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Preface

Understanding the hydrogen atom is at the heart of modern physics.
Exploring the energy levels and the symmetry of the most fundamental two-
body system has led to advances in atomic physics, quantum mechanics,
quantum electrodynamics, and elementary particle physics.

Regularities in the spectrum of atomic hydrogen inspired Bohr’s theory
of the atom and what has been called the old quantum theory, which
described general features of the atom but not detailed behavior. A crucial
success of the Schrodinger theory of wave mechanics, which was introduced
about 1921, was the calculation of the absorption and emission of radiation
and the second and third order Stark effect in the H atom. This non-
relativistic theory had many successes but was unable to deal with the
fine structure of the hydrogenic lines, a challenge solved by the relativistic
Dirac theory, which explained the fine structure and gave a value for the
spin component of the magnetic moment of the electron (g-2). Experiments
by Lamb and Retherford in 1947 revealed problems with the Dirac theory,
in particular that it incorrectly predicted that the 2s;,5 and 2p, /o levels
were degenerate. The method of renormalization was introduced by Bethe
to compute the Lamb shift, paving the way for the computation of radiative
effects due to the interaction of the electron with its own radiation field or
with the quantum fluctuations of the electromagnetic field, while avoiding
divergences. This was the birth of Quantum Electrodynamics (QED), today
a mature theory that has predicted the energy levels of the hydrogen atom
and the anomalous magnetic moment of the electron to unprecedented pre-
cision, the most precise physical theory in history [1, 2]. Today, significant
effort has been focused on the calculation of higher-order radiative shifts.
However, in this text, we focus on a deeper understanding of the H atom
and the first-order radiative interaction that accounts for 96% of the shift.

vii



viii The Hydrogen Atom

Measurement and explanation of the properties of the hydrogen atom
have been central to the development of modern physics over the last
century. One of the most useful and profound ways to understand its
properties is through its symmetries, which we explore, beginning with
the symmetry of the Hamiltonian, which reflects the symmetry of the
degenerate levels, then the larger non-invariance and spectrum-generating
groups, which include all the states. The successes in using symmetry to
explore the hydrogen atom led to the use of symmetry to understand and
model other physical systems, particularly elementary particles.

In Part 1, we discuss the role of symmetry and group theory in
understanding the H atom over the last century, and introduce some basic
ideas about symmetry groups. We provide an integrated treatment of
the symmetries of the classical and Schrodinger hydrogen atom, including
the four-dimensional rotational symmetry group SO(4) (special orthogonal
group in four dimensions), which is the degeneracy group, with the rotations
in four dimensions generated by the angular momentum vector and Runge—
Lenz vector, which points along the semi-major axis of the eliptical orbit.
We calculate the energy levels using these symmetry operators and consider
the wavefunctions in configuration space and in three- and four-dimensional
momentum space, and how the wavefunctions are transformed by the
generators. We introduce a novel set of wavefunctions that includes both the
bound and scattering states and that uses the usual Schrodinger quantum
numbers nlm. These wavefunctions allow for a simplified and integrated
approach to quantum theory calculations. The semi-classical limit of the
wavefunctions is explored.

In Part 2, we enlarge the degeneracy group to include all energy states of
the H atom, bound and scattering, and consider the non-invariance group
or spectrum-generating group SO(4,1), and the expanded group SO(4,2)
that allows us to write Schrodinger’s equation in terms of the generators.
The group SO(p,q) is the group of orthogonal transformations that preserve
the quantity X = 27 + 23 + --- + 2 — --- — 27, ,, which may be viewed
as the norm of a p+q-dimensional vector in a space that has a metric with
p plus signs and q minus signs. The letters SO stand for special orthogonal,
meaning the orthogonal transformations have a determinant equal to +1.

We present a unified treatment of the symmetries of the Schrodinger
hydrogen atom that focuses on the physics of the atom, that gives explicit
expressions for all the manifestly Hermitian generators in terms of position
and momenta operators in a Cartesian space, that explains the action of the
generators on the basis states, and that unifies the treatment of the bound
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and continuum states in terms of wave functions with the same quantum
numbers as the ordinary bound states. We evaluate the Casimir operators
(group invariants that are numerical constants) that characterize the group
representations. New group theoretical results are derived that are used in
Part 3 for the analytical calculation of radiative shifts.

In Part 3, we discuss radiative shifts in general, including in classical
physics for the Coulomb problem and for the simple harmonic oscillator. We
discuss the historical context, the significance and impact of Bethe’s seminal
calculation of the Lamb shift that was done using second order perturbation
theory. Then we take a different approach to calculate the radiative shift in
field theory using only the equations of motion (Klein—Gordon equation),
making none of the usual assumptions. We take the non-relativistic limit
of the expression for the Lamb shift and use SO(4,2) methods to obtain
an analytical expression for the first-order Lamb shift with no sum over all
states, unlike the usual formulation. We obtain a generating function for
the radiative shift for all energy levels. This unique analytical result allows
us to determine the contribution to the shift from each frequency of virtual
radiation and predicts the presence of a virtual radiation field that extends
more than a thousand times the Bohr radius of the atom. If other atoms
are nearby, this field results in the Casimir force and the van der Waals
force [3].

We sometimes use the phrase “hydrogen-like atom”, referring to atoms
that are ionized with only one orbital electron like hydrogen. Such atoms,
for example U%*®*+, have been measured to determine, for example, the
role of the atomic number Z. Other hydrogen-like atoms include ionized
helium, ionized deuterium, and positronium, which is made of a bound
electron and positron, and muonium, made of a bound antimuon and an
electron, or muonic atoms, in which an electron has been replaced by a
muon. These unique atoms have radiative shifts like ordinary hydrogen,
and although the qualitative behaviors are similar, the quantitative results
are very different and give insight into fundamental physics [2]. Exploring
muonic hydrogen spectra [4], and new physics using Rydberg states [5-10]
using ultra-high precision measurement of the energy levels has led to
new understanding of two-body systems with low Z, including muonium,
positronium, and tritium [11]. Measurements of levels shifts are currently
being used to determine the radius of the proton [1]. We will not discuss
these hydrogen-like atoms in further detail.

The hydrogen atom will doubtlessly continue to be one of the testing
grounds for fundamental physics. Researchers are exploring the relationship



X The Hydrogen Atom

between the hydrogen atom and quantum information [12], and the effect
of non-commuting canonical variables [x;, ;] # 0 on energy levels [13-15].
We can expect that further investigations of the hydrogen atom and
hydrogen-like atoms will continue to reveal new vistas of physics and that
symmetry considerations will play an important part.

The first eight chapters of the text assume that the reader is familiar
with quantum theory and classical mechanics at a first year graduate level.
The remainder of the book, which is primarily on radiative shifts and
quantum fluctuations of the electromagnetic field, assumes that the reader
is also familiar with quantum field theory at a first year graduate level.
The group theory is explained in the text. Students, non-experts, and the
new generation of scientists may find the clearer, integrated presentation of
the symmetries of the hydrogen atom helpful and illuminating, perhaps
motivating some to use these methods in various new contexts. Senior
researchers will find new perspectives, even some surprises and encourage-
ments.

I am grateful to my friends, teachers, and collaborators for discussions
over many years, with particular thanks to Peter Milonni and Lowell S.
Brown, each of whom has been an important inspiration and a trusted
source of knowledge for many years. I especially thank my good friend
Peter Milonni, who read most of the book in draft form and gave me very
helpful comments.

G. Jordan Maclay
Saint Charles, Illinois
USA, 2025
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Symmetry and Degeneracy of Energy
Levels in a Coulomb Potential



2 The Hydrogen Atom

In Chapter 1, we give an historical account of the role of symmetry in
quantum mechanics and of the seminal work done to explore the symmetries
of the Schrodinger hydrogen atom. Most of this work was done from
1920 to 1975, when physicists were using the H atom as a platform to
explore symmetries that might be applicable to elementary particle physics.
Why is symmetry important? Each symmetry in a physical system is
associated with a conserved quantity, and conserved quantities characterize
quantum systems. Symmetry in time corresponds to conservation of energy,
symmetry with respect to translation in space corresponds to conservation
of momentum, and isotropy in three-dimensional space corresponds to the
conservation of angular momentum.

In Chapter 2, the theory of the classical H atom is presented. The
classical equations of motion of the non-relativistic hydrogen atom in con-
figuration and momentum space are derived from symmetry considerations
alone.

In Chapter 3, we discuss the quantum theory of the H atom and
provide some general background observations about symmetry groups
and non-invariance groups. We discuss the degeneracy groups for the
Schrodinger, Dirac, and Klein—Gordon equations, and introduce the novel
(Za)~! eigenstates that allow us to treat the bound and scattering states
in a uniform way, using the usual Schrodinger energy eigenstate quantum
numbers nlm. The physical meaning of the symmetry transformations and
the structure of the SO(4) degeneracy group are discussed.

In Chapter 4, symmetries are discussed using the language of quantum
mechanics. In order to display the symmetries in quantum mechanics in
the most elegant and uniform way we use as a basis our eigenstates of the
inverse of the coupling constant, (Za)~!. We discuss the wave functions in
momentum and configuration space, how they transform, and their classical
limit for Rydberg states.

In Chapter 5, we discuss the Dirac H atom and its symmetry operators,
the generalized parity operator, and the conserved pseudoscalar operator,
which together give a representation of the degeneracy group SO(4).



Chapter 1

Introduction to the H Atom and
Symmetry Principles

1.1 Brief History of Symmetry in Quantum Mechanics
and its Role in Understanding the Schrodinger
Hydrogen Atom

The hydrogen atom is the fundamental two-body system and perhaps the
most important tool of atomic physics, and the continual challenge is
to continually improve our understanding of the hydrogen atom and to
calculate its properties to the highest accuracy possible. The current QED
theory is the most precise of any physical theory [1]:

The study of the hydrogen atom has been at the heart of the development
of modern physics...owing to the simplicity of the H atom, theoretical
calculations reach precision up to the 12th decimal place. .. high resolu-
tion laser spectroscopy experiments...reach to the 15th decimal place
for the 1S-2S transition ... The Rydberg constant is known to 6 parts
in 10" [1, 16]. Today, the precision is so great that the measurement of
the energy levels in the H atom has been used to determine the radius
of the proton.

Continual progress in understanding the properties of the hydrogen atom
has been a key to progress in quantum physics [17]. Understanding the
atomic spectra of the hydrogen atom drove the discovery of quantum
mechanics in the 1920s. The measurement of the Lamb shift in 1947
and its explanation in terms of the interaction of the atom with its own
radiation field or, from a different perspective, with the quantum vacuum
fluctuations, ushered in a revolution: the birth of quantum electrodynamics
[18-20]. Exploring the symmetries of the hydrogen atom has been an
essential part of this progress. Symmetry is a concept that has played
a broader role in physics in general, for example, in understanding the
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dynamics of the planets, atomic and molecular spectra, and the masses of
elementary particles.

When applied to an isolated system, Newton’s equations of motion
imply the conservation of momentum, angular momentum, and energy. But
the significance of these conservation laws was not really understood until
1911 when Emmy Noether established the connection between symmetry
and conservation laws [21]. Rotational invariance in a system results in
the conservation of angular momentum; translational invariance in space
results in the conservation of momentum; and translational invariance in
time results in the conservation of energy. We will discuss Nother’s theorem
in more detail in Section 1.2.

Another critical ingredient of knowledge, on which Noether based
her proof, was the idea of an infinitesimal transformation, such as a
infinitesimal rotation generated by the angular momentum operators in
quantum mechanics. These ideas of infinitesimal transformations originated
with the Norwegian mathematician Sophus Lie, who studied differential
equations in the latter half of the nineteenth century. He studied the
collection of infinitesimal transformations that would leave a differential
equation invariant [22]. In 1918, German physicist and mathematician
Hermann Weyl, in his classic book The Theory of Groups and Quantum
Mechanics, would refer to this collection of differential generators leaving
an operator invariant as a linear algebra, ushering in a little of the
terminology of modern group theory [23]. Still, this was a very early stage
in understanding the role of symmetry in the language of quantum theory.
When he introduced the new idea of a commutator on page 264, he put
the word “commutator” in quotes. In the preface, Weyl made a prescient
observation: “...the essence of the new Heisenberg—Schrodinger—Dirac
quantum mechanics is to be found in the fact that there is associated with
each physical system a set of quantities, constituting a non-commutative
algebra in the technical mathematical sense, the elements of which are the
physical quantities themselves.”

A few years later Eugene Wigner published in German Group Theory
and Its Application to the Quantum Mechanics of Atomic Spectra [24]. One
might ask why this classic was not translated into English until 1959. In the
preface to the English edition, Prof. Wigner recalled: “When the first edition
was published in 1931, there was a great reluctance among physicists toward
accepting group theoretical arguments and the group theoretical point of
view. It pleases the author that this reluctance has virtually vanished...”
It was the application of group theory in particle physics in the early
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sixties, such as SU(3) and chiral symmetry, that reinvigorated interest in
Wigner’s book and the field in general. In the 1940s, Wigner and Bargmann
developed the representation theory of the Poincare group that provided
an infrastructure for the development of relativistic quantum mechanics
[24, 25].

The progress in understanding the symmetries of the hydrogen atom
has some parallels to the history of symmetry in general: there were some
decades of interest, but after the 1930s interest waned for about three
decades in both fields, until stimulated by the work on symmetry in particle
physics.

Probably the first major advance in understanding the role of symmetry
in the classical treatment of the Kepler problem after Newton’s discovery
of universal gravitation, elliptical orbits and Kepler’s laws (1687), was
made 150 years later by Laplace. He discovered the existence of three
new constants of motion in addition to the components of the angular
momentum [26]. These additional conserved quantities are the components
of a three-dimensional vector which determines the direction of the
perihelion of the motion (point closest to the focus) and whose magnitude
is the eccentricity of the orbit. The Laplace vector was rediscovered by
Jacobi and has since been rediscovered numerous times under different
names. Today, it is generally referred to as the Runge-Lenz vector. But the
significance of this conserved quantity, which determines the semi-major
axis of the elliptical orbit, was not well understood until the 1930s.

In 1924, Pauli made the next major step forward in understanding the
role of symmetry in the hydrogen atom [27, 28]. He used the conserved
Runge-Lenz vector A and the conserved angular momentum vector L
to derive the energy spectrum of the hydrogen atom by purely algebraic
means, a beautiful result, yet he did not explicitly identify that L and A
formed the symmetry group SO(4) ~ SU(2) @ SU(2) corresponding to the
degeneracy.! At this time, the degree of degeneracy in hydrogen energy
levels was believed to be n? for a state with the principal quantum number
n, clearly greater than the degeneracy due to rotational symmetry, which
is (214 1). The degeneracy n? arises from the possible values of the angular

IThe group SU(2), special unitary group in two dimensions, corresponds to rotations
in a complex two dimensional space that are isomorphic to rotations in a 3-dimensional
space [29]. The group SO(4) is the group of special orthogonal transformations (rotations)
in a four dimensional vector space. Special means the determinant of the rotation matrix
is +1.
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momentum [ = 0,1,2,...n — 1, and the 2] + 1 values of the component of
angular momentum along the azimuthal axis m = —I, —{+1,...0,1,2,1+1.
The additional degeneracy was called an “accidental degeneracy” [30].

Six years after Pauli’s paper, Hulthen used the new Heisenberg matrix
mechanics to simplify the derivation of the energy eigenvalues of Pauli
by showing that the sum of the squares L? + A? could be used to
express the Hamiltonian and derive the energy eigenvalues [31]. In a
one sentence footnote in this three page paper, Hulthen gives probably
the most important information in the paper: Prof. Otto Klein, who
had collaborated for years with Sophus Lie, had noticed that the two
conserved vectors formed the generators of the Lorentz group, which we
can describe as rotations in four dimensions, the fourth dimension being
time. This is the non-compact group SO(3,1), the special orthogonal group
in four dimensions whose transformations leave the magnitude g, 2"2" =
—t2 4 22 + 3% + 22 unchanged.? Klein’s perceptive observation triggered the
introduction of group theory to understanding the hydrogen atom.

About a decade later, in 1935, the Russian physicist Vladimir Fock
published a major article in Zeitshrift fiir Physik, the journal in which
all key articles about the hydrogen atom cited were published [32]. He
transformed Schrodinger’s equation for a given energy eigenvalue from
configuration space to momentum space, and did a stereographic projection
onto a unit sphere, and showed that the bound state momentum space wave
functions were spherical harmonics in four dimensions. He stated that this
showed that rotations in four dimensions corresponded to the symmetry
of the degenerate bound state energy levels in momentum space, realizing
the group SO(4), the group of special orthogonal transformations which
leaves the norm of a four-vector U§ 4+ U + U3 + U3 constant. By counting
the number of four-dimensional spherical harmonics Y, in momentum
space (m = —l,—l+1...0,1,...,l, where the angular momentum [ can
equal | =n —1,n—2,...0) he determined that the degree of degeneracy
for the energy level characterized by the principal quantum number n was
n2. It is interesting that Fock did not cite the work by Pauli implying
the four-dimensional rotational symmetry in configuration space. Fock also
presented some ideas about using this symmetry in calculating form factors
for atoms.

2We employ natural Gaussian units so i = 1, ¢ = 1, and a = (e?/hc) ~ 1/137. The
notation for indices and vectors is p,v,... =0,1,2,3; 4,5,. = 1,2,3; pup" = fp(% + p?,
p = (p1,p2,P3), g = (=1, 1,1, 1).
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A year later, the German-American mathematician and physicist Valen-
tine Bargmann showed that for bound states (E < 0) Pauli’s conserved
operators, the angular momentum L and the Runge—Lenz vector A, obeyed
the commutation rules of SO(4) [25]. His use of commutators was so early in
the field of quantum mechanics that Bargmann explained the square bracket
notation he used for a commutator in a footnote [33]. He gave a differential
expression for the operators, adapting the approach of Lie generators in
the calculation of the commutators. He linked solutions to Schrodinger’s
equation in parabolic coordinates to the existence of the conserved Runge—
Lenz vector and was thereby able to establish the relationship of Fock’s
results to the algebraic representation of SO(4) for bound states implied by
Fock and Pauli [25]. He also pointed out that the scattering states (E > 0)
could provide a representation of the group SO(3,1). In a note at the end of
the paper, Bargmann, who was at the University in Zurich, thanked Pauli
for pointing out the paper of Hulthen and the observation by Klein that the
Lie algebra of L and A was the same as the infinitesimal Lorentz group,
which is how he referred to a Lie algebra. Bargmann’s work was a milestone
demonstrating the relationship of symmetry to conserved quantities, and
it clearly showed that, to fully understand a physical system, one needed
to go beyond the usual ideas of geometrical symmetry. This work was the
birth, in 1936, without much fanfare, of the idea of dynamical symmetry.

Little attention was paid to these developments until the 1960’s when
interest arose primarily because of the application of group theory in
particle physics, particularly modeling for the mass spectra of hadrons.
Particle physicists faced the challenge of achieving a quantitative descrip-
tion of hadron properties, particularly the mass spectra and form factors, in
terms of quark models. Since little was known about quark dynamics, they
turned to group-theoretical arguments, exploring groups like SU(3), chiral
U(3) ® U(3), U(6) ® U(6) etc. The success of the eight-fold way of SU(3)
(special unitary group in three dimensions) of American physicist Murray
Gell-Mann in 1962 brought attention to the use of symmetry considerations
and group theory as important tools for exploring systems in which one was
unsure of the exact dynamics [34].

In 1964, three decades after Fock’s work, American physicist Julian
Schwinger published a paper using SO(4) symmetry to construct a Green
function for the Coulomb potential, which he noted was based on a class
he taught at Harvard in 1949 [35]. The publication was a response to
the then current emphasis on group theory and symmetry which led, as
Israeli physicist Yuval Ne’eman described it, “to the great-leap-forward”
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in particle physics during the years 1961-66 [36]. Some of the principal
investigators leading this effort were Ne’eman [36], Gell-Mann [34, 37, 38|,
and Israeli physicist Y. Dothan [39], Japanese physicist Yochiri Nambu
[40], and English-American Freeman Dyson [41]. Advantage was taken of
the mathematical infrastructures of group theory developed years earlier
[23-25, 42, 43].

Interest was particularly strong in systems with wave equations that
had an infinite number of components, which characterize non-compact
groups. In about 1965, this interest in particle physics gave birth to the
identification of the non-compact groups SO(4,1) and SO(4,2) as providing
Spectrum Generating Algebras (SGA) that might serve as models for
hadronic masses. The hydrogen atom was seen as a model for exploring
the infinite-dimensional representations of non-compact groups. The first
mention of SO(4,1) was by Barut, Budini, and Fronsdal [44], where the H
atom was presented as an illustration of a system characterized by non-
compact representation, and so comprising an infinite number of states.
The first mention of a six-dimensional symmetry, referred to as the “non-
compact group O(6)”, appears to be by the Russian physicists I. Malin
and V. Man’ko of the Moscow Physico-technical Institute [45]. In a careful
three page paper, they showed that all the bound states of the H atom
energy spectrum in Fock coordinates provided a representation of this
group, and they calculated the Casimir operators for their symmetric tensor
representation in parabolic coordinates.

Very shortly thereafter, Turkish-American theoretical physicist Asim
Barut and his student at the University of Colorado, German theoretical
physicist Hagen Kleinert, showed that including the dipole operator er as
a generator led to the expansion of SO(4,1) to SO(4,2), and that all the
bound states of the H atom formed a representation of SO(4,2) [46]. This
allowed them to calculate dipole transition matrix elements algebraically.
They give a position representation of the generators based on the use of
parabolic coordinates. The generators of the transformations are given in
terms of the raising and lowering operators for the quantum numbers for
solutions to the H atom in parabolic coordinates. The dilation operator is
used to go from one SO(4) subspace with one energy to a SO(4) subspace
with a different energy, and it has a rather complicated form. They also
used SO(4,2) symmetry to compute form factors [47].

The papers of Polish-American physicist Myron Bander and French
physicist Claude Itzakson published in 1966, when both were working
at SLAC (Stanford Linear Accelerator in California), provided the first
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mathematically rigorous and “succinct” review of the O(4) symmetry of the
H atom, and provided an introduction to SO(4,1) [48, 49], which is referred
to as Spectrum Generating Algebra because it can be used to generate all
states of the H atom. They used two approaches in their mathematical
analysis, the first was referred to as “the infinitesimal method,” based on
the two symmetry operators, L and A and the O(4) group they form,
and the other, referred to as the “global method,” first done by Fock,
converted the Schrodinger equation to an integral equation with a manifest
four-dimensional symmetry in momentum space. They established the
equivalence of the two approaches by appealing to the solutions of the
H atom in parabolic coordinates and demonstrated that the symmetry
operators in the momentum space correspond to the symmetry operators
in the configuration space. As noted, the stereographic projection depends
on the energy, so the statements for a SO(4) subgroup were valid only in
a subspace of constant energy. They then explored the expansion of the
SO(4) group to include scale changes so that the energy can be changed,
transforming between states of different principal quantum number, which
correspond to different subspaces of SO(4). To ensure that this expansion
results in a group, they included other transformations which led to
the generators forming the conformal group O(4,1). Their mathematical
analysis introducing SO(4,1) was based on the projection of a p-dimensional
space (4 in the case of interest) on a paraboloid in p + 1 dimensions
(5 dimensions). In their derivation, they treated bound states in their first
paper [48] and scattering states in their second paper [49].

As we have indicated, interest in the SO(4,2) symmetry of the
Schrodinger equation was driven by a program focused on developing
equations for composite systems that had infinite multiplets of energy
solutions and ultimately could lead to equations that could be used to
predict masses of elementary particles, perhaps using other dimensions
[40, 48-53]. In 1969, Jordan and Pratt showed that one could add spin to
the generators A and L, and still form a SO(4) degeneracy group. Defining
J =1(L+ A)+ S, they showed that one could obtain a representation of
O(4,1) for any spin S [54].

In their review of the symmetry properties of the hydrogen atom, Bander
and Itzakson emphasized their purpose for exploring the group theory of
the hydrogen atom [48]:

The construction of unitary representations of non-compact groups

which have the property that the irreducible representations of their
maximal subgroup appear at most with multiplicity one is of certain
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interest for physical applications. The method of construction used here
in the Coulomb potential case can be extended to various other cases.
The geometrical emphasis may help visualize things and provide a global
form of the transformations.

Special attention was also given to solutions for the hydrogen atom from
the two-body Bethe-Salpeter equation, which allows for detailed nuclear
dynamics with a proton and electron interacting by a Coulomb potential,
since the symmetry was that of a relativistic non-compact group [40, 53,
55, 56].

Finally in 1969, five years after it was published, Schwinger’s form of
the Coulomb Green function based on the SO(4) symmetry was used to
calculate the Lamb shift by Michael Lieber, one of Schwinger’s students at
Harvard [35, 57]. A year later, Robert Huff, a student of Christian Fronsdal
at UCLA, focused on SO(4,2) group theory to compute the Lamb shift [58].
He converted the conventional expression for the Lamb shift into a matrix
element containing generators of SO(4,2), and was able to perform rotations
and scale changes to simplify and evaluate the matrix elements. After clever
mathematical manipulation, he obtained an expression for the Bethe log in
terms of a rapidly terminating series for the level shifts.

In the next few years, researchers published a few mathematically
oriented papers [54, 59-63], a short book [64] dealing with the symmetries
of the Coulomb problem, and a paper by Barut presenting a SO(4,2)
formulation of symmetry breaking in relativistic Kepler problems, with a 1
page summary of the application of SO(4,2) to the non-relativistic hydrogen
atom [47, 65]. Bednar published a paper applying group theory to a variety
of modified Coulomb potentials which included some matrix elements of
SO(4,2) using hydrogen atom basis states with quantum numbers nlm [66].
There was also interest in the application of symmetry methods and
dynamical groups in molecular chemistry [67] and atomic spectroscopy [68].

In the 1970s researchers focused on developing methods of group theory
and on understanding dynamical symmetries in diverse systems [69-71].
A book on group theory and its applications appeared in 1971 [72]. Barut
and his collaborators published a series of papers dealing with the hydrogen
atom as a relativistic elementary particle, leading to an infinite component
wave equation and mass formula [73-76].

Papers on the classical Kepler problem, the Runge-Lenz vector, and
SO(4) for the hydrogen atom have continued to appear sporadically over
the years, from 1959 to today. Many were published in the 1970s [77-83]
and some since 1980, including [28, 84-87]. Papers dealing with SO(4,2) are
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much less frequent. In 1986 Barut, A. Bohm, and Ne’eman published a book
on dynamical symmetries that included some material on the hydrogen
atom [88]. In 1986, Greiner and Muller published the second edition of
Quantum Mechanics Symmetries, which had six pages on the hydrogen
atom, covering only the SO(4) symmetry [89]. The 2005 book by Gilmore
on Lie algebras has four pages of homework problems on the H atom to
duplicate the results in early papers [90]. The last papers I know of using
SO(4,2) were applications in molecular physics [91, 92] and more general in
scope [93].

Carl Wulfman published a book on dynamical symmetries in 2011,
which provides a helpful mathematical discussion of dynamical symmetries
for the hydrogen atom [94]. He regularizes the Schrodinger equation,
essentially multiplying by r, obtaining Sturmian wave functions in parabolic
coordinates. This approach allows him to treat bound and scattering states
for SO(4,2) at one time, but requires redefining the inner product and leads
to a non-Hermitian position operator [94]. This method is also mentioned
in [95, p. 18]. We discuss it briefly in Section 3.4.2 and contrast it to our
approach using wave functions of the inverse of the coupling constant that
have the usual nlm quantum numbers, the usual inner product and produce
Hermitian generators. Our presentation benefits from all previous research
and, as a consequence, is hopefully clearer, more comprehensive, and reveals
a deeper understanding.

1.2 Symmetry of the Dirac Hydrogen Atom

We have focused our discussion on the symmetries of the non-relativistic
hydrogen atom described by the Schrodinger equation. Quantum mechanics
also describes the hydrogen atom in terms of the relativistic Dirac equation,
which we will discuss briefly in this section and in more detail in
Chapter 5.

The gradual understanding of the dynamical symmetry of the Dirac
atom parallels that of the Schrodinger atom, but it has received much
less attention, probably because the system has less relevance for particle
physics and for other applications. The rotational symmetry was known
to be present and the equation predicted that the energy depended on
the principal quantum number and the quantum number for the total
angular momentum 7, but not the spin s or the orbital angular momentum
| separately. This remarkable fact meant that, in some sense, angular
momentum contributed the same to the total energy, regardless of whether
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it was intrinsic or orbital in origin. This degeneracy is lifted if we include
the radiative interactions which lead to the Lamb shift.

To understand the symmetry group for the Dirac equation, consider
that for a given total angular momentum quantum number j > 0 there
are two degenerate levels for each energy level of the Dirac hydrogen atom:
one level has | = j + 1/2 and the other has I = j — 1/2. Since the [
values differ by unity, the two levels have opposite parity. Dirac described
a generalized parity operator K, which was conserved [33]. For an operator
A to transform one degenerate state into the other, it follows that the
operator has to commute with j and have parity —1. This means it has to
anti-commute with K, and so it is a conserved pseudoscalar operator.

In 1950, M. Johnson and B. Lippman discovered the operator A [96].
More work was done on understanding A by Biedenharn [97]. The Johnson—
Lippman operator has been rediscovered (including by us!) and reviewed
several times over the decades [98-100]. It has been interpreted in the non-
relativistic limit as the projection of the Runge-Lenz vector onto the spin
angular momentum [99, 101, 102].

The parity (—1)77=1/2 is conserved in time, so the states are parity
eigenstates. Using the two symmetry operators A and K, one can build a
SU(2) algebra. If we include the O(3) symmetry due to the conservation of
angular momentum, we obtain the full symmetry group SU(2) ® O(3) which
is isomorphic to SO(4) for the degeneracy of the Dirac hydrogen atom.

The SO(4) group can be expanded to include all states, obtaining
the spectrum generating group SO(4,1) or SO(4,2), depending on the
assumptions regarding the relativistic properties and the charges present
[46, 51].

1.3 Background on Symmetry Principles

1.3.1 The relationship between symmetry and conserved
quantities

The nature of the relationship between symmetry, degeneracy, and con-
served operators is implicit in the equation

where H is the Hamiltonian of our system, which we assume is Hermitian, S
is a Hermitian symmetry operator, and the brackets signify a commutator if
we are discussing a quantum mechanical system, or ¢ times a Poisson bracket
if we are discussing a classical system. If S is viewed as the generator of
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a transformation on H, then Eq. (1.1) says that the transformation leaves
H unchanged.® We therefore say that S is a symmetry operator of H and
leaves the energy invariant. The fact that a non-trivial S exists means that
there is a degeneracy. To show this, consider the action of the commutator
on an energy eigenstate |E):

[H,S]|E)=0 (1.2)
or
H(S|E)) = E(S|E)). (1.3)
If S is non-trivial then S|E) is a different state than |E) but has the same
energy eigenvalue. If we label all such degenerate states by
|[E,m),m=1,...,N (1.4)
then clearly S|E,m) is a linear combination of degenerate states:

S|E,m) = Spn|E,n) = Spun| E,n). (1.5)

The repeated index m means there is a summation over n. S, is a
matrix representation of S in the subspace of degenerate states. In a
classical Kepler system, S generates an orbit deformation that leaves H
invariant (for example, a rotation or a change in eccentricity keeping the
same length semi-minor axis). The existence of a non-trivial S therefore
implies a degeneracy in which multiple states have the same energy
eigenvalue. We can show that the complete set of symmetry operators for
H forms a Lie algebra by applying Jacobi’s identity to our set of Hermitian
operators S;:

[H,Si]zo, i=1,...,L. (1.6)
[Sjﬂ [Ha SZ]] + [Sz; [Sjﬂ HH + [Hﬂ [Sza Sj“ = 07 (17)
[H,[S:, S]] = 0. (1.8)

The commutator of S; and S; is therefore a symmetry operator of H. Either
the commutator is a linear combination of all the symmetry operators

3The commutator arises if one does a similarity transformation exp(iS0) on H, namely
exp (1S0)H exp (—iS0) = H +i[S, H]0 + higher order terms in 6.
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Si,i: ].,...,LS
[Si, Sj] = CF; Sk (1.9)

or the commutator defines a new symmetry operator which we label Sp 1.
We repeat this procedure until the Lie algebra closes as in Eq. (1.9).

By exponentiation, we assume that we can locally associate a group of
unitary transformations

exp(iS;a’) (1.10)

for real a® with our Lie algebra and so conclude that there is a group of
transformations under which the Hamiltonian is invariant [103]. We call
this the symmetry or degeneracy group of H. Our energy eigenstates form
a representation of this group.

It is possible to form scalar operators, called Casimir operators, from
the generators of the group that commute with all the generators of the
group and therefore have numerical values. The values of the Casimir
operators characterize the particular representation of the group. For
example, for the rotation group in three dimensions, O(3), the generators
are L = (Ly1,Lo,L3) and the quantity L? = L(L + 1) commutes with
all the generators. L can have any positive integer value for a particular
representation. The Casimir operator for O(3) is L?. The number of Casimir
operators that characterize a group is called the rank of the group. O(3) is
rank 1 and SO(4,2) is rank 3.

Now, let us consider Eq. (1.1) in a different way. If we view H as
the generator of translations in time, then we recall that the total time
derivative of an operator .S; is

as; i
dt  h

a55;
ot’

[H, 5]+ (1.11)

where the commutator and the partial derivative give the implicit and
explicit time dependence, respectively. Provided that the symmetry oper-

ators have no explicit time dependence (aﬁi = 0), then Eq. (1.11) implies
that the symmetry operators S; are conserved in time and dﬁ“‘ = 0. For

example, if the angular momentum vector generates rotations that leave the
energy unchanged, then the angular momentum is conserved. Conversely,
we can say that conserved Hermitian operators with no explicit time
dependence are symmetry operators of H. This very important relationship
between conserved Hermitian operators and symmetry was first discovered
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by German mathematician Emmy Noether in 1917, and is called Noether’s
Theorem [21, 21, 104-106].*

1.3.2 Non-invariance groups and spectrum generating
groups

As we have discussed, the symmetry algebra contains conserved generators
S; that transform an energy eigenstate into a linear combination of
eigenstates all with the same energy E,,. To illustrate with hydrogen atom
eigenstates:

Sinlm) = S™ nl'm/), (1.12)

nlm

where |nlm) refers to a state with energy F,,, squared angular momentum
I(I+ 1) and azimuthal angular momentum [, = m. Summation is implied
over repeated indices. Since the Hamiltonian for the H atom is Hermitian
and is bounded from below, the set of states [nlm) is complete. Since the
H is not bounded above, the complete set will include scattering states of
all positive energies.

A non-invariance algebra contains generators D; that can be used
to transform one energy eigenstate |nlm) into a linear combination of
other eigenstates, with the same or a different energy, different angular
momentum [ and different azimuthal angular momentum m:

Dlnlm) = DI |n/U'm). (1.13)

nlm

Since the set of energy eigenstates is complete, the action of the most general
operator would be identical to that shown in Eq. (1.13). Therefore, this
requirement alone is not sufficient to determine the generators needed.
The goal is to expand the degeneracy group with its generators S; into a
larger group, so that some or all of the eigenstates form a representation of

4The daughter of a mathematician, she wanted to be a mathematician, but since women
were not allowed to take classes at the University of Erlangen in Germany, she audited
courses. She did so well in the exams that she received a degree and was allowed to
enroll in the University and received a Ph.D. in 1907. She remained at the University,
unpaid, in an unofficial status, for 8 years. Then she went to the University at Gottengen,
where she worked for 8 years with no pay or status before being appointed as Lecturer
with a modest salary. She was invited in 1915 by Felix Klein and David Hilbert, two
of the most famous mathematicians in the world at the time, to work with them and
address issues in Einstein’s theory of General Relativity about energy conservation. She
discovered Noether’s First Theorem (and a second theorem also). She remained there
until 1933 when she, as a Jew, lost her job. At Einstein’s suggestion, she went to Bryn
Mawr College in Pennsylvania. She died of ovarian cancer two years later.
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the larger group with the degeneracy group as a subgroup. Thus, we need
to add generators GG; such that the combined set of generators

{Si, G, for all ¢, j} = {Dy; for all k}
forms an algebra that closes
[Di, Dj] = i€iji Dy. (1.14)

This is the Lie algebra for the expanded group. To illustrate with a
specific example, consider the O(4) degeneracy group of the H atom with
6 generators.® One can expand the group to O(5) or O(4,1), which has ten
generators by adding a four-vector of generators, some or all of which do not
commute with the Hamiltonian. The question then is: Do some or all of the
energy eigenstates with different principal quantum numbers n provide a
representation of O(5)? If so, then this would be considered a non-invariance
group. The group might be expanded further in order to obtain generators
of a certain type or to include all states in the representation. For the H
atom, the generators D; can transform between different energy eigenvalues,
meaning between eigenstates with different principal quantum numbers.
Another way to view the expansion of the Lie algebra of the symmetry
group is to consider additional generators D; that are constants in time
[107] but do not commute with the Hamiltonian, so
dD; 0— i oD;
at ~  h ot
If we make the additional assumption that the partial time dependence of
the generators is harmonic
0%D;(t)
ot?
then generators D;, and the first and second partial derivatives with
respect to time could close under commutation, forming an algebra. This
approach does not tell us what generators to add, but as we demonstrate
in Section 7.5, it does reflect the behavior of the generators that have been
added to form the spectrum generating group in the case of the hydrogen
atom.
We may look for the largest set of generators D, that can transform the
set of solutions into itself in an irreducible fashion (that is, there are no

[H, D;] + (1.15)

= wWinDnl(t). (1.16)

5An O(4) rotation can be implemented by an antisymmetric 4 x 4 matrix, which has
six independent off-diagonal components, hence six generators.
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more generators than necessary). These generators form the Lie algebra
for the non-invariance or spectrum generating algebra [45, 108]. If the
generators for the spectrum generating algebra can be exponentiated, then
we have a group of transformations for the spectrum generating group.
The corresponding wave functions form the basis for a single irreducible
representation of this group. This group generates transformations among
all solutions for all energy eigenvalues and is called the Spectrum Generating
Group [109]. For the H atom, SO(4,1) is a spectrum generating group or
non-invariance group, which can be reduced to contain one separate SO(4)
subgroup for each value of n.

To get a representation of SO(4,1) we need an infinite number of states,
which we have for the H atom. This group can be expanded by adding a five-
vector to form SO(4,2). The additional generators can be used to express
the Hamiltonian and the dipole transition operator. The group SO(p, q) is
the group of orthogonal transformations that preserve the quantity X =
22+ ad 4+ a:% — = xf,Jrq, which may be viewed as the norm of a
p + g-dimensional vector in a space that has a metric with p plus signs and
q minus signs. The letters SO stand for special orthogonal, meaning the
orthogonal transformations have a determinant equal to +1.

In terms of group theory, there is a significant difference between a group
like SO(4) and SO(4,1). SO(4) and SO(3) are both compact groups, while
SO(4,1) and SO(4,2) are non-compact groups. A continuous group G is
compact if each function f(g), continuous for all elements g of the group G,
is bounded. The rotation group in three dimensions O(3), which conserves
the quantity 7? = 2% + 23 + 2%, is an example of a compact group.

For a mnon-compact group consider the Lorentz group O(3,1) of
transformations to a coordinate system moving with a velocity v. The
transformations preserve the quantity r? — ¢?¢t2. The matrix elements
of the Lorentz transformations are proportional to 1/4/1 — 32, where
8 = w/ec, and are not bounded as 8 — 1. Therefore, r and ct may
increase without bound while the difference of the squares remains constant.
Unitary representations of non-compact groups are infinite dimensional.
For example, the representation of the non-invariance group SO(4,1) has
an infinite number of states. Unitary representations of compact groups
can be finite-dimensional; for example, our representation of SO(4) for an
energy level E,, has dimension n?.

In the 1960s and beyond, the spectrum generating group was of special
interest in particle physics because it was believed to provide guidance
where the precise particle dynamics were not known. The hydrogen atom
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provided a physical system as a model. Because the application was in
particle physics, there was less interest in exploring representations in terms
of the dynamical variables for position and momentum.

The expansion of the group from SO(4,1) to SO(4,2) was motivated by
the fact that the additional generators could be used to write Schrodinger’s
equation entirely in terms of the generators, and to express the dipole
transition operator. This allowed algebraic techniques and group theoretical
methods to be used to obtain solutions, calculate matrix elements, and other
quantities [46, 51].

1.4 Basic Idea of Eigenstates of (Za) ™!

We introduce the idea behind these states since they are unfamiliar [110].

The full derivation is given in Chapter 3, Section 3.4. The Schrodinger

equation in momentum space for bound states can be written ast

2mZ o
P +a?—

la) = 0. (1.17)

where where m = mass of the electron, r is the location of the electron,
p is its momentum, « is the fine structure constant, F is the total non-
relativistic energy, a? = —2mE > 0 and Za is the coupling constant, which
we will now view as a parameter rather than a constant. Although this is
physically impossible, it is mathematically possible and very useful. This
equation has well behaved solutions for certain discrete eigenvalues of the

energy or a?, namely

a? = —2mE, —m?*(Za)?/n?

or equivalently,

( an ): 1 (1.18)

mZa n
This last equation shows that solutions exist for certain values a,, of the
RMS momentum a. To introduce eigenstates of (Za)~! we simply take a
different view of this last equation and say that instead of quantizing a
and obtaining a,,, we imagine that we quantize (Za)~!, and let a remain
unchanged, obtaining
a 1

m(Za), T (1.19)

6We employ natural Gaussian units so i =1, ¢ = 1, and a = (e2/hc) ~ 1/137.
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So, now we can interpret Schrodinger’s equation as an eigenvalue equation
that has solutions for certain values of (Za)~! namely

(Za)7t = % (1.20)

We have the same equation but can view the eigenvalues differently but
equivalently. Instead of quantizing a we quantize (Za)~!.

This roughly conveys the basic idea of eigenstates of the inverse
of (Za), but this simplified version does not reveal the advantages of
our reformulation because we have left the Hamiltonian unchanged. In
Section 3.4 (Chapter 3, Section 4), we transform Schrodinger’s equation
to an eigenvalue equation in a/mZa so that the kernel is bounded
from below and from above, which means that there are no states with
E > 0 (no scattering states) and all states have the usual bound state
quantum numbers. Other important advantages to this approach will also
be discussed.

1.5 Degeneracy Groups for Schrodinger, Dirac and
Klein—Gordon Equations

The degeneracy groups for the bound states described by the different
equations of the hydrogen atom are summarized in Table 1.1. The
degeneracy (column 2) is due to the presence of conserved operators which
are also symmetry operators (column 3), forming a degeneracy symmetry
group (column 4). For example, The symmetry operators for the degeneracy
group in the Schrodinger hydrogen atom are the angular momentum L and
the Runge—Lenz vector A. In Chapter 3, it will be shown that together these
are the generators of the direct product SO(3) ® SO(3), which is isomorphic
to SO(4). Column 5 gives the particular representations present. These
numbers are determined by the allowed values of the Casimir operators
for the group and they determine the degree of degeneracy (last column)
and the corresponding allowed values of the quantum numbers for the
degenerate states.

As we mentioned earlier, the Casimir operators, which are made from
generators of the group, have to commute with all the members of the
group, and the only way this can happen is if they are actually constants
for the representation. The generators are formed from the dynamical
variables of the H atom, so the Casimir operators are invariants under
the group composed of the generators, and their allowed numerical values
reflect the underlying physics of the system and determine the appropriate
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representations of the group [22, 94, 111]. For example, L? is the Casimir
operator for the group O(3) and can have the values (I + 1). The
relationship between Casimir operators and group representations is true
for all irreducible group representations, including the SO(4) degeneracy
group, as well as the spectrum generating group SO(4,2) [56, 66].

For the Schrodinger equation there are n? states |nlm) that form a
representation of the degeneracy group SO(4) with generators L and A.
These states correspond to the principal quantum number n, the n different
values of the angular momentum quantum number [, and 2] + 1 different
values of the z component of the angular momentum Iy = m.

For the Dirac equation, the 2(2J + 1) dimensional degeneracy group
for bound states is realized by the total angular momentum operator J,
the generalized parity operator K, and the Johnson—Lippman operator A,
which together form the Lie algebra for SO(4).

For the fully relativistic Klein—-Gordon equation, only the symmetry
from rotational symmetry survives, leading to the degeneracy group O(3).
If the V2 term, the four-potential term squared, is dropped in a semi-
relativistic approximation as we describe in Section 3.3, then the equation
can be rewritten in the same form as the non-relativistic Schrodinger
equation, so a Runge-Lenz vector can be defined and the degeneracy group
is again SO(4).



Table 1.1. In the table L = rxp is the orbital angular momentum; A is the Runge-Lenz vector; J = L + o/2 is the total
angular momentum; K is the generalized parity operator; A is the conserved pseudoscalar operator.

Degeneracy Groups for Bound States in A Coulomb Potential

Conserved  Degeneracy

Equation Degeneracy Quantities Group Representation Dimension
Schrodinger E indep. of [, I, A L SO(4) (%,%) n?
Klein-Gordon E indep. of I, L 0(3) Casimir op. is I[(I+ 1) 20+ 1
Klein-Gordon without V2 term  E indep. of I, I A L SO(4) ("51 ,"51) n?
Dirac E depends on J, n only ANK,J SO(4) (1/2,J) 2(2J +1)
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Chapter 2

Classical Theory of the H Atom

In order to address orbital motion and the continuous deformation of orbits,
we give this discussion in terms of classical mechanics, but much of it is
valid in terms of the Heisenberg representation of quantum mechanics if
the Poisson brackets are converted to commutators, as will be discussed in
Section 2.4.

For a charged particle in a Coulomb potential, there are two classical
conserved vectors: the angular momentum L, which is perpendicular to the
plane of the orbit, and the Runge—Lenz vector A, which goes from the focus
corresponding to the center of mass and force along the semi-major axis
to the perihelion (closest point) of the elliptical orbit. The conservation
of A is related to the fact that non-relativistically the orbits do not
precess. The Hamiltonian of our bound state classical system with an energy
E <0 ist

H:ﬁ—@:E7 (2.1)
2m r
where m = mass of the electron, r is the location of the electron, p is its
momentum, « is the fine structure constant, E' is the total non-relativistic
energy.
The Runge—Lenz vector is

1 r

'We employ natural Gaussian units so h = 1, ¢ = 1, and o = (e2/hc) ~ 1/137. The
notation for indices and vectors is p,v,.. = 0,1,2,3; 4,7,. = 1,2,3; pup* = 7pg + p?,
p = (p1,p2,P3), g = (=1, 1,1, 1).

23
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where L is the angular momentum. From Hamilton’s equation, for a

subspace of energy E, H = E so
L A
A=Px2 mear (2.3)

a a r

where a is defined by
a=+vV—-2mE. (2.4)

From the virial theorem, the average momentum (p?) = —2mFE so a is the
root mean square momentum. Since we are discussing bound states, £ < 0.
It is straightforward to verify that A is conserved in time:

dA
A H=—=0 2.5
A1 == =0, (25)
where the brackets mean 7 times the Poisson bracket, the classical limit
of a commutator. From the definition of A and the definition of angular

momentum
L=rxp, (2.6)
it follows that A is orthogonal to the angular momentum vector
A-L=0. (2.7)

Using the fact that A and L are conserved, we can easily obtain equations
for the orbits in configuration and momentum space and the eccentricity,
and other quantities, all usually derived by solving the equations of motion
directly.

A and L are the generators of the group O(4). If we introduce the linear
combinations N = (L + A) and M = (L — A), we find that N and M
commute, reducing the non-simple group O(4) to the direct product O(3)
® O(3), which we will discuss in Section 3.2 in the language of quantum
mechanics.

2.1 Orbit in Configuration Space

To obtain the equation of the orbit one computes

mZa

r-A=rAcosp,. = —r +7r-px L. (2.8)
a
Noting that 7 - p x L = L? we can solve for r
L?/mZ
= /mZo (2.9)

(a/mZa)A cospy + 1
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This is the equation of an ellipse with eccentricity e = (a/mZa)A and a
focus at the origin (Fig. 2.1). To find e, in terms of the energy, we calculate
A - A using the identity p x L -p x L = p?L? and obtain

212 2mZa L2 Za\*
PR e (2.10)
a? a? r a
Substituting E from Eq. (2.1) gives the eccentricity
| 2PL° (2.11)
=e=4/—— + 1. )
mZ« m(Za)?

The length 7. of the semi-major axis is the average of the radii at the
turning points at ¢, = (0, )

ro = # (2.12)
Using the orbit equation we find
L2 1
eSS Zal— e (2.13)
or
Za  mZla
Te = *ﬁ = a2 . (214)

The energy depends only on the length of the semi-major axis r., not on the
eccentricity. This important result is a consequence of the symmetry of
the problem. It is convenient to parameterize the eccentricity in terms of
the angle v (see Fig. 2.1) where

e =sinwv. (2.15)

From this definition and from Egs. (2.11), (2.13), and (2.14) follow the
useful results

L=rcacosv, A=rcasinv (2.16)

which immediately imply

(2.17)

9 9 9 mZa\ >
L? 4+ A% = (rea)” = .

a
This equation is the classical analogue of an important quantum

mechanical result first obtained by Pauli and Hulthen allowing us to
determine the energy levels from symmetry properties alone [27, 31]. From
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b

3
r, Lr—»‘

2 =

Fig. 2.1. Classical Kepler orbit in configuration space. The orbit is in the 1-2 plane
(plane of the paper). One focus, where the proton charge is located, is the origin. The
semi-minor axis is b = r¢ sinv. The semi-major axis is rc.

Fig. 2.1, it is apparent that this equation is a statement of Pythagoras’
theorem for right triangles.
The energy equation (Eq. (2.1)) and the orbit equation (Eq. (2.9))

respectively may be rewritten in terms of a, r, and v:
2 2
Te p°ta
— = 2.18
r 2a? ( )
2

T COS® V
= 2.19
g 1+ sinv cos ¢ ( )

2.2 The Period
To obtain the period we use the geometrical definition of the eccentricity
e=1-(b/ro)?, (2.20)
where b is the semi-minor axis. Using e = sin v we find
b=rc.cosv (2.21)
so from Eq. (2.16) we obtain
L = ab. (2.22)
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From classical mechanics we know the magnitude of the angular momentum
is equal to twice the mass times the area swept out by the radius vector
per unit time. The area of the ellipse is wbr.. If the period of the classical
motion is T, then L = 2mnbr./T = ab. Therefore, the classical period is

mre m(Za)?
T=2r——=2 _— 2.23
P Ry 2 (2:23)
and the classical frequency wy = 27 /T is
a
ol = . 2.24
wer = - (2.24)

Expressing the root mean square momentum a = MUpean in terms of a
mean velocity vyean shows that

Umean = T'cWel

as expected.

2.3 Group Structure SO(4)

The generators of our symmetry operations form the closed Poisson bracket
algebra of O(4):

[LZ', LJ] = ifz’jkLk, [LZ, A]] == ieijkAk, [AZ, A]] == ifz’jkLk- (225)

The brackets mean ¢ times the Poisson bracket, which is the classical
limit of a commutator. The first bracket says that the angular momentum
generates rotations and forms a closed Lie algebra corresponding to O(3).
The second bracket says that the Runge-Lenz vector transforms as a vector
under rotations generated by the angular momentum. The last bracket says
that the multiple transformations generated by the Runge-Lenz vector are
equivalent to a rotation. Taken together the Poisson brackets form the Lie
algebra of O(4). The connected symmetry group for the classical bound
state Kepler problem is obtained by exponentiating our algebra giving
the symmetry group SO(4). The scattering states with E > 0 form a
representation of the non-compact group SO(3,1).

We now want to determine the nature of the transformations generated
by A; and L;. Clearly, L - dw generates a rotation of the elliptical orbit
about the axis dw by an amount dw. To investigate the transformations
generated by A-dv we assume a particular orientation of the orbit, namely
that it is in the 1-2 (or x—y) plane and that A is along the 1l-axis (see
Fig. 2.1). The more general problem is obtained by a rotation generated
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by L;. For an example, we choose a transformation with dv pointing along
the 2-axis so that A -dv = Ay0v. The change in A is defined by § A where

0A =i[A v, Al (2.26)
From the Poisson bracket relations we find for this particular case:
5A1 = L351/, 5A2 = 0, 5143 = 7L1($I/. (227)

For our orbit, L1 = 0 so 043 = 0. We perform a similar computation to
find L. We find we can characterize the transformation by

0A1 = L3dv or O0A= Lov
0Ly = —A0v or OL=—Adv ) (2.28)

de=+1—¢€%0v or I(sinv) = cosviv

Recalling e = sinv and Eq. (2.16) we see that these transformations are
equivalent to the substitution

v— v+ (2.29)

The eccentricity of the orbit, and therefore A and L are all changed in
such a way that the energy, a and 7. (length of the semi-major axis)
remain constant. In our example, both L and A change in length but not
direction, so the plane and orientation of the orbit are unchanged. The
general transformation A - du will also rotate the plane of the orbit or the
semi-major axis.

Figure 2.2 shows a set of orbits in configuration space with different
values of the eccentricity e = sinv but the same total energy and the
same semi-major axis 7., which is the bold hypotenuse. The bold vertical
and horizontal legs are A/a and L/a and are related to the hypotenuse
r. by Pythagoras’s theorem. The generator Asv produces a deformation
of the circular orbit into the various elliptical orbits shown. This classical
degeneracy corresponds to the quantum mechanical degeneracy in energy
levels that occurs for different eigenvalues of the angular momentum with
a fixed principal quantum number.

We can visualize all possible elliptical orbits for a fixed total energy
or semi-major axis through a simple device. It is possible to produce an
elliptical orbit with eccentricity sinv as the shadow of a circle of radius
r. which is rotated an amount v about an axis perpendicular to the
illuminating light. With a complete rotation of the circle we will see all
possible classical elliptical orbits corresponding to a given total energy.
In quantum mechanics only certain angles of rotation would be possible
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Fig. 2.2. Kepler bound state orbits in configuration space for a fixed energy and

different values of the eccentricity e = sinv. The bold hypotenuse is the semi-major

axis 7. which makes an angle v with the vertical 2-axis. From Eq. (2.17), 72 =

(A/a)? + (L/a)? as illustrated. The vector L is along the 3-axis, pointing out of the
paper, perpendicular to the orbit, and A is along the l-axis.

corresponding to the quantized values of L. As the circle is rotated we
must imagine that the force center shifts as the sine of the angle of rotation
so that it always remains at the focus.?

2.4 The Classical Hydrogen Atom in Momentum Space

We can derive the equation for the classical orbit in momentum space of a
particle bound in a Coulomb potential using the conserved operators L and
A. For convenience, we assume that we have rotated our axes so that L
lies along the 3-axis and A lies along the 1-axis as shown in Fig. 2.1. We
compute

—mZo

r —mZa
pA=pA=—p —=—"
a r

Pr (2.30)
a

2Were it not for this displacement of the force center, the observation that a rotated
circle projects onto a plane as an ellipse would manifest the four-dimensional symmetry
of the hydrogen-like atom directly in configuration space. The elliptical orbits could
be viewed as projections of a rotated hypercircle onto a three-dimensional hyperplane.
These considerations can be applied with some modification to the three-dimensional
harmonic oscillator for which the force center and the center of the ellipse coincide.
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and employ Eq. (2.11), A = ™22 sinp, to obtain?

a

pr = —sinvpy, (2.31)

which we substitute into the identity

L2
pi+ 3 =p"=pi+p} (2.32)
Using Egs. (2.16) and (2.18) we find
2 2
L= (pg?jﬂ) + (pchfﬂ) co;v7 (2:33)
and
p? — a? = 2aps tan v, (2.34)

which may also be written as

a2

2 2

pi + (p2 —atanv)” = . (2.35)

From Eq. (2.35), we see the orbit in momentum space is a circle of radius
a/cosv with its center displaced from the origin a distance atanv along
the 2-axis. Figure 2.3 shows the momentum space orbit that corresponds
to the configuration space orbit in Fig. 2.1. As an alternative method of

showing the momentum space orbits are circular we can compute [112]

LxA\*
Using the lemma
_ L , 2
px A= —ad), (2.37)

the fact that L- A = 0, and Eq. (2.16), we find C' = a/cosv. The orbit is a
circle of radius a/cos v whose center lies at aL x A/L?, in agreement with
the previous result.

We now consider what the generators A; and L; do to the orbit in
momentum space. Clearly, L generates a rotation of the axes. For an A;
transformation consider the same situation we considered in our discussion

3This equation and any other equation written in this specific coordinate system can be
generalized to an arbitrary coordinate system by noting that the Cartesian unit vectors

may be written in a manner that is independent of the coordinate system: 7 =
_ LxA k — L
-7 - LA ) -

A

wl
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P2
a
cosv
atanv ) ﬁ
1 u :
|
Q —=

Fig. 2.3. Kepler orbit in momentum space of radius a/cosv, with its center at ps =
atanv, corresponding to the orbit in configuration space shown in Fig. 2.1. A circular
orbit in configuration space corresponds to a circular orbit in momentum space centered
on the origin with radius a.

of the configuration space orbit (see Figs. 2.1 and 2.3). Since the generator
Asdv changes v to v + dv, we conclude that in momentum space this shifts
the center of the orbit along the ps-axis and changes the radius of the circle.
However, the distance a from the ps-axis to the intersection of the orbit
with the p;-axis remains unchanged. Figure 2.4 shows a set of momentum
space orbits for a fixed energy which correspond to the set of orbits in
configuration space shown in Fig. 2.2.

2.5 Four-Dimensional Stereographic Projection in
Momentum Space

It is interesting that in classical mechanics the bound state orbits in a
Coulomb potential are simpler in momentum space than in configura-
tion space. In quantum mechanics, the momentum space wave functions
become simply four-dimensional spherical harmonics if one normalizes the
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-0

Fig. 2.4. Kepler orbits in momentum space for a fixed energy and RMS momentum
a with different values of the eccentricity e = sinv corresponding to the orbits in
configuration space shown in Fig. 2.2. The straight lines locate the center of the
corresponding circular orbit on the pg-axis. For a circular orbit, v is zero and the
eccentricity is zero.

momentum p by dividing by the RMS momentum a = /—2mkFE, so it
becomes dimensionless, and performs a stereographic projection onto a
unit hypersphere in a four-dimensional space [32, 48, 94]. We will do the
analogous projection procedure for the classical orbits. As shown in Fig. 2.5,
the three-dimensional momentum space hyperplane passes through the
center of the four-dimensional hypersphere. The unit vector in the fourth
direction is 7 = (1,0,0,0). The unit vector U goes from the center of the
sphere to the surface of the hypersphere where it is intersected by the line
connecting the vector p/a to the north pole of the sphere.
We find

2’L 2 2
U= 193 p=L"2

= - —. 2.38
p* + a? p*+a? (2:38)
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2=
A A A2
n U =1
]
a
MOMENTUM SPACE
HYPERPLANE

FOUR DIMENSIONAL
HYPERSPHERE

Fig. 2.5. Stereographic projection in momentum space for a fixed energy, mapping p/a
into U. The unit vector in the 4 direction is n and n - U = cos O4.

Note that the four-vector U has been normalized to 1. Inverting the
equations gives the following result.

al; . L 1+Us
_ _ . 2.39
1—u, P TY10, (2.39)

Di

Momentum space vectors for which p/a < 1 are mapped onto the lower
hyperhemisphere. The advantage of this projection over one in which the
hypersphere is tangent to the hyperplane is that we may have |n| = |0| = 1.
At times, it is convenient to describe U in terms of spherical polar
coordinates in four dimensions. Since U is a unit vector we define

Uy = cosfy,

Us = sinf4 cos b,

U, = sin 6y sin @ sin ¢,
Uy = sin 4 sin 0 cos ¢.

(2.40)

where 6 and ¢ are the usual coordinates in three dimensions. By comparison
to Eq. (2.38), we have

4 =2cot™* b 0 =cos 22 ¢ =tan? bz, (2.41)
a p b1

2.6 Orbit in U-Space

We want to find the trajectory of the particle on the surface of the
hypersphere corresponding to the Kepler orbits in configuration space or
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U
4
I

Fig. 2.6. Showing the hyperplane containing the orbit making an angle v with the Uz
plane. Note tanv = A/L as required by Eq. (2.16).

the displaced circles in momentum space. We assume that we have rotated
the axes in configuration space so that L is along the 3-axis and A is
along the 1-axis, as shown in Fig. 2.1. The equation for the orbit in the three-
dimensional momentum space is given by Egs. (2.34) or (2.36). Dividing
Eq. (2.34) by p? + a® immediately gives a parametric equation for the
projected orbit in U space:

Us = U tanv. (2.42)

Since the orbit is in the 1-2 plane in configuration space, it follows
that Us = 0. The orbit lies in a hyperplane perpendicular to the 2—4 plane
that goes through the origin and makes an angle 7/2 — v with the Uy-axis
as shown in Fig. 2.6.* The orbit is the intersection of this plane with the
hypersphere and is therefore a great circle. To derive the exact equation
for the projected orbit we express p in Cartesian components p; and ps in
Eq. (2.34) and substitute Eq. (2.39) obtaining

UP 4 U2 — 2tanv Us(l — Uy) = (1 — Uy)?. (2.43)

To interpret this equation we consider it in a rotated coordinate system.
We perform a rotation by an amount dv about the 1-3 plane; Asdv is the
generator of this rotation which mixes the components along the Uy and

4We define the angle between a three-dimensional hyper-plane and a line as 7/2 minus
the angle between the line and the normal to the hyperplane.
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U, axes. The equations of transformation may be written®
Uy = Ulcosdv + Ujsindy, Us = U,
T T e (2.44)
Uy = Ujcosdv — Uysindv, Uy, =Uj.

This transformation is equivalent to making the substitution v — v + dv
in the equations relating to the orbit. For example, Eq. (2.42) becomes

U, = Ultan (v + v). (2.45)

We choose 0v = —v, which means the orbital plane becomes U; = 0.
Writing Eq. (2.43) in terms of the primed coordinates, we find

U+ U =1, (2.46)

which in the original system is
U + (Uzcosv + Uysinv)? = 1. (2.47)

This is the equation of a great hypercircle (v,0) centered at the origin and
lying in a hyperplane making an angle 7/2—v with the Us-axis and an angle
/2 with the Us-axis. If L did not lie along the Us-axis but, for example,
was in the 1-3 plane, at an angle O from the Us-axis, then Eq. (2.47) would
be modified by the substitution

Uy — Uy cos© + Ussin O, (2.48)

which follows since U; transforms as a three-vector. The corresponding great
circle (v,0) lies in a hyperplane making an angle /2 — v with the Uy-axis
and 7/2 — © with the 3-axis.

The motion of the orbiting particle corresponds to a dot moving along
the great circle (1,0 or ©) with a period T given by the classical period
Eq. (2.23). The velocity in configuration space can be expressed in terms
of Uy by using its definition in terms of p? Eq. (2.39) or in terms of
04 Eq. (2.41). The particle is moving at maximum velocity when 6, is a
minimum, which occurs at the perihelion when 64 = 7/2 — v:

maz (g) - \/E \/% (2.49)

5Tt is desirable to first show that A (and of course L) generate rotations of the
hypersphere or U. However, since we prefer to do the necessary calculations in terms of
commutators rather than Poisson brackets, we defer these considerations to Section 2.4.
There we show that the generator L; rotates U about the i — 4 plane; the generator
Aj rotates U about the 2-3 plane, etc., thereby changing the orbit with respect to the
Uy-axis and changing the eccentricity.
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and at a minimum velocity when 04 = 7/2 + v:

. p) 1—e

min (— ) = . 2.50

(a 1+e ( )
These values of 6, correspond to turning points at which r and p have
extreme values. This is apparent when we use the definition of Uy Eq. (2.36)

and Eq. (2.18) for the total energy to show

Te —T

U, =

Te

When 7 > 7, then p? < a?, so the particle is moving more slowly than the
RMS velocity. Applying the virial theorem to any orbit we find (p?) = a2,
so, as expected, a is the RMS momentum and (1/(1 —Uy)) =1 = (r¢/r).
Figure 2.7 is a picture of a simple device illustrating the stereographic
projection of the orbit in p/a-space onto the four-dimensional hypersphere
in U-space. We assume that the orbit is in the 1-2 plane and that A lies
along the 1-axis, so ps = 0, U3 = 0. Due to this trivial dependence on ps,
we have omitted the 3-axis. The vertical pin or rod represents the unit

Fig. 2.7. Model illustrating the stereographic projection from the 1-2 plane to a four-
dimensional hypersphere. The pin represents the unit vector n along the 4-axis, normal
to the 1-2 plane.
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vector n that lies along the 4-axis. The circumference of the larger circle
perpendicular to the 4-axis represents the orbit in p/a-space. One can see
that it is displaced from the origin along the 2-axis. Centered at the origin,
we must imagine a hypersphere of unit radius U? = 1. The stereographic
projection U of the vector p/a is obtained by placing the string coming
from the top of n directly at the head of the vector p/a. The intersection
of the string with the unit hypersphere defines U. As the string is moved
along the orbit in p/a-space, it intersects the hypersphere along a great
circle shown by the circumference of the unit circle making an angle v with
the 1-2 plane. We can see, for example, that at the closest approach 6y is
a minimum and Uy is a maximum, U-A= Uy is a minimum and p/a is a
maximum.

2.7 Classical Time Dependence of Orbital Motion

We can determine the time dependence of the orbital motion by integrating
the expression for the angular momentum L = mr?dg,. /dt

/dt/mTTquﬁr, (2.52)

where r is given by the orbit equation Eq. (2.19) and we are assuming that
the orbit is in the 1-2 plane. After integrating, we can use the equations
relating the momentum space and configuration space variables to obtain
the time dependence in p-space and U-space. We obtain

1 1 L [t ér () dé,
/ dt = cos® 1// ¢ (2.53)
0 0 (

2 . . 2"
rZ cosvm 1+ sinv cos ¢y.)

We can show that the left-hand side of this equation is equal to w;t,
where wg; is the classical frequency, substituting Eqgs. (2.16) and (2.24)

L=ar.cosv wy= ¢ (2.54)
mre
The integral on the right side gives [113]
gt = 751n1/(‘:0s1/s1n O ~ tan-! 'cosz/smgbr ’ (2.55)
1+ sinwvcos ¢, sinv + cos ¢,
which may be simplified as
Ay Ay
t=——==—1 — 2.56
el re M Tro—1 (2:56)

where y = 7 sin ¢,.
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We can convert Eq. (2.55) to obtain the time dependence in U-space.
The relationship between the angle ¢ = ¢, in momentum space and ¢, in
configuration space follows by differentiating the orbit equation Eq. (2.34)
with respect to time and using L = mr2q§T or by solving simultaneously the
configuration space orbit Eq. (2.19), the momentum space orbit Eq. (2.34)
and the energy equation Eq. (2.18). We find

CcCos vV

sin ¢, = —pcos ¢ cos ¢ = psin gb@ — sinv. (2.57)
a

a

From these equations, the definitions of the U;, Eq. (2.38), and the orbit
and energy equations, it follows that for the classical orbit in the 1-2 plane

7 sin ¢,
AL S
T'¢ COSV
r sinv + cos ¢,
Uy=————"—="Ucotvr,
2 Te cos v 4 (2.58)
Us =0,
Te —T
Uy == .
Te

Using these results in Eq. (2.55) gives

wet = Uy siny + tan™! <%) , (2.59)

which gives the time dependence in U space, and agrees with the results of
[39, 107]. We can also rewrite the inverse tangent as cos™! U using

s, U3
U =1 2.60
it cos? v ( )
and obtain
wet = Uy siny 4 cos™ ' Uj. (2.61)

Using Eq. (2.30), we can generalize this result to an arbitrary orbit in
configuration space.
T L U-A

p _
alt = — _— 2.62
Wel e + cos I (2.62)

If we consider Egs. (2.59)—(2.61) for circular orbits with e = sinv = 0,
we obtain tan™'(Uz/U;) = cos™ Uy = ¢(t) = wat = ¢,(t) + 7/2, and
U? + U2 = 1, representing uniform motion in a circle. For this orbit,
U4=0, SO 94:71'/2.
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2.8 Symmetry of the Harmonic Oscillator

We can find a conserved Runge-Lenz vector for the non-relativistic
hydrogen atom because the elliptical orbit does not precess, as it does
for the relativistic atom. The only central force laws which yield classical
elliptical orbits that do not precess are the inverse Kepler force and the
linear harmonic oscillator force [110]. Thus, it seems reasonable that one
could construct a constant vector similar to A for the oscillator, although
the force center for the atom is at a focus and for the oscillator it is at
the center of the ellipse. However, it is not possible to define a vector that
corresponds to the Runge-Lenz vector for the oscillator [114]. However, it
is possible to construct a constant Hermitian second-rank tensor 7;:

T;; = meopipj + mwoz; ;. (2.63)
This constant tensor is analogous to the moment of inertia tensor for
rigid body motion. The eigenvectors of the tensor will be constant vectors
along the principal axes for the particular orbit being considered. The
existence of the conserved tensor leads to the U(3) symmetry algebra of
the oscillator. The generators are Af;T;; where the \’s are the usual U(3)
matrices [36]. The spectrum generating algebra is SU(3,1).

In another approach, the Schrodinger equation for the hydrogen atom
has been transformed into an equation for a four-dimensional harmonic
oscillator or two two-dimensional harmonic oscillators. This approach fits
well with parabolic coordinates and was used especially in the 1980s to
analyze the group structure of the atom and relate it to SU(3) [52, 115-123].
We will not discuss this approach further.

In the next chapter, we describe the H atom in terms of quantum
mechanics.
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Chapter 3

The Hydrogen-like Atom in Quantum
Mechanics

In this section, we switch from classical dynamics to quantum mechanics
and discuss the group structure and exploit it to determine the bound state
energy spectrum directly, as Pauli and his followers did almost a century
ago [27, 31]. In Section 3.4, we introduce a new set of basis states for the
hydrogen-like atom, eigenstates of the coupling constant. Using these states
allows us to display the symmetries in the most convenient manner and to
treat bound and scattering states uniformly.

3.1 The Degeneracy Group SO(4)
The quantum mechanical Hamiltonian is

2

P Za
H=—-—=F. 3.1
2m r (3-1)
The classical expression for the Runge-Lenz vector must be symmetrized

to ensure the corresponding quantum mechanical operator A is Hermitian:
1 pxL—Lxp r>

A= —mZa— | . 3.2

v —2mH < 2 r (32)

We may verify that A and L = r x p both commute with the Hamil-
tonian H. The commutation relations of L; and A; are the same as the
corresponding classical Poisson bracket relations for bound states:

[LZ', LJ] = ieijkLk, [Lz; AJ] == ieijkAk; [AZ, A]] == ieijkLk (33)

and form the algebra of O(4) [48]. We can write the commutation relations
in a single equation that makes the O(4) symmetry explicit. If we define

S,'j = €ijkLk 51‘4 = Ai (34)

41
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then
[Sab; Scd] == Z-((Sachd + 5deac - 5adSbc - 5chad) a, b= ]-, 2, 3, 4. (35)

The Kronecker delta function d,; acts like a metric tensor.

3.2 Derivation of the Energy Levels

We can obtain the energy levels by determining which representations of
the SO(4) group are realized by the degenerate eigenstates of the hydrogen-
like atom [25, 27, 48]. The representations of SO(4) can be characterized
by the numerical values of the two Casimir operators for SO(4):

Ci=L-A Cy=L*+ A% (3.6)

Once we know the value of C5, then the eigenvalues of H follow from the
quantum mechanical form of Eq. 2.17, namely

(mZa)?

L?+ A% +1=~——.
* * —2mH

(3.7)

In order to determine the possible values of Cp we factor the O(4)
algebra into two disjoint SU(2) algebras [124], each of which has the same
commutation relations as the ordinary angular momentum operators,

N=iL+A) M=1i(L-A). (3.8)
The commutation relations are
[Mi; NJ] =0 [Ml, MJ] == ieijkMk [Ni; NJ] = ieijka. (39)

In analogy with the results for the ordinary angular momentum operators,
the Casimir operators are

2 _ s . s 1
M _]1(32—’_1)5 ]1_055517"'

N2 (s t1). =011 (3.10)
b 72) 9"

The numbers j; and jo, which may have half-integral values for SU(2) but
not O(3), define the (j1, j2) representation of SO(4). From the definitions of
A and L in terms of the canonical variables, it follows that C;y = L- A =0
which means j; = jo = j as in the classical case. For our representations,
we find

M?=N?=§(L*+ A% =j(j+1),j =0,3,1,. (3.11)
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and therefore
L*+ A2 +1=(25+1)% (3.12)

Substituting this result into Eq. (3.7) gives the usual formula for the bound
state energy levels of the hydrogen atom:

m(Za)?
HI:—7:EH7 313
277;2 ( )
where the principal quantum number n = 25 +1 = 1,2,... and the prime

on H signifies an eigenvalue of the operator H.
Within a subspace of energy FE,, the Runge-Lenz vector is

1 L - L
A- L (u_mmz) (3.14)
an 2 r

where

Z
an = \/—2mE, = % (3.15)

Our considerations of the Casimir operators have shown that the
hydrogen atom provides completely symmetric tensor representations of
SO(4), namely, (j,7) = (”771, %4), n = 1,2,... The dimensionality is
(27 + 1) = n?, corresponding to the n? degenerate states. The appearance
of only symmetrical tensor representations (j;1 = j2) can be traced to
L - A vanishing, which is a consequence of the structure of L and A in
terms of the dynamical variables for the hydrogen-like atom. For systems
other than the hydrogen-like atom, it is not generally possible to find
the expression for the energy levels in terms of all the different quantum
numbers alone. It worked here since we could express the Hamiltonian as
a function of the Casimir operators which contained all quantum numbers
explicitly.

There are a variety of possible basis states. We could choose basis states
for the SO(4) representation that reflect the SU(2) decomposition, namely
eigenstates of M2, N2, M3 and N3 [124]. Another possibility is to have a
basis with the eigenstates of the Casimir operator Cs, and As, and Ms. This
choice fits well with the use of parabolic coordinates [73]. A more physically
understandable choice is to choose the common basis states |nlm) that are
eigenstates of Cy, L2, and L3. For this set of basis states, we have

V(L2 + A2 + 1)|nlm) = n|nlm) (3.16)
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L?Inlm) = I(1 + 1)|nim) (3.17)
Ls|nlm) = m|nlm,). (3.18)
We can define raising and lowering operators for m:
Ly =1Ly +ilo, (3.19)
which obeys the commutation relations
[L?,L4] =0  [L3,Li]=+Ly. (3.20)

Therefore, we can use Ly to change the value of m for the basis states

La|nlm) = /(11 +1) —m(m £ 1)|nl m £ 1) (3.21)

for [ > 1. We can also use the generators A to change the angular
momentum. A general SO(4) transformation can be expressed as a rotation
induced by L, followed by a rotation induced by As, followed by another
rotation generated by L [125]. Our interest is primarily in changing
the angular momentum [, which is most directly done using As, which
commutes with L3 and Cs, and so it only changes [:

i = (A
+ <(" jl?)(i ;m ))2 Inl — 1m) (3.22)

for [ > 1.

3.3 Relativistic and Semi-relativistic Spinless Particles in
the Coulomb Potential Described by the Klein-Gordon
Equation

As we mentioned in Chapter 1, in the discussion of Table 1, the relativistic
Klein—Gordon equation may be approximated by dropping the V2 term to
obtain an equation of the same form as the non-relativistic Schrodinger
equation. The Klein—Gordon equation

(0 = (B~ V) +m) = 0

where E is the relativistic total energy, may be solved exactly for a Coulomb
potential, V' = —(Za«)/r [126]. The energy levels depend on a principal
quantum number and on the magnitude of the angular momentum but not
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on its direction. The only degeneracy present is associated with the O(3)
symmetry of the Hamiltonian. For a relativistic scalar particle, there is no
degeneracy to be lifted by a Lamb shift.

If we neglect the V2 term the resulting equation can be written in the

form
2 E2_m2\ -
oy T g —o,
2F 2F

This is exactly the same as the nonrelativistic Schrodinger equation with
the substitutions
m—E FE— ﬂ
2F

Thus, we regain the O(4) symmetry of the non-relativistic hydrogen atom,
and can define two conserved vectors, as indicated in Table 1. It is possible
to take the “square root” of this approximate Klein-Gordon equation (in
the same sense that the Dirac equation is the square root of the Klein—
Gordon equation) and obtain an approximate Dirac equation whose energy

eigenvalues are independent of the orbital angular momentum [127].

3.4 Eigenstates of the Inverse Coupling Constant (Za)~?!

We introduced the unusual idea of eigenstates of the coupling constant
(Za)~! in Section 1.3. We are allowing the coupling constant to vary
while we keep the energy a?/2m constant. Mathematics allows this unusual
treatment of a constant as a parameter, while of course it is physically
impossible.

Solutions to Schrodinger’s equation for a particle of energy E = —a?/2m
in a Coulomb potential

p2+a2

_2mZa iy (3.23)
r

may be found for certain critical values of the energy E,, = —a?2/2m where
an = mZa/n. The corresponding eigenstates of the Hamiltonian are |nim)
which satisfy Eq. (3.23) with a replaced by a,. In addition to the bound
states because there is no upper bound on p? in the Hamiltonian, we also
have the continuum of scattering states that have £ > 0.

Since the quantity which must have discrete values for a solution to exist
is actually a/mZa, as noted in Section 1.4, we might ask if eigensolutions
to Eq. (3.23) exist for certain critical values of Za while keeping a and
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the energy fixed [110]. To investigate such solutions it is convenient to
algebraically transform (3.23):

[ 1 (p2+a2) 1 1 (QmZa) 1]\/@'@0’

)\ o )o@ Vel \ ar ) /o)
where
pla) = L (3:20)

Since p(a) commutes with p? we obtain the eigenvalue equation

(=) - K@] o) =0, (3.25)

mZo

where the totally symmetric and real kernel is

2a2 1 2a2
K = — 3.26
(a/) \/p2 ¥ a2 ar \/p2 ¥ a2 ( )

and we define the transformed eigenstates |nlm) in terms of the old
eigenstates |nim)

la) = (p(a))*]a). (3.27)

As before, solutions to this transformed equation may found for the
eigenvalues

K'(a) = (m‘;a)' - % (3.28)

If we hold Za constant and let a vary, we obtain the usual spectrum a,, =
V—2mE, = mZa/n. For a = a,, Eq. (3.27) reduces to the equation for
the eigenstates

vV p(ay)|nlm) = |nlm;ay,). (3.29)

Alternatively, if we hold a constant, then Z« has the spectrum

(Za)n = % (3.30)

with the corresponding eigenstates of (Za)~! being

[nlm; a). (3.31)
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The relationship between the usual energy eigenstates |nlm) and the
eigenstates [nlm;a) of (Za)™! is

p*+ a2

~1/2
5.7 ] [nim; ay), (3.32)

|nim) = #|nlm;an) = [
plan)

which requires that both sets of states have precisely the same quantum

numbers.

Note that the magnitude (a|K(a)la) is proportional to (1/ar), =
(1/a,)(1/n%ag) where ag is the Bohr radius for the ground state and so
is positive and bounded. The kernel K (a) is real and symmetric in p and r
and is manifestly Hermitean. Since the kernel K in Eq. (3.25) is bounded,
definite, and Hermitian with respect to the eigenstates |nim;a,,) the set of
normalized eigenstates

|nlm;a) n=0,1,2,...; 1=0,1,....n—2,n—1;
m=—l,—l+1,...,1—1,1, (3.33)

where

(l — K(a)) |nlm;a) =0 (3.34)

n

is a complete orthonormal basis for the hydrogen-like atom [94, p. 340; 110;
128, p. 19]:

(nlm;a|ln'l'm’; a) = Spns 611 Smme (3.35)
Z [nlm; a)(nlm; o = 1. (3.36)

nlm
There are several important points to notice with regard to these eigenstates
of the inverse of the coupling constant:

(1) Because of the boundedness of K, there is no continuum
portion in the eigenvalue spectrum of (Za)~ !, the eigenvalues
are discrete. Since K is a positive definite Hermitian operator, all
eigenvalues are positive real numbers. This feature leads to a unified
treatment of all states of the hydrogen-like atom as opposed to the
treatment in terms of energy eigenstates in which we must consider
separately the bound states and the continuum of scattering states.

(2) It follows from Eq. (3.32) that the quantum numbers, multiplic-
ities, and degeneracies of these states |nlm;a) are precisely
the same as those of the usual bound energy eigenstates. For
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example, there are n? eigenstates of (Za)~! that have the principal
quantum number equal to n or (Z«) equal to na/m.

A single value of the RMS momentum a or the energy
E = —a?/2m applies to all states in our complete basis as
opposed to the usual energy eigenstates where each non-degenerate
state has a different value of a. We have made this explicit by including
a in the notation for the states: |nim;a). Sometimes, for simplicity, we
will write the states as [nlm), provided that the value of a has been
specified. This behavior in which a single value of a applies to all states
will prove to be very useful. In essence, it allows us to generalize from
statements applicable in a subspace of Hilbert space with energy F,, or
energy parameter a,, to the entire Hilbert space.

By a suitable scale change or dilation we can give the quantity
a any positive value we desire. This is effected by the unitary
operator

D()\) = eiz®@rirpA (3.37)
which transforms the canonical variables
DNpD'(N) =e*p DN)rD I\ =etr (3.38)
and the kernel K (a)
DNK (a)DY(\) = K (ae) (3.39)
and the eigenvalue equation
1
(5 - K(ae)‘)) D(N)|nlm; a) = 0. (3.40)
Therefore, the states transform as
D(\)|nlm; a) = |nlm; ae). (3.41)

These transformed states form a new basis corresponding to the new
value e*a of the RMS momentum.

The relationship between the energy eigenstates and the (Za)~!

eigenstates can be written using the dilation operator:

1 n
|nlm) = ————=D(\,)|nm; a), where e = an (3.42)
p(an) a

The usual energy eigenstates |nlm) are obtained from the eigenstates
of (Za)~! by first performing a scale change to insure that the energy
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parameter a has the value a,, and then multiplying by a factor p~!/2. The
(Za)™! eigenvalue equation Eq. (3.25) indicates that the eigenfunctions
are functions of p/a or ar, while the energy eigenvalue equation Eq. (3.23)
indicates that the eigenfunctions are functions of p/a, and a,r if we note
that mZa = na,. Hence, the scale change from a to a, is needed. The

factor p~—1/2

is required to convert Schrodinger’s equation to one involving
a bounded Hermitean operator.

Using the eigenstates of (Za)~! as our basis allows us to analyze the
mathematical and physical structure of the hydrogen-like atom in the

easiest and clearest way.

3.4.1 Amnother set of eigenstates of (Za) ™!

We can transform Schrodinger’s equation Eq. (3.23) to an eigenvalue
equation for (Za)™! that differs from Eq. (3.34):

(3 - K@) Intm: @) = (3.43)

n
where
1 2a* 1
K = 3.44
) = e o (8.44)
and
1
[nlm) = ﬁD()\nﬂnlm;a”) pla) =n/ar. (3.45)
plan

The kernel Kj(a) is bounded from below and is a positive definite
Hermitian operator so the eigenstates form a complete basis. K1 (a) is also
bounded from above and there are no scattering states with arbitrary large
energies. The relationship of these basis states to the energy eigenstates is
the same as that of the previously discussed eigenstates of (Za)~! Eq. (3.41)
but with p(a) = n/ar. The n guarantees that the two sets of eigenstates
have consistent normalization, which may be checked by means of the virial
theorem. The n cancels out when similarity transforming from the basis
of energy eigenstates to the basis of (Za)~!. Note that, classically, both
kernels equal 1/ar..

The first set of basis states of (Za)~! with p(a) = p? + a?/2a? is more
convenient to use when working in the momentum space, and the second
set with p(a) = n/ar is more convenient in configuration space.



50 The Hydrogen Atom

Other researchers have used other approaches to secure a bounded
kernel for the Schrodinger hydrogen atom, for example, by multiplying the
equation on the left by r to regularize it [94]. However, the methods used
have not symmetrized the kernels to make them Hermitian, nor are all the
generators of the corresponding groups Hermitian, and they have to redefine
the inner product [51, 94].

3.4.2 Transformation of A and L to the new basis states

We must transform the defining equation for A as given in Eq. (3.2) and
L = r x p when we change our basis states from eigenstates of the energy
to eigenstates of the inverse coupling constant. The correct transformation
may be derived by requiring that the transformed generators produce the
same linear combination of new states as the original generators produced
of the old states. Thus, since

Alnlm) =Y |nl'm) A7, (3.46)

U,m’

where the coefficients Af,”]n, are the matrix elements of A, we require that
the transformed generator a satisfies the equation

alnlm) = Z [nl'm’) A, (3.47)

'm/’

In other words, since the Runge—Lenz vector A is a symmetry operator of
the original energy eigenstates, a will be a symmetry operator of the new
states with precisely the same properties and matrix elements. Since A is
Hermitian, a is Hermitian.

To obtain a differential expression for a acting on the new states, we
need to transform the generator using Eq. (3.42):

a=D"(\) <x/p(an)A\/ﬁ> D). (3.48)

The effect of the scale change from D(),) on the quantity in large
parenthesis is to replace a,, everywhere by a. By explicit calculation, we
find

a—
2a 2

1 (rp2 + p’r
2

ar
r~pppp~r)— (3.49)
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for p(a) = (p® + a?)/2a*. And we obtain

2, .2
a%(%rq)pppm%ﬂ)% (3.50)
for p(a) =n/ar.

Both of these expressions for a are manifestly Hermitian. In addition,
since there is no dependence on the principal quantum number, these
expressions are valid in the entire Hilbert space, and not just in a subspace
spanned by the degenerate states, as was the case when we used the energy
eigenstates as a basis using Eq. (3.14).

The angular momentum operator is invariant under scale changes, and
it commutes with scalar operators. Therefore, L is invariant under the

similarity transformation ——D()\,,) and the expression for the angular
Yy \/m ( n) p g

momentum operator with respect to the eigenstates of (Za)~! is the same
as the expression with respect to the eigenstates of the energy.

3.5 The (U’| Representation

The U’ coordinates provide the natural four-dimensional representation for
the investigation of the symmetries of the hydrogen-like atom in quantum
mechanics, as in classical mechanics.! Therefore, we briefly consider the
relevant features of this representation and, in particular, its relationship
to the momentum representation. The eigenstate (U’| of Uy, b = 1,2,3,4,
is defined by

o'y v,=0, (U (3.51)

These states are complete on the unit hypersphere in four dimensions:
/ U] dRY = / U] sin? 04 sin 0d0sdidd — 1,  (3.52)

where Q) refers to the angles (64,0, ¢) defined in Eq. (2.41). The U variables
are defined in terms of the momentum variables and the quantity a in
Eq. (2.38). Therefore the momentum and the U operators commute

[pi, Up] =0 (3.53)
and the state (U’] is proportional to a momentum eigenstate (p'|:

Ul =V JIW), (3.54)

1The prime indicates eigenvalues of operators, and the unprimed quantities indicate
abstract operators. The quantity x’ means the four-vector (t’, x’).
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where the momentum eigenstate is defined by (p’|p = p’(p| and

/ &) (] = 1. (3.55)

The function J(p') may be determined by equating the completeness
conditions and substituting Eq. (3.54):

1= [ @) = [ e = [Eeawiwl. @50
which leads to the identification of the differential quantities
dp' = d*Q' J(p) (3.57)

demonstrating that J(p’) is the Jacobian of the transformation from the
p- to the U-space. The volume element in momentum space is

d3p' = p?dp’ sin0'd6’d¢’ (3.58)
Substituting the expression for d*Q’ from Eq. (3.52) we find

— IQd_Z)I 1 d /

d3 /
=P 0 sin% e,

(3.59)

Using Eq. (2.38) and (2.40) we can evaluate dp’/df4 and sin 6y in terms of
p, obtaining the Jacobian

3
p/2 +a2
J(p") = { 50 ] . (3.60)
Therefore from Eq. (3.54) we have the important result
2 ,273/2
p°+a
W= [ (3.61)

We can use this result to compute the action of 7 on (U’| in terms of
differential operators. Using the equation

@'lr=iVy @', (3.62)

we obtain

. 3ip’
<[]I|’I'1 = (va/ — m) <UI| (363)
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3.5.1 Action of a and L on (U’|

Using Eq. (3.62) for the action of » on (U’| and using the expression
Eq. (3.49) for a, we immediately find that when acting on (U’|, a has
the differential representation

7
@ = (0~ *)Vy — 2D V), (3.64)

where
(U'|la=a'(U'|. (3.65)

We can also write @’ in terms of the U’ variables by using the relationship
Eq. 2.39 between the p and U variables:

a = UiV —U'id/d,, (3.66)

where the spatial part of the four vector U’ is U = (U, Us,Us) and
U, is the fourth component. This is the differential representation of a
rotation operator mixing the spatial and the fourth components of U’.
When acting on the state (U’|, clearly ‘¥ generates a four-dimensional
rotation that produces a new eigenstate (U”|. To derive the form of the
finite transformation explicitly we compute

la, U!) = iULos;  [al,, UL) = iU, (3.67)

ia-nv

For a finite transformation a with n? = 1, for the transformation of

the spatial components of U we have

U’ = eia/~nuU/e—ia/~nu

(3.68)
=U —nn-U +nn-U'cosv—nUjsinv
and for the fourth component of U we have
U’ — eia’~nuU /e—ia'~nz/
. ! (3.69)

=Ujcosv+mn-U'sinv.

These equations of transformation are like those for a Lorentz transforma-
tion of a four-vector (r, it). We can illustrate the equations for ez (cf
Eq. (2.44)) which mixes the 2 and 4 components of U’:
U/ =U, Uj="U;
. (3.70)
UY =Ujcosv —Uysinvy Uy = Ujsinv + Uj cosv.
When L acts on (U’| it has the differential representation

L'=U'xiVy (3.71)
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This result follows directly since U/ equals pj times a factor that is a scalar
under rotations in three dimensions. When e‘L“ acts on (U’| it produces a
new state (U”|, where the spatial components of U’ have been rotated to
produce U”.

In summary, we see that U’ is a four-vector under rotations generated by
a’ and L'. Therefore the states (U’| provide a vector representation of the
group of rotations in four dimensions SO(4), with the generators a and L.

In the next chapter, we describe the wave functions of the hydrogen
atom.



Chapter 4

Wave Functions for the Hydrogen-like Atom

In this chapter, we analyze the wave functions of the hydrogen-like atom,
working primarily in the (U’| representation and using eigenstates of
the inverse of the coupling constant (Za)-' for the basis states. In
this representation, the wave functions are spherical harmonics in four
dimensions. We derive the relationship of the usual energy eigenfunctions
in momentum space to the spherical harmonics and discuss the classical
limits in momentum and configuration space.

4.1 Transformation Properties of the Wave Functions
under the Symmetry Operations

We can show that the wave functions Yy, (U’) in the (U’| representation
with respect to the eigenstates of (Za)™?

Youm(U') = (U'|nlm) (4.1)

transform as four-dimensional spherical harmonics under the four-
dimensional rotations generated by the Runge-Lenz vector a and the
angular momentum L. We note that the quantity a is implicit in both the
bra and the ket in Eq. (4.1). For our basis states we employ the set of (Za) ™!
eigenstates [nlm) of the inverse coupling constant that are convenient for
momentum space calculations (p = (p? + a?)/2a?). We choose these states
rather than those convenient for configuration space calculations because
the (U’| eigenstates are proportional to the (p’| eigenstates (Eq. 3.61).

If we transform our system by the unitary operator e?, where 6 =
L-w+ a- v, then the wave function in the new system is

L (U) = (U'e |nlm). (4.2)

nlm

55
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There are two ways in which we may interpret this transformation,
corresponding to what have been called the active and the passive
interpretations. In the passive interpretation, we let €’ act on the coordi-
nate eigenstate (U’| . As we have seen in Section 3.5.1, this produces a new
eigenstate (U”|, where the four-vector U” is obtained by a four-dimensional
rotation of U’ (Egs. 3.68-3.70). Thus we have

Lo (U') = (U [nlm) = YVigm (U"). (4.3)

nlm

In the active interpretation, we let e act on the basis state [nlm). Since L
and a are symmetry operators of the system, which transform degenerate
states into each other, it follows that ¢*’|nlm) must be a linear combination
of states with a principal quantum number equal to n. Therefore, we have

! 1
i (U') = Y (U [RR Inllm) =y B Yo (U'). (4.4
Um! Um!
The wave functions for degenerate states with a given n transform
irreducibly among themselves under the four-dimensional rotations, forming

a basis for an irreducible representation of SO(4) of dimensions n?. Equating
the results of the two different interpretations gives

Yorm (U") = R Yot (U'). (4.5)
'm/’

The transformation properties Eq. (4.5) of Yy, are precisely analogous to
those of the three-dimensional spherical harmonic functions. It follows that
Y., jm are four-dimensional spherical harmonics [48, 129].

4.2 Differential Equation for the Four-Dimensional
Spherical Harmonics Y1, (U’)

The differential equation for the Y,;,(U’) may be obtained from the
equation

(L + a") Yo (U") = (02 — 1) Yo (U"), (4.6)

which follows from Cy = n? — 1 and the definition Co = L? + A%, Eq. (3.6).
Substituting in the differential expressions Egs. (3.66) and (3.71) for a’
and L’ we find that L’? + a’? equals V%, — (U’ - V)2, which is the
angular part of the Laplacian operator in four dimensions (cf in three
dimensions, L?/r? = p? — p?). Thus Eq. (4.6) is the differential equation
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for four-dimensional spherical harmonics with the degree of homogeneity
equal to n — 1, which means n? such functions exist, in agreement with the
know degree of degeneracy.

4.3 Energy Eigenfunctions in Momentum Space

We want to determine the relationship between the usual energy eigen-

functions in the momentum space Vi, (p’) = (P'|nlm) (with a = a,)
and the four-dimensional spherical harmonic eigenfunctions Y, (U’;a) =
(U'|nlm; a).

We choose the RMS momentum a to have the value a,,. If we use the
expression Eq. (3.61) for (U’| in terms of (p/|

(4.7)

3/2
p2+ai /
2a,

=l

and the expression Eq. (3.32) for the eigenstates of (Za)~! in terms of the
energy eigenstates

p2+a2

|nlm;ay,) = 20 2 nlm) (4.8)

we find the desired result

pPPtan) 1

Ynzm(U';an)Z( S, )2@¢nlm(p/)- (4.9)

The usual method of deriving this relationship between the wave function
in momentum space and the corresponding spherical harmonics in four
dimensions involves transforming the Schrodinger wave equation to an
integral equation in momentum space [32, 48]. As in the classical case,
we first replace p by p/a and perform a stereographic projection from
the hyperplane corresponding to the three-dimensional momentum space
to a unit hypersphere in a four-dimensional space. The resulting integral
equation manifests a four-dimensional invariance. When the wave functions
are normalized as in Eq. (4.9), the solutions are spherical harmonics in
four dimensions. As another alternative to this procedure, we can Fourier
transform the configuration space wave functions directly [129].
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4.4 Explicit Form for the Spherical Harmonics
The spherical harmonics in four dimensions can be expressed as [130]:
Yo (Q) = Ni(n, 1) (sin 04) CEL  (cos 0s)

ei'm¢

Vor

The factor in brackets is equal to Y;"(6, ¢), the usual spherical harmonic
in three-dimensions [130]. The Gegenbauer polynomials C;) () of degree n

. |:N2(l, m)(sin 6’)7”07”“/2 (cosb)

l—m

(4.10)

and order X\ are defined in terms of a generating function:

TaTEp = SO a

n=0
Ni(n,l) and Ny(l,m) are chosen to normalize the Y,,;,, on the surface of
the unit sphere:

/ Yot ()P = 1, (4.12)

where d®Qp = sin? 6, sin 0dfd¢. We find

ot ) = 20 (10 ) = e )]

In the next section, we discuss the asymptotic behavior of Y, for large

quantum numbers and compare it to the classical results of Chapter 2. We
first mention experiments with Rydberg atoms, which are atoms with a
very large radius that approximate the classical behavior.

4.5 Wave Functions in the Semi-classical Limit
4.5.1 Rydberg atoms

Advances in quantum optics, such as the development of ultra-short laser
pulses, microwave spectroscopy, and atom interferometry, have opened
new possibilities for experiments with atoms and Rydberg states, meaning
hydrogen-like atoms in states with very large principal quantum numbers
and correspondingly large diameter electron orbits. The pulsed electromag-
netic fields can be used to modify the behavior of the orbital electrons. Semi-
classical electron wave packets in hydrogen-like atoms were first generated
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in 1988 by ultrashort laser pulses, and today are often generated by unipolar
teraherz pulses [131-133].

Rydberg states of alkalai metals, which have one outer electron, have
been employed recently in systems of entangled atoms to perform quantum
computation. Two atoms, micrometers apart, can interact a billion times
more strongly than normal if one is excited to a high-energy Rydberg state,
for example with n about 79. Now much bigger, that atom shifts the energy
levels in the second atom so it cannot be excited, the so-called Rydberg
blockade [278].

Over the last few decades, there has been a broad interest in the
classical limit of the hydrogen-like atom for n very large, Rydberg states,
for a number of reasons [134]: (1) Rydberg states are at the border
between bound states and the continuum, and any process that leads to
excited bound states, ions, or free electrons usually leads to the production
of Rydberg states. This includes, for example, photo-ionization or the
application of microwave fields. The very large cross section for scattering is
unique. (2) Rydberg states can be used to model atoms with a higher atomic
number that have an excited valence electron that orbits beyond the core.
(3) In Rydberg states, the application of electric and magnetic fields breaks
the symmetry of the atom and allows the study of different phenomena,
including the transition from classical chaos to quantum chaos [135].
(4) Rydberg atoms can be used to study coherent transient excitation and
relaxation, for example the response to short laser pulses creating coherent
quantum wave packets that behave like a classical particle.

The square of the wave function for a given quantum state gives a
probability distribution for the electron that is independent of time. The
wave function is the appropriate description for Rydberg states for which
the principal quantum number is not too high.

If we want to describe the movement of an electron in a semiclassical
state, with a large radius, going around the nucleus with a classical time
dependence, then we need to form a wave packet. The wave packet is built
as a superposition of many wave functions with a band of principal quantum
numbers.

A variety of theoretical methods have been used to derive expressions
for the hydrogen atom wave functions and wave packets for highly excited
states. There is general agreement on the wave functions for large n, and
that the wave functions display the expected classical behavior: elliptical
orbits in the configuration space and great circles in the four-dimensional
momentum space [136-139).
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Researchers have proposed a variety of wave packets to describe
semi-classical Rydberg states. There are general similarities in the wave
packets that describe electrons traveling in circular or elliptical orbits
with a classical time dependence for some characteristic number of orbits,
and it is maintained that the quantum mechanical wave packets provide
results that agree with the classical results [112, 132, 133, 136-141].
Most of the approaches exploit the SO(4) or SO(4,2) symmetry of the
hydrogen atom, which is used to rotate a circular orbit to an elliptical
orbit. The starting orbital is often taken as a coherent state, which is
usually considered a classical-like state. The most familiar example of a
coherent state is for a one-dimensional harmonic oscillator characterized
by creation and annihilation operators af and a. The coherent state |a)
is a superposition of energy eigenstates that is an eigenstate of a where
ala) = a|a) for a complex «. This coherent state will execute harmonic
motion like a classical particle [142]. To obtain a coherent state for the
hydrogen-like atom, eigenstates of the operator that lowers the principal
quantum number n (which will be discussed in Section 7.4) have been
used [143], as well as lowering operators based on the equivalence of the
four-dimensional harmonic oscillator representation of the hydrogen atom
[137, 138, 144].

In either case, this coherent eigenstate is characterized by a complex
eigenvalue, which needs to be specified. Several constraints have been
used to obtain the classical wave packet that presumably obeys Kepler’s
laws, such as requiring that the orbit lie in a plane so (z) = 0 for the
orbital, or that (r — rcassical) be a minimum, or that some minimum
uncertainty relationship is obtained. In addition, there are issues regarding
the approximations used, in particular, those that relate to time. For
times characteristic of the classical hydrogen atom, the wave packets act
like a classical system. For longer times, the wave packet spreads in the
azimuthal direction and after some number of classical revolutions of order
10 to 100 the spread is 27 so the electron is uniformly spread over the
entire orbit. The spread arises because the component wave functions
that form the wave packet have different momenta. In two derivations,
still longer times were considered, and recoherence was predicted to occur
after about n/3 revolutions, where n is the approximate principal quantum
number, although there is some difference in the predicted amount of
recoherence [134, 139]. Due to the conservation of L and A the spread
of the wave packets is inhibited except in the azimuthal direction.
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Brown took a different approach to develop a wave packet for a circular
orbit [112]. He first developed the asymptotic wave function for large n and
then optimized the coefficients in a Gaussian superposition to minimize the
spread in ¢, obtaining a predicted characteristic decoherence time of about
10 minutes, considerably longer than any other predicted decoherence time.

Other authors have explored the problem from the perspective of
classical physics and the Bohr Correspondence Principle [136, 140, 145,
146] Results from the different methods support the basic conclusion
that the wave functions are peaked on the corresponding classical Kepler
trajectories: “atomic elliptic states sew the wave flesh on the classical
bones” [132].

With the variety of experimental methods used to generate Rydberg
states, a variety of Rydberg wave packets are created, and it is not clear
which theoretical model, if any, is preferred [134]. We take a very simple
approach to forming a wave packet and simply use a Gaussian weight for
the different frequency components. This does not give an intentionally
optimized wave packet, but it is a much simpler approach and the result
has all the expected classical behavior that is very similar to that obtained
from much more complicated derivations. We start with a circular orbit
and then do a SO(4) rotation to secure an elliptical orbit. We show that it
has the classical period of rotation.

4.5.2 Formation of semi-classical wave packets

We need to derive the semi-classical limit of the wave functions that
correspond to circular orbits in configuration space. For this case, sinv,
which we interpret as the expectation value of the eccentricity, vanishes. We
derive expressions for the wave functions in momentum space and then form
a wave packet. To obtain corresponding expressions for elliptical orbits, we
perform a rotation by e’®* which does not alter the energy but changes the
eccentricity and the angular momentum.

Case 1: Circular orbits, sinv = e =0

We derive the asymptotic form of Y, the spherical harmonic in four
dimensions, for large quantum numbers, where for simplicity we choose the
quantum numbers n—1 = [ = m corresponding to a circular orbit in the 1-2
plane. From Eq. (4.10) we see that we encounter Gegenbauer polynomials
of the form (¢, which represents the first term in the expansion of the left
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side of Eq. (4.11), and therefore are unity. For a very large I, sin' § will have
a very strong peak at § = w/2 so we make the expansion [112]

T T 1 T\ 2 2
infh —sin [ — G T R D O oo e (1/2)(0-7/2)
sin 0 s1n(2+(9 2)) 2(9 2) + e
(4.15)
to obtain
sin! @ & e~ (1/DUO-7/2)* (4.16)

The asymptotic forms for N7 and N, can be computed using the properties
of T functions:

lim T(az + b) ~ V2me % (az)** 103, (4.17)
Z—r 00
and the Stirling approximation for the factorial function

n! =~ v2mn(n/e)" for large n. (4.18)

We obtain!

1 x\2 1, x\2 .
Yim1m-1() =, /%6—5”(94—5) e 3n(0-3)" fitn—1)¢ (4.19)

which gives the probability density

2 2

|Yn,n71,n71(Q)|2 = (2:_2)67n(947%) 'ein(eig) : (4.20)
We have Gaussian probability distributions in 6, and 6 about the value
7/2. The distributions are quite narrow with widths Afy ~ A0 ~ 1//n.
The spherical harmonic essentially describes a circle (04 = 6 = 7/2) on the
unit hypersphere in the 1-2 plane. As n becomes very large, both Uy =
cosfy =~ (r —r.)/r (Egs. (2.40) and (2.51)) and Us = sinf, cosf, which
is proportional to p3, go to zero as 1/4/n. The distribution approaches the
great circle U + U3 = 1 that we saw in Eq. (2.46) for a classical particle
moving in a circular orbit in the 1-2 plane in configuration space. Note
that this state is a quantum mechanical stationary state with a constant
probability density. To get the classical time dependence, we need to form
a wave packet.

L According to Eq. (4.9), the corresponding wavefunction in momentum space 1 (p) is

obtained by multiplying Y7, n—1,,—1(2) by 40,%/2/(])2 +a?)2.
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Forming a Wave packet

We form a time dependent wave packet for circular orbits by superposing
circular energy eigenstates:

X(Qﬂ t) = Z eitEn n,nfl,nflAan, (421)

where A, _y is an amplitude peaked about n = N >> 1. For n >> 1 we
expand FE,, about Ey:

oF 0*’E
E,=En+ | s+ 55 24 (4.22)
on | n on? |y
where s = n — N. From the equation for the energy levels, E

—m(Za)?/(2n?) we compute

~m(Za)? | —8E3
N N3 m(ZaA)]Q' (4.23)

In agreement with the Bohr Correspondence Principle, the right-hand side
of Eq. (4.23) is just the classical frequency w.; as given in Eq. (2.24). For
the second order derivative we have

OFE,
on

0°E 3
mZln T NYEED 4.24
on? ‘N N B (4.24)
which gives
x(9,t) = e~ HtEN pi¢(N—1) Z o—i(wast—(8)s*t—s0)
s=—N+1
.A5|YN+5,N+571,N+571|. (425)

We choose a simple Gaussian form for A

1
As = \/ﬁe—sz/(QN). (426)

Brown used A, = Ce~*"3at/N which minimizes the diffusion in ¢ at time
t [112]. Since |Yn4s,N+s—1,N+s—1| varies slowly with s for N >> 1, we can
take it outside of the summation in Eq. (4.25). We now replace the sum by
an integral over s. Since A, is peaked about s = N, we can integrate from
s = —o0 to s = +00. We perform the integral by completing the square in
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the usual way. The final result for the probability amplitude for a circular
orbital wave packet is

—1
|2(Q, 1) = [Yan—1,v-1]? (1 + 522N?)

N

| (4.27)

~exp |— (¢ — wclt)Q

This represents a Gaussian distribution in ¢ that is centered about the
classical value ¢ = wqt, which means that the wavepacket is traveling in
the classical trajectory with the classical time dependence. The width of
the ¢ distribution is

Ap = (N)CVD (14 B2HN2)Y2 = (N) M2 (14 9022)Y% (4.28)

The distribution in ¢ at t = 0 is very narrow, proportional to 1/ VN, but
A¢ increases approximately linearly over time.

The distributions in 6, and 6 are Gaussian and centered about /2 in
each case, as for the circular wave function (cf. Eq. (4.20)) with widths
equal to (N)~/2. The spread of these distributions in time is inhibited
because of the conservation of angular momentum and energy. The detailed
behavior of the widths depends on our use of the Gaussian distribution.
Other distributions will give different widths, although the general behavior
is expected to be similar.

As a numerical example, consider a hydrogen atom that is in the
semiclassical region when the orbital diameter is about 1cm. The corre-
sponding principal quantum number is about 10%, the mean velocity is
about 2.2 x 10* cm/sec, and the period about 1.5 x 10™% sec. After about
34 revolutions or 5 x 1073 sec, the spread in ¢ is about 27, which means
that the electron is spread uniformly throughout the circular orbit. This
characteristic spreading time can be compared to 1.6 x 1073 sec for a fully
optimized wave packets formed from coherent SO(4,2) states [139, 147]. In
order to make predictions about significantly longer times, we would need
to retain more terms in the expansion Eq. (4.22) of E,,.

Case 2: Elliptical orbits sinv = e # 0

We can obtain the classical limit of the wave function for elliptical orbits by
first writing our asymptotic form Eq. (4.19) for Y,, ,—1,,—1 in terms of the
U variables instead of the angular variables by using definitions Eq. (2.40),
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and setting @ = a,,. Retaining only the lowest order terms in (64 —7/2) and
(0 —m/2), we find

S 3 n— n—t( Y2 1 1
Yn,n—l,n—l(U) = (%) : 61( 1)ta (U?) . e_in(U‘l)ze_i”(UB)Q. (429)

For large n, this represents a circular orbit in the 1-2 plane. The exponential
in Uz indicates ps is near zero; the exponential in Uy indicates that Uy =
(re —r)/r. (Eq. 2.51) is near zero so the trajectory is approximately the
classical trajectory. The quantity 7. is the length of the classical semi-major
axis given by Eq. (2.14). We now perform a rotation by Asv. which will
change the eccentricity to sinv, and change the angular momentum, but
will not change the energy or the orbital plane. Using Eq. (3.70) to express
the old coordinates in terms of the new coordinates, we find to lowest order
1/2 ., —1 Us
Virwa U) = () e (o)

.efén{Uz sinv—Us cosv}? efén(U3)2' (430)

In Section 2.6, we found that the vanishing of the term in braces
(0 = Uysinv — Uy cosv), along with Us approximately zero, specifies the
classical great hypercircle orbit (Eq. (2.42)) corresponding to an ellipse
in configuration space with eccentricity e = sinv and lying in the 1-2
plane. The probability density Y,/ , 1, _1(U)[* vanishes except within a
hypertorus with a narrow cross section of radius approximately ﬁ which
is centered about the classical distribution. Since the width ﬁ of the
distribution is constant in U space, it will not be constant when projected
onto p space.

In terms of the original momentum space variables (Eq. 2.38), the
asymptotic spherical harmonic is

Y;L,n—l,n—l (p)

1
E —1 P2
_ ( n )2 pi(n=1) tan (3:27)

272

2 12 2
n 5 9 a cos v
-exp{—(g) [pl—i—(pg—atany) _COSQZ/:| <p2+a2)}
e — (ﬁ) 2psa i ’a =a (4.31)
Xp )\t a =a,. )

The expression in brackets corresponds to the momentum space classical

orbit equation we found previously (Eq. 2.35). As we expect, p3 is Gaussian
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risa minimum

P,

ris a maximum

Fig. 4.1. Wave function probability distribution |[Y;! =, . (p)|? in momentum space
for large n, showing the variation in the width of the momentum distribution about the
classical circular orbit. The center of the distribution is at po = atanv. The classical
orbit is in the 1-2 plane.

about zero since the classical orbit is in the 1-2 plane. We can simplify the
expressions for the widths by observing that to lowest order we can use
Eq. (2.34), which implies p? + a®> = 2a% + 2apz tanv in the exponentials.
The widths of both distributions therefore increase linearly with ps. We
also note that since classically there exists a one-to-one correspondence
between each point of the trajectory in momentum space and each point
in configuration space, we may interpret the widths of the distributions
using Eq. (2.18) (p? + a?)/a® = 2r./r. Accordingly the widths increase as
the momentum increases or as the distance to the force center decreases
(Fig. 4.1).

Forming a Wave packet for Elliptical Motion

We may form a time dependent wave packet superposing the wave functions
of Eq. (4.30). Care must be taken to include the first-order dependence
(through a,,) of tan=!(Us/U; cosv) on the principal quantum number when
integrating over the Gaussian weight function. The result for the probability
density is the same as before (Eq. 4.27) except [V vy v 4]* (given in
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Eq. 4.30) replaces |Yy ny—1,n-1]? and

U,

1
wat = tan _—
ol (U1 cosv

> +sinv (Uy) (4.32)

replaces wqt = ¢, The final result for large n = N is

Ix(, 1) = %(1 + B2t?*n?) "t exp[-n(Ussinv — Uy cosv)].

1 U : ° n
exp[—nUZ] - exp l— (qb — tan™? Ulcizsz/ + Uy sin 1/) W] .

(4.33)

The result has the same time dependence as the classical result Eq. (2.59)
and the orbit is approximating the classical orbit (Eq. 2.42). The spread
of the wave packet will be controlled by the same factor as for the circular
wave packet.

Remark on the Semiclassical Limit in Configuration Space

The time dependent quantum mechanical probability density follows the
classical trajectory in momentum space, meaning that the probability is
greatest at the classical location of the particle in momentum space. Since
the configuration space wave function is the Fourier transform of the
momentum space wave function, the classical limit must also be obtained in
configuration space. That this limit is obtained is made explicit by observing
that the momentum space probability density is large when

(Uysinv — Uy cosv)? ~ 0. (4.34)

However, from Section 2.6 we know that a parametric equation for the
classical orbit in U = space is

Ussinvy — Uy cosv = 0. (4.35)
Accordingly we conclude that the configurations space probability will be
large when
" — Tclassical °
{7] ~0. (436)
T'classical

4.6 Quantized Semiclassical Orbits

It is convenient at times to have a semiclassical model for the orbitals of
the hydrogen-like atom. Historically, this was first done by Pauling and
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Wilson [148, p. 36]. We can obtain a model by interpreting the classical
formulae for the geometrical properties of the orbits as corresponding to
the expectation values of the appropriate quantum mechanical expressions.
Thus, when the energy E = —a?/2m appears in a classical formula, we
employ the expression for a for the quantized energy levels a = 1/nr
where 79 = (mZa)~! which is the radius 0.53 Angstrom of the ground
state. Similarly, if L? appears in a classical formula, we substitute [(I + 1)
where [ is quantized [ = 0,1,2,...,n — 2,n — 1; and m , the component of
L along the 3-axis is quantized: m= —I, -1+ 1,—1+2,...,1[.

Orbits in Configuration Space

Recalling Eq. (2.14), r. = mZa/a?, and noting Eq. (3.15) a = mZa/n,
we see ar. = n, which gives a semi-major axis of length r. = n?rq, where
ro = 1/mZa is the radius for the circular orbit of the ground state. For a
circular orbit, the radius is the semi-major axis. Thus, r. is the radius of
a circular orbit for a state with principal quantum number n. For an orbit
with eccentricity e = sin v, the equations for the magnitude of L and A are

L =r.acosv =ncosv =+/I(l+1) (4.37)
A=reasiny =nsinv =+/n? —1(l+1) (4.38)

This gives an eccentricity sin v equal to

e=sinv=4/1- (4.39)

and a semi-major axis equal to

b=rcsinv =n/I(l+1). (4.40)

Note that the expression for e is limited in its meaning. For an s state, it
always gives e = 1, and for states with [ = n —1 it gives e = y/1/n, not the
classically expected 0 for a circular orbit.

Orbits in U-Space

The corresponding great hypercircle orbits (v,0) in U-space are described
by giving the quantized angle v, between the three-dimensional hyperplane
of the orbit and the 4-axis, and the quantized angle ©, between the
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hyperplane of the orbit and the 3-axis:

cosv = l(l;; D (4.41)
C m

= 4.42

o8 10+ 1) (442)

Note the similarity in these two equations, suggesting that m relates to [ the
same way that [ relates to n, suggesting a four-dimensional generalization
of the usual vector model of the atom which only describes the precession
of L about the z-axis.

The results for orbits in configuration and momentum space illustrate
some interesting features:

(1) Equation ar = n illustrates that the characteristic dimensions of
an orbit in the configuration space and the corresponding orbit in
momentum space are inversely proportional, as expected, since they
are related by a Fourier transform, consistent with the Heisenberg
Uncertainty Principle.

(2) If I = 0, then there is no classical state. The orbit in configuration
space degenerates into a line passing through the origin, while the
corresponding circular orbit in momentum space attains an infinite
radius and an infinite displacement from the origin. Although this seems
peculiar from the pure classical viewpoint, quantum mechanically it
follows that for S states there is a non-vanishing probability of finding
the electron within the nucleus. S states are very important in the
quantum mechanics of the hydrogen atom.

In order to interpret these statements about quantized semiclassical
elliptical orbits we observe that for the quantum mechanical state of the
hydrogen-like atom with definite n, [, m, the probability density, which is
the square of the absolute value of the wave function, is (1) independent
of ¢, or ¢, and (2) it does not confine the electron to some orbital plane.
Since the quantum mechanical distribution for such a state specifies no
preferred direction in the 1-2 plane, we must imagine this distribution as
corresponding in some way to an average over all possible orientations of
the semiclassical elliptical orbit. This interpretation is supported by the fact
that the region within which the quantum mechanical radial distribution
function differs largely from zero is included between the values of r
corresponding to the semiclassical turning points r.(1 & sinv).
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4.7 Four-Dimensional Vector Model of the Atom

In configuration space or momentum space, the angle between the classical
plane of the orbit and the z-axis is ©, which is usually interpreted in terms
of the vector model of the atom, in which we imagine L to be a vector of
magnitude y/I(I 4+ 1) precessing about the z-axis, with m as the component
along the z-axis as shown in Fig. 4.2.

This precession may be linked to the ¢, independence of the probability
and the absence of an orbital plane, as mentioned at the end of the preceding
section. The precession constitutes a classical mechanism that yields the
desired average over all possible orientations of the semi-classical elliptical
orbit. Since the angle © is restricted to have only certain discrete values,
one can say that there is a quantization of space.

The expression for cosv = /(I 4+ 1)/n? is quite analogous to that for ©,
Eq. (4.42), and so suggests a generalization of the vector model of the atom
to four dimensions. The projection of the four-dimensional vector model
onto the physical three-dimensional subspace must give the usual vector
model. We can achieve this by imagining that a four-dimensional vector of
length n, where n is the principal quantum number, is precessing in such
a way that its third and fourth components are constants, while the first
and second components vary periodically. The projection onto the 1-2-3
hyperplane is a vector of constant magnitude /I(l + 1) precessing about
the 3-axis (Fig. 4.3). The component along the 3-axis is m. The component
along the 4-axis is A = /n? — (I + 1) the magnitude of the vector A.
The vectors L and A are perpendicular to each other. Thus, the precessing
n vector makes a constant angle © with the 3-axis and a constant angle

Fig. 4.2. Three-dimensional vector model of the atom. The angular momentum vector
L precesses about the z-axis so the component in the z-direction is L, = m.
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A=vnZ-1(1+1)

Fig. 4.3. Four-dimensional vector model of the atom. The vector representing the
principal quantum number n precesses so that the vectors L and A are its components
along the 3-axis and the 4-axis respectively.

7/2 — v with the 4-axis. Since both angles are restricted to certain values,
we may say that we have a quantization of four-dimensional space.
In the next chapter, we deal with the relativisitic Dirac hydrogen atom.
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Chapter 5

The Dirac Hydrogen Atom: The Kepler
Problem for a Relativistic Spinning Electron

We first discuss the conserved generalized parity operator introduced by
Dirac and then derive and interpret the conserved pseudoscalar operator A,
examining its non-relativistic limit. We present the symmetry group for the
Dirac electron in a Coulomb potential.

5.1 Dirac’s Generalized Parity Operator Ky

For a non-relativistic electron in a Coulomb field, the Pauli equation reduces
to the Schrodinger equation

(ﬁ_@_g)wzo (5.1)

and the scalar o - L is a constant on the motion. This suggests that there
exists some conserved relativistic generalization of o - L for the Dirac
equation with the Hamiltonian!
Za
H=a -p+pfm——. (5.2)
r
In order to investigate this possibility, we calculate the effect of o - L on
our four component Dirac spinors using the equation
oN2 3
J2:(L+5) :](g+1)=l(l+1)+a-L+Z. (5.3)
We know that either j = [+ 1/2 or j = [ — 1/2. Since the upper and
lower components of the spinor have opposite parity, if [ = j — 1/2 for

1We use the following conventions: —iyso = «; YuYv + VoY = —20uv; A0 = v192737s.
It is convenient to use a direct product representation p® o of the matrices. In the Dirac
representation, we have v5 = ip1, 8 = p3, v = p3p1pi, where p; and o, i = 1,2,3 are
two independent sets of Pauli spin matrices.

73
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the upper component, then I’ = j + 1/2 for the lower component and
vice versa. Solving Eq. (5.3) for [ equal to j — 1/2 and j + 1/2, we obtain
the result

Vji=j+1

(0 L+0)¥(j0) = <j+%>

7wj,l:jf%
o1 }

where ¥(j,1) is a four-component Dirac spinor

wj,l—j+1

Vii=j—1

W(j,1) = l (5.5)

;1 is a two-component spinor, and

- 1 0 56
ﬂ(o _1>. (56)

If we multiply Eq. (5.4) by 5 and perform some simple manipulations, we
obtain the following:

KqW(j,1) = (=1)"*712(5 +1/2)9(5,0) (5.7)

with
Kgs=0(c-L+1). (5.8)
In order to make the Dirac spinor an eigenspinor of Ky, which is the
relativistic generalization of o - L, we had to insert a § because the upper

and lower components have opposite parity. By an explicit calculation, we
can show that

[KdaH] = 0’ [Kda J] = 07 (59)

so K4 is a conserved scalar. Another important feature of K, is that its
square is related to J2. If we operate on Eq. (5.7) with K, or just square
Eq. (5.8) and use the identity

oc-Ac-B=A-B+io-AXxB,

we find

1
K;=J%+ T (5.10)
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It is useful to define a normalized operator

Ky
= , 5.11
j+1/2 (5.11)
which obeys the equation
RO, 1) = (=D (=) 2W(5,0) = K2 (,1). (5.12)

For fixed j, the operator k is proportional to the parity operator. The
eigenvalues k' have been called the normality. The eigenstates are labeled
k' and j (in addition to n and m). The two degenerate energy levels have
the same n and j, but the eigenvalues k’ are opposite in sign.

5.2 The Conserved Pseudoscalar Operator A

By definition, the operator A transforms one degenerate state into the other.
Since the two states have opposite parities, A must have a parity equal
to —1. In addition, since the two states have the same j, the operator must
not change the angular momentum. Therefore, A is a pseudoscalar and
obeys the following commutation relations

[J,A]=0; [H,A]=0 (5.13)
and the anticommutation relation
{K4, A} =0. (5.14)

Clearly, any conserved pseudoscalar constructed from the dynamical vari-
ables will be suitable. The pseudoscalar A will be unique up to a constant
scalar function that commutes with A, namely, f(H,J?). An essentially
unique A is obtained if we require that

A% =1.

This requirement means that A does not change the norm of the states and
also specifies our phase convention. For Za = 0, there exists a conserved
pseudoscalar, o - p, which, if normalized, would equal the helicity. Since Ky
is a conserved scalar, it is possible to obtain another pseudoscalar constant
by commutation:

[0-p, K4 =180 - (p x L— L x p). (5.15)

By attempting to close the algebra of conserved quantities for Za = 0,
we have obtained a term equal to (2ia)fBo - A, where A is the conserved
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quantum mechanical Runge Lenz vector for Za = 0. This will be the first
term in A. Since

{U 'paKd} = Oa

we can write the left side of Eq. (5.15) as 20 - p K4. The term o - p may
be written in terms of the free Hamiltonian Hy:

Hy = —ivys0 - p+ fm. (5.16)
Solving for o - p gives
o-p=—iys(Ho — fm). (5.17)
If we follow the same procedure but use the Hamiltonian for Za # 0 given
in Eq. (5.2), we find
o-p+ i%? = —ivs(H — Bm). (5.18)

Comparison of Eq. (5.17) and Eq. (5.18) suggests that when we turn on
the electromagnetic interaction, we replace o -p by o -p+ i'yg,@. Thus, in
analogy to Eq. (5.15), we compute the pseudoscalar

. Za 2«
o -p—l—z’yg,T,Kd =20 -pK+2zT'y5Kd.

We find that the commutator of this pseudoscalar with H is a constant
times —im @75(0’ - L +1). We must now find a term whose commuter
with H will cancel this. From the quantum mechanical form of A (Eq. 2.2),
we would expect A to contain a term similar to 2imZao - 7 multiplied by
1 or 3. Upon calculation, we find that the correct term does not contain

the . The final result for A is

A= Kd,a-p—i-i%% + 2imZoo - ;
or, by using Eq. (5.18),

A = —=2iKyys(H — fm) + 2imZao - ;

To normalize A, we compute

A2

1 —Kj (H? —m?) —m*(Za)*. (5.19)
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Therefore, the normalized A is
A 1
A= — = Kd’}/g)(H*ﬂm)*mZOLO"Z
A (K3 (B2 = m?) + (mZa)?] ’

N

(5.20)
This operator has been interpreted to be related to the conserved Runge—
Lenz vector in the non-relativistic Schrodinger H atom [101].

5.3 The Symmetry Group of the Degenerate Levels

The normalized operators A = A/|A| and k = K;/|K4| obey the following
equations:

M=1 k=1 {k\=0. (5.21)
Therefore, the components of
5 - %()\, _ikA k)
form an SU(2) algebra obeying the commutation relations
(2, 5;] = i€iju Xk

Using our two degenerate levels as a basis, we may construct a matrix
representation of the generators in terms of the Pauli matrices:

1
k= (0 01) =03, k islike a parity operator in the subspace,

1 0
—ik\ = <0 Z) — oo, —ik\ interchanges the levels

0 1
A= < > =01, A interchanges the degenerate levels,

10 and multiplies by —¢ times the parity.

Since the degree of degeneracy is always two for the Dirac hydrogen-
like atom, we always have this two-dimensional representation of SU(2).
The group structure here is the same as that of the isotopic spin group.
Our two-dimensional representation of the group is equivalent to the two-
dimensional representation of the isotopic spin group obtained by using a
proton and a neutron as the basis states.?

2For the hydrogen-like atom degeneracy group, rotations for all angles have physical
meaning. For the isotopic spin group, the same is not true. Although we may formally
rotate from a neutron state to a proton state, no such intermediate states have been
observed, nor are they allowed by superselection rules.
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For the Dirac hydrogen-like atom, the conserved operators are 3 and J.
They are the elements of the complete degeneracy algebra

SU(2) (0 SU(2) (5.22)

two-dimensional (2j + 1)-dimensional
representation representation

This direct product representation SU(2)®@SU(2) will be a subalgebra of the
spectrum-generating algebra. If we label the representation by the Casimir
operators of the two disjoint SU(2) groups, namely,

1 1
2= (1+2
(143),

J* =30+ 1),

then we have the (%, Jj ) representation. The degeneracy group correspond-
ing to this is SO(4).

5.4 Calculation of A for the Pauli Hamiltonian with
First-Order Relativistic Corrections

The expression for A, Eq. (5.20), contains the Dirac Hamiltonian. We can
approximate the Hamiltonian to obtain first-order corrections to A. To
obtain A to O (m(Z a)4), we perform a Foldy—Wouthuysen transformation.?
The Dirac Hamiltonian Eq. (5.2) may be transformed as follows:

H =UHU!

P’ Zo Za Zao-L  Za
S0+ 1T 5B g

@2&

where

7
U =exp (—%6750' . p).

3In order to determine the order of the terms, we note that in the non-relativistic
domain p ~ meZa, r ~ 1/(mcZc).
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A second unitary transformation eliminates the last term:

H'=VHV™!
2 4
P P Zoa  Zao-L 7wZa 5
:ﬂm+ﬂ%+ %*TJF Az 13 + 2m25(r)+0(m(Za) ),
(5.24)
where
r Zo
V =exp <’y50' . r_?’W)
Executing the same transformation U on A yields*
A Ay
5= U§U
Za 1l
— Kqo -p+imZao -~ + §ﬂKd : {o‘ - p, _a_} +0 (m(Za)®).
r 4 rm
(5.25)

Transformation V changes A’ by terms that are, at most, of order m(Z«).?
Therefore,
N =VANVT
=N +0(m(Za)®).
We may manipulate Eq. (5.25) into the form
N =0 A"(-2i),

where

L—-L Za 1l 1 1
ar—plexb—Lxp) ( 3Zal) o or( 31 gl
2 2 r m r 4m? r2
(5.26)

To the order m(Za)?, we see that A” is \/—2mE times the non-
relativistic quantum mechanical Runge-Lenz vector (Eq. 3.2). In the non-
relativistic limit, we might interpret this result in terms of the vector model
of the atom. The vectors L and S precess about J = L+ S. If we visualize
A as precessing about J with the same rotational frequency as L (and S)
and recall L- A = 0, then we see that J-A = %O“A may be constant despite
the fact that neither A nor o are conserved separately (see Fig. 5.1).

4Note that K is unchanged by the transformations U and V.
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Fig. 5.1. Precession of A, S, and L about J. Note that L - A = 0.

In the next chapter, we introduce the non-invariance group SO(4,1),
which is a representation of all the energy states of the non-relativistic
H atom.



PART 2

The Coulomb Potential
and Non-invariance Groups
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Vast worlds lie within the
hollows of each atom
multifarious as the motes

in a sunbeam.

Yoga Vasistha

Ancient Indian Vaisesika treatise

In Part 1, we discussed the classical features and the symmetry operators
of the hydrogen-like atom. We discussed the groups formed by these
operators and the representations of the groups realized by the hydrogen-
like atom. A summary of the results is given in Table 1.1 on page 21.

In Part 2, we consider the Schrodinger hydrogen-like atom and its
unitary “non-invariance” operators e’“%i, where G; is a generator and f3; is
a real parameter, using eigenstates of (Za)~! for our basis. These operators
transform an eigenstate of the Schrodinger kernel K (Eq. 3.25) with a
definite value of the coupling constant (or principal quantum number) into
a linear combination of eigenstates with different values of the coupling
constant (or different principal quantum numbers).? Unlike the invariance
operators a and L, the non-invariance operators clearly do not commute

with the kernel K:

The set of all invariance and non-invariance operators forms a group
with which we may generate all eigenstates in our complete set from a given
eigenstate. We show that this group, called the spectrum generating group
of the hydrogen-like atom, is SO(4, 1), the group of orthogonal transforma-
tions in a five-dimensional space with a metric gap = (-1,1,1,1,1), A, B =
0,1,2,3,4.2

The complete set of eigenstates of (Za)~! for the hydrogen-like atom
forms an irreducible infinite-dimensional representation of SO(4, 1) which,

Yossef Dothan, Phys. Rev. D, 2, 2944 (1970) has hypothesized that such operators

may have explicit time dependence but are constant in time (%z = O). This hypothesis

is equivalent to saying that G; is a generator of a symmetry transformation of the time-
dependent Schrodinger equation.
280(p, q) is the group of ‘orthogonal’ transformations that preserve the quantity
x:x%Jr:c%Jr---er?,fxgH7---fxz2,+q.
The quantity * may be viewed as the norm of a p + ¢g-dimensional vector in a space
that has a metric with p plus signs and ¢ minus signs. The letters SO stand for special
orthogonal, meaning the orthogonal transformations have determinant equal to +1.
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we shall find, is reducible into an infinite sum of irreducible representations
of SO(4), each corresponding to the degeneracy group for a particular
principal quantum number n.

In Chapter 6, the first chapter of Part 2, we introduce the non-invariance
or spectrum generating group of the hydrogen atom SO(4,1), and discuss
the generators of group transformations and relate them to the group of
conformal transformations in momentum space. We evaluate the Casimir
operators for SO(4,1).

In Chapter 7, the spectrum generating group SO(4,1) is expanded to
SO(4,2) in order to be able to write Schrodinger’s equation as an algebraic
equation in terms of the group generators. All physical states together form
a basis for a unitary irreducible representation of this non-invariance groups.
We derive manifestly Hermitian expressions in terms of the momentum
and position canonical variables for the additional generators of the group
transformations and discuss the meaning of the generators. The values
of the Casimir operators that characterize the group representation are
calculated by considering the dynamical structure of the hydrogen-like
atom. Some important group theory results are derived that will be used
in the calculations of radiative shifts. We discuss the important subgroups
of SO(4,2).
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Chapter 6

The Spectrum Generating Group SO(4,1)
for the Hydrogen-like Atom

We consider the Schrodinger hydrogen atom and its unitary “non-
invariance” or spectrum generating operators e’“% | where Gj is a generator
and f3; is a real parameter, using eigenstates of (Za)~! for the basis of our
representation. These operators transform an eigenstate of the kernel K
(Egs. 3.25, 3.34) with a definite value of the coupling constant (or principal
quantum number) into a linear combination of eigenstates with different
values of the coupling constant (or different principal quantum numbers)
and different [ and m. Unlike the invariance generators L and A, the non-
invariance generators clearly do not generally commute with the kernel K,
[G;, K] # 0, so they change the principal quantum number.

The set of all invariance and non-invariance operators forms a group
with which we may generate all eigenstates in our complete set from a
given eigenstate. We show that this group, called the spectrum generating
group of the hydrogen-like atom, is SO(4,1), the group of orthogonal trans-
formations in a five-dimensional space with a metric gap = (—1,1,1,1,1),
where A, B = 0,1,2,3,4. The complete set of eigenstates of (Za)~! for
the hydrogen-like atom forms a unitary, irreducible, infinite-dimensional
representation of SO(4,1) which, we shall find, can be decomposed into
an infinite sum of irreducible representations of SO(4), each corresponding
to the degeneracy group for a particular principal quantum number. A
unitary representation means that all generators are unitary operators.
An irreducible representation does not contain lower dimensional repre-
sentations of the same group. In Section 6.3, we discuss the isomorphism
between the spectrum generating group SO(4,1) and the group of conformal
transformations in momentum space. An isomorphism means that the
groups have the same structure and can be mapped to each other.

85
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6.1 Motivation for Introducing the Spectrum Generating
Group SO(4,1)

We examined the group structure for the degenerate eigenstates of (Za)~!
for the Schrodinger hydrogen-like atom: the degenerate states n? form an
irreducible representation of SO(4). The next question we might ask is: Do
all or some of the states with different principal quantum numbers form
an irreducible representation of some larger group which is reducible into
SO(4) subgroups? If such a group exists, then it clearly is not an invariance
group of the kernel K, as shown in Eq. (3.34):

<l - K(a)> Inlm; a) = 0.

n

If we want our non-invariance group to include just some of the states then
it can be a compact group, since unitary representations of compact groups
can be finite dimensional. If we want to include all states, then it will be
a non-compact group since there are an infinite number of eigenstates of
(Za)~1 and all unitary representations of non-compact groups are infinite
dimensional [22].

We can find a compact non-invariance group for the first N levels of the
coupling constant, n = 1,2,..., N. The dimensionality of our representation
is

. (6.1)

N
St N(N +1)(2N + 1)
6
n=1

Mathematical analysis of the group SO(5) shows that this is the dimension-
ality of the irreducible symmetrical tensor representation of SO(5) given by
the tensor with five upper indices 7%, where a,b,.. = 1,2,3,4 or 5 [24].
Reducing this representation of SO(5) into its SO(4) components gives

(symm - tensorN) go(5) = (0,0) @ (%, %) Q... & <¥, %)
= (symm - tensor n = 1)so(4)®
(symm - tensor n = 2)g5o(4)®
..@  (symm - tensorn = N)go4),
(6.2)
which is precisely the structure of the first N levels of a hydrogen-like
atom. If we want to include all levels then we guess that the appropriate

non-compact group is SO(4,1), whose maximal compact subgroup is SO(4).
Thus, we conjecture that all states form a representation of SO(4,1).
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Consider the Lie algebra of O(4,1) and the general structure of its
generators in terms of the canonical variables. The matrices representing
the rotations of O(n) are antisymmetric n X n matrices, with n(n — 1)/2
independent off-diagonal elements. Thus, the algebra of O(n) has n(n—1)/2
generators, and to extend the algebra of O(n) to O(n + 1), n additional
generators are required, which can be taken as components of an n-vector.
To extend the Lie algebra from O(4) to O(5) or O(4,1) we can choose the
additional generators G, to be components of a four-vector G under O(4).
Assuming the generators of O(4) are Sy then:

[Sab, Ge] = i(Gpdac — Galbe) a,b,c=1,2,3,4. (6.3)
If we apply Jacobi’s identity Eq. (1.7) to Sap, G, and Gy, and use Eq. (6.3)
we find

[Sab, [Ga, Gs]] = 0. (6.4)

We require that the Lie algebra closes, so [G,,Gp] must be a linear
combination of the generators, clearly proportional to Sy, and we choose
the normalization such that

[Ga, G| = —iSap. (6.5)
If we define
Gy=S540=05; G;=Sip=5; (6.6)
and recall Eq. (3.4)
Li = eijiSj  Ai = Sia

then the additional commutation relations that realize SO(4,1) may be
written in terms of L, A, B, and S:

[Li, Bj] = ieijkBk [Li, S] = O,
S, A;] = iB; [S, Bj] = i4;, (6.7)
[Aj, Bk] = i5ij [Bz; B]] = *ieijkLk-
The top two commutators show that B transforms as a three-vector under
O(3) rotations and that S is a scalar under rotations. Alternatively we can
write the commutation relations in terms of the generators Sap, A4, B =
0,1,2,3,4:
[SaB,Scp] = i(gacSep + 98pSac — gapSec — gpcSap), (6.8)

where gop = —1,gaq = 1, where a = 1,2, 3, 4.
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The commutators above follow directly from the mathematical theory
of SO(4,1), but the theory does not tell us what these generators represent,
just their commutation properties. We now investigate the general features
of the SO(4,1) representations provided by the hydrogen-like atom and how
to represent the generators in terms of the canonical variables.

6.2 Casimir Operators

The two Casimir operators of SO(4,1) are [94, Chap. 11; 124]
Q2 = %SABSAB =824+ B?>- A2 L (6.9)
and
Qs = —waw = (SL—Ax B)?— i[L~(A+B)—(A+B)~L]2, (6.10)

Whel"63 wpA = %GABCDESBCSDE

For SO(4), we recall that for the SO(4) representations the structure of
the generators in terms of the canonical variables led to the vanishing of one
Casimir operator C; = L - A and consequently to the appearance of only
symmetrical tensor representations. We will find Q)4 vanishes for analogous
reasons.

If B is a pseudovector, it is proportional to L, which is the only
independent pseudovector that can be constructed from the dynamical
variables. The coefficient of proportionality, a scalar, X need not commute
with H:

B=XL [X,L]=0 [X, H]#0. (6.11)

Since [B;, Bj] = —ie;j, Ly it follows that X? = —1 and B would therefore
be a constant multiple of L and not an independent generator. Thus,
B must be a vector and expressible as a linear combination of the dynamical
variables

B = fr+ hp, (6.12)
where f and h are scalar functions of 7, p?, and 7 - p. Accordingly, we find

B-L=L-B=0. (6.13)

3Here, € is the anti-symmetric Levi-Civita tensor which has the value +1 = €12345 and
+1 for an even number of permutations and —1 for an odd number of permutations of
the indices, and vanishes if any two indices are equal.
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Further since B is a vector and A is a vector, A x B is a pseudovector and
therefore is proportional to L, the only independent pseudovector that can
be constructed from the dynamical variables:

AxB=YL, [Y,L]=0, (6.14)

where Y is scalar. For this equation to be consistent with the SO(4,1)
commutation relations, we find Y = S and therefore

AxB=S5SL. (6.15)

It follows from L - A = 0 and from Egs. (6.13) and (6.15) that for the
SO(4,1) representations realized by the hydrogen-like atom

Q4 =0. (6.16)

As with the SO(4) symmetry, the dynamics of the hydrogen atom require
that only certain representations of SO(4,1) appear. From the mathematical
theory of irreducible infinite dimensional unitary representations of SO(4,1)
we have the following results:

ClassI: Q4 =0; @Qgreal, >0
SU(2) x SU(2) content:
, 11
Class II: Q4 =0,Q2 = —(s —1)(s+2),s = integer >0
SU(2) x SU(2) content: (6.18)
n_ (S f) s+1 s+1
(@) *(2’2 @< 2 2 )¢
The class I representations are realized by the complete set of eigenstates of
(Za)~! for the hydrogen-like atom. Note, however, that we have an infinite
number of such class I representations since ()2 may have any positive real

value. We shall find that for Q2 = 2 we may extend our group from SO(4,])
to SO(4,2). The class II representations are realized by the eigenstates of

] (6.17)

(Za)~! with the principal quantum numbers from n = s + 1 to n becoming
infinite. The first s levels could, if we choose, be described by SO(5).

In this section, we have analyzed the group structure and the repre-
sentations using the complete set of eigenstates of (Za)~! for our basis.
We might ask: What if we used energy eigenstates instead as a basis for
the representations? From Section 3.4, we know that the quantum numbers
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and multiplicities of the (Za)~! eigenstates are precisely the same as those
of the bound energy eigenstates. Thus, with the energy eigenstates as our
basis, we would reach the same conclusions about the group structure as
before, but we would include only the bound states in our representations
and we would be ignoring all scattering states.

6.3 Relationship of the Dynamical Group SO(4,1) to the
Conformal Group in Momentum Space

We can give a more complete analysis of the hydrogen-like atom in terms
of SO(4,1) by considering the relationship between the four-dimensional
rotations of the four-vector U! with a = 1,2,3,4, which we discussed in
Section 3.5.1, and the group of conformal transformations in momentum
space. Conformal transformations preserve the angles between directed
curves, but not necessarily the lengths. The rotations generated by the
Runge—Lenz vector a and the angular momentum L leave the scalar product
U,V of four-vectors invariant and therefore are conformal transformations.
The stereographic projection that we used is also a conformal transfor-
mation. Since the product of two conformal transformations is itself a
conformal transformation, we must conclude that a generates a conformal
transformation of the momentum three-vector p.

In order to express the most general conformal transformation, we must
introduce two additional operators that correspond to the operators B and
S introduced in Section 6.1. Using the isomorphism between the generators
L, a, B, and S of SO(4,1) and the generators of conformal transformations
in momentum space, we can immediately obtain expressions for the
additional generators B and S in terms of the canonical variables, which is
our objective. We need these additional generators to complete our SO(4,1)
group for the hydrogen atom.

To derive the isomorphism we use the most convenient representation,
namely that based on eigenstates of (Za)~! convenient for momen-
tum space calculations (p = %) Once established, the isomorphism
becomes a group theoretical statement and is independent of the particular
representation.

The conformal group in momentum space

An arbitrary infinitesimal conformal transformation in momentum three-
space may be written as

6p; = daj + dwjrpk + Spp; + (p*dc; — 2p;p - bc) (6.19)
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where dw;p = —dwy;.
The terms in dp; arise as follows:

da; translation generated byR - da

dw; rotation generated by J - 0w, Jij = €1 Jk

dp dilation generated byDdp

dc; special conformal transformation generated by K - dc.

(6.20)

This is a 10 parameter group with the generators (R, .JJ, D, K) which obey
the following commutation relations:

[D,Rj] = iR; (D, J] =0

[D, Kj] = —iK; [Ri, Ji] = 1€ Ry

[Kn, R = 2i€nmedy — 2i0mn D [Ji, Ji] = i€ikmJIm - (6.21)
[Ri, Rj] =0 [Ki, Jk] = ieikam

[KJ7 Kj] =0

There is an isomorphism between the algebra of the generators of conformal
transformations and the dynamical non-invariance algebra of SO(4,1) of
the hydrogen atom. Since .J; is the generator of spatial rotations, we make
the association L; = J;. Comparing the differential change in p; from a

transformation generated by A - év (in the representation with p = £ 232 ,
Eq. (3.49)
épi =ila-év,p;l
1 (6.22)

o [(p* — a®) 6v; — 2p - Svp;].

to the differential change in p; from a special conformal transformation
Eq. 6.19 leads to the association

1 /K;

To confirm the identification, we can use the commutation relations of the

conformal group to show that the O(4) algebra of L and a corresponds
K

K_
indicates that the representation of a is valid whether we use p = (p? +
a?)/2a* or p = n/(ar). The correspondence in commutators alone suggests
that our SO(4) degeneracy group should be considered as a subgroup of the

larger group SO(4,1). It suggests introducing the operators

precisely to that of J and 3( aR). This correspondence in commutators

Bla)=B = % (% + aR> S=D. (6.24)
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The commutation relations of S and B which follow from Eq. (6.24) and
from the commutation relations Eq. (6.21) are identical to the commutation
relations given for S and B in Section 6.1. Thus, considering the a and L
transformations in momentum space as conformal transformations, we were
led to introduce the generators B and S and obtain the dynamical algebra
SO(4,1). Further, we are led to the expressions for these generators in terms
of the canonical variables.

By comparing the expression for a in terms of the conformal generators
Eq. (6.23) with our known expressions for a, Eq. (3.49) or Eq. (3.50), we
obtain expressions for K; and R; in terms of the canonical variables. If
we use the eigenstates convenient for configuration space calculations (p =
n/ar) we make the identifications

1
K =g(rp*+p'r)—r-pp—pp-7— 55

(6.25)
R=r.
Substituting these results in the equation for B we find
1 [ p*r +rp? r ar
2@( 5 TepP—PPT = 5 |+ o (6.26)

which is a manifestly Hermitean operator valid throughout Hilbert space.
From Egs. (6.23) and (6.24) we can show that

B—-a=ar. (6.27)

To compute D we substitute the expressions for K and R into the
commutation relation from Eq. (6.21)

i
D=Z|K,R;
S, R
obtaining the result
1
D=§(p-r+r-p):S, (6.28)

which is identical to the generator of the scale change transformation D(\)
defined in Eq. (3.37) in Section 3.4. S is defined in Eq. (6.6).
The significance of the generator D = S of the scale change in terms of
SO(4,1) is apparent if we compute
) K : K
AP (aR + —) e = ¢ R+ —
a

Y
al

(6.29)

where a’ = era.
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The unitary transformation e*” can be viewed as generating an inner
automorphism of SO(4,1) which is an equivalent representation of SO(4)
characterized by a different value of the quantity a or the energy. In other
words, under scale change ¢*”, the basis states for our representation of
SO(4,1), |nlm; a), transform to a new set |nlm;ea) in agreement with our
discussion in Section 3.3. The scale change also changes the operators; for

example, the operator B(a) changes in a corresponding manner
e*PB(a)e™™P = B(eta). (6.30)

Since the algebra of our generators closes, we may also view e as

transforming a given generator into a linear combination of the generators.
With the definitions of @ and B (Egs. (6.23) and (6.24)) we can easily show
that (6.29), with the upper sign, can also be written

e?*P Be=*P = B cosh A + a sinh \. (6.31)
Similarly, we have
e*Pae~*P = Bsinh\ + a cosh. (6.32)

In Chapter 7, we will expand the group SO(4,1) to SO(4,2) to allow us
to express Schrodinger’s equation in terms of the generators of SO(4,2).
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Chapter 7

The Group SO(4,2)

7.1 Motivation for Introducing SO(4,2)

We would like to express Schrodinger’s equation as an algebraic equation
in the generators of some group [50, 51]. As we cannot do this with our
SO(4,]) generators S4p, we expand the group again. To guide us, we recall
that to expand SO(3) to SO(4) we added a three-vector of generators A, and
to expand SO(4) to SO(4,1) we added a four-vector of generators (S, B).
In both cases, this type of expansion produced a set of generators that
were convenient for the study of the hydrogen-like atom. We guess that
the appropriate expansion of SO(4,1) is obtained by adding a five-vector
(under SO(4,1)) of generators T'y, A = 0,1,2,3,4, to obtain SO(4,2) [50,
51]. We can provide additional motivation for this choice by considering
Schrodinger’s equation. The generators in terms of which we want to express
this equation must be scalars under L; rotations since the energy levels do
not depend on the orientation in space. Also we know S = Sy (Egs. (6.6)
and (6.29)) generates scale changes of Schrodinger’s equation. Since T'4 is
a five-vector under SO(4,1), it must satisfy the equation

(Sa,Tc] =i(I'gac —Tagse). (7.1)

The spatial components of T'4, which are (I';,I'3,I's) = T', transform as a
vector under rotations generated by L.

To construct the Lie algebra of SO(4,2), we require that the set of
operators {T'4,Sap; A, B = 0,1,2,3,4} must close under the operations
of commutation. By applying Jacobi’s identity, Eq. (1.7), to T'4,T'p, and
Sap, and requiring that I'y and I'g do not commute, we find

[Sap,[Ca, )] =0 A B=0,1,234.

95
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Since we require our Lie algebra to close, the commutator of I'y and I'p
must be proportional to S4p. We normalize I' so

[[4,Tp] = —iSap A,B=0,1,2,34. (7.2)
If we define
Sas=T4=—S54 A=0,1,2,3,4. (7.3)
and recall
Ai=8u Bi=58i Li=eijSix S= 5w

then we may unite all the commutation relations of 'y and S4p in the
single equation:

[SaB, Scp] = i(g4cSBD + 98DSAC — gADSBC — 9BCSAD), (7.4)

where A, B,...,=0,1,2,3,4,5 and goo = g55 = —1; gua = 1,a = 1,2, 3, 4.

These are the commutation relations for the Lie algebra of SO(4,2). In
terms of A, B, L,S and I'4 the additional commutation relations for the
non-commuting generators are [66]:

[Bi, F]] = iF()(sij Fz; Fj] Zekak

[
[Ai; Fj] = ZF45W [Fz; F()] = ZBZ
[Li, Tj] = i€l [T, Ta] = —i4;
. 7.5
[F4, F()] = ZS ( )
[B;, o] =T, [A;, T4] = —iT;
[S, F()] == ZT‘4 [S F4] ZF().
The fact that S = S40 mixes the zero and four components of a five-

vector suggests that Schrodinger’s equation may be expressed in terms of
the components 'y and I'y, which are scalars under L;, of the five-vector I 4.

7.2 Casimir Operators

The Lie algebra of SO(4,2) is rank three so it has three Casimir opera-
tors [56] Wa, W3, and Wy:

1
W, = —55,458“43 =Qy+Tal?, (7.6)

where Q)2 is the non-vanishing SO(4,1) Casimir operator Eq. (6.9), and

Wy = ABCPES S 3SepSer (7.7)
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Wi = SapSB€SepSTA, (7.8)
where A,B,C,D,g,f = 0; ]-7 2; 374a 5.
Computation of W3

We can show that W3 = 0 from dynamical considerations similar to
those used in the discussion of SO(4,1) Casimir operators. The only terms
that can be included in W3 are scalars formed from products of three
generators with different indices

B-AxT, A-T'xB, I'"BxA (7.9)
r.L-B, ToL-A, ST-L. (7.10)

It is interesting that these terms are actually all pseudoscalars. Terms such
as B - A x L are simply not possible due to the structure of W3, which
requires that all terms contain I' or a component of I'. We know that
' = (I'1,T2,T'3) must not be a pseudovector, otherwise it would be
proportional to L and therefore not an independent generator. Since it
is a vector, it must be equal to a linear combination of » and p. Therefore,
we conclude

' L=L-T=0. (7.11)
Since I" and B are both vectors and L is the only pseudovector we have,

we conclude I' x B = AL. In order to determine the scalar A we evaluate
the commutators

[Bi, (T' x B)g], and [[k, (T x B)] (7.12)
and find
I'x B=ToL=-BxT. (7.13)
The analogous equations for A and I', and for A and B are
'xA=-I4ywL=—-AxT (7.14)
AxB=SL=-BxA. (7.15)

From Egs. (7.14) and (7.15), we see that because of the dynamical structure
of the generators, each of the quantities in Eq. (7.9) is proportional to the
quantity directly below in Eq. (7.10). We have also shown that (Egs. (3.2),
(7.11), (6.13))

L-B=L-A=T-L=0. (7.16)
Accordingly each scalar in our list vanishes and

W3 = 0. (7.17)
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Computation of Wy

To compute W5 we need to evaluate
2 =0al =12 + 1,00 -T2 (7.18)

From the structure of Ws as shown in Eq. (7.6), we see that ' must be
a number since Wy and )2 are both Casimir operators and, therefore,
numbers for a particular representation. Accordingly, we have

[[2,T4] =0. (7.19)

From this equation, we can deduce a lemma that allows us to easily evaluate
Wo and Wy in terms of the number I'2. Using Eq. (7.19) and the definition
of Sap Eq. (7.2) we find

FASAB + SABFA =0,

where, as usual, we are summing over repeated indices.
Contracting Eq. (7.1) with gac gives

SapT? —T4S4p = 4T p.
Consequently, it must follow that
Sapl? =2iTp = —T4S45. (7.20)
We are now able to evaluate the quantity
SapSB =iSap[lB,Tc] =i(SaplPTc — SaplcTP).

Using Eq. (7.1) for the commutator of S4p with I'c and Eq. (7.20) for the
contraction SagI'® we prove the lemma

SapSE =2iSca —Talc +Tgac. (7.21)

The value of the SO(4,1) Casimir operator Q2 = %gACS’ABSBC follows
directly from the lemmas:

Qo = 212, (7.22)
So, we have from Eq. (7.6)

Wy = 302 (7.23)
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Computation of Wy
The Casimir operator Wy can be written as

Wi = SaSBCScpSPA + SapSB°S5pSPA

+ S5558°ScpSP? + 855555 S5pSPP, (7.24)
where we have two different fonts B,D = 0,1,2,3,4,5 and A,C =
0,1,2,3,4.

In order to evaluate Wy in terms of I'? we compute SagS5C. Recalling
I'a = Sas we see

SapSBC =TAT'C + SppSEC. (7.25)
Substituting the lemma Eq. (7.21), we find
SapSPC =2i8G —T'%g.C. (7.26)
From Eq. (7.20), it follows that
S.5SBY = 2i1¢. (7.27)
Substituting Eqgs. (7.22), (7.25-7.27) into Eq. (7.24) for Wy we find
Wy = 6(I'?)% — 2412, (7.28)

The fact that the non-vanishing Casimir operators (Q2, W2, and Wy) for
SO(4,1) and SO(4,2) are given in terms of I'? implies that the representation
of SO(4,2) determines the particular representation of SO(4,1) appropriate
to the hydrogen-like atom. In turn, the value of I'? is determined by the
structure of the I's in terms of the canonical variables. In Section 7.4, we
derive these structures and find that

=1
Therefore, the quadratic SO(4,1) Casimir operator Q2 has the value
Q2 =2
and the SO(4,2) Casimir operators have the values:
Wo=3 Ws=0 Wy=-18.

Researchers who have published different representations of SO(4,2)
based on the hydrogen atom and that give their Casimir operators all have
Wy = 3 (or their equivalent) and W3 = 0 [47, 91, 94], however, two authors
have representations with Wy = 0 [47, 94] and one [91] has Wy = —12,
compared to our value of —18.

From the mathematical theory of representations it follows that our
representations of SO(4,1) and SO(4,2) are both unitary and irreducible.
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This means that there is no subset of basis vectors that transform among
themselves as SO(4,1) or as SO(4,2).

7.3 Some Group Theoretical Results

In this section, we derive the transformation properties of the SO(4,2)
generators and then a novel contraction formula that will prove useful for
situations in which we want to express the Schrodinger Hamiltonian, for
example, in our calculation of the radiative shift for the hydrogen atom in
Chapter 12. We will work primarily with the SO(4,2) generators expressed
as the combination of the SO(4,1) generators Sap and the five-vector T,
with gap = (-=1,1,1,1,1), where A, B=0,1,2,3,4.

Transformation properties of the generators

We can evaluate quantities like
ABP () = €489 ge 19459 (no sum over A or B) (7.29)

by expanding the exponentials in an infinite series, and then using the
commutation relations of the generators Sap and I'y (Eq. 7.1), and the I'pg
(Eq. 7.2), repeatedly. However, it is easier to solve the differential equations
satisfied by “4BT'p and to use the appropriate boundary conditions.
Differentiating Eq. (7.29) and using the commutation relations, we obtain
the equations

d2

d 4B
il T'n =
B 62

7 ABrp = —gaagpp “PTp, (7.30)

—gnp *PT 4
which have the solution

ABFB FBCOS\/gAAgBBe-i- FASlny/gAAgBBH (7.31)

\/T

Using a similar procedure we find
eT408, pe™ 4% = G5 cosh \/ganb + /gaal g sinh \/gasd (7.32)

1
SAB sinh \/gAAH, (7.33)
A

eiFAeI‘Be*iFAG =I'pcosh/gaal +

where no summation over A or B is implied.
These formulae, Eqs. (7.31-7.33), give the SO(4,2) transformation
properties of the SO(4,2) generators.
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The contraction formula

If we multiply Eq. (7.33) from the right by e’'4¢ and then contract from
the left with I'p, we obtain

ZFBeiFAGFB = [(1 —gAAFA) cosh\/gAAG—i— smh\/gAAH iLa0
B VI
+gAAF?4€ZFA0, (734)

where we have used '’ = 1 and Eq. 7.20. Expanding the hyperbolic
functions in terms of exponentials and collecting terms gives

ZFB erar (1 + \Z%)i;(m—mm)a
+1 (1 _ W_A)Qei(l“,aJri\/gA_A)a + gAAF2 IV
2 Nerv 4
(7.35)
A Fourier decomposition of a function of I' 4 may be written
f(T4) = % /d@h(@)eiw. (7.36)

Consequently, we have

1 iTa \2 )
XB:FBf(FA)FB =3 (1 + \/m) f(Ta—ivgaa)

. 2
+% (1 — \Z%) f(Ca+ivgaa) +gaal%f(Ca).

(7.37)

By performing a suitable rotation, we can generalize this formula from
functions of T'4 to functions of ' 4n? where nan® = 1. For n? = —1, we
start with I'y = [’y and rotate to obtain a very general result

ZI‘Ban = (nF+1) f(nl' +1)

+ %(nf — 1)?f(nl — 1) — (nD)%f(nT'), (7.38)

where nI' = —nol'g + n;I'; + nyly.
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We will have occasion to apply this formula for the special case

1
f(nl') = A (7.39)
Using the representation
L _ /OO dse”Se s, (7.40)
I'm—v 0
we obtain the important result
T I‘nl— VFA = —2u /000 ds 6”5% (sinh2 gefrns) (7.41)

which is in a form convenient for calculations of radiative shifts.
Deriwation of the T' 4 in terms of canonical variables

For our basis states we shall use eigenstates of (Za)™! convenient for
configuration space calculations (p na/r, Section 3.4.1). We choose
these states rather than those convenient for momentum space calculations

because they lead to simpler expressions for the I' 4 in terms of the canonical
variables, although the expression for a is slightly more complicated. Our
basis states must obey the equation of the energy eigenvalues or coupling
constant Eq. 3.34

[%(a) - n] |nlm) = 0. (7.42)
We know that K, ' must commute with the generators of the SO(4)
symmetry group a; = Si4 and S;; = €L because the kernel K is a
scalar that determines degenerate energy eigenstates. We expect that it is
related to the five-vector T of generators that we added to go from SO(4,1)
to SO(4,2). The only components of T' that are scalars are I’y and I"y. We
choose

Ty = [Ki(a)] ' = \/ﬁ%\/ﬁ: ! <M +ar>, (7.43)

2 a

so that
(T — n)|nlm) = 0. (7.44)

This last equation is the Schrodinger equation expressed in our language of
SO(4,2): our states |nlm) are eigenstates of I'g with eigenvalue n.
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To find T'y, we calculate 'y = —i[S, o], using Eq. (6.28) for S, we find

F4\/ﬁp2_“2\/al(Mar). (7.45)

2a2 2 a

Sometimes it is convenient to use the linear combinations

2
Fo—Tya=ar To+T4= @, (7.46)

which can be used to express the dipole transition operator [46].
We can find T'; from Eq. (7.5), I'; = —i[B;,[¢], where B; is from

Eq. (6.26):

L = rpiv/r, (7.47)

which we might initially have guessed since [[';,T';] = —ie;xLy and
[rpi,rpj] ~ Li. Every component of I'4 is Hermitean; consequently, the
generators Sup that are given by the commutators Eq. (7.2) are also
Hermitian. We may explicitly verify that these expressions for I'4 lead to
a consistent representation of all generators in the SO(4,2) Lie algebra.

Under a scale change generated by S, I'; is invariant and I'y and T’y
transform in the same manner as a and B (Eq. 6.29): they retain their
form but a is transformed into e*a:

e {&} ers — 1 (M + e)‘ar) (7.48)

|V 2 era

The scale change generates an inner automorphism of SO(4,2) charac-
terized by a different value of the parameter a.

7.4 Subgroups of SO(4,2)

The two most significant subgroups are generated by [66]:

1. Li,a; or Sjk,Sis, forming an SO(4) subgroup. These generators
commute with I'g and therefore constitute the degeneracy group for states of
energy —a?/(2m) and fixed principal quantum number n (or fixed coupling
constant na/m). The Casimir operator for this subgroup is

a’+L*=n*—-1=1%-1. (7.49)

We discussed this subgroup in Section 3.2 in terms of L and A and the
states |nim). The same results are obtained with the generators L and
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a with the states |nlm). For example, we have the raising and lowering
operators for m and [ (Egs. 3.21, 3.22). With the definition

Ly =1L +ilo, (7.50)
it follows that

[L3,L+] = +Lx, (7.51)

which gives

Lilnim) = /(I +1) —m(m+1)|nl m+1)  Lz|nlm) = m|nlm).

(7.52)
for [ > 1. In analogy to L4 one can define
a+ = ay % ias, (7.53)
which obey the relations
[ag, ai] = :|ZL3 [Lg, ai] = :l:a:t (754)
and
n?— (I+1)2)(+2+£m)(l+1+m))?
at|nlm) =F (( ( )4gl(—|— 1)2_1)( )> [nl 4+ 1m £ 1)
(7.55)
1
212 -1 2
+ ((" N ;2”1)5 ¢m)> Inl — 1m + 1) (7.56)

for [ > 1. The action of a4 is not directly analogous to that of Ly in
Eq. (3.21) because we are using [nim) as basis states. If we used |nasls = m)
as basis states, the action would be similar. An operator that changes only
the angular momentum is ag

az|nlm) = ((n ¢ Z(lll)l()(i i_ 11) — )) 2 [nl 4+ 1m)
+ ((" *ip)(i ;m ))5 Inl — 1m) (7.57)

for [ > 1. Since a3z commutes with L3 and I'y, it does not change n or m.
2. Ty, S = Sy, Ty, forming a SO(2,1) subgroup. These operators
commute with L but not with I'g, hence then can change n but not L
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or m. The Casimir operator for this subgroup is!
2-T7-S*=L*=1(+1). (7.58)
We can define the operators [66]
n=ry j2=5 jz=TIo (7.59)
with commutators
1, g2l = —ijs [jo,js] =ij1  [js, a] = ija. (7.60)
We can define the raising and lowering operators
Jx = j1 £ije =g iS5, (7.61)
which obey the commutation relations
[+, J3] = Fix- (7.62)

We find (in analogy to Eq. 7.52)

Do|nlm) = nnim) (T4 +iS)|nim) = \/n(n£1) — (I + 1)|n+ 1 Im)

(7.63)
We can express the action of I'g — I'y = ar on our states
1
ar|nlm) = 5((71)(71 -0 =ll+ 1))2 [n—11m) +n|nim)
1 1
+=(n)(n+1)—=1(1+1)2n+1Im). (7.64)

2

As mentioned previously, the operator S generates scale changes as shown

in Eq. (6.29), where the value of a is changed. We can also express the action

of S equivalently as transforming I'y into Ty, as suggested by Eq. (6.31):
e he™ ™ = Iy cosh A — [y sinh ), (7.65)
e ye ™ = Ty cosh A — Ty sinh . (7.66)

!To prove this note that L? = (r xp)? = r?p? —r?pZ where p, = (1/2)(%-p+p-L) and
[r,pr] = 4. Thus L? = r2p? —rp,rp, —irpy. But L? = (1//7)L?\/r and Sos = —/Tpr\/T
so it follows that L2 = (To—T4)(To+T4)— 5034 — 1504 which gives the result quoted.
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7.5 Time Dependence of SO(4,2) Generators

For a generator to be constant it must commute with the Hamiltonian as
discussed in Section 2.1. Since the SO(4,2) group is the non-invariance or
spectrum generating group, the additional generators do not all commute
with the Hamiltonian. It is notable that as far as we know only one paper
considers the time dependence of the generators of non-invariance groups
in general and one briefly considers SO(4,2) specifically [107, 139]. Our
results certainly clarify and make explicit the time dependence and show
that it is just a particular aspect of the SO(4,2) transformations. In our
representation |nim;a), the Hamiltonian has been transformed into I’y and
the Schrodinger energy eigenvalue equation has become T'g|nlm) = n|nim).
Accordingly, all generators that commute with I'y are constants of motion,
including a, L. The other operators B,I', S,y have a time dependence
given by Egs. (7.32) and (7.33), for example

S(t) = 5 (0) B~ = ¢Totge=Tol — Gcost 4 I'ysint (7.67)

Ty(t) = Ty (0) B~ = eiTol e~ ot =Ty cost — Ssint.  (7.68)

Consequently, terms like j; (Eq. 7.61) have a simple exponential time
dependence

ja(t) = j(0)e*™. (7.69)

Similarly, T + 7B has an exponential time dependence.

7.6 Expressing the Schrodinger Equation in Terms of the
Generators of SO(4,2)

We can write the Schrodinger equation for the usual energy eigenstate [nlm)
with energy E,, = —a2/2m of a particle in a Coulomb potential in terms of
SO(4,2) generators. Since the generators are in terms of energy —a?/2m, we
need to make a scale change. From Section 3.4, Eq. (3.42), the relationship
between the Schrodinger energy eigenstate |nim) and the eigenstate |nim)
of (Za)™1 is

[nlm; a) = e~ \/p(a,)|nlm), (7.70)

where

M= plan) = —. (7.71)

a anr

Substituting Eq. (7.70) in the eigenvalue equation Eq. (7.44) for |nlm;a)
and employing the transformation Egs. (7.65) and (7.66), we find the usual
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Schrodinger equation can be expressed in SO(4,2) terms as

(Tn — n)+/plan)|nlm) =0, (7.72)

where
I'n = FA’I’LA = FOTLO + Fini + F4n4 (773)
2 2 2o 9
n? = cosh A, = @t s n' = 0, 7’L4 = —sinh \,, = ¢ In
2aay, 2aay,
(7.74)
and nan? =n? —nk = —1.

Equation (7.72) expresses Schrodinger’s equation for an ordinary energy
eigenstate |nlm) with energy Eny = —a2/2m in the language of SO(4,2).
It shows the relationship between these energy eigenstates and the basis
states of (Za)~! that are used for the SO(4,2) representation.

The next chapter, the first in Part 3, deals with radiative shifts in
classical and quantum systems.
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PART 3
Radiative Level Shifts
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The hydrogen atom is the

fundamental two-body system

and perhaps the most important

tool of physics; years after the Bohr theory
the challenge is still there to calculate

its properties to the highest accuracy possible.
Stanley Brodsky

Radiation is a process common to classical and quantum systems with
very different effects in each regime. In a quantum system, the interaction of
a bound electron with its own radiation field leads to complex shifts in the
energy levels of the electron, with the real part of the shift corresponding
to a shift in the energy level and the imaginary part to the width of the
energy level. The most celebrated radiative shift is the Lamb shift between
the 2515 and the 2p;,5 levels of the hydrogen atom. The measurement
of this shift in 1947 by Willis Lamb Jr. and his graduate student Robert
Rutherford proved that the prediction by Dirac theory that the energy
levels were degenerate was incorrect.

Hans Bethe’s calculation of the shift demonstrated that the renor-
malization process, suggested by Kramers, was required to deal with the
divergences plaguing the existing theories and led to the understanding
that interactions of the electron with its own radiation field needed to
be considered. it was also becoming clear that interactions with the zero-
point vacuum field, the lowest energy state of the quantized electromagnetic
field, needed to be considered since it has measurable effects, for example,
the Lamb shift and the Casimir force, not just resetting the zero of
energy. Understanding the calculation of these effects led to the birth of
modern quantum electrodynamics (QED). Other calculations of the Lamb
shift followed by Welton and Power in an effort to clarify the physical
mechanisms leading to the shift.

We explore the history of Bethe’s calculation and its significance. We
discuss radiative effects in classical and quantum systems from different
perspectives, with the emphasis on understanding the fundamental physical
phenomena. Illustrations are drawn from systems with central forces: the
H atom, and the three-dimensional harmonic oscillator.

A first-order QED calculation of the complex radiative shift for a spinless
electron is presented based on the mass? operator and the non-relativistic
approximation of the Klein—Gordon equation. No other assumptions are
made. We employ a SO(4,2) group theoretical approach, which gives the



Radiative Level Shifts 111

shift as an integral over frequency of a function, which we call a shift
spectral density. The shift spectral density reveals how different frequencies
contribute to the total energy shift. We find, for example, that half the
radiative shift for N = 1 level in H comes from photon energies below
9700eV, and that the expressions by Power and Welton do not have the
correct low frequency behavior, although they do give the correct value for
the total shift.

The shift of atomic energy levels from the levels given by the Dirac or
Klein—Gordon equations with the appropriate potentials results from effects
radiative shift that can be classified into four groups [2, 95, 128, 149-158|:

(1) The interaction of the bound particle with its own radiation field.

(2)

(3) Finite nuclear mass effects, including relativistic recoil corrections.

(4) Nuclear structure effects, including finite size and polarization correc-
tions, and the interaction of the nuclear magnetic moment with the
magnetic field of the electron.

Vacuum polarization effects.

The most frequently discussed and measured shift in energy levels is the
celebrated Lamb shift between the 2s;,5 and 2p; /5 levels in the hydrogen
atom. Although measurements of the shift were attempted in the 1930s,
it was not measured accurately until 1947 when Lamb and Retherford
employed rf spectroscopy and exploited the metastability of the 2s; /5 level
and determined that the shift was approximately 1050 MHz, or 1 part in
10° of the 2s1 9 level [18, 159-162]. Shortly thereafter Bethe [19] published
a non-relativistic quantum theoretical calculation of the shift assuming that
it was due to the interaction of the electron with a radiation field. Bethe did
not state in his paper whether the source of the radiation field leading to
the radiative shift was the quantum fluctuations of the vacuum field or the
radiation field of the atom. Both fields had been proposed as leading to the
shift in the self energy of the electron. For example Weisskopf had proposed
that the vacuum field contributed to the self energy of the electron in the
H atom. Indeed, to first order the fields are equivalent. Several researchers
tend to believe Bethe meant the radiation fields of the atom. Welton and
Feynman provided explanations of the Lamb shift in terms of interactions
with the quantum vacuum field.

This lowest order radiative shift (to a(Za)?*) accounts for about 96%
of the measured shift. As the years passed, the calculation was refined
and the effects (2), (3), and (4) were included. New measurements were
made and old data were reanalyzed. There are many articles on these
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TABLE 1
VARIOUS CONTRIBUTIONS TO THE LAMB SHIFT IN H - 25k — 2Pk

DESCRIPTION CRODER MAGNITUDE (MHz)
1. Radiative shift
2™ orpER @z ®n (109 22, 1} 1079.32 % .02
@1 = 137.0361) a(zewn 7.14
wza) % f109°24, 1og 24, 1} - 0.38 % .04
4% ORDER at? (zayin {Pitoi . 145 = .07
F,(0) - 0.10
a?(220%n * .02
2. Vacuum polarization
2" oRpER a(zenin - 27.13
48 ORDER o (22)%m - 0.24
3. Finite nuclear mass
REDUCED MASS CORRECTIONSW 20 §m logfzs, 1} - 1.64
RECOIL . (z® B logfzx, 1) 0.36 X .01
4. Nuclear structure
PROTCN SIZE (z0* (R m 0.13
total 1057.91 £ .16

Fig. 1. Approximate Contributions to the Lamb Shift.

calculations, so we limit ourselves to giving a few general references and
a few recent references [2, 157, 158, 163-168]. In this text, we deal with
only the dominant radiative component of the shift.

Table 1 gives a summary of the approximate theoretical values for the
contribution to the Lamb shift from the different effects.

The agreement between theory and experiment has varied over the last
70 years, indicating the complexity of the theoretical calculation and the
difficulties in the experimental measurements. The difference in the values
for the Lamb shift obtained from theory and experiment has reflected many
things: that not all physical effects were accounted for, that higher order
terms had to be included, that errors were made in the calculations, that
the accepted value of the fine structure constant changed, that experimental
results were reinterpreted, that the radius of the proton was needed. Today,
after decades of concerted effort, the agreement is phenomenal, one of the
most precise of any in the physical sciences, to 13 decimal places [1].

We discuss the radiative shift of a particle that is in a bound energy
eigenstate from various viewpoints.
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In Chapter 8, we review some of the history of the Lamb shift and discuss
radiative effects in classical physics. We discuss Bethe’s calculation, and
its significance for QED. We clarify the physical meaning of the radiative
shifts that appear in field theory by explaining the effects of the zero-point
vibrations of the electromagnetic field in a semiclassical analysis. We express
the radiative shift as the difference in the energy of the particle when freely
oscillating in the zero-point field and when oscillating in the zero-point field
while bound in a potential. We consider the radiative shift in the language
of field theory: the shift equals the change in the mass renormalization of
the particle that occurs when it becomes bound.

In Chapter 9, we discuss radiative effects in classical physics and
quantum physics for central force potentials, and illustrate with two
examples, the Coulomb potential and the 3D isotropic harmonic potential.
We try to provide an intuitive sense of radiative shifts that appear in
field theory by considering the effects of the zero-point fluctuations of the
electromagnetic field in a semiclassical analysis of the motion of a bound
particle. We discuss the general nature of radiative shifts, for example, that
the presence of a boundary can lead to a radiative shift.

In Chapter 10, we consider the radiative shift in the language of field
theory: the shift equals the change in the mass renormalization of the
particle that occurs when it becomes bound. The approach reflects Bethe’s
interpretation of the divergences he encountered. We derive an expression
for the complex shift in terms of matrix elements of the mass? operator M?2,
which corresponds to the total self-energy squared of the bound particle.
Using the equations of motion for a relativistic scalar particle in a potential,
we derive an expression for M? to order « in the radiation field, i.e. assuming
that only one radiation field photon is exchanged. We also consider the
requirements for gauge invariance in our expressions for a physical shift.

In Chapter 11, we consider the radiative level shifts in the non-
relativistic dipole approximation, demonstrating that the shift is complex:
the imaginary part corresponds to the width for decay by dipole emission
and the real part corresponds to the displacement of the energy level.

We show that the real and imaginary parts satisfy a dispersion relation,
which is fundamentally just an expression of causality [169]. We interpret
the radiative shift as due to the virtual transitions induced by the
interaction of the particle with its own radiation field. This interaction
means that a given energy level has a finite width and that the mean energy
of the initial state of the system, averaged over time, is shifted.
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In Chapters 11 and 12, we derive integral expressions for the complete
radiative shifts for semi-relativistic spinless mesons in our two potentials as
functions of the coupling constants, rather than developing a perturbation
expansion as is customary. Our semi-relativistic approximation is to drop
the V2 term in the Klein-Gordon equation, thereby ensuring that we have
the same group structure as in the non-relativistic problem (Chapter 7).

In Chapter 12, we use the group theory of SO(4,2) to determine the
radiative shifts in energy levels for a spinless electron in a Coulomb potential
due to its interaction with its own radiation field, or equivalently with
the quantum vacuum. In the non-relativistic or dipole approximation the
level shift contains a matrix element of a rotation operator of an O(1,2)
subgroup of the group SO(4,2). We can sum this over all states, obtaining
the character of the representation, yielding a single integral which is a
generating function for the radiative shift for any level in the non-relativistic
or dipole approximation. The integral is an analytic expression for the level
shift. A brief conclusion follows.

In Chapter 13, we compute the radiative shift for a spinless relativistic
electron bound in a harmonic potential.

In Chapter 14, we introduce the concept of the spectral shift density, the
quantity that has to be integrated over frequency to obtain the radiative
shift. The spectral shift density indicates the relative contribution to the
radiative shift from different frequencies. This allows us to compare the
various methods that have been used to compute the Lamb shift, examining
their high and low frequency behavior.

In Chapter 15, we discuss the cloud of virtual electromagnetic energy
that surrounds the H atom and is responsible for the Lamb shift and van
der Waals and Casimir forces.



Chapter 8

History and Some Aspects
of the Lamb Shift

8.1 Background

We discuss aspects of Bethe’s pivotal calculation, including its history, its
significance, and its impact on the development of quantum electrodynam-
ics. We then consider radiative shifts from different perspectives, classical
and QED, with the objective of highlighting the connections between
different aspects of the Lamb shift and clarifying the physical processes
involved.

Our QED calculations are limited to the lowest-order shift for spinless
electrons, the same as in Bethe’s calculation. To explore the connections
between physical phenomena and mathematics, we derive the complex first-
order radiative shift in terms of the mass? operator using the fundamental
equations of motion and then relate the results to Feynman diagrams. This
is a more difficult derivation than simply using second-order perturbation
theory or Feynman diagrams. Generally, textbook derivations only consider
the real part of the shift. The radiative shifts are interpreted as the
difference in energy or mass renormalization between a free electron and
a bound electron, precisely as Bethe described it. The real part of the
shift is the level shift and the imaginary part the level width, and we
derive a dispersion relation between these parts. Atomic level shifts can be
approximately modeled as arising from transitions with the absorption and
emission of virtual photons that cause the atom to be in different energy
states some of the time. To offer two perspectives, we discuss results for
two central force systems, the H atom and the three-dimensional isotropic
simple harmonic oscillator.

115
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As we noted in Chapter 1, the hydrogen atom is the fundamental
two-body system and perhaps the most important tool of atomic physics,
and the continual challenge is to calculate its properties to the highest
accuracy possible. The current QED theory is the most precise of any
physical theory[1]: This remarkable precision began with the measurement
and calculation of the first-order radiative Lamb shift, and that is why
we are presenting a historical discussion of it. The derivation of this shift
is present, in one form or another, in virtually every book on quantum
field theory [3, 172-175]. The derivation is often based on the Schrodinger
equation, using second-order perturbation theory to include the minimal
coupling to the radiation field of the electron or to the electromagnetic
field of the quantum vacuum.

There are many excellent and comprehensive reviews of the Lamb shift
and the computation of energy levels to high precision in hydrogen-like
atoms, including all the different effects [2, 95, 128, 149-158]. As noted
above, the purpose of our discussion is quite different. We offer new
perspectives on the physics that began the new age of QED.

8.2 History and Significance of Bethe’s Calculation
8.2.1 Brief history before Bethe’s calculation

Physicists had considered the need to account for an interaction of the
electron with it own radiation field or with the vacuum field but did not have
a suitable theory. Oppenheimer in 1930 had computed that the interaction
with the atom’s radiation field would lead to an infinite shift in energy,
and therefore he rejected the notion as unphysical and thought that major
changes in the theory were needed [176]:

The theory thus leads to the false prediction that spectral lines will
be infinitely displaced from the values predicted by the Bohr frequency
condition. .. As it stands the integral over v diverges absolutely.. We
have treated these difficulties in some detail because they show that the
present theory will not be applicable to any problem where relativistic
effects are important, where that is, we cannot be guided by the limiting
case ¢ — 00... It appears improbable that the difficulties discussed in
this work will be soluble without an adequate theory of the masses of
the electron and the proton; nor is it certain that such a theory will be
possible on the basis of the special theory of relativity.

In 1939, Weisskopf computed the self-energy of the electron “due to
forced vibrations under the influence of the zero-point fluctuations of the
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radiation field.” He obtained a divergent result. This was one of the first
attempts to integrate the effects of the quantum vacuum fluctuations into
the explanations of self energy. Also note that he referred to the quantum
vacuum as a radiation field [181].

Indeed, Bethe, in his landmark paper also used the phrase “radiation
field” so it not absolutely certain, in my mind, precisely what he meant. To
the lowest order, the calculation would be the same for the radiation field
or the field of the vacuum fluctuations. Bethe used the expression for the
free field vector potential in his calculation, consistent with a vacuum field
or a first order radiaion field calculation

In 1938, Kramers had suggested the idea of renormalization of the mass
due to interactions with the vacuum field and its necessity in classical as well
as in quantum theories, but had no clear idea how to do it in practice [177].
As Bethe said in an interview in 1996 [178, 179]:

Kramers had said [at the Shelter Island Conference] that we misunder-
stood the self energy of the electron. The divergent self energy of the
electron was already included in the physical mass. We need to consider
the difference in the self energy between a free electron and one bound
in an atom.

It was believed that the divergence in the self energy of a electron due
to its interaction with the radiation field was linear in the cutoff frequency
until, in 1939, at Fermi’s suggestion, Weisskopf used the relativistic Dirac
theory and showed (after correcting a critical error in sign pointed out by
Furry [180]) that the electron self energy divergence was logarithmic [181].
He computed that the electron charge distribution was spread over a
Compton wavelength with a shape described by a Hankel function because
of its interaction with the vacuum field, a calculation that remains valid
today [3].

The Dirac theory predicted that the 2s; /5 and 2p, /5 levels in the H atom
were degenerate. Measurements of the energy difference had been done but
with mixed results. Then, in 1947, Willis Lamb Jr.! applied the expertise

1Willis Eugene Lamb Jr. was an American physicist, born in Los Angeles in 1913, who
won the Nobel Prize in Physics in 1955 “for his discoveries concerning the fine structure
of the hydrogen spectrum.” He went to the University of California at Berkeley where
he received an undergraduate degree in chemistry, and then a PhD in theoretical physics
in 1938, working with J. Robert Oppenheimer as his advisor. David Bohm received his
PhD with Oppenheimer a few years later. At one point as a young man, Lamb considered
becoming a professional chess player instead of a physicist [182]! After receiving his PhD,
he then joined the faculty at Columbia University, where he did research at the Columbia
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in microwave technology that he developed working with Prof. Isador Rabi
at Columbia on radar research during WWII to the precise determination
of the 2515 — 2py /o energy difference of 1050 MHz or 4.3 x 10~%eV. Dyson
who, as a graduate student working with Bethe at Cornell, recalled [184]:

And of course the people at Cornell were very closely in touch with
the people in Columbia, and in particular Willis Lamb talked to Hans
Bethe, who was the professor at Cornell, and Bethe then sat down and
gave the first more or less adequate theory of the Lamb shift, just from a
physical point of view. He understood that the reason why you had the
Lamb shift was that the electron in the hydrogen atom was interacting
with the Maxwell electromagnetic field, in addition to interacting with
the proton, so that the effect of the fluctuations in the Maxwell field
was disturbing the electron while it was revolving around the proton,
causing a slight change in the position of the orbits. And so it was the
back reaction of the electromagnetic field on the electron that Lamb
had been measuring. And so Bethe understood that from a physical
point of view. The problem was then, could you actually calculate it?
And with the quantum electrodynamics as it was then, it turned out
you couldn’t; that if you just applied the rules of the game as they
were then understood and tried to calculate the Lamb shift, the answer
came out infinity, not a number of megacycles but an infinite number of
megacycles. So that wasn’t very useful and so it was clearly a real defect
of the theory that it couldn’t grapple with this problem.

Lamb presented his results at the Conference on the Foundations of
Quantum Mechanics held at Shelter Island 1-3 June 1947, and published
them 18 June 1947 in a three-page paper in Physical Review [18]. Dyson
later commented on the reaction to Lamb presenting his results at the
conference [184]:

The hydrogen atom being the simplest and most deeply explored object
in the whole universe, in a way—I mean if you don’t understand the
hydrogen atom, you don’t understand anything, and to find that things
were wrong even with a hydrogen atom was a big shock. So it became
the ambition of every theoretical physicist to understand this.

Radiation Laboratory from 1943 to 1951 with Prof. Isador Rabi, who won the Nobel Prize
in physics in 1944. Lamb taught at Stanford, Oxford, Columbia, Yale, and University
of Arizona. Norman Kroll was one of his students. For the last three decades of his
life, he was critical of the standard interpretation of quantum mechanics, particularly
the quantum theory of measurement and did not believe in the idea of a photon [183].
He died in 2008 at age 94.
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At the conference, many people, including Schwinger, Weisskopf, and
Oppenheimer, suggested that the deviation resulted from quantum fluctu-
ations acting on the electron in the atom. However, the shift from this
interaction was infinite in all existing theories and therefore had been
ignored. The consensus was that the current theory was fundamentally
flawed and that a radically new idea was needed to deal with this. On the
75-mile train ride home to Schenectady, NY, Bethe did a non-relativistic
calculation using second-order perturbation theory, assuming minimal
coupling with a quantized electromagnetic field. The calculation predicted
that the interaction of the electron with the radiation field would lead to
a shift of 1040 MHz [19]. Bethe wrote a paper that was three pages long
and sent it to the participants on 9 June. The paper was received by the
Physical Review and published on 15 August. As Bethe later recalled in an
interview [178, 179]:

The combination of these two talks of Kramers and Lamb stimulated me
greatly and I said to myself: let’s try to calculate that Lamb shift, let’s
try to calculate the difference between the self energy of a free electron
and that of an electron bound in the hydrogen in the N = 2 state. At the
conference I said to myself: I can do that. And indeed once the conference
was over | traveled to Schenectady to General Electric Research Labs.
On the train I figured out how much that difference might be. I had
to remember the interaction of the electromagnetic quanta with the
electron. I wasn’t sure about a factor of two. So if I remembered correctly,
I seem to get just about the right energy separation of 1000 MHz, but
I might be wrong by a factor of two. So the first thing I did when I
came to the library at General Electric was to look up Heitler’s book
on radiation theory. I found that indeed I had remembered the number
correctly and that I got 1000 MHz. ...I was helped very much by a
previous paper by Weisskopf who had shown that in Dirac pair theory
that the energy of an electron only diverged logarithmically when you get
to high energy. So I said to myself once I take the difference between the
bound electron and free electron the logarithmic divergence will probably
disappear and it will converge. So let’s just calculate the effect of quanta
up to the energy of the electron mass times ¢ squared and let’s hope the
relativistic correction won’t make any difference.

Dirac has called this result the “most important calculation in physics

»

for decades.” Freeman Dyson described it as “a turning point in the
history of physics. ... It broke through a thicket of skepticism and opened
the way to the modern era of particle physics. It showed us all how
to connect QED with the real world” [184, 185]. In his Nobel lecture,

Feynman called Bethe’s calculation “the most important discovery in the
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Fig. 8.1. Hans Bethe, holding the pocket computer of his times. (Thanks to the APS
archives for the photo).

history of quantum electrodynamics” [186, 187]. In a major 2001 review
article, Eides states: “Discovery of the Lamb shift, a subtle discrepancy
between the predictions of the Dirac equation and the experimental data,
triggered development of modern relativistic quantum electrodynamics and
subsequently the Standard Model of physics” [152]. We discuss Bethe’s
approach in detail in Sec. 9.3.1.

The key to Bethe’s success was his interpretation of the infinities
that arise in the calculation. He saw that one infinite energy shift was
independent of the Coulomb potential, and therefore, he reasoned, should
correspond to a mass renormalization of the free electron. He interpreted
the infinity as a renormalization of a bare electron resulting in an electron
with the observed physical mass. This insight allowed him to continue with
the calculation and compute the finite energy shift due to the interaction of
the electron with the vacuum field for a specific atomic state. The resulting
frequency integration led to another divergence, but only logarithmic, thus
he used an energy cutoff of mc? to ensure a finite result, reasoning that
since the calculation was non-relativistic a cutoff was justified. His insightful
assumptions led to a result of surprising accuracy.?

2Hans Bethe was born in Germany in 1906. As a child, his father, a physician, told
of Hans at age four sitting on the stoop of their house, a piece of chalk in each hand,
taking square roots of numbers. By the age of five, he had fully understood fractions and
could add, subtract, multiply, and divide any two of them. At age seven, he was finding
ever-larger prime numbers and had made a table of the powers of two and three, up to
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To obtain the final numerical result required a calculation of the so-
called Bethe log (which he credited to GE workers Dr. Stehn and Miss
Steward), which can be interpreted as the average excitation energy for the
radiative interaction. It equals the average energy difference between the
level whose shift is being computed and the other levels which are reached
by virtual transitions due to interaction with the quantized radiation
field. The calculations showed that the average excitation energy for the
N = 2 state was about 17.8 Rydbergs or 240eV (1Rydberg = 13.6eV,
corresponding to the energy of the ground state of the H atom), which
Bethe thought was “an amazingly high value” that indicated scattering
states dominated the Bethe log, but the result was still clearly in the non-
relativistic energy range since 240eV < mc? = 0.5MeV. (More amazing,
we show in Chapter 14 that over 95% of the ground state shift arises from
excitation energies that are greater than the ionization potential, that is
scattering states.) The value of the Bethe log computed was slightly in
error, and the currently accepted value for the 2s state is 16.6392 [152],
which changes the calculated 2s; /5 — 2p, /5 shift from 1040 MHz, the value
Bethe gave in his paper, to 1052 MHz, compared to the currently accepted
value of about 1057.845 MHz.

Some reflections of Freeman Dyson shed some light on Bethe’s person-
ality and his work style, which may have led to his success [178]:

2™ and 319 and had memorized them [188]. After two years at Frankfort University,
he transferred to Munich in 1926, joining Arnold Sommerfeld’s group, where he learned
the need to work hard and built his confidence. He received his doctorate summa cum
laude a few years later. On a fellowship, he went to Rome and worked with Fermi. From
Fermi, Bethe learned to reason qualitatively, to obtain insights from back-of-envelope
calculations, and to think of physics as easy and fun, as challenging problems to be solved.
Bethe’s craftsmanship was an amalgam of what he learned from Fermi and Sommerfeld,
two great physicists and teachers, and combined the best of both: the thoroughness
and rigor of Sommerfeld with the clarity and simplicity of Fermi. This craftsmanship
is displayed in full force in the many reviews that Bethe wrote [158], which remains a
classic even today. In 1932, Bethe began an appointment at Tubingen, but Hitler’s rise to
power and the enactment of racial laws in 1933 prohibiting any Jew from state or federal
position forced Bethe to leave. In 1935, he joined the physics faculty at Cornell, and
enjoyed the atmosphere very much, and remained there for most of his career. During
WWII, he served as head of the Theoretical Division at Los Alamos, under Oppenheimer.
Bethe won the Nobel Prize in physics in 1967 for “for his contributions to the theory of
nuclear reactions, especially his discoveries concerning the energy production in stars.”
He explained why the sun keeps shining, and did not win it for his contributions to QED.
In later years, he advocated for peaceful use of nuclear energy and nuclear disarmament.
He died in 2005 at age 98.
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He had this intense love of doing physics collectively. I mean that it
wasn’t really physics if you did by yourself, it was something you did
with a group of people. And so I just loved it from the beginning and
became very much a part of it right away. And then, of course, his way
of work was actually quite unique, I mean if you compare Bethe with
anybody else I knew. First of all, he had total command of the facts, that
he absolutely just - you never needed to look up a number in a table
because he knew them all. He knew all the energy levels of hydrogen and
he knew the atomic weights of the different elements and the density of
lead and gold and uranium, all these just physical quantities, he knew
them all. In addition, of course, he had an extraordinary ability to sit
down and calculate and just simply go at it...And he was, of course, also
just extraordinarily reliable: if he said something, you could believe it.
He was very careful about everything he said. So just a thoroughly solid
person. Very different from Feynman, because Feynman was far more
imaginative. I mean, one thing Bethe did not have was imagination; he
never really invented anything, he just used the theories that were there
to explain the facts, and he knew the facts and he knew the theories, so
he just put them together; whereas Feynman was always inventing things
and he didn’t believe the theories that were taught in the textbooks, he
had to make them up for himself, so he had a much harder time; but
still, of course, in the end you need imagination too; I mean, both kinds
of physicists are needed.

The lowest order radiative shift of magnitude (4/37)mc?a(Za)* that
Bethe computed involves the emission and absorption of one virtual photon,
the so-called one-loop correction, so that in the expression for the shift the
« arising from the coupling is raised to the first power. This first-order
radiative shift accounts for about 96% of the energy difference between the
2512 and 2py /o states.

The other major effect of the same order that contributes to the classic
Lamb shift is vacuum polarization, often called the Uehling contribution,
which had been computed successfully before the Lamb shift measurement
and gives a shift of about —27 MHz [158, 189, 190]. Vacuum polarization
arises from the presence of a virtual electron-positron cloud, approximately
a Compton wavelength in radius, surrounding a charge, essentially produc-
ing a dielectric constant in the vacuum region near a charge. For S states,
the electron goes very close to the proton, penetrating this cloud around
the proton, and therefore effectively sees a larger charge and experiences
a stronger binding force, which lowers the energy level by approximately
2.4% or 25 MHz [152, 180]. The fact that including the effect of the vacuum
polarization ensured greater agreement with the experiment convinced
physicists that the vacuum polarization contribution was real and correct.
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8.2.2 The effect of Bethe’s calculation on the development
of quantum theory

Bethe commented on his 1947 paper in a videotaped interview in 1998 [178]:

And as far as I know, this paper both disappointed and stimulated other
people who were more versed in relativistic theory, namely Schwinger
and Feynman... and also Weisskopf. Weisskopf pursued the theory
in an old-fashioned way and calculated the relativistic part, together
with some of his collaborators. And Schwinger was stimulated to
produce a completely new theory, a relativistically invariant theory of
quantum electrodynamics. But essentially extending the old quantum
electrodynamics, making it relativistically invariant. Feynman at Cornell
used the completely novel and independent way of getting at the same
problem. He had his own way of doing quantum mechanics, his own way
of putting in the electric field. And it turned out that in the end that
Feynman’s new way was very much easier than Schwinger’s way.

Shortly after Bethe’s calculation, Dyson published, as a problem
assigned by Bethe, a calculation of the Lamb shift for a spinless elec-
tron [191]. Formal and rigorous relativistic calculations using perturbation
theory and including spin were performed in 1949 by J. French and
V. Weisskopf [192] and N. Kroll and W. Lamb [193]. Weisskopf later
commented about these calculations that they “resulted in good agreement
with the experiment. However, the methods used by those authors of

2

subtracting two infinities were clumsy and unreliable [180].” However,
history has been kind to these calculations that were not dependent on cut-
off points, which were perhaps clumsy and difficult, but produced excellent
results that have stood the test of time [3, 173].

Bethe’s breakthrough in understanding the role of the vacuum electro-
magnetic field and how to deal with divergences led to intense theoretical
work in quantum electrodynamics. It is most remarkable that within a year,
three different approaches to quantum electrodynamics were independently
developed that were relativistic and could deal with divergences with
some success. Schwinger, Tomonaga, and Feynman each had proposed
a manifestly covariant method, and shown its capability to address a
broader range of QED problems than just the energy levels of the H
atom [186, 194]. Although all of these methods appeared to be different,
with his characteristic insight, Freeman Dyson showed that they had
essential similarities and were mutually consistent [195]. He summarized:
“The advantages of the Feynman theory are simplicity and ease of appli-
cation, while those of Tomonaga-Schwinger are generality and theoretical
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completeness.” These new methods could be used to treat the radiative
interaction as a perturbation to any desired order of approximation. Dyson
also compared the results to those from the S matrix theory [196]. Dyson
observed that Oppenheimer was particularly reluctant to accept Feynman’s
approach [197].

Welton provided some physical insight into the radiative shift with an
approximate calculation based on a semi-classical model of the vacuum field
which caused the oscillation of the electron bound in the Coulomb field,
effectively increasing its size [198]. This motion meant that the electron
saw a modified Coulomb potential. Only for S states was the spread of
the electron sufficient to modify the energy level, in rough agreement with
Bethe’s result. This calculation is discussed in more detail in Section 9.3.2.

In their comprehensive 2001 review [152], Eides et al. give a different
perspective on the spread of the electron: “According to QED an electron
continuously emits and absorbs virtual photons and as a result its electric
charge is spread over a finite volume instead of being pointlike,” and then
they use the expression for the form factor, F(—k?) = 1 — (1/6)(r?)k2,
to obtain the rms radius, obtaining a value of 1330 MHz for the Lamb
shift. Their calculation differs from that of most authors [3, 175], in that
they assume the bound electron is slightly off mass shell so the cutoff term
becomes In(1/Za)? rather than in(1/Za).

A period of intense theoretical development followed Bethe’s calculation,
characterized by calculations of the energy levels of the H atom and QED
in general, performed with increasing precision and complexity. Some of the
key developments from 1950 to about 1970 are in the papers [157, 199-204];
from 1980 to 2000 are in [166, 205-221]; and from 2000 to the present are
in [9, 11, 167, 168, 222-232]. Theorists applied themselves to compute the
numerous other effects leading to the total shift between the 2s; /5 and 2p; /o
levels, as well as for other levels, including relativistic corrections, center of
mass effects, recoil corrections, radiative recoil corrections, nuclear size and
spin effects, and more rigorous, more precise, and higher order calculations
of the radiative shifts (for reviews, see [2, 95, 128, 149-155]).

One of the biggest challenges in the precise computation of the radiative
shifts is the necessity to deal with frequencies from the IR to relativistic
values. For the low frequencies, the starting point is the non-relativistic
dipole approximation, and the Coulomb gauge is the most convenient. On
the other hand, for the high frequencies, relativistic dynamics is needed,
the binding energy can be neglected, and the most convenient gauge is the
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covariant Feynman gauge. Matching the contributions from both regions is
a challenging procedure. Commenting on these perennial matching issues
in a 2001 review, Eides et al. observe [152].

It is a strange irony of history that due to these difficulties it became
common wisdom in the sixties that it was better to avoid separation
of the contributions coming from different momenta regions than to
try to invent an accurate matching procedure... Bjorken and Drell
wrote, having in mind the separation procedure: The reader may
understandably be unhappy with this procedure... we recommend the
recent treatment of Erickson and Yennie which avoids the division into
soft and hard photons. Schwinger wrote “...there is a moral here for us.
The artificial separation of high and low frequencies, which are handled
in different ways, must be avoided.” All this advice was written even
though it was understood that the separation of the large and small
distances was physically quite natural and the contributions coming from
large and small distances have a different physical nature.

Davies concluded in a 1982 paper:

...the explanation of the Lamb shift is a far more orderly affair if it
is consistently carried through within the framework of old fashioned
perturbation theory. . .the joining up of the low and high energy contri-
butions does not involve any new physics: it is a simple mathematical
device to enable the use of two distinct approximation schemes [221].

In actual fact, the attitude has changed in the last decade, and
theorists have developed more elaborate methods to deal with matching
contributions from high and low frequency regions and are now trying to
embrace the split to clarify the physical nature of corrections and improve
the results of computations [152, 231].

In Steven Weinberg’s 1995 classic “The Quantum Theory of Fields,” he
uses an elegant method of computing radiative shifts in which he introduces
a photon mass in the photon propagators that ultimately cancels when
the low and high momenta regions are combined. As he says, his result
is 1052.19 MHz, “just the same as the old result of Kroll and Lamb [193]
and French and Weisskopf [192] which they obtained using the techniques
of old-fashioned perturbation theory [173].” Lowell Brown in his book
Quantum Field Theory advocates using analytical continuation in the
spatial dimensionality of the field [174]. He notes that in n > 4 dimensions
there is no IR divergence and, in n < 4, there is no UV divergence; thus, in
the limit of n — 4, one can obtain the correct results.
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8.2.3 Current focus in precision QED for light atoms

New developments in calculations include simplifications of the Bethe-
Salpeter equation for a system with masses that are very different, such
as the proton and electron [9, 205, 212, 231-233]. The simplifications are
described as effective potential methods, and the “on the mass shell”
approach [151]. Computers are used heavily for numerical computations.
Higher and higher order corrections are being computed [9, 11, 167, 168,
208, 212, 214, 219, 222-224, 231, 232], using numerical as well as analytical
methods [225-230]. In Lamb shift calculations for the classic 251,25 — 2py /2
shift, there are hundreds of separate terms that are computed to secure a
precision of 1 part in 103,

The interest in the Lamb Shift in hydrogen has moved to a more
general interest in the QED analysis of two-particle bound states in systems
generally with low Z and one or two electrons [2, 95, 128, 149-152, 196,
199-202, 205]. This includes bound states of an electron and a positron
(positronium), bound states of a muon and a proton (muonium), and
even antihydrogen. Systems with high Za coupling are of interest for the
study of nuclear effects or the study of perturbations as a function of Za.
Precision QED analysis has also been applied to deuterium and ionized
tritium and systems with two electrons, like He. There have been incredible
advances in experimental methods that now include atom interferometry,
laser spectroscopy, and two-photon spectroscopy, which can be used to
study transitions such as 15 — 2§ and 1S — 35 that do not have a
change in the angular momentum. The 1.5 — 2S5 transition has a natural
line width of only 1.3Hz, so experimental determinations are a thousand
times more accurate than for any other transition in H, where typical
line widths are about 1 MHz or more. For this transition, precision up
to 15 decimal places is possible [1]. This means the determination of the
2812 — 2p1 /2 Lamb shift is not limited by the 2s line which is very broad.
Many different transitions in these systems are studied, and the results are
correlated to secure more precision and to determine likely values of the fine
structure constant and the Rydberg constant and, hopefully, the radius
of the proton. The radius obtained from the measurements of hydrogen
and muonic hydrogen differs by four standard deviations, a puzzle that is
currently being addressed [234, 235].

There are physicists, including notables Dirac, Schrédinger, Einstein,
Pauli, Lamb, Bohm, Feynman, and others who are not satisfied with the
present version of quantum electrodynamics, in which perturbation theory,
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which should rightfully deal with small perturbations, is dealing with
infinite terms. Three years before he died, Feynman wrote:

The shell game that we play..is technically called renormalization. But
no matter how clever the word is, it is what I would call a dippy
process! Having to resort to such hocus-pocus has prevented us from
proving that the theory of quantum electrodynamics is mathematically
self-consistent [236].

It is ironic that Bethe’s original calculation appears to have set this
direction for the development of QED. Had he not had such success with his
original calculation, perhaps we would have a theory without infinities today
that provided a more satisfying intellectual and philosophical viewpoint.
However, it is hard to argue with success.

In Chapter 9 we discuss radiative shifts in classical and quantum
systems, including the role of the quantum vacuum.
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Chapter 9

Radiative Shifts, Classical Physics,
and the Zero-Point Fluctuations
of the Electromagnetic Field

9.1 Background on QED Radiative Shift Calculations

The zero-point vacuum fluctuations have a spectral energy density of p(w) =
hw3 /272c®. In QED, the vacuum field is typically expressed as a sum over an
infinite number of plane waves with all possible momenta hk and directions
k/k with the restriction that the energy Ej in each mode is fiwy, /2 = hik/2c.
The vector potential is [3]*

2mhc? , ,
Ar,) =Y o (e’ kr=ent) gl emillr—wn)y o 0 (9.1)
k,\

where the raising and lowering operators obey the commutation rules
[axx, GLW] = Ok OAN (9.2)

and €k » are the two normalized polarization vectors (A = 1,2) that are
orthogonal to k, thus k - ex » = 0, and

€k, \ ek N = 5,\)\/. (9.3)

The electric field is E(r,t) = —0A(r,t)/0t and B(r,t) = V x A(r,1).
The interaction Hamiltonian for a particle of charge e and mass m in the

IThe quantization volume V is an artifice to avoid infinite volumes. In this box
normalization ky = 2mng/Le, ky = 2mny /Ly, and k; = 2mn. /L., with V = LyLyL..
The integers ng, ny, and n. go from —oco to +oo.
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vacuum field is

1
Hi=—(p—eA)? 4
I Qm(p € )a (9)

where A is the vector potential for the vacuum field. The radiative shift
in energy levels, such as the Lamb shift, arises from the p - A term. The
contribution to the energy shift due to the A? term does not depend on the
state of the atom and so is ignored in calculations of the radiative shifts
between levels.

To summarize the properties of the vacuum field in QED: no real
photons are present, only random virtual photons of energy fw/2 and
momentum hk/2¢, with all possible values of momentum, are present,
consistent with Eq. (9.1). The expectation values of the electromagnetic
fields vanish: (E) = 0, (B) = 0, but the variances do not: (E?) # 0,
(B?) # 0. The fields are isotropic (invariant under rotations), invariant
under space-time translations (homogeneous), and under boosts (Lorentz
invariant). The energy density spectrum is proportional to w?, which is the
only spectral density that is Lorentz invariant [3]. This means that if you
are traveling through space at some velocity, the vacuum field will always
look the same, with the same spectral density. For temperatures above 0 K,
there is an additional black body component to the vacuum field, which we
do not consider here.

In QED, we can model mass or charge renormalization with the process:

bare point electron + vacuum fluctuations + radiative reaction —
electron with physical mass, charge, and effective size of a Compton

wavelength

A bare, free, charged, point particle is constantly being accelerated in the
field, acquiring a mean kinetic energy that increases its effective mass. Since
the particle is oscillating, the effective volume occupied by the particle
increases and it can no longer be usefully regarded as a point particle,
but as a particle with an effective dimension of a Compton wavelength.
The interaction of the free electron with the vacuum field results in the
renormalization of the ideal point electron, so it has the physical properties
of a real electron. It cannot radiate because the zero point vibrations
represent the lowest energy state of the vacuum.

A similar process occurs for an atom, in which the atom undergoes
allowed virtual transitions due to the vacuum field. These transitions can
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be seen as shifting the energy corresponding to a given state of the atom.
A QED based model for this mechanism responsible for the radiative part
of the Lamb shift is discussed in Section 11.4.1.

In QED, radiative shifts are often calculated using Feynman diagrams,
in which the atom is depicted as propagating in time, and it emits or absorbs
a virtual photon changing its state correspondingly; then a short time later
(consistent with the time-energy uncertainty principle) absorbs or emits the
same virtual photon and returns to the initial state. The free vacuum field
is generally interpreted as the cause of these transitions. On the other hand,
the transitions can be interpreted as due to the interaction of the electron
with its own radiation field. To first order, the radiation field of the electron
is the same as the free field of the quantum vacuum. Hence, QED radiative
shifts are the same to the first order whether we compute them as arising
from self-interaction with the radiation field or as arising from interaction
with the ubiquitous virtual fluctuating zero-point vacuum field. Although
these interpretations fit the equations and appear reasonable, it should be
pointed out that no experiments could verify that these virtual transitions
actually occur since the times are so short; it is a matter of preference how
one views these phenomena.

Milonni has clarified the role of vacuum fluctuations and the radiative
reaction in QED calculations of the Lamb shift and the Casimir force [3,
Section 4.13] or [172, Section 7.4]. If the annihilation and creation operators
in the vector potential are made to be symmetric in the calculations, then
the level shift is determined to be due solely to the free vacuum field. This
is how Welton and Feynman did their calculations, and how the Stark effect
is typically computed. However, if the operators are normally ordered, then
the level shift is found to be due to the radiation field of the electron, which
Milonni also refers to as a source field. Thus, the preference of the person
doing the calculation determines which field appears to be responsible for
the Lamb shift.

9.2 Radiative Effects in Classical Physics

Classically, any charge radiates when it is accelerated, and this emission of
radiation, which carries away momentum, angular momentum, and energy,
alters the unperturbed motion of the particle. To account for this radiation
classically, we include in the equations of motion a resistive or damping force
proportional to the third derivative with respect to time of the position.
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For a classical radiating electron in a Coulomb potential, Newton’s second
law becomes the Abraham—Lorentz equation of motion
d’r Ze’r  2e% dPr

The second term on the right is the Abraham—Lorentz force, the non-
relativistic radiative reaction force for an accelerating charged particle. The
radiation field of the particle essentially exerts a force on itself, sometimes
called a “self-field”, a phenomenon that leads to renormalization and radia-
tive shifts in QED. The classical equations of motion become sufficiently
complicated, so that they are usually solved only in an approximation
[237]. We illustrate the effects by considering the non-relativistic classical
hydrogen atom and the non-relativistic classical simple harmonic oscillator.

9.2.1 The classical hydrogenike atom

Without radiative damping, a classical electron in a Coulomb potential
would travel in elliptical or circular orbits in a periodic way. Including the
damping means that the orbits decay with the emission of radiation. As
time passes elliptical orbits tend to become circular and the mean radius
decreases leading to collapse of the atom. The electron in a classical H atom,
starting at a radius of 0.53A (given by quantum mechanics), would collapse
in about 1.3 x 107! s [238-240]. Consideration of the rate of decay of the
energy and the angular momentum for an atom with charge Ze leads to the
equation for the radius r.(t) of a circular orbit for a mass m and charge e
as a function of time

. a(Za)
(1) = r(0) — 422y (96)
with classical orbital frequency
Za
ol = —. 9.7
Wel m,rgl ( )

The Lamor equation P = (2/3)(at?) gives the radiated power. The

2

acceleration v can be obtained from the Coulomb force F' = mo = Za/r7,

giving the radiated power

P(t) = %0‘(57‘;‘)2%4[ (9.8)
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Applying the Correspondence Principle we obtain the transition probability

Pt) 2 (Za)’?
I'=s—~=-ma———. 9.9
oo 3o (mre )72 (9.9)
Substituting the quantum mechanical result for the radius of the H atom
for large principal quantum number N

N2
.= 9.10
" mZao ( )
gives the transition rate or width for state N
2 a(Za)?
I'n = 3™ N (9.11)

This width is 27 times the energy lost classically by radiation in one
revolution (about 27w 48 MHz = 301 MHz, assuming N = 2). We show
that for large N this width equals the imaginary part of the radiative shift
calculated from quantum field theory.

Efforts have been made to stabilize the ground state of the hydrogen
atom using stochastic electrodynamics (SED), which is classical electro-
dynamics with an additional field, a classical version of the zero-point
electromagnetic field that is included with the objective of obtaining the
same results as quantum theory [238-241]. Stochastic electrodynamics
(SED) includes a classical stochastic field that has the same energy density
as the quantum vacuum field. In the SED modeling efforts of the hydrogen
atom to date, the classical field supplies the energy lost by radiation from
the classical electron that orbits the proton, thus stabilizing the orbit for a
short time, but then results in the ionization of the atom.

9.2.2 Radiative shifts to lowest order in the classical
stmple harmonic oscillator

In a real harmonic oscillator, damping is present due to internal friction,
environmental interactions, and radiation. The damping shifts the resonant
frequency and causes the oscillations to decay in time. Consequently,
the emitted radiation is no longer monochromatic, but has a frequency
spectrum with a finite width. For an undamped one-dimensional oscillator
with charge e, mass m, and resonant frequency wy, the displacement from
equilibrium is

X (t) = Re(Xoe 0. (9.12)
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Including a radiative damping force in the equations of motion produces
a complex shift in the resonant frequency [237]

wo — wo + Awo + %F, (913)
where
5 ah \? 2 ah

The factors of ¢ and h arise for the classical oscillator since radiation
is emitted. The term ah/mc? is the time it takes for light to travel a
distance equal to o times the reduced Compton wavelength, 9.6 x 10724
sec, which also equals the time it takes for light to travel a distance equal
to the classical electron radius.? Radiative effects are only important for
accelerations that result in changes in velocity for times less than ah/mc?.
For the classical harmonic oscillator, the shift Awq is a higher order effect
than the width I'.

When we recall that in quantum mechanics the energy is proportional
to the frequency E = hw and that the time dependence of an eigenstate
of energy F is e ™F | it is no surprise that in quantum electrodynamics
radiative effects produce a complex shift in the bound state energies of a
system, the real part being the shift in the energy level and the imaginary
part being the width of the state that determines its lifetime.

We can verify the Bohr Correspondence Principle for the three-
dimensional isotropic harmonic oscillator. This principle states that in
the limit of large quantum numbers the classical power radiated in the
fundamental band is equal to the product of the photon energy and
the quantum mechanical transition probability (or the reciprocal of the
lifetime). The power radiated from the classical isotropic oscillator is all in
the fundamental band and has the value

P= gawéﬁ, (9.15)
where A2 is the mean square amplitude of oscillation. The corresponding
transition rate or line width I" is

P p—
I'=— = Zawj A2 (9.16)
wo 3
2The classical radius of the electron is ro = e?/(mc?) = 2.8 x 10713 cm, which can

be written at ah/mec = aX, where A is the reduced Compton wavelength of the electron
3.8 x 107! cm (Compton wavelength divided by 27).
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For a quantum mechanical three-dimensional oscillator, the energy for a
state N is Ey = (N + %)wo ~ mwiA? and we find

— 3 1
A2 =N+ = . 9.17

( + 2) mwo ( )
Accordingly, in the limit of large quantum numbers, it follows from the
Bohr Correspondence Principle that

Iy = ; (%) WEN. (9.18)

We show in Section 11.5 that this width 'y equals the radiative level
width computed in quantum mechanics. The Correspondence Principle
makes no statement about the level shift, which is the real part of the
radiative shift, and indeed the classical calculation yields a level shift of
order (a)? while the quantum mechanical result is of order «.

9.2.3 Comparison of results for harmonic oscillator and
Coulomb potential

The level width (Eq. 9.18) of the harmonic oscillator increases with the
principal quantum number N, while for the hydrogen atom, the level width
(Eq. 9.11) decreases with N. There is a similar inverse relationship of
the level width with the mass. These results follow because the force on
the particle increases with distance for the harmonic oscillator, while it
decreases with distance for the H atom. For the harmonic oscillator the
force center is at the center of the ellipse; for the Coulomb potential the
force center is at a focus. The classical radiative damping in the harmonic
oscillator gives a complex shift that illustrates the close relationship between
radiative level shifts, as in the Lamb shift, and radiative widths. The level
widths for both systems are related by the Bohr Correspondence Principle
to the classical power radiated.

9.3 The Relationship Between Radiative Shift and the
Zero-Point Field: The Radiative Shift Calculations of
Bethe, Welton, and Power

In classical physics, the electromagnetic field in the vacuum vanishes (unless
we are dealing with SED, stochastic electrodynamics). However, from
quantum electrodynamics, we know that we must consider the effects of
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the zero-point fluctuations of the electromagnetic field.? Three different
approaches have been used to explain the Lamb shift.

9.3.1 Bethe’s approach

The first calculation of the Lamb shift of a hydrogen atom was done by

Bethe in 1947, who assumed that the shift was due to the interaction of the

atom with a quantized electromagnetic field, which we assume is the zero-

point field. He calculated the shift using second order perturbation theory,

assuming that there was minimal coupling in the Hamiltonian:
e? A2

2me?”

Hiypyp = ———A -p+ (9.19)
mc

where m is the mass of the electron and A is the vector potential for the

vacuum field given by Eq. 9.1.

As we have explained, the shift arises from the perturbation
—(e/me)A - p . The shift from the A? term is independent of the state
of the atom and is therefore neglected. In the non-relativistic dipole
approximation, the vector potential is evaluated as A(0,t).

2rhe?\ /2 ; ;
A(0,t) = E ( o ) (ax re "kt + aL/\em’“t)ek,,\ (9.20)
k
)

The total shift for level N from second order perturbation theory is [3]

|<7’L7 1k)\|hk>\|N, Uac)|2
AE = E E 21
NTot ENfEm*h . ) (9 )
n  k,\
where

e (2mhc?
- _ i . 22
hk}\ me ( (JJkV ) a/k:)\(ek»\ p) (9 )

The vacuum field induces a transition from the initial state |N,vac) to
an intermediate state with one photon |n, 1) and energy E,, + hwy. The

3We also mention the vacuum fluctuations of the charge density, characterized by virtual
electron—positron pairs, which leads to the renormalization of the electron charge. Since
this charge renormalization contributes much less to the shift between states than the
mass renormalization from the zero-point vibrations of the EM field, we shall not consider
it here. In mesic atoms, in which the meson orbit is largely within the nucleus, the
opposite situation occurs.
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matrix element of the operator inducing the transition is

e [2nhc?

s Lex|hea| N, =—— N €k 9.23
(n, Lia|haea| N, vac) me < iV >P N €kX ( )

which means the energy shift equals

2« (NL|p;|n){(n|p;|NL)

AENTot = —— dEE , 9.24
NTot 37rm262;/ E,—Ex+E (9-24)
where the quantum vacuum field energy is E = hw, a = e?/hc is the

fine structure constant, and the momentum matrix elements are |p,n| =
[{(n|p|N)|. The sum is over all intermediate states |n), scattering and bound,
where n # N. This shift has a linear divergence. Bethe’s insight was to tame
this divergence by removing the contribution to the shift from the free
electron in the H atom. He therefore subtracted the shift AEy,... obtained
by letting the binding energy vanish in Eq. (9.24) (E,, — Ex) — 0:

AE e = f%# En: |pnN|2/dE. (9.25)
The observable shift is therefore

AENL = AENTot — AEfree. (9.26)
This yields Bethe’s final result

90 s phwe . (En — En){NL|pi|n)(n|p;|NL)
)2 —Jo

ABEy; = —2
NL 3 (me E, —Ey+E —ie ’

(9.27)

where we is a cutoff frequency for the integration that we will take as
hwe = mc?.

Using an idea from Kramers, Bethe did this renormalization, taking
the difference between the terms with a potential present and without a
potential present, essentially performing the free electron mass renormal-
ization. He reasoned that relativistic retardation could be neglected and the
radiative shift could be reasonably approximated using a non-relativistic
approach, and he cut the integration off at an energy corresponding to the
mass of the electron. He obtained a finite result that required a numerical
calculation over all states, bound and scattering, that gave good agreement
with measurements [18, 19, 158].

The spectral density in the Bethe formalism, which we will analyze in
Chapter 14, is the quantity in Eq. (9.27) being integrated over E which
gives the contribution to the shift as a function of the frequency of the



138 The Hydrogen Atom

vacuum field. It includes the sum over states n. The term for n represents
the contribution to the Lamb shift for the virtual transition from state N
to state n. Note since the ground state is the lowest state, all intermediate
states have higher energies, so the ground state shift has to be positive.

For comparison with the other calculations of the Lamb shift, it is
helpful to show the next steps Bethe took to evaluate the shift AE, for
the S states, which have the largest shifts. Note that the spectral density
in Eq. (9.27), that we will discuss in Section 14.2, is not affected by the
subsequent approximations Bethe made to evaluate the integral. First the
E integration is done:

200 [ 17 (mc® + E, — Ey)
AEBethe — 22— 2(E,, — En)l i . (9.28
N I me ;|pNn| ( N)n |En_EN| ( )

To simplify the evaluation Bethe assumed |E, — Ey| < mc? in the
logarithm and that the logarithm would vary slowly with n so it could
be replaced by an average value

BB =2 (LY e Sy BB - By, 0)
" ~ 37 \me |En — En|ave < Pl 5 M '

where the hat over the AF indicates this is an approximation to Eq. (9.27).
The summation can be evaluated using the dipole sum rule

2> " Ipyal’(En — Ex) = B*(N|V?V|N). (9.30)
The value of the Laplacian with a Coulomb potential V = —Ze?/r is
V2V (r) = 4rZe*5(r), so we have
(N |V*V|N) = anZe*[yn (0)], (9.31)
where 1(r) is the wave function for a Coulomb potential. |1/ (0)|* is zero
except for S states
1 ( Zame\®
2
= 32
v =+ (%) (9.32)
For S states, this gives an energy shift equal to [3]:
— Bethe  4mc? 1 mc?
E = Za)*—In —-———. 9.33
N 3 ) N M (9.33)

The average In(mc?/|E,, — En|)ave in this expression, which Bethe com-
puted numerically by summing over states, can be given in terms of the so
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called Bethe log v(N, L):

ch

2
In—— = —~(N,L Oroln ——.
n |En — EN|Ave ’Y( ) )+ Lon (ZO[)Q

For an S states with principal quantum number N, (N, 0) is
1/2)(Za)?mc?
o [P 2 (B — Ex)ln U2Ze) me”
Z'rn |pN‘rL|2 (E"L - EN)

The sum is over all states, bound and scattering. Comparison of Eq. (9.33)
to the definition of y(N,0) Eq. (9.34), we see there is a difference in the
argument of the In function. This difference causes the appearance of the
term In(2/Za)?. Bethe also has extended the formalism to shifts for states
that are not S states [158]. To determine the shift, it is necessary to evaluate

’Y(N,O) =

(9.34)

the Bethe log by performing a numerical calculation over all states, bound
and scattering. The final result gave good agreement with measurements
[18, 19, 158].

Regarding the approximations Bethe made to obtain Eq. (9.28) from
Eq. (9.29) and the use of the Bethe log Eq. (9.34), he commented: “The
important values of |E,, — Exn| will be of order of the ground state binding
energy for a hydrogenic atom. This energy is very small compared to mc?
so the log [in our Eq. (9.28)] is very large and not sensitive to the exact
value of (E, — Ex). In the numerator, we neglect (F,, — Ex) altogether
and replace it by an average energy [158].”

Our work shows that Bethe was correct that the relative contribution
from energies of the order of the ground state is very important, but we find
in Chapter 14, when we analyze the contribution to the Lamb shift from
different frequencies, that the contribution from higher energy scattering
states is very significant, and therefore that the approximation |E,, — Ex| <
mc? is not valid for scattering states for which FE, increases to the value
mc?. We are not aware of any quantitative estimates of the error in the
approximation. The difference, 0.3%, between our value for the total 1S
shift and that of Bethe may be due to this approximation, although we
have not verified this. On the other hand, Bethe’s approximation may have
made his non-relativistic approach viable.

9.3.2 Welton’s approach

To provide a more intuitive physical picture of the shift, Welton and
Weisskopf considered the effect of a zero-point vacuum field on the motion
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of an electron bound in a Coulomb potential [198, 242]. The fluctuation in
the position of the electron £ due to the random zero-point vacuum field Eq
causes a variation in the potential energy. If r is the location of the particle
when it is unperturbed by the zero point field, then when perturbed, the
particle effectively sees a potential V(r + £). For weak binding, £ < r, and
we make the expansion?

Vie+&)=V(E)+£ - VV(r)+ % €-V)>V(E)+---. (9.35)

Because of the harmonic time dependence of the vacuum field, (€) vanishes
and the radiative shift is given approximately by the vacuum expectation
value of the last term:

AE\l\IIVelton _ <€_2> <V2V(I')> (936)

6

where we assume the potential has spherical symmetry, thus (£7) = (£3) =
(€3) = (£2/3). Eq. (9.36), which is valid for any central force, gives
AEX,VC“EO” as the product of two factors, one depending on the nature

N’

of the fluctuations of the radiation field and the other depending on the
structure of the system. To estimate (£2) for the vacuum field we consider
the Hamiltonian for a particle of mass m and charge e in the vacuum field
using the radiation gauge (V =0,V - A =0):
1
H=—(p—eA(t,0))> 9.37
5 (P~ cA(1,0) (9.37)

We use the value of the vector potential for the free vacuum field at the
origin, A(t,0), which is equivalent to the dipole approximation. The proton
and the electron can be considered to become a point dipole. Hamilton’s
equations give the result

md*€/dt* = e dA/dL. (9.38)

Integrating gives

£(t) = %/t dtA (t',0). (9.39)

Squaring this and taking the vacuum expectation value gives:

t

co-(=) [

4This expansion is essentially the dipole approximation.

t
dt'etet / dt" e ((A(H,0) - A(",0)),). (9.40)

o0
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The vacuum expectation value on the right side is simply —ig;; D%, where
D% is the radiation gauge propagator in configuration space®:
1 . TN 1

D, (' —t") = @ /d k<5ij — kik; - ?> 3 Wt =t (9.41)

Accordingly, we find

(€)= 2 (i)

™ mc

hwc E
/ & (9.42)
Ey E

where we show the factors of & and ¢ to stress that the term in parentheses
(h/mc) is A., the reduced Compton wavelength of the particle, which we
take to be the electron; thus X, is 3.86 x 10~ cm.b

We take the upper limit fuwe to be mc? to correspond to the mass
of the electron, the same limit used by Bethe. For greater frequencies, it
is clear that our semiclassical calculation is invalid because of relativis-
tic kinematical effects and particle—antiparticle pair creation, which will
become possible. (Another justification for taking this limit is given when
we discuss this process from the point of view of the uncertainty principle).
For the lower limit, we take some characteristic energy Ey of the bound
state system, for example the magnitude of the ground state energy. This
gives a value of 8.4 x 10712 cm = 0.22X, = /(€2) for the RMS displacement
of the electron due to the vacuum fluctuations.

The final expression for the shift in the energy of a particle bound in a
central potential V(r) is

Welton @ h ? m02 2
AFE =3, <%) In (—) (V=V(r)). (9.43)
This equation is valid for all central forces, including the Coulomb potential
or the simple harmonic oscillator. Because of our simplifications in the
treatment, the shift is not complex, but just represents the real portion of
the complex level shift. This equation is the first term in Eq. (11.50), which
gives the complex shift derived by field theory for a central potential.

The Welton model is a simple, physically appealing semi-classical model.
A modified version of Welton’s model has been published by Passante and
Rizzuto, in which they perform a rigorous quantum mechanical derivation

5The metric is (—1,1,1,1) for p =0,1,2,3; 4,5 = 1,2, 3.
6We can also derive Eq. (9.42) using a Fourier decomposition of md2€/dt? and
integrating over the frequency distribution of the vacuum field [3].
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of the change in the electron orbitals based on the virtual transitions that
lead to the radiative shift [243]. This new version does not suffer from some
of the drawbacks of Welton’s original version.

Welton’s model for Coulomb potential

For the Coulomb potential, the Laplacian is given by Eq. (9.31) and
(9.32). If we use a quantum mechanical average of the Laplacian, then
the expression for the shift for an S state with principal quantum number
N is

Welt 4a(Za)tme? 1 me 4B
ARGt = ———~ — 9.44
N 3 N3 /E E (9.44)
which can be integrated to give
AWetton _ da(Za)me* 1 . mc? (9.45)

3 N3 . T{)
where Ej is a characteristic low energy, which we might choose as the
energy of the ground state. For the Coulomb potential, the Laplacian is
proportional to 63(r), so classically the shift vanishes since the classical
electron is never at the center, whereas quantum mechanically the shift is
only for S states. On the other hand, if we happen to compare Eq. (9.45)
to Eq. (9.33), we see that if we take the same lower limit |E,, — En|ave as
in the Bethe log Eq. (9.34), we get exactly the same total S state shift as in
the approximate Bethe formalism Eq. (9.29). With these limits, the RMS
amplitude of oscillation of the electron bound in the Coulomb potential

((£)?) is about 72 fermis, about 1/740 of the mean radius of the 1S
electron orbit.

Welton’s model for simple harmonic oscillator

For the 3D harmonic oscillator V' = (1/2)mw?(z? + y? + 22), the Laplacian
is a constant V2V = 3mw?, and for the characteristic low energy we take
FEy = hw, so the shift for every level is a constant equal to

AWelton _ g (hw())Q %

SHO = . ch In hu)o (946)

This level shift is the same as the real part of the complex level shift
Eq. (11.57), derived by QED in Chapter 11. For the harmonic oscillator,
we get the same constant shift whether we take a classical or a quantum
mechanical average. For an oscillator with a ground state energy of 2eV,



Radiative Shifts, Classical Physics, and the Zero-Point Fluctuations 143

the In term is about 12.4 and the shift is about 2.3 x 10~7 eV, which is
comparable to the 2s; /5 — 2p; /5 lamb shift value of 4.3 x 10~ %eV.

9.3.3 Feynman’s approach (implemented by Power)

Feynman proposed another approach to compute the Lamb shift: he
maintained that the change in the energy in the quantum vacuum due to the
presence of the H atoms would exactly equal the Lamb shift. Feynman’s
approach highlights the changes in the vacuum field energy due to the
interactions with the H atoms. Power, based on the suggestion by Feynman,
considered the change in vacuum energy when N hydrogen atoms are placed
in a volume V, using the expression for the index of refraction n(wy)
[3, 203, 244]. The H atoms cause a change in the index of refraction and
therefore a change in the frequencies of the vacuum fluctuations present.
The corresponding change in vacuum energy AFE is

1 1 1
AFEPower — — “hwy — =hwy. 9.47
Zn(wk)Z BTtk (9.47)

For a dilute gas of atoms in a level N, the index of refraction is

47TNd wnN|d|$LN

2 2
3h — Wy N~ W

n(wy) =14+ (9.48)
where Ny is the number density, w,ny = (E, — En)/h and d,ny = ex,n,
the transition dipole moment. After substituting n(wy) into Eq. (9.47), we
get a divergent result for the energy shift. Following Bethe’s approach, we
need to subtract from AFE the energy shift for the N free electrons, which
equals the shift when w,y — 0, with no binding energy. After making this
subtraction and converting the sum over k to an integral over w, and letting
NV — 1, the observable shift in energy is obtained [3]:

2
2 me/h duow
Power __ 3 2
Noting that
) )
(n|p|N) = ﬁm(nHH, x||N) = %m(En — En){n|x|N), (9.50)

we can show

m2w2
|p'rLN|2 = ”nQW'rQLN|X”LN|2 = TnN|d”N|2 (951)
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This allows us to write Power’s result Eq. (9.49) as
me?/h
dww

2¢e?
AEBLower — - —_ n 2/ s B—— 9.52
N I m2es ;w N|pnN| 0 w2N — w2 ( )

n

Writing this equation in terms of E = hw instead of w yields

2
me EdE
AEPowe'r — = E
for =22 (o ) Sl (2 o[ e

(9.53)

In Chapter 14, we will use this equation to analyze the spectral density
for Power’s method, showing the spectral density is different from Bethe’s
at low frequencies but the same at high frequencies. When Eq. (9.53) is
integrated with respect to E, taking the principal value, we obtain

ower 2a
apger 22 (LY S lp. B Bx)

mc® + (B, — Exn)  mc? — (E, — En)
x In X
En - EN En - EN
Except for the argument in the In function, which corresponds to the
upper limit of integration, this is the same as Bethe’s expression Eq. (9.33)
for the shift. If we assume mc?> > E, — Ey, as Bethe did, then both
expressions for the total shift are identical. We know, however, that there

1/2

(9.54)

are significant contributions to the shift from scattering states FE, that
have energies near mc?. Thus, this approximation is not valid at very high
energies of E,, because the second factor in the In function in Eq. (9.54)
may even become less than one since Fy is negative, making the [n term
negative.

Milonni and his collaborators have modified the derivation of the
Lamb shift that is based on Feynman’s approach so that the result is
identical to Bethe’s result [244]. They note the expression for the index
of refraction assumes the presence of a real photon, which leads to an
unphysical contribution that is usually eliminated by the choice of the cutoff
frequency we. To correct for this problem without relying on the cutoff
frequency, they include in the shift the contribution from the self interaction
of the atom as well as the contribution from the vacuum fluctuations. When
both contributions are included, the total shift is the same as Bethe’s
result. Their approach would likely eliminate the problematical In term
in Eq. (9.54) that may become negative for very large E,,.
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One assumption in the computation by Power is that the index of
refraction in the box containing the atoms is spatially uniform. We will
return to this assumption and suggest in Chapter 15 a model that predicts,
for a single atom, the changes in the vacuum field energy as a function of
position for each spectral component of the radiative shift.

9.3.4 Observing zero-point vibrations of the electron

We might ask: Why do we not observe point particles with their unrenor-
malized masses oscillating in the zero point field? The answer is an
observation of distances of the order of /(£?) ~ /a(h/mc) (Eq. 9.42),
about one tenth of the Compton wavelength, would, by the uncertainty
principle, involve momenta of the order of mc/y/a and energies of the
order of mc?/a, causing violent uncontrollable perturbations in the zero-
point motion and leading to the creation of particle-antiparticle pairs in
the vicinity of the particle we were attempting to observe.

To illuminate the nature of the free particle renormalization by analogy,
consider an impenetrable massless black box containing a gas. Since E =
mc?, the kinetic energy of the gas molecules contributes to inertial mass,
and the observable mass depends not only on the mass of the gas molecules
but also on their temperature, which indicates their mean kinetic energy.
The separate contributions to the observable mass of the box cannot be
measured directly, but if we know the temperature, we can compute them.
The analogy of this hypothetical situation is quite close to the free particle
renormalization since we can regard the zero-point vibration as causing
infinite or very large virtual temperature fluctuations. In renormalization,
the initial mass of the particle is chosen so that the renormalized mass is
equal to the known physical mass.

9.4 General Nature of Radiative Shifts

Before ending this section, it seems important conceptually to stress the
general nature of radiative shifts [3, 245-248]. First, we note that a shift in
the particle mass from the infinite free space (renormalized) value occurs
whenever the particle is not in infinite free space. Not only an external
potential, but any object altering the zero-point field of infinite free space
will produce a shift in the energy levels of an atom.” For example, there

"The shift is also dependent on temperature since the vacuum field has a temperature
dependent component due to the presence of black body radiation.
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is a change in the mass, charge, and magnetic moment of an electron or
a change in the Lamb shift of an atom when we put it near a surface or
between two surfaces or in a dielectric medium [245, 246, 249, 250].

A second observation we would like to mention is that radiative shifts
can occur whenever we have an interaction between a particle and a field,
not necessarily just the electromagnetic field. For example, there are shifts
for the gravitational field or for the meson field of a nucleus [247].

In the next chapter, we use quantum field theory to derive an expression
for the radiative shift of an hydrogen atom.



Chapter 10

The Radiative Shift in Field Theory

There are numerous ways to compute first-order radiative shifts, as
explained in detail in excellent texts, for example [3, 172, 173, 175].
We employ a different approach, calculating the shift in terms of the
mass® operator, in hopes that this clarifies the physical significance of
renormalization and the shift more clearly than some other methods [251].
We give comments on the various approaches, including the traditional
methods. We do not include the effects of electron spin in our first-
order non-relativistic calculations. The only assumptions made are the
equations of motion and the minimal coupling of the vector potential to
the momentum.

10.1 The Mass? Operator

The radiative shift of a particle can be understood as the difference
between the mass renormalization for a bound particle and the mass
renormalization for a free particle, which we consider to be a spinless
electron or meson. Therefore, we briefly review the mass renormalization
of a free electron (assuming that all other quantities except the mass have
been renormalized). The equation of motion for a free bare meson field is

—0"¢o(z") +migo (z') =0, (10.1)

where my is the unrenormalized mass'. The propagator for the bare meson
Go(2',2") satisfies the equation

(=0 +m3)Gy (2, 2") = 5(2" — 2"). (10.2)

1The primes indicate eigenvalues of operators, and unprimed quantities indicate
abstract operators. The quantity 2’ means the four-vector (¢, r’).

147
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We can rewrite this equation as

1
Go (2, 2") = m5 (2" —a") (10.3)
or in momentum space
1
Gop) = ——. 10.4
o) = (104)

The meson has a charge distribution and therefore interacts with its
own electromagnetic field, producing a change in mass. The propagator for
a free self-interacting meson becomes

G B 1
F(p) - pg +mg +M§(p)7
where MZ%(p) is the mass? operator for a free, self-interacting or dressed
meson. If m? is the observed (renormalized) physical mass, then the
propagator G (p) must have a pole at p?> = —m?. Thus,

m? =m2 + Mz(p® = —m?). (10.6)

(10.5)

The space-time methods of Feynman, which were developed right after
Bethe’s calculation, were helpful in providing a physical picture of the
phenomena and in facilitating calculations [186]. In that spirit, we consider
the diagrams in Fig. 10.1 that show the processes that represent the mass?
operator M% to order €? or a in the radiation field of the meson (one
photon of the radiation field is present). By analyzing the mass? operator in
Section 10.5, we show that these are indeed appropriate Feynman diagrams.

In configuration space, the equation of motion for the free self-
interacting meson is

(p2 + mg)GF(J?I,J?”) + /d4$I”M}2;v($I _ $II,)GF($III,$,I) _ (5($I _ $”).

(10.7)

Fig. 10.1. Feynman diagrams for mass renormalization. Time axis is horizontal. The
diagram on the left corresponds to the p - A term and shows an electron emitting a
virtual photon and then at a later time reabsorbing the photon. The diagram on the
right corresponds to the A2 term.
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The presence of the convolution integral indicates that we can view the
meson as having a finite extent. The shape of the meson centered at r’ is
proportional to the Fourier transform of mg + M#%(p), namely

1
O(r" =) 4 5 (ME(r" = 1") + mg —m?). (10.8)

The effective finite extent of the meson in the vacuum field is central
to the interpretation of the Lamb shift. Alternatively, we can say that we
have a point particle, but now it is in a non-local potential. Although we
need never explicitly mention the zero-point vibrations in our field-theoretic
calculation, we could interpret the Feynman diagrams as corresponding to
the zero-point fluctuations or to the interaction of the electron with its own
radiation field [172, p. 240].

We can estimate the amplitude (€2) of the zero-point oscillations
of the meson (or equivalently, the emission and absorption of virtual
photons) by applying the uncertainty relations to the process depicted in
Fig. 10.1. When the photon is emitted, the particle receives a momentum
k; with uncertainty Ak;. Consequently, the uncertainties in the position
& and velocity v of the particle satisfy the relations A¢ > 1/Ak; and
Av; =~ Ak;/m. Requiring that Av; &~ 1 implies that Ak; ~ m and
A& > 1/m = Compton wavelength. To get the effective (£2), we must
multiply by the probability that the photon has been emitted. The diagram
has two vertices so the probability is proportional to «, which leads to the
result a(A€)? = (€2) ~ 3a/m? = 3a(h/mc)? the mean amplitude squared
of the zero-point vibrations, which is comparable to the result (Eq. 9.42)
obtained using the equations of motion for the vector potential.

When we place a bare meson (or spinless electron) in an external
potential, we assume that it forms a bound state. The propagator and
therefore the equations of motion are as before except that: (1) the free
mass?® operator M% is replaced by a bound state mass operator M?; (2) the
propagator G for a free particle with radiative interaction is replaced by
the corresponding propagator G for a bound particle; and (3) p,, is replaced
by the four-vector by 1I,, = p,, — V},, where V), is the external four-potential
in accordance with minimal coupling [3]. The energy of the bound state is
shifted by a mechanism similar to that for a free bare meson. The Feynman
diagrams are shown in Fig. 10.2.

The double line represents a meson propagating in the external poten-
tial. The difference between the diagrams for the bound meson and the free
meson corresponds to the radiative level shift (Fig. 10.3). In other words,
the radiative shift in a bound state level is the change in the self-energy of
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;

>

Fig. 10.2. Feynman diagrams for the bound state mass renormalization. The double
line represents a meson bound in an external potential.

- 2%

Fig. 10.3. Feynman diagrams showing the level shift is the difference between the
bound state mass renormalization and the free particle mass renormalization. The double

;

line represents a meson bound in an external potential.

a particle that occurs when it becomes bound. As discussed in Section 8.2,
this is exactly the way Bethe framed the problem of computing the Lamb
shift. The intermediate state of the atom, i.e., while the virtual radiation
field photon has been exchanged, is unknown. In his historic approach, the
cumulative effect of these virtual transitions is given by the Bethe log term.

To indicate in more detail the process involved in the radiative shift
for a Coulomb potential, we expand the double line representation of the
bound meson, indicating separate meson and proton lines and the photons
exchanged that represent the Coulomb force (Fig. 10.4). The graphs that
give the radiative changes are of the form shown in Fig. 10.5. The lowest
order shift, to order « (first order) in the radiation field and (Za)?* (second
order) in the Coulomb field, is given simply by the vertex correction
(Fig. 10.6).

Rather than consider separately all the various graphs in the Coulomb
field and obtain an answer in a series with powers of Za or In(Z«) as is done
with higher order calculations [152, 199, 214, 219], we calculate the radiative
correction using the equations of motion for a meson (spinless electron) in
a Coulomb field and then make approximations to first order assuming
that the proton or Coulomb source is an infinitely heavy point charge. We
are neglecting relativistic effects, recoil effects, center of mass corrections,
radiative corrections and size effects for the proton. To include these effects,
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Fig. 10.4. Feynman diagrams for the meson (top line) bound to the Coulomb field of
a proton (bottom line). The dots indicate that all possible configurations of Coulomb
photons, including crossed photon lines, are to be included.

Fig. 10.5. Feynman diagrams for the meson (top line) bound to the Coulomb field of a
proton (bottom line), with the exchange of Coulomb photons and one radiative photon
emitted and reabsorbed by the meson.

En

Fig. 10.6. Feynman diagram for lowest order radiative correction to the bound meson.

we would need to use the Bethe—Salpeter equation [95, 158, 223]. On the
other hand, Weinberg (in 1995) did not think the Bethe-Salpeter equation
was the correct equation for relativistic interactions (it includes no crossed
photon diagrams), and he concluded: “It must be said that the theory of
relativistic effects and radiative corrections in bound states is not yet in
entirely satisfactory shape” [173].

In general, we are concerned with directly measurable quantities, namely
the shift in the energy difference between two states of a bound meson. For
example, we calculate the change in the 2s-2p separation. Clearly, this shift
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is given by the difference in renormalization between a meson bound in a
2s state and one bound in a 2p state. Thus, the renormalization of a free
meson is never actually used.

10.2 Expressing the Radiative Shift in Terms of the
Matrix Elements of the Mass? Operator

From the equation for the propagator of a self-interacting meson in a
potential V#(x), we can find the equation obeyed by the corresponding
meson wave functions. Taking mass-renormalized wave functions of the
meson in the potential field as our unperturbed states, we apply first-order
perturbation theory to find the expression for the radiative shift in terms of
matrix elements of the perturbation M. The Green function or propagator
for a meson field ¢(2’) that interacts with its own radiation field and the
external potential V), satisfies the equation:

(I + m? + M)G (', ") = 6(a’ — 2™), (10.9)
where
1
I, = gaft - Vu(2"), (10.10)

m is the physical mass, M? is the (mass)? operator and M is the

renormalized mass? operator for a meson in a Coulomb potential

M= M2 +m2 —m?. (10.11)

Equation (10.9) is similar in form to Eq. (10.7). However, in Eq. (10.7)
we explicitly indicate the integration over 2’ whereas in Eq. (10.9) we use
a shorthand notation for integration. We assume that our four-potential is
such that we can work in a gauge with V; = 0,V? = V(r). Since we want
an energy shift, we take the Fourier transform of Eq. (10.9) with respect to
time

(0~ (E V)2 +m? + D (E)G(E,r' ,#") = 5(r' —+"),  (10.12)
where we define

2~

M (E)G(E,x',x") = /d?’r"'MQ(E,r',r”’)G(E,r"',r”) (10.13)

and E is the relativistic total energy. We can convert Eq. (10.12) to an
equation for the wave functions by expressing the Green function as the
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vacuum expectation value of the time ordered product of the meson field

o(z"):
Ga',a") = i{(@(a")o (")) +). (10.14)

If we insert a complete set of eigenstates of the Hamiltonian (particle,
antiparticle, bound, and scattering) in this equation for G and use the
equation of motion for ¢(z):

¢(r7 t) = ethéf’(Ta O)eithv (1015)
we find
" ® Y "
G(E,r’,v") = Z M + contribution of scattering states.
—~  E- D,

(10.16)
The ®(r) are the relativistic bound state particle wave functions
(0]¢(7, 0)| E};) with the renormalized mass and a relativistic total energy Ej.
If Eq. (10.12) is to be satisfied when we substitute this form for G and let

k=n,E=F,, and ' # r”, then it follows that
P2 +m2 — (B, — V)2 + M (E))Pu(r') = 0. (10.17)

We now use first-order perturbation theory to calculate the radiative

. -2 . .
shift due to M~ (E,,). The unperturbed wave functions are the renormalized
relativistic wave functions v, (r’) for a meson which satisfy the equation

P2 = (ES = V') + m2iu(r') = 0, (10.18)

where E? is the unperturbed relativistic energy eigenvalue. For our
normalization, we choose

(U, (B = V')y) = m, (10.19)
where the scalar product is defined as follows:

(6, Ap) = / & ¢ (r') (A (r)). (10.20)

We note that ®,, (') equals QZQ“' ) plus higher order terms. We take the scalar
product of Eq. (10.17) with v, and substitute Eq. (10.19) and Eq. (10.20)
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and obtain, to lowest order in the radiation field, the shift for the state N:
ABy = By — B = ﬁ(m, T (Bn)n), (10.21)

which is shorthand for
Ay = ﬁ / &r 9% (r) / BT (B, v ")), (10.22)

If we define the relativistic state |71) such that ¢, (r') = (r/|7) and note
that

N (Ey,r',v") = (7' [M(Ey)|r") (10.23)
then we obtain the simple and important result
- 1 ~ 9 ~
ABy = %<N|M2(EN)|N>. (10.24)

The radiative shift of the level Ey is equal to 1/2m times the expectation
value of the renormalized (mass)? operator m (Ex) with respect to the
state (N |, where E is the relativistic energy.

In Sections 10.5 and 11.2, we derive an expression for M- to order a
in the radiation field by using the equations of motion for the meson in an
external potential, a method we believe is closest to fundamental principles.

10.3 S Matrix Approach

As an alternative to our approach, we should mention that it is possible
to use the S matrix formalism to find the radiative shift. As mentioned
in Section 8.2, Dyson showed the equivalence of the QED formulations of
Schwinger and Feynman with the S matrix formalism [195, 196]. For the
Lagrangian interaction, we use

Ling = ¢j,, Al (10.25)

where A” , is the radiation field of the meson and j* is the current of the
meson in the potential field. We calculate the S matrix element between
pure bound states with the usual harmonic time dependence. Since we have
a perturbation to a bound state, the matrix element must be expressed in
the form (S)x = ¢ "TEN=EY) where T is the interaction time. To obtain
the shift, we perform the integrations and use the usual trick of equating
T and 275(0).
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10.4 Derivation of Mass? Operator for a Relativistic
Meson (Spinless Electron) in an External Potential

We calculate 3 (E ) in a covariant gauge in which the meson radiation field
Al' ., and the meson field ¢ obey the equations:

(A8, ("), AL gla)] = g6’ — 2")
[Attad(r t) md( ”vt)] =0 (10.26)
[Anzd( ) (b(TH?t)] =0
[aOArad( ) ¢(rllvt)] =0.
Since the results are gauge invariant, we can choose the Feynman gauge in
order to simplify the calculation. In the final answer, we simply replace the
Feynman propagator with the radiation gauge propagator. The derivation
proceeds by converting the Klein—Gordon equation for a self-interacting
meson in an external potential into an equation for the corresponding
Green function G(z/,2”). An explicit form for M2(E) is then obtained
by comparing this equation to the defining equation for G which includes
M? (Eq. (10.9)). If desired, skip the mathematics and go to Section 10.5.
To take electromagnetic self-interactions into account in the Klein—
Gordon equation, we make the substitution

I, — 1T}, — eAy raa(z’), (10.27)
where Eq. (10.10) defines ITj, = (1/4)0,, — V,,(2'), with the result
(I1? + mg)¢(a’) = j(), (10.28)
where
J @) = e {A7 @) 10} 6 (2f) — A%, () Ayoraa (2') $('). (10.29)

The anticommutator ensures that the term A - p is Hermitian. To convert
Eq. (10.28) into an equation for G(z', z"), we make use of the definition of
G(z',2") Eq. (10.14). We multiply from the right by ¢'(z”), time order,
and take the vacuum expectation value. We use the equation

92(A(2)B(a"))+ = (97 Ala)B("))
+ [BhAG), B(a)8(t — )
+ Op[A(x"), B(2")]o(t" — ")
+ AW, B (¢ — 1),

(10.30)



156 The Hydrogen Atom

which follows from the lemma
h(A@)B@"))+ = (BoAR)B"))+ +[A@), B")o( — ") (10.31)
to obtain the result
(I + m3)G(a',2") = +6(a" — a") +i((j(2")d" (&"))+). (10.32)

Since we are calculating M’ to order €2 in the radiation field, the
torm e2((A%4 (2/) AL, (2') 6 (') 6 (2)),) in ((j(a')6 (@"))3) can be
calculated with the field of a free photon rather than with the radiation
field. In essence, this follows since the radiation field is equal to the free
field plus terms of higher order. This is essentially why we get the same
result whether we assume the radiative shift is due to interaction with
either the vacuum field or the radiation field of the atom. To show the
formal justification, consider the matrix element

o = ((AM(ENA(E")p(a)p (")) ). (10.33)
Recall
OZAM(E) = ej*(¢'), (10.34)
thus
0o = e(("(€) A (€)' ("))
+ig" (' — €){(¢(x)o' (7)) +), (10.35)

To lowest order, we may drop the first term. Solving for o gives
v 1 ! 11 !/ "
o= |g" 5.7 50 (6 =¢&")| G(',2"). (10.36)
E/

Considering the boundary conditions, we realize that the term in brackets
is just the usual Feynman propagator. Accordingly, we obtain

o=-D"( -G 2"). (10.37)

This result is to be expected since to lowest order the complete Hilbert
space factors into two independent spaces, one for ¢(z') and one for A(z’).
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Thus, we have shown that

((F(@")p(a"))+) = ie*((Au(a) A (2"))+) G2’ ")
+e(((Apd (2 I + T AL () p(a ) pa")) 1)
(10.38)

We can rewrite the second term on the right side using the notation
E/uArad( /)¢( /) — (Arad ( /)H/u + H/p,Arad( /))¢( /)
p@)e(ah) = (A (@ W T

(For+ 300 - 2 ) A€ot e
(10.39)
From Eq. (10.32), we have
(I 4+ m)G(a a") = 8(a’ — a") + e (A2 (@ )o(a') 6! ("))
— (A @NOEE ). (10.40)

Using Eq. (10.9) and Eq. (10.11) for the unrenormalized mass® operator
M? shows the last two terms on the right side of Eq. (10.40) are equal to

.
~MPG(a!a") = ieT (A )p(a' ) (a) 1)
— (A A (@) )G ). (104

where M2G(x2',2") represents a convolution integral as in Eq. (10.13). To
order e?, we may replace the full propagator G by the Coulomb propagator
G° for a particle in the potential with the physical mass:

(I1'2 + mA) G (2, 2") = §(2’ — ). (10.42)
Operating on Eq. (10.41) from the right with I1?(2”") + m? therefore gives
%
M2 (2, 2") = —ie TI((A (a")p(a")o! ()4 ) (I (2") +m?)
+e*((Au(z) A" (2')4)o(x" — 2"). (10.43)
Following the same procedure as before gives the result
H] H
M?(a!,2") = —ie’TL* (2/){(Apu(2') A (&) ¢ (2 )61 (2)) )11, (2"
+e*((Au(a) A (2")4)o (" — "), (10.44)
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which is a shorthand notation for

2 1
M?(2 2" = ie? (gaﬁ + g@E’f — 2V”(a:')> D, (& —¢&"G(a, 2")

2 1
- V// —8’/// - 2V” " " =g! I =g/
X(inFZ-e (ﬂf))k,s
—ie?DH(0)8(z" — 2”). (10.45)
"

Since our calculation is to order « or e?
G(z',2"). Now that we have derived the equation for M?(z', z'"), we return

to the radiation gauge.

, we have again substituted G¢ for

10.5 The Expression for M? (E’)

For our calculation of the radiative shift, we need the operator correspond-
ing to the time Fourier transform of M?(2’,2"). To obtain this result, we
use the expression for G° which follows from Eq. (10.42) and the invariance
for translations in time?:

c > dE 1 —iB(t' =t
G (a:’,:c") = [m Z <T’/ m 7’”>€ ( , (1046)
where

Ik =pk, 0= E—Vv(r). (10.47)

If we substitute Eq. (10.46) and

Ak (er_en
_ k(& —¢

D (€ =87 = / (2m)i° (=)D, (k) (10.48)

into our expression for M?, Eq. (10.45), and we note the derivative with
respect to 5;& brings down a factor of k,, we find, after some computation,

2To validate this expression for G¢ we operate on the integral with I’ +m?. We observe
o'F <) =< ¢/ |I*, 0 < ¢/| =< |10 so (IT'2 +m?2) < r'| =< 7/|(TI%2 +m?). With the
normalization < r’|r”" >= §(r’ — r’’), it follows the integral obeys the defining equation

for G°.
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the important result for the unrenormalized relativistic mass? operator

~ je? d*k
MQE:£/—DVI<:T‘“’ 10.4
() 92 (271')4 #() ’ (09)
where
1
TH — (OTTH — ) (O]TY — kY
( )(ka)2+m2( )

+ (201" + KY) (21 + kM) — 2g*. (10.50)

TRy v 2

We exploit the symmetry of the photon propagator under & — —k to
write T" in a form that manifests crossing symmetry. From the Feynman
rules we see that the diagrams corresponding to the operator T#” are shown
in Fig. 10.7.

The double line in the figure refers to the meson propagating in an
external potential. TH” is the operator Compton scattering amplitude in
the forward direction. The seagull term on the right in Fig. 10.7 must be
included to insure gauge invariance. At threshold, it gives the Thomson
scattering amplitude. As Eq. (10.49) indicates, we obtain the diagrams for
M? by contracting the diagrams for T with the diagram for the photon
propagator D, giving the resulting Feynman diagrams for M? in Fig.
10.8. The crossed diagram may be deformed into the uncrossed diagram;
therefore, both diagrams give equal contributions to M?2. Note that, in
a calculation of the shift between two levels, the bubble term gives no
contribution since its matrix elements are independent of the state.

mT+k T-k

Fig. 10.7. Feynman diagrams for the Compton scattering amplitude 7" of a photon
by a bound meson (double line).
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Fig. 10.8. Feynman diagrams for M? that give the radiative shift of a bound meson,

The shift arises from the Compton scattering amplitude (Fig. 10.7) of virtual radiation
photons by a bound meson (double line).

10.6 Gauge Invariance of the Shift AE'\]/V for a Relativistic
Meson (Spinless Electron)

We must show that the most general gauge transformation [174]
D,y = Dy 4+ Nnyky + ok, + v’k k, (10.51)

induces no change in the observed shift. Under a gauge transformation, the
radiative shift changes by an amount

1ie? [ d'k
S(AEN) = 5/ ( (NN ke, T 4 iy b, T + 0k ke, T | N).

om 2 | (2m)*
(10.52)
We contract 7" with k, and use the identities
211 = (II 2 2 _ H2 2
EQRII+ k) =1+ k) —i;m 2( —;—m)2 (10.53)
k(I — k) = —[(IT — k)% +m?] + 12 + m
to obtain
1
k, T = (211" 4 k) — (11? By (211" + k"
— (201" — k) + (211" — k") o (II? + m?
( )+ ( VR )
— kY. (10.54)
For our unperturbed basis states, we have
(I + m?) [N) = 0. (10.55)

Consequently, (N |k, T"| N) = 0. Since T" (k) = T"*(—k) it follows that
(N |k, TH| N) = 0. Accordingly, we see that T is gauge invariant between
physical states and that § (AE ) vanishes. Now that we have an expression
for the mass? operator, we can evaluate it to determine the shift. In the
next chapter, we make a non-relativistic approximation of the shift.



Chapter 11

Calculation of the Radiative Shifts in the
Non-relativistic Approximation

In this chapter, we consider the expression for the radiative level shifts in the
dipole approximation, clarifying the physical meaning of the approximation
and its relationship to the non-relativistic approximations. We show that
the shift is complex: the imaginary part corresponding to the width
for decay by dipole emission and the real part corresponding to the
displacement of the energy level. This result is an extension of Bethe’s
second-order perturbation theory calculation of just the level shift. We show
that the real and imaginary parts satisfy a dispersion relation, which
is fundamentally just an expression of causality [169]. We interpret the
radiative shift as due to the virtual transitions induced by the interaction
of the particle with its own radiation field. This interaction means that for a
given energy level, there is a finite width and that the mean energy, averaged
over time, is shifted. After developing the results for an arbitrary central
force potential, we illustrate two particular cases: the harmonic oscillator
potential and the Coulomb potential.

11.1 Relationship to the Dipole Approximation

The dipole approximation and the non-relativistic approximation are often
considered as two separate approximations. In radiative shift calculations,
the dipole approximation is often given by the prescription: In the radiation
gauge compute the shift ignoring the dependence of T#¥ on the photon
three-momentum k. As a consequence, we find that the term T°°Dgq
corresponding to the static Coulomb or longitudinal photon interaction
gives a vanishing contribution to the shift. In this way, the dipole

161



162 The Hydrogen Atom

approximation breaks gauge invariance, which is why we must specify the
gauge.

Another form of the dipole approximation is to let A(7) be independent
of . To understand the properties of this form of the dipole approxima-
tion under gauge transformations, consider the non-relativistic interaction
Hamiltonian for radiation with a four-potential (¢(r), A(r)) and a scalar
particle of charge e and mass m:

Hy (p-A)+ o, (11.1)

e
T om
Under a gauge transformation A — A 4+ VA, ¢ — ¢ — O\, and Hy
transforms into H; + A, where

A=—Sp. VAr—ed. (11.2)
m

To obtain gauge invariance, the matrix elements of A between the initial
and final states must vanish: (f|A[i) = 0. If we let A\ = e**7~% then gauge
invariance requires that

1 . .
<f‘_p kezk~7‘ 70.)6“6'71
m

z> = 0. (11.3)

Following the customary prescription for the dipole approximation, we set
exp(ik - r) equal to unity, then, since (f|i) = 0, we conclude that the
matrix element (f|p- k|¢) must vanish if we are to obtain gauge invariance.
Clearly, this is not generally the case and gauge invariance is violated.
The difficulty lies in the fact that setting the exponential equal to one
resulted in approximating the change in the vector potential to the first
order in k and the change in the scalar potential to zero order in k. If we
approximate the change in the scalar potential to one order higher, then
we find that the gauge invariance requires

1
<f‘—p~kiwk:~r
m

z> =0. (11.4)
In fact, this quantity vanishes since
(7| B|i) = itritm.vyi) =i (B — B (7Irli)
= iw(f|r]i).
In the radiation gauge, the scalar potential vanishes, thus we circumvent

these difficulties.
Alternatively, we may obtain the unrenormalized M? operator in the

(11.5)

non-relativistic approximation from a different perspective, by noting that
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the pole in the photon propagator in Eq. (10.49) ensures that the integration
over k¥ leads to the result |k| = k° but since |k| is a momentum it
equals a frequency over the speed of light |k| = w/c. As ¢ increases the
magnitude of the spatial momentum vanishes and we obtain the dipole
approximation. Seen in this way, the dipole approximation is not gauge
dependent but simply part of the non-relativistic approximation. If we work
in the radiation gauge, then this method gives the same result obtained from
the usual proscription.

From dynamical considerations we can show that in a bound system
characterized by a small coupling constant the motion is non-relativistic
and |k|, the approximate change in momentum for radiative transitions
between states, may be neglected with respect to the momentum p of the
bound particle.

Consider a potential of the form

V(r) = %mg””(mr)n n> —2. (11.6)

The exponent of the mass m is chosen so that the coupling constant g is
dimensionless; the exponent of g and the overall coefficient are chosen so
that V agrees with the conventional expressions for the simple harmonic
oscillator (n = 2,9 = y/wp/m and the Coulomb potential (n = —1,g9 =
Za). The total non-relativistic energy of the atom is £ = T 4+ V. The
virial theorem for our potential is T' = —(n/2)V. Applying the uncertainty
principle we find

PR E ~gme, Ex n—HngCQ, (11.7)
r 2n
where c is the speed of light. These results justify the use of non-relativistic
dynamics for small g. The contribution to the shift of a bound state energy
level will be greatest per Hz for resonant virtual transitions, that is, when
the photon energy equals the difference between two energy levels. For these
resonant transitions F = |k|c and

H ~ L
for weak coupling. To insure that the non-relativistic approximations

‘g<<1 (11.8)

remain valid during integration over frequency, it may be necessary to use
a cutoff which is proportional to the mass. The shift for greater frequencies
for physically realistic situations can be calculated by neglecting the bound
state energy and keeping only the lowest order terms in the coupling
constant.
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To understand the physical meaning of the dipole approximation more
clearly, we employ the translation operator in momentum space e**" to
show that for a function f(p), we have the identity

(N|2p—k)f(p— k)(2p — E)|N)
= (N[e*")(2p+ k) f(p)(2p + k) (e **"|N). (11.9)

Applying this result to the expressions for M?(E) and T** (Eq. (10.49)
and Eq. (10.50)), we see that the matrix elements for the shift are between
translated atomic states (e~%*'"|N)) that have a center of mass momentum
—k in order to conserve momentum when the virtual photon of momentum
+k is emitted. In addition, from the Feynman rules for spinless mesons,
we know that the k present in 2p + k ensures momentum conservation
at the vertex. Accordingly, dropping the k dependence means that we
are violating momentum conservation and neglecting the recoil of the
particle, which is a reasonable approximation since we are dealing with
long wavelength photons whose momentum is much less than the particle’s
momentum. For large momenta, near the end of the integration over
frequency, the approximation breaks down. In more accurate calculations,
we need to maintain center of mass momentum conservation and include
the corresponding recoil terms [95, 152, 199, 214, 219, 231].

11.2 M? in the Non-relativistic Dipole Approximation

We first take the non-relativistic limit of our fully relativistic expression for
T Eq. (10.50):

TH = (211" — k) S (211 — k)

M- k)2 +m

+ (211" + k¥) 5 (211" + kH) — 2g17.

1
(IT+k)2+m
We obtain the crossing symmetric, gauge invariant Compton scattering
amplitude operator in the forward direction for a meson or a spinless
Schrodinger electron in a potential V:

1
(p—k)?2+2mV — (E - k% 2m
1
P+ k)2 +2mV — (E+k°)2m

TY = (2p; — ky) (2p; — kj)

+(2p; +kj) (2pi + ki) — 297,

(11.10)
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TOO _ 4m2 1
(p—k)2+2mV — (E —k°)2m
1
4m? —2¢% 11.11
* m(p+k)2+2me(E+k0)2m g ( )
. 1
T = 2m(2p; — ki
m2pi = k) e ey — (B = #0)am
1
+2m (2p; + ki), (11.12)

(p+ k)2 +2mV — (E + k9)2m

where E is the non-relativistic energy £ = E-m (which is negative for
the hydrogen atom). We have dropped the V2 terms in the denominator of
T, As a check on the non-relativistic limit, we can prove gauge invariance
by noting

k-(2p+k)=(p+k)’—p°

k-(2p—k)=—(p-k)*+p°
and remembering that for matrix elements between physical states we can
use the Schrodinger equation

(11.13)

(H—-E)|N) =0, (11.14)
where
»?
H==_1Y. 11.1
2m v ( 5)

The expression for the (mass)? operator in the non-relativistic limit is
given by

Z'e2 4
M?*(E) = 7/%]3;”(1{)@”, (11.16)

where TH" is given by the non-relativistic form in Eq. (11.10) to Eq. (11.12).
We use the photon propagator in the radiation gauge:

P,
Do :% D;; = (11.17)
where
kik;
P = (5”- k;). (11.18)

We first perform the k° integration. There are poles in the complex k° plane
at k= E -V — (p — k)?/2m + ie (in the first quadrant) and 4-(w/c — ie)
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(second and fourth quadrants), where w = c|k| and we display the speed
of light ¢. Closing the contour in the lower half plane surrounds the single
pole at kg = w/c — ie and gives the result

ko
d;
2m7r/ @
X {PZ]
1

+4m?2c? — 2mgoo (11.19)
w_,_v (B —w)

w 1 w
(p n - (pin:)Q +V7(E7w) pj njc mgj]

2m

where 1 = k/|k| and we have combined cross terms since they give equal
contributions to M?2. As we let ¢ — oo, the terms in fiw/c vanish leaving us
with the expression for M? obtained by making the dipole approximation
in the usual way (|k| — 0).

The angular integration for the term g;; P is

o 2
/ o — kg P = 501 (11.20)

corresponding to the two transverse polarization states of a photon. Using
the identity,

d =1 H—E (11.21)
H—(E—-w) H— (F—-w)’ '
we find
ac 8 p? 4 H-FE
M? = — dw|=— — 2me? — ——————D;
7r o [3 2m 3w + 2me” 3mPH (E —w)p
H-E
—2mc? . 11.22
"CH T (E—w) (11.22)

The expectation value of the last term, which comes from g0 D, vanishes
for physical states. The first term can be interpreted as the change in kinetic
energy due to mass renormalization in the non-relativistic limit [3]. The
second and third terms compose the mass renormalization of free particles
as they do not involve the Hamiltonian. The next to the last term is the
only term that depends on the potential V' and gives a vanishing shift in
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the free particle limit V' — 0. Thus, the renormalized mass? operator in
the non-relativistic limit is

—2 dac H-F
M (F)= — ; ;- 11.2
(E) 3mm /dwle —(F—w)— il (11.23)

11.3 Calculation of the Radiative Shift in the
Non-relativistic Limit

The shift is given by the matrix elements of M’ between the non-relativistic
states of the meson. To find the non-relativistic limit of the normalization
in Eq. (10.19) of our relativistic meson wave functions (r|n), we use
our definition of the non-relativistic energy E = E — m to write the
normalization in the form
3.1/ =N (2 En V

/d | (r'|n)| <1+ww) =1, (11.24)
where we make the factors of ¢ explicit. Clearly, in the non-relativistic
limit, we obtain the usual Schrodinger wave functions (r'|n) with the
normalization

/d3r'|<r'|n>|2 =1 (11.25)
or
(nlm|n'U'm'y = SOy Smm’. (11.26)

The effective shift in the unperturbed level EY, due to the radiative
interaction is the matrix element of the renormalized (mass)? operator
with respect to |N):

AEy = Ex — ES = — (N|M (Ex)|N). (11.27)

1
2m

Substituting the expression for 1V (Eq. (11.23)) and inserting a
complete set of intermediate states gives the result

20~ [“C . [(Bn— En) (N |pi|n) (n|pi| N)]
ABEy = d 11.28
N SWmQXn:A . E, — Ex +w —ie o (11.28)

where the s in the summation indicates that we also include scattering
states.! This is the same result as in Bethe’s original paper and in his

INote that the sign of the energy shift is positive. This seems to contradict the rule that
a perturbation must lower the ground state energy. However, the rule holds if we consider
the total perturbation to be the unrenormalized (mass)2 operator, not the renormalized
operator.
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book [19, 158]. Note that a cutoff iwe = mc?, where m is the mass of the
electron has been introduced. No approximation has been used to evaluate
the integral. Bethe justified the cutoff in the frequency integration on the
grounds that the radiative shift is primarily a non-relativistic phenomena.
Equation (11.28) can be easily derived from second-order perturbation
theory, as shown in Section 9.3, Eq. (9.27). This was Bethe’s approach,
in which the complete set of states |n) represents intermediate states. This
is often the method used in calculations of the radiative Lamb shift in
textbooks [3]. We have derived this equation for the shift using only the
fundamental equations of motion.

We now show that the term in brackets in this equation is proportional
to the probability of a transition between state IV and state n due to the
emission or absorption of dipole radiation, which leads to a model for the
radiative shift. The interaction Hamiltonian is

Hini(t) = = p(t) - A7 (r(2),), (11.29)

where A™? is the vector potential for the spinless electron’s or meson’s
radiation field. The S matrix operator is

S _ (ei fjcm:dtHint(t):)_i_, (1130)

where the double dots mean that the Hamiltonian is normally ordered, with
creation operators to the left of the annihilation operators. We want the
matrix element p for a transition n — n’,n’ < n with the emission of a
photon of momentum k and polarization e:

p = (ken'|S — 1|n). (11.31)

To lowest order, the Hilbert spaces are separable and A™? equals the free
field vector potential A. The matrix element of A is the photon wave
function:

(ke] A(r(t),1)|0) = ee thmTivt, (11.32)
In the interaction representation,
p(t) = et p(0) e, (11.33)
Accordingly, we find

p= —27ri%6 (B +w — E,) (n'|e- pln), (11.34)
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where we use the dipole approximation k-r ~ 1. The decay rate for n — n’
by dipole emission is
e total probability

n’n —

(11.35)

interaction time

In the usual way, we take 27§(0) as the interaction time, |k| = w, giving

Brk 1 |p|?
Z/ T 27|T’;|( 5 (11.36)

Recalling
Zemem‘ =0i — k/,—gj’ (11.37)
o
we obtain
4
e, = 3—7:2@” — B |pi|n) (nlpi|n’) >0, n' <n (11.38)

for the decay rate from n — n’ by dipole emission, where E,, — E!, = wp,.
Similarly, the rate for the transition n — n’ for n’ > n, by absorption of
dipole radiation is

4
re, = 3—0‘2 (B — En) (0! |pi|n) (nlpi|n/) >0, o' >n.  (11.39)
' m
In accordance with the principle of detailed balance, we see

re, =r¢ (11.40)

fL ,n n, fL
From our definition, I'; ,, is defined only for n’ > n and then is always
positive or zero. We see formally that I'}, |, = —I'7, . Accordingly, if n > n',
we interpret I'f, , as —I'7, . Using this convention with our expression for

I, ./, we find that, after changing variables, the expression in Eq. (11.28)
for the shift may be written in the simpler form:
1S Entwc _lpe N
AEy = — dw—2" 11.41
N ﬂ;/En ww—EN—ie ( )

Based on Eq. (11.10) to Eq. (11.12) for T#¥, it is clear that AFEy is an
analytic function f(N, Ex) of energy Ey, which is in the denominator. We
define

AEN = f(N;En) =) fa(N; En). (11.42)

The partial shift f,,(N; Ex) represents the contribution to the shift in level
N from virtual transitions from level N to level n. We replace En by the
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complex variable z and investigate the structure of the partial shift as a
function of z:
1

E,+twc _l1e

fu(N;z) = l/ de. (11.43)
T JE, w—z— 1€

We extend the lower limit of integration to F; and the upper limit to co and

multiply by the appropriate theta functions (0(t) =0if ¢t < 0,=1if ¢t > 0)

so that the value of the integral is unchanged. After summing over all states,

we find that the complex radiative shift obeys the dispersion relation [169]

1 /> I N;
f(N;z) = —/ de, (11.44)
7 Jg, w—z—ie
where
1
Imf(N;w) = g —EFZ’NG(wan)H(chrEn—w). (11.45)

n
We can separate the integral into its real and imaginary parts

f(N;z):lP/wdwariImf(N;z). (11.46)

s Eq

Figure 11.1 shows the cut structure for f(N;w) in the complex w plane.

1 2 3 N-1 En PPnea| Ens2

e 1L Me
-3, n =2lN_1,N

e !
%FN,N+1

e
lérlN,N+2

Fig. 11.1. Cut Structure of f(N;w) in the complex w plane. At each value of E,, which
is less than FE, there is a cut with a discontinuity of —%Ffl N at By, there is no cut.
At each value of E, which is greater than Ej, there is a cut with a discontinuity of
1

TS -

2° N,n
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11.4 Radiative Shift for Physical Energy Levels

The function f(N;z)|.—g, gives the radiative shift for the energy level Ey.
The imaginary part of the shift is

ImAEN = Imf (N;EN)

11.47
:7_ZFnN*7_FN5 ( )

n<N

where I'y is the total width for the decay of state N to state n by
dipole radiation. The imaginary part of the shift equals the half-width
in magnitude and is always negative, as it must be to ensure that the
probability density decreases exponentially: |67”(Eo1\’+AEN)|2 = e I'nt,
Only states to which the state N can decay by the emission of real radiation
contribute to the width of the level Ejy.

The real part of the shift Re f(N; Ex) is given by the principal part of
the integral. Since we integrate from E; to oo, skipping the infinitesimal
portion |w — En| < ¢, all cuts (or equivalently all intermediate states)
contribute to the real part of the radiative shift. Integrating over w, we
obtain an expression for the real part of the partial shift f,(N; Ey):

Iy n<N 1 wec—EN+E,
Ref,(N: Ey) = : x — I PC T ENTEn 4R
Ju(N: B) {FN XS TEEE (Lay

We can approximate Re f,(N; En) by neglecting F,, — Fy in the numerator
of the log, similar to the approximation Bethe used. With this approxima-
tion, and writing the log of the ratio as a difference in logs, we can sum
Re f,,(N; Ey) over all states using the dipole sum rule and Eq. (11.38):

3m2 S . S
o 21 Nn = 2% (B — En) (N |piln) (n|pi| N) = ~(N|VZV|N).
(11.49)
This gives the result
ReAE 2—0‘ L nw2v Ny m %<
N = 3 m 2 0

E,
+ zn:(En — En)(N|pi|n){n|pi|N) In m} , (11.50)

where Fj is an arbitrary energy parameter that we shall take to be some
characteristic energy of the bound system, for example, the ground state
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energy. We take the frequency cutoff we to be mc? /A, as Bethe did. The first
term is the same expression for the shift that we obtained by considering
the motion of the particle in the zero-point field (Eq. 9.43) in Welton’s
model. Note that we have assumed only that the spinless electron is in a
central force potential V' (r), not necessarily a Coulomb potential.

11.4.1 A model to interpret the results

We can construct a simple model (Fig. 11.2) to interpret the salient features
of the partial radiative shifts f,,(N; En), which give the shift in the energy
En due to virtual transitions to level m. The features are expressed in the
following equations, which hold for any positive integer m < N:

(1) Refm(N; En)+ Refn(m; Ey) = 0.
(2) Re fm(N;EN) <O.
(3) Im [, (N; En) = Refm(N;EN)[%lnw]ﬁicEM]_l.

The first relation shows that the average energy of two levels that shift
each other is unchanged. Together, the first two relations show that virtual
transitions to lower states cause downward shifts and transitions to upper
states cause upward shifts. This is an important result, demonstrating
that a radiative shift tends to conserve energy. Consider, for example,
the radiative shift in the ground state of H. Many transitions to higher
states will contribute to raising the ground state energy level. Each of the

’7 «— r=Refm(N;EN)[UTCIH(.L)C/(Em—EN)]'[
N — |

} Re fm(N;EN)
E,. ——q9-—""""""==-7 - - -
E 1" -- —

}Rc fN(m;Em)
EO 4

Fig. 11.2. The energy level E?\, is shifted to Ey by intermediate virtual transitions to
EQ,, which also increases the width of the level to T'. The level EY, is shifted to En, by
virtual transitions to E?V. The latter transition does not increase the width of the level
for Ey,.
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higher levels experiences a very small shift downwards. The sum of all the
downward shifts will equal the upward shift on the ground state, so the
total of all the shifts is zero. To determine the net energy shift of the atom
precisely, one would also have to consider the population of the various
states. Since the ground state is heavily populated, there tends to be a net
increase of energy.

The third statement shows that the contribution of a lower level to
the width is less than its contribution to the level shift by the factor
(1/m)In(we/|En — Ep|). We can deduce relations (1) and (2) for the level
shifts exactly and relation (3) for the level width in an approximation by
assuming that the observed energy corresponds to a time-weighted average
of the original energy and the energy of the state to which the system made
a virtual transition. To make this interpretation quantitative, we consider
a state N with a partial width I' = I'§, ,, = I'}, \ for m < N. The system
makes I" transitions from N to m in one second and remains in the state
m for a time allowed by the time-energy uncertainty principle:?

1
ot ————. 11.51
EN _E'm ( g )

Therefore, for a system in which I' << Ey — E,, (e.g., atomic systems),
the average energy Fngqye Of level N is shifted and is approximately

T
EN[L'UC = 7E,m + (1

- Ex-—E,,

Ey = Ey—T. 11.52
v L. ) N =En ( )

The level shift for state N due to a transition from a state N to a lower
state m is Enge — En or Refn,(N; Ey) = —TI'%, n- Similarly, we find
that for a transition from a state m to a higher state N, the level shift
is Refny(m, En) = Iy, which is positive. From these two expressions, the
relations (1) and (2) follow. Corresponding to the third relation we find
using Eq. (11.45) and the results directly above that the model predicts a
level width

Imf,,(N; Ey) = fér = %Refm(N;EN). (11.53)

2The time-energy relationship is not an uncertainly principle in the same sense as
the position-momentum uncertainty principle, which follows because the corresponding
operators do not commute. The time-energy relationship arises from the properties of
Fourier transforms [172, p. 201].
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This result agrees with relation (3) only if we replace %lnﬁ by
unity.® The difference between the equations for the level shift and the level
width arises primarily because only states that can decay by the emission

of real radiation contribute to the width of level Ey.

11.5 Two Examples: The Harmonic Oscillator and the
Coulomb Potential

In our discussion thus far, we only assume we have a spinless particle of
mass m and charge e in a central force potential V (r) interacting with its
own radiation field. Now, we can apply the results to these two specific
potentials.

(1) Isotropic 3D Harmonic Oscillator

Consider a simple isotropic harmonic oscillator in three dimensions for
which

1
V(r)= §mw3r2 (11.54)

with energy levels
3
EN: <N+§) wo, N:m + ng + ns. (].].55)

The fact that V(r) increases formally with r without bound does not
introduce difficulties since transitions are possible only between adjacent
energy levels. Employing the matrix elements of the momentum operator

mw
<n; |pj| n) = \/ TO(V n; + 1671;”1'-&-1 - \/n_i(sn;ni—l)v (11.56)

we can easily compute the real part of the radiative shift using Eq. (11.50)
or the complex shift using Eqgs. (11.38-11.39) and Eq. (11.42) and Egs.
(11.47-11.48). For the complex radiative shift of level Ex, we find

hwo)? 2
ABEy = 9% (ln re i—wN) (11.57)
T mc wo 3
giving a corresponding width
2 (huwy)?
I'yvy=—- N 11.58
N 30[ me2 ) ( )

3For the H atom, the value of (1/m)in(we/|En — Fm|) is roughly three assuming the

cutoff is at hwe = mc? and n and m are adjacent energy levels of the bound state.
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where we have displayed the factors of & and c. In the dipole approximation,
the shift is the same for all levels: no degeneracy is split. On the other
hand, the radiative width I'y increases with IV and is consistent with the
width Eq. (9.18) obtained by applying the Bohr Correspondence Principle
to the classical expression for the radiated power. The ratio of I'n/Ey
approaches a constant for large N and equals (2/3)akiwy/mc?. In Chapter
13, we compute the radiative shift for a relativistic spinless electron in a
harmonic potential and show that for some levels the degeneracy is lifted.

(2) The Coulomb Potential

We have
Vi) =-22 (11.59)
and therefore
V2V (r) = 4nZad(r). (11.60)

Since the matrix elements of the delta function vanish except for S states,
we may isolate the L dependence of the shift by defining the Bethe log
~(N, L)(Eq. 9.34), where [158]

(N, L) S22 (B, — Ex) (N 0 |pi| n) (n |pi| N 0)
= 325, (Bu = Ex) (NLpi|n) (n |pi| NL) In {225 2x "

mc2(Za)?

(11.61)

Using Eq. (11.50), setting the frequency cutoff to we = m, setting E,
to the ground state energy (1/2)m(Za)? and substituting the Schrodinger
wave function

3
ln (0)]% = % (ZO‘Tm> 510, (11.62)

we find the shift for level NL is

ReAEy, — [é—?:a(Za)‘l] % {5Lo In ﬁ — (N, L)} L (1L63)

where (N, L) must still be numerically evaluated.* The result is the same
result that Bethe obtained in his original calculation. The Bethe log is
tabulated for a few energy levels in the original work in which it was
introduced [158] and in various articles for additional levels and with a
higher precision, for example [152, 227].

4The value of the Bethe log for the 28 state is about (2, 0) = In(16.639).
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To provide a scale of magnitude for the shift, we note that the term
in square brackets is the energy radiated in one revolution of the electron
in the ground state according to the laws of classical physics and equals
Planck’s constant times 1090 MHz. The currently accepted value for the
281/9-2p1/o Lamb shift is about 1057.87 MHz, which includes all effects,
including vacuum polarization, to higher orders. The 2p shift is negative as
we discuss in Chapter 14. We can estimate the relative shift

(Za)?
N
which is about one part in 1.3 x 10° for N = 2. The width for low-lying
states may be obtained by computing the sum in Eq. (11.45) explicitly.
For both examples, the relative shifts go approximately as « x (bound
state energy level)/(rest mass energy), reflecting the fundamental nature
of radiative shifts (and that we are considering radiative shifts in lowest
order).
In the limit of very large quantum numbers for any central force

AEN/EN%Q (11.64)

field for circular orbits, we can simplify the expression for the width I'y
by assuming that the most important transitions are those for which
An << N. The strongest transitions in the classical limit are between
wave packets corresponding to the circular orbits n = N, [ = N — 1 and
n = N—1, [ = N—2. This is equivalent to saying that the classical radiation
is primarily in the fundamental band. Consequently, our sum collapses to

4o
3m?2’

where w,; is the classical frequency of rotation. This matrix element can be

T'n = we (N |pi| N = 1) (N — 1 |ps| N) (11.65)

obtained without direct computation by noting that

(NIp*|N) = (N |pi| N + 1) (N + 1|p;| N) + (N |pi| N = 1) (N = 1|p;| N) ,
(11.66)
which follows from our assumption that the only significant transitions are
those for which AN = £1 and from the fact that (N|p;|N) = 0 for a bound
state. We assume that the matrix elements do not change rapidly with N,
thus

(Nlpil N =1) (N = 1|p;| N) = (N [pi| N + 1) (N + 1[ps| N) .~ (11.67)

Therefore, our final expression for I'y is

2a
I'ny = et (N [p*|N). (11.68)
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For the Coulomb potential wy = m(Za)?/N? (which is consistent with
Eq. (9.7) and Eq. (9.10)), and (N|p?|N) = (mZa/N)?, so we find
4
'y = %ma(irog) , (11.69)
which is in agreement with the result obtained by the correspondence
principle Eq. (9.11).

Note that nowhere in our derivation of Eq. (11.68) do we specify the
detailed nature of the central force. We only assumed that the radiation was
in the fundamental band, which is always true for classical circular orbits.
In fact, this equation agrees with the expression for I' obtained by applying
the correspondence principle to the classical expression for the radiated

power P, for any circular orbit of a charged particle with momentum p:
PC: —m—p Wery (].].70)

which, from the Bohr Correspondence Principle, has the width I' = P, /w,

SO
2 «

2

For exact non-relativistic calculations, the sum over states for the
real part of the energy shift was trivial to compute for the harmonic
oscillator since only two intermediate states contribute. Alternatively, if we
compute the shift from Eq. (11.23) without inserting intermediate states,
then from the equations of motion we can easily compute the contraction
over p;. We will follow this procedure in our calculations of the level
shift for the relativistic harmonic oscillator in Chapter 13. Unfortunately,
obtaining exact results for the Coulomb potential is more difficult. If we use
Eq. (11.28), we must include an infinite number of intermediate states in our
sum. If we do not use intermediate states but rather use Eq. (11.23) directly,
then we find that the equations of motion are intractable unless we use
group theoretical techniques, which are described in the next chapter [252].
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Chapter 12

SO(4,2) Calculation of the Radiative Shift
for the Schrodinger Hydrogen Atom

In Chapter 12, we compute the radiative shift in the non-relativistic dipole
approximation and to first order in the radiation field, as did Bethe, but
we use group theoretical methods based on the SO(4,2) symmetry of the
non-relativistic hydrogen atom as developed in Chapter 7. The shifts are
expressed as integrals over the frequency of the virtual electromagnetic
field. This allows us to determine the contribution of different frequencies
to the shift. The analytic expressions for the shifts are easy to evaluate
numerically as discussed in Chapter 14. Bethe’s calculation required the
numerical sum over all intermediate states to obtain the average value of
the energy of the states contributing to the shift. In our calculation, we
do not use intermediate states, and we derive an integral equivalent to
Bethe’s log, and more generally derive the shift for all levels in terms of a
double integral of an analytic function that we can readily evaluate.

12.1 SO(4,2) Expressions for the Radiative Shift

An expression for the radiative shift Ay, for energy level E of a hydrogen
atom in a state |V L) can be easily obtained using second order perturbation
theory (to first order in « the radiation field) [3, 19, 149, 158]

20y / “ g En = EN)INLIpilm) (nlpiINL)

AEnNT =
NL = grm? E, — Ex +w —ie ’

where we is a cutoff frequency for integration that we will take as we = m.
This equation is the same as Eq. (9.27) which we derived using perturbation
theory and Eq. (11.28) which we derived using the mass? operator and the
non-relativistic dipole approximation to the Klein—-Gordon equation. This
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expression, which is the same as Bethe’s before any approximations were
made, has been derived by inserting a complete set of states |n)(n| in Egs.
(11.23) and (11.27), a step that is not necessary with our group theoretical
approach:

AENL =

20 we H*EN
dw(N L|p;
3mm? A (NLlp H—- (Exy —w)

If we add and subtract w from the numerator, we find the real part of the
shift is

i| NL). 12.2
—pINL).  (122)

2 we 9
where
Qnr = (NL|p; i|INL 12.4
NL = { |pH—EN+w—z'ep| ) ( )
and
2
P Zao
=— - — 12.5
2m r ( )

The imaginary part of the shift gives the width of the level as discussed in
Secs. 11.3 and 11.4.

The matrix element Q7 can be converted to a matrix element of
a function of the generators I'y taken between the eigenstates |nim) of
(Za)~!. To do this we insert factors of 1 = \/F% and use the definitions
of T4 in terms of the canonical variables, Eqs. (7.45-7.47). Letting the
parameter a take the value ay, we obtain the result

mv
where I'n(§) = —Tong + T'ang, and
2
no(§) = ﬁ =—cosh¢ n;=0 ny(§) = _%\/Té = —sinh ¢
(12.7)
and
e= 2 o N yes, (12.8)

N VITE
From the definitions, we see ¢ = $in(1 + &) > 0 and na(&)n?(§) = —1.
The quantity
mcZo
—2m(En —w)
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may be considered the effective principal quantum number for a state of
energy En — w. The contraction over i in 2 can be evaluated using the
group theoretical formula Eq. (7.41):

1 e d
T4 r4= 721// ds e”sd— (sinh2 g e*F"(E)S).

I'n—v 0 S
Applying this equation to Eq. (12.6), we obtain

2 0 d
QnL = meV / dse”s£ (sinh2 %MNL(S))

N2 0
Y (NLITy———Ty|NL
TNz 4I‘n(§) vt
+m (NLIPg——— TN L (12.9)
TNz TnE) —v ° ’ '
where
My (s) = (NLle T8N L). (12.10)

In order to evaluate the last-two terms in Qpyz, we can express the
action of I'y on our states in terms of I'n(§) — v. Substituting Eq. (7.44)

I'o|NL) = N|NL) (12.11)

into the expression for I'n(§) — v, with n(§) given by Eq. (12.7) gives

Iy=N - <Sin1h¢) (Cn(€) — v) (12.12)

when acting on the state |[NL). If we substitute Eq. (12.12) into the
expression for the ReAEyy, Eq. (12.3), use Eq. (12.9), and simplify using
the virial theorem

(NL|p?|NL) = a%,

we find that the term in p? exactly cancels the last two terms in Qyr,
yielding the result

dma(Za)t

AByy =
oAby = =5

¢e i d s
: o) vs ah2 2
/0 d¢ sinh ¢ge /0 dse 7 (smh 2MNL(s)),
(12.13)



182 The Hydrogen Atom

where

1 w 1 2N?
¢ =3l (1 + ﬁ) =3l (1 + (ZT)Q> (12.14)
and wg = m.

This is a very convenient expression for the shift ReAFyy for any
state NL because we can derive an analytical expressions for Myy. An
unexpected feature of Eq. (12.13) is that the explicit dependence on the
principal quantum number is 1/N*, whereas in the Bethe formalism (see
Eq. 9.33) the dependence is 1/N3. The difference arises because in Eq.
(12.13), the integrand contains ¢ and v = Ne~? which both depend on the
energy Ex = —(1/2N?)m(Za)? of the state. The numerical calculations of
both equations agree.

Comparison to the Bethe logarithm

Comparing the SO(4,2) expression for the shift Eq. (12.13) to Eq. (11.63),
which gives the shift in terms of a sum over states and the Bethe log, we
find that the Bethe log is

Pe o d 9
v(N,L) = fN/ d¢sinh¢e¢/ dse”sd— (sinh EMNL(S))
0 0 s

2
droln——. 12.15
+0ro (Za)? ( )
Note that this expression for the Bethe log is not an approximation like the
usual expression in which an approximate integration over energy has been
done.

12.2 Generating Function for the Shifts

We can derive a generating function for the shifts for any eigenstate
characterized by N and L if we multiply Eq. (12.13) by N4V and sum
over all NN > L + 1. To simplify the right side of the resulting equation,
we use the fact that the O(2,1) algebra of T'g, T'4, and S closes (Section 7.4).
We make the identifications j; = I'y,jo = S, and j3 = [’y to compute the
sum on the right hand side using Eq. (12.10), My = (NL|e "N L),
and use Eq. (7.44), (o — n)|nlm) = 0:

> e NMyp= > (NLleY|NL), (12.16)

N=L+1 N=L+1
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where

e~ 3% = =BTo,—sI'n(&) (12.17)

We perform j transformation, generated by a similarity transforamtion,
such that

eIV o eIV = g7hoY, (12.18)

Remembering the cyclic symmetry of the trace, we find

> e PNMyp= > (NLle¥|INL) = Z e NV (12.19)
N=L+1 N=L+1 N=L+1
e~ (L+1)
Z e PN MNL_ﬁ, (12.20)
N=L+1 B

where we have used the identity

17611’ Ze

m=0

Eq. (12.20) is a generating function for My, which determines the
radiative shift as shown in Eq. (12.13).

In order to find a particular My, we must expand both sides of Eq.
(12.20) in powers of e=# and equate the coefficients of the corresponding
powers of e~ ?. First, we need an equation for e~¥. This can be obtained
using the isomorphism between j and the Pauli o matrices:

o i i 1
(I's, 8, L) = (j1,J2,J3) = <501, 302 §U3>- (12.21)
Using Egs. (12.17) and (12.18) and the formula
€™ —cos 2 +in - osin f, (12.22)
2 2
where [n| =1, we find
v B s B s
cosh 5 = cosh 5 cosh 5 + sinh 5 sinh 5 cosh ¢. (12.23)

We can rewrite this equation in a form easier for expansion

et =de3P + bem3 — 3V, (12.24)
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where

d = cosh % + sinh g cosh ¢
. (12.25)
b = cosh % — sinh g cosh ¢

Let 8 become very large and iterate the equation for e~2% to obtain the
result

eV =Ae P14+ Are P+ Aye P 4], (12.26)
where
1
A=Ao=—

2 —1
d=s (3> (b=a7) (12.27)
Ay =3d72(b—d ") —272(b—d).

Note b —d~! = —d~!sinh® £ sinh® ¢.

12.3 The Shift Between Degenerate Levels

Expressions for the energy shift between degenerate levels with quantum
numbers (N, L) and (N, L’) may be obtained directly from the generating
function using Eq. (12.13) and Eq. (12.20). We find

Z e PNN*Re AEN — Z efﬁNN4ReAENL/
N=L+1 N=L'+1

dma(Za)t [ > d
= 77”0[( @) / dgbed’ sinh ¢ dse”® —
3 0 0 ds

—p(L+1) _ =9 (L'+1)
.12 f (& e
X <smh 5 T —o=v ) (12.28)

For an example, consider L = 1, L’ = 0. For the shifts between levels
we obtain

Z G_BNN4 Re (AENO — AENl) + Re AElo 6_6
N=2

4 4 ¢c
— M / do e? sinh é
3 0 0

oo

d
dse”SE (sinh2 ge*w). (12.29)
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Substituting Eq. (12.26) for e~?, which gives the coefficient AAx_; of
e N8B we find

RG(AEN() — AENl)

dma(Za)* [?* b o o sd [ 9S
:WA dge? sinh ¢ ; dse £(Slnh iAAN,l),

(12.30)

where A and Ax_; are given in Eq. (12.27) in terms of the integration
variables s and ¢.

General expression for My,

Once we have a general expression for My, we can use Eq. (12.13) to
calculate the shift for any level Enr. We can obtain expressions for the
values of My by letting 5 become large, expanding the denominator in
Eq. (12.20) and equating the coefficients of powers of 7. For large 3, we
have large ¥. We have

e~ Y (L+1)
—(m+L)
1—e ¥ Z ‘

and for large S it follows from Eq. (12.26) that

Yo e My =Y e fA A+ )] (1231
N=L+1 m=1

Using the multinomial theorem [129], the coefficient of e #(™+L) in the
exponent on the right side of the equation becomes

oo

Am+L (m+L) —B(m—+L+s+2t+...)
mz::l 2; T A1 AL e , (12.32)
where r +s+¢t+---=m+ L.

To obtain the expression for My, we note IV is the coefficient of 5 on
the left side of Eq. (12.31) so N=m+L+s+2t+---=r+2s+3t+---
Accordingly we find

_ (rtsttt.. )(7’+5+7tJr ! gs at
Myp= Y A =PI ASAL . (12.33)

7,8,t,...

where r +2s+3t+---=Nandr+s+t+---> L.



186 The Hydrogen Atom

By applying this formula, we obtain the results:

N=1:

My =A (12.34)
N=2

Moy = A% + AA,

My 42 (12.35)
N =3

Mz = A% + 2424, + AA,

M3 = A% +2A%4, (12.36)

Msy = A3

Shifts for N =1 and N = 2
To illustrate these results, we can calculate the shift for a given energy
level using Eq. (12.13). For N = 1, we note from Eq. (12.34) that Mo = A,

and from Eq. (12.27) that A = 1/d*. We find that the real part of the
radiative shift for the 1.5 ground state is

dma(Za)t [ > o d 1
M / dpe? sinh ¢ dse®e " L 55
3m 0 0 ds (coth 5 + cosh qb)

(12.37)

RBAElo =

where ¢, is given by Eq. (12.14).

Equation (12.30) can be used to obtain the shift between two states
with the same N and with L = 0 and L = 1. For the N = 2 Lamb shift
between 2S-2P states, the radiative shift to first order in « (one radiation
field photon), is

(AEy — AFEs)
Za)t [ > - 1
= M/ dpe? sinh® ¢ dse?s® 04 T
67 0 0 ds (coth 5 + cosh ([))
(12.38)
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The s integral can be computed in terms of a Jacobi function of the
second kind [130]' The shifts for 1S and 2S-2P are given in terms of integrals
of simple analytic functions.

In Chapter 13, we compute the radiative shift for a harmonically bound
relativistic particle without spin.

1As a check on our group theoretical methods, we can compare our matrix elements
(10/e*5?|n0) with those of Huff [58]. To go from Eq. (12.20) to Eq. (12.21), we do a
rotation R(¢) = ei¢s generated by S that transforms I'n into I'g. For N, L = 1,0 we
have

Mo = (10je~""°[10) = (10| R(¢)e~"°*R™*(¢)[10)
_ 1 (12.39)
(cosh £ 4 sinh £ cosh ¢)2
Expanding the hyperbolic functions, we get

4e~*° -2

s
Mip = = [1 - ¢ " tanh? 7]
10 (1 + cosh ¢)2 ¢y

n—1
= (1+cosh¢> Zne ns (tamh2 %) . (12.40)

We can also compute Mig by inserting a complete set of states and using I'g|n0) =
n|n0) in Eq. (12.39). Because the generator S is a scalar, only states with L = 0,m =0
can contribute:

Mo = > e "*|n(10|R(¢)[n0)|°. (12.41)
nlm

Comparing this to Eq. (12.40), we make the identification

4n b2 ¢ n-l1
QORI = o (ta h 2) . (12.42)

Huff computes this matrix element by analytically continuing the known O(3) matrix

element of e*/v?® obtaining
4n o\" 1
10|R 0)]? = ———— (tanh? = ) - [2F1(0,—1;n; = (1 — cosh $))]?. (12.43
OIRE0 = 5% (tanh? )RR ~Lin: S (1= cos o). (1249

Using tanh ¢/2 = sinh¢/(cosh¢ + 1) and that 2F; = 1 for the arguments here,
we can show that this result agrees with our much more simply expressed result from
group theory.
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Chapter 13

Radiative Shift of a Relativistic Meson
(Spinless Electron) in a Harmonic Potential

13.1 Introduction

We compute the radiative shift for a spinless, relativistic meson with charge
e in a three-dimensional harmonic potential V = C?r?2, where C is a real
constant. From consideration of the equations of motion, we compute the
radiative shift of the energy levels that corresponds to the difference in
the contribution to the mass renormalization of a mass m bound by the
harmonic interaction and a free meson [253, 254]. We derive an integral
expression for the complex radiative shift to order « in the radiation field
and to all orders in C, the binding field. In Section 13.2, we perform the
computations after making the simplifying assumption that the virtual
photon is spinless. In Section 13.3, we include the effects of spin.

We assume the unperturbed meson state |N) = |N1N2Ns3) obeys the
Klein—Gordon equation with the interaction term

(p* — pg + C*r* + m?)|N) = 0. (13.1)
The equations of motion can be written in the form
(H — E%)|N) =0, (13.2)
where
2 2
_p m (N
= 2m+ 5 (m> r (13.3)
and the relativistic energy is
2 2
bp—m
EY =" —. 13.4
g =B (13.4)
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This form shows that the equations of motion are the same as those of a
simple harmonic oscillator with frequency

w=C/m. (13.5)
Consequently, we know that the unperturbed energy levels are
ES = (N + g) w, (13.6)
where N = Ny + Ny + N3,
which implies that
p32<N+%>C+m2. (13.7)

13.2 Relativistic Radiative Shift for a Scalar Photon
Interaction

The shift is given by the equation

d'k 1 1
AEy =En —EQ =1 —— — (N|———
NN TN 1g/ (2m)* k2 < ‘D(kz) — i€
where g = 2me?, 1/k? is the propagator for a scalar photon, and D(k) is
the inverse momentum space propagator for the bound meson:

N>, (13.8)

D (k,ko) = D(k) = (p — k)? — (po — ko)* + C*r? +m?. (13.9)
We employ the integral representations
1 i 2 1 i . ’
— d\ —iAk" —eX — / dt —itD(k)—e t
k2 — e l/o ¢ C D) —ie )y M
(13.10)
By employing the translation operator in momentum space, we see that
efitD(k) _ eik“r‘efitD(O,ko)efik“r" (1311)
where
D(0, ko) = 2mH +m? — (po — ko)*. (13.12)

By applying the equations of motion for the canonical variables for an
elapsed time equal to mt, we find
e~ tmHy eitmH — . cos(Ot) — p; sin(Ct)

_ | , 13.13
efzthpiezth =p; COS(Ct) +7; SlH(Ct) ( )
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We can compute the translations in Eq. (13.11) explicitly with the result

1 > : ; i
_ dt —itmH _i2k-pv _+itmH
D(k) —ie ’A cr e
Xefi,uk2e—it('m2—(1)0_k0)2)efelt, (1314)
where

. sin(Ct) cos(C't)

= C ,
(13.15)

L sin(C't)

- C

The integration over scalar photon momentum can be performed by
completing the square and employing the general formula

/ dpettiar=2ibe) _ T 7 i (13.16)
a

After taking matrix elements as indicated in Eq. (13.8), we find that
the shift is

AEN, NyN, :/ dt/ AAONSIN, N, Ny (13.17)
O 0

where we have used the product representation for the three-dimensional
harmonic oscillator states | N1 NoN3) = |N1)|N2)|N3). The quantities o and
Q) are

g 1 it (s
ox =~ () he i(#) (13.18)

. . 2
Oy nany = (A + 1) 2 (N1 Ny Ny e (35

N;NyNs).  (13.19)

We can calculate the matrix elements directly and express the results
in terms of the quantity

) (iVQC)]
Q) = ()\+u—z‘y20)j+%. (13.20)
We find
Qo0 = 2(0),
Q100 = Q(0) + Q(1), (13.21)
Q200 = Q2(0) +2Q(1) + %Q(Q)a
Q110 = 2(0) + 2Q2(1) + Q(2)
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The radiative shifts lift the degeneracy for some levels, and this
parameterization simplifies the calculation of shifts between degenerate
levels. Renormalization of the free particle mass is contained in €2(0) to
all orders. This follows by noting that, for 7 > 1, as C' — 0

lim Q(j) — 0. (13.22)
C—0

For calculations of the shift between the non-degenerate energy levels,
we would use a different formulation, subtracting the free particle shift in
the beginning.

To verify our equations, we consider the limit C' — 0, which should yield
the free particle renormalization. In this limit, we have y — ¢, v — ¢ from
Eq. (13.15), and pZ = m? from Eq. (13.7) so the only non-vanishing € is

Q0) = (A+1)"2. (13.23)

Substituting these quantities into the expression for the shift,
Eq. (13.17), we find

1 [ee)
g dt —im2ut
AEfee = — d —e MY 13.24
o =z [ v [ e (13.24)
where we have made the substitution
t
= —. 13.25
V= ( )

To avoid having a spurious imaginary term, we do not include the
contribution from the pole at ¢ = 0, but start our integration at ¢ = e.
Using the formula

[ee} —1at
/ dt < — = —In(ea) -7, (13.26)
we find

AE‘free = ln(me) +v-1, (1327)

g
1672
where € in the infinitesimal cutoff for the ¢ integration and ~ is Euler’
constant. This result has the same structure as the conventional result
with respect to the divergences. The finite parts depend on the values
of the cutoffs and on the particular procedures used to evaluate the
integrals. The infinite terms cancel in the calculation of measurable shifts
and consequently have no direct physical significance.
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Equation 13.20 for the bound state shifts can be rewritten in terms of
y and 7 = 2C't:

A= i?C= Lo 1= L (e i — 1)]

2Cy T
i?C = % (e +e7'T —2) (13.28)
1 iT —iT
h=gc e

The integral used to calculate the shifts is

1 00
AEN(J’)E/ dy/ dtonQ(j), (13.29)
0 0
which equals
1 oo | (1T —iT J o —iynt
- g 1 dr 7 (e +e ' —2) em W
AN G) = g [y [ A TR T
1672 (24)7 Jo 2Ce T [1_%(6—”_’_,&'7_1)]] 2
(13.30)

where the lower limit of the 7 integration is 2¢C to avoid the pole at
zero. The degree of coupling to the harmonic oscillator is given by the
dimensionless parameter

P
= —. 13.31
=56 (13.31)
The shift can be expressed as a single integral of a confluent hypergeometric
function with two arguments. The structure is similar to that for the H
atom, where the shift can also be expressed in terms of an integral over a

confluent hypergeometric function [156].

13.3 Relativistic Radiative Shift for a Spin 1 Photon
Interaction

The expression for the shift is

o . dk 1 "
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where we are using the spin 1 photon propagator and

TH = (2p — k), (2p — k)™ (13.33)

1
D(k) —ie

Executing the trace gives

Ty =4 pz'pimp“p%im} _z{p'k’%}

—4dpok

— (K* —k2) ﬁ. (13.34)

1
°D(k)

We can derive expressions for each of these quantities in terms of our
previous results by employing the Heisenberg equations of motion for p; and
¢; (Eq. 13.13) and also our form of the Klein—-Gordon equation (Eq. 13.1).

Our final result is

o0 o0 3
AEN1N2N3 = 4/ d/\/ dt |:p20 — %1220 (N+ 5> 731‘#02
0 0
A\ 1 0
_ 2 2
p0t+>\+(“yc )228V

1 0

2.2 (op2.2
+ C*7 (2C%* - 1) —z78()\+ )

] oN SN, N2 Ny

1 o]
+ ;/ dtUNQN1N2N3|)\:O7 (13.35)
0

where on and Qn, N, N, have the same meaning as before (Egs. (13.18) and
(13.19)).

In Chapter 14 we return to the hydrogen atom and we determine the
contribution to the Lamb shift from the different frequency components in
the quantum vacuum field. We find that 97% of the radiative shift is due to
energies above the ionization energy, implying that transitions to scattering
states dominate.



Chapter 14

New Insights into the Lamb Shift: The
Spectral Density of the Shift

In an atom, the interaction of a bound electron with the vacuum fluctua-
tions of the electromagnetic field leads to complex shifts in the energy levels
of the electron, with the real part of the shift corresponding to a shift in
the energy level and the imaginary part to the width of the energy level.
The most celebrated radiative shift is the Lamb shift between the 2s; /5 and
2py /2 levels of the hydrogen atom. We have done a calculation of the shift
using a group theoretical approach which gives the shift as an integral over
frequency of an analytic function, which we call a shift spectral density.
The shift spectral density reveals how different frequencies contribute to
the total energy shift. We find, for example, that half the radiative shift for
N =1 level in hydrogen comes from photon energies above 9700eV, and
that the expressions by Power and Welton for the radiative shift do not
have the correct low frequency behavior, although they do give the correct
value for the total shift.

14.1 Introduction

In astronomy, in quantum theory, in quantum electrodynamics (QED),
there have been periods of great progress in which solutions to challenging
problems have been obtained, and the fields have moved forward. However,
in some cases, getting the right answers can still leave fundamental
questions unanswered. The Big Bang explained the origin of the cosmic
background radiation, but left the problem of why the universe appears to
be made of matter and not equal amounts of matter and antimatter [255].
In quantum theory, we can compute the behavior of atoms, yet we cannot
describe a measurement of a quantum system in a self-consistent way or
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make sense of the collapse of a photon wavefunction from a nearly infinite
volume to a point [256]. In quantum electrodynamics, we can compute the
Lamb shift of the H atom to 15 decimal places [1], yet we are left with
the paradox of using perturbation theory to remove infinite terms, or to
understand a quantum vacuum with infinite energy. In this chapter, we
examine some of the differences in the approaches to the computation of
the non-relativistic Lamb shift. For all these approaches, the Lamb shift can
be expressed in different ways as an integral over frequency of a spectral
density that indicates the contribution to the shift from different frequency
components in the quantum vacuum.

We compare the spectral densities for the different approaches of Bethe,
Welton and Power to the group theoretical spectral density of the non-
relativistic Lamb shift for the 1S ground state, the 2S and 2P levels. With
this new picture of the Lamb shift, we have found differences between the
various approaches. Knowing the spectral density of the shift provides new
insights into understanding the Lamb shift.

14.2 Spectral Density of the Lamb Shift

Our goal is to develop an expression for the shift of an energy level, in terms
of the generators of the group SO(4,2), that is an integral over frequency.
Then the integrand will be the spectral density of the shift, and group
theoretical techniques can be used to evaluate it [20]. We have derived
a generating function for the shifts for all levels in Chapter 12. We first
focus on the ground state 1S level as an illustration of the results. At
ordinary temperatures and pressures, most atoms are in the ground state.
The radiative shift for the 1S level is given in Eq. (12.37) [252]

4 200( Z o)A P & _ 1
AE, = dmc*a(Za)® / dope? sinh(f)/ dsese ’ a 5
3 0 0 ds (coth $ + cosh ¢)

(14.1)

where the dimensionless normalized frequency variable ¢ is defined as
1 hw
o= §ln [1 + —] ,

7 (14.2)

where F; is the ground state energy —13.6eV. The cutoff ¢. corresponds
to B = hwe = mc?, 511 keV, corresponding to the electron mass. The
group theoretical expression for the Lamb shift Eq. 14.1 is directly derived
from the Klein—Gordon equations of motion using a non-relativistic dipole



New Insights into the Lamb Shift: The Spectral Density of the Shift 197

approximation, assuming infinite proton mass, and minimal coupling with
the vacuum field. Basis states of (1/Z«) are used since they have no
scattering states and have the same quantum numbers as the usual bound
energy eigenstates [252]. The level shift is obtained as the difference between
the mass renormalization for a spinless meson bound in the desired state
and the mass renormalization for a free meson. Second order perturbation
theory is not used. Near the end of the derivation, an equation which
is identical to Bethe’s result Eq. (9.27) for the radiative shift can be
derived by inserting a complete set of Schrodinger energy eigenstates. Thus,
we expect the fundamental results from Bethe’s spectral density (with
no approximations) and the group theoretical spectral density to be in
agreement [20, 252].

We can write Eq. 14.1 as an integral over E = hw, which is the energy
of the vacuum field in eV, and evaluate the definite integral over s for
different values of E. We measure the ground state Lamb shift AF; in eV
so the spectral density of the shift dAF; /dFE is measured in eV /eV which
is dimensionless:

2
me dAE,
AFE, = dE 14.
o= [ S, (14.3)
where the ground state spectral density from Eq. (14.1) is
dAE, 40”5, > 1 1
= — h d se N
dE 3w W ¢ 0 5 sinh(5)? (coth § 4 cosh ¢)3

(14.4)

Figure 14.1 shows a logarithmic plot (ordinate is a log, abscissa is
linear) of the spectral density dﬁgl of the ground state Lamb shift with
Z =1 over the entire range of energy F computed from Eq. (14.4) using
Mathematica. The spectral density is largest at the lowest energies and
decreases monotonically by about 4 orders of magnitude as the energy

increases to 511 eV. The ground state shift is the integral of the spectral

density from energy 0 to 511 keV. Figure 14.2 is a loglog plot (both ordinate
and abscissa are log) of the same information. The use of the loglog plot
expands the energy range for each decade, revealing that for energy above
about 100 eV the slope is approximately —1, indicating that the spectral
density is nearly proportional to 1/E. For energy below about 10 eV, the
spectral density in Fig. 14.2 is almost flat, corresponding to a linear increase
as energy decreases, with a maximum spectral density at the lowest energy
computed, as shown in Fig. 14.3.
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Fig. 14.1. Plot of the log of the spectral density of the ground state Lamb shift from
the group theoretical expression Eq. (14.4) on the vertical axis versus the energy in eV
from 0 to 511 keV on the horizontal axis.
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Fig. 14.2. This loglog plot shows the log of the spectral density of the ground state
shift from the group theoretical expression Eq. (14.4) on the vertical axis versus the
log of the energy in eV. From about 0 eV to 10 eV, there is a slow linear decrease in
the spectral density. For energies above about 100 eV, the behavior is dominated by a
1/energy dependence.
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Fig. 14.3. Linear plot of the ground state spectral density as a function of eV calculated
from group theory, plotted as a function of energy for low and mid energies. From about 0
eV to 10 eV, the spectral density decreases linearly from its maximum value at the origin
which corresponds to 0 eV for all graphs. (a) Linear decrease in ground state spectral
density at very low energies. Note ordinate changes very little over small energy region
plotted. (b) Near linear change in ground state spectral density for visible and near
IR energies. The contribution to the total shift for energies below 3 eV is about 0.7%.
(c) Ground state spectral density calculated for energies below 80 eV, which contribute
about 8.6% to the total shift.
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Figure 14.2 shows that there are essentially two different behaviors of
the spectral density. For values of the energy E of the vacuum field that
are about 10 eV and below, in the range of the changes in energy for bound
state transitions, the spectral density corresponds to the near horizontal
portion of the spectral density in Fig. 14.2, and when E is much larger
than the bound state energies, the spectral density goes as 1/E.

Figure 14.3 shows linear plots (linear in ordinate and abscissa) of the
spectral density of the shift for the ground state computed from Eq. (14.4)
for several lower energy regions. Fig. 14.3(a) shows a linear decrease in the
spectral density as the energy increases over the small, low energy interval
plotted. Figure 14.3(b) shows a linear decrease of about 15% as the energy
increases from 0 eV to 3 eV. Figure 14.3(c) shows that the spectral density
decreases by a factor of about 4 as the energy increases from 0 eV to 100
eV. In the low frequency limit, the spectral density decreases linearly as
the energy increases from the asymptotic constant value at 0eV.

It may seem somewhat surprising that the spectral shift density is a
monotonically decreasing function as the energy increases. Bethe believed,
and it seemed reasonable, that the contributions to the shift would be
greatest for resonant transitions between the bound state energy levels,
but there is no such effect in the computed spectral shift density. This
conundrum suggests we may not have a precise understanding of the
physical processes that are occurring despite the fact that our mathematics
allow us to make a very precise computation of the shift. One of the
challenges is that it is not possible to measure these computed transitions
directly.

From explicit evaluations, we will show in Section 14.4 that for S states
with principal quantum number n, the asymptotic spectral density for large
E is proportional to a(Za)*(1/n3)(1/E), and show in Section 14.5 that as
the energy E goes to zero, the spectral density increases linearly, reaching
a maximum value that is proportional to a(Za)?(1/n?). An approximate
fit to the ground state data in Fig. 14.1 is

dAEF(E) (1+e B/B)

B Y Ero (14.5)

where A = 4.4008 x 1076, B = 11.841eV, C = 106.79¢eV. The fit is quite
good at the asymptotes and within 10% over the entire energy range.

We can use the spectral density shown in Figs. 14.1 or 14.2 to determine
the contribution to the total ground state shift from different energy regions.
If we integrate the spectral density from 0 eV to energy E, we obtain the
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value of the partial shift A;(F) in which these energies (0 eV to E eV)
contribute to the total shift AFE; for the ground state. In Fig. 14.4, we have
plotted Ay (E)/AE;, which is the fraction of the total shift AFE; due to the
contributions of energies below FE, as a function of E. Figure 14.4(a) shows
that almost 80% of the shift comes from energies below about 100,000
eV. Figure 14.4(b) shows that about half the total shift is from energies
below 9050 eV. Figure 14.4(c) shows that energies below 100 eV contribute
about 10% of the total shift. Energies below 13.6 eV contribute about 2.5%
while energies below 1 eV contribute about 1/4% of the total. It is quite
remarkable that over 96% of the contribution to the 1S radiative shift is
from transitions to states that are ionized. As shown in Fig. 14.4(c), the
fraction of the total shift increases linearly as E decreases from 10 ev to 0,
corresponding to the nearly horizontal portion of the shift density as shown
in Fig. 14.2. The contribution to the total 1S shift for the visible spectral
interval 400-700 nm (1.770-3.10 eV) is about 1.00342 x 10~7 eV or about
3/10% of the total shift.

The relative contribution to the total shift per eV is much greater for
lower energies. For example, half the 1S shift corresponds to energies 0 to
9000 eV, but only about 0.2% corresponds to 500,000 to 509,000 eV. The
largest contribution to the shift per eV is at the lowest energies, which
have the steepest slope of the spectral density curve in Fig. 14.1, about
1000 times greater than the slope for the largest values of the energy. But
the total range for the large energies, from 9050 to 510,000 is so large that
the absolute contribution to the total shift for large energies is significant.

For the ground state, Fig. 14.5 shows how the dominant terms for
different m in the Bethe sum over states in Eq. (12.1) contribute to the
full spectral density obtained from group theory Eq. (14.4). Each such
term in the Bethe sum could be interpreted as corresponding to the shift
resulting from virtual transitions from state n to state m occurring due to
the vacuum field. Each term shown has a behavior similar to that of the full
spectral density, but the magnitudes decrease as the transition probabilities
decrease.

Figure 14.6 shows the spectral densities for the 1S (top curve) and 2S
(middle curve) shifts. The shapes are similar, but the spectral density
for the 1S shift is about eight times as large at high frequencies and
about four times as large at low frequencies, factors that we will derive
explicitly by considering the asymptotic forms of the spectra density for
S states with different principal quantum numbers. Both have a 1/FE high
frequency behavior. The s integration in the group theoretical calculation
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Fig. 14.4. The ordinate is the fraction of the ground state shift AE; due to vacuum
field energies between 0 and E, plotted as a function of E on the abscissa. This plot is
obtained by integration of the spectral density from Eq. (14.4), shown in Fig. 14.1. The
plot is linear in the ordinate and abscissa. The origin corresponds to (0,0) for all plots.
(a) Fraction of the 1S shift due to energies from 0 to E plotted versus E on the abscissa,
for 0 < E < 510 keV. (b) Fraction of the 1S shift due to energies below E plotted versus
E, for 0 < E <9000 eV. (c) Fraction of the 1S shift due to energies from 0 to E plotted
versus E on the abscissa, for 0 < E < 100 eV. Energies below 30 eV account for about
0.05 of the total shift. The variation is linear for £ < 10 eV.
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Fig. 14.5. This loglog plot shows the 1S spectral density from group theory Eq. (14.4)
(top curve), and the contributions to this shift in the Bethe formalism for the transition
1S — 2P (blue, just below top curve), 1S — 4P (red, third curve from the top), 1.5 — 8P
(green, bottom curve). The dashed line shows the high frequency 1/F asymptote. The
top curve is the complete 1S spectral density which is the summation of the contributions
from all transitions.
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Fig. 14.6. This loglog plot shows the log of the group theoretical spectral density
for the 1S (black, top curve) and 2S (red, middle curve) shifts on the vertical axis
versus the log of the frequency in eV. The dashed curve below 1 eV is a 2S low energy
approximation Eq. (14.24) from group theory or the Bethe formula. The bottom curve
is the largest single contribution in the Bethe formalism to the 2S shift spectral density
for the transition 2S — 3P.
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for the 28 state diverges for energies below 10.2 eV due to a non-relativistic
approximation, but the spectral density of the shift can be obtained from
a low energy approximation, Eq. (14.24), to the group theory result, which
we derive in Section 14.4.

We can define the spectral density dﬁg" for a state n in a convenient
form suggested by Eq. (14.4),

dAE, 4o E
o ;Lw dsWy(s,dn) where ¢, =In[l+ @], (14.6)
where the energy for state n is E, = —mc?(Za)?/2n?. From our group
theoretical results for the 2S-2P Lamb shift, Eq. (12.38), we have
4e(2se™"2+¢2) ¢inh3 (o )esch? (&
Was—ap (s, ¢2) = (¢2) (3) (14.7)

(cosh(¢2) + coth (%))5
and for the 2P shift [252]:

WQP(S, qf)g) (14.8)
e(25e7"2462) ginh (¢ )esch® (£) (cosh(g2) sinh(s) + cosh(s) — 3)
2 (cosh(¢z) + coth (%)) '

(14.9)

The spectral density of the 2P shift has a very different behavior from
the spectral density of the 2S shift (Fig. 14.7). It is negative and drops
off as 1/E?%. The shift is negative because the dominant contribution to
the shift is from virtual transitions from the 2P state to the lower 1S
state, with an energy difference of about 10.2 eV. At 510 keV, the 2P
spectral density is about five orders of magnitude smaller than the 2S
spectral density. Below 20 eV, the absolute value of the 2P spectral density
is greater than the 2S spectral density. Note that the 2P spectral density
is actually negative and the 2S spectral density is positive. For energies
below about 20 eV, the absolute value of the spectral density of the 2P
shift increases rapidly in magnitude as the energy is reduced and is much
larger than the spectral density for the 2S shift. The 2S shift cannot have
a negative contribution from the lower 1S state since the transition 25—1S
is forbidden by conservation of angular momentum. The classic Lamb shift
arises from the difference between the two spectral densities, so the negative
2P spectral density actually increases the 2S-2P Lamb shift as the energy
decreases (Fig. 14.8). The total 2P shift is about 0.3% of the 2S shift. Bethe
also computed a negative contribution for the shift from the 2P state [158].
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Fig. 14.7. This loglog plot shows the log of the absolute value of the spectral density
on the vertical axis versus the log of the energy in eV for the 2S shift (red, top curve),

which goes as 1/F for large E, and for the 2P shift (green, bottom curve), which goes
as 1/E? for large E.
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Fig. 14.8. This loglog plot shows the log of the spectral density for the 2S shift (red,
bottom line) and the 2S-2P Lamb shift (blue, curved middle line) versus the log of the
energy. The line at the top is the 1/E asymptote.
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14.2.1 Comparing the ground state group theoretical Lamb
shift calculations to those of Bethe, Welton, and
Feynman

Integrating the group theoretical spectral density Eq. (14.4) from near
zero energy (5.4 x 1077 eV) to 511 keV, about the rest mass energy of
the electron, gives the 1S shift of 3.4027 x 107° eV, in agreement with
the numerical result of Bethe and Salpeter summing over states and using
the Bethe log approximation, 3.392 x 1075 eV, to about 0.3% [158].

Bethe and Salpeter reported that the ground state Bethe log Eq. (9.34),
which is a logarithmically weighted average value of the excitation of the
energy levels contributing to the radiative 1S shift, was 19.77 Ry or 269
eV [158]. Because of the weighting, it is not clear how one should interpret
this value, other than it indicates that high energy photons and scattering
states contribute significantly to the shift. As we have noted, our group
theoretical method does not provide an equivalent weighted average value
for direct comparison.

Although the methods of Bethe, Welton, and Power as defined all give
approximately the same value for the 1S shift, which equals the integral
of the spectral density in our approach, they differ significantly in their
frequency dependence, which we will now examine.

14.3 The Spectral Density of the Lamb Shift at High
Frequency

The form for dAE,, /dE, which is the Lamb shift spectral density for level
n, can be obtained at high energies from (1) the classic calculation by
Bethe using second order perturbation theory, before any approximations
are made to evaluate the integral; (2) the calculation by Welton of the Lamb
shift; (3) the calculation of Power of the Lamb shift based on Feynman’s
approach; and (4) our group theoretical calculation.

The spectral density for level n can be written from Bethe’s expression
Eq. (11.28)

AEBethe  9¢ /1 \? ) 1
S0 2 L B, - Ep)—————— (141
5 = o () SPlE By (410

n

If we are evaluating the spectral density for the ground state n =1, Z =1,
then By = —13.613 eV and for the bound states E,, = —13.613eV/m?.
For scattering states E,, is positive. Hence, the denominator is negative for
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all terms in the sum over m and never vanishes, and the spectral density
is positive, and the ground state shift is positive as it must be. For large
values of £ > F,, — E,,, we can make the approximation

AEfethe 1
= 2 (L) Sl mg a1

m

The summation can be evaluated using the dipole sum rule Eq. (9.30), and
Egs. (9.31) and (9.32) for the Coulomb S state wavefunction, obtaining the
final result for the high frequency spectral density for S states with principal
quantum number n

dAEBethe dme® 411

= ame 14.12
ap e 3 2 5 g (14.12)

The result highlights the 1/F behavior at high frequencies, and shows
the presence of a coefficient proportional to 1/n3. To put a scale on the
coefficient, we note that the high frequency spectral density can be written
as (8/3m)(a(Za)?/n)(E,/E).

The spectral density for all frequencies from Welton’s model can be
obtained from Eq. (9.44):

da(Za)*me?® 1 1

A}/VVelton _ o F E .

(14.13)

This is identical to this high frequency limit of Bethe’s calculation. Thus,
at low frequencies, the spectral density for Welton’s calculation diverges as
1/E. Because of the expectation value of the Laplacian, Welton’s approach
predicts a shift only for S states. Its appeal is that it gives a clear physical
picture of the primary role of vacuum fluctuations in the Lamb shift and
shows the presence of the 1/E characteristic behavior. To obtain a level
shift, it requires providing a low energy limit for the integration. As we
have noted, if the lower limit is Bethe’s logarithmic average excitation
energy, 269 eV for n = 1, and the upper limit mc?, then Welton’s total
1S shift agrees with Bethe’s. A choice of this type works since (1) it does
not include any contributions from energies below 269 eV and (2) it gives a
compensating contribution for energies from 269 eV to about 1000 eV that is
larger than the actual spectral density, as shown in Fig. 14.2, and (3) above
about 1000 eV, Welton’s model gives the same 1/F spectral density
as Bethe.
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The spectral density for Power’s model can be obtained from Eq. (9.53)

AEPower 94 (1 \? ) E
dE 37 <mc) zm: [P [( VB E) = B

(14.14)

For large energy E, we see the result is identical to the high frequency limit
Eq. (14.12) for the Bethe formalism and the Welton model so we have
AEPower dme? a(Za)* 1
— L |E—>00 = —_— . 14.15
dE 1P 3r  n® E (14.15)
Thus, we find for S states a 1/E dependence of the high frequency
spectral density, corresponding to the logarithmic divergence at high

frequency. We can write all the high energy theoretical results in a form
allowing easy comparison to the calculated group theoretical spectral
density eV/eV:

dAEBethe 4 2 7 4 1

dab, e, = AmealZa) 1 (14.16)
dE 3n n® FE

The spectral density is 1/n3 for the S states. For the ground state n = 1,

Z =1, we have

dAElBethe

—

A fit to the last two data points near 510 KeV in the group theoretical
calculations gives:

dAElGTcalc

—

The coefficients differ by approximately 2%. The difference may be due

1
|E—>o0 = 4.488 x 10*65 (14.17)

1
|E—>510kev = 4.4008 x 10*65. (14.18)

to the fact that the Bethe result is a high frequency asymptotic result,
whereas the group theory is for a finite limit of 510 eV. Figure 14.9 is a
plot of the ground state group theoretical spectral density (top curve) from
Eq. (14.4) and the theoretical high energy 1/E function from Bethe, Power
and Welton, Eq. (14.17), (slightly below top curve), and the difference times
a factor of 10 (bottom curve). The asymptotic theoretical result from Bethe,
Power, and Welton agrees with the full group theoretical calculation from
Eq. (14.4) to within about 2% at 511 keV and to within about 6% at 50 KeV.
It is notable that the high frequency form is a reasonable approximation
down to 50 keV. In fact, the Welton approach is based on this observation;
it has the same 1/FE energy dependence for all energies.



New Insights into the Lamb Shift: The Spectral Density of the Shift 209

Spectral Shift

Density
1.x1071°

5.x107"

Energy eV
100000 0000 500000

-5.x107"

-1.x10°7™

Fig. 14.9. Top curve is the 1S group theoretical calculated spectral density Eq. (14.4),
slightly lower curve is the 1/F asymptotic model Eq. (14.17) of Bethe, Power and Welton,
and the bottom negative curve is the difference times 10, plotted for the interval 50—
510keV. Both axes are linear.

14.4 Spectral Density of the Lamb Shift at Low Frequency

We can obtain a low frequency limit of the spectral density of the Lamb
shift from the Bethe spectral density Eq. (14.10). For small values of E, the
spectral density can be expanded to the first order in F, giving

AEfethe E

Since the sum is over a complete set of states m, including scattering states,
we can evaluate the first term in parenthesis using the sum rule

> IPpnl® = —2mE, = (mc)Q(%)Q. (14.20)
For the second term we use Eq. 9.51
Bl = Ml = T,
and the Thomas—Reiche-Kuhn sum rule [259]
S w2 = 20 (14.21)
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to evaluate the resulting summation. The final result for £ — 0 is

AEBethe 20 (Za)? a
— g~ = — — . 14.22
dE P70 T 3n p2 Tme? ( )
The corresponding spectral density forn =1,7 =1 is
dAElBethe| _ 4ax13.6 3E
dE P70 T T 3ame? 4% 13.6
=8.253 x 107%(1 — 0.0551E). (14.23)

As FE decreases to zero, the spectral density increases linearly to a constant
value (4a/37)(|En|/mc?) = 202722 /3mn? = 8.253 x 10~8/n?. The intercept
goes as 1/n?, but the slope, a/7wmc?, which is constant and has a remarkably
simple form, is independent of n.

If we take the low frequency limit of the group theoretical result Eq.
(14.4) analytically, we obtain exactly the same result as in Eq. (14.23) from
the Bethe formulation

dAEGTheory dAEBethe
T|E—>o = d71E|E7>0 T e— E. (14.24)

Figure 14.3 shows the results of group theoretical calculations of the spectral

20 (Za)? o

density of the ground state Lamb shift for different energy regions, showing
the near linear increase in the spectral density as the frequency decreases
from 80 eV to 107° eV. For low values of E, the slopes and intercept
from Eq. (14.24) agree within about two tenth of a percent with the exact
theoretical values obtained from Eq. (14.4).

To explore Power’s approach at low frequency, we can let E become
very small in the spectral density Eq. (14.14), giving

AEPower 2 , E
g e = e L Pl (1425)

which is identical to the second term in Eq. (14.19), the low E approxima-
tion to the Bethe result Eq. (14.10), so we have from Eq. (14.22):
AEPower 1
— = ————7=F. 14.26
dE T mc? ( )
This result Eq. (14.26) is identical to the frequency dependent term in
Eq. (14.24), which is the low frequency spectral density from the Bethe
approach and from the group theoretical expression. However, in the low
frequency limit based on Power’s expression for the spectral density, the
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constant term that is present in the other approaches does not appear.
This is a consequence of the form used for the index of refraction, which
assumes that real photons are present that can excite the atom with
resonant transitions. The modified implementation of Feynman’s proposal
by Milonni et al., noted in Section 9.3.3 would yield a low energy result
that agrees with that of Bethe and group theory [244].

14.5 Conclusion

The non-relativistic Lamb shift can be interpreted as due to the interaction
of an atom with the fluctuating electromagnetic field of the quantum
vacuum. We introduce the concept of a spectral shift density which is
a function of frequency w or energy E = hw of the vacuum field. The
integral of the spectral density from F = 0 to the rest mass energy of an
electron, 511 keV, gives the radiative shift. We report on calculations of
the spectral density of the level shifts for 1S, 2S and 2P states based on a
group theoretical analysis and compare the results to the spectral densities
implicit in previous calculations of the Lamb shift. The group theoretical
calculation provides an explicit form for the spectral density over the entire
spectral range. Bethe’s approach requires a summation over an infinite
number of states, all bound and all scattering, to obtain a comparable
spectral density. We compare all approaches for asymptotic cases, for very
large and very small energies E.

The calculations of the shift spectral density provide a new perspective
on radiative shifts. The group theory approach as well as the approaches of
Bethe, Power, and Welton all show the same 1/F high frequency behavior
for S states above about £ = fw = 1000 eV to E = 511 keV, namely
a spectral density for S states equal to (4/37)(a(Za)*me?/n?)(1/E) for
states with principal quantum number n. Since our group theory calculation
shows that about 76% of the ground state 1S shift is contributed by E above
1000 eV, this is essentially why all the approaches give approximately the
same result for the 1S Lamb shift.

Only the Bethe and group theory calculations have the correct low
frequency behavior. We find that for the S states the spectral density
increases linearly as E approaches zero. Its maximum value is at £ = 0
and for S states equals (2a/37)(Za)?/n?. This maximum value is about
1/(Za)? or about 2 x 10% larger than the high frequency spectral density
at E = 510 keV. Thus, low energies contribute much more to the shift
for a given spectral interval than high energies. Energies below 13.6 eV
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contribute about 2.5%. It is surprising that about 97.5% of the 1S radiative
shift is due to fluctuation energies above the ionization potential, which
means that intermediate scattering states dominate the shift. Because of
the huge spectral range that contributes to the shift, contributions to the
shift from high energies are very important. Half of the contribution to the
1S shift comes from energies above 9050 eV.

The 2P shift has a very different spectral density from an S state: it
is negative and has an asymptotic behavior that goes as 1/E? rather than
as 1/E. Below about 20 eV, the absolute value of the 2P spectral density
is much larger than the 2S spectral density and dominates the 2S-2P shift
spectral density, yet the total 2P shift is only about 0.3% of the total 2S
shift.

In the last chapter, we discuss the field of virtual vacuum energy that
surrounds the hydrogen atom due to its interaction with quantum vacuum
fluctuations.



Chapter 15

The Cloud of Virtual Quanta
Surrounding the H Atom

15.1 Introduction

This chapter focuses on the spectral interpretation of the dominant lowest-
order non-relativistic radiative shift, which is what Bethe calculated,
and which accounts for about 97% of the total shift. This shift can be
interpreted as arising from virtual transitions of the H atom induced
by quantum fluctuations of the electromagnetic field. Since the vacuum
field contains all frequencies, virtual transitions to all states, bound and
scattering, occur. Indeed, as we saw in Chapter 14, over 95% of the ground
state shift arises from transitions to scattering states. These short-lived
virtual transitions result in a slight shift in the average energy of the atom,
the radiative Lamb shift [20]. This continuous process of absorption and
emission of virtual photons produces a cloud of virtual energy around the
atom [243]. When only one atom is present, the interaction results in the
field around the atom corresponding to the Lamb shift. If multiple atoms
are present, these clouds affect neighboring atoms; along with the zero-point
field, this interaction leads to the van der Waals force and the Casimir force.
The van der Waals forces arise because the vacuum fluctuations cause a
correlation in the induced dipole moments of the atoms.

We have calculated the non-relativistic Lamb shift using SO(4,2) group
theory. In Chapter 14, Egs. (14.3) and (14.4) give an expression for the
level shift as an integral of a spectral shift density over the frequency of the
vacuum fluctuations [252, 260]. There is no sum over states as in Bethe’s
evaluation of the shift. This approach provides an analytical expression
for the contribution of each frequency of the vacuum fluctuations to the
radiative Lamb shift. This expression allows us to compute the volume
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that corresponds to the spectral components present in the Lamb shift by
considering the energy density of the zero-point vacuum field.

The calculations by Power and Milonni show that for the ground state
1S Lamb shift, which is positive since all transitions are to states with
energy greater than the ground state, the energy density of the fluctuating
zero point field around the atom must increase so that the integral of the
energy over the volume surrounding the atom gives the 1S Lamb shift
[3, 203, 244]. The increased energy is supplied by the quantum fluctuations
of the electromagnetic field. By comparing the needed vacuum energy,
which we determine from our calculation of the spectral shift density in
Chapter 14, with the known energy density of the zero-point vacuum
fluctuations, we can calculate the volume of vacuum energy needed for each
spectral component of the shift. In Sec. 15.2, we will show that for energies
above about 100 eV, the spectral volume is much smaller than the region
occupied by the ground state wavefunction; for energies less than about
1 eV the spectral volume is significantly larger than the ground state
wavefunction. Consequently, the focus of this paper is on the low energy
regime. For this regime, we will show that the radius of the spherical spectral
volume for a vacuum fluctuation of wavelength X is approximately (o /2m)A,
where « is the fine structure constant. A simple estimate of the size of the
virtual photon cloud based on the uncertainty relation for energy and time
predicts a maximum radius of the spectral volume which is larger than that
predicted by the Lamb shift model by a factor of 1/4a [257, 261].

15.2 Computing the Size of the Vacuum Energy Field

Consider a large box containing one H atom in the ground state. We know
dA B,
dE

given by Eq. (14.4), and the energy density of the quantum vacuum without

both the spectral density of the radiative shift in the ground state,
an H atom present. In the box containing the H atom, the vacuum field
density must increase such that the integral of the energy density over
the volume provides the 1S Lamb shift. This increase in vacuum energy
results from the vacuum fluctuations, which have a free-field spectral energy
density (energy/volume - frequency) equal to [3]

th

2m2¢3’

po(w) (15.1)

where ¢ is in cm/s, w is the radial frequency in s~! and p has units

1

of erg/cm3-sec™!. If the frequency is measured in eV then it is the
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energy £ = hw, and the vacuum spectral energy density has units of
(eV/em®— eV) = 1/cm? and is

E3

The integral | 51 ® po(E)dE represents the energy density eV/ cm? in the
energy interval Fy to Fs. The question being addressed here is: what volume
of vacuum energy of density po(F) is required to supply the amount of
energy required for the radiative shift?

The total renormalized radiative shift AF; can be expressed as the
integral of the vacuum energy density po(E) over an effective volume V; (E):

2

AEl = /mc dEp()(E)Vl(E), (153)

with the same upper limit for E as used previously [3]. Recall the definition
of the spectral shift density Eq. (14.3):

2
mc AEl
AFE, = dE ) 15.4
1 /0 5 (15.4)
Comparing Eq. (15.3) with Eq. (15.4) shows that the effective spectral
volume V; (E) needed to insure energy balance at each energy F is

dAE; 1
F) = .
YE) = TIE no(®)

(15.5)

The spectral volume V; (E) has dimensions of cm?® and contains the amount
of vacuum energy at energy value E that corresponds to the ground state
spectral density at the same energy E. To compute the spectral volume
Vi(E), we use the results for the spectral shift density dAE; /dE described
in Chapter 14, Eqgs. (14.4) for the 1S shift and (14.6-14.8) for the 2S and 2P
shifts. The spectral volume, V4 (EF), in Eq. (15.5) is assumed to be spherical
since the ground state is an S state, so the radius can be calculated from
the known spectral volume. In Section 15.4, this assumption is discussed in
more detail.

Equations (15.3)—(15.5) are general equations and apply to any calcu-
lation of the radiative Lamb shift that can be expressed as an integral over
the vacuum energy, as in Eq. (15.4). The utility of Egs. (15.3)—(15.5) lies in
our ability to provide an explicit analytical expression for the spectral shift
using our group theoretical results.

An example of Eq. (15.3) is in the calculation of the Lamb shift as
a Stark effect by Milonni [3]. Consider the energy W = —1d - E(w) for a
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dipole d in an isotropic field, E(w). Assuming that the dipole is induced
by the field, then d(w) = a(w)E(w). The energy for an atom A at x, with
polarizability a4(w) can be expressed as [3]

Wi — —% /Ooo dwces () (E2(w)). (15.6)

For the Lamb shift, (E(w)?) = 47pg(w), where pg is the zero-point vacuum
spectral energy density, one obtains

Wa =27 /OOO dwa g (w)po(w). (15.7)

The polarizability is provided by the Kramers—Heisenberg formula and has
units of volume. This expression for the Lamb shift has the same form
as Eq. (15.3). To complete the Stark shift calculation, the contribution
from the free electron needs to be subtracted, after which the final result
is identical to that of Bethe [3].

In Fig. 15.1, for the 1S ground state radiative shift, we plot the log of
the radius in A of the spectral volume V; (E) on the y-axis versus the log
of the energy E in eV on the z-axis.

For energies above about 100 eV, the spectral volume is less than 1 cubic
Angstrom, approximately the volume of the ground state wavefunction.
For an energy of 1 eV, the spectral volume is 11850 A3, corresponding to
a sphere of radius about 14 A, meaning that there is a sphere of positive
vacuum energy of radius 14 A around the atom corresponding to the 1 eV
shift spectral density.

Radius in Angstroms
of Spectral Volume

100f
0.1 ™S

10_4, o

1 1000

Energy eV

Fig. 15.1. The log of the radius of the spherical spectral volume V; (E) for the 1S state,
Eq. (15.5), as a function of the log of the vacuum field energy E, from 0.0027 eV (where
the radius is 5330 A) to 511,000 eV (where the radius is 10~17 A).
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Fig. 15.2. The log of the radius of the spherical spectral volume Vi(E) for the 1S
state, Eq. (15.5) as a function of the vacuum field energy E, from 0.05 eV to 23 eV,
with corresponding radii of 288 A and 0.5 A. The radius approximately follows 1/F
behavior.

Figure 15.2 shows the radius of the spherical spectral volume for energies
below 23 eV. For an energy of 21.7 €V, the spectral radius equals the mean
radius of the ground-state wave function of 0.53 A. For energies less than
21.7 €V, the radius will be greater than the radius of the ground state.
For an energy of 0.054 eV, the radius is 288 A. For these low energies, the
radius goes approximately as 1/F.

For low-energy vacuum fluctuations, the spectral density from Eq. 14.24
can be approximated for an S state with the principal quantum number n
as constant, dropping the energy dependent term:

dAE,, 20 (Za)?
dE 3r n2
Equation (15.8) is accurate to about 5% at 1 eV, and the precision increases
as the energy decreases. This approximation corresponds to the end point
FE = 0 of the nearly horizontal portion of the spectral density in Fig. 14.2.
For these low energies, the spectral volume, V,,(E), from Eq. (15.5) is
A a(Za)? (he)?
T3 n2 B3
Assuming a spherical spectral volume of radius Ry (E) for a state n, one
finds:

(15.8)

|E—>0 =

Va(E)

(15.9)

a(Za)Q] Y3 he

Ry (E) = [ = (15.10)

n2
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which for low E for the 1S state of hydrogen gives

he 14.4A

The H atom is surrounded by a steady-state cloud of virtual quanta; this
cloud has a radius Ry (FE) in Angstroms for a quantum energy E in eV
and is continuously emitted and absorbed by the field. This vacuum energy
density of the cloud is positive in the sense that it is above the free-field
vacuum energy density.

It is remarkable that the asymptotic low energy spectral radius, Ry (E),
in Eq. (15.11) has such a simple form. This result can be rewritten using

the definition, a = €2 /hic , with e the elementary charge as

62

E = o (5 (15.12)

Thus, the Coulomb energy for two electrons separated by a distance Ry (E)

(15.11)

equals the energy F = hw of the corresponding vacuum virtual photon.

It is interesting to compare the radius Ry (F) of the spectral volume
with the wavelength, A, of the vacuum fluctuation corresponding to F =
hw = 27he/A. For the ground state, this gives

« A
Ry (E) = %)\ = %61
The radius of the spectral volume is equal to /27 times the wavelength of

(15.13)

the corresponding vacuum fluctuation. That the radius is so much smaller
than the wavelength of the corresponding vacuum fluctuation may seem
puzzling, but we need to remember that the energy in the volume is
an integral overall the wavelengths in the vacuum field. Long-wavelength
vacuum fluctuations produce macroscopic regions of positive vacuum energy
for the hydrogen ground state. For a fluctuation wavelength of 1 km, which
corresponds to a radio wave, the vacuum field around the atom would
extend for over one meter.

15.3 Comparison to Predictions from the
Uncertainty Relation

A simple analysis using the uncertainty relation can provide an order of
magnitude estimate of the largest extent of the positive energy vacuum
field. The hydrogen atom is a quantum system, and its energy in the ground
state can consequently vary for a time interval 7 by an amount AFE,, which
is restricted by the uncertainty relation [172, p. 201]

AE,T < /2. (15.14)
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The variation in energy is modeled by the emission and absorption of virtual
photons of energy AFE, = hw, and frequency w,. Since the velocity of the

photon is ¢, in the time 7 it can travel a distance 2R,, where [257]
he c A
Ry < 7 =7—"7"=2
< 4AFE, 4w, 87

where )\ is the wavelength of the virtual photon. Comparison of Eq. (15.15)

(15.15)

to Eq. (15.13) shows that for the same energy virtual photon we have
Ry = 4aR,. (15.16)

For vacuum fluctuations of energy E below about 1 eV, the dimension Ry of
the virtual cloud predicted by an analysis of the ground state Lamb shift is
4 times smaller than the maximum extent, R,,, allowed by the Uncertainty
Relation. Ref. [257] has suggested that (47/3)a can be considered the mean
density of virtual photons in the region around the atom, which may explain
the difference between R, and Ry .

15.4 Significance of the Zero-Point Field Around the Atom

The cloud of quantum fluctuations surrounding the H atom can be inter-
preted as resulting from the scattering of the free-field vacuum fluctuations
by the atom. The zero-point field activates the atom in a continuous process,
creating the steady-state cloud of quantum fluctuations that has been
described in this chapter. As the derivation of the Lamb shift in terms of the
Stark effect suggests, the zero-point field induces an instantaneous dipole
moment in the atom that leads to a dipole field. The continuous stochastic
excitation from the zero-point field leads to a sum of incoherent dipole
contributions that average to a spherically symmetric cloud [172].

One can imagine the atom undergoing virtual transitions from the
ground state to all higher energy states and then returning to the ground
state in accordance with the time-energy uncertainty relation. For a zero-
point fluctuation of the wavelength A, our calculations in Section 15.2 have
show that the cloud extends about aA/27 from the nucleus, which can be a
macroscopic distance. Probably the easiest way to detect the vacuum field,
at least for short distances, is by the presence of Casimir-Polder or van der
Waals forces. Direct measurement of vacuum fluctuations is challenging but
there have been several recent direct measurements in the terahertz range
using femtosecond electro-optic detection in a cryogenic non-linear crystal
[262-264].

For the cloud of vacuum energy that we have calculated, there are several
ways of exploring its significance: first, by computing estimates of the mean



220 The Hydrogen Atom

energy density, which we do in Section 15.5; and second, by explaining its
role in the creation of van der Waals forces under the assumption that
another H atom is nearby, which we do in Section 15.6.

15.4.1 Does the field of vacuum fluctuations around the

atom have any biological significance?

There are similar fields of quantum vacuum energy around all atoms, and
for macroscopic matter, the fields are more energetic, so it is reasonable to
ask this question. We know these fields induce significant dispersion forces
and interactions, for example in protein folding, DNA stacking, and nucleic
acid stability [281].

Recent research has suggested that Casimir forces, Casimir-Polder
forces, van der Waals forces and quantum entanglement may play a
pervasive role in biological systems. For example, Casimir forces have been
proposed as the force that stabilizes the lipid bilayer structure of cell
membranes [279].

To organize data from diverse fields, neurology, biophysics, psychology,
mind-body medicine, psychoimmunology, energy medicine, researchers have
proposed the concept of an energetic biofield, “a complex organizing
field engaged in the generation, maintenance, and regulation of biological
homeodynamics” [280]. It is very likely that the ubiquitous field of quantum
fluctuations plays a role in the biofield. There is increasing evidence of
quantum signaling, entanglement, communication in biological systems
[282] and in the cytoskeleton of networks of microtubules [280]:

“Together these results describe the mind-body as an interconnected
system in which electromagnetic and quantum interactions act through
field-coherent oscillatory activity to regulate biological processes and
mediate interactions correlated with sentience and mental activity.”

It is very possible that future research will involve extensive exploration
of the role of vacuum fluctuations in biological systems. The discovery of
a simple, reliable method to measure vacuum fluctuations would certainly
catalyze this research.

15.5 Energy Density of the Zero-Point Field Around
the Atom

Using the results in Section 15.3, it is possible to compute the energy density
of this field as a function of distance for different wavelengths or energy
intervals of the zero-point field. Consider a spherical shell: the inner radius
corresponds to one energy and is given by Eq. (15.11). The outer radius
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Fig. 15.3. The Lamb shift energy density, pihsen from Eq. (15.19) as a function of the
inner radius, Ry = ahc/(BE), of the shell. The outer radius, R = ahc/E, is 1.03 times
the inner radius; thus, g(8) = 11.3 (see Eq. (15.21)).

corresponds to a slightly smaller energy. For this energy interval, one can
estimate the contribution to the total Lamb shift by integrating the curve
in Fig. 14.1 [260]. For energies below 1 eV the contribution to the ground
state Lamb shift is about 0.24% of the total shift. In this low energy range,
the contribution to the shift scales linearly with the energy, as shown in
Fig. 14.3(b). This allows us to compute a mean energy density, pihse“, of the
quantum fluctuations in a spherical shell.

The density of the Lamb shift energy in the spherically symmetric region
of vacuum energy surrounding the H atom can be analyzed in terms of shells
with an outer radius of R = ahc/F and inner radius of Ry = ahic/Ey. Tt is
convenient to let £y = SF, where 8 > 1. Assuming that both energies are
less than 1 eV, one can integrate the Lamb shift (LS) spectral density from
Eq. (15.8) for the ground state and Z = 1 to obtain the enegy contained
in the shell

BE 20{3 20{3
AEshell p :/ dEZ=— =" FE(B -1 15.17
LS ( ) 5 31 3T (6 ) ( )

to an accuracy of about 5%. The volume of the shell is

4 ; 1 1
shell o 3
Therefore, the Lamb shift energy density (in erg/cm?) in the shell is
B AEE%GH(E) 1 1 b5—1

shell - 4
PLs(E) = Vehel(B) 272 (he)3 1 — 1/53E : (15.19)
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The Lamb shift energy density for a shell with outer radius R = ahc/E, and
inner radius Ry = ahc/(BE), is proportional to E* or 1/R{,(E). Figure 15.3
shows the value of pfie!! as a function of the inner radius (in A), where the
outer radius is 1.03 times the inner radius (8 = 1.03).

One can compare the energy density pi!!(E) from Eq. (15.19) (in
erg/cm?®) to the energy density piP*"'(E) (in erg/cm?) of the free zero-point
vacuum field for the same spectral interval, i.e., from E to SE:

BE 1

p(s)hen(E) = /E dEP()(E) = WE4(ﬂ4 — 1). (15.20)

One finds that the ratio
psNE) _, B-1 1
p(shell(E) 1— 1/63 64 -1
is a constant that depends on . The Lamb shift energy density for the

=9(8), (15.21)

shell is directly proportional to the free vacuum energy density for the
same energy interval. This result follows for low E since the spectral density,
dAEl from Eq. (15.8), is a constant. Comparison with Eq. (15.5) shows that
po( )Vi(E) is therefore constant and independent of E for low E values.

The function g¢(f3) is singular at 8 = 1 and decreases rapidly as
increases. For 1 < 8 < 1.35, g(p) is greater than 1. For /5 of (1.01, 1.02 1.03,
1.05, 1.1), the corresponding values of g(3) are (33.5,16.8,11.3,6.8,3.5).
For these shells, pii!l(E) is always greater than p§P®!'(E). Just as free-field
vacuum fluctuations are important in many physical systems, the field of
fluctuations due to the Lamb shift must be equally important.

Table 15.1 shows the results of computing the energy densities for
different spherical shells. The first row corresponds to a shell with the
frequency range of the visible spectrum (400 nm to 700 nm), for which
the energy density in the shell, pihse“, is 98.7 erg/cm?®, which is 45% of
the correspondmg pihell (the free field energy density for the shell) of 218
erg/cm3. For cases with 3 < 1.35, the ratio pii!!/pghe!l in the fifth column
is greater than one.

The energy densities pjii!! for the shells are significant, for example,
compared to the energy densities, ppp, for black body radiation over the
same spectral intervals. For a temperature of 600 K (for which the peak
intensity is at about five micrometers or 0.25 eV) the ratio of pic!/ppy,
is 2.8 x 10%, 148, and 10.1, respectively, for the shells with radii 20 —30
A, 5060 A, and 200-210 A. Of course black body radiation is ordinary
electromagnetic radiation, while the Lamb shift energy consists of vacuum
fluctuations of the electromagnetic field.
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Table 15.1. The inner and outer radii for a spherical shell around the atom, the
corresponding fluctuation energies pihse“ Eq. (15.19) and pghe“ Eq. (15.20), and the ratio of

pihsell to pghell.

Mean Shell Mean Shell
Inner and Quantum Lamb Shift Free Field
Outer Radii Fluctuation Energy Energy
of Spherical Energy Range Density, pihse“ Density, pghe“
Shell (in A) (in eV) (in erg/cm?3) (in erg/cm3)  pghell /pshell
4.64 to 8.13 Visible 3.10 to 1.77 98.7 218 0.45
10 to 20 0.72 to 1.44 3.34 10.65 0.314
20 to 30 0.48 to 0.72 0.399 0.570 0.700
30 to 40 0.36 to 0.48 0.1024 0.0959 1.068
40 to 50 0.288 to 0.36 0.0373 0.0262 1.16
50 to 60 0.240 to 0.288 0.0167 0.00941 1.77
60 to 70 0.2057 to 0.240 0.00852 0.00403 2.12
70 to 80 0.180 to 0.2057 0.00480 0.00196 2.45
80 to 90 0.160 to 0.180 0.00291 0.00104 2.79
90 to 100 0.144 to 0.16 0.00186 0.000595 3.13
140 to 150 0.096 to 0.1029 0.000344 0.0000718 4.78
200 to 210 0.0686 to 0.072 8.59 x 107° 1.25 x 107° 6.87
300 to 310 0.0465 to 0.048 1.76 x 10~° 1.67 x 1076 10.49
400 to 410 0.0351 to 0.036 5.63 x 1076 4.27 x 1077 13.16
1000 to 1020 0.01412 to 0.0144 1.46 x 10~ 7 8.58 x 109 16.97

15.6 Relationship between the Zero-Point Field Around
the Atom and van der Waals Forces

Zero-temperature Lamb shifts and van der Waals interactions have straight-
forward physical interpretations in terms of fluctuating zero-point fields [3].
Here, we consider an isolated atom A and describe the fluctuating field
around this atom that arises from its interaction with the free field vacuum
fluctuations. The field around atom A corresponds to the non-relativistic
Lamb shift for atom A. If another atom is present, the field around A plays
an essential role in the van der Waals forces between the atoms.

To illustrate this, generalize Eq. (15.6) for the energy of an induced
dipole at A to include a second atom B. The total field is Ek, and the
combined energy is [3, Sec. 3.11]

Wiap = 3 > aaloon) (B (x,1), (15.22)
kw

where a4 (wy) is the polarizability of atom A at frequency wy, k is the wave
vector, and ¢ denotes the time. The total field acting on A is assumed to be
the sum of the zero-point field Eq k. (x4,t) acting on A and the field at A
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that is produced by atom B from its interaction with the quantum vacuum
field:

Ekw(XA,t) = EO,kw(XA, t) + EB,kw(XA7t)' (15.23)

The presence of the second atom breaks the spherical symmetry, so a
summation over k for the non-isotropic field is included. Each atom is
“driven” by the zero-point field at its location, creating a fluctuating dipole
field about the atom. The field about atom B affects atom A and vice versa
so the total energy is

1
Wi = —3 > aa(wi)(Bf s (x4, 1) + B g (x4, )
kw
+Eoxw(x4,)EB ko (x4,t) + Epxw(x4, 1) Eo ke (x4, t)).
(15.24)

The portion of the energy W% that depends on the distance between the
atoms corresponds to the van der Waals force, and is

1
wigh = —3 > aa(wr) (Bow (X4, ) Ep g (X4, 1)
kw

+EB,kw(XA,t)Eka(XA,t)). (15.25)

The term aa(wi)(Eokw(x4,t))? in the summation in Eq. (15.24) does
not depend on the separation between the atoms and corresponds to the
Lamb shift for atom A. This is the field of vacuum fluctuations about the
atom that represents the atom’s response to the vacuum field that we have
described. From Eq. (15.25) one can immediately see that this field also
plays an essential role in the van der Waals force. Similarly, this field would
be essential for the Casimir—Polder force between an atom and a surface.

The term Ep k., (x4,t) represents the field at atom A that is from the
induced dipole at atom B, and is proportional to the polarizability apg(wy)
of atom B. After computation, the final expression for the van der Waals
force is shown to be a symmetric integral over w of the product a4 (w)ap(w)
times a function of w and r = |x4 — x| [3]. Detailed calculations of the
renormalized electric and magnetic field fluctuations around a dressed H
atom are given in [243].

To clarify the physical origin of the van der Waals force, we note
that the field about atom B corresponding to the Lamb shift induces a
fluctuating dipole moment in the nearby atom A. The correlation between
the fluctuating dipole moments at the two locations gives rise to the van
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der Waals forces. The correlation falls off rapidly with frequency and with
the distance r between the two locations, giving the r~%-dependence of the
non-retarded van der Waals interaction. The cloud of zero-point fluctuations
about the H atom described is fundamental to van der Waals forces as well
as to the Lamb shift. These phenomena are linked in that they both arise
from the interaction between atoms and the fluctuating zero-point field.

The van der Waals forces tend to become retarded for distances
greater than about ag/a (ap being the Bohr radius of the ground-state
wavefunction), or about 70 A. Retarded van der Waals forces are described
as Casimir forces [3]. From the calculations in Table 15.1, one can see that
lower energy fluctuations are responsible for these dispersion forces.

15.7 Conclusions

The nonrelativistic Lamb shift can be interpreted as being due to the
interaction between atoms and the fluctuating zero-point electromagnetic
field of the quantum vacuum. The renormalized radiative Lamb shift can
be expressed in terms of a spectral shift density, which is a function of
the frequency w or energy E = hw of the vacuum field. The integral of
the spectral density from E = 0 to the rest of the mass energy of an
electron, 511 keV, gives the non-relativistic radiative shift for that state of
the atom.

Feynman, Power, and Milonni showed that the radiative shift equals the
change in the energy of the vacuum fluctuations in the region containing
the H atom. Using this result with our group-theoretical calculation of
the contribution to the Lamb shift from each frequency of the vacuum
fluctuations, we derived an expression for the size of the region of vacuum
energy corresponding to each value of the vacuum energy F around the H
atom. The spectral volume for the energy E around an H atom contains
vacuum fluctuations of energy FE; the total energy of these fluctuations
equals the radiative shift corresponding to that energy FE. For the ground
state, the energy density in the spectral volume is positive, which means
that it is above the energy density of the free field. For £ > 23 eV, the radius
of the region of positive energy vacuum fluctuations is less than the atomic
radius; on the other hand, for energies less than 1 eV the radius is shown
to be approximately Ry (F) = ahc/E = 14.4/E A, and can be much larger
than the ground-state wavefunction.

The radius of the spectral volume can also be expressed in terms of the
wavelength of the corresponding vacuum fluctuations as aA/2m = \/861.
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An estimate of the extent of photons from virtual transitions based on the
uncertainty relation for time and energy predicts a maximum radius that is
about 1/4« larger than the radius based on the radiative shift calculations.

The vacuum energy field around the H atom described in this chapter
plays an essential role in the van der Waals forces and Casimir forces as
well as in the Lamb shift. These phenomena are linked since both arise from
the interaction between atoms and the fluctuating zero-point field. The
calculations in this paper were performed for the ground state of H, which
has a positive radiative shift. States with a negative radiative shift, such as
2P, would also have a spectral volume as well; however, the energy would
be negative, i.e., below the free-field vacuum energy. Notably, this analysis
is complicated by the fact that the 2P state decays to the 1S state.

15.8 Final Comments about the H atom and Radiative
Shifts and Future Research

We have discussed the history of Lamb shift and Bethe’s pivotal calculation
and how it influenced the direction of theoretical physics for over half a
century.

Measurement and computation of the properties of the hydrogen atom
have been central to the development of modern physics over the last
century. One of the most useful and profound ways to understand its
properties is through its symmetries, which we have explored, beginning
with the symmetry of the Hamiltonian, which reflects the symmetry of the
degenerate levels, then the larger non-invariance and spectrum-generating
groups, which include all of the states. The successes in using symmetry
to explore the hydrogen atom led to use of symmetry to understand and
model other physical systems, particularly elementary particles.

We have discussed the general nature of radiative shifts of bound state
energy levels from the classical and the quantum perspectives, examining
in some detail results for the harmonic oscillator and the hydrogen atom.
The radiative shifts are complex; the real part is the level shift and the
imaginary part is the level width. The shifts arise due to the emission and
absorption of virtual photons which occurs because of the interaction of the
charged particle with its own radiation field or with the vacuum zero-point
fluctuations. We know that vacuum fluctuations are affected by geometry
and therefore radiative shifts differ from free space values for atoms in a
cavity or near a surface [245-249, 265]. Lamb shifts have even been used to
model gravitational energy in black holes [266].
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Today, the calculation of radiative shifts and atomic energy levels can
be done very precisely, from 1 part in 10'? to 1 part in 10'® for certain
energy levels, one of the the most precise computations for any physical
system [1]. Today, the corresponding experiments demonstrate comparable
precision and agreement with theory. Because of this high precision,
measurements of radiative shifts and atomic energy levels reveal detailed
information about phenomena causing shifts aside from radiative effects.
Some see the opportunity for developing metrology [205, 267-270]. This
favorable situation allows atomic systems to be a platform for the discovery
of new physics beyond the standard model.

Theoreticians are already calculating the effect on energy levels due to
the quantization of space and space-time fluctuations for H atoms, muonic
atoms, and Rydberg states [4, 6, 14, 15, 267, 271-274]. Measurements are
being done on cooperative Lamb shifts for mesoscopic arrays [275, 276].

Researchers are exploring the relationship between the hydrogen atom
and quantum information [12], the effect of non-commuting canonical
variables [x;, z;] # 0 on energy levels [13-15], muonic hydrogen spectra [4],
and new physics using Rydberg states [5-8, 10, 277]. The ultra high pre-
cision of the measurement of energy levels has led to a new understanding
of the two body systems with low Z, including muonium, positronium,
and tritium [149]. As mentioned in the introduction, measurements of levels
shifts are currently being used to measure the radius of the proton [1]. We
can expect that atomic energy level measurements and computations will
continue to contribute significantly to the development of quantum physics
in the future. Investigations of the hydrogen atom and hydrogen-like atoms
will continue to reveal new vistas of physics, and symmetry considerations
will likely play an important part.
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Appendix A

Appendix: Brief Derivation of the Group
Theoretical Formula for the Radiative Shift

The group theoretical approach is based solely on the Schrodinger and
Klein—Gordon equations of motion in the non-relativistic dipole approxi-
mation. We obtain a result

20 Rue H - Ey
AEN = ——— dE (N L|p;
ML= 3 (me)? A N = =B

i| N L Al
—pIND). (A1)

where E = hw and w¢ is a cutoff frequency for the integration that we will
take as hw. = mc?. If we insert a complete set of states in this expression
we obtain Bethe’s result Eq. (12.1). If we add and subtract E from the
numerator in Eq. (A.1), we find the real part of the shift is

9 hw,
AEn: = —% _Re / dE[(NL|p*|NL) — EQy1), (A.2)
3mw(me)? 0
where
1
Qny = (NLp; JNL). A3
N = |le—EN+hw7iep| ) (A.3)

The matrix element 2y, can be converted to a matrix element of a function

of SO(4,2) generators taken between the basis states |nlm;a) of (Za)™!

[110]. To obtain these basis states [nlm;a) we write Schrodinger’s equation
a

for a particle of energy F = —% in a Coulomb potential as

9 2mhcZa
r

P’ +a la) = 0. (A4)
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There are solutions for |a) for certain critical values of the energy

2
E, = —;;;L or for a, = % By inserting factors of 1 = \/ar\/% and
making a scale change from a,, to a we obtain the eigenvalue equation
1
(5 - Kl(a)) [nlm;a) =0, (A.5)
where
1 2a*h 1

Ki(a) = pla) = nh/ar ~/p(a,)|nlm) = |nlm;ay).

var p? +a? \/ar
(A.6)

The complete basis functions |nlm;a) have the same quantum numbers as
the ordinary bound states [110]. The kernel Kj(a) is bounded and finite,
so there are no continuum solutions. We define a generator of SO(4,1) as
F() = 1/K1(a) SO

(Tp — n)|nim) = 0. (A.7)

We need to define several more generators. The generator S is a dimension-
less dilation operator that can change the value of the parameter a in the
basis states:

:%(pw”rr-p). (A.8)

To find T'y, we calculate I'y = —i[S,T'o], obtaining

n:%(ﬁpTQﬁ—ar) rOZ%(M’TQﬁ +ar>. (A.9)

S

The generators (I'y, S, To) = (j1,42,73) form a O(2,1) subgroup and S =
i[l4,T0],To = —i[S,T4] and for our representations I'3 — ' — S% = L? =
I(I+1). The scale change S transforms I’y according to the equation

eMsI‘O(a)e*“‘S = I‘O(e)‘a) =Tgcosh A — I'ysinh A (A.10)

with the corresponding equation for I'y. Finally, we have

NG (A.11)

The quantity I' = (T'g, I'1, T2, '3, T'4) is a five vector under transformations
generated by SO(4,2). For the representation of SO(4,2) based on the states
[nlm), all generators are Hermetian, and I'? = TyT4 = —T2 +T? + T3 +
I'2 + T3 = 1. The commutators of the components of the five vector are
generators of SO(4,2) transformations.
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Inserting factors of 1 = \/ar\/% and using the definitions of the
generators we can transform Eq. (A.3) to

my
QNL = W(NLH‘;WFANL), (A.12)
where
Oey . 2F8 i PP S
n (5)—2m—c05h¢) n'=0 n(§) = SUTTE sinh ¢
(A.13)
and
 hw N —
€7|EN| z/fmfNe . (A.14)

From the definitions, we see ¢ = $in(1+ &) > 0 and na(&)n?(¢) = —1.
The contraction over 7 in 27, may be evaluated using our group theoretical
formula for a contraction Eq. 7.31

%:rBf(nF)FB = %(nf +1)2f(nI +1)

+ %(nf —1)?f(nl — 1) — (nD)2f(nI).  (A.15)

We apply the contraction formula to the the integral representation

1 o0
r) = = dse’se s A.16
F0) = s = [ dsere (A.16)
and obtain the result Eq. 7.41
1 e d s
T M= <2y [ dsers - (sinn? 2 e ). Al
AT Z/A se” - (sinh” ;e (A.17)

Applying this to our expression Eq. (A.12) for Quy, gives

mu2 [e%s} e d ) 9 8
Onp = -2 /0 dse T (smh QMNL(S))

N2
v 1
—mZ(NL|D TNL
mNQ( | 4Fn(§)71/ 1IN L)
+m- (NL|Ty———To|NL) (A.18)
TNz OTn(g) —v 9150 '

where

Myr(s) = (NLle7™©3|NL). (A.19)
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In order to evaluate the last two terms in Eq. (A.19), we use I'g = N|NL)
and express the action of I'y on our states as 'y = N—(1/sinh ¢)(T'n(§)—v).
Using the virial theorem (NLM |p*|NLM) = a%, we find that the term in
p? in Eq. (A.2) exactly cancels the last two terms in Qy, yielding the
result

damcta(Za)t [ . o [T Lsd (. o5
ReAENL:W/O d¢ sinh ¢e /0 dse E(smh §MNL(S)),
(A.20)
where
1 fiw, 1 2N?
.= =In (1 “l=zln{l1+—]. A.21
o= gin (14 i) =30 (1+ ) 2

We can derive a generating function for the shifts for any eigenstate
characterized by N and L if we multiply Eq. (A.20) by N*e=#" and sum
over all NN > L + 1. To simplify the right side of the resulting equation,
we use the fact that Ty, S, and Ty form an O(2,1) algebra so we have:

2, ¢ MMyp= 3 (NLle¥INL), (A.22)
N=L+1 N=L+1
where
e—J% = g=BToy—sI'n(€) (A.23)

We perform a j transformation generated by e®S, such that e 9% —
e 7% = ¢7To¥ The trace is invariant with respect to this transformation

so we have
o0 oo oo —p(L+1)
BN _ —jatp _ -Ny _ €
S e PNMy,= > (NLle#INL)= Y e N = 0
N=L+1 N=L+1 N=L+1
(A.24)

where we have used (NL|Tg)|[NL) = N.

In order to find a particular My, we must expand the right hand side
of the equation in powers of e=# and equate the coefficients to those on the
left hand side. Using the isomorphism between 5 and the Pauli o matrices
(F4,S, F()) — (jl,jg,j3) — (%O’l, %02, %0’3) we find

et3¥ = de?P + be 28 — 729, (A.25)
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where

d = cosh > + sinh % cosh ¢
2 2

5 5 . (A.206)

b = cosh 3~ sinh 3 cosh ¢

Let 8 become very large and iterate the equation for e~2% to obtain the
result

eV =Ae P14+ Are™? + Age ™ + ... ], (A.27)

where A = 1/d* and A; = —(2/d)(b— d~'). To obtain My, we expand
the right side of Eq. (A.24) using Eq. (A.27), and use the multinomial
theorem and collect terms in powers of 8. For the 1S shift, we want the
matrix element Mjg which corresponds to e # so Mg = A. For N = 2,
Moy = A? + AA{, Mayy = A?. Therefore, the radiative shift for the 1S
ground state is

4 2 7 4 prode 0 s d 1
ReAFEy = M/ dpe? sinh ¢ dsess 2 5
3 0 0 ds (coth 5 + cosh (;5)
(A.28)
The shift for the 2S-2P level is
Z 4 ¢c
RG(AEQ() - AEQl) = M / d¢e¢ sinh3 ¢
61 0
o —¢ d 1
X / dse2se* = 1 (A29)
0 ds (coth 5 + cosh gb)
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