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Preface

Understanding the hydrogen atom is at the heart of modern physics.

Exploring the energy levels and the symmetry of the most fundamental two-

body system has led to advances in atomic physics, quantum mechanics,

quantum electrodynamics, and elementary particle physics.

Regularities in the spectrum of atomic hydrogen inspired Bohr’s theory

of the atom and what has been called the old quantum theory, which

described general features of the atom but not detailed behavior. A crucial

success of the Schrodinger theory of wave mechanics, which was introduced

about 1921, was the calculation of the absorption and emission of radiation

and the second and third order Stark effect in the H atom. This non-

relativistic theory had many successes but was unable to deal with the

fine structure of the hydrogenic lines, a challenge solved by the relativistic

Dirac theory, which explained the fine structure and gave a value for the

spin component of the magnetic moment of the electron (g-2). Experiments

by Lamb and Retherford in 1947 revealed problems with the Dirac theory,

in particular that it incorrectly predicted that the 2s1/2 and 2p1/2 levels

were degenerate. The method of renormalization was introduced by Bethe

to compute the Lamb shift, paving the way for the computation of radiative

effects due to the interaction of the electron with its own radiation field or

with the quantum fluctuations of the electromagnetic field, while avoiding

divergences. This was the birth of Quantum Electrodynamics (QED), today

a mature theory that has predicted the energy levels of the hydrogen atom

and the anomalous magnetic moment of the electron to unprecedented pre-

cision, the most precise physical theory in history [1, 2]. Today, significant

effort has been focused on the calculation of higher-order radiative shifts.

However, in this text, we focus on a deeper understanding of the H atom

and the first-order radiative interaction that accounts for 96% of the shift.
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viii The Hydrogen Atom

Measurement and explanation of the properties of the hydrogen atom

have been central to the development of modern physics over the last

century. One of the most useful and profound ways to understand its

properties is through its symmetries, which we explore, beginning with

the symmetry of the Hamiltonian, which reflects the symmetry of the

degenerate levels, then the larger non-invariance and spectrum-generating

groups, which include all the states. The successes in using symmetry to

explore the hydrogen atom led to the use of symmetry to understand and

model other physical systems, particularly elementary particles.

In Part 1, we discuss the role of symmetry and group theory in

understanding the H atom over the last century, and introduce some basic

ideas about symmetry groups. We provide an integrated treatment of

the symmetries of the classical and Schrödinger hydrogen atom, including

the four-dimensional rotational symmetry group SO(4) (special orthogonal

group in four dimensions), which is the degeneracy group, with the rotations

in four dimensions generated by the angular momentum vector and Runge–

Lenz vector, which points along the semi-major axis of the eliptical orbit.

We calculate the energy levels using these symmetry operators and consider

the wavefunctions in configuration space and in three- and four-dimensional

momentum space, and how the wavefunctions are transformed by the

generators. We introduce a novel set of wavefunctions that includes both the

bound and scattering states and that uses the usual Schrodinger quantum

numbers nlm. These wavefunctions allow for a simplified and integrated

approach to quantum theory calculations. The semi-classical limit of the

wavefunctions is explored.

In Part 2, we enlarge the degeneracy group to include all energy states of

the H atom, bound and scattering, and consider the non-invariance group

or spectrum-generating group SO(4,1), and the expanded group SO(4,2)

that allows us to write Schrodinger’s equation in terms of the generators.

The group SO(p,q) is the group of orthogonal transformations that preserve

the quantity X = x21 + x22 + · · · + x2p − · · · − x2p+q , which may be viewed

as the norm of a p+q-dimensional vector in a space that has a metric with

p plus signs and q minus signs. The letters SO stand for special orthogonal,

meaning the orthogonal transformations have a determinant equal to +1.

We present a unified treatment of the symmetries of the Schrodinger

hydrogen atom that focuses on the physics of the atom, that gives explicit

expressions for all the manifestly Hermitian generators in terms of position

and momenta operators in a Cartesian space, that explains the action of the

generators on the basis states, and that unifies the treatment of the bound
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and continuum states in terms of wave functions with the same quantum

numbers as the ordinary bound states. We evaluate the Casimir operators

(group invariants that are numerical constants) that characterize the group

representations. New group theoretical results are derived that are used in

Part 3 for the analytical calculation of radiative shifts.

In Part 3, we discuss radiative shifts in general, including in classical

physics for the Coulomb problem and for the simple harmonic oscillator. We

discuss the historical context, the significance and impact of Bethe’s seminal

calculation of the Lamb shift that was done using second order perturbation

theory. Then we take a different approach to calculate the radiative shift in

field theory using only the equations of motion (Klein–Gordon equation),

making none of the usual assumptions. We take the non-relativistic limit

of the expression for the Lamb shift and use SO(4,2) methods to obtain

an analytical expression for the first-order Lamb shift with no sum over all

states, unlike the usual formulation. We obtain a generating function for

the radiative shift for all energy levels. This unique analytical result allows

us to determine the contribution to the shift from each frequency of virtual

radiation and predicts the presence of a virtual radiation field that extends

more than a thousand times the Bohr radius of the atom. If other atoms

are nearby, this field results in the Casimir force and the van der Waals

force [3].

We sometimes use the phrase “hydrogen-like atom”, referring to atoms

that are ionized with only one orbital electron like hydrogen. Such atoms,

for example U238+, have been measured to determine, for example, the

role of the atomic number Z. Other hydrogen-like atoms include ionized

helium, ionized deuterium, and positronium, which is made of a bound

electron and positron, and muonium, made of a bound antimuon and an

electron, or muonic atoms, in which an electron has been replaced by a

muon. These unique atoms have radiative shifts like ordinary hydrogen,

and although the qualitative behaviors are similar, the quantitative results

are very different and give insight into fundamental physics [2]. Exploring

muonic hydrogen spectra [4], and new physics using Rydberg states [5–10]

using ultra-high precision measurement of the energy levels has led to

new understanding of two-body systems with low Z, including muonium,

positronium, and tritium [11]. Measurements of levels shifts are currently

being used to determine the radius of the proton [1]. We will not discuss

these hydrogen-like atoms in further detail.

The hydrogen atom will doubtlessly continue to be one of the testing

grounds for fundamental physics. Researchers are exploring the relationship
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between the hydrogen atom and quantum information [12], and the effect

of non-commuting canonical variables [xi, xj ] �= 0 on energy levels [13–15].

We can expect that further investigations of the hydrogen atom and

hydrogen-like atoms will continue to reveal new vistas of physics and that

symmetry considerations will play an important part.

The first eight chapters of the text assume that the reader is familiar

with quantum theory and classical mechanics at a first year graduate level.

The remainder of the book, which is primarily on radiative shifts and

quantum fluctuations of the electromagnetic field, assumes that the reader

is also familiar with quantum field theory at a first year graduate level.

The group theory is explained in the text. Students, non-experts, and the

new generation of scientists may find the clearer, integrated presentation of

the symmetries of the hydrogen atom helpful and illuminating, perhaps

motivating some to use these methods in various new contexts. Senior

researchers will find new perspectives, even some surprises and encourage-

ments.

I am grateful to my friends, teachers, and collaborators for discussions

over many years, with particular thanks to Peter Milonni and Lowell S.

Brown, each of whom has been an important inspiration and a trusted

source of knowledge for many years. I especially thank my good friend

Peter Milonni, who read most of the book in draft form and gave me very

helpful comments.

G. Jordan Maclay

Saint Charles, Illinois

USA, 2025
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2 The Hydrogen Atom

In Chapter 1, we give an historical account of the role of symmetry in

quantum mechanics and of the seminal work done to explore the symmetries

of the Schrodinger hydrogen atom. Most of this work was done from

1920 to 1975, when physicists were using the H atom as a platform to

explore symmetries that might be applicable to elementary particle physics.

Why is symmetry important? Each symmetry in a physical system is

associated with a conserved quantity, and conserved quantities characterize

quantum systems. Symmetry in time corresponds to conservation of energy,

symmetry with respect to translation in space corresponds to conservation

of momentum, and isotropy in three-dimensional space corresponds to the

conservation of angular momentum.

In Chapter 2, the theory of the classical H atom is presented. The

classical equations of motion of the non-relativistic hydrogen atom in con-

figuration and momentum space are derived from symmetry considerations

alone.

In Chapter 3, we discuss the quantum theory of the H atom and

provide some general background observations about symmetry groups

and non-invariance groups. We discuss the degeneracy groups for the

Schrodinger, Dirac, and Klein–Gordon equations, and introduce the novel

(Zα)−1 eigenstates that allow us to treat the bound and scattering states

in a uniform way, using the usual Schrodinger energy eigenstate quantum

numbers nlm. The physical meaning of the symmetry transformations and

the structure of the SO(4) degeneracy group are discussed.

In Chapter 4, symmetries are discussed using the language of quantum

mechanics. In order to display the symmetries in quantum mechanics in

the most elegant and uniform way we use as a basis our eigenstates of the

inverse of the coupling constant, (Zα)−1. We discuss the wave functions in

momentum and configuration space, how they transform, and their classical

limit for Rydberg states.

In Chapter 5, we discuss the Dirac H atom and its symmetry operators,

the generalized parity operator, and the conserved pseudoscalar operator,

which together give a representation of the degeneracy group SO(4).



Chapter 1

Introduction to the H Atom and
Symmetry Principles

1.1 Brief History of Symmetry in Quantum Mechanics

and its Role in Understanding the Schrodinger

Hydrogen Atom

The hydrogen atom is the fundamental two-body system and perhaps the

most important tool of atomic physics, and the continual challenge is

to continually improve our understanding of the hydrogen atom and to

calculate its properties to the highest accuracy possible. The current QED

theory is the most precise of any physical theory [1]:

The study of the hydrogen atom has been at the heart of the development
of modern physics . . . owing to the simplicity of the H atom, theoretical
calculations reach precision up to the 12th decimal place . . .high resolu-
tion laser spectroscopy experiments . . . reach to the 15th decimal place
for the 1S–2S transition . . .The Rydberg constant is known to 6 parts
in 1012 [1, 16]. Today, the precision is so great that the measurement of
the energy levels in the H atom has been used to determine the radius
of the proton.

Continual progress in understanding the properties of the hydrogen atom

has been a key to progress in quantum physics [17]. Understanding the

atomic spectra of the hydrogen atom drove the discovery of quantum

mechanics in the 1920s. The measurement of the Lamb shift in 1947

and its explanation in terms of the interaction of the atom with its own

radiation field or, from a different perspective, with the quantum vacuum

fluctuations, ushered in a revolution: the birth of quantum electrodynamics

[18–20]. Exploring the symmetries of the hydrogen atom has been an

essential part of this progress. Symmetry is a concept that has played

a broader role in physics in general, for example, in understanding the

3



4 The Hydrogen Atom

dynamics of the planets, atomic and molecular spectra, and the masses of

elementary particles.

When applied to an isolated system, Newton’s equations of motion

imply the conservation of momentum, angular momentum, and energy. But

the significance of these conservation laws was not really understood until

1911 when Emmy Noether established the connection between symmetry

and conservation laws [21]. Rotational invariance in a system results in

the conservation of angular momentum; translational invariance in space

results in the conservation of momentum; and translational invariance in

time results in the conservation of energy. We will discuss Nöther’s theorem

in more detail in Section 1.2.

Another critical ingredient of knowledge, on which Noether based

her proof, was the idea of an infinitesimal transformation, such as a

infinitesimal rotation generated by the angular momentum operators in

quantum mechanics. These ideas of infinitesimal transformations originated

with the Norwegian mathematician Sophus Lie, who studied differential

equations in the latter half of the nineteenth century. He studied the

collection of infinitesimal transformations that would leave a differential

equation invariant [22]. In 1918, German physicist and mathematician

Hermann Weyl, in his classic book The Theory of Groups and Quantum

Mechanics, would refer to this collection of differential generators leaving

an operator invariant as a linear algebra, ushering in a little of the

terminology of modern group theory [23]. Still, this was a very early stage

in understanding the role of symmetry in the language of quantum theory.

When he introduced the new idea of a commutator on page 264, he put

the word “commutator” in quotes. In the preface, Weyl made a prescient

observation: “. . . the essence of the new Heisenberg–Schrodinger–Dirac

quantum mechanics is to be found in the fact that there is associated with

each physical system a set of quantities, constituting a non-commutative

algebra in the technical mathematical sense, the elements of which are the

physical quantities themselves.”

A few years later Eugene Wigner published in German Group Theory

and Its Application to the Quantum Mechanics of Atomic Spectra [24]. One

might ask why this classic was not translated into English until 1959. In the

preface to the English edition, Prof. Wigner recalled: “When the first edition

was published in 1931, there was a great reluctance among physicists toward

accepting group theoretical arguments and the group theoretical point of

view. It pleases the author that this reluctance has virtually vanished. . .”

It was the application of group theory in particle physics in the early
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sixties, such as SU(3) and chiral symmetry, that reinvigorated interest in

Wigner’s book and the field in general. In the 1940s, Wigner and Bargmann

developed the representation theory of the Poincare group that provided

an infrastructure for the development of relativistic quantum mechanics

[24, 25].

The progress in understanding the symmetries of the hydrogen atom

has some parallels to the history of symmetry in general: there were some

decades of interest, but after the 1930s interest waned for about three

decades in both fields, until stimulated by the work on symmetry in particle

physics.

Probably the first major advance in understanding the role of symmetry

in the classical treatment of the Kepler problem after Newton’s discovery

of universal gravitation, elliptical orbits and Kepler’s laws (1687), was

made 150 years later by Laplace. He discovered the existence of three

new constants of motion in addition to the components of the angular

momentum [26]. These additional conserved quantities are the components

of a three-dimensional vector which determines the direction of the

perihelion of the motion (point closest to the focus) and whose magnitude

is the eccentricity of the orbit. The Laplace vector was rediscovered by

Jacobi and has since been rediscovered numerous times under different

names. Today, it is generally referred to as the Runge-Lenz vector. But the

significance of this conserved quantity, which determines the semi-major

axis of the elliptical orbit, was not well understood until the 1930s.

In 1924, Pauli made the next major step forward in understanding the

role of symmetry in the hydrogen atom [27, 28]. He used the conserved

Runge–Lenz vector A and the conserved angular momentum vector L

to derive the energy spectrum of the hydrogen atom by purely algebraic

means, a beautiful result, yet he did not explicitly identify that L and A

formed the symmetry group SO(4) ≈ SU(2)
⊗

SU(2) corresponding to the

degeneracy.1 At this time, the degree of degeneracy in hydrogen energy

levels was believed to be n2 for a state with the principal quantum number

n, clearly greater than the degeneracy due to rotational symmetry, which

is (2l+1). The degeneracy n2 arises from the possible values of the angular

1The group SU(2), special unitary group in two dimensions, corresponds to rotations
in a complex two dimensional space that are isomorphic to rotations in a 3-dimensional
space [29]. The group SO(4) is the group of special orthogonal transformations (rotations)
in a four dimensional vector space. Special means the determinant of the rotation matrix
is +1.
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momentum l = 0, 1, 2, . . . n− 1, and the 2l + 1 values of the component of

angular momentum along the azimuthal axism = −l,−l+1, . . .0, 1, 2, l+1.

The additional degeneracy was called an “accidental degeneracy” [30].

Six years after Pauli’s paper, Hulthen used the new Heisenberg matrix

mechanics to simplify the derivation of the energy eigenvalues of Pauli

by showing that the sum of the squares L2 + A2 could be used to

express the Hamiltonian and derive the energy eigenvalues [31]. In a

one sentence footnote in this three page paper, Hulthen gives probably

the most important information in the paper: Prof. Otto Klein, who

had collaborated for years with Sophus Lie, had noticed that the two

conserved vectors formed the generators of the Lorentz group, which we

can describe as rotations in four dimensions, the fourth dimension being

time. This is the non-compact group SO(3,1), the special orthogonal group

in four dimensions whose transformations leave the magnitude gμνz
μzν =

−t2+x2+y2+z2 unchanged.2 Klein’s perceptive observation triggered the

introduction of group theory to understanding the hydrogen atom.

About a decade later, in 1935, the Russian physicist Vladimir Fock

published a major article in Zeitshrift für Physik, the journal in which

all key articles about the hydrogen atom cited were published [32]. He

transformed Schrodinger’s equation for a given energy eigenvalue from

configuration space to momentum space, and did a stereographic projection

onto a unit sphere, and showed that the bound state momentum space wave

functions were spherical harmonics in four dimensions. He stated that this

showed that rotations in four dimensions corresponded to the symmetry

of the degenerate bound state energy levels in momentum space, realizing

the group SO(4), the group of special orthogonal transformations which

leaves the norm of a four-vector U2
0 +U2

1 +U2
2 +U2

3 constant. By counting

the number of four-dimensional spherical harmonics Ynlm in momentum

space (m = −l,−l + 1 . . . 0, 1, . . . , l, where the angular momentum l can

equal l = n − 1, n − 2, . . . 0) he determined that the degree of degeneracy

for the energy level characterized by the principal quantum number n was

n2. It is interesting that Fock did not cite the work by Pauli implying

the four-dimensional rotational symmetry in configuration space. Fock also

presented some ideas about using this symmetry in calculating form factors

for atoms.

2We employ natural Gaussian units so � = 1, c = 1, and α = (e2/�c) ≈ 1/137. The
notation for indices and vectors is μ, ν, . . . = 0, 1, 2, 3; i, j, . = 1, 2, 3; pμpμ = −p20 + p2,
p = (p1, p2, p3), gμν = (−1, 1, 1, 1).
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A year later, the German-American mathematician and physicist Valen-

tine Bargmann showed that for bound states (E < 0) Pauli’s conserved

operators, the angular momentum L and the Runge–Lenz vector A, obeyed

the commutation rules of SO(4) [25]. His use of commutators was so early in

the field of quantum mechanics that Bargmann explained the square bracket

notation he used for a commutator in a footnote [33]. He gave a differential

expression for the operators, adapting the approach of Lie generators in

the calculation of the commutators. He linked solutions to Schrodinger’s

equation in parabolic coordinates to the existence of the conserved Runge–

Lenz vector and was thereby able to establish the relationship of Fock’s

results to the algebraic representation of SO(4) for bound states implied by

Fock and Pauli [25]. He also pointed out that the scattering states (E > 0)

could provide a representation of the group SO(3,1). In a note at the end of

the paper, Bargmann, who was at the University in Zurich, thanked Pauli

for pointing out the paper of Hulthen and the observation by Klein that the

Lie algebra of L and A was the same as the infinitesimal Lorentz group,

which is how he referred to a Lie algebra. Bargmann’s work was a milestone

demonstrating the relationship of symmetry to conserved quantities, and

it clearly showed that, to fully understand a physical system, one needed

to go beyond the usual ideas of geometrical symmetry. This work was the

birth, in 1936, without much fanfare, of the idea of dynamical symmetry.

Little attention was paid to these developments until the 1960’s when

interest arose primarily because of the application of group theory in

particle physics, particularly modeling for the mass spectra of hadrons.

Particle physicists faced the challenge of achieving a quantitative descrip-

tion of hadron properties, particularly the mass spectra and form factors, in

terms of quark models. Since little was known about quark dynamics, they

turned to group-theoretical arguments, exploring groups like SU(3), chiral

U(3) ⊗ U(3), U(6) ⊗ U(6) etc. The success of the eight-fold way of SU(3)

(special unitary group in three dimensions) of American physicist Murray

Gell-Mann in 1962 brought attention to the use of symmetry considerations

and group theory as important tools for exploring systems in which one was

unsure of the exact dynamics [34].

In 1964, three decades after Fock’s work, American physicist Julian

Schwinger published a paper using SO(4) symmetry to construct a Green

function for the Coulomb potential, which he noted was based on a class

he taught at Harvard in 1949 [35]. The publication was a response to

the then current emphasis on group theory and symmetry which led, as

Israeli physicist Yuval Ne’eman described it, “to the great-leap-forward”
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in particle physics during the years 1961–66 [36]. Some of the principal

investigators leading this effort were Ne’eman [36], Gell-Mann [34, 37, 38],

and Israeli physicist Y. Dothan [39], Japanese physicist Yochiri Nambu

[40], and English-American Freeman Dyson [41]. Advantage was taken of

the mathematical infrastructures of group theory developed years earlier

[23–25, 42, 43].

Interest was particularly strong in systems with wave equations that

had an infinite number of components, which characterize non-compact

groups. In about 1965, this interest in particle physics gave birth to the

identification of the non-compact groups SO(4,1) and SO(4,2) as providing

Spectrum Generating Algebras (SGA) that might serve as models for

hadronic masses. The hydrogen atom was seen as a model for exploring

the infinite-dimensional representations of non-compact groups. The first

mention of SO(4,1) was by Barut, Budini, and Fronsdal [44], where the H

atom was presented as an illustration of a system characterized by non-

compact representation, and so comprising an infinite number of states.

The first mention of a six-dimensional symmetry, referred to as the “non-

compact group O(6)”, appears to be by the Russian physicists I. Malin

and V. Man’ko of the Moscow Physico-technical Institute [45]. In a careful

three page paper, they showed that all the bound states of the H atom

energy spectrum in Fock coordinates provided a representation of this

group, and they calculated the Casimir operators for their symmetric tensor

representation in parabolic coordinates.

Very shortly thereafter, Turkish-American theoretical physicist Asim

Barut and his student at the University of Colorado, German theoretical

physicist Hagen Kleinert, showed that including the dipole operator er as

a generator led to the expansion of SO(4,1) to SO(4,2), and that all the

bound states of the H atom formed a representation of SO(4,2) [46]. This

allowed them to calculate dipole transition matrix elements algebraically.

They give a position representation of the generators based on the use of

parabolic coordinates. The generators of the transformations are given in

terms of the raising and lowering operators for the quantum numbers for

solutions to the H atom in parabolic coordinates. The dilation operator is

used to go from one SO(4) subspace with one energy to a SO(4) subspace

with a different energy, and it has a rather complicated form. They also

used SO(4,2) symmetry to compute form factors [47].

The papers of Polish-American physicist Myron Bander and French

physicist Claude Itzakson published in 1966, when both were working

at SLAC (Stanford Linear Accelerator in California), provided the first
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mathematically rigorous and “succinct” review of the O(4) symmetry of the

H atom, and provided an introduction to SO(4,1) [48, 49], which is referred

to as Spectrum Generating Algebra because it can be used to generate all

states of the H atom. They used two approaches in their mathematical

analysis, the first was referred to as “the infinitesimal method,” based on

the two symmetry operators, L and A and the O(4) group they form,

and the other, referred to as the “global method,” first done by Fock,

converted the Schrodinger equation to an integral equation with a manifest

four-dimensional symmetry in momentum space. They established the

equivalence of the two approaches by appealing to the solutions of the

H atom in parabolic coordinates and demonstrated that the symmetry

operators in the momentum space correspond to the symmetry operators

in the configuration space. As noted, the stereographic projection depends

on the energy, so the statements for a SO(4) subgroup were valid only in

a subspace of constant energy. They then explored the expansion of the

SO(4) group to include scale changes so that the energy can be changed,

transforming between states of different principal quantum number, which

correspond to different subspaces of SO(4). To ensure that this expansion

results in a group, they included other transformations which led to

the generators forming the conformal group O(4,1). Their mathematical

analysis introducing SO(4,1) was based on the projection of a p-dimensional

space (4 in the case of interest) on a paraboloid in p + 1 dimensions

(5 dimensions). In their derivation, they treated bound states in their first

paper [48] and scattering states in their second paper [49].

As we have indicated, interest in the SO(4,2) symmetry of the

Schrodinger equation was driven by a program focused on developing

equations for composite systems that had infinite multiplets of energy

solutions and ultimately could lead to equations that could be used to

predict masses of elementary particles, perhaps using other dimensions

[40, 48–53]. In 1969, Jordan and Pratt showed that one could add spin to

the generators A and L, and still form a SO(4) degeneracy group. Defining

J = 1
2 (L+A) + S, they showed that one could obtain a representation of

O(4,1) for any spin S [54].

In their review of the symmetry properties of the hydrogen atom, Bander

and Itzakson emphasized their purpose for exploring the group theory of

the hydrogen atom [48]:

The construction of unitary representations of non-compact groups
which have the property that the irreducible representations of their
maximal subgroup appear at most with multiplicity one is of certain
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interest for physical applications. The method of construction used here
in the Coulomb potential case can be extended to various other cases.
The geometrical emphasis may help visualize things and provide a global
form of the transformations.

Special attention was also given to solutions for the hydrogen atom from

the two-body Bethe–Salpeter equation, which allows for detailed nuclear

dynamics with a proton and electron interacting by a Coulomb potential,

since the symmetry was that of a relativistic non-compact group [40, 53,

55, 56].

Finally in 1969, five years after it was published, Schwinger’s form of

the Coulomb Green function based on the SO(4) symmetry was used to

calculate the Lamb shift by Michael Lieber, one of Schwinger’s students at

Harvard [35, 57]. A year later, Robert Huff, a student of Christian Fronsdal

at UCLA, focused on SO(4,2) group theory to compute the Lamb shift [58].

He converted the conventional expression for the Lamb shift into a matrix

element containing generators of SO(4,2), and was able to perform rotations

and scale changes to simplify and evaluate the matrix elements. After clever

mathematical manipulation, he obtained an expression for the Bethe log in

terms of a rapidly terminating series for the level shifts.

In the next few years, researchers published a few mathematically

oriented papers [54, 59–63], a short book [64] dealing with the symmetries

of the Coulomb problem, and a paper by Barut presenting a SO(4,2)

formulation of symmetry breaking in relativistic Kepler problems, with a 1

page summary of the application of SO(4,2) to the non-relativistic hydrogen

atom [47, 65]. Bednar published a paper applying group theory to a variety

of modified Coulomb potentials which included some matrix elements of

SO(4,2) using hydrogen atom basis states with quantum numbers nlm [66].

There was also interest in the application of symmetry methods and

dynamical groups in molecular chemistry [67] and atomic spectroscopy [68].

In the 1970s researchers focused on developing methods of group theory

and on understanding dynamical symmetries in diverse systems [69–71].

A book on group theory and its applications appeared in 1971 [72]. Barut

and his collaborators published a series of papers dealing with the hydrogen

atom as a relativistic elementary particle, leading to an infinite component

wave equation and mass formula [73–76].

Papers on the classical Kepler problem, the Runge–Lenz vector, and

SO(4) for the hydrogen atom have continued to appear sporadically over

the years, from 1959 to today. Many were published in the 1970s [77–83]

and some since 1980, including [28, 84–87]. Papers dealing with SO(4,2) are
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much less frequent. In 1986 Barut, A. Bohm, and Ne’eman published a book

on dynamical symmetries that included some material on the hydrogen

atom [88]. In 1986, Greiner and Muller published the second edition of

Quantum Mechanics Symmetries, which had six pages on the hydrogen

atom, covering only the SO(4) symmetry [89]. The 2005 book by Gilmore

on Lie algebras has four pages of homework problems on the H atom to

duplicate the results in early papers [90]. The last papers I know of using

SO(4,2) were applications in molecular physics [91, 92] and more general in

scope [93].

Carl Wulfman published a book on dynamical symmetries in 2011,

which provides a helpful mathematical discussion of dynamical symmetries

for the hydrogen atom [94]. He regularizes the Schrodinger equation,

essentially multiplying by r, obtaining Sturmian wave functions in parabolic

coordinates. This approach allows him to treat bound and scattering states

for SO(4,2) at one time, but requires redefining the inner product and leads

to a non-Hermitian position operator [94]. This method is also mentioned

in [95, p. 18]. We discuss it briefly in Section 3.4.2 and contrast it to our

approach using wave functions of the inverse of the coupling constant that

have the usual nlm quantum numbers, the usual inner product and produce

Hermitian generators. Our presentation benefits from all previous research

and, as a consequence, is hopefully clearer, more comprehensive, and reveals

a deeper understanding.

1.2 Symmetry of the Dirac Hydrogen Atom

We have focused our discussion on the symmetries of the non-relativistic

hydrogen atom described by the Schrodinger equation. Quantum mechanics

also describes the hydrogen atom in terms of the relativistic Dirac equation,

which we will discuss briefly in this section and in more detail in

Chapter 5.

The gradual understanding of the dynamical symmetry of the Dirac

atom parallels that of the Schrodinger atom, but it has received much

less attention, probably because the system has less relevance for particle

physics and for other applications. The rotational symmetry was known

to be present and the equation predicted that the energy depended on

the principal quantum number and the quantum number for the total

angular momentum j, but not the spin s or the orbital angular momentum

l separately. This remarkable fact meant that, in some sense, angular

momentum contributed the same to the total energy, regardless of whether
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it was intrinsic or orbital in origin. This degeneracy is lifted if we include

the radiative interactions which lead to the Lamb shift.

To understand the symmetry group for the Dirac equation, consider

that for a given total angular momentum quantum number j > 0 there

are two degenerate levels for each energy level of the Dirac hydrogen atom:

one level has l = j + 1/2 and the other has l = j − 1/2. Since the l

values differ by unity, the two levels have opposite parity. Dirac described

a generalized parity operator K, which was conserved [33]. For an operator

Λ to transform one degenerate state into the other, it follows that the

operator has to commute with j and have parity −1. This means it has to

anti-commute with K, and so it is a conserved pseudoscalar operator.

In 1950, M. Johnson and B. Lippman discovered the operator Λ [96].

More work was done on understanding Λ by Biedenharn [97]. The Johnson–

Lippman operator has been rediscovered (including by us!) and reviewed

several times over the decades [98–100]. It has been interpreted in the non-

relativistic limit as the projection of the Runge–Lenz vector onto the spin

angular momentum [99, 101, 102].

The parity (−1)l+j−1/2 is conserved in time, so the states are parity

eigenstates. Using the two symmetry operators Λ and K, one can build a

SU(2) algebra. If we include the O(3) symmetry due to the conservation of

angular momentum, we obtain the full symmetry group SU(2)⊗O(3) which

is isomorphic to SO(4) for the degeneracy of the Dirac hydrogen atom.

The SO(4) group can be expanded to include all states, obtaining

the spectrum generating group SO(4,1) or SO(4,2), depending on the

assumptions regarding the relativistic properties and the charges present

[46, 51].

1.3 Background on Symmetry Principles

1.3.1 The relationship between symmetry and conserved

quantities

The nature of the relationship between symmetry, degeneracy, and con-

served operators is implicit in the equation

[H,S] = 0, (1.1)

whereH is the Hamiltonian of our system, which we assume is Hermitian, S

is a Hermitian symmetry operator, and the brackets signify a commutator if

we are discussing a quantummechanical system, or i times a Poisson bracket

if we are discussing a classical system. If S is viewed as the generator of
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a transformation on H , then Eq. (1.1) says that the transformation leaves

H unchanged.3 We therefore say that S is a symmetry operator of H and

leaves the energy invariant. The fact that a non-trivial S exists means that

there is a degeneracy. To show this, consider the action of the commutator

on an energy eigenstate |E〉:
[H,S]|E〉 = 0 (1.2)

or

H(S|E〉) = E(S|E〉). (1.3)

If S is non-trivial then S|E〉 is a different state than |E〉 but has the same

energy eigenvalue. If we label all such degenerate states by

|E,m〉,m = 1, . . . , N (1.4)

then clearly S|E,m〉 is a linear combination of degenerate states:

S|E,m〉 = Smn|E, n〉 ≡
∑

n

Smn|E, n〉. (1.5)

The repeated index n means there is a summation over n. Smn is a

matrix representation of S in the subspace of degenerate states. In a

classical Kepler system, S generates an orbit deformation that leaves H

invariant (for example, a rotation or a change in eccentricity keeping the

same length semi-minor axis). The existence of a non-trivial S therefore

implies a degeneracy in which multiple states have the same energy

eigenvalue. We can show that the complete set of symmetry operators for

H forms a Lie algebra by applying Jacobi’s identity to our set of Hermitian

operators Si:

[H,Si] = 0, i = 1, . . . , L. (1.6)

[Sj , [H,Si]] + [Si, [Sj , H ]] + [H, [Si, Sj ]] = 0, (1.7)

so

[H, [Si, Sj]] = 0. (1.8)

The commutator of Si and Sj is therefore a symmetry operator ofH . Either

the commutator is a linear combination of all the symmetry operators

3The commutator arises if one does a similarity transformation exp(iSθ) on H, namely
exp (iSθ)H exp (−iSθ) = H + i[S,H]θ + higher order terms in θ.
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Si, i = 1, . . . , L:

[Si, Sj ] = CkijSk (1.9)

or the commutator defines a new symmetry operator which we label SL+1.

We repeat this procedure until the Lie algebra closes as in Eq. (1.9).

By exponentiation, we assume that we can locally associate a group of

unitary transformations

exp(iSia
i) (1.10)

for real ai with our Lie algebra and so conclude that there is a group of

transformations under which the Hamiltonian is invariant [103]. We call

this the symmetry or degeneracy group of H . Our energy eigenstates form

a representation of this group.

It is possible to form scalar operators, called Casimir operators, from

the generators of the group that commute with all the generators of the

group and therefore have numerical values. The values of the Casimir

operators characterize the particular representation of the group. For

example, for the rotation group in three dimensions, O(3), the generators

are L = (L1, L2, L3) and the quantity L2 = L(L + 1) commutes with

all the generators. L can have any positive integer value for a particular

representation. The Casimir operator for O(3) is L2. The number of Casimir

operators that characterize a group is called the rank of the group. O(3) is

rank 1 and SO(4,2) is rank 3.

Now, let us consider Eq. (1.1) in a different way. If we view H as

the generator of translations in time, then we recall that the total time

derivative of an operator Si is

dSi
dt

=
i

�
[H, Si̇] +

∂Si

∂t
, (1.11)

where the commutator and the partial derivative give the implicit and

explicit time dependence, respectively. Provided that the symmetry oper-

ators have no explicit time dependence (∂Si

dt = 0), then Eq. (1.11) implies

that the symmetry operators Si are conserved in time and dSi

dt = 0. For

example, if the angular momentum vector generates rotations that leave the

energy unchanged, then the angular momentum is conserved. Conversely,

we can say that conserved Hermitian operators with no explicit time

dependence are symmetry operators of H . This very important relationship

between conserved Hermitian operators and symmetry was first discovered
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by German mathematician Emmy Noether in 1917, and is called Noether’s

Theorem [21, 21, 104–106].4

1.3.2 Non-invariance groups and spectrum generating

groups

As we have discussed, the symmetry algebra contains conserved generators

Si that transform an energy eigenstate into a linear combination of

eigenstates all with the same energy En. To illustrate with hydrogen atom

eigenstates:

Si|nlm〉 = Snl
′m′

nlm |nl′m′〉, (1.12)

where |nlm〉 refers to a state with energy En, squared angular momentum

l(l + 1) and azimuthal angular momentum lz = m. Summation is implied

over repeated indices. Since the Hamiltonian for the H atom is Hermitian

and is bounded from below, the set of states |nlm〉 is complete. Since the

H is not bounded above, the complete set will include scattering states of

all positive energies.

A non-invariance algebra contains generators Di that can be used

to transform one energy eigenstate |nlm〉 into a linear combination of

other eigenstates, with the same or a different energy, different angular

momentum l and different azimuthal angular momentum m:

D|nlm〉 = Dn′l′m′
nlm |n′l′m′〉. (1.13)

Since the set of energy eigenstates is complete, the action of the most general

operator would be identical to that shown in Eq. (1.13). Therefore, this

requirement alone is not sufficient to determine the generators needed.

The goal is to expand the degeneracy group with its generators Si into a

larger group, so that some or all of the eigenstates form a representation of

4The daughter of a mathematician, she wanted to be a mathematician, but since women
were not allowed to take classes at the University of Erlangen in Germany, she audited
courses. She did so well in the exams that she received a degree and was allowed to
enroll in the University and received a Ph.D. in 1907. She remained at the University,
unpaid, in an unofficial status, for 8 years. Then she went to the University at Gottengen,
where she worked for 8 years with no pay or status before being appointed as Lecturer
with a modest salary. She was invited in 1915 by Felix Klein and David Hilbert, two
of the most famous mathematicians in the world at the time, to work with them and
address issues in Einstein’s theory of General Relativity about energy conservation. She
discovered Noether’s First Theorem (and a second theorem also). She remained there
until 1933 when she, as a Jew, lost her job. At Einstein’s suggestion, she went to Bryn
Mawr College in Pennsylvania. She died of ovarian cancer two years later.
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the larger group with the degeneracy group as a subgroup. Thus, we need

to add generators Gi such that the combined set of generators

{Si, Gj for all i, j} ≡ {Dk; for all k}
forms an algebra that closes

[Di, Dj] = iεijkDk. (1.14)

This is the Lie algebra for the expanded group. To illustrate with a

specific example, consider the O(4) degeneracy group of the H atom with

6 generators.5 One can expand the group to O(5) or O(4,1), which has ten

generators by adding a four-vector of generators, some or all of which do not

commute with the Hamiltonian. The question then is: Do some or all of the

energy eigenstates with different principal quantum numbers n provide a

representation of O(5)? If so, then this would be considered a non-invariance

group. The group might be expanded further in order to obtain generators

of a certain type or to include all states in the representation. For the H

atom, the generatorsDi can transform between different energy eigenvalues,

meaning between eigenstates with different principal quantum numbers.

Another way to view the expansion of the Lie algebra of the symmetry

group is to consider additional generators Di that are constants in time

[107] but do not commute with the Hamiltonian, so

dDi

dt
= 0 =

i

�
[H, Di̇] +

∂Di

∂t
. (1.15)

If we make the additional assumption that the partial time dependence of

the generators is harmonic

∂2Di(t)

∂t2
= ωinDn(t). (1.16)

then generators Di, and the first and second partial derivatives with

respect to time could close under commutation, forming an algebra. This

approach does not tell us what generators to add, but as we demonstrate

in Section 7.5, it does reflect the behavior of the generators that have been

added to form the spectrum generating group in the case of the hydrogen

atom.

We may look for the largest set of generators Di that can transform the

set of solutions into itself in an irreducible fashion (that is, there are no

5An O(4) rotation can be implemented by an antisymmetric 4 × 4 matrix, which has
six independent off-diagonal components, hence six generators.
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more generators than necessary). These generators form the Lie algebra

for the non-invariance or spectrum generating algebra [45, 108]. If the

generators for the spectrum generating algebra can be exponentiated, then

we have a group of transformations for the spectrum generating group.

The corresponding wave functions form the basis for a single irreducible

representation of this group. This group generates transformations among

all solutions for all energy eigenvalues and is called the Spectrum Generating

Group [109]. For the H atom, SO(4,1) is a spectrum generating group or

non-invariance group, which can be reduced to contain one separate SO(4)

subgroup for each value of n.

To get a representation of SO(4,1) we need an infinite number of states,

which we have for the H atom. This group can be expanded by adding a five-

vector to form SO(4,2). The additional generators can be used to express

the Hamiltonian and the dipole transition operator. The group SO(p, q) is

the group of orthogonal transformations that preserve the quantity X =

x21 + x22 + · · · + x2p − · · · − x2p+q, which may be viewed as the norm of a

p+ q-dimensional vector in a space that has a metric with p plus signs and

q minus signs. The letters SO stand for special orthogonal, meaning the

orthogonal transformations have a determinant equal to +1.

In terms of group theory, there is a significant difference between a group

like SO(4) and SO(4,1). SO(4) and SO(3) are both compact groups, while

SO(4,1) and SO(4,2) are non-compact groups. A continuous group G is

compact if each function f(g), continuous for all elements g of the group G,

is bounded. The rotation group in three dimensions O(3), which conserves

the quantity r2 = x21 + x22 + x23, is an example of a compact group.

For a non-compact group consider the Lorentz group O(3,1) of

transformations to a coordinate system moving with a velocity v. The

transformations preserve the quantity r2 − c2t2. The matrix elements

of the Lorentz transformations are proportional to 1/
√

1− β2, where

β = v/c, and are not bounded as β → 1. Therefore, r and ct may

increase without bound while the difference of the squares remains constant.

Unitary representations of non-compact groups are infinite dimensional.

For example, the representation of the non-invariance group SO(4,1) has

an infinite number of states. Unitary representations of compact groups

can be finite-dimensional; for example, our representation of SO(4) for an

energy level En has dimension n2.

In the 1960s and beyond, the spectrum generating group was of special

interest in particle physics because it was believed to provide guidance

where the precise particle dynamics were not known. The hydrogen atom
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provided a physical system as a model. Because the application was in

particle physics, there was less interest in exploring representations in terms

of the dynamical variables for position and momentum.

The expansion of the group from SO(4,1) to SO(4,2) was motivated by

the fact that the additional generators could be used to write Schrodinger’s

equation entirely in terms of the generators, and to express the dipole

transition operator. This allowed algebraic techniques and group theoretical

methods to be used to obtain solutions, calculate matrix elements, and other

quantities [46, 51].

1.4 Basic Idea of Eigenstates of (Zα)−1

We introduce the idea behind these states since they are unfamiliar [110].

The full derivation is given in Chapter 3, Section 3.4. The Schrodinger

equation in momentum space for bound states can be written as6

[

p2 + a2 − 2mZα

r

]

|a〉 = 0. (1.17)

where where m = mass of the electron, r is the location of the electron,

p is its momentum, α is the fine structure constant, E is the total non-

relativistic energy, a2 = −2mE > 0 and Zα is the coupling constant, which

we will now view as a parameter rather than a constant. Although this is

physically impossible, it is mathematically possible and very useful. This

equation has well behaved solutions for certain discrete eigenvalues of the

energy or a2, namely

a2n = −2mEn −m2(Zα)2/n2

or equivalently,
( an
mZα

)

=
1

n
. (1.18)

This last equation shows that solutions exist for certain values an of the

RMS momentum a. To introduce eigenstates of (Zα)−1 we simply take a

different view of this last equation and say that instead of quantizing a

and obtaining an, we imagine that we quantize (Zα)−1, and let a remain

unchanged, obtaining

a

m(Zα)n
=

1

n
. (1.19)

6We employ natural Gaussian units so � = 1, c = 1, and α = (e2/�c) ≈ 1/137.
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So, now we can interpret Schrodinger’s equation as an eigenvalue equation

that has solutions for certain values of (Zα)−1 namely

(Zα)−1
n =

m

an
. (1.20)

We have the same equation but can view the eigenvalues differently but

equivalently. Instead of quantizing a we quantize (Zα)−1.

This roughly conveys the basic idea of eigenstates of the inverse

of (Zα), but this simplified version does not reveal the advantages of

our reformulation because we have left the Hamiltonian unchanged. In

Section 3.4 (Chapter 3, Section 4), we transform Schrodinger’s equation

to an eigenvalue equation in a/mZα so that the kernel is bounded

from below and from above, which means that there are no states with

E > 0 (no scattering states) and all states have the usual bound state

quantum numbers. Other important advantages to this approach will also

be discussed.

1.5 Degeneracy Groups for Schrodinger, Dirac and

Klein–Gordon Equations

The degeneracy groups for the bound states described by the different

equations of the hydrogen atom are summarized in Table 1.1. The

degeneracy (column 2) is due to the presence of conserved operators which

are also symmetry operators (column 3), forming a degeneracy symmetry

group (column 4). For example, The symmetry operators for the degeneracy

group in the Schrodinger hydrogen atom are the angular momentum L and

the Runge–Lenz vectorA. In Chapter 3, it will be shown that together these

are the generators of the direct product SO(3)⊗SO(3), which is isomorphic

to SO(4). Column 5 gives the particular representations present. These

numbers are determined by the allowed values of the Casimir operators

for the group and they determine the degree of degeneracy (last column)

and the corresponding allowed values of the quantum numbers for the

degenerate states.

As we mentioned earlier, the Casimir operators, which are made from

generators of the group, have to commute with all the members of the

group, and the only way this can happen is if they are actually constants

for the representation. The generators are formed from the dynamical

variables of the H atom, so the Casimir operators are invariants under

the group composed of the generators, and their allowed numerical values

reflect the underlying physics of the system and determine the appropriate
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representations of the group [22, 94, 111]. For example, L2 is the Casimir

operator for the group O(3) and can have the values l(l + 1). The

relationship between Casimir operators and group representations is true

for all irreducible group representations, including the SO(4) degeneracy

group, as well as the spectrum generating group SO(4,2) [56, 66].

For the Schrodinger equation there are n2 states |nlm〉 that form a

representation of the degeneracy group SO(4) with generators L and A.

These states correspond to the principal quantum number n, the n different

values of the angular momentum quantum number l, and 2l + 1 different

values of the z component of the angular momentum lZ = m.

For the Dirac equation, the 2(2J + 1) dimensional degeneracy group

for bound states is realized by the total angular momentum operator J,

the generalized parity operator K, and the Johnson–Lippman operator Λ,

which together form the Lie algebra for SO(4).

For the fully relativistic Klein–Gordon equation, only the symmetry

from rotational symmetry survives, leading to the degeneracy group O(3).

If the V 2 term, the four-potential term squared, is dropped in a semi-

relativistic approximation as we describe in Section 3.3, then the equation

can be rewritten in the same form as the non-relativistic Schrödinger

equation, so a Runge–Lenz vector can be defined and the degeneracy group

is again SO(4).
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Table 1.1. In the table L = rxp is the orbital angular momentum; A is the Runge–Lenz vector; J = L + σ/2 is the total
angular momentum; K is the generalized parity operator; Λ is the conserved pseudoscalar operator.

Degeneracy Groups for Bound States in A Coulomb Potential

Conserved Degeneracy
Equation Degeneracy Quantities Group Representation Dimension

Schrodinger E indep. of l, lz A, L SO(4) (n−1
2

,n−1
2

) n2

Klein–Gordon E indep. of lz L O(3) Casimir op. is l(l+ 1) 2l+ 1

Klein–Gordon without V 2 term E indep. of l, lz A, L SO(4) (n−1
2

,n−1
2

) n2

Dirac E depends on J , n only Λ,K,J SO(4) (1/2, J) 2(2J + 1)
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Chapter 2

Classical Theory of the H Atom

In order to address orbital motion and the continuous deformation of orbits,

we give this discussion in terms of classical mechanics, but much of it is

valid in terms of the Heisenberg representation of quantum mechanics if

the Poisson brackets are converted to commutators, as will be discussed in

Section 2.4.

For a charged particle in a Coulomb potential, there are two classical

conserved vectors: the angular momentum L, which is perpendicular to the

plane of the orbit, and the Runge–Lenz vector A, which goes from the focus

corresponding to the center of mass and force along the semi-major axis

to the perihelion (closest point) of the elliptical orbit. The conservation

of A is related to the fact that non-relativistically the orbits do not

precess. The Hamiltonian of our bound state classical system with an energy

E < 0 is1

H =
p2

2m
− Zα

r
= E, (2.1)

where m = mass of the electron, r is the location of the electron, p is its

momentum, α is the fine structure constant, E is the total non-relativistic

energy.

The Runge–Lenz vector is

A =
1√−2mH

(

p×L−mZαr
r

)

, (2.2)

1We employ natural Gaussian units so � = 1, c = 1, and α = (e2/�c) ≈ 1/137. The
notation for indices and vectors is μ, ν, .. = 0, 1, 2, 3; i, j, . = 1, 2, 3; pμpμ = −p20 + p2,
p = (p1, p2, p3), gμν = (−1, 1, 1, 1).

23
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where L is the angular momentum. From Hamilton’s equation, for a

subspace of energy E, H = E so

A =
p×L

a
− mZα

a

r

r
, (2.3)

where a is defined by

a =
√−2mE. (2.4)

From the virial theorem, the average momentum 〈p2〉 = −2mE so a is the

root mean square momentum. Since we are discussing bound states, E < 0.

It is straightforward to verify that A is conserved in time:

[A, H ] =
dA

dt
= 0, (2.5)

where the brackets mean i times the Poisson bracket, the classical limit

of a commutator. From the definition of A and the definition of angular

momentum

L = r × p, (2.6)

it follows that A is orthogonal to the angular momentum vector

A ·L = 0. (2.7)

Using the fact that A and L are conserved, we can easily obtain equations

for the orbits in configuration and momentum space and the eccentricity,

and other quantities, all usually derived by solving the equations of motion

directly.

A and L are the generators of the group O(4). If we introduce the linear

combinations N = 1
2 (L+A) and M = 1

2 (L−A), we find that N and M

commute, reducing the non-simple group O(4) to the direct product O(3)

⊗ O(3), which we will discuss in Section 3.2 in the language of quantum

mechanics.

2.1 Orbit in Configuration Space

To obtain the equation of the orbit one computes

r ·A = rAcosφr = −rmZα
a

+ r · p×L. (2.8)

Noting that r · p×L = L2 we can solve for r

r =
L2/mZα

(a/mZα)A cosφr + 1
. (2.9)
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This is the equation of an ellipse with eccentricity e = (a/mZα)A and a

focus at the origin (Fig. 2.1). To find e, in terms of the energy, we calculate

A ·A using the identity p×L · p×L = p2L2 and obtain

A2 =
p2L2

a2
− 2mZα

a2
L2

r
+

(

mZα

a

)2

. (2.10)

Substituting E from Eq. (2.1) gives the eccentricity

a

mZα
A = e =

√

2EL2

m(Zα)2
+ 1. (2.11)

The length rc of the semi-major axis is the average of the radii at the

turning points at φr = (0, π)

rc =
r1 + r2

2
. (2.12)

Using the orbit equation we find

rc =
L2

mZα

1

1− e2 (2.13)

or

rc = −Zα
2E

=
mZα

a2
. (2.14)

The energy depends only on the length of the semi-major axis rc, not on the

eccentricity. This important result is a consequence of the symmetry of

the problem. It is convenient to parameterize the eccentricity in terms of

the angle ν (see Fig. 2.1) where

e = sin ν. (2.15)

From this definition and from Eqs. (2.11), (2.13), and (2.14) follow the

useful results

L = rca cos ν, A = rca sin ν (2.16)

which immediately imply

L2 +A2 = (rca)
2 =

(

mZα

a

)2

. (2.17)

This equation is the classical analogue of an important quantum

mechanical result first obtained by Pauli and Hulthen allowing us to

determine the energy levels from symmetry properties alone [27, 31]. From
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Fig. 2.1. Classical Kepler orbit in configuration space. The orbit is in the 1–2 plane
(plane of the paper). One focus, where the proton charge is located, is the origin. The
semi-minor axis is b = rc sin ν. The semi-major axis is rc.

Fig. 2.1, it is apparent that this equation is a statement of Pythagoras’

theorem for right triangles.

The energy equation (Eq. (2.1)) and the orbit equation (Eq. (2.9))

respectively may be rewritten in terms of a, r, and ν:

rc
r

=
p2 + a2

2a2
(2.18)

r =
rc cos

2 ν

1 + sin ν cosφr
. (2.19)

2.2 The Period

To obtain the period we use the geometrical definition of the eccentricity

e =
√

1− (b/rc)2, (2.20)

where b is the semi-minor axis. Using e = sin ν we find

b = rc cos ν (2.21)

so from Eq. (2.16) we obtain

L = ab. (2.22)
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From classical mechanics we know the magnitude of the angular momentum

is equal to twice the mass times the area swept out by the radius vector

per unit time. The area of the ellipse is πbrc. If the period of the classical

motion is T , then L = 2mπbrc/T = ab. Therefore, the classical period is

T = 2π
mrc
a

= 2π

√

m(Zα)2

−8E3
. (2.23)

and the classical frequency ωcl = 2π/T is

ωcl =
a

mrc
. (2.24)

Expressing the root mean square momentum a = mvmean in terms of a

mean velocity vmean shows that

vmean = rcωcl

as expected.

2.3 Group Structure SO(4)

The generators of our symmetry operations form the closed Poisson bracket

algebra of O(4):

[Li, Lj ] = iεijkLk, [Li, Aj ] = iεijkAk, [Ai, Aj ] = iεijkLk. (2.25)

The brackets mean i times the Poisson bracket, which is the classical

limit of a commutator. The first bracket says that the angular momentum

generates rotations and forms a closed Lie algebra corresponding to O(3).

The second bracket says that the Runge–Lenz vector transforms as a vector

under rotations generated by the angular momentum. The last bracket says

that the multiple transformations generated by the Runge–Lenz vector are

equivalent to a rotation. Taken together the Poisson brackets form the Lie

algebra of O(4). The connected symmetry group for the classical bound

state Kepler problem is obtained by exponentiating our algebra giving

the symmetry group SO(4). The scattering states with E > 0 form a

representation of the non-compact group SO(3,1).

We now want to determine the nature of the transformations generated

by Ai and Li. Clearly, L · δω generates a rotation of the elliptical orbit

about the axis δω by an amount δω. To investigate the transformations

generated by A ·δν we assume a particular orientation of the orbit, namely

that it is in the 1–2 (or x–y) plane and that A is along the 1-axis (see

Fig. 2.1). The more general problem is obtained by a rotation generated
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by Li. For an example, we choose a transformation with δν pointing along

the 2-axis so that A · δν = A2δν. The change in A is defined by δA where

δA = i[A · δν,A]. (2.26)

From the Poisson bracket relations we find for this particular case:

δA1 = L3δν, δA2 = 0, δA3 = −L1δν. (2.27)

For our orbit, L1 = 0 so δA3 = 0. We perform a similar computation to

find δL. We find we can characterize the transformation by

δA1 = L3δv or δA = Lδν

δL3 = −A1δν or δL = −Aδν
δe =

√
1− e2δν or δ(sin ν) = cos νδν

. (2.28)

Recalling e = sin ν and Eq. (2.16) we see that these transformations are

equivalent to the substitution

ν −→ ν + δν. (2.29)

The eccentricity of the orbit, and therefore A and L are all changed in

such a way that the energy, a and rc (length of the semi-major axis)

remain constant. In our example, both L and A change in length but not

direction, so the plane and orientation of the orbit are unchanged. The

general transformation A · δμ will also rotate the plane of the orbit or the

semi-major axis.

Figure 2.2 shows a set of orbits in configuration space with different

values of the eccentricity e = sin ν but the same total energy and the

same semi-major axis rc, which is the bold hypotenuse. The bold vertical

and horizontal legs are A/a and L/a and are related to the hypotenuse

rc by Pythagoras’s theorem. The generator A2ν produces a deformation

of the circular orbit into the various elliptical orbits shown. This classical

degeneracy corresponds to the quantum mechanical degeneracy in energy

levels that occurs for different eigenvalues of the angular momentum with

a fixed principal quantum number.

We can visualize all possible elliptical orbits for a fixed total energy

or semi-major axis through a simple device. It is possible to produce an

elliptical orbit with eccentricity sin ν as the shadow of a circle of radius

rc which is rotated an amount ν about an axis perpendicular to the

illuminating light. With a complete rotation of the circle we will see all

possible classical elliptical orbits corresponding to a given total energy.

In quantum mechanics only certain angles of rotation would be possible
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Fig. 2.2. Kepler bound state orbits in configuration space for a fixed energy and
different values of the eccentricity e = sin ν. The bold hypotenuse is the semi-major
axis rc which makes an angle ν with the vertical 2-axis. From Eq. (2.17), r2c =
(A/a)2 + (L/a)2 as illustrated. The vector L is along the 3-axis, pointing out of the
paper, perpendicular to the orbit, and A is along the 1-axis.

corresponding to the quantized values of L. As the circle is rotated we

must imagine that the force center shifts as the sine of the angle of rotation

so that it always remains at the focus.2

2.4 The Classical Hydrogen Atom in Momentum Space

We can derive the equation for the classical orbit in momentum space of a

particle bound in a Coulomb potential using the conserved operators L and

A. For convenience, we assume that we have rotated our axes so that L

lies along the 3-axis and A lies along the 1-axis as shown in Fig. 2.1. We

compute

p ·A = p1A =
−mZα
a

p · r
r
≡ −mZα

a
pr (2.30)

2Were it not for this displacement of the force center, the observation that a rotated
circle projects onto a plane as an ellipse would manifest the four-dimensional symmetry
of the hydrogen-like atom directly in configuration space. The elliptical orbits could
be viewed as projections of a rotated hypercircle onto a three-dimensional hyperplane.
These considerations can be applied with some modification to the three-dimensional
harmonic oscillator for which the force center and the center of the ellipse coincide.
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and employ Eq. (2.11), A = mZα
a sin ν, to obtain3

pr = − sin νp1, (2.31)

which we substitute into the identity

p2r +
L2

r2
= p2 = p21 + p22. (2.32)

Using Eqs. (2.16) and (2.18) we find

1 =

(

2ap1
p2 + a2

)2

+

(

2ap2
p2 + a2

)2
1

cos2 v
, (2.33)

and

p2 − a2 = 2ap2 tan ν, (2.34)

which may also be written as

p21 + (p2 − a tan ν)2 =
a2

cos2 ν
. (2.35)

From Eq. (2.35), we see the orbit in momentum space is a circle of radius

a/cos ν with its center displaced from the origin a distance a tan ν along

the 2-axis. Figure 2.3 shows the momentum space orbit that corresponds

to the configuration space orbit in Fig. 2.1. As an alternative method of

showing the momentum space orbits are circular we can compute [112]

(

p− aL×A

L2

)2

= C2. (2.36)

Using the lemma

p×A = − L

2a
(p2 − a2), (2.37)

the fact that L ·A = 0, and Eq. (2.16), we find C = a/cos ν. The orbit is a

circle of radius a/cos ν whose center lies at aL×A/L2, in agreement with

the previous result.

We now consider what the generators Ai and Li do to the orbit in

momentum space. Clearly, L generates a rotation of the axes. For an Ai
transformation consider the same situation we considered in our discussion

3This equation and any other equation written in this specific coordinate system can be
generalized to an arbitrary coordinate system by noting that the Cartesian unit vectors
may be written in a manner that is independent of the coordinate system: i = A

A
,

j = L×A
LA

, k = L
L
.
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Fig. 2.3. Kepler orbit in momentum space of radius a/cos ν, with its center at p2 =
a tan ν, corresponding to the orbit in configuration space shown in Fig. 2.1. A circular

orbit in configuration space corresponds to a circular orbit in momentum space centered
on the origin with radius a.

of the configuration space orbit (see Figs. 2.1 and 2.3). Since the generator

A2δν changes ν to ν + δν, we conclude that in momentum space this shifts

the center of the orbit along the p2-axis and changes the radius of the circle.

However, the distance a from the p2-axis to the intersection of the orbit

with the p1-axis remains unchanged. Figure 2.4 shows a set of momentum

space orbits for a fixed energy which correspond to the set of orbits in

configuration space shown in Fig. 2.2.

2.5 Four-Dimensional Stereographic Projection in

Momentum Space

It is interesting that in classical mechanics the bound state orbits in a

Coulomb potential are simpler in momentum space than in configura-

tion space. In quantum mechanics, the momentum space wave functions

become simply four-dimensional spherical harmonics if one normalizes the
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Fig. 2.4. Kepler orbits in momentum space for a fixed energy and RMS momentum
a with different values of the eccentricity e = sin ν corresponding to the orbits in
configuration space shown in Fig. 2.2. The straight lines locate the center of the
corresponding circular orbit on the p2-axis. For a circular orbit, ν is zero and the
eccentricity is zero.

momentum p by dividing by the RMS momentum a =
√−2mE, so it

becomes dimensionless, and performs a stereographic projection onto a

unit hypersphere in a four-dimensional space [32, 48, 94]. We will do the

analogous projection procedure for the classical orbits. As shown in Fig. 2.5,

the three-dimensional momentum space hyperplane passes through the

center of the four-dimensional hypersphere. The unit vector in the fourth

direction is n̂ = (1, 0, 0, 0). The unit vector Û goes from the center of the

sphere to the surface of the hypersphere where it is intersected by the line

connecting the vector p/a to the north pole of the sphere.

We find

Ui =
2api
p2 + a2

i = 1, 2, 3. U4 =
p2 − a2
p2 + a2

. (2.38)
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Fig. 2.5. Stereographic projection in momentum space for a fixed energy, mapping p/a
into Û . The unit vector in the 4 direction is n̂ and n̂ · Û = cosΘ4.

Note that the four-vector U has been normalized to 1. Inverting the

equations gives the following result.

pi =
aUi

1− U4
p2 = a2

1 + U4

1− U4
. (2.39)

Momentum space vectors for which p/a < 1 are mapped onto the lower

hyperhemisphere. The advantage of this projection over one in which the

hypersphere is tangent to the hyperplane is that we may have |n̂| = |Û | = 1.

At times, it is convenient to describe Û in terms of spherical polar

coordinates in four dimensions. Since Û is a unit vector we define

U4 = cos θ4,

U3 = sin θ4 cos θ,

U2 = sin θ4 sin θ sinφ,

U1 = sin θ4 sin θ cosφ.

(2.40)

where θ and φ are the usual coordinates in three dimensions. By comparison

to Eq. (2.38), we have

θ4 = 2 cot−1 p

a
θ = cos−1 p3

p
φ = tan−1 p2

p1
. (2.41)

2.6 Orbit in U-Space

We want to find the trajectory of the particle on the surface of the

hypersphere corresponding to the Kepler orbits in configuration space or
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Fig. 2.6. Showing the hyperplane containing the orbit making an angle ν with the U2

plane. Note tan ν = A/L as required by Eq. (2.16).

the displaced circles in momentum space. We assume that we have rotated

the axes in configuration space so that L is along the 3-axis and A is

along the 1-axis, as shown in Fig. 2.1. The equation for the orbit in the three-

dimensional momentum space is given by Eqs. (2.34) or (2.36). Dividing

Eq. (2.34) by p2 + a2 immediately gives a parametric equation for the

projected orbit in U space:

U4 = U2 tan ν. (2.42)

Since the orbit is in the 1–2 plane in configuration space, it follows

that U3 = 0. The orbit lies in a hyperplane perpendicular to the 2–4 plane

that goes through the origin and makes an angle π/2− ν with the U4-axis

as shown in Fig. 2.6.4 The orbit is the intersection of this plane with the

hypersphere and is therefore a great circle. To derive the exact equation

for the projected orbit we express p in Cartesian components p1 and p2 in

Eq. (2.34) and substitute Eq. (2.39) obtaining

U2
l + U2

2 − 2 tan ν U2(l − U4) = (1− U4)
2. (2.43)

To interpret this equation we consider it in a rotated coordinate system.

We perform a rotation by an amount δν about the 1–3 plane; A2δν is the

generator of this rotation which mixes the components along the U2 and

4We define the angle between a three-dimensional hyper-plane and a line as π/2 minus
the angle between the line and the normal to the hyperplane.
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U4 axes. The equations of transformation may be written5

U2 = U ′
2 cos δν + U ′

4 sin δν, U3 = U ′
3

U4 = U ′
4 cos δν − U ′

2 sin δν, U1 = U ′
1.

(2.44)

This transformation is equivalent to making the substitution ν −→ ν + δν

in the equations relating to the orbit. For example, Eq. (2.42) becomes

U ′
4 = U ′

2 tan (ν + δν). (2.45)

We choose δν = −ν, which means the orbital plane becomes U ′
4 = 0.

Writing Eq. (2.43) in terms of the primed coordinates, we find

U ′2
1 + U ′2

2 = 1, (2.46)

which in the original system is

U2
1 + (U2 cos ν + U4 sin ν)

2 = 1. (2.47)

This is the equation of a great hypercircle (ν, 0) centered at the origin and

lying in a hyperplane making an angle π/2−ν with the U4-axis and an angle

π/2 with the U3-axis. If L did not lie along the U3-axis but, for example,

was in the 1–3 plane, at an angle Θ from the U3-axis, then Eq. (2.47) would

be modified by the substitution

U1 −→ U1 cosΘ + U3 sinΘ, (2.48)

which follows since Ui transforms as a three-vector. The corresponding great

circle (ν,Θ) lies in a hyperplane making an angle π/2− ν with the U4-axis

and π/2−Θ with the 3-axis.

The motion of the orbiting particle corresponds to a dot moving along

the great circle (ν, 0 or Θ) with a period T given by the classical period

Eq. (2.23). The velocity in configuration space can be expressed in terms

of U4 by using its definition in terms of p2 Eq. (2.39) or in terms of

θ4 Eq. (2.41). The particle is moving at maximum velocity when θ4 is a

minimum, which occurs at the perihelion when θ4 = π/2− ν:

max
(p

a

)

=

√

1 + e

1− e =

√

r2
r1

(2.49)

5It is desirable to first show that A (and of course L) generate rotations of the
hypersphere or Û . However, since we prefer to do the necessary calculations in terms of
commutators rather than Poisson brackets, we defer these considerations to Section 2.4.
There we show that the generator Li rotates Û about the i − 4 plane; the generator
A1 rotates Û about the 2–3 plane, etc., thereby changing the orbit with respect to the
U4-axis and changing the eccentricity.
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and at a minimum velocity when θ4 = π/2 + ν:

min
(p

a

)

=

√

1− e
1 + e

. (2.50)

These values of θ4 correspond to turning points at which r and p have

extreme values. This is apparent when we use the definition of U4 Eq. (2.36)

and Eq. (2.18) for the total energy to show

U4 =
rc − r
rc

. (2.51)

When r > rc then p
2 < a2, so the particle is moving more slowly than the

RMS velocity. Applying the virial theorem to any orbit we find 〈p2〉 = a2,

so, as expected, a is the RMS momentum and 〈1/(1− U4)〉 = 1 = 〈rc/r〉.
Figure 2.7 is a picture of a simple device illustrating the stereographic

projection of the orbit in p/a-space onto the four-dimensional hypersphere

in U-space. We assume that the orbit is in the 1–2 plane and that A lies

along the 1-axis, so p3 = 0, U3 = 0. Due to this trivial dependence on p3,

we have omitted the 3-axis. The vertical pin or rod represents the unit

Fig. 2.7. Model illustrating the stereographic projection from the 1–2 plane to a four-
dimensional hypersphere. The pin represents the unit vector n̂ along the 4-axis, normal
to the 1–2 plane.
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vector n̂ that lies along the 4-axis. The circumference of the larger circle

perpendicular to the 4-axis represents the orbit in p/a-space. One can see

that it is displaced from the origin along the 2-axis. Centered at the origin,

we must imagine a hypersphere of unit radius Û2 = 1. The stereographic

projection Û of the vector p/a is obtained by placing the string coming

from the top of n directly at the head of the vector p/a. The intersection

of the string with the unit hypersphere defines Û . As the string is moved

along the orbit in p/a-space, it intersects the hypersphere along a great

circle shown by the circumference of the unit circle making an angle ν with

the 1–2 plane. We can see, for example, that at the closest approach θ4 is

a minimum and U4 is a maximum, Û ·A = U1 is a minimum and p/a is a

maximum.

2.7 Classical Time Dependence of Orbital Motion

We can determine the time dependence of the orbital motion by integrating

the expression for the angular momentum L = mr2dφr/dt
∫

dt =

∫

mr2

L
dφr, (2.52)

where r is given by the orbit equation Eq. (2.19) and we are assuming that

the orbit is in the 1–2 plane. After integrating, we can use the equations

relating the momentum space and configuration space variables to obtain

the time dependence in p-space and U -space. We obtain

1

r2c

1

cos ν

L

m

∫ t

0

dt = cos3 ν

∫ φr(t)

0

dφr

(1 + sin ν cosφr)
2 . (2.53)

We can show that the left-hand side of this equation is equal to ωclt,

where ωcl is the classical frequency, substituting Eqs. (2.16) and (2.24)

L = arc cos ν ωcl =
a

mrc
. (2.54)

The integral on the right side gives [113]

ωclt = − sin ν cos ν sinφr
1 + sin v cosφr

− tan−1 cos ν sinφr
sin ν + cosφr

, (2.55)

which may be simplified as

ωclt = −A
L

y

rc
− tan−1 A

L

y

rc − r , (2.56)

where y = r sinφr.
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We can convert Eq. (2.55) to obtain the time dependence in U-space.

The relationship between the angle φ ≡ φp in momentum space and φr in

configuration space follows by differentiating the orbit equation Eq. (2.34)

with respect to time and using L = mr2φ̇r or by solving simultaneously the

configuration space orbit Eq. (2.19), the momentum space orbit Eq. (2.34)

and the energy equation Eq. (2.18). We find

sinφr = −p cosφcos ν
a

cosφr = p sinφ
cos v

a
− sin ν. (2.57)

From these equations, the definitions of the Ui, Eq. (2.38), and the orbit

and energy equations, it follows that for the classical orbit in the 1–2 plane

U1 = −r sinφr
rc cos ν

,

U2 =
r

rc

sin ν + cosφr
cos v

= U4 cot ν,

U3 = 0,

U4 =
rc − r
rc

.

(2.58)

Using these results in Eq. (2.55) gives

ωclt = U1 sin ν + tan−1

(

U2

U1 cos ν

)

, (2.59)

which gives the time dependence in U space, and agrees with the results of

[39, 107]. We can also rewrite the inverse tangent as cos−1 U1 using

U2
1 +

U2
2

cos2 ν
= 1 (2.60)

and obtain

ωclt = U1 sin ν + cos−1 U1. (2.61)

Using Eq. (2.30), we can generalize this result to an arbitrary orbit in

configuration space.

ωclt = −p · r
arc

+ cos−1 U ·A
A

. (2.62)

If we consider Eqs. (2.59)–(2.61) for circular orbits with e = sin ν = 0,

we obtain tan−1(U2/U1) = cos−1U1 = φ(t) = ωclt = φr(t) + π/2, and

U2
1 + U2

2 = 1, representing uniform motion in a circle. For this orbit,

U4 = 0, so θ4 = π/2.
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2.8 Symmetry of the Harmonic Oscillator

We can find a conserved Runge–Lenz vector for the non-relativistic

hydrogen atom because the elliptical orbit does not precess, as it does

for the relativistic atom. The only central force laws which yield classical

elliptical orbits that do not precess are the inverse Kepler force and the

linear harmonic oscillator force [110]. Thus, it seems reasonable that one

could construct a constant vector similar to A for the oscillator, although

the force center for the atom is at a focus and for the oscillator it is at

the center of the ellipse. However, it is not possible to define a vector that

corresponds to the Runge–Lenz vector for the oscillator [114]. However, it

is possible to construct a constant Hermitian second-rank tensor Tij :

Tij =
1

mω0
pipj +mω0xixj . (2.63)

This constant tensor is analogous to the moment of inertia tensor for

rigid body motion. The eigenvectors of the tensor will be constant vectors

along the principal axes for the particular orbit being considered. The

existence of the conserved tensor leads to the U(3) symmetry algebra of

the oscillator. The generators are λaijTij where the λ’s are the usual U(3)

matrices [36]. The spectrum generating algebra is SU(3,1).

In another approach, the Schrodinger equation for the hydrogen atom

has been transformed into an equation for a four-dimensional harmonic

oscillator or two two-dimensional harmonic oscillators. This approach fits

well with parabolic coordinates and was used especially in the 1980s to

analyze the group structure of the atom and relate it to SU(3) [52, 115–123].

We will not discuss this approach further.

In the next chapter, we describe the H atom in terms of quantum

mechanics.
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Chapter 3

The Hydrogen-like Atom in Quantum
Mechanics

In this section, we switch from classical dynamics to quantum mechanics

and discuss the group structure and exploit it to determine the bound state

energy spectrum directly, as Pauli and his followers did almost a century

ago [27, 31]. In Section 3.4, we introduce a new set of basis states for the

hydrogen-like atom, eigenstates of the coupling constant. Using these states

allows us to display the symmetries in the most convenient manner and to

treat bound and scattering states uniformly.

3.1 The Degeneracy Group SO(4)

The quantum mechanical Hamiltonian is

H =
p2

2m
− Zα

r
= E. (3.1)

The classical expression for the Runge–Lenz vector must be symmetrized

to ensure the corresponding quantum mechanical operator A is Hermitian:

A =
1√−2mH

(

p×L−L× p

2
−mZαr

r

)

. (3.2)

We may verify that A and L = r × p both commute with the Hamil-

tonian H . The commutation relations of Li and Ai are the same as the

corresponding classical Poisson bracket relations for bound states:

[Li, Lj ] = iεijkLk, [Li, Aj ] = iεijkAk, [Ai, Aj ] = iεijkLk (3.3)

and form the algebra of O(4) [48]. We can write the commutation relations

in a single equation that makes the O(4) symmetry explicit. If we define

Sij = εijkLk Si4 = Ai (3.4)

41
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then

[Sab, Scd] = i(δacSbd + δbdSac − δadSbc − δbcSad) a, b = 1, 2, 3, 4. (3.5)

The Kronecker delta function δab acts like a metric tensor.

3.2 Derivation of the Energy Levels

We can obtain the energy levels by determining which representations of

the SO(4) group are realized by the degenerate eigenstates of the hydrogen-

like atom [25, 27, 48]. The representations of SO(4) can be characterized

by the numerical values of the two Casimir operators for SO(4):

C1 = L ·A C2 = L2 +A2. (3.6)

Once we know the value of C2, then the eigenvalues of H follow from the

quantum mechanical form of Eq. 2.17, namely

L2 +A2 + 1 =
(mZα)2

−2mH . (3.7)

In order to determine the possible values of C2 we factor the O(4)

algebra into two disjoint SU(2) algebras [124], each of which has the same

commutation relations as the ordinary angular momentum operators,

N = 1
2 (L+A) M = 1

2 (L−A). (3.8)

The commutation relations are

[Mi, Nj] = 0 [Mi,Mj] = iεijkMk [Ni, Nj] = iεijkNk. (3.9)

In analogy with the results for the ordinary angular momentum operators,

the Casimir operators are

M2 = j1 (j2 + 1) , j1 = 0, 12 , 1, . . .

N2 = j2 (j2 + 1) , j2 = 0, 12 , 1, . . .
(3.10)

The numbers j1 and j2, which may have half-integral values for SU(2) but

not O(3), define the (j1, j2) representation of SO(4). From the definitions of

A and L in terms of the canonical variables, it follows that C1 = L ·A = 0

which means j1 = j2 = j as in the classical case. For our representations,

we find

M2 = N 2 = 1
4 (L

2 +A2) = j(j + 1), j = 0, 12 , 1, .. (3.11)
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and therefore

L2 +A2 + 1 = (2j + 1)2. (3.12)

Substituting this result into Eq. (3.7) gives the usual formula for the bound

state energy levels of the hydrogen atom:

H ′ = −m(Zα)2

2n2
= En, (3.13)

where the principal quantum number n = 2j + 1 = 1, 2, . . . and the prime

on H signifies an eigenvalue of the operator H .

Within a subspace of energy En, the Runge–Lenz vector is

A =
1

an

(

p×L−L× p

2
−mZαr

r

)

, (3.14)

where

an =
√

−2mEn =
mZα

n
. (3.15)

Our considerations of the Casimir operators have shown that the

hydrogen atom provides completely symmetric tensor representations of

SO(4), namely, (j, j) = (n−1
2 , n−1

2 ), n = 1, 2, . . . The dimensionality is

(2j +1)2 = n2, corresponding to the n2 degenerate states. The appearance

of only symmetrical tensor representations (j1 = j2) can be traced to

L · A vanishing, which is a consequence of the structure of L and A in

terms of the dynamical variables for the hydrogen-like atom. For systems

other than the hydrogen-like atom, it is not generally possible to find

the expression for the energy levels in terms of all the different quantum

numbers alone. It worked here since we could express the Hamiltonian as

a function of the Casimir operators which contained all quantum numbers

explicitly.

There are a variety of possible basis states. We could choose basis states

for the SO(4) representation that reflect the SU(2) decomposition, namely

eigenstates of M 2, N2, M3 and N3 [124]. Another possibility is to have a

basis with the eigenstates of the Casimir operator C2, and A3, andM3. This

choice fits well with the use of parabolic coordinates [73]. A more physically

understandable choice is to choose the common basis states |nlm〉 that are
eigenstates of C2, L

2, and L3. For this set of basis states, we have

√

(L2 +A2 + 1)|nlm〉 = n|nlm〉 (3.16)
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L2|nlm〉 = l(l + 1)|nlm〉 (3.17)

L3|nlm〉 = m|nlm〉. (3.18)

We can define raising and lowering operators for m:

L± = L1 ± iL2, (3.19)

which obeys the commutation relations

[L2, L±] = 0 [L3, L±] = ±L±. (3.20)

Therefore, we can use L± to change the value of m for the basis states

L±|nlm〉 =
√

(l(l + 1)−m(m± 1)|nl m± 1〉 (3.21)

for l ≥ 1. We can also use the generators A to change the angular

momentum. A general SO(4) transformation can be expressed as a rotation

induced by L, followed by a rotation induced by A3, followed by another

rotation generated by L [125]. Our interest is primarily in changing

the angular momentum l, which is most directly done using A3, which

commutes with L3 and C2, and so it only changes l:

A3|nlm〉 =
(

(n2 − (l + 1)2)((l + 1)2 −m2)

4(l+ 1)2 − 1

)
1
2

|nl + 1m〉

+

(

(n2 − l2)(l2 −m2)

4l2 − 1

)
1
2

|nl − 1m〉 (3.22)

for l ≥ 1.

3.3 Relativistic and Semi-relativistic Spinless Particles in

the Coulomb Potential Described by the Klein-Gordon

Equation

As we mentioned in Chapter 1, in the discussion of Table 1, the relativistic

Klein–Gordon equation may be approximated by dropping the V 2 term to

obtain an equation of the same form as the non-relativistic Schrodinger

equation. The Klein–Gordon equation

(p2 − (Ẽ − V )2 +m2)ψ̃ = 0

where Ẽ is the relativistic total energy, may be solved exactly for a Coulomb

potential, V = −(Zα)/r [126]. The energy levels depend on a principal

quantum number and on the magnitude of the angular momentum but not



The Hydrogen-like Atom in Quantum Mechanics 45

on its direction. The only degeneracy present is associated with the O(3)

symmetry of the Hamiltonian. For a relativistic scalar particle, there is no

degeneracy to be lifted by a Lamb shift.

If we neglect the V 2 term the resulting equation can be written in the

form
(

p2

2Ẽ
+ V − Ẽ2 −m2

2Ẽ

)

ψ̃ = 0.

This is exactly the same as the nonrelativistic Schrodinger equation with

the substitutions

m→ Ẽ E → Ẽ2 −m2

2Ẽ
.

Thus, we regain the O(4) symmetry of the non-relativistic hydrogen atom,

and can define two conserved vectors, as indicated in Table 1. It is possible

to take the “square root” of this approximate Klein-Gordon equation (in

the same sense that the Dirac equation is the square root of the Klein–

Gordon equation) and obtain an approximate Dirac equation whose energy

eigenvalues are independent of the orbital angular momentum [127].

3.4 Eigenstates of the Inverse Coupling Constant (Zα)−1

We introduced the unusual idea of eigenstates of the coupling constant

(Zα)−1 in Section 1.3. We are allowing the coupling constant to vary

while we keep the energy a2/2m constant. Mathematics allows this unusual

treatment of a constant as a parameter, while of course it is physically

impossible.

Solutions to Schrodinger’s equation for a particle of energy E = −a2/2m
in a Coulomb potential

[

p2 + a2 − 2mZα

r

]

|a〉 = 0 (3.23)

may be found for certain critical values of the energy En = −a2n/2m where

an = mZα/n. The corresponding eigenstates of the Hamiltonian are |nlm〉
which satisfy Eq. (3.23) with a replaced by an. In addition to the bound

states because there is no upper bound on p2 in the Hamiltonian, we also

have the continuum of scattering states that have E > 0.

Since the quantity which must have discrete values for a solution to exist

is actually a/mZα, as noted in Section 1.4, we might ask if eigensolutions

to Eq. (3.23) exist for certain critical values of Zα while keeping a and
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the energy fixed [110]. To investigate such solutions it is convenient to

algebraically transform (3.23):

[

1
√

ρ(a)

(

p2 + a2

a

)

1
√

ρ(a)
− 1
√

ρ(a)

(

2mZα

ar

)

1
√

ρ(a)

]

√

ρ(a)|a〉 = 0,

where

ρ(a) =
p2 + a2

2a2
. (3.24)

Since ρ(a) commutes with p2 we obtain the eigenvalue equation

[( a

mZα

)

−K(a)
]

|a) = 0, (3.25)

where the totally symmetric and real kernel is

K(a) =

√

2a2

p2 + a2
1

ar

√

2a2

p2 + a2
(3.26)

and we define the transformed eigenstates |nlm) in terms of the old

eigenstates |nlm〉

|a) = (ρ(a))
1
2 |a〉. (3.27)

As before, solutions to this transformed equation may found for the

eigenvalues

K ′(a) =
( a

mZα

)′
=

1

n
. (3.28)

If we hold Zα constant and let a vary, we obtain the usual spectrum an =√−2mEn = mZα/n. For a = an, Eq. (3.27) reduces to the equation for

the eigenstates

√

ρ(an)|nlm〉 = |nlm; an). (3.29)

Alternatively, if we hold a constant, then Zα has the spectrum

(Zα)n =
na

m
(3.30)

with the corresponding eigenstates of (Zα)−1 being

|nlm; a). (3.31)
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The relationship between the usual energy eigenstates |nlm〉 and the

eigenstates |nlm; a) of (Zα)−1 is

|nlm〉 = 1
√

ρ(an)
|nlm; an) =

[

p2 + a2n
2a2n

]−1/2

|nlm; an), (3.32)

which requires that both sets of states have precisely the same quantum

numbers.

Note that the magnitude (a|K(a)|a) is proportional to 〈1/ar〉n =

(1/an)(1/n
2a0) where a0 is the Bohr radius for the ground state and so

is positive and bounded. The kernel K (a) is real and symmetric in p and r

and is manifestly Hermitean. Since the kernel K in Eq. (3.25) is bounded,

definite, and Hermitian with respect to the eigenstates |nlm; an) the set of

normalized eigenstates

|nlm; a) n = 0, 1, 2, . . . ; l = 0, 1, . . . , n− 2, n− 1;

m = −l,−l+ 1, . . . , l − 1, l, (3.33)

where
(

1

n
−K(a)

)

|nlm; a) = 0 (3.34)

is a complete orthonormal basis for the hydrogen-like atom [94, p. 340; 110;

128, p. 19]:

(nlm; a|n′l′m′; a) = δnn′δll′δmm′ (3.35)
∑

nlm

|nlm; a)(nlm; a| = 1. (3.36)

There are several important points to notice with regard to these eigenstates

of the inverse of the coupling constant:

(1) Because of the boundedness of K , there is no continuum

portion in the eigenvalue spectrum of (Zα)−1, the eigenvalues

are discrete. Since K is a positive definite Hermitian operator, all

eigenvalues are positive real numbers. This feature leads to a unified

treatment of all states of the hydrogen-like atom as opposed to the

treatment in terms of energy eigenstates in which we must consider

separately the bound states and the continuum of scattering states.

(2) It follows from Eq. (3.32) that the quantum numbers, multiplic-

ities, and degeneracies of these states |nlm; a) are precisely

the same as those of the usual bound energy eigenstates. For
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example, there are n2 eigenstates of (Zα)−1 that have the principal

quantum number equal to n or (Zα) equal to na/m.

(3) A single value of the RMS momentum a or the energy

E = −a2/2m applies to all states in our complete basis as

opposed to the usual energy eigenstates where each non-degenerate

state has a different value of a. We have made this explicit by including

a in the notation for the states: |nlm; a). Sometimes, for simplicity, we

will write the states as |nlm), provided that the value of a has been

specified. This behavior in which a single value of a applies to all states

will prove to be very useful. In essence, it allows us to generalize from

statements applicable in a subspace of Hilbert space with energy En or

energy parameter an to the entire Hilbert space.

(4) By a suitable scale change or dilation we can give the quantity

a any positive value we desire. This is effected by the unitary

operator

D(λ) = ei
1
2 (p·r+r·p)λ, (3.37)

which transforms the canonical variables

D(λ)pD−1(λ) = e−λp D(λ)rD−1(λ) = eλr (3.38)

and the kernel K (a)

D(λ)K(a)D−1(λ) = K(aeλ) (3.39)

and the eigenvalue equation
(

1

n
−K(aeλ)

)

D(λ)|nlm; a) = 0. (3.40)

Therefore, the states transform as

D(λ)|nlm; a) = |nlm; aeλ). (3.41)

These transformed states form a new basis corresponding to the new

value eλa of the RMS momentum.

The relationship between the energy eigenstates and the (Zα)−1

eigenstates can be written using the dilation operator:

|nlm〉 = 1
√

ρ (an)
D(λn)|n�m; a), where eλn =

an
a
. (3.42)

The usual energy eigenstates |nlm〉 are obtained from the eigenstates

of (Zα)−1 by first performing a scale change to insure that the energy
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parameter a has the value an and then multiplying by a factor ρ−1/2. The

(Zα)−1 eigenvalue equation Eq. (3.25) indicates that the eigenfunctions

are functions of p/a or ar, while the energy eigenvalue equation Eq. (3.23)

indicates that the eigenfunctions are functions of p/an and anr if we note

that mZα = nan. Hence, the scale change from a to an is needed. The

factor ρ−1/2 is required to convert Schrodinger’s equation to one involving

a bounded Hermitean operator.

Using the eigenstates of (Zα)−1 as our basis allows us to analyze the

mathematical and physical structure of the hydrogen-like atom in the

easiest and clearest way.

3.4.1 Another set of eigenstates of (Zα)−1

We can transform Schrodinger’s equation Eq. (3.23) to an eigenvalue

equation for (Zα)−1 that differs from Eq. (3.34):

(

1

n
−K1(a)

)

|nlm; a) = 0, (3.43)

where

K1(a) =
1√
ar

2a2

p2 + a2
1√
ar
, (3.44)

and

|nlm〉 = 1
√

ρ(an)
D(λn)|nlm; an) ρ(a) = n/ar. (3.45)

The kernel K1(a) is bounded from below and is a positive definite

Hermitian operator so the eigenstates form a complete basis. K1(a) is also

bounded from above and there are no scattering states with arbitrary large

energies. The relationship of these basis states to the energy eigenstates is

the same as that of the previously discussed eigenstates of (Zα)−1 Eq. (3.41)

but with ρ(a) = n/ar. The n guarantees that the two sets of eigenstates

have consistent normalization, which may be checked by means of the virial

theorem. The n cancels out when similarity transforming from the basis

of energy eigenstates to the basis of (Zα)−1. Note that, classically, both

kernels equal 1/arc.

The first set of basis states of (Zα)−1 with ρ(a) = p2 + a2/2a2 is more

convenient to use when working in the momentum space, and the second

set with ρ(a) = n/ar is more convenient in configuration space.
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Other researchers have used other approaches to secure a bounded

kernel for the Schrodinger hydrogen atom, for example, by multiplying the

equation on the left by r to regularize it [94]. However, the methods used

have not symmetrized the kernels to make them Hermitian, nor are all the

generators of the corresponding groups Hermitian, and they have to redefine

the inner product [51, 94].

3.4.2 Transformation of A and L to the new basis states

We must transform the defining equation for A as given in Eq. (3.2) and

L = r × p when we change our basis states from eigenstates of the energy

to eigenstates of the inverse coupling constant. The correct transformation

may be derived by requiring that the transformed generators produce the

same linear combination of new states as the original generators produced

of the old states. Thus, since

A|nlm〉 =
∑

l′,m′
|nl′m′〉Alml′m′ , (3.46)

where the coefficients Alml′m′ are the matrix elements of A, we require that

the transformed generator a satisfies the equation

a|nlm) =
∑

l′m′
|nl′m′)Alml′m′ . (3.47)

In other words, since the Runge–Lenz vector A is a symmetry operator of

the original energy eigenstates, a will be a symmetry operator of the new

states with precisely the same properties and matrix elements. Since A is

Hermitian, a is Hermitian.

To obtain a differential expression for a acting on the new states, we

need to transform the generator using Eq. (3.42):

a = D−1(λn)

(

√

ρ(an)A
1

√

ρ(an)

)

D(λn). (3.48)

The effect of the scale change from D(λn) on the quantity in large

parenthesis is to replace an everywhere by a. By explicit calculation, we

find

a =
1

2a

(

rp2 + p2r

2
− r · pp− pp · r

)

− ar

2
(3.49)
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for ρ(a) = (p2 + a2)/2a2. And we obtain

a =
1

2a

(

rp2 + p2r

2
− r · pp− pp · r − r

4r2

)

− ar

2
(3.50)

for ρ(a) = n/ar.

Both of these expressions for a are manifestly Hermitian. In addition,

since there is no dependence on the principal quantum number, these

expressions are valid in the entire Hilbert space, and not just in a subspace

spanned by the degenerate states, as was the case when we used the energy

eigenstates as a basis using Eq. (3.14).

The angular momentum operator is invariant under scale changes, and

it commutes with scalar operators. Therefore, L is invariant under the

similarity transformation 1√
ρ(an)

D(λn) and the expression for the angular

momentum operator with respect to the eigenstates of (Zα)−1 is the same

as the expression with respect to the eigenstates of the energy.

3.5 The 〈U ′| Representation

The U ′ coordinates provide the natural four-dimensional representation for

the investigation of the symmetries of the hydrogen-like atom in quantum

mechanics, as in classical mechanics.1 Therefore, we briefly consider the

relevant features of this representation and, in particular, its relationship

to the momentum representation. The eigenstate 〈U ′| of Ub, b = 1, 2, 3, 4,

is defined by

〈U ′| Ub = U ′
b 〈U ′|. (3.51)

These states are complete on the unit hypersphere in four dimensions:
∫

|U ′〉〈U ′| d3Ω′ =
∫

|U ′〉〈U ′| sin2 θ4 sin θdθ4dθdφ = 1, (3.52)

where Ω refers to the angles (θ4, θ, φ) defined in Eq. (2.41). The U variables

are defined in terms of the momentum variables and the quantity a in

Eq. (2.38). Therefore the momentum and the U operators commute

[pi, Ub] = 0 (3.53)

and the state 〈U ′| is proportional to a momentum eigenstate 〈p′|:
〈U ′| = 〈p′|

√

J(p), (3.54)

1The prime indicates eigenvalues of operators, and the unprimed quantities indicate
abstract operators. The quantity x′ means the four-vector (t′, x′).



52 The Hydrogen Atom

where the momentum eigenstate is defined by 〈p′|p = p′〈p| and
∫

d3p′|p′〉〈p′| = 1. (3.55)

The function J(p′) may be determined by equating the completeness

conditions and substituting Eq. (3.54):

1 =

∫

d3p′|p′〉〈p′| =
∫

d3Ω′|U ′〉〈U ′| =
∫

d3Ω′J(p′)|p′〉〈p′|, (3.56)

which leads to the identification of the differential quantities

d3p′ = d3Ω′J(p′) (3.57)

demonstrating that J(p′) is the Jacobian of the transformation from the

p- to the U -space. The volume element in momentum space is

d3p′ = p′2dp′ sin θ′dθ′dφ′ (3.58)

Substituting the expression for d3Ω′ from Eq. (3.52) we find

d3p′ = p′2
dp′

dθ′4

1

sin2 θ′4
dΩ′. (3.59)

Using Eq. (2.38) and (2.40) we can evaluate dp′/dθ4 and sin θ4 in terms of

p, obtaining the Jacobian

J(p′) =
[

p′2 + a2

2a

]3

. (3.60)

Therefore from Eq. (3.54) we have the important result

〈U ′| = 〈p′|
[

p2 + a2

2a

]3/2

. (3.61)

We can use this result to compute the action of r on 〈U ′| in terms of

differential operators. Using the equation

〈p′|r = i∇p′〈p′|, (3.62)

we obtain

〈U ′|r =

(

i∇p′ − 3ip′

p′2 + a2

)

〈U ′|. (3.63)
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3.5.1 Action of a and L on 〈U ′|
Using Eq. (3.62) for the action of r on 〈U ′| and using the expression

Eq. (3.49) for a, we immediately find that when acting on 〈U ′|, a has

the differential representation

a′ =
i

2a
((p′2 − a2)∇p′ − 2p′p′ ·∇p′), (3.64)

where

〈U ′|a = a′〈U ′|. (3.65)

We can also write a′ in terms of the U ′ variables by using the relationship

Eq. 2.39 between the p and U variables:

a′ = U ′
4i∇U ′ −U ′i∂/∂′4, (3.66)

where the spatial part of the four vector U ′ is U = (U1, U2, U3) and

U4 is the fourth component. This is the differential representation of a

rotation operator mixing the spatial and the fourth components of U ′.
When acting on the state 〈U ′|, clearly eia·ν generates a four-dimensional

rotation that produces a new eigenstate 〈U ′′|. To derive the form of the

finite transformation explicitly we compute

[a′j , U
′
j ] = iU ′

4δij [a′j , U
′
4] = −iU ′

i . (3.67)

For a finite transformation aia·nν with n2 = 1, for the transformation of

the spatial components of U we have

U ′′ = eia
′·nνU ′e−ia

′·nν

= U ′ − nn ·U ′ + nn ·U ′ cos ν − nU ′
4 sin ν

(3.68)

and for the fourth component of U we have

U ′′
4 = eia

′·nνU4
′e−ia

′·nν

= U ′
4 cos ν + n ·U ′ sin ν.

(3.69)

These equations of transformation are like those for a Lorentz transforma-

tion of a four-vector (r, it). We can illustrate the equations for eia2ν (cf

Eq. (2.44)) which mixes the 2 and 4 components of U ′:

U ′′
1 = U ′

1 U ′′
3 = U ′

3

U ′′
2 = U ′

2 cos ν − U ′
4 sin ν U ′′

4 = U ′
2 sin ν + U ′

4 cos ν.
. (3.70)

When L acts on 〈U ′| it has the differential representation

L′ = U ′ × i∇U ′ (3.71)
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This result follows directly since U ′
i equals p

′
i times a factor that is a scalar

under rotations in three dimensions. When eiL·ω acts on 〈U ′| it produces a
new state 〈U ′′|, where the spatial components of U ′ have been rotated to

produce U ′′.
In summary, we see that U ′ is a four-vector under rotations generated by

a′ and L′. Therefore the states 〈U ′| provide a vector representation of the

group of rotations in four dimensions SO(4), with the generators a and L.

In the next chapter, we describe the wave functions of the hydrogen

atom.



Chapter 4

Wave Functions for the Hydrogen-like Atom

In this chapter, we analyze the wave functions of the hydrogen-like atom,

working primarily in the 〈U ′| representation and using eigenstates of

the inverse of the coupling constant (Zα)−1 for the basis states. In

this representation, the wave functions are spherical harmonics in four

dimensions. We derive the relationship of the usual energy eigenfunctions

in momentum space to the spherical harmonics and discuss the classical

limits in momentum and configuration space.

4.1 Transformation Properties of the Wave Functions

under the Symmetry Operations

We can show that the wave functions Ynlm(U ′) in the 〈U ′| representation
with respect to the eigenstates of (Zα)−1

Ynlm(U ′) ≡ 〈U ′|nlm) (4.1)

transform as four-dimensional spherical harmonics under the four-

dimensional rotations generated by the Runge–Lenz vector a and the

angular momentum L. We note that the quantity a is implicit in both the

bra and the ket in Eq. (4.1). For our basis states we employ the set of (Zα)−1

eigenstates |nlm) of the inverse coupling constant that are convenient for

momentum space calculations (ρ = (p2 + a2)/2a2). We choose these states

rather than those convenient for configuration space calculations because

the 〈U ′| eigenstates are proportional to the 〈p′| eigenstates (Eq. 3.61).
If we transform our system by the unitary operator eiθ, where θ =

L · ω + a · ν, then the wave function in the new system is

Y ′
nlm(U ′) = 〈U ′|eiθ|nlm). (4.2)

55
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There are two ways in which we may interpret this transformation,

corresponding to what have been called the active and the passive

interpretations. In the passive interpretation, we let eiθ act on the coordi-

nate eigenstate 〈U ′| . As we have seen in Section 3.5.1, this produces a new

eigenstate 〈U ′′|, where the four-vector U ′′ is obtained by a four-dimensional

rotation of U ′ (Eqs. 3.68–3.70). Thus we have

Y ′
nlm(U ′) = 〈U ′′|nlm) = Ynlm(U ′′). (4.3)

In the active interpretation, we let eiθ act on the basis state |nlm). Since L

and a are symmetry operators of the system, which transform degenerate

states into each other, it follows that eiθ|nlm) must be a linear combination

of states with a principal quantum number equal to n. Therefore, we have

Y ′
nlm(U ′) =

∑

l′m′
〈U ′|Rnlmnl′m′ |nl′m′) =

∑

l′m′
Rnlmnl′m′Ynl′m′(U ′). (4.4)

The wave functions for degenerate states with a given n transform

irreducibly among themselves under the four-dimensional rotations, forming

a basis for an irreducible representation of SO(4) of dimensions n2. Equating

the results of the two different interpretations gives

Ynlm(U ′′) =
∑

l′m′
Rnlmnl′m′Ynl′m′(U ′). (4.5)

The transformation properties Eq. (4.5) of Ynlm are precisely analogous to

those of the three-dimensional spherical harmonic functions. It follows that

Ynjm are four-dimensional spherical harmonics [48, 129].

4.2 Differential Equation for the Four-Dimensional

Spherical Harmonics Ynlm(U ′)

The differential equation for the Ynlm(U ′) may be obtained from the

equation

(L′2 + a′2)Ynlm(U ′) = (n2 − 1)Ynlm(U ′), (4.6)

which follows from C2 = n2− 1 and the definition C2 = L2+A2, Eq. (3.6).

Substituting in the differential expressions Eqs. (3.66) and (3.71) for a′

and L′ we find that L′2 + a′2 equals ∇2
U ′ − (U ′ · ∇U ′)2, which is the

angular part of the Laplacian operator in four dimensions (cf in three

dimensions, L2/r2 = p2 − p2r). Thus Eq. (4.6) is the differential equation



Wave Functions for the Hydrogen-like Atom 57

for four-dimensional spherical harmonics with the degree of homogeneity

equal to n− 1, which means n2 such functions exist, in agreement with the

know degree of degeneracy.

4.3 Energy Eigenfunctions in Momentum Space

We want to determine the relationship between the usual energy eigen-

functions in the momentum space ψnlm(p′) ≡ 〈p′|nlm〉 (with a = an)

and the four-dimensional spherical harmonic eigenfunctions Ynlm(U ′; a) =
〈U ′|nlm; a).

We choose the RMS momentum a to have the value an. If we use the

expression Eq. (3.61) for 〈U ′| in terms of 〈p′|

〈U ′| = 〈p′|
(

p2 + a2n
2an

)3/2

(4.7)

and the expression Eq. (3.32) for the eigenstates of (Zα)−1 in terms of the

energy eigenstates

|nlm; an) =

√

p2 + a2n
2a2n

|nlm〉 (4.8)

we find the desired result

Ynlm(U ′; an) =
(

p2 + a2n
2an

)2
1√
an
ψnlm(p′). (4.9)

The usual method of deriving this relationship between the wave function

in momentum space and the corresponding spherical harmonics in four

dimensions involves transforming the Schrodinger wave equation to an

integral equation in momentum space [32, 48]. As in the classical case,

we first replace p by p/a and perform a stereographic projection from

the hyperplane corresponding to the three-dimensional momentum space

to a unit hypersphere in a four-dimensional space. The resulting integral

equation manifests a four-dimensional invariance. When the wave functions

are normalized as in Eq. (4.9), the solutions are spherical harmonics in

four dimensions. As another alternative to this procedure, we can Fourier

transform the configuration space wave functions directly [129].
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4.4 Explicit Form for the Spherical Harmonics

The spherical harmonics in four dimensions can be expressed as [130]:

Ynlm(Ω) = N1(n, l)(sin θ4)
lCl+1
n−1−l(cos θ4)

·
[

N2(l,m)(sin θ)mC
m+1/2
l−m (cos θ)

eimφ√
2π

]

. (4.10)

The factor in brackets is equal to Y ml (θ, φ), the usual spherical harmonic

in three-dimensions [130]. The Gegenbauer polynomials Cλn(x) of degree n

and order λ are defined in terms of a generating function:

1

(1− 2tx+ t2)λ
=
∑

n=0

tnCλn(x). (4.11)

N1(n, l) and N2(l,m) are chosen to normalize the Ynlm on the surface of

the unit sphere:
∫

|Ynlm(Ω)|2d3ΩU = 1, (4.12)

where d3ΩU = sin2 θ4 sin θdθdφ. We find

N1(n, l) =

√

22l+1

π

n(n− l − 1)!(l!)2

(n+ l)!
(4.13)

N2(l,M) =

√

22m

π

(

l +
1

2

)

(l −m)!

(l +m)!

[

Γ

(

m+
1

2

)]2

. (4.14)

In the next section, we discuss the asymptotic behavior of Ynlm for large

quantum numbers and compare it to the classical results of Chapter 2. We

first mention experiments with Rydberg atoms, which are atoms with a

very large radius that approximate the classical behavior.

4.5 Wave Functions in the Semi-classical Limit

4.5.1 Rydberg atoms

Advances in quantum optics, such as the development of ultra-short laser

pulses, microwave spectroscopy, and atom interferometry, have opened

new possibilities for experiments with atoms and Rydberg states, meaning

hydrogen-like atoms in states with very large principal quantum numbers

and correspondingly large diameter electron orbits. The pulsed electromag-

netic fields can be used to modify the behavior of the orbital electrons. Semi-

classical electron wave packets in hydrogen-like atoms were first generated
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in 1988 by ultrashort laser pulses, and today are often generated by unipolar

teraherz pulses [131–133].

Rydberg states of alkalai metals, which have one outer electron, have

been employed recently in systems of entangled atoms to perform quantum

computation. Two atoms, micrometers apart, can interact a billion times

more strongly than normal if one is excited to a high-energy Rydberg state,

for example with n about 79. Now much bigger, that atom shifts the energy

levels in the second atom so it cannot be excited, the so-called Rydberg

blockade [278].

Over the last few decades, there has been a broad interest in the

classical limit of the hydrogen-like atom for n very large, Rydberg states,

for a number of reasons [134]: (1) Rydberg states are at the border

between bound states and the continuum, and any process that leads to

excited bound states, ions, or free electrons usually leads to the production

of Rydberg states. This includes, for example, photo-ionization or the

application of microwave fields. The very large cross section for scattering is

unique. (2) Rydberg states can be used to model atoms with a higher atomic

number that have an excited valence electron that orbits beyond the core.

(3) In Rydberg states, the application of electric and magnetic fields breaks

the symmetry of the atom and allows the study of different phenomena,

including the transition from classical chaos to quantum chaos [135].

(4) Rydberg atoms can be used to study coherent transient excitation and

relaxation, for example the response to short laser pulses creating coherent

quantum wave packets that behave like a classical particle.

The square of the wave function for a given quantum state gives a

probability distribution for the electron that is independent of time. The

wave function is the appropriate description for Rydberg states for which

the principal quantum number is not too high.

If we want to describe the movement of an electron in a semiclassical

state, with a large radius, going around the nucleus with a classical time

dependence, then we need to form a wave packet. The wave packet is built

as a superposition of many wave functions with a band of principal quantum

numbers.

A variety of theoretical methods have been used to derive expressions

for the hydrogen atom wave functions and wave packets for highly excited

states. There is general agreement on the wave functions for large n, and

that the wave functions display the expected classical behavior: elliptical

orbits in the configuration space and great circles in the four-dimensional

momentum space [136–139].
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Researchers have proposed a variety of wave packets to describe

semi-classical Rydberg states. There are general similarities in the wave

packets that describe electrons traveling in circular or elliptical orbits

with a classical time dependence for some characteristic number of orbits,

and it is maintained that the quantum mechanical wave packets provide

results that agree with the classical results [112, 132, 133, 136–141].

Most of the approaches exploit the SO(4) or SO(4,2) symmetry of the

hydrogen atom, which is used to rotate a circular orbit to an elliptical

orbit. The starting orbital is often taken as a coherent state, which is

usually considered a classical-like state. The most familiar example of a

coherent state is for a one-dimensional harmonic oscillator characterized

by creation and annihilation operators a† and a. The coherent state |α〉
is a superposition of energy eigenstates that is an eigenstate of a where

a|α〉 = α|α〉 for a complex α. This coherent state will execute harmonic

motion like a classical particle [142]. To obtain a coherent state for the

hydrogen-like atom, eigenstates of the operator that lowers the principal

quantum number n (which will be discussed in Section 7.4) have been

used [143], as well as lowering operators based on the equivalence of the

four-dimensional harmonic oscillator representation of the hydrogen atom

[137, 138, 144].

In either case, this coherent eigenstate is characterized by a complex

eigenvalue, which needs to be specified. Several constraints have been

used to obtain the classical wave packet that presumably obeys Kepler’s

laws, such as requiring that the orbit lie in a plane so 〈z〉 = 0 for the

orbital, or that 〈r − rclassical〉 be a minimum, or that some minimum

uncertainty relationship is obtained. In addition, there are issues regarding

the approximations used, in particular, those that relate to time. For

times characteristic of the classical hydrogen atom, the wave packets act

like a classical system. For longer times, the wave packet spreads in the

azimuthal direction and after some number of classical revolutions of order

10 to 100 the spread is 2π so the electron is uniformly spread over the

entire orbit. The spread arises because the component wave functions

that form the wave packet have different momenta. In two derivations,

still longer times were considered, and recoherence was predicted to occur

after about n/3 revolutions, where n is the approximate principal quantum

number, although there is some difference in the predicted amount of

recoherence [134, 139]. Due to the conservation of L and A the spread

of the wave packets is inhibited except in the azimuthal direction.
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Brown took a different approach to develop a wave packet for a circular

orbit [112]. He first developed the asymptotic wave function for large n and

then optimized the coefficients in a Gaussian superposition to minimize the

spread in φ, obtaining a predicted characteristic decoherence time of about

10 minutes, considerably longer than any other predicted decoherence time.

Other authors have explored the problem from the perspective of

classical physics and the Bohr Correspondence Principle [136, 140, 145,

146] Results from the different methods support the basic conclusion

that the wave functions are peaked on the corresponding classical Kepler

trajectories: “atomic elliptic states sew the wave flesh on the classical

bones” [132].

With the variety of experimental methods used to generate Rydberg

states, a variety of Rydberg wave packets are created, and it is not clear

which theoretical model, if any, is preferred [134]. We take a very simple

approach to forming a wave packet and simply use a Gaussian weight for

the different frequency components. This does not give an intentionally

optimized wave packet, but it is a much simpler approach and the result

has all the expected classical behavior that is very similar to that obtained

from much more complicated derivations. We start with a circular orbit

and then do a SO(4) rotation to secure an elliptical orbit. We show that it

has the classical period of rotation.

4.5.2 Formation of semi-classical wave packets

We need to derive the semi-classical limit of the wave functions that

correspond to circular orbits in configuration space. For this case, sin ν,

which we interpret as the expectation value of the eccentricity, vanishes. We

derive expressions for the wave functions in momentum space and then form

a wave packet. To obtain corresponding expressions for elliptical orbits, we

perform a rotation by eia·ν which does not alter the energy but changes the

eccentricity and the angular momentum.

Case 1: Circular orbits, sin ν = e = 0

We derive the asymptotic form of Ynlm, the spherical harmonic in four

dimensions, for large quantum numbers, where for simplicity we choose the

quantum numbers n−1 = l = m corresponding to a circular orbit in the 1–2

plane. From Eq. (4.10) we see that we encounter Gegenbauer polynomials

of the form Cλ0 , which represents the first term in the expansion of the left
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side of Eq. (4.11), and therefore are unity. For a very large l, sinl θ will have

a very strong peak at θ = π/2 so we make the expansion [112]

sin θ = sin
(π

2
+
(

θ − π

2

))

= 1− 1

2

(

θ − π

2

)2

+ · · · ≈ e−(1/2)(θ−π/2)2

(4.15)

to obtain

sinl θ ≈ e−(1/2)l(θ−π/2)2. (4.16)

The asymptotic forms for N1 and N2 can be computed using the properties

of Γ functions:

lim
z→∞Γ(az + b) �

√
2πe−az(az)az+b−

1
2 , (4.17)

and the Stirling approximation for the factorial function

n! ≈
√
2πn(n/e)n for large n. (4.18)

We obtain1

Yn,n−1,n−1(Ω) =

√

n

2π2
e−

1
2n(θ4−π

2 )
2 · e− 1

2n(θ−π
2 )

2

ei(n−1)φ. (4.19)

which gives the probability density

|Yn,n−1,n−1(Ω)|2 =
n

(2π2)
e−n(θ4−

π
2 )

2 · e−n(θ−π
2 )

2

. (4.20)

We have Gaussian probability distributions in θ4 and θ about the value

π/2. The distributions are quite narrow with widths Δθ4 ≈ Δθ ≈ 1/
√
n.

The spherical harmonic essentially describes a circle (θ4 = θ = π/2) on the

unit hypersphere in the 1–2 plane. As n becomes very large, both U4 =

cos θ4 ≈ (r − rc)/r (Eqs. (2.40) and (2.51)) and U3 = sin θ4 cos θ, which

is proportional to p3, go to zero as 1/
√
n. The distribution approaches the

great circle U2
1 + U2

2 = 1 that we saw in Eq. (2.46) for a classical particle

moving in a circular orbit in the 1–2 plane in configuration space. Note

that this state is a quantum mechanical stationary state with a constant

probability density. To get the classical time dependence, we need to form

a wave packet.

1According to Eq. (4.9), the corresponding wavefunction in momentum space ψ(p) is

obtained by multiplying Yn,n−1,n−1(Ω) by 4a
5/2
n /(p2 + a2)2.
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Forming a Wave packet

We form a time dependent wave packet for circular orbits by superposing

circular energy eigenstates:

χ(Ω, t) =
∑

n

eitEnYn,n−1,n−1An−N , (4.21)

where An−N is an amplitude peaked about n = N >> 1. For n >> 1 we

expand En about EN :

En = EN +
∂E

∂n

∣

∣

∣

∣

N

s+
∂2E

∂n2

∣

∣

∣

∣

N

s2 + · · · , (4.22)

where s = n − N . From the equation for the energy levels, E =

−m(Zα)2/(2n2) we compute

∂En
∂n

∣

∣

∣

N
=
m(Zα)2

N3
=

√

−8E3
N

m(Zα)2
. (4.23)

In agreement with the Bohr Correspondence Principle, the right-hand side

of Eq. (4.23) is just the classical frequency ωcl as given in Eq. (2.24). For

the second order derivative we have

∂2E

∂n2

∣

∣

∣

N
= − 3

N
ωcl ≡ β, (4.24)

which gives

χ(Ω, t) = e−itEN eiφ(N−1)
∞
∑

s=−N+1

e−i(ωclst−(β
2 )s

2t−sφ)

·As|YN+s,N+s−1,N+s−1|. (4.25)

We choose a simple Gaussian form for As

As =
1√
2πN

e−s
2/(2N). (4.26)

Brown used As = Ce−s
23ωclt/N which minimizes the diffusion in φ at time

t [112]. Since |YN+s,N+s−1,N+s−1| varies slowly with s for N >> 1, we can

take it outside of the summation in Eq. (4.25). We now replace the sum by

an integral over s. Since As is peaked about s = N , we can integrate from

s = −∞ to s = +∞. We perform the integral by completing the square in
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the usual way. The final result for the probability amplitude for a circular

orbital wave packet is

|x(Ω, t)|2 = |YN,N−1,N−1|2
(

1 + β2t2N2
)−1

· exp
[

− (φ− ωclt)2 N

1 + (βtN)2

]

. (4.27)

This represents a Gaussian distribution in φ that is centered about the

classical value φ = ωclt, which means that the wavepacket is traveling in

the classical trajectory with the classical time dependence. The width of

the φ distribution is

Δφ = (N)(−1/2)(1 + β2t2N2)1/2 = (N)(−1/2)(1 + 9ω2
clt

2)1/2. (4.28)

The distribution in φ at t = 0 is very narrow, proportional to 1/
√
N , but

Δφ increases approximately linearly over time.

The distributions in θ4 and θ are Gaussian and centered about π/2 in

each case, as for the circular wave function (cf. Eq. (4.20)) with widths

equal to (N)−1/2. The spread of these distributions in time is inhibited

because of the conservation of angular momentum and energy. The detailed

behavior of the widths depends on our use of the Gaussian distribution.

Other distributions will give different widths, although the general behavior

is expected to be similar.

As a numerical example, consider a hydrogen atom that is in the

semiclassical region when the orbital diameter is about 1 cm. The corre-

sponding principal quantum number is about 104, the mean velocity is

about 2.2× 104 cm/sec, and the period about 1.5× 10−4 sec. After about

34 revolutions or 5 × 10−3 sec, the spread in φ is about 2π, which means

that the electron is spread uniformly throughout the circular orbit. This

characteristic spreading time can be compared to 1.6× 10−3 sec for a fully

optimized wave packets formed from coherent SO(4,2) states [139, 147]. In

order to make predictions about significantly longer times, we would need

to retain more terms in the expansion Eq. (4.22) of En.

Case 2: Elliptical orbits sin ν = e 
= 0

We can obtain the classical limit of the wave function for elliptical orbits by

first writing our asymptotic form Eq. (4.19) for Yn,n−1,n−1 in terms of the

U variables instead of the angular variables by using definitions Eq. (2.40),
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and setting a = an. Retaining only the lowest order terms in (θ4−π/2) and
(θ − π/2), we find

Yn,n−1,n−1(Û) =
( n

2π2

) 1
2

e
i(n−1) tan−1

(
U2
U1

)
· e− 1

2n(U4)
2

e−
1
2n(U3)

2

. (4.29)

For large n, this represents a circular orbit in the 1-2 plane. The exponential

in U3 indicates p3 is near zero; the exponential in U4 indicates that U4 =

(rc − r)/rc (Eq. 2.51) is near zero so the trajectory is approximately the

classical trajectory. The quantity rc is the length of the classical semi-major

axis given by Eq. (2.14). We now perform a rotation by A2ν. which will

change the eccentricity to sin ν, and change the angular momentum, but

will not change the energy or the orbital plane. Using Eq. (3.70) to express

the old coordinates in terms of the new coordinates, we find to lowest order

Y ′
n,n−1,n−1(U) =

( n

2π2

)1/2

e
i(n−1) tan−1

(
U2

U1 cos v

)

· e− 1
2n{U2 sin ν−U4 cos ν}2 · e− 1

2n(U3)
2

. (4.30)

In Section 2.6, we found that the vanishing of the term in braces

(0 = U2 sin ν − U4 cos ν), along with U3 approximately zero, specifies the

classical great hypercircle orbit (Eq. (2.42)) corresponding to an ellipse

in configuration space with eccentricity e = sin ν and lying in the 1–2

plane. The probability density |Y ′
n,n−1,n−1(U)|2 vanishes except within a

hypertorus with a narrow cross section of radius approximately 1√
n
which

is centered about the classical distribution. Since the width 1√
n

of the

distribution is constant in U space, it will not be constant when projected

onto p space.

In terms of the original momentum space variables (Eq. 2.38), the

asymptotic spherical harmonic is

Yn,n−1,n−1(p)

=
( n

2π2

) 1
2

e
i(n−1) tan−1

(
p2

p1 cos ν

)

· exp
{

−
(n

2

)

[

p21 + (p2 − a tan ν)2 − a2

cos2 ν

]2(
cos ν

p2 + a2

)

}2

· exp
{

−
(n

2

)

(

2p3a

p2 + a2

)}2 ∣
∣

∣a = an. (4.31)

The expression in brackets corresponds to the momentum space classical

orbit equation we found previously (Eq. 2.35). As we expect, p3 is Gaussian
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Fig. 4.1. Wave function probability distribution |Y ′
n,n−1,n−1(p)|2 in momentum space

for large n, showing the variation in the width of the momentum distribution about the

classical circular orbit. The center of the distribution is at p2 = a tan ν. The classical
orbit is in the 1–2 plane.

about zero since the classical orbit is in the 1–2 plane. We can simplify the

expressions for the widths by observing that to lowest order we can use

Eq. (2.34), which implies p2 + a2 = 2a2 + 2ap2 tan ν in the exponentials.

The widths of both distributions therefore increase linearly with p2. We

also note that since classically there exists a one-to-one correspondence

between each point of the trajectory in momentum space and each point

in configuration space, we may interpret the widths of the distributions

using Eq. (2.18) (p2 + a2)/a2 = 2rc/r. Accordingly the widths increase as

the momentum increases or as the distance to the force center decreases

(Fig. 4.1).

Forming a Wave packet for Elliptical Motion

We may form a time dependent wave packet superposing the wave functions

of Eq. (4.30). Care must be taken to include the first-order dependence

(through an) of tan
−1(U2/U1 cos ν) on the principal quantum number when

integrating over the Gaussian weight function. The result for the probability

density is the same as before (Eq. 4.27) except |Y ′
N,N−1,N−1|2 (given in
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Eq. 4.30) replaces |YN,N−1,N−1|2 and

ωclt = tan−1

(

U2

U1 cos ν

)

+ sin ν (U1) (4.32)

replaces ωclt = φ, The final result for large n = N is

|χ(Ω, t)|2 =
n

2π2
(1 + β2t2n2)−1 exp[−n(U2 sin ν − U4 cos ν)].

exp[−nU2
3 ] · exp

[

−
(

φ− tan−1 U2

U1 cos ν
+ U1 sin ν

)2
n

1 + (βtn)2

]

.

(4.33)

The result has the same time dependence as the classical result Eq. (2.59)

and the orbit is approximating the classical orbit (Eq. 2.42). The spread

of the wave packet will be controlled by the same factor as for the circular

wave packet.

Remark on the Semiclassical Limit in Configuration Space

The time dependent quantum mechanical probability density follows the

classical trajectory in momentum space, meaning that the probability is

greatest at the classical location of the particle in momentum space. Since

the configuration space wave function is the Fourier transform of the

momentum space wave function, the classical limit must also be obtained in

configuration space. That this limit is obtained is made explicit by observing

that the momentum space probability density is large when

(U2 sin ν − U4 cos ν)
2 ≈ 0. (4.34)

However, from Section 2.6 we know that a parametric equation for the

classical orbit in U = space is

U2 sin ν − U4 cos ν = 0. (4.35)

Accordingly we conclude that the configurations space probability will be

large when
[

r − rclassical
rclassical

]2

≈ 0. (4.36)

4.6 Quantized Semiclassical Orbits

It is convenient at times to have a semiclassical model for the orbitals of

the hydrogen-like atom. Historically, this was first done by Pauling and
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Wilson [148, p. 36]. We can obtain a model by interpreting the classical

formulae for the geometrical properties of the orbits as corresponding to

the expectation values of the appropriate quantum mechanical expressions.

Thus, when the energy E = −a2/2m appears in a classical formula, we

employ the expression for a for the quantized energy levels a = 1/nr0
where r0 = (mZα)−1 which is the radius 0.53 Angstrom of the ground

state. Similarly, if L2 appears in a classical formula, we substitute l(l + 1)

where l is quantized l = 0, 1, 2, . . . , n− 2, n− 1; and m , the component of

L along the 3-axis is quantized: m= −l,−l+ 1,−l+ 2, . . . , l.

Orbits in Configuration Space

Recalling Eq. (2.14), rc = mZα/a2, and noting Eq. (3.15) a = mZα/n,

we see arc = n, which gives a semi-major axis of length rc = n2r0, where

r0 = 1/mZα is the radius for the circular orbit of the ground state. For a

circular orbit, the radius is the semi-major axis. Thus, rc is the radius of

a circular orbit for a state with principal quantum number n. For an orbit

with eccentricity e = sin ν, the equations for the magnitude of L and A are

L = rca cos ν = n cos ν =
√

l(l + 1) (4.37)

A = rca sin ν = n sin ν =
√

n2 − l(l + 1) (4.38)

This gives an eccentricity sin ν equal to

e = sin ν =

√

1− l(l + 1)

n2
(4.39)

and a semi-major axis equal to

b = rc sin ν = n
√

l(l + 1). (4.40)

Note that the expression for e is limited in its meaning. For an s state, it

always gives e = 1, and for states with l = n− 1 it gives e =
√

1/n, not the

classically expected 0 for a circular orbit.

Orbits in U -Space

The corresponding great hypercircle orbits (ν,Θ) in U -space are described

by giving the quantized angle ν, between the three-dimensional hyperplane

of the orbit and the 4-axis, and the quantized angle Θ, between the
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hyperplane of the orbit and the 3-axis:

cos ν =

√

l(l + 1)

n2
(4.41)

cosΘ =

√

m2

l(l + 1)
. (4.42)

Note the similarity in these two equations, suggesting thatm relates to l the

same way that l relates to n, suggesting a four-dimensional generalization

of the usual vector model of the atom which only describes the precession

of L about the z-axis.

The results for orbits in configuration and momentum space illustrate

some interesting features:

(1) Equation ar = n illustrates that the characteristic dimensions of

an orbit in the configuration space and the corresponding orbit in

momentum space are inversely proportional, as expected, since they

are related by a Fourier transform, consistent with the Heisenberg

Uncertainty Principle.

(2) If l = 0, then there is no classical state. The orbit in configuration

space degenerates into a line passing through the origin, while the

corresponding circular orbit in momentum space attains an infinite

radius and an infinite displacement from the origin. Although this seems

peculiar from the pure classical viewpoint, quantum mechanically it

follows that for S states there is a non-vanishing probability of finding

the electron within the nucleus. S states are very important in the

quantum mechanics of the hydrogen atom.

In order to interpret these statements about quantized semiclassical

elliptical orbits we observe that for the quantum mechanical state of the

hydrogen-like atom with definite n, l,m, the probability density, which is

the square of the absolute value of the wave function, is (1) independent

of φr or φp and (2) it does not confine the electron to some orbital plane.

Since the quantum mechanical distribution for such a state specifies no

preferred direction in the 1–2 plane, we must imagine this distribution as

corresponding in some way to an average over all possible orientations of

the semiclassical elliptical orbit. This interpretation is supported by the fact

that the region within which the quantum mechanical radial distribution

function differs largely from zero is included between the values of r

corresponding to the semiclassical turning points rc(1± sin ν).
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4.7 Four-Dimensional Vector Model of the Atom

In configuration space or momentum space, the angle between the classical

plane of the orbit and the z-axis is Θ, which is usually interpreted in terms

of the vector model of the atom, in which we imagine L to be a vector of

magnitude
√

l(l + 1) precessing about the z-axis, with m as the component

along the z-axis as shown in Fig. 4.2.

This precession may be linked to the φr independence of the probability

and the absence of an orbital plane, as mentioned at the end of the preceding

section. The precession constitutes a classical mechanism that yields the

desired average over all possible orientations of the semi-classical elliptical

orbit. Since the angle Θ is restricted to have only certain discrete values,

one can say that there is a quantization of space.

The expression for cos ν =
√

l(l+ 1)/n2 is quite analogous to that for Θ,

Eq. (4.42), and so suggests a generalization of the vector model of the atom

to four dimensions. The projection of the four-dimensional vector model

onto the physical three-dimensional subspace must give the usual vector

model. We can achieve this by imagining that a four-dimensional vector of

length n, where n is the principal quantum number, is precessing in such

a way that its third and fourth components are constants, while the first

and second components vary periodically. The projection onto the 1–2–3

hyperplane is a vector of constant magnitude
√

l(l+ 1) precessing about

the 3-axis (Fig. 4.3). The component along the 3-axis is m. The component

along the 4-axis is A =
√

n2 − l(l + 1) the magnitude of the vector A.

The vectors L and A are perpendicular to each other. Thus, the precessing

n vector makes a constant angle Θ with the 3-axis and a constant angle

Fig. 4.2. Three-dimensional vector model of the atom. The angular momentum vector
L precesses about the z-axis so the component in the z-direction is Lz = m.
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Fig. 4.3. Four-dimensional vector model of the atom. The vector representing the
principal quantum number n precesses so that the vectors L and A are its components
along the 3-axis and the 4-axis respectively.

π/2− ν with the 4-axis. Since both angles are restricted to certain values,

we may say that we have a quantization of four-dimensional space.

In the next chapter, we deal with the relativisitic Dirac hydrogen atom.
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Chapter 5

The Dirac Hydrogen Atom: The Kepler
Problem for a Relativistic Spinning Electron

We first discuss the conserved generalized parity operator introduced by

Dirac and then derive and interpret the conserved pseudoscalar operator Λ,

examining its non-relativistic limit. We present the symmetry group for the

Dirac electron in a Coulomb potential.

5.1 Dirac’s Generalized Parity Operator Kd

For a non-relativistic electron in a Coulomb field, the Pauli equation reduces

to the Schrodinger equation
(

p2

2m
− Zα

r
− E

)

ψ = 0 (5.1)

and the scalar σ · L is a constant on the motion. This suggests that there

exists some conserved relativistic generalization of σ · L for the Dirac

equation with the Hamiltonian1

H = α · p+ βm− Zα

r
. (5.2)

In order to investigate this possibility, we calculate the effect of σ · L on

our four component Dirac spinors using the equation

J2 =
(

L+
σ

2

)2

= j(j + 1) = l(l + 1) + σ · L+
3

4
. (5.3)

We know that either j = l + 1/2 or j = l − 1/2. Since the upper and

lower components of the spinor have opposite parity, if l = j − 1/2 for

1We use the following conventions: −iγ5σ = α; γμγν + γνγμ = −2δμν ; γ0 = γ1γ2γ3γ5.
It is convenient to use a direct product representation ρ⊗σ of the matrices. In the Dirac
representation, we have γ5 = iρ1, β = ρ3, γi = ρ3ρ1ρi, where ρi and σi, i = 1, 2, 3 are
two independent sets of Pauli spin matrices.

73
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the upper component, then l′ = j + 1/2 for the lower component and

vice versa. Solving Eq. (5.3) for l equal to j − 1/2 and j + 1/2, we obtain

the result

(σ · L+ l)Ψ(j, l) =

(

j +
1

2

)[

ψj,l=j+ 1
2

−ψj,l=j− 1
2

]

= β

(

j +
1

2

)

Ψ(j, l), (5.4)

where Ψ(j, l) is a four-component Dirac spinor

Ψ(j, l) =

[

ψj,l=j+ 1
2

ψj,l=j− 1
2

]

. (5.5)

ψj,l is a two-component spinor, and

β =

(

1 0

0 −1

)

. (5.6)

If we multiply Eq. (5.4) by β and perform some simple manipulations, we

obtain the following:

KdΨ(j, l) = (−1)l+j−1/2(j + 1/2)Ψ(j, l) (5.7)

with

Kd = β(σ · L+ 1). (5.8)

In order to make the Dirac spinor an eigenspinor of Kd, which is the

relativistic generalization of σ · L, we had to insert a β because the upper

and lower components have opposite parity. By an explicit calculation, we

can show that

[Kd, H ] = 0; [Kd, J ] = 0, (5.9)

so Kd is a conserved scalar. Another important feature of Kd is that its

square is related to J2. If we operate on Eq. (5.7) with Kd or just square

Eq. (5.8) and use the identity

σ ·Aσ ·B = A ·B + iσ ·A×B,

we find

K2
d = J2 +

1

4
. (5.10)
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It is useful to define a normalized operator

k =
Kd

j + 1/2
, (5.11)

which obeys the equation

kΨ(j, l) = (−1)l(−1)j−1/2Ψ(j, l) ≡ k′Ψ(j, l). (5.12)

For fixed j, the operator k is proportional to the parity operator. The

eigenvalues k′ have been called the normality. The eigenstates are labeled

k′ and j (in addition to n and m). The two degenerate energy levels have

the same n and j, but the eigenvalues k′ are opposite in sign.

5.2 The Conserved Pseudoscalar Operator Λ

By definition, the operator Λ transforms one degenerate state into the other.

Since the two states have opposite parities, Λ must have a parity equal

to −1. In addition, since the two states have the same j, the operator must

not change the angular momentum. Therefore, Λ is a pseudoscalar and

obeys the following commutation relations

[J ,Λ] = 0; [H,Λ] = 0 (5.13)

and the anticommutation relation

{Kd,Λ} = 0. (5.14)

Clearly, any conserved pseudoscalar constructed from the dynamical vari-

ables will be suitable. The pseudoscalar Λ will be unique up to a constant

scalar function that commutes with Λ, namely, f(H,J2). An essentially

unique Λ is obtained if we require that

Λ2 = 1.

This requirement means that Λ does not change the norm of the states and

also specifies our phase convention. For Zα = 0, there exists a conserved

pseudoscalar, σ ·p, which, if normalized, would equal the helicity. Since Kd

is a conserved scalar, it is possible to obtain another pseudoscalar constant

by commutation:

[σ · p, Kd] = iβσ · (p× L−L× p). (5.15)

By attempting to close the algebra of conserved quantities for Zα = 0,

we have obtained a term equal to (2ia)βσ · A, where A is the conserved
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quantum mechanical Runge Lenz vector for Zα = 0. This will be the first

term in Λ. Since

{σ · p,Kd} = 0,

we can write the left side of Eq. (5.15) as 2σ · p Kd. The term σ · p may

be written in terms of the free Hamiltonian H0:

H0 = −iγ5σ · p+ βm. (5.16)

Solving for σ · p gives

σ · p = −iγ5(H0 − βm). (5.17)

If we follow the same procedure but use the Hamiltonian for Zα �= 0 given

in Eq. (5.2), we find

σ · p+ iγ5
Zα

r
= −iγ5(H − βm). (5.18)

Comparison of Eq. (5.17) and Eq. (5.18) suggests that when we turn on

the electromagnetic interaction, we replace σ ·p by σ ·p+ iγ5
Zα
r . Thus, in

analogy to Eq. (5.15), we compute the pseudoscalar

[

σ · p+ iγ5
Zα

r
,Kd

]

= 2σ · pK + 2i
2α

r
γ5Kd.

We find that the commutator of this pseudoscalar with H is a constant

times −im Zα
r γ5(σ · L + 1). We must now find a term whose commuter

with H will cancel this. From the quantum mechanical form of A (Eq. 2.2),

we would expect Λ to contain a term similar to 2imZασ · rr multiplied by

1 or β. Upon calculation, we find that the correct term does not contain

the β. The final result for Λ is

Λ =

[

Kd,σ · p+ i
Zα

r
γ5

]

+ 2imZασ · r
r

or, by using Eq. (5.18),

Λ = −2iKdγ5(H − βm) + 2imZασ · r
r
.

To normalize Λ, we compute

Λ2

4
= −K2

d

(

H2 −m2
)−m2(Zα)2. (5.19)
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Therefore, the normalized Δ is

λ =
Λ

|Λ| =
1

[K2
d (H

2 −m2) + (mZα)2]
1
2

[

Kdγ5(H − βm)−mZασ · r
r

]

.

(5.20)

This operator has been interpreted to be related to the conserved Runge–

Lenz vector in the non-relativistic Schrodinger H atom [101].

5.3 The Symmetry Group of the Degenerate Levels

The normalized operators λ = Λ/|Λ| and k = Kd/|Kd| obey the following

equations:

λ2 = 1 k2 = 1 {k, λ} = 0. (5.21)

Therefore, the components of

Σ =
1

2
(λ,−ikλ, k)

form an SU(2) algebra obeying the commutation relations

[Σi,Σj ] = iεijkΣk.

Using our two degenerate levels as a basis, we may construct a matrix

representation of the generators in terms of the Pauli matrices:

k =

(

1 0

0 −1
)

= σ3, k is like a parity operator in the subspace,

λ =

(

0 1

1 0

)

= σ1, λ interchanges the degenerate levels,

−ikλ =

(

0 −i
i 0

)

= σ2,
−ikλ interchanges the levels

and multiplies by −i times the parity.

Since the degree of degeneracy is always two for the Dirac hydrogen-

like atom, we always have this two-dimensional representation of SU(2).

The group structure here is the same as that of the isotopic spin group.

Our two-dimensional representation of the group is equivalent to the two-

dimensional representation of the isotopic spin group obtained by using a

proton and a neutron as the basis states.2

2For the hydrogen-like atom degeneracy group, rotations for all angles have physical
meaning. For the isotopic spin group, the same is not true. Although we may formally
rotate from a neutron state to a proton state, no such intermediate states have been
observed, nor are they allowed by superselection rules.
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For the Dirac hydrogen-like atom, the conserved operators are Σ and J .

They are the elements of the complete degeneracy algebra

SU(2)
⊗

SU(2) (5.22)

two-dimensional (2j + 1)-dimensional

representation representation

This direct product representation SU(2)⊗SU(2) will be a subalgebra of the
spectrum-generating algebra. If we label the representation by the Casimir

operators of the two disjoint SU(2) groups, namely,

Σ2 =
1

2

(

1 +
1

2

)

,

J2 = j(j + 1),

then we have the
(

1
2 ; j
)

representation. The degeneracy group correspond-

ing to this is SO(4).

5.4 Calculation of Λ for the Pauli Hamiltonian with

First-Order Relativistic Corrections

The expression for λ, Eq. (5.20), contains the Dirac Hamiltonian. We can

approximate the Hamiltonian to obtain first-order corrections to λ. To

obtain Λ to O
(

m(Zα)4
)

, we perform a Foldy–Wouthuysen transformation.3

The Dirac Hamiltonian Eq. (5.2) may be transformed as follows:

H ′ = UHU−1

= βm+ β
p2

2m
− Zα

r
+
πZα

2m2
δ(r) +

Zα

4m2

σ ·L
r3

+
Zα

2m
βγ5σ · r

r3
,

(5.23)

where

U = exp

(

− i

2m
βγ5σ · p

)

.

3In order to determine the order of the terms, we note that in the non-relativistic
domain p ∼ mcZα, r ∼ 1/(mcZα).
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A second unitary transformation eliminates the last term:

H ′′ = V H ′V −1

= βm+ β
p2

2m
+ β

p4

8m3
− Zα

r
+

Zα

4m2

σ ·L
r3

+
πZα

2m2
δ(r) + 0

(

m(Zα)5
)

,

(5.24)

where

V = exp

(

γ5σ · r
r3

Zα

4m2

)

.

Executing the same transformation U on Λ yields4

Λ′

2
= U

Λ

2
U−1

= Kdσ · p+ imZασ · r
r
+

3

4
βKd ·

{

σ · p, Zα
r

1

m

}

+ 0
(

m(Zα)5
)

.

(5.25)

Transformation V changes Λ′ by terms that are, at most, of order m(Zα).5

Therefore,

Λ′′ = V Λ′V −1

= Λ′ + 0
(

m(Zα)5
)

.

We may manipulate Eq. (5.25) into the form

Λ′′ = σ ·A′′(−2i),
where

A′′ = β
(p×L−L× p)

2

(

1 +
3

2

Zα

r

1

m

)

−mZαr
r

(

1 +
3

4

1

m2
βK

1

r2

)

.

(5.26)

To the order m(Zα)2, we see that A′′ is
√−2mE times the non-

relativistic quantum mechanical Runge–Lenz vector (Eq. 3.2). In the non-

relativistic limit, we might interpret this result in terms of the vector model

of the atom. The vectors L and S precess about J = L+S. If we visualize

A as precessing about J with the same rotational frequency as L (and S)

and recall L·A = 0, then we see that J ·A = 1
2σ ·A may be constant despite

the fact that neither A nor σ are conserved separately (see Fig. 5.1).

4Note that K is unchanged by the transformations U and V .
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Fig. 5.1. Precession of A, S, and L about J . Note that L ·A = 0.

In the next chapter, we introduce the non-invariance group SO(4,1),

which is a representation of all the energy states of the non-relativistic

H atom.



PART 2

The Coulomb Potential
and Non-invariance Groups
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Vast worlds lie within the

hollows of each atom

multifarious as the motes

in a sunbeam.

Yoga Vasistha

Ancient Indian Vaisesika treatise

In Part 1, we discussed the classical features and the symmetry operators

of the hydrogen-like atom. We discussed the groups formed by these

operators and the representations of the groups realized by the hydrogen-

like atom. A summary of the results is given in Table 1.1 on page 21.

In Part 2, we consider the Schrodinger hydrogen-like atom and its

unitary “non-invariance” operators eiGiβi , where Gi is a generator and βi is

a real parameter, using eigenstates of (Zα)−1 for our basis. These operators

transform an eigenstate of the Schrodinger kernel K (Eq. 3.25) with a

definite value of the coupling constant (or principal quantum number) into

a linear combination of eigenstates with different values of the coupling

constant (or different principal quantum numbers).1 Unlike the invariance

operators a and L, the non-invariance operators clearly do not commute

with the kernel K :

[Gi,K] �= 0.

The set of all invariance and non-invariance operators forms a group

with which we may generate all eigenstates in our complete set from a given

eigenstate. We show that this group, called the spectrum generating group

of the hydrogen-like atom, is SO(4, 1), the group of orthogonal transforma-

tions in a five-dimensional space with a metric gAB = (−1, 1, 1, 1, 1), A,B =

0, 1, 2, 3, 4.2

The complete set of eigenstates of (Zα)−1 for the hydrogen-like atom

forms an irreducible infinite-dimensional representation of SO(4, 1) which,

1Yossef Dothan, Phys. Rev. D, 2, 2944 (1970) has hypothesized that such operators

may have explicit time dependence but are constant in time
(

dG
dt
i = 0

)
. This hypothesis

is equivalent to saying that Gi is a generator of a symmetry transformation of the time-
dependent Schrodinger equation.
2SO(p, q) is the group of ‘orthogonal’ transformations that preserve the quantity

x = x21 + x22 + · · ·+ x2p − x2p+1 − · · · − x2p+q.

The quantity x may be viewed as the norm of a p + q-dimensional vector in a space
that has a metric with p plus signs and q minus signs. The letters SO stand for special
orthogonal, meaning the orthogonal transformations have determinant equal to +1.
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we shall find, is reducible into an infinite sum of irreducible representations

of SO(4), each corresponding to the degeneracy group for a particular

principal quantum number n.

In Chapter 6, the first chapter of Part 2, we introduce the non-invariance

or spectrum generating group of the hydrogen atom SO(4,1), and discuss

the generators of group transformations and relate them to the group of

conformal transformations in momentum space. We evaluate the Casimir

operators for SO(4,1).

In Chapter 7, the spectrum generating group SO(4,1) is expanded to

SO(4,2) in order to be able to write Schrodinger’s equation as an algebraic

equation in terms of the group generators. All physical states together form

a basis for a unitary irreducible representation of this non-invariance groups.

We derive manifestly Hermitian expressions in terms of the momentum

and position canonical variables for the additional generators of the group

transformations and discuss the meaning of the generators. The values

of the Casimir operators that characterize the group representation are

calculated by considering the dynamical structure of the hydrogen-like

atom. Some important group theory results are derived that will be used

in the calculations of radiative shifts. We discuss the important subgroups

of SO(4,2).
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Chapter 6

The Spectrum Generating Group SO(4,1)
for the Hydrogen-like Atom

We consider the Schrodinger hydrogen atom and its unitary “non-

invariance” or spectrum generating operators eiGiβi , whereGi is a generator

and βi is a real parameter, using eigenstates of (Zα)−1 for the basis of our

representation. These operators transform an eigenstate of the kernel K

(Eqs. 3.25, 3.34) with a definite value of the coupling constant (or principal

quantum number) into a linear combination of eigenstates with different

values of the coupling constant (or different principal quantum numbers)

and different l and m. Unlike the invariance generators L and A, the non-

invariance generators clearly do not generally commute with the kernel K,

[Gi,K] �= 0, so they change the principal quantum number.

The set of all invariance and non-invariance operators forms a group

with which we may generate all eigenstates in our complete set from a

given eigenstate. We show that this group, called the spectrum generating

group of the hydrogen-like atom, is SO(4,1), the group of orthogonal trans-

formations in a five-dimensional space with a metric gAB = (−1, 1, 1, 1, 1),
where A,B = 0, 1, 2, 3, 4. The complete set of eigenstates of (Zα)−1 for

the hydrogen-like atom forms a unitary, irreducible, infinite-dimensional

representation of SO(4,1) which, we shall find, can be decomposed into

an infinite sum of irreducible representations of SO(4), each corresponding

to the degeneracy group for a particular principal quantum number. A

unitary representation means that all generators are unitary operators.

An irreducible representation does not contain lower dimensional repre-

sentations of the same group. In Section 6.3, we discuss the isomorphism

between the spectrum generating group SO(4,l) and the group of conformal

transformations in momentum space. An isomorphism means that the

groups have the same structure and can be mapped to each other.
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6.1 Motivation for Introducing the Spectrum Generating

Group SO(4,1)

We examined the group structure for the degenerate eigenstates of (Zα)−1

for the Schrodinger hydrogen-like atom: the degenerate states n2 form an

irreducible representation of SO(4). The next question we might ask is: Do

all or some of the states with different principal quantum numbers form

an irreducible representation of some larger group which is reducible into

SO(4) subgroups? If such a group exists, then it clearly is not an invariance

group of the kernel K, as shown in Eq. (3.34):
(

1

n
−K(a)

)

|nlm; a) = 0.

If we want our non-invariance group to include just some of the states then

it can be a compact group, since unitary representations of compact groups

can be finite dimensional. If we want to include all states, then it will be

a non-compact group since there are an infinite number of eigenstates of

(Zα)−1 and all unitary representations of non-compact groups are infinite

dimensional [22].

We can find a compact non-invariance group for the first N levels of the

coupling constant, n = 1, 2, . . . , N . The dimensionality of our representation

is
N
∑

n=1

n2 =
N(N + 1)(2N + 1)

6
. (6.1)

Mathematical analysis of the group SO(5) shows that this is the dimension-

ality of the irreducible symmetrical tensor representation of SO(5) given by

the tensor with five upper indices T abc..., where a, b, .. = 1, 2, 3, 4 or 5 [24].

Reducing this representation of SO(5) into its SO(4) components gives

(symm · tensorN)SO(5) = (0, 0)⊕
(

1

2
,
1

2

)

⊕ . . . ⊕
(

N − 1

2
,
N − 1

2

)

= (symm · tensor n = 1)SO(4)⊕
(symm · tensor n = 2)SO(4)⊕

. . .⊕ (symm · tensorn = N)SO(4),
(6.2)

which is precisely the structure of the first N levels of a hydrogen-like

atom. If we want to include all levels then we guess that the appropriate

non-compact group is SO(4,1), whose maximal compact subgroup is SO(4).

Thus, we conjecture that all states form a representation of SO(4,1).
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Consider the Lie algebra of O(4,1) and the general structure of its

generators in terms of the canonical variables. The matrices representing

the rotations of O(n) are antisymmetric n × n matrices, with n(n − 1)/2

independent off-diagonal elements. Thus, the algebra of O(n) has n(n−1)/2
generators, and to extend the algebra of O(n) to O(n + 1), n additional

generators are required, which can be taken as components of an n-vector.

To extend the Lie algebra from O(4) to O(5) or O(4,1) we can choose the

additional generators Ga to be components of a four-vector G under O(4).

Assuming the generators of O(4) are Sab then:

[Sab, Gc] = i(Gbδac −Gaδbc) a, b, c = 1, 2, 3, 4. (6.3)

If we apply Jacobi’s identity Eq. (1.7) to Sab, Ga, and Gb and use Eq. (6.3)

we find

[Sab, [Ga, Gb]] = 0. (6.4)

We require that the Lie algebra closes, so [Ga, Gb] must be a linear

combination of the generators, clearly proportional to Sab and we choose

the normalization such that

[Ga, Gb] = −iSab. (6.5)

If we define

G4 = S40 = S; Gi = Si0 = Bi (6.6)

and recall Eq. (3.4)

Li = eijkSjk Ai = Si4

then the additional commutation relations that realize SO(4,1) may be

written in terms of L,A,B, and S:

[Li, Bj ] = iεijkBk [Li, S] = 0,

[S,Aj ] = iBj [S,Bj ] = iAj ,

[Aj , Bk] = iδjkS [Bi, Bj ]. = −iεijkLk.
(6.7)

The top two commutators show that B transforms as a three-vector under

O(3) rotations and that S is a scalar under rotations. Alternatively we can

write the commutation relations in terms of the generators SAB, A,B =

0, 1, 2, 3, 4:

[SAB, SCD] = i(gACSBD + gBDSAC − gADSBC − gBCSAD), (6.8)

where g00 = −1, gaa = 1, where a = 1, 2, 3, 4.
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The commutators above follow directly from the mathematical theory

of SO(4,1), but the theory does not tell us what these generators represent,

just their commutation properties. We now investigate the general features

of the SO(4,1) representations provided by the hydrogen-like atom and how

to represent the generators in terms of the canonical variables.

6.2 Casimir Operators

The two Casimir operators of SO(4,1) are [94, Chap. 11; 124]

Q2 = −1

2
SABS

AB = S2 +B2 −A2 −L2, (6.9)

and

Q4 = −wAwA = (SL−A×B)2− 1

4
[L · (A+B)− (A+B) ·L]2, (6.10)

where3 wA = 1
8εABCDES

BCSDE

For SO(4), we recall that for the SO(4) representations the structure of

the generators in terms of the canonical variables led to the vanishing of one

Casimir operator C1 = L ·A and consequently to the appearance of only

symmetrical tensor representations. We will find Q4 vanishes for analogous

reasons.

If B is a pseudovector, it is proportional to L, which is the only

independent pseudovector that can be constructed from the dynamical

variables. The coefficient of proportionality, a scalar, X need not commute

with H :

B = XL [X,L] = 0 [X,H ] �= 0. (6.11)

Since [Bi, Bj] = −ieijkLk it follows that X2 = −1 and B would therefore

be a constant multiple of L and not an independent generator. Thus,

B must be a vector and expressible as a linear combination of the dynamical

variables

B = fr + hp, (6.12)

where f and h are scalar functions of r, p2, and r · p. Accordingly, we find

B · L = L ·B = 0. (6.13)

3Here, ε is the anti-symmetric Levi-Civita tensor which has the value +1 = ε12345 and
+1 for an even number of permutations and −1 for an odd number of permutations of
the indices, and vanishes if any two indices are equal.
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Further since B is a vector and A is a vector, A×B is a pseudovector and

therefore is proportional to L, the only independent pseudovector that can

be constructed from the dynamical variables:

A×B = Y L, [Y,L] = 0, (6.14)

where Y is scalar. For this equation to be consistent with the SO(4,1)

commutation relations, we find Y = S and therefore

A×B = SL. (6.15)

It follows from L · A = 0 and from Eqs. (6.13) and (6.15) that for the

SO(4,1) representations realized by the hydrogen-like atom

Q4 = 0. (6.16)

As with the SO(4) symmetry, the dynamics of the hydrogen atom require

that only certain representations of SO(4,1) appear. From the mathematical

theory of irreducible infinite dimensional unitary representations of SO(4,1)

we have the following results:

Class I: Q4 = 0; Q2 real, > 0

SU(2) × SU(2) content:

(Q)I =(0, 0)⊕
(

1

2
,
1

2

)

⊕ (1, 1)⊕ . . .
] (6.17)

Class II: Q4 = 0, Q2 = −(s− 1)(s+ 2), s = integer > 0

SU(2)× SU(2) content:

(Q)II =
(s

2
,
s

2

)

⊕
(

s+ 1

2
,
s+ 1

2

)

⊕ · · ·
(6.18)

The class I representations are realized by the complete set of eigenstates of

(Zα)−1 for the hydrogen-like atom. Note, however, that we have an infinite

number of such class I representations since Q2 may have any positive real

value. We shall find that for Q2 = 2 we may extend our group from SO(4,l)

to SO(4,2). The class II representations are realized by the eigenstates of

(Zα)−1 with the principal quantum numbers from n = s + 1 to n becoming

infinite. The first s levels could, if we choose, be described by SO(5).

In this section, we have analyzed the group structure and the repre-

sentations using the complete set of eigenstates of (Zα)−1 for our basis.

We might ask: What if we used energy eigenstates instead as a basis for

the representations? From Section 3.4, we know that the quantum numbers
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and multiplicities of the (Zα)−1 eigenstates are precisely the same as those

of the bound energy eigenstates. Thus, with the energy eigenstates as our

basis, we would reach the same conclusions about the group structure as

before, but we would include only the bound states in our representations

and we would be ignoring all scattering states.

6.3 Relationship of the Dynamical Group SO(4,1) to the

Conformal Group in Momentum Space

We can give a more complete analysis of the hydrogen-like atom in terms

of SO(4,1) by considering the relationship between the four-dimensional

rotations of the four-vector U ′
a with a = 1, 2, 3, 4, which we discussed in

Section 3.5.1, and the group of conformal transformations in momentum

space. Conformal transformations preserve the angles between directed

curves, but not necessarily the lengths. The rotations generated by the

Runge–Lenz vector a and the angular momentum L leave the scalar product

UaV
a of four-vectors invariant and therefore are conformal transformations.

The stereographic projection that we used is also a conformal transfor-

mation. Since the product of two conformal transformations is itself a

conformal transformation, we must conclude that a generates a conformal

transformation of the momentum three-vector p.

In order to express the most general conformal transformation, we must

introduce two additional operators that correspond to the operators B and

S introduced in Section 6.1. Using the isomorphism between the generators

L, a, B, and S of SO(4,1) and the generators of conformal transformations

in momentum space, we can immediately obtain expressions for the

additional generators B and S in terms of the canonical variables, which is

our objective. We need these additional generators to complete our SO(4,1)

group for the hydrogen atom.

To derive the isomorphism we use the most convenient representation,

namely that based on eigenstates of (Zα)−1 convenient for momen-

tum space calculations
(

ρ = (p2+a2)
2a2

)

. Once established, the isomorphism

becomes a group theoretical statement and is independent of the particular

representation.

The conformal group in momentum space

An arbitrary infinitesimal conformal transformation in momentum three-

space may be written as

δpj = δaj + δωjkpk + δρpj +
(

p2δcj − 2pjp · δc
)

(6.19)
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where δωjk = −δωkj .
The terms in δpj arise as follows:

δaj translation generated byR · δa
δωjk rotation generated by J · δω, Jij = εijkJk
δρ dilation generated byDδρ

δcj special conformal transformation generated by K · δc.
(6.20)

This is a 10 parameter group with the generators (R,J , D,K) which obey

the following commutation relations:

[D,Rj ]· = iRj [D, Ji] = 0

[D,Kj ] = −iKj [Ri, Jk] = iεijkRk
[Kn, Rm] = 2iεnmrJr − 2iδmnD [Ji, Jk] = iεikmJm
[Ri, Rj ] = 0 [Ki, Jk] = iεikmKm

[Kj ,Kj] = 0

. (6.21)

There is an isomorphism between the algebra of the generators of conformal

transformations and the dynamical non-invariance algebra of SO(4,1) of

the hydrogen atom. Since Ji is the generator of spatial rotations, we make

the association Li = Ji. Comparing the differential change in pi from a

transformation generated by A · δν (in the representation with ρ = p2+a2

2a2 ,

Eq. (3.49)

δpi = i [a · δν, pi]
= − 1

2a

[(

p2 − a2) δνi − 2p · δνpi
]

.
(6.22)

to the differential change in pi from a special conformal transformation

Eq. 6.19 leads to the association

ai =
1

2

(

Ki

a
− aRi

)

. (6.23)

To confirm the identification, we can use the commutation relations of the

conformal group to show that the O(4) algebra of L and a corresponds

precisely to that of J and 1
2 (

K
a −aR). This correspondence in commutators

indicates that the representation of a is valid whether we use ρ = (p2 +

a2)/2a2 or ρ = n/(ar). The correspondence in commutators alone suggests

that our SO(4) degeneracy group should be considered as a subgroup of the

larger group SO(4,1). It suggests introducing the operators

B(a) ≡ B =
1

2

(

K

a
+ aR

)

S = D. (6.24)
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The commutation relations of S and B which follow from Eq. (6.24) and

from the commutation relations Eq. (6.21) are identical to the commutation

relations given for S and B in Section 6.1. Thus, considering the a and L

transformations in momentum space as conformal transformations, we were

led to introduce the generators B and S and obtain the dynamical algebra

SO(4,l). Further, we are led to the expressions for these generators in terms

of the canonical variables.

By comparing the expression for a in terms of the conformal generators

Eq. (6.23) with our known expressions for a, Eq. (3.49) or Eq. (3.50), we

obtain expressions for Ki and Ri in terms of the canonical variables. If

we use the eigenstates convenient for configuration space calculations (ρ =

n/ar) we make the identifications

K =
1

2
(rp2 + p2r)− r · pp− pp · r − r

4r2 .

R = r.

(6.25)

Substituting these results in the equation for B we find

B =
1

2a

(

p2r + rp2

2
− r · pp− pp · r − r

4r2

)

+
ar

2
, (6.26)

which is a manifestly Hermitean operator valid throughout Hilbert space.

From Eqs. (6.23) and (6.24) we can show that

B − a = ar. (6.27)

To compute D we substitute the expressions for K and R into the

commutation relation from Eq. (6.21)

D =
i

2
[Ki, Ri]

obtaining the result

D =
1

2
(p · r + r · p) = S, (6.28)

which is identical to the generator of the scale change transformation D(λ)

defined in Eq. (3.37) in Section 3.4. S is defined in Eq. (6.6).

The significance of the generator D = S of the scale change in terms of

SO(4,1) is apparent if we compute

eiλD
(

aR± K

a

)

e−iλD = a′R ± K

a′
, (6.29)

where a′ = eλa.
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The unitary transformation eiλD can be viewed as generating an inner

automorphism of SO(4,1) which is an equivalent representation of SO(4)

characterized by a different value of the quantity a or the energy. In other

words, under scale change eiλD, the basis states for our representation of

SO(4,1), |nlm; a), transform to a new set |nlm; eλa) in agreement with our

discussion in Section 3.3. The scale change also changes the operators; for

example, the operator B(a) changes in a corresponding manner

eiλDB(a)e−iλD = B(eλa). (6.30)

Since the algebra of our generators closes, we may also view eiλD as

transforming a given generator into a linear combination of the generators.

With the definitions of a and B (Eqs. (6.23) and (6.24)) we can easily show

that (6.29), with the upper sign, can also be written

eiλDBe−iλD = B coshλ+ a sinhλ. (6.31)

Similarly, we have

eiλDae−iλD = B sinhλ+ a coshλ. (6.32)

In Chapter 7, we will expand the group SO(4,1) to SO(4,2) to allow us

to express Schrodinger’s equation in terms of the generators of SO(4,2).
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Chapter 7

The Group SO(4,2)

7.1 Motivation for Introducing SO(4,2)

We would like to express Schrodinger’s equation as an algebraic equation

in the generators of some group [50, 51]. As we cannot do this with our

SO(4,l) generators SAB, we expand the group again. To guide us, we recall

that to expand SO(3) to SO(4) we added a three-vector of generatorsA, and

to expand SO(4) to SO(4,1) we added a four-vector of generators (S,B).

In both cases, this type of expansion produced a set of generators that

were convenient for the study of the hydrogen-like atom. We guess that

the appropriate expansion of SO(4,1) is obtained by adding a five-vector

(under SO(4,1)) of generators ΓA, A = 0, 1, 2, 3, 4, to obtain SO(4,2) [50,

51]. We can provide additional motivation for this choice by considering

Schrodinger’s equation. The generators in terms of which we want to express

this equation must be scalars under Li rotations since the energy levels do

not depend on the orientation in space. Also we know S = S40 (Eqs. (6.6)

and (6.29)) generates scale changes of Schrodinger’s equation. Since ΓA is

a five-vector under SO(4,1), it must satisfy the equation

[SAB,ΓC ] = i(ΓBgAC − ΓAgBC). (7.1)

The spatial components of ΓA, which are (Γ1,Γ2,Γ3) = Γ, transform as a

vector under rotations generated by L.

To construct the Lie algebra of SO(4,2), we require that the set of

operators {ΓA, SAB;A,B = 0, 1, 2, 3, 4} must close under the operations

of commutation. By applying Jacobi’s identity, Eq. (1.7), to ΓA,ΓB, and

SAB, and requiring that ΓA and ΓB do not commute, we find

[SAB, [ΓA,ΓB]] = 0 A,B = 0, 1, 2, 3, 4.

95
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Since we require our Lie algebra to close, the commutator of ΓA and ΓB
must be proportional to SAB. We normalize Γ so

[ΓA,ΓB] = −iSAB A,B = 0, 1, 2, 3, 4. (7.2)

If we define

SA5 = ΓA = −S5A A = 0, 1, 2, 3, 4. (7.3)

and recall

Ai = Si4 Bi = Sio Li = eijkSjk S = S40

then we may unite all the commutation relations of ΓA and SAB in the

single equation:

[SAB, SCD] = i(gACSBD + gBDSAC − gADSBC − gBCSAD), (7.4)

where A,B, . . . ,= 0, 1, 2, 3, 4, 5 and g00 = g55 = −1; gaa = 1, a = 1, 2, 3, 4.

These are the commutation relations for the Lie algebra of SO(4,2). In

terms of A,B,L, S and ΓA the additional commutation relations for the

non-commuting generators are [66]:

[Bi,Γj] = iΓ0δij [Γi,Γj ] = −iεijkLk
[Ai,Γj ] = iΓ4δij [Γi,Γ0] = −iBi
[Li, Γj ] = iεijkΓk [Γi,Γ4] = −iAi

[Γ4,Γ0] = −iS
[Bi,Γ0] = iΓi [Ai,Γ4] = −iΓi
[S,Γ0] = iΓ4 [S,Γ4] = iΓ0.

(7.5)

The fact that S = S40 mixes the zero and four components of a five-

vector suggests that Schrodinger’s equation may be expressed in terms of

the components Γ0 and Γ4, which are scalars under Li, of the five-vector ΓA.

7.2 Casimir Operators

The Lie algebra of SO(4,2) is rank three so it has three Casimir opera-

tors [56] W2, W3, and W4:

W2 = −1

2
SABSAB = Q2 + ΓAΓ

A, (7.6)

where Q2 is the non-vanishing SO(4,1) Casimir operator Eq. (6.9), and

W3 = εABCDEFSABSCDSEF (7.7)
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W4 = SABSBCSCDSDA, (7.8)

where A,B, C,D, E ,F = 0, 1, 2, 3, 4, 5.

Computation of W3

We can show that W3 = 0 from dynamical considerations similar to

those used in the discussion of SO(4,1) Casimir operators. The only terms

that can be included in W3 are scalars formed from products of three

generators with different indices

B ·A× Γ, A · Γ×B, Γ ·B ×A (7.9)

Γ4L ·B, Γ0L ·A, SΓ · L. (7.10)

It is interesting that these terms are actually all pseudoscalars. Terms such

as B · A × L are simply not possible due to the structure of W3, which

requires that all terms contain Γ or a component of Γ. We know that

Γ = (Γ1,Γ2,Γ3) must not be a pseudovector, otherwise it would be

proportional to L and therefore not an independent generator. Since it

is a vector, it must be equal to a linear combination of r and p. Therefore,

we conclude

Γ · L = L · Γ = 0. (7.11)

Since Γ and B are both vectors and L is the only pseudovector we have,

we conclude Γ ×B = λL. In order to determine the scalar λ we evaluate

the commutators

[Bk, (Γ×B)k], and [Γk, (Γ×B)k] (7.12)

and find

Γ×B = Γ0L = −B × Γ. (7.13)

The analogous equations for A and Γ, and for A and B are

Γ×A = −Γ4L = −A× Γ (7.14)

A×B = SL = −B ×A. (7.15)

From Eqs. (7.14) and (7.15), we see that because of the dynamical structure

of the generators, each of the quantities in Eq. (7.9) is proportional to the

quantity directly below in Eq. (7.10). We have also shown that (Eqs. (3.2),

(7.11), (6.13))

L ·B = L ·A = Γ ·L = 0. (7.16)

Accordingly each scalar in our list vanishes and

W3 = 0. (7.17)
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Computation of W2

To compute W2 we need to evaluate

Γ2 ≡ ΓAΓ
A = Γ2

4 + ΓiΓ
i − Γ2

0. (7.18)

From the structure of W2 as shown in Eq. (7.6), we see that Γ2 must be

a number since W2 and Q2 are both Casimir operators and, therefore,

numbers for a particular representation. Accordingly, we have

[Γ2,ΓA] = 0. (7.19)

From this equation, we can deduce a lemma that allows us to easily evaluate

W2 and W4 in terms of the number Γ2. Using Eq. (7.19) and the definition

of SAB Eq. (7.2) we find

ΓASAB + SABΓ
A = 0,

where, as usual, we are summing over repeated indices.

Contracting Eq. (7.1) with gAC gives

SABΓ
A − ΓASAB = 4iΓB.

Consequently, it must follow that

SABΓ
A = 2iΓB = −ΓASAB. (7.20)

We are now able to evaluate the quantity

SABS
B
C = iSAB[Γ

B,ΓC ] = i(SABΓ
BΓC − SABΓCΓB).

Using Eq. (7.1) for the commutator of SAB with ΓC and Eq. (7.20) for the

contraction SABΓ
B we prove the lemma

SABS
B
C = 2iSCA − ΓAΓC + Γ2gAC . (7.21)

The value of the SO(4,1) Casimir operator Q2 = 1
2g
ACSABS

B
C follows

directly from the lemma:

Q2 = 2Γ2. (7.22)

So, we have from Eq. (7.6)

W2 = 3Γ2. (7.23)
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Computation of W4

The Casimir operator W4 can be written as

W4 = SABSBCSCDSDA + SABSB5S5DSDA

+S5BSBCSCDSD5 + S5BSB5S5DSD5, (7.24)

where we have two different fonts B,D = 0, 1, 2, 3, 4, 5 and A,C =

0, 1, 2, 3, 4.

In order to evaluate W4 in terms of Γ2 we compute SABSBC. Recalling

ΓA = SA5 we see

SABSBC = ΓAΓ
C + SABS

BC. (7.25)

Substituting the lemma Eq. (7.21), we find

SABSBC = 2iSCA − Γ2g C
A . (7.26)

From Eq. (7.20), it follows that

S5BSBC = 2iΓC. (7.27)

Substituting Eqs. (7.22), (7.25–7.27) into Eq. (7.24) for W4 we find

W4 = 6(Γ2)2 − 24Γ2. (7.28)

The fact that the non-vanishing Casimir operators (Q2,W2, and W4) for

SO(4,1) and SO(4,2) are given in terms of Γ2 implies that the representation

of SO(4,2) determines the particular representation of SO(4,l) appropriate

to the hydrogen-like atom. In turn, the value of Γ2 is determined by the

structure of the Γs in terms of the canonical variables. In Section 7.4, we

derive these structures and find that

Γ2 = 1.

Therefore, the quadratic SO(4,1) Casimir operator Q2 has the value

Q2 = 2

and the SO(4,2) Casimir operators have the values:

W2 = 3 W3 = 0 W4 = −18.
Researchers who have published different representations of SO(4,2)

based on the hydrogen atom and that give their Casimir operators all have

W2 = 3 (or their equivalent) and W3 = 0 [47, 91, 94], however, two authors

have representations with W4 = 0 [47, 94] and one [91] has W4 = −12,
compared to our value of −18.

From the mathematical theory of representations it follows that our

representations of SO(4,1) and SO(4,2) are both unitary and irreducible.
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This means that there is no subset of basis vectors that transform among

themselves as SO(4,1) or as SO(4,2).

7.3 Some Group Theoretical Results

In this section, we derive the transformation properties of the SO(4,2)

generators and then a novel contraction formula that will prove useful for

situations in which we want to express the Schrodinger Hamiltonian, for

example, in our calculation of the radiative shift for the hydrogen atom in

Chapter 12. We will work primarily with the SO(4,2) generators expressed

as the combination of the SO(4,1) generators SAB and the five-vector Γ,

with gAB = (−1, 1, 1, 1, 1), where A,B = 0, 1, 2, 3, 4.

Transformation properties of the generators

We can evaluate quantities like

ABΓB(θ) ≡ eiSABθΓBe
−iSABθ (no sum over A or B) (7.29)

by expanding the exponentials in an infinite series, and then using the

commutation relations of the generators SAB and ΓA (Eq. 7.1), and the ΓB
(Eq. 7.2), repeatedly. However, it is easier to solve the differential equations

satisfied by ABΓB and to use the appropriate boundary conditions.

Differentiating Eq. (7.29) and using the commutation relations, we obtain

the equations

d

dθ
ABΓB = −gBB ABΓA

d2

dθ2
ABΓB = −gAAgBB ABΓB , (7.30)

which have the solution

ABΓB = ΓB cos
√
gAAgBBθ +

gBB√
gAAgBB

ΓA sin
√
gAAgBBθ. (7.31)

Using a similar procedure we find

eiΓAθSABe
−iΓAθ = SAB cosh

√
gAAθ +

√
gAAΓB sinh

√
gAAθ (7.32)

eiΓAθΓBe
−iΓAθ = ΓB cosh

√
gAAθ +

1√
gAA

SAB sinh
√
gAAθ, (7.33)

where no summation over A or B is implied.

These formulae, Eqs. (7.31–7.33), give the SO(4,2) transformation

properties of the SO(4,2) generators.
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The contraction formula

If we multiply Eq. (7.33) from the right by eiΓAθ and then contract from

the left with ΓB, we obtain

∑

B

ΓBeiΓAθΓB =

[

(1 − gAAΓ2
A) cosh

√
gAAθ +

2iΓA√
gAA

sinh
√
gAAθ

]

eiΓAθ

+ gAAΓ
2
Ae

iΓAθ, (7.34)

where we have used Γ2 = 1 and Eq. 7.20. Expanding the hyperbolic

functions in terms of exponentials and collecting terms gives

∑

B

ΓBeiΓAθΓB =
1

2

(

1 +
iΓA√
gAA

)2

ei(ΓA−i√gAA)θ

+
1

2

(

1− iΓA√
gAA

)2

ei(ΓA+i
√
gAA)θ + gAAΓ

2
Ae

iΓAθ.

(7.35)

A Fourier decomposition of a function of ΓA may be written

f(ΓA) =
1

2π

∫

dθh(θ)eiΓAθ. (7.36)

Consequently, we have

∑

B

ΓBf(ΓA)ΓB =
1

2

(

1 +
iΓA√
gAA

)2

f(ΓA − i√gAA)

+
1

2

(

1− iΓA√
gAA

)2

f(ΓA + i
√
gAA) + gAAΓ

2
Af(ΓA).

(7.37)

By performing a suitable rotation, we can generalize this formula from

functions of ΓA to functions of ΓAn
A where nAn

A = ±1. For n2 = −1, we
start with ΓA = Γ0 and rotate to obtain a very general result

∑

B

ΓBf(nΓ)Γ
B =

1

2
(nΓ + 1)2f(nΓ + 1)

+
1

2
(nΓ− 1)2f(nΓ− 1)− (nΓ)2f(nΓ), (7.38)

where nΓ = −n0Γ0 + niΓi + n4Γ4.
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We will have occasion to apply this formula for the special case

f(nΓ) =
1

Γn− ν . (7.39)

Using the representation

1

Γn− ν =

∫ ∞

0

dseνse−Γns, (7.40)

we obtain the important result

ΓA
1

Γn− ν Γ
A = −2ν

∫ ∞

0

ds eνs
d

ds

(

sinh2
s

2
e−Γns

)

(7.41)

which is in a form convenient for calculations of radiative shifts.

Derivation of the ΓA in terms of canonical variables

For our basis states we shall use eigenstates of (Zα)−1 convenient for

configuration space calculations (ρ = na/r, Section 3.4.1). We choose

these states rather than those convenient for momentum space calculations

because they lead to simpler expressions for the ΓA in terms of the canonical

variables, although the expression for a is slightly more complicated. Our

basis states must obey the equation of the energy eigenvalues or coupling

constant Eq. 3.34
[

1

K1(a)
− n

]

|nlm) = 0. (7.42)

We know that K−1
1 must commute with the generators of the SO(4)

symmetry group ai = Si4 and Sij = εijkLk because the kernel K1 is a

scalar that determines degenerate energy eigenstates. We expect that it is

related to the five-vector Γ of generators that we added to go from SO(4,1)

to SO(4,2). The only components of Γ that are scalars are Γ0 and Γ4. We

choose

Γ0 = [K1(a)]
−1 =

√
ar
p2 + a2

2a2
√
ar =

1

2

(√
rp2
√
r

a
+ ar

)

, (7.43)

so that

(Γ0 − n)|nlm) = 0. (7.44)

This last equation is the Schrodinger equation expressed in our language of

SO(4,2): our states |nlm) are eigenstates of Γ0 with eigenvalue n.
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To find Γ4, we calculate Γ4 = −i[S,Γ0], using Eq. (6.28) for S, we find

Γ4 =
√
ar
p2 − a2
2a2

√
ar =

1

2

(√
rp2
√
r

a
− ar

)

. (7.45)

Sometimes it is convenient to use the linear combinations

Γ0 − Γ4 = ar Γ0 + Γ4 =

√
rp2
√
r

a
, (7.46)

which can be used to express the dipole transition operator [46].

We can find Γi from Eq. (7.5), Γi = −i[Bi,Γ0], where Bi is from

Eq. (6.26):

Γi =
√
rpi
√
r, (7.47)

which we might initially have guessed since [Γi,Γj ] = −iεijkLk and

[rpi, rpj ] ∼ Lk. Every component of ΓA is Hermitean; consequently, the

generators SAB that are given by the commutators Eq. (7.2) are also

Hermitian. We may explicitly verify that these expressions for ΓA lead to

a consistent representation of all generators in the SO(4,2) Lie algebra.

Under a scale change generated by S, Γi is invariant and Γ4 and Γ0

transform in the same manner as a and B (Eq. 6.29): they retain their

form but a is transformed into eλa:

eiλS
{

Γ0

Γ4

}

e−iλS =
1

2

(√
rp2
√
r

eλa
± eλar

)

. (7.48)

The scale change generates an inner automorphism of SO(4,2) charac-

terized by a different value of the parameter a.

7.4 Subgroups of SO(4,2)

The two most significant subgroups are generated by [66]:

1. Li, ai or Sjk, Si4, forming an SO(4) subgroup. These generators

commute with Γ0 and therefore constitute the degeneracy group for states of

energy −a2/(2m) and fixed principal quantum number n (or fixed coupling

constant na/m). The Casimir operator for this subgroup is

a2 +L2 = n2 − 1 = Γ2
0 − 1. (7.49)

We discussed this subgroup in Section 3.2 in terms of L and A and the

states |nlm〉. The same results are obtained with the generators L and
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a with the states |nlm). For example, we have the raising and lowering

operators for m and l (Eqs. 3.21, 3.22). With the definition

L± = L1 ± iL2, (7.50)

it follows that

[L3, L±] = ±L±, (7.51)

which gives

L±|nlm) =
√

(l(l + 1)−m(m± 1)|nl m± 1) L3|nlm) = m|nlm).

(7.52)

for l ≥ 1. In analogy to L± one can define

a± = a1 ± ia2, (7.53)

which obey the relations

[a3, a±] = ±L3 [L3, a±] = ±a± (7.54)

and

a±|nlm) =∓
(

(n2 − (l + 1)2)(l + 2±m)(l + 1±m)

4(l + 1)2 − 1

)
1
2

|nl + 1m± 1)

(7.55)

±
(

(n2 − l2)(l ∓m)(l − 1∓m)

4l2 − 1

)
1
2

|nl − 1m± 1) (7.56)

for l ≥ 1. The action of a± is not directly analogous to that of L± in

Eq. (3.21) because we are using |nlm) as basis states. If we used |na3l3 = m)

as basis states, the action would be similar. An operator that changes only

the angular momentum is a3

a3|nlm) =

(

(n2 − (l + 1)2)((l + 1)2 −m2)

4(l+ 1)2 − 1

)
1
2

|nl+ 1m)

+

(

(n2 − l2)(l2 −m2)

4l2 − 1

)
1
2

|nl− 1m) (7.57)

for l ≥ 1. Since a3 commutes with L3 and Γ0, it does not change n or m.

2. Γ4, S = S40, Γ0, forming a SO(2,1) subgroup. These operators

commute with L but not with Γ0, hence then can change n but not L
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or m. The Casimir operator for this subgroup is1

Γ2
0 − Γ2

4 − S2 = L2 = l(l + 1). (7.58)

We can define the operators [66]

j1 = Γ4 j2 = S j3 = Γ0 (7.59)

with commutators

[j1, j2] = −ij3 [j2, j3] = ij1 [j3, j1] = ij2. (7.60)

We can define the raising and lowering operators

j± = j1 ± ij2 = Γ4 ± iS, (7.61)

which obey the commutation relations

[j±, j3] = ∓j±. (7.62)

We find (in analogy to Eq. 7.52)

Γ0|nlm) = n|nlm) (Γ4 ± iS)|nlm) =
√

n(n± 1)− l(l+ 1)|n± 1 lm)

(7.63)

We can express the action of Γ0 − Γ4 = ar on our states

ar|nlm) =
1

2
((n)(n − l)− l(l+ 1))

1
2 |n− 1 lm) + n|n lm)

+
1

2
((n)(n+ l)− l(l + 1))

1
2 |n+ 1 lm). (7.64)

As mentioned previously, the operator S generates scale changes as shown

in Eq. (6.29), where the value of a is changed. We can also express the action

of S equivalently as transforming Γ0 into Γ4, as suggested by Eq. (6.31):

eiSλΓ0e
−iSλ = Γ0 coshλ− Γ4 sinhλ, (7.65)

eiSλΓ4e
−iSλ = Γ4 coshλ− Γ0 sinhλ. (7.66)

1To prove this note that L2 = (r×p)2 = r2p2−r2p2r where pr = (1/2)(r
r
·p+p · r

r
) and

[r, pr] = i. Thus L2 = r2p2−rprrpr−irpr. But L2 = (1/
√
r)L2√r and S04 = −√

rpr
√
r

so it follows that L2 = (Γ0 −Γ4)(Γ0 +Γ4)−SO2
04 − iS04 which gives the result quoted.
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7.5 Time Dependence of SO(4,2) Generators

For a generator to be constant it must commute with the Hamiltonian as

discussed in Section 2.1. Since the SO(4,2) group is the non-invariance or

spectrum generating group, the additional generators do not all commute

with the Hamiltonian. It is notable that as far as we know only one paper

considers the time dependence of the generators of non-invariance groups

in general and one briefly considers SO(4,2) specifically [107, 139]. Our

results certainly clarify and make explicit the time dependence and show

that it is just a particular aspect of the SO(4,2) transformations. In our

representation |nlm; a), the Hamiltonian has been transformed into Γ0 and

the Schrodinger energy eigenvalue equation has become Γ0|nlm) = n|nlm).

Accordingly, all generators that commute with Γ0 are constants of motion,

including a, L. The other operators B,Γ, S,Γ4 have a time dependence

given by Eqs. (7.32) and (7.33), for example

S(t) = eiHtS(0)E−iHt = eiΓ0tSe−iΓ0t = S cos t+ Γ4 sin t (7.67)

Γ4(t) = eiHtΓ4(0)E
−iHt = eiΓ0tΓ4e

−iΓ0t = Γ4 cos t− S sin t. (7.68)

Consequently, terms like j± (Eq. 7.61) have a simple exponential time

dependence

j±(t) = j±(0)e±it. (7.69)

Similarly, Γ± iB has an exponential time dependence.

7.6 Expressing the Schrodinger Equation in Terms of the

Generators of SO(4,2)

We can write the Schrodinger equation for the usual energy eigenstate |nlm〉
with energy En = −a2n/2m of a particle in a Coulomb potential in terms of

SO(4,2) generators. Since the generators are in terms of energy −a2/2m, we

need to make a scale change. From Section 3.4, Eq. (3.42), the relationship

between the Schrodinger energy eigenstate |nlm〉 and the eigenstate |nlm)

of (Zα)−1 is

|nlm; a) = e−iSλn
√

ρ(an)|nlm〉, (7.70)

where

eλn =
an
a

ρ(an) =
n

anr
. (7.71)

Substituting Eq. (7.70) in the eigenvalue equation Eq. (7.44) for |nlm; a)

and employing the transformation Eqs. (7.65) and (7.66), we find the usual
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Schrodinger equation can be expressed in SO(4,2) terms as

(Γn− n)
√

ρ(an)|nlm〉 = 0, (7.72)

where

Γn ≡ ΓAn
A = Γ0n

0 + Γin
i + Γ4n

4 (7.73)

no = coshλn =
a2 + a2n
2aan

, ni = 0, n4 = − sinhλn =
a2 − a2n
2aan

(7.74)

and nAn
A = n2

4 − n2
0 = −1.

Equation (7.72) expresses Schrodinger’s equation for an ordinary energy

eigenstate |nlm〉 with energy EN = −a2n/2m in the language of SO(4,2).

It shows the relationship between these energy eigenstates and the basis

states of (Zα)−1 that are used for the SO(4,2) representation.

The next chapter, the first in Part 3, deals with radiative shifts in

classical and quantum systems.
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The hydrogen atom is the

fundamental two-body system

and perhaps the most important

tool of physics; years after the Bohr theory

the challenge is still there to calculate

its properties to the highest accuracy possible.

Stanley Brodsky

Radiation is a process common to classical and quantum systems with

very different effects in each regime. In a quantum system, the interaction of

a bound electron with its own radiation field leads to complex shifts in the

energy levels of the electron, with the real part of the shift corresponding

to a shift in the energy level and the imaginary part to the width of the

energy level. The most celebrated radiative shift is the Lamb shift between

the 2s1/2 and the 2p1/2 levels of the hydrogen atom. The measurement

of this shift in 1947 by Willis Lamb Jr. and his graduate student Robert

Rutherford proved that the prediction by Dirac theory that the energy

levels were degenerate was incorrect.

Hans Bethe’s calculation of the shift demonstrated that the renor-

malization process, suggested by Kramers, was required to deal with the

divergences plaguing the existing theories and led to the understanding

that interactions of the electron with its own radiation field needed to

be considered. it was also becoming clear that interactions with the zero-

point vacuum field, the lowest energy state of the quantized electromagnetic

field, needed to be considered since it has measurable effects, for example,

the Lamb shift and the Casimir force, not just resetting the zero of

energy. Understanding the calculation of these effects led to the birth of

modern quantum electrodynamics (QED). Other calculations of the Lamb

shift followed by Welton and Power in an effort to clarify the physical

mechanisms leading to the shift.

We explore the history of Bethe’s calculation and its significance. We

discuss radiative effects in classical and quantum systems from different

perspectives, with the emphasis on understanding the fundamental physical

phenomena. Illustrations are drawn from systems with central forces: the

H atom, and the three-dimensional harmonic oscillator.

A first-order QED calculation of the complex radiative shift for a spinless

electron is presented based on the mass2 operator and the non-relativistic

approximation of the Klein–Gordon equation. No other assumptions are

made. We employ a SO(4,2) group theoretical approach, which gives the
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shift as an integral over frequency of a function, which we call a shift

spectral density. The shift spectral density reveals how different frequencies

contribute to the total energy shift. We find, for example, that half the

radiative shift for N = 1 level in H comes from photon energies below

9700 eV, and that the expressions by Power and Welton do not have the

correct low frequency behavior, although they do give the correct value for

the total shift.

The shift of atomic energy levels from the levels given by the Dirac or

Klein–Gordon equations with the appropriate potentials results from effects

radiative shift that can be classified into four groups [2, 95, 128, 149–158]:

(1) The interaction of the bound particle with its own radiation field.

(2) Vacuum polarization effects.

(3) Finite nuclear mass effects, including relativistic recoil corrections.

(4) Nuclear structure effects, including finite size and polarization correc-

tions, and the interaction of the nuclear magnetic moment with the

magnetic field of the electron.

The most frequently discussed and measured shift in energy levels is the

celebrated Lamb shift between the 2s1/2 and 2p1/2 levels in the hydrogen

atom. Although measurements of the shift were attempted in the 1930s,

it was not measured accurately until 1947 when Lamb and Retherford

employed rf spectroscopy and exploited the metastability of the 2s1/2 level

and determined that the shift was approximately 1050 MHz, or 1 part in

106 of the 2s1/2 level [18, 159–162]. Shortly thereafter Bethe [19] published

a non-relativistic quantum theoretical calculation of the shift assuming that

it was due to the interaction of the electron with a radiation field. Bethe did

not state in his paper whether the source of the radiation field leading to

the radiative shift was the quantum fluctuations of the vacuum field or the

radiation field of the atom. Both fields had been proposed as leading to the

shift in the self energy of the electron. For example Weisskopf had proposed

that the vacuum field contributed to the self energy of the electron in the

H atom. Indeed, to first order the fields are equivalent. Several researchers

tend to believe Bethe meant the radiation fields of the atom. Welton and

Feynman provided explanations of the Lamb shift in terms of interactions

with the quantum vacuum field.

This lowest order radiative shift (to α(Zα)4) accounts for about 96%

of the measured shift. As the years passed, the calculation was refined

and the effects (2), (3), and (4) were included. New measurements were

made and old data were reanalyzed. There are many articles on these
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Fig. 1. Approximate Contributions to the Lamb Shift.

calculations, so we limit ourselves to giving a few general references and

a few recent references [2, 157, 158, 163–168]. In this text, we deal with

only the dominant radiative component of the shift.

Table 1 gives a summary of the approximate theoretical values for the

contribution to the Lamb shift from the different effects.

The agreement between theory and experiment has varied over the last

70 years, indicating the complexity of the theoretical calculation and the

difficulties in the experimental measurements. The difference in the values

for the Lamb shift obtained from theory and experiment has reflected many

things: that not all physical effects were accounted for, that higher order

terms had to be included, that errors were made in the calculations, that

the accepted value of the fine structure constant changed, that experimental

results were reinterpreted, that the radius of the proton was needed. Today,

after decades of concerted effort, the agreement is phenomenal, one of the

most precise of any in the physical sciences, to 13 decimal places [1].

We discuss the radiative shift of a particle that is in a bound energy

eigenstate from various viewpoints.
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In Chapter 8, we review some of the history of the Lamb shift and discuss

radiative effects in classical physics. We discuss Bethe’s calculation, and

its significance for QED. We clarify the physical meaning of the radiative

shifts that appear in field theory by explaining the effects of the zero-point

vibrations of the electromagnetic field in a semiclassical analysis. We express

the radiative shift as the difference in the energy of the particle when freely

oscillating in the zero-point field and when oscillating in the zero-point field

while bound in a potential. We consider the radiative shift in the language

of field theory: the shift equals the change in the mass renormalization of

the particle that occurs when it becomes bound.

In Chapter 9, we discuss radiative effects in classical physics and

quantum physics for central force potentials, and illustrate with two

examples, the Coulomb potential and the 3D isotropic harmonic potential.

We try to provide an intuitive sense of radiative shifts that appear in

field theory by considering the effects of the zero-point fluctuations of the

electromagnetic field in a semiclassical analysis of the motion of a bound

particle. We discuss the general nature of radiative shifts, for example, that

the presence of a boundary can lead to a radiative shift.

In Chapter 10, we consider the radiative shift in the language of field

theory: the shift equals the change in the mass renormalization of the

particle that occurs when it becomes bound. The approach reflects Bethe’s

interpretation of the divergences he encountered. We derive an expression

for the complex shift in terms of matrix elements of themass2 operatorM2,

which corresponds to the total self-energy squared of the bound particle.

Using the equations of motion for a relativistic scalar particle in a potential,

we derive an expression forM2 to order α in the radiation field, i.e. assuming

that only one radiation field photon is exchanged. We also consider the

requirements for gauge invariance in our expressions for a physical shift.

In Chapter 11, we consider the radiative level shifts in the non-

relativistic dipole approximation, demonstrating that the shift is complex:

the imaginary part corresponds to the width for decay by dipole emission

and the real part corresponds to the displacement of the energy level.

We show that the real and imaginary parts satisfy a dispersion relation,

which is fundamentally just an expression of causality [169]. We interpret

the radiative shift as due to the virtual transitions induced by the

interaction of the particle with its own radiation field. This interaction

means that a given energy level has a finite width and that the mean energy

of the initial state of the system, averaged over time, is shifted.



114 The Hydrogen Atom

In Chapters 11 and 12, we derive integral expressions for the complete

radiative shifts for semi-relativistic spinless mesons in our two potentials as

functions of the coupling constants, rather than developing a perturbation

expansion as is customary. Our semi-relativistic approximation is to drop

the V2 term in the Klein–Gordon equation, thereby ensuring that we have

the same group structure as in the non-relativistic problem (Chapter 7).

In Chapter 12, we use the group theory of SO(4,2) to determine the

radiative shifts in energy levels for a spinless electron in a Coulomb potential

due to its interaction with its own radiation field, or equivalently with

the quantum vacuum. In the non-relativistic or dipole approximation the

level shift contains a matrix element of a rotation operator of an O(1,2)

subgroup of the group SO(4,2). We can sum this over all states, obtaining

the character of the representation, yielding a single integral which is a

generating function for the radiative shift for any level in the non-relativistic

or dipole approximation. The integral is an analytic expression for the level

shift. A brief conclusion follows.

In Chapter 13, we compute the radiative shift for a spinless relativistic

electron bound in a harmonic potential.

In Chapter 14, we introduce the concept of the spectral shift density, the

quantity that has to be integrated over frequency to obtain the radiative

shift. The spectral shift density indicates the relative contribution to the

radiative shift from different frequencies. This allows us to compare the

various methods that have been used to compute the Lamb shift, examining

their high and low frequency behavior.

In Chapter 15, we discuss the cloud of virtual electromagnetic energy

that surrounds the H atom and is responsible for the Lamb shift and van

der Waals and Casimir forces.



Chapter 8

History and Some Aspects
of the Lamb Shift

8.1 Background

We discuss aspects of Bethe’s pivotal calculation, including its history, its

significance, and its impact on the development of quantum electrodynam-

ics. We then consider radiative shifts from different perspectives, classical

and QED, with the objective of highlighting the connections between

different aspects of the Lamb shift and clarifying the physical processes

involved.

Our QED calculations are limited to the lowest-order shift for spinless

electrons, the same as in Bethe’s calculation. To explore the connections

between physical phenomena and mathematics, we derive the complex first-

order radiative shift in terms of the mass2 operator using the fundamental

equations of motion and then relate the results to Feynman diagrams. This

is a more difficult derivation than simply using second-order perturbation

theory or Feynman diagrams. Generally, textbook derivations only consider

the real part of the shift. The radiative shifts are interpreted as the

difference in energy or mass renormalization between a free electron and

a bound electron, precisely as Bethe described it. The real part of the

shift is the level shift and the imaginary part the level width, and we

derive a dispersion relation between these parts. Atomic level shifts can be

approximately modeled as arising from transitions with the absorption and

emission of virtual photons that cause the atom to be in different energy

states some of the time. To offer two perspectives, we discuss results for

two central force systems, the H atom and the three-dimensional isotropic

simple harmonic oscillator.
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As we noted in Chapter 1, the hydrogen atom is the fundamental

two-body system and perhaps the most important tool of atomic physics,

and the continual challenge is to calculate its properties to the highest

accuracy possible. The current QED theory is the most precise of any

physical theory[1]: This remarkable precision began with the measurement

and calculation of the first-order radiative Lamb shift, and that is why

we are presenting a historical discussion of it. The derivation of this shift

is present, in one form or another, in virtually every book on quantum

field theory [3, 172–175]. The derivation is often based on the Schrodinger

equation, using second-order perturbation theory to include the minimal

coupling to the radiation field of the electron or to the electromagnetic

field of the quantum vacuum.

There are many excellent and comprehensive reviews of the Lamb shift

and the computation of energy levels to high precision in hydrogen-like

atoms, including all the different effects [2, 95, 128, 149–158]. As noted

above, the purpose of our discussion is quite different. We offer new

perspectives on the physics that began the new age of QED.

8.2 History and Significance of Bethe’s Calculation

8.2.1 Brief history before Bethe’s calculation

Physicists had considered the need to account for an interaction of the

electron with it own radiation field or with the vacuum field but did not have

a suitable theory. Oppenheimer in 1930 had computed that the interaction

with the atom’s radiation field would lead to an infinite shift in energy,

and therefore he rejected the notion as unphysical and thought that major

changes in the theory were needed [176]:

The theory thus leads to the false prediction that spectral lines will
be infinitely displaced from the values predicted by the Bohr frequency
condition. . . As it stands the integral over ν diverges absolutely.. We
have treated these difficulties in some detail because they show that the
present theory will not be applicable to any problem where relativistic
effects are important, where that is, we cannot be guided by the limiting
case c → ∞... It appears improbable that the difficulties discussed in
this work will be soluble without an adequate theory of the masses of
the electron and the proton; nor is it certain that such a theory will be
possible on the basis of the special theory of relativity.

In 1939, Weisskopf computed the self-energy of the electron “due to

forced vibrations under the influence of the zero-point fluctuations of the
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radiation field.” He obtained a divergent result. This was one of the first

attempts to integrate the effects of the quantum vacuum fluctuations into

the explanations of self energy. Also note that he referred to the quantum

vacuum as a radiation field [181].

Indeed, Bethe, in his landmark paper also used the phrase “radiation

field” so it not absolutely certain, in my mind, precisely what he meant. To

the lowest order, the calculation would be the same for the radiation field

or the field of the vacuum fluctuations. Bethe used the expression for the

free field vector potential in his calculation, consistent with a vacuum field

or a first order radiaion field calculation

In 1938, Kramers had suggested the idea of renormalization of the mass

due to interactions with the vacuum field and its necessity in classical as well

as in quantum theories, but had no clear idea how to do it in practice [177].

As Bethe said in an interview in 1996 [178, 179]:

Kramers had said [at the Shelter Island Conference] that we misunder-
stood the self energy of the electron. The divergent self energy of the
electron was already included in the physical mass. We need to consider
the difference in the self energy between a free electron and one bound
in an atom.

It was believed that the divergence in the self energy of a electron due

to its interaction with the radiation field was linear in the cutoff frequency

until, in 1939, at Fermi’s suggestion, Weisskopf used the relativistic Dirac

theory and showed (after correcting a critical error in sign pointed out by

Furry [180]) that the electron self energy divergence was logarithmic [181].

He computed that the electron charge distribution was spread over a

Compton wavelength with a shape described by a Hankel function because

of its interaction with the vacuum field, a calculation that remains valid

today [3].

The Dirac theory predicted that the 2s1/2 and 2p1/2 levels in the H atom

were degenerate. Measurements of the energy difference had been done but

with mixed results. Then, in 1947, Willis Lamb Jr.1 applied the expertise

1Willis Eugene Lamb Jr. was an American physicist, born in Los Angeles in 1913, who
won the Nobel Prize in Physics in 1955 “for his discoveries concerning the fine structure
of the hydrogen spectrum.” He went to the University of California at Berkeley where
he received an undergraduate degree in chemistry, and then a PhD in theoretical physics
in 1938, working with J. Robert Oppenheimer as his advisor. David Bohm received his
PhD with Oppenheimer a few years later. At one point as a young man, Lamb considered
becoming a professional chess player instead of a physicist [182]! After receiving his PhD,
he then joined the faculty at Columbia University, where he did research at the Columbia
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in microwave technology that he developed working with Prof. Isador Rabi

at Columbia on radar research during WWII to the precise determination

of the 2s1/2 − 2p1/2 energy difference of 1050MHz or 4.3× 10−6 eV. Dyson

who, as a graduate student working with Bethe at Cornell, recalled [184]:

And of course the people at Cornell were very closely in touch with
the people in Columbia, and in particular Willis Lamb talked to Hans
Bethe, who was the professor at Cornell, and Bethe then sat down and
gave the first more or less adequate theory of the Lamb shift, just from a
physical point of view. He understood that the reason why you had the
Lamb shift was that the electron in the hydrogen atom was interacting
with the Maxwell electromagnetic field, in addition to interacting with
the proton, so that the effect of the fluctuations in the Maxwell field
was disturbing the electron while it was revolving around the proton,
causing a slight change in the position of the orbits. And so it was the
back reaction of the electromagnetic field on the electron that Lamb
had been measuring. And so Bethe understood that from a physical
point of view. The problem was then, could you actually calculate it?
And with the quantum electrodynamics as it was then, it turned out
you couldn’t; that if you just applied the rules of the game as they
were then understood and tried to calculate the Lamb shift, the answer
came out infinity, not a number of megacycles but an infinite number of
megacycles. So that wasn’t very useful and so it was clearly a real defect
of the theory that it couldn’t grapple with this problem.

Lamb presented his results at the Conference on the Foundations of

Quantum Mechanics held at Shelter Island 1–3 June 1947, and published

them 18 June 1947 in a three-page paper in Physical Review [18]. Dyson

later commented on the reaction to Lamb presenting his results at the

conference [184]:

The hydrogen atom being the simplest and most deeply explored object
in the whole universe, in a way—I mean if you don’t understand the
hydrogen atom, you don’t understand anything, and to find that things
were wrong even with a hydrogen atom was a big shock. So it became
the ambition of every theoretical physicist to understand this.

Radiation Laboratory from 1943 to 1951 with Prof. Isador Rabi, who won the Nobel Prize
in physics in 1944. Lamb taught at Stanford, Oxford, Columbia, Yale, and University
of Arizona. Norman Kroll was one of his students. For the last three decades of his
life, he was critical of the standard interpretation of quantum mechanics, particularly
the quantum theory of measurement and did not believe in the idea of a photon [183].
He died in 2008 at age 94.
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At the conference, many people, including Schwinger, Weisskopf, and

Oppenheimer, suggested that the deviation resulted from quantum fluctu-

ations acting on the electron in the atom. However, the shift from this

interaction was infinite in all existing theories and therefore had been

ignored. The consensus was that the current theory was fundamentally

flawed and that a radically new idea was needed to deal with this. On the

75-mile train ride home to Schenectady, NY, Bethe did a non-relativistic

calculation using second-order perturbation theory, assuming minimal

coupling with a quantized electromagnetic field. The calculation predicted

that the interaction of the electron with the radiation field would lead to

a shift of 1040MHz [19]. Bethe wrote a paper that was three pages long

and sent it to the participants on 9 June. The paper was received by the

Physical Review and published on 15 August. As Bethe later recalled in an

interview [178, 179]:

The combination of these two talks of Kramers and Lamb stimulated me
greatly and I said to myself: let’s try to calculate that Lamb shift, let’s
try to calculate the difference between the self energy of a free electron
and that of an electron bound in the hydrogen in the N = 2 state. At the
conference I said to myself: I can do that. And indeed once the conference
was over I traveled to Schenectady to General Electric Research Labs.
On the train I figured out how much that difference might be. I had
to remember the interaction of the electromagnetic quanta with the
electron. I wasn’t sure about a factor of two. So if I remembered correctly,
I seem to get just about the right energy separation of 1000MHz, but
I might be wrong by a factor of two. So the first thing I did when I
came to the library at General Electric was to look up Heitler’s book
on radiation theory. I found that indeed I had remembered the number
correctly and that I got 1000MHz. . . .I was helped very much by a
previous paper by Weisskopf who had shown that in Dirac pair theory
that the energy of an electron only diverged logarithmically when you get
to high energy. So I said to myself once I take the difference between the
bound electron and free electron the logarithmic divergence will probably
disappear and it will converge. So let’s just calculate the effect of quanta
up to the energy of the electron mass times c squared and let’s hope the
relativistic correction won’t make any difference.

Dirac has called this result the “most important calculation in physics

for decades.” Freeman Dyson described it as “a turning point in the

history of physics. . .. It broke through a thicket of skepticism and opened

the way to the modern era of particle physics. It showed us all how

to connect QED with the real world” [184, 185]. In his Nobel lecture,

Feynman called Bethe’s calculation “the most important discovery in the
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Fig. 8.1. Hans Bethe, holding the pocket computer of his times. (Thanks to the APS
archives for the photo).

history of quantum electrodynamics” [186, 187]. In a major 2001 review

article, Eides states: “Discovery of the Lamb shift, a subtle discrepancy

between the predictions of the Dirac equation and the experimental data,

triggered development of modern relativistic quantum electrodynamics and

subsequently the Standard Model of physics” [152]. We discuss Bethe’s

approach in detail in Sec. 9.3.1.

The key to Bethe’s success was his interpretation of the infinities

that arise in the calculation. He saw that one infinite energy shift was

independent of the Coulomb potential, and therefore, he reasoned, should

correspond to a mass renormalization of the free electron. He interpreted

the infinity as a renormalization of a bare electron resulting in an electron

with the observed physical mass. This insight allowed him to continue with

the calculation and compute the finite energy shift due to the interaction of

the electron with the vacuum field for a specific atomic state. The resulting

frequency integration led to another divergence, but only logarithmic, thus

he used an energy cutoff of mc2 to ensure a finite result, reasoning that

since the calculation was non-relativistic a cutoff was justified. His insightful

assumptions led to a result of surprising accuracy.2

2Hans Bethe was born in Germany in 1906. As a child, his father, a physician, told
of Hans at age four sitting on the stoop of their house, a piece of chalk in each hand,
taking square roots of numbers. By the age of five, he had fully understood fractions and
could add, subtract, multiply, and divide any two of them. At age seven, he was finding
ever-larger prime numbers and had made a table of the powers of two and three, up to
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To obtain the final numerical result required a calculation of the so-

called Bethe log (which he credited to GE workers Dr. Stehn and Miss

Steward), which can be interpreted as the average excitation energy for the

radiative interaction. It equals the average energy difference between the

level whose shift is being computed and the other levels which are reached

by virtual transitions due to interaction with the quantized radiation

field. The calculations showed that the average excitation energy for the

N = 2 state was about 17.8Rydbergs or 240 eV (1Rydberg = 13.6 eV,

corresponding to the energy of the ground state of the H atom), which

Bethe thought was “an amazingly high value” that indicated scattering

states dominated the Bethe log, but the result was still clearly in the non-

relativistic energy range since 240 eV � mc2 = 0.5MeV. (More amazing,

we show in Chapter 14 that over 95% of the ground state shift arises from

excitation energies that are greater than the ionization potential, that is

scattering states.) The value of the Bethe log computed was slightly in

error, and the currently accepted value for the 2s state is 16.6392 [152],

which changes the calculated 2s1/2 − 2p1/2 shift from 1040MHz, the value

Bethe gave in his paper, to 1052MHz, compared to the currently accepted

value of about 1057.845MHz.

Some reflections of Freeman Dyson shed some light on Bethe’s person-

ality and his work style, which may have led to his success [178]:

214 and 310, and had memorized them [188]. After two years at Frankfort University,
he transferred to Munich in 1926, joining Arnold Sommerfeld’s group, where he learned
the need to work hard and built his confidence. He received his doctorate summa cum

laude a few years later. On a fellowship, he went to Rome and worked with Fermi. From
Fermi, Bethe learned to reason qualitatively, to obtain insights from back-of-envelope
calculations, and to think of physics as easy and fun, as challenging problems to be solved.
Bethe’s craftsmanship was an amalgam of what he learned from Fermi and Sommerfeld,
two great physicists and teachers, and combined the best of both: the thoroughness
and rigor of Sommerfeld with the clarity and simplicity of Fermi. This craftsmanship
is displayed in full force in the many reviews that Bethe wrote [158], which remains a
classic even today. In 1932, Bethe began an appointment at Tubingen, but Hitler’s rise to
power and the enactment of racial laws in 1933 prohibiting any Jew from state or federal
position forced Bethe to leave. In 1935, he joined the physics faculty at Cornell, and
enjoyed the atmosphere very much, and remained there for most of his career. During
WWII, he served as head of the Theoretical Division at Los Alamos, under Oppenheimer.
Bethe won the Nobel Prize in physics in 1967 for “for his contributions to the theory of
nuclear reactions, especially his discoveries concerning the energy production in stars.”
He explained why the sun keeps shining, and did not win it for his contributions to QED.
In later years, he advocated for peaceful use of nuclear energy and nuclear disarmament.
He died in 2005 at age 98.
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He had this intense love of doing physics collectively. I mean that it
wasn’t really physics if you did by yourself, it was something you did
with a group of people. And so I just loved it from the beginning and
became very much a part of it right away. And then, of course, his way
of work was actually quite unique, I mean if you compare Bethe with
anybody else I knew. First of all, he had total command of the facts, that
he absolutely just - you never needed to look up a number in a table
because he knew them all. He knew all the energy levels of hydrogen and
he knew the atomic weights of the different elements and the density of
lead and gold and uranium, all these just physical quantities, he knew
them all. In addition, of course, he had an extraordinary ability to sit
down and calculate and just simply go at it. . .And he was, of course, also
just extraordinarily reliable: if he said something, you could believe it.
He was very careful about everything he said. So just a thoroughly solid
person. Very different from Feynman, because Feynman was far more
imaginative. I mean, one thing Bethe did not have was imagination; he
never really invented anything, he just used the theories that were there
to explain the facts, and he knew the facts and he knew the theories, so
he just put them together; whereas Feynman was always inventing things
and he didn’t believe the theories that were taught in the textbooks, he
had to make them up for himself, so he had a much harder time; but
still, of course, in the end you need imagination too; I mean, both kinds
of physicists are needed.

The lowest order radiative shift of magnitude (4/3π)mc2α(Zα)4 that

Bethe computed involves the emission and absorption of one virtual photon,

the so-called one-loop correction, so that in the expression for the shift the

α arising from the coupling is raised to the first power. This first-order

radiative shift accounts for about 96% of the energy difference between the

2s1/2 and 2p1/2 states.

The other major effect of the same order that contributes to the classic

Lamb shift is vacuum polarization, often called the Uehling contribution,

which had been computed successfully before the Lamb shift measurement

and gives a shift of about −27MHz [158, 189, 190]. Vacuum polarization

arises from the presence of a virtual electron-positron cloud, approximately

a Compton wavelength in radius, surrounding a charge, essentially produc-

ing a dielectric constant in the vacuum region near a charge. For S states,

the electron goes very close to the proton, penetrating this cloud around

the proton, and therefore effectively sees a larger charge and experiences

a stronger binding force, which lowers the energy level by approximately

2.4% or 25MHz [152, 180]. The fact that including the effect of the vacuum

polarization ensured greater agreement with the experiment convinced

physicists that the vacuum polarization contribution was real and correct.
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8.2.2 The effect of Bethe’s calculation on the development

of quantum theory

Bethe commented on his 1947 paper in a videotaped interview in 1998 [178]:

And as far as I know, this paper both disappointed and stimulated other
people who were more versed in relativistic theory, namely Schwinger
and Feynman. . . and also Weisskopf. Weisskopf pursued the theory
in an old-fashioned way and calculated the relativistic part, together
with some of his collaborators. And Schwinger was stimulated to
produce a completely new theory, a relativistically invariant theory of
quantum electrodynamics. But essentially extending the old quantum
electrodynamics, making it relativistically invariant. Feynman at Cornell
used the completely novel and independent way of getting at the same
problem. He had his own way of doing quantum mechanics, his own way
of putting in the electric field. And it turned out that in the end that
Feynman’s new way was very much easier than Schwinger’s way.

Shortly after Bethe’s calculation, Dyson published, as a problem

assigned by Bethe, a calculation of the Lamb shift for a spinless elec-

tron [191]. Formal and rigorous relativistic calculations using perturbation

theory and including spin were performed in 1949 by J. French and

V. Weisskopf [192] and N. Kroll and W. Lamb [193]. Weisskopf later

commented about these calculations that they “resulted in good agreement

with the experiment. However, the methods used by those authors of

subtracting two infinities were clumsy and unreliable [180].” However,

history has been kind to these calculations that were not dependent on cut-

off points, which were perhaps clumsy and difficult, but produced excellent

results that have stood the test of time [3, 173].

Bethe’s breakthrough in understanding the role of the vacuum electro-

magnetic field and how to deal with divergences led to intense theoretical

work in quantum electrodynamics. It is most remarkable that within a year,

three different approaches to quantum electrodynamics were independently

developed that were relativistic and could deal with divergences with

some success. Schwinger, Tomonaga, and Feynman each had proposed

a manifestly covariant method, and shown its capability to address a

broader range of QED problems than just the energy levels of the H

atom [186, 194]. Although all of these methods appeared to be different,

with his characteristic insight, Freeman Dyson showed that they had

essential similarities and were mutually consistent [195]. He summarized:

“The advantages of the Feynman theory are simplicity and ease of appli-

cation, while those of Tomonaga-Schwinger are generality and theoretical
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completeness.” These new methods could be used to treat the radiative

interaction as a perturbation to any desired order of approximation. Dyson

also compared the results to those from the S matrix theory [196]. Dyson

observed that Oppenheimer was particularly reluctant to accept Feynman’s

approach [197].

Welton provided some physical insight into the radiative shift with an

approximate calculation based on a semi-classical model of the vacuum field

which caused the oscillation of the electron bound in the Coulomb field,

effectively increasing its size [198]. This motion meant that the electron

saw a modified Coulomb potential. Only for S states was the spread of

the electron sufficient to modify the energy level, in rough agreement with

Bethe’s result. This calculation is discussed in more detail in Section 9.3.2.

In their comprehensive 2001 review [152], Eides et al. give a different

perspective on the spread of the electron: “According to QED an electron

continuously emits and absorbs virtual photons and as a result its electric

charge is spread over a finite volume instead of being pointlike,” and then

they use the expression for the form factor, F (−k2) = 1 − (1/6)〈r2〉k2,

to obtain the rms radius, obtaining a value of 1330MHz for the Lamb

shift. Their calculation differs from that of most authors [3, 175], in that

they assume the bound electron is slightly off mass shell so the cutoff term

becomes ln(1/Zα)2 rather than ln(1/Zα).

A period of intense theoretical development followed Bethe’s calculation,

characterized by calculations of the energy levels of the H atom and QED

in general, performed with increasing precision and complexity. Some of the

key developments from 1950 to about 1970 are in the papers [157, 199–204];

from 1980 to 2000 are in [166, 205–221]; and from 2000 to the present are

in [9, 11, 167, 168, 222–232]. Theorists applied themselves to compute the

numerous other effects leading to the total shift between the 2s1/2 and 2p1/2
levels, as well as for other levels, including relativistic corrections, center of

mass effects, recoil corrections, radiative recoil corrections, nuclear size and

spin effects, and more rigorous, more precise, and higher order calculations

of the radiative shifts (for reviews, see [2, 95, 128, 149–155]).

One of the biggest challenges in the precise computation of the radiative

shifts is the necessity to deal with frequencies from the IR to relativistic

values. For the low frequencies, the starting point is the non-relativistic

dipole approximation, and the Coulomb gauge is the most convenient. On

the other hand, for the high frequencies, relativistic dynamics is needed,

the binding energy can be neglected, and the most convenient gauge is the
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covariant Feynman gauge. Matching the contributions from both regions is

a challenging procedure. Commenting on these perennial matching issues

in a 2001 review, Eides et al. observe [152].

It is a strange irony of history that due to these difficulties it became
common wisdom in the sixties that it was better to avoid separation
of the contributions coming from different momenta regions than to
try to invent an accurate matching procedure. . . Bjorken and Drell
wrote, having in mind the separation procedure: The reader may
understandably be unhappy with this procedure. . . we recommend the
recent treatment of Erickson and Yennie which avoids the division into
soft and hard photons. Schwinger wrote “. . .there is a moral here for us.
The artificial separation of high and low frequencies, which are handled
in different ways, must be avoided.” All this advice was written even
though it was understood that the separation of the large and small
distances was physically quite natural and the contributions coming from
large and small distances have a different physical nature.

Davies concluded in a 1982 paper:

. . .the explanation of the Lamb shift is a far more orderly affair if it
is consistently carried through within the framework of old fashioned
perturbation theory. . .the joining up of the low and high energy contri-
butions does not involve any new physics: it is a simple mathematical
device to enable the use of two distinct approximation schemes [221].

In actual fact, the attitude has changed in the last decade, and

theorists have developed more elaborate methods to deal with matching

contributions from high and low frequency regions and are now trying to

embrace the split to clarify the physical nature of corrections and improve

the results of computations [152, 231].

In Steven Weinberg’s 1995 classic “The Quantum Theory of Fields,” he

uses an elegant method of computing radiative shifts in which he introduces

a photon mass in the photon propagators that ultimately cancels when

the low and high momenta regions are combined. As he says, his result

is 1052.19MHz, “just the same as the old result of Kroll and Lamb [193]

and French and Weisskopf [192] which they obtained using the techniques

of old-fashioned perturbation theory [173].” Lowell Brown in his book

Quantum Field Theory advocates using analytical continuation in the

spatial dimensionality of the field [174]. He notes that in n > 4 dimensions

there is no IR divergence and, in n < 4, there is no UV divergence; thus, in

the limit of n→ 4, one can obtain the correct results.
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8.2.3 Current focus in precision QED for light atoms

New developments in calculations include simplifications of the Bethe-

Salpeter equation for a system with masses that are very different, such

as the proton and electron [9, 205, 212, 231–233]. The simplifications are

described as effective potential methods, and the “on the mass shell”

approach [151]. Computers are used heavily for numerical computations.

Higher and higher order corrections are being computed [9, 11, 167, 168,

208, 212, 214, 219, 222–224, 231, 232], using numerical as well as analytical

methods [225–230]. In Lamb shift calculations for the classic 2s1/2 − 2p1/2
shift, there are hundreds of separate terms that are computed to secure a

precision of 1 part in 1013.

The interest in the Lamb Shift in hydrogen has moved to a more

general interest in the QED analysis of two-particle bound states in systems

generally with low Z and one or two electrons [2, 95, 128, 149–152, 196,

199–202, 205]. This includes bound states of an electron and a positron

(positronium), bound states of a muon and a proton (muonium), and

even antihydrogen. Systems with high Zα coupling are of interest for the

study of nuclear effects or the study of perturbations as a function of Zα.

Precision QED analysis has also been applied to deuterium and ionized

tritium and systems with two electrons, like He. There have been incredible

advances in experimental methods that now include atom interferometry,

laser spectroscopy, and two-photon spectroscopy, which can be used to

study transitions such as 1S → 2S and 1S → 3S that do not have a

change in the angular momentum. The 1S → 2S transition has a natural

line width of only 1.3Hz, so experimental determinations are a thousand

times more accurate than for any other transition in H, where typical

line widths are about 1MHz or more. For this transition, precision up

to 15 decimal places is possible [1]. This means the determination of the

2s1/2 − 2p1/2 Lamb shift is not limited by the 2s line which is very broad.

Many different transitions in these systems are studied, and the results are

correlated to secure more precision and to determine likely values of the fine

structure constant and the Rydberg constant and, hopefully, the radius

of the proton. The radius obtained from the measurements of hydrogen

and muonic hydrogen differs by four standard deviations, a puzzle that is

currently being addressed [234, 235].

There are physicists, including notables Dirac, Schrödinger, Einstein,

Pauli, Lamb, Bohm, Feynman, and others who are not satisfied with the

present version of quantum electrodynamics, in which perturbation theory,
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which should rightfully deal with small perturbations, is dealing with

infinite terms. Three years before he died, Feynman wrote:

The shell game that we play..is technically called renormalization. But
no matter how clever the word is, it is what I would call a dippy
process! Having to resort to such hocus-pocus has prevented us from
proving that the theory of quantum electrodynamics is mathematically
self-consistent [236].

It is ironic that Bethe’s original calculation appears to have set this

direction for the development of QED. Had he not had such success with his

original calculation, perhaps we would have a theory without infinities today

that provided a more satisfying intellectual and philosophical viewpoint.

However, it is hard to argue with success.

In Chapter 9 we discuss radiative shifts in classical and quantum

systems, including the role of the quantum vacuum.
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Chapter 9

Radiative Shifts, Classical Physics,
and the Zero-Point Fluctuations
of the Electromagnetic Field

9.1 Background on QED Radiative Shift Calculations

The zero-point vacuum fluctuations have a spectral energy density of ρ(ω) =

�ω3/2π2c3. In QED, the vacuum field is typically expressed as a sum over an

infinite number of plane waves with all possible momenta �k and directions

k/k with the restriction that the energy Ek in each mode is �ωk/2 = �k/2c.

The vector potential is [3]1

A(r, t) =
∑

k,λ

√

2π�c2

ωkV
(akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkλ)) ek,λ, (9.1)

where the raising and lowering operators obey the commutation rules

[akλ, a
†
k′λ′ ] = δkk′δλλ′ (9.2)

and εk,λ are the two normalized polarization vectors (λ = 1, 2) that are

orthogonal to k, thus k · ek,λ = 0, and

ek,λ · ek,λ′ = δλλ′ . (9.3)

The electric field is E(r, t) = −∂A(r, t)/∂t and B(r, t) = ∇ ×A(r, t).

The interaction Hamiltonian for a particle of charge e and mass m in the

1The quantization volume V is an artifice to avoid infinite volumes. In this box
normalization kx = 2πnx/Lx, ky = 2πny/Ly, and kz = 2πnz/Lz , with V = LxLyLz .
The integers nx, ny , and nz go from −∞ to +∞.

129
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vacuum field is

HI =
1

2m
(p− eA)2, (9.4)

where A is the vector potential for the vacuum field. The radiative shift

in energy levels, such as the Lamb shift, arises from the p · A term. The

contribution to the energy shift due to the A2 term does not depend on the

state of the atom and so is ignored in calculations of the radiative shifts

between levels.

To summarize the properties of the vacuum field in QED: no real

photons are present, only random virtual photons of energy �ωk/2 and

momentum hk/2c, with all possible values of momentum, are present,

consistent with Eq. (9.1). The expectation values of the electromagnetic

fields vanish: 〈E〉 = 0, 〈B〉 = 0, but the variances do not: 〈E2〉 �= 0,

〈B2〉 �= 0. The fields are isotropic (invariant under rotations), invariant

under space–time translations (homogeneous), and under boosts (Lorentz

invariant). The energy density spectrum is proportional to ω3, which is the

only spectral density that is Lorentz invariant [3]. This means that if you

are traveling through space at some velocity, the vacuum field will always

look the same, with the same spectral density. For temperatures above 0K,

there is an additional black body component to the vacuum field, which we

do not consider here.

In QED, we can model mass or charge renormalization with the process:

bare point electron + vacuum fluctuations + radiative reaction→
electron with physical mass, charge, and effective size of a Compton

wavelength

A bare, free, charged, point particle is constantly being accelerated in the

field, acquiring a mean kinetic energy that increases its effective mass. Since

the particle is oscillating, the effective volume occupied by the particle

increases and it can no longer be usefully regarded as a point particle,

but as a particle with an effective dimension of a Compton wavelength.

The interaction of the free electron with the vacuum field results in the

renormalization of the ideal point electron, so it has the physical properties

of a real electron. It cannot radiate because the zero point vibrations

represent the lowest energy state of the vacuum.

A similar process occurs for an atom, in which the atom undergoes

allowed virtual transitions due to the vacuum field. These transitions can
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be seen as shifting the energy corresponding to a given state of the atom.

A QED based model for this mechanism responsible for the radiative part

of the Lamb shift is discussed in Section 11.4.1.

In QED, radiative shifts are often calculated using Feynman diagrams,

in which the atom is depicted as propagating in time, and it emits or absorbs

a virtual photon changing its state correspondingly; then a short time later

(consistent with the time-energy uncertainty principle) absorbs or emits the

same virtual photon and returns to the initial state. The free vacuum field

is generally interpreted as the cause of these transitions. On the other hand,

the transitions can be interpreted as due to the interaction of the electron

with its own radiation field. To first order, the radiation field of the electron

is the same as the free field of the quantum vacuum. Hence, QED radiative

shifts are the same to the first order whether we compute them as arising

from self-interaction with the radiation field or as arising from interaction

with the ubiquitous virtual fluctuating zero-point vacuum field. Although

these interpretations fit the equations and appear reasonable, it should be

pointed out that no experiments could verify that these virtual transitions

actually occur since the times are so short; it is a matter of preference how

one views these phenomena.

Milonni has clarified the role of vacuum fluctuations and the radiative

reaction in QED calculations of the Lamb shift and the Casimir force [3,

Section 4.13] or [172, Section 7.4]. If the annihilation and creation operators

in the vector potential are made to be symmetric in the calculations, then

the level shift is determined to be due solely to the free vacuum field. This

is how Welton and Feynman did their calculations, and how the Stark effect

is typically computed. However, if the operators are normally ordered, then

the level shift is found to be due to the radiation field of the electron, which

Milonni also refers to as a source field. Thus, the preference of the person

doing the calculation determines which field appears to be responsible for

the Lamb shift.

9.2 Radiative Effects in Classical Physics

Classically, any charge radiates when it is accelerated, and this emission of

radiation, which carries away momentum, angular momentum, and energy,

alters the unperturbed motion of the particle. To account for this radiation

classically, we include in the equations of motion a resistive or damping force

proportional to the third derivative with respect to time of the position.
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For a classical radiating electron in a Coulomb potential, Newton’s second

law becomes the Abraham–Lorentz equation of motion

m
d2r

dt2
= −Ze

2r

r3
+

2e2

3c2
d3r

dt3
. (9.5)

The second term on the right is the Abraham–Lorentz force, the non-

relativistic radiative reaction force for an accelerating charged particle. The

radiation field of the particle essentially exerts a force on itself, sometimes

called a “self-field”, a phenomenon that leads to renormalization and radia-

tive shifts in QED. The classical equations of motion become sufficiently

complicated, so that they are usually solved only in an approximation

[237]. We illustrate the effects by considering the non-relativistic classical

hydrogen atom and the non-relativistic classical simple harmonic oscillator.

9.2.1 The classical hydrogenike atom

Without radiative damping, a classical electron in a Coulomb potential

would travel in elliptical or circular orbits in a periodic way. Including the

damping means that the orbits decay with the emission of radiation. As

time passes elliptical orbits tend to become circular and the mean radius

decreases leading to collapse of the atom. The electron in a classical H atom,

starting at a radius of 0.53A (given by quantum mechanics), would collapse

in about 1.3 × 10−11 s [238–240]. Consideration of the rate of decay of the

energy and the angular momentum for an atom with charge Ze leads to the

equation for the radius rcl(t) of a circular orbit for a mass m and charge e

as a function of time

r3cl(t) = r3cl(0)− 4
α(Zα)

m2
t (9.6)

with classical orbital frequency

ωcl =

√

Zα

mr3cl
. (9.7)

The Lamor equation P = (2/3)(αv̇2) gives the radiated power. The

acceleration v̇ can be obtained from the Coulomb force F = mv̇ = Zα/r2cl,

giving the radiated power

P(t) =
2

3

α(Zα)2

m2

1

r4cl
. (9.8)
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Applying the Correspondence Principle we obtain the transition probability

Γ =
P (t)

ωcl
=

2

3
mα

(Zα)3/2

(mrcl)5/2
. (9.9)

Substituting the quantum mechanical result for the radius of the H atom

for large principal quantum number N

rc =
N2

mZα
(9.10)

gives the transition rate or width for state N

ΓN =
2

3
m
α(Zα)4

N5
. (9.11)

This width is 2π times the energy lost classically by radiation in one

revolution (about 2π 48MHz = 301MHz, assuming N = 2). We show

that for large N this width equals the imaginary part of the radiative shift

calculated from quantum field theory.

Efforts have been made to stabilize the ground state of the hydrogen

atom using stochastic electrodynamics (SED), which is classical electro-

dynamics with an additional field, a classical version of the zero-point

electromagnetic field that is included with the objective of obtaining the

same results as quantum theory [238–241]. Stochastic electrodynamics

(SED) includes a classical stochastic field that has the same energy density

as the quantum vacuum field. In the SED modeling efforts of the hydrogen

atom to date, the classical field supplies the energy lost by radiation from

the classical electron that orbits the proton, thus stabilizing the orbit for a

short time, but then results in the ionization of the atom.

9.2.2 Radiative shifts to lowest order in the classical

simple harmonic oscillator

In a real harmonic oscillator, damping is present due to internal friction,

environmental interactions, and radiation. The damping shifts the resonant

frequency and causes the oscillations to decay in time. Consequently,

the emitted radiation is no longer monochromatic, but has a frequency

spectrum with a finite width. For an undamped one-dimensional oscillator

with charge e, mass m, and resonant frequency ω0, the displacement from

equilibrium is

X(t) = Re(X0e
−iω0t). (9.12)
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Including a radiative damping force in the equations of motion produces

a complex shift in the resonant frequency [237]

ω0 → ω0 +Δω0 +
i

2
Γ, (9.13)

where

Δω0 = − 5

18

(

α�

mc2

)2

ω3
0 Γ =

2

3

α�

mc2
ω2
0 . (9.14)

The factors of c and � arise for the classical oscillator since radiation

is emitted. The term α�/mc2 is the time it takes for light to travel a

distance equal to α times the reduced Compton wavelength, 9.6 × 10−24

sec, which also equals the time it takes for light to travel a distance equal

to the classical electron radius.2 Radiative effects are only important for

accelerations that result in changes in velocity for times less than α�/mc2.

For the classical harmonic oscillator, the shift Δω0 is a higher order effect

than the width Γ.

When we recall that in quantum mechanics the energy is proportional

to the frequency E = �ω and that the time dependence of an eigenstate

of energy E is e−itE , it is no surprise that in quantum electrodynamics

radiative effects produce a complex shift in the bound state energies of a

system, the real part being the shift in the energy level and the imaginary

part being the width of the state that determines its lifetime.

We can verify the Bohr Correspondence Principle for the three-

dimensional isotropic harmonic oscillator. This principle states that in

the limit of large quantum numbers the classical power radiated in the

fundamental band is equal to the product of the photon energy and

the quantum mechanical transition probability (or the reciprocal of the

lifetime). The power radiated from the classical isotropic oscillator is all in

the fundamental band and has the value

P =
2

3
αω4

0A
2, (9.15)

where A2 is the mean square amplitude of oscillation. The corresponding

transition rate or line width Γ is

Γ =
P

ω0
=

2

3
αω3

0A
2. (9.16)

2The classical radius of the electron is rcl = e2/(mc2) = 2.8 × 10−13 cm, which can
be written at α�/mc = αλ, where λ is the reduced Compton wavelength of the electron
3.8× 10−11 cm (Compton wavelength divided by 2π).



Radiative Shifts, Classical Physics, and the Zero-Point Fluctuations 135

For a quantum mechanical three-dimensional oscillator, the energy for a

state N is EN = (N + 3
2 )ω0 ≈ mω2

0A
2 and we find

A2 =

(

N +
3

2

)

1

mω0
. (9.17)

Accordingly, in the limit of large quantum numbers, it follows from the

Bohr Correspondence Principle that

ΓN =
2

3

( α

m

)

ω2
0N. (9.18)

We show in Section 11.5 that this width ΓN equals the radiative level

width computed in quantum mechanics. The Correspondence Principle

makes no statement about the level shift, which is the real part of the

radiative shift, and indeed the classical calculation yields a level shift of

order (α)2 while the quantum mechanical result is of order α.

9.2.3 Comparison of results for harmonic oscillator and

Coulomb potential

The level width (Eq. 9.18) of the harmonic oscillator increases with the

principal quantum number N, while for the hydrogen atom, the level width

(Eq. 9.11) decreases with N. There is a similar inverse relationship of

the level width with the mass. These results follow because the force on

the particle increases with distance for the harmonic oscillator, while it

decreases with distance for the H atom. For the harmonic oscillator the

force center is at the center of the ellipse; for the Coulomb potential the

force center is at a focus. The classical radiative damping in the harmonic

oscillator gives a complex shift that illustrates the close relationship between

radiative level shifts, as in the Lamb shift, and radiative widths. The level

widths for both systems are related by the Bohr Correspondence Principle

to the classical power radiated.

9.3 The Relationship Between Radiative Shift and the

Zero-Point Field: The Radiative Shift Calculations of

Bethe, Welton, and Power

In classical physics, the electromagnetic field in the vacuum vanishes (unless

we are dealing with SED, stochastic electrodynamics). However, from

quantum electrodynamics, we know that we must consider the effects of
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the zero-point fluctuations of the electromagnetic field.3 Three different

approaches have been used to explain the Lamb shift.

9.3.1 Bethe’s approach

The first calculation of the Lamb shift of a hydrogen atom was done by

Bethe in 1947, who assumed that the shift was due to the interaction of the

atom with a quantized electromagnetic field, which we assume is the zero-

point field. He calculated the shift using second order perturbation theory,

assuming that there was minimal coupling in the Hamiltonian:

Hint = − e

mc
A · p+

e2

2mc2
A2, (9.19)

where m is the mass of the electron and A is the vector potential for the

vacuum field given by Eq. 9.1.

As we have explained, the shift arises from the perturbation

−(e/mc)A · p . The shift from the A2 term is independent of the state

of the atom and is therefore neglected. In the non-relativistic dipole

approximation, the vector potential is evaluated as A(0, t).

A(0, t) =
∑

k,λ

(

2π�c2

ωkV

)1/2

(ak,λe
−iωkt + a†k,λe

iωkt)εk,λ (9.20)

The total shift for level N from second order perturbation theory is [3]

ΔENTot =
∑

n

∑

k,λ

|〈n, 1kλ|hkλ|N, vac〉|2
EN − Em − �ωk

, (9.21)

where

hkλ = − e

mc

(

2π�c2

ωkV

)

a†kλ(εkλ · p). (9.22)

The vacuum field induces a transition from the initial state |N, vac〉 to
an intermediate state with one photon |n, 1kλ〉 and energy En + �ωk. The

3We also mention the vacuum fluctuations of the charge density, characterized by virtual
electron–positron pairs, which leads to the renormalization of the electron charge. Since
this charge renormalization contributes much less to the shift between states than the
mass renormalization from the zero-point vibrations of the EM field, we shall not consider
it here. In mesic atoms, in which the meson orbit is largely within the nucleus, the
opposite situation occurs.
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matrix element of the operator inducing the transition is

〈n, 1kλ|hkλ|N, vac〉 = − e

mc

(

2π�c2

ωkV

)

pnN · εkλ, (9.23)

which means the energy shift equals

ΔENTot = − 2

3π

α

m2c2

∑

n

∫

dEE
〈NL|pi|n〉〈n|pi|NL〉

En − EN + E
, (9.24)

where the quantum vacuum field energy is E = �ω, α = e2/�c is the

fine structure constant, and the momentum matrix elements are |pnN | =
|〈n|p|N〉|. The sum is over all intermediate states |n〉, scattering and bound,

where n �= N. This shift has a linear divergence. Bethe’s insight was to tame

this divergence by removing the contribution to the shift from the free

electron in the H atom. He therefore subtracted the shift ΔEfree obtained

by letting the binding energy vanish in Eq. (9.24) (En − EN )→ 0:

ΔEfree = − 2

3π

α

m2c2

∑

n

|pnN |2
∫

dE. (9.25)

The observable shift is therefore

ΔENL = ΔENTot −ΔEfree. (9.26)

This yields Bethe’s final result

ΔENL =
2α

3π(mc)2

s
∑

n

∫

�ωC

0

dE
(En − EN )〈NL|pi|n〉〈n|pi|NL〉

En − EN + E − iε , (9.27)

where ωC is a cutoff frequency for the integration that we will take as

�ωC = mc2.

Using an idea from Kramers, Bethe did this renormalization, taking

the difference between the terms with a potential present and without a

potential present, essentially performing the free electron mass renormal-

ization. He reasoned that relativistic retardation could be neglected and the

radiative shift could be reasonably approximated using a non-relativistic

approach, and he cut the integration off at an energy corresponding to the

mass of the electron. He obtained a finite result that required a numerical

calculation over all states, bound and scattering, that gave good agreement

with measurements [18, 19, 158].

The spectral density in the Bethe formalism, which we will analyze in

Chapter 14, is the quantity in Eq. (9.27) being integrated over E which

gives the contribution to the shift as a function of the frequency of the
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vacuum field. It includes the sum over states n. The term for n represents

the contribution to the Lamb shift for the virtual transition from state N

to state n. Note since the ground state is the lowest state, all intermediate

states have higher energies, so the ground state shift has to be positive.

For comparison with the other calculations of the Lamb shift, it is

helpful to show the next steps Bethe took to evaluate the shift ΔEn for

the S states, which have the largest shifts. Note that the spectral density

in Eq. (9.27), that we will discuss in Section 14.2, is not affected by the

subsequent approximations Bethe made to evaluate the integral. First the

E integration is done:

ΔEBetheN =
2α

3π

(

1

mc

)2
∑

n

|pNn|2(En − EN )ln
(mc2 + En − EN )

|En − EN | . (9.28)

To simplify the evaluation Bethe assumed |En − EN | � mc2 in the

logarithm and that the logarithm would vary slowly with n so it could

be replaced by an average value

̂ΔE
Bethe

n =
2α

3π

(

1

mc

)2

ln
mc2

|En − EN |Ave
∑

n

|pNn|2(En − EN ), (9.29)

where the hat over the ΔE indicates this is an approximation to Eq. (9.27).

The summation can be evaluated using the dipole sum rule

2
s
∑

n

|pNn|2(En − EN ) = �
2〈N |∇2V |N〉. (9.30)

The value of the Laplacian with a Coulomb potential V = −Ze2/r is

∇2V (r) = 4πZe2δ(r), so we have
〈

N
∣

∣∇2V
∣

∣N
〉

= 4πZe2|ψN (0)|2, (9.31)

where ψ(r) is the wave function for a Coulomb potential. |ψN (0)|2 is zero

except for S states

|ψN (0)|2 =
1

π

(

Zαmc

N�

)3

. (9.32)

For S states, this gives an energy shift equal to [3]:

̂ΔE
Bethe

N =
4mc2

3π
α(Zα)4

1

N3
ln

mc2

|En − EN |Ave . (9.33)

The average ln(mc2/|En − EN |)Ave in this expression, which Bethe com-

puted numerically by summing over states, can be given in terms of the so
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called Bethe log γ(N,L):

ln
mc2

|En − EN |Ave = −γ(N,L) + δL0 ln
2

(Zα)2
.

For an S states with principal quantum number N, γ(N, 0) is

γ(N, 0) =

∑

m |pNn|2(En − EN )ln (1/2)(Zα)2mc2

|En−EN |
∑

m |pNn|2 (En − EN )
. (9.34)

The sum is over all states, bound and scattering. Comparison of Eq. (9.33)

to the definition of γ(N, 0) Eq. (9.34), we see there is a difference in the

argument of the ln function. This difference causes the appearance of the

term ln(2/Zα)2. Bethe also has extended the formalism to shifts for states

that are not S states [158]. To determine the shift, it is necessary to evaluate

the Bethe log by performing a numerical calculation over all states, bound

and scattering. The final result gave good agreement with measurements

[18, 19, 158].

Regarding the approximations Bethe made to obtain Eq. (9.28) from

Eq. (9.29) and the use of the Bethe log Eq. (9.34), he commented: “The

important values of |En −EN | will be of order of the ground state binding

energy for a hydrogenic atom. This energy is very small compared to mc2

so the log [in our Eq. (9.28)] is very large and not sensitive to the exact

value of (En − EN ). In the numerator, we neglect (En − EN ) altogether

and replace it by an average energy [158].”

Our work shows that Bethe was correct that the relative contribution

from energies of the order of the ground state is very important, but we find

in Chapter 14, when we analyze the contribution to the Lamb shift from

different frequencies, that the contribution from higher energy scattering

states is very significant, and therefore that the approximation |En−EN | �
mc2 is not valid for scattering states for which En increases to the value

mc2. We are not aware of any quantitative estimates of the error in the

approximation. The difference, 0.3%, between our value for the total 1S

shift and that of Bethe may be due to this approximation, although we

have not verified this. On the other hand, Bethe’s approximation may have

made his non-relativistic approach viable.

9.3.2 Welton’s approach

To provide a more intuitive physical picture of the shift, Welton and

Weisskopf considered the effect of a zero-point vacuum field on the motion
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of an electron bound in a Coulomb potential [198, 242]. The fluctuation in

the position of the electron ξ due to the random zero-point vacuum field E0

causes a variation in the potential energy. If r is the location of the particle

when it is unperturbed by the zero point field, then when perturbed, the

particle effectively sees a potential V (r+ ξ). For weak binding, ξ � r, and

we make the expansion4

V (r+ ξ) = V (r) + ξ ·∇V (r) +
1

2
(ξ ·∇)2 V (r) + · · · . (9.35)

Because of the harmonic time dependence of the vacuum field, 〈ξ〉 vanishes
and the radiative shift is given approximately by the vacuum expectation

value of the last term:

ΔEWelton
N =

〈ξ2〉
6

〈∇2V(r)
〉

N
, (9.36)

where we assume the potential has spherical symmetry, thus 〈ξ21〉 = 〈ξ22〉 =
〈ξ23〉 = 〈ξ2/3〉. Eq. (9.36), which is valid for any central force, gives

ΔEWelton
N as the product of two factors, one depending on the nature

of the fluctuations of the radiation field and the other depending on the

structure of the system. To estimate 〈ξ2〉 for the vacuum field we consider

the Hamiltonian for a particle of mass m and charge e in the vacuum field

using the radiation gauge (V = 0,∇ ·A = 0):

H =
1

2m
(p− eA(t, 0))2. (9.37)

We use the value of the vector potential for the free vacuum field at the

origin, A(t, 0), which is equivalent to the dipole approximation. The proton

and the electron can be considered to become a point dipole. Hamilton’s

equations give the result

md2ξ/dt2 = e dA/dt. (9.38)

Integrating gives

ξ(t) =
e

m

∫ t

−∞
dtA (t′, 0) . (9.39)

Squaring this and taking the vacuum expectation value gives:

〈ξ · ξ〉 =
( e

m

)2
∫ t

−∞
dt′e+εt

′
∫ t

−∞
dt′′e+εt

′′〈(A(t′, 0) ·A(t′′, 0))+〉. (9.40)

4This expansion is essentially the dipole approximation.
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The vacuum expectation value on the right side is simply −igijDij , where

Dij is the radiation gauge propagator in configuration space5:

Dij (t
′ − t′′) =

1

(2π)4

∫

d4k

(

δij − kikj · 1

k2

)

1

k2
e−iω(t

′−t′′). (9.41)

Accordingly, we find

〈

ξ2
〉

=
2α

π

(

�

mc

)2 ∫ �ωC

E0

dE

E
, (9.42)

where we show the factors of � and c to stress that the term in parentheses

(�/mc) is λc, the reduced Compton wavelength of the particle, which we

take to be the electron; thus λc is 3.86× 10−11 cm.6

We take the upper limit �ωC to be mc2 to correspond to the mass

of the electron, the same limit used by Bethe. For greater frequencies, it

is clear that our semiclassical calculation is invalid because of relativis-

tic kinematical effects and particle–antiparticle pair creation, which will

become possible. (Another justification for taking this limit is given when

we discuss this process from the point of view of the uncertainty principle).

For the lower limit, we take some characteristic energy E0 of the bound

state system, for example the magnitude of the ground state energy. This

gives a value of 8.4×10−12 cm = 0.22λc =
√〈ξ2〉 for the RMS displacement

of the electron due to the vacuum fluctuations.

The final expression for the shift in the energy of a particle bound in a

central potential V(r) is

ΔEWelton =
α

3π

(

�

mc

)2

ln

(

mc2

E0

)

〈∇2V (r)〉. (9.43)

This equation is valid for all central forces, including the Coulomb potential

or the simple harmonic oscillator. Because of our simplifications in the

treatment, the shift is not complex, but just represents the real portion of

the complex level shift. This equation is the first term in Eq. (11.50), which

gives the complex shift derived by field theory for a central potential.

The Welton model is a simple, physically appealing semi-classical model.

A modified version of Welton’s model has been published by Passante and

Rizzuto, in which they perform a rigorous quantum mechanical derivation

5The metric is (−1, 1, 1, 1) for μ = 0, 1, 2, 3; i, j = 1, 2, 3.
6We can also derive Eq. (9.42) using a Fourier decomposition of md2ξ/dt2 and

integrating over the frequency distribution of the vacuum field [3].
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of the change in the electron orbitals based on the virtual transitions that

lead to the radiative shift [243]. This new version does not suffer from some

of the drawbacks of Welton’s original version.

Welton’s model for Coulomb potential

For the Coulomb potential, the Laplacian is given by Eq. (9.31) and

(9.32). If we use a quantum mechanical average of the Laplacian, then

the expression for the shift for an S state with principal quantum number

N is

ΔWelton
N =

4α(Zα)4mc2

3π

1

N3

∫ mc2

E0

dE

E
(9.44)

which can be integrated to give

ΔWelton
N =

4α(Zα)4mc2

3π

1

N3
ln
mc2

E0
(9.45)

where E0 is a characteristic low energy, which we might choose as the

energy of the ground state. For the Coulomb potential, the Laplacian is

proportional to δ3(r), so classically the shift vanishes since the classical

electron is never at the center, whereas quantum mechanically the shift is

only for S states. On the other hand, if we happen to compare Eq. (9.45)

to Eq. (9.33), we see that if we take the same lower limit |En − EN |Ave as

in the Bethe log Eq. (9.34), we get exactly the same total S state shift as in

the approximate Bethe formalism Eq. (9.29). With these limits, the RMS

amplitude of oscillation of the electron bound in the Coulomb potential
√

〈(
ξ)2〉 is about 72 fermis, about 1/740 of the mean radius of the 1S

electron orbit.

Welton’s model for simple harmonic oscillator

For the 3D harmonic oscillator V = (1/2)mω2
o(x

2 + y2+ z2), the Laplacian

is a constant ∇2V = 3mω2
o , and for the characteristic low energy we take

E0 = �ω, so the shift for every level is a constant equal to

ΔWelton
SHO =

α

π

(�ω0)
2

mc2
ln

�ωC
�ω0

. (9.46)

This level shift is the same as the real part of the complex level shift

Eq. (11.57), derived by QED in Chapter 11. For the harmonic oscillator,

we get the same constant shift whether we take a classical or a quantum

mechanical average. For an oscillator with a ground state energy of 2 eV,
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the ln term is about 12.4 and the shift is about 2.3 × 10−7 eV, which is

comparable to the 2s1/2 − 2p1/2 lamb shift value of 4.3× 10−6 eV.

9.3.3 Feynman’s approach (implemented by Power)

Feynman proposed another approach to compute the Lamb shift: he

maintained that the change in the energy in the quantum vacuum due to the

presence of the H atoms would exactly equal the Lamb shift. Feynman’s

approach highlights the changes in the vacuum field energy due to the

interactions with the H atoms. Power, based on the suggestion by Feynman,

considered the change in vacuum energy when N hydrogen atoms are placed

in a volume V, using the expression for the index of refraction n(ωk)

[3, 203, 244]. The H atoms cause a change in the index of refraction and

therefore a change in the frequencies of the vacuum fluctuations present.

The corresponding change in vacuum energy ΔE is

ΔEPower =
∑

k

1

n(ωk)

1

2
�ωk − 1

2
�ωk. (9.47)

For a dilute gas of atoms in a level N, the index of refraction is

n(ωk) = 1 +
4πNd
3�

∑

n

ωnN |d|2nN
ω2
nN − ω2

k

, (9.48)

where Nd is the number density, ωnN = (En − EN )/� and dnN = exnN ,

the transition dipole moment. After substituting n(ωk) into Eq. (9.47), we

get a divergent result for the energy shift. Following Bethe’s approach, we

need to subtract from ΔE the energy shift for the N free electrons, which

equals the shift when ωnN → 0, with no binding energy. After making this

subtraction and converting the sum over k to an integral over ω, and letting

NV → 1, the observable shift in energy is obtained [3]:

ΔEPowerN = − 2

3πc3

∑

n

ω3
nN |dnN |2

∫ mc2/�

0

dωω

ω2
nN − ω2

. (9.49)

Noting that

〈n|p|N〉 = i

�
m〈n|[H,x]|N〉 = i

�
m(En − EN )〈n|x|N〉, (9.50)

we can show

|pnN |2 = m2ω2
nN |xnN |2 =

m2ω2
nN

e2
|dnN |2. (9.51)
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This allows us to write Power’s result Eq. (9.49) as

ΔEPowerN = − 2e2

3πm2c3

∑

n

ωnN |pnN |2
∫ mc2/�

0

dωω

ω2
nN − ω2

. (9.52)

Writing this equation in terms of E = �ω instead of ω yields

ΔEPowerN = −2α

3π

(

1

mc

)2
∑

n

|pnN |2(En − EN )

∫ mc2

0

EdE

(En − EN )2 − E2

(9.53)

In Chapter 14, we will use this equation to analyze the spectral density

for Power’s method, showing the spectral density is different from Bethe’s

at low frequencies but the same at high frequencies. When Eq. (9.53) is

integrated with respect to E, taking the principal value, we obtain

ΔEPowerN =
2α

3π

(

1

mc

)2
∑

n

|pnN |2(En − EN )

× ln

[

mc2 + (En − EN )

En − EN × mc2 − (En − EN )

En − EN

]1/2

. (9.54)

Except for the argument in the ln function, which corresponds to the

upper limit of integration, this is the same as Bethe’s expression Eq. (9.33)

for the shift. If we assume mc2 	 En − EN , as Bethe did, then both

expressions for the total shift are identical. We know, however, that there

are significant contributions to the shift from scattering states En that

have energies near mc2. Thus, this approximation is not valid at very high

energies of En because the second factor in the ln function in Eq. (9.54)

may even become less than one since EN is negative, making the ln term

negative.

Milonni and his collaborators have modified the derivation of the

Lamb shift that is based on Feynman’s approach so that the result is

identical to Bethe’s result [244]. They note the expression for the index

of refraction assumes the presence of a real photon, which leads to an

unphysical contribution that is usually eliminated by the choice of the cutoff

frequency ωC . To correct for this problem without relying on the cutoff

frequency, they include in the shift the contribution from the self interaction

of the atom as well as the contribution from the vacuum fluctuations. When

both contributions are included, the total shift is the same as Bethe’s

result. Their approach would likely eliminate the problematical ln term

in Eq. (9.54) that may become negative for very large En.
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One assumption in the computation by Power is that the index of

refraction in the box containing the atoms is spatially uniform. We will

return to this assumption and suggest in Chapter 15 a model that predicts,

for a single atom, the changes in the vacuum field energy as a function of

position for each spectral component of the radiative shift.

9.3.4 Observing zero-point vibrations of the electron

We might ask: Why do we not observe point particles with their unrenor-

malized masses oscillating in the zero point field? The answer is an

observation of distances of the order of
√〈ξ2〉 ≈ √α(�/mc) (Eq. 9.42),

about one tenth of the Compton wavelength, would, by the uncertainty

principle, involve momenta of the order of mc/
√
α and energies of the

order of mc2/α, causing violent uncontrollable perturbations in the zero-

point motion and leading to the creation of particle–antiparticle pairs in

the vicinity of the particle we were attempting to observe.

To illuminate the nature of the free particle renormalization by analogy,

consider an impenetrable massless black box containing a gas. Since E =

mc2, the kinetic energy of the gas molecules contributes to inertial mass,

and the observable mass depends not only on the mass of the gas molecules

but also on their temperature, which indicates their mean kinetic energy.

The separate contributions to the observable mass of the box cannot be

measured directly, but if we know the temperature, we can compute them.

The analogy of this hypothetical situation is quite close to the free particle

renormalization since we can regard the zero-point vibration as causing

infinite or very large virtual temperature fluctuations. In renormalization,

the initial mass of the particle is chosen so that the renormalized mass is

equal to the known physical mass.

9.4 General Nature of Radiative Shifts

Before ending this section, it seems important conceptually to stress the

general nature of radiative shifts [3, 245–248]. First, we note that a shift in

the particle mass from the infinite free space (renormalized) value occurs

whenever the particle is not in infinite free space. Not only an external

potential, but any object altering the zero-point field of infinite free space

will produce a shift in the energy levels of an atom.7 For example, there

7The shift is also dependent on temperature since the vacuum field has a temperature
dependent component due to the presence of black body radiation.
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is a change in the mass, charge, and magnetic moment of an electron or

a change in the Lamb shift of an atom when we put it near a surface or

between two surfaces or in a dielectric medium [245, 246, 249, 250].

A second observation we would like to mention is that radiative shifts

can occur whenever we have an interaction between a particle and a field,

not necessarily just the electromagnetic field. For example, there are shifts

for the gravitational field or for the meson field of a nucleus [247].

In the next chapter, we use quantum field theory to derive an expression

for the radiative shift of an hydrogen atom.



Chapter 10

The Radiative Shift in Field Theory

There are numerous ways to compute first-order radiative shifts, as

explained in detail in excellent texts, for example [3, 172, 173, 175].

We employ a different approach, calculating the shift in terms of the

mass2 operator, in hopes that this clarifies the physical significance of

renormalization and the shift more clearly than some other methods [251].

We give comments on the various approaches, including the traditional

methods. We do not include the effects of electron spin in our first-

order non-relativistic calculations. The only assumptions made are the

equations of motion and the minimal coupling of the vector potential to

the momentum.

10.1 The Mass2 Operator

The radiative shift of a particle can be understood as the difference

between the mass renormalization for a bound particle and the mass

renormalization for a free particle, which we consider to be a spinless

electron or meson. Therefore, we briefly review the mass renormalization

of a free electron (assuming that all other quantities except the mass have

been renormalized). The equation of motion for a free bare meson field is

−∂′2φ0(x′) +m2
0φ0 (x

′) = 0, (10.1)

where m0 is the unrenormalized mass1. The propagator for the bare meson

G0(x
′, x′′) satisfies the equation

(−∂′2 +m2
0)G0 (x

′, x′′) = δ(x′ − x′′). (10.2)

1The primes indicate eigenvalues of operators, and unprimed quantities indicate
abstract operators. The quantity x′ means the four-vector (t′, r′).

147
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We can rewrite this equation as

G0 (x
′, x′′) =

1

−∂′2 +m2
0

δ (x′ − x′′) (10.3)

or in momentum space

G0(p) =
1

p2 +m2
0

. (10.4)

The meson has a charge distribution and therefore interacts with its

own electromagnetic field, producing a change in mass. The propagator for

a free self-interacting meson becomes

GF (p) =
1

p2 +m2
o +M2

F(p)
, (10.5)

where M2
F (p) is the mass2 operator for a free, self-interacting or dressed

meson. If m2 is the observed (renormalized) physical mass, then the

propagator GF (p) must have a pole at p2 = −m2. Thus,

m2 = m2
o +M2

F (p
2 = −m2). (10.6)

The space-time methods of Feynman, which were developed right after

Bethe’s calculation, were helpful in providing a physical picture of the

phenomena and in facilitating calculations [186]. In that spirit, we consider

the diagrams in Fig. 10.1 that show the processes that represent the mass2

operator M2
F to order e2 or α in the radiation field of the meson (one

photon of the radiation field is present). By analyzing themass2 operator in

Section 10.5, we show that these are indeed appropriate Feynman diagrams.

In configuration space, the equation of motion for the free self-

interacting meson is

(p2 +m2
0)GF (x

′, x′′) +
∫

d4x′′′M2
F (x

′ − x′′′)GF (x′′′, x′′) = δ(x′ − x′′).
(10.7)

Fig. 10.1. Feynman diagrams for mass renormalization. Time axis is horizontal. The
diagram on the left corresponds to the p · A term and shows an electron emitting a
virtual photon and then at a later time reabsorbing the photon. The diagram on the
right corresponds to the A2 term.
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The presence of the convolution integral indicates that we can view the

meson as having a finite extent. The shape of the meson centered at r′ is
proportional to the Fourier transform of m2

0 +M2
F (p), namely

δ(r′ − r′′) + 1

m2
(M2

F (r
′ − r′′) +m2

0 −m2). (10.8)

The effective finite extent of the meson in the vacuum field is central

to the interpretation of the Lamb shift. Alternatively, we can say that we

have a point particle, but now it is in a non-local potential. Although we

need never explicitly mention the zero-point vibrations in our field-theoretic

calculation, we could interpret the Feynman diagrams as corresponding to

the zero-point fluctuations or to the interaction of the electron with its own

radiation field [172, p. 240].

We can estimate the amplitude 〈ξ 2〉 of the zero-point oscillations

of the meson (or equivalently, the emission and absorption of virtual

photons) by applying the uncertainty relations to the process depicted in

Fig. 10.1. When the photon is emitted, the particle receives a momentum

ki with uncertainty Δki. Consequently, the uncertainties in the position

ξ and velocity v of the particle satisfy the relations Δξ > 1/Δki and

Δvi ≈ Δki/m. Requiring that Δvi ≈ 1 implies that Δki ≈ m and

Δξi > 1/m = Compton wavelength. To get the effective 〈ξ2〉, we must

multiply by the probability that the photon has been emitted. The diagram

has two vertices so the probability is proportional to α, which leads to the

result α(Δξ)2 = 〈ξ2〉 ≈ 3α/m2 = 3α(�/mc)2 the mean amplitude squared

of the zero-point vibrations, which is comparable to the result (Eq. 9.42)

obtained using the equations of motion for the vector potential.

When we place a bare meson (or spinless electron) in an external

potential, we assume that it forms a bound state. The propagator and

therefore the equations of motion are as before except that: (1) the free

mass2 operatorM2
F is replaced by a bound state mass operatorM2; (2) the

propagator GF for a free particle with radiative interaction is replaced by

the corresponding propagator G for a bound particle; and (3) pμ is replaced

by the four-vector by Πμ = pμ −Vμ, where Vμ is the external four-potential

in accordance with minimal coupling [3]. The energy of the bound state is

shifted by a mechanism similar to that for a free bare meson. The Feynman

diagrams are shown in Fig. 10.2.

The double line represents a meson propagating in the external poten-

tial. The difference between the diagrams for the bound meson and the free

meson corresponds to the radiative level shift (Fig. 10.3). In other words,

the radiative shift in a bound state level is the change in the self-energy of
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Fig. 10.2. Feynman diagrams for the bound state mass renormalization. The double
line represents a meson bound in an external potential.

Fig. 10.3. Feynman diagrams showing the level shift is the difference between the
bound state mass renormalization and the free particle mass renormalization. The double
line represents a meson bound in an external potential.

a particle that occurs when it becomes bound. As discussed in Section 8.2,

this is exactly the way Bethe framed the problem of computing the Lamb

shift. The intermediate state of the atom, i.e., while the virtual radiation

field photon has been exchanged, is unknown. In his historic approach, the

cumulative effect of these virtual transitions is given by the Bethe log term.

To indicate in more detail the process involved in the radiative shift

for a Coulomb potential, we expand the double line representation of the

bound meson, indicating separate meson and proton lines and the photons

exchanged that represent the Coulomb force (Fig. 10.4). The graphs that

give the radiative changes are of the form shown in Fig. 10.5. The lowest

order shift, to order α (first order) in the radiation field and (Zα)4 (second

order) in the Coulomb field, is given simply by the vertex correction

(Fig. 10.6).

Rather than consider separately all the various graphs in the Coulomb

field and obtain an answer in a series with powers of Zα or ln(Zα) as is done

with higher order calculations [152, 199, 214, 219], we calculate the radiative

correction using the equations of motion for a meson (spinless electron) in

a Coulomb field and then make approximations to first order assuming

that the proton or Coulomb source is an infinitely heavy point charge. We

are neglecting relativistic effects, recoil effects, center of mass corrections,

radiative corrections and size effects for the proton. To include these effects,
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Fig. 10.4. Feynman diagrams for the meson (top line) bound to the Coulomb field of
a proton (bottom line). The dots indicate that all possible configurations of Coulomb
photons, including crossed photon lines, are to be included.

Fig. 10.5. Feynman diagrams for the meson (top line) bound to the Coulomb field of a
proton (bottom line), with the exchange of Coulomb photons and one radiative photon
emitted and reabsorbed by the meson.

Fig. 10.6. Feynman diagram for lowest order radiative correction to the bound meson.

we would need to use the Bethe–Salpeter equation [95, 158, 223]. On the

other hand, Weinberg (in 1995) did not think the Bethe–Salpeter equation

was the correct equation for relativistic interactions (it includes no crossed

photon diagrams), and he concluded: “It must be said that the theory of

relativistic effects and radiative corrections in bound states is not yet in

entirely satisfactory shape” [173].

In general, we are concerned with directly measurable quantities, namely

the shift in the energy difference between two states of a bound meson. For

example, we calculate the change in the 2s-2p separation. Clearly, this shift
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is given by the difference in renormalization between a meson bound in a

2s state and one bound in a 2p state. Thus, the renormalization of a free

meson is never actually used.

10.2 Expressing the Radiative Shift in Terms of the

Matrix Elements of the Mass2 Operator

From the equation for the propagator of a self-interacting meson in a

potential V μ(x), we can find the equation obeyed by the corresponding

meson wave functions. Taking mass-renormalized wave functions of the

meson in the potential field as our unperturbed states, we apply first-order

perturbation theory to find the expression for the radiative shift in terms of

matrix elements of the perturbationM
2
. The Green function or propagator

for a meson field φ(x′) that interacts with its own radiation field and the

external potential Vμ satisfies the equation:

(Π′2 +m2 +M
2
)G(x′, x′′) = δ(x′ − x′′), (10.9)

where

Π′
μ =

1

i
∂ ′
μ − Vμ(x′), (10.10)

m is the physical mass, M2 is the (mass)2 operator and M
2

is the

renormalized mass2 operator for a meson in a Coulomb potential

M
2
=M2 +m2

0 −m2. (10.11)

Equation (10.9) is similar in form to Eq. (10.7). However, in Eq. (10.7)

we explicitly indicate the integration over x′′′, whereas in Eq. (10.9) we use

a shorthand notation for integration. We assume that our four-potential is

such that we can work in a gauge with Vi = 0, V 0 = V (r). Since we want

an energy shift, we take the Fourier transform of Eq. (10.9) with respect to

time

(p′2 − ( ˜E − V ′)2 +m2 +M
2
( ˜E))G( ˜E, r′, r′′) = δ(r′ − r′′), (10.12)

where we define

M
2
( ˜E)G(˜E, r ′, r ′′) ≡

∫

d3r′′′M
2
(˜E, r ′, r ′′′)G(˜E, r ′′′, r ′′) (10.13)

and ˜E is the relativistic total energy. We can convert Eq. (10.12) to an

equation for the wave functions by expressing the Green function as the
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vacuum expectation value of the time ordered product of the meson field

φ(x′):

G(x′, x′′) = i〈(φ(x′)φ†(x′′))+〉. (10.14)

If we insert a complete set of eigenstates of the Hamiltonian (particle,

antiparticle, bound, and scattering) in this equation for G and use the

equation of motion for φ(x):

φ(r, t) = eiHtφ(r, 0)e−iHt, (10.15)

we find

G(˜E, r ′, r ′′) =
∑

k

Φk (r
′)Φk (r

′′)
˜E − ˜Ek

+ contribution of scattering states.

(10.16)

The Φk(r) are the relativistic bound state particle wave functions

〈0|φ(r, 0)| ˜Ek〉 with the renormalized mass and a relativistic total energy ˜Ek.

If Eq. (10.12) is to be satisfied when we substitute this form for G and let

k = n, ˜E = ˜En, and r
′ �= r′′, then it follows that

(p′2 +m2 − ( ˜En − V ′)2 +M
2
( ˜En))Φn(r

′) = 0. (10.17)

We now use first-order perturbation theory to calculate the radiative

shift due toM
2
( ˜En). The unperturbed wave functions are the renormalized

relativistic wave functions ˜ψn(r
′) for a meson which satisfy the equation

[p′2 − ( ˜E0
n − V ′)2 +m2] ˜ψn(r

′) = 0, (10.18)

where ˜E0
n is the unperturbed relativistic energy eigenvalue. For our

normalization, we choose

( ˜ψn, ( ˜E
◦
n −V′) ˜ψn) = m, (10.19)

where the scalar product is defined as follows:

(φ,Aψ) =

∫

d3r′ φ∗(r′)(Aψ(r′)). (10.20)

We note that Φn(r
′) equals ˜ψ(r′) plus higher order terms. We take the scalar

product of Eq. (10.17) with ˜ψn and substitute Eq. (10.19) and Eq. (10.20)
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and obtain, to lowest order in the radiation field, the shift for the state N :

Δ ˜EN ≡ ˜EN − ˜E0
N =

1

2m
( ˜ψN , M

2
( ˜EN ) ˜ψN ), (10.21)

which is shorthand for

ΔẼN =
1

2m

∫

d3r ψ̃∗
N(r

′)
∫

d3r′′M
2
(ẼN, r

′, r′′)ψ̃N(r
′′). (10.22)

If we define the relativistic state |ñ〉 such that ψ̃n(r
′) ≡ 〈r′|ñ〉 and note

that

M
2
( ˜En, r

′, r′′) = 〈r′|M2
( ˜En)|r′′〉 (10.23)

then we obtain the simple and important result

Δ ˜EN =
1

2m
〈 ˜N |M2

( ˜EN )|Ñ〉. (10.24)

The radiative shift of the level ˜EN is equal to 1/2m times the expectation

value of the renormalized (mass)2 operator M
2
( ˜EN ) with respect to the

state 〈 ˜N |, where ˜E is the relativistic energy.

In Sections 10.5 and 11.2, we derive an expression for M
2
to order α

in the radiation field by using the equations of motion for the meson in an

external potential, a method we believe is closest to fundamental principles.

10.3 S Matrix Approach

As an alternative to our approach, we should mention that it is possible

to use the S matrix formalism to find the radiative shift. As mentioned

in Section 8.2, Dyson showed the equivalence of the QED formulations of

Schwinger and Feynman with the S matrix formalism [195, 196]. For the

Lagrangian interaction, we use

Lint = ejμA
μ
rad, (10.25)

where Aμrad is the radiation field of the meson and jμ is the current of the

meson in the potential field. We calculate the S matrix element between

pure bound states with the usual harmonic time dependence. Since we have

a perturbation to a bound state, the matrix element must be expressed in

the form 〈S〉N = e−iT(ẼN−Ẽ0
N), where T is the interaction time. To obtain

the shift, we perform the integrations and use the usual trick of equating

T and 2πδ(0).
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10.4 Derivation of Mass2 Operator for a Relativistic

Meson (Spinless Electron) in an External Potential

We calculateM
2
( ˜E) in a covariant gauge in which the meson radiation field

Aμrad and the meson field φ obey the equations:
[

Ȧμrad(x
′), Aνrad(x

′′)
]

= igμνδ(x′ − x′′)
[Aμrad(r

′, t), Aνrad(r′′, t)] = 0
[

A0
rad(r

′, t), φ(r ′′, t)
]

= 0
[

∂0A
0
rad(r

′, t), φ(r ′′, t)
]

= 0.

(10.26)

Since the results are gauge invariant, we can choose the Feynman gauge in

order to simplify the calculation. In the final answer, we simply replace the

Feynman propagator with the radiation gauge propagator. The derivation

proceeds by converting the Klein–Gordon equation for a self-interacting

meson in an external potential into an equation for the corresponding

Green function G(x′, x′′). An explicit form for M2( ˜E) is then obtained

by comparing this equation to the defining equation for G which includes

M2 (Eq. (10.9)). If desired, skip the mathematics and go to Section 10.5.

To take electromagnetic self-interactions into account in the Klein–

Gordon equation, we make the substitution

Π′
μ → Π′

μ − eAμ,rad(x′), (10.27)

where Eq. (10.10) defines Π′
μ = (1/i)∂′μ − Vμ(x′), with the result

(Π′2 +m2
0)φ(x

′) = j(x′), (10.28)

where

j (x′) = e
{

Aradμ (x′),Π′μ}φ (x′)− e2Aμrad (x′)Aμ,rad (x′)φ(x′). (10.29)

The anticommutator ensures that the term A · p is Hermitian. To convert

Eq. (10.28) into an equation for G(x′, x′′), we make use of the definition of

G(x′, x′′) Eq. (10.14). We multiply from the right by φ†(x′′), time order,

and take the vacuum expectation value. We use the equation

∂′2(A(x′)B(x′′))+ = (∂′2A(x′)B(x′′))+

+ [∂′0A(x
′),B(x′′)]δ(t′ − t′′)

+ ∂′0[A(x
′),B(x′′)]δ(t′ − t′′)

+ [A(x′),B(x′′)]δ′(t′ − t′′),

(10.30)
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which follows from the lemma

∂′0(A(x
′)B(x′′))+ = (∂0A(x

′)B(x′′))+ + [A(x′), B(x′′)]δ(t′ − t′′) (10.31)

to obtain the result

(Π′2 +m2
0)G(x

′, x′′) = +δ(x′ − x′′) + i〈(j(x′)φ†(x′′))+〉. (10.32)

Since we are calculating M
2
to order e2 in the radiation field, the

term e2〈(Arad
μ (x′)Aμrad (x

′)φ (x′)φ† (x′′))+〉 in 〈(j(x′)φ†(x′′))+〉 can be

calculated with the field of a free photon rather than with the radiation

field. In essence, this follows since the radiation field is equal to the free

field plus terms of higher order. This is essentially why we get the same

result whether we assume the radiative shift is due to interaction with

either the vacuum field or the radiation field of the atom. To show the

formal justification, consider the matrix element

σ = 〈(Aμ(ξ′)Aν(ξ′′)φ(x′)φ†(x′′))+〉. (10.33)

Recall

∂ 2
ξ′A

μ(ξ′) = ejμ(ξ ′), (10.34)

thus

∂2ξ′σ = e〈(jμ(ξ′)Aν(ξ′′)φ(x′)φ†(x′′))+〉
+ igμνδ(ξ′ − ξ′′)〈(φ(x′)φ†(x′′))+〉. (10.35)

To lowest order, we may drop the first term. Solving for σ gives

σ =

[

gμν
1

∂ξ′ 2
δ (ξ′ − ξ′′)

]

G(x′, x′′). (10.36)

Considering the boundary conditions, we realize that the term in brackets

is just the usual Feynman propagator. Accordingly, we obtain

σ = −Dμν(ξ′ − ξ′′)G(x′, x′′). (10.37)

This result is to be expected since to lowest order the complete Hilbert

space factors into two independent spaces, one for φ(x′) and one for A(x′).
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Thus, we have shown that

〈(j(x′)φ(x′′))+〉 = ie2〈(Aμ(x′)Aμ(x′))+〉G(x′, x′′)
+ e〈((Aradμ (x′)Π′μ +Π′μAradμ (x′))φ(x′)φ(x′′))+〉.

(10.38)

We can rewrite the second term on the right side using the notation

−→
Π ′μAradμ (x′)φ(x′) ≡ (Arad

μ (x′)Π′μ +Π′μAradμ (x′))φ(x′)

=

(

1

i
∂μξ ′ +

2

i
∂μx′ − 2V μ(x′)

)

Arad
μ (ξ′)φ(x′)|ξ′=x′ .

(10.39)

From Eq. (10.32), we have

(Π′2 +m2
0)G(x

′, x′′) = δ(x′ − x′′) + ie
−→
Π ′μ〈(Aradμ (x′)φ(x′)φ†(x′′))+〉

− e2〈(Aμ(x′)Aμ(x′))+〉G(x′, x′′). (10.40)

Using Eq. (10.9) and Eq. (10.11) for the unrenormalized mass2 operator

M2 shows the last two terms on the right side of Eq. (10.40) are equal to

−M2G(x′, x′′) = ie
−→
Π ′μ〈(Aradμ (x′)φ(x′)φ†(x′′))+〉
− e2〈(Aμ(x′)Aμ(x′))+〉G(x′, x′′). (10.41)

where M2G(x′, x′′) represents a convolution integral as in Eq. (10.13). To

order e2, we may replace the full propagator G by the Coulomb propagator

Gc for a particle in the potential with the physical mass:

(Π′2 +m2)Gc(x′, x′′) = δ(x′ − x′′). (10.42)

Operating on Eq. (10.41) from the right with Π2(x′′) +m2 therefore gives

M2(x′, x′′) = −ie −→Π ′μ〈(Arad
μ (x′)φ(x′)φ†(x′′))+〉(Π2(x′′) +m2)

+ e2〈(Aμ(x′)Aμ(x′))+〉δ(x′ − x′′). (10.43)

Following the same procedure as before gives the result

M2(x′, x′′) = −ie2
−−→
Π

′μ(x′)〈(Aμ(x′)Aν(x′′)φ(x′)φ†(x′′))+〉
←−
Πν(x

′′)

+ e2〈(Aμ(x′)Aμ(x′))+〉δ(x′ − x′′), (10.44)
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which is a shorthand notation for

M2(x′, x′′) = ie2
(

2

i
∂ μx′ +

1

i
∂ μξ′ − 2V μ(x′)

)

Dμν(ξ
′ − ξ′′)Gc(x′, x′′)

×
(

2

i
∂νx′′ +

1

i
∂νξ′′ − 2V μ(x′′)

)

|ξ′′=x′′, ξ′=x′

− ie2Dμ
μ(0)δ(x

′ − x′′). (10.45)

Since our calculation is to order α or e2, we have again substituted Gc for

G(x′, x′′). Now that we have derived the equation forM2(x′, x′′), we return
to the radiation gauge.

10.5 The Expression for M2( ˜E)

For our calculation of the radiative shift, we need the operator correspond-

ing to the time Fourier transform of M2(x′, x′′). To obtain this result, we

use the expression for Gc which follows from Eq. (10.42) and the invariance

for translations in time2:

Gc (x′, x′′) =
∫ ∞

−∞

d ˜E

2π

〈

r′
∣

∣

∣

∣

1

Π2 +m2 − iε
∣

∣

∣

∣

r′′
〉

e−iẼ(t′−t′′) , (10.46)

where

Πk = pk, Π0 = ˜E − V (r). (10.47)

If we substitute Eq. (10.46) and

Dμν (ξ
′ − ξ′′) =

∫

d4k

(2π)4
eik(ξ

′−ξ′′)Dμν(k) (10.48)

into our expression for M2, Eq. (10.45), and we note the derivative with

respect to ξ′μ brings down a factor of kμ, we find, after some computation,

2To validate this expression for Gc we operate on the integral with Π′2+m2. We observe
Π′k < r′| =< r′|Πk, Π′0 < r′| =< r′|Π0 so (Π′2+m2) < r′| =< r′|(Π2+m2). With the
normalization < r′|r′′ >= δ(r′ − r′′), it follows the integral obeys the defining equation
for Gc.
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the important result for the unrenormalized relativistic mass2 operator

M2( ˜E) =
ie2

2

∫

d4k

(2π)4
Dμν(k)T

μν , (10.49)

where

T μν = (2Πμ − kμ) 1

(Π − k)2 +m2
(2Πν − kν)

+ (2Πν + kν)
1

(Π + k)2 +m2
(2Πμ + kμ)− 2gμν . (10.50)

We exploit the symmetry of the photon propagator under k → −k to

write T μν in a form that manifests crossing symmetry. From the Feynman

rules we see that the diagrams corresponding to the operator T μν are shown

in Fig. 10.7.

The double line in the figure refers to the meson propagating in an

external potential. T μν is the operator Compton scattering amplitude in

the forward direction. The seagull term on the right in Fig. 10.7 must be

included to insure gauge invariance. At threshold, it gives the Thomson

scattering amplitude. As Eq. (10.49) indicates, we obtain the diagrams for

M2 by contracting the diagrams for T μν with the diagram for the photon

propagator Dμν , giving the resulting Feynman diagrams for M2 in Fig.

10.8. The crossed diagram may be deformed into the uncrossed diagram;

therefore, both diagrams give equal contributions to M2. Note that, in

a calculation of the shift between two levels, the bubble term gives no

contribution since its matrix elements are independent of the state.

Fig. 10.7. Feynman diagrams for the Compton scattering amplitude Tμν of a photon
by a bound meson (double line).
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Fig. 10.8. Feynman diagrams for M2 that give the radiative shift of a bound meson,
The shift arises from the Compton scattering amplitude (Fig. 10.7) of virtual radiation

photons by a bound meson (double line).

10.6 Gauge Invariance of the Shift Δ˜EN for a Relativistic

Meson (Spinless Electron)

We must show that the most general gauge transformation [174]

Dμν → Dμν + λ′nμkν + μ′nνkμ + ν ′kμkν (10.51)

induces no change in the observed shift. Under a gauge transformation, the

radiative shift changes by an amount

δ(Δ˜EN) =
1

2m

ie2

2

∫

d4k

(2π)4
〈˜N|λ′nμkνT μν + μ′nνkμTμν + ν′kμkνTμν | ˜N〉.

(10.52)

We contract T μν with kμ and use the identities

k(2Π + k) = (Π + k)2 +m2 − (Π2 +m2
)

k(2Π− k) = −[(Π− k)2 +m2] + Π2 +m2 (10.53)

to obtain

kμT
μν = (2Πν + kν)− (Π2 +m2)

1

(Π + k)2 +m2
(2Πν + kν)

− (2Πν − kν) + (2Πν − kν) 1

(Π− k)2 +m2
(Π2 +m2)

− 2kν. (10.54)

For our unperturbed basis states, we have
(

Π2 +m2
) | ˜N〉 = 0. (10.55)

Consequently, 〈 ˜N |kμT μν | ˜N〉 = 0. Since T μν(k) = T νμ(−k) it follows that
〈 ˜N |kνT μν | ˜N〉 = 0. Accordingly, we see that T μν is gauge invariant between

physical states and that δ(Δ˜EN ) vanishes. Now that we have an expression

for the mass2 operator, we can evaluate it to determine the shift. In the

next chapter, we make a non-relativistic approximation of the shift.



Chapter 11

Calculation of the Radiative Shifts in the
Non-relativistic Approximation

In this chapter, we consider the expression for the radiative level shifts in the

dipole approximation, clarifying the physical meaning of the approximation

and its relationship to the non-relativistic approximations. We show that

the shift is complex: the imaginary part corresponding to the width

for decay by dipole emission and the real part corresponding to the

displacement of the energy level. This result is an extension of Bethe’s

second-order perturbation theory calculation of just the level shift. We show

that the real and imaginary parts satisfy a dispersion relation, which

is fundamentally just an expression of causality [169]. We interpret the

radiative shift as due to the virtual transitions induced by the interaction

of the particle with its own radiation field. This interaction means that for a

given energy level, there is a finite width and that the mean energy, averaged

over time, is shifted. After developing the results for an arbitrary central

force potential, we illustrate two particular cases: the harmonic oscillator

potential and the Coulomb potential.

11.1 Relationship to the Dipole Approximation

The dipole approximation and the non-relativistic approximation are often

considered as two separate approximations. In radiative shift calculations,

the dipole approximation is often given by the prescription: In the radiation

gauge compute the shift ignoring the dependence of T μν on the photon

three-momentum k. As a consequence, we find that the term T 00D00

corresponding to the static Coulomb or longitudinal photon interaction

gives a vanishing contribution to the shift. In this way, the dipole

161
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approximation breaks gauge invariance, which is why we must specify the

gauge.

Another form of the dipole approximation is to let A(r) be independent

of r. To understand the properties of this form of the dipole approxima-

tion under gauge transformations, consider the non-relativistic interaction

Hamiltonian for radiation with a four-potential (φ(r),A(r)) and a scalar

particle of charge e and mass m:

HI = − e

m
(p ·A) + eφ. (11.1)

Under a gauge transformation A → A + ∇λ, φ → φ − ∂tλ, and HI

transforms into HI + Λ, where

Λ = − e

m
p ·∇λ− e∂tλ. (11.2)

To obtain gauge invariance, the matrix elements of Λ between the initial

and final states must vanish: 〈f |Λ|i〉 = 0. If we let λ = eik·r−iωt, then gauge

invariance requires that
〈

f

∣

∣

∣

∣

1

m
p · k eik·r − ω eik·r

∣

∣

∣

∣

i

〉

= 0. (11.3)

Following the customary prescription for the dipole approximation, we set

exp(ik · r) equal to unity, then, since 〈f |i〉 = 0, we conclude that the

matrix element 〈f |p ·k|i〉 must vanish if we are to obtain gauge invariance.

Clearly, this is not generally the case and gauge invariance is violated.

The difficulty lies in the fact that setting the exponential equal to one

resulted in approximating the change in the vector potential to the first

order in k and the change in the scalar potential to zero order in k. If we

approximate the change in the scalar potential to one order higher, then

we find that the gauge invariance requires
〈

f

∣

∣

∣

∣

1

m
p · k − iωk · r

∣

∣

∣

∣

i

〉

= 0. (11.4)

In fact, this quantity vanishes since
〈

f
∣

∣

∣

p

m

∣

∣

∣ i
〉

= i〈f |[H, r]〉i〉 = i (Ef − Ei) 〈f |r|i〉
= iω〈f |r|i〉.

(11.5)

In the radiation gauge, the scalar potential vanishes, thus we circumvent

these difficulties.

Alternatively, we may obtain the unrenormalized M2 operator in the

non-relativistic approximation from a different perspective, by noting that
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the pole in the photon propagator in Eq. (10.49) ensures that the integration

over k0 leads to the result |k| = k0 but since |k| is a momentum it

equals a frequency over the speed of light |k| = ω/c. As c increases the

magnitude of the spatial momentum vanishes and we obtain the dipole

approximation. Seen in this way, the dipole approximation is not gauge

dependent but simply part of the non-relativistic approximation. If we work

in the radiation gauge, then this method gives the same result obtained from

the usual proscription.

From dynamical considerations we can show that in a bound system

characterized by a small coupling constant the motion is non-relativistic

and |k|, the approximate change in momentum for radiative transitions

between states, may be neglected with respect to the momentum p of the

bound particle.

Consider a potential of the form

V (r) =
1

n
mgn+2(mr)n n ≥ −2. (11.6)

The exponent of the mass m is chosen so that the coupling constant g is

dimensionless; the exponent of g and the overall coefficient are chosen so

that V agrees with the conventional expressions for the simple harmonic

oscillator (n = 2, g =
√

ω0/m and the Coulomb potential (n = −1, g =

Zα). The total non-relativistic energy of the atom is E = T + V . The

virial theorem for our potential is T̄ = −(n/2)V̄ . Applying the uncertainty

principle we find

p ≈ 1

r
≈ gmc, E ≈ n+ 2

2n
g2mc2, (11.7)

where c is the speed of light. These results justify the use of non-relativistic

dynamics for small g. The contribution to the shift of a bound state energy

level will be greatest per Hz for resonant virtual transitions, that is, when

the photon energy equals the difference between two energy levels. For these

resonant transitions E ≈ |k|c and
∣

∣

∣

∣

k

p

∣

∣

∣

∣

∼ E

pc
∼
∣

∣

∣

∣

n+ 2

2n

∣

∣

∣

∣

g << 1 (11.8)

for weak coupling. To insure that the non-relativistic approximations

remain valid during integration over frequency, it may be necessary to use

a cutoff which is proportional to the mass. The shift for greater frequencies

for physically realistic situations can be calculated by neglecting the bound

state energy and keeping only the lowest order terms in the coupling

constant.
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To understand the physical meaning of the dipole approximation more

clearly, we employ the translation operator in momentum space eik·r to

show that for a function f(p), we have the identity

〈N |(2p− k)f(p− k)(2p− k)|N〉
= 〈N |eik·r)(2p+ k)f(p)(2p+ k)(e−ik·r|N〉. (11.9)

Applying this result to the expressions for M2(E) and T μν (Eq. (10.49)

and Eq. (10.50)), we see that the matrix elements for the shift are between

translated atomic states (e−ik·r|N〉) that have a center of mass momentum

−k in order to conserve momentum when the virtual photon of momentum

+k is emitted. In addition, from the Feynman rules for spinless mesons,

we know that the k present in 2p + k ensures momentum conservation

at the vertex. Accordingly, dropping the k dependence means that we

are violating momentum conservation and neglecting the recoil of the

particle, which is a reasonable approximation since we are dealing with

long wavelength photons whose momentum is much less than the particle’s

momentum. For large momenta, near the end of the integration over

frequency, the approximation breaks down. In more accurate calculations,

we need to maintain center of mass momentum conservation and include

the corresponding recoil terms [95, 152, 199, 214, 219, 231].

11.2 M2 in the Non-relativistic Dipole Approximation

We first take the non-relativistic limit of our fully relativistic expression for

T μν Eq. (10.50):

T μν = (2Πμ − kμ) 1

(Π− k)2 +m2
(2Πν − kν)

+ (2Πν + kν)
1

(Π + k)2 +m2
(2Πμ + kμ)− 2gμν.

We obtain the crossing symmetric, gauge invariant Compton scattering

amplitude operator in the forward direction for a meson or a spinless

Schrodinger electron in a potential V :

T ij = (2pi − ki) 1

(p− k)2 + 2mV − (E − k0) 2m (2pj − kj)

+ (2pj + kj)
1

(p+ k)2 + 2mV − (E + k◦) 2m
(2pi + ki)− 2gij,

(11.10)
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T 00 = 4m2 1

(p− k)2 + 2mV − (E − k◦) 2m

+4m2 1

(p+ k)2 + 2mV − (E + k0) 2m
− 2g00, (11.11)

T i0 = 2m(2pi − ki) 1

(p− k)2 + 2mV − (E − k0)2m

+2m
1

(p+ k)2 + 2mV − (E + k0)2m
(2pi + ki), (11.12)

where E is the non-relativistic energy E = ˜E − m (which is negative for

the hydrogen atom). We have dropped the V 2 terms in the denominator of

T μν . As a check on the non-relativistic limit, we can prove gauge invariance

by noting

k · (2p+ k) = (p+ k)2 − p2

k · (2p− k) = −(p− k)2 + p2 (11.13)

and remembering that for matrix elements between physical states we can

use the Schrodinger equation

(H − E)|N〉 = 0, (11.14)

where

H =
p2

2m
− V. (11.15)

The expression for the (mass)2 operator in the non-relativistic limit is

given by

M2(E) =
ie2

2

∫

d4k

(2π)4
Dμν(k)T

μν , (11.16)

where T μν is given by the non-relativistic form in Eq. (11.10) to Eq. (11.12).

We use the photon propagator in the radiation gauge:

D00 =
g00
k2

Dij =
Pij
k2
, (11.17)

where

Pij =

(

δij − kikj
k2

)

. (11.18)

We first perform the k0 integration. There are poles in the complex k0 plane

at k0 = E − V − (p− k)2/2m+ iε (in the first quadrant) and ±(ω/c− iε)
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(second and fourth quadrants), where ω = c|k| and we display the speed

of light c. Closing the contour in the lower half plane surrounds the single

pole at k0 = ω/c− iε and gives the result

M2 = − αc

2mπ

∫

ωdω

∫

dΩk
4π

×
{

Pij

[

(

2pi − n̂iω
c

) 1
(p−n̂ω

c )2

2m + V − (E − ω)
(

2pj − n̂j ω
c

)

− 2mgij

]

+4m2c2
1

(p−n̂ω
c )2

2m + V − (E − ω)
− 2mg00

}

, (11.19)

where n̂ = k/|k| and we have combined cross terms since they give equal

contributions toM2. As we let c→∞, the terms in n̂ω/c vanish leaving us

with the expression for M2 obtained by making the dipole approximation

in the usual way (|k| → 0).

The angular integration for the term gijP
ij is

∫

dΩk
4π

gijP
ij =

2

3
δij (11.20)

corresponding to the two transverse polarization states of a photon. Using

the identity,

ω

H − (E − ω) = 1− H − E
H − (E − ω) , (11.21)

we find

M2 = −αc
π

∫

dω

[

8

3

p2

2m
− 3ω + 2mc2 − 4

3m
pi

H − E
H − (E − ω)pi

− 2mc2
H − E

H − (E − ω)

]

. (11.22)

The expectation value of the last term, which comes from g00D
00, vanishes

for physical states. The first term can be interpreted as the change in kinetic

energy due to mass renormalization in the non-relativistic limit [3]. The

second and third terms compose the mass renormalization of free particles

as they do not involve the Hamiltonian. The next to the last term is the

only term that depends on the potential V and gives a vanishing shift in
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the free particle limit V → 0. Thus, the renormalized mass2 operator in

the non-relativistic limit is

M
2
(E) =

4αc

3πm

∫

dωpi
H − E

H − (E − ω)− iεpi. (11.23)

11.3 Calculation of the Radiative Shift in the

Non-relativistic Limit

The shift is given by the matrix elements ofM
2
between the non-relativistic

states of the meson. To find the non-relativistic limit of the normalization

in Eq. (10.19) of our relativistic meson wave functions 〈r′|ñ〉, we use

our definition of the non-relativistic energy E = Ē − m to write the

normalization in the form
∫

d3r′|〈r′|ñ〉|2
(

1 +
EN
mc2

− V

mc2

)

= 1, (11.24)

where we make the factors of c explicit. Clearly, in the non-relativistic

limit, we obtain the usual Schrodinger wave functions 〈r′|n〉 with the

normalization
∫

d3r′|〈r′|n〉|2 = 1 (11.25)

or

〈nlm|n′l′m′〉 = δnn′δll′δmm
′. (11.26)

The effective shift in the unperturbed level E0
N due to the radiative

interaction is the matrix element of the renormalized (mass)2 operator

with respect to |N〉:
ΔEN = EN − E0

N =
1

2m
〈N |M2

(EN )|N〉. (11.27)

Substituting the expression for M
2

(Eq. (11.23)) and inserting a

complete set of intermediate states gives the result

ΔEN =
2α

3πm2

s
∑

n

∫ ωC

0

dω
[(En − EN ) 〈N |pi|n〉 〈n |pi|N〉]

En − EN + ω − iε , (11.28)

where the s in the summation indicates that we also include scattering

states.1 This is the same result as in Bethe’s original paper and in his

1Note that the sign of the energy shift is positive. This seems to contradict the rule that
a perturbation must lower the ground state energy. However, the rule holds if we consider
the total perturbation to be the unrenormalized (mass)2 operator, not the renormalized
operator.
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book [19, 158]. Note that a cutoff �ωC = mc2, where m is the mass of the

electron has been introduced. No approximation has been used to evaluate

the integral. Bethe justified the cutoff in the frequency integration on the

grounds that the radiative shift is primarily a non-relativistic phenomena.

Equation (11.28) can be easily derived from second-order perturbation

theory, as shown in Section 9.3, Eq. (9.27). This was Bethe’s approach,

in which the complete set of states |n〉 represents intermediate states. This

is often the method used in calculations of the radiative Lamb shift in

textbooks [3]. We have derived this equation for the shift using only the

fundamental equations of motion.

We now show that the term in brackets in this equation is proportional

to the probability of a transition between state N and state n due to the

emission or absorption of dipole radiation, which leads to a model for the

radiative shift. The interaction Hamiltonian is

Hint (t) =
e

m
p(t) ·Arad(r(t), t), (11.29)

where Arad is the vector potential for the spinless electron’s or meson’s

radiation field. The S matrix operator is

S = (ei
∫∞
−∞:dtHint(t):)+, (11.30)

where the double dots mean that the Hamiltonian is normally ordered, with

creation operators to the left of the annihilation operators. We want the

matrix element ρ for a transition n → n′, n′ < n with the emission of a

photon of momentum k and polarization ε:

ρ = 〈kεn′|S − 1|n〉. (11.31)

To lowest order, the Hilbert spaces are separable and Arad equals the free

field vector potential A. The matrix element of A is the photon wave

function:

〈kε|A(r(t), t)|0〉 = εe−ik·r+iωt. (11.32)

In the interaction representation,

p(t) = e+iHtp(0)e−iHt. (11.33)

Accordingly, we find

ρ = −2πi e
m
δ (En′ + ω − En) 〈n′|ε · p|n〉, (11.34)
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where we use the dipole approximation k ·r ≈ 1. The decay rate for n→ n′

by dipole emission is

Γen′,n =
total probability

interaction time
. (11.35)

In the usual way, we take 2πδ(0) as the interaction time, |k| = ω, giving

Γen′,n =
∑

pol

∫

d3k

(2π)3
1

2ω

|ρ|2
2πδ(0)

. (11.36)

Recalling

∑

μ

εμiεμj = δij − kikj
k2

, (11.37)

we obtain

Γen′,n =
4α

3m2
(En − E′

n)〈n′|pi|n〉〈n|pi|n′〉 > 0, n′ < n (11.38)

for the decay rate from n→ n′ by dipole emission, where En −E′
n = ωnn′ .

Similarly, the rate for the transition n → n′ for n′ > n, by absorption of

dipole radiation is

Γan′,n =
4α

3m2
(En′ − En) 〈n′ |pi|n〉 〈n |pi|n′〉 > 0, n′ > n. (11.39)

In accordance with the principle of detailed balance, we see

Γan′,n = Γen,n′ . (11.40)

From our definition, Γen,n′ is defined only for n′ > n and then is always

positive or zero. We see formally that Γen,n′ = −Γen′,n. Accordingly, if n > n′,
we interpret Γen,n′ as −Γen′,n. Using this convention with our expression for

Γen,n′ , we find that, after changing variables, the expression in Eq. (11.28)

for the shift may be written in the simpler form:

ΔEN =
1

π

s
∑

n

∫ En+ωC

En

dω
− 1

2Γ
e
n,N

ω − EN − iε . (11.41)

Based on Eq. (11.10) to Eq. (11.12) for T μν, it is clear that ΔEN is an

analytic function f(N,EN ) of energy EN , which is in the denominator. We

define

ΔEN = f (N ;EN ) =
s
∑

n

fn(N ;EN ). (11.42)

The partial shift fn(N ;EN ) represents the contribution to the shift in level

N from virtual transitions from level N to level n. We replace EN by the
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complex variable z and investigate the structure of the partial shift as a

function of z:

fn(N ; z) =
1

π

∫ En+ωC

En

dω
− 1

2Γ
e
n,N

ω − z − iε . (11.43)

We extend the lower limit of integration to E1 and the upper limit to∞ and

multiply by the appropriate theta functions (θ(t) = 0 if t < 0,= 1 if t > 0)

so that the value of the integral is unchanged. After summing over all states,

we find that the complex radiative shift obeys the dispersion relation [169]

f(N ; z) =
1

π

∫ ∞

E1

dω
Imf(N ;ω)

ω − z − iε , (11.44)

where

Imf(N ;ω) =

s
∑

n

−1

2
Γen,Nθ(ω − En)θ(ωC + En − ω). (11.45)

We can separate the integral into its real and imaginary parts

f(N ; z) =
1

π
P

∫ ∞

E1

dω
Imf(N ;ω)

ω − z + i Im f(N ; z). (11.46)

Figure 11.1 shows the cut structure for f(N ;ω) in the complex ω plane.

Fig. 11.1. Cut Structure of f(N ;ω) in the complex ω plane. At each value of En which
is less than EN , there is a cut with a discontinuity of − 1

2
Γe
n,N ; at EN , there is no cut.

At each value of En which is greater than EN , there is a cut with a discontinuity of
1
2
Γe
N,n.
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11.4 Radiative Shift for Physical Energy Levels

The function f(N ; z)|z=EN gives the radiative shift for the energy level EN .

The imaginary part of the shift is

ImΔEN = Im f (N ;EN )

= −1

2

∑

n<N

Γen,N ≡ −
1

2
ΓN ,

(11.47)

where ΓN is the total width for the decay of state N to state n by

dipole radiation. The imaginary part of the shift equals the half-width

in magnitude and is always negative, as it must be to ensure that the

probability density decreases exponentially: |e−it(E0
N+ΔEN)|2 = e−ΓN t.

Only states to which the state N can decay by the emission of real radiation

contribute to the width of the level EN .

The real part of the shift Re f(N ;EN ) is given by the principal part of

the integral. Since we integrate from E1 to ∞, skipping the infinitesimal

portion |ω − EN | < ε, all cuts (or equivalently all intermediate states)

contribute to the real part of the radiative shift. Integrating over ω, we

obtain an expression for the real part of the partial shift fn(N ;EN ):

Refn(N ;EN ) =

{−Γen,N n < N

ΓeN,n n > N
× 1

2π
ln
ωC − EN + En
|En − EN | . (11.48)

We can approximate Re fn(N ;EN ) by neglecting En−EN in the numerator

of the log, similar to the approximation Bethe used. With this approxima-

tion, and writing the log of the ratio as a difference in logs, we can sum

Re fn(N ;EN ) over all states using the dipole sum rule and Eq. (11.38):

3m2

2α

s
∑

n

ΓeN,n = 2
s
∑

n

(En − EN ) 〈N |pi|n〉 〈n |pi|N〉 = −〈N |∇2V |N〉.
(11.49)

This gives the result

ReΔEN =
2α

3πm2

{

1

2
〈N |∇2V |N〉 ln ωC

E0

+
∑

n

(En − EN )〈N |pi|n〉〈n|pi|N〉 ln Eo
|En − EN |

}

, (11.50)

where E0 is an arbitrary energy parameter that we shall take to be some

characteristic energy of the bound system, for example, the ground state
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energy. We take the frequency cutoff ωC to bemc2/�, as Bethe did. The first

term is the same expression for the shift that we obtained by considering

the motion of the particle in the zero-point field (Eq. 9.43) in Welton’s

model. Note that we have assumed only that the spinless electron is in a

central force potential V (r), not necessarily a Coulomb potential.

11.4.1 A model to interpret the results

We can construct a simple model (Fig. 11.2) to interpret the salient features

of the partial radiative shifts fm(N ;EN ), which give the shift in the energy

EN due to virtual transitions to level m. The features are expressed in the

following equations, which hold for any positive integer m < N :

(1) Refm(N ;EN ) +RefN(m;Em) = 0.

(2) Re fm(N ;EN ) < 0.

(3) Im fm(N ;EN ) = Refm(N ;EN )[ 1π ln
ωC

|EN−Em| ]
−1.

The first relation shows that the average energy of two levels that shift

each other is unchanged. Together, the first two relations show that virtual

transitions to lower states cause downward shifts and transitions to upper

states cause upward shifts. This is an important result, demonstrating

that a radiative shift tends to conserve energy. Consider, for example,

the radiative shift in the ground state of H. Many transitions to higher

states will contribute to raising the ground state energy level. Each of the

Fig. 11.2. The energy level E0
N is shifted to EN by intermediate virtual transitions to

E0
m, which also increases the width of the level to Γ. The level E0

m is shifted to Em by
virtual transitions to E0

N . The latter transition does not increase the width of the level
for Em.
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higher levels experiences a very small shift downwards. The sum of all the

downward shifts will equal the upward shift on the ground state, so the

total of all the shifts is zero. To determine the net energy shift of the atom

precisely, one would also have to consider the population of the various

states. Since the ground state is heavily populated, there tends to be a net

increase of energy.

The third statement shows that the contribution of a lower level to

the width is less than its contribution to the level shift by the factor

(1/π)ln(ωC/|EN − Em|). We can deduce relations (1) and (2) for the level

shifts exactly and relation (3) for the level width in an approximation by

assuming that the observed energy corresponds to a time-weighted average

of the original energy and the energy of the state to which the system made

a virtual transition. To make this interpretation quantitative, we consider

a state N with a partial width Γ = ΓeN,m = Γam,N for m < N . The system

makes Γ transitions from N to m in one second and remains in the state

m for a time allowed by the time-energy uncertainty principle:2

δt ≈ 1

EN − Em . (11.51)

Therefore, for a system in which Γ << EN − Em (e.g., atomic systems),

the average energy ENave of level N is shifted and is approximately

ENave =
Γ

EN − EmEm +

(

1− Γ

EN − Em

)

EN = EN − Γ. (11.52)

The level shift for state N due to a transition from a state N to a lower

state m is ENave − EN or Refm(N ;EN ) = −Γem,N . Similarly, we find

that for a transition from a state m to a higher state N , the level shift

is RefN (m,EN ) = ΓaN,m which is positive. From these two expressions, the

relations (1) and (2) follow. Corresponding to the third relation we find

using Eq. (11.45) and the results directly above that the model predicts a

level width

Imfm(N ;EN ) = −1

2
Γ =

1

2
Refm(N ;EN ). (11.53)

2The time-energy relationship is not an uncertainly principle in the same sense as
the position-momentum uncertainty principle, which follows because the corresponding
operators do not commute. The time-energy relationship arises from the properties of
Fourier transforms [172, p. 201].
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This result agrees with relation (3) only if we replace 1
π ln

ωC

|EN−Em| by

unity.3 The difference between the equations for the level shift and the level

width arises primarily because only states that can decay by the emission

of real radiation contribute to the width of level EN .

11.5 Two Examples: The Harmonic Oscillator and the

Coulomb Potential

In our discussion thus far, we only assume we have a spinless particle of

mass m and charge e in a central force potential V (r) interacting with its

own radiation field. Now, we can apply the results to these two specific

potentials.

(1) Isotropic 3D Harmonic Oscillator

Consider a simple isotropic harmonic oscillator in three dimensions for

which

V (r) =
1

2
mω2

0r
2 (11.54)

with energy levels

EN =

(

N +
3

2

)

ω0, N = n1 + n2 + n3. (11.55)

The fact that V (r) increases formally with r without bound does not

introduce difficulties since transitions are possible only between adjacent

energy levels. Employing the matrix elements of the momentum operator

〈n′
i |pj |ni〉 =

√

mω0

2
(
√
ni + 1δn′

ini+1 −√niδn′
ini−1), (11.56)

we can easily compute the real part of the radiative shift using Eq. (11.50)

or the complex shift using Eqs. (11.38–11.39) and Eq. (11.42) and Eqs.

(11.47–11.48). For the complex radiative shift of level EN , we find

ΔEN =
α

π

(�ω0)
2

mc2

(

ln
ωC
ω0
− i2

3
πN

)

(11.57)

giving a corresponding width

ΓN =
2

3
α
(�ω0)

2

mc2
N, (11.58)

3For the H atom, the value of (1/π)ln(ωC/|En − Em|) is roughly three assuming the
cutoff is at hωc = mc2 and n and m are adjacent energy levels of the bound state.
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where we have displayed the factors of � and c. In the dipole approximation,

the shift is the same for all levels: no degeneracy is split. On the other

hand, the radiative width ΓN increases with N and is consistent with the

width Eq. (9.18) obtained by applying the Bohr Correspondence Principle

to the classical expression for the radiated power. The ratio of ΓN/EN
approaches a constant for large N and equals (2/3)α�ω0/mc

2. In Chapter

13, we compute the radiative shift for a relativistic spinless electron in a

harmonic potential and show that for some levels the degeneracy is lifted.

(2) The Coulomb Potential

We have

V (r) = −Zα
r

(11.59)

and therefore

∇2V (r) = 4πZαδ(r). (11.60)

Since the matrix elements of the delta function vanish except for S states,

we may isolate the L dependence of the shift by defining the Bethe log

γ(N,L)(Eq. 9.34), where [158]

γ(N,L)
∑s

n (En − EN ) 〈N 0 |pi|n〉 〈n |pi|N 0〉
=
∑s

n (En − EN ) 〈NL |pi|n〉 〈n |pi|NL〉 ln |En−EN |
1
2mc

2(Zα)2

. (11.61)

Using Eq. (11.50), setting the frequency cutoff to ωC = m, setting Eo
to the ground state energy (1/2)m(Zα)2 and substituting the Schrodinger

wave function

|ψN (0)|2 =
1

π

(

Zαm

N

)3

δL0, (11.62)

we find the shift for level NL is

ReΔENL =

[

4m

3π
α(Zα)4

]

1

N3

{

δLO ln
2

(Zα)2
− γ(N,L)

}

, (11.63)

where γ(N,L) must still be numerically evaluated.4 The result is the same

result that Bethe obtained in his original calculation. The Bethe log is

tabulated for a few energy levels in the original work in which it was

introduced [158] and in various articles for additional levels and with a

higher precision, for example [152, 227].

4The value of the Bethe log for the 2S state is about γ(2, 0) = ln(16.639).
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To provide a scale of magnitude for the shift, we note that the term

in square brackets is the energy radiated in one revolution of the electron

in the ground state according to the laws of classical physics and equals

Planck’s constant times 1090 MHz. The currently accepted value for the

2s1/2–2p1/2 Lamb shift is about 1057.87 MHz, which includes all effects,

including vacuum polarization, to higher orders. The 2p shift is negative as

we discuss in Chapter 14. We can estimate the relative shift

ΔEN/EN ≈ α (Zα)
2

N
, (11.64)

which is about one part in 1.3 × 106 for N = 2. The width for low-lying

states may be obtained by computing the sum in Eq. (11.45) explicitly.

For both examples, the relative shifts go approximately as α x (bound

state energy level)/(rest mass energy), reflecting the fundamental nature

of radiative shifts (and that we are considering radiative shifts in lowest

order).

In the limit of very large quantum numbers for any central force

field for circular orbits, we can simplify the expression for the width ΓN
by assuming that the most important transitions are those for which

Δn << N . The strongest transitions in the classical limit are between

wave packets corresponding to the circular orbits n = N, l = N − 1 and

n = N−1, l = N−2. This is equivalent to saying that the classical radiation
is primarily in the fundamental band. Consequently, our sum collapses to

ΓN = ωcl 〈N |pi|N − 1〉 〈N − 1 |pi|N〉 4α

3m2
, (11.65)

where ωcl is the classical frequency of rotation. This matrix element can be

obtained without direct computation by noting that

〈N |p2|N〉 ∼= 〈N |pi|N + 1〉 〈N + 1 |pi|N〉+ 〈N |pi|N − 1〉 〈N − 1 |pi|N〉 ,
(11.66)

which follows from our assumption that the only significant transitions are

those for which ΔN = ±1 and from the fact that 〈N |pi|N〉 = 0 for a bound

state. We assume that the matrix elements do not change rapidly with N ,

thus

〈N |pi|N − 1〉 〈N − 1 |pi|N〉 ∼= 〈N |pi|N + 1〉 〈N + 1 |pi|N〉 . (11.67)

Therefore, our final expression for ΓN is

ΓN =
2α

3m2
ωc�
〈

N
∣

∣p2
∣

∣N
〉

. (11.68)
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For the Coulomb potential ωcl = m(Zα)2/N3 (which is consistent with

Eq. (9.7) and Eq. (9.10)), and 〈N |p2|N〉 = (mZα/N)2, so we find

ΓN =
2

3
mα

(Zα)4

N5
, (11.69)

which is in agreement with the result obtained by the correspondence

principle Eq. (9.11).

Note that nowhere in our derivation of Eq. (11.68) do we specify the

detailed nature of the central force. We only assumed that the radiation was

in the fundamental band, which is always true for classical circular orbits.

In fact, this equation agrees with the expression for Γ obtained by applying

the correspondence principle to the classical expression for the radiated

power Pc for any circular orbit of a charged particle with momentum p:

Pc =
2

3

α

m2
p2ω2

cl, (11.70)

which, from the Bohr Correspondence Principle, has the width Γ = Pc/ωcl
so

Γ =
2

3

α

m2
p2ωcl. (11.71)

For exact non-relativistic calculations, the sum over states for the

real part of the energy shift was trivial to compute for the harmonic

oscillator since only two intermediate states contribute. Alternatively, if we

compute the shift from Eq. (11.23) without inserting intermediate states,

then from the equations of motion we can easily compute the contraction

over pi. We will follow this procedure in our calculations of the level

shift for the relativistic harmonic oscillator in Chapter 13. Unfortunately,

obtaining exact results for the Coulomb potential is more difficult. If we use

Eq. (11.28), we must include an infinite number of intermediate states in our

sum. If we do not use intermediate states but rather use Eq. (11.23) directly,

then we find that the equations of motion are intractable unless we use

group theoretical techniques, which are described in the next chapter [252].
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Chapter 12

SO(4,2) Calculation of the Radiative Shift
for the Schrodinger Hydrogen Atom

In Chapter 12, we compute the radiative shift in the non-relativistic dipole

approximation and to first order in the radiation field, as did Bethe, but

we use group theoretical methods based on the SO(4,2) symmetry of the

non-relativistic hydrogen atom as developed in Chapter 7. The shifts are

expressed as integrals over the frequency of the virtual electromagnetic

field. This allows us to determine the contribution of different frequencies

to the shift. The analytic expressions for the shifts are easy to evaluate

numerically as discussed in Chapter 14. Bethe’s calculation required the

numerical sum over all intermediate states to obtain the average value of

the energy of the states contributing to the shift. In our calculation, we

do not use intermediate states, and we derive an integral equivalent to

Bethe’s log, and more generally derive the shift for all levels in terms of a

double integral of an analytic function that we can readily evaluate.

12.1 SO(4,2) Expressions for the Radiative Shift

An expression for the radiative shift ΔNL for energy level EN of a hydrogen

atom in a state |NL〉 can be easily obtained using second order perturbation

theory (to first order in α the radiation field) [3, 19, 149, 158]

ΔENL =
2α

3πm2

s
∑

n

∫ ωC

0

dω
(En − EN )〈NL|pi|n〉〈n|pi|NL〉

En − EN + ω − iε , (12.1)

where ωC is a cutoff frequency for integration that we will take as ωC = m.

This equation is the same as Eq. (9.27) which we derived using perturbation

theory and Eq. (11.28) which we derived using the mass2 operator and the

non-relativistic dipole approximation to the Klein–Gordon equation. This

179
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expression, which is the same as Bethe’s before any approximations were

made, has been derived by inserting a complete set of states |n〉〈n| in Eqs.

(11.23) and (11.27), a step that is not necessary with our group theoretical

approach:

ΔENL =
2α

3πm2

∫ ωC

0

dω〈NL|pi H − EN
H − (EN − ω)− iεpi|NL〉. (12.2)

If we add and subtract ω from the numerator, we find the real part of the

shift is

ReΔENL =
2α

3πm2
Re

∫ ωC

0

dω[〈NL|p2|NL〉 − ωΩNL], (12.3)

where

ΩNL = 〈NL|pi 1

H − EN + ω − iεpi|NL〉 (12.4)

and

H =
p2

2m
− Zα

r
. (12.5)

The imaginary part of the shift gives the width of the level as discussed in

Secs. 11.3 and 11.4.

The matrix element ΩNL can be converted to a matrix element of

a function of the generators ΓA taken between the eigenstates |nlm) of

(Zα)−1. To do this we insert factors of 1 =
√
r 1√

r
and use the definitions

of ΓA in terms of the canonical variables, Eqs. (7.45–7.47). Letting the

parameter a take the value aN , we obtain the result

ΩNL =
mν

N2

(

NL|Γi
Γn(ξ)− νΓi|NL

)

, (12.6)

where Γn(ξ) = −Γ0n0 + Γ4n4, and

n0(ξ) =
2 + ξ

2
√
1 + ξ

= − coshφ ni = 0 n4(ξ) = − ξ

2
√
1 + ξ

= − sinhφ

(12.7)

and

ξ =
ω

|EN | ν =
N√
1 + ξ

= Ne−φ. (12.8)

From the definitions, we see φ = 1
2 ln(1 + ξ) > 0 and nA(ξ)n

A(ξ) = −1.
The quantity

ν =
mcZα

√−2m(EN − ω)
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may be considered the effective principal quantum number for a state of

energy EN − ω. The contraction over i in ΩNL can be evaluated using the

group theoretical formula Eq. (7.41):

ΓA
1

Γn− νΓ
A = −2ν

∫ ∞

0

ds eνs
d

ds

(

sinh2
s

2
e−Γn(ξ)s

)

.

Applying this equation to Eq. (12.6), we obtain

ΩNL = −2mν
2

N2

∫ ∞

0

dseνs
d

ds

(

sinh2
s

2
MNL(s)

)

−m ν

N2

(

NL|Γ4
1

Γn(ξ)− νΓ4|NL
)

+m
ν

N2

(

NL|Γ0
1

Γn(ξ)− νΓ0|NL
)

, (12.9)

where

MNL(s) = (NL|e−Γn(ξ)s|NL). (12.10)

In order to evaluate the last-two terms in ΩNL, we can express the

action of Γ4 on our states in terms of Γn(ξ)− ν. Substituting Eq. (7.44)

Γ0|NL) = N |NL) (12.11)

into the expression for Γn(ξ)− ν, with n(ξ) given by Eq. (12.7) gives

Γ4 = N −
(

1

sinhφ

)

(Γn(ξ)− ν) (12.12)

when acting on the state |NL). If we substitute Eq. (12.12) into the

expression for the ReΔENL, Eq. (12.3), use Eq. (12.9), and simplify using

the virial theorem

(NL|p2|NL) = a2N ,

we find that the term in p2 exactly cancels the last two terms in ΩNL,

yielding the result

ReΔENL =
4mα(Zα)4

3πN4

∫ φc

0

dφ sinhφeφ
∫ ∞

0

ds eνs
d

ds

(

sinh2
s

2
MNL(s)

)

,

(12.13)
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where

φc =
1

2
ln

(

1 +
ωC
|EN |

)

=
1

2
ln

(

1 +
2N2

(Zα)2

)

(12.14)

and ωC = m.

This is a very convenient expression for the shift ReΔENL for any

state NL because we can derive an analytical expressions for MNL. An

unexpected feature of Eq. (12.13) is that the explicit dependence on the

principal quantum number is 1/N4, whereas in the Bethe formalism (see

Eq. 9.33) the dependence is 1/N3. The difference arises because in Eq.

(12.13), the integrand contains φ and ν = Ne−φ which both depend on the

energy EN = −(1/2N2)m(Zα)2 of the state. The numerical calculations of

both equations agree.

Comparison to the Bethe logarithm

Comparing the SO(4,2) expression for the shift Eq. (12.13) to Eq. (11.63),

which gives the shift in terms of a sum over states and the Bethe log, we

find that the Bethe log is

γ(N,L) = −N
∫ φc

0

dφ sinh φeφ
∫ ∞

0

dseνs
d

ds

(

sinh2
s

2
MNL(s)

)

+ δL0ln
2

(Zα)2
. (12.15)

Note that this expression for the Bethe log is not an approximation like the

usual expression in which an approximate integration over energy has been

done.

12.2 Generating Function for the Shifts

We can derive a generating function for the shifts for any eigenstate

characterized by N and L if we multiply Eq. (12.13) by N4eβN and sum

over all N,N ≥ L+ 1. To simplify the right side of the resulting equation,

we use the fact that the O(2,1) algebra of Γ0, Γ4, and S closes (Section 7.4).

We make the identifications j1 = Γ4, j2 = S, and j3 = Γ0 to compute the

sum on the right hand side using Eq. (12.10), MNL = (NL|e−Γn(ξ)s|NL),
and use Eq. (7.44), (Γ0 − n)|nlm) = 0:

∞
∑

N=L+1

e−βNMNL =
∞
∑

N=L+1

(NL|e−j·ψ|NL), (12.16)
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where

e−j·ψ ≡ e−βΓ0e−sΓn(ξ). (12.17)

We perform j transformation, generated by a similarity transforamtion,

such that

e−j·ψ → e−j3ψ = e−Γ0ψ. (12.18)

Remembering the cyclic symmetry of the trace, we find

∞
∑

N=L+1

e−βNMNL =
∞
∑

N=L+1

(NL|e−j3ψ|NL) =
∞
∑

N=L+1

e−Nψ, (12.19)

∞
∑

N=L+1

e−βNMNL =
e−ψ(L+1)

1− e−ψ , (12.20)

where we have used the identity

1

1− e−ψ =

∞
∑

m=0

e−mψ.

Eq. (12.20) is a generating function for MNL, which determines the

radiative shift as shown in Eq. (12.13).

In order to find a particular MNL, we must expand both sides of Eq.

(12.20) in powers of e−β and equate the coefficients of the corresponding

powers of e−β . First, we need an equation for e−ψ. This can be obtained

using the isomorphism between j and the Pauli σ matrices:

(Γ4, S,Γ0)→ (j1, j2, j3)→
(

i

2
σ1,

i

2
σ2,

1

2
σ3

)

. (12.21)

Using Eqs. (12.17) and (12.18) and the formula

e
i
2 sn·σ = cos

s

2
+ in · σ sin

s

2
, (12.22)

where |n| = 1, we find

cosh
ψ

2
= cosh

β

2
cosh

s

2
+ sinh

β

2
sinh

s

2
coshφ. (12.23)

We can rewrite this equation in a form easier for expansion

e+
1
2ψ = de

1
2β + be−

1
2β − e− 1

2ψ, (12.24)
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where

d = cosh
s

2
+ sinh

s

2
coshφ

b = cosh
s

2
− sinh

s

2
coshφ

. (12.25)

Let β become very large and iterate the equation for e−
1
2ψ to obtain the

result

e−ψ = Ae−β
[

1 +A1e
−β +A2e

−2β + · · · ] , (12.26)

where

A = A0 =
1

d2

A1 = −
(

2

d

)

(

b− d−1
)

A2 = 3d−2
(

b− d−1
)2 − 2−2(b− d−1).

...

(12.27)

Note b − d−1 = −d−1 sinh2 s2 sinh
2 φ.

12.3 The Shift Between Degenerate Levels

Expressions for the energy shift between degenerate levels with quantum

numbers (N,L) and (N,L′) may be obtained directly from the generating

function using Eq. (12.13) and Eq. (12.20). We find

∑

N=L+1

e−βNN4 ReΔENL −
∞
∑

N=L′+1

e−βNN4 ReΔENL′

=
4mα(Zα)4

3π

∫ φc

0

dφeφ sinhφ

∫ ∞

0

dseνs
d

ds

×
(

sinh2
s

2

e−ψ(L+1) − e−ψ(L′+1)

1− e−ψ
)

. (12.28)

For an example, consider L = 1, L′ = 0. For the shifts between levels

we obtain
∞
∑

N=2

e−βNN4 Re (ΔENO −ΔEN1) + ReΔE10 e
−β

=
4mα(zα)4

3π

∫ φc

0

dφ eφ sinhφ

∫ ∞

0

dseνs
d

ds

(

sinh2
s

2
e−ψ

)

. (12.29)
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Substituting Eq. (12.26) for e−ψ, which gives the coefficient AAN−1 of

e−Nβ, we find

Re(ΔEN0 −ΔEN1)

=
4mα(Zα)4

3πN4

∫ φc

0

dφeφ sinhφ

∫ ∞

0

dseνs
d

ds

(

sinh2
s

2
AAN−1

)

,

(12.30)

where A and AN−1 are given in Eq. (12.27) in terms of the integration

variables s and φ.

General expression for MNL

Once we have a general expression for MNL, we can use Eq. (12.13) to

calculate the shift for any level ENL. We can obtain expressions for the

values of MNL by letting β become large, expanding the denominator in

Eq. (12.20) and equating the coefficients of powers of e−β. For large β, we
have large ψ. We have

e−ψ(L+1)

1− e−ψ =

∞
∑

m=1

e−ψ(m+L)

and for large β it follows from Eq. (12.26) that

∞
∑

N=L+1

e−βNMNL =

∞
∑

m=1

[

e−βA
(

1 +A1e
−β + . . .

)]m+L
. (12.31)

Using the multinomial theorem [129], the coefficient of e−β(m+L) in the

exponent on the right side of the equation becomes

∞
∑

m=1

Am+L
∑

r,s,t,...

(m+ L)!

r!s!t! . . .
A1

sAt2 . . . e
−β(m+L+s+2t+...), (12.32)

where r + s+ t+ · · · = m+ L.

To obtain the expression for MNL, we note N is the coefficient of β on

the left side of Eq. (12.31) so N = m+L+ s+ 2t+ · · · = r+ 2s+ 3t+ · · ·
Accordingly we find

MNL =
∑

r,s,t,...

A(r+s+t+...) (r + s+ t+ . . .)!

r!s!t! . . .
As1A

t
2 . . . , (12.33)

where r + 2s+ 3t+ · · · = N and r + s+ t+ · · · > L.
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By applying this formula, we obtain the results:

N = 1:

M10 = A (12.34)

N = 2:

M20 = A2 +AA1

M21 = A2
(12.35)

N = 3:

M30 = A3 + 2A2A1 +AA2

M31 = A3 + 2A2A1

M32 = A3

(12.36)

Shifts for N = 1 and N = 2

To illustrate these results, we can calculate the shift for a given energy

level using Eq. (12.13). For N = 1, we note from Eq. (12.34) thatM10 = A,

and from Eq. (12.27) that A = 1/d2. We find that the real part of the

radiative shift for the 1S ground state is

ReΔE10 =
4mα(Zα)4

3π

∫ φc

0

dφeφ sinhφ

∫ ∞

0

dsese
−φ d

ds

1
(

coth s
2 + coshφ

)2 ,

(12.37)

where φc is given by Eq. (12.14).

Equation (12.30) can be used to obtain the shift between two states

with the same N and with L = 0 and L = 1. For the N = 2 Lamb shift

between 2S-2P states, the radiative shift to first order in α (one radiation

field photon), is

(ΔE20 −ΔE21)

=
mα(Zα)4

6π

∫ φc

0

dφeφ sinh3 φ

∫ ∞

0

dse2se
−φ d

ds

1
(

coth s
2 + coshφ

)4 .

(12.38)
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The s integral can be computed in terms of a Jacobi function of the

second kind [130]1 The shifts for 1S and 2S-2P are given in terms of integrals

of simple analytic functions.

In Chapter 13, we compute the radiative shift for a harmonically bound

relativistic particle without spin.

1As a check on our group theoretical methods, we can compare our matrix elements
(10|eiSφ|n0) with those of Huff [58]. To go from Eq. (12.20) to Eq. (12.21), we do a
rotation R(φ) = eiφS generated by S that transforms Γn into Γ0. For N,L = 1, 0 we
have

M10 = (10|e−Γns|10) = (10|R(φ)e−Γ0sR−1(φ)|10)

=
1

(cosh s
2
+ sinh s

2
coshφ)2

.
(12.39)

Expanding the hyperbolic functions, we get

M10 =
4e−s

(1 + cosh φ)2

[
1− e−s tanh2 s

2

]−2

=
4

(1 + cosh φ)2

∞∑
n=1

ne−ns

(
tanh2 φ

2

)n−1

. (12.40)

We can also compute M10 by inserting a complete set of states and using Γ0|n0) =
n|n0) in Eq. (12.39). Because the generator S is a scalar, only states with L = 0, m = 0
can contribute:

M10 =
∑
nlm

e−ns|n(10|R(φ)|n0)|2. (12.41)

Comparing this to Eq. (12.40), we make the identification

|(10|R(φ)|n0)|2 =
4n

(1 + coshφ)2

(
tanh2 φ

2

)n−1

. (12.42)

Huff computes this matrix element by analytically continuing the known O(3) matrix
element of eiJyφ obtaining

|〈10|R(φ)|n0〉|2 =
4n

cosh2 φ− 1

(
tanh2 φ

2

)n

· [2F1(0,−1;n;
1

2
(1− coshφ))]2. (12.43)

Using tanh φ/2 = sinhφ/(cosh φ + 1) and that 2F1 = 1 for the arguments here,
we can show that this result agrees with our much more simply expressed result from
group theory.
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Chapter 13

Radiative Shift of a Relativistic Meson
(Spinless Electron) in a Harmonic Potential

13.1 Introduction

We compute the radiative shift for a spinless, relativistic meson with charge

e in a three-dimensional harmonic potential V = C2r2, where C is a real

constant. From consideration of the equations of motion, we compute the

radiative shift of the energy levels that corresponds to the difference in

the contribution to the mass renormalization of a mass m bound by the

harmonic interaction and a free meson [253, 254]. We derive an integral

expression for the complex radiative shift to order α in the radiation field

and to all orders in C, the binding field. In Section 13.2, we perform the

computations after making the simplifying assumption that the virtual

photon is spinless. In Section 13.3, we include the effects of spin.

We assume the unperturbed meson state |N〉 = |N1N2N3〉 obeys the

Klein–Gordon equation with the interaction term

(p2 − p20 + C2r2 +m2)|N〉 = 0. (13.1)

The equations of motion can be written in the form

(H − E0
N )|N〉 = 0, (13.2)

where

H =
p2

2m
+
m

2

(

C

m

)2

r2 (13.3)

and the relativistic energy is

E0
N =

p20 −m2

2m
. (13.4)
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This form shows that the equations of motion are the same as those of a

simple harmonic oscillator with frequency

ω = C/m. (13.5)

Consequently, we know that the unperturbed energy levels are

E0
N =

(

N +
3

2

)

ω, (13.6)

where N = N1 +N2 +N3,

which implies that

p20 = 2

(

N +
3

2

)

C +m2. (13.7)

13.2 Relativistic Radiative Shift for a Scalar Photon

Interaction

The shift is given by the equation

ΔEN = EN − EO
N = ig

∫

d4k

(2π)4
1

k2

〈

N

∣

∣

∣

∣

1

D(k)− iε′
∣

∣

∣

∣

N

〉

, (13.8)

where g = 2me2, 1/k2 is the propagator for a scalar photon, and D(k) is

the inverse momentum space propagator for the bound meson:

D (k, k0) = D(k) = (p− k)2 − (p0 − k0)2 + C2r2 +m2. (13.9)

We employ the integral representations

1

k2 − iε = i

∫ ∞

0

dλe−iλk
2−ελ,

1

D(k)− iε′ = i

∫ ∞

0

dte−itD(k)−ε′t.

(13.10)

By employing the translation operator in momentum space, we see that

e−i tD(k) = eik·re−i tD(0, ko)e−ik·r, (13.11)

where

D(0, k0) = 2mH +m2 − (p0 − k0)2. (13.12)

By applying the equations of motion for the canonical variables for an

elapsed time equal to mt, we find

e−itmHrieitmH = ri cos(Ct)− pi sin(Ct)
e−itmHpieitmH = pi cos(Ct) + ri sin(Ct)

. (13.13)
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We can compute the translations in Eq. (13.11) explicitly with the result

1

D(k)− iε′ = i

∫ ∞

0

dte−itmHei2k·pνe+itmH

× e−iμk2e−it(m2−(p0−k0)2)e−ε
′t, (13.14)

where

μ =
sin(Ct) cos(Ct)

C
,

ν =
sin(Ct)

C
.

(13.15)

The integration over scalar photon momentum can be performed by

completing the square and employing the general formula
∫ ∞

−∞
dxe±(iax2−2ibx) =

π

a
e∓

b2

a e±i
π
4 . (13.16)

After taking matrix elements as indicated in Eq. (13.8), we find that

the shift is

ΔEN1N2N3 =

∫ ∞

O

dt

∫ ∞

0

dλσNΩN1N2N3 , (13.17)

where we have used the product representation for the three-dimensional

harmonic oscillator states |N1N2N3〉 = |N1〉|N2〉|N3〉. The quantities σ and

Ω are

σN = − g

16π2
(λ + t)−

1
2 e

−ip20
(

t2

t+λ

)
(13.18)

ΩN1N2N3 = (λ + μ)−
3
2 〈N1N2N3|eip

2( ν2

λ+μ )|N1N2N3〉. (13.19)

We can calculate the matrix elements directly and express the results

in terms of the quantity

Ω(j) =

(

iν2C
)j

(λ+ μ− iν2C)j+ 3
2

. (13.20)

We find

Ω000 = Ω(0),

Ω100 = Ω(0) + Ω(1),

Ω200 = Ω(0) + 2Ω(1) + 3
2Ω(2),

Ω110 = Ω(0) + 2Ω(1) + Ω(2).

(13.21)
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The radiative shifts lift the degeneracy for some levels, and this

parameterization simplifies the calculation of shifts between degenerate

levels. Renormalization of the free particle mass is contained in Ω(0) to

all orders. This follows by noting that, for j ≥ 1, as C → 0

lim
C→0

Ω(j)→ 0. (13.22)

For calculations of the shift between the non-degenerate energy levels,

we would use a different formulation, subtracting the free particle shift in

the beginning.

To verify our equations, we consider the limit C → 0, which should yield

the free particle renormalization. In this limit, we have μ → t, ν → t from

Eq. (13.15), and p20 = m2 from Eq. (13.7) so the only non-vanishing Ω is

Ω(0)→ (λ+ t)−
3
2 . (13.23)

Substituting these quantities into the expression for the shift,

Eq. (13.17), we find

ΔEfree = − g

16π2

∫ 1

0

dy

∫ ∞

0

dt

t
e−im

2yt, (13.24)

where we have made the substitution

y =
t

t+ λ
. (13.25)

To avoid having a spurious imaginary term, we do not include the

contribution from the pole at t = 0, but start our integration at t = ε.

Using the formula

∫ ∞

ε

dt
e−iat

t
= − ln(εa)− γ, (13.26)

we find

ΔEfree =
g

16π2
ln(εm2) + γ − 1, (13.27)

where ε in the infinitesimal cutoff for the t integration and γ is Euler’

constant. This result has the same structure as the conventional result

with respect to the divergences. The finite parts depend on the values

of the cutoffs and on the particular procedures used to evaluate the

integrals. The infinite terms cancel in the calculation of measurable shifts

and consequently have no direct physical significance.
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Equation 13.20 for the bound state shifts can be rewritten in terms of

y and τ = 2Ct:

λ+ μ− iν2C =
τ

2Cy

[

1− y

iτ

(

e−iτ + iτ − 1
)

]

iν2C =
1

4iC

(

eiτ + e−iτ − 2
)

μ =
1

4iC

(

eiτ − e−iτ
)

.

(13.28)

The integral used to calculate the shifts is

ΔEN (j) ≡
∫ 1

0

dy

∫ ∞

0

dtσNΩ(j), (13.29)

which equals

ΔEN (j) = − g

16π2

1

(2i)j

∫ 1

0

dy

∫ ∞

2Cε

dτ

τ j+1

yj
(

eiτ + e−iτ − 2
)j
e−iyητ

[

1− y
iτ (e

−iτ + iτ − 1)
]j+ 3

2

,

(13.30)

where the lower limit of the τ integration is 2εC to avoid the pole at

zero. The degree of coupling to the harmonic oscillator is given by the

dimensionless parameter

η =
p20
2C

. (13.31)

The shift can be expressed as a single integral of a confluent hypergeometric

function with two arguments. The structure is similar to that for the H

atom, where the shift can also be expressed in terms of an integral over a

confluent hypergeometric function [156].

13.3 Relativistic Radiative Shift for a Spin 1 Photon

Interaction

The expression for the shift is

ΔEN = EN − E0
N = ig

∫

d4k

(2π)4
1

k2 − iε
〈

N
∣

∣Tμμ
∣

∣N
〉

, (13.32)
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where we are using the spin 1 photon propagator and

Tμμ = (2p− k)μ 1

D(k)− iε(2p− k)
μ. (13.33)

Executing the trace gives

T μμ = 4

[

pi
1

D(k)
pi − p2o

1

D(k)

]

− 2

{

p · k, 1

D(k)

}

− 4poko
1

D(k)
− (k2 − k2o

) 1

D(k)
. (13.34)

We can derive expressions for each of these quantities in terms of our

previous results by employing the Heisenberg equations of motion for pi and

qi (Eq. 13.13) and also our form of the Klein–Gordon equation (Eq. 13.1).

Our final result is

ΔEN1N2N3 = 4

∫ ∞

0

dλ

∫ ∞

0

dt

[

−p2O − C2ν22C

(

N+
3

2

)

− 3iμC2

− p20
t

t+ λ
+

(

2μνC2 +
λ

ν

)

1

2i

∂

∂ν

+C2ν2
(

2C2ν2 − 1
) 1

−i
∂

∂(λ+ μ)

]

σNΩN1N2N3

+
1

i

∫ ∞

0

dtσNΩN1N2N3 |λ=0, (13.35)

where σN and ΩN1N2N3 have the same meaning as before (Eqs. (13.18) and

(13.19)).

In Chapter 14 we return to the hydrogen atom and we determine the

contribution to the Lamb shift from the different frequency components in

the quantum vacuum field. We find that 97% of the radiative shift is due to

energies above the ionization energy, implying that transitions to scattering

states dominate.



Chapter 14

New Insights into the Lamb Shift: The
Spectral Density of the Shift

In an atom, the interaction of a bound electron with the vacuum fluctua-

tions of the electromagnetic field leads to complex shifts in the energy levels

of the electron, with the real part of the shift corresponding to a shift in

the energy level and the imaginary part to the width of the energy level.

The most celebrated radiative shift is the Lamb shift between the 2s1/2 and

2p1/2 levels of the hydrogen atom. We have done a calculation of the shift

using a group theoretical approach which gives the shift as an integral over

frequency of an analytic function, which we call a shift spectral density.

The shift spectral density reveals how different frequencies contribute to

the total energy shift. We find, for example, that half the radiative shift for

N = 1 level in hydrogen comes from photon energies above 9700 eV, and

that the expressions by Power and Welton for the radiative shift do not

have the correct low frequency behavior, although they do give the correct

value for the total shift.

14.1 Introduction

In astronomy, in quantum theory, in quantum electrodynamics (QED),

there have been periods of great progress in which solutions to challenging

problems have been obtained, and the fields have moved forward. However,

in some cases, getting the right answers can still leave fundamental

questions unanswered. The Big Bang explained the origin of the cosmic

background radiation, but left the problem of why the universe appears to

be made of matter and not equal amounts of matter and antimatter [255].

In quantum theory, we can compute the behavior of atoms, yet we cannot

describe a measurement of a quantum system in a self-consistent way or
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make sense of the collapse of a photon wavefunction from a nearly infinite

volume to a point [256]. In quantum electrodynamics, we can compute the

Lamb shift of the H atom to 15 decimal places [1], yet we are left with

the paradox of using perturbation theory to remove infinite terms, or to

understand a quantum vacuum with infinite energy. In this chapter, we

examine some of the differences in the approaches to the computation of

the non-relativistic Lamb shift. For all these approaches, the Lamb shift can

be expressed in different ways as an integral over frequency of a spectral

density that indicates the contribution to the shift from different frequency

components in the quantum vacuum.

We compare the spectral densities for the different approaches of Bethe,

Welton and Power to the group theoretical spectral density of the non-

relativistic Lamb shift for the 1S ground state, the 2S and 2P levels. With

this new picture of the Lamb shift, we have found differences between the

various approaches. Knowing the spectral density of the shift provides new

insights into understanding the Lamb shift.

14.2 Spectral Density of the Lamb Shift

Our goal is to develop an expression for the shift of an energy level, in terms

of the generators of the group SO(4,2), that is an integral over frequency.

Then the integrand will be the spectral density of the shift, and group

theoretical techniques can be used to evaluate it [20]. We have derived

a generating function for the shifts for all levels in Chapter 12. We first

focus on the ground state 1S level as an illustration of the results. At

ordinary temperatures and pressures, most atoms are in the ground state.

The radiative shift for the 1S level is given in Eq. (12.37) [252]

ΔE1 =
4mc2α(Zα)4

3π

∫ φc

0

dφeφ sinhφ

∫ ∞

0

dsese
−φ d

ds

1
(

coth s
2 + coshφ

)2 ,

(14.1)

where the dimensionless normalized frequency variable φ is defined as

φ =
1

2
ln

[

1 +
�ω

|E1|
]

, (14.2)

where E1 is the ground state energy −13.6 eV. The cutoff φc corresponds

to E = �ωC = mc2, 511 keV, corresponding to the electron mass. The

group theoretical expression for the Lamb shift Eq. 14.1 is directly derived

from the Klein–Gordon equations of motion using a non-relativistic dipole
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approximation, assuming infinite proton mass, and minimal coupling with

the vacuum field. Basis states of (1/Zα) are used since they have no

scattering states and have the same quantum numbers as the usual bound

energy eigenstates [252]. The level shift is obtained as the difference between

the mass renormalization for a spinless meson bound in the desired state

and the mass renormalization for a free meson. Second order perturbation

theory is not used. Near the end of the derivation, an equation which

is identical to Bethe’s result Eq. (9.27) for the radiative shift can be

derived by inserting a complete set of Schrodinger energy eigenstates. Thus,

we expect the fundamental results from Bethe’s spectral density (with

no approximations) and the group theoretical spectral density to be in

agreement [20, 252].

We can write Eq. 14.1 as an integral over E = �ω, which is the energy

of the vacuum field in eV, and evaluate the definite integral over s for

different values of E. We measure the ground state Lamb shift ΔE1 in eV

so the spectral density of the shift dΔE1/dE is measured in eV/eV which

is dimensionless:

ΔE1 =

∫ mc2

0

dΔE1

dE
dE, (14.3)

where the ground state spectral density from Eq. (14.1) is

dΔE1

dE
=

4α3

3π
e−2φ sinhφ

∫ ∞

0

dsese
−φ 1

sinh( s2 )
2

1

(coth s
2 + coshφ)3

.

(14.4)

Figure 14.1 shows a logarithmic plot (ordinate is a log, abscissa is

linear) of the spectral density dΔE1

dE of the ground state Lamb shift with

Z = 1 over the entire range of energy E computed from Eq. (14.4) using

Mathematica. The spectral density is largest at the lowest energies and

decreases monotonically by about 4 orders of magnitude as the energy

increases to 511 eV. The ground state shift is the integral of the spectral

density from energy 0 to 511 keV. Figure 14.2 is a loglog plot (both ordinate

and abscissa are log) of the same information. The use of the loglog plot

expands the energy range for each decade, revealing that for energy above

about 100 eV the slope is approximately −1, indicating that the spectral

density is nearly proportional to 1/E. For energy below about 10 eV, the

spectral density in Fig. 14.2 is almost flat, corresponding to a linear increase

as energy decreases, with a maximum spectral density at the lowest energy

computed, as shown in Fig. 14.3.
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Fig. 14.1. Plot of the log of the spectral density of the ground state Lamb shift from
the group theoretical expression Eq. (14.4) on the vertical axis versus the energy in eV

from 0 to 511 keV on the horizontal axis.

Fig. 14.2. This loglog plot shows the log of the spectral density of the ground state
shift from the group theoretical expression Eq. (14.4) on the vertical axis versus the
log of the energy in eV. From about 0 eV to 10 eV, there is a slow linear decrease in
the spectral density. For energies above about 100 eV, the behavior is dominated by a
1/energy dependence.
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(a)

(b)

(c)

Fig. 14.3. Linear plot of the ground state spectral density as a function of eV calculated
from group theory, plotted as a function of energy for low and mid energies. From about 0
eV to 10 eV, the spectral density decreases linearly from its maximum value at the origin
which corresponds to 0 eV for all graphs. (a) Linear decrease in ground state spectral
density at very low energies. Note ordinate changes very little over small energy region
plotted. (b) Near linear change in ground state spectral density for visible and near
IR energies. The contribution to the total shift for energies below 3 eV is about 0.7%.
(c) Ground state spectral density calculated for energies below 80 eV, which contribute
about 8.6% to the total shift.
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Figure 14.2 shows that there are essentially two different behaviors of

the spectral density. For values of the energy E of the vacuum field that

are about 10 eV and below, in the range of the changes in energy for bound

state transitions, the spectral density corresponds to the near horizontal

portion of the spectral density in Fig. 14.2, and when E is much larger

than the bound state energies, the spectral density goes as 1/E.

Figure 14.3 shows linear plots (linear in ordinate and abscissa) of the

spectral density of the shift for the ground state computed from Eq. (14.4)

for several lower energy regions. Fig. 14.3(a) shows a linear decrease in the

spectral density as the energy increases over the small, low energy interval

plotted. Figure 14.3(b) shows a linear decrease of about 15% as the energy

increases from 0 eV to 3 eV. Figure 14.3(c) shows that the spectral density

decreases by a factor of about 4 as the energy increases from 0 eV to 100

eV. In the low frequency limit, the spectral density decreases linearly as

the energy increases from the asymptotic constant value at 0 eV.

It may seem somewhat surprising that the spectral shift density is a

monotonically decreasing function as the energy increases. Bethe believed,

and it seemed reasonable, that the contributions to the shift would be

greatest for resonant transitions between the bound state energy levels,

but there is no such effect in the computed spectral shift density. This

conundrum suggests we may not have a precise understanding of the

physical processes that are occurring despite the fact that our mathematics

allow us to make a very precise computation of the shift. One of the

challenges is that it is not possible to measure these computed transitions

directly.

From explicit evaluations, we will show in Section 14.4 that for S states

with principal quantum number n, the asymptotic spectral density for large

E is proportional to α(Zα)4(1/n3)(1/E), and show in Section 14.5 that as

the energy E goes to zero, the spectral density increases linearly, reaching

a maximum value that is proportional to α(Zα)2(1/n2). An approximate

fit to the ground state data in Fig. 14.1 is

dΔEFit1 (E)

dE
= A

(1 + e−E/B)
(E + C)

, (14.5)

where A = 4.4008× 10−6, B = 11.841eV, C = 106.79 eV. The fit is quite

good at the asymptotes and within 10% over the entire energy range.

We can use the spectral density shown in Figs. 14.1 or 14.2 to determine

the contribution to the total ground state shift from different energy regions.

If we integrate the spectral density from 0 eV to energy E, we obtain the
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value of the partial shift Δ1(E) in which these energies (0 eV to E eV)

contribute to the total shift ΔE1 for the ground state. In Fig. 14.4, we have

plotted Δ1(E)/ΔE1, which is the fraction of the total shift ΔE1 due to the

contributions of energies below E, as a function of E. Figure 14.4(a) shows

that almost 80% of the shift comes from energies below about 100,000

eV. Figure 14.4(b) shows that about half the total shift is from energies

below 9050 eV. Figure 14.4(c) shows that energies below 100 eV contribute

about 10% of the total shift. Energies below 13.6 eV contribute about 2.5%

while energies below 1 eV contribute about 1/4% of the total. It is quite

remarkable that over 96% of the contribution to the 1S radiative shift is

from transitions to states that are ionized. As shown in Fig. 14.4(c), the

fraction of the total shift increases linearly as E decreases from 10 ev to 0,

corresponding to the nearly horizontal portion of the shift density as shown

in Fig. 14.2. The contribution to the total 1S shift for the visible spectral

interval 400–700 nm (1.770–3.10 eV) is about 1.00342× 10−7 eV or about

3/10% of the total shift.

The relative contribution to the total shift per eV is much greater for

lower energies. For example, half the 1S shift corresponds to energies 0 to

9000 eV, but only about 0.2% corresponds to 500,000 to 509,000 eV. The

largest contribution to the shift per eV is at the lowest energies, which

have the steepest slope of the spectral density curve in Fig. 14.1, about

1000 times greater than the slope for the largest values of the energy. But

the total range for the large energies, from 9050 to 510,000 is so large that

the absolute contribution to the total shift for large energies is significant.

For the ground state, Fig. 14.5 shows how the dominant terms for

different m in the Bethe sum over states in Eq. (12.1) contribute to the

full spectral density obtained from group theory Eq. (14.4). Each such

term in the Bethe sum could be interpreted as corresponding to the shift

resulting from virtual transitions from state n to state m occurring due to

the vacuum field. Each term shown has a behavior similar to that of the full

spectral density, but the magnitudes decrease as the transition probabilities

decrease.

Figure 14.6 shows the spectral densities for the 1S (top curve) and 2S

(middle curve) shifts. The shapes are similar, but the spectral density

for the 1S shift is about eight times as large at high frequencies and

about four times as large at low frequencies, factors that we will derive

explicitly by considering the asymptotic forms of the spectra density for

S states with different principal quantum numbers. Both have a 1/E high

frequency behavior. The s integration in the group theoretical calculation



202 The Hydrogen Atom

(a)

(b)

(c)

Fig. 14.4. The ordinate is the fraction of the ground state shift ΔE1 due to vacuum
field energies between 0 and E, plotted as a function of E on the abscissa. This plot is
obtained by integration of the spectral density from Eq. (14.4), shown in Fig. 14.1. The
plot is linear in the ordinate and abscissa. The origin corresponds to (0,0) for all plots.
(a) Fraction of the 1S shift due to energies from 0 to E plotted versus E on the abscissa,
for 0 < E < 510 keV. (b) Fraction of the 1S shift due to energies below E plotted versus
E, for 0 < E < 9000 eV. (c) Fraction of the 1S shift due to energies from 0 to E plotted
versus E on the abscissa, for 0 < E < 100 eV. Energies below 30 eV account for about
0.05 of the total shift. The variation is linear for E < 10 eV.
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Fig. 14.5. This loglog plot shows the 1S spectral density from group theory Eq. (14.4)
(top curve), and the contributions to this shift in the Bethe formalism for the transition

1S → 2P (blue, just below top curve), 1S → 4P (red, third curve from the top), 1S → 8P
(green, bottom curve). The dashed line shows the high frequency 1/E asymptote. The
top curve is the complete 1S spectral density which is the summation of the contributions
from all transitions.

Fig. 14.6. This loglog plot shows the log of the group theoretical spectral density
for the 1S (black, top curve) and 2S (red, middle curve) shifts on the vertical axis
versus the log of the frequency in eV. The dashed curve below 1 eV is a 2S low energy
approximation Eq. (14.24) from group theory or the Bethe formula. The bottom curve
is the largest single contribution in the Bethe formalism to the 2S shift spectral density
for the transition 2S → 3P.
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for the 2S state diverges for energies below 10.2 eV due to a non-relativistic

approximation, but the spectral density of the shift can be obtained from

a low energy approximation, Eq. (14.24), to the group theory result, which

we derive in Section 14.4.

We can define the spectral density dΔEn

dE for a state n in a convenient

form suggested by Eq. (14.4),

dΔEn
dE

=
4α3

3π

∫ ∞

0

dsWn(s, φn) where φn = ln [1 +
E

|En| ], (14.6)

where the energy for state n is En = −mc2(Zα)2/2n2. From our group

theoretical results for the 2S-2P Lamb shift, Eq. (12.38), we have

W2S−2P (s, φ2) =
4e(2se

−φ2+φ2) sinh3(φ2)csch
2
(

s
2

)

(

cosh(φ2) + coth
(

s
2

))5 (14.7)

and for the 2P shift [252]:

W2P (s, φ2) (14.8)

= −e
(2se−φ2+φ2) sinh(φ2)csch

4
(

s
2

)

(cosh(φ2) sinh(s) + cosh(s)− 3)

2
(

cosh(φ2) + coth
(

s
2

))5 .

(14.9)

The spectral density of the 2P shift has a very different behavior from

the spectral density of the 2S shift (Fig. 14.7). It is negative and drops

off as 1/E2. The shift is negative because the dominant contribution to

the shift is from virtual transitions from the 2P state to the lower 1S

state, with an energy difference of about 10.2 eV. At 510 keV, the 2P

spectral density is about five orders of magnitude smaller than the 2S

spectral density. Below 20 eV, the absolute value of the 2P spectral density

is greater than the 2S spectral density. Note that the 2P spectral density

is actually negative and the 2S spectral density is positive. For energies

below about 20 eV, the absolute value of the spectral density of the 2P

shift increases rapidly in magnitude as the energy is reduced and is much

larger than the spectral density for the 2S shift. The 2S shift cannot have

a negative contribution from the lower 1S state since the transition 2S→1S

is forbidden by conservation of angular momentum. The classic Lamb shift

arises from the difference between the two spectral densities, so the negative

2P spectral density actually increases the 2S-2P Lamb shift as the energy

decreases (Fig. 14.8). The total 2P shift is about 0.3% of the 2S shift. Bethe

also computed a negative contribution for the shift from the 2P state [158].
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Fig. 14.7. This loglog plot shows the log of the absolute value of the spectral density
on the vertical axis versus the log of the energy in eV for the 2S shift (red, top curve),
which goes as 1/E for large E, and for the 2P shift (green, bottom curve), which goes
as 1/E2 for large E.

Fig. 14.8. This loglog plot shows the log of the spectral density for the 2S shift (red,
bottom line) and the 2S-2P Lamb shift (blue, curved middle line) versus the log of the
energy. The line at the top is the 1/E asymptote.
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14.2.1 Comparing the ground state group theoretical Lamb

shift calculations to those of Bethe, Welton, and

Feynman

Integrating the group theoretical spectral density Eq. (14.4) from near

zero energy (5.4 × 10−7 eV) to 511 keV, about the rest mass energy of

the electron, gives the 1S shift of 3.4027 × 10−5 eV, in agreement with

the numerical result of Bethe and Salpeter summing over states and using

the Bethe log approximation, 3.392× 10−5 eV, to about 0.3% [158].

Bethe and Salpeter reported that the ground state Bethe log Eq. (9.34),

which is a logarithmically weighted average value of the excitation of the

energy levels contributing to the radiative 1S shift, was 19.77 Ry or 269

eV [158]. Because of the weighting, it is not clear how one should interpret

this value, other than it indicates that high energy photons and scattering

states contribute significantly to the shift. As we have noted, our group

theoretical method does not provide an equivalent weighted average value

for direct comparison.

Although the methods of Bethe, Welton, and Power as defined all give

approximately the same value for the 1S shift, which equals the integral

of the spectral density in our approach, they differ significantly in their

frequency dependence, which we will now examine.

14.3 The Spectral Density of the Lamb Shift at High

Frequency

The form for dΔEn/dE, which is the Lamb shift spectral density for level

n, can be obtained at high energies from (1) the classic calculation by

Bethe using second order perturbation theory, before any approximations

are made to evaluate the integral; (2) the calculation by Welton of the Lamb

shift; (3) the calculation of Power of the Lamb shift based on Feynman’s

approach; and (4) our group theoretical calculation.

The spectral density for level n can be written from Bethe’s expression

Eq. (11.28)

ΔEBethen

ΔE
=

2α

3π

(

1

mc

)2
∑

m

|pmn|2(En − Em)
1

En − Em − E . (14.10)

If we are evaluating the spectral density for the ground state n = 1, Z = 1,

then E1 = −13.613 eV and for the bound states Em = −13.613eV/m2.

For scattering states Em is positive. Hence, the denominator is negative for
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all terms in the sum over m and never vanishes, and the spectral density

is positive, and the ground state shift is positive as it must be. For large

values of E > En − Em, we can make the approximation

ΔEBethen

ΔE
|E−>∞ =

2α

3π

(

1

mc

)2
∑

m

|pmn|2(Em − En)
1

E
. (14.11)

The summation can be evaluated using the dipole sum rule Eq. (9.30), and

Eqs. (9.31) and (9.32) for the Coulomb S state wavefunction, obtaining the

final result for the high frequency spectral density for S states with principal

quantum number n

dΔEBethen

dE
|E−>∞ =

4mc2

3π
α(Zα)4

1

n3

1

E
. (14.12)

The result highlights the 1/E behavior at high frequencies, and shows

the presence of a coefficient proportional to 1/n3. To put a scale on the

coefficient, we note that the high frequency spectral density can be written

as (8/3π)(α(Zα)2/n)(En/E).

The spectral density for all frequencies from Welton’s model can be

obtained from Eq. (9.44):

ΔWelton
N =

4α(Zα)4mc2

3π

1

N3

1

E
. (14.13)

This is identical to this high frequency limit of Bethe’s calculation. Thus,

at low frequencies, the spectral density for Welton’s calculation diverges as

1/E. Because of the expectation value of the Laplacian, Welton’s approach

predicts a shift only for S states. Its appeal is that it gives a clear physical

picture of the primary role of vacuum fluctuations in the Lamb shift and

shows the presence of the 1/E characteristic behavior. To obtain a level

shift, it requires providing a low energy limit for the integration. As we

have noted, if the lower limit is Bethe’s logarithmic average excitation

energy, 269 eV for n = 1, and the upper limit mc2, then Welton’s total

1S shift agrees with Bethe’s. A choice of this type works since (1) it does

not include any contributions from energies below 269 eV and (2) it gives a

compensating contribution for energies from 269 eV to about 1000 eV that is

larger than the actual spectral density, as shown in Fig. 14.2, and (3) above

about 1000 eV, Welton’s model gives the same 1/E spectral density

as Bethe.
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The spectral density for Power’s model can be obtained from Eq. (9.53)

ΔEPowern

dE
= −2α

3π

(

1

mc

)2
∑

m

|pmn|2(Em − En)
E

(Em − En)2 − E2

(14.14)

For large energy E, we see the result is identical to the high frequency limit

Eq. (14.12) for the Bethe formalism and the Welton model so we have

ΔEPowern

dE
|E−>∞ =

4mc2

3π

α(Zα)4

n3

1

E
. (14.15)

Thus, we find for S states a 1/E dependence of the high frequency

spectral density, corresponding to the logarithmic divergence at high

frequency. We can write all the high energy theoretical results in a form

allowing easy comparison to the calculated group theoretical spectral

density eV/eV:

dΔEBethen

dE
|E−>∞ =

4mc2

3π

α(Zα)4

n3

1

E
. (14.16)

The spectral density is 1/n3 for the S states. For the ground state n = 1,

Z = 1, we have

dΔEBethe1

dE
|E−>∞ = 4.488× 10−6 1

E
. (14.17)

A fit to the last two data points near 510 KeV in the group theoretical

calculations gives:

dΔEGTcalc1

dE
|E−>510 keV = 4.4008× 10−6 1

E
. (14.18)

The coefficients differ by approximately 2%. The difference may be due

to the fact that the Bethe result is a high frequency asymptotic result,

whereas the group theory is for a finite limit of 510 eV. Figure 14.9 is a

plot of the ground state group theoretical spectral density (top curve) from

Eq. (14.4) and the theoretical high energy 1/E function from Bethe, Power

and Welton, Eq. (14.17), (slightly below top curve), and the difference times

a factor of 10 (bottom curve). The asymptotic theoretical result from Bethe,

Power, and Welton agrees with the full group theoretical calculation from

Eq. (14.4) to within about 2% at 511 keV and to within about 6% at 50 KeV.

It is notable that the high frequency form is a reasonable approximation

down to 50 keV. In fact, the Welton approach is based on this observation;

it has the same 1/E energy dependence for all energies.
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Fig. 14.9. Top curve is the 1S group theoretical calculated spectral density Eq. (14.4),
slightly lower curve is the 1/E asymptotic model Eq. (14.17) of Bethe, Power and Welton,

and the bottom negative curve is the difference times 10, plotted for the interval 50–
510keV. Both axes are linear.

14.4 Spectral Density of the Lamb Shift at Low Frequency

We can obtain a low frequency limit of the spectral density of the Lamb

shift from the Bethe spectral density Eq. (14.10). For small values of E, the

spectral density can be expanded to the first order in E, giving

ΔEBethen

dE
|E−>0 =

2α

3π

(

1

mc

)2
∑

m

|pmn|2
(

1− E

Em − En

)

. (14.19)

Since the sum is over a complete set of statesm, including scattering states,

we can evaluate the first term in parenthesis using the sum rule

∑

m

|pmn|2 = −2mEn = (mc)2
(Zα)2

n2
. (14.20)

For the second term we use Eq. 9.51

|pmn|2 = m2ω2
mn|xmn|2 =

m2ω2
mn

e2
|dmn|2

and the Thomas–Reiche–Kuhn sum rule [259]

∑

m

ωmn|dmn|2 =
3e2�

2m
(14.21)
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to evaluate the resulting summation. The final result for E → 0 is

ΔEBethen

dE
|E−>0 =

2α

3π

(Zα)2

n2
− α

πmc2
E. (14.22)

The corresponding spectral density for n = 1, Z = 1 is

dΔEBethe1

dE
|E−>0 =

4α× 13.6

3πmc2

(

1− 3E

4× 13.6

)

= 8.253× 10−8(1 − 0.0551E). (14.23)

As E decreases to zero, the spectral density increases linearly to a constant

value (4α/3π)(|En|/mc2) = 2α3Z2/3πn2 = 8.253× 10−8/n2. The intercept

goes as 1/n2, but the slope, α/πmc2, which is constant and has a remarkably

simple form, is independent of n.

If we take the low frequency limit of the group theoretical result Eq.

(14.4) analytically, we obtain exactly the same result as in Eq. (14.23) from

the Bethe formulation

dΔEGTheory1

dE
|E−>0 =

dΔEBethe1

dE
|E−>0 =

2α

3π

(Zα)2

n2
− α

πmc2
E. (14.24)

Figure 14.3 shows the results of group theoretical calculations of the spectral

density of the ground state Lamb shift for different energy regions, showing

the near linear increase in the spectral density as the frequency decreases

from 80 eV to 10−5 eV. For low values of E, the slopes and intercept

from Eq. (14.24) agree within about two tenth of a percent with the exact

theoretical values obtained from Eq. (14.4).

To explore Power’s approach at low frequency, we can let E become

very small in the spectral density Eq. (14.14), giving

ΔEPowern

dE
|E−>0 = − 2α

3πmc3

∑

m

|pmn|2
E

Em − En (14.25)

which is identical to the second term in Eq. (14.19), the low E approxima-

tion to the Bethe result Eq. (14.10), so we have from Eq. (14.22):

ΔEPowern

dE
= − 1

π

α

mc2
E. (14.26)

This result Eq. (14.26) is identical to the frequency dependent term in

Eq. (14.24), which is the low frequency spectral density from the Bethe

approach and from the group theoretical expression. However, in the low

frequency limit based on Power’s expression for the spectral density, the



New Insights into the Lamb Shift: The Spectral Density of the Shift 211

constant term that is present in the other approaches does not appear.

This is a consequence of the form used for the index of refraction, which

assumes that real photons are present that can excite the atom with

resonant transitions. The modified implementation of Feynman’s proposal

by Milonni et al., noted in Section 9.3.3 would yield a low energy result

that agrees with that of Bethe and group theory [244].

14.5 Conclusion

The non-relativistic Lamb shift can be interpreted as due to the interaction

of an atom with the fluctuating electromagnetic field of the quantum

vacuum. We introduce the concept of a spectral shift density which is

a function of frequency ω or energy E = �ω of the vacuum field. The

integral of the spectral density from E = 0 to the rest mass energy of an

electron, 511 keV, gives the radiative shift. We report on calculations of

the spectral density of the level shifts for 1S, 2S and 2P states based on a

group theoretical analysis and compare the results to the spectral densities

implicit in previous calculations of the Lamb shift. The group theoretical

calculation provides an explicit form for the spectral density over the entire

spectral range. Bethe’s approach requires a summation over an infinite

number of states, all bound and all scattering, to obtain a comparable

spectral density. We compare all approaches for asymptotic cases, for very

large and very small energies E.

The calculations of the shift spectral density provide a new perspective

on radiative shifts. The group theory approach as well as the approaches of

Bethe, Power, and Welton all show the same 1/E high frequency behavior

for S states above about E = �ω = 1000 eV to E = 511 keV, namely

a spectral density for S states equal to (4/3π)(α(Zα)4mc2/n3)(1/E) for

states with principal quantum number n. Since our group theory calculation

shows that about 76% of the ground state 1S shift is contributed by E above

1000 eV, this is essentially why all the approaches give approximately the

same result for the 1S Lamb shift.

Only the Bethe and group theory calculations have the correct low

frequency behavior. We find that for the S states the spectral density

increases linearly as E approaches zero. Its maximum value is at E = 0

and for S states equals (2α/3π)(Zα)2/n2. This maximum value is about

1/(Zα)2 or about 2 × 104 larger than the high frequency spectral density

at E = 510 keV. Thus, low energies contribute much more to the shift

for a given spectral interval than high energies. Energies below 13.6 eV
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contribute about 2.5%. It is surprising that about 97.5% of the 1S radiative

shift is due to fluctuation energies above the ionization potential, which

means that intermediate scattering states dominate the shift. Because of

the huge spectral range that contributes to the shift, contributions to the

shift from high energies are very important. Half of the contribution to the

1S shift comes from energies above 9050 eV.

The 2P shift has a very different spectral density from an S state: it

is negative and has an asymptotic behavior that goes as 1/E2 rather than

as 1/E. Below about 20 eV, the absolute value of the 2P spectral density

is much larger than the 2S spectral density and dominates the 2S-2P shift

spectral density, yet the total 2P shift is only about 0.3% of the total 2S

shift.

In the last chapter, we discuss the field of virtual vacuum energy that

surrounds the hydrogen atom due to its interaction with quantum vacuum

fluctuations.



Chapter 15

The Cloud of Virtual Quanta
Surrounding the H Atom

15.1 Introduction

This chapter focuses on the spectral interpretation of the dominant lowest-

order non-relativistic radiative shift, which is what Bethe calculated,

and which accounts for about 97% of the total shift. This shift can be

interpreted as arising from virtual transitions of the H atom induced

by quantum fluctuations of the electromagnetic field. Since the vacuum

field contains all frequencies, virtual transitions to all states, bound and

scattering, occur. Indeed, as we saw in Chapter 14, over 95% of the ground

state shift arises from transitions to scattering states. These short-lived

virtual transitions result in a slight shift in the average energy of the atom,

the radiative Lamb shift [20]. This continuous process of absorption and

emission of virtual photons produces a cloud of virtual energy around the

atom [243]. When only one atom is present, the interaction results in the

field around the atom corresponding to the Lamb shift. If multiple atoms

are present, these clouds affect neighboring atoms; along with the zero-point

field, this interaction leads to the van der Waals force and the Casimir force.

The van der Waals forces arise because the vacuum fluctuations cause a

correlation in the induced dipole moments of the atoms.

We have calculated the non-relativistic Lamb shift using SO(4,2) group

theory. In Chapter 14, Eqs. (14.3) and (14.4) give an expression for the

level shift as an integral of a spectral shift density over the frequency of the

vacuum fluctuations [252, 260]. There is no sum over states as in Bethe’s

evaluation of the shift. This approach provides an analytical expression

for the contribution of each frequency of the vacuum fluctuations to the

radiative Lamb shift. This expression allows us to compute the volume

213
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that corresponds to the spectral components present in the Lamb shift by

considering the energy density of the zero-point vacuum field.

The calculations by Power and Milonni show that for the ground state

1S Lamb shift, which is positive since all transitions are to states with

energy greater than the ground state, the energy density of the fluctuating

zero point field around the atom must increase so that the integral of the

energy over the volume surrounding the atom gives the 1S Lamb shift

[3, 203, 244]. The increased energy is supplied by the quantum fluctuations

of the electromagnetic field. By comparing the needed vacuum energy,

which we determine from our calculation of the spectral shift density in

Chapter 14, with the known energy density of the zero-point vacuum

fluctuations, we can calculate the volume of vacuum energy needed for each

spectral component of the shift. In Sec. 15.2, we will show that for energies

above about 100 eV, the spectral volume is much smaller than the region

occupied by the ground state wavefunction; for energies less than about

1 eV the spectral volume is significantly larger than the ground state

wavefunction. Consequently, the focus of this paper is on the low energy

regime. For this regime, we will show that the radius of the spherical spectral

volume for a vacuum fluctuation of wavelength λ is approximately (α/2π)λ,

where α is the fine structure constant. A simple estimate of the size of the

virtual photon cloud based on the uncertainty relation for energy and time

predicts a maximum radius of the spectral volume which is larger than that

predicted by the Lamb shift model by a factor of 1/4α [257, 261].

15.2 Computing the Size of the Vacuum Energy Field

Consider a large box containing one H atom in the ground state. We know

both the spectral density dΔE1

dE of the radiative shift in the ground state,

given by Eq. (14.4), and the energy density of the quantum vacuum without

an H atom present. In the box containing the H atom, the vacuum field

density must increase such that the integral of the energy density over

the volume provides the 1S Lamb shift. This increase in vacuum energy

results from the vacuum fluctuations, which have a free-field spectral energy

density (energy/volume - frequency) equal to [3]

ρ0(ω) =
�ω3

2π2c3
, (15.1)

where c is in cm/s, ω is the radial frequency in s−1 and ρ has units

of erg/cm3–sec−1. If the frequency is measured in eV then it is the
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energy E = �ω, and the vacuum spectral energy density has units of

(eV/cm3− eV) = 1/cm3 and is

ρ0(E) =
E3

2π2�3c3
. (15.2)

The integral
∫ E2

E1
ρ0(E)dE represents the energy density eV/ cm3 in the

energy intervalE1 to E2. The question being addressed here is: what volume

of vacuum energy of density ρ0(E) is required to supply the amount of

energy required for the radiative shift?

The total renormalized radiative shift ΔE1 can be expressed as the

integral of the vacuum energy density ρ0(E) over an effective volume V1(E):

ΔE1 =

∫ mc2

0

dEρ0(E)V1(E), (15.3)

with the same upper limit for E as used previously [3]. Recall the definition

of the spectral shift density Eq. (14.3):

ΔE1 =

∫ mc2

0

dE
ΔE1

dE
. (15.4)

Comparing Eq. (15.3) with Eq. (15.4) shows that the effective spectral

volume V1(E) needed to insure energy balance at each energy E is

V1(E) =
dΔE1

dE

1

ρ0(E)
. (15.5)

The spectral volume V1(E) has dimensions of cm3 and contains the amount

of vacuum energy at energy value E that corresponds to the ground state

spectral density at the same energy E. To compute the spectral volume

V1(E), we use the results for the spectral shift density dΔE1/dE described

in Chapter 14, Eqs. (14.4) for the 1S shift and (14.6–14.8) for the 2S and 2P

shifts. The spectral volume, V1(E), in Eq. (15.5) is assumed to be spherical

since the ground state is an S state, so the radius can be calculated from

the known spectral volume. In Section 15.4, this assumption is discussed in

more detail.

Equations (15.3)–(15.5) are general equations and apply to any calcu-

lation of the radiative Lamb shift that can be expressed as an integral over

the vacuum energy, as in Eq. (15.4). The utility of Eqs. (15.3)–(15.5) lies in

our ability to provide an explicit analytical expression for the spectral shift

using our group theoretical results.

An example of Eq. (15.3) is in the calculation of the Lamb shift as

a Stark effect by Milonni [3]. Consider the energy W = − 1
2d · E(ω) for a
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dipole d in an isotropic field, E(ω). Assuming that the dipole is induced

by the field, then d(ω) = α(ω)E(ω). The energy for an atom A at xa with

polarizability αA(ω) can be expressed as [3]

WA = −1

2

∫ ∞

0

dωαA(ω)〈E2(ω)〉. (15.6)

For the Lamb shift, 〈E(ω)2〉 = 4πρ0(ω), where ρ0 is the zero-point vacuum

spectral energy density, one obtains

WA = −2π
∫ ∞

0

dωαA(ω)ρ0(ω). (15.7)

The polarizability is provided by the Kramers–Heisenberg formula and has

units of volume. This expression for the Lamb shift has the same form

as Eq. (15.3). To complete the Stark shift calculation, the contribution

from the free electron needs to be subtracted, after which the final result

is identical to that of Bethe [3].

In Fig. 15.1, for the 1S ground state radiative shift, we plot the log of

the radius in Å of the spectral volume V1(E) on the y-axis versus the log

of the energy E in eV on the x-axis.

For energies above about 100 eV, the spectral volume is less than 1 cubic

Angstrom, approximately the volume of the ground state wavefunction.

For an energy of 1 eV, the spectral volume is 11850A3, corresponding to

a sphere of radius about 14 A, meaning that there is a sphere of positive

vacuum energy of radius 14 A around the atom corresponding to the 1 eV

shift spectral density.

Fig. 15.1. The log of the radius of the spherical spectral volume V1(E) for the 1S state,
Eq. (15.5), as a function of the log of the vacuum field energy E, from 0.0027 eV (where
the radius is 5330 Å) to 511,000 eV (where the radius is 10−17 Å).
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Fig. 15.2. The log of the radius of the spherical spectral volume V1(E) for the 1S
state, Eq. (15.5) as a function of the vacuum field energy E, from 0.05 eV to 23 eV,

with corresponding radii of 288 Å and 0.5 Å. The radius approximately follows 1/E
behavior.

Figure 15.2 shows the radius of the spherical spectral volume for energies

below 23 eV. For an energy of 21.7 eV, the spectral radius equals the mean

radius of the ground-state wave function of 0.53 Å. For energies less than

21.7 eV, the radius will be greater than the radius of the ground state.

For an energy of 0.054 eV, the radius is 288 Å. For these low energies, the

radius goes approximately as 1/E.

For low-energy vacuum fluctuations, the spectral density from Eq. 14.24

can be approximated for an S state with the principal quantum number n

as constant, dropping the energy dependent term:

dΔEn
dE

|E→0 =
2α

3π

(Zα)2

n2
. (15.8)

Equation (15.8) is accurate to about 5% at 1 eV, and the precision increases

as the energy decreases. This approximation corresponds to the end point

E = 0 of the nearly horizontal portion of the spectral density in Fig. 14.2.

For these low energies, the spectral volume, Vn(E), from Eq. (15.5) is

Vn(E) =
4π

3

α(Zα)2

n2

(�c)3

E3
. (15.9)

Assuming a spherical spectral volume of radius RV (E) for a state n, one

finds:

RV (E) =

[

α(Zα)2

n2

]1/3
�c

E
, (15.10)
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which for low E for the 1S state of hydrogen gives

RV (E) = α
�c

E
=

14.4 Å

E eV
. (15.11)

The H atom is surrounded by a steady-state cloud of virtual quanta; this

cloud has a radius RV (E) in Angstroms for a quantum energy E in eV

and is continuously emitted and absorbed by the field. This vacuum energy

density of the cloud is positive in the sense that it is above the free-field

vacuum energy density.

It is remarkable that the asymptotic low energy spectral radius, RV (E),

in Eq. (15.11) has such a simple form. This result can be rewritten using

the definition, α = e2/�c , with e the elementary charge as

E =
e2

RV (E)
. (15.12)

Thus, the Coulomb energy for two electrons separated by a distance RV (E)

equals the energy E = �ω of the corresponding vacuum virtual photon.

It is interesting to compare the radius RV (E) of the spectral volume

with the wavelength, λ, of the vacuum fluctuation corresponding to E =

�ω = 2π�c/λ. For the ground state, this gives

RV (E) =
α

2π
λ =

λ

861
. (15.13)

The radius of the spectral volume is equal to α/2π times the wavelength of

the corresponding vacuum fluctuation. That the radius is so much smaller

than the wavelength of the corresponding vacuum fluctuation may seem

puzzling, but we need to remember that the energy in the volume is

an integral overall the wavelengths in the vacuum field. Long-wavelength

vacuum fluctuations produce macroscopic regions of positive vacuum energy

for the hydrogen ground state. For a fluctuation wavelength of 1 km, which

corresponds to a radio wave, the vacuum field around the atom would

extend for over one meter.

15.3 Comparison to Predictions from the

Uncertainty Relation

A simple analysis using the uncertainty relation can provide an order of

magnitude estimate of the largest extent of the positive energy vacuum

field. The hydrogen atom is a quantum system, and its energy in the ground

state can consequently vary for a time interval τ by an amount ΔEu which

is restricted by the uncertainty relation [172, p. 201]

ΔEuτ < �/2. (15.14)
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The variation in energy is modeled by the emission and absorption of virtual

photons of energy ΔEu = �ωu and frequency ωu. Since the velocity of the

photon is c, in the time τ it can travel a distance 2Ru where [257]

Ru <
�c

4ΔEu
=

c

4ωu
=

λ

8π
, (15.15)

where λ is the wavelength of the virtual photon. Comparison of Eq. (15.15)

to Eq. (15.13) shows that for the same energy virtual photon we have

RV = 4αRu. (15.16)

For vacuum fluctuations of energyE below about 1 eV, the dimension RV of

the virtual cloud predicted by an analysis of the ground state Lamb shift is

4α times smaller than the maximum extent, Ru, allowed by the Uncertainty

Relation. Ref. [257] has suggested that (4π/3)α can be considered the mean

density of virtual photons in the region around the atom, which may explain

the difference between Ru and RV .

15.4 Significance of the Zero-Point Field Around the Atom

The cloud of quantum fluctuations surrounding the H atom can be inter-

preted as resulting from the scattering of the free-field vacuum fluctuations

by the atom. The zero-point field activates the atom in a continuous process,

creating the steady-state cloud of quantum fluctuations that has been

described in this chapter. As the derivation of the Lamb shift in terms of the

Stark effect suggests, the zero-point field induces an instantaneous dipole

moment in the atom that leads to a dipole field. The continuous stochastic

excitation from the zero-point field leads to a sum of incoherent dipole

contributions that average to a spherically symmetric cloud [172].

One can imagine the atom undergoing virtual transitions from the

ground state to all higher energy states and then returning to the ground

state in accordance with the time–energy uncertainty relation. For a zero-

point fluctuation of the wavelength λ, our calculations in Section 15.2 have

show that the cloud extends about αλ/2π from the nucleus, which can be a

macroscopic distance. Probably the easiest way to detect the vacuum field,

at least for short distances, is by the presence of Casimir-Polder or van der

Waals forces. Direct measurement of vacuum fluctuations is challenging but

there have been several recent direct measurements in the terahertz range

using femtosecond electro-optic detection in a cryogenic non-linear crystal

[262–264].

For the cloud of vacuum energy that we have calculated, there are several

ways of exploring its significance: first, by computing estimates of the mean
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energy density, which we do in Section 15.5; and second, by explaining its

role in the creation of van der Waals forces under the assumption that

another H atom is nearby, which we do in Section 15.6.

15.4.1 Does the field of vacuum fluctuations around the

atom have any biological significance?

There are similar fields of quantum vacuum energy around all atoms, and

for macroscopic matter, the fields are more energetic, so it is reasonable to

ask this question. We know these fields induce significant dispersion forces

and interactions, for example in protein folding, DNA stacking, and nucleic

acid stability [281].

Recent research has suggested that Casimir forces, Casimir-Polder

forces, van der Waals forces and quantum entanglement may play a

pervasive role in biological systems. For example, Casimir forces have been

proposed as the force that stabilizes the lipid bilayer structure of cell

membranes [279].

To organize data from diverse fields, neurology, biophysics, psychology,

mind-body medicine, psychoimmunology, energy medicine, researchers have

proposed the concept of an energetic biofield, “a complex organizing

field engaged in the generation, maintenance, and regulation of biological

homeodynamics” [280]. It is very likely that the ubiquitous field of quantum

fluctuations plays a role in the biofield. There is increasing evidence of

quantum signaling, entanglement, communication in biological systems

[282] and in the cytoskeleton of networks of microtubules [280]:

“Together these results describe the mind-body as an interconnected

system in which electromagnetic and quantum interactions act through

field-coherent oscillatory activity to regulate biological processes and

mediate interactions correlated with sentience and mental activity.”

It is very possible that future research will involve extensive exploration

of the role of vacuum fluctuations in biological systems. The discovery of

a simple, reliable method to measure vacuum fluctuations would certainly

catalyze this research.

15.5 Energy Density of the Zero-Point Field Around

the Atom

Using the results in Section 15.3, it is possible to compute the energy density

of this field as a function of distance for different wavelengths or energy

intervals of the zero-point field. Consider a spherical shell: the inner radius

corresponds to one energy and is given by Eq. (15.11). The outer radius
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Fig. 15.3. The Lamb shift energy density, ρshellLS from Eq. (15.19) as a function of the
inner radius, R1 = α�c/(βE), of the shell. The outer radius, R = α�c/E, is 1.03 times
the inner radius; thus, g(β) = 11.3 (see Eq. (15.21)).

corresponds to a slightly smaller energy. For this energy interval, one can

estimate the contribution to the total Lamb shift by integrating the curve

in Fig. 14.1 [260]. For energies below 1 eV the contribution to the ground

state Lamb shift is about 0.24% of the total shift. In this low energy range,

the contribution to the shift scales linearly with the energy, as shown in

Fig. 14.3(b). This allows us to compute a mean energy density, ρshellLS , of the

quantum fluctuations in a spherical shell.

The density of the Lamb shift energy in the spherically symmetric region

of vacuum energy surrounding the H atom can be analyzed in terms of shells

with an outer radius of R = α�c/E and inner radius of R1 = α�c/E1. It is

convenient to let E1 = βE, where β > 1. Assuming that both energies are

less than 1 eV, one can integrate the Lamb shift (LS) spectral density from

Eq. (15.8) for the ground state and Z = 1 to obtain the enegy contained

in the shell

ΔEshell
LS (E) =

∫ βE

E

dE
2α3

3π
=

2α3

3π
E(β − 1) (15.17)

to an accuracy of about 5%. The volume of the shell is

V shell(E) =
4π

3
(α�c)3

(

1− 1

β3

)

1

E3
. (15.18)

Therefore, the Lamb shift energy density (in erg/cm3) in the shell is

ρshellLS (E) =
ΔEshell

LS (E)

V shell(E)
=

1

2π2

1

(�c)3
β − 1

1− 1/β3
E4. (15.19)
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The Lamb shift energy density for a shell with outer radius R = α�c/E, and

inner radius R1 = α�c/(βE), is proportional to E4 or 1/R4
V (E). Figure 15.3

shows the value of ρshellLS as a function of the inner radius (in Å), where the

outer radius is 1.03 times the inner radius (β = 1.03).

One can compare the energy density ρshellLS (E) from Eq. (15.19) (in

erg/cm3) to the energy density ρshell0 (E) (in erg/cm3) of the free zero-point

vacuum field for the same spectral interval, i.e., from E to βE:

ρshell0 (E) =

∫ βE

E

dEρ0(E) =
1

8π2�3c3
E4(β4 − 1). (15.20)

One finds that the ratio

ρshellLS (E)

ρshell0 (E)
= 4

β − 1

1− 1/β3

1

β4 − 1
= g(β), (15.21)

is a constant that depends on β. The Lamb shift energy density for the

shell is directly proportional to the free vacuum energy density for the

same energy interval. This result follows for low E since the spectral density,
dΔE1

dE from Eq. (15.8), is a constant. Comparison with Eq. (15.5) shows that

ρ0(E)V1(E) is therefore constant and independent of E for low E values.

The function g(β) is singular at β = 1 and decreases rapidly as β

increases. For 1 < β < 1.35, g(β) is greater than 1. For β of (1.01, 1.02 1.03,

1.05, 1.1), the corresponding values of g(β) are (33.5, 16.8, 11.3, 6.8, 3.5).

For these shells, ρshellLS (E) is always greater than ρshell0 (E). Just as free-field

vacuum fluctuations are important in many physical systems, the field of

fluctuations due to the Lamb shift must be equally important.

Table 15.1 shows the results of computing the energy densities for

different spherical shells. The first row corresponds to a shell with the

frequency range of the visible spectrum (400 nm to 700 nm), for which

the energy density in the shell, ρshellLS , is 98.7 erg/cm3, which is 45% of

the corresponding ρshell0 (the free field energy density for the shell) of 218

erg/cm3. For cases with β < 1.35, the ratio ρshellLS /ρshell0 in the fifth column

is greater than one.

The energy densities ρshellLS for the shells are significant, for example,

compared to the energy densities, ρbb, for black body radiation over the

same spectral intervals. For a temperature of 600 K (for which the peak

intensity is at about five micrometers or 0.25 eV) the ratio of ρshellLS /ρbb
is 2.8 × 104, 148, and 10.1, respectively, for the shells with radii 20 –30

Å, 50–60 Å, and 200–210 Å. Of course black body radiation is ordinary

electromagnetic radiation, while the Lamb shift energy consists of vacuum

fluctuations of the electromagnetic field.
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Table 15.1. The inner and outer radii for a spherical shell around the atom, the
corresponding fluctuation energies ρshellLS Eq. (15.19) and ρshell0 Eq. (15.20), and the ratio of
ρshellLS to ρshell0 .

Inner and
Outer Radii
of Spherical
Shell (in Å)

Quantum
Fluctuation

Energy Range
(in eV)

Mean Shell
Lamb Shift

Energy
Density, ρshell

LS
(in erg/cm3)

Mean Shell
Free Field
Energy

Density, ρshell
0

(in erg/cm3) ρshell
LS /ρshell

0

4.64 to 8.13 Visible 3.10 to 1.77 98.7 218 0.45
10 to 20 0.72 to 1.44 3.34 10.65 0.314
20 to 30 0.48 to 0.72 0.399 0.570 0.700
30 to 40 0.36 to 0.48 0.1024 0.0959 1.068
40 to 50 0.288 to 0.36 0.0373 0.0262 1.16
50 to 60 0.240 to 0.288 0.0167 0.00941 1.77
60 to 70 0.2057 to 0.240 0.00852 0.00403 2.12
70 to 80 0.180 to 0.2057 0.00480 0.00196 2.45
80 to 90 0.160 to 0.180 0.00291 0.00104 2.79
90 to 100 0.144 to 0.16 0.00186 0.000595 3.13
140 to 150 0.096 to 0.1029 0.000344 0.0000718 4.78
200 to 210 0.0686 to 0.072 8.59 × 10−5 1.25 × 10−5 6.87
300 to 310 0.0465 to 0.048 1.76 × 10−5 1.67 × 10−6 10.49
400 to 410 0.0351 to 0.036 5.63 × 10−6 4.27 × 10−7 13.16
1000 to 1020 0.01412 to 0.0144 1.46 × 10−7 8.58 × 10−9 16.97

15.6 Relationship between the Zero-Point Field Around

the Atom and van der Waals Forces

Zero-temperature Lamb shifts and van der Waals interactions have straight-

forward physical interpretations in terms of fluctuating zero-point fields [3].

Here, we consider an isolated atom A and describe the fluctuating field

around this atom that arises from its interaction with the free field vacuum

fluctuations. The field around atom A corresponds to the non-relativistic

Lamb shift for atom A. If another atom is present, the field around A plays

an essential role in the van der Waals forces between the atoms.

To illustrate this, generalize Eq. (15.6) for the energy of an induced

dipole at A to include a second atom B. The total field is Ek,ω and the

combined energy is [3, Sec. 3.11]

WAB = −1

2

∑

kω

αA(ωk)〈E2
kω(xA, t)〉, (15.22)

where αA(ωk) is the polarizability of atom A at frequency ωk, k is the wave

vector, and t denotes the time. The total field acting on A is assumed to be

the sum of the zero-point field E0,kω(xA, t) acting on A and the field at A
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that is produced by atom B from its interaction with the quantum vacuum

field:

Ekω(xA, t) = E0,kω(xA, t) +EB,kω(xA, t). (15.23)

The presence of the second atom breaks the spherical symmetry, so a

summation over k for the non-isotropic field is included. Each atom is

“driven” by the zero-point field at its location, creating a fluctuating dipole

field about the atom. The field about atom B affects atom A and vice versa

so the total energy is

W total
AB = −1

2

∑

kω

αA(ωk)〈E2
0,kω(xA, t) +E2

B,kω(xA, t)

+E0,kω(xA, t)EB,kω(xA, t) +EB,kω(xA, t)E0,kω(xA, t)〉.
(15.24)

The portion of the energyW total
AB that depends on the distance between the

atoms corresponds to the van der Waals force, and is

W vdW
AB = −1

2

∑

kω

αA(ωk)〈E0,kω(xA, t)EB,kω(xA, t)

+EB,kω(xA, t)E0,kω(xA, t)〉. (15.25)

The term αA(ωk)〈E0,kω(xA, t)〉2 in the summation in Eq. (15.24) does

not depend on the separation between the atoms and corresponds to the

Lamb shift for atom A. This is the field of vacuum fluctuations about the

atom that represents the atom’s response to the vacuum field that we have

described. From Eq. (15.25) one can immediately see that this field also

plays an essential role in the van der Waals force. Similarly, this field would

be essential for the Casimir–Polder force between an atom and a surface.

The term EB,kω(xA, t) represents the field at atom A that is from the

induced dipole at atom B, and is proportional to the polarizability αB(ωk)

of atom B. After computation, the final expression for the van der Waals

force is shown to be a symmetric integral over ω of the product αA(ω)αB(ω)

times a function of ω and r = |xA − xB| [3]. Detailed calculations of the

renormalized electric and magnetic field fluctuations around a dressed H

atom are given in [243].

To clarify the physical origin of the van der Waals force, we note

that the field about atom B corresponding to the Lamb shift induces a

fluctuating dipole moment in the nearby atom A. The correlation between

the fluctuating dipole moments at the two locations gives rise to the van
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der Waals forces. The correlation falls off rapidly with frequency and with

the distance r between the two locations, giving the r−6-dependence of the

non-retarded van der Waals interaction. The cloud of zero-point fluctuations

about the H atom described is fundamental to van der Waals forces as well

as to the Lamb shift. These phenomena are linked in that they both arise

from the interaction between atoms and the fluctuating zero-point field.

The van der Waals forces tend to become retarded for distances

greater than about a0/α (a0 being the Bohr radius of the ground-state

wavefunction), or about 70 Å. Retarded van der Waals forces are described

as Casimir forces [3]. From the calculations in Table 15.1, one can see that

lower energy fluctuations are responsible for these dispersion forces.

15.7 Conclusions

The nonrelativistic Lamb shift can be interpreted as being due to the

interaction between atoms and the fluctuating zero-point electromagnetic

field of the quantum vacuum. The renormalized radiative Lamb shift can

be expressed in terms of a spectral shift density, which is a function of

the frequency ω or energy E = �ω of the vacuum field. The integral of

the spectral density from E = 0 to the rest of the mass energy of an

electron, 511 keV, gives the non-relativistic radiative shift for that state of

the atom.

Feynman, Power, and Milonni showed that the radiative shift equals the

change in the energy of the vacuum fluctuations in the region containing

the H atom. Using this result with our group-theoretical calculation of

the contribution to the Lamb shift from each frequency of the vacuum

fluctuations, we derived an expression for the size of the region of vacuum

energy corresponding to each value of the vacuum energy E around the H

atom. The spectral volume for the energy E around an H atom contains

vacuum fluctuations of energy E; the total energy of these fluctuations

equals the radiative shift corresponding to that energy E. For the ground

state, the energy density in the spectral volume is positive, which means

that it is above the energy density of the free field. For E > 23 eV, the radius

of the region of positive energy vacuum fluctuations is less than the atomic

radius; on the other hand, for energies less than 1 eV the radius is shown

to be approximately RV (E) = α�c/E = 14.4/E Å, and can be much larger

than the ground-state wavefunction.

The radius of the spectral volume can also be expressed in terms of the

wavelength of the corresponding vacuum fluctuations as αλ/2π = λ/861.
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An estimate of the extent of photons from virtual transitions based on the

uncertainty relation for time and energy predicts a maximum radius that is

about 1/4α larger than the radius based on the radiative shift calculations.

The vacuum energy field around the H atom described in this chapter

plays an essential role in the van der Waals forces and Casimir forces as

well as in the Lamb shift. These phenomena are linked since both arise from

the interaction between atoms and the fluctuating zero-point field. The

calculations in this paper were performed for the ground state of H, which

has a positive radiative shift. States with a negative radiative shift, such as

2P, would also have a spectral volume as well; however, the energy would

be negative, i.e., below the free-field vacuum energy. Notably, this analysis

is complicated by the fact that the 2P state decays to the 1S state.

15.8 Final Comments about the H atom and Radiative

Shifts and Future Research

We have discussed the history of Lamb shift and Bethe’s pivotal calculation

and how it influenced the direction of theoretical physics for over half a

century.

Measurement and computation of the properties of the hydrogen atom

have been central to the development of modern physics over the last

century. One of the most useful and profound ways to understand its

properties is through its symmetries, which we have explored, beginning

with the symmetry of the Hamiltonian, which reflects the symmetry of the

degenerate levels, then the larger non-invariance and spectrum-generating

groups, which include all of the states. The successes in using symmetry

to explore the hydrogen atom led to use of symmetry to understand and

model other physical systems, particularly elementary particles.

We have discussed the general nature of radiative shifts of bound state

energy levels from the classical and the quantum perspectives, examining

in some detail results for the harmonic oscillator and the hydrogen atom.

The radiative shifts are complex; the real part is the level shift and the

imaginary part is the level width. The shifts arise due to the emission and

absorption of virtual photons which occurs because of the interaction of the

charged particle with its own radiation field or with the vacuum zero-point

fluctuations. We know that vacuum fluctuations are affected by geometry

and therefore radiative shifts differ from free space values for atoms in a

cavity or near a surface [245–249, 265]. Lamb shifts have even been used to

model gravitational energy in black holes [266].
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Today, the calculation of radiative shifts and atomic energy levels can

be done very precisely, from 1 part in 1012 to 1 part in 1015 for certain

energy levels, one of the the most precise computations for any physical

system [1]. Today, the corresponding experiments demonstrate comparable

precision and agreement with theory. Because of this high precision,

measurements of radiative shifts and atomic energy levels reveal detailed

information about phenomena causing shifts aside from radiative effects.

Some see the opportunity for developing metrology [205, 267–270]. This

favorable situation allows atomic systems to be a platform for the discovery

of new physics beyond the standard model.

Theoreticians are already calculating the effect on energy levels due to

the quantization of space and space-time fluctuations for H atoms, muonic

atoms, and Rydberg states [4, 6, 14, 15, 267, 271–274]. Measurements are

being done on cooperative Lamb shifts for mesoscopic arrays [275, 276].

Researchers are exploring the relationship between the hydrogen atom

and quantum information [12], the effect of non-commuting canonical

variables [xi, xj ] �= 0 on energy levels [13–15], muonic hydrogen spectra [4],

and new physics using Rydberg states [5–8, 10, 277]. The ultra high pre-

cision of the measurement of energy levels has led to a new understanding

of the two body systems with low Z, including muonium, positronium,

and tritium [149]. As mentioned in the introduction, measurements of levels

shifts are currently being used to measure the radius of the proton [1]. We

can expect that atomic energy level measurements and computations will

continue to contribute significantly to the development of quantum physics

in the future. Investigations of the hydrogen atom and hydrogen-like atoms

will continue to reveal new vistas of physics, and symmetry considerations

will likely play an important part.
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Appendix A

Appendix: Brief Derivation of the Group
Theoretical Formula for the Radiative Shift

The group theoretical approach is based solely on the Schrodinger and

Klein–Gordon equations of motion in the non-relativistic dipole approxi-

mation. We obtain a result

ΔENL =
2α

3π(mc)2

∫ �ωc

0

dE〈NL|pi H − EN
H − (EN − E)− iεpi|NL〉, (A.1)

where E = �ω and ωC is a cutoff frequency for the integration that we will

take as �ωc = mc2. If we insert a complete set of states in this expression

we obtain Bethe’s result Eq. (12.1). If we add and subtract E from the

numerator in Eq. (A.1), we find the real part of the shift is

ΔENL =
2α

3π(mc)2
Re

∫ �ωc

0

dE[〈NL|p2|NL〉 − EΩNL], (A.2)

where

ΩNL = 〈NL|pi 1

H − EN + �ω − iεpi|NL〉. (A.3)

The matrix element ΩNL can be converted to a matrix element of a function

of SO(4,2) generators taken between the basis states |nlm; a) of (Zα)−1

[110]. To obtain these basis states |nlm; a) we write Schrodinger’s equation

for a particle of energy E = − a2

2m in a Coulomb potential as
[

p2 + a2 − 2m�cZα

r

]

|a〉 = 0. (A.4)
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There are solutions for |a〉 for certain critical values of the energy

En = − a2n
2m or for an = mcZα

n . By inserting factors of 1 =
√
ar 1√

ar
and

making a scale change from an to a we obtain the eigenvalue equation
(

1

n
−K1(a)

)

|nlm; a) = 0, (A.5)

where

K1(a) =
1√
ar

2a2�

p2 + a2
1√
ar

ρ(a) = n�/ar
√

ρ(an)|nlm〉 = |nlm; an).

(A.6)

The complete basis functions |nlm; a) have the same quantum numbers as

the ordinary bound states [110]. The kernel K1(a) is bounded and finite,

so there are no continuum solutions. We define a generator of SO(4,1) as

Γ0 = 1/K1(a) so

(Γ0 − n)|nlm) = 0. (A.7)

We need to define several more generators. The generator S is a dimension-

less dilation operator that can change the value of the parameter a in the

basis states:

S =
1

2�
(p · r + r · p). (A.8)

To find Γ4, we calculate Γ4 = −i[S,Γ0], obtaining

Γ4 =
1

2�

(√
rp2
√
r

a
− ar

)

Γ0 =
1

2�

(√
rp2
√
r

a
+ ar

)

. (A.9)

The generators (Γ4, S,Γ0) = (j1, j2, j3) form a O(2,1) subgroup and S =

i[Γ4,Γ0],Γ0 = −i[S,Γ4] and for our representations Γ2
0 − Γ2

4 − S2 = L2 =

l(l + 1). The scale change S transforms Γ0 according to the equation

eiλSΓ0(a)e
−iλS = Γ0(e

λa) = Γ0 coshλ− Γ4 sinhλ (A.10)

with the corresponding equation for Γ4. Finally, we have

Γi =
1

�

√
rpi
√
r. (A.11)

The quantity Γ = (Γ0,Γ1,Γ2,Γ3,Γ4) is a five vector under transformations

generated by SO(4,2). For the representation of SO(4,2) based on the states

|nlm), all generators are Hermetian, and Γ2 = ΓAΓ
A = −Γ2

0 + Γ2
1 + Γ2

2 +

Γ2
3 + Γ2

4 = 1. The commutators of the components of the five vector are

generators of SO(4, 2) transformations.
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Inserting factors of 1 =
√
ar 1√

ar
and using the definitions of the

generators we can transform Eq. (A.3) to

ΩNL =
mν

N2
(NL|Γi

Γn(ξ)− νΓi|NL), (A.12)

where

n0(ξ) =
2 + ξ

2
√
1 + ξ

= coshφ ni = 0 n4(ξ) = − ξ

2
√
1 + ξ

= − sinhφ

(A.13)

and

ξ =
�ω

|EN | ν =
N√
1 + ξ

= Ne−φ. (A.14)

From the definitions, we see φ = 1
2 ln(1 + ξ) > 0 and nA(ξ)n

A(ξ) = −1.
The contraction over i in ΩNL may be evaluated using our group theoretical

formula for a contraction Eq. 7.31

∑

B

ΓBf(nΓ)Γ
B =

1

2
(nΓ + 1)2f(nΓ + 1)

+
1

2
(nΓ− 1)2f(nΓ− 1)− (nΓ)2f(nΓ). (A.15)

We apply the contraction formula to the the integral representation

f(nΓ) =
1

Γn− ν =

∫ ∞

0

dseνse−nΓs (A.16)

and obtain the result Eq. 7.41

ΓA
1

Γn− ν Γ
A = −2ν

∫ ∞

0

ds eνs
d

ds

(

sinh2
s

2
e−nΓs

)

. (A.17)

Applying this to our expression Eq. (A.12) for ΩNL gives

ΩNL = −2mν
2

N2

∫ ∞

0

dseνs
d

ds

(

sinh2
s

2
MNL(s)

)

−m ν

N2
(NL|Γ4

1

Γn(ξ)− νΓ4|NL)

+m
ν

N2
(NL|Γ0

1

Γn(ξ)− νΓ0|NL), (A.18)

where

MNL(s) = (NL|e−Γn(ξ)s|NL). (A.19)
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In order to evaluate the last two terms in Eq. (A.19), we use Γ0 = N |NL)
and express the action of Γ4 on our states as Γ4 = N−(1/ sinhφ)(Γn(ξ)−ν).
Using the virial theorem (NLM |p2|NLM) = a2N , we find that the term in

p2 in Eq. (A.2) exactly cancels the last two terms in ΩNL, yielding the

result

ReΔENL =
4mc2α(Zα)4

3πN4

∫ φc

0

dφ sinhφeφ
∫ ∞

0

ds eνs
d

ds

(

sinh2
s

2
MNL(s)

)

,

(A.20)

where

φc =
1

2
ln

(

1 +
�ωc
|EN |

)

=
1

2
ln

(

1 +
2N2

(Zα)2

)

. (A.21)

We can derive a generating function for the shifts for any eigenstate

characterized by N and L if we multiply Eq. (A.20) by N4e−βN and sum

over all N,N ≥ L+ 1. To simplify the right side of the resulting equation,

we use the fact that Γ4, S, and Γ0 form an O(2,1) algebra so we have:

∞
∑

N=L+1

e−βNMNL =

∞
∑

N=L+1

(NL|e−j·ψ|NL), (A.22)

where

e−j·ψ ≡ e−βΓ0e−sΓn(ξ). (A.23)

We perform a j transformation generated by eiφS , such that e−j·ψ →
e−j3ψ = e−Γ0ψ. The trace is invariant with respect to this transformation

so we have

∞
∑

N=L+1

e−βNMNL =

∞
∑

N=L+1

(NL|e−j3ψ|NL) =
∞
∑

N=L+1

e−Nψ =
e−ψ(L+1)

1− e−ψ ,

(A.24)

where we have used (NL|Γ0)|NL) = N .

In order to find a particular MNL, we must expand the right hand side

of the equation in powers of e−β and equate the coefficients to those on the

left hand side. Using the isomorphism between j and the Pauli σ matrices

(Γ4, S,Γ0)→ (j1, j2, j3)→ ( i2σ1,
i
2σ2,

1
2σ3) we find

e+
1
2ψ = de

1
2β + be−

1
2β − e− 1

2ψ, (A.25)
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where

d = cosh
s

2
+ sinh

s

2
coshφ

b = cosh
s

2
− sinh

s

2
coshφ

. (A.26)

Let β become very large and iterate the equation for e−
1
2ψ to obtain the

result

e−ψ = Ae−β
[

1 +A1e
−β +A2e

−2β + · · · ] , (A.27)

where A = 1/d2 and A1 = −(2/d)(b − d−1). To obtain MNL, we expand

the right side of Eq. (A.24) using Eq. (A.27), and use the multinomial

theorem and collect terms in powers of β. For the 1S shift, we want the

matrix element M10 which corresponds to e−β so M10 = A. For N = 2,

M20 = A2 + AA1, M21 = A2. Therefore, the radiative shift for the 1S

ground state is

ReΔE10 =
4mc2α(Zα)4

3π

∫ φc

0

dφeφ sinhφ

∫ ∞

0

dsese
−φ d

ds

1
(

coth s
2 + coshφ

)2 .

(A.28)

The shift for the 2S-2P level is

Re(ΔE20 −ΔE21) =
mα(Zα)4

6π

∫ φc

0

dφeφ sinh3 φ

×
∫ ∞

0

dse2se
−φ d

ds

1
(

coth s
2 + coshφ

)4 . (A.29)
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