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Preface

This book originates from my work on infinite-dimensional analysis in relation to
mathematical studies of supersymmetric quantum field theory, which started in 1984
and still continues. During the course of the research, I discovered an intrinsic math-
ematical structure that some models in supersymmetric quantum field theory have in
common. It may be characterized as the theory of infinite-dimensional Dirac oper-
ators on the abstract boson—fermion Fock space, the tensor product Hilbert space of
the abstract boson Fock space and the abstract fermion Fock space. I consider it one
of the most important results in this research and to be developed further.

The present book is written as an introduction to analysis of the abstract boson—
fermion Fock space with applications to mathematical supersymmetric quantum
field theory, which forms an interesting field of infinite-dimensional analysis. The
emphasis is put on the theory of infinite-dimensional Dirac operators as suggested
above. Since infinite-dimensional Dirac operators may have relations to infinite-
dimensional geometry, the book may be read also from that viewpoint.

A general background behind the infinite-dimensional analysis treated in the book
is found in the abstract supersymmetric quantum mechanics (SQM). For this reason,
we begin with a review of the mathematical theory of it in Chap. 1. The abstract SQM
can be applied to both SQM with finite degrees of freedom and SQM with infinite
degrees of freedom including supersymmetric quantum field theory. In Chap. 2, we
summarize fundamental aspects of the theory of Fock spaces (full Fock space, boson
Fock space and fermion Fock space) within the scope of the following chapters. In
Chap. 3, we review the Q-space representation—a probability-theoretical represen-
tation—of the abstract boson Fock space, which is useful to derive path (functional)
integral representations for vacuum expectation values or traces of operators with
respect to the heat semi-groups generated by boson second quantization operators and
their perturbations. Chapter 4 is the main body of the present book and is devoted to an
introductory description of the theory of infinite-dimensional Dirac operators on the
abstract boson-fermion Fock space. We see that the theory is a realization of infinite
Hilbert complexes as general concepts. Moreover, we construct an abstract inter-
acting supersymmetric quantum field model in terms of infinite-dimensional Dirac
operators on the abstract boson—fermion Fock space. In the last chapter, we show
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that the two-dimensional N = 1 and N = 2 Wess—Zumino models in supersym-
metric quantum field theory are concrete realizations of the abstract supersymmetric
quantum field model introduced in Chap. 4 and hence that the theory in Chap. 4 gives
an abstract unification of the models.

Since the book is introductory as mentioned above, two appendices are added. In
Appendix A, self-adjoint extensions of a symmetric operator matrix are described.
Appendix B concerns the construction of an infinite-dimensional Gaussian measure
on the space of continuous functions with values in a real Hilbert space on a finite
interval (a path space). For the same reason, the references are not intended to be
complete.

The intended audience for the present book is mainly graduate students and non-
experts in mathematics and mathematical physics who are interested in infinite-
dimensional analysis as well as mathematical analysis of quantum field theories,
including supersymmetric ones.

I would like to thank Roman Gielerak for inviting me to deliver a series of lectures
on infinite-dimensional Dirac operators at the XXVIII Karpacz Winter School of
Theoretical Physics, Poland, 1992, Rémi Léandre and Sylvie Paycha for their kind
interest in my work and inviting me to Institut de Recherche Mathématique Avancée
(IRMA), Université de Strasbourg in 1994 and Itaru Mitoma (deceased) for joint
work on infinite-dimensional analysis on the abstract boson—fermion Fock space.
My thanks go also to Mr. Masayuki Nakamura, editor, at Springer Japan for inviting
me to write a book in the series of Springer Briefs in Mathematical Physics.

Sapporo, Japan Asao Arai
June 2022
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Chapter 1 ®)
Abstract Supersymmetric Quantum oo
Mechanics

Abstract We review basic aspects of the mathematical theory of abstract super-
symmetric quantum mechanics, which can be applied to supersymmetric quantum
mechanics both with finite degrees of freedom and with infinite degrees of freedom,
including supersymmetric quantum field theory.

1.1 Definition and Basic Properties

An abstract form of supersymmetric quantum mechanics is defined as follows [5,
64] (for physical backgrounds, see, e.g., [66—68]):

Definition 1.1 Let N € N. A quadruple (7, I, {Qi}f\': 1» H) consisting of a Hilbert
space1 ¢ and linear operators I', Q; (i = 1,..., N), H on JZ satisfying the fol-
lowing (i)—(iv) is called a supersymmetric quantum mechanics (SQM):

() I" is self-adjoint and unitary with I" # 41 (I denotes identity).

(i) Foreachi =1, ..., N, Q; is self-adjoint and H = Ql.z.

(iii) Foreachi =1, ..., N, I" leaves Dom(Q;), the domain of Q;, invariant (i.e.
I'(Dom(Q;)) C Dom(Q);)) and anti-commutes with Q; on Dom(Q;): forall ¥ €
Dom(Q;),

{r, 0¥ =0, (1.1)

where {, } denotes anti-commutator: {A, B} := AB + B A for algebraic objects
A and B.

(iv)Inthecase N > 2,foralli, j = 1,..., N withi # j, Q; and Q; anti-commute
on Dom(Q;) N Dom(Q)) in the sense of sesquilinear form:

! In this book, we mean by a “Hilbert space" a complex Hilbert space unless otherwise stated. We
denote the inner product and the norm of a Hilbert space .7 by (, ) ,» (linear in the second vector)

and || - || respectively. But, if there is no danger of confusion, we write them simply (, ) and
| - || respectively.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1

A. Arai, Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields,
SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-19-5678-2_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5678-2_1&domain=pdf
https://doi.org/10.1007/978-981-19-5678-2_1

2 1 Abstract Supersymmetric Quantum Mechanics
(0w, 0;®)+(0;¥, 0i®) =0, ¥, @ e Dom(Q;) N Dom(Q)).

In Definition 1.1, 5# denotes the Hilbert space of state vectors of the SQM. It
follows from condition (ii) that H is a non-negative self-adjoint operator on .7#. Each
operator Q; and H are called a self-adjoint supercharge (or simply a supercharge)
and the supersymmetric Hamiltonian in the SQM respectively. The number N
of self-adjoint supercharges is called the degree of supersymmetry. If N = n for a
specific natural number n, then (S, I", {Q;}!_,, H) is called an N = n SQM. We
denotean N = 1 SQM by (7, I", Q, H) (Q := Qy).

For a linear operator A on a Hilbert space, we denote by o (A) (resp. o,(A)) the
spectrum (resp. the point spectrum) of A.2

Condition (i) in Definition 1.1 implies that

r’=1, ol =oy(I') ={-1,1}, 1.2)
hence I' is a grading operator on .7#.* It follows from condition (ii) that
Dom(H'?) = Dom(|Q;) =Dom(Q;) (i =1,....N), [Qil=H"? (13)

where, for a self-adjoint operator A, |A| denotes the modulus of A: |A|:=
[ IMdE A () (Ey4 is the spectral measure of A) and, if A is non-negative, then A'/?
is defined by A2 := [AV2dE,(1).*

1.2 Reflection Symmetry of the Spectrum of a Self-adjoint
Supercharge

Let (7, I, {Q;}Y_,, H) be an SQM and denote any Q; by Q. Then:

i=1>
Theorem 1.1

(1) The spectrum o (Q) is reflection symmetric with respect to the origin of R, i.e.,
if L € 0(Q), then —A € o (Q).

26(A):=C \ p(A), where p(A) := {z € C|A — z is injective and Ran(A — z), the range of A —
z, isdense with (A — z)~! being bounded}, the resolvent setof A, and o, (A) is the set of eigenvalues
of A.

A self-adjoint unitary operator y on a Hilbert space with y # =1 is called a grading operator
on 7.

“In general, for a self-adjoint operator A on a Hilbert space .# and a Borel measurable function f
on R, the operator f(A) is defined as the operator satisfying the following: Dom(f(A)) = {¥ €
K| fR I FOVPAIE4sMW¥ > < 00} and (@, f(AWY) = fR fA)Ad (P, EAMNY), dex ¥ e
Dom( f(A)). The operator f(A) is symbolically denoted as f(A) = f FQ)AEA().
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(i) Suppose that 0,(Q) # ¥. Then, for each ) € 0,(Q), —A is in 0,(Q) and the
dimension of ker(Q — A),> the eigenspace of Q with eigenvalue )\, coincides with
that of ker(Q + M), the eigenspace of Q with eigenvalue —A:

dimker(Q — X)) = dimker(Q + A). (1.4)

Proof (i) Condition (i) in Definition 1.1 implies that I"~! = I". This property and
condition (iii) in Definition 1.1 imply the operator equality®

ror-'=-o. (1.5)

Hence Q and —Q are unitarily equivalent. It follows from the unitary invariance
of the spectrum of a linear operator that o (Q) = o (— Q). This means that o (Q) is
symmetric with respect to the origin of R.

(i) By (1.5), for all z € C, we have I'(Q — z)I" ™' = —(Q + z). In particular,
for each A € 0,(Q), this equation implies that —A € 0,(Q) and I"ker(Q — 1) =
ker(Q + A). Hence (1.4) follows. U

Since we have
H = 0% (1.6)
it follows that
ker H = ker Q. (1.7)

The spectrum of Q is related to that of H in the way stated in the following
theorem:

Theorem 1.2 (i) 0 (Q) = {+./ulu € o (H)}; (ii) 0,(Q) = {£. /1l € op(H)}.

Proof (i) By (1.3) and the spectral mapping theorem, we have o (|Q|) = {\/uln €
o(H)}. We denote by E, the spectral measure of the self-adjoint operator Q.
Let & := Ran(E((0, 00))) and &_ := Ran(Ey((—o0, 0))). Then we have the
orthogonal decomposition # = &, @ ker Q @ &_. The operator Q is reduced
by &7 and ker Q. We denote the reduced part of Q to & (resp. ker Q) by

5 For a linear operator A on a Hilbert space, ker A := {¥ € Dom(A)|A¥ = 0}, the kernel of A.

6 Let A and B be linear operators from a Hilbert space #1 to a Hilbert space .. (i) B is said to be an
extension of A if Dom(A) C Dom(B)and A¥ = BW¥, ¥ € Dom(A). Inthis case, we write A C B.
(ii) A is said to be equal to B if Dom(A) = Dom(B) and AV = B¥, ¥ € Dom(A)(= Dom(B)).
In this case, we write A = B. This type of equality is called operator equality. It follows that A = B
ifand only if A C B and B C A. The notion of extension of linear operator is important in treating
linear operators not everywhere defined, in particular, unbounded linear operators.

7 A linear operator A on a Hilbert space .# is said to be reduced by a closed subspace .# of
 if, for all ¥ € Dom(A), P, ¥ (P is the orthogonal projection to .#) is in Dom(A) and
AP, V¥ = P, AW.Inthis case, one can define an operator A, on .# as follows: Dom(A 4 ) :=
Dom(A)N #,A 4 ¥ = AW, ¥ € Dom(A_4 ). The operator A , is called the reduced part of A
to /.
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0™ (resp. 0©). By functional calculus, we have Q = 0P @ 0@ @ 0 and
0] = 0 @ 0© & (— Q). Hence

a(0) =o(@) U0 Us(0 ), 0(10) =a(0P)Ua (D) Uo(—0).

By Theorem 1.1 (i), 0 (£Q) \ {0} = o (F Q™) \ {0}. Therefore o (|Q|) \ {0} =
o (Q)\ {0}. Thus o(Q) \ {0} = (6(1QD \ {OD U (6(=[Q]) \ {0}). This implies
the following: (a)ifker O = {0},theno (Q) = o (|Q|) U o (—|Q|). Hence the desired
result holds; (b) if ker Q # {0}, then o (Q®) = {0} and hence, by (1.7), 0 € o (H).
Therefore 0 € o (Q) and the desired result holds.

(ii) (1.6) implies that o, (Q) C {A € R[A% € op(H)}. Conversely, let A € Rbesuch
that A% € op(H). Then there exists a non-zero vector ¥ € Dom(H ) such that HY =
A2¥. Hence, by (1.6), (Q — A)(Q + A)¥ = 0. This implies that —A € op(Q) or
A € 0,(Q). Hence, by Theorem 1.1 (ii), A € 0,(Q). Therefore 6 (Q) = {A € R[A? e
op(H)}. Thus the desired result holds. (Il

1.3 Orthogonal Decomposition of State Vectors

By (1.2), 27 has the orthogonal decomposition
H =5 @ I = {(V;, W)Wy € H4) (1.8)
with 7, == ker(I" — 1), . :=ker(I" 4+ 1). The closed subspaces .77 and 7
are called the bosonic subspace and the fermionic subspace respectively. A non-
zero vector in J%, (resp. ) is called a bosonic (resp. fermionic) state. Since
'y, = 1y, forall ¥y € %, we call the operator I" the state—sign operator.®
Let P, be the orthogonal projections onto .7%.. Then we have

r=p, —P. (1.9)

By this equation and the relation P, + P_ = I, we obtain

ﬂ:%dim. (1.10)

8 In the physics literature, I" is often written as “(—1)F”.
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1.4 Operator Matrix Representations

Since .77 has the orthogonal decomposition (1.8), a linear operator on .7 may have
an operator matrix representation with respect to (1.8) (see Appendix A). By (1.9)
and Remark A.1 in Appendix A, we have

r=1@(—1)=<(1)_01). (1.11)

We next derive the operator matrix representation of Q with respect to (1.8).

Lemma 1.1 For all ¥ € Dom(Q), P+¥ € Dom(Q) and QP,¥ = P_QV,
QP_Y¥ = P,QVY. In particular, Q maps Dom(Q) N Jt; to 5.

Proof An easy exercise (use (1.10) and (1.1)). O

For two Hilbert spaces 27 and %, we denote by €(J7, %) the set of densely
defined closed linear operators from J# to % .

It follows from Lemma 1.1 and Lemma A.1 (i)—(ii) that the operator matrix rep-
resentation of O with respect to (1.8) takes the form:

(0 O-
°= (Q+ 0 )
with O, € €U, 7 ) and Q_ € €(J_, 7). The self-adjointness of Q and The-
orem A.1 (ii) imply that 0 = Q7 the adjoint of Q. Hence we obtain

0= (Q0+ QO*+>. (1.12)

Applying Lemma A.2 to the case A = B = Q and using (1.6) and (1.12), we
obtain the operator matrix representation of H:

_(H: 0 _
H_<0 H>_H+69H_ (1.13)
with
Hy:=0Q.0y, H :=0.0}. (1.14)

Hence H is reduced by 7%, and the reduced part of H to .77 (resp. ) is given by
H, (resp. H_). The operators H. are non-negative self-adjoint operators. We call
H, (resp. H-) the bosonic (resp. fermionic) Hamiltonian. It follows from (1.14)
that Hy = |Q+|* and hence

H!? = 04| (1.15)
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1.5 Construction of SQM

In this section, we describe two methods to construct an SQM in an abstract frame-
work.

1.5.1 Method I

Let (J7,, £_, A) be a triple consisting of Hilbert spaces 7, and A € €(#,, #_).
Then the triple yields the direct sum Hilbert space % := J#,. @ J#_ and operators

o ._[(A*A 0 (0 A
hA._AAEBAA—<0 aax ] =\ 0 )

It is easy to see that 14 and g4 are self-adjoint [22, Proposition B.1, Theorem B.2].
It follows that hy = qi. It is obvious that the operator I := 1 @ (—I) on % isa
grading operator. Thus (2, ', ga, ha)isan N = 1 SQM. This method can easily
be extended to construct an SQM with supersymmetry of degree N > 2.

1.5.2 Method 11

In applications to concrete models of SQM, there may be the case where only the
symmetricity” of the operator which is expected to be a supercharge is known and it
may be non-trivial to prove or disprove its (essential) self-adjointness. In this case,
one may proceed as follows. Let (¢, I', Q) be a triple consisting of a Hilbert space
J, a grading operator I" on S and a closed symmetric operator Q such that Q
anti-commutes with " on Dom(Q): for all ¥ € Dom(Q), I'¥ is in Dom(Q) and

Fow + Qry =0. (1.16)

Such an operator Q is called an abstract Dirac operator with respect to I". We have
the orthogonal decomposition (1.8). Then Q has the operator matrix representation

(0 0
o-(45.%)

9 A linear operator S on a Hilbert space is said to be symmetric if Dom(S) is dense and, for all
v, & € Dom(S), (®, S¥) = (S, ¥). It follows that S is symmetric if and only if Dom(S) is dense
and § C S* (i.e., $* is an extension of ).
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where Q- := Q [ Dom(Q) N 7% (the restriction of Q to Dom(Q) N 74.). It fol-
lows that O are densely defined closed linear operators. Hence, by Theorem A.2 in
Appendix A, the operators

_(0 ¢ _(0 0
0=(0, %) 2=(o-7)

are self-adjoint extensions of Q. Moreover, using (1.11) and Lemma A.2 in Appendix
A, one can show that (1.16) holds with Q replaced by Q; and O, respectively.
Thus we have two SQM (27, I', O, Hy) and (7, I", Q», H,) with H| := Q% and
H, := Q%. If Q is self-adjoint, then O = Q; = Q. But, if Q is not self-adjoint,
then Q0 # Q».

1.6 Spectral Supersymmetry

Let (7, T, {Qi}f\’zl, H) be an SQM. Then, by (1.13), we have

o(H)=0(Hy)Ua(H_) C[0,00), op(H)=0,(Hy)Uo,(H_).

Moreover, there exist characteristic structures between the spectra of the bosonic
Hamiltonian H, and those of the fermionic Hamiltonian H_:

Theorem 1.3 (spectral supersymmetry)

o(H)\ {0} =0 (H) \ {0} =0 (H-)\ {0},
op(H) \ {0} = 0p(H1) \ {0} = o (H-) \ {0}.

14( eove ’fcl eaCh 12 < O])(li-i—) \ {O}’ deﬁ 1€ L E - I(er(li-f— E) %— ly
/—Q ’ ( )'
IJElP . +lp l} (S] keI Ii+ E

Then Ran(Ug) = ker(H_ — E) and Ug is a unitary operator from ker(H,. — E) to
ker(H_ — E). In particular,

dimker(H; — E) = dimker(H_ — E)

and each positive eigenvalue E of H is degenerate with dimker(H — E) being even
or oo.
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Theorem 1.3 can be proved by an application of a general theorem:

Theorem 1.4 (Deift’s theorem) Let 57, # be Hilbert spaces and A € E(H, X).
Then A*A and AA* are non-negative self-adjoint operators on 7€ and & respec-
tively and

o (A*A) \ {0} = 0 (AA™)\ {0}, (1.17)
0p(A7A) \ (0} = 0 (AA") \ {0).

Moreover, for each A € 0p,(A*A)\ {0}, the operator U, :ker(A*A — L) — &
defined by

1
U = —)\Al]/, W € ker(A*A — 1)

\/_
is a unitary operator from ker(A*A — ) to ker(AA* — A). In particular,
dimker(A*A — A) = dimker(AA™ — 1).

For proof of this theorem, we refer the reader to [31] or [22, Theorem 7.23], [18,
Theorem 9.8].

Proof of Theorem 1.3

We have (1.13) and (1.14). Hence we need only to apply Theorem 1.4 to the case
where 7 = ¢, # = and A = Q. (]

The degenerate structure of each positive eigenvalue of the supersymmetric
Hamiltonian H described in Theorem 1.3 is interesting to note.

1.7 Ground States

In general, for a self-adjoint operator A on a Hilbert space, which is bounded from
below, the infimum of the spectrum of A

Ey(A) :=info (A) > —00
is called the lowest energy of A.'° If Eq(A) > 0, then A is said to be strictly positive.

If Eg(A) is an eigenvalue of A (i.e., Eq(A) € 0,(A)), then each non-zero vector
in ker(A — Eog(A)) (resp. Eg(A)) is called a ground state (resp. the ground state

10 Originally this term is used only for the case where A denotes a quantum mechanical Hamiltonian.
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energy) of A. In this case, we say that A has a ground state. If dim ker(A — Ep(A)) =
1 (resp. dimker(A — E¢(A)) > 2), then the ground sate of A is said to be unique
(resp. degenerate). If Eg(A) = 0 € 0,(A), then a ground state of A is called a zero-
energy ground state.

Theorem 1.3 yields the following result:

Theorem 1.5 If H is strictly positive and has a ground state, then the ground state
of H is degenerate with dimker(H — Eo(H)) being an even number or oo.

With regard to zero-energy ground states of H, we have by (1.13)
ker H = ker H, & ker H_. (1.18)

Hence, if ker H # {0} (i.e., H has a zero-energy ground state), then ker H, # {0}
or ker H_ # {0}.

1.8 Spontaneous Supersymmetry Breaking and an Index
Formula

Physically, the supercharge Q is interpreted as the generator of supersymmetry in
the SQM under consideration. Hence a state vector eliminated by Q is regarded as
a state with supersymmetry. Based on this picture, a non-zero vector ¥ € Dom(Q)
such that QW = 0 (if it exists) is called a supersymmetric state. Hence the set of
supersymmetric states is given by ker Q \ {0}.

If ker O = {0}, then there exist no supersymmetric states. In this case, we say that
the supersymmetry is spontaneously broken.

Using (1.7), one can characterize the spontaneous supersymmetry breaking in
terms of the supersymmetric Hamiltonian H:

Theorem 1.6 The supersymmetry is spontaneously broken if and only if H has no
zero-energy ground states. In particular, if H is strictly positive, then the supersym-
metry is spontaneously broken.

It follows from (1.12) that
ker O =ker O @ ker Q7. (1.19)
Hence
dimker Q = dimker Q4 + dimker Q% € Z, U {00},
where Z, := {0} U N (the set of non-negative integers).
In general, for a densely defined linear operator A from a Hilbert space to a Hilbert

space such that at least one of ker A and ker A* is finite-dimensional, one can define
an object
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ind A := dimker A — dimker A* € Z U {£o00},

where Z is the set of integers. This object is called the index of A. Itis well known that,
even if dim ker A and dim ker A* are not calculated, there exist cases where ind A
can be calculated; the so-called “index theorems" give methods of such calculations
(see, e.g., [33]).

A necessary condition for the supersymmetry to be spontaneously broken is given
as follows:

Proposition 1.1 [f the supersymmetry is spontaneously broken, then ind Q = 0.

Proof The present assumption is equivalent to ker Q = {0}. Hence, by (1.19),
ker O = {0} and ker Q% = {0}. Therefore dimker @, = 0 and dimker Q% = 0.
Thus ind 0 =0. 0

It follows from (1.14) that
ker H, =ker Q,, ker H_ =ker 07, (1.20)
which, together with (1.18), imply that
ker H =ker O @ ker Q7.

The difference between the number of bosonic zero-energy states and that of
fermionic zero-energy states

Aw = dimker H, — dimker H_

is called the Witten index, provided that one of dim ker H; and dim ker H_ is finite.
By (1.20), we have

ind 0, = Ay.

By this relation and Proposition 1.1, we obtain the following corollary:
Corollary 1.1 If the supersymmetry is spontaneously broken, then Ayw = 0.

In relation to the notion of index of a linear operator, we here recall the definition
of a (semi-) Fredholm operator acting in a Hilbert space.

An operator T € &(J, %) ( and £ are Hilbert spaces) is said to be semi-
Fredholm if Ran(7) is closed and at least one of dim ker 7 and dim ker 7* is finite.
A semi-Fredholm operator 7 is called a Fredholm operator if both of dim ker 7
and dim ker T* are finite. The importance of (semi-)Fredholm operator lies in that
some stability theorems hold [45, Chapter IV, §5].""

The index of Q. may be computed in terms of the heat semi-group {e~##} £0
generated by the supersymmetric Hamiltonian H:

1 For a general theory of index of (semi-) Fredholm operator, see, e.g., [33].
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Theorem 1.7 Suppose that, for some constant By > 0, e P is trace class. Then,
forall B > Bo, e PH is trace class and Q. is Fredholm with

ind Q. = Tr (e #1), (1.21)
where Tr denotes trace. The right-hand side is independent of B.

Proof The operator e #f is bounded, injective, non-negative and self-adjoint. It
follows that o (e %) C [0, 1]. Since a trace class operator is compact, e ## is com-
pact. Hence the spectrum of e ## consists of only positive eigenvalues A,, n > 1
(1 = Ay > Ay > - -+ > 0) with a finite multiplicity m,. By the spectral mapping the-
orem, the spectrum of H is given by {g,}, C [0, 00) with &, = -8 ! log 2,, and
the multiplicity of ¢, being equal to m,. In particular, dimker H < oco. Hence,
by (1.20), dimker Q@ < oo and dimker Q% < oo. By (1.15), we have [|Q ¥ =
|H?w|| > V3||¥|, ¥ € (ker Q1) NDom(Q.), whered := mino (Hy) \ {0} >
0. This implies that Ran(Q) is closed. Thus Q. is Fredholm. For all g > B,
Tre PH =% mue P <Y _ mue P =Tre P < 0o Hencee P! istrace
class for all 8 > Bo. Moreover, us_ing by (1.8) and Theorem 1.3, we have

Tr (le Py = Tre PH+ — Tre PH-
= dimker H, — dimker H_ + Z mpe Por — Z mye P

&,>0 &,>0

=dimker H, —dimker H. = Aw =ind Q..

Thus (1.21) holds. ([l



Chapter 2 ®)
Elements of the Theory of Fock Spaces oo

Abstract We review the theory of Fock spaces within the scope of the following
chapters (for more details, see [22]).

2.1 Full Fock Space

Let # be a Hilbert space. For each n € N, we denote the n-fold tensor product
Hilbert space of . by ®".#. We set ®. := C. The infinite direct sum Hilbert
space of "7 (n =0,1,2,...)

o0 o0
FH) =P " ={w =W v eg"# n=0 Y ¢ <oo
n=0 n=0

is called the full Fock space over J#. The algebraic infinite direct sum of ®”" .77
n=0,1,2,...)

Fo(H) =8, " H
= {W = (W) W" e @"H#, n>0,3ng e N(W™ =0,¥n > ng)}

is a dense subspace of .% (). The subspace .%,(5) is called the finite particle
subspace of .% (7).

For each subspace 2 of ¢, we denote by ®" % the n-fold algebraic tensor
product of 2. It follows that, if & is dense in 77, then ®" 7 is dense in ®" 7. We
set ®0@ := C. If 2 is dense in 77, then the algebraic infinite direct sum of Q"9
n=0,1,2,..)

Fin(D) : = @’ZO@J"@

is dense in .% (J7). It is obvious that .%;,(2) C Fo(FF).
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The vector Q2 € % () defined by
QY =1, QW =0, n>1

is called the Fock vacuum in .% (7). This vector plays an important role in the
theory of Fock spaces.

2.2 Boson Fock Space

For each n € N, we denote by S, the symmetrization operator (Symmetrizer) on
Q"I ,i.e., S, is the bounded linear operator on ®".7# such that

1 .
S @ @) =— 3 Yoy ® BYow, Vi €M, i=1....n,

‘o€,
where S, :={o : {l,...,n} > {l,...,n}|o is injective} denotes the symmetry

group of order n (the permutation group of order n). It is shown that S, is an orthog-
onal projection [22, Theorem 2.9(ii)]. Hence its range

®L A = Ran(S,)

is a closed subspace of ®" .77 . This closed subspace is called the n-fold symmetric
tensor product Hilbert space of 7. We set ®°.7# := C. In the context of quantum
field theory, ®" ¢ gives an abstract form of Hilbert spaces of state vectors of n
identical bosons.

The infinite direct sum Hilbert space of ®7.7 (n =0, 1,2, ...)

Fn(H) 1 = P L,
n=0

which is a closed subspace of .7 (J¢), is called the boson (or symmetric) Fock
space over .7#’. The vector space

Foo(H) 1= P, (H) N Fo (),

as a subspace of %, (%), is called the bosonic finite particle subspace of .%, (7).
For each subspace 2 of s, the vector space

&, 7 = S,(®" D)
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is called the n-fold algebraic symmetric tensor product of 2. If & is dense in 77, then
®:9 is dense in ®"7. We set ®°2 := C. We denote by %, 1, (Z) the algebraic
infinite direct sum of ®:’@ (n=0,1,2,...):
A 00
T 7 S5 ¢,
Fp,in(D) 1 = @n:o@)s 2.

It follows that, if & is dense in SZ, then %}, 4,(2) is dense in F, (7).

2.3 Fermion Fock Space

Foreachn € N, wedenoteby A, the anti-symmetrization operator (anti-symmetrizer)
on ®"J7, i.e., A, is the bounded linear operator on ®".5# such that

1
An(¢1®--~®1ﬁn)=; Z sgn(O) Vo) ® - Vo), Vi€H,i=1,....n,
‘oe6,

where sgn(o) is the sign of the permutation o . It is shown that A, is an orthogonal
projection [22, Theorem 2.9(ii)]. Hence its range

N'(F) == Ran(A,)

is a closed subspace of ®".#. This closed subspace is called the n-fold anti-
symmetric tensor product Hilbert space of .77. Each element of A" () is called
an anti-symmetric tensor of order n. We set A°(#) := C. In the context of quantum
field theory, A" (J7) gives an abstract form of Hilbert spaces of state vectors of n
identical fermions.

The infinite direct sum Hilbert space of A"(J#) (n =0, 1,2,...)

F(H) - = P A" ), 2.1)
n=0

which is a closed subspace of .% (), is called the fermion (or anti-symmetric)
Fock space over 7. The vector space

Fi0(H) 1= F () N Fo(FE),

as a subspace of % (), is called the fermionic finite particle subspace of .7 (7).
For each subspace 2 of s, the vector space

AN(D) = AR" D)
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is called the n-fold algebraic anti-symmetric tensor product of 2. If ¥ is dense in
S, then A"(2) is dense in A" (). We set A%(Z) := C. We denote by .Z; ,(2)
the algebraic infinite direct sum of A"(2) (n =0, 1,2,...):

A OO

Frn(2) =P, _A"(D).

It follows that, if & is dense in JZ, then %¢ ,(2) is dense in F; (F€).
We have the orthogonal decomposition

F(H) = Fi () © Fy,(H) 2.2)

With Fp ( (H) 1= @ o NP (), Fi_(H) 1= By NPH ().

2.4 Second Quantization Operators on the Full Fock Space

Let A, be a linear operator on a Hilbert space .7, (n € Z.). Then the infinite direct
sum @2 A, of {A,}, on the Hilbert space &2 .77, is defined as follows:

o

Dom (&2 A,) = | ¥ € &2, |W™ € Dom(4,), n >0, Y A, |? <ot
n=0

(@204, 9)™ = A, W™ ¥ € Dom(@3 yAn), m > 0.

Let T be a densely defined closed linear operator on .77 and I be the identity
operator on 7. Then, for each j = 1, ..., n, one has a tensor product operator [22,
§3.7]:

Jjth

T,=19 QIOTRI®---®I

acting in ®" .77, which is densely defined closed. The set {T;};_, yields a densely
defined closed linear operator on ®" .77

T™ .= Z T;, (2.3)
j=1

where, for a closable linear operator L, L denotes the closure of L. We set T© :=0
acting in ®".77. Then the infinite direct sum of {7 ™},

ar(Ty: =@, 7™
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is a densely defined closed linear operator on .% (). The operator dI" (T) is called
the second quantization operator (or simply second quantization) of 7" on the full
Fock space .7 (7). It is known that, if T be self-adjoint, then dI" (T') is self-adjoint
[22, Theorem 4.8]. It is obvious that Q_» € Dom(dI’(T)) and

dIr (T)Q» = 0. 2.4)

For a general linear operator A on JZ (not necessarily a densely defined closed
operator), one has the operator

n Jth

A;@ = Z I®---RI® Z ®I®---®I (& means algebraic tensor product)

with Dom(A;'lg) := &"Dom(A). Then one can define the algebraic infinite direct

sum of {AJ)}22 ) (AQ) := 0)

dr®(A) == &,2 Al (2.5)

We call the operator dI"®#)(A) the algebraic second quantization of A.

There is another type of second quantization operator on the full Fock space
F(J€). Tt is defined by the infinite direct sum of n-fold tenor product operators
T :=TRT®---®T (n=0,1,2,...)of T with®T := 1:

(T =&,.°,8"T.
We call it the I"-operator of T or the second quantization of second kind of 7' [17,
§3.3]. If T is unitary, then so is I"(T). A relation between dI"(-) and I"(-) is given
as follows: for each self-adjoint operator T on 77,

F(eiﬂ) — eizdF(T)’ te R

For other properties of I'(-), see [22, Theorem 4.11].

2.5 Boson Second Quantization Operators

Let T be a densely defined closed linear operator on s# and T be the operator
defined by (2.3). Then one can show that, foralln € N, S, TW c TWS, (e, T™S,
is an extension of S, 7 ™). Since S,, is the orthogonal projection onto ®” .7, it follows
that 7™ is reduced by ®".5. We denote its reduced part to ®” by T”. Then
one can define a closed linear operator on the boson Fock space .%,(7¢) by
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dhn(T) == &2, T
with 79 := 0. This operator is called the boson second quantization operator of
T. It follows that, if T is self-adjoint, then so is dI',(T) [22, Theorem 1.38]).
The boson second quantization operator of the identity / on %

Ny = dly(I)

is called the boson number operator. The name comes from the following easily
proved formula:

Ny [ ®5# =n, n=>0.

It is easy to see that, for each n > 0, ®"T is reduced by ®7.7°. We denote its
reduced part by (®"T')s and define

Fb(T) = @Zio(@nT)s

acting in %, (J¢). We call it the boson I"-operator of T or the boson second
quantization of second kind of 7. It follows that, if T is unitary, then so is I, (7).

2.6 Fermion Second Quantization Operators

One can show that, for all n e N, A,T™ c T™A,. Since A, is the orthogonal
projection onto A"(), it follows that T is reduced by A"(#). We denote its
reduced part to A" (%) by d]}(")(T). We set dl}(o)(T) := 0. Then one can define a
closed linear operator on the fermion Fock space .%; () by

dry(T) == @2 ,dI"(T).
This operator is called the fermion second quantization operator of 7. It is shown
that, if T is self-adjoint, then so is dI'¢(T).
The fermion number operator is defined by
Nt :=dI¢(I). (2.6)
As in the case of the boson number operator, we have

Nt [ A" () =n, n=>0. 2.7)

It is easy to see that ®"T is reduced by A" (7). We denote its reduced part by
A"(T). Then the operator defined by



2.8 Boson Creation and Annihilation Operators 19
(T = @y A" (T) 2.8)

acting in % () is called the fermion I"-operator of 7 or the fermion second
quantization of second kind of 7. If T is unitary, then so is I(T).

2.7 Infinite Determinants

Let T be a trace class operator on .Z. Then it is shown that, for all n > 0, A"(T) is
trace class [57, p. 323, Lemma 3]. Moreover, the infinite series

det(1 +7T) := ZTr A" (T)
n=0

is absolutely convergent [57, p.323, Lemma 4]. The number det(1 + T') is called the
determinant of 1 + 7. It follows from (2.8) that I'+(T) is trace class and

det(14+T) = Tr I (T).
‘We next consider the case where T is Hilbert—Schmidt. In this case, one needs
a regularization to define a notion of determinant of 1 4+ 7. One can show that the
operator
Ry(T):=(1+T)e T -1
is trace class [63, Lemma 9.1]. Hence one can define

dety(1 + T) := det(1 + Ro(T)).

This is called the regularized determinant of the Hilbert—Schmidt operator 7.

2.8 Boson Creation and Annihilation Operators

Let .7 be a Hilbert space. Then, for each f € .77, there exists a unique closed linear
operator A(f) on the boson Fock space .%, () such that its adjoint A(f)* takes
the following form (see, e.g., [22, §5.7] or [23, §6.4]):

o
Dom(A(f)*) = {W € Fo ()| Y IVnSu(f @ ¥ D)2 <00t

n=1

AN O =0, A WD = /nSy(f@ED), n>1, WeDom(A(f)").
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The operator A(f) is called the boson annihilation operator with test vector
f, while A(f)* is called the boson creation operator with test vector f. These
operators have the following properties: for all f € S, %, 0(5¢) C Dom(A(f)) N
Dom(A(f)*) and the operator set {A(f), A(f)*|f € 5} obeys the canonical com-
mutation relations (CCR) on .%, o(5¢): for all f, g € J7,

[A()), A= (f.8). (2.9)
[A(f), A(®@]=0, [A(f)*, A(®)1=0 on Fo(H). (2.10)

The Fock vacuum € ;» € .Z () belongs to %, () and satisfies
A()Qy =0, fes. 2.11)
It is easy to see that, foralln € Nand fi, ..., f, € 72,

(A - AL Q)™ = VIS, (fi® - ® fo),
(A AL Q)™ =0, m #n.

Hence, for each subspace 2 of .7, we have

Foin(2) =span 1 Qe | [TAUD | Qeln =1, fi,.... ue Z¢, (212)

J=1

where, for a subset . of a vector space, span .# denotes the subspace algebraically
spanned by .. It is easy to see that, for any densely defined closed linear operator
T on J, P amDom(T)) C Dom(dl,(T)) and, for all n € N and fi,..., f, €
Dom(T),

dlLy(TYA(fD) - A(f) " Qe = ZA(fl)*"'A(Tfj)*"'A(ﬁJ*Q%/- (2.13)

J=1

In what follows, we denote by A(f)* either A(f) or A(f)*. It is well known
that, for all f € 2. Dom(N,’*) C Dom(A(f)*) [22, Corollary 5.9]. With regard
to continuity of A(f)* in f € 7, we have:

Lemma 2.1 Let f,, f € 7 and lim,_ .o f, = f. Then, for all ¥ € Dom(N,'?),
lim,,_, o0 A(fn)#\p = A(f)#\I/

Proof See [22, Lemma 5.13(iii)]. O

Let T be a self-adjoint operator on .7”. Then one can prove the following operator
equalities [22, Lemma 5.21]:

eitth(T)A(f)#efildﬂ,(T) — A(eitTf)#, t e R, f e %’ (214)
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If dI,(T) represents the Hamiltonian of a quantum system, then (2.14) gives the
formula for the time-development of A(f)*.

2.9 Segal Field Operator

For each f € JZ, the symmetric operator

1
Ps(f) = E(A(f)* + A

on %, () is called the Segal field operator with test vector f. It is shown that,
for each dense subspace & of 57, ®gs(f) is essentially self-adjoint on F, 6, (2)[23,
Theorem 5.22]. For notational simplicity, we denote the closure of ®g(f), which is
self-adjoint, by the same symbol ®g( f). It follows from (2.9) and (2.10) that, for all
f.8€7,

[®s(f), Ps(e)] =iIm (f, g) on Fo(H), (2.15)

where, for a complex number z € C, Im z denotes the imaginary part of z.
Let T be a self-adjoint operator on J#. Then, by (2.14), we have

D g (fle 1T = dg (T f), teR, feH. (2.16)

2.10 Isomorphisms Among Boson Fock Spaces

Let 27" be a Hilbert space and T : 7 — 7’ be a unitary operator. Then Q" T is a
unitary operator from ®! ¢ to ®%.7”. Hence

L(T) =@, Q" T

with convention ®°7 := 1 is a unitary operator from .7, (J¢) to ., (). Therefore
Fp(I) and F, (') are isomorphic under I, (7). It is easy to see that

(T Ay (LT = Ap(Tf), feH,

where Ay (-) denotes the annihilation operator on .7, (7).
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2.11 Fermion Creation and Annihilation Operators

Let . be a Hilbert space. Then, for each u € J#, there exists a unique everywhere
defined bounded linear operator B(u) on the fermion Fock space .%;(.%#") such that
its adjoint B(u)* takes the following form (see, e.g., [22, §6.6 and §6.7]): for all
Ve Fp(X),

Bw)*¥)?@ =0, (Bw)w)? = /pA,ue¥? ) peN.
The operator B(u) is called the fermion annihilation operator with test vector u,
while B(u)* is called the fermion creation operator with test vector u. The operator
set {B(u), B(u)*|lu € J£} obeys the canonical anti-commutation relations (CAR):

forallu,v € %,

{B(u), B(v)"} = (u, v), (2.17)
{B(u), Bw)} =0, {Bw)*, B(v)*} =0. (2.18)

Taking v = u in (2.18), we have
Bu)*=0, (Bw*)*=0, uex. (2.19)
The Fock vacuum € » € % (%) belongs also to .%; (%) and satisfies
Bw)Qy =0, ue. (2.20)
Using (2.17), one can show that the operator norm || B(u)*|| of B(u)* is given by
Bl = IBu)*|| = [lull. (2.21)
In the same way as in the proof of (2.12), one can show that, for each subspace &
of #, we have
P
Fran(&) =span { Q. [[[Bwp* | Qulp=lujeé j=1.....p
j=1

Let T be a densely defined closed linear operator on ~#". Then, it follows
that % gn(Dom(7T)) C Dom(dl7(T)) and, for all p > 1 and u; € Dom(T), j =

1,...,p,

P
dl7(T)B(up)* - B(up)*Qy = Z B@u)* - B(Tu;)" - Buy) Qy. (2.22)
j=1

This formula and (2.21) imply:
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Lemma 2.2 Assume that T € B(X). Then, for all ¥ € F; ,( %),
I (T)V| < CullTl,

where Cy is a constant depending on WV (independent of T ).

Let T be a self-adjoint operator on % . Then it is shown [22, Theorem 6.18] that,
forallt e Randu € ¢,

14D By y#e=itdl(T) _ p(oitTy# (2.23)

2.12 Fermion Quadratic Operators

For later use (see Sect. 4.11), we here recall some basic objects in the operator theory
on the fermion Fock space % (.%").
Let {e,}22, be a complete orthonormal system (CONS) of %" .

Lemma 2.3 Let T € B(X). Then, for all ¥ € Fg jn (),

lim ZB(Ten) B(e,)V = dIF(T)V, (2.24)
Jim ;‘ B(e,)*B(Te)V = dlF(T*)W, (2.25)

in F¢(X') independently of the choice of {€,}°2 ;.
Proof 1t is sufficient to prove (2.24) and (2.25) for vectors ¥ of the form
W =Bu)" - Bup) 2y W,...,u,ex). (2.26)
In this case, we have
N p
Y B(Te))*Ble)¥ =Y Buy)*- - B(Tu")* - Bu,)*Qu,
n=1 '

where uE.N) =N 1en uj)e,. It is obvious that limy_ uiN) =u;. Then the

boundedness of 7" implies that limy_, Tu;"" = Tu;. Hence, by (2.21), we obtain
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N n
Jim_ Z] B(Te,)" Ble,)W = Zl B(un)* - B(Tuy)* - B(u,)* Qe = dI¥(T)V,
n= J=
where we have used (2.22). Similarly, one can prove (2.25). O

A mapping T : # — J# is called an anti-linear Hilbert-Schmidt operator if T

is a bounded anti-linear operator and Zfi’;, IT&,]I> < oo for some CONS {&, ot

of . In this case, | T ||z := /> re; T, 1% is called the Hilbert-Schmidt norm of

T as in the usual Hilbert-Schmidt operators.'

Lemma 2.4 Assume that T is a Hilbert—Schmidt operator on & or an anti-linear
Hilbert—Schmidt operator on & . Then, for all ¥V € F 0 (JE), the limits

N
TV := i B(Te,)*B(e,)* VW,
() Ngnm; (Teu)* Blen)

N
g (T = NIE%OX; B(e,)B(Te,)¥
n=

exist independently of the choice of {e,}32 . Moreover,

lgi(TW] < CyllT ]2, (2.27)
lg2(T)W| < CylT]- (2.28)

Proof Let W be as in (2.26). Then

N (p+2)
(Z B(Ten)*B(en)*lD> = VP +D ApOy @ui 8- @uy),
n=1

where Oy = 22;1 Te, ® ey. It is easy to see that {fy}5_, is a Cauchy sequence
in # ® 7. Hence 6 :=limy_ o Oy = Z:ozl Te, e, € X Q K exists. Since
Ap2 is a bounded operator on ®” 2.7, it follows that g (T) W exists and

@DV =/ (p+ 21 Ap2(0 @ui @ - Qup).

Hence (g1 (T)W[| < /(p + DO llur |l - - - lup |l Ttis easy to see that [|0]] = || T ||2.
Therefore (2.27) holds.
Let &, := (X, B(e,)B(Te,)¥)P~?. Then we have

't is shown that Z;’C:l ITE, I% is independent of the choice of {£,}5° .
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14

j-1
=Z{Z(—1)”"(9}N>,uk>u1 Q@i ® ;B Qu,
k=1

j=1

P
+ Z (—l)j+k*1<9;N),uk>u1 ®-'-®ﬁj®"'ﬁk®"'®”p}
k=j+1

with Q;N) =N, (uj, Tey)en, where iy indicates the omission of uy. It is easy

to see that §; := limy_, QI(N) exists and [|0; || == ||T*u;||. Therefore g,(T') exists
and

(q2(T) W)=

:Z{Z( l)/+k<9]auk)ul® ®Mk® ﬁ]®®”[)

j=1 " k=1

P
+ Z (—1)j+k1<6J‘,Mk>u1®"'®ﬁj®"'ﬁk®"'®up}.
k=j+1

Note that [|0;]| < IT*|| lu;|l and | T*|| = [T ||.? Hence it follows that ||g>(T)W¥| <
Cy||T|. Thus (2.28) holds. O

We regard q,(T) (a = 1, 2) as a linear operator on .%;(.%#") with Dom(q,(T)) =
Z1.iin (). Hence q,(T) is densely defined. It follows that Dom(g,(T)*) includes
j\f’ﬁn (:%/) and

(1) | Frin(KH) = q2(T), q2(T)* | Frn(H) = qi(T).
Hence each ¢, (T) is closable. We introduce the following symbols:
(B*IT|B*) := q:(T), (BIT|B) :=q2(T).

Then we have (B|T|B)* D (B*|T|B*) .Inview of Lemma 2.3, foreach T € B(.%),
we introduce the following symbol:

(B*|T|B) := dI(T).

Each of the operators (B*|T|B), (B*|T|B*) and (B|T|B) is called a fermion
quadratic operator with respect to 7.

2 This holds also for bounded anti-linear operators.



Chapter 3
(Q-space Representation of Boson Fock Gzt
Space

Abstract We review the so-called Q-space representation (a probability theoretical
representation) of the boson Fock space over a Hilbert space. This representation
is useful in analyzing quantum field models (e.g., [20, 34, 38, 61, 62]) and has
important relations to infinite-dimensional stochastic analysis (e.g., [38, 51]).

3.1 Gaussian Random Process

Let h be a real Hilbert space and (M, X', 1) be a probability measure space. Suppose
that, for each f € b, a random variable ¢(f) on (M, X, ) is assigned. If the set
{e(f)1f € b} of random variables satisfies the following properties, then it is called
the Gaussian random process indexed by bh:

(1) Forall f,g ehanda,b € R,

plaf +bg) = ap(f) +bp(g), ae.,

where “a.e.” means “almost everywhere with respect to ™.

@) {e(f)|f € b}is full, i.e., X is the smallest Borel field such that {¢(f)|f € b}
is measurable.

(iii) Foreach f € b, ¢(f) is a Gaussian random variable such that its characteristic
function € R — [}, "¢"dy is of the form:

/eifw(f)du — e—tZIIfII%,/4’ teR (3.1)
M

The argument of ¢ (f) (i.e., points of M) will not be written explicitly if there is no
danger of confusion.

Let {¢(f)|f € b} be the Gaussian random process indexed by h and (M, X, u)
be the underlying probability measure space. It follows from (3.1) that, forall p € N,
o(f)Pisin L*(M, fu) and
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1
(p(He(g) = 3 (f. 8y, f.geh,

where, for an integrable function F on (M, X, u), (F) := f Fdu.
M

For each n e N and fi,..., f, €bh, one can define a random variable
2@(f1) - @(fy) : on M by the following recursion relations:

(1) = e(f),
() e(f) r =e(f) te(f2) - o(fa):

S o)) o) o) e(f) s n =2,

j=2

where <p/(\f]) indicates the omission of ¢ ( f;). The random variable : ¢ (f1) ---@(f) :
is called the Wick product of ¢ (f1) - - - @(f,).
For each f € hand n € N, we define : ¢(f)" : by

() =) e(f) s
—

It follows that

[n/2] |

! 1 "
Ce(f)' = Z m <—§ (‘P(f)2>> (),

m=0

where [n/2] denotes the maximal integer not exceeding /2. It is shown [22, Theorem
5.23] that : @(f1) - - - @(fu) : is symmetric for all permutations of (f, ..., f,) and,
foralln,m e Nand fj, g, feb(G=1,....,n,k=1,...,m),

Co(f)---o(fu) ) =0,

8mn
CoUf) o) o) - olgm) ) =28 3 (figo)y (Fr o)y

ceq,

£ 1
(o) 2) = ”2& (3.2)

In particular, for n # m, : ¢(f1)---@(f,) : is orthogonal to : ¢(g;) - - - ¢(gm). The
constant function 1 is in L>(M, d ). Hence, introducing the closed subspaces

Io(h) == {alla € C},
() == span {: o(f1)---o(fu) : 1 fi..... fu€b}, n=1
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in L2(M, du), where, for a subset 2 of a Hilbert space %, 9 denotes the closure
of Z in ', we have a family {I5,(h)}°2, of mutually orthogonal closed subspaces
in L?(M, d ). An important fact is:

L*(M,dp) = &2 (h),

the Ito—-Segal-Wiener decomposition (for a proof, see, e.g., [22, Theorem 5.52],
[61, 1.25))).

3.2 Natural Isomorphism of Boson Fock Spaces

It is a well-known fact that, for any real Hilbert space f, the Gaussian random
process indexed by h exists (see, e.g., [61, Theorem 1.9]). We denote the Gaussian
random process and the underlying probability measure space by {¢y (/)| f € b} and
(Qy, Xy, 1y) respectively. Hence

/e""’h(f)duh _ B4 fey
o

We denote the complexification of h by hc and the complex conjugation on ¢
by C. Then one can consider the boson Fock space %, (hc) over he. We introduce
the following operators:

¢c(f) == Ps(f), mc(f):=Psf), febh.

By (2.15), {¢pc (f), mc(f)|f € b} satisfies the Heisenberg CCR on %, o(he):

[pc(f), mc(@]=i{f g,
[dc(f). dc(@] =0, [mc(f),mc(®)]=0, f.geh.

Hence, for each subspace # of b, (%, (hc), Fo.0(he), {dc(f), c () f € #'}) is
a representation of the Heisenberg CCR over # [23, §8.8]. It is called the Fock
representation of the Heisenberg CCR over 7%,

There is a natural isomorphism between %, (h¢) and LZ(Q;], duy):

Theorem 3.1 There exists a unitary operator Uy, from F,(he) to LZ(Q;,, dy) such
that UpS2y. = 1 and, foralln € Nand fi, ..., f, €,

U ACF)* - A(f) 250 = 2" 2 o (f1) - 0 () = -
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Moreover, the following operator equality holds:

Upc(fUy ' = @y(f). f €.
Proof See, e.g., [61, Theorem 1.11] or [22, Theorem 5.53]. O

We call the unitary operator Uy in Theorem 3.1 the natural isomorphism from
Zv(he) to L*(Qy, duy). The Hilbert space L*(Qy, duy) is called the Q-space
representation of the boson Fock space .7, (h¢). One of the advantages of Q-space
representation is in that the quantum field ¢ ( f) is represented as the multiplication
operator by the function ¢y (f) on Qy.

For each f € h¢, we define

Dy = N2U,A(H)U; . (3.3)

Since A(f) is closed and anti-linear in f € hc, Dy is a closed linear operator on
LZ(Q;,, dy) and anti-linear in f.

For each n € N, we denote by &, the set of complex polynomials of
n variables zp,...,z,. One can show that, for each n €¢ N and all P € &2,

P(py(f1), ..., ¢p(fu))isin Dom(D /) and

n

DyP(py(f1), - op(fu) = D _(f £1) @ PY@y (1) -, 05 (fi),

j=1

where (9; P)(z1, ..., 24) := 0P (z1,...,2,)/0z;. Based on this fact, we call D, the
directional functional differential operator in f. For a subspace 2 of fj, we define

'@(@) = Span{P((/)h(fl),v(ﬂh(fn))m EN,P € L@ns flv"'vfn € @}

Let f € b. Then ¢ (f) = igpe (f) — iv/ZA(f) on Dom(A(£)) N Dom(A(f)*).

Hence, letting

7y (f) i= Upmte (U,
we have

7wy (f) = —iDy +ipy(f)

on Z(h).
The range of test vectors of ¢¢(-) can be extended in a natural way to h¢: for each

= fi+tifs(fi, f» €b), we define
oc(f) = dc(f1) +ipc(f).
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It follows that the correspondence f +— ¢¢(f) is complex linear on %, o(hc). Then
we have

Uppc (U = @5 (f),  f € be,

where

op (f1 +if2) == @(f1) +igy(f2) (f1, 2 €H).

By (3.3), we have Df“v = \/EUbA(f)*Ug1 for all f € hc. On the other hand, we
have A(f)* = 2¢c(f) — A(CS) on

&r = Dom(A(f1)) N Dom(A(f2)) N Dom(A(f1)*) N Dom(A(f2)").
Hence

D; = —Dcf + 2§0h(f) on Ubgf. 3.4)

3.3 Gradient Operator

We introduce a subspace of LZ(Qb, dig):

C'(Q;,) = {¥ € Ny Dom(Dy)| for each f € b, the mapping f +— (D¥)(q)

is continuous for a.e. ¢ € Qy}.

It is easy to see that 2 (h) C C'(Qy) with

D¢ P(py(f1)s -, 05(fn)) =<f, Z(ajp)((/)h(fl)» RN (fn))fj>
hc

Jj=1

for all P(gy(f1),...,0p(fn)) € Z(h). In particular, Cl(Qb) is dense in
L2(Qh, duy). By the Riesz theorem, for each ¥ e Cl(Qb) and a.e. g € Qy , there
exists a unique vector gy (g) € hc such that

(Dr¥)(q) = (f, 8w (@)y., [ €bec.

In general, for a measure space (M, X, v) (v is not necessarily a probability
measure) and a separable Hilbert space %, we denote by L? (M, dv; %) (p > 1)
the space of J# -valued L?-functions on (M, X, v) (cf. [S5, §II.1, Example 6]):
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L°(M,dv, #) ={F: M — X%, E—measurable|/ ||F(x)||f}/,dv(x) < oo}
M
(3.5

In the case p = 2, L*(M, dv; #) becomes a Hilbert space with inner product

(F,G) := / (F(x), G(x)) 4 dv(x), F,G e LX(M,dv;.X).

M

One can define a linear operator V from LZ(Q;,, dy) to Lz(Qh, duy; be) as
follows:

Dom(V) : = {¥ € C'(Qp)Igw € L*(Qp, diy; o)}, (3.6)
VU : =gy, ¥ e Dom(V) (3.7)

so that
DY = (f,VlI/)hC, f € be.

We call V the gradient operator on L*(Qy, djip). It follows from the closedness
of Dy that V is closed.

Remark 3.1 In the context of the theory of the abstract Wiener space, the operator
V corresponds to the H-differential operator D [35, 59].

It is easy to see that £ () C Dom(V) with

VP (f1) o @y () = D@ PY @y (f)s -, oy (f)) S

j=1

for all P(py(f1), ..., 05(f) € Z (). Hence V is densely defined. Thus V is a
densely defined closed linear operator. Therefore, by a general theorem, the adjoint
V* exists as a linear operator from Lz(Qh, duy; be) to LZ(Q,,, dy) and is densely
defined. It is easy to see that z@(h)ébbc C Dom(V*).

3.4 More General Natural Isomorphisms of Boson Fock
Spaces

Let g be a real Hilbert space and T be a unitary operator from g to ). For each
f=fi+ifreac(fi, f» €9),wecanextend T to the unitary operator from gc to
he by Tf :=Tf; +iTf,. Then, as we have seen in Sect. 2.10, I},(T) is a unitary
operator from %, (gc) to Fp(he) and satisfies
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Ly(T)Age (NHTH(T) ™ = A (Tf). [ € gc.
Let Uy, : %,(he) — L2(Q|,, diy) be the unitary operator in Theorem 3.1. Then
Ur := Uy T(T)
is a unitary operator from %, (gc) to LZ(Qb, dy) satisfying

UrQy. =1,
UrAge (f1)* -+ Age () R2ge = 2" 2 0o (TF1) - - - oy (T f):,
n>1,fi,...., fn€g.

We already know that %, (gc) is unitarily equivalent to Lz(Qg, dig). Hence
LZ(Qg, d|ig) is unitarily equivalent to L2(Q;,, dpy) in such a way that, for all n and
Sroooos fu € 8,0 9g(f1) - g(fn) : corresponds to : @y (T f1) - - - o (T f,) . We say
that this type of unitary equivalence is natural. Hence, in this sense, LZ(Q;,, dvy)
also can be regarded as a Q-space representation of % (g).

The isomorphism U7 is useful in applications to quantum field theory (see Sect.
5.2.2).



Chapter 4 ®)
Boson-Fermion Fock Spaces oo
and Abstract Supersymmetric Quantum

Field Models

Abstract We introduce some operators on the abstract boson—fermion Fock space,
including exterior differential and Dirac operators, and describe fundamental prop-
erties of them. We present also abstract supersymmetric quantum field models.

4.1 Boson-Fermion Fock Space

Let ¢ and % be Hilbert spaces. Then one can make the tensor product
F(H, H) = Fo(H) @ F(HX)
of the boson Fock space %, () and the fermion Fock space .%;(.%#"). This Hilbert
space is called the boson—fermion Fock space over the pair (¢, %"). For a subspace
2 of  and a subspace & of ', we define
Fin(2D, E) = Fo. (D) Tt in(&).
It follows that, if 2 and & are dense in 7 and JZ respectively, then %4,(Z, &) is
dense in F(, K).
We have by (2.1) the following natural identifications:
FH,H) =&\ TF A, H), FOA,H) = Fo(H) QN (K).
Hence we have the orthogonal decomposition
F(H, H)=F (I, X)DF_(,X) 4.1)

with

T A, H) =@\ F A, H), FAH,H) =S5 F (A,
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Let Ny be the fermion number operator on .%¢(.%") (see (2.6) and (2.7)). Then

be — ein1®Nr

is aunitary self-adjoint operator on % (¢, ') satistying I'g | Fo(H, H) = £1.
We call I;¢ the grading operator on the boson—fermion Fock space .7 (7, J¢) with
respect to the orthogonal decomposition (4.1).

There is another orthogonal decomposition of the boson—fermion Fock space. For
each r € Z,, we define a closed subspace

F(F, H) = By p=r (@ ) @ NP (X). “4.2)
Then we have
F(H, H) = B2 )F (I, H). 4.3)

This orthogonal decomposition has the following meaning. The boson number oper-
ator Ny and the fermion number operator Ny yield a new operator

Nt := No ® I + 1 ® N¢ (4.4)

on % (A, ). Then it is easy to see that .7, (S, J£') is the eigenspace of Ny, with
eigenvalue r. Namely, (4.3) is the direct sum of the eigenspaces of Ni,;. We call Ny
the total number operator on .% (¢, J%).

4.2 (Q-Space Representation of Boson—-Fermion Fock Space

Inwhat follows, we assume that 7€ and % are separable (then S, () and F;(H)
are separable). We fix a real Hilbert space ) such that .77 = b, the complexification
of . Let Uy, be the unitary operator in Theorem 3.1. Then

Uy :=Uy® 1
is a unitary operator from % (¢, ') to L*(Qy, duy) ® F¢ (). Hence, under the
unitary operator Uy, the boson—fermion Fock space .7 (¢, %) is unitarily equiva-
lent to LZ(Q;,, dpy) ® F (). Moreover, there exists a unitary operator Uy from
L*(Qy, duy) ® Fi () to LX(Qy, diy; Fi (X)) (see (3.5)) such that

Ut(@ @ W) = d( W, & e L*(Qy,duy), ¥ € F(X)
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(see, e.g., [22, Theorem 2.6]). Hence the operator
Vot == UpiUp, 4.5)
is a unitary operator from .7 (¢, %) to
§ = LX(Qy, duy; Fi(H), (4.6)

the Hilbert space of .%; (.#")-valued L>—functions on (Qy, 1y). Therefore the boson—
fermion Fock space .% (¢, ') is unitarily equivalent to §. We call the Hilbert space
5 the O-space representation of the boson—fermion Fock space . % (J7, ¢). Itis
easy to see that

§ = @5 L} (Qy, dg; N (H)).

An element of LZ(Q;], duy; AP()) may be regarded as an L?-differential form of
order p on the space Q. Thus the boson—fermion Fock space % (777, %) is unitarily
equivalent to the infinite direct sum of Hilbert spaces consisting of L>-differential
forms on Q.

4.3 Exterior Differential Operators

4.3.1 Definitions and Basic Properties

We introduce a basic operator on % (5, %'). Let S € €(J, %) such that the non-
negative self-adjoint operator S*S is reduced by b. Let {£,}°°, be a CONS of %

such that £, € Dom(S*), n € N. Then, for each N € N, we define an operator dng)
by

N
d" =" A(S*E,) ® B(E,)" 4.7)
n=1

acting in .Z (J¢, #'). It is obvious that %, 4, ()R (H) C Dom(déN)). It fol-
lows from (2.11) that, for all ¢ € F (%),

d" (2 ® ¢) = 0. (4.8)

For fi,..., fu € 77 (n € N)andeach P € &, we define vectors ¥ (f1, ..., fn)
and wP(fl» AR ] fn) G ﬁb,ﬁn(%) by
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V(fiseeos fu) =AD" - A R
lI/P(fl’ R fn) = P(¢C(f1)v »¢C(ﬁ1))91f

Lemma 4.1 Forall ¥ € ., 5,(Dom(8))®.%: (), the limit
dw = lim dMw 4.9)
exists and, foreach P € P,, all fi, ..., fn € Dom(S) (n € N)and all ¢ € F(KX),
d (2, @ ¢) =0, (4.10)

AW (i )@= U(fisoos fioos L) @B, (411)
j=1

dUp(fi )@ =Y Wy p(fio.oos fiuoo ) @ B(SF)'$.  (4.12)

j=1

Proof Equation (4.10) follows from (4.8). Using (2.9) and (2.11), one can show that

AW (fre )@ =Y W (freee Frvo fi) @ BGMYg

Jj=1
with u$" == Y| (£, Sf;)&n. We have limy_ou'") = Sf; in /. Hence, by
.21, limy_ o [ B@S)* — B(Sf)*| = 0. Thus dS°'W(f1, ..., fo) ® ¢) exists
and (4.11) holds. Similarly, one can prove (4.12). [l

Equations (4.10) and (4.11) show that the limit operator d§°°) is independent of
the choice of the CONS {£,}2% . Hence dy™® is well-defined with Dom(d{™) =
T fin(Dom(8))Q.F¢ ().

Since déoo) is densely defined, its adjoint (d;oo))* exists. Basic properties of this
operator are described in the next lemma:

Lemma 4.2 It holds that
Dom((dS)*) D Fin (A, Dom(S*))

and, for all € Fy, in (), ui, ..., u, € Dom(S*) (p > 1),
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A5 (W ® 24) =0, (4.13)
S (W ® Bu)* - B(up)*2)
4
= > (=DTAS ) Y @ Bun)® - Blug)* -+ B(uy)* 2 - (4.14)
k=1
Proof One has (d{")* > Y-V, A(S*&,)* ® B(&,), which, together with (2.20),
implies (d{")*(¢ ® 24) =0. Hence, for all ® € Dom(dy”), (¥ ® 2.,
d;N)QD) = 0. Taking the limit N — oo and using Lemma 4.1, we have (Y ®
Q. ,d$® ®) = 0. This implies that ¥ ® 2, € Dom((d™)*) and (4.13) holds.

We next prove (4.14). Let ay = <¢ ® B(ul)*-~-B(u,,)*[2,)g/,d§N)<D>. Then,
using (2.17), we have

ay = (@) ¥ ® B+ B, s, )

P
= 2D @ Bt B By 2, (A M) @ D),
k=1

where fk(N) = 2;11\;1 (&n, ug) &,. By Lemma 4.1, we have
Tim ay = (¥ ® Bu)® - Bluy) Qe d59).
— 00
We have limy_, oo fk(N) = uy in # . Hence it follows that

Jim (¥ @ B@)® - B - By 2, (AGS M) @ D)
= (v & B B+ B, 2, (AGS"u) ® D)
- <A(s*uk)w ® B(u))* - Bun)* -~ B(uy)* 2., q>>.

Hence

(v ® Ba)* - By 2, df o)

P
B <Z(—1>’”A<S*uk>w ® Bu)* -+ Bup)*--- Bu,)* Q2r, ¢>'

k=1
This implies that v ® B(u)*--- B(u,)*2¢ € Dom((dgoo))*) and (4.14) holds. O

By Lemma 4.2, the adjoint (déoo))* is densely defined. Hence d;oo) is closable.
We denote its closure by ds:
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ds = dS. (4.15)
For a subspace & of s and p > 0, we define
V(D) :=span {¥p(fi, ..., f)In €N, fi,.... fo € D, P € P} AP (X).

For vectors X =Yp(fi,..., ) @ne¥,(2) and ¥ =¥p(g1,...,8n) RO €
Y4(2) (p, q = 0), we define a vector in ¥,,,(2) by

XAY = P(pc(f1), - dc(fu)) Q(Pc(g1)s - -+ s Pc(gm)) 20 @ (n A D),
(4.16)

where

V(P +q)!
v/ plq!

the wedge (exterior) product of 1 and 6. For any X € ¥,(2) and Y € ¥,(Z), we
extend the operation A by bilinearity to define X AY € ¥,.,(2). Wecall X A Y
the wedge product of X and Y.

The next theorem states basic properties of d:

nAG = Aprg(n®0) € APHI(H),

Theorem 4.1
(i) (nilpotency) For all ¥ € Dom(ds), ds¥ € Dom(dys) and d§l1/ =0.
(i) For each p=0,1,2,---, dy maps Dom(ds) N FP(H, HK) to

F PV, H).
(ili) Forall X € ¥,(Dom(S)) and Y € ¥,(Dom(S)), X A Y is in Dom(ds) and

ds(X AY) = (dsX) AY + (=1)PX A (dsY). 4.17)

Proof (i) Let fi,...,f, €eDom(S), ¢e F(H) and set V¥ :=
A(f1)" - A(f)* 2. ® ¢. Then, using (2.10) and (2.18), we have

= A" A A AU 2 ® BSF)* BIST)
Jk=1,j#k
== > AUDE - AUD* - AUDE - AU 2 ® B(ST)*B(SFi) ¢
Jk=1, j#k
= —d2w.

Hence d§l1/ = 0.Let¥ € Dom(ds). Then, by (4.15), there exists a sequence {¥, } 2 |
with ¥, € Z 4o (Dom(S))®.Z () such that ¥, — ¥ and ds¥, — ds¥ (n —
o0). By the preceding result, ds(ds¥,) = 0. Since dy is closed, it follows that ds¥ €
Dom(ds) and ds(dsqf) =0.
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(i1) This follows from (4.11) and a limiting argument.
(iii) It is sufficient to prove (4.17) for X and Y given by (4.16) with fi, ..., fn,
g1, ..., 8m € Dom(S). In this case, we have

ds(XAY)Y =Y W p(firos f) | Wolgr .., gm) ® (SF) A (1 A 6)
j=1

+ W (fis s f) (Z NI gm>) ® (Sg) A (7 A 6).

k=1

It is easy to see that (Sfi) A(MAE)=(SfiAn) A0 and (Sgr) A(nAO)=
(=1)Pn A (Sgr A 6). Hence (4.17) follows. ([l

Based on Theorem 4.1, we call the operator ds the exterior differential operator
associated with § € €(J7, ") on the boson—fermion Fock space % (¢, ). Anti-
commutation properties of the family {ds}see(#,.» ) are summarized in the following
lemma:

Lemmad.3 Let S, T € €(, %). Then:
(1) Zhin(Dom(S) N Dom(T), #) C Dom(dsdr) N Dom(drds) and

{ds,dr} =0 on Fgm(Dom(S) N Dom(T), 7).
(i) Z4n (S, Dom(S*) NDom(T*) C Dom(did;) N Dom(d;dy) and
{di, d7} =0 on Fsn (€, Dom(S*) N Dom(T™)).
(iii) Zn(Dom(T*S), Dom(ST*)) C Dom(dsd}) N Dom(d;ds) and
{ds, di} =dIM® (T*S)QI + 1&dI ™ (ST*)
on Fin(Dom(T*S), Dom(ST*)), where dI\"® #) (resp. dI}"® ®#)) is the

reduction of the algebraic second quantization dI"™® #) of # (see (2.5)) to
the boson (resp. fermion) Fock space.

Proof Direct computations as in the proofs of Lemmas 4.1 and 4.2 (use (2.13) and
(2.22) also). U

Remark 4.1 Miyao [53] gave a characterization for the operator ds from a more
general point of view, called the super-quantization.
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4.3.2 A Cochain Complex

By Theorem 4.1(ii), one can define for each p > 0 a densely defined closed linear
operator ds_, from .Z P (', %) to F PV (A, H) by

Dom(ds, ,) := Dom(ds) N .Z P (A, X),
ds )W = (ds¥)"™", ¥ e Dom(d,).

Then Theorem 4.1(ii) implies that

Ran(ds,,) C Dom(ds, p+1), (4.18)
ds. p+1ds,, =0 onDom(ds ,). 4.19)

This shows that ({Dom(ds, p)};":O, {ds. p};ozo) forms a cochain complex:

ds.p
0 — Dom(ds,o) = Dom(ds,)) =5 -+ — Dom(ds.,) “% Dom(ds,ps1) — -+ -
(4.20)

4.4 Operators in the Q-space Representation

Let Vit be the unitary operator defined by (4.5). Then, each linear operator L on
F (A, X) acts in Lz(Qb, dpy; Fi (X)) as beLVb}l. By (3.3), we have for all
fesH

~ . 1
U(A(f)@ DU, ' = —=D; Q1.

V2
Hence .
Veedg Vg = L B&) Dy
s Vot T n e
n=1 ﬁ

Therefore

o0

1
bedSVb}‘ = Z EB(EH)*DW" on Vipr Z5in(Dom(S), ). 4.21)

n=1

Note that

{B(&n), B(Ew)™} = 8um.  {B(&,), B} =0, n,m eN.
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Hence VirdsVi;' is a functional differential operator of infinite variables with
bounded operator coefficients satisfying CAR.

4.5 Hilbert Complex

The structure shown in (4.20) with (4.18) and (4.19) is in fact an example of a general
concept, called the Hilbert complex [30]. In this section, we review this concept and
related facts.

4.5.1 Definitions and Basic Facts

Let {%};’,":0 be a sequence of Hilbert spaces and {D)}}7, be a sequence of densely
defined closed linear operators with domain

2, :=Dom(D,) C /%,
and range
%, '=Ran(D,) C 5,
such that, forall p > 0, Z, C 2,4, and
D, 1D, =0 on2%,. (4.22)

Hence we have a cochain complex

Dy Dy DP
00— —> 9 — - — Dy — Dpy1 — -+~

This cochain complex, denoted by ({7, Yoros {2, Yoro: {Dpl5Lo). is called a Hilbert

complex. We use the following convention:
%1 = 9,1 = {0}, D,1 =0. (423)

If there is a number N € N such that 57, = {0}, Vp > N + 1, then the Hilbert com-
plex is said to be finite. A finite Hilbert complex has been discussed in [30]. In this
section, we deal with the case where the Hilbert complex is infinite, i.e., the case
where there exist infinitely many non-zero Hilbert spaces in {.7},}77.

It follows from (4.22) that, for all p > 0,

%, :=Ran(Dy) C Dom(D,,_,) C J,
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and
* * _ * . *
D, D, =0 on @p := Dom(Dy).

By (4.23), 9*, = % and D* | = 0. Hence we have a chain complex

*

* D¢ * Dy * * 4 *
0D =Dy «— D« Doy <= T — -+

We call the chain complex ({%};c:_l, {_@;};":_1, {D}}7~_,) the dual complex of
the Hilbert complex ({%};iw {@p};’f’zo, {Dp}plo)-

In every Hilbert complex ({:#,,}7_, {Z},2. {Dp}}2¢), each Hilbert space .77},
has a natural orthogonal decomposition as shown below. Let

N

€, =ker D, ﬂkerD;‘,_], p>0.
Then one has the following fact [30, Lemma 2.1]:

Theorem 4.2 (weak Hodge decomposition) For each p > 0, ¢, has the orthogonal
decomposition

Hoy = Sy ® Ry ® . (4.24)

Proof Since D, is a closed linear operator, ker D), is a closed subspace of 7.
Hence one has the orthogonal decomposition

H#, =ker D, @ (ker D))",

where (ker D,,)* denotes the orthogonal complement of ker D,,. The closedness of
ker D, and (4.22) imply that %,_; C ker D,. One has also J¢, = %,-1 ® %’;-_].
Hence ker D, = %, ® (ker D, N %;;1). Therefore

Hy =Ry @ (ker Dy N Z,y_,) @ (ker D)™

On the other hand, for each closed linear operator T on a Hilbert space, (ker Tt =
Ran(T*) (e.g., [23, Theorem 1.2]), which implies also that (RanT)* = ker T*.
Therefore

oy = Kp—1 ® (ker D, Nker D;‘,_l) @%.

Thus (4.24) holds. (]
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4.5.2 Laplace-Beltrami Operators of Finite Order and de
Rham-Hodge—Kodaira Decompositions

By the von Neumann theorem, for each p > 0, D; D, and D, D;‘, are non-negative
self-adjoint operators on 7, and 7, respectively. We set

A() = DE;D()

In what follows, we assume the following:

Assumption (A) For each p > 1, the subspace
Epi=9,ND,

is dense in J,.

Lemma 4.4 Foreach p > 1, there exists aunique non-negative self-adjoint operator
A, on H, such that Dom(A,/*) = &, and, for all ¥, ® € Dom(A)/”),

(a)2w, A)?®) = (D,W, D,®)+(D}_,w, D} D). (4.25)
Proof 1t is easy to see that the sesquilinear form ¢ on &, defined by

q(¥, ®) :=(D,¥, D,®)+ (D} ¥, D} | ®), ¥, Peé,

is closed and non-negative. Hence, by a general representation theorem on sesquilin-
ear forms (e.g., [45, Chap. VI, Theorem 2.23], [55, Theorem VIII.15]), the operator
A, as described above exists. (I

It follows from (4.25) that, for all p > 1, Dom(D;Dp) N Dom(D,,_lD;j_,) C
Dom(A,) and

AW = (D;‘;Dp + Dp_lD:‘,_])lI/, v e Dom(D’;Dp) N Dom(Dp_lD;_l).
In other words,

DiD,+ Dy D' C A, (4.26)

We remark that, at this stage, it is unclear whether the equality (operator equality)
holds in (4.26) or not (see Remark 4.2). By this fact and by analogy with the Laplace—
Beltrami operator on the pth differential forms on a finite-dimensional manifold, we
call the operator A, (p > 0) the p-th Laplace-Beltrami operator associated with
the Hilbert complex ({%};OZO, {.@p};"zo, {Dp}plo)-

Remark 4.2 For p > 1, the subspace Dom(D;;Dp) N Dom(D,,_; D;fl) may not
be dense in .77;,. Hence the operator L, := DyD,+ Dp_, D;q may not be densely



46 4 Boson-Fermion Fock Spaces and Abstract Supersymmetric Quantum Field Models

defined. Moreover, even if Dom (D7, D) N Dom(D,,_; D}, ;) is dense (then L, turns
out to be a symmetric operator), it is non-trivial if L, is essentially self-adjoint or
not. This is the reason why we define the p-th Laplace—Beltrami operator A, via the
sesquilinear form q.

Each non-zero element in ker A, may be interpreted as an abstract p-th harmonic
Sform on 72,

Lemma4.5 Forallp >0, kerA, = %%, In particular, dimker A, = dim %%,

Proof We first remark that, for every non-negative self-adjoint operator A on a
Hilbert space, ker A = ker A2 Let ¥ € ker A,. Then A;,/zlll = 0. Hence, by

(4.25),D,¥ = 0and D*_,¥ = 0,implyingthat ¥ € %, Thusker A, C /,.Con-

versely, let ¥ € .%,. Then, by (4.25), | A}/>¥||? = 0, implying that ¥ € ker A}/,
Hence ¥ ekerAp.Thusj?; Ckera,. U

Theorem 4.2 and Lemma 4.5 yield the following result:

Corollary 4.1 (de Rham—Hodge—Kodaira decomposition) For each p > 0, 7, has
the orthogonal decomposition

Sy =ker Ay & Kp_t ® K. (4.27)
In particular, if Z,—1 and %), are closed, then

Hy =ker A, ® Zp-1 © %, (4.28)
Corollary 4.2 Suppose that, for each p > 0, D, is semi-Fredholm. Then

6, =ker A, @ K- EB%’;.

If each D), (p = 0) is Fredholm, then dimker A, < oc.

Proof Since Ran(D,,_,) is closed, we have % = Xp—1. It is well-known that, if

T is semi-Fredholm (resp. Fredholm), then so is T* (e.g., [45, Chap. IV, Corollary

5.14]). Hence Ran(Dy) is closed. Therefore %; = %1”; Thus (4.27) yields (4.28).
If each D, (p > 0) is Fredholm, then dimker D, < oo and dim ker D;‘,_l < 00.

Hence dim j?j, < 00. Then, by Lemma 4.5, dimker A, < oo. |
4.5.3 The Dirac and the Laplace-Beltrami Operators
Associated With a Hilbert Complex

Let ({7,520 {Zp} 720, {D)p},20) be a Hilbert complex with Assumption (A). It is
natural to construct the infinite direct sum Hilbert space
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9= EB;’,":O%

Then there is the right shift operator on ) [22, p. 165, §4.4] associated with {D,, };":0.
We denote it by D, which is given as follows:

oo

Dom(D) = (¥ € HI¥P € 2,.p = 0. |ID, 1" V|P <00y,
p=I

(DY)P =D, ;wP D p>0, ¥eDom(D).

It follows from a general theorem on right shift operators [22, Theorem 4.3] that D
is a densely defined closed linear operator and the adjoint D* takes the following
form:

Dom(D*) = {¥ € 9|¥"*D e %, p > 0, Z 1 D5w P+D|2 < oo},
p=0

(D*)? = DiwP*D - p>0,¥ € Dom(DY).

The operators D and D* are nilpotent in the sense of the next lemma:
Lemma 4.6 D? = 0 on Dom(D) and (D*)? = 0 on Dom(D*).

Proof Let ¥ € Dom(D). Then (D¥)©® = 0 and (DY) = D,,,llI/(p’l), p=>1
Hence, by (4.22), (D¥)” is in Dom(D,) and D,(D¥)? = 0. This implies that
D¥ € Dom(D) and D(D¥) = 0. Hence D? = 0 on Dom(D).

Let ® € Dom(D*). Then, by the preceding result, (D*®, D¥) = <<I>, DZ'JI) =
0= (0, ¥). Hence (D*®, D¥) = (0, ¥), ¥ € Dom(D). This means that D*® €
Dom(D*) and D*(D*®) = 0. Hence (D*)? = 0 on Dom(D*). O

In analogy with analysis on finite-dimensional manifolds, it is natural to consider
the operator

0 := D + D*. (4.29)

We call it the Dirac operator associated with D. It follows from Assumption (A)
that Dom(Q) = Dom(D) N Dom(D*) is dense in $. It is obvious that Q C Q*.
Hence Q is a symmetric operator. But, at this stage, it is unclear if Q is essentially
self-adjoint or not. A basic property of Q is:

Lemma 4.7 The operator Q is closed.

Proof Let ¥ € Dom(Q). Then, by Lemma 4.6, we have
Q¥ |* = |D¥|* + | D*W¥|>. (4.30)

This implies the closedness of Q (apply a general theorem [22, Theorem 1.4]). [
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The following lemma is often useful to prove the essential self-adjointness of
symmetric operators (cf. [56, Chap. 10, Problem 28]):

Lemma 4.8 Let A be a symmetric operator on a Hilbert space S such that A? is
essentially self-adjoint on a dense subspace 9 C Dom(A?). Then A is essentially
self-adjoint on 9.

Proof We set Ag := A | 9, the restriction of A to 2. Since A? is non-negative
and essentially self-adjoint on 7, A? is a non-negative self-adjoint operator. Hence
T := A2+ 1 is a strictly positive self-adjoint operator with 7 > 1. By a limit-
ing argument, one can show that Dom(7) C Dom(A4) and, for all ¥ € Dom(7T),
(AgW, TW) = (TW, Ay ). Applying this equation to the case where ¥ = T~ '®
with ® € Dom(A7,), we have (¥, A7, ®) = (A}, D, w).! This implies that, for all
a € R\ {0},
Im (¥, (A%, +ia)®) = a (¥, D) = a| T ®|>.

Hence, taking ® € ker(A7, + ia), we have |T~'2®|> = 0, implying that T~'® =
0 and hence ® = 0. Therefore ker(A¥, + ia) = {0}. In particular, ker(A¥, £i) =
{0}. Thus, by the well-known criterion (see, e.g., [55, p.257, Corollary]) on essential
self-adjointness of symmetric operators, Ay is essentially self-adjoint, i.e., A is
essentially self-adjoint on 2. |

The following proposition formulates a sufficient condition for Q to be self-
adjoint:

Proposition 4.1 Suppose that Q7 is essentially self-adjoint on a dense subspace
D C Dom(Q?). Then Q is self-adjoint and essentially self-adjoint on D.

Proof By applying Lemma 4.8 to the case A = Q, we see that Q is essentially
self-adjoint on ©. But, by Lemma 4.7, Q is closed. Hence Q is self-adjoint (cf. [55,
Theorem VIIIL.3, Corollary (p.257)]). O

The sequence {A)}77, of the Laplace—Beltrami operators naturally defines an
infinite direct sum operator on J¢:

A=@,A4,. (4.31)

We call it the Laplace-Beltrami operator on $). It follows that A is a non-negative
self-adjoint operator with

ker A = @) ker A.
Lemma 4.9 The following operator equality holds:

12 _ 1/2
A — @;OzoAp .

I Recall that, for any densely defined closable linear operator L, (L)* = L*.
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Proof This follows from functional calculus of an infinite direct sum operator of
self-adjoint operators [22, Theorem 4.4(iii)]. [l

Theorem 4.3 The operator equality
A=0"0 (4.32)
holds.

Proof In the same way as in the proof of (4.30) (or by (4.30) and the polarization
identity), one can show that, for all ¥, ® € D(Q),

(QW, Q®) = (D, D®) +(D*¥, D*®)

M

((ng/(p)’ Dp@([’)) + (D;_]lll(”), D;_]q)(P)))
0

<
Il

¢

(A;/Zq/(ﬂ), A;/Zq)(p)>.

<
Il
o

By Lemma 4.9, the right-hand side is equal to (A'/2@, A'/2®). Hence
(AV2@, A2 ®) = (QW, QD). (4.33)
Note that D(Q) = D(A'/?). Hence (4.33) shows that A is the self-adjoint opera-

tor associated with the sesquilinear form (¥, ®) — (QW, Q®) which is closed by
Lemma 4.7. Hence (4.32) holds. U

The next corollary immediately follows from (4.32):

Corollary 4.3 If Q is self-adjoint, then A = Q.

4.5.4 Supersymmetric Structure

It is easy to see that the operator

is bounded with Dom (/) = $ satisfying
rg=1 TIi{=Ty, Tg#=*l

In other words, Iy is a grading operator on ).
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Lemma 4.10 Forall ¥ € Dom(Q), I'y¥ is in Dom(Q) and
I'o QW + QI'y¥ = 0. (4.34)

Proof Let¥ € Dom(Q). Then I'q¥ = {(—l)plI/(p)};":O. Since |(—1)?| = 1, it fol-
lows that I'q ¥ C Dom(D) N Dom(D*) = Dom(Q) and, for all p > 0,

(QIs¥) " = D, (=1)!'wP™D) + Dy (- )P rHh)
= —(=DP(DY)P = (=)D W) = —(I'5 Q¥)".
Hence (4.34) holds. O
Corollary 4.3 and Lemma 4.10 imply:
Theorem 4.4 Suppose that Q is self-adjoint. Then (9, 'y, Q, A) is an SOM.

Thus we see that, for a Hilbert complex such that the Dirac operator Q is self-
adjoint, a supersymmetric structure is associated with it.

In Theorem 4.4, the self-adjointness of Q is assumed. But, in the case where Q
is not necessarily self-adjoint, we can use the method described in Sect. 1.5.2. The
Hilbert space $) has the following orthogonal decomposition:

YJ = ~ﬁeven 57 ﬁodd
with
Heven = @;o:o%m Had = @;o:()%pﬂ.

Since each of D and D* can be regarded as elements in €(Heyen, Nodd) and
C(Hodds Heven) (hence so can be Q), we can define Q. € E(Hyen, Hoda) and
0_ € €(Hoad> Heven) by

Q+ = Q fDom(Q) N $Hevens Q— = Q fDom(Q) N $Hodd

where the closedness of Q4 follows from Lemma 4.7. By the results in Sect. 1.5.2,
the operators O and Q, defined by

_(0 0 _(0 o
0= %) e=(a%)

are self-adjoint extensions of Q. It follows that

2 (010+ O >
A"‘Q1‘< 0 0,0
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and

Ay = Q% = (Q_OQi QiOQ_)

are non-negative self-adjoint operators. It is easy to see that
Ig:=1& (-1
on $). Then, by the theory in Sect. 1.5.2, we obtain:

Theorem 4.5 The quadruples (9, ', Q1, A1) and (9, 'y, Q2, A2) are both SOM.

If Q is self-adjoint, then the two SQM are the same satisfying Q = Q| = Q> and
A=A = A,

4.6 Hilbert Complexes Associated With Boson—-Fermion
Fock Space

We now come back to the boson—fermion Fock space . (¢, J¢'). By the theory in
Sect. 4.3, we have:

Lemma 4.11 The triple Hgg := (.7 P (2, Ao, (Dom(ds, )}, {ds,p}olo)
is a Hilbert complex.

Therefore we can apply the results in Sect. 4.5 to the Hilbert complex Hgg. First,
Theorem 4.2 yields:

Theorem 4.6 (weak Hodge decomposition) For each p > 0, %P (, X') has the
orthogonal decomposition

FO (A, H) = Hs,, ®Ran(ds ,—1) ® Ran(dj)

with %%g,p =kerds,, Nkerdy ,_,.
Lemma 4.12 For each p > 0, D(ds, ,) N D(d;p,l) is dense in F P (A, H).
Proof By Lemmas 4.1 and 4.2, we have
Fo.in(Dom()®A” (Dom(5™)) € D(ds,,) N D(d5.,_,).
Since Dom(S) and Dom(S*) are dense in J# and % respectively, the subspace

P in(Dom(S))®A” (Dom(S*)) is dense in .Z P (¢, #). Thus the desired result
follows. O
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By Lemma 4.12, Assumption (A) in Sect. 4.5 is satisfied in the present context
(9, = Dom(ds, ), 9;71 = D0m(d§,p71)). Hence, by Lemma 4.4, there exists a
unique non-negative self-adjoint operator Ag , on .ZP) (¢, ') such that

Dom(A{?) = D(ds,,) N D(d;,,_,)

and, for all ¥, ® € D(ds,,) N D(d§’p71),
1/2 1/2 * *
(af3w. A 0) = (ds, W, ds,) ) + (d5 9. 5, D).
We call Ag , the p-th Laplace-Beltrami operator associated with S € €(JZ, %)
on .F WP (A, #). In particular, Ag is called the Laplacian on .7 O (7, %) =

Fu () associated with S.
We next want to identify Ay , in terms of known operators. The subspace

PP = P in(Dom(S*S5) @AY (Dom(S5*)) (4.35)

is dense in .# ") (¢, #) and included in Dom(d;pds,,,) N Dom(ds,,,_ld;pfl) (see
Lemmas 4.1 and 4.2). Hence it follows that the operator

Ls,p :=dg ,ds,p +ds p-1ds ,_;-
is a non-negative symmetric operator on .% P (', #) (ds._ := 0).
Lemma 4.13 Forall p > 0, Ly, is closed.
Proof Forall ¥ e 2P, we have by (4.19)
ILsp %I = lld5 ,ds. ¥ 1I* + llds p-1d5 ,_ I

Since dg ,ds, p and ds ,-1d; ,_, are non-negative self-adjoint and hence closed, the
equation implies that Ly , is closed. (]

Theorem 4.7 For all p > 0, Lg , is self-adjoint and the following operator equal-
ities hold:

Asp=Ls,=dl(S*S) @ I + I ® dI'" (55*). (4.36)

Proof Let
G, = dl(S*S) @ I + 1 @ dI"(SS5™)).

Then G, is non-negative self-adjoint. By Lemma 4.3(iii), we have Lg , = G, on

2" Hence G, | 2§ C Ls,,. On the other hand, 2" is a core for G, [22, Theo-
rem 4.7 (iii), Theorem 6.1 (iv)]. Hence G, C Lg , = L, , (by Lemma 4.13). Since
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every self-adjoint operator has no non-trivial symmetric extension, it follows that
G, =Ls,,. Thus Lg , is self-adjoint and the second equality in (4.36) holds. By
(4.26), we have Lg , C As ,. Since Ly , is self-adjoint as already seen. it follows
that LSJ, = As’p. O

It follows from (4.36) and a general spectral theory on tensor products of self-
adjoint operators [22, Theorem 3.8] that

0 (As,p) = (A + plx € o (d4(5*9)), p € o (dl}" (S5*)},
0p(As.p) = {h + Ik € o (dL(S*S)). p € op(dl}” (S57))).

The spectral properties of dI1,(-) and dl(-) are well-known [22, Theorem 5.3, §6.5].
Hence the spectrum and the point spectrum of Ag , are computed, although we do
not write them down here.

In the present context, Corollaries 4.1 and 4.2 take the following forms:

Corollary 4.4 (de Rham-Hodge—Kodaira decomposition) For each p > 0, the
Hilbert space FP (', X') has the orthogonal decomposition

FPNA, H) =ker Ag , ® Ran(ds,,—1) ® Ran(dj ).
In particular, if Ran(ds, ,—1) and Ran(d; p) are closed, then
FPNA, H) = ker Ag , ® Ran(ds,,—1) ® Ran(dj ).
Corollary 4.5 Suppose that, for each p > 0, ds ,, is semi-Fredholm. Then
FPNA, ) = ker As,, & Ran(ds p—1) ® Ran(d ).

Ifeach ds,, (p > 0) is Fredholm, then dimker Ag , < o0.
One can identify ker Ag ,:

Theorem 4.8

ker Ag , = @52 {(®) ker §) ® AP (ker §%)}. 4.37)
Proof By (4.36) and a general theorem,”> we have

ker Ag , = ker dI,(S*S) ® ker dl“f(”)(SS*).

It is easy to see that

2 Let A; (i =1, 2) be a non-negative self-adjoint operator on a Hilbert space 7. Then ker(A| ®
I+1®Ay) =ker(A; ® Az). See, e.g., [22, Theorem 7.6].
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ker dI},(S*S) = &, ker(5*$)™.

Moreover,
ker(5*$)" = ®" ker §*S = ® ker §
and
ker dI " (S8*) = AP (ker(SS™)) = AP (ker §¥).
Thus (4.37) holds. O

For a linear operator 7 on a Hilbert space, the number
nul (T) :=dimker T € Z, U {oc0}

is called the nullity of 7.
Formula (4.37) implies:

Corollary 4.6
(1) Ifnul (S) =0, then
1 (p=0)

nul (§*)!

(nul (S%) — )1 ! 1< < 1(S*
nul (Ag ) = (nul (§%) — p)!p! (1 < p < nul (§%) < 00)

00 (nul (§%) = o0)

0 (0 < nul ($*) < p)
@ii) Ifnul (S) > 1, then

o0 (0<p=<nul(§) < o0)
nul (Ag,,) =
0 (0 <nul($*) < p)

Remark 4.3 (i) The operators ds , and Ag , were first introduced in [4] in the case
where 7 = {f € ' (R)|(—A, + m>)"12f e L2R")} (' (R") is the space of
tempered distributions on R", A, is the n-dimensional Laplacian and m > 0 is a
constant), # = L>(R") and S = (—A,, + m?)'/2. The first form was generalized in
[6, 8, 9]. In [60], the case where .77 = % and S = I was studied from viewpoints
of the Malliavin calculus. Fundamental (Sobolev type) spaces of differential forms
based on Ag , were proposed and analyzed in [25, 26].

(ii) L. Gross [35] introduced an infinite-dimensional Laplacian in the framework
of the abstract Wiener space, which, in the present framework, corresponds to Ag o
with # = J¢ and S = I and a generalization of it (see also [59, 60]).
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4.7 Laplace-Beltrami Operators on Boson—-Fermion Fock
Space

We denote by Ag the Laplace-Beltrami operator on .% (J¢, %) (see (4.31)):
As =@, As.p-
By (4.36), we have
As =dlL,(S*S) @ I + 1 @ dI1(SSY). (4.38)

This may be a remarkable formula, clarifying a “geometric” meaning of the sum of a
boson second quantization operator and a fermion second quantization dI'},(S*S) ®
I+1Q®d(SSY).

The sequence {@;’7 )};’,":0 (see (4.35) ) yields the algebraic infinite direct sum

o0

2. (4.39)

95 = GAB
It is easy to see that
Ds = Foin(Dom(S*$))® F fin (Dom(SS™))

Lemma 4.14 Let A and A, be self-adjoint operators on Hilbert spaces ] and 765
respectively. Suppose that A; (i = 1, 2)is essentially self-adjoint on a dense subspace
2; C Dom(A;). Then A\ @ I + I ® A, is essentially self-adjoint on 2,8 D».

Proof See [55, p. 301, Corollary (a)] or [22, Theorem 3.8(iii)]. O
Theorem 4.9 The Laplace—Beltrami operator Ay is essentially self-adjoint on Ds.

Proof The operator dI,(S*S) is essentially self-adjoint on .7, g, (Dom(S*S)). Sim-
ilarly, dI':(SS*) is essentially self-adjoint on %t g, (Dom(SS*)). Hence, by (4.38)
and Lemma 4.14, Ag is essentially self-adjoint on Zs. (]

4.8 Dirac Operators on Boson—-Fermion Fock Space

We denote by Qy the Dirac operator associated with dy (see (4.29)):
Qs :=ds+ d;.
An important fact is:

Theorem 4.10 The operator Qg is self-adjoint and
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2
Ag = Q. (4.40)

Moreover, Qs is essentially self-adjoint on Ds.

Proof 1t is easy to see that s C D(Q%). A simple application of (4.32) yields that
Ag = Q% on Ys. By this fact and Theorem 4.9, Q% is essentially self-adjoint on Zs.
By this result and Proposition 4.1, Q5 is self-adjoint and essentially self-adjoint on
Zs. Then (4.32) implies (4.40). O

Theorems 4.10 and 4.4 imply:
Theorem 4.11 For each S € €(, %), (F (I, %), I, Os, Ag) is an SOM.

By (4.40) and (4.38), we have
Qé =dlL(S*S) @ I + I ® dI7(SS¥). 4.41)

This formula gives a basic relation between the Dirac operator Qg and the second
quantization operators dl,(S*S) and dI;(SS*).

It follows from (4.41) and (2.4) that £2» ® £2.» € ker Os. Hence, in the SQM
(F(H, X)), Tve, Qs, As), supersymmetry is not spontaneously broken. As is
shown later in Chap. 5, the SQM (F# (7, '), Ivt, Qs, As) is an abstract form of
some free supersymmetric quantum field models. By (1.17) applied to the case A =
S, we have o (5*S) \ {0} = o (5§5*) \ {0}. Hence, in the present abstract model, the
“boson mass" inf o (§*5) \ {0} coincides with the “fermion mass" inf o (§5*) \ {0}.
This is a characteristic of free relativistic supersymmetric quantum field models.

Remark 4.4 By (4.38) and the spectral theory of tensor products of self-adjoint
operators [22, Theorem 3.8 (i), Theorem 3.12 (i)], we have

0(Ag) = {Ap + Af [Ap € 0 (dIH(S*S5)), s € o (dIF(S5*))},
0p(As) = {Ap + Af [Ap € 0p(dIH(S™S)), At € 0p(dlF(SS™))}.

Hence the spectra of Ag are determined by the spectral properties of $*S and SS* (for
spectral properties of second quantization operators, see [22, Theorem 5.3, Theorem
6.10]). By Theorem 1.2, we have

0(Qs) = {£/uln € 0(As}, 0p(Qs) = {£/1uln € op(Ag)}.

Thus one can know the spectra of Qg from those of Ag, although we do not write
them down here (see [21]).

Remark 4.5 The theory of infinite-dimensional Dirac operators presented
here can be extended to study the geometry of non-flat infinite-dimensional
manifolds [48-50].
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4.9 Strong Anti-Commutativity of Dirac Operators

We have a family {Qs}sce(#..#) of Dirac operators indexed by €(7, %). It may
be interesting to find properties of this family. From the viewpoint of SQM, it would
be natural to ask when Qg anti-commutes with Q7 (S, T € &(J7, %)).

Let

Ds. 1 := Fagn(Dom(T*S) N Dom(S*T), Dom(ST*) N Dom(T S*)).
Then, by Lemma 4.3, Zs r C Dom(QsQ7) N Dom(Q7Qs) and
{Qs, Or} = AL (T*S + S*T)QI + 1Qdl™® (ST* + T S*) on s 1.

This implies:

Lemma 4.15 The operators Qs and Qr anti-commute on Ps r if and only if
T*S+S*T =0, ST*+TS* =0. (4.42)

For self-adjoint operators, there is a concept of anti-commutativity stronger than
the usual one, which was introduced by Vasilescu [65]:

Definition 4.1 Self-adjoint operators A and B on a Hilbert space . are said to
strongly anti-commute if, for all t € R, ¢85 A C Ae "5,

Remark 4.6 (i) It is shown a posteriori [65] that this definition is symmetric with
respect to A and B so that it is certainly meaningful.
(i) It is shown also that strongly anti-commuting self-adjoint operators are anti-
commuting in the usual sense. But the converse is not true.
(iii) One can prove that self-adjoint operators A and B strongly anti-commute if
and only if the operator equality e'’® Ae!’® = A holds for all ¢ € R.

It is known that the concept of strong anti-commutativity is useful [13, 14, 65].
Hence it may be important to know when Qg and Q7 strongly anti-commute. To
state a result on this problem, we introduce a self-adjoint operator

on the direct sum Hilbert space s @ % . Note that (4.42) is equivalent to
AsAr + ArAs =0.

Concerning strong anti-commutativity of Dirac operators { Qs}sce(# .. ), there is a
beautiful structure:
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Theorem 4.12 The Dirac operators Qs and Qr strongly anti-commute if and only
if As and At strongly anti-commute. In that case, S + T € €(H, ) and Qs+ =
Qs+ 0r.

Proof See [16, Theorem 3.1]. [l

Theorem 4.12 can be applied to construction of integrable representations, on
the boson—fermion Fock space, of the two-dimensional relativistic supersymmetry
algebra which is generated by four elements Q,, Q,, H, P with defining relations

Qi=H+P, Q3=H-P, 0,0+ 0:0,=0.

For the details, see [13, 16].

Remark 4.7 The following hold [16, Lemma 3.4]: (i) Qs strongly commutes with
the total number operator Ny (see (4.4)); (ii) Qs isreduced by each %, (¢, &), r €
Z (see (4.2)); (iii) the operator Ay is unitarily equivalent to Qg i, the reduced part
of Qg to .%# (7, #), in a natural way. These properties of Qg also are interesting.

4.10 Perturbations of Dirac Operator Qg

A method to construct an interacting supersymmetric quantum field model in the
present abstract framework is to define a new Dirac operator as a perturbation of Qg
by a suitable operator. A natural way to define a perturbation of Qg is to perturb
dg by a suitable operator. For this purpose, it is more convenient to work with the
Q-space representation § of the boson—fermion Fock space .% (7, J¢) (see (4.6)).
As is already remarked, each linear operator L on % (J#, 2¢) has the form beLVb}1
in the Q-space representation. But, in what follows, for notational simplicity, we use
the symbol L for Vi L Vb}' also unless otherwise stated.

4.10.1 Witten Deformation

Let W : Qy +— R U {£00} be measurable and finite a.e.. Then a perturbation of dy
is given by

. -w w
dS,W =e dse s

where e*"W are regarded as multiplication operators on §. This is called the Witten

deformation of dg.> Itis easy to see that, if W is bounded, then d,  is densely defined

3 This deformation was introduced by Witten [69] for the exterior differential operator on a finite-
dimensional manifold.
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and closed. But, in the case where W is unbounded, it may depend on the properties
of W whether or not ds, w is densely defined. We do not discuss this problem here;
we simply assume that dg w is densely defined and closable. We denote its closure
by the same symbol. Then the adjoint dg y, exists and is densely defined, satisfying
déy D eVdie™V It follows that

dé,w =0 onDom(ds w).
A perturbation of Oy is defined by

Os.w :=dsw+dg .

It follows that Qs w is closed. If Dom(ds w) N Dom(dg y,) is dense, then Qg w is a
closed symmetric operator.

Suppose that Dom(ds w) N Dom(d;W) is dense. Then, as in Lemma 4.4, there
exists a unique non-negative self-adjoint operator Ag y on § such that Dom(A]S{ i)) =
Dom(ds w) N Dom(d}‘,w) and, for all ¥, ® € Dom(dg w) N Dom(d;“’w),

(aYsw A5 @) = (ds w, ds.w®) + (5 . d5 ).

The operator Ag w gives a perturbation of the Laplace—Beltrami operator Ag.
Using (4.21), one has formally

dsw =ds + %B(SVW(q))* (a.e. g € Qy), (4.43)

where B(-)* is the fermion creation operator on .%¢ (%) and V is the gradient operator
on LZ(QI,, duy) (see (3.6) and (3.7)). In this form, one can extend the perturbation
of ds to a more general one by replacing the .# -valued function SVW/+/2 on Oy
with a general one F : Qy — % . In the next subsection, we consider this type of
perturbation.

Remark 4.8 The perturbation of dg given above is formally regarded as a special
case of the more general perturbation which replaces the measure 11y with a general
one [8]. This point of view was further developed in [1-3]. In the framework of an
abstract Wiener space, spectral analysis of an operator corresponding to the Laplace—
Beltrami operator A,y (the case where .# = J# and S = I) is made in [37] with
W obeying a set of conditions.

Remark 4.9 There is another type of perturbation for ds: ds(«) 1= ds + ¢ A(g) ®
B(v)* witha € C, g € 7, v € . This model is explicitly analyzable and one can
see that the model has some interesting features. See [21] for the details.
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4.10.2 More General Perturbations

Let F € L*(Qy,dpuy; #) and B(u) (u € ) be the fermion annihilation operator
on % () with test vector u (see Sect. 2.11). Then, for a.e. ¢, F(g) is in 2Z and
be | F(q) ||,21/th (g) < oo.Hence B(F(q)) is abounded linear operator on .%¢(£")
and, by (2.21)

f IB(F(@)*IPduy(q) = I FI%, (4.44)
Qp

where B(-)* denotes either B(-) or B(-)*. We define an operator B(F) on § as follows:

Dom(B(F)) := {¥ € J] / IB(F (@)% (@)I*duy(q) < oo ¢,
Oy
(B(F)¥)(q) := B(F(g)¥(q), ¥ €3, ae.q € Qy.
Note that B(F) is not necessarily bounded.*
Let M r be the multiplication operator on L2(Q;,, dvy) by the function || F(-)]|.
Then Dom (M| ) is dense in L*(Qy, dip). It follows from (2.21) that
Dom (M r)®-Z¢ (%) C Dom(B(F)).

Hence Dom(B(F)) is dense in §. Therefore the adjoint B(F)* exists. It is not so
difficult to show that

Dom(B(F)*) = { ¥ GSI/ I(B(F (@) ¥ (@)|*dmg(q) < o0 ¢,
0Oy
(B(F)*¥)(q) = B(F(g))*¥(q), ¥ € Dom(B(F)*), ae.q € Qy.

We now consider the following perturbation of d:
ds(F) :==ds+ B(F)*.

In the Q-space representation § of % (S, %), we have by (4.21)

‘A simple example is given by the case where F(q) = f(gq)u for an a.e. finite function f on Qy
and u € 7. In this case, B(F(q)) = f(¢)*B(u).If f is not essentially bounded on (Qy, y), then
the multiplication operator by f* is unbounded and hence B(F') is unbounded.
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1

7 > B(&)*Dsw, on 2(Dom(8)®.F in (K ). (4.45)

n=1

ds =

In what follows, we assume the following:
(Fl) Ubjb’ﬁn(%) C Dom(MHpH).

It follows from Assumption (F.1) that
Dom(ds(F)) D Voi (Fp,in(Dom(8)&.F; fin (H)).
Hence dg(F) is densely defined. Therefore the adjoint dg(F)* exists and satisfies
ds(F)* D d§+ B(F).

This implies that ds(F)* also is densely defined. Hence ds(F) is closable. With this
preliminary, we define a perturbation of Qg by

Os(F) :=ds(F) +ds(F)". (4.46)
Let
Ds == Ve Ds,
where s is defined by (4.39). Then .@S C Dom(Qgs(F)) and
Qs(F) = Qs + B(F) + B(F)* on s. (4.47)

Hence Qs (F) is densely defined and a symmetric operator on §. Equation (4.47)
shows that Qg(F) | 925 is a perturbation of Qg by the operator B(F) + B(F)*. As
we have seen in Theorem 4.10, Qg is essentially self-adjoint on _@5. But it may
depend on properties of F whether or not Qg(F') is essentially self-adjoint on a
suitable subspace. A simple case is given in the following proposition:

Proposition 4.2 Suppose that the function || F (-)||» on Qy is essentially bounded.
Then Qs(F) is self-adjoint with Dom(Qs(F)) = Dom(Qy) and essentially self-
adjoint on any core of Qs.

Proof Under the present assumption, B(F') and B(F)* are bounded and sois B(F) +
B(F)*. Hence the assertions follow from the Kato—Rellich theorem. ([l

In the case where the assumption in Proposition 4.2 does not hold, however, it
becomes a highly mathematical problem to prove essential self-adjointness of Q s (F).
A partial result on this problem is obtained in [12].

For notational simplicity, we denote the closure of Qs(F) | -@s by the same symbol
Qs (F). Under Assumptions (F.1), we have the following:
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Proposition 4.3 For all ¥ € Dom(Qs(F)), Iwt¥ is in Dom(Qg(F)) and
Ly Qs(F)Y = —0s(F) Iyp .

Proof ltiseasy toshow that I, Qs(F)¥ = —Qs(F)I[wW, ¥ € .@5. Then the state-
ment is proved by a simple limiting argument. O

Proposition 4.3 implies that (§, v, Qs(F), Hs(F)), where
Hs(F) = Qs(F)*,
is an SQM if Qs (F) is self-adjoint. This SQM is regarded as an abstract supersym-
metric quantum field model whose supercharge and supersymmetric Hamiltonian
are given by Qs(F) and Hg(F) respectively.

The orthogonal decomposition (2.2) of a fermion Fock space induces the orthog-
onal decomposition

F=3%.03-, (4.48)
where
S+ = LX(Qy, diy; Fr4(H), T- = L*(Qy, dpy; Fr_(X)).

Then we have
Top [ 8§+ =1

and Qs (F') has the operator matrix representation with respect to (4.48)

QS(F>=( 0 QS’(F)),

Os+(F) 0

where Qg 1 (F):= Qs(F) | Dom(Qg(F)) N§+. Following the prescription in
Sect. 1.5.2, one can define two self-adjoint operators:

Wy . 0  QOs4(F)” @ 0 Qs-(F)
QS(F)'_(QS,+(F) 0 ) Qs(F)'_(Q*g,_w) 0 )

Then Q(S')(F ) and Q(Sz)(F ) are self-adjoint extensions of Qg(F). Hence, letting
H{(F) == Q¢ (F)’, H{'(F) = 0¥ (F),

we obtain two SQM (F. Iy, Q5 (F), Hy" (F)) and (3. Iy, Q) (F). H{ (F)). We
have

Hg(F) C H(F), a=1,2.
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A simple application of Theorem 1.7 yields:

Theorem 4.13

. W gy

(i) Suppose that, for some constant By > 0, e Pofls (F) s trace class. Then, for all
(1) . . .

B = Bo, e PHs () s trace class and Qs.+(F) is Fredholm with

ind Q4 (F) = Tr (Iige #H# ),

independently of B > By.

2
(i1) Suppose that, for some constant y > 0, e~PHS"(F) s trace class. Then, for all
B > Po, e B F) s trace class and Qs._(F) is Fredholm with

ind Qs._(F) = —Tr (Iyye P15 (9,

independently of B > Bo.’

4.11 Explicit Form of Supersymmetric Hamiltonian Hg(F)

In view of Theorem 4.13, we need to know an explicit form of H S(”)( F)(@a=1,2).
To find it, however, we need some conditions on F'.

(F2)

(E3)

(F4)

For some p > 4, || F|.» € L?(Qy, duy), where, fora > 1, L*(Qy, duy) 1=
{¥ : Qy— CU {+£o0}, rneasurable|th Y (g)|*duy(g) < oo}

Fora.e.q, F(q) € Dom(S*) and CS*F(q) = S*F(q), where C is the complex
conjugation on hc. Moreover, S*F € Dom(V*), where (S*F)(q) := S*F(q)
for a.e. ¢ and V* is the adjoint of the gradient operator V (see (3.6) and (3.7))
and V*S*F € L"(Qy, duy) for some r > 2.

For all u € 2, the function F,(-) :== (F(:), u)» on Qy is in L"(Qh, diy)
for some r’ > 2 and

F,, F*€Dom(V), (VF,)(q), (VF*)(q) € Dom(S) (a.e.q).

Moreover, for a.e. g, the linear operator Tr(q) and the anti-linear operator
Rr(g) on % defined by

1 1
Te(@u = =S(VEN@). Re@ui= —=SVED@). we X

are bounded and Hilbert—-Schmidt respectively, and ||Tr(-)|l, |Rr(:)|l2 €
L*(Qy, duy) for some s > 2.

5 Here we use the following fact also: for each Fredholm operator A, ind A* = —ind A.
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(F.5) There exists a sequence {Fy}%_, with Fy € 2 (Dom(S))®Dom(S*) such
that, for some constants p > 4,r > 2and s > 2,

li Fy —F|I”, d =0,
Ni“oo/ IFN = FII%, dig(q)
Oy

tim [ 195" Fy (@) = V5" F@) diuy @) =0,

N—oo

O
Nliﬂoo / 1TFy (@) — Tr(@)I*d gy (q) =0,
2y
Jim [ 1Ry @ = Re@I3diy (@) =
O
Remark 4.10 Condition (F.2) implies (F.1).

In Sect. 2.12, we have introduced fermion quadratic operators. These operators
have extensions to the boson—fermion Fock space § as shown below. For a 8 (.%")-
valued measurable function 7'(-) on Qy, we define the operator (B*|T (-)|B) on § as
follows:

Dom({B*|T()|B)) := {¥ € ]| / {B*IT (@) B) ¥ (@I, \dy(q) < 00},
Oy
(B*IT()IB)¥)(q) := (BT (q)|B)¥(g), ¥ € Dom)(B*|T()|B)), ae.q.

If T (g) is Hilbert—Schmidt or anti-linear Hilbert—Schmidt for a.e. g, then one can
define also the operators (B*|T (-)|B*) and (B|T (-)|B) on § as follows:

Dom({B*|T()|B*)) := (¥ € §] / {B*IT @) 1B*) ¥ (@I, \dry(q) < 0o},
Oy
(B*IT()I1B*)¥)(q) := (B*|T(q)|B*)¥(q). ¥ € Dom)(B*|T(-)|B)), ae.q,

Dom((B|T(-)|B)) :={¥ € Slf | (BIT (q)|B) W(Q)H%w)dﬂh(q) < oo},
Qp
(BIT()|B)Y¥)(q) :=(B|T(q)|B)¥(q), ¥ € Dom) (B|T()|B)), ae.q.

Proposition 4.4 Assume (F.2)—(F.5). Then 923 C Dom(Qs(F)?) = Dom(Hs(F))
and
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1
Hs(F) =As + —=V"S'F +IF Q% +(B°1TrO1B)
+(B*ITr()*|B) + (B*|Rr ()|B*) + (BIRF ()| B). (4.49)
on 925.
Proof We give only an outline of the proof. We have

0s(F)? D0% + {ds, B(F)} + {ds, B(F)*} + {d%, B(F)} + {d}, B(F)*}
+ B(F)2 + (B(F)*)2 + B(F)B(F)" + B(F)"B(F).

It follows from (2.19) that B(F)? = 0 and (B(F)*)> = 0 on s and
B(F)B(F)" + B(F)*B(F) = [|[F()|% on s,

where we have used condition (F.2). We already know that Dom(Q%) D 925 and
Q% = Ag. Hence

Qs(F)* DAs + IFO)% + (ds, BUF)} + (ds, B(F)*} + {d§, B(F)} + {d, B(F)*}.

To proceed further, we first consider the case where F € % (Dom(S))&Dom(S*).
In this case, there exist K € N , Gy € Z(Dom(S)) and v, € Dom(S*) (k =
1,..., K) such that F = Zk 1 Gk ® vi. Let d be the dimension of the subspace
span {vy, ..., vg}and {en} _ beaCONS of span {vy, ..., vg}. Then one can rewrite
F in terms of {en}N | toobtain F = Z  Hy ® e, with H, € & (Dom(S)). Itis not

so difficult to show that @S is included in Dom({ds, B(F)}) N Dom({ds, B(F)f}) N
Dom({d¢, B(F)}) N Dom({d{, B(F)*}) and the following equations hold on Zs:

1 N
{ds, B(F)} = (B*|Tr())|B) + ﬁ; (F, en)Dgse,,

{ds, B(F)"} = (B*|Rr ()| B¥)

{d5, B(F)} = (B|Rp(")|B),

{ds, B(F)* }—<B ITr ()*|B) + Z>D§* (en, F),

where we have formula (4.45) is used. By (3.4), we have
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N N N
1 1 1
= § D**e : <en7 F> = = E <en7 F>DCS*6,, + — § (D**e <en’ F))
ﬁn:l ﬁn:l ﬁn:l

Condition (F.3) implies that "~ (F, e,) Ds.., = >"™_ (¢4, F) Dcsee, on Js. One

n=1
can show that Z,I,V:1 (en, F)Dcgre, = V*S*F on 95. Thus we see that .@5 C
Dom(Q(F)?) and (4.49) holds. Then, by alimiting argument using condition (E.5),
one can extended the result to a general F' obeying the assumption in Proposition
4.4. For more details, see the proof of [12, Theorem 4.4] (note that notations and
methods there are slightly different from those of the present book). Cf. also [11]. UJ

We formulate an additional condition under which (B*|Rp|B*) and (B|Rr|B)
vanish on Ys:

(F.6) Forall u, v € Dom(S*) and a.e. ¢ € Qy,
(Su. (VED @), = (S*v. (VE)(@)), . -

Example 4.1 Let W € Dom(V) such that, for a.e. g, (VW)(g) € Dom(S). Then
the # -valued function F := SVW/ V2 on Qy—see (4.43)—satisfies (F.6).

Lemma 4.16 Fora.e. g,
(B*IRF(q)|B*) =0 on F (X))
if and only if (F.6) holds. In that case, we have
(BIRF(q)IB) =0 on F (X))

Proof Let¥ := B(u)*---B(up)* 2y (p>0,uy,...,u, € % )and {e,}32, be a
CONS of ¥ . Then

(B*IRF(@IB*)¥) P = /(p+ D1Ap (T Qui ® - @ uy),

where T := ) 77| Rr(q)e, ® e,.Hence (B*|Rp(q)|B*) W = Oforalluy, ..., u, €
J if and only if A»(T) =0. On the other hand, A,(T) =0 is equivalent to
(F.6). The second half of the lemma follows from that (B|Rr|B) = (B*|Rp|B*)*
on Ys. O

Lemma 4.16 implies that, under conditions (F.2)—(F.6), Hs (F') takes the following

simpler form on %s:

1
Hs(F) = As + EV*S*F +IFOI% + (BT ()IB) + (B*|Tr (-)*|B). (4.50)



4.12 Path Integral Representation of the Index of Qg 1 (F) 67

4.12 Path Integral Representation of the Index of Qg +(F)

Under additional conditions, one can derive a path integral representation for the
index ind Qg +(F). In this section, we briefly describe this aspect.
We continue to assume (F.2)—(F.5).

4.12.1 Path Integral Representations of Pure Imaginary
Time Correlation Functions of Bose Fields

An additional assumption is the following:

(S.1) The non-negative self-adjoint operators
h:=S*S

and SS* are strictly positive and, for some constant y > 1, h~~1 is trace
class on .

Under Assumption (S.1), h~%~D is a strictly positive and self-adjoint compact oper-
ator. Hence there exists a CONS {e,}52, of hc and positive numbers &, such that
he, = €nen, €y < 1 (n > D and Trh~ =D =3, e, "™V < 00, Tt follows that

o (h) = op(h) = {e,};2, and ) e;(yfl) < 00. In particular, we have
nwyzi}—<m. (4.51)

Hence A~ is trace class on b.

The domain Dom(h?/?) Nk is a real Hilbert space with the inner prod-
uct (f, g)y := (W"*f,h"%g)y (f,g € Dom(h"/*)Nh) and the norm || f||, :=

(f, f),. We denote this Hilbert space by h,. On the other hand, b is a real inner
product space with the inner product {f, g)_, := (W2 f,h77%g) (f, g € h). We
denote the completion of this inner product space by f_, . It follows that _,, is the
dual space of b, with the natural bilinear form (¢, f) (¢ € h_,, f € b,) such that
(9. f) = (@, f)yifg € hand, forallp € h_, and £ € b, | (. /)| < @l [ £,
where || - ||, denotes the norm of f_,,. By (S.1), the embedding of h into f_, is
Hilbert—Schmidt. Hence, by the Minlos theorem (e.g., [20, Theorem D.18], [32], [38,
Theorem 1.72]), we can take the measure space Qp to be h_,,. Letting

E:=b,

we denote the measure py on E by pg. In this case, we have ¢y (f)(¢) = (¢, f)
(peE . fehs

6 For febandy € E, (¢, f) :=1lim,_, (¢, fn) in LZ(E, dug), where { f,,}, is a sequence in
by, such thatlim,, o f; = f in b. The limit lim,,_, o (@, f,) is independent of the choice of { f;,},.
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Lemma 4.17 Forall B > 0, e~ is trace class.

Proof 1t is easy to see that C := sup,_,x”e #* < co. Hence Y oo, (e,, e Ple,) =
Yo e P <O e, < 00 (by (4.51)). O

Since [le #"|| < 1 for all B > 0, it follows that 1 — e~#" is strictly positive and
bijective. In particular, the inverse (1 — e #")~! exists.

The boson second quantization operator dl1,(h) physically denotes the Hamilto-
nian of a free Bose field with one-boson Hamiltonian 4.

Lemma 4.18 Forall B > 0, e BN g trace class and

1
1‘[20:1 (1 —ePen)”

Proof See [22, Corollary 5.5]. O

Tr =Pt —

In the context of quantum statistical mechanics, the function
Zg:=Tr e Plb(h)

of B > 0 (the inverse temperature) is called the partition function of the free Bose
field system with the Hamiltonian dI, ().

Let 2 be a x-algebra consisting of linear operators on .%,(hc) such that I (the
identity)e 2 and, for all A € A and t > 0, Ae "> s trace class on .%,(hc) or a
densely defined bounded linear operator whose extension is trace class on %, (hc).
Then one can define a linear functional wg : A — C by

Tr (Ae—ﬂdfb(h))

wp(A) = Z

, Aefl

It follows that wg (1) = 1 and wg(A*A) > O forall A € 2. Hence wg is a state on .
It is called the Gibbs state associated with dI'},(h).

The time development of the time-zero Bose field ¢¢ (f) (f € b) under the Hamil-
tonian dl},(h) is defined by e" M e (f)e~ "M where t € R is the time param-
eter. Replacing ¢ by it, we see that it is natural to define the “pure imaginary time
development" ¢¢ (it, f) of ¢pc(f) by

oclit, ) == eftdrb(h)q‘)c(f)etdfh(h).

For each n € N, the n-point correlation functions of pure imaginary time free Bose
fields with respect to the Gibbs state wg are defined by

Gty f15 -0 5 tas Ju) i=wg(@c(ity, f1) - - Pc(itn, fu))s
0<n =<t <tw<B, fr..... fu€Dh.
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The following lemma gives a trace formula for the two-point correlation functions:

Lemma4.19 Let0 <s <t < Band f, g € hh. Then

1
Gals, g3, ) =S {g, (77" 7P A—eTMTf) L (45)

Proof In the same way as in the proof of (2.14), one can show that
1

ﬁ(A(e‘”’f)* + A" f)) on F, gn(Dom(e™)).

oclit, f) =
Hence

1
Ga(s, g t, f) = 5{wﬁ(A(e*“thA(e*”'f)*) + wp(Ale™"g)* A f))
+ wg(Ae" @) A(e™ )*) + wp(A(e™ ) A ))).

It is not so difficult to show (see [29, §5.2], [19, Theorem 8.16]) that, for all fi, f> €

be,
ws(A(f)*A() = (fr e A =)' i),
wp(AMDARDY = (fi. A —e )7 f),
wp(A(fA(f2)") =0, wg(A(fi)A(f)) =0.
Using these formulas, one obtains (4.52). ([l
Remark 4.11 It is shown that, for all n > 1, G,,_; = 0 and G,, is written as a

combinatorial sum of two-point functions G,.

As in the case of Euclidean quantum field theory [61], one can represent the
correlation function G, in terms of functional integrations. A key fact for this is
Lemma 4.20 below.

For each 8 > 0, we set

Eg := C([0, B]; E),

the space of continuous mappings from [0, 8] to E, which is a path space with paths
in E. For each ® € Eg, we set

O, :=P(t) € E.

We denote by .# the Borel field on Eg generated by {®,(f)| f € b, t € [0, 8]}, where
S,(f) = (D, f).
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Lemma 4.20 There exist a probability measure g on (Eg, #) such that
(D, (H)If €b,t €[0,Bl} is a family of jointly Gaussian random variables on
(Eg, ZF, ug) with covariance

/dﬂﬁq>t(f)q>s(g) — %(f, (e—lt—s\h + e—(ﬁ—lt—s\)h)(l _ e—ﬁh)—1g>h ’ (4.53)

Eg
forall f,g ebhandt,s € [0, B].

Proof We need only apply the theory in Appendix B to the case A = h (cf. [36,
Proposition 5.1]). (|

Remark 4.12 It follows from (4.53) that, for all f €0, fEﬁIQDO(f)—

d>,g(f)|2dpc/3 = 0. Hence ®((f) = Pg(f) for a.e. ®. Since h is separable, it fol-
lows that ®) = ®g for a.e. & € Eg. This means that, for a.e. ®, ® € Eg is a loop
in E. Hence one can regard the measure j1g as the probability measure on the loop
space L([0, B]; E) := {® € C([0, B]; E)| Py = Pp}.

We can now state formulas which represent correlation functions as functional
integrals with respect to pug:

Theorem 4.14 Let fi,..., [ €h0<ti <th <---<t, < B.Then

Gty frs--- itns Jo) = /q)tl(fl)"'q)t,,(fn)dﬂﬁ(q))-

Ep

Proof See [15, Theorem 2.2].” O

Theorem 4.14 can be extended as follows. Let V be a real-valued measurable
function on E which is finite for a.e. ¢ and bounded from below (i.e., there exists a
real constant Vj, such that V((p) > Vp for a.e. @) satisfying that Dom(de(h)l/ N
Dom(Vl/z) is dense in L*(E, dug), where Vi=V-— Vo = 0. Then, by the sec-
ond representation theorem for densely defined closed symmetric forms [45, Chap.
VI, Theorem 2.23], there exists a unique self-adjoint operator Hy on L*(E,dug),
bounded from below, such that, for all ¥, ® € Dom(dl} (h)'/?) N Dom(V1/2),

(A w. A)20) = (dryon ' Pw, driy () 120) + (V12w, V1726),

where HV =Hy —Vy, >0, and Dom(Hl/2

One can prove the following:

) = Dom(dl} (h)'/2) N Dom(V1/2).

7 Note that the convention on the Gaussian random process in [15] is different from that in the
present book.
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Theorem 4.15 Let V and Hy be as above. Then:

() Forall B > 0, e P s trace class.
(ii) Letn € Nand Fy, . .., F, be measurable functions on E such that, for all t >
0, e"HV|Fj|e_’HV (j =1,...,n)is trace class. Then, for all t, ..., t, € [0, B]
satisfying0 <t <thpb <---<t, <B,

Tr (e*lev Fle*(fzftl)Hv .. Fn_le*(fn*tn—l)Hv Fne*(ﬁ*fn)Hv)
Zg

7;V(<I>,)d1
=/F1<<I>t,)-~-Fn<<bt,,)e 2

Eg

Proof See [15, Theorem 3.1]. O

4.12.2 Index Formula

For a.e. ¢ € E, the operator

Lp(p) :==Tr(p) + Tr(p)*

is a self-adjoint Hilbert-Schmidt operator on .#". We denote by 9, the differential
operator 3/t with periodic boundary condition on L*([0, B1; 2#) = L?([0, B]) ®
¢ . By using the unitary equivalence 9, + SS* = 9, ® I + I ® SS*, the theory of
tensor product operators and the strict positivity of SS*, one can show that 9, + SS*
is bijective with (9, + S§*)~! being bounded. Hence, for a.e. ® € Eg, we can define
the bounded linear operator

Kp(®) := Lp(®)( + S5*)™"

on L2([0, B]; 7).

Lemma 4.21 Suppose that
B
/ ILF(D)5dt < 00, a.e . (4.54)
0

Then, for a.e. ®, Kp(®) is Hilbert—Schmidt on L?([0, Bl; ') and there exists a
bounded linear operator K p(®; t,s) on H (t,s € [0, B], t # s) such that the map-
ping s — Kp(®;t,s) (s # t) is strongly continuous and
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B
(Kp(®) ))(t) = / Kp(®;1,5) f(s)ds, f e L*(0,B]; ).
0
Moreover, Kp(®;t) := Kp(®; t,t + 0) is trace class on X and
B
Tr Kp(®) = /Tr Kp(®: t)dt
0

is a real-valued measurable function on Eg.
Proof See [9, Lemma 6.6, Lemma 6.7]. |

Let

1 * QK 2
Wi := —V*S*F + ||F|% .

/2

Theorem 4.16 Assume (F.2)—(F.6), (4.54) and the following:

(i) The operator Hg(F) given by (4.50) is essentially self-adjoint on @5 and, for
all B > 0, e PHs) jg trace class.

(i1) The operator dI,(h) + Wp is essentially self-adjoint, bounded from below
and, for all B > 0, e PABWFTWE) g trgce class.

(iii)

B
1 ~
/duﬂexp —/ WF(dDS)ds+§||KF||§+|TrKF| < 0.
0

Eg

Then Qs +(F) is Fredholm and

B
ind 031 (F) = [ dug(@deta(l + Kr(@)exp |~ [ W(@ds +TKr(®)

(4.55)

independently of B > 0, where det, (1 + -) denotes the regularized determinant for
a Hilbert—Schmidt operator (see Sect. 2.7).

Proof See [9, Theorem 6.8]. We remark that, by using suitable approximate and
limiting arguments, one can remove some of the assumed conditions in [9, Theorem
6.8]. O
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Remark 4.13 Inthe case where (F.6) does not hold, the operators ( B*| R (-)| B*) and
(B|RF(-)|B) do not vanish. But, in this case too, one can derive a path integral repre-
sentation forind Qg +(F) [9, Theorem 6.10] which is given by (4.55) with the factor
deta(1 + K (®))eTKr(® replaced by PF(As, B (d)) exp (—% JETe K (@) ds),
where As and B (®P) are bounded skew-symmetric operators on K ® K (Ag does
not depend on ®) and Pf(-, -) denotes the extended relative Pfaffian defined for a
pair of bounded skew-symmetric operators [9, Appendix E].

We present, in the next chapter, examples of the infinite dimensional Dirac operator
Qs(F) which appear in supersymmetric quantum field theory.



Chapter 5 ®)
Models in Supersymmetric Quantum oo
Field Theory

Abstract We construct in a mathematically rigorous way two-dimensional versions
of the Wess—Zumino models in supersymmetric quantum field theory as an appli-
cation of the theory of infinite-dimensional Dirac operators on the abstract boson—
fermion Fock space presented in Chap. 4. Other supersymmetric quantum field mod-
els also are briefly mentioned.

5.1 Preliminaries

We construct supersymmetric quantum field models on the two-dimensional (cylin-
drical) space—time

M, =RxT, = {(t,x)|t € R,x € Te}

with Ty := R/£Z (one-torus), which is identified with the circle of length £. For this
purpose, we need some preparations.

5.1.1 Momentum Operator of a Quantum Particle in T,

In what follows, we use the physical unit system where the light speed ¢ and the
reduced Planck constant 7 are equal to 1. The momentum space of a quantum particle
being in 7, is given by

We denote by ¢2(T,) the Hilbert space of absolutely square summable functions on
Tgl
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ATy :=u:T, - C| Z lu(p)*> < oo

I’Efk

- u(p)*v(p), u, v € €2(Ty). We set

with inner product (u, v) := 3" 7

Hi = C(T)).
For each p € T,, we define a function e p on T, by

1 .
ep(x) = —=e, xeT,.

NG

It is well known that {e,,}pefe is a CONS of L?(T;). One can show [23, Theorem
1.33] that there exists a unique unitary operator .%; : L*(T;) — ¢ such that

1 . ~
(‘ng)(p) = (ep’ f)LZ(T@) = ﬁ / e_lpr(x)dx’ f € Lz(Tf)a p € Tf'
T,

The unitary operator .7, is called the one-dimensional discrete Fourier transform
associated with 7,. We write

fi=Ff fel*Ty.

We define an operator p, on L2(Ty) as follows:

Dom(py) :={ f € L*(T)| Y_ Ipf(p)I> < o0y,
Pef'z

pof = pf(pey, [ €Dom(py).

pef(

It is easy to see that, for each p € T}, e, € Dom(py) and pee, = pe,, ie., p is
an eigenvalue of p, and e, is an eigenvector of p, belonging to p. Since {e,} ety
is a CONS of L?(T)), it follows that p, is self-adjoint and o (p;) = op(Pe) = 7.
The operator p, is called the momentum operator with the periodic boundary
condition acting in L*(7;). We have

FipeF ' =p, (5.1)

where the right-hand side denotes the multiplication operator by the funcion p on
T,. Since py is self-adjoint, its square
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. A2
—A = py

is a non-negative self-adjoint operator on L?(7;). The operator A, is called the Lapla-
cian with the periodic boundary condition acting in L?(7;). The Hamiltonian of
a relativistic free particle of mass m > 0 in 7y is defined by

he = (5 +m)'? = (= A+ m?)'? (5.2)
acting in L*(Ty). Let w : T, — R be defined by

w(p)i=pr+m2, pef,. (5.3)

Then, by (5.1) and the functional calculus, we have
jghgf[l = w,

where the right-hand side denotes the multiplication operator by the function w.
The value w(p) denotes the energy of the relativistic free particle with momentum
peT.

5.1.2 The Free Quantum Klein—-Gordon Field on M,

We now move to the boson Fock space %, () over 7 in the momentum repre-
sentation. We denote the annihilation operator on .7, (;) with test vector u € J%
by a(u). It is easy to see that, for each f € L?>(T,) and t € R, e”“’f/ﬁ is in 74;.
Therefore one can define

_L eitwf * eith
¢(t,f)-—ﬁ{a<\/5> +a<ﬂ)},

where f* means the complex conjugate of f and f\* := %, f*. In the same way as in
[22, Theorem 5.31], one can show that, forall f € Dom(A;) and ¥ € %, o(57), the
correspondence R > 1 — ¢ (¢, f)WV istwice strongly differentiable and the following
equation holds:

d2
TP O+, (—A+ m*) f)¥ =0,

where d /dt means strong differentiation with respect to ¢. Thus the operator-valued
functional (¢, f) € R x Dom(A,) — ¢ (z, f) satisfies the free Klein—-Gordon equa-
tion on the subspace .7y, o(.7%). Moreover, if f = f*, f € L>(T;),then¢ (¢, f)isthe
Segal field operator with test vector e/'® f /+/o. Hence it is symmetric and essentially
self-adjoint (see Sect. 2.9). In particular, ¢ (¢, f) is aneutral Bose field. The operator-
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valued functional ¢ : (¢, f) — ¢ (¢, f) is called the free quantum Klein—Gordon
field on M,. Obviously the time-zero field of ¢ takes the form

_ U (FY (T )
o(f) -—¢(0,f)—ﬁ{a <JZ> +a<@)}, feL(Ty. 5.4)

The canonical conjugate momentum operator of ¢ (¢, f) is defined by

. 1):= 5 [ (V7)o (oo 7|

for all f € L*(T;) such that /& f € ;. One can easily show that, for each
teR, (o, f).n(t, g)|f. g € LX(Ty), Jwg € 7} obeys the Heisenberg CCR on
Foo(): for all fi, fo, g1, g2 € L*(Ty) such that wg, V/wg, € 7,

(@@, f1), (2, g1)] =i/f1(X)g|(x)dx, (5.5)
T,

[¢(ts fl)s ¢(t’ f2)=O» [T[(tvgl)an(tng)]ZO (56)

on %y, o(H7).

To understand a mathematical feature of ¢ (¢, f) and 7 (¢, f), we recall a notion.
We denote by Z(T,) the Fréchet space of infinitely differentiable functions on Ty
with the family {p,};2, of semi-norms defined by

d"f(x)
dx"

on(f) = sup , n>0.

xeT;

The Fréchet space Z(Ty) is called the space of test functions on 7,. The space of
continuous linear functionals on Z(T})), denoted by 2'(T), is called the space of
distributions on 7 (cf. [58, Chap. IV, §IV.2]). A distribution F on T, is said to be
real if F(f)* = F(f*) for all f € 2(T,). We denote the space of real distributions
on Ty by Z,,,,(T¢). Let Ziea1(Te) be the space of real-valued test functions on 7;:

@real(Tl) ={f€ @(TZ)UC = f*}
Then, for all f € Zrea(Ty) and F € I, (Ty), F(f) is a real number.

Let .Z be a Hilbert space and & be a dense subspace of JZ". Suppose that,
for each f € 9(T;), a linear operator F(f) on . is given such that, for all
f € 9(T,), Dom(F(f)) C Z and, forall ¥ € 2, F(f)V is linear in f. The sub-
space Z is called a common domain for F(f), f € 2(T,).If, forall ¥, @ € 2, the
functional (¥, F(f)®) of f € P(Ty) is continuous in f, i.e., the correspondence
f = (Y, F(f)®) is an element of 2'(T,), then F is called an operator-valued
distribution on 7. In this case, one often introduces a symbol F(x) (which has no
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mathematical meaning a priori) to write formally F(f) = f T, F(x) f (x)dx and calls
F (x) the distribution kernel of F.

A basic fact is that, foreach t € R, ¢ (¢, ) and 7 (¢, -) are operator-valued distribu-
tions on Ty with %, (#¢) being a common domain. Hence one can write formally

b1, f) = f 6,1 f(0)dx, 7t f) = / (6, 2) f (¥)dx
Ty T;

with operator-valued distribution kernels ¢ (¢, x) and 7 (t, x).
Let

Hb = de(w), (57)

the boson second quantization operator of the multiplication operator @ acting in
;. Then, by (2.16), we have

¢, ) ="l 1eR, feLXT).
Thus Hy, may be interpreted as the Hamiltonian of the quantum system described by
{p@, Nt € R, f € L*(Ty)). R R
For each p € T;, we define §,, : T, — R by §,(q) := 5,4, g € T, with §,, being
the Kronecker delta. Then it is obvious that §, € ;. Hence one can define the
operator

a(p) = a(s,).
We call it the boson annihilation operator with momentum p. It follows that
la(p),a(q)*]1 =8yg, la(p),a(@]=0, [a(p)*,a(@)*]=0

on %y 0(54;). Since {8,|p € f[} is a CONS of 77, it follows that, for all u € 777,
limy_ oo Z/I;]:—N u(p)8, = u in s¢. Hence, by Lemma 2.1, for all ¥ € ., o(J47),

eitw?} e~ito(p)
v = - v,
a( @) I; =P

eitwf * eito)
— | ¥ = B — Wy,
a ( 7 ) pZTj =y Pap)
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Therefore

1
o, f) = Z =
peTy

(apy e ® f(p) + a(pre™ P f(=p)) on Fp,0(H)).

This shows that the formal expression

)*eitw(p)fipx + a(p)efitw(p)vLipX)

0= =3 — L (a
STV s e

may serve as the symbol for the operator-valued distribution kernel of ¢ (¢, f), f €
9(Ty).! Similarly, the symbol for the operator-valued distribution kernel of
w(t, ), f € P(Ty) is given by

]T(t,x) — ﬁ Z M wf(zp) (a(p)*eita)(p)fipx _ a(p)efita)(p)#»ipX).

PeTy

The Heisenberg CCR (5.5) and (5.6) are symbolically written as follows:

[, x), @, y)]=id(x —y),
[, x), ¢, ] =0, [n@ x), 7 y)]=0,

where 8 (x — y) is the delta-distribution on 7; x Tj.
It is shown [22, Proposition 9.12] that the Hamiltonian H,, is written as

Hy =) _ w(p)a(p)*a(p) onDom(Hp).

PEfz

5.1.3 The Majorana Field on M,

The classical free Dirac equation in the space—time M, takes the following form:
(%9 +iy'dy —m)y?t,x) =0, (t,x)e M, (5.8)

with

cl
wcl(hx) = <1ﬂ—c~18:;;) c (CZ’

1 The symbol ¢ (z, x) here does not have meaning as an operator on .7, (). But one can give
mathematical meaning to ¢ (¢, x) as a sesquilinear form on a suitable domain (cf. [22, §9.6]).
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being a continuously differentiable spinor on M,, where ¥ and y! are the gamma
matrices associated with the two-dimensional Minkowski space-time, i.e., y° and
y! are 2 x 2 Hermitian and anti-Hermitian matrices respectively satisfying the anti-
commutation relations

oy =2¢", pv=0,1, g% =1¢"=-1,¢g"=¢""=0,

m > 0 is a parameter denoting physically the mass of the classical Dirac field ¥,
and 0, := d/0¢, 9, := 9/dx. Let

al =00
Then, using the one-dimensional Dirac operator
hp = —ia'd, + yom,
one can rewrite (5.8) as
i3,y (t, x) = hpyl(, x). (5.9)
A solution 1! of (5.8) is called a classical Majorana field if it is real: ¥°!(¢, x)* =
¥el(t, x), (¢, x) € M,. We first construct a classical Majorana field. For this purpose,

it is convenient to use the following representation of the gamma matrices, called the
Majorana representation:

o (0—i L (0
=(74) = ()

In this representation, we have
1 (10
“=\g_1)

[ —i0x —im
hD_( im  idy )

We write the discrete Fourier transform of ¥¢!(z, -) as ¥°'(z, -):

Hence

~ 1 . ~
v, p) = % f v, x)e P*dx, peT,.
T,

Then (5.9) is equivalent to
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d ~ o .
iaw“(r, p) =ho(P)Y'(t, p), peT (5.10)

where

7 o o _ [ p —im
hD(p)-—ozp+Vm—(im _p>'

Since ﬁD( p) is Hermitian, it follows from (5.9) that
e, p) = e PP, p).
Thus the initial value problem of (5.10) (pence of (5.9)) is solved.
To find an explicit representation of ¥ (¢, p), we need to solve the eigenvalue

problem of hn( p). But this is easy. The eigenvalues of hin( p) are w(p) and nor-
malized eigenvectors are given by

1! v(p) 1! v(=p)
0= ot (i) -0 = s (Lind)
where w(p) is defined by (5.3) and

v(p) ==+ w(p)+ p.

Using the equation
v(p)v(=p) =m,

one can easily check that
ho(pus(p) = o (p)uL(p).
Note that, for each p € f‘g, {us(p)} is an orthonormal basis of C2. Therefore
Glt, p) = e P e (puy(p) + P e_(pu_(p),

with c4(p) := (us(p), ¥1(0, p))c2. Thus

1 . . ,
Y, x) = NG D e fe " Pe (puy(p) + " Pe_(pu_(p)} .

Péffz

Using the easily proved properties

ur(=p)* =u_(p), uy(p)=u_(=p)*,
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we see that the reality condition is equivalent to c_(p) = c4(—p)*. Hence, putting
bel( p) := c+(p), we find that the classical Majorana field is of the form

vl x) = % > P e P (p)b (p) + P u(p)b (= p)*Y.

pely
In components, we have

cl _L eii —itw(p) cl ito(p) o Npelo_ o\
Wt’x)_ﬂgm{e ()b (p) + P (= )b (—p)*},

.11

7 Ipx i .
v, x) = ﬁ > —_zw ) {7 P u(=p)b(p) — " Pu(p)b(=p)*} .
pely

(5.12)
To construct a quantum field version of WCI(I, x), we move to the fermion Fock
space % (7;) over ;. We denote the fermion annihilation operator on .%;(.77) by

b(u), u € 7;.By (5.11) and (5.12), it is natural to define a two-component quantum
field

v, f) = (‘““’ f’) . () eR x LT

Y-, f)
by
_L ve[ta)f * veitw?}
w+(t,f).—ﬁ|:b( NG ) +b< Jo >i|,
__L f}eitwf *_ ﬁeitw?:
v = fz[b< ﬂ) (7 )}
where

B(p):=v(-p), pel.
Note that . (¢, f) are bounded operators. It follows that v (z, -) are operator-

valued distributions on Ty. If f = f*, then they are bounded self-adjoint operators.
Moreover, ¥ (¢, f) satisfies the distributional Dirac equation

VOB, f) + iy vt -3 f) —my(t, £) =0, (t, f) €R x CH(Ty),
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where 0, means strong differentiationin . Itis easy to see that {y/. (¢, f)|f € L*(T))}
obeys the CAR:

(Yo, ), Vg, 8)} = Sup / f)gx)dx, f.g e L*(T), t R, o, ==
T,
(5.13)

Thus ¥ (¢, f) is a Majorana field on M,.
Let

H; :=dl;(w), (5.14)

the fermion second quantization operator of the multiplication operator w acting in
;. Then, by (2.23), we have

wol(t9 f)=eifowa(f)e_itHf’ teRr feﬁ’ a=:t5
where ¥, (f) := ¥, (0, f) (@ = %) are the components of the time-zero Majorana
field ¥ (0, f). Thus H; may be interpreted as the Hamiltonian of the quantum system

described by {y+ (7, )lt € R, f € H}.
For each p € T, one can define the operator

b(p) = b(5p).
We call it the fermion annihilation operator with momentum p. It follows that

{b(p). b(@)*} =8pq. {b(p).b(@)} =0, {b(p)*,b(g)*}=0.

As in the bosonic case, we can show that, for all u € /%

b(u) =Y u(p)*b(p), bw)* =Y u(p)b(p)*.

pef} PEfe
Therefore
_ v(p) ito(p) § x4 ,—ito(p) Fr_
Vi = 30 s (O f )+ F=plbp).

pely
— V(=P) (o § * _ —itw(p) F_
Y-, f) = szTj T1a07 (T T = e fpbip))

Hence the operator-valued distribution kernels of . (¢, -) are given by
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Yot ) = f Z \/‘;Ef_()p (1P (p)* 4 TP,
Yot = Z \;% (P (py — e PP ()
The CAR (5.13) is symbolically written as
(Wt 20, Yt 1)) = 8px — y), = £, (5.15)

As in the case of the boson Hamiltonian Hy, (cf. [22, Proposition 9.12]) , one can
show that

Hi =) o(p)b(p)*b(p) on Dom(Hy).

PEfz

Let ¥4+ (x) := ¥+ (0, x). Then one can define operator-valued distribution kernels

§1(x), &2(x) by

1

fi1(x) = E(l/u(x) +¥-(x),
1

£(x) = E(IM(X) — Y- (x)).

It follows from (5.15) that {£(x), & (x)} also obeys the CAR:

{8a(x), & (V)} =8upd(x —y), a,b=112.

Explicitly, &,(x) has the following form as an operator-valued distribution kernel

1 4 .
—_ *b * —IpX b ipx ,
§1(x) = \/Zpief[ 700) (t(P)*b(p) e P + T(p)b(p)e'"*)

1 1 . )
- - b * —ipx *p ipx i
£2(x) */Z,,Eef/ ) (z(p)b(p)*e™™* + T(p)*b(p)e)

where

t(p) = %(v(p) +iv(=p)), peT.
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For each f € L?(T;), we define

1 * £ * Fo_

£1(/) :,; e (T + 1) b)),
1 £ * * Lo

&(/) =[§m (x P + () f=pb(p).

which are bounded linear operators on .%;(.7;), and write

/Ej(x)f(x)dx =§&;(f), j=12. (5.16)
T,

5.2 The N =1 Wess—Zumino Model on M,

We are now ready to construct the Wess—Zumino models on the cylinder M, in a
mathematically rigorous way. We refer the reader to [40] for a survey of these models
as well as aspects related to them.

There are two kinds of Wess—Zumino models which are distinguished by the
degree N of supersymmetry: N = 1 and N = 2. We first consider the N = 1 Wess—
Zumino model on M,. The model describes an interaction of a relativistic neutral
Bose field with a Majorana field. Hence a Hilbert space of state vectors for the N = 1
Wess—Zumino model can be taken to be the boson—fermion Fock space

Fof () == Fo(I6) @ F(I)

over (J7;, 7).

5.2.1 The Free Case

As a first step, we construct a free N = 1 Wess—Zumino model on M,. The Hamil-
tonian of it is defined by

Hy:=H,®1+1® Hi,

where Hy, and Hy are defined by (5.7) and (5.14) respectively.
To define a supercharge, let S, be the multiplication operator on .7 by the function

T(=p)*:
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Dom(S;) = {u € H#| ) [t(=p)u(p)l* < oo

PEfz
(S;u)(p) := t(—=p)*u(p), p €Ty, u € Dom(S,)

and denote by ds_ the boson—fermion Fock space exterior differential operator asso-
ciated with S; (see (4.15)). Then, applying (4.7) and (4.9) to the present context, one
can show that, for all ¥ € .%, g, (Dom(S;)) & F in (7).

ds, ¥ =) 1(=p)'b(p)*a(p)¥.

[’Efe

The supercharge in the free N = 1 Wess—Zumino model is defined by the Dirac
operator

Qo = QS, :d;r +dS,-

Since
SiS: =w=S8.5,

we have by (4.41)
0} = dl(w) ® I + 1 ® dIt(») = Hp.

Hence, letting I'y be the state-sign operator on .F,¢(547), we see that (Fpe(54), Iy,
Qo, Hp) is an SQM. This is a mathematically rigorous form of the N = 1 free Wess—
Zumino model.

5.2.2 The Interacting Case

To define an interaction of the neutral quantum Klein—Gordon field and the Majorana
field, it is more convenient to use the Q-space representation of the quantum Klein—
Gordon field.

Let

L2(T) == {f e LX(T)If = f*),

the real Hilbert space consisting of real elements in L>(Ty) . Then, by (5.4), we have
forall f, g € L2 (T))

real

(20, 0N ()20,) = —<i i> =~ P fn ) s (517
3205
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where hy is defined by (5.2). Note that, for all f € L2 (T;), h, '/ f is in L2 (Ty).
Formula (5.17) suggests that ¢ ( f) can be realized as the Gaussian random process

indexed by the real Hilbert space

2
real

P fn P e) ey (f, g € LRy (Ty).

P, :=the completion of L2  (T,) with respect to the inner product

We denote by {¢(f)|f € Z,} the Gaussian random process indexed by %, and
by (Q¢, ¥y, ¢) the underlying probability measure space. Then, by Theorem 3.1,
there exists a unique unitary operator U, from .%,(%;) to L?(Qy, du) such that
U4, = land, foralln > 1, f1,..., f, € L2, (To),

UeAz, (f)* - Ap, (f) Rz, = 2" 1 0(f1) -0 (f) © .

Remark 5.1 It is easy to see that, for all y > 2, h;(yfl) is trace class. Hence,

applying the theory in Sect. 4.12.1 to the case where h) = ereal(T() and h = hy, one
can take, as Q; and ¢(f) (f € L2 (T})), the following:

real
Qe=b-y (¥ >2), e(f) =g, f), ¢€b,.
One of the advantages of this choice for Q, is in that Q is a real Hilbert space

and hence that infinite-dimensional differential calculus on O, may be employed for
further analysis.

It is easy to see that hé/ * can be extended to a unitary operator from L>(T}) to ;.
We denote the extension by I;é/ *. Then

Jg = Eéﬂygl
is a unitary operator from .7; to %,. Hence, by the theory in Sect. 3.4, the operator
Vg = U@Fb(.]e) (518)

is a unitary operator from .7, (J4;) to L?(Qy, d ), satisfying that V, 2, = 1 and,
forallmn > 1, fi,..., fu € Lfeal(Tg),

Vea(w 2 fi) a2 f) 2, =2 Lo (f1) - 0(fr) -

In particular, we have

Vip (V. = o(f), [ e Liy(Ty).

The subspace
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Wy = span{l,: @(fi)---@o(f) i In>1, fi,..., fn € L2y (Ty) N D(hy)}

is dense in L%(Qy, due). It is easy to see that, for all ¥, @ € %}, the mapping
f € Drea(Tt) = (Y, 9(f)P) 12(0,.ap,) 1S continuous. Hence (W, 9 ()P) 120, .ap,) €
92'(T,). In this sense, ¢ is a random distribution on 7,. As in the case of ordinary
distributions, we symbolically write

o(f) = / () f (¥)dx

T;

and call the symbol ¢(x) the distribution kernel of the random distribution ¢.

In what follows, we use L?(Qy, di,) as a Q-space representation of .7, (.5%;) and
work with L2(Qy, du).

Let x € .Z(R), the Schwartz space of rapidly decreasing C*°-functions on R,
satisfying (i) fR x(x)dx = 1; (ii) x (x) = x(—x), x € R; (iii) the Fourier transform
x of x is non-negative; (iv) x (p) = 0 for |p| > 1 and x (p) > O for |p| < 1/2. For
each k > 0, let

Xe(X) ==« Zx(/{(x —k0), xeR.
keZ

Then it follows that y, is in C*°(R) and periodic with period £. Hence y, can be
regarded as an element of Z(Ty). Itis easy to show that, forall f € Z(T;) andx € Ty,

lim, _, o fn Xe(x —y)f(»)dy = f(x) = 8,(f). Namely, x,(x — -) converges to the
delta-distribution 8, at x in 2'(T,). Noting this property, one defines the time-zero
quantum field ¢, (x) (x € T,) with ultraviolet cutoff x in the Q-space representation
by

P (x) == @(xc (x =),
which is mathematically meaningful as a random variable. By (3.2), we have
n .2 n! 2n
() Fdpe = et =l
o

Hence
n .2 n! 2n
dx | 1 @(x)" " du, = Z—nllxkll%ﬁ < oo.
Qy

T,

Therefore, by the Fubini theorem, fT« C e (X)" 2 dx < 0o (ue-a.e.). Hence it follows
that, for all polynomials P(x) of x € R,
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f |1 P(ge(x) : Pdx < o0 (je-ae.). (5.19)
T,

Let W be a polynomial of the form
1 5
Wkx)=Vx)— me , xeR

with V (x) being a real polynomial of degree deg V > 2. Then

Ory = ffl(x) Wi (g (x) 1 dx

T,

—see(5.16)—is well-defined as a bounded linear operator on .%¢ (94;) ((e-a.e.), i.e.,
Q1. isaB(F(H3))-valued function on (Qy, 1¢). The supercharge of the interacting
N = 1 Wess—Zumino model with ultraviolet cutoff « is defined by

Q/c = QO + QI,K'

Itis easy to see that Q, is densely defined withDom(Q,) D #; and Q, is asymmetric
operator.
For w¢-a.e. g € Qy, one can define Y, (q) € J7; by

1 . .
Y (q)(p) := ﬁ/ Wi (x)(q) 1 e dx, peTy,
Te

the discrete Fourier transform of the function 7y 3 x +—: W/ (¢, (x)(g)) :. It follows
from the unitarity of the discrete Fourier transform that

1Ye(@)3, = / W (e (x)(q)) ¥ dx.
T,
Note that
PP _
2w(p)

Hence, u¢-a.e.q € Qy, 1Y (q)/+/2w is an element of .77;. Therefore one can define
a mapping FV : 0, — 7 by

T*
FV(q) = \/2_Yk<q>, pe-ae. q € Q.
w

It is easy to see that Q1 , = b(F") + b(FV)* on #;. Hence we have
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1
O« = Qs.(F") on,

where Qs, (FV) is the operator Qs(F) (see (4.46)) with S = S, and F = FD.
Thus the abstract SQM (§, Igr, Os(F), Hs(F)) yields, as a concrete realization,
the interacting N = 1 Wess—Zumino model with ultraviolet cutoff.

In the paper [44], the following results are reported: (i) O, is essentially self-
adjoint (we denote its closure by the same symbol); (ii)) Q, + := O, [ Dom(Q,) N
L*(Qq, due; F. () is Fredholm and ind Q, , is constant in «. In particular,
ind O+ =ind Qg 4;(ii).ind Q, + = ¢[(deg V + 1) mod 2], where ¢ = £1 is the
sign of the highest degree coefficient of V. Itis shown that the index formula continues
to hold also in the limit ¥« — o0 (the removal of the ultraviolet cutoff).

5.3 The N = 2 Wess—Zumino Model on M,

We next consider the N = 2 Wess—Zumino model on M,. This is a supersymmetric
quantum field model which describes an interaction of a charged Bose field and the
Dirac field.”? We first recall these fields.

The Hilbert space for a charged particle on 7, with spin 0 is taken, in the momen-
tum representation, to be

Hy = I D A,

where 77, @ {0} (resp. {0} @ ;) describes the Hilbert space of state vectors of
the particle (resp. anti-particle). Let %, (%) be the boson Fock space over J#; and
denote by a(u, v) the boson annihilation operator with test vector (u, v) € J£; on
F (). The annihilation operator a, () (resp. a_(u)) (u € ;) for the particle
(resp. anti-particle) is given by

ar(u) :==a(u,0), a_(u):=a(0,u).
It follows from (2.9) and (2.10) that, for all u, v € 777,

[as(u), ax(v)*] = (u,v),

lay@),a-)*1=0, [ar@*, a_()]=0

on F, 0(#;). The free charged Bose field is defined by

b, f) = % {a+ (e”’"%) +a_ (e"’w%)} , teR, fe L.

2 A quantum mechanical version of the model is studied in a mathematically rigorous way in [7,
24, 27, 41].
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Note that ¢ (¢, f) is not symmetric even if f = f*. Hence it is not neutral. As
in the case of the neutral quantum scalar field ¢ (¢, f), one can show that, for all
f € Dom(A,) and ¥ € %, o(#}), the correspondence R > 1 +— ¢ (f, f)W is twice
strongly differentiable and the following equation holds:

2
570%(% DY+ ¢e(t, (=A+m?) fHY =0,

where d /dt means strong differentiation with respect to ¢. Thus the operator-valued
functional (¢, ) € R x Dom(A,) — ¢.(t, f) satisfies the free Klein—Gordon equa-
tion on the subspace %, o (7).

The canonical conjugate momentum operator of ¢ (¢, f) is defined by

Telt, f) = % fa-(aer fy - a.(Jwe' 7)) (5.20)

for f € Dom(h}/z). We have

A (t, f5)*
t

ITC(I, f): 3

on Fy, o(Jy).

It is easy to see that the following CCR are satisfied: for all fi, f> € L*(T,) and
12
g1, 82 € Dom(h,?),

[e(t, f1), 7e(t, g)] =i f fi(x)g1(x)dx, (5.21)
T,

[¢C(Is fl)s nC(ts gl)*] = Oa

[c(t, 1), de(t, £2)'1=0, [m(t, g1), me(t, g2)*1 = 0.

Let
H. = dI, (v & w).
Then we have by (2.14)
gelt, )= e"Meg (e, mo(t, g) = e e (g)e

forallt e R, f € L*(T)), g € Dom(hé/z), where
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- (LY s (L
9(f) -—¢c(0,f)—ﬁ{a+<ﬂ) +a_(ﬂ>},
me(f) =70, f) = \Lﬁ {o Vo —a.arh)}.

the time-zero field of ¢.(¢, f) and of 7. (¢, g) respectively. Thus H. is interpreted as
the Hamiltonian of the charged Bose field under consideration.

For later use, here we write down the operator-valued distribution kernel of ¢ (f)
and of 7 (f):

de(x) =

)e—ipx’

. > L (@) +a—p)
NG 7 V20(p)

L (o) — (=)

Te(x) = ﬁ >

PeTy

where a4 (p) 1= a+(5,).

We next define the free quantum Dirac field on 7,. The Hilbert space of state
vectors for the free quantum Dirac field is taken to be .%; (%), the fermion Fock space
over %;. We denote by b(u, v) the fermion annihilation operator with test vector
(u, v) € A, on F¢( ;). The annihilation operator b (1) (resp. b_ (1)) (u € ;) for
the Dirac particle (resp. anti-Dirac particle) is given by

by(m) :=bw,0), b_(u):=>b0,u).
It follows from (2.17) and (2.18) that, for all u, v € 77,

{ba(u), b(v)*} = (u,v),
{bi),b_()*} =0, (b b_(v)} =0.

In the N =2 Wess—Zumino model on My, it is suitable to use the following
representation of the gamma matrices y° and y !

o (0 —1 L (01
(45 =)

In this representation, we have

and hence
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It follows that the eigenvalues of sz( p) are £w(p) and

NN V(—P)) ._ ;( v(p) )
() “m(—v@) = )

are normalized eigenvectors of sz( p) with eigenvalue w (p) and —w (p) respectively.
Let

bi(p) :=b+(5p).

Then one can show that the object ¥ (¢, x) := (1 (¢, x), ¥ (¢, x)) with the operator-
valued distribution Kernels

V(= p)
= f 2 Tm

(p)*eitw(p)—ipx + b+(p)e—il‘w(P)+ipx} ,

1//'2(t x) \/_ Z % _(p)*eitw(P)—illx _ b+(p)e—itw(ﬂ)+ipx} ,

satisfies (5.8) as an equation of operator-valued distributions and that the anti-
commutation relations hold in the sense of operator-valued distributions:

{wa(tv -x)v Wb(t» y)*} = (SabS(x - y)7 {¢a(t’ )C), wb(t’ )’)} = 07 a, b = 17 2

Hence v (¢, x) is a canonically quantized free Dirac field.?
The time-zero Dirac field is given by

Ya(x) :=v%,0,x), a=1,2.
Then, it follows from (2.23) that
Yalt, x) = "™y, ()™ a=1,2,
in the sense of operator-valued distributions, where
Hp :=dli;(w & w).

Hence Hp, is interpreted as the Hamiltonian of the free quantum Dirac field.
Let

o(p) = —%V(—p), peT

and define an operator S, on .%; as follows:

3 Of course, mathematically meaningful is the object ¥, (¢, f) smeared with f € Z(Ty) (a = 1, 2).
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Dom(S,) 1= {u € H|Jo u € %),

(Syu)(p) = (_ZE;)" : (,"((_p;)> u(p). p € T, u e Dom(s,).

Then it is easy to see S, is a densely defined closed linear operator and
Sy =-S5, (5.22)
where we have used the fact o (p)* = —o(p), p € T,. 1t follows that
SESe =SSk =0 P o. (5.23)

Note that {(5,, 0), (0,6,)|p € fe} is a CONS of .%;. Hence

ds, = Y {a(S5(8,.00) ® b((8,.0)* + a(S:(0.8,)) ® b((0., ,)"}

PEYA}
on Fg,(Dom(S,), ;). By (5.22), we have
S;(8,,0) = (0(=p)8,, —a(p)8,), S,(0,8,) = (=0 (p)s,, —0(—=p)sy,).

By these formulas and the anti-linearity of a(«) in u € %}, we obtain

ds, = Y _{(=o(=plas(p) + o (p)a_(p)) ® by (p)*

pely
+ (o (plas(p) +o(=p)a_(p)) ® b_(p)*}

on Zgn(Dom(S,), ;). A supercharge of the free N = 2 Wess—Zumino model is
defined by the Dirac operator

Os, =ds, + d;a.
By (4.41) and (5.23), we have
0% =H.®I+1® Hp.
Hence
Hwz :=H.®1+1® Hp
is the Hamiltonian of the free N = 2 Wess—Zumino model.

We next consider the interacting N = 2 Wess—Zumino model. In the same way
as in the case of the charged quantum scalar field on R? (see [22, §10.16]), one can
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show that there exists a unitary operator X, from %,(%;) to %, (74) @ Fu(47)
such that X, 2 », = 2., ® 2, and

1
V2
X¢H X' = H,® I + 1 ® H,

Xepe(NX;'= —=@(NHRT+i IRd()), felLTy,

where ¢ (f) and I-{b are defined by (5.4) and (5.7) respectively. Let V, be defined
by (5.18). Then V, :=V, ® V, is a unitary operator from .%,(7) ®~§b(%’%)
to L2(Qu, dpe) ® L*(Qy. dpre) = L*(Qp x Q. d(1e ® ) such that Vo2, ®
R, = land, forall f € L% (T,

Ve@(H @DV = i), Ve @ ¢(MNVy ' = pa(f),
where
e1(Ng1, q2) == 9q1),  92(q1,92) == 9())(q2), e @ pe-ae.(q1,42) € Q¢ x Q.
Hence, letting 7y := 174 Xy, we obtain that 17,2, = 1 and

1

ﬁ(rpl(f) +iga(f)), f e Liy (To)

Yo ()Y, =

Thus ¢.(f) is realized as a complex Gaussian random process. We call {¢;(f) +
io2(f)|f € L2 (T,)} the Q-space representation of {¢.(f)|f € L2 ,(Ty)}. In what

real real
follows, we work with this representation.

For each k > 0, we define
1 ,
P (x) := E{wl(xk(x =)+ i (x — )}
Let U (z) be a polynomial of complex variable z € C with degree deg U > 2 and set
m
P(z) :=U(2) — 512, zeC.
As in the case of (5.19), one can show that

/'P/(®K('x))|2dx <00 (¢ Q@ pe-ae.).
T;

Hence
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Q1(k) == — %T/(% () P' (@i (x)) + P2 (x) P' (D (x))")dx
+ % T/(wl () P (P ()" + Y2 (x)* P'(Pye (x)))dx

is well-defined as a bounded linear operator on % (%) (e ® pe-a.e.),i.e., Qr(k) is
a B(F(H,))-valued function on (Qp x Qy, (e ® 11e). A supercharge of the inter-
acting N = 2 Wess—Zumino model with ultraviolet cutoff « is given by

O(x) :== Qs, + O1(k),

an operatoron L2(Q, x Q. d(te ® 11); Fi (7)), where Qs is thatin the Q-space
representation (i.e., strictly writing, itis ¥ Qs, T~ "). It is easy to see that Q (k) is a
symmetric operator.

For u, ® ne-a.e. g € Q¢ x Qy, one can define Z, (q) € J; by

1 . N
Z(q)(p) == 7 / P'(®(x)(q))e "dx, peTy.
T,

It follows that
1Ze(@) 5y, = / |P'(®,(x)(q))|*dx.

T,

It is easy to see that SUP 7, [v(£p)/+/@(p)| < co. Hence one can define a mapping
F®?:Qyx Qy— by

(e Ze (=P — v(P)Ze
F2@)(p) :=( 37wt VP Ze (=) = V(D) Ze ()

, ® pe-ae. q, T
_2\/5(],)(1)(—[7)2/((17)+V(p)ZK(—p)*)) Uy @ pe-ae.q, p €Ty

We have

IFP (@)%, = / |P' (@, (x))*dx.
Te

The mapping F® is in fact defined so that
O1(k) = b(F?) + b(FP)* (5.24)

on the subspace
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span {1, @i (f1) - - @1 (f)e2(81) - - - ¢2(8)
|n5r 2 07” +r 2 19 f]a D) fn’ gla "'7gr € L%ea](T[)}®yf,ﬁn(%)'

We redefine Qj(x) by (5.24) and Q(x) by
Q(k) := Qs, (F?),

where Qg (F?) is the operator Qg(F) (see (4.46)) with S = S, and F = F?.
Thus the abstract SQM (F, I'sr, Os(F), Hg(F)) yields, as a concrete realization, the
interacting N = 2 Wess—Zumino model with ultraviolet cutoff. In the paper [42, 43]
(cf. also [39]), the following results are reported: (i) Q(x) is essentially self-adjoint
(we denote its closure by the same symbol); (ii)) Q4 (x) := Q(x) [ Dom(Q(x)) N
L*(Q¢ x Q. d (e ® we); Fi. 1 (#y)) is Fredholm and ind Q (k) is constant in k.
In particular, ind Q. (x) = ind Q4 (0); (iii) ind Q4+ (k) =degV — 1. It is shown
that the index formula continues to hold also in the limit x — 0.

5.4 Other Models

There are supersymmetric quantum field models other than the Wess—Zumino mod-
els, to which the mathematical framework presented in Chap. 4 can be applied. Below
is a list of them:

(1) A model of a non-relativistic Fermi field interacting with a non-relativistic Bose
field. The free Hamiltonian of the model is of the form

dhy(= Ay +m>) @ I + 1 @ dl7(— A, +m?)

on %, (L*(R")) ® Z:(L*(R")) (see Remark 4.3). The model is associated with
the so-called Parisi—Wu stochastic quantization [54]. See [4] for more details.

(i1) A model of a non-relativistic Fermi field interacting with a gauge field [70]. This
model is related to the Floer theory [28].

(iii)) A model obtained as a supersymmetric extension of a quantum scalar field
model [10].

(iv) The Wess—Zumino—Witten model [46, 47].

(v) Amodel of a Bose field interacting with a Fermi field on the d-dimensional lattice
74 [52].



Appendix A
Self-adjoint Extensions of a Symmetric
Operator Matrix

Let 77 and % be Hilbert spaces and
=00 I =V =W, W)Y € H, ¥, € I3}, (A.1)

the direct sum Hilbert space of 77 and 73. Let L be a linear operator on 7 such
that

Dom(L) = (Dom(L) N J4) & (Dom(L) N F25). (A2)
Then, fora, b = 1, 2, one can define a linear operator L, from 7, to 77, as follows:

Dom(L,;) := Dom(L) N 7%,
LW = (L(W[, 0))(17 LY, = (L(O, WZ))M ¥, € Dom(Lab)'

Then we have
LY = (L ¥ + LW, Ly + Lp¥,), ¥ € Dom(L).

In this sense, we write
Ly L
L= . A3
(Lzl Lzz) (A-3)
This representation is called the operator matrix representation of L with respect to
(A.1).
If L is bounded with Dom(L) = 77, then (A.2) is satisfied and hence L has
always the operator matrix representation (A.3) with L,, being bounded with
DOI’Il(La/,) = jﬁ;
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100 Appendix A: Self-adjoint Extensions of a Symmetric Operator Matrix

Conversely, suppose that, for a, b = 1, 2, a linear operator L, from /7, to 77 is
given. Then these operators define a linear operator L on .72 by (A.3) withDom(L) =
(Dom(L1;) N Dom(Ly;)) @ (Dom(L2) N Dom(L2y)).

In this appendix, we consider only the case where L is anti-diagonal, i.e., L;; = 0
and Ly, = 0.' In this case, L takes the form

(0T
A._<SO>, (Ad)

with T (resp. S) being a linear operator from 775 (resp. J4]) to J4] (resp. F4). We
have

Dom(A) = Dom(S) & Dom(T). (A.S5)

Remark A.1 There is another simple case of L, i.e., the case where L, = 0 and
L>; = 0 so that
. (L O
L—LD.—( 0 Ly

In this case, L is said to be diagonal. It is easy to see that Lp = Ly @ Ly, the direct
sum operator of L; and Ly;.

Some basic properties of the anti-diagonal operator matrix A are summarized in
the following lemma:

Lemma A.1 Let A be the operator matrix given by (A.4).

(i) The operator A is closed if and only if S and T are closed.
(ii) The operator A is closable if and only if S and T are closable. In that case,
the closure A of A is given as follows:

Y
A=<SO>. (A.6)

(iii) The operator A is densely defined if and only S and T are densely defined. In
that case, the adjoint A* of A is given as follows:

. (08
A _(T* 0). (A7)

Proof (i) Suppose that A is closed. Let ¥, € Dom(S) (n € N) be a sequence such
thatlim,_, . ¥, =¥ € J4 andlim,_, o, S¥, = ® € 4. Then, (¥,, 0) € Dom(A),
lim,, o (¥, 0) = (¥, 0) and lim,,_, oo A(¥,, 0) = (0, @). Hence, by the closedness
of A, (¥,0) € Dom(A) and A(¥, 0) = (0, @). This means that ¥ € Dom(S) and

! For more general cases, see [22, Appendix B].
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S¥ = @. Therefore S is closed. Similarly, for any sequence ¥, € Dom(7T) (n € N)
such thatlim,_, o, ¥, = ¥’ € J% and lim,,_,o TW¥, = &' € J, one can prove that
¥’ € Dom(T) and T¥' = @’. Hence T is closed.

Conversely, suppose that S and 7 are closed. Let ¥, = (¥, ¥,2) € Dom(A)
(n € N) be a sequence such that lim, o ¥, = ¥ € S and lim, ., AW, =P €
€. Then lim,_, oo ¥y = ¥, (a = 1,2) and lim,,_, oo S¥,,; = D5, lim,,_, oo TW,n =
@,. Since S and T are closed, it follows that ¥; € Dom(S), ¥, € Dom(T) and
S¥, = &,, TV, = &;. Hence S and T are closed.

(ii) Suppose that A is closable. Let ¥, € Dom(S) (n € N) be a sequence such
that lim,_, o ¥, = 0 and lim,_, o, S¥, = @ € J%. Then lim,_, . (¥,, 0) = (0, 0)
and lim,,_, 5 A(lIf,,, 0) = (0, @). Since A is closable, it follows that (0, @) = (0.0).
Hence @ = 0. Therefore S is closable. Similarly, one can show that T is closable.

Conversely, suppose that S and T are closable. Then one can define the following

operator matrix: B
~ 0T
we (07,

By (i), A is a closed operator. It is obvious that A C A (i.e., A is an extension of A).
Hence A is closable and A C A. ~ ~

To prove the converse relation A C A, let ¥ € Dom(A) = Dom(S) ®
Dom(T). Then there exists a sequence {¥,}°2, with ¥, € Dom(S) and ¥, €
Dom(T) such that hmn_>OO U, = W, limy e S¥ = S¥; and limy,_ e W =
Y, lim, o TW, = TlI/2 This implies that ¥, € Dom(A) and hm,Hoo v, =V,
lim, 00 AY), = (Tllfg, Sw)). Hence ¥ € Dom(A) and AY = (T¥,, S¥,) = AW,
Therefore A C A. Thus we obtain A = A, ie., (A.6) holds.

(iii) By (A.5), A is densely defined if and only if S and T are densely defined.
Suppose that A is densely defined and let

;. (0 8
ve(23),
Then Dom(A’) = Dom(7T*) @ Dom(S*) and, for all ® € Dom(A), ¥ € Dom(A’),

(W AD) ;o = (V1. T D) s, + (W2, SP1) s, = (AW, D), .

Hence ¥ € Dom(A*) and A*¥ = A’W¥. This means that A’ C A*.

Conversely, let ¥ € Dom(A*). Then, for all & € Dom(A), we have
(AD, V) p = (D, A*W) ). Let AW =(n,1n2). Then (TP, W), +
(SP1, ¥2) s, = (D1, 1) sy, + (P2, M2) s, Take @3 =0. Then (SPy, ¥3),, =
(@1, n1) 4, Since @1 € Dom(S) is arbitrary, it follows that ¥, € Dom(S*) and
S*W, =n;. We next take @1 =0. Then (TP, 1), = (P2, n2) . Hence
Y, € Dom(T*) and T*¥, =n,. Therefore ¥ € Dom(T*) & Dom(S*) and

¥ = (§*W,, T*¥;). This means that ¥ € Dom(A’) and A'¥ = A*W, i.e
A* C A’. Thus A* = A, i.e., (A.7) holds. O
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The symmetricity and the self-adjointness of A given by (A.4) are characterized
as follows:

Theorem A.1 Let A be the operator matrix given by (A.4).

(i) The operator A is symmetric if and only if S and T are densely defined and
rcs,scr~
(ii) The operator A is self-adjoint if and only if S is closed and T = S*.

Proof (i) Suppose that A is symmetric. Then A is densely defined and A C A*.
Hence, by (A.5), S and T are densely defined and (A.7) imply that 7 C S* and
ScT.

Conversely, suppose that S and T are densely defined and 7 C S* and S C T*.
Then, by (A.5), A is densely defined. By (A.7), we have A C A*. Hence A is sym-
metric.

(i1) The operator A is self-adjointifand only if A* = A.By (A.7), thisis equivalent
to that 7 = S* and S = T*. Since the adjoint of a densely defined linear operator
is closed, it follows that T = S* and S = T* if and only if S is closed and T = S*
(recall that, for a densely defined closable linear operator C, C** = C). Thus the
assertion is proved. (]

Theorem A.2 Let A be the operator matrix given by (A.4). Suppose that A is sym-
metric. Then S and T are densely defined closable and the operators

0 S* 0T
A ._<30>, Az._(T*()), (A.8)

are self-adjoint extensions of A, i.e., A and A, are self-adjoint operators satisfying
ACAiand A C A,.

Proof By Theorem A.1(i), S and T are densely definedand S C T*, T C S*--- ().
These relations imply that 7* and S* are densely defined. Hence T and S are closable
and T* = T, §** = §. Hence it follows from Theorem A.1(ii) that A, and A, are
self-adjoint. Relations («) imply that A C A; and A C A,. Hence A; and A, are
self-adjoint extensions of A. O

Remark A.2 It is easy to see that A| # A, if and only if A is not essentially self-
adjoint.

Finally, we describe the rule of the product of two anti-diagonal operator—matrices:

Lemma A.2 Let A be given by (A.4) and

#=(u)

with U (resp. V ) being a linear operator from J4 (resp. 76) to 7 (resp. 7). Then
operator equality
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TU 0
AB:TU@SV:( 0 SV) (A9)

holds.

Proof An easy exercise. (]



Appendix B

Construction of an Infinite-Dimensional
Gaussian Measure on a Path Space

In this appendix, we give an outline on the construction of Gaussian measure (g in
Lemma 4.20 in a more general setting.
Let 8 > Oand

1 0 eizk,, 6‘”‘

Ezk—iknze“—l’ £>0, (B.1)
n=—oo

1 & eithn eBHDA

EZ/\—ikn=eﬂk—1’ <0 (B.2)
n=—oo

Proof Equation (B.1) can be proved by applying the residue theorem to the mero-
morphic function f(z) = e’*(e# — 1)~!(z — A)~! of complex variable z. Equation
(B.2) follows from (B.1) with ¢ replaced by B + ¢ > 0 and the property e’?* = 1, n
e Z. O

LemmaB.2 Let ) > 0and0 < |t| < B (t € R). Then

e 1A + e~ (B=lthx 2 o Leitkn
_ o,—PBX Y 2 PN
1—e B = A2+ k2

(B.3)

Proof This follows from (B.1) and (B.2). O

Let 7 be a real separable Hilbert space and C ([0, 8]; 7Z) be the space of J¢-
valued continuous functions on the interval [0, 8]. We denote by .#¢ the complexifi-
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cAation of 7. For each F € C([0, B]; #¢), we define the discrete Fourier transform
F : 7 — ¢ by

B
F(n) = 0/(]b,,(t)*F(z‘)dt, @ (t) = %e”k”, neZ,tel0,p],

where the integral is taken in the sense of a strong Riemann integral in . It is well-
known that {¢,}°° ___ isa CONS of L?([0, B]). Hence, for all CONS {e,, Joo_, of Hz,
{Pn ® emnezmen With (@, ® €,,)(1) := P (1)ey, is a CONS of L*([0, B]; H#¢) (the
Hilbert space of .7¢(-valued measurable functions on [0, 8]). Using this fact, one can

show that  °2 ||15‘(n)||(2%0t < oo, satisfying

00 B
S 1B, = / IFOI, dr.
0

n=—0o0

Let A be a strictly positive self-adjoint operator on .7 with A > a > 0. Then, by
the functional calculus of self-adjoint operators, for all f € 7 and n € Z, we have
|A(A? + kﬁ)’lfH,;goC < I fll#/a. Hence, using the Schwarz inequality, one can
show that, forall F, G € C([0, B1; ), Y22 [(F(n), A(A2 + k) 'G () | <
00. Therefore one can define a sesquilinear form (F, G), _; by

(F,G)a—1:=2 Y (F(n), AA* + k)" G, F,G e C(0, BL; H).

n=—00

Since ker(A!'/2(A% + k2)~'/?) = {0}, it follows that (, ), _ is an inner product of
C([0, B]; 7). We denote the completion of the real inner product space
(C(10, B1; ), {, )4 _1) by #, which is a real separable Hilbert space.

For each s € [0, 8], we denote by &, the delta distribution on [0, 8], i.e.,
35 € 2'(0, B]) such that §;(u) = u(s), u € 2([0, B]) (the space of infinitely dif-
ferentiable periodic functions on [0, 8]). The discrete Fourier transformation can be
extended to §; @ f (f € ) with

i o
85 ® f(n) = ﬁf”"” :

Hence it follows that, for all 7 € [0, 8] and f € 57, §, ® f is in # . Moreover, for
all f,g € A and s, t € [0, B],
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[e¢]

2 )
(5:® £ ®8)y =3 Dk (f A+ kD)),

n=—0o0

2 & A
= E Z f et(tfs)k,lmd (f, E4 (A)g)% y

n=700(0’oo)

where E 4 is the spectral measure of A. It is easy to see that one can interchange the
integral f(O,oo) d (f, E4(M)g) ; and the summation Y .- . Then, using (B.3), we
obtain

(6 ® f.8: @8y =(fi (e M4 PTITIHA—eTP)The) . (B

We now consider the Gaussian random process ¢y indexed by # so that

. - 1
f e Ogu, = W4 6, (FYy (G)duy = FF.Ghy  F.GeV,
Oy (O

where (Qy , iy ) is the underlying probability measure space. Hence, by (B.4),

f Oy (8 ® oy (8s @ g)duy
Oy

= %(f, (e 4 o7 PImDA 1 — P Tleg) 5,1 €10,B], f.g € H.
(B.5)

In what follows, we assume that, for some constant y > 1, A== jgtrace class.
Then A~7/? is Hilbert—Schmidt. The domain Dom(A?/?) is a real Hilbert space
with inner product (f, g), := (AV/zf, AV/2g>)f , f, g € Dom(A"/?). We denote this
Hilbert space by .77, . The sesquilinear form ( , )_, : 7 x 7 — R defined by

(f.8)_y =(ATf A7), figet,

is an inner product of 7. We denote the completion of the inner product space
(W, (, )_-,) by A, . Itis shown that the dual space %’f of 77, is naturally isomor-
phic to /%, by the natural bilinear form (¢, f) suchthat (¢, f) = (A’V/zqﬁ, AV/zf)%,
forgp € A, f € I,

Since the embedding of .77 into 777, is Hilbert-Schmidt (nuclear), it follows
from a general theorem (Minlos’s theorem) that there exists a Gaussian measure
on J#_,, such that

f L

‘%*V
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Since A7 is trace class and positive, there exists a CONS {e,}7, of # and a
sequence {A,};2, of positive numbers such that Ae, = A,e, and Zn: A’ < o0.
Each f € J7 is expanded as f = Zf’;l apen, an = {en, ). Then, for all ¢ €
[0, 81,

[e.¢]
by (8 ® f) =) anpy (5 ®e,)
n=1
in the topology of L2(# , d iy ). For each N € N, we define

(N) Zd)/// ((St Q en)en e .

n=1

Then one can show that, for all M, N e Nwith M > N,

/ 1™ = X1 duy = 5 Z ky

Oy n N+1

Hence the limit

X =) by @ene,

n=1

exists in L2(Qy , duy ; H.-,) (the Hilbert space of 7, -valued L>-functions on
(Qw , ny)). Moreover, it is easy to see that (X,, f) = ¢y (6: @ f), [ e,
Hence {{X,, )|t € [0, B], f € 2£,} is a family of jointly Gaussian random vari-
ables such that, foralln € N, t; € [0, ] and f; € J7,,

/ e LN / (X0, F) X fi)dun .

V4 Oy

and (B.5) takes the form:

(f, (71514 4 e~ F—msDAY (] _ g=PAY-1g)

N =

/ (Xo. f) (X, g) dity =
Oy
s,t €[0,B], f.g € . (B.6)

Using the assumption that A ~=D s trace class, one can show that, forall s, 7 € [0, B
andn € N,

/ 1X, = X,I% dpy < Clt —s"
Oy
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with C > 0 being a constant. Hence, by an application of Kolmogorov’s lemma on
regularity of stochastic process (see, e.g., [62, Theorem 5.1], [20, Corollary 2.23]),
{X:}:ef0,5) has a continuous version (in fact, a Holder continuous version). We denote
by the continuous version of X, by the same symbol so that, for a.e. ¢ € Qy,
X,(q) € S, is continuous in ¢ € [0, B].

We now define a mapping X : Oy — C([0, Bl; 7.,) by

X(q)(1) = X,(q), ae.q€Q.

Let vg be the image measure by X so that, for all mappings  : C([0, 81; 52Z,) — R,

/ (X (@)dpy = / D(®)dvs().
Oy C([0,8);27-,)

In particular, taking n as n(®@) := (@ (1), f) (P(s), g), P € C([0, Bl; H,), f. g €
s¢,, we have by (B.6)

(@@1), [)(P(s), 8) dvp(P)
C(10.BL:7-,)

= %(f, (e g emPTImI A — TP Tle) s, 1 €10, 8], f, 8 € A
(B.7)

Thus we have shown that there exists a family {(@(¢), f) |t € [0, B], f € S, } of
jointly Gaussian random variables on C ([0, B]; #~,) with an infinite-dimensional
measure vg satisfying (B.7). Since C ([0, B]; S#Z, ) is a path space with paths in J7Z,,
vg is a path space measure.
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