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Classical and Quantum Phase Space Mechanics 1

1 Introduction
1.1 The Third Revolution

Mechanics is not matter in motion. It is geometric structure in possibility. For
more than a century, the principal mode of representation for mechanical theory
has been via higher dimensional possibility spaces. Primary amongst these are
phase spaces. This Element is about the structure of these spaces and the man-
ner in which this structure affords representations of mechanical systems. Our
intention is to set out the core mathematical and physical content of classical
and quantum phase space mechanics as a staging post for future foundational
investigation. Whilst we confine ourselves to phase space representations in
finite dimensions, the content of this Element is relevant to the foundations of
essentially all areas of modern physics. Each of classical mechanics, statistical
mechanics, quantum theory, and general relativity admits phase space formu-
lations and, as such, foundational questions from each of these areas can be
reformulated in phase space terms. Moreover, the phase space representation
is perhaps uniquely positioned to provide formal means to explore the connec-
tion between physical theories, most significantly the complex of relationships
between open and closed, and statistical and quantum theories which is one of
the primary motivation for our study.
From amore historical perspective, it is worth remarking that the transition to

the study of physical theory in terms of phase spaces can be understood to mark
third revolutionary change in physical theory, foundationally as important and
almost coincident with the quantum and relativity revolutions, but vastly less
studied by historians and philosophers of science. This is the transformation
from the quantitive to the qualitative methods in the study of dynamical sys-
tems that ran from the late nineteenth century to the mid twentieth century and
had as its crowning achievement the celebrated Kolmogorov–Arnold–Moser
(KAM) theorem which establishes, under certain conditions, the persistence
under small perturbations of quasi-periodic motions in ‘most’ initial states of a
Hamiltonian dynamical systems (Arnold, Kozlov, & Neishtadt, 2006, §6.3).
The quantitive to qualitative revolution was initiated by a series of results

concerning the stability of the solar system in the last decade of the nine-
teenth century by Henri Poincaré and brought together in his monumental
Les Méthodes Nouvelles de la Mécanique Céleste (New Methods of Celestial
Mechanics) published in three volumes between 1892 and 1899. The essence
of Poincaré’s qualitative approach was a set of new methods for the study of
features of sets of solutions to a mechanical problem in terms of properties of
flows on phase spaces. As noted by Abraham and Marsden in the introduction
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to their textbook, this qualitative approach then immediately suggests a connec-
tion between physical properties such as stability, and the geometric structure
of phase space:

[Poincaré] visualised a dynamical system as a field of vectors on a phase
space, in which a solution is a smooth curve tangent at each of its points to
the vector at that point. The qualitative theory is based on geometric prop-
erties of the phase portrait: the family of solution curves, which fill up the
entire phase space. For questions such as stability, it is necessary to study
the entire phase portrait including the behaviour for all values of the time
parameter. Thus it was essential to consider the entire phase space at once
as a geometric object . . . [The] special geometric structure pertaining to the
occurrence of phase variables in canonical conjugate pairs [is] a symplectic
structure. (Abraham & Marsden, 1980, p.xviii)

One of the key stepping stones to Poincaré’s stability results was his demonstra-
tion of the generic existence of an integral invariant, equivalent to symplectic
volume form, under the dynamics (Goroff, 1993, p. I79). This result was earl-
ier proved by both Liouville (1838) and Boltzmann (1871) and is now known
as Liouville’s theorem. It is the first and arguably most basic result of quali-
tative mechanics. Liouville’s theorem and its failure will be one of the three
interconnected themes that run throughout this Element.
The other two themes are, first, more generally, the conceptualisation of

phase spaces as structured possibility spaces and, second, more specifically,
the connection between the notions of ‘open’ and ‘closed’ mechanical systems,
dissipation and decoherence, and the idea of probability and quasi-probability
flows on phase spaces as incompressible fluid flows. Whilst the first topic has
been subject to a limited discussion in the philosophical literature, the second
is a novel intervention, and, as such this Element can be understood, in part, as
a short research monograph setting out a novel interpretative stance on these
topics.
Our main focus is didactic not dialectic. This Element is primarily intended

for researchers and graduate students in the philosophy and foundations of
physics with an interest in the conceptual foundations of phase space formula-
tions of mechanics. As such, our primary goal is a pedagogical and expository
one. An array of formal and conceptual machinery for the analysis of phase
spacemechanics is introduced and it is hoped that a suitable platform for further
studies and research on the topic has been provided.
The formal material presented here is designed to be largely self-contained.

The first section focuses upon introducing some key geometric ideas clearly
and with a degree of rigour. We will not attempt to offer a comprehensive intro-
duction to differential geometry but rather seek to build up the key conceptual
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tools assuming some familiarity with manifolds and maps. When we draw on
key concepts from topology and analysis we will provide reference to good
discussions rather than formal definitions. This will allow the reader a degree
of formal foundation from which to understand what it means to formulate
the Hamiltonian formulation of classical mechanics in terms of symplectic
geometry. Similarly, later we will introduce some basic concepts from measure
theory such that the reader can situate the use of probability density func-
tions in stochastic phase space formulations of mechanics in a suitably rigorous
mathematical context without requiring an entire course in analysis.
Our goal is to provide the reader with both physical and mathematical intu-

itions for the structure of classical and quantum phase space representations in
finite dimensions. To that end, we will return in each context to the specific
example of simple harmonic motion. Each section will include the explicit
study of this system and we invite the reader to run through the straightforward
calculations themselves. We will largely proceed without step-by-step proofs
but with provide reference to relevant results in the literature. Each section
concludes with a list of topics for future study with an aim of both establishing
connections to existing literature and highlighting issues that are suitable topic
for creative graduate work on the topic.

1.2 Modal Structure and Representation
Before we commence our project proper, it will prove useful to provide some
ancillary philosophical motivation in terms of the exploration the conceptual
foundations of possibility spaces and their role in the representation of modal
structure. The concept of modal structure has been much discussed in the
context of Ontic Structural Realism (Berenstain & Ladyman, 2011; Ladyman,
1998, 2024; Ladyman & Lorenzetti, 2023; Ladyman & Ross, 2007). In that
context, it is understood as a general term that subsumes causal structure, mech-
anisms, nomological structure, probabilistic and statistical structures. Here we
will always and only use the term in a much more restrictive sense as relating
to the interpretation of mathematical structures on a possibility space. Such a
notion requires no consideration of the metaphysics of causation, laws, mech-
anisms, or dispositions – a metaphysics which has little, if any, relevance to
scientific practice in the context of phase space mechanics (and arguably more
widely).
The idea of explicitly interpreting phase spaces as possibility spaces can be

found in Rickles (2007). In particular, Rickles suggests that we should under-
stand geometric spaces as being used to represent the ‘possibility structures’ of
theories. On this account, the models given by a space and geometric structure
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function as ‘possibility spaces’ in sense that one starts with a set of possibil-
ities, as represented by the ‘bare’ manifold, and then imposes a geometrical
structure on the manifold to give space that represents relationships between
these possibilities (Rickles, 2007, p.10).
A further idea that proves useful here is the distinction betweenmaterial and

formal modes as introduced by Ladyman and Ross (2007) following Carnap
(1934), cf. Ladyman&Thebault (2024). The idea is very simple yet deceptively
powerful. Concepts and terms are used in the material mode when applied to
concrete systems, and in the formal mode when applied to representations, that
is, linguistic or mathematical structures. We thus have that to discuss a phys-
ical system X in the material mode is to make an ontological claim about the
properties of X. To discuss X in the formal mode is to refer to the representa-
tions (linguistic or mathematical structures) of X. If X is a possible state of the
world in material mode, then, in the formal mode, we can think then think of
any given phase space point as a representation of such a possibility.
Next, following Weatherall (2018) and Fletcher (2020), we can define the

representational capacities of a scientific model as the states of affairs that
the model may be used to represent well. The representational capacities of a
possibility space are then understood to be the structured set of possible states
of affairs that the space may be used to represent well. The structures imposed
upon this space then correspond to constraints or prescriptions with regard to
the space’s representational capabilities. For example, Liouville’s theorem tells
us that the possible states of affairs that can be repented by a Hamiltonian phase
space must be represented as occupying a stable volume of possibility space
over time.
One then arrives at the immediate and highly challenging question: what is

the material mode correlate of the constraints or prescriptions with regard to
a space’s representational capabilities? In other words, if we consider the part
of the model that encodes how the possibilities it can represent relate to each
other, can we still think of there being a material mode counterpart to which it
corresponds. Let us call this material mode counterpart modal structure.
This idea brings to mind the trailblazing discussion of Saunders (1993).

Saunders considers what Post (1971) had earlier called the generalized prin-
ciple of correspondence: what is taken over from preceding theories is not only
those laws and experimental facts which are well-confirmed, but also ‘patterns’
and ‘internal connections’. He then suggests that a strong candidate for such
internal connections are structures such as the Poisson bracket in phase space
formalism of classical mechanics which was, of course, ‘deformed’ through
theory change into the commutator of quantum theory. Saunders emphasises
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the historical heuristic fruitfulness of focusing upon structures such as the
Poisson bracket, and pivotally their heuristic plasticity.
This idea is further emphasised by French (2011), who indicates that pre-

cisely these structures are the dynamical structures that an Ontic Structural
Realists should be realists about cf. Ladyman (1998, 2023). We thus have a
straightforward response to our question: the aspect of a phase space model that
encodes how the possibilities it can represent relate to each other represents
ontic modal structure and such structure can ontology promoted to a ‘thing’
along the lines discussed by Berenstain and Ladyman (2011) cf. Thébault
(2016). One major attractive feature of such a view of ontic structural realist
approach to phase space is that it allows us to make sense of the truth-makers
for highly significant modal claims regarding physical systems. One of the fea-
tures of the world that the truth of modal claims, such as the stability of the
solar system, depends upon is the existence of ontic modal structure that is rep-
resented by (is the material model correlate of) the satisfaction of Liouville’s
theorem. The theorem encodes real structure relating to how possibilities relate
to each.
Such a metaphysically thick approach to modal structure may not, how-

ever, sit well with all. A healthy, Humean scepticism warns us to be wary
of interpreting modal talk metaphysically. It would, however, strain the bonds
of philosophical naturalism to seek to diminish the scientific explanatory
role of possibility space structure by attempting to either reduce away or elimin-
ate its modal character cf. Lyon and Colyvan (2008). After all, if the qualitative
revolution in mechanics has given us anything it is an ability to make pre-
cise modal claims regarding physical systems based upon geometric features
of phase spaces.
This sentiment against both realism and eliminativism regarding modal

structure brings to mind a general strategy for responding to tricky philo-
sophical ‘placement’ problems: expressivism. Following Price (2008), we can
understand such problems to occur when we have trouble locating the ‘place-
ment’ of a particular class of things that feature in our vocabulary without
our ontology. For example, moral or causal facts. The standard expressivist
response to such problems, which Price traces back to Hume, is to argue that
the placement issue originates from a category error. Our tendency to seek to
‘place’ moral or causal facts within the world reflects a mistaken understanding
of the function of causal or moral vocabulary within our discourse.We note that
this language is not in the business of ‘describing reality’ and offer some other
positive account of what functional role this vocabulary plays in our linguistic
lives.
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What prospect is there for offering an expressivist account of themodal struc-
ture of possibility spaces that avoids the placement problem? The most detailed
discussion of the idea of a modal expressivism can be found in the extended
exegeses of the ideas of Wilfred Sellars due to Brandom (2015) and is encapsu-
latedwithin what Brandom calls themodal Kant-Sellars thesis (see in particular
p. 26 & p.212). The thesis can be expressed in terms of a claim articulated in
three stages. First, that there is a relation between the use of modal vocabu-
lary and the use of empirical descriptive vocabulary. Second, that this relation
is one of pragmatic dependence in which the use of modal vocabulary can
be elaborated from the use of descriptive vocabulary. Third, that this elabor-
ation does no more than make implicit features of the descriptive vocabulary
explicit. According to the thesis ‘in being able to use ordinary empirical
descriptive vocabulary, one already knows how to do everything that one needs
to know how to do, in principle, to use alethic modal vocabulary – in particu-
lar subjunctive conditionals’ (p.26). Thus, ‘[m]odal expressivism tells us that
modal vocabulary makes explicit normatively significant relations of subjunct-
ively robust material consequence and incompatibility among claimable (hence
propositional) contents’ (p.212).
To what extent can we appeal to modal expressivism in the context of the

modal structure of possibility spaces? The first and most basic challenge is to
recover the basic modal notions that Sellars and Brandom are concerned with.
This is most straightforward in the case of the core ‘alethic’ modal vocabu-
lary of natural language: necessity, possibility, impossibility, and contingency.
In a possibility space model, what is necessary holds of all points in the state
space; what is possible holds of at least one point in the state space; what is
impossible holds of no points in the state space; and what is contingent holds of
some but not all points in the phase space. Next, and also fairly straightforward,
are the relations of concepts of material consequence and incompatibility. For
Brandom these are normatively significant relationsmade explicit by our ordin-
ary language modal vocabulary. In a possibility space representation, these
relations can be framed via reference to generic properties that constrain the
dynamics to surfaces in possibility space. Most significantly surfaces of con-
stant value in some integral of motion (tantalisingly Brandom even makes
reference to Noether’s theorem but draws the connection only to laws rather
than possibility space constraints, ibid. p.196).
The modal structure that can be encoded in a possibility space is, however,

immeasurably richer than the modal vocabulary of natural language. There is
much more than can be said about the structure of possibility in a possibility
space representation than in our ordinarymodal talk.Wemight thus understand,
geometric and measure theoretic tools to provide us with novel modal concepts
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that build upon the intuitive idea of structured relations between possibilities.
This is precisely the function notions such as volume of possibility space or
dynamical stability are designed to play.
Significantly, these expanded modal concepts are such that it is not obvi-

ous how one would explicate them from our ordinary empirical descriptive
vocabulary of quantities in space and time. We thus find an interesting tension
with the third stage of articulation of Brandom’s modal Kant-Sellars thesis.
Plausibly, it might not be true that in being able to use ordinary empirical
descriptive vocabulary, one already knows how to do everything that one needs
to know how to do, in principle, to use modal vocabulary. Rather, one might run
the pragmatic dependence the other way round. The novel modal vocabulary
that possibility space representations afford us with equip us with new ways
of expanding our empirical descriptive vocabulary. One can might thus under-
stand themodal expressivismmotivated by the structure of possibility spaces as
a more fluid kind than Brandom describes. Modal vocabulary still has a prag-
matic dependence on descriptive vocabulary, in this case the descriptions of
states of the world encoded in points in possibility spaces, but it can do much
more than simply make explicit already acquired functions of that vocabulary.
It can equipped us with new expressive tools.
An alternative interpretation, more in keeping with Brandom’s approach,

would to frame the novelty of the relevant modal concepts as being with
respect to the natural vs. scientific language rather than the empirical descrip-
tive vocabulary per se. The idea would be to seek to preserve the third stage of
the modal expressivist account and insist that modal language can only make
implicit features of the descriptive vocabulary explicit. In this context, it is
descriptive features of scientific language, not contained in ordinary descrip-
tive language, that are made explicit via the modal structure of phase space.
Thus, the modal concepts that the structure of phase space equips us with are
novel with respect to ordinary descriptive language, and the ordinary modal
concepts implicitly contained therein, but are not genuinely novel with respect
to scientific descriptive language. Whilst providing such an account of modal
structure of phase spaces would fit better with Brandom’s modal Kant-Sellars
thesis, it appears to require a rather sophisticatedmeta-semantic account of how
the process of ‘making explicit’ functions in the scientific context. In particular,
a meta-semantic account how scientific modal concepts might be explicated
from a descriptive vocabulary that lacks, for example, the inherently modal
concept of phase space structure. In either case, there is an interesting project
of applying the ideas of modal expressivism to scientific language in general
and phase space mechanics in particular.
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Wewill return to the articulation of modal expressivist ideas in context of the
specific formal features of phase space representations of classical and quantum
mechanics in Section 8. We invite the reader to keep idea of modal structure
of possibility spaces in mind when navigating the mathematical and physical
material that follows.

1.3 Section Summaries
The remainder of this Element consists of seven sections. In Section 2 we
provide a skeleton overview of key ideas from differential geometry. Most sig-
nificantly we will introduce the notion of a two-form as a geometric means of
equipping a phase space with an orientated volume and the Lie derivative as a
special kind of derivative operator. The Lie derivative allows us to define how
a geometric object, such as a function or a two-form, changes along a particular
set of directions in a phase space, corresponding to a vector field. The directions
picked out by a vector field are directly analogous to flow lines in a fluid and
thus a Lie derivative can tell us how a geometric object changes under a flow
associated with any vector field.
Section 3 then introduces the formalisation of phase space in terms of

symplectic manifolds. These are even-dimensional manifolds equipped with
symplectic two-forms. Hamilton’s equations of motion are then defined simply
by the special Hamilton vector field associated to the Hamiltonian function by
the symplectic two-form. Dynamics is a flow on phase space. The famous result
of Liouville (and Poincaré) is then simply that for any Hamiltonian system, the
Lie derivative of the symplectic two-form along the flow associated with the
Hamiltonian function is zero. The dynamics preserves the volume form. This is
a qualitative result that can be stated without reference to any coordinate sys-
tem. The structure of a Hamiltonian theory in the symplectic representation is
encoded in intrinsic geometric facts invariant under the class of transformations
called symplectomorphisms.
Section 4 introduces a little more mathematical machinery to allow us to

discussmeasures on phase space via the integration of probability density func-
tions. We then show how these objects can be combined with the symplectic
version of Hamiltonian mechanics in order to define a set of stochastic phase
space models that provide a perspicacious formulation of classical statistical
mechanical theory. In this context, Liouville’s theorem has a natural presenta-
tion in terms of the incompressibility of a probability ‘fluid’ – which admits
no local sources or sinks – and is formally equivalent to statement that the
total derivative of the probability density is always vanishing in a stochas-
tic Hamiltonian system. A further important result that can be derived in this
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formalism under restricted circumstances is a classical stochastic version of
the Ehrenfest equations in which the first moments of position and momen-
tum obey Newton’s first two laws of motion. This provides a simple and direct
means to connect stochastic and deterministic models and, moreover, a precise
language to understand divergence from the Ehrenfest equations in stochastic
models that is also found in quantum theories.
Section 5 considers the geometric formalism for the study of open classical

systems that display dissipative behaviour. Our analysis will bring in the tools
of contact geometry which are a natural extension of symplectic geometry and
allow us to formulate mechanics in odd dimensional phase spaces. Such phase
spaces are uniquely suited to the representation of dissipative systems since
they provide possibility space models of systems that are mechanically non-
conservative, such as an oscillator with a velocity-dependent damping factor.
Moreover, contact geometry provides us with a set of geometric models which
provide phase representations with structure beyond that encoded in Liouville’s
theorem. We are able to represent phase space dynamics with compression
(or expansion) of the volume form under the contact Hamiltonian flow. This
is to represent structured sets of possibilities which occupy a shrinking (or
expanding) volume of possibility space over time.
Section 6 introduces the phase space formulation of quantum mechanics

focusing on the Wigner function. We first consider some formal ideas relating
to the generalisation from a probability density function to a quasi-probability
density function and some subtle features of the finite signed measure that is
induced by such functions. We next build up the quantum phase formalism step
by step noting the crucial differences with the stochastic phase space theory in
terms of the negativity and non-localisability of the Wigner quasi-probability
density function. We then return to our theme of Liouville’s theorem and its
failure by showing how the local compressibility of the quasi-probability dens-
ity is directly connected to the structure of the Moyal bracket that equips the
quantum phase space observables, the Weyl symbols, with a non-commutative
structure. Finally, we demonstrate the sense in which the Ehrenfest-type rela-
tions for the first moments in the quantum phase space formalism correspond
to those derived in the context of the stochastic theory.
Section 7 considers the quantum phase space representation of open quan-

tum systems. Such systems are generically represented as having non-unitary
dynamics and provide the basis for the study of the phenomena of decoherence.
We start with a final piece of mathematics based upon Fourier transforms that
leads to the formal idea of a Gaussian smoothing. We then consider the gen-
eral formal structure of an open quantum systems and the relationship between
non-unitarity and probability conservation. The successive discussions then
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introduce the three most important classes of open quantum system master
equations the Lindblad equation, the Caldeira-Leggett equation, and the Joos-
Zeh equation. The latter two equations are considered in their quantum phase
space form. This analysis allows us to demonstrate the formal connections to
classical damping via Ehrenfest relations in the case of the Caldeira-Leggett
equation and to decoherence and Wigner positivity via Gaussian smoothing in
the case of the Joos-Zeh master equation.
The final Section 8 then returns to our theme of representation and possibility

and provides an interpretative summary of our results and their implications for
the ideas of representational capacity and modal structure.

2 Elements of Differential Geometry
Our main goal in this section is to introduce the idea of differential forms
together with the four basic operations on differential forms that define the
theory of exterior calculus. These are the wedge product, ∧, interior product,
ι, exterior derivative, d, and Lie derivative, L. We will follow Olver (2000),
Arnol’d (2013), and Holm (2011), supplemented by Abraham and Marsden
(1980). Additional sources are noted where relevant.Wewill assume basic con-
cepts from differential geometry such the definition of a differential manifold.
The Einstein summation convention is used throughout.
We start by recapping the idea a of vector field and flow on a manifold. When

combined with the language of differential forms this will allow us to provide
a fully geometric rendering of phase space mechanics. A vector field, X, on a
manifold,M, assigns a tangent vector X |x ∈ TM |x to each point x ∈ M. In local
coordinates a vector field has the form:

X |x = X i(x) ∂
∂xi

(2.1)

where each X i(x) is a smooth function of x. In what follows we will often
write a vector fields simply as X = X i∂i for short. We will write the space
of vector fields on a manifold X(M). Formally, the space of vector fields on a
manifold can also be defined in terms of smooth sections of the tangent bundle
TM (Abraham & Marsden, 1980).
An integral curve of a vector field is a smooth parametrised curve x = ϕ(ϵ)

whose tangent vector Ûϕ at any point, x, coincides with the value of X, so we
have:

Ûϕ(ϵ) = X |ϕ(ϵ ) (2.2)

If we visualise a vector field as an array of arrows on a manifold, then the
integral curves are the curves that ‘thread’ the arrows such that at any point
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the curve is tangent to the arrow at that point. The parametrised maximal inte-
gral curve passing thought x ∈ M is the flow generated by X which we will
write as Φ(ϵ,x). The flow generated by a vector field is equivalent to the local
group action of the Lie group R on that manifold. The vector field is then the
infinitesimal generator of the group action since the Taylor expansion takes the
form:

Φ(ϵ,x) = x + ϵX 1(x) + O(ϵ2) (2.3)

We can express the flow in terms of the exponentiation of the vector field as:

exp(ϵX )x ≡ Φ(ϵ,x) (2.4)

The property that X is tangent to Φ(ϵ,x) for fixed x,

d
dϵ
Φ(ϵ,x) = X |Φ(ϵ ,x) (2.5)

can thus be written as:
d
dϵ

exp(ϵX )x = X |exp(ϵX )x (2.6)

This way of thinking about the flows in terms of exponentiation will prove
crucial for the definition of the fourth operation on differential forms, the Lie
derivative. Before we get to that point, let us first introduce the idea of forms
itself.
We will focus on giving simple and intuitive definitions. A more formal and

concise approach is taken in the following box. In the most general sense,
differential forms are a special type of tensors on manifolds. They have the
property that they are anti-symmetric under exchange of any pair of indices.
Differential forms are the crucial formal object that allow for the standard inte-
gral theorems, such as those due to Gauss and Stokes, to be generalised to
manifolds of arbitrary dimensions. They are also the central object that allow
for the geometrisation of Hamiltonian mechanics. Like tensors in general, dif-
ferential forms have a rank. Intuitively, we can think of this rank as the number
of independent dimensions that can be simultaneously associated with a mag-
nitude by the tensor. For our purposes it will be important to understand the
formal definition of differential forms of rank 0, 1 and 2. These intuitively cor-
respond a specific type of generalisations of functions, vectors, and matrices
respectively.
A rank-0 differential form, or 0-form, on a manifoldM is just a smooth real

valued function f : M→ R. The differential of the function df at a point x ∈ M
is a linear map, df (x) : TxM → R, from the tangent space TxM of M at x to
the real numbers. If we write a local coordinate basis of the tangent space as
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∂/∂ j, j = 1, . . . n, then a dual basis can be written as a local coordinate basis as
dx,k = 1 . . . n. The differential of a function is then written as:

df =
∂f
∂xk

dxk (2.7)

A differential 1-form then has a local coordinate expression in terms of linear
combinations of differentials of the coordinates:

θ = f1(x)dx1 + . . . + fn(x)dxn (2.8)

As such, the space of 1-forms at a point x ∈ M is just the space of linear func-
tions on the tangent space TM |x, This is, by definition, the cotangent space
T ∗M |x, or dual vector space to the tangent space at x. A 1-form on a manifold
M is then a smooth section of the cotangent bundle T ∗M. Geometrically we can
understand a 1-form as defining an orientated line segment.
In order to define the next rank of differential form, the 2-form, it is conveni-

ent to introduce the first of our four operations of exterior calculus. This is the
wedge product, ∧. Its most basic operation is the multiplication of two 1-forms
in order to construct a 2-form, that is, it is such that ω = θ1 ∧ θ2 is a 2-form. In
a local 1-form basis dx j, j = 1 . . . n we have that:

ω = fijdxi ∧ dx j (2.9)

where the sum over repeated indices is ordered so that it is taken for all i, j
satisfying i < j. The local coordinate expression for a 2-form on R3 is thus:

ω = f (x,y, z)dy ∧ dz + g(x,y, z)dz ∧ dx + h(x,y, z)dx ∧ dy (2.10)

Geometrically we can understand the wedge product as allowing us to
compose orientated line segments (1-forms) to construct orientated surface
elements (2-forms), then orientated volume elements (3-forms), and so on
for arbitrary dimensions (rank of form). That these elements are orientated is
equivalent to the fact that the wedge product is anti-symmetric under exchange
of indices and so we have that dx j ∧ dyk = −dxk ∧ dx j. See Figure 1 for
illustration.
Formally, the anti-symmetry is implied by the fact that the wedge product is

the multiplication operation of alternating algebra, which by definition, means
that we have that θ∧θ = 0 which implies θ1∧θ2 = −θ2∧θ1. The interpretation
2-form as an orientated surface between two 1-forms obviously matches with
the property that the orientated area of a 1-formwith itself is zero. If we consider
a two form ω acting on a pair of vectors X and Y then the alternating property
is that ω(X,Y ) = −ω(Y,X ) and ω(X,X ) = 0 which is the property of skew-
symmetry. See the following box for more details.
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Figure 1 Geometric illustration of 2-form as an orientated area element:
θ1 ∧ θ2(u,v) = θ1(u)θ2(v) − θ1(v)θ2(u) = −θ2 ∧ θ1(u,v).

B೹ം 1 Dೳ೰೰೯೼೯೸೾ೳ೫೶ k-೰೹೼೷೽ ೫೸೮ ೾ೲ೯ W೯೮ೱ೯ P೼೹೮೿೭೾
Let M by a smooth manifold and TM |x its tangent space at x. The space
∧kT ∗M |x of differential k-forms at x is the set of all k-linear alternating
functions:

α : TM |x × . . . × TM |x → R (2.11)

A smooth differential k-form α on M is then the collection of smoothly
varying alternating k-linear maps α |x ∈ ∧kT ∗M |x where we require that the
evaluation of the k-form on k smooth vector fields is a smooth real function
of x. (Olver, 2000, p. 54)
Differential k-forms on a manifold α ∈ Ωk(M) form an exterior algebra.

The wedge product is as an associative, bilinear, anticomputative map that
is the product operation on the exterior algebra of differential forms. The
wedge product is defined such that if α ∈ Ωk(M) and β ∈ Ωl(M) for k, l =
0 . . . n then α∧ β ∈ Ωk+l(M)where the explicit form of the ∧ operation can
be defined in terms of the tensor product operation as

α ∧ β = (k + l)!
k!l!

A(α ⊗ β) (2.12)

where A is the alternating map. (Abraham & Marsden, 1980, §2.3-4).

The second operation on differential forms is the interior product, ι. The
interior product is also called the contraction and allows us to compose a dif-
ferential form with a vector field such that we lower the rank of the form
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in question. For our purposes the most important application of the interior
product is the contraction of a 2-form with a vector field to give a 1-form. In
components, the explicit form of the product can be written:

ιXω = ιX( fjkdx j ∧ dxk) = X ifijdx j (2.13)

In two dimensions, the contraction of a vector field, X = X j∂j = X 1∂1 + X 2∂2,
with a 2-form, ω = fijdxi ∧ dx j then takes the simple form:

ιXω = X 1f12dx2 + X 2f21dx1 (2.14)

We have thus combined a 2-form with a vector field in order to product a
1-form. The contraction of a 2-form always yields a 1-form (or zero). Later we
will find that Hamilton’s equations can be expressed in terms of the contraction
of a canonical 2-form on phase space.
The contraction of a 1-form is then defined by the interior product of a 1-form

with a vector field, which gives us a 0-form. As already noted, a 0-form is just
a function. The contraction of a 0-form is always zero, so ιX f = 0. The interior
product of a vector field with a 1-form is equivalent to the dot product between
a covariant and contravariant vectors:

ιXθ = ιX( fkdxk) = fkδkj X
j = fjX j = f · X (2.15)

where the indices k, j indicate vector components and we assume the Einstein
summation convention.
The third operation on differential forms is the is the exterior derivative, d.

The exterior derivative is the unique family of mappings that raise the rank of a
differential form. In this sense it can be thought of the opposite or dual operation
to the interior derivative. The exterior product is a linear, local operator and
is such that d2 = 0. The exterior derivative of a 0-form is a 1-form and the
exterior derivative of a 1-form is a 2-form, and so on. We have already given
the formula for the exterior derivative of a 0-form in terms of the expression for
the differential of a function Equation (2.7). The exterior derivative of a 1-form
is given in coordinates by the expression:

dθ = d( fidxi) =
∂fi
∂xk

dxk ∧ dxi = dfi ∧ dxi (2.16)

The class of 2-forms, which are such that they can be written as the exterior
derivative of a one form, ω = dθ, are called exact. A two form that is such
that dω = 0 is called closed. Since d2 = 0 we have that all exact 2-forms are
necessarily closed.
The exterior product allows us to express the following attractive general-

isation of Stokes theorem due to Élie Cartan:
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Theorem 2.1 Stokes-Cartan Theorem: Suppose M is a compact oriented
k-dimensional manifold with boundary ∂M and α is a smooth (k − 1)-form
on M. Then:∫

M
dα =

∫
∂M

α (2.17)

As well as generalised Stokes’s original theorem in vector calculus, the
Stokes-Cartan Theorem also embodies the fundamental theorem of calculus
and the Gauss divergence theorem. We can see the first relation rather trivially
by considering the integration of the differential of a function, df, along a curve
in R3 with endpoints a and b. That is, applying Theorem 2.1 in the case of a 0-
form integrated over a 1-dimensional manifold with 0-dimensional boundaries
{a,b}:∫

[a,b]
df =

∫
∂[a,b]

f = f (b) − f (a) (2.18)

B೹ം 2 Tೲ೯ Eം೾೯೼ೳ೹೼ ೫೸೮ I೸೾೯೼ೳ೹೼ D೯೼ೳഀ೫೾ೳഀ೯
Let M be a manifold. Then there is a unique family of mappings dk(U) :
Ωk(U) → Ωk+1(U),k = 0 . . . n, and U is open in M, such that the exterior
derivative, denoted d, has the properties of being a closed, local, anti-
derivation of the exterior algebra that reduces to the differential for k = 0.
The property of being an anti-derivation in this context means that:

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ (2.19)

for α ∈ Ωk(U) and β ∈ Ωl(U) (Abraham & Marsden, 1980, Theorem
2.4.5). LetM be a manifold, X a tangent vector field, and α a (k + 1)-form.
Then the interior derivative ιXα is defined by:

ιXα(X1 . . . Xk) = α(X,X1 . . . Xk) (2.20)

where ιXα = 0 for k = 0. The interior product is an anti-derivation of
the exterior algebra and can be proved to be such that it maps k-forms to
(k − 1)-forms. That is, we have that ιX : Ωk(M) → Ωk−1(M),k = 1 . . . n.
(Abraham & Marsden, 1980, Theorem 2.4.13).

The fourth and final operation on differential forms is the Lie derivative, L.
The Lie derivative of a differential form with respect to a vector field, LXα, is
a linear, derivation operation on the space of differential forms that commutes
with the exterior derivative and is such that it maps k-forms to k-forms. The Lie
derivative allows us to analyse how a geometric object on a manifold varies
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under the flow induced by a vector field on that manifold. In particular, the Lie
derivative provides us with a means of comparing vector fields and differential
before and after they are acted upon by the flow of a vector field.
Most straightforwardly, we can understand the Lie derivative of a function, f,

with respect to the flow induced by a vector field, X, as telling us how f changes
under the infinitesimal flow generated by X. In the exponential representation
of a flow what we are doing in calculating the Lie derivative is then equivalent
to evaluating f (exp(ϵX )x) as ϵ varies. We thus have that:

d
dϵ

f (exp(ϵX )x) = X i(exp(ϵX )x) ∂f
∂xi
(exp(ϵX )x) (2.21)

= X ( f )(exp(ϵX )x) (2.22)

so for ϵ = 0 we have that:

d
dϵ

����
ϵ=0

f (exp(ϵX )x) = X i∂i f (x) = X ( f )(x) ≡ LX f (x) (2.23)

The Lie derivative of a function therefore reduces to the ordinary directional
derivative in the direction picked out by the vector field. (Olver, 2000, pp. 30-1).
The Lie derivative of a vector field with respect to another vector field is

called the Lie bracket of two vector fields. It is the unique vector field LXY ≡
[X,Y ] satisfying:

[X,Y ] =
(
X j∂jY i − Y j∂jX i) ∂i (2.24)

for X = X i∂i and Y = Y i∂i. We can conceive the Lie bracket of two vec-
tor fields geometrically as the infinitesimal commuter of one-parameter groups
associated with the two vector fields, exp(ϵX ) and exp(ϵY ).
The Lie bracket defines an algebraic structure called a Lie algebra. In par-

ticular, if we consider the space of vector fields on a manifold X,Y ∈ X(M) then
the Lie bracket [X,Y ] on X(M) together with the real vector space structure of
X(M) induces a Lie algebra since satisfies the three conditions:

1. Bilinear:[aX + bY,Z ] = a[X,Z ] + b[Y,Z ] for all real scalars a,b
2. Alternativity: [X,X ] = 0,∀X ∈ X(M)
3. Jacobi Identity: [X, [Y,Z ]] + [Y,Z,X ]] + [Z, [X,Y ]] = 0,∀X,Y,Z ∈ X(M)

These conditions imply that the Lie bracket is skew symmetric, so [X,Y ] =
−[Y,X ] and it is possible to define a Lie algebra via bilinearity, skew symmetry
and the Jacobi identity. See (Abraham & Marsden, 1980, p.85) and (Holm,
2011, §1.7) for more details.
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The Lie derivative of 1-forms can be calculated straightforwardly based upon
the fact that the L and d operations commute. This means that we have that:

LXθ = LX ( fkdxk) = fk(LXdxk) + X ( fk)dxk = fkd(X (xk)) + X ( fk)dxk (2.25)

a short calculation shows that the final expression on the right is equivalent to:

ιXd( fkdxk) + d(ιX ( fkdxk)) = ιXdθ + d(ιXθ) = LXθ (2.26)

The final expression is a special case of Cartan’s magic formulawhich gives us
a general equivalence between Lie derivatives and the combination of interior
and exterior derivatives:

LXα = ιXdα + d(ιXα) (2.27)

A second important special case of Cartan’s magic formula is for closed 2-
forms ω = dθ:

LXω = LXdθ = ιXd(dθ) + d(ιXdθ) = d(ιXdθ) = d(ιXω) (2.28)

since d2 = 0. Thus the Lie derivative of a closed 2-form with respect to a vector
field X, is equivalent to the exterior derivative of the contraction of that vector
field with that 2-form.
The Lie derivative is uniquely suited to expression of the invariance prop-

erties of a differential forms since we have that a differential k-form α on a
manifoldM is invariant under the flow of a vector fieldX if and only ifLXα = 0.
(Olver, 2000, Proposition 1.65). A similar result holds for vector fields. Intui-
tively the idea is that since the Lie derivative gives us an expression for the
behaviour of a geometric object (form, vector field, ormore general tensor field)
as it is dragged along the flow generated by a vector field. The vanishing of the
Lie derivative is necessary and sufficient for invariance under the relevant flow.
It will be useful to be able to talk precisely about how maps on manifolds

transfer onto the differential objects defined on them.1 A diffeomophisms is an
invertible C∞-mappings between the manifolds: φ : M→ N. The transfer of a
diffeomorphism onto vector fields of the same rank defined onM and N is then
the push-forward of the diffeomorphism which we write φ∗. The transfer of a
diffeomorphism onto a differential form of the same rank defined on M and N
is then the pull-back of the diffeomorphism which we write φ∗.
We can then specify the transfer of a diffeomorphism onto the exterior

derivative as

φ∗(dα) = d(φ∗α) (2.29)

1 See (Malament, 2012, §1.5) for more details.
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and onto the interior derivative as:

φ∗(ιXα) = ι(φ∗X )(φ∗α) (2.30)

The first expression simply amounts to saying that the exterior derivative oper-
ation commutes with the pull-back of a diffeomorphism. The second, implies
that we can construct the pull-back of a diffeomorphism onto the interior
derivative by applying the push-forward operation to the vector field and the
pull-back operation to the differential form.
If we combine these expressions with Cartan’s magic formulae then we can

write the pull-back of the Lie derivative of a differential form with respect to a
vector field simply as:

φ∗(LXα) = φ∗ (ιXdα + d(ιXα)) (2.31)

= ι(φ∗X )d(φ∗α) + d(ι(φ∗X )φ∗α) (2.32)

These relations will prove of particular value later.

B೹ം 3 Tೲ೯ Lೳ೯ D೯೼ೳഀ೫೾ೳഀ೯
Define the pull-back of the flow of a vector field X as:

ϕ∗ϵ ≡ exp(ϵX )∗ = ∧kT ∗M|exp(ϵX )x → ∧kT ∗M|x . (2.33)

Let X be a vector field on M and α be a differential k-form defined on M.
The Lie derivative of αwith respect to X is the k-formwhose value at x ∈ M
is given by:

LXα |x ≡ lim
ϵ→0

ϕ∗(α |exp(ϵX )x − α |x
ϵ

=
d
dϵ

����
ϵ=0

ϕ∗(α |exp(ϵX )x) (2.34)

(Olver, 2000, Definition 1.63).

This concludes our brief review of differential forms and the four basic oper-
ations of wedge product, interior product, exterior derivative, and lie derivative.
In the next section we will see how the language of differential forms allows for
a natural geometric rendering of Hamiltonian mechanics defined by a special
type of 2-form called the symplectic 2-form.

3 Symplectic Geometry and Phase Space Mechanics

. . . la physique est de la géométrie — géométrie symplectique.

(Gotay & Isenberg, 1992, p. 238)
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3.1 Symplectic Geometry and Hamiltonian Systems
In this section we will analyse the geometric structure of Hamiltonian mech-
anics understood as symplectic structure. In particular, we will show how
Hamilton’s equations can be written in the language of differential forms with
the operations on differential forms defined in the previous section applied to
the symplectic 2-form that is intrinsic to the geometric structure of phase spaces.
The world ‘symplectic’ was coined by Herman Weyl and means interwoven

or plaited. As we shall see, the term is an apposite one since it is precisely the
symplectic structure that encodes the interweaving of the canonical position
and momentum coordinates with both each other and the dynamics. Here we
will primarily follow Abraham and Marsden (1980).
We start by introducing the idea of a non-degenerate differential 2-form.

Consider a 2-form acting on a pair of vector fieldsω(X,Y ).We say thatω is non-
degenerate whenwe have thatω(X,Y ) = 0,∀X implies that Y = 0. Conversely, a
degenerate 2-form is such that there is a Y , 0 such thatω(X,Y ) = 0,∀X. This is
equivalent to a non-degenerate 2-form having a trivial kernel, or nullspace, and
a degenerate 2-form having a non-trivial kernel. These definitions generalise
to k-forms. However, the 2-form case is all we will need for the definition of
symplectic structure.
It can be proven that a 2-form on a manifoldM is non-degenerate if and only

ifM has an even dimension, 2n, and ωn = ω ∧ . . . ∧ ω is a volume form onM
that we write as:

Ωω =
(−1)[n/2]

n!
ωn (3.1)

A manifold admits a nowhere-vanishing volume form if and only if it is ori-
entable and thus we have that the existence of a non-degenerate two form on
a manifold is necessary and sufficient for the manifold to be orientable. See
(Abraham & Marsden, 1980, §3.1) for more details.
We are now able to state the pivotal theorem of Darboux which, in this con-

text, means that given a closed, non-degenerate 2-form on a manifold, there
is a local coordinate system at every point in which the form has a canonical
coordinate expression. The theorem can be stated as follows:

Theorem 3.1 Darboux’s theorem: Suppose ω is a non-degenerate 2-form on
a 2n-dimensional M. Then dω = 0 if and only if there is a chart (U, φ) at each
m ∈ M such that φ(m) = 0 and with φ(u) = (x1(u) . . . xn(u),y1(u) . . . yn(u)) we
have that:

ω|U =
n∑
i=1

dxi ∧ dyi (3.2)

(Abraham & Marsden, 1980, Theorem 3.2.2)
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Let us then define a symplectic form as a closed, non-degenerate 2-form, ω,
on a manifold,M. A symplectic manifold, (M,ω), is then given by a pairing of a
manifold,M, together with a symplectic form onM. Application of Darboux’s
theorem to symplectic manifolds establishes the existence of a special set of
symplectic charts where the component functions xi,yi are canonical coordin-
ates, which we will write as qi,pi to foreshadow the application to Hamiltonian
systems. We are thus guaranteed to be able to locally express the symplectic
form as:

ω =

n∑
i=1

dqi ∧ dpi (3.3)

and volume form as:

Ωω = dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn. (3.4)

By the Riesz representation theorem (Abraham & Marsden, 1980, Theorem
2.6.9). we are guaranteed that for any orientable manifold, M, with volume
form Ω, there is a unique measure µΩ such that for every continuous function
of compact support we have that:∫

fdµΩ =
∫

fΩ (3.5)

See (Souriau, 2012, §16) for a detailed introduction to the definitions of meas-
ures on manifolds. N.B. strictly the measure µΩ should be defined on the Borel
sets U of M. We will provide an explicit definition of the Borel sets of RN in
the context of probability measures in Section 4.1.
For a symplecticmanifold the uniquemeasure associated to the volume form,
Ωω , is the Liouville measure µΩω . In coordinates, the Liouville measure can
be expressed as:

µΩω =

∫
U
Ωω =

∫
U
dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn. (3.6)

For most physical purposes we are interested in symplectic manifolds that
are phase spaces. That is, symplectic manifolds that are the cotangent bundles,
T ∗Q, to a configuration space, Q. Cotangent bundles of manifolds are always
symplectic manifolds. This is because a canonical 1-form or symplectic poten-
tial, θ, is defined on the cotangent bundle to any manifold and we can we can
always define a symplectic two form, ω, in terms of the exterior derivative
of the symplectic potential, ω = dθ (Abraham & Marsden, 1980, Theorem
3.2.10).
In finite dimensionswith (q1 . . . qn) coordinates onQ and (q1 . . . qn,p1 . . . pn)

coordinates on T ∗Q we can provide local expressions for symplectic potential
of the form:
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θ = pidqi (3.7)

which means the symplectic 2-form is given by:

ω = dθ = dpi ∧ dqi (3.8)

The matrix representation of symplectic 2-form ω is given by:

J =

(
0 I
−I 0

)
(3.9)

where I is the identity. The matrix is easily seen to be skew-symmetric and
non-singular.
We can now define a Hamiltonian system as follows. Let (M,ω) by a sym-

plectic manifold and H : M→ R a Cr function. Define the Hamiltonian vector
field, XH by the condition:

ιXHω = dH (3.10)

then (M,ω,XH) is a Hamiltonian system and H is the Hamiltonian function.
Given an arbitrary vector field Y we can write this equation equivalently as:

ω(XH,Y ) = dH(Y ) (3.11)

The non-degeneracy of ω guarantees that XH exists. On connected symplectic
manifolds any two Hamiltonians for the same Hamiltonian vector field differ
by a constant.
Now, let (q1 . . . qn,p1 . . . pn) be coordinates for ω so that we have that

ω = dpi ∧ dqi then the Hamiltonian vector field takes the form:

XH =

(
∂H
∂pi

,− ∂H
∂qi

)
(3.12)

The integral curves of XH are the γ(t) = (q(t),p(t)) for which Hamilton’s
equations hold:

Ûq = ∂H
∂pi

, Ûp = ∂H
∂qi

(3.13)

for i = 1 . . . n. Thus we can understand (3.10) as Hamilton’s equations.
The skew symmetry of ω together with (3.11) then directly implies conser-

vation of the Hamiltonian function, typically interpreted as an energy function,
since for any Hamiltonian system (M,ω,XH) we have that the evaluation of the
Hamiltonian function on the integral curves H(γ(t)) will be constant in t:

d
dt
H(γ(t)) = ω(XH(γ(t)),XH(γ(t))) = 0 (3.14)

(Abraham & Marsden, 1980, Proposition 3.3.3)
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We thus see that the basic dynamical features of Hamiltonian mechanics
are encoded in the symplectic structure of phase space. In particular, sym-
plectic structure is in an important sense intrinsic to phase spaces and given
such structure and an energy function we are guaranteed to be able to define a
Hamiltonian system that in turn provides a unique (up to a constant) representa-
tion of energy-conserving dynamics. In the following section we will consider
a mild generalisation of the conversation property of the dynamics in terms of
the conversation of phase-space volume in a Hamiltonian system, as implied
via a geometric version of Liouville’s Theorem.

3.2 Liouville’s Theorem and the Poisson Bracket
The defining feature of the geometrisation of mechanics as we have explored it
thus far is the consideration of properties of families of solutions in a state space.
It is the structure of such families that the symplectic structure of phase space
pertains. This feature will prove crucial to our more interpretative discussion
of geometric representations of mechanical systems in Section 8. In the present
sectionwewill focus our attention a key formal property of families of solutions
in phase space: the conversation of phase space volume.
A simple intuitive picture of the content of Liouville’s Theorem can be pro-

vided by considering the instantaneous state of a finite ensemble of identical
mechanical systems with differing initial conditions, corresponding to a finite
region of phase space. Consider the flow of the Hamiltonian vector field at
every point in our region and imagine following this flow for a finite time. In
such a way we can define a second region of phase space corresponding to
the time evolution of our ensemble. The theorem states that the two regions
occupy the same volume. In formal terms, following (Abraham & Marsden,
1980, Proposition 3.3.4), we can state the result as follows:

Theorem 3.2 Liouville’s Theorem : Let (M,ω,XH) be a Hamiltonian system
and ϕ(t) be the flow of the Hamiltonian vector field XH. Then for each t we
have that ϕ∗(t)ω = ω and thus that ϕ(t) also preserves the volume form Ωω .

A geometric basis for the theorem is straightforward to establish if we
recall that Cartan’s magic formula for closed 2-forms ω = dθ given in (2.28)
was:

LXω = d(ιXω).

The geometric form of Liouville’s Theorem then immediately follows from the
definition of the Hamiltonian vector field, the Lie derivative, and the exterior
product, since we have that:
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d
dt
ϕ∗(t)ω = ϕ∗(t)LXHω

= ϕ∗(t)(d(ιXHω)) = ϕ∗(t)(d(dH))
= 0

which implies that ϕ∗(t)ω = ω which, in turn, implies that ϕ(t) preserves the
volume form Ωω . We have thus distilled the geometric essence of Liouville’s
theorem to the simple statement that:

LXHω = 0 (3.15)

which is true for any Hamiltonian system (M,ω,XH).
A further important result, which is also often called Liouville’s Theorem,

is that the unique Liouville measure µΩω , associated to the volume form, Ωω ,
is also conserved under the infinitesimal transformation associated with any
Hamiltonian vector field defined on a symplectic manifold. This means that the
Liouville measure is conserved by the dynamics and, more generally, under any
symplectomorphism (Souriau, 2012, Theorem 16.99).2

We will return to this important result in the context of our discussion of
probability and phase space statistical mechanics in Section 4.3.
Let (M,ω) be a symplectic manifold and f and g be functions on M. We can

then define the Poisson bracket of f and g via the action of theω on the induced
vector fields Xf and Xg:

{ f,g} = ω(Xf,Xg) (3.16)

Which can be expressed in terms of the Lie derivative as:

{ f,g} = −LXfg = LXg f (3.17)

The Poisson bracket of two functions thus corresponds to the Lie bracket of the
associated vector fields.
The space of real valued smooth functions over a symplectic manifold forms

a particular type of Lie algebra called a Poisson algebra where the Lie bracket
satisfies the usual conditions given earlier together with the further condition
of obeying Leibniz’s rule: { fg,h} = f{g,h} + g{ f,h}. Manifolds equipped with
such a bracket operation are called Poisson manifolds and all symplectic mani-
folds can be shown to be Poisson manifolds (the converse does not hold). For
more details see (Marsden, 1992, §2).

2 This result is an exemplification of the much more general property that any measure
defined via the integral of a volume form will be invariant under orientation persevering
diffeomorphisms (Lee, 2003, Prop. 16.6).
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Using the relation between the Lie derivative and Poisson bracket, it is not
difficult to show that in canonical coordinates (q1 . . . qn,p1 . . . pn) the Poisson
bracket takes the familiar form:

{ f,g} = ∂f
∂qi

∂g
∂pi
− ∂f
∂pi

∂g
∂qi

(3.18)

(Abraham & Marsden, 1980, Corollary 3.3.14)
Let us then consider the Hamilton vector, XH field on a symplectic manifold,

and associated flow ϕ(t). For any function on the manifold, f, we have that:

d
dt
ϕ∗(t)f = ϕ∗(t)LXH f = {ϕ∗(t)f,H} (3.19)

A more concise and familiar expression is to write (3.19) simply as:

Ûf = { f,H} (3.20)

which is the equation of motion in Poisson bracket form (Marsden & Ratiu,
2013). We can then express energy conversation in the form {H,H} = 0 and
express that a function g onM is a constant of motion relative to XH by writing
simply {g,H} = 0.
A simple way to approach the more general question of invariants functions

is to consider a vector field Xg that is such that LXgω = 0 and LXgH = 0. That
is, a symplectomorphism that preserves the Hamiltonian. Such transformations
will preserve the integral curves of XH and thus the infinitesimal transform-
ations generated by Xg are symmetry transformations in the generalised sense
that they map dynamically possible models into dynamically possible models
(Gryb & Thébault, 2023).
In such circumstances, we will have that {g,H} = 0 where g is the Hamilton-

ian function defined by relation dg = ιXgdω. This means that every symmetry
transformations generated by the flow of some vector field Xg that preserves ω
has an associated conserved charge g. This result has been called the symplec-
tic Noether theorem and expresses the deep interweaving between symmetry,
conversation, and the symplectic structure of Hamiltonian systems.

3.3 Symplectomorphisms
The final feature of symplectic mechanics that we shall consider is the perhaps
the most subtle and certainly the most beautiful. In simple terms, the feature in
question is that the canonical coordinate charts that we lay upon a symplectic
manifold do not have physical significance. Rather, the structure of a mech-
anical theory within the symplectic representation is encoded in the Hamilton
vector field which is independent of the canonical coordinate chart.
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We can capture the content of this idea more precisely by considering the
general form of transformations between manifolds defined by diffeomor-
phisms. Recall that diffeomorphisms are invertible C∞-mappings between the
manifolds: φ : M → N. Let us consider a pair of symplectic 2n-dimensional
manifolds, (M,ω) and (N, ρ). If the push-forward of the diffeomorphism φ pre-
serves the symplectic structure, that is, we have that φ∗ρ = ω, then we say that
φ is a symplectomorphism or canonical transformation.
The most crucial feature of symplectomorphisms is their action on the

Hamilton vector field defined via (3.10). The general form of this action can
be proved via a theorem attributed to Jacobi (Abraham & Marsden, 1980,
Theorem 3.3.9) and can be concisely stated as:

φ∗XH = XH◦φ (3.21)

Since, as noted earlier, on connected symplectic manifolds any two Hamil-
tonians for the same Hamiltonian vector field differ by a constant, we then
have that the symplectomorphisms leave the dynamical structure encoded in
the Hamiltonian vector field unchanged. The proof of (3.21) is straightforward
and instructive so we will provide a brief reconstruction here.
First, re-write Hamilton’s equations (3.10) for the Hamiltonian function

given by the composition H ◦ φ:

ιXH◦φω = d(H ◦ φ) (3.22)

Second, apply the push-forward of the symplectomorphism to the original form
of Hamilton’s equations (3.10) using our transfer equations (2.29) and (2.30):

ι(φ∗XH)(φ∗ω) = φ∗dH (3.23)

= d(H ◦ φ) (3.24)

Then equating our two expressions gives:

ιXH◦φω = ι(φ∗XH)(φ∗ω) (3.25)

We then have by definition that φ∗ω = ω and so application of Hamilton’s
equations once more finally gives us:

XH◦φ = φ∗XH. (3.26)

Symplectomorphisms both preserve the volume form and allow us to trans-
form between the local symplectic charts defined on the two manifolds. They
are also the crucial ingredient in the theory of canonical transformations and
the Hamilton-Jacobi formulation of mechanics.
Abstractly speaking, symplectomorphisms are the isomorphism of the cat-

egory of symplectic manifolds. On that basis we might plausibly interpret a



26 Philosophy of Physics

given symplectic manifold, (M,ω), to be defined only up to symplectomor-
phism. We will consider this feature in our more interpretative discussion of
geometric representations of mechanical systems in Section 8.

3.4 Classical Harmonic Oscillator
Consider a Newtonian system with one spatial degrees of freedom q and poten-
tial V(q) = 1

2kq
2 in some preferred chat. The phase space is a two dimensional

symplectic manifold. The Hamiltonian of the system is:

H =
p2

2m
+
1
2
kq2 (3.27)

and the associated Hamiltonian vector field:

XH =
( p
m
,−kq

)
(3.28)

The geometric form of this vector field is illustrated in Figure 2.
The integral curves of XH are the γ(t) = (q(t),p(t)) for which Hamilton’s

equations hold:

Figure 2 Phase portrait showing the Hamiltonian vector field and
corresponding integral curves of a simple harmonic oscillator for a specific set

of parameter values. Generated withMathematica
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Ûq = p
m
, Ûp = −kq (3.29)

which are obviously equivalent to Newton’s second law since the two equations
imply that:

Üq = − k
m
q (3.30)

which means we have the familiar solutions of q(t) = A cos(ωt)+B sin(ωt) for
ω =

√
k/m.

If the initial position and momentum are q0 and p0 then we will have that
A = q0 and B = p0√

mk
and thus that the general solutions are given by:

q(t) = q0 cos(ωt) + p0√
mk

sin(ωt) (3.31)

p(t) = −mωq0 sin(ωt) + p0 cos(ωt) (3.32)

Liouville’s theorem then implies conservation of phase space area along the
Hamiltonian flow in question. Geometrically this can be visualised as the con-
stant area of a rotating quadrilateral picked out by a bundle of contiguous
trajectories.

3.5 Further Topics of Study
• The Symplectic Noether theorem (Souriau, 1974, p. 357), (Kostant, 1970)
(Kosmann-Schwarzbach, 2010, p108).
• Symplectic Reduction and Philosophy of Symmetry (Belot, 2007; Bradley,
2024a; Butterfield, 2007; Rickles, 2007; Thébault, 2011).
• Symplectic Structure and Theoretical Equivalence (Barrett, 2019; Bradley,
2024b; Curiel, 2014; Dewar, 2022; North, 2009)
• Anti-Symplectomorphisms and Time-Reversal Symmetry (Roberts, 2022).

4 Probability and Statistical Phase Space Mechanics

If we regard a phase as represented by a point in space of 2n
dimensions, the changes which take place in the course of time
in our ensemble of systems will be represented by a current in
such space. This current will be steady so long as the external
coordinates are not varied. In any case the current will sat-
isfy a law which in its various expressions is analogous to the
hydrodynamic lawwhich may be expressed by the phrases con-
servation of volumes or conservation of density about a moving
point.

(Gibbs, 1902, p.11)
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4.1 Measures and Probability Densities Functions
In this section we provide a brief introduction to some of the core math-
ematical concepts for the representation of phase space probability measures
in statistical mechanics. We will assume basic concepts from elementary set
theory. Our aim is to introduce the core formal notions of a σ-algebra, a
probability measure, the Borel sets of R, Lebesgue integrability, and a prob-
ability density function. We will principally follow (Dudley, 2010, §-3-4) and
(Breuer & Petruccione, 2002, §1). See also (Feller, 1991, §IV) for further
technical details. Additional sources will be noted where relevant.
Consider a set, Ω, which is non-empty. Let us designate this set the sample

space. Now consider a non-empty collection of subsets, A, that we designate
the event algebra. The event algebra is then a σ-algebra iff the following three
conditions hold:

1. The sample space and the empty set belong to the event algebra, that is,
∅ ∈ A, Ω ∈ A.

2. The elements of the event algebra are closed under complementation, that
is, Ω \ σ ∈ A for all σ ∈ A.

3. The elements of the event algebra are closed under countable union, that is,
A1 ∪ A2 ∪ A3, . . . ,∈ A for all A1,A2,σ3, . . . ,∈ A.

The third condition is crucial for the algebra to be a σ-algebra. One can define
an algebra of events that is not a σ-algebra by weakening the condition, for
example to finite union.

B೹ം 4 A೮೮ೳ೾ೳഀೳ೾ഃ ೫೸೮ M೯೫೽೿೼೯ S೺೫೭೯೽
Following (Dudley, 2010, pp.85-87), let X be a set and C be a collection of
subsets of X with ∅ ∈ C. Consider a set function µ which is a function from
C into the extended real line [−∞,∞] ≡ {−∞} ∪ R ∪ {∞}.
We say that the set function µ is finitely additive iff µ(∅) = 0 and whenever
Ai ∈ C for i = 1, . . . ,n are disjoint and

A ≡
n⋃
i=1

Ai ∈ C (4.1)

we have that

µ(A) =
n∑
i=1

µ(Ai) (4.2)
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If, additionally, we have that whenever An ∈ C,n = 1,2, . . . ,An are disjoint
and B ≡ ∪n≥1An ∈ C, we have that

µ(B) =
∑
n≥1

µ(An) (4.3)

then µ is countably additive.
For any set X the power set 2X is the collection of all subsets of X. A col-
lection of subsets A ⊂ 2X is a ring iff ∅ ∈ A and for all A and B in A we
have that A ∪ B ∈ A and B \ A ∈ A . A ring is an algebra iff X ∈ A.
We then have that an algebra is a σ-algebra if for any sequence {An} of
sets in A, ∪n≥1An ∈ A. A countably additive function µ from a σ-algebra
S of subsets of X into [0,∞] is then a measure and a triple [X,S, µ] is a
measure space.

A probability measure is a set function p : A → R which assigns a real
number p(A) to every event A in a σ-algebra, that is, we have that A 7→ p(A) ∈
R, such that the following three conditions hold:

1. The probability of any event lies in the unit interval, that is, for all A ∈ A

we have that 0 ≤ p(A) ≤ 1.
2. The total probability is normalised to one across the sample space, that is,

p(Ω) = 1.
3. If we have a countable collection of disjoint events the probability of their

union is equal to the sum of their probabilities, that is, we have that if

A1, . . . ,An, . . . ∈ A with Ai ∩ Aj = ∅ for i , j

then

p(∪∞n=1An) =
∞∑
n=1

µ(An) (4.4)

The last condition of σ-additivity is crucial for the measure to be a probability
measure. It can be weakened to define a set function that is not a probability
measure for example since it is only a finitely additive quasi-measure. We will
consider the case of quasi-measures whenwe examine the quantum phase space
formalism in Section 6.
In general terms, we can think of any specification of a triple of sample

space, σ-algebra and probability measure as a probability model, (Ω,A,p).
Realisations of such a model can then be provided by specifying representa-
tions of the relevant σ-algebra and probability measure in terms of specific



30 Philosophy of Physics

sets of objects with the appropriate algebraic structure and functions with the
appropriate properties.
The most important σ-algebra found in the formalisation of physical theory

is that generated by the topology of R. In particular, we can understand the
Borel sets of R as being given by the smallest σ-algebra which contains all the
open and closed intervals of the real line.3 We will denote the Borel sets of the
real line as B(R).
There is guaranteed to exists ameasure onB(R) defined on the closed interval
(a,b] of the real numbers in terms of the distance measure µL((a,b]) = b − a
for any real a ≤ b (Dudley, 2010, Theorem 3.2.6). The measure µL is called
the Lebesgue measure on R and can be naturally extended to a real space of
arbitrary finite dimension RN in terms of a volume measure µNL which allows
us to pick out the class of Lebesgue measurable subsets of RN. The Borel sets
of B(RN) are the most physically important example of Lebesgue measurable
sets. A function f : RN → R is then Lebesgue measurable if the pre-image of
every Borel set under the function is a Lebesgue measurable set.
The final element in the formalisation of probability theory for a state space

application is the idea of a density function. This in turn requires us to define
what it is for a function to be integrable on RN. Eliding some considerable
formal subtleties (Dudley, 2010, §4) we can do this rather directly in terms
of the Lebesgue measure by specifying that a Lebesgue measurable function
f : RN → R is Lebesgue integrable iff we have that:∫

RN
| f (x) | dµNL (x) < ∞ (4.5)

We can then introduce a probability density function as a function f : RN → R
that is Lebesgue integrable and defines a probability measure p(B) over the
Borel sets of RN given by the formula:

p(B) =
∫
B
f (x)dµNL (x) (4.6)

where B ∈ B.
Since have demanded that p(B) defines a probability measure, we will auto-

matically have that three conditions aforementioned hold. We can restate these
conditions explicitly as follows:

1. The probability density associated with any sub-region of RN lies in the unit
interval, that is, for all B ∈ B we have that 0 ≤ p(B) ≤ 1.

2. The probability density is normalised to one across RN, that is, we have that

3 See (Dudley, 2010, p.98) for a more full definition.
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p(Ω) =
∫
RN

f (x)dµNL (x) = 1 (4.7)

3. If we have a countable collection of disjoint regions of RN, the probability
of their union is equal to the sum of their probabilities, that is, we have
that if

B1, . . . ,Bn, . . . ∈ B with Bi ∩ Bj = ∅ for i , j

then

p(∪∞n=1Bn) =
∞∑
n=1

∫
Bn
f (x)dµNL (x) (4.8)

The final condition implies that any function which is measurable on the Borel
algebra can play the role of a probability density function (PDF) so long as it
is positive and norm one across the entire space. Moreover, we also have that a
PDFwill be Lebesguemeasurable by definition. The leads us to the final crucial
concept the idea of the essential support of a PDF.
The essential support of a function, ess sup( f ), indicates the smallest closed

subset in the domain of a measurable function such that the function can be zero
‘almost’ everywhere outside that subset. The ‘almost’ in this context is cashed
out via the measure such that the points which are outside the essential sup-
port and where the function is non-zero are of measure zero. For any Lebesgue
measurable function f we have that ess sup( f ) = sup( f ) (Lieb & Loss, 2001,
p.13). The essential support and support of the PDF f (x) is thus given by the
smallest possible region inRN such that the function can be zero (almost) every-
where else. These are the singleton elements of the Borel sets points which
correspond to the point set {x}.
We thus have the possibility of picking out an event in the σ-algebra via a

point set {x} ∈ RN and it is admissible to choose a probability density function
which assigns a non-zero value only to a measure zero subset of all other points.
This means that it is possible to consider probability density functions that
are (almost) entirely concentrated at a single point which amounts to allowing
the possibility that the probability density function approximates a δ-function.
Correspondingly, since its integral over RN is normalised, by concentrating a
probability density function almost entirely at one point we must allow that the
function is unbounded from above.
These properties will be important for physical interpretation of the deter-

ministic limit of stochastic phase space models considered in Section 4.2. They
will also prove relevant in the context quantum phase space representations,
in which the point set is not part of the essential support, as discussed in
Section 6.1.
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4.2 Stochastic Phase Space Models
We will now proceed to combine the formal ingredients developed in the pre-
vious section with the phase space representation of mechanics presented in
Section 3.1. This will lead us to a stochastic representation of phase space
mechanics within which we combine a Hamiltonian mechanical system with
a probability density function.
The core elements of a stochastic phase space model are built from the nat-

ural structures on Γ. In particular, whereas the symplectic structure induces
a Poisson algebraic structure, the topological structure induces a σ-algebraic
structure. The crucial link between the two is in terms of the volume meas-
ure dq ∧ dp which is both the unique Liouville volume form preserved by the
Hamiltonian flow as per the discussion of Section 3.2 and the natural Lebesgue
volume measure on Γ as per the discussion of Section 4.1.
Following, Dawid and Thébault (2025), let us then define a stochastic phase

space model as a triple (Γ,O, ρ) with the following properties:

1. State Space: Γ = (R2N,ω) represents the space of possible states of system
as a 2N-dimensional symplectic manifold equipped with the closed non-
degenerate two form ω = dq ∧ dp and associated volume measure dqdp in
the Darboux chart;

2. Observable Algebra: O represents observables as a Poisson algebra given
by the space of real-valued smooth functions over Γ with the Cartesian
product and Poisson bracket {, }, the relevant bilinear products. The dis-
tinguished function H ∈ O induces a time evolution automorphism via the
Poisson bracket: d

dtA = {A,H} for all A ∈ O.
3. Probability Density Function: ρ is a phase space probability density func-

tion, ρ(q,p) : Γ → R, which is Lebesgue integrable with respect to the
volume measure, dqdp, and induces a probability measure, µ, such that for
any event with probability, µ(B), there is a corresponding PDF, ρ(q,p), that
satisfies the conditions:
(a) µ(B) ≥ 0 for all B ∈ B (positive)
(b)

∫
Γ
ρ(q,p)dqdp = 1 (normalised)

(c) If B1, . . . ,Bn, . . . ∈ B with Bi ∩ Bj = ∅ for i , j then µ(∪∞n=1Bn) =∑∞
n=1

∫
Bn
ρ(q,p)dqdp (σ-additive)

where B ∈ B are the Borel sets B(R2N).
4. Expectation Values: 〈A〉 is the expectation value (first moment) of an

observable defined as:

〈A〉 ≡
∫
Γ

A(q,p)ρ(q,p)dqdp (4.9)

for all A ∈ O
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A stochastic phase space model provides an interpretation (assignment of
meaning) to a classical probabilistic structure as follows: The state space Γ is
the sample spaceΩ. The Borel sets given by sub-regions of phase spaceB(R2N)
are the σ-algebra. The probability measure p(B) is given by the integration of
the probability density function ρ(q,p)with respect to the volumemeasure dqdp
over a sub-region B ⊆ R2N. The model includes a deterministic subset since a
function that approximates a δ-function is an admissible PDF and thus the case
in which the singleton of the Borel sets is measure (almost) one and (almost)
all other points are measure zero is an admissible stochastic phase space model
as per our discussion of the essential support earlier.
The model also provides a representation of expectation values of observ-

able functions. That is, it allows us to represent not just the stochastic properties
associated with the state of the system but also the stochastic properties observ-
ables in terms of the their moments. The first moment being the expectation
value as per Equation (4.9). The higher order (raw) moments (i.e. variance,
skewness, kurtosis) are then given by the standard formula:

〈Am〉 =
∫
Γ

A(q,p)nρ(q,p)dqdp (4.10)

where m is the order of the moment. Clearly the expectation values are, like
the moments in general, also part of the observable algebra. As such, we can
use the Hamiltonian function and the Poisson bracket to describe the evolution
equations for themoments.Wewill derive an explicit form of these equations in
terms of the stochastic Ehrenfest equations in Section 4.4 based upon the fam-
ous continuity equation due to Liouville that will be derived in the following
section.

4.3 Probability Currents and the Liouville Equation
In this section we will review the elementary textbook presentation of the
stochastic Liouville’s equation following Pathria and Beale (2011). We start
by showing how the equation can be derived by thinking of the classical
probability density in terms of a ‘fluid’ with an incompressible flow, before con-
sidering the relation to the symplectic structure via the geometric presentation
of Liouville’s theorem that was provided in the previous section.
We start by considering an arbitrary volume B of the phase space with a

boundary ∂B. If we think of the probability like a fluid, it is natural to under-
stand there to be a phase space current J i which represents net flow out of the
region, and is associated with the ‘fluid’ density ρ(q,p) by the formula:

J i = ρ(q,p)vi (4.11)
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where vi is just the tuple (Ûq, Ûp) and the other dimensions of phase space are
suppressed as per our notation earlier. If ni is the unit vector normal to the
boundary ∂B, we then have that by Gauss’s theorem we can write:∫

∂B
J inid(∂B) =

∫
B
∂iJ idqdp (4.12)

=

∫
B

(
Ûq∂ρ
∂q
+ Ûp∂ρ

∂p

)
dqdp (4.13)

=

∫
B
{ρ,H}dqdp (4.14)

where we have used Hamilton’s equations and the definition of the Poisson
bracket.
Now, if we assume the probabilistic equivalent of the continuity equation –

that is, the fluid has no ‘sources’ or ‘sinks’ – then the rate of change of total
probability fluid in an arbitrary region will be equal to the negative of the flux
out of the region. Thus, we have that:

∂

∂t

∫
B
ρdqdp = −

∫
∂B

J inid(∂B) (4.15)

= −
∫
B
{ρ,H}dqdp (4.16)

and thus that:∫
B

(
∂ρ

∂t
+ {ρ,H}

)
dqdp = 0 (4.17)

Finally, we then have that

dρ
dt
=
∂ρ

∂t
+ {ρ,H} = 0 (4.18)

since we need to be able to drop the integrals for the equation to hold for
arbitrary regions.
Equation (4.18) is the Liouville equation and it means that the total derivative

of the probability density is always vanishing in a stochastic Hamiltonian sys-
tem. Equivalently, the Liouville equation implies that the probability 3-current
given by the tuple (ρ, ρÛq, ρÛp) is always conserved. Intuitively, we can think of
the stochastic Liouville equation as implying that the local density around a
representative point as viewed by a co-moving observer stays constant in time
(Pathria & Beale, 2011, p. 28), cf. (Gibbs, 1902, p.11). This is the characteristic
property of a fluid with an incompressible flow.
The Liouville equation has an obvious formal connection to the geometric

equation we introduced as Liouville’s Theorem in Section 3.2. In that context
we saw that for any Hamiltonian system (M,ω,XH) the Lie drag of the symplec-
tic structure under the dynamics vanishes, that is,LXHω = 0.We also noted that
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a further implication of theorem is that the Liouville measure µΩω , associated
to the volume form, Ωω will also be invariant under the dynamics.
The full significance of these results should now be clear. In particular, when

combined with the Liouville equation (4.18) it is evident that the additivity
property of regions of phase space will be preserved over time since both the
measure and the local density about a representative point are preserved. There
are then two (closely related) ways in which this property can fail to hold: the
measure may fail to be invariant or the probability 3-current may fail to be
locally conserved. The dissipative dynamics displayed by contact Hamilton-
ian systems considered in Section 5 will exemplify the first possibility and the
quantum phase space dynamics of quasi-probability representations considered
in Section 6 will exemplify the second.

4.4 The Stochastic Ehrenfest Equations
Let us now study the implications of the Liouville equation for the equation of
motion for the statistical moments of the observables. We will restrict to the
case in which the form of the Hamiltonian is H = 1

2mp
2 + V(q). The Liouville

equation then is then:

∂ρ

∂t
= −{ρ,H} (4.19)

= − p
m
∂ρ

∂q
+
∂V(q)
∂q

∂ρ

∂p
(4.20)

The first moment equations (4.9) then take the form:

〈q〉 =
∫
Γ

qρdqdp (4.21)

〈p〉 =
∫
Γ

pρdqdp (4.22)

The equation of motion for 〈q〉 is straightforwardly derived by taking deriva-
tives and using the first of Hamilton’s equations together with the vanishing of
the total derivative of ρ to get:

d
dt
〈q〉 = 1

m
〈p〉 (4.23)

This is, of course, the Newtonian equation for the momentum in terms of the
velocity only expressed in terms of the ‘centre of mass’ of the probability
distribution. By the same approach the equation of motion for 〈p〉 is given
by:

d
dt
〈p〉 = −

∫
Γ

dV(q)
dq

ρdqdp (4.24)
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which means that we have that:
d
dt
〈p〉 = −

〈
dV(q)
dq

〉
(4.25)

The equation (4.25) allows us to treat the centroid of the distribution as a
particle obeying Newton’s second law if it is true that:〈

dV(q)
dq

〉
=

dV(〈q〉)
dq

(4.26)

We will thus have that under this condition a classical stochastic version of
the Ehrenfest equations will hold and we can understand the centroid of the
distribution as being governed by the same equations as a Newtonian point
particle in that we get equations of the form P = m ÛQ and ÛP = − 5 V(Q) for
Q = 〈q〉 and P = 〈p〉. The ‘if’ is all important, however. The stochastic version
of the Ehrenfest equations hold only under the condition (4.26). Indeed, the
equations will not hold, even approximately, unless the probability distribution
is of suitably narrow width (Ballentine, Yang, & Zibin, 1994).
To establish explicit limits on the validly of the stochastic Ehrenfest equa-

tions, following the treatment of Ballentine and McRae (1998), we can expand
V(q) in a Taylor series in δq = q − 〈q〉:

V(q) = V〈q〉 +
∞∑
l=1

(δq)l
l!

dlV(〈q〉)
d〈q〉l

(4.27)

which implies that:

dV(q)
dq

=
dV(〈q〉)
d〈q〉 +

∞∑
l=1

(δq)l
(l − 1)!

dl−1V(〈q〉)
d〈q〉l−1

(4.28)

where we have used the chain rule and the fact that d〈q〉
dq = 1. Substituting this

expression into (4.25) means that we have that:

d
dt
〈p〉 = −

〈
dV(〈q〉)
d〈q〉

〉
−

〈 ∞∑
l=1

(δq)l
(l − 1)!

dl−1V(〈q〉)
d〈q〉l−1

〉
(4.29)

= −dV(〈q〉)
d〈q〉 +

∞∑
l=1

〈(δq)l〉
(l − 1)!

dl−1V(〈q〉)
d〈q〉l−1

(4.30)

where we have assumed that:〈
dlV(〈q〉)
d〈q〉l

〉
=

dlV(〈q〉)
d〈q〉l

(4.31)

for all l since 〈q〉 is just a number rather than a random variable.
This analysis indicates that we can understand themoments, 〈(δq)l〉 for l ≥ 1,

as parametrising the divergence from the stochastic Ehrenfest equations. For
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distributions symmetric about the mean, the first moment vanishes, thus we
will expect the first deviation to typically be controlled by the size of second
moment which is simply the variance. Thus, as indicated earlier, the stochas-
tic Ehrenfest equations only approximately hold for probability distributions
of suitably narrow width. These features have interesting implications for the
study of the classical limit of quantum theories and the role of the quantum
Ehrenfest equations as a guide to the classical point particle as opposed to
stochastic limit.

4.5 Stochastic Harmonic Oscillator
Let us then return to our favourite mechanical example of the simple harmonic
oscillator only in stochastic form. Physically we could think of the system as
being given by an ensemble of oscillators with a statistical distribution over the
initial conditions.
Assume initial conditions are set by a probability density function

ρ0(q0,p0,0) and the standard Hamiltonian of the H = q2
2m +

1
2kq

2 as per the ana-
lysis of Section 3.4. The Liouville’s equation (4.18) then gives us a homogenous
first order PDE of the form:[

∂

∂t
+

p
m
∂

∂q
− 2kq ∂

∂p

]
ρ(q,p, t) = 0 (4.32)

Let us solve the equation by the method of characteristics. That is, we look for
a solution of the form ρ(q(s),p(s), t(s)) where (q(s),p(s), t(s)) is a characteristic
curve. Applying the total derivative gives us:

d
ds
ρ(q(s),p(s), t(s)) = ∂ρ

∂q
dq
ds
+
∂ρ

∂p
dp
ds
+
∂ρ

∂t
dt
ds

(4.33)

which means we have the system of ODEs
dt
ds
= 1 (4.34)

dq
ds
=

p
m

(4.35)

dp
ds
= −2kq (4.36)

and recover the PDE via:
d
ds
ρ(q(s),p(s), t(s)) =

[
∂

∂t
+

p
m
∂

∂q
− 2kq ∂

∂p

]
ρ(q(s),p(s), t(s))

= 0

Setting t(s = 0) = 0 means we have that t = s and our system reduces to:
dq
dt
=

p
m

(4.37)
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dp
dt
= −2kq (4.38)

We already saw in Section 3.4 that if the initial position and momentum are q0
and p0 then this system is solved by the general solutions:

q(t) = q0 cos(ωt) + p0√
mk

sin(ωt) (4.39)

p(t) = −mωq0 sin(ωt) + p0 cos(ωt) (4.40)

forω =
√
k/m. We want to use the same dynamical equations to infer the initial

state from the present state and so we need to put in the initial state as (q,p) and
run the equations back by −t to get:

q0 = q cos(ωt) − p
√
mk

sin(ωt) (4.41)

p0 = +mωq sin(ωt) + p cos(ωt) (4.42)

Thus we have that:

ρ(q,p, t) = ρ0(q cos(ωt) − p
√
mk

sin(ωt),mωq sin(ωt) + p cos(ωt)) (4.43)

Let us then consider an initial probability distribution that is a Gaussian in
position and momentum and thus we have that:

ρ0(q0,p0) =
1
2π

e−[(q0−X0)2+p20]/2 (4.44)

where X0 is an initial position offset. The equation for ρ(q,p, t) then takes the
form:

ρ(q,p, t) = 1
2π

e−[(q cos(t)−p sin(t)−X0)2] × 1
2π

e−[(q sin(ωt)+p cos(t))2]/2 (4.45)

where we have set ω = k = m = 1. The characteristic oscillatory motion of
the system is now reflected in the motion of the Gaussian wave-packet in phase
space as shown in Figure 3.

4.6 Further Topics of Study
• The Fokker-Planck Equation (Risken, 1996)
• Chaotic Stochastic Dynamics (Leith, 1996)
• Time Reversal Symmetry in Open Classical Systems (Guff & Rocco, 2023).
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Figure 3 Graphs of Equation (4.45) showing successive time steps of a
probability density function on phase space ρ(q,p, t) that is initially Gaussian
in position and momentum and evolves according to the Liouville equation
with a simple harmonic potential. Generated using Python and ChatGPT.

5 Dissipation and Contact Phase Space Mechanics

Contact geometry is the odd-dimensional twin of symplectic
geometry. The relation between them is similar to the relation
between projective and affine geometry.

(Arnold & Givental, 2001, p.71)

5.1 Contact Geometry and Contact Hamiltonian Systems
Contact geometry is the odd-dimensional counterpart of symplectic geometry.
In this section we will analyse the dynamical application of contact geometry
to the class of contact Hamiltonian systems which extend the notion of a (sym-
plectic) Hamiltonian dynamical system defined in the last section. The focus
of this section is to set out the core formal ideas and, in particular, make expli-
cit the analogy with the structure of symplectic mechanics as articulated in
Section 3.1. For the most part we will follow (Arnold & Givental, 2001, §4)
and Bravetti, Cruz, and Tapias (2017). Section 5.2 will focus on the feature
of volume form non-conservation that marks a significant difference between
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symplectic and contact Hamiltonian system and provides a natural geometric
framework for the representation of dissipation.
We define a field of hyperplanes on a smooth manifold when, in the tan-

gent space to every point, we define a hyperplane that depends smoothly on
the point. A field of hyperplanes can be defined locally by a non-vanishing dif-
ferential 1-form η. That is, for a smooth manifold M we have that α |x , 0 for
every point x ∈ M. A field of hyperplanes on a (2n + 1) dimension manifold is
a contact structure if we have a (2n + 1)-form such that:

η ∧ (dη)n |x , 0 (5.1)

A manifold equipped with contact structure is a contact manifold or contact
geometry, which we can indicate by a pair (M, η). In addition to the character-
istic 1-form, η, a contact manifold possess a characteristic vector field which is
the unique Reeb vector field, ξ, and defined by the conditions:

ιξη = 1 (5.2)

ιξdη = 0 (5.3)

The local analysis is particularly instructive. In the neighbourhood of each
point of a (2n + 1)-dimensional contact manifold, Darboux’s theorem implies
there will exist coordinates (z,q1 . . . qn,p1 . . . pn) in which the contact structure
has the form:

η = dz − pidqi (5.4)

In Darboux coordinate the Reeb vector field takes the simple form:

ξ =
∂

∂z
(5.5)

There is thus is a natural geometric relation between the Reeb vector field
and the ‘odd’ coordinate z owing to the fact that the Reeb vector picks out
a ‘vertical’ direction with respect to the kernel of η.
We can use the contact structure on a given contact manifold to associate to

every differentiable function on the manifold,H, a contact Hamiltonian vector
field which is generate byH via the relations:

LXHη = −ξ(H)η (5.6)

−H = ιXHη (5.7)

where ξ(H) is the function given by acting on the contact Hamiltonian with the
Reeb vector field and H is called the contact Hamiltonian. The first condition
(5.6) implies that XH leaves the contact form invariant up to a conformal factor
(as discussed in Section 5.3 this means it generates a ‘contactomorphism’). The
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second condition (5.7) implies that XH is generated by a Hamiltonian function.
In terms of Darboux coordinates we can re-write (5.6) as:

LXHη = −
∂H
∂z

η (5.8)

which will be useful later.
The two conditions can be used to study the behaviour of the contact form

along the flow defined by a contact vector field. In particular, application of
Cartan’s magic formula gives us:

LXHη = ιXHdη + d(ιXHη) (5.9)

Then, combined with the application of the exterior derivative to (5.7), we have
that:

−dH = d(ιXHη) = LXHη − ιXHdη (5.10)

which in turn implies that:

dH = ιXHdη − LXHη (5.11)

This is in contrast to the symplectic case where writing things in terms of the
symplectic potential we have by definition that:

dH = ιXHdθ (5.12)

The contrast between these formulas expresses the fundamental difference
between a Hamiltonian vector field, XH on a symplectic manifold, (M,dθ) and
a contact Hamiltonian vector field, XH on a contact manifold, (M, η): the char-
acteristic 1-form is by preserved along the symplectic Hamiltonian flow of the
first but not the contact Hamiltonian flow.
The comparison between the Hamiltonian and contact Hamiltonian systems

is made even more explicit in Darboux coordinates where we can write the
contact Hamiltonian vector field out explicitly in components as:

XH =

(
pi
∂H
∂pi

)
∂

∂z
−

(
pi
∂H
∂z
+
∂H
∂qi

)
∂

∂pi
+

(
∂H
∂pi

)
∂

∂qi
(5.13)

which implies that the flow of XH has the form:

Ûqi = ∂H
∂pi

(5.14)

Ûpi = −pi
∂H
∂z
− ∂H
∂qi

(5.15)

Ûz = pi
∂H
∂pi

(5.16)
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The correspondencewith Hamilton’s equations can be immediately recognised.
In particular, whenH does not depend upon z the first two equations areHamil-
ton’s equations. Given this, it is not surprising that one can think of a contact
Hamiltonian system in terms of a collection of symplectic Hamiltonian systems
arranged as leaves of a foliation along the z direction.

5.2 Dissipation
Consider a contact Hamiltonian system (M, η,H) and a smooth function on this
space F ∈ C∞(M). The time evolution of F with respect to the parameter
defined by the Hamiltonian vector field XH is given an expression in Darboux
coordinates that takes the form:

dF
dt
= XHF (5.17)

= −H∂F
∂z
+ pi

(
∂F
∂z

∂H
∂pi
− ∂F
∂pi

∂H
∂z

)
+
∂F
∂qi

∂H
∂pi
− ∂F
∂pi

∂H
∂qi

)
(5.18)

= −H∂F
∂z
+ pi

(
∂F
∂z

∂H
∂pi
− ∂F
∂pi

∂H
∂z

)
+ {F,H} (5.19)

which is the contact Hamiltonian analogue of (3.20). We can thus understand
the evolution of a contact Hamiltonian system in terms of a Poisson bracket
evolution component together with contact corrections.
A functionF ∈ C∞(M) is invariant under the contact Hamiltonian dynamics

associated with XH if it is constant along the flow of XH. Now consider the
contact Hamiltonian function itself. We have immediately from equation (5.17)
that the evolution of the Hamiltonian function is given by:

dH
dt
= −H∂H

∂z
(5.20)

This implies thatH is invariant under the contact Hamiltonian dynamics if and
only ifH= 0 orH does not depend upon z (where the or is non-exclusive). In the
latter case we would then have an invariant Hamiltonian functionH=H(qi,pi)
which we can identify with the mechanical energy which is conserved by the
contact dynamics. Thus, we have that a special case of contact Hamiltonian
mechanics can be used to represent systems that are non-dissipative system or
mechanically conservative.
Let us then consider a more general case in which the contact Hamiltonian

takes the form:

H = H(qi,pi) + h(z) (5.21)

where we again interpret H(qi,pi) as the mechanical energy. From (5.17) we
have the function H(qi,pi) has evolution equation:
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dH
dt
= −pi

∂H
∂pi

∂h
∂z

(5.22)

The structure of this equation provides a physical basis to interpret h(z) as a
potential that generates a dissipative force. Typically this is understood in terms
of an interaction with an external environment. We will consider the paradig-
matic example of a dissipative system in terms of a linearly damped oscillator
in Section 5.4.

5.3 Contactomorphisms
Recall once more that diffeomorphisms are invertible C∞-mappings between
the manifolds: φ : M→ N. Let us consider a pair of (2n+ 1)-dimensional con-
tact manifolds, (M, η) and (N, ν). If the push-forward of the diffeomorphism φ

leaves the contact form invariant up to a conformal factor, so we have that
η̃ = fη, then the diffeomorphism is called a contactomorphism. Abstractly
speaking, contactomorphisms are the isomorphism of the category of contact
manifolds.4

Here we should note the contrast with symplectomorphisms which leave the
symplectic form invariant exactly. The key feature behind this difference is that
the structure of a contact geometry is only defined up to a conformal factor and
thus there is a formal sense in which a given contact manifold, (M, η), is defined
only up to contactomorphism.
The existence of a conformal factor in the contactomorphism transformation

has an obvious implication for the behaviour of the contact volume form. In par-
ticular, while symplectomorphisms are such that they preserve the symplectic
volume form, Ωω contactomorphisms are such that they induce a re-scaling of
the contact volume form:

Ωη = η ∧ (dη)n (5.23)

We can see the explicit form of this re-scaling by considering the induced
transformation on the two form dη since we have that dη̃ = df∧ η + fdη which
implies that:

η̃ ∧ (dη̃)n = f n+1 ∧ (dη)n. (5.24)

Thus, we have that a contactomorphisms re-scales the volume form of a con-
tact manifold by a term f n+1. The re-scaling admits the special case in which

4 Strictly speaking contactomorphisms include both time-independent and time-dependent con-
tact transformations that leaves the contact form invariant up to a conformal factor. For
our purpose it is sufficient to consider the time-independent case only. For discussion of
time-dependent contact transformations see (Bravetti et al., 2017, 3.4).
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Table 1 Contact mechanics is the odd-dimensional counterpart to
symplectic mechanics.

Geometric Mechanics Comparison Table

Symplectic Mechanics Contact Mechanics
2n-dimension symplectic manifold 2n + 1 dimension contact manifold
Hamiltonian System (M,H,ω) Contact Hamiltonian System (M,H, η)
Symplectic Potential θ = pidqi Contact form η = dz − pidqi
Volume Form Ωω = dθn Contact Volume Form Ωη = η ∧ (dη)n
Hamilton’s Equations dH = ιXHdθ Contact Hamilton’s Equations

dH = ιXHdη − LXHη

Liouville’s theorem LXHΩω = 0 Volume Form Non-Conservation
LXHΩη = −(n + 1) ∂H∂z Ωη

f = 1 and thus the contact volume form is preserved. This corresponds to a
symplectomorphism of the 2n symplectic manifold with Darboux coordinates
(q,p).
We can then consider the behaviour of the contact volume form under the

flow generated by a contact Hamiltonian vector field XH by calculating the Lie
derivativeLXH (η∧(dη)n). Application of the product rule for the Lie derivative
of the wedge product combined with Equation (5.9) then imply an expression
of the form:

LXH (η ∧ (dη)n) = −(n + 1)
∂H
∂z
(η ∧ (dη)n) (5.25)

We thus have non-conservation (compression or expansion) of the volume form
under the contact Hamiltonian flow with the divergence taking the form:

div(XH) = −(n + 1)
∂H
∂z

(5.26)

This corresponds to the failure of Liouville’s theorem and provides the foun-
dation for a statistical mechanical representation of dissipation in contact
Hamiltonian systems to complement the loss of mechanical energy representa-
tion of dissipation we noted earlier. The comparison between symplectic and
contact Hamiltonian systems is summarised in Table 1.

5.4 Damped Harmonic Oscillator
Let us consider a simple physical example of a contact Hamiltonian system that
is the direct analogue of the Harmonic Oscillator we studied in Section 3.4.
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We follow the treatment of (Bravetti, de León, Marrero, & Padrón, 2020, §2).
It will prove instructive to consider a generic spatially dependent potential V(q)
and then specialise to the oscillator V(q) = 1

2q
2 later. We set all constants to 1.

Consider a product manifold C = R × T ∗R2 with contact structure η = dz −
p1dq1 − p2dq2. The contact HamiltonianH : C → R is:

H(z,p,q) = 1
2
( p21 + p22) + V(q) + γz (5.27)

with γ ∈ R− {0}. This is equivalent to the case of H(qi,pi) = 1
2 ( p21 +p22)+V(q)

and h(z) = γz in (5.21). The contact Hamilton equations are then given by:

Ûqi = pi (5.28)

Ûpi = − ∂V
dqi
− γpi (5.29)

Ûz = ( p21 + p22) −H (5.30)

Correspondence to the standard Newtonian treatment of the damped oscillator
is straightforward to establish. In particular, combining the first two equations
gives the characteristic second-order equation:

Üqi = −γ Ûqi − ∂V
∂qi
= 0 (5.31)

which is Newton’s second law supplemented with a velocity-dependent damp-
ing force as expected.
Let us then specialise to the case of the one-dimensional damped oscillator

with V(q) = 1
2q

2 and i = 1 and γ = 1. The first two equations then have the
characteristic form:

Ûq = p (5.32)

Ûp = −q − p (5.33)

This means that if we set z = constant the contact Hamiltonian vector field takes
the characteristic form of an (underdamped) oscillator. With q(t) = e−t cos(t)
and p(t) = e−t sin(t). The geometric form of this vector field is illustrated in Fig-
ure 5. The full-contact Hamiltonian vector field is then given by supplementing
equations (5.32) and (5.33) with the equation:

Ûz = 1
2
p2 − 1

2
q2 − z (5.34)

The full-contact Hamiltonian vector field of the system is depicted in Figure 4
together with the surfaces of constant z which reproduce the two-dimensional
structure depicted in Figure 5.
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Figure 4 Illustration of the contact Hamiltonian vector field of an
underdamped oscillator system. Left diagram shows the full vector field.

Right diagram shows the vector field over slices of z = constant. Generated
withMathematica

Figure 5 Phase portrait showing the contact Hamiltonian vector field and
corresponding integral curves of an underdamped simple harmonic oscillator

for a specific set of parameter values and z = constant. Generated with
Mathematica
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5.5 Further Topics of Study
• Extended Phase Space as a ContactManifold (Arnol’d, 2013; Gryb & Thébault,
2023).
• General Contact Hamiltonian Framework (Arnold & Givental, 2001;
Bravetti et al., 2017; Bravetti & Tapias, 2015).
• Contact Reduction and Scaling Symmetry (Bravetti, Jackman, & Sloan,
2023).

6 Quasi-Probability and Quantum Phase Space Mechanics

[M]any physicists hold the conviction that classical-valued
position and momentum variables should not be simultan-
eously employed in any meaningful formula expressing quan-
tum behaviour, simply because this would also seem to violate
the uncertainty principle. However, they are wrong. Quantum
mechanics can be consistently and autonomously formulated in
phase space, with c-number position and momentum variables
simultaneously placed on an equal footing, in a way that fully
respects Heisenberg’s principle. This other quantum frame-
work is equivalent to both the Hilbert space approach and the
path integral formulation. Quantum mechanics in phase space
thereby gives a third point of view which provides still more
insight and understanding.

(Curtright, Fairlie, & Zachos, 2013, p.6)

6.1 Quasi-Measures and Quasi-Probability Densities
In this section we will consider the abstract generalisation of the probability
density function in terms of a quasi-probability density. This abstract notion of a
quasi-probability density will provide us with a formal foundation to introduce
the Wigner function which is the privileged quasi-probability density densities
used in quantum phase space mechanics. We will assume the formal details
from measure theory already introduced in Section 4.1, and the reader may
wish to refer back to that material in reading the following.
Let us begin by considering an a generalisation of a σ-algebra via the

weaker notion of an event algebra. Here we are using a slight generalisation
of the framework set out in Dowker and Wilkes (2022). In general the quasi-
probability functions we will consider satisfy the stronger structure of being a
finite-signed measure over a σ-algebra.
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Consider a sample space,Ω, define by a non-empty set. An event algebra, E,
is then a non-empty collection of subsets of Ω such that:

1. Ω \ α ∈ E for all α ∈ E (closed under comeplementation);
2. α ∪ β ∈ E for all α, β ∈ E (closed under finite union);

By definition we have that ∅ ∈ E, Ω ∈ E, and E is closed under-finite intersec-
tion. We can then define a quasi-probability model as a triple (Ω,E, µ̃) where
the three elements are a sample space, an event algebra, and a quasi-measure
µ̃ which is a set function µ̃ : E → R which is such that µ̃(Ω) = 1 (normalised).
Two important features that a quasi-probability model does not have are σ-

additivity and positivity. The first is since we have not insisted that the event
algebraE is aσ-algebra; it need not be closed under countable unions.5 The sec-
ond is since we have not insisted that the quasi-measure µ̃ is a measure; it need
not be positive (nor indeed σ-additive). Strengthening the model to include
these features results in the familiar formal structure of a classical probability
model.
In parallel to the idea of a quasi-measure we can consider a quasi-probability

density function. This is a function that induces a quasi-measure in a manner
analogous the way in which a probability density function induces a probability
measure. Assuming already that we are in a phase space representation where
the space R2N is equipped with the usual symplectic chart (q,p) and an integra-
tion measure dqdp we can introduce the a quasi-probability density function as
a function F : R2N → R that induces a quasi-measure µ̃ such that:

µ̃(C) =
∫
C
F(q,p)dNqdNp (6.1)

for some collections of sub-regions of the state space C ⊂R2N and the normal-
isation can be defined via the condition:

µ̃(Γ) = lim
n→∞

∫
Bn
F(q,p)dqdp = 1 (6.2)

where Bn = {(q,p) | |q|2 + |p|2 ≤ rn} and limn→∞ rn = ∞ (Aniello, 2016).
The role of the limits in (6.2) are crucial. In particular, they impose a weaker
condition of normalisation that is compatible with the failure of Lebesgue
integrability.
Consider, in particular, the Wigner quasi-probability representation, to be

discussed in more detail shortly. In this context, it can be proved that the

5 For a detailed discussion of relationship between forms of additivity and classical and quantum
probabilities see Arageorgis, Earman, and Ruetsche (2017).
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relevant quasi-probability density function, the Wigner function, is not neces-
sarily Lebesgue integrable (Daubechies, 1983) and thus that there exists F(q,p)
such that:

µ̃(R2N) =
∫
R2N
| F(q,p) | dNqdNp ≮ ∞ (6.3)

One can show, however, that the Wigner function is an element of L2(T⋆R) ∩
C0(T⋆R) and is thus a square integrable and continuous function on the phase
space (Landsman, 2012, p. 142). Moreover, the induced quasi-measure is σ-
additive and the Wigner function induces a finite signed measure (Dias, de
Gosson, & Prata, 2019).
As noted in Dawid and Thébault (2025), a further important feature of the

Wigner quasi-probability density function, W, is a restriction of the essential
support to volumes of phase space greater than equal to one in units of ℏ
(Dell’Antonio, 2016, p.19). As noted in Section 4.1, the essential support of
a function, ess sup( f ), indicates the smallest closed subset in the domain of
a measurable function such that the function can be zero ‘almost’ everywhere
outside that subset. Significantly, the essential support of the Wigner function,
ess sup(W), cannot be less than a characteristic volume of one in units of ℏ. We
therefore have that, in contrast to the classical case, it is not possible to con-
centrate a Wigner quasi-probability density almost entirely at a single point.
This amounts to precluding the possibility that the Wigner quasi-probability
density function approximates a δ-function in phase space (Leonhardt, 2010,
p.71). As such, phase space points are not in ess sup(W) and we cannot have a
situation in which the Wigner function is non-zero at a point but zero (almost)
everywhere else.
The bound on the Wigner function, of course, means that δ-functions not

admissible quasi-probability density functions. Furthermore, due to the unit
norm, the bound also means that any function that leads to localisation of
the quasi-probably mass of order ℏ are excluded. Physically speaking, these
connections can be understood as a consequence of the Heisenberg uncer-
tainty principle (in generalised Robertson-Schrödinger form) which, in turn,
is a direct consequence of the non-commutative structure induced by the ⋆-
product, see (Curtright et al., 2013, §5) and (Huggett, Lizzi, & Menon, 2021,
§5.1). In particular, by the Cauchy–Schwarz inequality the Wigner function is
bounded such that − 1

ϵ ≤ W(q,p) ≤ 1
ϵ with ϵ = ℏ

2 . Significantly, the bound
and the corresponding failure of the localisability of the Wigner function are
independent from its negativity.
We will provide a more detailed presentation of the Wigner function in Sec-

tion 6.3. In preparation for this discussion in the following Section 6.2, before
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we will provide an abstract characterisation of quantum phase space model to
parallel the presentation of stochastic phase space models in Section 4.2.

6.2 Quantum Phase Space Models
Following, Dawid and Thébault (2025), a phase space representation of a quan-
tum possibility space model is a triple is a triple (Γ,O,F) that takes the
following form:

1. State Space: Γ = R2N represents the space of possible states of system
as a 2N-dimensional symplectic manifold equipped with the closed non-
degenerate two form ω = dq ∧ dp and associated volume measure dqdp in
the Darboux chart;

2. Observable Algebra: A represents observables as a (non-commutative)
Moyal algebra of Weyl symbols which are the Wigner transforms of the
algebra of (Weyl ordered) bounded linear operators B(H) on a Hilbert space
of square integral functionsH = L2(R2N). The binary operation is given by
a⋆-product operation which can be expressed as a pseudo-differential oper-
ator in powers of ℏ and the non-commutativity of the algebra is expressed
via the fundamental relation that [Â, B̂] = {{A,B}} ≡ 1

iℏ (A ⋆ B − A ⋆ B)
for all A,B ∈ A and all Â, B̂ ∈ B(H). The distinguished function H ∈ A
induces a time evolution automorphism via the Moyal bracket such that
d
dtA = {{A,H}} for all A ∈ A;

3. Quasi-ProbabilityDensity Function: is a possibility spaceweighting func-
tion F(q,p) : Γ → R that induces a quasi-measure µ̃(B) =

∫
B F(q,p)dqdp

that satisfies the conditions:

(a) µ̃(Γ) = limn→∞
∫
Bn

F(q,p)dqdp = 1 where Bn = {(q,p) | |q|2 + |p|2 ≤
rn} (normalised)

(b) | F(q,p) |≤ 1
ϵ (bounded)

(c) If B1, . . . ,Bn, . . . ∈ B with Bi ∩ Bj = ∅ for i , j then µ̃(∪∞n=1Bn) =∑∞
n=1

∫
Bn
F(q,p)dqdp (σ-additive)

where B ∈ B are the Borel sets B(R2N)
4. Expectation Values: 〈A〉 is the expectation value or mean of an observable

defined as: 〈A〉 ≡
∫
Γ
A(q,p)⋆F(q,p)dqdp for all A ∈ A.

The model provides an interpretation (assignment of meaning) to a quasi-
probability structure as follows: The state space Γ is the sample space Ω and
the event algebra A is given by regions of phase space of volume greater than
or equal to some minimum volume which depends upon ϵ . The quasi-measure
µ̃ is given by the integral of the quasi-probability density function with respect
to the volume measure.
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6.3 The Wigner Function
The central formal object of the phase space formulation of quantum theory is
the Wigner function, W(q,p) (E. Wigner, 1932). The Wigner function is the
most widely used quasi-probability distribution function on phase space. A
concise and very clear introduction to the Wigner function and the quantum
phase space formalism is Curtright et al. (2013). Further useful discussions
can be found in Case 2008); De Gosson (2017) Hillery, O’Connell, Scully,
and Wigner (1984); Leonhardt (2010); O’Connell and Wigner (1981). The
small philosophical literature is principally consists of the discussions found
in Cohen (1966); Friederich (2021); Sneed (1970); Suppes (1961); Wallace
(2021). A concise formal overview which includes extension to non-canonical
phase space variables can be found in Dubois, Saalmann, and Rost (2021).
The most general form of theWigner function is in terms of a transformation

of the density matrix operator ρ̂ defined on some Hilbert space H. Signifi-
cantly, this presentation of the function is well defined for pure or mixed states.
Explicitly, we writeW(q,p) as

W(q,p) = 1
2π

∫
dq′〈q − q′ | ρ̂ | q + q′〉e−iq′p (6.4)

where q and p represent classical phase space position and momentum values.6

For a pure state with spatial wavefunction ψ(q) we can provide a more
explicit representation of the Wigner function as:

Wψ(q,p) =
1
2π

∫
dq′ ψ∗

(
q − ℏ

2
q′

)
e−iypψ

(
q +
ℏ

2
q′

)
(6.5)

For a normalised input wavefunctions it is normalised since we have that:∫
dpdqWψ(q,p) = 1 (6.6)

The Wigner function does not privilege the spatial over momentum wavefunc-
tion. We can see this by considering the Fourier transform to the momentum-
space wavefunction:

ϕ =

∫
dq e

iqp
ℏ ψ(q) 1

√
2πℏ

(6.7)

6 Formally, the Wigner function is the symmetrically ordered complex Fourier transform of
the characteristic function on the quantum phase space. For instructive explicit treatments
in the context of Bosonic systems see Weedbrook et al. (2012) and Adesso, Ragy, and Lee
(2014).
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which leads to a symmetric expression for the Wigner function for momentum
space wavefunction ϕ(p) with the roles of q and p switched:

Wϕ(q,p) =
1
2π

∫
dp′ ϕ∗

(
p − ℏ

2

′)
e−ip

′qϕ

(
p +
ℏ

2
p′

)
(6.8)

These expressions are for a pure state.
Among the quasi-probability distribution that we may define on phase space

the Wigner function can be picked out based upon a particular symmetric oper-
ator ordering.7 It can also be motivated on physical grounds. In particular,
althoughWigner originally proposed the choice of a function of the form (6.5),
based upon simplicity considerations, he was later able to show that theWigner
function is implied uniquely by two overlapping subsets of conditions, each of
which has a clear physical motivation. The conditions are:

1. Real. The Wigner function is a real function, Wψ(q,p) = 〈ψ |Â(q,p)|ψ〉 for
Â(q,p) a self-adjoint operator depending upon q and p.

2. Probability Shadow. The p and q projections of the Wigner function lead
to marginal probability distributions and the function is normalised; that is,
we have that: i)

∫
dpWψ(q,p) =|ψ(q)|2; ii)

∫
dqWψ(q,p) =|ψ(p)|2; and iii)∫

dqdpWψ(q,p) = 1
3. Galilei Covariant. The Wigner function should be Galilei covariant; that

is, we have that if ψ(q) → ψ(q + a) then Wψ(q,p) → Wψ(q + a,p) and if
ψ(q) → eip′q/ℏψ(q) thenWψ(q,p) → Wψ(q,p − p′)

4. Reflection Covariant. TheWigner function should be covariant under reflec-
tions in space and time; that is, if ψ(q) → ψ(−q) then Wψ(q,p) →
Wψ(−q,−p) and if ψ(q) → ψ∗(q) thenWψ(q,p) → Wψ(q,−p)

5. Newtonian. The Wigner function for the force-free case should recover the
classical equation of motion; that is, we should have that:

∂Wψ

∂t
= − p

m
∂Wψ

∂q
(6.9)

6. Overlap Integral. The overlap between two wavefunctions can be expressed
in terms of their Wigner functions as:����∫ dqψ∗(q)ϕ(q)

����2 = (2ϕℏ)∫ dqdpWψ(q,p)Wϕ(q,p) (6.10)

The conditions 1–6 all have a physical motivation that could plausible be
understood to come from our expectations regarding the empirical content of
quantum physics and the need to recover the empirical content of classical

7 See (Barnett & Radmore, 2002, §4) for discussion.
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physics in the appropriate limit. The condition 6 implies that if ϕ and ψ are
orthogonal then:

(2ϕℏ)
∫

dqdpWψ(q,p)Wϕ(q,p) = 0 (6.11)

which means that Wψ(q,p) cannot be everywhere positive. The uniqueness of
the expression for the Wigner function of a pure state (6.5) then can be alterna-
tively derived from the combination of 1–5 (E. Wigner, 1979) or from 1 to 4 and
6 (O’Connell & Wigner, 1981). These results can be generalised to the case of
mixed states. Most significantly, it can be proved that any quasi-probability
distribution function of the form F(q,p) = 〈ψ |Â(q,p)|ψ〉 which and repro-
duces the marginal probability densities cannot also be positive semi-definite
(E. P. Wigner, 1971). Wigner negativity is evidently a distinctive non-classical
feature of the Wigner function. The size of the regions of negativity in phase
space are of order ℏ which will be important in what follows. Significantly, the
subset of Wigner functions that correspond to minimum uncertainty coherent
states can be shown to be everywhere positive (and visa versa) (Hudson, 1974;
Mariño, 2021).
Despite its negativity theWigner function has a number of attractive features

that mark it out as privileged among the quasi-probability distribution func-
tions. In particular, the density and marginal features noted earlier crucially
depend upon the ⋆-product associated to the Wigner function being the Moyal
⋆-product product. This is what allows one ⋆-product to be dropped inside an
integral via integration by parts leading to formal behaviour that matches that of
a genuine probability density function for themarginals and expectation values.
This feature is in contrast to the Husimi Q-function for which the associated
product ⋆⃝ cannot be integrated out and leads to marginals distributions that
do not correspond to those of quantum mechanics (Curtright et al., 2013, §13).
Thus, although the Q-function is positive definite, it has features that make
any potential connection with genuine probability densities much less direct.
Moreover, as per our definition of a quasi-probability density function, both the
Wigner function and the Q-function are bounded (ϵ = π for the Q-function) and
thus cannot be concentrated (almost) entirely in at a single phase space point
as per our earlier discussion. There is also the Glauber–Sudarshan P-function.
This function, which can also be negative, is strictly not a quasi-probability
density as per our definition since it is not bounded. Further, despite its usage
in various areas of optics, the function is the most pathological member of the
quasi-probability family and may fail to exist as a well-tempered distribution
(Leonhardt, 2010, p. 82). As such, theWigner function is certainly better placed
to be the distinguished representation of quasi-probability.
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6.4 The Weyl Transform and the Moyal Bracket
The transformation between the density matrix ρ̂ and the Wigner function W
can be generalised to an arbitrary operator Â as:

A(q,p) = 1
2π

∫
dq′〈q − q′ | Â | q + q′〉e−iq′p (6.12)

Where we understand A(q,p) to be the Weyl transform for the operator Â. As
such theWeyl transform coverts an operator onHilbert space, with the preferred
Weyl operator ordering, into a function on phase space.
An important property of the Weyl transform is that the trace of the product

of two operators Â and B̂ is expressed in phase space in terms of the integral of
the product of the relevant Weyl transforms:

Tr[ÂB̂] = 1
ℏ

∫ ∫
A(q,p)B(q,p)dqdp (6.13)

This immediately implies that we can express the expectation value of an
operator as:

〈A〉 = Tr[ρ̂B̂] =
∫ ∫

W(q,p)A(q,p)dqdp (6.14)

As such the Wigner function can be identified as the role of an analogous to a
classical probability density in that we obtain the average value of a quantity
by integrating over that quantity multiplied by the Wigner function. We know,
of course, that the Wigner function is a quasi-probability density and thus we
should not take the analogy at face value.
For simple operators that can be expressed as sums of q̂ and p̂ (i.e. do not

have terms of the form q̂p̂ or q̂2p̂) the Weyl transform returns the unmodified
classical observable expression. We will see this in our treatment of the quan-
tum oscillator in Section 6.6. In general, however, as noted, both the Wigner
function in particular, and theWeyl transform in general, are defined in terms of
a preferred operator ordering. For a general operator this means that the reso-
lution of operator ordering ambiguities will introduce ℏ quantum corrections
to the phase space observables and thus the functions A(q,p) cannot be simply
equated with the observables of the classical Hamiltonian system. For more
details see (Curtright et al., 2013, §12).
As we saw in at the end of Section 3.2, the observables of a classical Ham-

iltonian system form a Lie algebra with the Poisson bracket the associated Lie
bracket. Similarly, the observables of a quantum system in the Hilbert space
formalism also form a Lie algebra, and in this case the commutator is the asso-
ciated Lie bracket. It is natural then to seek to define analogous structures in the
quantum phase space formalism. In this context we define the Moyal bracket
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of two observables in the quantum phase space formalism as equivalent to the
commutator of the corresponding operators under the Weyl transform. That is,
we have that:

iℏ[[A(q,p),B(q,p)]] ≡ [Â, B̂] (6.15)

The Moyal bracket is a Lie bracket and can be derived as the unique one-
parameter (ℏ) associative deformation of the Poisson bracket.8 Indeed, up
to second order in ℏ the Moyal bracket corresponds to the Poisson bracket
(Dubois et al., 2021). We thus have that:

[[A,B]] = {A,B} + O(ℏ2) (6.16)

In order to provide an intrinsic expression for the Moyal bracket we can
introduce the ⋆-product which takes the form:

⋆ ≡ exp(←−∂ q
−→
∂ p −

←−
∂ p
−→
∂ q) (6.17)

where the over arrows imply application of the partial derivative to the left-hand
and right-hand side of the ⋆-product respectively. That is, we have that:

A(q,p)←−∂ qB(q,p) =
∂A(q,p)
∂q

B(q,p)

A(q,p)−→∂ qB(q,p) = A(q,p)∂B(q,p)
∂p

We can write the Moyal bracket in terms of the ⋆-product as:

iℏ[[A(q,p),B(q,p)]] = A(q,p)⋆B(q,p) − B(q,p)⋆A(q,p) (6.18)

The ⋆-product involves exponentials of derivative operators and in prac-
tice is most easily evaluated through translation of function arguments
(Curtright et al., 2013, Lemma 1.):

A(q,p)⋆B(q,p) = A
(
q +

iℏ
2
−→
∂ p,p −

iℏ
2
−→
∂ q

)
B(q,p) (6.19)

This formulae is actually one representative of a general pattern of representa-
tions of the Moyal star product bidifferential operator expansions that takes the
form:

(A⋆B)(q,p) = A
(
q +

iℏ
2
−→
∂p,p −

iℏ
2
−→
∂q

)
B(q,p) (6.20)

= A(q,p)B
(
q − iℏ

2
←−
∂p,p +

iℏ
2
←−
∂q

)
(6.21)

8 For a foundational discussion that includes the related notion of deformation quantisation, see
Feintzeig (2022).
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= A
(
q +

iℏ
2
−→
∂p,p

)
B

(
q − iℏ

2
←−
∂p,p

)
(6.22)

= A
(
q,p − iℏ

2
−→
∂q

)
B

(
q,p +

iℏ
2
←−
∂q

)
. (6.23)

Later we will find these expressions of particular use for explicitly calculating
Moyal star products in mechanical examples.
It is also possible to write the⋆-product in terms of a generalised convolution

integral via the Fourier transform, see Baker (1958) and (Curtright et al., 2013,
pp. 44-5). If there is only one ⋆-product involved we can recover the plain
product as:∫

dpdqA⋆B =
∫

dpdqA⋆B =
∫

dqdpAB (6.24)

Static Wigner functions can be shown to obey the ⋆-genvalue equation
(Curtright et al., 2013, Lemma 3.):

H(q,p)⋆W(q,p) = H
(
q +

iℏ
2
−→
∂ p,p −

iℏ
2
−→
∂ q

)
W(q,p) = EW(q,p) (6.25)

where E is the energy eigenvalue of the time-independent Schrödinger equa-
tion, Ĥψ = Eψ.

6.5 Moyal’s Equation and Ehrenfest’s Theorem
The basic dynamical equation for phase space quantum mechanics is Moyal’s
equation which expresses the rate of change of any observable A(q,p) via the
Moyal bracket as:

∂A(q,p)
∂t

=
1
iℏ
(H(q,p)⋆A(q,p) − A(q,p)⋆H(q,p)) (6.26)

= [[H(q,p),A(q,p)]] (6.27)

where H(q,p) is the Weyl transform of the Hamiltonian operator Ĥ. As noted,
H(q,p) will not in general be equivalent to the classical Hamiltonian function
but will rather have order quantum corrections.
Applying Moyal’s equation to the Wigner function W(q,p) gives us an

expression of the form:

∂W(q,p)
∂t

= [[H(q,p),W(q,p)]] (6.28)

= {H(q,p),W(q,p)} + O(ℏ2) (6.29)

Expressing things in this form allows an instructive comparison between the
quantum and classical phase space formalisms. In particular, recall that the
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Liouville equation for a classical probability density (4.18) took the form:

∂ρ(q,p)
∂t

+ {ρ(q,p),Hcl(q,p)} = 0 (6.30)

wherewe havewritten the classical Hamiltonian function asHcl(q,p) for clarity.
By contrast, for phase space quantum mechanics we have that

∂W(q,p)
∂t

+ {W(q,p),H(q,p)} = O(ℏ2) (6.31)

Thus the quantum correction terms express precisely the sense in which the
Wigner function fails to behave like its classical counter part. In other words,
quantum phase space representations encode the failure of classicality in terms
of the failure of Liouville’s theorem. In particular, we find that the O(ℏ2)
higher momentum derivatives of the Wigner function that are present in the
Moyal bracket, but absent in the Poisson bracket, modify the Liouville flow
into characteristic quantum configurations (Curtright et al., 2013, p. 59).
A particularly beautiful visualisation of this way of thinking about

the classical-quantum distinction comes from the interpretation of (quasi-
)probability density as a phase space fluid flow. Whereas in the classical case
Equation (4.18) means that the flow of the classical probability density ρ(q,p)
on phase space is interpreted in terms of the flow of a incompressible fluid,
the contrasting Equation (6.28) means that the flow of the quantum quasi-
probability density on phase space, W(q,p) is interpreted in terms of the flow
of a compressible fluid.
We can see this even more explicitly by considering an the flux integral for

an arbitrary region ∆ about some representative point in phase space:

d
dt

∫
∆

dqdpW =
∫
∆

dqdp
(
∂W
∂t
+ ∂q(ÛqW) + ∂p(ÛpW)

)
(6.32)

=

∫
∆

dqdp ([[H,W]] − {H,W)}) (6.33)

, 0 (6.34)

In the vivid terms of Curtright et al. (2013) we thus find that ‘the phase space
region does not conserve in time the number of point swarming about the repre-
sentative point: points diffuse away, in general, without maintaining the density
of the quantum quasi-probability fluid; and, conversely they are not prevented
form coming together, in contrast for deterministic flow behaviour’ (p. 58). The
quasi-probability density associated with regions of phase space thus mani-
fests a local violation of additivity over time in marked contrast to the classical
probability density function in phase space.
A further, and significant, application of Moyal’s equation is to the recovery

of semi-classical equations of motion. In particular, we can express the rate
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of change of the average of a time-independent quantum phase space function
A(q,p) as:

d〈A〉
dt
=

∫
dqdp

∂W
∂t

A (6.35)

=
1
iℏ

∫
dqdp (H⋆W −W⋆H)⋆A (6.36)

=
1
iℏ

∫
dqdpW[[A,H]] (6.37)

= 〈[[A,H]]〉 (6.38)

This is the general form of the Ehrenfest relation in the quantum phase space
formalism.
Assuming that we have a Hamiltonian of the standard form, H(q,p) = 1

2p
2 +

V(q), where all constants are set to 1, then we immediately get for the first two
moments that:

d
dt
〈q〉 = 〈[[q,H]]〉 (6.39)

d
dt
〈p〉 = 〈[[p,V(q)]]〉 (6.40)

Consider the second equation. To compute the relevant brackets we just need
the identity:

[[p,F(q)]] = −dF(q)
dq

(6.41)

This holds for any polynomial function F(q) and can be straightforwardly
derived by application of the Bopp shift formulas (6.20) and (6.21) (or equiva-
lently via the Taylor expansions).
Applying (6.41) for A = p in (6.35) immediately gives us:

d〈p〉
dt
=
1
2
〈[[p,p2]]〉 + 〈[[p,V(q)]] (6.42)

= 〈[[p,V(q)]]〉 (6.43)

= −
〈
dV(q)
dq

〉
(6.44)

This is, of course, simply to recover Hamilton’s second equation (which is
a form of Newton’s second law) as a semi-classical equation for the first
moments. Moreover, it is precisely the same formula as we derived for the
first momentum moment in stochastic Ehrenfest relation (4.25) in Section 4.4.
More interestingly, as per our earlier discussion, we find that the average

position and the average momentum in the quantum phase space formalism
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will follow a classical trajectory only if we have that:〈
dV(q)
dq

〉
≈ dV(〈q〉)

dq
(6.45)

In this sense we find that the approximate limiting relation is between
stochastic phase space and quantum phase space formalism. The classical deter-
ministic phase space theory may fail to be even approximately recovered for
suitably wide distributions or whenever the higher-order moments become
relevant.
This highlights the idea articulated in Ballentine and McRae (1998) that the

classical limit of a quantum theory is not a single deterministic classical trajec-
tory in phase space, but an ensemble of trajectories in a stochastic phase space.
In particular, the averages and higher moments of the quantum and classical
distributions can agree in situations where neither is approximately obeying
Newton’s laws for deterministic evolution.

6.6 Quantum Harmonic Oscillator
Let us conclude our discussion by returning to our old friend the one-
dimensional simple harmonic oscillator. We again have a Hamiltonian of the
form:

H(q,p) = 1
2

(
q2 + p2

)
(6.46)

where we have set k = m = 1 for convenience. Evidently there is no operator
ordering ambiguity so we can use the classical expression for the Hamiltonian
in the quantum phase space formalism.
Application of the ⋆-genvalue equation (6.25) gives us:((

q +
iℏ
2
∂p

)2
+

(
p − iℏ

2
∂q

)2
− 2E

)
W(q,p) = 0 (6.47)

Taking the imaginary part of this equation gives us an expression of the form:

(q∂p − p∂q)W(q,p) = 0 (6.48)

which implies we can restrict W to a function W(z) depending upon a phase
space scalar z = 4

ℏH =
2
ℏ (q2 + p2).

The real part of the ⋆-genvalue equation then gives us:(
z
4
− z∂2z − ∂z −

E
ℏ

)
W(z) = 0 (6.49)
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which we can solve with an ansatz W(z) = e −z2 L(z) where L(z) is the Laguerre
polynomial:

Ln =
1
n!
ez∂nz (e−zzn) (6.50)

The ⋆-genvalue functions for the simple harmonic oscillator are given by:

Wn =
(−1)2
πℏ

e−2H/ℏLn
(
4H
ℏ

)
(6.51)

The first three ⋆-genvalue functions are graphed in Figure 6.9 Further analysis
of this model can be found in (Curtright et al., 2013, §7).
Let us then derive the Ehrenfest relation in the quantum phase space

formalisms for the first moments. From (6.35) we have that:

d〈A〉
dt
= 〈[[A,H]]〉 (6.52)

=
1
2
〈[[A,q2]]〉 + 1

2
〈[[A,p2]]〉 (6.53)

For A = q we have:

d〈q〉
dt
=

1
2iℏ

∫
dqdpW[[q,p2]] (6.54)

=

∫
dqdpWp (6.55)

= 〈p〉 (6.56)

where we have used the relations that [[q,p2]] = [[q,p]] ⋆ p + p ⋆ [[q.p]] and
[[q,p]] = iℏ.
Applying (6.41) for A = pmeans in case of the quantum Harmonic oscillator

we get:

d〈p〉
dt
= −〈q〉 (6.57)

Combining (6.54) and (6.57) gives us the characteristic ODE for a Harmonic
oscillator expressed in terms of the first moments of position:

d2〈q〉
dt2

= −〈q〉 (6.58)

6.7 Further Topics of Study
• Wigner Negativity, Contextuality and Entanglement (Booth, Chabaud, &
Emeriau, 2022; Okay, Bermejo-Vega, Browne, & Raussendorf, 2017).

9 Credit Samira Bahrami (2011), “Wigner Function of Harmonic Oscillator” Wolfram Demon-
strations Project. demonstrations.wolfram.com/WignerFunctionOfHarmonicOscillator/
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Figure 6 Wigner ⋆-genvalue function PWn (q,p) for the simple harmonic
oscillator for n = 1,2,3.
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• Weak values and the Wigner transform (De Gosson, 2017, §12.3)
• Q-function Interpretation of Quantum Theory (Friederich, 2021; Schroeck,
2013).
• Kirkwood-Dirac Distribution (Umekawa, Lee, & Hatano, 2024).

7 Decoherence and Open Quantum Phase Space Mechanics

Most interesting systems are much too complicated to be
describable in practice by the underlying microscopic laws of
physics. [. . .] Practical considerations force one to seek for
a simpler, effectively probabilistic description in terms of an
open system’s dynamics. The use of probability theory allows
the treatment of complex systems which involve a huge or even
an infinite number of degrees of freedom. This is achieved by
restricting the mathematical formulation to an appropriate set
of a small number of relevant variables. Experience shows that
under quite general physical conditions the time evolution of
the relevant variables is governed by simple dynamical laws
which can be formulated in terms of a set of effective equa-
tions of motion. The latter take into account the coupling to
the remaining, irrelevant degrees of freedom in an approximate
way through the inclusion of dissipative and stochastic terms.

(Breuer & Petruccione, 2002, p.viii)

7.1 The Fourier Transform and the Heat Kernel
The long-standing and much remarked upon interplay between pure mathem-
atics and applied physics has perhaps no more elegant illustration than the fact
that the Fourier transform was invented as a means to solve the heat equa-
tion. Here we will briefly review some of the basic mathematics behind the
Fourier transform solution to the heat equation with a view to the better under-
standing of the thermal basis of decoherence and open quantum phase space
mechanics. For the most part we follow the elementary textbook discussion of
Craig (2018).
Let us first introduce the notion of a convolution operator. Consider two inte-

grable functions defined on the real line: h(x),g(x) ∈ L1(R1). The convolution
operator is a product operation that returns a further function (h∗g)(x) ∈ L1(R1)
that is given by:

(h ∗ g)(x) =
∫ +∞

−∞
h(x − x′)f (x′)dx′ (7.1)

As such, we can think of the convolution of two functions as an integral product
in which one function is reflected and shifted.
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The convolution product is commutative and associative which means that
if we have that h(x), f (x),g(x) ∈ L1(R1) then it is the case that:

(h ∗ g)(x) = (g ∗ h)(x) (7.2)

(h ∗ (g ∗ f ))(x) = ((h ∗ g) ∗ f )(x) (7.3)

Furthermore, if we have that ∂x f ∈ L1(R1) then we can show that the differen-
tiation operation commutes with the operation of convolution:

∂x(h ∗ f )(x) = h ∗ (∂x f )(x) (7.4)

Both these important properties of the convolution operator can be derived from
the behaviour of the convolution operator under the Fourier transform.
Let us first define the Fourier transform of a function g(x) ∈ L1(R1) as

F(g(x)) ≡ ĝ(ξ) = 1
√
2π

∫ +∞

−∞
e−iξxg(x)dx (7.5)

We will then also have that F(g(x)) ∈ L1(R1). The inverse Fourier transform is
then given by:

g(x) = 1
√
2π

∫ +∞

−∞
e−iξxĝ(ξ)dξ (7.6)

which we assume to be always well-defined. Further, it can be shown that
(∂̂x f )(ξ) = iξ f̂ (ξ) and thus that we can always re-express spatial derivatives
in terms of the Fourier transform (Craig, 2018, Proposition 2.3).
Now, if we consider the Fourier transform of the convolution between

h(x),g(x) ∈ L1(R1), we will have that F((h ∗ g)(x)) is given by:

(�h ∗ g)(ξ) = ∫ +∞

−∞
eiξx

(∫ +∞

−∞
h(x − x′)f (x′)dx′

)
dx

=
1
√
2π

∫ +∞

−∞

∫ +∞

−∞
e−iξ(x−x

′)h(x − x′)e−iξx′ f (x′)dx′dx

where we have used Fubini’s theorem. This we can then re-write as:

=
√
2π

(
1
√
2π

∫ +∞

−∞
e−iξx

′
f (x′)

(
1
√
2π

∫ +∞

−∞
e−iξ(x−x

′)h(x − x′)dx
)
dx′

)
=
√
2π f̂ (ξ)ĥ(ξ)

We thus get the fundamental relation (sometimes called the Convolution
Theorem) that under Fourier transform convolution becomes multiplication:�h ∗ g(ξ) = √2πĥ(ξ)ĝ(ξ) (7.7)

From this it is straightforward to show that the convolution product is commu-
tative and associative and commutes with differentiation as aforementioned.
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Let us then consider the heat equation, which is a second-order homogenous
partial differential equation of the form:

0 = (∂t −
1
2
∂2x )u(t,x) (7.8)

where t ∈ R1+ and x ∈ R.
Assume initial data u(0,x) = f (x) ∈ L1(R1) and that u(t,x) is sufficiently

well-behaved that we can define its Fourier inversion:

u(t,x) = 1
2π

∫ +∞

−∞
eiξxû(t, ξ)dξ (7.9)

Using the relation (∂̂x f )(ξ) = iξ f̂ (ξ)which was assumed earlier we can re-write
the heat equation as:

d
dt
û(t, ξ) = −1

2
ξ2û(t, ξ) (7.10)

which is a second-order ordinary differential equation with a solution of the
form:

û(t, ξ) = e−
1
2 ξ

2tû(0, ξ) = e−
1
2 ξ

2t f̂ (ξ) (7.11)

where f̂ (ξ) is the Fourier transform of the initial data. We thus have the solution
to the heat equation in Fourier transform space and simply need to transform
back to get the solution in the original space.

u(t,x) = 1
2π

∫ +∞

−∞
eiξxû(t, ξ)dξ (7.12)

=
1
2π

∫ +∞

−∞
eiξx(e− 1

2 ξ
2tf̂ (ξ))dξ (7.13)

=
1
2π

∫ +∞

−∞

∫ +∞

−∞
eiξ(x−y)e−

1
2 ξ

2tf ( y)dydξ (7.14)

=

∫ +∞

−∞

1
2π

(∫ +∞

−∞
eiξ(x−y)e−

1
2 ξ

2tdξ
)
f ( y)dy (7.15)

=

∫ +∞

−∞
H(t,x − y) f ( y)dy (7.16)

where we have introduced the heat kernel function H(t,x) which can be shown
to have the explicit Gaussian form:

H(t,x) = 1
√
2πt

e−
1
2 x

2/t (7.17)

The definition of the convolution product from earlier then allows us to write
the general solution to the heat equation in terms of the convolution of the heat
kernel with the initial data as:
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u(t,x) =
∫ +∞

−∞
H(t,x − x′)f ( y)dx′ (7.18)

= (H(t, ·) ∗ f )(x) (7.19)

We thus arrive at the general result that the evolution equation for a smooth
initial distribution under a diffusion equation (with constant diffusion coeffi-
cient) is equivalent to the convolution of the initial distribution with a Gaussian.
This is the most physically important illustration of a Weierstrass transform,
also known as Gaussian smoothing or Gaussian filter. The physical effect is
for the initial distribution to be progressively smoothed towards a Gaussian
distribution just as one would expect in a physical diffusion process. Such
transformations have a fundamental importance in signal analysis and image
processing. This physical understanding of theWeierstrass transform as Gauss-
ian smoothing via heat kernel convolution will prove crucial to understanding
decoherence in an open quantum phase space formalism.

7.2 Open and Closed Quantum Theory
In the context of quantum physics the distinction between closed and open is
best understood as picking out the distinction between models that are uni-
tary and non-unitary rather than between quantum systems that do or do not
have interactions with an external environment. This way of understanding the
open/closed distinctions accords with much but not all physical practice and is
defended at length in Ladyman and Thebault (2024), which we partially follow
in the following.
Let us first consider some important formal properties of unitarity in relation

to probability, purity and entropy. First, most straightforwardly, unitarity is
sufficient but not necessary for probability conservation since there are non-
unitary dynamical equations that preserve probability. In particular, in the
density matrix formalism, where a state is represented by a positive semi-
definite operator of unit trace, ρ, a map is probability preserving if it is
trace-preserving. A map being unitary then a sufficient but not necessary
condition for a map to be trace-preserving.
In general, unitary time evolution conserves the norm induced by the inner

product on Hilbert space. It can be shown that unitary time evolution is suffi-
cient (although again not necessary) for the preservation of the purity of a
quantum state when represented as a density operator. Explicitly, the purity
of a state is given by γ = Tr(ρ2). Pure states are such that γ = 1. The quantum
operation Λ(ρ) = UρU † preserves the purity of ρ if U is a unitary operator
(Jaeger, 2007).
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Purity preservation is equivalent to the conservation of linear entropy since
SL = 1−γ. There is also a connection between unitarity and the conservation of
the informational or von Neumann entropy S = −Tr(ρlnρ)). In particular, the
von Neumann entropy is also invariant with respect to the quantum operation
Λ(ρ) = UρU † since we have that S(UρU †) = S(ρ) (Breuer & Petruccione,
2002, §2.3). Hence, unitary closed system dynamics conserves both the linear
and von Neumann entropies and non-unitary open system dynamics allows for
entropy non-conservation.
To provide a concrete representation of open and closed system quantum

models let us first consider the paradigmatic equation for a unitary quantum
dynamics of density operators, the von Neumann equation:

Ûρ = −i[H, ρ] (7.20)

where the evolution of density operator ρ will be unitary provided the Hamil-
tonian H is self-adjoint. The von Neumann is simply the Schrödinger equation
expressed in terms of the density matrix rather than the wavefunction.
The paradigmatic equation for open quantum systems is the Lindblad equa-

tion. The Lindblad equation is made up of a unitary part identical to the von
Neumann equation together with a non-unitary part. For an initial pure state the
unitary part reduces to the Schrödinger equation (hence, the Lindblad equation
may be regarded as more general). In physical models the non-unitary part of
the dynamics, encoded in a super-operator D(ρ), corresponds to a dissipator
term that encodes the parameterised effects of decoherence, thermal damping
and noise.
Explicitly, the Lindblad equation can be written:

Ûρ = −i[H, ρ] +
∑
i,j

aij(FiρF†j −
1
2
{F†j Fi, ρ}) (7.21)

= −i[H, ρ] +D(ρ) (7.22)

where the Fi are bounded operators, {, } is the anti-commutator, and the matrix
aij is positive semi-definite (Breuer & Petruccione, 2002, Eq. 3.63).
The more customary diagonal form of the equation is then given by re-

writing the dissipator as (Breuer & Petruccione, 2002, Eq. 3.61):

D(ρ) =
k=N2−1∑
k=1

γk(AkρA†k −
1
2
A†kAkρ −

1
2
ρA†kAk) (7.23)

=

k=N2−1∑
k=1

γk([Akρ,A†k] + [Ak, ρA†k]) (7.24)
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where

Fi =

k=N2−1∑
k=1

ukiAk (7.25)

and the u are unitaries such that the matrix uau† is diagonal with non-negative
eignevalues γi.
The non-unitary dynamics of a system having the Lindblad form is a suffi-

cient (but not necessary) condition for probability to be conserved. We can see
this as follows, following Cuffaro and Hartmann (2024):
First, take the trace of both sides of the full Lindblad equation to arrive at:

Tr( Ûρ(t)) = −Tr(i[H, ρ(t)]) + Tr(D(ρ(t))) (7.26)

The form of D(ρ(t)) is given by (7.24). Then, since, in general, the trace of a
commutator is always zero we then have that Tr( Ûρ(t)) = 0. This then implies
that d

dtTr(ρ(t)) = 0 and thus that Tr(ρ(0)) = Tr(ρ(t)) = 1. Next, consider a
complete set of measurements with outcomes m and corresponding projective
operators Mm. We would then have that

∑
mM†mMm = I. Finally, if pm(t) is the

probability of obtaining a measurement m then:∑
m

pm(t) =
∑
m

Tr(ρ(t)M†mMm) (7.27)

= Tr
∑
m
(ρ(t)M†mMm) (7.28)

= Tr(ρ(0)) = Tr(ρ(t)) = 1 (7.29)

Hence
∑

m pm(t) =
∑

m pm(0) = 1.
We thus have that at the level of probability, open quantum dynamics should

be expected to be globally probability conserving so long as it is modelled via a
master equation in Lindblad form. This is entirely in keeping with our consider-
ations of local quasi-probability fluid non-conservation that obtains in the case
the Wigner-Moyal representation, even for closed quantum systems, since that
formalism also shows both local conservation of probability for the marginals
and global conservation of quasi-probability. Moreover, as shall be expounded
in more detail in Section 8, the fact that open quantum system dynamics con-
serves the total probability of the state of the system encodes an important form
of modal autonomy within the relevant models. The models can represent the
evolution of possibilities of the open system consistently without reference to
a further system despite the model being open. We will return to this idea later.
There is a natural connection between open quantum systems and classical

contact systems. In particular, the semi-classical limit of an open quantum
system model is typically a dissipative classical model as is indicated by the
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interpretation of the non-unitary part of the Lindblad equation as a dissipator.
Most vividly, we can show that the Caldeira-Leggett master equation recovers
the equations of motion for a damped Brownian particle when the Ehrenfest-
type relations are used to derive the equations of motion for the first and second
ordermoments.Wewill show this explicitly in the following section for the har-
monic oscillator recovering the results of (Breuer & Petruccione, 2002, p. 175)
but via the Wigner-Moyal formalism.

7.3 Semi-Classical Damped Quantum Oscillator
The Caldeira-Leggett equation (Breuer & Petruccione, 2002;
Caldeira & Leggett, 1983) is an important example of a quantum master equa-
tion derived via the so-called system-reservoir approach. The derivation starts
by considering a single particle moving in a potential as the system and then
coupling the particle to a bath of harmonic oscillators. One then quantises the
model, traces out the bath and applies a series of approximations leading to
an open systems master equation for the quantum particle only that takes the
characteristic form:

dρ̂
dt
= −i[Ĥ, ρ̂] − 2mγkBT [q̂, [q̂, ρ̂]] − iγ[q̂, {p̂, ρ̂}] (7.30)

where T is temperature, {, } is the anti-commutator and we have assumed
ℏ= 1. The equation is an open quantum model that can be derived from a
closed quantum model of a particle coupled to a bath of oscillators. The dens-
ity matrix is a reduced density matrix for the system after a suitable tracing
operation and application of limits. For more details on the derivation see
(Breuer & Petruccione, 2002, §3.6).
The first term in the Caldeira-Leggett equation is simply the normal unitary

time evolution equation. The second term with the double commutator encodes
the effects of decoherence. The third term then can be understood to encode
the effects of dissipation at a quantum level. We will consider the significance
of the second term in the following section. For the time being, let us focus
our attention on the first and third terms only since these are the terms that
feature in the Ehrenfest relation. This will allow us to explicitly demonstrate the
connection to classical models of dissipation via the Wigner-Moyal formalism.
Let us start by multiplying out the anti-commutator and writing out the

Caldeira-Leggett equation without the decoherence term (since this would drop
out in the Ehrenfest relations in any case). From (7.30) we have:

d
dt
ρ̂ = − i

ℏ

(
[Ĥ, ρ̂] + γ[q̂, p̂ρ̂] + γ[q̂, ρ̂p̂]

)
(7.31)
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Applying (6.15) and (6.18) allows us to re-write the same master equation in
the Wigner-Moyal formalism:

d
dt
W = − i

ℏ
(H⋆W −W⋆H)

− iγ
ℏ
(q⋆ (p⋆W) − (p⋆W)⋆ q) (7.32)

− iγ
ℏ
(q⋆ (W⋆ p) − (W⋆ p)⋆ q)

If we assume that H= p2 + q2 and apply the bidifferential operator represen-
tation of the Moyal star we get:

d
dt
W = − i

ℏ

[(
q +

iℏ
2
−→
∂p

)2
W −W

(
q − iℏ

2
←−
∂p

)2]
− i
ℏ

[(
p − iℏ

2
−→
∂q

)2
W −W

(
p +

iℏ
2
←−
∂q

)2]
− i
ℏ

[(
q +

iℏ
2
−→
∂p

) ((
p − iℏ

2
−→
∂q

)
W

)
−

((
p − iℏ

2
−→
∂q

)
W

) (
q − iℏ

2
←−
∂p

)]
− i
ℏ

[(
q +

iℏ
2
−→
∂p

) (
W

(
p +

iℏ
2
←−
∂q

)
−

(
W

(
p +

iℏ
2
←−
∂q

)) (
q − iℏ

2
←−
∂p

)]
d
dt
W = −p∂W

∂q
+ q

∂W
∂p

− i
ℏ

[(
q +

iℏ
2
−→
∂p

) (
pW +

iℏ
2
∂W
∂q

)
−

(
pW +

iℏ
2
∂W
∂q

) (
q − iℏ

2
←−
∂p

)]
− i
ℏ

[(
q +

iℏ
2
−→
∂p

) (
pW − iℏ

2
∂W
∂q

)
−

(
pW − iℏ

2
∂W
∂q

) (
q − iℏ

2
←−
∂p

)]
Together these imply that the Caldeira-Leggett equationwithout the decoher-

ence term is equivalent to a Fokker-Planck equation for the Wigner function of
the form:

d
dt
W = −p∂W

∂q
+ q

∂W
∂p
+ 2

∂

∂p
(pW) (7.33)

The difference between the two entirely encoded in the difference between a
Wigner quasi-probability distribution and a classical probability distribution
as per our earlier discussions, that is, negativity, failure of localisability, and
failure of local conservation over time.
The rate of change of the average of a time-independent quantum phase space

function is then given by the analogue of (6.35) which is:

d〈O〉
dt
=

∫
dqdp

∂W
∂t

O (7.34)

=
1
iℏ

∫
dqdp [(H⋆W −W⋆H)⋆O
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+ γ (q⋆ (p⋆W) − (p⋆W)⋆ q)⋆O (7.35)

+ γ (q⋆ (W⋆ p) − (W⋆ p)⋆ q)⋆O

We can then substitute in the Moyal brackets and use the triple product rule
A⋆ (B⋆C) = (A⋆B)⋆C to re-write this as:

d〈O〉
dt
=

1
iℏ

∫
dqdpW [[A,H]]

+
γ

iℏ

∫
dqdp [(p⋆W)[[O,q]] + (W⋆K)[[O,q]]]

= 〈[[O,H]]〉 + γ

iℏ

∫
dqdp [(p⋆W)[[O,q]] + (W⋆ p)[[O,q]]]

Since [[q,q]] = 0 we immediately have that for O = q:

d〈q〉
dt
= 〈[[q,H]]〉 (7.36)

which is identical to the closed quantum system expression (6.35). The famil-
iar simple harmonic Hamiltonian, H(q,p) = 1

2mp
2 + 1

2kq
2, gives the explicit

expression:

d〈q〉
dt
=

1
m
〈p〉 (7.37)

as per the free particle case consider in (6.54). More interestingly for O = p we
have that:

d〈p〉
dt
= 〈[[p,H]]〉 + γ

iℏ

∫
dqdp [(p⋆W)[[p,q]] + (W⋆ p)[[p,q]]]

= 〈[[p,H]]〉 + 2γ
∫

dqdpWK

= 〈[[p,H]]〉 + 2γ〈p〉

where we have assumed that [[q,p]] = iℏ and used (6.24). For the general
Hamiltonian H = 1

2mp
2 + V(q) this will give us an expression that takes the

form:
d〈p〉
dt
= 〈[[p,H]]〉 + 2γ〈p〉

= 〈[[p,V(q)]]〉 + 2γ〈p〉

= −
〈
dV(q)
dq

〉
+ 2γ〈p〉

Where we have applied (6.41) once more. We thus have that 〈q〉 is given by the
solution to the ODE:

d2

dt2
〈q〉 + 2γ d

dt
〈q〉 + 2〈q〉 = 0 (7.38)

which is of equation for a damped oscillator as expected.
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We thus have a direct formal connection between classical contact systems
and open quantum systems with dissipation. This could have been expected
from the form of the equations for the first moments which is structurally very
similar to the contact Hamilton’s equations. Exploration of these connections
is an outstanding and highly important physical and mathematical challenge.
For recent work see Cruz-Prado, Bravetti, and Garcia-Chung (2021).

7.4 Wigner Negativity and Decoherence
Let us now consider the behaviour of the Wigner function within a simple
model of decoherence with a focus on the role of Wigner negativity due to Joos
and Zeh (1985). The Joos-Zeh equation can be derived based on a idealised
decoherence model with recoilless scattering that carries away information but
not momentum of a quantum particle. As such it is a minimal model for position
localisation of a quantum particle via the destruction of coherence. More real-
istic models include noise and dissipation terms but share the central formal
feature of Gaussian-smoothing via heat kernel convolution as per our earlier
discussion.
The Joos-Zeh master equation takes the explicit form:

dρ̂
dt
= − i

2m
[p̂2, ρ̂] − D

2
[q̂, [q̂, ρ̂]] (7.39)

where we have assumed a free particle Hamiltonian and the decoherence time
scale will be t0 =

√
m/D. Physically, the localisation rate,D, measures how fast

interference between different positions disappears for distances smaller than
the wavelength of the scattered particles. It has units cm−2 s−1 and includes a
factor of ℏ−2 and a linear dependence on temperature (Joos et al., 2013, §3.2.1).
This is, of course, just the first two terms of the Caldeira-Leggett equation.
Using the same approach as before, the quantum phase space equation cor-

responding to (7.39) is given by a Fokker-Planck type-equation for the Wigner
function:

∂W
∂t
= − p

m
∂W
∂q
+
D
2
∂2W
∂p2

(7.40)

As with the equation (7.33) we considered earlier, the expression has the same
functional form as a Fokker-Planck type equation for a classical probability
density function. However it is not physically equivalent to such an equa-
tion precisely because the Wigner function is a quasi-probability density with
non-classical features (negativity, failure of localisability, and failure of local
conservation ) as per our earlier discussions.
Following Diósi and Kiefer (2002), the Fokker-Plank equation for the

Wigner function can be demonstrated to be equivalent to a progressive
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Gaussian-smoothing of an initial Wigner function W(Γ; 0). In particular, we
can re-write the Equation (7.40) as a convolution of the form:

W(Γ; t) = g(Γ; CW(t)) ∗W(x − pt/m,p; 0) (7.41)

where g(Γ; CW(t)) is a generalised Gaussian function with time-dependent
correlation matrix:

CW(t) = Dt

(
t2/3m2 t/2m
t/2m 1

)
(7.42)

andwe have used the ∗ symbol for the convolution operation to avoid confusion
with the Moyal star product.
Convolution with a Gaussian function, as per the heat equation discussed

earlier, has the general effect of smoothing the Wigner function. Furthermore,
we can understand decoherence in terms of convolution of the Wigner function
with a Gaussian according to a Weierstrass transform. This is, in fact, pre-
cisely to transform aWigner function into aHusimiQ-function (Curtright et al.,
2013, §13). As such, we should not expect the quantum mechanical mar-
ginal probabilities to be fully recoverable post-decoherence, which is perhaps
unsurprising.
The regions of Wigner negativity are of order ℏ and a Gaussian smooth-

ing can be shown to be such that it will progressively render any initial Wigner
function positive definite.10 Indeed, Diósi andKiefer (2002) show that by Equa-
tion (7.41), any initial state will be such that Wigner function will be strictly
positive after a finite time tD which is of the order of the decoherence timescale
t0 defined earlier. The result of Diósi and Kiefer (2002) demonstrates that even
for the most simple model of decoherence the dynamical equations serve to
smooth-out structure of the Wigner function and eliminate Wigner negativity
almost immediately.

7.5 Further Topics of Study
• Decoherent Histories and Quasi-Measure Theory (Dowker & Wilkes, 2022;
Sorkin, 1994).
• Semi-classical Limit of the Wigner Function (Berry, 1977; Mariño, 2021).
• Decoherence, the Semi-classicality limit, and Probability (Hernández,
Ranard, & Riedel, 2023; Layton & Oppenheim, 2023).
• Wigner Positivity Without a von Neumann Term (Brody, Graefe, &
Melanathuru, 2024).

10 This is true for Gaussian smoothings but does not hold in general for any averaging
(de Aguiar & de Almeida, 1990).
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8 Representation and Possibility
This final section will knit together some of the key ideas of the foregoing six
in the context of our unifying philosophical themes. Our initial focus will be
upon the philosophical significance of phase space formulations of classical and
quantum mechanical theories understood as possibility space representations
with particular reference to the role of Liouville theorem and its failure for the
analysis of the representational capacities of such spaces. We will then turn
to analysis of the modal structure of phase spaces and the idea of appealing to
a form of modal expressivism to both avoid the placement problem for such
structure and better to understanding its pragmatic function.

8.1 Classical Possibility Space Representations
The choice of a symplectic manifold as the representational space for the states
of a family of physical systems has significant implications for the relations
between physical possibilities that our possibility space has the capacity to
represent. Most straightforwardly, symplectic manifolds come equipped with
a standard of isomorphism, symplectomorphism, and as such we can imme-
diately apply the norm of Weatherall (2018) and assert that since isomorphic
mathematical models in physics should be taken to have the same representa-
tional capacities, if a particular symplectic manifold may be used to represent
a given structured set of possible states of affairs, then any symplectomorphic
model be used to represent that a given structured set of possible states of affairs
equally well. In physical practice, this crucial feature of symplectic manifolds
corresponds to our ability to choose arbitrary canonical charts on phase space.
Although the representational norm is implicit in physical and mathematical
practice it is worth stating explicitly at least to clarify that the canonical momen-
tum variables only correspond to Newtonian momentum in a preferred chart,
pace Chua and Callender (2021).
The geometric structure of a symplectic manifold provides us with a frame-

work for representing physical systems as Hamiltonian systems. Hamiltonian
systems represent dynamical possible models of a theory as flows generated by
Hamilton vector fields. These flows are constrained to preserve the symplec-
tic structure that encodes the relationship between the instantaneous position
and canonical momenta variables. This, in turn, implies through Liouville’s
theorem that the phase space volume the trajectories cut-out occupy a con-
stant volume of phase space over time. Thus, for any Hamiltonian system, a
given family of dynamically possible models will occupy a constant volume of
possibility space over time.
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In the formal mode, Liouville’s theorem is a well-known feature of phase
space representations. The interpretative implications of the theorem do not,
however, seem to have been subject to any previous philosophical discussion.
In particular, the theorem constrains the capacity of the space to represent only
sets of possibilities that maintain their distinct evolutions. Since phase space
volume is conserved, every set of instantaneous possibilities picked out by a
dynamical curve will remain distinct. In general, phase spaces with symplectic
structure, and thus a Liouville theorem, cannot represent (fine-grained) sets of
possibilities which have ‘attractors’ such that there is a particular possibility
that gets preferentially selected towards over time.
In the context of a stochastic phase space representations, Liouville’s the-

orem implies that the probability flow is ‘incompressible’. This has similar
but non-identical implications for the relations between possibilities that a
stochastic possibility space has the capacity to represent. That is, like in
the Hamiltonian case, Liouville’s theorem constrains the capacity of the
space to represent only sets of possibilities that maintain their distinct evo-
lutions. However, a stochastic possibility space has more structure and thus
more representational capacity: the constraint embodies in Liouville’s the-
orem is manifested in terms of both in the preservation of the underlying
unit volume and in the incompressibility the flow of the probability density
fluid.
The choice of a symplectic manifold as the representational space for the

states of a family of physical systems is also restrictive with regard to relations
between possibilities that our possibility space has the capacity to represent.
In particular, the geometric structure of Hamiltonian systems and symplec-
tic manifolds is such that we cannot represent families of physical systems
endowed with modal structure corresponding to the shrinking of volumes of
possibility space over time. In the stochastic case this, of course, corresponds
to the fact that the space cannot represent compression (or expansion) of prob-
ability fluid flow and thus the existence of sinks and sources of probability
current.
The contrast we have inmind here is with contact manifolds. Such spaces can

be used to represent structured sets of possibilities in which Liouville’s theorem
is violated and there is compression (or expansion) of the local volume form on
contact phase space. This can be understood as a local compression (or expan-
sion) of solutions along surfaces transverse to the dynamical flow. One can
then represent sets of possibilities that do not maintain their distinct evolutions.
Since contact phase space volume is not conserved sets of instantaneous possi-
bilities picked out by a dynamical curves will not necessarily remain distinct.
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In general, phase spaces with contact structure, and thus violation of Liouville’s
theorem, can represent (fine-grained) sets of possibilities which have ‘attract-
ors’ such that there is a particular possibility that gets preferentially selected
towards over time.
Consider a set of damped oscillators with family members corresponding

to different initial velocity and momentum. Over time we expect the volume
of possibility space occupied by the family to approach zero since, due to the
damping, the dynamics will eventually lead all the oscillators to a single pos-
sible state of a stationary oscillator at the zero potential position. The space thus
has the capacity to represent modal structure in which we have convergence
between possible histories of the world in which the same physical system
but different initial conditions are instantiated. This rich representational struc-
ture also, of course, allows the representation of measure expansion and thus
modal structure in which the volume of possibility space taken up by a set
of possible states expands rather than contracts. Although physically difficult
to conceptualise such behaviour is just the time reverse of the convergence
behaviour. As such, plausibly the capacity to represent it corresponds to the
ability of a contact manifold to represent worlds with a reversed (local) arrow of
time.
The failure of Liouville’s theorem is the context of contact phase space

mechanics thus encodes a representational capacity for modal structures that
goes beyond that of symplectic phase space mechanics. We should, however,
note the strong formal similarities between the two spaces, notwithstanding the
crucial formal differences. In particular, just as contact structure induces con-
tact Hamiltonian vector fields in analogy to how symplectic structure induces
(symplectic) Hamiltonian vector fields, we can identify a general class of
structure persevering maps on a contact manifold that are the analogue of
symplectomorphisms. These are contactomophisms.
Applying the norm of Weatherall (2018) once more, we can assert that since

isomorphic mathematical models in physics should be taken to have the same
representational capacities, if a particular contact manifold may be used to
represent a given structured set of possible states of affairs, then any contacto-
mophicmodel be used to represent that structured set of possible states of affairs
equally well. The interconnections between contact and symplectic manifolds
can be pushed even further once we recognise that in many (if not all) physical
contexts it is possible to map between contact and symplectic representations
of the same underlying physical degrees of freedom (Bravetti et al., 2020). The
implications of such procedures for the representational structure of possibility
spaces warrants considerable further study.
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8.2 Quantum Possibility Space Representations
Let us now turn to quantum phase space mechanics and consider some attend-
ant questions relating to representation and possibility. In this context it proves
highly instructive to distinguish the specific way in which Liouville’s theorem
fails in the context of contact phase space mechanics from form of failure
found in quantum phase space mechanics. In particular, we can contrast the
non-Liouville representational capacity of a contact Hamiltonian phase space
with that of a quantum phase space. Liouville’s theorem fails but this fail-
ure is not dependent upon the underlying phase space geometry, but rather
upon the further structures that were placed upon the space. In particular, the
non-commutative Moyal-bracket structure of quantum phase space leads to a
representation in which the quasi-probability function displays a ‘fluid’ flow
that is no longer incompressible and shows local failure of conservation about
a point. Over the entire phase space, however, the quasi-probability density is
conserved. We thus have the capacity to represent quantum dynamics in which
the total probability – trace of the density matrix – is conserved.
The particular local failure of Liouville’s theorem is one of the features of

quantum phase space representations that allows them to encode characteris-
tic non-classical aspects of quantum systems. Another feature is the inability
of quantum phase space representations to admit quasi-probability densities
which are localised of order ℏ. The contrast here is with classical stochastic
phase space representations where the Dirac delta function is an admissible
probability density function. The respective difference in representational cap-
acity is with regard to whether the two spaces can represent states of affairs that
are determinate in position and momentum. Classical stochastic phase space
representations do not encode Heisenberg uncertainty structure and are thus
able to represent states of affairs that are determinate in position and momen-
tum. Quantum phase space representations do encode Heisenberg uncertainty
structure and are thus not able to represent states of affairs that are determinate
in position and momentum at order ℏ. This feature is formally connected to the
bound on the Wigner function.
The final core feature of quantum phase space representations that allows

them to encode characteristic non-classical aspects of quantum systems is
Wigner negativity. That the quasi-probability densities are valued on the nega-
tive part of the real line of course indicates a deep conceptual difference
between these functions and classical probability functions. Indeed, this fea-
ture is connected to the phase space representation of non-classical properties
such as entanglement and contextuality. The patches of negativity are of size
order ℏ, and thus, the quantum phase space formalism includes a dimensionfull
representation of the size of non-classical behaviour.
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Open quantum system phase space representations all us to represent quan-
tum systems interacting with an environment. In the most general sense such
representations are under-constrained. In particular, if we consider the most
general possible master equation then we find the possibility space structure
that can be represented includes not just non-unitary dynamics and dissipa-
tion but also global failure of probability conservation. If, however, we restrict
to maps which preserve the trace then we will recover global probability
conservation.
The Lindblad form of quantum master equations provide a general frame-

work for representing probability conserving systems since they have a dynam-
ical structure that encodes a sufficient condition for the preservation of total
probability. A quantum phase space with Lindblad dynamics thus has the
capacity to represent states of affairs in which probability is conserved, but
coherence is lost. What is more it can represent such states of affairs in an
autonomous way (Ladyman & Thebault, 2024). The fact that open quantum
system dynamics conserves the total probability of the state of the system
encodes an important form ofmodal autonomywithin the relevant models. The
models can represent the evolution of possibilities of the open system consist-
ently without reference to a further system despite the model being open in the
sense of representing dynamics in which coherence is lost.
In the phase space representation, loss of coherence is represented in terms

of the suppression of negativity of the Wigner quasi-probability function. This
can be studied explicitly in terms of the Joos-Zeh model in which we can
understand suppression of negativity in terms of a Gaussian-smoothing of the
Wigner function. Since Wigner negativity encodes characteristic non-classical
features within a quantum phase space representation, the smoothing of a quasi-
probability function then represents successive removal of one key quantum
feature of phase space representations via a diachronic dynamical process. It is
worth remaking that in the context of more general classes of master equa-
tions key qualitative feature encoded in quantum phase representations has
been applied in the context of analysis of the emergence of classical chaos from
quantum systems (Franklin, 2023; Habib, Shizume, & Zurek, 1998).
The Caldeira-Leggett equation is an open system model which combines

the decoherence term of the Joos-Zeh model with a further dissipation term.
The model has the capacity to represent states of affairs that share the
characteristic structure of contact systems when considered in the semi-
classical Ehrenfest limit. In particular, we find that the form of the Ehrenfest
equations for the Caldeira-Leggett master equation partially isomorphic to the
contact Hamilton’s equations. A quantum phase space representation with a
master equation of the Caldeira-Leggett form thus has the capacity to represent,
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for example, the stochastic damped classical oscillator via the dynamics of its
first moments.
Classical and quantum phase spaces have distinct representational capaci-

ties as encoded in the structure of the underlying geometric space and further
algebraic, probability and quasi-probability structures placed upon them. Such
modal structures allows us to express characteristic features of structured sets
of physical possibilities. With this in mind let us return to the problem of under-
standing the novel function modal structure of possibility spaces within our
scientific and philosophical vocabulary.

8.3 A Modal Revolution
Recall from Section 1.2 that following Price and Brandom we introduced the
idea of modal expressivism as a response to the placement problem for modal
structure. The idea is to follow the standard expressivist line in responding
to the problem of situating a particular class of things that feature in our
vocabulary without expanding our ontology. We assert that modal language
is not in the business of ‘describing reality’ and offer some other positive
account of what functional role this language plays in our linguistic lives.
Rather, we understand modal structural vocabulary within possibility space
representations as being as being pragmatic dependent on descriptive vocabu-
lary in that modal vocabulary can be elaborated from the use of descriptive
vocabulary.
We also considered the idea, contra Brandom, that the novel modal vocabu-

lary of possibility space representations equips us with new ways of expanding
our empirical descriptive vocabulary. Modal vocabulary still has a pragmatic
dependence on descriptive vocabulary, in this case the descriptions of states
of the world encoded in points in possibility spaces, but it can do much more
than simply make explicit already acquired functions of that vocabulary. It can
equipped us with new expressive tools. An alternative interpretation, more in
keeping with Brandom’s approach, would to frame the novelty of the relevant
modal concepts as being only respect to the natural vs. scientific languages
rather than the empirical descriptive vocabulary per se. On this more approach,
it is descriptive features of scientific language, not contained in ordinary
descriptive language, that are made explicit via the modal structure of phase
space. The challenge to such an account is to provide a detailed meta-semantic
account of how the process of ‘making explicit’ functions in the scientific con-
text. In particular, how scientific modal concepts might be explicated from a
descriptive vocabulary that lacks, for example, the inherently modal concept
of phase space structure. In either case, there is an interesting and potentially
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highly productive project of fleshing out the meta-semantic details of a modal
expressivist account of phase space structure.
In the context of the content of the previous six sections the basic strat-

egy of modal expressivism ideas can be further explicated as follows. Modal
expressivism lets us interpret phase space representations such that the modal
structure (such as that encoded in Liouville’s theorem) does not itself stand
in a representation relation. Rather, it encodes normatively significant, robust
counterfactual relations among empirical phenomena (such as stable dynam-
ical relations between possibilities) in virtue of which phase space descriptions
do not merely label, but discriminate and classify states of affairs. That is,
phase space representations are able to articulate inference-worthy relationships
among empirical possibilities such as conservative or dissipative behaviour or
localisability or its failure.
There is then a normativitity of modal structure that comes from its role

determining what counts as a good explanatory inference, and more generally
qualitative inference, about physical phenomena that does not depend upon
considering specific trajectories of states in phase space. In this way, we can
understand the revolutionary transition towards qualitative mechanics as initi-
ated by Poincaré, as a fundamentally modal revolution. By providing us with
new methods to study the structure of possibility space, phase space mechanics
allows us to equip our descriptive vocabulary with new uses and, moreover,
enlarges the range of our inductive inferences regarding physical phenomena
greatly beyondwhat is possible within a purely quantitive approach.Mechanics
is modal structure in phase space.
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