
A GENTLE
INTRODUCTION
TO QUANTUM
MACHINE
LEARNING

Y. Du · X. Wang · N. Guo · Z. Yu · Y. Qian
K. Zhang · M.-H. Hsieh · P. Rebentrost
D. Tao

A Gentle Introduction to Quantum Machine
Learning

Yuxuan Du • Xinbiao Wang • Naixu Guo •
Zhan Yu • Yang Qian • Kaining Zhang •
Min-Hsiu Hsieh • Patrick Rebentrost • Dacheng Tao

A Gentle Introduction to
Quantum Machine Learning

Yuxuan Du
College of Computing and Data Science
Nanyang Technological University
Singapore, Singapore

Naixu Guo
Centre for Quantum Technologies
National University of Singapore
Singapore, Singapore

Yang Qian
Department of Data Science
City University of Hong Kong
Hong Kong, China

Min-Hsiu Hsieh
Quantum Computing Research Center
Hon Hai (Foxconn)
Taipei, Taiwan

Dacheng Tao
College of Computing and Data Science
Nanyang Technological University
Singapore, Singapore

Xinbiao Wang
College of Computing and Data Science
Nanyang Technological University
Singapore, Singapore

Zhan Yu
Centre for Quantum Technologies
National University of Singapore
Singapore, Singapore

Kaining Zhang
College of Computing and Data Science
Nanyang Technological University
Singapore, Singapore

Patrick Rebentrost
Centre for Quantum Technologies
National University of Singapore
Singapore, Singapore

ISBN 978-981-95-1283-6 ISBN 978-981-95-1284-3 (eBook)
https://doi.org/10.1007/978-981-95-1284-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3

Preface

Quantum computers, as next-generation computational devices, harness the quan-
tum principles of superposition and entanglement to process information in ways
fundamentally different from classical computers. These unique properties enable
quantum computers to address many practical problems that are intractable for
classical computers. Although quantum computing is still in its early stages, we
have entered an era since 2019 where quantum supremacy has been experimentally
demonstrated by several research groups and industrial organizations, underscoring
the immense potential of quantum technologies to transform various aspects of
everyday life.

Machine learning (ML) is widely regarded as one of the most promising and
impactful applications of quantum computing. The ability of quantum computing
to accelerate advancements in foundational models, such as generative pre-trained
transformers (GPTs), and even pave the way toward artificial general intelligence
(AGI), is particularly compelling. Recent progress in both theories and experiments
has exhibited the power of quantum machine learning (QML). More precisely, the
integration of quantum computing with ML may lead to novel approaches that
outperform classical algorithms by offering faster runtimes, better performance,
and reduced data requirements. This advancement can benefit many areas such
as computer vision, natural language processing, drug discovery, finance, and
fundamental science.

As an interdisciplinary field, the development of QML requires close collabo-
ration between leading scientists and engineers in both quantum computing and
artificial intelligence (AI). At the same time, as QML advances alongside the
continuous progress of quantum hardware, there is a growing need for expertise
from the AI community to drive this emerging field forward. However, the distinct
conceptual frameworks and terminologies of quantum and classical computing
present significant barriers for researchers and practitioners with a classical ML
background in understanding the mechanisms behind QML algorithms and the
benefits they may offer. Reducing this barrier to entry remains a major challenge
within the community.

v

vi Preface

To overcome this challenge, we have written this book to deliver a comprehensive
introduction to the latest developments in QML. Whether you are an AI researcher,
an ML practitioner, or a computer science student, this resource will equip you with
a solid foundation in the principles and techniques of QML. By bridging the gap
between classical ML and quantum computing, this book could serve as a useful
resource for those looking to engage with QML and explore the forefront of AI in
the quantum era.

Singapore, Singapore
Singapore, Singapore
Singapore, Singapore
Singapore, Singapore
Hong Kong, China
Taipei, Taiwan
Singapore, Singapore
Singapore, Singapore
February 2025

Yuxuan Du
Xinbiao Wang

Naixu Guo
Zhan Yu

Yang Qian
Min-Hsiu Hsieh

Patrick Rebentrost
Dacheng Tao

Declarations

Competing Interests The authors have no competing interests to declare that are
relevant to the content of this manuscript.

vii

Contents

1 Introduction . 1
1.1 Introduction to Quantum Machine Learning. 2

1.1.1 Quantum Computers . 3
1.1.2 Metrics for Quantum Advantages . 6
1.1.3 Explored Tasks in Quantum Machine Learning 8

1.2 Progress of Quantum Machine Learning. 9
1.2.1 Progress of Quantum Computers . 9
1.2.2 Progress of Quantum Machine Learning Under FTQC 11
1.2.3 Progress of Quantum Machine Learning Under NISQ 12

1.3 Organization of This Book . 16
References . 18

2 Basics of Quantum Computing . 23
2.1 From Classical Bits to Quantum Bits . 24

2.1.1 Classical Bits . 24
2.1.2 Quantum Bits (Qubits) . 24
2.1.3 Density Matrix . 28

2.2 From Digital Logic Circuit to Quantum Circuit Model 30
2.2.1 Classical Digital Logic Circuit . 30
2.2.2 Quantum Circuit . 32

2.3 Quantum Read-In and Read-Out Techniques . 43
2.3.1 Quantum Read-In . 43
2.3.2 Quantum Read-Out Methods . 47

2.4 Quantum Linear Algebra . 52
2.4.1 Block Encoding . 53
2.4.2 Basic Arithmetic for Block Encodings . 54
2.4.3 Quantum Singular Value Transformation. 56

2.5 Code Demonstration . 57
2.5.1 Read-In Implementations. 57
2.5.2 Block Encoding . 59

2.6 Bibliographic Remarks . 60

ix

x Contents

2.6.1 Advanced Quantum Read-In Methods . 60
2.6.2 Advanced Quantum Read-Out Methods . 62
2.6.3 Advanced Quantum Linear Algebra . 63

References . 64

3 Quantum Kernel Methods . 69
3.1 Classical Kernel Machines . 70

3.1.1 Motivation of Kernel Methods . 70
3.1.2 Dual Representation . 73
3.1.3 Kernel Construction . 75

3.2 Quantum Kernel Machines . 78
3.2.1 Quantum Feature Maps and Quantum Kernel Machines 78
3.2.2 Comparative Analysis: Quantum vs. Classical

Kernel Methods . 81
3.2.3 Concrete Examples of Quantum Kernels . 82

3.3 Theoretical Foundations of Quantum Kernel Machines. 87
3.3.1 Expressivity of Quantum Kernel Machines 88
3.3.2 Generalization of Quantum Kernel Machines 92

3.4 Code Demonstration . 98
3.4.1 Classification on MNIST Dataset . 99

3.5 Bibliographic Remarks . 105
3.5.1 Quantum Kernel Design . 106
3.5.2 Theoretical Studies of Quantum Kernels . 107
3.5.3 Applications of Quantum Kernels . 108

References . 109

4 Quantum Neural Networks . 111
4.1 Classical Neural Networks . 112

4.1.1 Perceptron . 113
4.1.2 Multilayer Perceptron . 115

4.2 Fault-Tolerant Quantum Perceptron . 119
4.2.1 Grover Search . 119
4.2.2 Online Quantum Perceptron with Quadratic Speedups 121

4.3 NISQ-Era Quantum Neural Networks . 125
4.3.1 General Framework . 126
4.3.2 Discriminative Learning with QNNs . 130
4.3.3 Generative Learning with QNNs . 131

4.4 Theoretical Foundations of Quantum Neural Networks. 136
4.4.1 Expressivity and Generalization of Quantum Neural

Networks . 137
4.4.2 Trainability of Quantum Neural Networks . 145

4.5 Code Demonstration . 149
4.5.1 Quantum Classifier . 149
4.5.2 Quantum Patch GAN . 156

4.6 Bibliographic Remarks . 164
4.6.1 Discriminative Learning with QNN . 165

Contents xi

4.6.2 Generative Learning with QNNs . 168
References . 169

5 Quantum Transformer . 177
5.1 Classical Transformer . 178

5.1.1 Tokenization and Embedding . 179
5.1.2 Self-Attention . 179
5.1.3 Residual Connection . 181
5.1.4 Feed-Forward Network . 181
5.1.5 Optimization and Inference . 182

5.2 Fault-Tolerant Quantum Transformer . 183
5.2.1 Quantum Self-Attention . 186
5.2.2 Quantum Residual Connection and Layer Normalization 191
5.2.3 Quantum Feed-Forward Neural Network. 193

5.3 Runtime Analysis with Quadratic Speedups . 195
5.3.1 Overview . 195
5.3.2 Empirical Studies of Potential Quantum Speedups 196

5.4 Code Demonstration . 197
5.5 Bibliographic Remarks . 200
References . 201

6 Conclusion . 203

A Concentration Inequality . 205

B Haar Measure and Unitary t-Design . 209
References . 211

List of Acronyms

Notations Used in This Book

Notation Concept
a, b, aj , bj , α, β . Scalars
x, y . Vectors
W,A. Matrices
R. Real Euclidean space
C. Complex Euclidean space
N. The set of natural numbers
[a]. The set of integers {1, 2, · · · , a}.
E[·]. Expectation value of a random variable
Var[·]. Variance of a random variable
O. Asymptotic upper bound notation

. Asymptotic lower bound notation

. Transpose operation
a∗. Complex conjugate of the number a
†. Conjugate transpose operation

. Outer product operation
A B . Element-wise multiplication (Hadamard product) of matrices A

and B
f ◦ g . Composition of functions f and g
|0 , |1 , |ψ . Pure quantum state in Dirac notation
N Number of qubits
|0N , |0 ⊗N

. Zero state with N -qubits
Id . Identity matrix with the size d × d .

ρ . Quantum state in density matrix representation
H Hamiltonian
U,V . Unitary operator
X, Y,Z . Pauli operators
RX, RY, RZ. Rotation gates along the x, y, and z axes, respectively

xiii

xiv List of Acronyms

CX,CZ . Controlled-X gate and controlled-Z gate
E., N. Quantum channel
O Observable
O . Expectation of observable O
· op . Operator norm

n Number of training examples
D. Dataset
Tr(Oρ). Expectation value of an observable O
U(θ). Parameterized quantum circuit
L(θ). Loss function
∇θL(θ). Gradient of loss function L. w.r.t parameters θ .

A Glossary of Key QML Terms

Term Concept
NISQ The terminology “Noisy Intermediate-Scale Quantum”

(NISQ) is a summary of the current status of quantum
computing hardware, characterized by devices with 50 to
a few hundred qubits that are prone to noise and errors.

Ansatz / VQC / PQC Ansatz, Variational Quantum Circuit (VQC), and Parame-
terized Quantum Circuit (PQC) are interchangeably used
in literature to refer to a parameterized quantum state or a
specific form of a quantum circuit used as a trial solution
for variational algorithms.

HEA Hardware Efficient Ansatz (HEA) is a design strategy
for VQCs that minimizes circuit depth and gate count
by using the native gate set and connectivity of current
quantum hardware.

Quantum Dataset A collection of data that describes quantum systems and
their evolution.

Quantum Feature Map A method used in QML to encode classical data into
quantum states.

Basis Encoding Directly encodes a classical binary string into quantum
states, e.g., encoding 001 as |001 ..

Amplitude Encoding Encodes a normalized classical vector into amplitudes of
a quantum state, e.g., encoding a classical vector (x1, x2).

as x1|0 x2|1 ..
Angle Encoding Encodes data into angles of quantum rotation gates, e.g., a

classical value x is mapped to a state using a rotation g ate:
|ψ(x) RY(x)|0 ..

VQA Variational Quantum Algorithm (VQA) represents a
class of hybrid quantum-classical algorithms that use

List of Acronyms xv

VQCs/PQCs optimized by classical algorithms. Two
key classes of VQAs are quantum neural networks and
variational quantum eigen-solvers.

QNN The term “Quantum Neural Network” (QNN) denotes
a quantum-classical hybrid framework in which quan-
tum circuits with adjustable parameters are optimized
to perform tasks such as classification, regression, or
simulation.

QCNN Quantum Convolutional Neural Network (QCNN) is the
extension of classical convolutional neural network in
the quantum scenario. Two key components of QCNNs
are quantum convolutional layers and pooling layers. The
former is translationally invariant and the latter reduces
the number of qubits while preserving key information.

Quantum Kernels A similarity function that measures how close two classi-
cal data points are when mapped into a quantum Hilbert
space.

Quantum Classifiers Quantum machine learning models, including both quan-
tum kernels and QNNs, are designed to classify data into
different categories.

QGMs Quantum Generative Models (QGMs) refer to a class of
quantum machine learning models leveraging quantum
computing to generate new data samples that follow the
distribution of a given dataset. Common QGMs include
quantum circuit Born machine, quantum generative adver-
sarial network, quantum Boltzmann machine, quantum
variational autoencoder, and quantum generative diffusion
model.

Quantum Gradient The derivative of a quantum computing function with
respect to the parameters of a parameterized quantum
circuit.

Parameter Shift Rule A technique for computing quantum gradients by evalu-
ated parameter-shifted instances of a variational quantum
circuit.

BP Barren Plateau (BP) is a phenomenon in the optimization
landscape of certain VQAs where the gradient of the cost
function becomes exponentially small as the number of
qubits increases.

Expressivity The capability of a quantum model or circuit (e.g., an
ansatz) to represent a wide variety of quantum states or
functions. In other words, it reflects how rich the model’s
representational power is. Common metrics of the expres-
sivity of a QML model include Rademacher complexity,
Vapnik–Chervonenkis (VC) dimension, covering number,
and the size of the Fourier spectrum.

xvi List of Acronyms

Trainability A measure of how feasibly a quantum model can be
optimized or trained using classical or hybrid optimization
methods. It focuses on the structure of the quantum
circuit’s parameter space. Poor trainability, often due to
phenomena like barren plateaus (i.e., regions where gradi-
ents vanish), can significantly hinder the learning process.

Generalization error The difference in performance between a quantum
model’s predictions on training data and its performance
on new, unseen data. In QML, a low generalization error
indicates that the model has effectively captured the
underlying patterns without overfitting the training set,
ensuring it can robustly handle novel inputs.

FTQC Fault-tolerant quantum computing (FTQC) is a system
that performs reliable quantum computations despite the
presence of errors and noise in quantum hardware.

Quantum Noise Unwanted interactions between a quantum system and its
environment, leading to decoherence and computational
errors.

QEC Quantum error correction (QEC) is a set of techniques
designed to protect quantum information from errors
caused by decoherence, gate imperfections, and measure-
ment noise.

QRAM Quantum random access memory (QRAM) is a quantum
data structure that allows efficient access to large datasets
in superposition.

Block Encoding A quantum algorithmic primitive for embedding arbitrary
matrices into unitary matrices that can be implemented on
a quantum computer.

QSP Quantum signal processing (QSP) is a framework that can
implement nonlinear polynomials of signals by iterating
signal unitaries and signal processing unitaries.

QSVT Quantum singular value transformation (QSVT) is the
multi-qubit lifted version of QSP, which is a powerful
technique for applying polynomial transformations to sin-
gular values of a matrix.

LCU Linear combination of unitaries (LCU) is a technique
that implements the block encoding of a weighted sum
of unitary matrices, enabling efficient quantum matrix
operations.

Chapter 1
Introduction

Abstract This chapter introduces the emerging field of quantum machine learning
(QML), which aims to integrate the strengths of quantum computing with classical
machine learning to achieve computational advantages. It begins by contextualizing
QML within the broader evolution of computing paradigms, from CPUs and
GPUs to quantum processors, and highlights the limitations of classical systems
in handling increasingly complex learning tasks. The chapter then presents a first
glimpse into QML, including the foundational components of quantum computers,
different measures of quantum advantages, and the main research directions in
QML. Progress in QML is reviewed under two regimes: fault-tolerant quantum
computing (FTQC) and noisy intermediate-scale quantum (NISQ) devices. Finally,
the chapter outlines the structure of the tutorial and explains its intended audience.
Together, these discussions provide a comprehensive background and motivation for
the chapters that follow.

The advancement of computational power has been a central driver of modern
industrial revolutions, particularly since the mid-twentieth century. The invention
of the modern computer, followed by the central processing unit (CPU), led to
the “digital revolution,” transforming industries through process automation and
the rise of information technology. Later, the emergence of graphical processing
units (GPUs) accelerated advancements in artificial intelligence (AI) and big
data, making applications such as intelligent transportation, autonomous vehicles,
scientific simulations, and data analysis possible. Moore’s law, which describes the
doubling of transistors on integrated circuits every two years, is reaching its physical
and practical limits. Traditional computing hardware, including CPUs and GPUs,
is constrained by these limitations. The exponential growth of data and increasing
complexity of applications require new computational paradigms. Quantum com-
puting [1] emerges as a promising approach by harnessing principles of quantum
mechanics, such as superposition and entanglement, to process information in
fundamentally new ways.

One of the most concrete and direct ways to understand the potential of quantum
computers is through the framework of complexity theory [2]. Theoretical computer

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1
https://doi.org/10.1007/978-981-95-1284-3_1

2 1 Introduction

scientists have demonstrated that quantum computers can efficiently solve problems
within the BQP. (bounded-error quantum polynomial time) complexity class,
meaning these problems can be solved in polynomial time by a quantum computer.
In contrast, classical computers are limited to efficiently solving problems within
the P. (polynomial time) complexity class. While it is widely believed, though
not proven, that P ⊆ BQP., this suggests that quantum computers can provide
exponential speedups for certain problems in BQP. that are intractable for classical
machines.

A prominent example of such a problem is large-number factorization, which
forms the basis of RSA cryptography. Shor’s algorithm [3], a quantum algorithm,
can factor large numbers in polynomial time, while the most efficient known
classical factoring algorithm requires super-polynomial time. For instance, breaking
an RSA-2048 bit encryption key would take a classical computer approximately
300 trillion years, whereas an ideal quantum computer could complete the task
in around 10 seconds. However, constructing “ideal” quantum computers remains
a significant challenge. As will be discussed in later chapters, based on current
fabrication techniques, this task could potentially be completed in approximately
8 hours using a noisy quantum computer with a sufficient number of qubits—the
fundamental units of quantum computation [4].

The convergence of the computational power offered by quantum machines and
the limitations faced by AI models has led to the rapid emergence of the field:
quantum machine learning (QML) [5]. In particular, the challenges in modern AI
stem from the neural scaling law [6], which posits that “bigger is often better.” Since
2020, this principle has driven the development of increasingly colossal models,
featuring more complex architectures and an ever-growing number of parameters.
However, this progress comes at an immense cost. For instance, training a model
like ChatGPT on a single GPU would take approximately 355 years, while the
cloud computing costs for training such large models can reach tens of thousands of
dollars.

These staggering costs present a critical barrier to the future growth of AI. Quan-
tum computing, celebrated for its extraordinary computational capabilities, holds
the potential to overcome these limitations. It offers the possibility of advancing
models like generative pretrained transformers (GPTs) and accelerating progress
toward artificial general intelligence (AGI). Quantum computing, particularly QML,
marks a shift from the classical “it from bit” paradigm to the quantum “it from
qubit” perspective. This transition has the potential to reshape AI and computational
science.

1.1 Introduction to Quantum Machine Learning

What exactly is quantum machine learning (QML)? In its simplest terms, the
focus of this book on QML can be summarized as follows (see Sect. 1.1.3 for the
systematic overview).

1.1 Introduction to Quantum Machine Learning 3

Quantum Machine Learning (Informal)
QML explores learning algorithms that can be executed on
quantum computers to accomplish specified tasks with potential advantages
over classical implementations.

This interpretation involves three key elements: quantum processors, specified
tasks, and advantages. The following sections clarify the specific meaning of each
term, laying the groundwork for understanding the mechanisms and potential of
QML.

1.1.1 Quantum Computers

Quantum computing traces its origins to 1980, when Paul Benioff proposed the
quantum Turing machine [7], a quantum analog of the classical Turing machine.
Several models of quantum computation have since emerged, including circuit-
based quantum computation [8], one-way quantum computation [9], adiabatic
quantum computation [10], and topological quantum computation [11]. These
models are computationally equivalent, as any can efficiently simulate the others.
Due to its prevalence in both research and industry, the circuit-based quantum
computer is the primary focus in this book.

Quantum computing gained further momentum in the early 1980s when physi-
cists faced an exponential increase in computational overhead while simulating
quantum dynamics, particularly as the number of particles in a system grew. This
“curse of dimensionality” prompted Yuri Manin and Richard Feynman to inde-
pendently propose leveraging quantum phenomena to build quantum computers.
Accordingly, such devices would be far more efficient for simulating quantum
systems than classical computers.

However, as a universal computing device, the potential of quantum com-
puters extends well beyond quantum simulations. In the 1990s, [3] developed a
groundbreaking quantum algorithm for large-number factorization, posing a serious
threat to widely used encryption protocols such as RSA and Diffie–Hellman. In
1996, Grover’s algorithm demonstrated a quadratic speedup for unstructured search
problems [12], a task with broad applications. Since then, the influence of quantum
computing has expanded into a wide range of fields. To name a few, various quantum
algorithms have been developed to achieve runtime speedups in finance [13], drug
design [14], optimization [15], and, most relevant to this book, machine learning.

A direct comparison of fundamental components clarifies why quantum com-
puters may outperform classical computers. As shown in Fig. 1.1, both classical
and quantum computers feature three primary components: input, computation, and
output. Table 1.1 summarizes the differences in their implementations.

4 1 Introduction

Fig. 1.1 The paradigm between classical and quantum computing

Table 1.1 Comparison between classical and quantum computing

Classical Quantum

Input Binary bits Quantum bits

Computation Digital logical circuits Quantum circuits

Output Retrieve solution Quantum measurements

Table 1.2 Mathematical representations of N -(quantum) bits in classical and quantum
computers. Here, the symbols ‘ †.’ and C. denote the transpose conjugation and complex space,
respectively

Classical Quantum

Single bit
(N = 1.)

x ∈ {0, 1}. [a1, a2]† ∈ C2 . s.t. |a1|2 + |a2|2 = 1.

Multiple bits
(N > 1.)

x ∈ {0, 1}N . s.t.[a1, a2, . . . , a2N]† ∈ C2N
. s.t. |a1|2 + |a2|2 + . . . + |a2N |2 = 1.

The advantages of quantum computers stem primarily from the key distinctions
between classical bits and quantum bits (qubits), as well as between digital logic
circuits and quantum circuits, as outlined below:

• Bits versus qubits. A classical bit is a binary unit that takes on a value of either
0 or 1. In contrast, a quantum bit, or qubit, can exist in a superposition of both 0
and 1 simultaneously, represented by a two-dimensional vector where the entries
correspond to the probabilities of the qubit being in each state.

Furthermore, while classical bits follow the Cartesian product rule, qubits
adhere to the tensor product rule. This distinction implies that an N -qubit system
is described by a 2N

.-dimensional vector, allowing quantum systems to encode
information exponentially with N—far surpassing the capacity of classical bits.
Table 1.2 summarizes the mathematical expressions of classical and quantum
bits.

• Digital logic circuits versus quantum circuits. Classical computers rely on digital
logic circuits composed of logic gates that perform operations on bits in a
deterministic manner, as illustrated in Fig. 1.1. In contrast, quantum circuits
consist of quantum gates, which act on single or multiple qubits to modify

1.1 Introduction to Quantum Machine Learning 5

their states—the probability amplitudes a1, . . . , a2N ., as shown in Table 1.2.
Owing to the universality of quantum gates, for any given input qubit state,
there always exists a specific quantum circuit capable of transforming the input
state into one corresponding to the target solution—a particular probability
distribution. For certain probability distributions, a quantum computer can use
a polynomial number of quantum gates relative to the qubit count N to generate
the distribution. In contrast, classical computers require an exponential number
of gates with N to achieve the same result. This difference underpins the quantum
advantage.

• The readout process in quantum computing differs fundamentally from that
in classical computing, as it involves quantum measurements. Intuitively,
quantum measurements can extract information from a quantum system and
translate it into a form that can be interpreted by classical systems. For problems
in quantum physics and chemistry, quantum measurements can reveal far more
useful information than classical simulations of the same systems, enabling
significant runtime speedups in obtaining the desired physical properties.

The formal definitions of quantum computing are presented in Chap. 2. The
computational power of quantum computers is primarily determined by two factors:
the number of qubits and quantum gates as well as their respective qualities. The
term “qualities” refers to the fact that fabricating quantum computers is highly
challenging, as both qubits and quantum gates are prone to errors. These qualities
are measured using various physical metrics. One commonly used metric is quantum
volume VQ . [16], which quantifies a quantum computer’s capabilities by accounting
for both its error rates and overall performance. Mathematically, the quantum
volume represents the maximum size of square quantum circuits that the computer
can successfully implement to achieve the heavy output generation problem. The
mathematical expression is

. log2(VQ) = arg max
m

min(m, d(m)), (1.1)

where m ≤ N . is a number of qubits selected from the given N -qubit quantum
computer and d(m). is the number of qubits in the largest square circuits for
which heavy outputs can be reliably sampled with probability exceeding 2/3.. The
heavy output generation problem discussed here stems from proposals aimed at
demonstrating quantum advantage. That is, a quantum computer of sufficiently high
quality is expected to generate heavy outputs frequently across a range of random
quantum circuit families. For illustration, Table 1.3 summarizes the progress of
quantum computers as of 2024.

6 1 Introduction

Table 1.3 Progress of
quantum computers up to
December 2024

Date log2(VQ). N Manufacturer System name

Dec, 2024 – 105 Google Willow

Aug, 2024 21 56 Quantinuum H2-1

Jul, 2024 9 156 IBM Heron

Jun, 2023 19 20 Quantinuum H1-1

Sep, 2022 13 20 Quantinuum H1-1

Apr, 2022 12 12 Quantinuum H1-2

Jul, 2021 10 10 Honeywell H1

Nov, 2020 7 10 Honeywell H1

Aug, 2020 6 27 IBM Falcon r4

Remark
Note that quantum volume is not the unique metric for evaluating the per-
formance of quantum computers. There are several other metrics that assess
the power of quantum processors from different perspectives. For instance,
circuit layer operations per second (CLOPS) [17] measures the computing
speed of quantum computers, reflecting the feasibility of running practical
calculations that involve a large number of quantum circuits. Additionally,
effective quantum volume [18] provides a more nuanced comparison between
noisy quantum processors and classical computers, considering factors such
as error rates and noise levels. These metrics, among others, offer a more
comprehensive understanding of the strengths and limitations of quantum
computers across various applications.

1.1.2 Metrics for Quantum Advantages

Quantum advantage refers to situations where quantum computers solve problems
more efficiently than classical computers. However, “efficiency” can be defined in
multiple ways. The most common metric is runtime complexity, where quantum
algorithms may achieve significant or even exponential speedups. For example,
Shor’s algorithm provides exponential improvements for large-number factoriza-
tion.

In the context of quantum learning theory [19], efficiency is often measured by
sample complexity, especially within the probably approximately correct (PAC.)
learning framework. Here, sample complexity is defined as the number of inter-
actions (e.g., queries of target quantum systems or measurements) required for a
learner to achieve a desired prediction accuracy below a specified threshold. Here,
the quantum advantage is realized when the upper bound on the sample complexity
of a quantum learning algorithm for a given task is lower than the lower bound of all

1.1 Introduction to Quantum Machine Learning 7

classical learning algorithms. While low sample complexity is a necessary condition
for efficient learning, it does not guarantee practical efficiency alone. For example,
identifying useful training examples within a small sample size may still require
substantial computational time.

Remark (Difference of Sample Complexity in Classical and Quantum
ML)
In classical ML, sample complexity typically refers to the number of training
examples required for a model to generalize effectively. An example is the
number of labeled images needed to train an image classifier. In quantum
ML, however, sample complexity can take on varied meanings depending on
the context, as shown below.

• Quantum state tomography (see Sect. 2.3.2). Here, the sample complexity
refers to the number of measurements required to accurately reconstruct
the quantum state of a system.

• Evaluation of the generalization ability of quantum neural networks (see
Sect. 4.4). Here, the sample complexity refers to the number of input-
output pairs needed to train the network to approximate a target function,
similar to classical ML.

• Quantum system learning. Here, the sample complexity often refers to
the number of queries to interact with the target quantum system, such
as the number of times a system must be probed to learn its Hamiltonian
dynamics.

In addition to sample complexity, another commonly used measure in quantum
learning theory is quantum query complexity, particularly within the frameworks of
quantum statistical learning and quantum exact learning. As these frameworks are
not the primary focus of this book, interested readers are referred to [20] for a more
detailed discussion.

Quantum advantage can be pursued through two main approaches. The first
involves identifying problems with quantum circuits that demonstrate provable
advantages over classical counterparts in the aforementioned measures [21]. Such
findings deepen our understanding of quantum computing’s potential and expand
its range of applications. However, these quantum circuits often require substantial
quantum resources, which are currently beyond the reach of near-term quantum
computers. Additionally, for many tasks, analytically determining the upper bound
of classical algorithm complexities is challenging.

These challenges have motivated a second approach: demonstrating that current
quantum devices can perform accurate computations on a scale that exceeds brute-
force classical simulations—a milestone known as “quantum utility.” Quantum
utility refers to quantum computations that yield reliable, accurate solutions to prob-

8 1 Introduction

lems beyond the reach of brute-force classical methods and otherwise accessible
only through classical approximation techniques [22]. This approach represents a
step toward practical computational advantage with noise-limited quantum circuits.
Reaching the era of quantum utility signifies that quantum computers have attained
a level of scale and reliability enabling researchers to use them as effective tools for
scientific exploration, potentially leading to groundbreaking new insights.

1.1.3 Explored Tasks in Quantum Machine Learning

QML research is extensive and can be broadly categorized into four main areas.
These categories are defined by two factors: the nature of the computing device
(whether it is quantum (Q) or classical (C)) and the type of data being processed
(whether it is generated by a quantum (Q) or classical (C)) system) and the type
of data being processed (whether it is generated by a quantum (Q) or classical (C)
system). The four sectors are explained as follows:

CC Sector. The CC sector refers to classical data processed on classical systems,
representing traditional machine learning. Here, classical ML algorithms run on
classical processors (e.g., CPUs and GPUs) and are applied to classical datasets.
A typical example is using neural networks to classify images of cats and dogs.
CQ Sector. The CQ sector involves using classical ML algorithms on classical
processors to analyze quantum data collected from quantum systems. Typical
examples include applying classical neural networks to classify quantum states,
estimating properties of quantum systems from measurement data, and employ-
ing classical regression models to predict outcomes of quantum experiments.
QC Sector. The QC sector involves developing QML algorithms that run on
quantum processors (QPUs) to process classical data. In this context, quantum
computing resources are leveraged to enhance or accelerate the analysis of
classical datasets. Typical examples include applying QML algorithms, such as
quantum neural networks and quantum kernels, to improve pattern recognition in
image analysis.
QQ Sector. The QQ sector involves developing QML algorithms executed on
QPUs to process quantum data. In this context, quantum computing resources are
leveraged to reduce the computational cost of analyzing and understanding com-
plex quantum systems. Typical examples include using quantum neural networks
for quantum state classification and applying quantum-enhanced algorithms to
simulate quantum many-body systems.

The classification above is not exhaustive. As illustrated in Fig. 1.2, each sector
can be further subdivided based on various learning paradigms. For instance,
discriminative vs. generative learning or supervised, unsupervised, and semi-
supervised learning. Additionally, each sector can be further categorized according
to different application domains, such as chemistry, computer vision, power sys-
tems, logistics, finance, and healthcare.

1.2 Progress of Quantum Machine Learning 9

Fig. 1.2 Different research directions in QML

Remark
The primary focus of this book is on the QC and QQ sectors. For more details
on CQ, interested readers can refer to [23–25].

1.2 Progress of Quantum Machine Learning

Significant efforts have been directed toward the QC and QQ sectors to identify
the tasks and conditions under which QML can achieve computational advantages
over classical machine learning. To clarify the progress of QML, it is essential
to first examine the recent advances in quantum computers—the foundational
infrastructure underpinning quantum algorithms.

1.2.1 Progress of Quantum Computers

The novelty and inherent challenges of utilizing quantum physics for computation
have driven the development of various computational architectures, giving rise
to the formalized concept of circuit-based quantum computers, as discussed in
Sect. 1.1.1. In pursuit of this goal, numerous companies and organizations are
striving to establish their architecture as the leading approach and to be the first to
demonstrate practical utility or quantum advantage on a large-scale quantum device.

Common architectures currently include superconducting qubits (employed by
IBM and Google), ion-trap systems (pioneered by IonQ), and Rydberg atom
systems (developed by QuEra), each offering distinct advantages [26]. Specifically,
superconducting qubits excel in scalability and fast gate operations [27], while
ion-trap systems are known for their high coherence times, precise control over
individual qubits, and full connectivity of all qubits [28]. Moreover, Rydberg atom

10 1 Introduction

Fig. 1.3 Common quantum architectures and roadmaps from different quantum companies

systems enable flexible qubit connectivity through highly controllable interactions
[29]. Besides these architectures, integrated photonic quantum computers are
emerging as promising alternatives for robust and scalable quantum computation.
A summarization is provided in Fig. 1.3.

Despite recent advances, today’s quantum computers remain highly sensitive to
environmental noise and prone to quantum decoherence, lacking the stability needed
for fault-tolerant operation. This results in qubits, quantum gates, and quantum
measurements that are inherently imperfect, introducing errors that can lead to
incorrect outputs. To capture this stage in quantum computing, John Preskill coined
the term “noisy intermediate-scale quantum” (NISQ) era [30], which describes the
current generation of quantum processors. These processors feature up to thousands
of qubits, but their capabilities are restricted with error-prone gates and limited
coherence times.

In the NISQ era, notable achievements have been made alongside new chal-
lenges. Industrial and academic teams, such as those at Google and USTC, have
demonstrated quantum advantages on specific sampling tasks, where the noisy
quantum computers they fabricated outperform classical computers in computa-
tional efficiency [31, 32]. However, most quantum algorithms that theoretically
offer substantial runtime speedups depend on fault-tolerant, error-free quantum
systems—capabilities that remain beyond the reach of current technology.

At this pivotal stage, the path forward in quantum computing calls for progress
on both hardware and algorithmic fronts.

On the hardware side, it is essential to continuously improve qubit count,
coherence times, gate fidelities, and the accuracy of quantum measurements across
various quantum architectures. Once the number and quality of qubits surpass
certain thresholds, quantum error correction codes can be implemented [8], paving
the way for fault-tolerant quantum computing (FTQC). Broadly, quantum error
correction uses redundancy and entanglement to detect and correct errors without

1.2 Progress of Quantum Machine Learning 11

directly measuring the quantum state, thus preserving coherence. Advancements in
quantum processors will enable a progression from the NISQ era to the early FTQC
era, ultimately reaching the fully FTQC era.

On the algorithmic side, two key questions must be addressed:

• How can NISQ devices be utilized to perform meaningful computations with
practical utility?

• What types of quantum algorithms can be executed on early fault-tolerant
and fully fault-tolerant quantum computers to realize the potential of quantum
computing in real-world applications?

Progress on either question could have broad implications. A positive answer to
the first question would suggest that NISQ quantum computers have immediate
practical applicability. Meanwhile, the advancements in the second question would
expand the scope and impact of quantum computing as more robust, fault-tolerant
systems become feasible. The following two sections review recent progress in
quantum machine learning related to these two questions.

1.2.2 Progress of Quantum Machine Learning Under FTQC

A key milestone in FTQC-based QML algorithms is the quantum linear equations
solver introduced by Harrow et al. [33]. Many machine learning models rely on
solving linear equations, a computationally intensive task that often dominates the
overall runtime due to the polynomial scaling of complexity with matrix size.
The HHL algorithm provides a breakthrough by reducing runtime complexity to
polylogarithmic scaling with matrix size, given that the matrix is well conditioned
and sparse. This advancement is highly significant for AI, where datasets frequently
reach sizes in the millions or even billions.

The exponential runtime speedup achieved by the HHL algorithm has garnered
significant attention from the research community, highlighting the potential of
quantum computing in AI. Following this milestone, a body of work has emerged
that employs the quantum matrix inversion techniques developed in HHL (or its
variants) as subroutines in the design of various FTQC-based QML algorithms.
These algorithms often offer runtime speedups over their classical counterparts
[34, 35]. Notable examples include quantum principal component analysis [36] and
quantum support vector machines [37].

Another milestone in FTQC-based QML algorithms is the quantum singular
value transformation (QSVT), proposed by Gilyén et al. [38]. QSVT enables poly-
nomial transformations of the singular values of a linear operator embedded within
a unitary matrix, offering a unifying framework for various quantum algorithms.
It has connected and enhanced a broad range of quantum techniques, including
amplitude amplification, quantum linear system solvers, and quantum simulation
methods. Compared to the HHL algorithm for solving linear equations, QSVT

12 1 Introduction

provides improved scaling factors, making it a more efficient tool for addressing
these problems in the context of QML.

In addition to advancements in linear equation solving, another promising line
of research in FTQC-based QML focuses on leveraging quantum computing to
enhance deep neural networks (DNNs) rather than traditional machine learning
models. This research track has two main areas of focus. The first is the acceleration
of DNN optimization, with notable examples including the development of efficient
quantum algorithms for dissipative differential equations to expedite (stochastic)
gradient descent, as well as quantum Langevin dynamics for optimization [39, 40].
The second area centers on advancing Transformers using quantum computing.
In Chap. 5, how quantum computing can be employed to accelerate Transformers
during the inference stage will be discussed in detail.

Remark
However, there are several critical caveats of the HHL-based QML algo-
rithms. First, the assumption of efficiently preparing the quantum states
corresponding to classical data runtime is very strong and may be impractical
in the dense setting. Second, the obtained result x . is still in the quantum form
|x .. Note that extracting one entry of |x . into the classical form requires
O(

√
N). runtime, which collapses the claimed exponential speedups. The

above two issues amount to the read-in and read-out bottlenecks in QML
[41]. The last caveat is that the employed strong quantum input model such
as quantum random access memory (QRAM) [42] leads to an inconclusive
comparison. Through exploiting a classical analog of QRAM as the input
model, there exist efficient classical algorithms to solve recommendation
systems in polylogarithmic time in the size of input data.

1.2.3 Progress of Quantum Machine Learning Under NISQ

The work conducted by Havlicek et al. [43] marked a pivotal moment for QML
in the NISQ era. This study demonstrated the implementation of quantum kernel
methods and quantum neural networks (QNNs) on a 5-qubit superconducting
quantum computer, highlighting potential quantum advantages from the perspective
of complexity theory. Unlike the aforementioned FTQC algorithms, quantum kernel
methods and QNNs are flexible and can be effectively adapted to the limited
quantum resources available in the NISQ era. These demonstrations, along with
advancements in quantum hardware, sparked significant interest in exploring QML
applications using NISQ quantum devices. We will delve into quantum kernel
methods and QNNs in Chaps. 3 and 4, respectively.

1.2 Progress of Quantum Machine Learning 13

Quantum neural networks

Data
Encoder

…

Deep neural networks

(dataset) (dataset)

Fig. 1.4 Mechanisms of DNNs and QNNs

Quantum Neural Networks (Informal)
A quantum neural network (QNN) is a hybrid model that leverages quantum
computers to implement trainable models similar to classical neural networks
while using classical optimizers to complete the training process.

As shown in Fig. 1.4, the mechanisms of QNNs and deep neural networks
(DNNs) are almost the same. Both DNNs and QNNs follow an iterative approach.
At each iteration, they take input data, process it through multiple layers, and
produce an output prediction. The key difference between DNNs and QNNs is the
way of implementing their learning models. This difference gives the potential of
quantum learning models to solve complex problems beyond the reach of classical
neural networks, opening new frontiers in many fields. Roughly speaking, research
in QNNs and quantum kernel methods has primarily focused on three key areas:
(I) quantum learning models and applications, (II) the adaptation of advanced AI
topics to QML, and (III) theoretical foundations of quantum learning models. A
brief overview of each category is provided below.

(I) QUANTUM LEARNING MODELS AND APPLICATIONS. This category focuses
on implementing various DNNs on NISQ quantum computers to tackle a wide range
of tasks.

From a model architecture perspective, quantum analogs of popular classical
machine learning models have been developed. Typical instances include the quan-
tum versions of multilayer perceptrons (MLPs), autoencoders, convolutional neural
networks (CNNs), recurrent neural networks (RNNs), extreme learning machines,
generative adversarial networks (GANs), diffusion models, and Transformers. Some
of these QNN structures have even been validated on real quantum platforms,
demonstrating the feasibility of applying quantum algorithms to tasks traditionally
dominated by classical deep learning [44–46].

From an application perspective, QML models implemented on NISQ devices
have been explored across diverse fields, including fundamental science, image

14 1 Introduction

classification, image generation, financial time series prediction, combinatorial opti-
mization, healthcare, logistics, and recommendation systems. These applications
demonstrate the broad potential of QML in the NISQ era, though achieving full
quantum advantage in these areas remains an ongoing challenge [47, 48].

(II) ADAPTATION OF ADVANCED AI TOPICS TO QML. Beyond model design,
advanced topics from AI have been extended to QML, aiming to enhance the
performance and robustness of different QML models. Examples include quantum
architecture search [49] (the quantum equivalent of neural architecture search),
advanced optimization techniques [50], and pruning methods to reduce the complex-
ity of quantum models [51, 52]. Other areas of active research include adversarial
learning [53], continual learning [54, 55], differential privacy [56, 57], distributed
learning [58, 59], federated learning [60], and interpretability within the context
of QML [61]. These techniques have the potential to significantly improve the
efficiency and effectiveness of QML models, addressing some of the current
limitations of NISQ devices.

(III) THEORETICAL FOUNDATIONS. Quantum learning theory [62] has garnered
increasing attention, aiming to compare the capabilities of different QML models
and to identify the theoretical advantages of QML over classical machine learning
models. As shown in Fig. 1.5, the learnability of QML models can be evaluated
across three key dimensions: expressivity, trainability, and generalization capabili-
ties. Similar to classical learning theory, these dimensions serve as the foundation
for understanding how quantum models perform in various contexts, providing a
common ground for comparing QML and classical ML models. Below, a brief
overview of each measure is provided.

• Trainability. This area examines how the design of QNNs influences their
convergence properties, including the impact of system noise and measurement
errors on the ability to converge to local or global minima. Good trainability
allows QML models to efficiently optimize toward an optimal solution. Due to
its importance, we address two key concepts with respect to the trainability of
QNNs, i.e., barren plateaus and overparameterization, in Sect. 4.4.2.

Fig. 1.5 The learnability of quantum machine learning models

1.2 Progress of Quantum Machine Learning 15

• Expressivity. Researchers investigate how the number of parameters and the
structure of QNNs affect the size of the hypothesis space they can represent. A
central question is whether QNNs and quantum kernels can efficiently represent
functions or patterns that classical neural networks cannot, thereby offering
potential quantum advantage. In Sects. 3.3.1 and 4.4.1, the expressivity of QML
models is explored from the perspectives of the universal approximation theorem
and model complexity, respectively.

• Generalization. This focuses on understanding how the gap between training and
test error evolves with the size of the dataset, the structure of QNNs or quantum
kernels, and the number of parameters. The goal is to determine whether QML
models can generalize more effectively than classical models, particularly in the
presence of noisy data or when training data is limited. For comprehensive,
Sects. 3.3.2 and 4.4.1, an in-depth analysis of how QML models generalize
with limited training data and varying model structures is provided, along with
the interpretation of the generalization advantages of QML models for specific
datasets.

The combination of advancements in model design, application domains, and
theoretical understanding is driving the progress of QML in the NISQ era. Although
the field is still in its early stages, the progress achieved thus far provides promising
insights into the potential of quantum computing to enhance conventional AI.
As quantum hardware continues to evolve, further breakthroughs are expected,
potentially unlocking new possibilities for practical QML applications.

Remark
It is important to note that QNNs and quantum kernel methods can also be
considered FTQC algorithms when executed on fully fault-tolerant quantum
computers. The reason these algorithms are discussed in the context of NISQ
devices is their flexibility and robustness, making them well suited to the
limitations of current quantum hardware.

Unlike quantum hardware, where the number of qubits has rapidly scaled from
zero to thousands, the development of QML algorithms—and quantum algorithms
more broadly—has taken an inverse trajectory, transitioning from FTQC to NISQ
devices. This shift reflects the move from idealized theoretical frameworks to practi-
cal implementations. The convergence of quantum hardware and QML algorithms,
where the quantum resources required by these algorithms become attainable on
real quantum computers, enables researchers to experimentally evaluate the power
and limitations of various quantum algorithms.

Based on the minimum quantum resources required to complete learning tasks,
we distinguish between FTQC algorithms, discussed in Sect. 1.2.2, and NISQ
algorithms, including QNNs and quantum kernel methods, in Sect. 1.2.3. FTQC-

16 1 Introduction

based QML algorithms necessitate error-corrected quantum computers with tens of
billions of qubits—an achievement that remains far from realization. In contrast,
QNNs and quantum kernels are more flexible and can be executed on both NISQ
and FTQC devices, depending on the available resources.

As quantum hardware continues to progress, the development of QML algo-
rithms must evolve in tandem. A promising direction is to integrate FTQC
algorithms with QNNs and quantum kernel methods, creating new QML algorithms
that can be run on current quantum processors while offering enhanced quantum
advantages across various tasks.

To maintain self-consistency, this section concludes by highlighting key differ-
ences between classical and quantum machine learning models in complexity, rep-
resentational power, and scalability. QML models can achieve exponential speedups
for specific computational tasks, such as large-number factorization. They also
provide enhanced representational power through superposition and entanglement,
supporting more compact and expressive data representations. Furthermore, QML
models have the potential for greater scalability compared to classical approaches,
although practical scalability is currently limited by hardware and error correction
constraints. These advantages underscore the motivation for continued exploration
of QML.

1.3 Organization of This Book

To encourage and enable computer scientists to engage with the rapidly growing
field of quantum AI, we provide this book that revisits QML algorithms from
a computer science perspective. With this aim, the book is designed to balance
theory, practical implementations, and applications, making it suitable for readers
with some background in classical machine learning. The book is divided into the
following chapters:

Chapter 2: BASICS OF QUANTUM COMPUTING. Before delving into QML, this
chapter lays the groundwork by introducing the fundamental concepts of quantum
computing. It covers the transition from classical bits to quantum bits, explains
quantum circuit models, illustrates how quantum systems interface with classical
systems through quantum read-in and read-out mechanisms, and presents some
fundamental concepts of quantum linear algebra. By the end of this chapter, you
will understand that a solid grasp of linear algebra is all you need to comprehend
the basics of quantum computing.

Chapters 3, 4, and 5: CLASSICAL ML MODELS EXTENDED TO QUANTUM

FRAMEWORKS. Each of these chapters follows a consistent structure, starting
with a review of the classical model and progressing to its quantum extension—
quantum kernel methods in Chap. 3, quantum neural networks in Chap. 4, and
quantum Transformers in Chap. 5. This unified structure enables readers to clearly
understand how classical machine learning models can be translated into quantum
implementations and how quantum computers may offer computational advantages.

1.3 Organization of This Book 17

Appendix
The appendix serves as a supplementary resource, providing the essential math-
ematical tools that are omitted from the main text for brevity. In particular, it
includes basic introduction of concentration inequalities, the Haar measure, and
other foundational concepts relevant to the book.

To provide a clear and comprehensive learning experience, each chapter is
composed of the following parts:

1. Classical foundations and quantum model construction. Each chapter begins
with a review of the classical version of the model, ensuring that readers are
well acquainted with the foundational concepts before exploring their quantum
adaptations. After this review, we introduce quantum versions of the models,
focusing on implementations based on NISQ, FTQC, or both.

2. Theoretical analysis. There is nothing more practical than a good theory. In
this book, each chapter provides a theoretical analysis of the learnability of
QML models, focusing on key aspects such as expressivity, trainability, and
generalization capabilities.

To ensure a balance between depth and self-consistency, this book provides
proof for the most significant theoretical results, as highlighted by theorems and
lemmas. For results that are less central to the main content of this book, we
present them as facts and include appropriate references, allowing readers to
easily locate the complete proofs if desired.

3. Code implementation. “Talk is cheap, show me the code.” To provide a practical,
hands-on learning experience, each chapter includes code implementations
using real-world datasets (to be specified). This section walks readers through
the process of implementing quantum models on simulated or real quantum
hardware. All numerical examples illustrated in this book are available in https://
qml-tutorial.github.io/, accompanied by Jupyter Notebooks.

Instead of building everything from scratch, the well-established PennyLane
library is employed for implementation [63]. This choice does not imply any
specific preference. Other quantum computing libraries, such as Qiskit [64],
Cirq [65], and TensorFlow Quantum [66], can also be used, offering similar
capabilities and flexibility. A brief summary of these quantum computing tools
is listed in Table 1.4.

4. Frontier topics and future directions. Each chapter concludes with an exploration
of cutting-edge topics and emerging challenges in the field. This part highlights
open research problems, ongoing developments, and potential future directions
for the quantum versions of each model, providing insights into where the field
may be headed.

https://qml-tutorial.github.io/
https://qml-tutorial.github.io/
https://qml-tutorial.github.io/
https://qml-tutorial.github.io/
https://qml-tutorial.github.io/

18 1 Introduction

Table 1.4 Summary of quantum software tools for quantum machine learning

Tool Support device Integration Key features

PennyLane IBM, Rigetti, IonQ,
AQT, Xanadu

TensorFlow, PyTorch,
JAX

Automatic differentiation for
quantum circuits, extensive
library of QML applications

Qiskit IBM Quantum Python, scikit-learn,
PyTorch

Open-source, supports both
simulation and real hardware
execution

Cirq Google Sycamore TensorFlow
Quantum, NumPy

Low-level quantum circuit
design, fine control over gate
execution

TFQ Simulated backend,
Cirq-compatible
devices

TensorFlow Integrated with TensorFlow
for deep learning
applications, quantum data
processing

QuTiP Simulated backends NumPy, SciPy Efficient simulations of
noisy quantum systems,
visualization tools for
quantum dynamics

References

1. Feynman, R. P. (2017). Quantum mechanical computers. Between Quantum and Cosmos,
16(6), 523–548.

2. Watrous, J. (2008). Quantum computational complexity. arXiv preprint arXiv:0804.3401.
3. Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Review, 41(2), 303–332.
4. Gidney, C., & Ekerå, M. (2021). How to factor 2048 bit RSA integers in 8 hours using 20

million noisy qubits. Quantum, 5, 433.
5. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum

machine learning. Nature, 549(7671), 195–202.
6. Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,

A., Wu, J., & Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361

7. Benioff, P. (1982). Quantum mechanical hamiltonian models of turing machines. Journal of
Statistical Physics, 29, 515–546.

8. Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information: 10th
anniversary edition (2nd ed.). Cambridge University Press. ISBN 1-10-700217-6.

9. Raussendorf, R., & Briegel, H. J. (2001). A one-way quantum computer. Physical Review
Letters, 86(22), 5188.

10. Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern
Physics, 90(1), 015002.

11. Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1),
2–30.

12. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212–219).

13. Herman, D., Googin, C., Liu, X., Sun, Y., Galda, A., Safro, I., Pistoia, M., & Alexeev, Y.
(2023). Quantum computing for finance. Nature Reviews Physics, 5(8), 450–465.

https://pennylane.ai/
https://qiskit.org/
https://quantumai.google/cirq
https://www.tensorflow.org/quantum
http://qutip.org/

References 19

14. Santagati, R., Aspuru-Guzik, A., Babbush, R., Degroote, M., Gonzalez, L., Kyoseva, E., Moll,
N., Oppel, M., Parrish, R. M., Rubin, N. C., et al. (2024). Drug design on quantum computers.
Nature Physics, 20(4), 549–557.

15. Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana,
G., Dunjko, V., Egger, D. J., Elmegreen, B. G., et al. (2024). Challenges and opportunities in
quantum optimization. Nature Reviews Physics, 6, 1–18.

16. Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D., & Gambetta, J. M. (2019). Validating
quantum computers using randomized model circuits. Physical Review A, 100(3), 032328.

17. Wack, A., Paik, H., Javadi-Abhari, A., Jurcevic, P., Faro, I., Gambetta, J. M., & Johnson, B. R.
(2021). Quality, speed, and scale: Three key attributes to measure the performance of near-term
quantum computers. arXiv preprint arXiv:2110.14108.

18. Kechedzhi, K., Isakov, S. V., Mandrà, S., Villalonga, B., Mi, X., Boixo, S., & Smelyanskiy,
V. (2024). Effective quantum volume, fidelity and computational cost of noisy quantum
processing experiments. Future Generation Computer Systems, 153, 431–441.

19. Arunachalam, S., & De Wolf, R. (2017). Guest column: A survey of quantum learning theory.
ACM Sigact News, 48(2), 41–67.

20. Anshu, A., & Arunachalam, S. (2024). A survey on the complexity of learning quantum states.
Nature Reviews Physics, 6(1), 59–69.

21. Harrow, A. W., & Montanaro, A. (2017). Quantum computational supremacy. Nature,
549(7671), 203–209.

22. Kim, Y., Eddins, A., Anand, S., Wei, K. X., Van Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu,
Y., Zaletel, M., Temme, K., et al. (2023). Evidence for the utility of quantum computing before
fault tolerance. Nature, 618(7965), 500–505.

23. Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine
learning. Contemporary Physics, 56(2), 172–185.

24. Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum
domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001.

25. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &
Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics,
91(4), 045002.

26. Cheng, B., Deng, X.-H., Gu, X., He, Y., Hu, G., Huang, P., Li, J., Lin, B.-C., Lu, D., Lu, Y.,
et al. (2023). Noisy intermediate-scale quantum computers. Frontiers of Physics, 18(2), 21308.

27. Huang, H.-L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting quantum computing: A
review. Science China Information Sciences, 63, 1–32.

28. Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum
computing: Progress and challenges. Applied Physics Reviews, 6(2), 021314.

29. Morgado, M., & Whitlock, S. (2021). Quantum simulation and computing with Rydberg-
interacting qubits. AVS Quantum Science, 3(2), 1–36.

30. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
31. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S.,

Brandao, F. G. S. L., Buell, D. A., et al. (2019). Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779), 505–510.

32. Wu, Y., Bao, W.-S., Cao, S., Chen, F., Chen, M.-C., Chen, X., Chung, T.-H., Deng, H., Du,
Y., Fan, D., et al. (2021). Strong quantum computational advantage using a superconducting
quantum processor. Physical Review Letters, 127(18), 180501.

33. Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of
equations. Physical Review Letters, 103(15), 150502.

34. Montanaro, A. (2016). Quantum algorithms: An overview. NPJ Quantum Information, 2(1),
1–8.

35. Dalzell, A. M., McArdle, S., Berta, M., Bienias, P., Chen, C.-F., Gilyén, A., Hann, C. T.,
Kastoryano, M. J., Khabiboulline, E. T., Kubica, A., et al. (2023). Quantum algorithms: A
survey of applications and end-to-end complexities. arXiv preprint arXiv:2310.03011.

36. Lloyd, S., Mohseni, M., & Rebentrost, P. (September 2014). Quantum principal component
analysis. Nature Physics, 10(9), 631–633. ISSN 1745-2481. https://doi.org/10.1038/nphys3029

https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029

20 1 Introduction

37. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data
classification. Physical Review Letters, 113(13), 130503.

38. Gilyén, A., Su, Y., Low, G. H., & Wiebe, N. (2019). Quantum singular value transformation
and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19. ACM, June 2019.
https://doi.org/10.1145/3313276.3316366

39. Chen, Z., Lu, Y., Wang, H., Liu, Y., & Li T. (2023). Quantum langevin dynamics for
optimization. arXiv preprint arXiv:2311.15587.

40. Liu, J., Liu, M., Liu, J.-P., Ye, Z., Wang, Y., Alexeev, Y., Eisert, J., & Jiang, L. (2024).
Towards provably efficient quantum algorithms for large-scale machine-learning models.
Nature Communications, 15(1), 434.

41. Aaronson, S. (2015). Read the fine print. Nature Physics, 11(4), 291–293.
42. Giovannetti, V., Lloyd, S., & Maccone, L. (2008). Quantum random access memory. Physical

Review Letters, 100(16), 160501.
43. Havlicek, V., Corcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., &

Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747), 209–212.

44. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R.,
Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews
Physics, 3(9), 625–644.

45. Li, W., & Deng, D.-L. (2022). Recent advances for quantum classifiers. Science China Physics,
Mechanics & Astronomy, 65(2), 220301.

46. Tian, J., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., Yi, W., Huang, W., Wang, C., Wu,
X., et al. (2023). Recent advances for quantum neural networks in generative learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(10), 12321–12340

47. Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote,
M., Heimonen, H., Kottmann, J. S., enke, T., et al. (2022). Noisy intermediate-scale quantum
algorithms. Reviews of Modern Physics, 94(1), 015004.

48. Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., & Coles, P. J. (2022). Challenges and
opportunities in quantum machine learning. Nature Computational Science, 2(9), 567–576.

49. Du, Y., Huang, T., You, S., Hsieh, M.-H., & Tao, D. (2022). Quantum circuit architecture search
for variational quantum algorithms. NPJ Quantum Information, 8(1), 62.

50. Stokes, J., Izaac, J., Killoran, N., & Carleo, G. (2020). Quantum natural gradient. Quantum, 4,
269.

51. Sim, S., Romero, J., Gonthier, J. F., & Kunitsa, A. A. (2021). Adaptive pruning-based
optimization of parameterized quantum circuits. Quantum Science and Technology, 6(2),
025019.

52. Wang, X., Liu, J., Liu, T., Luo, Y., Du, Y., & Tao, D. (2023). Symmetric pruning in quantum
neural networks. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=K96AogLDT2K

53. Lu, S., Duan, L.-M., & Deng, D.-L. (Aug 2020). Quantum adversarial machine learning.
Physical Review Research, 2, 033212. https://doi.org/10.1103/PhysRevResearch.2.033212

54. Jiang, W., Lu, Z., & Deng, D.-L. (May 2022). Quantum continual learning overcoming
catastrophic forgetting. Chinese Physics Letters, 39(5), 050303. https://doi.org/10.1088/0256-
307X/39/5/050303

55. Zhang, C., Lu, Z., Zhao, L., Xu, S., Li, W., Wang, K., Chen, J., Wu, Y., Jin, F., Zhu, X.,
et al. (2024). Quantum continual learning on a programmable superconducting processor. arXiv
preprint arXiv:2409.09729.

56. Du, Y., Hsieh, M.-H., Liu, T., Tao, D., & Liu, N. (2021). Quantum noise protects quantum
classifiers against adversaries. Physical Review Research, 3(2), 023153.

57. Watkins, W. M., Chen, S. Y.-C., & Yoo, S. (2023). Quantum machine learning with differential
privacy. Scientific Reports, 13(1), 2453. https://doi.org/10.1038/s41598-022-24082-z

58. Du, Y., Qian, Y., Wu, X., & Tao, D. (2022). A distributed learning scheme for variational
quantum algorithms. IEEE Transactions on Quantum Engineering, 3, 1–16.

https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1103/PhysRevResearch.2.033212
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1088/0256-307X/39/5/050303
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z
https://doi.org/10.1038/s41598-022-24082-z

References 21

59. Sheng, Y.-B., & Zhou, L. (2017). Distributed secure quantum machine learning. Science
Bulletin, 62(14), 1025–1029.

60. Ren, C., Yan, R., Zhu, H., Yu, H., Xu, M., Shen, Y., Xu, Y., Xiao, M., Dong, Z. Y., Skoglund,
M., et al. (2023). Towards quantum federated learning. arXiv preprint arXiv:2306.09912.

61. Pira, L., & Ferrie, C. (2024). On the interpretability of quantum neural networks. Quantum
Machine Intelligence, 6(2), 52.

62. Banchi, L., Pereira, J. L., Jose, S. T., & Simeone, O. (2023). Statistical complexity of quantum
learning. Advanced Quantum Technologies, 2300311.

63. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso-
Linaje, G., AkashNarayanan, B., Asadi, A., et al. (2018). Pennylane: Automatic differentiation
of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968.

64. Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J., Lishman, J., Gacon, J., Martiel, S.,
Nation, P. D., Bishop, L. S., Cross, A. W., et al. (2024). Quantum computing with qiskit. arXiv
preprint arXiv:2405.08810.

65. Cirq Developers. (May 2024). Cirq. https://doi.org/10.5281/zenodo.11398048.
66. Broughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H., Isakov, S. V., Massey, P.,

Halavati, R., Niu, M. Y., Zlokapa, A., et al. (2020). Tensorflow quantum: A software framework
for quantum machine learning. arXiv preprint arXiv:2003.02989.

https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048

Chapter 2
Basics of Quantum Computing

Abstract This chapter introduces the fundamental concepts of quantum computa-
tion, such as quantum states, quantum circuits, and quantum measurements, along
with key topics in quantum machine learning, including quantum read-in, quantum
read-out, and quantum linear algebra. These foundational elements are essential
for understanding quantum machine learning algorithms and will be repeatedly
referenced throughout the subsequent chapters. This chapter is organized into six
sections: Sect. 2.1 introduces quantum bits and their mathematical representations;
Sect. 2.2 covers quantum circuits, including quantum gates, quantum channels,
and quantum measurements; Sect. 2.3 discusses how to encode classical data into
quantum systems and extract classical information from quantum states; Sect. 2.4
explores concepts in quantum linear algebra; Sect. 2.5 provides practical coding
exercises to reinforce these concepts; and finally, Sect. 2.6 presents recent advance-
ments in efficient quantum read-in and read-out techniques, as well as developments
in quantum linear algebra for further exploration.

This chapter introduces the fundamental concepts of quantum computation, includ-
ing quantum states, quantum circuits, and quantum measurements. Key topics in
quantum machine learning are also presented, such as quantum read-in methods,
quantum read-out methods, and quantum linear algebra. These foundational ele-
ments are essential for understanding quantum machine learning algorithms and are
referenced throughout the subsequent chapters.

This chapter is organized as follows. Section 2.1 introduces quantum bits and
their mathematical representations. Section 2.2 covers quantum circuits, including
quantum gates, quantum channels, and quantum measurements. Section 2.3 dis-
cusses how to encode classical data into quantum systems and extract classical
information from quantum states. Section 2.4 delves into quantum linear algebra;
Sect. 2.5 provides practical coding exercises to reinforce these concepts. Finally,
Sect. 2.6 presents recent advancements in efficient quantum read-in and read-out
techniques for further exploration.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2
https://doi.org/10.1007/978-981-95-1284-3_2

24 2 Basics of Quantum Computing

2.1 From Classical Bits to Quantum Bits

In this section, quantum bits (qubits) are defined and the mathematical tools used to
describe quantum states are presented. The discussion begins with classical bits and
then transitions to their quantum counterparts. Interested readers are recommended
to consult the textbook [1] for the detailed explanations.

2.1.1 Classical Bits

In classical computing, a bit is the basic unit of information, which can exist in
one of two distinct states: 0 or 1. Each bit holds a definite value at any given time.
When multiple classical bits are used together, they can represent more complex
information. For instance, a set of three bits can represent 23 = 8. distinct states,
ranging from 000 to 111.

2.1.2 Quantum Bits (Qubits)

Analogous to the role of “bit” in classical computation, the basic element in quantum
computation is the quantum bit (qubit). The representation of single-qubit states is
introduced first, followed by an extension to two-qubit and multi-qubit states.

Single-Qubit State A single-qubit state can be represented by a two-dimensional
vector with unit length. Mathematically, a qubit state can be written as

.a = a1

a2
∈ C2 , (2.1)

where |a1|2 + |a2|2 = 1. satisfies the normalization constraint. Following conven-
tions in quantum theory, Dirac notation is used to represent vectors [1]. That is, the
vector a . is denoted by |a . (named “ket”) with

.|a a1|0 a2|1 , (2.2)

where |0 e0 ≡ 1
0

. and |1 e1 ≡ 0
1

. are two computational (unit) basis

states. In this representation, the coefficients a1 . and a2 . are referred to as amplitudes.
The probabilities of obtaining the outcomes 0 or 1 upon measurement of the qubit
are given by |a1|2 . and |a2|2 ., respectively. The normalization constraint ensures that
these probabilities always sum to one, as required by the probabilistic nature of
quantum mechanics. In addition, the conjugated transpose of a ., i.e., a†

., is denoted

2.1 From Classical Bits to Quantum Bits 25

by a|. (named “bra”) with

. a| = a∗
1 0| + a∗

2 1| ∈ C2 , (2.3)

where 0| ≡ e0 ≡ [1, 0], 1| ≡ e1 ≡ [0, 1], and the symbol “ .” denotes the
transpose operation.

The physical interpretation of coefficients {ai}. is probability amplitudes. Namely,
when information needs to be extracted from the qubit state |a . into the classical
form, quantum measurements are applied to this state, where the probability of
sampling the basis |0 . (|1 .) is |a1|2 . (|a2|2).. Recall that the classical bit only permits
the deterministic status with “0” or “1,” while the qubit state in Eq. (2.2) is the
superposition of the two status “ |0 .” and “ |1 ..”

Remark
The quantum superposition leads to a distinct power between quantum and
classical computation, where the former can accomplish certain tasks with
provable advantages.

Two-Qubit State The two qubits obey the tensor product rule, i.e.,

.
x1

x2
⊗ y1

y2
=

⎡
⎢⎢⎣

x1
y1

y2

x2
y1

y2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1y1

x1y2

x2y1

y2y2

⎤
⎥⎥⎦ , (2.4)

which differs from the classical bits yielding the Cartesian product rule.
For instance, let the first qubit follow Eq. (2.2) and the second qubit state be

|b b1|0 b2|1 . with |b1|2 + |b2|2 = 1.. The two-qubit state formed by |a . and
|b . is defined as

. |a b a1b1|0 0 a1b2|0 1 a2b1|1 0 a2b2|1 1 C
4 ,

(2.5)

where the computational basis follows |0 0
1
0
0
0

., |0 1
0
1
0
0

. , |1 0

0
0
1
0

. , |1 1
0
0
0
1

., and the coefficients satisfy 2
i=1

2
j=1 |aibj |2 = 1..

26 2 Basics of Quantum Computing

Remark
For ease of notations, the state |a b . can be simplified as |ab ., |a, b ., or
|a b .. These notations will be used interchangeably throughout the book.

Example 2.1 A typical example of a two-qubit state is the Bell state, which
represents a maximally entangled quantum state of two qubits. There are four
types of Bell states, expressed ass

. |φ+ 1√
2

(|00 11) ,

|φ− 1√
2

(|00 11) ,

|ψ+ 1√
2

(|01 10) ,

|ψ− 1√
2

(|01 10) . (2.6)

Each Bell state is a superposition of two computational basis states in the
four-dimensional Hilbert space.

Multi-qubit State The above two-qubit case can now be generalized to the N -qubit
case with N > 2.. In particular, an N -qubit state |ψ . is a 2N

.-dimensional vector with

.|ψ
2N

i=1

ci |i C
2N

, (2.7)

where the coefficients satisfy the normalization constraint 2N

i=1 |ci |2 = 1. and the
symbol “i” of the computational basis |i . refers to a bit-string with i ∈ {0, 1}N ..
As with the single-qubit case, the physical interpretation of coefficients {ci}. is
probability amplitudes, where the probability to sample the bit-string “i” is |ci |2 ..
When the number of nonzero entries in c = [c1, . . . , ci , . . . , c2N] . is larger than
one, which implies that different bit-strings are coexisting coherently, the state |ψ .

is called in superposition.

2.1 From Classical Bits to Quantum Bits 27

Remark
In quantum computing, a basis state |i . refers to a computational basis state
in the Hilbert space of a quantum system. For an N -qubit system, the compu-
tational basis states are represented as |i 0 · · · 0 , |0 · · · 1 , . . . , |1 · · · 1 .,
where i is the binary representation of the state index. These states form an
orthonormal basis of the 2N

.-dimensional Hilbert space, satisfying

. i|j δij ,∀i, j ∈ 2N . (2.8)

These basis states are fundamental for representing and analyzing quantum
states, as any arbitrary quantum state can be expressed as a linear combination
of these basis states.

Moreover, the size of c. exponentially scales with the number of qubits
N , attributed to the tensor product rule. This exponential dependence is an
indispensable factor to achieve quantum supremacy [2], since it is extremely
expensive and even intractable to record all information of c. by classical
devices for the modest number of qubits, e.g., N > 100..

Entangled Multi-qubit State A fundamental phenomenon in multi-qubit quantum
systems is entanglement, which represents a nonclassical correlation between
quantum systems that cannot be explained by classical physics. As proved by Jozsa
and Linden [3], quantum entanglement is an indispensable component to offer an
exponential speedup over classical computation. A representative example is Shor’s
algorithm, which utilizes entanglement to attain an exponential speedup over any
classical factoring algorithm. In an entangled quantum state, the state of one qubit
cannot be fully described independently of the other qubits, even if they are spatially
separated. The formal definition of entanglement for states in Dirac notation is as
follows.

Definition 2.1 (Entanglement for States in Dirac Notation) An N -qubit state
|ψ C

2N
. is entangled if it cannot be expressed as the tensor product of states

of its subsystems A and B :

.|ψ = |ψa ψb , ∀|ψa C
2NA

, |ψb C
2NB

,NA + NB = N. (2.9)

If the state can be expressed in this form, it is referred to as seperable.

28 2 Basics of Quantum Computing

Example 2.2 (GHZ State) A typical example of an entangled N -qubit
state is the Greenberger–Horne–Zeilinger (GHZ) state [4]. GHZ state is a
generalization of the two-qubit Bell state (see Example 2.1) to a maximally
entangled N -qubit state. The general form of an N -qubit GHZ state is

.|GHZN

1√
2

|0 ⊗N + |1 ⊗N . (2.10)

For N = 3., the GHZ state is

.|GHZ3
1√
2

(|000 111) . (2.11)

A key property of the entangled states (e.g., Bell states and GHZ states) is that
measuring one qubit determines the outcome of measuring the other qubit, reflecting
their strong quantum correlation.

2.1.3 Density Matrix

Another description of quantum states is through density matrix or density opera-
tors. The reason for establishing density operators instead of Dirac notations arises
from the imperfection of physical systems. Specifically, Dirac notations introduced
in Sect. 2.1.2 are used to describe “ideal” quantum states (i.e., pure states), where
the operated qubits are isolated from the environment. Alternatively, when the
operated qubits interact with the environment unavoidably, the density operators
are employed to describe the behavior of quantum states living in this open system.
As such, density operators describe more general quantum states.

Mathematically, an N -qubit density operator, denoted by ρ ∈ C2N×2N
., presents

a mixture of m quantum pure states |ψi C
2N

. with probability pi ∈ [0, 1]. and
m
i=1 pi = 1.. That is,

.ρ =
m

i=1

piρi , (2.12)

2.1 From Classical Bits to Quantum Bits 29

where ρi = |ψi ψi | ∈ C2N×2N
. is the outer product of the pure state |ψi .. The

outer product of two vectors |u , |v C
n
. is expressed as

.|u v| =

⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ v∗

1 v∗
2 · · · v∗

n =

⎡
⎢⎢⎢⎣

u1v
∗
1 u1v

∗
2 · · · u1v

∗
n

u2v
∗
1 u2v

∗
2 · · · u2v

∗
n

...
...

. . .
...

unv
∗
1 unv

∗
2 · · · unv

∗
n

⎤
⎥⎥⎥⎦ , (2.13)

where ui . and v∗
i . are the element of |u . and the conjugate transpose v|., respectively.

From the perspective of computer science, the density operator ρ . is just a positive
semi-definite matrix with trace-preserving, i.e., 0 ρ . and Tr(ρ) = 1..

Definition 2.2 (Positive Semi-definite Matrix) A matrix A ∈ Cn×n
. is positive

semi-definite (PSD) if it satisfies the following conditions:

1. A is Hermitian: A = A†
..

2. For any nonzero vector |v C
n
., v| A|v 0., where v| A|v . represents the

quadratic form of A with respect to |v ..

When m = 1., the density operator ρ . amounts to a pure state with ρ = |ψ1 ψ1|..
When m > 1., the density operator ρ . describes a “mixed” quantum state, where the
rank of ρ . is larger than 1. A simple criterion distinguishes pure states from mixed
states: a pure state m = 1. yields Tr(ρn) = Tr(ρ) = 1. for any n ∈ N+ .. Conversely,
a mixed state with m > 1. satisfies Tr(ρn) < Tr(ρ) = 1. for any n ∈ N+ \ {1}., as its
rank is greater than 1. Similar to Definition 2.1 for entanglement of pure states, the
entanglement of mixed states can also be defined.

Definition 2.3 (Entanglement for Mixed States) Let ρ . be a density operator
acting on a composite Hilbert space HA ⊗HB .. The state ρ . is said to be entangled
if it cannot be expressed as

.ρ =
i

pi ρ
(i)
A ⊗ ρ

(i)
B , (2.14)

where pi ≥ 0., i pi = 1., and ρ
(i)
A . and ρ

(i)
B . are density operators on HA . and HB .,

respectively. If ρ . can be written in this form, it is called separable.

Example 2.3 (Density Matrix Representations)

(i) Consider the single-qubit pure state |ψ 1√
2
(|0 1).. The corre-

sponding density operator is

. ρ = |ψ ψ | = 1

2
1 1
1 1

.

(continued)

30 2 Basics of Quantum Computing

Example 2.3 (continued)
Here, Tr ρ2 = Tr(ρ) = 1., confirming that it is a pure state.

(ii) Consider the classical probabilistic mixture of |0 .and |1 ., each with equal
probability p = 0.5.. The density operator is

. ρ = 0.5|0 0| + 0.5|1 1| = 1

2
1 0
0 1

.

In this case, Tr ρ2 = 0.5 < Tr(ρ) = 1., indicating it is a mixed state.

2.2 From Digital Logic Circuit to Quantum Circuit Model

To process quantum states, quantum computation is introduced, with the quantum
circuit model serving as a fundamental framework. This section begins with classi-
cal computation in Sect. 2.2.1 and transitions to details about the quantum circuit
model in Sect. 2.2.2, including quantum gates, quantum channel, and quantum
measurements.

2.2.1 Classical Digital Logic Circuit

Digital logic circuits are the foundational building blocks of classical computing
systems. They process classical bits by performing logic operations through logic
gates. In this subsection, the essential components of digital logic circuits and their
functionality are introduced, followed by a discussion of how these classical circuits
relate to quantum circuits.

2.2.1.1 Logic Gates

Logic gates are the basic components of a digital circuit. They take binary inputs,
represented as 0 or 1, and produce a binary output based on a predefined logic
operation. The most common logic gates are summarized below.

1. NOT Gate: This gate inverts the input bit, i.e., it produces 1 if the input is 0, and
vice versa. Its truth table is shown in Table 2.1.

2. AND Gate: Produces an output of 1 only if both input bits are 1; otherwise, it
outputs 0. The truth table is shown in Table 2.2.

2.2 From Digital Logic Circuit to Quantum Circuit Model 31

Table 2.1 Input-output
mapping of the NOT gate

Input (A) Output (NOT A)

0 1

1 0

Table 2.2 Input-output
mapping of the AND gate

Input (A) Input (B) Output (A AND B)

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.3 Input-output
mapping of the OR gate

Input (A) Input (B) Output (A OR B)

0 0 0

0 1 1

1 0 1

1 1 1

Table 2.4 Input-output
mapping of the XOR gate

Input (A) Input (B) Output (A XOR B)

0 0 0

0 1 1

1 0 1

1 1 0

3. OR Gate: Outputs 1 if at least one input is 1. The truth table is shown in
Table 2.3.

4. XOR Gate: Produces an output of 1 if the inputs are different and 0 otherwise.
The truth table is shown in Table 2.4.

These logic gates can be combined in various configurations to build more
complex circuits capable of performing arbitrary arithmetic operations.

2.2.1.2 Circuit Design and Universality

A classical digital logic circuit is composed of interconnected gates designed to
perform specific tasks, such as addition or multiplication. A key property of these
circuits is universality, meaning any logic function can be implemented using a
finite set of gates. For example, the NAND Gate (NOT AND) and NOR Gate (NOT
OR) are universal gates. Any other logic operation can be constructed using only
NAND or NOR gates [5].

32 2 Basics of Quantum Computing

2.2.2 Quantum Circuit

Classical digital logic circuits provide the essential framework for understanding
computation. While classical circuits operate on bits and perform deterministic
operations, quantum circuits manipulate qubits and involve probabilistic behavior.
The concepts of logic gates, circuit design, and universality lay the groundwork for
transitioning to quantum circuits introduced in this subsection.

2.2.2.1 Quantum Gate

Recall that the computational toolkit for classical computers is logic gates, e.g.,
NOT, AND, OR, and XOR, which are applied to the single bit or multiple
bits to accomplish computation. Similarly, the computational toolkit for quantum
computers (or quantum circuits) is quantum gate, which operates on qubits
introduced in Sect. 2.1.2 to complete the computation. Both single-qubit and multi-
qubit gates are introduced in the following.

Single-Qubit Gates Single-qubit gates control the evolution of the single-qubit
state |a .. Due to the law of quantum mechanics, the evolved state should satisfy
the normalization constraint. The implication of this constraint is that the evolution
must be a unitary operation. Concretely, denoted U ∈ C2×2

. as a linear operator and
the evolved state as

.|â U |a â1|0 â2|1 C
2 , (2.15)

the summation of coefficients |â1|2+|â2|2 â|â a|U†U |a . is equal to 1 if and
only if U is unitary with U†U = UU† = I2 .. The symbol “ †.” denotes the conjugate
transpose operation. Under the density operator representation, the evolution of |a .

yields

.ρ̂ = UρU† , (2.16)

where ρ̂ = |â â|. and ρ = |a a|..
Several common single-qubit gates, including Pauli-X, Pauli-Y, Pauli-Z,

Hadamard, and rotational single-qubit gates about the X, Y, and Z axes
(RX, RY, RZ.), are illustrated in Fig. 2.1. According to Theorem 4.1 in [1], any
unitary operation on a single qubit can be decomposed into a sequence of rotations
as

.U = RZ(α) RY(β) RZ(γ), (2.17)

where α, β, γ ∈ [0, 2π)., up to a global phase shift.

2.2 From Digital Logic Circuit to Quantum Circuit Model 33

Quantum gate Matrix form Circuit representation

Pauli-X (X)
0 1
1 0 X

Pauli-Y (Y)
0 −i
i 0 Y

Pauli-Z (Z)
1 0
0 −1 Z

Hadamard (H)
1√
2

1 1
1 −1 H

Controlled-Z (CZ)

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠
Z

RX(θ)
cos θ

2 − i sin θ
2

− i sin θ
2 cos θ

2
Rx(θ)

RY(θ)
cos θ

2 − sin θ
2

sin θ
2 cos θ

2
Ry(θ)

RZ(θ)
e− i θ/2 0

0 e i θ/2 Rz(θ)

SWAP

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

Controlled-NOT (CNOT)

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

Fig. 2.1 The summarization of quantum gates

|a
input state U

|â
evolved state

= |a
input state RZ(α) RY(β) RZ(γ) |â

evolved state

Fig. 2.2 The evolution of the single-qubit state decomposed into the quantum gates

The evolution from |a . to |â . can be visualized using a quantum circuit diagram,
as illustrated in Fig. 2.2. The wire in the circuit represents a qubit, which evolves
from the initial state |a . on the left to the final state |â . on the right. Gates are
applied sequentially from left to right along the wire.

34 2 Basics of Quantum Computing

Remark
The circuit model serves as a foundational framework for describing quantum
computation due to its intuitive and modular nature, making it accessible for
researchers and practitioners transitioning from classical to quantum com-
puting. First, the circuit model provides a standardized graphical language
to represent complex quantum algorithms, enabling clear visualization of the
computational flow and interactions among qubits. Second, the modularity of
the circuit model allows quantum operations to be easily decomposed into a
predefined gate set, ensuring compatibility across different quantum hardware
architectures.

Multi-qubit Gates The evolution of the N -qubit quantum state can be effectively
generalized by the single-qubit case. That is, the unitary operator U ∈ C2N×2N

.

evolves an N -qubit state |ψ . in Eq. (2.7) as

.|ψ U |ψ C
2N

. (2.18)

The evolution of |ψ . under the density operator representation is denoted by ρ̂ =
UρU†

., where ρ̂ = |ψ ψ |. and ρ = |ψ ψ |..

Remark
In the view of computer science, the quantum (logic) gates in Fig. 2.1 are
well-designed matrices with the following properties. First, all quantum gates
are unitary (e.g., X X† = I2 .). Second, X., Y., Z., H. gates have the fixed form
with size 2 × 2.; CNOT., CZ., and SWAP. gates have the fixed form with size
4 × 4.. Third, RX(θ)., RY(θ)., RZ(θ). gates are matrices controlled by a single
variable θ ..

Figure 2.1 includes two significant multi-qubit gates: the controlled-Z (CZ) gate
and the controlled-NOT (CNOT) gate. For instance, the CNOT gate operates on two
qubits: a control qubit (top line) and a target qubit (bottom line). If the control qubit
is 0, the target qubit remains unchanged; if the control qubit is 1, the target qubit is
flipped.

2.2 From Digital Logic Circuit to Quantum Circuit Model 35

U

|0 H

|0

|0

1√
2
(|000 + |111)

Fig. 2.3 The decomposition of the multi-qubit circuit U in the case of N = 3.

Example 2.4 (State Evolved by Multi-qubit Gates) Figure 2.3 illustrates
the evolution of a 3-qubit state |ψ . under a multi-qubit circuit consisting of
multi-qubit gates. Each wire represents a qubit, and the evolution occurs from
left to right. Starting with the initial state |ψ 000 ., a Hadamard gate is
applied to the first qubit, followed by two CNOT gates. That is, the first one
acts on the first and second qubits, and the other acts on the second and third
qubits. The final evolved state, shown on the right, is the GHZ state introduced
in Example 2.2, i.e., |ψ U |ψ 1√

2
(|000 111).. The entire unitary

operation can be represented as

.U = (I2 ⊗ CNOT)(CNOT ⊗I2)(H ⊗I4). (2.19)

Remark
The CNOT gate plays a pivotal role in quantum computing due to its unique
ability to generate entangled states, such as the Bell states and GHZ states
presented in Examples 2.1 and 2.2. Besides, the CNOT gate is one of the
most commonly implemented gates on quantum hardware. Its design and
optimization directly impact the fidelity and scalability of quantum systems.

A Universal Quantum Gate Set While many single and multi-qubit gates exist,
it is sufficient to use a universal set of gates to construct any unitary operation.
As proved in Chapter 4.5.2 of Ref. [1], any unitary operator U in Eq. (2.18) can be
decomposed into the single-qubit and two-qubit gates with a certain arrangement.

36 2 Basics of Quantum Computing

Fact 2.1 (Solovay-Kitaev Theorem, [6]) Consider a fixed universal gate set G.,
which generates a dense group SU(d).. Then, any unitary operator U ∈ SU(d). can
be approximated to an arbitrary precision 0. by a finite sequence of gates from
G.. Formally, there exists a decomposition such that

. U −
L

l=1

Gl

op

≤ l ∈ G, L ∈ N, (2.20)

where · op . is the operator norm which is the largest singular value of a matrix
and L is the required number of gates that scales as

.L = O logc(1 , (2.21)

with c ≈ 4..

A commonly used universal gate set includes single-qubit rotations RX(θ)., RY(θ).,
RZ(θ)., and two-qubit gates such as the CNOT. gate. As illustrated in Fig. 1.1, any
ideal quantum computation can be represented by a unitary operator. This universal
gate set provides a practical and foundational toolkit for implementing arbitrary
quantum algorithms.

2.2.2.2 Quantum Channels

Analogous to the unitary operation describing the evolution of quantum states in the
closed system, the quantum channel formalizes the evolution of quantum states in
the open system. Refer to the textbook [7] for more details.

Mathematically, every quantum channel N(·). can be treated as a linear, com-
pletely positive, and trace-preserving map (CPTP map).

Definition 2.4 (CPTP Map) Denote L(H). as the space of square linear operators
acting on the Hilbert space H.. Then,N(·). is a CPTP map if the following conditions
are satisfied:

• Linearity means that for any XA, YA ∈ L(HA). and a, b ∈ C., N(aXA + bYA) =
aN(XA) + bN(YA)..

• A linear map N : L(HA) → L(HB). is a positive map if N(XA). is positive
semi-definite for all positive semi-definite operators XA ∈ L(HA).. Furthermore,
a linear mapN : L(HA) → L(HB). is completely positive if IR ⊗N. is a positive
map for any size of R.

• Trace preservation means that Tr(N(XA)) = Tr(XA). for any XA ∈ L(HA)..

A quantum channel can be represented by the Choi–Kraus decomposition [1].
Mathematically, let L(HA,HB). denote the space of linear operators taking HA . to

2.2 From Digital Logic Circuit to Quantum Circuit Model 37

HB .. The Choi–Kraus decomposition of the quantum channel N(·) : L(HA) →
L(HB). is

.N(XA) =
d

a=1

MaXAM†
a (2.22)

where XA ∈ L(HA)., Ma ∈ L(HA,HB)., d
a=1 M†

aMa = Idim(HA) ., and d ≤
dim(HA)dim(HB).. Here, dim(H∗). refers to the dimension of the spaceH∗ ..

Two common types of quantum channels are introduced next, which are widely
used to simulate noise in quantum devices.

The first type is the depolarizing channel, which considers the scenario such that
the information of the input state can be entirely lost with some probability.

Definition 2.5 (Depolarization Channel) Given an N -qubit quantum state ρ ∈
C

2N×2N
., the depolarization channel Np . acts on a 2N

.-dimensional Hilbert space as
follows

.Np(ρ) = (1 − p)ρ + p
I2N

2N
, (2.23)

where I2N /2N
. refers to the maximally mixed state and p is a scalar representing the

depolarization r ate.

Example 2.5 (Single-Qubit State with Depolarization Channel) Consider
a single-qubit pure state ρ = |0 0|. with the density matrix

.ρ = |0 0| = 1 0
0 0

. (2.24)

When the depolarizing channel Np . acts on this state, the output is given by

.Np(ρ) = (1 − p)
1 0
0 0

+ p

2
1 0
0 1

= 1 − p
2 0

0 p
2

. (2.25)

Therefore, the purity is inferred as

. Tr N2
p(ρ) = 1 − p + p2

2
. (2.26)

When p = 0., the state remains pure and unchanged. When 0 < p ≤ 1., the
state becomes a mixture of states |0 . and |1 . with Tr(N2

p(ρ)) < 1.. When
p = 1., the state evolves into the maximally mixed state.

38 2 Basics of Quantum Computing

The second type is the Pauli channel, which serves as a dominant noise source
in many computing architectures and as a practical model for analyzing error
correction [8].

Definition 2.6 (Single-Qubit Pauli Channel) Given a quantum state ρ ∈ C2×2
.,

the single-qubit Pauli channel Np . acts on this state as follows

.Np(ρ) = pIρ + pX X ρ X +pY Y ρ Y +pZ Z ρ Z , (2.27)

where p = (pI , pX, pY , pZ). and pI + pX + pY + pZ = 1..

Note that for a single-qubit system, the depolarization channelNp . is a special Pauli
channel by setting pX = pY = pZ = p ..

Example 2.6 (Single-Qubit State with Pauli Channel) Consider a single-
qubit pure state ρ = |0 0|. with the density matrix:

.ρ = |0 0| = 1 0
0 0

. (2.28)

When the Pauli channel Np . acts on this state, the output is given by

.Np(ρ) = pI
1 0
0 0

+ pX
0 0
0 1

+ pY
0 0
0 1

+ pZ
1 0
0 0

. (2.29)

= pI + pZ 0
0 pX + pY

. (2.30)

Let us analyze three special cases for the probability vector p =
(pI , pX, pY , pZ).:

• Case 1: If pX = pY = pZ = p ., the Pauli channel reduces to the
depolarization channel and the prepared state becomes

.Np(ρ) = 1 − 2p 0
0 2p

. (2.31)

• Case 2: If pY = pZ = 0., the prepared state becomes

.Np(ρ) = 1 − pX 0
0 pX

. (2.32)

In this scenario, the Pauli channel reduces to the bit-flip channel.

(continued)

2.2 From Digital Logic Circuit to Quantum Circuit Model 39

Example 2.6 (continued)
• Case 3: For other values of p., the effect of the Pauli channel on the pure

state |0 . can be interpreted as a combination of the depolarizing channel
and the bit-flip channel.

To generalize the single-qubit Pauli channel to a multi-qubit Pauli channel, the
definition is extended to account for the action of Pauli operators on multiple qubits.

Definition 2.7 (Multi-qubit Pauli Channel) Given a quantum state ρ ∈ C2N×2N
.

for an N-qubit system, the multi-qubit Pauli channel Np . acts as

.Np(ρ) =
P∈PN

pP PρP †, (2.33)

where PN = {I,X, Y,Z}⊗N
. denotes the set of all tensor products of the N single-

qubit Pauli operators and pP . is the probability of applying the Pauli operator P with

P∈PN
pP = 1..

Remark
The multi-qubit Pauli channel considers the existence of correlated Pauli noise
on different qubits. If each qubit only experiences independent single-qubit
Pauli noise, the multi-qubit channel can be written as the tensor product of
single-qubit Pauli channels:

.Np(ρ) = ⊗N
i=1Npi

(ρ), (2.34)

where Npi
. is the single-qubit Pauli channel acting on the i-th qubit with

probabilities pi = (pI , pX, pY , pZ)..

Given the motivation and definition of quantum channels, a natural question
arises: what is the relation between quantum channels and quantum gates? It is
straightforward to observe that a quantum gate is a special case of a quantum
channel. Conversely, the evolution of a quantum state can be built from a unitary
operation via isometric extension [7]. The following theorem demonstrates that any
quantum channel arises from a unitary evolution on a larger Hilbert space.

40 2 Basics of Quantum Computing

Remark
The Choi–Kraus decomposition reveals that a unitary operator is a special
case of a quantum channel. Specifically, when d = 1., the quantum channel
reduces to

.N(XA) = M1XAM†
1, (2.35)

where M1 . is a unitary operator satisfying M†
1M1 = I.. This highlights that

all unitary operators are quantum channels, but not all quantum channels are
unitary.

Theorem 2.1 ([7]) Let N(·) : L(HA) → L(HB). be a quantum channel defined
in Eq. (2.22). Let HE . be the Hilbert space of an auxiliary system. Denote the input
state as ρ . (i.e., a density operator ρ ∈ Cdim(HA)×dim(HA)

.). Then, there exists a
unitary U : L(HA ⊗HE) → L(HB ⊗HE). and a normalized vector (i.e., a pure
state) |ϕ C

dim(HE)
. such that

.N(ρ) = TrE U(ρ ⊗ |ϕ ϕ|)U† , (2.36)

where TrE(·). denotes the partial trace over the ancillary Hilbert spaceHE . and the
dimension ofHE . depends on the rank of the Kraus representation of N..

Proof Sketch of Theorem 2.1 The system is extended to include an ancillary
Hilbert space HE ., representing the environment. The combined space HA ⊗ HE .

forms a closed physical system, whose evolution can be described by a unitary
operator U acting onHB ⊗HE ..

To find a feasible unitary U , the quantum channel N. is rewritten using its
isometric extension [7], i.e.,

.N(ρ) = TrE VρV † , (2.37)

where V : HA → HB ⊗HE . is an isometry operator embedding the input state into
the larger Hilbert space. For simplicity, assume HA = HB .. The isometry operator
V can always be embedded into a unitary operator U acting onHB ⊗HE ., ensuring
that U captures the reversible evolution of the extended system.

Next, the input state ρ . is augmented by introducing an ancillary state |ϕ
HE ., yielding the combined state ρ ⊗ |ϕ ϕ|.. Substituting this augmented state and
the unitary operator U into the isometric extension in Eq. (2.37) gives Eq. (2.36).
Theorem 2.1 is thereby proven.

The translation between the unitary operation and the quantum channels
described by Theorem 2.1 can be visually explained, as shown in Fig. 2.4. In

2.2 From Digital Logic Circuit to Quantum Circuit Model 41

Fig. 2.4 The evolution of
quantum states based on
Theorem 2.1

ρ
U

N (ρ)

Trace over

Fig. 2.5 The quantum circuit
diagram with measurement

|a
input state U

this diagram, the first wire corresponds to the original input state ρ ., while the
second wire represents the initial state |ϕ . of the environment. To determine the
output of the quantum channel N. applied to ρ ., an N.-induced unitary operation U is
performed on the combined system, followed by a partial trace over the environment
to discard its information.

2.2.2.3 Quantum Measur ements

Besides quantum gates and channels, which change quantum states, measurement is
another crucial operation in quantum circuits. Its goal is to get classical information
from an evolved quantum state. Figure 2.5 shows a quantum circuit diagram: it
depicts applying a unitary U to a single-qubit state |a ., followed by a quantum
measurement.

Quantum measurements fall into two main categories: projective measurements
and positive operator-valued measures [1, 9].

Projective measurement, also known as von Neumann measurement, is described
by a Hermitian operator A = i λi |vi vi |., where {λi}. and {|vi . refer to the
eigenvalues and eigenvectors of A, respectively. According to the Born rule [1],
when the measurement operator A ∈ C

2N×2N
. is applied to an N -qubit state

| C
2N

., the probability of getting any eigenvalue from {λi}. is

. Pr(λi) vi | 2 . (2.38)

In the density operator representation, suppose that the state to be measured is ρ ∈
C

2N×2N
., the probability of measuring any one of the eigenvalues in {λi}. is

. Pr(λi) = Tr(ρ|vi vi |). (2.39)

Define i = |vi vi | as the i-th projective operator. The complete set of projectiv e
operators { i}. has the following properties:

.1) i j = δij i; 2) †
i = i; 3) 2

i = i; 4)
i

i = I2N . (2.40)

42 2 Basics of Quantum Computing

One special set of projectors is i = |i i|. for ∀i ∈ [2N].. This measures the
probability of finding the system in the basis state |i .. For example, given the single-
qubit state |α . in Eq. (2.2), the probability of measuring the computational basis
state |i . is

. Pr(i) vi |α 2 = |αi |2 . (2.41)

The second type of quantum measurement is the positive operator-valued
measures (POVM). A POVM uses a set of positive operators 0 Ei . satisfying

i Ei = I.. Each positive operator Ei . corresponds to a measurement outcome.
Specifically, applying the measurement {Em}. to the state |ψ ., the probability of
outcome i is given b y

. Pr(i) ψ |Ei |ψ 2. (2.42)

In the density operator representation, if the state to be measured is ρ ∈ C2N×2N
.,

the probability of outcome i is

. Pr(i) = Tr(ρEi). (2.43)

The main difference between projective measurements and POVM elements is
that POVM elements do not have to be orthogonal. Because of this, projective
measurement is a special case of the generalized measurement (i.e., by setting
Ei = †

i i .).

Remark
Here, we discuss what information can be accessed through quantum

measurements, both in theory and in practice. To illustrate, imagine the
computation result is the probability amplitude a1 . in the single-qubit state
|a a1|0 a2|1 . in Eq. (2.2). To get a1 . as a classical value from this
quantum state, the projective operator 1 = |0 0|. is applied to this state.
Quantum mechanics states that after each measurement, the state collapses.
The measured outcome Vi . acts as a binary random variable following a
Bernoulli distribution Ber(ai)., i.e., Pr(Vi = 1) = a1 . and Pr(Vi = 0) =
1 − a1 .. By applying the measurement i . to K copies of the state |a ., the
statistics are obtained. The sample mean is written as ā1 = K

i=1 Vi/K .. The
law of large numbers states that ā1 = a1 . when K → ∞.. However, only
the finite number of measurements K is allowed in practice. This leads to an
estimation error.

2.3 Quantum Read-In and Read-Out Techniques 43

2.3 Quantum Read-In and Read-Out Techniques

Quantum read-in and read-out describe how information moves between classical
and quantum systems. These are fundamental steps in quantum machine learning
(Fig. 1.1). They load data and extract results.

Quantum read-in and read-out are major roadblocks to using quantum computing
for classical tasks. As emphasized in [10], quantum algorithms offer exponential
speedups in certain problems, but these benefits are lost if data read-in and read-
out are inefficient. Read-in means loading classical data into quantum systems,
and read-out means extracting results from quantum systems. Specifically, quantum
states are high dimensional, and measurement precision is limited. These factors
often create overheads that grow quickly with problem size. These challenges
highlight why optimizing quantum read-in and read-out is crucial to unlock the full
potential of quantum computing. This section details quantum read-in and read-out
methods, covering their basic concepts and several common algorithms.

2.3.1 Quantum Read-In

Quantum read-in is the process of encoding classical information into quantum
systems that a quantum computer can manipulate. It’s essentially a classical-to-
quantum mapping. It bridges the gap, allowing us to use quantum algorithms to
solve classical problems. This section introduces several common encoding meth-
ods: basis encoding, amplitude encoding, angle encoding, and quantum random
access memory. Some easy-to-use demonstrations are provided in Sect. 2.5.

2.3.1.1 Basis Encoding

Basis encoding is a straightforward way to encode classical data that can be repre-
sented in binary form. Given a classical binary vector x = (x0, . . . , xi , . . . , xN−1) ∈
{0, 1}N ., this method maps it directly to a quantum state:

.|ψ x0, . . . , xN−1 . (2.44)

This process requires N . qubits to represent a binary vector of length N .. To prepare
the quantum state |ψ ., we apply an X . gate to each qubit if its corresponding bit
value is 1. The overall quantum state preparation can be expressed as

.|ψ
N−1

i=0

Xxi |0 ⊗N,

44 2 Basics of Quantum Computing

Fig. 2.6 Example of basis
encoding for the integer 6 |0 X |1

|0 X |1
|0 0

where |0 ⊗N
. represents an initial state of all qubits set to |0 . and Xxi . means

applying the X . gate to the i-th qubit only if xi = 1..

Example 2.7 (Basis Encoding) To encode the integer 6., its binary form is
x = (1, 1, 0).. The corresponding quantum state is |110 .. This state can be
implemented by applying X . gates to the first and second qubits, as shown in
Fig. 2.6.

2.3.1.2 Amplitude Encoding

Amplitude encoding maps classical data into the amplitudes of a quantum state.
Given a vector x = x0, . . . , xi , . . . , x2N−1 ∈ C2N

. containing complex values, the
L2 . normalization is applied to obtain a normalized vector:

.x̂ = x

x 2
, (2.45)

where x 2 . is the Euclidean norm. This ensures that the normalized vector x̂ .

satisfies 2N−1
i=0 |x̂i |2 = 1.. The quantum state is then

.|ψ
2N−1

i=0

x̂i |i (2.46)

with |i . representing the N .-qubit computational basis states.

Example 2.8 (Amplitude Encoding) To encode a normalized vector x =
(x0, x1) ∈ C2

. as the quantum state |ψ x0|0 x1|1 ., this can be achieved
by applying a rotation gate U = RY (θ). to the initial state |0 ., where θ =
2 arccos(x0)..

2.3 Quantum Read-In and Read-Out Techniques 45

Amplitude encoding can represent a very large vector length 2N
. with just

N . qubits, making it highly efficient in terms of qubit counts. However, preparing
this quantum state requires constructing a unitary transformation U . such that
|ψ U |0 ⊗N

.. Efficiently finding such transformations is challenging and an active
research area (see Sect. 2.6 for more discussions).

2.3.1.3 Angle Encoding

Basis encoding and amplitude encoding are basic ways to map classical data to
quantum states, but they have different resource needs. Basis encoding uses as many
qubits as the data’s binary length and needs few gate operations to prepare the state.
In contrast, amplitude encoding is very qubit efficient, using only a logarithmic
number of qubits for the data’s size, but it needs many gate operations.

To address this limitation, an alternative is angle encoding. The core idea of angle
encoding is to embed classical data into a quantum state through rotation angles.

Given a real-valued vector x = (x0, . . . , xi , . . . , xN−1) ∈ RN
., the encoded

quantum state can be represented as

.|ψ
N−1

i=0

Rσ (xi)|0 ⊗N =
N−1

i=0

exp −i
xi

2
σ |0 ⊗N, (2.47)

where σ ∈ {X, Y,Z}. denotes a Pauli operator, as defined in Fig. 2.1. Since Pauli
rotation gates are 2π .-periodic, it is essential to scale each element xi . into the range
[0, π). to ensure that different values are encoded into distinct quantum states.

A key advantage of angle encoding is its ability to introduce nonlinearity. By
mapping classical data into the parameters of quantum rotation gates, angle encod-
ing uses trigonometric functions to naturally capture nonlinear relationships. This
property is crucial in quantum machine learning because models need nonlinearity
to learn complex patterns, like those that cannot be separated by a straight line.

2.3.1.4 Quantum Random Access Memory (QRAM)

Basis encoding, amplitude encoding, and angle encoding typically encode one data
item at a time, making it hard to work with large, complex classical datasets. The
QRAM [11], like classical RAM, can store, address, and access multiple quantum
states at once.

QRAM consists of two types of qubits: data qubits for storing classical data and
address qubits for addressing. Given a classical dataset D = x(j) M−1

j=0 . with M
training examples, assume each data item is separately encoded into a quantum state
|x(j)

d . using one of the encoding methods above. The QRAM works like this: (1)
First, prepare an Na .-qubit address register where Na log2(M) .; (2) Then, link
each data state |x(j)

d . with corresponding address state |j a .. The entire dataset then

46 2 Basics of Quantum Computing

forms a quantum state:

.|D
M−1

j=0

1√
M

|j a|x(j)
d . (2.48)

Remark
The subscript d in |x(j)

d . shows this quantum state is in the data register,
unlike address qubits, which use the subscript a (e.g., |j a .). This convention
helps to distinguish between the roles of data and address qubits in QRAM
operations.

Example 2.9 (QRAM Encoding) Consider a dataset D = {2, 3}.. Using
basis encoding, each sample is first turned into a two-qubit quantum state:
{|10 d , |11 d}.. Each data state then gets an address state, |0 a . for the first
state |10 d . and |1 a . for the second state |11 d .. The resulting QRAM-encoded
state looks like this:

.|D 1√
2

(|0 a|10 d + |1 a|11 d) . (2.49)

The corresponding quantum circuit for implementing this state is shown in
Fig. 2.7.

QRAM allows the dataset D. to be stored in a coherent quantum superposition,
enabling simultaneous access to all data items through the entanglement of address
and data qubits. While QRAM is theoretically powerful, its practical implementa-
tion remains a significant challenge due to the need for a large number of qubits and
quantum operations (see Sect. 2.6 for the discussion).

Fig. 2.7 Example of QRAM
encoding for the dataset
D = {2, 3}.

|0 a H X X
|0 d
0 d

2.3 Quantum Read-In and Read-Out Techniques 47

2.3.2 Quantum Read-Out Methods

Quantum read-out translates the quantum state from a computation into classical
data. This allows for further processing, interpretation, or optimization using
classical systems. It’s the opposite of quantum read-in, acting as a quantum-to-
classical mapping.

Depending on how much information is extracted, quantum read-out methods
generally fall into two types: full information and partial information read-out
methods. These methods allow for customized read-out processes that fit the needs
of various quantum applications, including tomography, optimization, and machine
learning tasks.

2.3.2.1 Full Information Read-Out Methods

Full information read-out aims to completely reconstruct the quantum state. This
helps us fully understand how the quantum system behaves. The most common way
to do this is through quantum state tomography (QST) [12].

QST involves taking quantum measurements, collecting statistics, and then
using classical computers to reconstruct the quantum state. In what follows, two
reconstruction techniques broadly used in QST, i.e., linear inversion [13] and
maximum likelihood estimation (MLE) [14], are introduced.

QST with Linear Inversion Linear inversion is a direct way to reconstruct a quantum
state from measurement data by solving linear equations. Let ρ . be the explored
quantum state and {Ei}. be a set of measurements. According to the Born rule, the
probability of measurement outcome i is given b y

. Pr(Ei |ρ) = Tr(ρEi). (2.50)

In practice, Pr(Ei |ρ). is not directly accessible but is approximated by the frequency
pi . of measurement outcome i over multiple measurements. By the law of large
numbers, as the number of measurements increases, pi . converges to the true
probability Pr(Ei |ρ).. Collecting measurements across all bases, there is a linear
system:

.

⎡
⎢⎣

Tr(ρE0)

Tr(ρE1)
...

⎤
⎥⎦ =

⎡
⎢⎣

E†
0 · ρ

E†
1 · ρ
...

⎤
⎥⎦ = Aρ ≈ p =

⎡
⎢⎣

p0

p1
...

⎤
⎥⎦ , (2.51)

where E. and ρ . refer to the vector representations of matrices Ei . and ρ ., respectively.
The vector representation of a matrix is obtained by stacking its columns into a
single-column vector. For example, the vector form of a 2 × 2. identity matrix is
I2 = [1, 0, 0, 1]T .. The matrix A is constructed such that each row corresponds to

48 2 Basics of Quantum Computing

the vector representation of the measurement operator, i.e., A = E†
0; E†

1; The
vector p . contains the measured frequencies pi ..

If the measurements are tomographically complete (meaning {Ei}. forms a basis
for the system’s Hilbert space), we can reconstruct the state ρ . by solving these linear
equations:

.ρ = AT A
−1

AT p. (2.52)

A common strategy is to use Pauli operators as measurement bases {Ei}.. The
density matrix ρ . for an N -qubit system can be written using the Pauli basis as

.ρ = 1

2N

4N−1

i=0

ciPi, ci ∈ R, Pi ∈ {I,X, Y,Z}⊗N . (2.53)

The coefficients ci . represent projections of ρ . onto the Pauli basis, calculated as

.ci = Tr(ρPi). (2.54)

To fully reconstruct ρ ., the quantum state must theoretically be measured in all 4N−1.

Pauli bases to estimate each ci ..

Remark
The Pauli basis includes four Hermitian matrices: I , X, Y , and Z, as
introduced in Fig. 2.1. These operators form a complete basis for the space
of 2 × 2. complex matrices. For N -qubit systems, the tensor products of these
single-qubit operators span the space of 2N ×2N

. complex matrix. This makes
the Pauli basis essential for representing quantum states, observables, and
their transformations.

A key drawback of linear inversion is that it doesn’t guarantee a valid density
matrix. The estimated quantum state might not have properties like positive semi-
definiteness (Definition 2.2), especially with limited measurements.

Maximum Likelihood Estimation (MLE) To ensure physical constraints on the
quantum state during reconstruction, MLE is introduced. MLE reconstructs ρ . by
maximizing the likelihood of observing the measurement outcomes. It does this
while ensuring ρ . is Hermitian, is positive semi-definite, and has a trace of one. The
likelihood function is

.L(ρ) =
i

Tr(ρEi)
pi . (2.55)

2.3 Quantum Read-In and Read-Out Techniques 49

Reconstructing ρ . then becomes solving this optimization problem:

. arg max
ρ

L ρ , s.t. ρ 0, ρ = ρ †, Tr ρ = 1. (2.56)

Solving this usually needs iterative numerical optimization, which can be computa-
tionally intensive.

Remark
A common challenge across all quantum state tomography (QST) methods,
including linear inversion and MLE, is the exponential computational cost
with respect to the number of qubits. Specifically, the number of parameters
needed for reconstruction grows exponentially with the system size. This
makes QST methods practical only for systems with a small number of qubits.
This limitation highlights the need for scalable ways to characterize quantum
states in larger systems.

2.3.2.2 Partial Information Read-Out Methods

Partial information read-out methods extract specific, useful information from
a quantum state without needing to reconstruct its entire density matrix. This
approach enables efficient characterization and analysis of large-qubit systems.
Current partial read-out techniques generally fall into three categories based on the
type of information collected: sampling, expectation value estimation, and shadow
tomography.

Sampling Sampling involves repeatedly measuring the quantum state in the com-
putational basis to estimate the probability distribution over bit-strings. Given a state
|ψ ., the probability of observing a specific computational basis |i . is given by

. Pr(i) = | ψ |i |2 . (2.57)

The frequency of each outcome from repeated measurements provides an estimate
of Pr(i).. Sampling is particularly useful in the following applications:

• Sampling over complicated distributions. Quantum states can represent complex
probability distributions that are difficult to sample classically. Quantum sam-
pling allows efficient exploration of these distributions for specific applications,
such as probabilistic modeling and Markov chain Monte Carlo [15].

• Optimization problems. Sampling helps find high-probability bit-strings in quan-
tum algorithms like the Quantum Approximate Optimization Algorithm [16] and

50 2 Basics of Quantum Computing

Grover search [17]. These sampled bit-strings often represent optimal or near-
optimal solutions.

• Verification. Sampling facilitates the comparison of a quantum circuit’s output
with theoretical expectations or desired distributions, helping to verify the
quantum systems [2, 18, 19].

Expectation Value Estimation For many quantum computation problems, such as in
quantum chemistry and many-body physics, the computation result is the estimated
expectation value of certain observables on the evolved quantum state [20, 21].

An observable O ∈ C
2N×2N

. mentioned here is a Hermitian operator that
represents a measurable physical quantity. For an N -qubit system, O can be
expressed in terms of a Pauli basis expansion, i.e.,

.O =
4N

i=1

αiPi, Pi ∈ {I2, X, Y,Z}⊗N, αi ∈ R. (2.58)

where Pi . denotes the i-th N -qubit Pauli string.
The expectation value of an observable O with respect to an N -qubit state ρ . is

. O Tr(ρO). (2.59)

Substituting the Pauli expansion of O, the expectation value is expressed as the
weighted sum of the expectation values of each Pauli basis term due to the linearity
of the trace operation, i.e.,

. O

4N

i=1

αi Tr(ρPi) ≡
4N

i=1

αi Pi . (2.60)

To estimate the expectation value of each individual Pauli term Pi ., the quantum
state ρ . must be measured on the basis of the eigenstates of Pi .. The measurement
outcome is then associated with the corresponding eigenvalue of Pi .. Notably,
the eigenstates and eigenvalues of Pi . can be derived from the eigenstates and
eigenvalues of its constituent single-qubit Pauli operators Pij ..

• Eigenvalues. The eigenvalues of Pi . are the product of the eigenvalues of
each single-qubit Pauli operator Pij ., i.e., Pi = ⊗N

j=1Pij .. For example, if the
eigenvalues of Pij . are ± 1., then the eigenvalues of Pi . are products of these
individual eigenvalues and remain in {±1}..

• Eigenstates. The eigenstates of Pi . are the tensor products of the eigenstates of
the single-qubit Pauli operators Pij .. If |λijk . is one of the eigenstate of Pij ., then
the corresponding eigenstate of Pi . is

N
j=1 |λijk ..

This structure allows Pi . to be analyzed in terms of its simpler single-qubit
components, significantly simplifying the process of determining the measurement

2.3 Quantum Read-In and Read-Out Techniques 51

basis for expectation value estimation. By repeating the measurements M times and
obtaining the corresponding measurement results {rj }Mj=1 ., the statistical value of
Pi . can be estimated by

. P̂i

1

M

M

j=1

rj . (2.61)

The expectation value of the observable O is therefore statistically estimated by

Ô
4N−1
i=0 αi P̂i .

Remark
A key step in the process is to measure the quantum system in the basis of the
eigenstates of Pi .. If Pi . is diagonal in the computational basis (e.g., a tensor
product of Pauli-Z operators), the state can be directly measured without
additional operations. Otherwise (e.g., for Pauli-X or Pauli-Y operators), a
unitary transformation must be applied to rotate the quantum state into the
desired basis. Specifically, when measuring in the Pauli-X basis (i.e., . and

.), a Hadamard gate H is applied to the state ρ ., i.e.,

.ρ = HρH. (2.62)

When measuring in the Pauli-Y basis (i.e., |0 i|1√
2

. and |0 i|1√
2

.), a phase

gate S = √
Z . followed by a Hadamard gate H is applied, i.e.,

.ρ = S†HρHS. (2.63)

Measuring the state ρ . in the computational basis is equivalent to measuring
the state ρ . in the corresponding Pauli basis.

Shadow Tomography Full QST needs an exponential number of quantum state
copies, making it impractical for systems with more than a few qubits. Instead of
fully reconstructing the density matrix, shadow tomography [22] efficiently extracts
specific properties of a quantum state, such as the expectation values of many
observables.

Definition 2.8 (Shadow Tomography, [22]) Given an unknown D-dimensional
quantum state ρ ., as well as M observables O1, . . . , OM ., output real numbers
b1, . . . , bM . such that |bi − Tr(Oiρ)| ≤ . for all i, with success probability at least
1 − δ .. Do this via a measurement of ρ⊗k

., where k = . is as small as
possible.

52 2 Basics of Quantum Computing

Aaronson [22] proved that the shadow tomography problem can be solved using
a polylogarithmic number of copies of states in terms of the dimension D and
number M of observables. This result demonstrates that it is possible to estimate
the expectation values of exponentially many observables for a quantum state of
exponential dimension using only a polynomial number of measurements.

The core idea of shadow tomography is to create a compact classical represen-
tation, or “shadow,” of a quantum state. This shadow holds enough information to
estimate many of the state’s properties. Building on this concept, [23] proposed
a more practical and efficient approach, termed classical shadow, which uses
randomized measurements to construct this classical representation. The classical
shadow approach consists of the following steps:

1. Randomized measurements. Perform random unitary transformations on the
quantum state and measure the transformed state in the computational basis.
These random transformations can be drawn from specific ensembles, such as
Clifford gates or local random rotations, which ensure that the measurement
outcomes capture the essential properties of the quantum state.

2. Classical shadow construction. Using the measurement results, construct a
classical shadow of the quantum state. This compact representation encodes the
quantum state in a way that allows for the efficient estimation of properties.

3. Property estimation. Use the classical shadow to compute the desired properties
of the quantum state, such as expectation values of specific observables, subsys-
tem entropies, or fidelities with known states.

Shadow tomography needs exponentially fewer measurements than full quantum
state tomography. This makes it a practical solution for large-scale quantum sys-
tems. Moreover, the shadow of a quantum state serves as a versatile representation,
enabling the efficient estimation of various properties such as expectation values,
entanglement measures, and subsystem correlations.

2.4 Quantum Linear Algebra

We next introduce quantum linear algebra, a potent toolbox for designing various
FTQC-based algorithms introduced in Sect. 1.2.2. For clarity, the definition of block
encoding is presented in Sect. 2.4.1, detailing how to implement a matrix on a
quantum computer. Based on this, some basic arithmetic rules for block encodings
are introduced in Sect. 2.4.2, including multiplication, linear combination, and the
Hadamard product. Finally, in Sect. 2.4.3, the quantum singular value transforma-
tion method is introduced, which enables one to implement functions onto singular
values of block-encoded matrices.

2.4 Quantum Linear Algebra 53

2.4.1 Block Encoding

For many computational problems, such as solving linear equations, it is often
necessary to deal with a non-unitary matrix A. However, remember that quantum
gates as discussed in Sect. 2.2 are unitaries. Therefore, if we want to solve these
problems on quantum computers, it is essential to consider how to encode the matrix
A into a unitary. This challenge can be addressed by the block encoding technique.

Definition 2.9 (Block Encoding, [24]) Suppose that A is an N -qubit operator ,
α, ε ≥ 0. and a ∈ N.. Then, the (a + N).-qubit unitary U is said to be an (α, a, ε).-
block encoding of A if

. A − α(0|⊗a ⊗ I2N)U(|0 ⊗a ⊗ I2N) ε. (2.64)

Here, . represents the spectral norm, i.e., the largest singular value of the matrix.

The circuit implementation of the block encoding is illustrated in Fig. 2.8. The
scaled matrix A/α . interacts with the state |ψ . if the first qubit registers are measured
as |0 .. By definition, there is α A . and any unitary U is an (1, 0, 0).-block
encoding of itself.

Fact 2.2 (Block Encoding via the Linear Combination of Unitaries (LCU)
Method, [24]) Suppose that A can be written in the form

.A =
k

αkUk, (2.65)

where {αk}. are real numbers and Uk . are some easily prepared unitaries such as
Pauli strings. Then, the LCU method allows us to have the access to two unitaries,
i.e.,

.USEL =
k

|k k| ⊗ Uk, . (2.66)

UPREP :|0
1√
α 1 k

√
αk|k , (2.67)

where α = (α1, α2, . . .)..

Fig. 2.8 Quantum circuit for
block encoding

a
0

A|ψ

|0
UA

54 2 Basics of Quantum Computing

After simple mathematical analysis, one can obtain U = (U
†
PREP ⊗

I2N)USEL(UPREP ⊗ I2N). is a (α 1,m, 0).-block encoding of A. Here, I2N . is the
identity operator of N -qubit size and 1 . denotes the 1 . norm of a given vector.

Similar to the definition of block encoding, the state preparation encoding can be
defined.

Definition 2.10 (State Preparation Encoding [25]) We say a unitary Uψ . is an
.-state-encoding of an N -qubit quantum state |ψ . if

. ψ α(0a| ⊗ I)Uψ |0a+N ∞ ≤ (2.68)

where ∞ . denotes the infinity norm of the given vector.

More straightforwardly, the .-state-encoding Uψ . prepares the state:

. Uψ |0 0
1

α
|0 ψ 1 − α2|1 bad ,

where ψ ψ ∞ ≤ . and |bad . is an arbitrary quantum state. One can further
prepare the state |ψ . by usingO(α). times of amplitude amplification [26]. The state
preparation encoding can be understood as a specific case of the block encoding, i.e.,
it is the block encoding of a C2N×1

. matrix.

2.4.2 Basic Arithmetic for Block Encodings

Now, we introduce some arithmetic rules for block encoding unitaries. The follow-
ing two facts describe the product and linear combination rules of block encoding
unitaries, respectively.

Fact 2.3 (Product of Block Encoding, [24]) If U is an (α, a, δ).-block encoding of
an N -qubit operator A, and V is a (β, b, ε).-block encoding of an N -qubit operator
B, then (I2b ⊗U)(I2a ⊗V). is an (αβ, a + b, αε +βδ).-block encoding of AB. Here,
I2a . is the identity operator of a-qubit size.

Fact 2.4 (Linear Combination of Block Encoding, [24]) Let A = k xkAk . be
an s-qubit operator with β x 1 . and ε1 > 0., where x. is the vector of coefficients.
Suppose the access to

.PL|0
k

ck|k , . (2.69)

PR|0
k

dk|k , . (2.70)

2.4 Quantum Linear Algebra 55

W =
k

|k k| ⊗ Uk + Is −
k

|k k| ⊗Ia ⊗ Ib , (2.71)

where k |βc∗
kdk − xk| ≤ ε1 . and Uk . is an (α, a, ε2).-block encoding of Ak .. Then,

an (αβ, a + b, αε1 + βε2).-block encoding of A can be implemented by using one
time of W,PL ., and PR ..

These results can be verified via direct computation. Another arithmetic rule broadly
employed in quantum machine learning is the Hadamard product, a.k.a, the element-
wise product. The following lemma exhibits how to achieve this operation via the
block encoding framework.

Lemma 2.1 (Hadamard Product of the Block Encoding Unitaries, [25]) With
N ∈ N., consider two matrices A,B ∈ C2N×2N

., and assume that an (α, a, δ).-
encoding UA . of matrix A and .-encoding UB . of matrix B are accessible,
then an (αβ, a + b + + βδ).-encoding of matrix A ◦ B . corresponding to the
Hadamard product of A and B can be constructed.

Proof Sketch of Lemma 2.1 For simplicity, we only consider the perfect case, i.e.,
no errors. Refer to Ref. [25] for the proof details under the more general cases.

The intuition for achieving the Hadamard product is that all the needed elements
can be found in the tensor product, i.e.,

. 0a+b| ⊗ I22N I2b ⊗ UA ⊗ I2N I2a ⊗ UB ⊗ I2N |0a+b
I22N (2.72)

=A ⊗ B
αβ

.

To this end, the question is reduced to finding proper permutation unitaries that
can shift the required elements to the correct positions to achieve the Hadamard
product. Denote P = d−1

i=0 |i i| ⊗ |0 i|.. As proved by Zhao et al. [27], the
tensor product of A and B can be reformulated to the Hadamard product via P , i.e.,

. P (A ⊗ B)P † = (A ◦ B) ⊗ |0 0|.

However, P . is not a unitary. Instead, we consider P = d−1
i,j=0 |i i| ⊗ |i ⊕ j j |.,

which can be easily constructed by using N CNOT gates, i.e., one CNOT gate
between each pair of qubits consisting of one qubit from the first register and
the corresponding qubit from the second register. By direct computation, it can be
show n

. I2N 0N | P A ⊗ B P †
I2N ⊗ |0N = A ◦ B. (2.73)

Therefore, by direct computation, one can verify that P ⊗ I2a+b (I2b ⊗ UA ⊗
I2N) I2a ⊗ UB ⊗ I2N (P † ⊗ I2a+b). is the desired block encoding.

56 2 Basics of Quantum Computing

2.4.3 Quantum Singular Value Transformation

Having established how to implement matrices on quantum computers and perform
arithmetic operations among them, the next step is to introduce methods for
implementing matrix functions on quantum computers. The method is called the
quantum singular value transformation (QSVT), which is a powerful framework
that can unify most known quantum algorithms.

In machine learning applications, we primarily work with real matrices. The
computational cost of QSVT for real matrices is summarized in the follow-
ing theorem. For a matrix A, consider its singular value decomposition A =

i σi |ψi φi |.. Given a function P(x)., P (SV)(A). is used to represent P (SV)(A) =
i P (σi)|ψi φi |..

Fact 2.5 (Quantum Singular Value Transformation—Real Matrix Case, [24])
Suppose that UA . is an (α, a, ε).-block encoding of a real matrix A. If δ ≥ 0. and
P : R→ C. is a d-degree polynomial satisfying that

.for all x ∈ [−1, 1] : |P(x)| ≤ 1

4
, (2.74)

then a quantum circuit Ũ . exists. This circuit is a (1, a + 3, 4d
√

ε/α + δ).-block
encoding of P (SV)(A/α). and involves d applications of UA . and U

†
A . gates. Further,

the circuit’s description can be classically computed in O(poly(d, log(1/δ))). time.

If the block-encoded matrix A is Hermitian, the singular value transformation is
equivalent to the eigenvalue transformation. In this case, the matrix function can be
directly implemented using QSVT.

The following section introduces several applications of QSVT. While QSVT
has many important applications, this book focuses on those relevant to machine
learning tasks. The first application is matrix inversion, widely used in traditional
machine learning methods like principal component analysis. For a general matrix,
this typically refers to implementing the Moore-Penrose pseudoinverse, i.e., the
inverse of all singular va lues.

Lemma 2.2 (Matrix Inversion, Simplified [24]) Let UA . be a (1, a, 0).-block
encoding of matrix A. Further, for simplicity, assume the nonzero singular values
of A are lower bounded by δ > 0.. Let 0 ≤ ≤ δ ≤ 1

2 .. One can construct a

(1/δ, a + 2 .-block encoding of A−1
. by using Õ(1

δ
log(1)). times of UA . and U

†
A ..

Proof Sketch of Lemma 2.2 This can be achieved by finding a good polynomial
approximation for the function 1/x .. While such a polynomial cannot be found for
the entire interval [−1, 1]., it does exist on the interval [−1,−δ] ∪ [δ, 1]. for some
δ > 0..

The second application of QSVT is nonlinear amplitude transformation. As
mentioned in Sect. 2.3.1, classical data can be encoded into quantum states in several
ways. Here, the employed methodology is the amplitude encoding case described

2.5 Code Demonstration 57

in Sect. 2.3.1.2, especially for the real amplitudes. The nonlinear transformation is
achieved by combining diagonal block encoding with QSVT.

Fact 2.6 (Diagonal Block Encoding of Amplitudes, [28, 29]) Given a state

preparation unitary Uψ . of an N -qubit state |ψ 2N

j=1 ψj |j ., where {ψj }. are
real, ψ 2 = 1., one can construct an (1, N +2 .-encoding of the diagonal matrix
A = diag(ψ1, . . . , ψd). with O(N). circuit depth and O(1). times of controlled-U and
controlled-U†

..

As a straightforward generalization, one can replace the state preparation unitary
with the general state preparation encoding, as mentioned in Definition 2.10. By
creating the block encoding of amplitudes, we can implement many functions onto
these amplitudes using QSVT. A direct application is performing the neural network
on the quantum computer, as will be detailed in Sect. 5.2.

2.5 Code Demonstration

This section provides code implementations for key techniques introduced earlier,
including quantum read-in strategies and block encoding. These examples offer
readers an opportunity to practice and deepen their understanding.

2.5.1 Read-In Implementations

This subsection demonstrates toy examples of implementing data encoding methods
in quantum computing, as discussed in earlier sections. Specifically, the basis
encoding, amplitude encoding, and angle encoding from Sect. 2.3.1.3 are covered.
These examples aim to provide readers with hands-on experience in applying
quantum data encoding techniques.

2.5.1.1 Basis Encoding

PennyLane provides built-in support for basis encoding through its “BasisEmbed-
ding” function. Below is Python code demonstrating the basis encoding for the
integer 6.

58 2 Basics of Quantum Computing

1 import pennylane as qml
2

3 dev = qml.device("default.qubit", range(3))
4 @qml.qnode(dev)
5 def circuit(x):
6 qml.BasisEmbedding(x, range(3))
7 return qml.state()
8

9 # Call the function
10 circuit(6)

2.5.1.2 Amplitude Encoding

PennyLane offers built-in support for amplitude encoding via the “AmplitudeEm-
bedding” function. Below is a Python example demonstrating amplitude encoding
for a randomly generated complex vector.

1 import pennylane as qml
2 import numpy as np
3

4 # Number of qubits
5 n_qubits = 8
6

7 # Define a quantum device with 8 qubits
8 dev = qml.device("default.qubit", wires=n_qubits)
9

10 @qml.qnode(dev)
11 def circuit(x):
12 qml.AmplitudeEmbedding(features=x, wires=range(n_qubits),

normalize=True, pad_with=0.)
13 return qml.state()
14

15 # Generate a random complex vector of length 2^n_qubits
16 x_real = np.random.normal(loc=0, scale=1.0, size=2**n_qubits)
17 x_imag = np.random.normal(loc =0, scale=1.0, size=2**n_qubits)
18 x = x_real + 1j * x_imag
19

20 # Execute the circuit to encode the vector as a quantum state
21 circuit(x)

2.5.1.3 Angle Encoding

PennyLane provides built-in support for angle encoding via the “AngleEmbedding”
function. Below is a Python example demonstrating angle encoding for a randomly
generated real vector.

2.5 Code Demonstration 59

1 import pennylane as qml
2 import numpy as np
3

4 # Number of qubits
5 n_qubits = 8
6

7 # Define a quantum device with 8 qubits
8 dev = qml.device("default.qubit", wires=n_qubits)
9

10 @qml.qnode(dev)
11 def circuit(x):
12 qml.AngleEmbedding(features=x, wires=range(n_qubits),

rotation="X")
13 return qml.state()
14

15 # Generate a random real vector of length n_qubits
16 x = np.random .uniform(0, np.pi, (n_qubits))
17

18 # Execute the circuit to encode the vector as a quantum state
19 circuit(x)

2.5.2 Block Encoding

An example of constructing a block encoding is provided here. The block encoding
is constructed via the linear combination, as described in Fact 2.2. PennyLane is
used to maintain consistency, but there are also many other available platforms.
Note that Pauli decomposition is time-consuming (for an N -qubit matrix, it takes
O(N4N). time), so it’s not recommended to try this method with large matrices.

1 import numpy as np
2 import pennylane as qml
3 import matplotlib.pyplot as plt
4

5 a = 0.36
6 b = 0.64
7

8 # matrix to be decomposed
9 A = np.array(

10 [[a, 0, 0, b],
11 [0, -a, b, 0],
12 [0, b, a, 0],
13 [b, 0, 0, -a]]
14)
15

16 # decompose the matrix into sum of Pauli strings
17 LCU = qml.pauli_decompose(A)
18 LCU_coeffs , LCU_ops = LCU.terms()
19

20 # normalized square roots of coefficients

60 2 Basics of Quantum Computing

21 alphas = (np.sqrt(LCU_coeffs) / np.linalg.norm(np.sqrt(
LCU_coeffs)))

22

23 dev = qml.device("default.qubit", wires=3)
24

25 # unitaries
26 ops = LCU_ops
27 # relabeling wires: 0 --> 1, and 1 --> 2
28 unitaries = [qml.map_wires(op, {0: 1, 1: 2}) for op in ops]
29

30 @qml.qnode(dev)
31 def lcu_circuit(): # block_encode
32 # PREP
33 qml.StatePrep(alphas, wires=0)
34

35 # SEL
36 qml.Select(unitaries, control=0)
37

38 # PREP_dagger
39 qml .adjoint(qml.StatePrep(alphas, wires=0))
40 return qml.state()
41

42 print(np.real(np.round(output_matrix ,2)))

2.6 Bibliographic Remarks

This chapter concludes by discussing recent advancements in efficiently implement-
ing fundamental quantum computing components. For clarity, a brief overview of
advanced quantum read-in and read-out methods is provided, as these are crucial
for efficiently loading and extracting classical data in quantum machine learning
pipelines. The latest progress in quantum linear algebra is also reviewed.

2.6.1 Advanced Quantum Read-In Methods

While conventional read-in methods can encode classical data into quantum com-
puters, they typically face two key challenges that limit their broad use in practical
learning problems. To address these limitations, initial efforts have focused on
developing more advanced quantum read-in methods.

Challenge I: High demand for quantum resources. Encoding methods like amplitude
encoding and basis encoding presented in Sect. 2.3.2 generally suffer from high
quantum resource requirements. While amplitude encoding is highly compact in
terms of qubit requirements, it demands an exponential number of quantum gates
relative to data size to prepare an exact amplitude-encoded state. In contrast, basis

2.6 Bibliographic Remarks 61

encoding requires a large number of qubits proportional to the input size, even
though it can be implemented with a small number of quantum gates. The high
demand for either quantum gates or qubit counts makes these basic encoding
strategies infeasible for practical use.

Challenge II: Insufficient nonlinearity. While quantum mechanics is inherently
linear, most practical machine learning models require nonlinearity to capture
complex data patterns effectively. Conventional encoding methods like angle
encoding introduce some nonlinearity. However, their representational power
remains limited due to the linear nature of quantum operations and shallow circuit
depth.

For Challenge I, a practical alternative is the approximate amplitude encoding
(AAE) [30]. Instead of implementing exact amplitude encoding, AAE trains a
parameterized quantum circuit with a constrained depth to approximate the desired
quantum state with high fidelity. The training process optimizes the fidelity between
the target state and the approximate state, ensuring that the representation error
remains within a small bound.

For Challenge II, techniques like data re-uploading [31] have been developed.
Data re-uploading involves feeding the same classical data into the quantum circuit
multiple times, interspersed with trainable quantum operations. By alternating
data encoding with trainable transformations, this approach allows the quantum
model to capture nonlinear relationships more effectively without additional qubits.
Additionally, neural quantum embedding [32] has been proposed. This method
leverages classical deep learning techniques to learn optimal quantum embeddings,
effectively separating nonlinearly separable data classes.

To address both Challenges I and II, hybrid encoding strategies have been
introduced to leverage the respective advantages of each encoding method. For
instance, basis-amplitude encoding combines basis encoding for discrete random
variables with amplitude encoding for high-precision probabilities. This effectively
encodes both categorical and continuous features without additional qubits [33].
Another widely used strategy involves classical preprocessing methods for high-
dimensional data, such as principal component analysis (PCA) [34], to reduce input
dimensionality before applying quantum encoding. This preprocessing step reduces
overall quantum resource requirements while preserving relevant information.

Beyond fixed encoding strategies, learning-based approaches have emerged that
dynamically adjust data encoding for specific tasks. For example, [35] achieve
task-specific quantum embeddings by incorporating learnable parameters into the
encoding layers, which are optimized to maximize class separability in Hilbert
space. This technique is analogous to classical metric learning. Following this rou-
tine, a quantum few-shot embedding framework [36] has been proposed to encode
classical data into quantum states, which can be generalized to the downstream
quantum machine learning tasks. These methods enable quantum circuits to adapt
their encodings dynamically, improving efficiency and performance.

62 2 Basics of Quantum Computing

2.6.2 Advanced Quantum Read-Out Methods

Conventional quantum read-out methods often face significant challenges, including
high computational overhead and resource inefficiencies. Below, we discuss the
primary challenges and discuss solutions in two quantum read-out methods: QST
and observable estimation.

Challenge I: High computational overhead of QST. QST aims to reconstruct the
density matrix of a quantum state, but this becomes computationally infeasible as
the system size increases. This is because the required number of measurements
and the classical memory grows exponentially with the number of qubits.

Challenge II: Resource inefficiency in observable estimation. The required number
of measurements for observable estimation grows linearly with the number of
Pauli terms in the observable. For observables where the number of Pauli terms
substantially increases with the system size, the measurement cost becomes
prohibitive.

For Challenge I, the key idea is to represent only a subspace of the quantum
space. This effectively captures task-relevant properties while reducing computa-
tional cost. For example, in many QML algorithms, such as the HHL algorithm
for solving linear systems [37] and quantum singular value decomposition [38],
the solution state exists within the row or column space of the input matrix. When
the input matrix is low-rank, state tomography can be obtained efficiently [39] as
the linear combination of a complete basis chosen from the input matrix. Besides,
an effective technique is matrix product state (MPS) tomography [40, 41]. This
technique’s key idea is that many practical quantum states, such as those in Ising
models or low-entanglement systems, can be efficiently represented with fewer
parameters. By focusing on states with limited entanglement, MPS tomography
reconstructs the state using only a polynomial number of measurements with the
qubit counts.

Another promising approach is using neural networks to parameterize quantum
states. Neural quantum states allow for the efficient representation and reconstruc-
tion of density matrices, particularly for complex or high-dimensional quantum
systems. For instance, restricted Boltzmann machines [42] and Transformer [43]
have been applied to approximate the probability of measurement outcome and
density matrices [44–47]. These approaches are particularly effective for systems
that are difficult to capture using traditional methods.

For Challenge II, a measurement reduction technique can be applied by exploit-
ing the commutativity of Pauli operators. When multiple Pauli terms commute,
they can be measured simultaneously within the same measurement basis, sig-
nificantly reducing the total measurement cost [48, 49]. This approach has been
widely adopted in hybrid quantum-classical algorithms, such as variational quantum
Eigensolvers (VQE) [50], where Hamiltonians are decomposed into sums of Pauli
terms. Grouping commuting terms into clusters allows for efficient measurement
strategies while preserving accuracy.

2.6 Bibliographic Remarks 63

In addition to measurement grouping, adaptive measurement strategies further
improve resource allocation during expectation value estimation. The key observa-
tion is that not all Pauli terms contribute equally to the total observable—terms with
higher variance require more measurement shots for reliable estimation, while low-
variance terms can be measured with fewer shots. Building on this insight, adaptive
shot allocation techniques [51–53] dynamically distribute measurement resources
across Pauli terms based on their statistical properties and achieve more accurate
estimations with a finite measurement budget.

2.6.3 Advanced Quantum Linear Algebra

Quantum linear algebra, based on the block encoding and quantum singular
value transformation framework, has proven its power for the design of quantum
algorithms. Compared to the traditional subroutines like quantum phase estimation
and quantum arithmetic [54, 55], quantum linear algebra can exponentially improve
the dependency on precision [24]. However, a major drawback is that it can only
deal with the singular values of block-encoded matrices.

A natural consideration is to generalize the singular value transformation to the
eigenvalue transformation. One strong motivation from the application aspect for
this is to solve the differential equations on the quantum computer [56–60]. This
remains an active research field. Quantum eigenvalue processing, proposed by Low
and Su [61], focuses on matrices with real spectra and Jordan forms, in which they
prepare the Faber history state to achieve efficient eigenvalue transformation over
the complex plane. An et al. [62] and [63] show that simulating a general class of
non-unitary dynamics can be achieved by the linear combination of Hamiltonian
simulation (LCHS).

Another approach is to broaden the range of functions that can be implemented
by quantum linear algebra. Quantum phase processing, proposed by Wang et al.
[64], can directly apply arbitrary trigonometric transformations to eigenphases of a
unitary operator. Similar results have been independently obtained by Motlagh and
Wiebe [65]. In addition, Rossi and Chuang [66] investigates how to implement mul-
tivariate functions. For the application, a representative example is the multivariate
state preparation achieved by Mori et al. [67], enabling the amplitude encoding of
classical multivariate data.

In Sect. 2.4, we introduce the concept of diagonal block encoding, which
can convert a state preparation unitary into a block encoding. As the efficient
construction of block encodings is a prerequisite for achieving end-to-end quantum
advantage, an important research direction is to investigate which types of matrices
can be efficiently prepared. By leveraging state-of-the-art techniques in quantum
state preparation [68, 69] and the linear combination of unitaries [70], it is possible
to efficiently construct block encodings for certain classes of matrices [71, 72].
Additionally, explicit constructions have been explored for specific types of sparse
matrices [73].

64 2 Basics of Quantum Computing

References

1. Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information: 10th
anniversary edition (2nd ed.). Cambridge University Press. ISBN 1-10-700217-6.

2. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S.,
Brandao, F. G. S. L., Buell, D. A., et al. (2019). Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779), 505–510.

3. Jozsa, R., & Linden, N. (2003). On the role of entanglement in quantum-computational
speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 459(2036), 2011–2032.

4. Greenberger, D. M., Horne, M. A., & Zeilinger, A. (1989). Going beyond bell’s theorem. In
Bell’s theorem, quantum theory and conceptions of the universe (pp. 69–72). Springer.

5. Leach, D. P., & Malvino, A. P. (1994). Digital principles and applications. Glencoe/McGraw-
Hill.

6. Dawson, C. M., & Nielsen, M. A. (2005). The solovay-kitaev algorithm. arXiv preprint quant-
ph/0505030.

7. Wilde, M. M. (2011). From classical to quantum shannon theory. arXiv preprint
arXiv:1106.1445.

8. Flammia, S. T., & Wallman, J. J. (2020). Efficient estimation of pauli channels. ACM
Transactions on Quantum Computing, 1(1), 1–32.

9. Preskill, J. (1999). Lecture notes for physics 219: Quantum computation. Caltech Lecture
Notes, 7, 1.

10. Aaronson, S. (2015). Read the fine print. Nature Physics, 11(4), 291–293.
11. Giovannetti, V., Lloyd, S., & Maccone, L. (2008). Quantum random access memory. Physical

Review Letters, 100(16), 160501.
12. Vogel, K., & Risken, H. (1989). Determination of quasiprobability distributions in terms of

probability distributions for the rotated quadrature phase. Physical Review A, 40(5), 2847.
13. Qi, B., Hou, Z., Li, L., Dong, D., Xiang, G., & Guo, G. (2013). Quantum state tomography via

linear regression estimation. Scientific Reports, 3(1), 3496.
14. Hradil, Z. (1997). Quantum-state estimation. Physical Review A, 55(3), R1561.
15. Layden, D., Mazzola, G., Mishmash, R. V., Motta, M., Wocjan, P., Kim, J.-S., & Sheldon, S.

(2023). Quantum-enhanced markov chain monte carlo. Nature, 619(7969), 282–287.
16. Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization

algorithm. arXiv preprint arXiv:1411.4028.
17. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings

of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212–219).
18. Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J.,

Martinis, J. M., & Neven, H. (2018). Characterizing quantum supremacy in near-term devices.
Nature Physics, 14(6), 595–600.

19. Bouland, A., Fefferman, B., Nirkhe, C., & Vazirani, U. (2019). On the complexity and
verification of quantum random circuit sampling. Nature Physics, 15(2), 159–163.

20. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta,
J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature, 549(7671), 242–246.

21. Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Grant, E., Wossnig, L., Rungger, I.,
Booth, G. H., et al. (2022). The variational quantum eigensolver: A review of methods and best
practices. Physics Reports, 986, 1–128.

22. Aaronson, S. (2018). Shadow tomography of quantum states. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (pp. 325–338).

23. Huang, H.-Y., Kueng, R., & Preskill, J. (2020). Predicting many properties of a quantum system
from very few measurements. Nature Physics, 16(10), 1050–1057.

References 65

24. Gilyén, A., Su, Y., Low, G. H., & Wiebe, N. (2019). Quantum singular value transformation
and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19. ACM. https://doi.
org/10.1145/3313276.3316366

25. Guo, N., Yu, Z., Choi, M., Agrawal, A., Nakaji, K., Aspuru-Guzik, A., & Rebentrost, P. (2024).
Quantum linear algebra is all you need for transformer architectures. https://arxiv.org/abs/2402.
16714

26. Brassard, G., Høyer, P., Mosca, M., & Tapp, A. (2002). Quantum amplitude amplification
and estimation. In Quantum computation and information (Washington, DC, 2000) (Vol. 305).
Contemporary Mathematics (pp. 53–74). American Mathematical Society. ISBN 978-0-8218-
2140-4. https://doi.org/10.1090/conm/305/05215

27. Zhao, L., Zhao, Z., Rebentrost, P., & Fitzsimons, J. (2021). Compiling basic linear algebra
subroutines for quantum computers. Quantum Machine Intelligence, 3(2), 21. ISSN 2524-
4914. https://doi.org/10.1007/s42484-021-00048-8

28. Guo, N., Mitarai, K., & Fujii, K. (2024). Nonlinear transformation of complex amplitudes via
quantum singular value transformation. Physical Review Research, 6, 043227. https://doi.org/
10.1103/PhysRevResearch.6.043227

29. Rattew, A. G., & Rebentrost, P. (2023). Non-linear transformations of quantum amplitudes:
Exponential improvement, generalization, and applications. https://arxiv.org/abs/2309.09839

30. Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N.,
& Yamamoto, N. (2022). Approximate amplitude encoding in shallow parameterized quantum
circuits and its application to financial market indicators. Physical Review Research, 4(2),
023136.

31. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading
for a universal quantum classifier. Quantum, 4, 226.

32. Hur, T., Araujo, I. F., & Park, D. K. (2024). Neural quantum embedding: Pushing the limits of
quantum supervised learning. Physical Review A, 110(2), 022411.

33. Schuld, M., & Petruccione, F. (2018). Information encoding. In M. Schuld & F. Petruccione
(Eds.), Supervised learning with quantum computers (pp. 139–171). Springer.

34. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4), 433–459.

35. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., & Killoran, N. (2020). Quantum embeddings for
machine learning. arXiv preprint arXiv:2001.03622.

36. Liu, M., Liu, J., Liu, R., Makhanov, H., Lykov, D., Apte, A., & Alexeev, Y. (2022). Embedding
learning in hybrid quantum-classical neural networks. In 2022 IEEE International Conference
on Quantum Computing and Engineering (QCE) (pp. 79–86). IEEE.

37. Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of
equations. Physical Review Letters, 103(15), 150502.

38. Rebentrost, P., Steffens, A., Marvian, I., & Lloyd, S. (2018). Quantum singular-value decom-
position of nonsparse low-rank matrices. Physical Review A, 97(1), 012327.

39. Zhang, K., Hsieh, M.-H., Liu, L., & Tao, D. (2021). Quantum gram-schmidt processes and
their application to efficient state readout for quantum algorithms. Physical Review Research,
3(4), 043095.

40. Lanyon, B. P., Maier, C., Holzäpfel, M., Baumgratz, T., Hempel, C., Jurcevic, P., Dhand, I.,
Buyskikh, A.S., Daley, A. J., ramer, M., et al. (2017). Efficient tomography of a quantum
many-body system. Nature Physics, 13(12), 1158–1162.

41. Orús, R. (2019). Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9),
538–550.

42. Fischer, A., & Igel, C. (2012). An introduction to restricted boltzmann machines. In Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications: 17th Iberoamerican
Congress, CIARP 2012, Buenos Aires, Argentina, September 3–6, 2012. Proceedings 17 (pp.
14–36). Springer.

43. Vaswani, A. (2017). Attention is all you need. In Advances in neural information processing
systems.

https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1007/s42484-021-00048-8
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839

66 2 Basics of Quantum Computing

44. Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., & Carleo, G. (2018). Neural-
network quantum state tomography. Nature Physics, 14(5), 447–450. https://doi.org/10.1038/
s41567-018-0048-5

45. Schmale, T., Reh, M., & Gärttner, M. (2022). Efficient quantum state tomography with
convolutional neural networks. NPJ Quantum Information, 8(1). ISSN 2056-6387. https://doi.
org/10.1038/s41534-022-00621-4

46. Wang, H., Weber, M., Izaac, J., & Lin, C. Y.-Y. (2022). Predicting properties of quantum
systems with conditional generative models. arXiv preprint arXiv:2211.16943.

47. Zhao, L., Guo, N., Luo, M.-X., & Rebentrost, P. (2023). Provable learning of quantum states
with graphical models. https://arxiv.org/abs/2309.09235

48. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta,
J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature, 549(7671), 242–246. ISSN 0028-0836, 1476-4687. https://doi.org/
10.1038/nature23879

49. Verteletskyi, V., Yen, T.-C., & Izmaylov, A. F. (2020). Measurement optimization in the
variational quantum eigensolver using a minimum clique cover. The Journal of Chemical
Physics, 152(12), 124114.

50. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R.,
Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews
Physics, 3(9), 625–644.

51. Rubin, N. C., Babbush, R., & McClean, J. (2018). Application of fermionic marginal
constraints to hybrid quantum algorithms. New Journal of Physics, 20(5), 053020.

52. Arrasmith, A., Cincio, L., Somma, R. D., & Coles, P. J. (2020). Operator sampling for shot-
frugal optimization in variational algorithms. arXiv preprint arXiv:2004.06252.

53. Qian, Y., Du, Y., & Tao, D. (2024). Shuffle-qudio: Accelerate distributed vqe with trainability
enhancement and measurement reduction. Quantum Machine Intelligence, 6(1), 1–22.

54. Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem. https://arxiv.
org/abs/quant-ph/9511026

55. Ruiz-Perez, L., & Garcia-Escartin, J. C. (2017). Quantum arithmetic with the quantum fourier
transform. Quantum Information Processing, 16(6). ISSN 1573-1332. https://doi.org/10.1007/
s11128-017-1603-1

56. Liu, J.-P. Kolden, H. Ø., Krovi, H. K., Loureiro, N. F., Trivisa, K., & Childs, A. M. (2021).
Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings of
the National Academy of Sciences, 118(35). ISSN 1091-6490. https://doi.org/10.1073/pnas.
2026805118

57. Childs, A. M., Liu, J.-P., & Ostrander, A. (2021). High-precision quantum algorithms for partial
differential equations. Quantum, 5, 574. ISSN 2521-327X. https://doi.org/10.22331/q-2021-
11-10-574

58. An, D., Linden, N., Liu, J.-P., Montanaro, A., Shao, C., & Wang, J. (2021). Quantum-
accelerated multilevel Monte Carlo methods for stochastic differential equations in mathe-
matical finance. Quantum, 5, 481. ISSN 2521-327X. https://doi.org/10.22331/q-2021-06-24-
481

59. Jin, S., Liu, N., & Yu, Y. (2022). Quantum simulation of partial differential equations via
schrodingerisation. https://arxiv.org/abs/2212.13969

60. Shang, Z.-X., Guo, N., An, D., & Zhao, Q. (2024). Design nearly optimal quantum algorithm
for linear differential equations via lindbladians. https://arxiv.org/abs/2410.19628

61. Low, G. H., & Su, Y. (2024). Quantum eigenvalue processing. https://arxiv.org/abs/2401.06240
62. An, D., Liu, J.-P., & Lin, L. (2023). Linear combination of Hamiltonian simulation for

nonunitary dynamics with optimal state preparation cost. Physical Review Letters, 131,
150603. https://doi.org/10.1103/PhysRevLett.131.150603

63. An, D., Childs, A. M., Lin, L., & Ying, L. (2024). Laplace transform based quantum eigenvalue
transformation via linear combination of Hamiltonian simulation. https://arxiv.org/abs/2411.
04010

https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://doi.org/10.1038/s41534-022-00621-4
https://arxiv.org/abs/2309.09235
https://arxiv.org/abs/2309.09235
https://arxiv.org/abs/2309.09235
https://arxiv.org/abs/2309.09235
https://arxiv.org/abs/2309.09235
https://arxiv.org/abs/2309.09235
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.22331/q-2021-06-24-481
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2212.13969
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2410.19628
https://arxiv.org/abs/2401.06240
https://arxiv.org/abs/2401.06240
https://arxiv.org/abs/2401.06240
https://arxiv.org/abs/2401.06240
https://arxiv.org/abs/2401.06240
https://arxiv.org/abs/2401.06240
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://doi.org/10.1103/PhysRevLett.131.150603
https://arxiv.org/abs/2411.04010
https://arxiv.org/abs/2411.04010
https://arxiv.org/abs/2411.04010
https://arxiv.org/abs/2411.04010
https://arxiv.org/abs/2411.04010
https://arxiv.org/abs/2411.04010

References 67

64. Wang, Y., Zhang, L., Yu, Z., & Wang, X. (2023). Quantum phase processing and its applications
in estimating phase and entropies. Physical Review A, 108(6). ISSN 2469-9934. https://doi.org/
10.1103/PhysRevA.108.062413

65. Motlagh, D., & Wiebe, N. (2024). Generalized quantum signal processing. https://arxiv.org/
abs/2308.01501

66. Rossi, Z. M., & Chuang, I. L. (2022). Multivariable quantum signal processing (m-QSP):
Prophecies of the two-headed oracle. Quantum, 6, 811. ISSN 2521-327X. https://doi.org/10.
22331/q-2022-09-20-811

67. Mori, H., Mitarai, K., & Fujii, K. (2024). Efficient state preparation for multivariate monte
carlo simulation. https://arxiv.org/abs/2409.07336

68. Zhang, X-M., Li, T., & Yuan, X. (2022). Quantum state preparation with optimal circuit depth:
Implementations and applications. Physical Review Letters, 129(23), 230504. https://doi.org/
10.1103/PhysRevLett.129.230504

69. Sun, X., Tian, G., Yang, S., Yuan, P., & Zhang, S. (2023). Asymptotically optimal circuit depth
for quantum state preparation and general unitary synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(10), 3301–3314. ISSN 1937-4151. https://
doi.org/10.1109/TCAD.2023.3244885. https://ieeexplore.ieee.org/document/10044235

70. Childs, A. M., & Wiebe, N. (2012). Hamiltonian simulation using linear combinations of
unitary operations. Quantum Information & Computation, 12(11–12), 901–924. ISSN 1533-
7146.

71. Guseynov, N., & Liu, N. (2024). Efficient explicit circuit for quantum state preparation of
piece-wise continuous functions. https://arxiv.org/abs/2411.01131

72. Guseynov, N., Huang, X., & Liu, N. (2024). Explicit gate construction of block encoding for
Hamiltonians needed for simulating partial differential equations. https://arxiv.org/abs/2405.
12855

73. Camps, D., Lin, L., Van Beeumen, R., & Yang, C. (2023). Explicit quantum circuits for block
encodings of certain sparse matrices. https://arxiv.org/abs/2203.10236

https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://doi.org/10.1103/PhysRevA.108.062413
https://arxiv.org/abs/2308.01501
https://arxiv.org/abs/2308.01501
https://arxiv.org/abs/2308.01501
https://arxiv.org/abs/2308.01501
https://arxiv.org/abs/2308.01501
https://arxiv.org/abs/2308.01501
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://doi.org/10.22331/q-2022-09-20-811
https://arxiv.org/abs/2409.07336
https://arxiv.org/abs/2409.07336
https://arxiv.org/abs/2409.07336
https://arxiv.org/abs/2409.07336
https://arxiv.org/abs/2409.07336
https://arxiv.org/abs/2409.07336
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2411.01131
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2405.12855
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236

Chapter 3
Quantum Kernel Methods

Abstract This chapter provides a comprehensive guide to understanding quantum
kernel methods, covering the fundamental concepts of classical and quantum kernel
methods, their theoretical foundations, and practical implementations. Section 3.1
offers a detailed introduction to classical kernel methods, including their motivation,
derivation, and the construction of classical kernel functions. Building on this
foundation, Sect. 3.2 discusses the motivation for implementing kernel methods
on quantum devices, exploring the potential advantages of quantum kernels. It
also introduces the specific implementation of quantum kernel functions, clarifies
the relationship between classical and quantum kernel machines, and provides
concrete examples of quantum kernels. Section 3.3 delves into the theoretical
foundations of quantum kernels, focusing on two key aspects: the expressivity
and generalization properties of quantum kernel machines. It examines the diverse
feature spaces that quantum kernels can represent and the potential advantages
of quantum kernels in reducing generalization error compared to classical kernel
methods. This analysis underscores the ability of quantum kernels to improve the
accuracy of predictions for unseen data. Finally, Sect. 3.4 demonstrates simple yet
illustrative code implementations of quantum kernels using the MNIST dataset.

Machine learning (ML) algorithms fundamentally aim to learn underlying feature
representations within training data. This allows data points to be effectively
modeled using simple tools like linear classifiers. Kernel methods offer a powerful
way to achieve this. They capture nonlinear patterns efficiently. In kernel methods, a
kernel function is defined as the inner product between the high-dimensional feature
representations of data points. These feature representations are generated by a
hidden feature map, which transforms the original data into a higher-dimensional
space. In this space, complex patterns become easier to identify and model. The
kernel function, therefore, serves as a measure of similarity between data points in
this transformed space.

The effectiveness of kernel methods heavily depends on the hidden feature map’s
ability to capture relevant patterns in the data. The better this feature map reveals
the underlying structure, the better the kernel method performs in learning and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_3

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3
https://doi.org/10.1007/978-981-95-1284-3_3

70 3 Quantum Kernel Methods

generalizing from data. However, classical kernel methods are inherently limited
by the types of patterns they can recognize, as these are constrained by classical
computational frameworks. Essentially, classical models excel at detecting patterns
they are specifically designed to recognize but may struggle with patterns that
deviate from this framework.

In contrast, quantum mechanics can generate complex, nonintuitive patterns
often beyond classical algorithms’ reach. Quantum systems can produce statistical
correlations that are computationally challenging—or even impossible—for classi-
cal computers to replicate. This suggests that employing quantum circuits as hidden
feature maps could enable the detection of patterns that are difficult or impractical
for classical models to capture. By leveraging quantum circuits, we can potentially
access new regions of the feature space, leading to improved pattern recognition
capabilities and, consequently, better learning performance.

These insights motivate the development of quantum kernel methods, where
both the hidden feature map and the kernel function are implemented on a quantum
computer. By harnessing the unique properties of quantum mechanics, such as
superposition and entanglement, quantum kernel methods have the potential to
surpass their classical counterparts in specific machine learning tasks. This could
result in more powerful models with enhanced generalization capabilities.

In this chapter, we provide a step-by-step explanation of the transition from
classical kernel machines to quantum kernel machines in Sects. 3.1 and 3.2.
Moreover, we discuss the theoretical foundation of quantum kernel machines in
Sect. 3.3 from the aspects of expressivity and generalization of quantum kernel
machines. Finally, we demonstrate simple yet illustrative code implementations on
MNIST dataset.

3.1 Classical Kernel Machines

3.1.1 Motivation of Kernel Methods

Before delving into kernel machines, it is essential to first understand the motivation
behind kernel methods. In many machine learning tasks, particularly in classifica-
tion, the goal is to find a decision boundary that best separates different classes
of data. When the data is linearly separable, this boundary can be represented as
a straight line (in 2D), a plane (in 3D), or a hyperplane (in higher dimensions),
as illustrated in Fig. 3.1a. Mathematically, given an input space X ⊂ R

d
. with

d ≥ 1. and a target or output space Y = {+1,−1}., we consider a training dataset
D = {(x(i), y(i))}ni=1 ∈ (X×Y)n . where each data point x(i) ∈ X. is associated with
a label y(i) ∈ Y.. For the dataset to be linearly separable, there must exist a vector
w ∈ Rd

. and a bias term b ∈ R. such that

.∀i ∈ [n], y(i)(w x(i) + b) ≥ 0, (3.1)

3.1 Classical Kernel Machines 71

(a) (b) (c)

Fig. 3.1 Various distributions of data points

where w x(i)
. represents the inner product of vectors w . and x(i)

.. This means that a
hyperplane defined by (w, b). can perfectly separate the two classes.

However, in real-world scenarios, data is often not linearly separable, as shown
in Fig. 3.1b. The decision boundary required to separate classes may be curved
or highly complex. Traditional linear models struggle with such nonlinear data
because they are inherently limited to creating only linear decision boundaries. This
limitation highlights the need for more flexible approaches.

To address nonlinear data, one effective strategy is to transform the input data
into a higher-dimensional space where it might become linearly separable. This
transformation is known as feature mapping, denoted by

.φ : x → φ(x) ∈ RD. (3.2)

Here, the original input space X. is mapped to a higher-dimensional feature space
R

D
., where D ≥ d .. The idea is that in this higher-dimensional space, linear models

can more easily identify complex patterns from the original data. A visualization is
shown in as shown in Fig. 3.1c.

However, explicitly computing the feature map φ(x). in Eq. (3.2) can be com-
putationally expensive, especially if the feature space is high dimensional or even
infinite dimensional. Fortunately, many machine learning algorithms for tasks like
classification or regression depend primarily on the inner product between data
points, which will be explained in Sect. 3.1.2. In the feature space, this inner product
is given by φ(x(i)), φ(x(j)) ..

Remark
Throughout the whole tutorial, we interchangeably use a b ., a · b ., a, b ., and
a|b . to denote the inner production of two vectors a . and b..

To circumvent the computational cost of explicitly calculating the feature map,
we can use a kernel function. A kernel function k(x(i), x(j)). is defined as

.k(x(i), x(j)) φ(x(i)), φ(x(j)) . (3.3)

72 3 Quantum Kernel Methods

This allows us to compute the inner product in the higher-dimensional feature
space indirectly, without ever having to compute φ(x). explicitly. This approach is
commonly known as the kernel trick.

Using the kernel function directly in algorithms avoids the computational
overhead of working in a high-dimensional space. The collection of kernel values
for a dataset forms the kernel matrix (or Gram matrix), where each entry is given by
k(x(i), x(j)).. This matrix is central to many kernel-based algorithms, as it captures
the pairwise similarities between all training data points.

To illustrate the kernel trick, let’s consider a simple example in a d-dimensional
input space, where x = (x1, · · · , xd) .. Suppose the polynomial kernel is of degree
2, defined as

. k(x, z) =(x z)2

=(x1z1 + · · · + xdzd)2

=
d

i=1

d

j=1

xizixjzj

=[x2
1, · · · , x2

d ,
√

2x1x2, · · · ,
√

2xdxd−1]
[z2

1, · · · , z2
d ,

√
2z1z2, · · · ,

√
2zdzd−1]

=φ(x) φ(z). (3.4)

Here, it can be seen that the feature mapping, which comprises all second-order
terms, takes the form as

.φ(x) = [x2
1, · · · , x2

d ,
√

2x1x2, · · · ,
√

2xdxd−1] . (3.5)

Notably, directly computing the kernel function (x z)2
. for a large d is much more

efficient than explicitly calculating the feature map φ(x). and then taking the inner
product φ(x) φ(z).. Specifically, using the kernel function only requires O(d). time,
since it involves computing the dot product in the original input space Rd

.. In
contrast, explicitly computing the transformed feature vectors φ(x). and their inner
product could increase time complexity to O(D)., where D is the dimensionality
of the feature space after mapping. For this example of a polynomial kernel with
degree 2, D can grow to O(d2).. This demonstrates the kernel trick’s computational
efficiency.

3.1 Classical Kernel Machines 73

Remark
Throughout this manuscript, we use the notations O. and . to represent the
asymptotic upper and lower bounds, respectively, on the growth rate of a term,
ignoring constant factors and lower-order terms.

3.1.2 Dual Representation

To understand why many machine learning algorithms rely primarily on the inner
products between data points, we need to introduce the concept of the dual
representation. In essence, many linear parametric models used for regression or
classification can be recast into an equivalent dual form, where the kernel function
evaluated on the training data emerges naturally.

Let’s start with a linear regression model with the training dataset {(x(i), y(i))}ni=1 ..
Here, the parameters are determined by minimizing a regularized sum-of-squares
error function:

.L(w) = 1

2

n

i=1

w φ(x(i)) − y(i)
2 + λ

2
w w, (3.6)

where w . refers to the transpose of model parameters w ., φ(x(i)). represents the
feature mapping of the input x(i)

., and λ ≥ 0. is the regularization factor that helps
prevent overfitting.

To find the optimal w ., the gradient of L(w). with respect to w . is set to be zero,
i.e.,

.
∂L(w)

∂w
=

n

i=1

w φ(x(i)) − y(i) φ(x(i)) + λw = 0. (3.7)

From this, it can be seen that the solution for w . can be expressed as a linear
combination of the training data’s feature vectors:

.w = −1

λ

n

i=1

(w φ(x(i)) − y(i))φ(x(i)) =
n

i=1

a(i)φ(x(i)) := a, (3.8)

where = φ(x(1)), · · · , φ(x(n)) . is the design matrix, whose i-th row is given
by φ(x(i)) .. Here, the coefficients a(i)

. are functions of w ., defined as

.a(i) = −1

λ
w φ(x(i)) − y(i) . (3.9)

74 3 Quantum Kernel Methods

Thus, instead of directly optimizing w ., the problem can be reformulated in terms
of the parameter vector a ., giving rise to a dual representation. By substituting w =

a . into the original objective function L(w). in Eq. (3.6), the result is

.L(a) = 1

2
a a − a y + 1

2
y y + λ

2
a y, (3.10)

where y = y(1), · · · , y(n)
. denotes the vector representation of n training labels.

The kernel matrix is defined by K = ., where each element is given by

.Kij = φ(x(i)) φ(x(j)) = k(x(i), x(j)), (3.11)

using kernel function k(x, x). defined by Eq. (3.3). The objective function in terms
of a . simplifies to

.L(a) = 1

2
a K2a − a Ky + 1

2
y y + λ

2
a Ky. (3.12)

Setting the gradient of L(a). with respect to a . to zero gives us

.a = (K + λIn)
−1y, (3.13)

where In . is the identity matrix of size n × n..
Now, using this dual formulation, it can be derived the prediction for a new input

x .. Substituting w = a . in Eq. (3.8), the prediction of x . is given by

.y(x) = w φ(x) a, φ(x) k(x) (K + λIn)
−1y, (3.14)

where k(x) ∈ Rn
. is a vector with elements ki (x) = k(x(i), x) = φ(x(i)) φ(x)..

This shows that the dual formulation allows us to express the solution entirely in
terms of the kernel function k(x, x)., rather than explicitly working with the feature
map φ(x).. This is particularly advantageous because it enables us to work in high-
dimensional or even infinite-dimensional feature spaces implicitly.

In the dual formulation, the parameter vector a . is determined by inverting an n×n.

matrix. The original parameter space formulation, in contrast, requires inverting a
d×d .matrix to determine w .. Although this may not seem advantageous when n > d .,
the true benefit of the dual formulation lies in its ability to leverage the kernel trick.
By expressing the solution in terms of the kernel function, we avoid the explicit
computation of the feature vectors φ(x).. This allows us to implicitly utilize feature
spaces of very high, or even infinite, dimensionality, enabling the model to capture
complex, nonlinear relationships in the data without the associated computational
cost.

3.1 Classical Kernel Machines 75

Remark
We standardize the notation used throughout this chapter to help readers
follow the content more easily. The kernel function is represented by the
lowercase letter k or with subscripts kQ . and kC .. The kernel matrix is denoted
by the capital letter K or with subscripts KQ . and KC .. Additionally, we use
the bold lowercase letter k(x). to represent the vector of kernel values, where
each element is given by kj (x) = k(x(j), x)., corresponding to the training
points x(j) ∈ {x(1), . . . , x(n)}..

3.1.3 Kernel Construction

To utilize the kernel trick in machine learning algorithms, it is essential to construct
valid kernel functions. One approach is to start with a feature mapping φ(x). and
then derive the corresponding kernel. For a one-dimensional input space, the kernel
function is defined as

.k(x, x) = φ(x) φ(x) =
D

i=1

φi(x), φi(x) , (3.15)

where φi(x). are the basis functions of the feature map.
Alternatively, kernels can be constructed directly without explicitly defining a

feature map. In this case, the chosen function must be a valid kernel. This means
it needs to correspond to an inner product in some (possibly infinite-dimensional)
feature space. Mercer’s condition guarantees a kernel function’s validity.

Fact 3.1 (Mercer’s Condition) Let X ⊂ Rd
. be a compact set and let k : X×X→

R. be a continuous and symmetric function. Then, k admits a uniformly convergent
expansion of the form

.k(x, x) =
∞

i=0

ai φi(x), φi(x) (3.16)

with ai > 0. if and only if for any square-integrable function c, the following
condition holds

.
X X

c(x)c(x)k(x, x)dxdx ≥ 0. (3.17)

Mercer’s condition is crucial because it ensures that the optimization problem for
algorithms like support vector machines (SVM) remains convex [1], guaranteeing

76 3 Quantum Kernel Methods

convergence to a global minimum. A condition equivalent to Mercer’s condition
(under the assumptions of the theorem) is that the kernel k(·, ·). be positive definite
symmetric. This property is more general since it does not require any assumption
about X..

Definition 3.1 (Positive Definite Symmetric Kernels) A kernel k : X × X → R.

is said to be positive definite symmetric (PDS) if for any {x(1), · · · , x(n)} ⊂ X., the
matrix K = [k(x(i), x(j))]ij ∈ Rn×n

. is symmetric positive semi-definite (SPSD).

In other words, a kernel matrix K associated with a PDS kernel function will
always be SPSD, ensuring that the corresponding optimization problem remains
well behaved.

Below, several commonly used positive definite symmetric kernels are presented.

Example 3.1 (Polynomial Kernels) A polynomial kernel of degree m ∈ N.

with a constant c > 0. is defined as

.k(x, x) = (x · x + c)m, ∀x, x ∈ Rd . (3.18)

This kernel maps the input space to a higher-dimensional space of dimension
d+m

m
.. For instance, in a two-dimensional input space (d = 2.) and with m =

2., the kernel is expanded as follows:

.k(x, x) = (x1x1 + x2x2 + c)2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x2
1

x2
2√

2 x1x2√
2c x1√
2c x2

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x 2
1

x 2
2√

2 x1x2√
2c x1√
2c x2
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.19)

In other words, this kernel corresponds to an inner product in a higher-
dimensional space of dimension 6.

Thus, the features corresponding to a second-degree polynomial include the
original features (x1 . and x2 .), products of these features, and the constant feature.
More generally, the features associated with a polynomial kernel of degree m are all
the monomials of degree at most m based on the original features.

3.1 Classical Kernel Machines 77

Example 3.2 (Gaussian Kernels) The Gaussian kernel (or Radial Basis
Function, RBF) is one of the most widely used kernels, defined as

.∀x, x ∈ Rd , k(x, x) = exp − x − x

2σ 2
, (3.20)

where σ > 0. controls the width of the Gaussian function.

Gaussian kernels are particularly effective in capturing complex nonlinear
patterns due to their infinite-dimensional feature space.

Example 3.3 (Sigmoid Kernels) The sigmoid kernel over Rd
. is defined as

.k(x, x) = tanh(a · (x · x) + b), ∀x, x ∈ Rd , (3.21)

where a, b > 0. are constants and tanh(c) = ec−e−c

ec+e−c . is the hyperbolic tangent
function, which squashes an arbitrary constant c ∈ R. to a value between − 1.

and 1.

This kernel relates to neural networks, as it resembles the activation function
commonly used in multilayer perceptrons, as introduced in the next chapter. Using
the sigmoid kernel with support vector machines results in a model similar to a
simple neural network.

Remark
Support vector machines (SVMs) are a well-known algorithm that heavily
relies on kernel methods and are primarily used for classification tasks. The
objective of an SVM is to identify the optimal hyperplane that separates
data points from different classes with the maximum margin. The margin is
defined as the distance between the hyperplane and the closest data points
from each class, known as support vectors. SVMs can be applied to both linear
and nonlinear classification problems. For nonlinear cases, kernel functions
are employed to map the data into higher-dimensional spaces, enabling the
separation of data that is not linearly separable in the original space. For a
detailed introduction to SVMs, please refer to [1].

78 3 Quantum Kernel Methods

3.2 Quantum Kernel Machines

Quantum machine learning might someday outperform classical ML, but
researchers need to tackle big hurdles first. To effectively introduce quantum kernel
machines, it is essential to recognize the limitations of classical kernel machines.
As discussed in Sect. 3.1, classical kernel machines rely on manually tailored
feature mappings, such as polynomials or radial basis functions. However, these
mappings may fail to capture the complex patterns within the dataset. Quantum
kernel machines emerge as a promising alternative, as they perform feature mapping
using quantum circuits, enabling them to explore exponentially larger feature spaces
that are otherwise infeasible for classical computation.

Another crucial characteristic of quantum kernels is that they can be effectively
implemented on near-term quantum devices, making them a practical tool for
exploring the utility of near-term quantum technologies.

3.2.1 Quantum Feature Maps and Quantum Kernel Machines

The key difference between quantum kernel machines and classical kernel machines
lies in how the feature mapping is performed. In the quantum context, a feature
map refers to the injective encoding of classical data x ∈ Rd

. into a quantum
state |φ(x) U(x)|ψ . on an N -qubit quantum register, where U(x). refers to
the physical operation or quantum circuit that depends on the data x .. This feature
map is implemented on a quantum computer and produces quantum states, which
are referred to as quantum feature maps.

Definition 3.2 (Quantum feature map) Given an N -qubit quantum system ini-
tialized in state |ψ ., let x ∈ X ⊂ Rd

. be classical data. The quantum feature map is
defined as the mapping

. φ : X→ F,

φ(x) =|φ(x) φ(x)| = ρ(x), (3.22)

where F. is the space of complex-valued 2N ×2N
.matrices equipped with the Hilbert-

Schmidt inner product ρ, σ Tr(ρσ). for ρ, σ ∈ F.. In addition, the state |φ(x) .

can be implemented by applying a data-encoding quantum circuit U(x). introduced
in Sect. 2.3.1 on an initial state |ψ ., leading to the expression of |φ(x) U(x)|ψ ..

Recall that one way of constructing kernels is adopting the inner product
of the defined feature mappings. Using the Hilbert-Schmidt inner product from
Definition 3.2, the quantum kernel is defined as follows.

Definition 3.3 (Quantum kernel) Let φ . be a quantum feature map over the
domain X.. The quantum kernel kQ . is the inner product between two quantum feature

3.2 Quantum Kernel Machines 79

maps ρ(x). and ρ(x). for data points x, x ∈ X.:

. kQ : X×X→ R,

kQ(x, x) = Tr(ρ(x)ρ(x)) = φ(x)|φ(x)
2
. (3.23)

To justify the term “kernel,” the quantum kernel must be shown to be a
positive definite function. A quantum kernel can be expressed as the product of a
complex-valued kernel k̂Q(x, x) φ(x)|φ(x) C and its complex conjugate
k̂Q(x, x)∗ φ(x)|φ(x) ∗ φ(x)|φ(x) . Since the product of two kernels is
known to be a valid kernel, it suffices to show that k̂Q(x, x). is a valid complex-
valued kernel and satisfies positive definiteness. For any x(i) ∈ X., i = 1, · · · , n.,
and any coefficients ci ∈ C., the following holds

.

i,j

cic
∗
j k̂Q(x(i), x(j)) =

i,j

cic
∗
j φ(x(i))|φ(x(j))

=
i

ci φ(x(i))|
⎛
⎝

j

c∗
j |φ(x(j))

⎞
⎠

=
i

c∗
i |φ(x(i))

2

≥ 0. (3.24)

This inequality confirms that k̂Q(x, x). satisfies Mercer’s condition to be a valid
kernel as illustrated in Eq. (3.17). Therefore, the quantum kernel kQ(x, x). is also a
valid kernel.

The inner product between quantum states can be efficiently estimated on
quantum computers using techniques such as Loschmidt echo test [2] and SWAP test
[3]. Both methods correspond to distinct quantum circuit architectures, as illustrated
in Fig. 3.2.

One key merit of quantum kernels is that their derivation does not require the
explicit representation of the quantum feature maps. Instead, it relies only on the

|0 U(x) U(x)†

|0 H H

|0 U(x)

swap

|0 U(x)

(a) (b)

Fig. 3.2 Two methods for computing the inner product of the kernel. (a) Loschmidt echo test. (b)
Swap test

80 3 Quantum Kernel Methods

construction of the associated quantum circuits. This aligns with the essence of
kernel methods: while feature mappings can be computationally complex, the kernel
function itself must remain efficient to evaluate.

Below, the core steps for constructing a quantum kernel are outlined.

General Construction Rules of Quantum Kernels
There are three steps to construct a quantum kernel:

1. Quantum feature map construction. Design a data-dependent quantum
circuit U(x). to encode classical input data x . into the amplitudes or
parameters of a quantum state |φ(x) U(x)|ψ . where the initial state
|ψ . is typically |0 ⊗N

..
2. Kernel evaluation. The quantum kernel is typically defined as the inner

product of quantum states corresponding to two data points. Mathemati-
cally, this can be expressed as kQ(x, x) = φ(x)|φ(x)

2
..

3. Post-processing. After executing the quantum circuit for different input
pairs, measure the output and calculate the kernel matrix. This matrix will
then be used in machine learning models, such as SVM.

Below is a simple example of a quantum kernel with an angle encoding feature
map introduced in Sect. 2.3.1.

Example 3.4 (Single-Qubit Kernel) Consider an embedding that encodes a
scalar input x ∈ R. into the quantum state of a single qubit. The embedding is
implemented by the Pauli-X rotation gate RX(x) = e−ixσx/2

., where σx . is the
Pauli-X operator. The quantum feature map is then given by φ : x → ρ(x) =
|φ(x) ψ(x)|. with

. |φ(x) e−ixσx/2|0
= (cos(x)I− i sin(x)σx) |0
= cos(x)|0 i sin(x)|1 , (3.25)

and hence the quantum kernel yields

. k(x, x) = cos
x

2
cos

x

2
+ sin

x

2
sin

x

2

2

= cos
x − x

2

2

,

which is a translation invariant squared cosine kernel.

3.2 Quantum Kernel Machines 81

3.2.2 Comparative Analysis: Quantum vs. Classical Kernel
Methods

Comparing the fundamental components of classical and quantum kernel machines
provides an intuitive way to understand their connections and differences. As
illustrated in Fig. 3.3, both classical and quantum kernels embed data points from
the data space X. into a high-dimensional space and then compute the kernel as
the inner product of feature maps. The quantum kernel achieves this using quantum
circuits, as indicated by the blue color. Table 3.1 summarizes how these components
are implemented in classical and quantum kernel machines.

The main distinctions between classical and quantum kernel machines lie in
the computation processes for feature mapping and kernel matrix construction, as
outlined below:

• Classical versus quantum feature maps. Quantum feature maps encode data
into quantum states, resulting in exponentially large complex-valued vectors
|φ(x) C

2N
.. Nevertheless, classical feature maps operate in finite-dimensional

real-valued spaces φ(x) ∈ RD
.. While quantum feature maps can theoretically

⋯

()

()

⋯

⋯

(()) (())

⋯

⋯

| (())⟩

| (())⟩
|0⟩
|0⟩

|0⟩

()

(()) † (())

|0⟩
|0⟩

|0⟩

Data space

Classical f eature space ℳ

Quantum feature space ℋ Quantum kernel

Classical kernel

Fig. 3.3 The paradigm of classical and quantum kernels

Table 3.1 Comparison between classical and quantum kernel machines

Classical kernel Quantum kernel

Input Classical data {x(i)}ni=1 ∈ Rd . Classical data {x(i)}ni=1 ∈ Rd .

Feature Real vector φ(x) ∈ RD . Complex vector |φ(x) C
2N

.

Kernel n-dimensional real matrix KC . n-dimensional real matrix KQ .

Computation Digital logical circuits φ(x). Quantum circuits U(x)|ψ .

82 3 Quantum Kernel Methods

be simulated on classical computers by separating real and imaginary parts, this
simulation becomes computationally infeasible as the number of qubits grows.
Even feature maps generated by shallow quantum circuits are difficult to sim-
ulate efficiently on classical hardware, highlighting the inherent computational
complexity of quantum feature maps.

• Classical versus quantum kernels. The kernel function is determined by the
feature mapping, but its computational properties differ significantly between
classical and quantum methods. A key merit of kernel methods is that they allow
the use of complex feature maps while maintaining efficient kernel evaluations.
Quantum kernels leverage quantum circuits to compute the inner product of
quantum states, enabling the recognition of intricate patterns that classical
kernels fail to capture. If a quantum kernel is computationally hard to evaluate
classically, it offers a significant advantage by exploiting quantum computing’s
ability to process complex data representations efficiently.

Remark
The efficiency discussed here refers to the computational time within the
respective classical or quantum frameworks as summarized below:

• Classical Efficiency: Determined by the depth of digital logical circuits
used for feature mapping and kernel computation.

• Quantum Efficiency: Determined by the depth of quantum circuits required
to achieve the same tasks.

A computation process is considered efficient if it can be completed in
polynomial time relative to the problem size in its corresponding framework
(classical or quantum).

3.2.3 Concrete Examples of Quantum Kernels

To better understand the concept of a quantum kernel, common information encod-
ing strategies used in quantum machine learning and their associated kernels are
examined. It is important to note that some kernels cannot be efficiently computed
on classical computers [4]. While such results are significant, the question of which
quantum kernels are practically useful for real-world problems remains an open
challenge.

In the following examples, the various encoding strategies introduced in
Sect. 2.3.1 are first reviewed, and then, the corresponding quantum kernels are
presented.

3.2 Quantum Kernel Machines 83

Example 3.5 (Quantum kernel with basis encoding) Given a classical
binary vector x = (x1, · · · , xd) ∈ {0, 1}d ., the quantum feature mapping
related to basis encoding refers to

.|φ(x) x1, · · · , xd , (3.26)

and the induced quantum kernel yields

.k(x, x) φ(x)|φ(x) 2 = δxx , (3.27)

where δxx = 1. if x = x . and otherwise 0.

The basis encoding requires N = d . qubits. This kernel function provides a very
strict similarity measure on the input space and is arguably not the best choice of
data encoding for quantum machine learning tasks.

Example 3.6 (Quantum kernel with amplitude encoding) Given a vector
x = (x1, · · · , xd) ∈ Rd

., the quantum feature mapping related to amplitude
encoding refers to

.|φ(x)

d

i=1

xi

x 2
|i , (3.28)

where x 2 . is the Euclidean norm. The related quantum kernel is given by

.k(x, x) φ(x)|φ(x) 2 = x, x 2

x 2
2 x 2

2

. (3.29)

The amplitude encoding requires N log2(d) . qubits. This encoding strategy
leads to an identity feature map, which can be implemented by a nontrivial quantum
circuit (for obvious reasons also known as “arbitrary state preparation”), which
takes time O(d). in the worst case. Besides, this quantum kernel does not add much
power to a linear model in the original feature space and is primarily of interest for
theoretical investigations aimed at eliminating the effect of the feature map.

84 3 Quantum Kernel Methods

Example 3.7 (Quantum kernel with angle encoding) Given a vector x =
(x1, · · · , xd) ∈ Rd

., the quantum feature mapping related to angle encoding
refers to

.|φ(x) Wd+1e
−ixdGd Wd · · ·W2e

−ix1G1W1|0 ⊗d , (3.30)

where W1, · · · ,Wd+1 . are arbitrary unitary evolutions and Gi . is di ≤ d .-
dimensional Hermitian operator called the generating Hamiltonian.

For a special case in which Wi = I. and Gi . refers to the Pauli-X operators
σx . acting on the i-th qubit, the quantum feature mapping refers to

.|φ(x)

d

i=1

exp −i
xi

2
σx |0 ⊗d , (3.31)

and the related quantum kernel is given by

. k(x, x) =
d

i=1

sin(xi) sin(xi) + cos(x(i)) cos(xi)
2

=
d

i=1

cos(xi − xi)
2
. (3.32)

The angle encoding requires d qubits, mapping the classical data to a 2d
.-

dimensional Hilbert space. A key advantage of angle encoding is its introduction
of nonlinearity, a property essential for effective kernel-based machine learning.
Specifically, nonlinearity enables the transformation of low-dimensional and non-
linearly separable data into higher-dimensional, linearly separable representations.
Additionally, angle encoding is well suited for implementation on modern devices
with limited qubits and circuit depth, making it practical for exploring the utility of
near-term quantum computers.

The quantum kernels related to different data encoding strategies have a resem-
blance to kernels from the classical machine learning literature. This means that
sometimes up to an absolute square value, they can be identified with standard
kernels such as the polynomial or Gaussian kernel. For the special case of angle
encoding, the resemblance to classical kernels is because the employed quantum
circuit does not employ any entangled quantum gates such that it can be simulated
classically. We now discuss the general form of the quantum kernels induced
by quantum feature maps from angle encoding in Eq. (3.30). The simplified case
is considered where each input x(i)

. is encoded only once and all encoding
Hamiltonians are the same, i.e., G1 = · · · = Gd = G..

3.2 Quantum Kernel Machines 85

Theorem 3.1 (Fourier Representation of the Quantum Kernel) LetX = Rd
. and

U(x). be a quantum circuit that encodes the data inputs x = (x1, · · · , xd) ∈ X. into
a d-qubit quantum state |φ(x) . via gates of the form e−ixiG . for i = 1, · · · , d ..
Without loss of generality, G is assumed to be a m ≤ 2d

.-dimensional diagonal
operator with spectrum λ1, · · · , λm .. Between such data-encoding gates, and before
and after the entire encoding circuit, arbitrary unitary evolutions W1, · · · ,Wd+1 .

can be applied, so that

.U(x) = Wd+1e
−ixdGd Wd · · ·W2e

−ix1G1W1. (3.33)

The quantum kernel kQ(x, x). can be written as

.kQ(x, x) =
s,t∈

eisxeitx cst , (3.34)

where ⊂ Rd
. and cst ∈ C.. For every s, t ∈ ., we have − s,−t ∈ . and

cst = c∗−s−t ., which guarantees that the quantum kernel is real valued.

Proof Sketch of Theorem 3.1 The assumption that the generator G is diagonal
could be made without loss of generality because Hermitian operators can be
diagonalized as G = †

. with

.e−ixi =

⎛
⎜⎜⎝

e−ixiλ1 0 · · · 0
0 e−ixiλ2 · · · 0

· · · · · ·
0 · · · 0 e−ixiλm

⎞
⎟⎟⎠ , (3.35)

where V †
. refers to the conjugate transpose of the matrix V , λ1, · · · , λm . are the

eigenvalues of G. Formally, V, V †
. can be absorbed into the arbitrary circuits Wi+1 .

and Wi . before and after the encoding gate. In this regard, the quantum kernel can be
written down as the inner product between the feature state of the specific forms in
Eq. (3.30), i.e.,

.k(x, x)

= φ(x)|φ(x)

= 0| W †
1 (e−ix1)† · · · (e−ixd)†W

†
d+1Wd+1e

−ixd · · · e−ix1 W1|0
2

= 0| W †
1 (e−ix1)† · · · (e−ixd)†e−ixd · · · e−ix1 W1|0

2

=
m

j1,··· ,jd=1

m

k1,··· ,kd=1

e−i(λj1x1−λk1x1+···+λjd
xd−λkd

xd)

86 3 Quantum Kernel Methods

Table 3.2 Overview of typical data encoding strategies and their quantum kernels. The input
domain is assumed to be the x = (x1, · · · , xd) ∈ X ⊂ Rd .

Encoding Qubits Dimension Quantum kernel k(x, x).

Basis encoding d 2d . δx,x .

Amplitude encoding log2(d) . d |x†x |2 .
Angel encoding d 2d .

d
k=1 | cos(xk − xk)|2 .

General angle encoding d 2d . s,t∈ e−isxeitx cst .

× W (1k1)
1 · · · W (kd−1kd)

d
∗
W (jd jd−1)

d · · · W (j11)
1

2

=
j k

e− j x− kx) (ωk)
∗ωj

2

=
j k h l

e− j − l)xe k− h)x (ωkωh)∗ωjωl, (3.36)

Here, the scalars W
(ab)
i . refer to the element a| Wi |b . of the unitary operator Wi ..

The bold multi-index j . represents the set (j1, · · · , jd)., and j . is a vector containing
the eigenvalues selected by the multi-index (and similarly for k,h, l .).

All terms where j − l = s . and k − h = t . can be summarized. In other
words, the differences of eigenvalues amount to the same vectors s, t .. Then

. k(x, x) =
s,t∈

e−isxeitx

j ,l: j − l=s k,h: k− h=t

ωjωl(ωkωh)∗

=
s,t∈

e−isxeitx cst . (3.37)

The frequency set . contains all vectors { j − l}. with j = (λj1, · · · , λjd
). and

λj1, · · · , λjd
∈ [1, · · · ,m]..

The various strategies for constructing quantum feature mappings and quantum
kernels are summarized in Table 3.2.

Remark
After obtaining the quantum kernel matrix KQ . for a given training dataset
{(x(i), y(i))}ni=1 ., it can be used to perform regression or classification tasks in
a manner similar to the classical kernel methods. In particular, as discussed in
Sect. 3.1.2, consider the linear regression model given by

(continued)

3.3 Theoretical Foundations of Quantum Kernel Machines 87

.L(w) = 1

2

n

i=1

w · φQ(x(i)) − y(i)
2 + λ

2
w · w, (3.38)

where φQ(x(i)). denotes the quantum feature mapping related to the quantum
kernel kQ ., w . denotes the model parameters, and λ ≥ 0. is the regularization
factor. Using the quantum kernel matrix, the dual representation of the linear
model given in Eq. (3.14) can be expressed to predict the output for a new
input as

.y(x) = kQ(x) · (KQ + λIn)
−1y, (3.39)

where y = (y(1), · · · , y(n)). refers to the label vector and kQ(x). is a vector

with elements k
(i)
Q (x) = kQ(x(i), x)..

3.3 Theoretical Foundations of Quantum Kernel Machines

This section delves into the theoretical foundations of quantum kernels. Specifically,
it focuses on two crucial aspects: the expressivity and generalization properties of
quantum kernel machines. As shown in Fig. 3.4, these two aspects are essential for
understanding the potential advantages of quantum kernels over classical learning
approaches and their inherent limitations. In particular, expressivity refers to the
size of the hypothesis space HQ . represented by quantum kernels, where H. refers
to the whole hypothesis space. Generalization considers the learned hypothesis
that can accurately predict unseen data, exhibiting a small distance from the
target concept. For ease of understanding, this section emphasizes the fundamental

ℋ
ℋ

⋯
Optimization path

()

()

∗
∗

Target function

Fig. 3.4 The expressivity and generalization of quantum kernels

88 3 Quantum Kernel Methods

concepts necessary for evaluating the power and limitation of quantum kernels
instead of exhaustively reviewing all theoretical results.

The outline of this chapter is as follows. In Sect. 3.3.1, the expressivity of quan-
tum kernels is discussed, referring to the diversity of feature spaces that quantum
kernels can represent. The insights gained will help identify tasks particularly well
suited for quantum kernels. Then, in Sect. 3.3.2, the potential advantage of quantum
kernels in terms of generalization error compared to all classical kernel machines is
examined. This analysis highlights their ability to accurately predict labels or values
for unseen data.

3.3.1 Expressivity of Quantum Kernel Machines

Quantum kernels, as discussed in Sect. 3.2, are constructed by explicitly defining
quantum feature mappings. In this context, the expressivity of quantum kernel
machines refers to the types of functions that quantum feature mappings can
approximate and the kinds of correlations that quantum kernels can effectively
model.

Following the conventions of [5], it is demonstrated that any kernel function can
be approximated using finitely deep quantum circuits by showing that the associated
feature mapping can also be approximated using quantum circuits. This conclusion
rests on two key theoretical foundations: Mercer’s feature space construction and the
universality of quantum circuits. Together, these principles establish the theoretical
feasibility of realizing any kernel function as a quantum kernel.

It is important to note that if exact mathematical equality were required, Mercer’s
construction would demand an infinite-dimensional Hilbert space, which in turn
would require quantum computers with infinitely many qubits—an impractical sce-
nario. However, in practical applications, approximating functions to a certain level
of precision is more important than achieving exact evaluations. This perspective
makes it feasible to implement the corresponding quantum feature mappings using a
finite number of qubits. The following theorem confirms that any kernel function can
be approximated as a quantum kernel to arbitrary precision with finite computational
resources (proof details are deferred to the end of this subsection).

Theorem 3.2 (Approximate Universality of Finite-Dimensional Quantum Fea-
ture Maps) Let k : X × X → R. be a kernel function. Then, for any ε ≥ 0., there
exists N ∈ N. and a quantum feature mapping ρN . onto the Hilbert space of quantum
states of N qubits such that

.|k(x, x) − 2N Tr(ρN(x)ρN(x)) + 1| < ε (3.40)

for almost all x, x ∈ X..

Theorem 3.2, instead of discussing the ε .-approximation of quantum kernels in
the form |k(x, x) − Tr(ρN(x)ρN(x))| < ε ., introduces additional multiplicative

3.3 Theoretical Foundations of Quantum Kernel Machines 89

and additive factors. The corresponding mathematical expression is |k(x, x) −
2N Tr(ρN(x)ρN(x)) + 1| < ε .. These additional factors, explained below, do not
impede the universality of the theorem.

Moreover, the statement that Eq. (3.40) holds for almost all x, x ∈ X. stems
from measure theory. It signifies that the inequality is valid “except on sets of
measure zero” or equivalently “with probability 1.” In other words, while adversarial
instances of x, x ∈ X. may exist for which the inequality does not hold, such
instances are so sparse that the probability of encountering them when sampling
from the relevant probability distribution is zero.

Last, Theorem 3.2 establishes that any kernel function can be approximated as a
quantum kernel up to a multiplicative and an additive factor using a finite number
of qubits.

Before presenting the proof of this theorem, Algorithm 1 is first introduced,
which maps classical vectors to quantum states. These quantum states can then
be used to evaluate Euclidean inner products as quantum kernels. Subsequently,
we demonstrate Lemmas 3.1 and 3.2. These two lemmas separately formalize
the correctness and runtime complexity of Algorithm 1, as well as establish the
relationship between the Euclidean inner product of encoded real vectors and the
Hilbert-Schmidt inner product of the corresponding quantum states.

Algorithm 1 Classical to quantum embedding (C2QE)

Input: a unit vector with 1-norm r ∈ d
1

Output: Quantum state ρr ∝ I + d
i=1 r iPi See Lemma 3.1

1: Set N log4(d + 1)
2: Pad r with zeros until its length is 4N − 1
3: Draw i ∈ {1, . . . , 4N − 1} with probability |r i |
4: Prepare ρi = 1

2 N (I + sign(r i)Pi).
5: retu rn ρi

The output of Algorithm 1, 1
2N (I ± P)., is a single (pure) eigenstate of a Pauli

operator P with eigenvalue ± 1.. However, since Line 3 involves sampling an index
i ∈ {1, · · · , 4N − 1}., Algorithm 1 is inherently random, and the resulting quantum
state is a classical mixture of pure states.

Lemma 3.1 (Correctness and Runtime of Algorithm 1) Let r ∈ d
1 ⊂ Rd

. be
a unit vector with respect to the 1-norm, i.e., r 1 = 1.. Take N log4(d +
1) . and pad r . with zeros until its length is 4N − 1.. Let (Pi)

4N−1
i=1 . be the set of all

Pauli matrices on N qubits, excluding the identity. Then, Algorithm 1 prepares the
following state as a classical mixture:

. ρ(·) : d
1 → Herm(2N),

r ρr = I+
4N−1
i=1 r iPi

2N
. (3.41)

The total runtime complexity t of Algorithm 1 fulfills t ≤ O(poly(d))..

90 3 Quantum Kernel Methods

Proof of Lemma 3.1 The proof begins by expanding the state as follows:

.
I+ 4N−1

i=1 r iPi

2N
= 1

2N

⎛
⎝4N−1

i=1

|r i |I+
4N−1

i=1

r iPi

⎞
⎠ , (3.42)

where the first equality follows that r 1 = 1. and r ∈ R4N−1
.. Rewriting the above

equation using sign(r i). yields

.
I+ 4N−1

i=1 r iPi

2N
= 1

2N

⎛
⎝4N−1

i=1

|r i |I+
4N−1

i=1

|r i |sign(r i)Pi

⎞
⎠

= 1

2N

4N−1

i=1

|r i | (I+ sign(r i)Pi) 0. (3.43)

This uses the fact that i |r i r 1 = 1. and I ± Pi ≥ 0. for all Pauli operators
Pi .. Efficiently preparing I+Pi . is achieved by rotating each qubit’s |0 . basis state to
the corresponding Pauli basis and flipping the necessary qubits individually. Since
this state is a convex combination of quantum states, it can be efficiently prepared
by mixing, when the number of terms is polynomial.

Lemma 3.2 (Euclidean Inner Products) Let r, r ∈ Rd
. be unit vectors with

respect to the 1-norm, i.e., r 1 r 1 = 1.. For the states ρr , ρr . produced in
Algorithm 1, the following identity holds

. r, r 2N Tr(ρrρr) − 1. (3.44)

Proof of Lemma 3.2 The proof utilizes the following principles: (1) The trace is
linear, and the trace of a tensor product equals the product of traces. (2) All Pauli
words are traceless except for the identity, and each Pauli operator is its own inverse.
Hence, the product of distinct Pauli operators is also traceless.

Expanding the trace of ρrρr ., we have

. Tr(ρrρr) = Tr

⎛
⎝ 1

4N

⎛
⎝I+

4N−1

j=1

rjPj

⎞
⎠

⎛
⎝I+

4N−1

k=1

rkPk

⎞
⎠

⎞
⎠ , (3.45)

which could be simplified as

. Tr(ρrρr) = 1

4N
Tr

⎛
⎝I+

4N−1

j=1

rj rjP
2
j +

4N−1

k j

rj rkPjPk

⎞
⎠ . (3.46)

3.3 Theoretical Foundations of Quantum Kernel Machines 91

Using the properties of Pauli operators, the trace becomes

. Tr(ρrρr) = 1

4N

⎛
⎝Tr (I) + Tr

⎛
⎝4N−1

j=1

rj rj I

⎞
⎠

⎞
⎠ = 1 r, r

2N
. (3.47)

This completes the proof.

Lemma 3.2 clarifies the origin of the extra factors in Theorem 3.2. In particular,
the 2N

. multiplicative factor is unproblematic, as N ≤ O(log(d)). and the methods
are designed to scale polynomially with d. Moreover, the quantum state ρr . is
generally mixed but can be efficiently prepared. The mapping is injective but not
surjective.

With these results in place, the proof of Theorem 3.2 is now presented.

Proof of Theorem 3.2 The proof follows from a corollary of Mercer’s theorem and
the universality of quantum computing. First,the corollary of the Mercer’s Theorem
(i.e., Fact 3.1) is employed, which states that an arbitrary kernel k admits a uniformly
convergent expansion of the form in Eq. (3.16). This ensures the existence of a finite-
dimensional feature map m : X→ R

m
. such that

. k(x, x) m(x m(x) < ε. (3.48)

Without loss of generality, it is assumed that m(x) 1. for all x ∈ X.. The
quantum state ρ m . can then be prepared, which requires log4(m + 1) . qubits. By
preparing two such states—one for m(x). and one for m(x).—their inner product
can be computed as the Hilbert-Schmidt inner product of the quantum states, as
shown in Lemma 3.2. This leads to

. m(x m(x) 2N Tr ρ
m(x)ρ m(x) − 1. (3.49)

For reference, note that Tr ρ
m(x)ρ m(x) . can be computed using the SWAP

test to an additive precision determined by the number of measurement shots. This
allows approximation of the result efficiently to any desired polynomial additive
precision. Consequently, it follows that

. k(x, x) − 2N Tr ρ
m(x)ρ m(x) + 1 < ε, (3.50)

for almost all x, x ∈ X.. This completes the proof.

Theorem 3.2 does not aim to demonstrate any quantum advantage but rather
establishes the ultimate expressivity of quantum kernels. The theorem guarantees
the existence of a quantum kernel using a finite number of qubits. However, it does
not specify the scaling of required qubits with increasing computational complexity
of the kernel function k or with decreasing approximation error ε > 0.. The number
of qubits N will depend on certain properties of the kernel k and the approximation
error ε .. For instance, if the required number of qubits scales exponentially with these

92 3 Quantum Kernel Methods

parameters, Theorem 3.2 would have limited practical utility. lso to be considered
is the time required to find such a quantum kernel approximation, independently
of memory and runtime requirements for preparing feature vectors and computing
their inner product.

Remark
Although Theorem 3.2 establishes that all kernel functions can be realized
as quantum kernels, there may still exist kernel functions that cannot be
realized efficiently as quantum kernels. This observation requires us to identify
quantum kernels that can be computed efficiently on quantum computers, i.e.,
in polynomial time.

3.3.2 Generalization of Quantum Kernel Machines

Generalization, which quantifies the ability of learning models (both classical and
quantum) to predict unseen data, is a critical metric for evaluating the quality of a
learning model. Due to its importance, this section analyzes the potential advantages
of quantum kernels in terms of generalization.

To provide a comprehensive understanding, this section first elucidates the
generalization error bounds for general kernel machines, establishing a unified
framework for a fair comparison between quantum kernels and classical kernels.
Subsequently, a geometric metric is introduced to assess the potential quantum
advantage of quantum kernels with respect to generalization error for a fixed amount
of training data.

3.3.2.1 Generalization Error Bound for Kernel Machines

The optimal learning models based on specified kernel machines, which can be
either classical or quantum, are reviewed, as discussed in Sect. 3.1.2. Suppose we
have obtained n training examples {(x(i), y(i))}ni=1 . with x(i) ∈ Rd

. and y(i) =
f (x(i)) ∈ R., where f is the target function. After training on this data, there exists a
machine learning algorithm that outputs h(x) = w†φ(x)., where φ(x) ∈ CD

. refers
to the hidden feature map corresponding the classical/quantum kernel function
k(x(i), x(j)) = Kij = φ(x(i)) · φ(x(j)).. More precisely, the mean square error
is considered as the loss function for such a task:

.L(w, x) = λw†w +
n

i=1

w†φ(x(i)) − y(i)
2
, (3.51)

3.3 Theoretical Foundations of Quantum Kernel Machines 93

where λ ≥ 0. is the regularization parameters for avoiding overfitting.
The optimal parameters for optimizing this loss function are given by

.w∗ = arg min
w∈ L(w, x). (3.52)

As discussed in Sect. 3.1.2, the optimal solution w∗
. in Eq. (3.52) has the explicit

form of

.w∗ = †(K + λIn)
−1y =

n

i=1

n

j=1

φ(x(i))((K + λIn)
−1)ij y

(j), (3.53)

where y = [y(1), ..., y(n)] . refers to the vector of labels and K ∈ Rn×n
. is the

kernel matrix, and the second equality follows that = [φ(x(1)), · · · , φ(x(n))]†
..

Moreover, the norm of the optimal parameters has a simple form when λ → 0., i.e.,

. w∗ 2
2 = y K−1y. (3.54)

The prediction error of these learning models is

. w∗(x) = f (x) − (w∗)†φ(x) , (3.55)

which is uniquely determined by the kernel matrix K and the hyperparameter λ.

as shown in Eq. (3.53). In particular, the focus will be on the upper bound on the
expected prediction error, as the sum of training error and generalization error.

Prediction, Training, and Generalization Error
In the context of learning theory, the upper bound of the expected prediction
error defined in Eq. (3.55) (a.k.a, expected risk) is achieved by separately
analyzing the upper bounds of the training error (a.k.a, empirical risk) and
the generalization error, i.e.,

. Ex∼D w∗(x) = 1

n

n

i=1

w∗(x(i))

Training error

+Ex∼D w∗(x) − 1

n

n

i=1

w∗(x(i))

Generalization error

.

(3.56)
This decomposition stems from the fact that data distribution D. is inaccessible
in most scenarios.

94 3 Quantum Kernel Methods

A rough derivation of the upper bound of training error and generalization error
will now be presented, outlining the necessary steps for clarity, while omitting
specific details found in [6].
•. Training error. Employing the convexity of function and Jensen’s inequality, the
training error yields

.
1

n

n

i=1

w∗(x(i)) ≤ 1

n

n

i=1

(w∗)†φ(x(i)) − y(i) 2
. (3.57)

Moreover, combining with the expression for the optimal w∗
. given in Eq. (3.53), we

can obtain the upper bound of training error in terms of the kernel matrix K and
hyperparameter λ., i.e.,

.
1

n

n

i=1

w∗(x(i)) ≤ λ2y (K + λIn)−2y

n
. (3.58)

Note that when λ = 0. and K are invertible, the training error is zero. However, the
hyperparameter is usually set to λ > 0. in practice.
•. Generalization error. The derivation of generalization error is more complicated
than training error, involving a basic theorem in statistic and learning theory,
presented below.

Fact 3.2 (Theorem 3.3, [1]) Let G. be a family of function mappings from a set Z.

to [0, 1].. Then, for any δ > 0., with probability at least 1 − δ . over identical and
independent draw of n samples fromZ : z(1), · · · , z(n)

., we have for all g ∈ G.

.Ezg(z) ≤ 1

n

n

i=1

g(z(i)) + 2Eσ sup
g∈G

1

n

n

i=1

σig(z(i)) + 3
log(2/δ)

2n
, (3.59)

where σ1, · · · , σn . are in independent and uniform random variables over {1,−1}..
For kernel functions defined in Eq. (3.55), the set Z. refers to the space of input

vector with z(i) = x(i)
. drawn from an input distribution. Each function g equals t o

w/α . for some w ., where w . is defined in Eq. (3.55) and α . is a normalization factor
such that the range of w/α . is [0, 1].. Without loss of generality, assume α = 1..
For any specific parameter w ., consider the special case of G. with setting Gw =
{ v v w .. Then, the upper bound of generalization error for the optimal
parameter is

. Ex w∗(x) − 1

n

n

i=1

w∗(x(i))

≤2Eσ sup
v w∗

1

n

n

i=1

σi v(x
(i)) + 3

log(2 w∗ /δ)

2n
. (3.60)

3.3 Theoretical Foundations of Quantum Kernel Machines 95

Moreover, applying Talagrand’s contraction lemma [1] to the first term on the right-
hand side gives

. Eσ sup
v w∗

1

n

n

i=1

σi v(x
(i)) ≤Eσ sup

v w∗
1

n

n

i=1

σi(w
∗)†φ(x(i))

≤ w∗ 2

n
, (3.61)

where the first inequality follows that v(x
(i)). is Lipschitz continuous with respect

to (w∗)† · φ(x(i)). with Lipschitz constant 1, the second inequality follows direct
algebra operation. For detailed simplification, refer to Lemma 1 of [6].

In conjunction with Eq. (3.60), Eq. (3.61), and the expression of the optimal
parameter w∗

. given in Eq. (3.53), the final upper bound of generalization error in
terms of the kernel matrix is derived:

. Ex w∗(x) − 1

n

n

i=1

w∗(x(i))

≤5 · y (K + λIn)
−1K(K + λIn)

−1y

n
+ 3

log(2/δ)

2n
. (3.62)

For the case of λ = 0., the first term in the generalization error bound simplifies to
5 · y K−1y/n..

With the upper bound of training and generalization error, the prediction error of
the learning model for a specific kernel matrix can be directly obtained. These three
errors are summarized below.

Remark
The upper bound of the prediction error for kernel methods defined in
Eq. (3.55) refers to

. Ex∼D w∗(x) ≤ O λ2y (K + λIn)−2y

n

Training error

+

y (K + λIn)−1K(K + λIn)−1y

n
+ log(1/δ)

n

Generalization error

, (3.63)

(continued)

96 3 Quantum Kernel Methods

where K is a specific kernel related to the learning models and y =
[y(1), · · · , y(n)]. refers to the label vector of n training data. For the special
case of λ = 0., the training error is zero, and the prediction error reduces to
the generalization error with a simple form

.Ex∼D w∗(x) ≤ O
⎛
⎝ y K−1y

n
+ log(1/δ)

n

⎞
⎠ . (3.64)

Note that the derived upper bound of the prediction error applies to both classical
and quantum kernels. This is because there are no restrictions imposed on the kernel
matrix K during the derivation.

3.3.2.2 Quantum Kernels with Prediction Adv antages

Using the above theoretical results of generalization error for general kernel
machines, we now elucidate how to access the potential quantum advantage of
quantum kernels. For a clear understanding, we focus on the case of λ = 0. in which

the prediction error bound has a simple form of O y K−1y/n + log(1/δ)/n .

as shown in Eq. (3.64). In particular, this bound has a key dependence on two
quantities, namely, (1) the size of training data n and (2) the kernel-dependent term
y K−1y ., which we denote as

.sK(y) = y K−1y, (3.65)

in the following discussion for simplification.
The dependence on n reflects the role of data to improve prediction performance.

On the other hand, the quantity sK(y). is equal to the model complexity of the trained
function h(x) = (w∗)† ·φ(x)., where sK(y) w∗ 2 = (w∗)† ·w∗

. after training. A
smaller value of sK(y). implies better generalization to new data x . sampled from the
distribution D.. Intuitively, sK(y). measures whether the closeness between x(i)

. and
x(j)

. defined by the kernel function k(x(i), x(j)). matches well with the closeness of
the labels y(i)

. and y(j)
., recalling that a larger kernel value indicates two points are

closer.
Based on the above discussion, it is interesting to analyze the potential advantage

of quantum kernel machines. Given a set of training data {(x(i), y(i))}ni=1 ., let Q. and
C. be the class of Quantum and Classical kernels, respectively, that can be efficiently
evaluated on quantum and classical computers for any given x .. In order to formally
evaluate the potential for quantum prediction advantage generally, one must take the
quantum kernel KQ ∈ Q. to satisfy the following two conditions:

3.3 Theoretical Foundations of Quantum Kernel Machines 97

• KQ . is hard to compute classically for any given x ..
• According to Eq. (3.65), the quantity sQ(y). related to the quantum kernel KQ .

must be the minimal over all efficient classical models, namely, sQ(y) ≤ sC(y).

for any KC ∈ C. with sC(y). being the KC . related quantity.

From the second condition, one can see that the potential advantage for the
quantum kernel KQ . to predict better than a classical kernel KC . depends on the
largest possible separation between sQ(y). and sC(y). for a dataset. Huang et
al. [6] define a geometry metric, namely, asymmetric geometric difference, to
characterize this separation for a fixed training dataset, which is given by

.gCQ = g(KC ||KQ) = KQ(K−1
C) KQ ∞, (3.66)

where ∞ . is the spectral norm of the resulting matrix and we assume Tr(KQ) =
Tr(KC) = n.. The geometric difference g(KC ||KQ). can be computed on a classical
computer by performing a singular value decomposition of the n × n. matrices KC .

and KQ . in time at most order n3
..

Figure 3.5 presents a detailed flowchart for evaluating the potential quantum
prediction advantage using the defined geometric difference gCQ . in a machine
learning task. The input consists of n data samples, along with both quantum and
classical methods, each associated with its respective kernel. The tests are conducted
as a function of n to highlight the role of data size in determining the potential for a
prediction advantage.

First, the geometric quantity gCQ . is evaluated, which quantifies the potential for
a separation between quantum and classical predictions, without yet considering the
actual function to be learned. Specifically, a large value of gCQ ∝ √

n. suggests the
possibility of a quantum prediction advantage. If the test is passed, an adversarial
dataset that saturates this limit can be constructed. In particular, there exists a
dataset with sC = g2

CQsQ ., where the quantum model exhibits superior prediction
performance, as will be described in the subsequent context.

Geometry test for quantum prediction advantage

∝
Data set exists with

potential quantum

advantage

Can be constructed

Complexity test

for specific data

≪

∝ ,
≪

Else

Classical ML can

learn & predict well

potential quantum

advantage

Likely hard to learn

≪ Classical ML predicts similar or

better than the quantum ML

Classical ML prerr dicts simimm lar or

betttt er thtt an thtt e quqq antutt muu ML

Fig. 3.5 A flowchart for understanding the potential for quantum prediction advantage (Adapted
from [6])

98 3 Quantum Kernel Methods

Subsequently, to incorporate the provided data, a label-specific test can be
performed using the model complexities sC . and sQ .. For quantum kernels and
classical learning models, when sQ n. and sC ∝ n., a prediction advantage for
quantum models is possible, as supported by the generalization bound in Eq. (3.64).
In contrast, if gCQ . is small such as gCQ

√
n., the classical learning model will

likely have a similar or better model complexity sC(y). compared to the quantum
model. In this case, the classical model’s prediction performance will be competitive
or superior, and the classical model would likely be preferred.

3.3.2.3 Construction of Dataset with Maximal Quantum Advantage

The construction rule of a dataset that enables the maximal separation between
the model complexity of quantum kernels and classical kernels is as follows. As
indicated by the geometry test in Fig. 3.5, to separate between quantum and classical
models related to kernel matrix KQ . and KC ., the ratio between sC . and sQ . should be
as large as possible for a particular choice of targets y(1), · · · , y(n)

.. This could be
achieved by solving the optimization problem:

. min
y∈Rn

sC

sQ
= min

y∈Rn

y K−1
C y

y K−1
Q y

, (3.67)

which has an exact solution given by a generalized eigenvalue problem. The
solution is given by y = KQv ., where v . is the eigenvector of KQK−1

C KQ .

corresponding to the eigenvalue g2 KQK−1
C KQ ∞ .. This guarantees that

sC = g2sQ ., and note that by definition of g, sC ≤ g2sQ .. Hence, this dataset
fully utilized the geometric difference between the quantum and classical space.
Finally, we can turn this dataset, which maps input x . to a real value yQ ., into a
classification task by replacing yQ . with + 1. if yQ > median(y(1), · · · , y(n)). and
− 1. if yQ ≤ median(y(1), · · · , y(n)).. The constructed dataset will yield the largest
separation between quantum and classical models from a learning theoretic sense, as
the model complexity fully saturates the geometric difference. If there is no quantum
advantage in this dataset, there will likely be none.

3.4 Code Demonstration

This section explores the practical implementation of a quantum kernel. Before
diving into concrete code examples, an efficient strategy for estimating the quantum
kernel in practice is discussed.

As explained in Sect. 3.2, one method for estimating the quantum kernel is the
SWAP test, which is resource-intensive. An alternative is to encode the classical
data vector x . using a unitary operation U(x). and apply the inverse embedding of x .

3.4 Code Demonstration 99

using U(x)†
. on the same qubits. The quantum kernel kQ(x, x). is then estimated

by measuring the expectation of the projector O = (|0 0|)⊗N
. on the zero state.

The complete quantum circuit architecture for this process is illustrated in
Fig. 3.3. Mathematically, the process is expressed as

. 0⊗N |U(x)U(x)†OU(x)†U(x)|0⊗N

0⊗N |U(x)U(x)†|0 ⊗N 0|⊗NU(x)†U(x)|0⊗N

= 0⊗N |U(x)†U(x)|0⊗N
2

= φ(x)|φ(x)
2

=kQ(x, x). (3.68)

This approach allows the quantum kernel estimation to use the same number of
qubits required for the quantum feature mapping of the classical vector x ..

Next, an example demonstrating the workflow of applying quantum kernels
for classification tasks on the MNIST dataset is provided, with step-by-step code
implementation.

3.4.1 Classification on MNIST Dataset

We train a support vector machine (SVM) classifier associated with a quantum
kernel on the MNIST dataset, a widely used benchmark in image classification. To
assess the performance of the quantum kernel-based classifier, we adopt the classi-
fication accuracy, a standard metric in classification tasks. That is, the classification
accuracy is defined as the proportion of correctly classified samples out of the total
number of samples.

The pipeline involves the following steps:

Step 1 Load and preprocess the dataset.
Step 2 Define the quantum feature mapping.
Step 3 Construct the quantum kernel.
Step 4 Train and evaluate the SVM classifier.

We begin by importing the required libraries.

1 import pennylane as qml
2 from sklearn.datasets import fetch_openml
3 from sklearn.decomposition import PCA
4 from sklearn.model_selection import train_test_split
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.svm import SVC
7 from sklearn.metrics import accuracy_score
8 import numpy as np

100 3 Quantum Kernel Methods

Step 1: Dataset Preparation The focus is on the digits 3 and 6 in the MNIST
dataset, forming a binary classification problem. Principal component analysis
(PCA) [7] is applied to reduce the feature dimension of the images, minimizing the
number of required qubits for encoding. The compressed features are normalized to
align with the periodicity of the quantum feature mapping.

1 def load_mnist(n_qubit):
2 # Load MNIST dataset from OpenML
3 mnist = fetch_openml(’mnist_784’, version=1)
4 X, y = mnist.data, mnist.target
5

6 # Filter out the digits 3 and 6
7 mask = (y == ’3’) | (y == ’6’)
8 X_filtered = X[mask]
9 y_filtered = y[mask]

10

11 # Convert labels to binary (0 for digit 3 and 1 for digit
6)

12 y_filtered = np.where(y_filtered == ’3’, 0, 1)
13

14 # Apply PCA to reduce feature dimension
15 pca = PCA(n_components=n_qubit)
16 X_reduced = pca.fit_transform(X_filtered)
17

18 # Normalize the input features
19 scaler = StandardScaler().fit(X_reduced)
20 X_scaled = scaler.transform(X_reduced)
21

22 # Split into training and testing sets
23 X_train, X_test, y_train, y_test = train_test_split(

X_scaled , y_filtered , test_size=0.2, random_state=42)
24 return X_train, X_test, y_train, y_test
25

26 n_qubit = 8
27 X_train, X_test, y_train, y_test = load_mnist(n_qubit)

To better understand the structure of the dataset, the training data are visualized
using t-distributed stochastic neighbor embedding (t-SNE) [8]. The following code
generates the visualization:

1 def visualize_dataset(X, labels):
2 import matplotlib.pyplot as plt
3 from sklearn.manifold import TSNE
4

5 tsne = TSNE(n_components=2, random_state=42, perplexity
=30)

6 label2name = {
7 0: ’3’,
8 1: ’6’
9 }

10 mnist_tsne = tsne.fit_transform(X)
11 for label in np.unique(labels):
12 indices = labels == label

3.4 Code Demonstration 101

13 plt.scatter(mnist_tsne[indices, 0], mnist_tsne[indices
, 1], cmap=’coolwarm’, s=20, label=f
label2name[label]}’)

14

15 # Add labels and legend
16 plt.title()
17 plt.xlabel()
18 plt.ylabel()
19 plt.legend()
20

21 plt.tight_layout()
22 plt.show()
23

24 visualize_dataset(X_train, y_train)

The resulting t-SNE visualization is shown in Fig. 3.6.

Steps 2 and 3: Define Quantum Feature Mapping and Building Quantum
Kernel We use angle embedding as the quantum feature mapping method. The
quantum kernel is implemented as follows.

Fig. 3.6 T-SNE visualization of MNIST dataset of two classes “3” and “6”

102 3 Quantum Kernel Methods

1 dev = qml.device(’default.qubit’, wires=n_qubit)
2

3 @qml.qnode(dev)
4 def kernel(x1, x2, n_qubit):
5 qml.AngleEmbedding(x1, wires=range(n_qubit))
6 qml.adjoint(qml.AngleEmbedding)(x2, wires=range(n_qubit))
7 return qml.expval(qml. Projector([0]*n_qubit, wires=range(

n_qubit)))

Using the quantum kernel, the kernel matrix is constructed by computing the
kernel values for all pairs of samples:

1 def kernel_mat(A, B):
2 mat = []
3 for a in A:
4 row = []
5 for b in B:
6 row.append(kernel(a, b, n_qubit))
7 mat .append(row)
8 return np.array(mat)

Next, the quantum kernel matrix is visualized to gain insight into its structure.

1 def visualize_kernel(X, y, n_sample):
2 X_vis = []
3 for label in np.unique(y):
4 index = y == label
5 X_vis.append(X[index][:n_sample])
6

7 X_vis = np.concatenate(X_vis, axis=0)
8 n_sample_per_class = len(X_vis) // 2
9

10 sim_mat = kernel_mat(X_vis, X_vis)
11 np.save(’code/chapter_4_kernel/sim_mat.npy’, sim_mat)
12

13 import matplotlib.pyplot as plt
14 plt.imshow(sim_mat, cmap=’viridis’, interpolation=’nearest

’)
15

16 # Add color bar to show the scale
17 plt.colorbar(label=’Similarity’)
18

19 plt.axhline(n_sample_per_class - 0.5, color=’red’,
linewidth=1.5) # Horizontal line

20 plt.axvline(n_sample_per_class - 0.5, color=’red’,
linewidth=1.5) # Vertical line

21

22 xticks = yticks = np.arange(0, len(X_vis))
23 xtick_labels = [f"3-{i+1}" if i < n_sample_per_class else

f"6-{i+1-n_sample_per_class}" for i in range(len(X_vis
))]

24 ytick_labels = xtick_labels
25

3.4 Code Demonstration 103

26 plt.xticks(xticks, labels=xtick_labels , rotation=90,
fontsize=8)

27 plt.yticks(yticks, labels=ytick_labels , fontsize=8)
28

29 # Title and axis labels
30 plt.title()
31 plt.xlabel()
32 plt.ylabel()
33

34

35 plt.tight_layout()
36 plt. show()
37

38 visualize_kernel(X_train, y_train, 10)

The resulting kernel matrix is shown in Fig. 3.7.
From the visualization, we observe a clear block structure:

• Most of the elements in the top-left and bottom-right blocks, where samples
belong to the same class, show higher similarity values.

• Most of the elements in the top-right and bottom-left blocks, where samples
belong to different classes, exhibit lower similarity values.

This indicates that it may be possible to distinguish the two classes by setting a
similarity threshold.

Step 4: Training SVM We construct a SVM classifier with the quantum kernel
matrix and train it with the training data prepared in Step 1:

1 svm = SVC(kernel=kernel_mat)
2 svm.fit(X_train, y_train)
3 pred = svm.predict(X_test)
4 print("Accuracy:" , accuracy_score(y_test, pred))

Fig. 3.7 Visualization of
quantum kernel matrix on 20
samples, equally drawn from
two classes “3” and “6” in
MNIST dataset

104 3 Quantum Kernel Methods

To further analyze how the performance of the SVM with a quantum kernel
depends on the size of the training dataset, the number of training samples is varied
from 10 to 100 in increments of 10. For each configuration, the corresponding
classification accuracy on the test data is recorded.

1 svm = SVC(kernel=’precomputed’)
2 n_sample_max = 100
3 X_train_sample = []
4 y_train_sample = []
5 for label in np.unique(y_train):
6 index = y_train == label
7 X_train_sample.append(X_train[index][:n_sample_max])
8 y_train_sample.append(y_train[index][:n_sample_max])
9 X_train_sample = np.concatenate(X_train_sample , axis=0)

10 y_train_sample = np.concatenate(y_train_sample , axis=0)
11 kernel_mat_train = kernel_mat(X_train_sample , X_train_sample)
12 kernel_mat_test = kernel_mat(X_test, X_train_sample)
13

14 accuracy = []
15 n_samples = []
16 for n_sample in range(10, n_sample_max+10, 10):
17 class1_indices = np.arange(n_sample)
18 class2_indices = np.arange(n_sample_max , n_sample_max+

n_sample)
19 selected_indices = np.concatenate([class1_indices ,

class2_indices])
20

21 svm.fit(kernel_mat_train[np.ix_(selected_indices ,
selected_indices)], np.concatenate([y_train_sample[:
n_sample], y_train_sample[n_sample_max:n_sample_max+
n_sample]]))

22 pred = svm.predict(np.concatenate([kernel_mat_test[:, :
n_sample], kernel_mat_test[:, n_sample_max:
n_sample_max+n_sample]], axis=1))

23 accuracy.append(accuracy_score(y_test, pred))
24 n_samples.append(n_sample)
25

26 plt.plot(n_sample , accuracy , marker=’o’)
27 plt.title()
28 plt.xlabel()
29 plt.xticks(n_sample , n_sample)
30 plt.ylabel(’Accuracy’)
31 plt.grid()
32 plt.tight_layout()
33 plt.show()

As illustrated in Fig. 3.8, the quantum kernel-based SVM achieves over 93%.

accuracy with just 20 training samples and continues to improve as more training
data is provided, ultimately exceeding 99%. accuracy with 200 training samples.
This performance highlights the potential of quantum kernels in classification tasks.

To evaluate the effectiveness of quantum kernels in comparison to classical
counterparts, an SVM classifier using three different classical kernels introduced

3.5 Bibliographic Remarks 105

Fig. 3.8 The classification
accuracy on test data as a
function of the number of
training samples

Fig. 3.9 The classification accuracy of SVM with classical kernels on test data as a function of
the number of training samples

in this chapter is implemented, which are the polynomial kernel, the RBF kernel,
and the sigmoid kernel. For a fair comparison, all experimental settings are kept
identical, except for the choice of the kernel function. The hyperparameters for
each classical kernel are set to their default values in the scikit-learn library. The
same training and evaluation procedures used for the quantum kernel-based SVM
are applied, and the results are summarized in Fig. 3.9. A comparison of these results
reveals that the quantum kernel achieves performance comparable to that of the
classical RBF kernel on this dataset. This suggests that quantum kernels can serve
as a competitive alternative to well-established classical kernel methods for certain
classical classification tasks.

3.5 Bibliographic Remarks

The foundational concept of using quantum computers to evaluate kernel functions,
namely, the concept of quantum kernels, was first explored by Schuld et al.
[9]. They highlighted the fundamental differences between quantum kernels and

106 3 Quantum Kernel Methods

quantum support vector machines. Building on this, [10] and [11] established a
connection between quantum kernels and parameterized quantum circuits (PQCs),
demonstrating their practical implementation. These works emphasized the parallels
between quantum feature maps and the classical kernel trick. Since then, a large
number of studies delved into figuring out the potential of quantum kernels for
solving practical real-world problems.

The recent advancements in quantum kernel machines can be roughly catego-
rized into three key areas: kernel design, theoretical findings, and applications.
Specifically, the advances in kernel design focus on addressing challenges such as
vanishing similarity and kernel concentration by exploring innovative frameworks.
Theoretical work studies how well quantum kernels might work on new data, how
robust they are to noise, and whether they can really outperform classical methods.
Practical studies focus on applying quantum kernels to real-world problems. The
following sections discuss each of these areas.

3.5.1 Quantum Kernel Design

A crucial research line in this field focuses on constructing trainable quantum
kernels to maximize performance for specific datasets and problem domains. In
particular, traditional quantum kernels, with fixed data embedding schemes, are
limited to specific feature representation spaces and often fail to capture the complex
and diverse patterns inherent in real-world data. To tackle this, [12] designed feature
maps tailored to each task. Later, [13] showed that quantum feature maps can be
optimized—much like adjusting parameters in a neural network—using data re-
uploading methods [14, 15]. Other researchers proposed combining different kernels
or searching for the best quantum circuit architecture [16, 17]. Covariant quantum
kernels, suggested by Glick et al. [18], are another approach for problems with group
structure.

Another major challenge is the problem of “vanishing similarity,” in quantum
kernels [19], also called exponential kernel concentration [19]. Quantum kernels
are based on the overlap between quantum feature maps. But in high-dimensional
spaces, these feature maps tend to be almost orthogonal, making the kernels nearly
useless for distinguishing data points [6]. As a result, models built on these kernels
may not generalize well to new data.

To fix vanishing similarity, [6] suggested storing quantum features as classical
vectors and using a standard Gaussian kernel. This bypasses the problem of
near-orthogonal quantum states. Another method, the antisymmetric logarithmic
derivative quantum Fisher kernel, encodes the geometric structure of the input data
to avoid the same issue [20]. Others have tried rescaling the input data or tuning
hyperparameters to keep feature maps closer together [21, 22], which helps prevent
vanishing similarity but can make the kernels less flexible.

3.5 Bibliographic Remarks 107

3.5.2 Theoretical Studies of Quantum Kernels

Theory work tries to find out how well quantum kernels really work, especially in
practical conditions. Researchers focus on two big questions: how flexible quantum
kernels are (can they model complex data?) and how well they generalize (do they
work on new data, not just the training set?).

3.5.2.1 Expressivity of Quantum Kernels

The expressivity of quantum kernels refers to their capacity to capture complex data
relationships and represent intricate patterns in the feature space. Researchers often
use the idea of the reproducing kernel Hilbert space (RKHS) to analyze this, which
tells us what kind of functions a kernel can model.

Schuld [23] rigorously analyzed the RKHS of embedding-based quantum ker-
nels and established the universality approximation theorem, demonstrating that
quantum kernels can approximate a wide class of functions. Building on this, [24]
extended the analysis by investigating parameterized quantum embedding kernels,
introducing a data-reuploading structure and proving a corresponding universality
approximation theorem. These results underscore the expressive power of quantum
kernels in representing complex data structures.

Even if a quantum kernel is flexible, it must also be efficient to build. If making
a universal quantum kernel takes as long as classical methods, the advantage
disappears.

To narrow this gap, [5] examined the expressive power of efficient quantum
kernels that can be implemented on quantum computers within polynomial time.
Their work provides a detailed analysis of the types of kernels that are achievable
with a polynomial number of qubits and within polynomial time. The relevant
results offer insights into the feasibility and practical utility of quantum kernels in
real-world scenarios.

However, alongside the exploration of expressive power, a significant challenge
known as exponential kernel concentration has been identified. Four things make
this worse—too much expressivity in embeddings, global measurements, entangle-
ment, and noise [19]. Many studies now focus on building new types of quantum
kernels that avoid this pitfall, as discussed in Sect. 3.5.1.

3.5.2.2 Generalization of Quantum Kernels

Generalization—how well a model does on new data—is just as important as
flexibility. Studies like [6] have set bounds for how much quantum kernels can
generalize. For some quantum data, quantum kernels can learn patterns that classical
models cannot.

108 3 Quantum Kernel Methods

However, quantum kernels often face practical hurdles like noise or limited
measurements. For large datasets or when noise is strong, generalization can get
much worse [25]. New methods like indefinite kernel learning can help keep
performance strong, even in tough conditions.

Quantum kernels can also help for some hard classical problems. For example,
with datasets based on the discrete logarithm, quantum kernels predict quickly,
while classical models need much more time [4]. This hints at real speedup for
some problems.

Still, quantum kernels are not always better. Without built-in “inductive bias”—
rules that help models guess well on new data—they can underperform compared
to classical models [26]. The way data is encoded matters a lot.

3.5.2.3 Provable Advantages of Quantum Kernels

The potential for quantum kernels to demonstrate quantum advantage has been a
central focus of research. For instance, [6] provided evidence of generalization
advantages for quantum kernels on quantum data. Similarly, [4] presented a rigorous
framework showing that quantum kernels can efficiently solve problems like
the discrete logarithm problem, which is believed to be intractable for classical
computers under standard cryptographic assumptions. Moreover, [27] demonstrated
quantum advantage in distribution learning tasks, offering some of the earliest
theoretical evidence of quantum advantage in machine learning.

However, many of these tasks are artificial, designed specifically to showcase
quantum advantages. This raises the question of how these theoretical benefits can
be translated to real-world applications. In this regard, the next significant challenge
is to demonstrate that quantum models can consistently outperform classical models
in solving practical, real-world problems.

3.5.3 Applications of Quantum Kernels

Motivated by the potential of quantum kernels to recognize complex data patterns,
numerous studies have explored their practical applications across diverse fields,
including classification, drug discovery, anomaly detection, and financial modeling.

For instance, [28] investigate the use of quantum kernels for image classification,
specifically in identifying real-world manufacturing defects. Similarly, [29] apply
quantum kernels to satellite image classification, a task of particular importance
in the earth observation industry. In the field of quantum physics, [30] and [31]
leverage quantum kernels to recognize phases of quantum matter, where quantum
kernels outperform classical learning models in solving certain problems. In drug
discovery, [32] explore the potential of quantum kernels to accelerate and improve
the identification of promising compounds.

References 109

Quantum kernels have also been explored in anomaly detection. Liu and
Rebentrost [33] demonstrate their superior performance over classical methods
in detecting anomalies within quantum data. Furthermore, [34] employ quantum
kernel methods for fraud classification tasks, showing improvements when bench-
marked against classical methods. Miyabe et al. [35] expand their application to the
financial domain by proposing a quantum multiple-kernel learning methodology.
This approach broadens the scope of quantum kernels to include credit scoring and
directional forecasting of asset price movements, highlighting their potential utility
in financial services.

Despite the promise of quantum kernels shown in specialized scenarios, their
empirical advantages over classical models remain limited to specific problem
settings, such as the negative impact of noise and large computation complexity
in handling large-scale datasets. The realization of quantum advantage in practical
tasks remains an ongoing area of research, with current efforts directed toward
identifying real-world problems where quantum kernels outperform classical alter-
natives.

References

1. Mohri, M. (2018). Foundations of machine learning. MIT Press.
2. Kusumoto, T., Mitarai, K., Fujii, K., Kitagawa, M., & Negoro, M. (2021). Experimental

quantum kernel trick with nuclear spins in a solid. npj Quantum Information, 7(1), 94.
3. Blank, C., Park, D. K., Rhee, J.-K. K., & Petruccione, F. (2020). Quantum classifier with

tailored quantum kernel. npj Quantum Information, 6(1), 41.
4. Liu, Y., Arunachalam, S., & Temme, K. (2021). A rigorous and robust quantum speed-up in

supervised machine learning. Nature Physics, 17(9), 1013–1017.
5. Gil-Fuster, E., Eisert, J., & Dunjko, V. (2024). On the expressivity of embedding quantum

kernels. Machine Learning: Science and Technology, 5(2), 025003.
6. Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., McClean, J.

R. (2021). Power of data in quantum machine learning. Nature Communications, 12(1), 2631.
7. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics, 2(4), 433–459.
8. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine

Learning Research, 9(11), 2579–2605.
9. Schuld, M., Fingerhuth, M., & Petruccione, F. (2017). Implementing a distance-based classifier

with a quantum interference circuit. Europhysics Letters, 119(6), 60002.
10. Havlicek, V., Corcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., &

Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747), 209–212.

11. Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature hilbert spaces.
Physical Review Letters, 122(4), 040504.

12. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., & Killoran, N. (2020). Quantum embeddings for
machine learning. arXiv preprint arXiv:2001.03622.

13. Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J. H. S., Faehrmann, P. K., & Meyer,
J. J. (2022). Training quantum embedding kernels on near-term quantum computers. Physical
Review A, 106(4), 042431.

14. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading
for a universal quantum classifier. Quantum, 4, 226.

110 3 Quantum Kernel Methods

15. Schuld, M., Sweke, R., Meyer, J. J. (2021). Effect of data encoding on the expressive power of
variational quantum-machine-learning models. Physical Review A, 103(3), 032430.

16. Vedaie, S. S., Noori, M., Oberoi, J. S., Sanders, B. C., & Zahedinejad, E. (2020). Quantum
multiple kernel learning. arXiv preprint arXiv:2011.09694.

17. Lei, C., Du, Y., Mi, P., Yu, J., & Liu, T. (2024). Neural auto-designer for enhanced quantum
kernels. arXiv preprint arXiv:2401.11098.

18. Glick, J. R., Gujarati, T. P., Corcoles, A. D., Kim, Y., Kandala, A., Gambetta, J. M., & Temme,
K. (2024). Covariant quantum kernels for data with group structure. Nature Physics, 20(3),
479–48.

19. Thanasilp, S., Wang, S., Cerezo, M., & Holmes, Z. (2022). Exponential concentration and
untrainability in quantum kernel methods. arXiv preprint arXiv:2208.11060.

20. Suzuki, Y., Kawaguchi, H., & Yamamoto, N. (2022). Quantum fisher kernel for mitigating the
vanishing similarity issue. Quantum Science and Technology, 9(3), 035050.

21. Shaydulin, R., & Wild, S. M. (2022) Importance of kernel bandwidth in quantum machine
learning. Physical Review A, 106(4), 042407.

22. Canatar, A., Peters, E., Pehlevan, C., Wild, S. M., & Shaydulin, R. (2022). Bandwidth enables
generalization in quantum kernel models. arXiv preprint arXiv:2206.06686.

23. Schuld, M. (2021). Supervised quantum machine learning models are kernel methods. arXiv
preprint arXiv:2101.11020.

24. Jerbi, S., Fiderer, L. J., Nautrup, H. P., Kübler, J. M., Briegel, H. J., & Dunjko, V. (2023).
Quantum machine learning beyond kernel methods. Nature Communications, 14(1), 1–8.

25. Wang, X., Du, Y., Luo, Y., & Tao, D. (2021). Towards understanding the power of quantum
kernels in the nisq era. Quantum, 5, 531.

26. Kübler, J., Buchholz, S., & Schölkopf, B. (2021). The inductive bias of quantum kernels.
Advances in Neural Information Processing Systems, 34, 12661–12673.

27. Sweke, R., Seifert, J.-P., Hangleiter, D., & Eisert, J. (2021). On the quantum versus classical
learnability of discrete distributions. Quantum, 5, 417.

28. Beaulieu, D., Miracle, D., Pham, A., & Scherr, W. (2022). Quantum kernel for image
classification of real world manufacturing defects. arXiv preprint arXiv:2212.08693.

29. Rodriguez-Grasa, P., Farzan-Rodriguez, R., Novelli, G., Ban, Y., & Sanz, M. (2024). Satellite
image classification with neural quantum kernels. arXiv preprint arXiv:2409.20356.

30. Sancho-Lorente, T., Román-Roche, J., & Zueco, D. (2022). Quantum kernels to learn the
phases of quantum matter. Physical Review A, 105(4), 042432.

31. Wu, Y., Wu, B., Wang, J., & Yuan, X. (2023). Quantum phase recognition via quantum kernel
methods. Quantum, 7, 981.

32. Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins,
S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of
Chemical Information and Modeling, 61(6), 2641–2647.

33. Liu, N., & Rebentrost, P. (2018). Quantum machine learning for quantum anomaly detection.
Physical Review A, 97(4), 042315.

34. Grossi, M., Ibrahim, N., Radescu, V., Loredo, R., Voigt, K., Von Altrock, C., & Rudnik, A.
(2022). Mixed quantum–classical method for fraud detection with quantum feature selection.
IEEE Transactions on Quantum Engineering, 3, 1–12.

35. Miyabe, S., Quanz, B., Shimada, N., Mitra, A., Yamamoto, T., Rastunkov, V., Alevras, D.,
Metcalf, M., King, D. J. M., Mamouei, M., et al. Quantum multiple kernel learning in financial
classification tasks. arXiv preprint arXiv:2312.00260.

Chapter 4
Quantum Neural Networks

Abstract This chapter presents an in-depth exploration of classical and quantum
neural network paradigms, encompassing the fundamental architectures, training
methodologies, and theoretical analyses of network performance. This chapter
is organized into five sections: Sect. 4.1 reviews the structural and theoretical
foundations of classical neural networks; Sect. 4.2 introduces the quantum per-
ceptron model, elucidating its theoretical advantages over classical counterparts;
Sect. 4.3 explores quantum neural networks (QNNs), detailing the process by which
classical data is encoded into quantum states and processed through parameterized
quantum gates, thereby mitigating the challenges posed by large model sizes and
high computational costs; Sect. 4.4 delves into the theoretical aspects of QNNs,
emphasizing their expressivity, generalization, and trainability; and finally, Sect. 4.5
provides illustrative code implementations using benchmark datasets to demonstrate
the practical viability of QNNs.

Classical neural networks [1] form the bedrock of modern artificial intelligence
and have achieved widespread success in domains like computer vision [2] and
natural language processing [3]. However, despite these triumphs, classical neural
networks grapple with significant hurdles. For instance, their excessively large
model sizes and the resulting high computational demands [4] lead to substantial
energy consumption [5]. These limitations stem from their reliance on classical
computational resources, which become increasingly unsustainable as models grow
in complexity.

Quantum neural networks (QNNs) [6] offer a promising solution by enhancing
neural networks with the computational potential of quantum circuits [7]. In QNNs,
classical input data is encoded into quantum states, and quantum gates with
trainable parameters process these states in ways that classical systems cannot easily
replicate. This computational regime leverages quantum mechanics to explore new
forms of pattern recognition and problem-solving that go beyond classical methods.
Thus, QNNs have the potential to outperform classical neural networks in specific
learning tasks [8], where the advantages in processing and learning can be explored.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_4

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4
https://doi.org/10.1007/978-981-95-1284-3_4

112 4 Quantum Neural Networks

Despite these exciting prospects, realizing the full potential of QNNs faces
challenges, including quantum noise [9] and the need for scalable quantum hard-
ware [10]. Nevertheless, continuous advancements in quantum hardware and algo-
rithm design promise QNNs will address the inefficiencies inherent in classical
models, particularly in fields such as quantum many-body physics [11] and quantum
chemistry [12].

This chapter offers a systematic overview. First, the structure and function of
classical neural networks are outlined in Sect. 4.1. Then, the discussion transitions
to fault-tolerant and near-term quantum neural networks in Sects. 4.2 and 4.3,
respectively. The theoretical foundations of QNNs are also explored in Sect. 4.4,
with a focus on their **trainability** (how easily a model can “learn” from data),
expressivity (how well they model complex patterns), and **generalization**
(how well they work on new data). Finally, illustrative code implementations of
QNNs using the wine [13] and MNIST datasets [14] are provided in Sect. 4.5.

4.1 Classical Neural Networks

Neural networks [15–17] are computer models inspired by the structure of the
human brain, designed to process and analyze complex patterns in data. Originally
developed from the concept of neurons connected by weighted pathways, neural
networks have become one of the most powerful tools in artificial intelligence [1].
Each neuron processes its inputs by applying weights and nonlinear activations,
producing an output that feeds into the next layer of neurons. This structure enables
neural networks to learn complex functions during training [18]. For example,
given a dataset of images and their labels, a neural network can learn to classify
categories, such as distinguishing between cats and dogs, by adjusting its parameters
during training. Guided by optimization algorithms such as gradient descent [19],
the learning process allows the network to gradually reduce the error between the
predicted and actual outputs, allowing it to learn the best parameters for the given
task.

After nearly a century of development, neural networks have undergone remark-
able advancements in both their architectures and capabilities. The simplest model,
the perceptron [15], established the fundamental principle by demonstrating how
neural networks could learn to separate linearly classifiable categories. Building
upon this, deeper and more complex networks—such as multilayer perceptrons
(MLPs) [16] and transformers [17]—have led to breakthroughs in tasks spanning
autonomous driving and content generation.

4.1 Classical Neural Networks 113

4.1.1 Perceptron

The perceptron model, first introduced by McCulloch and Pitts [15], is widely
recognized as a foundational structure in artificial neural networks. It has inspired
architectures ranging from convolutional neural networks (CNNs) [20] and residual
neural networks (ResNets) [21] to transformers [17]. Given its fundamental role, the
mechanism of single-layer perceptrons is introduced next.

A single-layer perceptron comprises three fundamental components: input neu-
rons, a weighted layer, and an output neuron as illustrated in Fig. 4.1. Given a
d-dimensional input vector x ∈ Rd

., the input layer consists of d neurons, each
representing the feature xi . for ∀i ∈ [d].. This input is processed through a weighted
summation, i.e.,

.z = w x, (4.1)

where w . is the transpose of the weight vector and z is the output of the weighted
layer. A nonlinear activation function is then applied to produce the output neuron
ŷ .. For the standard perceptron model, the sign function is typically used as the
activation function:

.ŷ = f (z) = 1, if z ≥ 0,

−1, if z < 0.
(4.2)

The perceptron learns from input data by iteratively adjusting its trainable
parameters w .. In particular, letD = x(a), y(a) n

a=1 . be the training dataset, where
x(a)

. represents the input features of the a-th example, and y(a) ∈ {−1, 1}.denotes the
corresponding label. When the perceptron outputs a prediction ŷ(s)

., the parameters
are updated accordingly, i.e.,

.w ← w + y(s) − ŷ(s) x(s). (4.3)

Fig. 4.1 Illustration of a
perceptron

114 4 Quantum Neural Networks

This training process repeats iteratively until the error reaches a predefined thresh-
old.

Perceptrons can perfectly classify linearly separable data with a finite number of
mistakes, as established in Theorem 4.1.

Theorem 4.1 (Convergence of Perceptrons [22]) Suppose the training data con-
sists of unit vectors separated by a margin of γ . with labels y(i) ∈ {−1, 1}.. Then,
there exists a perceptron training algorithm that achieves zero error with at most

O 1
γ 2 . mistakes.

Proof of Theorem 4.1 Consider the initial parameter of the perceptron w = 0..
Since the training dataset is linearly separable by a margin of γ ., there exists a unit
vector w∗ . such that y(i)w∗ x(i) ≥ γ . for all samples i ∈ [n].. Let x(s,t)

. be the sample
that is misclassified in the t-th step, which is then used for adjusting the parameter.
Let w(t). be the parameter after the t-th step. Using Eq. (4.3), it can be shown that

. w∗ w(t)− w∗ w(t − 1)

= y(s,t) − ŷ(s,t) w∗ x(s,t)

= 2y(s,t)w∗ x(s,t) ≥ 2γ, (4.4)

where Eq. (4.4) is derived by noticing the sample x(s,t), y(s,t)
. is misclassified with

ŷ(s,t) y(s,t)
. and y(s,t), ŷ(s,t) ∈ {−1, 1}.. By considering the initialization w(0) =

0., the norm of the parameter after the t-th step can be bounded by

. w(t) ≥ w∗ w(t) . (4.5)

= w∗
t

t =1

w(t)− w(t − 1) . (4.6)

≥ 2γ t, (4.7)

where Eq. (4.5) follows from the condition w∗ 1.. Equation (4.7) is derived by
using the result in Eq. (4.4). On the other hand

. w(t) 2 w(t − 1) 2

= w(t − 1)+ y(s,t) − ŷ(s,t) x(s,t)
2 − w(t − 1) 2

. (4.8)

= w(t − 1)+ 2y(s,t) x(s,t) 2 − w(t − 1) 2
. (4.9)

= 4 x(s,t) 2 + 4w(t − 1) y(s,t) x(s,t)

≤ 4+ 4w(t − 1) y(s,t)x(s,t)
. (4.10)

≤ 4, (4.11)

4.1 Classical Neural Networks 115

where Eq. (4.8) follows from the weight update rule in Eq. (4.3). Equation (4.9) is
derived by noticing that y(s,t) = ŷ(s,t)

. and y(s,t), ŷ(s,t) ∈ {−1, 1}.. Equation (4.10)
follows from the condition x(i) 1. for all samples. Equation (4.11) is derived
by noticing that the sample (x(s,t), y(s,t)). is misclassified by the perceptron with the
parameter w(t − 1)., i.e.,

. y(s,t)w(t − 1) x(s,t) ≤ 0.

Thus, after t steps, the parameter is bounded by

. w(t) 2
√

t . (4.12)

Combining Eqs. (4.7) and (4.12), it can be shown that

.t ≤ 1

γ 2
. (4.13)

Since the parameters are used in an inner product operation, as shown in
Eq. (4.1), the single-layer perceptron can be considered as a basic kernel method
employing the identity feature mapping. Consequently, the single-layer perceptron
can only classify linearly separable data and is inadequate for handling more
complex tasks, such as the XOR problem [23]. This limitation has driven the devel-
opment of advanced neural networks, such as multilayer perceptrons (MLPs) [16],
which can capture nonlinear relationships by incorporating nonlinear activation
functions and multilayer structures.

4.1.2 Multilayer Perceptron

The multilayer perceptron (MLP) is a fully connected neural network architecture
consisting of three components: the input layer, hidden layers, and output layer, as
illustrated in Fig. 4.2. Here, the dashed lines denote softmax operations. Similar to
the single-layer perceptron introduced in Sect. 4.1.1, the neurons in the MLP are
connected through weighted sums, followed by nonlinear activation functions.

The mathematical expression of MLP is as follows. Let x(a,1)
. be the a-th input

data and = 1. denote the input layer. Define L as the number of total layers. The
forward propagation at the + 1).-th layer ∀ ∈ {1, 2, . . . , L− 2}. yields

.z +1) = W x + b ,

x +1) = σ(z +1)),

116 4 Quantum Neural Networks

Fig. 4.2 Illustration of a multilayer perceptron with two hidden layers

Table 4.1 Common nonlinear activation functions

Name Formulation

Sigmoid function σ(x) = 1/(1+ exp(−x)).

Hyperbolic tangent function σ(x) = tanh(x).

Rectified linear unit (ReLU) function σ(x) = max(0, x).

where σ . represents the nonlinear activation function and W . and b . denote
trainable weight and the bias term, respectively. Similar to the notation z in the
perceptron in Sect. 4.1.1, z +1)

. denotes the output of the linear sum in the + 1.-
th layer, which is expressed in a more generalized vector form. Therefore, the
parameters for the weighted linear sum are expressed in matrix form as W ..
Various methods exist for implementing nonlinear activations, with some common
approaches summarized in Table 4.1.

After passing through L − 2. hidden layers, the output of MLP given by the
equation below serves as the prediction to approximate the target label y(a)

., i.e.,

. ̂y
(a) = softmax x(a,L) :=

exp x
(a,L)
1 , · · · , exp x

(a,L)
p

p

i=1 exp x
(a,L)
i

,

with p here denotes the dimension of x(a,L)
..

Next, consider a simple binary classification example to illustrate the MLP
learning process. Let {(x(a), y(a))}a∈D . be the training dataset D., where x(a)

. is the
feature vector and y(a) ∈ {(1, 0) , (0, 1) }. is the label for two categories. Consider
the MLP with one hidden layer. The prediction can be expressed as follows:

4.1 Classical Neural Networks 117

. ̂y
(a) = softmax(x(a,3)) = softmax ◦ σ z(a,3)

= softmax ◦ σ W(2)x(a,2) + b(2)

= softmax ◦ σ W(2)σ z(a,2) + b(2)

= softmax ◦ σ W(2)σ W(1)x(a,1) + b(1) + b(2) ,

where ◦. denotes the function composition. Here, σ(x) = 1/(1 + exp(−x)). is used
as the nonlinear activation function.

MLP learns from the given dataset by minimizing the loss function with respect
to the parameters θ = (W(1),W(2), b(1), b(2)).. A possible choice of the loss function
is the 2 . norm distance between the prediction and the label:

.L(θ) = 1

|D|
a∈D
L(a)(θ) = 1

2|D|
a∈D

ŷ
(a)

(θ)− y(a)
2
. (4.14)

We use gradient descent with learning rate η . to optimize the parameters:

. θ(t + 1) = θ(t)− η∇θL(θ(t)).

As illustrated in Fig. 4.3, the gradient is computed using backpropagation [24] as
follows. First, the gradient with respect to the output layer is given by

.
∂L(a)

∂ŷ
(a)
= ŷ

(a) − y(a),

∂L(a)

∂x(a,3)
= ∂ŷ

(a)

∂x(a,3)

∂L(a)

∂ŷ
(a)
= diag ŷ

(a) − ŷ
(a)

ŷ
(a) ∂L(a)

∂ŷ
(a)

,

∂L(a)

∂z(a,3)
= ∂x(a,3)

∂z(a,3)

∂L(a)

∂x(a,3)
= diag 1− z(a,3) z(a,3) ∂L(a)

∂x(a,3)
,

Fig. 4.3 Illustration of
backpropagation when
calculating the gradient of an
MLP with one hidden layer.
The index of sample a is
omitted for simplicity

118 4 Quantum Neural Networks

where 1. denotes the vector (1, 1, · · · , 1) . and . denotes the element-wise multi-
plication (Hadamard product). For convenience, we omit the dimension of 1. here,
which has the same dimension with z(a,3)

.. Next, the gradient with respect to the
hidden layer can be obtained using the chain rule:

.
∂L(a)

∂x(a,2)
= ∂z(a,3)

∂x(a,2)

∂L(a)

∂z(a,3)
= W(2) ∂L(a)

∂z(a,3)
,

∂L(a)

∂W(2)
= ∂z(a,3)

∂W(2)

∂L(a)

∂z(a,3)
= ∂L(a)

∂z(a,3)
x(a,2) ,

∂L(a)

∂b(2)
= ∂z(a,3)

∂b(2)

∂L(a)

∂z(a,3)
= ∂L(a)

∂z(a,3)
,

∂L(a)

∂z(a,2)
= ∂x(a,2)

∂z(a,2)

∂L(a)

∂x(a,2)
= diag 1− z(a,2) z(a,2) ∂L(a)

∂x(a,2)
.

The gradient with respect to the parameters for the input layer is derived similarly:

.
∂L(a)

∂W(1)
= ∂z(a,2)

∂W(1)

∂L(a)

∂z(a,2)
= ∂L(a)

∂z(a,2)
x(a,1) ,

∂L(a)

∂b(1)
= ∂z(a,2)

∂b(1)

∂L(a)

∂z(a,2)
= ∂L(a)

∂z(a,2)
.

After multiple training epochs, the loss function converges to a value below a
predefined threshold, which leads to a small classification error.

Compared to single-layer perceptrons, MLPs can model nonlinear relationships
by employing hidden layers and activation functions. This enables them to learn
abstract representations by capturing the complex patterns inherent in the data.
Mathematically, the power of MLPs is guaranteed by the universal approximation
theorem, as stated in Theorem 4.1, which asserts that a single hidden layer is
sufficient to approximate any arbitrary continuous function.

Fact 4.1 (Universal Approximation Theorem, Informal Version Adapted from
[25]) Let C(X,Rm). denote the set of continuous functions from a subset X. of a
Euclidean space Rn

. to a Euclidean space Rm
.. Denote by σ . a function that is not

polynomial. Then, for every n,m ∈ N., compact set K ⊆ Rn
., f ∈ C(K,Rm)., and

0., there exist k ∈ N., A ∈ Rk×n
., b ∈ Rk

., and C ∈ Rm×k
. such that

. sup
x∈X

f (x)− g(x)

where g(x) = Cσ(Ax + b)..

4.2 Fault-Tolerant Quantum Perceptron 119

Remark
MLPs involve a large number of parameters due to their fully connected
multilayer architecture. This high parameter count provides MLPs with
considerable flexibility (how well they model complex patterns), allowing
them to learn complex data distributions. However, the excessive capacity to
fit the training data often leads to overfitting [26], where the MLP captures
noise and irrelevant patterns instead of generalizable features. As a result,
MLPs tend to perform poorly on unseen data, especially when the training
set is limited or noisy. To mitigate this issue, advanced techniques such
as dropout [27], weight decay [28], and attention mechanisms [17] have
been proposed to reduce overfitting in MLPs while maintaining sufficient
expressivity.

4.2 Fault-Tolerant Quantum Perceptron

The primary goal of advancing quantum machine learning (QML) is to leverage the
computational power of quantum mechanics to improve performance across various
learning tasks. As discussed in Sect. 1.1.2, these advantages can include reduced
runtime, lower query complexity, and enhanced sample efficiency compared to
classical models. A notable example is the quantum perceptron model [29]. This
FTQC-based QML algorithm, which uses the Grover search, offers a quadratic
improvement in the query complexity during training over its classical counterpart.
For a complete understanding, this section first introduces the Grover search
algorithm, followed by a detailed explanation of the quantum perceptron model.

4.2.1 Grover Search

Grover search [30] provides runtime speedups for unstructured search problems,
finding broad use in cryptography, quantum machine learning, and constraint
satisfaction. Classical search methods typically require O(d). queries for a dataset
with d entries. In contrast, Grover’s algorithm can identify the target element with

high probability using only O
√

d . queries to a quantum oracle. Consequently,

quantum algorithms that incorporate Grover search have the potential to achieve a
quadratic speedup over classical approaches.

In general, a search task can be abstracted as a function f (x). such that f (x) = 1.

if x . belongs to the solution set of the search problem and f (x) = 0. otherwise. We
consider a dataset consisting of d = 2N

.elements, where each element is represented
by the quantum state |x . with x = 0, 1, · · · , d−1.. In this process, two key quantum

120 4 Quantum Neural Networks

oracles are introduced. The first oracle, U0 = 2(|0 0|)⊗N− Id ., applies a phase shift
of eiπ = −1. to all quantum states except |0 ⊗N

., which remains unchanged. The
second oracle, Uf ., operates in a similar manner. That is, it applies a phase shift of
− 1. to quantum states that belong to the solution set while leaving all other states

unaffected. The procedure for Grover search is described in Algorithm 2.

Algorithm 2 Grover search
Require: Quantum oracles Uf and U0. The size of the dataset and the solution set, denoted by

d = 2N and M , respectively.
Ensure: An index corresponds to one of the solution states with high probability.
1: Initialize a register of N qubits with the state of uniform superposition:

|φ0
1√
d

d−1

x=0

|x
N

n=1

|0 1√
2

=
N

n=1

H |0 .

2: Let m π
4

d
M − 1

2 . Apply the following operation:

|φm H⊗N U0H⊗N Uf
m | φ0 .

3: Measure the state |φm to generate an index.

Theorem 4.2 (Time Complexity of Grover Search) Grover search finds a
solution to the unstructured search problem with high probability in time

O d
M

(log d + Tf) ., where d is the size of the dataset, M is the size of the

solution set, and Tf . denotes the time complexity of implementing the oracle Uf ..

Remark
The Grover search achieves a quadratic speedup in the query complexity of
the oracle Uf .. It provides a quantum advantage in the runtime only if the time
complexity of the oracle Uf ., denoted as Tf ., is less than

√
d ..

Proof of Theorem 4.2 Let the superposition of the solution state be

.|target
1√
M

x:f (x)=1

|x .

4.2 Fault-Tolerant Quantum Perceptron 121

Similarly, the superposition of the states outside the solution set is given by

. |other
1√

2N −M
x|f (x)=0

|x .

Thus, the initial uniform superposition state can be expressed as

. |φ0
M

2N
|target

2N −M

2N
|other α0|target β0|other .

In principle, the coefficient associated with the target state is expected to increase
during the quantum state evolution, such that the solution could be obtained through
quantum measurement with high probability. The dynamics of these coefficients can
be described as follows:

. αk target|φk

target|H⊗NU0H
⊗NUf |φk−1

target| (2|φ0 φ0| − I) Uf (αk−1|target βk−1|other)

target| (2|φ0 φ0| − I) (−αk−1|target βk−1|other)

= 1− 2α2
0 αk−1 + 2α0β0βk−1,

βk other|φk

other| (2|φ0 φ0| − I) (−αk−1|target βk−1|other)

= 2β2
0 − 1 βk−1 − 2α0β0αk−1.

Let the angle θ = arccos 2N−M
2N ., then by induction, it can be shown that

. αk = sin[(2k + 1)θ], βk = cos[(2k + 1)θ].

To ensure that the coefficient αm = O(1)., there is a condition (2m + 1)θ ≈ π/2..

Therefore, m = O(1/θ) = O 2N

M
. suffices to obtain the solution with high

probability.

4.2.2 Online Quantum Perceptron with Quadratic Speedups

As stated in Theorem 4.1, for a linearly separable dataset with a margin γ ., a
perceptron model can achieve perfect classification after making O(1/γ 2). mistakes

122 4 Quantum Neural Networks

during training. In classical approaches, identifying a sample that is misclassified
by the current model may require up to O(d). queries, where d denotes the size
of the training dataset. In contrast, the quantum perceptron model [29] can find
misclassified samples more efficiently using the Grover search algorithm, achieving
a quadratic speedup in the number of queries needed.

First, let’s look at how the input data is set up. For classification, a dataset

{z(i)}di=1 = x(i), y(i) d

i=1 . is considered, where the label y(i) ∈ {−1, 1}.. For
convenience, it is assumed that the number of samples, d, is a power of 2, i.e.,
d = 2N

.. Each data vector x(i)
. is represented using B bits. The information of each

sample z(i)
. is stored in the quantum state |z(i)

. using B + 1. qubits.

Example 4.1 For the sample (x(i), y(i)) = ([0, 0, 1, 0], 1)., the correspond-
ing quantum state is |z(i) 00101 .. Here, the last qubit encodes the label
(where “0” represents the label “−1.”), and the other qubits represent the data
vector. If x(i)

. is a float vector, a similar bit sequence can be can be formed by
concatenating the binary representations of its elements.

Next, the oracle models are introduced. A quantum oracle U is assumed to exist
for encoding training data as the corresponding quantum state, i.e.,

.U |i 0 i z(i) , U†|i z(i) i 0 . (4.15)

Due to the linearity of unitary operations

.U

d−1

i=0

1√
d
|i 0

d−1

i=0

1√
d
|i z(i) . (4.16)

In addition to the input oracle U described in Eq. (4.15), the quantum perceptron
model employs another oracle to distinguish between correctly classified and
misclassified quantum states. Specifically, the oracle Fw . satisfies

.Fw|z(i) (−1)f (w,z(i))|z(i) , (4.17)

where f : (w, z(i)) → {0, 1}.. The function outputs 1 if the current perceptron
model with weight w . misclassifies the training sample z(j)

.; otherwise, it outputs 0.
Furthermore, we define

.Fw = U†(I⊗ Fw)U, (4.18)

4.2 Fault-Tolerant Quantum Perceptron 123

which is used as the oracle Uf . in the Grover search. The online quantum perceptron
procedure is given in Algorithm 3. The query complexity of the online quantum
perceptron is provided in Theorem 4.3.

Algorithm 3 Online quantum perceptron

Require: Linearly separable dataset {z(i)}d
i=1 = {(x(i) , y(i))}d

i=1, where d = 2N . Margin
threshold γ . Constants ∈ (0, 1) and c ∈ (1, 2).

Ensure: Weight w for a perceptron that correctly classifies the dataset with a margin γ with
probability at least 1 − .

1: Initialize the weight w = 0.
2: for h = 1, · · · , 1

γ 2 do

3: for k = 1, · · · , log3/4 γ 2 do

4: for j = 1, · · · , logc
1

sin(2 sin−1(1/
√

d))
do

5: Draw m uniformly from {0, · · · , cj 1}.
6: Prepare the quantum state

|φ0
1√
d

d−1

i=0

|i .

7: Generate the state

|φ1 {[(2|φ0 φ0| − Id)⊗ Id] Fw}m |φ0 0 ⊗N .

8: Measure the first register of the state |φ1 to obtain an outcome q.
9: if f (w, z(q)) = 1 then

10: Update w ← w + y(q) x(q).
11: end if
12: end for
13: end for
14: end for
15: Output w.

Theorem 4.3 (Online Quantum Perceptron [29]) Consider a training dataset
that consists of unit vectors {x(1), · · · , x(d)}. and labels {y(1), · · · , y(d)}. with a
margin γ .. Denote by nquant . the number of queries to Fw . needed to learn the weight
w ., such that the training dataset is perfectly classified with probability at least 1− .,
then

.nquant ∈ O
√

d

γ 2
log

1

γ 2
.

124 4 Quantum Neural Networks

For the classical case where the training vectors are uniformly sampled from the
training dataset, the number of queries to fw . is bounded by

. nclass ∈ O d

γ 2
log

1

γ 2
.

Proof of Theorem 4.3 The main idea of the quantum perceptron model in Algo-
rithm 3 is to replace the procedure of finding the misclassified sample in classical
perceptrons with the Grover search. Due to convergence result for perceptrons
in Theorem 4.1, h = 1, · · · , 1

γ 2 . iterations of Steps (3–13) suffice to update
the weight w . toward the case of perfect classification. Therefore, Theorem 4.3
is the direct consequence of the following lemmas and Theorem 4.1. The query
complexity of classical perceptrons has the lower bound ., since the model
needs to go through the entire dataset in the worst case.

Lemma 4.1 Given only uniform sampling access to the training dataset, there
exists a classical perceptron that either finds a misclassified sample to update the
weight w . or concludes that no such example exists with probability 1 − 2

., using
O(d log(1 2)). queries to fw ..

Lemma 4.2 The procedure of Steps 3–13 in Algorithm 3 either finds a misclassified
sample to update the weight w . or concludes that no such example exists with

probability 1− 2
., using O

√
d log(1 2) . queries to Fw ..

Proof (Proof of Lemma 4.1) First, let mc = d log(1 2) . be the number of
samples drawn from the dataset uniformly in each iteration of training. Suppose
these samples are classified correctly, then the probability that the entire dataset is
classified correctly is

. Pr(Correct classification) ≥ 1− 1− 1

d

mc

≥ 1− exp −mc

d
≥ 1− 2.

Proof of Lemma 4.2 For convenience, denote θa := arccos d−d0
d

., where d0 . the
number of misclassified samples in the dataset according to the current model. Let
d1 logc

1
sin(2 sin−1(1/

√
d))

.. Here, an exponential expansion strategy is used in

Steps 4–12 to handle the scenario of unknown d0 .. Namely, quantum operations in
the Grover search are repeated for m times, where m is drawn from an exponentially
expanded set 0, · · · , cj 1. uniformly for a predefined c ∈ (1, 2). and j =
1, · · · , d1 .. It can be shown that this strategy can find a misclassified sample before
the convergence of Algorithm 3 with an average probability at least 1/4.:

4.3 NISQ-Era Quantum Neural Networks 125

. Pr f (w, z(q)) = 1 =
d1

j=1

1

cj

cj 1

m=0

sin2((2m+ 1)θa)

≥ 1

cd1

cd1 1

m=0

sin2((2m+ 1)θa)

= 1

2
1− sin(4 cd1 θa)

2 cd1 sin(2θa)

≥ 1

4
.

The procedure of Steps 4–12 is repeated for k = 1, · · · , log3/4 γ 2
. iterations

to accumulate the success probability. The probability of finding a misclassified
sample in Steps 3–13 before the convergence of Algorithm 3 is at least

.1− 1− 1

4

log3/4
2

≥ 1− 2. (4.19)

Finally, the query complexity Q of Steps 3–13 in Algorithm 3 can be upper
bounded as follows:

. Q ≤
log3/4 γ 2

k=1

d1

j=1

cj

≤ 1+ log3/4 γ 2 c

1− c
1− cd1

≤ 1+ log3/4 γ 2 c2

c − 1

1

sin(2 sin−1(1/
√

d))
− 1

= O √
d log

1
2 .

4.3 NISQ-Era Quantum Neural Networks

Following recent experimental breakthroughs in superconducting quantum hard-
ware architectures [10, 31–33], researchers have devoted considerable effort to
developing and implementing quantum machine learning algorithms optimized
for current and near-term quantum devices [34]. Unlike fault-tolerant quantum

126 4 Quantum Neural Networks

computers, these devices face three primary limitations: quantum noise, limited
coherence time, and circuit connectivity constraints. Regarding quantum noise,
state-of-the-art devices have single-qubit gate error rates of 10−4 ∼ 10−3

. and two-
qubit gate error rates of approximately 10−3 ∼ 10−2

. [32, 33]. The coherence time
is around 102 μ.s [10, 32, 33], primarily limited by decoherence in noisy quantum
channels. Regarding circuit connectivity, most superconducting quantum processors
employ architectures that exhibit two-dimensional connectivity patterns and their
variants [10, 32, 33]. Gate operations between nonadjacent qubits must be executed
through intermediate relay operations, leading to additional error accumulation. To
address these inherent limitations, the quantum neural network (QNN) framework
has been proposed. Specifically, these QNNs are designed to perform meaningful
computations on near-term quantum devices.

4.3.1 General Framework

This section introduces the basic architecture of QNNs. As illustrated in Fig. 4.4,
a fundamental QNN comprises three main parts: the input, the model circuit, and
the measurement. Specifically, the input state ρin . is prepared using the operation
Udata ., followed by a variational quantum circuit (VQC) V (θ). and the measurement
operation.

Input The QNN uses quantum states ρin . as input data. As shown in Table 4.2,
QNNs can process both classical and quantum data. Specifically, the input states
ρin . may be introduced from physical processes such as quantum Hamiltonian
evolutions. Another way is to construct the state ρin . by encoding classical vectors
using encoding protocols introduced in Sect. 2.3.1, such as angle encoding and
amplitude encoding.

|0

|0

|0

|0

Udata (ρin) V (θ)

Fig. 4.4 Illustration of a QNN

4.3 NISQ-Era Quantum Neural Networks 127

Table 4.2 Examples of classical and quantum data employed in QNNs, where H denotes the
system Hamiltonian, kB . is the Boltzmann constant, and |φ0 . is a predefined initial state

Example Input state formulation

Classical data Angle encoding N
n=1 [RY(xn)|0].

Amplitude encoding d−1
i=0 xi/ x 2|i .

Quantum data Gibbs state exp(−H/kBT)

Tr[exp(−H/kBT)] .

Hamiltonian evolution exp(−iH t)|φ0 .

Uent Uent

Fig. 4.5 Illustration of a hardware-efficient circuit with two entanglement layers

Fig. 4.6 Illustration of a quantum convolutional neural network

Model Circuit QNNs employ variational quantum circuits (VQCs), a.k.a, ansatzes,
to extract and learn features from input data. A typical VQC, denoted as V (θ).,
features a layered structure composed of both parameterized (trainable) and fixed
quantum gates. For general-purpose implementations, a common strategy is to use
the parameters θ . as the phases of single-qubit rotation gates RX, RY, RZ., while
quantum entanglement is introduced through fixed two-qubit gates, such as CX and
CZ. Standard circuit architectures include the hardware-efficient circuit (HEC) [35],
shown in Fig. 4.5, and the quantum convolutional neural network (QCNN) [36],
shown in Fig. 4.6. For problem-specific applications, such as finding the ground
states of molecular Hamiltonians, specialized circuits like the unitary coupled
cluster ansatz [37] are employed.

128 4 Quantum Neural Networks

Example 4.2 Hardware-efficient circuits incorporate several widely adopted
ansatzes. Single-qubit rotations {RX, RY, RZ}. are used to construct parame-
terized single-qubit unitaries. The entangled unitary layer can be implemented
using two-qubit gates such as

. Uent =
N
2

n=1

U(2n− 1+ k%2, 2n+ k%2) for the k-th layer,

Uent =
N
2

n=1

U(2n− 1, 2n)

N−1
2

n=1

U(2n, 2n+ 1),

where U ∈ {CX,CZ}..

Measurement After implementing the model circuit, the quantum state is mea-
sured using specific observables, denoted as O, to extract classical information.
The choice of observables depends on the experimental objectives. For a variational
quantum eigensolver, where the goal is to find the ground state and energy of a
given Hamiltonian, the observable is chosen to be the target Hamiltonian itself. In
quantum machine learning applications involving classical data, the measurement
outcomes are used to approximate label information, which typically lacks direct
physical significance. As a result, the observable can, in principle, be any Hermitian
operator. However, for practical experimental considerations, a linear combination
of Pauli-Z operators is commonly used as the observable:

.O =
N

j=1

cj I
⊗(j−1) ⊗ Zj ⊗ I⊗(N−j), (4.20)

where c ∈ RN
. is a weight vector. The measurement outcome of QNN can be

expressed as a function of θ ., i.e.,

.f (θ; ρin, V ,O) = Tr OV (θ)ρinV (θ)† . (4.21)

Training of QNNs As a QML framework, the optimization of QNNs amounts to
updating parameters θ . using gradient-based methods. Thanks to the linearity of
quantum mechanics and the unitary evolution constraint, in certain cases, gradients
can be elegantly calculated using the parameter-shift rule.

4.3 NISQ-Era Quantum Neural Networks 129

Theorem 4.4 (Parameter-Shift Rule [38]) Suppose the gate Gj(θ j). in a VQC
V (θ). has a unitary Hamiltonian Hj ., then the corresponding gradient could be
obtained as

.
∂f

∂θ j

(θ) = 1

2
f θ + π

2
e(j) − f θ − π

2
e(j) ,

where the function f follows the Eq. (4.21) and the one-hot vector e(j)
. has the same

dimension with θ . with the j -th element being 1.

Proof (Proof of Theorem 4.4)
For convenience, we denote the detailed structure of VQC as

. V (θ) =
1

i=L

Gi(θ i)Wi,

where L is the number of parameters in VQC, Gi . is the parameterized gate, and Wi .

is the fixed gate. By assumption, the gate takes the form as

. Gj(θ j) = exp(−iHj θ j /2),

where the Hamiltonian Hj . is a unitary. For convenience, unnecessary parameterized
and fixed gates can be merged into the state ρin . and the observable O, i.e.,

. ρin = Wj

⎛
⎝ 1

i=j−1

Gi(θ i)Wi

⎞
⎠ ρin

⎛
⎝j−1

i=1

W
†
i Gi(θ i)

†

⎞
⎠ W

†
j ,

O =
⎛
⎝ L

i=j

W
†
i Gi(θ i)

†

⎞
⎠ O

⎛
⎝ j

i=L

Gi(θ i)Wi

⎞
⎠ .

It can be shown that

. f (θ) = Tr OV (θ)ρinV (θ)†

= Tr O Gj(θ j)ρinGj(θ j)
†

= Tr O exp(−iHj θ j /2)ρin exp(iHj θ j /2)

= cos2 θ j

2
Tr O ρin + i

2
sin θ j [Hj ,O]ρin + sin2 θ j

2
Tr HjO Hjρin ,

(4.22)

where [A,B] := AB − BA. denotes the commutator.

130 4 Quantum Neural Networks

After some calculations from Eq. (4.22), it can be shown that

. f θ + π

2
e(j) = 1− sin θ j

2
Tr O ρin + i

2
cos θ j [Hj ,O]ρin

+1+ sin θ j

2
Tr HjO Hjρin

f θ − π

2
e(j) = 1+ sin θ j

2
Tr O ρin − i

2
cos θ j [Hj ,O]ρin

+1− sin θ j

2
Tr HjO Hjρin

∂f

∂θj

(θ) = − 1

2
sin θ j Tr O ρin + i

2
cos θ j [Hj ,O]ρin

+1

2
sin θ j Tr HjO Hjρin .

Comparing the above equations, Theorem 4.4 is proved.

4.3.2 Discriminative Learning with QNNs

This section presents an example of using a QNN for discriminative learning, which
focuses on distinguishing between different categories. The focus is on binary
classification, where the label y(i) = ±1. corresponds to the input state ρ(i)

.. For
classical data, the state ρ(i) = |ψ(x(i)) ψ(x(i))|.can be generated from the classical
vector x(i)

. using a read-in approach:

.|ψ(x(i)) Uφ(x(i))|0 . (4.23)

Here, the feature map can be constructed via angle encoding, as introduced in
Sect. 2.3.1:

.Uφ(x(i)) =
N

n=1

RY(x(i)
n) =

N

n=1

exp(−iYx(i)
n /2). (4.24)

Denote by O and V (θ). the quantum observable and the VQC, respectively. The
prediction function of the QNN is given by

.ŷ(i)(θ) = Tr[OV (θ)ρ(i)V (θ)†]. (4.25)

4.3 NISQ-Era Quantum Neural Networks 131

In the binary classification task, the QNN learns by training the parameter θ . to
minimize the distance between the label y(i)

. and the prediction ŷ(i)(θ).. Specifically,
the mean square error (MSE) is used as the loss function:

. θ∗ = argminL(θ), where L(θ) =
n

i=1

θ , x(i), y(i)) = 1

2

n

i=1

ŷ(i)(θ)− y(i)
2
.

(4.26)

The gradient of the loss in Eq. (4.26) can be calculated via the chain rule, i.e.,

.∇θL(θ) =
n

i=1

ŷ(i)(θ)− y(i) ∇θ ŷ
(i)(θ), (4.27)

where the gradient of the prediction ŷ(i)
. can be obtained by using the parameter-

shift rule in Theorem 4.4. Consequently, a variety of gradient-based optimization
algorithms, such as stochastic gradient descent [19], Adagrad [39], and Adam [40],
can be employed to train QNNs.

Remark
The QNN binary classification framework can be naturally extended to multi-
label classification using the one-vs-all strategy. Specifically, we train k QNN
binary classifiers for k classes, with each classifier distinguishing a specific
class from t he others.

Remark
The QNN classification framework presented in this section can be extended
to quantum regression learning by incorporating continuous labels.

4.3.3 Generative Learning with QNNs

This section introduces a quantum generative model implemented by QNNs: the
quantum generative adversarial network (QGAN) [41]. Like its classical counter-
parts, QGAN learns to generate samples by using a discriminator and a generator
that compete in a two-player minimax game. Specifically, both the discriminator D
and the generator G can be implemented using QNNs. By leveraging the expressive

132 4 Quantum Neural Networks

power of QNNs, QGAN has the potential to exhibit quantum advantages in certain
tasks [42, 43].

To illustrate QGAN’s training and sampling processes, two examples based on
the quantum patch and batch GANs, as proposed by Huang et al. [44], are presented.
Let N denote the number of qubits and M the number of training samples. The
patch and batch strategies are designed for the cases where N < log M . and N >

log M ., respectively. In particular, the patch strategy allows for generating high-
dimensional images even with limited quantum resources. In contrast, the batch
strategy supports parallel training when enough quantum resources are accessible.

4.3.3.1 Quantum Patch Generative Adversarial Network

The discussion begins with the quantum patch GAN, which consists of a quan-
tum generator, as illustrated in Fig. 4.7, a classical discriminator, and a classical
optimizer. Both the learning and sampling processes of an image are performed in
patches, involving T sub-generators. For the t-th sub-generator, the model takes a
latent state z. as input and generates a sample Gt(z).. Specifically, the latent state is
prepared from the initial state |0 ⊗N

. using a single-qubit rotation layer, where the
parameters {αn}Nn=1 . are sampled from the uniform distribution over [0, 2π).. The
latent state is then processed through an N -qubit hardware-efficient circuit UGt (θ).,
which leads to the state

.|ψt(z) UGt (θ)|z . (4.28)

To perform nonlinear operations, partial measurements are conducted, and a
subsystem A. (ancillary qubits) is traced out from the state |ψt(z) .. The resulting

Uz

|0

|0

|0

|0

|0

|0

Ancillary
for G

(α1) U(θ 1)

(α2) U(θ 2)

Sample
Register

(α3) U(θ 3)

(α4) U(θ 4)

(α5) U(θ 5)

(α6) U(θ 6)

Fig. 4.7 The quantum generator used in the quantum patch GAN, where each U(θ) ∈ U(2). is
a trainable single-qubit unitary

4.3 NISQ-Era Quantum Neural Networks 133

mixed state is

.ρt (z) = TrA [⊗ I|ψt(z) ψt (z)|]
Tr [⊗ I|ψt(z) ψt (z)|] , (4.29)

where . is the projective operator acting on the subsystem A.. Subsequently, the
mixed state ρt (z). is measured in the computational basis to obtain the sample
Gt(z).. Specifically, let Pr(J = j) := Tr[|j j |ρt (z)]., where the probabilities of the
outcomes can be estimated by the measurement. The sample Gt(z). is then defined
as

.Gt(z) = [Pr(J = 0), · · · , Pr(J = j), · · · , Pr(J = 2N−NA − 1)], (4.30)

where NA . is the number of qubits in A.. Finally, the complete image is reconstructed
by aggregating these samples from all sub-generators as follows:

.G(z) = [G1(z), · · · ,GT (z)]. (4.31)

In principle, the discriminator D in a quantum patch GAN can be any classical
neural network that takes the training data x . or the generated sample G(z). as input,
with the output

.D(x), D(G(z)) ∈ [0, 1]. (4.32)

Let γ . and θ . denote the parameters of the discriminator D and the generator
G, respectively. The optimization problem for the quantum patch GAN can be
formulated as

. min
θ

max
γ
L(Dγ (Gθ (z)),Dγ (x)) := E

x
log Dγ (x) + E

z
log(1−Dγ (Gθ (z))) .

(4.33)

Similar to quantum discriminative learning, the quantum patch GAN can be trained
using gradient-based optimization algorithms.

4.3.3.2 Quantum Batch GAN

As illustrated in Fig. 4.8, the quantum batch GAN differs from the quantum patch
GAN by employing a quantum discriminator. In a quantum batch GAN, all qubits
are divided into two registers: the index register, consisting of NI . qubits, and the
feature register, consisting of NF .qubits. The qubits in the feature register are further
partitioned into three parts: ND . qubits for generating quantum samples, NAG

. qubits
for implementing nonlinear operations in the generator Gθ ., and NAD

. qubits for
implementing nonlinear operations in the discriminator Dγ .. For a batch with size

134 4 Quantum Neural Networks

|0

|0

|0

|0

|0

|0

|0

0

Index
Register

Uz
Ancillary
for G

UG(θ)

Sample
Register

UD(γ)

Ancillary
for D

Fig. 4.8 The main structure of the quantum batch GAN

|Bk| = 2NI ., two oracles are used to encode the information of latent vectors and
training samples:

.|0 I ⊗ |0 F
Uz−→ 1

2NI

i

|i I ⊗ |z(i)
F , . (4.34)

|0 I ⊗ |0 F
Ux−→

1

2NI
i
|i I ⊗ |x(i)

F . (4.35)

Remark
For data with M features, state preparation for amplitude encoding in Ux .

requires Õ(2NI M). multi-controlled quantum gates, which is infeasible for
current quantum devices. This challenge can be addressed by employing
pretrained shallow circuit approximations of the given oracle [45].

After the encoding stage, a PQC UG(θ). and the corresponding partial measure-
ment are employed as the quantum generator. Thus, the generated state correspond-
ing to |Bk|. fake samples is obtained as follows:

4.3 NISQ-Era Quantum Neural Networks 135

.
1

2NI

i

|i I ⊗ |z(i)
F

UG(θ)−−−→ 1

2NI

i

|i I ⊗ UG(θ)⊗ I
2
NAD

|z(i)
F := |ψ(z)

AG−−−→ I2NI ⊗ AG
⊗ I

2
ND+NAD

|ψ(z)

Tr I2NI ⊗ AG
⊗ I

2
ND+NAD

|ψ(z) ψ(z)|
:= |Gθ (z) ,

where the partial measurement AG
= (|0 0|)⊗NAG . serves as the nonlinear

operation. In the sampling stage, the reconstructed image is generated similarly to
the quantum patch GAN. Specifically, the i-th image Gθ (z

(i)). in the batch is

.Gθ (z
(i)) = Pr(J = 0|I = i), · · · , Pr(J = 2ND − 1|I = i) , (4.36)

where

. Pr(J = j |I = i) = Tr [|i I |j F i|I j |F |G(z) G(z)|] . (4.37)

Finally, we introduce the training stage. A quantum discriminator is applied
to either the fake generated state |Gθ (z) . or the real data state |x .. Similar to
the quantum generator, the quantum discriminator Dγ . consists of a PQC UD(γ).,
followed by the corresponding partial measurement. In the case of the real state, the
state evolution proceeds as follows:

.
1

2NI

i

|i I ⊗ |x(i)
F

UD(γ)−−−→ 1

2NI

i

|i I ⊗ I
2
NAG

⊗ UD(γ)|x(i)
F := |ψ(x)

AD−−−→ I
2
N−NAD

⊗ AG
|ψ(x)

Tr I
2
N−NAD

⊗ AG
|ψ(x) ψ(x)|

:= |Dγ (x) ,

where the partial measurement is AG
= (|0 0|)⊗NAD .. The classical description

Dγ (x). is generated similarly to Eq. (4.36). The generated state Gθ |z . undergoes the
same procedure to obtain the description Dγ (Gθ (z)).. These classical vectors are
then used in the loss function in Eq. (4.33) to train parameters θ . and γ ..

136 4 Quantum Neural Networks

4.4 Theoretical Foundations of Quantum Neural Networks

Quantum neural networks (QNNs) primarily aim to make accurate predictions
on unseen data. Achieving this goal depends on three key factors: expressivity,
generalization ability, and trainability, as illustrated in Fig. 4.9. The expressivity
of a QNN defines its hypothesis space H. (solid blue ellipse). When H. has a
moderate size and encompasses the target concept (solid red star), QNNs can
achieve good performance. Conversely, if H. is too small to cover the target concept
(the solid gray star), the QNN’s performance diminishes. During QNN optimization,
a significant challenge is the vanishing gradient problem, often called the barren
plateau. This issue prohibits a good estimation near the target parameters θ∗ .. A
thorough analysis of these factors is crucial for understanding QNNs’ potential
advantages and limitations relative to classical machine learning models. Instead
of providing an exhaustive review of all theoretical results, this section highlights
key conceptual insights of QNNs.

As explained in Sect. 3.3, expressivity refers to a model’s ability to represent
a wide range of functions, determining the smallest achievable training error.
Section 4.4.1 characterizes the expressivity of QNNs using the covering number,
an advanced tool from statistical learning theory. This analysis will reveal the
relationship between the expressivity of QNNs and their structural factors, such
as the size of the quantum system and the number of exploited quantum gates.
Understanding this connection helps clarify how QNNs’ expressivity scales with
their architecture.

Generalization ability evaluates the discrepancy between a model’s performance
on the training data and on unseen test data. Section 4.4.1 further explores
the relationship between the generalization ability and expressivity of QNNs by
deriving a generalization error bound in terms of the covering number. This bound
provides insights into how the expressivity of QNNs—specifically their structural
factors—may impact their ability to generalize and offers a framework to assess
their potential advantages over classical ML models.

ℋ

⋯
Optimization path

()

()

∗

Target function

Grad info

Optimal

∗

Optimal

Fig. 4.9 Overview of the expressivity, generalization ability, and trainability of QNNs

4.4 Theoretical Foundations of Quantum Neural Networks 137

While expressivity and generalization ability are crucial for both quantum
kernels and QNNs, trainability emerges as an additional consideration for QNNs
due to the introduction of trainable parameters in quantum circuits. This leads to
fundamentally different optimization challenges, rendering many existing results
from classical ML models inapplicable. Specifically, trainability refers to a model’s
ability to efficiently converge to a good solution during training, directly influencing
the computational cost. In Sect. 4.4.2, the barren plateau problem is introduced.
This is a major challenge in training quantum neural networks. As the system
size increases, gradients vanish exponentially. This makes optimization extremely
difficult. Additionally, various strategies to address this issue will be discussed,
offering practical insights into enhancing the trainability of QNNs.

4.4.1 Expressivity and Generalization of Quantum Neural
Networks

The expressivity and generalization are deeply interconnected within the framework
of statistical learning theory for understanding the prediction ability of any learning
model. To better understand these terms in the context of quantum neural networks,
let us first review the framework of empirical risk minimization (ERM), which is a
popular framework for analyzing these abilities in statistical learning theory.

LetD = {(x(i), y(i))}ni=1 ∈ X×Y. be the training dataset sampled independently
from an unknown distribution P.. A learning algorithm A. aims to use the dataset
D. to infer a hypothesis hθ∗ : X → Y. from the hypothesis space H. that could
accurately predict all labels of x ∈ X. following the distribution P.. This amounts to
identifying an optimal hypothesis in H. minimizing the expected risk:

.R(h) = E(x,y)∼P θ∗(x), y), (4.38)

where ·, ·). refers to the per-sample loss predefined by the learner. Unfortunately,
since the distribution P. is unknown, the expected risk cannot be directly assessed.
In practice, A. alternatively learns an empirical hypothesis h

θ̂
∈ H., as the global

minimizer of the (regularized) loss function

.L(θ ,D) = 1

n

n

i=1

θ (x
(i)), y(i))+ R(θ), (4.39)

where R(θ). refers to an optional regularizer, as will be detailed in the following.
Moreover, the first term on the right-hand side refers to the empirical risk:

.RERM(h
θ̂
) = 1

n

n

i=1
θ̂
(x(i)), y(i)), (4.40)

138 4 Quantum Neural Networks

which is also known as the training error. To address the intractability of R(h
θ̂
)., one

can decompose it into two measurable terms:

.R(h
θ̂
) = RERM(h

θ̂
)+ RGene(hθ̂

), (4.41)

where RGene(hθ̂
) = R(h

θ̂
) − RERM(h

θ̂
). refers to the generalization error. In this

regard, a small prediction error necessitates the learning model to achieve both a
small training error and a small generalization error.

4.4.1.1 An Overview

Before moving to analyze the training error (ERM) and generalization error
of QNNs rigorously, we first delve into better understanding the meaning of
expressivity and generalization ability of the learning models with the ERM
framework. Moreover, an intuition about the necessities and benefits of exploring
such theoretical aspects of QNNs as a special learning model is provided.

Expressivity can be directly understood as the size of the learning model’s
hypothesis space H = {hθ : θ ∈ }.. Intuitively, the achievable smallest empirical
risk is determined by the expressivity of learning models. Specifically, a learning
model with low expressivity may not fit the training data with complex patterns,
e.g., the hypothesis space of linear modelH = {hθ = θ · x}. cannot fit the nonlinear
data {x(i), (x(i))2}. perfectly.

In general, the cardinality of the hypothesis space is infinity, as the parameters θ .

are continuous. This makes it hard to compare the expressivity of different learning
models. An alternative measure is model complexity, which measures the richness
of the hypothesis space through the structural factors of the specific learning models,
such as the number of parameters, depth, or architectural design. Remarkably, model
complexity is measurable and bounded. In this tutorial, the covering number will be
used to measure the model complexity of QNNs.

The generalization capability of learning models is directly measured by the
generalization error RGene . in Eq. (4.41). Good generalization means the learning
model predicts well on both unseen and training data. In this regard, a small
generalization error combined with a small training error implies a small prediction
error, as the generalization error ensures that prediction performance on unseen data
is comparable to training performance.

In statistical learning theory, it is well established that a bias-variance trade-off
governs the interplay between model complexity and generalization performance
for any learning model. This highlights the delicate balance required for a model to
generalize well to unseen data. The relationship is often depicted by a U-shaped
curve, as shown in Fig. 4.10. This curve suggests that there exists an optimal
level of model complexity for improving the generalization ability of any learning
model. When under the point related to optimal expressivity, increasing model
complexity improves performance on training data and enhances generalization.
However, beyond a certain point, higher complexity leads to overfitting, resulting

4.4 Theoretical Foundations of Quantum Neural Networks 139

Fig. 4.10 Influence of model
complexity on generalization
error

Model Complexity
rorrE

OverfittingUnderfitting

Best fit

in poor generalization on test data. For QNNs, identifying this optimal level of
complexity is crucial for achieving the best balance between training performance
and generalization.

4.4.1.2 Expressivity of QNNs

In this chapter, we analyze the generalization error of QNNs through a specific
measure of model complexity: the covering number. This measure helps us better
understand and characterize the generalization performance of QNNs.

To elucidate the specific definition of the covering number, the general structures
of QNNs are first reviewed. Define ρ ∈ C2N×2N

. as the N -qubit input quantum

states, O ∈ C2N×2N
. as the quantum observable, U(θ) = Ng

l=1 ul(θ) ∈ U(2N). as
the applied ansatz, where θ ∈ . are the trainable parameters living in the parameter
space ., ul(θ) ∈ U(2k). refers to the l-th quantum gate operated with at most
k-qubits with k ≤ N ., and U(2N). stands for the unitary group in dimension 2N

..
In general, U(θ). is formed by Ngt . trainable gates and Ng − Ngt . fixed gates, e.g.,
⊂ [0, 2π)Ngt .. Under the above definitions, the explicit form of the output of QNN

under the ideal scenarios is

.h(θ,O, ρ) := Tr U(θ)†OU(θ)ρ . (4.42)

Given the training dataset D = {(ρ(i), y(i))}ni=1 . and loss function L(θ ,D). defined
in Eq. (4.39), QNN is optimized to find a good approximation h∗(θ,O, ρ) =
arg minh(θ,O,ρ)∈H L(θ,D). that can well approximate the target concept, where H.

refers to the hypothesis space of QNNs with

.H = Tr U(θ)†OU(θ)ρ θ ∈ . (4.43)

An intuition about how the hypothesis space H. affects the performance of QNNs
is depicted in Fig. 4.9. When H. has a modest size and covers the target concepts,

140 4 Quantum Neural Networks

Fig. 4.11 The geometric
intuition of covering number.
Covering number concerns
the minimum number of
spherical balls with radius .
that occupy the whole space εε

the estimated hypothesis could well approximate the target concept. By contrast,
when the complexity of H. is too low, a significant gap exists between the estimated
hypothesis and the target concept. An effective measure to evaluate the complexity
of H. is covering number, an advanced tool broadly used in statistical learning
theory, to bound the complexity of H. and measure the expressivity of QNNs.

Definition 4.1 (Covering Number) The covering number N(U). denotes
the least cardinality of any subset V ⊂ U . that covers U at scale . with a norm

., i.e., supA∈UminB∈V A − B .. Here, we use this notion to measure the
expressivity of QNNs.

The geometric interpretation of the covering number is depicted in Fig. 4.11,
which refers to the minimum number of spherical balls with radius . that are
required to completely cover a given space with possible overlaps. This notion has
been employed to study other crucial topics in quantum physics such as Hamiltonian
simulation and entangled states. Note that . is a predefined hyperparameter, i.e., a
small constant with ∈ (0, 1)., and is independent of any factor. This convention is
widely adopted in machine learning to evaluate the capacity of various models.

Following the convention of [46], a step-by-step analysis of the model com-
plexity of the hypothesis space H. of QNNs defined in Eq. (4.43) is provided. In
particular, how the covering number of QNNs is controlled by their structural factors
will be elucidated, including the number of parameterized gates Ngt ., the number of
qubits k the gates acting on, and the type of the quantum observable O. To this end,
we first consider a simpler hypothesis space consisting of the operator group:

.Hcirc := U(θ)†OU(θ) θ ∈ . (4.44)

This space removes the input state ρ . is removed compared to the hypothesis space
H. related to QNNs. Actually, the covering number of H. under the metric d could
be connected to the covering number ofHcirc . under the related metric dcirc . through
employing their Lipschitz properties, which is encapsulated in the following fact.

Fact 4.2 Let (H1, d1). and (H2, d2). be two metric spaces satisfying f : H1 → H2 .

be bi-Lipschitz such that

.cld1(x, z) ≤ d2(f (x), f (z)) ≤ crd1(x, z), ∀x, z ∈ H1. (4.45)

4.4 Theoretical Foundations of Quantum Neural Networks 141

Then, their covering number obeys

.N(H1, 2 l , d1) ≤ N(H2 2) ≤ N(H1 r , d1), (4.46)

where the left inequality requires ≤ clcu/2. with cu . being the upper bound of the
distance between any two points inH1 ., namely, d1(x, z) ≤ cu . for x, z ∈ H1 ..

Fact 4.2 indicates that we can derive the covering number of the metric space
(H, d). by analyzing the covering number of the metric space (Hcirc, dcirc). and the
Lipschitz constants of the mapping between H. and Hcirc .. Intuitively, a quantum
circuit with many multi-qubit parameterized gates results in a complex QNN
with high model complexity. These intuitions are formalized into Theorem 4.5.
Specifically, the result of the covering number of the metric space (Hcirc, dcirc). is
encapsulated in Lemma 4.3.

Lemma 4.3 Suppose that the employed N -qubit quantum circuit containing in total
Ng . gates with Ng > N ., each gate ui(θ). acting on most k qubits, and Ngt ≤ Ng .

gates in U(θ). are trainable. The .-covering number for the operator groupHcirc . in
Eq. (4.44) with respect to the operator-norm distance obeys

.N(Hcirc) ≤ 7Ngt O 22kNgt

, (4.47)

where O . denotes the operator norm of O.

Proof of Lemma 4.3 To measure the covering number the operator group of
Hcirc = {U(θ)†OU(θ) θ ∈ }., one could first consider a fixed .-covering S.

for the set N(U(2k). of all possible gates and define the set

.S̃ :=
⎧⎨
⎩

i∈{Ngt }
ui(θ i)

j∈{Ng−Ngt }
uj ui(θ i) ∈ S

⎫⎬
⎭ , (4.48)

where ui(θ i). and uj . specify the trainable and fixed quantum gates in the employed

quantum circuit, respectively. Note that for any circuit U(θ) = Ng

i=1 ui(θ i)., one

can always find a U (θ) ∈ S̃. where each ui(θ i). of trainable gates is replaced with
the nearest element in the covering set S., and the discrepancy U(θ)†OU(θ) −
U (θ)†OU (θ) . satisfies

. U(θ)†OU(θ)− U (θ)†OU (θ)

U − U O

≤Ngt O (4.49)

142 4 Quantum Neural Networks

where the first inequality uses the triangle inequality and the second inequality
follows from U − U Ngt ..

Therefore, by Definition 4.1, S̃. forms an Ngt O .-covering set for Hcirc .. An
upper bound for the group S., as established by Barthel and Lu [47, Lemma 1], gives

|S| ≤ 7
22k

.. Since there are |S|Ngt . combinations for the gates in S̃., it follows that

|S̃| ≤ 7
22kNgt

. and the covering number forHcirc . satisfies

.N(Hcirc, Ngt O) ≤ 7 22kNgt

. (4.50)

An equivalent representation of the above inequality is

.N(Hcirc) ≤ 7Ngt O 22kNgt

. (4.51)

With the established covering number of operator groupHcirc ., one could directly
analyze the covering number of the hypothesis space H. related to QNNs, which is
encapsulated in the following theorem.

Theorem 4.5 For 0 1/10., the covering number of the hypothesis space H.

in Eq. (4.43) yields

.N(H | · |) ≤ 7Ngt O 22kNgt

, (4.52)

where O . denotes the operator norm of O.

Proof of Theorem 4.5 The intuition of the proof is as follows. Recall the definition
of the hypothesis space H. in Eq. (4.43) and Lemma 4.2. When H1 . refers to the
hypothesis space H. and H2 . refers to the unitary group U(2N)., the upper bound of
the covering number of H., i.e., N(H1, d1 ., can be derived by first quantifying
cr . Eq. (4.45) and then interacting with N(Hcirc). in Lemma 4.3. Based on
the above observations, the following addresses the upper bound of the covering
number N(H | · |)..

The Lipschitz constant cr . in Eq. (4.45) is derived as a prerequisite for establishing
the upper bound of N(H | · |).. Define U ∈ U(2N). as the employed quantum

circuit composed of Ng . gates, i.e., U = Ng

i=1 ul .. Let U . be the quantum circuit
where each of the Ng . gates is replaced by the nearest element in the covering set.
The relation between the distance d2(Tr(U†OU ρ), Tr(U†OUρ)). and the distance
d1(U ,U). yields

4.4 Theoretical Foundations of Quantum Neural Networks 143

. d2(Tr(U†OU ρ), Tr(U†OUρ))

=|Tr(U†OU ρ)− Tr(U†OUρ)|
= Tr (U†OU − U†OU)ρ

≤ U†OU − U†OU Tr(ρ)

=d1(U
†OU ,U†OU), (4.53)

where the first equality comes from the explicit form of the hypothesis, the first
inequality uses the Cauchy-Schwartz inequality, and the last inequality employs
Tr(ρ) = 1. and

. U†OU − U†OU = d1(U
†OU ,U†OU). (4.54)

The above equation indicates cr = 1.. Combining the above result with
Lemma 4.2 (i.e., Eq. (4.45)) and Lemma 4.3, we obtain

.N(H | · |) ≤ N(Hcirc) ≤ 7Ngt O 22kNgt

. (4.55)

This relation ensures

.N(H | · |) ≤ 7Ngt O 22kNgt

. (4.56)

Theorem 4.5 indicates that the most decisive factor, which controls the complex-
ity of H., is the employed quantum gates in U(θ).. This claim is ensured by the fact
that the term 22kNgt . exponentially scales the complexity N(H | · |).. Meanwhile,
the qubits count N and the operator norm O . polynomially scale the complexity of
N(H | · |).. These observations suggest a succinct and direct way to compare the
expressivity of QNNs with different quantum circuits. Moreover, the dependence
of the expressivity of QNNs on the type of quantum gates (denoted by the term k)
demonstrated that the expressivity of QNNs depends on the structure information of
ansatz such as the location of different quantum gates and the types of the employed
quantum gates. The expressivity measured by the covering number could provide
practical guidance for designing the circuit structure of QNNs.

144 4 Quantum Neural Networks

4.4.1.3 Generalization Error of QNNs

As the relation between generalization error and covering number is well established
in statistical learning theory, we can directly obtain the generalization error bound
with the above bounds of covering number following the same conventions.

Theorem 4.6 Assume that the loss function . defined in Eq. (4.38) is L1 .-Lipschitz
and upper bounded by a constant C, the QNN-based learning algorithm outputs a
hypothesis h

θ̂
. from the training dataset S. of size n. Following the notations of risk

RGene(hθ̂
) = R(h

θ̂
) − RERM(h

θ̂
). defined in Eq. (4.41), for 0 1/10., with

probability at least 1− δ . with δ ∈ (0, 1)., we have

.RGene(hθ̂
) ≤ O 8L+ c + 24L Ngt · 2k

√
n

. (4.57)

Proof Sketch of Theorem 4.6 Recall that the bound of generalization error in terms
of Rademacher complexity has been established by Kakade et al. [48] as follows:

.RGene(hθ̂
) ≤ 2L1R(HQNN)+ 3C

ln(2/δ)

2n
, (4.58)

where R(HQNN). represents the empirical Rademacher complexity of the hypothe-
sis space of QNNs. Furthermore, the relationship between Rademacher complexity
and covering number can be derived using the Dudley entropy integral bound [49],
which is given by

.R(H) ≤ inf
α>0

4α + 12√
n

1

α

lnN(H|S 2)d , (4.59)

where H|S . denotes the set of vectors formed by the hypothesis with n examples
in the dataset S.. In this regard, the generalization error bound in Eq. (4.57)
could be obtained by combining the Eqs. (4.58) and (4.59) with direct but tedious
calculations, which is omitted here. For details of the calculations, please refer to
the proof of Theorem 2 in [46].

The assumption used in this analysis is quite mild, as the loss functions in QNNs
are generally Lipschitz continuous and can be bounded above by a constant C. This
property has been broadly employed to understand the capability of QNNs. The
results obtained have three key implications. First, the generalization bound exhibits
an exponential dependence on the term k and a sublinear dependence on the number
of trainable quantum gates Ngt .. This observation reflects the quantum version of
Occam’s razor [50], where the parsimony of the output hypothesis implies greater
predictive power. Second, increasing the number of training examples n improves
the generalization bound. This suggests that incorporating more training data is
essential for optimizing complex quantum circuits. Lastly, the sublinear dependence

4.4 Theoretical Foundations of Quantum Neural Networks 145

on Ngt . may limit the ability to accurately assess the generalization performance
of overparameterized QNNs [51]. Together, these implications provide valuable
insights for designing more powerful QNNs.

4.4.2 Trainability of Quantum Neural Networks

The parameters in QNNs are often trained using gradient-based optimizers. As
such, the magnitude of the gradient plays a crucial role in the trainability of QNNs.
Specifically, large gradients are desirable, as they allow the loss function to decrease
rapidly and consistently. However, this favorable property does not hold across a
wide range of problem settings. In contrast, training QNNs usually encounters the
barren plateau (BP) problem [52], i.e., the variance of the gradient, on average,
decreases exponentially as the number of qubits increases. In this section, we first
introduce an example demonstrating how quantum circuits that form unitary 2-
designs [53] lead to BP and then discuss several techniques to avoid or mitigate
this issue.

We begin by introducing some basic notations. For convenience, let L denote
the number of parameters in the QNN V (θ).. Consider the loss function defined as
the measurement outcome of an N -qubit quantum state ρ . after applying the QNN
operation, i.e.,

.f (θ) = Tr OV (θ)ρV (θ)† . (4.60)

Then, the mathematical formulation of the BP phenomenon is given by

.EP
∂f

∂θk

= 0, VarP
∂f

∂θk

= exp(−αN) · β, (4.61)

where P. represents the probability distribution of the quantum circuit and α, β > 0.

are constants. In the case where the circuit V (θ). has a random structure with a
polynomial number of single-qubit rotations and CNOT or CZ gates in N , a uniform
distribution over the parameter space can approximate a 2-design for the unitary
V (θ). [54, 55]. Moreover, a unitary sampled from an exact 2-design exhibits the
following statistical properties.

Fact 4.3 ([56]) Let {Wy}y∈Y ⊂ U(d). form a unitary 2-design, and let A,B,C,D :
Hw → Hw . be arbitrary linear operator. Then

.
1

|Y |
y∈Y

Tr[WyAW †
y B] = Tr[A] Tr[B]

d
, . (4.62)

146 4 Quantum Neural Networks

1

|Y |
y∈Y

Tr[WyAW †
y B] Tr[WyCW †

y D]

= 1

d2 − 1
(Tr[AC] Tr[BD] + Tr[A] Tr[B] Tr[C] Tr[D])

−
1

d(d2 − 1)
(Tr[A] Tr[C] Tr[BD] + Tr[AC] Tr[B] Tr[D]) , . (4.63)

1

|Y |
y∈Y

Tr[WyAW †
y BWyCW †

y D]

= 1

d2 − 1
(Tr[A] Tr[C] Tr[BD] + Tr[AC] Tr[B] Tr[D])

− 1

d(d2 − 1)
(Tr[AC] Tr[BD] + Tr[A] Tr[B] Tr[C] Tr[D]) . (4.64)

Fact 4.3 can be derived from Facts B.1 and B.2 in Appendix B, which provides
a more detailed discussion of unitary designs, potentially of independent interest.
By applying Fact 4.3, it can be shown that QNNs with quantum circuits forming
2-designs exhibit barren plateau loss landscapes.

Theorem 4.7 (Adapted from [52]) Consider the loss function given in Eq. (4.60),
where the QNN V (θ) = L

j=1 Vj (θ j)Wj . with fixed gate Wj . and variational
gate Vj (θ j) = exp(−iθ jHj/2).. Suppose all hermitian matrices {Hj }. are trace-
less. For an integer k ∈ [1, L]., denote U− = k−1

j=1 Vj (θ j)Wj . and U+ =
L
j=k+1 Vj (θ j)Wj .. Then, if both U− . and U+ . form 2-designs, there is

.E
∂f

∂θk

= 0, Var
∂f

∂θk

≈ 1

23N+1
Tr O2 Tr ρ2 Tr H 2

j . (4.65)

Proof (Proof of Theorem 4.7)
By using notations U− . and U+ ., the function f (θ). in Eq. (4.60) can be expressed

as

.f = Tr OVρV †

= Tr OU−VkWkU+ρU
†
+W

†
k V

†
k U

†
−

= Tr U
†
−OU−VkWkU+ρU

†
+W

†
k V

†
k

= Tr O exp(−iθkHk/2)ρ exp(iθkHk/2) ,

4.4 Theoretical Foundations of Quantum Neural Networks 147

where O := U
†
−OU− . and ρ := WkU+ρU

†
+W

†
k .. Thus, the gradient could be

calculated as

.
∂f

∂θk

= i

2
Tr O Vkρ V

†
k ,Hk .

The expectation of the gradient is zero since

. E
U+,U−

∂f

∂θk

= E i

2
Tr O Vkρ V

†
k ,Hk

= E
U+,U−

i

2
Tr U

†
−OU− Vkρ V

†
k ,Hk

= E
U+

i

2N+1
Tr [O] Tr Vkρ V

†
k ,Hk . (4.66)

= 0, (4.67)

where Eq. (4.66) follows from Eqs. (4.62) and (4.67) is derived by noticing
Tr[[A,B]] = Tr[AB − BA] = 0.. Therefore, the variance of the gradient equals to
the expectation of its square, i.e.,

. Var
U+,U−

∂f

∂θk

= E
U+,U−

∂f

∂θk

2

= − 1

4
EU+,U− Tr U

†
−OU− Vkρ V

†
k ,Hk

2

= − 1

4× (22N − 1)
E
U+

Tr O2 Tr Vkρ V
†
k ,Hk

2

+ 1

2N+2 22N − 1
E
U+

Tr [O]2 Tr Vkρ V
†
k ,Hk

2
. (4.68)

= − 1

4× 22N − 1
Tr O2

E
U+

Tr Vkρ V †
k ,Hk

2
, (4.69)

where Eq. (4.68) follows from Eqs. (4.63) and (4.69) follows from Tr[O] = 0..
Further, it can be shown that

. E
U+

Tr Vkρ V
†
k ,Hk

2

= 2 E
U+

Tr Vkρ V
†
k Hk

2 − 2 E
U+

Tr Vkρ V
†
k

2
(Hk)

2

= 2 E
U+

Tr VkWkU+ρU
†
+W

†
k V

†
k Hk

2

148 4 Quantum Neural Networks

−2 E
U+

Tr VkWkU+ρU
†
+W

†
k V †

k
2
(Hk)

2

= 2

22N − 1
Tr[ρ]2 Tr[H 2

k] + Tr ρ2 Tr[Hk]2

− 2

2N(22N − 1)
Tr ρ2 Tr H 2

k + Tr[ρ]2 Tr[Hk]2

−
2

2N
Tr H 2

k Tr ρ2
. (4.70)

≈ −
2N+1

22N − 1
Tr H 2

k Tr ρ2 , (4.71)

where Eq. (4.70) follows from Eqs. (4.62) and (4.64). Equation (4.71) is derived by
ignoring minor terms and using Tr[Hk] = 0.. Combining Eqs. (4.69) and (4.71), it
can be shown that

. Var
U+,U−

∂f

∂θk

≈ 2N

2× 22N − 1 2 Tr O2 Tr H 2
k Tr ρ2

≈ 1

23N+1 Tr O2 Tr ρ2 Tr H 2
k .

Thus, Theorem 4.7 is proved.

Remark
The influence of barren plateau can be categorized into three folds.

1. Training efficiency. Exponentially small gradients imply that the training
of QNNs with gradient-based optimizers may require exponential numbers
of iterations to converge.

2. Optimization effectiveness. The calculation of the gradient via the
parameter-shift rule would introduce unbiased statistical noise due to finite
shot numbers. A small gradient could be vulnerable to these measurement
noises, which may induce additional barriers in optimizations.

3. Quantum advantage. QNNs are expected to exhibit quantum advantages
by employing intermediate to large numbers of qubits. However, the barren
plateau phenomenon may induce exponential training steps, which can
offset potential quantum advantages.

Since the barren plateau could seriously affect the trainability of scaled QNNs
and raise concerns about the utility of QNNs for achieving quantum advantages,

4.5 Code Demonstration 149

researchers have been focused on developing techniques to address this problem.
Existing efforts include specific architecture design [56–58], parameter initialization
schemes [59, 60], and advanced training protocols [61, 62]. Here, we briefly
introduce two related results with theoretical guarantees.

Fact 4.4 (Shallow Hardware-Efficient Circuits are BP-Free, Informal Version
Adapted from [56]) Suppose the observable has a local form in the Pauli basis
decomposition. For QNNs employing N -qubit shallow hardware-efficient circuits
with logarithmic depths, the variance of the gradient has the lower bound:

.Var
∂f

∂θk

≥ 1

poly(N)
. (4.72)

Fact 4.5 (Gaussian Initializations Help to Escape the BP Region, Informal
Version Adapted from [60]) Suppose the observable is the tensor product of
Pauli matrices σi = σi1 ⊗ · · · ⊗ σiN ., where the number of nonidentity matrices
in {σi1, · · · , σiN }. is S. For QNNs employing N -qubit shallow hardware-efficient
circuits with the depth L, the gradient norm has the lower bound:

.E
θ

θf
2 ≥ L

SS(L+ 2)S+1 Tr σjρin
2
, (4.73)

where S is the number of nonzero elements i n i ., and the index j = (j1, j2, · · · , jN).

such that jm = 0,∀im = 0. and jm = 3,∀im 0.. The expectation is taken with the

Gaussian distribution N 0, 1
4S(L+2)

. for the parameters θ ..

4.5 Code Demonstration

This section provides hands-on demonstrations of QNNs for both discriminative and
generative tasks, which illustrate practical implementations of quantum classifiers
and quantum patch GAN. Each subsection corresponds to a specific application,
offering a step-by-step explanation and code walkthrough.

4.5.1 Quantum Classifier

We now demonstrate how to utilize QNN to solve discriminative tasks, specifically
a binary classification problem based on the Wine dataset, which is widely used in
machine learning benchmarks and classification tasks. The major steps are outlined
below:

150 4 Quantum Neural Networks

Step 1 Load and preprocess the dataset.
Step 2 Implement a quantum read-in protocol to encode classical data into quantum

states.
Step 3 Construct a parameterized quantum circuit model to process the input

quantum states.
Step 4 Train and test the QNN to evaluate its performance.

We first import all the necessary libraries:

1 import sklearn
2 import sklearn.datasets
3 import pennylane as qml
4 from pennylane import numpy as np
5 from pennylane. optimize import AdamOptimizer
6 import matplotlib.pyplot as plt

Step 1: Dataset Preparation The Wine dataset is prepared for the classification
task. For simplicity, the focus is on the first two classes of the Wine dataset.
The dataset consists of 13 attributes per sample, each with a distinct range.
The normalization is applied to rescale these attributes to the interval [0, π]..
Furthermore, the labels are remapped from {0, 1}. to {−1, 1}. to align with the output
range of the quantum circuit model. The dataset is split into training and test sets to
fairly evaluate the classifier.

1 def load_wine(split_ratio = 0.5):
2 feat, label = sklearn.datasets.load_wine(return_X_y=True)
3

4 # normalization
5 feat = np.pi * (feat - np.min(feat, axis=0, keepdims=True)

) / np.ptp(feat, axis=0, keepdims=True)
6

7 index_c0 = label == 0
8 index_c1 = label == 1
9

10 label = label * 2 - 1
11

12 n_c0 = sum(index_c0)
13 n_c1 = sum(index_c1)
14

15 X_train = np.concatenate((feat[index_c0][:int(split_ratio*
n_c0)], feat[index_c1][:int(split_ratio*n_c1)]), axis
=0)

16 y_train = np.concatenate((label[index_c0][:int(split_ratio
*n_c0)], label[index_c1][:int(split_ratio*n_c1)]),
axis=0)

17 X_test = np.concatenate((feat[index_c0][int(split_ratio*
n_c0):], feat[index_c1][int(split_ratio*n_c1):]), axis
=0)

18 y_test = np.concatenate((label[index_c0][int(split_ratio*
n_c0):], label[index_c1][int(split_ratio*n_c1):]),
axis=0)

4.5 Code Demonstration 151

19

20 return X_train, y_train, X_test, y_test
21 X_train, y_train, X_test , y_test = load_wine()

To better understand the dataset, t-SNE is employed to visualize its distribution.
As shown in Fig. 4.12, each data point is projected into a 2D space for visualization,
with distinct colors representing different classes.

1 def visualize_dataset(X, y):
2 from sklearn.manifold import TSNE
3

4 tsne = TSNE(n_components=2, random_state=42, perplexity
=30)

5

6 wine_tsne = tsne.fit_transform(X)
7 for label in np.unique(y):
8 indices = y == label
9 plt.scatter(wine_tsne[indices, 0], wine_tsne[indices,

1], edgecolor=’black’, cmap=’coolwarm’, s=20,
label=f)

10

11 # Add labels and legend
12 plt.title(

classes)")
13 plt.xlabel()
14 plt.ylabel()
15 plt.legend()
16

17 plt.tight_layout()
18 plt.show()
19 visualize_dataset(X_train, y_train)

Step 2: Data Encoding To encode the 13 attributes of the Wine dataset into a
quantum system, angle encoding introduced in Sect. 2.3.1.3 is used, followed by a
layer of CNOT gates acting on neighboring qubits to introduce entanglement.

1 def data_encoding(x):
2 n_qubit = len(x)
3 qml.AngleEmbedding(features =x , wires = range(n_qubit) ,

rotation ="X")
4 for i in range(n_qubit):
5 if i +1 < n_qubit:
6 qml.CNOT(wires=[i, i+1])

Step 3: Building Quantum Classifier With the data encoding in place, a quantum
binary classifier is constructed. The circuit model is composed of multiple layers,
where each layer includes parameterized single-qubit rotation gates with trainable
angles, followed by a block of nonparametric CNOT gates to introduce entangle-
ment among qubits. To read-out the category information of each input sample from
the prepared quantum state, the expectation value of the Pauli-Z operator on the first
qubit is calculated.

152 4 Quantum Neural Networks

Fig. 4.12 T-SNE visualization of Wine dataset of the first two classes

1 def classifier(param, x=None):
2 data_encoding(x)
3 n_layer, n_qubit = param.shape[0], param.shape[1]
4 for i in range(n_layer):
5 for j in range(n_qubit):
6 qml.Rot(param[i, j, 0], param[i, j, 1], param[i, j

, 2], wires=j)
7 for j in range(n_qubit):
8 if j+1 < n_qubit:
9 qml.CNOT(wires=[j, j+1])

10 return qml.expval(qml.PauliZ(0))
11

12 n_qubit = X_train.shape[1]
13 dev = qml.device(’default.qubit’, wires=n_qubit)
14 circuit = qml.QNode(classifier , dev)

The whole quantum circuit of two layers is visualized by drawing the diagram,
as shown in Fig. 4.13.

1 fig, ax = qml.draw_mpl(circuit)(np.pi * np.random.randn(2,
n_qubit, 3), X_train[0])

2 fig.show()

Step 4: Training and Evaluation of Quantum Classifier With the data and circuit
model ready, we now move to the optimization of the quantum classifier. The mean
squared error (MSE) is used as the loss function. The goal is to minimize the
difference between the predicted and actual labels over the training set.

4.5 Code Demonstration 153

Fig. 4.13 The circuit diagram of the quantum classifier

1 def mse_loss(predict, label):
2 return np.mean((predict - label)**2)
3

4 def cost(param, circuit, X, y):
5 exp = []
6 for i in range(len(X)):
7 pred = circuit(param, x=X[i])
8 exp.append (pred)
9 return mse_loss(np.array(exp), y)

To evaluate the performance of the quantum classifier, classification accuracy is
exploited as the metric. Specifically, if the sign of the read-out result matches the
corresponding label, the prediction is considered correct; otherwise, it is deemed
incorrect. The accuracy is then calculated as the proportion of correctly classified
samples out of the total.

1 def accuracy(predicts , labels):
2 assert len(predicts) == len(labels)
3 return np.sum((np.sign(predicts)*labels+1)/2)/len(predicts

)

154 4 Quantum Neural Networks

The Adam optimizer is utilized to minimize the loss function. To ensure efficient
computation, the dataset is divided into smaller batches for each training iteration.
At the end of each epoch, both the training and test losses, along with the
classification accuracy, are recorded to track the model’s performance.

1 lr = 0.01
2 opt = AdamOptimizer(lr)
3 batch_size = 4
4

5 n_epoch = 50
6 cost_train , cost_test, acc_train, acc_test = [], [], [], []
7 for i in range(n_epoch):
8 index = np.random.permutation(len(X_train))
9 feat_train , label_train = X_train[index], y_train[index]

10 for j in range(0, len(X_train), batch_size):
11 feat_train_batch = feat_train[j*batch_size:(j+1)*

batch_size]
12 label_train_batch = label_train[j*batch_size:(j+1)*

batch_size]
13 param = opt.step(lambda v: cost(v, circuit,

feat_train_batch , label_train_batch), param)
14

15 # compute cost
16 cost_train.append(cost(param, circuit, X_train, y_train))
17 cost_test.append(cost(param, circuit, X_test, y_test))
18

19 # compute accuracy
20 pred_train = []
21 for j in range(len(X_train)):
22 pred_train.append(circuit(param, x=X_train[j]))
23 acc_train. append(accuracy(np.array(pred_train), y_train))
24

25 pred_test = []
26 for j in range(len(X_test)):
27 pred_test.append(circuit(param, x=X_test[j]))
28 acc_test.append(accuracy(np.array(pred_test), y_test))

After training the QNN, the training and test cost, as well as the accuracy over
epochs, can be visualized using the following code. As demonstrated in Fig. 4.14,
this QNN achieves a test accuracy exceeding 80%..

1 plt.figure(figsize=(12, 6))
2

3 plt.subplot(1, 2, 1)
4 epochs = np.arange(n_epoch) + 1
5 plt.plot(epochs, cost_train , label= , marker=’o’

)
6 plt.plot(epochs, cost_test, label= , marker=’o’)
7 plt.title()
8 plt.xlabel(’Epochs’)
9 plt.ylabel(’Cost’)

10 plt.legend()
11 plt.grid()

4.5 Code Demonstration 155

Fig. 4.14 The training curve of the quantum classifier

12

13 # Plot training and test accuracy
14 plt.subplot(1, 2, 2)
15 plt.plot(epochs, acc_train, label= , marker=

’o’)
16 plt.plot(epochs, acc_test , label= , marker=’o’)
17 plt.title()
18 plt.xlabel(’Epochs’)
19 plt.ylabel(’Accuracy’)
20 plt.legend()
21 plt.grid()
22

23 plt.tight_layout()
24 plt.show()

To better understand the performance of the quantum classifier in comparison to
a classical counterpart, an MLP for the same classification task is also implemented.

1 class MLP(nn.Module):
2 def __init__(self):
3 super(MLP, self).__init__()
4 self.fc1 = nn.Linear(13, 10) # 13 input features to

10 neurons
5 self.fc2 = nn.Linear(10, 2) # 10 neurons to 2 output

classes
6

7 def forward(self, x):
8 x = torch.relu(self.fc1(x))
9 x = self.fc2(x)

10 return x

In this implementation, the number of hidden neurons in the MLP is set to 10,
resulting in approximately 150 trainable parameters, which is comparable to the

156 4 Quantum Neural Networks

Fig. 4.15 The training curve of the classical MLP

number of parameters in the QNN. All other hyperparameters, such as the optimizer
and learning rate, remain the same to ensure a fair comparison. The training curve
for the MLP is shown in Fig. 4.15. The MLP converges quickly, achieving 100%.

training accuracy and over 90%. test accuracy.
While the MLP currently demonstrates superior accuracy, the QNN still provides

a promising alternative. It is important to note that the performance of the QNN
could potentially be further enhanced by employing more advanced read-in proto-
cols, as discussed in Sect. 2.3.1, which could enable more efficient and expressive
representations of the input data. Additionally, optimizing the circuit design, such
as adjusting the arrangement of layers or introducing more complex parameterized
gates to increase the model’s capacity, as highlighted in Sect. 4.6, could further
improve the QNN’s ability to capture intricate patterns in the dataset.

4.5.2 Quantum Patch GAN

We next demonstrate how to implement a quantum patch GAN introduced in
Sect. 4.3.3 for the generation of handwritten digits of five. To evaluate the perfor-
mance of the generative model, the Fréchet Distance (FD), a widely used metric
for quantifying the difference between two distributions, is employed. The metric is
formally defined as

.FD = μr − μg
2 + Tr r + g − 2 r g)

1
2), (4.74)

where μr . and μg . are the mean feature vectors of real and generated images and
r . and g . are the covariance matrices of the feature vectors of real and generated

images. A lower FD value indicates that the generated images closely resemble

4.5 Code Demonstration 157

the real ones, while a higher FD suggests a greater discrepancy between the
distributions. This metric provides an effective way to quantitatively evaluate the
quality of the generated samples. In addition to FD, other commonly used metrics
for evaluating the quality of generated images include inception score and kernel
inception distance.

The whole pipeline includes the following steps:

Step 1 Load and preprocess the dataset.
Step 2 Build the classical discriminator.
Step 3 Build the quantum generator.
Step 4 Train the quantum patch GAN.
Step 5 Visualize the generated images.

We begin by importing the required libraries:

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 from torch.utils.data import Dataset, DataLoader
5

6 import numpy as np
7 import matplotlib.pyplot as plt
8 import pennylane as qml
9 import math

Step 1: Dataset Preparation We will use the Optical Recognition of Handwritten
Digits dataset (optdigits), where each data point represents an 8 × 8. grayscale
image. The following code defines a custom dataset class to load and process the
data.

1 class OptdigitsData(Dataset):
2 def __init__(self, data_path, label):
3 """
4 Dataset class for Optical Recognition of Handwritten

Digits.
5 """
6 super().__init__()
7

8 self.data = []
9 with open(data_path , ’r’) as f:

10 for line in f.readlines():
11 if int(line.strip().split(’,’)[-1]) == label:
12 # Normalize image pixel values from [0,16)

to [0, 1)
13 image = [int(pixel)/16 for pixel in line.

strip().split(’,’)[:-1]]
14 image = np.array(image, dtype=np.float32).

reshape(8, 8)
15 self.data.append(image)
16 self.label = label
17

158 4 Quantum Neural Networks

Fig. 4.16 Samples in the dataset optdigits

18 def __len__(self):
19 return len(self.data)
20

21 def __getitem__(self, index):
22 return torch.from_numpy(self.data [index]), self.label

After defining the dataset, we can visualize a few examples as shown in Fig. 4.16
to better understand the structure of the dataset.

1 def visualize_dataset(data_path):
2 """
3 Visualizes the dataset by displaying examples for each

digit label.
4 """
5 plt.figure(figsize=(10, 5))
6 for i in range(10):
7 plt.subplot(1, 10, i + 1)
8 data = OptdigitsData(data_path , label=i)
9 plt.imshow(data[0][0], cmap=’gray’)

10 plt.title(f)
11 plt.axis(’off’)
12 plt. tight_layout()
13 plt.show()
14

15 visualize_dataset(’code/chapter5_qnn/data/optdigits.tra’)

Step 2: Building the Classical Discriminator The discriminator is a classical
neural network responsible for distinguishing real images from fake ones. It consists
of fully connected layers with ReLU activations. The final output is passed through
a Sigmoid function, which scales the output to the range (0, 1)., serving as a
probabilistic indicator of whether the input image is real or fake.

1 class ClassicalDiscriminator(nn.Module):
2 """
3 A classical discriminator for classifying real and fake

images.
4 """
5 def __init__(self, input_shape):
6 super().__init__()
7 self.model = nn.Sequential(
8 nn.Flatten(),
9 nn.Linear(int(np.prod(input_shape)), 256),

10 nn.ReLU(),
11 nn.Dropout(),

4.5 Code Demonstration 159

12 nn.Linear(256, 128),
13 nn.ReLU(),
14 nn.Dropout(),
15 nn.Linear(128, 1),
16 nn.Sigmoid()
17)
18

19 def forward(self, img):
20 return self.model(img)

Step 3: Defining the Quantum Patch Generator The generator in the quantum
patch GAN consists of parameterized quantum circuits (PQC). These circuits are
responsible for generating patches of the target image. Specifically, the PQC follows
the layout in Fig. 4.7, which applies layers of single-qubit rotation gates and
entangling gates to the latent state.

1 def PQC(params):
2 n_layer, n_qubit = params.shape[0], params.shape[1]
3 for i in range(n_layer):
4 for j in range(n_qubit):
5 qml.Rot(params[i, j, 0], params[i, j, 1], params[i

, j, 2], wires=j)
6 # Control Z gates
7 for j in range(n_qubit - 1):
8 qml.CZ(wires=[j, j + 1])

Then, we implement the quantum generator for each patch of an image, i.e., sub-
generators. The sub-generator transforms the latent variable z. into a latent quantum
state |z ., applies a PQC, performs partial measurements on the ancillary system
A., and outputs the probabilities of each computational basis state in the remaining
system, which correspond to the generated pixel values.

1 def QuantumGenerator(params, z=None, n_qubit_a=1):
2 n_qubit = params.shape[1]
3

4 # angle encoding of latent state z
5 for i in range(n_qubit):
6 qml.RY(z[i], wires=i)
7

8 PQC(params)
9

10 # partial measurement on the ancillary qubits
11 qml .measure(wires=n_qubit -1)
12 return qml.probs(wires=range(n_qubit-n_qubit_a))

Using the sub-generators, the quantum patch generator combines the output
patches from multiple sub-generators to construct the complete image.

160 4 Quantum Neural Networks

1 class PatchQuantumGenerator(nn.Module):
2 """
3 Combines patches generated by quantum circuits into full

images.
4 """
5 def __init__(self, qnode_generator , n_generator , n_qubit,

n_qubit_a , n_layer):
6 super().__init__()
7

8 self.params_generator = nn.ParameterList([
9 nn.Parameter(torch.rand((n_layer, n_qubit, 3)),

requires_grad=True) for _ in range(n_generator
)

10])
11 self.qnode_generator = qnode_generator
12 self.n_qubit_a = n_qubit_a
13

14 def forward(self, zs):
15 images = []
16 for z in zs:
17 patches = []
18 for params in self.params_generator:
19 patch = self.qnode_generator(params, z=z,

n_qubit_a=self.n_qubit_a).float()
20

21 # post-processing: min-max scaling
22 patch = (patch - patch.min()) / (patch.max() -

patch.min() + 1e-8)
23

24 patches.append(patch.unsqueeze(0))
25 patches = torch.cat(patches, dim=0)
26 images.append(patches.flatten().unsqueeze(0))
27 return torch.cat(images, dim=0)

Step 4: Training the Quantum Patch GAN With the dataset and models ready,
we initialize the quantum generator, classical discriminator, and their optimizers.

1 # Hyperparameters
2 torch.manual_seed(0)
3 image_width = 8
4 image_height = 8
5 n_generator = 4
6 n_qubit_d = int(np.log2((image_width * image_height) //

n_generator))
7 n_qubit_a = 1
8 n_qubit = n_qubit_d + n_qubit_a
9 n_layer = 6

10

11 # Quantum device
12 dev = qml.device("lightning.qubit", wires=n_qubit)
13 qnode_generator = qml.QNode(QuantumGenerator , dev)
14

4.5 Code Demonstration 161

15 # Initialize generator and discriminator
16 discriminator = ClassicalDiscriminator([image_height ,

image_width])
17 discriminator.train()
18 generator = PatchQuantumGenerator(qnode_generator , n_generator

, n_qubit, n_qubit_a , n_layer)
19 generator.train()
20

21 # Optimizers
22 lr_generator = 0.3
23 lr_discriminator = 1e-2
24 opt_discriminator = optim.SGD(discriminator.parameters(), lr=

lr_discriminator)
25 opt_generator = optim.SGD(generator.parameters(), lr=

lr_generator)
26

27 # Construct dataset and dataloader
28 batch_size = 4
29 dataset = OptdigitsData(’code/chapter5_qnn/data/optdigits.tra’

, label=5)
30 dataloader = DataLoader(dataset, batch_size=batch_size ,

shuffle=True, drop_last=True)
31

32 # Loss function
33 loss_fn = nn.BCELoss()
34 labels_real = torch.ones(batch_size , dtype=torch.float)
35 labels_fake = torch.zeros(batch_size , dtype=torch.float)
36

37 # Testing setup
38 n_test = 10
39 z_test = torch.rand(n_test, n_qubit) * math.pi

The GAN training process involves alternating updates for the discriminator and
the generator. The discriminator is trained to distinguish between real and fake
images, while the generator learns to create images that can successfully deceive
the discriminator. To track the generator’s progress during training, the generated
images are saved at the end of each epoch.

1 n_epoch = 10
2 record = {}
3 for i in range(n_epoch):
4 for data, _ in dataloader:
5

6 zs = torch.rand(batch_size , n_qubit) * math.pi
7 image_fake = generator(zs)
8

9 # Training the discriminator
10 discriminator.zero_grad()
11 pred_fake = discriminator(image_fake.detach())
12 pred_real = discriminator(data)
13

162 4 Quantum Neural Networks

14 loss_discriminator = loss_fn(pred_fake.squeeze(),
labels_fake) + loss_fn(pred_real.squeeze(),
labels_real)

15 loss_discriminator.backward()
16 opt_discriminator.step()
17

18 # Training the generator
19 generator.zero_grad()
20 pred_fake = discriminator(image_fake)
21 loss_generator = loss_fn(pred_fake.squeeze(),

labels_real)
22 loss_generator.backward()
23 opt_generator.step()
24

25 print(f loss={
loss={

)
26

27 # test
28 generator.eval()
29 image_generated = generator(z_test).view(n_test,

image_height , image_width).detach()
30

31 record[str(i)] = {
32 ’loss_discriminator’: loss_discriminator.item(),
33 ’loss_generator’: loss_generator.item(),
34 ’image_generated’: image_generated.numpy().tolist()
35 }
36 generator.train()

Step 5: Visualizing the Generated Images After training, the images generated
by the quantum generator are visualized in Fig. 4.17 to evaluate its performance.
These visualizations allow us to see how well the model has learned to produce
realistic image patches.

1 n_epochs_to_visualize = len(record) // 2
2 n_images_per_epoch = 10
3

4 fig, axes = plt.subplots(n_epochs_to_visualize ,
n_images_per_epoch , figsize=(n_images_per_epoch ,
n_epochs_to_visualize))

5

6 # Iterate through the recorded epochs and visualize generated
images

7 for epoch_idx , (epoch, data) in enumerate(record.items()):
8 if epoch_idx % 2 == 1:
9 continue

10 images = np.array(data[’image_generated’])
11

12 for img_idx in range(n_images_per_epoch):
13 ax = axes[epoch_idx // 2, img_idx]
14 ax.imshow(images[img_idx], cmap=’gray’)

4.5 Code Demonstration 163

Fig. 4.17 The images generated by quantum patch GAN during training

15 ax.axis(’off’)
16

17 # Add epoch information to the title of each row
18 if img_idx == 0:
19 ax.set_title(f , fontsize=10)
20

21 plt.tight_layout()
22 plt.show()

To benchmark the performance of the quantum patch GAN, a classical patch
GAN is implemented, where both the generator and discriminator are entirely
classical. Specifically, each patch is generated using an MLP with independent
parameters, and the final image is obtained by assembling all generated patches.
This ensures a fair comparison between quantum and classical generative models.

1 class ClassicalPatchGenerator(nn.Module):
2 def __init__(self, latent_dim , patch_size , n_patches):
3 super().__init__()
4 self.latent_dim = latent_dim
5 self.patch_size = patch_size
6 self.n_patches = n_patches
7

8 # MLP to generate each patch
9 self.patch_generators = nn.ModuleList([nn.Sequential(

10 nn.Linear(latent_dim , 5), # Input layer
11 nn.ReLU(),
12 nn.Linear(5, patch_size * patch_size), # Output

layer (patch)
13 nn.Sigmoid() # Output in range [0, 1]
14) for _ in range(n_patches)])
15

16 def forward(self, zs):
17 images = []

164 4 Quantum Neural Networks

Fig. 4.18 FD values achieved by quantum patch GAN (“QuantumGAN”) and classical patch
GAN (“MLP-GAN”)

18 for z in zs:
19 patches = []
20 for i in range(self.n_patches):
21 patch = self.patch_generators[i](z) #

Generate a patch
22 patch = patch.view(self.patch_size , self.

patch_size) # Reshape to patch size
23 patches.append(patch.unsqueeze(0)) # Add

batch dimension
24 patches = torch.cat(patches, dim=0) # Combine

patches
25 images.append(patches .flatten().unsqueeze(0)) #

Flatten and add batch dimension
26 return torch.cat(images, dim=0) # Combine all images

This choice of MLP architecture ensures that the number of trainable parameters
in the classical GAN is comparable to that of the quantum GAN, making the
comparison meaningful. With all other experimental settings unchanged, the same
generation task is conducted using this MLP-based GAN (MLP-GAN). The FD
values achieved by both models are presented in Fig. 4.18. The results show that
the quantum GAN exhibits competitive performance compared to its classical
counterpart, demonstrating the potential of quantum-enhanced generative models.

4.6 Bibliographic Remarks

Quantum neural networks (QNNs) are a major focus in quantum machine learning.
They show promise for both classifying data (discriminative tasks) and creating
new data (generative tasks). For classification, QNNs use quantum systems that can

4.6 Bibliographic Remarks 165

capture complicated patterns in data by working in high-dimensional spaces. For
generating data, QNNs use flexible quantum circuits to create patterns that may be
too difficult for classical models to handle. Although these approaches use similar
learning tricks, each brings its own set of challenges in how the models are built,
tested, and used in practice. In the remainder of this section, we briefly review recent
advances in QNNs. Interested readers can refer to Ablayev et al. [63], Li and Deng
[64], Massoli et al. [65], Li et al. [66], Tian et al. [67], and Wang and Liu [34] for a
more comprehensive review.

4.6.1 Discriminative Learning with QNN

QNNs for classifying data have quickly become one of the busiest research areas
in quantum machine learning. They may help find better ways to represent features
and process data faster. Quantum learning can handle tricky classification problems,
thanks to quantum parallelism and high-dimensional systems, which might go
beyond what classical neural networks can do. QNNs are especially promising for
data with built-in quantum features or where quantum entanglement helps solve the
problem [8].

4.6.1.1 Model Designs

In the realm of quantum discriminative models, researchers have developed various
quantum neural architectures. In general, variational quantum classifiers [68, 69]
could employ parameterized quantum circuits for classification tasks. Subsequently,
quantum convolutional neural networks [36] are designed for processing structured
data. Hybrid quantum-classical architectures [70] are proposed to combine quantum
layers with classical neural networks. Other notable works include the development
of quantum versions of popular classical architectures like recurrent neural net-
works [71] and attention mechanisms [72]. Finally, Pérez-Salinas et al. [73] and Fan
and Situ [74] have explored quantum re-uploading strategies for encoding classical
data, achieving QML models with more expressive feature maps.

Besides designing these networks by hand, researchers are looking for ways to
make QNNs simpler and faster. For example, quantum architecture search methods
have been developed by Du et al. [75], Zhang et al. [76], Lu et al. [77], Linghu
et al. [78] to automatically discover optimal quantum circuit designs with reduced
gate complexity. Sim et al. [79] and Wang et al. [80] introduced quantum pruning
techniques that systematically identify and remove redundant quantum gates while
preserving the performance. In the realm of knowledge distillation, researchers
have demonstrated how to transfer knowledge from the teacher model given as
quantum [81] or classical [82] neural networks to more compact quantum circuit
architectures that are more robust against quantum noises. These optimization

166 4 Quantum Neural Networks

approaches have collectively contributed to improving the practical performance
of QNNs on real quantum devices, particularly in the NISQ era.

4.6.1.2 Theoretical Foundations

To find out where QNNs can really help, it is important to study how well they can
learn. This usually comes down to three main ideas: flexibility (how well they model
complex patterns), how easily a model can learn from data (trainability), and how
well they work on new data (generalization). Researchers have dug deeper into each
of these topics, which are described below.

Expressivity The expressivity of QNNs refers to their ability to represent complex
functions or quantum states efficiently. Universal approximation theorems (UAT)
incorporating data re-uploading strategies have been established by Pérez-Salinas
et al. [73] firstly with subsequent works [83, 84] in various problem settings.
Beyond the UAT, Sim et al. [85], Nakaji and Yamamoto [86], and Holmes et al.
[87] analyze the expressivity of QNNs by investigating how well the parameterized
quantum circuits used in QNNs can approximate the Haar distribution, a critical
measure of expressive capacity in quantum systems. Moreover, Yu et al. [88] analyze
the non-asymptotic error bounds of variational quantum circuits for approximating
multivariate polynomials and smooth functions.

Trainability Trainability means how easily QNNs can learn from data. This
depends on two things: how strong the learning signals (“slopes” or gradients) are
and how quickly the model gets to a good solution.

For the first research line, McClean et al. [52] first found the phenomenon of
vanishing gradients, dubbed as the barren plateau. That is, as quantum systems get
bigger, the “slopes” used for learning almost disappear. This makes it very hard
for QNNs to learn. Since then, a series of studies explored the cause of barren
plateau, including global measurements [56], highly entanglement [89], quantum
tensor networks [90], and quantum system noise [91].

To tackle this, researchers have tried smarter ways to pick starting parame-
ters [59, 60], design new cost functions [56], and set up proper circuits [57].
Quantum-specific regularization techniques have also been developed to mitigate
these effects [92].

Another research line looks at how fast QNNs can reach good solutions. Studies
show that making QNNs large enough (overparameterized) helps them find good
answers quickly. Kiani et al. [93] and Wiersema et al. [94] experimentally found that
overparameterized QNNs embrace a benign landscape and permit fast convergence
toward near optimal local minima. Later, theory caught up and explained why bigger
QNNs learn so fast—even with complicated math behind the scenes. Specifically,
Larocca et al. [51] and Anschuetz [95] utilized tools from dynamical Lie algebra and
random matrix theory, respectively, to quantify the critical points in the optimization
landscape of overparameterized QNNs. Moreover, You et al. [96] extended the
classical convergence results of Xu et al. [97] to the quantum domain, proving that

4.6 Bibliographic Remarks 167

overparameterized QNNs achieve an exponential convergence rate. Additionally,
Liu et al. [98] and Wang et al. [99] introduced the concept of the quantum neural
tangent kernel (QNTK) to further demonstrate the exponential convergence rate
of overparameterized QNNs. Besides the overparameterization theory, Du et al.
[100, 101], Qi et al. [102], and Qian et al. [103] investigated the required conditions
to ensure the convergence of QNNs toward local minima.

Generalization Another key question is do QNNs work well on new data? In
particular, Abbas et al. [104] compared the generalization power of QNNs and
classical learning models based on an information geometry metric. Caro et al. [105]
and Du et al. [46] established generalization error bounds using covering numbers,
revealing the impact of circuit structural factors—such as the number of gates and
types of observables—on generalization ability. Similarly, Bu et al. [106] analyzed
the generalization ability of QNNs from the perspective of quantum resource theory,
emphasizing the role of quantum resources such as entanglement and magic in
influencing generalization.

Some frameworks even point to situations where QNNs clearly beat classical
models. In particular, Huang et al. [8, 107] provided insights into the conditions
under which quantum models outperform their classical counterparts. Zhang et al.
[108] investigate the training-dependent generalization abilities of QNNs, while
Du et al. [109] study problem-dependent generalization, highlighting key factors
that enable QNNs to achieve strong generalization performance. The generalization
ability of QNNs under both the underparameterized and overparameterized regimes
has been discussed by Qian et al. [110], Gil-Fuster et al. [111], and Kempkes et al.
[112].

To get a big-picture view, the no-free-lunch theorem has been used to study
QNNs. Poland et al. [113] explore the average performance of QNNs across all
possible datasets and problems, providing a broader perspective on their generaliza-
tion potential. Extending this work, Sharma et al. [114] and Wang et al. [115] adapt
the no-free-lunch theorem to scenarios involving entangled data, demonstrating the
potential benefits of entanglement in certain settings. Additionally, Wang et al. [116]
establish a no-free-lunch framework for various learning protocols, considering
different quantum resources used in these protocols.

Potential Advantages One major challenge in quantum learning is to find tasks
where QNNs clearly beat classical models for solving “normal” (classical) prob-
lems. Some studies have shown QNNs can be better than classical models, but
usually only on special, made-up tasks. For instance, polynomial advantages over
commonly used classical models have been demonstrated through quantum contex-
tuality in sequential learning [117, 118]. Additionally, quantum entanglement has
been shown to reduce communication requirements in nonlocal machine learning
tasks [119]. However, most QNNs—unless they are carefully designed—can be
copied or simulated by classical computers. The review [120] presented strong
evidence that commonly used models with provable absence of barren plateaus are
also classically simulable. Concrete algorithms in this research line include Pauli

168 4 Quantum Neural Networks

path simulators [121–123], tensor-network simulators [124], and learning protocols
[125–127].

4.6.1.3 Applications

QNNs for classifying data have found use in many areas. For example, researchers
have tried quantum methods for image classification [128] and pattern recogni-
tion [129]. In quantum chemistry, QNNs help predict proton affinities [130] and aid
in developing new catalysts [131]. In finance, they are used for tasks like classifying
market trends [132] and detecting fraud [133]. In medicine, QNNs have supported
drug discovery [134] and disease diagnosis [135, 136].

However, real-world tests show that today’s QNNs still have important limita-
tions [110, 137]. For example, one study compared eight popular QNNs to classical
models on different datasets and found no clear performance advantage [137]. Still,
QNNs can be very flexible on small, simple datasets. Sometimes, they need fewer
parameters than classical networks to get similar results, since quantum systems can
model more complicated patterns. Overall, QNNs for classification are still in the
early stages. Better network designs, smarter training methods, and ways to reduce
errors will be key for making quantum models truly useful.

4.6.2 Generative Learning with QNNs

QNNs for generating data are another exciting direction in quantum machine
learning. These models use flexible quantum circuits to create data patterns that
can be more complex than those made by classical models, especially in high-
dimensional or quantum settings. For more details, see the survey by Tian et al.
[67].

4.6.2.1 Model Designs

Researchers have designed many types of QNNs for generating data. For instance,
quantum circuit Born machines (QCBMs) [45] use quantum circuits to produce
random patterns. Quantum generative adversarial networks (QGANs) [41] bring the
“generator vs. discriminator” idea into quantum computing. Quantum Boltzmann
machines [138] use quantum systems to sample from complicated distributions.
Quantum autoencoders [139] help with tasks like compressing or reconstructing
quantum states. More recently, quantum diffusion models [140, 141] have been
introduced to create sets of quantum states or even classical images. These examples
show that QNNs can tackle a wide variety of generative problems.

References 169

4.6.2.2 Theoretical Foundations

On the theory side, generative QNNs face many of the same learning challenges
as QNNs for classification. Similar to QNNs for discriminative tasks, quantum
generative models like QCBMs face the barren plateau issue with additional
mechanisms from the Kullback-Leibler (KL) divergence loss function [142]. But
in cases where data is scarce, QCBMs can sometimes learn faster than classical
generative models [143]. Some studies show that quantum models can represent
data patterns that classical models cannot and can learn or generate these patterns
much faster [144, 145]. For example, even simple quantum extensions of common
classical models like Bayesian networks can model more complex relationships.
Other research has explored how well quantum generative models can generalize to
new data, using measures like maximum mean discrepancy [146].

4.6.2.3 Applications

Generative QNNs are being tested in a variety of fields. In finance, they have been
used to create synthetic data and model tricky financial patterns, sometimes beating
classical models [43, 147]. In physics, they help with tasks like simulating quantum
systems or reconstructing quantum states [148]. For image generation, quantum
GANs can produce high-quality pictures [44]. In drug discovery, quantum gener-
ative models may help search through large chemical spaces more efficiently [149].
These examples show the wide reach of QNNs in generative tasks.

References

1. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
2. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning

for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018(1),
7068349.

3. Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for
natural language processing. IEEE Transactions on Neural Networks and Learning Systems,
32(2), 604–624.

4. Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,
de Las Casas, D., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-
optimal large language models. In Proceedings of the 36th International Conference on
Neural Information Processing Systems (pp. 30016–30030).

5. de Vries, A. (2023). The growing energy footprint of artificial intelligence. Joule, 7(10),
2191–2194.

6. Jeswal, S. K., & Chakraverty, S. (2019). Recent developments and applications in quantum
neural network: A review. Archives of Computational Methods in Engineering, 26(4), 793–
807.

7. Liu, J., Liu, M., Liu, J.-P., Ye, Z., Wang, Y., Alexeev, Y., Eisert, J., & Jiang, L. (2024).
Towards provably efficient quantum algorithms for large-scale machine-learning models.
Nature Communications, 15(1), 434.

170 4 Quantum Neural Networks

8. Huang, H.-Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., Neven, H., Babbush,
R., Kueng, R., Preskill, J., et al. (2022). Quantum advantage in learning from experiments.
Science, 376(6598), 1182–1186.

9. Peters, E., Caldeira, J., Ho, A., Leichenauer, S., Mohseni, M., Neven, H., Spentzouris, P.,
Strain, D., & Perdue, G. N. (2021). Machine learning of high dimensional data on a noisy
quantum processor. NPJ Quantum Information, 7(1), 161.

10. Acharya, R., Aghababaie-Beni, L., Aleiner, I., Andersen, T. I., Ansmann, M., Arute, F., Arya,
K., Asfaw, A., Astrakhantsev, N., Atalaya, J. et al. (2024). Quantum error correction below
the surface code threshold. arXiv preprint arXiv:2408.13687.

11. Gardas, B., Rams, M. M., & Dziarmaga, J. (2018). Quantum neural networks to simulate
many-body quantum systems. Physical Review B, 98(18), 184304.

12. Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., Kivlichan,
I. D., Menke, T., Peropadre, B., Sawaya, N. P. D., et al. (2019). Quantum chemistry in the age
of quantum computing. Chemical Reviews, 119(19), 10856–10915.

13. Dua, D., & Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml
14. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
15. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5, 115–133.
16. Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment,
32(14–15), 2627–2636.

17. Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, 30, 5998–6008.

18. Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,
6(8), 1069–1072.

19. Amari, S. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing,
5(4–5), 185–196.

20. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L.
(1989). Handwritten digit recognition with a back-propagation network. Advances in Neural
Information Processing Systems, 2, 396–404.

21. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–
778).

22. Novikoff, A. B. J. (1962). On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, New York (Vol. 12, pp. 615–622).

23. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6), 386.

24. LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for
back-propagation. In Proceedings of the 1988 Connectionist Models Summer School (Vol. 1,
pp. 21–28).

25. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5), 359–366.

26. Caruana, R., Lawrence, S., & Giles, C. L. (2000). Overfitting in neural nets: Backpropagation,
conjugate gradient, & early stopping. Advances in Neural Information Processing Systems,
13, 402–408.

27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1), 1929–1958.

28. Krogh, A., & Hertz, J. A. (1991). A simple weight decay can improve generalization.
Advances in Neural Information Processing Systems, 4, 950–957.

29. Kapoor, A., Wiebe, N., & Svore, K. M. (2016). Quantum perceptron models. Advances in
Neural Information Processing Systems, 29, 3999–4007.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

References 171

30. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212–219).

31. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S.,
Brandao, F.G. S. L., Buell, D. A., et al. (2019). Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779), 505–510.

32. AbuGhanem, M. (2024). Ibm quantum computers: Evolution, performance, and future
directions. arXiv preprint arXiv:2410.00916.

33. Gao, D., Fan, D., Zha, C., Bei, J., Cai, G., Cai, J., Cao, S., Zeng, X., Chen, F., Chen, J., et al.
(2024). Establishing a new benchmark in quantum computational advantage with 105-qubit
zuchongzhi 3.0 processor. arXiv preprint arXiv:2412.11924.

34. Wang, Y., & Liu, J. (2024). A comprehensive review of quantum machine learning: From nisq
to fault tolerance. Reports on Progress in Physics, 87(11), 116402.

35. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta,
J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature, 549(7671), 242–246.

36. Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature
Physics, 15(12), 1273–1278.

37. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik,
A., & O’brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor.
Nature Communications, 5(1), 4213.

38. Crooks, G. E. (2019). Gradients of parameterized quantum gates using the parameter-shift
rule and gate decomposition. arXiv preprint arXiv:1905.13311.

39. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2121–2159.

40. Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

41. Lloyd, S., & Weedbrook, C. (2018). Quantum generative adversarial learning. Physical
Review Letters, 121(4), 040502.

42. Bravyi, S., Gosset, D., & König, R. (2018). Quantum advantage with shallow circuits.
Science, 362(6412), 308–311.

43. Zhu, E. Y., Johri, S., Bacon, D., Esencan, M., Kim, J., Muir, M., Murgai, N., Nguyen, J.,
Pisenti, N., Schouela, A., et al. (2022). Generative quantum learning of joint probability
distribution functions. Physical Review Research, 4(4), 043092.

44. Huang, H.-L., Du, Y., Gong, M., Zhao, Y., Wu, Y., Wang, C., Li, S., Liang, F., Lin, J., Xu, Y.,
et al. (2021a). Experimental quantum generative adversarial networks for image generation.
Physical Review Applied, 16(2), 024051.

45. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., & Perdomo-
Ortiz, A. (2019a). A generative modeling approach for benchmarking and training shallow
quantum circuits. npj Quantum Information, 5(1), 45.

46. Du, Y., Tu, Z., Yuan, X., & Tao, D. (2022a). Efficient measure for the expressivity of
variational quantum algorithms. Physical Review Letters, 128(8), 080506.

47. Barthel, T., & Lu, J. (2018). Fundamental limitations for measurements in quantum many-
body systems. Physical Review Letters, 121(8), 080406.

48. Kakade, S. M., Sridharan, K., & Tewari, A. (2008). On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. Advances in Neural Information Processing
Systems, 21, 793–800.

49. Dudley, R. M. (1967). The sizes of compact subsets of hilbert space and continuity of gaussian
processes. Journal of Functional Analysis, 1(3), 290–330.

50. Haussler, A., & Warmuth, M. (1987). Occam’s razor. Information Processing Letters, 24,
377–380.

51. Larocca, M., Ju, N., García-Martín, D., Coles, P. J., & Cerezo, M. (2023). Theory of
overparametrization in quantum neural networks. Nature Computational Science, 3(6), 542–
551.

172 4 Quantum Neural Networks

52. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. (2018). Barren
plateaus in quantum neural network training landscapes. Nature Communications, 9(1), 4812.

53. Dankert, C., Cleve, R., Emerson, J., & Livine, E. (2009). Exact and approximate unitary 2-
designs and their application to fidelity estimation. Physical Review A—Atomic, Molecular,
and Optical Physics, 80(1), 012304.

54. Harrow, A. W., & Low, R. A. (2009). Random quantum circuits are approximate 2-designs.
Communications in Mathematical Physics, 291, 257–302.

55. Haferkamp, J. (2022). Random quantum circuits are approximate unitary t-designs in depth
o(nt5+o(1)).. Quantum, 6, 795.

56. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., & Coles, P. J. (2021). Cost function dependent
barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1),
1791.

57. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A. T., & Coles, P. J. (2021). Absence
of barren plateaus in quantum convolutional neural networks. Physical Review X, 11(4),
041011.

58. Zhang, K., Hsieh, M.-H., Liu, L., & Tao, D. (2021). Toward trainability of deep quantum
neural networks. arXiv preprint arXiv:2112.15002.

59. Grant, E., Wossnig, L., Ostaszewski, M., & Benedetti, M. (2019). An initialization strategy
for addressing barren plateaus in parametrized quantum circuits. Quantum, 3, 214.

60. Zhang, K., Liu, L., Hsieh, M.-H., & Tao, D. (2022a). Escaping from the barren plateau via
gaussian initializations in deep variational quantum circuits. Advances in Neural Information
Processing Systems, 35, 18612–18627.

61. Skolik, A., McClean, J. R., Mohseni, M., Van Der Smagt, P., & Leib, M. (2021). Layerwise
learning for quantum neural networks. Quantum Machine Intelligence, 3, 1–11.

62. Haug, T., & Kim, M. S. (2021). Optimal training of variational quantum algorithms without
barren plateaus. arXiv preprint arXiv:2104.14543.

63. Ablayev, F., Ablayev, M., Huang, J. Z., Khadiev, K., Salikhova, N., & Wu, D. (2019). On
quantum methods for machine learning problems part ii: Quantum classification algorithms.
Big Data Mining and Analytics, 3(1), 56–67.

64. Li, W., & Deng, D.-L. (2022). Recent advances for quantum classifiers. Science China
Physics, Mechanics & Astronomy, 65(2), 220301.

65. Massoli, F. V., Vadicamo, L., Amato, G., & Falchi, F. (2022). A leap among quantum
computing and quantum neural networks: A survey. ACM Computing Surveys, 55(5), 1–37.

66. Li, W., Lu, Z., & Deng, D.-L. (2022). Quantum neural network classifiers: A tutorial. SciPost
Physics Lecture Notes, 61, 1–28.

67. Tian, J., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., Yi, W., Huang, W., Wang, C., Wu,
X., et al. (2023). Recent advances for quantum neural networks in generative learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(10), 12321–12340.

68. Havlicek, V., Corcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., &
Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747), 209–212.

69. Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical
Review A, 98(3), 032309.

70. Arthur, D., et al. (2022). A hybrid quantum-classical neural network architecture for binary
classification. arXiv preprint arXiv:2201.01820.

71. Bausch, J. (2020). Recurrent quantum neural networks. Advances in Neural Information
Processing Systems, 33, 1368–1379.

72. Shi, J., Zhao, R.-X., Wang, W., Zhang, S., & Li, X. (2024). QSAN: A near-term achievable
quantum self-attention network. IEEE Transactions on Neural Networks and Learning
Systems, 36(8), 13995–14008.

73. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. (2020). Data re-uploading
for a universal quantum classifier. Quantum, 4, 226.

74. Fan, L., & Situ, H. (2022). Compact data encoding for data re-uploading quantum classifier.
Quantum Information Processing, 21(3), 87.

References 173

75. Du, Y., Huang, T., You, S., Hsieh, M.-H., & Tao, D. (2022b). Quantum circuit architecture
search for variational quantum algorithms. npj Quantum Information, 8(1), 62.

76. Zhang, S.-X., Hsieh, C.-Y., Zhang, S., & Yao, H. (2022b). Differentiable quantum architecture
search. Quantum Science and Technology, 7(4), 045023.

77. Lu, Z., Shen, P.-X., & Deng, D.-L. (2021). Markovian quantum neuroevolution for machine
learning. Physical Review Applied, 16(4), 044039.

78. Linghu, K., Qian, Y., Wang, R., Hu, M.-J., Li, Z., Li, X., Xu, H., Zhang, J., Ma, T., Zhao, P.,
et al. Quantum circuit architecture search on a superconducting processor. Entropy, 26(12),
1025 (2024).

79. Sim, S., Romero, J., Gonthier, J. F. & Kunitsa, A. A. (2021). Adaptive pruning-based
optimization of parameterized quantum circuits. Quantum Science and Technology, 6(2),
025019.

80. Wang, X., Liu, J., Liu, T., Luo, Y., Du, Y., & Tao, D. (2022). Symmetric pruning in quantum
neural networks. arXiv preprint arXiv:2208.14057.

81. Alam, M., Kundu, S., & Ghosh, S. (2023). Knowledge distillation in quantum neural network
using approximate synthesis. In Proceedings of the 28th Asia and South Pacific Design
Automation Conference (pp. 639–644).

82. Li, M., Fan, L., Cummings, A., Zhang, X., Pan, M., & Han, Z. (2024). Hybrid quantum
classical machine learning with knowledge distillation. In ICC 2024-IEEE International
Conference on Communications (pp. 1139–1144). IEEE.

83. Schuld, M., Sweke, R., & Meyer, J. J. (2021). Effect of data encoding on the expressive power
of variational quantum-machine-learning models. Physical Review A, 103(3), 032430.

84. Yu, Z., Yao, H., Li, M., & Wang, X. (2022). Power and limitations of single-qubit native
quantum neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, &
A. Oh (Eds.), Advances in neural information processing systems (Vol. 35, pp. 27810–27823).
Curran Associates, Inc.

85. Sim, S., Johnson, P. D., & Aspuru-Guzik, A. (2019). Expressibility and entangling capability
of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quan-
tum Technologies, 2(12), 1900070.

86. Nakaji, K., & Yamamoto, N. (2021). Expressibility of the alternating layered ansatz for
quantum computation. Quantum, 5, 434.

87. Holmes, Z., Sharma, K., Cerezo, M., & Coles, P. J. (2022). Connecting ansatz expressibility
to gradient magnitudes and barren plateaus. PRX Quantum, 3(1), 010313.

88. Yu, Z., Chen, Q., Jiao, Y., Li, Y., Lu, X., Wang, X., & Yang, J. (2025). Non-asymptotic approx-
imation error bounds of parameterized quantum circuits. Advances in Neural Information
Processing Systems, 37, 99089–99127.

89. Ortiz Marrero, C., Kieferová, M., & Wiebe, N. (2021). Entanglement-induced barren plateaus.
PRX Quantum, 2(4), 040316.

90. Martin, E. C., Plekhanov, K., & Lubasch, M. (2023). Barren plateaus in quantum tensor
network optimization. Quantum, 7, 974.

91. Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., & Coles, P. J. (2021).
Noise-induced barren plateaus in variational quantum algorithms. Nature Communications,
12(1), 6961.

92. Larocca, M., Czarnik, P., Sharma, K., Muraleedharan, G., Coles, P. J., & Cerezo, M. (2022).
Diagnosing barren plateaus with tools from quantum optimal control. Quantum, 6, 824.

93. Kiani, B. T., Lloyd, S., & Maity, R. (2020). Learning unitaries by gradient descent. arXiv
preprint arXiv:2001.11897.

94. Wiersema, R., Zhou, C., de Sereville, Y., Carrasquilla, J. F., Kim, Y. B., & Yuen, H. (2020).
Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX
Quantum, 1(2), 020319.

95. Anschuetz, E. R. (2021). Critical points in quantum generative models. arXiv preprint
arXiv:2109.06957.

96. You, X., Chakrabarti, S., & Wu, X. (2022). A convergence theory for over-parameterized
variational quantum eigensolvers. arXiv preprint arXiv:2205.12481.

174 4 Quantum Neural Networks

97. Xu, Z., Cao, X., & Gao, X. (2018). Convergence analysis of gradient descent for eigenvector
computation. In International Joint Conferences on Artificial Intelligence.

98. Liu, J., Najafi, K., Sharma, K., Tacchino, F., Jiang, L., & Mezzacapo, A. (2023). Analytic
theory for the dynamics of wide quantum neural networks. Physical Review Letters, 130(15),
150601.

99. Wang, X., Liu, J., Liu, T., Luo, Y., Du, Y., & Tao, D. (2023). Symmetric pruning in quantum
neural networks. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=K96AogLDT2K

100. Du, Y., Hsieh, M.-H., Liu, T., You, S., & Tao, D. (2021). Learnability of quantum neural
networks. PRX Quantum, 2(4), 040337.

101. Du, Y., Qian, Y., Wu, X., & Tao, D. (2022c). A distributed learning scheme for variational
quantum algorithms. IEEE Transactions on Quantum Engineering, 3, 1–16.

102. Qi, J., Yang, C.-H. H., Chen, P.-Y. & Hsieh, M.-H. (2023). Theoretical error performance
analysis for variational quantum circuit based functional regression. npj Quantum Informa-
tion, 9(1), 4.

103. Qian, Y., Du, Y., & Tao, D. (2024). Shuffle-qudio: Accelerate distributed vqe with trainability
enhancement and measurement reduction. Quantum Machine Intelligence, 6(1), 1–22.

104. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & Woerner, S. (2021). The power of
quantum neural networks. Nature Computational Science, 1(6), 403–409.

105. Caro, M. C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., & Coles,
P. J. (2022). Generalization in quantum machine learning from few training data. Nature
Communications, 13(1), 4919.

106. Bu, K., Koh, D. E., Li, L., Luo, Q., & Zhang, Y. (2022). Statistical complexity of quantum
circuits. Physical Review A, 105(6), 062431.

107. Huang, H.-Y., Kueng, R., & Preskill, J. (2021b). Information-theoretic bounds on quantum
advantage in machine learning. Physical Review Letters, 126(19), 190505.

108. Zhang, K., Liu, J., Liu, L., Jiang, L., Hsieh, M.-H., & Tao, D. (2024a). The curse of random
quantum data. arXiv preprint arXiv:2408.09937.

109. Du, Y., Yang, Y., Tao, D., & Hsieh, M.-H. (2023). Problem-dependent power of quantum
neural networks on multiclass classification. Physical Review Letters, 131(14), 140601.

110. Qian, Y., Wang, X., Du, Y., Wu, X., & Tao, D. (2022). The dilemma of quantum neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5603–5615.

111. Gil-Fuster, E., Eisert, J., & Bravo-Prieto, C. (2024). Understanding quantum machine learning
also requires rethinking generalization. Nature Communications, 15(1), 2277.

112. Kempkes, M., Ijaz, A., Gil-Fuster, E., Bravo-Prieto, C., Spiegelberg, J., van Nieuwenburg,
E., & Dunjko, V. (2025). Double descent in quantum machine learning. arXiv preprint
arXiv:2501.10077.

113. Poland, K., Beer, K., & Osborne, T. J. (2020). No free lunch for quantum machine learning.
arXiv preprint arXiv:2003.14103.

114. Sharma, K., Cerezo, M., Holmes, Z., Cincio, L., Sornborger, A., & Coles, P. J. (2022).
Reformulation of the no-free-lunch theorem for entangled datasets. Physical Review Letters,
128(7), 070501.

115. Wang, X., Du, Y., Tu, Z., Luo, Y., Yuan, X., & Tao, D. (2024a). Transition role of entangled
data in quantum machine learning. Nature Communications, 15(1), 3716.

116. Wang, X., Du, Y., Liu, K., Luo, Y., Du, B., & Tao, D. (2024b). Separable power of classical
and quantum learning protocols through the lens of no-free-lunch theorem. arXiv preprint
arXiv:2405.07226.

117. Anschuetz, E. R., Hu, H.-Y., Huang, J.-L., & Gao, X. (2023). Interpretable quantum advantage
in neural sequence learning. PRX Quantum, 4(2), 020338.

118. Anschuetz, E. R., & Gao, X. (2024). Arbitrary polynomial separations in trainable quantum
machine learning. arXiv preprint arXiv:2402.08606.

119. Zhao, H., & Deng, D.-L. (2024). Entanglement-induced provable and robust quantum learning
advantages. arXiv preprint arXiv:2410.03094.

https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K

References 175

120. Cerezo, M., Larocca, M., García-Martín, D., Diaz, N. L., Braccia, P., Fontana, E., Rudolph,
M. S., Bermejo, P., Ijaz, A., Thanasilp, S., et al. (2023). Does provable absence of barren
plateaus imply classical simulability? or, why we need to rethink variational quantum
computing. arXiv preprint arXiv:2312.09121.

121. Bermejo, P., Braccia, P., Rudolph, M. S., Holmes, Z., Cincio, L., & Cerezo, M. (2024).
Quantum convolutional neural networks are (effectively) classically simulable. arXiv preprint
arXiv:2408.12739.

122. Angrisani, A., Schmidhuber, A., Rudolph, M. S., Cerezo, M., Holmes, Z., & Huang, H.-
Y. (2024). Classically estimating observables of noiseless quantum circuits. arXiv preprint
arXiv:2409.01706.

123. Lerch, S., Puig, R., Rudolph, M. S., Angrisani, A., Jones, T., Cerezo, M., Thanasilp, S., &
Holmes, Z. (2024). Efficient quantum-enhanced classical simulation for patches of quantum
landscapes. arXiv preprint arXiv:2411.19896.

124. Shin, S., Teo, Y. S., & Jeong, H. (2024). Dequantizing quantum machine learning models
using tensor networks. Physical Review Research, 6(2), 023218.

125. Landman, J., Thabet, S., Dalyac, C., Mhiri, H., & Kashefi, E. (2022). Classically approxi-
mating variational quantum machine learning with random fourier features. arXiv preprint
arXiv:2210.13200.

126. Schreiber, F. J., Eisert, J., & Meyer, J. J. (2023). Classical surrogates for quantum learning
models. Physical Review Letters, 131(10), 100803.

127. Du, Y., Hsieh, M.-H., & Tao, D. (2024). Efficient learning for linear properties of bounded-
gate quantum circuits. arXiv preprint arXiv:2408.12199.

128. Henderson, M., Shakya, S., Pradhan, S., & Cook, T. (2020). Quanvolutional neural networks:
Powering image recognition with quantum circuits. Quantum Machine Intelligence, 2(1), 2.

129. Alrikabi, H. T. S., Aljazaery, I. A., Qateef, J. S., Alaidi, A. H. M., & Roa’a, M. (2022).
Face patterns analysis and recognition system based on quantum neural network QNN.
International Journal of Interactive Mobile Technologies, 16(8), 35–48.

130. Jin, H., & Merz Jr., K. M. (2024). Integrating machine learning and quantum circuits for
proton affinity predictions. arXiv preprint arXiv:2411.17856.

131. Roh, J., Oh, S., Lee, D., Joo, C., Park, J., Moon, I., Ro, I., & Kim, J. (2024). Hybrid quantum
neural network model with catalyst experimental validation: Application for the dry reforming
of methane. ACS Sustainable Chemistry & Engineering, 12(10), 4121–4131.

132. Li, Y., Wang, Z., Han, R., Shi, S., Li, J., Shang, R., Zheng, H., Zhong, G., & Gu, Y. (2023).
Quantum recurrent neural networks for sequential learning. Neural Networks, 166, 148–161.

133. Innan, N., Sawaika, A., Dhor, A., Dutta, S., Thota, S., Gokal, H., Patel, N., Khan, M. A.,
Theodonis, I., & Bennai, M. (2024). Financial fraud detection using quantum graph neural
networks. Quantum Machine Intelligence, 6(1), 7.

134. Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins,
S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of
Chemical Information and Modeling, 61(6), 2641–2647.

135. Benedetti, M., Coyle, B., Fiorentini, M., Lubasch, M., & Rosenkranz, M. (2021). Variational
inference with a quantum computer. Physical Review Applied, 16(4), 044057.

136. Enad, H. G., Mohammed, M. A., et al. (2023). A review on artificial intelligence and quantum
machine learning for heart disease diagnosis: Current techniques, challenges and issues,
recent developments, & future directions. Fusion: Practice and Applications (FPA), 11(1),
08–25.

137. Bowles, J., Ahmed, S., & Schuld, M. (2024). Better than classical? the subtle art of
benchmarking quantum machine learning models. arXiv preprint arXiv:2403.07059.

138. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. (2018). Quantum
boltzmann machine. Physical Review X, 8(2), 021050.

139. Romero, J., Olson, J. P., & Aspuru-Guzik, A. (2017). Quantum autoencoders for efficient
compression of quantum data. Quantum Science and Technology, 2(4), 045001.

140. Zhang, B., Xu, P., Chen, X., & Zhuang, Q. (2024b). Generative quantum machine learning
via denoising diffusion probabilistic models. Physical Review Letters, 132(10), 100602.

176 4 Quantum Neural Networks

141. Kölle, M., Stenzel, G., Stein, J., Zielinski, S., Ommer, B., & Linnhoff-Popien, C. (2024).
Quantum denoising diffusion models. arXiv preprint arXiv:2401.07049.

142. Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Shaya, O., Vallecorsa, S., Grossi, M., &
Holmes, Z. (2024). Trainability barriers and opportunities in quantum generative modeling.
npj Quantum Information, 10(1), 116.

143. Hibat-Allah, M., Mauri, M., Carrasquilla, J., & Perdomo-Ortiz, A. (2024). A framework for
demonstrating practical quantum advantage: Comparing quantum against classical generative
models. Communications Physics, 7(1), 68.

144. Gao, X., Zhang, Z.-Y., & Duan, L.-M. (2018). A quantum machine learning algorithm based
on generative models. Science Advances, 4(12), eaat9004.

145. Gao, X., Anschuetz, E. R., Wang, S.-T., Cirac, J. I., & Lukin, M. D. (2022). Enhancing
generative models via quantum correlations. Physical Review X, 12(2), 021037.

146. Du, Y., Tu, Z., Wu, B., Yuan, X., & Tao, D. (2022d). Power of quantum generative learning.
arXiv preprint arXiv:2205.04730.

147. Alcazar, J., Leyton-Ortega, V., & Perdomo-Ortiz, A. (2020). Classical versus quantum models
in machine learning: Insights from a finance application. Machine Learning: Science and
Technology, 1(3), 035003.

148. Benedetti, M., Grant, E., Wossnig, L., & Severini, S. (2019b). Adversarial quantum circuit
learning for pure state approximation. New Journal of Physics, 21(4), 043023.

149. Li, J., Topaloglu, R. O., & Ghosh, S. (2021). Quantum generative models for small molecule
drug discovery. IEEE Transactions on Quantum Engineering, 2, 1–8.

Chapter 5
Quantum Transformer

Abstract This chapter provides a comprehensive introduction to the quantum
transformer algorithm. In Sect. 5.1 we first described what is the transformer
architecture, with detailed explanation about its key subroutines. We also briefly
mention the optimization and training. In Sect. 5.2, we provide a guide about
designing each quantum subroutine, including quantum self-attention, quantum
residual connection with layer norm, and quantum feed-forward neural networks,
based on the quantum linear algebra. We further mention various numerical studies
on the open-source large language models and provide a detailed discussion about
the potential of quantum advantage in Sect. 5.3. Some basic codes are provided in
Sect. 5.4. Finally in Sect. 5.5, we provide a bibliographic remark for readers who are
interested to explore.

Transformers, introduced by Vaswani [1], have become one of the most important
and widely adopted deep learning architectures in modern AI. Transformers were
first developed to improve previous architectures for natural language processing on
the ability to handle long-range dependencies and capture intricate relationships
in data. Unlike previous sequential models, such as recurrent neural networks,
which process information in a step-by-step manner, transformers use a mechanism
called self-attention to capture correlations among all elements in a sequence
simultaneously. This parallel processing capability significantly reduces training
time and improves learning performance.

Despite its many advantages, the transformer architecture has several draw-
backs, particularly the required computational resources. As discussed in previous
chapters, quantum computing provides unique advantages over classical computing
in certain applications by leveraging quantum phenomena such as superposition,
entanglement, and interference. These capabilities have inspired researchers to
explore whether integrating quantum computing with Transformers could lead to
superior performance compared to their classical counterparts in specific tasks.

To address this question, in this chapter, the mechanism of Transformers is
introduced in Sect. 5.1. Then, the construction of a quantum Transformer on a
fault-tolerant quantum computer is illustrated in Sect. 5.2. The runtime of quantum

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_5

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5
https://doi.org/10.1007/978-981-95-1284-3_5

178 5 Quantum Transformer

transformers combined with numerical observations is also analyzed in Sect. 5.3,
demonstrating a quadratic speedup over the classical counterpart.

5.1 Classical Transformer

The transformer architecture is designed to predict the next token (formally present
in Sect. 5.1.1) in a sequence by leveraging sophisticated neural network components.
Its modular design—including residual connections, layer normalization, and feed-
forward networks (FFNs) as introduced in Sect. 4.1—makes it highly scalable and
customizable. This versatility has enabled its successful application in large-scale
foundation models across diverse domains. Notable examples include natural lan-
guage processing, computer vision, reinforcement learning, robotics, and beyond.

The full architecture of Transformer is illustrated in Fig. 5.1. In particular, the
encoder processes the source sequence through multiple layers of multiheaded
self-attention and feed-forward networks, augmented with residual connections,

Fig. 5.1 A standard
transformer architecture,
showing an encoder on the
left and a decoder on the
right. (Image by Daniel Voigt
Godoy under CC BY)

https://github.com/dvgodoy/dl-visuals
https://creativecommons.org/licenses/by/4.0/

5.1 Classical Transformer 179

layer normalization, and positional encodings. The decoder incorporates masked
multiheaded self-attention to process the target sequence and multiheaded cross-
attention to integrate information from the encoder. The output is passed through
a feed-forward network and a final linear layer to generate predictions. Note that
while the original paper by Vaswani [1] introduced both encoder and decoder
components, contemporary large language models primarily adopt decoder-only
architectures, which have demonstrated superior practical performance. Therefore,
in the remainder of this section, the implementation of each building block is
detailed, and the optimization of decoder-only Transformer architectures is dis-
cussed. To deepen the understanding, a toy example of a classical Transformer with
the code demonstration is provided in Sect. 5.4.

5.1.1 Tokenization and Embedding

To handle sequential data, such as natural language, Transformers employ tok-
enization to convert it into discrete units. This preprocessing step makes the data
compatible with computational models and optimizes it for parallel processing,
particularly on GPUs. More concisely, Tokenization breaks a sentence into smaller
pieces called tokens, which could be words, subwords, or even characters, depending
on the tokenization strategy. For example, the sentence “Transformers are amazing!”
might become tokens like (“Transform,” “ers,” “are,” “amazing,” “!”) if subwords
are used. Modern tokenization methods [2–4] enable sophisticated mapping of
complex inputs into token spaces.

For Transformer, tokens are mapped to high-dimensional real vector representa-
tions via embedding [1], as highlighted by the solid box “Embeddings/Projections”
in Fig. 5.1. Let dtoken . denote the dictionary’s token count and dmodel . represent the
embedding vector dimension. The set containing all token embedding vectors in the
dictionary is defined as

. W := Wj ∈ Rdmodel :Wj is the embedding of token j ∈ [dtoken] .

An .-length sentence is represented as a sequence of vectors {Sj }j=1 ., where Sj ∈
W.. Mathematically, this sequence can be interpreted as a real matrix S ∈ R ×dmodel .

whose j -th row Sj . representing the j -th token.

5.1.2 Self-Attention

Self-attention is a core building block of the transformer architecture, which
captures intrinsic correlations among tokens. By allowing each token in a sequence
to attend to every other token, Transformer generates attention matrices via the

180 5 Quantum Transformer

inner-product operations. This operation encodes complex inter-token relationships
into a transformative vector representation, colloquially termed “scaled dot-product
attention.” The generated attention matrices highlight how relevant each part of
the input is to every other part. This allows Transformers to handle contextual
dependencies across a variety of data structures.

The self-attention mechanism, as highlighted by the blue or red box in Fig. 5.1,
involves three parameterized weight matrices: Wq,Wk ∈ Rdmodel×dk ., and Wv ∈
R

dmodel×dv ..

Remark
Following conventions [1], the notation d is used to specify dmodel ., dk ., and dv .

in the rest of this chapter, i.e., d := dmodel = dk = dv .. This is a widely used
setting in practice.

Given a sequence S ∈ R ×d
., the three new matrices after interacting it with three

parameterized weight matrices Wq,Wk,Wv . are defined, i.e.,

• Query matrix: Q := SWq ..
• Key matrix: K := SWk ..
• Value matrix: V := SWv ..

The attention block computes the matrix Gsoft ∈ R ×d
. via

.Attention(Q,K, V) = softmax QK /α0 V =: Gsoft, (5.1)

where α0 > 0. is a scaling factor and softmax(·). is a row-wise nonlinear
transformation such that softmax(z)j := ezj / k∈[] ezk . for z ∈ R . and j ∈ []..
The row-wise softmax application ensures the controlled attention distribution.
The scaling factor α0 = √

d . empirically prevents excessive value amplification,
particularly when input matrix rows have zero mean and unit standard deviation.

For decoder-only architectures, masked self-attention is employed, strategically
hiding tokens subsequent to the current query token, i.e.,

.Mjk = 0 k ≤ j,

−∞ k > j.
(5.2)

Conceptually, the mask M is applied to the scaled dot product QK /α0 . in Eq. (5.1)
before the softmax operation. Specifically, the matrix in the softmax operation is
modified as QK /α0 + M ..

Another crucial technique in Transformer is the multihead attention, which
further extends the self-attention mechanism by computing and concatenating
multiple attention matrices. This operation enables parallel representation learning

5.1 Classical Transformer 181

across different subspaces. In practice, the embedding dimensions are often much
larger (e.g., d = 512. or d = 768.), with multiple attention heads working simulta-
neously, each capturing distinct relationships between words in the sequence. This
mechanism plays a crucial role in modern AI, as it allows words to dynamically
interact with one another within the context of the sequence.

While multihead attention is a pivotal advancement in Transformer architectures,
its details will not be explored here, as the quantum Transformer implementa-
tions presented below primarily support single-head attention. Nonetheless, these
techniques remain essential in classical AI and are promising directions for future
developments in quantum Transformers.

5.1.3 Residual Connection

Residual connections (the arrows bypassing the main components, such as the
attention and feed-forward layers in Fig. 5.1), paired with layer normalization
(green box in the figure), provide crucial architectural flexibility and robustness. By
enabling direct information flow between layers, they mitigate challenges in training
deep neural networks [5, 6].

For the j -th token in an .-length sentence, the residual connection generates
Gsoft

j + Sj ∈ Rd
. for ∀j ∈ []., which is subsequently normalized to standardize the

vector representation. Let

. ̄sj := 1

d

d

k=1

Gsoft
jk + Sjk , . . . ,

d

k=1

Gsoft
jk + Sjk ∈ Rd ,

where ς := 1
d

d
k=1 Gsoft

j + Sj − s̄j k

2
.. The complete residual connection

with the layer normalization LN(·, ·). can be expressed as

.LNγ,β Gsoft
j , Sj = γ

Gsoft
j + Sj − s̄j

ς
+ β, (5.3)

where γ . and β . denote the scale and bias parameters, respectively.

5.1.4 Feed-Forward Network

Recall the definitions of fully connected neural networks (FFN) in Sect. 4.1.
Transformers employ a two-layer fully connected transformation (yellow box in
Fig. 5.1) to proceed with the output of residual connection, i.e.,

.FFN LN(zj , Sj) = σ LN Gsoft
j , Sj M1 + b1 M2 + b2, (5.4)

182 5 Quantum Transformer

where M1 ∈ Rd×d ,M2 ∈ Rd ×d
. are linear transformation matrices and b1, b2 . are

vectors. In most practical cases, d = 4d .. Here, σ(x). is an activation function, such
as tanh(x). and ReLU(x) = max(0, x).. Another activation function that has been
widely used in Transformers is the Gaussian error linear unit function (GELU), i.e.,

. GELU(x) = x · 1

2
1 + erf

x√
2

.

Single-Head and Single-Block Transformer
By integrating all ingredients introduced in Sect. 5.1.1, the explicit form of
single-head and single-block Transformer is reached, i.e.,

.Transformer(S, j) := LN(FFN(LN(Attention(S, j)))). (5.5)

For the final output, i.e., to predict the next token, one can implement the
softmax function to make the vector into a distribution Pr(·|S1, . . . , Sj−1).,
where the dimension is the size of the token dictionary dtoken ., and sample
from this distribution.

In modern architectures, multiple computational blocks are applied iteratively.
Similar to multihead attention, we will not explore this in detail here, as the
quantum Transformer implementations introduced below primarily support single-
head attention.

5.1.5 Optimization and Inference

Upon the architecture of Transformer, its optimization involves training the model
to achieve high performance on a given task. When applied to language processing
tasks, a feasible loss function of the Transformer is the cross entropy between the
predicted probability distribution and the correct distribution. Mathematically, given
a .-length sequence {S1, . . . , S }. as input, the loss function can be written as

.L = −1

j=1

Pr(Sj |S1, . . . , Sj−1), (5.6)

where Pr(Sj |S1, . . . , Sj−1). is the predicted probability of the correct Sj . coming out
of the softmax layer, based on the previous tokens.

5.2 Fault-Tolerant Quantum Transformer 183

This process of training Transformers can be achieved by using Adam opti-
mizer [7]. Learning rate schedules, such as warm-up followed by decay, can provide
stable and effective convergence.

After optimization, the trained Transformer can be used in inference, which
refers to making predictions on new data. Given a new initial sequence S =
S1, . . . , Sj−1 ., it is fed to the trained Transformer to obtain the distribution

Pr Sj |S1, . . . , Sj−1 .. Then, a decoding strategy (e.g., greedy decoding or sampling)
can be used to select the token based on the highest probability or a sampling
approach.

Efficient inference is crucial for deploying models in real-world applications.
Speed optimization techniques, such as quantization, reduce the precision of weights
and activations to accelerate inference with minimal accuracy loss [8]. Pruning
removes redundant weights or attention heads to reduce the model size and compu-
tational cost [9]. Batching and parallelism are also critical, with batched inference
allowing the processing of multiple inputs simultaneously and GPU or TPU
acceleration enabling parallel computations. Efficient attention at inference, such
as caching key and value tensors, reduces redundant computations in autoregressive
tasks like text generation [10].

The inference cost is up to ten times the training cost as large language models
(LLMs) are trained once and applied millions of times [11, 12]. For this reason,
in the next section, the harnessing of quantum computing to address this issue is
explored, which is crucial from both scientific and societal perspectives.

5.2 Fault-Tolerant Quantum Transformer

In this section, an end-to-end transformer architecture implementable on a quantum
device is presented, which includes all the key building blocks introduced in
Sect. 5.1. Besides, the potential runtime speedups of this quantum model are
discussed. In particular, here the focus is on the inference process in which a
classical Transformer has already been trained and is queried to predict the single
next token.

Recall that in Sect. 5.1, the three parameterized matrices in the self-attention
mechanism are assumed to have the same size, i.e., Wq,Wk,Wv ∈ Rd×d

.. Besides,
the input sequence S and the matrix returned by the attention block Gsoft

. have
the size × d .. Here, it is further supposed that the length of the sentence and
the dimension of hidden features exponentially scale with 2, i.e., = 2N

. and
log d ∈ N+

.. This setting aligns with the scaling of quantum computing, making it
easier to understand. For other cases, padding techniques can be applied to expand
the matrix and vector dimensions to conform to this requirement.

Since the runtime speedups depend heavily on the capabilities of the available
input oracles, it is essential to specify the input oracles used in the quantum Trans-
former before detailing the algorithms. For the classical Transformers, memory

184 5 Quantum Transformer

access to the inputs such as the sentence and the query, key, and value matrices
is assumed. In the quantum version, access to several matrices via block encoding
techniques introduced in Sect. 2.4 is assumed.

Assumption 5.1 (Input Oracles) Following the explicit form of the single-head
and single-layer Transformer in Eq. (5.5), there are five parameterized weight
matrices, i.e., Wq ., Wk ., Wv ∈ Rd×d

. in the attention block, as well as M1 ∈ Rd ×d
.

and M2 ∈ Rd×d
. in FFN. Note that here, M1 . and M2 . are actually the transpose

of parameterized matrices in the classical transformer. The quantum Transformer
assumes access to these five parameterized weight matrices, as well as the input
sequence S ∈ R ×d

. via block encoding.
Mathematically, given any A ∈ {Wq,Wk,Wv,M1,M2, S}. corresponding to an

N -qubit operator, α, ε ≥ 0. and a ∈ N., there exists a (a + N).-qubit unitary UA .

referring to the (α, a, ε).-block encoding of A with

. A − α(0|⊗a ⊗ I2N)UA(|0 ⊗a ⊗ I2N) ε, (5.7)

where . represents the spectral norm.

Under this assumption, the quantum Transformer can access US ., UWq ., UWk
.,

and UWv . corresponding to the (αs, as).-encoding of S and (αw, aw).-encodings of
Wq,Wk ., and Wv ., respectively. Moreover, the quantum Transformer can access
(αm, am).-encodings UM1 . and UM2 . corresponding two weight matrices M1 ∈ Rd ×d

.

and M2 ∈ Rd×d
. in FFN.

Remark
For simplicity and clarity, in the following, the perfect block encoding of input
matrices without errors is considered, i.e., ε = 0.. As such, the error term
of the block encoding will not be explicitly written, and (α, a). will be used
instead of (α, a, 0).. The output of the quantum Transformer is a quantum state
corresponding to the probability distribution of the next token.

The complete single-layer structure is described in Fig. 5.2. A quantum Trans-
former consists of a self-attention and a feed-forward network sub-layer, incorpo-
rating residual connections with layer normalization. The inputs of the quantum
Transformer are block encodings of matrices for the input sequence and pretrained
weights, from which the relevant matrices for the transformer are constructed (query
Q, key K , and value V). Each of the components accepts the block encoding from
the prior component as the input and prepares a block encoding of the target matrix
using quantum linear algebra as the output.

Under the above assumptions about access to the read-in protocols, the following
theorem indicates how to implement a single-head and single-block Transformer
architecture in Eq. (5.5) on the quantum computer.

5.2 Fault-Tolerant Quantum Transformer 185

Fig. 5.2 Overview of the single-layer decoder-only quantum transformer

Theorem 5.1 (Quantum Transformer, Informal) For a single-head and single-
block Transformer depicted in Fig. 5.2, suppose its embedding dimension is d and
its input sequence S has the length = 2N

.. Under Assumption 5.1 about the input
oracles, for the index j ∈ []., one can construct an .-accurate quantum circuit for
the quantum state proportional to

.

d

k=1

Transformer(S, j)k|k , (5.8)

by using Õ dN2αsαw log2(1 . times of the input block encodings.

This theorem is demonstrated by explicitly designing the quantum circuit for
each computation block of the Transformer architecture in a coherent way, i.e.,
without intermediate measurement. In addition, a subsequent transformation of
the amplitude-encoded state, followed by measurement in the computational basis,
yields the index of the next predicted token based on the probabilities modeled by
the Transformer architecture.

Roadmap In the remainder of this section, we detail the implementation of
quantum Transformers, proceeding from the bottom to the top as illustrated in
Fig. 5.2. Specifically, the quantization of the attention block Attention(S, j). is first
demonstrated in Sect. 5.2.1. Next, the quantization of residual connections and
layer normalization operations (i.e., the operation LN(Attention(S, j)). in Eq. (5.5))
is presented in Sect. 5.2.2. Last, the quantization of the fully connected neural
network is exhibited to complete the computation LN(FFN(LN(Attention(S, j)))).

186 5 Quantum Transformer

in Sect. 5.2.3. This end-to-end approach ensures that the generated quantum state
corresponds to the one described in Eq. (5.8).

5.2.1 Quantum Self-Attention

The quantum self-attention block is now described, aiming to complete the compu-
tation:

. Attention(Q,K, V) = softmax QK /α0 V =: Gsoft

in Eq. (5.1) on quantum computers. More specifically, under Assumption 5.1, the
quantum self-attention block outputs a block encoding of a matrix G whose j -th
row is the same as the output of the classical attention block, as described in the
following theorem.

Theorem 5.2 (Quantum Self-Attention) Let α0 = α2
s α

2
w .. For the index j ∈ [].,

one can construct a block encoding of a matrix G such that G = Gsoft
j

:=
(softmax QK /α0 V) ..

Remark
For quantum self-attention, a slight change is made by setting the scaling
factor α0 = α2

s α
2
w . for the following reasons. The first is that the usual setting

α0 = 1/
√

d . is chosen somewhat heuristically, and there are already some
classical works considering different scaling coefficients which may even
achieve better performance [13, 14]. The second, which is more important, is
that the quantum input assumption using the block encoding format naturally
contains the normalization factor α . which plays a similar role to the scaling
factor. Therefore, for the quantum case in the context of this work, it suffices
to use α . directly.

The implementation of the quantum self-attention block can be decomposed into
three steps:

1. Construction of the block encoding of the matrix QK . and the matrix V given
access to US ., UWq ., UWk

., and UWv ..
2. Implementation of the quantum algorithm to compute the softmax function

softmax QK /α0 . given access to UKQ ..
3. Multiply with V via the product of block encodings.

In what follows, the implementation of each step is iteratively detailed.

5.2 Fault-Tolerant Quantum Transformer 187

Step I The construction of the block encoding of matrix QK . and V builds upon
the employment of F act 2.3. That is, given access to (α, a).-encoding UA . of matrix A
and (β, b).-encoding UB . of matrix B, an (αβ, a+b).-encoding can be constructed for
the matrix AB. This result leads to the efficient construction of the block encodings
of QK . and V asz summarized below .

– For the matrix V = WvS ., it is straightforward to set A = Wv . and B = S . to
construct the (αv, av).-encoding UV ., where αv = αsαw . and av = as + aw ..

– For the matrix QK ., we first use Fact 2.3 to construct the (αq, aq).-encoding UQ .

and (αk, ak).-encoding UK . with Q = WqS . and K = WkS ., respectively. Then,
we use Fact 2.3 again to construct the (α0, a0).-encoding UQK . of QK ., where
α0 = α2

s α
2
w . and a0 = 2as + 2aw .. Note that for a real matrix M and its block

encoding unitary UM ., U
†
M . is the block encoding of M ..

Step II Once the unitary UQK . is prepared, the quantum algorithm corresponding
to the softmax function, i.e., softmax(QK /α0)., is implemented. Note that the
softmax function relies on the exponential function, which is generally resource-
intensive to implement on quantum computers. To circumvent this bottleneck,
the quantum Transformer uses polynomial functions to approximate the softmax
function, as supported by the following fact.

Fact 5.1 For x ∈ [−1, 1]., the function f (x) := ex
. can be approximated with error

bound . with an O(log(1 .-degree polynomial function.

The insight provided by Fact 5.1 is to use polynomial functions to approximate
the softmax function, i.e., exp ◦(QK /α0). is first approximated using polynomial
functions and then multiplied with different coefficients (normalization) for each
row.

Remark
The notation exp ◦(A). indicates that the exponential operation is applied
element-wise to each entry of the matrix A, rather than representing a matrix
exponential.

Moreover, the element-wise functions mean that functions are imple-
mented on each matrix element.

In this context, the challenge of implementing a quantized softmax function
reduces to the implementation of a quantized polynomial function. The key
technique for achieving this lies in applying polynomial functions to each element
of block-encoded matrices, as detailed in the following lemma.

Lemma 5.1 (Element-Wise Polynomial Function of Block-Encoded Matrix)
Let N, k ∈ N.. Given access to an (α, a).-encoding of a matrix A ∈ C2N×2N

. and

188 5 Quantum Transformer

an r-degree polynomial function fr(x) = r
j=1 cj x

j
., cj ∈ C. for j ∈ [r]., one can

construct a (C, b).-encoding of fr ◦ (A/α). by using O r2
. times the input unitary,

where C := r
j=1 |cj |., b := ra + (r − 1)N log(r + 1) ..

Moreover, for a polynomial function gr(x) = r
j=0 cj x

j
. with constant term c0 .,

one can construct a (C , b).-encoding of gr ◦ (A/α)., where C = rc0 + C ..

Proof of Lemma 5.1 To achieve this implementation, two state-preparation uni-
taries PL . and PR . are constructed, which act on log(r + 1) . qubits such that

.PL : |0 log(r+1) 1√
C

r

j=1

|cj ||j , . (5.9)

PR : |0 log(r+1) 1√
C

r

j=1

|cj |eiθj |j , (5.10)

where C = r
j=1 |cj |. and |cj |eiθj = cj .. These two unitaries encode the polynomial

coefficients {cj }. into the quantum circuit, which is needed for block encoding via
the linear combination of unitaries indicated in Fact 2.2. Note that the construction
of PL . and PR . is efficient for small r , as the corresponding circuit is O(r).-depth with
only elementary quantum gates [15, 16].

For j ∈ [r]., let UAj . be the (1, ja + (j − 1)N).-encoding of

. (A/α)◦j := (A/α) ◦ (A/α) ◦ · · · ◦ (A/α)

j−1 times of Hadamard product

,

which is constructed by iteratively applying Lemma 2.1. Now, the construction of
the unitary W = r

j=1 |j j |⊗UAj +(I2 log r − r
j=1 |j j |)⊗Ira+rn . is described.

Instead of preparing block encodings of A◦j
. for all j ∈ [r]., it suffices to prepare

block encodings of A◦2j
. for j log r .. As an example, A◦7 = A◦4 · A◦2 · A◦1

..
Combining these together, we need to use O log r

j=1 2j = O(r). times of UA . to
construct (ra + (r − 1)N + 2 log r).-qubit unitary W . By Fact 2.2, a (C, ra + (r −
1)N + 2 log r).-encoding of fr ◦ (A/α). can be implemented.

To implement element-wise functions including constant terms, access to the
block encoding of a matrix whose elements are all 1 is also needed. Notice that
this matrix can be written as the linear combination of the identity matrix and the
reflection operator, i.e.,

.

k,k ∈[2N]
|k k | = 2N

2

⎛
⎝I2N −

⎛
⎝I2N − 2

2N

k,k ∈[2N]
|k k |

⎞
⎠
⎞
⎠ . (5.11)

=
2N

2
I2N − H⊗N

I2N − 2|0N 0N | H⊗N , (5.12)

5.2 Fault-Tolerant Quantum Transformer 189

where H is the Hadamard gate. Define Uref = |0 0| ⊗ I2N + |1 1| ⊗ H⊗N(I2N −
2|0N 0N |)H⊗N

.. By direct computation, one can show that U0 = (XH ⊗
I2N)Uref(H ⊗ I2N). is an (2N, 1).-encoding of k,k |k k |.. One can achieve the
element-wise function by following the same steps as above and taking linear
combinations among U0, . . . , UAr .. A point to notice is that only (2N, 1).-encoding
of the matrix whose elements are all 1 can be constructed since the spectral norm of
this matrix is 2N

.. Therefore, 2Nc0 . s encoded into the state instead of c0 . to amplify
the constant term.

Supported by the above lemma, Step II (i.e., the quantum softmax for self-
attention) can be completed, as shown in the following theorem.

Theorem 5.3 (Quantum Softmax for Self-Attention, Informal) Given an (α, a).-
encoding UA . of a matrix A ∈ R ×

., a positive integer d, and an index j ∈ []., one
can prepare a state encoding of

. |Aj :=
k=1

softmax (A/α)jk|k
1

Zj k=1

exp ◦ A

2α jk
|k ,

where Zj = k=1 exp ◦(A/α)jk ..

Proof Sketch of Theorem 5.3 First, the block encoding of exp ◦(A
2α

). is con-
structed. Note that Taylor expansion of exp(x). contains a constant term 1. This
can be achieved with Lemma 5.1 and Fact 5.1. Here, since we are only focusing on
the j -th row, instead of taking linear combination with the matrix whose elements
are all 1, we take sum with the matrix whose j -th row elements are all 1 and else
are 0. This enables us to have a better dependency on ., i.e., from . to

√
.. For

index j ∈ []., let Uj : |0 j .. One can achieve this by changing Eq. (5.12) to
the following:

.

k

|j k| =
√
2

UjH
⊗N − Uj I2N − 2|0N 0N | H⊗N . (5.13)

Following the same steps in Lemma 5.1, one can achieve the construction. There
are two error terms in this step. Denote Uf ◦(A) . as the constructed block encoding
unitary. By Lemma 5.1 and some additional calculation, one can show that Uf ◦(A) . is

a block encoding of exp ◦ A
2α

.. Note that exp ◦ A
2α jk

= exp ◦ A
2α kj

.. With unitary

U
†
f ◦(A)(I ⊗ Uj). and amplitude amplification, one can prepare a state encoding of

the target state

.|Aj := 1

Zj k=1

exp ◦ A

2α jk
|k , (5.14)

190 5 Quantum Transformer

where Zj = k=1 exp ◦(A/α)jk . is the normalization factor of softmax function
for the j -th row.

Step III Finally, the matrix multiplication with V is implemented. This can be
easily achieved by using F act 2.3, with U

†
f (QK)

. and UV .. Consequently, an encoded
quantum state is obtained, analogous to

.

k

softmax QK /α0 V
jk

|k . (5.15)

Combining the results of Steps I, II, and III, the proof of Theorem 5.2 can be
presented below.

Proof of Theorem 5.2 In the first step, the block encoding of matrix QK . and V is
constructed. Note that for a real matrix M and its block encoding unitary UM ., U

†
M .

is the block encoding of M .. By Fact 2.3, one can construct an (α0, a0).-encoding
UQK . of QK ., where α0 := α2

s α
2
w . and a0 = 2as + 2aw .. One can also construct an

(αv, av).-encoding UV . of V , where αv = αsαw . and av = as + aw ..
By Theorem 5.3, using UQK ., one can prepare a state encoding of the state:

.

k=1

softmax QK /α0 jk
|k ,

where Zj = k=1 exp ◦(QK /α0)jk .. Remember that state encoding is also a
block encoding. By Lemma 2.1, one can construct a block encoding of a matrix
whose j -th column is

. softmax QK /α0 j1, . . . , softmax QK /α0

ignoring other columns. Let this block encoding unitary be Uf (QK) ..

Last, by exploiting Fact 2.3 again, with U
†
f (QK)

. and UV ., we obtain an encoded
quantum state analogous to

.

k

softmax QK /α0 V
jk

|k .

5.2 Fault-Tolerant Quantum Transformer 191

5.2.1.1 Extension to Implement Quantum Masked Self-Attention

This section considers the implementation of the masked self-attention, which is
essential for the decoder-only structure. This can be achieved by slightly changing
some steps as introduced in previous theorems.

Corollary 5.1 (Quantum Masked Self-Attention) For the index j ∈ []., one can

construct a block encoding of a matrix Gmask
. such that Gmask = softmax QK

α0
+

M V ., where M is the masked matrix as Eq. (5.2), Zj = k=1 exp ◦ QK
α0

+
M

jk
..

Proof of Corollary 5.1 To achieve masked self-attention, the steps mentioned in
Theorem 5.3 are slightly modified.

First, to approximate the exponential function, the approach of using a matrix
where all elements in the j -th row are set to 1 while other rows remain 0 is extended.
Instead, this approach is refined by considering only the first 2 log(j+1)

. elements in
the j -th row to be 1. Note that this matrix can be achieved similarly to the original
one. The encoding factor of this matrix is 2 log(j+1) /2

..
Second, after approximating the function, for index j ∈ []., the block encoding

is multiplied with a projector k,k≤j |k k|. to mask the elements. Though the
projector k∈S |k k|. for S ⊆ []. is not unitary in general, one can construct a
block encoding of the projector as it can be written by the linear combination of two
unitaries:

.

k∈S
|k k| = 1

2
I+ 1

2
2

k∈S
|k k| − I . (5.16)

Define Uproj := |0 0| ⊗ I + |1 1| ⊗ (2 k∈S |k k| − I).. One can easily verify
that (H ⊗ I)Uproj(H ⊗ I). is a (1, 1, 0).-encoding of k∈S |k k|., where H is the
Hadamard gate. The following steps follow the same with Theorems 5.2 and 5.3.

One may further achieve the multihead self-attention case by using the linear
combination of unitaries.

5.2.2 Quantum Residual Connection and Layer Normalization

This subsection discusses the implementation of the residual connection with layer
normalization on a quantum computer. The implementation of the layer norm block,
as shown in Fig. 5.2, continues based on the result in Theorem 5.2.

192 5 Quantum Transformer

Theorem 5.4 (Quantum Residual Connection with Layer Normalization)
Given access to the block encoding of the matrix G in Theorem 5.2, one can
construct a quantum-encoded state:

.

d

k=1

LN Gsoft
j , Sj k

|k 1

ς

d

k=1

Gsoft
jk + Sjk − s̄j |k ,

where s̄j := 1
d

d
k=1 Gsoft

jk + Sjk . and ς := d
k=1 Gsoft

jk + Sjk − s̄j
2
..

Proof of Sketch of Theorem 5.4 As shown in Theorem 5.2, a block encoding of a
matrix G whose j -th row is the same row as that of Gsoft

. can be constructed. By
Assumption 5.1, Us ., an (αs, as).-encoding of S, is provided. By Lemma 2.4 with the
state preparation pair (P, P). such that

.P |0 1√
αg + αs

√
αg|0 √

αs |1 , (5.17)

one can construct a quantum circuit Ures . which is an (αg + αs, ag + 1).-encoding of
an × d . matrix whose j -th row is the same as that of Gsoft + S ..

Now, the creation of a block encoding of a diagonal matrix s̄j · I., where
s̄j := 1

d
d
k=1 Gsoft

jk + Sjk ., is considered. Define a unitary as H log d := H⊗ log d
..

Note that H log d
. is a (1, 0, 0).-encoding of itself, and the first column of H log d

. is
1√
d
(1, . . . , 1) .. By Fact 2.3, one can multiply Gsoft + S . with H log d

. to construct a

block encoding of an × d . matrix, whose (j, 1).-element is
√

ds̄i .. One can further
move this element to (1, 1). by switching the first row with the j -th row. By tensor
product with the identity I. of log d . qubits, one can construct a block encoding of √

ds̄i · I..
With Uj : |0 j ., one can prepare the state:

. U†
res(I⊗ Uj)|0 0

1

αg + αs

|0
d

k=1

ψk|k 1 − k ψ2
k

(αg + αs)2
|1 bad .

(5.18)

By the diagonal block encoding of amplitudes mentioned as Fact 2.6, this can be
converted to a block encoding of the diagonal matrix diag(Gj1 + Sj1, . . . , Gjd +
Sjd)..

By taking the linear combination as Fact 2.4 with state preparation pair (P1, P2).,
where

.P1|0 1

1 + 1/
√

d

|0 1√
d

|1 (5.19)

5.2 Fault-Tolerant Quantum Transformer 193

and

.P2|0 1

1 + 1/
√

d

|0 1√
d

|1 , (5.20)

one can construct a block encoding of diag Gj1 + Sj1 − s̄j , . . . , Gjd + Sjd − s̄j .,
and we call it ULN .. Then, the unitary ULN I ⊗ H log d

. is an state encoding of the
state

.
1

ς

d

k=1

Gsoft
jk + Sjk − s̄j |k ,

where ς := d
k=1 Gsoft

jk + Sjk − s̄j
2
..

5.2.3 Quantum Feed-Forward Neural Network

Attention is now turned to the third main building block of the transformer archi-
tecture, the feed-forward neural network. This block often is a relatively shallow
neural network with linear transformations and ReLU activation functions [1].
More recently, activation functions such as the GELU have become popular, being
continuously differentiable. We highlight that they are ideal for quantum Trans-
formers, since the QSVT framework requires functions that are well approximated
by polynomial functions. Functions like ReLU(x) = max(0, x).cannot be efficiently
approximated. The GELU is constructed from the error function, which is efficiently
approximated as follows.

Fact 5.2 (Polynomial Approximation of Error Function [17]) Let 0.. For
every k > 0., the error function erf(kx) := 2√

π

kx

0 e−t2
dt . can be approximated

with error up to . by a polynomial function with degree O k log 1
..

This lemma implies the following efficient approximation of the GELU function
with polynomials.

Corollary 5.2 (Polynomial Approximation of GELU Function) Let 0. and
λ ∈ O(1).. For every k > 0. and x ∈ [−λ, λ]., the GELU. function GELU(kx) :=
kx · 1

2 1+erf kx√
2

. can be approximated with error up to .by a polynomial function

with degree O k log kλ
..

Proof of Corollary 5.2 It suffices to approximate the error function with precision

kλ
. by Fact 5.2.

194 5 Quantum Transformer

The following theorem considers the implementation of the two-layer feed-
forward network on quantum computers. As mentioned, the GELU function is
widely used in transformer-based models and is explicitly considered as the
activation function in the theorem. Cases for other activation functions like sigmoid
follow the same analysis. An example is the tanh(x). function, which can be well
approximated by a polynomial for x ∈ [−π/2, π/2]. [18].

Theorem 5.5 (Two-Layer Feed-Forward Network with GELU Function, Infor-
mal) Assume we have access to (α, a).-state encoding of an N -qubit state |ψ

2N

k=1 ψk|k ., where {ψk}. are real and ψ 2 = 1.. Further, assume access to
(αm, am).-encodings UM1 .and UM2 .of weight matrices M1 ∈ Rd ×d

.and M2 ∈ Rd×d
..

Let the activation function be GELU(x) := x · 1
2 1 + erf x√

2
.. One can prepare a

state encoding of the state:

.|φ 1

C

d

k=1

M2 · GELU(M1 · ψ)
k
|k , (5.21)

where C is the normalization factor .

Proof of sketch of Theorem 5.5 The proof proceeds as follows. Recall that

.(I2a ⊗ UM1)(I2am ⊗ Uψ)|0a+am+N 1

ααm

|0a+am M1|ψ , (5.22)

where | . is an unnormalized orthogonal state. For the case d ≥ ., this can
be achieved by padding ancilla qubits to the initial state. By Fact 2.6, one can
construct a block encoding of the diagonal matrix diag((M1ψ)1, . . . , (M1ψ)d)..
Note that the GELU. function does not have a constant term and is suitable to use
the importance-weighted amplitude transformation as in [19]. Instead of directly
implementing the GELU function, the function f (x) = 1

2 1 + erf x√
2

. is first

implemented. Note that the value of |erf(x)|. is upper bounded by 1. By Fact 2.6
with function 1

4 1 + erf ααm
x√
2

., one can construct a block encoding of matrix

diag f (M1ψ)1, . . . , f (M1ψ)d ..
Let the previously constructed block encoding unitary be Uf (x) .. We have

. Uf (x)(I⊗ UM1)(I⊗ Uψ)|0 0
1

2ααm

|0
k

GELU(M1ψ)k|k ⊥ ,

(5.23)

5.3 Runtime Analysis with Quadratic Speedups 195

where |⊥ . is an unnormalized orthogonal state. Finally, by implementing the block
encoding unitary UM2 ., the result is

. (I⊗ UM2)(I⊗ Uf (x))(I⊗ UM1)(I⊗ Uψ)|0 0

= C

2αα2
m

|0
d

k=1

M2 · GELU(M1 · ψ)
k
|k ⊥ , (5.24)

where C is the normalization factor and |⊥ . is an unnormalized orthogonal state.

Remark
The quantum feed-forward network discussed in this subsection is a quantum
implementation of the classical feed-forward network under the input assump-
tion of block encoding, which is essentially different from the quantum analog
of neural networks introduced in Chap. 4.

5.3 Runtime Analysis with Quadratic Speedups

This section provides a combined analytical and numerical analysis to explore the
potential of a quantum speedup in time complexity.

5.3.1 Overview

With the quantum implementation of self-attention, residual connection, layer nor-
malization, and feed-forward networks, the quantum transformer can be constructed
by combining these building blocks as in Theorem 5.1.

This final complexity is obtained on the basis of the following considerations: the
single-head and single-block transformer architecture includes one self-attention,
one feed-forward network, and two residual connections with layer normalization,
as shown in Fig. 5.2.

Starting from the input assumption as Assumption 5.1, for the index j ∈ [].,
the block encoding of the self-attention matrix is first constructed, as described in
Sect. 5.2.1. This output can be directly the input of the quantum residual connection
and layer normalization, as Sect. 5.2.2, which output is a state encoding. Remind
the definition of state encoding as Definition 2.10. The state encoding can directly
be used as the input of the feed-forward network, as Sect. 5.2.3. Finally, we put

196 5 Quantum Transformer

the output of the feed-forward network, which is a state encoding, into the residual
connection block. This is possible by noticing that state encoding is a specific kind
of block encoding. Multiplying the query complexity of these computational blocks,
one can achieve final result. The detailed analysis of runtime is referred to Guo et
al. [20]

As Theorem 5.1 shows, the quantum transformer uses O(dN2αsαw). times
the input block encodings, where αs . and αw . are encoding factors. By analyzing
naive matrix multiplication, the runtime of classical single-head and single-block
Transformer during the inference stage is O + d2)., where d is the embedding
dimension and = 2N

. is the input sequence length. From the comparison, it can
be seen that αs . and αw . are the dominant factors that affect the potential quantum
speedup. The properties of these two factors will be explored via numerical studies.

5.3.2 Empirical Studies of Potential Quantum Speedups

The encoding factors αs . and αw . appear in the block encodings of matrices S and
Wq,Wk,Wv .. Recall that the encoding factor α . is lower bounded by the spectral
norm of a block-encoded matrix A, i.e., α A .. Given access to quantum random
access memory (QRAM) and a quantum data structure [21, 22], there are well-
known implementations that enable the construction of a block encoding for an
arbitrary matrix A where the encoding factor is upper bounded by the Frobenius
norm A F .. Based on these considerations, these two norms of the input matrices
of several open-source large language models are numerically studied1 to provide
upper and lower bound of αs . and αw ..

The input sequence matrix S, which introduces the dependency on ., is first
investigated. Input data in real-world applications sampled from the widely used
Massive Multitask Language Understanding (MMLU) dataset [23] are considered,
covering 57 subjects across science, technology, engineering, mathematics, the
humanities, the social sciences, and more. The scaling of the spectral norm and
Frobenius norm of S on the MMLU dataset is demonstrated in Fig. 5.3. It can be
found that the matrix norms of the input matrix of all LLMs scale at most as O(

√
..

As additional interest, this analysis of the matrix norm provides new insights
for the classical tokenization and embedding design. It can be observed that
comparatively more advanced LLM models like Llama2-7b and Mistral-7b have
large variances of matrix norms. This phenomenon is arguably the consequence of
the training in those models; the embeddings that frequently appear in the real-world
dataset are actively updated at the pretraining stage and, therefore, are more broadly
distributed.

1 Parameters are obtained from the Hugging Face website, which is an open-source platform for
machine learning models.

https://huggingface.co/

5.4 Code Demonstration 197

Fig. 5.3 Scaling of the spectral norm S . and the Frobenius norm S F . with . for each model,
displayed on logarithmic scales for both axes

The spectral and Frobenius norms of weight matrices (Wq,Wk,Wv .) for the large
language models are then computed. The result can be seen in Fig. 5.4. Many of the
LLMs below a dimension d of 103

. that we have checked have substantially different
norms. It is observed that for larger models such as Llama2-7b and Mistral-7b,
which are close to the current state-of-the-art open-source models, the norms do not
change dramatically. Therefore, it is reasonable to assume that the spectral norm and
the Frobenius norm of the weight matrices are at most O(

√
d). for advanced LLMs.

Given these numerical experiments, it is reasonable to assume that αs = O(
√

.

and αw = O(
√

d)., and we obtain a query complexity of the quantum transformer

in O(d
3
2
√

.. We continue with a discussion of the possible time complexity.
With the QRAM assumption, the input block encodings can be implemented in a
polynomially logarithmic time of .. Even without a QRAM assumption, there can
be cases when the input sequence is generated efficiently, for example, when the
sequence is generated from a differential equation, see additional discussions in the
supplementary material. In these cases, we demonstrate that a quadratic speedup of
the runtime of a single-head and single-block Transformer can be expected.

5.4 Code Demonstration

This section explains how self-attention works with a simple concrete example.
Consider a short sequence of three words: “the cat sleeps.”

First, we convert each word into an embedding vector. For this toy example, very
small four-dimensional embeddings are used:

198 5 Quantum Transformer

Fig. 5.4 Norms of weight matrices across open-source LLMs

1 The = [1, 0, 1, 0]
2 cat = [0, 1, 1, 1]
3 sleeps = [1, 1, 0, 1]

In self-attention, each word needs to “attend” to all other words in the sequence.
This happens through three key steps using learned weight matrices (Wq ., Wk ., Wv .)
to transform the embeddings into queries, keys, and values. When word embeddings
are multiplied by these matrices, the result is

1 import numpy as np
2

3 # Input tokens (3 tokens, each with 3 features)
4 S = np.array([
5 [1, 0, 1, 0], # for "The"
6 [0, 1, 1, 1], # for "cat"
7 [1, 1, 0, 1] # for "sleeps"
8])
9

10 # Initialize weights for Query, Key, and Value (4x3 matrices)
11 W_q = np.array(
12 [
13 [0.2, 0.4, 0.6, 0.8],
14 [0.1, 0.3, 0.5, 0.7],
15 [0.9, 0.8, 0.7, 0.6],
16 [0.5, 0.4, 0.3, 0.2],
17]
18)
19

20 W_k = np.array(

5.4 Code Demonstration 199

21 [
22 [0.1, 0.3, 0.5, 0.7],
23 [0.6, 0.4, 0.2, 0.1],
24 [0.8, 0.9, 0.7, 0.6],
25 [0.2, 0.1, 0.3, 0.4],
26]
27)
28

29 W_v = np.array(
30 [
31 [0.3, 0.5, 0.7, 0.9],
32 [0.6, 0.4, 0.2, 0.1],
33 [0.8, 0.9, 0.7, 0.6],
34 [0.5, 0.4, 0.3, 0.2],
35]
36)
37

38 # Compute Query, Key, and Value matrices
39 Q = S @ W_q
40 K = S @ W_k
41 V = S @ W_v

Next, attention scores are computed by multiplying Q and K . and then applying
softmax.

1 # Compute scaled dot-product attention
2 d = Q.shape[1] # Feature dimension
3 attention_scores = Q @ K.T / np.sqrt(d)
4

5 def softmax(x):
6 """Compute softmax values for each set of scores in x."""
7 return np.exp(x) / np.sum (np.exp(x), axis=1, keepdims=True

)
8

9 attention_weights = softmax(attention_scores)

The attention weight would be

. softmax
Q · K√

4
=
⎡
⎣0.324 0.467 0.209

0.305 0.515 0.180
0.346 0.432 0.222

⎤
⎦ .

The final output captures how each word relates to every other word in the sentence.
In this case, “sleeps” pays most attention to “cat” (0.432), some attention to “The”
(0.346), and less attention to itself (0.222). Finally, these scores are used to create a
weighted sum of the values:

1 output = attention_weights @ V

200 5 Quantum Transformer

The final output is

. output =
⎡
⎣1.536 1.519 1.265 1.157

1.566 1.536 1.261 1.137
1.512 1.507 1.269 1.174

⎤
⎦ .

5.5 Bibliographic Remarks

Transformer architecture has profoundly revolutionized AI and has broad impacts.
As classical computing approaches its physical limitations, it is important to ask
how we can leverage quantum computers to advance Transformers with better
performance and energy efficiency. Besides the fault-tolerant quantum Transformers
introduced in Sect. 5.2, multiple works are advancing this frontier from various
perspectives.

One aspect is to design novel quantum neural network architectures introduced
in Chap. 4 with the intuition from the Transformer, especially the design of the
self-attention block. In particular, Li et al. [24] propose the quantum self-attention
neural networks and verify their effectiveness with the synthetic datasets of quantum
natural language processing. There are several follow-up works along this direction
[25–27].

Another research direction is exploring how to utilize quantum processors to
advance certain parts of the transformer architecture. Specifically, Gao et al. [28]
consider how to compute the self-attention matrix under sparse assumption and
show a quadratic quantum speedup. Liu et al. [29] harness quantum neural networks
to generate weight parameters for the classical model. In addition, Liu et al. [30]
devise a quantum algorithm for the training process of large-scale neural networks,
implying an exponential speedup under certain conditions. Several other works
consider machine learning related optimization problems [31–34].

Despite the progress made, several important questions remain unresolved.
Among them, one key challenge is devising efficient methods to encode classical
data or parameters onto quantum computers. Currently, most quantum algorithms
can only implement one or at most constant layers of Transformers [20, 35, 36]
without quantum tomography. Are there effective methods that can be generalized to
multiple layers, or is achieving this even necessary? Moreover, given the numerous
variants of the classical Transformer architecture, can these variants also benefit
from the capabilities of quantum computers? Lastly, if one considers training a
model directly on a quantum computer, is it possible to do so in a “quantum-native”
manner—avoiding excessive data read-in and read-out operations?

References 201

References

1. Vaswani, A. (2017). Attention is all you need. In Advances in neural information processing
systems.

2. Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with
subword units. In K. Erk & N. A. Smith (Eds.), Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, Berlin, Germany, August 2016 (Vol. 1: Long
papers, pp. 1715–1725). Association for Computational Linguistics. https://doi.org/10.18653/
v1/P16-1162. https://aclanthology.org/P16-1162

3. Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In E. Blanco & W. Lu (Eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, Brussels, Belgium, November 2018 (pp. 66–71). Association for
Computational Linguistics. https://doi.org/10.18653/v1/D18-2012. https://aclanthology.org/
D18-2012.

4. Mielke, S. J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M., Gallé, M., Raja, A., Si, C., Lee,
W. Y., Sagot, B., & Tan, S. (2021). Between words and characters: A brief history of open-
vocabulary modeling and tokenization in NLP. arXiv:2112.10508.

5. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
arXiv:1512.03385.

6. Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. https://arxiv.org/abs/1607.
06450

7. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio &
Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, May 7–9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6980

8. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Steiner, B., & Rolland,
H. (2018). Quantization and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 2704–2713).

9. Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and connections for
efficient neural networks. In Advances in neural information processing systems (NeurIPS)
(pp. 1135–1143).

10. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019).
Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

11. McDonald, J., Li, B., Frey, N., Tiwari, D., Gadepally, V., & Samsi, S. (2022). Great power,
great responsibility: Recommendations for reducing energy for training language models. In
Findings of the Association for Computational Linguistics: NAACL 2022. https://doi.org/10.
18653/v1/2022.findings-naacl.151

12. Desislavov, R., Martínez-Plumed, F., & Hernández-Orallo, J. (2023). Trends in AI inference
energy consumption: Beyond the performance-vs-parameter laws of deep learning. Sustainable
Computing: Informatics and Systems, 38, 100857. ISSN 2210-5379. https://doi.org/10.1016/j.
suscom.2023.100857. https://www.sciencedirect.com/science/article/pii/S2210537923000124

13. Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J.,
Chen, W., & Gao, J. (2022). Tensor programs v: Tuning large neural networks via zero-shot
hyperparameter transfer. arXiv:2203.03466.

14. Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S., Dong, L., Wang, R., Xue, J., & Wei,
F. (2024). The era of 1-bit LLMs: All large language models are in 1.58 bits. arXiv:2402.17764.

15. Sun, X., Tian, G., Yang, S., Yuan, P., & Zhang, S. (2023). Asymptotically optimal circuit depth
for quantum state preparation and general unitary synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(10), 3301–3314 (2023). ISSN 1937-4151.
https://doi.org/10.1109/TCAD.2023.3244885. https://ieeexplore.ieee.org/document/10044235

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.18653/v1/2022.findings-naacl.151
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/TCAD.2023.3244885
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235
https://ieeexplore.ieee.org/document/10044235

202 5 Quantum Transformer

16. Zhang, X-M., Li, T., & Yuan, X. (2022). Quantum state preparation with optimal circuit depth:
Implementations and applications. Physical Review Letters, 129(23), 230504. https://doi.org/
10.1103/PhysRevLett.129.230504

17. Low, G. H. (2017). Quantum signal processing by single-qubit dynamics. Thesis, Mas-
sachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/115025

18. Guo, N., Mitarai, K., & Fujii, K. (2024). Nonlinear transformation of complex amplitudes via
quantum singular value transformation. Physical Review Research, 6, 043227. https://doi.org/
10.1103/PhysRevResearch.6.043227

19. Rattew, A. G., & Rebentrost, P. (2023). Non-linear transformations of quantum amplitudes:
Exponential improvement, generalization, and applications. https://arxiv.org/abs/2309.09839

20. Guo, N., Yu, Z., Choi, M., Agrawal, A., Nakaji, K., Aspuru-Guzik, A., & Rebentrost, P. (2024).
Quantum linear algebra is all you need for transformer architectures. https://arxiv.org/abs/2402.
16714

21. Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis.
Nature Physics, 10(9), 631–633. ISSN 1745-2481. https://doi.org/10.1038/nphys3029

22. Kerenidis, I., & Prakash, A. (2016). Quantum recommendation systems. arXiv:1603.08675.
23. Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J. (2021).

Measuring massive multitask language understanding. In Proceedings of the International
Conference on Learning Representations (ICLR).

24. Li, G., Zhao, X., & Wang, X. (2023). Quantum self-attention neural networks for text
classification. https://arxiv.org/abs/2205.05625

25. Cherrat, E. A., Kerenidis, I., Mathur, N., Landman, J., Strahm, M., & Li, Y. Y. (2024). Quantum
vision transformers. Quantum, 8, 1265. ISSN 2521-327X. https://doi.org/10.22331/q-2024-
02-22-1265

26. Evans, E. N., Cook, M., Bradshaw, Z. P., & LaBorde, M. L. (2024). Learning with sasquatch:
A novel variational quantum transformer architecture with Kernel-based self-attention. https://
arxiv.org/abs/2403.14753

27. Widdows, D., Aboumrad, W., Kim, D., Ray, S., & Mei, J. (2024). Quantum natural language
processing. https://arxiv.org/abs/2403.19758

28. Gao, Y., Song, Z., Yang, X., & Zhang, R. (2023). Fast quantum algorithm for attention
computation. https://arxiv.org/abs/2307.08045

29. Liu, C.-Y., Yang, C.-H. H., Hsieh, M.-H., & Goan, H.-S. (2024). A quantum circuit-based
compression perspective for parameter-efficient learning. https://arxiv.org/abs/2410.09846

30. Liu, J., Liu, M., Liu, J.-P., Ye, Z., Wang, Y., Alexeev, Y., Eisert, J., & Jiang, L. (2024).
Towards provably efficient quantum algorithms for large-scale machine-learning models.
Nature Communications, 15(1), 434.

31. Yang, S., Guo, N., Santha, M., & Rebentrost, P. (2023). Quantum Alphatron: Quantum
advantage for learning with Kernels and noise. Quantum, 7, 1174. ISSN 2521-327X. https://
doi.org/10.22331/q-2023-11-08-1174

32. Zhang, C., & Li, T. (2024). Comparisons are all you need for optimizing smooth functions.
https://arxiv.org/abs/2405.11454

33. Wang, H., Zhang, C., & Li, T. (2024). Near-optimal quantum algorithm for minimizing the
maximal loss. https://arxiv.org/abs/2402.12745

34. Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F., & Lloyd, S. (2018). Quantum gradient
descent and newton’s method for constrained polynomial optimization. https://arxiv.org/abs/
1612.01789

35. Liao, Y., & Ferrie, C. (2024). GPT on a quantum computer. https://arxiv.org/abs/2403.09418
36. Khatri, N., Matos, G., Coopmans, L., & Clark, S. (2024). Quixer: A quantum transformer

model. https://arxiv.org/abs/2406.04305

https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://dspace.mit.edu/handle/1721.1/115025
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://doi.org/10.1103/PhysRevResearch.6.043227
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2309.09839
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://arxiv.org/abs/2402.16714
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625
https://arxiv.org/abs/2205.05625
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.22331/q-2024-02-22-1265
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.14753
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2403.19758
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2410.09846
https://arxiv.org/abs/2410.09846
https://arxiv.org/abs/2410.09846
https://arxiv.org/abs/2410.09846
https://arxiv.org/abs/2410.09846
https://arxiv.org/abs/2410.09846
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://doi.org/10.22331/q-2023-11-08-1174
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2405.11454
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/2402.12745
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2403.09418
https://arxiv.org/abs/2406.04305
https://arxiv.org/abs/2406.04305
https://arxiv.org/abs/2406.04305
https://arxiv.org/abs/2406.04305
https://arxiv.org/abs/2406.04305
https://arxiv.org/abs/2406.04305

Chapter 6
Conclusion

Abstract This chapter concludes the tutorial by highlighting the potential of
quantum machine learning (QML) to accelerate scientific discovery and real-world
applications. It revisits the tutorial’s key themes, including quantum adaptations of
classical models, theoretical insights, and implementation on near-term and future
quantum devices. The chapter also emphasizes the importance of QML in domains
such as drug discovery, material science, and optimization, where classical methods
face scalability limits.

This tutorial systematically explores the landscape of quantum machine learning,
covering foundational principles, the adaptation of classical models to quantum
frameworks, and the theoretical underpinnings of quantum algorithms. By providing
practical implementations and discussing emerging research directions, it aims to
bridge the gap between classical AI and quantum computing for researchers and
practitioners.

The insights gained from this tutorial highlight the potential of quantum machine
learning to revolutionize various domains, from fundamental scientific research to
practical applications in industry. As quantum hardware continues to evolve, quan-
tum machine learning is likely to play a central role in harnessing the computational
advantages of quantum systems. In the meantime, the field of quantum machine
learning faces challenges, as discussed at the end of each chapter. Overcoming these
barriers will be critical for unlocking its full potential.

Moving forward, interdisciplinary collaboration between quantum computing
and AI researchers will be essential for addressing these challenges and realizing
the transformative potential of QML. Overall, it is hoped that this tutorial serves as
a valuable resource for those eager to contribute to this rapidly evolving discipline.

The insights presented in this tutorial underscore the transformative potential of
QML, spanning fundamental scientific research to practical industrial applications.
While this tutorial primarily focuses on machine learning, QML also holds promise
in several key domains. In drug discovery, QML can enhance molecular interaction
simulations, accelerating the identification of promising drug candidates and reduc-
ing development costs. In materials science, quantum models improve the prediction

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3_6

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-1284-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6
https://doi.org/10.1007/978-981-95-1284-3_6

204 6 Conclusion

of material properties, facilitating the discovery of superconductors, energy-efficient
compounds, and high-performance materials. In optimization, QML algorithms
offer advancements in logistics, supply chain management, and energy distribution,
improving efficiency across industries.

As quantum hardware advances, QML is expected to play a central role in
harnessing quantum computational advantages. However, significant challenges
remain, as discussed at the end of each chapter. Overcoming these obstacles is
crucial for unlocking the full potential of QML. Moving forward, interdisciplinary
collaboration between quantum computing and AI researchers will be key to
addressing these challenges and driving future innovations.

Ultimately, this tutorial is hoped to serve as a valuable resource for those eager
to contribute to this rapidly evolving field.

Appendix A
Concentration Inequality

In this section, we introduce some of the most common concentration inequali-
ties in statistical learning theory. These inequalities are widely used in deriving
generalization error bounds for learning models. In practical scenarios, one often
needs to infer properties of an unknown distribution based on finite data samples
drawn from that distribution. Concentration inequalities address the deviations of
functions of independent random variables from their expectations. They provide
tools to analyze the difference between the empirical mean (or some estimate) and
the true expectation of random variables that follow a probability distribution.

We begin by recalling some basic tools that will be used throughout this section.
For any nonnegative random variable X following the probability distribution p(x).,
its expectation can be written as

.EX =
∞

0
xp(x)dx. (A.1)

This leads directly to a fundamental building block for concentration inequalities,
namely, Markov’s inequality.

Lemma A.1 (Markov’s Inequality) For any nonnegative random variable X, and
a positive constant t > 0., we have

.P{X ≥ t} ≤ EX
t

. (A.2)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3

205

https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3

206 A Concentration Inequality

Proof Employing the definition of cumulative distribution function, we have

. P{X ≥ t} =
∞

t

p(x)dt

≤
∞

t

p(x)
x

t
dt

≤
∞

0 p(x)xd

t

≤EX
t

, (A.3)

where the first inequality follows that x/t > 1. in the interval x ∈ [t,∞]. and the
second inequality employs the positiveness of integral term p(x)x/t ..

Using Markov’s inequality, it follows that if φ . is a strictly monotonically increasing,
nonnegative function, then for any random variable X and real number t > 0., we
have

.P{X ≥ t} = P{φ(X) ≥ φ(t)} ≤ Eφ(X)

φ(t)
. (A.4)

An application of this result with φ(x) = x2
. leads to the simplest concentration

inequality, i.e., Chebyshev’s inequality.

Lemma A.2 Let X be an arbitrary random variable and the real number t > 0.,
then

.P{|X − EX| ≥ t} ≤ Var(X)

t2 . (A.5)

Proof Utilizing the extention of Markov’s inequality in Eq. (A.4) with setting
φ(x) = x2

. yields

. P{|X − EX| ≥ t} =P{|X − EX|2 ≥ t2}

≤E(X − EX)2

t2

=Var(X)

t2 . (A.6)

A Concentration Inequality 207

More generally, by taking φ(x) = xq
. (x ≥ 0.), then for any q > 0., we obtain the

following moment-based inequality:

.P{|X − EX| ≥ t} ≤ E(X − EX)q

tq
. (A.7)

Here, the parameter q can be chosen to optimize the upper bound in specific
examples. Such moment bounds often provide sharp estimates for tail probabilities.
A related idea forms the basis of Chernoff’s bounding method. In particular, by
setting φ(x) = esx

. for some s > 0., we can derive a useful upper bound for any
random variable X and t > 0.:

.P{X ≥ t} = P{esX ≥ est } ≤ Ee
sX

est
. (A.8)

In Chernoff’s method, the goal is to choose an appropriate s > 0. to minimize the
upper bound or make it as small as possible.

Now, we turn to concentration inequalities for sums of independent random
variables. Specifically, we aim to bound probabilities of deviations from the mean,
i.e., P{|Sn − ESn| ≥ t}., where Sn = n

i=1 Xi ., and X1, · · · , Xn . are independent
real-valued random variables.

By applying Chebyshev’s inequality to Sn ., we obtain

.P{|Sn − ESn| ≥ t} ≤ Var(Sn)

t2 =
n
i=1 Var(Xi)

t2 . (A.9)

In terms of the sample mean, this can be rewritten as

.P
1

n

n

i=1

Xi − EXi ≥ ε ≤ σ 2

nε2 , (A.10)

where σ 2 = 1
n

n
i=1 Var(Xi).. Chernoff’s bounding method is particularly useful for

bounding tail probabilities of sums of independent random variables. By exploiting
the independence property (i.e., the expected value of a product of independent
random variables equals the product of their expected values), Chernoff’s bound
can be expressed as

. P {Sn − ESn ≥ t} ≤e−st
E exp s

n

i=1

(Xi − EXi)

=e−st
n

i=1

E exp (s(Xi − EXi)) (by independence).

(A.11)

208 A Concentration Inequality

Now, the challenge then becomes finding a good upper bound for the moment
generating function of the random variables Xi − EXi .. For bounded random
variables, one of the most elegant results is Hoeffding’s inequality [6].

Lemma A.3 (Hoeffding’s Inequality) Let X be a random variable w ith EX =
0, a ≤ X ≤ b.. Then, for s > 0.

.E[esx] ≤ exp
s2(b − a)2

8
(A.12)

This lemma, combined with Eq. (A.11), immediately implies Hoeffding’s tail
inequality [6].

Theorem A.1 Let X1, · · · , Xn . be independent bounded random variables such
that Xi . falls in the interval [ai, bi]. with probability one. Then, for any real number
t > 0., we have

.P {Sn − ESn ≥ t} ≤ exp
−2t2

n
i=1(bi − ai)2

, (A.13)

and

.P {Sn − ESn ≤ −t} ≤ exp
−2t2

n
i=1(bi − ai)2

, (A.14)

Hoeffding’s inequality, first proven for binomial random variables by [2] and [9],
provides a powerful tool for bounding tail probabilities. However, a limitation is
that it does not take into account the variance of the Xi .’s, which can sometimes
yield loose bounds.

Appendix B
Haar Measure and Unitary t-Design

In this section, we introduce some basic knowledge of Haar measure [4] and unitary
t-design [3], which are extensively employed in group representation theory and
quantum information [1, 8], especially in the analysis of barren plateaus and the
trainability of variational quantum algorithms [7].

We begin with the Haar measure. Roughly speaking, Haar measure is a unique
probability measure that generates the uniform distribution over a compact group.
In this chapter, we focus on the Haar measure on the unitary space U(d). for
convenience. Mathematically, the Haar measure is uniform given by invariant
properties in Definition B.1.

Definition B.1 (Haar Measure onU(d).) A measure μ. is the Haar measure on the
unitary spaceU(d). if and only if μ. is:

1. Left invariant, i.e., μ(US) = μ(S). for any measurable set S ⊆ U(d). and any
unitary U ∈ U(d)..

2. Right invariant, i.e., μ(SU) = μ(S). for any measurable set S ⊆ U(d). and any
unitary U ∈ U(d)..

3. A probability measure, i.e., dμ(U) = 1..

As provided in Definition B.1, the Haar measure is continuous on the whole space
due to left- and right-invariant properties. Therefore, researchers are interested in
approximating the Haar measure with the uniform distribution over some finite sets.
Specifically, the unitary set whose uniform distribution shares the same t-th moment
with the Haar measure is defined as the unitary t-design.

Definition B.2 (Unitary 2-Design) Let μ. be the Haar measure on the spaceU(d)..
Then, a finite set S. forms a unitary t-design if and only if it fulfills one of the
following equivalent conditions:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Du et al., A Gentle Introduction to Quantum Machine Learning,
https://doi.org/10.1007/978-981-95-1284-3

209

https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3
https://doi.org/10.1007/978-981-95-1284-3

210 B Haar Measure and Unitary t-Design

1.

.
1

|S|
U∈S

U⊗t ⊗ (U†)⊗t =
U(d)

U⊗t ⊗ (U†)⊗t dμ(U).

2. Let Pt,t (U). be the polynomial with at most t degrees of elements from U and at
most t degrees of elements from U†

.. Then

.
1

|S|
U∈S

Pt,t (U) =
U(d)

Pt,t (U)dμ(U).

Corollary B.1 A unitary t-design is also a unitary (t − 1).-design.

We remark that invariant properties of the Haar measure lead to several useful
formulations of unitary t-designs provided in Facts B.1 and B.2.

Fact B.1 (Average over Unitary 1-Design [10]) Let S. be a set of unitary 1-design
onU(d). and μ. be the corresponding Haar measure. Then

.
1

|S|
U∈S

UijU
∗
i j =

U(d)

UijU
∗
i j dμ(U) = 1

d
δii δjj .

Fact B.2 (Average over Unitary 2-Design [10]) Let S. be a set of unitary 2-design
onU(d). and μ. be the corresponding Haar measure. Then

.
1

|S|
U∈S

Ui1j1Ui2j2U
∗
i1j1

U∗
i2j2

=
U(d)

Ui1j1Ui2j2U
∗
i1j1

U∗
i2j2

dμ(U)

= 1

d2 − 1
δi1i1

δi2i2
δj1j1

δj2j2
+ δi1i2

δi2i1
δj1j2

δj2j1

− 1

d(d2 − 1)
δi1i1

δi2i2
δj1j2

δj2j1
+ δi1i2

δi2i1
δj1j1

δj2j2
.

How big is a unitary t-design? [11] have proved that, for instance, the size of
unitary 1-design and unitary 2-design scale polynomially to the dimension of the
unitary space.

Fact B.3 (The Size of a Unitary 2-Design [11]) A unitary 1-design on U(d). has
no fewer than d2

. elements. A unitary 2-design on U(d). has no fewer than d4 −
2d2 + 2. elements.

For a system with N qubits, the dimension of the unitary space is d = 2N
..

Therefore, an exact t-design could involve exponential numbers of ensembles with
increased qubits. Could we obtain an approximation to the unitary t-design, which
can be generated in polynomial times with less degree of freedom? [5] has proved

B Haar Measure and Unitary t-Design 211

that random quantum circuits with linear depths could form an approximate unitary
t-design.

Definition B.3 (Approximate Unitary Designs) Let μ. be the Haar measure
on the space U(d).. We denote the moment superoperator (t)

ν (A) :=
U(d)

U⊗tA(U†)⊗t
.. Denote by Mn(C). the n × n. complex matrices. Denote

by := maxX X 1≤1 ⊗ In)X 1 . the diamond norm for the linear
transformation : Mn(C) → Mm(C). and X ∈ Mn2(C).. Then, a probability
distribution ν . onU(d). is an .-approximate unitary t-design if

.
(t)
ν − (t)

μ ≤
dt

.

Fact B.4 (Random Quantum Circuits Form Approximate Unitary Designs,
Informal Version from [5]) For the number of qubits N ≥ O(log t)., alternative
layered random quantum circuits with Haar-random unitary gates sampled from
U(4). lead to an .-approximate unitary t-design when the circuit depth

. k ≥ O t4+o(1) Nt + log
1

,

where the term o(1) → 0. when t → ∞..

References

1. Adam, M. (2013). Applications of unitary k-designs in quantum information processing. PhD
thesis, Masarykova univerzita, Fakulta informatiky.

2. Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics, 23, 493–507.

3. Dankert, C., Cleve, R., Emerson, J., & Livine, E. (2009). Exact and approximate unitary 2-
designs and their application to fidelity estimation. Physical Review A Atomic, Molecular, and
Optical Physics, 8(1), 012304.

4. Haar, A. (1933). Der massbegriff in der theorie der kontinuierlichen gruppen. Annals of
Mathematics, 34(1), 147–169.

5. Haferkamp, J. (2022). Random quantum circuits are approximate unitary t-designs in depth
o(nt5+o(1)).. Quantum, 6, 795.

6. Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (Eds.), The collected works of wassily hoeffding. Springer Series in
Statistics. Springer.

7. Larocca, M., Thanasilp, S., Wang, S., Sharma, K., Biamonte, J., Coles, P. J., Cincio, L.,
McClean, J. R., Holmes, Z., & Cerezo, M. (2024). A review of barren plateaus in variational
quantum computing. arXiv preprint arXiv:2405.00781.

8. Nagy, G. (1993). On the haar measure of the quantum su (n) group. Communications in
Mathematical Physics, 153, 217–217.

9. Okamoto, M. (1959). Some inequalities relating to the partial sum of binomial probabilities.
Annals of the Institute of Statistical Mathematics, 10, 29–35.

212 B Haar Measure and Unitary t-Design

10. Puchała, Z., & Miszczak, J. A. (2017). Symbolic integration with respect to the haar measure
on the unitary groups. Bulletin of the Polish Academy of Sciences. Technical Sciences, 65(1),
21–27.

11. Roy, A., & Scott, A. J. (2009). Unitary designs and codes. Designs, Codes and Cryptography,
53, 13–31.

	Preface
	Declarations
	Contents
	List of Acronyms
	Notations Used in This Book
	A Glossary of Key QML Terms

	1 Introduction
	1.1 Introduction to Quantum Machine Learning
	1.1.1 Quantum Computers
	1.1.2 Metrics for Quantum Advantages
	1.1.3 Explored Tasks in Quantum Machine Learning

	1.2 Progress of Quantum Machine Learning
	1.2.1 Progress of Quantum Computers
	1.2.2 Progress of Quantum Machine Learning Under FTQC
	1.2.3 Progress of Quantum Machine Learning Under NISQ

	1.3 Organization of This Book
	References

	2 Basics of Quantum Computing
	2.1 From Classical Bits to Quantum Bits
	2.1.1 Classical Bits
	2.1.2 Quantum Bits (Qubits)
	2.1.3 Density Matrix

	2.2 From Digital Logic Circuit to Quantum Circuit Model
	2.2.1 Classical Digital Logic Circuit
	2.2.1.1 Logic Gates
	2.2.1.2 Circuit Design and Universality

	2.2.2 Quantum Circuit
	2.2.2.1 Quantum Gate
	2.2.2.2 Quantum Channels
	2.2.2.3 Quantum Measurements

	2.3 Quantum Read-In and Read-Out Techniques
	2.3.1 Quantum Read-In
	2.3.1.1 Basis Encoding
	2.3.1.2 Amplitude Encoding
	2.3.1.3 Angle Encoding
	2.3.1.4 Quantum Random Access Memory (QRAM)

	2.3.2 Quantum Read-Out Methods
	2.3.2.1 Full Information Read-Out Methods
	2.3.2.2 Partial Information Read-Out Methods

	2.4 Quantum Linear Algebra
	2.4.1 Block Encoding
	2.4.2 Basic Arithmetic for Block Encodings
	2.4.3 Quantum Singular Value Transformation

	2.5 Code Demonstration
	2.5.1 Read-In Implementations
	2.5.1.1 Basis Encoding
	2.5.1.2 Amplitude Encoding
	2.5.1.3 Angle Encoding

	2.5.2 Block Encoding

	2.6 Bibliographic Remarks
	2.6.1 Advanced Quantum Read-In Methods
	2.6.2 Advanced Quantum Read-Out Methods
	2.6.3 Advanced Quantum Linear Algebra

	References

	3 Quantum Kernel Methods
	3.1 Classical Kernel Machines
	3.1.1 Motivation of Kernel Methods
	3.1.2 Dual Representation
	3.1.3 Kernel Construction

	3.2 Quantum Kernel Machines
	3.2.1 Quantum Feature Maps and Quantum Kernel Machines
	3.2.2 Comparative Analysis: Quantum vs. Classical Kernel Methods
	3.2.3 Concrete Examples of Quantum Kernels

	3.3 Theoretical Foundations of Quantum Kernel Machines
	3.3.1 Expressivity of Quantum Kernel Machines
	3.3.2 Generalization of Quantum Kernel Machines
	3.3.2.1 Generalization Error Bound for Kernel Machines
	3.3.2.2 Quantum Kernels with Prediction Advantages
	3.3.2.3 Construction of Dataset with Maximal Quantum Advantage

	3.4 Code Demonstration
	3.4.1 Classification on MNIST Dataset

	3.5 Bibliographic Remarks
	3.5.1 Quantum Kernel Design
	3.5.2 Theoretical Studies of Quantum Kernels
	3.5.2.1 Expressivity of Quantum Kernels
	3.5.2.2 Generalization of Quantum Kernels
	3.5.2.3 Provable Advantages of Quantum Kernels

	3.5.3 Applications of Quantum Kernels

	References

	4 Quantum Neural Networks
	4.1 Classical Neural Networks
	4.1.1 Perceptron
	4.1.2 Multilayer Perceptron

	4.2 Fault-Tolerant Quantum Perceptron
	4.2.1 Grover Search
	4.2.2 Online Quantum Perceptron with Quadratic Speedups

	4.3 NISQ-Era Quantum Neural Networks
	4.3.1 General Framework
	4.3.2 Discriminative Learning with QNNs
	4.3.3 Generative Learning with QNNs
	4.3.3.1 Quantum Patch Generative Adversarial Network
	4.3.3.2 Quantum Batch GAN

	4.4 Theoretical Foundations of Quantum Neural Networks
	4.4.1 Expressivity and Generalization of Quantum Neural Networks
	4.4.1.1 An Overview
	4.4.1.2 Expressivity of QNNs
	4.4.1.3 Generalization Error of QNNs

	4.4.2 Trainability of Quantum Neural Networks

	4.5 Code Demonstration
	4.5.1 Quantum Classifier
	4.5.2 Quantum Patch GAN

	4.6 Bibliographic Remarks
	4.6.1 Discriminative Learning with QNN
	4.6.1.1 Model Designs
	4.6.1.2 Theoretical Foundations
	4.6.1.3 Applications

	4.6.2 Generative Learning with QNNs
	4.6.2.1 Model Designs
	4.6.2.2 Theoretical Foundations
	4.6.2.3 Applications

	References

	5 Quantum Transformer
	5.1 Classical Transformer
	5.1.1 Tokenization and Embedding
	5.1.2 Self-Attention
	5.1.3 Residual Connection
	5.1.4 Feed-Forward Network
	5.1.5 Optimization and Inference

	5.2 Fault-Tolerant Quantum Transformer
	5.2.1 Quantum Self-Attention
	5.2.1.1 Extension to Implement Quantum Masked Self-Attention

	5.2.2 Quantum Residual Connection and Layer Normalization
	5.2.3 Quantum Feed-Forward Neural Network

	5.3 Runtime Analysis with Quadratic Speedups
	5.3.1 Overview
	5.3.2 Empirical Studies of Potential Quantum Speedups

	5.4 Code Demonstration
	5.5 Bibliographic Remarks
	References

	6 Conclusion
	A Concentration Inequality
	B Haar Measure and Unitary t-Design
	References

