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Preface

This book originates from my work on infinite-dimensional analysis in relation to
mathematical studies of supersymmetric quantum field theory, which started in 1984
and still continues. During the course of the research, I discovered an intrinsic math-
ematical structure that some models in supersymmetric quantum field theory have in
common. It may be characterized as the theory of infinite-dimensional Dirac oper-
ators on the abstract boson–fermion Fock space, the tensor product Hilbert space of
the abstract boson Fock space and the abstract fermion Fock space. I consider it one
of the most important results in this research and to be developed further.

The present book is written as an introduction to analysis of the abstract boson–
fermion Fock space with applications to mathematical supersymmetric quantum
field theory, which forms an interesting field of infinite-dimensional analysis. The
emphasis is put on the theory of infinite-dimensional Dirac operators as suggested
above. Since infinite-dimensional Dirac operators may have relations to infinite-
dimensional geometry, the book may be read also from that viewpoint.

A general background behind the infinite-dimensional analysis treated in the book
is found in the abstract supersymmetric quantum mechanics (SQM). For this reason,
we begin with a review of the mathematical theory of it in Chap. 1. The abstract SQM
can be applied to both SQM with finite degrees of freedom and SQM with infinite
degrees of freedom including supersymmetric quantum field theory. In Chap. 2, we
summarize fundamental aspects of the theory of Fock spaces (full Fock space, boson
Fock space and fermion Fock space) within the scope of the following chapters. In
Chap. 3, we review the Q-space representation—a probability-theoretical represen-
tation—of the abstract boson Fock space, which is useful to derive path (functional)
integral representations for vacuum expectation values or traces of operators with
respect to the heat semi-groups generated by boson second quantization operators and
their perturbations. Chapter 4 is themain body of the present book and is devoted to an
introductory description of the theory of infinite-dimensional Dirac operators on the
abstract boson-fermion Fock space. We see that the theory is a realization of infinite
Hilbert complexes as general concepts. Moreover, we construct an abstract inter-
acting supersymmetric quantum field model in terms of infinite-dimensional Dirac
operators on the abstract boson–fermion Fock space. In the last chapter, we show

v
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that the two-dimensional N = 1 and N = 2 Wess–Zumino models in supersym-
metric quantum field theory are concrete realizations of the abstract supersymmetric
quantum field model introduced in Chap. 4 and hence that the theory in Chap. 4 gives
an abstract unification of the models.

Since the book is introductory as mentioned above, two appendices are added. In
Appendix A, self-adjoint extensions of a symmetric operator matrix are described.
Appendix B concerns the construction of an infinite-dimensional Gaussian measure
on the space of continuous functions with values in a real Hilbert space on a finite
interval (a path space). For the same reason, the references are not intended to be
complete.

The intended audience for the present book is mainly graduate students and non-
experts in mathematics and mathematical physics who are interested in infinite-
dimensional analysis as well as mathematical analysis of quantum field theories,
including supersymmetric ones.

I would like to thank Roman Gielerak for inviting me to deliver a series of lectures
on infinite-dimensional Dirac operators at the XXVIII Karpacz Winter School of
Theoretical Physics, Poland, 1992, Rémi Léandre and Sylvie Paycha for their kind
interest in my work and inviting me to Institut de Recherche Mathématique Avancée
(IRMA), Université de Strasbourg in 1994 and Itaru Mitoma (deceased) for joint
work on infinite-dimensional analysis on the abstract boson–fermion Fock space.
My thanks go also to Mr. Masayuki Nakamura, editor, at Springer Japan for inviting
me to write a book in the series of Springer Briefs in Mathematical Physics.

Sapporo, Japan
June 2022

Asao Arai
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Chapter 1
Abstract Supersymmetric Quantum
Mechanics

Abstract We review basic aspects of the mathematical theory of abstract super-
symmetric quantum mechanics, which can be applied to supersymmetric quantum
mechanics both with finite degrees of freedom and with infinite degrees of freedom,
including supersymmetric quantum field theory.

1.1 Definition and Basic Properties

An abstract form of supersymmetric quantum mechanics is defined as follows [5,
64] (for physical backgrounds, see, e.g., [66–68]):

Definition 1.1 Let N ∈ N. A quadruple (H , Γ , {Qi }Ni=1, H ) consisting of a Hilbert
space1 H and linear operators Γ , Qi (i = 1, . . . , N ), H on H satisfying the fol-
lowing (i)–(iv) is called a supersymmetric quantum mechanics (SQM):

(i) Γ is self-adjoint and unitary with Γ �= ±I (I denotes identity).
(ii) For each i = 1, . . . , N , Qi is self-adjoint and H = Q2

i .
(iii) For each i = 1, . . . , N , Γ leaves Dom(Qi ), the domain of Qi , invariant (i.e.
Γ (Dom(Qi )) ⊂ Dom(Qi )) and anti-commutes with Qi on Dom(Qi ): for allΨ ∈
Dom(Qi ),

{Γ, Qi }Ψ = 0 , (1.1)

where { , } denotes anti-commutator: {A, B} := AB + BA for algebraic objects
A and B.
(iv) In the case N ≥ 2, for all i, j = 1, . . . , N with i �= j , Qi and Q j anti-commute
on Dom(Qi ) ∩ Dom(Q j ) in the sense of sesquilinear form:

1 In this book, we mean by a “Hilbert space" a complex Hilbert space unless otherwise stated. We
denote the inner product and the norm of a Hilbert spaceH by 〈 , 〉H (linear in the second vector)
and ‖ · ‖H respectively. But, if there is no danger of confusion, we write them simply 〈 , 〉 and
‖ · ‖ respectively.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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2 1 Abstract Supersymmetric Quantum Mechanics

〈
QiΨ, Q j�

〉 + 〈
Q jΨ, Qi�

〉 = 0, Ψ,� ∈ Dom(Qi ) ∩ Dom(Q j ).

In Definition 1.1, H denotes the Hilbert space of state vectors of the SQM. It
follows from condition (ii) that H is a non-negative self-adjoint operator onH . Each
operator Qi and H are called a self-adjoint supercharge (or simply a supercharge)
and the supersymmetric Hamiltonian in the SQM respectively. The number N
of self-adjoint supercharges is called the degree of supersymmetry. If N = n for a
specific natural number n, then (H , Γ, {Qi }ni=1, H) is called an N = n SQM. We
denote an N = 1 SQM by (H , Γ, Q, H) (Q := Q1).

For a linear operator A on a Hilbert space, we denote by σ(A) (resp. σp(A)) the
spectrum (resp. the point spectrum) of A.2

Condition (i) in Definition 1.1 implies that

Γ 2 = I, σ (Γ ) = σp(Γ ) = {−1, 1}, (1.2)

hence Γ is a grading operator on H .3 It follows from condition (ii) that

Dom(H 1/2) = Dom(|Qi |) = Dom(Qi ) (i = 1, . . . , N ), |Qi | = H 1/2, (1.3)

where, for a self-adjoint operator A, |A| denotes the modulus of A: |A| :=∫ |λ|dEA(λ) (EA is the spectral measure of A) and, if A is non-negative, then A1/2

is defined by A1/2 := ∫
λ1/2dEA(λ).4

1.2 Reflection Symmetry of the Spectrum of a Self-adjoint
Supercharge

Let (H , Γ, {Qi }Ni=1, H) be an SQM and denote any Qi by Q. Then:

Theorem 1.1

(i) The spectrum σ(Q) is reflection symmetric with respect to the origin of R, i.e.,
if λ ∈ σ(Q), then −λ ∈ σ(Q).

2 σ(A) := C \ ρ(A), where ρ(A) := {z ∈ C|A − z is injective and Ran(A − z), the range of A −
z, is densewith (A − z)−1 being bounded}, the resolvent set of A, andσp(A) is the set of eigenvalues
of A.
3 A self-adjoint unitary operator γ on a Hilbert space with γ �= ±I is called a grading operator
on H .
4 In general, for a self-adjoint operator A on a Hilbert spaceK and a Borel measurable function f
on R, the operator f (A) is defined as the operator satisfying the following: Dom( f (A)) = {Ψ ∈
K | ∫

R
| f (λ)|2d‖EA(λ)Ψ ‖2 < ∞} and 〈�, f (A)Ψ 〉 = ∫

R
f (λ)d 〈�, EA(λ)Ψ 〉 ,� ∈ K , Ψ ∈

Dom( f (A)). The operator f (A) is symbolically denoted as f (A) = ∫
f (λ)dEA(λ).



1.2 Reflection Symmetry of the Spectrum of a Self-adjoint Supercharge 3

(ii) Suppose that σp(Q) �= ∅. Then, for each λ ∈ σp(Q), −λ is in σp(Q) and the
dimension of ker(Q − λ),5 the eigenspace of Q with eigenvalue λ, coincides with
that of ker(Q + λ), the eigenspace of Q with eigenvalue −λ:

dim ker(Q − λ) = dim ker(Q + λ). (1.4)

Proof (i) Condition (i) in Definition 1.1 implies that Γ −1 = Γ . This property and
condition (iii) in Definition 1.1 imply the operator equality6

Γ QΓ −1 = −Q. (1.5)

Hence Q and −Q are unitarily equivalent. It follows from the unitary invariance
of the spectrum of a linear operator that σ(Q) = σ(−Q). This means that σ(Q) is
symmetric with respect to the origin of R.

(ii) By (1.5), for all z ∈ C, we have Γ (Q − z)Γ −1 = −(Q + z). In particular,
for each λ ∈ σp(Q), this equation implies that −λ ∈ σp(Q) and Γ ker(Q − λ) =
ker(Q + λ). Hence (1.4) follows. �

Since we have

H = Q2, (1.6)

it follows that

ker H = ker Q. (1.7)

The spectrum of Q is related to that of H in the way stated in the following
theorem:

Theorem 1.2 (i) σ(Q) = {±√
μ|μ ∈ σ(H)}; (ii) σp(Q) = {±√

μ|μ ∈ σp(H)}.
Proof (i) By (1.3) and the spectral mapping theorem, we have σ(|Q|) = {√μ|μ ∈
σ(H)}. We denote by EQ the spectral measure of the self-adjoint operator Q.
Let E+ := Ran(EQ((0,∞))) and E− := Ran(EQ((−∞, 0))). Then we have the
orthogonal decomposition H = E+ ⊕ ker Q ⊕ E−. The operator Q is reduced
by E±7 and ker Q. We denote the reduced part of Q to E± (resp. ker Q) by

5 For a linear operator A on a Hilbert space, ker A := {Ψ ∈ Dom(A)|AΨ = 0}, the kernel of A.
6 Let A and B be linear operators from aHilbert spaceH1 to a Hilbert spaceH2. (i) B is said to be an
extension of A if Dom(A) ⊂ Dom(B) and AΨ = BΨ,Ψ ∈ Dom(A). In this case, wewrite A ⊂ B.
(ii) A is said to be equal to B if Dom(A) = Dom(B) and AΨ = BΨ,Ψ ∈ Dom(A)(= Dom(B)).
In this case, we write A = B. This type of equality is called operator equality. It follows that A = B
if and only if A ⊂ B and B ⊂ A. The notion of extension of linear operator is important in treating
linear operators not everywhere defined, in particular, unbounded linear operators.
7 A linear operator A on a Hilbert space H is said to be reduced by a closed subspace M of
H if, for all Ψ ∈ Dom(A), PM Ψ (PM is the orthogonal projection to M ) is in Dom(A) and
APM Ψ = PM AΨ . In this case, one can define an operator AM onM as follows: Dom(AM ) :=
Dom(A) ∩ M , AM Ψ := AΨ, Ψ ∈ Dom(AM ). The operator AM is called the reduced part of A
to M .
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Q(±) (resp. Q(0)). By functional calculus, we have Q = Q(+) ⊕ Q(0) ⊕ Q(−) and
|Q| = Q(+) ⊕ Q(0) ⊕ (−Q(−)). Hence

σ(Q) = σ(Q(+)) ∪ σ(Q(0)) ∪ σ(Q(−)), σ (|Q|) = σ(Q(+)) ∪ σ(Q(0)) ∪ σ(−Q(−)).

By Theorem 1.1 (i), σ(±Q(−)) \ {0} = σ(∓Q(+)) \ {0}. Therefore σ(|Q|) \ {0} =
σ(Q(+)) \ {0}. Thus σ(Q) \ {0} = (σ (|Q|) \ {0}) ∪ (σ (−|Q|) \ {0}). This implies
the following: (a) if ker Q = {0}, thenσ(Q) = σ(|Q|) ∪ σ(−|Q|).Hence the desired
result holds; (b) if ker Q �= {0}, then σ(Q(0)) = {0} and hence, by (1.7), 0 ∈ σ(H).
Therefore 0 ∈ σ(Q) and the desired result holds.

(ii) (1.6) implies thatσp(Q) ⊂ {λ ∈ R|λ2 ∈ σp(H)}. Conversely, letλ ∈ Rbe such
that λ2 ∈ σp(H). Then there exists a non-zero vectorΨ ∈ Dom(H) such that HΨ =
λ2Ψ . Hence, by (1.6), (Q − λ)(Q + λ)Ψ = 0. This implies that −λ ∈ σp(Q) or
λ ∈ σp(Q). Hence, by Theorem 1.1 (ii), λ ∈ σp(Q). Therefore σ(Q) = {λ ∈ R|λ2 ∈
σp(H)}. Thus the desired result holds. �

1.3 Orthogonal Decomposition of State Vectors

By (1.2), H has the orthogonal decomposition

H = H+ ⊕ H− = {(Ψ+, Ψ−)|Ψ± ∈ H±} (1.8)

with H+ := ker(Γ − 1), H− := ker(Γ + 1). The closed subspaces H+ and H−
are called the bosonic subspace and the fermionic subspace respectively. A non-
zero vector in H+ (resp. H−) is called a bosonic (resp. fermionic) state. Since
Γ Ψ± = ±Ψ± for all Ψ± ∈ H±, we call the operator Γ the state–sign operator.8

Let P± be the orthogonal projections onto H±. Then we have

Γ = P+ − P−. (1.9)

By this equation and the relation P+ + P− = I , we obtain

P± = 1

2
(I ± Γ ). (1.10)

8 In the physics literature, Γ is often written as “(−1)F”.
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1.4 Operator Matrix Representations

SinceH has the orthogonal decomposition (1.8), a linear operator onH may have
an operator matrix representation with respect to (1.8) (see Appendix A). By (1.9)
and Remark A.1 in Appendix A, we have

Γ = I ⊕ (−I ) =
(
I 0
0 −I

)
. (1.11)

We next derive the operator matrix representation of Q with respect to (1.8).

Lemma 1.1 For all Ψ ∈ Dom(Q), P±Ψ ∈ Dom(Q) and QP+Ψ = P−QΨ ,
QP−Ψ = P+QΨ . In particular, Q maps Dom(Q) ∩ H± toH∓.

Proof An easy exercise (use (1.10) and (1.1)). �

For two Hilbert spaces H and K , we denote by C(H ,K ) the set of densely
defined closed linear operators from H toK .

It follows from Lemma 1.1 and Lemma A.1 (i)–(ii) that the operator matrix rep-
resentation of Q with respect to (1.8) takes the form:

Q =
(

0 Q−
Q+ 0

)

with Q+ ∈ C(H+,H−) and Q− ∈ C(H−,H+). The self-adjointness of Q and The-
orem A.1 (ii) imply that Q− = Q∗+, the adjoint of Q+. Hence we obtain

Q =
(

0 Q∗+
Q+ 0

)
. (1.12)

Applying Lemma A.2 to the case A = B = Q and using (1.6) and (1.12), we
obtain the operator matrix representation of H :

H =
(
H+ 0
0 H−

)
= H+ ⊕ H− (1.13)

with

H+ := Q∗
+Q+, H− := Q+Q∗

+. (1.14)

Hence H is reduced byH± and the reduced part of H toH+ (resp.H−) is given by
H+ (resp. H−). The operators H± are non-negative self-adjoint operators. We call
H+ (resp. H−) the bosonic (resp. fermionic) Hamiltonian. It follows from (1.14)
that H± = |Q±|2 and hence

H 1/2
± = |Q±|. (1.15)
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1.5 Construction of SQM

In this section, we describe two methods to construct an SQM in an abstract frame-
work.

1.5.1 Method I

Let (K+,K−, A) be a triple consisting of Hilbert spacesK± and A ∈ C(K+,K−).
Then the triple yields the direct sum Hilbert space K := K+ ⊕ K− and operators

hA := A∗A ⊕ AA∗ =
(
A∗A 0
0 AA∗

)
, qA :=

(
0 A∗
A 0

)
.

It is easy to see that hA and qA are self-adjoint [22, Proposition B.1, Theorem B.2].
It follows that hA = q2

A. It is obvious that the operator ΓK := I ⊕ (−I ) on K is a
grading operator. Thus (K , ΓK , qA, hA) is an N = 1 SQM. This method can easily
be extended to construct an SQM with supersymmetry of degree N ≥ 2.

1.5.2 Method II

In applications to concrete models of SQM, there may be the case where only the
symmetricity9 of the operator which is expected to be a supercharge is known and it
may be non-trivial to prove or disprove its (essential) self-adjointness. In this case,
one may proceed as follows. Let (H , Γ, Q) be a triple consisting of a Hilbert space
H , a grading operator Γ on H and a closed symmetric operator Q such that Q
anti-commutes with Γ on Dom(Q): for all Ψ ∈ Dom(Q), Γ Ψ is in Dom(Q) and

Γ QΨ + QΓ Ψ = 0. (1.16)

Such an operator Q is called an abstract Dirac operatorwith respect to Γ . We have
the orthogonal decomposition (1.8). Then Q has the operator matrix representation

Q =
(

0 Q−
Q+ 0

)
,

9 A linear operator S on a Hilbert space is said to be symmetric if Dom(S) is dense and, for all
Ψ,� ∈ Dom(S), 〈�, SΨ 〉 = 〈S�,Ψ 〉. It follows that S is symmetric if and only if Dom(S) is dense
and S ⊂ S∗ (i.e., S∗ is an extension of S).
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where Q± := Q � Dom(Q) ∩ H± (the restriction of Q to Dom(Q) ∩ H±). It fol-
lows that Q± are densely defined closed linear operators. Hence, by Theorem A.2 in
Appendix A, the operators

Q1 :=
(

0 Q∗+
Q+ 0

)
, Q2 :=

(
0 Q−
Q∗− 0

)

are self-adjoint extensions of Q.Moreover, using (1.11) and LemmaA.2 inAppendix
A, one can show that (1.16) holds with Q replaced by Q1 and Q2 respectively.
Thus we have two SQM (H , Γ, Q1, H1) and (H , Γ, Q2, H2) with H1 := Q2

1 and
H2 := Q2

2. If Q is self-adjoint, then Q = Q1 = Q2. But, if Q is not self-adjoint,
then Q1 �= Q2.

1.6 Spectral Supersymmetry

Let (H , Γ, {Qi }Ni=1, H) be an SQM. Then, by (1.13), we have

σ(H) = σ(H+) ∪ σ(H−) ⊂ [0,∞), σp(H) = σp(H+) ∪ σp(H−).

Moreover, there exist characteristic structures between the spectra of the bosonic
Hamiltonian H+ and those of the fermionic Hamiltonian H−:

Theorem 1.3 (spectral supersymmetry)

σ(H) \ {0} = σ(H+) \ {0} = σ(H−) \ {0},
σp(H) \ {0} = σp(H+) \ {0} = σp(H−) \ {0}.

Moreover, for each E ∈ σp(H+) \ {0}, define UE : ker(H+ − E) → H− by

UEΨ := 1√
E
Q+Ψ, Ψ ∈ ker(H+ − E).

Then Ran(UE ) = ker(H− − E) and UE is a unitary operator from ker(H+ − E) to
ker(H− − E). In particular,

dim ker(H+ − E) = dim ker(H− − E)

and each positive eigenvalue E of H is degenerate with dim ker(H − E) being even
or ∞.
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Theorem 1.3 can be proved by an application of a general theorem:

Theorem 1.4 (Deift’s theorem) LetH ,K be Hilbert spaces and A ∈ C(H ,K ).
Then A∗A and AA∗ are non-negative self-adjoint operators on H and K respec-
tively and

σ(A∗A) \ {0} = σ(AA∗) \ {0}, (1.17)

σp(A
∗A) \ {0} = σp(AA

∗) \ {0}.

Moreover, for each λ ∈ σp(A∗A) \ {0}, the operator Uλ : ker(A∗A − λ) → K
defined by

UλΨ := 1√
λ
AΨ, Ψ ∈ ker(A∗A − λ)

is a unitary operator from ker(A∗A − λ) to ker(AA∗ − λ). In particular,

dim ker(A∗A − λ) = dim ker(AA∗ − λ).

For proof of this theorem, we refer the reader to [31] or [22, Theorem 7.23], [18,
Theorem 9.8].

Proof of Theorem 1.3

We have (1.13) and (1.14). Hence we need only to apply Theorem 1.4 to the case
where H = H+, K = H− and A = Q+. �

The degenerate structure of each positive eigenvalue of the supersymmetric
Hamiltonian H described in Theorem 1.3 is interesting to note.

1.7 Ground States

In general, for a self-adjoint operator A on a Hilbert space, which is bounded from
below, the infimum of the spectrum of A

E0(A) := inf σ(A) > −∞

is called the lowest energy of A.10 If E0(A) > 0, then A is said to be strictly positive.
If E0(A) is an eigenvalue of A (i.e., E0(A) ∈ σp(A)), then each non-zero vector

in ker(A − E0(A)) (resp. E0(A)) is called a ground state (resp. the ground state

10 Originally this term is used only for the casewhere A denotes a quantummechanicalHamiltonian.
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energy) of A. In this case, we say that A has a ground state. If dim ker(A − E0(A)) =
1 (resp. dim ker(A − E0(A)) ≥ 2), then the ground sate of A is said to be unique
(resp. degenerate). If E0(A) = 0 ∈ σp(A), then a ground state of A is called a zero-
energy ground state.

Theorem 1.3 yields the following result:

Theorem 1.5 If H is strictly positive and has a ground state, then the ground state
of H is degenerate with dim ker(H − E0(H)) being an even number or ∞.

With regard to zero-energy ground states of H , we have by (1.13)

ker H = ker H+ ⊕ ker H−. (1.18)

Hence, if ker H �= {0} (i.e., H has a zero-energy ground state), then ker H+ �= {0}
or ker H− �= {0}.

1.8 Spontaneous Supersymmetry Breaking and an Index
Formula

Physically, the supercharge Q is interpreted as the generator of supersymmetry in
the SQM under consideration. Hence a state vector eliminated by Q is regarded as
a state with supersymmetry. Based on this picture, a non-zero vector Ψ ∈ Dom(Q)

such that QΨ = 0 (if it exists) is called a supersymmetric state. Hence the set of
supersymmetric states is given by ker Q \ {0}.

If ker Q = {0}, then there exist no supersymmetric states. In this case, we say that
the supersymmetry is spontaneously broken.

Using (1.7), one can characterize the spontaneous supersymmetry breaking in
terms of the supersymmetric Hamiltonian H :

Theorem 1.6 The supersymmetry is spontaneously broken if and only if H has no
zero-energy ground states. In particular, if H is strictly positive, then the supersym-
metry is spontaneously broken.

It follows from (1.12) that

ker Q = ker Q+ ⊕ ker Q∗
+. (1.19)

Hence

dim ker Q = dim ker Q+ + dim ker Q∗
+ ∈ Z+ ∪ {∞},

where Z+ := {0} ∪ N (the set of non-negative integers).
In general, for a densely defined linear operator A from aHilbert space to a Hilbert

space such that at least one of ker A and ker A∗ is finite-dimensional, one can define
an object
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ind A := dim ker A − dim ker A∗ ∈ Z ∪ {±∞},

whereZ is the set of integers. This object is called the indexof A. It iswell known that,
even if dim ker A and dim ker A∗ are not calculated, there exist cases where ind A
can be calculated; the so-called “index theorems" give methods of such calculations
(see, e.g., [33]).

A necessary condition for the supersymmetry to be spontaneously broken is given
as follows:

Proposition 1.1 If the supersymmetry is spontaneously broken, then ind Q+ = 0.

Proof The present assumption is equivalent to ker Q = {0}. Hence, by (1.19),
ker Q+ = {0} and ker Q∗+ = {0}. Therefore dim ker Q+ = 0 and dim ker Q∗+ = 0.
Thus ind Q+ = 0. �

It follows from (1.14) that

ker H+ = ker Q+, ker H− = ker Q∗
+, (1.20)

which, together with (1.18), imply that

ker H = ker Q+ ⊕ ker Q∗
+.

The difference between the number of bosonic zero-energy states and that of
fermionic zero-energy states

ΔW := dim ker H+ − dim ker H−

is called theWitten index, provided that one of dim ker H+ and dim ker H− is finite.
By (1.20), we have

ind Q+ = ΔW.

By this relation and Proposition 1.1, we obtain the following corollary:

Corollary 1.1 If the supersymmetry is spontaneously broken, then ΔW = 0.

In relation to the notion of index of a linear operator, we here recall the definition
of a (semi-) Fredholm operator acting in a Hilbert space.

An operator T ∈ C(H ,K ) (H and K are Hilbert spaces) is said to be semi-
Fredholm if Ran(T ) is closed and at least one of dim ker T and dim ker T ∗ is finite.
A semi-Fredholm operator T is called a Fredholm operator if both of dim ker T
and dim ker T ∗ are finite. The importance of (semi-)Fredholm operator lies in that
some stability theorems hold [45, Chapter IV, §5].11

The index of Q+ may be computed in terms of the heat semi-group {e−βH }β≥0

generated by the supersymmetric Hamiltonian H :

11 For a general theory of index of (semi-) Fredholm operator, see, e.g., [33].
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Theorem 1.7 Suppose that, for some constant β0 > 0, e−β0H is trace class. Then,
for all β ≥ β0, e−βH is trace class and Q+ is Fredholm with

ind Q+ = Tr (Γ e−βH ), (1.21)

where Tr denotes trace. The right-hand side is independent of β.

Proof The operator e−β0H is bounded, injective, non-negative and self-adjoint. It
follows that σ(e−β0H ) ⊂ [0, 1]. Since a trace class operator is compact, e−β0H is com-
pact. Hence the spectrum of e−β0H consists of only positive eigenvalues λn, n ≥ 1
(1 ≥ λ1 > λ2 > · · · > 0) with a finite multiplicity mn . By the spectral mapping the-
orem, the spectrum of H is given by {εn}n ⊂ [0,∞) with εn = −β−1

0 log λn and
the multiplicity of εn being equal to mn . In particular, dim ker H < ∞. Hence,
by (1.20), dim ker Q+ < ∞ and dim ker Q∗+ < ∞. By (1.15), we have ‖Q+Ψ ‖ =
‖H 1/2

+ Ψ ‖ ≥ √
δ‖Ψ ‖, Ψ ∈ (ker Q+)⊥ ∩ Dom(Q+), where δ := min σ(H+) \ {0} >

0. This implies that Ran(Q+) is closed. Thus Q+ is Fredholm. For all β ≥ β0,
Tr e−βH = ∑

n≥1 mne−βεn ≤ ∑
n≥1 mne−β0εn = Tr e−β0H < ∞. Hence e−βH is trace

class for all β ≥ β0. Moreover, using by (1.8) and Theorem 1.3, we have

Tr (Γ e−βH ) = Tr e−βH+ − Tr e−βH−

= dim ker H+ − dim ker H− +
∑

εn>0

mne
−βεn −

∑

εn>0

mne
−βεn

= dim ker H+ − dim ker H− = ΔW = ind Q+.

Thus (1.21) holds. �



Chapter 2
Elements of the Theory of Fock Spaces

Abstract We review the theory of Fock spaces within the scope of the following
chapters (for more details, see [22]).

2.1 Full Fock Space

Let H be a Hilbert space. For each n ∈ N, we denote the n-fold tensor product
Hilbert space of H by ⊗nH . We set ⊗0H := C. The infinite direct sum Hilbert
space of ⊗nH (n = 0, 1, 2, . . .)

F (H ) : =
∞⊕

n=0

⊗nH =
{

� = {�(n)}∞n=0

∣∣�(n) ∈ ⊗nH , n ≥ 0,
∞∑

n=0

‖�(n)‖2 < ∞
}

is called the full Fock space over H . The algebraic infinite direct sum of ⊗nH
(n = 0, 1, 2, . . .)

F0(H ) : = ⊕̂∞
n=0 ⊗n H

= {
� = {�(n)}∞n=0

∣∣�(n) ∈ ⊗nH , n ≥ 0, ∃n0 ∈ N (�(n) = 0,∀n ≥ n0)
}

is a dense subspace of F (H ). The subspace F0(H ) is called the finite particle
subspace ofF (H ).

For each subspace D of H , we denote by ⊗̂n
D the n-fold algebraic tensor

product of D . It follows that, if D is dense in H , then ⊗̂n
D is dense in ⊗nH . We

set ⊗̂0
D := C. If D is dense in H , then the algebraic infinite direct sum of ⊗̂n

D
(n = 0, 1, 2, . . .)

Ffin(D) : =
⊕̂∞

n=0
⊗̂n

D

is dense inF (H ). It is obvious that Ffin(D) ⊂ F0(H ).
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The vector �H ∈ F (H ) defined by

�
(0)
H := 1, �(n) = 0, n ≥ 1

is called the Fock vacuum in F (H ). This vector plays an important role in the
theory of Fock spaces.

2.2 Boson Fock Space

For each n ∈ N, we denote by Sn the symmetrization operator (symmetrizer) on
⊗nH , i.e., Sn is the bounded linear operator on ⊗nH such that

Sn(ψ1 ⊗ · · · ⊗ ψn) = 1

n!
∑

σ∈Sn

ψσ(1) ⊗ · · · ⊗ ψσ(n), ψi ∈ H , i = 1, . . . , n,

where Sn := {σ : {1, . . . , n} → {1, . . . , n}|σ is injective} denotes the symmetry
group of order n (the permutation group of order n). It is shown that Sn is an orthog-
onal projection [22, Theorem 2.9(ii)]. Hence its range

⊗n
sH := Ran(Sn)

is a closed subspace of ⊗nH . This closed subspace is called the n-fold symmetric
tensor product Hilbert space ofH . We set⊗0

sH := C. In the context of quantum
field theory, ⊗n

sH gives an abstract form of Hilbert spaces of state vectors of n
identical bosons.

The infinite direct sum Hilbert space of ⊗n
sH (n = 0, 1, 2, . . .)

Fb(H ) : =
∞⊕

n=0

⊗n
sH ,

which is a closed subspace of F (H ), is called the boson (or symmetric) Fock
space over H . The vector space

Fb,0(H ) := Fb(H ) ∩ F0(H ),

as a subspace ofFb(H ), is called the bosonic finite particle subspace ofFb(H ).
For each subspace D of H , the vector space

⊗̂n
sD := Sn(⊗̂n

D)
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is called the n-fold algebraic symmetric tensor product ofD . IfD is dense inH , then
⊗̂n

sD is dense in ⊗n
sH . We set ⊗0

sD := C. We denote by Fb,fin(D) the algebraic
infinite direct sum of ⊗̂n

sD ( n = 0, 1, 2, . . .):

Fb,fin(D) : =
⊕̂∞

n=0
⊗̂n

sD .

It follows that, if D is dense inH , then Fb,fin(D) is dense inFb(H ).

2.3 Fermion Fock Space

For eachn ∈ N,wedenote by An the anti-symmetrizationoperator (anti-symmetrizer)
on ⊗nH , i.e., An is the bounded linear operator on ⊗nH such that

An(ψ1 ⊗ · · · ⊗ ψn) = 1

n!
∑

σ∈Sn

sgn(σ )ψσ(1) ⊗ · · · ⊗ ψσ(n), ψi ∈ H , i = 1, . . . , n,

where sgn(σ ) is the sign of the permutation σ . It is shown that An is an orthogonal
projection [22, Theorem 2.9(ii)]. Hence its range

∧n(H ) := Ran(An)

is a closed subspace of ⊗nH . This closed subspace is called the n-fold anti-
symmetric tensor product Hilbert space ofH . Each element of ∧n(H ) is called
an anti-symmetric tensor of order n. We set∧0(H ) := C. In the context of quantum
field theory, ∧n(H ) gives an abstract form of Hilbert spaces of state vectors of n
identical fermions.

The infinite direct sum Hilbert space of ∧n(H ) (n = 0, 1, 2, . . .)

Ff(H ) : =
∞⊕

n=0

∧n(H ), (2.1)

which is a closed subspace of F (H ), is called the fermion (or anti-symmetric)
Fock space over H . The vector space

Ff,0(H ) := Ff(H ) ∩ F0(H ),

as a subspace ofFf(H ), is called the fermionic finite particle subspace ofFf (H ).
For each subspace D of H , the vector space

∧̂n
(D) := An(⊗̂n

D)
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is called the n-fold algebraic anti-symmetric tensor product of D . If D is dense in
H , then ∧̂n

(D) is dense in ∧n(H ). We set ∧0(D) := C. We denote by Ff,fin(D)

the algebraic infinite direct sum of ∧̂n
(D) ( n = 0, 1, 2, . . .):

Ff,fin(D) : =
⊕̂∞

n=0
∧̂n

(D).

It follows that, if D is dense inH , then Ff,fin(D) is dense inFf(H ).
We have the orthogonal decomposition

Ff(H ) = Ff,+(H ) ⊕ Ff,−(H ) (2.2)

withFf,+(H ) := ⊕∞
p=0 ∧2p (H ), Ff,−(H ) := ⊕∞

p=0 ∧2p+1 (H ).

2.4 Second Quantization Operators on the Full Fock Space

Let An be a linear operator on a Hilbert spaceHn (n ∈ Z+). Then the infinite direct
sum ⊕∞

n=0An of {An}n on the Hilbert space ⊕∞
n=0Hn is defined as follows:

Dom(⊕∞
n=An) :=

{
� ∈ ⊕∞

n=0Hn |�(n) ∈ Dom(An), n ≥ 0,
∞∑

n=0

‖An�(n)‖2 < ∞
}

,

(⊕∞
n=0An�)(m) := Am�(m), � ∈ Dom(⊕∞

n=0An), m ≥ 0.

Let T be a densely defined closed linear operator on H and I be the identity
operator onH . Then, for each j = 1, . . . , n, one has a tensor product operator [22,
§3.7]:

Tj := I ⊗ · · · ⊗ I⊗
j th
�

T ⊗I ⊗ · · · ⊗ I

acting in ⊗nH , which is densely defined closed. The set {Tj }nj=1 yields a densely
defined closed linear operator on ⊗nH :

T (n) :=
n∑

j=1

Tj , (2.3)

where, for a closable linear operator L , L̄ denotes the closure of L . We set T (0) := 0
acting in ⊗0H . Then the infinite direct sum of {T (n)}n

dΓ (T ) : = ⊕∞
n=0T

(n)
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is a densely defined closed linear operator onF (H ). The operator dΓ (T ) is called
the second quantization operator (or simply second quantization) of T on the full
Fock spaceF (H ). It is known that, if T be self-adjoint, then dΓ (T ) is self-adjoint
[22, Theorem 4.8]. It is obvious that �H ∈ Dom(dΓ (T )) and

dΓ (T )�H = 0. (2.4)

For a general linear operator A on H (not necessarily a densely defined closed
operator), one has the operator

A(n)
alg :=

n∑

j=1

I ⊗̂ · · · ⊗̂I ⊗̂
j th
�

A ⊗̂I ⊗̂ · · · ⊗̂I (⊗̂ means algebraic tensor product)

with Dom(A(n)
alg) := ⊗̂n

Dom(A). Then one can define the algebraic infinite direct

sum of {A(n)
alg}∞n=0 (A

(0)
alg := 0)

dΓ (alg)(A) := ⊕̂∞
n=0A

(n)
alg . (2.5)

We call the operator dΓ (alg)(A) the algebraic second quantization of A.
There is another type of second quantization operator on the full Fock space

F (H ). It is defined by the infinite direct sum of n-fold tenor product operators
⊗nT := T ⊗ T ⊗ · · · ⊗ T (n = 0, 1, 2, . . .) of T with ⊗0T := 1:

Γ (T ) := ⊕∞
n=0 ⊗n T .

We call it the Γ -operator of T or the second quantization of second kind of T [17,
§3.3]. If T is unitary, then so is Γ (T ). A relation between dΓ (·) and Γ (·) is given
as follows: for each self-adjoint operator T on H ,

Γ (eitT ) = eitdΓ (T ), t ∈ R.

For other properties of Γ (·), see [22, Theorem 4.11].

2.5 Boson Second Quantization Operators

Let T be a densely defined closed linear operator on H and T (n) be the operator
defined by (2.3). Then one can show that, for all n ∈ N, SnT (n) ⊂ T (n)Sn (i.e., T (n)Sn
is an extension of SnT (n)). Since Sn is the orthogonal projection onto⊗n

sH , it follows
that T (n) is reduced by ⊗n

sH . We denote its reduced part to ⊗n
sH by T (n)

s . Then
one can define a closed linear operator on the boson Fock space Fb(H ) by
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dΓb(T ) := ⊕∞
n=0T

(n)
s

with T (0)
s := 0. This operator is called the boson second quantization operator of

T . It follows that, if T is self-adjoint, then so is dΓb(T ) [22, Theorem 1.38]).
The boson second quantization operator of the identity I onH

Nb := dΓb(I )

is called the boson number operator. The name comes from the following easily
proved formula:

Nb � ⊗n
sH = n, n ≥ 0.

It is easy to see that, for each n ≥ 0, ⊗nT is reduced by ⊗n
sH . We denote its

reduced part by (⊗nT )s and define

Γb(T ) := ⊕∞
n=0(⊗nT )s

acting in Fb(H ). We call it the boson Γ -operator of T or the boson second
quantization of second kind of T . It follows that, if T is unitary, then so is Γb(T ).

2.6 Fermion Second Quantization Operators

One can show that, for all n ∈ N, AnT (n) ⊂ T (n)An . Since An is the orthogonal
projection onto ∧n(H ), it follows that T (n) is reduced by ∧n(H ). We denote its
reduced part to ∧n(H ) by dΓ (n)

f (T ). We set dΓ (0)
f (T ) := 0. Then one can define a

closed linear operator on the fermion Fock space Ff(H ) by

dΓf(T ) := ⊕∞
n=0dΓ

(n)
f (T ).

This operator is called the fermion second quantization operator of T . It is shown
that, if T is self-adjoint, then so is dΓf(T ).

The fermion number operator is defined by

Nf := dΓf(I ). (2.6)

As in the case of the boson number operator, we have

Nf � ∧n(H ) = n, n ≥ 0. (2.7)

It is easy to see that ⊗nT is reduced by ∧n(H ). We denote its reduced part by
∧n(T ). Then the operator defined by
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Γf(T ) := ⊕∞
n=0 ∧n (T ) (2.8)

acting in Ff(H ) is called the fermion Γ -operator of T or the fermion second
quantization of second kind of T . If T is unitary, then so is Γf(T ).

2.7 Infinite Determinants

Let T be a trace class operator onH . Then it is shown that, for all n ≥ 0, ∧n(T ) is
trace class [57, p. 323, Lemma 3]. Moreover, the infinite series

det(1 + T ) :=
∞∑

n=0

Tr ∧n (T )

is absolutely convergent [57, p.323, Lemma 4]. The number det(1 + T ) is called the
determinant of 1 + T . It follows from (2.8) that Γf(T ) is trace class and

det(1 + T ) = Tr Γf(T ).

We next consider the case where T is Hilbert–Schmidt. In this case, one needs
a regularization to define a notion of determinant of 1 + T . One can show that the
operator

R2(T ) := (1 + T )e−T − 1

is trace class [63, Lemma 9.1]. Hence one can define

det2(1 + T ) := det(1 + R2(T )).

This is called the regularized determinant of the Hilbert–Schmidt operator T .

2.8 Boson Creation and Annihilation Operators

LetH be a Hilbert space. Then, for each f ∈ H , there exists a unique closed linear
operator A( f ) on the boson Fock space Fb(H ) such that its adjoint A( f )∗ takes
the following form (see, e.g., [22, §5.7] or [23, §6.4]):

Dom(A( f ))∗) =
{

� ∈ Fb(H )|
∞∑

n=1

‖√nSn( f ⊗ �(n−1))‖2 < ∞
}

,

(A( f )∗�)(0) = 0, (A( f )∗�)(n) = √
nSn( f ⊗ �(n−1)), n ≥ 1, � ∈ Dom(A( f )∗).
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The operator A( f ) is called the boson annihilation operator with test vector
f , while A( f )∗ is called the boson creation operator with test vector f . These
operators have the following properties: for all f ∈ H ,Fb,0(H ) ⊂ Dom(A( f )) ∩
Dom(A( f )∗) and the operator set {A( f ), A( f )∗| f ∈ H } obeys the canonical com-
mutation relations (CCR) on Fb,0(H ): for all f, g ∈ H ,

[A( f ), A(g)∗] = 〈 f, g〉 , (2.9)

[A( f ), A(g)] = 0, [A( f )∗, A(g)∗] = 0 on Fb,0(H ). (2.10)

The Fock vacuum �H ∈ F (H ) belongs toFb(H ) and satisfies

A( f )�H = 0, f ∈ H . (2.11)

It is easy to see that, for all n ∈ N and f1, . . . , fn ∈ H ,

(A( f1)
∗ · · · A( fn)

∗�H )(n) = √
n!Sn( f1 ⊗ · · · ⊗ fn),

(A( f1)
∗ · · · A( fn)

∗�H )(m) = 0, m �= n.

Hence, for each subspace D of H , we have

Fb,fin(D) = span

⎧
⎨

⎩�H ,

⎛

⎝
n∏

j=1

A( f j )
∗
⎞

⎠ �H |n ≥ 1, f1, . . . , fn ∈ D

⎫
⎬

⎭ , (2.12)

where, for a subsetM of a vector space, spanM denotes the subspace algebraically
spanned by M . It is easy to see that, for any densely defined closed linear operator
T on H , Fb,fin(Dom(T )) ⊂ Dom(dΓb(T )) and, for all n ∈ N and f1, . . . , fn ∈
Dom(T ),

dΓb(T )A( f1)
∗ · · · A( fn)

∗�H =
n∑

j=1

A( f1)
∗ · · · A(T f j )

∗ · · · A( fn)
∗�H . (2.13)

In what follows, we denote by A( f )# either A( f ) or A( f )∗. It is well known
that, for all f ∈ H . Dom(N 1/2

b ) ⊂ Dom(A( f )#) [22, Corollary 5.9]. With regard
to continuity of A( f )# in f ∈ H , we have:

Lemma 2.1 Let fn, f ∈ H and limn→∞ fn = f . Then, for all � ∈ Dom(N 1/2
b ),

limn→∞ A( fn)#� = A( f )#�.

Proof See [22, Lemma 5.13(iii)]. �
Let T be a self-adjoint operator onH . Then one can prove the following operator

equalities [22, Lemma 5.21]:

eitdΓb(T )A( f )#e−i tdΓb(T ) = A(eitT f )#, t ∈ R, f ∈ H , (2.14)
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If dΓb(T ) represents the Hamiltonian of a quantum system, then (2.14) gives the
formula for the time-development of A( f )#.

2.9 Segal Field Operator

For each f ∈ H , the symmetric operator

�S( f ) := 1√
2
(A( f )∗ + A( f ))

on Fb(H ) is called the Segal field operator with test vector f . It is shown that,
for each dense subspaceD ofH , �S( f ) is essentially self-adjoint onFb,fin(D)[23,
Theorem 5.22]. For notational simplicity, we denote the closure of �S( f ), which is
self-adjoint, by the same symbol �S( f ). It follows from (2.9) and (2.10) that, for all
f, g ∈ H ,

[�S( f ),�S(g)] = i Im 〈 f, g〉 onFb,0(H ), (2.15)

where, for a complex number z ∈ C, Im z denotes the imaginary part of z.
Let T be a self-adjoint operator on H . Then, by (2.14), we have

eitdΓb(T )�S( f )e
−i tdΓb(T ) = �S(e

itT f ), t ∈ R, f ∈ H . (2.16)

2.10 Isomorphisms Among Boson Fock Spaces

LetH ′ be a Hilbert space and T : H → H ′ be a unitary operator. Then ⊗nT is a
unitary operator from ⊗n

sH to ⊗n
sH

′. Hence

Γb(T ) := ⊕∞
n=0 ⊗n T

with convention⊗0T := 1 is a unitary operator fromFb(H ) toFb(H ′). Therefore
Fb(H ) and Fb(H ′) are isomorphic under Γb(T ). It is easy to see that

Γb(T )AH ( f )Γb(T )−1 = AH ′(T f ), f ∈ H ,

where AH (·) denotes the annihilation operator on Fb(H ).
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2.11 Fermion Creation and Annihilation Operators

LetK be a Hilbert space. Then, for each u ∈ K , there exists a unique everywhere
defined bounded linear operator B(u) on the fermion Fock space Ff(K ) such that
its adjoint B(u)∗ takes the following form (see, e.g., [22, §6.6 and §6.7]): for all
� ∈ Ff(K ),

(B(u)∗�)(0) = 0, (B(u)∗�)(p) = √
pAp(u ⊗ �(p−1)), p ∈ N.

The operator B(u) is called the fermion annihilation operator with test vector u,
while B(u)∗ is called the fermion creation operatorwith test vector u. The operator
set {B(u), B(u)∗|u ∈ K } obeys the canonical anti-commutation relations (CAR):
for all u, v ∈ K ,

{B(u), B(v)∗} = 〈u, v〉 , (2.17)

{B(u), B(v)} = 0, {B(u)∗, B(v)∗} = 0. (2.18)

Taking v = u in (2.18), we have

B(u)2 = 0, (B(u)∗)2 = 0, u ∈ K . (2.19)

The Fock vacuum �K ∈ F (K ) belongs also toFf(K ) and satisfies

B(u)�K = 0, u ∈ K . (2.20)

Using (2.17), one can show that the operator norm ‖B(u)#‖ of B(u)# is given by

‖B(u)‖ = ‖B(u)∗‖ = ‖u‖. (2.21)

In the same way as in the proof of (2.12), one can show that, for each subspace E
of K , we have

Ff,fin(E ) = span

⎧
⎨

⎩�K ,

⎛

⎝
p∏

j=1

B(u j )
∗
⎞

⎠ �K |p ≥ 1, u j ∈ E , j = 1, . . . , p

⎫
⎬

⎭ .

Let T be a densely defined closed linear operator on K . Then, it follows
that Ff,fin(Dom(T )) ⊂ Dom(dΓf(T )) and, for all p ≥ 1 and u j ∈ Dom(T ), j =
1, . . . , p,

dΓf(T )B(u1)
∗ · · · B(u p)

∗�K =
p∑

j=1

B(u1)
∗ · · · B(Tu j )

∗ · · · B(u p)
∗�K . (2.22)

This formula and (2.21) imply:
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Lemma 2.2 Assume that T ∈ B(K ). Then, for all � ∈ Ff,fin(K ),

‖dΓf(T )�‖ ≤ C�‖T ‖,

where C� is a constant depending on � (independent of T ).

Let T be a self-adjoint operator onK . Then it is shown [22, Theorem 6.18] that,
for all t ∈ R and u ∈ K ,

eitdΓf (T )B(u)#e−i tdΓf (T ) = B(eitT )#. (2.23)

2.12 Fermion Quadratic Operators

For later use (see Sect. 4.11), we here recall some basic objects in the operator theory
on the fermion Fock space Ff(K ).

Let {en}∞n=1 be a complete orthonormal system (CONS) of K .

Lemma 2.3 Let T ∈ B(K ). Then, for all � ∈ Ff,fin(K ),

lim
N→∞

N∑

n=1

B(T en)
∗B(en)� = dΓf(T )�, (2.24)

lim
N→∞

N∑

n=1

B(en)
∗B(T en)� = dΓf(T

∗)�, (2.25)

inFf(K ) independently of the choice of {en}∞n=1.

Proof It is sufficient to prove (2.24) and (2.25) for vectors � of the form

� = B(u1)
∗ · · · B(u p)

∗�K (u1, . . . , u p ∈ K ). (2.26)

In this case, we have

N∑

n=1

B(T en)
∗B(en)� =

p∑

j=1

B(u1)
∗ · · · B(Tu(N )

j )∗ · · · B(u p)
∗�K ,

where u(N )
j := ∑N

n=1

〈
en, u j

〉
en . It is obvious that limN→∞ u(N )

j = u j . Then the

boundedness of T implies that limN→∞ Tu(N )
j = Tu j . Hence, by (2.21), we obtain
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lim
N→∞

N∑

n=1

B(T en)
∗B(en)� =

n∑

j=1

B(u1)
∗ · · · B(Tu j )

∗ · · · B(u p)
∗�K = dΓf(T )�,

where we have used (2.22). Similarly, one can prove (2.25). �

A mapping T : K → K is called an anti-linear Hilbert–Schmidt operator if T
is a bounded anti-linear operator and

∑∞
n=1 ‖T ξn‖2 < ∞ for some CONS {ξn}∞n=1

ofK . In this case, ‖T ‖2 :=
√∑∞

n=1 ‖T ξn‖2 is called the Hilbert–Schmidt norm of

T as in the usual Hilbert–Schmidt operators.1

Lemma 2.4 Assume that T is a Hilbert–Schmidt operator on K or an anti-linear
Hilbert–Schmidt operator on K . Then, for all � ∈ Ff,fin(K ), the limits

q1(T )� := lim
N→∞

N∑

n=1

B(T en)
∗B(en)

∗�,

q2(T )� := lim
N→∞

N∑

n=1

B(en)B(T en)�

exist independently of the choice of {en}∞n=1. Moreover,

‖q1(T )�‖ ≤ C�‖T ‖2, (2.27)

‖q2(T )�‖ ≤ C�‖T ‖. (2.28)

Proof Let � be as in (2.26). Then

(
N∑

n=1

B(T en)
∗B(en)

∗�

)(p+2)

= √
(p + 2)! Ap+2(θN ⊗ u1 ⊗ · · · ⊗ u p),

where θN := ∑N
n=1 T en ⊗ en . It is easy to see that {θN }∞N=1 is a Cauchy sequence

in K ⊗ K . Hence θ := limN→∞ θN = ∑∞
n=1 T en ⊗ en ∈ K ⊗ K exists. Since

Ap+2 is a bounded operator on ⊗p+2K , it follows that q1(T )� exists and

(q1(T )�)(p+2) = √
(p + 2)! Ap+2(θ ⊗ u1 ⊗ · · · ⊗ u p).

Hence ‖q1(T )�‖ ≤ √
(p + 2)!‖θ‖ ‖u1‖ · · · ‖u p‖. It is easy to see that ‖θ‖ = ‖T ‖2.

Therefore (2.27) holds.
Let �p := (

∑N
n=1 B(en)B(T en)�)(p−2). Then we have

1 It is shown that
∑∞

n=1 ‖T ξn‖2 is independent of the choice of {ξn}∞n=1.
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�p =
p∑

j=1

{ j−1∑

k=1

(−1) j+k
〈
θ

(N )
j , uk

〉
u1 ⊗ · · · ⊗ ûk ⊗ · · · û j ⊗ · · · ⊗ u p

+
p∑

k= j+1

(−1) j+k−1
〈
θ

(N )
j , uk

〉
u1 ⊗ · · · ⊗ û j ⊗ · · · ûk ⊗ · · · ⊗ u p

}

with θ
(N )
j := ∑N

n=1

〈
u j , T en

〉
en , where ûk indicates the omission of uk . It is easy

to see that θ j := limN→∞ θ
(N )
j exists and ‖θ j‖ == ‖T ∗u j‖. Therefore q2(T ) exists

and

(q2(T )�)(p−2)

=
p∑

j=1

{ j−1∑

k=1

(−1) j+k
〈
θ j , uk

〉
u1 ⊗ · · · ⊗ ûk ⊗ · · · û j ⊗ · · · ⊗ u p

+
p∑

k= j+1

(−1) j+k−1
〈
θ j , uk

〉
u1 ⊗ · · · ⊗ û j ⊗ · · · ûk ⊗ · · · ⊗ u p

}
.

Note that ‖θ j‖ ≤ ‖T ∗‖ ‖u j‖ and ‖T ∗‖ = ‖T ‖.2 Hence it follows that ‖q2(T )�‖ ≤
C�‖T ‖. Thus (2.28) holds. �

We regard qa(T ) (a = 1, 2) as a linear operator onFf(K ) with Dom(qa(T )) =
Ff,fin(K ). Hence qa(T ) is densely defined. It follows that Dom(qa(T )∗) includes
Ff,fin(K ) and

q1(T )∗ � Ff,fin(K ) = q2(T ), q2(T )∗ � Ff,fin(K ) = q1(T ).

Hence each qa(T ) is closable. We introduce the following symbols:

〈
B∗|T |B∗〉 := q1(T ), 〈B|T |B〉 := q2(T ).

Thenwe have 〈B|T |B〉∗ ⊃ 〈B∗|T |B∗〉 . In view of Lemma 2.3, for each T ∈ B(K ),
we introduce the following symbol:

〈
B∗|T |B〉 := dΓf(T ).

Each of the operators 〈B∗|T |B〉 , 〈B∗|T |B∗〉 and 〈B|T |B〉 is called a fermion
quadratic operator with respect to T .

2 This holds also for bounded anti-linear operators.



Chapter 3
Q-space Representation of Boson Fock
Space

Abstract We review the so-called Q-space representation (a probability theoretical
representation) of the boson Fock space over a Hilbert space. This representation
is useful in analyzing quantum field models (e.g., [20, 34, 38, 61, 62]) and has
important relations to infinite-dimensional stochastic analysis (e.g., [38, 51]).

3.1 Gaussian Random Process

Let h be a real Hilbert space and (M,Σ,μ) be a probability measure space. Suppose
that, for each f ∈ h, a random variable ϕ( f ) on (M,Σ,μ) is assigned. If the set
{ϕ( f )| f ∈ h} of random variables satisfies the following properties, then it is called
the Gaussian random process indexed by h:

(i) For all f, g ∈ h and a, b ∈ R,

ϕ(a f + bg) = aϕ( f ) + bϕ(g), a.e.,

where “a.e.” means “almost everywhere with respect to μ”.
(ii) {ϕ( f )| f ∈ h} is full, i.e., Σ is the smallest Borel field such that {ϕ( f )| f ∈ h}

is measurable.
(iii) For each f ∈ h, ϕ( f ) is a Gaussian random variable such that its characteristic

function t ∈ R �→ ∫
M eitϕ( f )dμ is of the form:

∫

M

eitϕ( f )dμ = e−t2‖ f ‖2h/4, t ∈ R (3.1)

The argument of ϕ( f ) (i.e., points of M) will not be written explicitly if there is no
danger of confusion.

Let {ϕ( f )| f ∈ h} be the Gaussian random process indexed by h and (M,Σ,μ)

be the underlying probability measure space. It follows from (3.1) that, for all p ∈ N,
ϕ( f )p is in L2(M, f μ) and
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〈ϕ( f )ϕ(g)〉 = 1

2
〈 f, g〉h , f, g ∈ h,

where, for an integrable function F on (M,Σ,μ), 〈F〉 := ∫

M
F dμ.

For each n ∈ N and f1, . . . , fn ∈ h, one can define a random variable
: ϕ( f1) · · · ϕ( fn) : on M by the following recursion relations:

: ϕ( f1) : = ϕ( f1),

: ϕ( f1) · · · ϕ( fn) : = ϕ( f1) : ϕ( f2) · · · ϕ( fn) :

−
n∑

j=2

〈
ϕ( f1)ϕ( f j )

〉 : ϕ( f2) · · · ϕ̂( f j ) · · ·ϕ( fn) :, n ≥ 2,

where ϕ̂( f j ) indicates the omission of ϕ( f j ). The random variable : ϕ( f1) · · · ϕ( fn) :
is called theWick product of ϕ( f1) · · · ϕ( fn).

For each f ∈ h and n ∈ N, we define : ϕ( f )n : by

: ϕ( f )n : =: ϕ( f ) · · · ϕ( f )
︸ ︷︷ ︸

n

: .

It follows that

: ϕ( f )n :=
[n/2]∑

m=0

n!
(n − 2m)!m!

(

−1

2

〈
ϕ( f )2

〉
)m

ϕ( f )n−2m,

where [n/2] denotes themaximal integer not exceeding n/2. It is shown [22, Theorem
5.23] that : ϕ( f1) · · · ϕ( fn) : is symmetric for all permutations of ( f1, . . . , fn) and,
for all n,m ∈ N and f j , gk, f ∈ h ( j = 1, . . . , n, k = 1, . . . ,m),

〈: ϕ( f1) · · · ϕ( fn) :〉 = 0,

〈: ϕ( f1) · · · ϕ( fn) : : ϕ(g1) · · · ϕ(gm) :〉 = δmn

2n
∑

σ∈Sn

〈
f1, gσ(1)

〉
h
· · · 〈 fn, gσ(n)

〉
h
,

〈: ϕ( f )n :2〉 = n!‖ f ‖2nh
2n

. (3.2)

In particular, for n 	= m, : ϕ( f1) · · · ϕ( fn) : is orthogonal to : ϕ(g1) · · · ϕ(gm). The
constant function 1 is in L2(M, dμ). Hence, introducing the closed subspaces

Γ0(h) := {α1|α ∈ C},
Γn(h) := span {: ϕ( f1) · · · ϕ( fn) : | f1, . . . , fn ∈ h}, n ≥ 1
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in L2(M, dμ), where, for a subset D of a Hilbert space K , D denotes the closure
of D in K , we have a family {Γn(h)}∞n=0 of mutually orthogonal closed subspaces
in L2(M, dμ). An important fact is:

L2(M, dμ) = ⊕∞
n=0Γn(h),

the Itô–Segal–Wiener decomposition (for a proof, see, e.g., [22, Theorem 5.52],
[61, (I.25)]).

3.2 Natural Isomorphism of Boson Fock Spaces

It is a well-known fact that, for any real Hilbert space h, the Gaussian random
process indexed by h exists (see, e.g., [61, Theorem I.9]). We denote the Gaussian
random process and the underlying probability measure space by {ϕh( f )| f ∈ h} and
(Qh,Σh, μh) respectively. Hence

∫

Qh

eiϕh( f )dμh = e−‖ f ‖2h/4, f ∈ h.

We denote the complexification of h by hC and the complex conjugation on hC
by C . Then one can consider the boson Fock space Fb(hC) over hC. We introduce
the following operators:

φC( f ) := 	S( f ), πC( f ) := 	S(i f ), f ∈ h.

By (2.15), {φC( f ), πC ( f )| f ∈ h} satisfies the Heisenberg CCR on Fb,0(hC):

[φC( f ), πC(g)] = i 〈 f, g〉 ,

[φC( f ), φC(g)] = 0, [πC( f ), πC(g)] = 0, f, g ∈ h.

Hence, for each subspace W of h, (Fb(hC),Fb,0(hC), {φC( f ), πC( f )| f ∈ W }) is
a representation of the Heisenberg CCR over W [23, §8.8]. It is called the Fock
representation of the Heisenberg CCR over W.

There is a natural isomorphism between Fb(hC) and L2(Qh, dμh):

Theorem 3.1 There exists a unitary operator Ub fromFb(hC) to L2(Qh, dμh) such
that UbΩhC

= 1 and, for all n ∈ N and f1, . . . , fn ∈ h,

UbA( f1)
∗ · · · A( fn)

∗ΩhC
= 2n/2 : ϕh( f1) · · · ϕh( fn) : .
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Moreover, the following operator equality holds:

UbφC( f )U−1
b = ϕh( f ), f ∈ h.

Proof See, e.g., [61, Theorem I.11] or [22, Theorem 5.53]. �

We call the unitary operator Ub in Theorem 3.1 the natural isomorphism from
Fb(hC) to L2(Qh, dμh). The Hilbert space L2(Qh, dμh) is called the Q-space
representation of the boson Fock spaceFb(hC). One of the advantages of Q-space
representation is in that the quantum field φC( f ) is represented as the multiplication
operator by the function ϕh( f ) on Qh.

For each f ∈ hC, we define

D f := √
2UbA( f )U−1

b . (3.3)

Since A( f ) is closed and anti-linear in f ∈ hC, D f is a closed linear operator on
L2(Qh, dμh) and anti-linear in f .

For each n ∈ N, we denote by Pn the set of complex polynomials of
n variables z1, . . . , zn . One can show that, for each n ∈ N and all P ∈ Pn ,
P(ϕh( f1), . . . , ϕh( fn)) is in Dom(D f ) and

D f P(ϕh( f1), . . . , ϕh( fn) =
n∑

j=1

〈
f, f j

〉
(∂ j P)(ϕh( f1), . . . , ϕh( fn)),

where (∂ j P)(z1, . . . , zn) := ∂P(z1, . . . , zn)/∂z j . Based on this fact, we call D f the
directional functional differential operator in f . For a subspaceD of h, we define

P(D) := span {P(ϕh( f1), . . . , ϕh( fn))|n ∈ N, P ∈ Pn, f1, . . . , fn ∈ D}.

Let f ∈ h. Then πC( f ) = iφC( f ) − i
√
2A( f ) on Dom(A( f )) ∩ Dom(A( f )∗).

Hence, letting

πh( f ) := UbπC( f )U−1
b ,

we have

πh( f ) = −i D f + iϕh( f )

onP(h).
The range of test vectors of φC(·) can be extended in a natural way to hC: for each

f = f1 + i f2 ( f1, f2 ∈ h), we define

φC( f ) := φC( f1) + iφC( f2).
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It follows that the correspondence f �→ φC( f ) is complex linear onFb,0(hC). Then
we have

UbφC( f )U−1
b = ϕh( f ), f ∈ hC,

where
ϕh( f1 + i f2) := ϕh( f1) + iϕh( f2) ( f1, f2 ∈ h).

By (3.3), we have D∗
f = √

2UbA( f )∗U−1
b for all f ∈ hC. On the other hand, we

have A( f )∗ = √
2φC( f ) − A(C f ) on

E f := Dom(A( f1)) ∩ Dom(A( f2)) ∩ Dom(A( f1)
∗) ∩ Dom(A( f2)

∗).

Hence

D∗
f = −DC f + 2ϕh( f ) on UbE f . (3.4)

3.3 Gradient Operator

We introduce a subspace of L2(Qh, dμh):

C1(Qh) := {Ψ ∈ ∩ f ∈hC
Dom(D f )| for each f ∈ hC, the mapping f �→ (D f Ψ )(q)

is continuous for a.e. q ∈ Qh}.

It is easy to see that P(h) ⊂ C1(Qh) with

D f P(ϕh( f1), . . . , ϕh( fn)) =
〈

f,
n∑

j=1

(∂ j P)(ϕh( f1), . . . , ϕh( fn)) f j

〉

hC

for all P(ϕh( f1), . . . , ϕh( fn)) ∈ P(h). In particular, C1(Qh) is dense in
L2(Qh, dμh). By the Riesz theorem, for each Ψ ∈ C1(Qh) and a.e. q ∈ Qh , there
exists a unique vector gΨ (q) ∈ hC such that

(D f Ψ )(q) = 〈 f, gΨ (q)〉hC
, f ∈ hC.

In general, for a measure space (M,Σ, ν) (ν is not necessarily a probability
measure) and a separable Hilbert space K , we denote by L p(M, dν;K ) (p ≥ 1)
the space of K -valued L p-functions on (M,Σ, ν) (cf. [55, §II.1, Example 6]):
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L p(M, dν;K ) := {F : M → K , Σ-measurable|
∫

M

‖F(x)‖p
K dν(x) < ∞}.

(3.5)

In the case p = 2, L2(M, dν;K ) becomes a Hilbert space with inner product

〈F,G〉 :=
∫

M

〈F(x),G(x)〉K dν(x), F,G ∈ L2(M, dν;K ).

One can define a linear operator ∇ from L2(Qh, dμh) to L2(Qh, dμh; hC) as
follows:

Dom(∇) : = {Ψ ∈ C1(Qh)|gΨ ∈ L2(Qh, dμh; hC)}, (3.6)

∇Ψ : = gΨ , Ψ ∈ Dom(∇) (3.7)

so that
D f Ψ = 〈 f,∇Ψ 〉hC

, f ∈ hC.

We call ∇ the gradient operator on L2(Qh, dμh). It follows from the closedness
of D f that ∇ is closed.

Remark 3.1 In the context of the theory of the abstract Wiener space, the operator
∇ corresponds to the H -differential operator D [35, 59].

It is easy to see that P(h) ⊂ Dom(∇) with

∇P(ϕh( f1), . . . , ϕh( fn)) =
n∑

j=1

(∂ j P)(ϕh( f1), . . . , ϕh( fn)) f j

for all P(ϕh( f1), . . . , ϕh( fn)) ∈ P(h). Hence ∇ is densely defined. Thus ∇ is a
densely defined closed linear operator. Therefore, by a general theorem, the adjoint
∇∗ exists as a linear operator from L2(Qh, dμh; hC) to L2(Qh, dμh) and is densely
defined. It is easy to see that P(h)⊗̂hC ⊂ Dom(∇∗).

3.4 More General Natural Isomorphisms of Boson Fock
Spaces

Let g be a real Hilbert space and T be a unitary operator from g to h. For each
f = f1 + i f2 ∈ gC ( f1, f2 ∈ g), we can extend T to the unitary operator from gC to
hC by T f := T f1 + iT f2. Then, as we have seen in Sect. 2.10, Γb(T ) is a unitary
operator fromFb(gC) toFb(hC) and satisfies
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Γb(T )AgC
( f )Γb(T )−1 = AhC

(T f ), f ∈ gC.

Let Ub : Fb(hC) → L2(Qh, dμh) be the unitary operator in Theorem 3.1. Then

UT := UbΓb(T )

is a unitary operator from Fb(gC) to L2(Qh, dμh) satisfying

UTΩgC
= 1,

UT AgC
( f1)

∗ · · · AgC
( fn)

∗ΩgC
= 2n/2 : ϕh(T f1) · · · ϕh(T fn):,

n ≥ 1, f1, . . . , fn ∈ g.

We already know that Fb(gC) is unitarily equivalent to L2(Qg, dμg). Hence
L2(Qg, dμg) is unitarily equivalent to L2(Qh, dμh) in such a way that, for all n and
f1, . . . , fn ∈ g, : ϕg( f1) · · · ϕg( fn) : corresponds to : ϕh(T f1) · · · ϕh(T fn) :. We say
that this type of unitary equivalence is natural. Hence, in this sense, L2(Qh, dμh)

also can be regarded as a Q-space representation of Fb(g).
The isomorphism UT is useful in applications to quantum field theory (see Sect.

5.2.2).



Chapter 4
Boson–Fermion Fock Spaces
and Abstract Supersymmetric Quantum
Field Models

Abstract We introduce some operators on the abstract boson–fermion Fock space,
including exterior differential and Dirac operators, and describe fundamental prop-
erties of them. We present also abstract supersymmetric quantum field models.

4.1 Boson–Fermion Fock Space

Let H and K be Hilbert spaces. Then one can make the tensor product

F (H ,K ) := Fb(H ) ⊗ Ff(K )

of the boson Fock space Fb(H ) and the fermion Fock spaceFf(K ). This Hilbert
space is called theboson–fermion Fock space over the pair (H ,K ). For a subspace
D of H and a subspace E of K , we define

Ffin(D,E ) := Fb,fin(D)⊗̂Ff,fin(E ).

It follows that, if D and E are dense in H and K respectively, then Ffin(D,E ) is
dense inF (H ,K ).

We have by (2.1) the following natural identifications:

F (H ,K ) = ⊕∞
p=0F

(p)(H ,K ), F (p)(H ,K ) := Fb(H ) ⊗ ∧p(K ).

Hence we have the orthogonal decomposition

F (H ,K ) = F+(H ,K ) ⊕ F−(H ,K ) (4.1)

with

F+(H ,K ) := ⊕∞
p=0F

(2p)(H ,K ), F−(H ,K ) := ⊕∞
p=0F

(2p+1)(H ,K ).
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Let Nf be the fermion number operator on Ff(K ) (see (2.6) and (2.7)). Then

Γbf := eiπ I⊗Nf

is a unitary self-adjoint operator onF (H ,K ) satisfyingΓbf � F±(H ,K ) = ±I .
We callΓbf the grading operator on the boson–fermion Fock spaceF (H ,K )with
respect to the orthogonal decomposition (4.1).

There is another orthogonal decomposition of the boson–fermion Fock space. For
each r ∈ Z+, we define a closed subspace

Fr (H ,K ) := ⊕n+p=r (⊗n
sH ) ⊗ ∧p(K ). (4.2)

Then we have

F (H ,K ) = ⊕∞
r=0Fr (H ,K ). (4.3)

This orthogonal decomposition has the following meaning. The boson number oper-
ator Nb and the fermion number operator Nf yield a new operator

Ntot := Nb ⊗ I + I ⊗ Nf (4.4)

onF (H ,K ). Then it is easy to see thatFr (H ,K ) is the eigenspace of Ntot with
eigenvalue r . Namely, (4.3) is the direct sum of the eigenspaces of Ntot. We call Ntot

the total number operator on F (H ,K ).

4.2 Q-Space Representation of Boson–Fermion Fock Space

In what follows, we assume thatH andK are separable (thenFb(H ) andFf(K )

are separable). We fix a real Hilbert space h such thatH = hC, the complexification
of h. Let Ub be the unitary operator in Theorem 3.1. Then

˜Ub := Ub ⊗ I

is a unitary operator fromF (H ,K ) to L2(Qh, dμh) ⊗ Ff(K ). Hence, under the
unitary operator ˜Ub, the boson–fermion Fock space F (H ,K ) is unitarily equiva-
lent to L2(Qh, dμh) ⊗ Ff(K ). Moreover, there exists a unitary operator Ubf from
L2(Qh, dμh) ⊗ Ff(K ) to L2(Qh, dμh;Ff(K )) (see (3.5)) such that

Ubf(� ⊗ Ψ ) = �(·)Ψ, � ∈ L2(Qh, dμh), Ψ ∈ Ff(K )
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(see, e.g., [22, Theorem 2.6]). Hence the operator

Vbf := Ubf˜Ub (4.5)

is a unitary operator from F (H ,K ) to

F := L2(Qh, dμh;Ff(K )), (4.6)

theHilbert space ofFf(K )-valued L2–functions on (Qh, μh). Therefore the boson–
fermion Fock spaceF (H ,K ) is unitarily equivalent toF.We call the Hilbert space
F the Q-space representation of the boson–fermion Fock space F (H ,K ). It is
easy to see that

F = ⊕∞
p=0L

2(Qh, dμh; ∧p(K )).

An element of L2(Qh, dμh; ∧p(K )) may be regarded as an L2-differential form of
order p on the space Qh. Thus the boson–fermion Fock spaceF (H ,K ) is unitarily
equivalent to the infinite direct sum of Hilbert spaces consisting of L2-differential
forms on Qh.

4.3 Exterior Differential Operators

4.3.1 Definitions and Basic Properties

We introduce a basic operator onF (H ,K ). Let S ∈ C(H ,K ) such that the non-
negative self-adjoint operator S∗S is reduced by h. Let {ξn}∞n=1 be a CONS of K
such that ξn ∈ Dom(S∗), n ∈ N. Then, for each N ∈ N, we define an operator d(N )

S
by

d(N )
S :=

N
∑

n=1

A(S∗ξn) ⊗ B(ξn)
∗ (4.7)

acting in F (H ,K ). It is obvious that Fb,fin(H )⊗̂Ff(K ) ⊂ Dom(d(N )
S ). It fol-

lows from (2.11) that, for all φ ∈ Ff(K ),

d(N )
S (ΩH ⊗ φ) = 0. (4.8)

For f1, . . . , fn ∈ H (n ∈ N) and each P ∈ Pn , we define vectorsΨ ( f1, . . . , fn)
and ΨP( f1, . . . , fn) ∈ Fb,fin(H ) by
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Ψ ( f1, . . . , fn) := A( f1)
∗ · · · A( fn)

∗ΩH ,

ΨP( f1, . . . , fn) := P(φC( f1), . . . , φC( fn))ΩH .

Lemma 4.1 For all Ψ ∈ Fb,fin(Dom(S))⊗̂Ff(K ), the limit

d(∞)
S Ψ := lim

N→∞ d(N )
S Ψ (4.9)

exists and, for each P ∈ Pn, all f1, . . . , fn ∈ Dom(S) (n ∈ N) and all φ ∈ Ff(K ),

d(∞)
S (ΩH ⊗ φ) = 0, (4.10)

d(∞)
S Ψ ( f1, . . . , fn) ⊗ φ =

n
∑

j=1

Ψ ( f1, . . . , ̂f j , . . . , fn) ⊗ B(S f j )
∗φ, (4.11)

d(∞)
S ΨP( f1, . . . , fn) ⊗ φ =

n
∑

j=1

Ψ∂ j P( f1, . . . , ̂f j , . . . , fn) ⊗ B(S f j )
∗φ. (4.12)

Proof Equation (4.10) follows from (4.8). Using (2.9) and (2.11), one can show that

d(N )
S Ψ ( f1, . . . , fn) ⊗ φ =

n
∑

j=1

Ψ ( f1, . . . ̂f j , . . . fn) ⊗ B(u(N )
j )∗φ

with u(N )
j :=∑N

m=1

〈

ξm, S f j
〉

ξm . We have limN→∞ u(N )
j = S f j in K . Hence, by

(2.21), limN→∞ ‖B(u(N )
j )∗ − B(S f j )∗‖ = 0. Thus d(∞)

S Ψ ( f1, . . . , fn) ⊗ φ) exists
and (4.11) holds. Similarly, one can prove (4.12). �

Equations (4.10) and (4.11) show that the limit operator d(∞)
S is independent of

the choice of the CONS {ξn}∞n=1. Hence d(∞)
S is well-defined with Dom(d(∞)

S ) =
Fb,fin(Dom(S))⊗̂Ff(K ).

Since d(∞)
S is densely defined, its adjoint (d(∞)

S )∗ exists. Basic properties of this
operator are described in the next lemma:

Lemma 4.2 It holds that

Dom((d(∞)
S )∗) ⊃ Ffin(H ,Dom(S∗))

and, for all ψ ∈ Fb,fin(H ), u1, . . . , u p ∈ Dom(S∗) (p ≥ 1),
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(d(∞)
S )∗(ψ ⊗ ΩK ) = 0, (4.13)

(d(∞)
S )∗(ψ ⊗ B(u1)

∗ · · · B(u p)
∗ΩK )

=
p
∑

k=1

(−1)k−1A(S∗uk)∗ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK . (4.14)

Proof One has (d(N )
S )∗ ⊃∑N

n=1 A(S∗ξn)∗ ⊗ B(ξn), which, together with (2.20),
implies (d(N )

S )∗(ψ ⊗ ΩK ) = 0. Hence, for all � ∈ Dom(d(∞)
S ), 〈ψ ⊗ ΩK ,

d(N )
S �〉 = 0. Taking the limit N → ∞ and using Lemma 4.1, we have 〈ψ ⊗

ΩK , d(∞)
S �〉 = 0. This implies that ψ ⊗ ΩK ∈ Dom((d(∞)

S )∗) and (4.13) holds.

We next prove (4.14). Let aN :=
〈

ψ ⊗ B(u1)∗ · · · B(u p)
∗ΩK , d(N )

S �
〉

. Then,

using (2.17), we have

aN =
〈

(d(N )
S )∗ψ ⊗ B(u1)

∗ · · · B(u p)
∗ΩK ,�

〉

=
p
∑

k=1

(−1)k−1
〈

ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK , (A(S∗ f (N )
k ) ⊗ I )�

〉

,

where f (N )
k :=∑N

n=1 〈ξn, uk〉 ξn . By Lemma 4.1, we have

lim
N→∞ aN =

〈

ψ ⊗ B(u1)
∗ · · · B(u p)

∗ΩK , d(∞)
S �

〉

.

We have limN→∞ f (N )
k = uk inK . Hence it follows that

lim
N→∞

〈

ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK , (A(S∗ f (N )
k ) ⊗ I )�

〉

=
〈

ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK , (A(S∗uk) ⊗ I )�
〉

=
〈

A(S∗uk)ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK ,�
〉

.

Hence
〈

ψ ⊗ B(u1)
∗ · · · B(u p)

∗ΩK , d(∞)
S �

〉

=
〈

p
∑

k=1

(−1)k−1A(S∗uk)ψ ⊗ B(u1)
∗ · · · B̂(uk)∗ · · · B(u p)

∗ΩK ,�

〉

.

This implies that ψ ⊗ B(u1)∗ · · · B(u p)
∗ΩK ∈ Dom((d(∞)

S )∗) and (4.14) holds. �

By Lemma 4.2, the adjoint (d(∞)
S )∗ is densely defined. Hence d(∞)

S is closable.
We denote its closure by dS:
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dS := d(∞)
S . (4.15)

For a subspace D ofH and p ≥ 0, we define

Vp(D) := span {ΨP( f1, . . . , fn)|n ∈ N, f1, . . . , fn ∈ D, P ∈ Pn}⊗̂ ∧p (K ).

For vectors X = ΨP( f1, . . . , fn) ⊗ η ∈ Vp(D) and Y = ΨQ(g1, . . . , gm) ⊗ θ ∈
Vq(D) (p, q ≥ 0), we define a vector in Vp+q(D) by

X ∧ Y := P(φC( f1), . . . , φC( fn))Q(φC(g1), . . . , φC(gm))ΩH ⊗ (η ∧ θ),

(4.16)

where

η ∧ θ :=
√

(p + q)!√
p!q! Ap+q(η ⊗ θ) ∈ ∧p+q(K ),

the wedge (exterior) product of η and θ . For any X ∈ Vp(D) and Y ∈ Vq(D), we
extend the operation ∧ by bilinearity to define X ∧ Y ∈ Vp+q(D). We call X ∧ Y
the wedge product of X and Y .

The next theorem states basic properties of dS:

Theorem 4.1

(i) (nilpotency) For all Ψ ∈ Dom(dS), dSΨ ∈ Dom(dS) and d2
SΨ = 0.

(ii) For each p = 0, 1, 2, · · · , dS maps Dom(dS) ∩ F (p)(H ,K ) to
F (p+1)(H ,K ).

(iii) For all X ∈ Vp(Dom(S)) and Y ∈ Vq(Dom(S)), X ∧ Y is in Dom(dS) and

dS(X ∧ Y ) = (dS X) ∧ Y + (−1)p X ∧ (dSY ). (4.17)

Proof (i) Let f1, . . . , fn ∈ Dom(S), φ ∈ Ff(K ) and set Ψ :=
A( f1)∗ · · · A( fn)∗ΩH ⊗ φ. Then, using (2.10) and (2.18), we have

d2SΨ =
n
∑

j,k=1, j �=k

A( f1)
∗ · · · Â( fk)∗ · · · Â( f j )∗ · · · A( fn)

∗ΩH ⊗ B(S fk)
∗B(S f j )

∗φ

= −
n
∑

j,k=1, j �=k

A( f1)
∗ · · · Â( fk)∗ · · · Â( f j )∗ · · · A( fn)

∗ΩH ⊗ B(S f j )
∗B(S fk)

∗φ

= −d2SΨ.

Hence d2
SΨ = 0. LetΨ ∈ Dom(dS). Then, by (4.15), there exists a sequence {Ψn}∞n=1

with Ψn ∈ Fb,fin(Dom(S))⊗̂Ff(K ) such that Ψn → Ψ and dSΨn → dSΨ (n →
∞). By the preceding result, dS(dSΨn) = 0. Since dS is closed, it follows that dSΨ ∈
Dom(dS) and dS(dSΨ ) = 0.
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(ii) This follows from (4.11) and a limiting argument.
(iii) It is sufficient to prove (4.17) for X and Y given by (4.16) with f1, . . . , fn ,

g1, . . . , gm ∈ Dom(S). In this case, we have

dS(X ∧ Y ) =
⎛

⎝

n
∑

j=1

Ψ∂ j P( f1, . . . , fn)

⎞

⎠ΨQ(g1, . . . , gm) ⊗ (S f j ) ∧ (η ∧ θ)

+ ΨP( f1, . . . , fn)

(

m
∑

k=1

Ψ∂k Q(g1, . . . , gm)

)

⊗ (Sgk) ∧ (η ∧ θ).

It is easy to see that (S f j ) ∧ (η ∧ θ) = (S f j ∧ η) ∧ θ and (Sgk) ∧ (η ∧ θ) =
(−1)pη ∧ (Sgk ∧ θ). Hence (4.17) follows. �

Based on Theorem 4.1, we call the operator dS the exterior differential operator
associated with S ∈ C(H ,K ) on the boson–fermion Fock spaceF (H ,K ). Anti-
commutation properties of the family {dS}S∈C(H ,K ) are summarized in the following
lemma:

Lemma 4.3 Let S, T ∈ C(H ,K ). Then:

(i) Ffin(Dom(S) ∩ Dom(T ),K ) ⊂ Dom(dSdT ) ∩ Dom(dT dS) and

{dS, dT } = 0 on Ffin(Dom(S) ∩ Dom(T ),K ).

(ii) Ffin(H ,Dom(S∗) ∩ Dom(T ∗) ⊂ Dom(d∗
Sd

∗
T ) ∩ Dom(d∗

T d
∗
S) and

{d∗
S , d

∗
T } = 0 on Ffin(H ,Dom(S∗) ∩ Dom(T ∗)).

(iii) Ffin(Dom(T ∗S),Dom(ST ∗)) ⊂ Dom(dSd∗
T ) ∩ Dom(d∗

T dS) and

{dS, d∗
T } =dΓ (alg)

b (T ∗S)⊗̂I + I ⊗̂dΓ (alg)
f (ST ∗)

on Ffin(Dom(T ∗S),Dom(ST ∗)), where dΓ (alg)
b (#) (resp. dΓ (alg)

f (#)) is the
reduction of the algebraic second quantization dΓ (alg)(#) of # (see (2.5)) to
the boson (resp. fermion) Fock space.

Proof Direct computations as in the proofs of Lemmas 4.1 and 4.2 (use (2.13) and
(2.22) also). �

Remark 4.1 Miyao [53] gave a characterization for the operator dS from a more
general point of view, called the super-quantization.
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4.3.2 A Cochain Complex

By Theorem 4.1(ii), one can define for each p ≥ 0 a densely defined closed linear
operator dS,p fromF (p)(H ,K ) toF (p+1)(H ,K ) by

Dom(dS,p) := Dom(dS) ∩ F (p)(H ,K ),

dS,pΨ := (dSΨ )(p+1), Ψ ∈ Dom(dp).

Then Theorem 4.1(ii) implies that

Ran(dS,p) ⊂ Dom(dS,p+1), (4.18)

dS,p+1dS,p = 0 on Dom(dS,p). (4.19)

This shows that ({Dom(dS,p)}∞p=0, {dS,p}∞p=0) forms a cochain complex:

0 → Dom(dS,0)
dS,0→ Dom(dS,1)

dS,1→ · · · → Dom(dS,p)
dS,p→ Dom(dS,p+1) → · · ·

(4.20)

4.4 Operators in the Q-space Representation

Let Vbf be the unitary operator defined by (4.5). Then, each linear operator L on
F (H ,K ) acts in L2(Qh, dμh;Ff(K )) as VbfLV

−1
bf . By (3.3), we have for all

f ∈ H

˜Ub(A( f ) ⊗ I )˜U−1
b = 1√

2
D f ⊗ I.

Hence

Vbfd
(N )
S V−1

bf =
N
∑

n=1

1√
2
B(ξn)

∗DS∗ξn .

Therefore

VbfdSV
−1
bf =

∞
∑

n=1

1√
2
B(ξn)

∗DS∗ξn on VbfFfin(Dom(S),K ). (4.21)

Note that

{B(ξn), B(ξm)∗} = δnm, {B(ξn), B(ξm)} = 0, n,m ∈ N.
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Hence VbfdSV
−1
bf is a functional differential operator of infinite variables with

bounded operator coefficients satisfying CAR.

4.5 Hilbert Complex

The structure shown in (4.20) with (4.18) and (4.19) is in fact an example of a general
concept, called the Hilbert complex [30]. In this section, we review this concept and
related facts.

4.5.1 Definitions and Basic Facts

Let {Hp}∞p=0 be a sequence of Hilbert spaces and {Dp}∞p=0 be a sequence of densely
defined closed linear operators with domain

Dp := Dom(Dp) ⊂ Hp

and range

Rp := Ran(Dp) ⊂ Hp+1

such that, for all p ≥ 0, Rp ⊂ Dp+1 and

Dp+1Dp = 0 on Dp. (4.22)

Hence we have a cochain complex

0 −→ D0
D0−→ D1

D1−→ · · · −→ Dp
Dp−→ Dp+1 −→ · · ·

This cochain complex, denoted by ({Hp}∞p=0, {Dp}∞p=0, {Dp}∞p=0), is called aHilbert
complex. We use the following convention:

H−1 := D−1 := {0}, D−1 := 0. (4.23)

If there is a number N ∈ N such thatHp = {0},∀p ≥ N + 1, then the Hilbert com-
plex is said to be finite. A finite Hilbert complex has been discussed in [30]. In this
section, we deal with the case where the Hilbert complex is infinite, i.e., the case
where there exist infinitely many non-zero Hilbert spaces in {Hp}∞p=0.

It follows from (4.22) that, for all p ≥ 0,

R∗
p := Ran(D∗

p) ⊂ Dom(D∗
p−1) ⊂ Hp
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and

D∗
p−1D

∗
p = 0 on D∗

p := Dom(D∗
p).

By (4.23), D∗−1 = H0 and D∗−1 = 0. Hence we have a chain complex

0←−D∗
−1

D∗
0←− D∗

0

D∗
1←− D∗

1 ←− · · ·D∗
p−1

D∗
p←− D∗

p ←− · · · .

We call the chain complex ({Hp}∞p=−1, {D∗
p}∞p=−1, {D∗

p}∞p=−1) the dual complex of
the Hilbert complex ({Hp}∞p=0, {Dp}∞p=0, {Dp}∞p=0).

In every Hilbert complex ({Hp}∞p=0, {Dp}∞p=0, {Dp}∞p=0), each Hilbert spaceHp

has a natural orthogonal decomposition as shown below. Let

Ĥp := ker Dp ∩ ker D∗
p−1, p ≥ 0.

Then one has the following fact [30, Lemma 2.1]:

Theorem 4.2 (weakHodge decomposition)For each p ≥ 0,Hp has the orthogonal
decomposition

Hp = Ĥp ⊕ Rp−1 ⊕ R∗
p. (4.24)

Proof Since Dp is a closed linear operator, ker Dp is a closed subspace of Hp.
Hence one has the orthogonal decomposition

Hp = ker Dp ⊕ (ker Dp)
⊥,

where (ker Dp)
⊥ denotes the orthogonal complement of ker Dp. The closedness of

ker Dp and (4.22) imply that Rp−1 ⊂ ker Dp. One has also Hp = Rp−1 ⊕ R⊥
p−1.

Hence ker Dp = Rp−1 ⊕ (ker Dp ∩ R⊥
p−1). Therefore

Hp = Rp−1 ⊕ (ker Dp ∩ R⊥
p−1) ⊕ (ker Dp)

⊥.

On the other hand, for each closed linear operator T on a Hilbert space, (ker T )⊥ =
Ran(T ∗) (e.g., [23, Theorem 1.2]), which implies also that (RanT )⊥ = ker T ∗.
Therefore

Hp = Rp−1 ⊕ (ker Dp ∩ ker D∗
p−1) ⊕ R∗

p.

Thus (4.24) holds. �
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4.5.2 Laplace–Beltrami Operators of Finite Order and de
Rham–Hodge–Kodaira Decompositions

By the von Neumann theorem, for each p ≥ 0, D∗
pDp and DpD∗

p are non-negative
self-adjoint operators on Hp and Hp+1 respectively. We set

Δ0 := D∗
0D0.

In what follows, we assume the following:

Assumption (A) For each p ≥ 1, the subspace

Ep := Dp ∩ D∗
p−1

is dense in Hp.

Lemma 4.4 For each p ≥ 1, there exists a uniquenon-negative self-adjoint operator
Δp on Hp such that Dom(Δ

1/2
p ) = Ep and, for all Ψ,� ∈ Dom(Δ

1/2
p ),

〈

Δ1/2
p Ψ,Δ1/2

p �
〉 = 〈DpΨ, Dp�

〉+ 〈D∗
p−1Ψ, D∗

p−1�
〉

. (4.25)

Proof It is easy to see that the sesquilinear form q on Ep defined by

q(Ψ,�) := 〈DpΨ, Dp�
〉+ 〈D∗

p−1Ψ, D∗
p−1�

〉

, Ψ,� ∈ Ep

is closed and non-negative. Hence, by a general representation theorem on sesquilin-
ear forms (e.g., [45, Chap. VI, Theorem 2.23], [55, Theorem VIII.15]), the operator
Δp as described above exists. �

It follows from (4.25) that, for all p ≥ 1, Dom(D∗
pDp) ∩ Dom(Dp−1D∗

p−1) ⊂
Dom(Δp) and

ΔpΨ = (D∗
pDp + Dp−1D

∗
p−1)Ψ, Ψ ∈ Dom(D∗

pDp) ∩ Dom(Dp−1D
∗
p−1).

In other words,

D∗
pDp + Dp−1D

∗
p−1 ⊂ Δp. (4.26)

We remark that, at this stage, it is unclear whether the equality (operator equality)
holds in (4.26) or not (see Remark 4.2). By this fact and by analogywith the Laplace–
Beltrami operator on the pth differential forms on a finite-dimensional manifold, we
call the operator Δp (p ≥ 0) the p-th Laplace–Beltrami operator associated with
the Hilbert complex ({Hp}∞p=0, {Dp}∞p=0, {Dp}∞p=0).

Remark 4.2 For p ≥ 1, the subspace Dom(D∗
pDp) ∩ Dom(Dp−1D∗

p−1) may not
be dense inHp. Hence the operator L p := D∗

pDp + Dp−1D∗
p−1 may not be densely
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defined.Moreover, even if Dom(D∗
pDp) ∩ Dom(Dp−1D∗

p−1) is dense (then L p turns
out to be a symmetric operator), it is non-trivial if L p is essentially self-adjoint or
not. This is the reason why we define the p-th Laplace–Beltrami operator Δp via the
sesquilinear form q.

Each non-zero element in kerΔp may be interpreted as an abstract p-th harmonic
form onHp.

Lemma 4.5 For all p ≥ 0, kerΔp = Ĥp. In particular, dim kerΔp = dim Ĥp.

Proof We first remark that, for every non-negative self-adjoint operator A on a
Hilbert space, ker A = ker A1/2. Let Ψ ∈ kerΔp. Then Δ

1/2
p Ψ = 0. Hence, by

(4.25), DpΨ = 0 and D∗
p−1Ψ = 0, implying thatΨ ∈ Ĥp. Thus kerΔp ⊂ Ĥp. Con-

versely, let Ψ ∈ Ĥp. Then, by (4.25), ‖Δ1/2
p Ψ ‖2 = 0, implying that Ψ ∈ kerΔ1/2

p .
Hence Ψ ∈ kerΔp. Thus Ĥp ⊂ kerΔp. �

Theorem 4.2 and Lemma 4.5 yield the following result:

Corollary 4.1 (de Rham–Hodge–Kodaira decomposition) For each p ≥ 0,Hp has
the orthogonal decomposition

Hp = kerΔp ⊕ Rp−1 ⊕ R∗
p. (4.27)

In particular, ifRp−1 and R∗
p are closed, then

Hp = kerΔp ⊕ Rp−1 ⊕ R∗
p. (4.28)

Corollary 4.2 Suppose that, for each p ≥ 0, Dp is semi-Fredholm. Then

Hp = kerΔp ⊕ Rp−1 ⊕ R∗
p.

If each Dp (p ≥ 0) is Fredholm, then dim kerΔp < ∞.

Proof Since Ran(Dp−1) is closed, we haveRp−1 = Rp−1. It is well-known that, if
T is semi-Fredholm (resp. Fredholm), then so is T ∗ (e.g., [45, Chap. IV, Corollary
5.14]). Hence Ran(D∗

p) is closed. Therefore R
∗
p = R∗

p. Thus (4.27) yields (4.28).
If each Dp (p ≥ 0) is Fredholm, then dim ker Dp < ∞ and dim ker D∗

p−1 < ∞.

Hence dim Ĥp < ∞. Then, by Lemma 4.5, dim kerΔp < ∞. �

4.5.3 The Dirac and the Laplace–Beltrami Operators
Associated With a Hilbert Complex

Let ({Hp}∞p=0, {Dp}∞p=0, {Dp}∞p=0) be a Hilbert complex with Assumption (A). It is
natural to construct the infinite direct sum Hilbert space
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H := ⊕∞
p=0Hp

Then there is the right shift operator onH [22, p. 165, §4.4] associated with {Dp}∞p=0.
We denote it by D, which is given as follows:

Dom(D) =
⎧

⎨

⎩

Ψ ∈ H|Ψ (p) ∈ Dp, p ≥ 0,
∞
∑

p=1

‖Dp−1Ψ
(p−1)‖2 < ∞

⎫

⎬

⎭

,

(DΨ )(p) = Dp−1Ψ
(p−1), p ≥ 0, Ψ ∈ Dom(D).

It follows from a general theorem on right shift operators [22, Theorem 4.3] that D
is a densely defined closed linear operator and the adjoint D∗ takes the following
form:

Dom(D∗) = {Ψ ∈ H|Ψ (p+1) ∈ D∗
p, p ≥ 0,

∞
∑

p=0

‖D∗
pΨ

(p+1)‖2 < ∞},

(D∗Ψ )(p) := D∗
pΨ

(p+1), p ≥ 0, Ψ ∈ Dom(D∗).

The operators D and D∗ are nilpotent in the sense of the next lemma:

Lemma 4.6 D2 = 0 on Dom(D) and (D∗)2 = 0 on Dom(D∗).

Proof Let Ψ ∈ Dom(D). Then (DΨ )(0) = 0 and (DΨ )(p) = Dp−1Ψ
(p−1), p ≥ 1.

Hence, by (4.22), (DΨ )(p) is in Dom(Dp) and Dp(DΨ )(p) = 0. This implies that
DΨ ∈ Dom(D) and D(DΨ ) = 0. Hence D2 = 0 on Dom(D).

Let � ∈ Dom(D∗). Then, by the preceding result, 〈D∗�, DΨ 〉 = 〈�, D2Ψ
〉 =

0 = 〈0, Ψ 〉. Hence 〈D∗�, DΨ 〉 = 〈0, Ψ 〉 , Ψ ∈ Dom(D). This means that D∗� ∈
Dom(D∗) and D∗(D∗�) = 0. Hence (D∗)2 = 0 on Dom(D∗). �

In analogy with analysis on finite-dimensional manifolds, it is natural to consider
the operator

Q := D + D∗. (4.29)

We call it the Dirac operator associated with D. It follows from Assumption (A)
that Dom(Q) = Dom(D) ∩ Dom(D∗) is dense in H. It is obvious that Q ⊂ Q∗.
Hence Q is a symmetric operator. But, at this stage, it is unclear if Q is essentially
self-adjoint or not. A basic property of Q is:

Lemma 4.7 The operator Q is closed.

Proof Let Ψ ∈ Dom(Q). Then, by Lemma 4.6, we have

‖QΨ ‖2 = ‖DΨ ‖2 + ‖D∗Ψ ‖2. (4.30)

This implies the closedness of Q (apply a general theorem [22, Theorem 1.4]). �
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The following lemma is often useful to prove the essential self-adjointness of
symmetric operators (cf. [56, Chap. 10, Problem 28]):

Lemma 4.8 Let A be a symmetric operator on a Hilbert space H such that A2 is
essentially self-adjoint on a dense subspace D ⊂ Dom(A2). Then A is essentially
self-adjoint on D .

Proof We set AD := A � D , the restriction of A to D . Since A2 is non-negative
and essentially self-adjoint on D , A2 is a non-negative self-adjoint operator. Hence
T := A2 + 1 is a strictly positive self-adjoint operator with T ≥ 1. By a limit-
ing argument, one can show that Dom(T ) ⊂ Dom(AD ) and, for all Ψ ∈ Dom(T ),
〈AD Ψ, TΨ 〉 = 〈TΨ, AD Ψ 〉. Applying this equation to the case where Ψ = T−1�

with � ∈ Dom(A∗
D ), we have 〈Ψ, A∗

D �〉 = 〈A∗
D �,Ψ 〉.1 This implies that, for all

a ∈ R \ {0},
Im
〈

Ψ, (A∗
D + ia)�

〉 = a 〈Ψ,�〉 = a‖T−1/2�‖2.

Hence, taking � ∈ ker(A∗
D + ia), we have ‖T−1/2�‖2 = 0, implying that T−1� =

0 and hence � = 0. Therefore ker(A∗
D + ia) = {0}. In particular, ker(A∗

D ± i) =
{0}. Thus, by the well-known criterion (see, e.g., [55, p.257, Corollary]) on essential
self-adjointness of symmetric operators, AD is essentially self-adjoint, i.e., A is
essentially self-adjoint on D . �

The following proposition formulates a sufficient condition for Q to be self-
adjoint:

Proposition 4.1 Suppose that Q2 is essentially self-adjoint on a dense subspace
D ⊂ Dom(Q2). Then Q is self-adjoint and essentially self-adjoint on D.

Proof By applying Lemma 4.8 to the case A = Q, we see that Q is essentially
self-adjoint onD. But, by Lemma 4.7, Q is closed. Hence Q is self-adjoint (cf. [55,
Theorem VIII.3, Corollary (p.257)]). �

The sequence {Δp}∞p=0 of the Laplace–Beltrami operators naturally defines an
infinite direct sum operator on H :

Δ := ⊕∞
p=0Δp. (4.31)

We call it the Laplace–Beltrami operator on H. It follows that Δ is a non-negative
self-adjoint operator with

kerΔ = ⊕∞
p=0 kerΔp.

Lemma 4.9 The following operator equality holds:

Δ1/2 = ⊕∞
p=0Δ

1/2
p .

1 Recall that, for any densely defined closable linear operator L , (L̄)∗ = L∗.
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Proof This follows from functional calculus of an infinite direct sum operator of
self-adjoint operators [22, Theorem 4.4(iii)]. �

Theorem 4.3 The operator equality

Δ = Q∗Q (4.32)

holds.

Proof In the same way as in the proof of (4.30) (or by (4.30) and the polarization
identity), one can show that, for all Ψ,� ∈ D(Q),

〈QΨ, Q�〉 = 〈DΨ, D�〉 + 〈D∗Ψ, D∗�
〉

=
∞
∑

p=0

(〈DpΨ
(p), Dp�

(p)〉 + 〈D∗
p−1Ψ

(p), D∗
p−1�

(p)〉)

=
∞
∑

p=0

〈Δ1/2
p Ψ (p), Δ1/2

p �(p)〉.

By Lemma 4.9, the right-hand side is equal to 〈Δ1/2Ψ,Δ1/2�〉. Hence

〈Δ1/2Ψ,Δ1/2�〉 = 〈QΨ, Q�〉. (4.33)

Note that D(Q) = D(Δ1/2). Hence (4.33) shows that Δ is the self-adjoint opera-
tor associated with the sesquilinear form (Ψ,�) �→ 〈QΨ, Q�〉 which is closed by
Lemma 4.7. Hence (4.32) holds. �

The next corollary immediately follows from (4.32):

Corollary 4.3 If Q is self-adjoint, then Δ = Q2.

4.5.4 Supersymmetric Structure

It is easy to see that the operator

ΓH := ⊕∞
p=0(−1)p

is bounded with Dom(ΓH) = H satisfying

Γ 2
H = I, Γ ∗

H = ΓH, ΓH �= ±I.

In other words, ΓH is a grading operator on H.
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Lemma 4.10 For all Ψ ∈ Dom(Q), ΓHΨ is in Dom(Q) and

ΓHQΨ + QΓHΨ = 0. (4.34)

Proof Let Ψ ∈ Dom(Q). Then ΓHΨ = {(−1)pΨ (p)}∞p=0. Since |(−1)p| = 1, it fol-
lows that ΓHΨ ⊂ Dom(D) ∩ Dom(D∗) = Dom(Q) and, for all p ≥ 0,

(QΓHΨ )(p) = Dp−1((−1)p−1Ψ (p−1)) + D∗
p((−1)p+1Ψ (p+1))

= −(−1)p(DΨ )(p) − (−1)p(D∗Ψ )(p) = −(ΓHQΨ )(p).

Hence (4.34) holds. �

Corollary 4.3 and Lemma 4.10 imply:

Theorem 4.4 Suppose that Q is self-adjoint. Then (H, ΓH, Q,Δ) is an SQM.

Thus we see that, for a Hilbert complex such that the Dirac operator Q is self-
adjoint, a supersymmetric structure is associated with it.

In Theorem 4.4, the self-adjointness of Q is assumed. But, in the case where Q
is not necessarily self-adjoint, we can use the method described in Sect. 1.5.2. The
Hilbert space H has the following orthogonal decomposition:

H = Heven ⊕ Hodd

with

Heven := ⊕∞
p=0H2p, Hodd := ⊕∞

p=0H2p+1.

Since each of D and D∗ can be regarded as elements in C(Heven,Hodd) and
C(Hodd,Heven) (hence so can be Q), we can define Q+ ∈ C(Heven,Hodd) and
Q− ∈ C(Hodd,Heven) by

Q+ := Q � Dom(Q) ∩ Heven, Q− := Q � Dom(Q) ∩ Hodd,

where the closedness of Q± follows from Lemma 4.7. By the results in Sect. 1.5.2,
the operators Q1 and Q2 defined by

Q1 :=
(

0 Q∗+
Q+ 0

)

, Q2 :=
(

0 Q−
Q∗− 0

)

are self-adjoint extensions of Q. It follows that

Δ1 := Q2
1 =
(

Q∗+Q+ 0
0 Q+Q∗+

)
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and

Δ2 := Q2
2 =
(

Q−Q∗− 0
0 Q∗−Q−

)

are non-negative self-adjoint operators. It is easy to see that

ΓH := I ⊕ (−I )

on H. Then, by the theory in Sect. 1.5.2, we obtain:

Theorem 4.5 The quadruples (H, ΓH, Q1,Δ1) and (H, ΓH, Q2,Δ2) are both SQM.

If Q is self-adjoint, then the two SQM are the same satisfying Q = Q1 = Q2 and
Δ = Δ1 = Δ2.

4.6 Hilbert Complexes Associated With Boson–Fermion
Fock Space

We now come back to the boson–fermion Fock spaceF (H ,K ). By the theory in
Sect. 4.3, we have:

Lemma 4.11 The triple HBF := ({F (p)(H ,K )}∞p=0, {Dom(dS,p)}∞p=0, {dS,p}∞p=0)

is a Hilbert complex.

Therefore we can apply the results in Sect. 4.5 to the Hilbert complex HBF. First,
Theorem 4.2 yields:

Theorem 4.6 (weak Hodge decomposition) For each p ≥ 0,F (p)(H ,K ) has the
orthogonal decomposition

F (p)(H ,K ) = ĤS,p ⊕ Ran(dS,p−1) ⊕ Ran(d∗
S,p)

with ĤS,p := ker dS,p ∩ ker d∗
S,p−1.

Lemma 4.12 For each p ≥ 0, D(dS,p) ∩ D(d∗
S,p−1) is dense inF

(p)(H ,K ).

Proof By Lemmas 4.1 and 4.2, we have

Fb,fin(Dom(S))⊗̂∧̂p
(Dom(S∗)) ⊂ D(dS,p) ∩ D(d∗

S,p−1).

Since Dom(S) and Dom(S∗) are dense in H and K respectively, the subspace
Fb,fin(Dom(S))⊗̂∧̂p

(Dom(S∗)) is dense in F (p)(H ,K ). Thus the desired result
follows. �
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By Lemma 4.12, Assumption (A) in Sect. 4.5 is satisfied in the present context
(Dp = Dom(dS,p), D∗

p−1 = Dom(d∗
S,p−1)). Hence, by Lemma 4.4, there exists a

unique non-negative self-adjoint operator ΔS,p on F (p)(H ,K ) such that

Dom(Δ
1/2
S,p) = D(dS,p) ∩ D(d∗

S,p−1)

and, for all Ψ,� ∈ D(dS,p) ∩ D(d∗
S,p−1),

〈

Δ
1/2
S,pΨ,Δ

1/2
S,p�

〉

= 〈dS,pΨ, dS,p�
〉+ 〈d∗

S,p−1Ψ, d∗
S,p−1�

〉

.

We call ΔS,p the p-th Laplace–Beltrami operator associated with S ∈ C(H ,K )

on F (p)(H ,K ). In particular, ΔS,0 is called the Laplacian on F (0)(H ,K ) ∼=
Fb(H ) associated with S.

We next want to identify ΔS,p in terms of known operators. The subspace

D (p)
S := Fb,fin(Dom(S∗S))⊗̂∧̂p

(Dom(SS∗)) (4.35)

is dense inF (p)(H ,K ) and included in Dom(d∗
S,pdS,p) ∩ Dom(dS,p−1d∗

S,p−1) (see
Lemmas 4.1 and 4.2). Hence it follows that the operator

LS,p := d∗
S,pdS,p + dS,p−1d

∗
S,p−1.

is a non-negative symmetric operator on F (p)(H ,K ) (dS,−1 := 0).

Lemma 4.13 For all p ≥ 0, L S,p is closed.

Proof For all Ψ ∈ D (p)
S , we have by (4.19)

‖LS,pΨ ‖2 = ‖d∗
S,pdS,pΨ ‖2 + ‖dS,p−1d

∗
S,p−1Ψ ‖2.

Since d∗
S,pdS,p and dS,p−1d∗

S,p−1 are non-negative self-adjoint and hence closed, the
equation implies that LS,p is closed. �

Theorem 4.7 For all p ≥ 0, L S,p is self-adjoint and the following operator equal-
ities hold:

ΔS,p = LS,p = dΓb(S
∗S) ⊗ I + I ⊗ dΓ (p)

f (SS∗). (4.36)

Proof Let
Gp := dΓb(S

∗S) ⊗ I + I ⊗ dΓ (p)
f (SS∗)).

Then Gp is non-negative self-adjoint. By Lemma 4.3(iii), we have LS,p = Gp on
D (p)

S . Hence Gp � D (p)
S ⊂ LS,p. On the other hand,D

(p)
S is a core for Gp [22, Theo-

rem 4.7 (iii), Theorem 6.1 (iv)]. Hence Gp ⊂ L̄ S,p = LS,p (by Lemma 4.13). Since
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every self-adjoint operator has no non-trivial symmetric extension, it follows that
Gp = LS,p. Thus LS,p is self-adjoint and the second equality in (4.36) holds. By
(4.26), we have LS,p ⊂ ΔS,p. Since LS,p is self-adjoint as already seen. it follows
that LS,p = ΔS,p. �

It follows from (4.36) and a general spectral theory on tensor products of self-
adjoint operators [22, Theorem 3.8] that

σ(ΔS,p) = {λ + μ|λ ∈ σ(dΓb(S∗S)), μ ∈ σ(dΓ (p)
f (SS∗))},

σp(ΔS,p) = {λ + μ|λ ∈ σp(dΓb(S
∗S)), μ ∈ σp(dΓ

(p)
f (SS∗))}.

The spectral properties of dΓb(·) and dΓf(·) are well-known [22, Theorem 5.3, §6.5].
Hence the spectrum and the point spectrum of ΔS,p are computed, although we do
not write them down here.

In the present context, Corollaries 4.1 and 4.2 take the following forms:

Corollary 4.4 (de Rham–Hodge–Kodaira decomposition) For each p ≥ 0, the
Hilbert space F (p)(H ,K ) has the orthogonal decomposition

F (p)(H ,K ) = kerΔS,p ⊕ Ran(dS,p−1) ⊕ Ran(d∗
S,p).

In particular, if Ran(dS,p−1) and Ran(d∗
S,p) are closed, then

F (p)(H ,K ) = kerΔS,p ⊕ Ran(dS,p−1) ⊕ Ran(d∗
S,p).

Corollary 4.5 Suppose that, for each p ≥ 0, dS,p is semi-Fredholm. Then

F (p)(H ,K ) = kerΔS,p ⊕ Ran(dS,p−1) ⊕ Ran(d∗
S,p).

If each dS,p (p ≥ 0) is Fredholm, then dim kerΔS,p < ∞.

One can identify kerΔS,p:

Theorem 4.8

kerΔS,p = ⊕∞
n=0{(⊗n

s ker S) ⊗ ∧p(ker S∗)}. (4.37)

Proof By (4.36) and a general theorem,2 we have

kerΔS,p = ker dΓb(S
∗S) ⊗ ker dΓ (p)

f (SS∗).

It is easy to see that

2 Let Ai (i = 1, 2) be a non-negative self-adjoint operator on a Hilbert space Hi . Then ker(A1 ⊗
I + I ⊗ A2) = ker(A1 ⊗ A2). See, e.g., [22, Theorem 7.6].
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ker dΓb(S
∗S) = ⊕∞

n=0 ker(S
∗S)(n)

s .

Moreover,
ker(S∗S)(n)

s = ⊗n
s ker S

∗S = ⊗n
s ker S

and
ker dΓ (p)

f (SS∗) = ∧p(ker(SS∗)) = ∧p(ker S∗).

Thus (4.37) holds. �

For a linear operator T on a Hilbert space, the number

nul (T ) := dim ker T ∈ Z+ ∪ {∞}

is called the nullity of T .
Formula (4.37) implies:

Corollary 4.6

(i) If nul (S) = 0, then

nul (ΔS,p) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 (p = 0)

nul (S∗)!
(nul (S∗) − p)!p! (1 ≤ p ≤ nul (S∗) < ∞)

∞ (nul (S∗) = ∞)

0 (0 ≤ nul (S∗) < p)

.

(ii) If nul (S) ≥ 1, then

nul (ΔS,p) =
⎧

⎨

⎩

∞ (0 ≤ p ≤ nul (S∗) ≤ ∞)

0 (0 ≤ nul (S∗) < p)
.

Remark 4.3 (i) The operators dS,p and ΔS,p were first introduced in [4] in the case
where H = { f ∈ S ′(Rn)|(−Δn + m2)−1/2 f ∈ L2(Rn)} (S ′(Rn) is the space of
tempered distributions on R

n , Δn is the n-dimensional Laplacian and m > 0 is a
constant),K = L2(Rn) and S = (−Δn + m2)1/2. The first form was generalized in
[6, 8, 9]. In [60], the case where H = K and S = I was studied from viewpoints
of the Malliavin calculus. Fundamental (Sobolev type) spaces of differential forms
based on ΔS,p were proposed and analyzed in [25, 26].

(ii) L. Gross [35] introduced an infinite-dimensional Laplacian in the framework
of the abstract Wiener space, which, in the present framework, corresponds to ΔS,0

withH = K and S = I and a generalization of it (see also [59, 60]).
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4.7 Laplace–Beltrami Operators on Boson–Fermion Fock
Space

We denote by ΔS the Laplace–Beltrami operator on F (H ,K ) (see (4.31)):

ΔS := ⊕∞
p=0ΔS,p.

By (4.36), we have

ΔS = dΓb(S
∗S) ⊗ I + I ⊗ dΓf(SS

∗). (4.38)

This may be a remarkable formula, clarifying a “geometric" meaning of the sum of a
boson second quantization operator and a fermion second quantization dΓb(S∗S) ⊗
I + I ⊗ dΓf(SS∗).

The sequence {D (p)
S }∞p=0 (see (4.35) ) yields the algebraic infinite direct sum

DS := ⊕̂∞
p=0D

(p)
S . (4.39)

It is easy to see that

DS = Fb,fin(Dom(S∗S))⊗̂Ff,fin(Dom(SS∗))

Lemma 4.14 Let A1 and A2 be self-adjoint operators on Hilbert spacesH1 andH2

respectively. Suppose that Ai (i = 1, 2) is essentially self-adjoint on a dense subspace
Di ⊂ Dom(Ai ). Then A1 ⊗ I + I ⊗ A2 is essentially self-adjoint on D1⊗̂D2.

Proof See [55, p. 301, Corollary (a)] or [22, Theorem 3.8(iii)]. �

Theorem 4.9 The Laplace–Beltrami operator ΔS is essentially self-adjoint on DS.

Proof The operator dΓb(S∗S) is essentially self-adjoint onFb,fin(Dom(S∗S)). Sim-
ilarly, dΓf(SS∗) is essentially self-adjoint on Ff,fin(Dom(SS∗)). Hence, by (4.38)
and Lemma 4.14, ΔS is essentially self-adjoint on DS . �

4.8 Dirac Operators on Boson–Fermion Fock Space

We denote by QS the Dirac operator associated with dS (see (4.29)):

QS := dS + d∗
S .

An important fact is:

Theorem 4.10 The operator QS is self-adjoint and
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ΔS = Q2
S. (4.40)

Moreover, QS is essentially self-adjoint on DS.

Proof It is easy to see that DS ⊂ D(Q2
S). A simple application of (4.32) yields that

ΔS = Q2
S onDS . By this fact and Theorem 4.9, Q2

S is essentially self-adjoint onDS .
By this result and Proposition 4.1, QS is self-adjoint and essentially self-adjoint on
DS . Then (4.32) implies (4.40). �

Theorems 4.10 and 4.4 imply:

Theorem 4.11 For each S ∈ C(H ,K ), (F (H ,K ), Γbf , QS,ΔS) is an SQM.

By (4.40) and (4.38), we have

Q2
S = dΓb(S

∗S) ⊗ I + I ⊗ dΓf(SS
∗). (4.41)

This formula gives a basic relation between the Dirac operator QS and the second
quantization operators dΓb(S∗S) and dΓf(SS∗).

It follows from (4.41) and (2.4) that ΩH ⊗ ΩK ∈ ker QS . Hence, in the SQM
(F (H ,K ), Γbf , QS,ΔS), supersymmetry is not spontaneously broken. As is
shown later in Chap. 5, the SQM (F (H ,K ), Γbf , QS,ΔS) is an abstract form of
some free supersymmetric quantum field models. By (1.17) applied to the case A =
S, we have σ(S∗S) \ {0} = σ(SS∗) \ {0}. Hence, in the present abstract model, the
“boson mass" inf σ(S∗S) \ {0} coincides with the “fermion mass" inf σ(SS∗) \ {0}.
This is a characteristic of free relativistic supersymmetric quantum field models.

Remark 4.4 By (4.38) and the spectral theory of tensor products of self-adjoint
operators [22, Theorem 3.8 (i), Theorem 3.12 (i)], we have

σ(ΔS) = {λb + λf |λb ∈ σ(dΓb(S∗S)), λf ∈ σ(dΓf(SS∗))},
σp(ΔS) = {λb + λf |λb ∈ σp(dΓb(S

∗S)), λf ∈ σp(dΓf(SS
∗))}.

Hence the spectra ofΔS are determined by the spectral properties of S∗S and SS∗ (for
spectral properties of second quantization operators, see [22, Theorem 5.3, Theorem
6.10]). By Theorem 1.2, we have

σ(QS) = {±√
μ|μ ∈ σ(ΔS}, σp(QS) = {±√

μ|μ ∈ σp(ΔS)}.

Thus one can know the spectra of QS from those of ΔS , although we do not write
them down here (see [21]).

Remark 4.5 The theory of infinite-dimensional Dirac operators presented
here can be extended to study the geometry of non-flat infinite-dimensional
manifolds [48–50].
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4.9 Strong Anti-Commutativity of Dirac Operators

We have a family {QS}S∈C(H ,K ) of Dirac operators indexed by C(H ,K ). It may
be interesting to find properties of this family. From the viewpoint of SQM, it would
be natural to ask when QS anti-commutes with QT (S, T ∈ C(H ,K )).

Let

DS,T := Ffin(Dom(T ∗S) ∩ Dom(S∗T ),Dom(ST ∗) ∩ Dom(T S∗)).

Then, by Lemma 4.3, DS,T ⊂ Dom(QSQT ) ∩ Dom(QT QS) and

{QS, QT } = dΓ (alg)
b (T ∗S + S∗T )⊗̂I + I ⊗̂dΓ (alg)

f (ST ∗ + T S∗) on DS,T .

This implies:

Lemma 4.15 The operators QS and QT anti-commute on DS,T if and only if

T ∗S + S∗T = 0, ST ∗ + T S∗ = 0. (4.42)

For self-adjoint operators, there is a concept of anti-commutativity stronger than
the usual one, which was introduced by Vasilescu [65]:

Definition 4.1 Self-adjoint operators A and B on a Hilbert space L are said to
strongly anti-commute if, for all t ∈ R, eit B A ⊂ Ae−i t B .

Remark 4.6 (i) It is shown a posteriori [65] that this definition is symmetric with
respect to A and B so that it is certainly meaningful.
(ii) It is shown also that strongly anti-commuting self-adjoint operators are anti-
commuting in the usual sense. But the converse is not true.
(iii) One can prove that self-adjoint operators A and B strongly anti-commute if
and only if the operator equality eit B Aeit B = A holds for all t ∈ R.

It is known that the concept of strong anti-commutativity is useful [13, 14, 65].
Hence it may be important to know when QS and QT strongly anti-commute. To
state a result on this problem, we introduce a self-adjoint operator

�S :=
(

0 S∗
S 0

)

on the direct sum Hilbert space H ⊕ K . Note that (4.42) is equivalent to

�S�T + �T�S = 0.

Concerning strong anti-commutativity of Dirac operators {QS}S∈C(H ,K ), there is a
beautiful structure:
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Theorem 4.12 The Dirac operators QS and QT strongly anti-commute if and only
if�S and�T strongly anti-commute. In that case, S ± T ∈ C(H ,K ) and QS±T =
QS ± QT .

Proof See [16, Theorem 3.1]. �

Theorem 4.12 can be applied to construction of integrable representations, on
the boson–fermion Fock space, of the two-dimensional relativistic supersymmetry
algebra which is generated by four elements Q1, Q2, H, P with defining relations

Q2
1 = H + P, Q2

2 = H − P, Q1Q2 + Q2Q1 = 0.

For the details, see [13, 16].

Remark 4.7 The following hold [16, Lemma 3.4]: (i) QS strongly commutes with
the total number operator Ntot (see (4.4)); (ii) QS is reduced by eachFr (H ,K ), r ∈
Z+ (see (4.2)); (iii) the operator �S is unitarily equivalent to QS,1, the reduced part
of QS toF1(H ,K ), in a natural way. These properties of QS also are interesting.

4.10 Perturbations of Dirac Operator QS

A method to construct an interacting supersymmetric quantum field model in the
present abstract framework is to define a new Dirac operator as a perturbation of QS

by a suitable operator. A natural way to define a perturbation of QS is to perturb
dS by a suitable operator. For this purpose, it is more convenient to work with the
Q-space representation F of the boson–fermion Fock spaceF (H ,K ) (see (4.6)).
As is already remarked, each linear operator L onF (H ,K ) has the form VbfLV

−1
bf

in the Q-space representation. But, in what follows, for notational simplicity, we use
the symbol L for VbfLV

−1
bf also unless otherwise stated.

4.10.1 Witten Deformation

Let W : Qh �→ R ∪ {±∞} be measurable and finite a.e.. Then a perturbation of dS
is given by

dS,W := e−WdSe
W ,

where e±W are regarded as multiplication operators on F. This is called the Witten
deformationofdS .3 It is easy to see that, ifW is bounded, thendS,W is densely defined

3 This deformation was introduced by Witten [69] for the exterior differential operator on a finite-
dimensional manifold.
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and closed. But, in the case where W is unbounded, it may depend on the properties
of W whether or not dS,W is densely defined. We do not discuss this problem here;
we simply assume that dS,W is densely defined and closable. We denote its closure
by the same symbol. Then the adjoint d∗

S,W exists and is densely defined, satisfying
d∗
S,W ⊃ eWd∗

Se
−W . It follows that

d2
S,W = 0 on Dom(dS,W ).

A perturbation of QS is defined by

QS,W := dS,W + d∗
S,W .

It follows that QS,W is closed. If Dom(dS,W ) ∩ Dom(d∗
S,W ) is dense, then QS,W is a

closed symmetric operator.
Suppose that Dom(dS,W ) ∩ Dom(d∗

S,W ) is dense. Then, as in Lemma 4.4, there

exists a unique non-negative self-adjoint operatorΔS,W onF such that Dom(Δ
1/2
S,w) =

Dom(dS,W ) ∩ Dom(d∗
S,W ) and, for all Ψ,� ∈ Dom(dS,W ) ∩ Dom(d∗

S,W ),

〈

Δ
1/2
S,wΨ,Δ

1/2
S,W�

〉

= 〈dS,WΨ, dS,W�
〉+ 〈d∗

S,WΨ, d∗
S,W�

〉

.

The operator ΔS,W gives a perturbation of the Laplace–Beltrami operator ΔS .
Using (4.21), one has formally

dS,W = dS + 1√
2
B(S∇W (q))∗ (a.e. q ∈ Qh), (4.43)

where B(·)∗ is the fermion creation operator onFf(K ) and∇ is the gradient operator
on L2(Qh, dμh) (see (3.6) and (3.7)). In this form, one can extend the perturbation
of dS to a more general one by replacing the K -valued function S∇W/

√
2 on Qh

with a general one F : Qh → K . In the next subsection, we consider this type of
perturbation.

Remark 4.8 The perturbation of dS given above is formally regarded as a special
case of the more general perturbation which replaces the measure μh with a general
one [8]. This point of view was further developed in [1–3]. In the framework of an
abstractWiener space, spectral analysis of an operator corresponding to the Laplace–
Beltrami operator ΔI,W (the case where K = H and S = I ) is made in [37] with
W obeying a set of conditions.

Remark 4.9 There is another type of perturbation for dS: dS(α) := dS + αA(g) ⊗
B(v)∗ with α ∈ C, g ∈ H , v ∈ K . This model is explicitly analyzable and one can
see that the model has some interesting features. See [21] for the details.
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4.10.2 More General Perturbations

Let F ∈ L2(Qh, dμh;K ) and B(u) (u ∈ K ) be the fermion annihilation operator
on Ff(K ) with test vector u (see Sect. 2.11). Then, for a.e. q, F(q) is in K and
∫

Qh
‖F(q)‖2K dμh(q) < ∞. Hence B(F(q)) is a bounded linear operator onFf(K )

and, by (2.21)

∫

Qh

‖B(F(q))#‖2dμh(q) = ‖F‖2, (4.44)

where B(·)# denotes either B(·) or B(·)∗.We define an operator B(F) onF as follows:

Dom(B(F)) :=

⎧

⎪

⎨

⎪

⎩

Ψ ∈ F|
∫

Qh

‖B(F(q))Ψ (q)‖2dμh(q) < ∞

⎫

⎪

⎬

⎪

⎭

,

(B(F)Ψ )(q) := B(F(q))Ψ (q), Ψ ∈ F, a.e. q ∈ Qh.

Note that B(F) is not necessarily bounded.4

Let M‖F‖ be the multiplication operator on L2(Qh, dμh) by the function ‖F(·)‖.
Then Dom(M‖F‖) is dense in L2(Qh, dμh). It follows from (2.21) that

Dom(M‖F‖)⊗̂Ff(K ) ⊂ Dom(B(F)).

Hence Dom(B(F)) is dense in F. Therefore the adjoint B(F)∗ exists. It is not so
difficult to show that

Dom(B(F)∗) =

⎧

⎪

⎨

⎪

⎩

Ψ ∈ F|
∫

Qh

‖(B(F(q))∗Ψ (q)‖2dμh(q) < ∞

⎫

⎪

⎬

⎪

⎭

,

(B(F)∗Ψ )(q) = B(F(q))∗Ψ (q), Ψ ∈ Dom(B(F)∗), a.e. q ∈ Qh.

We now consider the following perturbation of dS:

dS(F) := dS + B(F)∗.

In the Q-space representation F ofF (H ,K ), we have by (4.21)

4 A simple example is given by the case where F(q) = f (q)u for an a.e. finite function f on Qh

and u ∈ K . In this case, B(F(q)) = f (q)∗B(u). If f is not essentially bounded on (Qh, μh), then
the multiplication operator by f ∗ is unbounded and hence B(F) is unbounded.
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dS = 1√
2

∞
∑

n=1

B(ξn)
∗DS∗ξn on P(Dom(S))⊗̂Ff,fin(K ). (4.45)

In what follows, we assume the following:

(F.1) UbFb,fin(H ) ⊂ Dom(M‖F‖).

It follows from Assumption (F.1) that

Dom(dS(F)) ⊃ Vbf(Fb,fin(Dom(S))⊗̂Ff,fin(K )).

Hence dS(F) is densely defined. Therefore the adjoint dS(F)∗ exists and satisfies

dS(F)∗ ⊃ d∗
S + B(F).

This implies that dS(F)∗ also is densely defined. Hence dS(F) is closable. With this
preliminary, we define a perturbation of QS by

QS(F) := dS(F) + dS(F)∗. (4.46)

Let

D̂S := VbfDS,

where DS is defined by (4.39). Then D̂S ⊂ Dom(QS(F)) and

QS(F) = QS + B(F) + B(F)∗ on D̂S. (4.47)

Hence QS(F) is densely defined and a symmetric operator on F. Equation (4.47)
shows that QS(F) � D̂S is a perturbation of QS by the operator B(F) + B(F)∗. As
we have seen in Theorem 4.10, QS is essentially self-adjoint on D̂S . But it may
depend on properties of F whether or not QS(F) is essentially self-adjoint on a
suitable subspace. A simple case is given in the following proposition:

Proposition 4.2 Suppose that the function ‖F(·)‖K on Qh is essentially bounded.
Then QS(F) is self-adjoint with Dom(QS(F)) = Dom(QS) and essentially self-
adjoint on any core of QS.

Proof Under the present assumption, B(F) and B(F)∗ are bounded and so is B(F) +
B(F)∗. Hence the assertions follow from the Kato–Rellich theorem. �

In the case where the assumption in Proposition 4.2 does not hold, however, it
becomes ahighlymathematical problem toprove essential self-adjointness ofQS(F).
A partial result on this problem is obtained in [12].

For notational simplicity,wedenote the closure of QS(F) � D̂S by the same symbol
QS(F). Under Assumptions (F.1), we have the following:
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Proposition 4.3 For all Ψ ∈ Dom(QS(F)), ΓbfΨ is in Dom(QS(F)) and
ΓbfQS(F)Ψ = −QS(F)ΓbfΨ .

Proof It is easy to show thatΓbfQS(F)Ψ = −QS(F)ΓbfΨ,Ψ ∈ D̂S . Then the state-
ment is proved by a simple limiting argument. �

Proposition 4.3 implies that (F, Γbf , QS(F), HS(F)), where

HS(F) := QS(F)2,

is an SQM if QS(F) is self-adjoint. This SQM is regarded as an abstract supersym-
metric quantum field model whose supercharge and supersymmetric Hamiltonian
are given by QS(F) and HS(F) respectively.

The orthogonal decomposition (2.2) of a fermion Fock space induces the orthog-
onal decomposition

F = F+ ⊕ F−, (4.48)

where

F+ := L2(Qh, dμh;Ff,+(K )), F− := L2(Qh, dμh;Ff,−(K )).

Then we have
Γbf � F± = ±I

and QS(F) has the operator matrix representation with respect to (4.48)

QS(F) =
(

0 QS,−(F)

QS,+(F) 0

)

,

where QS,±(F) := QS(F) � Dom(QS(F)) ∩ F±. Following the prescription in
Sect. 1.5.2, one can define two self-adjoint operators:

Q(1)
S (F) :=

(

0 QS,+(F)∗
QS,+(F) 0

)

, Q(2)
S (F) :=

(

0 QS,−(F)

Q∗
S,−(F) 0

)

.

Then Q(1)
S (F) and Q(2)

S (F) are self-adjoint extensions of QS(F). Hence, letting

H (1)
S (F) := Q(1)

S (F)2, H (2)
S (F) := Q(2)

S (F)2,

we obtain two SQM (F, Γbf , Q
(1)
S (F), H (1)

S (F)) and (F, Γbf , Q
(2)
S (F), H (2)

S (F)). We
have

HS(F) ⊂ H (a)
S (F), a = 1, 2.
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A simple application of Theorem 1.7 yields:

Theorem 4.13

(i) Suppose that, for some constant β0 > 0, e−β0H
(1)
S (F) is trace class. Then, for all

β ≥ β0, e−βH (1)
S (F) is trace class and QS,+(F) is Fredholm with

ind QS,+(F) = Tr (Γbfe
−βH (1)

S (F)),

independently of β ≥ β0.
(ii) Suppose that, for some constant β0 > 0, e−β0H

(2)
S (F) is trace class. Then, for all

β ≥ β0, e−βH (2)
S (F) is trace class and QS,−(F) is Fredholm with

ind QS,−(F) = −Tr (Γbfe
−βH (2)

S (F)),

independently of β ≥ β0.5

4.11 Explicit Form of Supersymmetric Hamiltonian HS(F)

In view of Theorem 4.13, we need to know an explicit form of H (a)
S (F) (a = 1, 2).

To find it, however, we need some conditions on F .

(F.2) For some p > 4, ‖F‖K ∈ L p(Qh, dμh), where, for α ≥ 1, Lα(Qh, dμh) :=
{Ψ : Qh �→ C ∪ {±∞}, measurable| ∫Qh

|Ψ (q)|αdμh(q) < ∞}.
(F.3) For a.e. q, F(q) ∈ Dom(S∗) andCS∗F(q) = S∗F(q), whereC is the complex

conjugation on hC. Moreover, S∗F ∈ Dom(∇∗), where (S∗F)(q) := S∗F(q)

for a.e. q and ∇∗ is the adjoint of the gradient operator ∇ (see (3.6) and (3.7))
and ∇∗S∗F ∈ Lr (Qh, dμh) for some r > 2.

(F.4) For all u ∈ K , the function Fu(·) := 〈F(·), u〉K on Qh is in Lr ′
(Qh, dμh)

for some r ′ > 2 and

Fu, F∗
u ∈ Dom(∇), (∇Fu)(q), (∇F∗

u )(q) ∈ Dom(S) (a.e.q).

Moreover, for a.e. q, the linear operator TF (q) and the anti-linear operator
RF (q) onK defined by

TF (q)u := 1√
2
S(∇Fu)(q), RF (q)u := 1√

2
S(∇F∗

u )(q), u ∈ K

are bounded and Hilbert–Schmidt respectively, and ‖TF (·)‖, ‖RF (·)‖2 ∈
Ls(Qh, dμh) for some s > 2.

5 Here we use the following fact also: for each Fredholm operator A, ind A∗ = −ind A.
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(F.5) There exists a sequence {FN }∞N=1 with FN ∈ P(Dom(S))⊗̂Dom(S∗) such
that, for some constants p > 4, r > 2 and s > 2,

lim
N→∞

∫

Qh

‖FN − F‖pK dμh(q) = 0,

lim
N→∞

∫

Qh

|∇∗S∗FN (q) − ∇∗S∗F(q)|r dμh(q) = 0,

lim
N→∞

∫

Qh

‖TFN (q) − TF (q)‖sdμh(q) = 0,

lim
N→∞

∫

Qh

‖RFN (q) − RF (q)‖s2dμh(q) = 0.

Remark 4.10 Condition (F.2) implies (F.1).

In Sect. 2.12, we have introduced fermion quadratic operators. These operators
have extensions to the boson–fermion Fock space F as shown below. For a B(K )-
valued measurable function T (·) on Qh, we define the operator 〈B∗|T (·)|B〉 on F as
follows:

Dom(
〈

B∗|T (·)|B〉) := {Ψ ∈ F|
∫

Qh

‖ 〈B∗|T (q)|B〉Ψ (q)‖2F f (K )dμh(q) < ∞},

(
〈

B∗|T (·)|B〉Ψ )(q) := 〈B∗|T (q)|B〉Ψ (q), Ψ ∈ Dom)
〈

B∗|T (·)|B〉), a.e. q.

If T (q) is Hilbert–Schmidt or anti-linear Hilbert–Schmidt for a.e. q, then one can
define also the operators 〈B∗|T (·)|B∗〉 and 〈B|T (·)|B〉 on F as follows:

Dom(
〈

B∗|T (·)|B∗〉) := {Ψ ∈ F|
∫

Qh

‖ 〈B∗|T (q)|B∗〉Ψ (q)‖2F f (K )dμh(q) < ∞},

(
〈

B∗|T (·)|B∗〉Ψ )(q) := 〈B∗|T (q)|B∗〉Ψ (q), Ψ ∈ Dom)
〈

B∗|T (·)|B∗〉), a.e. q,

Dom(〈B|T (·)|B〉) := {Ψ ∈ F|
∫

Qh

‖ 〈B|T (q)|B〉 Ψ (q)‖2F f (K )dμh(q) < ∞},

(〈B|T (·)|B〉Ψ )(q) := 〈B|T (q)|B〉 Ψ (q), Ψ ∈ Dom) 〈B|T (·)|B〉), a.e. q.

Proposition 4.4 Assume (F.2)–(F.5). Then D̂S ⊂ Dom(QS(F)2) = Dom(HS(F))

and
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HS(F) =ΔS + 1√
2
∇∗S∗F + ‖F(·)‖2K + 〈B∗|TF (·)|B〉

+ 〈B∗|TF (·)∗|B〉+ 〈B∗|RF (·)|B∗〉+ 〈B|RF (·)|B〉 . (4.49)

on D̂S.

Proof We give only an outline of the proof. We have

QS(F)2 ⊃Q2
S + {dS, B(F)} + {dS, B(F)∗} + {d∗

S , B(F)} + {d∗
S , B(F)∗}

+ B(F)2 + (B(F)∗)2 + B(F)B(F)∗ + B(F)∗B(F).

It follows from (2.19) that B(F)2 = 0 and (B(F)∗)2 = 0 on D̂S and

B(F)B(F)∗ + B(F)∗B(F) = ‖F(·)‖2K on D̂S,

where we have used condition (F.2). We already know that Dom(Q2
S) ⊃ D̂S and

Q2
S = ΔS . Hence

QS(F)2 ⊃ΔS + ‖F(·)‖2K + {dS, B(F)} + {dS, B(F)∗} + {d∗
S , B(F)} + {d∗

S , B(F)∗}.

To proceed further, we first consider the case where F ∈ P(Dom(S))⊗̂Dom(S∗).
In this case, there exist K ∈ N , Gk ∈ P(Dom(S)) and vk ∈ Dom(S∗) (k =
1, . . . , K ) such that F =∑K

k=1 Gk ⊗ vk . Let d be the dimension of the subspace
span {v1, . . . , vK } and {en}Nn=1 be a CONS of span {v1, . . . , vK }. Then one can rewrite
F in terms of {en}Nn=1 to obtain F =∑N

n=1 Hn ⊗ en with Hn ∈ P(Dom(S)). It is not
so difficult to show that D̂S is included in Dom({dS, B(F)}) ∩ Dom({dS, B(F)∗}) ∩
Dom({d∗

S , B(F)}) ∩ Dom({d∗
S , B(F)∗}) and the following equations hold on D̂S:

{dS, B(F)} = 〈B∗|TF (·)|B〉 + 1√
2

N
∑

n=1

〈F, en〉DS∗en ,

{dS, B(F)∗} = 〈B∗|RF (·)|B∗〉

{d∗
S , B(F)} = 〈B|RF (·)|B〉,

{d∗
S , B(F)∗} =

〈

B∗|TF (·)∗|B〉 + 1√
2

N
∑

n=1

〉

D∗
S∗en · 〈en, F〉,

where we have formula (4.45) is used. By (3.4), we have
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1√
2

N
∑

n=1

D∗
S∗en · 〈en, F〉 = − 1√

2

N
∑

n=1

〈en, F〉DCS∗en + 1√
2

N
∑

n=1

(D∗
S∗en 〈en, F〉).

Condition (F.3) implies that
∑N

n=1〈F, en〉DS∗en =∑N
n=1〈en, F〉DCS∗en on D̂S . One

can show that
∑N

n=1〈en, F〉DCS∗en = ∇∗S∗F on D̂S . Thus we see that D̂S ⊂
Dom(QS(F)2) and (4.49) holds. Then, by a limiting argument using condition (F.5),
one can extended the result to a general F obeying the assumption in Proposition
4.4. For more details, see the proof of [12, Theorem 4.4] (note that notations and
methods there are slightly different from those of the present book). Cf. also [11]. �

We formulate an additional condition under which 〈B∗|RF |B∗〉 and 〈B|RF |B〉
vanish on D̂S:

(F.6) For all u, v ∈ Dom(S∗) and a.e. q ∈ Qh,

〈

S∗u, (∇F∗
v )(q)

〉

hC

= 〈S∗v, (∇F∗
u )(q)

〉

hC

.

Example 4.1 Let W ∈ Dom(∇) such that, for a.e. q, (∇W )(q) ∈ Dom(S). Then
theK -valued function F := S∇W/

√
2 on Qh—see (4.43)—satisfies (F.6).

Lemma 4.16 For a.e. q,

〈

B∗|RF (q)|B∗〉 = 0 on Ff,fin(K )

if and only if (F.6) holds. In that case, we have

〈B|RF (q)|B〉 = 0 on Ff,fin(K )

Proof Let Ψ := B(u1)∗ · · · B(u p)
∗ΩK (p ≥ 0, u1, . . . , u p ∈ K ) and {en}∞n=1 be a

CONS of K . Then

(
〈

B∗|RF (q)|B∗〉Ψ )(p+2) = √(p + 2)!Ap+2(T ⊗ u1 ⊗ · · · ⊗ u p),

where T :=∑∞
n=1 RF (q)en ⊗ en . Hence 〈B∗|RF (q)|B∗〉 Ψ = 0 for all u1, . . . , u p ∈

K if and only if A2(T ) = 0. On the other hand, A2(T ) = 0 is equivalent to
(F.6). The second half of the lemma follows from that 〈B|RF |B〉 = 〈B∗|RF |B∗〉∗
on D̂S . �

Lemma 4.16 implies that, under conditions (F.2)–(F.6), HS(F) takes the following
simpler form on D̂S:

HS(F) = ΔS + 1√
2
∇∗S∗F + ‖F(·)‖2K + 〈B∗|TF (·)|B〉+ 〈B∗|TF (·)∗|B〉 . (4.50)
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4.12 Path Integral Representation of the Index of QS,+(F)

Under additional conditions, one can derive a path integral representation for the
index ind QS,+(F). In this section, we briefly describe this aspect.

We continue to assume (F.2)–(F.5).

4.12.1 Path Integral Representations of Pure Imaginary
Time Correlation Functions of Bose Fields

An additional assumption is the following:

(S.1) The non-negative self-adjoint operators

h := S∗S

and SS∗ are strictly positive and, for some constant γ > 1, h−(γ−1) is trace
class on h.

Under Assumption (S.1), h−(γ−1) is a strictly positive and self-adjoint compact oper-
ator. Hence there exists a CONS {en}∞n=1 of hC and positive numbers εn such that
hen = εnen , εn ≤ εn+1 (n ≥ 1) and Tr h−(γ−1) =∑∞

n=1 ε
−(γ−1)
n < ∞. It follows that

σ(h) = σp(h) = {εn}∞n=1 and
∑∞

n=1 ε
−(γ−1)
n < ∞. In particular, we have

Tr h−γ =
∞
∑

n=1

1

ε
γ
n

< ∞. (4.51)

Hence h−γ is trace class on h.
The domain Dom(hγ /2) ∩ h is a real Hilbert space with the inner prod-

uct 〈 f, g〉γ := 〈hγ /2 f, hγ /2g〉h ( f, g ∈ Dom(hγ /2) ∩ h) and the norm ‖ f ‖γ :=
√〈 f, f 〉γ . We denote this Hilbert space by hγ . On the other hand, h is a real inner
product space with the inner product 〈 f, g〉−γ := 〈h−γ /2 f, h−γ /2g〉 ( f, g ∈ h). We
denote the completion of this inner product space by h−γ . It follows that h−γ is the
dual space of hγ with the natural bilinear form 〈ϕ, f 〉 (ϕ ∈ h−γ , f ∈ hγ ) such that
〈ϕ, f 〉 = 〈ϕ, f 〉h if ϕ ∈ h and, for all ϕ ∈ h−γ and f ∈ hγ , | 〈ϕ, f 〉 | ≤ ‖ϕ‖−γ ‖ f ‖γ ,
where ‖ · ‖−γ denotes the norm of h−γ . By (S.1), the embedding of h into h−γ is
Hilbert–Schmidt. Hence, by theMinlos theorem (e.g., [20, TheoremD.18], [32], [38,
Theorem 1.72]), we can take the measure space Qh to be h−γ . Letting

E := h−γ

we denote the measure μh on E by μE . In this case, we have ϕh( f )(ϕ) = 〈ϕ, f 〉
(ϕ ∈ E, f ∈ h).6

6 For f ∈ h and ϕ ∈ E , 〈ϕ, f 〉 := limn→∞ 〈ϕ, fn〉 in L2(E, dμE ), where { fn}n is a sequence in
hγ such that limn→∞ fn = f in h. The limit limn→∞ 〈ϕ, fn〉 is independent of the choice of { fn}n .
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Lemma 4.17 For all β > 0, e−βh is trace class.

Proof It is easy to see that C := supx>0 x
γ e−βx < ∞. Hence

∑∞
n=1〈en, e−βhen〉 =

∑∞
n=1 e

−βεn ≤ C
∑∞

n=1 ε
−γ
n < ∞ ( by (4.51)). �

Since ‖e−βh‖ < 1 for all β > 0, it follows that 1 − e−βh is strictly positive and
bijective. In particular, the inverse (1 − e−βh)−1 exists.

The boson second quantization operator dΓb(h) physically denotes the Hamilto-
nian of a free Bose field with one-boson Hamiltonian h.

Lemma 4.18 For all β > 0, e−βdΓb(h) is trace class and

Tr e−βdΓb(h) = 1
∏∞

n=1(1 − e−βεn)
.

Proof See [22, Corollary 5.5]. �
In the context of quantum statistical mechanics, the function

Zβ := Tr e−βdΓb(h)

of β > 0 (the inverse temperature) is called the partition function of the free Bose
field system with the Hamiltonian dΓb(h).

Let A be a ∗-algebra consisting of linear operators on Fb(hC) such that I (the
identity)∈ A and, for all A ∈ A and t > 0, Ae−tdΓb(h) is trace class on Fb(hC) or a
densely defined bounded linear operator whose extension is trace class on Fb(hC).
Then one can define a linear functional ωβ : A → C by

ωβ(A) := Tr (Ae−βdΓb(h))

Zβ

, A ∈ A.

It follows that ωβ(I ) = 1 and ωβ(A∗A) ≥ 0 for all A ∈ A. Hence ωβ is a state on A.
It is called the Gibbs state associated with dΓb(h).

The time development of the time-zeroBose fieldφC ( f ) ( f ∈ h) under theHamil-
tonian dΓb(h) is defined by eitdΓb(h)φC( f )e−i tdΓb(h), where t ∈ R is the time param-
eter. Replacing t by i t , we see that it is natural to define the “pure imaginary time
development" φC(i t, f ) of φC( f ) by

φC(i t, f ) := e−tdΓb(h)φC( f )etdΓb(h).

For each n ∈ N, the n-point correlation functions of pure imaginary time free Bose
fields with respect to the Gibbs state ωβ are defined by

Gn(t1, f1; · · · ; tn, fn) :=ωβ(φC(i t1, f1) · · · φC(i tn, fn)),

0 ≤ t1 ≤ t2, · · · ≤ tn < β, f1, . . . , fn ∈ h.
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The following lemma gives a trace formula for the two-point correlation functions:

Lemma 4.19 Let 0 ≤ s ≤ t < β and f, g ∈ h. Then

G2(s, g; t, f ) = 1

2

〈

g, (e−(t−s)h + e−(β−(t−s))h)(1 − e−βh)−1 f
〉

h
. (4.52)

Proof In the same way as in the proof of (2.14), one can show that

φC(i t, f ) = 1√
2
(A(e−th f )∗ + A(eth f )) onFb,fin(Dom(eth)).

Hence

G2(s, g; t, f ) = 1

2
{ωβ(A(e−shg)∗A(e−th f )∗) + ωβ(A(e−shg)∗A(eth f ))

+ ωβ(A(eshg)A(e−th f )∗) + ωβ(A(eshg)A(eth f ))}.

It is not so difficult to show (see [29, §5.2], [19, Theorem 8.16]) that, for all f1, f2 ∈
hC,

ωβ(A( f1)
∗A( f2)) = 〈 f2, e−βh(1 − e−βh)−1 f1

〉

,

ωβ(A( f1)A( f2)
∗) = 〈 f1, (1 − e−βh)−1 f2

〉

,

ωβ(A( f1)
∗A( f2)

∗) = 0, ωβ(A( f1)A( f2)) = 0.

Using these formulas, one obtains (4.52). �

Remark 4.11 It is shown that, for all n ≥ 1, G2n−1 = 0 and G2n is written as a
combinatorial sum of two-point functions G2.

As in the case of Euclidean quantum field theory [61], one can represent the
correlation function Gn in terms of functional integrations. A key fact for this is
Lemma 4.20 below.

For each β > 0, we set

Eβ := C([0, β]; E),

the space of continuous mappings from [0, β] to E , which is a path space with paths
in E . For each � ∈ Eβ , we set

�t := �(t) ∈ E .

Wedenote byF theBorel field on Eβ generated by {�t ( f )| f ∈ h, t ∈ [0, β]}, where
�t ( f ) := 〈�t , f 〉.
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Lemma 4.20 There exist a probability measure μβ on (Eβ,F ) such that
{�t ( f )| f ∈ h, t ∈ [0, β]} is a family of jointly Gaussian random variables on
(Eβ,F , μβ) with covariance

∫

Eβ

dμβ�t ( f )�s(g) = 1

2

〈

f, (e−|t−s|h + e−(β−|t−s|)h)(1 − e−βh)−1g
〉

h
, (4.53)

for all f, g ∈ h and t, s ∈ [0, β].
Proof We need only apply the theory in Appendix B to the case A = h (cf. [36,
Proposition 5.1]). �

Remark 4.12 It follows from (4.53) that, for all f ∈ h,
∫

Eβ
|�0( f ) −

�β( f )|2dμβ = 0. Hence �0( f ) = �β( f ) for a.e. �. Since h is separable, it fol-
lows that �0 = �β for a.e. � ∈ Eβ . This means that, for a.e. �, � ∈ Eβ is a loop
in E . Hence one can regard the measure μβ as the probability measure on the loop
space L([0, β]; E) := {� ∈ C([0, β]; E)|�0 = �β}.

We can now state formulas which represent correlation functions as functional
integrals with respect to μβ :

Theorem 4.14 Let f1, . . . , fn ∈ h, 0 < t1 < t2 < · · · < tn < β. Then

Gn(t1, f1; · · · ; tn, fn) =
∫

Eβ

�t1( f1) · · · �tn ( fn)dμβ(�).

Proof See [15, Theorem 2.2].7 �

Theorem 4.14 can be extended as follows. Let V be a real-valued measurable
function on E which is finite for a.e. ϕ and bounded from below (i.e., there exists a
real constant V0 such that V (ϕ) ≥ V0 for a.e. ϕ) satisfying that Dom(dΓb(h)1/2) ∩
Dom(V̂ 1/2) is dense in L2(E, dμE ), where V̂ := V − V0 ≥ 0. Then, by the sec-
ond representation theorem for densely defined closed symmetric forms [45, Chap.
VI, Theorem 2.23], there exists a unique self-adjoint operator HV on L2(E, dμE ),
bounded from below, such that, for all Ψ,� ∈ Dom(dΓb(h)1/2) ∩ Dom(V̂ 1/2),

〈

Ĥ 1/2
V Ψ, Ĥ 1/2

V �
〉

= 〈dΓb(h)1/2Ψ, dΓb(h)1/2�
〉+
〈

V̂ 1/2Ψ, V̂ 1/2�
〉

,

where ĤV := HV − V0 ≥ 0, and Dom(Ĥ 1/2
V ) = Dom(dΓb(h)1/2) ∩ Dom(V̂ 1/2).

One can prove the following:

7 Note that the convention on the Gaussian random process in [15] is different from that in the
present book.
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Theorem 4.15 Let V and HV be as above. Then:

(i) For all β > 0, e−βHV is trace class.
(ii) Let n ∈ N and F1, . . . , Fn be measurable functions on E such that, for all t >

0, e−t HV |Fj |e−t HV ( j = 1, . . . , n) is trace class. Then, for all t1, . . . , tn ∈ [0, β]
satisfying 0 < t1 < t2 < · · · < tn < β,

Tr (e−t1HV F1e−(t2−t1)HV · · · Fn−1e−(tn−tn−1)HV Fne−(β−tn)HV )

Zβ

=
∫

Eβ

F1(�t1) · · · Fn(�tn )e
−

β
∫

0
V (�t )dt

dμβ.

Proof See [15, Theorem 3.1]. �

4.12.2 Index Formula

For a.e. ϕ ∈ E , the operator

LF (ϕ) := TF (ϕ) + TF (ϕ)∗

is a self-adjoint Hilbert–Schmidt operator on K . We denote by ∂t the differential
operator ∂/∂t with periodic boundary condition on L2([0, β];K ) ∼= L2([0, β]) ⊗
K . By using the unitary equivalence ∂t + SS∗ ∼= ∂t ⊗ I + I ⊗ SS∗, the theory of
tensor product operators and the strict positivity of SS∗, one can show that ∂t + SS∗
is bijective with (∂t + SS∗)−1 being bounded. Hence, for a.e.� ∈ Eβ , we can define
the bounded linear operator

KF (�) := LF (�t )(∂t + SS∗)−1

on L2([0, β];K ).

Lemma 4.21 Suppose that

β
∫

0

‖LF (�t )‖22dt < ∞, a.e. �. (4.54)

Then, for a.e. �, KF (�) is Hilbert–Schmidt on L2([0, β];K ) and there exists a
bounded linear operator KF (�; t, s) onK (t, s ∈ [0, β], t �= s) such that the map-
ping s �→ KF (�; t, s) (s �= t) is strongly continuous and
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(KF (�) f )(t) =
β
∫

0

KF (�; t, s) f (s)ds, f ∈ L2([0, β];K ).

Moreover, KF (�; t) := KF (�; t, t + 0) is trace class onK and

˜Tr KF (�) :=
β
∫

0

Tr KF (�; t)dt

is a real-valued measurable function on Eβ .

Proof See [9, Lemma 6.6, Lemma 6.7]. �

Let

WF := 1√
2
∇∗S∗F + ‖F‖2K .

Theorem 4.16 Assume (F.2)–(F.6), (4.54) and the following:

(i) The operator HS(F) given by (4.50) is essentially self-adjoint on D̂S and, for
all β > 0, e−βHS(F) is trace class.
(ii) The operator dΓb(h) + WF is essentially self-adjoint, bounded from below
and, for all β > 0, e−β(dΓb(h)+WF ) is trace class.
(iii)

∫

Eβ

dμβ exp

⎛

⎝−
β
∫

0

WF (�s)ds + 1

2
‖KF‖22 + |˜Tr KF |

⎞

⎠ < ∞.

Then QS,+(F) is Fredholm and

ind QS,+(F) =
∫

Eβ

dμβ(�)det2(1 + KF (�)) exp

⎛

⎝−
β
∫

0

W (�s)ds +˜Tr KF (�)

⎞

⎠

(4.55)

independently of β > 0, where det2(1 + ·) denotes the regularized determinant for
a Hilbert–Schmidt operator (see Sect. 2.7).

Proof See [9, Theorem 6.8]. We remark that, by using suitable approximate and
limiting arguments, one can remove some of the assumed conditions in [9, Theorem
6.8]. �
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Remark 4.13 In the casewhere (F.6) does not hold, the operators 〈B∗|RF (·)|B∗〉 and
〈B|RF (·)|B〉 do not vanish. But, in this case too, one can derive a path integral repre-
sentation for ind QS,+(F) [9, Theorem 6.10] which is given by (4.55) with the factor

det2(1 + KF (�))e˜Tr KF (�) replaced by ˜Pf(AS, BF (�)) exp
(

− 1
2

∫ β

0 Tr KF (�s) ds
)

,

where AS and BF (�) are bounded skew-symmetric operators onK ⊕ K (AS does
not depend on �) and ˜Pf(·, ·) denotes the extended relative Pfaffian defined for a
pair of bounded skew-symmetric operators [9, Appendix E].

Wepresent, in the next chapter, examples of the infinite dimensionalDirac operator
QS(F) which appear in supersymmetric quantum field theory.



Chapter 5
Models in Supersymmetric Quantum
Field Theory

Abstract We construct in a mathematically rigorous way two-dimensional versions
of the Wess–Zumino models in supersymmetric quantum field theory as an appli-
cation of the theory of infinite-dimensional Dirac operators on the abstract boson–
fermion Fock space presented in Chap. 4. Other supersymmetric quantum field mod-
els also are briefly mentioned.

5.1 Preliminaries

We construct supersymmetric quantum field models on the two-dimensional (cylin-
drical) space–time

M� := R × T� = {(t, x)|t ∈ R, x ∈ T�}

with T� := R/�Z (one-torus), which is identified with the circle of length �. For this
purpose, we need some preparations.

5.1.1 Momentum Operator of a Quantum Particle in T�

In what follows, we use the physical unit system where the light speed c and the
reduced Planck constant � are equal to 1. Themomentum space of a quantum particle
being in T� is given by

T̂� := 2πZ

�
.

We denote by �2(T̂�) the Hilbert space of absolutely square summable functions on
T̂�:
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�2(T̂�) :=
⎧
⎨

⎩
u : T̂� → C|

∑

p∈T̂�

|u(p)|2 < ∞
⎫
⎬

⎭

with inner product 〈u, v〉 := ∑
p∈T̂�

u(p)∗v(p), u, v ∈ �2(T̂�). We set

H� := �2(T̂�).

For each p ∈ T̂�, we define a function ep on T� by

ep(x) := 1√
�
eipx , x ∈ T�.

It is well known that {ep}p∈T̂�
is a CONS of L2(T�). One can show [23, Theorem

1.33] that there exists a unique unitary operator F� : L2(T�) → H� such that

(F� f )(p) = 〈
ep, f

〉

L2(T�)
= 1√

�

∫

T�

e−i px f (x)dx, f ∈ L2(T�), p ∈ T̂�.

The unitary operatorF� is called the one-dimensional discrete Fourier transform
associated with T�. We write

f̂ := F� f, f ∈ L2(T�).

We define an operator p̂� on L2(T�) as follows:

Dom( p̂�) :=
⎧
⎨

⎩
f ∈ L2(T�)|

∑

p∈T̂�

|p f̂ (p)|2 < ∞
⎫
⎬

⎭
,

p̂� f :=
∑

p∈T̂�

p f̂ (p)ep, f ∈ Dom( p̂�).

It is easy to see that, for each p ∈ T̂�, ep ∈ Dom( p̂�) and p̂�ep = pep, i.e., p is
an eigenvalue of p̂� and ep is an eigenvector of p̂� belonging to p. Since {ep}p∈T̂�

is a CONS of L2(T�), it follows that p̂� is self-adjoint and σ( p̂�) = σp( p̂�) = T̂�.
The operator p̂� is called the momentum operator with the periodic boundary
condition acting in L2(T�). We have

F� p̂�F
−1
� = p, (5.1)

where the right-hand side denotes the multiplication operator by the funcion p on
T̂�. Since p̂� is self-adjoint, its square
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−Δ� := p̂2�

is a non-negative self-adjoint operator on L2(T�). The operatorΔ� is called theLapla-
cian with the periodic boundary condition acting in L2(T�). The Hamiltonian of
a relativistic free particle of mass m > 0 in T� is defined by

h� := ( p̂2� + m2)1/2 = (−Δ� + m2)1/2 (5.2)

acting in L2(T�). Let ω : T̂� → R be defined by

ω(p) :=
√
p2 + m2, p ∈ T̂�. (5.3)

Then, by (5.1) and the functional calculus, we have

F�h�F
−1
� = ω,

where the right-hand side denotes the multiplication operator by the function ω.
The value ω(p) denotes the energy of the relativistic free particle with momentum
p ∈ T̂�.

5.1.2 The Free Quantum Klein–Gordon Field on M�

We now move to the boson Fock space Fb(H�) over H� in the momentum repre-
sentation. We denote the annihilation operator on Fb(H�) with test vector u ∈ H�

by a(u). It is easy to see that, for each f ∈ L2(T�) and t ∈ R, eitω f̂ /
√

ω is in H�.
Therefore one can define

φ(t, f ) := 1√
2

{

a

(
eitω f̂√

ω

)∗
+ a

(
eitω f̂ ∗
√

ω

)}

,

where f ∗ means the complex conjugate of f and f̂ ∗ := F� f ∗. In the same way as in
[22, Theorem 5.31], one can show that, for all f ∈ Dom(Δ�) and� ∈ Fb,0(H�), the
correspondenceR 	 t 
→ φ(t, f )� is twice strongly differentiable and the following
equation holds:

d2

dt2
φ(t, f )� + φ(t, (−Δ� + m2) f )� = 0,

where d/dt means strong differentiation with respect to t . Thus the operator-valued
functional (t, f ) ∈ R × Dom(Δ�) 
→ φ(t, f ) satisfies the free Klein–Gordon equa-
tion on the subspaceFb,0(H�). Moreover, if f = f ∗, f ∈ L2(T�), thenφ(t, f ) is the
Segal field operator with test vector eitω f̂ /

√
ω. Hence it is symmetric and essentially

self-adjoint (see Sect. 2.9). In particular, φ(t, f ) is a neutral Bose field. The operator-
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valued functional φ : (t, f ) 
→ φ(t, f ) is called the free quantum Klein–Gordon
field on M�. Obviously the time-zero field of φ takes the form

φ( f ) := φ(0, f ) = 1√
2

{

a

(
f̂√
ω

)∗
+ a

(
f̂ ∗

√
ω

)}

, f ∈ L2(T�). (5.4)

The canonical conjugate momentum operator of φ(t, f ) is defined by

π(t, f ) := i√
2

{
a
(√

ωeitω f̂
)∗ − a

(√
ωeitω f̂ ∗)

}

for all f ∈ L2(T�) such that
√

ω f̂ ∈ H�. One can easily show that, for each
t ∈ R, {φ(t, f ), π(t, g)| f, g ∈ L2(T�),

√
ωĝ ∈ H�} obeys the Heisenberg CCR on

Fb,0(H�): for all f1, f2, g1, g2 ∈ L2(T�) such that
√

ωĝ1,
√

ωĝ2 ∈ H�,

[φ(t, f1), π(t, g1)] = i
∫

T�

f1(x)g1(x)dx, (5.5)

[φ(t, f1), φ(t, f2) = 0, [π(t, g1), π(t, g2)] = 0 (5.6)

onFb,0(H�).
To understand a mathematical feature of φ(t, f ) and π(t, f ), we recall a notion.

We denote by D(T�) the Fréchet space of infinitely differentiable functions on T�

with the family {ρn}∞n=0 of semi-norms defined by

ρn( f ) := sup
x∈T�

∣
∣
∣
∣
dn f (x)

dxn

∣
∣
∣
∣ , n ≥ 0.

The Fréchet space D(T�) is called the space of test functions on T�. The space of
continuous linear functionals on D(T�)), denoted by D ′(T�), is called the space of
distributions on T� (cf. [58, Chap. IV, §IV.2]). A distribution F on T� is said to be
real if F( f )∗ = F( f ∗) for all f ∈ D(T�). We denote the space of real distributions
on T� by D ′

real(T�). Let Dreal(T�) be the space of real-valued test functions on T�:

Dreal(T�) := { f ∈ D(T�)| f = f ∗}.

Then, for all f ∈ Dreal(T�) and F ∈ D ′
real(T�), F( f ) is a real number.

Let K be a Hilbert space and D be a dense subspace of K . Suppose that,
for each f ∈ D(T�), a linear operator F( f ) on K is given such that, for all
f ∈ D(T�), Dom(F( f )) ⊂ D and, for all � ∈ D , F( f )� is linear in f . The sub-
spaceD is called a common domain for F( f ), f ∈ D(T�). If, for all �,Φ ∈ D , the
functional 〈�, F( f )Φ〉 of f ∈ D(T�) is continuous in f , i.e., the correspondence
f 
→ 〈�, F( f )Φ〉 is an element of D ′(T�), then F is called an operator-valued
distribution on T�. In this case, one often introduces a symbol F(x) (which has no
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mathematical meaning a priori) to write formally F( f ) = ∫

T�
F(x) f (x)dx and calls

F(x) the distribution kernel of F .
A basic fact is that, for each t ∈ R, φ(t, ·) and π(t, ·) are operator-valued distribu-

tions on T� withFb,0(H ) being a common domain. Hence one can write formally

φ(t, f ) =
∫

T�

φ(t, x) f (x)dx, π(t, f ) =
∫

T�

π(t, x) f (x)dx

with operator-valued distribution kernels φ(t, x) and π(t, x).
Let

Hb := dΓb(ω), (5.7)

the boson second quantization operator of the multiplication operator ω acting in
H�. Then, by (2.16), we have

φ(t, f ) = eit Hbφ( f )e−i t Hb , t ∈ R, f ∈ L2(T�).

Thus Hb may be interpreted as the Hamiltonian of the quantum system described by
{φ(t, f )|t ∈ R, f ∈ L2(T�)}.

For each p ∈ T̂�, we define δp : T̂� → R by δp(q) := δpq , q ∈ T̂� with δpq being
the Kronecker delta. Then it is obvious that δp ∈ H�. Hence one can define the
operator

a(p) := a(δp).

We call it the boson annihilation operator with momentum p. It follows that

[a(p), a(q)∗] = δpq , [a(p), a(q)] = 0, [a(p)∗, a(q)∗] = 0

on Fb,0(H�). Since {δp|p ∈ T̂�} is a CONS of H�, it follows that, for all u ∈ H�,
limN→∞

∑N
p=−N u(p)δp = u inH�. Hence, by Lemma 2.1, for all � ∈ Fb,0(H�),

a

(
eitω f̂ ∗
√

ω

)

� =
∑

p∈T̂�

e−i tω(p)

√
ω(p)

f̂ (−p)a(p)�,

a

(
eitω f̂√

ω

)∗
� =

∑

p∈T̂�

eitω(p)

√
ω(p)

f̂ (p)a(p)∗�,
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Therefore

φ(t, f ) :=
∑

p∈T̂�

1√
2ω(p)

(
a(p)∗eitω(p) f̂ (p) + a(p)e−i tω(p) f̂ (−p)

)
on Fb,0(H�).

This shows that the formal expression

φ(t, x) = 1√
�

∑

p∈T̂�

1√
2ω(p)

(a(p)∗eitω(p)−i px + a(p)e−i tω(p)+i px )

may serve as the symbol for the operator-valued distribution kernel of φ(t, f ), f ∈
D(T�).1 Similarly, the symbol for the operator-valued distribution kernel of
π(t, f ), f ∈ D(T�) is given by

π(t, x) = i√
�

∑

p∈T̂�

√
ω(p)√
2

(a(p)∗eitω(p)−i px − a(p)e−i tω(p)+i px ).

The Heisenberg CCR (5.5) and (5.6) are symbolically written as follows:

[φ(t, x), π(t, y)] = iδ(x − y),

[φ(t, x), φ(t, y)] = 0, [π(t, x), π(t, y)] = 0,

where δ(x − y) is the delta-distribution on T� × T�.
It is shown [22, Proposition 9.12] that the Hamiltonian Hb is written as

Hb =
∑

p∈T̂�

ω(p)a(p)∗a(p) on Dom(Hb).

5.1.3 The Majorana Field on M�

The classical free Dirac equation in the space–time M� takes the following form:

(iγ 0∂t + iγ 1∂x − m)ψcl(t, x) = 0, (t, x) ∈ M� (5.8)

with

ψcl(t, x) :=
(

ψcl+(t, x)
ψcl−(t, x)

)

∈ C
2,

1 The symbol φ(t, x) here does not have meaning as an operator on Fb(H�). But one can give
mathematical meaning to φ(t, x) as a sesquilinear form on a suitable domain (cf. [22, §9.6]).
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being a continuously differentiable spinor on M�, where γ 0 and γ 1 are the gamma
matrices associated with the two-dimensional Minkowski space-time, i.e., γ 0 and
γ 1 are 2 × 2 Hermitian and anti-Hermitian matrices respectively satisfying the anti-
commutation relations

{γ μ, γ ν} = 2gμν, μ, ν = 0, 1, g00 = 1, g11 = −1, g01 = g10 = 0,

m > 0 is a parameter denoting physically the mass of the classical Dirac field ψcl,
and ∂t := ∂/∂t , ∂x := ∂/∂x . Let

α1 := γ 0γ 1.

Then, using the one-dimensional Dirac operator

hD := −iα1∂x + γ 0m,

one can rewrite (5.8) as

i∂tψ
cl(t, x) = hDψcl(t, x). (5.9)

A solutionψcl of (5.8) is called a classical Majorana field if it is real:ψcl(t, x)∗ =
ψcl(t, x), (t, x) ∈ M�. We first construct a classical Majorana field. For this purpose,
it is convenient to use the following representation of the gamma matrices, called the
Majorana representation:

γ 0 =
(
0 −i
i 0

)

, γ 1 =
(
0 i
i 0

)

.

In this representation, we have

α1 =
(
1 0
0 −1

)

.

Hence

hD =
(−i∂x −im

im i∂x

)

,

We write the discrete Fourier transform of ψcl(t, ·) as ψ̂cl(t, ·):

ψ̂cl(t, p) := 1√
�

∫

T�

ψcl(t, x)e−i pxdx, p ∈ T̂�.

Then (5.9) is equivalent to
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i
d

dt
ψ̂cl(t, p) = ĥD(p)ψ̂cl(t, p), p ∈ T̂� (5.10)

where

ĥD(p) := α1 p + γ 0m =
(

p −im
im −p

)

.

Since ĥD(p) is Hermitian, it follows from (5.9) that

ψ̂cl(t, p) = e−i t ĥD(p)ψ̂(0, p).

Thus the initial value problem of (5.10) (hence of (5.9)) is solved.
To find an explicit representation of ψ̂cl(t, p), we need to solve the eigenvalue

problem of ĥD(p). But this is easy. The eigenvalues of ĥD(p) are ±ω(p) and nor-
malized eigenvectors are given by

u+(p) := 1√
2ω(p)

(
ν(p)

iν(−p)

)

, u−(p) := 1√
2ω(p)

(
ν(−p)
−iν(p)

)

,

where ω(p) is defined by (5.3) and

ν(p) := √
ω(p) + p.

Using the equation
ν(p)ν(−p) = m,

one can easily check that

ĥD(p)u±(p) = ±ω(p)u±(p).

Note that, for each p ∈ T̂�, {u±(p)} is an orthonormal basis of C
2. Therefore

ψ̂cl(t, p) = e−i tω)p)c+(p)u+(p) + eitω(p)c−(p)u−(p),

with c±(p) := 〈u±(p), ψ̂cl(0, p)〉C2 . Thus

ψcl(t, x) = 1√
�

∑

p∈T̂�

eipx
{
e−i tω(p)c+(p)u+(p) + eitω(p)c−(p)u−(p)

}
.

Using the easily proved properties

u+(−p)∗ = u−(p), u+(p) = u−(−p)∗,
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we see that the reality condition is equivalent to c−(p) = c+(−p)∗. Hence, putting
bcl(p) := c+(p), we find that the classical Majorana field is of the form

ψcl(t, x) = 1√
�

∑

p∈T̂�

eipx
{
e−i tω)p)u+(p)bcl(p) + eitω(p)u−(p)bcl(−p)∗

}
.

In components, we have

ψcl
+(t, x) = 1√

�

∑

p∈T̂�

eipx√
2ω(p)

{
e−i tω(p)ν(p)bcl(p) + eitω(p)ν(−p)bcl(−p)∗

}
,

(5.11)

ψcl
−(t, x) = i√

�

∑

p∈T̂�

eipx√
2ω(p)

{
e−i tω(p)ν(−p)bcl(p) − eitω(p)ν(p)bcl(−p)∗

}
.

(5.12)

To construct a quantum field version of ψcl(t, x), we move to the fermion Fock
spaceFf(H�) overH�. We denote the fermion annihilation operator onFf(H�) by
b(u), u ∈ H�. By (5.11) and (5.12), it is natural to define a two-component quantum
field

ψ(t, f ) =
(

ψ+(t, f )
ψ−(t, f )

)

, (t, f ) ∈ R × L2(T�)

by

ψ+(t, f ) := 1√
2

[

b

(
νeitω f̂√

ω

)∗
+ b

(
νeitω f̂ ∗

√
ω

)]

,

ψ−(t, f ) = − i√
2

[

b

(
ν̃eitω f̂√

ω

)∗
− b

(
ν̃eitω f̂ ∗

√
ω

)]

,

where

ν̃(p) := ν(−p), p ∈ T̂�.

Note that ψ±(t, f ) are bounded operators. It follows that ψ±(t, ·) are operator-
valued distributions on T�. If f = f ∗, then they are bounded self-adjoint operators.
Moreover, ψ(t, f ) satisfies the distributional Dirac equation

iγ 0∂tψ(t, f ) + iγ 1ψ(t,−∂x f ) − mψ(t, f ) = 0, (t, f ) ∈ R × C1(T�),
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where ∂t means strong differentiation in t . It is easy to see that {ψ±(t, f )| f ∈ L2(T�)}
obeys the CAR:

{ψα(t, f ), ψβ(t, g)} = δαβ

∫

T�

f (x)g(x)dx, f, g ∈ L2(T�), t ∈ R, α, β = ±.

(5.13)

Thus ψ(t, f ) is a Majorana field on M�.
Let

Hf := dΓf(ω), (5.14)

the fermion second quantization operator of the multiplication operator ω acting in
H�. Then, by (2.23), we have

ψα(t, f ) = eit Hfψα( f )e−i t Hf , t ∈ R, f ∈ H�, α = ±,

where ψα( f ) := ψα(0, f ) (α = ±) are the components of the time-zero Majorana
fieldψ(0, f ). Thus Hf may be interpreted as the Hamiltonian of the quantum system
described by {ψ±(t, f )|t ∈ R, f ∈ H�}.

For each p ∈ T̂�, one can define the operator

b(p) := b(δp).

We call it the fermion annihilation operator with momentum p. It follows that

{b(p), b(q)∗} = δpq , {b(p), b(q)} = 0, {b(p)∗, b(q)∗} = 0.

As in the bosonic case, we can show that, for all u ∈ H�

b(u) =
∑

p∈T̂�

u(p)∗b(p), b(u)∗ =
∑

p∈T̂�

u(p)b(p)∗.

Therefore

ψ+(t, f ) =
∑

p∈T̂�

ν(p)√
2ω(p)

(
eitω(p) f̂ (p)b(p)∗ + e−i tω(p) f̂ (−p)b(p)

)
,

ψ−(t, f ) = −i
∑

p∈T̂�

ν(−p)√
2ω(p)

(
eitω(p) f̂ (p)b(p)∗ − e−i tω(p) f̂ (−p)b(p)

)
.

Hence the operator-valued distribution kernels of ψ±(t, ·) are given by
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ψ+(t, x) = 1√
�

∑

p∈T̂�

ν(p)√
2ω(p)

(
eitω(p)−i pxb(p)∗ + e−i tω(p)+i pxb(p)

)
,

ψ−(t, x) = − i√
�

∑

p∈T̂�

ν(−p)√
2ω(p)

(
eitω(p)−i pxb(p)∗ − e−i tω(p)+i pxb(p)

)
.

The CAR (5.13) is symbolically written as

{ψα(t, x), ψβ(t, y)} = δαβδ(x − y), α, β = ±. (5.15)

As in the case of the boson Hamiltonian Hb (cf. [22, Proposition 9.12]) , one can
show that

Hf =
∑

p∈T̂�

ω(p)b(p)∗b(p) on Dom(Hf).

Letψ±(x) := ψ±(0, x). Then one can define operator-valued distribution kernels
ξ1(x), ξ2(x) by

ξ1(x) := 1√
2
(ψ+(x) + ψ−(x)),

ξ2(x) := 1√
2
(ψ+(x) − ψ−(x)).

It follows from (5.15) that {ξ1(x), ξ2(x)} also obeys the CAR:

{ξa(x), ξb(y)} = δabδ(x − y), a, b = 1, 2.

Explicitly, ξa(x) has the following form as an operator-valued distribution kernel:

ξ1(x) = 1√
�

∑

p∈T̂�

1√
2ω(p)

(
τ(p)∗b(p)∗e−i px + τ(p)b(p)eipx

)
,

ξ2(x) = 1√
�

∑

p∈T̂�

1√
2ω(p)

(
τ(p)b(p)∗e−i px + τ(p)∗b(p)eipx

)
,

where

τ(p) := 1√
2
(ν(p) + iν(−p)), p ∈ T̂�.
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For each f ∈ L2(T�), we define

ξ1( f ) :=
∑

p∈T̂�

1√
2ω(p)

(
τ(p)∗ f̂ (p)b(p)∗ + τ(p) f̂ (−p)b(p)

)
,

ξ2( f ) :=
∑

p∈T̂�

1√
2ω(p)

(
τ(p) f̂ (p)b(p)∗ + τ(p)∗ f̂ (−p)b(p)

)
,

which are bounded linear operators on Ff(H�), and write

∫

T�

ξ j (x) f (x)dx := ξ j ( f ), j = 1, 2. (5.16)

5.2 The N = 1 Wess–Zumino Model on M�

We are now ready to construct the Wess–Zumino models on the cylinder M� in a
mathematically rigorous way.We refer the reader to [40] for a survey of these models
as well as aspects related to them.

There are two kinds of Wess–Zumino models which are distinguished by the
degree N of supersymmetry: N = 1 and N = 2. We first consider the N = 1 Wess–
Zumino model on M�. The model describes an interaction of a relativistic neutral
Bose field with aMajorana field. Hence a Hilbert space of state vectors for the N = 1
Wess–Zumino model can be taken to be the boson–fermion Fock space

Fbf(H�) := Fb(H�) ⊗ Ff(H�)

over (H�,H�).

5.2.1 The Free Case

As a first step, we construct a free N = 1 Wess–Zumino model on M�. The Hamil-
tonian of it is defined by

H0 := Hb ⊗ I + I ⊗ Hf ,

where Hb and Hf are defined by (5.7) and (5.14) respectively.
To define a supercharge, let Sτ be themultiplication operator onH� by the function

τ(−p)∗:
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Dom(Sτ ) =
⎧
⎨

⎩
u ∈ H�|

∑

p∈T̂�

|τ(−p)∗u(p)|2 < ∞
⎫
⎬

⎭
,

(Sτu)(p) := τ(−p)∗u(p), p ∈ T̂�, u ∈ Dom(Sτ )

and denote by dSτ
the boson–fermion Fock space exterior differential operator asso-

ciated with Sτ (see (4.15)). Then, applying (4.7) and (4.9) to the present context, one
can show that, for all � ∈ Fb,fin(Dom(Sτ )) ⊗̂ Ff,fin(H�),

dSτ
� =

∑

p∈T̂�

τ (−p)∗b(p)∗a(p)�.

The supercharge in the free N = 1 Wess–Zumino model is defined by the Dirac
operator

Q0 := QSτ
= d∗

Sτ
+ dSτ

.

Since
S∗

τ Sτ = ω = Sτ S
∗
τ ,

we have by (4.41)

Q2
0 = dΓb(ω) ⊗ I + I ⊗ dΓf(ω) = H0.

Hence, letting Γ� be the state-sign operator onFbf(H�), we see that (Fbf(H�), Γ�,
Q0, H0) is an SQM. This is a mathematically rigorous form of the N = 1 freeWess–
Zumino model.

5.2.2 The Interacting Case

To define an interaction of the neutral quantumKlein–Gordon field and theMajorana
field, it is more convenient to use the Q-space representation of the quantum Klein–
Gordon field.

Let
L2
real(T�) := { f ∈ L2(T�)| f = f ∗},

the real Hilbert space consisting of real elements in L2(T�) . Then, by (5.4), we have
for all f, g ∈ L2

real(T�)

〈
ΩH �

, φ( f )φ(g)ΩH �

〉 = 1

2

〈
f̂√
ω

,
ĝ√
ω

〉

H �

= 1

2
〈h−1/2

� f, h−1/2
� g〉L2(T�), (5.17)
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where h� is defined by (5.2). Note that, for all f ∈ L2
real(T�), h

−1/2
� f is in L2

real(T�).
Formula (5.17) suggests thatφ( f ) can be realized as theGaussian randomprocess

indexed by the real Hilbert space

R� :=the completion of L2
real(T�) with respect to the inner product

〈h−1/2
� f, h−1/2

� g〉L2(T�) ( f, g ∈ L2
real(T�)).

We denote by {ϕ( f )| f ∈ R�} the Gaussian random process indexed by R� and
by (Q�, ��, μ�) the underlying probability measure space. Then, by Theorem 3.1,
there exists a unique unitary operator U� from Fb(R�) to L2(Q�, dμ�) such that
U�ΩR �

= 1 and, for all n ≥ 1, f1, . . . , fn ∈ L2
real(T�),

U�AR �
( f1)

∗ · · · AR �
( fn)

∗ΩR �
= 2n/2 : ϕ( f1) · · · ϕ( fn) : .

Remark 5.1 It is easy to see that, for all γ > 2, h−(γ−1)
� is trace class. Hence,

applying the theory in Sect. 4.12.1 to the case where h = L2
real(T�) and h = h�, one

can take, as Q� and ϕ( f ) ( f ∈ L2
real(T�)), the following:

Q� = h−γ (γ > 2), ϕ( f ) = 〈ϕ, f 〉, ϕ ∈ h−γ .

One of the advantages of this choice for Q� is in that Q� is a real Hilbert space
and hence that infinite-dimensional differential calculus on Q� may be employed for
further analysis.

It is easy to see that h1/2� can be extended to a unitary operator from L2(T�) toR�.
We denote the extension by h̃1/2� . Then

J� := h̃1/2� F−1
�

is a unitary operator from H� toR�. Hence, by the theory in Sect. 3.4, the operator

V� := U�Γb(J�) (5.18)

is a unitary operator fromFb(H�) to L2(Q�, dμ�), satisfying that V�ΩH �
= 1 and,

for all n ≥ 1, f1, . . . , fn ∈ L2
real(T�),

V�a(ω−1/2 f̂1)
∗ · · · a(ω−1/2 f̂n)

∗ΩH �
= 2n/2 : ϕ( f1) · · · ϕ( fn) : .

In particular, we have

V�φ( f )V−1
� = ϕ( f ), f ∈ L2

real(T�).

The subspace
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W� := span {1, : ϕ( f1) · · · ϕ( fn) : |n ≥ 1, f1, . . . , fn ∈ L2
real(T�) ∩ D(h�)}

is dense in L2(Q�, dμ�). It is easy to see that, for all �,Φ ∈ W�, the mapping
f ∈ Dreal(T�) 
→ 〈�,ϕ( f )Φ〉L2(Q�,dμ�)

is continuous. Hence 〈�,ϕ(·)Φ〉L2(Q�,dμ�)
∈

D ′(T�). In this sense, ϕ is a random distribution on T�. As in the case of ordinary
distributions, we symbolically write

ϕ( f ) =
∫

T�

ϕ(x) f (x)dx

and call the symbol ϕ(x) the distribution kernel of the random distribution ϕ.
In what follows, we use L2(Q�, dμ�) as a Q-space representation ofFb(H�) and

work with L2(Q�, dμ�).
Let χ ∈ S (R), the Schwartz space of rapidly decreasing C∞-functions on R,

satisfying (i)
∫

R
χ(x)dx = 1; (ii) χ(x) = χ(−x), x ∈ R; (iii) the Fourier transform

χ̂ of χ is non-negative; (iv) χ̂(p) = 0 for |p| ≥ 1 and χ̂ (p) > 0 for |p| < 1/2. For
each κ > 0, let

χκ(x) := κ
∑

k∈Z
χ(κ(x − k�)), x ∈ R.

Then it follows that χκ is in C∞(R) and periodic with period �. Hence χκ can be
regarded as an element ofD(T�). It is easy to show that, for all f ∈ D(T�) and x ∈ T�,
limκ→∞

∫

T�
χκ(x − y) f (y)dy = f (x) = δx ( f ). Namely,χκ(x − ·) converges to the

delta-distribution δx at x in D ′(T�). Noting this property, one defines the time-zero
quantum field ϕκ(x) (x ∈ T�) with ultraviolet cutoff κ in the Q-space representation
by

ϕκ(x) := ϕ(χκ(x − ·)),

which is mathematically meaningful as a random variable. By (3.2), we have

∫

Q�

: ϕκ(x)
n :2 dμ� = n!

2n
‖χκ(x − ·)‖2nR �

Hence ∫

T�

dx
∫

Q�

: ϕκ(x)
n :2 dμ� = n!

2n
‖χκ‖2nR �

� < ∞.

Therefore, by the Fubini theorem,
∫

T�
: ϕκ(x)n :2 dx < ∞ (μ�-a.e.). Hence it follows

that, for all polynomials P(x) of x ∈ R,
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∫

T�

| : P(ϕκ(x) : |2dx < ∞ (μ�-a.e.). (5.19)

Let W be a polynomial of the form

W (x) = V (x) − 1

2
mx2, x ∈ R

with V (x) being a real polynomial of degree deg V ≥ 2. Then

QI,κ :=
∫

T�

ξ1(x) : W ′(ϕκ(x) : dx

—see(5.16)—is well-defined as a bounded linear operator onFf(H�) (μ�-a.e.), i.e.,
QI,κ is aB(Ff(H�))-valued function on (Q�, μ�). The supercharge of the interacting
N = 1 Wess–Zumino model with ultraviolet cutoff κ is defined by

Qκ := Q0 + QI,κ .

It is easy to see thatQκ is densely definedwithDom(Qκ) ⊃ W� andQκ is a symmetric
operator.

For μ�-a.e. q ∈ Q�, one can define Yκ(q) ∈ H� by

Yκ(q)(p) := 1√
�

∫

T�

: W ′(ϕκ(x)(q)) : e−i pxdx, p ∈ T̂�,

the discrete Fourier transform of the function T� 	 x 
→: W ′(ϕκ(x)(q)) :. It follows
from the unitarity of the discrete Fourier transform that

‖Yκ(q)‖2H �
=
∫

T�

: W ′(ϕκ(x)(q)) :2 dx .

Note that |τ(p)|2
2ω(p)

= 1.

Hence,μ�-a.e. q ∈ Q�, τ ∗Yκ(q)/
√
2ω is an element ofH�. Therefore one can define

a mapping F (1)
κ : Q� → H� by

F (1)
κ (q) := τ ∗

√
2ω

Yκ(q), μ�-a.e. q ∈ Q�.

It is easy to see that QI,κ = b(F (1)
κ ) + b(F (1)

κ )∗ on W�. Hence we have
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Qκ = QSτ
(F (1)

κ ) on W�,

where QSτ
(F (1)

κ ) is the operator QS(F) (see (4.46)) with S = Sτ and F = F (1)
κ .

Thus the abstract SQM (F, ΓBF, QS(F), HS(F)) yields, as a concrete realization,
the interacting N = 1 Wess–Zumino model with ultraviolet cutoff.

In the paper [44], the following results are reported: (i) Qκ is essentially self-
adjoint (we denote its closure by the same symbol); (ii) Qκ,+ := Qκ � Dom(Qκ) ∩
L2(Q�, dμ�;Ff,+(H�)) is Fredholm and ind Qκ,+ is constant in κ . In particular,
ind Qκ,+ = ind Q0,+; (iii). ind Qκ,+ = ε[(deg V + 1) mod 2], where ε = ±1 is the
signof the highest degree coefficient ofV . It is shown that the index formula continues
to hold also in the limit κ → ∞ (the removal of the ultraviolet cutoff).

5.3 The N = 2 Wess–Zumino Model on M�

We next consider the N = 2 Wess–Zumino model on M�. This is a supersymmetric
quantum field model which describes an interaction of a charged Bose field and the
Dirac field.2 We first recall these fields.

The Hilbert space for a charged particle on T� with spin 0 is taken, in the momen-
tum representation, to be

K� := H� ⊕ H�,

where H� ⊕ {0} (resp. {0} ⊕ H�) describes the Hilbert space of state vectors of
the particle (resp. anti-particle). Let Fb(K�) be the boson Fock space over K� and
denote by a(u, v) the boson annihilation operator with test vector (u, v) ∈ K� on
Fb(K�). The annihilation operator a+(u) (resp. a−(u)) (u ∈ H�) for the particle
(resp. anti-particle) is given by

a+(u) := a(u, 0), a−(u) := a(0, u).

It follows from (2.9) and (2.10) that, for all u, v ∈ H�,

[a±(u), a±(v)∗] = 〈u, v〉 ,

[a+(u), a−(v)#] = 0, [a+(u)#, a−(v)] = 0

onFb,0(K�). The free charged Bose field is defined by

φc(t, f ) := 1√
2

{

a+
(

eitω
f̂√
ω

)∗
+ a−

(

eitω
f̂ ∗

√
ω

)}

, t ∈ R, f ∈ L2(T�).

2 A quantum mechanical version of the model is studied in a mathematically rigorous way in [7,
24, 27, 41].
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Note that φc(t, f ) is not symmetric even if f = f ∗. Hence it is not neutral. As
in the case of the neutral quantum scalar field φ(t, f ), one can show that, for all
f ∈ Dom(Δ�) and� ∈ Fb,0(K�), the correspondence R 	 t 
→ φc(t, f )� is twice
strongly differentiable and the following equation holds:

d2

dt2
φc(t, f )� + φc(t, (−Δ� + m2) f )� = 0,

where d/dt means strong differentiation with respect to t . Thus the operator-valued
functional (t, f ) ∈ R × Dom(Δ�) 
→ φc(t, f ) satisfies the freeKlein–Gordon equa-
tion on the subspace Fb,0(K�).

The canonical conjugate momentum operator of φc(t, f ) is defined by

πc(t, f ) := i√
2

{
a−(

√
ωeitω f̂ )∗ − a+(

√
ωeitω f̂ ∗)

}
(5.20)

for f ∈ Dom(h1/2� ). We have

πc(t, f ) = ∂φc(t, f ∗)∗

∂t
on Fb,0(K�).

It is easy to see that the following CCR are satisfied: for all f1, f2 ∈ L2(T�) and
g1, g2 ∈ Dom(h1/2� ),

[φc(t, f1), πc(t, g1)] = i
∫

T�

f1(x)g1(x)dx, (5.21)

[φc(t, f1), πc(t, g1)
∗] = 0,

[φc(t, f1), φc(t, f2)
#] = 0, [πc(t, g1), πc(t, g2)

#] = 0.

Let

Hc := dΓb(ω ⊕ ω).

Then we have by (2.14)

φc(t, f ) = eit Hcφc( f )e
−i t Hc , πc(t, g) = eit Hcπc(g)e

−i t Hc

for all t ∈ R, f ∈ L2(T�), g ∈ Dom(h1/2� ), where
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φc( f ) := φc(0, f ) = 1√
2

{

a+
(

f̂√
ω

)∗
+ a−

(
f̂ ∗

√
ω

)}

,

πc( f ) := πc(0, f ) = i√
2

{
a−(

√
ω f̂ )∗ − a+(

√
ω f̂ ∗)

}
,

the time-zero field of φc(t, f ) and of πc(t, g) respectively. Thus Hc is interpreted as
the Hamiltonian of the charged Bose field under consideration.

For later use, here we write down the operator-valued distribution kernel of φc( f )
and of πc( f ):

φc(x) = 1√
�

∑

p∈T̂�

1√
2ω(p)

(
a+(p)∗ + a−(−p)

)
e−i px ,

πc(x) = i√
�

∑

p∈T̂�

√
ω(p)√
2

(
a−(p)∗ − a+(−p)

)
e−i px ,

where a±(p) := a±(δp).
We next define the free quantum Dirac field on T�. The Hilbert space of state

vectors for the free quantumDirac field is taken to beFf (K�), the fermionFock space
over K�. We denote by b(u, v) the fermion annihilation operator with test vector
(u, v) ∈ K� onFf(K�). The annihilation operator b+(u) (resp. b−(u)) (u ∈ H�) for
the Dirac particle (resp. anti-Dirac particle) is given by

b+(u) := b(u, 0), b−(u) := b(0, u).

It follows from (2.17) and (2.18) that, for all u, v ∈ H�,

{b±(u), b±(v)∗} = 〈u, v〉 ,

{b+(u), b−(v)#} = 0, {b+(u)#, b−(v)} = 0.

In the N = 2 Wess–Zumino model on M�, it is suitable to use the following
representation of the gamma matrices γ 0 and γ 1:

γ 0 =
(

0 −1
−1 0

)

, γ 1 =
(
0 −1
1 0

)

.

In this representation, we have

α1 =
(−1 0

0 1

)

and hence

ĥD(p) =
(−p −m

−m p

)

.
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It follows that the eigenvalues of ĥD(p) are ±ω(p) and

w+(p) := 1√
2ω(p)

(
ν(−p)
−ν(p)

)

, w−(p) := 1√
2ω(p)

(
ν(p)

ν(−p)

)

are normalized eigenvectors of ĥD(p)with eigenvalueω(p) and−ω(p) respectively.
Let

b±(p) := b±(δp).

Then one can show that the object ψ(t, x) := (ψ1(t, x), ψ2(t, x)) with the operator-
valued distribution kernels

ψ1(t, x) := 1√
�

∑

p∈T̂�

ν(−p)√
2ω(p)

{
b−(p)∗eitω(p)−i px + b+(p)e−i tω(p)+i px

}
,

ψ2(t, x) := 1√
�

∑

p∈T̂�

ν(p)√
2ω(p)

{
b−(p)∗eitω(p)−i px − b+(p)e−i tω(p)+i px

}
,

satisfies (5.8) as an equation of operator-valued distributions and that the anti-
commutation relations hold in the sense of operator-valued distributions:

{ψa(t, x), ψb(t, y)
∗} = δabδ(x − y), {ψa(t, x), ψb(t, y)} = 0, a, b = 1, 2.

Hence ψ(t, x) is a canonically quantized free Dirac field.3

The time-zero Dirac field is given by

ψa(x) := ψa(0, x), a = 1, 2.

Then, it follows from (2.23) that

ψa(t, x) = eit HDψa(x)e
−i t HD , a = 1, 2,

in the sense of operator-valued distributions, where

HD := dΓf(ω ⊕ ω).

Hence HD is interpreted as the Hamiltonian of the free quantum Dirac field.
Let

σ(p) := − i√
2
ν(−p), p ∈ T̂�

and define an operator Sσ on K� as follows:

3 Of course, mathematically meaningful is the objectψa(t, f ) smeared with f ∈ D(T�) (a = 1, 2).
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Dom(Sσ ) := {u ∈ K�|√ω u ∈ K�},
(Sσu)(p) :=

(−σ(−p) σ (p)
σ (p) σ (−p)

)

u(p), p ∈ T̂�, u ∈ Dom(Sσ ).

Then it is easy to see Sσ is a densely defined closed linear operator and

S∗
σ = −Sσ , (5.22)

where we have used the fact σ(p)∗ = −σ(p), p ∈ T̂�. It follows that

S∗
σ Sσ = Sσ S

∗
σ = ω ⊕ ω. (5.23)

Note that {(δp, 0), (0, δp)|p ∈ T̂�} is a CONS of K�. Hence

dSσ
=
∑

p∈T̂�

{
a(S∗

σ (δp, 0)) ⊗ b((δp, 0)
∗ + a(S∗

σ (0, δp)) ⊗ b((0, δp)
∗}

onFfin(Dom(Sσ ),K�). By (5.22), we have

S∗
σ (δp, 0) = (σ (−p)δp,−σ(p)δp), S∗

σ (0, δp) = (−σ(p)δp,−σ(−p)δp).

By these formulas and the anti-linearity of a(u) in u ∈ K�, we obtain

dSσ
=
∑

p∈T̂�

{(−σ(−p)a+(p) + σ(p)a−(p)) ⊗ b+(p)∗

+ (σ (p)a+(p) + σ(−p)a−(p)) ⊗ b−(p)∗}

on Ffin(Dom(Sσ ),K�). A supercharge of the free N = 2 Wess–Zumino model is
defined by the Dirac operator

QSσ
:= dSσ

+ d∗
Sσ

.

By (4.41) and (5.23), we have

Q2
Sσ

= Hc ⊗ I + I ⊗ HD.

Hence

HWZ := Hc ⊗ I + I ⊗ HD

is the Hamiltonian of the free N = 2 Wess–Zumino model.
We next consider the interacting N = 2 Wess–Zumino model. In the same way

as in the case of the charged quantum scalar field on R
d (see [22, §10.16]), one can
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show that there exists a unitary operator X� from Fb(K�) to Fb(H�) ⊗ Fb(H�)

such that X�ΩK �
= ΩH �

⊗ ΩH �
and

X�φc( f )X
−1
� = 1√

2
(φ( f ) ⊗ I + i I ⊗ φ( f )), f ∈ L2(T�),

X�HcX
−1
� = Hb ⊗ I + I ⊗ Hb,

where φ( f ) and Hb are defined by (5.4) and (5.7) respectively. Let V� be defined
by (5.18). Then Ṽ� := V� ⊗ V� is a unitary operator from Fb(H�) ⊗ Fb(H�)

to L2(Q�, dμ�) ⊗ L2(Q�, dμ�) ∼= L2(Q� × Q�, d(μ� ⊗ μ�)) such that Ṽ�ΩH �
⊗

ΩH �
= 1 and, for all f ∈ L2

real(T�),

Ṽ�(φ( f ) ⊗ I )Ṽ−1
� = ϕ1( f ), Ṽ�(I ⊗ φ( f ))Ṽ−1

� = ϕ2( f ),

where

ϕ1( f )(q1, q2) := ϕ(q1), ϕ2(q1, q2) := ϕ( f ))(q2), μ� ⊗ μ�-a.e. (q1, q2) ∈ Q� × Q�.

Hence, letting Υ� := Ṽ�X�, we obtain that Υ�ΩK �
= 1 and

Υ φc( f )Υ
−1
� = 1√

2
(ϕ1( f ) + iϕ2( f )), f ∈ L2

real(T�)

Thus φc( f ) is realized as a complex Gaussian random process. We call {ϕ1( f ) +
iϕ2( f )| f ∈ L2

real(T�)} the Q-space representation of {φc( f )| f ∈ L2
real(T�)}. In what

follows, we work with this representation.
For each κ > 0, we define

Φκ(x) := 1√
2
{ϕ1(χκ(x − ·)) + iϕ2(χκ(x − ·))}.

LetU (z) be a polynomial of complex variable z ∈ C with degree degU ≥ 2 and set

P(z) := U (z) − m

2
z2, z ∈ C.

As in the case of (5.19), one can show that

∫

T�

|P ′(Φκ(x))|2dx < ∞ (μ� ⊗ μ�-a.e.).

Hence
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QI(κ) := − i√
2

∫

T�

(ψ1(x)P
′(Φκ(x)) + ψ2(x)P

′(Φκ(x))
∗)dx

+ i√
2

∫

T�

(ψ1(x)
∗P ′(Φκ(x))

∗ + ψ2(x)
∗P ′(Φκ(x)))dx

is well-defined as a bounded linear operator onFf(K�) (μ� ⊗ μ�-a.e.), i.e., QI(κ) is
a B(Ff(K�))-valued function on (Q� × Q�, μ� ⊗ μ�). A supercharge of the inter-
acting N = 2 Wess–Zumino model with ultraviolet cutoff κ is given by

Q(κ) := QSσ
+ QI(κ),

an operator on L2(Q� × Q�, d(μ� ⊗ μ�);Ff(K�)), where QSσ
is that in the Q-space

representation (i.e., strictly writing, it is Υ QSσ
Υ −1). It is easy to see that Q(κ) is a

symmetric operator.
For μ� ⊗ μ�-a.e. q ∈ Q� × Q�, one can define Zκ(q) ∈ H� by

Zκ(q)(p) := 1√
�

∫

T�

P ′(Φκ(x)(q))e−i pxdx, p ∈ T̂�.

It follows that

‖Zκ(q)‖2H �
=
∫

T�

|P ′(Φκ(x)(q))|2dx .

It is easy to see that supp∈T̂�
|ν(±p)/

√
ω(p)| < ∞. Hence one can define a mapping

F (2)
κ : Q� × Q� → K� by

F(2)
κ (q)(p) :=

⎛

⎝

i
2
√

ω(p)
(ν(−p)Zκ (−p)∗ − ν(p)Zκ (p))

− i
2
√

ω(p)
(ν(−p)Zκ (p) + ν(p)Zκ (−p)∗)

⎞

⎠ , μ� ⊗ μ�-a.e. q, p ∈ T̂�.

We have

‖F (2)
κ (q)‖2K �

=
∫

T�

|P ′(Φκ(x))|2dx .

The mapping F (2)
κ is in fact defined so that

QI(κ) = b(F (2)
κ ) + b(F (2)

κ )∗ (5.24)

on the subspace
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span {1, ϕ1( f1) · · · ϕ1( fn)ϕ2(g1) · · · ϕ2(gr )

|n, r ≥ 0, n + r ≥ 1, f1, . . . , fn, g1, . . . , gr ∈ L2
real(T�)}⊗̂Ff,fin(K�).

We redefine QI(κ) by (5.24) and Q(κ) by

Q(κ) := QSσ
(F (2)

κ ),

where QSσ
(F (2)

κ ) is the operator QS(F) (see (4.46)) with S = Sσ and F = F (2)
κ .

Thus the abstract SQM (F, ΓBF, QS(F), HS(F)) yields, as a concrete realization, the
interacting N = 2Wess–Zumino model with ultraviolet cutoff. In the paper [42, 43]
(cf. also [39]), the following results are reported: (i) Q(κ) is essentially self-adjoint
(we denote its closure by the same symbol); (ii) Q+(κ) := Q(κ) � Dom(Q(κ)) ∩
L2(Q� × Q�, d(μ� ⊗ μ�);Ff,+(K�)) is Fredholm and ind Q+(κ) is constant in κ .
In particular, ind Q+(κ) = ind Q+(0); (iii) ind Q+(κ) = deg V − 1. It is shown
that the index formula continues to hold also in the limit κ → ∞.

5.4 Other Models

There are supersymmetric quantum field models other than the Wess–Zumino mod-
els, towhich themathematical framework presented in Chap. 4 can be applied. Below
is a list of them:

(i) A model of a non-relativistic Fermi field interacting with a non-relativistic Bose
field. The free Hamiltonian of the model is of the form

dΓb(−Δn + m2) ⊗ I + I ⊗ dΓf(−Δn + m2)

onFb(L2(Rn)) ⊗ Ff(L2(Rn)) (see Remark 4.3). The model is associated with
the so-called Parisi–Wu stochastic quantization [54]. See [4] for more details.

(ii) A model of a non-relativistic Fermi field interacting with a gauge field [70]. This
model is related to the Floer theory [28].

(iii) A model obtained as a supersymmetric extension of a quantum scalar field
model [10].

(iv) The Wess–Zumino–Witten model [46, 47].
(v) Amodel of a Bose field interacting with a Fermi field on the d-dimensional lattice

Z
d [52].



Appendix A
Self-adjoint Extensions of a Symmetric
Operator Matrix

Let H1 and H2 be Hilbert spaces and

H := H1 ⊕ H2 = {Ψ = (Ψ1, Ψ2)|Ψ1 ∈ H1, Ψ2 ∈ H2}, (A.1)

the direct sum Hilbert space of H1 and H2. Let L be a linear operator on H such
that

Dom(L) = (Dom(L) ∩ H1) ⊕ (Dom(L) ∩ H2). (A.2)

Then, for a, b = 1, 2, one can define a linear operator Lab fromHb toHa as follows:

Dom(Lab) := Dom(L) ∩ Hb,

La1Ψ1 := (L(Ψ1, 0))a, La2Ψ2 := (L(0, Ψ2))a, Ψb ∈ Dom(Lab).

Then we have
LΨ = (L11Ψ1 + L12Ψ2, L21Ψ1 + L22Ψ2), Ψ ∈ Dom(L).

In this sense, we write

L =
(
L11 L12

L21 L22

)
. (A.3)

This representation is called the operator matrix representation of L with respect to
(A.1).

If L is bounded with Dom(L) = H , then (A.2) is satisfied and hence L has
always the operator matrix representation (A.3) with Lab being bounded with
Dom(Lab) = Hb.
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Conversely, suppose that, for a, b = 1, 2, a linear operator Lab fromHb toHa is
given. Then these operators define a linear operator L onH by (A.3)withDom(L) =
(Dom(L11) ∩ Dom(L21)) ⊕ (Dom(L12) ∩ Dom(L22)).

In this appendix, we consider only the case where L is anti-diagonal, i.e., L11 = 0
and L22 = 0.1 In this case, L takes the form

A :=
(
0 T
S 0

)
, (A.4)

with T (resp. S) being a linear operator from H2 (resp. H1) to H1 (resp. H2). We
have

Dom(A) = Dom(S) ⊕ Dom(T ). (A.5)

Remark A.1 There is another simple case of L , i.e., the case where L12 = 0 and
L21 = 0 so that

L = LD :=
(
L11 0
0 L22

)
.

In this case, L is said to be diagonal. It is easy to see that LD = L11 ⊕ L22, the direct
sum operator of L11 and L22.

Some basic properties of the anti-diagonal operator matrix A are summarized in
the following lemma:

Lemma A.1 Let A be the operator matrix given by (A.4).

(i) The operator A is closed if and only if S and T are closed.
(ii) The operator A is closable if and only if S and T are closable. In that case,
the closure Ā of A is given as follows:

Ā =
(
0 T̄
S̄ 0

)
. (A.6)

(iii) The operator A is densely defined if and only S and T are densely defined. In
that case, the adjoint A∗ of A is given as follows:

A∗ =
(

0 S∗
T ∗ 0

)
. (A.7)

Proof (i) Suppose that A is closed. Let Ψn ∈ Dom(S) (n ∈ N) be a sequence such
that limn→∞ Ψn = Ψ ∈ H1 and limn→∞ SΨn = Φ ∈ H2. Then, (Ψn, 0) ∈ Dom(A),
limn→∞(Ψn, 0) = (Ψ, 0) and limn→∞ A(Ψn, 0) = (0, Φ). Hence, by the closedness
of A, (Ψ, 0) ∈ Dom(A) and A(Ψ, 0) = (0, Φ). This means that Ψ ∈ Dom(S) and

1 For more general cases, see [22, Appendix B].
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SΨ = Φ. Therefore S is closed. Similarly, for any sequence Ψ ′
n ∈ Dom(T ) (n ∈ N)

such that limn→∞ Ψ ′
n = Ψ ′ ∈ H2 and limn→∞ TΨ ′

n = Φ ′ ∈ H1, one can prove that
Ψ ′ ∈ Dom(T ) and TΨ ′ = Φ ′. Hence T is closed.

Conversely, suppose that S and T are closed. Let Ψn = (Ψn1, Ψn2) ∈ Dom(A)

(n ∈ N) be a sequence such that limn→∞ Ψn = Ψ ∈ H and limn→∞ AΨn = Φ ∈
H . Then limn→∞ Ψna = Ψa (a = 1, 2) and limn→∞ SΨn1 = Φ2, limn→∞ TΨn2 =
Φ1. Since S and T are closed, it follows that Ψ1 ∈ Dom(S), Ψ2 ∈ Dom(T ) and
SΨ1 = Φ2, TΨ2 = Φ1. Hence S and T are closed.

(ii) Suppose that A is closable. Let Ψn ∈ Dom(S) (n ∈ N) be a sequence such
that limn→∞ Ψn = 0 and limn→∞ SΨn = Φ ∈ H2. Then limn→∞(Ψn, 0) = (0, 0)
and limn→∞ A(Ψn, 0) = (0, Φ). Since A is closable, it follows that (0, Φ) = (0.0).
Hence Φ = 0. Therefore S is closable. Similarly, one can show that T is closable.

Conversely, suppose that S and T are closable. Then one can define the following
operator matrix:

Ã :=
(
0 T̄
S̄ 0

)
.

By (i), Ã is a closed operator. It is obvious that A ⊂ Ã (i.e., Ã is an extension of A).
Hence A is closable and Ā ⊂ Ã.

To prove the converse relation Ã ⊂ Ā, let Ψ ∈ Dom( Ã) = Dom(S̄) ⊕
Dom(T̄ ). Then there exists a sequence {Ψn}∞n=1 with Ψn1 ∈ Dom(S) and Ψn2 ∈
Dom(T ) such that limn→∞ Ψn1 = Ψ1, limn→∞ SΨn1 = S̄Ψ1 and limn→∞ Ψn2 =
Ψ2, limn→∞ TΨn2 = T̄Ψ2. This implies that Ψn ∈ Dom(A) and limn→∞ Ψn = Ψ ,
limn→∞ AΨn = (T̄Ψ2, S̄Ψ1). Hence Ψ ∈ Dom( Ā) and ĀΨ = (T̄Ψ2, S̄Ψ1) = ÃΨ .
Therefore Ã ⊂ Ā. Thus we obtain Ã = Ā, i.e., (A.6) holds.

(iii) By (A.5), A is densely defined if and only if S and T are densely defined.
Suppose that A is densely defined and let

A′ :=
(

0 S∗
T ∗ 0

)
.

Then Dom(A′) = Dom(T ∗) ⊕ Dom(S∗) and, for all Φ ∈ Dom(A), Ψ ∈ Dom(A′),

〈Ψ, AΦ〉H = 〈Ψ1, TΦ2〉H 1
+ 〈Ψ2, SΦ1〉H 2

= 〈
A′Ψ,Φ

〉
H

.

Hence Ψ ∈ Dom(A∗) and A∗Ψ = A′Ψ . This means that A′ ⊂ A∗.
Conversely, let Ψ ∈ Dom(A∗). Then, for all Φ ∈ Dom(A), we have

〈AΦ,Ψ 〉H = 〈Φ, A∗Ψ 〉H . Let A∗Ψ = (η1, η2). Then 〈TΦ2, Ψ1〉H 1
+

〈SΦ1, Ψ2〉H 2
= 〈Φ1, η1〉H 1

+ 〈Φ2, η2〉H 2
. Take Φ2 = 0. Then 〈SΦ1, Ψ2〉H 2

=
〈Φ1, η1〉H 1

. Since Φ1 ∈ Dom(S) is arbitrary, it follows that Ψ2 ∈ Dom(S∗) and
S∗Ψ2 = η1. We next take Φ1 = 0. Then 〈TΦ2, Ψ1〉H 1

= 〈Φ2, η2〉H 2
. Hence

Ψ1 ∈ Dom(T ∗) and T ∗Ψ1 = η2. Therefore Ψ ∈ Dom(T ∗) ⊕ Dom(S∗) and
A∗Ψ = (S∗Ψ2, T ∗Ψ1). This means that Ψ ∈ Dom(A′) and A′Ψ = A∗Ψ , i.e.,
A∗ ⊂ A′. Thus A∗ = A′, i.e., (A.7) holds. �
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The symmetricity and the self-adjointness of A given by (A.4) are characterized
as follows:

Theorem A.1 Let A be the operator matrix given by (A.4).

(i) The operator A is symmetric if and only if S and T are densely defined and
T ⊂ S∗, S ⊂ T ∗.
(ii) The operator A is self-adjoint if and only if S is closed and T = S∗.

Proof (i) Suppose that A is symmetric. Then A is densely defined and A ⊂ A∗.
Hence, by (A.5), S and T are densely defined and (A.7) imply that T ⊂ S∗ and
S ⊂ T ∗.

Conversely, suppose that S and T are densely defined and T ⊂ S∗ and S ⊂ T ∗.
Then, by (A.5), A is densely defined. By (A.7), we have A ⊂ A∗. Hence A is sym-
metric.

(ii) The operator A is self-adjoint if and only if A∗ = A. By (A.7), this is equivalent
to that T = S∗ and S = T ∗. Since the adjoint of a densely defined linear operator
is closed, it follows that T = S∗ and S = T ∗ if and only if S is closed and T = S∗
(recall that, for a densely defined closable linear operator C , C∗∗ = C̄). Thus the
assertion is proved. �

Theorem A.2 Let A be the operator matrix given by (A.4). Suppose that A is sym-
metric. Then S and T are densely defined closable and the operators

A1 :=
(
0 S∗
S̄ 0

)
, A2 :=

(
0 T̄
T ∗ 0

)
, (A.8)

are self-adjoint extensions of A, i.e., A1 and A2 are self-adjoint operators satisfying
A ⊂ A1 and A ⊂ A2.

Proof By TheoremA.1(i), S and T are densely defined and S ⊂ T ∗, T ⊂ S∗ · · · (∗).
These relations imply that T ∗ and S∗ are densely defined. Hence T and S are closable
and T ∗∗ = T̄ , S∗∗ = S̄. Hence it follows from Theorem A.1(ii) that A1 and A2 are
self-adjoint. Relations (∗) imply that A ⊂ A1 and A ⊂ A2. Hence A1 and A2 are
self-adjoint extensions of A. �

Remark A.2 It is easy to see that A1 �= A2 if and only if A is not essentially self-
adjoint.

Finally,wedescribe the rule of the product of two anti-diagonal operator–matrices:

Lemma A.2 Let A be given by (A.4) and

B =
(
0 V
U 0

)

with U (resp. V ) being a linear operator fromH1 (resp.H2) toH2 (resp.H1). Then
operator equality
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AB = TU ⊕ SV =
(
TU 0
0 SV

)
(A.9)

holds.

Proof An easy exercise. �



Appendix B
Construction of an Infinite-Dimensional
Gaussian Measure on a Path Space

In this appendix, we give an outline on the construction of Gaussian measure μβ in
Lemma 4.20 in a more general setting.

Let β > 0 and

kn := 2πn

β
, n ∈ Z.

Lemma B.1 Let λ > 0 and 0 < |t | < β (t ∈ R). Then the following formulas hold:

1

β

∞∑
n=−∞

eitkn

λ − ikn
= etλ

eβλ − 1
, t > 0, (B.1)

1

β

∞∑
n=−∞

eitkn

λ − ikn
= e(β+t)λ

eβλ − 1
, t < 0. (B.2)

Proof Equation (B.1) can be proved by applying the residue theorem to the mero-
morphic function f (z) = etz(eβz − 1)−1(z − λ)−1 of complex variable z. Equation
(B.2) follows from (B.1) with t replaced by β + t > 0 and the property eiβkn = 1, n
∈ Z. �

Lemma B.2 Let λ > 0 and 0 ≤ |t | ≤ β (t ∈ R). Then

e−|t |λ + e−(β−|t |)λ

1 − e−βλ
= 2

β

∞∑
n=−∞

λeitkn

λ2 + k2n
. (B.3)

Proof This follows from (B.1) and (B.2). �

Let H be a real separable Hilbert space and C([0, β];H ) be the space of H -
valued continuous functions on the interval [0, β]. We denote byHC the complexifi-
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cation ofH . For each F ∈ C([0, β];H ), we define the discrete Fourier transform
F̂ : Z → HC by

F̂(n) :=
β∫

0

φn(t)
∗F(t)dt, φn(t) := 1√

β
eitkn , n ∈ Z, t ∈ [0, β],

where the integral is taken in the sense of a strong Riemann integral inHC. It is well-
known that {φn}∞n=−∞ is a CONS of L2([0, β]). Hence, for all CONS {em}∞m=1 ofHC,
{φn ⊗ em}n∈Z,m∈N with (φn ⊗ em)(t) := φn(t)em is a CONS of L2([0, β];HC) (the
Hilbert space ofHC-valued measurable functions on [0, β]). Using this fact, one can
show that

∑∞
n=−∞ ‖F̂(n)‖2HC

< ∞, satisfying

∞∑
n=−∞

‖F̂(n)‖2HC
=

β∫
0

‖F(t)‖2H dt.

Let A be a strictly positive self-adjoint operator onH with A ≥ a > 0. Then, by
the functional calculus of self-adjoint operators, for all f ∈ HC and n ∈ Z, we have
‖A(A2 + k2n)

−1 f ‖HC
≤ ‖ f ‖HC

/a. Hence, using the Schwarz inequality, one can
show that, for all F,G ∈ C([0, β];H ),

∑∞
n=−∞ |〈F̂(n), A(A2 + k2n)

−1Ĝ(n)〉HC
| <

∞. Therefore one can define a sesquilinear form 〈F,G〉A,−1 by

〈F,G〉A,−1 := 2
∞∑

n=−∞
〈F̂(n), A(A2 + k2n)

−1Ĝ(n)〉HC
, F,G ∈ C([0, β];H ).

Since ker(A1/2(A2 + k2n)
−1/2) = {0}, it follows that 〈 , 〉A,−1 is an inner product of

C([0, β];H ). We denote the completion of the real inner product space
(C([0, β];H ), 〈 , 〉A,−1) by W , which is a real separable Hilbert space.

For each s ∈ [0, β], we denote by δs the delta distribution on [0, β], i.e.,
δs ∈ D ′([0, β]) such that δs(u) = u(s), u ∈ D([0, β]) (the space of infinitely dif-
ferentiable periodic functions on [0, β]). The discrete Fourier transformation can be
extended to δs ⊗ f ( f ∈ H ) with

δ̂s ⊗ f (n) = 1√
β
e−iskn f.

Hence it follows that, for all t ∈ [0, β] and f ∈ H , δt ⊗ f is in W . Moreover, for
all f, g ∈ H and s, t ∈ [0, β],
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〈δt ⊗ f, δs ⊗ g〉W = 2

β

∞∑
n=−∞

ei(t−s)kn
〈
f, A(A2 + k2n)

−1g
〉
H

= 2

β

∞∑
n=−∞

∫
(0,∞)

ei(t−s)kn
λ

λ2 + k2n
d 〈 f, EA(λ)g〉H ,

where EA is the spectral measure of A. It is easy to see that one can interchange the
integral

∫
(0,∞)

d 〈 f, EA(λ)g〉H and the summation
∑∞

n=−∞. Then, using (B.3), we
obtain

〈δt ⊗ f, δs ⊗ g〉W = 〈
f, (e−|t−s|A + e−(β−|t−s|)A)(1 − e−βA)−1g

〉
H

. (B.4)

We now consider the Gaussian random process φW indexed by W so that

∫
QW

eiφW (F)dμW = e−‖F‖2W /4,

∫
QW

φW (F)φW (G)dμW = 1

2
〈F,G〉W , F,G ∈ W ,

where (QW , μW ) is the underlying probability measure space. Hence, by (B.4),

∫
QW

φW (δt ⊗ f )φW (δs ⊗ g)dμW

= 1

2

〈
f, (e−|t−s|A + e−(β−|t−s|)A)(1 − e−βA)−1g

〉
H

, s, t ∈ [0, β], f, g ∈ H .

(B.5)

In what follows, we assume that, for some constant γ > 1, A−(γ−1) is trace class.
Then A−γ /2 is Hilbert–Schmidt. The domain Dom(Aγ /2) is a real Hilbert space
with inner product 〈 f, g〉γ := 〈

Aγ /2 f, Aγ /2g
〉
H

, f, g ∈ Dom(Aγ /2). We denote this
Hilbert space by Hγ . The sesquilinear form 〈 , 〉−γ : H × H → R defined by

〈 f, g〉−γ := 〈
A−γ /2 f, A−γ /2g

〉
H

, f, g ∈ H ,

is an inner product of H . We denote the completion of the inner product space
(H , 〈 , 〉−γ ) byH−γ . It is shown that the dual spaceH ∗

γ ofHγ is naturally isomor-
phic toHγ by the natural bilinear form 〈φ, f 〉 such that 〈φ, f 〉 = 〈

A−γ /2φ, Aγ /2 f
〉
H

for φ ∈ H , f ∈ Hγ .
Since the embedding of H into H−γ is Hilbert–Schmidt (nuclear), it follows

from a general theorem (Minlos’s theorem) that there exists a Gaussian measure μ0

onH−γ such that ∫
H−γ

ei〈φ, f 〉dμ0 = e−‖ f ‖2H /4, f ∈ Hγ .
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Since A−γ is trace class and positive, there exists a CONS {en}∞n=1 of H and a
sequence {λn}∞n=1 of positive numbers such that Aen = λnen and

∑∞
n=1 λ

−γ
n < ∞.

Each f ∈ H is expanded as f = ∑∞
n=1 anen, an := 〈en, f 〉H . Then, for all t ∈

[0, β],
φW (δt ⊗ f ) =

∞∑
n=1

anφW (δt ⊗ en)

in the topology of L2(W , dμW ). For each N ∈ N, we define

X (N )
t =

N∑
n=1

φW (δt ⊗ en)en ∈ H .

Then one can show that, for all M, N ∈ N with M > N ,

∫
QW

‖X (N )
t − X (M)

t ‖2−γ dμW = 1

2

M∑
n=N+1

1

λ
γ
n
coth

βλn

2
→ 0 (M, N → ∞).

Hence the limit

Xt :=
∞∑
n=1

φW (δt ⊗ en)en

exists in L2(QW , dμW ;H−γ ) (the Hilbert space of H−γ -valued L2-functions on
(QW , μW )). Moreover, it is easy to see that 〈Xt , f 〉 = φW (δt ⊗ f ), f ∈ Hγ .
Hence {〈Xt , f 〉 |t ∈ [0, β], f ∈ Hγ } is a family of jointly Gaussian random vari-
ables such that, for all n ∈ N, t j ∈ [0, β] and f j ∈ Hγ ,

∫
W

e
i
∑n

j=1

〈
Xt j , f j

〉
= e− ∑n

j,k=1 Mjk/4, Mjk :=
∫

QW

〈
Xt j , f j

〉 〈
Xtk , fk

〉
dμW ,

and (B.5) takes the form:

∫
QW

〈Xt , f 〉 〈Xs, g〉 dμW = 1

2

〈
f, (e−|t−s|A + e−(β−|t−s|)A)(1 − e−βA)−1g

〉
H

,

s, t ∈ [0, β], f, g ∈ Hγ . (B.6)

Using the assumption that A−(γ−1) is trace class, one can show that, for all s, t ∈ [0, β]
and n ∈ N, ∫

QW

‖Xt − Xs‖2n−γ dμW ≤ C |t − s|n
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with C > 0 being a constant. Hence, by an application of Kolmogorov’s lemma on
regularity of stochastic process (see, e.g., [62, Theorem 5.1], [20, Corollary 2.23]),
{Xt }t∈[0,β] has a continuous version (in fact, a Hölder continuous version).We denote
by the continuous version of Xt by the same symbol so that, for a.e. q ∈ QW ,
Xt (q) ∈ H−γ is continuous in t ∈ [0, β].

We now define a mapping X : QW → C([0, β];H−γ ) by

X (q)(t) := Xt (q), a.e. q ∈ Q.

Let νβ be the imagemeasure by X so that, for all mappings η : C([0, β];H−γ ) → R,

∫
QW

η(X (q))dμW =
∫

C([0,β];H−γ )

η(Φ)dνβ(Φ).

In particular, taking η as η(Φ) := 〈Φ(t), f 〉 〈Φ(s), g〉 , Φ ∈ C([0, β];H−γ ), f, g ∈
Hγ , we have by (B.6)

∫
C([0,β];H−γ )

〈Φ(t), f 〉 〈Φ(s), g〉 dνβ(Φ)

= 1

2

〈
f, (e−|t−s|A + e−(β−|t−s|)A)(1 − e−βA)−1g

〉
H

, s, t ∈ [0, β], f, g ∈ Hγ .

(B.7)

Thus we have shown that there exists a family {〈Φ(t), f 〉 |t ∈ [0, β], f ∈ H−γ } of
jointly Gaussian random variables on C([0, β];H−γ ) with an infinite-dimensional
measure νβ satisfying (B.7). SinceC([0, β];H−γ ) is a path spacewith paths inH−γ ,
νβ is a path space measure.
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