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Preface

Quantum computers, as next-generation computational devices, harness the quan-
tum principles of superposition and entanglement to process information in ways
fundamentally different from classical computers. These unique properties enable
quantum computers to address many practical problems that are intractable for
classical computers. Although quantum computing is still in its early stages, we
have entered an era since 2019 where quantum supremacy has been experimentally
demonstrated by several research groups and industrial organizations, underscoring
the immense potential of quantum technologies to transform various aspects of
everyday life.

Machine learning (ML) is widely regarded as one of the most promising and
impactful applications of quantum computing. The ability of quantum computing
to accelerate advancements in foundational models, such as generative pre-trained
transformers (GPTs), and even pave the way toward artificial general intelligence
(AGI), is particularly compelling. Recent progress in both theories and experiments
has exhibited the power of quantum machine learning (QML). More precisely, the
integration of quantum computing with ML may lead to novel approaches that
outperform classical algorithms by offering faster runtimes, better performance,
and reduced data requirements. This advancement can benefit many areas such
as computer vision, natural language processing, drug discovery, finance, and
fundamental science.

As an interdisciplinary field, the development of QML requires close collabo-
ration between leading scientists and engineers in both quantum computing and
artificial intelligence (AI). At the same time, as QML advances alongside the
continuous progress of quantum hardware, there is a growing need for expertise
from the AI community to drive this emerging field forward. However, the distinct
conceptual frameworks and terminologies of quantum and classical computing
present significant barriers for researchers and practitioners with a classical ML
background in understanding the mechanisms behind QML algorithms and the
benefits they may offer. Reducing this barrier to entry remains a major challenge
within the community.
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Preface

To overcome this challenge, we have written this book to deliver a comprehensive
introduction to the latest developments in QML. Whether you are an Al researcher,
an ML practitioner, or a computer science student, this resource will equip you with
a solid foundation in the principles and techniques of QML. By bridging the gap
between classical ML and quantum computing, this book could serve as a useful
resource for those looking to engage with QML and explore the forefront of Al in

the quantum era.
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optimized or trained using classical or hybrid optimization
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circuit’s parameter space. Poor trainability, often due to
phenomena like barren plateaus (i.e., regions where gradi-
ents vanish), can significantly hinder the learning process.
The difference in performance between a quantum
model’s predictions on training data and its performance
on new, unseen data. In QML, a low generalization error
indicates that the model has effectively captured the
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Fault-tolerant quantum computing (FTQC) is a system
that performs reliable quantum computations despite the
presence of errors and noise in quantum hardware.
Unwanted interactions between a quantum system and its
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errTors.

Quantum error correction (QEC) is a set of techniques
designed to protect quantum information from errors
caused by decoherence, gate imperfections, and measure-
ment noise.

Quantum random access memory (QRAM) is a quantum
data structure that allows efficient access to large datasets
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multi-qubit lifted version of QSP, which is a powerful
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gular values of a matrix.
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that implements the block encoding of a weighted sum
of unitary matrices, enabling efficient quantum matrix
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Chapter 1 ®)
Introduction Check for

Abstract This chapter introduces the emerging field of quantum machine learning
(QML), which aims to integrate the strengths of quantum computing with classical
machine learning to achieve computational advantages. It begins by contextualizing
QML within the broader evolution of computing paradigms, from CPUs and
GPUs to quantum processors, and highlights the limitations of classical systems
in handling increasingly complex learning tasks. The chapter then presents a first
glimpse into QML, including the foundational components of quantum computers,
different measures of quantum advantages, and the main research directions in
QML. Progress in QML is reviewed under two regimes: fault-tolerant quantum
computing (FTQC) and noisy intermediate-scale quantum (NISQ) devices. Finally,
the chapter outlines the structure of the tutorial and explains its intended audience.
Together, these discussions provide a comprehensive background and motivation for
the chapters that follow.

The advancement of computational power has been a central driver of modern
industrial revolutions, particularly since the mid-twentieth century. The invention
of the modern computer, followed by the central processing unit (CPU), led to
the “digital revolution,” transforming industries through process automation and
the rise of information technology. Later, the emergence of graphical processing
units (GPUs) accelerated advancements in artificial intelligence (AI) and big
data, making applications such as intelligent transportation, autonomous vehicles,
scientific simulations, and data analysis possible. Moore’s law, which describes the
doubling of transistors on integrated circuits every two years, is reaching its physical
and practical limits. Traditional computing hardware, including CPUs and GPUs,
is constrained by these limitations. The exponential growth of data and increasing
complexity of applications require new computational paradigms. Quantum com-
puting [1] emerges as a promising approach by harnessing principles of quantum
mechanics, such as superposition and entanglement, to process information in
fundamentally new ways.

One of the most concrete and direct ways to understand the potential of quantum
computers is through the framework of complexity theory [2]. Theoretical computer

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 1
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2 1 Introduction

scientists have demonstrated that quantum computers can efficiently solve problems
within the BQP (bounded-error quantum polynomial time) complexity class,
meaning these problems can be solved in polynomial time by a quantum computer.
In contrast, classical computers are limited to efficiently solving problems within
the P (polynomial time) complexity class. While it is widely believed, though
not proven, that P € BQP, this suggests that quantum computers can provide
exponential speedups for certain problems in BQP that are intractable for classical
machines.

A prominent example of such a problem is large-number factorization, which
forms the basis of RSA cryptography. Shor’s algorithm [3], a quantum algorithm,
can factor large numbers in polynomial time, while the most efficient known
classical factoring algorithm requires super-polynomial time. For instance, breaking
an RSA-2048 bit encryption key would take a classical computer approximately
300 trillion years, whereas an ideal quantum computer could complete the task
in around 10 seconds. However, constructing “ideal” quantum computers remains
a significant challenge. As will be discussed in later chapters, based on current
fabrication techniques, this task could potentially be completed in approximately
8 hours using a noisy quantum computer with a sufficient number of qubits—the
fundamental units of quantum computation [4].

The convergence of the computational power offered by quantum machines and
the limitations faced by Al models has led to the rapid emergence of the field:
quantum machine learning (QML) [5]. In particular, the challenges in modern Al
stem from the neural scaling law [6], which posits that “bigger is often better.” Since
2020, this principle has driven the development of increasingly colossal models,
featuring more complex architectures and an ever-growing number of parameters.
However, this progress comes at an immense cost. For instance, training a model
like ChatGPT on a single GPU would take approximately 355 years, while the
cloud computing costs for training such large models can reach tens of thousands of
dollars.

These staggering costs present a critical barrier to the future growth of Al Quan-
tum computing, celebrated for its extraordinary computational capabilities, holds
the potential to overcome these limitations. It offers the possibility of advancing
models like generative pretrained transformers (GPTs) and accelerating progress
toward artificial general intelligence (AGI). Quantum computing, particularly QML,
marks a shift from the classical “it from bit” paradigm to the quantum “it from
qubit” perspective. This transition has the potential to reshape Al and computational
science.

1.1 Introduction to Quantum Machine Learning

What exactly is quantum machine learning (QML)? In its simplest terms, the
focus of this book on QML can be summarized as follows (see Sect. 1.1.3 for the
systematic overview).
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Quantum Machine Learning (Informal)

QML explores learning algorithms that can be executed on
quantum computers to accomplish specified tasks with potential advantages
over classical implementations.

This interpretation involves three key elements: quantum processors, specified
tasks, and advantages. The following sections clarify the specific meaning of each
term, laying the groundwork for understanding the mechanisms and potential of
QML.

1.1.1 Quantum Computers

Quantum computing traces its origins to 1980, when Paul Benioff proposed the
quantum Turing machine [7], a quantum analog of the classical Turing machine.
Several models of quantum computation have since emerged, including circuit-
based quantum computation [8], one-way quantum computation [9], adiabatic
quantum computation [10], and topological quantum computation [11]. These
models are computationally equivalent, as any can efficiently simulate the others.
Due to its prevalence in both research and industry, the circuit-based quantum
computer is the primary focus in this book.

Quantum computing gained further momentum in the early 1980s when physi-
cists faced an exponential increase in computational overhead while simulating
quantum dynamics, particularly as the number of particles in a system grew. This
“curse of dimensionality” prompted Yuri Manin and Richard Feynman to inde-
pendently propose leveraging quantum phenomena to build quantum computers.
Accordingly, such devices would be far more efficient for simulating quantum
systems than classical computers.

However, as a universal computing device, the potential of quantum com-
puters extends well beyond quantum simulations. In the 1990s, [3] developed a
groundbreaking quantum algorithm for large-number factorization, posing a serious
threat to widely used encryption protocols such as RSA and Diffie—Hellman. In
1996, Grover’s algorithm demonstrated a quadratic speedup for unstructured search
problems [12], a task with broad applications. Since then, the influence of quantum
computing has expanded into a wide range of fields. To name a few, various quantum
algorithms have been developed to achieve runtime speedups in finance [13], drug
design [14], optimization [15], and, most relevant to this book, machine learning.

A direct comparison of fundamental components clarifies why quantum com-
puters may outperform classical computers. As shown in Fig. 1.1, both classical
and quantum computers feature three primary components: input, computation, and
output. Table 1.1 summarizes the differences in their implementations.
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Classical Computing VS Quantum Computing

Classical Computation

7 Bits Input (Algorithm) > Output
0111001 [Digital Logic Circuits]
Input
raagggﬁai Quantum Computation

—_—

(Algorithm)
[Quantum Circuits]

> Output

Fig. 1.1 The paradigm between classical and quantum computing

Table 1.1 Comparison between classical and quantum computing

Classical Quantum
Input Binary bits Quantum bits
Computation Digital logical circuits Quantum circuits
Output Retrieve solution Quantum measurements

Table 1.2 Mathematical representations of N-(quantum) bits in classical and quantum
computers. Here, the symbols ‘{’ and C denote the transpose conjugation and complex space,

respectively
Classical Quantum
Single bit xe{0,1} |[an,al eCstlaiP+ o =1
(N=1)
Multiple bits | x € {0, 1} |stlar, az.....aw]" € C st a1 + az? + ...+ lag | = 1
(N >1)

The advantages of quantum computers stem primarily from the key distinctions
between classical bits and quantum bits (qubits), as well as between digital logic
circuits and quantum circuits, as outlined below:

* Bits versus qubits. A classical bit is a binary unit that takes on a value of either

0 or 1. In contrast, a quantum bit, or qubit, can exist in a superposition of both 0
and 1 simultaneously, represented by a two-dimensional vector where the entries
correspond to the probabilities of the qubit being in each state.

Furthermore, while classical bits follow the Cartesian product rule, qubits
adhere to the tensor product rule. This distinction implies that an N-qubit system
is described by a 2"-dimensional vector, allowing quantum systems to encode
information exponentially with N—far surpassing the capacity of classical bits.
Table 1.2 summarizes the mathematical expressions of classical and quantum
bits.

» Digital logic circuits versus quantum circuits. Classical computers rely on digital

logic circuits composed of logic gates that perform operations on bits in a
deterministic manner, as illustrated in Fig. 1.1. In contrast, quantum circuits
consist of quantum gates, which act on single or multiple qubits to modify
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their states—the probability amplitudes ay, ..., ay~, as shown in Table 1.2.
Owing to the universality of quantum gates, for any given input qubit state,
there always exists a specific quantum circuit capable of transforming the input
state into one corresponding to the target solution—a particular probability
distribution. For certain probability distributions, a quantum computer can use
a polynomial number of quantum gates relative to the qubit count N to generate
the distribution. In contrast, classical computers require an exponential number
of gates with N to achieve the same result. This difference underpins the quantum
advantage.

e The readout process in quantum computing differs fundamentally from that
in classical computing, as it involves quantum measurements. Intuitively,
quantum measurements can extract information from a quantum system and
translate it into a form that can be interpreted by classical systems. For problems
in quantum physics and chemistry, quantum measurements can reveal far more
useful information than classical simulations of the same systems, enabling
significant runtime speedups in obtaining the desired physical properties.

The formal definitions of quantum computing are presented in Chap.2. The
computational power of quantum computers is primarily determined by two factors:
the number of qubits and quantum gates as well as their respective qualities. The
term “qualities” refers to the fact that fabricating quantum computers is highly
challenging, as both qubits and quantum gates are prone to errors. These qualities
are measured using various physical metrics. One commonly used metric is quantum
volume Vg [16], which quantifies a quantum computer’s capabilities by accounting
for both its error rates and overall performance. Mathematically, the quantum
volume represents the maximum size of square quantum circuits that the computer
can successfully implement to achieve the heavy output generation problem. The
mathematical expression is

log, (V) = arg max min(m, d(m)), (1.1)

where m < N is a number of qubits selected from the given N-qubit quantum
computer and d(m) is the number of qubits in the largest square circuits for
which heavy outputs can be reliably sampled with probability exceeding 2/3. The
heavy output generation problem discussed here stems from proposals aimed at
demonstrating quantum advantage. That is, a quantum computer of sufficiently high
quality is expected to generate heavy outputs frequently across a range of random
quantum circuit families. For illustration, Table 1.3 summarizes the progress of
quantum computers as of 2024.
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Table 1.3 Progress of

Date log,(Vg) | N Manufacturer | System name
quantum computers up to -
December 2024 Dec, 2024 | - 105 | Google Willow

Aug, 2024 |21 56 | Quantinuum | H2-1

Jul, 2024 9 156 |IBM Heron

Jun, 2023 |19 20 | Quantinuum | HI-1

Sep, 2022 | 13 20 | Quantinuum | H1-1

Apr, 2022 |12 12 | Quantinuum | H1-2

Jul, 2021 10 10 | Honeywell Hi1

Nov, 2020 |7 10 | Honeywell Hl

Aug, 2020 |6 27 |IBM Falcon r4

Remark

Note that quantum volume is not the unique metric for evaluating the per-
formance of quantum computers. There are several other metrics that assess
the power of quantum processors from different perspectives. For instance,
circuit layer operations per second (CLOPS) [17] measures the computing
speed of quantum computers, reflecting the feasibility of running practical
calculations that involve a large number of quantum circuits. Additionally,
effective quantum volume [18] provides a more nuanced comparison between
noisy quantum processors and classical computers, considering factors such
as error rates and noise levels. These metrics, among others, offer a more
comprehensive understanding of the strengths and limitations of quantum
computers across various applications.

1.1.2 Metrics for Quantum Advantages

Quantum advantage refers to situations where quantum computers solve problems
more efficiently than classical computers. However, “efficiency” can be defined in
multiple ways. The most common metric is runtime complexity, where quantum
algorithms may achieve significant or even exponential speedups. For example,
Shor’s algorithm provides exponential improvements for large-number factoriza-
tion.

In the context of quantum learning theory [19], efficiency is often measured by
sample complexity, especially within the probably approximately correct ( PAC)
learning framework. Here, sample complexity is defined as the number of inter-
actions (e.g., queries of target quantum systems or measurements) required for a
learner to achieve a desired prediction accuracy below a specified threshold. Here,
the quantum advantage is realized when the upper bound on the sample complexity
of a quantum learning algorithm for a given task is lower than the lower bound of all
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classical learning algorithms. While low sample complexity is a necessary condition
for efficient learning, it does not guarantee practical efficiency alone. For example,
identifying useful training examples within a small sample size may still require
substantial computational time.

Remark (Difference of Sample Complexity in Classical and Quantum
ML)

In classical ML, sample complexity typically refers to the number of training
examples required for a model to generalize effectively. An example is the
number of labeled images needed to train an image classifier. In quantum
ML, however, sample complexity can take on varied meanings depending on
the context, as shown below.

* Quantum state tomography (see Sect.2.3.2). Here, the sample complexity
refers to the number of measurements required to accurately reconstruct
the quantum state of a system.

* Evaluation of the generalization ability of quantum neural networks (see
Sect.4.4). Here, the sample complexity refers to the number of input-
output pairs needed to train the network to approximate a target function,
similar to classical ML.

* Quantum system learning. Here, the sample complexity often refers to
the number of queries to interact with the target quantum system, such
as the number of times a system must be probed to learn its Hamiltonian
dynamics.

In addition to sample complexity, another commonly used measure in quantum
learning theory is quantum query complexity, particularly within the frameworks of
quantum statistical learning and quantum exact learning. As these frameworks are
not the primary focus of this book, interested readers are referred to [20] for a more
detailed discussion.

Quantum advantage can be pursued through two main approaches. The first
involves identifying problems with quantum circuits that demonstrate provable
advantages over classical counterparts in the aforementioned measures [21]. Such
findings deepen our understanding of quantum computing’s potential and expand
its range of applications. However, these quantum circuits often require substantial
quantum resources, which are currently beyond the reach of near-term quantum
computers. Additionally, for many tasks, analytically determining the upper bound
of classical algorithm complexities is challenging.

These challenges have motivated a second approach: demonstrating that current
quantum devices can perform accurate computations on a scale that exceeds brute-
force classical simulations—a milestone known as “quantum utility.” Quantum
utility refers to quantum computations that yield reliable, accurate solutions to prob-
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lems beyond the reach of brute-force classical methods and otherwise accessible
only through classical approximation techniques [22]. This approach represents a
step toward practical computational advantage with noise-limited quantum circuits.
Reaching the era of quantum utility signifies that quantum computers have attained
a level of scale and reliability enabling researchers to use them as effective tools for
scientific exploration, potentially leading to groundbreaking new insights.

1.1.3 Explored Tasks in Quantum Machine Learning

QML research is extensive and can be broadly categorized into four main areas.
These categories are defined by two factors: the nature of the computing device
(whether it is quantum (Q) or classical (C)) and the type of data being processed
(whether it is generated by a quantum (Q) or classical (C)) system) and the type
of data being processed (whether it is generated by a quantum (Q) or classical (C)
system). The four sectors are explained as follows:

CC Sector. The CC sector refers to classical data processed on classical systems,
representing traditional machine learning. Here, classical ML algorithms run on
classical processors (e.g., CPUs and GPUs) and are applied to classical datasets.
A typical example is using neural networks to classify images of cats and dogs.
CQ Sector. The CQ sector involves using classical ML algorithms on classical
processors to analyze quantum data collected from quantum systems. Typical
examples include applying classical neural networks to classify quantum states,
estimating properties of quantum systems from measurement data, and employ-
ing classical regression models to predict outcomes of quantum experiments.
QC Sector. The QC sector involves developing QML algorithms that run on
quantum processors (QPUs) to process classical data. In this context, quantum
computing resources are leveraged to enhance or accelerate the analysis of
classical datasets. Typical examples include applying QML algorithms, such as
quantum neural networks and quantum kernels, to improve pattern recognition in
image analysis.

QQ Sector. The QQ sector involves developing QML algorithms executed on
QPUs to process quantum data. In this context, quantum computing resources are
leveraged to reduce the computational cost of analyzing and understanding com-
plex quantum systems. Typical examples include using quantum neural networks
for quantum state classification and applying quantum-enhanced algorithms to
simulate quantum many-body systems.

The classification above is not exhaustive. As illustrated in Fig. 1.2, each sector
can be further subdivided based on various learning paradigms. For instance,
discriminative vs. generative learning or supervised, unsupervised, and semi-
supervised learning. Additionally, each sector can be further categorized according
to different application domains, such as chemistry, computer vision, power sys-
tems, logistics, finance, and healthcare.
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Fig. 1.2 Different research directions in QML

Remark
The primary focus of this book is on the QC and QQ sectors. For more details
on CQ, interested readers can refer to [23-25].

1.2 Progress of Quantum Machine Learning

Significant efforts have been directed toward the QC and QQ sectors to identify
the tasks and conditions under which QML can achieve computational advantages
over classical machine learning. To clarify the progress of QML, it is essential
to first examine the recent advances in quantum computers—the foundational
infrastructure underpinning quantum algorithms.

1.2.1 Progress of Quantum Computers

The novelty and inherent challenges of utilizing quantum physics for computation
have driven the development of various computational architectures, giving rise
to the formalized concept of circuit-based quantum computers, as discussed in
Sect. 1.1.1. In pursuit of this goal, numerous companies and organizations are
striving to establish their architecture as the leading approach and to be the first to
demonstrate practical utility or quantum advantage on a large-scale quantum device.

Common architectures currently include superconducting qubits (employed by
IBM and Google), ion-trap systems (pioneered by IonQ), and Rydberg atom
systems (developed by QuEra), each offering distinct advantages [26]. Specifically,
superconducting qubits excel in scalability and fast gate operations [27], while
ion-trap systems are known for their high coherence times, precise control over
individual qubits, and full connectivity of all qubits [28]. Moreover, Rydberg atom



10 1 Introduction

2020-2025 2025-2030 2030-2040+
2023 2027 2029 2030
Super-
conducting <> <> O
1121 qubits 1092 qubits + 15K gates 1M qubits 2000 qubits + 1B gates
1BM Quantum 1BM Quantum Tt d
Condor Flamingo QC Google 1BM Quantum
Blue Jay
2024 2027 2028 2029
® ° e e
on 36 qubits 192 qubits 1024 algorithm qubits 1000+ qubits
IonQ QUANTINUUM IonQ QUANTINUUM
Forte soL APOLLO
2023 2025 2026 2028+
Nl | @ @ )
atom 256 qubits 1000 qubits 100 logical qubits 128+ logical qubits + 200M gates
QuEra 10Mgates > 10K physical qubits Pasqal
Pasqal QuEra Centauraus
Orion Gamma 2030+
Photon 1M qubits
PsiQuantum

Fig. 1.3 Common quantum architectures and roadmaps from different quantum companies

systems enable flexible qubit connectivity through highly controllable interactions
[29]. Besides these architectures, integrated photonic quantum computers are
emerging as promising alternatives for robust and scalable quantum computation.
A summarization is provided in Fig. 1.3.

Despite recent advances, today’s quantum computers remain highly sensitive to
environmental noise and prone to quantum decoherence, lacking the stability needed
for fault-tolerant operation. This results in qubits, quantum gates, and quantum
measurements that are inherently imperfect, introducing errors that can lead to
incorrect outputs. To capture this stage in quantum computing, John Preskill coined
the term “noisy intermediate-scale quantum” (NISQ) era [30], which describes the
current generation of quantum processors. These processors feature up to thousands
of qubits, but their capabilities are restricted with error-prone gates and limited
coherence times.

In the NISQ era, notable achievements have been made alongside new chal-
lenges. Industrial and academic teams, such as those at Google and USTC, have
demonstrated quantum advantages on specific sampling tasks, where the noisy
quantum computers they fabricated outperform classical computers in computa-
tional efficiency [31, 32]. However, most quantum algorithms that theoretically
offer substantial runtime speedups depend on fault-tolerant, error-free quantum
systems—capabilities that remain beyond the reach of current technology.

At this pivotal stage, the path forward in quantum computing calls for progress
on both hardware and algorithmic fronts.

On the hardware side, it is essential to continuously improve qubit count,
coherence times, gate fidelities, and the accuracy of quantum measurements across
various quantum architectures. Once the number and quality of qubits surpass
certain thresholds, quantum error correction codes can be implemented [8], paving
the way for fault-tolerant quantum computing (FTQC). Broadly, quantum error
correction uses redundancy and entanglement to detect and correct errors without
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directly measuring the quantum state, thus preserving coherence. Advancements in
quantum processors will enable a progression from the NISQ era to the early FTQC
era, ultimately reaching the fully FTQC era.

On the algorithmic side, two key questions must be addressed:

e How can NISQ devices be utilized to perform meaningful computations with
practical utility?

* What types of quantum algorithms can be executed on early fault-tolerant
and fully fault-tolerant quantum computers to realize the potential of quantum
computing in real-world applications?

Progress on either question could have broad implications. A positive answer to
the first question would suggest that NISQ quantum computers have immediate
practical applicability. Meanwhile, the advancements in the second question would
expand the scope and impact of quantum computing as more robust, fault-tolerant
systems become feasible. The following two sections review recent progress in
quantum machine learning related to these two questions.

1.2.2 Progress of Quantum Machine Learning Under FTQC

A key milestone in FTQC-based QML algorithms is the quantum linear equations
solver introduced by Harrow et al. [33]. Many machine learning models rely on
solving linear equations, a computationally intensive task that often dominates the
overall runtime due to the polynomial scaling of complexity with matrix size.
The HHL algorithm provides a breakthrough by reducing runtime complexity to
polylogarithmic scaling with matrix size, given that the matrix is well conditioned
and sparse. This advancement is highly significant for Al, where datasets frequently
reach sizes in the millions or even billions.

The exponential runtime speedup achieved by the HHL algorithm has garnered
significant attention from the research community, highlighting the potential of
quantum computing in Al. Following this milestone, a body of work has emerged
that employs the quantum matrix inversion techniques developed in HHL (or its
variants) as subroutines in the design of various FTQC-based QML algorithms.
These algorithms often offer runtime speedups over their classical counterparts
[34, 35]. Notable examples include quantum principal component analysis [36] and
quantum support vector machines [37].

Another milestone in FTQC-based QML algorithms is the quantum singular
value transformation (QSVT), proposed by Gilyén et al. [38]. QSVT enables poly-
nomial transformations of the singular values of a linear operator embedded within
a unitary matrix, offering a unifying framework for various quantum algorithms.
It has connected and enhanced a broad range of quantum techniques, including
amplitude amplification, quantum linear system solvers, and quantum simulation
methods. Compared to the HHL algorithm for solving linear equations, QSVT
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provides improved scaling factors, making it a more efficient tool for addressing
these problems in the context of QML.

In addition to advancements in linear equation solving, another promising line
of research in FTQC-based QML focuses on leveraging quantum computing to
enhance deep neural networks (DNNs) rather than traditional machine learning
models. This research track has two main areas of focus. The first is the acceleration
of DNN optimization, with notable examples including the development of efficient
quantum algorithms for dissipative differential equations to expedite (stochastic)
gradient descent, as well as quantum Langevin dynamics for optimization [39, 40].
The second area centers on advancing Transformers using quantum computing.
In Chap. 5, how quantum computing can be employed to accelerate Transformers
during the inference stage will be discussed in detail.

Remark

However, there are several critical caveats of the HHL-based QML algo-
rithms. First, the assumption of efficiently preparing the quantum states
corresponding to classical data runtime is very strong and may be impractical
in the dense setting. Second, the obtained result x is still in the quantum form
|x). Note that extracting one entry of |x) into the classical form requires
O(+/N) runtime, which collapses the claimed exponential speedups. The
above two issues amount to the read-in and read-out bottlenecks in QML
[41]. The last caveat is that the employed strong quantum input model such
as quantum random access memory (QRAM) [42] leads to an inconclusive
comparison. Through exploiting a classical analog of QRAM as the input
model, there exist efficient classical algorithms to solve recommendation
systems in polylogarithmic time in the size of input data.

1.2.3 Progress of Quantum Machine Learning Under NISQ

The work conducted by Havlicek et al. [43] marked a pivotal moment for QML
in the NISQ era. This study demonstrated the implementation of quantum kernel
methods and quantum neural networks (QNNs) on a 5-qubit superconducting
quantum computer, highlighting potential quantum advantages from the perspective
of complexity theory. Unlike the aforementioned FTQC algorithms, quantum kernel
methods and QNNs are flexible and can be effectively adapted to the limited
quantum resources available in the NISQ era. These demonstrations, along with
advancements in quantum hardware, sparked significant interest in exploring QML
applications using NISQ quantum devices. We will delve into quantum kernel
methods and QNN in Chaps. 3 and 4, respectively.
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Fig. 1.4 Mechanisms of DNNs and QNNs

Quantum Neural Networks (Informal)

A quantum neural network (QNN) is a hybrid model that leverages quantum
computers to implement trainable models similar to classical neural networks
while using classical optimizers to complete the training process.

As shown in Fig. 1.4, the mechanisms of QNNs and deep neural networks
(DNNGs) are almost the same. Both DNNs and QNN follow an iterative approach.
At each iteration, they take input data, process it through multiple layers, and
produce an output prediction. The key difference between DNNs and QNN is the
way of implementing their learning models. This difference gives the potential of
quantum learning models to solve complex problems beyond the reach of classical
neural networks, opening new frontiers in many fields. Roughly speaking, research
in QNNs and quantum kernel methods has primarily focused on three key areas:
(D) quantum learning models and applications, (Il) the adaptation of advanced Al
topics to QML, and (III) theoretical foundations of quantum learning models. A
brief overview of each category is provided below.

(I) QUANTUM LEARNING MODELS AND APPLICATIONS. This category focuses
on implementing various DNNs on NISQ quantum computers to tackle a wide range
of tasks.

From a model architecture perspective, quantum analogs of popular classical
machine learning models have been developed. Typical instances include the quan-
tum versions of multilayer perceptrons (MLPs), autoencoders, convolutional neural
networks (CNNs), recurrent neural networks (RNNs), extreme learning machines,
generative adversarial networks (GANS5), diffusion models, and Transformers. Some
of these QNN structures have even been validated on real quantum platforms,
demonstrating the feasibility of applying quantum algorithms to tasks traditionally
dominated by classical deep learning [44—46].

From an application perspective, QML models implemented on NISQ devices
have been explored across diverse fields, including fundamental science, image
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classification, image generation, financial time series prediction, combinatorial opti-
mization, healthcare, logistics, and recommendation systems. These applications
demonstrate the broad potential of QML in the NISQ era, though achieving full
quantum advantage in these areas remains an ongoing challenge [47, 48].

(I) ADAPTATION OF ADVANCED Al TOPICS TO QML. Beyond model design,
advanced topics from Al have been extended to QML, aiming to enhance the
performance and robustness of different QML models. Examples include quantum
architecture search [49] (the quantum equivalent of neural architecture search),
advanced optimization techniques [50], and pruning methods to reduce the complex-
ity of quantum models [51, 52]. Other areas of active research include adversarial
learning [53], continual learning [54, 55], differential privacy [56, 57], distributed
learning [58, 59], federated learning [60], and interpretability within the context
of QML [61]. These techniques have the potential to significantly improve the
efficiency and effectiveness of QML models, addressing some of the current
limitations of NISQ devices.

(III) THEORETICAL FOUNDATIONS. Quantum learning theory [62] has garnered
increasing attention, aiming to compare the capabilities of different QML models
and to identify the theoretical advantages of QML over classical machine learning
models. As shown in Fig. 1.5, the learnability of QML models can be evaluated
across three key dimensions: expressivity, trainability, and generalization capabili-
ties. Similar to classical learning theory, these dimensions serve as the foundation
for understanding how quantum models perform in various contexts, providing a
common ground for comparing QML and classical ML models. Below, a brief
overview of each measure is provided.

e Trainability. This area examines how the design of QNNs influences their
convergence properties, including the impact of system noise and measurement
errors on the ability to converge to local or global minima. Good trainability
allows QML models to efficiently optimize toward an optimal solution. Due to
its importance, we address two key concepts with respect to the trainability of
QNNs, i.e., barren plateaus and overparameterization, in Sect. 4.4.2.

Expressivity

Q-system L

QAI model

‘ Trainability — Generalization

Fig. 1.5 The learnability of quantum machine learning models
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» Expressivity. Researchers investigate how the number of parameters and the
structure of QNNs affect the size of the hypothesis space they can represent. A
central question is whether QNNs and quantum kernels can efficiently represent
functions or patterns that classical neural networks cannot, thereby offering
potential quantum advantage. In Sects. 3.3.1 and 4.4.1, the expressivity of QML
models is explored from the perspectives of the universal approximation theorem
and model complexity, respectively.

* Generalization. This focuses on understanding how the gap between training and
test error evolves with the size of the dataset, the structure of QNNs or quantum
kernels, and the number of parameters. The goal is to determine whether QML
models can generalize more effectively than classical models, particularly in the
presence of noisy data or when training data is limited. For comprehensive,
Sects.3.3.2 and 4.4.1, an in-depth analysis of how QML models generalize
with limited training data and varying model structures is provided, along with
the interpretation of the generalization advantages of QML models for specific
datasets.

The combination of advancements in model design, application domains, and
theoretical understanding is driving the progress of QML in the NISQ era. Although
the field is still in its early stages, the progress achieved thus far provides promising
insights into the potential of quantum computing to enhance conventional Al
As quantum hardware continues to evolve, further breakthroughs are expected,
potentially unlocking new possibilities for practical QML applications.

Remark

It is important to note that QNNs and quantum kernel methods can also be
considered FTQC algorithms when executed on fully fault-tolerant quantum
computers. The reason these algorithms are discussed in the context of NISQ
devices is their flexibility and robustness, making them well suited to the
limitations of current quantum hardware.

Unlike quantum hardware, where the number of qubits has rapidly scaled from
zero to thousands, the development of QML algorithms—and quantum algorithms
more broadly—has taken an inverse trajectory, transitioning from FTQC to NISQ
devices. This shift reflects the move from idealized theoretical frameworks to practi-
cal implementations. The convergence of quantum hardware and QML algorithms,
where the quantum resources required by these algorithms become attainable on
real quantum computers, enables researchers to experimentally evaluate the power
and limitations of various quantum algorithms.

Based on the minimum quantum resources required to complete learning tasks,
we distinguish between FTQC algorithms, discussed in Sect.1.2.2, and NISQ
algorithms, including QNNs and quantum kernel methods, in Sect. 1.2.3. FTQC-
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based QML algorithms necessitate error-corrected quantum computers with tens of
billions of qubits—an achievement that remains far from realization. In contrast,
QNNs and quantum kernels are more flexible and can be executed on both NISQ
and FTQC devices, depending on the available resources.

As quantum hardware continues to progress, the development of QML algo-
rithms must evolve in tandem. A promising direction is to integrate FTQC
algorithms with QNNs and quantum kernel methods, creating new QML algorithms
that can be run on current quantum processors while offering enhanced quantum
advantages across various tasks.

To maintain self-consistency, this section concludes by highlighting key differ-
ences between classical and quantum machine learning models in complexity, rep-
resentational power, and scalability. QML models can achieve exponential speedups
for specific computational tasks, such as large-number factorization. They also
provide enhanced representational power through superposition and entanglement,
supporting more compact and expressive data representations. Furthermore, QML
models have the potential for greater scalability compared to classical approaches,
although practical scalability is currently limited by hardware and error correction
constraints. These advantages underscore the motivation for continued exploration
of QML.

1.3 Organization of This Book

To encourage and enable computer scientists to engage with the rapidly growing
field of quantum Al, we provide this book that revisits QML algorithms from
a computer science perspective. With this aim, the book is designed to balance
theory, practical implementations, and applications, making it suitable for readers
with some background in classical machine learning. The book is divided into the
following chapters:

Chapter 2: BASICS OF QUANTUM COMPUTING. Before delving into QML, this
chapter lays the groundwork by introducing the fundamental concepts of quantum
computing. It covers the transition from classical bits to quantum bits, explains
quantum circuit models, illustrates how quantum systems interface with classical
systems through quantum read-in and read-out mechanisms, and presents some
fundamental concepts of quantum linear algebra. By the end of this chapter, you
will understand that a solid grasp of linear algebra is all you need to comprehend
the basics of quantum computing.

Chapters 3, 4, and 5: CLASSICAL ML MODELS EXTENDED TO QUANTUM
FRAMEWORKS. Each of these chapters follows a consistent structure, starting
with a review of the classical model and progressing to its quantum extension—
quantum kernel methods in Chap.3, quantum neural networks in Chap.4, and
quantum Transformers in Chap. 5. This unified structure enables readers to clearly
understand how classical machine learning models can be translated into quantum
implementations and how quantum computers may offer computational advantages.
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Appendix

The appendix serves as a supplementary resource, providing the essential math-
ematical tools that are omitted from the main text for brevity. In particular, it
includes basic introduction of concentration inequalities, the Haar measure, and
other foundational concepts relevant to the book.

To provide a clear and comprehensive learning experience, each chapter is
composed of the following parts:

1. Classical foundations and quantum model construction. Each chapter begins
with a review of the classical version of the model, ensuring that readers are
well acquainted with the foundational concepts before exploring their quantum
adaptations. After this review, we introduce quantum versions of the models,
focusing on implementations based on NISQ, FTQC, or both.

2. Theoretical analysis. There is nothing more practical than a good theory. In
this book, each chapter provides a theoretical analysis of the learnability of
QML models, focusing on key aspects such as expressivity, trainability, and
generalization capabilities.

To ensure a balance between depth and self-consistency, this book provides
proof for the most significant theoretical results, as highlighted by theorems and
lemmas. For results that are less central to the main content of this book, we
present them as facts and include appropriate references, allowing readers to
easily locate the complete proofs if desired.

3. Code implementation. “Talk is cheap, show me the code.” To provide a practical,
hands-on learning experience, each chapter includes code implementations
using real-world datasets (to be specified). This section walks readers through
the process of implementing quantum models on simulated or real quantum
hardware. All numerical examples illustrated in this book are available in https://
gml-tutorial.github.io/, accompanied by Jupyter Notebooks.

Instead of building everything from scratch, the well-established PennyLane
library is employed for implementation [63]. This choice does not imply any
specific preference. Other quantum computing libraries, such as Qiskit [64],
Cirq [65], and TensorFlow Quantum [66], can also be used, offering similar
capabilities and flexibility. A brief summary of these quantum computing tools
is listed in Table 1.4.

4. Frontier topics and future directions. Each chapter concludes with an exploration
of cutting-edge topics and emerging challenges in the field. This part highlights
open research problems, ongoing developments, and potential future directions
for the quantum versions of each model, providing insights into where the field
may be headed.


https://qml-tutorial.github.io/
https://qml-tutorial.github.io/
https://qml-tutorial.github.io/
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Table 1.4 Summary of quantum software tools for quantum machine learning

Tool Support device Integration Key features

PennyLane IBM, Rigetti, IonQ, TensorFlow, PyTorch, | Automatic differentiation for

AQT, Xanadu JAX quantum circuits, extensive
library of QML applications
Qiskit IBM Quantum Python, scikit-learn, Open-source, supports both
PyTorch simulation and real hardware
execution
Cirq Google Sycamore TensorFlow Low-level quantum circuit
Quantum, NumPy design, fine control over gate
execution
TFQ Simulated backend, TensorFlow Integrated with TensorFlow
Cirg-compatible for deep learning
devices applications, quantum data
processing
QuTiP Simulated backends NumPy, SciPy Efficient simulations of

noisy quantum systems,
visualization tools for
quantum dynamics
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Chapter 2 ®)
Basics of Quantum Computing Qe

Abstract This chapter introduces the fundamental concepts of quantum computa-
tion, such as quantum states, quantum circuits, and quantum measurements, along
with key topics in quantum machine learning, including quantum read-in, quantum
read-out, and quantum linear algebra. These foundational elements are essential
for understanding quantum machine learning algorithms and will be repeatedly
referenced throughout the subsequent chapters. This chapter is organized into six
sections: Sect. 2.1 introduces quantum bits and their mathematical representations;
Sect.2.2 covers quantum circuits, including quantum gates, quantum channels,
and quantum measurements; Sect. 2.3 discusses how to encode classical data into
quantum systems and extract classical information from quantum states; Sect. 2.4
explores concepts in quantum linear algebra; Sect.2.5 provides practical coding
exercises to reinforce these concepts; and finally, Sect. 2.6 presents recent advance-
ments in efficient quantum read-in and read-out techniques, as well as developments
in quantum linear algebra for further exploration.

This chapter introduces the fundamental concepts of quantum computation, includ-
ing quantum states, quantum circuits, and quantum measurements. Key topics in
quantum machine learning are also presented, such as quantum read-in methods,
quantum read-out methods, and quantum linear algebra. These foundational ele-
ments are essential for understanding quantum machine learning algorithms and are
referenced throughout the subsequent chapters.

This chapter is organized as follows. Section 2.1 introduces quantum bits and
their mathematical representations. Section 2.2 covers quantum circuits, including
quantum gates, quantum channels, and quantum measurements. Section 2.3 dis-
cusses how to encode classical data into quantum systems and extract classical
information from quantum states. Section 2.4 delves into quantum linear algebra;
Sect. 2.5 provides practical coding exercises to reinforce these concepts. Finally,
Sect. 2.6 presents recent advancements in efficient quantum read-in and read-out
techniques for further exploration.
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24 2 Basics of Quantum Computing
2.1 From Classical Bits to Quantum Bits

In this section, quantum bits (qubits) are defined and the mathematical tools used to
describe quantum states are presented. The discussion begins with classical bits and
then transitions to their quantum counterparts. Interested readers are recommended
to consult the textbook [1] for the detailed explanations.

2.1.1 Classical Bits

In classical computing, a bit is the basic unit of information, which can exist in
one of two distinct states: 0 or 1. Each bit holds a definite value at any given time.
When multiple classical bits are used together, they can represent more complex
information. For instance, a set of three bits can represent 23 — 8 distinct states,
ranging from 000 to 111.

2.1.2 Quantum Bits (Qubits)

Analogous to the role of “bit” in classical computation, the basic element in quantum
computation is the quantum bit (qubit). The representation of single-qubit states is
introduced first, followed by an extension to two-qubit and multi-qubit states.

Single-Qubit State A single-qubit state can be represented by a two-dimensional
vector with unit length. Mathematically, a qubit state can be written as

a= [“1} eC?, 2.1)

a

where |a;|? + |as|> = 1 satisfies the normalization constraint. Following conven-
tions in quantum theory, Dirac notation is used to represent vectors [1]. That is, the
vector a is denoted by |a) (named “ker”) with

la) = a110) + ax|1) , (2.2)

where |0) = ¢g = |:(1)] and [1) = e = [(1)] are two computational (unit) basis

states. In this representation, the coefficients @1 and a; are referred to as amplitudes.
The probabilities of obtaining the outcomes 0 or 1 upon measurement of the qubit
are given by |a|? and |a;|?, respectively. The normalization constraint ensures that
these probabilities always sum to one, as required by the probabilistic nature of
quantum mechanics. In addition, the conjugated transpose of a, i.e., a’, is denoted
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by (a| (named “bra”) with
(al = a} (0] + a3 (1] € C?, (2.3)

where (0| = eg = [1,0], (1] = elT = [0, 1], and the symbol “T” denotes the
transpose operation.

The physical interpretation of coefficients {a;} is probability amplitudes. Namely,
when information needs to be extracted from the qubit state |a) into the classical
form, quantum measurements are applied to this state, where the probability of
sampling the basis |0) (|1)) is |a@1]? (|a2|?). Recall that the classical bit only permits
the deterministic status with “0” or “1,” while the qubit state in Eq.(2.2) is the
superposition of the two status “|0)” and “|1).”

Remark

The quantum superposition leads to a distinct power between quantum and
classical computation, where the former can accomplish certain tasks with
provable advantages.

Two-Qubit State The two qubits obey the tensor product rule, i.e.,

X1 |:y1i| X1y
|:x1:|®|:yl:|= Y2 — X1)Y2 i (2.4)
X2 Y2 x5 |:J’1} X2Y¥1
Y2 Y2y2

which differs from the classical bits yielding the Cartesian product rule.

For instance, let the first qubit follow Eq.(2.2) and the second qubit state be
|b) = b1|0) + b>|1) with |b1|*> + |b2|> = 1. The two-qubit state formed by |a) and
|b) is defined as

la) ® |b) = a1b1|0) ® |0) + a1520) ® |1) + azb1]1) ® |0) + azbs|1) ® 1) € C*,
(2.5)

1 0

where the computational basis follows |0)®[0) = |:8i|, 0Y®[1) = |:(1):| , [1)®1]0) =
0 0

0 0

[?} e 1) = [g] and the coefficients satisfy Y7_; >"3_, a;b;|* = 1.

0 1



26 2 Basics of Quantum Computing

Remark
For ease of notations, the state |a@) ® |b) can be simplified as |ab), |a, b), or
|a)|b). These notations will be used interchangeably throughout the book.

Example 2.1 A typical example of a two-qubit state is the Bell state, which
represents a maximally entangled quantum state of two qubits. There are four
types of Bell states, expressed ass

lpt) = L (100) + [11)),
V2

1
EE— — |11
o) ﬁ(IOO) 111),

[y ™) = = (101) +110)) ,
V2

1
Ty =—=(01) — [10)). 2.6
Iw>ﬁ(l)|>) (2.6)

Each Bell state is a superposition of two computational basis states in the
four-dimensional Hilbert space.

Multi-qubit State The above two-qubit case can now be generalized to the N-qubit
case with N > 2. In particular, an N-qubit state |1/) is a 2" -dimensional vector with

2N
W)=Y eliy ec? 2.7)
i=1

N
where the coefficients satisfy the normalization constraint lez e |2 = 1 and the
symbol “i” of the computational basis |i) refers to a bit-string with i € {0, 1}V.
As with the single-qubit case, the physical interpretation of coefficients {c;} is
9y |2

probability amplitudes, where the probability to sample the bit-string “i” is |c;
When the number of nonzero entries in ¢ = [¢,..., ¢, ..., CzN]T is larger than
one, which implies that different bit-strings are coexisting coherently, the state |y)
is called in superposition.
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Remark

In quantum computing, a basis state |i) refers to a computational basis state
in the Hilbert space of a quantum system. For an N-qubit system, the compu-
tational basis states are represented as |i) € {|0---0), [0---1),...,|1---1)},
where i is the binary representation of the state index. These states form an
orthonormal basis of the 2V -dimensional Hilbert space, satisfying

(j) = 8;. Vi, j e [2V]. (2.8)

These basis states are fundamental for representing and analyzing quantum
states, as any arbitrary quantum state can be expressed as a linear combination
of these basis states.

Moreover, the size of ¢ exponentially scales with the number of qubits
N, attributed to the tensor product rule. This exponential dependence is an
indispensable factor to achieve quantum supremacy [2], since it is extremely
expensive and even intractable to record all information of ¢ by classical
devices for the modest number of qubits, e.g., N > 100.

Entangled Multi-qubit State A fundamental phenomenon in multi-qubit quantum
systems is entanglement, which represents a nonclassical correlation between
quantum systems that cannot be explained by classical physics. As proved by Jozsa
and Linden [3], quantum entanglement is an indispensable component to offer an
exponential speedup over classical computation. A representative example is Shor’s
algorithm, which utilizes entanglement to attain an exponential speedup over any
classical factoring algorithm. In an entangled quantum state, the state of one qubit
cannot be fully described independently of the other qubits, even if they are spatially
separated. The formal definition of entanglement for states in Dirac notation is as
follows.

Definition 2.1 (Entanglement for States in Dirac Notation) An N-qubit state

N . P
[¥) € C?" is entangled if it cannot be expressed as the tensor product of states
of its subsystems A and B:

W) # W) ® [Ws), VIva) € CF ) e CF NA+Np=N.  (29)

If the state can be expressed in this form, it is referred to as seperable.



28 2 Basics of Quantum Computing

Example 2.2 (GHZ State) A typical example of an entangled N-qubit
state is the Greenberger—-Horne—Zeilinger (GHZ) state [4]. GHZ state is a
generalization of the two-qubit Bell state (see Example 2.1) to a maximally
entangled N-qubit state. The general form of an N-qubit GHZ state is

_ L N | heN
IGHZy) = ﬁ(|0> +1)N). (2.10)

For N = 3, the GHZ state is

1

GHZ3) =
| 3) 7

(1000) + |111)). @2.11)

A key property of the entangled states (e.g., Bell states and GHZ states) is that
measuring one qubit determines the outcome of measuring the other qubit, reflecting
their strong quantum correlation.

2.1.3 Density Matrix

Another description of quantum states is through density matrix or density opera-
tors. The reason for establishing density operators instead of Dirac notations arises
from the imperfection of physical systems. Specifically, Dirac notations introduced
in Sect.2.1.2 are used to describe “ideal” quantum states (i.e., pure states), where
the operated qubits are isolated from the environment. Alternatively, when the
operated qubits interact with the environment unavoidably, the density operators
are employed to describe the behavior of quantum states living in this open system.
As such, density operators describe more general quantum states.

o2V =2

Mathematically, an N-qubit density operator, denoted by p € , presents

a mixture of m quantum pure states |y;) € c?” with probability p; € [0, 1] and
Y, pi = 1. Thatis,

m
p=Y pipi. (2.12)
i=1
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N _oN .
where p; = Vi) (Vi] € C?" %27 is the outer product of the pure state |y;). The
outer product of two vectors |u), |v) € C" is expressed as

uq UiV} UIvy - Uy
* * *
u UV} UVy - - Uy
ju) (wl = | [vf v -] = N (2.13)
U, Uy vy Uy - Uy

where u; and v} are the element of |u) and the conjugate transpose (v|, respectively.
From the perspective of computer science, the density operator p is just a positive
semi-definite matrix with trace-preserving, i.e., 0 < p and Tr(p) = 1.

Definition 2.2 (Positive Semi-definite Matrix) A matrix A € C"*" is positive
semi-definite (PSD) if it satisfies the following conditions:

1. Ais Hermitian: A = AT,
2. For any nonzero vector [v) € C", (v| Alv) > 0, where (v| A|v) represents the
quadratic form of A with respect to |v).

When m = 1, the density operator p amounts to a pure state with p = [¥r1) (¥1].
When m > 1, the density operator p describes a “mixed” quantum state, where the
rank of p is larger than 1. A simple criterion distinguishes pure states from mixed
states: a pure state m = 1 yields Tr(p") = Tr(p) = 1 for any n € N. Conversely,
a mixed state with m > 1 satisfies Tr(p") < Tr(p) = 1 forany n € N \ {1}, as its
rank is greater than 1. Similar to Definition 2.1 for entanglement of pure states, the
entanglement of mixed states can also be defined.

Definition 2.3 (Entanglement for Mixed States) Let p be a density operator
acting on a composite Hilbert space H4 ® Hp. The state p is said to be entangled
if it cannot be expressed as

p=> piny ®pp (2.14)
i

where p; > 0, Zi pi = 1,and pg) and pg) are density operators on H,4 and Hp,
respectively. If p can be written in this form, it is called separable.

Example 2.3 (Density Matrix Representations)

(i) Consider the single-qubit pure state |) = Lz(|0) + [1)). The corre-

sponding density operator is

111
p=|w><w|=§[“].

(continued)
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Example 2.3 (continued)
Here, Tr (pz) = Tr(p) = 1, confirming that it is a pure state.

(i) Consider the classical probabilistic mixture of |0) and |1), each with equal
probability p = 0.5. The density operator is

1710
p =0.5/0) (0] +0.5]1) (1] = [0 J :

In this case, Tr (p?) = 0.5 < Tr(p) = 1, indicating it is a mixed state.

2.2 From Digital Logic Circuit to Quantum Circuit Model

To process quantum states, quantum computation is introduced, with the quantum
circuit model serving as a fundamental framework. This section begins with classi-
cal computation in Sect.2.2.1 and transitions to details about the quantum circuit
model in Sect.2.2.2, including quantum gates, quantum channel, and quantum
measurements.

2.2.1 Classical Digital Logic Circuit

Digital logic circuits are the foundational building blocks of classical computing
systems. They process classical bits by performing logic operations through logic
gates. In this subsection, the essential components of digital logic circuits and their
functionality are introduced, followed by a discussion of how these classical circuits
relate to quantum circuits.

2.2.1.1 Logic Gates

Logic gates are the basic components of a digital circuit. They take binary inputs,
represented as 0 or 1, and produce a binary output based on a predefined logic
operation. The most common logic gates are summarized below.

1. NOT Gate: This gate inverts the input bit, i.e., it produces 1 if the input is 0, and
vice versa. Its truth table is shown in Table 2.1.

2. AND Gate: Produces an output of 1 only if both input bits are 1; otherwise, it
outputs 0. The truth table is shown in Table 2.2.
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Table. 2.1 Input-output Input (A) | Output (NOT A)
mapping of the NOT gate 0 N
1 0
Table 2.2 Input-output Input (A) | Input (B) Output (A AND B)
mapping of the AND gate
0 0 0
0 1 0
1 0 0
1 1 1
Table 2.3 Input-output Input (A) | Input (B) Output (A OR B)
mapping of the OR gate 0 0 0
0 1 1
1 0 1
1 1 1
Table 2.4 Input-output Input (A) | Input (B) Output (A XOR B)
mapping of the XOR gate
0 0 0
0 1 1
1 0 1
1 1 0

3. OR Gate: Outputs 1 if at least one input is 1. The truth table is shown in
Table 2.3.

4. XOR Gate: Produces an output of 1 if the inputs are different and 0 otherwise.
The truth table is shown in Table 2.4.

These logic gates can be combined in various configurations to build more
complex circuits capable of performing arbitrary arithmetic operations.

2.2.1.2 Circuit Design and Universality

A classical digital logic circuit is composed of interconnected gates designed to
perform specific tasks, such as addition or multiplication. A key property of these
circuits is universality, meaning any logic function can be implemented using a
finite set of gates. For example, the NAND Gate (NOT AND) and NOR Gate (NOT
OR) are universal gates. Any other logic operation can be constructed using only
NAND or NOR gates [5].
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2.2.2 Quantum Circuit

Classical digital logic circuits provide the essential framework for understanding
computation. While classical circuits operate on bits and perform deterministic
operations, quantum circuits manipulate qubits and involve probabilistic behavior.
The concepts of logic gates, circuit design, and universality lay the groundwork for
transitioning to quantum circuits introduced in this subsection.

2.2.2.1 Quantum Gate

Recall that the computational toolkit for classical computers is logic gates, e.g.,
NOT, AND, OR, and XOR, which are applied to the single bit or multiple
bits to accomplish computation. Similarly, the computational toolkit for quantum
computers (or quantum circuits) is quantum gate, which operates on qubits
introduced in Sect. 2.1.2 to complete the computation. Both single-qubit and multi-
qubit gates are introduced in the following.

Single-Qubit Gates Single-qubit gates control the evolution of the single-qubit
state |a). Due to the law of quantum mechanics, the evolved state should satisfy
the normalization constraint. The implication of this constraint is that the evolution
must be a unitary operation. Concretely, denoted U € C2*? as a linear operator and
the evolved state as

|a) := Ula) = a10) + as|1) € C*, (2.15)

the summation of coefficients |@;|>+|a2|* = (ala) = (a|U'U|a) is equal to 1 if and
only if U is unitary with UTU = UUT = I. The symbol “}” denotes the conjugate
transpose operation. Under the density operator representation, the evolution of |a)
yields

p=UpUT, (2.16)

where ¢ = |a) (a| and p = |a) {a|.

Several common single-qubit gates, including Pauli-X, Pauli-Y, Pauli-Z,
Hadamard, and rotational single-qubit gates about the X, Y, and Z axes
(RX,RY, RZ), are illustrated in Fig.2.1. According to Theorem 4.1 in [1], any
unitary operation on a single qubit can be decomposed into a sequence of rotations
as

U = RZ(a) RY(B) RZ(y), (2.17)

where o, 8, y € [0, 21), up to a global phase shift.
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Quantum gate ‘ Matrix form ‘ Circuit representation
Pauli-X (X) (f é)
Pauli-Y (Y) <‘j 5’)
Pauli-Z (Z) <(1) _01>

1 /1 1
Hadamard (H) 7 (1 71>
1 0 0 O
Controlled-Z (CZ) 0 100
001 0
00 0 -1
cos Q) —1 sin(ﬁ)
2 2
O (5 wty) 0
cos(g) - sin(g)
RY(0) <sin(§) cos($) Ry (0)
e—iO 2 0
RZ(0) ( 0 ei@/?) R.(0)
1 0 0 0
SWAP R
00 0 1 -~
10 0 0
Controlled-NOT (CNOT) RO
0010

Fig. 2.1 The summarization of quantum gates

la) ] la) - o) — &
input state evolved state  input state RZ(a) |_| RY(8) |_| RZ() evolved state

Fig. 2.2 The evolution of the single-qubit state decomposed into the quantum gates

The evolution from |a) to |@) can be visualized using a quantum circuit diagram,
as illustrated in Fig.2.2. The wire in the circuit represents a qubit, which evolves
from the initial state |a@) on the left to the final state |@) on the right. Gates are
applied sequentially from left to right along the wire.
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Remark

The circuit model serves as a foundational framework for describing quantum
computation due to its intuitive and modular nature, making it accessible for
researchers and practitioners transitioning from classical to quantum com-
puting. First, the circuit model provides a standardized graphical language
to represent complex quantum algorithms, enabling clear visualization of the
computational flow and interactions among qubits. Second, the modularity of
the circuit model allows quantum operations to be easily decomposed into a
predefined gate set, ensuring compatibility across different quantum hardware
architectures.

Multi-qubit Gates The evolution of the N-qubit quantum state can be effectively

generalized by the single-qubit case. That is, the unitary operator U € c2" 2"
evolves an N-qubit state i) in Eq. (2.7) as
W) =Uly) ec? . 2.18)

The evolution of |y

) under the density operator representation is denoted by p =
UpUT, where p = |)

(¥land p = |¥) (Y.

Remark

In the view of computer science, the quantum (logic) gates in Fig.2.1 are
well-designed matrices with the following properties. First, all quantum gates
are unitary (e.g., xXxF = Ip). Second, X, Y, Z, H gates have the fixed form
with size 2 x 2; CNOT, CZ, and SWAP gates have the fixed form with size
4 x 4. Third, RX(0), RY(0), RZ(0) gates are matrices controlled by a single
variable 6.

Figure 2.1 includes two significant multi-qubit gates: the controlled-Z (CZ) gate
and the controlled-NOT (CNOT) gate. For instance, the CNOT gate operates on two
qubits: a control qubit (top line) and a target qubit (bottom line). If the control qubit
is 0, the target qubit remains unchanged; if the control qubit is 1, the target qubit is
flipped.
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= (000) + J111)

Fig. 2.3 The decomposition of the multi-qubit circuit U in the case of N = 3

Example 2.4 (State Evolved by Multi-qubit Gates) Figure 2.3 illustrates
the evolution of a 3-qubit state |1) under a multi-qubit circuit consisting of
multi-qubit gates. Each wire represents a qubit, and the evolution occurs from
left to right. Starting with the initial state ) = |000), a Hadamard gate is
applied to the first qubit, followed by two CNOT gates. That is, the first one
acts on the first and second qubits, and the other acts on the second and third
qubits. The final evolved state, shown on the right, is the GHZ state introduced
in Example 2.2, i.e., |$) =Uly) = %OOOO) + |111)). The entire unitary
operation can be represented as

U = (I, ® CNOT)(CNOT ®L,)(H ®L). (2.19)

Remark

The CNOT gate plays a pivotal role in quantum computing due to its unique
ability to generate entangled states, such as the Bell states and GHZ states
presented in Examples 2.1 and 2.2. Besides, the CNOT gate is one of the
most commonly implemented gates on quantum hardware. Its design and
optimization directly impact the fidelity and scalability of quantum systems.

A Universal Quantum Gate Set While many single and multi-qubit gates exist,
it is sufficient to use a universal set of gates to construct any unitary operation.
As proved in Chapter 4.5.2 of Ref. [1], any unitary operator U in Eq. (2.18) can be
decomposed into the single-qubit and two-qubit gates with a certain arrangement.
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Fact 2.1 (Solovay-Kitaev Theorem, [6]) Consider a fixed universal gate set G,
which generates a dense group SU(d). Then, any unitary operator U € SU(d) can
be approximated to an arbitrary precision € > 0 by a finite sequence of gates from
G. Formally, there exists a decomposition such that

<e GregG, LeN, (2.20)

L
U — nGl
=1

op

where |-||,p, is the operator norm which is the largest singular value of a matrix
and L is the required number of gates that scales as

L = 0 (log’(1/e)), (2.21)

with ¢ ~ 4.

A commonly used universal gate set includes single-qubit rotations RX(9), RY(9),
RZ(6), and two-qubit gates such as the CNOT gate. As illustrated in Fig. 1.1, any
ideal quantum computation can be represented by a unitary operator. This universal
gate set provides a practical and foundational toolkit for implementing arbitrary
quantum algorithms.

2.2.2.2 Quantum Channels

Analogous to the unitary operation describing the evolution of quantum states in the
closed system, the quantum channel formalizes the evolution of quantum states in
the open system. Refer to the textbook [7] for more details.

Mathematically, every quantum channel N(-) can be treated as a linear, com-
pletely positive, and trace-preserving map (CPTP map).

Definition 2.4 (CPTP Map) Denote L(H) as the space of square linear operators
acting on the Hilbert space H. Then, N(-) is a CPTP map if the following conditions
are satisfied:

* Linearity means that for any X4, Y4 € L(Hy) anda, b € C, N(aXa + bY4) =
aN(X4) +bN(Y4).

e A linear map N : L(Ha) — L(Hp) is a positive map if N(X4) is positive
semi-definite for all positive semi-definite operators X 4 € L(H4). Furthermore,
alinear map N : L(Hy) — L(Hp) is completely positive if Iz ® N is a positive
map for any size of R.

* Trace preservation means that Tr(N(X4)) = Tr(X4) for any X4 € L(Hy).

A quantum channel can be represented by the Choi—Kraus decomposition [1].
Mathematically, let L(H4, Hp) denote the space of linear operators taking H4 to
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Hp. The Choi—Kraus decomposition of the quantum channel N(-) : L(Hy) —
L(Hp) is

d
N(Xa) =) M,XM] (2.22)

a=1

where X4 € L(Hp), My € L(Hs Hp). Y 0_ MiMy = Lgime,) and d <
dim(H4)dim(Hp). Here, dim(H,) refers to the dimension of the space H,.

Two common types of quantum channels are introduced next, which are widely
used to simulate noise in quantum devices.

The first type is the depolarizing channel, which considers the scenario such that
the information of the input state can be entirely lost with some probability.

Definition 2.5 (Depolarization Channel) Given an N-qubit quantum state p €

c?” XZN, the depolarization channel N, acts on a 2N _dimensional Hilbert space as
follows
]IZN
Np(p) =1 —=p)p + PoN (2.23)

where Iy~ / 2N refers to the maximally mixed state and p is a scalar representing the
depolarization rate.

Example 2.5 (Single-Qubit State with Depolarization Channel) Consider
a single-qubit pure state p = |0) (0| with the density matrix

p=10)(0] = [(1) g] . (224)

When the depolarizing channel ), acts on this state, the output is given by

10 p(10 1-20
=(1-— = = 2 . 2.25
Np(p) = ( p)[oo}-i-z[()l} [ 0 %] (2.25)
Therefore, the purity is inferred as
2 P’

When p = 0, the state remains pure and unchanged. When 0 < p < 1, the
state becomes a mixture of states |0) and |1) with Tr(Nf,(p)) < 1. When
p = 1, the state evolves into the maximally mixed state.
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The second type is the Pauli channel, which serves as a dominant noise source
in many computing architectures and as a practical model for analyzing error
correction [8].

Definition 2.6 (Single-Qubit Pauli Channel) Given a quantum state p € C>*2,
the single-qubit Pauli channel N}, acts on this state as follows

Np(o) =prp+pxXpX+pyYpY+pzZpZ, (2.27)

where p = (py, px, py, pz) and p; + px + py + pz = 1.

Note that for a single-qubit system, the depolarization channel N, is a special Pauli
channel by setting px = py = pz = p.

Example 2.6 (Single-Qubit State with Pauli Channel) Consider a single-
qubit pure state p = |0) (0| with the density matrix:

p=10) (0] = [(1) 8] . (2.28)

When the Pauli channel NV, acts on this state, the output is given by

10 00 00 10
Np(p) = p1 [O 0] + px [0 J + py [O 1] + pz [O 0] (2.29)
pI + pz 0 :|
= . 2.30
|: 0 px-+py (2.30)

Let us analyze three special cases for the probability vector p =
(p1. Px, Py, P2):

e Case 1: If px = py = pz = p, the Pauli channel reduces to the
depolarization channel and the prepared state becomes

Np(p) = [1 o7 2‘;} 2.31)

* Case 2: If py = pz = 0, the prepared state becomes
1-— 0
Np(p) = [ o } . (2.32)
Px

In this scenario, the Pauli channel reduces to the bit-flip channel.

(continued)
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Example 2.6 (continued)
* Case 3: For other values of p, the effect of the Pauli channel on the pure

state |0) can be interpreted as a combination of the depolarizing channel
and the bit-flip channel.

To generalize the single-qubit Pauli channel to a multi-qubit Pauli channel, the
definition is extended to account for the action of Pauli operators on multiple qubits.

Definition 2.7 (Multi-qubit Pauli Channel) Given a quantum state p € o2 x2"
for an N-qubit system, the multi-qubit Pauli channel N}, acts as

No(p)= ) ppPpP’, (2.33)
PePy

where Py = {1, X,Y, Z }®N denotes the set of all tensor products of the N single-
qubit Pauli operators and pp is the probability of applying the Pauli operator P with

ZPGPN pr = L.

Remark

The multi-qubit Pauli channel considers the existence of correlated Pauli noise
on different qubits. If each qubit only experiences independent single-qubit
Pauli noise, the multi-qubit channel can be written as the tensor product of
single-qubit Pauli channels:

Np(p) = ®[L Ny, (p), (2.34)

where N, is the single-qubit Pauli channel acting on the i-th qubit with
probabilities p; = (p1, px, Py, Pz)-

Given the motivation and definition of quantum channels, a natural question
arises: what is the relation between quantum channels and quantum gates? It is
straightforward to observe that a quantum gate is a special case of a quantum
channel. Conversely, the evolution of a quantum state can be built from a unitary
operation via isometric extension [7]. The following theorem demonstrates that any
quantum channel arises from a unitary evolution on a larger Hilbert space.
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Remark

The Choi—Kraus decomposition reveals that a unitary operator is a special
case of a quantum channel. Specifically, when d = 1, the quantum channel
reduces to

N(X4) = M1 XM}, (2.35)

where M| is a unitary operator satisfying MJ{Ml = L. This highlights that
all unitary operators are quantum channels, but not all quantum channels are
unitary.

Theorem 2.1 ([7]) Let N(-) : L(Ha) — L(Hp) be a quantum channel defined
in Eq. (2.22). Let HE be the Hilbert space of an auxiliary system. Denote the input
state as p (i.e., a density operator p € CHMHDXAmHL)) Thep  there exists a
unitary U : L(Hs @ Hg) — L(Hp ® Hg) and a normalized vector (i.e., a pure
state) |¢) € CdimHE) sych that

Nep) =Tre (U(p @ o) (@hU") | (2.36)

where Trg () denotes the partial trace over the ancillary Hilbert space Hg and the
dimension of Hg depends on the rank of the Kraus representation of N.

Proof Sketch of Theorem 2.1 The system is extended to include an ancillary
Hilbert space HE, representing the environment. The combined space Hy ® HEg
forms a closed physical system, whose evolution can be described by a unitary
operator U acting on Hp ® HE.

To find a feasible unitary U, the quantum channel N is rewritten using its
isometric extension [7], i.e.,

N(p) = Trg (VpVT) , 2.37)

where V : Hy — Hp ® HE is an isometry operator embedding the input state into
the larger Hilbert space. For simplicity, assume H4 = Hp. The isometry operator
V can always be embedded into a unitary operator U acting on Hp @ Hg, ensuring
that U captures the reversible evolution of the extended system.

Next, the input state p is augmented by introducing an ancillary state |¢) €
HE, yielding the combined state p & |¢) (¢|. Substituting this augmented state and
the unitary operator U into the isometric extension in Eq. (2.37) gives Eq. (2.36).
Theorem 2.1 is thereby proven. O

The translation between the unitary operation and the quantum channels
described by Theorem 2.1 can be visually explained, as shown in Fig.2.4. In
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Fig. 2.4 The evolution of
quantum states based on p N(p )
Theorem 2.1 U
[) ~A| Trace over Hg
Fig. 2.5 The quantum circuit ’ a>
. .
diagram with measurement . U X
g input state L] D

this diagram, the first wire corresponds to the original input state p, while the
second wire represents the initial state |¢) of the environment. To determine the
output of the quantum channel N applied to p, an N-induced unitary operation U is
performed on the combined system, followed by a partial trace over the environment
to discard its information.

2.2.2.3 Quantum Measurements

Besides quantum gates and channels, which change quantum states, measurement is
another crucial operation in quantum circuits. Its goal is to get classical information
from an evolved quantum state. Figure 2.5 shows a quantum circuit diagram: it
depicts applying a unitary U to a single-qubit state |a), followed by a quantum
measurement.

Quantum measurements fall into two main categories: projective measurements
and positive operator-valued measures [1, 9].

Projective measurement, also known as von Neumann measurement, is described
by a Hermitian operator A = ), A;|v;) (v;|, where {A;} and {|v;)} refer to the
eigenvalues and eigenvectors of A, respectively. According to the Born rule [1],
o2V <2V

when the measurement operator A € is applied to an N-qubit state

|P) € CZN, the probability of getting any eigenvalue from {;} is
Pr(h) = | (v @) 1> (2.38)

In the density operator representation, suppose that the state to be measured is p €

c?” XZN, the probability of measuring any one of the eigenvalues in {};} is

Pr(1;) = Tr(plvi) (vil). (2.39)

Define I1; = |v;) (v;| as the i-th projective operator. The complete set of projective
operators {I1;} has the following properties:

D LT = 61 2) T = T;; 3) 17 = T3 4) Y I = L. (2.40)
i
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One special set of projectors is I1; = |i) (i| for Vi € [2V]. This measures the
probability of finding the system in the basis state |i). For example, given the single-
qubit state |e) in Eq.(2.2), the probability of measuring the computational basis
state |i) is

Pr(i) = | (vile) | = |ovi|* . (2.41)

The second type of quantum measurement is the positive operator-valued
measures (POVM). A POVM uses a set of positive operators 0 < E; satisfying
> i Ei = L Each positive operator E; corresponds to a measurement outcome.
Specifically, applying the measurement {E,,} to the state |y ), the probability of
outcome i is given by

Pr(i) = | (WIEil¥) I*. (2.42)

In the density operator representation, if the state to be measured is p € CszzN,
the probability of outcome i is

Pr(i) = Tr(pE;). (2.43)

The main difference between projective measurements and POVM elements is
that POVM elements do not have to be orthogonal. Because of this, projective
measurement is a special case of the generalized measurement (i.e., by setting
E; =TI TI)).

Remark

Here, we discuss what information can be accessed through quantum
measurements, both in theory and in practice. To illustrate, imagine the
computation result is the probability amplitude @ in the single-qubit state
la) = a1]|0) + a>|1) in Eq.(2.2). To get a; as a classical value from this
quantum state, the projective operator I1; = |0) (0| is applied to this state.
Quantum mechanics states that after each measurement, the state collapses.
The measured outcome V; acts as a binary random variable following a
Bernoulli distribution Ber(a;), i.e., Pr(V; = 1) = a; and Pr(V; = 0) =
1 — a;. By applying the measurement [1; to K copies of the state |a), the
statistics are obtained. The sample mean is written as a; = Zle 1 Vi/K. The
law of large numbers states that a; = a; when K — oo. However, only
the finite number of measurements K is allowed in practice. This leads to an
estimation error.
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2.3 Quantum Read-In and Read-Out Techniques

Quantum read-in and read-out describe how information moves between classical
and quantum systems. These are fundamental steps in quantum machine learning
(Fig. 1.1). They load data and extract results.

Quantum read-in and read-out are major roadblocks to using quantum computing
for classical tasks. As emphasized in [10], quantum algorithms offer exponential
speedups in certain problems, but these benefits are lost if data read-in and read-
out are inefficient. Read-in means loading classical data into quantum systems,
and read-out means extracting results from quantum systems. Specifically, quantum
states are high dimensional, and measurement precision is limited. These factors
often create overheads that grow quickly with problem size. These challenges
highlight why optimizing quantum read-in and read-out is crucial to unlock the full
potential of quantum computing. This section details quantum read-in and read-out
methods, covering their basic concepts and several common algorithms.

2.3.1 Quantum Read-In

Quantum read-in is the process of encoding classical information into quantum
systems that a quantum computer can manipulate. It’s essentially a classical-to-
quantum mapping. It bridges the gap, allowing us to use quantum algorithms to
solve classical problems. This section introduces several common encoding meth-
ods: basis encoding, amplitude encoding, angle encoding, and quantum random
access memory. Some easy-to-use demonstrations are provided in Sect. 2.5.

2.3.1.1 Basis Encoding

Basis encoding is a straightforward way to encode classical data that can be repre-
sented in binary form. Given a classical binary vectorx = (xg, ..., X;, ..., XN—_1) €
{0, 1}, this method maps it directly to a quantum state:

[¥) =1|x0, ..., XN=1). (2.44)

This process requires N qubits to represent a binary vector of length N. To prepare
the quantum state |y), we apply an X gate to each qubit if its corresponding bit
value is 1. The overall quantum state preparation can be expressed as

N-1

v = ) x*10)*",

i=0



44 2 Basics of Quantum Computing

Fig. 2.6 Example of basis

encoding for the integer 6 ‘ 0> X I ].>
0) — X L)
0) ——0)

where |0)®V represents an initial state of all qubits set to |0) and X*i means
applying the X gate to the i-th qubit only if x; = 1.

Example 2.7 (Basis Encoding) To encode the integer 6, its binary form is
x = (1, 1,0). The corresponding quantum state is |110). This state can be
implemented by applying X gates to the first and second qubits, as shown in
Fig.2.6.

2.3.1.2 Amplitude Encoding

Amplitude encoding maps classical data into the amplitudes of a quantum state.

. N ..
Given a vector x = (xo, ey Xy, xzzv,l) e C? containing complex values, the
L> normalization is applied to obtain a normalized vector:

N x
xX=—, (2.45)
llx1l2
where ||x]||» is the Euclidean norm. This ensures that the normalized vector X

N_1 A .
satisfies Z?:() ! |%;|> = 1. The quantum state is then

P

) =) &ili) (2.46)

i=0

with |i) representing the N-qubit computational basis states.

Example 2.8 (Amplitude Encoding) To encode a normalized vector x =
(x0, x1) € C? as the quantum state ) = x0|0) + x1]|1), this can be achieved
by applying a rotation gate U = Ry(0) to the initial state |0), where 8 =
2 arccos(xp).
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Amplitude encoding can represent a very large vector (length 2N ) with just
N qubits, making it highly efficient in terms of qubit counts. However, preparing
this quantum state requires constructing a unitary transformation U such that
|¥) = U|0)®N_ Efficiently finding such transformations is challenging and an active
research area (see Sect. 2.6 for more discussions).

2.3.1.3 Angle Encoding

Basis encoding and amplitude encoding are basic ways to map classical data to
quantum states, but they have different resource needs. Basis encoding uses as many
qubits as the data’s binary length and needs few gate operations to prepare the state.
In contrast, amplitude encoding is very qubit efficient, using only a logarithmic
number of qubits for the data’s size, but it needs many gate operations.

To address this limitation, an alternative is angle encoding. The core idea of angle
encoding is to embed classical data into a quantum state through rotation angles.

Given a real-valued vector x = (xg,...,X;,...,XNy—1) € RY . the encoded
quantum state can be represented as

® Ry (x)[0)® ® exp (—z —0) 0N (2.47)

where 0 € {X, 7Y, Z} denotes a Pauli operator, as defined in Fig.2.1. Since Pauli
rotation gates are 2 -periodic, it is essential to scale each element x; into the range
[0, ) to ensure that different values are encoded into distinct quantum states.

A key advantage of angle encoding is its ability to introduce nonlinearity. By
mapping classical data into the parameters of quantum rotation gates, angle encod-
ing uses trigonometric functions to naturally capture nonlinear relationships. This
property is crucial in quantum machine learning because models need nonlinearity
to learn complex patterns, like those that cannot be separated by a straight line.

2.3.1.4 Quantum Random Access Memory (QRAM)

Basis encoding, amplitude encoding, and angle encoding typically encode one data
item at a time, making it hard to work with large, complex classical datasets. The
QRAM [11], like classical RAM, can store, address, and access multiple quantum
states at once.

QRAM consists of two types of qubits: data qubits for storing classical data and
address qubits for addressing. Given a classical dataset D = {x(j )}1;/[:_01 with M
training examples, assume each data item is separately encoded into a quantum state
[x )y using one of the encoding methods above. The QRAM works like this: (1)
First, prepare an N,-qubit address register where N, = [log,(M)7; (2) Then, link
each data state |x/)),; with corresponding address state | j),. The entire dataset then
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forms a quantum state:

M—1
1 )
D) =Y ﬁ|j>a|x<f>>d. (2.48)

J=

Remark

The subscript d in |x(7)),; shows this quantum state is in the data register,
unlike address qubits, which use the subscript a (e.g., |j),). This convention
helps to distinguish between the roles of data and address qubits in QRAM
operations.

Example 2.9 (QRAM Encoding) Consider a dataset D = {2, 3}. Using
basis encoding, each sample is first turned into a two-qubit quantum state:
{|10)4, [11)4}. Each data state then gets an address state, |0), for the first
state |10)4 and |1), for the second state |11),. The resulting QRAM-encoded
state looks like this:

_ 1
v

The corresponding quantum circuit for implementing this state is shown in
Fig.2.7.

|D) (10)al10)a + [1)al11)a) - (2.49)

QRAM allows the dataset D to be stored in a coherent quantum superposition,
enabling simultaneous access to all data items through the entanglement of address
and data qubits. While QRAM is theoretically powerful, its practical implementa-
tion remains a significant challenge due to the need for a large number of qubits and
quantum operations (see Sect. 2.6 for the discussion).

Fig. 2.7 Example of QRAM |0) .H X X
encoding for the dataset ‘0; ,l\ rL

- d D D
D=1{2,3} 0), D
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2.3.2 Quantum Read-Out Methods

Quantum read-out translates the quantum state from a computation into classical
data. This allows for further processing, interpretation, or optimization using
classical systems. It’s the opposite of quantum read-in, acting as a quantum-to-
classical mapping.

Depending on how much information is extracted, quantum read-out methods
generally fall into two types: full information and partial information read-out
methods. These methods allow for customized read-out processes that fit the needs
of various quantum applications, including tomography, optimization, and machine
learning tasks.

2.3.2.1 Full Information Read-Out Methods

Full information read-out aims to completely reconstruct the quantum state. This
helps us fully understand how the quantum system behaves. The most common way
to do this is through quantum state tomography (QST) [12].

QST involves taking quantum measurements, collecting statistics, and then
using classical computers to reconstruct the quantum state. In what follows, two
reconstruction techniques broadly used in QST, i.e., linear inversion [13] and
maximum likelihood estimation (MLE) [14], are introduced.

OST with Linear Inversion Linear inversion is a direct way to reconstruct a quantum
state from measurement data by solving linear equations. Let p be the explored
quantum state and {E;} be a set of measurements. According to the Born rule, the
probability of measurement outcome i is given by

Pr(Ei|p) = Tr(pE;). (2.50)

In practice, Pr(E;|p) is not directly accessible but is approximated by the frequency
pi of measurement outcome i over multiple measurements. By the law of large
numbers, as the number of measurements increases, p; converges to the true
probability Pr(E;|p). Collecting measurements across all bases, there is a linear
system:

Tr(pEo) E - p Po
Tr(pE) | = |Ej-p| = Ap~p=|DP1], 2.51)

where E and p refer to the vector representations of matrices E; and p, respectively.
The vector representation of a matrix is obtained by stacking its columns into a
single-column vector. For example, the vector form of a 2 x 2 identity matrix is
I, = [1,0,0, 1]7. The matrix A is constructed such that each row corresponds to
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the vector representation of the measurement operator, i.e., A = [Eg; EJ{; . ] The
vector p contains the measured frequencies p;.

If the measurements are tomographically complete (meaning {E;} forms a basis
for the system’s Hilbert space), we can reconstruct the state p by solving these linear
equations:

p=(ATA)"'ATp. (2.52)

A common strategy is to use Pauli operators as measurement bases {E;}. The
density matrix p for an N-qubit system can be written using the Pauli basis as

4N 1
> ciP. ceR, PeflXY z)®V (2.53)
i=0

1
PZZ—N

The coefficients c; represent projections of p onto the Pauli basis, calculated as
ci =Tr(pP;). (2.54)

To fully reconstruct p, the quantum state must theoretically be measured in all 4" —1
Pauli bases to estimate each c;.

Remark

The Pauli basis includes four Hermitian matrices: I, X, Y, and Z, as
introduced in Fig.2.1. These operators form a complete basis for the space
of 2 x 2 complex matrices. For N-qubit systems, the tensor products of these
single-qubit operators span the space of 2"V x 2V complex matrix. This makes
the Pauli basis essential for representing quantum states, observables, and
their transformations.

A key drawback of linear inversion is that it doesn’t guarantee a valid density
matrix. The estimated quantum state might not have properties like positive semi-
definiteness (Definition 2.2), especially with limited measurements.

Maximum Likelihood Estimation (MLE) To ensure physical constraints on the
quantum state during reconstruction, MLE is introduced. MLE reconstructs p by
maximizing the likelihood of observing the measurement outcomes. It does this
while ensuring p is Hermitian, is positive semi-definite, and has a trace of one. The
likelihood function is

L(p) = [ Tr(oEN"". (2.55)



2.3 Quantum Read-In and Read-Out Techniques 49

Reconstructing p then becomes solving this optimization problem:

argmax L(p'), st o' >0, o =p", Tr(p)=1. (2.56)
o'

Solving this usually needs iterative numerical optimization, which can be computa-
tionally intensive.

Remark

A common challenge across all quantum state tomography (QST) methods,
including linear inversion and MLE, is the exponential computational cost
with respect to the number of qubits. Specifically, the number of parameters
needed for reconstruction grows exponentially with the system size. This
makes QST methods practical only for systems with a small number of qubits.
This limitation highlights the need for scalable ways to characterize quantum
states in larger systems.

2.3.2.2 Partial Information Read-Out Methods

Partial information read-out methods extract specific, useful information from
a quantum state without needing to reconstruct its entire density matrix. This
approach enables efficient characterization and analysis of large-qubit systems.
Current partial read-out techniques generally fall into three categories based on the
type of information collected: sampling, expectation value estimation, and shadow
tomography.

Sampling Sampling involves repeatedly measuring the quantum state in the com-
putational basis to estimate the probability distribution over bit-strings. Given a state
|¥), the probability of observing a specific computational basis |i) is given by

Pr(i) = (¥ ]i)]*. (2.57)

The frequency of each outcome from repeated measurements provides an estimate
of Pr(i). Sampling is particularly useful in the following applications:

* Sampling over complicated distributions. Quantum states can represent complex
probability distributions that are difficult to sample classically. Quantum sam-
pling allows efficient exploration of these distributions for specific applications,
such as probabilistic modeling and Markov chain Monte Carlo [15].

e Optimization problems. Sampling helps find high-probability bit-strings in quan-
tum algorithms like the Quantum Approximate Optimization Algorithm [16] and
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Grover search [17]. These sampled bit-strings often represent optimal or near-
optimal solutions.

e Verification. Sampling facilitates the comparison of a quantum circuit’s output
with theoretical expectations or desired distributions, helping to verify the
quantum systems [2, 18, 19].

Expectation Value Estimation For many quantum computation problems, such as in
quantum chemistry and many-body physics, the computation result is the estimated
expectation value of certain observables on the evolved quantum state [20, 21].

N N . . oer
An observable O € C2 *?" mentioned here is a Hermitian operator that
represents a measurable physical quantity. For an N-qubit system, O can be
expressed in terms of a Pauli basis expansion, i.e.,

4N
0= Zai P, P el X,Y,Z}®, « cR. (2.58)

i=1

where P; denotes the i-th N-qubit Pauli string.
The expectation value of an observable O with respect to an N-qubit state p is

(0) = Tr(pO). (2.59)

Substituting the Pauli expansion of O, the expectation value is expressed as the
weighted sum of the expectation values of each Pauli basis term due to the linearity
of the trace operation, i.e.,

4N 4N
(0)=) a;Tr(pP) = a; (P). (2.60)
i=1

i=1

To estimate the expectation value of each individual Pauli term P;, the quantum
state p must be measured on the basis of the eigenstates of P;. The measurement
outcome is then associated with the corresponding eigenvalue of P;. Notably,
the eigenstates and eigenvalues of P; can be derived from the eigenstates and
eigenvalues of its constituent single-qubit Pauli operators P;;.

* Figenvalues. The eigenvalues of P; are the product of the eigenvalues of
each single-qubit Pauli operator P;;, ie., P; = ®§-V=1P,- ;. For example, if the
eigenvalues of P;; are =+ 1, then the eigenvalues of P; are products of these
individual eigenvalues and remain in {#1}.

» Figenstates. The eigenstates of P; are the tensor products of the eigenstates of
the single-qubit Pauli operators P;;. If |A;;x) is one of the eigenstate of P;;, then

the corresponding eigenstate of P; is ®;V=1 [Aijk)-

This structure allows P; to be analyzed in terms of its simpler single-qubit
components, significantly simplifying the process of determining the measurement
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basis for expectation value estimation. By repeating the measurements M times and
obtaining the corresponding measurement results {r; y=1’ the statistical value of
(P;) can be estimated by

. T
(Py) = Mgrj. 2.61)

The expectation value of the observable O is therefore statistically estimated by
N N _ ~
(0) =i @i (Pi).

Remark

A key step in the process is to measure the quantum system in the basis of the
eigenstates of P;. If P; is diagonal in the computational basis (e.g., a tensor
product of Pauli-Z operators), the state can be directly measured without
additional operations. Otherwise (e.g., for Pauli-X or Pauli-Y operators), a
unitary transformation must be applied to rotate the quantum state into the
desired basis. Specifically, when measuring in the Pauli-X basis (i.e., |+) and
|—)), a Hadamard gate H is applied to the state p, i.e.,

o = HpH. (2.62)

OFi[l) oo q 10—l
2

When measuring in the Pauli-Y basis (i.e., N 7 ), a phase

gate S = +/Z followed by a Hadamard gate H is applied, i.e.,
o = STHpHS. (2.63)

Measuring the state p’ in the computational basis is equivalent to measuring
the state p in the corresponding Pauli basis.

Shadow Tomography Full QST needs an exponential number of quantum state
copies, making it impractical for systems with more than a few qubits. Instead of
fully reconstructing the density matrix, shadow tomography [22] efficiently extracts
specific properties of a quantum state, such as the expectation values of many
observables.

Definition 2.8 (Shadow Tomography, [22]) Given an unknown D-dimensional
quantum state p, as well as M observables Oj, ..., Oy, output real numbers
by, ..., by such that |b; — Tr(O;p)| < € for all i, with success probability at least
1 — 4. Do this via a measurement of ,o®k, where k = k(D, M, €, §) is as small as
possible.
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Aaronson [22] proved that the shadow tomography problem can be solved using
a polylogarithmic number of copies of states in terms of the dimension D and
number M of observables. This result demonstrates that it is possible to estimate
the expectation values of exponentially many observables for a quantum state of
exponential dimension using only a polynomial number of measurements.

The core idea of shadow tomography is to create a compact classical represen-
tation, or “shadow,” of a quantum state. This shadow holds enough information to
estimate many of the state’s properties. Building on this concept, [23] proposed
a more practical and efficient approach, termed classical shadow, which uses
randomized measurements to construct this classical representation. The classical
shadow approach consists of the following steps:

1. Randomized measurements. Perform random unitary transformations on the
quantum state and measure the transformed state in the computational basis.
These random transformations can be drawn from specific ensembles, such as
Clifford gates or local random rotations, which ensure that the measurement
outcomes capture the essential properties of the quantum state.

2. Classical shadow construction. Using the measurement results, construct a
classical shadow of the quantum state. This compact representation encodes the
quantum state in a way that allows for the efficient estimation of properties.

3. Property estimation. Use the classical shadow to compute the desired properties
of the quantum state, such as expectation values of specific observables, subsys-
tem entropies, or fidelities with known states.

Shadow tomography needs exponentially fewer measurements than full quantum
state tomography. This makes it a practical solution for large-scale quantum sys-
tems. Moreover, the shadow of a quantum state serves as a versatile representation,
enabling the efficient estimation of various properties such as expectation values,
entanglement measures, and subsystem correlations.

2.4 Quantum Linear Algebra

We next introduce quantum linear algebra, a potent toolbox for designing various
FTQC-based algorithms introduced in Sect. 1.2.2. For clarity, the definition of block
encoding is presented in Sect.2.4.1, detailing how to implement a matrix on a
quantum computer. Based on this, some basic arithmetic rules for block encodings
are introduced in Sect. 2.4.2, including multiplication, linear combination, and the
Hadamard product. Finally, in Sect.2.4.3, the quantum singular value transforma-
tion method is introduced, which enables one to implement functions onto singular
values of block-encoded matrices.
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2.4.1 Block Encoding

For many computational problems, such as solving linear equations, it is often
necessary to deal with a non-unitary matrix A. However, remember that quantum
gates as discussed in Sect.2.2 are unitaries. Therefore, if we want to solve these
problems on quantum computers, it is essential to consider how to encode the matrix
A into a unitary. This challenge can be addressed by the block encoding technique.

Definition 2.9 (Block Encoding, [24]) Suppose that A is an N-qubit operator,
o,& > 0and a € N. Then, the (a + N)-qubit unitary U is said to be an (¢, a, €)-
block encoding of A if

A —a({(01%* @ LU (0)® @ Iw)|| < e. (2.64)

Here, | - || represents the spectral norm, i.e., the largest singular value of the matrix.

The circuit implementation of the block encoding is illustrated in Fig. 2.8. The
scaled matrix A/« interacts with the state |y if the first qubit registers are measured
as |0). By definition, there is « > ||A| and any unitary U is an (1, 0, 0)-block
encoding of itself.

Fact 2.2 (Block Encoding via the Linear Combination of Unitaries (LCU)
Method, [24]) Suppose that A can be written in the form

A=Yl (2.65)
k

where {ay} are real numbers and Uy are some easily prepared unitaries such as
Pauli strings. Then, the LCU method allows us to have the access to two unitaries,
ie.,

User = ) _ k) (k| ® Uy, (2.66)
k
1
Upeg :10) =~ > Valk), 2.67)
k

where o = (a1, ap, ...).

block encoding | 0> 7

Fig. 2.8 Quantum circuit for a '_] D
0

Ua| ap)
V) — A
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After simple mathematical analysis, one can obtain U = (U;REP ®
Lw)UseL(Uprep ® L) is a (|lee]l1, m, 0)-block encoding of A. Here, Ion is the
identity operator of N-qubit size and || - ||| denotes the £1 norm of a given vector.

Similar to the definition of block encoding, the state preparation encoding can be
defined.

Definition 2.10 (State Preparation Encoding [25]) We say a unitary Uy is an
(o, a, €)-state-encoding of an N-qubit quantum state |i) if

1Y) — ({071 ® DUI0°N) oo < e, (2.68)

where || - ||oo denotes the infinity norm of the given vector.

More straightforwardly, the («, a, €)-state-encoding Uy, prepares the state:

1
Uy 0)]0) = EIO)II//) + V1 —«?[1)|bad),

where |||/} — |¥)|loo < € and |bad) is an arbitrary quantum state. One can further
prepare the state |’) by using O(«) times of amplitude amplification [26]. The state
preparation encoding can be understood as a specific case of the block encoding, i.e.,

. . N .
it is the block encoding of a C>" <! matrix.

2.4.2 Basic Arithmetic for Block Encodings

Now, we introduce some arithmetic rules for block encoding unitaries. The follow-
ing two facts describe the product and linear combination rules of block encoding
unitaries, respectively.

Fact 2.3 (Product of Block Encoding, [24]) If U is an («, a, §)-block encoding of
an N-qubit operator A, and V is a (B, b, €)-block encoding of an N -qubit operator
B, then (I, @ U)(Ina ® V) is an (af, a + b, ae 4+ BS)-block encoding of AB. Here,
Ipa is the identity operator of a-qubit size.

Fact 2.4 (Linear Combination of Block Encoding, [24]) Ler A = Zk xr Ay be
an s-qubit operator with B > ||X||1 and &1 > 0, where X is the vector of coefficients.
Suppose the access to

PLI0) = cilk), (2.69)
k

Ppl0) = > dlk), (2.70)
k
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W= [k} k| ® Uy + ((Is =Y I K)®T, ® I;;) : 2.71)

k k

where Zk |Bcidy — x| < &1 and Uy is an (o, a, £2)-block encoding of Ay. Then,
an (@B, a + b, ae; + Bez)-block encoding of A can be implemented by using one
time of W, Py, and Pg.

These results can be verified via direct computation. Another arithmetic rule broadly
employed in quantum machine learning is the Hadamard product, a.k.a, the element-
wise product. The following lemma exhibits how to achieve this operation via the
block encoding framework.

Lemma 2.1 (Hadamard Product of the Block Encoding Unitaries, [25]) With
N € N, consider two matrices A, B € CZNXZN, and assume that an (a, a, §)-
encoding Ux of matrix A and (B, b, €)-encoding Up of matrix B are accessible,
then an (B, a + b + N, ae + Bd)-encoding of matrix A o B corresponding to the

Hadamard product of A and B can be constructed.

Proof Sketch of Lemma 2.1 For simplicity, we only consider the perfect case, i.e.,
no errors. Refer to Ref. [25] for the proof details under the more general cases.

The intuition for achieving the Hadamard product is that all the needed elements
can be found in the tensor product, i.e.,

(<0a+b| ® 1122N)(I[2b RUAs® ]IZN)(I[za QU ® ]IzN)(|Oa+b> X 1[22N) (272)
_AQ®B
= aIB .

To this end, the question is reduced to finding proper permutation unitaries that
can shift the required elements to the correct positions to achieve the Hadamard
product. Denote P’ = Y97 1|i)(i| ® 0)(i|. As proved by Zhao et al. [27], the
tensor product of A and B can be reformulated to the Hadamard product via P, i.e.,

P'(A® B)P'" = (Ao B) ®0)(0].
However, P’ is not a unitary. Instead, we consider P = ZEJJLO Vi1 ® J)Jls
which can be easily constructed by using N CNOT gates, i.e., one CNOT gate
between each pair of qubits consisting of one qubit from the first register and
the corresponding qubit from the second register. By direct computation, it can be
shown

(Ly ® (0" ) P(A® B)PT(Iy ® [0Y)) = Ao B. (2.73)

Therefore, by direct computation, one can verify that (P ® Ly+s)(Ip ® Us ®
L) (e ® Up @ In ) (P ® Lyats) is the desired block encoding. O
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2.4.3 Quantum Singular Value Transformation

Having established how to implement matrices on quantum computers and perform
arithmetic operations among them, the next step is to introduce methods for
implementing matrix functions on quantum computers. The method is called the
quantum singular value transformation (QSVT), which is a powerful framework
that can unify most known quantum algorithms.

In machine learning applications, we primarily work with real matrices. The
computational cost of QSVT for real matrices is summarized in the follow-
ing theorem. For a matrix A, consider its singular value decomposition A =
Zi oi|vi){(¢i|. Given a function P(x), PGVI(A) is used to represent PEVI(A) =
> P@)|¥i) (il

Fact 2.5 (Quantum Singular Value Transformation—Real Matrix Case, [24])
Suppose that Uy is an (o, a, €)-block encoding of a real matrix A. If § > 0 and
P : R — Cis a d-degree polynomial satisfying that

forallx e [—-1,1]: |P(x)| < 2.74)

1
1
then a quantum circuit U exists. This circuit is a (1,a + 3, 4d/e/a + 6)-block

encoding of PV (A /a) and involves d applications of U, and U}; gates. Further,
the circuit’s description can be classically computed in O(poly(d, log(1/8))) time.

If the block-encoded matrix A is Hermitian, the singular value transformation is
equivalent to the eigenvalue transformation. In this case, the matrix function can be
directly implemented using QSVT.

The following section introduces several applications of QSVT. While QSVT
has many important applications, this book focuses on those relevant to machine
learning tasks. The first application is matrix inversion, widely used in traditional
machine learning methods like principal component analysis. For a general matrix,
this typically refers to implementing the Moore-Penrose pseudoinverse, i.e., the
inverse of all singular values.

Lemma 2.2 (Matrix Inversion, Simplified [24]) Ler Uas be a (1, a,0)-block
encoding of matrix A. Further, for simplicity, assume the nonzero singular values
of A are lower bounded by § > 0. Let 0 < € < § < % One can construct a

(1/8, a + 2, €)-block encoding of A~ by using (3(% log(%)) times of Up and Uj\.

Proof Sketch of Lemma 2.2 This can be achieved by finding a good polynomial
approximation for the function 1/x. While such a polynomial cannot be found for
the entire interval [—1, 1], it does exist on the interval [—1, —8] U [8, 1] for some
6 >0. i

The second application of QSVT is nonlinear amplitude transformation. As
mentioned in Sect. 2.3.1, classical data can be encoded into quantum states in several
ways. Here, the employed methodology is the amplitude encoding case described
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in Sect. 2.3.1.2, especially for the real amplitudes. The nonlinear transformation is
achieved by combining diagonal block encoding with QSVT.

Fact 2.6 (Diagonal Block Encoding of Amplitudes, [28, 29]) Given a state
preparation unitary Uy, of an N-qubit state |Yf) = Z?ll Yilj), where {;} are
real, | ||2 = 1, one can construct an (1, N + 2, €)-encoding of the diagonal matrix
A = diag(Yrq, ..., ¥g) with O(N) circuit depth and O(1) times of controlled-U and
controlled-U".

As a straightforward generalization, one can replace the state preparation unitary
with the general state preparation encoding, as mentioned in Definition 2.10. By
creating the block encoding of amplitudes, we can implement many functions onto
these amplitudes using QSVT. A direct application is performing the neural network
on the quantum computer, as will be detailed in Sect. 5.2.

2.5 Code Demonstration

This section provides code implementations for key techniques introduced earlier,
including quantum read-in strategies and block encoding. These examples offer
readers an opportunity to practice and deepen their understanding.

2.5.1 Read-In Implementations

This subsection demonstrates toy examples of implementing data encoding methods
in quantum computing, as discussed in earlier sections. Specifically, the basis
encoding, amplitude encoding, and angle encoding from Sect.2.3.1.3 are covered.
These examples aim to provide readers with hands-on experience in applying
quantum data encoding techniques.

2.5.1.1 Basis Encoding

PennyLane provides built-in support for basis encoding through its “BasisEmbed-
ding” function. Below is Python code demonstrating the basis encoding for the
integer 6.
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import pennylane as qml

5 |dev = gml.device("default.qubit", range(3))
. | @qml . qgnode (dev)

5 |def circuit(x):

6 gqml .BasisEmbedding(x, range(3))

7 return gml.state()

9 |# Call the function
0 | circuit (6)

2.5.1.2 Amplitude Encoding

PennyLane offers built-in support for amplitude encoding via the “AmplitudeEm-
bedding” function. Below is a Python example demonstrating amplitude encoding

for a randomly generated complex vector.

i | import pennylane as qml
> | import numpy as np

4 |# Number of qubits
5 |n_qubits = 8

7 |# Define a quantum device with 8 qubits
s |dev = gqml.device("default.qubit", wires=n_qubits)

0 | @gml.gnode (dev)

1 |def circuit(x):

12 qml . AmplitudeEmbedding (features=x, wires=range(n_qubits),
normalize=True, pad_with=0.)

13 return gml.state()

15 |# Generate a random complex vector of length 2An_qubits

16 | x_real = np.random.normal(loc=0, scale=1.0, size=2**n_qubits)
17 | x_imag = np.random.normal (loc=0, scale=1.0, size=2**n_qubits)
s |x = x_real + 1j * x_imag

0 |# Execute the circuit to encode the vector as a quantum state
21 | circuit (x)

2.5.1.3 Angle Encoding

PennyLane provides built-in support for angle encoding via the “AngleEmbedding”
function. Below is a Python example demonstrating angle encoding for a randomly
generated real vector.
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import pennylane as qml
import numpy as np

# Number of qubits
n_qubits = 8

# Define a quantum device with 8 qubits
dev = gml.device("default.qubit", wires=n_qubits)

@qml . gnode (dev)
def circuit(x):
qml . AngleEmbedding (features=x, wires=range(n_qubits),
rotation="X")
return gml.state()

# Generate a random real vector of length n_qubits
x = np.random.uniform(®, np.pi, (n_qubits))

# Execute the circuit to encode the vector as a quantum state
circuit(x)

2.5.2 Block Encoding

An example of constructing a block encoding is provided here. The block encoding

is constructed via the linear combination, as described in Fact2.2. PennyLane is

used to maintain consistency, but there are also many other available platforms.
Note that Pauli decomposition is time-consuming (for an N-qubit matrix, it takes

O(N4V) time), so it’s not recommended to try this method with large matrices.

import numpy as np
import pennylane as qml
import matplotlib.pyplot as plt

a = 0.36
b = 0.64

# matrix to be decomposed
A = np.array(

[[a, ©®, 0, b],
[0, -a, b, 0],
[0, b, a, 0],
[b, 0, 0, -all

)

# decompose the matrix into sum of Pauli strings
LCU = gml.pauli_decompose (A)
LCU_coeffs, LCU_ops = LCU.terms()

# normalized square roots of coefficients
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alphas = (np.sqrt(LCU_coeffs) / np.linalg.norm(np.sqrt(
LCU_coeffs)))

dev = gml.device("default.qubit", wires=3)

# unitaries

ops = LCU_ops

# relabeling wires: ® --> 1, and 1 --> 2

unitaries = [qml.map_wires(op, {0: 1, 1: 2}) for op in ops]

@qml .gnode (dev)

def lcu_circuit(): # block_encode
# PREP
qml.StatePrep(alphas, wires=0)

# SEL
qml.Select(unitaries, control=0)

# PREP_dagger
qml.adjoint (qml.StatePrep(alphas, wires=0))

return gml.state()

print(np.real (np.round(output_matrix,2)))

2.6 Bibliographic Remarks

This chapter concludes by discussing recent advancements in efficiently implement-
ing fundamental quantum computing components. For clarity, a brief overview of
advanced quantum read-in and read-out methods is provided, as these are crucial
for efficiently loading and extracting classical data in quantum machine learning
pipelines. The latest progress in quantum linear algebra is also reviewed.

2.6.1 Advanced Quantum Read-In Methods

While conventional read-in methods can encode classical data into quantum com-
puters, they typically face two key challenges that limit their broad use in practical
learning problems. To address these limitations, initial efforts have focused on
developing more advanced quantum read-in methods.

Challenge I: High demand for quantum resources. Encoding methods like amplitude
encoding and basis encoding presented in Sect. 2.3.2 generally suffer from high
quantum resource requirements. While amplitude encoding is highly compact in
terms of qubit requirements, it demands an exponential number of quantum gates
relative to data size to prepare an exact amplitude-encoded state. In contrast, basis
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encoding requires a large number of qubits proportional to the input size, even
though it can be implemented with a small number of quantum gates. The high
demand for either quantum gates or qubit counts makes these basic encoding
strategies infeasible for practical use.

Challenge II: Insufficient nonlinearity. While quantum mechanics is inherently
linear, most practical machine learning models require nonlinearity to capture
complex data patterns effectively. Conventional encoding methods like angle
encoding introduce some nonlinearity. However, their representational power
remains limited due to the linear nature of quantum operations and shallow circuit
depth.

For Challenge I, a practical alternative is the approximate amplitude encoding
(AAE) [30]. Instead of implementing exact amplitude encoding, AAE trains a
parameterized quantum circuit with a constrained depth to approximate the desired
quantum state with high fidelity. The training process optimizes the fidelity between
the target state and the approximate state, ensuring that the representation error
remains within a small bound.

For Challenge II, techniques like data re-uploading [31] have been developed.
Data re-uploading involves feeding the same classical data into the quantum circuit
multiple times, interspersed with trainable quantum operations. By alternating
data encoding with trainable transformations, this approach allows the quantum
model to capture nonlinear relationships more effectively without additional qubits.
Additionally, neural quantum embedding [32] has been proposed. This method
leverages classical deep learning techniques to learn optimal quantum embeddings,
effectively separating nonlinearly separable data classes.

To address both Challenges I and II, hybrid encoding strategies have been
introduced to leverage the respective advantages of each encoding method. For
instance, basis-amplitude encoding combines basis encoding for discrete random
variables with amplitude encoding for high-precision probabilities. This effectively
encodes both categorical and continuous features without additional qubits [33].
Another widely used strategy involves classical preprocessing methods for high-
dimensional data, such as principal component analysis (PCA) [34], to reduce input
dimensionality before applying quantum encoding. This preprocessing step reduces
overall quantum resource requirements while preserving relevant information.

Beyond fixed encoding strategies, learning-based approaches have emerged that
dynamically adjust data encoding for specific tasks. For example, [35] achieve
task-specific quantum embeddings by incorporating learnable parameters into the
encoding layers, which are optimized to maximize class separability in Hilbert
space. This technique is analogous to classical metric learning. Following this rou-
tine, a quantum few-shot embedding framework [36] has been proposed to encode
classical data into quantum states, which can be generalized to the downstream
quantum machine learning tasks. These methods enable quantum circuits to adapt
their encodings dynamically, improving efficiency and performance.
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2.6.2 Advanced Quantum Read-Out Methods

Conventional quantum read-out methods often face significant challenges, including
high computational overhead and resource inefficiencies. Below, we discuss the
primary challenges and discuss solutions in two quantum read-out methods: QST
and observable estimation.

Challenge I: High computational overhead of QST. QST aims to reconstruct the
density matrix of a quantum state, but this becomes computationally infeasible as
the system size increases. This is because the required number of measurements
and the classical memory grows exponentially with the number of qubits.

Challenge II: Resource inefficiency in observable estimation. The required number
of measurements for observable estimation grows linearly with the number of
Pauli terms in the observable. For observables where the number of Pauli terms
substantially increases with the system size, the measurement cost becomes
prohibitive.

For Challenge I, the key idea is to represent only a subspace of the quantum
space. This effectively captures task-relevant properties while reducing computa-
tional cost. For example, in many QML algorithms, such as the HHL algorithm
for solving linear systems [37] and quantum singular value decomposition [38],
the solution state exists within the row or column space of the input matrix. When
the input matrix is low-rank, state tomography can be obtained efficiently [39] as
the linear combination of a complete basis chosen from the input matrix. Besides,
an effective technique is matrix product state (MPS) tomography [40, 41]. This
technique’s key idea is that many practical quantum states, such as those in Ising
models or low-entanglement systems, can be efficiently represented with fewer
parameters. By focusing on states with limited entanglement, MPS tomography
reconstructs the state using only a polynomial number of measurements with the
qubit counts.

Another promising approach is using neural networks to parameterize quantum
states. Neural quantum states allow for the efficient representation and reconstruc-
tion of density matrices, particularly for complex or high-dimensional quantum
systems. For instance, restricted Boltzmann machines [42] and Transformer [43]
have been applied to approximate the probability of measurement outcome and
density matrices [44—47]. These approaches are particularly effective for systems
that are difficult to capture using traditional methods.

For Challenge II, a measurement reduction technique can be applied by exploit-
ing the commutativity of Pauli operators. When multiple Pauli terms commute,
they can be measured simultaneously within the same measurement basis, sig-
nificantly reducing the total measurement cost [48, 49]. This approach has been
widely adopted in hybrid quantum-classical algorithms, such as variational quantum
Eigensolvers (VQE) [50], where Hamiltonians are decomposed into sums of Pauli
terms. Grouping commuting terms into clusters allows for efficient measurement
strategies while preserving accuracy.
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In addition to measurement grouping, adaptive measurement strategies further
improve resource allocation during expectation value estimation. The key observa-
tion is that not all Pauli terms contribute equally to the total observable—terms with
higher variance require more measurement shots for reliable estimation, while low-
variance terms can be measured with fewer shots. Building on this insight, adaptive
shot allocation techniques [51-53] dynamically distribute measurement resources
across Pauli terms based on their statistical properties and achieve more accurate
estimations with a finite measurement budget.

2.6.3 Advanced Quantum Linear Algebra

Quantum linear algebra, based on the block encoding and quantum singular
value transformation framework, has proven its power for the design of quantum
algorithms. Compared to the traditional subroutines like quantum phase estimation
and quantum arithmetic [54, 55], quantum linear algebra can exponentially improve
the dependency on precision [24]. However, a major drawback is that it can only
deal with the singular values of block-encoded matrices.

A natural consideration is to generalize the singular value transformation to the
eigenvalue transformation. One strong motivation from the application aspect for
this is to solve the differential equations on the quantum computer [56—60]. This
remains an active research field. Quantum eigenvalue processing, proposed by Low
and Su [61], focuses on matrices with real spectra and Jordan forms, in which they
prepare the Faber history state to achieve efficient eigenvalue transformation over
the complex plane. An et al. [62] and [63] show that simulating a general class of
non-unitary dynamics can be achieved by the linear combination of Hamiltonian
simulation (LCHS).

Another approach is to broaden the range of functions that can be implemented
by quantum linear algebra. Quantum phase processing, proposed by Wang et al.
[64], can directly apply arbitrary trigonometric transformations to eigenphases of a
unitary operator. Similar results have been independently obtained by Motlagh and
Wiebe [65]. In addition, Rossi and Chuang [66] investigates how to implement mul-
tivariate functions. For the application, a representative example is the multivariate
state preparation achieved by Mori et al. [67], enabling the amplitude encoding of
classical multivariate data.

In Sect.2.4, we introduce the concept of diagonal block encoding, which
can convert a state preparation unitary into a block encoding. As the efficient
construction of block encodings is a prerequisite for achieving end-to-end quantum
advantage, an important research direction is to investigate which types of matrices
can be efficiently prepared. By leveraging state-of-the-art techniques in quantum
state preparation [68, 69] and the linear combination of unitaries [70], it is possible
to efficiently construct block encodings for certain classes of matrices [71, 72].
Additionally, explicit constructions have been explored for specific types of sparse
matrices [73].
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Chapter 3 m)
Quantum Kernel Methods <

Abstract This chapter provides a comprehensive guide to understanding quantum
kernel methods, covering the fundamental concepts of classical and quantum kernel
methods, their theoretical foundations, and practical implementations. Section 3.1
offers a detailed introduction to classical kernel methods, including their motivation,
derivation, and the construction of classical kernel functions. Building on this
foundation, Sect.3.2 discusses the motivation for implementing kernel methods
on quantum devices, exploring the potential advantages of quantum kernels. It
also introduces the specific implementation of quantum kernel functions, clarifies
the relationship between classical and quantum kernel machines, and provides
concrete examples of quantum kernels. Section 3.3 delves into the theoretical
foundations of quantum kernels, focusing on two key aspects: the expressivity
and generalization properties of quantum kernel machines. It examines the diverse
feature spaces that quantum kernels can represent and the potential advantages
of quantum kernels in reducing generalization error compared to classical kernel
methods. This analysis underscores the ability of quantum kernels to improve the
accuracy of predictions for unseen data. Finally, Sect. 3.4 demonstrates simple yet
illustrative code implementations of quantum kernels using the MNIST dataset.

Machine learning (ML) algorithms fundamentally aim to learn underlying feature
representations within training data. This allows data points to be effectively
modeled using simple tools like linear classifiers. Kernel methods offer a powerful
way to achieve this. They capture nonlinear patterns efficiently. In kernel methods, a
kernel function is defined as the inner product between the high-dimensional feature
representations of data points. These feature representations are generated by a
hidden feature map, which transforms the original data into a higher-dimensional
space. In this space, complex patterns become easier to identify and model. The
kernel function, therefore, serves as a measure of similarity between data points in
this transformed space.

The effectiveness of kernel methods heavily depends on the hidden feature map’s
ability to capture relevant patterns in the data. The better this feature map reveals
the underlying structure, the better the kernel method performs in learning and
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generalizing from data. However, classical kernel methods are inherently limited
by the types of patterns they can recognize, as these are constrained by classical
computational frameworks. Essentially, classical models excel at detecting patterns
they are specifically designed to recognize but may struggle with patterns that
deviate from this framework.

In contrast, quantum mechanics can generate complex, nonintuitive patterns
often beyond classical algorithms’ reach. Quantum systems can produce statistical
correlations that are computationally challenging—or even impossible—for classi-
cal computers to replicate. This suggests that employing quantum circuits as hidden
feature maps could enable the detection of patterns that are difficult or impractical
for classical models to capture. By leveraging quantum circuits, we can potentially
access new regions of the feature space, leading to improved pattern recognition
capabilities and, consequently, better learning performance.

These insights motivate the development of quantum kernel methods, where
both the hidden feature map and the kernel function are implemented on a quantum
computer. By harnessing the unique properties of quantum mechanics, such as
superposition and entanglement, quantum kernel methods have the potential to
surpass their classical counterparts in specific machine learning tasks. This could
result in more powerful models with enhanced generalization capabilities.

In this chapter, we provide a step-by-step explanation of the transition from
classical kernel machines to quantum kernel machines in Sects.3.1 and 3.2.
Moreover, we discuss the theoretical foundation of quantum kernel machines in
Sect. 3.3 from the aspects of expressivity and generalization of quantum kernel
machines. Finally, we demonstrate simple yet illustrative code implementations on
MNIST dataset.

3.1 Classical Kernel Machines

3.1.1 Motivation of Kernel Methods

Before delving into kernel machines, it is essential to first understand the motivation
behind kernel methods. In many machine learning tasks, particularly in classifica-
tion, the goal is to find a decision boundary that best separates different classes
of data. When the data is linearly separable, this boundary can be represented as
a straight line (in 2D), a plane (in 3D), or a hyperplane (in higher dimensions),
as illustrated in Fig.3.1a. Mathematically, given an input space X C R? with
d > 1 and a target or output space Y = {+1, —1}, we consider a training dataset
D= {(xD, y("))}?:1 € (X x Y)" where each data point x ) € X is associated with
alabel y) € Y. For the dataset to be linearly separable, there must exist a vector
w € R? and a bias term b € R such that

Vienl, yPw'x?+5) >0, (3.1)
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(a) (b)

Fig. 3.1 Various distributions of data points

where w " x©) represents the inner product of vectors w and x"). This means that a
hyperplane defined by (w, b) can perfectly separate the two classes.

However, in real-world scenarios, data is often not linearly separable, as shown
in Fig.3.1b. The decision boundary required to separate classes may be curved
or highly complex. Traditional linear models struggle with such nonlinear data
because they are inherently limited to creating only linear decision boundaries. This
limitation highlights the need for more flexible approaches.

To address nonlinear data, one effective strategy is to transform the input data
into a higher-dimensional space where it might become linearly separable. This
transformation is known as feature mapping, denoted by

¢:x > ¢p(x) e RP. (3.2)

Here, the original input space X is mapped to a higher-dimensional feature space
RP, where D > d. The idea is that in this higher-dimensional space, linear models
can more easily identify complex patterns from the original data. A visualization is
shown in as shown in Fig. 3.1c.

However, explicitly computing the feature map ¢ (x) in Eq.(3.2) can be com-
putationally expensive, especially if the feature space is high dimensional or even
infinite dimensional. Fortunately, many machine learning algorithms for tasks like
classification or regression depend primarily on the inner product between data
points, which will be explained in Sect. 3.1.2. In the feature space, this inner product

is given by (¢ (x@), ¢ (x()).

Remark
Throughout the whole tutorial, we interchangeably use a " b, a - b, (a, b), and
(a|b) to denote the inner production of two vectors a and b.

To circumvent the computational cost of explicitly calculating the feature map,
we can use a kernel function. A kernel function k(x @, x(/)) is defined as

k(x(i), x(j)) — (¢(x(i))’ ¢(x(j))> ) (3.3)
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This allows us to compute the inner product in the higher-dimensional feature
space indirectly, without ever having to compute ¢ (x) explicitly. This approach is
commonly known as the kernel trick.

Using the kernel function directly in algorithms avoids the computational
overhead of working in a high-dimensional space. The collection of kernel values
for a dataset forms the kernel matrix (or Gram matrix), where each entry is given by
k(x@, x()). This matrix is central to many kernel-based algorithms, as it captures
the pairwise similarities between all training data points.

To illustrate the kernel trick, let’s consider a simple example in a d-dimensional
input space, where x = (x1, --- , X4) | . Suppose the polynomial kernel is of degree
2, defined as

k(x,z) =(x'z)?

=(x121 + - + X324)*

d d
=D Tz
i1 j—=1

=[x3, - x2, V2x1x0, -, V2x4%4-1]
[z3, -, 22, V2z1z2, -+ V2zaza-11"
=¢(x) ¢ (2). (3.4)

Here, it can be seen that the feature mapping, which comprises all second-order
terms, takes the form as

p(x) =[x2, -, x2, V2x1x2, -, V2xax4-11". (3.5)

Notably, directly computing the kernel function (x "z)? for a large d is much more
efficient than explicitly calculating the feature map ¢ (x) and then taking the inner
product ¢ (x) T ¢ (z). Specifically, using the kernel function only requires O(d) time,
since it involves computing the dot product in the original input space R?. In
contrast, explicitly computing the transformed feature vectors ¢ (x) and their inner
product could increase time complexity to O(D), where D is the dimensionality
of the feature space after mapping. For this example of a polynomial kernel with
degree 2, D can grow to O(d?). This demonstrates the kernel trick’s computational
efficiency.
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Remark

Throughout this manuscript, we use the notations O and 2 to represent the
asymptotic upper and lower bounds, respectively, on the growth rate of a term,
ignoring constant factors and lower-order terms.

3.1.2 Dual Representation

To understand why many machine learning algorithms rely primarily on the inner
products between data points, we need to introduce the concept of the dual
representation. In essence, many linear parametric models used for regression or
classification can be recast into an equivalent dual form, where the kernel function
evaluated on the training data emerges naturally.

Let’s start with a linear regression model with the training dataset {(x @, y¢ ))};72 1
Here, the parameters are determined by minimizing a regularized sum-of-squares
error function:

Lw) = % > (0T - y<">)2 + %wTw, (3.6)

i=1

where w' refers to the transpose of model parameters w, ¢ (x)) represents the
feature mapping of the input x, and A > 0 is the regularization factor that helps
prevent overfitting.

To find the optimal w, the gradient of L(w) with respect to w is set to be zero,
ie.,
n
T Y (7w 3 0) g 41w =0 (3.7)

i=1

From this, it can be seen that the solution for w can be expressed as a linear
combination of the training data’s feature vectors:

w= —% D o) =y =3 a9 :=@Ta, (33

i=1 i=1

where ® = [qﬁ (xMy, ... ,(1)(x(”))]T is the design matrix, whose i-th row is given
by qﬁ(x(i) )T. Here, the coefficients a”) are functions of w, defined as

. 1 . .
@) _ T @) @)
a'’ = . (w d(x")—y ) (3.9
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Thus, instead of directly optimizing w, the problem can be reformulated in terms
of the parameter vector a, giving rise to a dual representation. By substituting w =
@ " a into the original objective function £(w) in Eq. (3.6), the result is

1 1 A
La) = EaT<1><1>T<1><1>Ta —a'®d"y+ EyTy + EazT<I><I>Ty, (3.10)
where y = (y(l), SRR y<"))T denotes the vector representation of n training labels.

The kernel matrix is defined by K = ®@® T, where each element is given by
Kij =N TpxD) = kx®, x), (.11)

using kernel function k(x, x’) defined by Eq. (3.3). The objective function in terms
of a simplifies to

1 1 A
L(a) = 5aTKza —a'Ky+ EyTy + EazTKy. (3.12)

Setting the gradient of L(a) with respect to a to zero gives us
a=(K+,)"y, (3.13)

where I, is the identity matrix of size n x n.
Now, using this dual formulation, it can be derived the prediction for a new input
x. Substituting w = ® " @ in Eq. (3.8), the prediction of x is given by

yx)=w p(x) = (®"a, ¢(x)) =k(x)T(K + L)y, (3.14)

where k(x) € R” is a vector with elements k; (x) = k(x?,x) = ¢(x@)T ¢ (x).
This shows that the dual formulation allows us to express the solution entirely in
terms of the kernel function k(x, x”), rather than explicitly working with the feature
map ¢ (x). This is particularly advantageous because it enables us to work in high-
dimensional or even infinite-dimensional feature spaces implicitly.

In the dual formulation, the parameter vector a is determined by inverting an n xn
matrix. The original parameter space formulation, in contrast, requires inverting a
d xd matrix to determine w. Although this may not seem advantageous whenn > d,
the true benefit of the dual formulation lies in its ability to leverage the kernel trick.
By expressing the solution in terms of the kernel function, we avoid the explicit
computation of the feature vectors ¢ (x). This allows us to implicitly utilize feature
spaces of very high, or even infinite, dimensionality, enabling the model to capture
complex, nonlinear relationships in the data without the associated computational
cost.
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Remark

We standardize the notation used throughout this chapter to help readers
follow the content more easily. The kernel function is represented by the
lowercase letter k or with subscripts ko and kc. The kernel matrix is denoted
by the capital letter K or with subscripts Ky and K¢. Additionally, we use
the bold lowercase letter k(x) to represent the vector of kernel values, where
each element is given by k;(x) = k(x| x), corresponding to the training
points xW) e {x(l), e, x(")}.

3.1.3 Kernel Construction

To utilize the kernel trick in machine learning algorithms, it is essential to construct
valid kernel functions. One approach is to start with a feature mapping ¢ (x) and
then derive the corresponding kernel. For a one-dimensional input space, the kernel
function is defined as

D

k(x,x') = @) o) = Y (i (). i (x)), (3.15)

i=1

where ¢; (x) are the basis functions of the feature map.

Alternatively, kernels can be constructed directly without explicitly defining a
feature map. In this case, the chosen function must be a valid kernel. This means
it needs to correspond to an inner product in some (possibly infinite-dimensional)
feature space. Mercer’s condition guarantees a kernel function’s validity.

Fact 3.1 (Mercer’s Condition) Let X C R? be a compact set and letk : X x X —
R be a continuous and symmetric function. Then, k admits a uniformly convergent
expansion of the form

k(x,x") = Zaz’(dh‘(X), ¢i (x)) (3.16)
i=0

with a; > 0 if and only if for any square-integrable function c, the following
condition holds

//c(x)c(x’)k(x,x’)dxdx’zo. (3.17)
XJX

Mercer’s condition is crucial because it ensures that the optimization problem for
algorithms like support vector machines (SVM) remains convex [1], guaranteeing
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convergence to a global minimum. A condition equivalent to Mercer’s condition
(under the assumptions of the theorem) is that the kernel k(-, -) be positive definite

symmetric. This property is more general since it does not require any assumption
about X.

Definition 3.1 (Positive Definite Symmetric Kernels) A kernel k¥ : X x X — R
is said to be positive definite symmetric (PDS) if for any (xM ... x™} c X, the
matrix K = [k(x®, x/))];; € R"™" is symmetric positive semi-definite (SPSD).

In other words, a kernel matrix K associated with a PDS kernel function will
always be SPSD, ensuring that the corresponding optimization problem remains
well behaved.

Below, several commonly used positive definite symmetric kernels are presented.

Example 3.1 (Polynomial Kernels) A polynomial kernel of degree m € N
with a constant ¢ > 0 is defined as

k(x,x)=(x-x'+¢)™, Vx,x eR% (3.18)
This kernel maps the input space to a higher-dimensional space of dimension

(djnm). For instance, in a two-dimensional input space (d = 2) and with m =
2, the kernel is expanded as follows:

xz [ x’lz
X3 x;
V2x1x) V2 xx!
k(x,x) = ! ! 2= : 1720 (319
(x,x) (x1x1+x2x2+c) \/%xl \/Zx/l ( )
V2c x3 V2c x),
c c

In other words, this kernel corresponds to an inner product in a higher-
dimensional space of dimension 6.

Thus, the features corresponding to a second-degree polynomial include the
original features (x| and x7), products of these features, and the constant feature.
More generally, the features associated with a polynomial kernel of degree m are all
the monomials of degree at most m based on the original features.
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Example 3.2 (Gaussian Kernels) The Gaussian kernel (or Radial Basis
Function, RBF) is one of the most widely used kernels, defined as

_ /
Vv, x' €RY, k(x,x') = exp G%) : (3.20)

where o > 0 controls the width of the Gaussian function.

Gaussian kernels are particularly effective in capturing complex nonlinear
patterns due to their infinite-dimensional feature space.

Example 3.3 (Sigmoid Kernels) The sigmoid kernel over R? is defined as
k(x,x’) = tanh(a - (x - x') +b), Vx,x’ €R? (3.21)

where a, b > 0 are constants and tanh(c) = C +e—c ~ is the hyperbolic tangent

function, which squashes an arbitrary constant c € Rto a value between — 1
and 1.

This kernel relates to neural networks, as it resembles the activation function
commonly used in multilayer perceptrons, as introduced in the next chapter. Using
the sigmoid kernel with support vector machines results in a model similar to a
simple neural network.

Remark

Support vector machines (SVMs) are a well-known algorithm that heavily
relies on kernel methods and are primarily used for classification tasks. The
objective of an SVM is to identify the optimal hyperplane that separates
data points from different classes with the maximum margin. The margin is
defined as the distance between the hyperplane and the closest data points
from each class, known as support vectors. SVMs can be applied to both linear
and nonlinear classification problems. For nonlinear cases, kernel functions
are employed to map the data into higher-dimensional spaces, enabling the
separation of data that is not linearly separable in the original space. For a
detailed introduction to SVMs, please refer to [1].
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3.2 Quantum Kernel Machines

Quantum machine learning might someday outperform classical ML, but
researchers need to tackle big hurdles first. To effectively introduce quantum kernel
machines, it is essential to recognize the limitations of classical kernel machines.
As discussed in Sect. 3.1, classical kernel machines rely on manually tailored
feature mappings, such as polynomials or radial basis functions. However, these
mappings may fail to capture the complex patterns within the dataset. Quantum
kernel machines emerge as a promising alternative, as they perform feature mapping
using quantum circuits, enabling them to explore exponentially larger feature spaces
that are otherwise infeasible for classical computation.

Another crucial characteristic of quantum kernels is that they can be effectively
implemented on near-term quantum devices, making them a practical tool for
exploring the utility of near-term quantum technologies.

3.2.1 Quantum Feature Maps and Quantum Kernel Machines

The key difference between quantum kernel machines and classical kernel machines
lies in how the feature mapping is performed. In the quantum context, a feature
map refers to the injective encoding of classical data x € R¢ into a quantum
state |¢p(x)) = U(x)|y) on an N-qubit quantum register, where U (x) refers to
the physical operation or quantum circuit that depends on the data x. This feature
map is implemented on a quantum computer and produces quantum states, which
are referred to as quantum feature maps.

Definition 3.2 (Quantum feature map) Given an N-qubit quantum system ini-
tialized in state |¢), let x € X C R? be classical data. The quantum feature map is
defined as the mapping

¢:X— F,
d(x) =g (x)) (P (x)| = p(x), (3.22)

where Fis the space of complex-valued 2" x 2" matrices equipped with the Hilbert-
Schmidt inner product (p, o) = Tr(po) for p, o € F. In addition, the state |¢(x))
can be implemented by applying a data-encoding quantum circuit U (x) introduced
in Sect. 2.3.1 on an initial state |y/), leading to the expression of |¢ (x)) = U (x)|y).

Recall that one way of constructing kernels is adopting the inner product
of the defined feature mappings. Using the Hilbert-Schmidt inner product from
Definition 3.2, the quantum kernel is defined as follows.

Definition 3.3 (Quantum kernel) Let ¢ be a quantum feature map over the
domain X. The quantum kernel k¢ is the inner product between two quantum feature
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maps p(x) and p(x’) for data points x, x’ € X:

ko : X x X =R,
2

ko(x,x") =Tr(p(x)p(x") = [(px)|p(x)|". (3.23)

To justify the term “kernel,” the quantum kernel must be shown to be a
positive definite function. A quantum kernel can be expressed as the product of a
complex-valued kernel kg (x, x) = (¢(x)|¢(x")) € C and its complex conjugate
IQQ(x, x)* = (p(x)|p(x))* = (p(x")|¢(x)). Since the product of two kernels is
known to be a valid kernel, it suffices to show that IGQ (x, x/ ) is a valid complex-
valued kernel and satisfies positive definiteness. For any xD e X i=1,--,n,
and any coefficients ¢; € C, the following holds

> eie (ko @, x9)) =3 cic} (9D lp )
i,j i,j

= <Z i <¢<x<">)|) Y g
i J
2

> 0. (3.24)

> cflp(x ™))

This inequality confirms that IQQ(x, x') satisfies Mercer’s condition to be a valid
kernel as illustrated in Eq. (3.17). Therefore, the quantum kernel ko (x, x') is also a
valid kernel.

The inner product between quantum states can be efficiently estimated on
quantum computers using techniques such as Loschmidt echo test [2] and SWAP test
[3]. Both methods correspond to distinct quantum circuit architectures, as illustrated
in Fig. 3.2.

One key merit of quantum kernels is that their derivation does not require the
explicit representation of the quantum feature maps. Instead, it relies only on the

@ oy — 1] H
0 v uw) 0) — (@)
SWAP
0) — U(2")

Fig. 3.2 Two methods for computing the inner product of the kernel. (a) Loschmidt echo test. (b)
Swap test
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construction of the associated quantum circuits. This aligns with the essence of
kernel methods: while feature mappings can be computationally complex, the kernel
function itself must remain efficient to evaluate.

Below, the core steps for constructing a quantum kernel are outlined.

General Construction Rules of Quantum Kernels
There are three steps to construct a quantum kernel:

1. Quantum feature map construction. Design a data-dependent quantum
circuit U(x) to encode classical input data x into the amplitudes or
parameters of a quantum state |¢p(x)) = U (x)|y) where the initial state
|¥) is typically |0)®V .

2. Kernel evaluation. The quantum kernel is typically defined as the inner
product of quantum states corresponding to two data points. Mathemati-
cally, this can be expressed as kg (x, x') = |(¢> x)|o(x")) |2.

3. Post-processing. After executing the quantum circuit for different input
pairs, measure the output and calculate the kernel matrix. This matrix will
then be used in machine learning models, such as SVM.

Below is a simple example of a quantum kernel with an angle encoding feature
map introduced in Sect.2.3.1.

Example 3.4 (Single-Qubit Kernel) Consider an embedding that encodes a
scalar input x € R into the quantum state of a single qubit. The embedding is
implemented by the Pauli-X rotation gate RX(x) = e¢~"*°*/2 where o, is the
Pauli-X operator. The quantum feature map is then given by ¢ : x — p(x) =

¢ (x)) (¥ (x)| with

¢ (x)) =e~*7/2|0)
= (cos(x)I — i sin(x)ay) |0)
=cos(x)|0) — i sin(x)|1), (3.25)

2 N\ 2
X —X
= cos ,
2

and hence the quantum kernel yields

cos (3) os () +sin (3) sin (%)

which is a translation invariant squared cosine kernel.

k(x, x') =
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3.2.2 Comparative Analysis: Quantum vs. Classical Kernel
Methods

Comparing the fundamental components of classical and quantum kernel machines
provides an intuitive way to understand their connections and differences. As
illustrated in Fig. 3.3, both classical and quantum kernels embed data points from
the data space X into a high-dimensional space and then compute the kernel as
the inner product of feature maps. The quantum kernel achieves this using quantum
circuits, as indicated by the blue color. Table 3.1 summarizes how these components
are implemented in classical and quantum kernel machines.

The main distinctions between classical and quantum kernel machines lie in
the computation processes for feature mapping and kernel matrix construction, as
outlined below:

* Classical versus quantum feature maps. Quantum feature maps encode data
into quantum states, resulting in exponentially large complex-valued vectors

lp(x)) € 2" Nevertheless, classical feature maps operate in finite-dimensional
real-valued spaces ¢ (x) € RP. While quantum feature maps can theoreticall
P q P y

e ©)

Data space X'

|
|
'|
| .
Lo o 4
lee g ¥

Classical feature space M Classical kernel

o

00 ‘y(x(i))ﬁuf(x(j))ﬂa
p®) 0 } |

o=+ A

o4 3
07 U b - O W)
l0)+ I =

Quantum feature space H Quantum kernel

Fig. 3.3 The paradigm of classical and quantum kernels

Table 3.1 Comparison between classical and quantum kernel machines

Classical kernel Quantum kernel
Input Classical data {x(i)}l'.‘:1 e R4 Classical data {x(")}l’.‘:l e R4
Feature Real vector ¢ (x) € RP Complex vector |¢(x)) € 2’
Kernel n-dimensional real matrix K¢ n-dimensional real matrix K o
Computation Digital logical circuits ¢ (x) Quantum circuits U (x)|¥)
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be simulated on classical computers by separating real and imaginary parts, this
simulation becomes computationally infeasible as the number of qubits grows.
Even feature maps generated by shallow quantum circuits are difficult to sim-
ulate efficiently on classical hardware, highlighting the inherent computational
complexity of quantum feature maps.

* Classical versus quantum kernels. The kernel function is determined by the
feature mapping, but its computational properties differ significantly between
classical and quantum methods. A key merit of kernel methods is that they allow
the use of complex feature maps while maintaining efficient kernel evaluations.
Quantum kernels leverage quantum circuits to compute the inner product of
quantum states, enabling the recognition of intricate patterns that classical
kernels fail to capture. If a quantum kernel is computationally hard to evaluate
classically, it offers a significant advantage by exploiting quantum computing’s
ability to process complex data representations efficiently.

Remark
The efficiency discussed here refers to the computational time within the
respective classical or quantum frameworks as summarized below:

* Classical Efficiency: Determined by the depth of digital logical circuits
used for feature mapping and kernel computation.

* Quantum Efficiency: Determined by the depth of quantum circuits required
to achieve the same tasks.

A computation process is considered efficient if it can be completed in
polynomial time relative to the problem size in its corresponding framework
(classical or quantum).

3.2.3 Concrete Examples of Quantum Kernels

To better understand the concept of a quantum kernel, common information encod-
ing strategies used in quantum machine learning and their associated kernels are
examined. It is important to note that some kernels cannot be efficiently computed
on classical computers [4]. While such results are significant, the question of which
quantum kernels are practically useful for real-world problems remains an open
challenge.

In the following examples, the various encoding strategies introduced in
Sect.2.3.1 are first reviewed, and then, the corresponding quantum kernels are
presented.
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Example 3.5 (Quantum kernel with basis encoding) Given a classical
binary vector x = (x1,---,x4) € {0, l}d, the quantum feature mapping
related to basis encoding refers to

lp(x)) = |x1,---,xq), (3.26)

and the induced quantum kernel yields

ke, x') = [ (px)|p(x)) [ = by, (3.27)

where 8, = 1 if x = x’ and otherwise 0.

The basis encoding requires N = d qubits. This kernel function provides a very
strict similarity measure on the input space and is arguably not the best choice of
data encoding for quantum machine learning tasks.

Example 3.6 (Quantum kernel with amplitude encoding) Given a vector
x = (x1,---,Xxg) € R, the quantum feature mapping related to amplitude
encoding refers to

d
) = ”%m, (3.28)
i=1

where ||x || is the Euclidean norm. The related quantum kernel is given by

|(x, x")]?

e (3.29)
lx13 - %113

k(x, x') = ($0)|p()|> =

The amplitude encoding requires N = [log,(d)] qubits. This encoding strategy
leads to an identity feature map, which can be implemented by a nontrivial quantum
circuit (for obvious reasons also known as “arbitrary state preparation”), which
takes time O(d) in the worst case. Besides, this quantum kernel does not add much
power to a linear model in the original feature space and is primarily of interest for
theoretical investigations aimed at eliminating the effect of the feature map.
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Example 3.7 (Quantum kernel with angle encoding) Given a vector x =
(x1,---,xq) € RY, the quantum feature mapping related to angle encoding
refers to

(X)) = Wapr1e X0 W, ... Wae 161w, |0)®4, (3.30)
where Wy, ---, Wyy are arbitrary unitary evolutions and G; is d; < d-
dimensional Hermitian operator called the generating Hamiltonian.

For a special case in which W; = I and G; refers to the Pauli-X operators
oy acting on the i-th qubit, the quantum feature mapping refers to

d .
() = Q) exp (=i o ) 10, (331)
i=1

and the related quantum kernel is given by

d
k(x,x") = l_[ )sin(x,-) sin(x}) + cos(x ") cos(x}) ?
i=1
d
=[] lcosx: — x| (332)
i=1

The angle encoding requires d qubits, mapping the classical data to a 2%-
dimensional Hilbert space. A key advantage of angle encoding is its introduction
of nonlinearity, a property essential for effective kernel-based machine learning.
Specifically, nonlinearity enables the transformation of low-dimensional and non-
linearly separable data into higher-dimensional, linearly separable representations.
Additionally, angle encoding is well suited for implementation on modern devices
with limited qubits and circuit depth, making it practical for exploring the utility of
near-term quantum computers.

The quantum kernels related to different data encoding strategies have a resem-
blance to kernels from the classical machine learning literature. This means that
sometimes up to an absolute square value, they can be identified with standard
kernels such as the polynomial or Gaussian kernel. For the special case of angle
encoding, the resemblance to classical kernels is because the employed quantum
circuit does not employ any entangled quantum gates such that it can be simulated
classically. We now discuss the general form of the quantum kernels induced
by quantum feature maps from angle encoding in Eq. (3.30). The simplified case
is considered where each input x) is encoded only once and all encoding
Hamiltonians are the same, i.e., G| = --- = G4 = G.
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Theorem 3.1 (Fourier Representation of the Quantum Kernel) Ler X = R? and
U (x) be a quantum circuit that encodes the data inputs x = (x1, -+ ,Xq) € X into
a d-qubit quantum state |¢(x)) via gates of the form e *iC fori = 1,--- ,d.
Without loss of generality, G is assumed to be a m < 2%-dimensional diagonal
operator with spectrum A1, - - - , Ay. Between such data-encoding gates, and before
and after the entire encoding circuit, arbitrary unitary evolutions Wy, - -, W1
can be applied, so that

Ux) = Wagpre X0 0Wy .. Wae 101wy, (3.33)

The quantum kernel kg (x, x') can be written as

ko, x') = Y el ey, (3.34)

s,teQ

where Q C RY and cst € C. For every s, t € Q, we have — s,—t € Q and
cst = ¥, which guarantees that the quantum kernel is real valued.

Proof Sketch of Theorem 3.1 The assumption that the generator G is diagonal
could be made without loss of generality because Hermitian operators can be
diagonalized as G = VE VT with

e~iXikt 0 ... 0
L 0 —ixidy ..
emixT ¢ , (3.35)
O e 0 e_ixi)wn
where V1 refers to the conjugate transpose of the matrix V, Ay, -+, Aj, are the

eigenvalues of G. Formally, V, VT can be absorbed into the arbitrary circuits W;_ |
and W; before and after the encoding gate. In this regard, the quantum kernel can be
written down as the inner product between the feature state of the specific forms in
Eq. (3.30), i.e.,

k(x,x)
= (x")Ip(x))]
. . . . N . . 2
=| O W ) (T W W e R e )

. . . . , 2
— ‘(0| WlT(e—lxIE)Q . (e—lde)Te—lde L. e_lx12W1|0>}

m m
§ 2 e*i()\jlxlf)hklx’|+~~~+)»jdxd7)»kdx’d)
Jiseesja=1ki, kg=1
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Table 3.2 Overview of typical data encoding strategies and their quantum kernels. The input

domain is assumed to be the x = (x1, - ,x4) € X C R?

Encoding Qubits Dimension Quantum kernel k(x, x”)
Basis encoding d 24 Oy x/

Amplitude encoding [log, (d)] d lxfx)?

Angel encoding d 24 ]_[zzl | cos(xy — x}()l2
General angle encoding d 24 Ygreq ¥ et ey

2
(1k1) (ka—1ka) * (aja-1) Ui
X<Wl 1...Wd ) |}|/d ...‘/Vl

2

Z Z e—i(ij—Akx )(wk)*w]
ik
SN TN e B Ax A A () oy (3.36)
i k h 1

Here, the scalars Wl.(ab) refer to the element (a| W;|b) of the unitary operator W;.
The bold multi-index j represents the set (ji, - - - , jg), and A is a vector containing
the eigenvalues selected by the multi-index (and similarly for k, &, [ ).

All terms where Aj — A; = s and A — A = t can be summarized. In other
words, the differences of eigenvalues amount to the same vectors s, £. Then

k(x,x') = Z emis¥ ity Z Z wjop(wgop)*
s,teQ JLAj—Aj=s k. h:Ag—Ap=t
= ) e, (3.37)
s.teQ
The frequency set €2 contains all vectors {Aj — Ay} with Aj = (A, -, A;,) and
Ajps-o s hj, €11+, m]. o

The various strategies for constructing quantum feature mappings and quantum
kernels are summarized in Table 3.2.

Remark

After obtaining the quantum kernel matrix Ko for a given training dataset
{(x@D, y(i))}l’.’zl, it can be used to perform regression or classification tasks in
a manner similar to the classical kernel methods. In particular, as discussed in
Sect. 3.1.2, consider the linear regression model given by

(continued)
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L(w) = % > (wT po(x®) — y<"))2 + %wT ‘w, (3.38)

i=1

where ¢ (xD) denotes the quantum feature mapping related to the quantum
kernel kg, w denotes the model parameters, and A > 0 is the regularization
factor. Using the quantum kernel matrix, the dual representation of the linear
model given in Eq. (3.14) can be expressed to predict the output for a new
input as

yx) =kox)" - (Ko + L)y, (3.39)

where y = (y(V, - .., y™) refers to the label vector and ko(x) is a vector
with elements k(é) (x) =kg (x®, x).

3.3 Theoretical Foundations of Quantum Kernel Machines

This section delves into the theoretical foundations of quantum kernels. Specifically,
it focuses on two crucial aspects: the expressivity and generalization properties of
quantum kernel machines. As shown in Fig. 3.4, these two aspects are essential for
understanding the potential advantages of quantum kernels over classical learning
approaches and their inherent limitations. In particular, expressivity refers to the
size of the hypothesis space H represented by quantum kernels, where H refers
to the whole hypothesis space. Generalization considers the learned hypothesis
that can accurately predict unseen data, exhibiting a small distance from the
target concept. For ease of understanding, this section emphasizes the fundamental

* * Target function
H —P e —> *

Optimization path

Fig. 3.4 The expressivity and generalization of quantum kernels
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concepts necessary for evaluating the power and limitation of quantum kernels
instead of exhaustively reviewing all theoretical results.

The outline of this chapter is as follows. In Sect. 3.3.1, the expressivity of quan-
tum kernels is discussed, referring to the diversity of feature spaces that quantum
kernels can represent. The insights gained will help identify tasks particularly well
suited for quantum kernels. Then, in Sect. 3.3.2, the potential advantage of quantum
kernels in terms of generalization error compared to all classical kernel machines is
examined. This analysis highlights their ability to accurately predict labels or values
for unseen data.

3.3.1 Expressivity of Quantum Kernel Machines

Quantum kernels, as discussed in Sect. 3.2, are constructed by explicitly defining
quantum feature mappings. In this context, the expressivity of quantum kernel
machines refers to the types of functions that quantum feature mappings can
approximate and the kinds of correlations that quantum kernels can effectively
model.

Following the conventions of [5], it is demonstrated that any kernel function can
be approximated using finitely deep quantum circuits by showing that the associated
feature mapping can also be approximated using quantum circuits. This conclusion
rests on two key theoretical foundations: Mercer’s feature space construction and the
universality of quantum circuits. Together, these principles establish the theoretical
feasibility of realizing any kernel function as a quantum kernel.

It is important to note that if exact mathematical equality were required, Mercer’s
construction would demand an infinite-dimensional Hilbert space, which in turn
would require quantum computers with infinitely many qubits—an impractical sce-
nario. However, in practical applications, approximating functions to a certain level
of precision is more important than achieving exact evaluations. This perspective
makes it feasible to implement the corresponding quantum feature mappings using a
finite number of qubits. The following theorem confirms that any kernel function can
be approximated as a quantum kernel to arbitrary precision with finite computational
resources (proof details are deferred to the end of this subsection).

Theorem 3.2 (Approximate Universality of Finite-Dimensional Quantum Fea-
ture Maps) Let k : X x X — R be a kernel function. Then, for any ¢ > 0, there
exists N € N and a quantum feature mapping py onto the Hilbert space of quantum
states of N qubits such that

lk(x, x) =2V Tr(pn () on (¥)) + 1] < & (3.40)

or almost all x, x’ € X.
Jf

Theorem 3.2, instead of discussing the g-approximation of quantum kernels in
the form |k(x, x") — Tr(py (x)on(x))| < &, introduces additional multiplicative
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and additive factors. The corresponding mathematical expression is |k(x,x") —
2N Tr(pn (x)py (x')) + 1] < . These additional factors, explained below, do not
impede the universality of the theorem.

Moreover, the statement that Eq. (3.40) holds for almost all x,x’ € X stems
from measure theory. It signifies that the inequality is valid “except on sets of
measure zero” or equivalently “with probability 1.” In other words, while adversarial
instances of x,x’ € X may exist for which the inequality does not hold, such
instances are so sparse that the probability of encountering them when sampling
from the relevant probability distribution is zero.

Last, Theorem 3.2 establishes that any kernel function can be approximated as a
quantum kernel up to a multiplicative and an additive factor using a finite number
of qubits.

Before presenting the proof of this theorem, Algorithm 1 is first introduced,
which maps classical vectors to quantum states. These quantum states can then
be used to evaluate Euclidean inner products as quantum kernels. Subsequently,
we demonstrate Lemmas 3.1 and 3.2. These two lemmas separately formalize
the correctness and runtime complexity of Algorithm 1, as well as establish the
relationship between the Euclidean inner product of encoded real vectors and the
Hilbert-Schmidt inner product of the corresponding quantum states.

Algorithm 1 Classical to quantum embedding (C2QE)

Input: a unit vector with 1-norm r € Z‘I’
Qutput: Quantum state p, oc I 4 Z?:] riP; > See Lemma 3.1

1: Set N = [logy(d + 1)]

2: Pad r with zeros until its length is 4" — 1

3: Drawi € {1,...,4N — 1} with probability |r;|
4: Prepare p; = ZLN I+ sign(r;) P;).

5: return p;

The output of Algorithm 1, %N(I[ + P), is a single (pure) eigenstate of a Pauli
operator P with eigenvalue + 1. However, since Line 3 involves sampling an index
iefl,--- 4N — 1}, Algorithm 1 is inherently random, and the resulting quantum
state is a classical mixture of pure states.

Lemma 3.1 (Correctness and Runtime of Algorithm 1) Let r € Ej’ c R? be
a unit vector with respect to the 1-norm, i.e., |r||i = 1. Take N = [logy(d +

1)] and pad r with zeros until its length is 4N _ 1. Let (Pi)?ifl be the set of all
Pauli matrices on N qubits, excluding the identity. Then, Algorithm 1 prepares the
following state as a classical mixture:

p(-) 4 — Herm(2V),

N_
1+ rp

N (3.41)

rt—= ppr =

The total runtime complexity t of Algorithm 1 fulfills t < O(poly(d)).
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Proof of Lemma 3.1 The proof begins by expanding the state as follows:

4N _1

N
I+ e
ZZ;NI Z Iri |1+ Z riP |, (3.42)

where the first equality follows that ||r||; = l and r € R4 -1, Rewriting the above
equation using sign(r;) yields

4N _1

I+ r
22—,; = Z i+ Z |rilsign(ri) P;
4N _
= > |ril I+ sign(r;) P;) = 0. (3.43)
i=1
This uses the fact that ), [r;| = [|r|li = 1 and I & P; > 0 for all Pauli operators

P;. Efficiently preparing I 4 P; is achieved by rotating each qubit’s |0) basis state to
the corresponding Pauli basis and flipping the necessary qubits individually. Since
this state is a convex combination of quantum states, it can be efficiently prepared
by mixing, when the number of terms is polynomial. O

Lemma 3.2 (Euclidean Inner Products) Let r,r' € R? be unit vectors with
respect to the 1-norm, i.e., |rlly = ||r'|y = 1. For the states py, p, produced in
Algorithm 1, the following identity holds

(r.r'y =2 Tr(p,p}) — 1. (3.44)

Proof of Lemma 3.2 The proof utilizes the following principles: (1) The trace is
linear, and the trace of a tensor product equals the product of traces. (2) All Pauli
words are traceless except for the identity, and each Pauli operator is its own inverse.
Hence, the product of distinct Pauli operators is also traceless.

Expanding the trace of p, p,, we have

4N 4N
1
Tr(py pp) =Tr il I+ erpj I+ Zr;Pk , (3.45)
j=1 =
which could be simplified as
4N 1
Te(prpy) = — Tr [T+ Z ririPE+ > ririPiPc | (3.46)

ki
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Using the properties of Pauli operators, the trace becomes

1 gy 1+ (r, r')
Te(orpr) = o7 [ Tr @ +Tr i) | = 2—N (3.47)
j=1
This completes the proof. O

Lemma 3.2 clarifies the origin of the extra factors in Theorem 3.2. In particular,
the 2V multiplicative factor is unproblematic, as N < O(log(d)) and the methods
are designed to scale polynomially with d. Moreover, the quantum state p, is
generally mixed but can be efficiently prepared. The mapping is injective but not
surjective.

With these results in place, the proof of Theorem 3.2 is now presented.

Proof of Theorem 3.2 The proof follows from a corollary of Mercer’s theorem and
the universality of quantum computing. First,the corollary of the Mercer’s Theorem
(i.e., Fact 3.1) is employed, which states that an arbitrary kernel k admits a uniformly
convergent expansion of the form in Eq. (3.16). This ensures the existence of a finite-
dimensional feature map ®,, : X — R™ such that

k@x, x") = () (x), P (x))] < . (3.48)

Without loss of generality, it is assumed that ||®,,(x)|| = 1 for all x € X. The
quantum state pg,, can then be prepared, which requires [log,(m + 1)] qubits. By
preparing two such states—one for ®,, (x) and one for ®,, (x")—their inner product
can be computed as the Hilbert-Schmidt inner product of the quantum states, as
shown in Lemma 3.2. This leads to

(@ (x), P (x)) = 2" Tr (o, (1) P, (1)) — 1. (3.49)

For reference, note that Tr (p<pm(x) pq;m(x/)) can be computed using the SWAP
test to an additive precision determined by the number of measurement shots. This
allows approximation of the result efficiently to any desired polynomial additive
precision. Consequently, it follows that

[k, %) = 2V T (po, 0 p0,00) + 1 < 2. (3.50)

for almost all x, x’ € X. This completes the proof. O

Theorem 3.2 does not aim to demonstrate any quantum advantage but rather
establishes the ultimate expressivity of quantum kernels. The theorem guarantees
the existence of a quantum kernel using a finite number of qubits. However, it does
not specify the scaling of required qubits with increasing computational complexity
of the kernel function k or with decreasing approximation error ¢ > 0. The number
of qubits N will depend on certain properties of the kernel k and the approximation
error ¢. For instance, if the required number of qubits scales exponentially with these
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parameters, Theorem 3.2 would have limited practical utility. 1so to be considered
is the time required to find such a quantum kernel approximation, independently
of memory and runtime requirements for preparing feature vectors and computing
their inner product.

Remark

Although Theorem 3.2 establishes that all kernel functions can be realized
as quantum kernels, there may still exist kernel functions that cannot be
realized efficiently as quantum kernels. This observation requires us to identify
quantum kernels that can be computed efficiently on quantum computers, i.e.,
in polynomial time.

3.3.2 Generalization of Quantum Kernel Machines

Generalization, which quantifies the ability of learning models (both classical and
quantum) to predict unseen data, is a critical metric for evaluating the quality of a
learning model. Due to its importance, this section analyzes the potential advantages
of quantum kernels in terms of generalization.

To provide a comprehensive understanding, this section first elucidates the
generalization error bounds for general kernel machines, establishing a unified
framework for a fair comparison between quantum kernels and classical kernels.
Subsequently, a geometric metric is introduced to assess the potential quantum
advantage of quantum kernels with respect to generalization error for a fixed amount
of training data.

3.3.2.1 Generalization Error Bound for Kernel Machines

The optimal learning models based on specified kernel machines, which can be
either classical or quantum, are reviewed, as discussed in Sect. 3.1.2. Suppose we
have obtained n training examples {(x@, y@)}"_ with x® € RY and y© =
f(xD) e R, where f is the target function. After training on this data, there exists a
machine learning algorithm that outputs h(x) = qub(x), where ¢ (x) € CP refers
to the hidden feature map corresponding the classical/quantum kernel function
k(x®, x)y = K;j = ¢(xD) - ¢(x)). More precisely, the mean square error
is considered as the loss function for such a task:

Low.x) = wiw+ Y (wTrp(x(i)) — y(">>2, (3.51)

i=1
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where A > 0 is the regularization parameters for avoiding overfitting.
The optimal parameters for optimizing this loss function are given by

w* = arg lr;lelg L(w, x). (3.52)

As discussed in Sect. 3.1.2, the optimal solution w* in Eq. (3.52) has the explicit
form of

w* =@ (K +21,) "'y =" DK +21) " Hijy", (3.53)
i=1 j=1

where y = [y1, ..., y™]T refers to the vector of labels and K € R™ " is the
kernel matrix, and the second equality follows that ® = [¢ (xMy, oo p(xMH]T
Moreover, the norm of the optimal parameters has a simple form when A — 0, i.e.,

lw |3 =y K 'y. (3.54)

The prediction error of these learning models is

w (x) = | f(x) — (TP (x)|, (3.55)

which is uniquely determined by the kernel matrix K and the hyperparameter A
as shown in Eq. (3.53). In particular, the focus will be on the upper bound on the
expected prediction error, as the sum of training error and generalization error.

Prediction, Training, and Generalization Error

In the context of learning theory, the upper bound of the expected prediction
error defined in Eq. (3.55) (a.k.a, expected risk) is achieved by separately
analyzing the upper bounds of the training error (a.k.a, empirical risk) and
the generalization error, i.e.,

1 & : & :
Exnpeu (¥) = — )€ (¢ ) + Expéur (¥) = — 3 e (x?).

i=1 i=1

Training error Generalization error
(3.56)
This decomposition stems from the fact that data distribution D is inaccessible
in most scenarios.
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A rough derivation of the upper bound of training error and generalization error
will now be presented, outlining the necessary steps for clarity, while omitting
specific details found in [6].

e Training error. Employing the convexity of function and Jensen’s inequality, the
training error yields

n

1 < : 1 : :
;;ew*u”) < |22 (@) -y, (3.57)

i=1

Moreover, combining with the expression for the optimal w* given in Eq. (3.53), we
can obtain the upper bound of training error in terms of the kernel matrix K and
hyperparameter A, i.e.,

1o . A2yT(K + ML) "2
‘wa*(x(’))s\/ y Ry, (3.58)
n

N n
i=1

Note that when A = 0 and K are invertible, the training error is zero. However, the
hyperparameter is usually set to A > 0 in practice.

e Generalization error. The derivation of generalization error is more complicated
than training error, involving a basic theorem in statistic and learning theory,
presented below.

Fact 3.2 (Theorem 3.3, [1]) Let G be a family of function mappings from a set Z
to [0, 1]. Then, for any 6 > 0, with probability at least 1 — § over identical and
independent draw of n samples from Z : zV, - .-, 2™, we have for all g € G

1 ¢ , log(2/8
Eeg(2) < =~ ) g@") +2E, [sup ZO g(z(’))} +3y/ %, (3.59)

i=1 geG

where o1, - - - , 0, are in independent and uniform random variables over {1, —1}.

For kernel functions defined in Eq. (3.55), the set Z refers to the space of input
vector with z®) = x@ drawn from an input distribution. Each function g equals to
€w /o for some w, where €,, is defined in Eq. (3.55) and « is a normalization factor
such that the range of €/« is [0, 1]. Without loss of generality, assume o = 1.
For any specific parameter w, consider the special case of G with setting G,, =
{ey | Y ||lv]l < ||w]|}. Then, the upper bound of generalization error for the optimal
parameter is

1< ‘
Brews (1) =~ _leew*(x“))
1=

5215(,[ sup ;Zalev(x(’)):| W. (3.60)
|

|v||<||w 2n
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Moreover, applying Talagrand’s contraction lemma [1] to the first term on the right-
hand side gives

E[ —Zmevu(’))} <E, [ sup —Za(w*) ¢(x<”>}

Hv\|<|\W*II L HIJH<HW*II n

*|12
< [l w*]| 7 3.61)

n

where the first inequality follows that €, (x ) is Lipschitz continuous with respect
to (w*)" - ¢ (x®) with Lipschitz constant 1, the second inequality follows direct
algebra operation. For detailed simplification, refer to Lemma 1 of [6].

In conjunction with Eq.(3.60), Eq.(3.61), and the expression of the optimal
parameter w* given in Eq. (3.53), the final upper bound of generalization error in
terms of the kernel matrix is derived:

l & .
Erews(x) — = > ey (x?)
n
i=1
y(K + M) 'K (K +AL,) "y log(2/8)

<5. +3 . (3.62)
n 2n

For the case of & = 0, the first term in the generalization error bound simplifies to
5-yTK~ly/n.

With the upper bound of training and generalization error, the prediction error of
the learning model for a specific kernel matrix can be directly obtained. These three
errors are summarized below.

Remark
The upper bound of the prediction error for kernel methods defined in
Eq. (3.55) refers to

A2y T (K + AL,)—2
ExNDew*mso(\/ y K+

n

Training error

T -1 !
\/y (K + AlL,) f(K‘H‘I”) y+\/@), (3.63)

Generalization error

(continued)
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where K is a specific kernel related to the learning models and y =
[y(l), e, y(”)] refers to the label vector of n training data. For the special
case of A = 0, the training error is zero, and the prediction error reduces to
the generalization error with a simple form

Tr—1
Bewpewr () <0 [ /25 y+,/1°g(nl/8) : (3.64)
n

Note that the derived upper bound of the prediction error applies to both classical
and quantum kernels. This is because there are no restrictions imposed on the kernel
matrix K during the derivation.

3.3.2.2 Quantum Kernels with Prediction Advantages

Using the above theoretical results of generalization error for general kernel
machines, we now elucidate how to access the potential quantum advantage of
quantum kernels. For a clear understanding, we focus on the case of A = 0 in which

the prediction error bound has a simple form of O (\/ y'K-ly/n+ \/ log(1/68)/ n)
as shown in Eq.(3.64). In particular, this bound has a key dependence on two

quantities, namely, (1) the size of training data n and (2) the kernel-dependent term
y"K~'y, which we denote as

sk =y Ky, (3.65)

in the following discussion for simplification.

The dependence on n reflects the role of data to improve prediction performance.
On the other hand, the quantity sg (y) is equal to the model complexity of the trained
function 2 (x) = (w*)T- ¢ (x), where sg (y) = | w*||> = (w*)" - w* after training. A
smaller value of sk (y) implies better generalization to new data x sampled from the
distribution D. Intuitively, s (y) measures whether the closeness between xD and
x() defined by the kernel function k(x @, x)) matches well with the closeness of
the labels y® and y/), recalling that a larger kernel value indicates two points are
closer.

Based on the above discussion, it is interesting to analyze the potential advantage
of quantum kernel machines. Given a set of training data {(x®, y®)}"_, let Q and
C be the class of Quantum and Classical kernels, respectively, that can be efficiently
evaluated on quantum and classical computers for any given x. In order to formally
evaluate the potential for quantum prediction advantage generally, one must take the
quantum kernel K¢ € Q to satisfy the following two conditions:



3.3 Theoretical Foundations of Quantum Kernel Machines 97

* Ky is hard to compute classically for any given x.

* According to Eq. (3.65), the quantity sp(y) related to the quantum kernel Ko
must be the minimal over all efficient classical models, namely, sg(y) < sc(y)
for any K¢ € C with sc(y) being the K¢ related quantity.

From the second condition, one can see that the potential advantage for the
quantum kernel K¢ to predict better than a classical kernel K¢ depends on the
largest possible separation between sp(y) and sc(y) for a dataset. Huang et
al. [6] define a geometry metric, namely, asymmetric geometric difference, to
characterize this separation for a fixed training dataset, which is given by

sco = s(kellKo) = | VKot W] (3.66)

where || - || is the spectral norm of the resulting matrix and we assume Tr(Kg) =
Tr(Kc) = n. The geometric difference g(K¢||K o) can be computed on a classical
computer by performing a singular value decomposition of the n x n matrices K¢
and K ¢ in time at most order n°.

Figure 3.5 presents a detailed flowchart for evaluating the potential quantum
prediction advantage using the defined geometric difference gcp in a machine
learning task. The input consists of n data samples, along with both quantum and
classical methods, each associated with its respective kernel. The tests are conducted
as a function of n to highlight the role of data size in determining the potential for a
prediction advantage.

First, the geometric quantity gc o is evaluated, which quantifies the potential for
a separation between quantum and classical predictions, without yet considering the
actual function to be learned. Specifically, a large value of gco o +/n suggests the
possibility of a quantum prediction advantage. If the test is passed, an adversarial
dataset that saturates this limit can be constructed. In particular, there exists a
dataset with s¢ = g% 050 where the quantum model exhibits superior prediction
performance, as will be described in the subsequent context.

Geometry test for quantum prediction advantage

Classical ML predicts similar or )
better than the quantum ML _> Classical ML can
2 learn & predict well

- Datasetexists with .\ . —| Sc®m |_ potential quantum

o< N | — 1 .
Yeo ¥ V1 pme:(;f;ﬂ‘i:z:tmn for specific data SoR3L advantage
P

—> Likely hard to learn

Fig. 3.5 A flowchart for understanding the potential for quantum prediction advantage (Adapted
from [6])

Jeg KA |=>
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Subsequently, to incorporate the provided data, a label-specific test can be
performed using the model complexities sc and sg. For quantum kernels and
classical learning models, when sg <« n and sc o n, a prediction advantage for
quantum models is possible, as supported by the generalization bound in Eq. (3.64).
In contrast, if gco is small such as gcp <K /1, the classical learning model will
likely have a similar or better model complexity sc(y) compared to the quantum
model. In this case, the classical model’s prediction performance will be competitive
or superior, and the classical model would likely be preferred.

3.3.2.3 Construction of Dataset with Maximal Quantum Advantage

The construction rule of a dataset that enables the maximal separation between
the model complexity of quantum kernels and classical kernels is as follows. As
indicated by the geometry test in Fig. 3.5, to separate between quantum and classical
models related to kernel matrix Ky and K¢, the ratio between s¢ and s should be
as large as possible for a particular choice of targets y!), ... | ™ This could be
achieved by solving the optimization problem:

T —1
. Sc .Y Koy
min — = min

ﬁ, (3-67)
yeR" S0 yeR" y KQ y

which has an exact solution given by a generalized eigenvalue problem. The
solution is given by y = ,/Kov, where v is the eigenvector of \/KoKo'\/Ko
corresponding to the eigenvalue g?> = ||\/K7QK c 1\/K7Q lloo- This guarantees that
sc = gsz, and note that by definition of g,s¢c < gsz. Hence, this dataset
fully utilized the geometric difference between the quantum and classical space.
Finally, we can turn this dataset, which maps input x to a real value yp, into a
classification task by replacing yp with + 1if yp > median(y®", -, y®) and
—1lifyp < median(y", - -, ). The constructed dataset will yield the largest
separation between quantum and classical models from a learning theoretic sense, as
the model complexity fully saturates the geometric difference. If there is no quantum
advantage in this dataset, there will likely be none.

3.4 Code Demonstration

This section explores the practical implementation of a quantum kernel. Before
diving into concrete code examples, an efficient strategy for estimating the quantum
kernel in practice is discussed.

As explained in Sect. 3.2, one method for estimating the quantum kernel is the
SWAP test, which is resource-intensive. An alternative is to encode the classical
data vector x using a unitary operation U (x) and apply the inverse embedding of x’
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using U (x)F on the same qubits. The quantum kernel ko (x, x’) is then estimated
by measuring the expectation of the projector O = (|0) (0])®" on the zero state.

The complete quantum circuit architecture for this process is illustrated in
Fig. 3.3. Mathematically, the process is expressed as

O2N|UxHUx) oU ) U x)|0%V)

= (0®M|U(x)U (x)T10)®N (01®N U (x") U (x)]0®N)
= ¥ w ey U
= [(p®)|p )|

=kg(x, x)). (3.68)

This approach allows the quantum kernel estimation to use the same number of
qubits required for the quantum feature mapping of the classical vector x.

Next, an example demonstrating the workflow of applying quantum kernels
for classification tasks on the MNIST dataset is provided, with step-by-step code
implementation.

3.4.1 Classification on MNIST Dataset

We train a support vector machine (SVM) classifier associated with a quantum
kernel on the MNIST dataset, a widely used benchmark in image classification. To
assess the performance of the quantum kernel-based classifier, we adopt the classi-
fication accuracy, a standard metric in classification tasks. That is, the classification
accuracy is defined as the proportion of correctly classified samples out of the total
number of samples.

The pipeline involves the following steps:

Step 1 Load and preprocess the dataset.

Step 2 Define the quantum feature mapping.
Step 3 Construct the quantum kernel.

Step 4 Train and evaluate the SVM classifier.

We begin by importing the required libraries.

import pennylane as qml

from sklearn.datasets import fetch_openml

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

import numpy as np
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Step 1: Dataset Preparation The focus is on the digits 3 and 6 in the MNIST
dataset, forming a binary classification problem. Principal component analysis
(PCA) [7] is applied to reduce the feature dimension of the images, minimizing the
number of required qubits for encoding. The compressed features are normalized to
align with the periodicity of the quantum feature mapping.

def load_mnist(n_qubit):
# Load MNIST dataset from OpenlML
mnist = fetch_openml ('mnist_784’, version=1)
X, vy = mnist.data, mnist.target

# Filter out the digits 3 and 6
mask = (y == '3’) | (y == '6’")
X_filtered = X[mask]

y_filtered = y[mask]

# Convert labels to binary (0 for digit 3 and 1 for digit
6)
y_filtered = np.where(y_filtered == ’3’, 0, 1)

# Apply PCA to reduce feature dimension
pca = PCA(n_components=n_qubit)
X_reduced = pca.fit_transform(X_filtered)

# Normalize the input features
scaler = StandardScaler().fit(X_reduced)
X_scaled = scaler.transform(X_reduced)

# Split into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y_filtered, test_size=0.2, random_state=42)

return X_train, X_test, y_train, y_test

n_qubit = 8
X_train, X_test, y_train, y_test = load_mnist(n_qubit)

To better understand the structure of the dataset, the training data are visualized

using ¢-distributed stochastic neighbor embedding (t-SNE) [8]. The following code
generates the visualization:

def visualize_dataset (X, labels):
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=42, perplexity
=30)
label2name = {
0: 37,
1: ’'6’
}
mnist_tsne = tsne.fit_transform(X)
for label in np.unique(labels):
indices = labels == 1label
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plt.scatter(mnist_tsne[indices, 0], mnist_tsne[indices
, 1], cmap=’coolwarm’, s=20, label=f’Number.{
label2name[label]}’)

# Add labels and legend
plt.title("t-SNE_.Visualization_.of_Two._.Classes.(3.and.6)")
plt.xlabel ("t-SNE_Dimension.1")

plt.ylabel ("t-SNE_.Dimension..2")

plt.legend ()

plt.tight_layout()
plt.show()

visualize_dataset(X_train, y_train)

The resulting t-SNE visualization is shown in Fig. 3.6.

Steps 2 and 3: Define Quantum Feature Mapping and Building Quantum
Kernel We use angle embedding as the quantum feature mapping method. The
quantum kernel is implemented as follows.

t-SNE Visualization of Two Classes (3 and 6)

80 A
e Number 3

Number 6

60

40 -

20 1

_20 .

t-SNE Dimension 2

_40 .

_60 B

—80 A

-75 -50 -25 0 25 50 75 100
t-SNE Dimension 1

Fig. 3.6 T-SNE visualization of MNIST dataset of two classes “3” and “6”
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dev = gml.device(’default.qubit’, wires=n_qubit)

@qml .gnode (dev)
def kernel(xl, x2, n_qubit):
qml .AngleEmbedding(x1, wires=range(n_qubit))
qml.adjoint (qml.AngleEmbedding) (x2, wires=range(n_qubit))
return gml.expval(qml.Projector([0]*n_qubit, wires=range(
n_qubit)))

Using the quantum kernel, the kernel matrix is constructed by computing the

kernel values for all pairs of samples:

def kernel_mat(A, B):
mat = []
for a in A:
row = []
for b in B:
row.append(kernel(a, b, n_qubit))
mat.append(row)
return np.array(mat)

Next, the quantum kernel matrix is visualized to gain insight into its structure.

def visualize_kernel(X, y, n_sample):

X_vis = []
for label in np.unique(y):
index = y == label

X_vis.append(X[index][:n_sample])

X_vis = np.concatenate(X_vis, axis=0)
n_sample_per_class = len(X_vis) // 2

sim_mat = kernel_mat(X_vis, X_vis)
np.save(’code/chapter_4_kernel/sim_mat.npy’, sim_mat)

import matplotlib.pyplot as plt

plt.imshow(sim_mat, cmap=’viridis’, interpolation=’nearest
)

# Add color bar to show the scale

plt.colorbar(label="Similarity’)

plt.axhline(n_sample_per_class - 0.5, color="red’,
linewidth=1.5) # Horizontal line

plt.axvline(n_sample_per_class - 0.5, color="red’,
linewidth=1.5) # Vertical line

xticks = yticks = np.arange(®, len(X_vis))

xtick_labels = [£f"3-{i+1}" if i < n_sample_per_class else
f"6-{i+1-n_sample_per_class}" for i in range(len(X_vis
)1

ytick_labels = xtick_labels
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plt.xticks(xticks, labels=xtick_labels, rotation=90,
fontsize=8)
plt.yticks(yticks, labels=ytick_labels, fontsize=8)

# Title and axis labels
plt.title("Quantum_Kernel_Matrix")
plt.xlabel ("Sample.Index")
plt.ylabel("Sample._Index")

plt.tight_layout()
plt.show()

visualize_kernel (X_train, y_train, 10)

The resulting kernel matrix is shown in Fig. 3.7.
From the visualization, we observe a clear block structure:

* Most of the elements in the top-left and bottom-right blocks, where samples
belong to the same class, show higher similarity values.

* Most of the elements in the top-right and bottom-left blocks, where samples
belong to different classes, exhibit lower similarity values.

This indicates that it may be possible to distinguish the two classes by setting a
similarity threshold.

Step 4: Training SVM We construct a SVM classifier with the quantum kernel
matrix and train it with the training data prepared in Step 1:

svm = SVC(kernel=kernel_mat)

svm. fit(X_train, y_train)

pred = svm.predict(X_test)

print("Accuracy:", accuracy_score(y_test, pred))

Fig. 3.7 Visualization of Quantum Kernel Matrix
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To further analyze how the performance of the SVM with a quantum kernel
depends on the size of the training dataset, the number of training samples is varied
from 10 to 100 in increments of 10. For each configuration, the corresponding
classification accuracy on the test data is recorded.

svm = SVC(kernel="precomputed’)

n_sample_max = 100

X_train_sample = []

y_train_sample = []

for label in np.unique(y_train):
index = y_train == label

X_train_sample.append(X_train[index][:n_sample_max])

y_train_sample.append(y_train[index][:n_sample_max])
X_train_sample = np.concatenate(X_train_sample, axis=0)
y_train_sample = np.concatenate(y_train_sample, axis=0)
kernel_mat_train = kernel_mat(X_train_sample, X_train_sample)
kernel_mat_test = kernel_mat(X_test, X_train_sample)

accuracy = []
n_samples = []
for n_sample in range(l®, n_sample_max+10, 10):
classl_indices = np.arange(n_sample)
class2_indices = np.arange(n_sample_max, n_sample_max+
n_sample)
selected_indices = np.concatenate([classl_indices,
class2_indices])

svm.fit(kernel_mat_train[np.ix_(selected_indices,
selected_indices)], np.concatenate([y_train_samplel[:
n_sample], y_train_sample[n_sample_max:n_sample_max+
n_sample]]))

pred = svm.predict(np.concatenate([kernel_mat_test[:,
n_sample], kernel_mat_test[:, n_sample_max:
n_sample_max+n_sample]], axis=1))

accuracy.append(accuracy_score(y_test, pred))

n_samples.append(n_sample)

plt.plot(n_sample, accuracy, marker=’o0’)
plt.title(’Classification,Accuracy.vs. #Training.Samples’)
plt.xlabel ('#Training.Samples’)

plt.xticks(n_sample, n_sample)

plt.ylabel (’Accuracy’)

plt.gridQ

plt.tight_layout()

plt.show()

As illustrated in Fig. 3.8, the quantum kernel-based SVM achieves over 93%
accuracy with just 20 training samples and continues to improve as more training
data is provided, ultimately exceeding 99% accuracy with 200 training samples.
This performance highlights the potential of quantum kernels in classification tasks.

To evaluate the effectiveness of quantum kernels in comparison to classical
counterparts, an SVM classifier using three different classical kernels introduced
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Fig. 3.8 The classification Classification Accuracy vs. #Training Samples
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Fig. 3.9 The classification accuracy of SVM with classical kernels on test data as a function of
the number of training samples

in this chapter is implemented, which are the polynomial kernel, the RBF kernel,
and the sigmoid kernel. For a fair comparison, all experimental settings are kept
identical, except for the choice of the kernel function. The hyperparameters for
each classical kernel are set to their default values in the scikit-learn library. The
same training and evaluation procedures used for the quantum kernel-based SVM
are applied, and the results are summarized in Fig. 3.9. A comparison of these results
reveals that the quantum kernel achieves performance comparable to that of the
classical RBF kernel on this dataset. This suggests that quantum kernels can serve
as a competitive alternative to well-established classical kernel methods for certain
classical classification tasks.

3.5 Bibliographic Remarks

The foundational concept of using quantum computers to evaluate kernel functions,
namely, the concept of quantum kernels, was first explored by Schuld et al.
[9]. They highlighted the fundamental differences between quantum kernels and
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quantum support vector machines. Building on this, [10] and [11] established a
connection between quantum kernels and parameterized quantum circuits (PQCs),
demonstrating their practical implementation. These works emphasized the parallels
between quantum feature maps and the classical kernel trick. Since then, a large
number of studies delved into figuring out the potential of quantum kernels for
solving practical real-world problems.

The recent advancements in quantum kernel machines can be roughly catego-
rized into three key areas: kernel design, theoretical findings, and applications.
Specifically, the advances in kernel design focus on addressing challenges such as
vanishing similarity and kernel concentration by exploring innovative frameworks.
Theoretical work studies how well quantum kernels might work on new data, how
robust they are to noise, and whether they can really outperform classical methods.
Practical studies focus on applying quantum kernels to real-world problems. The
following sections discuss each of these areas.

3.5.1 Quantum Kernel Design

A crucial research line in this field focuses on constructing trainable quantum
kernels to maximize performance for specific datasets and problem domains. In
particular, traditional quantum kernels, with fixed data embedding schemes, are
limited to specific feature representation spaces and often fail to capture the complex
and diverse patterns inherent in real-world data. To tackle this, [12] designed feature
maps tailored to each task. Later, [13] showed that quantum feature maps can be
optimized—much like adjusting parameters in a neural network—using data re-
uploading methods [14, 15]. Other researchers proposed combining different kernels
or searching for the best quantum circuit architecture [16, 17]. Covariant quantum
kernels, suggested by Glick et al. [18], are another approach for problems with group
structure.

Another major challenge is the problem of “vanishing similarity,” in quantum
kernels [19], also called exponential kernel concentration [19]. Quantum kernels
are based on the overlap between quantum feature maps. But in high-dimensional
spaces, these feature maps tend to be almost orthogonal, making the kernels nearly
useless for distinguishing data points [6]. As a result, models built on these kernels
may not generalize well to new data.

To fix vanishing similarity, [6] suggested storing quantum features as classical
vectors and using a standard Gaussian kernel. This bypasses the problem of
near-orthogonal quantum states. Another method, the antisymmetric logarithmic
derivative quantum Fisher kernel, encodes the geometric structure of the input data
to avoid the same issue [20]. Others have tried rescaling the input data or tuning
hyperparameters to keep feature maps closer together [21, 22], which helps prevent
vanishing similarity but can make the kernels less flexible.
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3.5.2 Theoretical Studies of Quantum Kernels

Theory work tries to find out how well quantum kernels really work, especially in
practical conditions. Researchers focus on two big questions: how flexible quantum
kernels are (can they model complex data?) and how well they generalize (do they
work on new data, not just the training set?).

3.5.2.1 Expressivity of Quantum Kernels

The expressivity of quantum kernels refers to their capacity to capture complex data
relationships and represent intricate patterns in the feature space. Researchers often
use the idea of the reproducing kernel Hilbert space (RKHS) to analyze this, which
tells us what kind of functions a kernel can model.

Schuld [23] rigorously analyzed the RKHS of embedding-based quantum ker-
nels and established the universality approximation theorem, demonstrating that
quantum kernels can approximate a wide class of functions. Building on this, [24]
extended the analysis by investigating parameterized quantum embedding kernels,
introducing a data-reuploading structure and proving a corresponding universality
approximation theorem. These results underscore the expressive power of quantum
kernels in representing complex data structures.

Even if a quantum kernel is flexible, it must also be efficient to build. If making
a universal quantum kernel takes as long as classical methods, the advantage
disappears.

To narrow this gap, [5] examined the expressive power of efficient quantum
kernels that can be implemented on quantum computers within polynomial time.
Their work provides a detailed analysis of the types of kernels that are achievable
with a polynomial number of qubits and within polynomial time. The relevant
results offer insights into the feasibility and practical utility of quantum kernels in
real-world scenarios.

However, alongside the exploration of expressive power, a significant challenge
known as exponential kernel concentration has been identified. Four things make
this worse—too much expressivity in embeddings, global measurements, entangle-
ment, and noise [19]. Many studies now focus on building new types of quantum
kernels that avoid this pitfall, as discussed in Sect. 3.5.1.

3.5.2.2 Generalization of Quantum Kernels

Generalization—how well a model does on new data—is just as important as
flexibility. Studies like [6] have set bounds for how much quantum kernels can
generalize. For some quantum data, quantum kernels can learn patterns that classical
models cannot.
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However, quantum kernels often face practical hurdles like noise or limited
measurements. For large datasets or when noise is strong, generalization can get
much worse [25]. New methods like indefinite kernel learning can help keep
performance strong, even in tough conditions.

Quantum kernels can also help for some hard classical problems. For example,
with datasets based on the discrete logarithm, quantum kernels predict quickly,
while classical models need much more time [4]. This hints at real speedup for
some problems.

Still, quantum kernels are not always better. Without built-in “inductive bias”—
rules that help models guess well on new data—they can underperform compared
to classical models [26]. The way data is encoded matters a lot.

3.5.2.3 Provable Advantages of Quantum Kernels

The potential for quantum kernels to demonstrate quantum advantage has been a
central focus of research. For instance, [6] provided evidence of generalization
advantages for quantum kernels on quantum data. Similarly, [4] presented a rigorous
framework showing that quantum kernels can efficiently solve problems like
the discrete logarithm problem, which is believed to be intractable for classical
computers under standard cryptographic assumptions. Moreover, [27] demonstrated
quantum advantage in distribution learning tasks, offering some of the earliest
theoretical evidence of quantum advantage in machine learning.

However, many of these tasks are artificial, designed specifically to showcase
quantum advantages. This raises the question of how these theoretical benefits can
be translated to real-world applications. In this regard, the next significant challenge
is to demonstrate that quantum models can consistently outperform classical models
in solving practical, real-world problems.

3.5.3 Applications of Quantum Kernels

Motivated by the potential of quantum kernels to recognize complex data patterns,
numerous studies have explored their practical applications across diverse fields,
including classification, drug discovery, anomaly detection, and financial modeling.

For instance, [28] investigate the use of quantum kernels for image classification,
specifically in identifying real-world manufacturing defects. Similarly, [29] apply
quantum kernels to satellite image classification, a task of particular importance
in the earth observation industry. In the field of quantum physics, [30] and [31]
leverage quantum kernels to recognize phases of quantum matter, where quantum
kernels outperform classical learning models in solving certain problems. In drug
discovery, [32] explore the potential of quantum kernels to accelerate and improve
the identification of promising compounds.
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Quantum kernels have also been explored in anomaly detection. Liu and
Rebentrost [33] demonstrate their superior performance over classical methods
in detecting anomalies within quantum data. Furthermore, [34] employ quantum
kernel methods for fraud classification tasks, showing improvements when bench-
marked against classical methods. Miyabe et al. [35] expand their application to the
financial domain by proposing a quantum multiple-kernel learning methodology.
This approach broadens the scope of quantum kernels to include credit scoring and
directional forecasting of asset price movements, highlighting their potential utility
in financial services.

Despite the promise of quantum kernels shown in specialized scenarios, their
empirical advantages over classical models remain limited to specific problem
settings, such as the negative impact of noise and large computation complexity
in handling large-scale datasets. The realization of quantum advantage in practical
tasks remains an ongoing area of research, with current efforts directed toward
identifying real-world problems where quantum kernels outperform classical alter-
natives.
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Chapter 4 ®)
Quantum Neural Networks <

Abstract This chapter presents an in-depth exploration of classical and quantum
neural network paradigms, encompassing the fundamental architectures, training
methodologies, and theoretical analyses of network performance. This chapter
is organized into five sections: Sect.4.1 reviews the structural and theoretical
foundations of classical neural networks; Sect.4.2 introduces the quantum per-
ceptron model, elucidating its theoretical advantages over classical counterparts;
Sect. 4.3 explores quantum neural networks (QNNSs), detailing the process by which
classical data is encoded into quantum states and processed through parameterized
quantum gates, thereby mitigating the challenges posed by large model sizes and
high computational costs; Sect.4.4 delves into the theoretical aspects of QNNs,
emphasizing their expressivity, generalization, and trainability; and finally, Sect. 4.5
provides illustrative code implementations using benchmark datasets to demonstrate
the practical viability of QNNs.

Classical neural networks [1] form the bedrock of modern artificial intelligence
and have achieved widespread success in domains like computer vision [2] and
natural language processing [3]. However, despite these triumphs, classical neural
networks grapple with significant hurdles. For instance, their excessively large
model sizes and the resulting high computational demands [4] lead to substantial
energy consumption [5]. These limitations stem from their reliance on classical
computational resources, which become increasingly unsustainable as models grow
in complexity.

Quantum neural networks (QNNs) [6] offer a promising solution by enhancing
neural networks with the computational potential of quantum circuits [7]. In QNNSs,
classical input data is encoded into quantum states, and quantum gates with
trainable parameters process these states in ways that classical systems cannot easily
replicate. This computational regime leverages quantum mechanics to explore new
forms of pattern recognition and problem-solving that go beyond classical methods.
Thus, QNNs have the potential to outperform classical neural networks in specific
learning tasks [8], where the advantages in processing and learning can be explored.
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Despite these exciting prospects, realizing the full potential of QNNs faces
challenges, including quantum noise [9] and the need for scalable quantum hard-
ware [10]. Nevertheless, continuous advancements in quantum hardware and algo-
rithm design promise QNNs will address the inefficiencies inherent in classical
models, particularly in fields such as quantum many-body physics [11] and quantum
chemistry [12].

This chapter offers a systematic overview. First, the structure and function of
classical neural networks are outlined in Sect. 4.1. Then, the discussion transitions
to fault-tolerant and near-term quantum neural networks in Sects.4.2 and 4.3,
respectively. The theoretical foundations of QNNs are also explored in Sect. 4.4,
with a focus on their **trainability** (how easily a model can “learn” from data),
**expressivity** (how well they model complex patterns), and **generalization**
(how well they work on new data). Finally, illustrative code implementations of
QNNs using the wine [13] and MNIST datasets [14] are provided in Sect. 4.5.

4.1 Classical Neural Networks

Neural networks [15-17] are computer models inspired by the structure of the
human brain, designed to process and analyze complex patterns in data. Originally
developed from the concept of neurons connected by weighted pathways, neural
networks have become one of the most powerful tools in artificial intelligence [1].
Each neuron processes its inputs by applying weights and nonlinear activations,
producing an output that feeds into the next layer of neurons. This structure enables
neural networks to learn complex functions during training [18]. For example,
given a dataset of images and their labels, a neural network can learn to classify
categories, such as distinguishing between cats and dogs, by adjusting its parameters
during training. Guided by optimization algorithms such as gradient descent [19],
the learning process allows the network to gradually reduce the error between the
predicted and actual outputs, allowing it to learn the best parameters for the given
task.

After nearly a century of development, neural networks have undergone remark-
able advancements in both their architectures and capabilities. The simplest model,
the perceptron [15], established the fundamental principle by demonstrating how
neural networks could learn to separate linearly classifiable categories. Building
upon this, deeper and more complex networks—such as multilayer perceptrons
(MLPs) [16] and transformers [17]—have led to breakthroughs in tasks spanning
autonomous driving and content generation.
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4.1.1 Perceptron

The perceptron model, first introduced by McCulloch and Pitts [15], is widely
recognized as a foundational structure in artificial neural networks. It has inspired
architectures ranging from convolutional neural networks (CNNs) [20] and residual
neural networks (ResNets) [21] to transformers [17]. Given its fundamental role, the
mechanism of single-layer perceptrons is introduced next.

A single-layer perceptron comprises three fundamental components: input neu-
rons, a weighted layer, and an output neuron as illustrated in Fig.4.1. Given a
d-dimensional input vector x € R?, the input layer consists of d neurons, each
representing the feature x; for Vi € [d]. This input is processed through a weighted
summation, i.e.,

z=w'x, 4.1)

where w ' is the transpose of the weight vector and z is the output of the weighted
layer. A nonlinear activation function is then applied to produce the output neuron
y. For the standard perceptron model, the sign function is typically used as the
activation function:

1, if z>0,

P = = 4.2
y=f@ {_1’ f .o 4.2)

The perceptron learns from input data by iteratively adjusting its trainable

parameters w. In particular, let D = {(x@, y@)}”_ be the training dataset, where

x @ represents the input features of the a-th example, and y©' e {—1, 1} denotes the
corresponding label. When the perceptron outputs a prediction $*), the parameters
are updated accordingly, i.e.,

W<~ w+ (y(‘v) — )A/(S)) x®, (4.3)

Fig. 4.1 Illustration of a e

perceptron
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This training process repeats iteratively until the error reaches a predefined thresh-
old.

Perceptrons can perfectly classify linearly separable data with a finite number of
mistakes, as established in Theorem 4.1.

Theorem 4.1 (Convergence of Perceptrons [22]) Suppose the training data con-
sists of unit vectors separated by a margin of y with labels y® € {—1, 1}. Then,
there exists a perceptron training algorithm that achieves zero error with at most

(0] (#) mistakes.

Proof of Theorem 4.1 Consider the initial parameter of the perceptron w = 0.
Since the training dataset is linearly separable by a margin of y, there exists a unit
vector w* such that yw* " x@ > y for all samples i € [n]. Let x-") be the sample
that is misclassified in the 7-th step, which is then used for adjusting the parameter.
Let w(¢) be the parameter after the 7-th step. Using Eq. (4.3), it can be shown that

w w() —w Tw( — 1)
_ (y(s,t) _ j}(s,t)) w0

= 2y * TG0 > 9y (4.4)

where Eq. (4.4) is derived by noticing the sample (x ), y*-?) is misclassified with
&1 £y and yD $6:D ¢ {1, 1}. By considering the initialization w(0) =
0, the norm of the parameter after the #-th step can be bounded by

lwl = [w*Tw()| *.5)
t
= [w" ) (w) —w(t' - 1)) (4.6)
=1
> 2y1, 4.7)

where Eq. (4.5) follows from the condition ||w*|| = 1. Equation (4.7) is derived by
using the result in Eq. (4.4). On the other hand

lw®)lI* — lw( — DI

2
Jwie =1+ (500 = 500) x50 jwi = )P (48)

2
= 4||x(s,t)||2 + 4w(t _ I)Ty(s,t)x(s,t)

<4+4+4w( —1)Ty®DxED (4.10)
<4, 4.11)
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where Eq. (4.8) follows from the weight update rule in Eq. (4.3). Equation (4.9) is
derived by noticing that y©&-? £ $(0 and y©&-D $6:0 e {—1,1}. Equation (4.10)
follows from the condition [|x®| = 1 for all samples. Equation (4.11) is derived
by noticing that the sample (x| y-D)) is misclassified by the perceptron with the
parameter w(z — 1), i.e.,

Y& w — DTS <.
Thus, after ¢ steps, the parameter is bounded by
lw()|l <2t (4.12)
Combining Egs. (4.7) and (4.12), it can be shown that

1

t < .
)/2

4.13)

O

Since the parameters are used in an inner product operation, as shown in
Eq. (4.1), the single-layer perceptron can be considered as a basic kernel method
employing the identity feature mapping. Consequently, the single-layer perceptron
can only classify linearly separable data and is inadequate for handling more
complex tasks, such as the XOR problem [23]. This limitation has driven the devel-
opment of advanced neural networks, such as multilayer perceptrons (MLPs) [16],
which can capture nonlinear relationships by incorporating nonlinear activation
functions and multilayer structures.

4.1.2 Multilayer Perceptron

The multilayer perceptron (MLP) is a fully connected neural network architecture
consisting of three components: the input layer, hidden layers, and output layer, as
illustrated in Fig. 4.2. Here, the dashed lines denote softmax operations. Similar to
the single-layer perceptron introduced in Sect.4.1.1, the neurons in the MLP are
connected through weighted sums, followed by nonlinear activation functions.

The mathematical expression of MLP is as follows. Let x(@ ! be the a-th input
data and £ = 1 denote the input layer. Define L as the number of total layers. The
forward propagation at the (£ + 1)-th layer V¢ € {1,2, ..., L — 2} yields

2@0HD — Oy @) | po

x(a,[-i—l) — O,(z(a,é—i-l))7
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input layer hidden layer hidden layer output layer
Fig. 4.2 Tllustration of a multilayer perceptron with two hidden layers

Table 4.1 Common nonlinear activation functions

Name Formulation

Sigmoid function o(x) =1/(1+exp(—x))
Hyperbolic tangent function o (x) = tanh(x)
Rectified linear unit (ReLU) function o (x) = max(0, x)

where o represents the nonlinear activation function and W and »© denote
trainable weight and the bias term, respectively. Similar to the notation z in the
perceptron in Sect. 4.1.1, z(4-*+1) denotes the output of the linear sum in the £ + 1-
th layer, which is expressed in a more generalized vector form. Therefore, the
parameters for the weighted linear sum are expressed in matrix form as W,
Various methods exist for implementing nonlinear activations, with some common
approaches summarized in Table 4.1.

After passing through L — 2 hidden layers, the output of MLP given by the
equation below serves as the prediction to approximate the target label y@, i.e.,

( ( (a,u) ( (a@))T

exp (x; ,r L, eXp X,

7 = softmax (x(”’L)) = i ;
>0 exp (x(1)

with p here denotes the dimension of x @),

Next, consider a simple binary classification example to illustrate the MLP
learning process. Let {(x@), y@)},cp be the training dataset D, where x@ is the
feature vector and y@ e {(1,0)T, (0, 1) T} is the label for two categories. Consider
the MLP with one hidden layer. The prediction can be expressed as follows:
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$@ = softmax(x“?) = softmax o & (z(”’3))
= softmax o & (W(z)x(a’z) + b(2)>
= softmax o o (W(2)0 (z(“’z)) + b(z))
= softmax o o (W(z)a (W(])x(“’]) + b(])> + b(z)) ,
where o denotes the function composition. Here, o (x) = 1/(1 + exp(—x)) is used
as the nonlinear activation function.
MLP learns from the given dataset by minimizing the loss function with respect

to the parameters § = w W@, b(l), b(z)). A possible choice of the loss function
is the £ norm distance between the prediction and the label:

2
A(ﬂ)(o) _ y(a)

0 (a) — 4.14
L6) = |D|Z£ 6) = 2|D| (4.14)

We use gradient descent with learning rate 7 to optimize the parameters:
0(r+1)=0()—nVeL(0()).

As illustrated in Fig. 4.3, the gradient is computed using backpropagation [24] as
follows. First, the gradient with respect to the output layer is given by

(a)
LY 5@ _ @
aj‘,(ﬂ)

oL@ 95 @ 5r@ 9L @
£ y— oL [dlag< <a)> A(a)j,(a)T] £

0x@d = gx@d gy Y 95 @

3
LD 9x@d 5L@  ding[(1-29) © 2] ALY
9z@3) T 97(@.3) gx@3) oax(@3)’

Fig. 4.3 Illustration of
backpropagation when @@
calculating the gradient of an / [/
MLP with one hidden layer.

The index of sample a is % %
omitted for simplicity
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where 1 denotes the vector (1,1, -, l)T and © denotes the element-wise multi-
plication (Hadamard product). For convenience, we omit the dimension of 1 here,
which has the same dimension with z(*. Next, the gradient with respect to the
hidden layer can be obtained using the chain rule:

3
0LD 02 3L ) LY
dx@2 — jx(@2) gz@a3) dz@d’

8.[:(“) 8Z(a'3) 3L(a) 31:(“) x(a,Z)T

IWD ~ aw®@ pz@3) ~ za3
LD 9z@d jr@  Hr@

b2 9p® 9z7@3 T 7@’

3£(a) ox @2 3£(a)

_ 1 _ (a2 (a,2)
92@D — 9z@D gr@d dlag[(l z )Qz ]

)

0L
dx @2’

The gradient with respect to the parameters for the input layer is derived similarly:

8.£(a) BZ(“’Z) 8-[:(“) _ a£<a> (a, DT
aw®D ~ awD gz@d  ggan* ’
31:(0) _ 3z(a,2) 31:(!1) _ 3£(a)
b0 ap) 9z@d  gz@d’

After multiple training epochs, the loss function converges to a value below a
predefined threshold, which leads to a small classification error.

Compared to single-layer perceptrons, MLPs can model nonlinear relationships
by employing hidden layers and activation functions. This enables them to learn
abstract representations by capturing the complex patterns inherent in the data.
Mathematically, the power of MLPs is guaranteed by the universal approximation
theorem, as stated in Theorem 4.1, which asserts that a single hidden layer is
sufficient to approximate any arbitrary continuous function.

Fact 4.1 (Universal Approximation Theorem, Informal Version Adapted from
[25]) Let C(X,R™) denote the set of continuous functions from a subset X of a
Euclidean space R" to a Euclidean space R™. Denote by o a function that is not
polynomial. Then, for every n,m € N, compact set K C R", f € C(K,R™), and
€ > 0, there existk € N, A € R*", b € R¥, and C € R™ ¥ such that

sup || f(x) — g@)Il <e,
xeX

where g(x) = Co(Ax + b).
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Remark

MLPs involve a large number of parameters due to their fully connected
multilayer architecture. This high parameter count provides MLPs with
considerable flexibility (how well they model complex patterns), allowing
them to learn complex data distributions. However, the excessive capacity to
fit the training data often leads to overfitting [26], where the MLP captures
noise and irrelevant patterns instead of generalizable features. As a result,
MLPs tend to perform poorly on unseen data, especially when the training
set is limited or noisy. To mitigate this issue, advanced techniques such
as dropout [27], weight decay [28], and attention mechanisms [17] have
been proposed to reduce overfitting in MLPs while maintaining sufficient
expressivity.

4.2 Fault-Tolerant Quantum Perceptron

The primary goal of advancing quantum machine learning (QML) is to leverage the
computational power of quantum mechanics to improve performance across various
learning tasks. As discussed in Sect. 1.1.2, these advantages can include reduced
runtime, lower query complexity, and enhanced sample efficiency compared to
classical models. A notable example is the quantum perceptron model [29]. This
FTQC-based QML algorithm, which uses the Grover search, offers a quadratic
improvement in the query complexity during training over its classical counterpart.
For a complete understanding, this section first introduces the Grover search
algorithm, followed by a detailed explanation of the quantum perceptron model.

4.2.1 Grover Search

Grover search [30] provides runtime speedups for unstructured search problems,
finding broad use in cryptography, quantum machine learning, and constraint
satisfaction. Classical search methods typically require O(d) queries for a dataset
with d entries. In contrast, Grover’s algorithm can identify the target element with

high probability using only O («/3) queries to a quantum oracle. Consequently,

quantum algorithms that incorporate Grover search have the potential to achieve a
quadratic speedup over classical approaches.

In general, a search task can be abstracted as a function f(x) such that f(x) = 1
if x belongs to the solution set of the search problem and f(x) = 0 otherwise. We
consider a dataset consisting of d = 2" elements, where each element is represented
by the quantum state |x) withx =0, 1, - -- , d — 1. In this process, two key quantum
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oracles are introduced. The first oracle, Uy = 2(]0)(0])®Y —1,, applies a phase shift
of ¢/™ = —1 to all quantum states except |0)®", which remains unchanged. The
second oracle, U, operates in a similar manner. That is, it applies a phase shift of
— 1 to quantum states that belong to the solution set while leaving all other states
unaffected. The procedure for Grover search is described in Algorithm 2.

Algorithm 2 Grover search
Require: Quantum oracles Uy and Up. The size of the dataset and the solution set, denoted by
d =2V and M, respectively.
Ensure: An index corresponds to one of the solution states with high probability.
1: Initialize a register of N qubits with the state of uniform superposition:

1 4! N 10} + 1) N
lpo)=—=> )= ———=(XH)0).
\/E x=0 n=1 ﬁ n=1
2: Letm =%,/ % — %j. Apply the following operation:

19m) = [HEVUHN U] 190).

3: Measure the state |¢,,) to generate an index.

Theorem 4.2 (Time Complexity of Grover Search) Grover search finds a
solution to the unstructured search problem with high probability in time

o (,/%(logd + Tf)), where d is the size of the dataset, M is the size of the

solution set, and Ty denotes the time complexity of implementing the oracle U y.

Remark
The Grover search achieves a quadratic speedup in the query complexity of
the oracle U . It provides a quantum advantage in the runtime only if the time

complexity of the oracle Uy, denoted as T, is less than Jd.

Proof of Theorem 4.2 Let the superposition of the solution state be

1
|target)=ﬁ > ).
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Similarly, the superposition of the states outside the solution set is given by
|other) 1 > )
other) = —— x).
/AN _
2 M x| f(x)=0

Thus, the initial uniform superposition state can be expressed as

N

N

M
|do) = 2—N|target) + |other) := «ag|target) 4+ Bo|other).

In principle, the coefficient associated with the target state is expected to increase
during the quantum state evolution, such that the solution could be obtained through
quantum measurement with high probability. The dynamics of these coefficients can
be described as follows:

o = (target|¢y)
= (target| HEN UgH®N U s | 1)
= (target| (2|¢o)(¢pol —I) Uy (ax—1|target) + Br—1|other))
= (target| (2|¢o)(po| — I) (—ax—1[target) + Bi—1|other))

(l — 20(%) ax—1 + 200B0Bk—1,

B = (other|¢y)
= (other]| (2|¢o){(¢o| — I) (—o_1|target) + Bi_1|other))

= (2,33 - 1) Bk—1 — 200 Bo0tk—1.

Let the angle 8 = arccos ,/ zszM , then by induction, it can be shown that
o = sin[(2k + 1)0], Br = cos[(2k + 1)0].

To ensure that the coefficient o, = O(1), there is a condition 2m + 1)0 ~ /2.
Therefore, m = O(1/6) = O( %) suffices to obtain the solution with high

probability. O

4.2.2 Online Quantum Perceptron with Quadratic Speedups

As stated in Theorem 4.1, for a linearly separable dataset with a margin y, a
perceptron model can achieve perfect classification after making O(1/y?) mistakes
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during training. In classical approaches, identifying a sample that is misclassified
by the current model may require up to O(d) queries, where d denotes the size
of the training dataset. In contrast, the quantum perceptron model [29] can find
misclassified samples more efficiently using the Grover search algorithm, achieving
a quadratic speedup in the number of queries needed.

First, let’s look at how the input data is set up. For classification, a dataset
2y, = {(x@, y("))};d=1 is considered, where the label y® e {—1,1}. For
convenience, it is assumed that the number of samples, d, is a power of 2, i.e.,
d = 2N . Each data vector x¥) is represented using B bits. The information of each
sample z(®) is stored in the quantum state |z*)) using B + 1 qubits.

Example 4.1 For the sample (x(i), y(i)) = ([0, 0, 1, 0], 1), the correspond-
ing quantum state is 1z®) = 100101). Here, the last qubit encodes the label
(where “0” represents the label “ — 1), and the other qubits represent the data
vector. If x® is a float vector, a similar bit sequence can be can be formed by
concatenating the binary representations of its elements.

Next, the oracle models are introduced. A quantum oracle U is assumed to exist
for encoding training data as the corresponding quantum state, i.e.,

Uli)10) = [i)1zD) , UTi)1z) = 1)]0). (4.15)

Due to the linearity of unitary operations

d—1 1 d—1 1 o
U —1i)|0) = —i)|z'). 4.16
gﬁmu ;ﬁwz ) (4.16)

In addition to the input oracle U described in Eq. (4.15), the quantum perceptron
model employs another oracle to distinguish between correctly classified and
misclassified quantum states. Specifically, the oracle Fj, satisfies

Folz®) = (=1)f 02D 0), (4.17)
where f : (w,z?)) — {0, 1}. The function outputs 1 if the current perceptron
model with weight w misclassifies the training sample z/); otherwise, it outputs 0.

Furthermore, we define

Fp=U'1® F,)U, (4.18)
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which is used as the oracle Uy in the Grover search. The online quantum perceptron
procedure is given in Algorithm 3. The query complexity of the online quantum
perceptron is provided in Theorem 4.3.

Algorithm 3 Online quantum perceptron

Require: Linearly separable dataset {z(")}fl:l = {(x(i),y(i))}le, where d = 2VN. Margin
threshold y. Constants € € (0, 1) and ¢ € (1, 2).

Ensure: Weight w for a perceptron that correctly classifies the dataset with a margin y with
probability at least 1 — €.

1: Initialize the weight w = 0.

2 forh=1,---, rﬁ do

3 fork=1,--- logy, y*€] do

4: forj:1,-..,nogcmmo

5 Draw m uniformly from {0, - - - , [¢/] — 1}.
6 Prepare the quantum state

1 d—1
o) = ﬁg")'

7. Generate the state

1) = {[2lo) (B0l — o) ®Tal Fu}™ |¢h0)|0)®".

8: Measure the first register of the state |¢;) to obtain an outcome q.
9: if f(w,z9) =1 then
10: Update w < w 4 y@x@,
11: end if
12: end for
13: end for
14: end for
15: Output w.

Theorem 4.3 (Online Quantum Perceptron [29]) Consider a training dataset
that consists of unit vectors {x(l), . ,x(d)} and labels {y(l), . ,y(d)} with a
margin y. Denote by nquan; the number of queries to Fy needed to learn the weight
w, such that the training dataset is perfectly classified with probability at least 1 —e,
then

N/
Nquant € (0] F lOg ﬁ
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For the classical case where the training vectors are uniformly sampled from the
training dataset, the number of queries to fy, is bounded by

d 1
Q(d) 3 nglass € 0 <—2 log — ) .
Y Y€

Proof of Theorem 4.3 The main idea of the quantum perceptron model in Algo-
rithm 3 is to replace the procedure of finding the misclassified sample in classical
perceptrons with the Grover search. Due to convergence result for perceptrons
in Theorem 4.1, h = 1,---, {#1 iterations of Steps (3—13) suffice to update
the weight w toward the case of perfect classification. Therefore, Theorem 4.3
is the direct consequence of the following lemmas and Theorem 4.1. The query
complexity of classical perceptrons has the lower bound €2(d), since the model
needs to go through the entire dataset in the worst case. O

Lemma 4.1 Given only uniform sampling access to the training dataset, there
exists a classical perceptron that either finds a misclassified sample to update the
weight w or concludes that no such example exists with probability 1 — €y?, using
O(d log(1/ey?)) queries to fy.

Lemma 4.2 The procedure of Steps 3—13 in Algorithm 3 either finds a misclassified
sample to update the weight w or concludes that no such example exists with

probability 1 — ey?, using O (\/c_z’ log(l/eyz)) queries to Fy.

Proof (Proof of Lemma 4.1) First, let m, = d[log(l/eyz)] be the number of
samples drawn from the dataset uniformly in each iteration of training. Suppose
these samples are classified correctly, then the probability that the entire dataset is
classified correctly is

1\
Pr(Correct classification) > 1 — (1 — E) > 1 —exp (—%) >1- eyz.

O

Proof of Lemma 4.2 For convenience, denote 6, := arccos ,/ d;d" , Where dj the

number of misclassified samples in the dataset according to the current model. Let
dy = [log. m]. Here, an exponential expansion strategy is used in
Steps 4—12 to handle the scenario of unknown dp. Namely, quantum operations in
the Grover search are repeated for m times, where m is drawn from an exponentially
expanded set 0, --- , [¢/] — 1 uniformly for a predefined ¢ € (1,2) and j =
1,---,d;. It can be shown that this strategy can find a misclassified sample before
the convergence of Algorithm 3 with an average probability at least 1/4:
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di e/1-1

Pr (f(w,z(q)) - 1) - X;W Z; sin2((2m + 1)6,)
Jj= m=

[ed11—1

‘2
z T > sin®(@m + 1)6,)
m=0

1 | sin(4[¢?176,)
2 27c¢d17 sin(26,)

1
> —.
4

The procedure of Steps 4-12 is repeated for k = 1, - - -, [logs 4 y2€] iterations

to accumulate the success probability. The probability of finding a misclassified
sample in Steps 3—13 before the convergence of Algorithm 3 is at least

1) Mogsy4 ey
1 - <1 — Z) >1—ey? (4.19)

Finally, the query complexity Q of Steps 3-13 in Algorithm 3 can be upper
bounded as follows:

Mogy,sy2el g

o= ) >
k=1  j=1

< 1+10g3/4y26> lic [1 —cd‘]

2
c 1
(1 +logs yze) c [ 1]

—1 Lsin@sin~'(1/¥/d))
=0 <x/glog #) .

IA

4.3 NISQ-Era Quantum Neural Networks

Following recent experimental breakthroughs in superconducting quantum hard-
ware architectures [10, 31-33], researchers have devoted considerable effort to
developing and implementing quantum machine learning algorithms optimized
for current and near-term quantum devices [34]. Unlike fault-tolerant quantum
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computers, these devices face three primary limitations: quantum noise, limited
coherence time, and circuit connectivity constraints. Regarding quantum noise,
state-of-the-art devices have single-qubit gate error rates of 107* ~ 1073 and two-
qubit gate error rates of approximately 1073 ~ 1072 [32, 33]. The coherence time
is around 107 s [10, 32, 33], primarily limited by decoherence in noisy quantum
channels. Regarding circuit connectivity, most superconducting quantum processors
employ architectures that exhibit two-dimensional connectivity patterns and their
variants [10, 32, 33]. Gate operations between nonadjacent qubits must be executed
through intermediate relay operations, leading to additional error accumulation. To
address these inherent limitations, the quantum neural network (QNN) framework
has been proposed. Specifically, these QNNs are designed to perform meaningful
computations on near-term quantum devices.

4.3.1 General Framework

This section introduces the basic architecture of QNNs. As illustrated in Fig. 4.4,
a fundamental QNN comprises three main parts: the input, the model circuit, and
the measurement. Specifically, the input state pj, is prepared using the operation
Udata, followed by a variational quantum circuit (VQC) V(@) and the measurement
operation.

Input The QNN uses quantum states pj, as input data. As shown in Table 4.2,
QNNs can process both classical and quantum data. Specifically, the input states
pin may be introduced from physical processes such as quantum Hamiltonian
evolutions. Another way is to construct the state pj, by encoding classical vectors
using encoding protocols introduced in Sect.2.3.1, such as angle encoding and
amplitude encoding.

10)—

10)—

Udata (pin) V(e)

10)—

MMM

10)—

Fig. 4.4 Illustration of a QNN
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Table 4.2 Examples of classical and quantum data employed in QNNs, where H denotes the
system Hamiltonian, kp is the Boltzmann constant, and |¢¢) is a predefined initial state

Example Input state formulation
Classical data Angle encoding ®,11V:1 [RY (x,)|0)]
. . 1 N
Amplitude encoding 5‘1:0 x;/llx|21i)
Quantum data Gibbs state exp(—H/kpT)

Tr[exp(—H/kpT)]
Hamiltonian evolution exp(—i Ht)|¢o)

Uent Uent

Fig. 4.5 Illustration of a hardware-efficient circuit with two entanglement layer

N ENMINEN

Fig. 4.6 Illustration of a quantum convolutional neural network

Model Circuit QNNs employ variational quantum circuits (VQCs), a.k.a, ansatzes,
to extract and learn features from input data. A typical VQC, denoted as V(0),
features a layered structure composed of both parameterized (trainable) and fixed
quantum gates. For general-purpose implementations, a common strategy is to use
the parameters @ as the phases of single-qubit rotation gates RX, RY, RZ, while
quantum entanglement is introduced through fixed two-qubit gates, such as C X and
C Z. Standard circuit architectures include the hardware-efficient circuit (HEC) [35],
shown in Fig.4.5, and the quantum convolutional neural network (QCNN) [36],
shown in Fig.4.6. For problem-specific applications, such as finding the ground
states of molecular Hamiltonians, specialized circuits like the unitary coupled
cluster ansatz [37] are employed.
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Example 4.2 Hardware-efficient circuits incorporate several widely adopted
ansatzes. Single-qubit rotations {RX, RY, RZ} are used to construct parame-
terized single-qubit unitaries. The entangled unitary layer can be implemented
using two-qubit gates such as

131
Uent = Q) U2n — 1+ k%2, 2n + k%2)  for the k-th layer,
n=1
141 N
Uent = ®U(2n —1,2n) ® UQn,2n + 1),
n=1 n=1

where U € {CX, CZ}.

Measurement After implementing the model circuit, the quantum state is mea-
sured using specific observables, denoted as O, to extract classical information.
The choice of observables depends on the experimental objectives. For a variational
quantum eigensolver, where the goal is to find the ground state and energy of a
given Hamiltonian, the observable is chosen to be the target Hamiltonian itself. In
quantum machine learning applications involving classical data, the measurement
outcomes are used to approximate label information, which typically lacks direct
physical significance. As a result, the observable can, in principle, be any Hermitian
operator. However, for practical experimental considerations, a linear combination
of Pauli-Z operators is commonly used as the observable:

N
0=> ¢ Vez; "/, (4.20)
j=1

where ¢ € RV is a weight vector. The measurement outcome of QNN can be
expressed as a function of 6, i.e.,

f®; o, V. 0) = Tr [ OV @) oV ®)']. (4.21)

Training of QNNs As a QML framework, the optimization of QNNs amounts to
updating parameters 6 using gradient-based methods. Thanks to the linearity of
quantum mechanics and the unitary evolution constraint, in certain cases, gradients
can be elegantly calculated using the parameter-shift rule.
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Theorem 4.4 (Parameter-Shift Rule [38]) Suppose the gate G;(0;) in a VQC
V(@) has a unitary Hamiltonian H;, then the corresponding gradient could be
obtained as

=303 s o-50)]

where the function f follows the Eq. (4.21) and the one-hot vector ) has the same
dimension with 0 with the j-th element being 1.

Proof (Proof of Theorem 4.4)
For convenience, we denote the detailed structure of VQC as

1
Vo) =[] Giwenw,
i=L

where L is the number of parameters in VQC, G; is the parameterized gate, and W;
is the fixed gate. By assumption, the gate takes the form as

Gj(0;) =exp(—iH;0;/2),

where the Hamiltonian H; is a unitary. For convenience, unnecessary parameterized
and fixed gates can be merged into the state pj, and the observable O, i.e.,

1 j—1

pa=Wi | TI Gi@owi | o | [] W/ Gi00)" | W],
i=j—1 i=1

3 .
o' = [[[w G| o IL[Gi(oi)Wi
i=j i=L
It can be shown that
f® = Te [0V ©)]
= Tr[o’G,-(o,-)p;nG,-(o,-)T]

Tr[O" exp(—iH;0;/2)pj, exp(iH;0;/2)]

0; 1 0;
= cos? ?J Tr[O'p,] + % sinf; [[Hj, O'lp},] + sin’ ?j Tr[H;O'Hjpj,].
(4.22)

where [A, B] := AB — BA denotes the commutator.
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After some calculations from Eq. (4.22), it can be shown that

T 1 —siné; i
f(0+3eV) = —=—LTc[0'p},] + 5 cost; [[H;. 0'15),]

+1+STin0j Tr[H;O'H;p},]
Flo-Te0) = % T[0'6},] — 5 cost; [1H;, Ol
1=sinb; szinﬂj Tr[H;O'H;p},]
;%(9) = — %sinoj Te[0'pf,] + %COS"/ [LH;, 0"1pf,]
+% sinf; Tr[H;O'H;p;,] .
Comparing the above equations, Theorem 4.4 is proved. o

4.3.2 Discriminative Learning with QNNs

This section presents an example of using a QNN for discriminative learning, which
focuses on distinguishing between different categories. The focus is on binary
classification, where the label y) = =1 corresponds to the input state p¢). For
classical data, the state p = |1 (x@)) (v (x)| can be generated from the classical
vector xV) using a read-in approach:

[y (x D)) = Uy (x©)]0). (4.23)

Here, the feature map can be constructed via angle encoding, as introduced in
Sect.2.3.1:

N N
Up(xD) = ® RY(x?) = ® exp(—iYx"/2). (4.24)
n=1 n=1

Denote by O and V(#) the quantum observable and the VQC, respectively. The
prediction function of the QNN is given by

300 = ToV©®)pV©). (4.25)
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In the binary classification task, the QNN learns by training the parameter 6 to
minimize the distance between the label y® and the prediction 3 (6). Specifically,
the mean square error (MSE) is used as the loss function:

n o 1 . .
6" = argminL(9), where L) = Y €0, x?, yV) = 5 3 (90)(0) - y(l)>

i=1 i=1

2
(4.26)

The gradient of the loss in Eq. (4.26) can be calculated via the chain rule, i.e.,

n

VoL® =Y (500) - yV) V4508, (4.27)

i=1

where the gradient of the prediction ) can be obtained by using the parameter-
shift rule in Theorem 4.4. Consequently, a variety of gradient-based optimization
algorithms, such as stochastic gradient descent [19], Adagrad [39], and Adam [40],
can be employed to train QNNss.

Remark

The QNN binary classification framework can be naturally extended to multi-
label classification using the one-vs-all strategy. Specifically, we train kK QNN
binary classifiers for k classes, with each classifier distinguishing a specific
class from the others.

Remark
The QNN classification framework presented in this section can be extended
to quantum regression learning by incorporating continuous labels.

4.3.3 Generative Learning with QNNs

This section introduces a quantum generative model implemented by QNNs: the
quantum generative adversarial network (QGAN) [41]. Like its classical counter-
parts, QGAN learns to generate samples by using a discriminator and a generator
that compete in a two-player minimax game. Specifically, both the discriminator D
and the generator G can be implemented using QNNs. By leveraging the expressive
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power of QNNs, QGAN has the potential to exhibit quantum advantages in certain
tasks [42, 43].

To illustrate QGAN’s training and sampling processes, two examples based on
the quantum patch and batch GANs, as proposed by Huang et al. [44], are presented.
Let N denote the number of qubits and M the number of training samples. The
patch and batch strategies are designed for the cases where N < [log M| and N >
[log M1, respectively. In particular, the patch strategy allows for generating high-
dimensional images even with limited quantum resources. In contrast, the batch
strategy supports parallel training when enough quantum resources are accessible.

4.3.3.1 Quantum Patch Generative Adversarial Network

The discussion begins with the quantum patch GAN, which consists of a quan-
tum generator, as illustrated in Fig.4.7, a classical discriminator, and a classical
optimizer. Both the learning and sampling processes of an image are performed in
patches, involving 7' sub-generators. For the ¢-th sub-generator, the model takes a
latent state z as input and generates a sample G,(z). Specifically, the latent state is
prepared from the initial state |0)®" using a single-qubit rotation layer, where the
parameters {ocn}r/l\/:1 are sampled from the uniform distribution over [0, 27). The
latent state is then processed through an N-qubit hardware-efficient circuit Ug, (9),
which leads to the state

[V:(2)) = Ug, (0)12). (4.28)

To perform nonlinear operations, partial measurements are conducted, and a
subsystem A (ancillary qubits) is traced out from the state |1;(z)). The resulting

Ancillary 0 : (o) E ; 0O E EI
for G ‘0>_i_ (o) E : U(6¢,2) E EI

0)— (exa) : r U(6es) : [~

Sample | ‘0>_§ 7 : i UBes) : EI

Register ‘0>_E_ (cvs) E E U(6e5) E EI
01— (eo) F—{ U 020) —=

U. Ug,(0), repeat for ¢ € [L]

Fig. 4.7 The quantum generator used in the quantum patch GAN, where each U (0 ,) € U(2) is
a trainable single-qubit unitary
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mixed state is

Tra [T @ L] (2)) (Y1 (2)]
Tr [T ® Iy (2)) (¥ ()]

pr(z) = (4.29)

where IT is the projective operator acting on the subsystem A. Subsequently, the
mixed state p;(z) is measured in the computational basis to obtain the sample
G+(z). Specifically, let Pr(J = j) := Tr[|j){jlp:(z)], where the probabilities of the
outcomes can be estimated by the measurement. The sample G;(z) is then defined
as

G,/ (2) =[Pr(J =0),--- ,Pr(J = j),--- ,Pr(J =2N"Na _ )], (4.30)

where N is the number of qubits in (A. Finally, the complete image is reconstructed
by aggregating these samples from all sub-generators as follows:

G(2) =161(2), -, Gr@)] (4.31)

In principle, the discriminator D in a quantum patch GAN can be any classical
neural network that takes the training data x or the generated sample G(z) as input,
with the output

D(x), D(G(z)) € [0, 1]. (4.32)

Let y and € denote the parameters of the discriminator D and the generator
G, respectively. The optimization problem for the quantum patch GAN can be
formulated as

minmax £(Dy (Go(2)). Dy (x)) = E [log Dy (¥)] +Elog(1 ~ Dy (Go(@))].
(4.33)

Similar to quantum discriminative learning, the quantum patch GAN can be trained
using gradient-based optimization algorithms.

4.3.3.2 Quantum Batch GAN

As illustrated in Fig. 4.8, the quantum batch GAN differs from the quantum patch
GAN by employing a quantum discriminator. In a quantum batch GAN, all qubits
are divided into two registers: the index register, consisting of N; qubits, and the
feature register, consisting of Nr qubits. The qubits in the feature register are further
partitioned into three parts: Np qubits for generating quantum samples, N4, qubits
for implementing nonlinear operations in the generator Gy, and N4, qubits for
implementing nonlinear operations in the discriminator D). For a batch with size



134 4 Quantum Neural Networks

Index )
Register

NN

Ancillary | 10) U N _|2|
for G |O> | -
Uc(0)
Sample ) 10) ] ]
Register |

Up(7)

Ancillary )
for D

VAR

Fig. 4.8 The main structure of the quantum batch GAN

|Br| = 21, two oracles are used to encode the information of latent vectors and
training samples:

u, 1 . .
0} ® [0)r = 557 2 1)1 ®120)r, (4.34)
1
00 @ 10)F 25 -3 iy & 16 @) 435)
1 F 2N1 : 1 F- .
1

Remark

For data with M features, state preparation for amplitude encoding in Uy
requires O(2V' M) multi-controlled quantum gates, which is infeasible for
current quantum devices. This challenge can be addressed by employing
pretrained shallow circuit approximations of the given oracle [45].

After the encoding stage, a PQC Ug(0) and the corresponding partial measure-
ment are employed as the quantum generator. Thus, the generated state correspond-
ing to | Bx| fake samples is obtained as follows:
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1 . .
N Z i) ® 127) F
;

Ug(9)

I |
—— 5w 2 lie (V6® @1, 12 ) = ¥ @)

M, Ly, @ Mag @ Lvp+ny, 1¥(2))
< 2 2 = 1Go(2)),
Tr [Ty @ Mag @ vy, [ @)W @]
where the partial measurement IT4, = (|0) (O|)®NAG serves as the nonlinear

operation. In the sampling stage, the reconstructed image is generated similarly to
the quantum patch GAN. Specifically, the i-th image G¢(z*) in the batch is

Go@™) = [Pr( =01 =), -+ Pr( =20 — 11 = )], (4.36)
where

Pr(J = jlI =1i) = Te[li)11/) r(il1 (GIFIG@NG @] (4.37)

Finally, we introduce the training stage. A quantum discriminator is applied
to either the fake generated state |Gg(z)) or the real data state |x). Similar to
the quantum generator, the quantum discriminator D, consists of a PQC Up(y),
followed by the corresponding partial measurement. In the case of the real state, the
state evolution proceeds as follows:

1 , l.
ZTIZU)I@PC())F

Upy) 1 . i

= 5w 2o 101® (Lyvag ® Up@)lx) ) = (o))

[SVPN ]IZN*NAD ® HAle(x)>
T[Ty, @ Mag (o) (0 ()]

= |Dy(x)),

where the partial measurement is [T, = (|0) (0)®N4p . The classical description
Dy (x) is generated similarly to Eq. (4.36). The generated state Gg¢|z) undergoes the
same procedure to obtain the description Dy, (Gg(z)). These classical vectors are
then used in the loss function in Eq. (4.33) to train parameters 6 and y.
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4.4 Theoretical Foundations of Quantum Neural Networks

Quantum neural networks (QNNs) primarily aim to make accurate predictions
on unseen data. Achieving this goal depends on three key factors: expressivity,
generalization ability, and trainability, as illustrated in Fig.4.9. The expressivity
of a QNN defines its hypothesis space H (solid blue ellipse). When H has a
moderate size and encompasses the target concept (solid red star), QNNs can
achieve good performance. Conversely, if H is too small to cover the target concept
(the solid gray star), the QNN'’s performance diminishes. During QNN optimization,
a significant challenge is the vanishing gradient problem, often called the barren
plateau. This issue prohibits a good estimation near the target parameters 0*. A
thorough analysis of these factors is crucial for understanding QNNs’ potential
advantages and limitations relative to classical machine learning models. Instead
of providing an exhaustive review of all theoretical results, this section highlights
key conceptual insights of QNNs.

As explained in Sect. 3.3, expressivity refers to a model’s ability to represent
a wide range of functions, determining the smallest achievable training error.
Section 4.4.1 characterizes the expressivity of QNNs using the covering number,
an advanced tool from statistical learning theory. This analysis will reveal the
relationship between the expressivity of QNNs and their structural factors, such
as the size of the quantum system and the number of exploited quantum gates.
Understanding this connection helps clarify how QNNs’ expressivity scales with
their architecture.

Generalization ability evaluates the discrepancy between a model’s performance
on the training data and on unseen test data. Section 4.4.1 further explores
the relationship between the generalization ability and expressivity of QNNs by
deriving a generalization error bound in terms of the covering number. This bound
provides insights into how the expressivity of QNNs—specifically their structural
factors—may impact their ability to generalize and offers a framework to assess
their potential advantages over classical ML models.

* * Target function

Optimization path

Fig. 4.9 Overview of the expressivity, generalization ability, and trainability of QNNs
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While expressivity and generalization ability are crucial for both quantum
kernels and QNNss, trainability emerges as an additional consideration for QNNs
due to the introduction of trainable parameters in quantum circuits. This leads to
fundamentally different optimization challenges, rendering many existing results
from classical ML models inapplicable. Specifically, trainability refers to a model’s
ability to efficiently converge to a good solution during training, directly influencing
the computational cost. In Sect.4.4.2, the barren plateau problem is introduced.
This is a major challenge in training quantum neural networks. As the system
size increases, gradients vanish exponentially. This makes optimization extremely
difficult. Additionally, various strategies to address this issue will be discussed,
offering practical insights into enhancing the trainability of QNNs.

4.4.1 Expressivity and Generalization of Quantum Neural
Networks

The expressivity and generalization are deeply interconnected within the framework
of statistical learning theory for understanding the prediction ability of any learning
model. To better understand these terms in the context of quantum neural networks,
let us first review the framework of empirical risk minimization (ERM), which is a
popular framework for analyzing these abilities in statistical learning theory.

Let D = {(x@, y(i))}?: | € X x Y be the training dataset sampled independently
from an unknown distribution #. A learning algorithm A aims to use the dataset
D to infer a hypothesis hg+ : X — Y from the hypothesis space H that could
accurately predict all labels of x € X following the distribution #. This amounts to
identifying an optimal hypothesis in { minimizing the expected risk:

R(h) = Ex,y)~pl(hg(x), y), (4.38)

where £(-, -) refers to the per-sample loss predefined by the learner. Unfortunately,
since the distribution £ is unknown, the expected risk cannot be directly assessed.
In practice, A alternatively learns an empirical hypothesis h; € H, as the global
minimizer of the (regularized) loss function

1 « N
L£6.D) = thyx),y") +RO), (4.39)
i=1

where R(0) refers to an optional regularizer, as will be detailed in the following.
Moreover, the first term on the right-hand side refers to the empirical risk:

1< . .
Rermi(hg) =~ £hy(x D), yO), (4.40)

i=1
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which is also known as the training error. To address the intractability of R(h), one
can decompose it into two measurable terms:

R(hy) = Rerm(hy) + RaGene(hy), (4.41)

where RgGene(hy) = R(hy) — Rerm(hy) refers to the generalization error. In this
regard, a small prediction error necessitates the learning model to achieve both a
small training error and a small generalization error.

4.4.1.1 An Overview

Before moving to analyze the training error (ERM) and generalization error
of QNNs rigorously, we first delve into better understanding the meaning of
expressivity and generalization ability of the learning models with the ERM
framework. Moreover, an intuition about the necessities and benefits of exploring
such theoretical aspects of QNN as a special learning model is provided.

Expressivity can be directly understood as the size of the learning model’s
hypothesis space H = {hg : 0 € ©}. Intuitively, the achievable smallest empirical
risk is determined by the expressivity of learning models. Specifically, a learning
model with low expressivity may not fit the training data with complex patterns,
e.g., the hypothesis space of linear model H = {hy = 0 - x} cannot fit the nonlinear
data {x @, (x)?} perfectly.

In general, the cardinality of the hypothesis space is infinity, as the parameters
are continuous. This makes it hard to compare the expressivity of different learning
models. An alternative measure is model complexity, which measures the richness
of the hypothesis space through the structural factors of the specific learning models,
such as the number of parameters, depth, or architectural design. Remarkably, model
complexity is measurable and bounded. In this tutorial, the covering number will be
used to measure the model complexity of QNNs.

The generalization capability of learning models is directly measured by the
generalization error Rgepe in Eq. (4.41). Good generalization means the learning
model predicts well on both unseen and training data. In this regard, a small
generalization error combined with a small training error implies a small prediction
error, as the generalization error ensures that prediction performance on unseen data
is comparable to training performance.

In statistical learning theory, it is well established that a bias-variance trade-off
governs the interplay between model complexity and generalization performance
for any learning model. This highlights the delicate balance required for a model to
generalize well to unseen data. The relationship is often depicted by a U-shaped
curve, as shown in Fig.4.10. This curve suggests that there exists an optimal
level of model complexity for improving the generalization ability of any learning
model. When under the point related to optimal expressivity, increasing model
complexity improves performance on training data and enhances generalization.
However, beyond a certain point, higher complexity leads to overfitting, resulting
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in poor generalization on test data. For QNNs, identifying this optimal level of
complexity is crucial for achieving the best balance between training performance
and generalization.

4.4.1.2 Expressivity of QNNs

In this chapter, we analyze the generalization error of QNNs through a specific
measure of model complexity: the covering number. This measure helps us better
understand and characterize the generalization performance of QNNs.

To elucidate the specific definition of the covering number, the general structures
of QNNs are first reviewed. Define p € 22" a5 the N -qubit input quantum
states, O € c2"x2" a5 the quantum observable, U(0) = ]_[ZN;"1 u;(0) € UQRN) as
the applied ansatz, where § € © are the trainable parameters living in the parameter
space ©, u;(0) € UQ2X) refers to the I-th quantum gate operated with at most
k-qubits with k < N, and U(2") stands for the unitary group in dimension 2.
In general, U(#) is formed by Ny, trainable gates and N, — Ny, fixed gates, e.g.,
® C |0, 271)N ¢t Under the above definitions, the explicit form of the output of QNN
under the ideal scenarios is

h@, 0, p) = Tr(U(o)TOU(o)p) . (4.42)

Given the training dataset O = {(p"), y)}"_, and loss function L(#, D) defined
in Eq.(4.39), QNN is optimized to find a good approximation h*(@, O, p) =
arg ming g, o, pyer L(0, D) that can well approximate the target concept, where H
refers to the hypothesis space of QNNs with

H = {Tr(U(a)TOU(o)p) ‘0 c @}. (4.43)

An intuition about how the hypothesis space H affects the performance of QNNs
is depicted in Fig. 4.9. When H has a modest size and covers the target concepts,
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Fig. 4.11 The geometric
intuition of covering number.
Covering number concerns
the minimum number of
spherical balls with radius €
that occupy the whole space

the estimated hypothesis could well approximate the target concept. By contrast,
when the complexity of H is too low, a significant gap exists between the estimated
hypothesis and the target concept. An effective measure to evaluate the complexity
of H is covering number, an advanced tool broadly used in statistical learning
theory, to bound the complexity of H and measure the expressivity of QNNs.

Definition 4.1 (Covering Number) The covering number N(U, ¢, || - ||) denotes
the least cardinality of any subset V' C U that covers U at scale € with a norm
Il - II,ie., supycq mingey ||A — Bl < €. Here, we use this notion to measure the
expressivity of QNNs.

The geometric interpretation of the covering number is depicted in Fig.4.11,
which refers to the minimum number of spherical balls with radius € that are
required to completely cover a given space with possible overlaps. This notion has
been employed to study other crucial topics in quantum physics such as Hamiltonian
simulation and entangled states. Note that € is a predefined hyperparameter, i.e., a
small constant with € € (0, 1), and is independent of any factor. This convention is
widely adopted in machine learning to evaluate the capacity of various models.

Following the convention of [46], a step-by-step analysis of the model com-
plexity of the hypothesis space H of QNNs defined in Eq. (4.43) is provided. In
particular, how the covering number of QNN is controlled by their structural factors
will be elucidated, including the number of parameterized gates Ny, the number of
qubits k the gates acting on, and the type of the quantum observable O. To this end,
we first consider a simpler hypothesis space consisting of the operator group:

Heire = {U(0)T0U(0)}0 € @] . (4.44)

This space removes the input state p is removed compared to the hypothesis space
H related to QNNs. Actually, the covering number of 9 under the metric d could
be connected to the covering number of H. under the related metric dej;. through
employing their Lipschitz properties, which is encapsulated in the following fact.

Fact 4.2 Let (H), dy) and (Hy, dy) be two metric spaces satisfying f : H — H,
be bi-Lipschitz such that

adi(x,z) =d(f(x), f(2) = crdi(x,2), Vx, 2 € Hi. (4.45)
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Then, their covering number obeys
N(Hy, 2¢/cr, di) < N(Ha, €, dr) < N(Hi, €/cr, dy), (4.46)

where the left inequality requires € < cjc,/2 with ¢, being the upper bound of the
distance between any two points in Hy, namely, di(x, z) < ¢, for x,z € H;.

Fact 4.2 indicates that we can derive the covering number of the metric space
(H, d) by analyzing the covering number of the metric space (Hcirc, deirc) and the
Lipschitz constants of the mapping between H and Hirc. Intuitively, a quantum
circuit with many multi-qubit parameterized gates results in a complex QNN
with high model complexity. These intuitions are formalized into Theorem 4.5.
Specifically, the result of the covering number of the metric space (Hcirc, deirc) 18
encapsulated in Lemma 4.3.

Lemma 4.3 Suppose that the employed N -qubit quantum circuit containing in total
N, gates with N; > N, each gate u;(0) acting on most k qubits, and Ngy < N,
gates in U(0) are trainable. The e-covering number for the operator group Heirc in
Eq. (4.44) with respect to the operator-norm distance obeys

TN (O[> Vet
N(Heire, €, ||-||)§<T> , (4.47)

where || O || denotes the operator norm of O.
Proof of Lemma 4.3 To measure the covering number the operator group of

Heire = {U(O)TOU(0)|0 € O}, one could first consider a fixed e-covering S
for the set N(U (2X), €, || - ||) of all possible gates and define the set

S:=1 [T won ] uj‘u,-(Oi)eS, (4.48)

i€{Ng} JE{Ng—Ng}

where u; (0;) and u; specify the trainable and fixed quantum gates in the employed
quantum circuit, respectively. Note that for any circuit U (@) = r[f\’:gl u;(0;), one
can always find a U () € S where each u i (0;) of trainable gates is replaced with
the nearest element in the covering set S, and the discrepancy ||U(0)'OU (0) —

Uc(0)T0U.(9)| satisfies

IU@)"0U®) — Uc8)"0U(0)]]
<|U = UcllOl|
<Ny Oe, (4.49)
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where the first inequality uses the triangle inequality and the second inequality
follows from ||U — Uc¢|| < Nge.

Therefore, by Definition 4.1, S forms an Nyt || Olle-covering set for Heire. An
upper bound for the group S, as established by Barthel and Lu [47, Lemma 1], gives

221( ~
|S| < (g) . Since there are |S|Vs' combinations for the gates in S, it follows that

~ 2% Ny,
S| < (g) and the covering number for ;.. satisfies

22k N,
N(Heire, N[ Olle, || - D) = <;) : (4.50)

An equivalent representation of the above inequality is

TNg O]\ Ve
N(Heire, €. ||'||)§<T) . (4.51)

O

With the established covering number of operator group Hcirc, one could directly
analyze the covering number of the hypothesis space H related to QNNs, which is
encapsulated in the following theorem.

Theorem 4.5 For 0 < € < 1/10, the covering number of the hypothesis space H
in Eq. (4.43) yields

(4.52)

2k
TNg |0\ N
E b

N((}-{’G’||)§<

where || O || denotes the operator norm of O.

Proof of Theorem 4.5 The intuition of the proof is as follows. Recall the definition
of the hypothesis space H in Eq.(4.43) and Lemma 4.2. When H; refers to the
hypothesis space H and H, refers to the unitary group U(2"), the upper bound of
the covering number of H, i.e., N(H\, d1, €), can be derived by first quantifying
¢r Eq.(4.45) and then interacting with N(Hirc, €, || - ||) in Lemma 4.3. Based on
the above observations, the following addresses the upper bound of the covering
number N(H, €, | - |).

The Lipschitz constant ¢, in Eq. (4.45) is derived as a prerequisite for establishing
the upper bound of N(H, €, | - |). Define U € UQ2N) as the employed quantum
circuit composed of N, gates, ie., U = ]_[lN:gl u;. Let U be the quantum circuit
where each of the N, gates is replaced by the nearest element in the covering set.
The relation between the distance do (Tr(U, ET OU.p), Tr(UTOUp)) and the distance
di(Ug, U) yields
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dy(Tr(U OU,p), Te(UT OUp))
=|Tr(U] OU.p) — Tr(UTOUp)|
=[ (wiov. - utouy)|
<|viov. —vtou|Trp
=d, (U 0U., U 0U), (4.53)

where the first equality comes from the explicit form of the hypothesis, the first
inequality uses the Cauchy-Schwartz inequality, and the last inequality employs
Tr(p) =1 and

HUJOUE — U*OUH —d\ (U oU., U OU). (4.54)

The above equation indicates ¢, = 1. Combining the above result with
Lemma 4.2 (i.e., Eq. (4.45)) and Lemma 4.3, we obtain

TN O]\ 2 Ner
NH, e, |- 1) < N(Heire, €, || - ) < <#> . (4.55)

This relation ensures
2k

TN |02 Ner

INet IO “) . (4.56)
€

N(ﬂﬂ€7||)§<

O

Theorem 4.5 indicates that the most decisive factor, which controls the complex-
ity of H, is the employed quantum gates in U (@). This claim is ensured by the fact
that the term 22 Vet exponentially scales the complexity N(H, €, | - |). Meanwhile,
the qubits count N and the operator norm || O || polynomially scale the complexity of
N(H, €, | - |). These observations suggest a succinct and direct way to compare the
expressivity of QNNs with different quantum circuits. Moreover, the dependence
of the expressivity of QNNs on the type of quantum gates (denoted by the term k)
demonstrated that the expressivity of QNNs depends on the structure information of
ansatz such as the location of different quantum gates and the types of the employed
quantum gates. The expressivity measured by the covering number could provide
practical guidance for designing the circuit structure of QNNss.
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4.4.1.3 Generalization Error of QNNs

As the relation between generalization error and covering number is well established
in statistical learning theory, we can directly obtain the generalization error bound
with the above bounds of covering number following the same conventions.

Theorem 4.6 Assume that the loss function £ defined in Eq. (4.38) is L1-Lipschitz
and upper bounded by a constant C, the QNN-based learning algorithm outputs a
hypothesis hy from the training dataset S of size n. Following the notations of risk
RGene(hg) = R(hy) — Rerm(hy) defined in Eq. (4.41), for 0 < € < 1/10, with
probability at least 1| — § with § € (0, 1), we have

8L + ¢ +24L /N, - 2k
¢ ot . (4.57)
Jn

RGene(h@) = o (

Proof Sketch of Theorem 4.6 Recall that the bound of generalization error in terms
of Rademacher complexity has been established by Kakade et al. [48] as follows:

In(2/3)

RGene(hé) = 2LI'R((}'{QNN) +3C n

, (4.58)

where R(Hgyn) represents the empirical Rademacher complexity of the hypothe-
sis space of QNN . Furthermore, the relationship between Rademacher complexity
and covering number can be derived using the Dudley entropy integral bound [49],
which is given by

, 12 !
R(H) < ;1;1;) <4a + NG /a \/lnN(7-{|3, e - ||2)de) , (4.59)

where H)s denotes the set of vectors formed by the hypothesis with n examples
in the dataset S. In this regard, the generalization error bound in Eq.(4.57)
could be obtained by combining the Eqgs. (4.58) and (4.59) with direct but tedious
calculations, which is omitted here. For details of the calculations, please refer to
the proof of Theorem 2 in [46]. m|

The assumption used in this analysis is quite mild, as the loss functions in QNNs
are generally Lipschitz continuous and can be bounded above by a constant C. This
property has been broadly employed to understand the capability of QNNs. The
results obtained have three key implications. First, the generalization bound exhibits
an exponential dependence on the term k and a sublinear dependence on the number
of trainable quantum gates Ng,. This observation reflects the quantum version of
Occam’s razor [50], where the parsimony of the output hypothesis implies greater
predictive power. Second, increasing the number of training examples n improves
the generalization bound. This suggests that incorporating more training data is
essential for optimizing complex quantum circuits. Lastly, the sublinear dependence
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on Ng, may limit the ability to accurately assess the generalization performance
of overparameterized QNNs [51]. Together, these implications provide valuable
insights for designing more powerful QNNs.

4.4.2 Trainability of Quantum Neural Networks

The parameters in QNNs are often trained using gradient-based optimizers. As
such, the magnitude of the gradient plays a crucial role in the trainability of QNNs.
Specifically, large gradients are desirable, as they allow the loss function to decrease
rapidly and consistently. However, this favorable property does not hold across a
wide range of problem settings. In contrast, training QNNs usually encounters the
barren plateau (BP) problem [52], i.e., the variance of the gradient, on average,
decreases exponentially as the number of qubits increases. In this section, we first
introduce an example demonstrating how quantum circuits that form unitary 2-
designs [53] lead to BP and then discuss several techniques to avoid or mitigate
this issue.

We begin by introducing some basic notations. For convenience, let L denote
the number of parameters in the QNN V(). Consider the loss function defined as
the measurement outcome of an N-qubit quantum state p after applying the QNN
operation, i.e.,

10 = Tr[OV(o)pV(o)T] . (4.60)

Then, the mathematical formulation of the BP phenomenon is given by

a a
Ep [%} =0, Varp [a—é;} =exp(—aN) - B, 4.61)

where P represents the probability distribution of the quantum circuit and «, 8 > 0
are constants. In the case where the circuit V(@) has a random structure with a
polynomial number of single-qubit rotations and CNOT or CZ gates in N, a uniform
distribution over the parameter space can approximate a 2-design for the unitary
V(0) [54, 55]. Moreover, a unitary sampled from an exact 2-design exhibits the
following statistical properties.

Fact 4.3 ([56]) Let {Wy}yey C U(d) form a unitary 2-design, andlet A, B, C, D :
Hy — Hy, be arbitrary linear operator. Then

1 t Tr[A] Tr[ B]
Tl Tr{Wy AWy B] = ————,
yey

(4.62)
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1
v > Tr[W, AW B Tr[W,CW/] D]

yeY

= ﬁ (Tr[AC] Tr[BD] + Tr[A] Tr[ B] Tr[C] Tr[ D])

_d(d2 D (Tr[A] Tr[C1 Tr[BD] + Tr[AC] Tr[B] Tr[ D)) , (4.63)
1

— f i
1 > Tr[W,AW] BW,CW D]

yeY

= dz;—l (Tr[A] Tr[C1 Tr[BD] + Tr[AC] Tr[ B] Tr[ D])

_d(dzl_ D (Tr[AC]1 Tr{BD] + Tr{ Al Tr{ B] Tr[C] Tr| D)) . (4.64)

Fact 4.3 can be derived from Facts B.1 and B.2 in Appendix B, which provides
a more detailed discussion of unitary designs, potentially of independent interest.
By applying Fact 4.3, it can be shown that QNNs with quantum circuits forming
2-designs exhibit barren plateau loss landscapes.

Theorem 4.7 (Adapted from [52]) Consider the loss function given in Eq. (4.60),
where the QNN V() = ]_[jL:1 Vi(@;)W; with fixed gate W; and variational
gate Vi(0;) = exp(—if;H;/2). Suppose all hermitian matrices {H;} are trace-

less. For an integer k € [1, L], denote U_- = ]_[];;} Vi@ j)W; and Uy =
Hf:kﬂ Vi@ ;))W;. Then, if both U_ and U form 2-designs, there is
of aof 1 1 2 2 2
E[M] =0, Var[m} ~ s |0 1 [0?] T [ B @es)

Proof (Proof of Theorem 4.7)
By using notations U_ and U, the function (@) in Eq. (4.60) can be expressed
as

Il
=
\Qﬁr
@)
5
=
=
=
+
R

=
Pv‘gal.
»<‘+
| I—



4.4 Theoretical Foundations of Quantum Neural Networks 147

where 0’ := UTOU_ and o= WkU+pUIWkT. Thus, the gradient could be
calculated as

af

i / 2val
%:ETr[O [Vka ,Hk]:l

The expectation of the gradient is zero since

af i
E —:E—T[O’[V /vT,H]]
Ui U_ 30y 2! kP Vi Tk

E Lrlutou_[vipviig
E r — — kp k> k

Uy U
_ i I
-z WTr[O]Tr[[Vkp vk,Hk]] (4.66)
—0, (4.67)

where Eq.(4.66) follows from Egs.(4.62) and (4.67) is derived by noticing
Tr[[A, B]] = Tt[AB — BA] = 0. Therefore, the variance of the gradient equals to
the expectation of its square, i.e.,

3 2
Var _f — E i
Uy, U_ | 00 UL, U_| 00

1 + 2
= — —Ey.u Tr[ULOU_ [Vkp/VT, Hk]]

4
1 2 Aval 2
— _mlIETr[O ]Tr[[Vkp Vk,Hk] }
1 2 2val 2
+m£m0] Tr|:[Vk,0 V, ,Hk] ] (4.68)
1

= - 4X(22—N_1)Tr[02] BT [[VkP/VkT’ Hk]z], (4.69)

where Eq. (4.68) follows from Egs. (4.63) and (4.69) follows from Tr[O] = 0.
Further, it can be shown that

2
E Tr[[vkp’v,j, Hy | }
Uy
T 2 274l 2 2
—2ETr (Vk,o A Hk) _2ETr (Vkp Vk) (Hy)
Uy Uy

PR 2
=2F Tr[(kakUwU;Wk’ Vi He) ]
+
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. . 2
2ETr |:(VkaU+,oner' V,j) (Hk)z}

+

s | TP )+ T[] T2

2

T [T [ 02] T [ 2] + Tel o Tet

_ziN Tr [sz] Tr [,02] (4.70)
— % Tr [sz] Tr [,02] , (4.71)

where Eq. (4.70) follows from Eqgs. (4.62) and (4.64). Equation (4.71) is derived by
ignoring minor terms and using Tr[ Hx] = 0. Combining Egs. (4.69) and (4.71), it
can be shown that

N
Uy)ali [%] ~ ﬁ Tr [02] Tr [sz] Tr [,02]

1 2 2 2
~ T Tr[O ]Tr[,o ]Tr[Hk].

Thus, Theorem 4.7 is proved.

Remark
The influence of barren plateau can be categorized into three folds.

1. Training efficiency. Exponentially small gradients imply that the training
of QNNs with gradient-based optimizers may require exponential numbers
of iterations to converge.

2. Optimization effectiveness. The calculation of the gradient via the
parameter-shift rule would introduce unbiased statistical noise due to finite
shot numbers. A small gradient could be vulnerable to these measurement
noises, which may induce additional barriers in optimizations.

3. Quantum advantage. QNNs are expected to exhibit quantum advantages
by employing intermediate to large numbers of qubits. However, the barren
plateau phenomenon may induce exponential training steps, which can
offset potential quantum advantages.

Since the barren plateau could seriously affect the trainability of scaled QNN
and raise concerns about the utility of QNNs for achieving quantum advantages,
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researchers have been focused on developing techniques to address this problem.
Existing efforts include specific architecture design [56—58], parameter initialization
schemes [59, 60], and advanced training protocols [61, 62]. Here, we briefly
introduce two related results with theoretical guarantees.

Fact 4.4 (Shallow Hardware-Efficient Circuits are BP-Free, Informal Version
Adapted from [56]) Suppose the observable has a local form in the Pauli basis
decomposition. For QNNs employing N-qubit shallow hardware-efficient circuits
with logarithmic depths, the variance of the gradient has the lower bound.:

Var [i] > Q <;> . 4.72)
20, poly(N)

Fact 4.5 (Gaussian Initializations Help to Escape the BP Region, Informal
Version Adapted from [60]) Suppose the observable is the tensor product of
Pauli matrices o; = 0;; ® --- ® 0j,, where the number of nonidentity matrices
in {oj,, -+ ,0iy} is S. For QNNs employing N-qubit shallow hardware-efficient
circuits with the depth L, the gradient norm has the lower bound:

2
JoEIIVofIIZ > ojpin] (4.73)

L T [
———1Tr
SS( L+ 2)S+1
where S is the number of nonzero elements in i, and the index j = (j1, j2, -+ » JN)
such that j, = 0,Vi, = 0and j,, = 3, Vi, # 0. The expectation is taken with the

Gaussian distribution N (0, 4$(L1—+2)) for the parameters 0.

4.5 Code Demonstration

This section provides hands-on demonstrations of QNNs for both discriminative and
generative tasks, which illustrate practical implementations of quantum classifiers
and quantum patch GAN. Each subsection corresponds to a specific application,
offering a step-by-step explanation and code walkthrough.

4.5.1 Quantum Classifier

We now demonstrate how to utilize QNN to solve discriminative tasks, specifically
a binary classification problem based on the Wine dataset, which is widely used in
machine learning benchmarks and classification tasks. The major steps are outlined
below:
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Step 1 Load and preprocess the dataset.

Step 2 Implement a quantum read-in protocol to encode classical data into quantum
states.

Step 3 Construct a parameterized quantum circuit model to process the input
quantum states.

Step 4 Train and test the QNN to evaluate its performance.

We first import all the necessary libraries:

import sklearn

import sklearn.datasets

import pennylane as qml

from pennylane import numpy as np

from pennylane.optimize import AdamOptimizer
import matplotlib.pyplot as plt

Step 1: Dataset Preparation The Wine dataset is prepared for the classification
task. For simplicity, the focus is on the first two classes of the Wine dataset.
The dataset consists of 13 attributes per sample, each with a distinct range.
The normalization is applied to rescale these attributes to the interval [0, 7].
Furthermore, the labels are remapped from {0, 1} to {—1, 1} to align with the output
range of the quantum circuit model. The dataset is split into training and test sets to
fairly evaluate the classifier.

def load_wine(split_ratio = 0.5):
feat, label = sklearn.datasets.load_wine(return_X_y=True)

# normalization
feat = np.pi * (feat - np.min(feat, axis=0, keepdims=True)
) / np.ptp(feat, axis=0, keepdims=True)

index_c® = label == 0
index_cl = label == 1

label = label * 2 -1

n_c® = sum(index_c®)
n_cl = sum(index_c1)

X_train = np.concatenate((feat[index_cO®][:int(split_ratio*
n_c0)], feat[index_cl][:int(split_ratio*n_cl)]), axis
=0)

y_train = np.concatenate((label[index_cO®][:int(split_ratio
*n_c0)], label[index_cl][:int(split_ratio*n_cl)]),
axis=0)

X_test = np.concatenate((feat[index_cO][int(split_ratio*
n_c0):], feat[index_cl][int(split_ratio*n_cl):]), axis
=0)

y_test = np.concatenate((label[index_cO®][int(split_ratio*
n_c®):], label[index_cl][int(split_ratio*n_cl):]),
axis=0)
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return X_train, y_train, X_test, y_test
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X_train, y_train, X_test, y_test = load_wine()

To better understand the dataset, t-SNE is employed to visualize its distribution.
As shown in Fig. 4.12, each data point is projected into a 2D space for visualization,
with distinct colors representing different classes.

def visualize_dataset(X, y):
from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=42, perplexity
=30)

wine_tsne = tsne.fit_transform(X)
for label in np.unique(y):
indices = y == label
plt.scatter(wine_tsne[indices, 0], wine_tsne[indices,
1], edgecolor=’'black’, cmap=’'coolwarm’, s=20,
label=f’Class.{label}’)

# Add labels and legend

plt.title("t-SNE_Visualization_of_Wine._.dataset.(two.
classes)")

plt.xlabel ("t-SNE_Dimension.1")

plt.ylabel ("t-SNE_Dimension.2")

plt.legend ()

plt.tight_layout()
plt.show()
visualize_dataset(X_train, y_train)

Step 2: Data Encoding To encode the 13 attributes of the Wine dataset into a
quantum system, angle encoding introduced in Sect.2.3.1.3 is used, followed by a
layer of CNOT gates acting on neighboring qubits to introduce entanglement.

def data_encoding(x):
n_qubit = len(x)
qml . AngleEmbedding (features =x , wires = range(n_qubit) ,
rotation ="X")
for i in range(n_qubit):
if i+1 < n_qubit:
gqml .CNOT (wires=[i, i+1])

Step 3: Building Quantum Classifier With the data encoding in place, a quantum
binary classifier is constructed. The circuit model is composed of multiple layers,
where each layer includes parameterized single-qubit rotation gates with trainable
angles, followed by a block of nonparametric CNOT gates to introduce entangle-
ment among qubits. To read-out the category information of each input sample from
the prepared quantum state, the expectation value of the Pauli-Z operator on the first
qubit is calculated.
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t-SNE Visualization of Wine dataset (two classes)
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Fig. 4.12 T-SNE visualization of Wine dataset of the first two classes

def classifier(param, x=None):
data_encoding(x)

n_layer, n_qubit = param.shape[0],
for i in range(n_layer):

for j in range(n_qubit):

param.shape[1]

gml.Rot(param[i, j, O], param[i, j, 1], param[i, j
, 2], wires=j)
for j in range(n_qubit):
if j+1 < n_qubit:
qml .CNOT (wires=[j, j+11)

return qml.expval (gml.PauliZ(0))

n_qubit = X_train.shape[1]
dev = gml.device(’default.qubit’, wires=n_qubit)
circuit = gml.QNode(classifier, dev)

The whole quantum circuit of two layers is visualized by drawing the diagram,

as shown in Fig. 4.13.

fig, ax = gml.draw_mpl(circuit) (np.pi * np.random.randn(2,
n_qubit, 3), X_train[0])
fig.show()

Step 4: Training and Evaluation of Quantum Classifier With the data and circuit
model ready, we now move to the optimization of the quantum classifier. The mean
squared error (MSE) is used as the loss function. The goal is to minimize the
difference between the predicted and actual labels over the training set.
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Fig. 4.13 The circuit diagram of the quantum classifier

def mse_loss(predict, label):
return np.mean((predict - label)**2)

def cost(param, circuit, X, y):
exp = []
for i in range(len(X)):
pred = circuit(param, x=X[i])
exp.append(pred)
return mse_loss(np.array(exp), y)

To evaluate the performance of the quantum classifier, classification accuracy is
exploited as the metric. Specifically, if the sign of the read-out result matches the
corresponding label, the prediction is considered correct; otherwise, it is deemed
incorrect. The accuracy is then calculated as the proportion of correctly classified
samples out of the total.

def accuracy(predicts, labels):
assert len(predicts) == len(labels)
return np.sum((np.sign(predicts)*labels+1)/2)/len(predicts
)
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The Adam optimizer is utilized to minimize the loss function. To ensure efficient
computation, the dataset is divided into smaller batches for each training iteration.
At the end of each epoch, both the training and test losses, along with the
classification accuracy, are recorded to track the model’s performance.

Ir = 0.01
opt = AdamOptimizer(lr)
batch_size = 4

n_epoch = 50
cost_train, cost_test, acc_train, acc_test = [], []1, [1, []
for i in range(n_epoch):
index = np.random.permutation(len(X_train))
feat_train, label_train = X_train[index], y_train[index]
for j in range(®, len(X_train), batch_size):
feat_train_batch = feat_train[j*batch_size:(j+1)*
batch_size]
label_train_batch = label_train[j*batch_size:(j+1)*
batch_size]
param = opt.step(lambda v: cost(v, circuit,
feat_train_batch, label_train_batch), param)

# compute cost
cost_train.append(cost(param, circuit, X_train, y_train))
cost_test.append(cost(param, circuit, X_test, y_test))

# compute accuracy

pred_train = []

for j in range(len(X_train)):
pred_train.append(circuit(param, x=X_train[j]))

acc_train.append(accuracy(np.array(pred_train), y_train))

pred_test = []

for j in range(len(X_test)):
pred_test.append(circuit(param, x=X_test[j]))

acc_test.append(accuracy(np.array(pred_test), y_test))

After training the QNN, the training and test cost, as well as the accuracy over
epochs, can be visualized using the following code. As demonstrated in Fig. 4.14,
this QNN achieves a test accuracy exceeding 80%.

plt.figure(figsize=(12, 6))

plt.subplot(l, 2, 1)

epochs = np.arange(n_epoch) + 1

plt.plot(epochs, cost_train, label='Training.Cost’, marker=’'o’
)

plt.plot(epochs, cost_test, label="Test.Cost’, marker="0")

plt.title(’Cost.Over_Epochs’)

plt.xlabel (’Epochs’)

plt.ylabel (’Cost’)

plt.legend ()

plt.grid(Q)




4.5 Code Demonstration

Cost Over Epochs

155

Accuracy Over Epochs
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Fig. 4.14 The training curve of the quantum classifier

# Plot training and test accuracy
plt.subplot(l, 2, 2)
plt.plot(epochs, acc_train,

0"
plt.plot(epochs, acc_test,
plt.title(’Accuracy.Over_Epochs’)
plt.xlabel (’Epochs’)
plt.ylabel (’Accuracy’)
plt.legend()
plt.gridQ)
plt.tight_layout ()
plt.show()

label="Training.Accuracy’,

label="Test.Accuracy’,

10 20 30 40 50
Epochs

marker=

marker='0")

To better understand the performance of the quantum classifier in comparison to
a classical counterpart, an MLP for the same classification task is also implemented.

class MLP(nn.Module):
def __init__(self):
super (MLP, self).__init__Q)
self.fcl = nn.Linear (13, 10)
10 neurons
self.fc2 = nn.Linear (10, 2)
classes
def

forward(self, x):

x = torch.relu(self.fcl(x))
x = self.fc2(x)
return x

# 13 input features to

# 10 neurons to 2 output

In this implementation, the number of hidden neurons in the MLP is set to 10,
resulting in approximately 150 trainable parameters, which is comparable to the
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Fig. 4.15 The training curve of the classical MLP

number of parameters in the QNN. All other hyperparameters, such as the optimizer
and learning rate, remain the same to ensure a fair comparison. The training curve
for the MLP is shown in Fig.4.15. The MLP converges quickly, achieving 100%
training accuracy and over 90% test accuracy.

While the MLP currently demonstrates superior accuracy, the QNN still provides
a promising alternative. It is important to note that the performance of the QNN
could potentially be further enhanced by employing more advanced read-in proto-
cols, as discussed in Sect.2.3.1, which could enable more efficient and expressive
representations of the input data. Additionally, optimizing the circuit design, such
as adjusting the arrangement of layers or introducing more complex parameterized
gates to increase the model’s capacity, as highlighted in Sect. 4.6, could further
improve the QNN’s ability to capture intricate patterns in the dataset.

4.5.2 Quantum Patch GAN

We next demonstrate how to implement a quantum patch GAN introduced in
Sect.4.3.3 for the generation of handwritten digits of five. To evaluate the perfor-
mance of the generative model, the Fréchet Distance (FD), a widely used metric
for quantifying the difference between two distributions, is employed. The metric is
formally defined as

1
FD = |u, — ,ug|2 +Tr(E, + 2, —2(2,55)2), (4.74)
where 1, and u, are the mean feature vectors of real and generated images and

Y, and X, are the covariance matrices of the feature vectors of real and generated
images. A lower FD value indicates that the generated images closely resemble
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the real ones, while a higher FD suggests a greater discrepancy between the
distributions. This metric provides an effective way to quantitatively evaluate the
quality of the generated samples. In addition to FD, other commonly used metrics
for evaluating the quality of generated images include inception score and kernel
inception distance.

The whole pipeline includes the following steps:

Step 1 Load and preprocess the dataset.
Step 2 Build the classical discriminator.
Step 3 Build the quantum generator.
Step 4 Train the quantum patch GAN.
Step 5 Visualize the generated images.

We begin by importing the required libraries:

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import Dataset, DatalLoader

import numpy as np

import matplotlib.pyplot as plt
import pennylane as qml

import math

Step 1: Dataset Preparation We will use the Optical Recognition of Handwritten
Digits dataset (optdigits), where each data point represents an 8 x 8 grayscale
image. The following code defines a custom dataset class to load and process the
data.

class OptdigitsData(Dataset):
def __init__(self, data_path, label):

Dataset class for Optical Recognition of Handwritten
Digits.

super () .__init__Q

self.data = []
with open(data_path, ’'r’) as f£:
for line in f.readlines():
if int(line.strip().split(’,’)[-1]) == label:
# Normalize image pixel values from [0,16)
to [0, 1)
image = [int(pixel)/16 for pixel in line.
strip() .split(’,’)[:-11]
image = np.array(image, dtype=np.float32).
reshape (8, 8)
self.data.append(image)
self.label = label
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Fig. 4.16 Samples in the dataset optdigits

def __len__(self):
return len(self.data)

def __getitem__(self, index):
return torch. from_numpy(self.datal[index]), self.label

After defining the dataset, we can visualize a few examples as shown in Fig. 4.16

def visualize_dataset(data_path):

Visualizes the dataset by displaying examples for each
digit label.

plt.figure(figsize=(10, 5))

for i in range(10):
plt.subplot(l, 10, i + 1)
data = OptdigitsData(data_path, label=i)
plt.imshow(data[0][0], cmap=’'gray’)
plt.title(f"Label: {i}")
plt.axis(’off’)

plt.tight_layout()

plt.show()

visualize_dataset(’code/chapter5_gqnn/data/optdigits.tra’)

Step 2: Building the Classical Discriminator The discriminator is a classical
neural network responsible for distinguishing real images from fake ones. It consists
of fully connected layers with ReLU activations. The final output is passed through
a Sigmoid function, which scales the output to the range (0, 1), serving as a
probabilistic indicator of whether the input image is real or fake.

class ClassicalDiscriminator (nn.Module):

A classical discriminator for classifying real and fake
images.
def __init__(self, input_shape):
super () .__init__Q
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear (int(np.prod(input_shape)), 256),
nn.RelLU(Q),
nn.Dropout (),
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nn.Linear (256, 128),
nn.ReLUQ),
nn.Dropout(),
nn.Linear (128, 1),
nn.Sigmoid ()

)

def forward(self, img):
return self.model (img)
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Step 3: Defining the Quantum Patch Generator The generator in

the quantum

patch GAN consists of parameterized quantum circuits (PQC). These circuits are

responsible for generating patches of the target image. Specifically, the

PQC follows

the layout in Fig.4.7, which applies layers of single-qubit rotation gates and

entangling gates to the latent state.

def PQC(params):
n_layer, n_qubit params.shape[0],
for i in range(n_layer):
for j in range(n_qubit):
gml.Rot(params[i, j,
, j, 2], wires=j)
# Control Z gates
for j in range(n_qubit

params.shape[l

0], params([i, j, 1],

1):

]

params[i

qml .CZ(wires=[j,

i+ 1D

Then, we implement the quantum generator for each patch of an image, i.e., sub-
generators. The sub-generator transforms the latent variable z into a latent quantum
state |z), applies a PQC, performs partial measurements on the ancillary system
A, and outputs the probabilities of each computational basis state in the remaining
system, which correspond to the generated pixel values.

def QuantumGenerator (params, z=None,

n_qubit params.shape[1]

n_qubit_a=1):

# angle encoding of latent state z
for i in range(n_qubit):
gqml .RY(z[i], wires=i)

PQC(params)
# partial measurement on the ancillary qubits

qml .measure(wires=n_qubit-1)
return gml.probs(wires=range(n_qubit-n_qubit_a))

Using the sub-generators, the quantum patch generator combines the output
patches from multiple sub-generators to construct the complete image.
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class PatchQuantumGenerator (nn.Module):
Combines patches generated by quantum circuits into full
images.
def __init__(self, gnode_generator, n_generator, n_qubit,
n_qubit_a, n_layer):
super () .__init__Q)

self.params_generator = nn.ParameterList ([
nn.Parameter (torch.rand((n_layer, n_qubit, 3)),
requires_grad=True) for _ in range(n_generator
D)
D
self.gnode_generator = gnode_generator
self.n_qubit_a = n_qubit_a

def forward(self, zs):
images = []
for z in zs:
patches = []
for params in self.params_generator:
patch = self.qgnode_generator(params, z=z,
n_qubit_a=self.n_qubit_a).float()

# post-processing: min-max scaling
patch = (patch - patch.min()) / (patch.max() -
patch.min() + 1le-8)

patches.append(patch.unsqueeze (0))
patches = torch.cat(patches, dim=0)
images.append(patches.flatten() .unsqueeze (0))

return torch.cat(images, dim=0)

Step 4: Training the Quantum Patch GAN With the dataset and models ready,
we initialize the quantum generator, classical discriminator, and their optimizers.

# Hyperparameters

torch.manual_seed (0)

image_width = 8

image_height = 8

n_generator = 4

n_qubit_d = int(np.log2((image_width * image_height) //
n_generator))

n_qubit_a =1

n_qubit = n_qubit_d + n_qubit_a

n_layer = 6

# Quantum device
dev = gml.device("lightning.qubit", wires=n_qubit)
gnode_generator = qml.QNode(QuantumGenerator, dev)
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# Initialize generator and discriminator

discriminator = ClassicalDiscriminator ([image_height,
image_width])

discriminator.train()

generator = PatchQuantumGenerator (qnode_generator, n_generator
, n_qubit, n_qubit_a, n_layer)

generator.train()

# Optimizers

lr_generator = 0.3

lr_discriminator = le-2

opt_discriminator = optim.SGD(discriminator.parameters(), lr=
lr_discriminator)

opt_generator = optim.SGD(generator.parameters(), lr=
lr_generator)

# Construct dataset and dataloader

batch_size = 4

dataset = OptdigitsData(’code/chapter5_gnn/data/optdigits.tra’
, label=5)

dataloader = Dataloader(dataset, batch_size=batch_size,
shuffle=True, drop_last=True)

# Loss function

loss_fn = nn.BCELoss ()

labels_real = torch.ones(batch_size, dtype=torch.float)
labels_fake = torch.zeros(batch_size, dtype=torch.float)

# Testing setup
n_test = 10
z_test = torch.rand(n_test, n_qubit) * math.pi
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The GAN training process involves alternating updates for the discriminator and
the generator. The discriminator is trained to distinguish between real and fake
images, while the generator learns to create images that can successfully deceive
the discriminator. To track the generator’s progress during training, the generated

images are saved at the end of each epoch.

n_epoch = 10
record = {}
for i in range(n_epoch):
for data, _ in dataloader:

zs = torch.rand(batch_size, n_qubit) * math.pi
image_fake = generator(zs)

# Training the discriminator
discriminator.zero_grad()

pred_fake = discriminator(image_fake.detach())
pred_real = discriminator(data)
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14 loss_discriminator = loss_fn(pred_fake.squeeze(),
labels_fake) + loss_fn(pred_real.squeeze(),
labels_real)

15 loss_discriminator.backward ()

16 opt_discriminator.step()

18 # Training the generator

19 generator.zero_grad()

20 pred_fake = discriminator (image_fake)

21 loss_generator = loss_fn(pred_fake.squeeze(),
labels_real)

2 loss_generator.backward()

23 opt_generator.step()

25 print(£f’The.{i}-th_epoch: _.discriminator._.loss={
loss_discriminator:.0.3f}, .generator._loss={
loss_generator:.0.3f}’)

27 # test

28 generator.eval ()

29 image_generated = generator(z_test).view(n_test,
image_height, image_width).detach()

31 record[str(i)] = {

32 "loss_discriminator’: loss_discriminator.item(),
"loss_generator’: loss_generator.item(),

34 "image_generated’: image_generated.numpy().tolist()
35 }

36 generator.train()

Step 5: Visualizing the Generated Images After training, the images generated
by the quantum generator are visualized in Fig. 4.17 to evaluate its performance.
These visualizations allow us to see how well the model has learned to produce
realistic image patches.

| |n_epochs_to_visualize = len(record) // 2
> |n_images_per_epoch = 10

4+ | fig, axes = plt.subplots(n_epochs_to_visualize,
n_images_per_epoch, figsize=(n_images_per_epoch,

n_epochs_to_visualize))

¢ |# Iterate through the recorded epochs and visualize generated

images
7 | for epoch_idx, (epoch, data) in enumerate(record.items()):
8 if epoch_idx % 2 == 1:
9 continue

10 images = np.array(data[’image_generated’])

12 for img_idx in range(n_images_per_epoch):
13 ax = axes[epoch_idx // 2, img_idx]
14 ax.imshow(images[img_idx], cmap='gray’)
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Fig. 4.17 The images generated by quantum patch GAN during training

ax.axis(’off’)

# Add epoch information to the title of each row
if img_idx ==
ax.set_title(f"Epoch.{epoch}", fontsize=10)

plt.tight_layout()
plt.show ()

To benchmark the performance of the quantum patch GAN, a classical patch
GAN is implemented, where both the generator and discriminator are entirely
classical. Specifically, each patch is generated using an MLP with independent
parameters, and the final image is obtained by assembling all generated patches.
This ensures a fair comparison between quantum and classical generative models.

class ClassicalPatchGenerator (nn.Module):
def __init__(self, latent_dim, patch_size, n_patches):
super () .__init__Q
self.latent_dim = latent_dim
self.patch_size = patch_size
self.n_patches = n_patches

# MLP to generate each patch
self.patch_generators = nn.ModulelList([nn.Sequential (

nn.Linear(latent_dim, 5), # Input layer
nn.RelLU(Q),
nn.Linear (5, patch_size * patch_size), # Output

layer (patch)
nn.Sigmoid() # Output in range [0, 1]
) for _ in range(n_patches)])

def forward(self, zs):
images = []
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Fig. 4.18 FD values achieved by quantum patch GAN (“QuantumGAN”) and classical patch

GAN (“MLP-GAN”)

for z in zs:
patches = []

for i in range(self.n_patches):
patch = self.patch_generators[i](z) #
Generate a patch
patch = patch.view(self.patch_size, self.
patch_size) # Reshape to patch size
patches.append(patch.unsqueeze(0)) # Add
batch dimension
patches = torch.cat(patches,
patches
images.append(patches.flatten() .unsqueeze(0)) #
Flatten and add batch dimension

dim=0) # Combine

return torch.cat(images,

dim=0)

# Combine all images

This choice of MLP architecture ensures that the number of trainable parameters
in the classical GAN is comparable to that of the quantum GAN, making the
comparison meaningful. With all other experimental settings unchanged, the same
generation task is conducted using this MLP-based GAN (MLP-GAN). The FD
values achieved by both models are presented in Fig.4.18. The results show that
the quantum GAN exhibits competitive performance compared to its classical
counterpart, demonstrating the potential of quantum-enhanced generative models.

4.6 Bibliographic Remarks

Quantum neural networks (QNNs) are a major focus in quantum machine learning.
They show promise for both classifying data (discriminative tasks) and creating
new data (generative tasks). For classification, QNNs use quantum systems that can
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capture complicated patterns in data by working in high-dimensional spaces. For
generating data, QNNs use flexible quantum circuits to create patterns that may be
too difficult for classical models to handle. Although these approaches use similar
learning tricks, each brings its own set of challenges in how the models are built,
tested, and used in practice. In the remainder of this section, we briefly review recent
advances in QNNs. Interested readers can refer to Ablayev et al. [63], Li and Deng
[64], Massoli et al. [65], Li et al. [66], Tian et al. [67], and Wang and Liu [34] for a
more comprehensive review.

4.6.1 Discriminative Learning with QNN

QNN:ss for classifying data have quickly become one of the busiest research areas
in quantum machine learning. They may help find better ways to represent features
and process data faster. Quantum learning can handle tricky classification problems,
thanks to quantum parallelism and high-dimensional systems, which might go
beyond what classical neural networks can do. QNNs are especially promising for
data with built-in quantum features or where quantum entanglement helps solve the
problem [8].

4.6.1.1 Model Designs

In the realm of quantum discriminative models, researchers have developed various
quantum neural architectures. In general, variational quantum classifiers [68, 69]
could employ parameterized quantum circuits for classification tasks. Subsequently,
quantum convolutional neural networks [36] are designed for processing structured
data. Hybrid quantum-classical architectures [70] are proposed to combine quantum
layers with classical neural networks. Other notable works include the development
of quantum versions of popular classical architectures like recurrent neural net-
works [71] and attention mechanisms [72]. Finally, Pérez-Salinas et al. [73] and Fan
and Situ [74] have explored quantum re-uploading strategies for encoding classical
data, achieving QML models with more expressive feature maps.

Besides designing these networks by hand, researchers are looking for ways to
make QNNs simpler and faster. For example, quantum architecture search methods
have been developed by Du et al. [75], Zhang et al. [76], Lu et al. [77], Linghu
et al. [78] to automatically discover optimal quantum circuit designs with reduced
gate complexity. Sim et al. [79] and Wang et al. [80] introduced quantum pruning
techniques that systematically identify and remove redundant quantum gates while
preserving the performance. In the realm of knowledge distillation, researchers
have demonstrated how to transfer knowledge from the teacher model given as
quantum [81] or classical [82] neural networks to more compact quantum circuit
architectures that are more robust against quantum noises. These optimization
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approaches have collectively contributed to improving the practical performance
of QNNs on real quantum devices, particularly in the NISQ era.

4.6.1.2 Theoretical Foundations

To find out where QNNs can really help, it is important to study how well they can
learn. This usually comes down to three main ideas: flexibility (how well they model
complex patterns), how easily a model can learn from data (trainability), and how
well they work on new data (generalization). Researchers have dug deeper into each
of these topics, which are described below.

Expressivity The expressivity of QNNs refers to their ability to represent complex
functions or quantum states efficiently. Universal approximation theorems (UAT)
incorporating data re-uploading strategies have been established by Pérez-Salinas
et al. [73] firstly with subsequent works [83, 84] in various problem settings.
Beyond the UAT, Sim et al. [85], Nakaji and Yamamoto [86], and Holmes et al.
[87] analyze the expressivity of QNNs by investigating how well the parameterized
quantum circuits used in QNNs can approximate the Haar distribution, a critical
measure of expressive capacity in quantum systems. Moreover, Yu et al. [§8] analyze
the non-asymptotic error bounds of variational quantum circuits for approximating
multivariate polynomials and smooth functions.

Trainability Trainability means how easily QNNs can learn from data. This
depends on two things: how strong the learning signals (“slopes” or gradients) are
and how quickly the model gets to a good solution.

For the first research line, McClean et al. [52] first found the phenomenon of
vanishing gradients, dubbed as the barren plateau. That is, as quantum systems get
bigger, the “slopes” used for learning almost disappear. This makes it very hard
for QNNs to learn. Since then, a series of studies explored the cause of barren
plateau, including global measurements [56], highly entanglement [89], quantum
tensor networks [90], and quantum system noise [91].

To tackle this, researchers have tried smarter ways to pick starting parame-
ters [59, 60], design new cost functions [56], and set up proper circuits [57].
Quantum-specific regularization techniques have also been developed to mitigate
these effects [92].

Another research line looks at how fast QNNs can reach good solutions. Studies
show that making QNN large enough (overparameterized) helps them find good
answers quickly. Kiani et al. [93] and Wiersema et al. [94] experimentally found that
overparameterized QNNs embrace a benign landscape and permit fast convergence
toward near optimal local minima. Later, theory caught up and explained why bigger
QNN learn so fast—even with complicated math behind the scenes. Specifically,
Larocca et al. [51] and Anschuetz [95] utilized tools from dynamical Lie algebra and
random matrix theory, respectively, to quantify the critical points in the optimization
landscape of overparameterized QNNs. Moreover, You et al. [96] extended the
classical convergence results of Xu et al. [97] to the quantum domain, proving that



4.6 Bibliographic Remarks 167

overparameterized QNNs achieve an exponential convergence rate. Additionally,
Liu et al. [98] and Wang et al. [99] introduced the concept of the quantum neural
tangent kernel (QNTK) to further demonstrate the exponential convergence rate
of overparameterized QNNs. Besides the overparameterization theory, Du et al.
[100, 101], Qi et al. [102], and Qian et al. [103] investigated the required conditions
to ensure the convergence of QNN toward local minima.

Generalization Another key question is do QNNs work well on new data? In
particular, Abbas et al. [104] compared the generalization power of QNNs and
classical learning models based on an information geometry metric. Caro et al. [105]
and Du et al. [46] established generalization error bounds using covering numbers,
revealing the impact of circuit structural factors—such as the number of gates and
types of observables—on generalization ability. Similarly, Bu et al. [106] analyzed
the generalization ability of QNNs from the perspective of quantum resource theory,
emphasizing the role of quantum resources such as entanglement and magic in
influencing generalization.

Some frameworks even point to situations where QNNs clearly beat classical
models. In particular, Huang et al. [8, 107] provided insights into the conditions
under which quantum models outperform their classical counterparts. Zhang et al.
[108] investigate the training-dependent generalization abilities of QNNs, while
Du et al. [109] study problem-dependent generalization, highlighting key factors
that enable QNN to achieve strong generalization performance. The generalization
ability of QNN under both the underparameterized and overparameterized regimes
has been discussed by Qian et al. [110], Gil-Fuster et al. [111], and Kempkes et al.
[112].

To get a big-picture view, the no-free-lunch theorem has been used to study
QNNSs. Poland et al. [113] explore the average performance of QNNs across all
possible datasets and problems, providing a broader perspective on their generaliza-
tion potential. Extending this work, Sharma et al. [114] and Wang et al. [115] adapt
the no-free-lunch theorem to scenarios involving entangled data, demonstrating the
potential benefits of entanglement in certain settings. Additionally, Wang et al. [116]
establish a no-free-lunch framework for various learning protocols, considering
different quantum resources used in these protocols.

Potential Advantages One major challenge in quantum learning is to find tasks
where QNN clearly beat classical models for solving “normal” (classical) prob-
lems. Some studies have shown QNNs can be better than classical models, but
usually only on special, made-up tasks. For instance, polynomial advantages over
commonly used classical models have been demonstrated through quantum contex-
tuality in sequential learning [117, 118]. Additionally, quantum entanglement has
been shown to reduce communication requirements in nonlocal machine learning
tasks [119]. However, most QNNs—unless they are carefully designed—can be
copied or simulated by classical computers. The review [120] presented strong
evidence that commonly used models with provable absence of barren plateaus are
also classically simulable. Concrete algorithms in this research line include Pauli
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path simulators [121-123], tensor-network simulators [124], and learning protocols
[125-127].

4.6.1.3 Applications

QNN s for classifying data have found use in many areas. For example, researchers
have tried quantum methods for image classification [128] and pattern recogni-
tion [129]. In quantum chemistry, QNNs help predict proton affinities [130] and aid
in developing new catalysts [131]. In finance, they are used for tasks like classifying
market trends [132] and detecting fraud [133]. In medicine, QNNs have supported
drug discovery [134] and disease diagnosis [135, 136].

However, real-world tests show that today’s QNN still have important limita-
tions [110, 137]. For example, one study compared eight popular QNNss to classical
models on different datasets and found no clear performance advantage [137]. Still,
QNNs can be very flexible on small, simple datasets. Sometimes, they need fewer
parameters than classical networks to get similar results, since quantum systems can
model more complicated patterns. Overall, QNNs for classification are still in the
early stages. Better network designs, smarter training methods, and ways to reduce
errors will be key for making quantum models truly useful.

4.6.2 Generative Learning with QNNs

QNNs for generating data are another exciting direction in quantum machine
learning. These models use flexible quantum circuits to create data patterns that
can be more complex than those made by classical models, especially in high-
dimensional or quantum settings. For more details, see the survey by Tian et al.
[67].

4.6.2.1 Model Designs

Researchers have designed many types of QNNs for generating data. For instance,
quantum circuit Born machines (QCBMs) [45] use quantum circuits to produce
random patterns. Quantum generative adversarial networks (QGANSs) [41] bring the
“generator vs. discriminator” idea into quantum computing. Quantum Boltzmann
machines [138] use quantum systems to sample from complicated distributions.
Quantum autoencoders [139] help with tasks like compressing or reconstructing
quantum states. More recently, quantum diffusion models [140, 141] have been
introduced to create sets of quantum states or even classical images. These examples
show that QNN can tackle a wide variety of generative problems.
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4.6.2.2 Theoretical Foundations

On the theory side, generative QNNs face many of the same learning challenges
as QNNs for classification. Similar to QNNs for discriminative tasks, quantum
generative models like QCBMs face the barren plateau issue with additional
mechanisms from the Kullback-Leibler (KL) divergence loss function [142]. But
in cases where data is scarce, QCBMs can sometimes learn faster than classical
generative models [143]. Some studies show that quantum models can represent
data patterns that classical models cannot and can learn or generate these patterns
much faster [144, 145]. For example, even simple quantum extensions of common
classical models like Bayesian networks can model more complex relationships.
Other research has explored how well quantum generative models can generalize to
new data, using measures like maximum mean discrepancy [146].

4.6.2.3 Applications

Generative QNN are being tested in a variety of fields. In finance, they have been
used to create synthetic data and model tricky financial patterns, sometimes beating
classical models [43, 147]. In physics, they help with tasks like simulating quantum
systems or reconstructing quantum states [148]. For image generation, quantum
GANSs can produce high-quality pictures [44]. In drug discovery, quantum gener-
ative models may help search through large chemical spaces more efficiently [149].
These examples show the wide reach of QNNs in generative tasks.

References
1. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
2. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning

for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018(1),
7068349.

3. Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for
natural language processing. /EEE Transactions on Neural Networks and Learning Systems,
32(2), 604-624.

4. Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,
de Las Casas, D., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-
optimal large language models. In Proceedings of the 36th International Conference on
Neural Information Processing Systems (pp. 30016-30030).

5. de Vries, A. (2023). The growing energy footprint of artificial intelligence. Joule, 7(10),
2191-2194.

6. Jeswal, S. K., & Chakraverty, S. (2019). Recent developments and applications in quantum
neural network: A review. Archives of Computational Methods in Engineering, 26(4), 793—
807.

7. Liu, J., Liu, M., Liu, J.-P, Ye, Z., Wang, Y., Alexeev, Y., Eisert, J., & Jiang, L. (2024).
Towards provably efficient quantum algorithms for large-scale machine-learning models.
Nature Communications, 15(1), 434.



170

(o]

10.

11.

12.

13

14.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29

4 Quantum Neural Networks

. Huang, H.-Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., Neven, H., Babbush,
R., Kueng, R., Preskill, J., et al. (2022). Quantum advantage in learning from experiments.
Science, 376(6598), 1182-1186.

. Peters, E., Caldeira, J., Ho, A., Leichenauer, S., Mohseni, M., Neven, H., Spentzouris, P.,

Strain, D., & Perdue, G. N. (2021). Machine learning of high dimensional data on a noisy

quantum processor. NPJ Quantum Information, 7(1), 161.

Acharya, R., Aghababaie-Beni, L., Aleiner, 1., Andersen, T. I., Ansmann, M., Arute, F., Arya,

K., Asfaw, A., Astrakhantsev, N., Atalaya, J. et al. (2024). Quantum error correction below

the surface code threshold. arXiv preprint arXiv:2408.13687.

Gardas, B., Rams, M. M., & Dziarmaga, J. (2018). Quantum neural networks to simulate

many-body quantum systems. Physical Review B, 98(18), 184304.

Cao, Y., Romero, J., Olson, J. P, Degroote, M., Johnson, P. D., Kieferova, M., Kivlichan,

L. D., Menke, T., Peropadre, B., Sawaya, N. P. D., et al. (2019). Quantum chemistry in the age

of quantum computing. Chemical Reviews, 119(19), 10856-10915.

. Dua, D., & Graft, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5, 115-133.

. Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment,

32(14-15), 2627-2636.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing

Systems, 30, 5998—6008.

Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,

6(8), 1069-1072.

Amari, S. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing,

5(4-5), 185-196.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L.

(1989). Handwritten digit recognition with a back-propagation network. Advances in Neural

Information Processing Systems, 2, 396-404.

. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770—

778).

Novikoff, A. B. J. (1962). On convergence proofs on perceptrons. In Proceedings of the

Symposium on the Mathematical Theory of Automata, New York (Vol. 12, pp. 615-622).

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6), 386.

LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for

back-propagation. In Proceedings of the 1988 Connectionist Models Summer School (Vol. 1,

pp. 21-28).

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5), 359-366.

Caruana, R., Lawrence, S., & Giles, C. L. (2000). Overfitting in neural nets: Backpropagation,

conjugate gradient, & early stopping. Advances in Neural Information Processing Systems,

13, 402-408.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15(1), 1929-1958.

Krogh, A., & Hertz, J. A. (1991). A simple weight decay can improve generalization.

Advances in Neural Information Processing Systems, 4, 950-957.

. Kapoor, A., Wiebe, N., & Svore, K. M. (2016). Quantum perceptron models. Advances in
Neural Information Processing Systems, 29, 3999—4007.


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

References 171

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

438.

49.

50.

51.

. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219).
Arute, F.,, Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S.,
Brandao, F.G. S. L., Buell, D. A, et al. (2019). Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779), 505-510.

AbuGhanem, M. (2024). Ibm quantum computers: Evolution, performance, and future
directions. arXiv preprint arXiv:2410.00916.

Gao, D., Fan, D., Zha, C., Bei, J., Cai, G., Cai, J., Cao, S., Zeng, X., Chen, F., Chen, J., et al.
(2024). Establishing a new benchmark in quantum computational advantage with 105-qubit
zuchongzhi 3.0 processor. arXiv preprint arXiv:2412.11924.

Wang, Y., & Liu, J. (2024). A comprehensive review of quantum machine learning: From nisq
to fault tolerance. Reports on Progress in Physics, 87(11), 116402.

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta,
J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature, 549(7671), 242-246.

Cong, L., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature
Physics, 15(12), 1273-1278.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik,
A., & O’brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor.
Nature Communications, 5(1), 4213.

Crooks, G. E. (2019). Gradients of parameterized quantum gates using the parameter-shift
rule and gate decomposition. arXiv preprint arXiv:1905.13311.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2121-2159.
Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lloyd, S., & Weedbrook, C. (2018). Quantum generative adversarial learning. Physical
Review Letters, 121(4), 040502.

Bravyi, S., Gosset, D., & Konig, R. (2018). Quantum advantage with shallow circuits.
Science, 362(6412), 308-311.

Zhu, E. Y., Johri, S., Bacon, D., Esencan, M., Kim, J., Muir, M., Murgai, N., Nguyen, J.,
Pisenti, N., Schouela, A., et al. (2022). Generative quantum learning of joint probability
distribution functions. Physical Review Research, 4(4), 043092.

Huang, H.-L., Du, Y., Gong, M., Zhao, Y., Wu, Y., Wang, C., Li, S., Liang, F.,, Lin, J., Xu, Y.,
et al. (2021a). Experimental quantum generative adversarial networks for image generation.
Physical Review Applied, 16(2), 024051.

Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., & Perdomo-
Ortiz, A. (2019a). A generative modeling approach for benchmarking and training shallow
quantum circuits. npj Quantum Information, 5(1), 45.

Du, Y., Tu, Z., Yuan, X., & Tao, D. (2022a). Efficient measure for the expressivity of
variational quantum algorithms. Physical Review Letters, 128(8), 080506.

Barthel, T., & Lu, J. (2018). Fundamental limitations for measurements in quantum many-
body systems. Physical Review Letters, 121(8), 080406.

Kakade, S. M., Sridharan, K., & Tewari, A. (2008). On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. Advances in Neural Information Processing
Systems, 21, 793-800.

Dudley, R. M. (1967). The sizes of compact subsets of hilbert space and continuity of gaussian
processes. Journal of Functional Analysis, 1(3), 290-330.

Haussler, A., & Warmuth, M. (1987). Occam’s razor. Information Processing Letters, 24,
377-380.

Larocca, M., Ju, N., Garcia-Martin, D., Coles, P. J., & Cerezo, M. (2023). Theory of
overparametrization in quantum neural networks. Nature Computational Science, 3(6), 542—
551.



172

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

4 Quantum Neural Networks

. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. (2018). Barren
plateaus in quantum neural network training landscapes. Nature Communications, 9(1), 4812.
Dankert, C., Cleve, R., Emerson, J., & Livine, E. (2009). Exact and approximate unitary 2-
designs and their application to fidelity estimation. Physical Review A—Atomic, Molecular,
and Optical Physics, 80(1), 012304.

Harrow, A. W., & Low, R. A. (2009). Random quantum circuits are approximate 2-designs.
Communications in Mathematical Physics, 291, 257-302.

Haferkamp, J. (2022). Random quantum circuits are approximate unitary z-designs in depth
o(ndto))y, Quantum, 6, 795.

Cerezo, M., Sone, A., Volkoff, T., Cincio, L., & Coles, P. J. (2021). Cost function dependent
barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1),
1791.

Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A. T., & Coles, P.J. (2021). Absence
of barren plateaus in quantum convolutional neural networks. Physical Review X, 11(4),
041011.

Zhang, K., Hsieh, M.-H., Liu, L., & Tao, D. (2021). Toward trainability of deep quantum
neural networks. arXiv preprint arXiv:2112.15002.

Grant, E., Wossnig, L., Ostaszewski, M., & Benedetti, M. (2019). An initialization strategy
for addressing barren plateaus in parametrized quantum circuits. Quantum, 3, 214.

Zhang, K., Liu, L., Hsieh, M.-H., & Tao, D. (2022a). Escaping from the barren plateau via
gaussian initializations in deep variational quantum circuits. Advances in Neural Information
Processing Systems, 35, 18612—18627.

Skolik, A., McClean, J. R., Mohseni, M., Van Der Smagt, P., & Leib, M. (2021). Layerwise
learning for quantum neural networks. Quantum Machine Intelligence, 3, 1-11.

Haug, T., & Kim, M. S. (2021). Optimal training of variational quantum algorithms without
barren plateaus. arXiv preprint arXiv:2104.14543.

Ablayev, F., Ablayev, M., Huang, J. Z., Khadiev, K., Salikhova, N., & Wu, D. (2019). On
quantum methods for machine learning problems part ii: Quantum classification algorithms.
Big Data Mining and Analytics, 3(1), 56-67.

Li, W., & Deng, D.-L. (2022). Recent advances for quantum classifiers. Science China
Physics, Mechanics & Astronomy, 65(2), 220301.

Massoli, F. V., Vadicamo, L., Amato, G., & Falchi, F. (2022). A leap among quantum
computing and quantum neural networks: A survey. ACM Computing Surveys, 55(5), 1-37.
Li, W, Lu, Z., & Deng, D.-L. (2022). Quantum neural network classifiers: A tutorial. SciPost
Physics Lecture Notes, 61, 1-28.

Tian, J., Sun, X., Du, Y., Zhao, S., Liu, Q., Zhang, K., Yi, W., Huang, W., Wang, C., Wu,
X., et al. (2023). Recent advances for quantum neural networks in generative learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(10), 12321-12340.

Havlicek, V., Corcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., &
Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747), 209-212.

Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical
Review A, 98(3), 032309.

Arthur, D., et al. (2022). A hybrid quantum-classical neural network architecture for binary
classification. arXiv preprint arXiv:2201.01820.

Bausch, J. (2020). Recurrent quantum neural networks. Advances in Neural Information
Processing Systems, 33, 1368-1379.

Shi, J., Zhao, R.-X., Wang, W., Zhang, S., & Li, X. (2024). QSAN: A near-term achievable
quantum self-attention network. IEEE Transactions on Neural Networks and Learning
Systems, 36(8), 13995-14008.

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. (2020). Data re-uploading
for a universal quantum classifier. Quantum, 4, 226.

Fan, L., & Situ, H. (2022). Compact data encoding for data re-uploading quantum classifier.
Quantum Information Processing, 21(3), 87.



References 173

75

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

. Du, Y., Huang, T., You, S., Hsieh, M.-H., & Tao, D. (2022b). Quantum circuit architecture
search for variational quantum algorithms. npj Quantum Information, 8(1), 62.

Zhang, S.-X., Hsieh, C.-Y., Zhang, S., & Yao, H. (2022b). Differentiable quantum architecture
search. Quantum Science and Technology, 7(4), 045023.

Lu, Z., Shen, P--X., & Deng, D.-L. (2021). Markovian quantum neuroevolution for machine
learning. Physical Review Applied, 16(4), 044039.

Linghu, K., Qian, Y., Wang, R., Hu, M.-J., Li, Z., Li, X., Xu, H., Zhang, J., Ma, T., Zhao, P,,
et al. Quantum circuit architecture search on a superconducting processor. Entropy, 26(12),
1025 (2024).

Sim, S., Romero, J., Gonthier, J. F. & Kunitsa, A. A. (2021). Adaptive pruning-based
optimization of parameterized quantum circuits. Quantum Science and Technology, 6(2),
025019.

Wang, X., Liu, J., Liu, T., Luo, Y., Du, Y., & Tao, D. (2022). Symmetric pruning in quantum
neural networks. arXiv preprint arXiv:2208.14057.

Alam, M., Kundu, S., & Ghosh, S. (2023). Knowledge distillation in quantum neural network
using approximate synthesis. In Proceedings of the 28th Asia and South Pacific Design
Automation Conference (pp. 639-644).

Li, M., Fan, L., Cummings, A., Zhang, X., Pan, M., & Han, Z. (2024). Hybrid quantum
classical machine learning with knowledge distillation. In ICC 2024-1EEE International
Conference on Communications (pp. 1139—1144). IEEE.

Schuld, M., Sweke, R., & Meyer, J. J. (2021). Effect of data encoding on the expressive power
of variational quantum-machine-learning models. Physical Review A, 103(3), 032430.

Yu, Z., Yao, H., Li, M., & Wang, X. (2022). Power and limitations of single-qubit native
quantum neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, &
A. Oh (Eds.), Advances in neural information processing systems (Vol. 35, pp. 27810-27823).
Curran Associates, Inc.

Sim, S., Johnson, P. D., & Aspuru-Guzik, A. (2019). Expressibility and entangling capability
of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quan-
tum Technologies, 2(12), 1900070.

Nakaji, K., & Yamamoto, N. (2021). Expressibility of the alternating layered ansatz for
quantum computation. Quantum, 5, 434.

Holmes, Z., Sharma, K., Cerezo, M., & Coles, P. J. (2022). Connecting ansatz expressibility
to gradient magnitudes and barren plateaus. PRX Quantum, 3(1), 010313.

Yu, Z., Chen, Q., Jiao, Y., Li, Y., Lu, X., Wang, X., & Yang, J. (2025). Non-asymptotic approx-
imation error bounds of parameterized quantum circuits. Advances in Neural Information
Processing Systems, 37, 99089-99127.

Ortiz Marrero, C., Kieferovd, M., & Wiebe, N. (2021). Entanglement-induced barren plateaus.
PRX Quantum, 2(4), 040316.

Martin, E. C., Plekhanov, K., & Lubasch, M. (2023). Barren plateaus in quantum tensor
network optimization. Quantum, 7, 974.

Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., & Coles, P. J. (2021).
Noise-induced barren plateaus in variational quantum algorithms. Nature Communications,
12(1), 6961.

Larocca, M., Czarnik, P., Sharma, K., Muraleedharan, G., Coles, P. J., & Cerezo, M. (2022).
Diagnosing barren plateaus with tools from quantum optimal control. Quantum, 6, 824.
Kiani, B. T., Lloyd, S., & Maity, R. (2020). Learning unitaries by gradient descent. arXiv
preprint arXiv:2001.11897.

Wiersema, R., Zhou, C., de Sereville, Y., Carrasquilla, J. F.,, Kim, Y. B., & Yuen, H. (2020).
Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX
Quantum, 1(2), 020319.

Anschuetz, E. R. (2021). Critical points in quantum generative models. arXiv preprint
arXiv:2109.06957.

You, X., Chakrabarti, S., & Wu, X. (2022). A convergence theory for over-parameterized
variational quantum eigensolvers. arXiv preprint arXiv:2205.12481.



174

97

98

99

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

4 Quantum Neural Networks

. Xu, Z., Cao, X., & Gao, X. (2018). Convergence analysis of gradient descent for eigenvector
computation. In International Joint Conferences on Artificial Intelligence.

. Liu, J., Najafi, K., Sharma, K., Tacchino, F., Jiang, L., & Mezzacapo, A. (2023). Analytic
theory for the dynamics of wide quantum neural networks. Physical Review Letters, 130(15),
150601.

. Wang, X, Liu, J., Liu, T., Luo, Y., Du, Y., & Tao, D. (2023). Symmetric pruning in quantum

neural networks. In The Eleventh International Conference on Learning Representations.

https://openreview.net/forum?id=K96AogLDT2K

Du, Y., Hsieh, M.-H., Liu, T., You, S., & Tao, D. (2021). Learnability of quantum neural

networks. PRX Quantum, 2(4), 040337.

Du, Y., Qian, Y., Wu, X., & Tao, D. (2022c). A distributed learning scheme for variational

quantum algorithms. IEEE Transactions on Quantum Engineering, 3, 1-16.

Qi, J., Yang, C.-H. H., Chen, P-Y. & Hsieh, M.-H. (2023). Theoretical error performance

analysis for variational quantum circuit based functional regression. npj Quantum Informa-

tion, 9(1), 4.

Qian, Y., Du, Y., & Tao, D. (2024). Shuffle-qudio: Accelerate distributed vqe with trainability

enhancement and measurement reduction. Quantum Machine Intelligence, 6(1), 1-22.

Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & Woerner, S. (2021). The power of

quantum neural networks. Nature Computational Science, 1(6), 403—-4009.

Caro, M. C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., & Coles,

P. J. (2022). Generalization in quantum machine learning from few training data. Nature

Communications, 13(1), 4919.

Bu, K., Koh, D. E., Li, L., Luo, Q., & Zhang, Y. (2022). Statistical complexity of quantum

circuits. Physical Review A, 105(6), 062431.

Huang, H.-Y., Kueng, R., & Preskill, J. (2021b). Information-theoretic bounds on quantum

advantage in machine learning. Physical Review Letters, 126(19), 190505.

Zhang, K., Liu, J., Liu, L., Jiang, L., Hsieh, M.-H., & Tao, D. (2024a). The curse of random

quantum data. arXiv preprint arXiv:2408.09937.

Du, Y, Yang, Y., Tao, D., & Hsieh, M.-H. (2023). Problem-dependent power of quantum

neural networks on multiclass classification. Physical Review Letters, 131(14), 140601.

Qian, Y., Wang, X., Du, Y., Wu, X., & Tao, D. (2022). The dilemma of quantum neural

networks. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5603-5615.

Gil-Fuster, E., Eisert, J., & Bravo-Prieto, C. (2024). Understanding quantum machine learning

also requires rethinking generalization. Nature Communications, 15(1), 2277.

Kempkes, M., Ijaz, A., Gil-Fuster, E., Bravo-Prieto, C., Spiegelberg, J., van Nieuwenburg,

E., & Dunjko, V. (2025). Double descent in quantum machine learning. arXiv preprint

arXiv:2501.10077.

Poland, K., Beer, K., & Osborne, T. J. (2020). No free lunch for quantum machine learning.

arXiv preprint arXiv:2003.14103.

Sharma, K., Cerezo, M., Holmes, Z., Cincio, L., Sornborger, A., & Coles, P. J. (2022).

Reformulation of the no-free-lunch theorem for entangled datasets. Physical Review Letters,

128(7), 070501.

Wang, X., Du, Y., Tu, Z., Luo, Y., Yuan, X., & Tao, D. (2024a). Transition role of entangled

data in quantum machine learning. Nature Communications, 15(1), 3716.

Wang, X., Du, Y., Liu, K., Luo, Y., Du, B., & Tao, D. (2024b). Separable power of classical

and quantum learning protocols through the lens of no-free-lunch theorem. arXiv preprint

arXiv:2405.07226.

Anschuetz, E. R., Hu, H.-Y., Huang, J.-L., & Gao, X. (2023). Interpretable quantum advantage

in neural sequence learning. PRX Quantum, 4(2), 020338.

Anschuetz, E. R., & Gao, X. (2024). Arbitrary polynomial separations in trainable quantum

machine learning. arXiv preprint arXiv:2402.08606.

Zhao, H., & Deng, D.-L. (2024). Entanglement-induced provable and robust quantum learning

advantages. arXiv preprint arXiv:2410.03094.


https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K
https://openreview.net/forum?id=K96AogLDT2K

References 175

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Cerezo, M., Larocca, M., Garcia-Martin, D., Diaz, N. L., Braccia, P., Fontana, E., Rudolph,
M. S., Bermejo, P, Ijaz, A., Thanasilp, S., et al. (2023). Does provable absence of barren
plateaus imply classical simulability? or, why we need to rethink variational quantum
computing. arXiv preprint arXiv:2312.09121.

Bermejo, P., Braccia, P., Rudolph, M. S., Holmes, Z., Cincio, L., & Cerezo, M. (2024).
Quantum convolutional neural networks are (effectively) classically simulable. arXiv preprint
arXiv:2408.12739.

Angrisani, A., Schmidhuber, A., Rudolph, M. S., Cerezo, M., Holmes, Z., & Huang, H.-
Y. (2024). Classically estimating observables of noiseless quantum circuits. arXiv preprint
arXiv:2409.01706.

Lerch, S., Puig, R., Rudolph, M. S., Angrisani, A., Jones, T., Cerezo, M., Thanasilp, S., &
Holmes, Z. (2024). Efficient quantum-enhanced classical simulation for patches of quantum
landscapes. arXiv preprint arXiv:2411.19896.

Shin, S., Teo, Y. S., & Jeong, H. (2024). Dequantizing quantum machine learning models
using tensor networks. Physical Review Research, 6(2), 023218.

Landman, J., Thabet, S., Dalyac, C., Mhiri, H., & Kashefi, E. (2022). Classically approxi-
mating variational quantum machine learning with random fourier features. arXiv preprint
arXiv:2210.13200.

Schreiber, F. J., Eisert, J., & Meyer, J. J. (2023). Classical surrogates for quantum learning
models. Physical Review Letters, 131(10), 100803.

Du, Y., Hsieh, M.-H., & Tao, D. (2024). Efficient learning for linear properties of bounded-
gate quantum circuits. arXiv preprint arXiv:2408.12199.

Henderson, M., Shakya, S., Pradhan, S., & Cook, T. (2020). Quanvolutional neural networks:
Powering image recognition with quantum circuits. Quantum Machine Intelligence, 2(1), 2.
Alrikabi, H. T. S., Aljazaery, I. A., Qateef, J. S., Alaidi, A. H. M., & Roa’a, M. (2022).
Face patterns analysis and recognition system based on quantum neural network QNN.
International Journal of Interactive Mobile Technologies, 16(8), 35—48.

Jin, H., & Merz Jr., K. M. (2024). Integrating machine learning and quantum circuits for
proton affinity predictions. arXiv preprint arXiv:2411.17856.

Roh, J., Oh, S,, Lee, D., Joo, C., Park, J., Moon, I, Ro, 1., & Kim, J. (2024). Hybrid quantum
neural network model with catalyst experimental validation: Application for the dry reforming
of methane. ACS Sustainable Chemistry & Engineering, 12(10), 4121-4131.

Li, Y., Wang, Z., Han, R., Shi, S., Li, J.,, Shang, R., Zheng, H., Zhong, G., & Gu, Y. (2023).
Quantum recurrent neural networks for sequential learning. Neural Networks, 166, 148—161.
Innan, N., Sawaika, A., Dhor, A., Dutta, S., Thota, S., Gokal, H., Patel, N., Khan, M. A.,
Theodonis, 1., & Bennai, M. (2024). Financial fraud detection using quantum graph neural
networks. Quantum Machine Intelligence, 6(1), 7.

Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins,
S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of
Chemical Information and Modeling, 61(6), 2641-2647.

Benedetti, M., Coyle, B., Fiorentini, M., Lubasch, M., & Rosenkranz, M. (2021). Variational
inference with a quantum computer. Physical Review Applied, 16(4), 044057.

Enad, H. G., Mohammed, M. A., et al. (2023). A review on artificial intelligence and quantum
machine learning for heart disease diagnosis: Current techniques, challenges and issues,
recent developments, & future directions. Fusion: Practice and Applications (FPA), 11(1),
08-25.

Bowles, J., Ahmed, S., & Schuld, M. (2024). Better than classical? the subtle art of
benchmarking quantum machine learning models. arXiv preprint arXiv:2403.07059.

Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. (2018). Quantum
boltzmann machine. Physical Review X, 8(2), 021050.

Romero, J., Olson, J. P., & Aspuru-Guzik, A. (2017). Quantum autoencoders for efficient
compression of quantum data. Quantum Science and Technology, 2(4), 045001.

Zhang, B., Xu, P., Chen, X., & Zhuang, Q. (2024b). Generative quantum machine learning
via denoising diffusion probabilistic models. Physical Review Letters, 132(10), 100602.



176

141.

142.

143.

144.

145.

146.

147.

148.

149.

4 Quantum Neural Networks

Kolle, M., Stenzel, G., Stein, J., Zielinski, S., Ommer, B., & Linnhoff-Popien, C. (2024).
Quantum denoising diffusion models. arXiv preprint arXiv:2401.07049.

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Shaya, O., Vallecorsa, S., Grossi, M., &
Holmes, Z. (2024). Trainability barriers and opportunities in quantum generative modeling.
npj Quantum Information, 10(1), 116.

Hibat-Allah, M., Mauri, M., Carrasquilla, J., & Perdomo-Ortiz, A. (2024). A framework for
demonstrating practical quantum advantage: Comparing quantum against classical generative
models. Communications Physics, 7(1), 68.

Gao, X., Zhang, Z.-Y., & Duan, L.-M. (2018). A quantum machine learning algorithm based
on generative models. Science Advances, 4(12), eaat9004.

Gao, X., Anschuetz, E. R., Wang, S.-T., Cirac, J. L., & Lukin, M. D. (2022). Enhancing
generative models via quantum correlations. Physical Review X, 12(2), 021037.

Du, Y., Tu, Z., Wu, B., Yuan, X., & Tao, D. (2022d). Power of quantum generative learning.
arXiv preprint arXiv:2205.04730.

Alcazar, J., Leyton-Ortega, V., & Perdomo-Ortiz, A. (2020). Classical versus quantum models
in machine learning: Insights from a finance application. Machine Learning: Science and
Technology, 1(3), 035003.

Benedetti, M., Grant, E., Wossnig, L., & Severini, S. (2019b). Adversarial quantum circuit
learning for pure state approximation. New Journal of Physics, 21(4), 043023.

Li, J., Topaloglu, R. O., & Ghosh, S. (2021). Quantum generative models for small molecule
drug discovery. IEEE Transactions on Quantum Engineering, 2, 1-8.



Chapter 5 ®)
Quantum Transformer <

Abstract This chapter provides a comprehensive introduction to the quantum
transformer algorithm. In Sect.5.1 we first described what is the transformer
architecture, with detailed explanation about its key subroutines. We also briefly
mention the optimization and training. In Sect.5.2, we provide a guide about
designing each quantum subroutine, including quantum self-attention, quantum
residual connection with layer norm, and quantum feed-forward neural networks,
based on the quantum linear algebra. We further mention various numerical studies
on the open-source large language models and provide a detailed discussion about
the potential of quantum advantage in Sect.5.3. Some basic codes are provided in
Sect. 5.4. Finally in Sect. 5.5, we provide a bibliographic remark for readers who are
interested to explore.

Transformers, introduced by Vaswani [1], have become one of the most important
and widely adopted deep learning architectures in modern Al. Transformers were
first developed to improve previous architectures for natural language processing on
the ability to handle long-range dependencies and capture intricate relationships
in data. Unlike previous sequential models, such as recurrent neural networks,
which process information in a step-by-step manner, transformers use a mechanism
called self-attention to capture correlations among all elements in a sequence
simultaneously. This parallel processing capability significantly reduces training
time and improves learning performance.

Despite its many advantages, the transformer architecture has several draw-
backs, particularly the required computational resources. As discussed in previous
chapters, quantum computing provides unique advantages over classical computing
in certain applications by leveraging quantum phenomena such as superposition,
entanglement, and interference. These capabilities have inspired researchers to
explore whether integrating quantum computing with Transformers could lead to
superior performance compared to their classical counterparts in specific tasks.

To address this question, in this chapter, the mechanism of Transformers is
introduced in Sect.5.1. Then, the construction of a quantum Transformer on a
fault-tolerant quantum computer is illustrated in Sect. 5.2. The runtime of quantum
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transformers combined with numerical observations is also analyzed in Sect.5.3,
demonstrating a quadratic speedup over the classical counterpart.

5.1 Classical Transformer

The transformer architecture is designed to predict the next foken (formally present
in Sect. 5.1.1) in a sequence by leveraging sophisticated neural network components.
Its modular design—including residual connections, layer normalization, and feed-
forward networks (FFNs) as introduced in Sect. 4.1—makes it highly scalable and
customizable. This versatility has enabled its successful application in large-scale
foundation models across diverse domains. Notable examples include natural lan-
guage processing, computer vision, reinforcement learning, robotics, and beyond.
The full architecture of Transformer is illustrated in Fig.5.1. In particular, the
encoder processes the source sequence through multiple layers of multiheaded
self-attention and feed-forward networks, augmented with residual connections,
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layer normalization, and positional encodings. The decoder incorporates masked
multiheaded self-attention to process the target sequence and multiheaded cross-
attention to integrate information from the encoder. The output is passed through
a feed-forward network and a final linear layer to generate predictions. Note that
while the original paper by Vaswani [1] introduced both encoder and decoder
components, contemporary large language models primarily adopt decoder-only
architectures, which have demonstrated superior practical performance. Therefore,
in the remainder of this section, the implementation of each building block is
detailed, and the optimization of decoder-only Transformer architectures is dis-
cussed. To deepen the understanding, a toy example of a classical Transformer with
the code demonstration is provided in Sect. 5.4.

5.1.1 Tokenization and Embedding

To handle sequential data, such as natural language, Transformers employ fok-
enization to convert it into discrete units. This preprocessing step makes the data
compatible with computational models and optimizes it for parallel processing,
particularly on GPUs. More concisely, Tokenization breaks a sentence into smaller
pieces called tokens, which could be words, subwords, or even characters, depending
on the tokenization strategy. For example, the sentence “Transformers are amazing!”
might become tokens like (“Transform,” “ers,” “are,” “amazing, ) if subwords
are used. Modern tokenization methods [2-4] enable sophisticated mapping of
complex inputs into token spaces.

For Transformer, tokens are mapped to high-dimensional real vector representa-
tions via embedding [1], as highlighted by the solid box “Embeddings/Projections”
in Fig. 5.1. Let dioken denote the dictionary’s token count and diyoge] represent the
embedding vector dimension. The set containing all token embedding vectors in the
dictionary is defined as

[EN R

W = {W; € Rfmotel W, is the embedding of token j € [dioken]}-

L
j=1

‘W. Mathematically, this sequence can be interpreted as a real matrix § € R¢*¢model
whose j-th row S; representing the j-th token.

An {-length sentence is represented as a sequence of vectors {S;} where §; €

5.1.2 Self-Attention

Self-attention is a core building block of the transformer architecture, which
captures intrinsic correlations among tokens. By allowing each token in a sequence
to attend to every other token, Transformer generates attention matrices via the
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inner-product operations. This operation encodes complex inter-token relationships
into a transformative vector representation, colloquially termed “scaled dot-product
attention.” The generated attention matrices highlight how relevant each part of
the input is to every other part. This allows Transformers to handle contextual
dependencies across a variety of data structures.

The self-attention mechanism, as highlighted by the blue or red box in Fig.5.1,

involves three parameterized weight matrices: W,, Wy € RYmode1 ¥dk  and W, €
Rdmodel xdy .

Remark

Following conventions [1], the notation d is used to specify dmodel, dx, and d,
in the rest of this chapter, i.e., d := dmnodel = dx = dy. This is a widely used
setting in practice.

Given a sequence S € RY*4 the three new matrices after interacting it with three
parameterized weight matrices W, Wy, W, are defined, i.e.,

* Query matrix: Q = SW,.
* Key matrix: K := SW;.
e Value matrix: V = SW,.

The attention block computes the matrix G*°ft € R*? via
Attention(Q, K, V) = softmax(QK " /ag)V = G**", (5.1)

where o9 > 0 is a scaling factor and softmax(-) is a row-wise nonlinear
transformation such that softmax(z); := ez/'/( Zke[ﬁ] ezk) forz € R and j € [€].
The row-wise softmax application ensures the controlled attention distribution.
The scaling factor ey = ~/d empirically prevents excessive value amplification,
particularly when input matrix rows have zero mean and unit standard deviation.

For decoder-only architectures, masked self-attention is employed, strategically
hiding tokens subsequent to the current query token, i.e.,

0 k<],
M = =/ (5.2)
—00 k> j.

Conceptually, the mask M is applied to the scaled dot product QK ' /g in Eq. (5.1)
before the softmax operation. Specifically, the matrix in the softmax operation is
modified as QK T Jog + M.

Another crucial technique in Transformer is the multihead attention, which
further extends the self-attention mechanism by computing and concatenating
multiple attention matrices. This operation enables parallel representation learning
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across different subspaces. In practice, the embedding dimensions are often much
larger (e.g., d = 512 or d = 768), with multiple attention heads working simulta-
neously, each capturing distinct relationships between words in the sequence. This
mechanism plays a crucial role in modern Al, as it allows words to dynamically
interact with one another within the context of the sequence.

While multihead attention is a pivotal advancement in Transformer architectures,
its details will not be explored here, as the quantum Transformer implementa-
tions presented below primarily support single-head attention. Nonetheless, these
techniques remain essential in classical Al and are promising directions for future
developments in quantum Transformers.

5.1.3 Residual Connection

Residual connections (the arrows bypassing the main components, such as the
attention and feed-forward layers in Fig.5.1), paired with layer normalization
(green box in the figure), provide crucial architectural flexibility and robustness. By
enabling direct information flow between layers, they mitigate challenges in training
deep neural networks [5, 6].

For the j-th token in an ¢-length sentence, the residual connection generates
Gj-Oﬂ +S§; € R? for Vj € [£], which is subsequently normalized to standardize the
vector representation. Let

d d
1
§j = (Z (G + Sjk)s - D (G + Sk ) e R,

k=1 k=1

where ¢ = \/ Iy, (G +5; —5)) k)z. The complete residual connection
with the layer normalization LN(-, -) can be expressed as

Gs‘oft_'_ S. —5;
LN, 4(G", 8)) = V%ﬂ + 8, (5.3)

where y and g denote the scale and bias parameters, respectively.

5.1.4 Feed-Forward Network

Recall the definitions of fully connected neural networks (FFN) in Sect.4.1.
Transformers employ a two-layer fully connected transformation (yellow box in
Fig.5.1) to proceed with the output of residual connection, i.e.,

FEN(LN(z, §))) = o (LN(G%™, S;) M1 + b1)Ma + by, (5.4)
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where M| € R¢ Xd’, M, € R4"*d are linear transformation matrices and b1, by are
vectors. In most practical cases, d’ = 4d. Here, o (x) is an activation function, such
as tanh(x) and ReLU(x) = max(0, x). Another activation function that has been
widely used in Transformers is the Gaussian error linear unit function (GELU), i.e.,

GELU(x) = x - % <1 + erf(%)) .

Single-Head and Single-Block Transformer
By integrating all ingredients introduced in Sect.5.1.1, the explicit form of
single-head and single-block Transformer is reached, i.e.,

Transformer(S, j) := LN(FFN(LN(Attention(S, j)))). 5.5)

For the final output, i.e., to predict the next token, one can implement the
softmax function to make the vector into a distribution Pr(:|Sy, ..., S;j—1),
where the dimension is the size of the token dictionary dioken, and sample
from this distribution.

In modern architectures, multiple computational blocks are applied iteratively.
Similar to multihead attention, we will not explore this in detail here, as the
quantum Transformer implementations introduced below primarily support single-
head attention.

5.1.5 Optimization and Inference

Upon the architecture of Transformer, its optimization involves training the model
to achieve high performance on a given task. When applied to language processing
tasks, a feasible loss function of the Transformer is the cross entropy between the
predicted probability distribution and the correct distribution. Mathematically, given

a {-length sequence {Si, ..., S¢} as input, the loss function can be written as
1 ¢
L=—7 D Pr(SjISi, o, Sjon), (5.6)
j=l1
where Pr(S;[S1, ..., S;j_1) is the predicted probability of the correct S; coming out

of the softmax layer, based on the previous tokens.
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This process of training Transformers can be achieved by using Adam opti-
mizer [7]. Learning rate schedules, such as warm-up followed by decay, can provide
stable and effective convergence.

After optimization, the trained Transformer can be used in inference, which
refers to making predictions on new data. Given a new initial sequence §' =
{S{, R S}_l}, it is fed to the trained Transformer to obtain the distribution
Pr(S;. IS, ..., S}—l)' Then, a decoding strategy (e.g., greedy decoding or sampling)
can be used to select the token based on the highest probability or a sampling
approach.

Efficient inference is crucial for deploying models in real-world applications.
Speed optimization techniques, such as quantization, reduce the precision of weights
and activations to accelerate inference with minimal accuracy loss [8]. Pruning
removes redundant weights or attention heads to reduce the model size and compu-
tational cost [9]. Batching and parallelism are also critical, with batched inference
allowing the processing of multiple inputs simultaneously and GPU or TPU
acceleration enabling parallel computations. Efficient attention at inference, such
as caching key and value tensors, reduces redundant computations in autoregressive
tasks like text generation [10].

The inference cost is up to ten times the training cost as large language models
(LLMs) are trained once and applied millions of times [11, 12]. For this reason,
in the next section, the harnessing of quantum computing to address this issue is
explored, which is crucial from both scientific and societal perspectives.

5.2 Fault-Tolerant Quantum Transformer

In this section, an end-to-end transformer architecture implementable on a quantum
device is presented, which includes all the key building blocks introduced in
Sect.5.1. Besides, the potential runtime speedups of this quantum model are
discussed. In particular, here the focus is on the inference process in which a
classical Transformer has already been trained and is queried to predict the single
next token.

Recall that in Sect. 5.1, the three parameterized matrices in the self-attention
mechanism are assumed to have the same size, i.e., W, Wy, W, € R9*d_ Besides,
the input sequence S and the matrix returned by the attention block G*°f have
the size £ x d. Here, it is further supposed that the length of the sentence and
the dimension of hidden features exponentially scale with 2, i.e., £ = 2V and
logd € N*. This setting aligns with the scaling of quantum computing, making it
easier to understand. For other cases, padding techniques can be applied to expand
the matrix and vector dimensions to conform to this requirement.

Since the runtime speedups depend heavily on the capabilities of the available
input oracles, it is essential to specify the input oracles used in the quantum Trans-
former before detailing the algorithms. For the classical Transformers, memory
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access to the inputs such as the sentence and the query, key, and value matrices
is assumed. In the quantum version, access to several matrices via block encoding
techniques introduced in Sect. 2.4 is assumed.

Assumption 5.1 (Input Oracles) Following the explicit form of the single-head
and single-layer Transformer in Eq.(5.5), there are five parameterized weight
matrices, i.e., Wy, Wi, W, € R*4 jp the attention block, as well as M| € R4 xd
and M, € RY*d" in FEN. Note that here, M and M, are actually the transpose
of parameterized matrices in the classical transformer. The quantum Transformer
assumes access to these five parameterized weight matrices, as well as the input
sequence S € R4 via block encoding.

Mathematically, given any A € {W,, Wi, Wy, M1, M3, S} corresponding to an
N-qubit operator, o, ¢ > 0 and a € N, there exists a (a + N)-qubit unitary Uy
referring to the (o, a, €)-block encoding of A with

A = a((01% @ L) Ua(I0)®* @ Lw)|l <, (5.7

where || - || represents the spectral norm.

Under this assumption, the quantum Transformer can access Uy, UWq, Uw,,
and Uw, corresponding to the («y, ag)-encoding of S and («y,, a,,)-encodings of
Wy, Wi, and W,, respectively. Moreover, the quantum Transformer can access
(am, am)-encodings Uy, and Uy, corresponding two weight matrices My € Rd'*xd
and M> € R4 in FFN.

Remark

For simplicity and clarity, in the following, the perfect block encoding of input
matrices without errors is considered, i.e., ¢ = 0. As such, the error term
of the block encoding will not be explicitly written, and (¢, a) will be used
instead of (¢, a, 0). The output of the quantum Transformer is a quantum state
corresponding to the probability distribution of the next token.

The complete single-layer structure is described in Fig.5.2. A quantum Trans-
former consists of a self-attention and a feed-forward network sub-layer, incorpo-
rating residual connections with layer normalization. The inputs of the quantum
Transformer are block encodings of matrices for the input sequence and pretrained
weights, from which the relevant matrices for the transformer are constructed (query
0, key K, and value V). Each of the components accepts the block encoding from
the prior component as the input and prepares a block encoding of the target matrix
using quantum linear algebra as the output.

Under the above assumptions about access to the read-in protocols, the following
theorem indicates how to implement a single-head and single-block Transformer
architecture in Eq. (5.5) on the quantum computer.
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Quantum feed-forward network with an activation function o
Layer Norm and an input vector ¥:

d
D, (o0t -9, i)

Feed-Forward Network

Quantum residual connection with layer normalization for the
j-th token:

d
3 o
k=1

Quantum self-attention matrix:

(Masked) Self Attention
G°ft = softmax(QKT /a) - V

Block encoding of the input matrices:
[l (e e e

* * * *

Block Encoding

Input sequence Weight matrices
S € R¥x4 Wy, Wy, W, € R4
M, € Rd'xd’Mz € Raxd’

Fig. 5.2 Overview of the single-layer decoder-only quantum transformer

Theorem 5.1 (Quantum Transformer, Informal) For a single-head and single-
block Transformer depicted in Fig. 5.2, suppose its embedding dimension is d and
its input sequence S has the length £ = 2. Under Assumption 5.1 about the input
oracles, for the index j € [£], one can construct an €-accurate quantum circuit for
the quantum state proportional to

d
ZTransformer(S, Delk), (5.8)
k=1

by using é(szasau) logz(l/e)) times of the input block encodings.

This theorem is demonstrated by explicitly designing the quantum circuit for
each computation block of the Transformer architecture in a coherent way, i.e.,
without intermediate measurement. In addition, a subsequent transformation of
the amplitude-encoded state, followed by measurement in the computational basis,
yields the index of the next predicted token based on the probabilities modeled by
the Transformer architecture.

Roadmap In the remainder of this section, we detail the implementation of
quantum Transformers, proceeding from the bottom to the top as illustrated in
Fig.5.2. Specifically, the quantization of the attention block Attention(S, j) is first
demonstrated in Sect.5.2.1. Next, the quantization of residual connections and
layer normalization operations (i.e., the operation LN(Attention(S, j)) in Eq. (5.5))
is presented in Sect.5.2.2. Last, the quantization of the fully connected neural
network is exhibited to complete the computation LN (FFN(LN(Attention(S, j))))
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in Sect.5.2.3. This end-to-end approach ensures that the generated quantum state
corresponds to the one described in Eq. (5.8).

5.2.1 Quantum Self-Attention

The quantum self-attention block is now described, aiming to complete the compu-
tation:

Attention(Q, K, V) = softmax(QK ' /ag)V = G*"

in Eq. (5.1) on quantum computers. More specifically, under Assumption 5.1, the
quantum self-attention block outputs a block encoding of a matrix G whose j-th
row is the same as the output of the classical attention block, as described in the
following theorem.

Theorem 5.2 (Quantum Self-Attention) Ler ag = afai. For the index j € [{],
one can construct a block encoding of a matrix G such that Gj, = Gj."ft =

(softmax (QK T /otg) V) ju.

Remark

For quantum self-attention, a slight change is made by setting the scaling
factor ap = a2, for the following reasons. The first is that the usual setting
ap = 1/+/d is chosen somewhat heuristically, and there are already some
classical works considering different scaling coefficients which may even
achieve better performance [13, 14]. The second, which is more important, is
that the quantum input assumption using the block encoding format naturally
contains the normalization factor & which plays a similar role to the scaling
factor. Therefore, for the quantum case in the context of this work, it suffices
to use « directly.

The implementation of the quantum self-attention block can be decomposed into
three steps:

1. Construction of the block encoding of the matrix QK " and the matrix V given
access to Ug, Uwq, Uw,, and Uy, .

2. Implementation of the quantum algorithm to compute the softmax function
softmax(QK T /ag) given access to Uk ¢.

3. Multiply with V via the product of block encodings.

In what follows, the implementation of each step is iteratively detailed.
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Step I The construction of the block encoding of matrix QK T and V builds upon
the employment of Fact 2.3. That is, given access to (¢, a)-encoding U4 of matrix A
and (B, b)-encoding Up of matrix B, an (a8, a+b)-encoding can be constructed for
the matrix A B. This result leads to the efficient construction of the block encodings
of QKT and V asz summarized below.

— For the matrix V = W, S, it is straightforward to set A = W, and B = S to
construct the (o, ay)-encoding Uy, where o, = a0y, and ay = as + ay,.

— For the matrix QK T we first use Fact 2.3 to construct the (ag, ag)-encoding Ug
and (o, ag)-encoding Ug with Q = W,S and K = W;S, respectively. Then,
we use Fact 2.3 again to construct the («g, ag)-encoding U OKT of QK T, where

ap = a?a2 and ayp = 2as + 2a,,. Note that for a real matrix M and its block

encoding unitary Uy, U;, is the block encoding of M T.

Step II Once the unitary U1 is prepared, the quantum algorithm corresponding
to the softmax function, i.e., softmax(QK T /ap), is implemented. Note that the
softmax function relies on the exponential function, which is generally resource-
intensive to implement on quantum computers. To circumvent this bottleneck,
the quantum Transformer uses polynomial functions to approximate the softmax
function, as supported by the following fact.

Fact 5.1 For x € [—1, 1], the function f(x) := e can be approximated with error
bound € with an O(log(1/€))-degree polynomial function.

The insight provided by Fact 5.1 is to use polynomial functions to approximate
the softmax function, i.e., expo(QK ' /ay) is first approximated using polynomial
functions and then multiplied with different coefficients (normalization) for each
row.

Remark
The notation expo(A) indicates that the exponential operation is applied
element-wise to each entry of the matrix A, rather than representing a matrix
exponential.

Moreover, the element-wise functions mean that functions are imple-
mented on each matrix element.

In this context, the challenge of implementing a quantized softmax function
reduces to the implementation of a quantized polynomial function. The key
technique for achieving this lies in applying polynomial functions to each element
of block-encoded matrices, as detailed in the following lemma.

Lemma 5.1 (Element-Wise Polynomial Function of Block-Encoded Matrix)
Let N,k € N. Given access to an («, a)-encoding of a matrix A € 22" gna
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an r-degree polynomial function f,(x) = Z] 1€Cj x) ,cj € Cfor j € [r], one can
construct a (C, b)-encoding of f, o (A/a) by using 0( ) times the input unitary,
where C := Z;'=1 lcjl, b ==ra+ (r — )N + [log(r + 1)1.

Moreover, for a polynomial function g,(x) = Z;‘:O c jxj with constant term c,
one can construct a (C’, b)-encoding of g o (A/a), where C' = rcg + C.

Proof of Lemma 5.1 To achieve this implementation, two state-preparation uni-
taries Pz and Pr are constructed, which act on [log(r + 1)] qubits such that

. |oMogr+DTy Z \/EU (5.9)

|0(10g(r+1)'\ Z /lcj el9/|] (510)

where C = Z;’=1 lcjland |c; el = ¢ j- These two unitaries encode the polynomial
coefficients {c;} into the quantum circuit, which is needed for block encoding via
the linear combination of unitaries indicated in Fact 2.2. Note that the construction
of Py and Pg is efficient for small r, as the corresponding circuit is O(r)-depth with
only elementary quantum gates [15, 16].

For j € [r],let Uy, be the (1, ja + (j — 1) N)-encoding of

(A/a)® := (AJa)o (AJa)o---o(A]a),

j—1 times of Hadamard product

which is constructed by iteratively applying Lemma 2.1. Now, the construction of
the unitary W= Z;:l ) {JI® Upi+ (1210gr - Z;‘:l 1D D®Latrn is described.
Instead of preparing block encodings of A°/ for all j € [r], it suffices to prepare
block encodings of A°? for j € |logr]. As an example, A°7 = A°*. A°2. A°!,
Combining these together, we need to use O( Zuog” 27 ) = O(r) times of Uy to
construct (ra + (r — 1) N + 2logr)-qubit umtary W.By Fact2.2,a (C,ra + (r —
1)N + 2logr)-encoding of f; o (A/«) can be implemented.

To implement element-wise functions including constant terms, access to the
block encoding of a matrix whose elements are all 1 is also needed. Notice that
this matrix can be written as the linear combination of the identity matrix and the
reflection operator, i.e.,

kk’—2N I I 2 k) (k' 5.11
Y W= by — [Ty — o5 D0 kK] (5.11)

k.k'e[2V] k.k'e[2V]

2N ®N N N RN
. (]IN—H (2N—2|0 10 |)H ) (5.12)
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where H is the Hadamard gate. Define Urer = [0)(0] @ Iy + [1)(1| ® (H®N(112N —
2|10M)(ON)H®N). By direct computation, one can show that Uy = (XH ®
L) Uret(H ® L) is an (2", 1)-encoding of > ki k) (K'|. One can achieve the
element-wise function by following the same steps as above and taking linear
combinations among Uy, ..., Uar. A point to notice is that only (2V, 1)-encoding
of the matrix whose elements are all 1 can be constructed since the spectral norm of
this matrix is 2V. Therefore, 2V ¢( s encoded into the state instead of ¢g to amplify
the constant term. O

Supported by the above lemma, Step II (i.e., the quantum softmax for self-
attention) can be completed, as shown in the following theorem.

Theorem 5.3 (Quantum Softmax for Self-Attention, Informal) Given an («, a)-
encoding Uy of a matrix A € RYY, a positive integer d, and an index j € [£], one
can prepare a state encoding of

4
1 A
14j) = Y | Jsoftmax (4/e) k) = 7z ZGXP"(g)jk'k)’

k=1 k=1

Wwhere Z; = Zle expo(A/a) jk.

Proof Sketch of Theorem 5.3 First, the block encoding of exp o(%) is con-
structed. Note that Taylor expansion of exp(x) contains a constant term 1. This
can be achieved with Lemma 5.1 and Fact 5.1. Here, since we are only focusing on
the j-th row, instead of taking linear combination with the matrix whose elements
are all 1, we take sum with the matrix whose j-th row elements are all 1 and else
are 0. This enables us to have a better dependency on ¢, i.e., from ¢ to +/¢. For
index j € [£], let U; : |0) — |j). One can achieve this by changing Eq. (5.12) to
the following:

> 1Nkl = “/72 (U,-H®N —U; (HZN - 2|0N><0N|) H®N) : (5.13)
k

Following the same steps in Lemma 5.1, one can achieve the construction. There
are two error terms in this step. Denote U f,(4) as the constructed block encoding
unitary. By Lemma 5.1 and some additional calculation, one can show that U 7,4 is

a block encoding of exp o(4). Note that exp o %)J. ;= €xp o(%); With unitary

U;.o( A)(I ® U;) and amplitude amplification, one can prepare a state encoding of
the target state

1< A
A;) = ﬁZexpo<Z>jk|k), (5.14)

J k=1
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where Z; = Zﬁ:l exp o(A/a) ji is the normalization factor of softmax function
for the j-th row. O

Step III Finally, the matrix multlphcatlon with V is implemented. This can be
easily achieved by using Fact 2.3, with Ut and Uy . Consequently, an encoded

quantum state is obtained, analogous to

FOKT)

4
> (softmax(QK " /ag)V ) jilk)- (5.15)
k

Combining the results of Steps I, II, and III, the proof of Theorem 5.2 can be
presented below.

Proof of Theorem 5.2 In the first step, the block encoding of matrix QK T and V is
constructed. Note that for a real matrix M and its block encoding unitary Uyy, U}L
is the block encoding of MT. By Fact 2.3, one can construct an (o, ag)-encoding
U OKT of QK where «g = a2 2 and ag = 2as + 2a,,. One can also construct an
(oty, ay)-encoding Uy of V, where oy = oy, and ay, = ag + ay.

By Theorem 5.3, using U k7, one can prepare a state encoding of the state:

4
Z \/softmax(QKT/ao)jklk),

k=1

where Z; = Zi:l exp o(QKT/(xo)jk. Remember that state encoding is also a
block encoding. By Lemma 2.1, one can construct a block encoding of a matrix
whose j-th column is

[softmax(QKT/ozo)jl, e softmax(QKT/ozo)ﬂ]

ignoring other columns. Let this block encoding unitary be U s (ggT)-

Last, by exploiting Fact 2.3 again, with Ut
quantum state analogous to

F(OKT) and Uy, we obtain an encoded

4
> (softmax(QK T [a0) V) ;,IK).
k
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5.2.1.1 Extension to Implement Quantum Masked Self-Attention

This section considers the implementation of the masked self-attention, which is
essential for the decoder-only structure. This can be achieved by slightly changing
some steps as introduced in previous theorems.

Corollary 5.1 (Quantum Masked Self-Attention) For the index j € [£], one can
T
construct a block encoding of a matrix G™X such that G‘}‘fSk = (softmax(% +

m)v)

M) .

Jjk

Proof of Corollary 5.1 To achieve masked self-attention, the steps mentioned in
Theorem 5.3 are slightly modified.

First, to approximate the exponential function, the approach of using a matrix
where all elements in the j-th row are set to 1 while other rows remain 0 is extended.
Instead, this approach is refined by considering only the first 2M°€(+DT elements in
the j-th row to be 1. Note that this matrix can be achieved similarly to the original
one. The encoding factor of this matrix is 2M1°g(+D1/2,

Second, after approximating the function, for index j € [£], the block encoding
is multiplied with a projector Zk,kg j Ik) (k| to mask the elements. Though the
projector ) ;s |k){(k| for S C [£] is not unitary in general, one can construct a
block encoding of the projector as it can be written by the linear combination of two
unitaries:

.
., where M is the masked matrix as Eq.(5.2), Z; = Zi:l exp O(QaKo +
Jj*

1.1
> k) (k| = JI+3 (22 k) (k| — 1[) . (5.16)

keS keS

Define Uproj == [0)(0] @ I+ [1)(1] ® (23 4cs k) (k| — I). One can easily verify
that (H ® DUproj(H ® 1) is a (1, 1, 0)-encoding of ) ", s |k)(k|, where H is the
Hadamard gate. The following steps follow the same with Theorems 5.2 and 5.3.

O

One may further achieve the multihead self-attention case by using the linear
combination of unitaries.

5.2.2 Quantum Residual Connection and Layer Normalization

This subsection discusses the implementation of the residual connection with layer
normalization on a quantum computer. The implementation of the layer norm block,
as shown in Fig. 5.2, continues based on the result in Theorem 5.2.
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Theorem 5.4 (Quantum Residual Connection with Layer Normalization)
Given access to the block encoding of the matrix G in Theorem 5.2, one can
construct a quantum-encoded state:

d

D (G + Sk —5) k),

k=1

ZLN (G¥1, S7), k) =
k=1

V\I»—*

where §j == 3 Zk 1 (G;‘,’ft + Sjk) and ¢ == \/Zk 1 ( G“’1ct + Sji — sl)z.

Proof of Sketch of Theorem 5.4 As shown in Theorem 5.2, a block encoding of a
matrix G whose j-th row is the same row as that of G*°f can be constructed. By
Assumption 5.1, Uy, an («ay, ag)-encoding of S, is provided. By Lemma 2.4 with the
state preparation pair (P, P) such that

1
P[0) = ﬁ(\/@owﬁsm), (5.17)

one can construct a quantum circuit Uyes which is an (og + @, ag + 1)-encoding of
an £ x d matrix whose j-th row is the same as that of G*°ft 4 §.

Now the creation of a block encoding of a diagonal matrix s; - I, where
5j =7 Zk 1 (GSO’Ct + Sjk), is considered. Define a unitary as H'°8¢ := H®ed,
Note that H'°2¢ is a (1, 0, 0)-encoding of itself, and the first column of H'°2¢ s
«/LE(I’ ..., 1)T. By Fact 2.3, one can multiply G*°' + S with H'°2¢ to construct a

block encoding of an ¢ x d matrix, whose (j, 1)-element is «/EE,-. One can further
move this element to (1, 1) by switching the first row with the j-th row. By tensor
product with the identity I of logd qubits, one can construct a block encoding of
Vds; - 1.

With U; : |0) — |j), one can prepare the state:

1 d AT
02: k — =k Tk __i1)|bad
o as|>k:11/fk|>+ @ +a )2|>|a)

Ups ® U)0)[0) =

(5.18)
By the diagonal block encoding of amplitudes mentioned as Fact 2.6, this can be
converted to a block encoding of the diagonal matrix diag(G;1 + Sj1,..., Gjq +
de).

By taking the linear combination as Fact 2.4 with state preparation pair (P, P»),
where

P10y = (5.19)

1 1
\/H—IW <|0) + ﬁu))



5.2 Fault-Tolerant Quantum Transformer 193

and
P|0) : (IO) : I1>> (5.20)
2 = T - T = s .
1+ 1//d Vd
one can construct a block encoding of diag(Gjl +S8i1—=35j,...,Gja+ Sja — §j),

and we call it UrN. Then, the unitary Urn (I[ ® H'ogd ) is an state encoding of the
state

> (Gt s =55 ) k),

1
s k=1

2
where ¢ = \/Zgzl (G;‘;Cﬁ + Sjk — Ej> ) i

5.2.3 Quantum Feed-Forward Neural Network

Attention is now turned to the third main building block of the transformer archi-
tecture, the feed-forward neural network. This block often is a relatively shallow
neural network with linear transformations and ReLU activation functions [1].
More recently, activation functions such as the GELU have become popular, being
continuously differentiable. We highlight that they are ideal for quantum Trans-
formers, since the QSVT framework requires functions that are well approximated
by polynomial functions. Functions like ReLU(x) = max(0, x) cannot be efficiently
approximated. The GELU is constructed from the error function, which is efficiently
approximated as follows.

Fact 5.2 (Polynomial Approximation of Error Function [17]) Let ¢ > 0. For
every k > 0, the error function erf(kx) = \/L; fokx e~ dt can be approximated

with error up to € by a polynomial function with degree O(k log (é))

This lemma implies the following efficient approximation of the GELU function
with polynomials.

Corollary 5.2 (Polynomial Approximation of GELU Function) Let ¢ > 0 and
A € OQ). For every k > 0 and x € [—A, A], the GELU function GELU (kx) =

kx- % (1 ~+erf (%)) can be approximated with error up to € by a polynomial function

with degree O(k log (%))

Proof of Corollary 5.2 1t suffices to approximate the error function with precision
& by Fact 5.2. |
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The following theorem considers the implementation of the two-layer feed-
forward network on quantum computers. As mentioned, the GELU function is
widely used in transformer-based models and is explicitly considered as the
activation function in the theorem. Cases for other activation functions like sigmoid
follow the same analysis. An example is the tanh(x) function, which can be well
approximated by a polynomial for x € [—m/2, /2] [18].

Theorem 5.5 (Two-Layer Feed-Forward Network with GELU Function, Infor-
mal) Assume we have access to («, a)-state encoding of an N-qubit state | ) =
Z/%i] Yrlk), where {1} are real and |||l = 1. Further, assume access to
(m, am)-encodings Uy, and Uy, of weight matrices My € R"*d gnd M, e Rdxd",
Let the activation function be GELU(x) := x - %(1 + erf(%)). One can prepare a

state encoding of the state:

) = éZ (M2 GELUGM, - ) 1K), (5.21)

k=1

where C is the normalization factor.

Proof of sketch of Theorem 5.5 The proof proceeds as follows. Recall that

1 ~
(e ® Upt,)(Tpam ® Uy |07y = JIO““’")MHV/) +11). (5.22)

m

where |I) is an unnormalized orthogonal state. For the case d’ > £, this can
be achieved by padding ancilla qubits to the initial state. By Fact 2.6, one can
construct a block encoding of the diagonal matrix diag((M{y¥)1, ..., (M1¥)a).
Note that the GELU function does not have a constant term and is suitable to use
the importance-weighted amplitude transformation as in [19]. Instead of directly
implementing the GELU function, the function f(x) = %(1 + erf(\%)) is first
implemented. Note that the value of |erf(x)| is upper bounded by 1. By Fact 2.6
with function %(1 + erf(aam\%)), one can construct a block encoding of matrix

diag (f(Mi¥)1, ..., F(M ) a).

Let the previously constructed block encoding unitary be U ¢(y). We have

UpyI® Upy)AQ Uy)|0)]0) =

aa, 0) Xk: GELUM 1¥)klk) + | L"),

(5.23)
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where |I’ ) is an unnormalized orthogonal state. Finally, by implementing the block
encoding unitary Uyy,, the result is

T Up)ITQ Up))I® Up)A® Uy)|0)]0)

d
0) Y (M2 GELUM: - ) 1K) + 117, (5.24)
k=1

Zaa

where C is the normalization factor and |IN> is an unnormalized orthogonal state.
O

Remark

The quantum feed-forward network discussed in this subsection is a quantum
implementation of the classical feed-forward network under the input assump-
tion of block encoding, which is essentially different from the quantum analog
of neural networks introduced in Chap. 4.

5.3 Runtime Analysis with Quadratic Speedups

This section provides a combined analytical and numerical analysis to explore the
potential of a quantum speedup in time complexity.

5.3.1 Overview

With the quantum implementation of self-attention, residual connection, layer nor-
malization, and feed-forward networks, the quantum transformer can be constructed
by combining these building blocks as in Theorem 5.1.

This final complexity is obtained on the basis of the following considerations: the
single-head and single-block transformer architecture includes one self-attention,
one feed-forward network, and two residual connections with layer normalization,
as shown in Fig. 5.2.

Starting from the input assumption as Assumption 5.1, for the index j e [{],
the block encoding of the self-attention matrix is first constructed, as described in
Sect. 5.2.1. This output can be directly the input of the quantum residual connection
and layer normalization, as Sect.5.2.2, which output is a state encoding. Remind
the definition of state encoding as Definition 2.10. The state encoding can directly
be used as the input of the feed-forward network, as Sect.5.2.3. Finally, we put
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the output of the feed-forward network, which is a state encoding, into the residual
connection block. This is possible by noticing that state encoding is a specific kind
of block encoding. Multiplying the query complexity of these computational blocks,
one can achieve final result. The detailed analysis of runtime is referred to Guo et
al. [20] ~

As Theorem 5.1 shows, the quantum transformer uses O(dN 2000,,) times
the input block encodings, where o and oy, are encoding factors. By analyzing
naive matrix multiplication, the runtime of classical single-head and single-block
Transformer during the inference stage is O(éd + d?), where d is the embedding
dimension and ¢ = 2V is the input sequence length. From the comparison, it can
be seen that oy and o, are the dominant factors that affect the potential quantum
speedup. The properties of these two factors will be explored via numerical studies.

5.3.2 Empirical Studies of Potential Quantum Speedups

The encoding factors o, and «,, appear in the block encodings of matrices S and
Wy, Wi, Wy. Recall that the encoding factor « is lower bounded by the spectral
norm of a block-encoded matrix A, i.e., @ > ||A||. Given access to quantum random
access memory (QRAM) and a quantum data structure [21, 22], there are well-
known implementations that enable the construction of a block encoding for an
arbitrary matrix A where the encoding factor is upper bounded by the Frobenius
norm ||A| r. Based on these considerations, these two norms of the input matrices
of several open-source large language models are numerically studied! to provide
upper and lower bound of «; and «y,.

The input sequence matrix S, which introduces the dependency on ¢, is first
investigated. Input data in real-world applications sampled from the widely used
Massive Multitask Language Understanding (MMLU) dataset [23] are considered,
covering 57 subjects across science, technology, engineering, mathematics, the
humanities, the social sciences, and more. The scaling of the spectral norm and
Frobenius norm of S on the MMLU dataset is demonstrated in Fig.5.3. It can be
found that the matrix norms of the input matrix of all LLMs scale at most as V)

As additional interest, this analysis of the matrix norm provides new insights
for the classical tokenization and embedding design. It can be observed that
comparatively more advanced LLM models like Llama2-7b and Mistral-7b have
large variances of matrix norms. This phenomenon is arguably the consequence of
the training in those models; the embeddings that frequently appear in the real-world
dataset are actively updated at the pretraining stage and, therefore, are more broadly
distributed.

! Parameters are obtained from the Hugging Face website, which is an open-source platform for
machine learning models.
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Fig. 5.3 Scaling of the spectral norm ||S|| and the Frobenius norm || S|| ¢ with £ for each model,
displayed on logarithmic scales for both axes

The spectral and Frobenius norms of weight matrices (W,, Wy, W,) for the large
language models are then computed. The result can be seen in Fig. 5.4. Many of the
LLMs below a dimension d of 103 that we have checked have substantially different
norms. It is observed that for larger models such as Llama2-7b and Mistral-7b,
which are close to the current state-of-the-art open-source models, the norms do not
change dramatically. Therefore, it is reasonable to assume that the spectral norm and
the Frobenius norm of the weight matrices are at most O(+/d) for advanced LLMs.

Given these numerical experiments, it is reasonable to assume that oy = o0W?)
and oy, = O(v/d), and we obtain a query complexity of the quantum transformer
in 5(d 3 Vf). We continue with a discussion of the possible time complexity.
With the QRAM assumption, the input block encodings can be implemented in a
polynomially logarithmic time of £. Even without a QRAM assumption, there can
be cases when the input sequence is generated efficiently, for example, when the
sequence is generated from a differential equation, see additional discussions in the
supplementary material. In these cases, we demonstrate that a quadratic speedup of
the runtime of a single-head and single-block Transformer can be expected.

5.4 Code Demonstration

This section explains how self-attention works with a simple concrete example.
Consider a short sequence of three words: “the cat sleeps.”

First, we convert each word into an embedding vector. For this toy example, very
small four-dimensional embeddings are used:
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In self-attention, each word needs to “attend” to all other words in the sequence.
This happens through three key steps using learned weight matrices (W, Wi, W,)
to transform the embeddings into queries, keys, and values. When word embeddings
are multiplied by these matrices, the result is

# Input tokens (3

S = np.array ([
[1, 0, 1, 0],
[, 1, 1, 17,
[1, 1, 0, 1]
D

W_q = np.array(
[
[0.2, 0.4
[0.1, 0.3
[0.9, 0.8
[60.5, 0.4
]
)
W_k = np.array(

import numpy as np

tokens,

#
#
#

# Initialize weights

[ — I — ]
w N 1o

for
for
for

for

"The"
neat”
"sleeps"

Query, Key,

0.8],
0.7],
0.6]1,
0.2],

each with 3 features)

and Value (4x3

matrices)




40

41

1
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[
[6.1, 6.3, 0.5, 0.7],
[0.6, 0.4, 0.2, 0.1],
[0.8, 6.9, 0.7, 0.6],
[0.2, 0.1, 0.3, 0.4],
1
)
W_v = np.array(
[0.3, 0.5, 0.7, 0.9],
[0.6, 0.4, 0.2, 0.1],
[0.8, 6.9, 0.7, 0.6],
[0.5, 0.4, 0.3, 0.2],
1
)
# Compute Query, Key, and Value matrices
Q=S @TW_q
K=5Sa@Ww.k
v S @ w_v

Next, attention scores are computed by multiplying Q and K T and then applying
softmax.

# Compute scaled dot-product attention
d = Q.shape[l] # Feature dimension
attention_scores = Q @ K.T / np.sqrt(d)

def softmax(x):
"""Compute softmax values for each set of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True

)

attention_weights = softmax(attention_scores)

The attention weight would be

0 KT 0.324 0.467 0.209
softmax <T) = 10.305 0.515 0.180
0.346 0.432 0.222

The final output captures how each word relates to every other word in the sentence.
In this case, “sleeps” pays most attention to “cat” (0.432), some attention to “The”
(0.346), and less attention to itself (0.222). Finally, these scores are used to create a
weighted sum of the values:

output = attention_weights @ V
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The final output is

1.536 1.519 1.265 1.157
output = | 1.566 1.536 1.261 1.137
1.512 1.507 1.269 1.174

5.5 Bibliographic Remarks

Transformer architecture has profoundly revolutionized Al and has broad impacts.
As classical computing approaches its physical limitations, it is important to ask
how we can leverage quantum computers to advance Transformers with better
performance and energy efficiency. Besides the fault-tolerant quantum Transformers
introduced in Sect.5.2, multiple works are advancing this frontier from various
perspectives.

One aspect is to design novel quantum neural network architectures introduced
in Chap.4 with the intuition from the Transformer, especially the design of the
self-attention block. In particular, Li et al. [24] propose the quantum self-attention
neural networks and verify their effectiveness with the synthetic datasets of quantum
natural language processing. There are several follow-up works along this direction
[25-27].

Another research direction is exploring how to utilize quantum processors to
advance certain parts of the transformer architecture. Specifically, Gao et al. [28]
consider how to compute the self-attention matrix under sparse assumption and
show a quadratic quantum speedup. Liu et al. [29] harness quantum neural networks
to generate weight parameters for the classical model. In addition, Liu et al. [30]
devise a quantum algorithm for the training process of large-scale neural networks,
implying an exponential speedup under certain conditions. Several other works
consider machine learning related optimization problems [31-34].

Despite the progress made, several important questions remain unresolved.
Among them, one key challenge is devising efficient methods to encode classical
data or parameters onto quantum computers. Currently, most quantum algorithms
can only implement one or at most constant layers of Transformers [20, 35, 36]
without quantum tomography. Are there effective methods that can be generalized to
multiple layers, or is achieving this even necessary? Moreover, given the numerous
variants of the classical Transformer architecture, can these variants also benefit
from the capabilities of quantum computers? Lastly, if one considers training a
model directly on a quantum computer, is it possible to do so in a “quantum-native”
manner—avoiding excessive data read-in and read-out operations?
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Chapter 6 ®)
Conclusion Pt

Abstract This chapter concludes the tutorial by highlighting the potential of
quantum machine learning (QML) to accelerate scientific discovery and real-world
applications. It revisits the tutorial’s key themes, including quantum adaptations of
classical models, theoretical insights, and implementation on near-term and future
quantum devices. The chapter also emphasizes the importance of QML in domains
such as drug discovery, material science, and optimization, where classical methods
face scalability limits.

This tutorial systematically explores the landscape of quantum machine learning,
covering foundational principles, the adaptation of classical models to quantum
frameworks, and the theoretical underpinnings of quantum algorithms. By providing
practical implementations and discussing emerging research directions, it aims to
bridge the gap between classical Al and quantum computing for researchers and
practitioners.

The insights gained from this tutorial highlight the potential of quantum machine
learning to revolutionize various domains, from fundamental scientific research to
practical applications in industry. As quantum hardware continues to evolve, quan-
tum machine learning is likely to play a central role in harnessing the computational
advantages of quantum systems. In the meantime, the field of quantum machine
learning faces challenges, as discussed at the end of each chapter. Overcoming these
barriers will be critical for unlocking its full potential.

Moving forward, interdisciplinary collaboration between quantum computing
and Al researchers will be essential for addressing these challenges and realizing
the transformative potential of QML. Overall, it is hoped that this tutorial serves as
a valuable resource for those eager to contribute to this rapidly evolving discipline.

The insights presented in this tutorial underscore the transformative potential of
QML, spanning fundamental scientific research to practical industrial applications.
While this tutorial primarily focuses on machine learning, QML also holds promise
in several key domains. In drug discovery, QML can enhance molecular interaction
simulations, accelerating the identification of promising drug candidates and reduc-
ing development costs. In materials science, quantum models improve the prediction
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of material properties, facilitating the discovery of superconductors, energy-efficient
compounds, and high-performance materials. In optimization, QML algorithms
offer advancements in logistics, supply chain management, and energy distribution,
improving efficiency across industries.

As quantum hardware advances, QML is expected to play a central role in
harnessing quantum computational advantages. However, significant challenges
remain, as discussed at the end of each chapter. Overcoming these obstacles is
crucial for unlocking the full potential of QML. Moving forward, interdisciplinary
collaboration between quantum computing and Al researchers will be key to
addressing these challenges and driving future innovations.

Ultimately, this tutorial is hoped to serve as a valuable resource for those eager
to contribute to this rapidly evolving field.



Appendix A
Concentration Inequality

In this section, we introduce some of the most common concentration inequali-
ties in statistical learning theory. These inequalities are widely used in deriving
generalization error bounds for learning models. In practical scenarios, one often
needs to infer properties of an unknown distribution based on finite data samples
drawn from that distribution. Concentration inequalities address the deviations of
functions of independent random variables from their expectations. They provide
tools to analyze the difference between the empirical mean (or some estimate) and
the true expectation of random variables that follow a probability distribution.

We begin by recalling some basic tools that will be used throughout this section.
For any nonnegative random variable X following the probability distribution p(x),
its expectation can be written as

EX = /ooxp(x)dx. (A1)
0

This leads directly to a fundamental building block for concentration inequalities,
namely, Markov’s inequality.

Lemma A.1 (Markov’s Inequality) For any nonnegative random variable X, and
a positive constant t > 0, we have

P{X >t} < g (A.2)
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Proof Employing the definition of cumulative distribution function, we have
o
P{X >t} =/ p(x)dt
t

o0
< f P
t

- fooo p(x)xd

— (A.3)
where the first inequality follows that x/¢ > 1 in the interval x € [¢, oo] and the

second inequality employs the positiveness of integral term p(x)x/t. O

Using Markov’s inequality, it follows that if ¢ is a strictly monotonically increasing,
nonnegative function, then for any random variable X and real number ¢ > 0, we
have

E¢ (X)
@)

P{X =1} =P{op(X) = ¢(n} = (A4)

An application of this result with ¢ (x) = x? leads to the simplest concentration
inequality, i.e., Chebyshev’s inequality.

Lemma A.2 Let X be an arbitrary random variable and the real number t > 0,
then

Var(X)
2

P{IX —EX| >t} < (A.5)

Proof Utilizing the extention of Markov’s inequality in Eq.(A.4) with setting
d(x) = x2 yields

P{|X — EX| >t} =P{|X —EX|? > %}

_ 2
_E(X —EX)
==

Var(X)
= t2 .

(A.6)
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More generally, by taking ¢ (x) = x7 (x > 0), then for any ¢ > 0, we obtain the
following moment-based inequality:

E(X —EX)?
P{|X —EX|>1} < — (A7)
Here, the parameter ¢ can be chosen to optimize the upper bound in specific
examples. Such moment bounds often provide sharp estimates for tail probabilities.
A related idea forms the basis of Chernoff’s bounding method. In particular, by
setting ¢ (x) = ** for some s > 0, we can derive a useful upper bound for any
random variable X and t > O:

s X

P(X >t} = P{e’* > ¢} < (A.8)

est
In Chernoff’s method, the goal is to choose an appropriate s > 0 to minimize the
upper bound or make it as small as possible.

Now, we turn to concentration inequalities for sums of independent random
variables. Specifically, we aim to bound probabilities of deviations from the mean,
ie., P{|S, — ES,| > t}, where §,, = Z?:] X;, and X1, ---, X, are independent
real-valued random variables.

By applying Chebyshev’s inequality to S, we obtain

Var(S,) >or Var(X;)
7 = .

P{IS, —BS,| > 1} < > (A9)
In terms of the sample mean, this can be rewritten as
o2
Zx —EXi|z e < —, (A.10)
ne

where 02 = 1 Z; 1 Var(X;). Chernoff’s bounding method is particularly useful for
bounding tall probabilities of sums of independent random variables. By exploiting
the independence property (i.e., the expected value of a product of independent
random variables equals the product of their expected values), Chernoff’s bound
can be expressed as

P{S, —ES, >t} <e™*E |:exp (s Z(Xi - EX,-))1|
i=1

e 1_[ E [exp (s(X; —EX;))] (by independence).
i=1
(A.11)
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Now, the challenge then becomes finding a good upper bound for the moment
generating function of the random variables X; — EX;. For bounded random
variables, one of the most elegant results is Hoeffding’s inequality [6].

Lemma A.3 (Hoeffding’s Inequality) Let X be a random variable with EX =
0,a < X <b. Then, fors >0

(A.12)

s2(b — a)?
=)

E[e™*] < exp <

This lemma, combined with Eq. (A.11), immediately implies Hoeffding’s tail
inequality [6].

Theorem A.1 Let X1, ---, X, be independent bounded random variables such
that X; falls in the interval [a;, b;] with probability one. Then, for any real number
t > 0, we have

—2¢2
P{S, —ES, >t} <exp <—Zn o a-)2) , (A.13)
i=1\"1 —

and

—2¢2
P{S, —ES, < —t} <exp <m> , (A.14)
i=1(bi —ai

Hoeffding’s inequality, first proven for binomial random variables by [2] and [9],
provides a powerful tool for bounding tail probabilities. However, a limitation is
that it does not take into account the variance of the X;’s, which can sometimes
yield loose bounds.



Appendix B
Haar Measure and Unitary #-Design

In this section, we introduce some basic knowledge of Haar measure [4] and unitary
t-design [3], which are extensively employed in group representation theory and
quantum information [1, 8], especially in the analysis of barren plateaus and the
trainability of variational quantum algorithms [7].

We begin with the Haar measure. Roughly speaking, Haar measure is a unique
probability measure that generates the uniform distribution over a compact group.
In this chapter, we focus on the Haar measure on the unitary space U(d) for
convenience. Mathematically, the Haar measure is uniform given by invariant
properties in Definition B.1.

Definition B.1 (Haar Measure on U/(d)) A measure u is the Haar measure on the
unitary space U(d) if and only if u is:

1. Left invariant, i.e., w(US) = u(S) for any measurable set S € U(d) and any
unitary U € U(d).

2. Right invariant, i.e., w(SU) = u(S) for any measurable set S € U(d) and any
unitary U € U(d).

3. A probability measure, i.e., [du(U) = 1.

As provided in Definition B.1, the Haar measure is continuous on the whole space
due to left- and right-invariant properties. Therefore, researchers are interested in
approximating the Haar measure with the uniform distribution over some finite sets.
Specifically, the unitary set whose uniform distribution shares the same #-th moment
with the Haar measure is defined as the unitary 7-design.

Definition B.2 (Unitary 2-Design) Let u be the Haar measure on the space U(d).
Then, a finite set S forms a unitary ¢-design if and only if it fulfills one of the
following equivalent conditions:
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1
S| ZU@”@(U*)@’ [u “ U® @ UHdu).

2. Let P;;(U) be the polynomial with at most ¢ degrees of elements from U and at
most 7 degrees of elements from U. Then

|S|ZP,,(U> / P (U)dp(U).

Corollary B.1 A unitary t-design is also a unitary (t — 1)-design.

We remark that invariant properties of the Haar measure lead to several useful
formulations of unitary ¢-designs provided in Facts B.1 and B.2.

Fact B.1 (Average over Unitary 1-Design [10]) Let S be a set of unitary 1-design
on U(d) and u be the corresponding Haar measure. Then

1
* — Y Y
ISI E UijUj, = [u(d) UijUjs jdp(U) = 818

Fact B.2 (Average over Unitary 2-Design [10]) Let S be a set of unitary 2-design
on U(d) and p be the corresponding Haar measure. Then

L)

1
E UX;gUhjl UiszUl’jlfU/ = [u(d) Uiljl Uizjz ;?]1, U;ij/du(U)
S

1
2 (8111 812158111’8121 81112812115111§8m )

1
d(dz 1) ( i 5!2!§811/§5/21f + Slllzalzllsjljfajzlz)

How big is a unitary #-design? [11] have proved that, for instance, the size of
unitary 1-design and unitary 2-design scale polynomially to the dimension of the
unitary space.

Fact B.3 (The Size of a Unitary 2-Design [11]) A unitary 1-design on U(d) has
no fewer than d* elements. A unitary 2-design on U(d) has no fewer than d* —
2d? + 2 elements.

For a system with N qubits, the dimension of the unitary space is d = 2V.
Therefore, an exact #-design could involve exponential numbers of ensembles with
increased qubits. Could we obtain an approximation to the unitary 7-design, which
can be generated in polynomial times with less degree of freedom? [5] has proved
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that random quantum circuits with linear depths could form an approximate unitary
t-design.

Definition B.3 (Approximate Unitary Designs) Let © be the Haar measure
on the space U(d). We denote the moment superoperator <I>ff)(A) =
fw( " U®'A(UT®". Denote by M,(C) the n x n complex matrices. Denote
by [[®llo = maxy.x),<i I(® ® I,)X||; the diamond norm for the linear
transformation & : M,(C) — M, (C) and X € M,>(C). Then, a probability
distribution v on U(d) is an e-approximate unitary ¢-design if

€

< —

o) _ @
[0 - 0| <

Fact B.4 (Random Quantum Circuits Form Approximate Unitary Designs,
Informal Version from [5]) For the number of qubits N > O(logt), alternative
layered random quantum circuits with Haar-random unitary gates sampled from
U(4) lead to an e-approximate unitary t-design when the circuit depth

1
k>0 <t4+”(1) (Nt + log —)) ,
€

where the term 0o(1) — 0 when t — o0.
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