

Quantum Software Engineering

Manuel A. Serrano • Ricardo Pérez-Castillo •

Mario Piattini
Editors

Quantum
Software
Engineering

Editors
Manuel A. Serrano
aQuantum
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

Ricardo Pérez-Castillo
aQuantum
University of Castilla-La Mancha (UCLM)
Talavera de la Reina, Spain

Mario Piattini
aQuantum
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

ISBN 978-3-031-05323-8 ISBN 978-3-031-05324-5 (eBook)
https://doi.org/10.1007/978-3-031-05324-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0962-5659
https://orcid.org/0000-0002-9271-3184
https://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-031-05324-5

The editors want to dedicate this book to the
aQuantum Team for their great work in
Quantum Software Engineering research and
practice.

To Laura and Maria Jose, we are entangled
through the time

Manuel A. Serrano

To my loved ones, to whom I am entangled
with

Ricardo Pérez-Castillo

To Terry and Peter Finch, a very “entangled”
couple, with love

Mario Piattini

Preface

Overview

Historically, we can identify different industrial “revolutions”: the first revolution
that took place at the end of the eighteenth century with the creation of the steam
engine and the telegraph; the second (in the first decade of the nineteenth century)
with the oil-fueled combustion engine, electricity, the telephone, and the radio; and
the third brought about by information technology and the spread of the Internet. In
the last two decades, we have witnessed another confluence of technologies, social
networks, mobile, big data and data analytics, cloud computing, artificial intelligence
(AI), 3D printing, virtual and augmented reality, robotics, blockchain, Internet of
things (IoT) and Internet of everything, etc., that have provoked a real digital
“revolution/transformation” in organizations. Far from stopping, the next revolution
is already looming, resulting from the combination of nano- and biotechnologies,
genomics, and quantum-based technologies. In fact, if the nineteenth century was the
“machine age,” and the twentieth century was the “information age,” the twenty-first
century will probably be the “quantum age.”

Quantum computing is gaining a lot of interest from governments, research
agencies, companies, and investors alike. It is already possible to use various
quantum computers, based on counterintuitive principles as superposition or entan-
glement, and take advantage of their bigger computing power to solve problems that
cannot be addressed by “classical” computers in a reasonable timeframe. The
application and usage of quantum computing require the use of completely different
kinds of algorithms and programming languages. Several quantum platforms are
already available for coding these new algorithms. So, it can be stated that: “The
thing driving the hype is the realization that quantum computing is actually real. It is
no longer a physicist’s dream—it is an engineer’s nightmare” [1].

As the IBM Institute for Business Value highlights: “We are living in the
Quantum Decade, when quantum computers are getting ready to overperform their
classical cousins in a meaningful task, achieving what we call Quantum Advantage”
[2]. The same report remarks that: “The integration of quantum computing, AI, and

vii

classical computing into hybrid multi-cloud workflows will drive the most signifi-
cant computing revolution in 60 years.”

viii Preface

However, for quantum computing being a more effective reality, quantum com-
puter science, hardware, and software are not enough, and a novel “Quantum
Software Engineering” (QSE) is becoming a must. Recently, the Software Engineer-
ing Institute of the Carnegie Mellon University has published a “National Agenda
for Software Engineering Research & Development” titled “Architecting the Future
of Software Engineering” [3], which includes an “Engineering Quantum Computing
Software Systems Research Focus Area,” pointing out that “If we imagine that
hardware advances that permit scaling are achieved, then advances in software and
software engineering will also be needed.” One of the “research recommendations”
of this agenda is to “Catalyze Increased Attention on Engineering for New Compu-
tational Models, with a Focus on Quantum-enabled Software Systems. The software
engineering community should collaborate with the quantum computing community
to anticipate new architectural paradigms for quantum-enabled computing systems.”

Precisely this book was conceived with this in mind, to gather a set of software
engineering techniques and tools to improve the productivity and assure the quality
in quantum software development. Thereby, quantum computing will be the main
driver for a new software engineering golden age during the present decade [4].

Organization

The book is composed of 15 chapters structured as follows.
Chapter 1, written by Elías F. Combarro, introduces the main general concepts

and foundations related to quantum computing.
Then a set of chapters deal with the quantum software engineering, methods, and

techniques.
In Chap. 2, Mario Piattini and Juan Manuel Murillo present the quantum software

engineering landscape and the main challenges that arise in this new computing
paradigm. This chapter also briefly reviews the Talavera Manifesto for quantum
software engineering and discusses the main problems in the field.

In Chap. 3, Miguel Ángel Blanco and Manuel A. Serrano propose a governance
system adapted to quantum information systems, based on COBIT.

In Chap. 4, Benjamin Weder, Johanna Barzen, Frank Leymann, and Daniel Vietz
show a quantum software life cycle for hybrid systems, proposing a new framework
specially adapted to this kind of system.

Carmelo R. Cartiere is the author of Chap. 5, where he explores and defines a new
formal method for quantum software engineering.

In Chap. 6, written by Carlos A. Pérez-Delgado, a quantum software modelling
language is presented, and Q-UML is proposed in order to facilitate the modelling of
quantum applications.

https://doi.org/10.1007/978-3-031-05324-5_1
https://doi.org/10.1007/978-3-031-05324-5_2
https://doi.org/10.1007/978-3-031-05324-5_3
https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.1007/978-3-031-05324-5_5
https://doi.org/10.1007/978-3-031-05324-5_6

Preface ix

Chapter 7, by Iaakov Exman and Alon Tsalik Shmilovich, offers a rigorous
formulation of the density matrix-based approach as a Universal Software Design
procedure. It enables modularization of all software system types.

In Chap. 8, written by David Valencia, Enrique Moguel, Javier Rojo, Javier
Berrocal, Jose Garcia-Alonso, and Juan M. Murillo an approximation to the devel-
opment of hybrid quantum-classical services is proposed using service-oriented
architectures, in order to tap on problems hard to deal with classical computing
algorithms. From the experiments made and analysis carried out, several shortcom-
ings of actual quantum computing are derived, allowing the proposal of some
directions for future development of quantum service-oriented computing (QSOC).

Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán, Macario
Polo, and José A. Cruz-Lemus show, in Chap. 9, the current trends and emerging
proposals for quantum software testing.

In Chap. 10, Miguel-Angel Sicilia, Marçal Mora-Cantallops, Salvador Sánchez-
Alonso, and Elena García-Barriocanal discuss the apparent differences and similar-
ities of quantum software engineering as an emerging discipline with “classical”
software engineering from the viewpoint of measurement and point to future
research directions in that particular area.

Ricardo Pérez del Castillo and Luis Jiménez-Navajas present in Chap. 11 a
software modernization process based on ADM, and, hence, on reengineering,
which could be effective in situations resulting from the evolution of classical and
quantum software.

Turning to the quantum software environments and tools, Chap. 12, by Jose
Antonio Cruz and Manuel A. Serrano, presents an overview of the different quantum
software layers and the existent quantum software tools and platforms.

Chapter 13, written by Guido Peterssen y Jose Luis Hevia, shows QuantumPath®
(QPath®), which is a quantum software development platform to support the design,
implementation, and execution of quantum software applications.

Nir Minerbi briefly explains, in Chap. 14, how quantum software development
could be achieved with Classiq, a Quantum Algorithm Design (QAD) platform that
automatically synthesizes complete quantum circuits from high-level functional
models.

And finally, in Chap. 15, Filipa Ramos Ferreira, João Paulo Fernandes, and Rui
Abreu present and overview of quantum software frameworks for deep learning.

Target Readership

The target readership for this book is assumed to have previous knowledge of
information systems and software engineering. The book is aimed at academics,
researchers, and practitioners involved in the creation of quantum information
systems and software platforms.

https://doi.org/10.1007/978-3-031-05324-5_7
https://doi.org/10.1007/978-3-031-05324-5_8
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_10
https://doi.org/10.1007/978-3-031-05324-5_11
https://doi.org/10.1007/978-3-031-05324-5_12
https://doi.org/10.1007/978-3-031-05324-5_13
https://doi.org/10.1007/978-3-031-05324-5_14
https://doi.org/10.1007/978-3-031-05324-5_15

Ciudad Real, Spain Manuel A. Serrano
Talavera de la Reina, Spain Ricardo Pérez-Castillo
Ciudad Real, Spain Mario Piattini
February 2022

¼

x Preface

It can also serve as a reference book for monographic courses on quantum
software development, as well as for the subjects to be incorporated in the curricula
of bachelor’s and master’s degree courses in the field of computer science.

References

1. Knight W (2018) Serious quantum computers are finally here. What are we going
to do with them? MIT Technol Rev

2. IBV (2021) The Quantum Decade. A playbook for achieving awareness, readi-
ness, and advantage. IBM Institute for Business Value. https://www.ibm.com/
downloads/cas/J25G35OK

3. SEI (2021) Architecting the future of software engineering. A national agenda for
Software Engineering Research & Development. Carnegie Mellon University,
Software Engineering Institute. https://resources.sei.cmu.edu/library/asset-view.
cfm?assetid 741193

4. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum Computing: a new
Software Engineering golden age. ACM SIGSOFT Softw Eng Notes 45(3):
12–14. https://dl.acm.org/doi/10.1145/3402127.3402131

https://www.ibm.com/downloads/cas/J25G35OK
https://www.ibm.com/downloads/cas/J25G35OK
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193
https://dl.acm.org/doi/10.1145/3402127.3402131

Acknowledgments

We would like to express our gratitude to all those individuals and parties who
helped us produce this volume. In the first place, we would like to thank all the
contributing authors and reviewers who helped improve the final version. Special
thanks to Springer-Verlag and Ralf Gerstner for believing in us once again and for
giving us the opportunity to publish this work.

We would also like to say how grateful we are to Natalia Pinilla of Universidad de
Castilla-La Mancha for her support during the production of this book.

Finally, we wish to acknowledge the support of the “QHealth: Quantum
Pharmacogenomics Applied to Aging” project, the 2020 CDTI (Center for the
Development of Industrial Technology of the Ministry of Science and Innovation
of Spain) Missions Program and FEDER, and the SMOQUIN project (PID2019-
104791RB-I00) funded by the Spanish Ministry of Science and Innovation
(MICINN).

xi

Contents

1 Quantum Computing Foundations . 1
Elías F. Combarro
1.1 Introduction . 1

1.1.1 Problems Quantum Computing Can Address
and Some Applications . 2

1.2 Models of Quantum Computing . 3
1.2.1 Gate-Based Quantum Computers 4
1.2.2 Adiabatic Quantum Computers and Quantum

Annealers . 4
1.2.3 Measurement-Based Quantum Computers 5

1.3 Elements of the Quantum Circuit Model 5
1.3.1 Qubits . 5
1.3.2 Measurements . 7
1.3.3 Quantum Gates . 9
1.3.4 Quantum Circuits . 12

1.4 Some Quantum Algorithms . 15
1.4.1 Generating Random Bits with a Quantum Circuit 15
1.4.2 Creating Entanglement . 16
1.4.3 Deutsch’s Algorithm . 17
1.4.4 Advanced Algorithms . 20

1.5 Quantum Adiabatic Computing and Quantum Annealing 20
1.6 Conclusions . 22
References . 22

2 Quantum Software Engineering Landscape and Challenges 25
Mario Piattini and Juan Manuel Murillo
2.1 Introduction . 25
2.2 Software Engineering Evolution . 27
2.3 The Talavera Manifesto . 29
2.4 Software Engineering Techniques . 30

xiii

https://doi.org/10.1007/978-3-031-05324-5_1
https://doi.org/10.1007/978-3-031-05324-5_1
https://doi.org/10.1007/978-3-031-05324-5_1
https://doi.org/10.1007/978-3-031-05324-5_1#Sec1
https://doi.org/10.1007/978-3-031-05324-5_1#Sec1
https://doi.org/10.1007/978-3-031-05324-5_1#Sec1
https://doi.org/10.1007/978-3-031-05324-5_1#Sec2
https://doi.org/10.1007/978-3-031-05324-5_1#Sec2
https://doi.org/10.1007/978-3-031-05324-5_1#Sec2
https://doi.org/10.1007/978-3-031-05324-5_1#Sec2
https://doi.org/10.1007/978-3-031-05324-5_1#Sec3
https://doi.org/10.1007/978-3-031-05324-5_1#Sec3
https://doi.org/10.1007/978-3-031-05324-5_1#Sec3
https://doi.org/10.1007/978-3-031-05324-5_1#Sec4
https://doi.org/10.1007/978-3-031-05324-5_1#Sec4
https://doi.org/10.1007/978-3-031-05324-5_1#Sec4
https://doi.org/10.1007/978-3-031-05324-5_1#Sec5
https://doi.org/10.1007/978-3-031-05324-5_1#Sec5
https://doi.org/10.1007/978-3-031-05324-5_1#Sec5
https://doi.org/10.1007/978-3-031-05324-5_1#Sec5
https://doi.org/10.1007/978-3-031-05324-5_1#Sec6
https://doi.org/10.1007/978-3-031-05324-5_1#Sec6
https://doi.org/10.1007/978-3-031-05324-5_1#Sec6
https://doi.org/10.1007/978-3-031-05324-5_1#Sec7
https://doi.org/10.1007/978-3-031-05324-5_1#Sec7
https://doi.org/10.1007/978-3-031-05324-5_1#Sec7
https://doi.org/10.1007/978-3-031-05324-5_1#Sec8
https://doi.org/10.1007/978-3-031-05324-5_1#Sec8
https://doi.org/10.1007/978-3-031-05324-5_1#Sec8
https://doi.org/10.1007/978-3-031-05324-5_1#Sec9
https://doi.org/10.1007/978-3-031-05324-5_1#Sec9
https://doi.org/10.1007/978-3-031-05324-5_1#Sec9
https://doi.org/10.1007/978-3-031-05324-5_1#Sec10
https://doi.org/10.1007/978-3-031-05324-5_1#Sec10
https://doi.org/10.1007/978-3-031-05324-5_1#Sec10
https://doi.org/10.1007/978-3-031-05324-5_1#Sec11
https://doi.org/10.1007/978-3-031-05324-5_1#Sec11
https://doi.org/10.1007/978-3-031-05324-5_1#Sec11
https://doi.org/10.1007/978-3-031-05324-5_1#Sec12
https://doi.org/10.1007/978-3-031-05324-5_1#Sec12
https://doi.org/10.1007/978-3-031-05324-5_1#Sec12
https://doi.org/10.1007/978-3-031-05324-5_1#Sec13
https://doi.org/10.1007/978-3-031-05324-5_1#Sec13
https://doi.org/10.1007/978-3-031-05324-5_1#Sec13
https://doi.org/10.1007/978-3-031-05324-5_1#Sec14
https://doi.org/10.1007/978-3-031-05324-5_1#Sec14
https://doi.org/10.1007/978-3-031-05324-5_1#Sec14
https://doi.org/10.1007/978-3-031-05324-5_1#Sec15
https://doi.org/10.1007/978-3-031-05324-5_1#Sec15
https://doi.org/10.1007/978-3-031-05324-5_1#Sec15
https://doi.org/10.1007/978-3-031-05324-5_1#Sec16
https://doi.org/10.1007/978-3-031-05324-5_1#Sec16
https://doi.org/10.1007/978-3-031-05324-5_1#Sec16
https://doi.org/10.1007/978-3-031-05324-5_1#Sec17
https://doi.org/10.1007/978-3-031-05324-5_1#Sec17
https://doi.org/10.1007/978-3-031-05324-5_1#Sec17
https://doi.org/10.1007/978-3-031-05324-5_1#Sec18
https://doi.org/10.1007/978-3-031-05324-5_1#Sec18
https://doi.org/10.1007/978-3-031-05324-5_1#Sec18
https://doi.org/10.1007/978-3-031-05324-5_1#Bib1
https://doi.org/10.1007/978-3-031-05324-5_1#Bib1
https://doi.org/10.1007/978-3-031-05324-5_2
https://doi.org/10.1007/978-3-031-05324-5_2
https://doi.org/10.1007/978-3-031-05324-5_2
https://doi.org/10.1007/978-3-031-05324-5_2#Sec1
https://doi.org/10.1007/978-3-031-05324-5_2#Sec1
https://doi.org/10.1007/978-3-031-05324-5_2#Sec1
https://doi.org/10.1007/978-3-031-05324-5_2#Sec2
https://doi.org/10.1007/978-3-031-05324-5_2#Sec2
https://doi.org/10.1007/978-3-031-05324-5_2#Sec2
https://doi.org/10.1007/978-3-031-05324-5_2#Sec3
https://doi.org/10.1007/978-3-031-05324-5_2#Sec3
https://doi.org/10.1007/978-3-031-05324-5_2#Sec3
https://doi.org/10.1007/978-3-031-05324-5_2#Sec4
https://doi.org/10.1007/978-3-031-05324-5_2#Sec4
https://doi.org/10.1007/978-3-031-05324-5_2#Sec4

xiv Contents

2.5 Software Engineering Environments . 30
2.6 Lack of Standardization . 32
2.7 Software Engineering Education . 33
2.8 Collaboration Between Industry and Academia 34
2.9 Conclusions . 35
References . 36

3 Quantum Information Technology Governance System 39
Miguel Ángel Blanco and Manuel Serrano
3.1 Quantum Technology and IT Governance 39
3.2 Quantum Information Technology Governance System

Design . 41
3.2.1 Step 1: Understand the Enterprise Context and

Strategy . 41
3.2.2 Step 2: Determine the Initial Scope of the QITGS 43
3.2.3 Step 3: Refine the Scope of the QITGS 43
3.2.4 Step 4: Conclude the QITGS 51

3.3 Quantum Information Technology Governance System 52
3.4 Limitations . 53
3.5 Conclusions . 56
References . 59

4 Quantum Software Development Lifecycle 61
Benjamin Weder, Johanna Barzen, Frank Leymann, and Daniel Vietz
4.1 Introduction . 61
4.2 Hybrid Quantum Applications . 62
4.3 Quantum Software Development Lifecycle 64

4.3.1 Interwoven Lifecycles . 64
4.3.2 Enclosing Lifecycle . 66
4.3.3 Quantum Workflow Lifecycle 69
4.3.4 Quantum Circuit Lifecycle . 71
4.3.5 Operations Lifecycle . 74

4.4 Discussion . 77
4.5 Related Work . 77
4.6 Conclusion and Outlook . 78
References . 79

5 Formal Methods for Quantum Software Engineering 85
Carmelo R. Cartiere
5.1 Introduction . 85
5.2 Overture to Formal Methods . 85
5.3 The Z Specification Language . 87
5.4 An Introduction to the Quantum Computing Observable 88

5.4.1 Formalizing the Observable . 89
5.4.2 The Observable Operators . 90

https://doi.org/10.1007/978-3-031-05324-5_2#Sec5
https://doi.org/10.1007/978-3-031-05324-5_2#Sec5
https://doi.org/10.1007/978-3-031-05324-5_2#Sec5
https://doi.org/10.1007/978-3-031-05324-5_2#Sec6
https://doi.org/10.1007/978-3-031-05324-5_2#Sec6
https://doi.org/10.1007/978-3-031-05324-5_2#Sec6
https://doi.org/10.1007/978-3-031-05324-5_2#Sec7
https://doi.org/10.1007/978-3-031-05324-5_2#Sec7
https://doi.org/10.1007/978-3-031-05324-5_2#Sec7
https://doi.org/10.1007/978-3-031-05324-5_2#Sec8
https://doi.org/10.1007/978-3-031-05324-5_2#Sec8
https://doi.org/10.1007/978-3-031-05324-5_2#Sec8
https://doi.org/10.1007/978-3-031-05324-5_2#Sec9
https://doi.org/10.1007/978-3-031-05324-5_2#Sec9
https://doi.org/10.1007/978-3-031-05324-5_2#Sec9
https://doi.org/10.1007/978-3-031-05324-5_2#Bib1
https://doi.org/10.1007/978-3-031-05324-5_2#Bib1
https://doi.org/10.1007/978-3-031-05324-5_3
https://doi.org/10.1007/978-3-031-05324-5_3
https://doi.org/10.1007/978-3-031-05324-5_3
https://doi.org/10.1007/978-3-031-05324-5_3#Sec1
https://doi.org/10.1007/978-3-031-05324-5_3#Sec1
https://doi.org/10.1007/978-3-031-05324-5_3#Sec1
https://doi.org/10.1007/978-3-031-05324-5_3#Sec2
https://doi.org/10.1007/978-3-031-05324-5_3#Sec2
https://doi.org/10.1007/978-3-031-05324-5_3#Sec2
https://doi.org/10.1007/978-3-031-05324-5_3#Sec2
https://doi.org/10.1007/978-3-031-05324-5_3#Sec3
https://doi.org/10.1007/978-3-031-05324-5_3#Sec3
https://doi.org/10.1007/978-3-031-05324-5_3#Sec3
https://doi.org/10.1007/978-3-031-05324-5_3#Sec3
https://doi.org/10.1007/978-3-031-05324-5_3#Sec8
https://doi.org/10.1007/978-3-031-05324-5_3#Sec8
https://doi.org/10.1007/978-3-031-05324-5_3#Sec8
https://doi.org/10.1007/978-3-031-05324-5_3#Sec9
https://doi.org/10.1007/978-3-031-05324-5_3#Sec9
https://doi.org/10.1007/978-3-031-05324-5_3#Sec9
https://doi.org/10.1007/978-3-031-05324-5_3#Sec16
https://doi.org/10.1007/978-3-031-05324-5_3#Sec16
https://doi.org/10.1007/978-3-031-05324-5_3#Sec16
https://doi.org/10.1007/978-3-031-05324-5_3#Sec18
https://doi.org/10.1007/978-3-031-05324-5_3#Sec18
https://doi.org/10.1007/978-3-031-05324-5_3#Sec18
https://doi.org/10.1007/978-3-031-05324-5_3#Sec19
https://doi.org/10.1007/978-3-031-05324-5_3#Sec19
https://doi.org/10.1007/978-3-031-05324-5_3#Sec19
https://doi.org/10.1007/978-3-031-05324-5_3#Sec20
https://doi.org/10.1007/978-3-031-05324-5_3#Sec20
https://doi.org/10.1007/978-3-031-05324-5_3#Sec20
https://doi.org/10.1007/978-3-031-05324-5_3#Bib1
https://doi.org/10.1007/978-3-031-05324-5_3#Bib1
https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.1007/978-3-031-05324-5_4#Sec1
https://doi.org/10.1007/978-3-031-05324-5_4#Sec1
https://doi.org/10.1007/978-3-031-05324-5_4#Sec1
https://doi.org/10.1007/978-3-031-05324-5_4#Sec2
https://doi.org/10.1007/978-3-031-05324-5_4#Sec2
https://doi.org/10.1007/978-3-031-05324-5_4#Sec2
https://doi.org/10.1007/978-3-031-05324-5_4#Sec3
https://doi.org/10.1007/978-3-031-05324-5_4#Sec3
https://doi.org/10.1007/978-3-031-05324-5_4#Sec3
https://doi.org/10.1007/978-3-031-05324-5_4#Sec4
https://doi.org/10.1007/978-3-031-05324-5_4#Sec4
https://doi.org/10.1007/978-3-031-05324-5_4#Sec4
https://doi.org/10.1007/978-3-031-05324-5_4#Sec5
https://doi.org/10.1007/978-3-031-05324-5_4#Sec5
https://doi.org/10.1007/978-3-031-05324-5_4#Sec5
https://doi.org/10.1007/978-3-031-05324-5_4#Sec14
https://doi.org/10.1007/978-3-031-05324-5_4#Sec14
https://doi.org/10.1007/978-3-031-05324-5_4#Sec14
https://doi.org/10.1007/978-3-031-05324-5_4#Sec21
https://doi.org/10.1007/978-3-031-05324-5_4#Sec21
https://doi.org/10.1007/978-3-031-05324-5_4#Sec21
https://doi.org/10.1007/978-3-031-05324-5_4#Sec30
https://doi.org/10.1007/978-3-031-05324-5_4#Sec30
https://doi.org/10.1007/978-3-031-05324-5_4#Sec30
https://doi.org/10.1007/978-3-031-05324-5_4#Sec36
https://doi.org/10.1007/978-3-031-05324-5_4#Sec36
https://doi.org/10.1007/978-3-031-05324-5_4#Sec36
https://doi.org/10.1007/978-3-031-05324-5_4#Sec37
https://doi.org/10.1007/978-3-031-05324-5_4#Sec37
https://doi.org/10.1007/978-3-031-05324-5_4#Sec37
https://doi.org/10.1007/978-3-031-05324-5_4#Sec38
https://doi.org/10.1007/978-3-031-05324-5_4#Sec38
https://doi.org/10.1007/978-3-031-05324-5_4#Sec38
https://doi.org/10.1007/978-3-031-05324-5_4#Bib1
https://doi.org/10.1007/978-3-031-05324-5_4#Bib1
https://doi.org/10.1007/978-3-031-05324-5_5
https://doi.org/10.1007/978-3-031-05324-5_5
https://doi.org/10.1007/978-3-031-05324-5_5
https://doi.org/10.1007/978-3-031-05324-5_5#Sec1
https://doi.org/10.1007/978-3-031-05324-5_5#Sec1
https://doi.org/10.1007/978-3-031-05324-5_5#Sec1
https://doi.org/10.1007/978-3-031-05324-5_5#Sec2
https://doi.org/10.1007/978-3-031-05324-5_5#Sec2
https://doi.org/10.1007/978-3-031-05324-5_5#Sec2
https://doi.org/10.1007/978-3-031-05324-5_5#Sec3
https://doi.org/10.1007/978-3-031-05324-5_5#Sec3
https://doi.org/10.1007/978-3-031-05324-5_5#Sec3
https://doi.org/10.1007/978-3-031-05324-5_5#Sec4
https://doi.org/10.1007/978-3-031-05324-5_5#Sec4
https://doi.org/10.1007/978-3-031-05324-5_5#Sec4
https://doi.org/10.1007/978-3-031-05324-5_5#Sec5
https://doi.org/10.1007/978-3-031-05324-5_5#Sec5
https://doi.org/10.1007/978-3-031-05324-5_5#Sec5
https://doi.org/10.1007/978-3-031-05324-5_5#Sec6
https://doi.org/10.1007/978-3-031-05324-5_5#Sec6
https://doi.org/10.1007/978-3-031-05324-5_5#Sec6

Contents xv

5.5 A Practical Example of F-QSE: Programming the Deutsch
Algorithm from Specifications . 92

5.6 Another Practical Example of F-QSE: The Quantum
Teleportation Protocol . 94

5.7 Conclusions and Outlooks . 97
Appendix . 98

A.1 Coding of Typical Quantum Operators 98
References . 100

6 A Quantum Software Modeling Language 103
Carlos A. Pérez-Delgado
6.1 Introduction . 103
6.2 Fundamental Axiom of Quantum Software Engineering 104
6.3 Design Principles for a Quantum Software Modeling

Language . 106
6.4 Q-UML . 110

6.4.1 UML . 110
6.4.2 Q-UML Extensions . 111
6.4.3 Activity and State Diagrams 115
6.4.4 Sequence Diagrams . 116
6.4.5 Discussion and Further Reading 118

References . 118

7 Quantum Software Models: Density Matrix for Universal
Software Design . 121
Iaakov Exman and Alon Tsalik Shmilovich
7.1 Introduction . 121

7.1.1 Bipartite Graph and Its Laplacian Matrix 121
7.1.2 From Laplacian to Density Matrix 123
7.1.3 Density Matrix for Universal Software Design 123
7.1.4 Chapter Organization . 124

7.2 Quantum-Wise Universal Software Design Theory 124
7.2.1 Modules as Sub-spaces of the Software System State

Space . 124
7.2.2 Number and Components of Software Modules 125
7.2.3 Quantum Modularization Procedure 126
7.2.4 Universality of Software Design 126

7.3 Quantum Software Design . 128
7.3.1 From Quantum Circuit to Density Matrix 128
7.3.2 First Quantum Case Study: Deutsch Algorithm 129
7.3.3 Second Quantum Case Study: Grover Search 131

7.4 Classical Software Design . 133
7.4.1 From Class Diagram to Density Matrix 133
7.4.2 First Classical Case Study: Command Design

Pattern . 134

https://doi.org/10.1007/978-3-031-05324-5_5#Sec7
https://doi.org/10.1007/978-3-031-05324-5_5#Sec7
https://doi.org/10.1007/978-3-031-05324-5_5#Sec7
https://doi.org/10.1007/978-3-031-05324-5_5#Sec7
https://doi.org/10.1007/978-3-031-05324-5_5#Sec8
https://doi.org/10.1007/978-3-031-05324-5_5#Sec8
https://doi.org/10.1007/978-3-031-05324-5_5#Sec8
https://doi.org/10.1007/978-3-031-05324-5_5#Sec8
https://doi.org/10.1007/978-3-031-05324-5_5#Sec9
https://doi.org/10.1007/978-3-031-05324-5_5#Sec9
https://doi.org/10.1007/978-3-031-05324-5_5#Sec9
https://doi.org/10.1007/978-3-031-05324-5_5#Sec10
https://doi.org/10.1007/978-3-031-05324-5_5#Sec10
https://doi.org/10.1007/978-3-031-05324-5_5#Sec11
https://doi.org/10.1007/978-3-031-05324-5_5#Sec11
https://doi.org/10.1007/978-3-031-05324-5_5#Bib1
https://doi.org/10.1007/978-3-031-05324-5_5#Bib1
https://doi.org/10.1007/978-3-031-05324-5_6
https://doi.org/10.1007/978-3-031-05324-5_6
https://doi.org/10.1007/978-3-031-05324-5_6
https://doi.org/10.1007/978-3-031-05324-5_6#Sec1
https://doi.org/10.1007/978-3-031-05324-5_6#Sec1
https://doi.org/10.1007/978-3-031-05324-5_6#Sec1
https://doi.org/10.1007/978-3-031-05324-5_6#Sec2
https://doi.org/10.1007/978-3-031-05324-5_6#Sec2
https://doi.org/10.1007/978-3-031-05324-5_6#Sec2
https://doi.org/10.1007/978-3-031-05324-5_6#Sec3
https://doi.org/10.1007/978-3-031-05324-5_6#Sec3
https://doi.org/10.1007/978-3-031-05324-5_6#Sec3
https://doi.org/10.1007/978-3-031-05324-5_6#Sec3
https://doi.org/10.1007/978-3-031-05324-5_6#Sec4
https://doi.org/10.1007/978-3-031-05324-5_6#Sec4
https://doi.org/10.1007/978-3-031-05324-5_6#Sec4
https://doi.org/10.1007/978-3-031-05324-5_6#Sec5
https://doi.org/10.1007/978-3-031-05324-5_6#Sec5
https://doi.org/10.1007/978-3-031-05324-5_6#Sec5
https://doi.org/10.1007/978-3-031-05324-5_6#Sec6
https://doi.org/10.1007/978-3-031-05324-5_6#Sec6
https://doi.org/10.1007/978-3-031-05324-5_6#Sec6
https://doi.org/10.1007/978-3-031-05324-5_6#Sec8
https://doi.org/10.1007/978-3-031-05324-5_6#Sec8
https://doi.org/10.1007/978-3-031-05324-5_6#Sec8
https://doi.org/10.1007/978-3-031-05324-5_6#Sec9
https://doi.org/10.1007/978-3-031-05324-5_6#Sec9
https://doi.org/10.1007/978-3-031-05324-5_6#Sec9
https://doi.org/10.1007/978-3-031-05324-5_6#Sec10
https://doi.org/10.1007/978-3-031-05324-5_6#Sec10
https://doi.org/10.1007/978-3-031-05324-5_6#Sec10
https://doi.org/10.1007/978-3-031-05324-5_6#Bib1
https://doi.org/10.1007/978-3-031-05324-5_6#Bib1
https://doi.org/10.1007/978-3-031-05324-5_7
https://doi.org/10.1007/978-3-031-05324-5_7
https://doi.org/10.1007/978-3-031-05324-5_7
https://doi.org/10.1007/978-3-031-05324-5_7
https://doi.org/10.1007/978-3-031-05324-5_7#Sec1
https://doi.org/10.1007/978-3-031-05324-5_7#Sec1
https://doi.org/10.1007/978-3-031-05324-5_7#Sec1
https://doi.org/10.1007/978-3-031-05324-5_7#Sec2
https://doi.org/10.1007/978-3-031-05324-5_7#Sec2
https://doi.org/10.1007/978-3-031-05324-5_7#Sec2
https://doi.org/10.1007/978-3-031-05324-5_7#Sec3
https://doi.org/10.1007/978-3-031-05324-5_7#Sec3
https://doi.org/10.1007/978-3-031-05324-5_7#Sec3
https://doi.org/10.1007/978-3-031-05324-5_7#Sec4
https://doi.org/10.1007/978-3-031-05324-5_7#Sec4
https://doi.org/10.1007/978-3-031-05324-5_7#Sec4
https://doi.org/10.1007/978-3-031-05324-5_7#Sec5
https://doi.org/10.1007/978-3-031-05324-5_7#Sec5
https://doi.org/10.1007/978-3-031-05324-5_7#Sec5
https://doi.org/10.1007/978-3-031-05324-5_7#Sec6
https://doi.org/10.1007/978-3-031-05324-5_7#Sec6
https://doi.org/10.1007/978-3-031-05324-5_7#Sec6
https://doi.org/10.1007/978-3-031-05324-5_7#Sec7
https://doi.org/10.1007/978-3-031-05324-5_7#Sec7
https://doi.org/10.1007/978-3-031-05324-5_7#Sec7
https://doi.org/10.1007/978-3-031-05324-5_7#Sec7
https://doi.org/10.1007/978-3-031-05324-5_7#Sec8
https://doi.org/10.1007/978-3-031-05324-5_7#Sec8
https://doi.org/10.1007/978-3-031-05324-5_7#Sec8
https://doi.org/10.1007/978-3-031-05324-5_7#Sec9
https://doi.org/10.1007/978-3-031-05324-5_7#Sec9
https://doi.org/10.1007/978-3-031-05324-5_7#Sec9
https://doi.org/10.1007/978-3-031-05324-5_7#Sec10
https://doi.org/10.1007/978-3-031-05324-5_7#Sec10
https://doi.org/10.1007/978-3-031-05324-5_7#Sec10
https://doi.org/10.1007/978-3-031-05324-5_7#Sec11
https://doi.org/10.1007/978-3-031-05324-5_7#Sec11
https://doi.org/10.1007/978-3-031-05324-5_7#Sec11
https://doi.org/10.1007/978-3-031-05324-5_7#Sec12
https://doi.org/10.1007/978-3-031-05324-5_7#Sec12
https://doi.org/10.1007/978-3-031-05324-5_7#Sec12
https://doi.org/10.1007/978-3-031-05324-5_7#Sec13
https://doi.org/10.1007/978-3-031-05324-5_7#Sec13
https://doi.org/10.1007/978-3-031-05324-5_7#Sec13
https://doi.org/10.1007/978-3-031-05324-5_7#Sec15
https://doi.org/10.1007/978-3-031-05324-5_7#Sec15
https://doi.org/10.1007/978-3-031-05324-5_7#Sec15
https://doi.org/10.1007/978-3-031-05324-5_7#Sec17
https://doi.org/10.1007/978-3-031-05324-5_7#Sec17
https://doi.org/10.1007/978-3-031-05324-5_7#Sec17
https://doi.org/10.1007/978-3-031-05324-5_7#Sec18
https://doi.org/10.1007/978-3-031-05324-5_7#Sec18
https://doi.org/10.1007/978-3-031-05324-5_7#Sec18
https://doi.org/10.1007/978-3-031-05324-5_7#Sec19
https://doi.org/10.1007/978-3-031-05324-5_7#Sec19
https://doi.org/10.1007/978-3-031-05324-5_7#Sec19
https://doi.org/10.1007/978-3-031-05324-5_7#Sec19

6

xvi Contents

7.4.3 Second Classical Case Study: Firefox for iOS 13
7.5 Hybrid Software System Design . 138

7.5.1 Hybrid Architecture: “Quantum Data, Classical
Control” . 138

7.5.2 First Hybrid Case Study: Teleportation Protocol 140
7.5.3 Second Hybrid Case Study: Quantum Co-processor . . . 141

7.6 Related Work . 142
7.6.1 Modularity: Laplacian and Density Matrix 143
7.6.2 Hybrid Software Systems: Architecture and

Formalization . 143
7.6.3 Design Universality . 144

7.7 Discussion . 144
7.7.1 Universality of Quantum, Classical, and Hybrid

Design . 144
7.7.2 Classical Software Systems as Classical Limit of

Quantum Systems . 145
7.7.3 Software Duality as State and Operator 146
7.7.4 Future Work . 146
7.7.5 Main Contribution . 146

References . 146

8 Quantum Service-Oriented Architectures: From Hybrid Classical
Approaches to Future Stand-Alone Solutions 149
David Valencia, Enrique Moguel, Javier Rojo, Javier Berrocal,
Jose Garcia-Alonso, and Juan M. Murillo
8.1 Introduction . 149
8.2 Background . 151
8.3 Current Status of Quantum Microservices: The Amazon

Braket Case Study . 153
8.3.1 Main Quantum Computing Approaches 153
8.3.2 Limitations of Getting Service-Oriented Computing

Benefits in Quantum Computing Environments 157
8.4 Directions for a Future QSOC . 160
8.5 Related Works . 162
8.6 Conclusion . 164
References . 164

9 Quantum Software Testing: Current Trends and Emerging
Proposals . 167
Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán,
Macario Polo, and José A. Cruz-Lemus
9.1 Introduction . 167
9.2 Current Trends on Quantum Software Testing 169

9.2.1 Overview Proposals . 169
9.2.2 Frameworks . 170

https://doi.org/10.1007/978-3-031-05324-5_7#Sec21
https://doi.org/10.1007/978-3-031-05324-5_7#Sec21
https://doi.org/10.1007/978-3-031-05324-5_7#Sec21
https://doi.org/10.1007/978-3-031-05324-5_7#Sec22
https://doi.org/10.1007/978-3-031-05324-5_7#Sec22
https://doi.org/10.1007/978-3-031-05324-5_7#Sec22
https://doi.org/10.1007/978-3-031-05324-5_7#Sec23
https://doi.org/10.1007/978-3-031-05324-5_7#Sec23
https://doi.org/10.1007/978-3-031-05324-5_7#Sec23
https://doi.org/10.1007/978-3-031-05324-5_7#Sec23
https://doi.org/10.1007/978-3-031-05324-5_7#Sec24
https://doi.org/10.1007/978-3-031-05324-5_7#Sec24
https://doi.org/10.1007/978-3-031-05324-5_7#Sec24
https://doi.org/10.1007/978-3-031-05324-5_7#Sec26
https://doi.org/10.1007/978-3-031-05324-5_7#Sec26
https://doi.org/10.1007/978-3-031-05324-5_7#Sec26
https://doi.org/10.1007/978-3-031-05324-5_7#Sec28
https://doi.org/10.1007/978-3-031-05324-5_7#Sec28
https://doi.org/10.1007/978-3-031-05324-5_7#Sec28
https://doi.org/10.1007/978-3-031-05324-5_7#Sec29
https://doi.org/10.1007/978-3-031-05324-5_7#Sec29
https://doi.org/10.1007/978-3-031-05324-5_7#Sec29
https://doi.org/10.1007/978-3-031-05324-5_7#Sec30
https://doi.org/10.1007/978-3-031-05324-5_7#Sec30
https://doi.org/10.1007/978-3-031-05324-5_7#Sec30
https://doi.org/10.1007/978-3-031-05324-5_7#Sec30
https://doi.org/10.1007/978-3-031-05324-5_7#Sec31
https://doi.org/10.1007/978-3-031-05324-5_7#Sec31
https://doi.org/10.1007/978-3-031-05324-5_7#Sec31
https://doi.org/10.1007/978-3-031-05324-5_7#Sec32
https://doi.org/10.1007/978-3-031-05324-5_7#Sec32
https://doi.org/10.1007/978-3-031-05324-5_7#Sec32
https://doi.org/10.1007/978-3-031-05324-5_7#Sec33
https://doi.org/10.1007/978-3-031-05324-5_7#Sec33
https://doi.org/10.1007/978-3-031-05324-5_7#Sec33
https://doi.org/10.1007/978-3-031-05324-5_7#Sec33
https://doi.org/10.1007/978-3-031-05324-5_7#Sec34
https://doi.org/10.1007/978-3-031-05324-5_7#Sec34
https://doi.org/10.1007/978-3-031-05324-5_7#Sec34
https://doi.org/10.1007/978-3-031-05324-5_7#Sec34
https://doi.org/10.1007/978-3-031-05324-5_7#Sec35
https://doi.org/10.1007/978-3-031-05324-5_7#Sec35
https://doi.org/10.1007/978-3-031-05324-5_7#Sec35
https://doi.org/10.1007/978-3-031-05324-5_7#Sec36
https://doi.org/10.1007/978-3-031-05324-5_7#Sec36
https://doi.org/10.1007/978-3-031-05324-5_7#Sec36
https://doi.org/10.1007/978-3-031-05324-5_7#Sec37
https://doi.org/10.1007/978-3-031-05324-5_7#Sec37
https://doi.org/10.1007/978-3-031-05324-5_7#Sec37
https://doi.org/10.1007/978-3-031-05324-5_7#Bib1
https://doi.org/10.1007/978-3-031-05324-5_7#Bib1
https://doi.org/10.1007/978-3-031-05324-5_8
https://doi.org/10.1007/978-3-031-05324-5_8
https://doi.org/10.1007/978-3-031-05324-5_8
https://doi.org/10.1007/978-3-031-05324-5_8
https://doi.org/10.1007/978-3-031-05324-5_8#Sec1
https://doi.org/10.1007/978-3-031-05324-5_8#Sec1
https://doi.org/10.1007/978-3-031-05324-5_8#Sec1
https://doi.org/10.1007/978-3-031-05324-5_8#Sec2
https://doi.org/10.1007/978-3-031-05324-5_8#Sec2
https://doi.org/10.1007/978-3-031-05324-5_8#Sec2
https://doi.org/10.1007/978-3-031-05324-5_8#Sec3
https://doi.org/10.1007/978-3-031-05324-5_8#Sec3
https://doi.org/10.1007/978-3-031-05324-5_8#Sec3
https://doi.org/10.1007/978-3-031-05324-5_8#Sec3
https://doi.org/10.1007/978-3-031-05324-5_8#Sec4
https://doi.org/10.1007/978-3-031-05324-5_8#Sec4
https://doi.org/10.1007/978-3-031-05324-5_8#Sec4
https://doi.org/10.1007/978-3-031-05324-5_8#Sec7
https://doi.org/10.1007/978-3-031-05324-5_8#Sec7
https://doi.org/10.1007/978-3-031-05324-5_8#Sec7
https://doi.org/10.1007/978-3-031-05324-5_8#Sec7
https://doi.org/10.1007/978-3-031-05324-5_8#Sec8
https://doi.org/10.1007/978-3-031-05324-5_8#Sec8
https://doi.org/10.1007/978-3-031-05324-5_8#Sec8
https://doi.org/10.1007/978-3-031-05324-5_8#Sec9
https://doi.org/10.1007/978-3-031-05324-5_8#Sec9
https://doi.org/10.1007/978-3-031-05324-5_8#Sec9
https://doi.org/10.1007/978-3-031-05324-5_8#Sec10
https://doi.org/10.1007/978-3-031-05324-5_8#Sec10
https://doi.org/10.1007/978-3-031-05324-5_8#Sec10
https://doi.org/10.1007/978-3-031-05324-5_8#Bib1
https://doi.org/10.1007/978-3-031-05324-5_8#Bib1
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9#Sec1
https://doi.org/10.1007/978-3-031-05324-5_9#Sec1
https://doi.org/10.1007/978-3-031-05324-5_9#Sec1
https://doi.org/10.1007/978-3-031-05324-5_9#Sec2
https://doi.org/10.1007/978-3-031-05324-5_9#Sec2
https://doi.org/10.1007/978-3-031-05324-5_9#Sec2
https://doi.org/10.1007/978-3-031-05324-5_9#Sec3
https://doi.org/10.1007/978-3-031-05324-5_9#Sec3
https://doi.org/10.1007/978-3-031-05324-5_9#Sec3
https://doi.org/10.1007/978-3-031-05324-5_9#Sec4
https://doi.org/10.1007/978-3-031-05324-5_9#Sec4
https://doi.org/10.1007/978-3-031-05324-5_9#Sec4

5

Contents xvii

9.2.3 Probabilistic Testing and Verification 172
9.2.4 Hoare Logic Applications . 173
9.2.5 Reversible Circuits Testing . 173
9.2.6 Analysis of the Current State of the Art 174

9.3 From Classic to Quantum Software Testing: Redefining the
Mutation Technique . 176
9.3.1 Introduction . 176
9.3.2 Quantum Specific Errors and Operators 176

9.4 Quantum Mutation Support Tool . 177
9.4.1 Description of the Prototype 177
9.4.2 Quantum Software Mutation Example 182

9.5 Conclusions and Future Work . 187
References . 188

10 Quantum Software Measurement . 193
Miguel-Angel Sicilia, Marçal Mora-Cantallops,
Salvador Sánchez-Alonso, and Elena García-Barriocanal
10.1 Introduction . 193
10.2 Background . 194

10.2.1 Quantum Instruction Sets . 194
10.2.2 High-Level Quantum Programming Languages 19
10.2.3 Quantum Software Practices 196
10.2.4 Quantum Software Metrics . 197

10.3 Some Similarities and Differences . 198
10.3.1 Software Artifacts in Quantum Software

Engineering . 199
10.3.2 Diverging Programming Models 199
10.3.3 Interpretations of Modularity and Separation of

Concerns . 200
10.3.4 Specificities of Hardware Constraints and Error

Correction . 200
10.3.5 Software Processes in Quantum Software

Engineering . 201
10.3.6 Software Resources in Quantum Software

Engineering . 201
10.4 Research Directions . 202

10.4.1 Software Size . 202
10.4.2 Software Structure . 203
10.4.3 Software Quality . 203
10.4.4 Resources . 204
10.4.5 Processes . 205

10.5 Conclusions and Outlook . 205
References . 206

https://doi.org/10.1007/978-3-031-05324-5_9#Sec5
https://doi.org/10.1007/978-3-031-05324-5_9#Sec5
https://doi.org/10.1007/978-3-031-05324-5_9#Sec5
https://doi.org/10.1007/978-3-031-05324-5_9#Sec6
https://doi.org/10.1007/978-3-031-05324-5_9#Sec6
https://doi.org/10.1007/978-3-031-05324-5_9#Sec6
https://doi.org/10.1007/978-3-031-05324-5_9#Sec7
https://doi.org/10.1007/978-3-031-05324-5_9#Sec7
https://doi.org/10.1007/978-3-031-05324-5_9#Sec7
https://doi.org/10.1007/978-3-031-05324-5_9#Sec8
https://doi.org/10.1007/978-3-031-05324-5_9#Sec8
https://doi.org/10.1007/978-3-031-05324-5_9#Sec8
https://doi.org/10.1007/978-3-031-05324-5_9#Sec9
https://doi.org/10.1007/978-3-031-05324-5_9#Sec9
https://doi.org/10.1007/978-3-031-05324-5_9#Sec9
https://doi.org/10.1007/978-3-031-05324-5_9#Sec9
https://doi.org/10.1007/978-3-031-05324-5_9#Sec10
https://doi.org/10.1007/978-3-031-05324-5_9#Sec10
https://doi.org/10.1007/978-3-031-05324-5_9#Sec10
https://doi.org/10.1007/978-3-031-05324-5_9#Sec11
https://doi.org/10.1007/978-3-031-05324-5_9#Sec11
https://doi.org/10.1007/978-3-031-05324-5_9#Sec11
https://doi.org/10.1007/978-3-031-05324-5_9#Sec12
https://doi.org/10.1007/978-3-031-05324-5_9#Sec12
https://doi.org/10.1007/978-3-031-05324-5_9#Sec12
https://doi.org/10.1007/978-3-031-05324-5_9#Sec13
https://doi.org/10.1007/978-3-031-05324-5_9#Sec13
https://doi.org/10.1007/978-3-031-05324-5_9#Sec13
https://doi.org/10.1007/978-3-031-05324-5_9#Sec14
https://doi.org/10.1007/978-3-031-05324-5_9#Sec14
https://doi.org/10.1007/978-3-031-05324-5_9#Sec14
https://doi.org/10.1007/978-3-031-05324-5_9#Sec19
https://doi.org/10.1007/978-3-031-05324-5_9#Sec19
https://doi.org/10.1007/978-3-031-05324-5_9#Sec19
https://doi.org/10.1007/978-3-031-05324-5_9#Bib1
https://doi.org/10.1007/978-3-031-05324-5_9#Bib1
https://doi.org/10.1007/978-3-031-05324-5_10
https://doi.org/10.1007/978-3-031-05324-5_10
https://doi.org/10.1007/978-3-031-05324-5_10
https://doi.org/10.1007/978-3-031-05324-5_10#Sec1
https://doi.org/10.1007/978-3-031-05324-5_10#Sec1
https://doi.org/10.1007/978-3-031-05324-5_10#Sec1
https://doi.org/10.1007/978-3-031-05324-5_10#Sec2
https://doi.org/10.1007/978-3-031-05324-5_10#Sec2
https://doi.org/10.1007/978-3-031-05324-5_10#Sec2
https://doi.org/10.1007/978-3-031-05324-5_10#Sec3
https://doi.org/10.1007/978-3-031-05324-5_10#Sec3
https://doi.org/10.1007/978-3-031-05324-5_10#Sec3
https://doi.org/10.1007/978-3-031-05324-5_10#Sec4
https://doi.org/10.1007/978-3-031-05324-5_10#Sec4
https://doi.org/10.1007/978-3-031-05324-5_10#Sec4
https://doi.org/10.1007/978-3-031-05324-5_10#Sec5
https://doi.org/10.1007/978-3-031-05324-5_10#Sec5
https://doi.org/10.1007/978-3-031-05324-5_10#Sec5
https://doi.org/10.1007/978-3-031-05324-5_10#Sec6
https://doi.org/10.1007/978-3-031-05324-5_10#Sec6
https://doi.org/10.1007/978-3-031-05324-5_10#Sec6
https://doi.org/10.1007/978-3-031-05324-5_10#Sec7
https://doi.org/10.1007/978-3-031-05324-5_10#Sec7
https://doi.org/10.1007/978-3-031-05324-5_10#Sec7
https://doi.org/10.1007/978-3-031-05324-5_10#Sec8
https://doi.org/10.1007/978-3-031-05324-5_10#Sec8
https://doi.org/10.1007/978-3-031-05324-5_10#Sec8
https://doi.org/10.1007/978-3-031-05324-5_10#Sec8
https://doi.org/10.1007/978-3-031-05324-5_10#Sec9
https://doi.org/10.1007/978-3-031-05324-5_10#Sec9
https://doi.org/10.1007/978-3-031-05324-5_10#Sec9
https://doi.org/10.1007/978-3-031-05324-5_10#Sec10
https://doi.org/10.1007/978-3-031-05324-5_10#Sec10
https://doi.org/10.1007/978-3-031-05324-5_10#Sec10
https://doi.org/10.1007/978-3-031-05324-5_10#Sec10
https://doi.org/10.1007/978-3-031-05324-5_10#Sec11
https://doi.org/10.1007/978-3-031-05324-5_10#Sec11
https://doi.org/10.1007/978-3-031-05324-5_10#Sec11
https://doi.org/10.1007/978-3-031-05324-5_10#Sec11
https://doi.org/10.1007/978-3-031-05324-5_10#Sec12
https://doi.org/10.1007/978-3-031-05324-5_10#Sec12
https://doi.org/10.1007/978-3-031-05324-5_10#Sec12
https://doi.org/10.1007/978-3-031-05324-5_10#Sec12
https://doi.org/10.1007/978-3-031-05324-5_10#Sec13
https://doi.org/10.1007/978-3-031-05324-5_10#Sec13
https://doi.org/10.1007/978-3-031-05324-5_10#Sec13
https://doi.org/10.1007/978-3-031-05324-5_10#Sec13
https://doi.org/10.1007/978-3-031-05324-5_10#Sec14
https://doi.org/10.1007/978-3-031-05324-5_10#Sec14
https://doi.org/10.1007/978-3-031-05324-5_10#Sec14
https://doi.org/10.1007/978-3-031-05324-5_10#Sec15
https://doi.org/10.1007/978-3-031-05324-5_10#Sec15
https://doi.org/10.1007/978-3-031-05324-5_10#Sec15
https://doi.org/10.1007/978-3-031-05324-5_10#Sec16
https://doi.org/10.1007/978-3-031-05324-5_10#Sec16
https://doi.org/10.1007/978-3-031-05324-5_10#Sec16
https://doi.org/10.1007/978-3-031-05324-5_10#Sec17
https://doi.org/10.1007/978-3-031-05324-5_10#Sec17
https://doi.org/10.1007/978-3-031-05324-5_10#Sec17
https://doi.org/10.1007/978-3-031-05324-5_10#Sec18
https://doi.org/10.1007/978-3-031-05324-5_10#Sec18
https://doi.org/10.1007/978-3-031-05324-5_10#Sec18
https://doi.org/10.1007/978-3-031-05324-5_10#Sec19
https://doi.org/10.1007/978-3-031-05324-5_10#Sec19
https://doi.org/10.1007/978-3-031-05324-5_10#Sec19
https://doi.org/10.1007/978-3-031-05324-5_10#Sec20
https://doi.org/10.1007/978-3-031-05324-5_10#Sec20
https://doi.org/10.1007/978-3-031-05324-5_10#Sec20
https://doi.org/10.1007/978-3-031-05324-5_10#Bib1
https://doi.org/10.1007/978-3-031-05324-5_10#Bib1

xviii Contents

11 Quantum Software Modernization . 209
Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini
11.1 Introduction . 209
11.2 Hybrid Information Systems . 210

11.2.1 Classical-Quantum Information Systems 210
11.2.2 Challenges of Hybrid Information Systems 212

11.3 Quantum Software Modernization . 213
11.3.1 Traditional Reengineering . 213
11.3.2 Architecture-Driven Modernization 214
11.3.3 Software Modernization of Hybrid Information

Systems . 217
11.4 Running/Application Example . 220

11.4.1 Reverse Engineering . 220
11.4.2 Restructuring . 223
11.4.3 Forward Engineering . 225

11.5 Conclusions . 226
References . 227

12 Quantum Software Tools Overview . 229
José A. Cruz-Lemus and Manuel A. Serrano
12.1 Quantum Software . 229

12.1.1 Quantum Software Layers . 230
12.2 Quantum Software Technologies . 231

12.2.1 Quantum Programming Languages 231
12.2.2 Quantum Software Simulators and Design

Environments . 235
12.2.3 Quantum Tools and Libraries 237
12.2.4 Quantum Annealing Environments 237
12.2.5 Full-Stack Software of Main Quantum Computing

Vendors . 241
12.2.6 Quantum Software Development and Run Platforms . . 243

12.3 Current Limitations and Future Trends 244
References . 245

13 Quantum Software Development with QuantumPath® 251
Guido Peterssen, Jose Luis Hevia, and Mario Piattini
13.1 Introduction . 251
13.2 QPath® Principles and Functionalities 252

13.2.1 Management of Solutions and Their Assets 253
13.2.2 Tools for the Design of Quantum Assets 253
13.2.3 Connection Points and qSOA 257
13.2.4 Enterprise Backend . 259

13.3 QPath® Advantages . 260
13.3.1 QPath® Facilitates Quantum Workforce

Development . 260

https://doi.org/10.1007/978-3-031-05324-5_11
https://doi.org/10.1007/978-3-031-05324-5_11
https://doi.org/10.1007/978-3-031-05324-5_11
https://doi.org/10.1007/978-3-031-05324-5_11#Sec1
https://doi.org/10.1007/978-3-031-05324-5_11#Sec1
https://doi.org/10.1007/978-3-031-05324-5_11#Sec1
https://doi.org/10.1007/978-3-031-05324-5_11#Sec2
https://doi.org/10.1007/978-3-031-05324-5_11#Sec2
https://doi.org/10.1007/978-3-031-05324-5_11#Sec2
https://doi.org/10.1007/978-3-031-05324-5_11#Sec3
https://doi.org/10.1007/978-3-031-05324-5_11#Sec3
https://doi.org/10.1007/978-3-031-05324-5_11#Sec3
https://doi.org/10.1007/978-3-031-05324-5_11#Sec4
https://doi.org/10.1007/978-3-031-05324-5_11#Sec4
https://doi.org/10.1007/978-3-031-05324-5_11#Sec4
https://doi.org/10.1007/978-3-031-05324-5_11#Sec5
https://doi.org/10.1007/978-3-031-05324-5_11#Sec5
https://doi.org/10.1007/978-3-031-05324-5_11#Sec5
https://doi.org/10.1007/978-3-031-05324-5_11#Sec6
https://doi.org/10.1007/978-3-031-05324-5_11#Sec6
https://doi.org/10.1007/978-3-031-05324-5_11#Sec6
https://doi.org/10.1007/978-3-031-05324-5_11#Sec7
https://doi.org/10.1007/978-3-031-05324-5_11#Sec7
https://doi.org/10.1007/978-3-031-05324-5_11#Sec7
https://doi.org/10.1007/978-3-031-05324-5_11#Sec8
https://doi.org/10.1007/978-3-031-05324-5_11#Sec8
https://doi.org/10.1007/978-3-031-05324-5_11#Sec8
https://doi.org/10.1007/978-3-031-05324-5_11#Sec8
https://doi.org/10.1007/978-3-031-05324-5_11#Sec9
https://doi.org/10.1007/978-3-031-05324-5_11#Sec9
https://doi.org/10.1007/978-3-031-05324-5_11#Sec9
https://doi.org/10.1007/978-3-031-05324-5_11#Sec10
https://doi.org/10.1007/978-3-031-05324-5_11#Sec10
https://doi.org/10.1007/978-3-031-05324-5_11#Sec10
https://doi.org/10.1007/978-3-031-05324-5_11#Sec11
https://doi.org/10.1007/978-3-031-05324-5_11#Sec11
https://doi.org/10.1007/978-3-031-05324-5_11#Sec11
https://doi.org/10.1007/978-3-031-05324-5_11#Sec12
https://doi.org/10.1007/978-3-031-05324-5_11#Sec12
https://doi.org/10.1007/978-3-031-05324-5_11#Sec12
https://doi.org/10.1007/978-3-031-05324-5_11#Sec13
https://doi.org/10.1007/978-3-031-05324-5_11#Sec13
https://doi.org/10.1007/978-3-031-05324-5_11#Sec13
https://doi.org/10.1007/978-3-031-05324-5_11#Bib1
https://doi.org/10.1007/978-3-031-05324-5_11#Bib1
https://doi.org/10.1007/978-3-031-05324-5_12
https://doi.org/10.1007/978-3-031-05324-5_12
https://doi.org/10.1007/978-3-031-05324-5_12
https://doi.org/10.1007/978-3-031-05324-5_12#Sec1
https://doi.org/10.1007/978-3-031-05324-5_12#Sec1
https://doi.org/10.1007/978-3-031-05324-5_12#Sec1
https://doi.org/10.1007/978-3-031-05324-5_12#Sec2
https://doi.org/10.1007/978-3-031-05324-5_12#Sec2
https://doi.org/10.1007/978-3-031-05324-5_12#Sec2
https://doi.org/10.1007/978-3-031-05324-5_12#Sec3
https://doi.org/10.1007/978-3-031-05324-5_12#Sec3
https://doi.org/10.1007/978-3-031-05324-5_12#Sec3
https://doi.org/10.1007/978-3-031-05324-5_12#Sec4
https://doi.org/10.1007/978-3-031-05324-5_12#Sec4
https://doi.org/10.1007/978-3-031-05324-5_12#Sec4
https://doi.org/10.1007/978-3-031-05324-5_12#Sec8
https://doi.org/10.1007/978-3-031-05324-5_12#Sec8
https://doi.org/10.1007/978-3-031-05324-5_12#Sec8
https://doi.org/10.1007/978-3-031-05324-5_12#Sec8
https://doi.org/10.1007/978-3-031-05324-5_12#Sec9
https://doi.org/10.1007/978-3-031-05324-5_12#Sec9
https://doi.org/10.1007/978-3-031-05324-5_12#Sec9
https://doi.org/10.1007/978-3-031-05324-5_12#Sec10
https://doi.org/10.1007/978-3-031-05324-5_12#Sec10
https://doi.org/10.1007/978-3-031-05324-5_12#Sec10
https://doi.org/10.1007/978-3-031-05324-5_12#Sec11
https://doi.org/10.1007/978-3-031-05324-5_12#Sec11
https://doi.org/10.1007/978-3-031-05324-5_12#Sec11
https://doi.org/10.1007/978-3-031-05324-5_12#Sec11
https://doi.org/10.1007/978-3-031-05324-5_12#Sec12
https://doi.org/10.1007/978-3-031-05324-5_12#Sec12
https://doi.org/10.1007/978-3-031-05324-5_12#Sec12
https://doi.org/10.1007/978-3-031-05324-5_12#Sec13
https://doi.org/10.1007/978-3-031-05324-5_12#Sec13
https://doi.org/10.1007/978-3-031-05324-5_12#Sec13
https://doi.org/10.1007/978-3-031-05324-5_12#Bib1
https://doi.org/10.1007/978-3-031-05324-5_12#Bib1
https://doi.org/10.1007/978-3-031-05324-5_13
https://doi.org/10.1007/978-3-031-05324-5_13
https://doi.org/10.1007/978-3-031-05324-5_13
https://doi.org/10.1007/978-3-031-05324-5_13#Sec1
https://doi.org/10.1007/978-3-031-05324-5_13#Sec1
https://doi.org/10.1007/978-3-031-05324-5_13#Sec1
https://doi.org/10.1007/978-3-031-05324-5_13#Sec2
https://doi.org/10.1007/978-3-031-05324-5_13#Sec2
https://doi.org/10.1007/978-3-031-05324-5_13#Sec2
https://doi.org/10.1007/978-3-031-05324-5_13#Sec3
https://doi.org/10.1007/978-3-031-05324-5_13#Sec3
https://doi.org/10.1007/978-3-031-05324-5_13#Sec3
https://doi.org/10.1007/978-3-031-05324-5_13#Sec4
https://doi.org/10.1007/978-3-031-05324-5_13#Sec4
https://doi.org/10.1007/978-3-031-05324-5_13#Sec4
https://doi.org/10.1007/978-3-031-05324-5_13#Sec9
https://doi.org/10.1007/978-3-031-05324-5_13#Sec9
https://doi.org/10.1007/978-3-031-05324-5_13#Sec9
https://doi.org/10.1007/978-3-031-05324-5_13#Sec10
https://doi.org/10.1007/978-3-031-05324-5_13#Sec10
https://doi.org/10.1007/978-3-031-05324-5_13#Sec10
https://doi.org/10.1007/978-3-031-05324-5_13#Sec11
https://doi.org/10.1007/978-3-031-05324-5_13#Sec11
https://doi.org/10.1007/978-3-031-05324-5_13#Sec11
https://doi.org/10.1007/978-3-031-05324-5_13#Sec12
https://doi.org/10.1007/978-3-031-05324-5_13#Sec12
https://doi.org/10.1007/978-3-031-05324-5_13#Sec12
https://doi.org/10.1007/978-3-031-05324-5_13#Sec12

Contents xix

13.3.2 QPath® Solves the Quality Problems of Quantum
Computing Platforms . 261

13.4 Example of Quantum Development with QPath® 262
13.5 Conclusions and Future Work . 265
References . 268

14 Quantum Software Development with Classiq 269
Nir Minerbi
14.1 The Hardware Race Is On, But What About Software? 269
14.2 The Limitations of Today’s Software Development Tools 269
14.3 The Unfortunate Side Effect of Gate-Level Development

Tools . 270
14.4 Finding a Historical Analogy . 270
14.5 What Is Quantum Algorithm Design? 272
14.6 What Does Classiq Do? . 272
14.7 Where Does Quantum Algorithm Design Fit in the Quantum

Software Stack? . 273
14.8 How Is QAD Different from a Compiler? 275
14.9 What Are Constraints in the QAD Context? 275
14.10 Can the Constraints Always Be Met? 278
14.11 What Are the Advantages of Quantum Algorithm Design? 278
14.12 If QAD Is an Abstraction Layer, Are We Losing

Optimization Capabilities? . 279
14.13 Don’t Some Existing Tools Already Provide Building

Blocks? . 279
14.14 The Quantum Future Is Bright . 280

15 Quantum Software Frameworks for Deep Learning 281
Filipa Ramos Ferreira, João Paulo Fernandes, and Rui Abreu
15.1 Introduction . 281
15.2 Quantum Computing Background . 284
15.3 Deep Learning Background . 286

15.3.1 Generative Adversarial Neural Networks 286
15.3.2 Convolutional Neural Networks 287
15.3.3 Frameworks and Tools for Hybrid Deep Learning . . . 287

15.4 Methods and Materials . 287
15.4.1 Generative Adversarial Network 289
15.4.2 Convolutional Neural Network 291

15.5 Results and Discussion . 295
15.5.1 Main Take-Aways . 298

15.6 Conclusion . 299
References . 300

https://doi.org/10.1007/978-3-031-05324-5_13#Sec13
https://doi.org/10.1007/978-3-031-05324-5_13#Sec13
https://doi.org/10.1007/978-3-031-05324-5_13#Sec13
https://doi.org/10.1007/978-3-031-05324-5_13#Sec13
https://doi.org/10.1007/978-3-031-05324-5_13#Sec14
https://doi.org/10.1007/978-3-031-05324-5_13#Sec14
https://doi.org/10.1007/978-3-031-05324-5_13#Sec14
https://doi.org/10.1007/978-3-031-05324-5_13#Sec15
https://doi.org/10.1007/978-3-031-05324-5_13#Sec15
https://doi.org/10.1007/978-3-031-05324-5_13#Sec15
https://doi.org/10.1007/978-3-031-05324-5_13#Bib1
https://doi.org/10.1007/978-3-031-05324-5_13#Bib1
https://doi.org/10.1007/978-3-031-05324-5_14
https://doi.org/10.1007/978-3-031-05324-5_14
https://doi.org/10.1007/978-3-031-05324-5_14
https://doi.org/10.1007/978-3-031-05324-5_14#Sec1
https://doi.org/10.1007/978-3-031-05324-5_14#Sec1
https://doi.org/10.1007/978-3-031-05324-5_14#Sec1
https://doi.org/10.1007/978-3-031-05324-5_14#Sec2
https://doi.org/10.1007/978-3-031-05324-5_14#Sec2
https://doi.org/10.1007/978-3-031-05324-5_14#Sec2
https://doi.org/10.1007/978-3-031-05324-5_14#Sec3
https://doi.org/10.1007/978-3-031-05324-5_14#Sec3
https://doi.org/10.1007/978-3-031-05324-5_14#Sec3
https://doi.org/10.1007/978-3-031-05324-5_14#Sec3
https://doi.org/10.1007/978-3-031-05324-5_14#Sec4
https://doi.org/10.1007/978-3-031-05324-5_14#Sec4
https://doi.org/10.1007/978-3-031-05324-5_14#Sec4
https://doi.org/10.1007/978-3-031-05324-5_14#Sec5
https://doi.org/10.1007/978-3-031-05324-5_14#Sec5
https://doi.org/10.1007/978-3-031-05324-5_14#Sec5
https://doi.org/10.1007/978-3-031-05324-5_14#Sec6
https://doi.org/10.1007/978-3-031-05324-5_14#Sec6
https://doi.org/10.1007/978-3-031-05324-5_14#Sec6
https://doi.org/10.1007/978-3-031-05324-5_14#Sec7
https://doi.org/10.1007/978-3-031-05324-5_14#Sec7
https://doi.org/10.1007/978-3-031-05324-5_14#Sec7
https://doi.org/10.1007/978-3-031-05324-5_14#Sec7
https://doi.org/10.1007/978-3-031-05324-5_14#Sec8
https://doi.org/10.1007/978-3-031-05324-5_14#Sec8
https://doi.org/10.1007/978-3-031-05324-5_14#Sec8
https://doi.org/10.1007/978-3-031-05324-5_14#Sec9
https://doi.org/10.1007/978-3-031-05324-5_14#Sec9
https://doi.org/10.1007/978-3-031-05324-5_14#Sec9
https://doi.org/10.1007/978-3-031-05324-5_14#Sec10
https://doi.org/10.1007/978-3-031-05324-5_14#Sec10
https://doi.org/10.1007/978-3-031-05324-5_14#Sec10
https://doi.org/10.1007/978-3-031-05324-5_14#Sec11
https://doi.org/10.1007/978-3-031-05324-5_14#Sec11
https://doi.org/10.1007/978-3-031-05324-5_14#Sec11
https://doi.org/10.1007/978-3-031-05324-5_14#Sec12
https://doi.org/10.1007/978-3-031-05324-5_14#Sec12
https://doi.org/10.1007/978-3-031-05324-5_14#Sec12
https://doi.org/10.1007/978-3-031-05324-5_14#Sec12
https://doi.org/10.1007/978-3-031-05324-5_14#Sec13
https://doi.org/10.1007/978-3-031-05324-5_14#Sec13
https://doi.org/10.1007/978-3-031-05324-5_14#Sec13
https://doi.org/10.1007/978-3-031-05324-5_14#Sec13
https://doi.org/10.1007/978-3-031-05324-5_14#Sec14
https://doi.org/10.1007/978-3-031-05324-5_14#Sec14
https://doi.org/10.1007/978-3-031-05324-5_14#Sec14
https://doi.org/10.1007/978-3-031-05324-5_15
https://doi.org/10.1007/978-3-031-05324-5_15
https://doi.org/10.1007/978-3-031-05324-5_15
https://doi.org/10.1007/978-3-031-05324-5_15#Sec1
https://doi.org/10.1007/978-3-031-05324-5_15#Sec1
https://doi.org/10.1007/978-3-031-05324-5_15#Sec1
https://doi.org/10.1007/978-3-031-05324-5_15#Sec2
https://doi.org/10.1007/978-3-031-05324-5_15#Sec2
https://doi.org/10.1007/978-3-031-05324-5_15#Sec2
https://doi.org/10.1007/978-3-031-05324-5_15#Sec3
https://doi.org/10.1007/978-3-031-05324-5_15#Sec3
https://doi.org/10.1007/978-3-031-05324-5_15#Sec3
https://doi.org/10.1007/978-3-031-05324-5_15#Sec4
https://doi.org/10.1007/978-3-031-05324-5_15#Sec4
https://doi.org/10.1007/978-3-031-05324-5_15#Sec4
https://doi.org/10.1007/978-3-031-05324-5_15#Sec5
https://doi.org/10.1007/978-3-031-05324-5_15#Sec5
https://doi.org/10.1007/978-3-031-05324-5_15#Sec5
https://doi.org/10.1007/978-3-031-05324-5_15#Sec6
https://doi.org/10.1007/978-3-031-05324-5_15#Sec6
https://doi.org/10.1007/978-3-031-05324-5_15#Sec6
https://doi.org/10.1007/978-3-031-05324-5_15#Sec7
https://doi.org/10.1007/978-3-031-05324-5_15#Sec7
https://doi.org/10.1007/978-3-031-05324-5_15#Sec7
https://doi.org/10.1007/978-3-031-05324-5_15#Sec8
https://doi.org/10.1007/978-3-031-05324-5_15#Sec8
https://doi.org/10.1007/978-3-031-05324-5_15#Sec8
https://doi.org/10.1007/978-3-031-05324-5_15#Sec9
https://doi.org/10.1007/978-3-031-05324-5_15#Sec9
https://doi.org/10.1007/978-3-031-05324-5_15#Sec9
https://doi.org/10.1007/978-3-031-05324-5_15#Sec10
https://doi.org/10.1007/978-3-031-05324-5_15#Sec10
https://doi.org/10.1007/978-3-031-05324-5_15#Sec10
https://doi.org/10.1007/978-3-031-05324-5_15#Sec11
https://doi.org/10.1007/978-3-031-05324-5_15#Sec11
https://doi.org/10.1007/978-3-031-05324-5_15#Sec11
https://doi.org/10.1007/978-3-031-05324-5_15#Sec12
https://doi.org/10.1007/978-3-031-05324-5_15#Sec12
https://doi.org/10.1007/978-3-031-05324-5_15#Sec12
https://doi.org/10.1007/978-3-031-05324-5_15#Bib1
https://doi.org/10.1007/978-3-031-05324-5_15#Bib1

List of Contributors

Rui Abreu Faculty of Engineering, University of Porto, Porto, Portugal
Instituto de Engenharia de Sistemas eComputadores: Investigacão eDesenvolvimento
em Lisboa, Porto, Portugal

Antonio García de la Barrera aQuantum, Alarcos Research Group, Department
of Technologies and Information Systems, Escuela Superior de Informática, Uni-
versity of Castilla-La Mancha, Ciudad Real, Spain

Johanna Barzen Institute of Architecture of Application Systems, University of
Stuttgart, Stuttgart, Germany

Javier Berrocal University of Extremadura, Cáceres, Spain

Miguel Ángel Blanco Alarcos Research Group, Institute of Technologies and
Information Systems, University of Castilla-La Mancha (UCLM), Ciudad Real,
Spain

Carmelo R. Cartiere Kellogg College, University of Oxford, Oxford, UK

Elías F. Combarro Computer Science Department, University of Oviedo, Oviedo,
Spain

José A. Cruz-Lemus aQuantum, Alarcos Research Group, Institute of Technolo-
gies and Information Systems, University of Castilla-La Mancha, Ciudad Real,
Spain

Iaakov Exman Software Engineering Department, The Jerusalem College of
Engineering – Azrieli, Jerusalem, Israel

João Paulo Fernandes Artificial Intelligence and Computer Science Laboratory,
Faculty of Engineering, University of Porto, Porto, Portugal

xxi

xxii List of Contributors

Filipa Ramos Ferreira Faculty of Engineering, University of Porto, Porto,
Portugal

Jose Garcia-Alonso University of Extremadura, Cáceres, Spain

Elena García-Barriocanal Computer Science Department, University of Alcalá,
Alcalá de Henares, Spain

Ignacio García-Rodríguez de Guzmán aQuantum, Alarcos Research Group,
Department of Technologies and Information Systems, Escuela Superior de
Informática, University of Castilla-La Mancha, Ciudad Real, Spain

Jose Luis Hevia aQuantum, Alhambra IT, Madrid, Spain

Luis Jiménez-Navajas aQuantum, Alarcos Research Group, Institute of Technol-
ogies and Information Systems, University of Castilla-La Mancha (UCLM), Ciudad
Real, Spain

Frank Leymann Institute of Architecture of Application Systems, University of
Stuttgart, Stuttgart, Germany

Nir Minerbi Classiq Technologies, Tel Aviv, Israel

Enrique Moguel University of Extremadura, Cáceres, Spain

Marçal Mora-Cantallops Computer Science Department, University of Alcalá,
Alcalá de Henares, Spain

Juan Manuel Murillo University of Extremadura, Cáceres, Spain

Ricardo Pérez-Castillo aQuantum, Alarcos Research Group, Institute of Technol-
ogies and Information Systems, University of Castilla-La Mancha (UCLM), Ciudad
Real, Spain

Carlos A. Pérez-Delgado University of Kent, Canterbury, Kent, UK

Guido Peterssen aQuantum, Alhambra IT, Madrid, Spain

Mario Piattini aQuantum, Alarcos Research Group, Institute of Technologies and
Information Systems, University of Castilla-La Mancha, Ciudad Real, Spain

Macario Polo aQuantum, Alarcos Research Group, Institute of Technologies and
Information Systems, University of Castilla-La Mancha, Ciudad Real, Spain

Javier Rojo University of Extremadura, Cáceres, Spain

Salvador Sánchez-Alonso Computer Science Department, University of Alcalá,
Alcalá de Henares, Spain

Manuel A. Serrano aQuantum, Alarcos Research Group, Escuela Superior de
Informática & Instituto de Tecnologías y Sistemas de Información, University of
Castilla-La Mancha, Ciudad Real, Spain

List of Contributors xxiii

Alon Tsalik Shmilovich Software Engineering Department, The Jerusalem Col-
lege of Engineering – Azrieli, Jerusalem, Israel

Miguel-Angel Sicilia Computer Science Department, University of Alcalá, Alcalá
de Henares, Spain

David Valencia University of Extremadura, Cáceres, Spain

Daniel Vietz Institute of Architecture of Application Systems, University of Stutt-
gart, Stuttgart, Germany

Benjamin Weder Institute of Architecture of Application Systems, University of
Stuttgart, Stuttgart, Germany

List of Abbreviations

ACM Association for Computing Machinery
ADL Architectural Description Language
ADM Architecture-Driven Modernization
AG Alignment Goal
AI Artificial Intelligence
API Application Programming Interface
APO Align, Plan, and Organize
ATPG Automatic Test Pattern Generation
AWS Amazon Web Services
BAI Build, Acquire, and Implement
BIST Built-In Self-Test
BPEL Business Process Execution Language
BPMN Business Process Model and Notation
BQM Binary Quadratic Model
CAD Computer-Aided Design
CEN European Committee for Standardization
CENELEC European Committee for Electrotechnical Standardization
CIM Computation Independent Model
CLQP Categorical Logic of Quantum Programs
CNN Convolutional Neural Networks
COBIT Control Objectives for Information and Related Technologies
CPU Central Processing Unit
CSA Cloud Security Alliance
DBE Deutsch, Barenco, and Ekert
DSL Domain-Specific Language
DSM Design Structure Matrix
DSS Deliver, Service, and Support
EDM Evaluate-Direct-Monitor
EG Enterprise Goal
EP Entanglement Principle

xxv

xxvi List of Abbreviations

EPR Einstein-Podolsky-Rosen
EQF European Quantum Flagship
ETSI European Telecommunications Standards Institute
F-QSE Formal Quantum Software Engineering
FM Formal Method
FPGA Field-Programmable Gate Arrays
FS Formal Specification
FV Formal Verification
GAN Generative Adversarial Neural
GHZ Greenberger-Horne-Zeilinger
IBV Institute for Business Value
IDB Inter-American Development Bank
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
ISACA Information Systems Audit and Control Association
ISO International Organization for Standardization
IT Information Technology
JSON JavaScript Object Notation
KA Knowledge Area
KDM Knowledge Discovery Metamodel
LOC Lines of Code
LSM Linear Software Model
MDA Model-Driven Architectures
MDE Model-Driven Engineering
MEA Monitor, Evaluate, and Assess
MNIST Modified National Institute of Standards and Technology
NISQ Noisy Intermediate-Scale Quantum
NIST National Institute of Standards and Technology
OMG Object Management Group
OOD Object-Oriented Design
PaaS Platform as a Service
PIM Platform-Independent Model
PSM Platform-Specific Model
PTM Probabilistic Transfer Matrix
QaaS Quantum as a Service
QAD Quantum Algorithm Design
QAI Quantum Artificial Intelligence/Quantum Algorithm Implementation
QALU Quantum Arithmetic Logic Unit
QANSWER Quantum Software Engineering and Programming
QAOA Quantum Approximate Optimization Algorithm
QASM Quantum Assembly Language
QC Quantum Computing
QCE Quantum Computing and Engineering

List of Abbreviations xxvii

QCFG Quantum Control Flow Graphs
QCP Quantum Computing Platform
QDLC Quantum Development Life Cycle
QDK Quantum Development Kit
QEC Quantum Error Correction
QFT Quantum Fourier Transform
QHL Quantum Hoare Logic
QIGTS Quantum Information Technology Governance System
QIR Quantum Intermediate Representation
QIS Quantum Information Systems
QIT Quantum Information Technology
QKD Quantum Key Distribution
QML Quantum Machine Learning
QRNG Quantum Random Number Generator
QSOA Quantum Service-Oriented Architecture
QSOC Quantum Service-Oriented Computing
QuMA Quantum Micro-Architecture
QoS Quality of Service
QP Quantum Programming
QPE Quantum Phase Estimation
QPU Quantum Processing Unit
QRAM Quantum Random Access Memory
QS Quantum Security
QSD Quantum System Development
QSE Quantum Software Engineering
QSOC Quantum Service-Oriented Computing
QT Quantum Technology
QTP Quantum Teleportation Protocol
Q-UML Quantum UML
QUBO Quadratic Unconstrained Binary Optimization
QV Quantum Volume
REST Representational State Transfer
SDK Software Development Kit
SDLC Software Development Life Cycle
SEI Software Engineering Institute
SOA Services-Oriented Architecture
SUD Systems Under Design
SWEBOK Software Engineering Body of Knowledge
TOSCA Topology and Orchestration Specification for Cloud Applications
TQF Total Quantum Factor
TSP Traveling Salesman Problem
UML Unified Modelling Language

xxviii List of Abbreviations

UP Unified Process
VHDL VHSIC (Very High-Speed Integrated Circuits) Hardware

Description Language
VMS Virtual Machine System
VQE Variational Quantum Eigensolver
XACC eXtreme-scale ACCelerator

Chapter 1
Quantum Computing Foundations

Elías F. Combarro

1.1 Introduction

Quantum computing [1] is a computational paradigm that explicitly uses properties
of subatomic particles such as superposition, entanglement, and interference to
achieve asymptotical speed-ups over classical algorithms on certain tasks. For
instance, the famous Shor’s algorithm [2] can factor an integer in polynomial time
on its number of digits, while the best-known classical algorithm for the same
problem is superpolynomial, and Grover’s algorithm [3] achieves a quadratic
speed-up over any possible classical algorithm (probabilistic or not) in the black-
box search problem.

Until recently, implementing quantum algorithms on an actual quantum device
required access to research lab prototypes. However, in the last few years, initiatives
such as IBM Quantum [4] have made some quantum computers available on the
cloud for free, creating a surge of interest in learning how to develop and execute
quantum algorithms. This involves using concepts from quantum information
processing theory (as, e.g., qubits, quantum gates, and measurements) that are not
used in classical programming languages, as well as understanding some particular
idiosyncrasies of quantum algorithms, such as reversibility, uncomputation, or the
impossibility of cloning information.

This chapter introduces, from scratch, all the elements and concepts that are
needed to understand and implement quantum algorithms in both quantum simula-
tors and actual quantum computers and illustrates them with some simple examples.
After this chapter, the reader will be equipped with all the quantum computing
background needed to understand the challenges on quantum software engineering
and to master the methods and techniques used in the field.

E. F. Combarro (*)
Computer Science Department, University of Oviedo, Oviedo, Spain
e-mail: efernandezca@uniovi.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_1&domain=pdf
mailto:efernandezca@uniovi.es
https://doi.org/10.1007/978-3-031-05324-5_1#DOI

2 E. F. Combarro

Throughout the chapter, we will use an axiomatic approach in which we only
describe the kind of mathematical objects that we will use to represent information
and data and the operations that we can perform on them in order to compute and
obtain results. Little or no reference will be made to the physical implementation of
these elements in actual quantum computers for, on the one hand, they can vary
greatly from one device to another and, on the other, they are not really needed to
understand how to process information and conduct computations with a quantum
computer. This method is similar to the way in which modern computer program-
ming courses are taught, with no need to explicitly mention how the computer stores
and transforms data and has already been used with remarkable success to teach
quantum computing courses (see [5]). Thus, in the following, we only assume from
the reader some familiarity with linear algebra, in particular computing with matrices
and vectors of complex numbers.

Although there are several different approaches to programming a quantum
computer (cf. Sect. 1.2), we will focus mainly on the quantum circuit model,
which we will introduce in Sect. 1.3. This is, by far, the most popular way of
defining and implementing quantum algorithms and the one that is used in most
quantum computers available today, and, for this reason, we will use it to introduce
the fundamental ideas of quantum computing and to describe and analyze, in Sect.
1.4, some quantum algorithms. In addition to this, in Sect. 1.5, we also include a
brief description of adiabatic quantum computing [6] and explain how this is
particularized in quantum annealers (another popular type of quantum computers
available today) to find approximate solutions of combinatorial optimization
problems [7].

But before that, we will motivate the study of the quantum computing paradigm
by presenting some of its applications.

1.1.1 Problems Quantum Computing Can Address and Some
Applications

As a computational paradigm, quantum computing has exactly the same power as
classical computing (as defined, for instance, by means of Turing machines). Thus, a
quantum computer cannot solve any new problem that was not already solvable with
traditional computers. However, we have evidence that quantum computers can
solve some problems asymptotically faster than what is possible with just classical
resources.

We still lack a complete characterization of the problems that are amenable to
quantum speed-ups, but we have some prominent examples in several different fields
of application. This includes tasks such as searching in unsorted databases quadrat-
ically faster (with the use of Grover’s algorithm [3]) or factoring large integers with
an exponential speed-up over the best, currently known classical algorithm, thanks
to Shor’s results [2].

1 Quantum Computing Foundations 3

In addition to this, quantum computers open the possibility of more efficient
simulation of physical and chemical systems in which quantum properties are
relevant. In fact, this was the original motivation (pointed out, among others, by
Feynman [8]) of studying how to process information with quantum mechanical
methods. Among the algorithms that have been proposed for this type of simulation,
we can find methods based on quantum phase estimation [9, 10] or on variational
circuits [11, 12].

Quantum computing also finds applications in the acceleration of classical
machine learning algorithms (see [13]) as well as in the definition of new, purely
quantum machine learning methods such as quantum neural networks [14]. The
potential of this type of models is still not completely understood, but recent results
[15] seem to indicate that they can offer an advantage in expressiveness when
compared to classical neural networks.

In addition to this, several ways of applying quantum information processing
techniques to finding approximate solutions of hard combinatorial optimization
problems have been proposed. Some of the most widely used are adiabatic quantum
computing and quantum annealing [7] and methods such as the quantum approxi-
mate optimization algorithm [16]. The possible fields of application are virtually
endless and include finance [17], logistics [18], or transportation [19], to name but a
few. Although no clear quantum advantage has been shown yet with these
approaches, in recent years, a lot of research (both theoretical and in practice) has
been conducted in order to determine their actual capabilities (see, e.g., [20]).

1.2 Models of Quantum Computing

As mentioned in the previous section, the main difference of quantum computing
when compared to classical computing is the explicit use of properties such as
superposition, entanglement, or interference. There are several ways to define
models that take into account these properties in the computations, and, for instance,
it is possible to define quantum Turing machines that can operate in superposition
(see [21, 22]). However, the relevance of such a model is merely theoretical, and it
seems almost impossible to implement in practice.

For this reason, in this chapter, we will roughly follow the classification of [23]
and consider the three types of quantum computers described in the following
subsections, as they are the ones that better describe the kind of quantum information
processing devices currently available and those expected to be available in the short
and medium term. Moreover, all of them are equally powerful (and also equivalent to
the quantum Turing machine model) and represent the main different approaches
existing nowadays to program quantum computers.

4 E. F. Combarro

1.2.1 Gate-Based Quantum Computers

Gate-based quantum computers, also called digital quantum computers, follow the
quantum circuit model of computation [24, 25]. This model somehow generalizes
the classical model of Boolean circuits but uses quantum bits (or qubits) to store
information. Then, unitary operations called quantum gates (in analogy to the logical
gates used in classical circuits) can be applied to perform computations, and the
results can be extracted by means of measurement of the qubit states.

This is, by far, the most widely used model of quantum computing, and most of
the currently available quantum computers, such as those developed by companies
like IBM, Google, Rigetti, Honeywell, or IonQ, are gate-based.

We will describe in detail all the elements of the quantum circuit model in
Sect. 1.3.

1.2.2 Adiabatic Quantum Computers and Quantum
Annealers

In contrast with the quantum circuit model, in which operations or gates are applied
in discrete steps to modify the qubit states, adiabatic quantum computing [6] is based
on the continuous evolution of a quantum state under the action of a Hamiltonian.
That is, we encode some information on the state of a quantum system, act on it by
some physical means (that depend on the actual implementation of the quantum
computer), and, finally, measure the resulting state to obtain an output.

The main difference with the gate-based model is that, here, the Hamiltonian (that
is usually time-dependent) acts continuously on the quantum state, while in digital
quantum computers, we have a sequence of discrete actions that transform the
quantum state step by step. If the Hamiltonian varies slowly enough (adiabaticity
condition) and if we start in a ground state (i.e., state of minimum energy) of the
initial Hamiltonian, it is guaranteed (see [6]) that the system remains always in a
ground state. Thus, an adequate choice of the final Hamiltonian so that its ground
state encodes a solution to a problem that we care about leads to a measurement that
can be used to solve the problem, and, in fact, it can be shown that this model is
equivalent to the quantum circuit one [26].

Ensuring adiabaticity (and even determining how slowly we should let the
Hamiltonian change over time) is usually very difficult in practice. For this reason,
quantum annealing has been proposed as a heuristic approach that follows the same
scheme as quantum adiabatic computing but does not guarantee adiabaticity in
general. This is the basis of commercial quantum computers such as the quantum
annealers developed by D-Wave.

In Sect. 1.5, we will explain in more detail how to use this approach to solve
combinatorial optimization problems.

1 Quantum Computing Foundations 5

1.2.3 Measurement-Based Quantum Computers

Measurement-based quantum computing (see [27]) is a way of doing computation
starting from a highly entangled initial state and performing adaptative measure-
ments on it. If the initial state is universal (such as is the case with, for instance,
cluster states), then this model allows to perform any computation that is possible
either with the quantum circuit model or with adiabatic quantum computing [28].

It is straightforward (see [29], e.g.) to simulate any quantum circuit in the
measurement-based model and the other way around. In fact, the preparation of
the initial highly entangled state can be done just by using one-qubit gates and
two-qubit entangling gates, and the subsequent measurements can be implemented,
again, with only one-qubit gates and measurements in the computational basis.

For this reason, in this chapter, we will focus mainly on gate-based quantum
computers, and we refer the interested reader to [30, 31] for surveys of recent
developments and proposals of practical implementations of the measurement-
based model.

1.3 Elements of the Quantum Circuit Model

In this section, we will describe in detail the different elements of the quantum circuit
model which, as mentioned in the previous section, are quantum bits (or qubits),
quantum or unitary gates, and measurements. Then, we show how these elements
can be combined in quantum circuits to conduct useful computations and highlight
some differences of this model with classical computing approaches.

1.3.1 Qubits

A quantum bit or qubit is the smallest information unit in quantum computing.
We can see a qubit as a mathematical abstraction that represents a quantum
physical system that is capable of being in two different states that we usually
denote by j0i and j1i. In contrast with the situation in classical computing, where
a bit can only take value 0 or value 1 at a given time, a qubit can be in what is called a
superposition of the states j0i and j1i, which in its most general form is

a 0j i þ b 1j i

where a and b are complex numbers such that ja 2j + jb 2j ¼ 1 (the reason for this
normalization condition will become apparent in Sect.).1.3.2

Thus, mathematically, we can represent the state of a qubit as a normalized vector
in a vector complex space of dimension 2, and if we identify (as it is customary)

� � � �
j0i with 1

0
and j1i with 0

1
, we have that a state such as aj0i + bj1i can be

represented by the column vector

6 E. F. Combarro

a
0

1

� �
þ b

0

1

� �
¼ a

b

� �
:

The reason for using this seemingly strange notation (known as Dirac notation)
for column vectors is that, on the one hand, it can succinctly represent the kind of
vectors in high-dimensional spaces that we will need in the following sections and,
on the other, it simplifies some calculations. If we have a state jψi ¼ aj0i + bj1i, it is
called ket, and its conjugate transpose, that is, the row vector (a* b*), where a* and
b* are the complex conjugates of a and b, is represented as hψ j, and it is called a bra.
Then, we can form the braket hψ jψi which is just the inner product

a� b�ð Þ a

b

� �
¼ a�aþ b�b ¼ aj j2 þ bj j2 ¼ 1:

Another way of carrying out the same computing with Dirac notation is noting
that hψ j ¼ a*h0j + b*h1j and then

ψ jψh i ¼ a� 0 þb�h1jÞ aj0ð i þ bj j1h ið Þ
¼ a�a 0j0h i þ a�b 0j1h i þ b�a 1j0h i þ b�b 1j1h i

which is equal to a*a + b*b ¼ jaj2 + jbj2 ¼ 1 because h0j 0i ¼ h1j 1i ¼ 1, and
h1j 0i ¼ h1j 0i ¼ 0.

When we have more than one qubit, each of them can take values j0i and j1i, and,
thus, the whole system can be in states j0i � j0i � ⋯ � j0i, j0i � j0i � ⋯ � j1i,
. . ., j1i � j1i � ⋯ � j1i (which we call tensor products) and, in fact, in any
superposition of them. We usually omit the tensor product symbol � and write, for
instance, j0ij1ij0i or even j010i instead of j0i ⨂ j1i ⨂ j0i. If the total number of
qubits n that we are using is clear from context, we can further simplify the notation
and write a decimal number instead of binary string so that, for instance, j6i ¼ j0110i
when n ¼ 4.

Then, the most general state of an n-qubit system is

X2n�1

i¼0

ai ij i

where each ai is a complex number and it holds that
P2n�1

i¼0
aij j2 ¼ 1. The ai coefficients

are usually called amplitudes.

1 Quantum Computing Foundations 7

We can identify each state jii with the column vector of size 2n which is all zeroes
except in the i-th position where it is 1. For instance, when n ¼ 2, we have

0j i ¼

1

0

0

0

0
BBB@

1
CCCA 1j i ¼

0

1

0

0

0
BBB@

1
CCCA 2j i ¼

0

0

1

0

0
BBB@

1
CCCA 3j i ¼

0

0

0

1

0
BBB@

1
CCCA:

The bra of an n-qubit ket is defined, again, as the conjugate transpose of the
corresponding column vector, and, thus, we have the very useful identity

ij jh i ¼ 1 if i ¼ j

0 otherwise

�

n

Notice that, then, jiif g2 �1
i¼0 is an orthonormal basis of a 2n-dimensional complex

vector space that includes all possible n-qubit states. This exponential increase in the
number of parameters needed to describe a general quantum state when we increase
the number of qubits is one of the reasons behind the difficulty of simulating
quantum computers with classical algorithms and behind the speed-ups that can be
obtained with some quantum algorithms.

A very important notion when we are working with more than one qubit is that of
entanglement. We say that an n-qubit state jψi is a product state if it can be written as
a tensor product jψ1ijψ2i where jψ1i and jψ2i are, respectively, n1- and n2-qubit
states with n1, n2 > 0 and n¼ n1 + n2. If jψi is not a product state, then we say that it
is entangled.

For instance, the state 1
2 j00i�j01iþj10i�j11ið Þ is a product state because it can

be written as

1ffiffiffi
2

p j0iþj1ið Þ 1ffiffiffi
2

p j0i�j1ið Þ

while, as the reader can easily verify, the state 1ffiffi
2

p j00iþj11ið Þ is entangled, because it
cannot be written as a product of any two one-qubit states. We will explore some
uses of entanglement in Sect. 1.4.2.

1.3.2 Measurements

As we have seen in the previous section, the quantum state on an n-qubit system is
implicitly defined by 2n complex parameters that satisfy a normalization condition.
However, according to the laws of quantum mechanics, there is no physical process
that allows us to directly access those parameters (known as the wavefunction of the

P

i A0

state). The only way in which we can obtain some information of this wavefunction
is by performing a measurement that will alter the system state. In the quantum
circuit model, measurements are usually performed in the computational basis and,
thus, will probabilistically output results of the form i for some i between 0 and
2n�1, leaving the system in state jii.

8 E. F. Combarro

Let us explain this in more detail, by first focusing on the case in which n¼ 1, that
is, when we only have one qubit. In the most general situation, we have a qubit in
state aj0i + bj1i. If we measure it in the computational basis, we will obtain 0 with
probability jaj2 and 1 with probability jbj2. In the first case, the state will change
(we usually say that it collapses) to j0i and, in the second, to j1i, so subsequent
measures will output the same result with probability 1 (unless until we act on the
state with a quantum gate, see next section).

The reason for imposing the normalization condition on a and b is now clear:
since jaj2 and jbj2 are the probabilities of the two only possible measurement results,
they need to add up to 1.

n

Similarly, when we have an n-qubit system in state 2 �1
i¼0 ai j ii and we measure

all of its qubits, we obtain i with probability jaij2, and the state collapses to jii.
Alternatively, we can decide to measure just one qubit instead of all the n.

Imagine, for instance, that we measure the j-th qubit. Then, we will obtain 0 with
probability

P
aij j2 where A0 is the set of integers 0 � i� 2n � 1 whose j-th bit is 0.

2
That is, we sum the probabilities of all the possible states which are compatible

with measuring 0 on the j-th qubit. Moreover, the state will collapse to

P
i2A0

ai j iiffiP
i2A0

aij j2
q

that is a normalized state. Analogously, the result of measuring the j-th qubit will be
1 with probability

P
i2A1

aij j2 where A1 is the set of integers 0 � i � 2n � 1 whose
j-th bit is 1. In that case, the new state of the system will be

P
i2A1

ai j iiffiP
i2A1

aij j2
q

For instance, if our state is 1ffiffi
3

p j001i þ 1ffiffi
3

p j010i þ 1ffiffi
3

p j100i, then the probabil-

ity of measuring 0 on the middle qubit is 2
3, in which case the state will collapse to

1ffiffi
2

p j001i þ 1ffiffi
2

p j100i, and the probability of measuring 0 on the middle qubit is 1
3,

with resulting state j010i.
Notice that the probability of obtaining i when measuring all the qubits of state

jψi ¼P2n�1
i¼1 ai j ii can be expressed as

2 2

1 Quantum Computing Foundations 9

aij j ¼ ijψh ij j ¼ ψ jih i ijψh i:

Then, we can contemplate measuring the state in a different orthonormal basis
jϕiif g2n�1

i¼1 , and the probability of obtaining the result associated with jϕii (with
subsequent collapse to jϕii) will be given by

ψ jϕih i ϕijψh i ¼ ϕijψh ij j2,

which is, indeed, the squared modulus of the coefficient of jϕii when jψi is
expressed in this new basis.

Thus, we can implement a measurement in a non-computational basis by first
performing a change of basis (we will learn how in the following section) and then
measuring in the computational basis.

1.3.3 Quantum Gates

So far, we have learned how an n-qubit system stores information in its state and how
to access (part of) that information by performing measurements. In this section, we
will introduce the kind of operations that we can use on qubits to modify their states
and implement useful computations.

In general, transformations of (closed) quantum systems are solutions to the
famous Schrödinger equation. Studying this equation and how to solve it is out of
the scope of this chapter. But, for the purpose of learning how to program quantum
computers, we only need to know that the evolution of a quantum system according
to the laws of quantum mechanics is given by unitary transformations, that is, linear
operations that preserve the state normalization condition. In the case of the quantum
circuit model, operations are performed in discrete steps and on a finite number n of
qubits. For this reason, these operations, known as quantum gates, can be identified
with square matrices of size 2n � 2n. Since these matrices need to preserve the
normalization constraint, they have to be unitary (cf. [1]), that is, their inverse must
be their conjugate transpose.

Mathematically, a unitary matrix U is a square matrix of complex numbers such
that

UU{ ¼ U{U ¼ I,

where U{ is the matrix obtained by transposing U and conjugating all its entries and
I is the identity matrix. Each quantum gate in the circuit model will be defined by a
matrix of this kind, and we will devote the rest of this section to introducing the most
important ones. Notice that these matrices can be interpreted as changes from one
orthonormal basis to another.

� �
0 1

� �
� �
� �
� �
� �
� �
� �
0 1

0 1

 !

10 E. F. Combarro

Table 1.1 Most important one-qubit quantum gates

Gate name Matrix Symbol

I or identity 1 0

0 1

H or Hadamard gate 1 1ffiffiffiBBp ffiffiffi
2

p
2 CC@ 1 1 Apffiffiffi

2
�pffiffiffi

2
X or NOT 0 1

1 0

Y 0 �i

i 0

Z 1 0

0 �1

S 1 0

0 i

S{ 1 0

0 �i

T 1 0

0 e
iπ
4

T{ 1 0

0 e
�iπ
4

Rotation of angle θ around the X axis θ θ
cosB 2

�i sin
2C@ A

θ θ�i sin cos
2 2

Rotation of angle θ around the Y axis θ θ
cos sinB 2 2 C@ A

θ θ
sin cos

2 2
Rotation of angle θ around the Z axis e

�iθ
2 0

0 e
iθ
2

We will start by analyzing the simplest case, that in which the system only has
one qubit. Then, a one-qubit quantum gate will have an associated 2 � 2 unitary
matrix that specifies how the gate acts on the basis vectors j0i and j1i. One example
is the X or NOT gate that takes j0i to j1i and j1i to j0i and thus is specified by the
unitary matrix

0 1

1 0

� �
:

For quick reference, the most common one-qubit quantum gates have been
collected in Table 1.1. Notice that we have included the identity gate, which leaves
the qubit state unchanged. Also, notice that there are three quantum gates, called

rotations around the axes X, Y, and Z, that depend on a parameter θ. These gates are
very important because it can be proved (see [1]) that any other one-qubit quantum
gate can be decomposed as a product of these gates for an adequate choice of the
angles. Also, the action of Rx(π), Ry(π), and Rz(π) strongly resembles that of X, Y, and
Z, respectively. In fact, the only difference is a complex number of modulus 1 that
multiplies the whole state, called a global phase. But notice that this does not affect
the measurement probabilities and, since all the gates are linear transformations, it
does not change the subsequent application of quantum gates either. For this reason,
states or gates that are equal up to a global phase can be considered equivalent.

1 Quantum Computing Foundations 11

Two-qubit gates can be identified with unitary matrices of size 4 � 4. Probably,
the most important one is the CNOT or controlled-X gate which acts on basis states
as follows:

j 0i j 0i⟶ j 0i j 0i j 0i j 1i⟶ j 0i j 1i j 1i j 0i⟶ j 1i j 1i j 1i j 1i⟶ j 1i j 0i

Notice that when the first qubit is j0i, the gate does not change the state of either
qubit, but when the first qubit is j1i, the second qubit is flipped (while the first one
remains unchanged). That is, we are applying a NOT or X gate on the second qubit
controlled by the value of the first one (hence, the controlled-X name). We can
summarize this behavior for x, y 2 {0, 1} by

jxi jyi⟶ jxi jx� yi

where � is the XOR operation on bits (or addition modulo 2).
This gate is collected, together with other important two-qubit gates, in Table 1.2,

but notice that any qubit gate can be controlled to form a two-qubit gate as we have
done with the X gate.

Another way of constructing two-qubit gates and, in fact, n-qubit gates for n > 1
is by means of the tensor product. If we have U and V, quantum gates acting on n1
and n2 qubits, respectively, then we can define the tensor product gate on
n ¼ n1 + n2 qubits U � V, whose action is defined on basis states by

U � V jxi jyi ¼ U jxi � V jyi

and extended linearly to all other states. We can simply think of U � V as U and
V acting in parallel on two different sets of qubits.

The concepts we have introduced so far are already enough to construct any
quantum circuit on an arbitrary number of qubits for it can be proved that, for
instance, the one-qubit rotation gates together with the CNOT gate and the tensor
product operation can be used to decompose any unitary gate of any size. In fact,
actual computers usually implement that set of gates or a similarly reduced one and
rely on decompositions to implement higher-order gates. However, we want to

0 1

0 1

0 1

0 1

introduce just one more gate because it will be important in our discussion on the
relationship between classical and quantum computing of the following section.

12 E. F. Combarro

Table 1.2 Some important two-qubit and three-qubit quantum gates

Gate name Matrix Symbol

CNOT or controlled-X 1 0 0 0B CB 0 1 0 0CB C@ 0 0 0 1A
0 0 1 0

SWAP 1 0 0 0B CB 0 0 1 0CB C@ 0 1 0 0A
0 0 0 1

Controlled-z 1 0 0 0B CB 0 1 0 0 CB C@ 0 0 1 0 A
0 0 0 �1

or

Toffoli 1 0 0 0 0 0 0 0B 0 1 0 0 0 0 0 0CB CB CB 0 0 1 0 0 0 0 0CB CB CB 0 0 0 1 0 0 0 0CB CB 0 0 0 0 1 0 0 0CB CB CB 0 0 0 0 0 1 0 0CB C@ 0 0 0 0 0 0 0 1A
0 0 0 0 0 0 1 0

The Toffoli gate or controlled-controlled-X gate is a three-qubit quantum gate
whose action of basis states is given by

jxi jyi jzi !jxi jyi jz� x ^ yð Þi

where x, y, z 2 {0, 1} and ^ is the logical AND operation. The matrix of the Toffoli
gate is presented in Table 1.2. As mentioned above, this gate can be decomposed in
one- and two-qubit gates (see, for instance, [1]).

1.3.4 Quantum Circuits

We can now combine all the elements introduced in the previous sections to define
what quantum circuits are and to explain how they can be used to perform
computations.

A quantum circuit contains a fixed number n of qubits that we represent by
n parallel lines or wires. Initially, the state of every qubit is j0i (and, hence, the initial

Þ

state of the whole system is the product state j0ij0i. . . j0i). Then, we sequentially
apply quantum gates to one or more of the wires, and we can, eventually, also
measure some of the qubits to obtain a result.

This is illustrated in Fig. 1.1, where we use the symbols from Tables 1.1 and 1.2
to represent the different gates and to represent measurements. Gates are applied
from left to right.

In the example circuit, we have three qubits initialized in state j0i so the whole
system is in state j000i. We start by applying an H gate to the top qubit (we should
think of this as an application of the three qubit gates H � I � I) to obtain the state
1ffiffi
2

p j000iþj100ið Þ. Then, we apply X gates to all the qubits to get 1ffiffi
2

p j011iþj111ið
which is transformed into 1ffiffi

2
p j011iþj101ið Þ after the application of the CNOT gate

whose control is the top qubit and target is the middle qubit (again, think of this as
the three-qubit gate CNOT�I). Then, we apply a Toffoli gate whose target is the top
qubit, and the state is transformed into 1ffiffi

2
p j111iþj101ið Þ. Thus, when we measure

the middle qubit, we obtain 0 with probability and 1
2 and 1 with probability 1

2. After
this measurement, the value of the second wire can be considered to be a classical bit,
so it is customary to use a double wire instead of the single wire used for qubits.

There are several things that need to be taken into account when working with
quantum circuits, especially because sometimes they are quite different from what
we are used to with classical algorithms. Some of the most important ones are:

1 Quantum Computing Foundations 13

Fig. 1.1 Example of quantum circuit

• Probabilistic behavior. In general, the result of the execution of a quantum circuit
is not deterministic, and we will obtain different values with certain probabilities.
Consequently, quantum algorithms usually involve a number of executions of
one or more quantum circuits together with some statistical manipulation (such as
considering the average or the mode) of the results obtained from the
measurements.

14 E. F. Combarro

Fig. 1.2 Reversible NAND gate implemented with quantum gates

• Reversibility. Every quantum gate is a unitary transformation. Consequently, each
quantum gate has an inverse, and its operation can be reversed (notice, however,
that measurements cannot be reversed in general). This raises the question of
whether quantum circuits can implement classical circuits composed of
non-reversible gates such as AND, OR, NAND, or XOR. However, it is not
difficult to show that the Toffoli and X gates, together with some ancillary qubits,
can be used to simulate any classical Boolean gate. For instance, Fig. 1.2 shows
how to implement a NAND gate. Notice that having the same number of inputs
and outputs is a necessary condition for a gate to be reversible. Since NAND is
universal for classical logic, it follows that we can simulate any classical circuit
with quantum gates and little overhead in the number of qubits.

• Hardness of classical simulation. From what we have learned in the previous
sections, it is easy to see that the execution of a quantum circuit is just a sequence
of vector-matrix multiplications followed by sampling according to the squared
moduli of the coefficients of the final vector. However, the size of the state vector
is 2nwhere n is the number of qubits, and we do not know of any classical method
able to simulate general quantum circuits efficiently (i.e., in time polynomial in
n). What is more, it is widely believed (see [32, 33], for instance) that such a
method does not exist. Although we still do not understand completely what
makes simulating quantum circuits hard for classical computers, there are several
properties such as entanglement, superposition, and interference that seem to be
the source of this difficulty.

• Impossibility of copying quantum information. Another particularity of quantum
information processing is the impossibility of making independent copies of
quantum states. In fact, it is not difficult to show (see [1]) that there is no quantum
gate that takes as input jψij0i, where jψi can be any arbitrary quantum state, and
outputs jψijψi. This fact, known as the no-cloning theorem, is a striking differ-
ence with classical algorithms and needs to be taken into account when program-
ming quantum computers.

All these properties make quantum algorithms quite different from classical ones,
so the design of useful quantum methods can become challenging in general. The
next section is devoted to show some simple examples of how quantum circuits can
be used to solve certain problems with an advantage over what is possible with just
classical resources.

1 Quantum Computing Foundations 15

1.4 Some Quantum Algorithms

In this section, we describe some quantum algorithms to illustrate the concepts intro-
duced in Sect. 1.3. Due to space constraints, we will focus only on some simple cases,
and we refer the interested reader to quantum algorithms textbooks such as [1] or [34].

1.4.1 Generating Random Bits with a Quantum Circuit

Arguably, the simplest quantum circuit with a potential practical use is the one
shown on Fig. 1.3. In fact, at least in theory, this circuit can be used to generate
perfect random bits, something that is of vital relevance for cryptography, games,
and simulation, among other applications. Indeed, the state after the application of
the H gate is 1ffiffi

2
p (j0i + j1i) which, upon measurement, gives 0 with probability

exactly 1
2 and 1 with probability exactly 1

2. Multiple, independent executions of the
circuit would give a perfectly random binary string.

Alternatively, one can consider using several qubits in parallel, as in the circuit in
Fig. 1.4. If we use n qubits, the state after the application of the H gates is

Fig. 1.3 Theoretical circuit to generate perfect random bits

Fig. 1.4 Theoretical circuit to generate perfect random binary strings

Þ¼
X

e

Þ

16 E. F. Combarro

1ffiffiffi
2

p j0iþj1ið Þ . . . 1ffiffiffi
2

p j0iþj1ið Þ¼ 1ffiffiffiffiffi
2n

p j0:::0iþj0:::1iþ . . .þj1:::1ið 1ffiffiffiffiffi
2n

p
2n�1

i¼0

jii

which, when measured, gives a random uniform bitstring of length n. In fact, th
application of a column ofH gates to obtain an equal superposition of all n-bit strings is
one the most widely used quantum computing primitives in the quantum circuit model,
as it allows to apply an operation to all possible inputs of length n at the same time.

It must be noted, however, that the circuits presented in Figs. 1.3 and 1.4 are
usually not enough to generate really uniform bitstrings in practice. As shown in
[35], readout errors, noise, and imperfections in gate implementations present in
current quantum computers can introduce biases in the outputs of these circuits.

1.4.2 Creating Entanglement

In the previous section, we have introduced quantum circuits to create superposi-
tions. In this one, we show how to create entangled states, another powerful
primitive that can be used in important protocols such as quantum teleportation
[36], superdense coding [37], or the generation of certified random bits [38] and in
quantum algorithms in general.

A simple way to create an entangled state is to use the circuit shown in Fig. 1.5. The
final state obtained with the circuit is 1ffiffi

2
p j00iþj11ið Þwhich is, indeed, entangled. This

state is known as one of the Bell pairs or states, the other ones being 1ffiffi
2

p j01iþj10ið ,
1ffiffi
2

p j00iþj11ið Þ, and 1ffiffi
2

p j01iþj10ið Þ. It is easy to see that these states can be obtained

by adding an X gate, a Z gate, or both, to the top qubit of the circuit in Fig. 1.5.
The circuit in Fig. 1.6 also creates an entangled state, namely,

1
2 j00iþj01iþj10i�j11ið Þ . This kind of circuit and this type of entangled state
(sometimes called a graph state) are widely used in measurement-based quantum
computing (see Sect. 1.2.3).

Another widely used entangled state is the so-called GHZ state 7 given by 1ffiffi
2

p �
j000iþj111ið Þ . It can be constructed with the circuit shown in Fig. 1.7, and it has
applications, for instance, in protocols for the generation of certified random bits [38].

Fig. 1.5 Circuit to create a Bell pair

�

1 Quantum Computing Foundations 17

0 H

H0

Fig. 1.6 Circuit to create a simple graph state

Fig. 1.7 Circuit to create a GHZ state

1.4.3 Deutsch’s Algorithm

In the two previous sections, we have shown how to create superpositions and
entangled states with quantum circuits. The third ingredient that is usually present
in quantum algorithms is interference. Interference is produced when two quantum
states are linearly combined so that the amplitudes of some basis states either
reinforce (constructive interference) or cancel (destructive interference). For
instance, if we apply an H gate to the state j0i, we obtain 1ffiffi

2
p j0iþj1ið Þ. If we now

apply another H gate, by linearity, the resulting state is

H
1ffiffiffi
2

p j0iþj1ið Þ ¼ 1ffiffiffi
2

p Hj0i þ Hj1ið Þ ¼ 1ffiffiffi
2

p 1ffiffiffi
2

p j0iþj1ið Þ þ 1ffiffiffi
2

p ðj0i�j1iÞ
�

¼ 1
2

j0iþj1iþj0i�j1ið Þ ¼j0i:

Notice that, in the last equality, the amplitudes of j0i have reinforced each other,
while the amplitudes of j1i have canceled each other.

That the phenomenon of interference could be exploited to speed up some
computations was first noticed by Deutsch. In [21], he proposed the following
problem: we are given a black-box implementation of a certain Boolean function

f that takes one bit as input and returns one bit as its output, and we need to determine
whether f is constant (it always returns the same output for any input) or balanced
(it returns 0 for one input and 1 for the other). The goal is to minimize the number of
queries to f.

18 E. F. Combarro

Fig. 1.8 Quantum oracle for a 1-bit Boolean function

Fig. 1.9 Circuit for Deutsch’s problem

In the classical setting, we need to query f on both 0 and 1, because the result of
just one query is always compatible with the function being constant and with the
function being balanced. However, there is a quantum algorithm that uses just one
query to f and solves the problem exactly for each possible f. To be able to use the
implementation of f in a quantum circuit, we need it to be reversible (cf. Sect. 1.3.4)
so we assume that it is given by a black-box or oracle as the one presented in Fig. 1.8.
Notice that the input is left unchanged in the top qubit and the output is added,
modulo 2, to the bottom qubit. Thus, for input jxij0i, we obtain jxijf(x)i, successfully
evaluating the function. The use of this type of oracle is common in many quantum
algorithms.

We can solve Deutsch’s problem with just one query to the oracle by using the
circuit in Fig. 1.9. If f is constant, then we will measure 0. If f is balanced, the result
will be 1. This can be easily proved because, just before the application of the oracle
gate, we have

j0iþj1ið Þ j0i�j1ið Þ
2

which is the same as

Þ

1 Quantum Computing Foundations 19

j0i j0i�j1ið Þ
2

þ j1i j0i�j1ið Þ
2

When we apply the oracle, by linearity, we obtain

j0i j0� f 0ð Þi�j1� f 0ð Þið Þ
2

þ j1 j0� f 1ð Þi�j1� f 1ð Þið
2

If f(0) ¼ 0, we have

j0� f 0ð Þi� j1� f 0ð Þi ¼j0i� j1i

However, if f(0) ¼ 1, we get

j0� f 0ð Þi� j1� f 0ð Þi ¼j0� 1i� j1� 1i ¼j1i� j0i ¼ � j0i�j1ið Þ

For f (1), the situation is the same, so the global state is

�1ð Þ f 0ð Þ j0i j0i�j1ið Þ
2

þ �1ð Þ f 1ð Þ j1i j0i�j1ið Þ
2

Because global phases are irrelevant (cf. Sect. 1.3.3), we can multiply the whole
state by (�1)f(0) to get

j0i j0i�j1ið Þ
2

þ �1ð Þ f 0ð Þþf 1ð Þ j1i j0i�j1ið Þ
2

So if f(0) ¼ f(1), we will have

j0i j0i�j1ið Þ
2

� j1i j0i�j1ið Þ
2

¼ j0iþj1ið Þ j0i�j1ið Þ
2

and when we apply the last H and measure, we obtain 0. But if f(0) 6¼ f(1), the state is

j0i j0i�j1ið Þ
2

� j1i j0i�j1ið Þ
2

¼ j0i�j1ið Þ j0i�j1ið Þ
2

and then, we obtain 1. Notice that the application of the final H gate is creating the
(constructive or destructive) interference that we need to obtain the correct result,
exactly in the same way that we showed at the beginning of this section.

20 E. F. Combarro

1.4.4 Advanced Algorithms

Space constraints prevent us from introducing more sophisticated algorithms in
detail. We refer the interested reader to [1, 34]. However, in this section, we will
briefly list and describe some quantum algorithms which are more advanced than the
ones presented so far.

Deutsch-Jozsa’s algorithm Deutsch’s problem can be generalized to n-bit Boolean
functions. We need to restrict the possible functions f to those that are either constant
or balanced (this is what we call a promise problem), and, again, we are asked to
determine to which of the two groups f belongs. Any deterministic classical algo-
rithm needs 2n�1 � 1 queries to the oracle in the worst case, but, again, there is a
quantum algorithm that solves the problem with just one query [39].

Grover’s algorithm Suppose we are given an unsorted list of N elements and we
want to find one that satisfies a certain condition. In the classical case, we need to
access the list a number of times that is O(N). Grover’s algorithm [3] can find the
element with high probability with just O

ffiffiffiffi
N

p� �
queries to the list.

Shor’s algorithm Finding non-trivial factors of large integers is widely considered
to be hard with classical algorithms, and, in fact, this assumption supports the
security of several well-known cryptographic schemes such as RSA [40]. Shor’s
algorithm [2] cleverly uses the so-called quantum Fourier transform (see [1]) to
factor integers in time that is polynomial in the length of the binary expansion of the
number.

Variational algorithms In recent years, variational circuits (i.e., quantum circuits
that use gates that depend on certain parameters as, for instance, the rotation gates
introduced in Sect. 1.3.3) have been used to define a number of quantum algorithms
that can address several different types of problems. For instance, the variational
quantum eigensolver [12] can be used to study properties of physical and chemical
systems, and the quantum approximate optimization algorithm [16] can be applied to
obtain approximate solutions of combinatorial optimization problems. Variational
circuits are also used as the basis of quantum machine learning methods such as
quantum neural networks [14, 15].

1.5 Quantum Adiabatic Computing and Quantum
Annealing

Quantum adiabatic computing is a computational model that uses quantum proper-
ties in a way different from the quantum circuit model (although it can be shown that
both are equivalent [26]). Instead of applying quantum gates at discrete steps, the
quantum state of the system at time t, denoted jψ(t)i, evolves according to the
application of external forces given by a time-dependent Hamiltonian, i.e., a linear

operator H(t) such that H(t){ ¼ H(t) (matrices satisfying this property are called
Hermitian).

1 Quantum Computing Foundations 21

Usually, the initial state jψ(0)i is the ground state of a simple Hamiltonian
H(0) ¼ H0, that is, a state such that hψ(0)jH0jψ(0)i is minimum among all values
hψjH0jψi. Notice that, because H{

0 ¼ H0, it holds that

ψ jH0jh iψð Þ� ¼ ψ jH{
0jψ

D E
¼ ψ jH0jψh i

which is then a real value, so it makes sense to compare these quantities.
In addition, the final Hamiltonian at time T, H(T) ¼ Hf , is set in a way that its

ground state has some useful property (for instance, encodes a solution to a certain
combinatorial problem). If the evolution from H0 to Hf is slow enough, the adiabatic
theorem guarantees (see [6]) that then jψ(T)i is the ground state of Hf and, upon
measurement, we can obtain information that can be used to solve our problem.

As an example, consider the well-known maximum cut or Max-Cut problem: we
are given a graph G ¼ (V,E), and we need to obtain a partition of the vertex
set V ¼ {1, . . ., n} into two disjoint sets V1 and V2 such that the number of edges
(i, j) 2 E such that i and j are one in V1 and the other in V2 is the maximum possible.
This problem is known to be NP-hard [41].

To transform Max-Cut into the problem of finding the ground state of a Hamil-
tonian, we encode a partition V1, V2 of V as a basis state jxiwith x 2 {0, 1}n such that
the i-th bit of x is 0 if i 2 V1 and 1 if i 2 V2. Then, we define the Hamiltonian

H f ¼
X
i, jð Þ2E

ZiZ j

� �
where ZiZj is the tensor product of matrices Z ¼ 1 0

0 �1
in positions i and j and

the identity in all other positions. Then, hxj ZiZjj xi is 1 if xi ¼ xj and �1 if xi 6¼ xj.
Consequently, hxjHf j xi is minimized exactly when jxi encodes a partition that gives
a maximum cut in the graph.

We can use this reduction to solve the Max-Cut problem via quantum adiabatic
computing. We use the Hf defined above, we set Hi to a Hamiltonian whose ground
state jψ0i we can easily prepare, and we evolve the system according to

H tð Þ ¼ 1� t
T

� 	
Hi þ t

T
H f

where T is big enough that adiabaticity is ensured.
In practice, however, T can be prohibitively big (in fact, even determining T can

be extremely difficult). For this reason, a heuristic version of quantum adiabatic
computing called quantum annealing is used instead. With this approach, T is not
necessarily set so that the evolution is ensured to be adiabatic, but the process is
repeated a number of times, and the best solution is kept. This is the method used in

X X
the quantum computers developed by Canadian company D-Wave in which Hf is of
the form

22 E. F. Combarro

H f ¼
i<j

Ji,jZiZ j þ
i

hiZi

where the coefficients Ji, j and hi are tunable real numbers. This is called an Ising
Hamiltonian, and it is easy to see that finding its ground state is NP-hard. In fact, if
we set Ji, j ¼ 1 for (i, j) 2 E, Ji, j ¼ 0 for (i, j) =2 E and hi ¼ 0 for all i, we recover the
Max-Cut problem, which we know is NP-hard.

These quantum annealers can, then, be used to obtain approximate solutions to
combinatorial optimization problems, and the process of programming them reduces
to finding a set of coefficients Ji, j and hi such thatHf adequately encodes our problem
(see [42] for some recipes on how to do this for a big collection of common
optimization problems).

1.6 Conclusions

In this chapter, we have introduced the paradigm of quantum computing with a
special focus on the model of quantum circuits. We have explained the main
elements of the model, namely, qubits, quantum gates, and measurements, and
how to build quantum circuits with them. Then, we have shown some simple
examples of quantum algorithms in which properties such as superposition, entan-
glement, and interference offer some advantage over what is possible with just
classical resources. Finally, we have briefly introduced quantum adiabatic comput-
ing and quantum annealing and shown how these models can be used to obtain
approximate solutions to hard combinatorial problems.

Acknowledgments This work was supported in part by the Spanish Ministry of Science and
Innovation under grant PID2020-119082RB-C22.

References

1. Nielsen MA, Chuang IL (2011) Quantum computation and quantum information, 10th Anni-
versary edn. Cambridge University Press

2. Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In:
Proceedings of FOCS, pp 124–134

3. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of
the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96. ACM,
New York, NY, pp 212–219

4. IBM Quantum (2021) https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/

1 Quantum Computing Foundations 23

5. Combarro EF, Vallecorsa S, Rodríguez-Muñiz LJ, Aguilar-González Á, Ranilla J, Di Meglio A
(2021) A report on teaching a series of online lectures on quantum computing from CERN.
J Supercomputing:1–31

6. Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D (2001) A quantum adiabatic
evolution algorithm applied to random instances of an NP-Complete problem. Science
292(5516):472–475

7. McGeoch CC (2014) Adiabatic Quantum Computation and Quantum Annealing. Synthesis
Lectures on Quantum Computing. Morgan & Claypool Publishers

8. Feynman R (1982) Simulating physics with computers. Int J Theoretical Phys 21(6):467–488
9. Abrams DS, Lloyd S (1999) Quantum algorithm providing exponential speed increase for

finding eigenvalues and eigenvectors. Phys Rev Lett 83(24):5162
10. Aspuru-Guzik A, Dutoi AD, Love PJ, Head-Gordon M (2005) Simulated quantum computation

of molecular energies. Science 309(5741):1704–1707
11. Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017)

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets.
Nature 549(7671):242–246

12. Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ, Love PJ, Aspuru-Guzik A, O’brien,
J.L. (2014) A variational eigenvalue solver on a photonic quantum processor. Nat Commun
5(1):1–7

13. Wittek P (2014) Quantum machine learning: what quantum computing means to data mining.
Academic Press

14. Schuld M (2018) Supervised learning with quantum computers. Springer
15. Abbas A, Sutter D, Zoufal CZ, Lucchi A, Figalli AF, Woerner S (2021) The power of quantum

neural networks. Nat Computational Sci 1:403–409
16. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv

preprint arXiv:1411.4028
17. Orús R, Mugel S, Lizaso E (2019) Quantum computing for finance: overview and prospects.

Rev Phys 4:100028. https://doi.org/10.1016/j.revip.2019.100028. https://www.sciencedirect.
com/science/article/pii/S2405428318300571

18. Ding Y, Chen X, Lamata L, Solano E, Sanz M (2021) Implementation of a hybrid classical-
quantum annealing algorithm for logistic network design. SN Comput Sci 2(2):1–9

19. Yarkoni S, Neukart F, Tagle EMG, Magiera N, Mehta B, Hire K, Narkhede S, Hofmann M
(2020) Quantum shuttle: traffic navigation with quantum computing. In: Proceedings of the 1st
ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering
Quantum Software, pp 22–30

20. Hauke P, Katzgraber HG, Lechner W, Nishimori H, Oliver WD (2020) Perspectives of quantum
annealing: methods and implementations. Rep Progr Phys 83(5):054401

21. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc R Soc Lond A 400:97–117

22. Fortnow L (2003) One complexity theorist’s view of quantum computing. Theoretical Comput
Sci 292(3):597–610

23. Ding Y, Chong FT (2020) Quantum computer systems: research for noisy intermediate-scale
quantum computers. Synthesis Lectures on Computer Architecture 15(2):1–227

24. Deutsch D (1989) Quantum computational networks. Proc R Soc Lond Ser A Math Phys Sci
425(1868):73–90. http://www.jstor.org/stable/2398494

25. Chi-Chih Yao A (1993) Quantum circuit complexity. In: Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, pp 352–361. https://doi.org/10.1109/SFCS.1993.
366852

26. Aharonov D, van Dam W, Kempe J, Landau Z, Loyd S, Regev O (2004) Adiabatic quantum
computation is equivalent to standard quantum computation. 45:42–51

27. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86(22):5188
28. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation on

cluster states. Phys Rev A 68(2):022312

https://doi.org/10.1016/j.revip.2019.100028
https://www.sciencedirect.com/science/article/pii/S2405428318300571
https://www.sciencedirect.com/science/article/pii/S2405428318300571
http://www.jstor.org/stable/2398494
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852

24 E. F. Combarro

29. Childs AM, Leung DW, Nielsen MA (2005) Unified derivations of measurement-based
schemes for quantum computation. Phys Rev A 71. https://doi.org/10.1103/PhysRevA.71.
032318. http://arxiv.org/abs/quant-ph/0404132v2

30. Wei TC (2018) Quantum spin models for measurement-based quantum computation. Adv Phys
X 3(1):1461026. https://doi.org/10.1080/23746149.2018.1461026

31. Wei TC (2021) Measurement-based quantum computation. https://doi.org/10.1093/acrefore/
9780190871994.013.31. https://oxfordre.com/physics/view/10.1093/acrefore/9780190871
994.001.0001/acrefore-9780190871994-e-31

32. Aaronson S (2010) BQP and the polynomial hierarchy. In: Proceedings of the Forty-Second
ACM Symposium on Theory of Computing. pp 141–150

33. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG,
Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor.
Nature 574(7779):505–510

34. Yanofsky NS, Mannucci MA (2008) Quantum computing for computer scientists. Cambridge
University Press

35. Combarro EF, Carminati F, Vallecorsa S, Ranilla J, Rúa IF (2021) On protocols for increasing
the uniformity of random bits generated with noisy quantum computers. J Supercomput 77
(8):8063–8081

36. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev
Lett 70:1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895. https://link.aps.org/
doi/10.1103/PhysRevLett.70.1895

37. Bennett CH, Wiesner SJ (1992) Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Phys Rev Lett 69:2881–2884. https://doi.org/10.1103/
PhysRevLett.69.2881. https://link.aps.org/doi/10.1103/PhysRevLett.69.2881

38. Acín A, Masanes L (2016) Certified randomness in quantum physics. Nature 540(7632):
213–219

39. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc
Lond A Math Phys Eng Sci 439(1907):553–558

40. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-
key cryptosystems. Commun ACM 21(2):120–126

41. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of Computer
Computations. Springer, pp 85–103

42. Lucas A (2014) Ising formulations of many NP problems. Front Phys 2:5

https://doi.org/10.1103/PhysRevA.71.032318
https://doi.org/10.1103/PhysRevA.71.032318
http://arxiv.org/abs/quant-ph/0404132v2
https://doi.org/10.1080/23746149.2018.1461026
https://doi.org/10.1093/acrefore/9780190871994.013.31
https://doi.org/10.1093/acrefore/9780190871994.013.31
https://oxfordre.com/physics/view/10.1093/acrefore/9780190871994.001.0001/acrefore-9780190871994-e-31
https://oxfordre.com/physics/view/10.1093/acrefore/9780190871994.001.0001/acrefore-9780190871994-e-31
https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881

Chapter 2
Quantum Software Engineering Landscape
and Challenges

Mario Piattini and Juan Manuel Murillo

2.1 Introduction

The seed for the first quantum revolution is dated at the beginning of the last century,
when many exceptional scientists (Planck, Einstein, Bohr, Schrödinger, Born, Dirac,
De Broglie, Heisenberg, Pauli, etc.) settled the basis of a new physic theory:
quantum mechanics. Quantum mechanics is the field of physics which describes
the behavior of nature at subatomic levels (i.e., photons, electrons, etc.), for which
classic mechanics cannot provide satisfactory explanations [1].

In 1982, Nobel laureate Richard Feynman in a visionary talk [2] asked: What kind
of computer are we going to use to simulate physics? Also, in the 1980s, Paul
Benioff [3] and Yuri Manin [4] laid the theoretical foundations of quantum com-
puting, and David Deutsch [5] proposed the “universal quantum computer.” So, the
second quantum revolution was launched, in which the idea for a quantum computer
was born, and quantum computer science started.

Over the last three decades, our understanding of “quantum computers” has
expanded dramatically, as the efforts to realize such an exotic computer have
made steady but remarkable progress []. Quantum computers will provide faster
computing speed (key to provide high value in different important applications)
through the usage of various “counterintuitive” principles of quantum mechanics
such as superposition and entanglement, explained in the previous chapter. In fact,

6

M. Piattini (*)
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Mario.Piattini@uclm.es

J. M. Murillo
University of Extremadura, Cáceres, Spain
e-mail: juanmamu@unex.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_2&domain=pdf
mailto:Mario.Piattini@uclm.es
mailto:juanmamu@unex.es
https://doi.org/10.1007/978-3-031-05324-5_2#DOI

quantum computing is gaining a lot of interest since there are countless, cutting-edge
applications in multiple areas []:7

26 M. Piattini and J. M. Murillo

• Privacy and cryptography: certification of randomness and authentication
• Artificial intelligence: quantum machine learning, quantum deep learning, etc.
• Supply chain and logistics: optimization problems in procurement, production

and distribution, vehicle routing optimization, etc.
• Chemistry: simulations of complex molecules, discovery of new materials,

advanced molecular design, etc.
• Economics and financial services: portfolio risk optimization and fraud detection,

actual randomness for financial models, simulations, scenario analysis, etc.
• Energy and agriculture: production of ammonia, better distribution of resources,

asset degradation modeling, etc.
• Medicine and health: protein folding and drug discovery, disease detection,

non-invasive and high-precision surgeries, targeted drug design, tailored medi-
cine, improvement of the quality of life, prediction of therapeutic
prescriptions, etc.

• Defense and national security programs

The achievement of such applications requires the use of a completely different
kind of computers and algorithms, which have the potential to solve tasks that we do
not even dare dream of today. And of course, as the Quantum Software Manifesto1

underlines, “it is urgent that we step up our efforts in quantum software.” Several
quantum programming languages, software development kits, and platforms are
already available for coding these new algorithms (see Chap. 12 “Quantum Software
Tools Overview”). But all the existing and even planned quantum software is not
enough.

In fact, it is necessary a new “quantum software engineering” (QSE). Clark and
Stepney [8] in the “Grand Challenge for Computing Research” about QSE urge for
“the development of a full discipline of Quantum Software Engineering, ready to
exploit the full potential of commercial quantum computer hardware once it
arrives. . . . This Challenge is to build the corresponding languages, tools and
techniques for quantum software engineering,” emphasizing the need to raise the
level of thinking about quantum programs.

Quantum software need to be developed in an appropriate way, i.e., following
software engineering best practices, adapting existing techniques, or creating new
ones, with efficient software engineering environments. Fortunately, the develop-
ment that this discipline has shown since the 1960s allows us to know which are the
most appropriate ways of improvement. It is now up to software engineers, both in
research and industry, to apply them.

The next section summarizes the software engineering evolution and how the
quantum computing fits in it. Section 2.3 presents the Talavera Manifesto for
Quantum Software Engineering and Programming that has been also endorsed by

1https://www.qusoft.org/quantum-software-manifesto/

https://doi.org/10.1007/978-3-031-05324-5_12
https://www.qusoft.org/quantum-software-manifesto/

2 Quantum Software Engineering Landscape and Challenges 27

various researchers and practitioners of different countries. Section 2.4 discusses
software engineering techniques. Section 2.5 presents the challenges posed by
software engineering environments, and Sect. 2.6 addresses the lack of standardiza-
tion. In Sect. 2.7, the presence of quantum computing and QSE in current education
curricula is discussed. Section 2.8 claims for the need for collaboration between
industry and academy to maximize the impact of results. Finally, Sect. 2.9 summa-
rizes the present chapter.

2.2 Software Engineering Evolution

Boehm [9] perfectly summarizes the evolution of software engineering as a process
of continuous thesis, antithesis, and synthesis. The evolution of software engineering
is “bottom-up” since it has been developed after computer science foundations. In
1931, Kurt Gödel [10] laid the foundation of computer science with his incomplete-
ness theorem, and in 1936, Alan Turing and Alonzo Church [11] introduced the
formalization of an algorithm, with limits on what can be computed (the Church-
Turing thesis). In the late 1930s, the hardware base was developed, remember the
first computers (such as Zuse’s Z1), and in the 1940s, computers (e.g., IBM’s Mark
I) built with tubes and capacitors were built. These advances were complemented in
the 1950s with the transistor-based computer and in the 1960s with the emergence of
computers with integrated circuit boards.

With hardware, machine languages came up, and the first assembly programming
languages come into view later. Maybe this is the closest point to the current
development of QSE technologies. Likening those machine languages with the
current circuit design for a quantum program and saving the differences with current
programming environments, it could be said that the effort required of the program-
mer is of the same order of magnitude.

In the 1950s (e.g., FORTRAN) and 1960s (COBOL) the first high-level pro-
gramming languages. With these languages arose the need of programming tech-
niques; the most influential technique was the structured programming proposed by
Dijkstra in 1968 [12, 13], as well as the techniques proposed by Warnier [14] and
Jackson [15].

Based on those concepts, in the 1970s, structured design techniques were pro-
posed by Myers, Yourdon, and Constantine, E/R model was defined by Chen [16],
and, lately, Gane and Sarson [17], DeMarco, and Weinberg [18] came up with
structured analysis. In the 1980s, comprehensive methodologies (Merise, SSADM,
Information Engineering, etc.) were suggested. This is considered by Booch
[19, 20], the first golden age of software engineering.

The same pattern was followed by object-oriented technologies. Different object-
oriented programming languages appeared: in the 1960s (Simula), in the 1970s
(Smalltalk), and in the 1980s (C++, Objective-C, Eiffel). In the 1990s, object-
oriented is eventually considered “the” approach for developing information sys-
tems. Nearly 100 methodologies were proposed, first for object-oriented design and

28 M. Piattini and J. M. Murillo

later for object-oriented analysis. The most important methodologies (those pro-
posed by Booch, Rumbaugh, and Jacobson) were integrated in UML (Unified
Modeling Language) [21] and UP (Unified Process). Booch [19, 20] named this
the “second golden age of software engineering.”

Also, in the 2000s, the need of an empirical and evidence-based software
engineering was recognized, and several of the proposed techniques and methods
were subjected to validation. In the past decade (2010s), DevOps and several
associated techniques have been producing another golden age [19, 20].

At the same time, service-oriented computing [22] emerged as a paradigm that
utilizes services as the fundamental elements for developing software. It proposes
the implementation of complex software solutions through the use of a set of services
that are composed and choreographed. Therefore, services can be invoked from
another piece of code (potentially another service) agnostically with respect to the
place, technology, or architecture of the invoked service. The services can thus be
maintained, evolved, replaced, and reused independently without affecting the
software that invokes them.

The success of service-oriented computing has been possible, thanks to the
development of cloud computing. Current quantum computers, which are still a
very expensive hardware to build and operate, are being offered following this
model. In its current form, most quantum computers can be accessed through the
cloud.

All signs point to that quantum computing will be the main driver for a new
software engineering golden age during the present decade of the 2020s [23]. The
question might be raised as to how far software engineering methods must be
renewed to address the quantum era. Software engineering has built up a broad
knowledge base and has learned many lessons that should be applied to the produc-
tion of quantum software. The new quantum software engineering field needs to be
considered as the application or adaptation of the well-known methods, techniques,
and practices of software engineering. Some techniques can be used just as they are
in classical computing. At the same time, however, new methods and techniques will
be defined specifically for quantum software production. Think, for example, of the
need to include in the software processes, together with business experts, scientists
capable of providing the quantum formulation of problems. In formal methods, for
example, model checking, the possibility of generating a target result and obtaining
the trace that makes it possible, thanks to the reversible nature of quantum architec-
tures instead of trying to demonstrate properties, many of them undecidable. Or
thinking about modeling techniques, the need for new abstractions to model
sequence diagrams in an architecture that no longer corresponds to the von Neumann
model. The new needs are even more evident if one thinks about the treatment of
concepts that are only present in quantum computing such as qubits superposition,
entanglement, or collapse.

2.3 The Talavera Manifesto

In the “Talavera Manifesto,” several principles and commitments for QSE have been
gathered [24]. This Manifesto was developed because of the discussion and presen-
tation of different viewpoints from academics and practitioners who joined in the 1st
International Workshop on the Quantum Software Engineering and Programming
(QANSWER’20). The nine principles referring to QSE are:

2 Quantum Software Engineering Landscape and Challenges 29

• QSE must be agnostic with respect to technologies and programming languages;
it must use methods and processes that are understandable, controllable, and
repeatable by broad communities.

• QSE must accept the coexistence of classical and quantum computing and
promote the use of reengineering techniques that allow the integration of new
quantum algorithms with existing classical information systems.

• QSE must enable the management of quantum software development projects,
producing quantum software that satisfies business objectives and requirements,
adequately meeting quality, time, and cost constraints. It will be necessary to
provide methods for effort estimation in quantum software development.

• QSE deals with the evolution of quantum software, which must be maintained
and evolved from its conception to its retirement; evolution must be addressed
throughout the entire quantum software lifecycle.

• QSE must try to obtain quantum programs with zero defects, defining the testing
techniques that allow to detect most of the defects before the program is released.

• QSE must be concerned with the quality of quantum software, both process and
product management, developing new development processes/methodologies
and new metrics for quantum programs.

• QSE must favor the reuse of quantum software, helping teams to share, index, and
find quantum software that can be reused, creating reference libraries and appli-
cation demonstrations.

• QSE should be aware of the need for security and privacy by design and should be
applied from the early stages of quantum software development.

• QSE encompasses software governance and management. It must establish the
processes, organizational structures, principles, policies, ethics, skills, competen-
cies, etc. as well as the services, infrastructure, and applications associated with
quantum software that must be provided by organizations.

This Manifesto also includes a call to action to all the stakeholders: software
practitioners, researchers, educators, government and funding bodies, quantum
technology vendors, professional associations, customers, and users.

30 M. Piattini and J. M. Murillo

2.4 Software Engineering Techniques

Quantum computing will affect all the areas of software engineering. As a matter of
fact, most of the 14 areas in SWEBOK (Software Engineering Body of Knowledge)
should be updated to include quantum issues.

It is necessary to reassess the software engineering techniques that are used today
and to adapt them and create such new ones as are necessary to improve productivity
and assure quality in quantum software development. In so doing, attention should
be paid to all processes through the whole quantum software lifecycle [25] from
“quantum-classical splitting,” the first phase of the quantum software lifecycle in
which “it is decided which parts of the problem to solve on a quantum computer and
which on a classical computer depending on the requirements of the problem
description,” to the “result analysis” that can be done automatically or by the user,
who has to decide whether an additional iteration is required to improve the results of
the quantum software application or not. In fact, today’s “NISQ” (noisy
intermediate-scale quantum) computers are limited, and quantum computations are
disturbed by errors [26].

Zhao [27] provides a comprehensive survey of the current state of the art in the
field in the different phases of the quantum software lifecycle. Different researchers
are already working on areas such as quantum software requirements analysis,
quantum software design, quantum software implementation, quantum software
testing, quantum software maintenance, or quantum software reuse. All these
works reveal the need for a strong research effort on quantum software engineering
techniques. As we already mentioned, the specific characteristics of quantum soft-
ware, namely, quantum superposition and entanglement, but also the uncertainty
associated with quantum measurements make necessary a new set of abstraction for
quantum software.

As previously discussed regarding the evolution of software engineering in Sect.
2.2, every time new abstractions are introduced in software, they are accompanied by
new software engineering techniques. The emergence of quantum computing and its
associated abstractions will require a renovation of the existing software engineering
techniques.

2.5 Software Engineering Environments

At the current state of quantum computing, there are two competing computational
models for the development of quantum software: quantum circuit-based software
and quantum annealing solutions. Since there is no dominant model yet and both
approaches are completely different, software engineering environments should
focus on one of them, assuming the risk that it will be deprecated later, or try to
accommodate for both alternatives, duplicating the effort needed to provide a
relevant environment.

We have also to be aware of the impact of quantum computing platforms on
quality attributes and software development activities [28]:

2 Quantum Software Engineering Landscape and Challenges 31

1. The lower level of the programming abstractions increases code complexity
impacting in maintainability, testability, reliability, and availability. Different
abstractions are used for quantum circuits and quantum annealing, which would
further increase complexity if both approaches were integrated.

2. Platform heterogeneity deteriorates software cohesion, affecting maintainability,
reliability, robustness, reusability, and the manageability and testability of the
system. Cohesion is deteriorated even further if both quantum computational
models are to be supported.

3. Remote software development and deployment make programming, testing, and
debugging quantum programs slower, affecting maintainability and testability.

4. The dependency on the known quantum algorithms affects the ability to perform
enhancement and corrective maintenance and testability and interoperability
(with classical software). Taking into account that algorithms for circuit-based
and annealing machines are radically different, it complicates this problem even
further to support both approaches.

5. The limited portability of quantum software affects availability, interoperability,
maintainability, and scalability.

6. The lack of native quantum operating system decreases performance, manage-
ability, reliability, scalability, and security.

7. The fundamentally different programming model increases code complexity,
affecting maintainability, interoperability, security, and testability.

It is essential to have quantum software development environments not only
oriented to conventional scientists (physicists, mathematicians, etc.) working in the
field of quantum computing but that also satisfy the needs of software engineers. In
fact, supporting quantum algorithm creation and design is very important, but also
offering tools to design, program, test, and maintain quantum software programs is
essential. Following the principles of the Talavera Manifesto [24], a quantum
software development environment should:

• Support agnostic quantum software development. Ideally, quantum software
(e.g., circuits, flows, etc.) should be visually designed, and the environment
would oversee translating transparently to the software designer the quantum
software definition in quantum software code, optimized for the specific target
platform (quantum computer, quantum simulator, or both). This characteristic
allows programmers to be independent of the specific details of each platform and
language, obviating the need to understand the complexities of the different
environments and specific quantum providers.

• Enable the integration of quantum/classical information systems, providing tools,
services, and processes for the development of hybrid information systems and
enabling classic development teams to manage the lifecycle of hybrid software
projects. In fact, quantum computing will not replace classical computing, so it is
necessary to integrate them using the appropriate service architectures.

32 M. Piattini and J. M. Murillo

• Allow developers to create and manage agnostic quantum services that can be
composed with classical services for the creation of complex hybrid solutions and
that brings all the advantages of service-oriented computing to the development
of quantum software.

• Manage the lifecycle automatically, from the creation of the quantum algorithm
through its development, testing, and implementation to its deployment and
reuse.

• Handle and support overall modernization and reengineering efforts for quantum
software [29], migrating from classical to quantum applications, based on exten-
sions of standards such as KDM (Knowledge Discovery Metamodel) [30]. It
should also transform or add new business operations supported by quantum
software that will be integrated into the target hybrid systems.

• Provide techniques for quantum software testing, dealing with the inherent
constraints of quantum computing to check intermediate states of quantum pro-
grams under execution, as well as the diversity of quantum platforms.

• Define layered quality models for quantum software, along with a set of metrics
and knowledge to control quality, from circuit-based representation to the domain
representation of a quantum program.

• Support quantum assets reuse, using a standardized, unified schema whatever the
execution target and providing utilities to add, edit, and manage all the quantum
assets: catalogues, circuit models, circuit flows, code, etc.

• Ensure, due to its own (environment) implementation and supported techniques,
“secure and privacy by design” quantum information systems.

• Allow QSE to cover the governance and management of software—even offering
the possibility of simultaneously launching the execution of the same quantum
software in multiple targets (quantum computers and/or simulators) and
collecting all the corresponding telemetry.

2.6 Lack of Standardization

In these moments of rapid evolution and a concomitant lack of standardization in
quantum programming and tools, there is a logical fear of betting on a platform or
language that in the end does not continue. This leads companies to hesitate over the
adoption of quantum applications and places quantum software designers and pro-
grammers in the difficult position of having to simultaneously learn, train, and
develop competencies for each of the existing and future languages and
development kits.

There are several standardization efforts: ISO/IEC JTC1/WG14—Quantum
Computing of International Organization for Standardization, Quantum Key Distri-
bution (QKD) of ETSI (European Telecommunications Standards Institute),
Quantum-Safe Security Working Group of CSA (Cloud Security Alliance), Focus
Group on Quantum Technologies of CEN-CENELEC (European Committee for
Standardization—European Committee for Electrotechnical Standardization),

Post-Quantum Cryptography of NIST (National Institute of Standards and Technol-
ogy), Quantum Initiative Support for Standards of IEEE (Institute of Electrical and
Electronics Engineers), etc. But at the moment there is no specific proposal on
software engineering processes or products.

2 Quantum Software Engineering Landscape and Challenges 33

2.7 Software Engineering Education

Peterssen [31] highlights how limited is the quantity of workforce that has made
quantum computing possible. This situation is even worse in the case of the invested
in QSE. The urgency for growth requires some accelerators in the preparation of the
quantum workforce, and one of them could be the training of engineers and pro-
grammers as specialists in quantum programming and software. Training of engi-
neers and quantum programmers must be urgently approached by manufacturers,
universities, and technical teaching to provide the quantum employment market with
the essential qualified workforce.

In fact, as has happened in previous stages of software development, one of the
major obstacles to the development of quality quantum software will be a shortage of
skilled labor [31]. The use of quantum software (and its environment) can imply a
relatively important period of learning and experimentation, so it is very important
that academia provides industry with a highly competent software workforce, with
specific quantum computing development skills.

Several online learning platforms offer different courses related to quantum
computing. Some professional’s organizations such as IEEE have created a new
flagship Quantum Computing Education—Workforce Development Program
“designed to empower our community of lifelong learners with quantum technology
industry knowledge for global impact.”2

There are also several universities and research centers which offer degrees,
masters, and PhD courses related to quantum computing. However, the most pres-
tigious computing curricula disregard quantum computing in general and QSE in
particular. Piattini [32] proposes the inclusion of quantum courses in all the com-
puting disciplines; through a cross-cutting “quantum technology” (QT), knowledge
area (KA) could be created, including six different units with their topics: QC,
quantum computing; QP, quantum programming; QSD, quantum system develop-
ment; QAI, quantum artificial intelligence; QS, quantum security; and QIS, quantum
information systems (see Table 2.1).

As universities, we must be very aware of the advice of Boehm [9]: “to keep
courses and courseware continually refreshed and up-to-date, and to anticipate future
trends and preparing students to deal with them” and so to incorporate in our
curricula courses quantum technologies, quantum computing, and quantum software
engineering.

2https://quantum.ieee.org/education/workforce-development

https://quantum.ieee.org/education/workforce-development

34 M. Piattini and J. M. Murillo

Table 2.1 Proposed quantum
courses in the existing
curricula

Subjects

Computing curriculum QC QP QSD QAI QS QIS

Computer Engineering x x

Computer Science x x x

Information Systems x x x

Information
Technology

x x x

Software Engineering x x x

Cybersecurity x x x

Data Science x x x

2.8 Collaboration Between Industry and Academia

For the field of quantum technology to be as successful as possible, it is essential that
there is close collaboration between industry and academia in several aspects.
Applications and use-cases need to be developed in close cooperation between the
two [33], and joint research efforts and projects are crucial to solving the problems
that quantum computing still presents us with. In fact, in quantum computing, it is
increased public and private sector investment which has enabled much of the recent
progress [34]. So big “quantum ecosystems” are fostering by the main quantum
software providers, such as the IBM Quantum Network,3 the Google’s Quantum
AI’s Summer Symposium,4 or the Microsoft Quantum Network.5

Amazon, however, is following a different approach. As the dominant actor on
the cloud computing market with AWS, it is also very interested in the possibilities
of quantum computing. Nevertheless, instead of developing their own quantum
computers, Amazon is acting as an integrator and through Amazon Braket provides
centralized access to quantum hardware from different vendors. With this role,
Amazon is acting toward an initial standardization of quantum computing software
that can be run in different hardware. In this regard, to accelerate the development of
quantum solutions and to engage in collaborative research projects with academia,
Amazon has created the Amazon Quantum Solutions Lab6 and a network of
consulting and technology partners to provide expertise in quantum systems.

Another example of such a collaboration is “aQuantum”, created in 2019 as a
joint unit for research, development, consulting, and services in the fields of Quan-
tum Software Engineering and Programming, by Alhambra IT (which belongs to the
French Prologue Group) and the Alarcos Research Group of the University of
Castilla La Mancha (UCLM). aQuantum follows a model of continuous co-exper-
imentation, technology transfer 2.0, and co-production between industry and

3https://www.ibm.com/quantum-computing/ibm-q-network/
4https://events.withgoogle.com/2021-quantum-summer-symposium/
5https://azure.microsoft.com/en-us/solutions/quantum-computing/network/
6https://aws.amazon.com/es/quantum-solutions-lab/

https://www.ibm.com/quantum-computing/ibm-q-network/
https://events.withgoogle.com/2021-quantum-summer-symposium/
https://azure.microsoft.com/en-us/solutions/quantum-computing/network/
https://aws.amazon.com/es/quantum-solutions-lab/

academia [35, 36]. Additionally, some IT company partners and the members of the
aQuantum Network7 collaborate with aQuantum to pursue progress in the adoption
of best practices in Quantum Software Engineering and Programming and the
implementation of practical quantum products and services, training, competences,
etc. aQuantum creates contributions to “quantum literacy” (especially in quantum
software) and participates in informative activities such as giving introductory
webinars on quantum computing, etc. We have also organized several international
workshops and tracks (e.g., QANSWER,8 QUATIC,9,10 QSET11,12), which seek to
bring together practitioners and researchers interested in quantum software engi-
neering, quantum software quality, quantum systems development, and related
topics. Such events play a vital role, as it is very important to know the real problems
faced by practitioners when developing a quantum software project and how
researchers can provide solutions to them. Also, aQuantum has started to provide
different services related to the development of quantum software solutions and the
QPath Platform.13 Furthermore, we participate as part of a consortium with other
companies and universities in a big project called “QHealth: Quantum pharmaco-
genomics applied to ageing”.14 This will help, for example, to map onto quantum
simulations the evolution of a patient in relation to their consumption of prescribed
drugs as well as their genetic and environmental limitations. In conducting a project
like this aimed at solving real problems, we came to understand some of the
(remaining) shortcomings of software engineering in the quantum world.

2 Quantum Software Engineering Landscape and Challenges 35

2.9 Conclusions

Quantum computing speed up solutions to algorithms that require massive parallel
computations (optimization, cryptography, machine learning, etc.) and allow us to
simulate nature more (chemistry, materials, subatomic particles) [37]. However, for
quantum computing to become a more effective reality, quantum computer science
is not enough. Much more is needed; it is essential to promote a new field of
“quantum software engineering” if all the real value of quantum applications and
algorithms are to be achieved.

7https://www.aquantum.es/partner-network/
8https://www.qanswer.site/
9https://2020.quatic.org/thematic-tracks/quality-aspects-in-quantum-computing
10https://2021.quatic.org/thematic-tracks/quality-aspects-in-quantum-computing
11https://quset.github.io/
12https://quset.github.io/qset2021/
13https://www.quantumpath.es/
14https://www.aquantum.es/rdi/qhealth/

https://www.aquantum.es/partner-network/
https://www.qanswer.site/
https://2020.quatic.org/thematic-tracks/quality-aspects-in-quantum-computing
https://2021.quatic.org/thematic-tracks/quality-aspects-in-quantum-computing
https://quset.github.io/
https://quset.github.io/qset2021/
https://www.quantumpath.es/
https://www.aquantum.es/rdi/qhealth/

36 M. Piattini and J. M. Murillo

Fig. 2.1 Quantum disciplines

So, it is necessary to go further (see Fig. 2.1) and to develop a quantum software
engineering body of knowledge and to focus efforts on software engineering
methods and techniques applied to quantum computing. And this is a task for
software engineers and researchers since several quantum computer scientists do
not know the software engineering principles and techniques, so several errors could
be done again, and some expensive “rediscoveries” could happen [38].

To achieve these aims, we recommend strengthening the relationship with aca-
demia in terms of both research and training of quantum software engineering and
programming professionals.

References

1. Feynman RP (1959) Plenty of room at the bottom. Am Phys Soc 1959:1–7. https://web.pa.msu.
edu/people/yang/RFeynman_plentySpace.pdf

https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf
https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf

2 Quantum Software Engineering Landscape and Challenges 37

2. Feynman RP (1982) Simulating physics with computers. Int J Theoretical Phys 21(6/7):
467–488

3. Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. J Statist Phys 1980:
563–591. https://doi.org/10.1007/BF01011339

4. Atiyah MF, Hitchin NJ, Drinfeld VG, Manin YI (1978) Construction of instantons. Phys Lett A
65(3):185–187. https://doi.org/10.1016/0375-9601(78)90141-X

5. Deutsch David (1985) Quantum theory, the Church–Turing principle and the universal quantum
computer. Proc R Soc Lond A40097–117. https://doi.org/10.1098/rspa.1985.0070

6. Maslov D, Nam Y, Kim J (2019) An outlook for quantum computing. Proc IEEE 107(1):5–11
7. IDB (2019) Quantum technologies. Digital transformation, social impact, and cross-sector

disruption. Interamerican Development Bank
8. Clark J, Stepney S (2002) Proposed “Grand Challenge for Computing Research” quantum

software engineering. https://www.cs.york.ac.uk/quantum/sig/021108/qsegc.pdf
9. Boehm B (2006) A view of 20th and 21st century software engineering. ICSE’06, Shanghai,

China, 20–28 May 2006. ACM
10. Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Monatshefte für Mathematik und Physik 38(1):173–198. https://doi.org/10.1007/
BF01700692

11. Church A, Turing AM (1937) On computable numbers, with an application to the
Entscheidungs problem. s2-42(1):230–265. https://doi.org/10.1112/plms/s2-42.1.230

12. Dijkstra EW (1968) Letters to the editor: Go to statement considered harmful. Commun ACM
11(3):147–148. https://doi.org/10.1145/362929.362947

13. Dijkstra EW (1972) Notes on Structured Programming. Structured programming. Academic
Press, GBR, pp 1–82

14. Warnier JD (1976) Logical construction of programs. Van Nostrand Reinhold, New York.
ISBN 0442291930

15. Jackson MA (1981) A system development method. In: Tools and notions for program
construction: an advanced course. Cambridge University Press. ISBN 9780521248013

16. Chen PPS (1976) The entity-relationship model—toward a unified view of data. ACM Trans
Database Syst. https://doi.org/10.1145/320434.320440

17. Gane C, Sarson T (1977) Structured systems analysis: tools & techniques. Comput J 23(3):255.
https://doi.org/10.1093/comjnl/23.3.255-a

18. DeMarco T (1979) Structured analysis and system specification. Prentice Hall PTR, Upper
Saddle River, NJ. ISBN 978-0-13-854380-8

19. Booch G (2018) The history of software engineering. IEEE Softw 35(5):108–114
20. Creswell J (2014) Research design: qualitative, quantitative and mixed methods approaches, 4th

edn. Sage Publications
21. Booch G, Rumbaugh J, Jacobson I (1999) The unified modeling language user guide. Addison

Wesley Longman, USA. ISBN 978-0-201-57168-4
22. Papazoglou MP, Georgakopoulos D (2003) Introduction: Service-oriented computing.

Commun ACM 46(10):24–28. https://doi.org/10.1145/944217.944233
23. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-

neering golden age. ACM SIGSOFT Softw Eng Newsl 45(3):12–14
24. Piattini M et al (2020) The Talavera manifesto for quantum software engineering and

programming. In: Proceedings of the 1st International Workshop on the QuANtum
SoftWare Engineering & pRogramming (QANSWER 2020). Talavera de la Reina, Toledo,
Spain, 11–12 February 2020. http://ceur-ws.org/Vol-2561/paper0.pdf

25. Weder B, Barzen J, Leymann F, Salm M, Vietz D (2020) The quantum software lifecycle. In:
Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Para-
digms for Engineering Quantum Software. pp 2–9

26. Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79
27. Zhao J (2020) Quantum software engineering landscapes and horizons. arXiv:2007.07047v1

https://doi.org/10.1007/BF01011339
https://doi.org/10.1016/0375-9601(78)90141-X
https://doi.org/10.1098/rspa.1985.0070
https://www.cs.york.ac.uk/quantum/sig/021108/qsegc.pdf
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/320434.320440
https://doi.org/10.1093/comjnl/23.3.255-a
https://doi.org/10.1145/944217.944233
http://ceur-ws.org/Vol-2561/paper0.pdf

38 M. Piattini and J. M. Murillo

28. Sodhi B, Kapur R (2021) Quantum computing platforms: assessing impact on quality attributes
and SDLC activities (Accepted in ICSA 2021). https://doi.org/10.13140/RG.2.2.20190.66886/1

29. Pérez-Castillo R, Serrano MA, Piattini M (2021) Software modernization to embrace quantum
technology. Adv Eng Softw 151:102933

30. OMG O (2016) Architecture-driven modernization: knowledge discovery meta-model (KDM)
https://www.omg.org/spec/KDM/1.4/About-KDM/

31. Peterssen G (2020) Quantum technology impact: the necessary workforce for developing
quantum software. In: Proceedings of the 1st International Workshop on the QuANtum
SoftWare Engineering & pRogramming, Talavera de la Reina, Spain, 11–12 February 2020
(QANSWER 2020). pp 6–22. http://ceur-ws.org/Vol-2561/paper1.pdf

32. Piattini M (2020) Training e. In: Proceedings of the 1st International Workshop on the QuANtum
SoftWare Engineering & pRogramming, Talavera de la Reina, Spain, 11–12 February 2020.
CEUR Workshop Proceedings 2561, CEUR-WS.org 2020, 23–30. http://ceur-ws.org/Vol-2561/
paper2.pdf

33. EQF (2020) Strategic research agenda. European Quantum Flagship
34. Grumbling E, Horowitz M (eds) (2019) Quantum computing: progress and prospects. The

National Academies Press, Washington, DC
35. Mikkonen T, Lassenius C, Männistö T, Oivo M, Järvinen J (2018) Continuous and collabora-

tive technology transfer: software engineering research with real-time industry impact. Inf
Softw Technol 95:34–45

36. Sannö A, Öberg AE, Flores-Garcia E, Jackson M (2019) Increasing the impact of industry–
academia collaboration through co-production. Technol Innov Manag Rev 9(4)

37. Bozzo-Rey M, Longbotton J, Müller HA (2019) Quantum computing: challenges and oppor-
tunities. Proc. CASCON 19, Toronto, Canada, November 2019. pp 393–394

38. Moguel E, Berrocal J, García-Alonso J, Murillo JM (2020) A Roadmap for Quantum Software
Engineering: applying the lessons learned from the classics. In: 1st Quantum Software Engi-
neering and TechnologyWorkshop. Q-SET’20 co-located with the IEEE QuantumWeek. IEEE
International Conference on Quantum Computing and Engineering (QCE20), 13 October 2020.
http://ceur-ws.org/Vol-2705/short1.pdf

https://doi.org/10.13140/RG.2.2.20190.66886/1
https://www.omg.org/spec/KDM/1.4/About-KDM/
http://ceur-ws.org/Vol-2561/paper1.pdf
http://ceur-ws.org
http://ceur-ws.org/Vol-2561/paper2.pdf
http://ceur-ws.org/Vol-2561/paper2.pdf
http://ceur-ws.org/Vol-2705/short1.pdf

Chapter 3
Quantum Information Technology
Governance System

Miguel Ángel Blanco and Manuel Serrano

3.1 Quantum Technology and IT Governance

Quantum computing and quantum technology use different quantum phenomena [1]
to solve various types of problems more efficiently than current technology is able to
do [2, 3]. Some of the many applications of quantum technology are sensors,
security, communications, and quantum simulation.

It is interesting to analyze the impact of these technologies in several industrial
sectors [4, 5]: finance (where they are employed to optimize the asset price portfolio
and to conduct risk analysis and fraud detection); insurance (to evaluate financial
instruments, options, and guarantees in insurance products and to measure opera-
tional risk); energy (where these technologies can optimize current networks and
suggest an appropriate use of energy); transport (where optimization is the most
tangible application in this sector); logistics (the main use of quantum technology
here is the optimization of operations related to the supply chain); automobiles and
aerospace (where the management and optimization of large fleets of cars or
autonomous planes are the main challenges); and chemist and pharmaceuticals
(in which the main application is the simulation of molecules in the discovery of
new compounds and materials, as well as to discover new materials to improve
batteries, microcircuits, or network architectures). Table 3.1 shows the relation
between these industries and their investment in different types of quantum
technologies [6].

For a company to be able to pay off the cost of an investment in quantum
technology, it is important that it be able to maximize value, minimize risk, and

M. Á. Blanco · M. Serrano (*)
Alarcos Research Group, Institute of Technologies and Information Systems, University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: Manuel.Serrano@uclm.es; miguelangel.blanco@alu.uclm.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_3&domain=pdf
mailto:Manuel.Serrano@uclm.es
mailto:miguelangel.blanco@alu.uclm.es
https://doi.org/10.1007/978-3-031-05324-5_3#DOI

optimize resources. To achieve these objectives, it is essential to “govern” the
quantum technology [6].

40 M. Á. Blanco and M. Serrano

Table 3.1 Relation between industry sector and quantum technology

Sector Computing Communication Simulation Security Sensors

Finance X X

Insurance X X

Energy X X X X X

Transport X X

Automobile X X X X X

Aerospace X X X X X

Logistics X X

Chemist X X

Pharmacist X X

Materials X X

The definition of “IT Governance” has changed and evolved over time and has
been adapted to the changing needs of companies. This evolution began with the
“classic” definition of [7] as being a “Framework for specifying decision rights and
responsibilities to promote desirable behavior in the use of Information Systems
Technology” and has since moved on to encompass the “comprehensive” definition
of [8]: “Information System Technologies Governance is the strategic alignment of
the Information System Technologies with the organization so as to achieve maxi-
mum business value through the development and maintenance of effective control
and responsibilities, performance management and risk.”

More recent definitions emphasize that IT Governance is an integral part of
corporate governance, exercised by the Board [9], and that its importance lies in
directing and controlling IT [10]. As the Information Systems Audit and Control
Association (ISACA) highlights: “Enterprise Governance of IT is concerned with
value delivery from digital transformation and the mitigation of business risk that
results from digital transformation” [11]. For this reason, it is very important to
provide a Quantum Information Technology Governance Framework that can be
used to design and implement the appropriate Quantum Information Technology
Governance System.

The rest of this chapter sets forth our proposals for the development of a Quantum
Information Technology Governance System which uses the COBIT 2019 [11] as its
Information Technology Governance Framework and then proceeds to detail its
limitations. This is followed by our conclusions from the work undertaken and
suggestions for the next steps in our research.

ISACA has recently released COBIT 2019, which consists of:

3 Quantum Information Technology Governance System 41

3.2 Quantum Information Technology Governance System
Design

• The COBIT 2019 Framework: Introduction and Methodology [11]
• The COBIT 2019 Framework: Governance and Management Objectives [12]
• The COBIT 2019 Design Guide: Designing an Information and Technology

Governance Solution [13]
• The COBIT 2019 Implementation Guide: Implementing and Optimizing an

Information and Technology Governance Solution [14]

The main objective of COBIT 2019 is to design an Information Technology
Governance System that will best fit a company’s strategy and will allow the
delivery of value to be maximized, risks to be minimized, and resources to be
optimized. To achieve this objective, COBIT 2019 includes the COBIT Core
Model, which contains a set of Governance and Management Objectives, and
considers different design factors and focus areas that should be used to build a
best-fit IT Governance System. We have built a Quantum Information Technology
Governance System (QITGS) by applying the methodology proposed by COBIT
2019 [13].

3.2.1 Step 1: Understand the Enterprise Context and Strategy

The objective of this step is to define the environment of the given company: its
Enterprise Strategy, Enterprise Goals, Risk Category, and all issues related to
Information Technology.

3.2.1.1 Enterprise Strategy

The strategy of companies that decide to invest in Quantum IT (QIT) is nowadays
focused on “innovation or differentiation,” since they are now beginning to invest in
and create strategic lines [15], with only slight differences depending on their
sector [6].

3.2.1.2 Enterprise Goals

When designing a QITGS, the most important enterprise goals to be chosen are those
that are aligned with the company strategy, and, following COBIT 2019 [13], those
primary enterprise goals are “EG01.—Portfolio of competitive products and ser-
vices” and “EG13.—Product and business innovation.” This is because, with an

“innovation and grow” strategy, it is extremely important for the product and
business innovation portfolio to be very clear and competitive. A secondary objec-
tive could, meanwhile, be “EG12.—Managed digital transformation program.”

3.2.1.3 Risk Category

Another important key element to the design of a QITGS as proposed by COBIT
2019 is that of understanding the company’s risk profile. COBIT 2019 defines
different risk categories and identifies several examples of risks for each category
that can be used to identify the priority of the risk categories. When designing a
QITGS, the most important risk categories (with their corresponding COBIT 2019
identification shown between parentheses) are:

42 M. Á. Blanco and M. Serrano

• QIT investment decision-making, portfolio definition, and maintenance
(RISKCAT01). When investing in quantum technology, the selection of the
infrastructure implies certain risks, because it is not a mature technology and
there is a wide variety of types [16].

• QIT cost and oversight (RISKCAT03). QIT is currently very expensive, and it is
necessary to invest to build a sustainable quantum industry [15]. Many public
organizations from different countries are, therefore, investing large amounts of
money in QIT [17].

• QIT expertise, skills, and behavior (RISKCAT04). In [18], the problem related to
the lack of a quantum workforce is examined, while [19] highlights the lack of
quantum technology in computer science curricula. A serious mismatch related to
the skills required within Quantum IT could, therefore, appear.

• Quantum software adoption/usage problems (RISKCAT08). The application of
QIT to new use cases can generate new problems as regards the use of quantum
software. To solve these problems, it is necessary to confront new challenges in
quantum software development, such as the creation of new quantum algorithms
or the integration of quantum computing into current computing [15].

• Quantum software failures (RISKCAT10). To implement QIT in industrial and
business sectors, it is necessary to resolve the impact of noise or decoherence that
can provoke errors in quantum computation [20]. The computers that currently
solve the noise problem are “noisy intermediate-scale quantum (NISQ)” com-
puters [21, 22] and will probably have a high commercial value [23].

• Third-party/supplier incidents (RISKCAT12). Not all quantum technology ven-
dors currently provide adequate support and services, although third-party com-
panies that do provide quantum services are on the rise [17].

3.2.1.4 Quantum Information Technology: Related Issues

The immaturity of quantum information technology (QIT) has led to several issues:

3 Quantum Information Technology Governance System 43

• Significant quantum QIT-related incidents, such as data loss, security breaches,
project failure, application errors, etc. (TRI01)

• QIT outsourcers having problems delivering the service. (TRI02)
• Reluctance by board members, executives, or senior management to engage with

QIT or a lack of committed business sponsors. (TRI03)
• A complex QIT operating model and/or unclear decision mechanisms for

QIT-related decisions. (TRI04)
• The excessively high cost of QIT. (TRI05)
• The gap between business and technical knowledge, which leads business users

and QIT and/or technology specialists to speak different languages. (TRI06)
• The inability to exploit new technologies or to innovate using QIT. (TRI07)

3.2.2 Step 2: Determine the Initial Scope of the QITGS

This step translates the different pieces of information collected in the previous step
into a set of prioritized governance components [13], i.e., the QITGS’s Initial Scope.

The first Governance and Management Objectives to be chosen are those that,
according to COBIT 2019 [13], cover the particular enterprise strategy identified in
the Enterprise Strategy section, which are “APO02.—Managed Strategy,”
“APO04.—Managed Innovation,” “APO05.—Managed Portfolio,” “BAI08.—
Managed Knowledge,” and “BAI11.—Managed Projects.”

The selected enterprise goals are then mapped onto the corresponding “alignment
goals” (AG). Table 3.2 shows the AGs selected for the QITGS that have a primary
(P) or secondary (S) importance.

COBIT 2019 also relates the alignment goals to a list of Governance and
Management Objectives, as shown in Table 3.3.

The risk appetite defined in the Risk Category section also must be mapped onto
priorities for Governance and Management Objectives. In the case of COBIT 2019
[13], the risk mitigation is implemented as Governance and Management Objectives
that need to be achieved. Their relations are shown in Table 3.4.

Moreover, the diagnosis of quantum information technology-related issues influ-
ences the Governance and each Management Objective, as defined in Table 3.5.

3.2.3 Step 3: Refine the Scope of the QITGS

In this step, the Initial Scope is refined based on the assessment of the remaining
design factors [13].

S P

P S

P S S

P P S

P P S

P S P

44 M. Á. Blanco and M. Serrano

Table 3.2 Mapping of the Governance and Management Objectives onto the Alignment
Objectives

EG01.—
Portfolio of
competitive
products and
services

EG12.—
Managed digital
transformation
programs

EG13.—
Product and
business
innovation

AG03.—Realized benefits from I&T-
enabled investments and services
portfolio

AG05.—Delivery of I&T services in
line with business requirements

AG06.—Agility to turn business
requirements into operational solutions

AG08.—Enabling and supporting
business processes by integrating
applications and technology

AG09.—Delivering programs on time
and on budget and meeting require-
ments and quality standards

AG13.—Knowledge, expertise, and
initiatives for business innovation

3.2.3.1 Threat Landscape

Companies that need to invest in QIT currently find themselves in a highly compet-
itive environment, which is the main reason why the level of the threat landscape in
which they operate could be considered as “high.” In the context of COBIT 2019, the
important Governance and Management Objectives which should be implemented
by companies that operate in this high level are shown in Column 1 of Table 3.6.

3.2.3.2 Compliance Requirements

COBIT 2019 [13] defines three levels of compliance requirements: “low,” “normal,”
and “high.” According to [6], the companies that decide to invest in QIT mostly
belong to the industrial sectors of finance, insurance, energy, transport, automobile,
aerospace, logistics, pharmaceuticals, and materials. Companies in these sectors
compete in markets with a high level of regulation, with the result that the level of
compliance requirements of companies interested in the design of a QITGS could be
considered as “high.”

In the case of COBIT 2019, Column 2 in Table 3.6 (above) shows the list of
Governance and Management Objectives that should be considered if companies
have “high” compliance requirements.

S

P S S S

S S P P

S P P S P

S P P S P

P S

S P

S P S

S S

P S

3 Quantum Information Technology Governance System 45

Table 3.3 Mapping of the Governance and Management Objectives onto the Alignment
Objectives

AG03 AG05 AG06 AG08 AG09 AG13

EDM01.—Ensured Governance Frame-
work Setting and Maintenance

P

EDM02.—Ensured Benefits Delivery P S S S S

EDM04.—Ensured Resource Optimization S S S S P

APO01.—Managed I&T Management
Framework

APO02.—Managed Strategy S S S P S

APO03.—Managed Enterprise
Architecture

APO04.—Managed Innovation S P S P

APO05.—Managed Portfolio P P S S S

APO06.—Managed Budget and Costs S P

APO07.—Managed Human Resources S S S P

APO08.—Managed Relationships S P P S S P

APO09.—Managed Service Agreements P S

APO10.—Managed Vendors P S S

APO11.—Managed Quality S S P

APO14.—Managed Data P

BAI01.—Managed Programs P S S P

BAI02.—Managed Requirements
Definition

BAI03.—Managed Solutions Identification
and Build

BAI04.—Managed Availability and
Capacity

BAI05.—Managed Organizational Change P S S P P

BAI06.—Managed IT Changes S P S

BAI07.—Managed IT Change Acceptance
and Transitioning

BAI08.—Managed Knowledge S S S S P

BAI10.—Managed Configuration S

BAI11.—Managed Projects P S P P

DSS01.—Managed Operations P S

DSS02.—Managed Service Requests and
Incident

P

DSS03.—Managed Problems P

DSS04.—Managed Continuity P

DSS05.—Managed Security Services S

DSS06.—Managed Business Process
Controls

MEA01.—Managed Performance and
Conformance Monitoring

MEA02.—Managed System of Internal
Control

MEA04.—Managed Assurance S

X
X

X
X

46 M. Á. Blanco and M. Serrano

T
ab

le
3.
4

M
ap
pi
ng

of
th
e
G
ov

er
na
nc
e
an
d
M
an
ag
em

en
t
O
bj
ec
tiv

es
on

to
th
e
ri
sk

ca
te
go

ri
es

R
IS
K
C
A
T
01

R
IS
K
C
A
T
03

R
IS
K
C
A
T
04

R
IS
K
C
A
T
08

R
IS
K
C
A
T
10

R
IS
K
C
A
T
12

E
D
M
01

.—
E
ns
ur
ed

G
ov

er
na
nc
e
F
ra
m
ew

or
k
S
et
tin

g
an
d

M
ai
nt
en
an
ce

E
D
M
02

.—
E
ns
ur
ed

B
en
efi
ts
D
el
iv
er
y

X

E
D
M
04

.—
E
ns
ur
ed

R
es
ou

rc
e
O
pt
im

iz
at
io
n

X
X

X

E
D
M
05

.—
E
ns
ur
ed

S
ta
ke
ho

ld
er

E
ng

ag
em

en
t

X
X

A
P
O
01

.—
M
an
ag
ed

I&
T
M
an
ag
em

en
t
F
ra
m
ew

or
k

X

A
P
O
05

.—
M
an
ag
ed

P
or
tf
ol
io

X

A
P
O
06

.—
M
an
ag
ed

B
ud

ge
ta
nd

C
os
ts

X

A
P
O
07

.—
M
an
ag
ed

H
um

an
R
es
ou

rc
es

X
X

A
P
O
08

.—
M
an
ag
ed

R
el
at
io
ns
hi
ps

X

A
P
O
09

.—
M
an
ag
ed

S
er
vi
ce

A
gr
ee
m
en
ts

X
X

A
P
O
10

.—
M
an
ag
ed

V
en
do

rs
X

X

A
P
O
11

.—
M
an
ag
ed

Q
ua
lit
y

X

B
A
I0
1.
—

M
an
ag
ed

P
ro
gr
am

s
X

B
A
I0
2.
—

M
an
ag
ed

R
eq
ui
re
m
en
ts
D
efi
ni
tio

n
X

B
A
I0
3.
—

M
an
ag
ed

S
ol
ut
io
ns

Id
en
tifi

ca
tio

n
an
d
B
ui
ld

X

B
A
I0
5.
—

M
an
ag
ed

O
rg
an
iz
at
io
na
l
C
ha
ng

e
X

B
A
I0
7.
—

M
an
ag
ed

IT
C
ha
ng

e
A
cc
ep
ta
nc
e
an
d
T
ra
ns
iti
on

in
g

X

B
A
I0
8.
—

M
an
ag
ed

K
no

w
le
dg

e
X

X

D
S
S
02

.—
M
an
ag
ed

S
er
vi
ce

R
eq
ue
st
s
an
d
In
ci
de
nt
s

X

D
S
S
03

.—
M
an
ag
ed

P
ro
bl
em

s

X X

X X

3 Quantum Information Technology Governance System 47

Table 3.5 Mapping of the Governance and Management Objectives onto the technology-related
issues

TRI01 TRI02 TRI03 TRI04 TRI05 TRI06 TRI07

EDM01.—Ensured Gover-
nance Framework Setting and
Maintenance

X X

EDM02.—Ensured Benefits
Delivery

X

EDM04.—Ensured Resource
Optimization

X

EDM05.—Ensured Stake-
holder Engagement

X

APO01.—Managed I&T Man-
agement Framework

X

APO04.—Managed Innovation X

APO06.—Managed Budget
and Costs

X

APO07.—Managed Human
Resources

X

APO08.—Managed
Relationships

APO09.—Managed Service
Agreements

X

APO10.—Managed Vendors X

APO11.—Managed Quality X

APO13.—Managed Security X

APO14.—Managed Data X

BAI04.—Managed Availability
and Capacity

X

BAI08.—Managed Knowledge X

DSS02.—Managed Service
Requests and Incidents

DSS03.—Managed Problems X X

DSS04.—Managed Continuity X

DSS05.—Managed Security
Services

X

MEA04.—Managed Assurance X

3.2.3.3 Role of Technology

The role played by QIT is one of “turnaround” because its role is that of a driver for
the innovation of business processes and services [13]. The most important Gover-
nance and Management Objectives to consider during the design of the QITGS are
shown in Column 3 of Table 3.6.

X

X
X

X

48 M. Á. Blanco and M. Serrano

T
ab

le
3.
6

G
ov

er
na
nc
e
an
d
M
an
ag
em

en
t
O
bj
ec
tiv

es
se
le
ct
ed

fo
r
ea
ch

de
si
gn

fa
ct
or

T
hr
ea
t

la
nd

sc
ap
e

C
om

pl
ia
nc
e

re
qu

ir
em

en
ts

R
ol
e
of

te
ch
no

lo
gy

S
ou

rc
in
g

m
od

el
fo
r

te
ch
no

lo
gy

T
ec
hn

ol
og

y
im

pl
em

en
ta
tio

n
m
et
ho

ds

T
ec
hn

ol
og

y
ad
op

tio
n

st
ra
te
gy

E
D
M
01

.—
E
ns
ur
ed

G
ov

er
na
nc
e
F
ra
m
ew

or
k

S
et
tin

g
an
d
M
ai
nt
en
an
ce

X
X

E
D
M
02

.—
E
ns
ur
ed

B
en
efi
ts
D
el
iv
er
y

X

E
D
M
03

.—
E
ns
ur
ed

R
is
k
O
pt
im

iz
at
io
n

X
X

E
D
M
04

.—
E
ns
ur
ed

R
es
ou

rc
e
O
pt
im

iz
at
io
n

E
D
M
05

.—
E
ns
ur
ed

S
ta
ke
ho

ld
er

E
ng

ag
em

en
t

A
P
O
01

.—
M
an
ag
ed

I&
T
M
an
ag
em

en
t
F
ra
m
ew

or
k

X

A
P
O
02

.—
M
an
ag
ed

S
tr
at
eg
y

X
X

A
P
O
03

.—
M
an
ag
ed

E
nt
er
pr
is
e
A
rc
hi
te
ct
ur
e

X

A
P
O
04

.—
M
an
ag
ed

In
no

va
tio

n
X

X

A
P
O
05

.—
M
an
ag
ed

P
or
tf
ol
io

X

A
P
O
06

.—
M
an
ag
ed

B
ud

ge
ta
nd

C
os
ts

A
P
O
07

.—
M
an
ag
ed

H
um

an
R
es
ou

rc
es

A
P
O
08

.—
M
an
ag
ed

R
el
at
io
ns
hi
ps

X

A
P
O
09

.—
M
an
ag
ed

S
er
vi
ce

A
gr
ee
m
en
ts

X

A
P
O
10

.—
M
an
ag
ed

V
en
do

rs
X

X

A
P
O
11

.—
M
an
ag
ed

Q
ua
lit
y

A
P
O
12

.—
M
an
ag
ed

R
is
k

X
X

A
P
O
13

.—
M
an
ag
ed

S
ec
ur
ity

X

A
P
O
14

.—
M
an
ag
ed

D
at
a

X

B
A
I0
1.
—

M
an
ag
ed

P
ro
gr
am

s
X

B
A
I0
2.
—

M
an
ag
ed

R
eq
ui
re
m
en
ts
D
efi
ni
tio

n
X

X
X

B
A
I0
3.
—

M
an
ag
ed

S
ol
ut
io
ns

Id
en
tifi

ca
tio

n
an
d

B
ui
ld

B
A
I0
4.
—

M
an
ag
ed

A
va
ila
bi
lit
y
an
d
C
ap
ac
ity

B
A
I0
5.
—

M
an
ag
ed

O
rg
an
iz
at
io
na
l
C
ha
ng

e
X

B
A
I0
6.
—

M
an
ag
ed

IT
C
ha
ng

es
X

X

B
A
I0
7.
—

M
an
ag
ed

IT
C
ha
ng

e
A
cc
ep
ta
nc
e
an
d

T
ra
ns
iti
on

in
g

X

B
A
I0
8.
—

M
an
ag
ed

K
no

w
le
dg

e

B
A
I0
9.
—

M
an
ag
ed

A
ss
et
s

B
A
I1
0.
—

M
an
ag
ed

C
on

fi
gu

ra
tio

n
X

B
A
I1
1.
—

M
an
ag
ed

P
ro
je
ct
s

X

D
S
S
01

.—
M
an
ag
ed

O
pe
ra
tio

ns
X

X
X

D
S
S
02

.—
M
an
ag
ed

S
er
vi
ce

R
eq
ue
st
s
an
d
In
ci
de
nt
s

D
S
S
03

.—
M
an
ag
ed

P
ro
bl
em

s
X

X

D
S
S
04

.—
M
an
ag
ed

C
on

tin
ui
ty

X
X

D
S
S
05

.—
M
an
ag
ed

S
ec
ur
ity

S
er
vi
ce
s

D
S
S
06

.—
M
an
ag
ed

B
us
in
es
s
P
ro
ce
ss

C
on

tr
ol
s

X

M
E
A
01

.—
M
an
ag
ed

P
er
fo
rm

an
ce

an
d
C
on

fo
rm

an
ce

M
on

ito
ri
ng

M
E
A
02

.—
M
an
ag
ed

S
ys
te
m

of
In
te
rn
al
C
on

tr
ol

X

M
E
A
03

.—
M
an
ag
ed

C
om

pl
ia
nc
e
w
ith

E
xt
er
na
l

R
eq
ui
re
m
en
ts

X

M
E
A
04

.—
M
an
ag
ed

A
ss
ur
an
ce

X

3 Quantum Information Technology Governance System 49

50 M. Á. Blanco and M. Serrano

3.2.3.4 Sourcing Model for Technology

The best source model to choose is the “cloud,” the main reason being that QIT is
currently very expensive to acquire and maintain, and it is generally provided by
suppliers. Column 4 of Table 3.6 shows the most important Governance and
Management Objectives to select from COBIT 2019 [13] when using a “cloud”
sourcing model.

3.2.3.5 Technology Implementation Methods

Companies that decide to invest in QIT will have to integrate it with classic
technology, because certain business processes are still supported by classic tech-
nology, with the result that these companies have to ensure that both technologies
can coexist. In this respect, the best option to choose is a “Hybrid” method, such as
that proposed by [24]. The Governance and Management Objectives are listed in
Column 5 of Table 3.6.

3.2.3.6 Technology Adoption Strategy

Another important decision to consider is the appropriate technology adoption
strategy. Currently, any company that decides to invest in QIT will have a “first
mover” strategy, because the technology on the market is, at present, very immature,
and they should consequently implement the Governance and Management Objec-
tives listed in Column 6 of Table 3.6.

3.2.4 Step 4: Conclude the QITGS

The objective of this step is to specify the elements in the QITGS, considering the
various decisions already made in the previous steps. This step is carried out using
the Excel sheet provided by COBIT 2019 [13].

Figure 3.1 shows the Governance and Management Objectives that correspond to
the Enterprise Strategy (Fig. 3.1, upper left), the Enterprise Goals (Fig. 3.1, upper
right), the Technology Risk Profile (Fig. 3.1, lower left), and the Technology-
Related Issues (Fig. 3.1, lower right).

An analysis of the impact and likelihood of each risk scenario category for the
QITGS is shown in Fig. 3.2.

The initial priorities for Governance and Management Objectives in the QITGS
are shown in Fig. 3.3.

3 Quantum Information Technology Governance System 51

Fig. 3.1 Influence of the design factors on Governance and Management Objectives

3.2.4.1 Refine the Scope of the Governance System

A summary of the value of each design factor and the figure showing the graphical
representation of its influence on the different Governance and Management
Objectives is shown in Table 3.7.

3.3 Quantum Information Technology Governance System

The final QITGS, considering all the design factors that use COBIT 2019 as a
proposal to design the IT Governance System, is shown in Fig. 3.6.

52 M. Á. Blanco and M. Serrano

Fig. 3.2 Risk categories for a QITGS

In order to design the QITGS, it is necessary to select the Governance and
Management Objectives that achieve at least a minimum number of points. In this
case, we consider those that have a score equal to or greater than 65. With this
criterion, the Governance and Management Objectives selected are “APO03.—
Managed Enterprise Architecture,” “APO05.—Managed Portfolio,” “APO07.—
Managed Human Resources,” “APO09.—Managed Service Agreements,”
“APO10.—Managed Vendors,” “BAI03.—Managed Solutions Identification and
Build,” “BAI05.—Managed Organizational Change,” and “BAI08.—Managed
Knowledge.”

3.4 Limitations

Some characteristics of Quantum IT are not covered by COBIT 2019, and so it will
be necessary to develop them for the design of the QITGS. The following two issues
can be highlighted: the development of new enterprise or technical architectures that
affect only the new design factors for quantum information technology and the
impact of the coexistence of “classic” technology with quantum information

3 Quantum Information Technology Governance System 53

Fig. 3.3 Initial design of QITGS

54 M. Á. Blanco and M. Serrano

Fig. 3.4 Influence of the design factors on Governance and Management Objectives

Table 3.7 Summary of the value of each design factor and the figure that shows the graphic
representation of the influence on the different Governance and Management Objectives

Design factor Value Figure

Threat landscape High Fig. 3.4 (upper left)

Compliance requirements High Fig. 3.4 (upper right)

Role of technology Turnaround Fig. 3.4 (lower left)

Sourcing model for technology Cloud Fig. 3.4 (lower light)

Technology implementation methods Hybrid Fig. 3.5 (left)

Technology adoption strategy First mover Fig. 3.5 (right)

technology. There are many COBIT 2019 design factors that do not apply to
quantum information technology and apply only to “classical” technology. These
design factors are shown in Table 3.8.

3 Quantum Information Technology Governance System 55

Fig. 3.5 Influence of the design factors on Governance and Management Objectives

COBIT 2019 contains other elements, which are “processes,” “organizational
structures,” “policies and procedures,” “information items,” “culture and behavior,”
“skills and competencies,” and “services, infrastructure, and applications” and which
could be used to implement in companies the Governance and Management Objec-
tives identified in the QITGS. The adaptation of these elements for the implemen-
tation of QITGS has not been analyzed in this chapter.

3.5 Conclusions

Quantum technology can solve several problems more efficiently than “classic”
technology. It is highly recommended that any company that decides to implement
quantum technology should first design a Quantum Information Technology Gov-
ernance System (QITGS) that will allow them to manage quantum technology
investments, thus enabling them to achieve strategic goals, minimize risks, and
optimize resources. A good starting point for the design of a QITGS is to use
COBIT 2019. While designing the QITGS, we identified certain issues related to
the use of COBIT 2019, and, although we consider it to be a good starting point from
which to design a QITGS, it should be borne in mind that it is necessary to have a
Quantum Governance Framework that covers all the characteristics and specifica-
tions of the current quantum industry, both as it stands at present and as it evolves in
the future.

56 M. Á. Blanco and M. Serrano

Fig. 3.6 Quantum Information Technology Governance System

3 Quantum Information Technology Governance System 57

Table 3.8 COBIT 2019 design factors that are not used to design the QITGS

Design factor Classification

Enterprise strategy design
factor

- Growth or acquisition
- Cost leadership
- Client service/stability

Enterprise goals design factor - EG02.—Managed business risk
- EG03.—Compliance with external laws and regulations
- EG04.—Quality of financial information
- EG05.—Customer-oriented service culture
- EG06.—Business service continuity and availability
- EG07.—Quality of management information
- EG08.—Optimization of internal business process function-
ality
- EG09.—Optimization of business process costs
- EG10.—Staff skills, motivation, and productivity
- EG11.—Compliance with internal policies

Risk profile design factor - Program and projects life cycle management
- Enterprise/IT architecture
- IT operational infrastructure incidents
- Unauthorized actions
- Hardware incidents
- Logical attacks (hacking, malware, etc.)
- Noncompliance
- Geopolitical issues
- Industrial action
- Acts of nature
- Technology-based innovation
- Environmental
- Data and information management

Quantum information
technology-related issues

- Frustration between different IT entities across the organiza-
tion because of a perception of low contribution to business
value
- Frustration between business departments (i.e., the IT cus-
tomer) and the IT department because of failed initiatives or a
perception of low contribution to business value
- Failures to meet IT-related regulatory or contractual require-
ments
- Regular audit findings or other assessment reports about poor
IT performance or reported IT quality or service problems
- Substantial hidden and rogue IT spending, that is, I&T
spending by user departments outside the control of the normal
I&T investment decision mechanisms and approved budgets
- Duplications or overlaps between various initiatives or other
forms of wasted resources
- Insufficient IT resources, staff with inadequate skills, or staff
burnout/dissatisfaction
- IT-enabled changes or projects frequently failing to meet
business needs and delivered late or over budget
- Obstructed or failed implementation of new initiatives or
innovations caused by the current IT architecture and systems
- Regular issues with data quality and integration of data across

(continued)

58 M. Á. Blanco and M. Serrano

Table 3.8 (continued)

Design factor Classification

various sources
- High level of end-user computing, creating (among other
problems) a lack of oversight and quality control over the
applications that are being developed and put into operation
- Business departments implementing their own information
solutions with little or no involvement of the enterprise IT
department (related to end-user computing, which often stems
from dissatisfaction with IT solutions and services)
- Ignorance of and/or noncompliance with privacy regulations

Threat landscape - Normal

compliance requirements - Normal
- Low

Role of technology - Support
- Factory
- Strategic

Sourcing model for technology - Outsourcing
- Insourced

Technology adoption strategy - Follower
- Slow adopter

References

1. Mykhailova M, Svore KM (2020) Teaching quantum computing through a practical software-
driven approach. In: 51st ACM Technical Symposium on Computer Science Education
(SIGCSE’20). ACM, Portland, OR, pp 1019–1025

2. Humble TS, DeBenedictis EP (2019) Quantum realism. IEEE Computer 52(6)
3. MIT Technology Review. https://www.technologyreview.com/s/610250/serious-quantum-

computers-are-finally-here-what-are-we-going-to-do-with-them/. Accessed 14 Jun 2020
4. Efe A (2020) Anticipating the disruptive and incremental innovations brought by quantum

computing. ISACA J 1:26–32
5. Boston Consulting Group. https://www.bcg.com/publications/2019/quantum-computers-cre

ate-value-when.aspx. Accessed 14 Jun 2020
6. Blanco MÁ, Piattini M (2020) Adapting COBIT for quantum computing governance. In:

Shepperd M, e Abreu FB, da Silva AR, Pérez-Castillo R (eds) Quality of information and
communications technology. Springer International Publishing, pp 274–283. https://doi.org/10.
1007/978-3-030-58793-2_22

7. Weill P, Ross JW (2004) IT Governance: how top performers manage IT decision rights for
superior results. Harvard Business Press

8. Webb P, Pollard C, Ridley G (2006) Attempting to define IT Governance: wisdom or folly?
Proceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06), 8, p 194a https://doi.org/10.1109/HICSS.2006.68

9. De Haes S, Van Grembergen W (2015) Enterprise Governance of IT. In: De Haes S, Van
Grembergen W (eds) Enterprise Governance of Information Technology: achieving alignment
and value, featuring COBIT 5. Springer International Publishing, pp 11–43. https://doi.org/10.
1007/978-3-319-14547-1_2

10. ISO/IEC (2015) ISO/IEC 38500:2015. Information technology—Governance of IT for the
organization

https://www.technologyreview.com/s/610250/serious-quantum-computers-are-finally-here-what-are-we-going-to-do-with-them/
https://www.technologyreview.com/s/610250/serious-quantum-computers-are-finally-here-what-are-we-going-to-do-with-them/
https://www.bcg.com/publications/2019/quantum-computers-create-value-when.aspx
https://www.bcg.com/publications/2019/quantum-computers-create-value-when.aspx
https://doi.org/10.1007/978-3-030-58793-2_22
https://doi.org/10.1007/978-3-030-58793-2_22
https://doi.org/10.1109/HICSS.2006.68
https://doi.org/10.1007/978-3-319-14547-1_2
https://doi.org/10.1007/978-3-319-14547-1_2

3 Quantum Information Technology Governance System 59

11. ISACA (2018) COBIT® 2019 framework: introduction and methodology. ISACA
12. ISACA (2018) COBIT® 2019 framework: Governance and Management Objectives. ISACA
13. ISACA (2018) COBIT® 2019 design guide: designing an Information and Technology Gov-

ernance solution. ISACA
14. ISACA (2018) COBIT® 2019 implementation guide: implementing and optimizing an Infor-

mation and Technology Governance solution. ISACA
15. European Quantum Flagship (2020) Strategic research agenda. European Quantum Flagship
16. Gerbert P, Ruess F (2018) The next decade in quantum computing—and how to play. BCG

Global. https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play
17. Wachsman MW (2020) The CIO’s guide to quantum computing. ZDNet
18. Peterssen Nodarse G (2020) Quantum technology impact: the necessary workforce for devel-

oping quantum software (ws.org/Vol)
19. Piattini M (2020) Training needs in quantum computing. QANSWER
20. Gill SS, Kumar A, Singh H, Singh M, Kaur K, UsmanM, Buyya R (2020) Quantum computing:

a taxonomy, Systematic Review and Future Directions
21. National Academies of Sciences E (2018) Quantum computing: progress and prospects. https://

doi.org/10.17226/25196
22. Preskill J (2018) Quantum Computing in the NISQ era and beyond. Quantum 2:79. https://doi.

org/10.22331/q-2018-08-06-79
23. Stewart D (2018) Quantum computers: the next supercomputers, but not the next laptops.

https://www2.deloitte.com/uk/en/insights/industry/technology/technology-media-and-telecom-
predictions/quantum-computing-supremacy.html

24. Pérez-Castillo R, Serrano MA, Piattini M (2021) Software modernization to embrace quantum
technology. Adv Eng Softw 151:102933. https://doi.org/10.1016/j.advengsoft.2020.102933

https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play
http://ws.org/Vol
https://doi.org/10.17226/25196
https://doi.org/10.17226/25196
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www2.deloitte.com/uk/en/insights/industry/technology/technology-media-and-telecom-predictions/quantum-computing-supremacy.html
https://www2.deloitte.com/uk/en/insights/industry/technology/technology-media-and-telecom-predictions/quantum-computing-supremacy.html
https://doi.org/10.1016/j.advengsoft.2020.102933

Chapter 4
Quantum Software Development Lifecycle

Benjamin Weder, Johanna Barzen, Frank Leymann, and Daniel Vietz

4.1 Introduction

Quantum computing promises to solve many problems more efficiently or precisely
than possible with classical computers, e.g., simulating complex physical systems or
applying machine learning techniques [1–3]. With recent advances in developing
more powerful quantum computers, also the development of corresponding quantum
software and applications and their integration into existing software architectures
are becoming increasingly important [4, 5]. However, the development of such
quantum applications is complex and requires the knowledge of experts from
various fields, e.g., physics, mathematics, and computer science [6–8].

Quantum software engineering is an emerging research area investigating con-
cepts, principles, and guidelines to develop, maintain, and evolve quantum applica-
tions [5, 9, 10]. Thereby, it has the goal to increase the quality and reusability of the
resulting quantum applications by systematically applying software engineering
principles during all development phases from the initial requirement analysis to
the retirement of the software [8, 11]. In classical software engineering, software
development lifecycles are often used to document the different development phases
a software artifact or application goes through [12, 13]. Furthermore, such software
development lifecycles also summarize best practices and methods that can be
applied in the various phases, as well as corresponding tools [8, 10]. Hence, they
can be used for educating new developers by providing an overview of the devel-
opment process or serve as a basis for the cooperation of experts from different
fields [14].

B. Weder (*) · J. Barzen · F. Leymann · D. Vietz
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany
e-mail: benjamin.weder@iaas.uni-stuttgart.de; johanna.barzen@iaas.uni-stuttgart.de;
frank.leymann@iaas.uni-stuttgart.de; daniel.vietz@iaas.uni-stuttgart.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_4&domain=pdf
mailto:benjamin.weder@iaas.uni-stuttgart.de
mailto:johanna.barzen@iaas.uni-stuttgart.de
mailto:frank.leymann@iaas.uni-stuttgart.de
mailto:daniel.vietz@iaas.uni-stuttgart.de
https://doi.org/10.1007/978-3-031-05324-5_4#DOI

62 B. Weder et al.

Today’s quantum applications are most often hybrid, consisting of quantum and
classical programs [15, 16]. Thus, the lifecycle for quantum applications involves
the development and operation of both kinds of programs. However, existing
lifecycles from classical software engineering [12, 17], as well as quantum software
lifecycles [6, 8], only target one of these kinds and do not address the resulting
integration challenges. Furthermore, the execution of the quantum and classical
programs must be orchestrated, and data has to be passed between them
[18]. Workflow technology is a means for these orchestrations providing benefits,
such as scalability, reliability, and robustness [19, 20]. Therefore, also the workflow
lifecycle must be integrated into the overall lifecycle for developing quantum
applications.

To address this, we introduce a quantum software development lifecycle describ-
ing the different relevant phases when developing and operating quantum applica-
tions. Thereby, we analyze the purpose of each phase, as well as available concepts
and tools. Furthermore, we discuss the different software artifacts usually constitut-
ing a quantum application and present their corresponding lifecycles. Finally, we
identify the plug points between the various lifecycles to enable their integration into
our overall lifecycle for the development of hybrid quantum applications.

The remainder of this chapter is structured as follows: Sect. 4.2 introduces
fundamentals about hybrid quantum applications. In Sect. 4.3, we present our
quantum software development lifecycle, as well as the lifecycles of the different
software artifacts constituting a hybrid quantum application. Afterward, Sect. 4.4
describes assumptions and possible limitations of the introduced lifecycle. Finally,
Sect. 4.5 discusses related work, and a conclusion and outlook are given in Sect. 4.6.

4.2 Hybrid Quantum Applications

Nowadays, quantum applications are, in most cases, hybrid, i.e., they consist of
quantum algorithm implementations (QAIs) and classical programs, as depicted in
Fig. 4.1 [15, 21, 22]. Thereby, the hybrid quantum application may comprise
multiple QAIs, e.g., first performing clustering and then training a classifier based
on the clustering results [1]. Furthermore, classical programs might be used to load
data, transform it into another format, or visualize it for the user [21, 23].

But even a single QAI is often hybrid, comprising quantum programs and
classical programs [15, 24]. The general structure of a gate-based QAI, i.e., quantum
programs are realized as quantum circuits, is shown at the bottom of Fig. 4.1
[15, 22]. Thereby, the pre-processing tasks are implemented by classical programs
and executed on classical computers. Pre-processing, e.g., includes generating state
preparation circuits based on input data to initialize the register of the quantum
computer when executing the quantum programs [25, 26]. The quantum programs
are executed on a quantum computer, first preparing the required state in the register
depending on the generated state preparation circuit [7, 15]. Afterward, the unitary
transformation specified by the proper quantum algorithm is performed, and finally,

4 Quantum Software Development Lifecycle 63

Q
ua

nt
um

 A
lg

or
ith

m
 Im

pl
em

en
ta

�o
n

(Q
AI

)

Cl
as

si
ca

l
Pr

og
ra

m
s

U
ni

ta
ry

Tr
an

sf
or

m
a�

on
M

ea
su

re
m

en
t

St
at

e
Pr

ep
ar

a�
on

Q
ua

nt
um

 C
om

pu
te

r

Po
st

-
Pr

oc
es

si
ng

Pr
e-

Pr
oc

es
si

ng

Cl
as

si
ca

l C
om

pu
te

r

(S
ub

-)W
or

kfl
ow

M

od
el …

Q
ua

nt
um

Pr
og

ra
m

s

Cl
as

si
ca

l
Pr

og
ra

m
s

W
or

kfl
ow

M

od
el

…

F
ig
.4

.1
G
en
er
al
st
ru
ct
ur
e
of

a
hy

br
id

qu
an
tu
m

ap
pl
ic
at
io
n

the result is measured. Post-processing, e.g., on a classical computer, interprets the
measurement results or mitigates readout errors in the result distribution by applying
an unfolding technique to retrieve a less disturbed distribution from the measured
distribution [27, 28].

64 B. Weder et al.

In addition, various quantum algorithms also require algorithm-specific pre- or
post-processing steps that have to be executed on a classical computer [21, 24]. For
example, the factorization algorithm of Shor [29] relies on classical post-processing
to analyze continued fractions. Another example is Simon’s algorithm [30], which
requires solving a linear system of equations after the quantum computation. Further,
different variational algorithms, such as VQE [31] or QAOA [32], perform several
iterations of quantum and classical processing until the result converges [24]. Thus,
the quantum and classical programs have to be integrated to retrieve the final result.

The different programs of QAIs, as well as the QAIs and classical programs of
hybrid quantum applications, have to be orchestrated, and required data must be
passed between them [18, 33]. Workflow technology is an orchestration approach
that has been proven since decades to be applicable in various heterogeneous
application areas [34, 35]. Hence, workflows should also be used for orchestrating
the programs constituting a quantum application [21]. For this, the required activities
invoking the quantum and classical programs, their execution order, and the data
flow between them are specified in so-called workflow models [19, 20]. Such
workflow models can automatically be executed by a workflow engine. In contrast
to the orchestration using a traditional program, e.g., written in Java or Python,
workflows provide different benefits, such as robustness, scalability, or persistence
[18, 20]. Further, alternative control flows in the presence of errors, as well as
transactions comprising multiple activities, can be defined [36]. Thus, hybrid quan-
tum applications will benefit from the usage of one or multiple workflow models
orchestrating the required programs.

4.3 Quantum Software Development Lifecycle

In this section, we present our quantum software development lifecycle, which is
depicted in Fig. 4.2. For this, we first discuss that the development of hybrid
quantum applications requires integrating the lifecycles of different software arti-
facts. Then, we present the various phases of the quantum software development
lifecycle.

4.3.1 Interwoven Lifecycles

As discussed in the previous section, quantum applications are usually compound
from different artifacts, namely, quantum and classical programs and workflows, to
orchestrate them [18, 21]. Thus, in addition to phases, such as the requirement

analysis or the design of the application, the development of a quantum application
also comprises the development of the constituting software artifacts. Hence, the
quantum software development lifecycle incorporates multiple lifecycles that are
interwoven, as depicted in Fig. 4.2: (1) the quantum workflow lifecycle, (2) the
classical software lifecycle, and (3) the quantum circuit lifecycle. Further, the
various software artifacts also have to be managed, which is prepared and done in
the (4) operations lifecycle. Thereby, developers and operations personnel should be
tightly integrated following the widely used DevOps paradigm [37, 38] to enable
fast and frequent releases [39]. This is especially important in the quantum comput-
ing domain with the rapid development of new quantum computers or software
tools, which may require adapting the quantum applications regularly [40]. Hence,
these lifecycles have to be integrated into the overall lifecycle, and concepts, best
practices, and tools used in the various lifecycles must be considered when devel-
oping hybrid quantum applications.

4 Quantum Software Development Lifecycle 65

Quantum
Workflow
Lifecycle

Opera�ons
Lifecycle

Quantum
Circuit

Lifecycle

Classical
So�ware
Lifecycle

Requirement
Analysis

Quantum-Classical
Spli�ng

Architecture
& Design

Implementa�on

Tes�ng

Deployment

Observability

Analysis

Fig. 4.2 Overview of the quantum software development lifecycle

There are various lifecycles for business process management and workflows
proposed by different works [11, 20, 41]. We base our lifecycle for quantum
workflows on the lifecycles presented by Leymann and Roller [20], as well as
Dumas et al. [41]. Furthermore, we added required phases specific to the quantum

computing domain. The quantum workflow lifecycle is discussed in detail in
Sect. 4.3.3.

66 B. Weder et al.

Similar to workflow lifecycles, also multiple lifecycles for the development of
classical software artifacts have been introduced [12, 13, 17]. A widely used
software lifecycle is the waterfall model, comprising five phases: (1) requirement
analysis, (2) design, (3) implementation, (4) testing, and (5) maintenance [13]. Other
lifecycles or software development models are the spiral model [42], the V-model
[17], and the prototype model [43]. However, the detailed discussion of lifecycles for
the development of classical software artifacts is out of the scope of this chapter.

Additionally, a lifecycle for the development of quantum circuits has to be
integrated into the overall lifecycle for the development of quantum applications.
Thereby, we use the quantum circuit lifecycle that we proposed in previous work [8],
which will be discussed in more detail in Sect. 4.3.4. Although there are some other
lifecycles [6, 10], they are still abstract and need to be refined to capture all relevant
details to guide developers (see Sect. 4.5). However, also lifecycles documenting the
relevant phases in the development of quantum programs for other quantum com-
puting models, e.g., the adiabatic model [44], can be integrated in the future.

Finally, all the developed software artifacts constituting a quantum application
have to be operated. This includes, e.g., the packaging of the quantum application to
ship it into the target environment or its deployment [37]. The required concepts and
tools differ from classical DevOps and have to be extended for the quantum
computing domain [38]. Section 4.3.5 presents the operations lifecycle exhaustively.

4.3.2 Enclosing Lifecycle

In the following, we introduce the enclosing lifecycle depicted in Fig. 4.2, defining
how the different lifecycles must be interwoven. Thus, various phases require
entering the lifecycles of the software artifacts constituting the quantum application,
e.g., the implementation phase. Other phases rely on the interplay of the
corresponding phases from the different lifecycles, e.g., the testing and deployment
phases. Hence, the goal of these phases is summarized, and the phases that must be
integrated are discussed.

4.3.2.1 Requirement Analysis

For both classical and quantum application development, the different interested
stakeholders must identify their requirements first [6, 45]. Thereby, the requirements
can be functional, i.e., defining the problems to solve, and non-functional, i.e.,
specifying quality attributes of the resulting quantum application, such as availabil-
ity, scalability, performance, or maintainability [22]. The requirements are
documented measurably to enable the evaluation of the resulting quantum applica-
tion in the later lifecycle phases, e.g., the analysis phase (see Sect. 4.3.2.8)

[10]. Further, the different requirements are prioritized, and the overall project
schedule is elaborated [37, 45].

4 Quantum Software Development Lifecycle 67

4.3.2.2 Quantum-Classical Splitting

The quantum-classical splitting phase is intended to decide which parts of the
quantum application to execute on a quantum computer and which on a classical
computer [8, 46]. For the quantum parts, it is also determined if, e.g., a gate-based
quantum computer [47] or a quantum annealer [44] should be used. The splitting is
based on the requirements from the previous phase, i.e., it is evaluated for which
parts suited quantum algorithms exist [6]. Furthermore, it is verified if the
non-functional requirements can be satisfied by a quantum program considering
the capabilities of the available quantum computers [48]. The splitting can, e.g., be
done by quantum experts based on their knowledge and experience [8]. However,
this task is complex, time-consuming, and error-prone. Therefore, it should be
automated or supported by a recommendation system, which can be based on
patterns [26, 49] and best practices or so-called provenance data [50, 51] about
other quantum applications.

4.3.2.3 Architecture and Design

The result of the previous phase is a collection of quantum and classical parts. In the
architecture and design phase, an architecture is conceptualized by using these parts
and specifying corresponding software components with their functionality and
interfaces [13, 37]. Then, the architecture is refined with the internals of the different
software components, e.g., the used data structures [10]. The resulting description
should provide enough details for the implementation of the various components in
the next phase. Thereby, it can, e.g., be specified using the Unified Modeling
Language (UML), for which an extension for quantum computing exists [16, 52].

4.3.2.4 Implementation

In the next phase, the quantum application is implemented based on the requirements
and design from the previous phases. Thereby, the implementation includes the
development of the different constituting software artifacts. This means the
lifecycles for classical programs and quantum programs (see Sect. 4.3.4) are entered
in this phase. Furthermore, workflows should be used for orchestrating the control
and data flow between these programs [18, 21]. Thus, also the quantum workflow
lifecycle is interwoven into this phase (see Sect. 4.3.3). The reuse of existing code
and programs is one of the major goals of quantum software engineering
[5, 9]. Hence, before entering the lifecycles to develop the required software

artifacts, existing code and implementations are searched, e.g., using an API man-
ager [53], a service registry [54], or a platform for sharing quantum software [4, 55].

68 B. Weder et al.

4.3.2.5 Testing

After the implementation, the quantum application is tested to verify the intended
behavior according to the specified requirements before delivering it to the users
[10, 13]. Similar to the implementation phase, it includes the testing of all consti-
tuting software artifacts, i.e., quantum programs, classical programs, and workflows.
Therefore, the testing of these artifacts is also located in their corresponding
lifecycles (e.g., see Sect. 4.3.4.3). In addition to testing the artifacts in isolation,
so-called integration tests should be performed to verify if the independently devel-
oped artifacts work together correctly [56]. Although there are some testing and
verification approaches for quantum circuits, the development of a holistic testing
strategy for hybrid quantum applications is still an open research question [57–59].

4.3.2.6 Deployment

During the deployment phase, everything is prepared to enable the execution of the
quantum application [60, 61]. Thus, the execution environment for the classical
programs is set up, e.g., for a Python script, a virtual machine may be created, and the
required Python runtime is installed on it [23]. Similarly, also the quantum programs
and the workflows must be deployed. However, some of the required functionality
may also be available as a service or API and require no deployment [62]. The
deployment is part of the operations lifecycle and is discussed in detail in
Sect. 4.3.5.4.

4.3.2.7 Observability

In the next phase, the quantum application and its execution environment are
monitored. Thereby, data is collected for two different purposes: (1) observing the
current state of a running quantum application and (2) storing the data in the long
term to enable its analysis, e.g., to improve the quantum application or to enable
traceability, comprehensibility, and reproducibility [20, 50]. This phase requires the
collection of data about all software artifacts comprising the hybrid quantum appli-
cation [51]. Hence, it must be defined in the different development lifecycles what
data to collect, which is then gathered at runtime in the operations lifecycle.

4 Quantum Software Development Lifecycle 69

4.3.2.8 Analysis

In the last phase of the lifecycle, the collected data from the observability phase is
analyzed. The goals of this phase are to find bugs that have to be fixed or possible
improvements for the quantum application [21, 51]. For example, if the quantum
programs frequently produce erroneous results, a sub-optimal splitting for today’s
limited quantum computers could be the reason [8, 63]. Therefore, after the analysis
phase, the next iteration of the lifecycle can be entered, e.g., adapting the require-
ments to perform an improved splitting and realize the other found optimizations.

4.3.3 Quantum Workflow Lifecycle

As discussed in Sect. 4.2, the different programs realizing a quantum application
have to be orchestrated, which should be done using workflows to benefit from their
advantages [21, 23]. Next, we present the quantum workflow lifecycle (see Fig. 4.3).

4.3.3.1 Modeling

In the modeling phase, the collection of activities implementing the quantum appli-
cation and their partial order are defined in a workflowmodel depending on the result
of the architecture and design phase (see Sect. 4.3.2.3) [20, 21]. Furthermore, also
the data flow between the activities is specified [19, 36]. Thereby, a standardized
workflow language, such as the Business Process Model and Notation (BPMN) [64]
or the Business Process Execution Language (BPEL) [65], should be used to
simplify the reuse of workflow models across different workflow engines [20, 34].

Opera�ons
Lifecycle

Quantum
Circuit

Lifecycle

Classical
So�ware
Lifecycle

Opera�on�� s
Lifi ecff yc clell

Quantum
CiCC rii cuit

Lifi ecff yc clell

ClCC assicii al
So�o ware
Lifi ecff yc clell

Quantum
Workflow
Lifecycle

Modeling

Quantum-Classical
Spli�ng

Quantum
Workflow
Lifecycle

IT RefinementDeployment

Observability

Analysis

Fig. 4.3 Detailed view of the quantum workflow lifecycle

70 B. Weder et al.

4.3.3.2 Quantum-Classical Splitting

Similar to the quantum-classical splitting of the enclosing lifecycle (see Sect.
4.3.2.2), a splitting is also performed in the quantum workflow lifecycle. Thereby,
the goal is to decide which of the activities of the workflow model from the previous
phase are implemented classically and which require the execution of a quantum
algorithm or program. For this, corresponding extensions for workflow languages
have been proposed providing explicit modeling constructs for the execution of
quantum circuits, as well as frequently occurring pre- and post-processing tasks
[18, 33].

4.3.3.3 IT Refinement

The IT refinement phase is intended to transform the abstract workflow model from
the previous phases into an executable workflow model [20]. For this, the contained
activities are refined regarding three dimensions: (1) what has to be done within the
activity, (2) with which programs is the activity performed, and (3) who is respon-
sible for the activity. Thereby, existing implementations for the activities should be
searched first, e.g., quantum and classical programs or workflow models that can be
used as sub-workflows to increase the software reuse [5, 53, 54]. If no suited
implementation to reuse is found, it must be implemented in this phase by entering
the corresponding lifecycle, e.g., the quantum circuit lifecycle (see Sect. 4.3.4).

4.3.3.4 Deployment

In the deployment phase, the modeled and refined workflow model is uploaded to the
workflow engine [20, 41]. Thereby, the workflow model is usually frozen, i.e., it can
no longer be changed. Thus, the upload of a changed workflow model from another
iteration of the lifecycle results in a new version of the workflow model and does not
affect running instances. The implementations of the different activities in the
workflow can either be bound during deployment or dynamically at runtime
[54]. After the deployment, the workflow is ready for execution and can be
instantiated.

4.3.3.5 Observability

The created workflow instances are monitored to track their current state during
runtime [19, 20]. This includes, e.g., the currently executed activities, the input and
output data of already performed activities, or the reason for taking a particular path
in the workflow model [21, 34]. The collected information can usually be visualized
by the workflow engine and, e.g., used to handle unexpected errors [20]. When a

aworkflow instance terminates, the collected data is moved to the audit trail,
separate database comprising the information about completed workflow instances
[66, 67].

4 Quantum Software Development Lifecycle 71

4.3.3.6 Analysis

In the last phase, the data stored in the audit trail is analyzed, e.g., using process
mining or machine learning techniques [66, 68]. Thereby, statistics about the various
paths taken through the workflow model or the average execution times can be used
as a basis for redesigning and improving the workflow model in the next iteration
[20]. This redesign, e.g., includes parallelizing activities, adding automated error
handling for frequently occurring errors, or improving slow activity
implementations.

4.3.4 Quantum Circuit Lifecycle

In the following, we discuss our quantum circuit lifecycle [8], as depicted in Fig. 4.4.
This lifecycle is, e.g., entered if a quantum circuit is required as part of a quantum
application, and no suitable implementation can be found (see Sect. 4.3.2.4).

4.3.4.1 Quantum-Classical Splitting

The splitting in the quantum circuit lifecycle is the splitting at the lowest granularity
compared to the splitting of quantum applications and quantum workflows. It is
entered with a description of the problem to solve and is intended to decide if a pure
quantum algorithm or a hybrid quantum algorithm should be used [8]. For example,

Opera�ons
Lifecycle

Classical
So�ware
Lifecycle

Quantum
Workflow
Lifecycle

Opera�on�� s
Lifi ecff yc clell

ClCC assicii al
So�o ware
Lifi ecff yc clell

Quantum
WoWW rkrr flk oflfl w
Lifi ecff yc clell

Quantum
Circuit

Lifecycle

Quantum-Classical
Spli�ng

Quantum Circuit
Enrichment

Quantum
Circuit

Lifecycle

Execu�on
Hardware-

Independent
Implementa�on

Error
Mi�ga�on

Op�miza�on
& Compila�on

Quantum
Hardware
Selec�on

Tes�ng
& Verifica�on

Fig. 4.4 Detailed view of the quantum circuit lifecycle

if the problem is to find eigenvalues, the quantum phase estimation (QPE) as a pure
quantum algorithm or the variational quantum eigensolver (VQE) as a hybrid
algorithm can be used [69], and the decision is done in this lifecycle phase.

72 B. Weder et al.

4.3.4.2 Hardware-Independent Implementation

After deciding which quantum algorithm to use, the corresponding quantum circuit
must be implemented. Thereby, the implementation should be hardware-
independent to enable a later hardware selection based on the current characteristics
of the different available quantum computers (see Sect. 4.3.4.5) [33, 48, 70]. Fur-
thermore, the quantum circuit should also be defined independent of specific input
data, which is encoded in the next phase by prepending a suited state preparation
circuit to the beginning of the implemented circuit [25, 26]. Thus, the quantum
circuit can be reused for different instances of the problem to solve [8]. For the
implementation of the quantum circuit, a plethora of technologies can be utilized, for
example, (1) quantum programming languages, such as Q# or Quipper; (2) quantum
assembly languages, such as OpenQASM or Quil; and (3) quantum libraries that are
embedded into classical programming languages, such as Qiskit or Forest in Python
[15, 40, 71].

4.3.4.3 Testing and Verification

Next, the quantum circuit is tested and verified to ensure its correct behavior. One
approach is to add statistical assertions to the quantum circuit [72]. Then, it is
verified that the specified state is measured when executing the quantum circuit
until the point where the assertion is defined. Thus, the results of the assertions guide
programmers in finding bugs. However, this requires the execution of the circuit for
each assertion, which is only feasible for small quantum circuits and few assertions.
Additionally, first approaches try to check assertions dynamically at runtime
[73]. But then additional ancilla qubits and gates are required, limiting the applica-
bility with today’s restricted quantum computers [63]. Another approach adapted
from classical software engineering is white- and black-box testing, e.g., utilizing a
simulator if this is feasible for the quantum circuit size [58, 74]. Further, quantum
circuits can also be verified by experts or using automated approaches [57, 59]. How-
ever, the debugging, testing, and verification of quantum circuits are still an open
research question.

4.3.4.4 Quantum Circuit Enrichment

The quantum circuit from the hardware-independent implementation phase is
implemented independent of a certain problem instance to solve. Thus, it is enriched
with the details required to solve a particular instance of the problem in this phase

[8]. This enrichment comprises two steps: (1) state preparation [25, 26] and
(2) oracle expansion [75]. For the state preparation step, a circuit initializing
the register of the quantum computer with the required state is generated based on
the input data [15, 26]. The resulting state preparation circuit is then prepended to the
original circuit. Thereby, different encodings exist, such as the angle, amplitude, or
basis encoding [26]. These encodings provide different characteristics, e.g., the
number of required qubits or gates. Furthermore, different quantum algorithms
rely on black-box functions, so-called oracles [15, 75]. However, these oracles
have to be implemented or loaded from a corresponding library before executing
the quantum circuit.

4 Quantum Software Development Lifecycle 73

4.3.4.5 Quantum Hardware Selection

Quantum computers that are available during the noisy intermediate-scale quantum
(NISQ) [63] era are error-prone and provide only limited capabilities [15, 48]. Addi-
tionally, periodic re-calibrations change their characteristics, e.g., the decoherence
times of the qubits, over time [51, 70]. Thus, the selection of a suitable quantum
computer to execute a given quantum circuit is a complex task [33, 48]. To overcome
this issue, different metrics, such as quantum volume (QV) [76] or the total quantum
factor (TQF) [77], and various benchmarks [78, 79] have been introduced to assess
the capabilities of the available quantum computers. Further, there are some tools,
such as the QuRE Toolbox [80], to estimate the required resources to execute a
quantum algorithm on given input data. Finally, the NISQ Analyzer [48] automati-
cally selects a suitable quantum computer based on properties of the quantum circuit,
such as width or depth, and the current characteristics of the available quantum
computers.

4.3.4.6 Optimization and Compilation

After selecting a suitable quantum computer for the execution of the quantum circuit,
it has to be optimized and compiled to the machine instructions that can be executed
by the selected quantum computer [81, 82]. For this, a quantum compiler assigns the
qubits of the quantum circuit to the physical qubits of the quantum computer [15, 83,
84]. Due to the different characteristics of the qubits, e.g., their decoherence times or
connectivity, the assignments influence the error probability of the quantum circuit
execution [15]. Therefore, the assignments should be optimized based on current
provenance data about the qubit characteristics [51]. Similarly, the gates used in the
quantum circuit must be mapped to gates physically implemented by the selected
quantum computer [81]. If one of the gates is not physically implemented, it has to
be replaced by a corresponding subroutine of implemented gates [51, 82].

74 B. Weder et al.

4.3.4.7 Execution

In the next phase, the compiled quantum circuit is executed on the selected quantum
computer. Depending on the quantum cloud offering used, this is done by submitting
a corresponding job to a queue or reserving a time slice for the execution [4, 47]. The
quantum circuit is usually executed multiple times, referred to as the number of
shots, to reduce the impact of statistical errors [15, 51]. Furthermore, if a variational
algorithm is selected in the quantum-classical splitting phase, the execution may
comprise multiple iterations of quantum and classical processing [8, 15].

4.3.4.8 Error Mitigation

In contrast to full error correction [85, 86], which is unfeasible on today’s NISQ
machines, error mitigation [87] has the goal to reduce the impact of noise in the
results of quantum circuit executions [15]. Some of these error mitigation techniques
require adding additional gates or adapting existing ones while using much fewer
qubits than needed for error correction [88]. However, the circuit then has to be
adapted before the execution. After the execution, classical post-processing is used
to mitigate the errors [87]. Some techniques also solely rely on classical post-
processing and do not require changes in the circuits [89]. A subset of these
techniques is so-called readout error mitigation or unfolding techniques
[27, 28]. Thereby, depending on the used technique, different states are periodically
prepared and subsequently measured on the quantum computer [8]. Based on the
retrieved data, the impact of readout errors can then be reduced in the result
distribution of a circuit execution [27].

4.3.5 Operations Lifecycle

The last lifecycle integrated into the quantum software development lifecycle is the
operations lifecycle, for which the different phases are depicted in Fig. 4.5. It is
intended to operate all the software artifacts comprising a quantum application.

4.3.5.1 Topology Modeling

The operations personnel performing the phases in this lifecycle are in charge of
deploying and managing all software artifacts of the hybrid quantum application (see
Sect. 4.3.5.4). However, a manual deployment and management are time-consuming
and error-prone [62, 90]. Thus, it must be automated using so-called provisioning or
deployment technologies, such as Kubernetes or Terraform [60, 61]. For this, all
necessary software artifacts and their dependencies are described by a directed

acyclic graph, called the topology model [91]. In addition to the proprietary lan-
guages provided by the different provisioning technologies, there are also standard-
ized languages such as TOSCA [92] to define topology models [60]. Figure 4.6
depicts an exemplary topology model for a hybrid quantum application. Thereby, the
nodes in the topology model represent the different software artifacts, e.g., the
classical and quantum programs [23]. Further, the edges specify the relations
between the artifacts, e.g., that the classical program is hosted on a docker engine
or connects to a quantum program after performing some pre-processing. The
semantics of the nodes is defined by reusable types shown in brackets [61], e.g.,
the quantum program is implemented as a Qiskit app and executed using the IBMQ
quantum cloud offering. Finally, the nodes in the topology model can be configured
using so-called properties, e.g., the token to access IBMQ at runtime as shown at the
corresponding node [60].

4 Quantum Software Development Lifecycle 75

Quantum
Circuit

Lifecycle

Classical
So�ware
Lifecycle

Quantum
Workflow
Lifecycle

Quantum
CiCC rii cuit

Lifi ecff yc clell

ClCC assicii al
So�o ware
Lifii eff cyc clcc ell

Quantum
WoWW rkrr flk oflfl w
Lifi ecff yc clell

Opera�ons
Lifecycle

Opera�ons
Lifecycle

Topology
Modeling

Packaging

Policy
Specifica�on

Deployment

Observability

Fig. 4.5 Detailed view of the operations lifecycle

Legend:

Port: 8081

Qiskit
(Qiskit)

[…]

Python Run�me
(Python 3.7)

[…]

Virtual Machine
(Ubuntu 20.04)

[…]

IBMQ
(IBMQ)

Token: […]

Port: 8080

Quantum Program
(Qiskit App)

Classical Program
(Docker Container)

Docker Engine
(Docker Engine)

[…]

hostedOn

connectsTo

dependsOn

Fig. 4.6 Exemplary topology model for a hybrid quantum application (based on [60])

76 B. Weder et al.

4.3.5.2 Packaging

After specifying the topology model, the quantum application is packaged as a self-
contained archive [21, 38]. Therefore, only a single entity including all dependencies
has to be transferred into the target environment for the execution [62]. This self-
contained archive contains the quantum and classical programs comprising the
quantum application, as well as the topology model from the previous phase
describing their dependencies and how they can be automatically provisioned
[21, 62]. Furthermore, workflow models to orchestrate the programs can be added
to the archive. Finally, data required by the quantum application may also be
packaged [93].

4.3.5.3 Policy Specification

The developed quantum application can usually be offered with different quality of
service (QoS) guarantees [94]. For example, the classical components of the quan-
tum application can be automatically scaled, or a defined time slice can be reserved
for the quantum programs. Therefore, different policies can be defined specifying the
QoS guarantees as well as the implications when using the policy, e.g., the incurred
monetary costs, to offer them in an app store or over an API manager [4, 53].

4.3.5.4 Deployment

In this phase, the execution environment for the quantum application is set up. For
this, the topology model is passed to a corresponding provisioning engine, which
interprets it and installs the required dependencies and programs [21, 61]. In addition
to a deployment for all users if a new version is available, also advanced strategies,
such as performing a canary deployment [95], are possible. This allows deploying
the new version for a subset of users to evaluate it before rolling it out for all users.

4.3.5.5 Observability

During runtime, the deployed software artifacts are monitored to verify their correct
behavior or to visualize their current state for the user (see Sect. 4.3.3.5). Thereby,
the collected data for all software artifacts constituting the quantum application must
be consolidated to enable a unified view [51]. This comprises, e.g., the logs of a
virtual machine executing a classical program, the logs of a workflow instance, or the
current characteristics of the used quantum computers. Furthermore, this data is
stored in the long term to enable the analysis of the quantum application (see
Sect. 4.3.2.8).

4 Quantum Software Development Lifecycle 77

4.4 Discussion

The introduced quantum software development lifecycle integrates the quantum
workflow lifecycle, implying that most non-trivial quantum applications should be
implemented using workflow technology [18, 21]. Thereby, workflow technology
enables benefiting from robust, proven, and mature solutions that have been applied
in various heterogeneous application areas, such as e-Science [35] or business
process management [34]. Furthermore, there are already the first commercial
workflow offerings specialized for quantum computing like Zapata Orquestra
[96]. Finally, IBM announced workflows as one of the major building blocks in
their roadmap [97]. However, our lifecycle can also be used without workflows if it
turns out in the architecture and design phase that workflows are not required for the
application.

The presented quantum circuit lifecycle (see Sect. 4.3.4) is designated for the
development and execution of quantum circuits during the NISQ era [8, 63]. There-
fore, it contains some phases that can be skipped if fully error-corrected quantum
computers are available, e.g., the hardware selection or error mitigation phase.
Furthermore, other lifecycle phases might change significantly due to new develop-
ments. For example, the quantum circuit enrichment phase must be adapted if an
efficient quantum random access memory (QRAM) [98] implementation is available
[8, 26]. Additionally, the quantum software development lifecycle is assuming gate-
based quantum algorithm implementations. However, it can be easily adapted by
integrating a lifecycle for quantum programs relying on other quantum computing
models, e.g., the adiabatic model [44], as discussed in Sect. 4.3.1. To the best of our
knowledge, there exists currently no lifecycle for quantum programs using another
model.

Finally, there are a lot of open research questions and possibilities to improve the
lifecycle phases, for example, developing a holistic test strategy for hybrid quantum
applications, the proposal of new metrics to assess and compare quantum computers,
or designing a recommendation system for the quantum-classical splitting phases.

4.5 Related Work

Different research works proposed lifecycles, methodologies, or workflows for the
development of quantum applications which will be discussed in this section.

Zhao [10] performed a comprehensive survey about quantum software engineer-
ing, presenting different methods, tools, and open questions in this research area.
Additionally, he also introduces a quantum software lifecycle based on the classical
waterfall model, consisting of five phases: (1) quantum software requirements
analysis, (2) quantum software design, (3) quantum software implementation,
(4) quantum software testing, and (5) quantum software maintenance. Thereby,
the different phases are reused from the classical lifecycle, but the tools and methods

for the phases are adapted to the quantum computing domain. However, it misses the
discussion of some important aspects, such as the deployment of quantum applica-
tions, the orchestration of the quantum and classical programs, and the packaging of
all required artifacts, e.g., to store and sell the quantum application in an app store.

78 B. Weder et al.

A quantum software lifecycle similar to Zhao’s is also proposed by Dey et al.
[6]. Thereby, they include the same five phases but add an additional quantum
feasibility study phase to the beginning of the lifecycle. This phase is intended to
evaluate the availability of suited quantum algorithms, as well as powerful enough
quantum computers. In our lifecycle, this is included in the quantum-classical
splitting phase of the enclosing lifecycle, which separates the problem into classical
parts and quantum parts that can be successfully executed on an available quantum
computer. However, it also does not include some important phases, e.g., the
monitoring of the running quantum application or their packaging as a self-contained
archive and deployment.

Quantum DevOps was proposed by Gheorghe-Pop et al. [38], motivating the
need to apply the DevOps paradigm in the quantum computing domain. Thereby,
they analyze the different phases of the traditional DevOps process and extend them
correspondingly. Further, they focus on the evaluation of the available quantum
computers in each iteration, to enable the selection of a suitable one for the
execution.

Sodhi et al. [22] analyzed the characteristics of different quantum computing
platforms, e.g., from IBM and Rigetti. Based on this analysis, they examined how
the characteristics affect quality attributes of quantum applications, such as main-
tainability, usability, or performance. Further, the impact on the various lifecycle
phases and required steps to achieve the quality attributes in these phases are
discussed.

4.6 Conclusion and Outlook

Quantum computers are rapidly evolving in terms of qubit counts, decoherence
times, and lower error rates. Thus, problems in more and more application areas
can be solved by quantum applications. Hence, the need for high-quality quantum
applications will increase dramatically in the next years. However, the development
of such applications is complex and incorporates experts from various fields. To
enable their successful cooperation and ease the education of new developers, a
common understanding of the development process of quantum applications is
needed. In this chapter, we introduced a quantum software development lifecycle
summarizing eight phases comprising this development process. Furthermore, we
discussed the different software artifacts usually realizing a quantum application,
i.e., quantum programs, classical programs, and workflows. We presented the
lifecycles of these artifacts and showed how they are integrated into the overall
lifecycle of quantum applications.

4 Quantum Software Development Lifecycle 79

Quantum computing in general, and also quantum software engineering, is a very
active research area where new concepts and tools are published regularly. There-
fore, the quantum software development lifecycle is a living document, which can be
adapted and extended with new developments. This comprises, e.g., the addition of
new concepts and tools or the extension with another development phase.

Acknowledgments This work was funded by the BMWi project PlanQK (01MK20005N), the
DFG’s Excellence Initiative project SimTech (EXC 2075 – 390740016), and the project SEQUOIA
funded by the Baden-Wuerttemberg Ministry of the Economy, Labour and Housing.

References1

1. Barzen J (2021) From digital humanities to quantum humanities: potentials and applications. In:
Quantum computing in the arts and humanities. Springer. arXiv:2103.11825

2. Barzen J, Leymann F, Falkenthal M, Vietz D, Weder B, Wild K (2021) Relevance of near-term
quantum computing in the cloud: a humanities perspective. Cloud Comput Serv Sci 1399:25–58

3. Gabor T et al (2020) The holy grail of quantum artificial intelligence: major challenges in
accelerating the machine learning pipeline. arXiv:2004.14035

4. Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K (2020) Quantum in the cloud:
application potentials and research opportunities. In: Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER). SciTePress, pp 9–24

5. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-
neering golden age. ACM SIGSOFT Softw Eng Notes 45(3):12–14

6. Dey N, Ghosh M, Kundu SS, Chakrabarti A (2020) QDLC–the quantum development life
cycle. arXiv:2010.08053

7. Nielsen MA, Chuang I (2002) Quantum computation and quantum information
8. Weder B, Barzen J, Leymann F, Salm M, Vietz D (2020) The quantum software lifecycle. In:

Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Para-
digms for Engineering Quantum Software (APEQS). ACM, pp 2–9

9. Piattini M, Serrano M, Perez-Castillo R, Petersen G, Hevia JL (2021) Toward a quantum
software engineering. IT Prof 23(1):62–66

10. Zhao J (2020) Quantum software engineering: landscapes and horizons. arXiv:2007.07047
11. Kohlborn T, Korthaus A, Rosemann M (2009) Business and software service lifecycle

management. In: Proceedings of the 13th International Enterprise Distributed Object Comput-
ing Conference (EDOC). IEEE, pp 87–96

12. Canós JH, Penadés MC, Carsí JÁ (1999) From software process to workflow process: the
workflow lifecycle. In: Proceedings of the International Process Technology Workshop

13. Munassar NMA, Govardhan A (2010) A comparison between five models of software engi-
neering. Int J Comput Sci Issues (IJCSI) 7(5):94

14. Ghezzi C, Jazayeri M, Mandrioli D (2002) Fundamentals of software engineering
15. Leymann F, Barzen J (2020) The bitter truth about gate-based quantum algorithms in the nisq

era. Quantum Sci Technol 5(4):044007
16. Pérez-Delgado CA, Perez-Gonzalez HG (2020) Towards a quantum software modeling

language. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp 442–444

1All links were last followed on June 15, 2021.

80 B. Weder et al.

17. Mathur S, Malik S (2010) Advancements in the V-Model. Int J Comput Applications 1(12):
29–34

18. Weder B, Breitenbücher U, Leymann F, Wild K (2020) Integrating quantum computing into
workflow modeling and execution. In: Proceedings of the 13th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC). IEEE, pp 279–291

19. Ellis CA (1999) Workflow technology. Computer supported cooperative work, trends in
software series 7:29–54

20. Leymann F, Roller D (2000) Production workflow: concepts and techniques. Prentice Hall PTR
21. Leymann F, Barzen J (2021) Hybrid quantum applications need two orchestrations in super-

position: a software architecture perspective. arXiv:2103.04320
22. Sodhi B, Kapur R (2021) Quantum computing platforms: assessing the impact on quality

attributes and SDLC activities. arXiv:2104.14261
23. Weder B, Barzen J, Leymann F, Zimmermann M (2021) Hybrid quantum applications need two

orchestrations in superposition: a software architecture perspective. In: Proceedings of the IEEE
International Conference on Web Services (ICWS). IEEE

24. McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid
quantum-classical algorithms. New J Phys 18(2):023023

25. Cortese JA, Braje TM (2018) Loading classical data into a quantum computer.
arXiv:1807.02500

26. Weigold M et al (2021) Data encoding patterns for quantum computing. In: Proceedings of the
27th Conference on Pattern Languages of Programs. The Hillside Group

27. Brenner L, Verschuuren P, Balasubramanian R, Burgard C, Croft V, Cowan G, Verkerke W
(2019) Comparison of unfolding methods using RooFitUnfold. arXiv:1910.14654

28. Maciejewski FB et al (2020) Mitigation of readout noise in near-term quantum devices by
classical post-processing based on detector tomography. Quantum 4

29. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J Comput 26(5):1484–1509

30. Simon DR (1994) On the power of quantum cryptography. In: 35th Annual Symposium on
Foundations of Computer Science, pp 116–123

31. Kandala A et al (2017) Hardware-efficient variational quantum eigensolver for small molecules
and quantum magnets. Nature 549(7671):242–246

32. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm.
arXiv:1411.4028

33. Weder B, Barzen J, Leymann F, Salm M (2021) Automated quantum hardware selection for
quantum workflows. Electronics 10(8)

34. Leymann F, Roller D (1997) Workflow-based applications. IBM Syst J 36(1):102–123
35. Liu J, Pacitti E, Valduriez P, Mattoso M (2015) A survey of data-intensive scientific workflow

management. J Grid Comput 13(4):457–493
36. Eder J, Liebhart W (1997) Workflow transactions. Workflow Handb:195–202
37. Bass L, Weber I, Zhu L (2015) DevOps: a software architect’s perspective. Addison-Wesley

Professional
38. Gheorghe-Pop ID, Tcholtchev N, Ritter T, Hauswirth M (2020) Quantum DevOps: towards

reliable and applicable NISQ quantum computing. In: IEEE Globecom Workshops. IEEE, pp
1–6

39. Wettinger J, Breitenbücher U, Kopp O, Leymann F (2016) Streamlining DevOps automation
for Cloud applications using TOSCA as standardized metamodel. Future Gen Comput Syst 56:
317–332

40. Vietz D et al (2021) On decision support for quantum application developers: categorization,
comparison, and analysis of existing technologies. In: Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, pp 127–141

41. Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals of business process
management, vol 1. Springer

4 Quantum Software Development Lifecycle 81

42. Boehm BW (1988) A spiral model of software development and enhancement. Computer 21(5):
61–72

43. Kumar N, Zadgaonkar A, Shukla A (2013) Evolving a new software development life cycle
model SDLC-2013 with client satisfaction. Int J Soft Comput Eng (IJSCE) 3(1):2231–2307

44. Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2008) Adiabatic quantum
computation is equivalent to standard quantum computation. SIAM Rev 50(4):755–787

45. Grady JO (2010) System requirements analysis. Elsevier
46. Pérez-Castillo R, Serrano MA, Piattini M (2021) Software modernization to embrace quantum

technology. Adv Eng Softw 151:102933
47. LaRose R (2019) Overview and comparison of gate level quantum software platforms. Quan-

tum 3:130
48. Salm M, Barzen J, Breitenbücher U, Leymann F, Weder B, Wild K (2020) The NISQ analyzer:

automating the selection of quantum computers for quantum algorithms. In: Proceedings of the
14th Symposium and Summer School on Service-Oriented Computing (SummerSOC).
Springer, pp 66–85

49. Leymann F (2019) Towards a pattern language for quantum algorithms. In: Quantum technol-
ogy and optimization problems. Springer International Publishing, pp 218–230

50. Herschel M, Diestelkämper R, Ben Lahmar H (2017) A survey on provenance: what for?
What form? What from? VLDB J 26(6):881–906

51. Weder B, Barzen J, Leymann F, Salm M, Wild K (2021) QProv: a provenance system for
quantum computing. IET Quantum Commun

52. Gemeinhardt F, Garmendia A, Wimmer M (2021) Towards model-driven quantum software
engineering. In: Proceedings of the 2nd International Workshop on Quantum Software Engi-
neering (Q-SE). ACM

53. De B (2017) API management. In: API management. Springer, pp 15–28
54. Garofalakis J, Panagis Y, Sakkopoulos E, Tsakalidis A (2006) Contemporary web service

discovery mechanisms. J Web Eng 5(3):265–290
55. Leymann F, Barzen J, Falkenthal M (2019) Towards a platform for sharing quantum

software. In: Proceedings of the 13th Advanced Summer School on Service-Oriented Comput-
ing (SummerSOC), IBM Technical Report. IBM Research Division, pp 70–74

56. Wu Y et al (2003) UML-based integration testing for component-based software. In: Interna-
tional Conference on COTS-Based Software Systems. Springer, pp 251–260

57. Amy M (2018) Towards large-scale functional verification of universal quantum circuits.
arXiv:1805.06908

58. Miranskyy A, Zhang L, Doliskani J (2020) Is your quantum program bug-free? In: Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). ACM, pp 29–32

59. Wang SA, Lu CY, Tsai IM, Kuo SY (2008) An XQDD-Based verification method for quantum
circuits. IEICE Trans Fundamentals Electr Commun Comput Sci 91(2):584–594

60. Wild K et al (2020) TOSCA4QC: two modeling styles for TOSCA to automate the deployment
and orchestration of quantum applications. In: Proceedings of the 24th International Enterprise
Distributed Object Computing Conference (EDOC). IEEE, pp 125–134

61. Wurster M et al (2019) The essential deployment metamodel: a systematic review of deploy-
ment automation technologies. Software-Intensive Cyber-Physical Systems

62. Weder B, Breitenbücher U, Képes K, Leymann F, Zimmermann M (2020) Deployable self-
contained workflow models. In: Proceedings of the 8th European Conference on Service-
Oriented and Cloud Computing (ESOCC). Springer, pp 85–96

63. Preskill J (2018) Quantum Computing in the NISQ era and beyond. Quantum 2:79
64. OMG (2011) Business Process Model and Notation (BPMN) version 2.0. Object Management

Group
65. OASIS (2007) Web Services Business Process Execution Language (WS-BPEL) version 2.0.

Organization for the Advancement of Structured Information Standards

82 B. Weder et al.

66. Agrawal R, Gunopulos D, Leymann F (1998) Mining process models from workflow logs. In:
International Conference on Extending Database Technology. Springer, pp 467–483

67. Waters BR, Balfanz D, Durfee G, Smetters DK (2004) Building an encrypted and searchable
audit log. In: NDSS, vol 4. Citeseer, pp 5–6

68. Pinter SS, Golani M (2004) Discovering workflow models from activities’ lifespans. Comput
Indus 53(3):283–296

69. Wang D, Higgott O, Brierley S (2019) Accelerated variational quantum eigensolver. Phys Rev
Lett 122(14):140504

70. Tannu SS, Qureshi MK (2019) Not all qubits are created equal: a case for variability-aware
policies for nisq-era quantum computers. In: Proceedings of the 24th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp 987–999

71. Fingerhuth M, Babej T, Wittek P (2018) Open source software in quantum computing. PLoS
One 13(12)

72. Huang Y, Martonosi M (2019) Statistical assertions for validating patterns and finding bugs in
quantum programs. In: Proceedings of the 46th International Symposium on Computer Archi-
tecture. ACM, pp 541–553

73. Liu J, Byrd GT, Zhou H (2020) Quantum circuits for dynamic runtime assertions in quantum
computation. In: Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, pp 1017–1030

74. Usaola MP (2020) Quantum Software Testing. In: Proceedings of the 1st International Work-
shop on the Quantum Software Engineering & Programming, pp 57–63

75. Kashefi E, Kent A, Vedral V, Banaszek K (2002) Comparison of quantum oracles. Phys Rev A
65(5):050304

76. Bishop LS et al (2017) Quantum volume. Technical Report
77. Sete EA, Zeng WJ, Rigetti CT (2016) A functional architecture for scalable quantum

computing. In: IEEE International Conference on Rebooting Computing, pp 1–6
78. Knill E, Laflamme R, Martinez R, Negrevergne C (2001) Benchmarking quantum computers:

the five-qubit error correcting code. Phys Rev Lett 86:5811–5814
79. Michielsen K, Nocon M, Willsch D, Jin F, Lippert T, De Raedt H (2017) Benchmarking gate-

based quantum computers. Comput Phys Commun 220:44–55
80. Suchara M, Kubiatowicz J, Faruque A, Chong FT, Lai CY, Paz G (2013) QuRE: the quantum

resource estimator toolbox. In: Proceedings of the 31st International Conference on Computer
Design (ICCD). IEEE, pp 419–426

81. Booth J Jr (2012) Quantum compiler optimizations. arXiv:1206.3348
82. Sivarajah S, Dilkes S, Cowtan A, Simmons W, Edgington A, Duncan R (2020) t| ket>: a

retargetable compiler for NISQ devices. Quantum Sci Technol
83. Heyfron LE, Campbell ET (2018) An efficient quantum compiler that reduces T count.

Quantum Sci Technol 4(1):015004
84. Javadi Abhari A et al (2014) ScaffCC: a framework for compilation and analysis of quantum

computing programs. In: Proceedings of the 11th Conference on Computing Frontiers. ACM,
pp 1–10

85. Gaitan F (2008) Quantum error correction and fault tolerant quantum computing. CRC Press
86. Reed MD et al (2012) Realization of three-qubit quantum error correction with superconducting

circuits. Nature 482(7385):382–385
87. Song C, Cui J, Wang H, Hao J, Feng H, Li Y (2019) Quantum computation with universal error

mitigation on a superconducting quantum processor. Sci Adv 5(9)
88. Endo S, Benjamin SC, Li Y (2018) Practical quantum error mitigation for near-future applica-

tions. Phys Rev X 8(3):031027
89. Endo S, Cai Z, Benjamin SC, Yuan X (2021) Hybrid quantum-classical algorithms and

quantum error mitigation. J Phys Soc Japan 90(3):032001
90. Breitenbücher U, Binz T, Képes K, Kopp O, Leymann F, Wettinger J (2014) Combining

declarative and imperative cloud application provisioning based on TOSCA. In: International
Conference on Cloud Engineering (IC2E). IEEE, pp 87–96

4 Quantum Software Development Lifecycle 83

91. Binz T, Breiter G, Leymann F, Spatzier T (2012) Portable cloud services using TOSCA. IEEE
Internet Comput 16(3):80–85

92. OASIS (2013) Topology and Orchestration Specification for Cloud Applications (TOSCA)
version 1.0. Organization for the Advancement of Structured Information Standards

93. Zimmermann M et al (2018) Towards deployable research object archives based on TOSCA. In:
Papers from the 12th Advanced Summer School on Service-Oriented Computing
(SummerSoC). IBM Research Division, pp 31–42

94. Cardoso J, Sheth A, Miller J, Arnold J, Kochut K (2004) Quality of service for workflows and
web service processes. J Web Semantics 1(3):281–308

95. Ahmadighohandizi F, Systä K (2016) Application development and deployment for IoT
devices. In: Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC). Springer, pp 74–85

96. Zapata: Orquestra (2021) https://www.zapatacomputing.com/orquestra
97. IBM (2021) IBM’s roadmap for building an open quantum software ecosystem. https://www.

ibm.com/blogs/research/2021/02/quantum-development-roadmap
98. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett

100(16):160501

https://www.zapatacomputing.com/orquestra
https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap
https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap

Chapter 5
Formal Methods for Quantum Software
Engineering

Carmelo R. Cartiere

5.1 Introduction

Although quantum computing (QC) is the future of computing systems, the tools for
reasoning about the quantum model of computation, in which the laws obeyed are
those on the quantum mechanical scale, are still a mix of linear algebra and Dirac
notation—two subjects more suitable for physicists rather than computer scientists
and software engineers [17, 18]. On this ground, we believe it is possible to provide a
more intuitive but still high-integrity approach to thinking and writing about quan-
tum computing systems, not only to foster the design of quantum algorithms but also
to simplify the development of quantum software. Here, we move the first step in
such a direction, introducing the Zed (Z) specification language as the means to
represent the operations of a quantum computer via axiomatic definitions, also hiring
the same symbolisms, semantics, and reasoning principles to which classical soft-
ware engineers are already used to. We name this novel branch formal quantum
software engineering (F-QSE) [1].

5.2 Overture to Formal Methods

Formal methods (FM) are a tool of classical software engineering, the distinguishing
feature of which is the ability to model and work with complex systems by
considering them as mathematical entities.

C. R. Cartiere (*)
Kellogg College, University of Oxford, Oxford, UK
e-mail: carmelo.cartiere@oxon.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_5&domain=pdf
mailto:carmelo.cartiere@oxon.org
https://doi.org/10.1007/978-3-031-05324-5_5#DOI

86 C. R. Cartiere

With FM, systems are represented with a rigorous mathematical model, which
has not only the advantage of having its properties thoroughly verified but also of
having its behavior tested via mathematical proof.

Indeed, the use of formal methods in a QC setting can help those who roam the
world of computing to both (a) better “understanding and reasoning about the
properties of quantum systems” with the adoption of a classical tool of software
engineering [2] and (b) describe quantum structures and design quantum algorithms
in a more spontaneous way while still adopting a particular form of a mathematically
rigorous system [3].

Plus, if we design a QC system using formal specifications (FS), we are devel-
oping a set of theorems about that system which, by being proved correct, shall
ensure the correct behavior of the system [20].

This is because the trait of FS is to adopt mathematical notations to accurately
describe the characteristic properties of a system, without overly limiting how these
properties are met, as well as describing the system’s behavior, but without dictating
how it should do it.

And FSs are helpful during the development process of a system for the reason
that they allow to confidently answer the key questions regarding the functions of the
system, without neither having to decipher any kind of information by immense
amounts of code nor having to investigate the meaning of more or less detailed
comments scattered across either the documentation or the code itself.

Since it is detached from the programming code, the guidelines of a FS can
already be fulfilled at the early stages of development. Nevertheless, there may be a
need to modify it along the way with any design change or addition, as well as when
customer requests are changed. But, beyond everything, it is a valuable tool to
promote a shared understanding of the system among all people involved in the
project.

To say it with Jacky’s words, “Using formal methods can be more difficult than
programming in the usual way—because formal methods aim higher. Describing
exactly what your program does is more difficult than letting testers or users figure it
out for themselves. Making your program do the right thing in every situation is
more difficult than just handling some typical cases. Any method that can handle
hard problems will sometimes be hard to carry out; only superficial methods can be
easy all the time. [. . .]. Formal methods make us confront the hard problems early.
The difficulties cannot be escaped, only deferred. Superficial methods put off the
hard parts until coding and testing—but then they appear with a vengeance. News
stories about stressful projects tell of programmers who work eighty-hour weeks,
sleep under their desks, punch holes in walls, have nervous breakdowns, and commit
suicide [Markoff, 1993; Zachary, 1994]. Compared to that, formal methods don’t
seem so difficult after all. By making difficult issues more visible, formal methods
encourage us to seek a more thorough understanding of the problem we are trying to
solve. They require us to express our intentions with exceptional simplicity and
clarity. They help us resist the usual tendency in programming to make things too
complicated and therefore error-prone and difficult to use” [4].

5 Formal Methods for Quantum Software Engineering 87

5.3 The Z Specification Language

In our work, we adopted Z as the FS language of choice: not only because it is
already the most (or one of the most) widely used formal languages for describing
and modeling the classical computing systems1 but also because, as Jacky
pointed out: “Fortunately, most of the mathematics we need for formal methods is
not terribly difficult. The discrete mathematics used in most practical applications of
formal methods is easier than much of the calculus that students in the sciences and
engineering must study” [4].

The Z specification language permits to build detailed and unambiguous specifi-
cations of the behavior of a system. Based on type theory, a branch of symbolic logic
that not only formalizes mathematical entities like variables, functions, and opera-
tions on them but also formalizes the idea that each entity is of some definite type
(e.g., the type ℕ of natural numbers), it allows to reasoning over the properties of a
system (e.g., inputs, transformations, outputs, boundaries) by adopting a detailed
mathematical notation based on well-defined data structures (e.g., sets, relations,
functions) and logical expressions written in first-order predicate logic.

It was Jean-Raymond Abrial that in 1977 originally proposed the Z specification
language. And when in the 1980s Abrial started working with the Programming
Research Group at the University of Oxford, the language was more substantially
developed.

Abrial alleged that Z is so named because “it is the ultimate language,” but we can
also assume that the Z specification language is so-called because it is based on a
minimal-typed version of Zermelo-Fraenkel’s set theory.

In our description of the F-QSE tools, we shall mainly use Z’s axiomatic
definitions, which are a formal description of the behavior of the system, or part of
it, by the means of declarations and predicates [19].

An axiomatic definition is drafted in the following form:

∶

In it, we can distinguish the two parts: the declaration, made up of the variable x
and basic type S, and the predicate p.

The declaration (or signature) is the simplest way to define an object and can be
expressed in two ways: if the object corresponds to an original set of elements, or
basic type, then either we will write its name in brackets or, if the object is a variable
of an already defined set, we shall give it the name of the set that it comes from (with
no brackets). For example, the declaration [Type] establishes an original basic type

1The most widely used notations for developing model-based languages are Vienna Development
Method (VDM), Zed (Z), and Bi (B) [5].

8 2

Observable

called Type. The other way is the declaration x:A, which establishes a new variable x
drawn from the set A (but with the limitation that if this set is not the set ℤ—i.e., the
set of integers—then, in that case, the set must be defined somewhere in the

88 C. R. Cartiere

specification) [2].
The predicate describes the behavior of the system: it takes as input one or more

entities from the domain in question and returns an output that is either True or False
[2]. In it, we can find the following logic symbols: (for all), ∃ (exists), (belongs
to), ● (such as), ^ (and), _ (or), ⟺ (if . . . and only if . . .), and) (if . . . then . . .).

It is worth mentioning that the basic type S shall identify the maximal set of the
system, that is, a set as much complete as possible within the boundaries of the given
specification. This has the effect of making sure that any given value x in the
specification shall be associated with exactly one type, that is, the largest set S for
which x 2 S [2].

So, the adoption of Z for modeling a system requires the formalization of the
building blocks of that system, which, in the case of a QC system, are the observable
and the observable operators.

For the sake of simplicity, you can think about the observable as the data type that
we shall use to declare qubits and about the observable operators as the operations
that can be performed on qubits.

Once that the observable and the observable operators have been formalized, it is
possible to proceed with the design and implementation of any QC model, i.e., the
abstract representation of a QC system, and with its formal verification (FV), through
a sequence of four rigorous yet intuitive steps: (a) the specification, which is the
narrative of the QC system and describes what the system should do; (b) the
refinement, which is an iterative fine-tuning of the FS and produces the polished
QC system; (c) the proof, which walks us through the process to prove, or disprove,
the properties of the QC system against its FS and demonstrate that the candidate
system’s design is correct; and, finally, (d) the implementation, which is the con-
version of the specification into working code.2

5.4 An Introduction to the Quantum Computing

Observables (or basis) can be considered the most significant entities of QM. Given
that a quantum object (QO) holds many attributes (e.g., position, momentum,
energy), one observable completely describes one attribute by conserving all of
that attribute’s possible states, or eigenstates, in a superposed configuration. In QC
systems, QOs have only one observable, the qubit, which superposed configuration
is the linear combination of its two possible eigenstates. Its quantum state vector,

2
“The trick of using formal methods effectively is to know when proofs are worth doing and when
they are not” [2].

j i j i

¼j iþ j i

¼ j i þ j i

1. It must be a complex square matrix of order n:

[]; i.e.:3

4

j

�

commonly expressed in Dirac’s bra-ket notation [6], is, therefore, the linear combi-
nation of the two eigenstates’ associated eigenvectors 0 , 1 ket, which

5 Formal Methods for Quantum Software Engineering 89

corresponding measurable eigenvalues (the scalars) are 0, 1:

ψ
! 0 1

As per its QM counterpart, measuring an observable in a QC system will collapse
that observable into one of its eigenstates that for a qubit are those corresponding to
either |0i or |1i, with probabilities c0, c1

3 [7]:
An easy way to illustrate the concept of an unknown state of an observable (i.e.,

when the basis’ states are in superposition) is by describing Schrödinger’s cat: if we
receive a cat in a closed box, it can be both dead and alive, with given probabilities,
until we open the box (i.e., we observe it). In bra-ket notation, it is simply written:

cat
�!

c0 alive c1 dead

5.4.1 Formalizing the Observable

By the third postulate of QM, an observable that has a finite number of quantum
As such, the three requirements

that it must have can be described, with a sound formalism, by adopting strongly
typed data and first-order logic

states can be represented via a Hermitian matrix.

n : ℂn�n

3The probability for an observable to collapse into any of its states is the squared modulus of the
states’ corresponding probability amplitudes, which are complex numbers that weight each eigen-
vector and such that it is |c0|

2 + ... + |cn|
2 1.¼

4But if the Hilbert space H is infinite-dimensional, the observable is described by a symmetric
operator, which is represented as a map f between two domains of basis’ states D and D� dense in H ,
such that 8x : D, y : D� ∃ f : D � D� • h f(x), y i ¼ h x, f(y) i. This is a bijective function (injective-
surjective), in the sense that it cannot map two distinct states of the domain D onto the same state of
the co-domain D�, thus preserving its unitary quality. However, because an infinite-dimensional
space is unbounded, also the operator is unbounded; therefore, it does not have a largest eigenvalue,
leaving us with the conclusion that it might not be defined everywhere and, as such, classifying it as a
partial bijective function, which implies graph inclusion: D D�.

n

90 C. R. Cartiere

2. It must be equivalent to its conjugate transpose:

8c : n ∃1 c
0 : nT ● cij ¼ c0ij

� �

3. For every eigenvector (or column) of the matrix, the eigenvalue must be a real
umber; and such that it is the element on the main diagonal of the matrix:

8Vn�1 : ℙn ∃1 λ : ℝ ●λ ¼ cjjEn

In Z, all three requirements can be summarized with the following axiomatic
definition satisfying the principle of soundness promoted by FM [2]:

5.4.2 The Observable Operators

After having introduced the new type n, it is now possible to define the observable
operators. They are elementary quantum gates that perform unitary transformations
Uf (i.e., reversible computations) and that, applied to an observable, make it possible
to write quantum programs.

As we will see, most of quantum gates only need to perform one operation during
a transformation, for example, when they make a classical state into a superposition
state, while only two operations are needed to form an entanglement between two
qubits.

In the following paragraphs, we introduce the axiomatic definition of the most
common quantum gates: Identity, Pauli-X, Phase Shift, Pauli-Z, Hadamard, and
C-Not. In this way, we shall have the necessary mathematical toolkit to design
quantum software in Z.

Identity Gate. It is the simplest, single qubit, quantum operator that maps the
input to the output unchanged. It is required by any operation where the same qubits
that are passed as arguments must be returned:

5 Formal Methods for Quantum Software Engineering 91

Pauli-X (or Bit-Flip) Gate. It is the quantum equivalent of the classical NOT gate:

Phase Shift Gate. It represents a family of gates that rotate the basis’ state |1i of
any arbitrary angle ϕ:

Pauli-Z (or π Phase Shift) Gate. It is a special case of the Phase Shift gate that
rotates the basis’ state |1i a π angle:

Hadamard Gate. It is perhaps the most useful quantum operator because it maps
any basis’ state to one qubit with balanced superposition and vice versa:

C-Not Gate. The Controlled Not gate is the most popular two-qubit operator
because it puts two qubits in a separable state, where a tensor product pairs the first

fi

92 C. R. Cartiere

qubit with the result of an addition modulo-2 between both. As such, it is used to
entangle two qubits or disentangle the EPR pair:

Similar to what happens in any conventional computation, quantum computations
are just a sequence of gates applied in a particular order: each gate takes an input and,
after having performed its operation on that input, returns an output. However, in
QC, the single use of an operator simultaneously applies to all basis’ states [8].

5.5 A Practical Example of F-QSE: Programming
the Deutsch Algorithm from Specifications

By using FM, it is possible to describing and implementing quantum algorithms
despite their complexity.

The Deutsch algorithm, the foundation model of QC [9, 10, 16], proves if a
quantum oracle, i.e., a black box that performs a unitary transformationUf on a qubit,
is either constant (always maximizing the same state) or balanced (returning each
state half of the time). It exploits the quantum entanglement principle [9] and
requires the use of two quantum operators: a Hadamard gate, for preparing two
qubits in balanced superposition, and a C-Not gate, for entangling the two qubits.

In Dirac notation, it is represented as a ket taking a pair of qubits, prepared from
wo different basis’ states (x and y), and mapping them to an entangled pair where the
econd qubit performs as the register storing the state (solution) that will be set on the
rst qubit by the quantum oracle. The observation (measurement) of the first qubit
hall, therefore, make it collapse into the state (|0i for constant, |1i for balanced) that
s held by the second qubit, to which it is entangled:

t
s

s
i

j x, yi !U f j x, f xð Þ⨁yi

With the Z notation, the algorithm can be described through axiomatic defini-
tions, either by importing within the constraining predicate the conventional Dirac
representation (which is sound but doesn’t add much in a SE perspective) (Fig. 5.1):

or by taking advantage of the axiomatic definitions already shaped for the
observable operators, writing:

rather than:

Indeed, with the last two definitions, by describing the algorithm through a
sequence of formal operators, we offer guidance for coding it by directly following
the stepwise logic represented.

Of course, the coding part can be done in any quantum programming language.
For our case, to match the formal definitions introduced, we worked out an instruc-
tions’ set in Haskell that leans on Green’s QIO library [].11

The Deutsch algorithm can now be, straightforwardly, translated into the follow-
ing QC program:

deutsch ∷ (Bool ⟶ Bool) ⟶ QIO (Bool)
deutsch f ¼ do
x ⟵ qb("H| 0i")

5 Formal Methods for Quantum Software Engineering 93

Fig. 5.1 The quantum
circuit for the Deutsch
algorithm

h i ¼

94 C. R. Cartiere

y ⟵ qb("H| 1i")
qN(f) x y
qH(x)
mq(x)

5.6 Another Practical Example of F-QSE: The Quantum
Teleportation Protocol

The Quantum Teleportation Protocol (QTP) is an algorithm that was firstly
published by Bennett et al. in 1993 and which can be used to transfer a quantum
state between two remote endpoints A and B (say, Alice and Bob).

The QTP is at the base of the so-called superdense coding; that is, you commu-
nicate two bits of classical information by only sending out one single qubit.

The foundation of the QTP is the entanglement principle (EP): when two remote
and not physically connected objects have in the past interacted within the same local
system, they remain linked forever; and each modification of the state of one of them
induces a modification into the state of the other one.

One practical use of the QTP is the possibility to carry out secure communications
in such a way that the cryptographic key does not need to be transferred between the
two endpoints but can just be teleported. By doing this, any risk of eavesdropping is
completely cancelled.

Now, with the help of a short storytelling, we will show a handy example of how
to implement the QTP with the use of FM.

Alice and Bob are two secret agents who met a long time ago but now live far
apart. During the time spent together, they generated an EPR (Einstein-Podolsky-
Rosen) pair or Bell state5 [13]:

j β00i ¼ 1ffiffiffi
2
p j 00i þ 1ffiffiffi

2
p j 11i

The simplest way to do it is to set one qubit in superposition with the use of a
Hadamard gate and, applying a C-Not gate, entangle it with a second qubit of known
state:

5Bell states represent the simplest example of quantum entanglement and are a form of two
maximally entangled basis’ state vectors (qubits) which are pure (cannot be represented as a
combination of other basis’ states) and normalized (the overall probability of the particle to be in
one of the two basis’ states is 1): Φ|Φ 1.

mission is to deliver a message to Bob (). This must be done by both preventing

5 Formal Methods for Quantum Software Engineering 95

Fig. 5.2 The quantum teleportation circuit proposed by Bennett et al. [12]

j βxyi !
U f j xi⨁y

As already seen in Deutsch’s algorithm, thanks to the use of Zed’s axiomatic
definition, we can express the constraining predicate with the conventional Dirac
form as:

However, our aim is to provide a clearer definition of the algorithm for SE:
something that can help the classically trained base of software engineers to go from
zero (the definition) to hero (the code). And it can be easily done by recruiting the
observable operators already defined, as:

rather than as:

When Alice and Bob had to part away, each of them took one piece of the EPR
pair (qa and qb). At some point in his life, Bob has to hide himself, and Alice’s

qdata
that the message can be eavesdropped and that anybody can use the transmission to
track down Bob’s location.

Alice does pair qa and qdata, performs a joint measurement with the intention of
detecting on which of the four Bell states they have been projected, and sends
(somewhere) to Bob the two classical bits obtained (cdata):

ð Þj i00 þ j i11 =
ffiffi
2
ffi i � jβ00

p i
ð Þj i01 þ j i10 =

ffiffi
2
ffi i � jβ01

p i
ð Þj i00 � j i11 =

ffiffi
2
ffi i � jβ10

p i
ð Þj i01 � j i10 =

ffiffi
2
ffi i � jβ11

p i

96 C. R. Cartiere

Table 5.1 The cdata map In Out

00

01

10

11

Fig. 5.3 The unitary operations that Bob must perform, controlled by cdata

For his part, Bob, who possesses a qubit of the EPR pair, that is now collapsed
due to the measurement performed by Alice, receives the two classical bits that will
let him to conditionally apply any of four given quantum gates to his part of the
(collapsed) EPR pair, obtaining in return the original message (Table 5.1).

The Quantum Teleportation Protocol is now completely described, and we can
translate it into an axiomatic definition and a corresponding QC program:6

6This program will not break the no-cloning theorem, because the state of the original qubit shall be
lost during the process.

∷ !

5 Formal Methods for Quantum Software Engineering 97

qtp Qbit QIO (Qbit)
qtp qdata ¼ do
(qa, qb) bell (b0)
cdata alice (qa) qdata
tdata bob (qb) cdata
return (tdata)

From the point of view of a classical software engineer, the QTP circuit is
intrinsically complex in order to be used as a guide for coding, but even by following
the verbal description of the QTP, it is not easy to interpret and transform the
algorithm into code.

Therefore, we cannot fail to appreciate both the clarity of the axiomatic definition
to describe the QTP and the guidance it offers to write the code needed to perform
such a powerful quantum function. And, with it, we also have the advantage of
eliminating (or, at least, minimizing) the risk of introducing either conceptual errors
during the drafting of the algorithm or coding errors during the transformation of the
algorithm into a working program.

Finally, the formalization of the algorithm produced by Z can help to reason
beyond its primitive use, with the possibility to extend the same logical structure for
identifying use cases that go beyond the particular instance, as, for example, in the
QTP paradigm, to describe the operations required to teleport matter and energy
[21]. But this is a topic for another study.

5.7 Conclusions and Outlooks

The diffusion of QC cannot be forever relegated within a narrow circle of experts,
but many computer scientists and software engineers entering the field of QC are
quickly put off by the existing conceptual and notational barriers [14]. This is not
only due to the intrinsic difficulty of the subject but also because it can only be seen
through a dark glass (as the complete knowledge of the state of a quantum system is
forbidden) [15].

Not only does QC require a completely different mindset, but in order to make
quantum computers available to everyone, we need to prepare a QC-ready workforce
capable of translating old and new challenges into problems that quantum computers
can understand.

One possible way to overcome this stasis is to tap into the existing broad base of
software engineers, introducing a vocabulary inspired by formal SE tools. In this

Appendix

98 C. R. Cartiere

work, you learned how the main notions of QC can take the form of axiomatic
definitions in Z notation so that they can be used throughout specifications []. The
result is a notational system that, ideally, can open the doors of QC to the wider
audience of players, helping them to understand, describe, and, ultimately, translate
the structure of a quantum algorithm into fully working code, adopting any quantum
programming language that is available.

2

A.1 Coding of Typical Quantum Operators

In the following sections, you will find the complete implementation of the quantum
operators (QO) required to run the code used in the proposed examples.

These QO have been designed based on the QIO Monad, which is a Haskell
library of purely functional interfaces for quantum programming [11].

A.1.1 QO for the Deutsch Algorithm

— return a qubit in a specified state
qb :: [Char] -> QIO (Qbit)
qb qstate
| qstate = = "|0>" = mkQ(False)
| qstate = = "|1>" = mkQ(True)
| qstate = = "|+>" || qstate = = "H|0>" = do

qBit <- qb("|0>")
applyU(uhad(qBit))
return(qBit)

| qstate = = "|->" || qstate = = "H|1>" = do
qBit <- qb("|1>")
applyU(uhad(qBit))
return(qBit)

| otherwise = error "qb: wrong argument"

— apply the C-Not (N) gate to a qubit
qN :: (Bool -> Bool) -> Qbit -> Qbit -> QIO ()
qN f qx qy = applyU(cond (qx) (\ a! if f(a) then unot(qy) else mempty))

— apply the Hadamard (H) gate to a qubit
qH :: Qbit -> QIO ()
qH qbit = applyU(uhad(qbit))

— measure a qubit
mq :: Qbit -> QIO (Bool)
mq qbit = measQ(qbit)

A.1.2 QO for the Quantum Teleportation Protocol

5 Formal Methods for Quantum Software Engineering 99

— return False
b0 :: Bool
b0 = (0==1)

— return True
b1 :: Bool
b1 = (1==1)

— apply the C-Not (N) gate to a qubit
qN :: Qbit -> Qbit -> QIO ()
qN qx qy = applyU(cond (qx) (\ a -> if a then unot(qy) else mempty))

— apply the Hadamard (H) gate to a qubit
qH :: Qbit -> QIO ()
qH qb = applyU(uhad(qb))

— apply the Identity (I) gate to a qubit
qI :: Qbit -> U
qI qb = mempty

— apply the Not (X) gate to a qubit
qX :: Qbit -> U
qX qb = unot(qb)

— apply the Pi Phase Shift (Z) gate to a qubit
qZ :: Qbit -> U
qZ qb = (uphase qb pi)

— apply the ZX sequence of gates to a qubit
qZX :: Qbit -> U
qZX qb = qX(qb) `mappend` qZ(qb)

— create a Bell state by sharing a qubit in superposition with a qubit in given state
bell :: Bool -> QIO (Qbit,Qbit)
bell qf = do

qa <- if not qf then qb(“|+>”) else qb(“|->”)
qb <- qb(“|0>”)
qN qa qb
return (qa,qb)

alice :: Qbit -> Qbit -> QIO (Bool,Bool)
alice qa qdata = do

— Alice applies the C-Not gate to qa, controlled by qdata (the information to be
sent)
qN (qdata) qa

— Alice applies the Hadamard gate to qdata
qH (qdata)

do nothing

— Bob applies the relevant gate to qb, which choice is controlled by the classical
bits received

References

6.

100 C. R. Cartiere

— Alice measures her qubits, collapsing them; and stores the result in two
classical bits
cdata <- mq (qdata,qa)
return (cdata)

bobcond :: (Bool, Bool) -> Qbit -> U

bobcond (False, False) qb = qI qb —

bobcond (False, True) qb = qX qb — apply the X gate (not gate)

bobcond (True , False) qb = qZ qb — apply the Z gate (pi phase shift gate)

bobcond (True , True) qb = qZX qb — apply the ZX sequence of gates

bob :: Qbit -> (Bool, Bool) -> QIO (Qbit)
bob qb cdata = do

applyU (bobcond cdata qb)

— Bob now finally has the result of the manipulation of qb
return (qb)

7

1. Cartiere CR (2020) Formal quantum software engineering: introducing the formal methods of
software engineering to quantum computing. https://doi.org/10.13140/RG.2.2.26157.10725/2

2. Woodcock J, Davies J (1996) Using Z. Specification, refinement, and proof. Prentice Hall
3. Cartiere CR (2013) Quantum software engineering: bringing the classical software engineering

into the quantum domain. Master’s Thesis, University of Oxford, Department of Computer
Science, Software Engineering Programme

4. Jacky J (1996) The way of Z: practical programming with formal methods. Cambridge
University Press

5. Ruhela V (2012) Z formal specification language – an overview. Int J Eng Res Technol (IJERT)
01(06)
Dirac P (1958) The principles of quantum mechanics, 4th edn. Oxford University Press

7. Mateus P, Sernadas A (2004) Reasoning about quantum systems. In: Alferes JJ, Leite J (eds)
Logics in artificial intelligence. JELIA 2004. Lecture Notes in Computer Science, vol 3229.
Springer, Berlin

7The quantum circuits of Figs. 5.2 and 5.3 have been drawn with the help of quirk, the quantum
circuit simulator by Craig Gidney (https://algassert.com/quirk).

https://doi.org/10.13140/RG.2.2.26157.10725/2
https://algassert.com/quirk

9.

11.

12.

13.

15.

17. Simon DR (1997) On the power of quantum computation. SIAM J Comput 26(5):1474–1483
18. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing. Oxford

University Press
19. Spivey JM (1992) The Z notation: a reference manual. Prentice Hall International
20. Saaltink M (1993) Z and EVES. Technical Report TR-91-5449-02
21. Roberts D, Nelms J, Starkey D, Thomas S (2012) Travelling by teleportation. Phys Spl Top

J. University of Leicester

5 Formal Methods for Quantum Software Engineering 101

8. Barenco A (1998) Quantum computation: an introduction. In: Lo H, Popescu S, Spiller T (eds)
Introduction to quantum computation and information. World Scientific
Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

10. Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum
computer. Proc R Soc Lond A 400:97–117
Green AS. The QIO package. Haskell community’s central package archive of open source soft.
https://hackage.haskell.org/package/QIO, v1.3
Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev
Lett 70:1895
Nielsen M, Chuang I (2010) Quantum computation and quantum information: 10th Anniversary
Edition. Cambridge University Press, Cambridge. https:/ /doi.org/10.1017/
CBO9780511976667

14. Greenwood GW (2001) Finding solutions to NP problems: philosophical difference between
quantum and evolutionary search algorithms. Portland State University, Portland, OR
Gross AM, Stallard J (2007) Implementing Grover’s algorithm using linear transformations in
Haskell. In: Proceedings of the Eighth Symposium on Trends in Functional Programming, vol
8. p XXV

16. Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc
Lond A 439:553

https://hackage.haskell.org/package/QIO
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

Chapter 6
A Quantum Software Modeling Language

Carlos A. Pérez-Delgado

6.1 Introduction

Modeling languages are useful tools for designing, discussing, and presenting new
software, hardware, and complete systems. Software modeling languages, in partic-
ular, have been so useful that they can be partially credited with transforming the
discipline of computer science (CS). Software modeling has helped CS to grow from
a solely mathematical research area in the mid-twentieth century to a multi-
disciplinary field that spans the entirety of the theory to end-product spectrum,
employs millions worldwide, produces ubiquitous and pervasive technology, and
has revolutionized every aspect of the human experience at the beginning of the
twenty-first century.

The key insight behind software modeling, and software engineering in general,
is that as long as any one person is required to understand the entirety of a project, the
complexity of projects that can be undertaken by homo sapiens will be severely
curtailed. The keys to surpassing the said limitations are encapsulation and abstrac-
tion. Together these allow large groups of humans to collaborate on projects whose
complexities are too high to be understood by any one person alone.

It is thus natural to expect quantum software modeling to similarly help quantum
computation in its evolution. Today, quantum computation is studied and developed
almost exclusively by very highly trained specialists: mostly mathematicians, com-
puter scientists, quantum chemists, and theoretical and experimental physicists.

If quantum information technologies are to achieve even a fraction of the ubiquity
of their classical brethren, then the stage must be opened to a broader set of
professionals. To achieve this, it will be necessary to be able to understand, and
discuss, quantum software without having to delve down to the (atomic) details.

C. A. Pérez-Delgado (*)
University of Kent, Canterbury, Kent, UK
e-mail: c.perez@kent.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_6&domain=pdf
mailto:c.perez@kent.ac.uk
https://doi.org/10.1007/978-3-031-05324-5_6#DOI

Software engineers today do not (usually) develop, discuss, or analyze their work at
a level of abstraction that includes half-adders and flip-flops, let alone voltages or
resistances. Similarly, we will need a language that allows us to discuss quantum
software that does not concern itself with Hamiltonians, unitary gates, or even
quantum circuits.

104 C. A. Pérez-Delgado

In the year 2021, there aren’t many, if any, large-scale quantum software projects.
So, it may seem premature to develop a quantum software modeling language. This
brings us to next reason why software modeling languages are important: they act as
an intuition pump. Language can indeed influence our ability to craft new ideas [1]
and not just communicate them effectively [2]. All computer scientists are familiar
with how different programming paradigms and their associated languages allow us
to think about and tackle problems in different ways. All physicists are similarly
familiar with Dirac notation and Feynman diagrams. And most mathematicians will
be equally fluent in category and type theories—all to name but a few examples.

Software modeling languages have been amply credited as powerful intuition
pumps in the past. Software modeling, and more generally software engineering, has
had a large measurable influence on lower abstraction level research in computer
science, such as programming languages [3]. It therefore stands to reason that the
development of a proper quantum software modeling language can also help in the
development of lower abstraction level tools—like quantum programming
languages.

What then does a “proper” quantum software modeling language look like? That
is the topic of the next section.

6.2 Fundamental Axiom of Quantum Software Engineering

A software modeling language is, above all, a language. As such, its utility is
directly proportional to the square of the number of people that “speak”
it. Therefore, while it may have some benefits, one should resist the temptation to
start completely anew when developing a quantum software modeling language. On
the contrary, it is quite clear that in order to derive the maximum possible value of a
new quantum software modeling language, one should aim to make it as close as
possible to existing classical modeling languages. We can explicitly state this
requirement as the first part of our Fundamental Axiom of Quantum Software
Engineering: quantum software engineering should be as similar to classical soft-
ware engineering as possible.

Is it possible then that a specific quantum software modeling language may be
entirely superfluous and a purely classical one would suffice? No. Quantum software
and classical software, while they may share many important similarities, are
different in fundamental ways. More importantly, they are different in fundamental
ways that need to be reflected in a design document. In the section, we will discuss
exactly how so.

6 A Quantum Software Modeling Language 105

|x1〉 H U

|x2〉 H

(a) Classical Logic Circuit (b) Quantum Circuit

|x3〉 U

x1

x2

Fig. 6.1 Two logic circuits, each depicting a software program. The one on the left is classical
logical circuit, whereas the one on the right is a quantum circuit. Note how, at least superficially,
there is little to tell each one apart

Before we consider how they are different, however, let us first consider how
quantum and classical software are similar or even the same. What sets quantum
software apart from its classical counterpart is, of course, the use of quantum
algorithms. However, despite the name, quantum algorithms are not, in themselves,
quantum objects. Consider Fig. 6.1. Part A shows a classical algorithm, while Part B
shows a quantum algorithm. In both cases, we have an ordered set of operations,
taken from a larger set, that are applied to some data called the input.

What distinguishes classical circuit from quantum circuits are two things. The
first is the set of permissible operations. Classical gates are usually taken to come
from a standard set of universal logical bit operations, such as {AND, NOT} or
simply {NAND}. Quantum gates, on the other hand, are taken from a universal set of
unitary operators, such as {CNOT, H, S, T}.

The second distinction is deeply connected to the first (and is what gives rise to
the operator disparity): quantum and classical algorithms (and software) operate on
different types of information. This is both an obvious and a subtle point. It is
obvious that quantum algorithms (and software) operate on quantum information,
while classical algorithms (and software) operate on classical information.

As a software engineer, this distinction can be treated much in the same way that
other, more traditional, data-type distinctions are treated. In traditional software
engineering, it would not be uncommon to deal with modules that, say, operate on
string or integer types. Specifying that a function/module/method takes as input a
string rather than an integer is a well-understood design decision.

However, in classical software engineering, this distinction is completely artifi-
cial. There is, fundamentally, no real distinction between a string and an integer.
Both are merely an ordered set of bits. It is true that we often create an abstraction
layer, on top of bits, that contains objects such as strings and integers, each such
object with its set of permissible operations, and so on. However, this abstraction is
there only for the benefit of the programmer or software engineer.

Quantum information, on the other hand, is fundamentally different from classical
information. Fundamental laws of physics dictate different sets of permissible
operations for each. Quantum information can be put in superposition; classical
information cannot. Classical information can be cloned or copied; quantum

information—in general—cannot. While quantum information can be converted to
classical information and vice versa, the operation is constrained to the following
fundamental physical laws, such as the Born rule, and is often an unavoidably lossy
conversion.1

106 C. A. Pérez-Delgado

Hence, the software engineer’s decision to have a module/function/etc. operate
on quantum or classical information is a fundamental one. And, it has immense
repercussions. Quantum information can only be stored in a quantum module,
operated by a quantum module, and can only be sent/communicated to other
quantum modules. And these are all fundamental requirements, rather than engi-
neering limitations. Even if quantum computers become as cheap and easy to operate
as classical ones, for the reasons stated above, it will always be necessary to
distinguish the use of classical from quantum information in a software design
document.

This brings us to the second part of the Fundamental Axiom of Quantum
Software Engineering which we can now state in full: quantum software engineering
should be as similar to classical software engineering as possible, but no more.

! Fundamental Axiom of Quantum Software Engineering

Quantum software engineering should be as similar to classical software engineering as possible,
but no more.

In the next section, we discuss precisely how quantum software modeling needs
to be different from classical.

6.3 Design Principles for a Quantum Software Modeling
Language

In the previous section, we discussed the fundamental axiom behind our approach to
software modeling and software engineering in general. In this section, we will
describe a set of guiding principles that we argue are both necessary and sufficient
for a quantum software modeling language to achieve the aforementioned central
axiom.

We will introduce five design principles. Each principle establishes a way in
which quantum software modeling must differentiate itself from classical software
modeling. For each principle, we will discuss why it is an essential feature of a
quantum software modeling language. Finally, we will make the argument as to why
these are the only five ways in which a quantum software modeling language should
differentiate itself from a classical one.

1For a full discussion on the nature of quantum information, please see a proper introductory text,
such as Nielsen and Chuang’s classic Quantum Computation and Quantum Information [4].

From here forth, we will adopt the language of object-oriented design when
appropriate. This is to ensure a consistent nomenclature throughout this chapter
and because we will be extending an existing classical object-oriented software
modeling language in the next section.

6 A Quantum Software Modeling Language 107

• Quantum Classes. Whenever a software module makes use of quantum informa-
tion, either as part of its internal state/implementation or as part of its interface, this
must be clearly established in a design document. The first and most obvious
requirement is the proper labeling of modules or classes. As discussed in the
previous section, whether a particular module is classical or quantum is an impor-
tant design consideration, with important ramifications. A quantum module will
operate on quantum information, using quantum functions/methods. It will need to
run on quantum hardware that allows for the storing of the said quantum informa-
tion and is capable of executing the said quantum operations. Classical modules do
not have any of these requirements. While classical modules can be, in general, run
on the same quantum hardware as the quantummodules, not doing so offers several
strong advantages. As such, it must be explicitly specified in any design document.
Below, we will discuss some guidelines that are helpful to a software designer
when deciding whether a particular module is classical or quantum.

• Quantum Elements. Each module interface element (e.g., public functions/
methods, public variables) and internal state variables can be either classical or
quantum and must be labeled accordingly.

• Quantum Variables. Each variable should be labeled as classical or quantum. If
the model represents data types, the variables should also specify the classical
(e.g., integer, string) or quantum (e.g., qubit, qubit array, quantum graph state)
data type.

• Quantum Operations. For each operation, both the input and output should be
clearly labeled as either classical or quantum. Whether the operation internally
operates quantumly should also be labeled.

On a more basic level, data (variables) and operations that act on the data are, as
discussed at length in the previous section, either classical or quantum. Quantum
information can generally only be stored in a quantum variable. And, while classical
information can be stored in a quantum variable, this would be both wasteful and
overly restrictive if the information to be stored is known to always be classical (e.g.,
while the information could be potentially cloned, since it is classical, the design
document would imply that, in general, it cannot).

Likewise, software operations (functions, methods) are either meant to operate on
classical or quantum data and are, in general, not interchangeable. As such, it is
important to label what kind of data the function takes as input and produces as output.

• Quantum Supremacy. A module that has at least one quantum element is to be
considered a quantum software module; otherwise, it is a classical module. Quan-
tum and classical modules should be clearly labeled as such. One of the major
considerations of any quantum software design is which modules are to be quantum
and which are classical. This principle states, in accordance with the central axiom

108 C. A. Pérez-Delgado

stated in the previous section, that a module is to be quantum if and only if it
contains quantum elements. Stated differently, a quantum module can contain both
classical and quantum (interface) elements. A classical module can only have
classical elements. A module having only classical elements will always be a
classical module unless it is “upgraded” by the next principle: quantum aggregation.

• Quantum Aggregation. Any module that is composed of one or more quantum
modules will itself be considered a quantum module and must be labeled as such.
In a similar way to the “quantum supremacy” principle, if a software module
aggregates (is composed of) at least one quantum module, then it itself will also
be labeled as a quantum module. It could be argued that the previous two
principles ought to be treated as a single, more general, principle: if a module
uses quantum information, in any way, as part of its implementation, then it is to
be considered a quantum module. Otherwise, it is a classical one.

There are two reasons to state the two principles separately. First, in most
software modeling languages, aggregation is considered and represented in separate
and distinct ways from other internal elements. Figure 6.3 gives an example of how
aggregated sub-modules (sub-classes) are represented differently from other internal
elements in both the quantum software modeling language Q-UML and the original
modeling language upon which it is based, UML.

A second important reason is that it allows us to explicitly make the distinction
between aggregation and communication, which is the next principle discussed.

• Quantum Communication. Quantum and classical modules can communicate
with each other as long as their interfaces are compatible, i.e., the quantum module
has classical inputs and/or outputs that can interface with the classical module.

In classical software engineering, there are two different ways in which two
distinct modules can interact. The first one is the aforementioned aggregation.
This occurs when one module is subsumed as part of another module. The second
is communication. This allows two separate modules (classes) to work together
without one being an internal part of the other.

In classical software engineering, there is really little distinction between the two.
In either case, there are two modules that need to be aware of each other’s interfaces
and are expected to couple or work well together. The major consideration for a
software engineer when deciding whether class B is an internal class of A or both
classes A and B merely communicate with each other is whether packages/modules/
classes other than A need to be aware of class B. If none do, then it makes sense to
hide class B as an inner, aggregated, class of A.

In QSE, there is another, more important, consideration. As noted earlier, a
quantum class is one that makes use of quantum resources. It is important to note
whether or not a class is quantum because that determines, among other things, what
type of hardware resources is needed to run the module.

Let us suppose that class A is (otherwise) classical and B is intrinsically quantum.
By making B an aggregated internal class of A, the software engineer is making the
implementer of class A responsible for any and all quantum resources incurred by

class B. In short, the designer is making the statement that quantum hardware and
resources are needed to implement A. Hence, although A has no quantum elements
of its own, it itself becomes a quantum class.

6 A Quantum Software Modeling Language 109

In contrast, if the designer chooses to make both A and B distinct classes that
merely communicate with one another, then class A can be implemented/run on fully
classical hardware. Any communication between A and B must then happen through
purely classical communication channels—given that A is classical, it has no
quantum interfaces and can therefore neither send nor receive quantum information
messages. Class B is then responsible for transforming any quantum information
meant for class A into classical (generally via measurement).

This consideration goes well beyond the differentiation between module aggre-
gation and communication in classical software engineering; and it is a clear
example of how and when QSE needs to go beyond its classical counterpart.

This concludes our discussion on the fundamental principles behind quantum
software modeling language design. We present all five principles on Table 6.1 for
easy reference.

The principles discussed in this section are the immediate consequences of
precisely two things. The first is the maxim we introduced in the previous section:
that quantum software engineering should differ from classical software engineering
only inasmuch as is absolutely necessary. The second is the intrinsic nature of
quantum information and its fundamental features that distinguish it from classical
information.

Table 6.1 Quantum software modeling language core design principles

Quantum ClassesWhenever a software module makes use of quantum information, either as part
of its internal state/implementation or as part of its interface, this must be clearly established in a
design document

Quantum Elements Each module interface element (e.g., public functions/methods, public
variables) and internal state variables can be either classical or quantum and must be labeled
accordingly
Quantum Variables Each variable should be labeled as classical or quantum. If the model

represents data types, the variables should also specify the classical (e.g., integer, string) or
quantum (e.g., qubit, qubit array, quantum graph state) data type
Quantum Operations For each operation, both the input and output should be clearly labeled

as either classical or quantum. Whether the operation internally operates quantumly should also be
labeled

Quantum Supremacy A module that has at least one quantum element is to be considered a
quantum software module; otherwise, it is a classical module. Quantum and classical modules
should be clearly labeled as such

Quantum AggregationAny module that is composed of one or more quantummodules will itself
be considered a quantum module and must be labeled as such

Quantum Communication Quantum and classical modules can communicate with each other as
long as their interfaces are compatible, i.e., the quantum module has classical inputs and/or
outputs that can interface with the classical module

110 C. A. Pérez-Delgado

These principles can—and we argue should—be applied when developing any
kind of quantum software modeling language, regardless of its level of formality, or
mathematical rigor. In the following section, we will put these principles into
practice with the presentation of a particular quantum software modeling language:
Q-UML.

6.4 Q-UML

In this section, we present Q-UML. Q-UML is an extension of the Unified Modeling
Language (UML) that allows it to properly model quantum software. It was first
introduced, alongside several other ideas covered in this chapter, at the Quantum
Software Engineering Workshop of the ACM/IEEE International Conference on
Software Engineering (ICSE) 2020 [5].

UML was chosen as the “base” classical modeling language for this first quantum
modeling language for two closely related reasons. The first is that UML is an
exceptionally easy to learn and use software modeling language, requiring very little
training and background knowledge to understand. The second is its consequently
large user base. By using UML as our basis, we can easily focus on developing and
discussing the quantum extensions.

These extensions aim to minimally change base UML. A direct line can be drawn
from each change to base UML to principle discussed in the previous section. The
changes are also implemented in a way as to make Q-UML maximally backwards
compatible with base UML. The goal is that for a purely classical piece of software,
both the UML and Q-UML models ought to be identical. And, indeed, that is
the case.

It did not, however, must be this way, nor is this a direct result of the principles
detail in the previous section or the maxim (axiom) from two sections past. The first
QSE principle discussed in the previous section states that quantum classes (mod-
ules) and classical ones need to be differentiated from one another. In Q-UML, we
choose to make that distinction by presenting classical classes just as they would
appear in base UML and adding new notation for quantum classes.

6.4.1 UML

UML (base) is a visual language that represents and models software via diagrams.
UML is agnostic with respect to programming languages tools, platforms, and
software development processes. That said, UML is an object-oriented modeling
language.

As its name suggests, UML attempts to be usable in any complex system design
and engineering. In many such systems, software may be merely a small component

of the overall whole. There are in total 14 different types of UML diagrams, split into
two general categories: structure and behavior diagrams.

6 A Quantum Software Modeling Language 111

Structure diagrams are used to model and represent the static elements of a
(software) system. The seven structure diagram types are class, package, object,
component, profile, composition structure, and deployment.

Behavior diagrams are used to model and represent the dynamic elements of a
(software) system. The seven behavior diagram types are state machine, use case,
activity, sequence, interaction overview, communication, and timing. These last four
are commonly referred to as interaction diagrams.

Of these 14 diagram types, the most widely used (and hence important) diagrams
are use case, class, object, state machine, sequence, and activity diagrams. Use case
diagrams are used to specify the functionality of a (software) system.

Class and object diagrams, as their names suggest, show the classes and objects of
the system, including their internal members, and their relationships (inheritance,
aggregation, communication) with each other. State diagrams are used to represent
the intra-object dynamics of the software system. Activity diagrams represent the
general logical and control flow of the entire system.2

6.4.2 Q-UML Extensions

Following the aforementioned QSE axiom and our design principles, all Q-UML
diagrams are identical to (base) UML diagrams, except for one thing: all instances of
quantum information, whether it is being stored, communicated, or processed, are to
be clearly labeled as such. Since UML is a graphical language, the Q-UML exten-
sions are also graphical.

There are two ways in which UML presents information in its diagrams. The first
is pictorially. Classes and objects are represented by rectangles, in class/object
diagrams, and their relationships to one another are represented via connecting
lines/arrows/etc. The second is via text, usually used as labels, for instance, the
names of classes and objects and the internal members of either.

Quantum information can be represented either pictorially or textually in
Q-UML. When it represented textually, quantum information will be typeset in
bold font, to distinguish it from classical. When quantum information is represented
pictorially, double lines will be used to set it apart. Whenever possible, both bold
font and double lines are used to represent quantum objects/processes/etc. This
covers the syntax of Q-UML.

As for the semantic rules, these follow from the previously discussed principles.
All static structures and dynamic processes in Q-UML are by default classical. A

2There are many good introductory texts to UML. That said, the text UML @Classroom: An
introduction to object-oriented modeling by Seidl et al. [6] is not only excellent; it happens to cover
in-depth precisely the UML diagrams discussed here.

static structure (e.g., class) is set to quantum if and only if (a) it directly stores
quantum information or (b) one of its constituent structures (a variable, aggregated
class, etc.) stores quantum information. Likewise, a dynamic structure (e.g., process)
is quantum if and only if it is itself a quantum information process or one of its own
sub-processes is a quantum information process.

112 C. A. Pérez-Delgado

Fig. 6.2 Q-UML use case diagram of Shor Application. Note how any use case of the software that
requires quantum resources (in this case, all of them) is distinguished by use of a double line

The rules are best presented through example. For this purpose, we present Shor
Application: a quantum software implementation of the well-known Shor’s algo-
rithm [7]. This software system would have obvious applications in cybersecurity:
Shor’s algorithm can be used to easily break RSA2048 encryption. Of course, there
are other more benign applications: factoring large integers is useful in many
number-theoretic, combinatorial, and optimization problems. There are likely
many more use cases for this software system, but we can focus on these two and
provide a Q-UML use case diagram that details them—see Fig. 6.2.

6 A Quantum Software Modeling Language 113

Use case diagrams in Q-UML are a bit subtle and slightly different from other
diagrams in their portrayal of quantum information resources. Obviously, human
actors (users of the system) cannot be quantum in nature.3 Further, no quantum
communication is sent to/from the user. Rather, the double lines in the use case
diagram are meant to denote the use of quantum resources, by the software system,
in satisfying the use case requirements.

A more common portrayal of quantum information in Q-UML is in class and
object diagrams, which we discuss next.

6.4.2.1 Class and Object Diagrams

Class (object) diagrams in Q-UML, as in base UML, denote not just classes (objects)
in the software system but also their internal elements and the relationships (com-
munication, aggregation, inheritance) between them.

Figure 6.3 showcases a Q-UML class diagram of our Shor Application. We can
use it to showcase the rules as they apply to both class and object diagrams. Shor
Application makes use of six classes—five of them quantum. The class Euclidean is
the only non-quantum one. The classes ShorApplication, ShorFactor, ShorOrder,
and QFT_n are all quantum. Note how their names are all typeset in bold to
emphasize this fact. The class QFT is both quantum and abstract; as such, its
name is typeset in both bold and italics, the latter following the (base) UML rule
to italicize abstract class names.

Finally, note how for all quantum classes the border of the rectangle denoting the
class uses a double line. This is a departure from the previous version of Q-UML [5],
which used only bold typeface to denote quantum classes.

This change was made for three reasons. The first reason is consistency. Q-UML
has—essentially—two syntactic rules, one for pictorial and one for text representa-
tions. Since classes in class diagrams (and objects in object diagrams) are
represented in both ways (a rectangle and a name), it makes sense that they follow
both sets of rules.

The second reason is readability and clarity. It is common for the class names to
be typeset with a slightly larger font than class elements. Merely using bold typeface
for quantum classes may not be clear or readable enough in some conditions.

Third, the use of double-lined borders for quantum classes does not seem to add
much visual clutter. Hence, both mentioned advantages can be achieved without any
discernible disadvantage.

Bold text is also applied to class members. Any attributes that store quantum
information will have their name typeset in bold. Representing quantum methods is
slightly more complex. If any of the inputs are quantum, these are bold. If the output
or data type of the method is quantum, then the data type should also be bold. For

3Putting aside any philosophical discussions about the quantum nature of the universe, here, we use
quantum as a shorthand for non-classical or coherent information.

backward compatibility with regular UML, whenever the input or output data types
of a method are omitted, these will be assumed to be classical in nature. In
accordance with the previously established rules, if a class/object has any quantum
attributes or methods, then it itself is considered quantum. In this case, its name shall
also be bold, and its border will use double lines.

114 C. A. Pérez-Delgado

Fig. 6.3 Q-UML class diagram of Shor Application. Quantum classes and elements are presented
in bold text, while quantum classes and relationships use double lines

Finally, relationships between classes follow the same rules, using double lines
whenever the relationship is quantum in nature. For inheritance, if the superclass is
quantum, then the sub-class, and the inheritance relationship, will also be quantum—

however, the converse is not necessarily true. In the case of aggregation and
composition, if a class/object being aggregated/composed is quantum, then the
class/object to which it is aggregated/composed into, as well as that relationship,
will also be quantum.

In contrast to the above, association relationships do not have any special rules.
Two classes can communicate together regardless of whether one, both, or none is
quantum. However, a classical class cannot (as already established) have the capac-
ity to receive, send, or store quantum information. Hence, any communication
between a quantum and a classical class must be through purely classical channels.

6 A Quantum Software Modeling Language 115

All of these rules translate directly to objects, their members and relationships, in
object diagrams. Next, we move onto the features of behavior Q-UML diagrams.

6.4.3 Activity and State Diagrams

Much in the same way that class and object diagrams are so closely related that they
merit being discussed together, so do activity and state diagrams. However, while
state and object diagrams are so similar that presenting one is sufficient to understand
both, activity and state diagrams have subtle and important difference between them
in Q-UML. Hence, it is important to detail them both with examples. Figure 6.4
presents a state diagram of an object belonging to the class QFT_n. Figure 6.5
presents a flowchart of the main algorithm followed by Shor Application.

Both follow the same basic rules: quantum information states and processes are
denoted through the use of bold text and double lines.

In our state diagram (Fig. 6.4), we have two quantum states: a computational
basis state and a Fourier basis state. Each is properly denoted as being quantum
states. The operation that transforms one into the other is necessarily a quantum
operator.

Hence, the transitions between both states—the arrows—are denoted as quantum
states using double lines.

Now consider the activity diagram in Fig. 6.5. Once again, the only quantum
operation—the period-finding step—is properly denoted as a quantum operation
using both double lines and bold text. However, note the complete lack of double-
lined arrows throughout the diagram. Why is this the case?

In Q-UML diagrams, as in base UML, activity diagrams represent multi-step
processes. Each rectangle (node) represents an activity. And the arrows merely
denote the passing of control from one logical activity to the next. Unlike in state
diagrams, where arrows denote operations or processes that can be either classical or
quantum, in activity diagrams, they denote the flow of control. It would be a category
error to even attempt to classify these as either classical or quantum.

Fig. 6.4 Q-UML state diagram of an object of class QFT_n. One can tell immediately that both
represented states are quantum states, and the transitions between them are mediated via quantum
operators, due to the use of bold text and double lines

116 C. A. Pérez-Delgado

Fig. 6.5 A Q-UML activity diagram for Shor Application, showing an overview of the logical
control flow of the program. The sole quantum operation is displayed using a double-lined border
and bold text

This relates back to the discussion in Sect. 6.2. While algorithms may operate on
classical and/or quantum information, the algorithms themselves—the logical flow-
control of a program—are always classical objects.

Next, we discuss sequence diagrams in Q-UML.

6.4.4 Sequence Diagrams

Sequence diagrams in Q-UML, like in base UML, allow us to portray the dynamic
relationship between modules in a software program. Figure 6.6 shows a Q-UML
sequence diagram for Shor Application.

Like before, we make use of bold text and double lines to portray quantum
information textually and pictorially. Names of quantum classes and the labels of
quantum messages are typeset in bold. The arrows depicting quantum messages use
double lines.

In another departure from the original version of Q-UML [5], we now also have
the borders of quantum classes and their lifelines, active objects, and threads using
double lines. Once again, this change was made for consistency and readability.

Note that although the relationship between ShorFactor and ShorOrder is
quantum, the messaging between them is not. A module is marked as quantum if

it uses quantum resources in any form, either directly as part of its internal imple-
mentation or as part of an aggregated module. If an aggregated sub-class is quantum,
then the encompassing class must also be marked as quantum. In a class diagram, the
quantum composition relationships inform us—especially in the case of a seemingly
classical module that does not in itself use quantum resources—which composed
modules are using quantum resources.

6 A Quantum Software Modeling Language 117

Fig. 6.6 Q-UML sequence diagram for Shor Application. Once again, bold text and double lines
are used to represent quantum classes/objects, their lifelines and threads, and quantum communi-
cation between them

Also, note the communication between the objects ShorOrder and QFT_n. The
module QFT_n operates on a quantum state. Hence, both “set” messages are
quantum. Likewise, the return messages ρ and ρ’ are quantum states. However,
the request to perform a quantum Fourier transform (QFT) or a QFT inverse
operation can (and therefore must) be communicated classically. This diagram
showcases the level of granularity available to us using these diagrams with the
proposed extensions.

118 C. A. Pérez-Delgado

6.4.5 Discussion and Further Reading

Q-UML, its design principles, and the axioms upon which those are built were first
introduced at the Quantum Software Engineering Workshop of the IEEE/ACM 42nd
International Conference on Software Engineering, in 2020 [5, 8]. This was among
the first major international events centered around quantum software engineering.

QSE is still a very young field. Q-UML—and the work surrounding—has been
from its inception an attempt to shape the future direction of this field. At its core,
Q-UML is what it says it is: a modeling language for quantum software. Hopefully, it
will become a pragmatically useful one: used in the design, development, and
discussion of complex quantum software. This chapter serves as an introduction,
for the working quantum software engineer, to Q-UML.

Hopefully, Q-UML will also serve as a template for further QSE development.
Q-UML is a testbed for the axiom put forth in Sect. 6.2. If Q-UML succeeds as a
modeling language, it will prove the utility of the said axiom and the design
principles that spawn from it. Regardless of the speed of adoption of Q-UML as a
practical tool, its development serves one other purpose: to spark a useful discussion
about the direction of QSE research and development. There is already some positive
evidence of this happening [8–10].

In short, this is a very interesting and exciting time for the field of quantum
software engineering. Many interesting discoveries and developments await those
willing and able to search them out. Q-UML is work in one possible direction in this
field. But it is also an attempt to argue how work in any direction in this new field
should be conducted. For example, the development of a formal specification
language for quantum software (something that Q-UML is certainly not) could
also be based on the same axiom/principles as Q-UML. And so, hopefully, the
contents of this chapter are useful to any researcher doing work in this field,
regardless of the direction they wish to take.

Acknowledgments The author would like to acknowledge funding through the EPSRC Quantum
Communications Hub (EP/T001011/1). The author would like to thank Hector Perez-Gonzalez for
his valuable work, knowledge, and insight, during the collaboration that gave birth to Q-UML, and
would also like to thank Joanna I. Ziembicka for useful comments during the preparation on this
manuscript.

References

1. Jackendoff R (1996) How language helps us think. Pragmatics Cognition 4(1):1–34
2. Mercer N (2002) Words and minds: how we use language to think together. Routledge
3. Ryder BG, Soffa ML, Burnett M (2005) The impact of software engineering research on

modern programming languages. ACM Trans Softw Eng Methodol 14(4):431–477. https://
doi.org/10.1145/1101815.1101818

4. Nielsen MA, Chuang I (2002) Quantum computation and quantum information

https://doi.org/10.1145/1101815.1101818
https://doi.org/10.1145/1101815.1101818

6 A Quantum Software Modeling Language 119

5. Pérez-Delgado CA, Perez-Gonzalez HG (2020) Towards a quantum software modeling
language. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp 442–444

6. Seidl M, Scholz M, Huemer C, Kappel G (2015) UML@ classroom: an introduction to object-
oriented modeling. Springer

7. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In:
Proceedings 35th annual symposium on foundations of computer science. IEEE, pp 124–134

8. Abreu R, Ali S, Yue T (2021) First international workshop on quantum software engineering
(q-se 2020). ACM SIGSOFT Softw Eng Notes 46(2):30–32

9. Moguel E, Berrocal J, García-Alonso J, Murillo JM (2020) A roadmap for quantum software
engineering: applying the lessons learned from the classics. In: Q-SET@ QCE. pp 5–13

10. Sánchez P, Alonso D (2021) On the definition of quantum programming modules. Appl Sci
11(13):5843

Chapter 7
Quantum Software Models: Density Matrix
for Universal Software Design

Iaakov Exman and Alon Tsalik Shmilovich

7.1 Introduction

Quantum Software Models [1] have been inspired by Linear Software Models [2, 3]
which represent software System Under Design (SUD) by linear algebraic structures
such as the modularity matrix and the Laplacian matrix [4]. The common motivation
behind theLinear andQuantum kinds of SoftwareModels consists of three arguments:

• Linear algebra—is both the basis of Linear Software Models’ entities and the
basis of Quantum Computation objects (see, e.g., Nielsen and Chuang [5]).

• Density matrix as a scaled Laplacian—a density matrix is easily obtained by
scaling a Laplacian matrix, as explained in Sect. 7.1.2.

• Modularization as the Models’ goal—the purpose of both Software Models is to
design modular software systems for the sake of human understanding.

This Introduction overviews Quantum Software Models’ concepts and purpose.

7.1.1 Bipartite Graph and Its Laplacian Matrix

A Laplacian matrix L [6] is generated from a graph, according to the equation

L ¼ D� A ð7:1Þ

I. Exman (*) · A. T. Shmilovich
Software Engineering Department, The Jerusalem College of Engineering – Azrieli, Jerusalem,
Israel
e-mail: iaakov@jce.ac.il

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_7&domain=pdf
mailto:iaakov@jce.ac.il
https://doi.org/10.1007/978-3-031-05324-5_7#DOI

122 I. Exman and A. T. Shmilovich

Fig. 7.1 Abstract bipartite graph—Its eight vertices form a Structors set {S1,S2,S3,S4} and a
Functionals set {F1,F2,F3,F4}. For instance, the Structor S3 provides two Functionals F2 and F3.
This graph shows three modules, connected components, surrounded by (blue) round rectangles:
one 2-by-2 module {S2,S3,F2,F3} and two 1-by-1 modules {S1,F1} and {S4,F4}. (Figures in color
online)

Fig. 7.2 Laplacian matrix fitting the bipartite graph in Fig. 7.1.—As the graph has eight vertices,
the matrix has eight columns and eight rows, each labeled either by a Functional Fi or a Structor Sk
(yellow background). Columns and rows are labeled in the same vertex order. The Degree diagonal
matrix has eight elements (green background). The Adjacency matrix elements, in the upper-right
quadrant and reflected around the diagonal in the lower-left quadrant, are eithe

where D is a diagonal Degree matrix showing graph vertex degrees and A is the
Adjacency matrix showing for vertex pairs, whether they are linked neighbors, in
which case the respective matrix element is 1-valued; otherwise, it is 0-valued.

r zero-valued or
negative by Eq. (7.1). The three system modules are also marked in (blue) color

We represent software systems by bipartite graphs, with two distinct vertex sets,
where each vertex is only linked to vertices in the other set. The Structors Si vertex
set generalizes object-oriented design (OOD) classes. The Functionals Fk vertex set
generalizes class methods. A Structor providing a Functional, e.g., a class containing
a method definition/declaration, is linked by an arrow to the respective Functional. A
sample abstract software system bipartite graph is seen in Fig. 7.1.

The bipartite graph in Fig. 7.1 generates the Laplacian matrix seen in Fig. 7.2.

7.1.2 From Laplacian to Density Matrix

The Laplacian matrix of a graph is symmetric, as can be observed in Fig. 7.2, and is
easily verified to be positive semidefinite [7]. On the other hand, the state of a
quantum system, in von Neumann’s density operator picture of the Hilbert formu-
lation of quantum mechanics, is identified with a density matrix [8], which is a
positive semidefinite trace one, Hermitian matrix.

Braunstein and co-authors [9] observed that the Laplacian matrix L(G) of a graph
G, scaled by the degree-sum d(G), has trace one. Thus, they defined the scaled
Laplacian as the density matrix ρ of the graph G:

ρ ¼ L Gð Þ=d Gð Þ: ð7:2Þ

As we represent any software system by a bipartite graph and by its
corresponding Laplacian matrix, we re-define the density matrix ρ in Eq. (7.2) as
the design density matrix of the given software system.

For instance, the degree-sum for the Laplacian matrix in Fig. 7.2 is d(G) ¼ 10.
Thus, the scaling factor to obtain the density matrix ρ of the graph G in Fig. 7.1 is
1/d(G) ¼ 0.1.

7.1.3 Density Matrix for Universal Software Design

An important claim of this chapter: it does not make sense to have distinct design
procedures for quantum, classical, and hybrid software systems.

We take into account the success of Laplacian-based design procedure [4] for
classical software systems in Linear Software Models and the simple relation of the
density matrix ρ to the Laplacian in Eq. (7.2). Thus, ρ is a plausible proposal for a
Universal Software Design procedure: for classical systems, the Laplacian is similar
to the density matrix; for quantum systems, the density matrix is a basic quantum
notion; hybrid systems are composed of classical and quantum sub-systems.

This chapter demonstrates formally and illustrates by case studies that:

7 Quantum Software Models: Density Matrix for Universal Software Design 123

• Any software system—quantum, classical, or hybrid—can be designed from the
information in the design density matrix of the system.

The design density matrix is a density matrix for all purposes. Thus, we shall
generally omit the design qualifier, unless when in need to emphasize this feature.

124 I. Exman and A. T. Shmilovich

7.1.4 Chapter Organization

This chapter is organized as follows: Sect. 7.2 provides the Universal Software
Design theory. Section 7.3 describes the Quantum Software Design and illustrates it
with two case studies. Section 7.4 does the same for Classical Software Design.
Section 7.5 describes typical hybrid software architecture and its Hybrid Software
Design. Section 7.6 cites related work. A discussion in Sect. 7.7 concludes the
chapter.

7.2 Quantum-Wise Universal Software Design Theory

Justified by the prevalent view in physics—classical systems are a classical limit of
quantum systems—we state the Universal Software Design theory in quantum terms.
Hybrid systems are a combination of quantum and classical sub-systems.

Specifically, this section re-defines software modules as sub-spaces of the soft-
ware system state space and states how to obtain modules’ number and their
components. Then, it formulates the Quantum Modularization Procedure, arguing
that it is a Universal Software Design procedure.

7.2.1 Modules as Sub-spaces of the Software System
State Space

A projection operator, in short, a projector, operates on its argument projecting it
into a sub-space of the relevant Hilbert state space.

Strictly speaking, a density matrix is the matrix representation of von Neumann’s
density operator [8], itself a projector. In the scientific literature, one freely inter-
changes the matrix for its operator. Using Dirac’s bra-ket notation [10], a density
operator ρ is a kind of ket-bra, as seen in Eq. (7.3):

ρ ¼ =ψihψ= ð7:3Þ

where ψ is a generic symbol of a quantum state [5].
The density matrix ρ operates on the system state space. A set of orthonormal

basis vectors—a set of kets—spans the system state space. For instance, by scaling
the Laplacian matrix in Fig. 7.2, one obtains a density matrix according to Eq. (7.2).
The eight corresponding kets in the computational basis set are |000i, |001i, |010i, |
011i, |100i, |101i, |110i, and |111i.

Modules are re-defined next as software sub-systems with internal interactions.

⧠

⧠

7 Quantum Software Models: Density Matrix for Universal Software Design 125

Definition 1: Module of a Software System
A module is a sub-system of a given software system, spanning a sub-space of the
whole software system state space. Each module sub-space is orthogonal to all other
module sub-spaces of the software system.

7.2.2 Number and Components of Software Modules

A projector can be associated with each ket in the computational basis set. For
instance, the ket |111i ¼ (0 0 0 0 0 0 0 1)T. Applying the density matrix ρ fitting the
Laplacian in Fig. 7.2 on the ket |111i obtains the rightmost density matrix column,
labeled S4, i.e., 0.1* (0 0 0 �1 0 0 0 1)T. The resulting projector, adding the
respective bra h111| at the ket’s r.h.s., is ρ |111i ¼ 0.1* (�|011i + |111i)h111|.
The relevant density matrix as a whole may be expressed as a sum of the basis set
projectors, with appropriate coefficients.

The number of software system modules is obtained from its density matrix:

Theorem 1: Number of Modules of a Software System
The number of modules in a software system represented by its density matrix is the
number of partition classes of the basis kets’ projectors corresponding to the density
matrix of the software system.

Proof:
By linear algebra arguments (see, e.g., [4]), software modules are obtained from the
software system Laplacian matrix eigenvectors, fitting the zero-valued eigenvalues.
The proof (see, e.g., [1]) should show that projectors applied to the lowest Laplacian
eigenvectors also obtain zero-valued eigenvalues.

The components—i.e., Structors and Functionals—in a given module are
obtained according to Theorem 2.

Theorem 2: Components of Modules of a Software System
The module components in a software system represented by its density matrix are
given by the Structors and Functionals fitting the respective basis kets/bras in the
projectors of the module partition class of the software system density matrix.

Proof:
As the projectors partition classes are also partition classes of the kets/bras in the
density matrix, there is a one-to-one correspondence with the respective module
Structors and Functionals.

7.2.3 Quantum Modularization Procedure

Given the above definition of software system modules, we formulate the
Modularization Procedure in quantum terms in the next textbox.

Procedure 1: Quantum Modularization of Software Systems

126 I. Exman and A. T. Shmilovich

1. Structors and Functionals—extract Structors and Functionals lists and their
relationships, from a quantum and/or classical source diagram.

2. Bipartite Graph—transform the Structors and Functionals lists and rela-
tionships into a bipartite graph.

3. Laplacian Matrix—generate a Laplacian matrix from the bipartite graph.
4. Density Matrix—obtain the density matrix by scaling the Laplacian.
5. Projectors—apply the density matrix on the basis kets, obtaining the pro-

jectors for each ket.
6. Projectors’ Sum—express the density matrix as a sum of projectors.
7. Partition Projectors’ Sum—partition projectors into disjoint sets, each

partition fitting a different module.
8. Module Numbers—is the number of disjoint projector sets by Theorem 1.
9. Module Composition—given by the labelled basis kets subset of projectors,

by Theorem 2.

Some clarifications are necessary for this procedure:

• Source Diagrams—typical Structors and Functionals sources are class diagrams
for classical systems and high-level quantum circuits for quantum systems, as
illustrated in the next sections of this chapter.

• Module Composition—basis kets columns are labelled by Fi and Sk.

7.2.4 Universality of Software Design

To assure universality of software system design, we first need to state two
definitions

• Allowed sub-system types—a minimal number
• Allowed transition types in hybrid sub-systems—a minimal number

The allowed sub-system types are defined next.

Definition 2: Allowed Sub-system Types in a Software System Involving Quan-
tum Computation
In a software system involving quantum computation, there may be any number of
sub-systems of only the following allowed types:

Type 1: Classical sub-system an object-oriented system containing classical func-

7 Quantum Software Models: Density Matrix for Universal Software Design 127

—

tions whose data are only composed of classical bits
Type 2: Quantum sub-system—a system containing quantum gates, which can be

aggregated into boxes, whose data are only composed of qubits (or equivalently
composed of qutrits or qudits in general).

Type 3: Hybrid sub-system—a system containing only a restricted number of
transition types from classical to quantum sub-systems or vice versa.

For non-object-oriented classical systems, such as functional-oriented program-
ming, see “Future Work” in Sect. 7.7. Aggregation of quantum gates into boxes is
assumed to be a trivial action, to be illustrated in the next section.

The allowed transition types for hybrid software sub-systems are defined next.

Definition 3: Allowed Transition Types in a Hybrid Sub-system
In a hybrid software sub-system, there may be any number of transitions of only the
following types:

Classical to Quantum Transition

• Translation of a number into qubit labels
• Insertion of numbers into a function applicable to qubits

Quantum to Classical Transition

• A measurement

Next, we formulate the Universality Thesis of Software Design.

Universality Thesis of Software Design
The Quantum Modularization Procedure is applicable to any software system
involving quantum computation, containing any number of only the allowed
sub-systems and any number of only the allowed transitions within hybrid
sub-systems.

The plausibility of this Thesis relies upon two aspects:

• Any software system falls in the above types—for all known practical purposes.
• The Quantum Modularization Procedure is applicable—to systems in the above

types. In other words, one needs to show—in Lemma 1—that for the allowed
sub-system types and transitions, one is able to make the first step of the Quantum
Modularization Procedure 1, viz., to extract Structors and Functionals lists and
their relationships. Once the first step has been done, all the subsequent steps of
the procedure are enabled.

Lemma 1: Applicability of the Quantum Modularization Procedure
Extraction of Structors and Functionals for the above software sub-system and
transition types is done as follows:

(a) For classical sub-systems—the source diagram is a UML class diagram;
Structors are classes in the diagram; Functionals are the class methods in the
diagram.

⧠

128 I. Exman and A. T. Shmilovich

(b) For quantum sub-systems—the source diagram is a high-level quantum circuit;
Structors are “boxes,” i.e., small-size collections of gates; Functionals are the
gates/functions in the diagram.

(c) For hybrid sub-systems—the transitions must be precisely specified, obtaining
clear-cut Structors and Functionals.

Proof:
(a) Classical sub-systems—applicability is self-evident.
(b) Quantum sub-systems—quantum circuits are usually described in terms of gates;

thus, it suffices to add boxes where needed and suitable, each box with at least
one gate inside.

(c) Hybrid sub-systems—applicability follows from conversions inside transitions
whose final outcomes—by convention or by strict algebraic rules—are Structors
and/or Functionals:

• In quantum to classical transitions—the Structor, i.e., the “box,” is a mea-
surement device, and the corresponding Functional, by convention, is “mea-
suring,” although not an actual logical gate.

• In classical to quantum transition—addition of Structors (“boxes”) is not
mandatory—but qubits and/or functions may be added to existing gates.
Qubits are initialized with labels, e.g., binary numbers standing for “input”
classical bits. Functions of gates may have classical bits in any legitimate role
of conventional functions, such as coefficients or exponents. This is formalized
by higher-order functions [11] (explained in Sect. 7.5.1).

7.3 Quantum Software Design

This section deals with the specifics of Quantum Software Design. Then it analyzes
two slightly different case studies, emphasizing diverse points of interest: the
elementary Deutsch algorithm and the Grover search algorithm.

7.3.1 From Quantum Circuit to Density Matrix

A high-level quantum circuit is the source diagram from which one extracts Structors
and Functionals from a quantum software sub-system. Here, we define quantum
circuits rather informally. Quantum circuits have the double character of a sequential
diagram and a structure diagram.

A quantum circuit has horizontal parallel qubit lines, upon which there are
quantum gates. A quantum gate may cover a single qubit line (e.g., the Hadamard
gate), two qubit lines (e.g., the CNot gate), three qubit lines (e.g., the Toffoli gate), or

¼ ¼

7 Quantum Software Models: Density Matrix for Universal Software Design 129

more qubit lines. In a quantum circuit as a sequential diagram, “time” increases from
left (the input qubits) to right (the outputs, typically a measurement).

Quantum gates can be aggregated inside “boxes,” the hierarchical software
structure building blocks. These are boxed subcircuits—cf. the Quipper quantum
programming language [12]. When subcircuits are repeatedly used within a larger
system circuit, they are boxed and labeled by a generic name, meaningful for the
software engineer. There may be boxes executed in parallel—displayed vertically on
different qubit line subsets. Quantum circuits are coined “high-level” since the exact
number of gates of the same type inside a box may be left unspecified.

Given a quantum circuit, the Structors are the circuit boxes. The Functionals are
gates inside the boxes. Following the Modularization Procedure, one obtains a
bipartite graph, generates the Laplacian matrix, and scales it to obtain the design
density matrix. Modules are density matrix partitions into disjoint projector sets.

7.3.2 First Quantum Case Study: Deutsch Algorithm

The Deutsch algorithm is a very simple example found in the quantum computing
literature (e.g., [5, 13]). Given are four possible Boolean functions whose domain
and range are both {0, 1}. These functions can be either constant—e.g., f(0)¼f(1)¼
0—or so-to-speak balanced, e.g., g(0) 0 and g(1) 1.

The problem solved by the Deutsch algorithm—given an unknown Boolean
function h—decides with minimal function evaluations whether h is constant or
balanced. A classical system needs two h evaluations: h(0) and h(1). The Deutsch
algorithm needs only one evaluation, due to the quantum circuit in Fig. 7.3.

Structors and Functionals (Fig. 7.4) are extracted from the quantum circuit
(Fig. 7.3), by the Quantum Modularization Procedure. Through the Structors and

Fig. 7.3 Deutsch algorithm quantum circuit—One sees two qubit lines. There are four boxes:
(1) Init applies one Hadamard gate per input yielding qubits superposition. (2) Unitary function Uf

causes quantum parallelism, saving one unknown function evaluation. (3) Global Property avoids
extra measurements. (4) Single qubit Measurement asks whether the unknown function is
“Balanced?”

¼

Functionals bipartite graph, one obtains a density matrix (Fig. 7.5), i.e., a scaled
Laplacian. The column and row labels are Structors and Functionals {F1,. . .,F4
S1,. . . .S4}. Kets above the columns, in Fig. 7.5, are not alternative labels. One
applies the density matrix on a basis set ket to obtain its fitting column. For example,
applying the density matrix on the ket |101i obtains the column labelled S2.

Performing the last steps of the Quantum Modularization Procedure 1, one
applies the Deutsch algorithm density matrix in Fig. 7.5, upon the computational
basis kets, obtaining the respective projectors. These added together results in an
equivalent expression of the density matrix. Partitioning projectors into disjoint
classes, one finally obtains the modules of the Deutsch algorithm, seen in Fig. 7.6.

7.3.2.1 Key Points: Deutsch Algorithm

130 I. Exman and A. T. Shmilovich

Fig. 7.4 Deutsch algorithm Structors and Functionals—Extracted from the quantum circuit in
Fig. 7.3

Fig. 7.5 Deutsch algorithm density matrix—Obtained from the Laplacian, scaled by the sum of
degrees in the main diagonal. For this matrix, the scaling factor is 1/8 0.125

• Hybrid sub-system transitions—the Deutsch algorithm, a very simple software
system, already illustrates all the three transitions within a hybrid sub-system, in
Definition 3, even though the transitions are not explicit. The first transition is in
the input to the Init Structor: one inserts classical bits as labels of the input qubits,
which is a quite common action to initiate a quantum circuit. The second
somewhat subtle transition (see higher-order functions in Sect. 7.5.1) occurs in

7 Quantum Software Models: Density Matrix for Universal Software Design 131

Fig. 7.6 Deutsch algorithm modules from projectors—There are four modules, obtained from the
density matrix in Fig. 7.5. The scaling factor was omitted for clarity in each module

Fig. 7.7 Grover search quantum circuit—There are four boxes (light blue background), each one
with the respective gates, and three modules

the function f(x)—the Boolean function whose domain and range are both
classical bits—used inside the Uf box. The third transition is the measurement
generating the classical output from the qubit being measured.

7.3.3 Second Quantum Case Study: Grover Search

Grover search (e.g., [14]) is a quantum algorithm useful to search unstructured
databases. It displays a quadratic speedup on the number of queries, relative to a
classical computation. It is done in four steps, seen in the quantum circuit in Fig. 7.7:

1. Transform the input into an equal superposition state by means of the nth tensor
power of the Hadamard gate H.

2. An oracle recognizes and marks the target item.
3. Target amplification cycles are performed by “inversion about the average.”
4. Measure the amplified target.

Structors and Functionals from the quantum circuit in Fig. 7.7 are listed in
Fig. 7.8.

¼

132 I. Exman and A. T. Shmilovich

Fig. 7.8 Grover search Structors and Functionals—The Structors fit to the four boxes in Fig. 7.7.
Oracle and Amplification composing the Grover Loop module are surrounded by a (dark blue)
frame

Fig. 7.9 Grover search density matrix—Now we may reveal that the bipartite graph in Fig. 7.1 and
the Laplacian matrix in Fig. 7.2 fit the Grover search algorithm. For this matrix, the scaling factor is
1/10 0.1

Fig. 7.10 Grover search modules from projectors—There are three modules, obtained from the
density matrix in Fig. 7.9. The scaling factor was omitted for clarity in each module

The Grover search density matrix from the above Structors and Functionals,
through the bipartite graph and the scaled Laplacian matrix, is seen in Fig. 7.9.

The last steps of the Quantum Modularization Procedure 1, apply the Grover
search density matrix in Fig. 7.9, upon the computational basis kets, obtaining the
respective projectors. Partitioning projectors into disjoint classes, one finally obtains
the three modules of Grover search, seen in Fig. 7.10.

7.3.3.1 Key Points: Grover Search

7 Quantum Software Models: Density Matrix for Universal Software Design 133

• Grover Iteration 2-by-2 Module—Two possible facts justify the Grover Loop
Cycle Structors pair (Oracle and Amplification) as a single module. First fact: in
contrast to the Init and Measurement Structors whose Functionals are invoked
just once, the Grover Loop is invoked together in repeated cycles until the
Amplification is high enough to measure the target item with high probability.
Second fact: the Amplification Functional is written as 2*|ψihψ| 2I where I is
the identity operator and ψ is any of the items being searched, while the Oracle
can be written as I 2 2*|ωihω| where ω stands for the marked target [15]. The
Oracle and Amplification Functionals are the same function, except for its
argument and the multiplication by �1 which is related to the “inversion”
about the average. This situation is similar to class “inheritance” in classical
software systems.

• Alternative Design—The Grover search design shown in the density matrix in
Fig. 7.8—with a 2-by-2 module—is not the only conceivable design. One may
decide to keep separate the Structors pair in the Grover Loop Cycle, to enable
independent optimization of the Oracle and Amplification in terms of actual gates
(see, e.g., Figgatt et al. [16]). Then, Grover search, instead of a 2-by-2 module,
would have only 1-by-1 modules, similar to the Deutsch algorithm in Fig. 7.5.

7.4 Classical Software Design

This section deals with the specifics of Classical Software Design, illustrating that a
design procedure anchored in a quantum notion, viz., a density matrix, is efficient as
well for classical software systems. Two case studies are then analyzed, stressing
diverse key points: the Command Design Pattern and the Firefox for iOS.

7.4.1 From Class Diagram to Density Matrix

A UML class diagram is the information source of Structors and Functionals from a
classical software sub-system. Class diagrams are exclusively structural diagrams,
not displaying behavior features, as a time axis or system states. This in contrast to
the double character quantum circuits with both structure and time sequence.

UML classes are basic structure units—whose generalization are Structors. Clas-
ses contain methods (i.e., functions) that can be, but are not necessarily, invoked.
Functionals are the generalization of class methods.

There are a few kinds of relationships among classes: inheritance, composition,
and association. The only kind of relationship directly appearing in design bipartite

134 I. Exman and A. T. Shmilovich

graphs is inheritance, i.e., two or more Structors offering the same Functional, which
is a common source of modules within a software system.

7.4.2 First Classical Case Study: Command Design Pattern

The Command Design Pattern is a behavioral pattern described in the well-known
book on Design Patterns (popularized as GoF—“Gang of Four” authors [17]). The
design pattern purpose is to abstract typical application commands—copy, paste,
delete, and save—to enable different requests and support “undo” and “redo”
operations. The Structors and Functionals from a class diagram ([17], page 236)
are in Fig. 7.11.

ICommand is an abstract interface. The Concrete Command is the implementa-
tion of a command. Invoker is a device asking the command to carry out the request,
such as a menu item or button. Receiver is a document or file that receives the action
of the command.

The Command density matrix obtained from the above Structors and Functionals,
by means of a bipartite graph and the scaled Laplacian matrix, is seen in Fig. 7.12.

The last steps of the Quantum Modularization Procedure 1, apply the Command
Design Pattern density matrix in Fig. 7.12, upon the computational basis kets,
getting the respective projectors. Partitioning projectors into disjoint classes yields
the three modules of the Command Design Pattern, seen in Fig. 7.13.

Fig. 7.11 Command Design Pattern, Structors and Functionals—It has two inheritance cases: {S1,
S2} ICommand and Concrete Command (light blue) and {S4, S5} IFile Receiver and Concrete File
Receiver (light green). I means interface

7.4.2.1 Key Points: Command Design Pattern

7 Quantum Software Models: Density Matrix for Universal Software Design 135

Fig. 7.12 Command Design Pattern density matrix—The diagonal degree matrix has 10 elements
(green) and the sum of degrees ¼ 14. The Adjacency matrix has modules (blue) corresponding to
the Structors and Functionals in Fig. 7.12, showing the two inheritance cases

Fig. 7.13 Command Design Pattern modules—Obtained by partitioning projectors into three
disjoint sets (in different colors), in the figure middle. Structors and Functionals are seen in the
figure r.h.s.

• Basis kets are even, but not necessarily powers of 2—basis kets are even due to
Structors and Functionals being in equal numbers. Look at the upper-right
quadrant of the Laplacian matrix or equivalently at its density matrix.1 But,
basis kets used to generate the relevant projectors are not necessarily powers of
2, as seen for the Command Design Pattern Fig. 7.12.

1This is a linear algebra theorem first proved within software design in the context of the modularity
matrix [3]. It is true when Structor vectors are all mutually linear independent and Functionals
vectors also are all mutually linear independent.

136 I. Exman and A. T. Shmilovich

Fig. 7.14 Firefox for iOS—Structors and Functionals—Obtained from the GitHub source, listed
without revealing the software modules

Fig. 7.15 Firefox for iOS—Scrambled bipartite graph—It is obviously difficult to discern at first
sight the modules of this software system

7.4.3 Second Classical Case Study: Firefox for iOS

The second classical case study is a subset of the widely used Firefox browser,
specifically its version for the iOS Apple operating system. The software system was
extracted from and is publicly available in GitHub [18].

The chosen subset contains three modules: Input alert, AuthenticationManager,
and a Synchronizer. The purpose of this case study is to show that, after scrambling
the modules, the Universal Modularization Procedure, based upon the density
matrix, blindly restores the correct modularity. The system’s Structors and Func-
tionals are in Fig. 7.14.

The Firefox iOS software system scrambled bipartite graph is shown in Fig. 7.15.

The corresponding density matrix obtained from the scrambled bipartite graph in
Fig. 7.15, through its Laplacian, is shown in Fig. 7.16.

This system’s modules, obtained from disjoint sets of projectors, are seen in
Fig. 7.17. The corresponding corrected bipartite graph is shown in Fig. 7.18. Com-
pare these results with our previous analysis within Linear Software Models [4].

7 Quantum Software Models: Density Matrix for Universal Software Design 137

Fig. 7.16 Firefox for iOS—Scrambled density matrix—It is obtained from the scrambled bipartite
graph in Fig. 7.15. The degree matrix is in the diagonal (green). The sum of degrees is 22; thus, the
Laplacian scaling factor is 1/22

Fig. 7.17 Firefox for iOS correct modules—They are obtained from the disjoint sets of projectors,
fitting the density matrix in Fig. 7.16. The Modularization Procedure automatically corrects the
information obtained from the scrambled bipartite graph and its density matrix

138 I. Exman and A. T. Shmilovich

Fig. 7.18 Firefox for iOS corrected bipartite graph—Redrawn based upon the modules in Fig. 7.17

7.5 Hybrid Software System Design

Hybrid software systems have a classical software sub-system and at least one
quantum software sub-system, linked by hybrid transitions between these
sub-systems. This section reduces design of hybrid software systems to its classical
and its quantum sub-systems, based upon the quantum notion of a density matrix and
their relevant transitions. Two case studies illustrate hybrid systems: the teleporta-
tion protocol and a classical sub-system with a quantum co-processor.

7.5.1 Hybrid Architecture: “Quantum Data, Classical
Control”

The “Quantum Data, Classical Control” (Fu et al. [19]) paradigm is reflected by
respective diagrams for quantum software and for classical software. For quantum
software, we adopted the quantum circuit as the source of information. Quantum
circuits, besides the quantum gates acting as Functionals within Structors, display
“data flow,” from a Structor to the next one, along the time axis. For classical
software, besides the class diagram as a source of Structors and Functionals, classical
UML behavior diagrams, e.g., statechart and sequence diagrams, display “control
flow” performing selection (e.g., if-then-else), loops, and procedures.

Hybrid software systems need both data flow and control flow, and the natural
division of responsibility between quantum sub-systems and classical sub-systems at
the design level is “Quantum Data, Classical Control.” Indeed, hybrid transitions, as
qubit measurement results, can serve as classical control, e.g., to decide whether a
quantum gate should be applied or not.

An open problem in hybrid software design is how to convert classical number
types into quantum qubits, back and forth. An interesting partial solution (Selinger
and Valiron [11]) is to formulate hybrid transitions between classical and quantum

Þ ð

objects as higher-order functions (also called operators2). The latter are defined as
functions that either get functions as input or return a function as output.

Two examples of higher-order functions serving as transitions from quantum to
classical entities—and vice versa—are as follows:

7 Quantum Software Models: Density Matrix for Universal Software Design 139

• Quantum to Classical Transition—as a higher-order function can be an expres-
sion of the form shown in Eq. (7.4):

qubit⨂qubit⟶qubit⨂qubitð Þ⟶bit ð7:4Þ

Equation (7.4) has two functions, each denoted by an arrow. The first function
within parentheses is a quantum function—whose domain is a tensor product of a
pair of qubits and whose range also is a tensor product of a pair of qubits; the second
function has as domain the first quantum function, and its range is a classical bit.

• Classical to Quantum Transition—as a higher-order function can be an expres-
sion of the form shown in Eq. (7.5):

bit⟶bitð Þ⟶ qubit⨂qubit⟶qubit⨂qubitð 7:5Þ

Equation (7.5) has three functions, each denoted by an arrow. The first function
within parentheses is a classical function with classical bits in both domain and
range; the other function also within parentheses is a quantum function as explained
for Eq. (7.4); the middle function has as domain (the input) the classical function and
its range as the quantum function.

Equation (7.4) is a higher-order function, as it gets the quantum function (within
parentheses) as an input. Equation (7.5) is a higher-order function, as both its input
and output are themselves functions.

The examples above illustrate transitions in the Deutsch algorithm, seen in
Fig. 7.3. The expression in Eq. (7.4) is a higher-order function characterizing the
whole Deutsch algorithm. Uf gets a pair of qubits as input and outputs a pair of
qubits. The overall Deutsch algorithm outputs a classical bit (after measurement).

The expression in Eq. (7.5) reflects the encoding from the classical Boolean
function h—unknown whether it is constant or balanced—into Uf a quantum
function, also in the Deutsch algorithm depicted in Fig. 7.3.

2A higher-order functions’ special case is also called functional. It is not used in this chapter,
avoiding confusion with Functional as class method generalization.

i

140 I. Exman and A. T. Shmilovich

Fig. 7.19 Teleportation Protocol—quantum circuit—It involves three qubits, two in location A and
one in location B. The goal is to move the quantum state |ψi from location A to location B, by
transmitting two classical bits, obtained by measurement of a decoding of the quantum state. Qubits
are shown by single lines. Classical bits are denoted by double lines (green arrow)

7.5.2 First Hybrid Case Study: Teleportation Protocol

The Teleportation Protocol ([5] and references therein) is a well-known hybrid
software system. Its purpose is to move a quantum state |ψi from location A (Alice’s
location) to location B (Bob’s location) by transmitting two classical bits.

A teleportation quantum circuit is seen in Fig. 7.19.

Initially, co-located Alice and Bob get a common EPR pair applying Hadamard
(H) and Controlled-NOT (CNot) gates to a starting qubit pair. Then, they travel to
their locations A and B. Alice decodes the |ψ state into another local EPR pair.

This system is hybrid because Alice’s two qubits are measured into two classical
bits, transmitted to location B, where they serve to select which of the Pauli operators
(X and Z) will encode the finally moved |ψi quantum state. These transitions can be
expressed as higher-order functions as in Eq. (7.6):

qubit⨂qubit⟶bit⨂bitð Þ⟶qubit ð7:6Þ

where the function within parentheses stands for measurements of the qubits pair
into a pair of classical bits and the external function outputs the teleported qubit.

The Structors and Functionals extracted from the high-level quantum circuit in
Fig. 7.19 are shown in Fig. 7.20.

Three explanations are needed for the Structors and Functionals in Fig. 7.20:

• Systematic dealing with qubit pairs—In both boxes, Init and Decoding, there is
no sense to separate the Hadamard and CNot gates, in distinct Structors, since
their goal is to generate EPR pairs.

• Systematic dealing with classical bit pair—In the Measurements and Encoding
boxes, there is no sense to separate the resulting classical bit pair or their effect in

7 Quantum Software Models: Density Matrix for Universal Software Design 141

Fig. 7.20 Teleportation Protocol—Structors and Functionals—These follow the quantum circuit of
Fig. 7.19, with four boxes, the four Structors, and the Functionals inside the boxes

the Pauli transform. The measurements are made in parallel because this is
possible, but the classical bits have no independent meaning; they are used
together to restore the |ψi quantum state in the different location, at the end of
the teleportation.

• Classical transmission of the classical bits is not a Structor by itself—Classical
transmission here is not a computation; it rather is a plain communication action
that should not affect the classical bit values.

The density matrix generated from the above Structors and Functionals has only
1-by-1 modules in a strictly diagonal fashion, similar to the Deutsch algorithm
density matrix in Fig. 7.5, so it is not repeated here.

7.5.2.1 Key Points: Teleportation Protocol

• Boxes in Parallel—this case study shows, for the first time in this chapter, boxes
in parallel. In this case, the number of Structors extracted is just one and not the
number of parallel boxes. This should be taken as a generic rule.

7.5.3 Second Hybrid Case Study: Quantum Co-processor

A classical CPU (central processing unit) with one or more quantum co-processors,
serving as accelerators of specific computations, is a common architecture for hybrid
software systems. This is illustrated by the simplified high-level quantum circuit
seen in Fig. 7.21 (see Fu et al. [20, 21]).

The quantum co-processor circuit in Fig. 7.21 has several differences from the
standard quantum circuits shown in previous case studies:

• The quantum device is an even higher-level abstraction—it does not display
specific gates such as CNot or H.

• Some boxes are rather lower-level abstractions—for instance, the register file
and the codeword generator are much closer to hardware.

142 I. Exman and A. T. Shmilovich

Fig. 7.21 Quantum co-processor attached to a classical CPU—high-level quantum circuit—The
classical CPU (green), the left-most box, is the source of instructions for the quantum co-processor.
These instructions, stored in a register file, are then used to generate pulse codewords to activate the
quantum co-processor device (blue) upon its qubits. The latter are measured to obtain classical bits.
These bits can be used for fast conditional execution, or for inclusion in the instructions of the
register file, or as final results returned to the classical CPU

• It displays measurement results recycled back to previous boxes—this is part of
classical control mechanisms. For instance, fast conditional execution enables
execution of a CNot.

From the quantum co-processor case study, one learns a few interesting lessons.

7.5.3.1 Key Points: Quantum Co-processor

• Control mechanisms—in order to deal with Structors consuming (instead of
providing) Functionals, one needs to use a density matrix containing consumers
in addition to provider Structors (see, e.g., Exman & Wallach [22]). This will be
done elsewhere in a different paper.

• Modularization to optimize implementation—throughout this chapter, we
referred to modularization to optimize design, in particular for quantum systems,
the optimization in terms of gates. In the case of hybrid systems, in which the
quantum sub-system is a co-processor, there is an additional motivation of
optimizing implementation, as discussed by Shi et al. in their paper “Optimized
Compilation of Aggregated Instructions” [23]. This explains the motivation for a
quantum circuit with lower-level abstraction boxes.

7.6 Related Work

This “Related Work” section is neither extensive nor comprehensive, due to space
limitations. It focuses on the most important concepts relevant to the topics dealt
with in this chapter: modularity, hybrid software systems, and universality.

7 Quantum Software Models: Density Matrix for Universal Software Design 143

7.6.1 Modularity: Laplacian and Density Matrix

Linear Software Models, developed by Exman and co-authors, to modularize clas-
sical software systems, are based upon algebraic structures. Examples are the
modularity matrix [3], the modularity lattice, and the Laplacian matrix (e.g., [6]).
Exman and Sakhnini [4] used bipartite graphs to get the Laplacian from modularity
matrices. Exman and Wallach [22] applied these models to software consumers.

Braunstein and co-authors [9] made the transition from graphs’ Laplacian matri-
ces to quantum computing density matrices, investigating separability issues. They
were followed by Wu [24] working in the same area.

In the quantum software system context, modularity is relevant to clustering
quantum gates into modules—as in the work by Exman and Shmilovich [1]—and
also to optimal compilation of aggregated instructions, as dealt with by Shi et al. [23]
(see also Sects. 7.6.3 and 7.7.1 of this chapter, on design universality).

Other approaches to classical modularity design are the economics-based Design
Rules by Baldwin and Clark [25] and DSM (Design Structure Matrix) (see, e.g.,
[26]). These have been applied to many engineering fields, but less so to software.
We are not aware of such applications to quantum software systems.

7.6.2 Hybrid Software Systems: Architecture
and Formalization

A standard architecture for hybrid software systems consists of a classical CPU and
one or more quantum co-processors. Fu et al. (e.g., [19–21]) proposed a quantum
micro-architecture—called QuMA—for such hybrid software systems, to enable a
fully programmable quantum computer.

A similar goal for a hybrid quantum-classical architecture—coined XACC
(eXtreme-scale ACCelerator)—was proposed by McCaskey and co-authors
[27]. It is based upon a co-processor model, independent of the underlying quantum
hardware, enabling programs to be executed on various QPUs (quantum processing
unit) types though a unified API (Application Programming Interface). An extensi-
ble compiler frontend enables language-independent quantum programming.

Hornibrook et al. [28] focus on other hybrid architecture aspects. The cryogenic
aspect distributes sub-systems across various temperature stages of the refrigeration
tower, starting from a classical CPU at room temperature at the top, an FPGA
controller at 4 Kelvin, down to the quantum co-processor at 20 milli-Kelvin at the
bottom. Another aspect refers to the essential error-correcting code.

Finally, the approach of Selinger and Valiron (e.g., [11]) formalizes transitions
between classical numbers and quantum qubits, and vice versa, by means of higher-
order functions, introduced within the context of quantum lambda calculus.

144 I. Exman and A. T. Shmilovich

7.6.3 Design Universality

Here, we point out to different universality meanings relevant to software. A deeper
consideration of these issues is given in Sect. 7.7.1 of the “Discussion.”

The first issue is a minimal number of quantum gates, from which any combina-
tion of other gates can be designed. Two papers published in 1995 deal with this
issue. The paper by Deutsch, Barenco, and Ekert (DBE-1995) [29] entitled “Uni-
versality in Quantum Computing” states: “almost every gate operating on two or
more qubits is a universal gate.”

The DBE-1995 paper is recommended for anyone dealing with quantum com-
puting, stating many foundational ideas: “quantum computer properties are not
postulated in abstracto, but are deduced entirely from the laws of physics” [31].
DBE-1995 also conjectures that non-universal gates are precisely (a) the 1-qubit
gates and collections of 1-qubit gates and (b) the classical gates. If this conjecture is
true, it reveals the existence of classical computation as a closed and stable “approx-
imation” to quantum computation.

The second paper telling us that “Almost any quantum logic gate with two or
more inputs is computationally universal” was published by Seth Lloyd [32] in July
1995. It proves a similar result to the DBE-1995 paper and refers to previous papers
dealing with the notion of quantum gates’ universality.

Another universality issue appears in the already referred paper by Shi et al. [23]
proposing a universal quantum compilation methodology to aggregate quantum
gates into clusters manipulating up to 10 qubits at a time. Its motivation is to
optimize performance when implementing the design into a specific quantum com-
puter architecture. It is universal in the sense that its compilation is independent of
the specific architecture.

7.7 Discussion

This section focuses on deep ideas in this chapter: universality, classical software
systems as classical limit of quantum systems, and software duality as state and
operator. It concludes with future work items.

7.7.1 Universality of Quantum, Classical, and Hybrid Design

Here, we frame universality of software design in a wider and deeper context while
critically inquiring what has been achieved and how it has been achieved and what is
still lacking.

The universality of software systems design means that we shall use the same
technical approach to the design of quantum, classical, and hybrid software systems
and there are deep reasons for doing software design in this way.

We rely on ideas of the already mentioned (DBE-1995) [29] paper for the deep
arguments in favor of universality of software design:

7 Quantum Software Models: Density Matrix for Universal Software Design 145

• The idea of sub-systems (in other words modularity)—DBE-1995 cautiously
states that “it is not so clear that computational systems must in turn be composed
of well-defined, albeit interacting, subsystems”; on the other hand, “it is hard to
conceive of a technology to manufacture complex computing machines, other
than from simple sub-systems which are themselves computing machines.”

• Classical computation as a good approximation (a limit of) quantum compu-
tation—DBE-1995 cautiously states the conjecture of classical gates as
non-universal gates, inferring “the existence of classical computation as a closed
and stable regime within quantum computation.”

In practice, the easy conversion of a Laplacian matrix into a density matrix
(by Braunstein et al. [9]) tells us that classical and quantum software systems can
equally be designed by the same approach, as explained along this chapter.

It remains the issue of hybrid software systems design. Apparently, internal
transitions between classical and quantum sub-systems within hybrid systems are a
tough nut to crack. In formalization terms, the higher-order functions seem to be a
promising solution. In terms of implementation of design into actual computers, the
problem deserves further considerations.

7.7.2 Classical Software Systems as Classical Limit
of Quantum Systems

In Sect. 7.7.1, the argument was already made that classical software systems are
classical limits of quantum software systems, as general classical physics is a limit of
quantum physics, given certain conditions.

The issue considered here is why preferring to describe classical software systems
by quantum notions, such as von Neumann’s density matrix, instead of adapting
classical UML to quantum systems, by suitable additions to UML diagrams, as it has
been done recently (see Perez-Castillo et al. [30]).

The merits of UML extensions are as follows: (a) Model abstractions are more
flexible than concrete specific implementations; (b) there are a huge literature and
large experience with UML; and (c) one could combine classical representation with
the UML quantum extensions to deal with hybrid systems. On the other hand, von
Neumann’s density matrix is anchored in the solid mathematical basis of quantum
theory.

¼

146 I. Exman and A. T. Shmilovich

7.7.3 Software Duality as State and Operator

Two arguments for von Neumann’s density matrix as the software design procedure
starting point and for using of higher-order functions to express classical/quantum
transitions within hybrid software systems are given here.

Software has a dual character of state and operator. Software static code is a
readable description of a state. Software is also runnable on a given input, i.e., an
operator applied to an input state, producing an output state—thus, it is an operator.

The density matrix describes a state of the quantum system and is itself an
operator—a kind of projector—applicable to states.

Concerning higher-order functions, Selinger and Valiron [11] state: “the heart of
high-order computation paradigm is the idea that functions are data.” Higher-order
functions have the dual character of being a function, i.e., an operator, and data, i.e.,
a state, as they are inputs/outputs of other functions or stored in data structures.

7.7.4 Future Work

Important theoretical issues for future work are to rigorously fill in the gaps in hybrid
software systems and the question of applicability to functional programming. In
practical terms, one needs an extensive investigation of a variety of case studies of
different kinds of application and a multiplicity of sizes.

7.7.5 Main Contribution

The main contribution of this chapter is to explicitly formulate the idea that there is a
universal procedure for software system design for quantum, classical, and hybrid
software systems, based upon the density matrix and complemented by higher-order
functions in the hybrid cases.

References

1. Exman I, Shmilovich AT (2021) Quantum software models: the density matrix for classical and
quantum software systems design. http://arxiv.org/abs/2103.13755

2. Exman I (2012) Linear software models. In: Jacobson I, Goedicke M, Johnson P (eds) GTSE
2012, SEMAT Workshop on General Theory of Software Engineering, KTH, Stockholm,
Sweden, pp 23–24. Video: http://www.youtube.com/watch?v EJfzArH8-ls

3. Exman I (2014) Linear software models: standard modularity highlights residual coupling. Int J
Softw Eng Knowl Eng 24:183–210. https://doi.org/10.1142/S0218194014500089

http://arxiv.org/abs/2103.13755
http://www.youtube.com/watch?v=EJfzArH8-ls
http://www.youtube.com/watch?v=EJfzArH8-ls
https://doi.org/10.1142/S0218194014500089

7 Quantum Software Models: Density Matrix for Universal Software Design 147

4. Exman I, Sakhnini R (2018) Linear software models: bipartite isomorphism between laplacian
eigenvectors and modularity matrix eigenvectors. Int J Softw Eng Knowl Eng 28(7):897–935.
https://doi.org/10.1142/S0218194018400107

5. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge
University Press, Cambridge

6. Merris R (1994) Laplacian matrices of graphs: a survey. Linear Algebr Appl 197–198:143–176
7. Weisstein EW (2021) Positive definite matrix. https://mathworld.wolfram.com/

PositiveDefiniteMatrix.html
8. von Neumann J (1927) Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechnik.

Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-
Physikalische Klasse:245–272. https://eudml.org/doc/59230

9. Braunstein SL, Ghosh S, Severini S (2006) The Laplacian of a graph as a density matrix: a basic
combinatorial approach to separability of mixed states. arXiv:quant-ph/0406165v2

10. Paul AM (1974) Dirac, the principles of quantum mechanics, 4th edn. Oxford University Press,
Oxford

11. Selinger P, Valiron B (2009) Quantum lambda calculus. In: Gay S, Mackie I (eds) Semantic
techniques in quantum computation. Cambridge University Press, Cambridge, pp 135–172

12. Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper: a scalable quantum
programming language. arXiv:1304.3390

13. Deutsch D (1985) Quantum theory, the Church-Turing Principle and the universal quantum
computer. Proc R Soc Lond A 400:97

14. Grover LK (1997) Quantum Computers can search arbitrarily large databases by a single query.
Phys Rev Lett 79(23):4709–4712

15. Arikan E (2002) An information-theoretic analysis of Grover’s algorithm. arXiv:quant-ph/
0210068v2

16. Figgatt C, Maslov D, Landsman KA, Linke NM, Debnath S, Monroe C (2018) Complete
3-Qubit Grover Search on a programmable quantum computer. Nat Commun 8:1918. https://
doi.org/10.1038/s41467-017-01904-7

17. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston, MA. {the GoF book}

18. GitHub, Firefox iOS mobile browser (2021) https://github.com/mozilla-mobile/firefox-ios
19. Fu X et al. eQASM: an executable quantum instruction set architecture. In: Proceedings of the

25th International Symposium on High-Performance Computer Architecture (HPCA’19).
arXiv:1808.02449

20. Fu X et al (2017) An experimental microarchitecture for a superconducting quantum processor.
http://arxiv.org/abs/1708.07677 [quant-ph]

21. Fu X, Rol MA, Bultink CC, van Someren J, Khammassi N, Ashraf I, Vermeulen RFL, de Sterke
JC, Vlothuizen WJ, Schouten RN, Almudéver CG, DiCarlo L, Bertels K (2018) A
microarchitecture for a superconducting quantum processor. IEEE Micro:40–47

22. Exman I, Wallach H (2020) Linear software models: an Occam’s razor set of algebraic
connectors integrates modules into a whole software system. Int J Softw Eng Knowl Eng
30(10):1375–1413. https://doi.org/10.1142/S0218194020400185

23. Shi Y, Leung N, Gokhale P, Rossi Z, Schuster DI, Hoffmann H, Chong FT (2019) Optimized
compilation of aggregated instructions for realistic quantum computers. In: Proceedings of the
Asplos’19. pp 1031–1044

24. Wu CW (2009) Multipartite separability of Laplacian matrices of graphs. Electr J Combinat 16:
#R61

25. Baldwin CY, Clark KB (2000) Design rules, vol I. The power of modularity. MIT Press, MA
26. Cai Y, Sullivan KJ (2006) Modularity analysis of logical design models. In: Proc. 21st IEEE/

ACM Int. Conf. Automated Software Eng. ASE’06, Tokyo, Japan, pp 91–102
27. McCaskey J, Dumitrescu EF, Liakh D, Chen M, Feng W, Humble TS (2018) A language and

hardware independent approach to quantum–classical computing. SoftwareX 7:245–254.
https://doi.org/10.1016/j.softx.2018.07.007

https://doi.org/10.1142/S0218194018400107
https://mathworld.wolfram.com/PositiveDefiniteMatrix.html
https://mathworld.wolfram.com/PositiveDefiniteMatrix.html
https://eudml.org/doc/59230
https://doi.org/10.1038/s41467-017-01904-7
https://doi.org/10.1038/s41467-017-01904-7
https://github.com/mozilla-mobile/firefox-ios
http://arxiv.org/abs/1708.07677
https://doi.org/10.1142/S0218194020400185
https://doi.org/10.1016/j.softx.2018.07.007

148 I. Exman and A. T. Shmilovich

28. Hornibrook JM et al (2014) Cryogenic control architecture for large-scale quantum computing.
arXiv:1409.2202

29. Deutsch D, Barenco A, Ekert A (1995) Universality in quantum computation. Proc R Soc Lond
A. Also: arXiv:quant-ph/9505018 – May 1995

30. Perez-Castillo R, Jimenez-Navajas L, Piattini M. Modelling quantum circuits with UML. In:
Proceedings of the QSE’2021 Quantum Software Engineering Workshop. arXiv:2103.16169

31. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467
32. Lloyd S (1995) Almost any quantum logic gate is universal. Phys Rev Let 75(2):346–349

Chapter 8
Quantum Service-Oriented Architectures:
From Hybrid Classical Approaches
to Future Stand-Alone Solutions

David Valencia, Enrique Moguel, Javier Rojo, Javier Berrocal,
Jose Garcia-Alonso, and Juan M. Murillo

8.1 Introduction

During the last decades, quantum computing [1] has been a very promising and
relevant research field, which encompasses not only computer science but also other
scientific fields such as information theory or quantum physics. In later years, one
can say that the development of quantum computers has reached a turning point with
the advent of noisy intermediate-scale quantum (NISQ) computers [2], with tens of
qubits, which allow to tap on tasks that outperform capabilities of classical
computers.

The latter, along with confluence of other socioeconomic circumstances, are
producing an ever-growing interest on quantum computing from commercial com-
panies [3]. An example of the actual situation and possible future quantum com-
mercial landscape can be found on the fact that several major computing
corporations, such as IBM,1 are starting to build their own quantum computers
with the idea of offering them to end users on a pay-per-use model. Each of the
particular solutions proposed by enterprises is accompanied by their own quantum
programming languages which are laying the basis of future development of quan-
tum services and software engineering.

Although a promising quantum computing era leading the future of computing
engineering is more clearly devised each day, the current state of art of quantum
computing is more focused on the integration of quantum computers with classical
ones, which has been coined as hybrid classical-quantum computing [4, 5]. With this
outlook in mind, a natural way of exploiting the collaborative coexistence and

1https://www.ibm.com/quantum-computing

D. Valencia · E. Moguel (*) · J. Rojo · J. Berrocal · J. Garcia-Alonso · J. M. Murillo
University of Extremadura, Cáceres, Spain
e-mail: davaleco@unex.es; enrique@unex.es; javirojo@unex.es; jberolm@unex.es;
jgaralo@unex.es; juanmamu@unex.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_8

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_8&domain=pdf
mailto:davaleco@unex.es
mailto:enrique@unex.es
mailto:javirojo@unex.es
mailto:jberolm@unex.es
mailto:jgaralo@unex.es
mailto:juanmamu@unex.es
https://www.ibm.com/quantum-computing
https://doi.org/10.1007/978-3-031-05324-5_8#DOI

pay-per-use perspective lies in the principles of service computing and engineering;
in fact, many of the research done and efforts of companies lean on the usage of
quantum infrastructures to allow consumption of quantum infrastructure as a service
with an approximation similar of usage of classical computing resources, i.e., IBM
Quantum Computing or Amazon Braket2 in what can be coined as a Quantum
Service-Oriented Computing (QSOC) strategy. The underlying idea of the solutions
proposed by companies is based on the facts that quantum computers are still very
hard to operate and very expensive to own.

150 D. Valencia et al.

Again, all the aforementioned architectures are extremely aligned with another
interesting and successful approach during the last decades, the microservices
architectural pattern [6], in which complex systems are devised as distributed
microservices, each of them being an independent process that interacts with the
rest through consumption of services, appearing to the end users as a whole virtual
computer. In this way, incorporating quantum computers to this paradigm will allow
to tackle on both classical and quantum problems from a microservices point of
view. Thus, the first step on this line of work must focus on the conversion from
quantum software to microservices to be integrated on existing architectures.

From a microservice standpoint, the integration of quantum software should not
be very different from classical microservices, in a way that it can be considered an
independent process with the ability to interact with the rest of the system through
consumption of services, and the underlying hardware is irrelevant. Nonetheless,
current state of the art of quantum computing proves the latter to be a false
assumption, forcing the necessity of specific approaches to generate hybrid
microservices architectures. In particular, executing a quantum algorithm as a
microservice is feasible with it being wrapped by a classical service, by means of
quantum software development kits, although with some limitations imposed by
current state of the art of quantum computing. First and foremost, quantum algo-
rithms invocation and execution are extremely coupled with underlying hardware,
leading to vendor locking. Secondly, results produced, mainly due to the probability
distribution over possible quantum states [7], by quantum algorithms differ from
classical solutions, further increasing the coupling with the quantum processor used.
This also exposes another problem associated with NISQ computers, which is
related to existing noise, leading to results subject to errors usually dependent on
the specific quantum computer and qubit topology. Last but not least, related with
quantum system collapse, one finds that it is not possible to obtain intermediate
verification of results, further affecting and reducing service orchestration.

From all of the above, it is clear that integration of classical-quantum services is a
very interesting and promising approach which continues the road laid down by
cloud computing, but invoking a quantum microservice in an agnostic way is not
possible, which violates all principles of service-oriented computing, producing that
all of the advantages of this paradigm are lost, specifically those related to software
quality x-abilities, i.e., composability, maintainability, reusability, and so on. To

2http://aws.amazon.com/braket

http://aws.amazon.com/braket

In general, SOA and microservices architecture do not compete. Both approaches
can coexist, each bringing its own advantages. In particular, those that make
microservices architecture desirable are the following:

cope with this problem, some of the techniques and methodologies of classical
service engineering must be translated to quantum service engineering domain,
and several new ones must be researched and proposed.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 151

The chapter is organized as follows: first, traditional microservices and their
characteristics are explored; in the next section, an actual commercial proposal for
development and execution of quantum software similarly to cloud computing is
explored using two well-known problems solved with different quantum computing
approaches; in Sect. 8.4, a proposal of a quantum service architecture is shown to try
to cope with problems detected in the previous section; finally, in the last sections,
the conclusion and related and future works are showcased.

8.2 Background

In order to address the integration of quantum and classical microservices under a
single architecture, it is necessary to understand how current classical microservices
work. This section does not pretend to be an exhaustive review of microservices, as
there is a wealth of literature on this topic [8, 9]. It is simply intended to present an
overview of how microservices work and to discuss those architectural and design
patterns that will need to be adapted to support quantum microservices.

Microservices architecture is an application architectural style in which an appli-
cation is composed of many discrete, network-connected components. These com-
ponents are called microservices [10]. The microservices architectural style can be
considered an evolution of the SOA (services-oriented architecture) architectural
style [11]. The main differences between the two of them lie on the fact that while
applications built with SOA services tended to focus on technical integration issues,
and the level of services implemented were often very larger-grained technical APIs,
the microservices approach remains focused on implementing clear business capa-
bilities through fine-grained business APIs.

But aside from service design issues, perhaps the biggest difference is the
deployment style. For many years, applications have been packaged monolithically,
that is, a team of developers would build a large application that did everything
needed for a business need. Once built, that application was deployed multiple times
to an application server. In contrast, in the microservices architectural style, several
smaller applications are built and packaged independently, each implementing only
part of the whole.

• The services are not integrated into the main system (loosely coupled), so they are
easier to develop and deploy. They can have independent scalability, and failures
can be isolated to a particular microservice, rather than a section or operation of
the application.

152 D. Valencia et al.

• Radical changes in the technology stack are not necessary, but the most appro-
priate technology can be used for each service independently of the technologies
used in the rest of microservices.

• Microservices are, in general, easier to maintain and test since they are small
pieces of software doing only one specific thing.

• From the development point of view, it is easier to get in and start being
productive, as the developers deal with the operation of several small services
instead of a complex one. In this way, the integration of microservices develop-
ment with DevOps and Agile methodologies is easier.

On the other side, relaying on a microservices architecture has the following
disadvantages associated with it:

• The complexity of microservices systems tends to be higher than their monolithic
counterparts. Additional to the systems functionalities, the coordination between
the different microservices has to be addressed. This usually involves different
communications protocol and synchronization mechanisms that increase the
overall system complexity.

• Similarly, deploying and operating a microservices system is much more com-
plicated than deploying a monolith system. The management and maintenance of
the different microservices requires greater coordination and effort from the
operations team.

• A microservices system tends to require higher computing capabilities than a
monolith. Although each microservice can be optimized for its tasks, its deploy-
ment requires its own container, dependencies, etc. that are replicated for each
service. The aggregated needs of the microservices are usually greater than that of
an alternative monolith.

In any case, the development of microservices, like any other software artefact, is
based on software engineering development processes. Due to the microservices
architecture success, in the software development industry as well as in academia,
there are a great number of techniques, methodologies, and tools to help developers
create this type of system.

Some of the most relevant are the decomposition patterns that help determine
which parts of the system are assigned to each microservice. Also, specifications like
Open API [12] help developers standardize their endpoints and provide code gen-
eration tools that facilitate the work of developers.

Once a microservice application has been developed, it also has to be deployed
and maintained. These tasks are covered under the DevOps term [13, 14] and include
aspects related to the integration, testing, administration, monitoring, etc. of
microservices.

For traditional systems, the first step in operating a microservices system is the
deployment. Many of the advantages provided by this architecture, such as the
scalability, are possible, thanks to the deployment strategy followed. Therefore,
when deploying microservices, it is necessary to take into account aspects such as
where each service is going to be deployed (several services on the same host

machine or each service in a different machine), the type of deployment (serverless,
containers, VMS, etc.), orchestration, activity logging, etc.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 153

To hide this complexity for the microservices consumers, the API Gateway
integration pattern is used. An API Gateway is the single-entry point for any
microservice call. It can work as a proxy service to route a request to the
microservice in question. It can also aggregate the results to send back to the
consumer or even create a fine-grained API for each specific type of client. It also
can take care of additional aspects like authentication/authorization. All this allows
developers of microservices systems to handle multiple calls to multiple
microservices from different channels, to handle different protocols, and to provide
response in different formats to different clients.

Once the services are deployed, all the issues related to management and main-
tenance must also be considered. Considering communications between the different
services, transaction management, maintaining data consistency, monitoring of
running services, security, testing and many other aspects.

As mentioned above, all these aspects have been studied for researchers and
practitioners, and good practices have been proposed and adopted to improve the
development of microservices. However, as far as the authors know, there are no
studies on which of these practices can be adapted to the creation of quantum
microservices or which need to be replaced by more specific alternatives.

8.3 Current Status of Quantum Microservices: The
Amazon Braket Case Study

In the present section, a brief review of the current leading technology solutions is
presented in order to ease understanding and evaluation of underlying hardware
supporting quantum microservices, along with their strengths and drawbacks.

8.3.1 Main Quantum Computing Approaches

As indicated before, we are facing a new era of quantum computing, led mainly by
the noisy intermediate-scale quantum (NISQ) computers, in whose one may find
reminiscences of beginning of the transistor era of classical computing, when the
evolution started to grow exponentially, finally leading to the great breakthrough that
enabled the current development of information systems. This evolution has been a
challenging process that, among other advances, has motivated the development of
software engineering as it is today. Researchers and industry must prepare to face a
similar process in the coming years, now facing the development of quantum
computing.

154 D. Valencia et al.

Current commercial quantum computing hardware and computers can be roughly
classified in two categories: quantum gate arrays and adiabatic quantum computers.
In the first category, we can find proposals of commercial quantum computers of
companies such as IBM’s with their Quantum System One3 with more than 20 qubits
and Rigetti’s Aspen-94 with more than 30 qubits. On the other category, their main
exponent is D-Wave’s Advantage5 architecture, with more than 5000 qubits.

Most current information systems are supported by cloud computing at any level
(IaaS, PaaS, or SaaS). Today’s quantum computers are no different in this regard and
are already available in the cloud under pay per use. One example of this can be
found on Amazon’s bracket. Amazon defines Braket as a fully managed quantum
computing service. Specifically, Braket provides a development environment to
build quantum algorithms, test them on quantum circuit simulators, and run them
on different quantum hardware technologies; it is a strategy allowing Amazon to
further expand their position, as the global leader regarding cloud computing and
services technologies through AWS, into the quantum computing area. Braket offers
both adiabatic and gate array-based quantum computers as underlying hardware to
execute the codes developed in their platform. At the moment of writing this chapter,
Braket supports three different quantum computer simulators and real quantum
computers from three different hardware vendors: Rigetti and IonQ (gate-based)
and D-Wave (quantum annealing).

The approach followed by Amazon Braket tries to cope with the first choice a
developer must make when faced with building a quantum program, that is: Should
we exploit both mainstream quantum possibilities (adiabatic and gate-based) or
work only with one type of architecture? In that case, which one? The aim of Braket
is to provide a higher abstraction level so users (potentially developers) are agnostic
of the underlying hardware and focused on the problem requirements. Additionally,
flexibility and scalability are also benefited. Nonetheless, due to the relative novelty
of the quantum proposals along with the particularities of quantum computing,
getting all the advantages of the new abstraction level is still more of a wish than a
reality. To illustrate this, this chapter will evaluate the complexity and shortcomings
of developing two quantum algorithms as services in Amazon Braket, one especially
suitable for quantum gate-based architectures (prime factoring) and a second one
suitable for quantum annealing (traveling salesperson problem).

8.3.1.1 Prime Factoring

Prime factorization is a particular application of integer factorization, a fundamental
problem in number theory that is computationally hard, but it is not believed to
belong to the NP-hard class of problems [15]. Nonetheless, it is a problem that has

3https://www.research.ibm.com/quantum-computing/system-one/
4https://www.rigetti.com/
5https://www.dwavesys.com/quantum-computing

https://www.research.ibm.com/quantum-computing/system-one/
https://www.rigetti.com/
https://www.dwavesys.com/quantum-computing

been used as a basic hardness assumption for cryptographic algorithms, such as the
famous RSA algorithm. Thus, integer factorization and identification of new
methods to address this task acquire an important role in information security.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 155

The problem proposed is basically to try to decompose a non-prime integer
number in nontrivial divisors, as indicated in Eq. (8.1), where N denotes the
non-prime integer and p and q are the nontrivial (prime) divisors:

N ¼ pq ð8:1Þ

There are multiple proposals and algorithms for the solution of this problem,
being the most famous Shor’s algorithm [7]. This algorithm is normally described in
terms of quantum gates and circuits, suitable for development and execution on
machines such as IBM’s Q computing chip [16], but when considering other
approaches on quantum computing, such as Adiabatic Quantum Computing based
on concepts such as quantum annealing, Shor’s algorithm implementation is not
direct. Nonetheless, other algorithms have been proposed for prime factoring, such is
the case of the algorithm proposed by Wang et al. in [17]. In particular, in the studies
conducted on this paper, these will be the algorithms proposed for integer factori-
zation: Shor’s algorithms for quantum machines programmed with quantum circuits
and gates, such as Rigetti’s [18] and IonQ’s [19], and integer factorization based on
quantum annealing for adiabatic quantum machines such as D-Wave’s [20]. The
selection of these algorithms is done without losing generality, in fact as Shor’s
algorithm is a very well-known study example for gate-based quantum computers,
whereas the algorithm proposed for quantum annealing is selected because clearly
shows the intricacies of specifying a problem in a QUBO form. Particularly, in
Fig. 8.1, a part of the code generated for the factorization of number 21 is shown.

However, when working with quantum annealing, the problem must be
reformulated to take the form of a QUBO or Ising, defining it by means of graphs
with valued vertex and valued links between these vertices where vertex represents
variables and links represent dual relationships between variables. Any higher-order
relationship such as those found on terms involving three or more variables must be
mathematically transformed to simpler two-variable-related terms. This task can be
of great complexity due to the necessity of ample and profound comprehension of
the problem and dexterity on mathematical knowledge and tools. To illustrate this, in
Fig. 8.2 are shown the values of the weights of the nodes along with the edges
between nodes for the factorization of 21. The steps to call the execution on
D-Wave’s quantum computer using Amazon Braket are also included.

8.3.1.2 Traveling Salesperson Problem (TSP)

Contrary to prime factoring, this is a recognized example in the class of NP-Class
problems [21], which can be categorized as an optimization problem. In the tradi-
tional definition of the problem, there exists a traveling salesperson that must visit all
cities inside a route, minimizing the traveled distance. Thus, in the classical

definition of the problem, there exist cities, usually described as nodes, and roads
connecting those cities, which can be considered as links between these nodes, each
with a weight indicating the distance. An example of this problem is shown in
Fig. 8.3.

156 D. Valencia et al.

Fig. 8.1 Circuit for Shor’s algorithm

Fig. 8.2 D-Wave’s invocation for the factoring of 21

The main difficulty of these kinds of problems relates to the increment of possible
solutions with the increase of the problem size, i.e., with 5 cities, there exist
12 possible routes, whereas for 25 cities, the number of routes grows to
3.1 � 1023. Furthermore, this particular problem has been expanded into more
realistic and complex formulations, usually in the forms of restrictions, such as the
case of the (Capacitated) Vehicle Routing Problem [22] or the case of TSP with Time
Windows [23].

Resolving this problem by classical computing methods is not always optimal,
and several methods, with their limitations, have been developed over the years as
replacement to brute force solutions on these optimization problems. In recent years,

due to the expansion of quantum computing, researchers began to develop quantum
algorithms that solve these problems: both for the perspective of adiabatic quantum
computing [24] and for the perspective of gate-based quantum computing [25, 26].

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 157

4.0

1.0

1.
0

2.0

2.0

2.0

0

1

2

3

Fig. 8.3 Example of a graph defining a TSP with four cities and the roads interconnecting them

To solve the problem in Amazon Braket, the code described in Fig. 8.4 has been
developed to work with quantum gate-based computers.

On the other hand, using quantum annealing to solve this problem is quite
straightforward, only needing to invoke a call to function, which is shown in
Fig. 8.5.

8.3.2 Limitations of Getting Service-Oriented Computing
Benefits in Quantum Computing Environments

Taking as a starting point the problems described in the previous section and the
description of their solutions in each quantum computational model, the aim of this
section is to highlight the difficulties encountered when trying to provide agnostic
implementations of the underlying computational model using Amazon Braket.

More specifically, the experiments carried out allow us to conclude that there is
some roughness, limitations, and problems that arise when a quantum piece of
software is expected to be provided as a service. They are mainly related to the
fact that, using current proposals to integrate quantum technologies such as Amazon
Braket, the benefits of service-oriented computing are lost.

First and foremost is the impossibility of abstracting the service from the under-
lying quantum computational model. The consequence is that both the service
developer and the users of the service are left with the problem of vendor locking.

In particular, because the formulation of the solution for a given problem is
completely different depending on the underlying quantum computational model,
each implementation for a given solution requires different number and type of
parameters depending on the underlying quantum machine. The difficulties are even

158 D. Valencia et al.

Fig. 8.4 Solution of the traveling salesperson problem implemented for gate-based quantum
computers

greater when facing solutions to problems whose formulation depends on factors
such as the size of the problem. This is the case of the solution provided for prime
factorization on an adiabatic architecture. As mentioned, that solution is formulated
using a QUBO or Ising (Fig. 8.2). Transforming the formulation to a two-variable
term formulation is a task whose complexity increases with the size of the number to
be factorized, mainly due to the introduction of auxiliary terms to simplify high-
order terms. The resulting number of parameters (two-variable terms) also depends
on this size.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 159

Fig. 8.5 Solution of the traveling salesperson problem using quantum annealing

Another limitation lies in the number of qubits available especially in the case of
gate-based systems. This fact directly limits the ability to run the solutions. For
example, in the case of the TSP shown in Fig. 8.3, when considering the Gate-based
solution, the number of qubits amounts to 14 (8 for eigenstates + 6 for phase), so this
small problem exceeds the number of qubits available (11 qubits) executed on the
IonQ hardware. This shows not only the limited power of the current hardware but
also the need for mechanisms to be included in quantum service computing to
determine the number of qubits needed so the executions can be launched in
appropriated powerful enough quantum computers. Due to the nature of quantum
algorithms for the different architectures, there is no trivial way obtain this number.
This will be a key question in developing quantum services execution schedulers.
However, this is not the only feature to have into account. There are many others
with implications in several other aspects of the service, such as the case of response
and awaiting time. Due to the nature of quantum computations making use of
quantum entanglement to explore all solutions at the same time, it is not possible
to query the system because it will be forced to collapse. Thus, it is not possible to
initially estimate response times without affecting the outcome of the algorithm and
can only base it on statistical calculations from previous execution times.

160 D. Valencia et al.

Finally, one of the biggest hurdles is related to the inherent nature of quantum
computing and their underlying physical phenomena that serve as base for the
quantum architecture. It is the case of ion traps or quantum chips. Due to the
problems that arise due to the characteristics of current quantum computers, mainly
noise in the qubits state, the experiments must be conducted several times to be
statistically consistent. Along with the latter, depending on the architecture execut-
ing the quantum code, one must work with a panoply of solutions ranging from
energy levels of solutions to “simple” probabilities and cases. This goes directly
against the agnostic nature of services, in which the underlying technology should be
irrelevant for the service consumer. For a real quantum service technology, the
responsibility of performing the different executions to get a consistent result cannot
be delegated in the client nor the customer who only wants to use a technology to get
a correct result, at least within a given margin of error, and with an economic cost
known in advance. How the number of shots required is estimated will have a direct
impact in the cost of the service executions. This reveals some issues, related with
service quality and costs, which still have to be addressed by quantum services
engineering.

8.4 Directions for a Future QSOC

Taking into account the examples depicted in the previous section, it is clear that
using classical SOC and microservices principles to develop hybrid quantum-
classical information systems is still far from being possible. Thus, some methodol-
ogies and techniques may have to be imported directly from the classical world to the
quantum world, while many others will need to be adapted, and some new ones will
have to be introduced.

A good starting point is to define a set of good practices that provides support to
the development and operation of quantum microservices. This is just the purpose of
Fig. 8.6. It proposes several steps that should be taken into account to create quantum
software that can be consumed as a microservice. The proposed steps are based on
current microservices and quantum technologies and try to exploit the benefits of
both worlds.

Fig. 8.6 Quantum services recommended practices

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 161

The first step to create a quantum microservice is the specification of the quantum
problem to be addressed. This step is very tightly related with the abovementioned
decomposition patterns of classical microservices. A microservice should focus on
implementing a single business capability. In the specific case of quantum services,
and given the current state of quantum hardware, any part of the problem that can be
solved by traditional services should be implemented as such. Only specific prob-
lems that benefit from running on a quantum computer should be implemented as
quantum algorithms.

Once this decomposition is done, the quantum services functionality should be
defined abstracting as many details as possible from the underlying quantum hard-
ware. For traditional services, one of the most extended mechanisms to perform this
task is the OpenAPI Specification. It defines a standard, language-agnostic interface
to RESTful APIs which allows both humans and computers to discover and under-
stand the capabilities of services without access to source code or documentation.
The same standard can be used for quantum services, although some modifications
may be needed to included specific quantum aspects such as the number of qubits
needed to run the service given a certain input or the number or shots to be executed.

From the OpenAPI specification of traditional services, a code generation tool is
able to generate API client libraries, server stubs, documentation, and configuration
automatically for dozens of programming languages. This tool can be extended to
support code generation for quantum services. This would abstract quantum
microservices developers from most of the specific details of the supported quantum
hardware and gain the support of the classical service community that are already
used to the OpenAPI ecosystem.

Although such quantum code generation tools can abstract many implementation
details, a quantum algorithm still needs to be developed to perform the microservice
computation. A quantum annealing solution, or a quantum gate-based solution
(or both), should be provided as the body of the generated quantum service.

Another interesting area to explore is related to the deployment of services. From
this point of view, the situation is very different to traditional services. To the
authors’ knowledge, actually, it is not possible to deploy services on quantum
machines; thus, the quantum software to be executed is deployed upon execution,
leading to a redeployment with each invocation. This implies an increase in the
computational resources needed to execute quantum microservices. Each time a
quantum microservice is consumed, it has to be deployed first. However, this
disadvantage can be turned into an advantage. A Quantum API Gateway should
be able to perform all the task that a traditional API Gateway performs and, at the
same time, apply a heuristic to decide the best quantum hardware in which to deploy
the service at each time. This heuristic could take into account the available quantum
computers in which the service can be run, the number of qubits needed, the cost of
running the service on each quantum computers, and other similar aspects. From this
information, the optimal hardware can be chosen for each user on real time,
providing a greater flexibility than traditional services where the deployment is
only performed one time.

162 D. Valencia et al.

Another necessary step is involved in the communication between traditional
microservices and quantum microservices. For this particular problem, one approx-
imation could be following an approach similar to how many traditional
microservices manage communications, using queues for the messages. However,
the collapse of the quantum systems should be taken into account. Once the quantum
algorithm that runs as the body of a quantum microservice has started is execution, it
will not be possible to consult its state without collapsing the system and, almost
certainly, invalidating the execution. Therefore, communications between quantum
services should be managed before or after the quantum core of the service is
executing and communication systems should be adapted to this behavior. The
Quantum API Gateway can also help coordinate these aspects each time a quantum
service is deployed.

From all the above, it is clear that there are two key elements needed in order to be
able to efficiently integrate hybrid quantum computing services, the specification of
the problem and the Quantum API Gateway. Both allow developers to mitigate the
problems of vendor lock-in and impossibility of deployment on quantum computers.
Additionally, a code generation tool can also help bridge the gap between them in a
way that is familiar to most services developers. Thus, we feel that the focus of
quantum microservices engineering should be in designing and developing these set
of proposed good practices in order to translate the benefits of traditional
microservices to hybrid quantum microservices.

8.5 Related Works

To date, works that focus on quantum microservices or hybrid microservices archi-
tectures are still sparse, and this is because quantum software engineering is a young
discipline. However, some researchers are starting to focus on this and related topics.

Already there are works that begin to explore the research opportunities of
quantum services and the potential of quantum services in the cloud [27]. In this
paper, researchers from different studies emphasize the problems encountered dur-
ing their research in this area. In particular, it includes the problems caused by the
need for different implementations of the same quantum algorithms for different
hardware vendors or the problems in deploying quantum services on quantum
computers.

As previously mentioned, in [28], the researchers further explore the deployment
of quantum services through an extension of TOSCA for quantum software deploy-
ment. This proposal shares some similarities with the work proposed in this book
chapter. Because quantum applications must be deployed again for each invocation,
a classical computer is needed to host and deploy these applications. Therefore, we
propose the use of a classical web service to wrap quantum algorithms and expose
them as endpoints.

In the same way, in [29], the researchers propose a procedure for the deployment
of algorithms in cloud-based quantum computers. This procedure is only valid for

circuit-based quantum algorithms because their proposal is based on starting from a
generic quantum circuit and then compiling that circuit in a specific quantum
computer.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 163

The fact that quantum algorithms are highly dependent on the hardware on which
they will be executed generates vendor lock-in problems. Therefore, there are
already works that aim to minimize these problems by parameterizing quantum
circuits [25, 30]. This technique allows the development of quantum circuits that
can be modified by means of input parameters, thus being able to be used to adapt the
algorithms to different computers or depending on the problem to be covered.
However, this technique cannot be applied to quantum annealing-based hardware.

From a commercial technological perspective, along with Amazon Braket, there
are different technological proposals related to the homogenization and simplifica-
tion of quantum access to computers and services. A clear example is Azure
Quantum [31], one of the main alternatives to Amazon Braket. Azure Quantum
offers a quantum software development kit that attempts to unify a heterogeneous set
of hardware and software solutions.

Other technology companies, software developers, and researchers are creating
high-level development environments, toolkits, APIs, and other technologies to
increase the level of abstraction of quantum software. For example, the IBM
Company proposes the IBM Quantum environment [32], while other developers
are focusing on specific areas such as quantum machine learning [20]. However, to
the authors’ knowledge, they do not provide any specific advantage over Amazon
Braket for the development of quantum microservices or hybrid solutions.

Additionally, for the development of quantum microservices with a similar
quality as that of classical services, it is not enough to simplify the development
and deployment of quantum algorithms. For this, other aspects of service engineer-
ing [33] need to be taken into account.

Some researchers are focusing on the orchestration aspects of quantum complex
algorithms. In [34] the authors propose a hardware-based orchestrator to control the
flow of complex quantum and hybrid applications. However, for quantum
microservices to be used with the same ease than classical services, software
orchestration solutions are still needed.

In this sense, once microservices are deployed and orchestrated, they need to be
managed. To this end, work lines around quantum DevOps practices are starting to
emerge. In [35], the author proposes a methodology to test the reliability of quantum
computers on a periodic manner. This reliability is used to estimate whether a given
hardware will provide results of sufficient quality and to select the most suitable
hardware available to run a quantum service.

Finally, in [36], the authors focus on trust and security issues in quantum services.
The current model in which quantum services are managed introduces some trust
issues regarding the specific hardware in which a given quantum task is run and other
related issues.

All the papers presented in this section reveal that further research is needed to
develop an effective quantum services engineering discipline.

164 D. Valencia et al.

8.6 Conclusion

In this chapter, we have presented an analysis of current quantum software from a
service-oriented computing point of view. We have used Amazon Braket to deploy
quantum services by wrapping them in a classical service and used prime factoring
and traveling salesman problems as examples to hint the differences and intricacies
of running the same service on a different quantum hardware, even when done under
a common development umbrella and platform such as Braket.

This research and the derived work have allowed us to clearly present the current
limitations in the construction and use of quantum services. To this end, we have
organized these limitations and argued the intensive research efforts needed to bring
the benefits of service-oriented computing to the quantum world.

Due to the young nature of quantum software engineering, most areas of this
discipline, including service-oriented computing, are still in their first steps. How-
ever, the paradigm shift underlying quantum computing implies that there can be no
direct translation of proposals and techniques. Running quantum algorithms as
traditional services is not enough to fully explode their advantages; on the contrary,
it will only degrade the solution.

Therefore, we believe that an effort is needed to generate new techniques,
methodologies, and tools to fully expose all the perks and benefits, already demon-
strated by cloud and service computing, into quantum software and services.

Acknowledgments This work was supported by the projects 0499_4IE_PLUS_4_E (Interreg V-A
España-Portugal 2014-2020) and RTI2018-094591-B-I00 (MCIU/AEI/FEDER, UE), by the
FPU19/03965 grant, by the Department of Economy and Infrastructure of the Government of
Extremadura (GR18112, IB18030), and by the European Regional Development Fund.

References

1. Steane A (1998) Quantum computing. Rep Prog Phys 61(2):117
2. Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79
3. MacQuarrie ER, Simon C, Simmons S, Maine E (2020) The emerging commercial landscape of

quantum computing. Nat Rev Phys 2(11):596–598
4. McCaskey A, Dumitrescu E, Liakh D, Humble T (2018) Hybrid programming for near-term

quantum computing systems. In: 2018 IEEE International Conference on Rebooting Computing
(ICRC). IEEE, pp 1–12

5. Sodhi B (2018) Quality attributes on quantum computing platforms. arXiv preprint.
arXiv:1803.07407

6. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (eds)
(2017) Microservices: yesterday, today, and tomorrow. Present Ulterior Softw Eng:195–216

7. Nielsen MA, Chuang I (2002) Quantum computation and quantum information
8. Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly Media
9. Richardson C (2018) Microservices patterns: with examples in Java. Manning Publications

10. Martin Fowler and James Lewis. Microservices, a definition of this new architectural
term. 2014.

8 Quantum Service-Oriented Architectures: From Hybrid Classical. . . 165

11. Brown K, Woolf B (2016) Implementation patterns of microservices architectures. HILLSIDE
Proc Conf Pattern Lang Prog 22:1–35

12. Schwichtenberg S, Gerth C, Engels G (2017) From open API to semantic specifications and
code adapters. In: Proceedings – 2017 IEEE 24th International Conference on Web Services,
ICWS 2017. Institute of Electrical and Electronics Engineers, pp 484–491

13. Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices architecture enables DevOps:
migration to a cloud-native architecture. IEEE Software 33(3):42–52

14. Fitzgerald B, Stol KJ (2017) Continuous software engineering: a roadmap and agenda. J Syst
Softw 123:176–189

15. Jiang S, Britt KA, McCaskey AJ, Humble TS, Kais S (2018) Quantum annealing for prime
factorization. Scientific Rep 8(1):1–9

16. Haring R, Ohmacht M, Fox T, Gschwind M, Satterfield D, Sugavanam K, Coteus P,
Heidelberger P, Blumrich M, Wisniewski R et al (2011) The ibm blue gene/q compute chip.
IEEE Micro 32(2):48–60

17. Wang B, Feng H, Yao H, Wang C (2020) Prime factorization algorithm based on parameter
optimization of Ising model. Scientific Rep 10(1):1–10

18. Motta M, Sun C, Tan ATK, O’Rourke MJ, Ye E, Minnich AJ, Brandao FGSL, Chan GK-L
(2020) Determining eigenstates and thermal states on a quantum computer using quantum
imaginary time evolution. Nat Phys 16(2):205–210

19. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum
computer. Nature 417(6890):709–711

20. Feng H,Wang B-N, Wang N,Wang C (2019) Quantum machine learning with d-wave quantum
computer. Quantum Eng 1(2):e12

21. Warren RH (2013) Adapting the traveling salesman problem to an adiabatic quantum computer.
Quantum Inf Proc 12(4):1781–1785

22. Irie H, Wongpaisarnsin G, Terabe M, Miki A, Taguchi S (2019) Quantum annealing of vehicle
routing problem with time, state and capacity. In: International Workshop on Quantum Tech-
nology and Optimization Problems. Springer, pp 145–156

23. Papalitsas C, Andronikos T, Giannakis K, Theocharopoulou G, Fanarioti S (2019) A qubo
model for the traveling salesman problem with time windows. Algorithms 12(11):224

24. Warren RH (2020) Solving the traveling salesman problem on a quantum annealer. SN Appl Sci
2(1):1–5

25. Matsuo A, Suzuki Y, Yamashita S (2020) Problem-specific parameterized quantum circuits of
the VQE algorithm for optimization problems. arXiv

26. Srinivasan K, Satyajit S, Behera BK, Panigrahi PK (2018) Efficient quantum algorithm for
solving travelling salesman problem: an IBM quantum experience. arXiv

27. Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K (2020) Quantum in the cloud:
application potentials and research opportunities. In: Proceedings of the 10th International
Conference on Cloud Computing and Service Science (CLOSER 2020). SciTePress, pp 9–24

28. Wild K, Breitenbücher U, Harzenetter L, Leymann F, Vietz D, Zimmermann M (2020)
TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration
of quantum applications. In: 24th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2020, Eindhoven, The Netherlands, October 5–8, 2020. IEEE, pp 125–134

29. Sim S, Cao Y, Romero J, Johnson PD, Aspuru-Guzik A (2018) A framework for algorithm
deployment on cloud-based quantum computers. arXiv preprint. arXiv:1810.10576

30. Adelomou AP, Ribe EG, Cardona XV (2020) Using the Parameterized Quantum Circuit
combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social workers’
schedule problem solver. arXiv

31. Cuomo D, Caleffi M, Cacciapuoti AS (2020) Towards a distributed quantum computing
ecosystem. IET Quantum Commun 1(1):3–8

32. Cross A (2018) The ibm q experience and qiskit open-source quantum computing software.
APS March Meeting Abstracts 2018:L58–003

166 D. Valencia et al.

33. Li S, He Z, Jia Z, Zhong C, Cheng Z, Shan Z, Shen J, Babar MA (2021) Understanding and
addressing quality attributes of microservices architecture: a systematic literature review. Inf
Softw Technol 131:106449

34. Cohen Y, Sivan I, Ofek N, Ella L, Drucker N, Shani T, Weber O, Grinberg H, Greenbaum M
(2020) Quantum orchestration platform integrated hardware and software for design and
execution of complex quantum control protocols. Bull Am Phys Soc 65

35. Gheorghe-Pop I-D, Tcholtchev N, Ritter T, Hauswirth M (2020) Quantum devops: towards
reliable and applicable nisq quantum computing. In: 2020 IEEE Globecom Workshops
(GC Wkshps). IEEE, pp 1–6

36. Phalak K, Ash-Saki A, Alam M, Topaloglu RO, Ghosh S (2021) Quantum puf for security and
trust in quantum computing. arXiv preprint. arXiv:2104.06244

Chapter 9
Quantum Software Testing: Current
Trends and Emerging Proposals

Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán,
Macario Polo, and José A. Cruz-Lemus

9.1 Introduction

In 1982, Nobel Laureate Richard Feynman asked: “What kind of computer are we
going to use to simulate physics?”, thereby inaugurating the “second quantum
revolution.” In fact, from this point, the very idea for a quantum computer was
born, and quantum computer science began in earnest. Over the last three decades,
our understanding of “quantum computers” has expanded drastically, as the efforts
to make real such an “exotic” computer have made steady yet remarkable progress
[1]. Using various “counterintuitive” principles such as superposition and entangle-
ment, quantum computers now yield faster computing speeds, providing high value
in many different and important applications. In fact, there are thousands of very
interesting applications for this new paradigm, covering several areas [2]: economics
and financial services, chemistry, medicine and health, supply chain logistics,
energy, agriculture, etc.

The prospects for quantum computing are indeed exciting, and extraordinary
expectations are now fueling a global effort to perfect quantum computing [3]. The
most important companies (Google, IBM, Microsoft, Intel, Atos, Alibaba, etc.) are
investigating how to take the most advantage of this new technology in their
businesses. Also, many countries (China, the USA, Japan, Russia, the UK, etc.)
are investing huge quantities of money in quantum technology. The involvement of

A. G. de la Barrera · I. G.-R. de Guzmán (*)
aQuantum, Alarcos Research Group, Department of Technologies and Information Systems,
Escuela Superior de Informática, University of Castilla-La Mancha, Ciudad Real, Spain
e-mail: Antonio.GAmo@uclm.es; Ignacio.GRodriguez@uclm.es

M. Polo · J. A. Cruz-Lemus
aQuantum, Alarcos Research Group, Institute of Technologies and Information Systems,
University of Castilla-La Mancha, Ciudad Real, Spain
e-mail: Macario.Polo@uclm.es; JoseAntonio.Cruz@uclm.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_9

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_9&domain=pdf
mailto:Antonio.GAmo@uclm.es
mailto:Ignacio.GRodriguez@uclm.es
mailto:Macario.Polo@uclm.es
mailto:JoseAntonio.Cruz@uclm.es
https://doi.org/10.1007/978-3-031-05324-5_9#DOI

governments is of great importance, as has been evidenced by the introduction of the
National Quantum Initiative Act in the USA, the funding of the Institute for
Quantum Computing by the Canadian government, or the European Union’s “Quan-
tum Manifesto and Quantum Technologies Flagship” initiative.

168 A. G. de la Barrera et al.

A variety of quantum computers is already available, such as IBM Q, IonQ,
Rigetti, D-Wave, Microsoft Quantum, and Google Quantum. Tens of quantum
programming languages exist (e.g., qGCL, Q Language, QML, Quipper,
OpenQASM, Qiskit, Q#) [4], as well as software development kits (e.g., Forest,
Qiskit, Cirq, QDK, Orquestra) [4]. A comprehensive review of quantum computing
literature, and a detailed overview of quantum software tools and technologies, plus
quantum computer hardware development, can be found in [5].

As the Quantum Software Manifesto1 states: “Given the recent rapid advances in
quantum hardware, it is urgent that we step up our efforts in quantum software,”
stressing the importance of quantum software. It is necessary to go a step further and
raise awareness of the need for quantum software engineering (QSE) that can enable
us to produce quantum software with the necessary quality and productivity [6].

The main current design for quantum computers is the so-called gate-based
quantum computing, very similar to today’s classical approaches, which consist in
dividing an algorithm into a sequence of a few very basic “primitive operations” or
gates. In this kind of quantum computer, one of the tools most used for creating
quantum programs is the quantum circuit. In fact, there exist several quantum circuit
simulators (Quirk,2 QCEngine,3 etc.), and some quantum vendors such as IBM use
the circuit as the main element for Qiskit programming.4 Quantum circuits are a very
good artefact with which to design quantum programs, since the transformation from
quantum circuits to quantum code is quite direct and furthermore entails a more
agnostic representation of a quantum algorithm (viewed from the point of view of
programming language).

So, given the current state of quantum software development, the promising
present and future of quantum computing, and the challenges posed by the Quantum
Software Manifesto, we would like to focus in this chapter on the strengthening of
quantum software engineering. Therefore, and with the aim of contributing to the
development of the quantum software testing process (focusing on quantum circuit
level), (1) we firstly present a review of the state of the art of the current proposals
about quantum software testing, followed with (2) the proposal of the adaptation of
the classical software mutation testing technique to the quantum software testing
context.

The chapter is organized as follows: the second section summarizes the review of
the state of the art of the last years regarding quantum software testing; the third
section presents the adaptation of the mutation technique to quantum software; the

1https://www.qusoft.org/quantum-software-manifesto/
2https://algassert.com/quirk
3http://machinelevel.com/qc/
4https://qiskit.org/

https://www.qusoft.org/quantum-software-manifesto/
https://algassert.com/quirk
http://machinelevel.com/qc/
https://qiskit.org/

fourth section presents a prototype to automate the application of the technique; and
finally, the fifth section outlines some conclusions of our work.

9 Quantum Software Testing: Current Trends and Emerging Proposals 169

9.2 Current Trends on Quantum Software Testing

This section presents a general view of the current state of the art of quantum
software testing, classified in (1) overviews, (2) frameworks, (3) probabilistic testing
and verification, (4) Hoare logic applications, and (5) reversible circuits testing.

9.2.1 Overview Proposals

Some publications present overviews, challenges, and predictions about the current
state of the art and the future of software engineering concerning quantum comput-
ing. They offer different perspectives about testing and verification, from state-of-
the-art surveys to bug taxonomies.

In [7], Zhao presents a comprehensive literature review on quantum software
engineering. The term “quantum software engineering” is defined in the paper as
“the use of sound engineering principles for the development, operation, and main-
tenance of quantum software and the associated document to obtain economically
quantum software that is reliable and works efficiently on quantum computers.” A
quantum software cascade-based lifecycle is also presented. Then, a quantum
software engineering state-of-the-art survey is conducted, summarizing the available
technology with a focus on analysis, design, implementation, testing, and
maintenance.

In [8], Miranskyy et al. discuss current classic software debugging tactics,
showing which ones can be directly adopted for quantum software testing. They
also list novel techniques suited for the quantum-computer-specific debugging
issues, such as superposition or entanglement verification, or the possibility of test
probability distributions employing approximate copies of the algorithm’s output.

Polo [9] introduces some challenges and ideas regarding the testing of quantum
programs, providing a brief overview of the existing approaches to the subject. The
work focuses on functional testing, discussing the place of the test suite in hybrid
classic/quantum systems, white box testing (particularly mutation), and, finally, the
applicability of classic model-based testing in model representation of quantum
circuits.

In [10], Huang and Martonosi survey a range of QC programs, performing
debugging on small-scale simulations using different languages and technologies.
Based on this experience, they conduct a comparative study assessing how the
quantum environment can support testing and debugging. They also state that a
quantum algorithm consists of three main conceptual parts, inputs, operations, and
outputs, and they point out that bugs can result from a mistake in any of these stages.

Finally, a bug taxonomy is presented, giving examples of each kind of bug together
with how to prevent them.

170 A. G. de la Barrera et al.

In [11], Sodhi considers state-of-the-art quantum computing platforms (QCPs) to
identify all relevant characteristics from a software architecture perspective. By this
means, the general architecture and typical programming model of a QCP are
specified. Then, the significant characteristics of QCPs—from an architectural
point of view—are listed and traced to the quality attributes, including testability,
briefly evaluating the impact on these.

Finally, in [12], Miranskyy et al. discuss several use cases for quantum algo-
rithms. Based on this, they address the use of quantum components as black-box
artifacts in solution libraries and compare two approaches to the testing of quantum
components: a unitary test perspective and a system of systems (SoS) approach. As a
result, they offer some tricks to analyze quantum programs during runtime.

9.2.2 Frameworks

Some of the selected publications present technological environments or
methodologic-level approaches aiming to provide—or including—a frame or con-
text for the testing activities.

In [13], Dey et al. addressed the need for systematic techniques for cost-effective
quantum software development, remarking how the different behavior of quantum
systems causes a barrier in the adoption of classic Software Development Life
Cycles (SDLCs). To this end, they propose a Quantum Development Life Cycle
(QDLC) model based on classical waterfall models. For the testing stage, they
propose a state reconstruction technique named quantum-state tomography. It is
based on repeated preparation and measurement in which the preparation and
measurement are repeated 22*n times for an n-qubit system.

In [14], Campos and Souto establish the need for a benchmark to ease the
reproducibility of quantum software engineering research. To this end, they propose
the development of a framework named QBugs, which includes a catalog of
quantum algorithms, a catalog of reproducible bugs, and supporting infrastructure
to enable empirical and controlled experimenting. In addition, they plan to—with the
use of GIT—automatically map each bug report labeled as “bug” or “issue” to the
commits introducing and solving the bug, automatically adding the identified
problem-solution tuple to the bug catalog.

In [15], Gomes et al. establish the need for pre-developed quantum software
components to increase the community of developers and their effectiveness and
efficiency. To this end, they propose the creation of quantum algorithm and data
structure libraries, both for the development and testing of quantum programs.

In [16], Reutter and Vicary introduce a knot-based language to design and verify
quantum algorithms. They offer a scheme for interpreting knot diagrams, called
shaded tangles, as quantum programs, allowing to yield substantial new insight

about how the program works along with a fully topological verification. Further-
more, it is observed that isotopic tangles yield equivalent programs.

9 Quantum Software Testing: Current Trends and Emerging Proposals 171

Property-based testing is a structured method for automated testing using pro-
gram specifications. In [17], Honarvar et al. introduce a property-based framework
for quantum programs in Q#, concerning property specification, test case generation,
and analysis of test results. The authors provide an overview of the framework’s
architecture and mode of use, a prototype, and some examples of its application
results.

In [18], Steiger et al. introduce a framework, named ProjectQ, for quantum
algorithm development. It transforms high-level domain-specific language (DSL)
code to several low-level instruction sets, enabling developers to test quantum
algorithms on efficient simulations or through the IBM Quantum Experience cloud
service. For this purpose, it uses a Python-embedded DSL and a set of compilers.
The framework includes tools for circuit drawing and resource estimation and allows
extension mechanisms such as plug-ins.

Fuzz testing, colloquially known as “fuzzing,” is a set of software testing
techniques implying the generation of a set of inputs aiming to finding errors and
identifying security flaws. Greybox fuzzing, the most deployed fuzzing strategy,
combines light program instrumentation with the new input data generation. In [19],
Wang et al. present QuanFuzz, a search-based test input generation tool for quantum
software. It analyses the system under test by instrumenting the source code and
identifying which parts of the source code are associated to the measurement results
and then mutates the initial input matrix, selecting those mutations which improve
the probability weight for a value of the quantum register to trigger sensitive
branches. Benchmark results shows QuanFuzz achieves 20–60% higher coverage
compared to traditional test input generation.

In [20], Betanzo introduces QuTAF, a test automation framework based on the
robot framework [21], for quantum applications testing on real quantum machines.
While focused on identifying hardware-related errors, it is proven that QuTAF can
identify software bugs as failing test cases.

Quipper is a functional language that enables a high-level approach for the
definition of quantum circuits. QPMC is a model checker developed for the verifi-
cation of quantum protocols specified as quantum Markov chains. In [22], Anticoli
et al. present Entangλe, a framework for translating Quipper-like programs into the
QPMC model checker, allowing to perform automatic formal verification of quan-
tum protocols.

In [23], Smelyanskiy et al. present a high-performance distributed quantum
simulator for classic computers named qHiPSTER, which can simulate single-
qubit gates and controlled two-qubit gates for testing purposes. It has been
performance-checked for up to 40-qubit algorithms, achieving high performance
and hardware efficiency limited by memory and bandwidth.

172 A. G. de la Barrera et al.

9.2.3 Probabilistic Testing and Verification

While classic computing shows a deterministic behavior, quantum physics proper-
ties as superposition mean that quantum computers deliver probabilistic measures
when classical observations are made on qubits; that is, when a qubit in a superpo-
sition state is collapsed into a classical value, it takes a given value with a given
probability. Some selected publications address quantum computing validation from
a probabilistic perspective from circuit and software levels.

Krishnaswamy et al. [24] propose a general fault modeling method to capture
both probabilistic and deterministic faults. The authors discuss how the behavior of
quantum circuits is inherently probabilistic, and they state that, while the goal of
traditional testing has always been to detect the presence of faults, probabilistic
testing aims to estimate fault probability—what the authors call “track uncertainty.”
This work presents a technology-agnostic, probabilistic equivalent called the “prob-
abilistic transfer matrix” (PTM) method. It is inspired by traditional fault models
representing faults and deriving test vectors that propagate fault effects to outputs.

In [25], Huang and Martonosi address the problem of quantum software valida-
tion. They particularly highlight the need for new tools to write quantum algorithms
as program code, citing the difficulty of probing the internal states of programs and
interpreting such states even with existing observations. They also mention the lack
of testing guidelines for quantum testing. Based on statistical tests over classical
observations, they present quantum program assertions that allow programmers to
determine whether a quantum program state matches the expected value in one of
either classical, superposition, or entangled types of states. They use such assertions
to test three benchmark quantum programs and to lay out a strategy for using
quantum programming patterns to place assertions and prevent bugs.

In [26], Li et al. propose Proq, a runtime assertion scheme based on projections
(closed subspaces of the state space), and checked on projective measurement that
reduces the number of assertions significantly compared to repeated executions.
They prove that projection-based assertions can statistically assure that a quantum
function is close to its expected behavior.

The standard weakest precondition calculus, introduced by Dijkstra [27] and
extended to probabilistic programs by Morgan et al. [28], has been successfully
employed to reason about the correctness of classic software. In [29], Feng et al.
extend the proof rules presented by Morgan et al. for classic probabilistic loops so
that they can be used to prove any correct assertion about quantum loops.

In [30], Baltag et al. present a decidable logic for reasoning about the correctness
of quantum programs. It captures system properties through probabilistic predication
formulas, stating that a given quantum state will collapse to a state which satisfies a
given condition with a given probability. They propose first-order quantifiers rang-
ing over quantum states and two second-order quantifiers, one ranging over
quantum-testable properties, the other over quantum “actions.” This technique is
used to describe the correctness of quantum teleportation, quantum search algorithm,
and the Deutsch-Jozsa algorithm.

9 Quantum Software Testing: Current Trends and Emerging Proposals 173

9.2.4 Hoare Logic Applications

Formal verification involves proving the correctness of an algorithm against a formal
specification. Hoare provided in [31] a set of logical rules allowing to reason about
the correctness of software, which has been the basis for a wide variety of testing
research, including some approximations for Hoare-like logic for verifying quantum
programs.

In [32], Barthe et al. propose a relational program logic based on a quantum
analogue of probabilistic couplings in order to perform a verification of the proper-
ties of quantum programs, such as reliability of quantum teleportation against noise
and uniformity for samples generated by the quantum Bernoulli factory.

Liu et al. [33] formalize the theory of quantum Hoare logic (QHL), particularly
the syntax and semantics of quantum programs; they establish rules for QHL and
verify the soundness and completeness of the deduction system for partial correct-
ness of quantum programs.

In [34], Zhou et al. derive a variant of QHL, named applied quantum Hoare logic
(aQHL), which significantly simplifies verification of quantum programs. It is
developed by restricting QHL to projections, a class of preconditions, and post-
conditions and adding several rules for reasoning about the robustness of quantum
programs.

Ying et al. [35] study the definition of invariants in quantum programs
(an invariant of a software at a given location is an assertion that is always true
when the location is reached, allowing to check partial correctness of a program).
They also address the problem of generating additive invariants for quantum soft-
ware by reducing it to a semidefinite programming (SDP) problem and applying an
SDP solver.

In [36], Kakutani presents a Hoare-style logic for the verification of quantum,
probabilistic programs. Hartog’s probabilistic Hoare logic [37] is extended in this
work, and the QPL language [38] is taken as the target.

Finally, Sun and He present the basic idea of categorical logic for quantum
programs (CLQP) [39]. CLPQ combines the logic of quantum programming
(LQP)—an extension of quantum Hoare logic—with categorical quantum mechan-
ics (CQM). They present its syntax, semantics, and proof system along with a proof-
of-concept over Deutsch’s algorithm’s correctness.

9.2.5 Reversible Circuits Testing

From the point of view of circuit verification, reversibility provides some interesting
properties, such as the conservation of energy and, thus, of information [40]. In the
current state of the art, the most used “high-level”models and languages in quantum
algorithm definition are still representations of circuits, thus keeping some of the
circuits’ properties that are interesting for unitary testing of quantum algorithms.

This is the reason why this topic has been considered relevant for this work. Some of
the selected publications focus on reversible quantum circuit verification and the
applicability of the classical reversible circuit existing techniques and approaches to
their quantum equivalents.

174 A. G. de la Barrera et al.

In Patel et al. [41], the test-set generation problem is considered, focusing on how
it is affected by the reversibility of circuits. It is demonstrated that reversibility
simplifies the problem in a significant way. An algorithm for finding complete test
sets is presented and compared to conventional automatic test pattern generation
(ATPG, hereinafter), obtaining test sets approximately half the size of the ATPG
ones. The authors also discuss how this work may be extended to reversible quantum
circuits, considering the inherent differences between the deterministic fault-free
classical circuits and the probabilistic fault-free quantum circuits.

In [42], Mondal et al. propose a fault detection scheme for any type of reversible
circuits consisting of entirely positive, negative, or mixed controlled Toffoli gates. It
is suitable for large circuits and has been tested on several benchmark circuits,
detecting faults, and identifying the faulty zone. After presenting the results, a
comparative analysis with other works is performed.

Finally, Zamani et al. [43] present a test generation method for reversible circuits,
adoptable by built-in self-test (BIST) implementations, which achieves a high fault
coverage. In the proposed approach, each test pattern is the output of the circuit to the
previous test pattern. A test generation algorithm to minimize test time is also
presented, achieving 100% fault coverage. Encouraging results were found in the
application of the benchmark simulation experiments of the proposed method.

9.2.6 Analysis of the Current State of the Art

According to the state of the art presented in the previous sections, a brief analysis of
the different findings will be presented, in order to outline in what extent the current
proposals support the emerging quantum software testing process of quantum
software engineering.

One of the main identified strengths is that experience with classic software
engineering has enabled the community to become aware of the need for a quantum
software engineering—and more specifically a quantum software testing engineer-
ing—in a very incipient state of quantum computing. This has enabled the develop-
ment of elements such as lifecycles [13], bug taxonomies [10, 14], or testing
frameworks [20] significantly earlier than their classic counterparts. On the other
hand, the low abstraction level of the models and languages used for quantum
algorithm definition implies that some techniques developed for quantum circuit
testing may be possibly applied to the unitary testing of quantum software. Another
point that derives from the low abstraction level is that the graphical platform-
independent models (PIM) are—with some exceptions [16]—based on a broadly
accepted meta-model, favoring standardization, abstraction, reuse, and indepen-
dence from technological providers.

9 Quantum Software Testing: Current Trends and Emerging Proposals 175

On the other hand, the main weakness found is the lack of a settled and well-
proven body of knowledge on quantum software engineering, as the state-of-the-art
testing of quantum algorithms and protocols is still rudimentary [17]. Even though
the tendency in SE is to raise the level of abstraction, the artifacts used for quantum
algorithm specification are still mainly circuit representations, lacking the advan-
tages of higher-level versions. Moreover, the life cycles proposed so far [7, 13] are
cascade-based approaches. While state-of-the-art classic SE lifecycles have
transformed testing processes into a set of transversal and iterative tasks, waterfall
models offer a more isolated and sequential vision of testing and verification.
Besides, there is still a lack of off-the-shelf components [15], such as testing
libraries, and technological environments that support verification and testing activ-
ities [17, 22] are still reduced in number, matureness, and integration.

However, there is a vast body of knowledge on classic testing engineering.
Although some techniques, processes, and activities have been assessed and
adapted, there are still others that are yet to be addressed, for example, the integration
of quantum processes and artifacts on classical platforms like KDM [44] or UML
[45] is an emerging field of study. Furthermore, the quantum as a service approach
that is expected to prevail in the near future [46] will make it possible to approach
integration testing and verification management through already established “as a
Service” practices, such as component integration techniques, provider service-level
agreements, or continuous integration processes [47]. Finally, from the perspective
of Model-Driven Architectures (MDA) [48], the low abstraction level of current
platform-independent and specific models (PIMs/PSMs) eases the mapping effort
between different models and languages significantly. This favors MDA’s practices
such as reuse and automatic transformation and testing of high-level executable
models.

Finally, it is crucial to point out the different threats that must be considered
concerning quantum software testing. Firstly, quantum programming is less intuitive
and more complex, and thus more error-prone due to quantum mechanics
[49, 50]. The fact that a significant proportion of practitioners have a background
in physics or mathematics rather than computer science can also be a source for
reluctance about the introduction of SE practices such as higher-abstraction-level
artifacts or the adoption of novel development/testing processes [51]. Secondly, the
QaaS predictable future combined with the low abstraction level of artifacts can
derive in low portability of models and code and solid dependency of the hardware
providers.

176 A. G. de la Barrera et al.

9.3 From Classic to Quantum Software Testing: Redefining
the Mutation Technique

9.3.1 Introduction

Considering the previous analysis of the state of the art, it is obvious the lack of
techniques and tools to implement a quantum software engineering-based quantum
software testing process. In order to start tackling with such situation, the current
section presents a redefinition of one of the most powerful techniques to perform
software testing in classic software development: software mutation.

Mutation testing has been widely used to improve the quality of test suites ever
since the inception of structure programming [52] to optimized applications in
object-oriented development [53, 54]. Also, mutation testing has been applied to
different software domains [55]. Mutants are usually generated by automated tools
that, through mutation operators, introduce syntactic changes in the programs. Most
of the time, these changes can be interpreted as small mistakes that a competent
programmer [56] might commit and that, under given circumstances, could lead to
the program showing an unexpected behavior. This situation is more common for
programmers who come from the field of classical computing [57].

Thus, mutation tools can imitate simple human errors and are premised on the
coupling effect (i.e., if a test suite is sensitive enough to detect simple faults, it will be
also able to detect more complex faults [58]). Each mutation operator is specialized
in introducing one particular type of change that may cause an error.

To the best of our knowledge, mutation is a technique that to date has not been
exploited in quantum circuit development, except for two proposals which do
mention the concept of mutation. The first of these is [59], where the authors
apply metamorphic testing to quantum software (written in Q#). In this approach,
the concept of “mutant” is only mentioned as a part of the validation of the approach
and as a method to modify the original source code. Although this approach is
focused on Q# programs, mutants proposed in this paper are just possible examples
of modifications that could be carried out on quantum software. The second such
proposal is [60], in which the authors present a novel quantum mutant-based fault
injection technique, based on the replacement of certain gates by other ones.

9.3.2 Quantum Specific Errors and Operators

Quantum computing is a young discipline, and as yet there are few fault models.
Two of the most significant are those produced by Lukac et al. [61] and by Biamonte
et al. [61], who, respectively, collect (1) faults due to quantum noise or gate-building
construction and (2) programmer faults.

We are concerned here with the second type, which we have grouped into the
following categories: missing gates, wrong gates, bridging faults (a multi-qubit gate

which connects wrong qubits), and initialization errors. We have included an
additional category for representing entanglement faults.

9 Quantum Software Testing: Current Trends and Emerging Proposals 177

The proposed, designed, and implemented mutation operators appear in
Table 9.1. Each operator includes its description and one example of its application.
Note that each operator can be applied several times to the same circuit, producing
one mutant circuit per application.

The wrong gate operators swap X, Y, Z, and H gates with the others, thus
showing a similar behavior. As a result, we give only three examples of its
application.

9.4 Quantum Mutation Support Tool

9.4.1 Description of the Prototype

QuMu is a tool for the mutation testing of quantum circuits. It is based on the circuit
representation given by the Quirk quantum circuit simulator.5 In Quirk, a circuit is
represented by an ordered set of columns, and on each column, there is an ordered set
of gates. Quirk exports the circuits as a JSON object, and from this, QuMu creates a
circuit representation. In Fig. 9.1, the diagram shows the most meaningful operations
in each class. Note that Gate is an abstract class that has as many concrete special-
izations (Fig.

Mutation operators are specializations of the abstract Operator class (Fig.),
which declare two abstract operations:

9.2

9.6) as types of gates that we want to mutate.

• isApplicableTo returns true whether this operator is applicable to a quantum
circuit passed as a parameter. If it is, then the operation saves in the
mutablePositions map whichever rows are mutable in each column.

• If it was determined that the operator was applicable to the circuit, apply goes
through all the columns and rows saved in mutablePositions and generates a
mutant for each mutable position. Every mutant is then saved in a database.

The operators are organized in a hierarchical structure (Fig. 9.3) like that shown in
Table 9.1, which allows for operations which are common to several operators to be
reused: for example, the isApplicableTo method in the abstract
EntanglementOperator class is valid for all three of its specializations.

The determination of the applicability of an operator to a given circuit relies on
reflective programming: for example, the isApplicableTo method in

5https://algassert.com/quirk

https://algassert.com/quirk

178 A. G. de la Barrera et al.
T
ab

le
9.
1

Q
ua
nt
um

m
ut
at
io
n
op

er
at
or
s

F
am

ily
O
pe
ra
to
r

D
es
cr
ip
tio

n

E
xa
m
pl
es

O
ri
gi
na
l
ci
rc
ui
t

M
ut
an
t
ci
rc
ui
t

In
iti
al
iz
at
io
n

C
ha
ng

e
in
iti
al
va
lu
e

C
ha
ng

es
th
e
in
iti
al
va
lu
e
of

a
qu

bi
t

F
ir
st
ga
te
du

pl
ic
at
io
n

D
up

lic
at
es

a
on

e-
qu

bi
t
ga
te
pl
ac
ed

in
th
e
fi
rs
t
co
lu
m
n
of

th
e

ci
rc
ui
t

F
ur
th
er

ga
te
du

pl
ic
at
io
n

D
up

lic
at
es

a
on

e-
qu

bi
t
ga
te
pl
ac
ed

in
th
e
se
co
nd

an
d
ne
xt

co
lu
m
ns

W
ro
ng

ga
te

S
w
ap

X
-Y

T
he
se

op
er
at
or
s
sw

ap
on
e
P
au
li
or

H
ad
am

ar
d
ga
te
w
ith

a
di
f-

fe
re
nt

P
au
li
or

H
ad
am

ar
d
ga
te

S
w
ap

H
-Y

S
w
ap

X
-Z

S
w
ap

X
-H

S
w
ap

Y
-X

S
w
ap

X
-Y

S
w
ap

Y
-Z

S
w
ap

Y
-H

S
w
ap

Z
-X

S
w
ap

Y
-X

(c
on

tin
ue
d)

S
w
ap

Z
-Y

S
w
ap

Z
-H

S
w
ap

H
-X

S
w
ap

H
-Y

S
w
ap

H
-Z

M
is
si
ng

ga
te

O
ne
-q
ub

it
ga
te
re
m
ov

al
R
em

ov
es

a
on

e-
qu

bi
tg

at
e
at
an
y
lo
ca
tio

n
of

th
e
ci
rc
ui
t

R
em

ov
ed

th
e
fo
ur
th

qu
bi
t

M
ul
ti-
qu

bi
t
ga
te
re
m
ov

al
R
em

ov
es

a
m
ul
ti-
qu

bi
t
ga
te
at
an
y
lo
ca
tio

n
of

th
e
ci
rc
ui
t

R
em

ov
ed

th
e
se
co
nd

co
lu
m
n

C
on

tr
ol

ga
te
re
m
ov

al
R
em

ov
es

on
e
co
nt
ro
lg

at
e
in

a
m
ul
ti-
qu

bi
t
ga
te

B
ri
dg

in
g

fa
ul
ts

S
w
ap

co
nt
ro
ls
an
d
co
n-

tr
ol
le
d
qu

bi
ts

S
w
ap
s
th
e
co
nt
ro
lg

at
e
w
ith

on
e
of

th
e
co
nt
ro
lle
d
ga
te
s

E
nt
an
gl
em

en
t

fa
ul
ts

W
ro
ng

en
ta
ng

le
m
en
t

in
iti
al
iz
at
io
n

M
ov

es
th
e
H
ga
te
to

th
e
X
ro
w

9 Quantum Software Testing: Current Trends and Emerging Proposals 179

T
ab

le
9.
1

(c
on

tin
ue
d)

F
am

ily
O
pe
ra
to
r

D
es
cr
ip
tio

n

E
xa
m
pl
es

O
ri
gi
na
l
ci
rc
ui
t

M
ut
an
t
ci
rc
ui
t

E
nt
an
gl
em

en
t
co
rr
up

tio
n

S
hi
ft
s
th
e
H
ga
te
to

th
e
ri
gh

t
of

th
e
co
nt
ro
lc
ol
um

n

F
or
ce

un
en
ta
ng

le
m
en
t

R
em

ov
es

th
e
H
ga
te
in

th
e
fi
rs
t
co
lu
m
n

F
or
ce

en
ta
ng

le
m
en
t

D
et
ec
ts
in
ve
rs
e
si
tu
at
io
ns

to
an

en
ta
ng

le
m
en
ta
nd

co
nv

er
ts
th
em

in
to

en
ta
ng

le
m
en
ts

180 A. G. de la Barrera et al.

OneQubitGateRemoval looks for gates implementing the IOneQubitGate interface
(Fig. 9.4). Currently, the only gates implementing this interface are X, Y, Z, and H—
and so the operator would not be applicable to the Square of Z gate. If we want to
apply this operator to this gate, we only need to ensure that SquareOfZ implements
the IOneQubitGate.

Once the two subsystems (i.e., the circuit with its columns and gates and the
operators) have been defined, the generation and execution of mutants is performed
by two engines:

9 Quantum Software Testing: Current Trends and Emerging Proposals 181

Fig. 9.1 QuMu representation of a quantum circuit

• The first engine (mutant generation) iterates over the selected mutation operators
and over the columns and gates of the circuit.

N

182 A. G. de la Barrera et al.

Fig. 9.2 A generic QuMu mutation operator

Fig. 9.3 Partial view of the architecture of the operators

• The second engine (mutant execution) uploads every mutated circuit onto the
Quirk website, performs the execution simulation of the mutant, downloads the
results, and saves them in the database.

9.4.2 Quantum Software Mutation Example

Figure 9.5 shows the top side of QuMu, which is implemented as a web application.
The tester may either load one of circuits saved in the database (shown in the
dropdown list of the section “Original circuit”) or may paste its Quirk’s JSO
specification into the “Your circuit” section.

The circuit is drawn in the third section (“Loaded circuit”), which is an iframe
element containing the Quirk web page.

9 Quantum Software Testing: Current Trends and Emerging Proposals 183

Fig. 9.4 isApplicableTo uses reflection to decide the applicability of an operator

In Sect. 9.4 (Fig. 9.5), the tester selects the operators they want to apply to the
circuit and presses the Generate mutant’s button. When the server receives the
request, it generates the mutants, saves them in the database, and returns the results
to the user-agent.

For the circuit shown in Fig. 9.5, QuMu generates 58 mutants. Figure 9.6 shows
the 15th mutant, generated by the Control Gate Removal operator to the control gate
at the CNOT gate, in the fifth column.

According to the distribution matrixes obtained from the execution of mutants,
they are classified into three different states: alive mutants, killed mutants, and
injured mutants.

9.4.2.1 Killed Mutants

In Quirk, all the circuits include a matrix of n x n (with n being the number of qubits)
on the right side, which shows the distribution of probabilities of each pair of qubits.
Each cell is represented by a complex number (r, i) that represents the amplitude
matrixes.

Figure 9.7 details the matrixes which correspond to the original and to the 18th
mutant. Since the distribution of the results is different, this mutant can be clearly
marked as killed.

184 A. G. de la Barrera et al.

Fig. 9.5 Top side of QuMu

9.4.2.2 Alive Mutants

The circuits in Fig. 9.8 are the original adder circuit (top row) and its 15th mutant,
whose change has also been generated by the Control Gate Removal operator (i.e.,
the control gate at the second column has been removed). Both distribution matrixes
are exactly equal, and, hence, this mutant is alive.

9 Quantum Software Testing: Current Trends and Emerging Proposals 185

Fig. 9.6 Detail of the 18th mutant for the circuit in Fig. 9.5

Fig. 9.7 Probabilities in the original (left) and in the 18th mutant, which is killed

9.4.2.3 Injured Mutants

There are other mutants that offer the same result as the original but leave the qubits
with a different phase. The Change Initial Value operator has produced the Mutant
1, the first qubit input value of which has been changed from 0 to 1.

As is seen in Fig. 9.9, the original and the mutant distribution matrixes are almost
identical, but there is a difference in the final phase of the first qubit: the quantum
particle points outside the paper in the original circuit and inside the paper in the

mutant. However, the absolute values of the complex numbers representing each cell
in the matrix are the same, and, thus, both outputs are indistinguishable when the
qubits are measured.

186 A. G. de la Barrera et al.

Fig. 9.8 Original circuit (top) and the 15th mutant, which remains alive

Fig. 9.9 The output probabilities are the same, but the phases are different (original versus
Mutant 1)

We refer to this type of mutant as “injured.”

9 Quantum Software Testing: Current Trends and Emerging Proposals 187

Fig. 9.10 First rows of the killing and injured matrixes for the Hadamard adder

9.4.2.4 Showing the Analysis Results in QuMu

QuMu includes a mutant execution engine and a mutant results analyzer. Once the
mutants have been generated, the first one iterates over each successive mutant, reads
the output produced by Quirk, extracts the probability distribution matrix, and saves
it onto a database. Then, the results analyzer compares the distribution matrixes of
the original circuit with every mutant, showing, respectively, either a killing or an
injured matrix (Fig. 9.10).

9.5 Conclusions and Future Work

Quantum computing is no longer a promise, but a reality, and its impact in current
and future society trends has been proven and recognized by academy and govern-
ments (which play crucial responsibilities on the success of quantum software
engineering [62]) since “quantum computers have the potential to solve tasks that
we don’t even dare dream of today and that classical computers can never solve”
[63]. However, quantum software (as a new and substantially different paradigm)
lacks a methodological background to ensure a quality development process and
quality products, as it has been claimed in different studies. A quantum software
engineering study field is emerging to avoid a potential quantum software crisis, and
many areas must be developed. That means that we must commence quantum
software engineering right now, thus seeking to be prepared, and endeavoring to
avoid low-quality quantum software plagued with errors and productivity problems.

To achieve all the benefits that quantum computing offers, though, this new
paradigm will need to be developed in an appropriate way. Testing processes and
tools are of particular importance—as is evident from classic software engineering.
As a first step in our walkthrough to the statement of a standardized quantum

software testing process, we present in this chapter (1) an analysis of the current state
of the art about quantum software testing, and aligned to our aim of contributing to
create a body of knowledge for quantum software testing (and, in turn, contribute to
quantum software engineering), and (2) we propose the redefinition of the quantum
software mutation-based testing technique, together with a prototype to make feasi-
ble the application of the proposal.

188 A. G. de la Barrera et al.

The analysis of the state-of-the-art reveals that quantum physics characteristics
have an important impact on the verification and validation of quantum software, as
well as superposition, which turn the deterministic nature of (classic) software into a
stochastic one for quantum software. Other quantum characteristics, such as the
inability to clone/copy the exact state of a qubit, make impossible to check the
intermediate state of a particular qubit. Despite these physical barriers to perform
testing on quantum programs, several trends have been identified: (1) proposals
dealing with the stochastic nature of quantum software, (2) adaptations of the Hoare
logic, and (3) the use of quantum circuits’ reversibility property.

Finally, a redefinition of the software testing based on mutation technique has
been proposed for quantum software testing. An initial set of errors has been
identified, and the corresponding mutant operators has been designed to simulate
the errors in “quantum circuits under tests.” To demonstrate the feasibility of the
technique, a prototype has been developed, and initial experiments show the possi-
bility to identify not only “killed and alive” quantum mutants but also a new type of
quantum mutant, the “injured” one. More research must be carried out in order to
find new errors and determine the most common ones and for refinements in the
redefinition on the technique.

Acknowledgments The research work presented in this chapter is framed within the following
projects: TESTIMO (Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de
Castilla La Mancha y Fondo Europeo de Desarrollo Regional FEDER, SBPLY/17/180501/000503)
and “QHealth: Quantum Pharmacogenomics Applied to Aging,” 2020 CDTI Missions Program
(Center for the Development of Industrial Technology of the Ministry of Science and Innovation of
Spain). We would like to thank all the aQuantum members, especially Guido Peterssen and Pepe
Hevia, for their help and support.

References

1. Maslov D, Nam Y, Kim J (2019) An outlook for quantum computing [point of view]. Proc IEEE
107(1):5–10

2. López, M.A. and Silva, M.M.D., Quantum technologies: digital transformation, social impact,
and cross-sector disruption. 2019.

3. Humble TS, DeBenedictis EP (2019) Quantum realism. Computer 52(06):13–17
4. LaRose R (2019) Overview and comparison of gate level quantum software platforms. Quan-

tum 3:130
5. Gill SS (2020) Quantum computing: a taxonomy, systematic review and future directions.

2010(15559). ArXiv

9 Quantum Software Testing: Current Trends and Emerging Proposals 189

6. Piattini M, Peterssen G, Pérez-Castillo R, Hevia JL, Serrano MA, Hernández G, García-
Rodríguez de Guzmán I, Paradela CA, Polo M, Murina E, Jiménez L, Marqueño JC,
Gallego R, Tura J, Phillipson F, Murillo JM, Niño A, Rodríguez M (2020) The Talavera
Manifesto for Quantum Software Engineering and Programming. In: QANSWER

7. Zhao J (2020) Quantum software engineering: landscapes and horizons. arXiv preprint
arXiv:2007.07047

8. Miranskyy A, Zhang L, Doliskani J (2020) Is your quantum program bug-free? In:
Proceedings – 2020 ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, ICSE-NIER 2020

9. Usaola MP (2020) Quantum software testing. In: QANSWER
10. Huang Y, Martonosi M (2019) QDB: from quantum algorithms towards correct quantum

programs. In: OpenAccess Series in Informatics
11. Sodhi B (2018) Quality attributes on quantum computing platforms. arXiv preprint

arXiv:1803.07407
12. Miranskyy A, Zhang L, Doliskani J (2021) On testing and debugging quantum software. arXiv

preprint arXiv:2103.09172
13. Dey N, Ghosh M, Chakrabarti A (2020) QDLC–the quantum development life cycle. arXiv

preprint arXiv:2010.08053
14. Campos J, Souto A (2021) QBugs: a collection of reproducible bugs in quantum algorithms and

a supporting infrastructure to enable controlled quantum software testing and debugging
experiments. arXiv preprint arXiv:2103.16968

15. Gomes C, Fortunato D, Fernandes JP, Abreu R (2020) Off-the-shelf components for quantum
programming and testing. In: CEUR Workshop Proceedings

16. Reutter D, Vicary J (2018) Shaded tangles for the design and verification of quantum programs
(extended abstract). In: Electronic Proceedings in Theoretical Computer Science, EPTCS

17. Honarvar S, Mousavi MR, Nagarajan R (2020) Property-based testing of quantum programs in
Q#. In: Proceedings – 2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing Workshops, ICSEW 2020

18. Steiger DS, Häner T, Troyer M (2018) ProjectQ: an open source software framework for
quantum computing. Quantum 2:49

19. Wang J, Gao M, Jiang Y, Lou J, Gao Y, Zhang D, Sun J (2018) QuanFuzz: Fuzz testing of
quantum program. arXiv preprint arXiv:1810.10310

20. Betanzo Sanchez F (2020) QuTAF: a test automation framework for quantum applications
21. Bisht S (2013) Robot framework test automation. Packt Publishing
22. Anticoli L, Piazza C, Taglialegne L, Zuliani P (2018) Entangλe: A translation framework from

quipper programs to quantum markov chains. In: Communications in computer and information
science, pp 113–126

23. Smelyanskiy M, Sawaya N, Aspuru-Guzik A (2016) qHiPSTER: the quantum high perfor-
mance software testing environment. arXiv preprint arXiv:1601.07195

24. Krishnaswamy S, Markov IL, Hayes JP (2007) Tracking uncertainty with probabilistic logic
circuit testing. IEEE Des Test Comput 24(4):312–321

25. Huang Y, Martonosi M (2019) Statistical assertions for validating patterns and finding bugs in
quantum programs. In: Proceedings – International Symposium on Computer Architecture

26. Li G, Zhou L, Yu N, Ding Y, Ying M, Xie Y (2020) Projection-based runtime assertions for
testing and debugging Quantum programs. In: Proceedings of the ACM on Programming
Languages. 4(OOPSLA)

27. Dijkstra EW, Dijkstra EW, Dijkstra EW, Dijkstra EW (1976) A discipline of programming, vol
613924118. Prentice-Hall, Englewood Cliffs

28. Morgan C, McIver A, Seidel K (1996) Probabilistic predicate transformers. ACM Trans
Program Lang Syst (TOPLAS) 18(3):325–353

29. Feng Y, Duan R, Ji Z, Ying M (2007) Proof rules for the correctness of quantum programs.
Theoretical Comput Sci 386(1–2):151–166

190 A. G. de la Barrera et al.

30. Baltag A, Bergfeld JM, Kishida K, Sack J, Smets SJL, Zhong S (2013) Quantum probabilistic
dyadic second-order logic. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).:64–80

31. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):
576–580

32. Barthe G, Hsu J, Ying M, Yu N, Zhou L (2020) Relational proofs for quantum programs. In:
Proceedings of the ACM on Programming Languages. 4(POPL)

33. Liu J, Zhan B, Wang S, Ying S, Liu T, Li Y, Ying M, Zhan N (2019) Formal verification of
quantum algorithms using quantum hoare logic. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), pp 187–207

34. Zhou L, Yu N, Ying M (2019) An applied quantum hoare logic. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI)

35. Ying M, Ying S, Wu X (2017) Invariants of quantum programs: characterisations and
generation. In: Conference Record of the Annual ACM Symposium on Principles of Program-
ming Languages

36. Kakutani Y (2009) A logic for formal verification of quantum programs. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pp 79–93

37. den Hartog J (1999) Verifying probabilistic programs using a hoare like logic. In: Annual Asian
Computing Science Conference. Springer

38. Selinger P (2004) Towards a quantum programming language. Mathematical Struct Comput Sci
14(4):527–586

39. Sun X, He F (2020) A first step to the categorical logic of quantum programs. Entropy 22(2)
40. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theoretical Phys 21(3):219–253
41. Patel KN, Hayes JP, Markov IL (2004) Fault testing for reversible circuits. IEEE Trans

Computer-Aided Des Integr Circ Syst 23(8):1220–1230
42. Mondal B, Bandyopadhyay C, Rahaman H (2016) A testing scheme for mixed-control based

reversible circuits. In: 2016 Sixth International Symposium on Embedded Computing and
System Design (ISED). IEEE

43. Zamani M, Tahoori MB, Chakrabarty K (2012) Ping-pong test: compact test vector generation
for reversible circuits. In: 2012 IEEE 30th VLSI Test Symposium (VTS). IEEE

44. Jiménez-Navajas L, Pérez-Castillo R, Piattini M (2020) Reverse engineering of quantum pro-
grams toward KDM models. In: International Conference on the Quality of Information and
Communications Technology. Springer

45. Pérez-Castillo R, Jiménez-Navajas L, Piattini M (2021) Modelling quantum circuits with UML.
arXiv preprint arXiv:2103.16169

46. Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K (2020) Quantum in the cloud:
application potentials and research opportunities. arXiv preprint arXiv:2003.06256

47. Bratman H, Court T (1975) The software factory. Computer 8(5):28–37
48. OMG (2003) MDA Guide v1.0. Business Process Integration chapter
49. Ying M (2011) Floyd-hoare logic for quantum programs. ACM Trans Program Lang Syst 33(6)
50. Piattini M, Serrano M, Perez-Castillo R, Petersen G, Hevia JL (2021) Toward a quantum

software engineering. IT Prof 23(1):62–66
51. Theocharis G, Kuhrmann M, Münch J, Diebold P (2015) Is water-scrum-fall reality? On the use

of agile and traditional development practices. In: International Conference on Product-Focused
Software Process Improvement. Springer

52. Agrawal H (1989) Design of mutant operators for the C programming language. Software
Engineering Research Center, Purdue University, West Lafayette.

53. Polo M, Piattini M, García-Rodríguez I (2009) Decreasing the cost of mutation testing with
second-order mutants. Softw Test Verif Reliab 19(2):111–131

54. Deng L, Offutt AJ (2018) Reducing the cost of android mutation testing

9 Quantum Software Testing: Current Trends and Emerging Proposals 191

55. Deng L, Offutt J, Ammann P, Mirzaei N (2017) Mutation operators for testing android apps. Inf
Softw Technol 81(C):154–168

56. DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the practicing
programmer. Computer 11(4):34–41

57. Li G, Zhou L, Yu N, Ding Y, Ying M, Xie Y (2020) Projection-based runtime assertions for
testing and debugging quantum programs. Proc ACM Program Lang 4

58. Offutt AJ (1992) Investigations of the software testing coupling effect. ACM Trans Softw Eng
Methodol 1(1):5–20

59. Honarvar S, Mousavi MR, and Nagarajan R. Property-based testing of quantum programs in
Q#. 2020.

60. Boncalo O, Udrescu M, Prodan L, Vladutiu M, Amaricai A (2007) Assessing quantum circuits
reliability with mutant-based simulated fault injection’. In: 2007 18th European Conference on
Circuit Theory and Design, pp 942–945

61. Lukac M, Kameyama M, Perkowski M, Kerntopf P, Moraga C (2017) Fault models in
reversible and quantum circuits. In: Adamatzky A (ed) Advances in Unconventional Comput-
ing, Theory, vol 1. Springer International, Cham, pp 475–493

62. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-
neering golden age. SIGSOFT Softw Eng Notes 45(3):12–14

63. EQF (2020) Strategic research agenda. European Quantum Flagship. European Commission

Chapter 10
Quantum Software Measurement

Miguel-Angel Sicilia, Marçal Mora-Cantallops, Salvador Sánchez-Alonso,
and Elena García-Barriocanal

10.1 Introduction

Software measurement plays an important role in software engineering. As software
engineering activities are diverse (including managing, costing, planning, modeling,
analyzing, specifying, designing, implementing, testing, and maintaining), so are the
possible metrics for processes and artifacts. Measurement is critical to the manage-
ment of the software process, and practitioners and researchers count with a rela-
tively mature body of knowledge for that purpose in the form of metrics, process
frameworks, and even maturity models. All of these are built on the experience of
decades of inquiry about development practice and provide the empirical and
theoretical foundations for the discipline [1]. Consequently, they are regularly
included as part of the educational path for software engineers [2]. However, the
progressive availability of practical quantum computers raises the question of the
extent to which those foundations can be transferred to the activity of developing
programs based on these new devices, provided that their computational models
depart rather radically from classical computers.

The programming of quantum computers (or quantum computer simulators) can
be done with low-level primitives, but a relatively coherent set of higher-level
abstractions have appeared in the last years [3]. Together with these abstractions, a
considerable number of “quantum-specific” programming languages have been
proposed and developed, together with their associated tooling (compilers, graphical
programming languages, and middleware abstracting real quantum computers and
simulators, among others). Further, there are known algorithms as the quantum
Fourier transform (QTF) or quantum phase estimation that appear to be used as

M.-A. Sicilia (*) · M. Mora-Cantallops · S. Sánchez-Alonso · E. García-Barriocanal
Computer Science Department, University of Alcalá, Alcalá de Henares, Spain
e-mail: msicilia@uah.es; marcal.mora@uah.es; sal-vador.sanchez@uah.es;
elena.garciab@uah.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_10

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_10&domain=pdf
mailto:msicilia@uah.es
mailto:marcal.mora@uah.es
mailto:sal-vador.sanchez@uah.es
mailto:elena.garciab@uah.es
https://doi.org/10.1007/978-3-031-05324-5_10#DOI

building blocks or library components and that might be considered in some sense as
higher-level primitives. All these achievements might make software engineering for
quantum computers appear as a maturing field of practice.

194 M.-A. Sicilia et al.

However, if we consider quantum software development activity nowadays in
terms of volume of effort spent, it becomes obvious that the situation cannot be
compared with that of classical software. This is due to its youth and relative lack of
maturity, but also since quantum software is in general aimed only at solving some
problems for which classical computers are deemed less efficient. This entails that
empirical studies are limited by the availability of actual quantum source code, but
also and more importantly by the general lack of studies related to resources or
processes used in producing that software.

The above-described situation portrays quantum software metrics and measure-
ment as an almost completely uncharted territory. For its exploration today, we can
only resort to our knowledge of classical software measurement, which may to some
extent be reused, reformulated, or maybe repurposed. It is even unclear if the nature
of quantum software and its specificity may render inadequate some ideas that are
applicable to developing traditional application or business software, since quantum
programs might with time become reusable libraries written by specialized devel-
opers, in a situation completely different to that of the current profession of software
engineer.

This chapter approaches the topic in its title from the just presented perspective, to
look ahead in a future in which quantum software development becomes widespread
at least for a class of problems in which effective and affordable quantum computers
are available. In that direction, it should be noted that the chapter speculates with
ideas that may become obsolete or inadequate as quantum hardware evolves or
innovations in that hardware or its programming interfaces depart significantly from
current practice.

The rest of this chapter is structured as follows. Section 10.2 provides a brief
overview of the landscape of programming languages and software tools available
for quantum development and reviews the scarce literature in the topic of software
metrics. Then, Sect. 10.3 approaches the idea of software quantum metrics in
contrast with “classical” software metrics, pointing to some differences. Then,
Sect. 10.4 proposes some tentative research directions in quantum software metrics.
Finally, conclusions and outlook are provided in Sect. 10.5.

10.2 Background

10.2.1 Quantum Instruction Sets

As with classical computers, programming quantum computers are expected to be
predominantly done using some form of high-level programming language for the
expression of quantum algorithms. However, it is important to understand that there
are several different “quantum instruction sets” that mediate the translation of

algorithms to physical instructions and that provide a programming experience close
to assembly or virtual machine programming.

10 Quantum Software Measurement 195

In some cases, those assembly-like languages are targeted mainly to a concrete
hardware platform. This could be the case, for example, the case of Jaqual [4],
designed for the Quantum Scientific Computing Open User Testbed (QSCOUT)
trapped-ion quantum computer testbed. Another example, Quil [5]—developed for
Rigetti’s uperconducting quantum processors—assumes a shared-memory architec-
ture. However, there are also notable examples of hardware-agnostic instruction sets,
for example, common QASM (cQASM) [6] and the Open Quantum Assembly
Language (OpenQASM), the latter now in its third version [7].

There is relevant research activity in compilers and optimizers for those lan-
guages. Häner et al. [8] argue that the toolchain for quantum computers is substan-
tially different from its classical counterpart, including the specificity of optimizing
steps, which may include gate rewriting or synthesis strategies, and also the choice of
quantum error correction (QEC) strategies. The extent to which those quantum
toolchains will be able to abstract the underlying constraints and features of devices
is still unclear. Today, languages and libraries still expose developers with the
devices themselves. As an example, Google Cirq Python-based language1 explicitly
exposes the hardware (e.g., via a Device class) but at the same time is prepared for
optimizing circuits, which brings a level of device independence. In this direction,
another interesting recent proposal is that of automating the selection of quantum
hardware [9]. That selection is today based on the constraints and capacity of
available hardware devices but may in the future be extended to more advanced
features, eventually that of automating program to device matching.

10.2.2 High-Level Quantum Programming Languages

A number of quantum programming languages have been proposed in recent years,
ranging from imperative to functional and also low level to high level. Most of them
are based on the quantum gate model paradigm, but some use other paradigms as the
continuous gate model or quantum annealing. In the case of open-source projects,
their degree of maturity and maintenance is heterogeneous, as discussed by
Fingerhuth et al. [10]. In the category of functional languages, there have been
several approaches to establish the theoretical foundations based on the lambda
calculus. For example, funQ is a language based on the syntax and type system
described by Selinger and Valinor [11].

There are many imperative languages or libraries available. The Quantum Com-
putation Language (QCL) [12] was one of the first languages, with quantum types
and quantum functions as counterparts of the classical ones. The Q language [13] is a
C++ embedded language. The Q j SIi language [14] is a .Net embedded language

1https://quantumai.google/cirq

https://quantumai.google/cirq

that supports quantum programming using a quantum extension of the while-
language. Some of these languages are explicitly designed to be familiar to devel-
opers of classical software by creating analogies of data types, data structures, and
control flow. As an example, the Scaffold language [15] follows a syntax resembling
the C/C++ languages and has as explicit goals “familiarity and ease of use” for
“users familiar with basic quantum computing and classical computer program-
ming.” It also features the interesting concept of classical code to quantum gates
sequence (C2QG) modules which “allow programmers to describe the functionality
of some parts of the algorithm from a higher perspective,” similar to existing
hardware description languages (HDLs) that translate those into gate constructs
[16]. In a similar direction to higher-level abstraction and programmer friendliness,
the Silq language [17] incorporates novel constructs and annotations explicitly
addressing conciseness and readability of quantum programs.

196 M.-A. Sicilia et al.

While some of the languages mentioned are actually libraries or domain-specific
languages built on top of an existing classical programming language, there are some
that are specific to quantum programming. Notably, Q# is a domain-specific lan-
guage explicitly designed to express quantum algorithms. Q# provides a type
system, constructs to safely interleave classical and quantum computations, and
other features as functional constructs which aid composition [18].

Quantum programming languages are often used inside software development
kits (SDKs) that are usually packaged with local simulators and libraries to access
simulators or real quantum computers. For example, Qiskit,2 founded by IBM
Research, provides a range of tools for accessing quantum computing platforms
following the gate model, including tools for quantum hardware verification and
specialized software frameworks for machine learning, finance, and ground state
energy computations. Ocean3 is a suite of tools D-Wave Systems provide for solving
problems with quantum computers using the binary quadratic model (BQM).

Arguably, software practitioners today are faced with a variety of language, tool,
and framework options, albeit the actual quantum devices are still in general limited
for many applications. The predominant option is the gate model, and there is
notable activity in language design, with an emphasis on developer adoption in
some cases. This at first glance appears as a promising landscape for studies focused
on programming language productivity, a concept that has been characterized in
terms of time to implementation and efficiency [19].

10.2.3 Quantum Software Practices

The literature on actual software development practices for quantum computing is
scarce and fragmentary. Dey et al. [20] have proposed a Quantum Development Life

2https://qiskit.org
3https://docs.ocean.dwavesys.com/

https://qiskit.org
https://docs.ocean.dwavesys.com/

Cycle (QDLC). QDLC includes a “waterfall-like” process encompassing quantum
feasibility study, quantum requirement specification, quantum system design, quan-
tum software coding and implementation, quantum testing, and quantum software
quality management. While the proposal has not gone through any kind of empirical
assessment and there are no studies on its use, QDLC provides an interesting point of
departure to software process design and measurement in future work.

10 Quantum Software Measurement 197

Weder et al. [21] discuss a proposal for a quantum software life cycle consisting
of ten phases, a gate-based quantum software application. Their proposal is more
specific and detailed than the one of Dey et al., as it starts with the design task of
splitting the application in quantum and classical parts and then going to phases that
start from a hardware-agnostic version of the programs to lower-level concerns as
optimization, hardware selection, and finally deployment and testing. However, the
life cycle departs from assumptions on the programming model and the current
limitations of quantum computers that may change in the future.

In a different direction, Gheorghe-Pop et al. [22] discuss the concept of “Quantum
DevOps.” Their proposal revolves around the idea of a cycle of activities: release,
evaluate, deploy, monitor, and feedback. This resembles widespread notions of the
DevOps concept, i.e., integrating some management and engineering perspectives
on the continuous delivery of software updates while guaranteeing their correctness
and reliability [23]. However, the proposal is preliminary and only mentions some
quantum computer-specific tasks.

As a summary, the emerging literature on quantum software practices not sur-
prisingly attempts to tailor existing processes and practices to the particularities of
quantum computing, incorporating specificities of the devices and the fact that
quantum computers are used as co-processors. Arguably, it is still early to assess
how effective these practices are at a significant scale, but still some initial potential
directions will be provided in Sect. 10.4.

10.2.4 Quantum Software Metrics

The literature specific to quantum software measurement in general is to the best of
our knowledge also scarce. Sicilia et al. [24] discussed a small-scale study on
measuring some aspects of the codebase of the Q# language available in open-
source repositories, including size measured as appearance of gates and some initial
insights on modular structure. However, that study is limited since it addresses only a
single SDK, which may not be generalizable, and the coded analyzed is mainly
libraries and test cases, which may not be representative of the practice of quantum
programming for particular business cases. The work of Cruz-Lemus et al. [25]
proposes specific metrics for understandability specific to the gate model, which can
be subject to future empirical examination.

Zhao [26] proposes some basic metrics for quantum software, which mainly
focus on measuring the size and structure of quantum programs. Regarding lines
of code (LOC), the proposal is discriminating gates and measurement primitives, and

counting the size of qubit registers used, or the number of distinct gates. Following
the idea of Halstead’s software science, they also propose measures that revolve
around counting combining counts of total and distinct occurrences of operators and
operands. For design metrics, there is a proposal of some sort of quantum architec-
tural description language (qADL) from which metrics counting lines, components,
and connections could be derived. For detailed design, the proposal is using the
number of “quantum design patterns” and, for specification type, some measures
using the recently proposed Unified Modeling Language (UML) extension called
Q-UML [27]. None of these proposals are validated or empirically tested in the
paper.

198 M.-A. Sicilia et al.

Zhao [26] also proposes adapting McCabe’s cyclomatic complexity metric based
on quantum control flow graphs (QCFGs) and Henry and Kafura’s information flow
metric based on the concepts of fan-in and fan-out between modules, but the
proposed metric does not detail what modules are in software and how they can be
identified; neither discusses if this should be applicable separately to classical-to-
quantum coupling or quantum-to-quantum coupling in some way.

There are also proposed metrics estimating attributes of quantum hardware. For
example, the Total Quantum Factor (TQF) [28] gives a rough estimate of the size of
the quantum circuit (circuit width times circuit depth) that can be run before the
processor’s performance decoheres. While these are not strictly software metrics,
they are useful for the connection of software to hardware relevant to the current
limitations of quantum computers.

As a summary, we can find some initial explorations of potential metrics that may
be reused or repurposed from classical software metrics. There is ample room for
initial empirical studies on those, especially those staying at module, code fragment,
or programming construct level, for which it is easier to find samples or devise
experiments.

10.3 Some Similarities and Differences

A quantum computer is a device that exploits the properties of quantum mechanics
to solve certain computational problems more efficiently than allowed by conven-
tional computers. Since measurement is related to some attribute of an entity, when
considering quantum software metrics, it is important to first grasp how quantum
software development is different from software engineering in general. Fenton and
Bieman [29] classify software entities in three categories: processes, products, and
resources. In what follows, we discuss potential differences and similarities for each
of these categories.

!

10 Quantum Software Measurement 199

10.3.1 Software Artifacts in Quantum Software Engineering

Everything produced by the software processes are artifacts. Code is the artifact that
receives more attention since it is the core product in software engineering. How-
ever, there are other elements that may deserve attention, as design or specification
documents.

There exist a large body of literature on the measurement of internal and external
classical software attributes, notably on metrics on size and structure (internal) and
quality (external). Some of them may be reformulated including constructs of
quantum software as done in [26]. However, those simple reinterpretations do not
come without controversial issues, as it is not clear that the constructs used for
classical software may be assimilated to their quantum counterparts. For example,
metrics of complexity as McCabe’s are deemed useful due to some apparent
correlation with number of defects. It is still to be demonstrated that this still holds
in the case of quantum software. We have identified a number of topics in which
classical and quantum software fundamentally appear to diverge and need to be
accounted for.

10.3.2 Diverging Programming Models

The gate model is the most common but not the unique computational paradigm. For
example, quantum annealers as D-Wave’s quantum computers focus on the specifics
of optimization problems. Concretely, programming into that paradigm is method-
ically done as the expression of a binary quadratic model (BQM). The BQM class of
problems consists of Ising models and quadratic unconstrained binary optimization
(QUBO) models and has the general form in (10.1).

min
X

a
aivi
X

i

X

j

bi,j, viv j þ c

ð10:1Þ

In principle, it seems that metrics addressing different of these models may be
developed separately and measurement in general would more likely require differ-
ent resorting to different elements. For example, in the Gate model, the idea of gates
as transformations gives some uniformity to the structuring of programs, which can
be used as a foundation to propose metrics, for example, based on understandability,
as a proxy for software quality attributes as maintainability [25]. It should be noted
that these will be specific to the gate model, and, for example, a QUBO model might
require a separate set of metrics that deal with its specifics.

Regarding the gate model, previous work on metrics in HDL gate-based lan-
guages as VHDL may also provide useful insights. Protheroe and Pessolano [30]
described a set of metrics for a range of VHDL specifications that correlated with

circuit metrics and proposed their use as a measure of design quality. However, it is
not clear that such results may be directly translated to the quantum gate model, as
this is a generalization of its classical counterpart and includes gates that have not a
direct correlation with classical logic gates, as for example, rotations.

200 M.-A. Sicilia et al.

10.3.3 Interpretations of Modularity and Separation
of Concerns

Modularity is arguably the key internal property of software design. It becomes a key
property for large software systems.

Also, in principle, there is not a concept of dependencies between subsystems or
high-level modules if we consider these to be pure quantum software, as these
dependencies become mediated by classical software, which typically commands
the quantum computer as a co-processor and then takes the results back from
measurement, possibly connecting those results to other computation stage, which
may or may not as well use quantum programs. This idea suggests that from the
viewpoint of higher-level design, there is no need for additional concepts or metrics
other than those already existing. This hypothesis revolves around the idea of
quantum program as specialized “black boxes” that carry some special task on
demand and that are governed by classical software for which dependency-based
or other metrics may still be adequate.

In the case of detailed design, Exman and Shmilovich [31] propose the use of
linear software model (LSM) for both classical and quantum software design
represent classical software systems by a bipartite graph with two sets of vertices,
one set standing for structors—a generalization of classes—and another for func-
tionals, a generalization of class methods. However, LSM is a formal approach
based on linear algebra for a theory of software rather than of software engineering
[32], so it is not addressing the practice of development itself but rather fundamentals
of software composition.

10.3.4 Specificities of Hardware Constraints and Error
Correction

As mentioned, hardware constraints of quantum computers are still first-class citi-
zens in high-level languages of libraries for quantum development. Also, developers
in some cases are exposed to the specifics of QEC and non-determinism are in some
cases. However, progress in optimization and tooling together with more powerful
and reliable future quantum computers may completely abstract out these or relegate
them to some form of low-level or “system programming” paradigm in the future.

10 Quantum Software Measurement 201

10.3.5 Software Processes in Quantum Software Engineering

A process is usually associated with some time scale. Process activities have
duration—they occur over time, and they may be ordered or related in some way
that depends on time, so that one activity must be completed before another can
begin. Examples of direct process measurements are duration, effort, or number of
incidents.

In QDLC [], we highlight the following as the most relevant differences that
relate too process issues:

20

• In the feasibility study, there is a need for a sort of operational feasibility which
for classical applications is often not done, as it is taken for granted that hardware
and software will pose no restrictions other than cost.

• Architectural design as a split process of the quantum and classical parts, with the
former requiring eventually a selection of the most adequate quantum computing
paradigm.

• The inclusion of hardware-specific considerations in testing and quality
management.

However, some of these differences may respond nowadays to limitations related
to the lack of maturity of quantum hardware, which might become less an issue in the
next years. And of course, there are other differences in requirements, design, and
coding, but they are dependent more on the knowledge of the underlying technol-
ogies and frameworks that actual changes in process.

10.3.6 Software Resources in Quantum Software
Engineering

The resources that we are likely to measure include any input for software produc-
tion. Thus, personnel (individual or teams), materials, tools (both software and
hardware), and methods are candidates for measurement.

Evidence on human resources needs and productivity is still lacking data, and it
would be difficult to get that data in the short term, since that would require the
widespread adoption of quantum computers, which is still an uncertain future event.
However, there are a considerable number of tools that go beyond programming
language support, which include frameworks and libraries together with simulators.
These could make a difference in future software estimation models, which can be
expected since the role of tools in the software process has been recognized and
studied in the past [33].

Further, the complexity and characteristics of the domain have also been consid-
ered a cost driver in classical software development [34]. Since the problems
addressed by quantum computers are in nature specific, i.e., improving the compu-
tational cost of particular algorithms, they render existing estimation models

inadequate. It is unclear if the emerging application domains of quantum computing
(e.g., chemistry, finance) or their algorithmic subfields (e.g., machine learning)
would require different estimation models.

202 M.-A. Sicilia et al.

In a different direction, it is still to be discerned if the paradigm of agile
development can be applied to quantum development, again due to it being targeted
to particular algorithmic problems.

10.4 Research Directions

In this section, we propose a tentative collection of research directions for quantum
software measurement, in an attempt to provide an agenda for the future. This list
stems from the previous discussion and takes into account the specificities of
quantum computing. Nonetheless, it is important to understand that these can only
be provisional and incomplete since it is expected that the field of quantum software
will rapidly evolve in the coming years.

10.4.1 Software Size

One of the key elements in software metrics is size, which is a well-known cost
driver in software estimation and can be considered to be related to complexity, a key
topic in software development. There are roughly two approaches to size, the
consideration of functional requirements and the measurement of some software
product (code or other artifacts).

Software size in quantum programs is an open area of research and is dependent
on the programming paradigm and possibly on the programming language. Empir-
ical studies on the number of constructs of quantum programs can be done by
comparing programs in different languages and libraries and studying their relations.
This would eventually lead to useful platform-invariant measures of size.

Research direction (RD_SIZ_1) Propose and validate constructs and metrics of
actual or projected quantum code size. □

If we approach size from the functional viewpoint, it is unclear if quantum
software requires new concepts or models, since, in principle, the use of quantum
computing or classical computing is a decision based on nonfunctional requirements.
Concretely, that decision stems for the need of reducing computational complexity.
In consequence, there is a need to examine if functional approaches to size require
adaptation.

Research direction (RD_SIZ_2) Evaluate the impact of quantum software devel-
opment in functional approaches to software size. □

10 Quantum Software Measurement 203

The impact of quantum computing may be related to the correlation of functional
size to actual artifact size or complexity. For example, architectures that are designed
to deal with hard computational problems may be no longer necessary if quantum
computers are used. There is some previous evidence in comparing function points
and formal specifications to code size for embedded software, which points to the
latter as more adequate [35]. This might be a point of departure for the estimation of
quantum functional size from specifications.

10.4.2 Software Structure

In classical development, coupling is used to capture the degree of interdependence
between different modules, determined in some way by their interface complexity. A
highly coupled system is in general considered result of poor design. However, these
considerations require research before reusing them to the case of quantum pro-
grams, including the impact of the interface of classical to quantum parts of a
software system.

Research direction (RD_STR_1) Empirically study the dependency and interface
structure of quantum programs at different levels of abstraction and contrast the
findings with classical software. □

From that understanding, it would be possible to propose metrics of quantum
code structure or transpose the ones from classical software that have been found
adequate.

Research direction (RD_STR_2) Propose and validate constructs and metrics of
quantum code structure. □

It should be noted that it is possible that empirical findings suggest a different
approach to software structure size in quantum software, because quantum com-
puters are coprocessors that are delegated some particular parts of the computation. It
is possible that there would be a need to devise completely new metrics and study
structure separating the quantum and classical parts of the system.

10.4.3 Software Quality

Software quality as defined in the ISO/IEC 9126 standard is related to a number of
aspects or characteristics that are to some extent difficult to disentangle and measure
[36]. While some of these aspects as those related to accuracy can be addressed and
measured by concrete practices as testing, others are more difficult to characterize, as
those concerning maintainability. The motivation of quantum computers lies in one
of these factors, efficiency, which is assumed to be the justification of using quantum
computers a priori.

204 M.-A. Sicilia et al.

The complexity of software in its different phases and artifacts (specification,
design, code, and others) is considered a driver of quality since complexity is
associated with more difficulty in attaining quality. In consequence, complexity is
a key ingredient to understand and measure quantum software.

Research direction (RD_QUA_1) Study the relative complexity of quantum code,
design, and other related elements. □

From an empirical standpoint, quality is directly related to testing in its different
forms (unitary, integration, system), and thus the testing of quantum software is of
importance. This is also due to the fact that quantum software is subject to some error
stemming from the implementation layer, and the approach to testing is different.

Research direction (RD_QUA_2) Study quantum software testing concepts and
metrics and its differences with classical software. □

Beyond complexity and correctness, there are other elements in the collection of
factors concerning quality that may be impacted by quantum computing. Some
appear to be solved by tooling, as portability, but there are others as reliability that
may deserve separate consideration for quantum software, at least given the current
state of quantum computing technology.

Research direction (RD_QUA_3) Explore the differences of classical versus quan-
tum internal quality attributes of software and its specificities. □

10.4.4 Resources

Since data about real-world quantum developer teams would be available only after
the widespread adoption of quantum computers, the most promising current research
directions are in the examination of potential cost drivers. Tentative lists of those can
be obtained from the broad literature on cost estimation, maturity, and productivity
regarding the classical software process. The low hanging fruit in this direction is
studying language and tool impact, which leads us to a first potential direction.

Research direction (RD_RES_1) Study the effect of quantum programming lan-
guages and associated tooling in developer productivity or its drivers. □

It should be noted that evidence of programming language impact in productivity
points to divergent results in new developments and in evolution projects [37], and
this difference would be difficult to discern in quantum computing due to the current
lack of empirical data. Experiments comparing cognitive properties of quantum
programming languages or libraries may shed light on its potential impact on
productivity. In this direction, an important milestone would be that of the writing
fixed sets of benchmarks in each language and measuring the implementation effort
and running time incurred, following the proposal in [19].

10 Quantum Software Measurement 205

Research direction (RD_RES_2) Study the relative complexity of quantum pro-
gramming in diverse application fields or domains and its impact. □

Productivity in one of its dimensions is driven by the effort needed by developers,
which is related to understandability [25], among other factors. This aspect of
productivity can be approached via experimental methods with developers, and
studies related to metrics that predict such understandability may be used as a
departure point, e.g., [38].

10.4.5 Processes

Research on the process aspects of quantum software development is arguably the
most difficult aspect for research, since there are not many organizations that
currently use quantum software, and they are typically enterprises specialized in a
concrete domain. Thus, potential models for estimating cost and effort could hardly
generalize to a future scenario in which a large portion of the IT industry regularly
uses quantum software.

However, there is room for small-scale experiments in cost estimation, and there,
the topic of cost estimation based on actual hardware usage can be approached since
there are vendors that yet provide actual quantum computation services hosted in the
cloud. Another potential topic for future research is the fit of particular process
paradigms, as agile development, with the development of applications that include
quantum software. These can be approached initially using case study research
designs or other approaches that may benefit from the close observation of existing
mature quantum development teams, as was done for agile methods in its early
phases [39].

10.5 Conclusions and Outlook

Quantum computing is an emerging new paradigm that demands a change in how
software development is approached, including at a very fundamental level the
mental models required for the task of programming, but also a different approach
to software processes in general. Further, quantum computers play the role of
coprocessors in current systems and are still subject to limitations in computational
capacity and other practical aspects. Despite those differences, quantum program-
ming language design has been an active area in the last years, which provides a
fertile ground for software measurement at levels of understandability or developer
productivity. Nonetheless, the understanding of the specificities or processes or
human resources needed in quantum development face limitations in the availability
of data or the lack of studies and may be more difficult to approach in the short term.

206 M.-A. Sicilia et al.

As a general conclusion, software measurement in quantum development is today
a largely unexplored topic, despite the variety, heterogeneity, and effort spent in
building programming languages and software tooling for quantum computers. We
have discussed the current scattered literature on the topic and discussed tentative
directions for further research in the short term, guided by an identification of
differences and commonalities of classical and quantum software from the viewpoint
of artifact, processes, and resources.

References

1. Abran A, April A, Buglione L (2010) Software measurement body of knowledge. Encyclopedia
of software engineering 1(1):1

2. Villavicencio M, Abran A (2010) Software measurement in software engineering education: a
comparative analysis. In: International Conferences on Software Measurement IWSM/
MetriKon/Mensura. pp 633–644

3. Miszczak JA (2012) High-level structures for quantum computing. Synthesis Lect Quantum
Comput 4(1):1–129

4. Morrison BC, Landahl AJ, Lobser DS, Rudinger KM, Russo AE, Van Der Wall JW, Maunz P
(2020) Just another quantum assembly language (Jaqal). In: 2020 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE). IEEE, pp 402–408

5. Smith RS, Curtis MJ, Zeng WJ (2016) A practical quantum instruction set architecture. arXiv
preprint arXiv:1608.03355

6. Khammassi N, Guerreschi GG, Ashraf I, Hogaboam JW, Almudever CG, Bertels K (2018)
cQASM v1.0: towards a common quantum assembly language. arXiv preprint
arXiv:1805.09607

7. Cross AW, Javadi-Abhari A, Alexander T, de Beaudrap N, Bishop LS, Heidel S et al (2021)
OpenQASM 3: a broader and deeper quantum assembly language. arXiv preprint
arXiv:2104.14722

8. Häner T, Steiger DS, Svore K, Troyer M (2018) A software methodology for compiling
quantum programs. Quantum Sci Technol 3(2):020501

9. Weder B, Barzen J, Leymann F, Salm M (2021) Automated quantum hardware selection for
quantum workflows. Electronics 10(8):984

10. Fingerhuth M, Babej T, Wittek P (2018) Open source software in quantum computing. PLoS
One 13(12):e0208561

11. Selinger P, Valiron B (2006) A lambda calculus for quantum computation with classical control.
Math Struct Comput Sci 16(3):527–552

12. Ömer B (2005) Classical concepts in quantum programming. Int J Theoretical Phys 44(7):
943–955

13. Bettelli S, Calarco T, Serafini L (2003) Toward an architecture for quantum programming. Eur
Phys J D-Atom Mol Optical Plasma Phys 25(2):181–200

14. Liu S, Wang X, Zhou L, Guan J, Li Y, He Y et al (2018) Q S : a quantum programming
environment. In: Symposium on real-time and hybrid systems. Springer, Cham, pp 133–164

15. Abhari AJ, Faruque A, Dousti MJ, Svec L, Catu O, Chakrabati A et al (2012) Scaffold: quantum
programming language. Princeton University, NJ

16. Abhari AJ, Patil S, Kudrow D, Heckey J, Lvov A, Chong FT, Martonosi M (2015) ScaffCC:
scalable compilation and analysis of quantum programs. Parallel Comput 45:2–17

17. Bichsel B, Baader M, Gehr T, Vechev M (2020) Silq: a high-level quantum language with safe
uncomputation and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp 286–300

10 Quantum Software Measurement 207

18. Svore K, Geller A, Troyer M, Azariah J, Granade C et al (2018) Q#, enabling scalable quantum
computing and development with a high-level DSL. In: Proceedings of the Real World Domain
Specific Languages Workshop 2018, pp 1–10

19. Kennedy K, Koelbel C, Schreiber R (2004) Defining and measuring the productivity of
programming languages. Int J High Performance Comput Applications 18(4):441–448

20. Dey N, Ghosh M, Chakrabarti A (2020) QDLC–the quantum development life cycle. arXiv
preprint arXiv:2010.08053

21. Weder B, Barzen J, Leymann F, Salm M, Vietz D (2020) The quantum software lifecycle. In:
Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Para-
digms for Engineering Quantum Software, pp 2–9

22. Gheorghe-Pop ID, Tcholtchev N, Ritter T, Hauswirth M (2020) Quantum DevOps: towards
reliable and applicable NISQ quantum computing. In: 2020 IEEE Globecom Workshops
(GC Wkshps). IEEE, pp 1–6

23. Leite L, Rocha C, Kon F, Milojicic D, Meirelles P (2019) A survey of DevOps concepts and
challenges. ACM Computing Surv (CSUR) 52(6):1–35

24. Sicilia MA, Sánchez-Alonso S, Mora-Cantallops M, García-Barriocanal E (2020) On the source
code structure of quantum code: insights from Q# and QDK. In: International Conference on the
Quality of Information and Communications Technology. Springer, Cham, pp 292–299

25. Cruz-Lemus JA, Marcelo LA, Piattini M (2021) Towards a set of metrics for quantum circuits
understandability. In: International Conference on the Quality of Information and Communi-
cations Technology. Springer, Cham, pp 239–249

26. Zhao J (2021) Some size and structure metrics for quantum software. arXiv preprint
arXiv:2103.08815

27. Pérez-Delgado CA, Pérez-González HG (2020) Towards a quantum software modeling
language. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp 442–444

28. Sete EA, Zeng WJ, Rigetti CT (2016) A functional architecture for scalable quantum
computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE,
pp 1–6

29. Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press
30. Protheroe D, Pessolano F (2000) An objective measure of digital system design quality. In:

Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat.
No. PR00525). IEEE, pp 227–233

31. Exman I, Shmilovich AT (2021) Quantum software models: the density matrix for classical and
quantum software systems design. arXiv preprint arXiv:2103.13755

32. Exman I (2015) Linear software models: key ideas. arXiv preprint arXiv:1510.04652
33. Baik J, Boehm B, Steece BM (2002) Disaggregating and calibrating the CASE tool variable in

COCOMO II. IEEE Trans Softw Eng 28(11):1009–1022
34. Abdukalykov R, Hussain I, Kassab M, Ormandjieva O (2011) Quantifying the impact of

different non-functional requirements and problem domains on software effort estimation. In:
2011 Ninth International Conference on Software Engineering Research, Management and
Applications. IEEE, pp 158–165

35. Staples M, Kolanski R, Klein G, Lewis C, Andronick J, Murray T et al (2013) Formal
specifications better than function points for code sizing. In: 2013 International Conference
on Software Engineering (ICSE). IEEE, pp 1257–1260

208 M.-A. Sicilia et al.

36. Jung HW, Kim SG, Chung CS (2004) Measuring software product quality: a survey of ISO/IEC
9126. IEEE Softw 21(5):88–92

37. Delorey DP, Knutson CD, Chun S (2007) Do programming languages affect productivity? A
case study using data from open source projects. In: First International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS’07: ICSE Workshops 2007). IEEE, p 8

38. Scalabrino S, Bavota G, Vendome C, Linares-Vásquez M, Poshyvanyk D, Oliveto R (2017)
Automatically assessing code understandability: how far are we? In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, pp 417–427

39. Dyba T, Dingsoyr T (2009) What do we know about agile software development? IEEE Softw
26(5):6–9

Chapter 11
Quantum Software Modernization

Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini

11.1 Introduction

Thanks to the efforts of researchers and organizations around the world, there exist
supercomputers capable of performing millions of operations per second, such as
Fugaku [1] or Summit [2]. Even with the computational power of these classical
supercomputers, there are operations that we cannot perform, as introduced in
previous chapters.

For those kinds of problems, quantum computing allows us to carry out opera-
tions in a reasonable time, whereas on some of today’s supercomputers, it would
take years to complete. This is because some of the most demanding operations (e.g.,
the simulation of molecule structures or number factorization) are, at least, approach-
able. This has implied that the interest of companies in quantum computing has
dramatically increased in the last few years. More and more organizations have
become aware of the benefits that this new computing paradigm can bring to the
society [3].

Researchers around the world are providing evidence, albeit still theoretical, of
the benefits and challenges of quantum computing. This means that companies
around the world must be prepared for this new technological leap, which may
leverage a new “golden age” in the software engineering field [4]. The advances in
quantum computing have taken place simultaneously with the development of
quantum programming languages and their respective compilers [5]. Which implies
a direct and necessary evolution of software engineering toward quantum comput-
ing. The combination of quantum physics and computer science changes the way in
which programs are designed, developed, and executed. Nevertheless, this

L. Jiménez-Navajas (*) · R. Pérez-Castillo · M. Piattini
aQuantum, Alarcos Research Group, Institute of Technologies and Information Systems,
University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
e-mail: luis.jimeneznavajas@uclm.es; ricardo.pdelcastillo@uclm.es; mario.piattini@uclm.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_11

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_11&domain=pdf
mailto:luis.jimeneznavajas@uclm.es
mailto:ricardo.pdelcastillo@uclm.es
mailto:mario.piattini@uclm.es
https://doi.org/10.1007/978-3-031-05324-5_11#DOI

technological leap from classical computing to quantum cannot be made by
discarding everything that has been built up to now and starting from scratch
[6]. There are several reasons for this, one of them being that, possibly, there are
certain operations in the systems of the companies that are so simple that it does not
make sense to implement them using quantum computing because of the cost versus
the potential gain [7]. Another reason is that companies have based strategic
decisions on the business rules embedded in their classical information systems
overtime (which is not available anywhere else) and its full replacement becomes too
risky.

210 L. Jiménez-Navajas et al.

The solution to that problem should not be the whole replacement of the current
information systems (henceforth called classical systems), but to modernize those
information systems that could benefit from the computational power of the quantum
computing paradigm. This means migrate toward classical-quantum information
systems, also known as hybrid information systems. The challenge of software
modernization of hybrid information systems is actually claimed by the Talavera
Manifesto on Quantum Software Engineering and Programming [8], and indeed,
there is some works in the literature about how to decide whether the applications of
the organizations will truly benefit from investment into quantum computing early
on or should wait before it is mature enough [9].

ADM (architecture-driven modernization) [10] may be the right path to accom-
plish the evolution of classical systems toward hybrid ones, as it has been proved to
be effective in the evolution of legacy information systems. ADM is the evolution of
traditional software reengineering that follows the MDE (model-driven engineering)
principles.

The remaining of this chapter is structured as follows. First, it discusses the
challenge that quantum computing brings to our information systems and the
transformation that it entails. Then, it is followed with the process of quantum
software modernization for evolving toward hybrid information systems. After this
is a running example of such process. The last section draws some conclusions.

11.2 Hybrid Information Systems

This section first introduces the notion of classical-quantum information systems
(cf. Sect. 11.2.1), and then it discusses the challenges of such hybrid information
systems (cf. Sect. 11.2.2).

11.2.1 Classical-Quantum Information Systems

In recent years, it has been theoretically demonstrated that quantum computing could
bring benefits to different fields of science, like in finances [11], chemistry [12], or

machine learning [13]. Although those benefits are only theoretical, the expectations
for implementing some of those promising quantum applications are huge.

11 Quantum Software Modernization 211

Input and output

Control Unit

Quantum Arithmentic Logic Unit Quantum Memory

C
la

ss
ic

al
Q

ua
nt

um

Quantum Bus System

Fig. 11.1 Quantum von Neumann Architecture (Adapted from [15])

This is why it is expected that in the future, companies or organizations will
employ quantum algorithms to perform functions that could be benefited from the
enhanced performance, for example, using Grover’s algorithm to perform searches
where massive amounts of data are found [14].

For this to become a reality, it does not necessarily imply a complete replacement
of current information systems toward quantum software systems. There are several
reasons for this. Firstly, not all companies will need to evolve to the new computing
paradigm, as (until now) quantum algorithms help us solve very specific tasks and
the business model of some companies may not allow them to employ these
algorithms. Another reason might be that the implementation of their information
systems with quantum software would not make a great difference in performance
since the functions that these information systems accomplish are simplistic regard-
ing quantum computing, while the cost of its implementation would skyrocket.

Furthermore, the requests needed to ask a quantum computer to perform certain
operations would require from classical information systems. Classical software is
also responsible for receiving the replies, as well as translating them into end-user
answers. Most of today’s quantum programs are remotely executed on cloud quan-
tum computers, and the results they return are then interpreted by classical programs.

Even more, at hardware level, hybrid systems have been also studied. For
example, Fig. 11.1 shows the architecture of quantum computer employing the
quantum von Neumann architecture [15], where the overall system is divided into
two components, a classical part which contains a control unit which controls the
quantum computer and a quantum component, which contains the quantum arith-
metic logic unit (QALU) which is in charge of manipulating the quantum informa-
tion transported through the quantum bus system and saved in the quantum memory
which should rely on multiplexing technology for large storage capability. Between
the two main components, an input and output region have the role of interface to the
“classical world” in order to initialize and/or measure the qubit.

Therefore, is believed that in the near future, organizations and companies will
develop (and/or migrate toward) hybrid information systems, which combine clas-
sical and quantum software [6, 16]. The evolution of classical information systems

toward hybrid ones implies a great challenge. In order to accomplish such evolution,
software reengineering practices must, therefore, be brought into the domain of
quantum software so as to deal with the aforementioned challenges.

212 L. Jiménez-Navajas et al.

So far, there are no guidelines nor good practices to develop quantum and hybrid
software as claimed by the Talavera Manifesto for Quantum Software Engineering
and Programming [17]. The goal of this chapter is to provide some guidelines and
general ideas on how to deal with challenges associated with this problem.

11.2.2 Challenges of Hybrid Information Systems

Once it is understood that companies will not completely replace their current
information systems to start from scratch with quantum systems, it is time to discuss
what kind of companies or organizations could benefit from the evolution of their
current information systems.

As mentioned above, if we evolve all current information systems to the quantum
software (imagine running such quantum information systems on computers with a
reasonable number of qubits), perhaps, only a small fraction of them will speed up,
while others will stay the same at best.

However, companies that will be able to take advantage of quantum computing
and will consider evolving their information systems will have to face a number of
challenges and will have to study in depth which components or functions to evolve.
In the vast majority of cases, this evolution would consist of carrying out the most
demanding operations in a provider’s cloud [18]. This would be one of the scenarios
to be faced, figuring out which functions to evolve and which algorithms that are
isolated in third-party systems should be used while communications with cloud
providers would be done through classical computing, i.e., the classical information
system would evolve into an information system with quantum cloud components.

Another scenario could occur if organizations want to take advantage of the
quantum computing hype and start to move their business models toward the new
paradigm. This would imply a direct evolution of their information systems toward
hybrid information systems, as they will still have certain business processes that
remain implemented by classical computing.

Since today’s computational power for NISQ (noisy intermediate-scale quantum)
devices is still limited to a degree, several NISQ devices could be used in a
distributed quantum computing architecture [19]. This will entail another important
challenge for the mentioned evolution toward hybrid information systems.

According to [20], hybrid information systems will also face obstacles in code
portability, tool integration, program validation, and the orchestration of workflow
development. These problems together with the low maturity of the quantum
solutions market will lead to other important challenges. Today, there exist a huge
volatility in quantum technology (quantum computers, programming languages,

development tools, etc.). Thus, today’s companies that bet to a specific technology
could find tomorrow that such technology become obsolete soon.

11 Quantum Software Modernization 213

11.3 Quantum Software Modernization

In this section, the overall quantum software modernization will be explained. For a
better understanding, as the process presented is based on ADM, one section is
aimed to explain the traditional software reengineering and its evolution to
architecture-driven modernization. Then, how the evolution toward hybrid informa-
tion systems may be achieved is finally explained.

11.3.1 Traditional Reengineering

Almost all technologies evolve over time, and so information systems should evolve
consequently. This evolution can have negative effects on those systems that were
developed in the past, like degradation or aging, making those information systems
legacy, which means that the source code that was developed could be technolog-
ically obsolete [21]. Reengineering allows “the preservation of the business knowl-
edge, making possible to carry out evolutionary maintenance of the legacy
information systems assuming low risks and low costs” [22]. The overall
reengineering process is typically presented as a “horseshoe” model [23] (see
Fig. 11.2) where reengineering consists of three main stages:

Reverse engineering The system is analyzed to identify its components and inter-
relationships and create abstract representations of the system in another form or at a
higher level of abstraction.

Restructuring The transformation from one representation form to another at the
same relative abstraction level. This stage can consist of refactoring, i.e., the internal
structure is improved while preserving the subject system’s external behavior (func-
tionality and semantics). Or additionally, it can add new functionality at this
abstraction level.

Forward engineering The final stage consists of the renovation by generating the
new source code and other software artefacts at lower abstraction level.

Software reengineering projects have traditionally failed when dealing with
specific challenges like the standardization and automation of the reengineering
process [25]. First, standardization constitutes a challenge since the reengineering
processes have been typically carried out in many different ad hoc manners.
Reengineering projects must, therefore, focus their efforts on a better definition of
the process. Furthermore, the code cannot be the only software asset that the

standardization covers, since “the code does not contain all the information that is
needed” [26].

214 L. Jiménez-Navajas et al.

Legacy System

U
nd

er
st

an
d,

 e
xt

ra
ct

, a
bs

tr
ac

t

New system

G
en

er
at

e,
 re

fin
e

High-level architectural model
Improve, restructure, extend

Improved restructured model

New Business
Functionality

Re
ve

rs
e

En
gi

ne
er

in
g Forw

ard Engineering

Fig. 11.2 Horseshoe software reengineering model (Adapted from [24])

The reengineering process must be formalized to ensure an integrated manage-
ment of all the knowledge involved in the process, such as source code, data,
business rules, and so on. Second, automation is also a very important problem. In
order to prevent failure in large complex legacy systems, the reengineering process
must be mature and repeatable [27]. In addition, the reengineering process needs to
be aided by automated tools in order to enable companies to handle the maintenance
costs [25].

11.3.2 Architecture-Driven Modernization

In order to address the mentioned challenges, traditional reengineering evolved
toward architecture-driven modernization (ADM) [28]. ADM consists of the use
of tools that facilitate the analysis, refactoring, and transformation of existing system
toward a modernization for supporting new requirements, migration of systems, or
even their interoperability. To accomplish this, ADM makes use of reengineering
and model-driven engineering (MDE) principles [29], i.e., software artefacts are
represented and managed as models, and automatic model transformation are
defined between them. Thus, ADM attempts to address the mentioned flaws of
traditional reengineering.

11 Quantum Software Modernization 215

Legacy System

M
in

in
g

Source PSM model

Ab
st

ra
ct

Source PIM model

Ab
st

ra
ct

Improved System

G
en

er
at

e

Target PSM model

De
fin

e

Target PIM model

De
fin

e

Source CIM model
Refactoring & op�miza�on

Target CIM model

New Business
Functionality

Re
ve

rs
e

En
gi

ne
er

in
g Forw

ard Engineering

Fig. 11.3 Horseshoe modernization model

The horseshoe reengineering model has been adapted to ADM, and it is known as
the horseshoe modernization model (see Fig.). There are three kinds of models
in the horseshoe model [].30

11.3

Computation Independent Model (CIM) is a view of the system from the computa-
tion independent viewpoint at a high abstraction level. A CIM does not show
details of the system’s structure. CIM models are sometimes called domain
models and play the role of bridging the gap between the domain experts and
experts in the system design and construction.

Platform Independent Model (PIM) is a view of a system from the platform
independent viewpoint at an intermediate abstraction level. A PIM has a specific
degree of technological independence to be suitable for use with a number of
different platforms of a similar type.

Platform Specific Model (PSM) is a view of a system from the platform specific
viewpoint at a low abstraction level. A PSM combines the specifications in the
PIM with the details that specify how that system uses a particular type of
platform or technology.

As a part of ADM initiative, the OMG released the Knowledge Discovery
Metamodel (KDM) within a broad set of proposed standards [31]. KDM addresses
the main challenges that appear in the modernization of legacy information systems,
and it is the cornerstone of the set of proposed standards, since the other standards
are defined around KDM [32]. KDM uses the OMG’s standards for representing the
models through XMI.

216 L. Jiménez-Navajas et al.

Core

KDM

Source

Code Actions

Data Event UI Platform

Conceptual Build Structure

Infrastructure
LayerFramework

P
rim

iti
ve

s,
 e

xp
lic

it,

au
to

m
at

ic
al

ly
 e

xt
ra

ct
ed

Metamodel

Programs
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer

H
ig

h-
le

ve
l,

im
pl

ic
it,

ex

pe
rts

, a
na

ly
st

s

Fig. 11.4 Layers, packages, and concerns in KDM

KDM provides a meta-model which represents the software artifacts that are
involved in the legacy information system, providing an accurate view of the
functions and structures of it. Reverse engineering techniques use KDM to build
high-abstraction level models in a bottom-up manner starting from software legacy
artifacts.

The KDM specification has different perspectives [32], and in order to simplify
the managing of its structure, four layers were designed. Each layer is, therefore,
based on the previous one, and each of them contains several packages representing
different concerns related to legacy information systems. Different KDM packages
and layers could be used depending on the artefacts analyzed (cf. Fig. 11.4).

According to the horseshoe modernization model, the ADM-based process can be
categorized into three kinds of modernization processes [33]. These depend on the
abstraction level reached in the reverse engineering stage. The reverse engineering
stage is probably the most important stage in the horseshoe modernization model.
This is because this activity conditions the abstraction level achieved in each kind of
modernization process and, therefore, the resources provided and possibilities to
restructure LISs. A higher abstraction level usually implies a greater amount of
knowledge and rich information which provide the modernization process with more
restructuring possibilities.

Figure 11.5 shows the three kinds of modernization processes depending on the
maximum abstraction level reached during the reverse engineering stage.

Technical Modernization This kind of modernization considers the lowest
abstraction level and is historically that which is most commonly applied to legacy
systems. A company carries out a technical modernization project when it wishes to
deal with platform or language obsolescence, new technical opportunities, confor-
mance to standards, system efficiency, system usability, or other similar moderni-
zation factors. This is sometimes not strictly considered to be a modernization
process since it focuses solely on corrective and preventive modifications, but in
any case, it addresses adaptive or perfective modifications according to the modern-
ization definition.

11 Quantum Software Modernization 217

Time

Abstraction
Level

Business
Modernization

Application/Data
Modernization

Technical
Modernization

Software Modernization Curve

Source System Target System

Fig. 11.5 Three kinds of horseshoe modernization models (Adapted from [33])

Application/Data Modernization This kind of modernization considers an inter-
mediate abstraction level since it focuses on restructuring a legacy system at the level
of application and data design to obtain the target system. This kind of moderniza-
tion is driven by several modernization factors such as improving system reusability,
reducing the delocalized system logic or system complexity, and applying design
patterns. There is a fine line between this kind of modernization and the previous
one, but that line is crossed when there is some impact on the system design level.

Business Modernization This kind of modernization increases the abstraction
level to the maximum. The restructuring stage therefore takes place at the level of
business architecture, i.e., the business rules and processes that govern a legacy
system in the company. Apart from technical models and application/data models,
this kind of modernization also incorporates business semantic models which are a
key asset in (1) preserving the business knowledge embedded in legacy systems and
(2) aligning the company’s business requirements with the future target systems.

11.3.3 Software Modernization of Hybrid Information
Systems

Software engineering has evolved as new (or adapted) technologies and methodol-
ogies are emerging to deal with the mentioned challenges of hybrid information
systems. Now, as a result of the new quantum paradigm, new difficulties have
emerged as explained before.

A solution based on reengineering, and more specifically on ADM [34], was
already proposed in [16] to achieve the evolution of classical information systems
toward hybrid ones. That solution introduced “quantum software reengineering” and
ensured that it might be used in three complementary scenarios:

218 L. Jiménez-Navajas et al.

KDM Repository

Classical Information
System

UML Models

Target Classical-Quantum
System

Existing Quantum
Programs

New Quantum
Programs

Expert-based
model refactoring

Automatic
model refactoring

Low-code
generative
techniques

Quantum code
parserCode, docs,

database,… parsers

Model
transformation

Extended Extended

Re
ve

rs
e

En
gi

ne
er

in
g

Fo
rw

ar
d

En
gi

ne
er

in
g

Restructuring

Fig. 11.6 Quantum software modernization approach

• Migrate existing, isolated quantum algorithms, and integrate them into the hybrid
information systems.

• Migrate classical legacy information systems toward hybrid architectures that
support the integration of classical-quantum information systems.

• Transform or add new business operations supported by quantum software that
will be integrated into the target hybrid systems.

Figure 11.6 shows the overall quantum reengineering process. Pérez-Castillo
et al. [6] proposed a software modernization based on existing standards such as
UML and KDM. This chapter addresses the quantum software modernization by
using KDM and UML, which does not mean that the process is limited to those
standards. In fact, alternative standards may be used during the quantum software
modernization process.

The reverse engineering stage consists of analyzing existing information systems
artefacts such as the source code, database schemas, etc. It could analyze classical
systems plus quantum programs if these exist. The output of the reverse engineering
phase is a set of KDM models that comprise a KDM repository. As previously
explained, this KDM repository represents, in a technology-agnostic way, all the

different perspectives and concerns of the legacy information systems in a holistic
way. In this way, previous knowledge and business rules might be preserved, and the
impact of the integration of quantum programs is reduced. Of course, KDM must be
extended (through their ordinary extensions mechanisms) to support the representa-
tion of quantum software aspects.

During the restructuring stage (see Fig. 11.6), KDM models are (semi)-
automatically transformed into high-abstraction level models representing analysis
and design aspects of the target hybrid systems. To achieve this, the meta-model
employed in this case might be UML. Like the KDM extension, UML should be
extended to support the new systems’ analysis and design elements concerning
quantum computing. In this point, software engineers can use this UML extension
to manually model quantum aspects for new, target systems which are integrated
with the existing elements previously gathered by reverse engineering.

Finally, the forward engineering stage (see Fig. 11.6) consists of a set of tech-
niques that are able to generate many parts of the source code for the target hybrid
systems. Today, there exist many well-proven generators for different classical
programming languages to produce code from UML models. However, there is no
generators for quantum programming languages from high abstraction models. In
our concern, this must be provided and integrated with other existing generative
techniques.

In order to carry out the quantum software modernization process, a number of
requirements can be identified (as labelled with Req. in Fig. 11.6).

11 Quantum Software Modernization 219

• Requirement 1: This indicates that as much information as possible from classic
information systems (e.g., source code, database schemas, or documentation)
must be extracted by means of a series of efficient and well-designed techniques
to be represented by means of KDM models. The KDM models of each compo-
nent shall be stored in a repository.

• Requirement 2: This requirement is almost the same as requirement 1, except that
instead of analyzing elements of classical information systems, it analyses ele-
ments of quantum programs.

• Requirement 3: In order for KDM to be able to handle the different quantum
elements that appear on quantum programs (i.e., quantum gates or qubits), it is
necessary to extend KDM by means of its standard extension mechanisms, which
in the case of KDM would be by using the “Extension Family.”

• Requirement 4: As happens with KDM, this requirement is due to the fact that it is
necessary to extend the UML meta-model to be able to work with the different
quantum elements. However, to accomplish this, an “UML Profile” will be
employed.

• Requirement 5: Once the two chosen standards in the quantum software modern-
ization process have been extended, a model transformation will be carried out
automatically. This transformation will take into account the extension mecha-
nisms of both standards.

220 L. Jiménez-Navajas et al.

• Requirement 6: By means of automatic code generation techniques, it will show
the low-level implementation with quantum gates and the integration of these in
the target hybrid system.

11.4 Running/Application Example

This section shows an example of the application of the quantum software modern-
ization process. For this purpose, it has been divided into three subsections, one for
each phase of the software modernization process (reverse engineering,
restructuring, and forward engineering). However, since there is already literature
on the generation of KDM models from code extracted from classical information
systems, the reverse engineering phase focuses on the generation a KDM model
from Q# [6], the restructuring phase performs the transformation of KDM models to
UML, and the forward engineering phase superficially explains the automatic
quantum code generation.

11.4.1 Reverse Engineering

The KDM standard was not created with the aim to evolve classical information
systems toward hybrid ones. Therefore, it was necessary to extend it through its
built-in extension mechanism to support the representation of the different quantum
entities, to accomplish the third requirement of the quantum software modernization
process. The full headway of the adaptation of KDM to quantum programs was
proposed in [16], which is briefly summarized in the next lines.

The default extension mechanism provided by KDM is the extension family. In
this extension family, the different components that can be found in a quantum
programming language are represented in this group, shown in Fig. 11.7. This
mechanism collects a set of stereotypes that are then used in the ordinary elements
provided by KDM.

Fig. 11.7 Extension family of KDM for quantum components

11 Quantum Software Modernization 221

Table 11.1 Matching KDM
elements with the defined one
of the extension family

KDM element Extension family element

CodeModel Quantum program

CallableUnit Quantum operation

ActionElement Quantum gate

StorableUnit and ParameterUnit Qubit

ActionElement Qubit measure

ActionRelation Control qubit

StorableUnit Qubit array

Fig. 11.8 Example of a Q# program

Table 11.1 shows the KDM elements in which each stereotype is applied to
represent all the different quantum entities (shown in Fig. 11.7). In KDM, the
CodeModel are those elements which collect the facts of the same program, so as
it will appear once in every program, it was assigned the stereotype Quantum
Program. The Quantum Operations are the typical methods of any usual program-
ming language that we already know, but these ones use quantum components.
Nevertheless, because the different Quantum Operations can be called between
them, they were assigned the CallableUnit element. The ActionElement element is
assigned to those elements which describe a basic unit of behavior, just like the
Quantum Gate and Qubit measure (this last stereotype is assigned to the Measure
gate) do.

The Qubit and Qubit Array stereotype are mapped in KDM to StorableUnit since
in the different quantum programming languages, a qubit is nothing more than a
variable with a stored value (in this case a 0 or 1). Further details about the usage of
the KDM extension are in the previous work [16].

This extension, as presented in [7], makes it possible to generate KDMmodels by
analyzing programs developed in Q#. Figure 11.8 shows an example of a short
program developed in Q#. In such program, an operation (which is equivalent to
methods or functions in traditional programming) is defined in line 5; in line 6, a
qubit variable is declared. Then, a Hadamard’s gate is applied in line 7 to the qubit
declared on the previous line. In line 8, the result of the appliance of the gate is
measured and returned in line 9.

222 L. Jiménez-Navajas et al.

Fig. 11.9 Resulting KDM file of the previous Q# program

Figure 11.9 depicts the resulting KDM model from the Q# program shown in
Fig. 11.8. The extension family defined on Fig. 11.7 can be seen from lines 7 to 17 of
Fig. 11.9. From line 33 to 48, the operation of the algorithm is defined. As said
previously, Q#’s operations (traditional methods) are defined as “CallableUnits”;
also those operations can receive qubits as parameters. In line 35, a qubit is declared
as a “StorableUnit” as a qubit, on reflection, is just a variable which stores a result
(the qubit’s state). Finally, from line 37 to 47 are described the action and the data
flow of the different quantum gates that appear in the algorithm. For example, from
line 37 to 42, it is described the Hamard’s gate, which inside it, in line 39 is found the
textual representation (in this case, “H(register)”), in line 40 the qubit in which is

applied (by means of the id’s), and in line 41, the next quantum gate which acts (with
the “actionRelation” of type “Flow”).

11 Quantum Software Modernization 223

11.4.2 Restructuring

In a similar way to KDM, it is necessary to extend the UML meta-model in order to
manage all the different quantum entities in UML and to accomplish the fourth
requirement. There are several ways to do this, but we proposed in [6] an extension
by creating an UML Profile. UML profiles are created as a set of stereotypes, tagged
values, and constraints defined for some of the existing UML elements. A key aspect
of this extension mechanism is that the defined profile would remain fully compliant
with UML. This is an advantage since researchers and practitioners can use our
proposal and integrate it with the existing modelling tools without further training.

Figure 11.10 shows the preliminary UML profile to graphically represent quan-
tum programs by means of activity diagrams. On the right side of the image, the
stereotypes that have been added to be able to work with the different quantum
entities are grouped together: quantum circuit, qubit, quantum gate, controlled qubit,
measure, and reset. The left side of Fig. 11.10 shows the UML meta-model excerpt
for representing UML Activity Diagrams. Leftward arrows from stereotypes to

Quantum UML Profile
<<metaclass>>

Activity QuantumCircuit

<<metaclass>>
Action

<<metaclass>>
AcceptEventAction

<<metaclass>>
ActivityPartition

<<metaclass>>
SendSignalAction

<<metaclass>>
ActivityGroup

<<metaclass>>
InvocationAction

<<metaclass>>
ActivityNode

<<metaclass>>
ActivityEdge

<<metaclass>>
ControlFlow

<<metaclass>>
ExecutableNode

<<metaclass>>
CallAction

<<metaclass>>
CallOperationAction

Qubit

QuantumGate

ControlledQubit

Measure

Reset
<<metaclass>>

ValueSpecificationAction

<<metaclass>>
Constraint

<<metaclass>>
Element

<<metaclass>>
NamedElement

<<metaclass>>
ControlNode

<<metaclass>>
InitialNode

<<metaclass>>
JoinNode

<<metaclass>>
ForkNode

<<metaclass>>
FinalNode

<<metaclass>>
ActivityFinalNode

superGroup

subGroup

0..1

*

inActivity

group

0..1

*

incoming target* 1

inPartition

edge

*

*

activityPartition

represents

*

0..1

activity

partition

0..*

*

outgoing source* 1

inPartition

node

*

*

constraint

constrainedElement

*

*

Fig. 11.10 Quantum UML profile extracted from [35]

� � � �

meta-class elements are extension elements that are used to indicate that the prop-
erties of a meta-class are extended through the respective stereotype.

224 L. Jiménez-Navajas et al.

The �QuantumCircuit� stereotype points directly to the Activity meta-class
because, to represent a quantum algorithm, a single activity diagram with the
�QuantumCircuit� stereotype will be used. Within this activity diagram, qubits
will be represented as ActivityPartition with the �Qubit� stereotype. Graphically,
the qubits can be seen as horizontal lines where the different quantum gates can be
placed. This way of representing qubits is similar to the way IBM Quantum
Experience [36] does it. All the quantum gates are action elements, but depending
on the way they act or behave on a qubit, they will have one stereotype or another.
The gates that affect the state of the qubit without any control qubit (such as the
Hadamard gate or the Pauli’s family) are represented as call operation actions plus
the stereotype �QuantumGate�. However, those quantum gates employing a
control qubit are represented by multiple action elements. The control qubit of the
gate is represented as send signal action with the stereotype �controlled qubit�
and the other part of the gate as accept event action with the �quantum gate�
stereotype. In order to keep the relationship between both parts, constraints have
been used between the involved elements. Additionally, special operations like qubit
measuring and qubit resetting are represented with value specification action ele-
ments and the respective stereotypes measure and reset .

KDM models, represented according to the quantum extension family [4], are
able to manage all the different quantum programs’ components and their interrela-
tionships (e.g., quantum circuits, qubits, quantum gates, etc.). Additionally, KDM
represents such components independently on the quantum technology and pro-
gramming languages. Such standardization of the quantum code allows to manage
quantum elements without a specific concern on the quantum platform or framework
where it was developed. The proposal of this paper follows the same technology-
agnostic approach since it focuses on transforming KDM models into the well-
known standard UML. The outgoing UMLmodels are useful since these can be used
for capturing further analysis and design details for hybrid information systems in
restructuring and forward engineering stages.

The designed KDM-to-UML has been formally defined in ATL [37]. An ATL
transformation program is composed of rules that define what elements of the input
meta-model are transformed in other elements regarding the output meta-model.

A key part for designing the model transformation is to define the input and
output meta-models. The input meta-model is an extension of KDM which allows
the identification of quantum elements proposed in [16]. The output meta-model is
the ECORE meta-model for UML version 2.5.1, which defines the abstract syntax of
UML. This ECORE meta-model can be seen in [38] and contains the UML model
description compliant with EMOF meta-model [39]. EMOF stands for Essential
MOF, and “it provides a straightforward framework for mapping MOF models to
implementations such as JMI and XMI for simple metamodels” [40]. The UML
meta-model is used as is, although a quantum UML profile as depicted in [35] is used
for modelling quantum circuits as UML activity diagram.

11 Quantum Software Modernization 225

Table 11.2 Summary of the transformations accomplished

Q# element Input KDM Output UML

Quantum program CompilationUnit Interaction

Quantum operation CallableUnit Activity

Qubit declaration StorableUnit ActivityPartition

Quantum gate ActionElement CallOperationAction/
AcceptEventAction/
SendSignalAction

Data flow between gates Flow ControlFlow

Having defined the meta-models, the design of the ATL transformation attempts
to identify which quantum entities could match with elements of the UML
metamodel.

The KDM-to-UML transformation followed a top-down order. Thus, the first
KDM elements that were transformed to UML are those that group the remaining
nested elements, i.e., the Segment element as the KDM model’s root element (which
may contain from different perspectives the description of a whole system, including
its components and interrelationships) [41], while the last, and more atomic, KDM
element is the actionRelation, which specifies on which qubit a quantum gate acted
and its flow control.

Table 11.2 shows a short summary of the transformations that have been carried
out, where on the left side is the Q# element that has been analyzed, on the middle of
the table its KDM modelling, and on the right side its UML transformation.

11.4.3 Forward Engineering

As mentioned before, the phase of forward engineering consists of generating the
new source code of the target system and other software artefacts at lower abstraction
level from the previous models. Generative and low-code methods for automatically
generating source code from abstract models have been widely addressed in the
literature.

Usually when creating a tool which generates code from models, first, it is
necessary to define the type of models from which to generate the source code.
The kind of concerns represented in the model (static or dynamic perspective of the
system) directly impact on the type of code to be generated. As in the previous
section, we focused on generating activity diagrams, some examples of code gener-
ation from dynamic models are shown.

Dominik Gessenharter et al. [42] presented an approach for code generation for
activities preceded by model transformation. Such approach generates Java code
from UML activity diagrams. It handles classes with their own attributes and
associations, considering the control nodes that the model may have. Sunitha
Edacheril et al. [43] approach associates activity diagrams with sequence diagram,

allowing the generation of code from both type of models. The aim of making an
association between those diagrams is because the control and data flow are better
defined in UML activity diagrams, while the method invocations (so, the commu-
nication among the different objects) are better gathered from sequence diagrams.

226 L. Jiménez-Navajas et al.

Alexander Knapp et al. [44] presented a Java code generator from UML state
machines diagrams called HUGO, which generates the different Java classes from
each of the classes defined in the UML model. Such classes contain the method
bodies of the specific operations and signal receptions which reproduce. It also runs a
method to set up and initialize the associated state machine.

Regarding quantum computing, there are frameworks and projects which gener-
ate quantum programs from quantum circuits. IBMQuantum Experience [36] allows
designing quantum circuits and export those circuits in the open-source Quantum
Assembly Language (OpenQASM) [45], which is a widely employed language in
the industry. Quantum Programming Studio [46] is a web application which allows
users to develop quantum circuits, run them on multiple quantum computers, and
export them in multiple quantum programming languages.

Finally, other proposal like Quantum Intermediate Representation (QIR) [47]
from Microsoft intends to serve as a common interface between the different
quantum programming languages and the target quantum computation platforms.
For this, any gate-based quantum platform may be represented in QIR as it does not
specify any specific quantum instruction, allowing to the computing environment
chosen to perform specific transformations. QIR follows the same pattern as com-
pilers, which compile source language into an intermediate representation where it
can be optimized and transformed.

11.5 Conclusions

Every day we are coming closer to a world where organizations can have access to
quantum computers or be able to run quantum algorithms that benefit their business
models. Moreover, the estimated predictions point to a large increase in the value of
services developed in this new paradigm.

However, the organizations which could benefit from quantum computing are not
yet ready for this paradigm leap. It has always been said that it is not the strongest
that survives, but the one that adapts the best. This phrase can be applied to our
context since, in a not-too-distant future, the organizations that best adapt their
business models (hence, their information systems) or create new strategies consid-
ering the new paradigm will be able to survive to the competence.

In this context, quantum software modernization has been introduced in this
chapter as a solution to carry out the evolution of classical information systems
toward hybrid information systems. This process makes it easier the combination of
both computing paradigms, quantum and classical. This process consists of three
phases, reverse engineering, restructuring, and forward engineering.

11 Quantum Software Modernization 227

The main implication of this kind of solutions is that it deals with the challenges
of hybrid information systems. Thus, software modernization helps the companies
identify which components from their business models could be evolved or even
start new businesses following this new paradigm through the use of techniques and
standards which have been proved to be effective solving such problems.

References

1. Dongarra JJUoT-KICL (2020) Technical Report. ICLUT-20-06, Report on the Fujitsu Fugaku
system

2. Wells J et al (2016) Announcing supercomputer summit. Oak Ridge National Lab. (ORNL),
Oak Ridge, TN

3. Haroche S, Raimond J-MJPT (1996) Quantum computing: dream or nightmare? 49(8):51–54
4. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-

neering golden age. SIGSOFT Softw Eng Notes 45:12–14
5. Mueck L (2017) Quantum software. Nature Publishing Group
6. Pérez-Castillo R, Serrano MA, Piattini M (2021) Software modernization to embrace quantum

technology. Adv Eng Softw 151:102933
7. Jiménez-Navajas L, Pérez-Castillo R, Piattini M (2020) Reverse engineering of quantum pro-

grams toward KDM models. In: International Conference on the Quality of Information and
Communications Technology. Springer

8. Piattini M et al (2020) The Talavera manifesto for quantum software engineering and
programming. In: QANSWER

9. Misra J et al (2021) When to build quantum software?
10. OMG. Architecture driven modernization task force. https://www.omg.org/adm/
11. Egger DJ et al (2020) Quantum computing for Finance: state of the art and future prospects
12. Cao Y et al (2019) Quantum chemistry in the age of quantum computing. 119(19):

10856–10915
13. Ristè D et al (2017) Demonstration of quantum advantage in machine learning. 3(1):1–5
14. Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of fast quantum

searching. Phys Rev Lett 80(15):3408–3411
15. Brandl MFJapa (2017) A quantum von Neumann architecture for large-scale quantum

computing
16. Jiménez-Navajas L, Pérez-Castillo R, Piattini M (2020) Reverse Engineering of Quantum

Programs Toward KDM Models. In: 13th International Conference on the Quality of Informa-
tion and Communications Technology (QUATIC) (Online Conference). Springer International,
Faro, Portugal, pp 249–262

17. Piattini M et al (2020) The Talavera manifesto for quantum software engineering and program-
ming. CEUR Workshop Proc 2561:1–5

18. MacQuarrie ER et al (2020) The emerging commercial landscape of quantum computing. Nat
Rev Phys 2(11):596–598

19. Ferrari D et al (2021) Compiler design for distributed quantum computing. IEEE Trans
Quantum Eng 2:1–20

20. McCaskey A et al (2018) Hybrid programming for near-term quantum computing systems. In:
2018 IEEE International Conference on Rebooting Computing (ICRC)

21. Ulrich WM (2002) Legacy systems: transformation strategies
22. De Lucia A et al (2007) Emerging methods, technologies, and process management in software

engineering, pp 1–276

https://www.omg.org/adm/

228 L. Jiménez-Navajas et al.

23. Kazman R, Woods SG, Carriere SJ (1998) Requirements for integrating software architecture
and reengineering models: CORUM II. In: Reverse Engineering – Working Conference Pro-
ceedings, pp 154–163

24. OMG (2016) Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model
(KDM), v1.4. OMG, p 372. https://www.omg.org/spec/KDM/1.4/PDF

25. Sneed HM (2005) Estimating the costs of a reengineering project. In: Proceedings of the 12th
Working Conference on Reverse Engineering. IEEE Computer Society, pp 111–119

26. Müller HA et al (2000) Reverse engineering: a roadmap. In: Proceedings of the Conference on
The Future of Software Engineering. ACM, Limerick, Ireland

27. Canfora G, Penta MD (2007) New frontiers of reverse engineering. In: 2007 Future of Software
Engineering. IEEE Computer Society

28. Ulrich WM, Newcomb PH (2010) Information systems transformation
29. Schmidt DC (2006) Developing applications using model-driven design environments. IEEE

Comput Soc 39(2):25–32
30. Miller J, Mukerji J (2003) MDA Guide Version 1.0.1. OMG, p 62. www.omg.org/docs/

omg/03-06-01.pdf
31. OMG (2009) Architecture-driven modernization standards roadmap. https://www.omg.org/

adm/ADMTF%20Roadmap.pdf
32. Pérez-Castillo R, De Guzmán IGR, Piattini M (2011) Knowledge Discovery Metamodel-ISO/

IEC 19506: a standard to modernize legacy systems. Comput Standards Interf 33:519–532
33. Khusidman V, Ulrich W (2007) Architecture-driven modernization: transforming the enter-

prise. DRAFT V.5. OMG, p 7. http://www.omg.org/docs/admtf/07-12-01.pdf
34. Pérez-Castillo R, de Guzmán IGR, Piattini M (2011) Architecture-driven modernization. In:

Modern software engineering concepts and practices: advanced approaches. IGI Global, p
75–103

35. Pérez-Castillo R, Jiménez-Navajas L, Piattini M (2021) Modelling quantum circuits with
UML. In: 43rd ACM/IEEE International Conference on Software Engineering Workshops.
2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE).
IEEE Computer Society, Virtual (originally in Madrid), p 7–12

36. IBM. IBM quantum experience webpage. https://quantum-computing.ibm.com/
37. Foundation E. ATL – a model transformation technology. https://www.eclipse.org/atl/
38. UML ECORE. https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/

uml.ecore
39. Eclipse (2021) EMF, ECore & Meta Model. https://www.eclipse.org/modeling/emft/search/

concepts/subtopic.html
40. OMG (2006) The Essential MOF (EMOF) model. https://it-dev.mpiwg-berlin.mpg.de/svn/JET/

trunk/doc/latex/Diplomarbeit/websources/OMG/06-01-01.pdf
41. OMG (2016) Architecture-Driven Modernization: Knowledge Discovery Meta-Model (KDM).

https://www.omg.org/spec/KDM/1.4/PDF
42. Gessenharter D, Rauscher M (2011) Code generation for UML 2 activity diagrams. In:

European Conference on Modelling Foundations and Applications. Springer
43. Viswanathan SE, Samuel PJIS (2016) Automatic code generation using unified modeling

language activity and sequence models. 10(6):164–172
44. Knapp A, SJPtWTfSD Merz, Verification (2002) Model checking and code generation for

UML state machines and collaborations. p 59–64
45. Cross AW et al (2017) Open quantum assembly language
46. (2019) Quantum Programming Studio webpage. https://quantum-circuit.com/
47. Microsoft (2020) Quantum immediate representation. https://devblogs.microsoft.com/qsharp/

introducing-quantum-intermediate-representation-qir/

https://www.omg.org/spec/KDM/1.4/PDF
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
https://www.omg.org/adm/ADMTF%20Roadmap.pdf
https://www.omg.org/adm/ADMTF%20Roadmap.pdf
http://www.omg.org/docs/admtf/07-12-01.pdf
https://quantum-computing.ibm.com/
https://www.eclipse.org/atl/
https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore
https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore
https://www.eclipse.org/modeling/emft/search/concepts/subtopic.html
https://www.eclipse.org/modeling/emft/search/concepts/subtopic.html
https://it-dev.mpiwg-berlin.mpg.de/svn/JET/trunk/doc/latex/Diplomarbeit/websources/OMG/06-01-01.pdf
https://it-dev.mpiwg-berlin.mpg.de/svn/JET/trunk/doc/latex/Diplomarbeit/websources/OMG/06-01-01.pdf
https://www.omg.org/spec/KDM/1.4/PDF
https://quantum-circuit.com/
https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/
https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/

Chapter 12
Quantum Software Tools Overview

José A. Cruz-Lemus and Manuel A. Serrano

12.1 Quantum Software

Quantum software development is a complex process that not only has the draw-
backs of classical software development but also has several characteristics that
make it a difficult process, such as the emergence of concepts like qubit superposi-
tion or entanglement [1].

But quantum software development is not only a complex task, in general,
software development, quantum or classical, is a difficult enterprise prone to failure
[2]. For this reason, building software has long been supported by various tools that
help avoid errors and automate many of the repetitive tasks that must be performed
during the development cycle. This trend has reached a high level of utilization in
current trends such as continuous software engineering [3] and DevOps [4].

Because of this complexity, if we want quantum computing to advance properly,
producing quality software at large scale and in an industrial way, we will need to
rely on the principles of software engineering, such as those proposed in the Talavera
Manifesto [5], propose and use life cycles [6], and use tools that simplify and
automate the stages of the creation process1 and even help in the reengineering
and migration of legacy systems to new quantum or hybrid systems [7].

Although we are at an early stage of quantum computing, manufacturers of
quantum computers are providing environments, tools, libraries, and APIs to facil-
itate the programming of such computers (e.g., IBM Qiskit2 or D-Wave Leap3). In

1https://aquantum.uclm.es/lang/en/indexEn.php
2https://qiskit.org/
3https://www.dwavesys.com/build/getting-started/

J. A. Cruz-Lemus (*) · M. A. Serrano
aQuantum, Alarcos Research Group, Escuela Superior de Informática & Instituto de
Tecnologías y Sistemas de Información, University of Castilla-La Mancha, Ciudad Real, Spain
e-mail: JoseAntonio.Cruz@uclm.es; Manuel.Serrano@uclm.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_12

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_12&domain=pdf
mailto:JoseAntonio.Cruz@uclm.es
mailto:Manuel.Serrano@uclm.es
https://aquantum.uclm.es/lang/en/indexEn.php
https://qiskit.org/
https://www.dwavesys.com/build/getting-started/
https://doi.org/10.1007/978-3-031-05324-5_12#DOI

addition, there are other players that provide environments that can work with
various platforms, such as Microsoft Q#,4 Zapata Computing’s Orquestra,5 or
QuantumPath.6 Finally, there are academic and independent proposals that have
created tools and languages oriented to the agnostic construction of quantum soft-
ware; a collection of such tools can be found in the aQuantum fundamentals portal.7

230 J. A. Cruz-Lemus and M. A. Serrano

Throughout this section, the different quantum software layers and the existent
quantum software tools and platforms will be presented.

12.1.1 Quantum Software Layers

Quantum computers are systems too complex to handle and program directly. At the
same time, they are powerful devices which can deal with problems which had been
really difficult in classical programming. That is why the usual implementation of a
quantum computer is a stack of layers, although this stack is not a standard, quantum
platforms follow a similar approach.

Quantum software development is performed by designing the quantum circuits
using drag-and-drop controls or directly coding them in user-friendly environments.
Later, with the aim of becoming a proper quantum application, the quantum circuits
are converted to an equivalent, intermediate representation in a quantum program-
ming language such as OpenQASM [8, 9] or pyQuil [10]. These quantum applica-
tions must be compiled, adapted, and optimized to be run on quantum devices,
taking into account the quantum processor architecture and its sets of quantum gates
and operators.

Once the quantum algorithm has been compiled for the target platform, another
step, known as “Quantum Error Correction” (QEC), is performed. The quantum
algorithm is enriched with instructions for preventing quantum errors due to
decoherence and quantum noise.

After the QEC, the quantum algorithm is compiled at a hardware level and
brought closer to the target quantum machine by specifying it in the quantum
firmware of the quantum computer, which represents the lowest layer of the quantum
computer stack.

The physical qubits of the quantum processor are adapted to the requirements
specified in the quantum algorithm by using technology-dependent optimizations.
All this process is graphically presented in Fig. 12.1.

All commercial environments and existing quantum computer adapt this stack,
including the compilation, error correction, and optimization in the bottom layers,
which are closer to the physical device. At the same time, some intermediate layers

4https://docs.microsoft.com/en-us/azure/quantum/
5https://www.zapatacomputing.com/orquestra/
6https://quantumpath.es/
7https://aquantum.uclm.es/lang/en/IfnCuanticaEn.php

https://docs.microsoft.com/en-us/azure/quantum/
https://www.zapatacomputing.com/orquestra/
https://quantumpath.es/
https://aquantum.uclm.es/lang/en/IfnCuanticaEn.php

adding libraries and optimized algorithms for various applications (e.g., chemistry,
optimization, artificial intelligence, etc.) are included for facilitating the developers’
tasks.

12 Quantum Software Tools Overview 231

User Interface

Quantum application

Logical compilation &
optimization

Quantum Error
Correction

Hardware compilation

Quantum
firmware

Physical
qubit

Classical
firmware

Physical
bit

Design tool

QEC tool

Programming
language

Compiler

Optimizer

Fig. 12.1 Full quantum computer stack

12.2 Quantum Software Technologies

This section reviews several software technologies by listing and classifying them,
including the following subsections: programming languages, simulators and design
environments, tools and libraries, main vendors full-stacks, and development and
run platforms.

12.2.1 Quantum Programming Languages

Programming quantum computers usually imply the definition of a quantum circuit
(see Fig. 12.2) so that it represents the operations being applied to each of the qubits
in the quantum computer. This graphical notation is useful for small examples and
for building prototypes, but as circuits get bigger, it stops being practical. As a result,
several quantum programming languages have been proposed to ease the

specification of quantum algorithms. These algorithms are normally a translation of
the quantum circuit into code.

232 J. A. Cruz-Lemus and M. A. Serrano

Fig. 12.2 Example of quantum circuit

Several quantum programming languages have been proposed in recent years.
Some of them are quantum circuit-oriented, while others are closer to high-level
languages. Again, some of these new arrivals cannot really be considered as auton-
omous languages, but libraries built over classical or embedded languages. These
libraries can be invoked from general-purpose, classical programming languages
such as C# or Python.

As an example, Fig. 12.3 provides a translation to OpenQASM of the quantum
circuit shown in Fig. 12.2.

Although most of the quantum programming languages follow the imperative and
functional paradigms, there are also some other languages which are based on
object-orientation, circuits, or even multi-paradigm approaches.

12.2.1.1 Quantum Imperative Programming Languages

Most of the quantum computing languages are imperative. While some of the
proposals provide a language of their own (usually assembler-based proposals),
most of them are extensions to other classical programming language, Python in
most cases.

Tables 12.1 and 12.2 (based on [35]) provide information on the imperative
quantum programming languages, including their year of invention, name, the
language on which it is based on, and bibliographical references.

12 Quantum Software Tools Overview 233

Fig. 12.3 Algorithm example in OpenQASM

Table 12.1 Low abstraction quantum imperative programming languages

Year Name Language Reference(s)

1998 QCL C [11]

2006 LanQ C [12, 13]

2012 Scaffold C (C++) [14, 15]

2016 QASM Assembly language [16]

2017 OpenQASM Assembly language [8, 9]

2017 cQASM Assembly language [17]

2020 Jaqual Assembly language [18]

As previously commented, most low-level imperative languages (see Table 12.1)
are assembler-based proposals, as an evolution or adaptation of OpenQASM, while
high-level quantum languages proposals (see Table 12.2) are more varied, although
the prevalence of Python is clear.

Nevertheless, there are multiple proposals associated with other programming
languages and platforms, such as Julia, Scala, C++, or .Net framework languages.

234 J. A. Cruz-Lemus and M. A. Serrano

Table 12.2 High abstraction quantum imperative programming languages

Year Name Language Reference(s)

2000 qGCL Pascal [19, 20]

2003 Q language C++ [21]

2008 NDQJava Java [22]

2009 Cove C# [23]

2012 Scaffold C (C++) [14, 15]

2013 Chisel-Q Scala [24]

2016 FJQuantum Feather-weight Java [25]

2016 ProjectQ Python [26]

2016 pyQuil (Quil) Python [10]

2017 Quiskit Python [27]

2018 IQu Idealized Algol [28]

2018 Strawberry Fields Python [29]

2018 Balckbird Python [29]

2018 QuantumOptics.jl Julia [30]

2018 Cirq Python [31]

2018 Q# C# [32]

2018 Q|SI> .Net language [33]

2020 Silq Python [34]

12.2.1.2 Quantum Functional Programming Languages

Although mainstream quantum programming languages are generally imperative,
there are several proposals which are based on functional programming. Some of
these proposals are new languages, usually based on lambda calculus, but many
others are designed as extensions of functional programming languages, such as F#
or Haskell. However, there are also proposals based on Python, which have been
gradually expanded to include extensions that make it a multi-paradigm language,
allowing functional quantum extensions.

Table 12.3 presents the information of the main functional quantum programming
languages, using the same format than the tables in the previous subsection. Some
programming languages support both imperative and functional programming.

12.2.1.3 Other Quantum Programming Languages

Following the same format as previous tables, Table 12.4 presents information about
other quantum programming languages, including circuit-based, declarative, and
other types, which were not included in any other table in this section.

12 Quantum Software Tools Overview 235

Table 12.3 Quantum functional programming languages

Year Name Language Reference(s)

1996 Quantum Lambda Calculi Lambda calculus [36]

2000 λq Lambda calculus [37]

2004 QFC (QPL) Flowchart [38–40]

2005 QML Similar to Haskell [41]

2005 cQPL Denotational [42]

2013 QuaFL Haskell [43]

2013 Quipper Haskell [44, 45]

2013 Chisel-Q Scala [24]

2014 LIQUi|> F# [46]

2015 Proto-Quipper Haskell [47]

2016 ProjectQ Python [26]

2016 qPCF Lambda calculus [28, 48]

2017 Quiskit Python [27]

2018 Strawberry Fields Python [29]

2018 Balckbird Python [29]

2018 Cirq Python [31]

2020 Silq Python [34]

Table 12.4 Other quantum programming languages

Year Name Language Reference(s)

2004 CQP Process calculus [49–51]

2005 QPAlg Process calculus [52, 53]

2011 QuECT Java [54]

2017 Forest Python [10]

2017 QWIRE Coq proof assistant [55]

12.2.2 Quantum Software Simulators and Design
Environments

Building quantum computers is difficult. Besides, there is a limited access to the few
actual quantum computers currently available. Thus, a set of different quantum
simulators8 has emerged to assist in designing and planning quantum circuits and
algorithms. This way, when a new quantum algorithm is developed, the initial proof-
of-concept validation is normally conducted with a simulator.

Quantum simulators are mostly based on the management of arrays, and only a
few of them are also based on graphs. The following list (based on []) presents
some well-known quantum simulators:

56

8https://www.quantiki.org/wiki/list-qc-simulators

https://www.quantiki.org/wiki/list-qc-simulators

236 J. A. Cruz-Lemus and M. A. Serrano

• Atom QASM Quantum Circuit Previewer9 is an Atom10 editor package that
converts QASM (Quantum Assembly) code into a graphical representation of
the quantum circuit in real time and provides additional information about the
circuit, such as its depth, number of instructions, and state vector visualizations.

• cuQuantum SDK11 is a development platform for simulating quantum circuits on
GPU-accelerated systems provided by Nvidia.

• DDSIM [57] is part of the JKQ tools and provides a decision diagram-based
quantum circuit simulator which allows the simulation of quantum circuits
defined in a REAL or OpenQASM format.

• Intel-QS (Quantum Simulator) or QHIPSTER (The Quantum High Performance
Software Testing Environment) [58] is a high-performance environment using
parallel algorithms.

• LIQUi|>12 from Microsoft is an integrated language for quantum simulation. The
simulations can be run on multiple platforms, but they can be integrated on other
applications or executed stand-alone scripts.

• ProjectQ [59] is an open-source array-based simulator which can easily be
extended by domain experts. It allows the simulation of up to approximately
30 qubits on a desktop machine. It also contains an emulator capable of deter-
mining the results for some algorithms (e.g., Shor’s algorithm) faster than an
average simulator.

• QCEC [60] is part of the JKQ toolset for quantum computing [57] which can be
used for quantum circuit equivalence checking. It also includes some quantum
mapping tools (QMAP).

• QDENSITY/QCWAVE [61] is a Mathematica package for simulating a quantum
computer.

• Qibo [62] is an open-source software for fast evaluation of quantum circuits and
adiabatic evolution which uses hardware accelerators.

• QuCirDET [63] is a design and simulation tool for quantum circuits.
• Quirk13 is an open-source web-based simulator built upon JavaScript that can be

executed inside the web browser. An example of this system can be seen in
Fig. 12.4.

• Qulacs [64] is a fast simulator for quantum circuits intended for research
purposes.

• QuIDDPro [65] is a graph-based simulator, specialized in the simulation of
Grover’s algorithm.

9https://atom.io/packages/qasm-circuit-preview
10https://atom.io/
11https://www.hpcwire.com/2021/04/13/gtc21-nvidia-launches-cuquantum-dips-a-toe-in-quan
tum-computing/
12http://stationq.github.io/Liquid/
13https://algassert.com/quirk

https://atom.io/packages/qasm-circuit-preview
https://atom.io/
https://www.hpcwire.com/2021/04/13/gtc21-nvidia-launches-cuquantum-dips-a-toe-in-quantum-computing/
https://www.hpcwire.com/2021/04/13/gtc21-nvidia-launches-cuquantum-dips-a-toe-in-quantum-computing/
http://stationq.github.io/Liquid/
https://algassert.com/quirk

12 Quantum Software Tools Overview 237

Fig. 12.4 Quirk simulator overview

• QuTe14 is a Quantum Testbed which provides a high-performance quantum
computing simulation platform open to research teams worldwide.

• QX [66] is a simulation platform based on arrays which parallelizes quantum
gates for performance improvement.

12.2.3 Quantum Tools and Libraries

Table 12.5 (based on [102, 103]) shows the most important quantum software tools
and libraries, including information about their type of distribution license, whether
it allows the use of quantum gates, their main capabilities, the programming lan-
guage(s) they rely on, and some bibliographical references.

12.2.4 Quantum Annealing Environments

The main advantage of quantum computing is reducing the execution time of time-
consuming algorithms, and due to this, a new type of quantum platforms has
emerged in recent times that implements one or several circuits solely oriented to
solving combinational optimization problems, known as Quantum Approximate
Optimization Algorithm (QAOA) [104].

14https://qute.ctic.es/

https://qute.ctic.es/

238 J. A. Cruz-Lemus and M. A. Serrano

T
ab

le
12

.5
Q
ua
nt
um

so
ft
w
ar
e
to
ol
s
an
d
te
ch
no

lo
gi
es

N
am

e
L
ic
en
se

Q
G
at
es

O
th
er

ca
pa
bi
lit
ie
s

L
an
gu

ag
e

R
ef
er
en
ce
(s
)

B
ac
ku

pB
ra
in

a
O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
Ja
va
S
cr
ip
t

B
lo
ch

S
ph

er
e

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
Ja
va

[
]

67

C
H
P
b

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s

C

C
ir
q

O
pe
n
so
ur
ce

Y
es

A
ll

P
yt
ho

n
[

]
68

D
rq
ub

itc
O
pe
n
so
ur
ce
,f
re
ew

ar
e

Y
es

P
ar
al
le
lis
m

M
A
T
L
A
B

E
qc
s

O
pe
n
so
ur
ce

Y
es

N
on

e
C

[
]

69

F
ey
nm

an
O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

M
ap
le

[
]

70

H
O
Q
S
T

O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
Ju
lia

[
]

71

Js
qu

is
O
pe
n
so
ur
ce

Y
es

N
on

e
Ja
va
sc
ri
pt

[
]

72

L
an
Q

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

L
an
Q

[
]

12

lib
qu

an
tu
m

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

C
,C

+
+

[
,

]
74

73

L
in
er
ar

A
Id

F
re
ew

ar
e

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
M
at
he
m
at
ic
a

M
-f
un

O
pe
n
so
ur
ce

Y
es

N
on

e
M
A
T
L
A
B
/O
ct
av
e

[
]

75

M
uk

ai
e

C
om

m
er
ci
al

N
o

A
cc
el
er
at
or
s,
D
ia
gr
am

s
P
yt
ho

n

O
pe
n
Q
ub

it
O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s

C
+
+

[
]

76

O
pe
nQ

A
S
M

O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
Q
A
S
M

[8
,9

,
]

77

O
pe
nQ

U
A
C
S

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

M
ap
le

[
]

78

P
ro
je
ct
Q

O
pe
n
so
ur
ce

Y
es

A
ll

P
yt
ho

n
[

]
59

Q
-g
ol

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s

C
aM

L
[

]
79

Q
-K

itf
F
re
ew

ar
e

Y
es

A
ll

Q
+
+
g

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
C
+
+

Q
C
A
D

F
re
ew

ar
e

Y
es

D
ia
gr
am

s
[

]
80

Q
C
G
P
U

O
pe
n
so
ur
ce

Y
es

P
ar
al
le
lis
m

R
us
t&

O
pe
nC

L
[

]
81

Q
ch
as

h
O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
H
as
ke
ll

Q
C
ir
cu
its

O
pe
n
so
ur
ce

Y
es

A
ll

P
yt
ho

n
[

]
82

Q
D
E
N
S
IT
Y

O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
M
at
he
m
at
ic
a

[
]

83

(c
on

tin
ue
d)

Q
ii

O
pe
n
so
ur
ce

Y
es

N
on

e
M
at
he
m
at
ic
a

Q
in
f

O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
M
ax
im

a
[

]
84

Q
IO

O
pe
n
so
ur
ce

Y
es

D
ia
gr
am

s
Q
io

+
H
as
ke
ll

[
]

85

Q
is
ki
t

O
pe
n
so
ur
ce

Y
es

A
ll

P
yt
ho

n
[

]
86

Q
M
D
D

O
pe
n
so
ur
ce

N
o

D
ia
gr
am

s
C
+
+

[
]

87

Q
O
C
S
j

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s

O
C
aM

L

Q
ra
ck

O
pe
n
so
ur
ce

N
o

N
on

e
C
+
+

[
]

88

Q
si
m
s

O
pe
n
so
ur
ce
,c
om

m
er
ci
al

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

C
+
+

[
]

89

Q
S
W
al
k.
jl

O
pe
n
so
ur
ce

Y
es

N
on

e
Ju
lia

[
]

90

Q
U
A
k

C
om

m
er
ci
al

N
o

O
pt
im

iz
at
io
n

Q
U
A

Q
ua
nt
av
o

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m

M
ap
le

[
]

91

Q
ua
nt
en
co
m
pu

te
r

N
on

e
Y
es

A
lg
or
ith

m
s

M
A
T
L
A
B

[
]

92

Q
ua
nt
um

l
F
re
ew

ar
e

Y
es

A
ll

M
at
he
m
at
ic
a

Q
ua
nt
um

C
ir
cu
it

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
Ja
va
sc
ri
pt

[
]

65

Q
ua
nt
um

F
og

O
pe
n
so
ur
ce

Y
es

A
ll

[
]

93

Q
ua
nt
um

P
ro
gr
am

m
in
g
S
tu
di
o

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
P
ar
al
le
lis
m
,D

ia
gr
am

s
Ja
va
sc
ri
pt

[
]

94

Q
ua
nt
um

U
se
r
In
te
rf
ac
em

O
pe
n
so
ur
ce

Y
es

N
on

e
P
ro
to
bu

f

Q
ua
nt
um

.N
E
T
n

O
pe
n
so
ur
ce

Y
es

N
on

e
N
E
T

Q
ua
nt
um

+
+

O
pe
n
so
ur
ce

N
o

N
on

e
C
+
+

[
]

95

Q
ua
nt
um

O
pt
ic
s.
jl

O
pe
n
so
ur
ce

N
o

A
lg
or
ith

m
s,
D
ia
gr
am

s
Ju
lia

[
]

30

Q
ua
nt
um

U
til
s

O
pe
n
so
ur
ce

Y
es

P
ar
al
le
lis
m
,D

ia
gr
am

s
M
at
he
m
at
ic
a

[
]

96

Q
ua
nt
um

W
al
k.
jlo

O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s

Ju
lia

Q
ub

it
W
or
kb

en
ch

p
C
om

m
er
ci
al

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s

Q
ub

it
W
or
kb

en
ch

q
F
re
ew

ar
e

Y
es

N
on

e

Q
ub

it4
M
at
la
b

O
pe
n
so
ur
ce

Y
es

A
ll

M
A
T
L
A
B

[
]

97

Q
uE

S
T

O
pe
n
so
ur
ce

Y
es

N
on

e
C

[
]

98

Q
uI
D
E

O
pe
n
so
ur
ce

Y
es

A
ll

.N
E
T

[
]

99

12 Quantum Software Tools Overview 239

N
am

e
L
ic
en
se

Q
G
at
es

O
th
er

ca
pa
bi
lit
ie
s

L
an
gu

ag
e

R
ef
er
en
ce
(s
)

Q
X

S
im

ul
at
or

r
O
pe
n
so
ur
ce

N
o

P
ar
al
le
lis
m

Q
ua
nt
um

C
od

e

S
ca
ff
ol
d/
S
ca
ff
C
C

O
pe
n
so
ur
ce

N
o

A
lg
or
ith

m
s

S
ca
ff
ol
d

[1
5]

S
im

Q
ub

it
O
pe
n
so
ur
ce

Y
es

A
lg
or
ith

m
s,
D
ia
gr
am

s
C
+
+

[1
00

]

S
ta
q

O
pe
n
so
ur
ce

Y
es

N
on

e
C

[9
5]

T
eq
ui
la

O
pe
n
so
ur
ce

Y
es

N
on

e
P
yt
ho

n
[1
01

]
a h
ttp

s:
//b

ac
ku

pb
ra
in
.g
ith

ub
.io

/q
ua
nt
um

-c
om

pi
le
r-
si
m
ul
at
or
/

b
ht
tp
s:
//w

w
w
.s
co
tta
ar
on

so
n.
co
m
/c
hp

/
c h
ttp

://
w
w
w
.d
r-
qu

bi
t.o

rg
/

d
ht
tp
://
lin

ea
ra
l.s
ou

rc
ef
or
ge
.n
et

e h
ttp

s:
//q

ua
nt
um

co
m
pu

tin
gi
nc
.c
om

/p
ro
du

ct
s.
ph

p
f g
ht
tp
s:
//s
ou

rc
ef
or
ge
.n
et
/p
ro
je
ct
s/
qp

lu
sp
lu
s/

h i h
ttp

s:
//g

ith
ub

.c
om

/ii
tis
/q
i

j h
ttp

s:
//g

ith
ub

.c
om

/d
ill
an
ch
an
g/
Q
O
C
S

k l h
ttp

://
ho

m
ep
ag
e.
ce
m
.it
es
m
.m

x/
lg
om

ez
/q
ua
nt
um

/in
de
x.
ht
m

m
ht
tp
s:
//q

ui
.r
es
ea
rc
h.
un

im
el
b.
ed
u.
au
/

n o p
ht
tp
s:
//e
ly
ah
.io

/p
ro
du

ct
q
ht
tp
s:
//e
ly
ah
.io

/p
ro
du

ct
r h
ttp

://
qu

an
tu
m
-s
tu
di
o.
ne
t

ht
tp
s:
//g

ith
ub

.c
om

/ii
tis
/Q
ua
nt
um

W
al
k.
jl

ht
tp
s:
//g

ith
ub

.c
om

/p
hb

au
di
n/
qu

an
tu
m
-c
om

pu
tin

g

ht
tp
s:
//w

w
w
.q
ua
nt
um

-m
ac
hi
ne
s.
co
/

ht
tp
s:
//h

ac
ka
ge
.h
as
ke
ll.
or
g/
pa
ck
ag
e/
qc
ha
s

ht
tp
s:
//s
ite
s.
go

og
le
.c
om

/v
ie
w
/q
ua
nt
um

-k
it/
ho

m
e

240 J. A. Cruz-Lemus and M. A. Serrano

https://backupbrain.github.io/quantum-compiler-simulator/
https://www.scottaaronson.com/chp/
http://www.dr-qubit.org/
http://linearal.sourceforge.net
https://quantumcomputinginc.com/products.php
https://sites.google.com/view/quantum-kit/home
https://sourceforge.net/projects/qplusplus/
https://hackage.haskell.org/package/qchas
https://github.com/iitis/qi
https://github.com/dillanchang/QOCS
https://www.quantum-machines.co/
http://homepage.cem.itesm.mx/lgomez/quantum/index.htm
https://qui.research.unimelb.edu.au/
https://github.com/phbaudin/quantum-computing
https://github.com/iitis/QuantumWalk.jl
https://elyah.io/product
https://elyah.io/product
http://quantum-studio.net

This paradigm consists in the construction of a mathematical model that repre-
sents the objective and a set of constraints existing in an optimization problem. One
of the main vendors of this second type of quantum computers is D-Wave Systems,15

which propose to solve several optimization problems by constructing a binary
quadratic model (BQM), consisting of a collection of binary-valued variables, i.e.,
variables that can have only two possible values (e.g., 0 or 1) and are affected by
biases and interactions between them.

Apart from D-Wave, there are some other less known platforms such as the
Fujitsu digital annealer16 which has a similar behavior to D-Wave computers. On the
other hand, this type of algorithm can be simulated on IBM quantum computers
through QAOA circuits17 and on Microsoft’s Q# environment and its cloud plat-
form, Azure Quantum,18 as well as on the Amazon Braket computing service.19

These types of algorithms and environments are largely specialized in solving a
specific type of optimization problem, for which they are highly efficient, although
they do not have, at the moment, the capacity to solve those problems that do not fit
the paradigm.

12.2.5 Full-Stack Software of Main Quantum Computing
Vendors

The most important characteristics of each of the main full-stack quantum software
platforms sold by the main vendors (see Fig. 12.5) are discussed in this section.

12 Quantum Software Tools Overview 241

• D-Wave20 is a Canadian firm offering an adiabatic quantum computer, special-
ized in the performance of optimization. They use “QMASM” as a machine
language. This language is below the open-source qbsolv library, which can
solve optimization problems by decompiling QUBO (Quadratic Unconstrained
Binary Optimization) problems.

• Google’s platform is called Quantum AI.21 It works with quantum circuits on
near-term quantum computers. This platform is based on Cirq, a Python library
“for writing, manipulating and optimizing quantum circuits and running them
against quantum computers and simulators” [105]. Some other Python library can
be run on top of Cirq, for instance, OpenFermion, which focuses on simulating
fermionic systems.

15https://www.dwavesys.com/solutions-and-products/cloud-platform/
16https://www.fujitsu.com/global/services/business-services/digital-annealer/
17https://qiskit.org/textbook/ch-applications/qaoa.html
18https://azure.microsoft.com/es-es/services/quantum/
19https://aws.amazon.com/braket/
20https://dwavesys.com/
21https://quantumai.google/

https://www.dwavesys.com/solutions-and-products/cloud-platform/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://qiskit.org/textbook/ch-applications/qaoa.html
https://azure.microsoft.com/es-es/services/quantum/
https://aws.amazon.com/braket/
https://dwavesys.com/
https://quantumai.google/

242 J. A. Cruz-Lemus and M. A. Serrano

Quantum Device

QMASM

qbsolv

Qsage ToQ

D-Wave

Other

Cirq

OpenFermion
-Cirq

Cirq

Google

MS-QDK &
Orquestra
from Zapata

Honeywell

Open QASM

QISKit
Terra

QISKit Aqua

QISkit

IBM

Other

Q#

Quantum
Dev. Kit

Microsoft

Quil

PyQuil

Grove

Forest

Rigetti

BlackBird

Strawberry
Fields

Penny Lane

Penny Lane

Xanadu

Ha
rdw

are
As
sem

bly
La
ng
ua
ge

Qu
an
tum

Cir
cu
its

Qu
an
tum

alg
ori
thm

s

Fu
ll-s
tac
k l
ibr
ari
es

Fig. 12.5 Main quantum full stack platforms

• Honeywell22 is a US company based in North Carolina. They are focused on
quantum computing based on Trapped-ion technology. Their quantum computers
do not have open access yet, but they are thought to be compatible, in the future,
with quantum algorithms that can run on other companies’ computers.

• IBM23 provides several quantum computers on a cloud-based service. These are
programmed through quantum circuits using a web quantum composer or by
defining them in Open QASM language. These circuits are supplied to the
quantum computer through the Qiskit Terra library as a platform provider.
Several libraries focused on specific domains, such as Qiskit Aqua, can be
found on top of them.

• Microsoft’s stack is based on the use of the Q# language programming. It
provides a set of libraries, API, and simulators using the Quantum Development
Kit (QDK). The access to the quantum computers has been migrated to its use on
the cloud via Azure services.

• Rigetti24 is a US company based in California. They provide access to its
quantum processors via their ASPEN-8 processors. Several software components
make their software stack up, among others, the PyQuil programming language
(a Python library) and Quil, an optimizing compiler for gate-based quantum
programs.

• Xanadu25 use photonic technology for quantum computing. This technology
provides robustness and scalability and can operate at room temperature. Its
devices are accessed through the Xanadu quantum cloud and feature the Straw-
berry Fields programming language provided as another Python library. Several
libraries, such as TensorFlow, can be used on top of this stack to carry out
domain-oriented applications. In addition, Xanadu provides a Python library
called “Penny Lane” for programming a quantum computer the same way a

22https://www.honeywell.com/us/en/company/quantum
23https://quantum-computing.ibm.com/
24https://www.rigetti.com/
25https://www.xanadu.ai/

https://www.honeywell.com/us/en/company/quantum
https://quantum-computing.ibm.com/
https://www.rigetti.com/
https://www.xanadu.ai/

12 Quantum Software Tools Overview 243

neural network is trained. This library can also be used on other quantum
platforms such as Google, IBM, or Rigetti.

12.2.6 Quantum Software Development and Run Platforms

In addition to the previously discussed full-stack environments, there are also some
other suites for designing and running quantum applications and workflows. Nor-
mally, these platforms interact with different quantum computers, tools, and
simulators:

• 1QBit26 provides a hardware-agnostic platform to solve intractable industry
problems, including 1Qloud which is a powerful optimization platform enabled
by quantum and classical computers.

• Aliro27 is a quantum platform oriented to creating and optimizing quantum
networks and quantum-secure communications, using Entanglement as a Service
(EaaS) so that it can be used by applications.

• Braket28 is the proposal from Amazon for quantum computing. It provides access
to different quantum computers and simulators hosted on the AWS platform. An
SDK is also provided for creating quantum algorithms which can be run on any
compatible quantum hardware (such as Rigetti or D-Wave). It can also be used on
hybrid approaches such as Penny Lane or Jupyter notebooks. It includes a
repository with pre-designed algorithms and tutorials and a machine and user
administration environment. Although Braket does not specifically support
hybrid software, it offers a Platform as a Service (PaaS) for an easy with classical
software.

• Classiq Technologies29 is a platform for designing quantum algorithms through
automation and synthesis. It creates such quantum algorithms from ideas without
needing to code at a quantum gate level by using a programming environment
that organizes the entire quantum software stack and creates algorithms compat-
ible with the main quantum programming environments (such as Q#, Cirq, or
Qiskit). The algorithms are also portable to different types of quantum hardware.

• Orquestra from Zapata30 is a quantum programming environment based on the
construction of quantum workflows. These workflows allow working at the
appropriate level of abstraction, but, at the same time, the programmer can get
closer to the hardware if needed. Deployment, scaling, and parallelization of
workflows can be performed by submitting them to Orquesta Quantum Engine

26https://1qbit.com/
27https://www.aliroquantum.com/
28https://aws.amazon.com/braket
29https://www.classiq.io/
30https://www.zapatacomputing.com/orquestra/

https://1qbit.com/
https://www.aliroquantum.com/
https://aws.amazon.com/braket
https://www.classiq.io/
https://www.zapatacomputing.com/orquestra/

244 J. A. Cruz-Lemus and M. A. Serrano

servers via REST API and can be executed both on classical and quantum
devices.

• QPath31 is a quantum software development and life cycle application platform
which implements a complete life cycle pipeline to create professional quantum
software solutions. It allows using different quantum programming languages and
platforms for coding new quantum algorithms, using a quantum software engi-
neering approach. It provides several connections to the main quantum platforms,
such as D-Wave, Rigetti, or IBM. Finally, it can be used to integrate classical and
quantum software to build hybrid systems.

• Strangeworks QC32 is a platform designed to serve as the central hub for all
quantum hardware and software vendors, enterprises, academia, and other enti-
ties, by facilitating the application of quantum computing to a broad range of
problems.

• t|keti from CQC (Cambridge Quantum Computing)33 is an architecture-agnostic
quantum software stack with its own compiler. It allows translating machine-
independent algorithms into optimized executable circuits.

12.3 Current Limitations and Future Trends

Today, the main limitations of quantum computing can be mainly grouped into two
categories, the lack of knowledge and experience in the construction of quantum
algorithms and the availability of quantum computers.

Regarding the first problem, apart from training, the emergence of new program-
ming methods, as well as advances in quantum software engineering, as supported
by the Talavera Manifesto [5] will probably be supportive in this new paradigm. On
the other hand, the problems associated with the technology lead to low availability
of quantum computers, as the low number of qubits available, the quantum noise
problems, qubits decoherence, and general availability of these computers. These
limitations can be alleviated in the future as the technology advanced.

Regarding tools and platforms, the main existing problems are related to the
current lack of software engineering culture; nowadays, we have a low level of
abstraction in the construction of quantum software, the absence of standards that
allow the reuse of code through components, or the lack of tools like the ones we use
in the construction of classic software such as project management or testing tools.

In the future, tools for testing, quality, etc. that do not exist today will be of
paramount importance. If we really want quantum software to become a reality, the
emergence of quantum software engineering is inevitable [106], which will give rise
to a new golden age of computing [107].

31https://www.quantumpath.es/eng/
32https://strangeworks.com/
33https://cambridgequantum.com/

https://www.quantumpath.es/eng/
https://strangeworks.com/
https://cambridgequantum.com/

Acknowledgments We would like to thank all the aQuantum members, especially Guido

12 Quantum Software Tools Overview 245

Peterssen and Pepe Hevia, for their invaluable help and support. This work was partially funded
by the “QHealth: Quantum Pharmacogenomics Applied to Aging” project, the 2020 CDTI Missions
Program [Center for the Development of Industrial Technology of the Ministry of Science and
Innovation of Spain and the AETHER-UCLM: A smart data holistic approach for context-aware
data analytics focused on Quality and Security project (Ministry of Science and Innovation of
Spain, PID2020-112540RB-C42)].

References

1. Mueck L (2017) Quantum software. Nature 549(7671):171–171
2. Dijkstra EW (1972) The humble programmer. Commun ACM 15(10):859–866
3. Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test,

and deployment automation. Pearson Education
4. Kim G, Humble J, Debois P, Willis J, Forsgren N (2021) The DevOps handbook: how to

create world-class agility, reliability, & security in technology organizations. IT Revolution
5. Piattini M, Peterssen G, Pérez-Castillo R, Hevia JL et al (2020) The Talavera Manifesto for

Quantum Software Engineering and Programming. QANSWER 2020 QuANtum SoftWare
Engineering & pRogramming. Proceedings of the 1st International Workshop on the QuAN-
tum SoftWare Engineering & pRogramming, Talavera de la Reina, Spain, February 11–12,
2020. http://ceur-ws.org/Vol-2561/paper0.pdf

6. Weder B, Barzen J, Leymann F, Salm M, Vietz D (2020) The quantum software lifecycle. In:
Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Para-
digms for Engineering Quantum Software, pp 2–9

7. Pérez-Castillo R, Serrano MA, Piattini M (2021) Software modernization to embrace quantum
technology. Adv Eng Softw 151:102933

8. Cross AW, Bishop LS, Smolin JA, Gambetta JM (2017) Open quantum assembly language.
arXiv preprint arXiv:1707.03429

9. Cross AW, Javadi-Abhari A, Alexander T, de Beaudrap N, Bishop LS, Heidel S, Ryan C,
Smolin J, Gambetta JM, Johson BR (2021) OpenQASM 3: a broader and deeper quantum
assembly language. arXiv:2104.14722v1

10. Smith RS, Curtis MJ, Zeng WJ (2016) A practical quantum instruction set architecture.
arXiv:1608.03355

11. Ömer B (2005) Classical concepts in quantum programming. Int J Theoretical Phys 44(7):
943–955

12. Mlnarik H (2007) Operational semantics and type soundness of quantum programming
language LanQ. arXiv preprint arXiv:0708.0890

13. Mlnarik H (2008) Semantics of quantum programming language LanQ. Int J Quant Inf 6
(Suppl 01):733–738

14. Abhari AJ, Faruque A, Dousti MJ, Svec L, Catu O, Chakrabati A, Chiang C-F, Vanderwilt S,
Black J, Chong F (2012) Scaffold: Quantum programming language. Princeton University, NJ

15. Abhari AJ, Patil S, Kudrow D, Heckey J, Lvov A, Chong FT, Martonosi M (2015) Scaffcc:
Scalable compilation and analysis of quantum programs. Parallel Comput 45:2–17

16. Pakin S (2016) A quantum macro assembler. In: 2016 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, pp 1–8

17. Khammassi N, Guerreschi GG, Ashraf I, Hogaboam JW, Almudever CG, Bertels K (2018)
cQASM v1.0: towards a common quantum assembly language. arXiv:1805.09607v1

18. Morrison BC, Landahl AJ, Lobser DS, Rudinger KM, Russo AE, Van Der Wall JW, Maunz P
(2020) Just another quantum assembly language (Jaqal). In: 2020 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE). IEEE, pp 402–408

http://ceur-ws.org/Vol-2561/paper0.pdf

246 J. A. Cruz-Lemus and M. A. Serrano

19. Sanders JW, Zuliani P (2000) Quantum programming. In: International Conference on Math-
ematics of Program Construction. Springer, pp 80–99

20. Zuliani P (2004) Non-deterministic quantum programming. In: Proceeding QPL 2004. Facoltà
di Scienze e Tecnologie Informatiche Libera Università di Bolzano Italy. pp 179–195

21. Bettelli S, Calarco T, Serafini L (2003) Toward an architecture for quantum programming. Eur
Phys J D-Atom Mol Optical Plasma Phys 25(2):181–200

22. Jia-Fu X, Song F-M, Qian S-J, Dai J-A, Zhang Y-J (2008) Quantum programming language
NDQJava. J Softw 19(1):1–8

23. Purkeypile M (2009) Cove: a practical quantum computer programming framework. PhD
Dissertation. Colorado Technical University. https://arxiv.org/abs/0911.2423

24. Liu X, Kubiatowicz J (2013) Chisel-Q: designing quantum circuits with a scala embedded
language. In: 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE,
pp 427–434

25. Feitosa SS, Vizzotto JK, Piveta EK, Du Bois AR (2016) FJQuantum–a quantum object
oriented language. Electron Notes Theoretical Comput Sci 324:67–77

26. Häner T, Steiger DS, Smelyanskiy M, Troyer M (2016) High performance emulation of
quantum circuits. In: SC’16: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, pp 866–874

27. Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Cabrera-
Hernández FJ, Carballo-Franquis J, Chen A, Chen C-F, Chow JM, Córcoles-Gonzales AD,
Cross AJ, Cross A, Cruz-Benito J, Culver C, González SDLP, Torre EDL, Ding D,
Dumitrescu E, Duran I, Eendebak P, Everitt M, Sertage IF, Frisch A, Fuhrer A, Gambetta J,
Gago BG, Gomez-Mosquera J, Greenberg D, Hamamura I, Havlicek V, Hellmers J, Herok Ł,
Horii H, Hu S, Imamichi T, Itoko T, Javadi-Abhari A, Kanazawa N, Karazeev A, Krsulich K,
Liu P, Luh Y, Maeng Y, Marques M, Martín-Fernández FJ, McClure DT, McKay D,
Meesala S, Mezzacapo A, Moll N, Rodŕıguez DM, Nannicini G, Nation P, Ollitrault P,
O’Riordan LJ, Paik H, Pérez J, Phan A, Pistoia M, Prutyanov V, Reuter M, Rice J, Davila
AR, Rudy RHP, Ryu M, Sathaye N, Schnabel C, Schoute E, Setia K, Shi Y, Silva A,
Siraichi Y, Sivarajah S, Smolin JA, Soeken M, Takahashi H, Tavernelli I, Taylor C,
Taylour P, Trabing K, Treinish M, Turner W, Vogt-Lee D, Vuillot C, Wildstrom JA,
Wilson J, Winston E, Wood C, Wood S, Wörner S, Akhalwaya IY, Zoufal C (2019) Qiskit:
an open-source framework for quantum computing. Scott Aaronson and B. Toth. 2003.
Simulation and synthesis of stabilizer quantum circuits

28. Paolini L, Piccolo M, Zorzi M (2019) QPCF: higher-order languages and quantum circuits. J
Autom Reason 63(4):941–966

29. Killoran N, Izaac J, Quesada N, Bergholm V, AmyM,Weedbrook C (2019) Strawberry fields:
a software platform for photonic quantum computing. Quantum 3:129

30. Krämer S, Plankensteiner D, Ostermann L, Ritsch H (2018) QuantumOptics. jl: a Julia
framework for simulating open quantum systems. Comput Phys Commun 227:109–116

31. Google AI Quantum team (2018) Cirq. https://github.com/quantumlib/Cirq
32. Svore K, Geller A, Troyer M, Azariah J, Granade C, Heim B, Kliuchnikov V, Mykhailova M,

Paz A, Roetteler M (2018) Q# enabling scalable quantum computing and development with a
high-level dsl. In: Proceedings of the Real World Domain Specific Languages Workshop
2018, pp 1–10

33. Liu S, Wang X, Zhou L, Guan J, Li Y, He Y, Duan R, Ying M (2018) Q |SI i: a quantum
programming environment. In: Symposium on Real-Time and Hybrid Systems. Springer, pp
133–164

34. Bichsel B, Baader M, Gehr T, Vechev M (2020) Silq: A high-level quantum language with
safe uncomputation and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp 286–300

35. Zhao J (2020) Quantum software engineering: landscapes and horizons. arXiv preprint
arXiv:2007.07047

https://arxiv.org/abs/0911.2423
https://github.com/quantumlib/Cirq

12 Quantum Software Tools Overview 247

36. Maymin P (1996) Extending the lambda calculus to express randomized and quantumized
algorithms. arXiv preprint quant-ph/9612052

37. Van Tonder A (2004) A lambda calculus for quantum computation. SIAM J Comput 33(5):
1109–1135

38. Selinger P (2004) Towards a quantum programming language. Math Struct Comput Sci 14(4):
527–586

39. Selinger P (2004) Towards a semantics for higher-order quantum computation. In: Proceed-
ings of the 2nd International Workshop on Quantum Programming Languages, TUCS General
Publication No, vol 33, pp 127–143

40. Selinger P, Valiron B (2006) A lambda calculus for quantum computation with classical
control. Math Struct Comput Sci 16(3):527

41. Altenkirch T, Grattage J (2005) A functional quantum programming language. In: 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’05). IEEE, pp 249–258

42. Mauerer W (2005) Semantics and simulation of communication in quantum programming.
arXiv preprint quant-ph/0511145

43. Lapets A, da Silva MP, Thome M, Adler A, Beal J, Roetteler M (2013) QuaFL: a typed DSL
for quantum programming. In: Proceedings of 1st annual workshop on functional program-
ming concepts in domain-specific language (FPCDS’13), pp 19–26

44. Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) An introduction to quantum
programming in quipper. In: International Conference on Reversible Computation. Springer,
Berlin, pp 110–124

45. Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper: a scalable quantum
programming language. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, June 16–19. pp 333–342

46. Wecker D, Svore KM (2014) LIQUi|>: a software design architecture and domain-specific
language for quantum computing. arXiv:1402.4467

47. Rios F, Selinger P (2017) A categorical model for a quantum circuit description language. In:
Proceedings 14th International Conference on Quantum Physics and Logic (QPL 2017), pp
164–178

48. Paolini L, Zorzi M (2017) qPCF: a language for quantum circuit computations. In: Interna-
tional Conference on Theory and Applications of Models of Computation. Springer, Cham, pp
455–469

49. Gay SJ, Nagarajan R (2004) Communicating quantum processes. In: Proceedings of the 2nd
International Workshop on Quantum Programming Languages, pp 91–107

50. Gay SJ, Nagarajan R (2005) Communicating quantum processes. In: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp
145–157

51. Gay SJ (2006) Quantum programming languages: survey and bibliography. Math Struct
Comput Sci 16(4):581–600

52. Jorrand P, Lalire M (2004) From quantum physics to programming languages: a process
algebraic approach. In: International Workshop on Unconventional Programming Paradigms.
Springer, Berlin, pp 1–16

53. Lalire M, Jorrand P (2004) A process algebraic approach to concurrent and distributed
quantum computation: operational semantics. arXiv preprint quant-ph/0407005

54. Chakraborty A (2011) QuECT: a new quantum programming paradigm. arXiv preprint
arXiv:1104.0497

55. Paykin J, Rand R, Zdancewic S (2017) QWIRE: a core language for quantum circuits. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18–20. ACM, pp 846–858

56. Zulehner A, Wille R (2019) Advanced simulation of quantum computations. IEEE Trans
Comput-Aided Des Integr Circuits Syst 38(5):848–863

57. Wille R, Hillmich S, Burgholzer L (2020) JKQ: JKU tools for quantum computing. In: 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE, pp 1–5

248 J. A. Cruz-Lemus and M. A. Serrano

58. Smelyanskiy M, Sawaya NP, Aspuru-Guzik A (2016) qHiPSTER: the quantum high perfor-
mance software testing environment. arXiv preprint arXiv:1601.07195

59. Steiger DS, Häner T, Troyer M (2018) ProjectQ: an open source software framework for
quantum computing. Quantum 2:49

60. Burgholzer L, Wille R (2021) QCEC: A JKQ tool for quantum circuit equivalence checking.
Softw Impacts 7:100051

61. Tabakin F, Juliá-Díaz B (2011) QCWAVE–a Mathematica quantum computer simulation
update. Comput Phys Commun 182(8):1693–1707

62. Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, García-Martín D, Garcia-
Saez A, Latorre JI, Carrazza S (2020) Qibo: a framework for quantum simulation with
hardware acceleration. arXiv preprint arXiv:2009.01845

63. Prousalis K, Konofaos N (2016) QuCirDET: a design and simulation tool for quantum
circuits. In: 2016 5th International Conference on Modern Circuits and Systems Technologies
(MOCAST). IEEE, pp 1–4

64. Suzuki Y, Kawase Y, Masumura Y, Hiraga Y, Nakadai M, Chen J, Nakanishi KM, Mitarai K,
Imai R, Tamiya S, Yamamoto T, Yan T, Kawakubo T, Nakagawa YO, Ibe Y, Zhang Y,
Yamashita H, Yoshimura H, Hayashi A, Fujii K (2020) Qulacs: a fast and versatile quantum
circuit simulator for research purpose. arXiv:2011.13524v1

65. Viamontes GF, Markov IL, Hayes JP (2009) Quantum circuit simulation. Springer
66. Khammassi N, Ashraf I, Xiang F, Almudever CG, Bertels K (2017) QX: a high-performance

quantum computer simulation platform. Proc Design Autom Test Europe 2017:464–469
67. Huo C (2009) A Bloch sphere animation software using a three dimensional Java simulator.

Doctoral dissertation, University of Cincinnati
68. Omole V, Tyagi A, Carey C, Hanus AJ, Hancock A, Garcia A, Shedenhelm J (2020) Cirq: a

python framework for creating, editing, and invoking Quantum circuits. http://sdmay20-08.sd.
ece.iastate.edu/docs/Design-Document-v2.pdf

69. Johan A. Brandhorst-Satzkorn. 2012. A review of freely available quantum computer simu-
lation software.

70. Radtke T, Fritzsche S (2005) Simulation of n-qubit quantum systems. I. Quantum registers and
quantum gates. Comput Phys Commun 173(1–2):91–113

71. Chen H, Lidar DA (2020). HOQST: Hamiltonian Open Quantum System Toolkit. arXiv
preprint arXiv:2011.14046

72. Srivastava R, Choi I, Cook T, NQIT User Engagement Team (2016) The commercial
prospects for quantum computing. Networked Quantum Information Technologies

73. Glendinning I, Ömer B (2003) Parallelization of the QC-lib quantum computer simulator
library. In: International Conference on Parallel Processing and Applied Mathematics.
Springer, Berlin, pp 461–468

74. da Silva Feitosa S, da Silva Bueno JA (2016) Simulating quantum parallelism in CPU and
GPU using the LibQuantum library. Communications and Innovations Gazette Magazine 1(2):
26–36

75. Tolba S, Rashad MZ, El-Dosuky MA (2013) Q#, a quantum computation package for the .
NET platform. arXiv preprint arXiv:1302.5133

76. Schneider SD (2000) Quantum systems simulator. Doctoral dissertation, Massachusetts Insti-
tute of Technology

77. McKay DC, Alexander T, Bello L, Biercuk MJ, Bishop L, Chen J, Chow JM, Córcoles AD,
Egger D, Filipp S, Gomez J, Hush M, Javadi-Abhari A, Moreda D, Nation P, Paulovicks B,
Winston E, Wood CJ, Wootton J, Gambetta JM (2018) Qiskit backend specifications for
OpenQASM and OpenPulse experiments. arXiv preprint arXiv:1809.03452

78. McCubbin CB (2000). Openquacs, an open-source quantum computation simulator in maple.
Doctoral dissertation, University of Maryland, Baltimore County

79. Caraiman S, Archip A, Manta V (2009) A grid enabled quantum computer simulator. In: 2009
11th International Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing. IEEE, pp 189–196

http://sdmay20-08.sd.ece.iastate.edu/docs/Design-Document-v2.pdf
http://sdmay20-08.sd.ece.iastate.edu/docs/Design-Document-v2.pdf

12 Quantum Software Tools Overview 249

80. Nielsen E, Gao X, Kalashnikova I, Muller RP, Salinger AG, Young RW (2013) QCAD
simulation and optimization of semiconductor double quantum dots. Technical report. Sandia
National Laboratories

81. Kelly A (2018) Simulating quantum computers using OpenCL. arXiv preprint
arXiv:1805.00988

82. Zagorodko PV (2020) Research of possibilities of quantum programming for realization of
tasks of machine learning. Doctoral dissertation

83. Juliá-Díaz B, Burdis JM, Tabakin F (2006) QDENSITY—a Mathematica quantum computer
simulation. Comput Phys Commun 174(11):914–934

84. Moran CC (2016). Quintuple: a python 5-qubit quantum computer simulator to facilitate cloud
quantum computing. arXiv preprint arXiv:1606.09225

85. Altenkirch T, Green AS (2010) The quantum IO monad. Semantic Tech Quantum
Computation:173–205

86. Cross AW (2018) The IBM Q experience and QISKit open-source quantum computing
software. In: APS March Meeting Abstracts, vol 2018. pp L58-003

87. Miller MD, Thornton MA (2006) QMDD: a decision diagram structure for reversible and
quantum circuits. In: 36th International Symposium on Multiple-Valued Logic (ISMVL’06).
IEEE, pp 30–30

88. Naeem W, Chuhdhry Y (2019) Q-Studio. Doctoral dissertation, Department of Computer
Science, COMSATS University Islamabad, Lahore campus

89. Beals TR (2008) Quantum communication and information processing. University of Califor-
nia, Berkeley

90. Glos A, Miszczak JA, Ostaszweski M. QSWalk.jl: Julia package for quantum stochastic walks
analysis. arXiv preprint arXiv:1801.01294

91. Feito A (2008) Quantavo: a maple toolbox for linear quantum optics. arXiv preprint
arXiv:0806.2171

92. Terörde M (2019) Registry-Spuren verursacht durch die Quantenprogrammiersprache Q
93. Dekant H, Tregillus H, Tucci R, Yin T (2019). artiste-qb-net/quantum-fog: Python tools for

analyzing both classical 29 and quantum Bayesian Networks [Electronic resource]. https://
github.com/artiste-qb-net/quantum-fog

94. Ivancova O, Korenkov V, Tyatyushkina O, Ulyanov S, Fukuda T (2020) Quantum supremacy
in end-to-end intelligent IT. Pt. I: Quantum software engineering-quantum gate level applied
models simulators. Syst Anal Sci Educ 1:52–84

95. Amy M, Gheorghiu V (2020) staq-a full-stack quantum processing toolkit. Quantum Sci
Technol

96. Hincks N, Granade CE, Borneman T, Cory DG (2015) Controlling quantum devices with
nonlinear hardware. Physical Rev Appl 4(2):024012

97. Tóth G (2008) QUBIT4MATLAB V3.0: a program package for quantum information science
and quantum optics for MATLAB. Comput Phys Commun 179(6):430–437

98. Jones T, Brown A, Bush I, Benjamin SC (2019) QuEST and high performance simulation of
quantum computers. Scientific Rep 9(1):1–11

99. Patrzyk J (2014) Graphical and programming support for simulations of quantum computa-
tions. Master of Science Thesis supervised by Katarzyna Rycerz

100. Patrzyk J, Patrzyk B, Rycerz K, Bubak M (2015) Towards a novel environment for simulation
of quantum computing. Comput Sci 16(1):103–129

101. Kottmann JS, Alperin-Lea S, Tamayo-Mendoza T, Cervera-Lierta A, Lavigne C, Yen T-C,
Verteletskyi V, Schleich P, Anand A, Degroote M, Chaney S, Kesibi M, Curnow NG, Solo B,
Tsilimigkounakis G, Zendejas-Morales C, Izmaylov AF, Aspuru-Guzik A (2020) TEQUILA:
a platform for rapid development of quantum algorithms. arXiv:2011.03057v1

102. Gill SS, Kumar A, Singh H, Singh M, Kaur K, Usman M, Buyya R (2020) Quantum
computing: a taxonomy, systematic review and future directions. arXiv preprint
arXiv:2010.15559

https://github.com/artiste-qb-net/quantum-fog
https://github.com/artiste-qb-net/quantum-fog

250 J. A. Cruz-Lemus and M. A. Serrano

103. Hevia JL, Peterssen G, Ebert C, Piattini M (2021) Quantum computing. IEEE Softw 38(5):
7–15

104. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm.
arXiv preprint arXiv:1411.4028

105. LaRose R (2019) Overview and comparison of gate level quantum software platforms.
Quantum 3:130

106. Piattini M, Serrano M, Pérez-Castillo R, Peterssen G, Hevia JL (2021) Towards a quantum
software engineering. IT Professional, IEEE 23(1):62–66. https://doi.org/10.1109/MITP.2020.
3019522

107. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-
neering golden age. ACM SIGSOFT Softw Eng Newsl 45(3):12–14

https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522

Chapter 13
Quantum Software Development
with QuantumPath®

Guido Peterssen, Jose Luis Hevia, and Mario Piattini

13.1 Introduction

As David Deutsch states: “Quantum theory is the most profound explanation known
to science. It violates many of the assumptions of common sense and all previous
science ... And yet this seemingly strange territory is the reality of which we and all
that we experience are a part. There is no other” [1]. This new, astonishing physics
theory describes the behavior of matter at subatomic levels (photons, electrons, etc.).
Quantum computers are based on the principles of this theory, such as superposition
and entanglement, and they seek to boost computational power exponentially. In
fact, many problems that have until now been impossible to solve, in practical terms,
might very well be able to be addressed by means of quantum computing [2]. There-
fore, interesting developments are taking place in cryptography, artificial intelli-
gence, communications, optimization, pharmacology, medicine, chemistry,
materials development, etc. [3].

As several experts point out, if the nineteenth century can be considered the
machine age, and the twentieth century the information age, the twenty-first century
will be the quantum age. For our part, we are confident that quantum computing may
become the main driver of a new “golden age” of software engineering [4]. However,
developing quantum software today is difficult, because software engineers have to
do with a new technological and programming paradigm. There is also a wide
variety of quantum programming languages [5], many quantum development

G. Peterssen · J. L. Hevia (*)
aQuantum, Alhambra IT, Madrid, Spain
e-mail: guido.peterssen@alhambrait.com; jluis.hevia@alhambrait.com

M. Piattini
aQuantum, Alarcos Research Group, Institute of Technologies and Information Systems,
University of Castilla-La Mancha, Ciudad Real, Spain
e-mail: mario.piattini@uclm.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_13

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_13&domain=pdf
mailto:guido.peterssen@alhambrait.com
mailto:jluis.hevia@alhambrait.com
mailto:mario.piattini@uclm.es
https://doi.org/10.1007/978-3-031-05324-5_13#DOI

When creating QPath®, we set out to follow the following principles:

environments [6], a wide variety of types of quantum simulators and hardware, and
there is still no methodology for developing high-quality quantum software. In this
context, it is easy to understand the enormous difficulties to overcome in the creation
of “universal” competencies for the development of quantum software.

252 G. Peterssen et al.

For those (like us) for whom the future of quantum computing is already here, the
challenge to contribute to the acceleration of the development of commercial
quantum software is to overcome, as soon as possible and in multiple ways, these
enormous obstacles which, by their complexity, they will hardly have an immediate
social and cultural solution.

In this chapter, we present QuantumPath® (QPath®), which is a quantum
software development platform to support the design, implementation, and execu-
tion of quantum software applications.1

The rest of the chapter is organized as follows: Sect. 13.2 provides an overview of
the QPath® platform principles and functionalities. Section 13.3 summarizes offers
some of the advantages of QPath®. An example of QPath® use is shown in Sect.
13.4. Section 13.5 presents the conclusions and future work.

13.2 QPath® Principles and Functionalities

• Agnosticism, in the sense that the platform shall support both quantum gate-based
and annealing technology.

• Extensibility. Since quantum technologies are in the process of continuous
research and evolution, it is necessary that the system can adapt to change through
a complete and well-designed model of extensions.

• Integration, an environment that will enable the integration of quantum/classical
(hybrid) information systems.

• Independency, i.e., an environment that shall make programmers independent of
the specific details of each platform and language, following the principle of
“write once, run everywhere.” Therefore, it masks the complexities of the differ-
ent environments by supporting the necessary transformations and automating the
whole process through efficient tools.

• Optimization, because the environment shall collect and analyze all the stored
telemetry.

• Scalability, the environment shall be scalable. It shall be deployed in as many
servers as necessary to guarantee a growth according to the number of users and
processes generated.

1https://www.quantumpath.es/

https://www.quantumpath.es/

13 Quantum Software Development with QuantumPath® 253

• Security. The system shall be designed to be secure. It shall provide secure
accesses to the service layers, as well as guarantees the protection of the system
assets.

• Software engineering because the platform shall support the quantum software
life cycle and its engineering.

• Usability, i.e., the platform shall help visually design the quantum assets of the
application and define the environment’s requirements and explore the results
using a unified scheme, without worrying about the language of quantum
computers.

QPath® is an ecosystem of tools, services, and processes—gathered on a plat-
form—that offers a complete and complex hybrid information system that allows
and execute quantum processing units regardless of the environment in which they
run, abstracting the classic application from the complexities that characterize them.

To fully comply with your accommodation, QPath® is composed of two large
functional units:

• CORE Modules, the core of the QuantumPath platform, capable of managing
solutions independent of quantum technology assisted by general purpose tools

• The APPs platform, which integrates with the CORE modules of the QPath®
system and makes it easier for development teams to manage the life cycle of
hybrid software projects

The QPath® Core offers different functionalities, which we summarize in the
next sections.

13.2.1 Management of Solutions and Their Assets

QPath® includes all the elements necessary to compose a “quantum application”:
(application) solution and its relationships to the quantum execution context in
which it will unfold; quantum circuits and their different approaches depending on
the type of technology used; direct code units, when more direct contact with a
particular machine is required; intermediate language treatment of the assets of a
quantum application; and main flows for the coordination of the all necessary
elements that make up an algorithm and organizes its execution control. All the
data elements stored in the cloud system are stored encrypted from origin to storage,
to fulfil the privacy of knowledge premise of the product at all levels.

13.2.2 Tools for the Design of Quantum Assets

QPath® consists of several tools both from the context of agnostic and platform-
specific solutions.

13.2.2.1 Circuit Editor

The circuit editor allows the graphical design (Fig. 13.1) of quantum gate circuits
through a web user interface (UI) built upon the Quirk Quantum Circuit Simulator,2

with drag and drop support to compose the circuit.
This editor will generate an intermediate QpIL language that will make it possible

to launch algorithms based on quantum gate circuits on any quantum gate hardware.

13.2.2.2 Annealer Compositor

Annealer Compositor is a high-level tool that allows you to model optimization
problems in a fully graphical and visual way (Fig. 13.2), without the need to use any
programming language. The design of the optimization problem is simplified to the
definition of four elements: parameters, auxiliary data, classes of variables, and rules.
Once the editing is finished with the Annealer Compositor, the system compiles the
circuit and generates the corresponding code in annealing metalanguage.

Once defined the basic metadata of an “annealing circuit” (name, description,
etc.), which is how in QPath® these assets are called, the application allows us to edit
the circuit with the Annealer Compositor.

This editor helps enormously in the modeling of an optimization problem, whose
design is simplified to the definition of these four elements:

254 G. Peterssen et al.

Fig. 13.1 Circuit editor of QPath®

2https://algassert.com/quirk

https://algassert.com/quirk

13 Quantum Software Development with QuantumPath® 255

Fig. 13.2 Annealer compositor of QPath®

• Parameters. Variables with constant values that allow to parameterize some of the
properties of the problem and that can be used in the Hamiltonians of the different
rules or constraints of the problem

• Auxiliary data. Arrays of data, with values that can also be used in the Hamilto-
nians of the different rules of the problem

• Classes. Defines the different types of real variables involved in the problem
• Rules. Set of rules that model the objective function and constraints of the

problem

Especially useful is the mathematical formula editor (Fig. 13.3) that simplifies the
task of defining the Hamiltonians associated with the constraints of the problem.

Once the editing is finished with the Annealer Compositor, the system compiles
the circuit and generates the corresponding code in annealing meta-language, a
proprietary meta-language, which allows the definition of optimization problems,
using the same logical structure as the Annealer Compositor.

13.2.2.3 Flow Editor

As with a classical solution, we can take circuits as components that need to be
orchestrated in an application where there can be multiple steps. So, to have an
application in which to launch the circuits, we will need to define a flow using the
editor shown. The flow has the responsibility of coordinating the way in which the
circuits and all the elements that QPath® will be executed and coordinating (see
Fig. 13.4).

256 G. Peterssen et al.

Fig. 13.3 Mathematical formula editor of QPath®

Fig. 13.4 Flow editor of QPath®

13 Quantum Software Development with QuantumPath® 257

Fig. 13.5 DirectCode Asset editor

13.2.2.4 Direct Code Editor

QPath®’s DirectCode editor (Fig. 13.5) allows to create pieces of code for a specific
hardware, taking advantage of all the potential of the hardware provider. Using this
tool, a user can write the circuit in the same language understood by a specific
technology (e.g., QASM for Qiskit, OCEAN for D-Wave, etc.). To simplify this
process, and make the code “semi-agnostic,” the DirectCode editor will let the user
to write the code inside a module abstraction and provide managed items that will be
integrated into the pipeline of QPath®. Fulfilling a small set of requisites, the defined
code will be independent of the final provider target.

The DirectCode, finally, will encapsulate the defined code as a standard circuit to
be used into the main pipeline of QPath®.

13.2.3 Connection Points and qSOA

QPath® makes possible the interconnection of quantum applications in an ecosys-
tem of classic solutions. Using a clear publishing service (Fig. 13.6), a concise layer
of REST API services is provided that allows any classic application to consume
quantum algorithms stored in the system with minimal effort or create new ones
using and injecting the QPath® IL.

258 G. Peterssen et al.

Fig. 13.6 QSOA API REST Fast Help

For example, the following Connection Point probes whether the job token of the
identified solution and application has been completed and its outcome: (/api/
connectionPoint/GetQuantumExecutionResponse/jobtoken/idSolution/idFlow)

HTTP GET HEADERS
content-type: application/json
Authorization: Bearer tokenJWT
RESPONSE
{
"ExitCode": "OK",
"ExitMessage": null,
"ExecutionData": {
"Solution": "WEBINARAnneal",

"Flow": "BoxFlows",
"Device": "dwave_ExactSolver_simulator",

"Histogram": histogram struct ",
"Duration": 157226789

}
}

QPath® supports the qSOA (Quantum Service Oriented Architecture) based on
connection points, which facilitates the creation of new layers of quantum services

13 Quantum Software Development with QuantumPath® 259

Fig. 13.7 qSOA of QPath®

and their integration into classical systems using a clear homogeneous and secure
API based on well-known open protocols and data format. This qSOA (Fig. 13.7)
therefore avoids to design, build, and test new integrations with the cloud API of
every quantum provider. Some examples of the operation of this architecture can be
found in https://www.aquantum.es/resources/webinars/.

13.2.4 Enterprise Backend

The backend is responsible for the complete operation of the platform, a backend
that—by design—contemplates security, high availability, load balancing, and
asynchronous customer processing. Fully scalable and reliable, it provides the
necessary components for all work to be processed in a decoupled way to the
customer and able to launch the execution units in the best possible context. This
backend manages the approved connections to suppliers of quantum simulators and
quantum computers, and that will collect all the telemetry from the process, provid-
ing knowledge and automatic assistance wherever needed.

QPath® allows the user to work with different quantum technologies such as
those from IBM, Microsoft, Rigetti, D-Wave, AWS Braket, and Fujitsu, as well as
with third-party quantum computing simulators such as QuTech or CTIC.

https://www.aquantum.es/resources/webinars/

260 G. Peterssen et al.

13.3 QPath® Advantages

Besides the advantages derived from its design principles, agnosticism, hybrid
systems support, integration of third-party solutions, etc., QPath® also solves the
main challenges faced by quantum software platforms [7] and fulfils the require-
ments derived for the Talavera Manifesto for Quantum Software Engineering and
Programming [8].

We want to highlight two other specific features of QPath® related to workforce
development and quality issues.

13.3.1 QPath® Facilitates Quantum Workforce Development

One of the greatest obstacles to the growth of the emerging quantum computing
industry today is the shortage of specialized workforce [9]. This is one of the most
urgent problems to be solved in the countries that are leading the race in quantum
computing technology and that are betting on the quantum industry as a growth
engine for their economies. In fact, they are trying, designing, and running large
quantum literacy projects as part of huge national quantum projects.

Bearing in mind, among other issues, this situation regarding the lack of work-
force required for the development of commercial quantum software, QPath®
facilitates the work of engineers and programmers in the development of quantum
software that does not demand “universal” skills for the development of high-quality
quantum software since it enables the quantum software life cycle and engineering
and the integration of quantum/classical information systems with its ecosystem of
tools, services, and processes that makes it possible to execute quantum process units
in a transparent way with respect to the quantum environment in which they are
executed. So, QPath® supports multidisciplinary teams, allowing them to focus only
on the functional knowledge required for the quantum solution in any field of
activity: Chemistry, Economy, Financial Services, Energy, Agriculture, Medicine
and Health, Privacy and Cryptography, Logistics, Defense and National
Security, etc.

All existing quantum providers add extensive repositories of information, code,
algorithms, training materials, and a long list of other types of resources that greatly
facilitate access to their quantum technologies. But they are only valid for working in
their environments, so if you must change the environment, you will need to learn
how to work in the new one and re-develop quantum algorithms and applications
from scratch. Something similar happens in the acquisition of the knowledge
required to develop with these toolkits.

QPath® contributes effectively to the rapid incorporation of a specialized work-
force to the deficient market of quantum developers, thanks to its truly agnostic
architecture, designed to simplify the work of quantum software developers and,

through their activity in the life cycles of the projects, actively contribute to ongoing
global quantum literacy in a direct and practical way.

Besides this, QPath® developers have at their disposal aQuantum Knowledge,3 a
portal with contents, materials, technical support, user forums, etc. focused on
institutions, companies, and professionals to initiate and accelerate the adoption of
the development of quality quantum algorithms and software for the real world.

13.3.2 QPath® Solves the Quality Problems of Quantum
Computing Platforms

QPath® further solves most of the quality problems of quantum computing plat-
forms [10]:

13 Quantum Software Development with QuantumPath® 261

• Lower level of the programming abstractions, which increases code complexity
impacting in maintainability, testability, reliability, and availability

• Platform heterogeneity, which deteriorates software cohesion, affecting maintain-
ability, reliability, robustness, reusability, and the manageability and testability of
the system

• Remote software development and deployment, which make programming, test-
ing, and debugging quantum programs slower affecting maintainability and
testability

• Dependency on the known quantum algorithms, affecting the ability to perform
enhancement and corrective maintenance, and testability and interoperability
(with classical software)

• Limited portability of software, which provokes the lack of standardization in
several areas, affecting availability, interoperability, maintainability, and
scalability

• Lack of native quantum operating system, decreasing performance, manageabil-
ity, reliability, scalability, and security

• Fundamentally different programming model, which can increase code complex-
ity affecting maintainability, interoperability, security, and testability

QPath® solves most of the previous mention quality problems of quantum
computing platforms, since:

• Lower level of the programming abstractions: QPath® is agnostic about quantum
programming languages and technologies, supporting visual designers of gates-
based circuits and the Annealer Compositor.

• Platform heterogeneity: QPath® provides the necessary tools for the development
team to focus on the development of the solution without having to worry about
the specificities of quantum platforms and their necessary requirement.

3aQuantum Knowledge.

262 G. Peterssen et al.

• Remote software development and deployment: QPath® offers a complete set of
tools for the design, construction, testing, and execution of quantum assets both
from the context of agnostic and platform-specific solutions.

• Dependency on the known quantum algorithms: QPath® supports the creation of
new quantum algorithms through its development, testing, and implementation,
to their deployment and the reuse of the existing ones. Extensibility capacity in
the main and critical modules of the platform. So that it is possible to attach to the
platform new connectors supported by partner and third-party technologies,
which expand the value added of the product.

• Limited portability of software: QPath® allows you to create your quantum
application assets and set the environment’s requirements, let the underground
details to the system, from model to results, the lifecycle path is automatic).
QPath® follows the principle of “write once, run everywhere.”

• Lack of native quantum operating system: QPath®’s enterprise backend contem-
plates—by design—the security, high availability, load balancing, and asynchro-
nous customer processing.

• Fundamentally different programming model: QPath® is a platform designed to
support the integration of hybrid classical/quantum software and therefore con-
tains the necessary tools to facilitate the integration of classical software with
quantum computing. Moreover, QPath® makes it easy for classic development
teams to manage hybrid software projects life cycle.

For all these reasons, QPath® is an excellent platform for the development of
quality practical quantum software, which integrates transparently with the main
quantum computers solving most of the quality problems of quantum computing
platforms.

13.4 Example of Quantum Development with QPath®

Imagine we want to add a simple QRNG (Quantum Random Number Generator)
into a Navision data form, using a preconfigured quantum provider into NAV
environment. To do that, we start defining the solution and the assets into QPath®
(Fig. 13.8).

After that, we define the QNRG using the circuit editor (Fig. 13.9).

And we must compose the corresponding flow (Fig. 13.10).

And then we can execute it and, selecting different quantum machines, explore
the results (Fig. 13.11).

On the other side, we have to extend Navision using the qSOA REST API
(Fig. 13.12). After that, we use the Navision QPath Setup Dialog (custom NAV

extensions developed), as shown in Fig. 13.13. In Fig. 13.14, customer pending data
to validate and seal with hash is shown with the QRNG numbers obtained dialog.
Finally, the customers that have been validated and sealed have a hash generated
with the QRNG returned using a developed protocol (Fig. 13.15).

13 Quantum Software Development with QuantumPath® 263

Fig. 13.8 Example in QPath®: defining the solution and the assets

Fig. 13.9 Example in QPath®: defining the QNRG

264 G. Peterssen et al.

Fig. 13.10 Example in QPath®: composing the flow

Fig. 13.11 Example in QPath®: executing the QNRG

In this example, all the executions have been recorded with telemetry, and the
results have been applied into the NAV data with a really known software architec-
ture. It should be noted that if the QRNG will improve over time, Navision could
execute the call more accurately and better without modifying any code.

13 Quantum Software Development with QuantumPath® 265

Fig. 13.12 Example in QPath®: main Navision dashboard

Fig. 13.13 Example in QPath®: Navision QPath® setup dialog

13.5 Conclusions and Future Work

We are convinced that the development of the quantum industry will not have a
future at a social scale if it only depends on the essential quantum scientists,
mathematicians, and physicists, as in its time the classical computing industry

would not have had the current success if it had only depended on cybernetic
engineers.

266 G. Peterssen et al.

Fig. 13.14 Example in QPath®: QRNG numbers obtained dialog

Fig. 13.15 Example in QPath®: customers with a hash generated by the QRNG

As with classical computing, it will be software engineers and programmers, in
interaction with users and the market, who will end up defining how and for what

quantum computing will be used when developing practical commercial applications
that will contribute to it, first, its usefulness and, progressively, its universality.

13 Quantum Software Development with QuantumPath® 267

In recent years, quantum computing has experienced a breakthrough. More and
more companies are taking up the challenge of designing and manufacturing quan-
tum computers, and the supply of tools for quantum software development is
growing all the time.

The problem that arises, and more in these moments of rapid evolution and lack of
standardization in quantum programming, is the fear of betting on a platform that
does not continue in the future. All this leads companies to slow the adoption of
quantum applications, which is dangerous because the use of quantum technologies
can lead to a relatively important period of learning and experimentation. In addition
to not being able to take advantage of all the benefits offered by this new paradigm in
a timely manner.

But we are already in the fourth era of software development, and so we must
prepare ourselves to take full advantage of it. The “Talavera Manifesto” urges to take
care of producing quantum software by applying knowledge and lessons learned
from the software engineering field. This implies to apply or adapt the existing
software engineering processes, methods, techniques, practices, and principles for
the development of quantum software (or it may imply creating new ones). Pre-
cisely, one of the great advantages that quantum computing offers us is the oppor-
tunity to experience what the pioneers of software engineering did in the 1960s of the
last century [11].

This has been one of the main challenges we faced when creating QPath®, as a
Quantum Software Development and Application Lifecycle Platform. QPath® pro-
poses an environment that makes programmers independent of the specific details of
each platform and language, following the principle of “write once, run every-
where.” In this way, QPath® supports the execution of quantum process units
transparently from the environment in which they are executed. Therefore, it
masks the complexities of the different environments by supporting the necessary
transformations and automating the whole process through efficient tools.

This allows to accelerate the construction and deployment of quantum applica-
tions, abstracting their technical complexities, since programmers can focus on the
domain of the problem or business model, needing only the functional knowledge
required for the solution.

As future work, we are working in the APP platform, which integrates with the
CORE modules of the QPath® system and makes it easier for development teams to
manage the life cycle of hybrid software project.

We believe that in this way, QPath® can significantly contribute to the adoption
of quantum technologies and specifically enable companies to develop and deploy
applications based on these technologies, safeguarding their investments. As Latorre
[12] already warned: “The future quantum business will grow, whether we like it or
not, because the future of our technology is quantum.”

Acknowledgments This work is part of “QHealth: Quantum Pharmacogenomics Applied to
Aging,” 2020 CDTI Missions Programme (Center for the Development of Industrial Technology

of the Ministry of Science and Innovation of Spain) and FEDER. We would like to thank all the
aQuantum members for their help and support.

268 G. Peterssen et al.

References

1. Deutsch D (2012) Beginning of infinity: explanations that transform the world. Penguin Books,
London

2. Aaronson S (2018) The limits of quantum computers. Sci Am March:62–69
3. IDB (2019) Quantum technologies. Digital transformation, social impact, and cross-sector

disruption. Interamerican Development Bank
4. Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: a new software engi-

neering golden age. ACM SIGSOFT Softw Eng Notes 45(3)
5. Piattini M, Serrano M, Pérez-Castillo R, Peterssen G, Hevia JL (2021) Towards a quantum

software engineering. IT Prof 23(1):62–66. https://doi.org/10.1109/MITP.2020.3019522
6. Hevia JL, Peterssen G, Ebert C, Piattini M (2021) Quantum Software Development toolkits.

Submitted to IEEE Software
7. Hevia JL (2020) Requirements for quantum software platforms. Q-SET’20: 1st Quantum

Software Engineering and Technology Workshop, Denver—Broomfield, CO, 13 Oct 2020.
CEDUR-Ws.org/Vol-2705/short3.pdf

8. Piattini M, Peterssen G, Pérez-Castillo R, Hevia JL et al (2020) The Talavera manifesto for
quantum software engineering and programming. QANSWER 2020 QuANtum SoftWare
Engineering & pRogramming. Proceedings of the 1st International Workshop on the QuANtum
SoftWare Engineering & pRogramming, Talavera de la Reina, Spain, 11–12 Feb 2020. http://
ceur-ws.org/Vol-2561/paper0.pdf

9. Peterssen G (2020) Quantum technology impact: the necessary workforce for developing
quantum software. Proceedings of the 1st International Workshop on the QuANtum SoftWare
Engineering & pRogramming (QANSWER), Talavera de la Reina, Spain, 11–12 Feb 2020

10. Sodhi B, Kapur R (2021) Quantum computing platforms: assessing impact on quality attributes
and SDLC activities (Accepted in ICSA 2021). https://doi.org/10.13140/RG.2.2.20190.66886/1

11. Cusumano M (2018) Technology strategy and management. The business of quantum comput-
ing. Commun ACM 61(10):20–22

12. Latorre JI (2017) Cuántica. Tu futuro en juego. Ariel. (In Spanish), Barcelona

https://doi.org/10.1109/MITP.2020.3019522
http://cedur-ws.org/Vol-2705/short3.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
https://doi.org/10.13140/RG.2.2.20190.66886/1

Chapter 14
Quantum Software Development
with Classiq

Nir Minerbi

14.1 The Hardware Race Is On, ButWhat About Software?

The quantum hardware race has started: companies such as IBM, Intel, Google,
Honeywell, Xanadu, IonQ, Rigetti, and Alibaba are racing to build ever-more-
powerful quantum computers. IBM, for instance, is promising1 over 400 qubits in
2022 and over 1000 qubits in 2023.

As important as the hardware is, the software is also critical in powering a
quantum revolution. Without powerful software, quantum computing will fail to
deliver on its promise, just like classical computers are practically useless without a
robust operating system and software infrastructure.

14.2 The Limitations of Today’s Software
Development Tools

Today, however, the process of developing quantum software is in its infancy.
Quantum programming languages like Q# from Microsoft, Qiskit from IBM, or
Cirq from Google primarily operate at the gate level. The programmer essentially
specifies which qubit is connected to what quantum gate, almost like connecting a
giant switchboard. Such languages also offer certain building blocks, but if a
required building block is not yet implemented, the user needs to specify the exact
sequence of interconnections between qubits and quantum gates. Even if a building

1https://research.ibm.com/blog/quantum-development-roadmap

N. Minerbi (*)
Classiq Technologies, Tel Aviv, Israel
e-mail: nir@classiq.io

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_14

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_14&domain=pdf
mailto:nir@classiq.io
https://research.ibm.com/blog/quantum-development-roadmap
https://doi.org/10.1007/978-3-031-05324-5_14#DOI

block is available—such as a Grover search—the user still needs to build custom
code. In the case of a Grover search, the user needs to build the oracle, and that is
done at the gate level. If the user wishes to design a completely new algorithm, that
new algorithm also has to be coded at the gate level.

270 N. Minerbi

This process is similar to creating a digital circuit by laboriously placing AND,
OR, and NOT logical gates. It is a useful tool to educate newcomers on the inner
workings of gates, but it fails to scale: such a process works when there are a few
dozen logical gates, but it is practically impossible to scale to thousands of gates or
beyond.

14.3 The Unfortunate Side Effect of Gate-Level
Development Tools

When it is difficult to create sophisticated quantum software, it becomes difficult to
find quantum software engineers. To use today’s methods, quantum software engi-
neers need to be experts in quantum information theory and have a working
understanding of quantum physics as well as a proficiency in linear algebra.

Such resumes are hard to find and are typically PhD-level graduates of major
universities. As talented as these folks are, they typically lack domain expertise in
molecular biology, option pricing, supply-chain optimization, or any other domain-
specific field. Because writing new algorithms at the gate level is difficult, it is also
challenging to integrate non-quantum experts into quantum teams.

14.4 Finding a Historical Analogy

Earlier, we compared quantum programming to the process of designing of digital
circuits. The evolution of digital circuit design served as inspiration to the Classiq
team in formulating our approach to software development.

An Intel 8086 processor has about 29,000 transistors, whereas a modern i7 has
over 4 billion transistors.2 These processors and many other complex chips were not
designed at the gate level. While an electronic engineer can undoubtedly put together
a working circuit with 20–30 logical gates, creating the Netlist even for an 8086 chip
by hand is simply impossible.

However, providing a high-level functional model to a computer and asking the
computer to convert this into a working circuit is most certainly possible. Design
languages like VHDL came to the rescue. With VHDL, Verilog, and similar
hardware description languages, a human designer describes the desired high-level

2https://en.wikipedia.org/wiki/Transistor_count

https://en.wikipedia.org/wiki/Transistor_count

functionality, and a computer synthesizes this high-level description into detailed
gate interconnections.

14 Quantum Software Development with Classiq 271

Fig. 14.1 Example of a transistor circuit

Such languages have made it possible to design truly complex circuits and to
effectively debug and maintain them. High-level languages also promote code reuse
so that the figurative wheel does not need to be reinvented every time.

For instance, consider the following circuit3 (Fig. 14.1):

Such a circuit might look difficult to understand, debug, and maintain, but when
exploring the VHDL code that described this circuit (and was used to generate it),
these tasks seem much less daunting (Fig. 14.2):

At Classiq, we believe in applying a VHDL-like approach to quantum computing.
While the particular elements of the language will be very different from the
electronic design equivalent, we believe users will achieve the same benefits:
being able to design sophisticated quantum circuits, which perhaps could not be
designed otherwise.

We call this concept “quantum algorithm design.”

3Source: Bob Reese, Mississippi State University http://esd.cs.ucr.edu/labs/tutorial/

http://esd.cs.ucr.edu/labs/tutorial/

272 N. Minerbi

Library IEEE;
use IEEE.std_logic_1164.all;
use work.iscas.all;
entity adder_cs is
port (

signal a,b: in std_logic_vector (15 downto 0);
signal cin: in std_logic;
signal sum: out std_logic_vector(15 downto 0);
signal cout: out std_logic

);
end adder_cs;

architecture behavior of adder_cs is
begin

process (a,b,cin)
variable temp_sum: std_logic_vector (sum’range);
variable temp_cout: std_logic;
constant groups: iarray(0 to 2) := (4,5,7);
begin
carry_select_adder(groups,a,b,cin,temp_sum, temp_cout);
sum <= temp_sum;
cout <= temp_cout;

end process;
end behavior;

Fig. 14.2 VHDL code of the previous circuit

14.5 What Is Quantum Algorithm Design?

Quantum algorithm design (QAD) is the quantum version of computer-aided design
(CAD). With QAD, quantum software engineers and scientists innovate and produce
much faster than ever before. Like in traditional computer-aided design, QAD users
achieve extraordinary results by letting computers handle the things that computers
are good at, freeing users to think, invent, and innovate.

14.6 What Does Classiq Do?

Classiq’s quantum algorithm design platform automatically synthesizes complete
quantum circuits from high-level functional models. What does this mean? It means
that within seconds, an engineer can transform a high-level functional description
into a working quantum circuit. For instance, here is a code fragment that imple-
ments quantum arithmetic (Fig. 14.3):

14 Quantum Software Development with Classiq 273

Fig. 14.3 Quantum
arithmetic code fragment

Quantum algorithm design synthesizes a quantum circuit from this high-level
functionality while meeting the designer-specified constraints (more on constraints
later). Such a circuit is shown below.

Such a circuit would be very difficult to generate by hand but is much easier to
generate using the quantum algorithm design approach (Fig. 14.4).

14.7 Where Does Quantum Algorithm Design Fit
in the Quantum Software Stack?

The Classiq QAD engine ingests a high-level functional model of the desired
quantum circuit and a constraints file. It can output code in various quantum
languages, including Qiskit, Q#, Cirq, and more. Furthermore, it includes
pre-configured integrations into most major quantum cloud providers, including
IBM, Amazon Braket, and Azure Quantum (Fig. 14.5).

The output of the Classiq engine is an agnostic quantum circuit, described in any
gate-level programming language. Compilers and transpilers ingest that output and
adapt it to the hardware of choice.

The ability to output code in various formats and be compatible with a variety of
cloud providers means that it is very easy to port code from one hardware target to
another. These days, when the industry is still in development, some companies are

274 N. Minerbi

Fig. 14.4 Generated
quantum circuit

Here are some of the constraints that the QAD platform can handle:

hesitant to commit to any particular hardware architecture. Thus, the ability to
deploy quantum circuits across a wide range of hardware backends is essential.

14 Quantum Software Development with Classiq 275

Fig. 14.5 QAD in a quantum software stack

14.8 How Is QAD Different from a Compiler?

The Classiq quantum algorithm design platform does not replace quantum compilers
or transpilers. Compilers ingest the output of the Classiq platform and have an
important role to perform, adapting the code to the particular hardware-specific
connectivity and available gates.

Where QAD adds significant value is in system-level optimization and in satis-
fying the constraints dictated by the designer.

A compiler can perform specific optimizations because it understands the con-
nectivity and properties of the target hardware. A compiler can also perform local
optimizations such as eliminating two back-to-back Hadamard gates.

QAD, in contrasts, provides system-level optimizations. For instance, when
creating a circuit for quantum arithmetic, QAD can preserve intermediate values if
they are used downstream or recover the qubits that hold them and use them for some
other purposes. QAD can do that because it understands the intent of the algorithm
designer. A compiler that looks at a concrete gate-level quantum circuit (in QASM or
another format) cannot.

QAD platforms analyze thousands upon thousands of options to come up with the
optimal solution. This level of analysis and optimization simply does not exist in
compilers.

14.9 What Are Constraints in the QAD Context?

Just like different people consider different constraints and wishes when they buy a
home, different quantum designers have different constraints that they want to
impose on the output circuit. These could be driven by hardware constraints,
personal preference, or a host of other reasons.

276 N. Minerbi

Fig. 14.6 State preparation code loading probability mass functions

• The width and depth of the circuit. How many qubits can you use? How deep can
the circuit be before errors creep in? A designer might want, for instance, to add
qubits (increase the width) as a way of reducing the depth.

• The usage of particular types of gates or preferred gate sets. Suggestions from the
target hardware vendor might drive this gate set.

• The desired accuracy. As can be seen later in this document, functional blocks
such as state preparation can be built in a variety of ways depending on the
desired accuracy.

• The connectivity of particular qubits, allowing to minimize the use of swap gates.

One of the unique capabilities of the Classiq platform is that it analyzes many
thousands of options to find the best one that satisfies these constraints. The designer
can change the constraints and regenerate the circuit to explore various options.
Doing this by hand might take days, but with Classiq, it takes seconds.

For instance, the following state preparation code (loading probability mass
functions) (Fig. 14.6):

Generates the following circuit (Fig. 14.7):

But since this circuit might be too deep, the designer might try to change the
accuracy of the loaded states from 0.01 to 0.05 (Fig. 14.8):

Resulting in a simpler circuit (Fig. 14.9):

This demonstrates the division of labor that is so important in QAD: the designer
defines the high-level functional model and the constraints and then lets the com-
puter analyze thousands of options to find a circuit that implements this while
meeting the constraints.

14 Quantum Software Development with Classiq 277

Fig. 14.7 Generated circuit from preparation code

Fig. 14.8 Updated preparation code

278 N. Minerbi

Fig. 14.9 New version of the circuit

14.10 Can the Constraints Always Be Met?

Of course not. It may be that the QAD platform cannot find a solution in a reasonable
amount of time. This can happen when the platform indicates that the constraints are
unsatisfactory, meaning that the engine proved mathematically that the requirements
couldn’t be met. Perhaps the number of qubits or depth of the circuit is too small, or
other constraints make it impossible. In other cases, the synthesis may just take too
long, and the user could elect to relax some of the constraints and shorten the circuit
generation time.

14.11 What Are the Advantages of Quantum Algorithm
Design?

Quantum algorithm design lets the designer focus on the algorithm’s functionality
instead of on the low-level implementation. This translates to substantial advantages
both today and tomorrow:

“Today,” when the quantum computers have a few or at most dozens of qubits,
this approach provides dramatic time-saving. It also allows estimating the resources
required to run a particular algorithm before spending too much time building it. It
may be that some algorithms are just too complex for today’s machines, and a quick
way to determine this is beneficial.

“Tomorrow,” when there will be hundreds or thousands of qubits, we believe that
this approach will make the impossible possible. The complexity of these machines
will be too much for even highly skilled quantum information scientists. The ability
to generate sophisticated algorithms from high-level functional models will be
paramount.

14 Quantum Software Development with Classiq 279

Both today and tomorrow, there is a significant advantage to be gained by making
quantum more accessible. Just like a Web designer does not need to understand how
a CMOS gate works, a quantum software engineer should not need to understand the
intricacies of the hardware. By focusing on the functional requirements, teams can
integrate experts from other fields. For instance, a financial option pricing expert
might join a team using quantum computers for sophisticated pricing models.
Similarly, supply-chain experts or chemists can join their company’s quantum
teams.

14.12 If QAD Is an Abstraction Layer, Are We Losing
Optimization Capabilities?

It is true that if you are an expert in “to the metal” code, you could theoretically
squeeze the last bit of optimization from your software. Still, QAD provides you
with other critically important advantages, as well as optimizations that couldn’t be
reached otherwise. The synthesis engine also examines many possible solutions—
more than a person could realistically examine—and chooses the optimal circuit.

One advantage is the ability to move your code between various hardware pro-
viders quickly. It is unclear which platforms will win, and organizations seek to
mitigate risks by writing portable code.

Another advantage is that programming “to the metal” quickly becomes
unfeasible with the growing complexity of quantum computers. Last, high-level
functional code is much easier to debug and maintain than the equivalent of
“quantum assembly language.”

14.13 Don’t Some Existing Tools Already Provide Building
Blocks?

Existing development tools indeed provide some templates, for instance, for VQE.
However, customizing those templates requires a lot of work. Search algorithms, for
example, require an oracle function, and creating such functions is very easy with
QAD yet impossible with any other current methods. A Monte Carlo option pricing
circuit, for instance, might require a sophisticated payoff function which will be very
difficult to create, debug, and maintain with standard development tools. But such a
payoff function will be much easier to create with QAD.

Additionally, if one wishes to create an entirely new algorithm, QAD will make
this process much easier.

280 N. Minerbi

14.14 The Quantum Future Is Bright

Progress in quantum computing hardware will not deliver the desired benefits
without significant matching progress in software. Quantum algorithm design soft-
ware makes it possible to implement more sophisticated algorithms on more
advanced machines while also widening the available labor pool and allow
domain-specific experts to work together with PhD-level quantum engineers.

If you have captured a beautiful photo but want to improve and clean it up, you
probably don’t want to do so pixel by pixel. Most would prefer using Photoshop or
other photo editing software that allows users to specify what you want to be done
and then automatically implement it at the pixel level.

Similarly, if your team members developed a new quantum algorithm, they don’t
want to code, debug, and maintain it gate by gate. The ability to synthesize quantum
circuits from high-level functional models, while satisfying the constraints that are
important to the designer, makes such a task both feasible and enjoyable. This is the
vision that unites us at Classiq and the one we are working to bring to life.

Chapter 15
Quantum Software Frameworks for Deep
Learning

Filipa Ramos Ferreira, João Paulo Fernandes, and Rui Abreu

15.1 Introduction

The exploration of the quantum mechanics phenomena for computational purposes
promises to revolutionize the technological world we live in [1]. This is even more
impressive as several areas are expected to benefit from the expansion of the limits
that classical computing is known to impose.

Quantum computers have the power of providing solutions for some of the
problems of practical interest for which a classical computer cannot, at least in a
timely manner. Problems in this category range from multidisciplinary domains such
as Chemistry, Medicine, Routing, or Finance [2]. As a matter of example, quantum
computing is expected to take molecular modelling to an entirely new level of
accuracy, as modelling energetic reactions using classical computers requires the
use of approximations which reduce the value of a model and increase the amount of
lab work that chemists need to do to validate it.1

1https://www.scientificamerican.com/article/how-quantum-computing-couldremake-chemistry/

F. Ramos Ferreira
Faculty of Engineering, University of Porto, Porto, Portugal
e-mail: filiparamos@fe.up.pt

J. P. Fernandes (*)
Artificial Intelligence and Computer Science Laboratory, Faculty of Engineering, University of
Porto, Porto, Portugal
e-mail: jpaulo@fe.up.pt

R. Abreu
Faculty of Engineering, University of Porto, Porto, Portugal

Instituto de Engenharia de Sistemas e Computadores: Investigacão e Desenvolvimento em
Lisboa, Porto, Portugal
e-mail: rui@computer.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_15

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_15&domain=pdf
mailto:filiparamos@fe.up.pt
mailto:jpaulo@fe.up.pt
mailto:rui@computer.org
https://www.scientificamerican.com/article/how-quantum-computing-couldremake-chemistry/
https://doi.org/10.1007/978-3-031-05324-5_15#DOI

For fairness, we should actually clarify that besides the theoretical advantages
generally associated with quantum computing, we have already seen in practice
concrete evidence of quantum computers largely outperforming classical computers.
This is known as quantum supremacy, whose evidence have been reported before
[,].43

282 F. Ramos Ferreira et al.

In this chapter, we focus on the exploration of quantum computing in the context
of deep learning. This is certainly a promising context as the properties of the Hilbert
Space that can be used to mathematically formulate quantum mechanics ensure a
theoretical advantage which allows performing computations in highly dimensional
data. This is precisely the current bottleneck of the classical approach, and the
potential of quantum-inspired approaches has led to an explosion of hybrid deep
learning models being proposed in literature, such as [5, 6].

Even so, we must denote that several proposals of machine and deep learning
algorithms are still purely grounded on a theoretical basis since they would require a
full-scale quantum computer to be validated. For example, [7] develop a quantum
neural network that performs MNIST classification. The training procedure is
achieved through the down sampling of the images to 16 data bits still run on
simulation due to the inaccessibility to a physical quantum computer with the
required characteristics. Even more, classification is kept binary, filtering only two
classes from the original dataset. Nevertheless, on such small-scaled experiments,
there have been indications that some models can already present similar or even
superior performance on simple tasks, when compared to their classical counterparts
[8, 9].

The widespread use of quantum computing, however, still faces some significant
hurdles, regardless of the application domain. For once, quantum physicists and
computer engineers still face the challenge of reaching more accurate quantum gates:
it is well known that current quantum computations are still heavily affected by noise
[10]. In tandem, the number of physical qubits incorporated in quantum computing
devices still needs to grow. Next, a very steep learning curve is assumed to be
required for any programmer to become (even if minimally) productive in develop-
ing software that can leverage the quantum computing potential. In this chapter, we
attempt to shed light on this second hurdle.

The main hypothesis for our work is that a programmer can build on already
2 3existing quantum computing frameworks such as IBM’s Qiskit or Google’s Cirq to

significantly accelerate the development of deep learning-based applications.
Our vision is that, in order to achieve real-world application of quantum neural

networks, or hybrid quantum-classical neural networks, mature tools, frameworks
and libraries must be readily available [11]. This actually comes as no surprise in the
classical context: such libraries and tools do exist for implementing classical
workflows.

2https://qiskit.org/
3https://quantumai.google/cirq

https://qiskit.org/
https://quantumai.google/cirq

The main contributions of our chapter can be highlighted as:

15 Quantum Software Frameworks for Deep Learning 283

The creation of frameworks or libraries that interact and abstract many gruesome
processes within neural networks, such as backpropagation, loss calculation and
evaluation, and many others, is vital for the future adoption of quantum deep
learning. Libraries such as PyTorch [12] and Tensorflow [13] have propelled clas-
sical deep learning into wide adoption both in research and industry. The same
adoption in the area of quantum-classical deep learning must be achieved in order to
further advance the knowledge state and to cement its position as a truly disruptive
field in application.

In our work, we therefore assume the mindset of a deep learning (classical)
programmer who wants to leverage quantum computing components in their work.
With this mindset, we designed and conducted an empirical study comparing Qiskit
and Cirq, two highly popular frameworks that enable parametrized circuit construc-
tion. We compare their libraries and characteristics for hybrid model development
from the perspective of a classical deep learning engineer or scientist.

Concerning libraries and tools for quantum-classical development, Qiskit offers
integration with PyTorch [12], a tool already widely used in research on classical
deep learning. On the other hand, Cirq integrates a framework, Tensorflow Quantum
[14], which facilitates the development of circuit-based models while maintaining
the structure of Tensorflow [13], another competitor tool widely used in the research
and production of classical workflows.

We focus our comparative study on two widely adopted and validated architec-
tures: generative adversarial neural networks (GANs) and convolutional neural
networks (CNNs). We choose a generative modelling architecture due to its natural
fit to quantum information theory. It is believed that GANs can be largely improved
by the capabilities of quantum computers (e.g., [15]). On the other hand, we also
choose convolutional neural networks since they are one of the building blocks of
current deep learning research and provide state-of-the-art results on a wide range of
tasks.

• We study readily available infrastructures for the development of hybrid
convolutional neural networks and generative adversarial neural networks on
both Qiskit and Cirq, taking a classical-computing scientist perspective.

• We implement both deep learning architectures in both quantum computing
frameworks.

• We compare the two frameworks for such implementation.

Overall, we seek to answer the following general research questions:

RQ1. What is the effort that a deep learning scientist needs to undertake to leverage
quantum computing using readily available quantum components?

RQ2. What is the relative power and ease of use of two of the most popular quantum
computing frameworks in the implementation of typical deep learning
architectures?

From our work, we were able to synthesize the following conclusions:

284 F. Ramos Ferreira et al.

• Qiskit enables an easier introduction for users with no quantum knowledge as
they can replicate small models known to them and understand the majority of the
process.

• PyTorch users also have an advantage when using Qiskit for model development
as the workflow is seamlessly transferred.

• Cirq and Tensorflow Quantum present better structure and organization, thus
being more intuitive for advanced development. We also find Tensorflow Quan-
tum tutorials to provide more insight.

• Tensorflow users also have an advantage when transferring to Tensorflow Quan-
tum as the workflow is the same.

• Qiskit includes a wide panoply of abstractions that allow for swift prototyping of
applications. Nevertheless, versioning issues might be an obstacle for newcomers
even when navigating the wide range of available tutorials.

To foster reproducibility, the code platform we developed is publicly available at
https://github.com/FilipaRamos/QuantumComputingDeepLearning.git.

This chapter is organized as follows. In Sect. 15.2, we enumerate some available
quantum frameworks, providing a more in-depth description of bothQiskit and Cirq,
focusing on the libraries that are necessary for hybrid-classical deep learning devel-
opment. In Sect. 15.3, we present a summary of previous studies on generative
adversarial and convolutional neural networks, both in the quantum and classical
context, including an analysis on research that analyses quantum frameworks and
tools. Section 15.4 describes the implementation process of the chosen networks on
both frameworks, including the description of implementation details with the
highlighting of the most important abstractions and structures available. In Sect.
15.5, we delineate the evaluation parameters and proceed to describe our experience
with both frameworks. Finally, in Sect. 15.6, we summarize the results stemming
from the carried evaluation, with the identification of both advantages and disad-
vantages for each framework and respective deep learning library while finalizing
with some directions for future work.

15.2 Quantum Computing Background

The advent of quantum computing has been accompanied by the insurgence of
several languages and frameworks that allow the creation of parametrized circuits
and thus propel innovation in the field. While the dawn of quantum computing was
associated with the creation of new stand-alone languages, such as the pioneer
Quantum Computation Language (QCL) [16, 17], current research has been focused
on using an already existent and established language, Python, for which several
framework-style quantum computing packages have been created.

The division of available tools for quantum computing can thus be delineated in
two distinct groups—that of stand-alone languages and that of packages for the
existent Python language. Within the stand-alone languages, one can find diversified

https://github.com/FilipaRamos/QuantumComputingDeepLearning.git

15 Quantum Software Frameworks for Deep Learning 285

types such as imperative, functional, and multi-paradigm languages. QCL, previ-
ously mentioned, falls within the imperative paradigm, as well as QGCL [18], a self-
entitled extension of Dijkstra’s GCL. On the functional paradigm, QML [19] and
Quipper [20] can be highlighted. As for multi-paradigm languages, Q# [21], from
Microsoft, and more recently Silq [22] can be found. As for Python-based package
frameworks, the aforementioned Cirq and Qiskit are the standouts; however, there
are other existent packages such as Ocean4 from D-Wave.

We focus our research on Qiskit and Cirq not simply due to their increased
popularity and accessibility, but especially due to their interaction with two of the
most widely used classical deep learning libraries, Pytorch and Tensorflow. This
stems from the fact that we aim to provide an introductory outlet for classical deep
learning scientists into the world of quantum computing, and thus, the existence of
previously known classical structures in the quantum computing world may be
critical for adoption.

Qiskit5 is officially labelled as an open-source SDK for working with quantum
computers either at an application level (e.g., hybrid deep learning development) or
at a lower, hardware-targeted use for investigation in the area of pulses and circuit
building. The SDK includes access to several simulators available for the modelling
and testing of the developed functions. More than this, Qiskit enables public access
to IBM’s physical quantum hardware, spanning a multitude of different architec-
tures, from superconducting qubits to trapped ions. Even though the availability of
real, physical quantum computing hardware is a strong advantage of Qiskit, the
current limitations on qubit technology dictate that their use be restricted to only
small-sized problems.

In particular, Qiskit’s application level aims to enable research activities and
quick prototyping of algorithms for a variety of different tasks, ranging from the
fields of machine learning to optimization, finance, and chemistry. Because of these
characteristics that are central to the SDK, Qiskit has a wide library of algorithms
already available, with abstractions and tutorials ready to be employed on the
aforementioned areas of investigation.

Cirq,6 on the other hand, is officially named an open-source framework, made
available to the general public as a Python library. The framework is focused on the
writing, manipulation, and optimization of quantum circuits, for execution on either
simulators or physical computers. Distinguishing from Qiskit’s approach, abstrac-
tions developed on Cirq are tuned to deal with the noisy characteristics of quantum
hardware, with a clear target of enabling users to achieve more facilitated state-of-
the-art results.

In terms of accessibility to simulators and hardware platforms, Cirq enables the
use of several types of simulators, with qsim being considered the current state-of-
the-art for wave function simulating. Access to a physical quantum computer is

4https://docs.ocean.dwavesys.com/en/stable/
5https://qiskit.org/
6https://quantumai.google/cirq

https://docs.ocean.dwavesys.com/en/stable/
https://qiskit.org/
https://quantumai.google/cirq

286 F. Ramos Ferreira et al.

authorized and only possible through other services (e.g., quantum computing
service7). Nevertheless, for researchers, the class Device represents an abstract
concept that can represent constraints of an actual quantum processor. Further than
this, Cirq recently presented a new tool, ReCirq, with the aim of easing the
development of novel research experiments through the availability of templates.

15.3 Deep Learning Background

In this section, some deep learning background is layered out, starting with a brief
description of the architectures considered for the comparative analysis of Qiskit and
Cirq. Furthermore, some related work in the area is mentioned, including both recent
classical and hybrid applications of these architectures. Lastly, we describe possibly
related research that focuses on either frameworks or tools for hybrid quantum-
classical deep learning.

15.3.1 Generative Adversarial Neural Networks

Generative adversarial neural networks were proposed by Goodfellow et al. [23] and
have become popular due to their capabilities to model complex distributions. The
basic structure of a GAN is composed of a pair of networks—a generator, which is
tasked with generating samples, and a discriminator, which tries to distinguish
between real and generated samples. Both networks are typically trained in a
min-max game until they reach Nash equilibrium. Naturally, the generator will
learn to emulate the target distribution as the discriminator will keep classifying its
samples as fake unless they are rather close to the target ones. Some examples of
applications where GANs have been widely successful are image-to-image transla-
tion [24], 3D object generation [25], and super resolution [26], among many others.

Concerning quantum GANs, ever since their theoretical feasibility was discussed,
many authors have focused on delivering possible implementations [27–29]. Situ
et al. [29] focus on modelling discrete distributions, while works like [28] have
tackled continuous distributions with a variational generator. In this area of appli-
cation, Zoufal et al. [6] propose the first qGAN that loads probability distributions
into quantum states, thus taking the first step into producing a generator that learns to
represent the distribution itself within the quantum space.

7https://quantumai.google/cirq/tutorials/google/start

https://quantumai.google/cirq/tutorials/google/start

15 Quantum Software Frameworks for Deep Learning 287

15.3.2 Convolutional Neural Networks

Convolutional neural networks are able to extract meaningful features from many
different types of data, which makes them resourceful for many applications.
Coupling high adaptability with high accuracy, CNNs have wide adoption and are
the current state of the art on many tasks, especially visual-driven ones, such as
object detection [30], face recognition [31], and personality feature identification
[32], just to name a few.

On the field of quantum convolutional neural networks, [33] demonstrate a
possible implementation and discuss potential experimental realizations and gener-
alizations. Concerning hybrid models, [5] propose an architecture with
convolutional filtering as a quantum circuit followed by traditionally fully connected
layers. On the other hand, [34] demonstrates a methodology for gradient calculation
in quantum fully connected layers. This methodology is generally coupled with a
classical convolutional module.

15.3.3 Frameworks and Tools for Hybrid Deep Learning

On the topic of studies of hybrid deep learning, we have found several authors that
focus on demonstrating the available methods and possibilities from an algorithmic
perspective, such as [35–37].

On the specific topic of framework analysis, we found studies targeted at each
single framework, such as [38] and [39] for Qiskit and Cirq, respectively.

Especially related to hybrid deep learning, as far as we are aware, there are at the
moment no studies equivalent to the one we are conducting.

15.4 Methods and Materials

In this section, the methodology that was employed for the analysis of both Qiskit
and Cirq is thoroughly described, including relevant implementation details. We
carry out the comparative study of the implementation of the aforementioned neural
network architectures—convolutional and generative adversarial networks—in a
quantum-classical, or hybrid environment in phases, as described in Fig. 15.1.

Each phase consists of:

Phase 1 Implementation of a sample hybrid generative adversarial network using
Qiskit (1. on Fig. 15.1)

Phase 2 Implementation of a sample hybrid generative adversarial network using
Cirq (2. on Fig. 15.1)

288 F. Ramos Ferreira et al.

Fig. 15.1 Phases of implementation for the sample architectures on both frameworks

Fig. 15.2 General architectures considered for a proof-of-concept implementation

Phase 3 Implementation of a sample hybrid convolutional neural network using
Qiskit (3. on Fig. 15.1)

Phase 4 Implementation of a sample hybrid convolutional neural network using
Cirq (4. on Fig. 15.1)

All phases are described in the following subsections, including the implemen-
tation details. Since the focus of this chapter is to provide insight into the aforemen-
tioned frameworks, we implement simple architectures, regardless of their quantum
utility, as a proof of concept. The general architectures that were considered for
framework testing purposes are described in Fig. 15.2.

n

15 Quantum Software Frameworks for Deep Learning 289

Overall, the generative adversarial network consists of a simple parametrized
circuit as a generator followed by a classical discriminator. Likewise, the
convolutional neural network sports a quantum convolutional layer followed by a
fully connected layer.

15.4.1 Generative Adversarial Network

We adopt a simple approach for a proof of concept of a generative adversarial
network on both frameworks. The generator is entirely quantum and consists of a
parameterized circuit. The discriminator, on the other hand, is a simple classical
model. On both, we set the objective as the modelling of a log-normal distribution.

Qiskit In Qiskit, the implementation of a qGAN is rather simple due to the already
existent abstractions. The qGAN abstraction accepts as arguments a generator circuit
and a discriminator model from Pytorch and, as such, allows for the complete control
over the architectures, encapsulating only the training procedures such as gradient
and loss calculation. The class, with all possible arguments, is shown in Listing 15.1.

The creation of a generator circuit, described in Listing 15.2, can also be easily
achieved using Qiskit’s circuit library. In particular, Qiskit provides a couple of
ansatz circuits8 by design, facilitating even further this development. We utilize the
TwoLocal ansatz with two qubits, rotation over y and entanglement with a Z gate for
proof of concept.

For the discriminator, we can load PyTorchDiscriminator from qiskit.aqua or
create a simple model from scratch in a classical manner, making use of nn.Module.

After the training is finished, the losses of both the generator and discriminator
can be conveniently accessed through qgan.gloss and qgan.dloss. Relative entropy is
also accessible on the parameter qgan.relentr. In order to plot and visualize the
resulting distribution that is being modelled, qgan.generator. getoutput(qgan.
quantuminstance, shots¼10000) can be called, returning both generated samples
and probabilities.

Cirq On Cirq, we have not found a direct abstraction that facilitates the devel-
opment of a Generative Adversarial Neural Network. Instead, it is possible to
encapsulate GANs training procedures through the use of tensorflow-gan, a
open-source lightweight library that is maintained by Tensorflow. We replicate the
same setting as described for Qiskit as much as possible for Cirq.

8In the context of variational circuits, an ansatz usually describes a subroutine consisting of a
sequence of gates applied to specific wires. Similar to the architecture of a neural network, this only
defines the base structure, while the types of gates and/or their free parameters can be optimized by
the variational procedure.

290 F. Ramos Ferreira et al.

Listing 15.1 Creation of a quantum instance and the QGAN abstraction on Qiskit

Listing 15.2 A simple circuit-based generator on Qiskit

Cirq enables the creation of qubits on a grid or line through the abstractions cirq.
GridQubit (row, col) and cirq.LineQubit(x). Since we aim at characterizing the
interfaces provided by Cirq and we have no access to a real quantum computer
from Google, we run all experiments on a simulator, and thus, the use of either qubits
on a grid or line is irrelevant. We choose grid qubits to easily be able to support 2D

15 Quantum Software Frameworks for Deep Learning 291

Listing 15.3 Interface for qubit creation on Cirq

data with minimal code changes on other experiments. Cirq demands the specifica-
tion of qubit parameters through sympy, as described in Listing 15.3.

We replicate the generator by hand through the construction of the same simple
circuit with two qubits, rotation on y and entanglement with a Z gate. The workflow
is rather similar to classical Tensorflow development, and, as such, an input layer and
a Model must be defined, as described in Listing 15.4.

As for the discriminator, we are able to replicate the PyTorchDiscriminator from
Qiskit with Keras, as showcased in Listing 15.5.

Finally, the abstraction from tensorflow-gan can be employed, passing only
the custom generator and discriminator as arguments, as seen in Listing 15.6. The
training loop needs to be constructed by the programmer; however, the
GANEstimator class has a method for evaluation and extraction of predictions
built-in, accessible through gan.evaluate(data, steps) and gan.predict(data).

15.4.2 Convolutional Neural Network

As for the convolutional neural network, we test two different layouts on both
frameworks: a parameterized circuit followed by convolutional layers and the
inverse, meaning convolutional layers followed by a parameterized circuit. The
description in the following subsections will be more focused on the essential
abstractions and methods available for the construction of said architectures. When-
ever necessary, we focus on the quantum followed by classical architecture since this
is the most demanding implementation since data needs to be loaded into a quantum
space.

For completeness, we run the proof of concept on two popular benchmark
datasets—mnist [40] and olivetti [41]. For both, classification is kept binary, and
as such, the data from two single classes is extracted from the original datasets.
When the data is fed directly to a parameterized circuit, the images are resized from

292 F. Ramos Ferreira et al.

Listing 15.4 Building a simple circuit-based generator using Cirq

their original size into a 4 � 4 array. We represent each pixel with a qubit,
influencing the state with the pixel value, in the fashion of [7].

Qiskit For the development of a qCNN, we start by creating a parameterized
circuit. We encapsulate the general circuit on a class. We do not replicate the circuit
in Listing 15.7 due to space constraints and instead choose to represent the most
relevant aspects to match the general logic demonstrated in Cirq.

Model encapsulation is then achieved in a classical manner, following Pytorch’s
workflow. We leave an example of the model creation in Listing 15.8. We do not
include the parameters in the Listing in order to simplify the demonstration of the
workflow.

15 Quantum Software Frameworks for Deep Learning 293

Listing 15.5 Replicating PyTorchDiscriminator from Qiskit on Tensorflow

Listing 15.6 The GANEstimator class from tensorflow-gan

Further than this, we define a forward function for the propagation through the
model and the training loop, on which losses are calculated and the forward and
backward methods are readily available for the abstraction of the internal training
procedures.

294 F. Ramos Ferreira et al.

Listing 15.7 Creating a parameterized circuit layer

Listing 15.8 Creating a parameterized circuit layer

Listing 15.9 Creating a parameterized circuit layer

Cirq Following the previously described logic, a parameterized circuit can be
created, as described in Listing 15.9.

This circuit is then encapsulated on a Sequential, as exemplified in Listing 15.10,
or on a Model object from Tensorflow. Classical layers can then be added at will on
the same object, facilitating the creation of the hybrid model. As previously
described, we do not include the parameters in the Listing in order to simplify the
demonstration of the workflow.

Model parameterization can be achieved in the same manner as in classical deep
learning development. The compile and fit methods are seamlessly available for this
purpose.

15.5 Results and Discussion

In this section, we evaluate the experience we had with both frameworks, Qiskit and
Cirq, and their respective tools for hybrid deep learning development. We will focus
on three main aspects: (1) the creation of parameterized circuits, (2) the integration of
parameterized circuits with classical layers, and (3) the training procedure.

This evaluation is targeted at qualifying the ease of introduction of classical
scientists into quantum-classical networks provided by both frameworks and respec-
tive libraries. In this context, we consider the following factors when evaluating the
learning curve of:

15 Quantum Software Frameworks for Deep Learning 295

Listing 15.10 Encapsulating the network on a Sequential object

• Readability. How easy can the code be written and understood.
• Expressiveness. Due to their usability, on this criterion, we consider only the

availability of abstractions and their quality.
• Effort. Effort in time needed for the initial development of the architectures.
• Documentation. Quality and accessibility of the documentation.

1. Creation of Parameterized Circuits

About structuring and parameterizing circuits, both frameworks offer several
tools of interest.

We argue that, in terms of the parameterization of circuits, Qiskit presents a
slightly more confusing interface as the definition of qubits and parameters changes
depending on the abstraction being used. On the other hand, on Cirq, parameteriza-
tion must be constructed through simply definitions, which gives it a more homo-
geneous structure. This may be due to the fact that Cirq is a framework focused on
circuit building, while Qiskit is more general in its purpose.

In terms of general readability, we feel that Cirq has the advantage as the qubit
creation and parameterization interfaces are more structured and homogeneous. This
makes the code more readable and easier to write in a coherent manner.

Regarding expressiveness, Qiskit has some advantages in its wide availability of
circuit abstractions. However, the interface to these abstractions changes slightly
between them and even more between Qiskit versions. We consider this to be a
negative point to the quality of the provided abstractions. On the other hand, Cirq

focuses on maintaining its structure and logic, which can be positive for seasoned
developers, but harder to tackle from the perspective of newer ones.

In terms of time, for the creation of the circuits, in both cases, we summarize an
estimate in Table 15.1. Deriving from the previously enumerated characteristics, we
find that the implementation on Cirq takes consistent time throughout architectures
(1 h), while on Qiskit, it is highly dependent on the existent abstractions (from 0.25 h
to 1 h on qCNN).

With regard to documentation, both provide suitable and complete sources. We
have found no issues navigating both circuit-building documentations. Several
tutorials of interest are also provided, with Cirq offering more directed, research-
oriented tutorials for advanced users. Nevertheless, the same information can be
roughly matched on several Qiskit tutorials.

296 F. Ramos Ferreira et al.

Table 15.1 Implementation time for circuit construction on both frameworks and architectures

Architecture Time for implementation on Qiskit (h) Time for implementation on Cirq (h)

qGAN 0.25 1

qCNN 1 1

2. Integration of Parameterized Circuits with Classical Layers

As for the integration of circuits with classical layers or models, we have found
completely opposite experiences with both architectures.

We find that the simple structure of Cirq in conjunction with Tensorflow Quan-
tum’s functionality makes for seamless and easy development, even the more
relevant for Tensorflow users. On Qiskit, we also see advantages for Pytorch users
as the translation is almost as seamless. However, we believe that it is necessary to
produce more code on Qiskit to achieve the same result when there is no abstraction
available, such as qCNN. Overall, from our experience, we see the easiness of
developing with Qiskit somewhat dependent on the existent abstractions.

Concerning readability, we consider both easily interpretable and see advantages
in their model construction. The slight differences between both seem to be derived
from the differentiation found between Pytorch and Tensorflow workflows. We
believe that users coming with experience on either will have no difficulties in
understanding the integration of the hybrid layers. We want to single out the
abstraction from Tensorflow Quantum, PQC which we believe is paramount to the
easiness of integration between both layers and the readability of the final model.

When it comes to expressiveness, as previously mentioned, in our experience, we
level both frameworks similarly as the available abstractions come mostly directly
from Pytorch and Tensorflow.

Considering the time needed for an introductory construction of each architecture,
we again summarize an estimate in Table 15.2. As expected, the implementation of
the qGAN is very much facilitated on Qiskit as a newcomer, while on Cirq, it takes a
much longer time for finding available structures and replicating the circuits by hand.

For qCNN, we find that Keras facilitated development, thus reducing the model
construction time.

Further than this, we have found Tensorflow Quantum’s documentation easier to
handle. This is due to the fact that Qiskit’s documentation requires the consultation
of specific versions for all packages since abstractions and methods are moved and
changed in between them. Further than that, it is necessary to know in which
package the desired functions are. Matching versions would be important for new
developers coming into Qiskit, as we found that certain functionalities do not work
on specific versions.

15 Quantum Software Frameworks for Deep Learning 297

Table 15.2 Estimated implementation time for model construction on both frameworks and
architectures

Architecture Time for implementation on Qiskit (h) Time for implementation on Cirq (h)

qGAN 0.5 1.5

qCNN 1.5 0.5

3. Training Procedures

Relating to training procedures, our analysis corroborates the previously
described characteristics.

Due to the existent qGAN abstraction in Qiskit, which completely encapsulates
the training procedure, on this architecture, the framework enables eased develop-
ment, especially for newer users. On the other hand, using Cirq and Tensorflow
Quantum, we had to employ an abstraction from another library to obtain a compa-
rable level of training encapsulation. This implicates the installation of another
package to the environment, which may be less desirable for certain users. Further
than this, the GANEstimator abstraction is not as automatized as Qiskit’s qGAN,
which means that more code is necessary to achieve the same result. Without using
the library, users have to manually program the entire training procedure.

Concerning the qCNN architecture, no abstractions can be used in either frame-
work, which leads to the gap between Pytorch and Tensorflow/Keras to be seen as
differentiation factors.

Relating to our criteria, we classify readability as being slightly higher on
Tensorflow Quantum due to Keras’ inherent easiness of model compilation and
fitting. On Qiskit, even with the qGAN abstraction, the training procedure becomes
entirely encapsulated, which might be considered as less interpretable from a new
user’s perspective.

Pertaining to the previously described aspects of both frameworks and respective
abstractions, we classify Qiskit’s expressiveness related to training procedures as
slightly superior.

As for development time, again summarized in Table 15.3, we find results to be
coherent with the previously described characteristics. Deriving from the existent

abstractions, the estimated development time in Qiskit is highly reduced in qGAN,
while Keras enables faster implementation on qCNN.

In terms of documentation, it is impossible to separate model creation from
training procedures, and, as such, we stand by the observations made in the previous
subsection.

15.5.1 Main Take-Aways

Building upon the aforementioned analysis, we draw the following take-away
messages, which may be considered as the main results of our study:

298 F. Ramos Ferreira et al.

Table 15.3 Estimated implementation time for training procedures on both frameworks and
architectures

Architecture Time for implementation on Qiskit (h) Time for implementation on Cirq (h)

qGAN 0.2 0.5

qCNN 1 0.2

• Qiskit enables an easier introduction for users with no quantum knowledge as
they can replicate small models known to them and understand the majority of the
process.

• Pytorch users also have an advantage when using Qiskit for model development
as the workflow is seamlessly transferred.

• Cirq and Tensorflow Quantum present better structure and organization, thus
being more intuitive for advanced development. We also find Tensorflow Quan-
tum tutorials to provide more insight even for beginner developers.

• Tensorflow users also have an advantage when transferring to Tensorflow Quan-
tum as the workflow is identical.

• Qiskit includes a wide panoply of abstractions that allow for swift prototyping of
applications. Nevertheless, versioning issues might be an obstacle for newcomers
even when navigating the wide range of available tutorials.

In particular, accounting for the adopted criteria for validation—readability,
expressiveness, effort, and documentation—we sum up the following aspects:

• Readability Cirq showcases higher readability throughout the tested architec-
tures, with strong structure and homogeneity. When abstractions are available, for
example, qGAN, Qiskit’s training procedures and structure can be entirely
altered, which can be a negative aspect for readability.

• Expressiveness Qiskit provides a wide range of abstractions that enable the
encapsulation of several processes, while Cirq lacks such functions. Neverthe-
less, interfaces to Qiskit’s abstractions might be entirely dependent on the used
version which can become a hurdle for continued projects.

• Effort The effort that is needed for implementation depends on the existence and
usability of the available abstractions. Implementation effort on Qiskit is highly

15 Quantum Software Frameworks for Deep Learning 299

dependent on the employed abstraction, while on Cirq, with less abstractions, a
more constant period of time is required.

• DocumentationWe find that bothQiskit and Cirq showcase good documentation
with eased access, including a wide range of informed tutorials. Cirq’s tutorials
can be considered as slightly more informative, with the same details having to be
matched in several places within Qiskit’s documentation.

15.6 Conclusion

In this chapter, we analyze and compare two frameworks, Qiskit and Cirq, and their
respective hybrid deep learning libraries and tools in the context of the introduction
of classical scientists to the field of quantum-classical deep learning.

After targeting the development of two very prominent architectures, generative
adversarial and convolutional, we discuss strong and weak points for both
environments.

The conclusions that we reached are grounded on the fact that Qiskit, with its
plenty availability of abstractions, eases the ability to start implementing simple
networks, while Cirq seems harder to tackle at first, however, presents very good
structure that is seamless for scientists that are comfortable with Tensorflow.

To the best of our knowledge, our study is novel in its aim and presents relevant
conclusions. To further advance the field of hybrid quantum-classical deep learning,
it is of paramount importance to captivate classical scientists that bring knowledge
from classical networks.

Moreover, classical deep learning has captivated several scientists due to the
availability of frameworks with an acceptable learning curve. Quantum computing
would significantly benefit from a similar infrastructure.

We argue that it would be interesting to tackle the implementation of other types
of relevant architectures, such as those based on deep reinforcement learning, within
quantum computing. This would bring even more value for scientists and engineers
from the classical computing paradigm who are entering the quantum-classical
space.

The implications of our work for a classical deep learning developer are as
follows. Firstly, we enable a faster learning curve to the hybrid quantum-classical
deep learning world since we discuss the most widely used tools in this context,
Qiskit and Cirq.

Secondly, we present some insight into the internals of these frameworks,
detailing the development of two of the most popularized network architectures,
GANs and CNNs. On this note, we foster reproducibility and encourage develop-
ment by making our code platform publicly available. We believe these can soften
the learning curve of these tools.

Finally, we provide valuable information to new quantum-classical deep learning
scientists who are looking to select a framework to initiate their research work since
we present a comparative analysis of their attributes. With these details, newcoming

scientists can easily discern where to find the qualities they seek, either on Qiskit
with PyTorch or with Cirq and Tensorflow Quantum.

300 F. Ramos Ferreira et al.

Moving forward, we intend to extend this study to other possible available
frameworks, evaluating whether there are other relevant tools for hybrid model
development. Tackling the aforementioned improvements, we also intend to invest
on building a sample deep reinforcement learning proof of concept.

Furthermore, we aim at delving deeper into both studied frameworks, starting
with the replication of widely known, complex classical models on a hybrid setting
to evaluate the scalability of both frameworks on more intricate scenarios.

Acknowledgments The work described in this chapter was supported in part by Fundaçao para a
Ciência e a Tecnologia (FCT) under Grants CMU/TIC/0064/2019 (a project funded by the Carnegie
Mellon Portugal Program), FaultLocker Project (ref. PTDC/CCI-COM/29300/2017), and UIDB/
50021/2020. The work was also supported by the Artificial Intelligence and Computer Science
Laboratory, University of Porto (LIACC), FCT/UID/CEC/0027/2020, funded by national funds
through the FCT/MCTES (PIDDAC).

References

1. Moller M, Vuik C (2017) On the impact of quantum computing technology on future develop-
ments in high-performance scientific computing. Ethics Inf Technol:1–17. https://doi.org/10.
1007/s10676-017-9438-0

2. Bertels K, Sarkar A, Krol A, Budhrani R, Samadi J, Geoffroy E, Matos J, Abreu R, Gielen G,
Ashraf I (2021) Quantum accelerator stack: a research roadmap. arXiv preprint
arXiv:2102.02035

3. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao
FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A,
Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan
MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z,
Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D,
Lindmark M, Lucero E, Lyakh D, Mandra S, McClean JR, McEwen M, Megrant A, Mi X,
Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E,
Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ,
Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ,
Yeh P, Zalcman A, Neven H, Martinis JM (2019) Quantum supremacy using a programmable
superconducting processor. Nature 574(7779):505–510. https://doi.org/10.1038/s41586019-
1666-5

4. Rinott Y, Shoham T, Kalai G (2020) Statistical aspects of the quantum supremacy demonstra-
tion. arXiv

5. Henderson M, Shakya S, Pradhan S, Cook T (2020) Quanvolutional neural networks: powering
image recognition with quantum circuits. Quantum Machine Intell 2(1):2. https://doi.org/10.
1007/s42484-020-00012-y

6. Zoufal C, Lucchi A, Woerner S (2019) Quantum generative adversarial networks for learning
and loading random distributions. NPJ Quantum Inf 5(1):103. https://doi.org/10.1038/s41534-
019-0223-2

7. Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors.
arXiv

https://doi.org/10.1007/s10676-017-9438-0
https://doi.org/10.1007/s10676-017-9438-0
https://doi.org/10.1038/s41586019-1666-5
https://doi.org/10.1038/s41586019-1666-5
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s41534-019-0223-2

15 Quantum Software Frameworks for Deep Learning 301

8. Alcazar J, Leyton-Ortega V, Perdomo-Ortiz A (2020) Classical versus quantum models in
machine learning: insights from a finance application. Machine Learn Sci Technol 1(3):035003.
https://doi.org/10.1088/26322153/ab9009

9. Huang HY, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H, McClean JR (2021)
Power of data in quantum machine learning. Nat Commun 12(1):2631. https://doi.org/10.1038/
s41467-021-22539-9

10. Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79. https://doi.
org/10.22331/q-2018-08-06-79

11. Gomes C, Fortunato D, Fernandes JP, Abreu R (2020) Off-the-shelf components for quantum
programming and testing. In: Proceedings of the 1st International Workshop on Software
Engineering & Technology (Q-SET’20), co-located with IEEE International Conference on
Quantum Computing and Engineering (IEEE Quantum Week’20), pp 14–19

12. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance
deep learning library. arXiv

13. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G,
Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P,
Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: A system for large-
scale machine learning. 12th USENIX Symposium on Operating Systems Design and
Implementation

14. Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Niu MY,
Halavati R, Peters E, Leib M, Skolik A, Streif M, Von Dollen D, McClean JR, Boixo S,
Bacon D, Ho AK, Neven H, Mohseni M (2020) TensorFlow quantum: a software framework
for quantum machine learning. arXiv

15. Stein SA, Baheri B, Tischio RM, Mao Y, Guan Q, Li A, Fang B, Xu S (2020) QuGAN: a
generative adversarial network through quantum states. arXiv

16. Omer B (2003) Quantum programming in QCL. THESIS.MASTER, TU Vienna. http://tph.
tuwien.ac.at/~oemer/doc/quprog.pdf

17. Omer B (2003) Structured quantum programming. THESIS.DOCTORAL, TU Vienna. http://
tph.tuwien.ac.at/~oemer/doc/structquprog.pdf

18. YingM, Yu N, Feng Y (2014) Alternation in quantum programming: from superposition of data
to superposition of programs. arXiv

19. Grattage JJ (2006) A functional quantum programming language. THESIS.DOCTORAL,
University of Nottingham. http://eprints.nottingham.ac.uk/10250/1/thesis.pdf

20. Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper. ACM SIGPLAN
Notices 48(6):333–342. https://doi.org/10.1145/2499370.2462177

21. Svore K, Roetteler M, Geller A, Troyer M, Azariah J, Granade C, Heim B, Kliuchnikov V,
Mykhailova M, Paz A (2018) Q# enabling scalable quantum computing and development with a
high-level DSL. ACM Press, New York, NY, pp 1–10. https://doi.org/10.1145/3183895.
3183901

22. Bichsel B, Baader M, Gehr T, Vechev M (2020) Silq: a high-level quantum language with safe
uncomputation and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. ACM, New York, NY, pp
286–300. https://doi.org/10.1145/3385412.3386007

23. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst

24. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV). IEEE, pp 2242–2251. https://doi.org/10.1109/ICCV.2017.244

25. Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. Adv Neural Inf Process Syst

https://doi.org/10.1088/26322153/ab9009
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf
http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf
http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf
http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf
http://eprints.nottingham.ac.uk/10250/1/thesis.pdf
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1109/ICCV.2017.244

302 F. Ramos Ferreira et al.

26. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J,
Wang Z, Shi W (2017) Photo-realistic single image superresolution using a generative adver-
sarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp 105–114. https://doi.org/10.1109/CVPR.2017.19

27. Hu L, Wu SH, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng DL, Zou CL, Sun L (2019)
Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv 5(1):
eaav2761. https://doi.org/10.1126/sciadv.aav2761

28. Romero J, Aspuru-Guzik A (2021) Variational quantum generators: generative adversarial
quantum machine learning for continuous distributions. Adv Quantum Technol 4(1):
2000003. https://doi.org/10.1002/qute.202000003

29. Situ H, He Z, Wang Y, Li L, Zheng S (2020) Quantum generative adversarial network for
generating discrete distribution. Inf Sci 538:193–208. https://doi.org/10.1016/j.ins.2020.05.127

30. Yuan T, Wan F, Fu M, Liu J, Xu S, Ji X, Ye Q (2021) Multiple instance active learning for
object detection. In: Conference on Computer Vision and Pattern Recognition

31. Chrysos G, Moschoglou S, Bouritsas G, Deng J, Panagakis Y, Zafeiriou SP (2021) Deep
polynomial neural networks. In: IEEE transactions on pattern analysis and machine intelligence.
https://doi.org/10.1109/TPAMI.2021.3058891

32. Fatimah SH, Djamal EC, Ilyas R, Renaldi F (2019) Personality features identification from
handwriting using convolutional neural networks. In: 2019 4th International Conference on
Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE,
pp 119–124. https://doi.org/10.1109/ICITISEE48480.2019.9003855

33. Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys. https://
doi.org/10.1038/s41567-019-0648-8

34. Crooks GE (2019) Gradients of parameterized quantum gates using the parameter-shift rule and
gate decomposition. arXiv

35. Fastovets DV, Bogdanov YI, Bantysh BI, Lukichev V (2019) Machine learning methods in
quantum computing theory. arXiv

36. Li R, Xu J, Yuan J, Li D (2021) An introduction to quantum machine learning algorithms. In:
Liu Q, Liu X, Li L, Zhou H, Zhao HH (eds) Proceedings of the 9th international conference on
computer engineering and networks, Advances in intelligent systems and computing, vol 1143.
Springer Singapore, Singapore, pp 519–532. https://doi.org/10.1007/978-981-15-3753-0-51

37. Martın-Guerrero JD, Lamata L (2020) Quantum machine learning. European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning

38. Wille R, Van Meter R, Naveh Y (2019) IBM’ qiskit tool chain: Working with and developing
for real quantum computers. In: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, pp 1234–1240. https://doi.org/10.23919/DATE.2019.8715261

39. Cirq quantum software framework review – quantum computing report. https://
quantumcomputingreport.com/review-of-the-cirq-quantum-software-framework/

40. LeCun Y, Cortes C (2010) MNIST handwritten digit database. http://yann.lecun.com/exdb/
mnist/

41. Face recognition on olivetti dataset |kaggle. https://www.kaggle.com/serkanpeldek/face-
recognition-on-olivetti-dataset

https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1126/sciadv.aav2761
https://doi.org/10.1002/qute.202000003
https://doi.org/10.1016/j.ins.2020.05.127
https://doi.org/10.1109/TPAMI.2021.3058891
https://doi.org/10.1109/ICITISEE48480.2019.9003855
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1007/978-981-15-3753-0-51
https://doi.org/10.23919/DATE.2019.8715261
https://quantumcomputingreport.com/review-of-the-cirq-quantum-software-framework/
https://quantumcomputingreport.com/review-of-the-cirq-quantum-software-framework/
http://lecun.com/exdb/mnist
http://lecun.com/exdb/mnist
https://www.kaggle.com/serkanpeldek/face-recognition-on-olivetti-dataset
https://www.kaggle.com/serkanpeldek/face-recognition-on-olivetti-dataset

