
SpringerBriefs in
Information Security and Cryptography

Kwangjo Kim

Practical Post-Quantum
Signatures
FALCON and SOLMAE
with Python

SpringerBriefs in Information Security
and Cryptography

Editor-in-Chief

Yang Xiang, Swinburne University of Technology, Melbourne, Australia

Series Editors

Liqun Chen , Department of Computer Science, University of Surrey, Guildford,
UK

Kim-Kwang Raymond Choo , Department of Information Systems, The Univer-
sity of Texas at San Antonio, San Antonio, USA

Sherman S. M. Chow , Chinese University of Hong Kong, Hong Kong, Hong
Kong

Robert H. Deng , Singapore Management University, Singapore, Singapore

Dieter Gollmann, FB 4-14, TU Hamburg-Harburg, Hamburg, Germany

Kuan-Ching Li, Department of Computer Science and Information Engineering,
Providence University, Taichung, Taiwan

Javier Lopez, University of Malaga, Malaga, Spain

Kui Ren, University at Buffalo, Buffalo, USA

Jianying Zhou , Singapore University of Technology and Design (SUTD),
Singapore, Singapore

https://orcid.org/0000-0003-2680-4907
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-0594-0432

The series aims to develop and disseminate an understanding of innovations,
paradigms, techniques, and technologies in the contexts of information and cyber-
security systems, as well as developments in cryptography and related studies.

It publishes concise, thorough and cohesive overviews of state-of-the-art topics in
these fields, as well as in-depth case studies. The series also provides a single point
of coverage of advanced and timely, emerging topics and offers a forum for core
concepts that may not have reached a level of maturity to warrant a comprehensive
monograph or textbook.

It addresses security, privacy, availability, and dependability issues, also welcom-
ing emerging technologies such as artificial intelligence, cloud computing, cyber
physical systems, and big data analytics related to cybersecurity research. Among
some core research topics:

Fundamentals and theories

• Cryptography for cybersecurity
• Theories of cybersecurity
• Provable security

Cyber Systems and Secure Networks

• Cyber systems security
• Network security
• Security services
• Social networks security and privacy
• Cyber attacks and defense
• Data-driven cyber security
• Trusted computing and systems

Applications and others

• Hardware and device security
• Cyber application security
• Human and social aspects of cybersecurity

Kwangjo Kim

Practical Post-Quantum
Signatures
FALCON and SOLMAE with Python

Kwangjo Kim
School of Computing
KAIST(Korea Advanced Institute for
Science and Technology) /IRCS
(International Research institute for Cyber
Security)
Daejeon, Korea (Republic of)

ISSN 2731-9555 ISSN 2731-9563 (electronic)
SpringerBriefs in Information Security and Cryptography
ISBN 978-3-031-81249-1 ISBN 978-3-031-81250-7 (eBook)
https://doi.org/10.1007/978-3-031-81250-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7

Preface

The current digital signature methods, such as RSA (Rivest-Shamir-Adleman),
DSA (Digital Signature Algorithm), and ECDSA (Elliptic Curve Digital Signature
Algorithm), are relatively straightforward in terms of mathematical understanding.
While the signing and verification processes differ depending on the key used,
the time required for these operations is nearly the same across these algorithms.
However, in the era of quantum computing, cryptographic methods must defend
against both current classical and future quantum attacks. Achieving this requires
a deeper understanding of algebraic geometry, lattice theory, Gaussian sampling,
and efficient polynomial computation techniques like FFT (Fast Fourier Transform)
and NTT (Number Theoretic Transform), which are crucial for most lattice-based
cryptosystems.

The FALCON algorithm, selected as a finalist in the NIST (National Institute
of Standards and Technology) Post-Quantum Cryptography (PQC) standardization
project after seven years of global evaluation, is a hash-and-sign digital signature
scheme based on the NTRU (N-th degree TRUncated polynomial) lattice problem,
within the GPV framework. Compared to other quantum-resistant signatures like
DILITHIUM and SPHINCS+, FALCON offers a significantly smaller combined size
for its public key and signature.

Following FALCON’s release, the SOLMAE algorithm was introduced in 2021.
Like FALCON, SOLMAE is another hash-and-sign scheme that operates within
the GPV (Genry Peikert Vaikuntanathan) framework but simplifies FALCON’s
complex signing process. Both FALCON and SOLMAE have been implemented
in Python, making them easier to understand and work with compared to other low-
level programming languages. To enhance understanding of their functionality, we
developed Python scripts that examine each algorithm step-by-step, breaking down
the results and the underlying mathematical concepts.

This monograph serves as an introductory or educational textbook for undergrad-
uate and graduate students, practitioners, engineers, and anyone interested in post-
quantum digital signatures. The material aims to present complex cryptographic
concepts in an accessible manner.

This monograph highlights:

v

vi Preface

• Clarity and Focus: The title clearly indicates that the book is about post-
quantum signatures, which is a critical and timely topic in the field of modern
cryptography.

• Practical Approach: The word Practical suggests that the book will focus
on hands-on, applicable knowledge, which is appealing to readers looking to
implement these cryptographic techniques.

• Specific Algorithms: Mentioning FALCON and SOLMAE directly in the title
highlights the specific post-quantum signature schemes covered, attracting read-
ers who are specifically interested in these algorithms.

• Programming Language: Including with Python informs readers that the book
will provide implementation examples or exercises using Python, which is a
popular language for such purposes.

YongIn, Republic of Korea Kwangjo Kim
December 2024

Acknowledgments

The author expresses his sincere gratitude to the volunteer group who designed
the initial version of SOLMAE. This group includes Mehdi Tibouchi, Alexandre
Wallet, Thomas Espitau, Akira Takahashi, and Yang Yu. The author is also grateful
to Seungki Kim and YeonJun Kim for their contributions to preparing the revised
specification of SOLMAE.

I would like to express my gratitude to my high school friends who accompanied
me and helped inspire the concept for this monograph in part while trekking Mont
Blanc for a week, starting in Chamonix, France, in August 2014.

I dedicate this monograph to my late parents, whose love and sacrifices laid the
foundation for my strength and resilience. Thanks to my wife, Nami Jang and my
family for their strong support. On the hill overlooking Seoksung Mt. in Yongin.

vii

Contents

1 Introduction . 1

2 Notations and Definition . 5

3 FALCON Algorithm . 11

4 SOLMAE Algorithm . 19

5 Basics of Python . 27

6 Checking FALCON with Python . 31

7 Checking SOLMAE with Python . 61

8 Concluding Remarks . 79

References . 81

Index . 85

ix

About the Author

Kwangjo Kim received his B.Sc. and M.Sc. degrees in Electronic Engineering
from Yonsei University, Korea, in 1980 and 1983, respectively, and his Ph.D.
from the Division of Electrical and Computer Engineering, Yokohama National
University, Japan, in 1991. From 1979 to 1997, he worked at the Electronics and
Telecommunications Research Institute (ETRI), serving as the Head of Coding
Section I. He has held various prestigious visiting positions, including Visiting
Professor roles at the Massachusetts Institute of Technology (MIT), the University
of California at San Diego (UCSD) in 2005, the Khalifa University of Science,
Technology, and Research (KUSTAR), UAE, in 2012, and the Bandung Institute
of Technology (ITB), Indonesia, in 2013. After retiring in August 2021 from the
Korea Advanced Institute of Science and Technology (KAIST), Korea, where he
had worked since 1998, Professor Kim has been serving as the President of the
International Research Institute for Cyber Security (IRCS, https://ircs.re.kr), a non-
profit organization approved by the Korean government. He is also an Emeritus
Professor at the School of Computing and the Graduate School of Information
Security at KAIST and the Honorary President of the Korea Institute of Infor-
mation Security and Cryptography (KIISC). Professor Kim has made significant
contributions to the field of cryptography. He served as a Board Member of the
International Association for Cryptologic Research (IACR) from 2000 to 2004 and
as Chairperson of the Asiacrypt Steering Committee from 2005 to 2008. He served
as the President of KIISC in 2009 and the Korean representative to IFIP TC-11 from
2017 to 2021. Recently he was appointed as Adjunct Faculty in the Department of
Electrical and Computer Engineering at Cleveland State University for the fiscal
years 2025 through 2028.

He was honored as the first Korean Fellow of the IACR for his contributions
to cryptographic design, education, and leadership, and for his exemplary service
to the IACR and the Asia-Pacific cryptographic community. In addition to his
leadership roles, Professor Kim served as General Chair for Asiacrypt 2020 (online)
and PQCrypto 2021 (hybrid), both held in Daejeon, Korea, including CHES2014 in
Busan, Korea, and Asiacrypt2004, Jeju Island, Korea, etc.

xi

https://ircs.re.kr
https://ircs.re.kr
https://ircs.re.kr
https://ircs.re.kr

xii About the Author

He coauthored with M.E. Aminanto, and H.C.Tanuwidjaja, Network Intrusion
Detection using Deep Learning – A Feature Learning Approach in 2018 and with
H.C. Tanuwidjaja Privacy-Preserving Deep Learning – A Comprehensive Survey in
2021, both published by Springer Briefs on Cyber Security Systems and Networks.

He was recognized as one of the World’s Top 2% Scientists by Stanford
University in 2023 and a key figure in the implementation of SOLMAE in Python,
a quantum-secure signature scheme that is faster and more efficient than FALCON,
which was selected as a FIPS standard by NIST in 2021. Professor Kim has an
H-index of 48 with 10,295 citations according to Google Scholar in 2024, and his
most cited paper is “ID-based blind signature and ring signature from pairings,”
coauthored with F. Zhang and presented at Asiacrypt 2002, which has been cited
814 times.

Professor Kim’s current research interests include cryptologic theory and prac-
tice, cybersecurity, and their applications, holding 10 international patents and 20
domestic patents.

For more details, please visit: https://caislab.kaist.ac.kr/kkj.

https://caislab.kaist.ac.kr/kkj
https://caislab.kaist.ac.kr/kkj
https://caislab.kaist.ac.kr/kkj
https://caislab.kaist.ac.kr/kkj
https://caislab.kaist.ac.kr/kkj
https://caislab.kaist.ac.kr/kkj

Acronyms

CRYSTALS CRYptographic SuiTe for Algebraic Lattices
DH Diffie Hellmam
DS Digital Signature
DSA Digital Signature Algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
FALCON FAst Fourier Lattice-based COmpact signatures over NTRU
FFT Fast Fourier Transform
FIPS Federal Information Processing Standard
GPV Gentry Peikert Vaikuntanathan
GSO Gram Schmidt Orthogonalization
KAT Known Answer Test
KEM Key Encapsulation Mechanism
NIST National Institute of Standards and Technology
NTRU Number Theory aRe Us or N-th degree TRUncated polynomial
NTT Number Theoretic Transform
PQC Post-Quantum Cryptography
RSA Rivest Shamir Adelmann
SAGA Statistically Acceptable GAussians
SOLMAE Secure algOrithm for Long-term Message Authentication and

Encryption

xiii

List of Algorithms

1 KeyGen of FALCON . 13
2 Sign of FALCON . 15
3 Compress . 16
4 Decompress . 16
5 Verif of FALCON . 17
6 KeyGen of SOLMAE . 22
7 Sign of SOLMAE . 24
8 Verif of SOLMAE . 25

xv

List of Figures

Fig. 3.1 Genealogic tree of FALCON . 12
Fig. 3.2 Flowchart of KeyGen for FALCON . 13
Fig. 3.3 Flowchart of Sign for FALCON . 15
Fig. 4.1 Overview of SOLMAE . 20
Fig. 4.2 Flowchart of KeyGen for SOLMAE . 21
Fig. 4.3 Flowchart of Sign for SOLMAE . 23
Fig. 5.1 Screen capture of Visual Studio Code . 29
Fig. 5.2 Installed packages in my PC environment . 30
Fig. 6.1 Output of test_split_and_merge() . 34
Fig. 6.2 phi16_roots used in Script 6.3 for FFT . 35
Fig. 6.3 Output of checking ftt.py . 37
Fig. 6.4 phi16_roots used in Script 6.6 for NTT . 39
Fig. 6.5 Output of checking ntt.py . 39
Fig. 6.6 Output of checking ntrugen.py . 40
Fig. 6.7 Output of six test cases . 42
Fig. 6.8 Description of parameters . 43
Fig. 6.9 Specific values of various parameters for both

FALCON-512 and FALCON-1024 . 44
Fig. 6.10 Output of test_samplerz . 45
Fig. 6.11 Comparison of generated random integers with ideal

Gaussian . 46
Fig. 6.12 Output of 5 ffnp() tests for FALCON-512 . 48
Fig. 6.13 Output of 5 ffnp() tests for FALCON-1024 . 49
Fig. 6.14 Three examples of key pairs and signature executing

FALCON-512 . 51
Fig. 6.15 Three examples of key pairs and signature executing

FALCON-1024 . 52
Fig. 6.16 Specification of my test computer used in test.py 52
Fig. 6.17 Time consumed in msec executing test.py . 59
Fig. 7.1 Output of solmae_params.py . 65
Fig. 7.2 Scatter plot of Unifcrown.py . 66

xvii

xviii List of Figures

Fig. 7.3 Scatter and QQ plots of checking N_sampler.py 68
Fig. 7.4 Sample output from executing Pairgen.py for

SOLMAE-512 . 70
Fig. 7.5 Sample output from executing Pairgen.py for

SOLMAE-1024 . 71
Fig. 7.6 Sample output by executing keygen.py for

SOLMAE-512 . 74
Fig. 7.7 Sample output by executing keygen.py for

SOLMAE-1024 . 74
Fig. 7.8 Two tests of keygen, sign and verify procedures of

SOLMAE-512 . 77
Fig. 7.9 Two tests of keygen, sign and verify procedures of

SOLMAE-1024 . 78

Chapter 1
Introduction

The history of cryptography began with simple substitution of plaintext letters, such
as the Caesar cipher [20]. During World War I and World War II, mechanical
encryption devices using such as multiple rotors were employed. The modern
cryptography has started from 1949 influenced by Shannon’s seminal paper entitled
as “Communication Theory of Secrecy Systems” [42].

The goal of modern cryptography is to secure information transmission, storage,
and processing through the Internet or other channels, protecting against illegal
eavesdropping, tampering, and forgery by unauthorized and malicious third parties.
This cryptography involves an encryption process that takes plaintext and a key as
inputs, and a decryption process that takes the ciphertext and a key as inputs to
produce a decrypted message identical to the original plaintext. If the same key is
used for both processes, it is called secret key or symmetric key cryptography. If
different keys are used, one of which is made public, the other kept in private (or
secret), it is called public key or asymmetric key cryptography.

Cryptography provides several security services, such as Confidentiality,
which ensures secure communication over a transmission medium or channel even
if a third party is eavesdropping. It also provides Authentication, which protects
against intentional tampering or forgery of messages by third parties, guaranteeing
message Integrity and including Identification, which distinguishes between legiti-
mate and illegitimate entities. Cryptology consists of both cryptography, the design
of cryptographic systems that are secure against various known attack methods, and
cryptanalysis, which seeks to discover secret information by using attack algorithms
and tools against publicly available data. Cryptographic designers must ensure that
their systems are secure not only against known attacks but also against future
attacks during the expected usage period. Cryptanalysts, on the other hand, use
the best available computers to exploit cryptographic vulnerabilities and statistical
properties to recover plaintext or secret keys from ciphertext within a feasible
timeframe. For example, an n-bit secret key encryption requires a search space
of O(2n)., and if this search space cannot realistically be explored with current

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1
https://doi.org/10.1007/978-3-031-81250-7_1

2 1 Introduction

technology, the cryptographic system is considered to be secure. Currently, the
minimum key size is 128 bits, and up to 256 bits is commonly used. NIST has
standardized AES-128 and AES-256 algorithms in FIPS 197 [31], which are widely
used globally.

On the other hand, public key cryptography was first devised in 1976 by Diffie
and Hellman(DH) [1] as a method where two parties who wish to communicate
publicly by exchanging public keys each other, and using their private keys, they
generate a shared secret known only to them.

The security of this DH method relies on the fact that it must be infeasible to
derive the private key from the public key, a problem known as the discrete logarithm
problem. To remain secure against digital computer attacks, the modulus used in DH
must be at least 2048 bits and can go up to 8192 bits.

In 1977, RSA (Rivest Shamir Adleman) [40] method extended the DH method
by proposing the RSA public key cryptosystem, which uses the product of two
large prime numbers for modular exponentiation in the encryption and decryption
processes. RSA’s security is based on the difficulty of the prime factorization
problem, and currently, modulus sizes range from 2048 bits to 8192 bits to ensure
security against digital attacks. In 1985 and 1987, Miller [29] and Koblitz [25]
simultaneously proposed a key exchange system using elliptic curves, which
reduces the modulus size of the DH method by a factor of six. This method is based
on the elliptic curve discrete logarithm problem, and key sizes currently range from
256 bits to 521 bits.

Public key cryptography systems like RSA method are categorized into two
types based on key usage: Key Encapsulation Mechanisms (KEM), used to securely
share a randomly generated session key, and Digital Signatures (DS), which ensure
message integrity. In KEM, a random session key is encrypted using the recipient’s
public key and decrypted using their private key to share the session key. In DS, the
sender (or signer) hashes the message to create a digest and then signs it using their
private key. The recipient (or verifier) verifies the signature using the public key. If
the verification matches, the message is accepted; otherwise, it is rejected. Thus, the
sender signs the message with a private key, while the recipient verifies the signature
with a public key. The current digital signature (DS) methods are categorized into
the hash-and-sign [14] method and the Fiat-Shamir-with-aborts [27] method.

The RSA-based signature method poses risks of forgery, so ElGamal [5]
proposed a probabilistic signature scheme based on the discrete logarithm problem.
NIST adopted this as a standard algorithm and defined the Digital Signature
Algorithm (DSA) in FIPS 186-4 [32], recommending a key size of at least 2048
bits. NIST also extended DSA to elliptic curves in FIPS 186-4 [32], establishing the
ECDSA algorithm, with key sizes ranging from 256 bits to 521 bits.

In 1999, Shor [43] proposed an efficient randomized algorithm on a hypothetical
quantum computer in 1999 to integer factorization and discrete logarithm problems
in a polynomial time. Building for the powerful computing environment at that
time was beyond imagination. Currently the threat of attacking the current (or
classical) secure system by using the quantum computer is expected to be right at
our fingertips due to the aggressive road map by IBM quantum computing [19].

1 Introduction 3

We are very concerned about so-called Harvest Now, Decrypt Later attack [45]
which is a surveillance strategy that relies on the acquisition and long-term
storage of currently unreadable encrypted data awaiting possible breakthroughs in
decryption technology that would render it readable in the future.

Due to the substantial amount of research on quantum computers, large-scale
quantum computers if built, can break many public-key cryptosystems based on
the number-theoretic hard problems in use. In 2016, NIST [37] has initiated Post
Quantum Cryptography (PQC) project to solicit, evaluate, and standardize one or
more quantum-resistant cryptographic algorithms for KEM and DS globally. After
several rounds, NIST has finally selected CRYSTALS-KYBER [41] for KEM and
CRYSTALS-DILITHIUM [28], FALCON [9]1 and SPHINCS+ [18] for DS in 2022.
The FIPS PUB standard of KYBER, DILITHIUM and SPHINCS+ are available at
[33, 34] and [35], respectively in 2024. As of writing this monograph, the FIPS
PUB standard of FALCON is under process.

Influenced by this NIST PQC project, Korean cryptographic society led by KpqC
task force [26] has called for soliciting Korean PQC candidates by the end of Oct. in
2022. By the due of submission, 7 candidates KEM and 8 candidates DS for KpqC
competition were submitted and their details are available at https://kpqc.or.kr/.

SOLMAE which stands for an acronym of quantum-Secure algOrithm for Long-
term Message Authentication and Encryption was submitted to KpqC Competition
as one of DS candidate algorithms which is a lattice-based signature scheme inspired
by several pioneering works based on the hash-then-sign signature paradigm
proposed by Gentry et al. [12]. SOLMAE is inspired from FALCON’s design. Some
of the new theoretical foundations were laid out in the presentation of MITAKA [7]
while keeping the security level of FALCON with 5 NIST levels of security I to
V. At a high level, SOLMAE removes the inherent technicality of the sampling
procedure, and most of its induced complexity from an implementation standpoint,
for free, that is with no loss of efficiency. This theoretical simplicity translates into
faster operations while preserving signatures and verification key sizes, on top of
allowing for additional features absent from FALCON, such as enjoying cheaper
masking and being parallelizable.

RSA and DH methods can be understood through number theoretic knowledge,
but to comprehend FALCON and SOLMAE in depth, not only is it necessary
to understand algebraic knowledge and Gaussian sampling techniques, but also
a foundational understanding of lattice theory and polynomial arithematics. Even
after reading the specifications for both signing methods, a significant amount
of mathematical background knowledge is required, making it difficult to grasp.
Since Python packages that implement both methods are publicly available, this
monograph minimizes the mathematical explanations and instead aims to help
anyone understand these two methods through Python scripts easily.

The organization of this monograph is as follows: In Chap. 2, we define our
notations and definition used in this monograph. In Chaps. 3 and 4, we overview

1 It stands for the acronym: Fast Fourier lattice-based compact signatures over NTRU.

https://kpqc.or.kr/
https://kpqc.or.kr/
https://kpqc.or.kr/
https://kpqc.or.kr/

4 1 Introduction

the specification of FALCON and SOLMAE including their keygen, signing and
verification procedures, respectively. After introducing the basics of Python and
how to set up your test environment over Windows OS in Chap. 5, we describe
how to perform the correctness of the common modules and functions, common.py,
fft.py, ntt.py, ntrugen.py and encoding.py both used in FALCON and
SOLMAE and check their correctness used only in FALCON, parameters.py,
samplerz.py, ffnp() in ffsampling.py, falcon.py and test.py in Chap. 6.
In Chap. 7, we describe the correctness of specific functions used in SOLMAE only
which include parameters.py, Unifcrwon.py, N_sampler.py, Parigen.py,
keygen.py and solmae.py by omitting the description of common modules used
for FALCON and SOLMAE.

Finally, we will give concluding remarks and suggest challenging issues in
Chap. 8.

Chapter 2
Notations and Definition

2.1 Matrices, Vectors, and Scalars

Matrices will usually be in bold uppercase (e.g., B.), vectors in bold lowercase
(e.g., v.), and scalars—which include polynomials—in italic (e.g. s). We use the
row convention for vectors. The transpose of a matrix B. may be noted Bt

.. The 𝓁2 .-

norm of a vector x = (x1, . . . , xd). is ‖x‖ = (∑
i |xi |2

)1/2
. and its 𝓁∞ .-norm is

‖x‖∞ = maxi |xi |.. It is to be noted that for a polynomial f , we do not use f '
. to

denote its derivative in this monograph.

2.2 Quotient Ring

Let Z. and N. denote a set of integers and a set of all numbers starting from 1,
respectively. Q. and R. denote a set of rational numbers and a set of real numbers,
respectively. For q ∈ N

×
., we denote by Zq . the quotient ring Z/qZ.. In FALCON

and SOLMAE, an integer modulus q = 12, 289. is prime, so Zq . is also a finite
field. We denote by Z

×
q . the group of invertible elements of Zq ., and by ϕ . Euler’s

totient function: ϕ(q) = |Z×
q | = q − 1 = 3 · 212

. since q is prime. The rings
Q[x]/(φ)., Z[x]/(φ)., and R[x]/(φ). where φ . is a monic minimal polynomial will
be interchangeably written as Q., Z., and KR ., respectively for the sake of our
convenience.

2.3 Number Fields

Let a = ∑d−1
i=0 aix

i
. and b = ∑d−1

i=0 bix
i
. be arbitrary elements of the number field

Q = Q[x]/(φ).. We note a∗
. and call (Hermitian) adjoint of a the unique element

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2
https://doi.org/10.1007/978-3-031-81250-7_2

6 2 Notations and Definition

of Q. such that for any root ζ . of φ ., a∗(ζ) = a(ζ)., where ·. is the usual complex
conjugation over C.. For φ = xd + 1., the Hermitian adjoint a∗

. can be expressed
simply:

.a∗ = a0 −
d−1⎲

i=1

aix
d−i (2.1)

We extend this definition to vectors and matrices: the adjoint B∗
. of a matrix B ∈

Qn×m
. (resp. a vector v.) is the component-wise adjoint of the transpose of B. (resp. v.):

.B =
⎾
a b

c d

⏋
⇔ B∗ =

⎾
a∗ c∗
b∗ d∗

⏋
(2.2)

2.4 Inner Product

The inner product 〈·, ·〉. over Q. and its associated norm ‖ · ‖. are defined as:

.〈a, b〉 = 1

deg(φ)

⎲

0<i≤d

ϕi(a) · ϕi(b) (2.3)

.‖a‖ = √〈a, a〉 (2.4)

These definitions can be extended to vectors: for u = (ui). and v = (vi). in Qm
.,

〈u, v〉 = ∑
i〈ui, vi〉.. For our choice of φ ., the inner product coincides with the usual

coefficient-wise inner product:

.〈a, b〉 =
⎲

0≤i<d

aibi; (2.5)

From an algorithmic point of view, computing the inner product or the norm is
most easily done using Eq. (2.3) if polynomials are in FFT representation, and using
Eq. (2.5) if they are in coefficient representation. By substituting b = a . in Eqs. (2.3)
and (2.5), we get

.‖ϕ(a)‖ = √
d · ‖a‖. (2.6)

where ‖ · ‖. is Euclidean norm. Since we know that

. ‖ϕ(a)‖ = √
2 · ‖(Re(ϕ1(a)), Im(ϕ1(a)), · · · Re(ϕd/2(a)), Im(ϕd/2(a)))‖,

(2.7)

2.7 NTRU Lattices 7

we get

.‖(Re(ϕ1(a)), Im(ϕ1(a)), · · · Re(ϕd/2(a)), Im(ϕd/2(a)))‖ =
/

d

2
· ‖a‖. (2.8)

If a ∈ KR . follows the d-dimensional standard normal distribution, it is known that

.(Re(ϕ1(a)), Im(ϕ1(a)), · · · Re(ϕd/2(a)), Im(ϕd/2(a))) follows Nd/2, (2.9)

whereNd/2 . denotes continuous Gaussian distribution with zero mean and d
2 ·Id .(i.e.,

Identity matrix) variance.

2.5 Lattice

A lattice is a discrete subgroup of Rn
.. Equivalently, it is the set of integer linear

combinations obtained from a basis B. of Rn
.. The volume of a lattice is det B. for

any of its basis.

2.6 Ring Lattices

For the rings Q = Q[x]/(φ). and Z = Z[x]/(φ)., positive integers m ≥ n., and a
full-rank matrix B ∈ Qn×m

., we denote by Λ(B). and call lattice generated by B., the
setZn ·B = {zB | z ∈ Zn}.. By extension, a set Λ. is a lattice if there exists a matrix
B. such that Λ = Λ(B).. We may say that Λ ⊆ Zm

. is a q-ary lattice if qZm ⊆ Λ..

2.7 NTRU Lattices

Let q be an integer, and f ∈ Z[x]/(xd + 1). such that f is invertible modulo q
(equivalently, det[f]. is coprime to q). Let h = g/f mod q . and consider the NTRU
module associated to h:

. MNTRU = {(u, v) ∈ K2
R

: hu − v = 0 mod q},

and its lattice version

.LNTRU = {(u, v) ∈ Z
2d : [h]u − v = 0 mod q}.

8 2 Notations and Definition

This lattice has volume qd
.. Over KR ., it is generated by (f, g). and any (F,G). such

that f G − gF = q .. For such a pair (f, g), (F,G)., this means that LNTRU . has a
basis of the form

. Bf,g =
⎾[f] [F]
[g] [G]

⏋
.

One checks that ([h],−Idd) · Bf,g = 0 mod q ., so the verification key is h. The
NTRU-search problem is : given h = g/f mod q ., find any (f ' = xif, g' = xig)..
In its decision variant, one must distinguish h = g/f mod q . from a uniformly
random h ∈ Rq := Z[x]/(q, xd + 1) = (Z/qZ)[x]/(xd + 1).. These problems
are assumed to be intractable for large d.

2.8 DFT Representation

For d = 2n
., we use φ(x) = xd + 1.. It is a monic polynomial of Z[x]., irreducible

in Q[x]. and with distinct roots over C.. Then ζj = exp(i(2j − 1)π/d). for
j = 1, 2, · · · d . are roots of φ(x).. For f = Σfix

i ∈ KR ., we define the coefficient
representation as f = (f0, f1, · · · fd−1). and Discrete Fourier Transform (DFT)
representation ϕ(f) = (ϕ1(f), · · · , ϕd(f))..

2.9 Discrete Gaussians

For σ,μ ∈ R. with σ > 0., we define the Gaussian function ρσ,μ . as ρσ,μ(x) =
exp(−|x−μ|2/2σ 2)., and the discrete Gaussian distribution DZ,σ,μ . over the integers
as:

.DZ,σ,μ(x) = ρσ,μ(x)
∑

z∈Z ρσ,μ(z)
(2.10)

The parameter μ. may be omitted when it is equal to zero.

2.10 Gram-Schmidt Orthogonalization

Any matrix B ∈ Qn×m
. can be decomposed as follows:

.B = L × B̃ (2.11)

2.11 LDL* Decomposition 9

where L. is lower triangular with 1’s on the diagonal, and the rows b̃i .’s of B̃. verify
〈b̃i , b̃j 〉 = 0. for i /= j .. When B. is full-rank, this decomposition is unique, and
it is called the Gram-Schmidt orthogonalization (or GSO). We also call the Gram-
Schmidt norm of B. the following value:

.‖B‖GS = max
b̃i∈B̃

‖b̃i‖ (2.12)

2.11 LDL* Decomposition

The LDL ∗ . decomposition writes any full-rank Gram matrix as a product LDL ∗ .,
where L ∈ Qn×n

. is lower triangular with 1’s on the diagonal, and D ∈ Qn×n
. is

diagonal. The LDL ∗ . decomposition and the GSO are closely related as for a basis B.,
there exists a unique GSO B = L · B̃., and for a full-rank Gram matrix G., there exists
a unique LDL ∗ . decomposition G = LDL∗

.. If G = BB∗
., then G = L · (B̃B̃∗) ·L∗

. is
a valid LDL ∗ . decomposition of G.. As both decompositions are unique, the matrices
L. in both cases are actually the same. In a nutshell:

. [L · B̃ is the GSO of B] ⇔ [L · (BB̃∗) · L∗ is the LDL∗ decomposition of (BB∗)].
(2.13)

The reason why we present both equivalent decompositions is that the GSO is
a more familiar concept in lattice-based cryptography, whereas the use of LDL ∗ .

decomposition is faster and therefore makes more sense from an algorithmic point
of view.

Chapter 3
FALCON Algorithm

3.1 Overview

Hoffstein et al. [16] suggested a new public-key cryptosystem based on a polynomial
ring in 1997 as an alternative to RSA and DH

whose difficulties are based on number-theoretic hard problems such as integer
factorization and discrete log problem, respectively. They founded the company
so-called as NTRU1 Cryptosystem with Lieman and initiated an open-source
lattice-based cryptography consisting of two algorithms: NTRUENCRYPT used for
encryption/decryption and NTRUSIGN used for digital signatures. Their security
relies on the presumed difficulty of factoring certain polynomials in a truncated
polynomial ring into a quotient of two polynomials having very small coefficients.

NTRUSIGN was designed based on the GGH signature scheme [13] which was
proposed in 1995 based on solving the Closest Vector Problem (CVP) in a lattice and
asymptotically is more efficient than RSA in the computation time for encryption,
decryption, signing, and verifying are all quadratic in the natural security parameter.
The signer demonstrates knowledge of a good basis for the lattice by using it to solve
CVP on a point representing the message; the verifier uses a bad basis for the same
lattice to verify that the signature under consideration is actually a lattice point and
is sufficiently close to the message point.

On the other hand, Min et al. [30] suggested a weak property of malleability of
NTRUSIGN using the annihilating polynomial from a given message and signature
pair to generate a valid signature. Nguyen and Regev [36] had cryptanalyzed
the original GGH signature scheme including NTRUSIGN in 2006 successfully
extracting secret information from many known signatures characterized by mul-

1 Number Theorists ‘R’ Us, or Number Theory Research Unit, or N-th degree TRuncated
polynomial Ring.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_3

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3
https://doi.org/10.1007/978-3-031-81250-7_3

12 3 FALCON Algorithm

tivariate optimization problems. Their experiments showed that 90,000 signatures
are sufficient to recover the NTRUSIGN-251 secret key.

In a nutshell, FALCON follows a framework introduced in 2008 by Gentry et
al. [12] which we call the GPV framework for short over the NTRU lattices and
uses a typically hash-and-sign paradigm. Their high-level idea is the following:

1. The public key is a long basis of a q-ary lattice.
2. The private key is (essentially) a short basis of the same lattice.
3. In the signing procedure, the signer:

(a) generates a random value, salt ;
(b) computes a target c = H(M||salt)., where H is a hash function sending input

to a random-looking point (on the grid);
(c) uses his knowledge of a short basis to compute a lattice point v. close to the

target c.;
(d) outputs (salt, s)., where s = c − v..

4. The verifier accepts the signature (salt, s). if and only if:

(a) the vector s is short;
(b) H(M||salt) − s. is a point on the lattice generated by his public key.

Only the signer should be able to efficiently compute v close enough to an
arbitrary target. This is a decoding problem that can be solved when a basis of
short vectors is known. On the other hand, anyone wanting to check the validity
of a signature should be able to verify lattice membership. The KeyGen, Sign and
Verif procedures for FALCON will be introduced briefly in the later Section by
restating the original specification as in [9]. Fig. 3.1 shows the genealogic tree of
FALCON. For details, the readers can refer to [9].

Fig. 3.1 Genealogic tree of FALCON

3.2 Key Generation of FALCON 13

3.2 Key Generation of FALCON

For the class of NTRU lattices, a trapdoor pair is (h,Bf,g). where h = f −1g,Bf,g .

is a trapdoor basis over LNTRU . and Pornin and Prest [38] showed that a completion
(F,G). can be computed in O(d log d). time from short polynomials f, g ∈ Z.. In
practice, their implementation is as efficient as can be for this technical procedure: it
is called NtruSolve in FALCON. Their algorithm only depends on the underlying
ring and has now a stable version for Z[x]/(xd + 1)., where d = 2n

..
Fig. 3.2 illustrates the flowchart of the key generation procedure for FALCON.

Algorithm 1 describes the pseudo-code for key generation of FALCON. Readers
can refer to Algorithms 5 and 6 in [9] for details on how to perform ntrugen
and ntrusolve, respectively. Additionally, Algorithms 8 and 9 in [9] explain the
procedures for LDL* and ffLDL*, respectively.

Fig. 3.2 Flowchart of KeyGen for FALCON

Algorithm 1 KeyGen of FALCON
Input: A monic polynomial φ ∈ Z[x], a modulus q
Output: A secret key sk, a public key pk
1: f, g, F, G ← NtruGen(φ, q) // Solving the NTRU equation

2: B ←
⎾

g −f
G −F

⏋
;

3: B̂ ← FFT(B) // Compute FFT for each {g,−f, G,−F}
4: G ← B̂ × B̂∗;
5: T ← ffLDL∗(G) // Compute the LDL* tree
6: for each leaf of T do
7: leaf.value ← σ/

√
leaf.value // Normalization step

8: sk ← (B̂, T);
9: h ← gf −1mod q;
10: pk ← h;
11: return sk, pk

14 3 FALCON Algorithm

3.3 Signing of FALCON

At a high level, the signing procedure in FALCON is at first to compute a hashed
value c ∈ Zq [x]/(φ). from the message, M and a salt r , then using the secret key,
f, g, F,G. to generate two short values (s1, s2). such that s1 + s2h = c mod q .. An
interesting feature is that only the first half of the signature (s1, s2). needs to be
sent along the message, as long as h is available to the verifier. This comes from
the identity hs1 = s2 mod q . defining these lattices, as we will see in the Verif
algorithm description.

The core of FALCON signing is to use ffSampling (Algorithm 11 in [9]) which
applies a randomizing rounding according to Gaussian distribution on the coefficient
of t = (t0, t1) ∈ (Q[x]/(φ))2 . stored in the FALCON Tree, T at the KeyGen
procedure of FALCON.

This fast Fourier sampling algorithm can be seen as a recursive version of Klein’s
well-known trapdoor sampler, but cannot be computed in parallel also known as
the GPV sampler. Klein’s sampler uses a matrix L. and the norm of Gram-Schmidt
vectors as a trapdoor while FALCON are using a tree of non-trivial elements in
such matrices. Note that Fouque et al. [10] suggested Gram-Schmidt norm leakage
in FALCON by timing side channels in the implementation of the one-dimensional
Gaussian samplers.

FALCON cannot output two different signatures for a message. This well-
known concern of the GPV framework can be addressed in several ways, for
example, making a stateful scheme or by hash randomization. FALCON chose
the latter solution for efficiency purposes. In practice, Sign adds a random “salt”
r ∈ {0, 1}k ., where k is large enough that an unfortunate collision of messages
is unlikely to happen, that is, it hashes (r||M). instead of M . A signature is then
sig = (r, Compress(s1))..

Fig. 3.3 and Algorithm 2 sketches the signing procedure for FALCON and shows
its pseudo-code for FALCON, respectively.

Readers can refer to Algorithm 11 in [9] for details on how to perform
ffsampling. SamplerZ illustrated at Algorithm 15 in [9], for given inputs μ. and
σ '

. in a certain range, outputs an integer z ∼ DZ,σ ',μ . in an isochronous manner.

3.3 Signing of FALCON 15

Fig. 3.3 Flowchart of Sign for FALCON

Algorithm 2 Sign of FALCON
Input: A message M ∈ {0, 1}∗, secret key sk, a bound γ .
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ‖(s1, s2)‖ ≤ γ .
1: r ← U({0, 1}320)
2: c ← HashToPoint(r||M, q, n)
3: t ← (− 1

q FFT(c) ⊙ FFT(F), 1
q FFT(c) ⊙ FFT(f)) // t = (FFT(c), FFT(0)) · B̂−1

4: do
5: do
6: z ← ffSamplingn(t,T)
7: s = (t − z)B̂ // At this point, s follows Gaussian distribution.
8: while ||s||2 > γ
9: (s1, s2) ← FFT-1(s)
10: s ← Compress(s2, 8 · sbytelen − 328) // Remove 1 byte for the header, and 40 bytes for

r
11: while(s = ⊥)
12: return (r, s)

3.3.1 Compress and Decompress Algorithms

The specification [9] of FALCON suggests encoding and decoding algorithms to
reduce the size of keys and signatures. For completeness, we provide a description

16 3 FALCON Algorithm

of the compression and decompression functions as depicted in Algorithms 3 and 4,
respectively. Note that slen = 8 · |sgn| − 320. by default where |sgn|. denotes the
signature size in bytes. The Compress and Decompress techniques are generic and
have no impact on the security level.

Algorithm 3 Compress
Input: A polynomial s = ∑d−1

i=0 siX
i ∈ R = Z[X]/(Xd + 1) and an integer slen.

Output: A compressed representation of str of s of bitsize slen, or ⊥
1: str ← {}
2: for i = 0 to d − 1 do
3: str ← (str || b) where b = 1 if si < 0, b = 0 otherwise;
4: str ← (str || b6b5 · · · b0) where bj = (|si | ⪢ j)&0x1;
5: k ← |si | ⪢ 7;
6: str ← (str || 0k1)
7: end for
8: if |str| > slen then
9: str ←⊥;
10: else
11: str ← (str || 0slen−|str|)
12: end if
13: return str

Algorithm 4 Decompress
Input: A bitstring str of bitsize slen
Output: A polynomial s = ∑d−1

i=0 siX
i ∈ R = Z[X]/(Xd + 1) or ⊥

1: if |str| /= slen then
2: return ⊥;
3: end if
4: for i = 0 to d − 1 do
5: s'

i ←
∑6

j=0 2
6−j str[1 + j];

6: k ← 0;
7: while str[8 + k] = 0 do
8: k ← k + 1
9: end while
10: si ← (−1)str[0] · (s'

i + 27k);
11: if si = 0 and str[0] = 1 then
12: return ⊥
13: end if
14: str ← str[9 + k :]
15: end for
16: if |str| /= 0|str| then
17: return ⊥;
18: end if
19: return s = ∑d−1

i=0 siX
i

3.4 Verification of FALCON 17

3.4 Verification of FALCON

The last step of the scheme is thankfully simpler to describe. Upon receiving a
signature (r, s). and message M , the verifier decompresses s. to a polynomial s1 . and
c = (0, H(r||M))., then wants to recover the full signature vector v = (s1, s2).. If v. is
a valid signature, the verification identity is (h,−1) · (c − v) = −H(r||M) − hs1 +
s2 mod q = 0., or equivalently the verifier can compute

. s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq ., and can be done very efficiently for a good
choice of modulus q using the Number Theoretic Transform (NTT). FALCON
currently follow the standard choice of q = 12, 289., as the multiplication in NTT
format amounts to d integer multiplications in Z/qZ.. The last step is to check that
‖(s1, s2)‖2 ≤ γ 2

.: the signature is only accepted in this case. The rejection bound
γ . comes from the expected length of vectors outputted by Sample described as
Algorithm 4 in [24].

Since they are morally Gaussian, they concentrate around their standard devi-
ation; a “slack” parameter τ = 1.042. is tuned to ensure that 90%. of the vectors
generated by Sample will get through the loop:

. γ = τ · σsig · √
2d.

Algorithm 5 shows the pseudo-code of verification procedure of FALCON.

Algorithm 5 Verif of FALCON
Input: A signature (r, s) on M , a public key pk = h, a bound γ .
Output: Accept or Reject.
1: s1 ← Decompress(s)
2: c ← H(r||M)
3: s2 ← c + hs1 mod q
4:
5: if ‖(s1, s2)‖2 > γ 2 then
6: return Reject.
7: else
8: return Accept.
9: end if

Chapter 4
SOLMAE Algorithm

4.1 Overview

Inspired by FALCON’s design, Espitau et al. presented so-called MITAKA [6] to
reduce some drawbacks of FALCON. At a high-level, it removes the inherent
technicality of the sampling procedure, and most of its induced complexity from
an implementation standpoint, for free, that is with no loss of efficiency. The
simplicity of our design translates into faster operations while preserving signature
and verification key sizes, in addition to allowing for additional features absent from
FALCON, such as enjoying less expensive masking, and being parallelizable. In
2023, Espitau et al. [8] suggested so-called ANTRAG in order to improve MITAKA

without loss of security covering all NIST level of security I to V using the degree
of cyclotomic ring from 512 to 1024 over specific cyclotomic polynomials under
the prime modulus but is not limited to the power of 2.

Taking all advantages of FALCON, MITAKA and ANTRAG, SOLMAE is yet
another quantum-safe signature based on NTRU trapdoor and achieves better
performance for the same security and advantages as FALCON which focused
only on NIST I and V levels of security. More precisely, SOLMAE offers the “best
of three worlds” between FALCON, MITAKA and ANTRAG. Overall, SOLMAE is
summarized in Fig. 4.1. For details on SOLMAE, refer to [24].

More details about all the objects mentioned in this section can be found later.
Here, we focus on the big lines behind our scheme’s principles, keeping details at a
minimum. While its predecessor FALCON could be summed up as “an efficient
instantiation of the GPV framework”, SOLMAE takes it one step further. The
ingredients behind the boxes in Fig. 4.1 are as follows:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_4

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4
https://doi.org/10.1007/978-3-031-81250-7_4

20 4 SOLMAE Algorithm

Fig. 4.1 Overview of SOLMAE

. An optimally tuned key generation algorithm, enhancing the security of our
new sampler to that of FALCON’s level;1

. The hybrid sampler is a faster, simpler, parallelizable and maskable Gaussian
sampler to generate signatures;

. Easy implementation by assembling all the advantages of MITAKA and
ANTRAG to make faster and simpler for practical purposes.

On the other hand, other techniques require tweaking the key generation and signing
procedures.

4.2 Key Generation of SOLMAE

An important concern here is that not all pairs (f, g), (F,G). gives good trapdoor
pairs for Sample described as Algorithm 4 in [24]. Schemes such as FALCON
and MITAKA solve this technicality essentially by sieving among all possible bases
to find the ones that reach an acceptable quality for the Sample procedure. This
technique is costly, and many tricks were used to achieve an acceptable KeyGen.
This sieving routine was bypassed by redesigning completely how good quality
bases can be found. This improves the running time of KeyGen and also increases
the security offered by Sample. In any case, note that NtruSolve’s running time
largely dominates the overall time for KeyGen: this is not avoidable as the basis
completion algorithm requires working with quite large integers and relatively high-
precision floating-point arithmetic.

At the end of the procedure, the secret key contains not only the secret basis but
also the necessary data for Sign and Sample. This additional information can be

1 This corresponds to the NIST-I and NIST-V requirements.

4.2 Key Generation of SOLMAE 21

represented by elements in KR . and is computed during or at the end of NtruSolve.
All-in-all, KeyGen outputs:

. sk = (b1 = (f, g),b2 = (F,G),~b2 = (~F, ~G),Σ1, Σ2, β1, β2)),

pk = (h, q, σsig, η),

where we recall that h = g/f mod q .. These parameters and a table of their practical
values are described more thoroughly in [24].

Informally, they correspond to the following:

. (f, g), (F, G). is a good basis of the lattice LNTRU . associated to h, with quality
Q(f, g) = α ., and ~b2 . is the Gram-Schmidt orthogonalization of (F,G). with
respect to (f, g).;

. σsig, η . are respectively the standard deviation for signature vectors, and a tight
upper bound on the “smoothing parameter of Zd

.”;
. Σ1, Σ2 ∈ KR . represent covariance matrices for two intermediate Gaussian

samplings in Sample;
. the vectors β1, β2 ∈ KR

2
. represent the orthogonal projections from KR

2
. onto

KR ·b1 . and KR ·~b2 . respectively. In other words, they act as “getCoordinates” for
vectors in KR

2
.. They are used by Sample and are precomputed for efficiency.

Algorithm 6 computes the necessary data for signature sampling, then outputs
the key pair. Note that NtruSolve could also compute the sampling data and the
public key, but for clarity, the pseudo-code gives these tasks to KeyGen of SOLMAE.
Fig. 4.2 sketches the key generation procedure of SOLMAE.

Fig. 4.2 Flowchart of KeyGen for SOLMAE

22 4 SOLMAE Algorithm

Algorithm 6 KeyGen of SOLMAE
Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F, G)) ∈ R2 of an NTRU lattice LNTRU with Q(f, g) = α;
1: while f is invertible modulo q do
2: b1 := (f, g) ← PairGen(q, α, R−, R+) // Secret basis computation between R− and R+
3: end while
4: b2 := (F, G) ← NtruSolve(q, f, g):
5: h ← g/f mod q // Public key data computation
6: γ ← 1.1 · σsig ·

√
2d // tolerance for signature length

7: β1 ← 1
〈b1,b1〉K

· b1 // Sampling data computation, in Fourier domain

8: Σ1 ←
/

σsig2

〈b1,b1〉K
− η2 .

9: ~b2 := (~F, ~G) ← b2 − 〈β1, b2〉 · b1
10: β2 ← 1

〈~b2,~b2〉K
·~b2 .

11: Σ2 ←
/

σsig2

〈~b2,~b2〉K
− η2 .

12: sk ← (b1, b2,~b2, Σ1, Σ2, β1, β2)
13: pk ← (q, h, σsig, η, γ)
14: return sk, pk

The function of two subroutines PairGen and NtruSolve are described below:

1. The PairGen algorithm generates d complex numbers (xj e
iθj)j≤d/2,

(yj e
iθj)j≤d/2 . to act as the FFT representations of two real polynomial f R, gR

.

in KR .. The magnitude of these complex numbers is sampled in a planar annulus
whose small and big radii are set to match a target Q(f, g). with UnifCrown [24].
It then finds close elements f, g ∈ Z. by round-off, unless maybe the rounding
error was too large. When the procedure ends, it outputs a pair (f, g). such that
Q(f, g) = α ., where α . depends on the security level.

2. NtruSolve is exactly Pornin and Prest’s algorithm and implementation [38]. It
takes as input (f, g) ∈ Z2

. and a modulus q, and outputs (F,G) ∈ Z2
. such that

(f, g), (F,G). is a basis of LNTRU . associated to h = g/f mod q .. It does so by
solving the Bézout-like equation f G−gF = q . in Z. using recursively the tower
of subfields for optimal efficiency.

4.3 Signing of SOLMAE

Recall that NTRU lattices live in R
2d

.. Their structure also helps to simplify the
preimage computation. Indeed, the signer only needs to compute m = H(M) ∈
R

d
., as then c = (0,m). is a valid preimage: the corresponding polynomials satisfy

(h, 1) · c = m..
As the same with Sign procedure of FALCON, an interesting feature is that only

the first half of the signature (s1, s2) ∈ LNTRU . needs to be sent along the message,

4.3 Signing of SOLMAE 23

Fig. 4.3 Flowchart of Sign for SOLMAE

as long as h is available to the verifier. This comes from the identity hs1 = s2 mod q .

defining these lattices, as we will see in the Verif algorithm description.2

Because of their nature as Gaussian integer vectors, signatures can be encoded to
reduce the size of their bit-representation. The standard deviation of Sample is large
enough so that the ⎿log

√
q⏌. least significant bits of one coordinate are essentially

random.
In practice, Sign adds a random “salt” r ∈ {0, 1}k ., where k is large enough that

an unfortunate collision of messages is unlikely to happen, that is, it hashes (r||M).

instead of M—our analysis in this regard is identical to FALCON. A signature is
then sig = (r, Compress(s1)). using Algorithm 3 stated in Sect. 3.3.1. SOLMAE
cannot output two different signatures for a message like FALCON which was
mentioned in Sect. 3.3.

Fig. 4.3 sketches the signing procedure of SOLMAE and Algorithm 7 shows
its pseudo-code. Z.-Sampler is equivalent to SamplerZ used in FALCON.
N.-Sampler (Algorithm 10 in [24]) refers to sampling from a Gaussian or normal
distribution. For PeikertSampler, see Algorithm 5 in [24].

2 The same identity can also be used to check the validity of signatures only with a hash of the
public key h, requiring this time send both s1 . and s2 ., but we will not consider this setting here.

24 4 SOLMAE Algorithm

Algorithm 7 Sign of SOLMAE
Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F, G), (~F, ~G), σsig, Σ1, Σ2, η), a

rejection parameter γ > 0.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ‖(s1, s2)‖ ≤ γ .
1: r ← U({0, 1}320)
2: c ← (0, H(r||M))
3: ĉ ← FFT(c)
4: while ‖(FFT-1(ŝ1),FFT-1(ŝ2))‖2 ≤ γ 2 do
5: (ŝ1, ŝ2) ← ĉ − Sample(ĉ, sk) // (s1, s2) ← DLNTRU,c,σsig .
6: end while
7: s1 ← FFT-1(ŝ1)
8: s ← Compress(s1)
9: return (r, s)

4.4 Verification of SOLMAE

The last step of the scheme is thankfully simpler to describe as shown in Algo-
rithm 8. Upon receiving a signature (r, s). and message M , the verifier decompresses
s to a polynomial s1 . and c = (0, H(r||M)). to recover the full signature vector
v = (s1, s2).. If v. is a valid signature, the verification identity is (h,−1) · (c − v) =
−H(r||M) − hs1 + s2 mod q = 0., or equivalently the verifier can compute

. s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq ., and can be performed very efficiently for a good
choice of modulus q using the Number Theoretic Transform (NTT). We currently
follow the standard choice (as in FALCON) of q = 12,289., as the multiplication in
NTT format amounts to d integer multiplications in Z/qZ.. The last step is to check
that ‖(s1, s2)‖2 ≤ γ 2

.: the signature is only accepted in this case.
The rejection bound γ . comes from the expected length of vectors outputted by

Sample. Since they are morally Gaussian, they concentrate around their standard
deviation; a “slack” parameter τ = 1.042. is tuned to ensure that 90%. of the vectors
generated by Sample will pass through the loop:

.γ = τ · σsig · √
2d.

4.4 Verification of SOLMAE 25

Algorithm 8 Verif of SOLMAE
Input: A signature (r, s) on M , a public key pk = h, a bound γ .
Output: Accept or reject.
1: s1 ← Decompress(s);
2: c ← H(r||M);
3: s2 ← c + hs1 mod q;
4: if ‖(s1, s2)‖2 > γ 2 then
5: return Reject.
6: else
7: return Accept.
8: end if

Chapter 5
Basics of Python

5.1 Python Programming Language

Python Programming Language, simply Python, is a high-level, interpreted pro-
gramming language known for its simplicity and readability. Created by Guido van
Rossum in the late 1980s, Python has become one of the most popular programming
languages, used across various domains, including web development, scientific
computing, data analysis, artificial intelligence, and more.

1. Key Features:

• Clear and Readable Syntax: Python’s simple, easy-to-learn syntax emphasizes
readability, making it an excellent choice for beginners and reducing the cost
of program maintenance.

• Dynamic Typing and Binding: These features allow Python to be highly
flexible and suitable for rapid application development.

• Modularity and Code Reuse: Python supports modules and packages, encour-
aging program modularity and code reuse.

• Extensive Standard Library: Python comes with a vast standard library,
providing tools and functionalities for virtually every task, with additional
third-party modules available.

• Cross-Platform: Python code can run on different platforms without modifi-
cation, making it highly portable. Multiple Programming Paradigms: Python
supports object-oriented, procedural, and functional programming styles,
allowing developers to choose the best approach for their project.

• Exception-Based Error Handling: Python handles errors by raising excep-
tions, which makes debugging easier. A source-level debugger allows inspec-
tion of variables, setting breakpoints, and stepping through code.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_5

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5
https://doi.org/10.1007/978-3-031-81250-7_5

28 5 Basics of Python

• Embeddable: Python can be embedded within applications as a scripting
interface, adding flexibility to larger systems. Extensibility: Python can be
extended with modules written in C, C++, Java (for Jython), or .NET
languages (for IronPython).

2. Productivity: Python’s fast edit-test-debug cycle enhances productivity. Since
there is no compilation step, developers can quickly iterate on their code.
Debugging is straightforward, and Python’s introspective capabilities allow
developers to inspect and manipulate objects at runtime.

3. Popular Frameworks and Libraries:

• Web Development: Flask and Django are popular frameworks for building
web applications.

• Scientific Computing and Data Analysis: NumPy and Pandas are widely used
for data manipulation and analysis.

• Artificial Intelligence and Machine Learning: Libraries like TensorFlow,
Keras, and PyTorch make Python a popular choice in AI/ML domains.

In conclusion, Python’s simplicity, flexibility, and extensive library support make
it a powerful language for a wide range of tasks, appealing to both beginners and
experienced developers alike.

5.2 Python Environment for Windows OS

You can download Visual Studio Code (or your favourable IDE application)
for your platform-Windows OS 10 or 11, Debian, Ubuntu, or macOS 10.15+—
from https://code.visualstudio.com/download. The installation process is straight-
forward; simply follow the provided instructions. Similarly to set up Visual
Studio Code, unzip the VSCode-win32-arm64-1.92.2.zip archive (unpacked
size: 391,456,013 bytes) and install it in your desired folder at your computer. It
is convenient to install WSL (Windows Subsystem for Linux) at your personal
computer working Windows OS to verify your program working Windows and
Unix OS’s at one platform. WSL allows developers to use Linux command-line
tools and utilities alongside Windows applications, making it easier to work in a
Linux environment for tasks such as software development, system administration,
and more, without leaving Windows ecosystem. It is better to install WSL 2.0
which was introduced in 2019 and offers better compatibility with Linux software,

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

5.3 Useful Python Packages 29

Fig. 5.1 Screen capture of Visual Studio Code

faster file I/O performance, and full system call compatibility. For Unix or MacOS
platform, it is also easy to set up Python environment. Fig. 5.1 shows the execution
screen of Visual Studio Code on Windows 10. The leftmost window displays the
file folder information, the upper-right window shows the editing screen for the
selected executable file, and the lower-right window displays the execution terminal.
In this screen, the file test_merge_and_split.py is being run with Python
3.8.9, and the lower-right window shows the execution results by displaying its
outcome of five test cases. Its details are described at Sect. 6.1.1. This setup makes
it incredibly convenient to edit and execute your Python scripts directly on your
personal computer.

5.3 Useful Python Packages

To view the necessary packages installed, use the command pip install list in
Microsoft Visual Studio Code, which will display the installed packages, as shown
in Fig. 5.2. For example, you may need to install packages such as numpy.

30 5 Basics of Python

Fig. 5.2 Installed packages in my PC environment

Chapter 6
Checking FALCON with Python

https://github.com/tprest/falcon.py contains an implementation of the FALCON
post-quantum cryptographic signature scheme in Python at github repository. This
repository contains the following files (roughly in order of dependency):

1. common.py contains shared functions and constants
2. encoding.py contains compression and decompression
3. rng.py implements a ChaCha20-based PRNG, useful for KATs (standalone)
4. samplerz.py implements a Gaussian sampler over the integers (standalone)
5. fft_constants.py contains precomputed constants used in the FFT
6. ntt_constants.py contains precomputed constants used in the NTT
7. fft.py implements the FFT over R[x]/(xn + 1).
8. ntt.py implements the NTT over Zq [x]/(xn + 1).
9. ntrugen.py generate polynomials f, g, F,G. in Z[x]/(xn + 1). such that f ·

G − g · F = q .

10. ffsampling.py implements the fast Fourier sampling algorithm
11. falcon.py implements FALCON
12. test.py implements tests to check that everything is properly implemented

Under ..\scripts folder contains some files that are helpful to implement
FALCON, test it and understand where parameters/constants come from. This
repository contains the following files:

1. generate_constants.sage can be used in SageMath to generate the FFT and
NTT constants.

2. parameters.py is a script that generates parameters used in the Round 3
specification as well as the C implementation.

3. saga.py contains the SAGA (Statistically Acceptable GAussians) test [17] suite
to test Gaussian samplers. It is used in test.py.

4. samplerz_KAT512.py and samplerz_KAT1024.py contain test vectors for the
sampler over the integers. They are used in test.py.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_6

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 6&domain=pdf
https://github.com/tprest/falcon.py
https://github.com/tprest/falcon.py
https://github.com/tprest/falcon.py
https://github.com/tprest/falcon.py
https://github.com/tprest/falcon.py
https://github.com/tprest/falcon.py
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6
https://doi.org/10.1007/978-3-031-81250-7_6

32 6 Checking FALCON with Python

5. sign_KAT.py contains test vectors for the signing procedure. It is used in
test.py.

To execute generate_constants.sage, familiarity with the SageMath pro-
gramming language (https://www.sagemath.org) is required, which is beyond the
scope of this monograph. For further details, please consult the appropriate refer-
ences.

6.1 Utility Modules for FALCON

6.1.1 Checking common.py

The Python script in Script 6.1 is commonly used in other Python scripts when
implementing FALCON or SOLMAE. The modular value q is fixed at 12,289
but can be adjusted based on your specific application. Since FALCON employs
polynomial arithmetic, the script enables splitting a polynomial into two equal
parts and merging them back into a single polynomial, as shown in Script 6.1. The
sqnorm(v) definition in common.py is not required for this test.

1 """Contains methods and objects which are reused through
multiple files."""

2 """q is the integer modulus which is used in Falcon."""
3 q = 12 * 1024 + 1
4 def split(f):
5 """Split a polynomial f in two polynomials.
6 Args:
7 f: a polynomial
8 Format: coefficient
9 """

10 n = len(f)
11 f0 = [f[2 * i + 0] for i in range(n // 2)]
12 f1 = [f[2 * i + 1] for i in range(n // 2)]
13 return [f0, f1]
14 def merge(f_list):
15 """Merge two polynomials into a single polynomial f.
16 Args:
17 f_list: a list of polynomials
18 Format: coefficient
19 """
20 f0, f1 = f_list
21 n = 2 * len(f0)
22 f = [0] * n
23 for i in range(n // 2):
24 f[2 * i + 0] = f0[i]
25 f[2 * i + 1] = f1[i]
26 return f
27 def sqnorm(v):
28 """Compute the square euclidean norm of the vector v."""

https://www.sagemath.org
https://www.sagemath.org
https://www.sagemath.org
https://www.sagemath.org

6.1 Utility Modules for FALCON 33

29 res = 0
30 for elt in v:
31 for coef in elt:
32 res += coef ** 2
33 return res

Script 6.1 Script of test_split_and_merge()

To verify the correctness of the split(f) and merge(f_list) functions
shown in Script 6.1, you can run the test Python script provided in Script 6.2.
This script checks four test cases with varying polynomial degrees to ensure
proper functionality. The Python script can be executed in your environment as
test_split_and_merge() function runs automatically under
if __name__ == "__main__":.

1 def test_split_and_merge():
2 # Test case 1: Polynomial with even number of coefficients
3 f1 = [3, 2, 1, 4, 5, 6] # Represents 3x^5 + 2x^4 + 1x^3 +

4x^2 + 5x +6
4 split_f1 = split(f1)
5 merged_f1 = merge(split_f1)
6 print("Test 1 - Original:", f1, "-> Split:", split_f1 , "->

Merged:", merged_f1)
7 # Check if merged is equal to original
8 assert f1 == merged_f1 , "Test 1 failed: Merged one does not

match the original"
9 # Test case 2: Polynomial with odd number of coefficients

10 f2 = [4, 2, 5, 7, 9, 11] # Represents 4x^5 + 2X^4+ 5x^3 +
7x^2 + 9x + 11

11 split_f2 = split(f2)
12 merged_f2 = merge(split_f2)
13 print("Test 2 - Original:", f2, "-> Split:", split_f2 , "->

Merged:", merged_f2)
14 # Check if merged is equal to original
15 assert f2 == merged_f2 , "Test 2 failed: Merged one does not

match the original"
16 # Test case 3: Polynomial with minimal length
17 f3 = [1, 2] # Represents 1x + 2
18 split_f3 = split(f3)
19 merged_f3 = merge(split_f3)
20 print("Test 3 - Original:", f3, "-> Split:", split_f3 , "->

Merged:", merged_f3)
21 # Check if merged is equal to original
22 assert f3 == merged_f3 , "Test 3 failed: Merged one does not

match the original"
23 # Test case 4: Empty polynomial
24 f4 = [] # Represents an empty polynomial
25 split_f4 = split(f4)
26 merged_f4 = merge(split_f4)
27 print("Test 4 - Original:", f4, "-> Split:", split_f4 , "->

Merged:", merged_f4)
28 # Check if merged is equal to original

34 6 Checking FALCON with Python

29 assert f4 == merged_f4 , "Test 4 failed: Merged one does not
match the original"

30 print("All tests passed!")
31 if __name__ =="__main__":
32 # Run the test case function
33 test_split_and_merge()

Script 6.2 test_split_and_merge.py

Fig. 6.1 Output of test_split_and_merge()

After executingtest_split_and_merge_test.py as shown in Script 6.2, the
result obtained are displayed in Fig. 6.1. These results indicate that all four cases
are working correctly by splitting and merging a given polynomial.

6.1.2 Checking fft.py

In order to perform FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier
Transform), which reduce the complexity of polynomial multiplication from O(n2).,
as in the schoolbook method, to O(n log n)., we need to split and merge polynomials
with real and complex values shown in Script 6.3 that we have once finished to check
before.

1 def split_fft(f_fft):
2 """Split a polynomial f in two polynomials.
3 Args:
4 f: a polynomial
5 Format: FFT
6 Corresponds to algorithm 1 (splitfft_2) of Falcon’s

documentation.
7 """
8 n = len(f_fft)
9 w = roots_dict[n]

10 f0_fft = [0] * (n // 2)
11 f1_fft = [0] * (n // 2)
12 for i in range(n // 2):
13 f0_fft[i] = 0.5 * (f_fft[2 * i] + f_fft[2 * i + 1])
14 f1_fft[i] = 0.5 * (f_fft[2 * i] - f_fft[2 * i + 1]) *

w[2 * i].conjugate()

6.1 Utility Modules for FALCON 35

15 return [f0_fft, f1_fft]
16

17 def merge_fft(f_list_fft):
18 """Merge two or three polynomials into a single polynomial f.
19 Args:
20 f_list: a list of polynomials
21 Format: FFT
22 Corresponds to algorithm 2 (mergefft_2) of Falcon’s

documentation.
23 """
24 f0_fft, f1_fft = f_list_fft
25 n = 2 * len(f0_fft)
26 w = roots_dict[n]
27 f_fft = [0] * n
28 for i in range(n // 2):
29 f_fft[2 * i + 0] = f0_fft[i] + w[2 * i] * f1_fft[i]
30 f_fft[2 * i + 1] = f0_fft[i] - w[2 * i] * f1_fft[i]
31 return f_fft

Script 6.3 Functions of splitting and merging polynomials for fft.py

Fig. 6.2 phi16_roots used in Script 6.3 for FFT

To run Script 6.3 correctly, we need to call the computed list of the roots of
phi_16 of x^8+1 for FFTwhich was precomputed by generate_constants.sage
and stored at a part of fft_constants.py shown as Fig. 6.2.

Script 6.4 presents the FFT and IFFT functions, which use merge_fft(),
split_fft(), and other related functions to convert real numbers in the time
domain into complex numbers in the frequency domain recursively, and vice versa.

1 def fft(f):
2 """Compute the FFT of a polynomial mod (x ** n + 1).
3 Args: f: a polynomial
4 Format: input as coefficients , output as FFT
5 """
6 n = len(f)
7 if (n > 2):
8 f0, f1 = split(f)

36 6 Checking FALCON with Python

9 f0_fft = fft(f0)
10 f1_fft = fft(f1)
11 f_fft = merge_fft([f0_fft, f1_fft])
12 elif (n == 2):
13 f_fft = [0] * n
14 f_fft[0] = f[0] + 1j * f[1]
15 f_fft[1] = f[0] - 1j * f[1]
16 return f_fft
17

18 def ifft(f_fft):
19 """Compute the inverse FFT of a polynomial mod (x ** n + 1).
20 Args: f: a FFT of a polynomial
21 Format: input as FFT, output as coefficients
22 """
23 n = len(f_fft)
24 if (n > 2):
25 f0_fft, f1_fft = split_fft(f_fft)
26 f0 = ifft(f0_fft)
27 f1 = ifft(f1_fft)
28 f = merge([f0, f1])
29 elif (n == 2):
30 f = [0] * n
31 f[0] = f_fft[0].real
32 f[1] = f_fft[0].imag
33 return f

Script 6.4 Python functions used in fft.py

Script 6.5 presents a test program to verify the correct functioning of the FFT
and IFFT implementations shown in Script 6.4.

1 from fft import fft,ifft
2 import numpy as np
3 def test_fft_ifft():
4 # Define a polynomial of degree 8 (which has 9 coefficients)
5 poly = [1, 2, 3, 4, 5, 6, 7, 8]
6 print("\nBefore FFT:")
7 print(np.array(poly))
8 # Perform FFT
9 fft_result = fft(poly)

10 print("\nFFT Result:")
11 print(np.array(fft_result))
12 # Perform IFFT
13 ifft_result = ifft(fft_result)
14 print("\nIFFT Result:")
15 print(np.array(ifft_result))
16 # Check if IFFT result is close to original polynomial
17 is_close = np.allclose(poly, ifft_result)
18 print("\nTest passed:", is_close)
19 if __name__ =="__main__":
20 # Run the test
21 test_fft_ifft()

Script 6.5 Test program for fft.py

6.1 Utility Modules for FALCON 37

Fig. 6.3 Output of checking ftt.py

Fig. 6.3 presents an example output from the test program, demonstrating the
correct functionality of both FFT and IFFT.

6.1.3 Checking ntt.py

Similarly to the FTT, the Number Theoretic Transform (NTT) and its inverse
(INTT) perform various operations on polynomials in the number domain, utilizing
modular arithmetic. The implementation details of these operations can be found in
the ntt.py and ntt_constants.py files within the FALCON Python package.
Script 6.6 illustrates the operation of the NTT and INTT, utilizing modular
arithmetic. It also includes a test program to verify their correctness. Fig. 6.5
presents a test example to verify the correct functioning of the NTT and INTT.

1 from common import split, merge, q
2 from ntt_constants import roots_dict_Zq , inv_mod_q
3 import numpy as np
4 i2 = 6145 # modular inverse of 2 for a given q
5 sqr1 = roots_dict_Zq[2][0]
6 def split_ntt(f_ntt):
7 """Split a polynomial f in two or three polynomials."""
8 n = len(f_ntt); w = roots_dict_Zq[n]
9 f0_ntt = [0] * (n // 2); f1_ntt = [0] * (n // 2)

10 for i in range(n // 2):
11 f0_ntt[i] = (i2 * (f_ntt[2 * i] + f_ntt[2 * i + 1])) % q
12 f1_ntt[i] = (i2 * (f_ntt[2 * i] - f_ntt[2 * i + 1]) *

inv_mod_q[w[2 * i]]) % q
13 return [f0_ntt, f1_ntt]
14 def merge_ntt(f_list_ntt):
15 """Merge two or three polynomials into a single

polynomial."""
16 f0_ntt, f1_ntt = f_list_ntt

38 6 Checking FALCON with Python

17 n = 2 * len(f0_ntt); w = roots_dict_Zq[n]
18 f_ntt = [0] * n
19 for i in range(n // 2):
20 f_ntt[2 * i] = (f0_ntt[i] + w[2 * i] * f1_ntt[i]) % q
21 f_ntt[2 * i + 1] = (f0_ntt[i] - w[2 * i] * f1_ntt[i]) % q
22 return f_ntt
23 def ntt(f):
24 """Compute the NTT of a polynomial."""
25 n = len(f)
26 if n > 2:
27 f0, f1 = split(f)
28 f0_ntt = ntt(f0); f1_ntt = ntt(f1)
29 f_ntt = merge_ntt([f0_ntt, f1_ntt])
30 elif n == 2:
31 f_ntt = [0] * n
32 f_ntt[0] = (f[0] + sqr1 * f[1]) % q
33 f_ntt[1] = (f[0] - sqr1 * f[1]) % q
34 return f_ntt
35 def intt(f_ntt):
36 """Compute the inverse NTT of a polynomial."""
37 n = len(f_ntt)
38 if n > 2:
39 f0_ntt, f1_ntt = split_ntt(f_ntt)
40 f0 = intt(f0_ntt); f1 = intt(f1_ntt)
41 f = merge([f0, f1])
42 elif n == 2:
43 f = [0] * n
44 f[0] = (i2 * (f_ntt[0] + f_ntt[1])) % q
45 f[1] = (i2 * inv_mod_q[1479] * (f_ntt[0] - f_ntt[1])) % q
46 return f
47 def test_ntt_intt():
48 """Test NTT and INTT functions for correctness."""
49 import random
50 n = 8 # Random polynomials of length 8 (a power of 2)
51 f = [random.randint(0, q-1) for _ in range(n)]
52 print("\nBefore NTT:"); print(np.array(f))
53 # Compute NTT and then INTT
54 f_ntt = ntt(f)
55 print("\nNTT Result:"); print(np.array(f_ntt))
56 f_intt = intt(f_ntt)
57 print("\nINTT Result:"); print(np.array(f_intt))
58 # Check if the INTT of NTT is the original polynomial
59 assert f == f_intt, f"Test failed: {f} != {f_intt}"
60 print(f"\nTest passed.")
61 if __name__ =="__main__":
62 # Run the test
63 test_ntt_intt()

Script 6.6 Test script for ntt.py

To run Script 6.6 correctly, we need to call the computed list of the roots of
phi_16 of x^8+1_Z for NTTwhich was precomputed by generate_constants.
sage and stored at a part of ntt_constants.py shown as Fig. 6.4.

6.1 Utility Modules for FALCON 39

Fig. 6.4 phi16_roots used in Script 6.6 for NTT

Fig. 6.5 Output of checking ntt.py

6.1.4 Checking ntrugen.py

To generate a private signing key, two randomly generated polynomials, f and g
are required. From these polynomials, two additional polynomials, F and G are
derived using the extended Euclidean algorithm under the modulus q. This process
is implemented in the function ntrugen.py, which is provided in part of the
FALCON Python package. To verify the correctness of ntrugen.py, we developed
a Python test script as illustrated in Script 6.7. This step can sometimes be time-
consuming.

1 from common import q
2 from fft import sub
3 from ntrugen import karamul, ntru_gen
4 import numpy as np
5 def polynomial_mod(a, mod):
6 n = len(mod)
7 result = np.polydiv(a, mod)[1]
8 return np.round(result).astype(int).tolist()
9 def check_ntru_properties(f, g, F, G, q):

10 n = len(f)
11 x_n_plus_1 = [0] * (n + 1)
12 x_n_plus_1[0] = 1; x_n_plus_1[n] = 1
13 fG = karamul(f, G); gF = karamul(g, F)
14 fG_minus_gF = sub(fG, gF)
15 print("fG_minus_gF:")
16 print(np.array(fG_minus_gF))
17 mod_result = polynomial_mod(fG_minus_gF , x_n_plus_1)
18 q_poly = [q] + [0] * (n-1)
19 return mod_result == q_poly
20 def test_ntru_gen(n):
21 """Test the ntru_gen function."""

40 6 Checking FALCON with Python

22 # Generate polynomials
23 f, g, F, G = ntru_gen(n)
24 print("f:"); print(np.array(f))
25 print("g:"); print(np.array(g))
26 print("F:"); print(np.array(F));
27 print("G:"); print(np.array(G));
28 # Check if f and g are non-zero
29 if all(coef == 0 for coef in f) or all(coef == 0 for coef in

g):
30 raise AssertionError("Generated polynomials f or g are

zero.")
31 # Check if the NTRU property is satisfied
32 if not check_ntru_properties(f, g, F, G, q):
33 raise AssertionError("f * G - g * F = q mod(x^n+1) is

not satisfied.")
34 print("NTRU generation test passed.")
35 if __name__ == "__main__":
36 n = 16 # Fix polynomial degree to test
37 test_ntru_gen(n)

Script 6.7 Test script for ntrugen.py

To verify the correctness of ntrugen.py, we set n = 16.and created a Python test
script. This script, as shown in Fig. 6.6, generates an example set of the polynomials
f, g, F, and G..

6.1.5 Checking encoding.py

This section explains the correctness of the compress and decompress functions
used to reduce the memory footprint of signature and other data, if needed. The
definitions of compress(v,slen) and decompress(x,slen,n) functions are
already provided in encoding.py module of FALCON Python package. Script 6.8

Fig. 6.6 Output of checking ntrugen.py

6.1 Utility Modules for FALCON 41

illustrates the 6 test cases coded to verify the correctness of compress(v,slen)
and decompress(x,slen,n) functions when used together.

1 from encoding import compress , decompress
2 def test_compress_decompress():
3 # Test cases
4 test_cases = [
5 ([-128, 127, 0], 5), # Mixed negative , positive , and

zero values
6 ([0, 0, 0, 0], 2), # All zeros
7 ([1, 2, 3, 4, 5, 6, 7], 3), # Small positive integers
8 ([-1, -2, -3, -4, -5, -6, -7], 3), # Small negative

integers
9 ([255, -255, 128, -128], 6), # Edge cases for low and

high bits
10 ([32767, -32768], 6), # Large positive and negative

integers
11]
12 for i, (v, slen) in enumerate(test_cases):
13 print(f"Test case {i + 1}: v = {v}, slen = {slen}")
14 compressed = compress(v, slen)
15 if compressed is False:
16 print("Compression failed (encoding too long)")
17 else:
18 decompressed = decompress(compressed , slen, len(v))
19 if decompressed is False:
20 print("Decompression failed (invalid encoding)")
21 elif decompressed == v:
22 print("Success! Decompressed list matches the

original list.")
23 else:
24 print("Failure! Decompressed list does not match

the original list.")
25 print(f"Compressed data: {compressed}\nDecompressed

data: {decompressed}")
26 print("-" * 40)
27

28 if __name__ == "__main__":
29 test_compress_decompress()

Script 6.8 Test program for encoding.py

Fig. 6.7 displays the output of the six test cases after running those illustrated in
Script 6.8. Two test cases succeeded, but other four cases failed due to encoding
too long error. In practice, it is possible to handle longer data for compression and
decompression.

42 6 Checking FALCON with Python

Fig. 6.7 Output of six test cases

6.2 FALCON-Specific Modules

This section outlines the specific functions and operations exclusive to both
FALCON-512 and FALCON-1024.

6.2.1 Checking parameters.py

parameters.py, located under folder ..\scripts in the FALCON Python pack-
age, is used to generate two crucial sets of security parameters for FALCON-512
and FALCON-1024. It focuses on the parameters, metrics, and security aspects
of these schemes. This section outlines its performance and output after executing
parameters.py.

Fig. 6.8 provides a summary of the key definitions related to the secure use of
FALCON across three aspects—Parameters, Metrics and Security. All parameter
values can be established during the setup phase and made available to authorized
signers and verifiers. The values in parenthesis use the optimization in [2].

Fig. 6.9 illustrates the specific values of various parameters for both FALCON-
512 and FALCON-1024. Note that the value of beta and beta2 . are approximated to
the nearest integer value less than their actual values.

6.2 FALCON-Specific Modules 43

Fig. 6.8 Description of parameters

6.2.2 Checking samplerz.py

SamplerZ generates random integer according to a Gaussian distribution with the
specified mean and standard deviation. It utilizes Basesampler(), Berexp() and
other computations as outlined in Algorithm 15 in [9].

The test script for samplerz.py, shown in Script 6.9, verifies whether 500
generated random integers, with a given mean of 0 and a standard deviation of 2.0,
conform to the ideal Gaussian distribution.

1 from samplerz import samplerz
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5

6 def test_samplerz():
7 mu = 0.0 # Mean of the distribution
8 sigma = 2.0 # Standard deviation
9 sigmin = 1.5 # sigmin scaling factor (must be 1 < sigmin <

sigma < MAX_SIGMA)
10

11 # Run the sampler multiple times to generate samples
12 samples = [samplerz(mu, sigma, sigmin) for _ in range(500)]
13 # Print out the first few samples

44 6 Checking FALCON with Python

Fig. 6.9 Specific values of various parameters for both FALCON-512 and FALCON-1024

6.2 FALCON-Specific Modules 45

14 print("First 15 generated integers: ", f"{samples[:15]}
...]")

15

16 # Calculate sample mean and sample standard deviation
17 sample_mean = np.mean(samples)
18 sample_std = np.std(samples)
19

20 # Generate a range of values for the theoretical Gaussian
distribution

21 x_values = np.linspace(min(samples), max(samples), 1000)
22

23 # Calculate the Gaussian probability density function (PDF)
for comparison

24 gaussian_pdf = norm.pdf(x_values , loc=mu, scale=sigma)
25

26 # Plot the histogram of the samples and overlay the
theoretical Gaussian curve

27 plt.figure(figsize=(8, 6))
28 plt.hist(samples, bins=20, density=True, edgecolor=’black’,

alpha=0.7, label=’Sample Histogram’)
29 plt.plot(x_values , gaussian_pdf , ’r-’, label=’Theoretical

Gaussian PDF’, linewidth=2)
30 plt.title(’Comparison of Sample Distribution with Gaussian

Distribution’)
31 plt.xlabel(’Sample Value’); plt.ylabel(’Density’)
32 plt.legend(); plt.grid(True); plt.show()
33

34 # Print the sample mean and standard deviation
35 print(f’Sample Mean: {sample_mean}’)
36 print(f’Sample Standard Deviation: {sample_std}’)
37

38 if __name__ == "__main__":
39 test_samplerz()
40 print("\nTest passed:")

Script 6.9 Test program for samplerz.py

Fig. 6.10 presents the first 10 generated integers following a Gaussian distribu-
tion, making it challenging to visually determine the underlying distribution.

To compare the generated random integers with the ideal Gaussian distribution,
which has a mean of 0.21 and a standard deviation of 1.870, Fig. 6.11 illustrates the
comparison. The generated values appear consistent with the Gaussian distribution
for the specified parameters. Since each test generates different random integers, the

Fig. 6.10 Output of test_samplerz

46 6 Checking FALCON with Python

Fig. 6.11 Comparison of generated random integers with ideal Gaussian

figure will vary with each run. Sometimes the test fails. If this happens, retrying it
might produce the desired result.

6.2.3 Checking ffnp() in ffsampling.py

This section describes to test the correctness of ffnp() function used in
ffsampling.py which samples the random value close to the theoretical bound in
a Fourier domain. This is unique idea used in FALCON. Script 6.10 shows its test
script in Python.

1 """
2 This file tests ffnp() function used at ffsampling.py in Falcon

Python package.
3 """
4 from common import q, sqnorm
5 from fft import add, sub, mul, div, neg, fft, ifft
6 from ffsampling import ffldl, ffldl_fft, ffnp, ffnp_fft
7 from ffsampling import gram
8 from random import randint, random, gauss, uniform
9 from ntrugen import karamul, ntru_gen , gs_norm

10 from scripts.sign_KAT import sign_KAT
11 def vecmatmul(t, B):
12 """Compute the product t * B, where t is a vector and B is a

square matrix.
13 Args:

6.2 FALCON-Specific Modules 47

14 B: a matrix
15 Format: coefficient
16 """
17 nrows = len(B)
18 ncols = len(B[0])
19 deg = len(B[0][0])
20 assert(len(t) == nrows)
21 v = [[0 for k in range(deg)] for j in range(ncols)]
22 for j in range(ncols):
23 for i in range(nrows):
24 v[j] = add(v[j], mul(t[i], B[i][j]))
25 return v
26 def test_ffnp(n, iterations):
27 """Test ffnp.
28 This functions check that:
29 1. the two versions (coefficient and FFT embeddings) of ffnp

are consistent
30 2. ffnp output lattice vectors close to the targets.
31 """
32 f = sign_KAT[n][0]["f"]
33 g = sign_KAT[n][0]["g"]
34 F = sign_KAT[n][0]["F"]
35 G = sign_KAT[n][0]["G"]
36 B = [[g, neg(f)], [G, neg(F)]]
37 G0 = gram(B)
38 G0_fft = [[fft(elt) for elt in row] for row in G0]
39 T = ffldl(G0)
40 T_fft = ffldl_fft(G0_fft)
41 sqgsnorm = gs_norm(f, g, q)
42 m = 0
43 for i in range(iterations):
44 t = [[random() for i in range(n)], [random() for i in

range(n)]]
45 t_fft = [fft(elt) for elt in t]
46 z = ffnp(t, T)
47 z_fft = ffnp_fft(t_fft, T_fft)
48 zb = [ifft(elt) for elt in z_fft]
49 zb = [[round(coef) for coef in elt] for elt in zb]
50 if z != zb:
51 print("ffnp and ffnp_fft are not consistent")
52 return False
53 diff = [sub(t[0], z[0]), sub(t[1], z[1])]
54 diffB = vecmatmul(diff, B)
55 norm_zmc = int(round(sqnorm(diffB)))
56 m = max(m, norm_zmc)
57 th_bound = (n / 4.) * sqgsnorm
58 if m > th_bound:
59 print("Warning: ffnp does not output vectors as short as

expected")
60 return False
61 else:
62 print("m={}, th_bound={:.3f}".format(m, th_bound))
63 print("ffnp output vectors as short as expected since m

<= th_bound")

48 6 Checking FALCON with Python

64 return True
65 if __name__ == "__main__":
66 n = 512 # select Falcon -512 or Falcon -1024
67 cases = 5 # Number of tests
68 print("** Testing ffNP of Falcon-",n)
69 for i in range(cases):
70 print("\n<< Test Case :", i+1,">>")
71 test_ffnp(n,i)
72 print("\nTest passed:")

Script 6.10 Test program for ffnp()

Fig. 6.12 Output of 5 ffnp() tests for FALCON-512

The value of n is fixed at 512 or 1024 depending on which version of FALCON
you are testing. Figs. 6.12 and 6.13 show the printout for 5 test cases ffnp()
function used for FALCON-512 and FALCON-1024, respectively.

6.2.4 Checking falcon.py

This section describes the correctness of executing FALCON-512 and FALCON-
1024 from the predetermined polynomials, f, g, F, and G. which is provided as
falcon.py in the FALCON Python package simply. The test script is listed as
Script 6.11. The value of n is fixed at 512 or 1024 depending on which version of
FALCON you are verifying.

6.2 FALCON-Specific Modules 49

Fig. 6.13 Output of 5 ffnp() tests for FALCON-1024

1 from common import q
2 from falcon import SecretKey, PublicKey
3 from scripts.sign_KAT import sign_KAT
4

5 import random
6 import string
7

8 # Function to generate a random message
9 def generate_random_message(length=26):

10 letters = string.ascii_lowercase # Lowercase letters a-z
11 message = ’’.join(random.choice(letters) for i in

range(length))
12 return message.encode() # Encoding the message as bytes
13

14 def test_f_signature(n, iterations=1):
15 f = sign_KAT[n][0]["f"]
16 g = sign_KAT[n][0]["g"]
17 F = sign_KAT[n][0]["F"]
18 G = sign_KAT[n][0]["G"]
19

20 sk = SecretKey(n, [f, g, F, G])
21 print("== Leading 10 values of private key")
22 print("f = ".ljust(3) + "[" + ", ".join(["{}".format(x) for

x in f[:10]]) + ", ...]")
23 print("g = ".ljust(3) + "[" + ", ".join(["{}".format(x) for

x in g[:10]]) + ", ...]")
24 print("F = ".ljust(3) + "[" + ", ".join(["{}".format(x) for

x in F[:10]]) + ", ...]")
25 print("G = ".ljust(3) + "[" + ", ".join(["{}".format(x) for

x in G[:10]]) + ", ...]")

50 6 Checking FALCON with Python

26

27 pk = PublicKey(sk)
28 print("== Leading 10 values of public key",)
29 print("h = ".ljust(3) + "[" + ", ".join(["{}".format(x) for

x in pk.h[:10]]) + ", ...]")
30

31 for i in range(iterations):
32 message = generate_random_message()
33 print("Messge = ",str(message))
34

35 sig = sk.sign(message); sig_str= sig.hex()
36 print("Signature =", sig_str[:30], ’...’, sig_str[-20:])
37 print("Length of Signature:",

int(len(sig_str)/2),"Bytes");
38

39 if (pk.verify(message, sig)== True):
40 print("Verification passed!!")
41 else:
42 print("Verification failed!!")
43 return False
44 return True
45 if __name__ == "__main__":
46 n = 512 # select Falcon -512 or Falcon -1024
47 cases = 3 # Number of tests
48 print("** Testing keygen, sign and verify procedures of

Falcon-",n)
49 for i in range(cases):
50 print("\n<< Test Case :", i+1,">>")
51 test_f_signature(n,i) # degree of cyclotomic poly.

(power of 2)
52 print("\nTest passed:")

Script 6.11 Test script for falcon.py

By setting the value of n at line 46 of Script 6.11 at 512 or 1024, Figs. 6.14
and 6.15 present three examples of built-in key pairs, a random message, its
signature in hexadecimal notation, the verification of signature for FALCON-512
and FALCON-1024, respectively.

6.2.5 Checking test.py

This section discusses the results of test.py provided in the FALCON Python
package. Fig. 6.16 shows the specifications of the computer used in executing
test.py, with the full Python script available in the FALCON Python package.

1 from common import q, sqnorm
2 from fft import add, sub, mul, div, neg, fft, ifft
3 from ntt import mul_zq, div_zq
4 from samplerz import samplerz , MAX_SIGMA
5 from ffsampling import ffldl, ffldl_fft, ffnp, ffnp_fft

6.2 FALCON-Specific Modules 51

Fig. 6.14 Three examples of key pairs and signature executing FALCON-512

52 6 Checking FALCON with Python

Fig. 6.15 Three examples of key pairs and signature executing FALCON-1024

Fig. 6.16 Specification of my test computer used in test.py

6.2 FALCON-Specific Modules 53

6 from ffsampling import gram
7 from random import randint, random, gauss, uniform
8 from math import sqrt, ceil
9 from ntrugen import karamul, ntru_gen , gs_norm

10 from falcon import SecretKey, PublicKey, Params
11 from falcon import SALT_LEN , HEAD_LEN , SHAKE256
12 from encoding import compress , decompress
13 from scripts import saga
14 from scripts.samplerz_KAT512 import sampler_KAT512
15 from scripts.sign_KAT import sign_KAT
16 from scripts.samplerz_KAT1024 import sampler_KAT1024
17 # https://stackoverflow.com/a/25823885/4143624
18 from timeit import default_timer as timer
19

20 def vecmatmul(t, B):
21 """Compute the product t * B, where t is a vector and B is a

square matrix.
22

23 Args:
24 B: a matrix
25

26 Format: coefficient
27 """
28 nrows = len(B)
29 ncols = len(B[0])
30 deg = len(B[0][0])
31 assert(len(t) == nrows)
32 v = [[0 for k in range(deg)] for j in range(ncols)]
33 for j in range(ncols):
34 for i in range(nrows):
35 v[j] = add(v[j], mul(t[i], B[i][j]))
36 return v
37

38 def test_fft(n, iterations=10):
39 """Test the FFT."""
40 for i in range(iterations):
41 f = [randint(-3, 4) for j in range(n)]
42 g = [randint(-3, 4) for j in range(n)]
43 h = mul(f, g)
44 k = div(h, f)
45 k = [int(round(elt)) for elt in k]
46 if k != g:
47 print("(f * g) / f =", k)
48 print("g =", g)
49 print("mismatch")
50 return False
51 return True
52

53 def test_ntt(n, iterations=10):
54 """Test the NTT."""
55 for i in range(iterations):
56 f = [randint(0, q - 1) for j in range(n)]
57 g = [randint(0, q - 1) for j in range(n)]
58 h = mul_zq(f, g)

54 6 Checking FALCON with Python

59 try:
60 k = div_zq(h, f)
61 if k != g:
62 print("(f * g) / f =", k)
63 print("g =", g)
64 print("mismatch")
65 return False
66 except ZeroDivisionError:
67 continue
68 return True
69

70

71 def check_ntru(f, g, F, G):
72 """Check that f * G - g * F = q mod (x ** n + 1)."""
73 a = karamul(f, G)
74 b = karamul(g, F)
75 c = [a[i] - b[i] for i in range(len(f))]
76 return ((c[0] == q) and all(coef == 0 for coef in c[1:]))
77

78 def test_ntrugen(n, iterations=10):
79 """Test ntru_gen."""
80 for i in range(iterations):
81 f, g, F, G = ntru_gen(n)
82 if check_ntru(f, g, F, G) is False:
83 return False
84 return True
85

86 def test_ffnp(n, iterations):
87 """Test ffnp.
88

89 This functions check that:
90 1. the two versions (coefficient and FFT embeddings) of ffnp

are consistent
91 2. ffnp output lattice vectors close to the targets.
92 """
93 f = sign_KAT[n][0]["f"]
94 g = sign_KAT[n][0]["g"]
95 F = sign_KAT[n][0]["F"]
96 G = sign_KAT[n][0]["G"]
97 B = [[g, neg(f)], [G, neg(F)]]
98 G0 = gram(B)
99 G0_fft = [[fft(elt) for elt in row] for row in G0]

100 T = ffldl(G0)
101 T_fft = ffldl_fft(G0_fft)
102 sqgsnorm = gs_norm(f, g, q)
103 m = 0
104 for i in range(iterations):
105 t = [[random() for i in range(n)], [random() for i in

range(n)]]
106 t_fft = [fft(elt) for elt in t]
107 z = ffnp(t, T)
108 z_fft = ffnp_fft(t_fft, T_fft)
109

110 zb = [ifft(elt) for elt in z_fft]

6.2 FALCON-Specific Modules 55

111 zb = [[round(coef) for coef in elt] for elt in zb]
112 if z != zb:
113 print("ffnp and ffnp_fft are not consistent")
114 return False
115 diff = [sub(t[0], z[0]), sub(t[1], z[1])]
116 diffB = vecmatmul(diff, B)
117 norm_zmc = int(round(sqnorm(diffB)))
118 m = max(m, norm_zmc)
119 th_bound = (n / 4.) * sqgsnorm
120 if m > th_bound:
121 print("Warning: ffnp does not output vectors as short as

expected")
122 return False
123 else:
124 return True
125

126 def test_compress(n, iterations):
127 """Test compression and decompression."""
128 try:
129 sigma = 1.5 * sqrt(q)
130 slen = Params[n]["sig_bytelen"] - SALT_LEN - HEAD_LEN
131 except KeyError:
132 return True
133 for i in range(iterations):
134 while(1):
135 initial = [int(round(gauss(0, sigma))) for coef in

range(n)]
136 compressed = compress(initial, slen)
137 if compressed is not False:
138 break
139 decompressed = decompress(compressed , slen, n)
140 if decompressed != initial:
141 return False
142 return True
143

144 def test_samplerz(nb_mu=100, nb_sig=100, nb_samp=1000):
145 """
146 Test our Gaussian sampler on a bunch of samples.
147 This is done by using a light version of the SAGA test suite,
148 see ia.cr/2019/1411.
149 """
150 # Minimal size of a bucket for the chi-squared test (must be

>= 5)
151 chi2_bucket = 10
152 assert(nb_samp >= 10 * chi2_bucket)
153 sigmin = 1.3
154 nb_rej = 0
155 for i in range(nb_mu):
156 mu = uniform(0, q)
157 for j in range(nb_sig):
158 sigma = uniform(sigmin, MAX_SIGMA)
159 list_samples = [samplerz(mu, sigma, sigmin) for _ in

range(nb_samp)]
160 v = saga.UnivariateSamples(mu, sigma, list_samples)

56 6 Checking FALCON with Python

161 if (v.is_valid is False):
162 nb_rej += 1
163 return True
164 if (nb_rej > 5 * ceil(saga.pmin * nb_mu * nb_sig)):
165 return False
166 else:
167 return True
168

169

170 def KAT_randbytes(k):
171 """
172 Use a fixed bytestring ’octets’ as a source of random bytes
173 """
174 global octets
175 oc = octets[: (2 * k)]
176 if len(oc) != (2 * k):
177 raise IndexError("Randomness string out of bounds")
178 octets = octets[(2 * k):]
179 return bytes.fromhex(oc)[::-1]
180

181 def test_samplerz_KAT(unused, unused2):
182 # octets is a global variable used as samplerz’s randomness.
183 # It is set to many fixed values by test_samplerz_KAT ,
184 # then used as a randomness source via KAT_randbits.
185 global octets
186 for D in sampler_KAT512 + sampler_KAT1024:
187 mu = D["mu"]
188 sigma = D["sigma"]
189 sigmin = D["sigmin"]
190 # Hard copy. octets is the randomness source for samplez
191 octets = D["octets"][:]
192 exp_z = D["z"]
193 try:
194 z = samplerz(mu, sigma, sigmin,

randombytes=KAT_randbytes)
195 except IndexError:
196 return False
197 if (exp_z != z):
198 print("SamplerZ does not match KATs")
199 return False
200 return True
201

202 def test_signature(n, iterations=10):
203 """
204 Test Falcon.
205 """
206 f = sign_KAT[n][0]["f"]
207 g = sign_KAT[n][0]["g"]
208 F = sign_KAT[n][0]["F"]
209 G = sign_KAT[n][0]["G"]
210 sk = SecretKey(n, [f, g, F, G])
211 pk = PublicKey(sk)
212 for i in range(iterations):
213 message = b"abc"

6.2 FALCON-Specific Modules 57

214 sig = sk.sign(message)
215 if pk.verify(message, sig) is False:
216 return False
217 return True
218

219 def test_sign_KAT():
220 """
221 Test the signing procedure against test vectors obtained from
222 the Round 3 implementation of Falcon.
223

224 Starting from the same private key, same message, and same
SHAKE256

225 context (for randomness generation), we check that we obtain
the

226 same signatures.
227 """
228 message = b"data1"
229 shake = SHAKE256.new(b"external")
230 for n in sign_KAT:
231 sign_KAT_n = sign_KAT[n]
232 for D in sign_KAT_n:
233 f = D["f"]
234 g = D["g"]
235 F = D["F"]
236 G = D["G"]
237 sk = SecretKey(n, [f, g, F, G])
238 # The next line is done to synchronize the SHAKE256

context
239 # with the one in the Round 3 C implementation of

Falcon.
240 _ = shake.read(8 * D["read_bytes"])
241 sig = sk.sign(message, shake.read)
242 if sig != bytes.fromhex(D["sig"]):
243 return False
244 return True
245

246 def wrapper_test(my_test, name, n, iterations):
247 """
248 Common wrapper for tests. Run the test, print whether it is

successful ,
249 and if it is, print the running time of each execution.
250 """
251 d = {True: "OK ", False: "Not OK"}
252 start = timer()
253 rep = my_test(n, iterations)
254 end = timer()
255 message = "Test {name}".format(name=name)
256 message = message.ljust(20) + ": " + d[rep]
257 if rep is True:
258 diff = end - start
259 msec = round(diff * 1000 / iterations , 3)
260 message += " ({msec} msec /

execution)".format(msec=msec).rjust(30)
261 print(message)

58 6 Checking FALCON with Python

262

263 # Dirty trick to fit test_samplerz into our test wrapper
264 def test_samplerz_simple(n, iterations):
265 return test_samplerz(10, 10, iterations // 100)
266

267 def test(n, iterations=500):
268 """A battery of tests."""
269 wrapper_test(test_fft , "FFT", n, iterations)
270 wrapper_test(test_ntt , "NTT", n, iterations)
271 # test_ntrugen is super slow, hence performed over a single

iteration
272 wrapper_test(test_ntrugen , "NTRUGen", n, 1)
273 wrapper_test(test_ffnp , "ffNP", n, iterations)
274 # test_compress and test_signature are only performed
275 # for parameter sets that are defined.
276 if (n in Params):
277 wrapper_test(test_compress , "Compress", n, iterations)
278 wrapper_test(test_signature , "Signature", n, iterations)
279 # wrapper_test(test_sign_KAT , "Signature KATs", n,

iterations)
280 print("")
281 # Run all the tests
282 if (__name__ == "__main__"):
283 print("Test Sig KATs : ", end="")
284 print("OK" if (test_sign_KAT() is True) else "Not OK")
285 # wrapper_test(test_samplerz_simple , "SamplerZ", None,

100000)
286 # raise ValueError(msg)
287 #ValueError: For each axis slice, the sum of the observed

frequencies must agree with the sum of the expected
frequencies to a relative tolerance of 1e-08, but the
percent differences are:

288 # 0.002004008016032064
289 wrapper_test(test_samplerz_KAT , "SamplerZ KATs", None, 1)
290 print("")
291

292 for i in range(9, 11):
293 n = (1 << i)
294 it = 1000
295 print("Test battery for n = {n}".format(n=n))
296 test(n, it)

Script 6.12 Test script for falcon.py

Fig. 6.17 shows the output from executing test.py, which includes testing the
FALCON Signature Known Answer Test (KAT) and the FALCON SamplerZ KAT.
The tests are conducted for rings of degree n = 512. and n = 1024.. Also, Fig. 6.17
displays the average time taken for various operations—Test FFT, Test NTT, Test
NTRUGen, Test ffNP, Test Compress, and Test Signature—after iterating 1,000
times. The time consumed may vary slightly depending on your test computer.

6.2 FALCON-Specific Modules 59

Fig. 6.17 Time consumed in msec executing test.py

Chapter 7
Checking SOLMAE with Python

SOLMAE Python package is available at web page: https://solmae-sign.info.
This repository contains the following files (roughly in order of dependency):

1. common.py contains shared functions and constants
2. encoding.py implements compress and decompress
3. rng.py implements a ChaCha20-based PRNG(standalone)
4. samplerz.py implements a Gaussian sampler over the integers (standalone)
5. fft_constants.py contains precomputed constants used in the FFT
6. ntt_constants.py contains precomputed constants used in the NTT
7. fft.py implements the FFT over R[x]/(xn + 1).
8. ntt.py implements the NTT over Zq [x]/(xn + 1).
9. ntrugen.py generate polynomials f, g, F,G. in Z[x]/(xn + 1). such that f ·

G − g · F = q .

10. params.py contains security parameters
11. Unifcrown.py implements Unifcrown sampler and its test script
12. Pairgen.py implements Pairgen and its test script
13. keygen.py implements keygen and its test script
14. PeikertSampler.py implements Peikert Sampler
15. N_sampler.py implements N-sampler
16. Sampler.py implements Sampler
17. solmae.py implements keygen, sign and verify procedures of SOLMAE-512

or SOLMAE-1024
18. test.py contains how to use and to check that everything is properly imple-

mented.(same as FALCON Python Package)

To implement the SOLMAE in Python, the modules used for FALCON such
as common.py, encoding.py, rng.py, samplerz.py, fft_constants.py,
fft.py, ntt_constants.py, ntt.py, and ntrugen.py are re-used, as their
functionalities are also essential for the operation of SOLMAE.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_7

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7
https://doi.org/10.1007/978-3-031-81250-7_7

62 7 Checking SOLMAE with Python

7.1 SOLMAE-Specific Modules

This section outlines the specific functions and operations exclusive to both
SOLMAE-512 and SOLMAE-1024. It includes generating security parameters,
generating pairs f and g, creating private and public keys, employing a uniform
crown sampler for random number, and Gaussian samplers including all procedure
tests of SOLMAE-512 and SOLMAE-1024.

7.1.1 Checking parameters.py

Under the folder ..\..\script, there is a file named solmae_params.py as
shown in Script 7.1. This script has been adapted from parameters.py in
FALCON Python package to be suitable for SOLMAE.

1 from math import sqrt, exp, log, pi, floor
2 # Constants
3 e = exp(1)
4 q = 1024 * 12 + 1 # Modulo
5 NB_QUERIES = 2 ** 64 # NIST Recommendation
6 eta = 1 / (2 ** 41)
7 sigmax = 1.8205 # Max. acceptable std. dev for Gaussian sampler
8 DEBUG = True
9 def smooth(eps, n, normalized=True):

10 """Calculate the smoothing parameter."""
11 rep = sqrt(log(2 * n * (1 + 1 / eps)) / pi)
12 if normalized:
13 return rep / sqrt(2 * pi)
14 else:
15 return rep
16 def ssmooth(eps, n):
17 """Estimation of the smoothing parameter of ZZ^n."""
18 return sqrt(log(2 * n * (1 + 1 / eps)) / pi) / sqrt(2 * pi)
19 def dimensionsforfree(B):
20 """Calculate dimensions for free."""
21 return round(B * log(4 / 3) / log(B / (2 * pi * exp(1))))
22 def print_security(B):
23 """Print the security parameters."""
24 sec_qrec_classical = floor(B * 0.292)
25 sec_qrec_quantum = floor(B * 0.265)
26 print(f"BIKZ:\t{B}")
27 print(f"Classical:\t{sec_qrec_classical}")
28 print(f"Quantum:\t{sec_qrec_quantum}")
29 def compute_para(d, alp, delt, corr):
30 """Compute parameters based on input."""
31 gs_norm = alp * sqrt(q)
32 smoothing = 1 / pi * sqrt(1 / 2 * log(2 * d * (1 + 1 / eta)))
33 sigma_sig = smoothing * alp * sqrt(q)
34 gamma = corr * sigma_sig * sqrt(2 * d)

7.1 SOLMAE-Specific Modules 63

35 R_minus = (1 / alp + delt) * sqrt(q)
36 R_plus = (alp - delt) * sqrt(q)
37 return gs_norm, smoothing , sigma_sig , gamma, R_minus, R_plus
38 def solmae_security(n, sigma_offset , fg_norm, target_bitsec ,

target_rejection=0.1, verbose=True):
39 """Calculate security parameters for SOLMAE."""
40 eps = 1 / sqrt(target_bitsec * NB_QUERIES)
41 sigma = sigma_offset * sqrt(q) * smooth(eps, 2 * n)
42 tau = 1.1 # Estimate of the signature size w.r.t rejection

prob.
43

44 while True:
45 max_sig_norm = floor(tau * sqrt(2 * n) * sigma)
46 rejection_rate = exp(2 * n * (1 - tau ** 2) / 2) * tau

** (2 * n)
47 if rejection_rate > target_rejection:
48 break
49 else:
50 tau -= 0.001
51

52 B = 100 # Initial block for Key recovery
53 sigma_fg = fg_norm / sqrt(2 * n)
54

55 while True:
56 left = (B / (2 * pi * e)) ** (1 - n / B) * sqrt(q)
57 right = sqrt(3 * B / 4) * sigma_fg
58 if left > right:
59 break
60 else:
61 B += 1
62 if verbose:
63 print(" -----[Key Recovery] -----")
64 print_security(B)
65

66 B = 100 # Signature forgery
67

68 def condition_LH(beta):
69 return min([(((pi * B) ** (1 / B) * B / (2 * pi * e)) **

((2 * n - k) / (2 * B - 2))) *
70 q ** (n / (2 * n - k)) for k in range(n)])
71 while condition_LH(B) > max_sig_norm:
72 B += 1
73 sec_forgery_classical = (B * 0.292)
74 sec_forgery_quantum = (B * 0.265)
75 if verbose:
76 print(" -----[Signature forgery] -----")
77 print_security(B)
78 return
79 def para_gen():
80 input_para = [
81 {"d": 512, "alpha": 1.17, "delta": 0.065, "correction":

1.04},
82 {"d": 1024, "alpha": 1.64, "delta": 0.3, "correction":

1.04}

64 7 Checking SOLMAE with Python

83]
84 for params in input_para:
85 d = params["d"]
86 alp = params["alpha"]
87 delt = params["delta"]
88 corr = params["correction"]
89 gs_norm, smoothing , sigma_sig, gamma, R_minus, R_plus =

compute_para(d, alp, delt, corr)
90

91 if DEBUG:
92 print(f"\n ** Security parameters for d = {d} **")
93 print("alpha(quality) =

{:.3f}".format(alp).ljust(25))
94 print("GS_norm =

{:.3f}".format(gs_norm).ljust(25))
95 print("smoothing =

{:.3f}".format(smoothing).ljust(25))
96 print("sigma_sig(sig width) =

{:.3f}".format(sigma_sig).ljust(25))
97 print("gamma =

{:.3f}".format(gamma).ljust(25))
98 print("gamma^2(sig. bound) = {:.3f}".format(gamma *

gamma).ljust(25))
99 print("R_minus =

{:.3f}".format(R_minus).ljust(25))
100 print("R_plus =

{:.3f}".format(R_plus).ljust(25))
101 print("\n== C/Q security of SOLMAE_512 ==")
102 solmae_security(512, 2.04, 1.17 * sqrt(q), 128, verbose=True)
103 print("\n== C/Q security of SOLMAE_1014 ==")
104 solmae_security(1024, 2.33, 1.17 * sqrt(q), 256,

verbose=True)
105 if __name__ == "__main__":
106 para_gen()
107 print("Test passed.")

Script 7.1 solmae_params.py

Fig. 7.1 displays the security parameters used to configure the programs for
SOLMAE-512 and SOLMAE-1024 along with their estimated classical and quan-
tum security levels.

7.1.2 Checking Unifcrown.py

The Python script shown in Script 7.2 is designed to efficiently generate random
values in an annular region with a fixed radius. This approach ensures that the values
are uniformly distributed within the specified annular region, making it suitable for
applications that require random sampling within such geometric constraints.

7.1 SOLMAE-Specific Modules 65

Fig. 7.1 Output of solmae_params.py

1 ###########################
2 # This is for SOLMAE only.
3 ###########################
4 import numpy as np
5 from rng import ChaCha20
6 from os import urandom
7 import matplotlib.pyplot as plt
8 def Unifcrown(R_min, R_max, randombytes=urandom):

66 7 Checking SOLMAE with Python

9 u_rho = int.from_bytes(randombytes(8), ’little’)
10 u_theta = int.from_bytes(randombytes(8), ’little’)
11 u_rho = (u_rho & 0x1fffffffffffff) * 2**(-53)
12 u_theta = (u_theta & 0x1fffffffffffff) * 2**(-53)
13 rho = np.sqrt(R_min**2+u_rho*(R_max**2-R_min**2))
14 x = rho*np.cos(np.pi/2*u_theta)
15 y = rho*np.sin(np.pi/2*u_theta) # equivalent to Algorithm 9
16 return x, y
17 if __name__ == ’__main__’:
18 x_list = []
19 y_list = []
20 for _ in range(5000):
21 x, y = Unifcrown(2, 5)
22 x_list.append(x)
23 y_list.append(y)
24 plt.plot(x_list,y_list, ’o’, markersize=3)
25 plt.show()

Script 7.2 Unifcrown.py and its plotting script

Fig. 7.2 Scatter plot of
Unifcrown.py

Fig. 7.2 illustrates a scatter plot of generated by executing Unifcrown.py 5,000
times using matplotlib.pyplot, a widely used tools for creating various types
of plots and visualizations. This demonstrates that efficient random generation is
effectively achieved.

7.1.3 Checking N_sampler.py

The N_sampler.py script generates random numbers following a Gaussian (or
Normal) distribution for the SOLMAE signing procedure, as depicted in Fig. 4.3. To

7.1 SOLMAE-Specific Modules 67

verify the correctness of the N_sampler.py Python script, a test script is provided,
shown in Script 7.3. without mentioning N_sampler.py Python module.

1 from rng import ChaCha20
2 from os import urandom
3 from params import SOLMAE_D
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import scipy.stats as stats
7 if __name__ == ’__main__’:
8 # generate datas
9 x_list = []; y_list = []; datas = []

10 n = 1000 # Set the number of test
11 for _ in range(n):
12 coeffs = n_sampler(); data = []
13 for i in range(SOLMAE_D//2):
14 x = coeffs[2*i]; y = coeffs[2*i+1]
15 x_list.append(x); y_list.append(y)
16 data.append(x);data.append(y)
17 datas.append(data)
18 # plot the data in 2D
19 fig = plt.figure(figsize = (20, 40)); ax1 =

fig.add_subplot(2, 1, 1)
20 plt.title("Distribution represented in 2D")
21 plt.plot(x_list,y_list, ’o’, markersize=3)
22 plt.xlim([-80, 80]); plt.ylim([-80, 80])
23 # calculate sample mean and sample variance
24 datas = np.array(datas); mu = np.array([0 for _ in

range(SOLMAE_D)])
25 cov_matrix = SOLMAE_D/2*np.eye(SOLMAE_D)
26 cov_matrix_inv = np.linalg.inv(cov_matrix)
27 data_mean = np.mean(datas, axis = 0)
28 print("mean:", data_mean)
29 data_cov_matrix = np.cov(datas.T, ddof = 1)
30 print("covariance: ", data_cov_matrix)
31 data_cov_matrix_inv = np.linalg.inv(data_cov_matrix)
32 # check if the datas follow the distribution N_{d/2} with qq

plot
33 ax2 = fig.add_subplot(2, 1, 2)
34 Maha_dist = []
35 for data in datas:
36 data = np.array(data)
37 Maha_dist.append(float(np.dot(np.dot(data.T,

cov_matrix_inv), data)))
38 Maha_dist = np.array(Maha_dist)
39 stats.probplot(Maha_dist, dist = stats.chi2(SOLMAE_D),

plot=ax2)
40 plt.title("chi-square QQ-plot")
41 plt.show()

Script 7.3 Test Python script of N_sampler.py

A QQ (Quantile-Quantile) plot is a graphical tool used to compare two prob-
ability distributions by plotting their quantiles against each other. It’s commonly

68 7 Checking SOLMAE with Python

Fig. 7.3 Scatter and QQ plots of checking N_sampler.py

used to assess if a dataset follows a specific theoretical distribution (e.g., normal
distribution) provided by matplotlib.pyplot Python package.

• Data Quantiles: The quantiles from the sample data are plotted on the y-axis.
• Theoretical Quantiles: The corresponding quantiles from the theoretical distribu-

tion (e.g., normal distribution) are plotted on the x-axis.

It the points fall approximately along a straight line (typically the 45 ◦ . line), the
sample data likely follows the theoretical distribution.

Fig. 7.3 shows its Scatter and QQ plots of checking N_sampler.py. The upper
part of Fig. 7.3 displays a scatter plot of the data distribution in 2 dimensions, while
the lower part shows a chi-square QQ plot. The QQ plot indicates that the generated
data follows a Gaussian distribution closely.

7.1.4 Checking Pairgen.py

Verifying the generated short two polynomials f and g used in Algorithm 4,
Pairgen.py and its test script is shown in Script 7.4.

1 ###
2 #This is (f,g) pair generation and its test program for SOLMAE.
3 ###

7.1 SOLMAE-Specific Modules 69

4 import numpy as np
5 from params import SOLMAE_D , Params, SOLMAE_Q
6 from Unifcrown import Unifcrown
7 from os import urandom
8 from fft import fft , ifft
9 m_pi = 3.14159265358979323846

10 count = 0
11 def Pairgen(randombytes=urandom):
12 global count
13 R_min = Params[SOLMAE_D]["lower_radius"]
14 R_max = Params[SOLMAE_D]["upper_radius"]
15 while True:
16 flag = True
17 count+=1
18 f_fft = [0 for _ in range(SOLMAE_D)]
19 g_fft = [0 for _ in range(SOLMAE_D)]
20 for i in range(SOLMAE_D//2):
21 x, y = Unifcrown(R_min, R_max)
22 u_1 = int.from_bytes(randombytes(8), ’little’)
23 theta_x = 2* m_pi *(u_1 & 0x1fffffffffffff) *

2**(-53)
24 u_2 = int.from_bytes(randombytes(8), ’little’)
25 theta_y = 2* m_pi *(u_2 & 0x1fffffffffffff) *

2**(-53)
26 # multiplied 2pi before this line
27 x_re = x*np.cos(theta_x); x_im = x*np.sin(theta_x)
28 y_re = y*np.cos(theta_y); y_im = y*np.sin(theta_y)
29 f_fft[i] = complex(x_re, x_im)
30 f_fft[i + SOLMAE_D//2] = complex(x_re, -x_im)
31 g_fft[i] = complex(y_re, y_im)
32 g_fft[i+SOLMAE_D//2] = complex(y_re, -y_im)
33 f = list(map(lambda n: round(n), ifft(f_fft)))
34 g = list(map(lambda n: round(n), ifft(g_fft)))
35 res_f_fft = fft(f); res_g_fft = fft(g)
36 for i in range(SOLMAE_D//2):
37 norm_sq = res_f_fft[i].real**2 +

res_f_fft[i].imag**2 +\
38 res_g_fft[i].real**2 + res_g_fft[i].imag**2
39 if norm_sq < SOLMAE_Q/Params[SOLMAE_D]["quality"]**2

or\
40 norm_sq >

SOLMAE_Q*Params[SOLMAE_D]["quality"]**2:
41 # 8977 16822
42 flag = False
43 continue
44 if flag:
45 return f, g
46 if __name__ == ’__main__’:
47 print("==(f,g) pair generation for SOLMAE-", SOLMAE_D)
48 cases = 5 # number pf tests
49 for i in range(cases):
50 count = 0
51 f, g = Pairgen()
52 print("\n << Test Cases :", i+1, ">>")

70 7 Checking SOLMAE with Python

53 print("\count is ", count)
54 print("Leading 10 coeffs of f = ".ljust(8) + "[" +

",".join(["{}".format(x) for x in f[:10]]) + ",
...]")

55 print("Leading 10 coeffs of g = ".ljust(8) + "[" +
",".join(["{}".format(x) for x in g[:10]]) + ",
...]")

56 print("Test passed!!")

Script 7.4 Pairgen.py and its test script

Fig. 7.4 presents sample output from executing Pairgen.py for SOLMAE-
1024 across five cases by setting the value SOLMAE_D = 512 in params.py. Each
generation involved rejection sampling, which was performed between 1 (very
lucky!) and 106 (very bad!) trials. Despite the variability in the number of sampling
attempts, the required short polynomials f and g were successfully generated in
every instance.

Similarly, Fig. 7.5 presents sample output from executing Pairgen.py for
SOLMAE-1024 across five cases by setting the value SOLMAE_D = 1024 in
params.py. Each generation involved rejection sampling, which was performed
1 trial only (very lucky cases). This experiment demonstrates that the required short
polynomials f and g were successfully generated in every instance after a single
sampling.

Fig. 7.4 Sample output from executing Pairgen.py for SOLMAE-512

7.1 SOLMAE-Specific Modules 71

Fig. 7.5 Sample output from executing Pairgen.py for SOLMAE-1024

7.1.5 Checking keygen.py

This section describes an example of executing keygen.py, which is used for
private and public keys of SOLMAE. The details of this example are illustrated
in Script 7.5.

1 ###
2 #This is to generate all keys and its test program for SOLMAE.
3 ###
4 from Pairgen import Pairgen
5 from ntt import ntt, intt, div_ntt
6 from ntrugen import ntru_solve
7 from fft import fft, ifft, add_fft, sub_fft, mul_fft, div_fft,

adj_fft, cut_half_fft
8 from numpy import sqrt
9 from params import Params, SOLMAE_D

10 from os import urandom
11 class secret_key:
12 def __init__(self):
13 self.f = []; self.g = []; self.F = []; self.G = []
14 self.Sigma1 = []; self.Sigma2 = []
15 self.b10_fft = []; self.b11_fft = []; self.b20_fft = [];

self.b21_fft = []
16 self.beta10_fft = []; self.beta11_fft = []
17 self.beta20_fft = []; self.beta21_fft = []

72 7 Checking SOLMAE with Python

18 class public_key:
19 def __init__(self):
20 self.h = []
21 def keygen(randombytes=urandom):
22 sk = secret_key()
23 pk = public_key()
24 while True:
25 f, g = Pairgen(randombytes)
26 try:
27 f_ntt = ntt(f)
28 g_ntt = ntt(g)
29 h_ntt = div_ntt(g_ntt, f_ntt)
30 except ZeroDivisionError:
31 continue
32 try:
33 F, G = ntru_solve(f, g)
34 except ValueError:
35 continue
36

37 sk.f = f; sk.g = g; sk.F = F; sk.G = G
38 pk.h = intt(h_ntt)
39 break
40 # Consistency values (2023.8.10, kkj)
41 eta_sq = Params[SOLMAE_D]["smoothing"] ** 2
42 sig_width = Params[SOLMAE_D]["signature_width"] ** 2
43 eta_sq_fft = [eta_sq for _ in range(SOLMAE_D)]
44 sig_width_fft = [sig_width for _ in range(SOLMAE_D)]
45

46 sk.b10_fft = fft(f); sk.b11_fft = fft(g)
47

48 b1_norm = add_fft(mul_fft(adj_fft(sk.b10_fft), sk.b10_fft),
mul_fft(adj_fft(sk.b11_fft), sk.b11_fft))

49 sk.beta10_fft = div_fft(sk.b10_fft, b1_norm)
50 sk.beta11_fft = div_fft(sk.b11_fft, b1_norm)
51 sk.Sigma1 = [sqrt(elem) for elem in

cut_half_fft(sub_fft(div_fft(sig_width_fft , b1_norm),
eta_sq_fft))]

52 sk.b20_fft = fft(F); sk.b21_fft = fft(G)
53 temp_fft = add_fft(mul_fft(adj_fft(sk.beta10_fft),

sk.b20_fft), mul_fft(adj_fft(sk.beta11_fft), sk.b21_fft))
54 sk.b20_tild_fft = sub_fft(sk.b20_fft, mul_fft(temp_fft ,

sk.b10_fft))
55 sk.b21_tild_fft = sub_fft(sk.b21_fft, mul_fft(temp_fft ,

sk.b11_fft))
56 b2_tild_norm = add_fft(mul_fft(adj_fft(sk.b20_tild_fft),

sk.b20_tild_fft), mul_fft(adj_fft(sk.b21_tild_fft),
sk.b21_tild_fft))

57 sk.beta21_fft = div_fft(sk.b21_tild_fft , b2_tild_norm)
58 sk.Sigma2 = [sqrt(elem) for elem in

cut_half_fft(sub_fft(div_fft(sig_width_fft ,
b2_tild_norm), eta_sq_fft))]

59 return sk, pk
60

61 if __name__ == ’__main__’:

7.1 SOLMAE-Specific Modules 73

62 sk, pk = keygen()
63 print("== Leading 3 to 10 values of key pairs for

SOLMAE_",SOLMAE_D ,"==")
64 print("f = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.f[:10]]) + ", ...]")
65 print("g = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.g[:10]]) + ", ...]")
66 print("F = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.F[:10]]) + ", ...]")
67 print("G = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.G[:10]]) + ", ...]")
68 print("h = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in pk.h[:9]]) + ", ...]")
69 print("f_fft = ".ljust(8) + "[" + ",

".join(["{:.3f}".format(x) for x in sk.b10_fft[:3]]) +
", ...]")

70 print("g_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b11_fft[:3]]) +
", ...]")

71 print("F_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b20_fft[:3]]) +
", ...]")

72 print("G_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b21_fft[:3]]) +
", ...]")

73 print("beta10_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b10_fft[:3]]) +
", ...]")

74 print("beta11_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b11_fft[:3]]) +
", ...]")

75 print("beta20_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b20_fft[:3]]) +
", ...]")

76 print("beta21_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b21_fft[:3]]) +
", ...]")

77 print("Sigma1 = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.Sigma1[:3]]) + ",
...]")

78 print("Sigma2 = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.Sigma2[:3]]) + ",
...]")

Script 7.5 keygen.py and its test script

Fig. 7.6 shows sample output from executing keygen.py for SOLMAE-512
by setting the value of SOLMAE_D = 512 in params.py including a set of typical
values of f, g, F, G, h, f_fft, g_fft, F_fft, G_fft, beta10_fft,
beta11_fft, beta20_fft, beta21_fft, Sigma1, and Sigma2.

Similarly, Fig. 7.7 shows sample output from executing keygen.py for
SOLMAE-1024 by setting the value of SOLMAE_D = 1024 in params.py
including a set of typical values of f, g, F, G, h, f_fft, g_fft, F_fft,

74 7 Checking SOLMAE with Python

Fig. 7.6 Sample output by executing keygen.py for SOLMAE-512

Fig. 7.7 Sample output by executing keygen.py for SOLMAE-1024

G_fft, beta10_fft, beta11_fft, beta20_fft, beta21_fft, Sigma1,
and Sigma2.

7.1.6 Checking solmae.py

This section describes the keygen, sign, and verification procedure of SOLMAE-
512 and SOLMAE-1024 from the randomly generated private and its corresponding
public key.

7.1 SOLMAE-Specific Modules 75

The test script is listed as Script 7.6. The value of SOLMAE_D in params.py is
fixed at 512 or 1024 depending on which type of SOLMAE you are verifying.

1 ###
2 # This is test of keygen, sign and verify procedures of SOLMAE
3 ###
4 from solmae import sign, verify
5 from keygen import secret_key , public_key , keygen
6 from os import urandom
7 from params import SOLMAE_D
8 def test_s_signature(iterations=1):
9 sk=secret_key()

10 pk=public_key()
11 sk, pk = keygen()
12 print("==Leading 10 values of keygen function for

SOLMAE-",SOLMAE_D)
13 print("f = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.f[:5]]) + ", ...]")
14 print("g = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.g[:5]]) + ", ...]")
15 print("F = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.F[:5]]) + ", ...]")
16 print("G = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in sk.G[:5]]) + ", ...]")
17 print("h = ".ljust(8) + "[" + ",

".join(["{}".format(x) for x in pk.h[:5]]) + ", ...]")
18 print("f_fft = ".ljust(8) + "[" + ",

".join(["{:.3f}".format(x) for x in sk.b10_fft[:3]]) +
", ...]")

19 print("g_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b11_fft[:3]]) +
", ...]")

20 print("F_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b20_fft[:3]]) +
", ...]")

21 print("G_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b21_fft[:3]]) +
", ...]")

22 print("beta10_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b10_fft[:3]]) +
", ...]")

23 print("beta11_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b11_fft[:3]]) +
", ...]")

24 print("beta20_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b20_fft[:3]]) +
", ...]")

25 print("beta21_fft = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.b21_fft[:3]]) +
", ...]")

26 print("Sigma1 = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.Sigma1[:3]]) + ",
...]")

76 7 Checking SOLMAE with Python

27 print("Sigma2 = ".ljust(8) + "[" + ",
".join(["{:.3f}".format(x) for x in sk.Sigma2[:3]]) + ",
...]")

28 message=urandom(SOLMAE_D) #generate SOLMAE-D Bytes message
randomly

29 hex_message = message.hex()
30 print("Message =",hex_message[:40], ’...’, hex_message[-17:])
31 print("Length of Message: ", len(message))
32 signature = sign(sk, message) # signing
33 str_signature =signature.hex()
34 print("Signature =",str_signature[:40], ’...’,

str_signature[-17:])
35 print("Length of Sig. = ", len(signature))
36 if (verify(pk, message, signature)== True): # verifying
37 print("Verification passed!!")
38 else:
39 print("Verification failed!!")
40 return False
41 return True
42 if __name__ == "__main__":
43 cases = 2 # Number of tests
44 print("**Testing of keygen, sign and verify procedures of

SOLMAE-",SOLMAE_D)
45 for i in range(cases):
46 print("\n<< Test Case :", i+1,">>")
47 test_s_signature(i) # degree of cyclotomic poly. (power

of 2)
48 print("\nTest passed:")

Script 7.6 Testing script of solmae.py

Depending on the value of SOLMAE_D in params.py, Figs. 7.8 and 7.9 present
two tests of randomly generated key data, a random 512 byte message, its
signature in hexadecimal notation, the verification of signature for SOLMAE-512
and SOLMAE-1024, respectively.

7.1 SOLMAE-Specific Modules 77

Fig. 7.8 Two tests of keygen, sign and verify procedures of SOLMAE-512

78 7 Checking SOLMAE with Python

Fig. 7.9 Two tests of keygen, sign and verify procedures of SOLMAE-1024

Chapter 8
Concluding Remarks

In this monograph, we encapsulate key insights into the comparative analysis
between FALCON and SOLMAE, particularly within the evolving landscape of
PQC. It underscores the growing necessity for secure algorithms resistant to
quantum-based attacks, given the rapid advancements in quantum computing. While
FALCON, selected as one of NIST’s PQC standard post-quantum signatures, has
been widely recognized as a pioneering signature scheme, SOLMAE offers practical
advantages such as simpler implementation and enhanced performance.

Both FALCON and SOLMAE ensure message integrity against modification or
forgery by attackers, guaranteeing long-term security, even in the future quantum
computing era. These schemes require a deeper understanding of algebra compared
to DSA or ECDSA, which are based on number theory. To aid in understanding the
detailed internal operations of FALCON and SOLMAE, main modules implemented
in Python scripts are tested step-by-step, enhancing comprehension for readers with
undergraduate-level knowledge.

The key generation, signing, and verification processes of FALCON and SOL-
MAE depend on a set of security parameters, generated and verified in the
parameters.py module. The results of these parameters allow configurations for
FALCON-512 and SOLMAE-512 (NIST level of security I), as well as FALCON-
1024 and SOLMAE-1024 (NIST level of security V). Visualizations of Gaussian
and uniform distributions of randomly generated numbers are also provided using
Python’s visualization and statistical measurement packages.

One of the main concerns in PQC remains side-channel attacks, which are
evolving alongside cryptographic algorithms. SOLMAE, by simplifying sampling
procedures and introducing parallelizable features, appears better equipped to
address these challenges with fewer complexities in masking techniques compared
to FALCON. Continuous improvements in performance will be crucial to stay
ahead of quantum threats. Moreover, ensuring security across different platform—
particularly against power, timing, and EM attacks, etc.—remains a critical issue.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7_8

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81250-7protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8
https://doi.org/10.1007/978-3-031-81250-7_8

80 8 Concluding Remarks

These considerations emphasize the need for ongoing research and optimization in
developing robust PQC.

Lastly, as research in this field continues, the cryptographic community must
remain vigilant in addressing potential weaknesses, building systems that are not
only quantum-resistant but also adaptable to the dynamic needs of an interconnected
world.

In Kim’s work [21], a performance comparison is presented between FALCON
and SOLMAE based on their Python implementations. The study evaluates their
efficiency by analyzing execution speed and overall performance to gain a compre-
hensive understanding. His companion paper in [22] has presented an asymptotic
complexity and performance comparison between FALCON and SOLMAE using
their C Implementation for a more realistic performance evaluation.

Finally, SOLMAE was established as a Korean TTA standard on Dec. 6, 2024,
under the title Quantum–safe Digital Signature based on NTRU Lattices – Part 1:
General in Korean, TTAK.KO-12.0410-Part 1 [23] and its Part 2 is planned to be
established as a TTA standard in 2025.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

2. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I, vol. 10820, pp. 125–145. Springer, Heidelberg
(2018)

3. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Abramov, S.A., Zima, E.V., Gao,
X.S. (eds.) Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC 2016, pp. 191–198. ACM, Waterloo (2016)

4. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices.
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 22–41.
Springer, Heidelberg (2014)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory 31(4), 469–472 (1985). https://doi.org/10.1109/TIT.1985.1057074

6. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M., Wallet, A.,
Yu, Y.: Mitaka: a simpler, parallelizable, maskable variant of FALCON. In: Dunkelman, O.,
Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022, pp. 222–253. Springer
International Publishing, Cham (2022)

7. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M., Wallet, A., Yu,
Y.: Mitaka: a simpler, parallelizable, maskable variant of Falcon. In: Advances in Cryptology,
Proc. of EUROCRYPTO 2022, Part III, pp. 222–253 (2022)

8. Espitau, T., Nguyen, T.T.Q., Sun, C., Tibouchi, M., Wallet, A.: Antrag: annular NTRU trapdoor
generation. In: Proc. of Asiacrypt2023, Part VII, Guangzhou, pp. 3–32 (2023)

9. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T.,
Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based compact signatures over
NTRU. https://falcon-sign.info/

10. Fouque, P.A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key recovery from Gram-Schmidt
norm leakage in hash-and-sign signatures over NTRU lattices. Cryptology ePrint Archive,
Paper 2019/1180 (2019). https://eprint.iacr.org/2019/1180

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: How to use a short basis: trapdoors for hard lattices
and new cryptographic constructions. In: Proc. of 40th ACM STOC 2008, pp. 197–206 (2008)

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pp. 197–206. ACM, Victoria (2008). https://doi.org/10.1145/1374376.1374407

13. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction
problems. In: Advances in Cryptology, Proc. of Crypto 1997, pp. 112–131 (1997)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7

81

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://falcon-sign.info/
https://falcon-sign.info/
https://falcon-sign.info/
https://falcon-sign.info/
https://eprint.iacr.org/2019/1180
https://eprint.iacr.org/2019/1180
https://eprint.iacr.org/2019/1180
https://eprint.iacr.org/2019/1180
https://eprint.iacr.org/2019/1180
https://eprint.iacr.org/2019/1180
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7

82 References

14. Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography. Massachusetts Institute of
Technology (2001). Available online at https://cseweb.ucsd.edu/~mihir/papers/gb.html

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In:
Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, June 21–
25, 1998. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer, Berlin (1998)

16. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN:
digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612,
pp. 122–140. Springer, Heidelberg (2003)

17. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: from inception
to implementation. Cryptology ePrint Archive, Paper 2019/1411 (2019). https://eprint.iacr.org/
2019/1411

18. Hulsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.L., Kam-
panakis, P., Kolbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Niederhagen, R., Rechberger,
C., Rijneveld, J., Schwabe, P., Aumasson, J.P., Westerbaan, B., Beullens, W.: Sphincs+. https://
sphincs.org/

19. IBM: Expanding the IBM quantum roadmap to anticipate the future of quantum-centric
supercomputing (2022). https://research.ibm.com/blog/ibm-quantum-roadmap-2025

20. Kahn, D.: The Codebreakers: The Comprehensive History of Secret Communication from
Ancient Times to the Internet. Scribner, New York (1996)

21. Kim, K.: Theoretical and empirical analysis of FALCON and SOLMAE using their python
implementation. In: Seo, H., Kim, S. (eds.) Information Security and Cryptology – ICISC
2023, pp. 235–260. Springer Nature Singapore, Singapore (2024)

22. Kim, K., Kim, Y.: Asymptotic complexity and performance comparison of FALCON and SOL-
MAE using their c implementation. Springer Briefs in Information Security and Cryptography,
ISBN 978-3-031-81249-1, Springer

23. Kim, K., Kim, Y.: Quantum-safe digital signature based on ntru lattices - part 1: General(in
korean). TTAK.KO-12.0410-Part1 (2024)

24. Kim, K., Tibouchi, M., Espitau, T., Takashima, A., Wallet, A., Yu, Y., Guilley, S., Kim, S.:
Solmae: algorithm specification. Updated SOLMAE, IRCS Blog (2023). https://ircs.re.kr/?p=
1714

25. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987). https://
doi.org/10.2307/2007884

26. KpqC: Korean post-quantum crytography (2020). https://kpqc.or.kr/
27. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-based signa-

tures. In: Advances in Cryptology - ASIACRYPT 2009. Lecture Notes in Computer Science,
vol. 5912, pp. 598–616. Springer (2009). https://doi.org/10.1007/978-3-642-10366-7_35

28. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehle, D., Bai, S.:
Crystal–dilithum. https://pq-crystals.org/dilithium/index.shtml

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Advances in Cryptology – CRYPTO
’85. Lecture Notes in Computer Science, vol. 218, pp. 417–426. Springer (1986). https://doi.
org/10.1007/3-540-39799-X_31

30. Min, S., Yamamoto, G., Kim, K.: Weak property of malleability in NTRUSign. In: Proc. of
ACISP 2004. LNCS, vol. 3108, pp. 379–390 (2004)

31. National Institute of Standards and Technology: FIPS 197: Advanced Encryption Standard
(AES) (November 2001). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

32. National Institute of Standards and Technology: FIPS 186-4: Digital Signature Standard (DSS)
(July 2013). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

33. National Institute of Standards and Technology: FIPS 203: Module-Lattice-Based Key-
Encapsulation Mechanism Standard (August 2024). https://doi.org/10.6028/NIST.FIPS.203

34. National Institute of Standards and Technology: FIPS 204: Module-Lattice-Based Digital
Signature Standard (August 2024). https://doi.org/10.6028/NIST.FIPS.204

35. National Institute of Standards and Technology: FIPS 205: Stateless Hash-Based Digital
Signature Standard (August 2024). https://doi.org/10.6028/NIST.FIPS.205

https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://eprint.iacr.org/2019/1411
https://eprint.iacr.org/2019/1411
https://eprint.iacr.org/2019/1411
https://eprint.iacr.org/2019/1411
https://eprint.iacr.org/2019/1411
https://eprint.iacr.org/2019/1411
https://sphincs.org/
https://sphincs.org/
https://sphincs.org/
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://ircs.re.kr/?p=1714
https://ircs.re.kr/?p=1714
https://ircs.re.kr/?p=1714
https://ircs.re.kr/?p=1714
https://ircs.re.kr/?p=1714
https://ircs.re.kr/?p=1714
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://kpqc.or.kr/
https://kpqc.or.kr/
https://kpqc.or.kr/
https://kpqc.or.kr/
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205

References 83

36. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU
signatures. J. Cryptol. 22(2), 139–160 (2009)

37. NIST: Post-quantum crytography (2016). https://csrc.nist.gov/projects/post-quantum-
cryptography

38. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using the field
norm. In: Lin, D., Sako, K. (eds.) Public-Key Cryptography – PKC 2019, pp. 504–533.
Springer International Publishing, Cham (2019)

39. Prest, T.: Gaussian Sampling in lattice-based cryptography. Ph.D. thesis, École Normale
Supérieure, Paris (2015)

40. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.
359342

41. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Seiler, G., Stehle, D., Ding, J.: Crystal–kyber. https://pq-crystals.org/kyber/index.shtml

42. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715
(1949)

43. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Rev. 41(2), 303–332 (1999)

44. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg
(2011)

45. Wikipedia: Harvest now, decrypt later (2023). https://en.wikipedia.org/wiki/Harvest_now_
decrypt_later

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later
https://en.wikipedia.org/wiki/Harvest_now_decrypt_later

Index

Symbols
𝓁2 .-norm, 5
𝓁∞ .-norm, 5
q-ary lattice, 7
ANTRAG, 19
DILITHIUM, 3
FALCON-512, 42
FALCON-1024, 42
KYBER, 3
MITAKA, 19
NTRUENCRYPT, 11
NTRUSIGN, 11
NtruSolve, 22
SOLMAE-512, 61
SOLMAE-1024, 61
SPHINCS+, 3

B
Bézout-like equation, 22

C
Closest Vector Problem (CVP), 11
Cyclotomic polynomials, 19
Cyclotomic ring, 19

D
Diffie and Hellman (DH), 2
Digital Signature Algorithm (DSA), 2
Digital Signatures (DS), 2
Discrete Fourier Transform (DFT), 8
Discrete Gaussians, 8

E
ElGamal, 2
Euler’s totient function, 5

F
Fast Fourier Transform (FFT), 22
ffSampling, 14
Fiat-Shamir-with-aborts, 2
Full-rank matrix, 7

G
GGH, 11
Gram-Schmidt orthogonalization (GSO), 8

H
Hash-and-sign, 2

I
Inner product, 6

K
Key Encapsulation Mechanisms (KEM), 2

L
Lattices, 7
LDL ∗ . decomposition, 9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2025
K. Kim, Practical Post-Quantum Signatures, SpringerBriefs in Information Security
and Cryptography, https://doi.org/10.1007/978-3-031-81250-7

85

https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7
https://doi.org/10.1007/978-3-031-81250-7

86 Index

M
Matrices, 5

N
NTRU Lattices, 7
NTRU decision problem, 8
NTRU search problem, 8
Number fields, 5
Number Theoretic Transform (NTT), 17, 24
Number Theory aRe Us/N-th degree

TRUncated polynomial (NTRU), 11

P
Post Quantum Cryptography (PQC), 3
Python, 27

Q
Quotient rings, 5

R
Ring lattices, 7
Rivest Shamir Adleman (RSA), 2

S
Scalars, 5
Shor, P.W., 2
Side-channel attacks, 79

V
Vectors, 5
Volume, of a lattice, 7

	Preface
	Acknowledgments
	Contents
	About the Author
	Acronyms
	List of Algorithms
	List of Figures
	1 Introduction
	2 Notations and Definition
	2.1 Matrices, Vectors, and Scalars
	2.2 Quotient Ring
	2.3 Number Fields
	2.4 Inner Product
	2.5 Lattice
	2.6 Ring Lattices
	2.7 NTRU Lattices
	2.8 DFT Representation
	2.9 Discrete Gaussians
	2.10 Gram-Schmidt Orthogonalization
	2.11 LDL* Decomposition

	3 FALCON Algorithm
	3.1 Overview
	3.2 Key Generation of FALCON
	3.3 Signing of FALCON
	3.3.1 Compress and Decompress Algorithms

	3.4 Verification of FALCON

	4 SOLMAE Algorithm
	4.1 Overview
	4.2 Key Generation of SOLMAE
	4.3 Signing of SOLMAE
	4.4 Verification of SOLMAE

	5 Basics of Python
	5.1 Python Programming Language
	5.2 Python Environment for Windows OS
	5.3 Useful Python Packages

	6 Checking FALCON with Python
	6.1 Utility Modules for FALCON
	6.1.1 Checking common.py
	6.1.2 Checking fft.py
	6.1.3 Checking ntt.py
	6.1.4 Checking ntrugen.py
	6.1.5 Checking encoding.py

	6.2 FALCON-Specific Modules
	6.2.1 Checking parameters.py
	6.2.2 Checking samplerz.py
	6.2.3 Checking ffnp() in ffsampling.py
	6.2.4 Checking falcon.py
	6.2.5 Checking test.py

	7 Checking SOLMAE with Python
	7.1 SOLMAE-Specific Modules
	7.1.1 Checking parameters.py
	7.1.2 Checking Unifcrown.py
	7.1.3 Checking N_sampler.py
	7.1.4 Checking Pairgen.py
	7.1.5 Checking keygen.py
	7.1.6 Checking solmae.py

	8 Concluding Remarks
	References
	Index

