithm that are
combined to steer the needle towards the target.
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3.1 Needle-Tissue Modelling

We will employ the needle-tissue interaction model we presented in
Rossa et al. (2016). The inputs to the model are the needle inser-
tion depth, the current needle deflection, and the rotation depth(s).
The model outputs the future needle tip trajectory and the needle
shape. In Rossa et al. (2016), the needle is modelled as a cantilever
compliant beam that experiences forces applied by the tissue in
the form of 1) a needle-tissue cutting force, which is applied at the
needle tip normal to the needle shaft (denoted by F ), and 2) the
tissue reaction force applied along the needle shaft, which is due to
compression of the tissue. This latter force depends on the stiffness
of tissue per unit length of the needle (denoted by K).

In Rossa et al. (2016), a method is devised to estimate both F
and K based only on ultrasound images. However, this requires the
ultrasound probe to follow the needle during insertion. Thanks to
the force sensor added to the actuation unit, F can be measured
without need for image feedback. Once F is determined, K can be
found by fitting the model to a single deflection measurement point
obtained from a stationary ultrasound probe.

In order to calculate the force F applied at the needle tip, the
needle steering apparatus measures the forces applied to the nee-
dle’s base Fin that are necessary to insert and withdraw it from
the tissue (see 2(a)). From this information, we will derive F by
following the procedure shown in Fig. 2. In Fig. 2(a), as the needle
is pushed into tissue, a force Fc is applied at the needle tip, that
has transverse and longitudinal components Q, and F , respectively.
These forces are functions of Fc and of the needle bevel angle β. As
the surgeon pushes the needle into the tissue, the measured force
at the needle base Fin corresponds to F1 = P + f where f is the
needle-tissue frictional force along the shaft given by f = (bv1)d,
where v1 is the insertion velocity, and b is the friction coefficient per
unit length of the inserted needle. When the needle is withdrawn
after insertion, the measured force F2 corresponds to friction only.
If the needle is withdrawn with a velocity of v2, the force P can be
found as (

v
= − 1

P F1 F2 (1)
v2

)
It is thereby implied that b is constant during insertion and with-
drawal Khadem et al. (2016). The force F is finally computed as
F = P (tanβ)−1, where β is the needle bevel angle. Knowing F ,
one can determine K by fitting the model such that the estimated
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tissue

(a) Insertion: F1 = Fr + P

tissue

(b) Withdrawal F2 = Fr

Figure 2: Needle insertion in soft tissue. As the needle cuts a path in the
tissue, a force Fc is applied to the needle tip. The horizontal component
of Fc plus friction along the shaft correspond to the needle insertion force
measured at the needle base. During needle withdrawal, the measured
force corresponds to friction only.

needle deflection v̂i(K) matches the measured deflection vi of an
inserted needle, at a point i along its shaft. More specifically, K is
found to minimize

J(K) = min
n∑

i=1

(vi − v̂i(K))2, (2)

where n is the number of measurements taken.
Once the needle-tissue model parameters are identified, the

model can be used to estimate the optimal needle rotation depths
as described in the next subsection.

In this section, a novel motion planner is developed. The motion
planner computes a large number of needle tip trajectories (plans)
using the model presented in Rossa et al. (2016) and selects the
best plan. It outputs a set of depths at which the needle is ax-
ially rotated that brings the needle to the target. The planner

3.2 Needle Steering Controller
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uses the Rapidly Exploring Random Tree (RRT) algorithm LaValle
and Kuffner (2001); Patil et al. (2014) to calculate the rotation
depths. RRT is an efficient sampling algorithm to quickly search
high-dimensional spaces that have algebraic constraints such as the
number of allowed needle rotations, by randomly building a space-
filling tree. Figure 3(a) shows a block diagram of the closed-loop
control algorithm based on the online motion planning.

To design the online motion planner we present the needle steer-
ing problem in the needle configuration space, called C. Assuming
the needle moves in a 2D insertion plane, the needle workspace
is a Euclidean space W = R2. The configuration space (C) is the
space of all possible control actions (i.e., depth(s) of needle rota-
tion(s)), whose values identify the configuration of the needle tip
in the workspace. Considering symmetry of rotation depths (e.g.,
rotations at depths of 40 and 80 mm are equal to rotations at 80
and 40 mm) the configuration space is an n-dimensional simplex,
where n is the number of axial rotations. For instance, if the max-
imum allowable number of rotations is 3, the configuration space
forms a tetrahedron.

The proposed motion planner uses an approximate decomposi-
tion of C. Assuming that the distance between two consecutive ro-
tations is at least 5 mm, C can be decomposed into several smaller
simplices shown in Fig. 3(c). This is a valid assumption since two
close 180◦ axial rotations are equal to one 360◦ rotation of the
needle tip and this action has no effect on needle deflection.

The disjoint cells in C form a connectivity graph. The nodes of
this graph are vertices of the cells corresponding to a certain con-
figuration (i.e., rotation depths). Assuming that the initial guess
for a configuration in C is qs and the goal configuration that steers
the needle toward the target is qg, planning a motion for the nee-
dle involves searching the connectivity graph for a path from cell
containing qs to the cell containing qg. For this purpose we use the
RRT algorithm. In the following a pseudocode description of the
motion planner algorithm is given.

The inputs of the RRT are the current depth X0, the num-
ber of allowed rotations N , and the computation time available
for planning Tmax. A hypothetical example of tree generation for
N = 2 is shown in Fig. 3(b). First, the configuration space C is
formed based on the number of allowed rotations N and the cur-
rent needle insertion depth X0 = 0. The tree is initialized with a
first vertex qs located at (0, 0) (see (I) in Fig. 3(b)). The algorithm
then generates a random candidate qrand from the N -dimentional
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(a) Diagram of the needle steering system

(b) Hypothetical 2D tree generation
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Figure 3: Overview of needle steering controller. (a) shows the block
diagram of the needle steering system. In (b), the RRT algorithm evalu-
ates the needle targeting accuracy for different rotation depths as shown
in (c). In (d) the resultant set of rotation depths.
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configuration space C (See Rand_Conf in Algorithm 1 and (II) in
Fig. 3(b)). Next, Near_Vertex runs through all the vertices (can-
didate rotation depths) in C to find the closest vertex to qrand.
New_Conf produces a new candidate configuration qnew on the seg-
ment joining qnear to qrand at a predefined arbitrary distance δ
from qnear (see (III) in Fig. 3(b)).

Algorithm 1: q9oal +---- RRT_Algorithm (Xo,N,Tmax) 

C +---- Initialize_space (Xo , N) 
T +---- Initialize_ tree (Xo ,N) 
while X = 0 /\ f < f max do

qrand +---- Rand_Conf (C) 
qnear +---- Near_Vertex (qrand, C) 
qnew +---- New_Conf (qrand, qnear) 
Pnew +---- Needle-tissue-model Rossa et aL. (2016) 

(qnew) 
T +---- Add_ Vert ex ( qnew) 
T +---- Add_Edge(qnew, qnear) 
if Pnew E 9 then
I q90al +---- Extract_Conf(qnew) 

end 
end 

The random tree T is expanded by incorporating qnew and the
segment joining it to qnear, as shown in (V I). Next, the needle
tip path and targeting accuracy (pnew) are obtained by inputting
the selected rotation depths in the needle-tissue interaction model
Rossa et al. (2016). The predicted needle shape for various candi-
date sets of rotation depths is shown in Fig. 3(c). When the needle
path for the newly added configuration is found to lie in the target
region (G), or when the computation times exceeds Tmax the RRT
planner terminates. The target region is a closed circle with 1 mm
diameter, centred on the desired target location in W. The former
condition implies that when the estimated needle tip deflection at
the maximum depth is less than 0.5 mm, the algorithm stops. If the
stopping condition is not met, the algorithm continues to expand
the tree with new vertices as depicted in (V ) and (V I) in Fig. 3(b).

Once the algorithm stops, the output qgoal contains the best set
of rotation depths that will bring the needle towards G. The RRT
expansion procedure results in a very efficient exploration of C and
the procedure for generating new candidates in RRT is intrinsically
biased toward regions of C that have not been visited.

In prostate brachytherapy, the needle insertion point and the
target are typically on the same horizontal line. Throughout this
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paper, we assume that the target is at a depth of 140 mm. In order
to limit tissue trauma, the total number of needle axial rotations
is set to three. Results of the simulation of the motion planner
in configuration space C and the corresponding needle deflection
predictions in needle workspaceW for an insertion depth of 140 mm
starting at 0 mm are shown in Fig. 3(c) and Fig. 3(d), respectively.

The RRT has been used for needle steering in LaValle and
Kuffner (2001). Unlike LaValle and Kuffner (2001), our search space
is directly constrained by the possible control inputs and by the
number and depths of rotations. Therefore, there is no need to
solve for the inverse kinematics of the model, which enables the
optimization problem to be solved faster and makes the solution
method suitable for online applications.

4. Experimental Setup

The setup for semi-automated seed implant is presented in
Fig. 4. Please see the attached video. Standard 18-gauge clinical
brachytherapy needles (Eckert & Ziegler Inc., USA) are loaded with
a single dummy seed shown in Fig. 8(a) and connected to the nee-
dle steering apparatus. As in manual brachytherapy, a stylet is in-
serted in the needle shaft in order to deposit the seed in the tissue.

Figure 4: Experimental setup. A standard 18-gauge brachytherapy nee-
dle carrying a single dummy seed is inserted in the tissue through a guid-
ing template. An ultrasound probe monitors the position of the needle
tip.
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Figure 5: Model fit results for each tissue sample. The model parame-
ters are found by minimizing the difference between the measured and
estimated needle tip deflection at the depth of 140 mm.

The needle is inserted through a standard brachytherapy template
grid (D0240018BK, from CR Bard, USA). For further details on
the hardware implementation, we refer the reader to Rossa et al.
(2016).

A 4DL14-5/38 linear ultrasound probe is placed on the tissue
surface to acquire transverse 2D ultrasound images of the needle
at 30 Hz. A linear stage motorized by a DC motor controls the
position of the ultrasound probe using a discrete PID controller.

Three different tissues are used in the experiments. The first
tissue is made by encasing a 130 mm long piece of porcine tissue
into a mixture of 20% gelatin derived from acid-cured tissue (gel
strength 300 from Sigma-Aldrich Corporation, USA) per litre of
water. This tissue can be seen in Fig. 4. The gelatin is meant to
create a 20 mm layer of tissue through which the needle is inserted
before reaching the porcine tissue, and also to create a flat surface in
order to ensure good acoustic contact between the ultrasound probe
and the tissue. In the second tissue, the porcine layer is replaced
with bovine tissue. Hence, the first two tissues are composed of two
different layers. The third tissue is made of high friction plastisol gel
(M-F Manufacturing Co., USA) mixed with 20% plastic softener.

For each tissue, 15 needle insertions at different locations in the
grid template followed by deposition of a single seed are performed.
The seeds are deposited at a depth of 140 mm. For each tissue, a set
of 15 insertions is performed using an open loop controller (image
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feedback is not used), and another set of 15 implants is performed
using a closed-loop needle insertion controller. This amounts to a
total of 6 different experimental scenarios and 90 seed implants in
total.

Each seed implantation procedure is composed of three phases:

1. Phase 1–Pre-scan: The needle has not been inserted in the
tissue. The ultrasound moves with a constant velocity of
8 mm·s-1 up to a depth of 150 mm and returns to the initial
position. Thereby, all previously implanted seeds and tracks
in the tissue left by other insertions can be identified.

2. Phase 2–Needle insertion: The ultrasound imaging plane is
placed close to the needle tip. During insertion, the ultra-
sound probe moves in synchrony such that the needle tip is
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(a) Open loop needle steering results
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Figure 6: Path followed by the needle tip in the X and Y planes (defined
in Fig. 4) during insertion in porcine, bovine, and synthetic tissue and
the average position of the bevel angle using open loop (a) and closed
loop (b) controllers, for each of the 15 insertions. Only the deflection in
the X plane is controlled.
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always visible in the image. Once the needle reaches the de-
sired depth of 140 mm, the seed is manually deposited and
the needle is withdrawn.

3. Phase 3–Post-scan: After the needle is withdrawn the tis-
sue is scanned in order to identify the position of the seed
deposited in Phase 2.

The needle steering controller will be employed in two different
ways. In open-loop mode, the controller determines 3 optimal rota-
tion depths prior to needle insertion. In closed-loop mode, the RRT
controller updates the rotation online based on the measured needle
tip position. The maximum computation time allowed for planning
is 1 second, which was found to provide good convergence. The
needle bevel angle is initially oriented such that the needle deflects
in a plane that is parallel to the table shown in Fig. 4. Deflection
along the vertical plane is not controlled.

4.1 Needle and Seed Tracking in Ultrasound Images

Needle tip tracking is done online as the needle is inserted into
the tissue. Each transverse ultrasound image is processed in real-
time using the algorithm presented in Waine et al. (2016). Seed
localization is done using the information from both the Phase 3
scan, containing the implanted seed, and the Phase 1 scan, which is
used to reduce background noise in the Phase 3 transverse images.
Final implanted seed positions are obtained offline after Phase 3
scan is completed. Note that when open-loop needle steering is used,
the images are not used as feedback in the controller but the needle
tip is still tracked.

From the final needle tip position in Phase 2, the seed depo-
sition depth is obtained and the transverse ultrasound image that
contains the seed can be selected from the Phase 3 scan, which
we will denote as IP3. The original image obtained in Phase 3 is
shown in Fig. 7(b). Even with the deposition depth of the seed
known, seed localization in transverse images is complicated by
several factors, the most important of which is that previous seeds
are present alongside the target seed, as well as the seed not be-
ing very distinct from the background image noise. An additional
complication is that the implanted seed moves away from the final
needle tip location, found in Phase 2, as the needle is withdrawn.
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The seed tracking algorithm consists of 2 stages, i.e., a pre-
processing stage and the background noise removal, see Fig. 7(a).
The first step in the pre-processing stage is to define a region of
interest (ROI) around the final needle tip location, found in Phase
2, in IP3 that is large enough to capture the seed with moderate
motion. Empirically, an ROI of 100 px by 100 px is found to be
sufficient. The next step is to find the ultrasound image at the seed
deposition depth captured in Phase 1, which we will call IP1. This
image contains the previously deposited seeds as well as background
noise from the phantom tissue. In order to remove the noise and
other seeds from the ROI in IP3 the exact same ROI is taken from
IP1 and the background is removed through a subtraction, such
that a cleaner image, denoted IC , is created, where IC = |IP3 −
IP1|. The image IC is then enhanced through the same contrast
stretching method given in Waine et al. (2016), see Fig. 7(b).

With the background noise and previous seeds removed from the
image, the target seed is now quite distinct from the background
and so the final step is the seed segmentation. A straightforward
binary threshold, determined empirically to count any pixel with an
intensity above 150 (on a scale from 0 to 255). As a final segmenta-
tion step all 4-connected component objects in the binary image are
found and the object with the largest number of pixels is chosen as
the seed. The seed location is then determined by taking the x and y
centroids of all of the pixels in the seed’s 4-connected object. Please
see the attached video or visit https://youtu.be/tnWdMXSxmiU.

5. Experimental Results

This section is divided into three main parts. First, calibration of
the needle steering controller is presented. Next, the needle steering
and seed implant results are shown.

5.1 Model Identification

The first step in performing assisted needle steering for accurate
seed deposition is to calibrate the needle steering controller. To
this end, 3 needle insertions followed by withdrawals are performed
in each tissue at an average velocity of 2 mm·s-1. The controller
is turned off and the needle insertion/withdrawal force is recorded.
For verification purposes, the ultrasound probe is following the nee-
dle tip. However, in a clinical scenario the ultrasound probe could

https://www.youtu.be
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Figure 7: Seed tracking routine in ultrasound images (a). The image
processing is presented in (b). Ultrasound images captured during a
Phase 3 showing the last implanted seed to be localized, with the track-
ing algorithm steps shown underneath.

instead be maintained stationary at the maximal insertion depth
to measure the needle deflection at a single depth.

Following the procedure described in Section III, the force ap-
plied at the needle tip is identified. The obtained force is input
to the needle-tissue interaction model Rossa et al. (2016) and the
needle deflection is estimated for various candidate tissue stiffness
values. The optimal needle-tissue stiffness is the one that minimizes
the difference between the predicted and observed needle tip deflec-
tion at the maximal insertion depth. Figure 5 presents the results
obtained with the identified model parameters. The prediction er-
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Table 1: Indentified needle tip force (N
and average absolute prediction error (mm

Porcine Bovin
tissue tissue

Force 1.10 ±0.07 1.26 ±

), tissue stiffness (N·mm-2),
).

e Synthetic
tissue

0.05 0.78 ±0.12
Stiffness 72.6 86.5 36.6
Mean error 0.53 ±0.28 0.83 ±0.44 0.89 ±0.62

ror is less than 1 mm for all tissue samples. The results, including
the optimal tissue stiffness, are summarized in Table 1.

5.2 Seed Implant with Non-image Based Needle Steering 

Knowing all the parameters necessary for estimating the needle tip
trajectory, the depths of rotation are determined by the controller.
Let us first assume that no image feedback is available. Therefore,
the controller is only used prior to the needle insertion. The needle
is inserted through the grid template at different locations spaced
5 mm apart as in current clinical brachytherapy. 15 insertions are
performed followed by seed deposition. The path followed by the
needle tip is shown in Fig. 6(a) along with the orientation of the
needle bevel angle. Over 45 insertions, the average needle targeting
accuracy in the X and Y directions is 0.93 and 0.62 mm with
the highest error occurring in bovine tissue and the lowest error
observed in porcine tissue.

Once the needle reaches the depth of 140 mm, the seed loaded in
the needle shaft is deposited in tissue and the needle is withdrawn.
The final seed location with respect to the desired hypothetical
seed distribution is shown in Fig. 8(a). The gray solid dot indicates
the desired seed location, which is defined as a point in a 2D plane
parallel to the grid template at a depth of 140 mm. The final needle
tip location is shown by the blue circle and the square is centroid
of each seed after needle withdrawal. The average seed targeting
accuracy in the X and Y planes is 0.89 and 0.60 mm, respectively.
During needle withdrawal the tissue deforms and moves the seeds
by up to 0.30 mm see (Fig. 9). These results are summarized in
Table 2.
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(a) Targeting accuracy and final seed location with open loop needle steering.

(b) Targeting accuracy and final seed location with closed loop needle steering.

Figure 8: Experimental results of seed deposition following a hypothet-
ical pre-planning. The solid gray dot indicates the seed target location.
The blue circle is the position of the needle tip at the target depth, and
the dark square shows the final position of the centroid of each seed after
the needle is withdrawn.

5.3 Seed Implant with Image-based Needle Steering

Let us now assume that the position of the needle tip can be mea-
sured at any time during insertion from ultrasound images. As a re-
sult, the steering controller can update the optimal rotation depths
on-line. This is expected to result in an immediate improvement
of targeting accuracy since the controller replans the path towards
the target given the current position of the needle tip X0, and the
number n of axial rotations that have been performed.

The path followed by the needle tip is presented in Fig. 6(b).
The third panel shows the average position of the bevel angle. The
absolute needle targeting accuracy in the X and Y planes is 0.57
and 0.53 mm, respectively. Considering the deflection along X, this
corresponds to an improvement of 40% compared to the case with-
out image feedback. The final needle tip location at the target depth
and the final location of the deposited seeds are shown in Fig. 8(b).
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Table 2: Experiential results. Average absolute needle targeting accu-
racy, seed placement error and seed deviation after needle withdrawal,
and average depth of needle rotation. Units are in millimetres.

Porcine Bovine Synthetic Average
tissue tissue tissue

X needle 0.69 ±0.45 1.07 ±0.41 1.05 ± 0.28 0.93
Y needle 0.63 ±0.38 0.68 ±0.48 0.56 ± 0.38 0.62

ba
se

d

X seed 0.81 ±0.36 0.86 ±0.38 1.01 ± 0.46 0.89
Y seed 0.53 ±0.30 0.46 ±0.37 0.81 ± 0.53 0.60
X motion 0.27 ±0.34 0.40 ±0.37 0.29 ± 0.21 0.32ag

e
im Y motion 0.35 ±0.17 0.22 ±0.23 0.36 ± 0.23 0.31

no
n- Rotation 1 31.1 18.7 12.8

Rotation 2 51.3 40.5 49.1
Rotation 3 100.9 102.5 118.9

-
X needle 0.51 ±0.44 0.39 ±0.26 0.81 ± 0.30 0.57
Y needle 0.79 ±0.52 0.41 ±0.34 0.40 ± 0.25 0.53

im
ag

e
ba

se
d X seed 0.60 ±0.48 0.59 ±0.25 0.21 ± 0.89 0.46

Y seed 0.84 ±0.34 0.34 ±0.29 0.31 ± 0.31 0.49
X motion 0.38 ±0.24 0.31 ±0.26 0.21 ± 0.21 0.30
Y motion 0.47 ±0.22 0.11 ±0.09 0.31 ± 0.31 0.29
Rotation 1 39.2 ±12.4 36.8 ±9.3 38.2 ±7.7
Rotation 2 52.4 ±13.7 49.6 ±11.9 55.2 ±10.3
Rotation 3 98.5 ±16.4 122 ±15.8 95.8 ±12.2

The average deviation from the actual to the desired seed location
is 0.46 and 0.49 mm in the vertical and horizontal planes, respec-
tively. The second part of Table 2 summarizes these results.

5.4 Discussion

Two different approaches have been proposed to steer a seed-
carrying needle towards a pre-defined target. In the first approach
the needle steering apparatus rotates the needle base at optimally
depths determined preoperatively. In the second case, the the cur-
rent position of the needle tip is used to update the optimal rotation
depths intraoperatively.

The first method is compatible with a clinical setting where
real-time measurement of the needle tip cannot be obtained dur-
ing insertion. To address this limitation the steering apparatus is
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Figure 9: Dummy seed displacement from the deposition location dur-
ing needle withdrawal in each tissue with open loop (left) and closed loop
(right) needle steering controllers.

equipped with a force sensor that measures the needle insertion
and withdrawal forces and estimates the required model parame-
ters using the deflection measured at a single depth after insertion.
15 seeds are implanted 5 mm apart in the tissue to form a hypo-
thetical seed distribution. The average needle and seed targeting
accuracy in the controlled deflection direction is 0.93 and 0.89 mm
on average, respectively.

The second method uses ultrasound images to measure the nee-
dle tip deflection in tissue as it is inserted. The controller running
at 1 Hz recalculates the steering manoeuvres online, such that de-
viations from the offline predicted path can be corrected. With this
approach, the average seed placement error is reduced to 0.46 mm.

Some commercially available ultrasound systems can be em-
ployed to follow the needle tip during insertion. Examples in-
clude the TargetScan from Envisioneering Medical, Overland, USA,
where the 2D axial imaging plane translates within a stationary
transrectal probe, and the 3D-2052 ultrasound probe from B&K
Ultrasound. Peabody, USA, where the imaging plane translates ax-
ially by 70 mm. As an alternative, the Sonalis Ultrasound System
from Best Medical, Pittsburgh, USA, has a longitudinal array that
provides for 140 mm length of view, encompassing the bladder, the
prostate and the perineum. Hence, the needle can be observed dur-
ing throughout the insertion as long as it does not deflect out of
the imaging plane.

Standards for seed implant quality are typically defined in terms
of quantitative X-ray Computed Tomography-based postoperative
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dosimetric evaluation. Currently, ultrasound-based postoperative
seed identification cannot be done routinely with any better than
80% accuracy Han et al. (2003); Wei et al. (2006). CT-based
dosimetry evaluation requires a separate imaging session to scan
the patient prostate in order to determine the final location of the
seeds. This assessment is subject to anatomical variations of the
prostate position and postoperative edema of the prostate gland.
With the proposed method in this paper, assessment and correc-
tions regarding seed implantation errors can be taken during the
procedure without the need for postoperative imaging.

6. Conclusion

In this paper we demonstrate the feasibility of a new framework
for accurate radioactive seed implantation and tracking during low
dose rate prostate brachytherapy for prostate cancer. A hand-held
needle steering apparatus controls the deflection of a seed-carrying
needle during insertion such that the needle tip reaches the desired
target with minimum deflection. The steering controller evaluates
the effects of axial needle rotations at different depths on the needle
targeting accuracy via a needle-tissue interaction model. Optimal
rotation depths are determined prior to the procedure and can be
updated as the needle insertion progresses. The device automati-
cally steers the needle as the surgeon manually inserts it in tissue,
keeping the surgeon in control of the procedure. Once the needle
reaches the target, the surgeon can deposit the seeds in tissue as in
current clinical practice. Hence, the proposed framework does not
require major modifications to the operating room setup. Knowing
the final needle tip location prior to seed deposition, a method is
proposed to track the final seed locations after needle withdrawal,
allowing the surgeon to monitor implant quality on the fly.

Despite the current clinical individual seed placement uncer-
tainty of 5 mm, very good clinical results for brachytherapy can
be achieved when the whole prostate gland is treated. This is a
consequence of the large number of seeds involved in a whole gland
implant (typically 80 to 100), and the addition of a 3 mm margin
around the prostate to create a planning target volume to which
the treatment dose is prescribed Salembier et al. (2007). With the
proposed system, the average seed placement accuracy is improved
to 0.46 mm in tissue phantoms. Reducing seed placement error to
this order in the clinic can enable accurate brachytherapy boost
or focal treatment of dominant intra-prostatic lesions rather than
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Chapter 3

Team Cognition Assessment
From Concept to Practice
Bin Zheng

1.  Team and Team Composition
Performing complex tasks requires more than one individual and 
focus to work in a cooperative environment. Increasing physical 
strengths in a team gives human operators the required muscles 
for handling tough task loads. More importantly, in today’s work 
environment, the increasing cognitive capacity within a team 
provides the necessary power to deal with challenges brought by 
the compound tasks performed in an erratic environment (Salas  
et al., 2008). Winning a battle in an unfamiliar battlefield, or flying 
an airplane through unpredictable weather conditions, or saving lives 
in the operating room and the emergent room, human operators need 
to work in teams. Thus, we can have increasing physical and mental 
capacities for monitoring multiple channels of information, making 
appropriate decisions in a short time, and delivering multifaceted and 
synchronized actions to fulfill the task goal. 

To build an effective team, a group of human individuals should 
‘interact dynamically, interdependently, and adaptively toward a 
common and valued goal, objective or mission, who have each been 
assigned specific roles or functions to perform, and have limited 
membership life span’ (Salas et al., 1992). In the above definition, 
three key elements stand out that distinguish a team from a group of 
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people, i.e., common goal, specific role, and interaction. Specifically, 
every individual in a team is assigned to a specific task to perform, 
and the role and responsibility of each team member should be known 
to all members in the team. They are working towards a common 
goal through team interaction, from taking and sharing information 
to delivering actions collaboratively. To work effectively together, 
team members must possess a specific set of knowledge for the team 
task; knowledge of their own and teammates’ responsibilities, and ‘a 
positive disposition toward working in a team’ (Baker et al., 2006). 
The shared knowledge among team members is also referred to as the 
team cognition, covering the mutual understanding of how to collect 
and share information, manage available resources, support decision-
making, and deliver a set of appropriate actions in responding to the 
changing environment (Cannon-Bowers and Salas, 2001). 

A typical teamwork scenario is the cockpit of commercial  
airlines. There are always at least two pilots, and often there are  
three. The captain is the team leader who makes major decisions and 
leads the crew to ensure the safety of all passengers during normal 
or crisis moments. The flying of the airplane is shared between the 
captain and the first officer who normally sits on the right side of 
the cockpit. The first officer has been trained as the captain. They 
are sharing task loads, information, and decisions during the flight 
to keep flying error to a minimum (Martins, 2016). In some airlines, 
especially in old planes, a flight engineer is required, who has the 
responsibility of monitoring the airplane’s instruments and calculating 
figures such as power setting, takeoff and landing speed, and fuel 
usage. In newer airlines, most of this work is done by computers on 
board. The flying team within the cockpit requires extensive team 
training to enable them to deal with crisis situations (Reynolds and 
Blickensderfer, 2009; Martins, 2016).

Another place we see teamwork in daily practice is the operating 
room for surgical care. Performing a life-saving surgical procedure 
requires a surgical team comprised of surgeons, anesthesiologists, 
and nurses (Zheng et al., 2012; Göras et al., 2019). 

The primary surgeon is the person taking the lead role for the 
surgical team. The surgeon decides on the location of the incision, 
the approach to the surgical site, the range of tissue dissection, 
the volume of organ recession, and means of wound closure. The 
primary surgeon in the operating room often takes responsibility to 
ensure that the operation goes smoothly with minimal complications 
(Carthey et al., 2001). The surgeon’s works are regularly assisted by 
two to four surgeons with different levels in surgical training. The 
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assistant surgeons are often the clinical fellows and residents who 
are learning to perform the procedures by exposure to the surgical 
site and providing direct support to the primary surgeon. The 
primary surgeon needs to direct nurses and assistants in every step 
of the procedure while working closely with the anesthesiologist to 
manage a stable and safe patient condition throughout the procedure  
(Paige, 2010). 

The surgeon’s responsibility on patient safety is shared by the 
anesthesiologist in the team (Cooper, 2018). The anesthesiologists 
start their work for the patient before other surgical team members; 
they manage the patient’s level of consciousness during the procedure 
to suppress the pain of the patient. The anesthesiologist has the 
principal responsibility to save patients’ lives during various critical 
moments when the vital signs of patients show severe problems 
during surgery (Cooper and Gaba, 2002). 

Nurses working inside the operating room are specially trained 
regularly (Alfredsdottir and Bjornsdottir, 2008). When they are 
assigned to work within the sterile field they are called scrub nurses. 
Their roles are to prepare and deliver surgical instruments to the 
surgeon, support the surgeon during the operation, and take care of 
the patient before and after entering the operating room. Circulating 
nurses work outside the sterile field in the operating room. They 
inspect surgical equipment and supplies, communicate with other 
medical staff outside the operating room, and support surgeons and 
anesthesiologists when needed in the operating room (Mitchell et al., 
2011).

In a busy operating room, above core team members are assisted 
by surgical technicians, physician assistants, nurse anesthetists, 
and nursing students. Besides, these four categories of core team 
members, other health professionals may be called to the operating 
room to provide specific support to patients, including radiologists, 
cardiologists, endoscopists, ultrasound technicians, and industry 
representatives.

Starting in 2009, we study the size and composition of surgical 
teams from seven hospitals located in the United States, Canada, 
and China. Results have been published separately in the Journal of 
American Surgery (Cassera et al., 2009), the Canadian Journal of 
Surgery (Zheng et al., 2012), and the Surgical Endoscopy (He et al., 
2014). Below we combine data from these three separate studies and 
give a global description on the size and composition of the surgical 
team. A total of 3160 surgical cases are reviewed in Table 1 and  
Table 2.
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Table 1.  Patients demographics, Procedure time, and Surgical teams from 3160 cases.

  Patient age (year) ASA* Procedure time (min) Team size Surgeon Anesthetists Nurse Other**

Mean 52.4 2.1 89.4 7.5 2.7 1.3 2.8 0.2

Std. Dev. 17.1 0.7 57.0 1.2 0.7 0.3 0.5 0.4

Minimum 14 1 10 4 1 1 1 0

Maximum 94 4 535 14 6 4 7 5

Note: *ASA American Society of Anesthesiologists, **Others include radiologists, cardiologists, endoscopists, ultrasound technicians, and industry 
representatives.
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Table 2.  Surgical team composition by specialty.

Surgeons Anesthesiologists Nurses Others

# Freq % Cumulative Freq % Cumulative Freq % Cumulative Freq % Cumulative 

1 249 7.89 7.89 1711 54.16 54.16 11 0.36 0.36 1919 60.72 60.72

2 1592 50.37 58.26 1352 42.77 96.93 281 8.89 9.25 1062 33.62 94.34

3 1124 35.56 93.82 86 2.72 99.65 1480 46.84 56.09 141 4.47 98.81

4 167 5.27 99.09 11 0.35 100 889 28.12 84.21 27 0.84 99.65

5 20 0.63 99.72 360 11.4 95.61 11 0.35 100.00

6 9 0.28 100 95 3.01 98.62

7 44 1.38 100

Total 3160 3160 3160 3160
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A study on surgical team composition shows that, for routine 
general surgical procedures taking about 90 minutes, a surgical team 
contains as many as eight people on average, ranging from four to 
fourteen people (Table 1). Among them, one anesthetist and two nurses 
are a basic and requirement. However, the number of surgeons varied 
depending on different surgical procedures. Only 8% of procedures 
were performed by one surgeon; the majority were performed by two 
(50%) and three (36%) surgeons (Table 2). 

Unlike the aviation crew, the surgical teams are not stable 
throughout the entire surgical procedure; members in a surgical team 
(such as nurses) leave and re-enter the team for various reasons, 
mainly regulated by the duty hour for different team members. 
The majority of surgical procedures involve three (47%) and four 
(28%) nurses. Making collaboration worse, the change of members 
within a surgical team is often unnoticed to the team leader. Planned 
actions with the previous team member(s) may not pass to the 
succeeding member(s). Therefore, increasing team size, complex 
composition, and unstable team formation are detrimental factors 
to the communication and collaboration of surgical teams (Carthey  
et al., 2001; Cassera et al., 2009; Zheng et al., 2012; He et al., 2014). 
Surgical time was prolonged as a result of a large team size in the 
operating room (Cassera et al., 2009; Zheng et al., 2012; He et al., 
2014).

2.  Team Cognition
We have an urgent need to train surgical teams after knowing the 
complicity of team composition and its detrimental impact on task 
performance (Birch et al., 2007; Paige, 2010; Fernandez et al., 2017).  
In such a dynamic work environment, surgical teams required team 
practice to develop team cognition (shared knowledge) among team 
members. 

As illustrated in Fig. 1, team cognition is built based on  
individual cognition. Each individual has a limited capacity in 
processing information from the environment. In performing a daily 
task, we all maintain a comfort zone in processing information 
received from the environment. Taking driving as an example, 
information about the road, direction, and weather, etc., are taken 
by the driver through his/her visual channel. At the same time, the 
driver’s control on the car is delivered by hands on the wheels and 
feet on the gas and brake pedals. Under routine driving, the driver’s 
eye scanning and car manipulation are autonomous, meaning the 
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volume of information processing is maintained in the comfort zone 
of his/her mind; the driver does not need to consciously focus on 
these tasks. 

When it comes to crisis moments, such as driving in heavy 
rainfalls or passing a semi-truck, the driver will need to request all 
his/her attention and manipulate the vehicle deliberately. The volume 
of information processed by the driver in these difficult situations 
is dramatically increased, consuming a portion of spare mental 
resources in the mind. If any other new situation emerges such as the 
appearance of a bike rider on the road site, then the driver may have 
an inadequate cognitive capacity to deal with this sudden situation 
promptly. The consequence of overloading a driver’s cognitive 
process can be quite a catastrophe. 

Now we look into the information processing model in a  
team setting. Considering the driving tasks were performed by two 
operators, navigation and visual surveillance on the road can be 
performed by the assistant sitting beside a driver. When they are 
encountering some dangerous situations, they may have increased 
mental powers to deal with the problem and maintain safe driving. 
Theoretically, the total capacity for processing information related 
to the tasks will be double. However, in reality, a certain amount 
of mental resources from each team member will be used for 
communication and coordinating the actions between team partners. 
Therefore, the total mental resource of a team used for processing 
information related to the team tasks will be less than twofold. We 
name the portion of resource for sharing information and coordinating 
actions team-related loads and the portion of resource for focusing on 
team tasks the task-related loads. 

Memory

Cognition

Team Output
Task Loads

Shared Cognition
Team goal, role, 
action plan etc. 

Input
Environmental

Output
Action/performance

Memory

Cognition
Input

Environmental

Team Loads
communication
action sync. etc.

Output
Action/performance

Figure 1.  Conceptual model of information processing in individual and team. A 
portion of cognitive resources in each individual is used for coordinating team task.
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In a newly-formed team, the team-related loads will be high 
because each team member has a strong desire for communication; 
they need to understand the partner’s skill set, expectation and 
action plan to the team goal (Cannon-Bowers and Salas, 2001; Baker  
et al., 2006; Savelsbergh et al., 2012). Members in any new team 
will need time to practice together before they can develop a mutual 
understanding on how to communicate information and synchronize 
their movements. Once the team has received sufficient practice over 
time, the team-related loads can be decreased as they have developed 
a shared knowledge (team cognition) towards the team goal and the 
portion of mental resources for task-loads can be increased (Cannon-
Bowers and Salas, 2001; Baker et al., 2006). We refer to a well-
trained team as a mature team. A mature team can be silent since each 
team member has adequate knowledge on how to use individual skills 
to support each other to achieve a common team goal. 

A good team training protocol is the one helping team members to 
reduce the amount of team-related loads yet increases the resources 
to the task-related load. In a certain type of surgical procedure, such 
as Minimally Invasive Surgery (MIS), the collaboration between the 
primary surgeon and the assistant is even more important because 
the visual presentation on surgical sites is controlled by the assistant 
who controls the camera, the laparoscope (Aggarwal et al., 2004). 
Therefore, surgical team training is critical for the success of any 
MIS procedure (Birch et al., 2009).

3.  Team Cognition Assessment
One key element of building any team training program is to develop 
a reliable assessment instrument for measuring team cognition (Salas 
et al., 1992; Stout et al., 1999; Gisick et al., 2018). Traditionally, such 
an assessment is subjective, based on observation and judgement  
by the senior team observers (Cooke et al., 2000). Recently, a  
few new methodologies have been developed to objectively measure 
team cognition based on team collaborative behaviors. We are  
discussing these technologies for the assessment of team cognition in 
this chapter.

3.1  Observation-based Assessment
During team practices, behaviors of team collaboration and  
communication were classified and rated using paper-based assessment 
forms, such as the Oxford Nontechnical Skills (NOTECHS) for  
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aviation pilots (Flin et al., 2003), the Multisource Feedback (MSF) for 
military (Atkins and Wood, 2002). Moving to the operating room for 
a surgical team, we have more specific tools like the Observational 
Teamwork Assessment for Surgery (OTAS) (Undre et al., 2007), the 
Nontechnical Skills (NOTSS) for surgical team (Yule et al., 2009), and 
the Anesthetists’ Non-technical Skills (ANTS) for anesthetists (Fletcher 
et al., 2003). 

The Oxford Non-Technical Skills (NOTECHS) scale was 
developed from an aviation instrument for assessment of teamwork 
and communication skills in the civil airline cockpit (Flin et al., 2003). 
The observation was done in four dimensions which were necessary 
for building a strong team: leadership and management, teamwork 
and cooperation, problem-solving and decision-making, and 
situation awareness. Within each dimension, there are 3 to 5 subteam 
modifiers. Team performance on each of these 16 subteam modifiers 
is scored on a scale of 1 to 4 (below standard –1, basic standard –2,  
standard = 3, excellent = 4), making a total score of 64 for the best 
team. Since its introduction in 2003, the NOTECHS evaluation system 
has been used in aviation and latterly in healthcare (Yule et al., 2006). 
Evidence for reliability and validity tests have been reported since 
then (Sevdalis et al., 2008; Mishra et al., 2009). 

To apply the NOTECHS idea to the surgical theatre, Observational 
Teamwork Assessment for Surgery (OTAS) was developed in 2007  
(Undre et al., 2007) and reported with rich evidence on reliability and 
validity tests (Sevdalis et al., 2009). The OTAS measures surgical team 
quality on five domains, communication, coordination, leadership, 
monitoring, and cooperation. The assessment can be performed 
before, during and after an operation. The OTAS rates performance 
of the surgeons, anesthetists, and nurses separately, covering all three 
core team members in any surgical team. 

The abovementioned instruments for team assessment are 
observation-based, and often are straightforward and easy for 
execution. However, the restriction on these assessment tools is 
obvious. By inspecting team performance, the observer will rate the 
quality of team behaviors over a Likert scale on each domain and 
calculate a total score for team performance (Healey et al., 2004). 
Each form needs to have a validity test before it can be accepted 
by the research community (Sevdalis et al., 2009). Here, we need 
to make sure the content of the assessment form matching the team 
setting (content validity), the form can separate the skill levels among 
different teams (construct validity). 
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To control personal bias, observers need to undertake a long 
and structured training phase before team assessment. During the 
assessment, observers are required to maintain their focus on the team 
performance and capture behaviors of team members throughout the 
entire procedure. This may raise a problem in the surgical theatre. 
The surgical procedures are varied in length. Considering the mean 
surgical time can be over two hours; it is difficult for our observers to 
avoid developing fatigue and introducing personal bias after a long 
engagement in the assessment (Carthey et al., 2001). Quite often 
in true practice, the observations are aided by the video recording 
technique (Zheng and Swanström, 2009; Zheng et al., 2009). Ideally, 
we should find ways to assess team cognition directly rather than 
displayed behaviors. 

One step towards the direct measurement of team cognition is by 
content analysis, which can be fulfilled using the think-aloud and the 
multiple-choice questions techniques (Cannon-Bowers et al., 1990).  
Specifically, we can compare the similarity of team knowledge among 
team members using cluster analysis, multidimensional scaling, 
pathfinder, and concept mapping.

Table 3 below shows an example of using multiple-choice 
questions test for assessing shared cognition among team members. 
Three emergency physicians provide answers to ten questions 
regarding their tactics task, each question has four (a, b, c, d) 
alternative choices.

Table 3.  Hypothetic tests on team cognition using multiple choice questions.

Question Correct 
answer

Subject A’s 
response

Subject B’s 
response

Subject C’s 
response

1 C c c c

2 D d d d

3 B b b b

4 A d d d

5 B c c c

6 D b d d

7 B d b b

8 A d c a

9 D a b d

10 A c d b

Mean (53%) 40% 50% 70%
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On average, three physicians in the emergency medical team  
provided 53% correct answers to all questions; however, they only 
unanimously answered three questions (Q1, Q2, Q3) correctly. 
Interestingly, we found they all provide the same wrong answers in Q4 
and Q5. This means, this team shared 50% of their team knowledge, 
but only 30% was correct, the other 20% shared knowledge was 
wrong. Further examining team members’ answers, we found that 
two physicians provided correct answers to Q6 and Q7; one physician 
correctly answered Q8 and Q9); and for Q10, none of the team members 
gave correct answers. It seems that there were 70% chances the team 
might fail the team task due to wrong cognition and the incorrect actions 
they took. 

Results presented by multiple-choice questions give us a good 
opportunity to visualize discrepancy and conflicts among team members 
and help us to comprehend where we can train team members to enhance 
their shared knowledge. Specifically, similar responses on Q4 and Q5 
indicate the consensus, agreement, or overlap of shared knowledge 
among team members. Once we correct them with the right answers in 
these two situations, we can increase their shared knowledge to 50%. 

Referring back to Table 1, we can make effects to teach  
Subject A on Q6 and Q7; improvement of Subject A on these two 
questions will increase shared knowledge of the team to 70%. 
Three physicians had a lower correction rate on Q8, Q9 and Q10; 
however, we noticed Subject C gave two correct answers to these 
three questions. The overall high score achieved by the Subject C 
indicates that he/she may have more experience in dealing with 
difficult situations. In reality, we may ask Subject A and Subject B to 
trust Subject C’s judgments to increase the chance of taking the right 
actions in the emergent cases. All wrong answers to Q10 are warning 
us that special training on this emergent situation is needed before we 
can comfortably send the team to the emergency room.

In brief, by conducting detailed analysis on the answers to multiple 
choice questions, we are able to identify the problems in a team, find 
ways to solve the problems, and build up shared knowledge promptly 
and appropriately among team members (Graesser et al., 2018). 

3.2  Behavioral-based Assessment
Over the past decades, our team performed teamwork assessments in the 
surgical context using behavior markers displayed by the surgical team. 
We started by setting up a complex laparoscopic task that required two 
instruments working together. The laparoscopic procedure is a robotic 
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and image-guided surgery performed in the abdominal cavity of patients. 
Surgeons in the laparoscopic procedure are required to complete the 
surgical tasks using long-shafted instruments while watching images of 
the surgical sites which are captured by an endoscope and displayed on 
a television monitor. 

In the simulation environment, operators were recruited to reach 
and grasp a surgical thread, pull it up from a piece of synthetic soft 
tissue for a short distance using a laparoscopic grasper in one hand, 
and then cutting it with a pair of endoscopic scissors held in the other 
hand. The task can be performed by one surgeon bi-manually, or 
by two surgeons uni-manually working side by side in a dyad team 
(Zheng et al., 2005; Zheng et al., 2007). All subjects were right-
handed, thus for the given task, subjects in the individual bimanual 
group held the grasper in the left and the scissors in the right hand. In 
the dyad team group, each instrument was held in the team members’ 
preferred hand. 

Results showed that total task time was shorter in the dyad  
team compared to the individual group. The contribution to the  
shorter total task time in the dyad team group was primarily due to  
the smaller delay between the start of the grasper and scissor 
movements rather than the difference in the movement speeds 
of these two instruments (Zheng et al., 2005). When the identical 
surgical task was performed by the individual bimanually, the 
scissors started to move to the surgical site quite late, often after  
the grasper completed grasping the target. Whereas in the dyad  
team, the scissors regularly were moved up nearby the cutting site 
before the grasper held the thread completely (Zheng et al., 2007). 
Since no verbal communication was allowed in the dyad team  
group, the early scissors movements performed by the scissor  
holders were not following the instructions of the grasper holder. 
Rather, the performance of this proactive movement was driven by 
the intention of a team member who clearly understood the team  
goal, roles of each member in the team, and was willing to  
collaborate to fulfill the team task as quickly as possible. We call this 
type of proactive action within a team without being instructed by 
another team member anticipatory movement (Zheng et al., 2007).

In contrast, individual operators were overloaded by challenges  
in laparoscopic tasks. A single operator can only mentally focus on  
the action performed in one hand before shifting attention to 
another hand. Each human operator has a limited capacity to 
process information loaded to his/her cognitive pathway. In case 
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of performing tasks so challenging as in laparoscopic surgery, we 
failed to see individual operators concurrently handle tasks with  
both hands (Zheng et al., 2007). However, the increasing mental 
power brought by the team members enables them to perform 
multiple tasks simultaneously. This phenomenon was more visible 
when giving them time to practice. Giving time to practice together, 
scissors moving up early to the surgical site were observed in all trials 
(Carthey et al., 2001; Zheng et al., 2007; Mitchell et al., 2011; Hicks 
and Petrosoniak, 2018). Therefore, the performance of antiparty 
movement has been recognized as a valuable behavioral marker for 
collaborative team works; and was observed in retrospect in many 
clinical settings.

In 2006, we conducted a field study in the operating room. We 
observed over 150 hours of surgical procedures on 59 laparoscopic 
cases performed by a group of surgical teams assisted by  
intermediate and experienced operating (scrubbing) nurses (Zheng 
et al., 2009). By checking the nurse’s actions every minute during 
the operation, we noticed that their surgery-related activities can 
be roughly divided into two categories, with or without following a 

Figure 2.  Anticipatory movements performed in the laboratory and clinical settings. In 
a laboratory setting (A, B), the scissor holder in the dyad team started movement 
before his team partner grasped the thread ready for cutting (B); in operating room  
(C, D), the scrubbing nurse (C), and the assistant surgeon (D) were recorded to perform 

anticipatory movements during surgical procedures.
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verbal instruction from the surgeon. As you can imagine, a majority 
of nurse activities followed the instructions of surgeons; yet there 
were occasions the supportive actions were performed by the nurses 
without following an instruction. The nurse anticipated the need 
of the surgeon and prepared the action ahead of time (Zheng et al., 
2009). For example, a nurse readied a pair of scissors ready when  
she saw the surgeon tying a knot; once the surgeon withdrew the 
needle driver from the suturing site, indicating the completion of knot 
tying, the nurse delivered the scissor to the surgeon’s hand without 
the need for a verbal instruction. 

The ability to perform anticipatory movements is regulated 
by a nurse’s experience in participating in surgical cases (Zheng  
et al., 2009; Mitchell et al., 2011). We found that intermediate and 
experienced nurses performed a similar amount of anticipatory 
movements in relatively easy and routine cases. When supporting 
complicated cases involving many on-site decisions, experienced 
nurses had the ability to anticipate surgeons’ actions; they performed 
significantly more anticipatory movements than the intermediate 
nurses (Zheng et al., 2009). 

Aided with video cameras, we recorded inter-person interaction 
between surgeons during the laparoscopic procedure (Zheng et al., 
2008; Zheng and Swanström, 2009). When the surgical team was  
newly formed, with the induction of a surgical fellow to the surgical  
unit by rotation, small amounts of anticipatory movements were 
observed compared to those performed by the original surgical team 
which had handled more surgery cases together. As the surgical  
team became mature, members in the team fully understood the role, 
abilities, and personal preference of their teammates; they could  
predict each other’s expected actions and performed collaborative  
tasks without the need for verbal communication (Zheng and 
Swanström, 2009). Increasing evidence has suggested that anticipatory 
movement is a valuable behavioral marker for team collaboration. 

Having said that, we are aware that collaborative behaviors  
such as anticipatory movements are not always aligned with the  
level of shared cognition within a team. In some situations, such as 
a team with active verbal communication, members in a team may 
not have chances to perform an increasing number of anticipatory 
movements even though they possess a high level of shared team 
knowledge (Carthey et al., 2001; Mitchell et al., 2011; Nurok et al., 
2011). We still need to find direct ways to measure team cognition  
in the minds of team members. The advancement in applying  
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dual eye-tracking in the team study opens a possibility to achieve 
this goal.

3.3  Dual Eye-tracking for Team Cognition Assessment
Eye-tracking is the process of measuring the point of gaze when a  
person is taking in information with his/her eyes. To achieve this, we 
need to use a device called eye-tracker. Most eye-trackers used today  
are non-intrusive; the reflecting lights on the surface of eyes can be 
recorded and used for calculating the point of gaze. 

According to the eye-mind hypothesis proposed by Just and 
Carpenter, what is fixated in the eyes is coupled with what is  
processed in mind (Just and Carpenter, 1976). However, this 
hypothesis was challenged later by pieces of evidence in human 
observation. We are occasionally thinking about something that we 
are not looking at. The existence of this type of covert attention  
warns us not to simply use fixation points for indicating fixation 
(Posner, 1980; Mulckhuyse and Theeuwes, 2010; Posner, 2016). 
However, the fast-shifting gaze from one location to another  
(saccade eye movement) can be safely interpreted as the relocation  
of attention. Also, when the gaze is connecting to actions in hand,  
covert attention is difficult to happen. Such as in surgery where 
surgeons’ visions are actively engaged to the task for guided 
manipulation, when the points of eyes are highly aligned with 
the points of mental focus. Therefore, if we can record each team 
members’ gaze points over a surgical procedure, our analyses on 
the similarity of their gaze points over time (the trajectories of the 
gazes) should shed light on the level of shared cognition among team 
members towards the team task. 

One barrier before us is how to record eye movements from 
multiple users. Typically in studying human eye movement, one 
eye-tracker unit is required for every operator; it is difficult to track 
multiple eye movements with current technology. In 2011, our team 
started to develop dual eye-tracking technology (Khan et al., 2012; 
Atkins et al., 2013). As shown in Fig. 3, two separate Tobii eye-
trackers were used to track two surgeons’ eye movements while they 
were performing a laparoscopic team task. Two eye-tracking signals 
were obtained and superimposed over the same surgical video with 
identical time frames. 

With this innovative technology, we were able to examine the 
similarity of two surgeons and test whether a mature team displays 
more collaborative eye behavior than the immature team. Our initial 
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attempt in checking the similarity between two eye motions was quite 
straight forward. At any time frame, we calculated the Euclidean 
distance between two gaze points (Tien et al., 2013). If the distance 
fell within 200 pixels, we recorded a moment of gaze overlap  
(Fig. 4). In an early study of comparing operators’ gaze points while 
performing a task versus just watching the task video, we found gaze 
overlap among operators is at a higher level than when they watched 
the video. 

The 200-pixel criterion for gaze overlap was arbitrated as it could 
be translated to a 1-cm distance in the monitor used for the study at 
that time. Within this distance, surgeons were supposed to be looking 
at the same anatomic structure. We can also use the visual angle to 
set up the threshold for gaze overlap. In Khan and Zheng’s study 
on surgeons, we defined the 3º visual field for the area of common 
interest (Khan et al., 2012). We calculated the presentation of gaze 
overlap over entire surgical procedures and compared the difference 
between mature and immature surgical teams. The results were 
encouraging; two operators with rich surgical experiences achieved 
55% gaze overlap which is significantly higher than the 43% gaze 
overlap recorded from two operators with poor surgical experiences. 

Checking gaze overlap at any given time is simple and fragile 
to describe complex and dynamic patterns of eye movement. Before 
introducing a more complicated algorithm, we need to know the 
nature of the eye-tracking signal. The eye-tracking data is comprised 
of a series of position data (X,Y) calculated over two coordinates, 
one for the camera and the other for the world. Once calibrated well, 
these two coordinates should be aligned, i.e., the position data should 
point to where a person looks at. The calculations on the Euclidean 

Surgeon A
Training Box

Eye Tracker

Surgical Monitor

Surgeon B

Figure 3.  Recording dual eye-tracking from two surgeons during a laparoscopic surgery.
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distance or the visual angles are all based on the position data of 
gazes. 

Each team member may have a different visual scanning approach 
to the environment. We use a hypothetical model to explain the 
situation. Considering there are five spots in the visual field to inspect. 
Operator X fixates these spots from A to E; Operator Y also fixated 
on all these spots but with a different starting point, for example 
from C to E then back to A. The scanning trajectories of these two 
operators are displayed in Fig. 5. Purely checking overlap among 
them will yield an unexpectedly low rate (Fig. 5, lower left) that 
may not represent the true nature of these two operators in terms of 
their shared knowledge towards team tasks. In reality, both operators 
inspect the identical hot spots and they may already generate similar 
task plans even though they are dis-synchronizing their visual scan 
paths. The question for us is how to correct the problem in the current 
method for calculating gaze overlap and finding an improved but 
robust way to describe members’ shared knowledge displayed in their 
eye scanpaths. 
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Figure 4.  Calculation of gaze overlap between two surgeons in laparoscopic surgery. 
Euclidean distances between two gaze points were calculated at any time frame and 
displayed over entire surgical time. Distance less than 200 pixel was recorded as the 

gaze overlap.
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The answers can be found in the cross-recurrence analysis 
(Hajari et al., 2016). Using this algorithm, the scanpath of Operator 
Y is shifted along the time axis until maximum overlapping is  
achieved with Operator X (Fig. 5, lower right). A typical CRA report 
includes phase lag as well as maximum overlap. By taking both 
spatial and tempera features of the eye scanpath into its calculation, 
CAR yields a better mathematical outcome in checking the similarity 
among different scanpaths, which enhances our ability to describe 
shared cognition among team members.

In summary, team cognition is the foundation for team 
performance (Cannon-Bowers et al., 1990; Salas et al., 2008). When 
each member in a team understands the team goal, roles of each  
other in the team, and ways to collaborate for the goal, they will 
anticipate actions and fulfill the task goal in a fast and effective  
manner. Besides those observational methods, we can measure 
team cognition using behavioral markers captured by video and 
eye-tracking. Videos record an increasing number of anticipatory 
movements in the mature teams, whereas eye-tracking discovered  
a higher rate of gaze overlap among members in the mature 
teams. Although most pieces of evidence presented in this chapter  
were collected from healthcare, results can be applied to other 
industries that are heavily dependent on team work. As new tracking 
technologies will be available for studying team collaboration, we 
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Figure 5.  Illustration of applying the cross-recurrence analysis to eye scanpath to improve 
the calculation of gaze overlap between two surgeons.
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anticipate more behavioral pieces of evidence will be produced 
towards our goal of assessing team performance and cognition with 
objective methods. 

References
Aggarwal, R., Moorthy, K. and Darzi, A. (2004). Laparoscopic skills 

training and assessment. Br. J. Surg., 91(12): 1549–1558.

Alfredsdottir, H. and Bjornsdottir, K. (2008). Nursing and patient 
safety in the operating room. J. Adv. Nurs., 61(1): 29–37.

Atkins, M. S., Tien, G., Khan, R. S., Meneghetti, A., Zheng, B. et al. 
(2013). What do surgeons see: capturing and synchronizing eye 
gaze for surgery applications. Surg. Innov., 20(3): 241–248.

Atkins, P. W. B. and Wood, R. E. (2002). Self-versus others’ ratings 
as predictors of assessment center ratings: Validation evidence for 
360-degree feedback programs. Pers. Psychol., 55(4): 871–904.

Baker, D., Day, R. and Salas, E. (2006). Teamwork as an essential 
component of high-reliability organizations. Health Serv. Res., 
41: 1576–1598.

Birch, D. W., Misra, M. and Farrokhyar, F. (2007). The feasibility 
of introducing advanced minimally invasive surgery into surgical 
practice. Can. J. Surg., 50(4): 256–260.

Birch, D. W., Bonjer, H. J., Crossley, C., Burnett, G., de Gara, C.  
et al. (2009). Canadian consensus conference on the development 
of training and practice standards in advanced minimally invasive 
surgery. Can. J. Surg., 52(4): 321–327.

Cannon-Bowers, J. A., Salas, E. and Converse, S. A. (1990). Cognitive 
psychology and team training: Training shared mental models and 
complex systems. Hum Factors Bullet, 33(12): 1–4.

Cannon-Bowers, J. A. and Salas, E. (2001). Reflections on shared 
cognition. J. Organ. Behav., 22(2): 195–202.

Carthey, J., de Leval, M. R. and Reason, J. T. (2001). The human factor 
in cardiac surgery: Errors and near misses in a high technology 
medical domain. Ann. Thorac. Surg., 72(1): 300–305.

Cassera, M. A., Zheng, B., Martinec, D. V., Dunst, C. M., Swanström, 
L. L. et al. (2009). Surgical time independently affected by 
surgical team size. Am. J. Surg., 198(2): 216–222.



66  ■  Brain and Cognitive Intelligence: Control in Robotics

Cooke, N. J., Salas, E., Cannon-Bowers, J. A. and Stout, R. J. (2000). 
Measuring team knowledge. Hum Factors, 42(1): 151–173.

Cooper, J. B. and Gaba, D. (2002). No myth: Anesthesia is a model 
for addressing patient safety. Anesthesiology, 97(6): 1335–1337.

Cooper, J. B. (2018). Critical role of the surgeon-anesthesiologist 
relationship for patient safety. Anesthesiology, 129(3): 402–405.

Fernandez, R., Shah, S., Rosenman, E. D., Kozlowski, S. W. J., 
Parker, S. H. et al. (2017). Developing team cognition: A role for 
simulation. Simul. Health., c12(2): 96–103.

Fletcher, G., Flin, R., McGeorge, P., Glavin, R., Maran, N. et al. 
(2003). Anaesthetists’ Non-Technical Skills (ANTS): Evaluation 
of a behavioural marker system. Br. J. Anaesth., 90(5): 580–588.

Flin, R. H., Martin, L., Goeters, K. -M., Hormann, H. J. Amalberti, 
R. et al. (2003). Development of the NOTECHS (non-technical 
skills) system for assessing pilots’ CRM skills. Hum Factors 
Aerosp Safety, 3(2): 97–119.

Gisick, L. M., Webster, K. L., Keebler, J. R., Lazzara, E. H., Fouquet, 
S. et al. (2018). Measuring shared mental models in healthcare. J. 
Patient Safety Risk Manag., 23(5): 207–219.

Göras, C., Olin, K., Unbeck, M., Pukk-Härenstam, K., Ehrenberg, 
A.  et al. (2019). Tasks, multitasking and interruptions among the 
surgical team in an operating room: A prospective observational 
study. BMJ Open, 9(5): e026410.

Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz,  
P. W. et al. (2018). Advancing the science of collaborative problem 
solving. Psychol. Sci. Public Interest, 19(2): 59–92.

Hajari, N., Cheng, I., Zheng, B. and Basu, A. (2016). Determining 
team cognition from delay analysis using cross recurrence 
plot. 2016 38th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC).

He, W., Ni, S., Chen, G., Jiang, X., Zheng, B. et al. (2014). The 
composition of surgical teams in the operating room and its 
impact on surgical team performance in China. Surg. Endosc., 
28(5): 1473–1478.



Team Cognition Assessment: From Concept to Practice  ■  67

Healey, A. N., Undre, S. and Vincent, C. A. (2004). Developing 
observational measures of performance in surgical teams. Qual. 
Saf. Health Care, 13 Suppl 1: i33–40.

Hicks, C. and Petrosoniak, A. (2018). The human factor: Optimizing 
trauma team performance in dynamic clinical environments. 
Emerg. Med. Clin. North Am., 36(1): 1–17.

Just, M. A. and Carpenter, P. A. (1976). Eye fixations and cognitive 
processes. Cogn. Psychol., 8(4): 441–480.

Khan, R. S., Tien, G., Atkins, M. S., Zheng, B., Panton, O. N.  
et al. (2012). Analysis of eye gaze: Do novice surgeons look at the 
same location as expert surgeons during a laparoscopic operation? 
Surg. Endosc., 26(12): 3536–3540.

Martins, A. (2016). A review of important cognitive concepts in 
aviation. Aviation, 20: 65–84.

Mishra, A., Catchpole, K. and McCulloch, P. (2009). The Oxford 
NOTECHS system: Reliability and validity of a tool for measuring 
teamwork behaviour in the operating theatre. Qual. Saf. Health 
Care, 18(2): 104.

Mitchell, L., Flin, R., Yule, S., Mitchell, J., Coutts, K. et al. 
(2011). Thinking ahead of the surgeon. An interview study to  
identify scrub nurses’ non-technical skills. Int. J. Nurs. Stud., 
48(7): 818–828.

Mulckhuyse, M. and Theeuwes, J. (2010). Unconscious attentional 
orienting to exogenous cues: A review of the literature. Acta 
Psychol. (Amst.), 134(3): 299–309.

Nurok, M., Sundt, T. M. 3rd and Frankel, A. (2011). Teamwork and 
communication in the operating room: Relationship to discrete 
outcomes and research challenges. Anesthesiol. Clin., 29(1): 1–11.

Paige, J. T. (2010). Surgical team training: promoting high reliability 
with nontechnical skills. Surg. Clin. North Am., 90(3): 569–581.

Posner, M. I. (1980). Orienting of attention. Q. J. Exp. Psychol., 
32(1): 3–25.

Posner, M. I. (2016). Orienting of attention: Then and now. Q. J. Exp. 
Psychol., (2006) 69(10): 1864–1875.



68  ■  Brain and Cognitive Intelligence: Control in Robotics

Reynolds, R. and Blickensderfer, E. (2009). Crew resource 
management and shared mental models: A proposal. J. Avia. 
Aerosp. Edu. Res., 19(1): 15–23.

Salas, E., Dickinson, T. L., Converse, S. A. and Tannenbaum,  
S. I. (1992). Toward an understanding of team performance and 
training. Teams: Their training and performance. Westport, CT, 
US, Ablex Publishing, 3–29.

Salas, E., Cooke, N. J. and Rosen, M. A. (2008). On teams, teamwork, 
and team performance: Discoveries and developments. Hum 
Factors, 50(3): 540–547.

Savelsbergh, C., Gevers, J. M. P., van der Heijden, B. I. J. M. and 
Poell, R. F. (2012). Team role stress: Relationships with team 
learning and performance in project teams. Group Organ. Manag., 
37(1): 67–100.

Sevdalis, N., Davis, R., Koutantji, M., Undre, S., Darzi, A. et 
al. (2008). Reliability of a revised NOTECHS scale for use in 
surgical teams. Am. J. Surg., 196(2): 184–190.

Sevdalis, N., Lyons, M., Healey, A. N., Undre, S., Darzi, A.  
et al. (2009). Observational teamwork assessment for surgery: 
Construct validation with expert versus novice raters. Ann. Surg., 
249(6): 1047–1051.

Stout, R. J., Cannon-Bowers, J. A., Salas, E. and Milanovich,  
D. M. (1999). Planning, shared mental models, and coordinated 
performance: An empirical link is established. Hum Factors, 
41(1): 61–71.

Tien, G., Atkins, M. S., Jiang, X., Khan, R. S., Zheng, B. et al. (2013). 
Identifying eye gaze mismatch during laparoscopic surgery. Stud. 
Health Technol. Inform., 184: 453–457.

Undre, S., Sevdalis, N., Healey, A. N., Darzi, A., Vincent, C. A.  
et al. (2007). Observational teamwork assessment for surgery 
(OTAS): Refinement and application in urological surgery. World 
J. Surg., 31(7): 1373–1381.

Yule, S., Flin, R., Paterson-Brown, S. and Maran, N. (2006). Non-
technical skills for surgeons in the operating room: A review of 
the literature. Surgery, 139(2): 140–149.



Team Cognition Assessment: From Concept to Practice  ■  69

Yule, S., Rowley, D., Flin, R., Maran, N., Youngson, G. et al. (2009).
Experience matters: Comparing novice and expert ratings of 
non-technical skills using the NOTSS system. ANZ J. Surg.,  
79(3): 154–160.

Zheng, B., Verjee, F., Lomax, A. and MacKenzie, C. L. (2005). Video 
analysis of endoscopic cutting task performed by one versus two 
operators. Surg. Endosc., 19(10): 1388–1395.

Zheng, B., Swanström, L. L. and MacKenzie, C. L. (2007). A 
laboratory study on anticipatory movement in laparoscopic 
surgery: A behavioral indicator for team collaboration. Surg. 
Endosc., 21(6): 935–940.

Zheng, B., Martinec, D. V., Cassera, M. A. and Swanström, L. L. 
(2008). A quantitative study of disruption in the operating 
room during laparoscopic antireflux surgery. Surg. Endosc.,  
22(10): 2171–2177.

Zheng, B. and Swanström, L. L. (2009). Video analysis of anticipatory 
movements performed by surgeons during laparoscopic 
procedures. Surg. Endosc., 23(7): 1494–1498.

Zheng, B., Taylor, M. D. and Swanström, L. L. (2009). An 
observational study of surgery-related activities between 
nurses and surgeons during laparoscopic surgery. Am. J. Surg.,  
197(4): 497–502.

Zheng, B., Panton, O. N. and Al-Tayeb, T. A. (2012). Operative 
length independently affected by surgical team size: Data from 2 
Canadian hospitals. Can. J. Surg., 55(6): 371–376.



Chapter 4

How to Make Sure That Robot 
Behavior Is Human-Like
Vladik Kreinovich, Olga Kosheleva and Laxman Bokati

1. Introduction and Formulation of the Problem

Need for robots that look and act like humans: a brief
reminder. In many practical applications, it is desirable to have
robots that look and act like humans. For example, if we want to
create a robot that takes care of small children, it is desirable to
have a human-like robot, to utilize the children’s natural affinity
towards human beings and their natural fear of unusual creatures.
Similarly, a medical robot that looks and acts like a human will
hopefully help the patients to be somewhat more relaxed in an
already stressful illness situation. A robot that takes care of older
people will sound warmer if this robot is more human-like. And,
of course, if something happens to a human operator (e.g., human
driver, human pilot, etc.), it would be great for the robot to be able
to fit into the control seat and take over.

What was the main challenge in the past decades. In the
past, the main problem was to make a robot look and behave like
a human.

What is the main problem now. Nowadays, we have robots
that look and sometimes behave remarkably like humans – we have
robotic TV announcers that are difficult to distinguish from the
real ones, robotic performers, among others.
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So we face a different problem now – that excellent robots can
be made. Their movements can be made optimal up to the minutest
detail, and their decisions can be made optimal. As a result, while
these robots may look like humans, they do not behave like humans
– to be more precise, instead of behaving like us humans, the robots
behave like idealized never-making-a-mistake superhuman beings.

Clarification: sometimes we do need superhuman robots.
Robots with superhuman abilities are definitely needed in many
applications – we need robots that can bravely go where humans
cannot, that can explore space, rescue victims of earthquakes, repair
nuclear reactors.

In many other applications, we need more human-like
robots. Having superhuman ability in a humanoid robot defeats
its very purpose – to look and behave like a human.

Of course, we want this robot to act like a very good human –
e.g., we do not want a medical robot to make mistakes on purpose.
However, in their movements, and appearance, we do not want
them to be perfect, but we want them to be like us. Misdiagnosing
a patient is a big no-no, but why not make a robot “accidentally”
bump into a chair and move it slightly (as a human being would)
if this will make this robot (and thus, this robot’s advice) more
acceptable to the patients.

What we do in this chapter. In this chapter, we provide al-
gorithmic foundations that will (hopefully) help in designing such
human-like robots.

2. Analysis of the Problem

Main idea. How can we simulate suboptimal human behavior?
According to modern psychology, as discovered and emphasized by
the Nobelists Herbert Simon and Daniel Kahneman (in his collab-
oration with Amos Tversky), this sub-optimality is mostly due to
bounded rationality – i.e., to the fact that we humans have limited
ability to process information; see, e.g., Kahneman, 2013.

Details. As a result, e.g., when optimizing, we do not exactly find
the value of the parameters for which the objective function attains
its largest value – instead:

■ we first discretise the problem, by dividing the range of pos-
sible situations (i.e., of possible values of the parameters)
into finitely many subranges, and
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■ then, in each subrange, we select a typical situation, and
we find the decision which is optimal for this typical situ-
ation; this decision will be used for all situations from this
subrange.

This is how we deal with most real-life problems; for example:

■ in a big class, where an individual approach is not realisti-
cally possible, an instructor deals separately with A students
(they need extra assignments), with C students (they need
encouragement), and with potentially failing students (they
need help);

■ a medical doctor diagnoses a patient, and then prescribes
the medicine corresponding to this particular diagnosis and
this particular group of patients, etc.

How should we select subranges? Once we apply the same
solution to all the situations from a given subrange, our solutions
become suboptimal. For some divisions into subranges, we may
have, in some situations, a big deviation from optimality. For other
divisions, the deviations are not that large.

It is reasonable to select a division which is optimal – in the
sense that the resulting decisions are as close to the optimal one as
possible for the given fixed number of subranges.

What we do in this chapter. In this chapter, we formulate
the corresponding optimization problem – of selecting the optimal
division into subranges – in precise terms, and provide a solution
to this problem.

We will consider two possible cases:

■ the case when we do not know the probabilities of differ-
ent situations; in this case, the natural way to gauge sub-
optimality is by the worst-case difference between the op-
timal and suboptimal values of the corresponding objective
function, and

■ the case when we know the probabilities of different situa-
tions; in this case, it is more natural to gauge sub-optimality
by the average difference between the optimal and subopti-
mal values.

Comment. Some of the corresponding mathematics will be simi-
lar to the one used in the book (Lorkowski and Kreinovich, 2018)
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to describe human behavior. In particular, this book shows that
the idea of bounded rationality explains why humans use imprecise
(“fuzzy”) natural-language terms when making decisions, and why
fuzzy control – that takes these words into account – often per-
forms better than a probabilistic approach; see, e.g., (Belohlavek et
al., 2017; Klir and Yuan, 1995; Mendel, 2017; Nguyen et al., 2019;
Novák et al., 1999; Zadeh, 1965). The explanation is that the fuzzy
approach implicitly takes into account not only the probability of
different alternatives, but also their utility.

The main difference of what we do in this chapter from the
mathematical analysis presented in (Lorkowski and Kreinovich,
2018) is that there, our main goal was to describe human behavior,
while here, the objective is to recommend (prescribe) the robot’s
behavior.

3. Case When We Do Not Know the Probabilities of
Different Situations

General description of the control situation. To describe
a situation, we need to describe the values of the quantities
x = (x1, . . . , xn) that describe this situation. For example, the state
of a doctor’s patient can be described by the patient’s body tem-
perature, age, blood pressure, etc. The state of a student can be
characterized by the student’s grades on different assignments. The
state of a mobile robot can be characterized by the coordinates de-
scribing its location and by the components of the velocity vector.
If the robot has arms, we should also describe the angles between
different parts of the robot’s arm and the corresponding angular
velocities.

Not all possible combinations of parameters are usually real-
istically possible. Let X denote the set of possible values of the
tuples x.

To improve the situation, we can apply different controls. Con-
trol can also be characterized by the values of the corresponding
parameters u = (u1, . . . , um). For example, we can slow down or
speed up the robot, change its direction, lift of lower its arm, etc.

We usually know the objective function, i.e., we know the gain
G(x, u) that we will get if we are in the state x, and we apply the
control u. For example, if the goal is for a robot to reach the patient
within a certain period of time t0 (e.g., if the patient fell down),
and the sooner the better, then G(x, u) is the difference between
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t0 and the time that the robot in the original state x will take to
reach the patient after applying the control u.

In general, our objective is to maximize this gain.

Ideal case: optimal control. In the ideal case, for each situation
x, we should selected the optimal control uopt(x), i.e., control for
which the gain is the largest:

G
(
x, uopt(x)

)
= maxG(x, u). (1)

u

Case of human-like behavior. In the case of human-like behav-
ior, we divide the range X into subranges Xj . In each subrange, we
select( a typical) representative situation x(j), and apply the control
uopt x(j) to all situations from the subrange Xj .

How to describe the degree of sub-optimality. For each sit-
uation x ∈ Xj , the best we can do is to apply the control uopt(x)
which is optimal for this situation. Then, we will get the gain
G (x, uopt(x)). Instead, we get the gain G

(
x, uopt

(
x(j) . The dif-

ference between these gains is equal to

))
∆Gj(x) = G

(
x, uopt(x)

)
−G

(
x, uopt

(
x(j)

))
. (2)

For a close-to-optimal control, the subranges are small, and all the
situations within each subrange are close to each other, so

x = x(j) +∆x, (3)

for some small ∆x, and, correspondingly,

uopt(x) = uopt
(
x(j) +∆u, (4)

for some small ∆u. We can therefore substitute

)
the expression

uopt
(
x(j)

)
= uopt(x)−∆u (5)

into the formula (2):

∆Gj(x) = G
(
x, uopt(x) −G x, uopt(x)−∆u , (6)

expand this expression in Taylor

)
series,

(
and keep the largest

)
non-

zero terms in this expansion. In general, we have

( ) ∑m
opt

) (
opt ∂G(x, u)

G x, u (x)−∆u = G x, u (x) − +
∂ui=1

·∆ui

i
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∑m m
1 2

·
∑ ∂ G(x, u) ·∆ui ·∆uj + . . . (7)

2 ∂ui∂uji=1 j=1

By definition (1) of the optimal control uopt(x), the function G(x, u)
attains its maximum at this control, so all the partial derivatives
are equal to 0:

∂G(x, u)
= 0, (8)

∂ui

thus

( ∑m
opt

) (
opt

) m
1 ∑ ∂2G(x, u)

G x, u (x)−∆u = G x, u (x) + · ∆ui ∆uj+. . .
2 ∂ui∂uji=1 j=1

· ·

(9)
Substituting this expression into the formula (6), we conclude that
the main term in the difference (6) is quadratic:

m m
1 ∂2G(x, u)

∆Gj(x) = − ·
∑∑

·∆ui ·∆uj . (10)
2 ∂ui∂uji=1 j=1

Here, ∑n opt∂ui (x)
∆ui =

∂xaa=1

·∆xa. (11)

Thus, the formula (1) takes the form

∑n n

∆Gj(x) =
∑

cab,j ·∆xa ·∆xb, (12)
a=1 b=1

where we denoted
cab,j = cab

(
x(j)

and

)

∑m ∑m opt opt
∂2G(x, u) ∂u (x) ∂uj (x)

c = i
ab(x) . (13)

∂ui∂uj ∂x
i=1 | a ∂xbj=1 u=uopt(x)

· ·

The overall quality of division into subranges is described by the
worst-case value of ∆Gj(x), i.e., by the value

max max ∆Gj(x). (14)
j x∈Xj

We want to find the division into subranges for which the quantity
(14) is the smallest possible.
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Towards finding the optimal division into subranges. For
each region Xj , let vj = max ∆Gj(x) be the largest value of ∆G(x)

x∈Xj

for all points x ∈ Xj . Then, it makes sense to assign, to this region,
all the points x for which ∆Gj(x) ≤ vj – adding these points to Xj

will not increase the worst-case sub-optimality.
According to the formula (12), the value ∆Gj(x) is a quadratic

function of xa, so each region {x : ∆Gj(x) ≤ vj} is an ellipsoid.
Thus, in the first crude approximation, each subrange Xj is an
ellipsoid whose axes are eigenvectors of the matrix aij . However,
these subranges needs to fill the whole space, so we need to make
them parallelepipeds with axes parallel to the axes of the ellipsoid
– i.e., to the eigenvectors of the matrix aij .

If for some j0, we have vj0 < max vj , then we can increase the
j

subrange Xj0 and decrease the size (and thus, the values vj) for
other subranges, thus decreasing the value max vj . Thus, in the

j

optimal division into subranges, we should have all values vj equal.
Let us denote the common value of all these vj by v.

What value v should we select? Suppose that we want to divide
the whole range X into N subranges. At each point x, the volume
of the subrange containing x is the volume of the corresponding
parallelepiped Xj . In the coordinate system y1, . . . , yn formed by
unit eigenvectors of the matrix cab, this matrix has a diagonal form
c′aa = λa and c′ab = 0 for a = b, where λa is the corresponding
eigenvalue of the original matrix cab∑. In these coordinates, the con-
dition ∆Gj(x) ≤ v takes the form λa · (∆ya)

2

a
≤ v. Thus, each

axis has half-length
√

v v
and, correspondingly, length 2 . The

λa λa

volume of the box Xj is equal to the product of these lengths,

√
i.e.,

to

2n · vn/2 ·
√√√√∏1

. (15)
λa

a

The product
minant, so

∏of all the eigenvalues of a matrix is equal to its deter-
λa = det(cab). Thus, the volume of each subrange is

a

equal to

v = 2n · vn/2 1· √ . (16)
det(cab)

̸
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So, in a unit volume close to the point x, we have 1/v such sub-
ranges, i.e., √

det(c (x)) · 2−n n/
ab · v− 2 (17)

subranges. The overall number of subranges can be obtained if we
add these numbers over all unit-volume parts of the range X, i.e.,
if we consider the integral∫
The

√
det(cab(x)) · 2−n · v−n/2 dx. (18)

number of subranges should be equal to N , so we conclude
that ∫ √

det(cab(x)) · 2−n · v−n/2 dx = N, (19)

and thus, that

vn/2
2−n

=
N

·
∫ √

det(cab(x)) dx, (20)

so
2/n

1
v =

4 N2/n
·

·

(∫
Thus, we arrive at the following

√
det(cab(x)) dx

)
. (21)

optimal division into subranges.

Solution: optimal division into subranges. Suppose that we
can have N subranges. Then, we compute the value v by using the
formula (21), where the matrix cab(x) is determined by the formula
(13). This value v is the largest possible difference between the
optimal and suboptimal values of the objective function G(x, u).

The corresponding subranges have the following form. Around
each point x, we find the unit eigenvectors and eigenvalues λa of
the matrix cab(x). In the local coordinate system y1, . . . , yn formed
by the unit eigenvectors, the subrange Xj is the following box:[

(j) v v
y1 −

√
(j)

, y
λ 1 +
1

√
λ1

]
× . . .×

[
y(j)n −

√
v
, y(j)

λ n +
n

√
v

λn

]
.

(22)

4. Case When We Know the Probabilities of Different
Situations

Description of the case. Suppose that we also know the rela-
tive frequency of different situations, i.e., we know the probability
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density function ρ(x) describing how frequently we will encounter
different situations.

Analysis of the problem. In this case, as one can show, locally,
we have a similar division. The difference is that instead of the same
value vj for all the subranges, we may have different values v(x) for
different subranges: to decrease the average measure of difference
∆Gj(x), it makes sense to make it larger for scarcely populated
subranges and smaller for densely populated subranges.

Once we know v(x) for each x, we can determine the corre-
sponding division into subranges. So, the main remaining problem
is finding the optimal function v(x). The main constraint is the
overall number N of subranges, which, similar to formula (19), has
the form

2−n ·
∫ √

det(cab(x)) · (v(x))−n/2 dx = N. (23)

Under this constraint, we want to minimize the average difference
∆G(x). For each subrange, the average difference is proportional
to v(x), so minimizing the average difference is equivalent to mini-
mizing the average values of v(x):∫

ρ(x) · v(x) dx → min . (24)

By using the Lagrange multiplier method, we can reduce this
constraint optimization problem to the unconstrained problem of
minimizing the functional∫

ρ(x) · v(x) dx+ λ ·
(
2−n ·

∫ √
det(cab(x)) · v(x)−n/2 dx−N

)
,

(25)
where λ is the Lagrange multiplier. Differentiating this expression
with respect to v(x) and equating the derivative to 0, we conclude
that

ρ(x)− λ · 2−n n· ·
√
det(cab(x)) · (v(x))−n/2−1 = 0, (26)

2

i.e., that:

))−n/2 ρ(x)
(v(x −1 = C · √ , (27)

det(cab(x))

where we denoted
def 1

C = . (27)n
λ · 2−n ·

2
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Thus,
n/

(v(x))−n/2 =
( (n+2)

(v(x))−n/2−1
)

=

Cn/(n+2) (ρ(x))n/(n+2)

· (√ . (28)
n/(n+2)

det(cab(x))

Substituting this expression for (v(x))−n/

)
2 into the formula (23),

we conclude that

2−n ·Cn/(n+2) ·
∫
(ρ(x))n/(n+2) · (det(c (x)))1/(n+2)

ab dx = N, (29)

hence

Cn/(n+2) 2n
= ∫ ·N

, (30)

(ρ(x))n/(n+2) · (det(cab(x)))1/(n+2) dx

and

(∫ 2n+2 ·N1+2/n

C = . (31)
1+2/n

(ρ(x))n/(n+2) · (det(c (x)))1/(n+2)
ab dx

)
From (27), we can then conclude that

(det(c (x)))1/(n+2)
ab

v(x) = . (32)
C2/(n+2) · (ρ(x))2/(n+2)

So, we arrive at the following solution.

Solution: optimal division into subranges. First, we compute
the auxiliary value C by using the formula (31). Then, the cor-
responding subranges have the following form. Around each point
x, we find the unit eigenvectors and eigenvalues λa of the matrix
cab(x). In the local coordinate system y1, . . . , yn formed by the unit
eigenvectors, the subrange Xj is the following box: (j)

√
v(x)

y − (j)
, y +

√
v(x) v(x) v(x)

1 . . .
λ 1
1 λ1

× ×


y(j)

√
(j

n − , y ) +
λ n
n

√  ,
λn

(33)


where v(x) is determined by the formula (32).
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Chapter 5

Embodied 3D Neural Tissue  
Cultures for Cognitive Research
Nicolas Rouleau

1.  Introduction
Functions of the brain have historically been classified as either 
behavioral or cognitive with the implicit assumption that one set  
of capacities can be isolated from the other without compromising 
their most essential and discriminant features. Consequently, the 
field of psychology has undergone significant paradigm shifts over 
the past century, oscillating between frameworks centered on mental 
processes or, alternatively, observable motor responses. Since, 
subjective experiences associated with cognitive processes remain 
opaque to direct, empirical measurement, contemporary investigators 
continue to rely on correlative factors (Koch et al., 2016; Llinás  
et al., 1998; Meador et al., 2002). Indeed, cognition is either inferred 
on the basis of highly correlated behavioral patterns such as verbal 
self-report or by observable brain activations with neuroimaging 
tools (i.e., reverse inference) such as functional magnetic resonance 
imaging (fMRI) or electroencephalography (EEG) (Poldrack, 
2006). It is uncontroversial to suggest that activations of particular 
brain structures are reliably associated with specific functional 
outputs and experiences. However, the brain’s inordinately 
complex microcircuitry represents an enduring bottleneck toward a 
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comprehensive understanding of how defined neural ensembles give 
rise to higher-order cognitive processes at a mechanistic level. With 
the goal of understanding the mental functions of naturally occurring 
and self-organized brains in living organisms, it may be necessary 
to first re-direct our attention to artificial equivalents as tools for 
discovery.

Neuroscientists are consistently generating enormous volumes of 
information on cell signaling, gene expression, network dynamics, 
and other detailed features of brains that are undoubtedly relevant 
to cognition but reliably beg the “big picture” questions to which 
humans actually want answers: What are the necessary and sufficient 
neural conditions from which experience emerges? Are constructs 
like “love” and “justice” reducible to defined network properties? 
How are complex and often self-contradictory rules encoded to 
define personal morality? How do neural tissues distinguish between 
veridical and imagined perceptions (if they do at all)? How do brains 
represent “meaning” in their microcircuitry? Our failure to grapple 
with the substance of these questions likely stems from an inability  
to shed old habits. One of the main limitations of our current  
approach—which has admittedly served the neuroscientific 
community well as a simple fact of history—is an assumed intrinsic 
importance associated with specific neural structures, biomolecules, 
and signal patterns as they relate to mental functions. In general, the 
biological sciences tend to preoccupy themselves with substrate-
dependent properties of organisms rather than attempting to find 
generalizable principles, rules, equations, and other fundamental 
operations that independently explain the phenomenon with the 
assumption that parts of the whole can be substituted or replaced 
without compromising outcomes. Until we replace our reverence for 
“natural”, ontogenetic morphology as a standard model for cognitive 
research with an open-minded exploration of artificial analogues, 
investigative potential in cognitive research will be limited.

In recent years, several authors have suggested that cognition 
may be a ubiquitous property of living systems that is fundamentally 
substrate-independent (Bostrom, 2003; Moon and Pae, 2019). Indeed, 
operant mechanisms underlying cognition may be fundamental to 
simple chemical reactions at the root of life itself. Single-celled 
organisms can be conditioned (Hennessey et al., 1979), navigate 
complex environments (Lyon, 2015; Murugan et al., 2021; Zhu  
et al., 2013), solve mazes (Nakagaki et al., 2000), and display decision-
making behaviors that are operationally indistinguishable from  
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those of mammals including humans (Lyon, 2020; Lyon et al., 2021;  
Zhu et al., 2013). From bacteria to insects and plants, there is 
considerable evidence that information processing—a fundament of 
cognition—is ubiquitous and expressed across the full spectrum of 
living systems (Lyon, 2020; Lyon et al., 2021). The term “minimal 
cognition” is becoming increasingly popular as a conceptual placeholder 
for what is an emerging science of thought and experience at the  
most rudimentary level (Lyon, 2020). With the goal of identifying 
universal operations that transcend species-specific tissue substrates, 
the field of minimal cognition has been extended to the study of 
dissociated neural cultures and tissue preparations in vitro. These 
systems are simple, flexible, and can be systematically manipulated 
to potentially determine the causes rather than the correlates of 
cognition. However, because—like the brain—haphazard neural 
activity “in a dish” is effectively meaningless without bodies with 
which to “decode the message”, new approaches will be needed to 
fuel discovery. Fortunately, advances in neural-computer interfaces 
and robotics are bridging these gaps and clearing a path toward a 
more sophisticated understanding of cognition as a generalized 
functional property of many systems.

2.  What are Neural-computer Interfaces?
Neural-computer interfaces (NCIs)—also called brain-computer 
interfaces or BCIs—are integrated systems that pair neural cells and 
tissues with computers, robots, machines, and other artificial outputs 
that record activity or couple signals to auxiliary resources to do 
work (Grosse-Wentrup et al., 2011; Halder et al., 2011; Soekadar  
et al., 2015) (Fig. 1). Whereas outputs of the central nervous system 
typically activate other CNS cells (thought) or muscles by way of the 
peripheral nervous system (behavior), NCIs replace these terminal 
effectors with artificial sensors and actuators.

The basic principle of the NCI was first demonstrated in the 
1920s by Hans Berger when he invented the EEG (Millett, 2001)— 
a device that converted voltages over the surface of the scalp into 
mechanical oscillations of a needle (neural-machine interface). The 
needle, which exuded a stream of ink, traced the neural oscillations  
on paper as a temporal record that could be quantified to infer  
cognitive states or functional pathologies like seizures. Since 
Berger’s time, the EEG has been fully digitized and is still used today 
as a common instrument in cognitive psychology and neuroscience 
research as well as in clinical practice.
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Today, NCIs are becoming increasingly popular and available 
as therapeutic devices and personal tools. Neurofeedback training, 
which pairs brain activity with computers that deliver threshold-
triggered sensory feedback (Fig. 1) have allowed clinical patients  
to consciously identify and learn to suppress their own seizures 
(Sterman and Egner, 2006; Walker and Kozlowsky, 2005), increase 
their concentration (Chung et al., 2008; Hammond, 2011), and  
alleviate anxiety (Hammond, 2005). Commercial NCIs are currently 
available as sleep aids and recreational gaming controllers. Industry 
leaders have even suggested that, within the decade, minimally 
invasive brain implants could provide humans with the ability  
to control their handheld and other electronic devices with thought 
alone (Pisarchik et al., 2019)—reifying technologies that were 
previously relegated to the status of science fiction. Implants 
signaling wirelessly to intermediate devices or other implants  
with on board processors could soon increase the efficiency and 
proficiency of human-to-human communication. Circumventing 
historical limitations to human communication such as geographical 
distance, these devices would effectively tighten human social 
networks by contracting spatial and temporal constraints of social 
behavior.

Figure 1.  Neural-computer interfaces (NCIs). Electrophysiological (EEG, MEA) 
or optical (not pictured) signals associated with neural activations are measured and 
analyzed to trigger feedback. Stimuli can feedback visual, audio, electrical, or chemical 
signals to generate a closed loop to facilitate learning. This figure was created with 
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Beyond commercial applications, NCIs are providing researchers 
with flexible, modular, and iterative solutions to study artificial 
intelligence (AI) and cognitive processes such as learning and memory. 
Indeed, optogenetic and other modern brain-stimulation technologies 
use light or voltage to trigger neuronal activity, thus modifying an 
organism’s cognitive and behavioral patterns (Kravitz and Kreitzer, 
2011; Zhang et al., 2010). These changes can be recorded with 
arrays of implanted electrodes within the stimulated region to detect 
functional neural correlates and elucidate brain-based mechanisms 
of functions at the organismal level. Paralleling these developments, 
biomedical engineers have made significant progress with in vitro 
NCIs. Coupling neural tissue cultures derived from the dissociated 
cells of brains from formerly living organisms with “artificial bodies” 
as simulated or real-world machines has revealed that in vitro NCIs 
make their own meaning by interacting with an external world that 
can be encoded as network-bound representations (DeMarse and 
Dockendorf, 2005). These techniques are allowing researchers to 
partially overcome the overwhelming swell of reductionist findings 
in the ever-expanding neuroscience literature with top-down models 
of how cognitive systems self-organize and change as a function of 
information feedback loops (Potter, 2007).

3.  Embodied Cultured Networks
It was previously assumed that bodies were hostage to mental  
action—they did as they were told and provided mindless sensory 
feedback to improve the one true cognitive control center: the  
brain. However, contemporary theorists are now exploring the 
possibility that cognition is fundamentally embodied (Wilson, 
2002). This radical idea suggests not only that the body and 
extended environment of the organism influence cognition or that 
cognition reciprocates, but also that the full, interconnected, and 
distributed chain of brain-body interfaces constitute a collection of 
cognitive resources (Anderson, 2003; Wilson and Golonka, 2013). 
Consistent with the idea of minimal cognition, embodied cognition 
implies many decentralized cognitive agents—not just brains—
contribute to behavior (Wilson and Golonka, 2013). As previously 
discussed, subjective experiences can only be inferred if the brain is 
functionally coupled to a body that can decode and translate mental 
representations into objective, executable response patterns. In other 
words, cognition is not quite reducible to the flow of information 
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within a system. Rather, understanding a cognitive process requires 
a thorough appraisal of the task to be solved, the resources at the 
system’s disposal, and its capacity to assemble and coordinate said 
resources toward solving the task (Wilson and Golonka, 2013).

Applied to cultured neural networks, embodiment begins with the 
measurement of activity from both individual and groups of cells. In 
principle, any feature of neural activity—from the influx of ions, to the 
action potential, and the downstream release of neurotransmitters—
can serve as the signal source. Consequently, both optical and 
electrophysiological detectors are reported in the literature.  
However, multielectrode arrays (MEAs) represent the most common 
interfaces, reinforced by over 40 years of technical development  
(Pine, 1980; Kim et al., 2018). Local field potentials (LFPs),  
recorded over dozens of distributed electrodes associated with the 
generation of local action potentials, are measured as punctate 
voltage fluctuations that vary by amplitude and frequency over time 
(Herreras, 2016). Using analog-to-digital converters, the spatial 
array of signals is digitized and sent to a computer that processes  
the information. Clusters of MEA sensors and their overlayed cells 
can be pre-defined as “motor” or “sensory” regions to output signals 
or receive stimulation as needed (Cozzi et al., 2005). This procedure 
partitions the neural network into functionalized regions rather 
than treating the culture as a homogenous mass. Whereas naturally 
occurring brains are equipped with morphogenetically conserved, 
functionalized brain regions, subsections of cultured neural networks 
must be defined by the experimenter based upon the input-output 
design of sensors and actuators.

It should be noted that brains without bodies or NCIs without 
sensory feedback to the neural preparation, are functionally 
abnormal. Interestingly, when disembodied neural networks are 
metabolically sustained without sensory feedback, they produce 
transient, significantly dilated action potentials (~ 100 ms/spike)  
that recur every few seconds—an abnormal signaling pattern 
not observed in vivo (Potter et al., 2004). However, delivering 
multi-site sensory feedback reverses the dysfunction and restores 
electrophysiological normalcy (Madhavan et al., 2003; Potter 
et al., 2004). It is likely that because neural systems evolved to 
control bodies that provided steady streams of sensory feedback, 
they developed dependencies that have persisted phylogenetically  
(Clark, 1998; Potter et al., 2004). Disembodied neural tissues are 
therefore intrinsically aberrant systems that are cutoff from essential 
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resources that allow them to perform higher-order functions. Indeed, 
the presence of bodily feedback as background noise is essential to 
stabilizing networks under pulsed stimulation conditions (tetanization) 
which otherwise devolve into states of hypersynchronous, seizure-
like electrical paroxysms or “barrages” (Chao et al., 2005). Therefore, 
“re-embodying” dissociated neural cultures provides a necessary 
element that is fundamentally missing from the network itself—a 
testament to the relevance of embodied cognition theory. 

When engineering an embodied neural network (Fig. 2), “closing 
the loop” (Potter et al., 2006) between outgoing (motor) and 
incoming (sensory) signals permits an experience-dependent wiring 
of the network (Weiler et al., 1995), also known as learning. Indeed, 
increased performance indicative of learning associated with an  

Figure 2.  Embodied cultured networks control robots, tissues, and simulations. 
Spatial arrays of signals from cultured neural networks (neurons and glia) are detected 
by multi-electrode arrays (MEAs) where outputs to a computer either trigger events 
or are processed by modeling software or artificial neural networks. Computers then 
trigger motor actuators associated with virtual or real-world bodies including mobile 
robots, animal bodies (biological tissues with injections of current), or simulated 
animal bodies (animats). Sensory feedback from bodies ultimately returns to the 
cultured network to provide the necessary information to learn and adapt. Plasticity 
within the embodied neural network, facilitated by electric pulses that track sensory 
feedback, changes synaptic strengths such that the microcircuitry becomes tuned to 
the task, optimizing performance. The closed sensory-motor loop is the key element 
where outputs are contingent upon a history of inputs. This figure was created with 
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in vitro cortical network coupled to an MEA with real-time feedback 
(i.e., an NCI) was fully inhibited by cutting off sensory feedback 
(Bakkum et al., 2008). If, as theoretical works suggest, higher-
order cognitive processes such as intelligence can be fundamentally 
operationalized as the maximization of reward (Silver et al., 2021), 
learning is the ultimate cognitive linchpin because capturing rewards 
will always depend on an acquired understanding of the environment. 
But how does a cultured neural network know what the sensory data 
is representing? How does the network distinguish itself from the 
environment? What is it like to be a brain in a dish? Of course, there’s 
no reason to suspect that any organism requires an understanding  
of the world as it actually is to compete and thrives within it 
(Hoffman et al., 2015; Prakash et al., 2020). In fact, the evidence 
suggests that a true or veridical perception of the environment is  
less desirable than practical fitness outcomes regardless of the 
resultant perceptual distortion (Hoffman et al., 2015; Prakash et al., 
2020). In other words, usefulness out competes truth. Therefore, 
encoding and decoding neural activity in NCIs does not need to 
perfectly track objective referents in the environment. Rather, key 
features inherent to network activity and environment can be used to 
guide sensory-motor feedback loops toward pre-defined goals. 

Decoding the activity of cultured neural networks involves 
the identification of signal features that can be exploited to define 
motor outputs (Tessadori et al., 2013). Individual voltage spikes, 
combinations of spikes (doublets, triplets), inter-spike intervals,  
bursts, and other patterns have been reported in the literatures 
(Tessadori et al., 2013); however, the evidence suggests that 
these discrete signal features do not necessarily contain sufficient 
information to drive improved performance (Tessadori et al., 
2013). Indeed, the whole signal may be greater than the sum of its  
parts. In one study, an in toto approach was used to extract the 
maximum information content from the unpartitioned signals of 
neural cultures which were transmitted first to an Artificial Neural 
Network (ANN) and then to a robot to perform a task (Pizzi et al., 
2009). The ANN’s precise computational strategies were obscured 
like a cognitive “black box”; however, it was clear that network 
activity could be decoded with high accuracy to perform robotic 
tasks. Whatever signal feature or combination of features enhanced 
performance was, in fact, present in the activity of the network 
even if it was recondite. Interestingly, the effect of the ANN was 
only apparent once the cells within the cultured neural network were 
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trained using sensory feedback. Which is to say, the information-
content of the embodied culture was only discernable by the ANN 
once it had been functionally mapped by learning processes driven 
by the NCI’s sensory feedback (Pizzi et al., 2009). 

One interpretation of this remarkable discovery is that neural 
ensembles make their own decodable meaning by learning processes 
that encode feedback as a representation of the extended environment. 
However, functionalized regions can be intentionally engineered into 
the network by defining “sensory” and motor” regions a priori as 
a function of space. For example, left and right halves or center-
surround organizations of the cultured neural networks can be 
programmed to pre-define sensory and motor regions (Tessadori  
et al., 2012). In principle, any geometry may provide the means of 
spatial encoding but there are likely quantitative limitations on the 
bases of spatial overlap and raw cell numbers. Nevertheless, there are 
two typical strategies that are currently used to encode information 
within embodied neural cultures as NCIs that display electrical 
activity—the first of which involves Spike-Timing Dependent 
Plasticity (STDP).

The theoretical foundation for STDP is rooted in Hebbian  
learning (Lobov et al., 2021; Roberts and Leen, 2010) where, as  
Donald Hebb described himself, “neurons that fire together, wire 
together”. Stated otherwise, when activity between pre- and post-
synaptic neurons becomes highly correlated or synchronous, the 
connections between them strengthens markedly. With STDP, it 
is possible to entrain synchronous activity within a neural circuit 
(Nowotny et al., 2003). Practically speaking, this involves an 
application of high-frequency stimuli—usually trains of pulsed 
voltage—to the network with frequencies greater or equal to 20 Hz. 
In simulations of Spiking Neural Networks (SNNs), STDP promotes 
the encoding of localized “negative” or “dangerous” stimuli in the 
environment to be avoided (Lobov et al., 2021). In experiments 
with cortical NCIs involving real-world mobile robot bodies, 20 Hz 
pulses were applied over a 2 second period to the side of the cortical 
network that was pre-defined as “sensory” and associated with the 
collision-side sensors of the mobile robot body (Novellino, 2007). 
The authors hypothesized that by strengthening synaptic connections 
among poorly correlated regions of the network, compensation as 
avoidance would be possible with training. Indeed, they observed 
short term plasticity associated with the STDP-type protocol  
with increased high frequency activity within the network that 
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modulated motor outputs for increased performance (Jimbo et al., 
1998). Similar results were reported using a similar technique with 
hippocampal rather than cortical cultures (Tessadori et al., 2012). 

The second technique, which is termed anti-STDP (anti-Hebbian), 
involves the weakening of presynaptic inputs to post-synaptic  
targets and is dependent upon strict timing constraints (Roberts 
and Leen, 2010). Rather than promoting “avoidance” anti-STDP 
promoted the localization of “positive” or “desirable” stimuli in SNNs  
(Lobov et al., 2021). One real-world application of STDP and anti-
STDP principles involves potentiating increased network response 
when the second of two injected stimuli are presented less than  
30 ms (> 33.3 Hz) apart (STDP) or depressed (anti-STDP) when  
they were 100–500 ms apart (2 Hz–10 Hz) (Shkolnik, 2003; Potter 
et al., 2004). In the context of NCIs, the goal of both STDP and  
anti-STDP is to change the network’s connective properties to reflect 
some feature of the environment informed by sensory feedback. 
Together, these techniques can be used to program NCIs with many 
possible applications.

4.  Cybernetic Organisms
Embodied cultures as NCIs are hybrid organisms composed of 
biological and artificial or electric components, which satisfy the 
classic definition of a cybernetic organism or “cyborg”. Steve M. 
Potter’s group’s hybrid robots or “hybrots”, developed at the George 
Institute of Technology, are among the most well-known cyborgs 
that have been developed. Among them, the Koala 6-wheeled  
rover (K-Team) is the most iconic. It can approach and track a  
second, randomly operated rover based on sensory feedback coded 
as short or long interspike intervals which maps the distance between 
the two robots (Potter et al., 2004; Shkolnik, 2003). Another notable 
hybrot is the MEART, which is a “semi-living artist” composed of  
a robotic arm controlled by 50,000 cultured neurons on an MEA  
that creates drawings with imaging feedback from a CCD camera 
(Bakkum et al., 2007; Potter et al., 2004). Both systems are based 
upon the same NCI principles involving cultured neural network 
monolayers on MEAs and can be trained to increase performance. As 
will now be discussed, a shift within the field is currently underway 
that will increase the complexity of NCIs with the potential to 
generate high-functioning cyborgs for cognitive research.
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5.  The 2D-3D Ttransition: Bioengineering  
Mini Brain Hybrots

Embodied NCIs have classically involved two-dimensional (2D) 
neural monolayers of dissociated cells from formerly living brains; 
however, in recent years there has been some effort to transition  
from 2D cell culture to three-dimensional (3D) neural tissue cultures. 
In particular, the replacement of monolayers with organotypic slice 
cultures has provided investigators with new potential directions  
for the construction of complex NCIs. For example, hybrots have  
been developed with thick (500 µm) neural slice preparations using 
custom multiphoton imaging systems (Rambani, 2007) and MEAs 
(Killian et al., 2016). Indeed, the development of convection-based 
superfusion techniques has enabled the long-term (e.g., weeks, 
months, years) sustainability of slice cultures that previously suffered 
from necrosis associated with poor nutrient and oxygen diffusion 
(Killian et al., 2016). Organotypic slice cultures contain defined 
circuits that are intrinsic to ontogeny, which means they display 
conserved microcircuitry with well-defined functions. 

The transition from monolayers to slice preparations is an 
exciting step forward for the field; however, slice cultures suffer 
from significant limitations that cannot simply be mitigated by the 
application of ever-more sophisticated culturing techniques. First 
and foremost, organotypic slice cultures are intrinsically damaged by 
dint of having been severed from their former efferent and afferent 
connections in the brain (Rouleau et al., 2021). This means that all 
connections that are directionally orthogonal to the injury plane are 
effectively lost and are not sufficiently plastic to re-integrate with 
surrounding tissues. Therefore, large sections of the tissues serve 
little or no function. Second, slices are derived from brains with 
pre-defined, functionalized brain regions. For example, a slice may 
contain motor and sensory cortices that were previously connected 
to descending or ascending tract systems within an animal body. 
In other words, neural networks within slice preparations are not 
experience-naïve in the same way dissociated cells are or are made to 
be– rather, they are fundamentally biased by a history of inputs and 
outputs that define the network’s synaptic connectome. Therefore, if 
the transition from 2D-to-3D tissues is to continue within the field, 
investigators must move away from slice preparations and toward 
more flexible systems that can be controlled and defined.
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Bioengineered 3D neural tissues are becoming increasingly 
accessible as tools for the cognitive sciences (Rouleau et al., 2021; 
Rouleau et al., 2021). Many “mini brain” models have been generated 
in recent years using bioprinting, spheroids, organoids, scaffold-based 
tissues, organ-on-a-chip configurations, and other 3D constructs 
(Gu, 2015; Rouleau et al., 2021). In general, 3D neural tissues are 
more physiologically relevant as they provide greater surface area 
for cell-cell interactions, increased cell density, and more realistic 
macro-scale signaling dynamics. Additionally, the composition of 3D 
neural tissues can be systematically controlled including the makeup 
of the extracellular matrix as well as the integration of cooperative 
cell types including vasculature for realistic perfusion of gases 
and small molecules. As measured by standard MEA technology, 
cortical organoids have displayed human-EEG-like oscillatory 
profiles which suggests stable network properties with synchronous 
activity can be generated in 3D mini brains (Trujillo et al., 2019). 
Paralleling advances in tissue culture, there has been a surge in novel 
3D MEA designs in the past 5 years with approaches that either 
incorporate embedded vertical arrays, protruding rods, sandwich-
type configurations, or conformal layering of electrodes (Choi et al., 
2021). It is predicted that complex 3D network features will soon 
become detectable, inspiring the next generation of 3D NCIs with 
applications in robotics and AI. 

Applied to investigations of embodied cognition, 3D NCIs are 
likely to provide increased physiological relevance and additional 
dimensions of complexity, control, tunability, and programmability. 
Indeed, as 3D bioengineered neural tissues become coupled with 
cybernetic bodies, the resulting cyborg hybrids could serve as the 
next generation of laboratory model systems with adapted behavioral 
paradigms for mini brain cognition experiments (Fig. 3). Some  
leading investigators have already designed and fabricated 3D 
neuromuscular organoids with and without spinal cord-like 
intermediates that generate motor responses as a function of mini 
brain network activity (Andersen et al., 2020; Bakooshli et al., 2019; 
Martins et al., 2020). Therefore, top-down motor control is already 
possible with 3D in vitro systems. Similarly, neural organoids with 
optic vesicles have been created that are sensitive to light (Gabriel  
et al., 2021); thus, sensory feedback is also possible. Now that 
the major pathway associated with voluntary movement—the 
corticospinal tract – has been recapitulated in vitro as a self-organizing 
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“assembloid” and investigators can already close the sensory-motor 
loop with purely biological substrates, there is little doubt that next-
generation 3D NCIs will match and even surpass these developments 
within years.

6.  Applications for Minimal Cognition Research
In 2021, Rouleauet al., published a review entitled Toward Studying 
Cognition in a Dish that discussed the future of embodied cultures 
in cognitive research. The authors argued that recapitulating higher-
order cognitive functions such as decision-making, abstract reasoning, 
and even consciousness in vitro would provide investigators with 
the means of reverse-engineering the “black box” of the mind. 
Because, unlike animal models and dissociated monolayer cultures, 
bioengineered neural tissues can be designed with limitless iterations 

Figure 3.  Embodying bioengineered 3D neural tissues for cognitive research. 
Organoids as well as scaffold-based and bioprinted 3D tissues equipped with 
cybernetic bodies will soon require adapted behavioral paradigms with applications 
in cognitive research. 3D NCIs and hybrots are anticipated as the next generation of 
model systems with which to assess mechanisms of cognition in the laboratory. This 

figure was created with BioRender.com.
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of unique cytoarchitectural organization and cell type composition, 
there is significant potential to identify fundamental substrate 
principles that are necessary or sufficient for cognitive function. 
Indeed, it was predicted that by adding and subtracting tissue 
elements, investigators would soon be able to elucidate and instruct a 
new causal model of neurocognition that transcends current standards 
of correlative functional anatomy. Even a capacity for consciousness 
may be identifiable by constructing embodied hybrid systems that are 
both experimentally flexible and subject to stimulus-response-based 
query. If consciousness is fundamentally a product of brain activity, 
the possibility of subjective experience in 3D neural tissues, that 
already display many neural correlates of consciousness including 
known EEG rhythms indicative of awareness, must be considered 
with some level of sincerity. However, the authors argued that before 
any such investigation could occur, it was first necessary to design 
appropriate interfaces with which to decode neural activity and 
translate it into motor responses with which to infer mental processes.

The first generation of adapted behavioral assays for 3D NCIs 
involving bioengineered neural tissues will likely center on learning 
and memory as well as comparatively simple displays of minimal 
cognition in hybrid systems. Currently, there are only a few examples 
of in vitro cognitive assays using 3D bioengineered neural tissues. 
One recent paper demonstrated that stimulation-induced habituation, 
which is a form of non-associative learning, was displayed by  
3D cortical networks (Rouleau et al., 2021). The networks also 
displayed spontaneous recovery, which indicates that the functional 
plasticity was short-term. However, as electronic interfaces become 
more accessible, many more demonstrations are to be expected. 
Subsequent developments of minimal cognitive research in vitro 
will likely borrow from the behaviorist tradition and involve highly 
operationalized procedures that involve decision-making-based 
outputs. Indeed, adapting classic operant chambers for in vitro work 
in general but 3D NCIs in particular would provide investigators 
with standardized means of assessing embodied cognitive task 
performance with quantifiable outcomes (Fig. 3). Since the tissues 
are highly modular, it may be possible to derive powerful laws, 
principles, and predictive patterns that underly intelligent systems 
and their decision-making operations. Of course, one distant but 
desirable goal would be to identify a subset of key elements that 
can explain subjective experience or consciousness in minimally 
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cognitive systems. With embodied 3D cultures, it may be possible 
to know what simple tissues can know by designing Turing tests for 
cyborgs. Interpreting results from any such test will require extreme 
caution; however, the prospect of building brains to think, behave, 
and experience is one that should arouse excitement in any cognitive 
scientist.

7.  Ethical and Legal Considerations
A sincere appreciation for the implications of potentially conscious 
embodied neural tissue preparations—bioengineered or otherwise— 
demands some consideration for ethical and legal issues. Krausová 
and Hazan (2017) broke ground in this area, discussing issues of 
liability in cases of hybrots causing damage to people or property, 
as well as the social and ethical impacts of general conflicts with 
cyborgs. The authors suggest that responsibility, which hinges on 
definitions of control and a capacity for moral decision-making, 
is a challenging concept when applied to AI and other non-human 
agents. In the case of hybrots, their creators or those who influence 
or determine their actions may be held responsible, but this will 
likely also depend upon the design of the system and its level of 
programmed autonomy. The freedom to overwrite rules, which is a 
feature of any cultured neural network capable of synaptic plasticity, 
will further complicate ethical and legal considerations. If a cyborg 
is programmed to write its own code or modify its neural networks, 
is the programmer ultimately responsible for the downstream 
consequences of the initial decision to forfeit control? Anticipating 
these technologies will eventually mature sufficiently to display 
human-level capabilities or surpass them, Krausová and Hazan 
(2017) suggest that it is reasonable to reserve the status of “electronic 
person” or “hybrid person” for hybrots and similar systems. Whether 
the locus of control is of a biological origin or not may be acritical 
determinant of personhood though a sufficiently advanced AI may 
equally qualify. Of course, the ability to harm hybrots and cyborgs or 
cause them to suffer will depend upon the presence of certain types of 
receptors (e.g., nociceptors), the ability to perceive or anticipate pain, 
a capacity for emotionality, a capacity for consciousness and self-
awareness, memory of traumatic events and other relevant factors. 
Designing cyborgs therefore represents an intrinsic ethical dilemma 
since elements can be added or omitted by the engineer a priori with 
some knowledge of the implications of each modification.
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