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Preface

Published in 1965, the brilliant book by R. P. Feynman and A. R. Hi-

bbs, “Quantum Mechanics and Path Integrals” (McGraw-Hill, New York,

1965) presented an unusually new at the time quantum-mechanical con-

cept - the path integral approach. This approach was an alternative to the

Schrödinger wave equation and Heisenberg matrix dynamics. The discov-

ery of the quantum mechanical path integral approach was originated by

the attempt of P. A. M. Dirac to find what corresponds in quantum the-

ory to the Lagrangian method of classical mechanics. Dirac searched for

the role which classical mechanics fundamentals like the Lagrangian and

‘least-action’ principle play in quantum mechanics. Based on Dirac’s find-

ings, Feynman developed his idea of “the sum over paths” and called it “a

path integral”. Since then, the path integral approach and the perturbation

technique based on it, Feynman diagrams, became powerful tools in quan-

tum mechanics and quantum field theory, solid state and quantum liquid

theory, equilibrium and non-equilibrium statistical physics, theory of tur-

bulence and chaotic phenomena, theory of random processes and polymer

physics, mathematics, chemistry, economic studies.

xiii
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Soon after Feynman’s remarkable invention, M. Kac observed that re-

placing time t with imaginary time −iτ in Feynman’s path integral brings

us Wiener’s path integral, which is the integral over Brownian motion paths.

Wiener’s integral is a well-defined object from the stand point of integration

in functional spaces. Feynman’s path integral is a rather heuristic object

well adjusted to implement perturbation expansions and to develop nonper-

turbative techniques in quantum theory. This circumstance is the reason

to use the term “Brownian-like paths” when talking about Feynman’s path

integral, and use the term “Brownian motion paths” when talking about

Wiener’s path integral. The trajectories of Brownian motion are in fact

the first example of fractional physical objects. Hence, the Feynman path

integral approach to quantum mechanics based on Brownian-like paths can

be considered the first successful attempt to apply the fractality concept to

quantum physics.

In the past two decades, it has been realized that the understanding

of complex quantum and classical physics phenomena requires the imple-

mentation of the Lévy flights random process instead of Brownian motion.

What is the motivation behind the involvement of Lévy flights into consid-

eration? It is well known that the position of a diffusive particle evolves

as a square root in time, x(t) ∼ t1/2. The 1/2 law or “square root law”

is an attribute of Brownian motion. However, for many complex quantum

and classical physics phenomena this temporal diffusive behavior has not

been observed. Instead, the more general evolution law x(t) ∼ t1/α with

0 < α ≤ 2, where α is the Lévy index, has been found. Thus, the well-

known diffusion law x(t) ∼ t1/2 is included as a special case at α = 2. The

adequate mathematical model to describe 1/α scaling is known as the Lévy

flights. The scaling law 1/α assigned to the Lévy flights has been empiri-

cally observed in quantum phenomena like the laser cooling of atoms, ion

dynamics in optical lattice, quantum anomalous transport, and in the mea-

surement of the momentum of cold cesium atoms in a periodically pulsed

standing wave of light. Besides this, Lévy flights are widely used to model

a variety of classical physics phenomena such as kinetics and transport in

classical complex systems, anomalous diffusion, chaotic dynamics, plasma

physics, dynamics of economic indexes, biology, physiology and social

science.

The Brownian-like quantum dynamics results in the Feynman path in-

tegral. So too, the Feynman path integral method ought to be extended

to approach complex quantum dynamic phenomena where Lévy-like flight

manifests at the quantum level. To extend the Feynman approach the in-
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tegration has to be expanded from Brownian-like to Lévy-like paths. The

basic outcome of the path integral over Lévy flight paths is a new funda-

mental quantum equation – the fractional Schrödinger equation. In other

words, if the Feynman path integral approach to quantum mechanics allows

one to derive the Schrödinger equation, then the path integral over Lévy

flight paths leads to a fractional Schrödinger equation. This is a manifesta-

tion of a new non-Gaussian physical paradigm, based on deep relationships

between the structure of fundamental physics equations and fractal dimen-

sions of “underlying” quantum paths. The fractional Schrödinger equation

includes the space derivative of fractional order α instead of the second order

space derivative in the well-known Schrödinger equation. The Lévy param-

eter α becomes a new fundamental parameter. The fractional Schrödinger

equation is the fractional differential equation in accordance with modern

terminology. This is the main point for the term, “fractional Schrödinger

equation”, and the more general term, “fractional quantum mechanics”.

To date, there is no book on fractional quantum mechanics and its

applications. This book gives a systematic, in-depth, fully covered and

self-consistent presentation on the subject. In addition to providing a deep

insight into fractional quantum mechanics fundamentals, the book advances

applications of fractional calculus to solve fractional quantum mechanics

physical problems. The book pioneers quantum mechanical applications

of the α-stable Lévy probability distribution and the H-function, invented

by C. Fox in the ’60s. It has occurred that the H-function, never before

used in quantum mechanics, is a well-suited mathematical tool to solve the

fractional Schrödinger equation for quantum physical problems.

The book discovers and explores new fractional quantum mechanics

equations. Remarkably, these equations turn into the well-known quantum

mechanics equations in the particular case when the Lévy index α = 2, and

Lévy flights become Brownian motion.

For advanced readers, young researchers and graduate students the book

serves as the first monograph and the first handbook on the topic, covering

fundamentals and applications of fractional quantum mechanics, time frac-

tional quantum mechanics, fractional statistical mechanics and fractional

classical mechanics.
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Chapter 1

What is Fractional Quantum
Mechanics?

1.1 Path integral

Non-relativistic quantum mechanics can be formulated in the frameworks

of three different approaches: the Heisenberg matrix algebra [1]-[3] the

Schrödinger equation [4]-[6] and the Feynman path integral [7]-[9]. These

three, apparently dissimilar approaches, are mathematically equivalent.

The discovery of the quantum mechanical path integral approach was

originated in the early ’30s by the attempt of Dirac [10] to find a relation-

ship between classical and quantum mechanics in terms of the classical me-

chanics ‘least-action’ principle. In essence, Dirac searched for the role that

classical mechanics fundamentals like the Lagrangian and the ‘least-action’

principle play in quantum mechanics. While he considered the Lagrangian

approach to classical mechanics more fundamental than the Hamiltonian

one, at the time it seemed to have no important role in quantum mechanics.

Dirac speculated on how this situation might be rectified, and concluded

that the propagator in quantum mechanics is “analogous” to exp(iS/~),

where S is the classical mechanical action and ~ is Planck’s constant.

Based on Dirac’s findings Feynman developed the “integral over all

paths”, the path integral. How it came to him was well described by Feyn-

man in his Nobel lecture [11]. I went to a beer party in the Nassau Tavern

in Princeton. There was a gentleman, newly arrived from Europe (Herbert

Jehle) who came and sat next to me. Europeans are much more serious

than we are in America because they think a good place to discuss intellec-

tual matters is a beer party. So he sat by me and asked, “What are you

doing” and so on, and I said, “I’m drinking beer.” Then I realized that he

wanted to know what work I was doing and I told him I was struggling with

this problem, and I simply turned to him and said “Listen, do you know any

1
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way of doing quantum mechanics starting with action – where the action

integral comes into the quantum mechanics?” “No,” he said, “but Dirac has

a paper in which the Lagrangian, at least, comes into quantum mechanics.

I will show it to you tomorrow.” Next day we went to the Princeton Library

(they have little rooms on the side to discuss things) and he showed me this

paper. Dirac’s paper [10] claimed that a mathematical tool which governs

the time development of a quantal system was “analogous”to the classical

Lagrangian.

Professor Jehle showed me this; I read it; he explained it to me, and

I said, “What does he mean, they are analogous; what does that mean,

analogous? What is the use of that?” He said, “You Americans! You

always want to find a use for everything!” I said that I thought that Dirac

must mean that they were equal. “No,” he explained, “he doesn’t mean they

are equal.” “Well,” I said, “let’s see what happens if we make them equal.”

So, I simply put them equal, taking the simplest example, but soon found

that I had to put a constant of proportionality A in, suitably adjusted. When

I substituted and just calculated things out by Taylor-series expansion, out

came the Schrödinger equation. So I turned to Professor Jehle, not really

understanding, and said, “Well you see Professor Dirac meant that they

were proportional.” Professor Jehle’s eyes were bugging out – he had taken

out a little notebook and was rapidly copying it down from the blackboard

and said, “No, no, this is an important discovery.”

Feynman’s path integral approach to quantum mechanics [12] brings

deep insights into the relationship between quantum and classical mechan-

ics and became a new efficient mathematical tool in quantum theory and

mathematical physics. Feynman’s thesis advisor, J. A. Wheeler wrote in

Physics Today 42, 24 (1989), “Feynman has found a beautiful picture to

understand the probability amplitude for a dynamical system to go from

one specified configuration at one time to another specified configuration at

a later time. He treats on a footing of absolute equality every conceivable

history that leads from the initial state to the final one, no matter how crazy

the motion in between. The contributions of these histories differ not at all

in amplitude, only in phase. And the phase is nothing but the classical ac-

tion integral, apart from the Dirac factor, ~. This prescription reproduces

all of standard quantum theory. How could one ever want a simpler way to

see what quantum theory is all about!”

The path integral approach due to its new overall space-time perspective

gives an intuitive way of viewing quantum dynamics and understanding the

classical limit of quantum mechanics.
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Today Feynman’s path integrals are widely used in quantum gauge

field theory and the theory of nonperturbative phenomena [13]-[17], physics

of dense strongly interacting matter (quark-gluon plasma) [18], statistical

physics [19], physics of polymers, theory of phase transitions and criti-

cal phenomena [20], atomic physics and high-energy radiation phenomena,

quantum optics [21], [22], theory of stochastic processes and its numerous

applications [23]-[26], option pricing and modeling of financial markets [20].

1.2 Fractals and fractional calculus

The Feynman path integral is in fact the integration over Brownian-like

quantum paths. The Brownian path is an example of a fractal. Follow-

ing Mandelbrot [27], it is said that a fractal is a self-similar object, that

is the whole object looks like any of its parts (for instance, see [27], [28]).

The wording “when the sum of independent identically distributed random

quantities has the same probability distribution as each random quantity dis-

tributed” can be considered as an expression of self-similarity - “when does

the whole object look like any of its parts”. The trajectories of Brownian

motion and Lévy flight are self-similar curves. In other words, the trajec-

tories of Brownian motion and Lévy flight can be considered as random

fractals. The fractal dimension of a Lévy flight trajectory can be expressed

in terms of the Lévy index α which serves as a measure of self-similarity.

In fact, the Lévy index α is equal to the Hausdorff–Besicovitch dimension

of trajectory of random motion [29]. That is, the fractal dimension of a

trajectory of Brownian motion is 2, while the fractal dimension of a Lévy

flight path is α, 0 < α ≤ 2.

If Brownian diffusion is described by the well-known diffusion equation

with scaling x(t) ∼ t1/2, then the diffusion governed by the Lévy flight pro-

cess is described by a fractional diffusion equation with scaling x(t) ∼ t1/α,

0 < α ≤ 2. The fractional diffusion equation is a well-suited mathematical

model to study anomalous diffusion displaying the scaling x(t) ∼ t1/α.

The standard diffusion equation includes a second-order spatial deriva-

tive. The fractional diffusion equation includes a fractional α-order spatial

derivative. Thus, the appropriate mathematical tool to study diffusion and

diffusion-like processes with 1/α scaling is a fractional diffusion equation,

which belongs to the mathematical field called fractional calculus [30]-[32].

Fractional calculus is concerned with the generalization of differentia-

tion and integration to non-integer (fractional) orders. The subject has
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a long history. In a letter to L’Hospital in 1695, Leibniz [33] raised the

following question: “Can the meaning of derivatives with integer order be

generalized to derivatives with non-integer orders?” L’Hospital was some-

what curious about the question and replied to Leibniz: “What if the or-

der will be 1/2?” From this question, the study of fractional calculus was

born. In a letter dated September 30, 1695 [33], [34] Leibniz responded

to the question, “ d1/2x will be equal to x
√
dx : x. This is an apparent

paradox from which, one day, useful consequences will be drawn.” Over the

centuries many brilliant mathematicians, among them Liouville, Riemann,

Weyl, Fourier, Abel, Lacroix, Leibniz, Grunwald, Letnikov and Riesz, have

built up a large body of mathematical knowledge on fractional integrals

and derivatives. Although fractional calculus is a natural generalization of

calculus, and although its mathematical history is equally long, it has just

recently become the attractive efficient tool in physics and mathematics.

The important fields of application of fractional calculus in physics

are the phenomena of anomalous diffusion, fractional quantum mechanics,

quantum and classical dynamics with long-range interactions, long memory

relaxation processes with non-exponential time decay, long tail phenomena

observed in network communication systems and in the behavior of financial

markets. Fractional calculus is an efficient tool to study chaotic dynamic

systems and their transport properties. In particular, it helps to obtain

some quantitative and qualitative results based on the known features of

fractional derivatives.

In mathematics, considerable attention has been recently focused on

the study of problems involving fractional spaces and nonlocal equations,

where nonlocality is treated in terms of pseudo-differential operators - frac-

tional differential operators, for example, the fractional Laplace operator.

Fractional differential operators and the fractional Sobolev spaces attract

the attention of many researchers, both from a pure mathematical stand

point and from a stand point of various applications, since these operators

naturally arise in many different contexts, such as, anomalous diffusion,

fractional kinetics, fractional quantum mechanics, fractional statistical me-

chanics, financial mathematics, signal processing and network communica-

tion systems, theory of equilibrium and non-equilibrium phenomena in the

systems with long-range interaction, theory and applications of fractional

stochastic processes, etc. The bibliography on the topic is so extensive that

it is a real challenge to come up with a reasonable list of references. Instead,

we direct the readers to papers [31], [32], [35], [36] where an introduction

to the subject and an extensive bibliography can be found.
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A review of recent developments in the field of fractional calculus and

its applications has been presented in [31], [32].

Among the many monographs and textbooks on fractional calculus fun-

damentals and their wide range of applications, books [30], [37]-[43], which

target the application of fractional calculus to a variety of important natural

science problems.

1.3 Lévy flights

The understanding of quantum and classical physics phenomena governed

by long-range space processes has required the implementation of the Lévy

flights random process [44]. It is well known that displacement of a particle

from some initial point follows the well-known square root law, x(t) ∼ t1/2.

The square root law is an attribute of the well-known Brownian motion

model for diffusion. However, for complex quantum and classical physics

phenomena this temporal diffusive behavior has not been observed. Instead,

the more general diffusion law x(t) ∼ t1/α with 0 < α ≤ 2, where α is

the Lévy index, has been found. The mathematical model to describe

1/α scaling is known as Lévy flights. What is the reason for the term

“Lévy flights”? The cloud of Lévy particles spreads faster than the cloud

of Brownian particles. The space scale x(t) of the Lévy cloud as a function

of time t follows the law x(t) ∼ t1/α. It is obvious that the lower bound is

reached for the Brownian cloud, α = 2. That is when α = 2 Lévy flights

turn into Brownian motion. The typical Lévy flight path looks like a set

of diffusion islands connected by long-step straight line flights, the length

of which depends on the value of the index α. The 2D Brownian motion is

displayed in Fig. 2, and the typical 2D trajectory of Lévy flight is shown

in Fig. 3.

The Lévy stochastic process is widely used to model a variety of complex

dynamic and kinetic processes, such as anomalous diffusion and kinetics

[45], [44], turbulence [46], chaotic dynamics and transport [47], [48], plasma

physics [49], dynamics of economic indexes [50], option pricing [20], biology

and physiology [51], [52].

The phenomenon of Lévy flights became an object of intensive study

in quantum physics. The scaling 1/α law assigned to the Lévy flights

has been empirically observed in the laser cooling of atoms [53]-[55], in

ions dynamics in optical lattice [56], in multiple scattering of light in hot

vapours of rubidium atoms [57], in multiple scattering of light in hot vapors
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of rubidium atoms in the measurement of the momentum of cold cesium

atoms in a periodically pulsed standing wave of light [58], in anomalous

transport phenomenon in the quantum kicked systems [59], [60].

Lévy flights are a natural generalization of Brownian motion. In mid

’30s, Lévy [61] and Khintchine [62] posed the question: When does the sum

of N independent identically distributed random quantities X = X1 +X2 +

...+XN have the same probability distribution pN (X) (up to scale factor)

as the individual steps pi(Xi), i = 1, ..., N? The traditional answer is that

each pi(Xi) should be a Gaussian distribution, because of a central limit

theorem [63]. In other words, a sum of N Gaussians is again a Gaussian,

but with N times the variance of the original one. Lévy and Khintchine

found a way to generalize the central limit theorem. They discovered a

class of non-Gaussian α-stable (stable under summation) distributions. So,

from the stand point of the probability theory the α-stable probability law

[63]-[66] is a generalization of the well-known Gaussian law. In other words,

the α-stable distribution with index α results from the sum of independent

identically distributed variables with probability density pα(x) ∼ x−1−α,

x → ∞ in the same way that the Gaussian distribution results from sum

of independent identically distributed variables with probability density

pG(x) ∼ exp{−x2/2}. Each α-stable distribution has a stability index α,

called the Lévy index 0 < α ≤ 2. The Lévy index defines the boundary of

convergence of statistical moments of fractional order. That is, a fractional

statistical µ-order moment of a stable law is finite only if its order µ is

strictly smaller than its Lévy index α (i.e. µ < α). Every moment of higher

order (including µ = α) is infinite or, as often said, divergent. The only

exception is the normal distribution which corresponds to the particular

stable law with the Lévy index α = 2 and it has an exceptional property

that all its statistical moments are finite.

1.4 Schrödinger equation

The Schrödinger equation is a fundamental equation of quantum mechan-

ics. Discovered by Schrödinger in 1926 [4], it was historically the second

fundamental formulation of the quantum mechanics. The first formulation

was the Heisenberg matrix mechanics developed by Heisenberg, Born and

Jordan in 1925.

Invented by Feynman in 1948 the Feynman path integral [7] is an alter-

native to Heisenberg matrix mechanics [1], [2] and Schrödinger wave equa-

tion [4]-[6]. The Feynman path integral is in fact the functional integral over
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Brownian-like quantum paths. Therefore, if we go from Brownian-like to

Lévy-like quantum paths we come to the Laskin path integral discovered by

Laskin in 2000 [67]. The Laskin path integral is the generalization of the

Feynman path integral. If one applies the Wick rotation (t→ −iτ) to the

Feynman path integral then the Feynman path integral becomes the Wiener

path integral , invented by Wiener in 1923 [68]. The Wiener path integral

is an efficient tool to study standard diffusion phenomena. If one applies

the Wick rotation to the Laskin path integral, then the Laskin path inte-

gral becomes the generalization of the Wiener path integral. Laskin path

integral with implemented Wick rotation is an efficient tool to study anoma-

lous diffusion phenomena [35], [44], [45]. In other words, the well-known

mapping between standard quantum mechanics and standard diffusion has

been extended by means of the Laskin path integral to the mapping be-

tween fractional quantum mechanics and anomalous diffusion. It allows us

to apply the path integral technique to study physical phenomena related

to anomalous diffusion.

The fractional Schrödinger equation discovered by Laskin [67] is a

fundamental equation of fractional quantum mechanics. The fractional

Schrödinger equation is a manifestation of the Lévy-like quantum path

scaling ∆x ∼ (∆t)1/α, while the Schrödinger equation can be considered as

a manifestation of the Brownian-like quantum path scaling ∆x ∼ (∆t)1/2

with ∆x and ∆t being space and time increments of a quantum path.

Therefore, fractional quantum mechanics can be thought of as the quan-

tum mechanics where the underlying Brownian-like quantum paths are sub-

stituted with the Lévy-like paths. In fractional quantum mechanics the

underlying quantum path has fractal dimension α and exhibits Lévy-like

scaling ∆x ∼ (∆t)1/α, while in standard quantum mechanics the underlying

quantum path has fractal dimension 2 and exhibits Brownian-like scaling

∆x ∼ (∆t)1/2. When α = 2, fractional quantum mechanics becomes stan-

dard quantum mechanics, and fundamental equations of fractional quantum

mechanics are transformed into the well-known fundamental equations of

standard quantum mechanics.

When we work with the path integral over Lévy flight quantum paths we

derive the fractional generalization of the Schrödinger equation - fractional

Schrödinger equation [67]. The fractional Schrödinger equation includes

the space derivative of fractional order α (α is the Lévy index), instead of

the second order (α = 2) space derivative in the standard Schrödinger equa-

tion. Thus, the fractional generalization of the Schrödinger equation is the

fractional differential equation in accordance with modern well-established
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terminology (see, for example, [30], [31], [37]-[41], [43], [48], [69], [70]). This

is one of the reasons to coin the new term fractional Schrödinger equation

and the more general term fractional quantum mechanics.

Due to the link between the path integral over the Lévy flights and

the fractional Schrödinger equation we can apply the path integral tool to

study the fractional Schrödinger equation. And vice versa, we can use the

fractional Schrödinger equation to solve the path integrals over Lévy flights.

1.5 Physical applications of fractional quantum mechanics

Despite the involvement of fractional Riesz derivative into the fractional

Schrödinger equation, it has occurred that exact solutions to many canon-

ical quantum mechanics problems can be obtained. From a stand point of

quantum mechanical fundamentals the following canonical quantum me-

chanics problems are solved analytically in the framework of fractional

quantum mechanics:

- A free particle;

- A particle in δ-potential;

- A particle in double δ-potential;

- Infinite potential well;

- Finite square potential well;

- Quantum particle in a box with δ-potential;

- Quadrupole triple δ-potential;

- Linear potential field;

- One-dimensional Coulomb potential;

- Penetration through δ-potential barrier;

- Penetration through rectangular finite potential barrier;

- Tunneling in fractional quantum mechanics;

- Quantum kernel for a particle in the infinite potential well.

Fractional Bohr atom model has been introduced and analyzed in the

framework of fractional quantum mechanics. Energy spectrum of fractional

Bohr atom and equation for fractional Bohr radius were found.

A new quantum model - quantum fractional oscillator has been intro-

duced and studied in semiclassical approximation. Quantum fractional os-

cillator is a generalization of the well-known quantum oscillator model of

the standard quantum mechanics. In other words, in fractional quantum

mechanics the fractional oscillator plays the same role as the quantum os-

cillator does in the standard quantum mechanics.

From a stand point of empirical confirmation of fractional quantum
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mechanics, a few interesting applications of fractional Schrödinger equation

and fractional calculus have been recently developed aiming to come up with

experimental setups to observe fractional quantum mechanical phenomena.

Stickler [71] launched a solid state physics realization of fractional quan-

tum mechanics by introducing a 1D infinite range tight-binding chain, which

he referred to as the 1D Lévy crystal characterized by the Lévy parame-

ter of order α ∈ (1, 2]. The dispersion relation and the density of states

of this many-particle system were studied for arbitrary α ∈ (1, 2]. It has

been shown that in the limit of small wave numbers all interesting proper-

ties of the fractional Schrödinger equation are recovered, while for α → 2

the well-established nearest-neighbor one-dimensional tight-binding chain

arises.

Another solid state physics implementation of fractional quantum me-

chanics is the mean-field model for polariton condensates [72]. Polaritons

are quasiparticles consisting of excitons and cavity photons within semicon-

ductor micro-cavities. Polaritons obey Bose–Einstein statistics and, thus,

can condense at certain physical conditions into a single particle mode.

Excitons are coupled pairs of electrons and holes of oppositely charged

spin-half particles in a semiconductor held together by the Coulomb force

between them. Excitons interact with light fields and can form integer

spin polariton quasiparticles in the strong coupling regime that are con-

fined to the micro-cavity [73]. The initiation of quantum mean-field model

for polariton condensates has been inspired by the well established solid

state physics concept of velocity dependent mass of a particle due to the

interaction with environment. It has been shown in [72] that the kinetic en-

ergy of the polariton condensate deviates significantly from the well-known

parabolic law. Linear waves analysis and numerical simulations show sig-

nificant impact velocity dependency of polariton mass on dynamic behavior

of polariton condensate when compared to the classic regime with velocity

independent polariton mass. The effect of dependency of polariton mass on

velocity serves as a test of the feasibility of fractional quantum mechanics

to study the dynamics of polariton condensate.

In the field of quantum liquid physics, an interesting application of

the fractional Schrödinger equation and Heisenberg dynamic equations for

fractional quantum mechanic operators of coordinate and velocity was

developed by Tayurskii and Lysogorskiy [74]. They built a fractional

two-fluid hydrodynamic model to study the motion of superfluid helium

in nanoporous media. As a physical application of the developed frac-

tional two-fluid hydrodynamic model, new nonlinear equations for pressure-
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temperature and pure temperature oscillations in superfluid helium were

obtained in [74]. It was shown that at low temperatures the pressure-

temperature coupling constant has linear dependence on temperature,

which can be tested experimentally to verify two-fluid fractional model.

A nuclear physics realization of fractional quantum mechanics was initi-

ated by Herrmann [75], who developed the fractional symmetric rigid rotor

model to study the low energy excitations of ground state band spectra of

even-even nuclei. A fractional extension of the rotation group SO(n) has

been developed to calculate symmetric rigid rotor oscillating modes, which

are treated as generalized rotations and are included in symmetry group

- fractional SOα(3), where α is Lévy index, 1 < α ≤ 2. A comparison

with the ground state band spectra of nuclei shows an agreement with ex-

perimental data better than 2% [75]. Another interesting nuclear physics

application of fractional quantum mechanics is the concept of fractional

q-deformed Lie algebras invented by Herrmann [76]. The corresponding

q-number was found for the fractional harmonic oscillator and it has been

shown that the energy spectrum is well suited to describe the ground state

spectra of even-even nuclei.

Longhi [77] came up with a quantum optics set-up to test predictions

of fractional quantum mechanics. The idea is to use transverse light dy-

namics in aspherical optical cavities to design a quantum optical resonator,

in which the transverse modes and resonance frequencies correspond to the

eigenfunctions and the eigenvalues of the fractional Schrödinger equation

with oscillator potential. The laser system presented by Longhi provides

a quantum optical realization of the fractional quantum harmonic oscilla-

tor, different modes of which can be selectively excited by suitable off-axis

pumping. An option to implement fractional pseudo-differential operators

in quantum optics could be exploited further to initiate other quantum

physics models with involvement of fractional operators. The results of

work [77] indicate that the field of quantum optics can be served as suitable

polygon where fractional models developed in quantum physics can become

experimentally accessible. Fractional optical models look promising from a

stand point of developing new approaches to control light diffraction and

to generate novel beam solutions [78].

Quantum field-theoretical application of fractional calculus was initiated

by Lim [79]. He discovered a fractional generalization of the Parisi–Wu

stochastic quantization approach [80] to quantize gauge fields. The idea

Lim came up with [79], [81] is to use fractional Langevin stochastic differ-
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ential equation1 to model dynamics of fractional Euclidean Klein–Gordon

field. The fractional Parisi–Wu approach developed by Lim with coauthors

[79], [81] allows to quantize fractional gauge fields. Free energy of massless

fractional Klein–Gordon field at finite temperature as well as the Casimir

energy of electromagnetic field confined between parallel walls were calcu-

lated and analyzed in [79]. The fractional quantum field-theoretical ap-

proach developed by Lim with coauthors is interesting and prospective ex-

tension of fractional quantum mechanics to fractional quantum field theory.

1.6 Book outline

The book is organized as follows.

Chapter 1 presents an introduction to the subject with basic definitions.

Some physical applications of fractional quantum mechanics are listed.

Chapter 2 introduces the concept of geometric and random fractals. The

definition of the fractal dimension has been explained using the example of

the geometric fractal - Koch curve. Two random fractals were studied: (i)

the trajectory of Brownian motion, and (ii) the trajectory of Lévy flight.

The fractal dimension of Brownian and Lévy paths has been calculated.

The Holtsmark probability distribution has been studied as an example of

the α-stable Lévy distribution.

Fundamentals of the fractional Schrödinger equation have been devel-

oped in Chapter 3, where the quantum Riesz fractional derivative has been

introduced and analyzed. The velocity operator and fractional current den-

sity were obtained. The fractional Schrödinger equation in momentum rep-

resentation has been developed. Hermiticity of the fractional Hamiltonian

operator was proven. It has been shown that fractional quantum mechanics

supports the parity conservation law.

The time independent fractional Schrödinger equation, which plays an

important role for many physical applications, has been explored in Chapter

4. The fractional Schrödinger equation in a periodic potential field has been

analyzed. It was shown that Bloch’s theorem holds in the framework of

fractional quantum mechanics.

In Chapter 5 a new mathematical formulation of the Heisenberg Uncer-

tainty Principle has been developed in the framework of fractional quantum

mechanics. The fundamental physical concept of the quantum Lévy wave

1The fractional Langevin stochastic differential equation was first developed by Laskin
(2000) [82] in the field of financial mathematics as the first fractional stochastic dynamic
model to explain long tail behavior in returns of financial market indices.
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packet was introduced. Quantum mechanics vs fractional quantum me-

chanics fundamentals involved into the mathematical formulation of Heisen-

berg’s Uncertainty Principle have been discussed.

The path integral over Lévy flights has been introduced and elaborated

in Chapter 6. The path integral over Lévy flights has been developed in

phase space and momentum representations. The fractional Schrödinger

equation, which is a manifestation of fractional quantum mechanics, has

been derived from the path integral over Lévy flights. Deep insight has

been provided into the fundamental relationship between the path integral

over Lévy flights and the celebrated Feynman’s path integral.

Chapters 7 and 8 present new equations for a free particle quantum

kernel in the framework of fractional quantum mechanics. The scaling

properties of a free particle kernel have been studied using the renormal-

ization group technique. The Laplace, energy-time and Fourier transforms

of a free particle quantum kernel were obtained.

A new physics model, the quantum fractional oscillator has been intro-

duced and explored in Chapter 9. A non-equidistant energy spectrum of the

1D quantum fractional oscillator has been found in semiclassical approxi-

mation in coordinate and momentum representations. The symmetries of

quantum fractional oscillator were studied.

Chapter 10 presents a few exactly solvable models of fractional quantum

mechanics. They include a free particle solution to 1D and 3D fractional

Schrödinger equations, quantum particle in the symmetric infinite potential

well, bound state in δ-potential well, linear potential field and quantum

kernel for a free particle in the box.

In Chapter 11 fractional nonlinear quantum dynamics is introduced

based on Davydov’s Hamiltonian with long-range exciton-exciton inter-

action. Fractional nonlinear Schrödinger equation, nonlinear Hilbert–

Schrödinger equation, fractional generalization of Zakharov system and

fractional Ginzburg–Landau equation have been discovered and explored.

Time fractional quantum mechanics and its applications were devel-

oped in Chapters 12 and 13. A new version of the space-time fractional

Schrödinger equation was developed. Our space-time fractional Schrödinger

equation involves two scale dimensional parameters, one of which can be

considered as a time fractional generalization of the famous Planck’s con-

stant, while the other can be interpreted as a time fractional generalization

of the scale parameter emerging in fractional quantum mechanics. The

concept of energy in the framework of time fractional quantum mechanics

was introduced and developed. It has been shown that in time fractional
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quantum mechanics a quantum system does not have stationary states, and

eigenvalues of the pseudo-Hamilton operator are not energy levels. The so-

lution to the space-time fractional Schrödinger equation was obtained in

the case when the pseudo-Hamilton operator does not depend on time.

It was found that time fractional quantum mechanics does not support a

fundamental property of quantum mechanics - conservation of quantum

mechanical probability. Depending on the particular choice of space and

time fractality parameters the introduced space-time fractional Schrödinger

equation covers the following three special cases: the Schrödinger equation,

the fractional Schrödinger equation and the time fractional Schrödinger

equation.

In Chapter 14 fractional statistical mechanics has been introduced based

on the path integral over Lévy flights. The path integral representations

were obtained for density matrix and partition function. Equation of state

of many-particle quantum system was found in the framework of fractional

statistical mechanics.

In Chapter 15 fractional classical mechanics has been introduced as a

classical counterpart of fractional quantum mechanics. The Lagrange, the

Hamilton, the Hamilton–Jacobi and the Poisson bracket approaches were

developed and studied in the framework of fractional classical mechanics. A

classical fractional oscillator model was introduced, and its exact analytical

solution was found. Scaling analysis of fractional classical motion equations

has been implemented based on the mechanical similarity. We discover and

discuss fractional Kepler’s third law which is a generalization of the well-

known Kepler’s third law. A map between the energy dependence of the

period of classical oscillations and the non-equidistant distribution of the

energy levels for the quantum fractional oscillator has been established.

A classical fractional oscillator model was introduced. An exact analytical

solution to the equation of motion of classical fractional oscillator was found

in the framework of the Hamilton–Jacobi approach.

Fractional classical dynamics on two-dimensional sphere will be pre-

sented in Chapter 16. A class of fractional Hamiltonian systems, general-

izing the classical mechanics problem of motion in a central field, has been

introduced and analyzed. The analysis is based on transforming an inte-

grable Hamiltonian system with two degrees of freedom on the plane into

a dynamic system that is defined on the sphere and inherits the integrals

of motion of the original fractional dynamic system. The passage to a dy-

namic system whose configurational manifold is a two-dimensional sphere

is an alternative approach to study the classical fractional oscillator model.
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It has been discovered that in the four-dimensional space of structural

parameters, there exists a one-dimensional manifold, containing the case

of the planar Kepler problem, along which the closedness of the orbits of

all finite motions and the third Kepler law are saved. Similarly, it has

been found that there exists a one-dimensional manifold, containing the

case of the two-dimensional isotropic harmonic oscillator, along which the

closedness of the orbits and the isochronism of oscillations are saved. Any

deformation of orbits on these manifolds does not violate the hidden sym-

metry belonging to the two-dimensional isotropic oscillator and the planar

Kepler problem. Two-dimensional manifolds, where all systems are charac-

terized by the same rotation number for the finite motion orbits, have also

been considered.

The Afterword summarizes fundamental fractional quantum physics

concepts and results covering fractional quantum mechanics, time fractional

quantum mechanics, fractional statistical mechanics and fractional classical

mechanics.

Appendices include the properties of Fox’s H-function and some defini-

tions and formulas of fractional calculus for the readers’ convenience.

Appendix A presents Fox’s H-function definition and lists its properties,

which are used to perform calculations in fractional quantum mechanics,

time fractional quantum mechanics and fractional statistical mechanics.

In Appendix B a brief introduction to fractional calculus is presented

including definitions of Riemann–Liouville fractional derivative, Riemann–

Liouville fractional integral, Caputo fractional derivative and quantum

Riesz fractional derivative.

Calculation of the integral arising in fractional quantum mechanical

problem of finding bound energy and bound wave function for a particle in

δ-potential well has been developed in Appendix C.

In Appendix D the polylogarithm function and its properties are pre-

sented. The polylogarithm function comes out in natural way while study-

ing quantum lattice dynamics with long-range interaction.

In Appendix E two new functions related to the Mittag-Leffler func-

tion have been introduced to solve the space-time fractional Schrödinger

equation. These two new functions can be considered as a fractional gen-

eralization of the well-known trigonometric functions sine and cosine. A

fractional generalization of the celebrated Euler’s formula is presented.
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Chapter 2

Fractals

The term fractal is now used as a scientific concept, as well as a physical

object. Fractal is a geometric shape that is self-similar on all scales. In

other words, no matter how much you magnify a fractal, it always looks

the same (or at least similar). Fractals are generally irregular (not smooth)

in shape, and thus are not objects definable by traditional geometry. That

means that fractals tend to have significant details, visible at any arbitrary

scale. In other words, ‘zooming in’ to a fractal simply shows similar pic-

tures, and it is so-called self-similarity. For example, a normal ‘Euclidean’

shape, such as a circle, looks flatter and flatter as it is magnified. At

infinite magnification it is impossible to tell the difference between a cir-

cle and a straight line. Fractals are not like this. The conventional idea

of curvature, which represents the reciprocal of the radius of an approxi-

mating circle, cannot be usefully applied because it scales away. Instead,

in a fractal, increasing the magnification reveals details that you simply

couldn’t see before. The secondary characteristics of fractals, while intu-

itively appealing, are remarkably hard to condense into a mathematically

precise definition. Strictly, a fractal should have a fractional, that is, non-

integer dimension. Fractals can be deterministic or random. The examples

of deterministic fractals include the Mandelbrot set [27], Lyapunov frac-

tal, Cantor set, Sierpinski carpet and triangle, Peano curve, and the Koch

snowflake [28]. Examples of random fractals are the Brownian motion and

Lévy flights and their generalizations [27].

Thus, following Mandelbrot [27], a fractal is defined as an object with

two properties: (a) self-similarity and (b) its fractal dimension strictly ex-

ceeds its topological dimension.

The relation between fractals and quantum (or statistical) mechanics is

easily observed in the framework of the Feynman path integral formulation

15
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[19], [83]. The background of the Feynman approach to quantum mechanics

is a path integral over the Brownian paths. The Brownian paths are non-

differentiable, self-similar curves whose fractal dimension is different from

its topological dimension [27], [28]. Brownian motion was historically the

first example of the fractal in physics.

First of all, let us describe how the fractal dimension can be defined.

Suppose we want to measure the length of the Brownian path. We take a

yardstick, representing a straight line of a given length ∆x. To measure the

length of the Brownian path we use the particular yardstick, starting a new

step where the previous step leaves off. It is obvious that the number of

steps N multiplied with the yardstick length gives a value l = N∆x for the

length of the Brownian path. Then we repeat the same procedure with a

smaller yardstick say, for instance ∆x′. Doing this for different resolutions

∆x yields a function l versus ∆x. Usually it is assumed a power law

l(∆x) →
∆x→0

l0(∆x)−δ, δ ≥ 0, (2.1)

where l0 is the dimension factor.

The scaling index (or critical exponent) δ is related to fractal dimension

dfract as

δ = dfract − 1,

from which we obtain the definition of the fractal dimension

dfract = 1 + δ. (2.2)

Note that when dfract = 1, then δ = 0 and the definition (2.1) just

reduces to the usual concept of length.

Let us calculate the fractal dimension with three examples of fractals:

the Koch curve, the Brownian path and the Lévy flights trajectory.

2.1 The Koch curve

As an example of the above consideration let us find the fractal dimension

of a deterministic fractal such as the Koch curve (see, for example, [28]).

This curve is composed of 4 sub-segments each of which is scaled down by

a factor of 1/3 from its parent, see Fig. 1.



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 17

Fractals 17

Fig. 1. The Koch curve

It is easy to see that each step in the construction of the Koch curve

increases its length by 4/3. The Koch curve is a self-similar curve. Indeed,

if we view the curve with a space resolution ∆x′ = 1
3∆x then we see just a

scaled down version of the curve we saw before with a space resolution ∆x.

Suppose we examine the Koch curve with the yardstick of the length

∆x and measure its length to be l,

l = l0(∆x)−δ. (2.3)

Then, if we reduce the yardstick length so that ∆x′ = 1
3∆x, the next

level of wiggles in the curve will contribute to the total length,

l′ = l0(∆x′)−δ = l0(
1

3
∆x)−δ. (2.4)

On the other hand, each next level of wiggles increases the length by a

factor of 4/3,

l′ =
4

3
l. (2.5)

Thus, from Eqs. (2.4) and (2.5) we have

4

3
l = l0(

1

3
∆x)−δ
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or

l =
3

4
l0(

1

3
∆x)−δ. (2.6)

By comparing Eq. (2.3) and Eq. (2.6) we conclude that

3

4
(
1

3
)−δ = 1.

This implies that

1 + δ =
ln 4

ln 3
,

or in accordance with the definition given by Eq. (2.2), the fractal dimen-

sion dKoch
fract of the Koch curve is

dKoch
fract =

ln 4

ln 3
' 1.2619.

Thus, the Koch curve has fractal dimension dKoch
fract ' 1.2619.

2.2 Brownian motion

There are no things, only processes.

David Bohm

2.2.1 Historical remarks

There are two meanings of the term Brownian motion: the physical phe-

nomenon that minute particles immersed in a fluid will experience a ran-

dom movement, and the celebrated mathematical model used to describe

it. The Brownian motion as a mathematical model can also be used to

describe many phenomena not resembling the random movement of minute

particles. The Brownian motion as a physical phenomenon was discovered

by biologist Brown in 1827. Brown studied pollen particles floating in wa-

ter under microscope as he observed minute particles within the vacuoles

in the pollen grains executing the jittery motion that now bears his name.

By doing the same with particles of dust, he was able to rule out that the

motion was due to pollen being “alive”, but it remained to explain the ori-

gin of the motion. The first to give a theory of Brownian motion was none

other than Einstein in 1905 [84]. At that time the atomic nature of matter

was still a controversial idea. Einstein observed that, if the kinetic theory
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of fluids was right, then the molecules of water would move at random and

so a small particle would receive a random number of impacts of random

strength and from random directions in any short period of time. This ran-

dom bombardment by the molecules of the fluid would cause a sufficiently

small particle to move in exactly the way described by Brown.

The mathematical theory of Brownian motion has been applied in con-

texts ranging far beyond the movement of particles in fluids. Mathemat-

ically, Brownian motion is a Wiener random process with the conditional

probability distribution function of the Gaussian form [63], [68], [85]. Brow-

nian motion is related to the random walk problem and it is generic in the

sense that many different stochastic processes reduce to Brownian motion

in suitable limits. These are all reasonable approximations to the phys-

ical properties of Brownian motion. More sophisticated formulations of

the random walk problem have led to the mathematical theory of diffusion

processes. The accompanying equation of motion is called the Langevin

equation or the Fokker-Planck equation depending on whether it is formu-

lated in terms of random trajectories or probability densities.

2.2.2 The Wiener process

Brownian motion as a mathematical model can be presented in terms of

the well-known Wiener random process. The Wiener process w(t) can be

introduced by the following equation

w(t, w0; η) = w0 +

t∫
t0

dτη(τ), w(t = t0) = w0, (2.7)

where η(t) is “white noise” with statistical properties defined by the set of

equations

< η(t1)...η(t2n+1) >η= 0, (2.8)

< η(t1)...η(t2n) >η= σn
∑

i1,...,i2n∈(1,...,2n)

δ(ti1 − ti2)...δ(ti2n−1
− ti2n),

here the summation is going over all possible rearrangements i1, ..., i2n by

pairs (the total number of these rearragements is (2n− 1)!! = (2n)!/2nn!),

and < ... >η denotes the averaging over “white noise” realizations, and σ

is the diffusion coefficient.
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From random dynamics stand point, we may say that the Wiener process

w(t) is defined by the following stochastic dynamic equation

.
w(t) = η(t), w(t0) = w0.

Going from the stochastic dynamic description (in terms of realizations

of the stochastic process w(t)) to statistical one (in terms of probability

distributions), we define the probability density function (pdf) p(wt|w0t0)

that the stochastic process w(t) will be found at w at time t under condition

that it started at t = t0 from w(t0) = w0,

p(wt|w0t0) =< δ(w − w(t, w0; η)) >η . (2.9)

Letting the δ-function be the Fourier integral

δ(x) =
1

2π

∞∫
−∞

dqeiqx,

and substituting it into Eq. (2.9) we have

p(wt|w0t0) =
1

2π

∞∫
−∞

dqeiq(w−w0) < exp{iq
t∫

t0

dτη(τ)} >η . (2.10)

Using Eqs. (2.8) we calculate

< exp{iq
t∫

t0

dτη(τ)} >η= exp{−q
2

2

t∫
t0

dτ

t∫
t0

dτ < η(τ)η(τ ′) >η} (2.11)

= exp{−1

2
σq2(t− t0)}.

Then for p(wt|w0t0) defined by Eq. (2.10) we find

p(wt|w0t0) ≡ p(w − w0, t− t0)

=
1

2π

∞∫
−∞

dqeiq(w−w0) exp{−1

2
σq2(t− t0)} (2.12)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 21

Fractals 21

=
1√

2πσ(t− t0)
exp{− (w − w0)2

2σ(t− t0)
}, t > t0.

It is easy to see that the probability density p(wt|w0t0) satisfies the

differential equation

∂p(wt|w0t0)

∂t
=
σ

2

∂2

∂w2
p(wt|w0t0), (2.13)

p(wt0|w0t0) = δ(w − w0),

and the Smoluchowski–Chapman–Kolmogorov equation

p(w1t1|w2t2) =

∫
dw′p(w1t1|w′t′)p(w′t′|w2t2). (2.14)

A generalization to D-dimensional Wiener process wa(t) (a = 1, ..., D) is

straightforward. Let w be the D-vector. The averaging over the trajectories

of D-dimensional “white noise” η is defined by the following equations

< ηa1(t1)...ηa2n+1
(t2n+1) >η= 0 (2.15)

and

< ηa1(t1)...ηa2n(t2n) >η (2.16)

=
∑

i1,...,i2n∈(1,...,2n)

σai1ai2 ...σai2n−1
ai2n

δ(ti1 − ti2)...δ(ti2n−1
− ti2n),

where the summation is over all possible rearrangements i1, ..., i2n by pairs

(the total number of these rearrangements is (2n− 1)!! = (2n)!/2nn!).

Expressing the D-dimensional δ-function as the Fourier integral

δ(x) =
1

(2π)D

∫
dDqeiqx, dDq = dq1...dqD,

with x and q being the D-dimensional vectors, and substituting δ(x) into

the D-dimensional generalization of Eq. (2.9) we find

p(wt|w0t0) =
1

(2π)D

∫
dDqeiq(w−w0) < exp{iqa

t∫
t0

dτηa(τ)} >η, (2.17)
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here and further we adopt the following summation convention: a repeated

index implies summation over the range of the index, that is the summation

over index a goes from 1 to D.

Using Eqs. (2.15) and (2.16) we find

< exp{iqa

t∫
t0

dτηa(τ)} >η= exp{−qaqb
2

t∫
t0

dτ

t∫
t0

dτ < ηa(τ)ηb(τ
′) >η}

= exp{−1

2
qaσabqb(t− t0)},

where σab is the D ×D diffusion matrix.

Then p(wt|w0t0) reads

p(wt|w0t0) ≡ p(w −w0, t− t0) (2.18)

=
1√

2π(detσ)(t− t0)
exp{−

(wa − w0a)σ−1
ab (wb − w0b)

2(t− t0)
}, t > t0,

where σ−1
ab is the inverse matrix with respect to the matrix σab and detσ

is the determinant of the matrix σab. It is easily seen that the probability

density p(wt|w0t0) satisfies the D-dimensional diffusion equation

∂p(wt|w0t0)

∂t
=
σab
2

∂2

∂wa∂wb
p(wt|w0t0), (2.19)

with the initial condition

p(wt|w0t0)|t=t0 = δ(w −w0),

and the D-dimensional generalization of the Smoluchowski–Chapman–

Kolmogorov equation (2.13)

p(wt|w0t0) =

∫
dDw′p(wt|w′t′) · p(w′t′|w0t0). (2.20)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 23

Fractals 23

2.2.3 Fractal dimension of Brownian path

Brownian motion is a random fractal. It follows from Eq. (2.12) that

(w − w0) ∝ (σ(t− t0))1/2. (2.21)

This scaling relation between an increment of the Wiener process ∆w =

w − w0 and a time increment ∆t = t − t0 allows one to find the fractal

dimension of the Brownian path. Indeed, let us consider the diffusion path

between two given space-time points. If we divide the given time interval T

into N slices, such as T = N∆t, then for the space length of the diffusion

path we have

L = N∆w =
T

∆t
∆w = σT (∆w)−1, (2.22)

where the scaling relation, Eq. (2.21) was taken into account. The fractal

dimension tells us about the length of the path when space resolution goes

to zero. The fractional dimension dfractal may be introduced in the following

way [27], [28]

L ∝ (∆w)1−dfractal ,

where ∆w → 0. Letting in Eq. (2.22) ∆w → 0 and comparing with the

definition of the fractal dimension dfractal yields

d
(Brownian)
fractal = 2. (2.23)

Thus, we conclude that the fractal dimension of the Brownian path

is 2.

2.3 Lévy flight process

2.3.1 Lévy probability distribution

The Lévy flights are a natural generalization of Brownian motion. In the

mid of ’30s Lévy [61] and Khintchine and Lévy [62] posed the question:

When will the sum of N independent identically distributed random quan-

tities X = X1 +X2 + ...+XN has the same probability distribution func-

tion pN (X) (up to scale factor) as the individual steps Pi(Xi), i = 1, ..., N?

The answer is that each pi(Xi) should be a Gaussian because of a central
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limit theorem [63], [64]. In other words, a sum of N Gaussians is again a

Gaussian, but with N times the variance of the original. Lévy and Khint-

chine proved that there exists a possibility to generalize the central limit

theorem. They discovered the class of non-Gaussian α-stable probability

distributions which possess the property of identity (up to scale factor) the

probability distribution function of individual random quantity Xi, Pi(Xi),

i = 1, ..., N to the probability distribution function P (X) of sum of N quan-

tities X = X1+X2+...+XN . So, the α-stable probability law (stable under

summation) [63], [65] is the generalization of the well-known Gaussian law.

In other words, the α-stable distribution with index α results from sums of

independent identically distributed random variables with probability dis-

tribution function p(x) ∼ x−1−α, x→∞ in the same way that the Gaussian

distribution results from sums of independent identically distributed ran-

dom variables with probability distribution function p(x) ∼ exp{−x2/2}.
Each α-stable distribution has a stability index α often called by the Lévy

index 0 < α ≤ 2.

The question “when does the sum of independent identically distributed

random quantities have the same probability distribution function as each

random quantity has” can be considered as an expression of self-similarity,

“when does the whole object look like any of its part”. The trajectories of

Brownian motion and Lévy flights are self-similar. The Lévy index serves

as a measure of self-similarity and is equal to the Hausdorff–Besicovitch

dimension of these trajectories [29].

To understand the Lévy probability distribution function let’s take an

example with two independent random variables x1 and x2 and their linear

combination

cx = c1x1 + c2x2,

where c, c1 and c2 are scale constants.

Suggesting that x1, x2 and x have the same probability distribution P

yields

P (cx) =

∞∫
−∞

dx1

∞∫
−∞

dx2P (x1)P (x2)δ(cx− c1x1 − c2x2), (2.24)

where P (x) is normalized
∞∫
−∞

dxP (x) = 1, (2.25)
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and has the characteristic function Φ(k)

Φ(k) =

∞∫
−∞

dxeikxP (x). (2.26)

The probability distribution function P (x) is expressed by the Fourier

transform

P (x) =
1

2π

∞∫
−∞

dke−ikxΦ(k). (2.27)

In terms of the characteristic function Eq. (2.24) has the form

Φ(k) = Φ(c1k)Φ(c2k)

or

ln Φ(k) = ln Φ(c1k) + ln Φ(c2k). (2.28)

The solution of the functional equation (2.28) can be written as

Φ(k) = exp(−c|k|α), (2.29)

with the condition

cα = cα1 + cα2 ,

where α is the Lévy index and condition 0 < α ≤ 2 guarantees positivity

of the probability distribution given by Eq. (2.27).

With the help of Eqs. (2.27) and (2.29) the Lévy probability distribution

function Pα(x) is expressed as [61], [62]

Pα(x) =
1

2π

∞∫
−∞

dke−ikx exp(−c|k|α), 0 < α ≤ 2. (2.30)

It is easy to show that for α = 1 Eq. (2.30) gives us the Cauchy proba-

bility distribution function

P1(x) =
c

π

1

x2 + c2
.

Recovering the Gaussian probability distribution from Eq. (2.30) when

α = 2 is straightforward

P2(x) =

√
1

4πc
exp(−x

2

4c
).



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 26

26 Fractional Quantum Mechanics

2.3.2 Isotropic D-dimensional Lévy flights

Isotropic D-dimensional Lévy probability distribution function can be de-

fined identically to the one-dimensional case. The isotropic D-dimensional

characteristic function has a form which is identical to the characteristic

function (2.29) of the one-dimensional Lévy law

ΦD(k) = exp(−c|k|α), (2.31)

where k is the D-vector and c is a scale constant.

The probability distribution function is given by the D-dimensional gen-

eralization of Eq. (2.27)

PDα (x) =
1

(2π)D

∫
dDke−ikxΦ(k) (2.32)

=
1

(2π)D

∫
dDke−ikx exp(−c|k|α), dDk = dk1...dkD.

Due to Eq. (2.31) D-dimensional Fourier integral (2.32) is transformed

into one-fold integral over the variable k

PDα (x) = PDα (r) =
r1−D/2

(2π)D/2

∞∫
0

dkJD/2−1(kr)kD/2 exp(−ckα), (2.33)

where r =
√
r2
1 + r2

2 + ...+ r2
D and JD/2−1(z) is a Bessel function [86].

It is interesting to note that the recursion relation linking PDα (r) to

PD+2
α (r) immediately follows from Eq. (2.33)

− 1

2πr

∂

∂r
PDα (r) = PD+2

α (r). (2.34)

The proof of this relation is straightforward, and relies only on the

identity [86]

− d

dz
[z−νJν(z)] = z−νJν+1(z). (2.35)

The above relation is just a special case of the general relation that holds

between the D-dimensional and (D+ 2)-dimensional Fourier transforms of

any isotropic function f(q) = f(q).

The D-dimensional generalization of the Cauchy probability distribu-

tion function PD1 (r) is recovered1 from Eq. (2.33) when α = 1,
1We used the formula (see Eq. (6.623.2) in [86])
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PD1 (r) = PDα (r)|α=1 =
Γ(D+1

2 )

π(D+1)/2

c

(c2 + r2)(D+1)/2
.

From Eq. (2.33) we can obtain D-dimensional generalization of the

Gaussian probability distribution function (α = 2) by using the formula

(see Eq. (10.22.51) in [87])

∞∫
0

dttν+1Jν(bt)e−p
2t2 =

bν

(2p2)ν+1
exp(− b2

4p2
),

Re ν > −1 and Re p2 > 0.

It gives us D-dimensional generalization of the Gaussian probability

distribution function PD2 (r),

PD2 (r) =
1

(4πc)D/2
exp(−r

2

4c
), (2.37)

where r2 is defined as

r2 = r2
1 + r2

2 + ...+ r2
D.

2.3.3 Lévy random process

The Lévy random process x(t) can be defined by the stochastic differential

equation

.
x(t) = ηL(t), x(t0) = x0, (2.38)

with the “Lévy white noise” ηL(τ) defined by the following characteristic

functional

< exp{i
t∫

t0

dτq(τ)ηL(τ)} >ηL= exp{−σα

t∫
t0

dτ |q(τ)|α}, (2.39)

∞∫
0

dtJν(βt)tν+1 exp(−αt) =
2α(2β)νΓ(ν + 3

2
)

√
π(α2 + β2)ν+3/2

, (2.36)

where Re ν > −1 and Reα > | Imβ|.
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where σα is the intensity of the Lévy noise, α is the Lévy index, 0 < α ≤ 2

and <...>ηL denotes the averaging2 over all possible realizations of the Lévy

white noise ηL(τ).

Similarly to the definition given by Eq. (2.8) the probability distribution

function pL(xt|x0t0) reads

pL(xt|x0t0) =< δ(x− x(t, x0; ηL)) >ηL , (2.42)

here x(t, x0; ηL) is the solution of Eq. (2.38) with the initial condition x0,

x(t, x0; η) = x0 +

t∫
t0

dτηL(τ), x(t0) = x0. (2.43)

Expressing the δ-function as the Fourier integral δ(x) = 1
2π

∞∫
−∞

dqeiqx

and taking into account Eqs. (2.43) and (2.39) we find

pL(xt|x0t0) =
1

2π

∞∫
−∞

dqeiq(x−x0) exp{−σα|q|α(t− t0)}, (2.44)

t > t0, 0 < α ≤ 2,

where σα can be considered at this point as a generalized diffusion coeffi-

cient with units of [σα] = cmα · sec−1.

Thus, we get the α-stable probability distribution function of the Lévy

random process or the Lévy flights. The α-stable distribution with 0 < α <

2 possesses finite moments of order µ, 0 < µ < α, but infinite moments of

higher order. Note that the Gaussian probability distribution (α = 2) is

stable one and it possesses moments of all orders.
2The averaging is defined as the following functional integral

< ... >ηL=

∫
DηL(τ)P (ηL(τ))..., (2.40)

where
∫
DηL(τ) stands for functional integral over the Lévy white noise ηL(τ) and

P (ηL(τ)) is the Lévy white noise probability distribution functional introduced by the

functional integral,

P (ηL(τ)) =

∫
Dk(τ) exp{−i

t∫
t0

dτk(τ)ηL(τ)} exp{−σα
t∫

t0

dτ |k(τ)|α}. (2.41)
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The α-stable Lévy distribution defined by Eq. (2.44) satisfies the frac-

tional diffusion equation

∂pL(xt|x0t0)

∂t
= σα∇αpL(xt|x0t0), ∇α ≡ ∂α

∂xα
, (2.45)

pL(xt|x0t0)|t=t0 = δ(x− x0),

where∇α is the fractional Riesz derivative defined through its Fourier trans-

form [30], [47], [63], [88] (see Appendix B for details),

∇αp(x, t) = − 1

2π

∞∫
−∞

dkeikx|k|αp(k, t). (2.46)

Here p(x, t) and p(k, t) are related to each other by the Fourier trans-

forms

p(x, t) =
1

2π

∞∫
−∞

dkeikxp(k, t), p(k, t) =

∞∫
−∞

dxe−ikxp(x, t). (2.47)

A generalization to the D-dimensional isotropic Lévy process is straight-

forward. Indeed, let x(t) be the D-vector xa(t) (a = 1, ..., D). Then the

D-dimensional generalization of Eq. (2.38) becomes

·
x(t) = ηL(t), (2.48)

where ηL(t) is the D-dimensional isotropic α-stable Lévy process with the

characteristic functional Φ{q(τ)},

Φ{q(τ)} =< exp

i
t∫

t0

dτq(τ)ηL(τ)

 >ηL= exp

−σα
t∫

t0

dτ |q(τ)|α
 .

(2.49)

Here σα is the generalized diffusion coefficient or, intensity of the Lévy

white noise, α is the Lévy index, 0 < α ≤ 2 and <...>ηL denotes the aver-

aging over all possible realizations of D-dimensional isotropic Lévy white

noise ηL(τ).

Similarly to the definition given by Eq. (2.42) the probability distribu-

tion function pL(xt|x0t0) of the D-dimensional isotropic Lévy process x(t)

reads
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pL(xt|x0t0) =< δ(x− x(t,x0;ηL)) >ηL , (2.50)

where x(t,x0;ηL) is the solution of Eq. (2.48) with the initial conditions

x0,

x(t,x0;ηL) = x0 +

t∫
t0

dτηL(τ), x(t0) = x0. (2.51)

Letting the D-dimensional δ-function be the Fourier integral

δ(x) =
1

(2π)D

∫
dDqeiqx,

and taking into account Eqs. (2.50) and (2.49) we finally find

pL(xt|x0t0) =
1

(2π)D

∞∫
−∞

dDqeiq(x−x0) exp{−σα|q|α(t− t0)}, (2.52)

where t > t0, α is the Lévy index 0 < α ≤ 2, and σα can be considered as a

generalized isotropic diffusion coefficient with units of [σα] = cmα · sec−1.

It is easy to see that the D-dimensional isotropic α-stable Lévy distri-

bution defined by Eq. (2.52) satisfies the D-dimensional fractional diffusion

equation

∂pL(xt|x0t0)

∂t
= σα(−∆)α/2pL(xt|x0t0), ∆ =

∂

∂x

∂

∂x
, (2.53)

pL(xt|x0t0)|t=t0 = δ(x− x0),

where (−∆)α/2 is D-dimensional isotropic fractional Riesz derivative de-

fined through its Fourier transform [30], [63], [67], [88] (see Appendix B for

details),

(−∆)α/2p(x, t) =
1

(2π)D

∫
dDkeikx|k|αp(k, t),

where p(x, t) and p(k, t) are related to each other by the D-dimensional

Fourier transforms

p(x, t) =
1

(2π)D

∫
dDkeikxp(k, t), p(k, t) =

∫
dDxe−ikxp(x, t).

Thus, we found the D-dimensional generalization pL(xt|x0t0) of the α-

stable probability distribution function of the Lévy random process or the

Lévy flights.
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2.3.4 Fractal dimension of Lévy flight path

Lévy flights bring us another example of a random fractal. It follows from

Eq. (2.44) that

(x− x0) ∝ (σα(t− t0))
1/α

, 1 < α ≤ 2. (2.54)

This scaling relation between an increment of the Lévy process ∆x =

x − x0 and a time increment ∆t = t − t0 allows one to find the fractal

dimension of the trajectory of a Lévy path. Let us consider the length of

the Lévy path between two given space-time points. By dividing the given

time interval T into N slices, such as T = N∆t, and taking into account

the scaling relation Eq. (2.54) we have

L = N∆x =
T

∆t
∆x = σαT (∆x)1−α.

Letting ∆x → 0 and comparing it with the definition of the fractal

dimension dfractal [27], [28] yields

d
(Lévy)
fractal = α, 1 < α ≤ 2. (2.55)

Thus, the fractal dimension of the Lévy path is α. The Lévy flight

pattern consists of a self-similar clustering of local sojourns, interrupted by

long jumps, at whose end a new cluster starts, and so on. Zooming into a

cluster, in turn reveals clusters interrupted by long jumps. Lévy flights in-

timately combine the local jumps properties stemming from the center part

of the jumps distribution around zero jump length, with strongly non-local

long-distance jumps, thereby creating slowly decaying spatial correlations,

a signature of non-Gaussian processes with diverging variance.

By comparing the scaling laws Eq. (2.21) and Eq. (2.54) we conclude

that the cluster of Lévy particles will spread faster than the cluster of

Brownian particles. From Eq. (2.54) we see that the space scale x(t) of

the Lévy cluster follows x(t) ∼ t1/α. It is easy to see that the lower bound

of the space scale x(t) is being reached for the Brownian cluster, α = 2.

This fact represents the difference between Brownian motion patterns and

clustered patterns of Lévy flights displayed in Figs. 2 and 3.
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Fig. 2. An illustration of Brownian motion which corresponds to normal

diffusion. It is obtained by iterating any random walk with identically

independently distributed elementary steps having finite variance. The first

3000 steps of the walk are shown [89].

 

Fig. 3. This is the pattern of Lévy flight shown for the Lévy index α = 1.5.

Contrary to Brownian motion, the variance and any moment of order µ,

µ ≥ α are infinite. As a consequence, any Lévy flight path is almost surely

not continuous, and the figure indeed displays jumps. The first 3000 steps

are presented [89].
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2.3.5 Holtsmark distribution

One of the examples of appearance of the α-stable Lévy distribution with

α = 3/2 comes from astrophysics. It is the Holtsmark distribution [90],

[91], which is the probability distribution function of the gravitational force

created at a randomly chosen point by a given system of stars.

Let us consider a stellar system as a sphere of radius R where N stars

are randomly located at ri with masses Mi (i = 1, 2, ..., N) that exert the

gravitational force Fg

Fg = G
N∑
i=1

Mi

r3
i

ri (2.56)

on a star, per unit mass, located at the origin r = 0 of the system. Here G

is the gravitational constant and ri are 3D vectors.

We assume that stars are uniformly distributed in space with density

ρ = const. Therefore, the random number N of stars in the sphere of radius

R follows the Poisson probability distribution

P (N) =

(
(4/3)πR3ρ

)N
N !

exp{−(4/3)πR3ρ}, (2.57)

here (4/3)πR3 is the volume of sphere of the radius R. Thus, the prob-

ability to find N stars in the sphere of radius R is given by P (N). The

normalization condition is
∞∑
N=0

P (N) = 1. (2.58)

Further, it is assumed that the masses Mi of stars are identically dis-

tributed random variables with probability distribution function φ(M) with

the normalization condition

∞∫
0

dMφ(M) = 1.

Then by definition (see Eq. (2.27)) the probability distribution function

P (F) of the gravitational force is

P (F) =
1

(2π)3

∫
d3k eikFΦ(k), (2.59)
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where Φ(k) is the characteristic function defined by,

Φ(k) =< exp(−ikFg) >, (2.60)

here Fg is given by Eq. (2.56) and < ... > means the averaging over three

random impacts:

1. random masses Mi;

2. random locations r1,...,rN ;

3. random number N of stars.

Let’s define these three averaging procedures.

1. Averaging over random masses Mi, < ... >M is defined as,

< ... >M=

∞∫
0

dM1...

∞∫
0

dMN

N∏
i=1

φ(Mi)... . (2.61)

2. Averaging over random locations r1, ..., rN , < ... >R is given by,

< ... >R=
1

(4/3)πR3

∫
(4/3)πR3

d3r1...
1

(4/3)πR3

∫
(4/3)πR3

d3rN ... . (2.62)

3. Averaging over random number N of stars, < ... >N in the volume

(4/3)πR3ρ is performed as,

< ... >N=
∞∑
N=0

(
(4/3)πR3ρ

)N
N !

exp{−(4/3)πR3ρ}.

With the help of Eqs. (2.56), (2.61) - (2.63) we transform Eqs. (2.59)

and (2.60) for P (F) as follows

P (F) =
1

(2π)3

∫
d3k eikF

∞∑
N=0

(
(4/3)πR3ρ

)N
N !

exp{−(4/3)πR3ρ} (2.63)

×
N∏
i=1

ρ ∫
(4/3)πR3

d3ri

∞∫
0

dMiφ(Mi) exp(−iGMi

r3
i

kri)

 .

Performing summation over N gives us

P (F) =
1

(2π)3

∫
d3k eikF exp{−Λ(k)}, (2.64)
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where Λ(k) has been introduced as

Λ(k) = ρ

∫
(4/3)πR3

d3r

1−
∞∫

0

dMφ(M) exp

(
−iGM

r3
kr

) . (2.65)

Because the integral over d3r is convergent we can go to R →∞, then

in the spherical coordinate system Λ(k) becomes

Λ(k) = ρ

∞∫
0

drr2

2π∫
0

dϕ

π∫
−π

dϑ sinϑ (2.66)

×

1−
∞∫

0

dMφ(M) exp(−iGM
r3
kr cosϑ)

 .

Integrating over dϕ and introducing new integration variables y and x

y =
GM

r2
, x = cosϑ,

yield

Λ(k) = ρπG3/2 < M3/2 >M

∞∫
0

dyy−5/2

1∫
−1

dx{1− exp(−ikyx)} (2.67)

= 2ρπG3/2 < M3/2 >M

∞∫
0

dyy−5/2

(
1− sin ky

ky

)
,

with

< M3/2 >M=

∞∫
0

dMM3/2φ(M).

To evaluate the integral Eq. (2.67) let’s introduce a new integration

variable η = ky. Then we have

Λ(k) = 2ρπG3/2 < M3/2 >M k3/2

∞∫
0

dηη−7/2 (η − sin η) . (2.68)
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After a few integrations by parts, Λ(k) is reduced to

Λ(k) = ρ
16

15
πG3/2 < M3/2 >M k3/2

∞∫
0

dηη−1/2 cos η (2.69)

=
4

15
ρ(2πG)3/2 < M3/2 >M k3/2,

where the formula for the Fresnel integral

∞∫
0

dηη−1/2 cos η =

∞∫
0

dς cos(ς2) =
√
π/(2
√

2),

has been used.

By combining Eqs. (2.64), (2.65) and (2.69) we finally obtain the prob-

ability distribution function P (F) of the gravitational force

P (F) =
1

(2π)3

∫
d3k eikF exp{−c|k|3/2}, (2.70)

where the constant c is given by

c = (
4

15
)ρ(2πG)3/2 < M3/2 >M , (2.71)

and the averaging over random star masses < ... >M is defined by Eq.

(2.61).

From Eq. (2.70), one can see that probability distribution P (F) of the

gravitational force Fg has the 3-dimensional α-stable law with the Lévy

index α = 3/2.

To simplify Eq. (2.70) we go to the spherical reference frame d3k =

k2dk sinϑdϑdϕ with polar axis along F, and perform integration over angle

variables ϑ and ϕ. Hence, we have

P (F) =
1

(2π)3

∞∫
0

k2dk

π∫
−π

sinϑdϑ

2π∫
0

dϕ·eikF cosϑ · exp{−ck3/2}

=
1

2π2F

∞∫
0

dk · k sin(kF ) exp{−ck3/2}.
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Using new variable x = kF yields

P (F) =
1

2π2F 3

∞∫
0

dx · x sin(x) exp{−cx3/2/F 3/2}. (2.72)

With the help of the equation

P (F)d3F = 4πP (F )F 2dF, (2.73)

we introduce the probability distribution function Q(F ), which satisfies

P (F)d3F = Q(F )dF.

Further, from Eqs. (2.72) and (2.73) it follows

Q(F ) =
2

πF

∞∫
0

dx · x sin(x) exp{−cx3/2/F 3/2}. (2.74)

Now, if we put f = F/c2/3, then we obtain

Q(F )dF = c2/3Q(f)df = H(f)df, (2.75)

where the probability distribution function H(f) is given by [91]

H(f) =
2

πf

∞∫
0

dxx sin(x) exp{−(x/f)3/2}. (2.76)

The probability distribution function H(f) is the Holtsmark distribu-

tion.

Thus, the 3-dimensional α-stable probability distribution function P (F)

with the Lévy index α = 3/2 given by Eq. (2.70) has been expressed in

terms of the Holtsmark distribution given by Eq. (2.76)

P (F)d3F = H(f)df.

The Holtsmark distribution was discovered in 1919 [90], before Lévy and

Khintchine [61], [62] developments on α-stable probability distributions.
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Fractional Schrödinger Equation

3.1 Fundamentals

Classical mechanics and quantum mechanics are based on the assumption

that the Hamiltonian function has the form

H(p, r) =
p2

2m
+ V (r), (3.1)

where p and r are the momentum and space coordinate of a particle with

mass m, and V (r) is the potential energy. In quantum mechanics, p and r

should be considered as quantum mechanical operators p̂ and r̂. Then the

Hamiltonian function H(p, r) becomes the Hamiltonian operator Ĥ(p̂, r̂),

Ĥ(p̂, r̂) =
p̂2

2m
+ V (r̂). (3.2)

The square dependence on the momentum in Eqs. (3.1) and (3.2) is

an empirical physical fact. However, an attempt to get insight on the

fundamentals behind this fact posts the question: are there other forms

of the kinematic term in Eqs. (3.1) and (3.2) which do not contradict

the fundamental principles of classical mechanics and quantum mechanics?

A convenient theoretical physics approach to answer this question is the

Feynman path integral approach to quantum mechanics [12], as it was first

observed by Laskin [67]. Indeed, the Feynman path integral is the integral

over Brownian-like paths. Brownian motion is a special case of the so-called

α-stable probability distributions developed by Lévy [61] and Khintchine

[62]. In mid ’30s they posed the question: Does the sum of N independent

identically distributed random quantities X = X1 + X2 + ... + XN have

the same probability distribution pN (X) (up to scale factor) as the individ-

ual steps Pi(Xi), i = 1, ..., N? The traditional answer is that each Pi(Xi)

39
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should be a Gaussian, because of the central limit theorem. In other words,

a sum of N Gaussians is again a Gaussian, but with N times the variance

of the original. Lévy and Khintchine proved that there exists the possi-

bility to generalize the central limit theorem. They discovered a class of

non-Gaussian α-stable (stable under summation) probability distributions.

Each α-stable distribution has a stability index α, often called the Lévy

index 0 < α ≤ 2. When α = 2 Lévy motion is transformed into Brownian

motion.

An option to develop the path integral over Lévy paths was discussed

by Kac [23], who pointed out that the Lévy path integral generates a func-

tional measure in the space of left (or right) continuous functions (paths)

having only first kind discontinuities. The path integral over Lévy paths

has first been introduced and elaborated with applications to fractional

quantum mechanics and fractional statistical mechanics by Laskin (see [67],

[92], [96]). He followed the framework of the Feynman space-time vision

of quantum mechanics, but instead of the Brownian-like quantum mechan-

ical trajectories, Laskin used the Lévy-like ones. If the fractal dimension

(for definition of fractal dimension, see [27], [28]) of the Brownian path is

d
(Brownian)
fractal = 2, then the Lévy path has fractal dimension d

(Lévy)
fractal = α,

where α is so-called the Lévy index, 1 < α ≤ 2. The Lévy index α becomes

a new fundamental parameter in fractional quantum and fractional classi-

cal mechanics similar to d
(Brownian)
fractal = 2 being a fundamental parameter

in standard quantum and classical mechanics. The difference between the

fractal dimensions of Brownian and Lévy paths leads to different physics.

In fact, fractional quantum mechanics is generated by the Hamiltonian op-

erator of the form [67], [92], [96]

Ĥα(p̂, r̂) = Dα|p̂|α + V (r̂), 1 < α ≤ 2, (3.3)

which is originated from the classical mechanics Hamiltonian function

Hα(p, r)

Hα(p, r) = Dα|p|α + V (r), 1 < α ≤ 2, (3.4)

with substitutions p→p̂, r→ r̂, and Dα being the scale coefficient with

units of [Dα] = erg1−α ·cmα · sec−α. One can say that Eq. (3.4) is a natural

generalization of the well-known Eq. (3.1). When α = 2, Dα = 1/2m and

Eq. (3.4) is transformed into Eq. (3.1) [67]. As a result, the fractional

quantum mechanics based on the Lévy path integral generalizes the stan-

dard quantum mechanics based on the well-known Feynman path integral.
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Indeed, if the path integral over Brownian trajectories leads to the well-

known Schrödinger equation, then the path integral over Lévy trajectories

leads to the fractional Schrödinger equation. The fractional Schrödinger

equation is a new fundamental equation of quantum physics, and it in-

cludes the space derivative of order α instead of the second (α = 2) order

space derivative in the standard Schrödinger equation. Thus, the fractional

Schrödinger equation is the fractional differential equation in accordance

with modern terminology (see, for example, [30], [31], [37]-[43], [48], [69],

[70]). This is the main point of the term, fractional Schrödinger equation,

and for the more general term, fractional quantum mechanics [67], [92].

When Lévy index α = 2, Lévy motion becomes Brownian motion. Thus,

fractional quantum mechanics includes standard quantum mechanics as a

particular Gaussian case at α = 2. The quantum mechanical path integral

over the Lévy paths [67] at α = 2 becomes the Feynman path integral [12],

[20].

In the limit case α = 2 the fundamental equations of fractional quan-

tum mechanics are transformed into the well-known equations of standard

quantum mechanics [12], [20], [94].

3.2 Fractional Schrödinger equation in coordinate

representation

3.2.1 Quantum Riesz fractional derivative

It follows from Eq. (3.1) that the energy E of a particle of mass m under

the influence of the potential V (r) is given by

E =
p2

2m
+ V (r). (3.5)

To obtain the Schrödinger equation we introduce the operators following

the well-known procedure,

E → i~
∂

∂t
, p→ −i~∇, (3.6)

where ∇ = ∂/∂r and ~ is Planck’s constant. Further, substituting trans-

formation (3.6) into Eq. (3.1) and applying it to the wave function ψ(r, t)

yields

i~
∂ψ(r, t)

∂t
= − ~2

2m
∆ψ(r, t) + V (r)ψ(r, t), (3.7)
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here ∆ = ∇ ·∇ is the Laplacian. Thus, we obtained the Schrödinger

equation [94].

By repeating the same consideration to Eq. (3.4) we find the fractional

Schrödinger equation [67], [95], [96]

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t) + V (r)ψ(r, t), (3.8)

1 < α ≤ 2,

where Dα is scale coefficient Dα with units of [Dα] = erg1−α · cmα · sec−α,

and the 3D generalization of the quantum Riesz fractional derivative

(−~2∆)α/2 has been introduced first by Laskin [67], [92]

(−~2∆)α/2ψ(r, t) =
1

(2π~)3

∫
d3pei

pr
~ |p|αϕ(p, t), (3.9)

where the wave functions in space ψ(r, t) and momentum ϕ(p, t) represen-

tations are related to each other by the 3D Fourier transforms

ψ(r, t) =
1

(2π~)3

∫
d3pei

pr
~ ϕ(p, t), ϕ(p, t) =

∫
d3re−i

pr
~ ψ(r, t).

(3.10)

The 3D fractional Schrödinger equation Eq. (3.8) can be rewritten in

the operator form

i~
∂ψ(r, t)

∂t
= Ĥαψ(r, t), 1 < α ≤ 2, (3.11)

if we introduce the fractional Hamiltonian Ĥα operator defined by

Ĥα = Dα(−~2∆)α/2 + V (r). (3.12)

This operator can be expressed in the form given by Eq. (3.3) by intro-

ducing quantum-mechanical operator of momentum p̂ = −i~∇ = −i~∂/∂r

and operator of coordinate r̂ = r.

Therefore, the 3D fractional Schrödinger equation Eq. (3.8) has the

following operator form

i~
∂ψ(r, t)

∂t
= Ĥα(p̂, r̂)ψ(r, t),
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with Ĥα(p̂, r̂) introduced by Eq. (3.3).

Commutation relationships for operators p̂ and r̂ are [94]

[r̂k, p̂j ] = i~δkj ,

[r̂k, r̂j ] = 0,

[p̂k, p̂j ] = 0,

where k, j = 1, 2, 3, ~ is Planck’s constant and δkj is the Kronecker symbol.

The 1D fractional Schrödinger equation first introduced by Laskin has

the form [67], [92], [96]

i~
∂ψ(x, t)

∂t
= −Dα(~∇)αψ(x, t) + V (x)ψ(x, t), 1 < α ≤ 2, (3.13)

where ψ(x, t) is wave function and the 1D quantum Riesz fractional deriva-

tive1 (~∇)α has been defined in the following way [67], [92]

(~∇)αψ(x, t) = − 1

2π~

∞∫
−∞

dpei
px
~ |p|αϕ(p, t), (3.14)

where ϕ(p, t) is the Fourier transform of the wave function ψ(x, t) given by

ϕ(p, t) =

∞∫
−∞

dxe−i
px
~ ψ(x, t), (3.15)

and respectively

ψ(x, t) =
1

2π~

∞∫
−∞

dpei
px
~ ϕ(p, t). (3.16)

When α = 2, Eq. (3.13) is transformed into the well-known 1D

Schrödinger equation

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t), (3.17)

1The Riesz fractional derivative was originally introduced in [88].
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where m is a particle mass.

It is easy to see that Eq. (3.13) can be rewritten in the operator form,

namely

i~
∂ψ

∂t
= Ĥαψ, (3.18)

here Ĥα is the 1D fractional Hamiltonian operator

Ĥα = −Dα(~∇)α + V (x). (3.19)

Alternatively, 1D fractional Schrödinger equation (3.13) can be pre-

sented as

i~
∂ψ(x, t)

∂t
= Dα(−~2∆)α/2ψ(x, t) + V (x)ψ(x, t), 1 < α ≤ 2, (3.20)

where 1D the quantum Riesz fractional derivative (−~2∆)α/2 has been

introduced by

(−~2∆)α/2ψ(x, t) =
1

(2π~)3

∫
d3pei

pr
~ |p|αϕ(p, t), (3.21)

where the wave functions in space ψ(x, t) and momentum ϕ(p, t) represen-

tations are related to each other by the Fourier transforms given by Eqs.

(3.15) and (3.16).

The operator form of Eq. (3.20) is

i~
∂ψ(x, t)

∂t
= Ĥαψ(x, t), 1 < α ≤ 2, (3.22)

where the Hamilton operator Ĥα is given by

Ĥα = Dα(−~2∆)α/2 + V (x), 1 < α ≤ 2. (3.23)

The classical mechanics Hamilton function Hα corresponding to the

Hamilton operator Ĥα is

Hα(p, x) = Dα|p|α + V (x), 1 < α ≤ 2. (3.24)

For the special case when α = 2 and D2 = 1/2m (see, for details

[67], [92]), where m is the particle mass, Eqs. (3.8), (3.13) and (3.20) are

transformed into the well-known 3D and 1D Schrödinger equations [94].
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3.3 Fractional Schrödinger equation in momentum

representation

Substituting the wave function ψ(x, t) from Eq. (3.16) into Eq. (3.13), mul-

tiplying by exp(−ipx/~) and integrating over dx bring us the 1D fractional

Schrödinger equation in momentum representation

i~
∂ϕ(p, t)

∂t
= Dα|p|αϕ(p, t) +

∫
d3p′Up,p′ϕ(p′, t), 1 < α ≤ 2, (3.25)

where Up,p′ is given by

Up,p′ =

∫
dx exp(−i(p−p′)x/~)V (x), (3.26)

and we used the following representation for the delta function δ(x)

δ(x) =
1

2π~

∫
dp exp(ipx/~). (3.27)

It is assumed that the integral in Eq. (3.26) exists.

Equation (3.25) is the 1D fractional Schrödinger equation in momentum

representation for the wave function ϕ(p, t).

To obtain the 3D fractional Schrödinger equation in momentum repre-

sentation, let us substitute wave function ψ(r, t) from Eq. (3.10) into Eq.

(3.8),

i~
(2π~)3

∂

∂t

∫
d3p′ei

p′r
~ ϕ(p′, t) =

Dα

(2π~)3

∫
d3p′ei

p′r
~ |p′|αϕ(p′, t) (3.28)

+
V (r)

(2π~)3

∫
d3p′ei

p′r
~ ϕ(p′, t).

Further, by multiplying Eq. (3.28) by exp(−ipr/~) and integrating over

d3r we obtain the equation for the wave function ϕ(p, t) in momentum

representation

i~
∂

∂t
ϕ(p, t) = Dα|p|αϕ(p, t) +

∫
d3p′Up,p′ϕ(p′, t), (3.29)

where Up,p′ has been defined by

Up,p′ =

∫
d3r exp(−i(p− p′)r/~)V (r), (3.30)
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and we used the following representation for the delta function δ(r)

δ(r) =
1

(2π~)3

∫
d3p exp(ipr/~). (3.31)

It is assumed that Up,p′ introduced by Eq. (3.30) exists.

Equation (3.29) is the 3D fractional Schrödinger equation in momentum

representation for the wave function ϕ(p, t).

If the normalization condition for wave function in coordinate space

ψ(r, t) has the form

∫
d3r|ψ(r, t)|2 = 1, (3.32)

then the wave function in momentum space ϕ(p, t) is normalized as

1

(2π~)3

∫
d3p|ϕ(p, t)|2 = 1. (3.33)

Indeed, substituting ψ(r, t) from Eq. (3.10) into Eq. (3.32), performing

integration over d3r, and using Eq. (3.31) yields Eq. (3.33).

3.4 Hermiticity of the fractional Hamiltonian operator

The fractional Hamiltonian Ĥα given by Eq. (3.19) is the Hermitian oper-

ator in the space with scalar product

(φ, χ) =

∞∫
−∞

dxφ∗(x, t)χ(x, t), (3.34)

where φ∗(x, t) is the complex conjugate wave function of φ(x, t).

To prove the hermiticity of Ĥα let us note that in accordance with the

definition of the quantum Riesz fractional derivative given by Eq. (3.14)

there exists the integration by parts formula

(φ, (~∇)αχ) = ((~∇)αφ, χ). (3.35)

The average energy Eα of a fractional quantum system with Hamilto-

nian Hα is

Eα =

∞∫
−∞

dxψ∗(x, t)Ĥαψ(x, t). (3.36)
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Taking into account Eqs. (3.19) and (3.35) we have

Eα =

∞∫
−∞

dxψ∗(x, t)Ĥαψ(x, t) =

∞∫
−∞

dx(Ĥ+
αψ(x, t))∗ψ(x, t) = E∗α.

As a physical consequence, the energy of the system is real. Thus, the

fractional Hamiltonian Ĥα defined by Eq. (3.19) is the Hermitian or self-

adjoint operator in the space with the scalar product defined by Eq. (3.34)

[95], [96]

(Ĥ+
αφ, χ) = (φ, Ĥαχ). (3.37)

Note that the 1D fractional Schrödinger equation (3.13) leads to the

fundamental equation

∂

∂t

∫
dxψ∗(x, t)ψ(x, t) = 0, (3.38)

which shows that the wave function remains normalized, if it is normalized

once. Multiplying Eq. (3.13) from the left by ψ∗(x, t), and multiplying the

conjugate complex of Eq. (3.13) by ψ(x, t), and then subtracting the two

resultant equations finally yield

i~
∂

∂t
(ψ∗(x, t)ψ(x, t)) = ψ∗(x, t)Ĥαψ(x, t)− ψ(x, t)Ĥ+

α ψ
∗(x, t).

Integrating this relation over the space variable x and using the fact

that the operator Ĥα is self-adjoint, we come to Eq. (3.38).

The 3D generalization of the proof of hermiticity is straightforward.

The fractional Hamiltonian Ĥα(p̂, r̂) given by Eq. (3.3) is the Hermitian

operator in the space with scalar product

(φ, χ) =

∫
d3rφ∗(r, t)χ(r, t), (3.39)

where φ∗(r, t) is the complex conjugate wave function of φ(r, t).

To prove the hermiticity of Ĥα(p̂, r̂) let us note that in accordance with

the definition of the 3D quantum Riesz fractional derivative given by Eq.

(3.9) there exists the integration by parts formula

(φ, (−~2∆)α/2χ) = ((−~2∆)α/2φ, χ). (3.40)
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With the help of Eqs. (3.3) and (3.40) the average energy of quantum

system Eα becomes

Eα =

∞∫
−∞

d3rψ∗(r, t)Ĥα(p̂, r̂)ψ(r, t) =

∞∫
−∞

dr(Ĥ+
α (p̂, r̂)ψ(r, t))∗ψ(r, t) = E∗α.

Hence, the fractional Hamiltonian Ĥα(p̂, r̂) given by Eq. (3.3) is the

Hermitian or self-adjoint operator in the space with the scalar product

defined by Eq. (3.39).

Defined by Eq. (3.8) the 3D fractional Schrödinger equation leads to

the important equation

∂

∂t

∫
d3rψ∗(r, t)ψ(r, t) = 0, (3.41)

which is the conservation law for normalization condition of the wave func-

tion in 3D case. The proof of Eq. (3.41) can be done by the straightforward

generalization of the proof of Eq. (3.38) in 1D case.

3.5 The parity conservation law in fractional quantum

mechanics

From definition (3.14) of the quantum Riesz fractional derivative it follows

that

(~∇)α exp
{
i
px

~

}
= −|p|α exp

{
i
px

~

}
. (3.42)

In other words, the function exp{ipx/~} is the eigenfunction of the

quantum Riesz fractional operator (~∇)α with eigenvalue −|p|α.

The 3D generalization is straightforward as it follows from Eq. (3.9),

(−~2∆)α/2 exp
{
i
px

~

}
= |p|α exp

{
i
px

~

}
, (3.43)

which means that the function exp{ipx/~} is the eigenfunction of the 3D

quantum Riesz fractional operator (−~2∆)α/2 with eigenvalue |p|α.

Thus, the operators (~∇)α and (−~2∆)α/2 are the symmetrized frac-

tional derivative, that is

(~∇x)α... = (~∇−x)α..., (3.44)
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and

(−~2∆r)
α/2... = (−~2∆−r)

α/2.... (3.45)

Due to properties (3.35) and (3.36), the kinetic part of fractional Hamil-

tonian Hα (see, for example Eqs. (3.3) or (3.19)) remains invariant under

inversion transformation. Inversion, or to be precise, spatial inversion in-

verts the sign of all three spatial coordinates

r→ −r, x→ −x, y → −y, z → −z. (3.46)

Let us denote the inversion operator by P̂ , which acts as

P̂ψ(r, t) = ψ(−r, t). (3.47)

Obviously, P 2 = I, here I is the unit operator. So, eigenvalues of parity

operator P are ±1.

Taking into account Eqs. (3.45) and (3.47) we have

P̂ (Dα(−~2∆)α/2)ψ(r, t) = (Dα(−~2∆)α/2)P̂ψ(r, t) (3.48)

or

[P̂ , (−~2∆)α/2] = 0, (3.49)

where the notation [..., ...] stands for the commutator of two operators,

[Â, B̂] = ÂB̂ − B̂Â.

Hence, the kinetic part of fractional Hamiltonian Hα (see, for example

Eqs. (3.3) or (3.19)) is invariant under inversion transformation.

Further, if the potential energy in the fractional Hamiltonian (see, for

example, Eq. (3.3)) is even, that is

V (r) = V (−r), (3.50)

then the chain of transformations holds

PV (r̂)ψ(r, t) = V (−r̂)ψ(−r, t) = V (r̂)Pψ(r, t), (3.51)
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which can be expressed in operator form

PV (r̂)− V (r̂)P = [P, V (r̂)] = 0. (3.52)

It follows from Eqs. (3.48) and (3.52) that the inversion operator P̂ and

the fractional Hamiltonian Ĥα commute,

[P̂ , Ĥα] = 0. (3.53)

We can divide the wave functions of quantum mechanical states with

a well-defined eigenvalue of the operator P̂ into two classes; (i) func-

tions which are not changed when acted upon by the inversion opera-

tor, P̂ψ+(r) = ψ+(r), the corresponding states are called even states;

(ii) functions which change sign under action of the inversion operator,

P̂ψ−(r) = −ψ−(r), the corresponding states are called odd states. Equa-

tion (3.53) represents the “parity conservation law” for fractional quantum

mechanics [96], that is, if the state of a closed fractional quantum mechan-

ical system has a given parity (i.e. if it is even or odd), then the parity is

conserved.

3.6 Velocity operator

The quantum mechanical velocity operator is defined as follows: v̂ = dr̂/dt,

where r̂ is the operator of coordinate. Using the general quantum mechan-

ical rule for differentiation of operators

d

dt
r̂ =

i

~
[Ĥα, r̂],

we find

v̂ =
i

~
(Ĥαr̂−r̂Ĥα).

Further, with the help of equation f(p̂)r − rf(p̂) = −i~∂f/∂p, which

holds for any function f(p̂) of the momentum operator p̂, and taking into

account Eq. (3.3) for the Hamiltonian operator Ĥα(p̂, r̂) we obtain the

equation for the velocity operator in fractional quantum mechanics [96]

v̂ = αDα(p̂2)α/2−1p̂, (3.54)
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here p̂ is the momentum operator, p̂ = −i~∂/∂r.

The velocity operator v̂ plays a fundamental role in fractional quantum

mechanics as well as in standard quantum mechanics.

When α = 2, the fractional quantum mechanics velocity operator Eq.

(3.54) becomes the well-known quantum velocity operator v̂ = p̂/m of

standard quantum mechanics [94].

In 1D space the fractional quantum mechanics velocity operator is

v̂ = αDα(p̂2)α/2−1p̂, (3.55)

where p̂ = −i~∂/∂x is the 1D momentum operator.

3.7 Fractional current density

Multiplying Eq. (3.8) from the left by ψ∗(r, t), and multiplying the com-

plex conjugate of Eq. (3.8) by ψ(r, t), then subtracting the two resultant

equations yield

∂

∂t

∫
d3r (ψ∗(r, t)ψ(r, t)) (3.56)

=
Dα

i~

∫
d3r

(
ψ∗(r, t)(−~2∆)α/2ψ(r, t)− ψ(r, t)(−~2∆)α/2ψ∗(r, t)

)
.

From this equation we are led to the following differential equation [97]

∂ρ(r, t)

∂t
+ divj(r, t) + K(r, t) = 0, (3.57)

where ρ(r, t) = ψ∗(r, t)ψ(r, t) is the quantum mechanical probability den-

sity, the vector j(r, t) introduced in [96] is called the fractional probability

current density vector

j(r, t) =
Dα~
i

(ψ∗(r, t)(−~2∆)α/2−1∇ψ(r, t) (3.58)

−ψ(r, t)(−~2∆)α/2−1∇ψ∗(r, t)),

and K(r, t) was originally found in [97] while developing the system of frac-

tional two-fluid hydrodynamic equations to model superfluid hydrodynamic

phenomena in nanoporous environments,
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K(r, t) = −Dα~
i

(∇ψ∗(r, t)(−~2∆)α/2−1∇ψ(r, t) (3.59)

−∇ψ(r, t)(−~2∆)α/2−1∇ψ∗(r, t)),

here the notation ∇ = ∂/∂r has been used.

In terms of the momentum operator p̂ = −i~∂/∂r, vector j(r, t) given

by Eq. (3.58) can be expressed in the form [96]

j =Dα(ψ∗(r, t)(p̂2)α/2−1p̂ψ(r, t) (3.60)

+ψ(r, t)(p̂2)α/2−1p̂∗ψ∗(r, t)),

which is a fractional generalization of the well-known equation for the prob-

ability current density vector of standard quantum mechanics [94].

Introduced by Eq. (3.59), K(r, t) can be expressed in the form

K(r, t) =
iDα

~
(p̂∗(r, t)ψ∗(p̂2)α/2−1p̂ψ(r, t) (3.61)

−p̂ψ(r, t)(p̂2)α/2−1p̂∗ψ∗(r, t)).

In terms of the velocity operator defined by Eq. (3.54), the fractional

probability current density vector j reads

j =
1

α
(ψ∗(r, t)v̂ψ(r, t) + ψ(r, t)v̂∗ψ∗(r, t)) , 1 < α ≤ 2, (3.62)

the extra term K(r, t) can be expressed as [97], [98]

K(r, t) =
i

α~
(p̂∗ψ∗(r, t)v̂ψ(r, t)− p̂ψ(r, t)v̂∗ψ∗(r, t)) . (3.63)

In standard quantum mechanics, when α = 2, and Dα = 1/2m, with m

being a particle mass, the extra term K(r, t) is vanished, velocity operator

given by Eq. (3.54) becomes v̂ = p̂/m. Hence, from Eq. (3.62) and we

come to the well-known expression for the probability current density vector

[94]

j|α=2=
1

2m
(ψ∗(r, t)p̂ψ(r, t) + ψ(r, t)p̂∗ψ∗(r, t)) , (3.64)
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here ψ(r, t) stands for a solution to standard Schrödinger equation (3.7).

We conclude, that in the case α = 2 Eq. (3.57) turns into the well-known

quantum mechanical probability conservation law

∂ρ(r, t)

∂t
+ divj(r, t)|α=2 = 0. (3.65)

The wave function of a free particle in the framework of fractional quan-

tum mechanics can be normalized to get a probability current density equal

to 1 (the current when one particle passes through a unit area per unit

time). The normalized wave function of a free particle is

ψ(r, t) =

√
α

2v
exp{ i

~
pr− i

~
Et}, E = Dα|p|α, (3.66)

1 < α ≤ 2,

where v is the particle velocity, v = αDαp
α−1. Then we have

j =
v

v
, v = αDα(p2)

α
2−1p, (3.67)

that is, the vector j is indeed the unit vector.
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Chapter 4

Time-Independent Fractional
Schrödinger Equation

The special case when Hamiltonian Hα does not depend explicitly on time

is of great importance for physical applications. It is easy to see that in

this case there exists a special solution to the 3D fractional Schrödinger

equation (3.8) in the form

ψ(r, t) = e−(i/~)Etφ(r), (4.1)

where E is the energy of a quantum particle,

E = Dα|p|α, 1 < α ≤ 2. (4.2)

The time-independent wave function φ(r) is the eigenvalue of fractional

Hamilton operator (3.3),

Ĥα(p̂, r̂)φ(r) = Eφ(r), (4.3)

with the eigenvalue given by (4.2).

With the help of Eq. (3.3) we find

Dα|p̂|αφ(r) + V (r̂)φ(r) = Eφ(r), (4.4)

or, in terms of the quantum Riesz fractional derivative (−~2∆)α/2 intro-

duced by Eq. (3.9),

Dα(−~2∆)α/2φ(r) + V (r̂)φ(r) = Eφ(r), 1 < α ≤ 2, (4.5)

which is the time-independent 3D fractional Schrödinger equation.

55
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In 1D case we have

ψ(x, t) = e−(i/~)Etφ(x), (4.6)

where E is the energy of a quantum particle,

E = Dα|p|α. (4.7)

The wave function φ(x) satisfies

Ĥαφ(x) = Eφ(x), (4.8)

where Ĥα has been introduced by Eq. (3.19) and E in this case is defined

by Eq. (4.7).

Hence, the time-independent 1D fractional Schrödinger equation reads

−Dα(~∇)αφ(x) + V (x)φ(x) = Eφ(x), 1 < α ≤ 2 (4.9)

or

Dα(−~2∆)α/2φ(x) + V (x)φ(x) = Eφ(x), 1 < α ≤ 2, (4.10)

where (~∇)α is 1D the quantum Riesz fractional derivative introduced by

Eq. (3.14), and (−~2∆)α/2 is an alternative expression for 1D the quantum

Riesz fractional derivative following from Eq. (3.9) with ∆ = ∂2/∂x2.

We call equations (4.4), (4.5) and (4.9) the time-independent (or sta-

tionary) fractional Schrödinger equation [95], [96]. From Eqs. (4.1) and

(4.6) we see that the fractional quantum mechanical wave function oscil-

lates with a definite frequency. The frequency of oscillations of a wave

function corresponds to the energy. Therefore, we say that when the frac-

tional wave function is of the special form given by Eqs. (4.1) or (4.6), the

state has a definite energy E. The probability density to find a particle at

r is the absolute square of the wave function |ψ(r, t)|2. In view of Eq. (4.1)

the probability density is equal to |φ(r)|2 and does not depend upon the

time. That is, the probability density of finding the particle in any location

is independent of the time. In other words, the system is in a stationary

state - stationary in the sense that there is no variation in the quantum

mechanical probability as a function of time.
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4.1 Continuity of derivative of wave function

Following Dong and Xu [99], we integrate both sides of Eq. (4.10) over x

ranging from a − ε to a + ε, with ε being a small positive quantity. The

result of the integration is

−~2Dα(−~2∆)α/2−1∇φ(x)|a+ε
a−ε =

a+ε∫
a−ε

dx(E − V (x))φ(x), (4.11)

1 < α ≤ 2,

where ∇ = ∂/∂x.

If potential energy V (x) is finite, we have

lim
ε→0

(−~2∆)α/2−1∇φ(x)|a+ε
a−ε = 0, (4.12)

which means that (−~2∆)α/2−1∇φ(x) is continuous at x = a.

By introducing the operator [99]

Vα = (−~2∆)α/2−1∇, (4.13)

we rewrite Eq. (4.12)

lim
ε→0
Vαφ(x)|a+ε

a−ε = 0. (4.14)

This equation is a fractional generalization of the continuity condition

of space derivative of wave function. This continuity condition is a re-

striction to the wave function of a fractional quantum system when the

potential function is bounded. If V (x) is infinite at some boundaries, then

a jump (discontinuity) condition for Vαφ(x) has to be taken into account.

Obviously, when α = 2 we obtain from Eq. (4.13)

V2 = Vα|α=2 = ∇,
and Eq. (4.12) becomes the well-known continuity condition for the first

order space derivative of wave function of standard quantum mechanics.

The operator Vα first introduced by Dong and Xu [99] can be expressed

in terms of 1D velocity operator v̂ defined by Eq. (3.55)

Vα = i
v̂

α~Dα
. (4.15)
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The operator Vα has been applied by Dong and Xu [99] to find exact

solutions to the fractional Schrödinger equation for a finite square well, peri-

odic potential, the δ-potential well, for the problem of penetration through

a δ-potential barrier, and for the Dirac comb.

4.2 The time-independent fractional Schrödinger equation

in momentum representation

To obtain the fractional Schrödinger equation in momentum representation

we define the Fourier transforms for the steady state wave functions in space

φ(r) and momentum φ(p) representations,

φ(r) =
1

(2π~)3

∫
d3pei

pr
~ φ(p), φ(p) =

∫
d3re−i

pr
~ φ(r). (4.16)

Substituting φ(r) given by Eq. (4.16) into Eq. (4.5) yields

Dα|p2|α/2φ(p) +

∫
d3p′Up,p′ϕ(p′),= Eφ(p), 1 < α ≤ 2, (4.17)

where Up,p′ has been introduced by Eq. (3.30).

Equation (4.17) is the 3D time-independent fractional Schrödinger equa-

tion in momentum representation.

In the 1D case the time-independent fractional Schrödinger equation in

momentum representation can be obtained in a similar way. We define the

Fourier transforms for the steady state wave functions,

φ(x) =
1

2π~

∞∫
−∞

dpeipx/~ϕ(p), ϕ(p) =

∞∫
−∞

dxe−ipx/~φ(x). (4.18)

Then substituting φ(x) given by Eq. (4.18) into Eq. (4.17) yields

Dα|p|αϕ(p) +

∞∫
−∞

dp′Up,p′ϕ(p′) = Eϕ(p), 1 < α ≤ 2, (4.19)

where we introduced

Up,p′ =
1

2π~

∞∫
−∞

dxe−i(p−p
′)/~V (x).

Equation (4.19) is the 1D time-independent fractional Schrödinger equa-

tion in momentum representation.
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4.3 Orthogonality of the wave functions

Suppose that E1 is a possible energy for which Eq. (4.10) has a solution φ1,

and that E2 is another value for energy for which this equation has some

other solution φ2. Then we know two special solutions of the fractional

Schrödinger equation, namely

ψ1(x, t) = e−(i/~)E1tφ1(x) and ψ2(x, t) = e−(i/~)E2tφ2(x).

Since the fractional Schrödinger equation is linear, it is clear that if ψ

is a solution, then ψ multiplied by any constant c is also a solution, cψ.

Furthermore, if ψ1 is a solution and ψ2 is a solution, then the sum of ψ1

and ψ2 is also a solution. Obviously, then, the wave function

ψ = c1e
−(i/~)E1tφ1 + c2e

−(i/~)E2tφ2 (4.20)

is a solution to the fractional Schrödinger equation.

It can be shown that if all of the possible values of E and the corre-

sponding functions φ are worked out, any solution to Eq. (4.10) can be

written as a linear combination of these special solutions of definite energy.

It is clear that the total probability to be anywhere is constant. With

the help of Eq. (4.20) for ψ, we have

∞∫
−∞

dxψ∗ψ = c∗1c1

∞∫
−∞

dx|φ1|2 + c∗1c2e
(i/~)(E1−E2)

∞∫
−∞

dxφ∗1φ2

+c1c
∗
2e
−(i/~)(E1−E2)

∞∫
−∞

dxφ1φ
∗
2 + c∗2c2

∞∫
−∞

dx|φ2|2.

Since it has to be a constant, the time-variable terms (i.e. terms includ-

ing e±(i/~)(E1−E2)) must vanish for all possible choices of c1 and c2. This

means

∞∫
−∞

dxφ∗1φ2 =

∞∫
−∞

dxφ1φ
∗
2 = 0. (4.21)

Thus, Eq. (4.21) says that two states with different energies are orthogo-

nal. In other words, if a particle is known to have an energy E1 and the wave



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 60

60 Fractional Quantum Mechanics

function ψ1(x, t) = e−(i/~)E1tφ1(x), then the amplitude that it is found to

have a different energy E2 and the wave function ψ2(x, t) = e−(i/~)E2tφ2(x)

must be 0.

On the other hand, it is useful to show directly from the fractional

Schrödinger equation (4.4) the orthogonality of the wave functions for

stationary quantum mechanical states with different energies, Em 6= En
(m 6= n). Let φm(r) and φn(r) be two wave functions which satisfy the 3D

fractional Schrödinger equations

Dα(−~2∆)α/2φm(r) + V (r)φm(r) = Emφm(r),

and

Dα(−~2∆)α/2φ∗n(r) + V (r)φ∗n(r) = E∗nφ
∗
n(r),

respectively.

Multiplying the first one by φ∗n(r) and the second one by φm(r), and

then subtracting the second one from the first one, yield

(Em − En)φm(r)φ∗n(r) (4.22)

= Dα(φ∗n(r)(−~2∆)α/2φm(r)− φm(r)(−~2∆)α/2φ∗n(r)).

We integrate both sides of Eq. (4.22) over d3r. Integral over d3r from

the right of Eq. (4.22) is 0 because of the hermiticity of fractional operator

(−~2∆)α/2, and we obtain

(Em − En)

∫
d3rψm(r)ψ∗n(r) = 0, (4.23)

which results in the orthogonality condition

∫
d3rψm(r)ψ∗n(r) = 0, (4.24)

because of the condition that Em 6= En.
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4.4 Linear combination of steady-state functions

Let the functions corresponding to the set of energy levels En be not only

orthogonal but also normalized, i.e. that the integral of the absolute square

over all x is 1. Then we will have

∞∫
−∞

dxφ∗n(x)φm(x) = δnm, (4.25)

where φ∗n(x) is the complex conjugate wave function of φn(x), δnm, the

Kronecker symbol, is defined by δnm = 0 if n 6= m and δnn = 1. Any

function which is likely to arise as a wave function can be expressed as a

linear combination of such φn’s. That is,

χ(x) =
∞∑
n=1

anφn(x). (4.26)

The coefficients an are easily obtained with the help of Eq. (4.25),

an =

∞∫
−∞

dxφ∗n(x)χ(x).

Substituting an into Eq. (4.26) yields

χ(x) =

∞∑
n=1

 ∞∫
−∞

dx′φ∗n(x′)χ(x′)

φn(x)

=

∞∫
−∞

dx′

( ∞∑
n=1

φn(x)φ∗n(x′)

)
χ(x′),

and we conclude that

∞∑
n=1

φn(x)φ∗n(x′) = δ(x− x′),

where δ(x) is the delta function.

It is clear that we can express the fractional kernel K(xbtb|xata) in terms

of the fractional wave functions φn(x) and the energy values En. Suppose
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that we know the wave function at time t1. Then, what is the wave function

at time t2? At time t1 the wave function ψ(x, t1) reads

ψ(x, t1) =
∞∑
n=1

cne
−(i/~)Ent1φn(x), (4.27)

while at time t2 the wave function ψ(x, t2) reads

ψ(x, t2) =
∞∑
n=1

cne
−(i/~)Ent2φn(x). (4.28)

Now, using Eq. (4.25) we find that

cm = e(i/~)Emt1

∞∫
−∞

dxψ(x, t1)φm(x),

and as a consequence ψ(x, t2) is

ψ(x, t2) =

∞∫
−∞

dx′
∞∑
n=1

φn(x)φ∗n(x′)e−(i/~)En(t2−t1)ψ(x′, t1). (4.29)

This equation determines the wave function ψ(x, t2) at time t2 com-

pletely in terms of the wave function ψ(x, t1) at previous time t1, t1 < t2.

4.5 Variational principle

The time-independent fractional Schrödinger equation (4.9) can be derived

from the quantum variational principle. That is, the problem of finding the

minimum of the functional

∫
dxφ∗(x)Ĥαφ(x), (4.30)

with Ĥα defined by Eq. (3.23) at the additional condition

∫
dxφ∗(x)φ(x) = 1, (4.31)

leads to the stationary fractional Schrödinger equation (4.9).
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The variational principle is

δ

∫
dxφ∗(x)Ĥαφ(x) = 0 (4.32)

with the condition given by Eq. (4.31). It follows from Eq. (4.32) that∫
dxδφ∗(x)Ĥαφ(x) +

∫
dxφ∗(x)Ĥ∗αφ(x) = 0. (4.33)

Using the hermiticity of the fractional Hamiltonian Ĥα given by Eq.

(3.23), we rewrite Eq. (4.33) in the form∫
dxδφ∗(x)Ĥαφ(x) +

∫
dxδφ(x)Ĥ∗αφ

∗(x) = 0. (4.34)

The variations δφ∗(x) and δφ(x) in Eq. (4.33) should satisfy the addi-

tion condition ∫
dxδφ∗(x)φ(x) +

∫
dxφ∗(x)δφ(x) = 0, (4.35)

which follows from Eq. (4.31).

By applying the method of Lagrange multipliers we can rewrite two

equations (4.34) and (4.35) as one equation∫
dxδφ∗(x)(Ĥα − E)φ(x) +

∫
dxδφ(x)(Ĥ∗α − E)φ∗(x) = 0, (4.36)

where E is the Lagrange multiplier and the variations δφ∗(x) and δφ(x) are

now independent.

The variational equation (4.36) is satisfied for all possible variations

δφ∗(x) and δφ(x) if wave functions φ(x) and φ∗(x) satisfy the fractional

Schrödinger equations

(Ĥα − E)φ(x) = 0, (4.37)

and

(Ĥ∗α − E)φ∗(x) = 0. (4.38)

Equations (4.37) and (4.38) are two fractional eigenvalue problems.

Thus, we conclude that the fractional time-independent Schrödinger

equations Ĥαφ(x) = Eφ(x) with Ĥα defined by Eq. (3.23) is equivalent to

the quantum variational principle

δ

∫
dxφ∗(x)(Ĥα − E)φ(x) = 0. (4.39)

with φ(x) being normalized by the condition (4.31).



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 64

64 Fractional Quantum Mechanics

4.6 Fractional Schrödinger equation in periodic potential

One of the fundamental problems of solid state physics is the problem of a

particle moving in a periodic structure - crystal. The quantum problem of

a particle moving in a one-dimensional periodic structure brings us the 1D

fractional Schrödinger equation in a periodic potential

V (x+ a) = V (x),

where a is the lattice constant.

4.6.1 Periodic potential

We consider the 1D time-independent fractional Schrödinger equation (4.9)

in the case when potential V (x) is periodic function

V (x) = V (x+ L), (4.40)

where due to translational periodicity we have

L = la, (4.41)

here a is the period of the function V (x) and l is an integer.

Given the potential (4.40) one can think of a 1D periodic structure with

period a as a 1D crystal with lattice constant a.

It is well known that any periodical function can be expressed by the

Fourier series. Thus, we write

V (x) =
∑
n

Vne
2πinx/a, (4.42)

with n being an integer. By rewriting this equation as

V (x) =
∑
g

Vge
igx, (4.43)

we introduce reciprocal lattice with period g defined as

gn = n
2π

a
. (4.44)
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The coefficients Vg in Eq. (4.43) are given by

Vg =
1

a

a∫
0

dxV (x)e−igx. (4.45)

It is easy to see that Eq. (4.43) is in agreement with Eq. (4.40). Indeed,

with the help of Eq. (4.43) we have

V (x+ L) =
∑
g

Vge
ig(x+L) =

∑
g

Vge
igx = V (x), (4.46)

if we note that exp(igL) = 1, because of

gL = n
2π

a
la = 2πnl, (4.47)

here nl is an integer.

4.6.2 Bloch theorem

To search for the solution to the 1D time-independent fractional

Schrödinger equation

−Dα(~∇)αφ(x) + V (x)φ(x) = Eφ(x), 1 < α ≤ 2, (4.48)

with periodic potential V (x) we exploit the ansatz

φ(x) =
∑
k

Cke
ikx, (4.49)

where Ck and k have to be defined.

Substituting wave function φ(x) introduced by Eq. (4.49) and V (x)

given by Eq. (4.43) into Eq. (4.9) gives

∑
k

Dα|k|αCkeikx +
∑
g,k

Vge
igxCke

ikx = E
∑
k

Cke
ikx. (4.50)

The sum over all possible values of g and k can be rewritten as

∑
g,k

Vge
igxCke

ikx =
∑
g,k

VgCk−ge
ikx. (4.51)
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Then Eq. (4.50) reads

∑
k

eikx{(Dα|k|αCk − E) +
∑
g

VgCk−g} = 0, 1 < α ≤ 2. (4.52)

The plane waves belong to an orthogonal set of functions. Therefore,

the coefficient of each term in the sum over k must vanish,

(Dα|k|α − E)Ck +
∑
g

VgCk−g = 0, 1 < α ≤ 2. (4.53)

Substituting k = q − g′ yields

(Dα|q − g′|α − E)Cq−g′ +
∑
g

VgCq−g′−g = 0. (4.54)

Introducing new summation variable g̃ = g′ + g results in

(Dα|q − g′|α − E)Cq−g′ +
∑
g̃

Vg̃−g′Cq−g̃ = 0. (4.55)

This equation shows that at a particular value of q the Cq−g depends

on q − g, where g is reciprocal lattice period. It follows from Eq. (4.49)

that the wave function φ(x) takes the form

φq(x) =
∑
g

Cq−ge
i(q−g)x = eiqxuq(x)

or

φq(x) = eiqxuq(x), (4.56)

where function uq(x)

uq(x) =
∑
g

Cq−ge
−igx, (4.57)

has periodicity of the lattice

uq(x) = uq(x+ L),

with L given by Eq. (4.41).
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The function φq(x) is Bloch’s wave function. Equation (4.56) is a mathe-

matical formulation of Bloch’s theorem [100]. In the framework of fractional

quantum mechanics Bloch’s theorem has the same form as in standard

quantum mechanics.

Bloch’s theorem: Every solution to the fractional Schrödinger equa-

tion in a periodic potential is a plane wave modulated by some function with

the periodicity of the lattice.

We conclude that the fractional Schrödinger equation supports Bloch’s

theorem.
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Chapter 5

Fractional Uncertainty Relation

The more precise the measurement of position, the more imprecise

the measurement of momentum, and vice versa.

Werner Heisenberg

Heisenberg’s Uncertainty Principle [101], which is a fundamental aspect of

quantum mechanics, has many different mathematical formulations. The

uncertainty relation is a mathematical formulation of Heisenberg’s Uncer-

tainty Principle. The first uncertainty relation in the framework of standard

quantum mechanics was developed by Kennard [102] in 1927. Since then

many other mathematical approaches have been developed to formulate

Heisenberg’s Uncertainty Principle.

Here we study the fractional uncertainty relation, which is a new mathe-

matical formulation of Heisenberg’s Uncertainty Principle in the framework

of fractional quantum mechanics. The fractional uncertainty relation was

formulated for the first time in [92].

5.1 Quantum Lévy wave packet

The 1D fractional Schrödinger equation for a free particle has the following

plane wave solution

ψ(x, t) = C exp

{
i
px

~
− iDα|p|αt

~

}
, (5.1)

where C is a normalization constant. In the special Gaussian case (α = 2

and D2 = 1/2m with m being a particle mass) Eq. (5.1) gives a plane

wave of standard quantum mechanics. Localized states are obtained by a

superposition of plane waves

69
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ψL(x, t) =
1

2π~

∞∫
−∞

dpϕ(p) exp

{
i
px

~
− iDα|p|αt

~

}
, (5.2)

here ϕ(p) is a “weight” function. We will study Eq. (5.2) for a one-

dimensional Lévy wave packet ψL(x, t) which has been introduced in [92]

ψL(x, t) =
Aν
2π~

∞∫
−∞

dp exp

{
−|p− p0|ν lν

2~ν

}
exp

{
i
px

~
− iDα|p|αt

~

}
, (5.3)

with the “weight” function ϕL(p) of the form

ϕL(p) = Aν exp

{
−|p− p0|ν lν

2~ν

}
,

p0 > 0, ν ≤ α, 1 < α ≤ 2,

where Aν is a normalization constant, l is a characteristic space scale, p0

is the center of the packet in momentum space and α is the Lévy index,

1 < α ≤ 2.

The Lévy wave packet ψL(x, t) is a generalization of the well-known

Gaussian wave packet in the framework of standard quantum mechanics.

Indeed, in the special case when α = 2 and ν = 2 the quantum mechanical

Lévy wave packet ψL(x, t) turns into the Gaussian wave packet ψG(x, t)

introduced by

ψG(x, t) =
1

2π~

∞∫
−∞

dpϕG(p) exp

{
i
px

~
− i p

2t

2m~

}
, (5.4)

with function ϕ(p) of the form

ϕG(p) = A2 exp

{
−|p− p0|2l2

2~2

}
, p0 > 0,

where A2 = Aν |ν=2 is the Gaussian wave packet normalization constant,

and l/~ can be thought of as the width of the Gaussian wave packet in the

momentum space.

We are interested in the probability density ρ(x, t) that a particle occu-

pies the position x, and the probability density w(p, t) that a particle has
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particular momentum value p. The wave packet ψL(x, t) defined by Eq.

(5.3) gives the probability density ρ(x, t)

ρ(x, t) = |ψL(x, t)|2 =
A2
ν

(2π~)2

∞∫
−∞

dp1dp2 exp

{
−|p1 − p0|ν lν

2~ν

}
(5.5)

× exp

{
−|p2 − p0|ν lν

2~ν

}
exp

{
i
(p1 − p2)x

~
− iDα(|p1|α − |p2|α)t

~

}
.

Now, we can fix the factor Aν such that
∫
dxρ(x, t) =

∫
dx|ψL(x, t)|2 =

1 with the result

Aν =

√
πνl

Γ(1/ν)
, (5.6)

where Γ(1/ν) is the Gamma function1. It follows immediately from (5.6)

that the normalization constant A2 for Gaussian wave packet is

A2 = Aν |ν=2 =
√

2lπ1/4.

Having Aν we present the Lévy wave packet (5.3) in the form

ψL(x, t) =
1

~

√
νl

4πΓ(1/ν)

∞∫
−∞

dp exp

{
−|p− p0|ν lν

2~ν

}

× exp

{
i
px

~
− iDα|p|αt

~

}
, (5.8)

ν ≤ α, 1 < α ≤ 2,

and the Gaussian wave packet in the form

ψG(x, t) =
1

~

√
l

2π3/2

∞∫
−∞

dp exp

{
−|p− p0|2l2

2~2

}
exp

{
i
px

~
− i p

2t

2m~

}
,

(5.9)
1The gamma function Γ(z) has the familiar integral representation

Γ(z) =

∞∫
0

dttz−1e−t, Re z > 0. (5.7)
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where p0 > 0.

The probability density w(p, t) that a particle has momentum p is

defined by

w(p, t) = |φL(p, t)|2,

where φL(p, t) is the Lévy wave packet in momentum φL(p, t) representa-

tion. The Lévy wave packets in space ψL(x, t) and momentum φL(p, t)

representations are related to each other by the Fourier transforms

ψL(x, t) =
1

2π~

∞∫
−∞

dp exp
{
i
px

~

}
φL(p, t) (5.10)

and

φL(p, t) =

∞∫
−∞

dp exp{−ipx
~
}ψL(x, t).

By comparing Eqs. (5.10) and (5.8) we conclude that

φL(p, t) =

√
πνl

Γ(1/ν)
exp

{
−|p− p0|ν lν

2~ν

}
exp

{
−iDα|p|αt

~

}
, (5.11)

ν ≤ α, 1 < α ≤ 2,

which can be considered as the Lévy wave packet φL(p, t) in the momentum

representation.

Note that φL(p, t) satisfies the fractional free particle Schrödinger equa-

tion in the momentum representation

i~
∂φL(p, t)

∂t
= Dα|p|αφL(p, t),

with the initial condition

φL(p, 0) =

√
πνl

Γ(1/ν)
exp

{
−|p− p0|ν lν

2~ν

}
.
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We have

∞∫
−∞

dx|ψL(x, t)|2

=
A2
ν

(2π~)2

∞∫
−∞

dx

∞∫
−∞

dpdp′ exp

{
i
(p− p′)x

~

}
φL(p, t)φ∗L(p′, t) (5.12)

=
A2
ν

(2π~)

∞∫
−∞

dp|φL(p, t)|2 = 1,

because of

1

(2π~)

∞∫
−∞

dx exp

{
i
(p− p′)x

~

}
= δ(p− p′).

From Eq. (5.12) we come to the following definition for the probability

density w(p, t) in momentum space

w(p, t) =
A2
ν

2π~
|φL(p, t)|2 (5.13)

with Aν defined by Eq. (5.6). The probability density w(p, t) in momentum

space reads

w(p, t) ≡ w(p) =
νl

2~Γ(1/ν)
exp

{
−|p− p0|ν lν

~ν

}
. (5.14)

It is time independent, since we are considering a free particle.

In coordinate space the probability to find a particle at position x in the

“box” dx is given by ρ(x, t)dx with the probability density ρ(x, t) defined

by Eq. (5.5). Correspondingly, the probability to find the particle with

momentum p in the “box” dp is represented by w(p, t)dp.
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5.2 Expectation values and µ-deviations of position and

momentum

Expectation values and the µ-deviations for a free particle position and

momentum can be estimated with the help of the probability densities

defined by Eqs. (5.5) and (5.14). The expectation value of the position is

defined by

< x >=

∞∫
−∞

dxxρ(x, t) (5.15)

=
A2
ν

(2π~)2

∞∫
−∞

dxx

∞∫
−∞

dpdp′ exp

{
i
(p− p′)x

~

}
φL(p, t)φ∗L(p′, t).

By substituting

x→ ~
i

∂

∂p
,

we have

< x >=
A2
ν

(2π~)2

∞∫
−∞

dx

∞∫
−∞

dpdp′
(
~
i

∂

∂p
exp

{
i
(p− p′)x

~

})
φL(p, t)φ∗L(p′, t).

Integrating by parts yields

< x >= − A2
ν

(2π~)

~
i

∞∫
−∞

dp

(
lν

~ν
∂

∂p
|p− p0|ν − i

Dαt

~
∂

∂p
|p|α

)

× exp

{
−|p− p0|ν lν

~ν

}
.

It is easy to check that the first term in the brackets vanishes, and we

find that the position expectation value is

< x >= αDα|p0|α−1t. (5.16)
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Using the dispersion relation given by Eq. (12.42) we may rewrite < x >

as follows

< x >=
∂Ep
∂p
|p=p0 · t = v0t, (5.17)

here

v0 =
∂Ep
∂p
|p=p0 = αDα|p0|α−1signp (5.18)

is the group velocity of the wave packet. We see that the maximum of the

Lévy wave packet (5.2) moves with the group velocity v0 like a classical

particle.

The µ-deviation (µ < ν) of position < |∆x|µ > is defined by

< |∆x|µ >=< |x− < x > |µ >=

∞∫
−∞

dx|x− < x > |µρ(x, t)

=
A2
ν

(2π~)2

∞∫
−∞

dx|x− < x > |µ
∞∫
−∞

dpdp′ exp

{
i
(p− p′)x

~

}
φL(p, t)φ∗L(p′, t).

This equation can be rewritten as

< |∆x|µ >=
lµ

2
N (α, µ, ν; τ , η0), (5.19)

where we introduce the following notations

N (α, µ, ν; τ , η0) =
21/νν

4πΓ(1/ν)

∞∫
−∞

dς|ς|µ

×
∞∫
−∞

dη

∞∫
−∞

dη′ exp{i(η − η′)(ς + ατη0
α−1)} (5.20)

× exp{−iτ(|η|α − |η′|α)− |η − η0|ν − |η′ − η0|ν}

and

η0 =
p0l

21/ν~
, τ =

Dαt

~

(
21/ν~
l

)α
.
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For the µ-root of the µ-deviation of position we obtain

< |∆x|µ >1/µ=
l

21/µ
N 1/µ(α, µ, ν; τ , η0). (5.21)

Thus, we found the uncertainty < |∆x|µ >1/µ in the position for the

Lévy wave packet.

Further, with the help of Eq. (5.14) the expectation value of the mo-

mentum is calculated as

< p >=

∞∫
−∞

dppw(p) =

∞∫
−∞

dp(p− p0)w(p) +

∞∫
−∞

dpp0w(p). (5.22)

The first integral vanishes, since w(p) is an even function of (p−p0) and

the momentum expectation value is

< p >= p0. (5.23)

The µ-deviation of the momentum is

< |∆p|µ >=

∞∫
−∞

dp|p− < p > |µw(p) =

(
~
l

)µ
Γ((µ+ 1)/ν)

Γ(1/ν)
. (5.24)

Then the uncertainty in the momentum (the µ-root of the µ-deviation

of momentum) is

< |∆p|µ >1/µ=
~
l

(
Γ((µ+ 1)/ν)

Γ(1/ν)

)1/µ

. (5.25)

5.3 Fractional uncertainty relation

What is not surrounded by uncertainty cannot be the truth.

Richard P. Feynman

Equations (5.21) and (5.25) yield

< |∆x|µ >1/µ< |∆p|µ >1/µ

=
~

21/µ

(
Γ((µ+ 1)/ν)

Γ(1/ν)

)1/µ

N 1/µ(α, µ, ν; τ , η0), (5.26)
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where N (α, µ, ν; τ , η0) is given by Eq. (5.20) and µ < ν ≤ α.

We obtain the fractional quantum mechanics uncertainty relation. This

relation implies that a spatially extended Lévy wave packet corresponds

to a narrow momentum distribution whereas a sharp Lévy wave packet

corresponds to a broad momentum distribution.

Since N (α, µ, ν; τ , η0) > 1 and Γ((µ + 1)/ν)/Γ(1/ν) ≈ 1/ν, Eq. (5.26)

with ν = α becomes

< |∆x|µ >1/µ< |∆p|µ >1/µ >
~

(2α)1/µ
, (5.27)

µ < α, 1 < α ≤ 2.

Note that for the special case when α = 2 we have µ = α = 2. That is,

for standard quantum mechanics (α = 2) with the definitions of position

and momentum uncertainties as the square-root of the square deviation,

Eq. (5.27) is transformed into the well-known uncertainty relation of stan-

dard quantum mechanics (see, for instance, [94]). The uncertainty relation

given by Eq. (5.27) can be considered as a generalization of the well-known

mathematical formulation of the fundamental Heisenberg Uncertainty Prin-

ciple for quantum systems described by the Hamilton operator Eq. (3.3).

In other words, when the fractal dimension of a quantum mechanical path

is less than 2, d
(Lévy)
fractal = α < 2, then the uncertainty relation takes the form

given by Eq. (5.27).

In standard quantum mechanics the energy-momentum relationship has

the form

Ep =
p2

2m
, (5.28)

where Ep is the energy, p is the momentum, and m is the mass of a quantum

particle. In fractional quantum mechanics the energy-momentum relation-

ship has the form

Ep = Dα|p|α, 1 < α ≤ 2, (5.29)

where Dα is the scale coefficient which first appeared in Eq. (3.3),

Dα|α=2 = D2 =
1

2m
.

The difference between Eq. (5.28) and Eq. (5.29) impacts the quantum

mechanics fundamentals, including the Schrödinger equation and mathe-

matical formulation of Heisenberg’s Uncertainty Principle - the uncertainty

relation.
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5.4 Uncertainty relation: Heisenberg vs fractional

To emphasize the new features which fractional quantum mechanics brings

into the mathematical formulation of Heisenberg’s Uncertainty Principle,

we present a map for the fundamentals involved in the well-known Heisen-

berg’s uncertainty relation (see, for example, [94]) and fractional uncer-

tainty relation (5.27). Table 1 from [98] presents two sets of equations

(one for standard quantum mechanics and another for fractional quantum

mechanics) involved in the mathematical formulation of Heisenberg’s Un-

certainty Principle: the energy-momentum relationship Ep, Schrödinger

equation, initial state wave function ψ(x, 0), the Gaussian wave packet de-

fined by Eq. (5.9) and the Lévy wave packet defined by Eq. (5.8), position

mean < x >, the definition of uncertainty, and, finally, the uncertainty

relation.

Quantum Mechanics Fractional Quantum Mechanics

Ep= p2/2m Ep= Dα|p|α, 1 < α ≤ 2

i~∂ψ(x,t)
∂t = − ~2

2m∇
2ψ + V (x)ψ i~∂ψ(x,t)

∂t = −Dα(~∇)
α
ψ + V (x)ψ

ψG(x,0)=(1/~)(l/2π3/2)1/2

×
∞∫
−∞

dpe
− |p−p0|

2l2

2~2 ei
px
~

ψL(x,0)=(1/~)(νl/4πΓ(1/ν))1/2

×
∞∫
−∞

dpe−
|p−p0|νlν

2~ν ei
px
~

Gaussian wave packet Eq. (5.9) Lévy wave packet Eq. (5.8)

< x >G= p0t/m < x >L= αDα|p0|α−1t

< ∆x >G= (< (x− < x >)2)
1/2

< ∆x >L= (< |x− < x > |µ >)
1/µ

< ∆x >G ·< ∆p >G>
~
2 < ∆x >L ·< ∆p >L>

~
(2α)1/µ

Table 1. Quantum Mechanics and Fractional Quantum Mechanics fun-

damentals2 involved into the mathematical formulation of Heisenberg’s

Uncertainty Principle.

The right column in Table 1 shows the new features, which fractional quan-

tum mechanics brings into the mathematical formulation of Heisenberg’s

Uncertainty Principle. Note that the restrictions on possible values of the

physical parameters α, ν, and µ come from quantum physics [67], [92] and

fundamentals of the Lévy α-stable probability distribution [65], [66].

2All definitions and equations related to the fractional quantum mechanics are taken
from [92].
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Path Integral over Lévy Flights

Thirty-one years ago [1949!], Dick Feynman told me about his

“sum over histories” version of quantum mechanics. “The electron does

anything it likes”, he said. “It just goes in any direction at any speed,

forward or backward in time, however it likes, and then you add up the

amplitudes and it gives you the wave-function.”

I said to him, “You’re crazy.”

But he wasn’t.

Freeman Dyson, 1980

6.1 Quantum kernel

If a particle at an initial time ta starts from the point xa and goes to a final

point xb at time tb, we will simply say that the particle goes from a to b

and its trajectory (path)1 x(t) will have the property that x(ta) = xa and

x(tb) = xb. In quantum mechanics, then, we have a quantum-mechanical

amplitude or a kernel to get from the point a to the point b, which we write

as K(xbtb|xata). The kernel K(xbtb|xata) is the sum of contributions from

all trajectories that go between the end points [12].

In the 1D case when the fractional Hamilton operator has a form given

by Eq. (3.19), we come to the definition of the kernel K(xbtb|xata) in

terms of the path integral over Lévy-like quantum paths in the phase space

1We first consider 1D case, and then will generalize our developments to 3D case.

79



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 80

80 Fractional Quantum Mechanics

representation first introduced by Laskin in [92]

K(xbtb|xata) = lim
N→∞

∞∫
−∞

dx1...dxN−1
1

(2π~)N

∞∫
−∞

dp1...dpN

× exp

 i

~

N∑
j=1

pj(xj − xj−1)

 (6.1)

× exp

− i~Dαε
N∑
j=1

|pj |α −
i

~
ε
N∑
j=1

V (xj , jε)

 ,

here ε = (tb−ta)/N , xj = x(ta+jε), pj = p(ta+jε) and x(ta+jε)|j=0 = xa,

x(ta + jε)|j=N = x(tb) = xb.

Equation (6.1) is the definition of the Laskin path integral in the phase

space representation.

Then in the continuum limit N →∞, ε→ 0 we obtain

K(xbtb|xata) (6.2)

=

x(tb)=xb∫
x(ta)=xa

Dx(τ)

∫
Dp(τ) exp

 i

~

tb∫
ta

dτ [p(τ)
·
x(τ)−Hα(p(τ), x(τ), τ)]

 ,

where
·
x(τ) denotes the time derivative

·
x(τ) = dx/dτ , Hα(p(τ), x(τ), τ)

is the fractional Hamiltonian given by Eq. (3.24) with the substitutions

p → p(τ), x → x(τ), and {p(τ), x(τ)} is the particle trajectory in phase

space, and
x(tb)=xb∫
x(ta)=xa

Dx(τ)
∫

Dp(τ)...stands for the path integral “measure”

formally introduced as

x(tb)=xb∫
x(ta)=xa

Dx(τ)

∫
Dp(τ)... (6.3)

= lim
N→∞

∞∫
−∞

dx1...dxN−1
1

(2π~)N

∞∫
−∞

dp1...dpN ....
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The exponential in Eq. (6.2) can be written as exp{iSα(p, x)/~} if we

introduce the fractional classical mechanics action Sα(p, x) as a functional

of trajectory {p(τ), x(τ)} in phase space [92]

Sα(p, x) =

tb∫
ta

dτ(p(τ)
·
x(τ)−Hα(p(τ), x(τ), τ)). (6.4)

Therefore, we have

K(xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

Dx(τ)

∫
Dp(τ) exp{iSα(p, x)/~} (6.5)

=

x(tb)=xb∫
x(ta)=xa

Dx(τ)

∫
Dp(τ) exp

 i

~

tb∫
ta

dτ [p(τ)
·
x(τ)−Hα(p(τ), x(τ), τ)]

 .

This equation introduces the quantum mechanical kernel K(xbtb|xata)

as a phase space path integral of exp{iSα(p, x)/~} over Lévy-like quantum

paths.

Since the coordinates xa and xb in definition (6.3) are fixed, all pos-

sible trajectories in Eq. (6.2) satisfy the boundary conditions x(tb) = xb,

x(ta) = xa. We see that the definition given by Eq. (6.3) includes one more

pj-integrals than xj-integrals. Indeed, while xa and xb are held fixed and

the xj-integrals are done for j = 1, ..., N − 1, each increment xj − xj−1 is

accompanied by one pj-integral for j = 1, ..., N . The above observed asym-

metry is a consequence of the particular boundary conditions. Namely, the

end points xa and xb are fixed in the coordinate space. There exists the

possibility of proceeding in a conjugate way keeping the initial pa and final

pb momenta fixed. The associated kernel can be derived by following the

same steps as before but working in the momentum representation (see, for

example, [20]).

The kernel K(xbtb|xata) introduced by Eq. (6.2) describes the evolution

of the quantum mechanical particle

ψ(xb, tb) =

∞∫
−∞

dxaK(xbtb|xata)ψ(xa, ta), (6.6)

where ψ(xa, ta) is the wave function of the initial state (at t = ta a particle

is in position xa) and ψ(xb, tb) is the wave function of the final state (at
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t = tb a particle is in position xb). The wave function ψ(xa, ta) is a quantum

mechanical amplitude of probability to find a particle at (xa, ta). Hence, the

evolution equation (6.6) says that the amplitude ψ(xb, tb) to get (xb, tb) is

integral over all possible xa of amplitude ψ(xa, ta) to find the particle at

(xa, ta) multiplied by transition amplitude K(xbtb|xata) to go from (xa, ta)

to (xb, tb, tb > ta). In other words, knowledge of kernel K(xbtb|xata) allows

us to study the evolution of a quantum particle by means of Eq. (6.6).

6.2 Phase space representation

When the fractional Hamilton operator has the form given by Eq. (3.3) the

phase space path integral over Lévy-like quantum paths is introduced as

K(rbtb|rata) = lim
N→∞

∫
dr1...drN−1

1

(2π~)3N

∫
dp1...dpN

× exp

 i

~

N∑
j=1

pj(rj − rj−1)

 (6.7)

× exp

− i~Dαε
N∑
j=1

|pj |α −
i

~
ε
N∑
j=1

V (rj , jε)

 ,

which is the generalization of Eq. (6.1) for 3D coordinate and 3D momen-

tum spaces. Here ε = (tb − ta)/N , rj = r(ta + jε), pj = p(ta + jε) and

r(ta+jε)|j=0 = ra, r(ta+jε)|j=N = rb, with ra and rb being the initial and

final points of particle paths, rj and pj are 3D vectors. We adopt the nota-

tions dri = d3ri, (i = 1, 2, ..., N − 1) and dpj = d3pj , (j = 1, 2, ..., N) while

working with the path integral over Lévy-like quantum paths in phase-space

representation. Then in the continuum limit N →∞, ε→ 0 we obtain

K(rbtb|rata) (6.8)

=

r(tb)=rb∫
r(ta)=ra

Dr(τ)

∫
Dp(τ) exp

 i

~

tb∫
ta

dτ [p(τ)
·
r(τ)−Hα(p(τ), r(τ), τ)]

 ,

where
·
r denotes the time derivative d/dτ , Hα(p(τ), r(τ), τ) is the fractional

Hamiltonian2 given by Eq. (3.3) with the substitutions p → p(τ), r →
2In general, the Hamiltonian Hα(p, r, τ) can depend on τ through τ -dependency of

potential energy term V (r, τ).
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r(τ), and {p(τ), r(τ)} is the particle trajectory in 6D phase space and
r(tb)=rb∫
r(ta)=ra

Dr(τ)
∫

Dp(τ)... stands for the path integral “measure” formally

introduced as

r(tb)=rb∫
r(ta)=ra

Dr(τ)

∫
Dp(τ)... (6.9)

= lim
N→∞

∫
dr1...drN−1

1

(2π~)3N

∫
dp1...dpN ....

For a free particle V (r) = 0, and equation (6.8) gives us a free particle

quantum mechanical kernel K(0)(rbtb|rata)

K(0)(rbtb|rata) (6.10)

=

r(tb)=rb∫
r(ta)=ra

Dr(τ)

∫
Dp(τ) exp

 i

~

tb∫
ta

dτ [p(τ)
·
r(τ)−Dα|p(τ)|α]

 .

The exponential in Eq. (6.8) can be written as exp{iSα(p, r)/~} if we

introduce the fractional classical mechanics action Sα(p, r) as a functional

of trajectory {p(τ), r(τ) in phase space

Sα(p, r) =

tb∫
ta

dτ(p(τ)
·
r(τ)−Hα(p(τ), r(τ), τ)). (6.11)

Then we have

K(rbtb|rata) =

r(tb)=rb∫
r(ta)=ra

Dr(τ)

∫
Dp(τ) exp{iSα(p, r)/~}. (6.12)

This is quantum mechanical kernel K(rbtb|rata) defined as phase space

path integral of exp{iSα(p, r)/~} over Lévy-like quantum paths.

Given that the 3D vectors ra and rb in Eqs. (6.8) and (6.9) are fixed, all

possible trajectories in Eqs. (6.8) and (6.9) satisfy the boundary condition

r(tb) = rb, r(ta) = ra. We see that the definition given by Eq. (6.9) includes
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one more pj-integrals than rj-integrals. Indeed, while ra and rb are held

fixed and the rj-integrals are done for j = 1, ..., N − 1, each increment

rj − rj−1 is accompanied by one pj-integral for j = 1, ..., N . The above

observed asymmetry is a consequence of the particular boundary condition,

namely, the end points ra and rb are fixed in the 3D coordinate space.

The kernel K(rbtb|rata) introduced by Eq. (6.12) describes the evolu-

tion of the quantum mechanical system

ψ(rb, tb) =

∫
d3raK(rbtb|rata)ψ(ra, ta), (6.13)

where ψ(ra, ta) is the wave function of the initial state (at t = ta a particle

is in position ra) and ψ(rb, tb) is the wave function of the final state (at

t = tb a particle is in position rb). The kernel K(rbtb|rata) satisfies

K(rbtb|rata) =

∫
d3r′K(rbtb|r′t′)K(r′t′|rata). (6.14)

This is a fundamental quantum mechanics equation, which establishes

the transformation law for the kernels, when two quantum transitions

(rata → r′t′) and (r′t′ → rbtb) occur in succession.

6.3 Coordinate representation

The path integral in coordinate space representation can be introduced by

performing the integration in Eq. (6.1) over momentums involved. To

calculate the integrals over dp1...dpN in Eq. (6.1) we introduce the Lévy

probability distribution function Lα(z) by means of the following equation

Lα(z) =
1

2π

∞∫
−∞

dς exp{izς − |ς|α}. (6.15)

In terms of Lα(z) we have

1

2π~

∞∫
−∞

dp exp

{
i

~
px− i

~
Dατ |p|α

}
(6.16)

=
1

~

(
iDατ

~

)−1/α

Lα

{
1

~

(
~

iDατ

)1/α

|x|

}
.
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Then the kernel K(xbtb|xata) introduced by Eq. (6.1) can be expressed

as

K(xbtb|xata) = lim
N→∞

∞∫
−∞

dx1...dxN−1~−N
(
iDαε

~

)−N/α
(6.17)

×
N∏
j=1

Lα

{
1

~

(
~

iDαε

)1/α

|xj − xj−1|

}
exp

− i~ε
N∑
j=1

V (xj , jε)

 ,

where ε = (tb − ta)/N , xj = x(ta + jε), and x(ta + jε)|j=0 = xa,

x(ta + jε)|j=N = xb.

Equation (6.17) is definition of the Laskin path integral in coordinate

representation.

In the continuum limit N →∞, ε→ 0 we obtain

K(xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

Dx(τ) exp{− i
~

tb∫
ta

dτV (x(τ), τ)}, (6.18)

where V (x(τ), τ) is the potential energy as a functional of the Lévy flight

path x(τ) and time τ , and
x(tb)=xb∫
x(ta)=xa

Dx(τ)... is the path integral measure in

coordinate space, first introduced by Laskin [67]

x(tb)=xb∫
x(ta)=xa

Dx(τ)... (6.19)

= lim
N→∞

∞∫
−∞

dx1...dxN−1~−N
(
iDαε

~

)−N/α

×
N∏
j=1

Lα

{
1

~

(
~

iDαε

)1/α

|xj − xj−1|

}
...,

here ~ denotes Planck’s constant, x(ta + jε)|j=0 = xa, x(ta + jε)|j=N = xb,

ε = (tb−ta)/N , and the Lévy probability distribution function Lα is defined

by Eq. (6.15).
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The Lévy probability distribution function Lα can be expressed in terms

of Fox’s H-function [92], [103], [104]

1

~
(
iDαt

~
)−1/αLα

{
1

~

(
~

iDαt

)1/α

|x|

}
(6.20)

=
1

α|x|
H1,1

2,2

[
1

~

(
~

iDαt

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
,

with Dα being the scale coefficient, and α being the Lévy index. Hence,

the path integral measure introduced by Eq. (6.19) can be alternatively

presented as

x(tb)=xb∫
x(ta)=xa

Dx(τ)...

= lim
N→∞

∞∫
−∞

dx1...dxN−1

N∏
j=1

1

α|xj − xj−1|
(6.21)

×H1,1
2,2

[
1

~

(
~

iDα(tb − ta)

)1/α

|xj − xj−1|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
....

The fractional path integral measure defined by Eq. (6.19) is generated

by the Lévy flights stochastic process. Indeed, from Eq. (6.19) we can find

that the scaling relation between a length increment (xj−xj−1) and a time

increment ∆t has the Lévy scaling

|xj − xj−1| ∝
(
~α−1Dα

)1/α
(∆t)1/α.

The scaling 1/α implies that the fractal dimension of the Lévy-like

quantum-mechanical path is d
(Lévy)
fractal = α. We conclude that the Lévy flights

quantum background leads to fractional quantum mechanics. Equations

(6.18)-(6.21) introduce fractional quantum mechanics via a newly invented

path integral over Lévy-like flights.

The kernel K(xbtb|xata) introduced by Eq. (6.18) describes the evolu-

tion of the quantum mechanical system

ψ(xb, tb) =

∫
dxaK(xbtb|xata)ψ(xa, ta), (6.22)
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where ψ(xa, ta) is the wave function of the initial state (at t = ta the particle

is in position xa) and ψ(xb, tb) is the wave function of the final state (at

t = tb the particle is in position xb). By comparing Eq. (4.29) with Eq.

(6.22), we come to the following expression for the kernel K(xbtb|xata)

K(xbtb|xata) =
∞∑
n=1

φn(xb)φ
∗
n(xa)e−(i/~)En(tb−ta), for tb > ta, (6.23)

and K(xbtb|xata) = 0 for tb < ta.

To interpret Eq. (6.23) we will follow Feynman [12]. The kernel

K(xbtb|xata) is given by the path integral (6.18) over all possible paths

between two points (xa, ta) and (xb, tb). Equation (6.23) defines the kernel

in terms of all possible energy states for the quantum mechanical transition

between two points (xa, ta) and (xa, ta). Hence, we have to sum the product

of the following terms over all possible energy states En labeled by n:

1. φn(xb), which is a quantum mechanical amplitude that the quantum

system is in the energy state n with energy En and at space point xb;

2. φ∗n(xa), which is a quantum mechanical amplitude that the quantum

system is in the energy state n with energy En and at space point xa;

3. e−(i/~)En(tb−ta) which is a quantum mechanical amplitude to occupy

the energy state n, with energy En at time tb, if at time ta the quantum

system was in the energy state3 n with the same energy En.

On the other hand, we introduced the kernel K(xbtb|xata) as the path

integral defined by Eq. (6.18). By equating expressions (6.18) and (6.23)

we obtain an important identity, which presents the path integral (6.18)

in terms of solutions to the time-independent 1D fractional Schrödinger

equation (4.10)

x(tb)=xb∫
x(ta)=xa

Dx(τ) exp{− i
~

tb∫
ta

dτV (x(τ), τ)} (6.24)

=
∞∑
n=1

φn(xb)φ
∗
n(xa)e−(i/~)En(tb−ta).

If we note that the left-hand side of this equation can be written as the

path integral (6.5) in phase space representation, then we obtain another

3The energy of the state is not changed while the quantum system goes from (x1, t1)
to (x2, t2). This is a fundamental property of quantum stationary states.
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important identity, which presents the phase space path integral (6.5) in

terms of solutions to the time-independent 1D fractional Schrödinger equa-

tion (4.10)

x(tb)=xb∫
x(ta)=xa

Dx(τ)

∫
Dp(τ) exp{iSα(p, x)/~} (6.25)

=
∞∑
n=1

φn(xb)φ
∗
n(xa)e−(i/~)En(tb−ta).

As an example, let us calculate a free particle kernel K(0)(xbtb|xata).

For a free particle we have V (x) = 0, and Eqs. (6.18) and (6.19) yield

K(0)(xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

Dx(τ) · 1 (6.26)

= ~−1

(
iDα(tb − ta)

~

)−1/α

Lα

{
1

~

(
~

iDα(tb − ta)

)1/α

|xb − xa|

}
,

or in terms of Fox’s H-function [67],

K(0)(xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

Dx(τ) · 1 (6.27)

=
1

α|xb − xa|
H1,1

2,2

[
1

~

(
~

iDα(tb − ta)

)1/α

|xb − xa|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.

Equations (6.26) and (6.27) present a new family of free particle quan-

tum mechanical kernels K(0)(xbtb|xata) parametrized by the parameter α.

6.3.1 3D coordinate representation

The path integral in coordinate space representation can be introduced by

performing the integration in Eq. (6.1) over momentums involved. To

calculate the integrals over dp1...dpN in Eq. (6.7), we introduce the Lévy

probability distribution function Lα(z) by means of the following equation

Lα(|r|) =
1

(2π)3

∫
d3k exp{ikr− |k|α}. (6.28)
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Hence, 3D generalization of Eq. (6.16) in terms of Lα(|r|) has the form

K(rbtb|rata) = lim
N→∞

∫
dr1...drN−1~−3N

(
iDαε

~

)−3N/α

(6.29)

×
N∏
i=1

Lα

{
1

~

(
~

iDαε

)1/α

|ri − ri−1|

}
exp

{
− i
~
ε
N∑
i=1

V (ri, iε)

}
,

which is the generalization of Eq. (6.17) for 3D coordinate and 3D momen-

tum spaces. Here ε = (tb − ta)/N , ri = r(ta + iε), and r(ta + iε)|i=0 = ra,

r(ta + iε)|i=N = rb, with ra and rb being initial and final points of particle

paths and Lα(|r|) is the Lévy probability distribution function given by

Eq. (6.28). We adopt the notations dri = d3ri, (i = 1, 2, ..., N − 1) while

working with the path integral over Lévy-like quantum paths in 3D space.

In the continuum limit N →∞, ε→ 0 we obtain

K(rbtb|rata) =

r(tb)=rb∫
r(ta)=ra

Dr(τ) exp

− i~
tb∫
ta

dτV (r(τ), τ)

, (6.30)

where V (r(τ), τ) is the potential energy as a functional of the 3D Lévy

flights path r(τ) and time τ , and
r(tb)=rb∫
r(ta)=ra

Dr(τ).. is the path integral mea-

sure in coordinate space, first introduced by Laskin [92]

r(tb)=rb∫
r(ta)=ra

Dr(τ)... (6.31)

= lim
N→∞

∫
dr1...drN−1~−3N

(
iDαε

~

)−3N/α

×
N∏
i=1

Lα

{
1

~

(
~

iDαε

)1/α

|ri − ri−1|

}
...,

here ~ denotes Planck’s constant, r(ta + iε)|i=0 = ra, r(ta + iε)|i=N = rb,

ε = (tb−ta)/N and Lα is the Lévy probability distribution function defined

by Eq. (6.28).
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The Lévy probability distribution function Lα involved in Eq. (6.31)

can be expressed in terms of Fox’s H-function [92], [103], [104]

~−3(
iDαt

~
)−3/αLα

{
1

~

(
~

iDα(tb − ta)

)1/α

|ri − ri−1|

}

= − 1

2πα

1

|ri − ri−1|3
(6.32)

×H1,2
3,3

[
1

~

(
~

iDα(tb − ta)

)1/α

|ri − ri−1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
.

with Dα being the scale coefficient with units of [Dα] = erg1−α ·cmα ·sec−α

and α being the Lévy index.

Therefore, the path integral measure introduced by Eq. (6.31) can be

alternatively presented in terms of Fox’s H1,2
3,3 -function

r(tb)=rb∫
r(ta)=ra

Dr(τ)...

= lim
N→∞

∫
dr1...drN−1

N∏
i=1

(
− 1

2πα|ri − ri−1|3

)
(6.33)

×H1,2
3,3

[
1

~

(
~

iDαε

)1/α

|ri − ri−1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
...,

where ε = (tb − ta)/N .

The kernel K(rbtb|rata) defined by Eq. (6.30) can be expressed in terms

of solutions φn(r) to the time-independent 3D fractional Schrödinger equa-

tion (4.5) by means of 3D generalization of Eq. (6.23),

K(rbtb|rata) =


∞∑
n=1

φn(rb)φ
∗
n(ra)e−(i/~)En(tb−ta), for tb > ta,

0, for tb < ta.
(6.34)

By equating expressions (6.30) and (6.34) we obtain an important iden-

tity, which presents the path integral (6.30) in terms of solutions to 3D

time-independent fractional Schrödinger equation (4.5)
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r(tb)=rb∫
r(ta)=ra

Dr(τ) exp

− i~
tb∫
ta

dτV (r(τ), τ)

 (6.35)

=
∞∑
n=1

φn(rb)φ
∗
n(ra)e−(i/~)En(tb−ta).

A free particle 3D time-independent fractional Schrödinger equation has

the plane wave solution

φp(r) = exp{ i
~

pr},

with the energy Ep = Dα|p|α. By considering the vector p as a label for

energy state we write the orthogonality condition for the wave functions

φp(r) in the form

∫
d3rφ∗p(r)φp′(r) = 0 Ep 6= Ep′ ,

where φ∗p(r) is wave function complex conjugate of wave function

φp(r). Hence, a free particle 3D fractional quantum-mechanical kernel

K(0)(rbtb|rata) can be written as

K(0)(rbtb|rata) =
∑
p

φp(rb)φ
∗
p(ra) exp{− i

~
Dα|p|α(tb − ta)}. (6.36)

Since the momentums are distributed over a continuum, the sum over

the p is really equivalent to an integral over the values of p, namely,

∑
p

...→ 1

(2π~)3

∫
d3p....

Using this substitution we see that Eq. (6.36) becomes the Fourier rep-

resentation of a free particle fractional 3D kernel K(rbtb|rata)

K(0)(rbtb|rata) =
1

(2π~)3

∫
d3p exp{ i

~
p(rb−ra)} exp{− i

~
Dα|p|α(tb−ta)}.
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6.4 Feynman’s path integral

It is simple, therefore it is beautiful.

Richard P. Feynman

In the special case, when α = 2 we rediscover the Feynman path integral.

When α = 2, the Lévy probability distribution function Lα(z) defined by

Eq. (6.15) becomes the normal probability distribution function N(z)

N(z) = Lα(z)|α=2 =
1

2π

∞∫
−∞

dςeizς−|ς|
2

=
1√
4π
e−z

2/4. (6.37)

When α = 2, then D2 = 1/2m, with m being a particle mass. In this

case Eq. (6.16) reads

1

2π~

∞∫
−∞

dp exp

{
i

~
px− i p

2

2m~
τ

}
(6.38)

=
1

~

(
iD2τ

~

)−1/2

L2

{
1

~

(
~

iD2τ

)1/2

|x|

}
=

√
m

2πi~τ
exp

{
i
mx2

2~τ

}
.

The kernel K(xbtb|xata) introduced by Eq. (6.18) is transformed into

Feynman’s kernel

KF (xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

DFx(τ) exp

− i~
tb∫
ta

dτV (x(τ), τ)

, (6.39)

where V (x(τ), τ) is the potential energy as a functional of quantum Brow-

nian motion path x(τ) and time τ , and
x(tb)=xb∫
x(ta)=xa

DF x(τ) is Feynman’s path

integral measure introduced as (see, Eq. (3-2) in [12])

x(tb)=xb∫
x(ta)=xa

DFx(τ)... (6.40)

= lim
N→∞

∞∫
−∞

dx1...dxN−1

(
2πi~ε
m

)−N/2 N∏
j=1

exp{im(xj − xj−1)2

2~ε
}...,
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here ~ denotes Planck’s constant, x(jε)|j=0 = x0 = xa, x(jε)|j=N = xN =

xb, ε = (tb − ta)/N .

The Feynman’s path integral measure defined by Eq. (6.40) is generated

by the Brownian-like motion process. Indeed, from Eq. (2.21) we can find

that the scaling relation between a length increment (xj−xj−1) and a time

increment ∆t has the well-known 1/2 law

|xj − xj−1| ∝ (~/2)
1/2

(∆t)1/2.

The diffusion scaling 1/2 implies that the fractal dimension of the

Brownian-like quantum-mechanical path is d
(B rownian)
fractal = 2. We conclude

that the Brownian motion quantum background leads to quantum mechan-

ics.

Equations (6.39) and (6.40) introduce quantum mechanics via Feyn-

man’s path integral. As an example, let us calculate a free particle Feyn-

man’s kernel K
(0)
F (xbtb|xata). For a free particle we have V (x) = 0, and

Eqs. (6.17) and (6.40) yield

K
(0)
F (xbtb|xata) =

x(tb)=xb∫
x(ta)=xa

DFx(τ) · 1 (6.41)

=

(
2πi~(tb − ta)

m

)−1/2

exp

{
im(xb − xa)2

2~(tb − ta)

}
.

Feynman’s free particle kernel can be expressed in terms of the Fourier

transform

K
(0)
F (xbtb|xata) =

1

2π~

∞∫
−∞

dp exp

{
i
p(xb − xa)

~
− ip

2(tb − ta)

2m~

}
, (6.42)

with the initial condition given by

K
(0)
F (xbtb|xata)|tb=ta = δ(xb − xa).

Having K
(0)
F (xbtb|xata) either in form (6.41) or (6.42), it is easy to see

that the consistency condition holds

K
(0)
F (xbtb|xata) =

∞∫
−∞

dx′K
(0)
F (xbtb|x′t′)K(0)

F (x′t′|xata).
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This is a special case of the general quantum-mechanical rule: the am-

plitudes are multiplied for events occurring in succession in time,

KF (xbtb|xata) =

∞∫
−∞

dx′KF (xbtb|x′t′)KF (x′t′|xata). (6.43)

6.4.1 3D generalization of Feynman’s path integral

When α = 2 the Hamilton function introduced by Eq. (3.4) has the form

H2(p, r) = Hα(p, r)|α=2 =
p2

2m
+ V (r, t), (6.44)

where p and r are the 3D vectors and it has been assumed that potential

energy term V (r, t) depends on t.

Then the phase space path integral given by Eq. (6.7) becomes the 3D

Feynman’s phase space path integral

KF (rbtb|rata) = lim
N→∞

∫
dr1...drN−1

1

(2π~)3N

∫
dp1...dpN (6.45)

× exp

 i

~

N∑
j=1

pj(rj − rj−1)

 exp

− i

2m~
ε
N∑
j=1

p2
j −

i

~
ε
N∑
j=1

V (rj , jε)

 .

Here ε = (tb − ta)/N , rj = r(ta + iε), and r(ta + iε)|i=0 = ra, r(ta +

iε)|i=N = rb, with ra and rb being initial and final points of particle paths.

Then in the continuum limit N →∞, ε→ 0 we obtain

KF (rbtb|rata) =

r(tb)=rb∫
r(ta)=ra

Dr(τ)

∫
Dp(τ) (6.46)

× exp

 i

~

tb∫
ta

dτ [p(τ)
·
r(τ)−H2(p(τ), r(τ), τ)]

 ,

where
·
r denotes the time derivative d/dτ , H2(p(τ), r(τ), τ) is the Hamil-

tonian given by Eq. (3.3) with the substitutions p → p(τ), r → r(τ),

{p(τ), r(τ)} is the particle trajectory in 6D phase space, and path integral

“measure”
r(tb)=rb∫
r(ta)=ra

Dr(τ)
∫

Dp(τ)... is defined by Eq. (6.9).
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Quantum kernel KF (rbtb|rata) given by Eq. (6.46) is Feynman’s path

integral in phase space representation.

To obtain the quantum kernel KF (rbtb|rata) in coordinate representa-

tion we have to perform integration over momentums in Eq. (6.46). It can

easily be done with the help of the formula

1

(2π~)3

∫
d3p exp

{
i

~
p(rj − rj−1)− i

2m~
εp2

}
(6.47)

=

(
2πi~ε
m

)−3N/2

exp

{
i
m(rj − rj−1)2

2~ε

}
.

Then Feynman’s quantum kernel KF (rbtb|rata) in 3D coordinate rep-

resentation can be written as

KF (rbtb|rata) = lim
N→∞

∫
dr1...drN−1

(
2πi~ε
m

)−3N/2

(6.48)

×
N∏
j=1

exp

{
i
m(rj − rj−1)2

2~ε

}
exp

− i~ε
N∑
j=1

V (rj , jε)

 ,

where V (rj , jε) comes from the potential energy term in Eq. (6.44).

The last equation can be rewritten as

KF (rbtb|rata) =

r(tb)=rb∫
r(ta)=ra

DF r(τ) exp

− i~
tb∫
ta

dτV (r(τ), τ)

 , (6.49)

where
r(tb)=rb∫
r(ta)=ra

DF r(τ) stands for 3D Feynman’s path integral “measure”

given by

=

r(tb)=rb∫
r(ta)=ra

DF r(τ)... (6.50)

= lim
N→∞

∫
dr1...drN−1

(
2πi~ε
m

)−3N/2 N∏
j=1

exp

{
i
m(rj − rj−1)2

2~ε

}
....

Thus, Feynman’s quantum kernel KF (rbtb|rata) in 3D coordinate rep-

resentation is defined by Eqs. (6.49) and (6.50).
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6.5 Fractional Schrödinger equation from the path integral

over Lévy flights

...it is more important to have beauty in one’s equations than to have

them fit experiment.

P.A.M. Dirac

The kernel K(xbtb|xata) which is defined by Eq. (6.18), describes the evo-

lution of the fractional quantum-mechanical system

ψ(xb, tb) =

∞∫
−∞

dxaK(xbtb|xata)ψ(xa, ta), tb ≥ ta, (6.51)

where ψ(xa, ta) is the wave function of a particle in space point xa at the

time t = ta, and ψ(xb, tb) is the fractional wave function of the particle

in space point xb at time t = tb. To obtain the differential equation for

the fractional wave function ψ(x, t) we apply Eq. (6.51) in the special case

when the time tb differs only by an infinitesimal interval ε from ta. By

renaming ta = t and tb = t+ ε we obtain

ψ(x, t+ ε) =

∞∫
−∞

dyK(x, t+ ε|y, t)ψ(y, t).

Using Feynman’s approximation
t+ε∫
t

dτV (x(τ), τ) ' εV (x+y
2 , t) and the

definition given by Eq. (6.18) we have

ψ(x, t+ ε)

=

∞∫
−∞

dy
1

2π~

∞∫
−∞

dp exp

{
i
p(x− y)

~
− iDαε|p|α

~
− i

~
εV (

x+ y

2
, t)

}
ψ(y, t).

We may expand the left-hand and the right-hand sides in power series

ψ(x, t) + ε
∂ψ(x, t)

∂t
=

∞∫
−∞

dy
1

2π~

∞∫
−∞

dpei
p(x−y)

~

(
1− iDαε|p|α

~

)
(6.52)
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×
(

1− i

~
εV (

x+ y

2
, t)

)
ψ(y, t).

Taking into account the definition (3.14) of quantum Riesz fractional

derivative (~∇)α we rewrite Eq. (6.52) as

ψ(x, t) + ε
∂ψ(x, t)

∂t
= ψ(x, t) + i

Dαε

~
(~∇)αψ(x, t)− i

~
εV (x, t)ψ(x, t),

where we kept the terms up to ε order only.

This will be true to order of ε if ψ(x, t) satisfies the differential equation

i~
∂ψ

∂t
= −Dα(~∇)αψ + V (x, t)ψ. (6.53)

This is the fractional Schrödinger equation first derived by Laskin [67],

[96] from the Laskin path integral. The space derivative in this equation is

of fractional order α, 1 < α ≤ 2.

Equation (6.53) may be rewritten in the operator form,

i~
∂ψ

∂t
= Ĥαψ, (6.54)

where Ĥα is the 1D fractional Hamiltonian operator introduced by Eq.

(3.19).

Since the kernel K(xbtb|xata) thought of as a function of variables xb, tb,

is a special wave function (namely, that for a particle which starts at xa, ta),

we see thatK(xbtb|xata) must also satisfy a fractional Schrödinger equation.

Thus, for the quantum system described by the fractional Hamiltonian Ĥα
we have

i~
∂

∂tb
K(xbtb|xata) = −Dα(~∇b)αK(xbtb|xata) (6.55)

+ V (xb)K(xbtb|xata),

where tb > ta and subscript “b” means that the quantum fractional deriva-

tive acts on the variable xb. The initial condition for this equation is

lim
tb→ta

K(xbtb|xata) = δ(xb − xa). (6.56)
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Setting up xb = x, tb = t and xa = 0, ta = 0, in the above equation and

using the fractional Hamiltonian operator Ĥα given by Eq. (3.19) we have

(
i~
∂

∂t
− Ĥα

)
K(x, t|0, 0) = 0 (6.57)

and

lim
t→0

K(x, t|0, 0) = δ(x), (6.58)

where δ(x) is delta function.

6.5.1 3D fractional Schrödinger equation from the path

integral over Lévy flights

In the 3D case the evolution of the quantum mechanical system is described

by Eq. (6.22). To derive the 3D fractional Schrödinger equation we apply

the evolution law (6.22) in the special case when the time tb differs only by

an infinitesimal interval ε from ta. By renaming ta = t and tb = t + ε we

obtain

ψ(r, t+ ε) =

∫
d3r′K(r, t+ ε|r′, t)ψ(r′, t).

Using Feynman’s approximation
t+ε∫
t

dτV (r(τ), τ) ' εV ( r+r′

2 , t) and the

definition given by Eq. (6.30) we have

ψ(r, t+ ε) =

∫
d3r′

1

(2π~)3

∫
d3p

× exp

{
i
p(r− r′)

~
− iDαε|p|α

~
− i

~
εV (

r + r′

2
, t)

}
ψ(r′, t).

We may expand the left-hand and the right-hand sides in power series

ψ(r, t) + ε
∂ψ(r, t)

∂t

=

∫
d3r′

1

(2π~)3

∫
d3pei

p(r−r′)
~

(
1− iDαε|p|α

~

)
(6.59)
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×
(

1− i

~
εV (

r + r′

2
, t)

)
ψ(r′, t).

Then, taking into account the definitions of the Fourier transforms

ψ(r, t) =
1

(2π~)3

∫
d3pei

pr
~ ϕ(p, t) (6.60)

and

ϕ(p, t) =

∫
d3re−i

pr
~ ψ(r, t), (6.61)

and definition (3.9) of the quantum Riesz fractional derivative (−~2∆)α/2

we obtain from Eq. (6.59)

ψ(r, t) + ε
∂ψ(r, t)

∂t
= ψ(r, t)− iDαε

~
(−~2∆)α/2ψ(r, t)− i

~
εV (r, t)ψ(r, t),

where we keep the terms up to ε order only.

This will be true to order of ε if ψ(r, t) satisfies the fractional differential

equation

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t) + V (r, t)ψ(r, t). (6.62)

This is the 3D fractional Schrödinger equation [96] for a quantum parti-

cle moving in three-dimensional space. The space derivative in this equation

is fractional derivative of order α. Equation (6.62) may be rewritten in the

operator form (3.11) by introducing fractional Hamiltonian operator Ĥα

defined by Eq. (3.12).

Since defined by Eq. (6.30) the kernel K(rbtb|rata) thought of as a

function of variables rb, tb, is a special wave function (namely, that for a

particle which starts at ra, ta), we see that K(rbtb|rata) must also satisfy a

3D fractional Schrödinger equation. With the help of Eq. (6.62) we have

i~
∂

∂tb
K(rbtb|rata) = Dα(−~2∆rb)

α/2K(rbtb|rata) + V (rb)K(rbtb|rata),

(6.63)

where tb > ta subscript “rb” means that the 3D quantum fractional deriva-

tive acts on the variable rb. The initial condition for this equation is

lim
tb→ta

K(rbtb|rata) = δ(rb − ra). (6.64)
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Setting up rb = r, tb = t and ra = 0, ta = 0, in the above equation and

using the fractional Hamiltonian operator Hα given by Eq. (3.12) we have

(
i~
∂

∂t
−Hα

)
K(r, t|0, 0) = 0 (6.65)

and

lim
t→0

K(r, t|0, 0) = δ(r), (6.66)

where δ(r) is delta function in 3D space.
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Chapter 7

A Free Particle Quantum Kernel

7.1 Fundamental properties

For a free particle when V (x, t) = 0, we have Hα(p) = Dα|p|α, then Eq.

(6.1) results in [67]

K(0)(xbtb|xata) =
1

2π~

∞∫
−∞

dp exp

{
i
p(xb − xa)

~
− iDα|p|α(tb − ta)

~

}
,

(7.1)

here K(0)(xbtb|xata) stands for a free particle quantum kernel in the frame-

work of fractional quantum mechanics.

Taking into account Eq. (7.1) it is easy to check the consistency

condition

K(0)(xbtb|xata) =

∞∫
−∞

dx′K(0)(xbtb|x′t′)K(0)(x′t′|xata).

This is a special case of the general quantum-mechanical rule: for events

occurring in succession in time the quantum mechanical amplitudes are

multiplied

K(xbtb|xata) =

∞∫
−∞

dx′K(xbtb|x′t′)K(x′t′|xata), (7.2)

where K(xbtb|xata) is given by Eq. (6.18). Introducing notations

x = xb − xa and t = tb − ta,

101
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we present Eq. (7.1) as

K(0)(x, t) =
1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|αt

~

}
. (7.3)

The fundamental properties of the kernel K(0)(x, t) are:

1. It is the solution to a free particle fractional Schrödinger equation

i~
∂

∂t
K(0)(x, t) = Dα(−~2∆)α/2K(0)(x, t), (7.4)

with initial condition

K(0)(x, t)|t=0 = K(0)(x, 0) = δ(x), (7.5)

where δ(x) is delta function.

2. It satisfies

∞∫
−∞

dxK(0)(x, t) = 1. (7.6)

3. The symmetries hold

K(0)(x, t) = K(0)(−x, t) (7.7)

and

(K(0)(x, t))∗ = K(0)(−x,−t) = K(0)(x,−t), (7.8)

where (K(0)(x, t))∗ stands for complex conjugate kernel.

4. When x = 0, the kernel K(0)(x, t) is

K(0)(0, t) = K(0)(x, t)|x=0 =
1

απ~

(
~

iDαt

)1/α

Γ(
1

α
), (7.9)

where Γ(1/α) is the Gamma function.
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7.1.1 Scaling

To make general conclusions on space and time dependencies of a free parti-

cle kernel K(0)(x, t), let’s study its scaling. We write K(0)(x, t;Dα), where

we keep Dα to remind that besides dependency on x and t the kernel de-

pends on Dα as well. In other words, the scale transformation has to be

applied to x, t and Dα. Hence, we write

t = λt′, x = λβx′, Dα = λγD′α, (7.10)

K(0)(x, t;Dα) = λδK(x′, t′;D′α),

here β, γ, δ are exponents of the scale transformations. Since the scale

transformations should leave a free particle 1D fractional Schrödinger equa-

tion (7.4) invariant and satisfy the condition given by Eq. (7.6) we obtain

the following relationships between scaling exponents,

αβ − γ − 1 = 0, δ + β = 0, (7.11)

which reduce the number of exponents up to 2. Therefore, we have the

two-parameters scale transformation group

t = λt′, x = λβx′, Dα = λαβ−1D′α, (7.12)

K(0)(λβx, λt;λαβ−1Dα) = λ−βK(0)(x, t;Dα) (7.13)

where β and λ are arbitrary group parameters.

To get the general scale invariant solutions to Eq. (7.4) we use the

renormalization group framework. As far as the scale invariant solutions to

Eq. (7.4) should satisfy the identity Eq. (7.13) for any arbitrary parameters

β and λ, the solutions depend on a combination of x, and t and Dα to

provide independence on β and λ. Therefore, due to Eqs. (7.12) and (7.13)

the scaling holds

K(0)(x, t;Dα) =
1

x
K(
x

~
(~/Dαt)

1/α) =
(~/Dαt)

1
α

~
L(
x

~
(~/Dαt)

1/α), (7.14)

where two arbitrary functions K and L are determined by the initial con-

ditions, K(.) = K(0)(1, .) and L(.) = K(0)(., 1).

Thus, Eq. (7.14) gives us general scale invariant form of a free particle

quantum kernel in the framework of fractional quantum mechanics.
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7.2 Fox H-function representation for a free particle kernel

Let’s show how a free particle fractional quantum mechanical kernel

K(0)(xbtb|xata) defined by Eq. (7.1) can be expressed in terms of the Fox

H-function [103]-[106]. First, following the approach proposed by Laskin

[93], we obtain the Mellin transform of the quantum mechanical fractional

kernel defined by Eq. (7.1). Second, by comparing the inverse Mellin trans-

form with the definition of the Fox function we obtain the desired expression

in terms of “known” function, i.e. Fox H-function1.

Introducing the notations x ≡ xb−xa, τ ≡ tb− ta, we rewrite Eq. (7.1)

K(0)(x, τ) =
1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
. (7.15)

Due to the symmetry K(0)(x, τ) = K(0)(−x, τ) given by Eq. (7.7) it is

sufficient to consider K
(0)
L (x, τ) for x ≥ 0 only. Further, we will use the

following definitions of the Mellin transform

∧
K(0)(s, τ) =

∞∫
0

dxxs−1K(0)(x, τ), (7.16)

and inverse Mellin transform

K(0)(x, τ) =
1

2πi

c+i∞∫
c−i∞

dsx−s
∧

K(0)(s, τ), (7.17)

where the integration path is a straight line from c − i∞ to c + i∞ with

0 < c < 1.

The Mellin transform of the K(0)(x, τ) defined in accordance with Eq.

(7.16) is

∧
K(0)(s, τ) =

1

2π~

∞∫
0

dxxs−1

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
.

1Note that the H-function bears the name of its discoverer Fox [103] although it has
been known since at least 1888, according to [106].
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By changing the variables of integration p →
(

~
iDατ

)1/α

ς and x →(
~

iDατ

)1/α

ξ, one obtains the integrals in the complex ς and ξ planes. Con-

sidering the paths of integration in the ς and ξ planes, it is easy to represent
∧

K(0)(s, τ) as follows,

∧
K(0)(s, τ)

=
1

2π

(
~

(~/iDατ)1/α

)s−1
∞∫

0

dξξs−1

∞∫
−∞

dς exp{iςξ − |ς|α}. (7.18)

The integrals over dξ and dς can be evaluated by using the equation

∞∫
0

dξξs−1

∞∫
0

dς exp{iςξ−ςα} =
4

s− 1
sin

π(s− 1)

2
Γ(s)Γ(1− s− 1

α
), (7.19)

where s− 1 < α ≤ 2 and Γ(s) is the Gamma function.

Inserting Eq. (7.19) into Eq. (7.18) and using the functional relations

for the Gamma function, Γ(1−z) = −zΓ(−z) and Γ(z)Γ(1−z) = π/ sinπz,

yield

∧
K(0)(s, τ) =

1

α

(
~

(~/iDατ)1/α

)s−1 Γ(s)Γ( 1−s
α )

Γ( 1−s
2 )Γ( 1+s

2 )
.

The inverse Mellin transform gives a free particle quantum mechanical

kernel K(0)(x, τ)

K(0)(x, τ) =
1

2πi

c+i∞∫
c−i∞

dsx−s
∧

K
(0)
L (s, τ)

=
1

2πi

1

α

c+i∞∫
c−i∞

ds

(
~

(~/iDατ)1/α

)s−1

x−s
Γ(s)Γ( 1−s

α )

Γ( 1−s
2 )Γ( 1+s

2 )
,

where the integration path is the straight line from c− i∞ to c+ i∞ with

0 < c < 1. By replacing s with −s we obtain
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K(0)(x, τ) =
1

α

(
~

(~/iDατ)1/α

)−1

× 1

2πi

−c+i∞∫
−c−i∞

ds

(
1

~

(
~

iDατ

)1/α

x

)s
Γ(−s)Γ( 1+s

α )

Γ( 1+s
2 )Γ( 1−s

2 )
.

The path of integration may be deformed into one running clockwise

around R+− c. Comparison with the definition of the Fox H-function (see,

Eqs. (58) and (59), in [93]) leads to

K(0)(x, τ) =
1

α

(
~

(~/iDατ)1/α

)−1

(7.20)

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

x

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
, x > 0.

Or for any x,

K(0)(x, τ) =
1

α

(
~

(~/iDατ)1/α

)−1

(7.21)

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.

By substituting x ≡ xb − xa, τ ≡ tb − ta we write

K(0)(xb − xa, tb − ta) =
1

α

(
~

(~/iDα(tb − ta))1/α

)−1

(7.22)

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

|xb − xa|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.

Applying Fox H-function Property 12.2.5 given by Eq. (A.14) in Ap-

pendix A, we can express K(0)(x, τ) as

K(0)(x, τ) =
1

α|x|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
, (7.23)
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and with the help of substitution x ≡ xb − xa, τ ≡ tb − ta we have

K(0)(xb − xa, tb − ta) (7.24)

=
1

α|xb − xa|
H1,1

2,2

[
1

~

(
~

iDα(tb − ta)

)1/α

|xb − xa|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.

It follows from Eqs. (7.21) and (7.23) that there is the identity for

H1,1
2,2 -function

(
~

(~/iDατ)1/α

)−1

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
(7.25)

=
1

|x|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
,

which is in line with the scaling given by Eq. (7.14).

By equating expressions (7.15) and (7.23) we obtain

1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
(7.26)

=
1

α|x|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.

With the help of identity (7.25) we can rewrite the above equation in

the form

1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
=

1

α

(
~

(~/iDατ)1/α

)−1

(7.27)

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.
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Substituting in Eq. (7.23) x ≡ xb − xa, τ ≡ tb − ta, finally yields

K(0)(xbtb|xata) =
1

α|xb − xa|

×H1,1
2,2

[
1

~

(
~

iDα(tb − ta)

)1/α

|xb − xa|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
. (7.28)

With the help of Property 12.2.5 (see Appendix A, Eq. (A.14)) it can

be rewritten as

K(0)(xb − xa, tb − ta) =
1

α

(
~

(~/iDα(tb − ta))1/α

)−1

(7.29)

×H1,1
2,2

[
1

~

(
~

iDατ

)1/α

|xb − xa|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.

Thus, we found two representations for the 1D free particle quantum

mechanical kernel K(0)(xbtb|xata) in the framework of fractional quantum

mechanics.

The equations (7.28) and (7.29) for the 1D free particle fractional quan-

tum mechanical kernel are in agreement with scaling law given by Eq.

(7.14).

Let us show that Eq. (7.23) includes the well-known Feynman’s quan-

tum mechanical kernel as a particular case at α = 2, see Eq. (3-3) in [12].

Putting α = 2 in Eq. (7.23), we write

K(0)(x, τ)|α=2 =
1

2|x|
H1,1

2,2

[
1

~

(
~

iD2τ

)1/2

|x|
∣∣∣∣ (1, 1/2), (1, 1/2)

(1, 1), (1, 1/2)

]
. (7.30)

Applying the series expansion defined by Eq. (A.9) to the H1,1
2,2 -function

and substituting k → 2l yield

K(0)(x, τ)|α=2 =
1

2~

(
~

iD2τ

)1/2 ∞∑
l=0

(
−1

~

(
~

iD2τ

)1/2
)2l

(7.31)

×|x|
2l

(2l)!

1

Γ( 1
2 − l)

.
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Taking into account identity Γ( 1
2 +z)Γ( 1

2−z) = π/ cosπz, and applying

the Gauss multiplication formula

Γ(2l) =

√
24l−1

2π
Γ(l)Γ(l +

1

2
), (7.32)

we find that

(2l)!Γ(
1

2
− l) =

√
π

(−1)l
(2)2ll!. (7.33)

With the help of Eq. (7.33) kernel K(0)(x, τ)|α=2 can be rewritten as

K(0)(x, τ)|α=2 =
1

2
√
π~

(
~

iD2τ

)1/2 ∞∑
l=0

(
−1

~

(
~

iD2τ

)1/2
)2l

× (−1)l|x|2l

22ll!
(7.34)

=
1

2
√
π~

(
~

iD2τ

)1/2

exp

{
−1

4

|x|2

~iD2τ

}
.

Since D2 = 1/2m, we come to the Feynman’s kernel

K(0)(x, τ)|α=2 ≡ K(0)
F (x, τ) =

√
m

2πi~τ
exp

{
im|x|2

2~τ

}
, (7.35)

or (see Eq. (3-3), [12])

K(0)(xb − xa, tb − ta)|α=2 ≡ K(0)
F (xb − xa, tb − ta) (7.36)

=

(
2πi~(tb − ta)

m

)−1/2

exp

{
im|xb − xa|2

2~(tb − ta)

}
,

which coincides with Eq. (6.41).

Thus, it is shown how Feynman’s free particle kernel can be derived

from the general equation (7.23).

By equating the expressions (7.30) and (7.35) we come to the identity

with involvement of H1,1
2,2 -function

1

2|x|
H1,1

2,2

[
1

~

(
2m~
iτ

)1/2

|x|
∣∣∣∣ (1, 1/2), (1, 1/2)

(1, 1), (1, 1/2)

]
(7.37)
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=

√
m

2πi~τ
exp

{
im|x|2

2~τ

}
.

This equation can be presented in the form

H1,1
2,2

[
w

∣∣∣∣ (1, 1/2), (1, 1/2)

(1, 1), (1, 1/2)

]
(7.38)

=
w√
π

exp

{
−w

2

4

}
,

where w has been introduced as

w =

(
2m

i~τ

)1/2

|x|. (7.39)

Using H-function Property 12.2.2 given by Eq. (A.11) from Appendix

A, we can rewrite Eq. (7.38) in terms of H1,0
1,1 -function

H1,0
1,1

[
w

∣∣∣∣ (1, 1/2)

(1, 1)

]
(7.40)

=
w√
π

exp

{
−w

2

4

}
.

Considering Eq. (7.21) in the case when α = 2, and equating it to Eq.

(7.35) we come to another identity with involvement of H1,1
2,2 -function

H1,1
2,2

[
1

~

(
2m~
iτ

)1/2

|x|
∣∣∣∣ (1/2, 1/2), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
(7.41)

=
1√
π

exp

{
im|x|2

2~τ

}
,

which can be rewritten in the form

H1,1
2,2

[
w

∣∣∣∣ (1/2, 1/2), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
(7.42)

=
1√
π

exp

{
−w

2

4

}
,
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with w given by Eq. (7.39).

The last equation can be expressed in terms of H1,0
1,1 -function

H1,0
1,1

[
w

∣∣∣∣ (1/2, 1/2)

(0, 1)

]
(7.43)

=
1√
π

exp

{
−w

2

4

}
,

if we apply H-function Property 12.2.2 given by Eq. (A.11) from Appendix

A.

It follows from Eqs. (7.38) and (7.42) that the identity holds

1

|w|
H1,0

1,1

[
w

∣∣∣∣ (1, 1/2)

(1, 1)

]
= H1,0

1,1

[
w

∣∣∣∣ (1/2, 1/2)

(0, 1)

]
, (7.44)

which is in line with H-function Property 12.2.5 given by Eq. (A.14).

7.2.1 A free particle kernel: 3D case

The generalization of Eq. (7.15) to the 3D case has the form

K(0)(rbtb|rata) (7.45)

=
1

(2π~)3

∫
d3p exp

{
i
p(rb − ra)

~
− iDα|p|α(tb − ta)

~

}
,

where r and p are the 3D vectors.

In terms of the Lévy probability distribution function defined by (6.28)

the kernel K(0)(rbtb|rata) can be expressed as

K(0)(rbtb|rata) =
1

~3

(
~

iDα(tb − ta)

)3/α

(7.46)

×Lα

(
1

~

(
~

iDα(tb − ta)

)1/α

|rb − ra|

)
.

To express the kernel K(0)(rbtb|rata) in terms of Fox’s H-function we

write
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K(0)(rbtb|rata) =
1

(2π~)3

∞∫
0

dpp2

π∫
0

dϑ sinϑ

2π∫
0

dϕ

× exp

{
i
p|rb − ra| cosϑ

~
− iDα|p|α(tb − ta)

~

}
.

By performing integration over dϑ and dϕ we come to

K(0)(rbtb|rata) (7.47)

=
1

2π2~2|rb − ra|

∞∫
0

dpp sin(
p|rb − ra|

~
) exp

{
−iDα|p|α(tb − ta)

~

}
.

Noting that

p sin(
p|rb − ra|

~
) = −~ ∂

∂|rb − ra|
cos(

p|rb − ra|
~

), (7.48)

we obtain

K(0)(rbtb|rata) = − 1

2π|rb − ra|
∂

∂x
K(0)(x; tb − ta)|x=|rb−ra|, (7.49)

here the kernel K(0)(x; tb − ta) is 1D kernel introduced by Eq. (7.15) and

presented in terms of H-function by Eq. (7.23).

Let us note that Eq. (7.49) is a special case of a general relation that

holds between the D-dimensional and (D + 2)-dimensional Fourier trans-

forms of any isotropic function. An important consequence of Eq. (7.49)

is that it allows us to evaluate the 3D kernel knowing the expression (7.23)

for a 1D quantum kernel. Thus, the problem is to calculate the derivative

of the 1D kernel in Eq. (7.49). With the help of Eq. (A.19) from Appendix

A we find

K(0)(rbtb|rata) = − 1

2πα

1

|rb − ra|3
(7.50)

×H1,2
3,3

[
1

~

(
~

iDα(tb − ta)

)1/α

|rb − ra|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
.
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This is fractional quantum mechanical kernel for a free particle in 3D

space. We see that in comparison with 1D case the 3D fractional quantum

mechanical kernel is represented in terms of Fox’s H1,2
3,3 -function.

By applying Property 12.2.5 for Fox’s H-function we express

K(0)(rbtb|rata) in the form

K(0)(rbtb|rata) = − 1

2πα~
1

|rb − ra|2

(
~

iDα(tb − ta)

)1/α

(7.51)

×H1,2
3,3

[
1

~

(
~

iDα(tb − ta)

)1/α

|rb − ra|
∣∣∣∣ (0, 1), (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2), (1, 1)

]
.

It is interesting to find out how the Feynman a free particle 3D quantum

mechanical kernelK
(0)
F (rbtb|rata) can be obtained from the general equation

(7.51) at α = 2. Setting in Eq. (7.51) α = 2 and applying the series

expansion (A.9) for the H1,2
3,3 -function we come to

K(0)(rbtb|rata)|α=2 = K
(0)
F (rbtb|rata) = − 1

4π|rb − ra|3

×
∞∑
k=0

Γ(1 + k)

Γ(k)Γ( 1−k
2 )

(−1)k

k!

(
1

~

(
~

iD2(tb − ta)

)1/2

|rb − ra|

)1+k

(7.52)

= − 1

4π~|rb − ra|2

(
~

iD2(tb − ta)

)1/2

×
∞∑
k=0

k

Γ( 1−k
2 )

(−1)k

k!

(
1

~

(
~

iD2(tb − ta)

)1/2

|rb − ra|

)k
.

Substitution k → 2l yields

K
(0)
F (rbtb|rata) (7.53)

= − 1

4π~|rb − ra|2

(
~

iD2(tb − ta)

)1/2

×
∞∑
l=0

(2l)

Γ( 1
2 − l)

1

(2l)!

(
−1

~

(
~

iD2(tb − ta)

)1/2

|rb − ra|

)2l

.
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Using the identity

∞∑
l=0

(2l)
(W )2l

Γ( 1
2 − l)(2l)!

= W
∂

∂W

∞∑
k=0

(W )2l

Γ( 1
2 − l)(2l)!

,

and introducing the notation

W =
1

~

(
~

iD2(tb − ta)

)1/2

|rb − ra|, (7.54)

we obtain from Eq. (7.53)

K
(0)
F (rbtb|rata)

= − 1

4π~|rb − ra|2

(
~

iD2(tb − ta)

)1/2

W
∂

∂W

∞∑
l=0

1

Γ( 1
2 − l)

(−W )
2l

(2l)!
.

With the help of Eq. (7.33) the sum in the last equation can be expressed

as

∞∑
l=0

1

Γ( 1
2 − l)

(−W )
2l

(2l)!
=

1√
π

exp

{
−W

2

4

}
.

Then taking into account Eq. (7.54) we find

K
(0)
F (rbtb|rata) =

(
1

4π~iD2(tb − ta)

)3/2

exp

{
− |rb − ra|2

4~iD2(tb − ta)

}
. (7.55)

Since D2 = 1/2m, where m is a particle mass, we rediscover Feynman’s

3D quantum mechanical kernel of a free quantum particle with the mass m

(see, Eq. (1.382) for the case D = 3, in [107]),

K
(0)
F (rbtb|rata) =

(
m

2πi~(tb − ta)

)3/2

exp

{
im|rb − ra|2

2~(tb − ta)

}
. (7.56)

Thus, we see that Eq. (7.51) includes Feynman’s 3D kernel

K
(0)
F (rbtb|rata) as a special case at α = 2.



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 115

A Free Particle Quantum Kernel 115

7.2.2 A free particle kernel: D-dimensional generalization

To generalize the above developments to D-dimensional space (D ≥ 2) we

write for the D-dimensional a free particle quantum mechanical kernel

K(0)(rbtb|rata) (7.57)

=
1

(2π~)D

∫
dDp exp

{
i
p(rb − ra)

~
− iDα|p|α(tb − ta)

~

}
,

where r and p are the D-dimensional vectors

r = (r1, r2, ..., rD) and p = (p1, p2, ..., pD).

Introducing the spherical coordinate system in the D-dimensional mo-

mentum space

(p1, p2, ..., pD)→ (p, ϕ, θ1, ..., θD−2),

where p = |p|, gives us

dDp = pD−1dpdϕ sin θ1dθ1 sin2 θ2dθ2... sin
D−2 θD−2dθD−2,

with the variables p, ϕ and θk assuming values over the intervals

0 ≤ p <∞, 0 ≤ ϕ ≤ 2π, 0 ≤ θk ≤ π, k = 1, ...,D− 2.

Thus, in the spherical momentum system Eq. (7.57) reads (for D≥ 4)

K(0)(rbtb|rata) =
1

(2π~)D

∞∫
0

dppD−1 exp

{
−iDαp

α(tb − ta)

~

}

×
2π∫
0

dϕ

D−3∏
k=1

π∫
0

dθk sink θk

 (7.58)

×
π∫

0

dθD−2 sinD−2 θD−2 exp

{
i
p|rb − ra| cos θD−2

~

}
.
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The integral over dϕ results in

2π∫
0

dϕ = 2π. (7.59)

To evaluate the integrals over dθ1...dθD−3 we use the formula

π∫
0

dθk sink θk =
√
π

Γ(k+1
2 )

Γ(k+2
2 )

, (7.60)

and obtain

D−3∏
k=1

π∫
0

dθk sink−1 θk

 =
D−3∏
k=1

(
√
π

Γ(k+1
2 )

Γ(k+2
2 )

)
=

π
D−3

2

Γ(D−1
2 )

. (7.61)

The integration over dθD−2 results in2

π∫
0

dθD−2(sin θD−2)D−2 exp

{
i
p|rb − ra| cos θD−2

~

}
(7.62)

= 22−D
2 π

Γ(D− 2)

Γ(D−2
2 )

(
~

p|rb − ra|

)D−2
2

JD−2
2

(
p|rb − ra|

~

)
.

Gathering together Eqs. (7.59) - (7.62) and taking into account Eq.

(7.32) yield for Eq. (7.58)

K(0)(rbtb|rata) =
1

(2π~)
D
2

1

~(|rb − ra|)
D−2

2

(7.63)

×
∞∫

0

dpp
D
2 JD−2

2
(
p|rb − ra|

~
) exp

{
−iDαp

α(tb − ta)

~

}
,

2We used the table integral (see, Eq. (3.387) in [86])

π∫
0

dθ sinm θ exp{iA cos θ}

=

1∫
−1

dx(1− x2)
m−1

2 eiAx = 21−
m
2

Γ(m)

Γ(m
2

)
A−

m
2 Jm

2
(A).
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where Jν(z) is the Bessel function of the first kind of order ν defined by

Eq. (8.402) in [86]

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k
z2k

22kk!Γ(ν + k + 1)
. (7.64)

From definition (7.64) we have

J0(z) = Jν(z)|ν=0 =
∞∑
k=0

(−1)k
z2k

22k(k!)2
(7.65)

and

J1/2(z) = Jν(z)|ν=1/2 =

√
z

2

∞∑
k=0

(−1)k
z2k

k!Γ(k + 3/2)

(z
2

)2k

(7.66)

=

√
2

πz

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
=

√
2

πz
sin z,

where we took into account the identity for Gamma function Γ(k + 3/2)

Γ(k + 3/2) =

√
π(2k + 1)!

k!22k+1
.

With the help of the above equations it can be easily verified that Eq.

(7.63) includes expressions for a free particle kernel in space dimensions

D = 2 and D = 3 as two particular cases. Indeed, it is easy to see, for

example, that in the case D = 3, substituting J1/2(z) into Eq. (7.63) gives

us the 3D kernel defined by Eq. (7.47).
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Chapter 8

Transforms of a Free Particle Kernel

Such is the advantage of a well-constructed language that its sim-

plified notation often becomes the source of profound theories.

Pierre-Simon Laplace

8.1 Laplace transform

The Laplace transform K̃(0)(x, s) of a 1D free particle kernel is defined as

K̃(0)(x, s) =

∞∫
0

dτe−sτK(0)(x, τ), (8.1)

where K(0)(x, τ) is given by Eq. (7.23).

By using Eq. (7.23) and applying the series expansion (A.9) for the

function H1,1
2,2 we obtain

K̃(0)(x, s) =
1

αx

∞∑
k=0

Γ( 1+k
α )

Γ( 1+k
2 )Γ( 1−k

2 )

(−1)k

k!

×

(
1

~

(
~
iDα

)1/α

|x|

)1+k ∞∫
0

dτe−sττ−
1+k
α (8.2)

=
1

αxs

∞∑
k=0

Γ( 1+k
α )Γ(1− 1+k

α )

Γ( 1+k
2 )Γ( 1−k

2 )

(−1)k

k!

(
1

~

(
~s
iDα

)1/α

|x|

)1+k

,

119
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where it was taken into account that

∞∫
0

dτe−sττ−
1+k
α = s

1+k
α −1Γ

(
1− 1 + k

α

)
.

Applying the definition of Fox’s function H1,2
3,2 we can finally rewrite the

Laplace transform K̃(0)(x, s) in terms of H-function

K̃(0)(x, s) =
1

αxs
(8.3)

×H1,2
3,2

[
1

~

(
~s
iDα

)1/α

|x|
∣∣∣∣ (1, 1/α), (0,−1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.

Putting α = 2 in Eq. (8.3) and using the series expansion for the

H1,2
3,2 -function we obtain the Laplace transform of a free particle kernel for

standard quantum mechanics

K̃(0)(x, s)|α=2 =

√
m

2si~
exp

{
−
√

2ms

i~
|x|

}
, (8.4)

here we used D2 = 1/2m, and m is particle mass.

8.2 The energy-time transformation

In fractional quantum mechanics an important role is played by the Fourier

transform of the kernel K(0)(x2 − x1, τ) in the time variable, which is the

fractional fixed-energy amplitude k(0)(x2, x1;E)

k(0)(x2, x1;E) =

∞∫
0

dτe(i/~)EτK(0)(x2 − x1, τ), (8.5)

where K(0)(x2 − x1, τ) is a free particle kernel given by Eq. (7.24).

To make the integral convergent, we have to move the energy into the

upper complex half-plane by an infinitesimal amount ε. Then the fractional

fixed-energy amplitude becomes

k(0)(x2, x1;E) =
∞∑
n=1

φn(x2)φ∗n(x1)
i~

E − En + iε
, (8.6)
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where φn(x) is the eigenfunction of the 1D fractional Schrödinger equation

with eigenvalue En.

The small iε-shift in the energy E in Eq. (8.6) may be thought of as

attached to each of the energies En which are thus shifted by an infinitesimal

value below the real energy axis. When doing the Fourier integral (8.5),

the exponential e−(i/~)Eτ always makes it possible to close the integration

contour along the energy axis by an infinite semicircle in the complex energy

plane, which lies in the upper half-plane for τ < 0 and in the lower half-

plane for τ > 0. The iε-shift guarantees that for τ < 0, there is no pole

inside the closed contour, making the propagator vanish. For τ > 0, on the

other hand, poles in the lower half-plane give a spectral representation of

the fractional kernel (8.6) via Cauchy’s residue theorem.

It follows that the fixed-energy amplitude k(0)(x2, x1;E) and the kernel

K(0)(x2 − x1, τ) are related to each other by the inverse energy Fourier

transform

K(0)(x2 − x1, τ) =
1

2π~

∞∫
−∞

dE e−(i/~)Eτk(0)(x2, x1;E). (8.7)

To obtain the equation for k(0)(x2, x1;E) in terms of H-function, let’s

substitute K(0)(x2 − x1, τ) given by

K(0)(x2 − x1, τ)

=
1

α|x2 − x1|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x2 − x1|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
into Eq. (8.5), and then evaluate the integral over dτ . The result is

k(0)(x2, x1;E) (8.8)

=
i~

α|x2 − x1|E
H2,1

2,3

[
1

~

(
− E

Dα

)1/α

|x2 − x1|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1/α), (1, 1), (1, 1/2)

]
.

The above equations can be easily generalized to the 3D case. Let us

calculate a free particle fixed-energy amplitude k
(0)
L (r2, r1;E) defined as

follows



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 122

122 Fractional Quantum Mechanics

k(0)(r2, r1;E) =

∞∫
0

dτe(i/~)EτK(0)(r2 − r1, τ). (8.9)

Then the inverse energy Fourier transform expresses K(0)(r2 − r1, τ) in

terms of k(0)(r2, r1;E)

K(0)(r2 − r1, τ) =
1

2π~

∞∫
0

dEe(i/~)Eτk(0)(r2, r1;E). (8.10)

With the help of Eq. (7.51) we have

k(0)(r2, r1;E) = −
∞∫

0

dτe(i/~)Eτ 1

2πα

1

|r2 − r1|3
(8.11)

×H1,2
3,3

[
1

~

(
~

iDατ

)1/α

|r2 − r1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
.

Using Property 12.2.8 of H-function (see Eq. (A.17) in Appendix A)

we find

k(0)(r2, r1;E) = − ~
2παiE|r2 − r1|3

(8.12)

×H2,2
3,4

[
1

~

(
− E

Dα

)1/α

|r2 − r1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1/α), (1, 1), (1, 1/2), (2, 1)

]
.

Thus the expression for the fixed-energy amplitude k
(0)
L (r2, r1;E) in-

volves the H2,2
3,4 Fox’s H-function. The inverse energy Fourier transform

defined by Eq. (8.10) and Eq. (8.12) allow us to obtain the following

alternative representation for the fractional kernel K(0)(r2 − r1, τ)

K(0)(r2 − r1, τ) = − 1

2π~

∞∫
−∞

dE e−(i/~)Eτ ~
2παiE|r2 − r1|3

(8.13)

×H2,2
3,4

[
1

~

(
− E

Dα

)1/α

|r2 − r1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1/α), (1, 1), (1, 1/2), (2, 1)

]
.
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If we put α = 2 then Eq. (8.12) gives us the standard quantum mechan-

ical fixed-energy amplitude k
(0)
QM(r2, r1;E) = k(0)(r2, r1;E)|α=2. Indeed, by

setting α = 2 into Eq. (8.12) and taking into account that in accordance

with Property 12.2.2 of H-function and Eq. (A.8) we have

H2,2
3,4

[
κ|r2 − r1|

∣∣∣∣ (1, 1), (1, 1/2), (1, 1/2)

(1, 1/2), (1, 1), (1, 1/2), (2, 1)

]

= H1,0
0,1

[
κ|r2 − r1|

∣∣∣∣ −(2, 1)

]

= (κ|r2 − r1|)2
exp (−κ|r2 − r1|) ,

where the notation

κ =
1

~
√
−2mE (8.14)

has been introduced.

Hence, we obtain in the case when α = 2

k
(0)
QM(r2, r1;E) = k(0)(r2, r1;E)|α=2

=
−im

2π~κ2|r2 − r1|3
× (κ|r2 − r1|)2

exp (−κ|r2 − r1|) (8.15)

= − im

2π~|r2 − r1|
× exp (−κ|r2 − r1|) ,

which is Eq. (1.390) from Chapter 1, [108].

8.3 A free particle Green function

In terms of the fractional fixed-energy amplitude k(0)(x2, x1;E) introduced

by Eq. (8.5), 1D free particle Green function G(0)(x2, x1;E) is defined as

G(0)(x2, x1;E) =
1

i~
k(0)(x2, x1;E). (8.16)

We can rewrite this equation to present a free particle Green function

in terms of a free particle fractional quantum mechanical kernel K(0)(x2 −
x1, τ) given by Eq. (8.7)
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G(0)(x2, x1;E) =
1

i~

∞∫
0

dτe(i/~)EτK(0)(x2 − x1, τ). (8.17)

Substituting k(0)(x2, x1;E) given by Eq. (8.8) into Eq. (8.16) yields

the expression for a free particle Green function G(0)(r2, r1;E) in terms of

H2,1
2,3 -function first found in [109]

G(0)(x2, x1;E) =
1

αE|x2 − x1|
(8.18)

×H2,1
2,3

[
1

~

(
− E

Dα

)1/α

|x2 − x1|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1/α), (1, 1), (1, 1/2)

]
.

This free particle Green function G(0)(r2, r1; τ) is related to

G(0)(r2, r1;E) by the energy-time Fourier transform

G(0)(r2, r1; τ) =
1

2π~

∞∫
−∞

dE e−(i/~)EτG(0)(r2, r1;E). (8.19)

Taking into account the path integral representation (6.5) for a free

fractional quantum mechanical kernel we can write

G(0)(r2, r1; τ) =
1

i~

∞∫
0

dτe(i/~)Eτ

×
r(tb)=rb∫
r(ta)=ra

Dx(τ)

∫
Dp(τ) exp{iSα(p, x)/~} (8.20)

=

r(τ)=rb∫
r(0)=ra

Dx(τ)

∫
Dp(τ) exp

 i

~

τ∫
0

dτ [p(τ)
·
x(τ)−Hα(p(τ), x(τ), τ)]

 ,

which is the path integral representation for a free particle Green function

in 1D case in the framework of fractional quantum mechanics.
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In 3D case the Green function for a free particle can be expressed in

terms of a fractional fixed-energy amplitude. It follows from Eqs. (8.9) and

(8.17) that

G(0)(r2, r1;E) =
1

i~
k(0)(r2, r1;E). (8.21)

In terms of the fractional fixed-energy amplitude k(0)(r2, r1;E) intro-

duced by Eq. (8.9), a free particle Green function G(0)(r2, r1;E) in the

framework of fractional quantum mechanics is defined as

G(0)(r2, r1;E) =
1

i~

∞∫
0

dτe(i/~)EτK(0)(r2 − r1, τ), (8.22)

whereK(0)(r2−r1, τ) is a free particle fractional quantum mechanical kernel

given by Eq. (7.45).

A free particle Green function G(0)(r2, r1; τ) is related to G(0)(r2, r1;E)

by the energy-time Fourier transform

G(0)(r2, r1; τ) =
1

2π~

∞∫
−∞

dE e−(i/~)EτG(0)(r2, r1;E). (8.23)

Taking into account the path integral representation (6.10) for a free

particle fractional quantum mechanical kernel we can write

G(0)(r2, r1;E) =
1

i~

∞∫
0

dτe(i/~)Eτ (8.24)

×
r(τ)=r2∫

r(0)=r1

Dr(τ ′)

∫
Dp(τ ′) exp

 i

~

τ∫
0

dτ ′[p(τ ′)
·
r(τ ′)−Dα|p(τ ′)|α]

 ,

which is the path integral representation for a free particle Green function

in the 3D case in the framework of fractional quantum mechanics.

The fractional quantum mechanical kernel K(0)(r2 − r1, τ) is expressed

in terms of the Green function G(0)(r2, r1;E) as

K(0)(r2 − r1, τ) =
i

2π

∞∫
−∞

dEe−(i/~)EτG(0)(r2, r1;E). (8.25)
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Using the 3D generalization of Eq. (8.6) we can define a free particle

Green function by the following equation

G(0)(r2, r1;E) =
∞∑
n=1

φn(r2)φ∗n(r1)
1

E − En + iε
, (8.26)

where φn(r) is the eigenfunction of a free particle time independent frac-

tional Schrödinger equation (4.4) with eigenvalue En, in the 3D case.

The Green G(r2, r1;E) function of a particle moving in potential field

V (r) is expressed in terms of fractional kernel K(r2 − r1, τ)

G(r2, r1;E) =
1

i~

∞∫
0

dτe(i/~)EτK(r2 − r1, τ), (8.27)

here K(r2− r1, τ) is defined by Eq. (6.7). We come to the definition of the

Green function in the framework of fractional quantum mechanics in terms

of path integral

G(r2, r1;E) =
1

i~

∞∫
0

dτe(i/~)Eτ

r(tb)=rb∫
r(ta)=ra

Dr(τ ′)

∫
Dp(τ ′) (8.28)

× exp

 i

~

tb∫
ta

dτ ′[p(τ ′)
·
r(τ ′)−Hα(p(τ ′), r(τ ′), τ ′)]

 ,

where
·
r denotes the time derivative, Hα(p(τ ′), r(τ ′), τ ′) is the fractional

Hamiltonian given by Eq. (3.3) with the substitutions p → p(τ ′), r →
r(τ ′), and {p(τ ′), r(τ ′)} is a particle trajectory in phase space.

The fractional quantum mechanical kernel K(r2− r1, τ) is expressed in

terms of the Green function G(0)(r2, r1;E) as

K(r2 − r1, τ) =
i

2π

∞∫
−∞

dEe−(i/~)EτG(r2, r1;E). (8.29)

The Green function for a free particle can be expressed in terms of

fractional fixed-energy amplitude. It follows from Eqs. (8.9) and (8.22)

that

G(0)(r2, r1;E) =
1

i~
k(0)(r2, r1;E). (8.30)
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Hence, we can use Eqs. (8.12) and (8.13) to present a free particle Green

function in terms of H-function

G(0)(r2, r1;E) = − 1

2παE|r2 − r1|3
(8.31)

×H2,2
3,4

[
1

~

(
− E

Dα

)1/α

|r2 − r1|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1/α), (1, 1), (1, 1/2), (2, 1)

]
.

In the limit case when α = 2, Eq. (8.13) gives us the standard

quantum mechanical Green function of a free particle, G
(0)
QM(r2, r1;E) =

G(0)(r2, r1;E)|α=2. Indeed, having Eq. (8.15) we write

G
(0)
QM(r2, r1;E) = − m

2π~2|r2 − r1|
× exp (−κ|r2 − r1|) , (8.32)

where κ has been introduced by Eq. (8.14).

Substituting Eq. (8.32) into Eq. (8.23) and integrating over dE yield

G
(0)
QM(r2, r1; τ) =

1

i~

( m

2πi~τ

)3/2

exp

{
im|rb − ra|2

2~τ

}
(8.33)

or

G
(0)
QM(r2, r1; τ) =

1

i~
K

(0)
F (rb, ra, τ), τ ≥ 0, (8.34)

where K
(0)
F (rb, ra, τ) is Feynman’s free particle kernel defined by Eq. (7.56)

with substitution tb − ta = τ .

8.4 Fractional kernel in momentum representation

To obtain the 1D fractional quantum-mechanical kernel in momentum rep-

resentation we start from Eq. (6.51). Taking into account the definitions

of the Fourier transforms given by Eqs. (3.15) and (3.16) let us present

Eq. (6.51) in momentum representation,

ϕ(pb, tb) =
1

2π~

∞∫
−∞

dpaK(pbtb|pata)ϕ(pa, ta), tb ≥ ta, (8.35)

where ϕ(pa, ta) is the wave function of a particle with momentum pa at

the time t = ta, and ϕ(pb, tb) is the wave function of the particle with
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momentum pb at time tb. This equation describes the evolution of a wave

function in momentum space. The kernel in momentum representation is

expressed in terms of the kernel in coordinate representation by the follow-

ing equation

K(pbtb|pata) =

∞∫
−∞

dxb

∞∫
−∞

dxae
− i

~pbxb+
i
~paxaK(xbtb|xata), (8.36)

where tb ≥ ta.

As an example, let us obtain a free particle kernel K(0)(pbtb|pata) in

momentum representation. By substituting into Eq. (8.36) a free particle

kernel in coordinate representation K(0)(xbtb|xata) given by Eq. (7.1), we

find

K(0)(pbtb|pata) = (2π~)δ(pa − pb) exp{− i
~
Dα|pa|α(tb − ta)}, (8.37)

when tb > ta and K(0)(pbtb|pata) = 0, when tb < ta.

The presence of the delta function δ(pa−pb) shows that the momentum

of a free quantum particle does not change, that is the kernel K(0)(pbtb|pata)

supports the moment conservation law.

It is easy to see that K(0)(pbtb|pata) satisfies

K(0)(pbtb|pata) =

∞∫
−∞

dp′K(0)(pbtb|p′t)K(0)(p′t|pata), tb > t > ta.

This is a special case of the general quantum-mechanical rule in mo-

mentum representation

K(pbtb|pata) =

∞∫
−∞

dp′K(pbtb|p′t)K(p′t|pata) tb > t > ta. (8.38)

The above consideration can be generalized to the 3D case. Substituting

the wave function ψ(r, t) with the wave function ϕ(p, t) into Eq. (6.22) (see,

Eq. (6.51)) ϕ(p, t) yields

ϕ(pb, tb) =
1

(2π~)3

∫
d3paK(pbtb|pata)ϕ(pa, ta), (8.39)
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where the kernel in the momentum representation K(pbtb|pata) is defined

in terms of the kernel in coordinate representation K(rbtb|rata) as follows

K(pbtb|pata) =

∫
d3rad

3rbe
− i

~pbrb+
i
~paraK(rbtb|rata). (8.40)

For example, for a free particle in the momentum representation

K(0)(pbtb|pata) we have

K(0)(pbtb|pata) =

∫
d3rad

3rbe
− i

~pbrb+
i
~paraK(0)(rbtb|rata) (8.41)

= (2π~)3δ(pa − pb) exp{− i
~
Dα|pa|α(tb − ta)}, for tb > ta,

and K(0)(pbtb|pata) = 0 for tb < ta.

The presence of the delta function δ(pa−pb) shows that the momentum

of a free quantum particle does not change. It follows from Eq. (8.41) that

the consistency condition holds

K(0)(pbtb|pata) =

∫
d3p′K(0)(pbtb|p′t)K(0)(p′t|pata), tb > t > ta.

This is a special case of the general quantum-mechanical rule: ampli-

tudes for events occurring in succession in time multiply

K(pbtb|pata) =

∫
d3p′K(pbtb|p′t)K(p′t|pata), tb > t > ta. (8.42)

From Eq. (8.41) we see that a free particle kernel in momentum space

is expressed in terms of an exponential function, while in coordinate repre-

sentation (7.50) it has a more complicated representation in terms of Fox’s

H-function.
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Chapter 9

Fractional Oscillator

9.1 Quarkonium and quantum fractional oscillator

As a physical application of fractional quantum mechanics we consider a

new approach to study the quark–antiquark bound states qq treated within

the non-relativistic potential picture [67]. Note that the non-relativistic

approach can only be justified for heavy quark systems (for example, char-

monium cc or bottonium bb). The term quarkonium is used to denote any

qq bound state system [110] in analogy to positronium in the e+e− sys-

tem. The non-relativistic potential approach remains the most successful

and simplest way to calculate and predict energy levels and decay rates of

quarkonium.

From the stand point of the “potential” view, we can assume that the

confining potential energy of two quarks localized at the space points ri
and rj , is

V (|ri − rj |) = qiqj |ri − rj |β , (9.1)

where qi and qj are the color charges of i and j quarks respectively, and

the index β > 0. Equation (9.1) coincides with the QCD requirements: (i)

At short distances the quarks and gluons appear to be weakly coupled; (ii)

At large distances the effective coupling becomes strong, resulting in the

phenomena of quark confinement1.

Considering a multiparticle system of N quarks yields the following

equation for the potential energy U(r1, ..., rN ) of the system

U(r1, ..., rN ) =
∑

1≤i<j≤N

qiqj |ri − rj |β . (9.2)

1The term quark confinement describes the observation that quarks do not occur iso-
lated in nature, but only in hadronic bound states as the colorless objects such as baryons
and mesons.

131



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 132

132 Fractional Quantum Mechanics

In order to illustrate the main idea, we consider the simplest case, when

color qi charge can only be in two states q or −q, and the colorless condition
N∑
i=1

qi = 0 takes place. Using the general statistical mechanics approach (see

Definition 3.2.1 and Proposition 3.2.2 in [111]) we can conclude that the

many-particle system with the potential energy (9.2) will be thermodynam-

ically stable only for 0 < β ≤ 2.

In order to study the problem of quarkonium it seems reasonable to

consider the non-relativistic fractional quantum mechanical model with the

fractional Hamiltonian operator Hα,β defined as

Hα,β = Dα(−~2∆)α/2 + q2|r|β , 1 < α ≤ 2, 1 < β ≤ 2, (9.3)

where r is the 3D vector, ∆ = ∂2/∂r2 is the Laplacian, and the operator

(−~2∆)α/2 is defined by Eq. (3.9).

Thus, we come to the fractional Schrödinger equation for the wave func-

tion ψ(r, t) of quantum fractional oscillator,

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t) + q2|r|βψ(r, t). (9.4)

Searching for the solution in form

ψ(r, t) = e−iEt/~φ(r), (9.5)

with E being energy of oscillator, we come to the time-independent frac-

tional Schrödinger equation of the form,

Dα(−~2∆)α/2φ(r) + q2|r|βφ(r) = Eφ(r). (9.6)

For the special case, when α = β, the Hamiltonian operator (9.3) has

the form

Hα = Dα(−~2∆)α/2 + q2|r|α, 1 < α ≤ 2, (9.7)

and Eq. (9.4) becomes

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t) + q2|r|αψ(r, t). (9.8)

It is easy to see that Hamiltonian Hα (9.7) is the fractional general-

ization of the 3D harmonic oscillator Hamiltonian of standard quantum
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mechanics. Following [67] and [96], we will call this model quantum frac-

tional oscillator.

In the 1D case the fractional Schrödinger equation for the wave function

ψ(r, t) of quantum fractional oscillator has the form

i~
∂ψ(r, t)

∂t
= −Dα(~∇)αψ(r, t) + q2|r|βψ(r, t), (9.9)

where 1 < α ≤ 2, 1 < β ≤ 2 and ∇ = ∂/∂x.

In 1D case the fractional Hamiltonian operator Hα,β is defined as

Hα,β = −Dα(~∇)αψ(r, t) + q2|r|β , (9.10)

The time independent fractional Schrödinger equation for 1D quantum

fractional oscillator is

−Dα(~∇)αφ(r) + q2|r|βφ(r) = Eφ(r), (9.11)

1 < α ≤ 2, 1 < β ≤ 2,

where the wave function ψ(r, t) is related to the time independent wave

function φ(r) by

ψ(r, t) = e−iEt/~φ(r), (9.12)

here E is the energy of quantum fractional oscillator.

9.1.1 Fractional oscillator in momentum representation

Using the definitions of the quantum Riesz fractional derivative (3.9) and

the Fourier transforms of the wave functions (3.10) one can rewrite the

fractional Schrödinger equation (9.4) in momentum representation

i~
∂ϕ(p, t)

∂t
= q2(−~2∆p)β/2ϕ(p, t) +Dα|p|αϕ(p, t), (9.13)

1 < α ≤ 2, 1 < β ≤ 2,

where ϕ(p, t) is the wave function in momentum representation

ϕ(p, t) =

∫
d3re−i

pr
~ ψ(r, t) (9.14)
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and (−~2∆p) is the quantum Riesz fractional derivative in momentum rep-

resentation introduced by

(−~2∆p)β/2ϕ(p, t) =

∫
d3re−i

pr
~ |r|βψ(r, t), (9.15)

with ∆p = ∂2/∂p2 being the Laplacian in momentum representation.

Searching for solution to Eq. (9.13) in the form

ϕ(p, t) = e−iEt/~χ(p),

where E is the energy of quantum fractional oscillator, we come to the time-

independent fractional Schrödinger equation in momentum representation,

q2(−~2∆p)β/2χ(p) +Dα|p|αχ(p) = Eχ(p). (9.16)

For the special case, when α = β, Eq. (9.13) becomes

i~
∂ϕ(p, t)

∂t
= q2(−~2∆p)α/2ϕ(p, t) +Dα|p|αϕ(p, t), (9.17)

1 < α ≤ 2.

It is easy to see that this equation is a fractional generalization of the

standard quantum mechanical 3D Schrödinger equation for the oscillator

in momentum representation.

9.2 Spectrum of 1D quantum fractional oscillator in semi-

classical approximation

9.2.1 Coordinate representation

In the 1D case time independent fractional Schrödinger equation for quan-

tum fractional oscillator is given by expression

−Dα(~∇)αφ(x) + q2|x|βφ(x) = Eφ(x), (9.18)

1 < α ≤ 2, 1 < β ≤ 2,

where ∇ = ∂/∂x.
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The energy levels of the 1D quantum fractional oscillator with the

Hamiltonian Hα = Dα|p|α + q2|x|β can be found in semiclassical approxi-

mation [96]. We set the total energy equal to E, so that

E = Dα|p|α + q2|x|β , (9.19)

whence |p| =
(

1
Dα

(E − q2|x|β)
)1/α

. Thus, at the turning points where

p = 0, classical motion is possible in the range |x| ≤ (E/q2)1/β .

A routine use of the Bohr–Sommerfeld quantization rule [94] yields

2π~(n+
1

2
) =

∮
pdx = 4

xm∫
0

pdx = 4

xm∫
0

D−1/α
α (E − q2|x|β)1αdx, (9.20)

where the notation
∮

means the integral over one complete period of the

classical motion, and xm = (E/q2)1/β is the turning point of classical mo-

tion. To evaluate the integral on the right-hand of Eq. (9.20) we introduce

a new variable y = x(E/q2)−1/β . Then we have

xm∫
0

D−1/α
α (E − q2|x|β)1αdx =

1

D
1/α
α q2/β

E
1
α+ 1

β

1∫
0

dy(1− yβ)1/α.

The integral over dy can be expressed in terms of the B-function. In-

deed, substitution z = yβ yields2

1∫
0

dy(1− yβ)1/α =
1

β

1∫
0

dzz
1
β−1(1− z) 1

α =
1

β
B(

1

β
,

1

α
+ 1). (9.22)

With the help of Eq. (9.22) we rewrite Eq. (9.20) as

π~
(
n+

1

2

)
=

2

D
1/α
α q2/β

E
1
α+ 1

β
1

β
B

(
1

β
,

1

α
+ 1

)
.

2The B-function is defined by

B(u, v) =

1∫
0

dyyu−1(1− y)v−1. (9.21)
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The above equation gives the energy levels of stationary states for the

1D quantum fractional oscillator [96],

En =

(
π~βD1/α

α q2/β

2B( 1
β ,

1
α + 1)

) αβ
α+β

(n+
1

2
)
αβ
α+β , (9.23)

1 < α ≤ 2, 1 < β ≤ 2.

This equation is a generalization of the well-known equation for the

energy levels of the standard quantum harmonic oscillator (see, for example,

[94]), and is transformed into it at α = 2, β = 2. Indeed, when α = 2 and

β = 2, we have D2 = 1/2m, q2 = mω2/2, where m is the oscillator mass

and its frequency is ω. In this case equation (9.23) results3

En = ~ω
(
n+

1

2

)
. (9.24)

We note that at the condition

1

α
+

1

β
= 1, (9.25)

Eq. (9.23) gives equidistant energy levels. When 1 < α ≤ 2 and 1 <

β ≤ 2 the condition given by Eq. (9.25) takes place for α = 2 and β = 2

only. It means that only the standard quantum harmonic oscillator has an

equidistant energy spectrum.

9.2.2 Momentum representation

In the 1D case the fractional Schrödinger equation (9.13) reads

i~
∂ϕ(p, t)

∂t
= q2(−~2∆p)

β/2ϕ(p, t) +Dα|p|αϕ(p, t), (9.26)

where ∆p = ∂2/∂p2 and 1 < α ≤ 2, 1 < β ≤ 2.

3The value for the B-function B(1/2, 3/2) = π/2 has been used.
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We set the total energy equal to E, so that

E = q2|x|β +Dα|p|α, (9.27)

where the dependence |x| on |p| is given by

|x| =
(

1

q2
(E −Dα|p|α)

)1/β

. (9.28)

Thus, at the turning points x = 0, classical motion is possible in the

range |pm| ≤ (E/Dα)1/α. The Bohr–Sommerfeld quantization rule reads

2π~(n+
1

2
) =

∮
xdp = 4

pm∫
0

xdp = 4

pm∫
0

1

q2/β
(E − q2|p|α)1βdp. (9.29)

The energy levels of stationary states for the 1D quantum fractional

oscillator in momentum representation can be obtained from Eq. (9.23) by

applying the transformations (9.20), that is

Dα↔q2, α↔β. (9.30)

It gives us

En =

(
π~αD1/α

α q2/β

2B( 1
α ,

1
β + 1)

) αβ
α+β

(n+
1

2
)
αβ
α+β , (9.31)

1 < α ≤ 2, 1 < β ≤ 2.

We note that at the condition

1

α
+

1

β
= 1,

Eq. (9.31) gives the equidistant energy levels.
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9.3 Dimensionless fractional Schrödinger equation for

fractional oscillator

Aiming to present the 1D fractional Schrödinger equation (9.18) in dimen-

sionless form, we introduce dimensionless coordinate ξ and scale parameter

λ

x = λξ, (9.32)

where units of λ is cm.

The scale transformation (9.32) initiates the scaling of the Riesz frac-

tional derivative

(−∆x)α/2 = λ−α(−∆ξ)
α/2, 1 < α ≤ 2, (9.33)

where ∆x = ∂2/∂x2 and ∆ξ = ∂2/∂ξ2.

Substituting Eqs. (9.32) and (9.33) into Eq. (9.18) yields

Dα~αλ−α(−∆ξ)
α/2φ(ξ) + q2λβ |ξ|βφ(ξ) = Eφ(ξ), (9.34)

here, wave function φ(ξ) is related to wave function φ(r) from Eq. (9.18)

by

φ(ξ) = λ1/2φ(r). (9.35)

Assuming that φ(x) is normalized as

∞∫
−∞

dx|φ(x)|2 = 1,

we conclude, that φ(ξ) is normalized as

∞∫
−∞

dξ|φ(ξ)|2 = 1. (9.36)

Choosing λ as

λ =

(
Dα~α

q2

)1/(α+β)

, (9.37)
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and introducing dimensionless energy ε defined by

ε =
E

(Dβ
α~αβq2α)1/(α+β)

, (9.38)

yield

(−∆ξ)
α/2φ(ξ) + |ξ|βφ(ξ) = εφ(ξ). (9.39)

To remind us that besides the dependency on ξ, the wave function φ(ξ)

also depends on α and β, we rename

φ(ξ)→ φα,β(ξ). (9.40)

Renaming allows us to present Eq. (9.39) in the form

(−∆ξ)
α/2φα,β(ξ) + |ξ|βφα,β(ξ) = εφα,β(ξ), (9.41)

1 < α ≤ 2, 1 < β ≤ 2.

This is a dimensionless fractional Schrödinger equation for the fractional

oscillator. From the stand point of fractional calculus, Eq. (9.41) can be

considered as a fractional eigenvalue problem with involvement of the frac-

tional Riesz derivative.

9.4 Symmetries of quantum fractional oscillator

It is easy to see that there is a set of transformations to go from Eq. (9.4)

to Eq. (9.13) and vice versa

r↔ p, ψ(r, t)↔ϕ(p, t), ∆↔∆p, (9.42)

Dα→q2, q2 → Dβ , α↔β.

By applying this symmetry we can go from coordinate representation

to momentum representation in all formulas for the fractional oscillator.

The symmetry

Dα→q2, q2 → Dβ , α↔β (9.43)
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leaves ε defined by Eq. (9.38) invariant, while changing the wave function

φα,β(ξ)→ χα,β(ξ).

In other words, the symmetry (9.43) transforms the wave function

φα,β(ξ) introduced by Eq. (9.40) into the wave function χα,β(ξ). The

transformed wave function χα,β(ξ) satisfies the dimensionless fractional

Schrödinger equation

(−∆ξ)
β/2χα,β(ξ) + |ξ|αχα,β(ξ) = εχα,β(ξ), (9.44)

1 < α ≤ 2, 1 < β ≤ 2,

and the normalization condition (9.36).

By comparing Eq. (9.41) and Eq. (9.44) we conclude that the solution

to eigenvalue problem (9.44) is

χα,β(ξ) = φα,β(ξ; ε)|α↔β = φβ,α(ξ; ε). (9.45)

Let us note that applying the symmetry (9.43) to Eq. (9.44) brings us

back to Eq. (9.41).
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Chapter 10

Some Analytically Solvable Models of
Fractional Quantum Mechanics

Thus, the task is, not so much to see what no one has yet seen;

but to think what nobody has yet thought, about that which everybody sees.

Erwin Schrödinger

10.1 A free particle

10.1.1 Scaling properties of the 1D fractional Schrödinger

equation

To make general conclusions regarding solutions of the 1D fractional

Schrödinger equation for a free particle, let’s study the scaling for the wave

function ψ(x, t;Dα), where we keep Dα to remind that besides dependency

on x and t the wave function depends on Dα as well. Taking into account

Eq. (7.10) we write

t = λt′, x = λβx′, Dα = λγD′α, (10.1)

ψ(x, t;Dα) = λδψ(x′, t′;D′α),

where β, γ, δ are exponents of the scale transformations which should leave

a free particle 1D fractional Schrödinger equation invariant

i~
∂ψ(x, t;Dα)

∂t
= −Dα(~∇)αψ(x, t;Dα), (10.2)

and save the normalization condition
∞∫
−∞

dx|ψ(x, t;Dα)|2 = 1. It results in

the relationships between scaling exponents,

αβ − γ − 1 = 0, δ + β/2 = 0, (10.3)

141
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and reduces the number of exponents up to 2. Therefore, we have the

two-parameter scale transformation group

t = λt′, x = λβx′, Dα = λαβ−1D′α, (10.4)

ψ(λβx, λt;λαβ−1Dα) = λ−β/2ψ(x, t;Dα), (10.5)

where β and λ are arbitrary group parameters.

When the initial condition ψ(x, t = 0) is invariant under the scaling

group introduced by Eqs. (10.4) and (10.5) then the solution to Eq. (10.2)

remains the group invariant. As an example of the invariant initial condition

one may keep in mind ψ(x, t = 0) = δ(x), which gives us the Green function

of the 1D fractional Schrödinger equation.

To get the general scale invariant solutions of a free particle 1D fractional

Schrödinger equation we may use the renormalization group framework. As

far as the scale invariant solutions to Eq. (10.2) should satisfy the identity

Eq. (10.5) for any arbitrary parameters β and λ, the solutions can depend

on a combination of x and t to provide the independence on β and λ. It

allows us to conclude that the scaling holds

ψ(x, t) =
1

x
Φ(
x

~
(~/Dαt)

1/α) =
(~/Dαt)

1
α

~
Ψ(
x

~
(~/Dαt)

1/α), (10.6)

where two arbitrary functions Φ and Ψ are determined by the initial con-

ditions, Φ(.) = ψ(1, .) and Ψ(.) = ψ(., 1).

Thus, Eq. (10.6) gives us general scale invariant form of a free particle

wave function in the framework of fractional quantum mechanics.

10.1.2 Exact 1D solution

Following [95], [109] let’s solve the 1D fractional Schrödinger equation for

a free particle (10.2) with initial condition ψ0(x)

ψ(x, t = 0) = ψ0(x). (10.7)

Applying the Fourier transforms defined by Eqs. (3.15) and using the

quantum Riesz fractional derivative given by Eq. (3.14) yield for the wave

function ϕ(p, t) in the momentum representation,

i~
∂ϕ(p, t)

∂t
= Dα|p|αϕ(p, t), (10.8)
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with the initial condition ϕ0(p) given by

ϕ0(p) = ϕ(p, t = 0) =

∞∫
−∞

dxe−ipx/~ψ0(x). (10.9)

Equation (10.8) is the 1D fractional Schrödinger equation for a free

particle in momentum representation.

The solution of the problem introduced by Eqs. (10.8) and (10.9) is

ϕ(p, t) = exp{−iDα|p|αt
~

}ϕ0(p). (10.10)

Therefore, the solution to the 1D fractional Schrödinger equation Eq.

(10.2) with initial condition given by Eq. (10.7) can be presented as

ψ(x, t) =
1

2π~

∞∫
−∞

dx′
∞∫
−∞

dp exp{ip(x− x
′)

~
− iDα|p|αt

~
}ψ0(x′). (10.11)

To perform the integral over dp let us first note that this equation can

be rewritten as

ψ(x, t) =
1

π~

∞∫
−∞

dx′
∞∫

0

dp cos(
p(x− x′)

~
) exp{−iDα|p|αt

~
}ψ0(x′). (10.12)

Second, exp(−iDα|p|αt/~) is expressed in terms of the Fox H-function

in the following way (see Eq. (A.21))

exp{−iDα|p|αt
~

} = H1,0
0,1

[
iDαt

~
|p|α

∣∣∣∣ −(0, 1)

]
. (10.13)

Further, using the cosine transform of H-function defined by Eq. (A.20),

we obtain

ψ(x, t) =

∞∫
−∞

dx′
1

|x− x′|
(10.14)

×H1,1
2,2

[
1

~α

(
~

iDαt

)
|x− x′|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, α/2)

]
ψ0(x′).
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Alternatively, because of the H-function’s Property 12.2.4 (see, Eq.

(A.13) in Appendix A), ψ(x, t) can be presented as

ψ(x, t) =

∞∫
−∞

dx′
1

α|x− x′|
(10.15)

×H1,1
2,2

[
1

~

(
~

iDαt

)1/α

|x− x′|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
ψ0(x′).

Hence, the integral over dp in Eq. (10.11) is expressed in terms of the

H1,1
2,2 -function. If we choose the initial condition ψ0(x) = δ(x), then Eq.

(10.15) gives us the quantum mechanical kernel K(0)(x, t|0, 0) for the 1D

free particle

K(0)(x, t|0, 0) =
1

α|x|
(10.16)

×H1,1
2,2

[
1

~

(
~

iDαt

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.

Applying H-function’s Property 12.2.5 given by Eq. (A.14), see Ap-

pendix A, we can rewrite K(0)(x, t|0, 0) in the following form

K(0)(x, t|0, 0) =
1

α~

(
~

iDαt

)1/α

(10.17)

×H1,1
2,2

[
1

~

(
~

iDαt

)1/α

|x|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.

Therefore, it allows us to rewrite Eq. (10.15) as

ψ(x, t) =
1

α~

(
~

iDαt

)1/α

(10.18)

×
∞∫
−∞

dx′H1,1
2,2

[
1

~

(
~

iDαt

)1/α

|x− x′|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
ψ0(x′),

which is an alternative form of the solution to the 1D fractional Schrödinger

equation.
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10.1.3 Exact 3D solution

Quantum dynamics of a free particle in the 3D space is governed by the

following equation,

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t), (10.19)

with initial condition

ψ(r, t = 0) = ψ0(r).

Using the 3D Fourier transforms defined by Eq. (12.19) and the defini-

tion of the 3D quantum fractional Riesz derivative given by Eq. (3.9) yield

for the wave function ϕ(p, t) in the momentum representation,

i~
∂ϕ(p, t))

∂t
= Dα|p|αϕ(p, t), (10.20)

with the initial condition ϕ0(p) given by

ϕ0(p) = ϕ(p, t = 0) =

∫
d3re−i

pr
~ ψ0(r). (10.21)

Going back to Eq. (10.19) we can see that the solution ψ(r, t) has a

form

ψ(r, t) =
1

(2π~)3

∫
d3r′

∫
d3p exp{ip(r− r′)

~
− iDα|p|αt

~
}ψ0(r′).

The integral over d3p can be expressed in terms of H1,2
3,3 -function, see,

for instance, Eqs. (33) and (34) in [93]. The solution to the problem defined

by Eq. (10.19) is

ψ(r, t) = − 1

2πα

∫
d3r′

1

|r− r′|3
(10.22)

×H1,2
3,3

[
1

~

(
~

iDαt

)1/α

|r− r′|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
ψ0(r′).

Substituting ψ0(r) = δ0(r) into Eq. (10.22) gives us the quantum me-

chanical kernel K(0)(r, t|0, 0) for a free particle
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K(0)(r, t|0, 0) (10.23)

= − 1

2πα

1

|r|3
H1,2

3,3

[
1

~

(
~

iDαt

)1/α

|r|
∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
.

This is the equation for a free particle 3D kernel in the framework of

fractional quantum mechanics. We see that in comparison with the 1D case,

the 3D quantum kernel is expressed in terms of the H1,2
3,3 Fox H-function.

In the case α = 2, we come to the well-known equation for the Feynman

3D quantum kernel K
(0)
F (r, t|0, 0),

K(0)(r, t|0, 0)|α=2 ≡ K(0)
F (r, t|0, 0) =

( m

2πi~t

)3/2

exp

{
im|r|2

2~t

}
. (10.24)

10.2 Infinite potential well

A particle in a one-dimensional well moves in a potential field V (x) which

is zero for −a ≤ x ≤ a, and which is infinite elsewhere,

V (x) =∞, x < −a, (i)

V (x) = 0, −a ≤ x ≤ a, (ii) (10.25)

V (x) =∞, x > a. (iii)

It is evident a priori that the spectrum will be discrete. We are inter-

ested in the solutions of the fractional Schrödinger equation (12.31) that

describe the stationary states with well-defined energies. Such a stationary

state with an energy E is described by a wave function ψ(x, t), which can

be written as ψ(x, t) = exp{−iEt/~}φ(x), where φ(x) is now time inde-

pendent. In regions (i) and (iii), (see Eq. (10.25)) we have to substitute

∞ for V (x) into Eq. (12.31), and it is easy to see that here the fractional

Schrödinger equation can be satisfied only if we take φ(x) = 0. In the

middle region (ii), the time-independent fractional Schrödinger equation is

−Dα(~∇)αφ(x) = Eφ(x). (10.26)
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We can treat this equation as a fractional eigenvalue problem [95].

Within region (ii), the eigenfunctions are determined by Eq. (10.26). Out-

side of the region (ii), x < −a and x > a, the eigenfunctions are zero. We

want the wave function φ(x) to be continuous everywhere, thus we impose

the boundary conditions

φ(−a) = φ(a) = 0 (10.27)

for the solutions to the fractional differential equation (10.26).

Hence, we have the eigenvalue problem

−Dα(~∇)αφ(x) = Eφ(x), φ(−a) = φ(a) = 0. (10.28)

It follows from Eq. (3.42) that the general solution to this eigenvalue

problem is superposition of plane waves

φ(x) = Aeikx +Be−ikx, (10.29)

where the following notation has been introduced

k =
1

~
(
E

Dα
)1/α, 1 < α ≤ 2, (10.30)

and constants A and B have to be chosen to satisfy the boundary conditions

(10.27). From Eqs. (10.29) and (10.27) we obtain

φ(a) = Aeika +Be−ika = 0 (10.31)

and

φ(−a) = Ae−ika +Beika = 0. (10.32)

It follows from Eq. (10.31) that

A = −Be−2ika. (10.33)

Inserting the last equation back into Eq. (10.31) brings us

sin(2ka) = 0. (10.34)
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To satisfy Eq. (10.34) we need to restrict values of k by

2ka = nπ

or

k =
nπ

2a
, (10.35)

where n is a positive integer.

By substituting Eqs. (10.33) and (10.35) into Eq. (10.29) we obtain

φn(x) = B{exp(−inπ
2a
x)− (−1)n exp(i

nπ

2a
x)}, (10.36)

with the constant B defined from the normalization condition

a∫
−a

dx|φn(x)|2 = 1. (10.37)

It is easy to see that to satisfy this normalization condition the constant

B in Eq. (10.36) has to be

B =
1

2
√
a
. (10.38)

Then the normalized solution to the problem (10.28) is

φn(x) =
1

2
√
a
{exp(−inπ

2a
x)− (−1)n exp(i

nπ

2a
x)}. (10.39)

The potential V (x) defined by Eq. (10.25) is symmetric potential

V (x) = V (−x).

Hence, one can search for the solutions φn(x), which have definite parity.

Indeed, in the case when n = 2m + 1, where m = 0, 1, 2, ... we obtain

from Eq. (10.39)

φeven
m (x) = φn(x)|n=2m+1 =

1√
a

cos(
(2m+ 1)π

2a
x), (10.40)

m = 0, 1, 2, ...,
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where the wave function φeven
m (x) is even under reflection x→ −x solution

to the problem (10.28), φeven
m (x) = φeven

m (−x).

In the case when n = 2m, where m = 1, 2, ... we obtain Eq. (10.39)

φodd
m (x) = φn(x)n=2m = − i√

a
sin(

mπ

a
x), m = 1, 2, ..., (10.41)

where wave function φodd
m (x) is odd under reflection x → −x solution to

the problem (10.28), φodd
m (x) = −φodd

m (−x).

Solutions φeven
m (x) and φodd

m (x) satisfy the orthonormality property that

is

a∫
−a

dxφeven
m (x)(φeven

m′ (x))∗ =

a∫
−a

dxφodd
m (x)(φodd

m′ (x))∗ = δmm′ ,

where δmm′ is the Kronecker symbol and (φeven
m′ (x))∗ is complex conjugate

wave function.

Solutions φeven
m (x) and φodd

m (x) also satisfy

a∫
−a

dxφeven
m (x)φodd

m′ (x) = 0, m 6= m′.

The eigenvalues of the fractional problem given by Eqs. (10.26) and

(10.27) are energy levels of the particle in the infinite symmetric potential

well (10.25). With the help of Eqs. (10.30) and (10.35) we find [95]

En = Dα

(
π~
2a

)α
nα, n = 1, 2, 3, ..., 1 < α ≤ 2. (10.42)

It is obvious that in the Gaussian case (α = 2), Eq. (10.42) is trans-

formed into the standard quantum mechanical equation (for example, see

Eq. (20.7), [94]) for the energy levels of a particle in the infinite potential

well.

The time-dependent solutions ψn(x, t) for a particle in a one-

dimensional infinite symmetric potential well are

ψn(x, t) =
1

2
√
a
{exp(−inπ

2a
x)− (−1)n exp(i

nπ

2a
x)} (10.43)

× exp

{
−iDα

(
π~
2a

)α
nαt/~

}
, n = 1, 2, 3, ....
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In the infinite potential well the ground state is represented by the wave

function ψground(x, t) at n = 1, and it has the form

ψground(x, t) = ψn(x, t)|n=1

=
1√
a

cos{πx
2a
} exp

{
−iDα

(
π~
2a

)α
t/~
}

(10.44)

= φground(x) exp{−iEgroundt/~},

where time independent wave function of ground state φground(x) is given

by

φground(x) ≡ φeven
0 (x) =

1√
a

cos{πx
2a
}, (10.45)

with φeven
0 (x) defined by Eq. (10.40) and the energy of the ground state is

Eground = Dα

(
π~
2a

)α
. (10.46)

It follows from Eq. (10.43) that the even time independent solution to

the problem (10.28) is

ψeven
m (x, t) =

1√
a

cos(
(2m+ 1)π

2a
x) (10.47)

× exp{−iDα

(
π~
2a

)α
(2m+ 1)αt/~}, m = 0, 1, 2, ...,

and the odd time independent solution to the problem (10.28) is

ψodd
m (x, t) = − i√

a
sin(

mπ

a
x) exp

{
−iDα

(
π~
a

)α
mαt/~

}
, (10.48)

m = 1, 2, ....
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10.2.1 Consistency of the solution for infinite potential well

Following the papers [112] and [113] let’s show that, the solution φground(x)

given by Eq. (10.45) satisfies the fractional differential equation (10.26),

−Dα(~∇)αφground(x) = Egroundφground(x), n = 1, 2, 3, .... (10.49)

and the boundary conditions

φground(a) = φground(−a) = 0. (10.50)

The energy Eground is given by Eq. (10.46).

By definition of quantum Riesz fractional derivatives (3.14) we have

−Dα(~∇)αφground(x) =
Dα

2π~

∞∫
−∞

dpei
px
~ |p|αϕground(p), (10.51)

where ϕground(p) is the Fourier transform of the ground state wave function

φground(x),

ϕground(p) =

∞∫
−∞

dxe−i
px
~ φground(x).

Further, substituting φground(x) given by Eq. (10.45) yields [112]

ϕground(p) =
1√
a

a∫
−a

dxe−i
px
~ cos{πx

2a
} (10.52)

= − π√
a

(
~2

a

)
cos(ap/~)

p2 − (π~/2a)2
.

It follows from Eqs. (10.49) and (10.51) that φground(x) reads

φground(x) =
Dα

2π~Eground

∞∫
−∞

dpei
px
~ |p|αϕground(p). (10.53)

Now we are aiming to show that equation (10.53) holds. Substituting

ϕground(p) given by Eq. (10.52) into the right-hand side of Eq. (10.53) yields

φground(x) = − Dα

2Eground

π√
a

(
~
a

) ∞∫
−∞

dpei
px
~ |p|α cos(ap/~)

p2 − (π~/2a)2
(10.54)
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= − Dα

2Eground

π√
a

(
~
a

)(
2a

π~

)2
∞∫
−∞

dpei
px
~
|p|α cos(ap/~)

(2ap/π~)2 − 1
.

To evaluate the integral we introduce a new integration variable

q =
2a

π~
p.

Then Eq. (10.54) reads

φground(x) = − Dα

πEground

1√
a

(
π~
2a

)α ∞∫
−∞

dq|q|α cos(πq/2)

q2 − 1
eiπqx/2a. (10.55)

The integral

I =

∞∫
−∞

dq|q|α cos(πq/2)

q2 − 1
eiπqx/2a (10.56)

has poles on the real axis at q = ±1, and it can be evaluated via analytic

continuation as a Cauchy principal value integral [114].

Substitution

cos(πq/2) =
1

2
(eiπq/2 + e−iπq/2)

allows us to present the integral I as

I = I1 + I2, (10.57)

where

I1 =
1

2

∞∫
−∞

dq|q|α ei(x/a+1)πq/2

(q + 1)(q − 1)
(10.58)

and

I2 =
1

2

∞∫
−∞

dq|q|α ei(x/a−1)πq/2

(q + 1)(q − 1)
. (10.59)
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In the first integral I1, we close the contour in the upper half q-plane

with a semicircular of radius R and then go around the poles on the real

axis in the upper q-plane, with small semicircular of radius ρ. With the

help of Jordan’s lemma we obtain for I1 in the limit R→∞ and ρ→ 0

I1 = iπ

(
i

2
cos

πx

2a

)
, (10.60)

where the value of the integral I1 has to be understood as a Cauchy principal

value [114].

Similarly, for the second integral I2, we close the contour in the lower

q-plane and circle around the poles in the lower half q-plane to obtain

I2 = iπ

(
i

2
cos

πx

2a

)
, (10.61)

where the value of the integral I2 has to be understood as a Cauchy principal

value [114].

By adding I1 and I2 we come up with the value of the integral I because

of Eq. (10.57)

I = −π cos
πx

2a
. (10.62)

Substituting the value of the integral I into Eq. (10.55) yields

φground(x) =
Dα

Eground

1√
a

(
π~
2a

)α
cos

πx

2a
. (10.63)

Noting that Eground is given by Eq. (10.46) we obtain φground(x) in the

form given by Eq. (10.41).

Thus, it has been shown that φground(x) is indeed the solution to eigen-

value problem presented by Eq. (10.28).

A similar consideration can be provided to prove that φeven
m (x) and

φodd
m (x), given by Eqs. (10.40) and (10.41) respectively, are in fact the

solutions to eigenvalue problem (10.28).

10.3 Bound state in δ-potential well

For one dimensional attractive δ-potential well, V (x) = −V0δ(x), (V0 > 0),

where δ(x) is the Dirac delta function, the time-independent fractional

Schrödinger equation (4.9) is
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−Dα(~∇)αφ(x)− V0δ(x)φ(x) = Eφ(x), 1 < α ≤ 2. (10.64)

Searching for the bound state in δ-potential well, we consider this frac-

tional quantum mechanical problem for negative energies E < 0. Dong and

Xu [115] were the first who found the bound energy and wave function in

δ-potential well in the framework of fractional quantum mechanics. In our

consideration we will follow [115] and [116].

To solve the problem defined by Eq. (10.64) we go to momentum rep-

resentation according to Eqs. (3.25) - (3.27). Thus, we have

Dα|p|αφ(p)− V0

2π~

∞∫
−∞

dqφ(q) = Eφ(p), 1 < α ≤ 2, (10.65)

where the wave function φ(p) in momentum representation and the wave

function in coordinate representation φ(x) are related to each other by

φ(x) =
1

2π~

∞∫
−∞

dpeipx/~φ(p), φ(p) =

∞∫
−∞

dxe−ipx/~φ(x). (10.66)

Let us define the parameter λ, λ > 0,

λα = − E

Dα
, E < 0. (10.67)

Then we can rewrite Eq. (10.65) in the form

φ(p) =
γU

|p|α + λα
, (10.68)

where the following notations have been introduced

γ =
V0

2π~Dα
(10.69)

and

U =

∞∫
−∞

dqφ(q) = 2π~φ(x)|x=0 = 2π~φ(0). (10.70)
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Substituting φ(p) given by Eq. (10.68) into Eq. (10.70) yields

1 = γ

∞∫
−∞

dp

|p|α + λα
= 2γλ1−α

∞∫
0

dq

|q|α + 1
. (10.71)

To calculate the integral

∞∫
0

dq/(|q|α + 1) we use formula (see, formula

3.241.2, page 322 [86])

∞∫
0

xµ−1dx

1 + xν
=
π

ν
cosec

µπ

ν
, [Re ν > Reµ > 0],

where cosecx = 1/ sinx.

Hence, we have

∞∫
0

dq

|q|α + 1
=
π

α
cosec

π

α

and Eq. (10.71) becomes

1 = 2γλ1−α π

α
cosec

π

α
.

Thus, we obtain

λ = (
2γπ

α
cosec

π

α
)1/(α−1). (10.72)

Using the definition given by Eq. (10.67) we find the bound energy in

δ-potential well

E = −
(
V0cosec(π/α)

α~D1/α
α

)α/(α−1)

. (10.73)

By substituting Eq. (10.68) into Eq. (10.66) we find the wave function

φ(x) of the bound state

φ(x) =
γU

2π~

∞∫
−∞

dp
eipx/~

|p|α + λα
. (10.74)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 156

156 Fractional Quantum Mechanics

The integral

∞∫
−∞

dpeipx/~/(|p|α + λα) has been calculated in Appendix

C, and the result is given by Eq. (C.14). Using this result we obtain φ(x)

φ(x) =
γU

λα|x|
H2,1

2,3

[
(~−1λ)α|x|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, 1), (1, α/2)

]
. (10.75)

The wave function has to satisfy the normalization condition

∞∫
−∞

dx|φ(x)|2 = 1, (10.76)

which allows us to calculate factor γU in Eq. (10.75). Indeed, by substi-

tuting Eq. (10.74) into Eq. (10.76) we have

∞∫
−∞

dx|φ(x)|2 = (
γU

2π~
)2

∞∫
−∞

dx

∞∫
−∞

dp1
eip1x/~

|p1|α + λα

∞∫
−∞

dp2
e−ip2x/~

|p2|α + λα

=
(γU)2

2π~

∞∫
−∞

dp1

∞∫
−∞

dp2δ(p1 − p2)
1

|p1|α + λα
1

|p2|α + λα

=
(γU)2

2π~

∞∫
−∞

dp
1

(|p1|α + λα)2
= 1,

that is

γU =
√

2π~

 ∞∫
−∞

dp
1

(|p1|α + λα)2

−1/2

. (10.77)

To calculate the integral

∞∫
−∞

dp/(|p|α+λα)2 we use formula (see, formula

3.241.4, page 322 [86])

∞∫
0

xµ−1dx

(p+ qxν)n+1
=

1

νpn+1

(
p

q

)µ/ν Γ(µν )Γ(1 + n− µ
ν )

Γ(1 + n)
,
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here

[0 <
µ

ν
< n+ 1, p 6= 0, q 6= 0].

Then the integral

∞∫
−∞

dp/(|p|α + λα)2 is

∞∫
−∞

dp
1

(|p|α + λα)2
=

2λ

αλ2α

Γ( 1
α )Γ(2− 1

α )

Γ(2)
(10.78)

=
2π

α
λ1−2α

(
α− 1

α

)
cosec(π/α),

where the identities

Γ(
1

α
)Γ(1− 1

α
) =

π

sin(π/α)
, Γ(2− 1

α
) = (1− 1

α
)Γ(1− 1

α
)

have been used.

Substituting the result (10.78) of calculation of the integral
∞∫
−∞

dp/(|p|α + λα)2 into Eq. (10.77) yields

γU =
√

2π~
(

2π

α
λ1−2α

(
α− 1

α

)
cosec(π/α)

)−1/2

(10.79)

= αλα

√
~

λ(α− 1)
sin(π/α).

Then, the wave function φ(x) given by Eq. (10.75) reads

φ(x) =
Cα
|x|

H2,1
2,3

[
(~−1λ)α|x|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, 1), (1, α/2)

]
, (10.80)

where 1 < α ≤ 2, Cα constant is defined by

Cα = α

√
~

λ(α− 1)
sin(π/α), (10.81)

and λ is introduced by Eq. (10.67).
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We conclude that the solution to fractional quantum mechanics problem

- finding bound energy and wave function of the bound state in δ-potential

well, is given by Eqs. (10.73), (10.80) and (10.81).

In the case of standard quantum mechanics, when α = 2 and D2 =

1/2m, Eqs. (10.73), (10.80) and (10.81) are transformed into the well-known

formulas [117] for the bound energy and bound state wave function in δ-

potential well. Indeed, when α = 2 the bound energy given by Eq. (10.73)

has the form

E = E|α=2 = −mV
2
0

2~2
. (10.82)

When α = 2, the constant Cα defined by Eq. (10.81) is

C2 = Cα|α=2 = 2

√
~
λ

= 2

√
~/
√
−2mE , (10.83)

with λ given by Eq. (10.67) at α = 2

λ =
√
−2mE . (10.84)

When α = 2, wave function φ(x) of the bound state in δ-potential well

becomes (see, Eq. (C.16) in Appendix C)

φ(x)|α=2 =
C2

|x|
H2,1

2,3

[
(~−1λ)2|x|2

∣∣∣∣ (1, 1), (1, 1)

(1, 2), (1, 1), (1, 1)

]
(10.85)

=
λC2

2~
exp{−λ|x|

~
} =

√
λ

~
exp{−λ|x|

~
},

which can be expressed in the form

φ(x)|α=2 =
(√
−2mE/~

)1/2

exp{−
√
−2mE
~

|x|}, (10.86)

if we take into account Eq. (10.84).
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10.4 Linear potential field

For a particle in a linear potential field (for example, see [94], page 74), the

potential function V (x) can be written as:

V (x) =

{
Fx, x ≥ 0,

∞, x < 0,
(10.87)

where F > 0. Therefore, the fractional Schrödinger equation Eq. (12.31)

becomes

−Dα(~∇)αφ(x) + Fxφ(x) = Eφ(x), 1 < α ≤ 2, x ≥ 0. (10.88)

The continuity and bounded conditions of the wave function let us con-

clude that φ(x) = 0, x < 0. Besides, φ(x) must satisfy the boundary

conditions

φ(x) = 0, x = 0,

φ(x) = 0, x→∞.
(10.89)

Then, wave function φn(x) of the quantum state with energy En, n =

1, 2, 3, ... is [115]

φn(x) =
2πAα
α+ 1

(10.90)

×H1,1
2,2

[
(x− En

F
)
1

~

(
Dα

(α+ 1)F~

)− 1
α+1

∣∣∣∣∣ (1− 1
α+1 ,

1
α+1 ), ( α+2

2(α+1) ,
α

2(α+1) )

(0, 1), ( α+2
2(α+1) ,

α
2(α+1) )

]
,

where the normalization constant Aα is given by

Aα =
1

2π~

(
Dα

(α+ 1)F~

)−1/(α+1)

. (10.91)

The energy spectra En has the form

En = λnF~
(

Dα

(α+ 1)F~

)1/(α+1)

, (10.92)

1 < α ≤ 2, n = 1, 2, 3, ...,

where λn are the solutions of the equation [115]
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H1,1
2,2

[
−λn

∣∣∣∣∣ (1− 1
α+1 ,

1
α+1 ), ( α+2

2(α+1) ,
α

2(α+1) )

(0, 1), ( α+2
2(α+1) ,

α
2(α+1) )

]
= 0. (10.93)

When α = 2, Eqs. (10.90) and (10.92) turn into well-known equations

of standard quantum mechanics [94], [115].

Other solvable physical models of fractional quantum mechanics include

the 1D Coulomb potential [115], a finite square potential well, dynamics in

the field of 1D lattice, penetration through a δ-potential barrier, the Dirac

comb [99], the bound state problem, and penetration through double δ-

potential barrier [118].

10.5 Quantum kernel for a free particle in the box

Now we are going to consider the impact of integration over Lévy flight

paths on a quantum kernel for a free particle in a 1D box of length 2a

confined by infinitely high walls at x = −a and x = a. With the help of Eq.

(6.23) the kernel K
(0)
box(xbt|xa0) of a free particle in the infinite symmetric

potential well (10.25) can be presented as

K
(0)
box(xbt|xa0) =

∞∑
n=1

φn(xb)φ
∗
n(xa)e−(i/~)Ent, t > 0, (10.94)

where the time-independent wave functions φn(x) are given by Eq. (10.39)

for a particle in a one-dimensional infinite symmetric potential well (10.25).

The energy levels En are defined by Eq. (10.46). Substituting φn(x) and

En into Eq. (10.94) yields

K
(0)
box(xbt|xa0)

=
1

4a

∞∑
n=1

[exp{iπn
2a

(−xb + xa)} − (−1)n exp{−iπn
2a

(xb + xa)}

−(−1)n exp{iπn
2a

(xb + xa)}+ exp{iπn
2a

(xb − xa)}] (10.95)

× exp

(
− itDα

~

(
π~
2a

)α
nα
)
, t > 0,
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or

K
(0)
box(xbt|xa0) (10.96)

=
1

2a

∞∑
n=1

[cos{πn
2a

(xb − xa)} − (−1)n cos{πn
2a

(xb + xa)}]

× exp

(
− itDα

~

(
π~
2a

)α
nα
)
.

The kernel K
(0)
box(xbt|xa0) satisfies the boundary conditions

K
(0)
box(xb = a, t|xa, 0) = 0,

K
(0)
box(xb, t|xa = −a, 0) = 0,

(10.97)

enforced by the two infinite walls at x = −a and x = a at all times.

Further, it is easy to see that the following chain of transformations

holds

K
(0)
box(xbt|xa0) =

1

2a

∞∑
n=1

[cos{πn
2a

(xb − xa)} − (−1)n cos{πn
2a

(xb + xa)}]

× exp

(
− itDα

~

(
π~
2a

)α
nα
)

=
1

4a

∞∑
l=−∞

∞∫
−∞

dpδ(p− π~
2a
l)

{
exp[

ip(xb − xa)

~
]− (−1)l exp[

ip(xb + xa)

~

}
(10.98)

× exp

(
− itDα|p|α

~

)

=
1

2π~

∞∑
l=−∞

∞∫
−∞

dp

{
exp[

ip(xb − xa + 4la)

~
]− (−1)l exp[

ip(xb + xa + 4la)

~
]

}

× exp

(
− itDα|p|α

~

)
,
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where the Poisson summation formula1 has been taken into consideration.

If we take into account the definition of a free particle kernel

K(0)(xbt|xa0) given by Eq. (12.20) then the kernel for a free particle in

the box with infinitely high walls Kbox(xbt|xa0) becomes

K
(0)
box(xbt|xa0) (10.100)

=
∞∑

l=−∞

{
K(0)(xb + 4la, t|xa0)− (−1)lK(0)(xb + 4la, t| − xa0)

}
.

In terms of Fox’s H1,1
2,2 -function K

(0)
box(xbt|xa0) is

K
(0)
box(xbt|xa0) =

1

α

(
~

(~/iDαt)1/α

)−1

×
∞∑

l=−∞

{
H1,1

2,2

[
1

~

(
~

iDαt

)1/α

|xb − xa + 4la|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
(10.101)

−(−1)lH1,1
2,2

[
1

~

(
~

iDαt

)1/α

|xb + xa + 4la|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]}
.

Alternatively, K
(0)
box(xbt|xa0) can be presented in terms of Fox’s H1,1

2,2 -

function as

K
(0)
box(xbt|xa0) =

1

α

1

|xb − xa|

×
∞∑

l=−∞

{
H1,1

2,2

[
1

~

(
~

iDαt

)1/α

|xb − xa + 4la|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
(10.102)

−(−1)lH1,1
2,2

[
1

~

(
~

iDαt

)1/α

|xb + xa + 4la|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]}
,

1

π~
2a

∞∑
l=−∞

δ(p−
π~
2a
l) =

∞∑
l=−∞

exp{i
4pa

~
l}, (10.99)

where δ is the delta function.
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where Property 12.2.5 (see Eq. (A.14) in Appendix A) of Fox’s H-function

has been used.

We see that for the kernel Kbox(xbt|xa0) we have two different repre-

sentations given by Eq. (10.96) and Eq. (10.101). By equating them we

come to a new identity with involvement of Fox’s H1,1
2,2 -function

1

2a

∞∑
n=1

[cos{πn
2a

(xb − xa)} − (−1)n cos{πn
2a

(xb + xa)}] (10.103)

× exp

(
− itDα

~

(
π~
2a

)α
nα
)

=
1

α

(
~

(~/iDαt)1/α

)−1

×
∞∑

l=−∞

{
H1,1

2,2

[
1

~

(
~

iDαt

)1/α

|xb − xa + 4la|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]

−(−1)lH1,1
2,2

[
1

~

(
~

iDαt

)1/α

|xb + xa + 4la|
∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]}
.

In the case when α = 2 this equation gives us the solution for a quantum

kernel of a free particle in the box K
(0)
box(xbt|xa0)|α=2 in the framework

of standard quantum mechanics. Indeed, using the identity (7.37) and

substituting D2 = 1/2m, where m is particle mass, we obtain

K
(0)
box(xbt|xa0)|α=2 =

√
m

2πi~t
(10.104)

×
∞∑

l=−∞

{
exp(

im|xb − xa + 4la|2

2~t
)− (−1)l exp(

im|xb + xa + 4la|2

2~t
)

}
.

Thus, we obtained the standard quantum mechanics solution to the

quantum kernel of a free particle in a symmetric 1D box of length 2a con-

fined by infinitely high walls at x = −a and x = a.
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10.6 Fractional Bohr atom

It could be that I’ve perhaps found out a little bit about the structure of

atoms. ... If I’m right, it would not be an indication of the nature of a

possibility [marginal note in the original: “i.e., impossibility”] (like J. J.

Thomson’s theory) but perhaps a little piece of reality.

N. Bohr (1912)2

In 1913 Bohr proposed a model for atoms and molecules by synthesizing

Planck’s quantum hypothesis with classical mechanics. When the atomic

number Z is small, his model provides good accuracy for the ground-state

energy. When Z is large, his model is not as accurate in comparison with

the experimental data but still provides a good trend agreeing with the

experimental values of the ground-state energy of atoms.

Bohr developed his approach for modeling atoms and molecules by syn-

thesizing Planck’s quantum hypothesis with classical mechanics [120], [121].

Bohr tried to explain the hydrogen spectral lines with a radical planetary

model of electrons orbiting around a nucleus. He made a set of assump-

tions to quantify his model, leading to the existence a discrete set of stable,

stationary orbits for electrons in the atom:

1. The dynamical equilibrium of the stationary electronic orbits in an

atom is achieved by balancing the electrostatic Coulomb forces of attraction

between nuclei and electrons against the centrifugal effect and the interelec-

tronic repelling treated in the framework of classical mechanics;

2. Stationary states satisfy the quantization condition that the ratio of

the total kinetic energy of the electron to its orbital frequency be an integer

multiple of ~. For circular orbits, this signifies that the angular momentum

of the electron is restricted by integer multiple of ~. Therefore, electrons

in the stationary orbits do not radiate in spite of their acceleration due to

orbital motion.

3. Energy is emitted by an atom only when an electron makes a jump i.e.

noncontinuous transition between two stationary orbits, and the frequency

of such radiation emission is determined by E/~, where E is the energy dif-

ference between higher and lower energy orbits where the transition occurs.

2A letter from Niels Bohr to his brother, Harald, dated 19 June 1912 (see, page 238 in
[119]).



April 19, 2018 16:9 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 165

Some Analytically Solvable Models of Fractional Quantum Mechanics 165

And vice versa, an atom absorbs radiation by having its electrons make a

transition from lower to higher energy orbit.

The success of the Bohr theory [120], [121] with hydrogen-like atoms

gave great impetus to further research on the “Bohr atom”. In spite of

some extraordinary achievements by Bohr and others, it was clear that the

theory was provisional.

The fractional generalization of the “Bohr atom” is based on the fol-

lowing fractional Schrödinger equation

i~
∂ψ(r, t)

∂t
= Dα(−~2∆)α/2ψ(r, t)− Ze2

|r|
ψ(r, t), (10.105)

where e is the electron charge, Ze is the nuclear charge of the hydrogen-like

atom, r is the 3D vector, ∆ = ∂2/∂r2 is the Laplacian, and the operator

(−~2∆)α/2 is the 3D quantum Riesz fractional derivative defined by Eq.

(3.9).

The fractional Hamiltonian of the considered quantum-mechanical sys-

tem has the form

H(p, r) = Dα|p|α −
Ze2

|r|
. (10.106)

The eigenvalue problem for a fractional hydrogen-like atom is [95]

Dα(−~2∆)α/2φ(r)− Ze2

|r|
φ(r) = Eφ(r),

where φ(r) is related to ψ(r, t) by the equation

ψ(r, t) = exp{−iEt
~
}φ(r).

The total energy E is

E = Ekin + V,

where Ekin is the kinetic energy

Ekin = Dα|p|α,

and V is the potential energy

V = −Ze
2

|r|
.
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It is well known that if the potential energy is a homogeneous function

of coordinates, and the motion takes place in a finite region of space, there

exists a simple relation between the time average values of the kinetic and

potential energies, known as the virial theorem (see, page 23, [122]). It

follows from the virial theorem that between average kinetic energy and

average potential energy of the system with Hamiltonian (10.106) there

exists the relation

αEkin = −V , (10.107)

where the average value f of any function of time is defined as

f = lim
T→∞

1

T

∞∫
0

dtf(t).

In order to evaluate the energy spectrum of the fractional hydrogen-like

atom let us remind the Niels Bohr postulates [120]:

1. The electron moves in orbits restricted by the requirement that the

angular momentum be an integral multiple of ~, that is, for circular orbits

of radius an, the electron momentum is restricted by

pan = n~, (n = 1, 2, 3, ...), (10.108)

and furthermore the electrons in these orbits do not radiate in spite of their

acceleration. They were said to be in stationary states.

2. Electrons can make discontinuous transitions from one allowed orbit

corresponding to n = n1 to another corresponding to n = n2, and the

change in energy will appear as radiation with frequency

ω =
En2 − En1

~
. (10.109)

An atom may absorb radiation by having its electrons make a transition

to a higher energy orbit.

Using the first Bohr’s postulate and Eq. (10.108) we obtain

αDα

(
n~
an

)α
=
Ze2

an
,

from which it follows that the equation for the radius of the fractional Bohr

orbits is

an = a0n
α
α−1 , (10.110)
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here a0 is the fractional Bohr radius (the radius of the lowest, n = 1 Bohr

orbit) defined as,

a0 =

(
αDα~α

Ze2

) 1
α−1

. (10.111)

By using Eq. (10.107) we find for the total average energy E

E = (1− α)Ekin.

Thus, for the energy levels of the fractional hydrogen-like atom we have

En = (1− α)E0n
− α
α−1 , 1 < α ≤ 2, (10.112)

where E0 is the binding energy of the electron in the lowest Bohr orbit n =

1, that is, the energy required to put it in a state with E = 0 corresponding

to n =∞,

E0 =

(
(Ze2)α

ααDα~α

) 1
α−1

. (10.113)

The quantity (α−1)E0 in Eq. (10.112) can be considered as a fractional

generalization of the Rydberg constant Ry = me4/2~2.

According to the second Bohr postulate the frequency of the radiation

ω associated with the transition, say, for example from m to n, m→ n, is,

ω =
(1− α)E0

~
·
[

1

n
α
α−1
− 1

m
α
α−1

]
. (10.114)

The new equations (10.110)-(10.114) give us the fractional generaliza-

tion of the “Bohr atom” theory. In a special Gaussian case (standard

quantum mechanics) Eqs. (10.110)-(10.114) allow one to reproduce the

well-known results of the Bohr theory [120], [121]. The existence of Eqs.

(10.110)-(10.114) is a result of deviation of fractal dimension d
(Lévy)
fractal of the

Lévy-like quantum mechanical path from 2, that is d
(Lévy)
fractal = α < 2.
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Chapter 11

Fractional Nonlinear Quantum
Dynamics

The nonlinear Schrödinger equation is an attractive and fast developing

area of studies. Not pretending to give a complete list of publications on

the topic, let us mention some of them, such as [123]-[129].

Our intent is to show how nonlinear fractional Schrödinger equation

and fractional Ginzburg–Landau equation emerge from quantum dynamics

with long-range interaction.

11.1 Exciton-phonon quantum dynamics with long-range

interaction

Dynamic lattice models are widely used to study a broad set of physical

phenomena and systems. In the early 1970s a novel mechanism for the lo-

calization and transport of vibrational energy in certain types of molecular

chains was proposed by A.S. Davydov [130]. He pioneered the concept of

the solitary excitons or the Davydov’s soliton [131]. Our focus is analyti-

cal developments on quantum 1D exciton-phonon dynamics with power-law

long-range exciton-exciton interaction Jn,m = J/|n−m|s, (s > 0) for exci-

tons located at the lattice sites n and m. In addition to the well-known in-

teractions with integer values of s, some complex media can be described by

fractional values of s (see, for example, references in [132]). Using the ideas

first developed by Laskin and Zaslavsky [133], we elaborate the Davydov

model for the exciton-phonon system with a long-range power-law exciton-

exciton interaction. We will show that 1D lattice exciton-phonon dynamics

in the long-wave limit can be effectively presented by the system of two cou-

pled equations for exciton and phonon sub-systems. The dynamic equation

describing the exciton sub-system is the fractional differential equation,

which is a manifestation of nonlocality of interaction, originating from the

169
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long-range interaction term. The dynamic equation describing the phonon

sub-system is the differential equation.

From this system of two coupled equations we obtain few fundamental

theoretical frameworks to study nonlinear quantum dynamics with long-

range interaction. They are: non-linear fractional Schrödinger equation,

non-linear Hilbert–Schrödinger equation, fractional generalization of Za-

kharov system, fractional Ginzburg–Landau equation [134].

11.2 Long-range exciton-exciton interaction

To model 1D quantum lattice dynamics let us consider a linear, rigid ar-

rangement of sites with one molecule at each lattice site. Then, Davydov’s

Hamiltonian [135] reads

Ĥ = Ĥex + Ĥph + Ĥint, (11.1)

where Ĥex is exciton Hamilton operator, which describes dynamics of in-

tramolecular excitations or simply excitons, Ĥph is phonon Hamiltonian op-

erator, which describes displacements of molecules from their equilibrium

states or, in other words, the lattice vibrations, and Hint is the exciton-

phonon operator, which describes interaction of molecular excitations (ex-

citons) with their displacements (lattice vibrations).

The exciton Hamiltonian Hex is

Ĥex = ε
∞∑

n=−∞
b+n bn − J

∞∑
n=−∞

(b+n bn+1 + b+n bn−1), (11.2)

here b+n is creation and bn is annihilation operators of an excitation on

a molecule on site n, parameter ε is exciton energy and J is interaction

constant.

Operators b+n and bn satisfy the commutation relations [bn, b
+
m] = δn,m,

[bn, bm] = 0, [b+n , b
+
m] = 0.

Alternatively, the Hamiltonian Hex can be written as

Ĥex = ε
∞∑

n=−∞
b+n bn −

∞∑
n,m=−∞

Jn,mb+n bm, (11.3)

if we introduce exciton transfer matrix Jn,m, which describes exciton-

exciton interaction,

Jn,m = J (δ(n+1),m + δ(n−1),m), (11.4)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 171

Fractional Nonlinear Quantum Dynamics 171

where the Kronecker symbols δ(n+1),m mean that only the nearest-neighbor

sites have been considered. In other words, the interaction term Jn,mb+n bm
in Eq. (11.3) is responsible for transfer from site n to the nearest-neighbor

sites n± 1.

The phonon Hamiltonian Hph is

Ĥph =
∞∑

n=−∞

(
p̂2
n

2m
+
w

2
(ûn+1 − ûn)2

)
, (11.5)

where w is the elasticity constant of the 1D lattice and ûn is the operator

of displacement of a molecule from its equilibrium position on the site n,

p̂n is the momentum operator of a molecule on site n and m is molecular

mass.

The exciton-phonon Hamiltonian Ĥint, which describes the coupling be-

tween internal molecular excitations with their displacements, has the form

Ĥint =
χ

2

∞∑
n=−∞

(ûn+1 − ûn)b+n bn, (11.6)

with the coupling constant χ.

To extend Davydov’s model and go beyond the nearest-neighbor inter-

action we introduce, follow Laskin [134], the power-law interaction between

excitons on sites n and m. Thus, to study long-range exciton-exciton in-

teraction we come up with exciton transfer matrix Jn,m given by

Jn−m =
J

|n−m|s
, n 6= m, (11.7)

where J is the interaction constant, parameter s covers different physical

models; the nearest-neighbor approximation (s = ∞), the dipole-dipole

interaction (s = 3), the Coulomb potential (s = 1). Our main interest

will be in fractional values of s that can appear for more sophisticated

interaction potentials attributed to complex media.

Aiming to obtain a system of coupled dynamic equations for the exciton-

photon system under consideration, we introduce Davydov’s ansatz.

11.2.1 Davydov’s ansatz

To study system described by Eq. (11.1) with exciton transfer matrix given

by Eq. (11.7) we introduce quantum state vector following [135] [136], see,

also [137]

|φ(t) >= |Ψ(t) > |Φ(t) >, (11.8)
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where quantum vectors |Ψ(t) > and |Φ(t) > are defined by

|Ψ(t) >=
∑
n

ψn(t)b+n |0 >ex (11.9)

and

|Φ(t) >= exp

{
− i
~
∑
n

(ξn(t)p̂n − ηn(t)ûn)

}
|0 >ph, (11.10)

here ~ is Planck’s constant, |0 >ex and |0 >ph are vacuum states of the

exciton and phonon sub-systems and ξn(t) is the diagonal matrix element

of the displacement operator ûn in the basis defined by Eq. (11.8), while

ηn(t) is diagonal matrix element of the momentum operator p̂n in the same

basis, that is

ξn(t) =< φ(t)|ûn|φ(t) >, ηn(t) =< φ(t)|p̂n|φ(t) > . (11.11)

The displacement ûn and momentum p̂n operators satisfy the commu-

tation relations

[ûn, p̂m] = i~δn,m, (11.12)

where ~ is Planck’s constant and δn,m is the Kronecker symbol,

δn,m =

{
1 n = m,

0 n 6= m.

The state vector |φ(t) > satisfies the normalization condition

< φ(t)|φ(t) >=
∑
n

|ψn(t)|2 = N, (11.13)

with |ψn(t)|2 being the probability to find exciton on the nth site and N is

the total number of excitons.

Therefore, the dynamics of the exciton-photon system with Hamiltonian

given by Eq. (11.1) can be described in terms of the functions ψn(t), ξn(t)

and ηn(t). In other words, Davydov’s ansatz defined by Eqs. (11.8)-(11.11)

allows us to go from the quantum Hamilton operator introduced by Eq.

(11.1) to classical Hamiltonian function developed below. In the basis of

the vectors |φ(t) >, the Hamilton operators Ĥex, Ĥph and Ĥint become
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the functions Hex(ψn, ψ
∗
n), Hph(ξn, ηn) and Hint(ψn, ψ

∗
n, ξn) of classical

dynamic variables ψn(t), ψ∗n(t), ξn(t) and ηn(t).

Thus, the function Hex(ψn, ψ
∗
n) is introduced as

Hex(ψn, ψ
∗
n) =< φ(t)|Ĥex|φ(t) > (11.14)

= ε
∞∑

n=−∞
ψ∗n(t)ψn(t)−

∞∑
n,m=−∞

Jn−mψ∗n(t)ψm(t),

here Jn−m is given by Eq. (11.7).

The function Hph(ξn, ηn) is introduced as

Hph(ξn, ηn) =< φ(t)|Ĥph|φ(t) > (11.15)

=

∞∑
n=−∞

(
η2
n

2m
+
w

2
(ξn+1 − ξn)2

)
.

The function Hint(ψn, ψ
∗
n, ξn) is introduced as

Hint(ψn, ψ
∗
n, ξn) =< φ(t)|Ĥint|φ(t) > (11.16)

=
χ

2

∞∑
n=−∞

(ξn+1 − ξn)ψ∗n(t)ψn(t).

Combining together Eqs. (11.14)-(11.16) we obtain the Hamiltonian

function H(ψn, ψ
∗
n, ξn, ηn) of the exciton-phonon system under considera-

tion

H(ψn, ψ
∗
n, ξn, ηn) =< φ(t)|Ĥ|φ(t) >

= Hex(ψn, ψ
∗
n) +Hph(ξn, ηn) +Hint(ψn, ψ

∗
n, ξn) (11.17)

= ε

∞∑
n=−∞

ψ∗n(t)ψn(t)−
∞∑

n,m=−∞
Jn−mψ∗n(t)ψm(t)

+
∞∑

n=−∞

(
η2
n

2m
+
w

2
(ξn+1 − ξn)2

)

+
χ

2

∞∑
n=−∞

(ξn+1 − ξn)ψ∗n(t)ψn(t).

Having the Hamiltonian function H(ψn, ψ
∗
n, ξn, ηn) we can develop the

motion equations for dynamic variables ψn(t), ψ∗n(t), ξn(t) and ηn(t).
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11.2.2 Motion equations

Following [135] and identifying conjugate coordinates and momenta from

the set of dynamic variables ψn(t), ψ∗n(t), ξn(t) and ηn(t), we come up with

the system of motion equations in terms of variational derivatives δ/δψ∗n(t),

δ/δψn(t), δ/δηn(t) and δ/δξn(t). For the variable ψn(t) the motion equa-

tion is

i~
∂ψn(t)

∂t
=

δ

δψ∗n(t)
H(ψn, ψ

∗
n, ξn, ηn). (11.18)

For the complex conjugate variable ψ∗n(t) we have

i~
∂ψ∗n(t)

∂t
= − δ

δψn(t)
H(ψn, ψ

∗
n, ξn, ηn). (11.19)

For the coordinate ξn(t) the motion equation reads

∂ξn(t)

∂t
=

δ

δηn(t)
H(ψn, ψ

∗
n, ξn, ηn), (11.20)

and for conjugate momenta ηn(t) the motion equation is

∂ηn(t)

∂t
= − δ

δξn(t)
H(ψn, ψ

∗
n, ξn, ηn), (11.21)

here H(ψn, ψ
∗
n, ξn, ηn) is given by Eq. (11.16).

For our purposes we will need the system of dynamic equations for

ψn(t), ξn(t) and ηn(t). Calculating the variational derivatives yields the

following system of three coupled equations

i~
∂ψn(t)

∂t
= Λψn(t)−

∑
m

(n6=m)

Jn−mψm(t) +
χ

2
(ξn+1 − ξn)ψn(t), (11.22)

∂ξn(t)

∂t
=
ηn
m
, (11.23)

and

∂ηn(t)

∂t
= w(ξn+1(t)− 2ξn(t) + ξn−1(t)) +

χ

2
(|ψn+1(t)2− |ψn(t)2|, (11.24)
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where the constant Λ is introduced by

Λ = ε+
1

2

∞∑
n=−∞

(
m

(
∂ξn(t)

∂t

)2

+ w(ξn+1 − ξn)2

)
.

Further, substituting ηn(t) from Eq. (11.23) into Eq. (11.24) yields

m
∂2ξn(t)

∂t2
= w(ξn+1 − 2ξn + ξn−1) +

χ

2
(|ψn+1(t)|2 − |ψn(t)|2. (11.25)

Our focus now is the system of two coupled discrete dynamic equations

(11.22) and (11.25).

11.3 From lattice to continuum

To obtain the dynamical equations in continuum space from discrete equa-

tions (11.22) and (11.25) we need a map to go from discrete functions ψn(t)

and ξn(t) to their continuum counterparts. Aiming to develop the map we

define two functions ϕ(k, t) and ν(k, t) in k space by means of the following

equations

ϕ(k, t) =
∞∑

n=−∞
ae−iknaψn(t), (11.26)

and

ν(k, t) =

∞∑
n=−∞

ae−iknaξn(t). (11.27)

With the help of identity

∞∑
n=−∞

ae−ikna

 1

2π

π∫
−π

dk′eik
′naf(k′, t)

 = f(k, t)

we conclude that the function ψn(t) is related to ϕ(k, t) as follows

ψn(t) =
1

2π

π∫
−π

dkeiknaϕ(k, t), (11.28)

and the function ξn(t) is related to ν(k, t) as follows

ξn(t) =
1

2π

π∫
−π

dkeiknaν(k, t), (11.29)
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here a is the lattice parameter, a > 0.

The lattice can be treated as a continuum media in the physical situation

when wavelength λ = 2π/k of dynamical processes in the exciton-phonon

system exceeds the scale na, λ� na. In other words, this is the case when

k � (na)−1, and we can substitute discrete functions ψn(t) and ξn(t) with

their continuum counterparts ψ(x, t) and ξ(x, t), that is

ψn(t) −→
k�(na)−1

ψ(x, t), (11.30)

and

ξn(t) −→
k�(na)−1

ξ(x, t), (11.31)

where x is continuous variable x = na.

In the long-wavelength approximation k � (na)−1 the integration in

Eqs. (11.28) and (11.29) can be expanded over the whole k space,

1

2π

π∫
−π

dkeikna... −→
k�(na)−1

1

2π

∞∫
−∞

dkeikx..., (11.32)

while the summation in Eqs. (11.26) and (11.27) has to be substituted with

integration over x space,

∞∑
n=−∞

ae−ikna... −→
k�(na)−1

∞∫
−∞

dxe−ikx.... (11.33)

It is easy to see that the integrations over k and x spaces support the

identity
∞∫
−∞

dxe−ikx

 1

2π

∞∫
−∞

dk′eik
′xf(k′, t)

 = f(k, t).

The equations (11.30)-(11.33) present the mapping to go from lattice

to continuum media. We apply this mapping to go from discrete to con-

tinuous nonlocal dynamical equations for the exciton-phonon system under

consideration.

In the case of continuum media Eqs. (11.28) and (11.29) become

ψ(x, t) =
1

2π

∞∫
−∞

dkeikxϕ(k, t), (11.34)
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and

ξ(x, t) =
1

2π

∞∫
−∞

dkeikxν(k, t). (11.35)

Functions ϕ(k, t) and ν(k, t) are expressed by the following two equations

ϕ(k, t) =

∞∫
−∞

dxe−ikxψ(x, t) (11.36)

and

ν(k, t) =

∞∫
−∞

dxe−ikxξ(x, t). (11.37)

Therefore, we conclude that in terms of the functions ψ(x, t) and ξ(x, t)

Eqs. (11.22) and (11.25) become continuous equations of motion

i~
∂ψ(x, t)

∂t
= λψ(x, t) (11.38)

−
∞∫
−∞

dy
∂

∂x
K(x− y)

∂

∂y
ψ(y, t) + χ

∂ξ(x, t)

∂x
ψ(x, t),

and

m
∂2ξ(x, t)

∂t2
= w

∂2ξ(x, t)

∂x2
+ χ

∂|ψ(x, t)|2

∂x
. (11.39)

Quantum equation (11.38) is nonlocal due to the presence of the integral

term. The kernel K(x) in the integral term of Eq. (11.38) has a form

K(x) =
1

π

∞∫
−∞

dkeikx
V(k)

k2
,

where the function V(k) is introduced as

V(k) = J (0)− J (k), (11.40)
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and J (k) is defined by

J (k) =
∞∑

n=−∞
(n6=0)

e−iknaJn, (11.41)

with Jn given by Eq. (11.7) and, finally, λ = Λ− J(0).

Thus, we come to a new system of coupled dynamic equations (11.38)

and (11.39) to model 1D exciton phonon dynamics with long-range exciton-

exciton interaction introduced by Eq. (11.7). The field ψ(x, t) describes the

exciton sub-system, while the field ξ(x, t) describes the phonon sub-system.

Equation (11.38) is the integro-differential equation while Eq. (11.39) is the

differential one. The integral term in Eq. (11.38) originates from the long-

range exciton-exciton interaction term - the second term in Hex(ψn, ψ
∗
n)

introduced by Eq. (11.14).

11.4 Fractional nonlinear quantum equations

To transform the system (11.38) and (11.39) into the system of coupled dif-

ferential equations of motion we use the properties of function V(k) defined

by Eq. (11.40) in the continuum limit a→ 0 (long wave limit k → 0), which

can be obtained from the asymptotics of the polylogarithm (see, Appendix

D)

V(k) ∼ Ds|ak|s−1, 2 ≤ s < 3, (11.42)

V(k) ∼ −J (ak)2 ln ak, s = 3, (11.43)

V(k) ∼ J ζ(s− 2)

2
(ak)2, s > 3, (11.44)

where Γ(s) is the Gamma function, ζ(s) is the Riemann zeta function and

coefficient Ds is defined by

Ds =
πJ

Γ(s) sin(π(s− 1)/2)
. (11.45)

It is seen from Eq. (11.42) that the fractional power of k occurs for

interactions with 2 ≤ s ≤ 3 only. In the coordinate space fractional power
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of |ak|s−1 gives us the fractional Riesz derivative of order s− 1 [37], [133],

[138], and we come to a fractional differential equation [134]

i~
∂ψ(x, t)

∂t
= λψ(x, t) (11.46)

−Dsa
s−1∂s−1

x ψ(x, t) + χ
∂ξ(x, t)

∂x
ψ(x, t),

here ∂s−1
x is the Riesz fractional derivative

∂s−1
x ψ(x, t) = − 1

2π

∞∫
−∞

dkeikx|k|s−1ϕ(k, t), 2 ≤ s < 3, (11.47)

where ψ(x, t) and ϕ(k, t) are related to each other by the Fourier transforms

defined by Eqs. (11.34) and (11.36).

Thus, we obtained the system of coupled equations, Eqs. (11.39) and

(11.46) to study one-dimensional exciton-phonon dynamics with long-range

interaction.

11.4.1 Fractional nonlinear Schrödinger equation

The system of coupled equations, Eqs. (11.39) and (11.46) can be further

elaborated to get nonlinear fractional quantum and classical equations. In-

deed, by assuming the existence of a stationary solution ∂ξ(x, t)/∂t = 0 to

Eq. (11.39) we obtain from Eq. (11.46) the following quantum fractional

differential equation for wave function ψ(x, t),

i~
∂ψ(x, t)

∂t
= λψ(x, t) (11.48)

−Dsa
s−1∂s−1

x ψ(x, t)− χ2

w
|ψ(x, t)|2ψ(x, t), 2 ≤ s < 3,

which can be rewritten in the form of fractional nonlinear Schrödinger equa-

tion [134],

i~
∂φ(x, t)

∂t
= −Dsa

s−1∂s−1
x φ(x, t)− χ2

w
|φ(x, t)|2φ(x, t), (11.49)
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where 2 ≤ s < 3 and the wave function φ(x, t) is related to the wave

function ψ(x, t) by

φ(x, t) = exp{iλt/~}ψ(x, t). (11.50)

It is easy to see that Eq. (11.49) supports normalization condition for

wave function φ(x, t), and the normalization condition is

∞∫
−∞

dx|φ(x, t)|2 = 1. (11.51)

Thus, using the system of coupled equations, Eqs. (11.39) and (11.46),

we discovered the fractional generalization of nonlinear Schrödinger equa-

tion (11.49) with a cubic focusing nonlinearity. The equation (11.49) has

to be supplied with initial condition φ(x, t)|t=0 = φ(x, 0).

To express Eq. (11.49) in dimensionless form let’s apply the scaling

transforms

t′ = ωt, x′ =
x

l
, φ′(x′, t′) =

√
lφ(x, t), (11.52)

where we introduce dimensionless time t′ and length x′, while ω is char-

acteristic frequency and l is characteristic space scale. The transform

φ′(x′, t′) =
√
lφ(x, t) supports the normalization condition Eq. (11.51).

Applying the scale transforms to Eq. (11.49) results in

i~ω
∂φ′(x′, t′)

∂t′

= −Dsa
s−1 1

ls−1
∂s−1
x′ φ(x′, t′)− χ2

wl
|φ′(x′, t′)|2φ′(x′, t′), (11.53)

2 ≤ s < 3.

By choosing

l =

(
Ds

~ω

)1/(s−1)

a, (11.54)
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we obtain the equation

i
∂φ′(x′, t′)

∂t′
= −∂s−1

x′ φ′(x′, t′)− κ|φ′(x′, t′)|2φ′(x′, t′),

where dimensionless parameter κ is introduced by

κ =
χ2(~ω)(2−s)/(s−1)

waD
1/(s−1)
s

. (11.55)

Finally, by renaming x′ → x, t′ → t and φ′ → φ we come to dimension-

less fractional nonlinear Schrödinger equation

i
∂φ(x, t)

∂t
= −∂s−1

x φ(x, t)− κ|φ(x, t)|2φ(x, t), 2 ≤ s < 3, (11.56)

with κ given by Eq. (11.55) and ∂s−1
x being the Riesz fractional derivative

defined by Eq. (11.47).

Due to Eq. (11.44) for s > 3, Eq. (11.49) turns into the nonlinear

Schrödinger equation with a cubic focusing nonlinearity [134],

i~
∂φ(x, t)

∂t
= −J ζ(s− 2)

2
a2∂2

xφ(x, t)− χ2

w
|φ(x, t)|2φ(x, t), (11.57)

where s > 3 and ∂2
x = ∂2/∂x2.

11.4.2 Nonlinear Hilbert–Schrödinger equation

It follows from Eqs. (11.42) and (11.45) that in the case s = 2 the function

V(k) in the long wave limit k → 0 takes the form

V(k) ∼ πJ |ak|, s = 2. (11.58)

In this case, assuming the existence of a stationary solution

∂ξ(x, t)/∂t = 0 to Eq. (11.39) we find from Eq. (11.38) the following

nonlinear quantum fractional differential equation for wave function ψ(x, t),

i~
∂ψ(x, t)

∂t
= λψ(x, t) (11.59)

−πJ aH{∂xψ(x, t)} − χ2

w
|ψ(x, t)|2ψ(x, t), s = 2,
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here H{...} is the Hilbert integral transform defined by

H{ψ(x, t)} =
1

π
PV

∞∫
−∞

dy
ψ(y, t)

x− y
, (11.60)

where PV stands for the Cauchy principal value of the integral.

Introducing wave function φ(x, t) related to the wave function ψ(x, t) by

means of Eq. (11.50) brings us the nonlinear Hilbert–Schrödinger equation

[133], [134]

i~
∂ϕ(x, t)

∂t
= −πJ aH{∂xϕ(x, t)} − χ2

w
|ϕ(x, t)|2ϕ(x, t), (11.61)

with normalization condition given by Eq. (11.51).

11.4.3 Fractional generalization of Zakharov system

Introducing a new variable σ(x, t) = ∂ξ(x, t)/∂x turns Eqs. (11.39) and

(11.48) into the following system of two coupled quantum equations [134]

for the fields ψ(x, t) and σ(x, t),

i~
∂ψ(x, t)

∂t
= λψ(x, t) (11.62)

−Dsa
s−1∂s−1

x ψ(x, t) + χσ(x, t)ψ(x, t),

and (
∂2

∂t2
− ν2 ∂

2

∂x2

)
σ(x, t) =

χ

m

∂2

∂x2
|ψ(x, t)|2, (11.63)

where ν =
√
w/m is physical parameter with the unit of velocity, the pa-

rameter Ds is defined by Eq. (11.45), ∂s−1
x is the Riesz fractional derivative

introduced by Eq. (11.47) and parameter s is in the range 2 ≤ s < 3. Equa-

tion (11.62) is fractional differential equation, while Eq. (11.63) includes

spatial and temporal derivatives of second order.

Considering wave function φ(x, t) related to the wave function ψ(x, t)

by means of Eq. (11.50), we rewrite Eqs. (11.62) and (11.63) in the form

[134]

i~
∂φ(x, t)

∂t
= −Dsa

s−1∂s−1
x φ(x, t)+χσ(x, t)φ(x, t), 2 ≤ s < 3, (11.64)
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and

(
∂2

∂t2
− ν2 ∂

2

∂x2

)
σ(x, t) =

χ

m

∂2

∂x2
|φ(x, t)|2. (11.65)

To express Eqs. (11.64) and (11.65) in dimensionless form, let’s apply

the scaling transforms

t′ = ωt, x′ =
x

l
, (11.66)

φ′(x′, t′) =
√
lφ(x, t), σ′(x′, t′) = lσ(x, t),

where we introduce dimensionless time t′ and length x′, while ω is char-

acteristic frequency and l is characteristic space scale. The transform

φ′(x′, t′) =
√
lφ(x, t) supports the normalization condition Eq. (11.51).

Plugging those transforms into Eqs. (11.64) and (11.65) results in

i~ω
∂φ′(x′, t′)

∂t′
= −Ds

(a
l

)s−1

∂s−1
x′ φ(x′, t′) + χσ′(x′, t′)φ′(x′, t′),

with 2 ≤ s < 3, and

(
ω2 ∂

2

∂t′2
− ν2

l2
∂2

∂x′2

)
σ′(x′, t′) =

χ

ml2
∂2

∂x′2
|φ′(x′, t′)|2.

Further, by choosing

l =

(
Ds

~ω

)1/(s−1)

, (11.67)

we have the system of coupled equations

i
∂φ′(x′, t′)

∂t′
= −∂s−1

x′ φ′(x′, t′) + γσ′(x′, t′)φ′(x′, t′) (11.68)

and

(
∂2

∂t′2
− κ2 ∂2

∂x′2

)
σ′(x′, t′) = β

∂2

∂x′2
|φ′(x′, t′)|2, (11.69)

with dimensionless parameters γ, κ and β introduced by

γ =
χ

~ω
, κ =

ν

ωl
, β =

χ

l2ω2m
. (11.70)
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Finally, by renaming x′ → x, t′ → t, φ′ → φ and σ′ → σ we come to

the following system of coupled equations for the fields φ(x, t) and σ(x, t)

i
∂φ(x, t)

∂t
= −∂s−1

x φ(x, t) + γσ(x, t)φ(x, t), 2 ≤ s < 3, (11.71)

and (
∂2

∂t2
− κ2 ∂

2

∂x2

)
σ(x, t) = β

∂2

∂x2
|φ(x, t)|2, (11.72)

with γ, κ and β given by Eq. (11.70).

The system of coupled equations (11.71) and (11.72) is fractional gen-

eralization of the Zakharov system originally introduced in 1972 to study

the Langmuir waves propagation in an ionized plasma [139].

In our approach, we came to the system of equations (11.71) and (11.72)

by studying the quantum 1D exciton-phonon system assuming that the only

exciton-exciton interaction has power-law long-range behavior.

11.4.4 Fractional Ginzburg–Landau equation

In the case of propagating waves one can search for the solution to the

system of equations (11.64) and (11.65) in the form of travelling waves

ψ(x, t) = ψ(x− vt) and ξ(x, t) = ξ(x− vt), (11.73)

where v is wave velocity.

By introducing the notation ζ = (x − vt) we can rewrite Eqs. (11.64)

and (11.65) as

i~v
∂φ(ζ)

∂ζ
= −Dsa

s−1∂s−1
ζ φ(ζ) + χσ(ζ)φ(ζ), 2 ≤ s < 3, (11.74)

and

(v2 − ν2)
∂2

∂ζ2σ(ζ) =
χ

m

∂2

∂ζ2 |φ(ζ)|2. (11.75)

It is easy to see that a solution to Eq. (11.75) is

σ(ζ) =
χ

m(v2 − ν2)
|φ(ζ)|2. (11.76)
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Then Eq. (11.74) results in nonlinear fractional equation

i~v
∂φ(ζ)

∂ζ
= −Dsa

s−1∂s−1
ζ φ(ζ) + γ|φ(ζ)|2φ(ζ), (11.77)

where nonlinearity parameter γ has been introduced as

γ =
χ2

m(v2 − ν2)
.

We call Eq. (11.77) fractional Ginzburg–Landau equation. This is quan-

tum nonlinear fractional differential equation in the framework of fractional

quantum mechanics.

To express Eq. (11.77) in dimensionless form, let’s apply the scaling

transforms

ζ ′ =
ζ

b
, φ′(ζ ′) =

√
bφ(ζ), σ′(ζ ′) = bσ(ζ), (11.78)

where we introduce dimensionless length ζ ′and characteristic scale b. The

transform φ′(ζ ′) =
√
bφ(ζ) supports the normalization condition Eq.

(11.51).

By performing the scaling transforms and then omitting the prime

symbol, we obtain fractional nonlinear differential equation

i
∂φ(ζ)

∂ζ
= −εs∂s−1

ζ φ(ζ) + δ|φ(ζ)|2φ(ζ), 2 ≤ s < 3, (11.79)

with dimensionless coefficients εs and δ introduced by

εs =
Dsa

s−1

bs−2~v
, δ =

γb

~v
=

χ2b

~vm(v2 − ν2)
. (11.80)

Thus, we came to the fractional Ginzburg–Landau equation (11.79) in

dimensionless form.
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11.5 Quantum lattice propagator

To study impact of long-range interaction on 1D quantum dynamics let

us focus on the exciton sub-system only. Hence, follow [133], [134] we

consider discrete linear problem associated with the exciton Hamiltonian

Hex(ψn, ψ
∗
n) given by Eq. (11.14).

Suppose that we know the solution ψn′(t
′) to Eq. (11.14) at some time

instant t′ at the lattice site n′. Then the solution ψn(t) at later time t,

(t > t′) at the lattice site n will be

ψn(t) =
∑
n′

Gn,n′(t|t′)ψn′(t′), (11.81)

where Gn,n′(t|t′) is quantum exciton 1D lattice propagator, that is the

probability of exciton transition from site n′ at the time moment t′ to site

n at the time moment t.

It follows from Eqs. (11.14) and (11.81) that Gn,n′(t|t′) is governed by

the motion equation

i~
∂Gn,n′(t|t′)

∂t
= εGn,n′(t|t′)−

∑
m

(m6=n)

Jn−mGm,n′(t|t′), t ≥ t′, (11.82)

with the initial condition

Gn,n′(t|t′)|t=t′ = δn,n′ , (11.83)

here δn,n′ is the Kronecker symbol.

To avoid bulky notations let’s choose n′ = 0, t′ = 0 and introduce Gn(t)

as

Gn(t) = Gn,0(t|0). (11.84)

It yields

i~
∂Gn(t)

∂t
= εGn(t)−

∑
m

(m6=n)

Jn−mGn(t), t ≥ t′, (11.85)

with the initial condition

Gn(t)|t=0 = δn,0. (11.86)
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At this point we take into consideration the propagator G(k, t) related

to Gn(t) as

G(k, t) =
∞∑

n=−∞
e−iknGn(t), (11.87)

here we put the lattice parameter, a = 1 for simplify.

Hence, in terms of G(k, t) the quantum lattice propagator Gn(t) is given

by1

Gn(t) =
1

2π

π∫
−π

dkeiknG(k, t). (11.88)

It follows from Eqs. (11.85), (11.87) and (11.41) that

i~
∂G(k, t)

∂t
= (ω + V(k))G(k, t), t ≥ 0, (11.89)

where V(k) is defined by Eqs. (11.40) and (11.41), energy ω is given by

ω = ε− J (0) (11.90)

and

J (0) =

∞∑
n=−∞
(n6=0)

Jn, (11.91)

with Jn given by Eq. (11.7). Then, it is easy to see from Eqs. (11.86) and

(11.87) that the initial condition for G(k, t) is

G(k, t = 0) = 1. (11.92)

1The formula (1.17.17) [140]

1

2π

∞∑
n=−∞

e−ikn

 π∫
−π

dk′eik
′nG(k′, t)

 = G(k, t)

has been used.



April 6, 2018 10:1 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 188

188 Fractional Quantum Mechanics

To solve Eq. (11.89) with the initial condition (11.92) let’s introduce quan-

tum propagator g(k, t)

g(k, t) = exp(iωt/~)G(k, t). (11.93)

Thus, G(k, t) can be expressed in terms of g(k, t) as

G(k, t) = exp(−iωt/~)g(k, t). (11.94)

It follows from Eq. (11.89) that the propagator g(k, t) is governed by

the equation

i~
∂g(k, t)

∂t
= V(k)g(k, t), t ≥ 0, (11.95)

with the initial condition

g(k, t = 0) = 1. (11.96)

The solution to the problem defined by Eqs. (11.95) and (11.96) is

g(k, t) = exp(−iV(k)t/~). (11.97)

By substituting Eqs. (11.94) and (11.97) into Eq. (11.88) we obtain

Gn(t) =
1

2π

π∫
−π

dk exp(ikn− i(ω + V(k))t/~). (11.98)

Similarly to (11.94) we write

Gn(t) = exp(−iωt/~)gn(t), (11.99)

where the quantum lattice propagator gn(t) has been introduced by

gn(t) =
1

2π

π∫
−π

dk exp(ikn− iV(k)t/~). (11.100)

The generalization to quantum lattice propagator gn,n′(t|t′) which de-

scribes transition of an exciton from site n′ at the time moment t′ to site

n at the time moment t (t > t′), is obvious

gn,n′(t|t′) =
1

2π

π∫
−π

dk exp(ik(n− n′)− iV(k)(t− t′)/~). (11.101)
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Therefore, the quantum lattice propagator gn,n′(t|t′) can be considered

as quantum transition amplitude. The propagator gn,n′(t|t′) describes dis-

crete in space and continuous in time 1D exciton transport.

Let us note that gn,n′(t|t′) satisfies the following fundamental criteria:

1. Normalization condition

∞∑
n=−∞

gn,n′(t|t′) = 1. (11.102)

2. Rule for two events successive in time

gn,n′(t1|t2) =
∞∑

m=−∞
gn,m(t1|t′)gm,n′(t′|t2). (11.103)

The last condition means that for exciton propagations occurring in

succession in time the quantum transition amplitudes are multiplied.

Our intend now is to study behavior of gn(t) at large |n|, when the main

contribution to the integral Eq. (11.100) comes from small k. Therefore,

we can expand integral over k from −∞ up to ∞,

gn(t) =
1

2π

∞∫
−∞

dk exp(ikn− iγs|k|υ(s)t/~), (11.104)

where

υ(s) =

{
2, for s > 3,

s− 1, for 2 < s < 3,
(11.105)

and

γs =

{
J ζ(s−2)

2 , for s > 3,

Ds, for 2 < s < 3,
(11.106)

here Ds is given by Eq. (11.45).

Asymptotic behavior of the lattice quantum 1D propagator gn(t) at

large |n| depends on the value of the parameter s. Indeed, when s > 3 Eq.

(11.104) goes to

gn(t) = (~/2πiJ ζ(s− 2)t)1/2 exp{− ~
2iJ ζ(s− 2)t

|n|2}, s > 3,

(11.107)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 190

190 Fractional Quantum Mechanics

if we take into account Eqs. (11.105) and (11.106).

When 2 < s < 3 the integral in Eq. (11.104) is expressed in terms of

the Fox’s H-function [93] and [104],

gn(t) =
1

|n|(s− 1)
H1,1

2,2

[(
~

iDst

)1/(s−1)

|n|
∣∣∣∣ (1, 1/(s− 1)), (1, 1/2)

(1, 1), (1, 1/2)

]
,

(11.108)

On the other hand, in the long-wave limit for 2 < s < 3 the integral in

Eq. (11.104) can be estimated as

gn(t) ' 1

π
Γ(s) sin(

π(s− 1)

2
)

(
iDst

~

)s/(s−1)
1

|n|s
. (11.109)

Thus, the asymptotics of the lattice quantum exciton propagator gn(t)

exhibits the power-law behavior at large |n| for 2 < s < 3. Transition from

Gaussian-like behavior Eq. (11.107) to the power-law decay Eq. (11.109) is

due to long-range interaction (the second term on the right of Eqs. (11.14)).

This transition can be interpreted as phase transition. In fact, when s > 3

the propagator gn(t) defined by Eq. (11.107) has correlation length2 ∆n

∆n '
(

2J ζ(s− 2)t

~

)1/2

, s > 3. (11.110)

When 2 < s < 3 the propagator gn(t) defined by Eq. (11.109) exhibits

the power-law behavior with infinite correlation length, that is in the case

2 < s < 3 the correlation length doesn’t exist for 1D lattice system with

long-range exciton-exciton interaction given by Eq. (11.7).

11.5.1 Crossover in random walk on 1D lattice

Exciton-exciton 1D lattice quantum dynamics initiates a 1D classic dynam-

ics random walk model. Indeed, if we put it→ τ ,

w(k) = V(k)/~ (11.111)

2Let us remark, that the lattice scale a is equal 1, a = 1.
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and rename

gn,n′(t|t′)|it→τ,it′→τ ′ → Pn,n′(τ |τ ′),

then Eq. (11.101) becomes

Pn,n′(τ |τ ′) =
1

2π

π∫
−π

dk exp{ik(n− n′)− w(k)(τ − τ ′)}, (11.112)

which is the definition of random walk transition probability Pn,n′(τ |τ ′).
The transition probability answers the question: What is the probability

that walker will be on site n at the time moment τ if at some previous time

moment τ ′ (τ ′ < τ) he was on site n′. It is easy to see that Pn,n′(τ |τ ′) is

normalized

∞∑
n=−∞

Pn,n′(τ |τ ′) = 1, (11.113)

and satisfies the Chapman-Kolmogorov equation

Pn,n′(τ1|τ2) =
∞∑

m=−∞
Pn,m(τ1|τ ′)Pm,n′(τ ′|τ2), (11.114)

with the initial condition

Pn,n′(τ |τ ′)|τ=τ ′ = δ(n− n′). (11.115)

We came to a continuous in time τ and discrete in space (1D lattice)

random walk model [133]. From Eq. (11.114) we conclude that the random

walk model under consideration is Markov random process. As we will see,

the obtained random walk model exhibits a cross-over from the Brownian

random walk (s > 3) with finite correlation length to the symmetric α-

stable (with α = s−1 and 2 < s < 3) Lévy random process with an infinite

correlation length.

Let’s choose n′ = 0, τ ′ = 0 and introduce Pn(τ) as

Pn(τ) = Pn,n′(τ |τ ′)|n′=0,τ ′=0 =
1

2π

π∫
−π

dk exp{ikn− w(k)τ}. (11.116)
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The probability Pn(τ) can be expressed as

Pn(τ) =
1

2π

π∫
−π

dk exp(ikn)P (k, τ), (11.117)

where P (k, τ) is given by

P (k, τ) =
∞∑

n=−∞
e−iknPn(τ) = exp{−w(k)τ}, (11.118)

and w(k) is defined by Eq. (11.111).

It follows straightforwardly from Eq. (11.118) that the probability

P (k, τ) satisfies motion equation

∂

∂τ
P (k, τ) = −w(k)P (k, τ), (11.119)

with the initial condition

P (k, t = 0) = 1.

In the case of continuum space the integral over k Eq. (11.117) can

be expanded from −∞ up to ∞ and we obtain probability distribution

function P (x, τ)

P (x, τ) =
1

2π

∞∫
−∞

dk exp(ikx)P (k, τ), (11.120)

where P (k, τ) is the inverse Fourier transform

P (k, τ) =

∞∫
−∞

dx exp(−ikx)P (x, τ). (11.121)

Thus, we have

P (x, τ) =
1

2π

∞∫
−∞

dk exp{ikx− w(k)τ}.
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Further, using Eqs. (11.42) and (11.44) we write the probability distri-

bution function P (x, τ) in the form

P (x, τ) =
1

2π

∞∫
−∞

dk exp(ikx− γs|k|υ(s)τ), (11.122)

which satisfies the initial condition

P (x, τ = 0) = δ(x), (11.123)

where υ(s) and γs are defined by Eq. (11.105) and Eq. (11.106) respec-

tively. This probability distribution function bears dependency on index

s and exhibits cross-over from Gaussian behavior at s > 3 to α-stable

(α = s− 1) Lévy law at 2 < s < 3.

It follows from Eq. (11.122) that

∂

∂τ
P (x, τ) = − γs

2π

∞∫
−∞

dk|k|υ(s) exp(ikx− γs|k|υ(s)τ) (11.124)

= γs
∂υ(s)

∂xυ(s)
P (x, τ),

where ∂υ(s)/∂xυ(s) stands for the Riesz fractional derivative introduced by

∂υ(s)

∂xυ(s)
P (x, τ) = − 1

2π

∞∫
−∞

dk|k|υ(s) exp(ikx)P (k, τ). (11.125)

Here P (x, τ) and P (k, τ) are related to each other by the Fourier trans-

forms defined by Eqs. (11.120) and (11.121). The initial condition to

fractional differential equation (11.124) is given by Eq. (11.123).

Thus, it has been shown that the presented random walk model exhibits

cross-over from normal to fractional mode, that is from Gaussian behavior

at s > 3 to α-stable (α = s− 1) Lévy law at 2 < s < 3.
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Chapter 12

Time Fractional Quantum Mechanics

12.1 Introductory remarks

The crucial manifestation of fractional quantum mechanics is fractional

Schrödinger equation. The fractional Schrödinger equation includes a spa-

tial derivative of fractional order instead of the second order spatial deriva-

tive in the well-known Schrödinger equation. Thus, only the spatial deriva-

tive becomes fractional in the fractional Schrödinger equation, while the

time derivative is the first order time derivative. Due to the presence of the

first order time derivative in the fractional Schrödinger equation, fractional

quantum mechanics supports all quantum mechanics fundamentals.

Inspired by the work of Laskin [67], [92], Naber invented time fractional

Schrödinger equation [141]. The time fractional Schrödinger equation in-

volves the time derivative of fractional order instead of the first-order time

derivative, while the spatial derivative is the second-order spatial deriva-

tive as it is in the well-known Schrödinger equation. To obtain the time

fractional Schrödinger equation, Naber mapped the time fractional diffusion

equation into the time fractional Schrödinger equation, similarly to the map

between the well-known diffusion equation and the standard Schrödinger

equation. The mapping implemented by Naber can be considered as a

“fractional” generalization of the Wick rotation [142]. To get the time

fractional Schrödinger equation, Naber implemented the Wick rotation in

complex t-plane by rising the imaginary unit i to the same fractional power

as the fractional order of the time derivative in the time fractional diffusion

equation. The time fractional derivative in the time fractional Schrödinger

equation is the Caputo fractional derivative [143]. Naber has found the ex-

act solutions to the time fractional Schrödinger equation for a free particle

and a particle in a potential well [141].

195
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Later on, Wang and Xu [144], and then Dong and Xu [145], combined

both Laskin’s fractional Schrödinger equation and Naber’s time fractional

Schrödinger equation and came up with space-time fractional Schrödinger

equation. The space-time fractional Schrödinger equation includes both

spatial and temporal fractional derivatives. Wang and Xu found exact so-

lutions to the space-time fractional Schrödinger equation for a free particle

and for an infinite square potential well. Dong and Xu found the exact

solution to the space-time fractional Schrödinger equation for a quantum

particle in δ-potential well.

Here we introduce time fractional quantum mechanics and develop its

fundamentals. The wording “time fractional quantum mechanics” means

that the time derivative in the fundamental quantum mechanical equa-

tions - Schrödinger equation and fractional Schrödinger equation, is sub-

stituted with a fractional time derivative. The time fractional derivative

in our approach is the Caputo fractional derivative. To introduce and de-

velop time fractional quantum mechanics we begin with our own version

of the space-time fractional Schrödinger equation. Our space-time frac-

tional Schrödinger equation involves two scale dimensional parameters, one

of which can be considered as a time fractional generalization of the famous

Planck’s constant, while the other one can be interpreted as a time frac-

tional generalization of the scale parameter emerging in fractional quantum

mechanics [67], [96]. The fractional generalization of Planck’s constant is

a fundamental dimensional parameter of time fractional quantum mechan-

ics, while the fractional generalization of Laskin’s scale parameter [67], [96]

plays a fundamental role in both time fractional quantum mechanics and

time fractional classical mechanics.

In addition to the above mentioned dimensional parameters, time frac-

tional quantum mechanics involves two dimensionless fractality parameters

α, 1 < α ≤ 2, and β, 0 < β ≤ 1. Parameter α is the order of the spa-

tial fractional quantum Riesz derivative [67] and β is the order of the time

fractional derivative. In other words, α is responsible for modelling spa-

tial fractality , while parameter β, which is the order of Caputo fractional

derivative, is responsible for modelling temporal fractality .

In the framework of time fractional quantum mechanics at particular

choices of fractality parameters α and β, we rediscovered the following

fundamental quantum equations:

1. Schrödinger equation (Schrödinger equation [6]), α = 2 and β = 1;

2. Fractional Schrödinger equation (Laskin equation [67], [96]), 1 < α ≤
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2 and β = 1;

3. Time fractional Schrödinger equation (Naber equation [141]), α = 2

and 0 < β ≤ 1;

4. Space-time fractional Schrödinger equation (Wang and Xu [144] and

Dong and Xu [145] equation), 1 < α ≤ 2 and 0 < β ≤ 1.

12.1.1 Shortcomings of time fractional quantum mechanics

While fractional quantum mechanics supports all quantum mechanics fun-

damentals, time fractional quantum mechanics violates the following fun-

damental physical laws of Quantum Mechanics:

a. Quantum superposition law;

b. Unitarity of evolution operator;

c. Probability conservation law;

d. Existence of stationary energy levels of quantum system.

Fractional quantum dynamics is governed by a pseudo-Hamilton op-

erator instead of the Hamilton operator in standard quantum mechanics.

Eigenvalues of quantum pseudo-Hamilton operator are not the energy levels

of a time fractional quantum system.

12.1.2 Benefits of time fractional quantum mechanics

What benefits does time fractional quantum mechanics bring into quantum

theory and its applications?

Despite the above listed shortcomings, the developments in time frac-

tional quantum mechanics can be considered a newly emerged and attrac-

tive application of fractional calculus to quantum theory. Time fractional

quantum mechanics helps to understand the significance and importance of

the fundamentals of quantum mechanics such as Hamilton operator, unitar-

ity of evolution operator, existence of stationary energy levels of quantum

mechanical system, quantum superposition law, conservation of quantum

probability, etc.

Besides, time fractional quantum mechanics invokes new mathematical

tools, which have never been used in quantum theory before.

From a stand point of quantum mechanical fundamentals, time frac-

tional quantum mechanics seems not as a quantum physical theory but

rather as an adequate, convenient mathematical framework, well adjusted

to study dissipative quantum systems interacting with environment [43].

The time fractional quantum mechanics is an adequate, convenient

mathematical framework, well adjusted to study dissipative quantum sys-
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tems interacting with environment [43].

12.2 Time fractional Schrödinger equation

12.2.1 Naber approach

Time fractional Schrödinger equation is the Schrödinger equation, where

first order time derivative is substituted with time derivative of fractional

order. To introduce time fractional Schrödinger equation we begin with

a brief review of Naber’s original approach [141]. Following by Naber we

present the standard 1D Schrödinger equation given by Eq. (3.17) using

Planck units,

iTP
∂ψ(x, t)

∂t
= −L

2
PMP

2m

∂2

∂x2
ψ(x, t) +

V (x)

EP
ψ(x, t), (12.1)

where LP , TP , MP , and EP are Planck length, time, mass and energy

defined by

LP =

√
G~
c3
, TP =

√
G~
c5
, MP =

√
~c
G
, EP = MP c

2, (12.2)

with G being the gravitational constant and c being the speed of light.

By introducing dimensionless parameter Nm and function NV (x)

Nm =
m

MP
and NV (x) =

V (x)

EP
, (12.3)

we rewrite Eq. (12.1) as

iTP
∂ψ(x, t)

∂t
= − L2

P

2Nm

∂2

∂x2
ψ(x, t) +NV (x)ψ(x, t). (12.4)

The parameter Nm is the measure of particle mass in Planck mass units,

while function NV (x) is the measure of potential energy V (x) in Planck

energy units.

To introduce time fractional Schrödinger equation we substitute time

derivative ∂/∂t in Eq. (12.1) to fractional time derivative of order ν defined

by (for details see Appendix B)

∂νt f(t) =
1

Γ(1− ν)

t∫
0

dτ
f
′
(τ)

(t− τ)ν
, 0 < ν < 1, (12.5)
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and

∂νt f(t) =
d

dt
f(t), ν = 1, (12.6)

where f
′
(τ) is first order time derivative, f

′
(τ) = df(τ)/dτ and Γ(1 − ν)

is the Gamma function.

Defined by Eqs. (12.5) and (12.6) fractional time derivative is called

Caputo fractional derivative [143].

This substitution can be realized by two alternative ways,

(iTP )ν∂νt ψ(x, t) = − L2
P

2Nm

∂2

∂x2
ψ(x, t) +NV (x)ψ(x, t) (12.7)

or

i(TP )ν∂νt ψ(x, t) = − L2
P

2Nm

∂2

∂x2
ψ(x, t) +NV (x)ψ(x, t) (12.8)

as far as TP must be raised to the same order as the order of time fractional

derivative to save appropriate units. Note that the range for parameter ν

in these equations is 0 < ν ≤ 1.

The question of whether or not to rise imaginary unit i to the order of

fractional time derivative was addressed by Naber [141]. Naber explained

as well why one should raise the power of imaginary unit i to the order ν

of fractional time derivative. From a stand point of a Wick rotation the

imaginary unit has to be raised to the same power as the time variable.

Another fundamental reason to raise imaginary unit to the same power as

the time variable is the criteria of appropriateness (from stand point of

quantum physics) of temporal behavior of the solution to time fractional

Schrödinger equation. Naber wrote [141], “When solving for the time com-

ponent of Eq. (12.7) or Eq. (12.8) the Laplace transform is the preferred

method. For Eq. (12.7), changing the order of the derivative moves the

pole (from the inverse Laplace transform) up or down the negative imagi-

nary axis. Hence, the temporal behavior of the solution will not change. For

Eq. (12.8), changing the order of the derivative moves the pole to almost

any desired location in the complex plane. Physically, this would mean that

a small change in the order of the time derivative, in Eq. (12.8), could

change the temporal behavior from sinusoidal to growth or to decay. Due

to the simpler physical behavior of Eq. (12.7) and the role of ‘i’ in a Wick

rotation, Eq. (12.7) is the best candidate for a time fractional Schrödinger

equation.”
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Thus, Eq. (12.7) is 1D time fractional Schrödinger equation first ob-

tained by Naber [141].

12.3 Space-time fractional Schrödinger equation

12.3.1 Wang and Xu, and Dong and Xu approach

Inspired by works [67], [92] and [141], Wang and Xu [144] and then Dong

and Xu [145] combined both Laskin’s fractional Schrödinger equation and

Naber’s time fractional Schrödinger equation and came up with space-time

fractional Schrödinger equation. Dong and Xu [145] coined the term space–

time fractional Schrödinger equation for Schrödinger equation with involve-

ment of both space and time fractional derivatives.

To review Wang and Xu, and Dong and Xu approach we will follow the

work by Dong and Xu [145]. With the help of Planck units defined by Eq.

(12.2) the 1D fractional Schrödinger equation (3.20) can be rewritten in

dimensionless form as [145]

iTP
∂ψ(x, t)

∂t
=
DαT

2−2α
P (−~2∆)α/2

M1−α
P EαPL

2−2α
P

ψ(x, t) +
V (x)

EP
ψ(x, t), (12.9)

1 < α ≤ 2.

Substituting the time derivative ∂/∂t with the Caputo fractional time

derivative ∂βt of order β, yields

(iTP )β∂βt ψ(x, t) =
DαT

2−2α
P (−~2∆)α/2

M1−α
P EαPL

2−2α
P

ψ(x, t) +
V (x)

EP
ψ(x, t), (12.10)

1 < α ≤ 2, 0 < β ≤ 1,

here ∂βt stands for fractional time derivative introduced by Eqs. (12.5) and

(12.6) with renaming ν → β.

Thus, Eq. (12.10) is first obtained by Wang and Xu [144] 1D space-time

fractional Schrödinger equation expressed in the form presented by Dong

and Xu [145].
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12.3.2 Laskin approach

Considering a 1D spatial dimensional, Laskin launched the space-time frac-

tional Schrödinger equation in the following form [146],

iβ~β∂βt ψ(x, t) = Dα,β(−~2
β∆)α/2ψ(x, t) + V (x, t)ψ(x, t), (12.11)

1 < α ≤ 2, 0 < β ≤ 1,

here ψ(x, t) is the wave function, i is imaginary unit, i =
√
−1, V (x, t) is

potential energy, ~β and Dα,β are two scale coefficients, which we introduce

into the framework of time fractional quantum mechanics, ∆ is the 1D

Laplace operator, ∆ = ∂2/∂x2, and, finally, ∂βt is the left Caputo fractional

derivative [143] of order β defined by

∂βt f(t) =
1

Γ(1− ν)

t∫
0

dτ
f
′
(τ)

(t− τ)ν
, 0 < β < 1, (12.12)

and

∂βt f(t) =
∂

∂t
f(t), β = 1, (12.13)

where f
′
(τ) is first order time derivative, f

′
(τ) = df(τ)/dτ , Γ(1−β) is the

Gamma function.

The operator (−~2
β∆)α/2 in Eq. (12.11) is a time fractional quantum

Riesz derivative introduced first in [146]

(−~2
β∆)α/2ψ(x, t) =

1

2π~β

∫
dpβ exp{ipβx

~β
}|pβ |αϕ(pβ , t), (12.14)

where the wave functions in space and momentum representations, ψ(x, t)

and ϕ(p, t), are related to each other by the Fourier transforms

ψ(x, t) =
1

2π~β

∫
dpβ exp{ipβx

~β
}ϕ(pβ , t) (12.15)

and

ϕ(pβ , t) =

∫
dr exp{−ipβx

~β
}ψ(x, t). (12.16)
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Quantum scale coefficient ~β has units of

[~β ] = erg · secβ , (12.17)

and scale coefficient Dα,β has units of

[Dα,β ] = erg1−α · cmα · sec−αβ . (12.18)

The introduction of the scale coefficient Dα,β was inspired by Bayin

[147].

12.4 Pseudo-Hamilton operator in time fractional quantum

mechanics

Aiming to obtain the operator form of space-time fractional Schrödinger

equation Eq. (12.11), let us define time fractional quantum momentum

operator p̂β

p̂β = −i~β
∂

∂x
, (12.19)

and quantum operator of coordinate x̂,

x̂ = x. (12.20)

Hence, the commutation relation in the framework of time fractional

quantum mechanics has the form

[x̂, p̂β ] = i~β , (12.21)

where [x̂, p̂β ] is the commutator of two quantum operators x̂ and p̂β ,

[x̂, p̂β ] = x̂p̂β − p̂β x̂.

Using quantum operators of momentum Eq. (12.19) and coordinate Eq.

(12.20), we introduce a new time fractional quantum mechanical operator

Ĥα,β(p̂β , x̂),

Ĥα,β(p̂β , x̂) = Dα,β |p̂β |α + V (x̂, t). (12.22)
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The operator Ĥα,β(p̂β , x̂) is not the Hamilton operator of the quantum

mechanical system under consideration1. Following [145], we will call this

operator pseudo-Hamilton operator.

Having the pseudo-Hamilton operator Ĥα,β , let us rewrite Eq. (12.11)

as

~βiβ∂βt ψ(x, t) = Ĥα,β(p̂β , x̂)ψ(x, t)

= (Dα,β |p̂β |α + V (x̂, t))ψ(x, t), (12.23)

1 < α ≤ 2, 0 < β ≤ 1,

which is operator form of the space-time fractional Schrödinger equation

[146].

The pseudo-Hamilton operator Ĥα,β(p̂β , x̂) introduced by Eq. (3.18) is

the Hermitian operator in space with scalar product

(φ, χ) =

∞∫
−∞

dxφ∗(x, t)χ(x, t). (12.24)

In this space, operators p̂β and x̂ defined by Eqs. (12.19) and (12.20) are

Hermitian operators. The proof can be found in any textbook on quantum

mechanics, (see, for example, [94]).

To prove the Hermiticity of quantum mechanical operator Ĥα,β let us

note that in accordance with the definition of the time fractional quantum

Riesz derivative given by Eq. (3.5) there exists the integration-by-parts

formula

(φ, (−~2
β∆)α/2χ) = ((−~2

β∆)α/2φ, χ). (12.25)

Therefore, using this integration-by-parts formula we prove straightfor-

wardly Hermiticity of the term Dα,β |p̂β |α = Dα,β(−~2
β∆)α/2. Next, poten-

tial energy operator V (x̂, t) in Eq. (3.18) is Hermitian operator by virtue

of being a function of Hermitian operator x̂.

Thus, we complete the proof of Hermiticity of the pseudo-Hamilton

operator Ĥα,β in the space with scalar product defined by Eq. (12.24).

1In time fractional quantum mechanics the eigenvalues of operator Ĥα,β(p̂β , x̂) are not
energies of a quantum system. In classical time fractional mechanics the principle of least

action with classical pseudo-Hamilton function Hα,β(pβ , x) does not result in Hamilton
equations of motion.
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12.5 3D generalization of space-time fractional Schrödinger

equation

Considering the 3D spatial dimensional, we launch the space-time fractional

Schrödinger equation of the following form [146],

iβ~β∂βt ψ(r, t) = Dα,β(−~2
β∆)α/2ψ(r, t) + V (r, t)ψ(r, t), (12.26)

1 < α ≤ 2, 0 < β ≤ 1,

where ψ(r, t) is the wave function, r is the 3D space vector, ∆ is the Lapla-

cian, ∆ = (∂/∂r)
2
, all other notations are the same as for Eq. (3.1), and

the 3D time fractional quantum Riesz derivative (−~2
β∆)α/2 is defined by

(−~2
β∆)α/2ψ(r, t) =

1

(2π~β)3

∫
d3r exp{ipβr

~β
}|pβ |αϕ(pβ , t), (12.27)

where the wave functions in space representation ψ(r, t) and momentum

representation ϕ(p, t) are related to each other by the 3D Fourier transforms

ψ(r, t) =
1

(2π~β)3

∫
d3p exp{ipβr

~β
}ϕ(pβ , t) (12.28)

and

ϕ(pβ , t) =

∫
d3r exp{−ipβr

~β
}ψ(r, t). (12.29)

Further, the 3D generalization of the pseudo-Hamilton operator Ĥα,β

in the framework of time fractional quantum mechanics is

Ĥα,β(p̂β , r̂) = Dα,β |p̂β |α + V (r̂, t), (12.30)

where r̂ is the 3D quantum operator of coordinate

r̂ = r, (12.31)

and p̂β is the 3D time fractional quantum momentum operator introduced

by

p̂β = −i~β
∂

∂r
, (12.32)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 205

Time Fractional Quantum Mechanics 205

with ~β being the scale coefficient appearing for the first time in Eqs. (3.1)

and (12.26).

The basic canonical commutation relationships in the 3D case are

[r̂k, p̂βj ] = i~βδkj , [r̂k, r̂j ] = 0, [p̂βk, p̂βj ] = 0, (12.33)

where δkj is the Kronecker symbol,

δkj ,=

{
1 k = j,

0 k 6= j,
(12.34)

and k, j = 1, 2, 3.

Having the 3D generalization of pseudo-Hamilton operator Ĥα,β(p̂β , r̂),

let us present Eq. (12.26) in the form

~βiβ∂βt ψ(r, t) = Ĥα,β(p̂β , r̂)ψ(r, t) (12.35)

= (Dα,β |p̂β |α + V (r̂, t))ψ(r, t),

1 < α ≤ 2, 0 < β ≤ 1,

which is the operator form of the 3D space-time fractional Schrödinger

equation.

Operators (12.31) and (12.32) allow us to introduce time fractional an-

gular momentum operator L̂β as cross-product of the above two defined

operators r̂ and p̂β

L̂β = r̂× p̂β = −i~βr× ∂

∂r
. (12.36)

This equation can be expressed in component form

L̂βi = εijkr̂j p̂βk, i, k, j = 1, 2, 3, (12.37)

if we use the 3D Levi-Civita antisymmetric tensor εijk which changes its

sign under interchange of any pair of indices i, j, k.

It is obvious that the algebra of time fractional angular momentum

operators L̂βi and its commutation relationships with operators r̂j and p̂βk
are the same as for the angular momentum operator of quantum mechanics

[94].
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12.5.1 Hermiticity of pseudo-Hamilton operator

To prove that defined by Eq. (12.26) Ĥα,β(p̂β , r̂) is Hermitian operator we

introduce the space with scalar product defined by

(φ(r, t), χ(r, t)) =

∫
d3rφ∗(r, t)χ(r, t), (12.38)

where φ∗(r, t) means complex conjugate function.

Then, the proof can be done straightforwardly by the 3D generalization

of the considered presented in Sec. 12.4.

12.5.2 The parity conservation law

Here we study invariance of pseudo-Hamilton operator Ĥα,β(p̂β , r̂) under

inversion transformation. Inversion, or to be precise, spatial inversion con-

sists of the simultaneous change in the sign of all three spatial coordinates

r→ −r, x→ −x, y → −y, z → −z. (12.39)

It is easy to see that

(−~2
β∆)α/2 exp{ipβx

~β
} = |pβ |α exp{ipβx

~β
}, (12.40)

which means that the function exp{ipβx/~β} is the eigenfunction of the 3D

time fractional quantum Riesz operator (−~2
β∆)α/2 with eigenvalue |pβ |α.

Thus, the operator (−~2
β∆)α/2 is the symmetrized fractional derivative,

that is

(−~2
β∆r)

α/2... = (−~2
β∆−r)

α/2.... (12.41)

Assuming that the potential energy operator V (r̂, t) is invariant under

spatial inversion V (r̂, t) = V (−r̂, t), we conclude that pseudo-Hamilton

operator Ĥα,β(p̂β , r̂) is invariant under inversion, or, in other words, it

supports the parity conservation law. The inverse symmetry results in

the fact that inversion operator P̂inv and the pseudo-Hamilton operator

Ĥα,β(p̂β , r̂) commute

P̂invĤα,β = Ĥα,βP̂inv. (12.42)
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Hence, we can divide the wave functions of time fractional quantum

mechanical states with defined eigenvalue of the operator P̂inv into two

classes: (i) wave functions which are not changed upon the action of the

inversion operator, P̂invψ+(r) = ψ+(r), the corresponding states are called

even states; (ii) wave functions which change sign under action of the in-

version operator, P̂invψ−(r) = −ψ−(r), the corresponding states are called

odd states. Equation (12.42) represents the parity conservation law for

time fractional quantum mechanics, that is, if the state of a time fractional

quantum mechanical system has a given parity (i.e. if it is even, or odd),

then this parity is conserved.

Thus, we conclude that time fractional quantum mechanics supports

the parity conservation law.

12.5.3 Space-time fractional Schrödinger equation in

momentum representation

To obtain the space-time fractional Schrödinger equation in momentum

representation let us substitute the wave function ψ(r, t) from Eq. (12.28)

into Eq. (12.26),

iβ~β∂βt
1

(2π~β)3

∫
d3p′β exp{i

p′βr

~β
}ϕ(p′β , t)

=
Dα,β

(2π~β)3

∫
d3p′β exp{i

p′βr

~β
}|p′β |αϕ(p′β , t) (12.43)

+
V (r,t)

(2π~β)3

∫
d3p′β exp{i

p′βr

~β
}ϕ(p′β , t).

Further, multiplying Eq. (12.43) by exp(−ipβr/~β) and integrating

over d3r yields the equation for the wave function ϕ(pβ , t) in momentum

representation

iβ~β∂βt ϕ(pβ , t) = Dα,β |pβ |αϕ(pβ , t) +

∫
d3p′βUpβ ,p′β

ϕ(p′β , t), (12.44)

1 < α ≤ 2, 0 < β ≤ 1,

where Upβ ,p′β
is introduced as

Upβ ,p′β
=

1

(2π~β)3

∫
d3r exp{−i(pβ−p′β)r/~β}V (r,t), (12.45)
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and we used the following representation for the delta function δ(r)

δ(r) =
1

(2π~β)3

∫
d3pβ exp(ipβr/~β). (12.46)

Equation (12.44) is the 3D space-time fractional Schrödinger equation

in momentum representation.

Substituting the wave function ψ(x, t) from Eq. (12.15) into Eq. (12.11),

multiplying by exp(−ipx/~) and integrating over dx bring us the 1D space-

time fractional Schrödinger equation in momentum representation

iβ~β∂βt ϕ(pβ , t) = Dα,β |pβ |αϕ(pβ , t) +

∫
dp′βUpβ ,p′βϕ(p′β , t), (12.47)

1 < α ≤ 2, 0 < β ≤ 1,

where Upβ ,p′β is given by

Upβ ,p′β =
1

2π~β

∫
dx exp{−i(pβ−p′β)x/~β}V (x), (12.48)

and we used the following representation for the delta function δ(x)

δ(x) =
1

2π~β

∫
dpβ exp(ipβx/~β). (12.49)

Equation (12.44) is the 1D space-time fractional Schrödinger equation

in momentum representation for the wave function ϕ(pβ , t).

12.6 Solution to space-time fractional Schrödinger equation

It is well known that if the Hamilton operator of a quantum mechanical

system does not depend on time, then we can search for the solution to the

Schrödinger equation in separable form. In the case when pseudo-Hamilton

operator (12.30) doesn’t depend on time we search for the solution to Eq.

(12.11) assuming that the solution has form,

ψ(x, t) = ϕ(x)χ(t), (12.50)

where ϕ(x) and χ(t) are spatial and temporal components of the wave

function ψ(x, t)2.
2We consider here 1D space-time fractional Schrödinger equation. The generalization

to 3D case can be done straightforwardly.
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It is assumed as well that initial wave function ψ(x, t = 0) = ψ(x, 0) is

normalized

∞∫
−∞

dx|ψ(x, 0)|2 = |χ(0)|2
∞∫
−∞

dx|ϕ(x)|2 = 1. (12.51)

Substituting Eq. (12.50) into Eq. (12.11) we obtain two equations

Ĥα,β(p̂β , x̂)ϕ(x) = Eϕ(x) (12.52)

and

iβ~β∂βt χ(t) = Eχ(t), χ(t = 0) = χ(0), (12.53)

where E is the eigenvalue of quantum mechanical pseudo-Hamilton operator

Ĥβ(p̂β , x̂),

Ĥα,β(p̂β , x̂) = Dα,β |p̂β |α + V (x̂), 1 < α ≤ 2, 0 < β ≤ 1. (12.54)

The solution to Eq. (12.52) depending on potential energy term V (x̂)

can be obtained by the well-known methods of standard quantum mechanics

[94]. To find the solution to time fractional equation (12.53) we can use the

Laplace transform method3. In the Laplace transform domain Eq. (12.53)

reads

iβ~β
(
sβχ̃(s)− sβ−1χ(0)

)
= Eχ̃(s), (12.57)

3The Laplace transform χ̃(s) of a function χ(t) is defined as

χ̃(s) =

∞∫
0

dte−stχ(t), (12.55)

where χ(t) is defined for t ≥ 0 if the integral exists.

The inverse Laplace transform is defined by

χ(t) =
1

2πi

γ+i∞∫
γi−∞

dsestχ̃(s), (12.56)

where the integration is done along the vertical line Re(s) = γ in the complex plane s

such that γ is greater than the real part of all singularities in the complex plane of χ̃(s).
This requirement on integration path in the complex plane s ensures that the contour

path is in the region of convergence. In practice, computing the complex integral can be
done by using the Cauchy residue theorem.
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where χ̃(s) is defined by Eq. (12.55) and χ(0) = χ(t = 0) is the initial

condition on time dependent component χ(t) of the wave function ψ(x, t)

given by Eq. (12.50).

Further, from Eq. (12.57) we have

χ̃(s) =
s−1

1− Es−β/iβ~β
χ(0), (12.58)

which can be presented as geometric series (the range of convergence is

given by the criteria |Es−β/iβ~β | < 1, see [147]),

χ̃(s) = χ(0)
∞∑
m=0

(
Es−β

iβ~β
)ms−1 = χ(0)

∞∑
m=0

(
E

iβ~β
)ms−mβ−1. (12.59)

Then the inverse Laplace transform yields

χ(t) = χ(0)
∞∑
m=0

(
E

iβ~β
)m

tβm

Γ(βm+ 1)
= χ(0)Eβ(

(−it)βE
~β

), (12.60)

here Eβ(z) is the Mittag-Leffler function [148], [149] defined by the series

Eβ(z) =
∞∑
m=0

zm

Γ(βm+ 1)
, (12.61)

with Γ(x) being the Gamma function given by Eq. (5.7).

In the limit case, when β = 1, the Mittag-Leffler function Eβ(z) becomes

the exponential function

Eβ(z)|β=1 =

∞∑
m=0

zm

m!
= exp(z), (12.62)

and χ(t) goes into

χ(t)|β=1 = χ(0) exp(−iEt
~

), (12.63)

here ~ is Planck’s constant and E is an eigenvalue of quantum mechanical

Hamilton operator Ĥα(p̂, x̂),

Ĥα(p̂, x̂) = Ĥα,β(p̂β , x̂)|β=1 = Dα|p̂|α + V (x̂), 1 < α ≤ 2, (12.64)
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where the scale coefficient Dα = Dα,β |β=1 was introduced originally in [67].

It is easy to see that the time dependent component χ(t) (12.60) of the

wave function ψ(x, t) can be written as

χ(t) = χ(0)

{
Ecβ(

E(−t)β

~β
) + iβEsβ(

E(−t)β

~β
)

}
, (12.65)

if we use the following new expression for the Mittag-Leffler function

Eβ(iβz),

Eβ(iβz) = Ecβ(z) + iβEsβ(z), 0 < β ≤ 1, (12.66)

in terms of two functions Ecβ(z) and Esβ(z) introduced by Eqs. (E.5) and

(E.6), see Appendix E.

It has been shown in Appendix E that Eq. (12.66) can be considered

as a fractional generalization of the celebrated Euler’s formula, which is

recovered from Eq. (12.66) in the limit case β = 1.

Finally, we have the solution to the time fractional Schrödinger equation

(12.11) given by

ψ(x, t) = ϕ(x)Eβ(
Etβ

iβ~β
) (12.67)

= ϕ(x)χ(0)

{
Ecβ(

E(−t)β

~β
) + iβEsβ(

E(−t)β

~β
)

}
.

We see from Eq. (12.67) that the time fractional quantum mechanics

does not support normalization condition for the wave function. If normal-

ization condition (12.51) holds at the initial time moment t = 0, then at

any time moment t > 0 it becomes time dependent

∞∫
−∞

dx|ψ(x, t)|2 =

∣∣∣∣Ecβ(
E(−tβ)

~β
) + iβEsβ(

E(−tβ)

~β
)

∣∣∣∣2 · |χ(0)|2
∞∫
−∞

dx|ϕ(x)|2

= E
{ ∣∣∣∣Ecβ(

E(−tβ)

~β
)

∣∣∣∣2 +

∣∣∣∣Esβ(
E(−tβ)

~β
)

∣∣∣∣2 (12.68)

+ 2 Re

(
iβEsβ(

E(−tβ)

~β
)Ec∗β(

E(−tβ)

~β
)

)}
,
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where Ec∗β(E(−tβ)
~β ) stands for the complex conjugate of the function

Ecβ(E(−tβ)
~β ), and we took into account the normalization condition given

by Eq. (12.51).

Therefore, we come to the conclusion that in the framework of

time fractional quantum mechanics total quantum mechanical probability
∞∫
−∞

dx|ψ(x, t)|2 is time dependent. In other words, time fractional quan-

tum mechanics does not support a fundamental property of the quantum

mechanics - conservation of quantum mechanical probability.

12.7 Energy in the framework of time fractional quantum

mechanics

Here, we introduce the concept of energy of time fractional quantum system.

Having the pseudo-Hamilton operator Ĥα,β(p̂β , x̂) and the wave function

ψα,β(x, t) given by Eq. (12.67) we define the energy of a quantum system

in the framework of time fractional quantum mechanics as follows:

Eα,β =

∫
dxψ∗α,β(x, t)Ĥα,β(p̂β , x̂)ψα,β(x, t), (12.69)

where ψ∗α,β(x, t) stands for the complex conjugate of wave function

ψα,β(x, t).

This definition is in line with the definition of stationary energy lev-

els in the frameworks of standard quantum mechanics [94] and fractional

quantum mechanics [67], [96]. Indeed, if the pseudo-Hamilton operator

Ĥα,β(p̂β , x̂) does not depend on time, then at β = 1 we obtain time in-

dependent Hamilton operator Ĥα(p̂, x̂) = Ĥα,β(p̂β , x̂)|β=1, while the wave

function ψα,β(x, t) introduced by Eq. (12.50) becomes

ψα,β(x, t)|β=1 = ψα,1(x, t) = ϕα,1(x)χ(0) exp(−iEα,1t
~

), (12.70)

with the help of Eq. (12.63). Hence, we obtain from Eq. (12.69)

Eα = Eα,β |β=1 =

∫
dxψ∗α,1(x, t)Ĥα(p̂β , x̂)ψα,1(x, t)|β=1 = Eα,1, (12.71)

here 1 < α ≤ 2, Eα is the energy of a physical quantum system, Eα,1 is

the eigenvalue of quantum mechanical Hamilton operator Ĥα(p̂, x̂) given

by Eq. (12.64), and normalization condition (12.51) has been taken into

account.



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 213

Time Fractional Quantum Mechanics 213

Hence, in the limit case β = 1 we recover the well-known statement of

standard quantum mechanics [94] and fractional quantum mechanics [67],

[96] that the energy spectrum of a quantum system is a set of eigenvalues

of Hamilton operator.

To calculate Eα,β let us substitute ψα,β(x, t) given by Eq. (12.50) into

Eq. (12.69)

Eα,β = Eα,β |χ(0)|2 (12.72)

×
∣∣∣∣Ecβ(

Eα,β(−tβ)

~β
) + iβEsβ(

Eα,β(−tβ)

~β
)

∣∣∣∣2
∞∫
−∞

dx|ϕ(x)|2,

where we used definition (12.65) for the function χα,β(t).

With the help of Eq. (12.51) the last equation can be rewritten as

Eα,β = Eα,β
{ ∣∣∣∣Ecβ(

E(−tβ)

~β
)

∣∣∣∣2 +

∣∣∣∣Esβ(
E(−tβ)

~β
)

∣∣∣∣2 (12.73)

+ 2 Re

(
iβEsβ(

E(−tβ)

~β
)Ec∗β(

E(−tβ)

~β
)

)}
.

This equation defines the energy Eα,β of a time fractional quantum

system with the pseudo-Hamilton operator Ĥα,β(p̂β , x̂) introduced by Eq.

(12.22). The energy Eα,β is real due to the Hermiticity of the pseudo-

Hamilton operator Ĥα,β(p̂β , x̂). We see that the energy Eα,β of a time

fractional quantum system depends on time t, eigenvalue Eα,β of pseudo-

Hamilton operator, and fractality parameters α and β. Thus, we come to

the conclusion that in the framework of time fractional quantum mechanics

there are no stationary states and the eigenvalues of the pseudo-Hamilton

operator are not the energy levels of time fractional quantum system.

Let us note that in the limit case β = 1 we have (see Eqs. (E.5) and

(E.6) in Appendix E),

Ecβ(z)|β=1 = cos(z), Esβ(z)|β=1 = sin(z). (12.74)

Hence, it follows from Eqs. (12.73) and (12.74) that

Eα = Eα,β |β=1 = Eα,1, 1 < α ≤ 2,

which is in line with Eq. (12.71).
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Chapter 13

Applications of Time Fractional
Quantum Mechanics

13.1 A free particle wave function

For a free particle when V (x, t) = 0, the 1D space-time fractional

Schrödinger equation (12.11) reads

iβ~β∂βt ψ(x, t) = Dα,β(−~2
β∆)α/2ψ(x, t), (13.1)

1 < α ≤ 2, 0 < β ≤ 1,

here ψ(x, t) is the wave function, i is imaginary unit, i =
√
−1, ~β is scale

coefficient, ∆ is 1D Laplace operator, ∆ = ∂2/∂x2, and, finally, ∂βt is the

left Caputo fractional derivative of order β defined by Eqs. (12.12) and

(12.13).

We are searching for solution to Eq. (13.1) with the initial condition

ψ0(x),

ψ0(x) = ψ(x, t = 0). (13.2)

By applying the Fourier transform to the wave function ψ(x, t),

ψ(x, t) =
1

2π~β

∞∫
−∞

dpβ exp{ipβx/~β}ϕ(pβ , t), (13.3)

with ϕ(pβ , t) defined by

ϕ(pβ , t) =

∞∫
−∞

dx exp{−ipβx/~β}ψ(x, t), (13.4)

215
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we obtain from Eq. (13.1)

iβ~β∂βt ϕ(pβ , t) = Dα,β |pβ |αϕ(pβ , t), (13.5)

with the initial condition ϕ0(pβ) given by

ϕ0(pβ) = ϕ(pβ , t = 0) =

∞∫
−∞

dx exp{−ipβx/~β}ψ0(x). (13.6)

The equation (13.5) is the 1D space-time fractional Schrödinger equation

in momentum representation.

The solution to the problem introduced by Eqs. (13.5) and (13.6) is

ϕ(pβ , t) = Eβ

(
Dα,β |pβ |α

tβ

iβ~β

)
ϕ0(pβ), (13.7)

where Eβ is the Mittag-Leffler function given by Eq. (12.61).

Hence, the solution to the 1D space-time fractional Schrödinger equation

Eq. (13.1) with initial condition given by Eq. (13.2) can be presented as

ψ(x, t) =
1

2π~β

∞∫
−∞

dx′
∞∫
−∞

dpβ exp

{
i
pβ(x− x′)

~β

}
(13.8)

×Eβ
(
Dα,β |pβ |α

tβ

iβ~β

)
ψ0(x′).

13.2 Infinite potential well problem in time fractional

quantum mechanics

Considering a particle in the symmetric infinite potential well defined by

Eq. (10.25) we can use the results of Sec. 10.2 to come up with solution

to space-time fractional Schrödinger equation (12.11). Since the potential

field defined by Eq. (10.25) does not depend on time t, we are searching

for solution ψ(x, t) to Eq. (12.11) in separable form given by Eq. (12.50),

ψ(x, t) = ϕ(x)χ(t), where ϕ(x) is spatial and χ(t) is temporal components

of the solution.

It is assumed as well, that initial wave function ψ(x, t = 0) = ψ(x, 0) is

normalized and the normalization condition is given by Eq. (12.51).
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The spatial component ϕ(x) of the solution ψ(x, t) satisfies

−Dα(~∇)αφ(x) = Eφ(x), φ(−a) = φ(a) = 0, (13.9)

where E is the eigenvalue of fractional quantum mechanical operator

−Dα(~∇)α.

The solution to the problem (13.9) was found in Sec. 10.2. The normal-

ized spatial wave function φn(x) is

φn(x) =
1

2
√
a
{exp(−inπ

2a
x)− (−1)n exp(i

nπ

2a
x)}, (13.10)

and quantized parameter En with units of energy is given by

En = Dα(
π~
2a

)nα, (13.11)

where n is positive integer and 2a is width of the symmetric infinite poten-

tial well defined by Eq. (10.25).

In the framework of time fractional quantum mechanics the energy of a

particle in the symmetric infinite potential well has the form

En = En
{ ∣∣∣∣Ecβ(

En(−tβ)

~β
)

∣∣∣∣2 +

∣∣∣∣Esβ(
En(−tβ)

~β
)

∣∣∣∣2 (13.12)

+ 2 Re

(
iβEsβ(

En(−tβ)

~β
)Ec∗β(

En(−tβ)

~β
)

)}
,

where functions Ecβ and Esβ are defined by Eqs. (E.5) and (E.6) (see,

Appendix E).

Since the potential V (x) defined by Eq. (10.25) is symmetric potential

V (x) = V (−x),

we can introduce even φeven
m (x) and odd φodd

m (x) under reflection x → −x
solutions to the problem (13.9). It has been found in Sec. 10.2 that φeven

m (x)

and φodd
m (x) are given by Eqs. (10.40) and (10.41) respectively.

The temporal component χ(t) of solution ψn(x, t) is given by Eq.

(12.60). Then the normalized solution to the problem (10.28) in the frame-

work of time fractional quantum mechanics is

ψn(x, t) =
1

2
√
a
{exp(−inπ

2a
x)− (−1)n exp(i

nπ

2a
x)} (13.13)
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×χ(0)Eβ

(
(−it)βE

~β

)
,

here Eβ((−it)E/~β) is the Mittag-Leffler function and χ(0) is the initial

(at t = 0) value of the temporal component χ(0) = χ(t)|t=0. We present

ψn(x, t) given by Eq. (13.13) as

ψn(x, t) = ϕn(x)χβ(t), (13.14)

where two functions ϕn(x) and χβ(t) have been introduced by

ϕn(x) =
1

2
√
a
{exp(−inπ

2a
x)− (−1)n exp(i

nπ

2a
x)} (13.15)

and

χβ(t) = χ(0)Eβ

(
(−it)βE

~β

)
. (13.16)

It is assumed that at the initial time moment t = 0, ψn(x, 0) =

ψn(x, t)|t=0 is normalized, that is

∞∫
−∞

dx|ψn(x, 0)|2 = |χ(0)|2
∞∫
−∞

dx|ϕn(x)|2 = 1. (13.17)

Taking into account that ϕn(x) is normalized spatial wave function (see,

Sec. 10.2) we conclude that |χ(0)|2 = 1.

The wave function ψn(x, t) given by Eq. (13.17) is solution to the space-

time fractional Schrödinger equation for a particle in symmetric infinite

potential well defined by Eq. (10.25).

It follows from Eq. (13.13) that even time independent solution to

the space-time fractional Schrödinger equation for a particle in symmetric

infinite potential well-defined by Eq. (10.25) is

ψeven
m (x, t) =

1√
a

cos

(
(2m+ 1)π

2a
x

)
χ(0)

×Eβ
{
Dα

(
(2m+ 1)π~

2a

)α
(−it)β/~β

}
, (13.18)

m = 0, 1, 2, ...,
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and the odd time independent solution is

ψodd
m (x, t) = − i√

a
sin(

mπ

a
x)χ(0) (13.19)

×Eβ
{
Dα

(
2mπ~
a

)α
(−it)β/~β

}
,

m = 1, 2, ....

In the infinite potential well the ground state is represented by the wave

function ψground(x, t), which is ψn(x, t) given by Eq. (13.13) at n = 1,

ψground(x, t) = ψn(x, t)|n=1 = ψ1(x, t), and it has the form

ψground(x, t) = ψ1(x, t) =
1√
a

cos{πx
2a
}χ(0)Eβ

{
Dα

(
π~
2a

)α
(−it)β/~β

}
.

(13.20)

Obviously, the ground state wave function ψground(x, t) can be presented

as

ψground(x, t) = ψeven
m (x, t)|m=0, (13.21)

where ψeven
m (x, t) is defined by Eq. (13.18).

In the framework of time fractional quantum mechanics ground state

energy Eground is

Eground = En|n=1 = E1
{ ∣∣∣∣Ecβ(

E1(−tβ)

~β
)

∣∣∣∣2 +

∣∣∣∣Esβ(
E1(−tβ)

~β
)

∣∣∣∣2 (13.22)

+ 2 Re

(
iβEsβ(

E1(−tβ)

~β
)Ec∗β(

E1(−tβ)

~β
)

)}
,

where En is defined by Eq. (13.12) and E1 comes from Eq. (13.11) at

n = 1,

E1 = En|n=1 = Dα(
π~
2a

). (13.23)

It is easy to see that Eqs. (13.14), (13.18) and (13.21) allow us to

conclude that time independent wave function of ground state φground(x)

is given by

φground(x) ≡ ψeven
0 (x) =

1√
a

cos{πx
2a
}. (13.24)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 220

220 Fractional Quantum Mechanics

13.3 A free particle space-time fractional quantum

mechanical kernel

The solution (13.8) to space-time fractional Schrödinger equation can be

expressed in the form

ψ(x, t) =

∞∫
−∞

dx′K
(0)
α,β(x− x′, t)ψ0(x′), (13.25)

if we introduce into consideration a free particle space-time fractional quan-

tum mechanical kernel K
(0)
α,β(x, t) defined by

K
(0)
α,β(x, t) =

1

2π~β

∞∫
−∞

dpβ exp

{
i
pβx

~β

}
Eβ

(
Dα,β |pβ |α

tβ

iβ~β

)
, (13.26)

1 < α ≤ 2, 0 < β ≤ 1.

The space-time fractional quantum mechanical kernelK
(0)
α,β(x, t) satisfies

K
(0)
α,β(x, t)|t=0 = K

(0)
α,β(x, 0) = δ(x), (13.27)

1 < α ≤ 2, 0 < β ≤ 1,

where δ(x) is delta function.

It follows immediately from Eq. (13.26) that the Fourier transform

K
(0)
α,β(pβ , t) of space-time fractional quantum mechanical kernel is

K
(0)
α,β(pβ , t) =

∞∫
−∞

dx exp

{
−ipβx

~β

}
K

(0)
α,β(x, t)

= Eβ

(
Dα,β |pβ |α

tβ

iβ~β

)
, (13.28)

1 < α ≤ 2, 0 < β ≤ 1.

This is the space-time fractional quantum mechanical kernel in momen-

tum representation.
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Applying the Laplace transform with respect to the time variable t we

obtain the Fourier-Laplace transform K
(0)
α,β(pβ , u) of space-time fractional

quantum mechanical kernel

K
(0)
α,β(pβ , s) =

∞∫
0

dt exp{−st}K(0)
α,β(pβ , t) (13.29)

=
sβ−1

sβ −Dα,β |pβ |α/iβ~β
K

(0)
α,β(pβ , 0).

Taking into account Eq. (13.27) we have

K
(0)
α,β(pβ , s) =

sβ−1

sβ −Dα,β |pβ |α/iβ~β
. (13.30)

13.3.1 Renormalization properties of the space-time

fractional quantum mechanical kernel

Aiming to study renormalization properties of the space-time fractional

quantum mechanical kernel, let us re-writeK
(0)
α,β(pβ , s) given by Eq. (13.30)

in integral form

K
(0)
α,β(pβ , s) = sβ−1

∞∫
0

du exp{−u(sβ −Dα,β |pβ |α/iβ~β)} (13.31)

=

∞∫
0

duNα,β(pβ , u)Lβ(u, s),

where we introduced two functions Nα,β(pβ , u) and Lβ(u, s) defined by

Nα,β(pβ , u) = exp{uDα,β |pβ |α/iβ~β} (13.32)

and

Lβ(u, s) = sβ−1 exp{−usβ}. (13.33)

Having new function Nα,β(pβ , u) we obtain

Nα,β(x, u) =
1

2π~β

∞∫
−∞

dpβ exp{ipβx
~β
}Nα,β(pβ , u) (13.34)
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=
1

2π~β

∞∫
−∞

dpβ exp{ipβx
~β
} exp{uDα,β |pβ |α/iβ~β}.

It is easy to see that the scaling

Nα,β(x, u) =
1

u1/α
Nα,β(

x

u1/α
, 1) (13.35)

holds for function Nα,β(x, u) given by Eq. (13.34).

Having new function Lβ(u, s) we obtain

Lβ(u, t) =
1

2πi

σ+i∞∫
σ−i∞

dsestLβ(u, s) (13.36)

=
1

2πi

σ+i∞∫
σ−i∞

dsestsβ−1 exp{−usβ},

where σ is greater than the real part of all singularities of Lβ(u, s) in the

complex plane.

It is easy to see that the scaling

Lβ(u, t) =
1

tβ
Lβ(

u

tβ
, 1), (13.37)

holds for function Lβ(u, t) given by Eq. (13.36).

In terms of the above introduced functions Nα,β(x, u) and Lβ(u, t) Eq.

(13.26) reads

K
(0)
α,β(x, t) =

∞∫
0

duNα,β(x, u)Lβ(u, t), (13.38)

where functions Nα,β(x, u) and Lβ(u, t) are defined by Eqs. (13.34) and

(13.36).

The equivalent representation for K
(0)
α,β(x, t) is

K
(0)
α,β(x, t) =

1

tβ

∞∫
0

du
1

u1/α
Nα,β(

x

u1/α
, 1)Lβ(

u

tβ
, 1), (13.39)
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where 1 < α ≤ 2 and 0 < β ≤ 1.

Hence, one can consider Eq. (13.39) as an alternative representation

for space-time fractional quantum mechanical kernel K
(0)
α,β(x, t). The in-

teresting feature of this representation is that it separates space and time

variables for space-time fractional quantum mechanical kernel K
(0)
α,β(x, t).

It follows from Eqs. (13.34) and (13.38) that

K
(0)
α,β(x, t) = K

(0)
α,β(−x, t). (13.40)

With the help of Eqs. (13.35) and (13.37) we conclude that the scaling

K
(0)
α,β(x, t) =

1

tβ/α
K

(0)
α,β(

x

tβ/α
, 1), (13.41)

holds for space-time fractional quantum mechanical kernel K
(0)
α,β(x, t) given

by Eq. (13.26).

Defined by Eqs. (13.37) and (13.36) function Lβ(u/tβ , 1) can be re-

written as

Lβ(z, 1) =
1

2πi

σ+i∞∫
σ−i∞

dsessβ−1 exp{−zsβ}, 0 < β ≤ 1, (13.42)

where we introduced a new variable z = u/tβ .

13.3.2 Wright L-function in time fractional quantum

mechanics

Our intent now is to show that the function Lβ(z, 1) defined by Eq. (13.42)

can be presented in terms of the Wright function (see, for example, [150]).

We call the function Lβ(z, 1) the Wright L-function. By deforming the in-

tegration path on the right-hand side of Eq. (13.42) into the Hankel contour

Ha we have

Lβ(z, 1) =
1

2πi

∫
Ha

dsessβ−1 exp{−zsβ}, 0 < β ≤ 1. (13.43)

A series expansion for exp{−zsβ} yields

Lβ(z, 1) =
1

2πi

∫
Ha

dsessβ−1
∞∑
k=0

(−1)kzk

k!
sβk (13.44)
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=
∞∑
k=0

(−1)kzk

k!

 1

2πi

∫
Ha

dsessβk+β−1

 .

Using the well-known Hankel representation of the Gamma function

(see, for example, [151]),

1

Γ(−σk + ν)
=

 1

2πi

∫
Ha

dsessσk−ν

 , (13.45)

we obtain for Lβ(z, 1)

Lβ(z, 1) =

∞∑
k=0

(−1)kzk

k!Γ(−βk + (1− β))
. (13.46)

In the notations of [150], the Wright function φ(a, β; z) is expressed as

φ(a, β; z) =
∞∑
k=0

zk

k!Γ(ak + β)
, a > −1, β ∈ C, (13.47)

where C stands for the field of complex numbers.

In terms of Fox’s H-function the function φ(a, β; z) has the following

representation

φ(a, β; z) = H1,0
0,2

[
−z
∣∣∣∣ (0, 1), (1− β, a)

]
. (13.48)

Therefore, we see that the Wright L-function Lβ(z, 1) introduced by Eq.

(13.43) has the following representation in terms of the Wright function

φ(−β, 1− β;−z)

Lβ(z, 1) = φ(−β, 1− β;−z). (13.49)

In terms of Fox’s H1,0
0,2 -function the Wright L-function Lβ(z, 1) is defined

by

Lβ(z, 1) = H1,0
0,2

[
−z
∣∣∣∣ (0, 1), (β,−β)

]
, 0 < β ≤ 1. (13.50)
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Knowledge of particular cases for the Wright function let us obtain the

particular cases for the function Lβ(z, 1).

1. When β = 1/2 we have

L1/2(z, 1) = Lβ(z, 1)|β=1/2 =
1√
π

exp(−z
2

4
). (13.51)

2. When β = 1 we have

L1(z, 1) = Lβ(z, 1)|β=1 = δ(z − 1), (13.52)

where δ(z) is delta function. The last property is useful to recover fractional

quantum mechanics and standard quantum mechanics formulas for a free

particle quantum kernel from the general equation (13.38).

Thus, function Lβ(z, 1) involved into representation (13.39) of space-

time fractional quantum kernel, is expressed by Eq. (13.49) as the Wright L-

function. The Wright L-function introduces into the time fractional quan-

tum mechanics a well-developed mathematical tool - Wright function. In

other words, many well-known results related to the Wright function can be

applied to study fundamental properties of the space-time fractional quan-

tum kernel and can be used to develop a variety of new applications of time

fractional quantum mechanics.

13.3.3 Fox H -function representation for a free particle

space-time fractional quantum mechanical kernel

The space-time fractional quantum kernel given by Eq. (13.26) can be ex-

pressed in terms of the Fox H-function. The definition of the H-function

and its fundamental properties can be found in [152]. We presented the

definition of the Fox H-function and some of its properties in Appendix A.

In terms of the Fox H-function the Mittag-Leffler function Eβ(z) is

presented by Eq. (B.11), see Appendix B. Then, K
(0)
α,β(x, t) given by Eq.

(13.26) reads

K
(0)
α,β(x, t) =

1

π~β

∞∫
0

dpβ cos(
pβx

~β
) (13.53)

×H1,1
1,2

[
−Dα,βp

α
β

tβ

iβ~β

∣∣∣∣ (0, 1)

(0, 1), (0, β)

]
.



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 226

226 Fractional Quantum Mechanics

With the help of the cosine transform of the H-function defined by of

Eq. (A.20), see Appendix A, we obtain

K
(0)
α,β(x, t) =

1

|x|
H2,1

3,3

[
− iβ~β
Dα,β~αβ tβ

|x|α
∣∣∣∣ (1, 1), (1, β), (1, α/2)

(1, α), (1, 1), (1, α/2)

]
, (13.54)

1 < α ≤ 2, 0 < β ≤ 1,

which is the expression for the space-time fractional quantum kernel

K
(0)
α,β(x, t) in terms of H2,1

3,3 -function.

Alternatively, using Property 12.2.4 given by Eq. (A.13), see Appendix

A, K
(0)
α,β(x, t) can be presented as

K
(0)
α,β(x, t)

=
1

α|x|
H2,1

3,3

[
1

~β

(
− iβ~β
Dα,βtβ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, β/α), (1, 1/2)

(1, 1), (1, 1/α), (1, 1/2)

]
, (13.55)

1 < α ≤ 2, 0 < β ≤ 1.

Thus, Eqs. (13.54) and (13.55) introduce a new family of a free parti-

cle space-time fractional quantum mechanical kernels parametrized by two

fractality parameters α and β. The kernel K
(0)
α,β(x, τ) does not satisfy quan-

tum superposition law defined by Eq. (24) in [92], due to the fractional time

derivative of order β in Eq. (13.1).

13.4 Special cases of time fractional quantum mechanics

With particular choice of fractality parameters α and β the space-time

fractional Schrödinger equation Eq. (12.11) covers the following three spe-

cial cases: the Schrödinger equation (α = 2 and β = 1), the fractional

Schrödinger equation (1 < α ≤ 2 and β = 1) and the time fractional

Schrödinger equation (α = 2 and 0 < β ≤ 1).

13.4.1 The Schrödinger equation

When α = 2 and β = 1, we have

Dα,β |α=2,β=1 = D2,1 =
1

2m
, pβ |β=1 = p, (13.56)
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and

~β |β=1 = ~, (13.57)

where m is the mass of a quantum particle, p is momentum of a quantum

particle and ~ is the well-known Planck’s constant.

In this case space-time fractional Schrödinger equation Eq. (12.11) goes

into the celebrated Schrödinger equation [6]

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t) + V (x, t)ψ(x, t). (13.58)

For the quantum mechanical kernel K
(0)
2,1(x, t) = K

(0)
α,β(x, t)|α=2,β=1,

where K
(0)
α,β(x, t) is defined by Eq. (13.38) we obtain

K
(0)
2,1(x, t) =

∞∫
0

duN2,1(x, u)L1(u, t), (13.59)

here

N2,1(x, u) =
1

2π~

∞∫
−∞

dp exp{ipx
~
} exp{uD2,1p

2/i~} (13.60)

=
1

2π~

∞∫
−∞

dp exp{ipx
~
} exp{−iu p2

2m~
},

and

L1(u, t) =
1

2πi

σ+i∞∫
σ−i∞

dsest exp{−us} = δ(t− u). (13.61)

Substitution of Eqs. (13.60) and (13.61) into Eq. (13.59) yields

K
(0)
2,1(x, t) =

1

2π~

∞∫
−∞

dp exp{ipx
~
} exp{−it p

2

2m~
}. (13.62)

The integral in Eq. (13.62) can be evaluated analytically and the result

is

K
(0)
F (x, t) = K

(0)
2,1(x, t) =

√
m

2πi~t
exp{imx

2

2~t
}, (13.63)

which is Feynman’s free particle quantum kernel given by Eq. (7.35).
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13.4.2 Fractional Schrödinger equation

In the case when β = 1, Dα,β goes into the scale coefficient Dα emerging

in fractional quantum mechanics [67], [92],

Dα,β |β=1 = Dα,1 = Dα, 1 < α ≤ 2, (13.64)

with units of,

[Dα] = erg1−α · cmα · sec−α.

In this case the space-time fractional Schrödinger equation Eq. (12.11)

goes into Laskin’s fractional Schrödinger equation [96]

i~∂tψ(x, t) = Dα(−~2∆)α/2ψ(x, t) + V (x, t)ψ(x, t), (13.65)

1 < α ≤ 2,

with ~ being fundamental Planck’s constant.

For the quantum mechanical kernel K
(0)
α,1(x, t) = K

(0)
α,β(x, t)|β=1, where

K
(0)
α,β(x, t) is defined by Eq. (13.38) we obtain

K
(0)
α,1(x, t) =

∞∫
0

duNα,1(x, u)L1(u, t), (13.66)

here

Nα,1(x, u) =
1

2π~

∞∫
−∞

dp exp{ipx
~
} exp{uDα|p|α/i~} (13.67)

and

L1(u, t) =
1

2πi

σ+i∞∫
σ−i∞

dsest exp{−us} = δ(t− u). (13.68)

Substitution of Eqs. (13.67) and (13.68) into Eq. (13.66) yields

K
(0)
α,1(x, t) =

1

2π~

∞∫
−∞

dp exp{ipx
~
} exp

{
−itDα|p|α

~

}
. (13.69)
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It was shown in Sec. 7.2 that the integral in Eq. (13.69) can be expressed

in terms of the H1,1
2,2 -function,

K
(0)
α,1(x, t) =

1

α|x|
H1,1

2,2

[
1

~

(
− i~
Dαt

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
, (13.70)

1 < α ≤ 2.

The expression (13.70) for a free particle quantum kernel K
(0)
α,1(x, t) can

be obtained directly from Eq. (13.55). Indeed, it is easy to see, that when

β = 1 Eq. (13.55) reads

K
(0)
α,1(x, t) = K

(0)
α,β(x, t)|β=1

=
1

α|x|
H2,1

3,3

[
1

~

(
− i~
Dαt

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/α), (1, 1/2)

]
, (13.71)

1 < α ≤ 2.

By using Property 12.2.1 (see Appendix A) we rewrite the above ex-

pression as

K
(0)
α,1(x, t) (13.72)

=
1

α|x|
H2,1

3,3

[
1

~

(
− i~
Dαt

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2), (1, 1/α)

(1, 1/α), (1, 1), (1, 1/2)

]
.

The next step is to use Property 12.2.2 (see Appendix A) to come to

Eq. (13.69) for a free particle fractional quantum kernel K
(0)
α,1(x, t). It was

shown in [93] that at α = 2 Eq. (13.70) goes into Eq. (13.63).

13.4.3 Time fractional Schrödinger equation

In the case when α = 2 we haveDα,β |α=2 = D2,β , 0 < β ≤ 1, where D2,β

is the scale coefficient with units of [D2,β ] = g−1·sec2−2β . In this case the

space-time fractional Schrödinger equation Eq. (12.11) goes into the time

fractional Schrödinger equation of the form

iβ~β∂βt ψ(x, t) = −D2,β~2
β∆ψ(x, t)+V (x, t)ψ(x, t), 0 < β ≤ 1. (13.73)
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This equation can be considered as an alternative to Naber’s time frac-

tional Schrödinger equation [141].

For the quantum mechanical kernel K
(0)
2,β(x, t) = K

(0)
α,β(x, t)|α=2, where

K
(0)
α,β(x, t) is defined by Eq. (13.38) we obtain

K
(0)
2,β(x, t) =

∞∫
0

duN2,β(x, u)Lβ(u, t), (13.74)

here

N2,β(x, u) =
1

2π~β

∞∫
−∞

dpβ exp{ipβx
~
} exp{uD2,βp

2
β/i

β~β}, (13.75)

and Lβ(u, t) is given by Eq. (13.36).

To express a free particle time fractional quantum kernel K
(0)
2,β(x, t) in

terms of the H-function let’s put α = 2 in Eq. (13.55)

K
(0)
2,β(x, t) = K

(0)
α,β(x, t)|α=2

=
1

2|x|
H2,1

3,3

[
1

~β

(
− iβ~β
Dα,βtβ

)1/2

|x|
∣∣∣∣ (1, 1/2), (1, β/2), (1, 1/2)

(1, 1), (1, 1/2), (1, 1/2)

]
, (13.76)

0 < β ≤ 1.

Using the Property 12.2.2 (see Appendix A) yields

K
(0)
2,β(x, t) =

1

2|x|
H2,0

2,2

[
1

~β

(
− iβ~β
Dα,βtβ

)1/2

|x|
∣∣∣∣ (1, β/2), (1, 1/2)

(1, 1), (1, 1/2)

]
.
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Next, by using the Property 12.2.1 and then Property 12.2.2 (see Ap-

pendix A) we find

K
(0)
2,β(x, t) =

1

2|x|
H1,0

1,1

[
1

~β

(
− iβ~β
Dα,βtβ

)1/2

|x|
∣∣∣∣ (1, β/2)

(1, 1)

]
. (13.77)

Thus, we find a new expression of a free particle time fractional quantum

kernel K
(0)
2,β(x, t) in terms of H1,0

1,1 -function. It can be shown that at β = 1

Eq. (13.77) goes into Eq. (13.63).
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Chapter 14

Fractional Statistical Mechanics

But although, as a matter of history, statistical mechanics owes its origin

to investigations in thermodynamics, it seems eminently worthy of an inde-

pendent development, both on account of the elegance and simplicity of its

principles, and because it yields new results and places old truths in a new

light in departments quite outside of thermodynamics.

J. Willard Gibbs (1902)

Preface to Elementary Principles in Statistical Mechanics

14.1 Density matrix

14.1.1 Phase space representation

In order to develop quantum fractional statistical mechanics let us introduce

fractional density matrix in terms of a path integral over Lévy flights. It

can be done by means of the following fundamental relationship

ρ(x, β|x0, 0) = K(xbtb|xata)
∣∣∣xb=x, tb=−i~βxa=x0,ta=0 , (14.1)

where K(xbtb|xata) is quantum kernel given by Eq. (6.5), ~ is Planck’s

constant and β is “inverse temperature” defined as

β = 1/kBT, (14.2)

here kB is Boltzmann’s constant and T is the temperature of statistical

mechanical system.

233
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It is easy to see from Eqs. (14.1) and (6.5) that ρ(xβ|x00) can be written

as

ρ(x, β|x0, 0) (14.3)

=

x∫
x0

Dx(τ)

∫
Dp(τ) exp

 i

~

−i~β∫
0

dτ [p(τ)
·
x(τ)−Hα(p(τ), x(τ), τ)]

 ,

where integration over τ is performed along the negative imaginary time

axis. Introducing a new integration variable

u = iτ , (14.4)

allows us to present the above equation for the density matrix as the fol-

lowing path integral

ρ(x, β|x0, 0) (14.5)

=

x(~β)=x∫
x(0)=x0

Dx(u)

∫
Dp(u) exp

−1

~

~β∫
0

du[p(u)
·
x(u)−Hα(p(u), x(u), u)]

 ,

where fractional Hamiltonian Hα(p, x) has the form (3.24) and p(u), x(u)

may be considered as a path (in phase space representation) evolving over

“imaginary time” u and ~ is Planck’s constant. A real variable u defined by

Eq. (14.4) has units of time and it is called “imaginary time” since when

the time τ is imaginary, u is real.

The exponential expression of Eq. (14.5) is very similar to the fractional

canonical action given by (6.4). Since it governs the quantum-statistical

path integral (14.5) it may be called the fractional quantum-statistical ac-

tion or fractional Euclidean action S
(e)
α (p, x), indicated by the superscript

(e) and subscript α,

S(e)
α (p, x) =

~β∫
0

du{p(u)
·
x(u) +Hα(p(u), x(u))}. (14.6)

Hence, the density matrix ρ(x, β|x0, 0) can be written as

ρ(x, β|x0, 0) (14.7)
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=

x(~β)=x∫
x(0)=x0

Dx(u)

∫
Dp(u) exp

{
−S

(e)
α (p, x)

~

}
.

The path integral “measure”
x(~β)=x∫
x(0)=x0

Dx(u)
∫

Dp(u)... in Eqs. (14.5) and

(14.7) is defined by

x(~β)=x∫
x(0)=x0

Dx(u)

∫
Dp(u)... (14.8)

= lim
N→∞

∞∫
−∞

dx1...dxN−1
1

(2π~)N

∞∫
−∞

dp1...dpN ....

The parameter u in Eq. (14.5) is not the true time in any sense. It is

just a parameter in an expression for the density matrix (see, for instance,

[19]). Let us call u the “time”, leaving the quotation marks to remind us

that it is not real time (although u does have units of time). Likewise x(u)

will be called the “coordinate” and p(u) the “momentum”. Then Eq. (14.5)

may be interpreted in the following way: Consider all the possible paths

by which the system can travel between the initial x(0) = x0 and final

x(~β) = x configurations in “time” ~β. Then the density matrix ρ(xβ|x00)

introduced by Eq. (14.5) is the path integral over all possible paths, the

contribution from a particular path is exp(S
(e)
α (p, x)/~), where S

(e)
α (p, x) is

fractional Euclidean action (14.6).

It is easy to see that with the help of Eqs. (6.5) and (6.25) we can

present the density matrix ρ(xβ|x00) defined by Eq. (14.5) in the form

ρ(x, β|x0, 0) =
∞∑
n=1

φn(x)φ∗n(x0)e−βEn , (14.9)

where φn(x) are eigenfunctions and En are eigenvalues of time independent

fractional Schrödinger equation with the fractional Hamilton operator given

by Eq. (3.23).
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14.1.2 Coordinate representation

In coordinate representation the path integral representation for the den-

sity matrix can be obtained from Eq. (6.18) by transition from t to −i}β,

where β is inverse temperature and then substituting τ = −iu with u being

“imaginary time”.

ρ(x, β|x0, 0) =

x(~β)=x∫
x(0)=x0

Dx(u) exp{−1

~

~β∫
0

duV (x(u), u)}, (14.10)

where V (x(u), u) is the potential energy as a functional of the Lévy flights

path x(u) and “imaginary time” u, and
x(tb)=xb∫
x(ta)=xa

Dx(τ)... is the path integral

measure in coordinate space first introduced by Laskin [67],

x(~β)=x∫
x(0)=x0

Dx(u)... (14.11)

= lim
N→∞

∞∫
−∞

dx1...dxN−1~−N (Dαν)
−N/α

×
N∏
j=1

Lα

{
1

~

(
1

Dαν

)1/α

|xj − xj−1|

}
...,

here ~ denotes Planck’s constant, ν = β/N , β = 1/kBT , and the Lévy

probability distribution function Lα is given by Eq. (6.15).

The Lévy probability distribution function Lα is expressed in terms

of Fox’s H1,1
2,2 function by Eq. (A.28). Hence, the path integral measure

(14.11) can be alternatively presented as

x(~β)=x∫
x(0)=x0

Dx(u)...

= lim
N→∞

∞∫
−∞

dx1...dxN−1

N∏
j=1

1

α|xj − xj−1|
(14.12)
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×H1,1
2,2

[
1

~

(
1

Dαν

)1/α

|xj − xj−1|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
....

The path integral measure defined by Eq. (14.11) or by Eq. (14.12), is

generated by the Lévy flights stochastic process.

14.1.3 Motion equation for the density matrix

To obtain “motion equation”1 for the density matrix ρ(x, β|x0) ≡
ρ(x, β|x0, 0) let us start from its path integral representation given by Eq.

(14.10). By repeating the same steps which led us from the path integral

(6.18) to fractional Schrödinger equation (6.53) we come to the following

fractional differential equation [67], [92]

−∂ρ(x, β|x0)

∂β
= −Dα(~∇x)αρ(x, β|x0) + V (x)ρ(x, β|x0), (14.13)

ρ(x, 0|x0) = δ(x− x0),

which is “motion equation” for the density matrix ρ(x, β|x0). Note that

quantum fractional Riesz operator (~∇x)α acts on variable x.

Equation (14.13) can be rewritten as

−∂ρ(x, β|x0)

∂β
= Hαρ(x, β|x0), ρ(x, 0|x0) = δ(x− x0), (14.14)

where the fractional Hamiltonian Hα is defined by Eq. (3.19).

Having the density matrix ρ(x, β|x0), we introduce the density matrix

in momentum representation ρ(0)(p, β|p0) as

ρ(p, β|p0) =

∞∫
−∞

dxdx0ρ(x, β|x0) exp

{
− i
~

(px− p0x0)

}
. (14.15)

Then the inverse transform brings us

ρ(x, β|x0) =
1

(2π~)2

∞∫
−∞

dpdp0ρ(p, β|p0) exp

{
i

~
(px− p0x0)

}
. (14.16)

1We use the term “motion equation” leaving the quotation marks in order to remind
that the density matrix evolves with β.
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Motion equation for the density matrix in momentum representation

ρ(p, β|p0) has the form

−∂ρ(p, β|p0)

∂β
= −Dα|p|αρ(p, β|p0) (14.17)

+

∞∫
−∞

dp′V (p′)ρ(p− p′, β|p0),

where the following notation

V (p) =
1

2π~

∞∫
−∞

dxV (x) exp{−ipx
~
},

has been introduced.

14.1.4 Fundamental properties of a free particle density

matrix

When V (x) = 0, the solution to Eq. (14.13) gives a free particle density

matrix ρ(0)(x− x0, β)

ρ(0)(x− x0, β) =
1

2π~

∞∫
−∞

dp exp

{
i
p(x− x0)

~
− βDα|p|α

}
. (14.18)

In terms of Fox’s H-function ρ(0)(x− x0, β) can be written as [67], [92]

ρ(0)(x− x0, β) =
1

α|x− x0|
H1,1

2,2

[
|x− x0|

~(Dαβ)1/α

∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
, (14.19)

here H1,1
2,2 is the Fox H-function (see [103], [104]), β = 1/kBT, where kB is

the Boltzmann’s constant, T is the temperature and Dα is scale coefficient

with units of [Dα] = erg1−α · cmα · sec−α.

Using H-function Property 12.2.5 given by Eq. (A.14) in Appendix A

we can rewrite the solution given by Eq. (14.19) in alternative form

ρ(0)(x− x0, β) =
1

α~(Dαβ)1/α
(14.20)
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×H1,1
2,2

[
|x− x0|

~(Dαβ)1/α

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
.

The momentum representation ρ(0)(p, β|p0) of a free particle fractional

density matrix ρ(0)(x, β|x0) defined by

ρ(0)(p, β|p0) =

∞∫
−∞

dxdx0ρ
(0)(x, β|x0) exp

{
− i
~

(px− p0x0)

}
has the form

ρ(0)(p, β|p0) = 2π~δ(p− p0) e−βDα|p|
α

. (14.21)

The density matrix ρ(0)(x, β|x0) is expressed in terms of ρ(0)(p, β|p0) by

the following way

ρ(0)(x, β|x0) =
1

(2π~)2

∞∫
−∞

dpdp0ρ
(0)(p, β|p0) exp

{
i

~
(px− p0x0)

}
.

The density matrix ρ(0)(x − x0, β) introduced by Eq. (14.18) has the

following fundamental properties:

1. It satisfies the consistency equation

ρ(0)(x2 − x1, β1 + β2) =

∞∫
−∞

dx′ρ(0)(x2 − x′, β2)ρ(0)(x′ − x1, β1). (14.22)

2. It is non-negative

ρ(0)(x− x0, β) ≥ 0. (14.23)

3. It satisfies

∞∫
−∞

dxρ(0)(x− x0, β) = 1.

4. The symmetries hold

ρ(0)(x− x0, β) = ρ(0)(−(x− x0), β) (14.24)
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and

(ρ(0)(x− x0, β))∗ = ρ(0)(x− x0, β), (14.25)

where (ρ(0)(x− x0, β))∗ stands for complex conjugate density matrix.

5. When β = 0, the density matrix ρ(0)(x− x0, 0) is

ρ(0)(x− x0, 0) = ρ(0)(x− x0, β)|β=0 = δ(x− x0), (14.26)

where δ(x) is delta function.

6. When x = x0, the density matrix ρ(0)(0, β) is

ρ(0)(0, β) = ρ(0)(x− x0, β)|x=x0
(14.27)

=
1

2π~

∞∫
−∞

dp exp {−βDα|p|α} =
1

απ~

(
1

βDα

)1/α

Γ(1/α),

here Γ(1/α) is the Gamma function.

14.1.5 Scaling of density matrix: a free particle

To make general conclusions regarding space and inverse temperature de-

pendencies of a free particle density matrix kernel ρ(0)(x, β), let’s study its

scaling.

For a free particle when V (x) = 0, Eq. (14.13) becomes

−∂ρ
(0)(x, β|x0)

∂β
= −Dα(~∇x)αρ(0)(x, β|x0), (14.28)

ρ(0)(x, 0|x0) = δ(x− x0).

Due to “initial” condition at β = 0 the solution will depend on x− x0,

that is ρ(0)(x, β|x0) = ρ(0)(x−x0, β). To make general conclusions regarding

solutions to the 1D fractional differential equation for density matrix for a

free particle, let’s study the scaling properties of ρ(0)(x− x0, β;Dα), where

we keep the parameter Dα to remind that besides dependency on x − x0,
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and β the density matrix depends on Dα as well. Scale transformations are

written as

β = λβ′, x = λσx′, x0 = λσx′0, Dα = λγD′α, (14.29)

ρ(0)(x− x0, β;Dα) = λδρ(0)(x′ − x′0, β
′;D′α),

where σ, γ, δ are exponents of the scale transformations which should

leave a free particle solution to 1D fractional differential equation (14.28)

invariant and save the condition
∞∫
−∞

dxρ(0)(x− x0, β;Dα) = 1. It results in

the relationships between scaling exponents,

ασ − γ − 1 = 0, δ + σ = 0, (14.30)

and reduces the number of exponents up to 2.

Hence, we obtain the two-parameters scale transformation group

β = λβ′, x = λσx′, Dα = λασ−1D′α,

ρ(0)(λσ(x− x0), λβ;λασ−1Dα) = λ−δρ(x− x0, β;D), (14.31)

here σ and λ are two arbitrary group parameters.

To get the general scale invariant density matrix ρ(0)(x − x0, β;Dα)

one can use the renormalization group framework. As far as the scale

invariant solutions of Eq. (14.28) should satisfy the identity Eq. (14.31) for

any arbitrary parameters σ and λ, the density matrix ρ(0)(x − x0, β;Dα)

can depend on a combination of x and β to provide the independency on

the group parameters of σ and λ. Therefore, due to Eq. (14.30) we obtain

ρ(0)(x− x0, β) =
1

|x− x0|
ρ1(|x− x0|/~(Dαβ)

1
α ) (14.32)

=
1

~(Dαβ)
1
α

ρ2(|x− x0|/~(Dαβ)
1
α ),

where two arbitrary functions ρ1 and ρ2 are determined by the conditions,

ρ1(.) = ρ(0)(1, .) and ρ2(.) = ρ(0)(., 1).

Thus, Eq. (14.32) brings us a general scale structure of density matrix

for a free particle in the framework of factional statistical mechanics. Let us

note that the form of the solution (14.19) is in line with the scale invariant

solution expressed in terms of function ρ1, while the solution (14.42) is in

line with the scale invariant solution expressed in terms of function ρ2.
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14.1.6 Density matrix for a particle in a one-dimensional

infinite well

As a physical application of the developed equation (14.13) let us consider

a particle in symmetric one-dimensional infinite well described by the po-

tential energy V (x) which is zero for −a ≤ x ≤ a and is infinite elsewhere,

see Eq. (10.25).

To obtain density matrix in this case we use the solution given by

Eq. (10.100) for a free particle quantum kernel developed in Sec. 11.5 and

implement the substitution (14.1). Thus, we have

ρbox(x, β|x0) (14.33)

=
∞∑

l=−∞

{
ρ(0)(x+ 4la, t|x00)− (−1)lρ(0)(x+ 4la, t| − x00)

}
,

where ρ(0)(x, β|x0) ≡ ρ(0)(x− x0, β) is defined by Eq. (14.19).

In terms of Fox’s H1,1
2,2 -function ρbox(x, β|x0) is

ρbox(x, β|x0) =
1

α

(
~

(1/Dαβ)1/α

)−1

×
∞∑

l=−∞

{
H1,1

2,2

[
|x− x0 + 4la|
~(βDα)1/α

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]
(14.34)

−(−1)lH1,1
2,2

[
|x+ x0 + 4la|
~(βDα)1/α

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

]}
.

Alternatively, ρbox(x, β|x0) can be presented in terms of Fox’s H1,1
2,2 -

function as

ρbox(x, β|x0) =
1

α

1

|x− x0|

×
∞∑

l=−∞

{
H1,1

2,2

[
|x− x0 + 4la|
~(βDα)1/α

∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
(14.35)
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−(−1)lH1,1
2,2

[
|x+ x0 + 4la|
~(βDα)1/α

∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]}
,

where Property 12.2.5 of Fox’s H-function has been used.

In the case when α = 2 Eq. (14.35) gives us the solution for a density

matrix of a free particle in the box ρbox(x, β|x0)|α=2 in the framework of

standard quantum mechanics. Indeed, substituting D2 = 1/2m, where m

is particle mass, and using the identity

1

α~(βDα)1/α
H1,1

2,2

[
|x+ 4la|

~(βDα)1/α

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

] ∣∣∣∣
α=2

(14.36)

=

√
m

2π~2β
exp

{
−m|x+ 4la|2

2~2β

}
,

we find

ρbox(x, β|x0)|α=2 =

√
m

2π~2β
(14.37)

×
∞∑

l=−∞

{
exp(−m|x− x0 + 4la|2

2~2β
)− (−1)l exp(−m|x+ x0 + 4la|2

2~2β
)

}
.

Thus, we obtain from Eq. (14.35) standard quantum mechanics solu-

tion for a free particle density matrix in a symmetric 1D box of length 2a

confined by infinitely high walls at x = −a and x = a.

14.2 Partition function

The partition function Z(β) is defined as a trace of the density matrix

ρ(x, β|x0) [67], [92], that is we have to take into account only those paths

where the initial and the final configurations are the same x = x0, and then

integrate over dx,

Z(β) =

∫
dxρ(x, β|x)

=

∫
dx

∫
x(0)=x(~β)=x

Dx(τ)

∫
Dp(τ) (14.38)
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× exp{−1

~

~β∫
0

du
{
p(u)

·
x(u) +Hα(p(u), x(u))

}

=

x(~β)=x∫
x(0)=x0

Dx(u)

∫
Dp(u) exp

{
−S

(e)
α (p, x)

~

}
,

where Hα(p(u), x(u)) is classical mechanics Hamilton function Hα(p, x) de-

fined by Eq. (3.24) with substitutions p→ p(u) and x→ x(u) and S
(e)
α (p, x)

is given by Eq. (14.6).

Equation (14.38) may be interpreted in the following way: Consider

all the possible paths by which the system can travel between the initial

x(0) and final x(~β) configurations in “time” ~β. The fractional density

matrix ρ is a path integral over all possible paths, the contribution from a

particular path being the “imaginary time” integral of the canonical action

(14.6) (considered as the functional of the path {p(u), x(u)} in the phase

space) divided by ~. The partition function is derived by integrating over

only those paths for which initial x(0) and final x(β) configurations are the

same and after that we integrate over all possible initial (or final) config-

urations. The knowledge of the partition function allows us to build the

thermodynamics of the system under consideration.

It is easy to see that with the help of Eq. (14.9) we can present the

partition function Z(β) in the form

Z(β) =

∫
dx

∞∑
n=1

φn(x)φ∗n(x)e−βEn =
∞∑
n=1

e−βEn , (14.39)

because of normalization condition

∫
dxφn(x)φ∗n(x) = 1,

for an eigenfunction φn(x) corresponding to an eigenvalue En of time-

independent fractional Schrödinger equation with the fractional Hamilton

operator given by Eq. (3.23). Therefore, we have

∫
dxρ(x, β|x) =

∞∑
n=1

e−βEn . (14.40)
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For a free particle in 1D space we obtain from Eq. (14.18), that

ρ(0)(x, β|x) = ρ(0)(x− x0, β)|x=x0 (14.41)

=
1

2π~

∞∫
−∞

dp exp {−βDα|p|α}

=
1

π~

∞∫
0

dp exp {−βDαp
α} =

1

απ~
1

(βDα)1/α
Γ(1/α),

where Γ(1/α) is the Gamma function.

Therefore, where for the 1D system with space scale V the trace of Eq.

(14.41) defines the partition function Z(β) for a free particle

Z(β) =

∫
V

dxρ(0)(x, β|x) =
V

απ~
1

(βDα)1/α
Γ(1/α), (14.42)

1 < α ≤ 2.

In order to obtain a formula for the fractional partition function in the

limit of fractional classical mechanics, let us study the case when ~β is

small. In this case the fractional density matrix ρ(x, β|x0) can be written

as [67], [92]

ρ(x, β|x0) = e−βV (x0) 1

2π~

∞∫
−∞

dp exp

{
i
p(x− x0)

~
− βDα|p|α

}
. (14.43)

The partition function Z(β) in the limit of classical statistical mechanics

becomes

Z(β) =

∞∫
−∞

dxρ(x, β|x) =
Γ(1/α)

απ~(βDα)1/α

∞∫
−∞

dxe−βV (x), (14.44)

1 < α ≤ 2.

The partition function Z(β) given by Eq. (14.44) is an approximation

valid if the particles of the system cannot wander very far from their initial
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positions in the “time” ~β. The limit on the distance which the particles

can wander before the approximation breaks down can be estimated from

Eq. (14.43). We see that if the final point differs from the initial point by

as much as

∆x ' ~(βDα)1/α = ~
(
Dα

kT

)1/α

,

the exponential function of Eq. (14.43) becomes greatly reduced. From

this, we can infer that intermediate points only on paths which do not

contribute greatly to the integral on the right-hand side of Eq. (14.43).

Thus, we conclude that if the potential V (x) does not alter very much as x

moves over this distance, then the fractional classical statistical mechanics

is valid.

14.3 Density matrix in 3D space

The above fractional statistical mechanics developments can be easily gener-

alized to the 3D coordinate space. It can be done by means of the following

fundamental relationship

ρ(r, β|r0, 0) = K(rbtb|rata)
∣∣∣rb=r, tb=−i~β
ra=r0,ta=0 , (14.45)

where K(rbtb|rata) is quantum kernel given by Eq. (6.8), ~ is Planck’s

constant and β is “inverse temperature” defined by Eq. (14.2).

It is easy to see from Eqs. (14.45) and (6.8) that ρ(r, β|r0, 0) can be

written as

ρ(r, β|r0, 0) (14.46)

=

r(~β)=r∫
r(0)=r0

Dr(τ)

∫
Dp(τ) exp

 i

~

−i~β∫
0

du[p(u)
·
r(u)−Hα(p(u), r(u), u)]

 ,

where integration over τ is performed along the negative imaginary time

axis. Introducing a new integration variable u = iτ , allows us to present

Eq. (14.46) as the following path integral

ρ(r, β|r0, 0) (14.47)

=

r(~β)=r∫
r(0)=r0

Dr(τ)

∫
Dp(τ) exp

−1

~

~β∫
0

du[p(u)
·
r(u)−Hα(p(u), r(u), u)]

 ,
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where r, r0 and p are the 3D vectors, fractional Hamiltonian Hα(p, r)

has form (3.4) and p(u), r(u) may be considered as a path (in phase space

representation) evolving over “imaginary time” u and ~ is Planck’s constant.

The exponential expression of Eq. (14.47) is very similar to the fractional

classical mechanics action given by (6.11). Since it governs the quantum-

statistical path integral (14.47) it may be called the fractional quantum-

statistical action or fractional Euclidean action S
(e)
α (p, r), indicated by the

superscript (e) and subscript α,

S(e)
α (p, r) =

~β∫
0

du[p(u)
·
r(u)−Hα(p(u), r(u), u)]. (14.48)

Therefore, we see that 3D density matrix ρ(r, β|r0, 0) reads

ρ(r, β|r0, 0) (14.49)

=

r(~β)=r∫
r(0)=r0

Dr(τ)

∫
Dp(τ) exp

{
−S

(e)
α (p, r)

~

}
.

The path integral measure
r(~β)=r∫
r(0)=r0

Dr(τ)
∫

Dp(τ)... in Eqs. (14.47) and

(14.49) is defined by

r(~β)=r∫
r(0)=r0

Dr(τ)

∫
Dp(τ)... (14.50)

= lim
N→∞

∫
dr1...drN−1

1

(2π~)3N

∫
dp1...dpN ....

One can interpret Eq. (14.49) in the following way: Consider all the

possible paths by which the system can travel between the initial r(0) = r0

and final r(~β) = r configurations in “time” ~β. We adopt the notations

dri = d3ri, (i = 1, 2, ..., N−1) and dpj = d3pj , (j = 1, 2, ..., N) while work-

ing with the path integral over Lévy flights in phase-space representation.

Then the density matrix ρ(r, β|r0, 0) introduced by Eq. (14.47) is the path

integral over all possible paths, the contribution from a particular path is

given by exp(S
(e)
α (p, r)/~), where S

(e)
α (p, r) is fractional Euclidean action

(14.48).
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With the help of Eqs. (6.34) and (6.46) we can present the density

matrix ρ(r, β|r0, 0) defined by Eq. (14.47) in the form

ρ(r, β|r0, 0) =
∞∑
n=1

φn(r)φ∗n(r0)e−βEn ,

where φn(r) are eigenfunctions and En are eigenvalues of time independent

3D fractional Schrödinger equation with the fractional Hamilton operator

given by Eq. (3.3). Then, 3D generalization of Eq. (14.40) has form∫
d3rρ(r, β|r, 0) =

∞∑
n=1

e−βEn . (14.51)

14.3.1 Coordinate representation

In coordinate representation the path integral representation for the density

matrix can be obtained from Eq. (6.30) by transition from t to −i}β, where

β is inverse temperature given by Eq. (14.2) and then substituting τ = −iu
with u being “imaginary time”

ρ(r, β|r0, 0) (14.52)

=

r(~β)=r∫
r(0)=0

Dr(u) exp{−1

~

~β∫
0

duV (r(u), u)},

where V (r(u), u) is the potential energy as a functional of the Lévy flight

path r(u) and “time” u, and
r(~β)=r∫
r(0)=0

Dr(u)... is the path integral measure

in 3D coordinate space,

r(~β)=r∫
r(0)=0

Dr(u)... = lim
N→∞

∫
dr1...drN−1~−3N (Dαν)

−3N/α
(14.53)

×
N∏
i=1

Lα

{
|ri − ri−1|
~(Dαν)1/α

}
...,

here ~ denotes the Planck’s constant, all possible paths go between the

initial r(0) = r0 and final r(~β) = r configurations in “time” ~β, ν = β/N ,

and the Lévy probability distribution function Lα is defined by Eq. (6.28).
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We adopt the notations dri = d3ri, (i = 1, 2, ..., N − 1) while working with

the path integral over Lévy flights in 3D space.

The Lévy probability distribution function Lα

{
(1/~) (1/Dαν)

1/α |r|
}

is expressed in terms of Fox’s H1,2
3,3 function by Eq. (6.32). Hence, the path

integral measure (14.53) can be alternatively presented as

r(~β)=r∫
r(0)=0

Dr(u)...

= lim
N→∞

∫
dr1...drN−1

N∏
i=1

(− 1

2πα|ri − ri−1|3
) (14.54)

×H1,2
3,3

[
|ri − ri−1|
~(Dαν)1/α

∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
....

The path integral measures defined by Eq. (14.53) and Eq. (14.54), are

generated by the Lévy flights stochastic process.

It is obvious that a free particle density matrix ρ(0)(r, β|r0, 0) for the

3D case has a form

ρ(0)(r, β|r0, 0) =
1

(2π~)3

∫
d3p exp

{
i
p(r− r0)

~
− βDα|p|α

}
, (14.55)

where r, r0 and p are the 3D vectors.

To present the density matrix ρL(r, β|r0) in terms of the Fox H-function

we rewrite Eq. (14.55) as

ρ(0)(r, β|r0, 0) =
1

2π2~2|r− r0|

∞∫
0

dpp sin(
p|r− r0|

~
) exp {−βDα|p|α} .

With the help of identity ρ(0)(r, β|r0) = − 1
2π

∂
∂xρ

(0)(x, β|0)|x=|r−r0|,

where ρ(0)(x, β|0) is the 1D density matrix given by Eq. (14.18), we find

the equation for a free particle fractional density matrix in the 3D space,

ρ(0)(r, β|r0, 0) (14.56)

= − 1

2πα

1

|r− r0|3
H1,2

3,3

[
|r− r0|

~(Dαβ)1/α

∣∣∣∣ (1, 1), (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2), (2, 1)

]
.
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It is easy to see that with the help of Eqs. (6.5) and (6.25) we can

present the density matrix ρ(0)(r, β|r0) defined by Eq. (14.55) in the form

ρ(0)(r, β|r0, 0) =
∞∑
n=1

φn(r)φ∗n(r0)e−βEn , (14.57)

where φn(r) are eigenfunctions and En are eigenvalues of time independent

3D fractional Schrödinger equation with the fractional Hamilton operator

given by Eq. (3.23).

The density matrix ρ(r, β|r0) obeys the fractional differential equation

−∂ρ(r, β|r0, 0)

∂β
= Dα(−~2∆)α/2ρ(r, β|r0, 0) + V (r)ρ(r, β|r0, 0) (14.58)

or

−∂ρ(r, β|r0, 0)

∂β
= Hαρ(r, β|r0, 0), ρ(r, β = 0|r0, 0) = δ(r− r0),

(14.59)

where the 3D fractional Hamiltonian Hα is defined by Eq. (3.23). The

initial condition for Eqs. (14.58) and (14.59) is given by

ρ(r, β = 0|r0) = δ(r− r0).

14.3.2 A free particle partition function in 3D

Generalization of Eq. (14.42) to the 3D space is given by [153]

Z(β) =

∫
V

d3rρ(0)(r, β|r, 0) =
V

2απ2~3

Γ (3/α)

(βDα)3/α
, (14.60)

where V is space volume and Γ(3/α) is the Gamma function.

The last result can be transformed into Z1 = V/λ3
α, if we introduce a

generalized thermal de Broglie wavelength λα [153]

λα =

(
2απ2~3 (βDα)

3
α

Γ(3/α)

)1/3

. (14.61)

When α = 2, we retrieve the expression for the well-known thermal de

Broglie wavelength λ2 = λα|α=2 =
√

2π~2/mkBT .

Thus, Eqs. (14.5), (14.10), (14.13), (14.38), (14.47), (14.52) are funda-

mental equations of fractional statistical mechanics.
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14.3.3 Feynman’s density matrix

When α = 2 and D2 = 1/2m, m is a particle mass, Eq. (14.18) gives2 the

well-known density matrix for the 1D free particle (see Eq. (10-46) of [12]

or Eq. (2-61) of [19])

ρ
(0)
F (x, β|x0) =

(
m

2π~2β

)1/2

exp

{
− m

2~2β
(x− x0)2

}
. (14.62)

It follows from Eq. (14.21) that in the momentum representation

ρ
(0)
F (p, β|p0) has form

ρ
(0)
F (p, β|p′) = 2π~δ(p− p′) e−βp

2/2m. (14.63)

Feynman’s density matrix in 3D case is

ρ
(0)
F (r, β|r0, 0) =

(
m

2π~2β

)3/2

exp

{
− m

2~2β
(r− r0)2

}
. (14.64)

In the momentum representation ρ
(0)
F (r, β|r0) has form

ρ
(0)
F (p, β|p0) = (2π~)3δ(p− p0) e−βp

2/2m. (14.65)

14.4 Fractional thermodynamics

14.4.1 Ideal gas

The canonical partition function ZN (β) of an ideal gas composed of N

particles occupying a volume V at a temperature T is given by

ZN (β) =
1

N !
Z(β)N , (14.66)

where Z(β) is the individual partition function of a free particle given by

Eq. (14.60) and β = 1/(kBT ) with kB being Boltzmann constant.

The Helmholtz energy F (β) is defined by [154]

F (β) = − 1

β
logZN (β). (14.67)

2Details of calculations can be found in Sec. 7.2.
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Substituting Eq. (14.66) into Eq. (14.67) yields

F (β) = −N
β

logZ(β) +
1

β
logN !. (14.68)

Since N is large, we can use the formula

logN ! ' N log(N/e), (14.69)

here e is the base of the natural logarithm and it is approximately equal to

2.71828.

Hence, we have

F (β) = −N
β

log[
e

N
Z(β)] = −N

β
log[

e

N

V

2απ2~3

Γ (3/α)

(βDα)3/α
]. (14.70)

The knowledge of Helmholtz energy F (β) allows us to compute the

thermodynamical quantities of the system. Indeed, since the pressure P of

the gas is calculated as

P = −∂F (β)

∂V
, (14.71)

we come to the equation of state

P =
N

βV
or PV = kBNT, (14.72)

where T is the temperature and kB is the Boltzmann constant. As far as

the dependency of Helmholtz energy F (β) on volume of the system is not

impacted by dispersion law

Eα(p) = Dα|p|α, 1 < α ≤ 2,

we see that equation of state (14.72) has the same form as the equation of

state for ideal gas with the well-known dispersion law, when α = 2,

E2(p) = Eα(p)|α=2 =
p2

2m
.

The internal energy U of gas is

U = −∂ logZN (β)

∂β
= −∂βF (β)

∂β
=

3

α

N

β
or U =

3

α
NkBT, (14.73)

and the specific heat Cv at constant volume is [153]

Cv = (
∂U

∂T
)V =

3

α
NkB . (14.74)
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14.4.2 Ideal Fermi and Bose gases

It is well-known that at low temperatures, T → 0, β → ∞, at a given gas

density, the distribution of number of identical particles over momentum

has form (see Eq. (55.3) in [154])

dNp =
gV

(2π~)3

d3p

eβ(ε−µ) ± 1
, (14.75)

where the ‘+’ sign stands for Fermi statistics, while the ‘−’ sign stands for

Bose statistics, g = 2S + 1 (with S being spin of a particle), V is volume

of system, µ is chemical potential, and, finally, ε stands for particle energy,

which has the form

ε = Dα|p|α. (14.76)

The wave function of a system of N identical particles can be either an-

tisymmetric or symmetric with respect to interchanges of any two particles.

The antisymmetric wave function occurs for particles with half-integer spin,

while symmetric case is for those with integer spin. For a system of parti-

cles described by antisymmetric wave function Pauli’s principle says: two

or more identical particles with half-integer spin cannot occupy the same

quantum state within a quantum system simultaneously. The statistics

based on this principle is called Fermi statistics. For a system of particles

described by symmetric wave function, the statistics is called Bose statis-

tics.

It follows immediately from Eqs. (14.75) and (14.76) that distribution

of number of particles over energy ε is

dNε =
gV

2απ2~3D
3/α
α

ε
3−α
α dε

eβ(ε−µ) ± 1
. (14.77)

When α = 2, Eq. (14.77) goes into Eq. (55.4) from [154].

Performing integration over ε we obtain the total number of particles

in the gas

N =
gV

2απ2~3D
3/α
α

∞∫
0

ε
3−α
α dε

eβ(ε−µ) ± 1
. (14.78)

Introducing a new integration variable z = βε let us rewrite Eq. (14.78)

in the form



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 254

254 Fractional Quantum Mechanics

N

V
=

gV

2απ2~3D
3/α
α β3/α

∞∫
0

z
3−α
α dz

ez−βµ ± 1
. (14.79)

This formula defines chemical potential µ as function of β and gas den-

sity N/V.

The internal energy U of gas is defined as

U =

∞∫
0

εdNε, (14.80)

where dNε is given by Eq. (14.77). Hence, we have

U =
gV

2απ2~3D
3/α
α

∞∫
0

ε
3
α dε

eβ(ε−µ) ± 1
. (14.81)

The thermodynamic potential Ω,

Ω = −PV, (14.82)

with P being gas pressure and V being gas volume, has the following rep-

resentation [154]

Ω = ± gV

(2π~)3β

∫
d3p log(1∓ eβ(µ−ε)). (14.83)

With the help of Eq. (14.76) we can present the thermodynamic poten-

tial Ω as

Ω = ∓ gV

2απ2~3βD
3/α
α

∞∫
0

dεε
3−α
α log(1± eβ(µ−ε)).

Integration by parts yields

Ω = −α
3

gV

2απ2~3βD
3/α
α

∞∫
0

ε
3
α dε

eβ(ε−µ) ± 1
. (14.84)

Then with the help of Eq. (14.81) we can express the thermodynamic

potential Ω in terms of the internal energy U
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Ω = −α
3
U. (14.85)

Taking into account Eq. (14.82) we find

PV =
α

3
U. (14.86)

It follows from Eqs. (14.82) and (14.84) that

P =
g

6π2~3βD
3/α
α

∞∫
0

ε
3
α dε

eβ(ε−µ) ± 1
. (14.87)

Introducing a new integration variable z = βε let us rewrite Eq. (14.87)

in the form

P =
g

6π2~3β(βDα)3/α

∞∫
0

z
3
α dz

ez−βµ ± 1
. (14.88)

Equations (14.79) and (14.88) define the equation of state of the gas

(the relation between P , V and T ) in parametric form, with parameter µ.

Let us study Eqs. (14.79) and (14.88) in the case when eβµ � 1, which is

the limit case of Boltzmann gas. In other words, is the limit case eβµ � 1

Boltzmann statistics holds (see, paragraph 55 in [154]). For eβµ � 1 we

expand the integrand in Eq. (14.88) in a power series of eβµ−z. For the first

two terms of expansion we have

∞∫
0

z
3
α dz

ez−βµ ± 1
'
∞∫

0

dzz
3
α eβµ−z(1∓ eβµ−z) (14.89)

=
3

α
Γ(3/α)eβµ(1∓ 1

2(3+α)/α
eβµ),

where Γ(3/α) is the Gamma function.

By substituting Eq. (14.89) into Eq. (14.88) and taking into account

Eq. (14.82) we find

Ω = −PV = − gV

2απ2~3β(βDα)3/α
Γ(3/α)eβµ(1∓ 1

2(3+α)/α
eβµ),
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which can be rewritten as

Ω = Ω0 ±
gV

2(3+2α)/ααπ2~3β(βDα)3/α
Γ(3/α)e2βµ, (14.90)

where Ω0 introduced by

Ω0 = − gV

2απ2~3β(βDα)3/α
Γ(3/α)eβµ (14.91)

can be considered as Boltzmann approximation (eβµ � 1) for thermody-

namic potential Ω in the framework of fractional thermodynamics.

For Boltzmann ideal gas we have

Ω0 = −N
β
. (14.92)

Then from Eqs. (14.91) and (14.92) we come to the expression for chem-

ical potential µ as function of gas temperature T and density N/V.

µ =
1

β
log[

N

V

2απ2~3(βDα)3/α

gΓ(3/α)
]. (14.93)

Thus, the criteria of applicability of Boltzmann approximation in the

framework of fractional thermodynamics is

N

V
~3(βDα)3/α � 1. (14.94)

This criteria says that Boltzmann approximation is valid if gas density

at given temperature is sufficiently low. In other words, gas has to be

rarefied enough to be considered in Boltzmann approximation.

When α = 2, Eq. (14.94) becomes the well-known expression for chem-

ical potential (at g = 1 see, for example, Eq. (45.6) in [154]).

By expressing the second term in the right-hand side of Eq. (14.90) in

terms of N and V, we come to the formula for a free energy

F = F0 ±
N2

gV

απ2~3(βDα/2)3/α

βΓ(3/α)
, (14.95)

where F0 is given by

F0 = −N
β

log[
e

N

V

2απ2~3

Γ (3/α)

(βDα)3/α
],
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see Eq. (14.70).

Then, using Eq. (14.71), we obtain quantum correction to the equation

of state of ideal Boltzmann gas in the framework of fractional thermody-

namics

PV =
N

β

(
1± N

gV

απ2~3(βDα/2)3/α

Γ(3/α)

)
(14.96)

or

PV = kBNT

(
1± N

gV

απ2~3(Dα/2kBT )3/α

Γ(3/α)

)
. (14.97)

This equation is applicable when the criteria (14.94) holds.

We see from Eq. (14.97) that the deviations of equation of state for

quantum gases from the equation of state for classical Boltzmann gas de-

pend on statistics of quantum gas. Indeed, in the case of Fermi statistics

(‘+’ sign) the pressure of gas is higher comparing to the pressure for classical

Boltzmann gas, while for the case of Bose statistics (‘−’ sign), the pressure

is lower comparing to the pressure for classical Boltzmann gas. We can

say that in the case of Fermi statistics the quantum exchange interaction

leads to an additional effective “repulsion” between particles of Fermi gas

resulting in pressure increase. In the case of Bose statistics we observe the

pressure decrease comparing to Boltzmann gas. Hence, in the case of Bose

statistics the quantum exchange interaction leads to an additional effective

“attraction” between particles of Bose gas resulting in pressure decrease.
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Chapter 15

Fractional Classical Mechanics

Fractional classical mechanics was introduced by Laskin [134] as a clas-

sical counterpart of fractional quantum mechanics. Here we present the

Lagrange, Hamilton and Hamilton–Jacobi frameworks for fractional clas-

sical mechanics. Scaling analysis of fractional classical motion equations

has been implemented based on the mechanical similarity. We discover

and discuss fractional Kepler’s third law which is a generalization of the

well-known Kepler’s third law.

Fractional classical oscillator model has been introduced and motion

equations for the fractional classical oscillator have been integrated. We

found an equation for the period of oscillations of fractional classical oscil-

lator. The map between the energy dependence of the period of classical

oscillations and the non-equidistant distribution of the energy levels for

quantum fractional oscillator has been established.

In the case when α = 2, all new developments are turned into the well-

known results of the classical mechanics.

15.1 Introductory remarks

Now we introduce and explore fractional classical mechanics as a classical

counterpart of the fractional quantum mechanics [67], [92], [96]. To begin

with, let us consider the equation for canonical classical mechanics action

Sα(p, q) defined by Eq. (6.4) (see Eq. (23) in [92]),

Sα(p, q) =

tb∫
ta

dτ(p(τ)
·
q(τ)−Hα(p(τ), q(τ))), (15.1)

where Hα(p(τ), q(τ)) arrives from the classical mechanics Hamiltonian

Hα(p, q) [67], [92], [96]

259
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Hα(p, q) = Dα|p|α + V (q), 1 < α ≤ 2, (15.2)

with substitutions p→ p(τ), q → q(τ).

Since the Hamiltonian Hα(p, q) does not explicitly depend on time, it

represents a conserved quantity which is in fact the total energy of fractional

classical mechanics system.

Here we consider 1D fractional classical mechanics. Then the 3D gen-

eralization is straightforward and it is based on the Hamiltonian (3.3)

Hα(p,q) = Dα|p|α + V (q), 1 < α ≤ 2, (15.3)

where p and q are the 3D vectors.

15.2 Fundamentals of fractional classical mechanics

15.2.1 Lagrange outline

The Lagrangian of fractional classical mechanics Lα(
·
q, q) is defined as usual

Lα(
·
q, q) = p

·
q −Hα(p, q), (15.4)

where the momentum p is

p =
∂Lα(

·
q, q)

∂
·
q

, (15.5)

and Hα(p, q) is given by Eq. (15.2).

Hence, we obtain the Lagrangian of the fractional classical mechanics

[134]

Lα(
·
q, q) =

(
1

αDα

) 1
α−1 α− 1

α
| ·q|

α
α−1 − V (q), 1 < α ≤ 2. (15.6)

For a free particle, V (q) = 0, the Lagrangian of the fractional classical

mechanics is

L(0)
α (
·
q, q) =

(
1

αDα

) 1
α−1 α− 1

α
| ·q|

α
α−1 , 1 < α ≤ 2. (15.7)

Further, the Euler-Lagrange equation of motion has the standard form
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d

dt

∂Lα(
·
q, q)

∂
·
q

− ∂Lα(
·
q, q)

∂q
= 0. (15.8)

By substituting Eq. (15.6) into Eq. (15.8) we find the motion equation

in Lagrangian form

(
1

αDα

) 1
α−1 1

α− 1

··
q| ·q|

2−α
α−1 +

∂V (q)

∂q
= 0. (15.9)

This equation has to be accompanied by the initial conditions. We

impose the following initial conditions. At t = 0, the initial displacement is

denoted by q0 and the corresponding velocity is denoted by
·
q0, that is we

can write,

q(t = 0) = q0 and
·
q(t = 0) =

·
q0. (15.10)

As one can see, Eq. (12.19) has a nonlinear kinematic term.

The new equation (12.19) is fractional generalization of the well-known

equation of motion of classical mechanics in the Lagrange form.

In the special case when α = 2, Eq. (12.19) goes into

m
··
q +

∂V (q)

∂q
= 0, (15.11)

where m is a particle mass (D2 = 1/2m) and the initial conditions are given

by Eq. (15.10).

15.2.2 Hamilton outline

To obtain the Hamilton equations of motion for the fractional classical

mechanics we apply variational principle,

δSα(p, q) = 0, (15.12)

where the action Sα(p, q) is given by Eq. (3.1).

Considering the momentum p and coordinate q as independent variables

we can write

δSα(p, q) =

tb∫
ta

dτ(δp
.
q + pδ

.
q − ∂Hα(p, q)

∂p
δp− ∂Hα(p, q)

∂q
δq) = 0. (15.13)
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Upon integration by parts of the second term pδ
.
q, the variation δSα

becomes

δSα(p, q) =

tb∫
ta

dτδp(
.
q − ∂Hα(p, q)

∂p
)

+pδq|tbta −
tb∫
ta

dτδq(
.
p+

∂Hα(p, q)

∂q
) = 0.

Since δq(ta) = δq(tb) = 0 at the end points of the trajectory, the term

pδq is 0. Between the end points δp and δq can take on any arbitrary value.

Hence, the variation δSα can be 0 if the following conditions are satisfied

·
q =

∂Hα(p, q)

∂p
,

·
p = −∂Hα(p, q)

∂q
. (15.14)

This is, of course, the canonical Hamilton equations of motion. Thus,

for the time-independent Hamiltonian given by Eq. (15.2) we obtain the

equations

·
q = αDα|p|α−1sgn p,

·
p = −V (q)

∂q
, 1 < α ≤ 2, (15.15)

where sgn p is the sign function which for nonzero values of p can be defined

by the formula

sgn p =
p

|p|
and |p| is the absolute value of p.

Equations (15.15) are the Hamilton equations for fractional classical

mechanics system.

15.2.3 Poisson bracket outline

It is well-known that Hamiltonian classical mechanics could be reformulated

in terms of the Poisson brackets. For the two arbitrary functions u(p, q)

and v(p, q) of variables p and q, the Poisson bracket is defined as [122]

{u(p, q), v(p, q)} =
∂u

∂p

∂v

∂q
− ∂u

∂q

∂v

∂p
. (15.16)
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The Hamilton’s equations of motion have an equivalent expression in

terms of the Poisson bracket. Indeed, suppose that f(p, q, t) is a function of

momentum p, coordinate q and time t. Then we have

df

dt
=
∂f

∂t
+

(
∂f

∂p

·
p+

∂f

∂q

·
q

)
. (15.17)

Substituting
·
q and

·
p given by Eq. (12.23) yields

df

dt
=
∂f

∂t
+ {Hα, f}, (15.18)

where {Hα, f} is the Poisson bracket defined by

{Hα, f} =
∂Hα

∂p

∂f

∂q
− ∂Hα

∂q

∂f

∂p
, (15.19)

with Hα given by Eq. (15.2).

15.2.4 Hamilton–Jacobi outline

Having the Lagrangian (15.4), we can present classical mechanics action

given by Eq. (15.1) as a function of coordinate q,

Sα(q) =

tb∫
ta

dτLα(
·
q, q) (15.20)

=

tb∫
ta

dτ

{(
1

αDα

) 1
α−1 α− 1

α
| ·q|

α
α−1 − V (q)

}
,

where 1 < α ≤ 2.

Let’s now treat the action Sα(q, tb) as a function of coordinate q and

the upper limit of integration, tb. Further, we suppose that motion goes

along the actual path, that is we consider action as a functional of actual

trajectory q(τ) in coordinate space. To evaluate the variance δSα(q, tb) we

have to compare the values of Sα(q, tb) for trajectories having a common

start point at q(ta), but passing through different end points at tb. Thus,

for the variation of the action by the variation of the end point δq(tb) of

the trajectory we have
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δSα(q, tb) = δ

tb∫
ta

dτLα(
·
q, q) (15.21)

=
∂Lα

∂
·
q
δq|tbta +

tb∫
ta

dτδq

(
∂Lα
∂q
− d

dt

∂Lα

∂
·
q

)
.

Because of Eq. (15.8) and δq(ta) = 0 we obtain

δSα(q, tb) = pδq(tb)

or

p =
δSα(q, tb)

δq(tb)
. (15.22)

For simplicity, letting δq(tb) = δq and tb = t, we can write

dSα(q, t)

dt
=
∂Sα(q, t)

∂t
+
∂Sα(q, t)

∂q

·
q =

∂Sα(q, t)

∂t
+ p

·
q. (15.23)

According to the definition of the action its total time derivative along

the trajectory is dSα/dt = Lα, and Eq. (15.23) can be presented as

∂Sα(q, t)

∂t
= Lα − p

·
q = −Hα(p, q), (15.24)

where Eq. (15.4) has been taken into account and p is given by Eq. (15.22).

Therefore, we come to the equation

∂Sα(q, t)

∂t
+Hα(

∂Sα(q, t)

∂q
, q) = 0. (15.25)

With Hα(p, q) given by Eq. (15.2) it takes the form

∂Sα(q, t)

∂t
+Dα|

∂Sα(q, t)

∂q
|α + V (q) = 0, 1 < α ≤ 2, (15.26)

where Sα is called the Hamilton’s principal function.

For time-independent Hamiltonian the variables q and t in this equation

can be separated. That is, we can search for solution of Eq. (15.26) in the

form
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Sα(q, t, E) = S(0)
α (q, E)− Et, (15.27)

where S
(0)
α (q, E) is time-independent Hamilton’s principal function and E,

is the constant of integration, which has been identified with the total

energy. Substituting Eq. (15.27) into Eq. (15.26) yields

Dα|
∂S

(0)
α (q, E)

∂q
|α + V (q) = E, 1 < α ≤ 2. (15.28)

Equations (15.26) and (15.28) are the Hamilton–Jacobi equations of

fractional classical mechanics.

As an example, let us consider a free particle, V (q) = 0. The Hamilton-

Jacobi equation Eq. (15.26) for a free particle is

∂Sα(q, t)

∂t
+Dα|

∂Sα(q, t)

∂q
|α = 0, 1 < α ≤ 2. (15.29)

Therefore, from Eqs. (15.27) and (15.28) we obtain a solution to the

Hamilton–Jacobi equation Eq. (15.29),

Sα(q, t, E) = (
E

Dα
)1/αq − Et. (15.30)

Follow the Hamilton-Jacobi fundamentals (see, for instance, [122]) we

differentiate Eq. (15.30) over the energy E and put the derivative equal to

a new constant δ,

δ =
∂Sα(q, t, E)

∂E
=

1

αDα
(
E

Dα
)

1
α−1q − t, (15.31)

which yields

q = αDα(
E

Dα
)1− 1

α (t+ δ) (15.32)

and

p =
∂Sα(q, t, E)

∂q
= (

E

Dα
)1/α, (15.33)

where E > 0 and 1 < α ≤ 2.

The equations (15.32) and (15.33) define the trajectory of a free particle

in fractional classical mechanics framework.

In limit case when α = 2 and D2 = 1/2m, Eqs. (15.9), (15.15), (15.26)

and (15.28) are transformed into the well-known Hamilton, Lagrange and

Hamilton–Jacobi equations of classical mechanics for a particle with mass

m moving in the potential field V (q).



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 266

266 Fractional Quantum Mechanics

15.3 Mechanical similarity

First of all, we intend to study the general properties of 1D fractional

classical motion without integrating motion equations (15.9), (15.15), and

(15.28).

When the potential energy V (q) is a homogeneous function of coordinate

q, it is possible to find some general similarity relationships.

Let us carry out a transformation in which the coordinates are changed

by a factor ρ and the time by a factor τ : q → q′ = ρq, t→ t′ = τt. Then all

velocities
·
q = dq/dt are changed by a factor ρ/τ , and the kinetic energy by

a factor (ρ/τ)
α/(α−1)

. If V (q) is a homogeneous function of degree β then

it satisfies,

V (ρq) = ρβV (q). (15.34)

It is obvious that if ρ and τ are such that (ρ/τ)
α/(α−1)

= ρβ , i.e. τ =

ρ1−β+ β
α , then the transformation leaves the motion equation unaltered.

This invariance is called mechanical similarity.

A change of all the coordinates of the particles by the same scale fac-

tor corresponds to replacement of the classical mechanical trajectories of

the particles by other trajectories, geometrically similar but different in

size. Thus, we conclude that, if the potential energy of the system is a

homogeneous function of degree β in Cartesian coordinates, the fractional

equations of motion permit a series of geometrically similar trajectories,

and the times of the motion between corresponding points are in the ratio

t′

t
=

(
l′

l

)1−β+ β
α

, (15.35)

where l′

l is the ratio of linear scales of the two paths. Not only the times

but also any other mechanical quantities are in a ratio which is a power of
l′

l . For example, the velocities and energies follow the scaling laws

·
q
′

·
q

=

(
l′

l

)β− βα
,

E′

E
=

(
l′

l

)β
, (15.36)

and

t′

t
=

(
E′

E

) 1
α+ 1

β−1

. (15.37)
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The following are some examples of the foregoing.

It follows from Eq. (15.37) that at 1
α + 1

β = 1 the period of oscillations

does not depend on energy of oscillator. The condition 1
α + 1

β = 1 with

1 < α ≤ 2, 1 < β ≤ 2 brings α = 2 and β = 2 only. It means, for instance,

that considering the fractional classical oscillator model with Hamiltonian

(15.41), we can conclude that the standard classical harmonic oscillator

only,

H2(p, q) = p2/2m+ g2q2, (15.38)

has the period of oscillations which does not depend on energy of oscillator.

In the uniform field of force, the potential energy is a linear function

of the coordinates, i.e. β = 1. From Eq. (15.37) we have t′

t =
(
l′

l

)1/α

.

Therefore, the time of motion in a uniform field (β = 1) is as the α-root of

the initial altitude.

If the potential energy is inversely proportional to the distance apart,

i.e. it is a homogeneous function of degree β = −1, then Eq. (15.35)

becomes

t′

t
=

(
l′

l

)2− 1
α

. (15.39)

For instance, regarding the problem of orbital motion in the 3D frac-

tional classical mechanics, we can state that the orbital period to the power

α is proportional to the power 2α − 1 of its orbit scale. This statement is

in fact a generalization of the well-known Kepler’s third law. We call Eq.

(15.39) as fractional Kepler’s third law . In special case α = 2, Eq. (15.39)

turns into the well-known Kepler’s third law [122].

In general, for negative β, β = −γ, in the space of the fractional Hamil-

tonians Hα,−γ at

1 + γ − γ

α
=

3

2
, (15.40)

there exists the subset of fractional dynamic systems, orbital motion of

which follows the well-known Kepler’s third law, that is, the square of the

orbital period is proportional to the cube of the orbit size.
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15.4 Integration of the motion equations. Fractional

classical oscillator

15.4.1 Lagrange approach

Quantum fractional oscillator model has been introduced in [67]. Frac-

tional classical oscillator can be considered as a classical counterpart of the

quantum fractional oscillator model.

We introduce fractional classical 1D oscillator as a mechanical system

with the Hamiltonian

Hα,β(p, q) = Dα|p|α + g2|q|β , (15.41)

where g is a constant with physical dimensional [g] = erg1/2 · cm−β/2 and

α and β are parameters, 1 < α ≤ 2, 1 < β ≤ 2.

It follows from Eq. (15.6) that the Lagrangian of the fractional classical

1D oscillator is

L(
·
q, q) =

(
1

αDα

) 1
α−1 α− 1

α
| ·q|

α
α−1 − g2|q|β , (15.42)

1 < α ≤ 2, 1 < β ≤ 2.

Hence, the motion equation of fractional classical 1D oscillator is

(
1

αDα

) 1
α−1 1

α− 1

··
q| ·q|

2−α
α−1 + βg2|q|β−1sgn q = 0. (15.43)

This is a new nonlinear classical mechanics equation of motion. When

α = 2 and β = 2 it turns into the well-known linear equation of motion for

classical mechanics oscillator which has the form,

m
··
q + 2g2q = 0, (15.44)

where m is a particle mass (D2 = 1/2m).

To integrate Eq. (15.43) we start from the law of energy conservation.

For the Lagrangian Eq. (15.42) we have

Dα

(
1

αDα

) α
α−1

| ·q|
α
α−1 + g2|q|β = E, (15.45)
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where E is the total energy. Thus, we have

| ·q| = αD1/α
α (E − g2|q|β)

α−1
α , (15.46)

which is a first-order differential equation, and it can be integrated.

Since the kinetic energy is positive, the total energy E always exceeds

the potential energy, that is E > g2|q|β . The points where the potential

energy equals the total energy g2|q|β = E are turning points of classical

trajectory. The 1D motion bounded by two turning points is oscillatory,

the particle moves repeatedly between those two points.

Substituting q = (E/g2)1/βy into Eq. (15.46) yields

| ·y| = αD1/α
α g2/βE1−( 1

α+ 1
β )(1− |y|β)1− 1

α . (15.47)

Hence, the period T (α, β) of oscillations is

T (α, β) = 4
E( 1

α+ 1
β )−1

αD
1/α
α g2/β

1∫
0

dy

(1− yβ)1− 1
α

.

By substituting z = yβ we rewrite the last equation in the form

T (α, β) = 4
E( 1

α+ 1
β )−1

αβD
1/α
α g2/β

1∫
0

dzz
1
β−1(1− z) 1

α−1. (15.48)

With the help of the B-function definition [156]

B(
1

β
,

1

α
) =

1∫
0

dzz
1
β−1(1− z) 1

α−1,

we finally find for the period of oscillations of fractional classical 1D

oscillator [155]

T (α, β) = 4
E( 1

α+ 1
β )−1

αβD
1/α
α g2/β

B(
1

β
,

1

α
). (15.49)

This equation shows that the period depends on the energy of fractional

classical 1D oscillator. The dependency on energy is in agreement with the

scaling law given by Eq. (15.37).

It follows from Eq. (15.49) that period T (α, β) doesn’t depend on the

energy of oscillator when (1/α + 1/β) = 1. If 1 < α ≤ 2 and 1 < β ≤ 2
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then condition (1/α + 1/β) = 1 gives us that α = 2 and β = 2. Hence,

we come to the standard classical mechanics harmonic oscillator with the

Hamiltonian given by Eq. (15.38) and the energy independent oscillation

period, T (2, 2) = π
√

2m/g.

Table 2 shows that the energy dependency of the period of fractional

classical oscillator is a classical counterpart of the fractional quantum me-

chanics statement on non-equidistant energy levels of quantum fractional

oscillator . For classical mechanics, independence on energy of the period

of classical oscillator is a classical counterpart of the quantum mechanics

statement on equidistant energy levels of quantum oscillator.

Period of oscillations T Quantum energy levels En
1<α<2
1<β<2

Fractional classical mechanics

T=4 E
( 1
α

+ 1
β

)−1

αβD
1/α
α g1/β

B( 1
β ,

1
α )

Fractional quantum mechanics

En=

(
π~βD1/α

α g2/β

2B( 1
β
, 1
α

+1)

) αβ
α+β

(n+ 1
2 )

αβ
α+β

α=2
β=2

Classical mechanics
T=π

√
2m/g

Quantum mechanics

En=~
√

2/mg(n+ 1
2 )

Table 2. Period of classical oscillations and quantum energy levels:

fractional mechanics (1 < α < 2, 1 < β < 2) vs standard mechanics

(α = 2, β = 2)1.

15.4.2 Hamilton approach

For the fractional 1D oscillator the Hamilton equations of motion in accor-

dance with Eqs. (15.14) and (15.41) are

·
q =

∂Hα,β

∂p
= αDα|p|α−1sgn p, (15.50)

1The period of oscillations T and frequency of oscillations ω are related by T = 2π/ω.
Hence, the classical mechanics frequency is ω =

√
2/mg, then the quantum mechanics

energy levels are En = ~ω(n+ 1
2

).
The energy levels equation for the fractional quantum oscillator has been taken from

[96].
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·
p = −∂Hα,β

∂q
= −βg2|q|β−1sgn q, (15.51)

where 1 < α ≤ 2, 1 < β ≤ 2.

Further, Hamilton equation (15.50) leads to

|p| =
(

1

αDα

) 1
α−1

| ·q|
1

α−1 . (15.52)

Substituting Eq. (15.52) into Eq. (15.41) yields exactly Eq. (15.45).

Therefore, downstream integration can be done by the same way as it was

done above in the framework of the Lagrange approach.

15.4.3 Hamilton–Jacobi approach

For fractional classical oscillator with the Hamilton function defined by Eq.

(15.41) a complete integral of the Hamilton–Jacobi equation (15.27) is

S(q, t, E) =

∫
dq(

1

Dα
(E − g2|q|β))1/α − Et, (15.53)

where the integration constant E can be identified with the total energy of

the fractional classical oscillator.

It is known that in standard classical mechanics [122], α = 2, the integral

in Eq. (15.53) is considered as an indefinite integral. At this point, to move

forward, we introduce the ansatz to treat the integral in Eq. (15.53) as

S(q, t, E) =

q∫
0

dq(
1

Dα
(E − g2|q|β))1/α − Et. (15.54)

Following the Hamilton–Jacobi fundamentals (see, for instance, [122])

we differentiate Eq. (15.53) over the energy E and put the derivative equal

to a new constant δ,

∂S(q, t, E)

∂E
=

1

αD
1/α
α

q∫
0

dq′(E − g2|q′|β)(1−α)/α − t = δ. (15.55)

Substituting integration variable q′ with new variable z, q′ =

(E/g2)1/βz1/β yields
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t+ δ =
E( 1

α+ 1
β )−1

αβD
1/α
α g2/β

qβg2/E∫
0

dzz
1
β−1(1− z) 1

α−1. (15.56)

The integral in the above equation can be expressed as the incomplete

Beta function2 and we obtain

t+ δ =
E( 1

α+ 1
β )−1

αβD
1/α
α g2/β

Bqβg2/E(
1

β
,

1

α
). (15.58)

This equation is the solution of the fractional 1D oscillator as function

t(q) in terms of the incomplete Beta function.

The incomplete Beta function Bx(µ, ν) has the hypergeometric repre-

sentation

Bx(µ, ν) =
xµ

µ
F (µ, 1− ν;µ+ 1;x), (15.59)

where F (µ, 1− ν;µ+ 1;x) is the hypergeometric function [158].

Now we can write Eq. (15.58) in the form

t+ δ =
E

1
α−1

αD
1/α
α

qF (
1

β
, 1− 1

α
;

1

β
+ 1; qβg2/E). (15.60)

Thus, in terms of the hypergeometric function we found solution of the

fractional 1D oscillator as function t(q).

Let us show that the ansatz given by Eq. (15.54) and based on it solu-

tion given by Eq. (15.60) allow us to reproduce the well-known solution to

standard classical harmonic oscillator, α = 2 and β = 2. Indeed, at α = 2

and β = 2 we have

ω(t+ δ) = xF (
1

2
,

1

2
;

3

2
;x2), (15.61)

2The incomplete Beta function is defined as [157]

Bx(µ, ν) =

x∫
0

dyyµ−1(1− y)ν−1. (15.57)
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where a new variable x has been introduced as,

x = g
√

1/Eq, (15.62)

and ω =
√

2/mg is the frequency of classical 1D oscillator.

Since

xF (
1

2
,

1

2
;

3

2
;x2) = arcsinx,

it follows from Eq. (15.61) that

x(t) = sinω(t+ δ).

By restoring the original dynamic variable q(t) from Eq. (15.62) we

obtain,

q(t) =

√
2E

mω2
sinω(t+ δ), (15.63)

which is the solution of the Hamilton-Jacobi equation for standard 1D har-

monic oscillator with the Hamiltonian given by Eq. (15.38).

Thus, we proved that the ansatz given by Eq. (15.54) gives us the well-

known solution to standard classical mechanics harmonic oscillator.
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Chapter 16

Fractional Dynamics in Polar
Coordinate System

Following [159] we develop an alternative approach to study fractional clas-

sical mechanical oscillator described by the Hamilton function given by Eq.

(15.41). To simplify the notations we rewrite Eq. (15.41) in the unified

form to cover 1D and 2D cases,

H =
1

α
pα +

1

β
rβ , p = |p|, p ∈ Pn, (16.1)

r = |r|, r ∈ Rn, n = 1, 2.

The idea behind the approach is to transform an integrable Hamiltonian

system with two degrees of freedom on the plane into a dynamic system

that is defined on the sphere and inherits the integrals of motion of the

original system.

The same class of dynamical systems may be treated as an extension of

“pseudobilliard” dynamical systems [159], which are closely related to the

case of α = 1. Each system from this class corresponds to a point in the

plane of fractional parameters (α, β). Dynamical systems described by Eq.

(16.1) have evident first integrals of energy and angular momentum.

First, consider systems (16.1) with α > 0, β > 0 in the one-dimensional

case. In these systems, there exist oscillations in the level H = E with

period

T (α, β;E) ∝ Eγ−1, γ ≡ 1/α+ 1/β. (16.2)

In the plane (α, β), the period T becomes independent on energy E if

the condition holds

γ =
1

α
+

1

β
= 1, (16.3)

275
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which corresponds to isochronous dynamic systems. In the two-dimensional

case, the period of finite oscillations in the systems corresponding to the

same condition is also independent on energy (for α > 0, β > 0, E > 0

and for α + β > 0, αβ < 0, E < 0). Furthermore, for α > 0 and β < 0,

the points (α, β), where γ = − 1
2 represent fractional dynamic systems, for

which the period (of oscillations, in the one-dimensional case, or that of

revolution along circular orbits, in the two-dimensional case) depends on

energy exactly as in the classical mechanics Kepler problem: T ∝ E−3/2.

The traditional method for classification of orbits in R2 involves inver-

sion of integrals that extend the elliptic integrals to the case of irrational

values of the fractional parameters (α, β). For example, when α > 0, β > 0,

the dependence of the absolute value r of the radius–vector of a particle on

the polar angle ϕ is determined by inverting the integral

ϕ =M
ρ∫

ρmin

d
(

1
ρ

)
√

(1− ρβ)
2
α −M2

, ρmin ≤ ρ ≤ ρmax.

Here , ρmin and ρmax are turning points of the trajectory, which are specified

by the roots of the equation ρβ = 1 − M
α

ρα ; ρ = r
r0

, r0 = (βE)
β
, M =

β
α1/αβ1/β ME−γ , where E and M are constant values of the first integrals of

motion.

We use an alternative approach to analyze orbits of dynamic systems

introduced by Hamiltonian function given by Eq. (16.1). The key point

of our approach is the passage to a dynamic system whose configurational

manifold is a two-dimensional unit sphere [160].

Let us specify each of the vectors p and r by their coordinates in a

respective polar coordinate system: r = (r, ϕ); p = (p, ψ). We change from

the polar angles ψ and ϕ to the angular variables Ψ = ψ+ϕ and Φ = ψ−ϕ.

The Hamiltonian function (16.1) leads to non-canonical equations of motion

of the form
ṙ = pα−1 cos Φ, Φ̇ = 1

rp (rβ − pα) sin Φ,

ṗ = −rβ−1 cos Φ, Ψ̇ = 1
rp (rβ + pα) sin Φ.

(16.4)

They have two evident integrals, the energy E = 1
αp

α+ 1
β r

β and the moment

M = rp sin Φ.

Excluding p and r in (16.4) yields the following equations for the angular

variables (Ψ,Φ):

Φ̈ = cot(Φ)
{

2Φ̇2 + 1
4 (α+ β)(Ψ̇2 − Φ̇2)

}
,

Ψ̈ = cot(Φ)
{

2Φ̇Ψ̇− 1
4 (α− β)(Ψ̇2 − Φ̇2)

}
.

(16.5)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 277

Fractional Dynamics in Polar Coordinate System 277

This system of equations describes the motion of a point with spherical co-

ordinates (Ψ,Φ) on the unit sphere, and is the main system in our approach.

Note that the parameters α and β enter only into the coefficients in these

equations, they do not enter into exponents of derivatives. Moreover, only

the derivatives of Ψ appear in system (16.5) and not this function itself.

When evolution of the angular variables (Ψ,Φ) is determined, the ab-

solute values of the vectors (p, r) are restored from the relations

pα =
1

2rp

Ψ̇− Φ̇

sin Φ
> 0, rβ =

1

2rp

Ψ̇ + Φ̇

sin Φ
> 0.

The first integrals of system (16.5)

I1 = (sin Φ)−2{(α+ β)Ψ̇ + (α− β)Φ̇},

I2 = (sin Φ)1−2γ
[
Ψ̇ + Φ̇

] 1
β ·
[
Ψ̇− Φ̇

] 1
α (16.6)

can be expressed in terms of the integrals E and M of the original Hamil-

tonian system: I1 = αβE/M, I2 = 2γM1−γ .

Let us consider, in more detail, the possible motions of a point on the

unit sphere that are yielded by system (16.5).

First, it can be shown that, for any orbit, the angular velocity Ψ̇ does

not change sign, and Φ varies within the range 0 ≤ Φ− ≤ Φ ≤ Φ+ ≤ π,

where Φ± are solutions to the system

sin Φ± =
M

r0p0
, pα0 = rβ0 =

E

γ
.

As M → (E/γ)γ , this strip shrinks into the equatorial circle Φ = π
2 .

The motion of the image point along the equator of the sphere corresponds

to the circular orbit (one with r = r0 and p = p0; such circular orbits

exist in systems with any nonzero α and β). The motion along the equator

is uniform: the azimuthal angle Ψ varies linearly with time with velocity

θ0 ≡ Ψ̇ = (E/γ)1−γ . Note that in the systems corresponding to the curve

γ = 1 the frequency of revolution along the circular orbit is independent of

E, and the first integrals (E,M) are functionally related.

Let us seek different closed orbits in a system with the Hamiltonian

function (16.1). In terms of the dynamic system (16.5), closed orbits corre-

spond to closed trajectories on the unit sphere. For such trajectories, the

frequency of oscillation of Φ must be commensurable with the frequency of

revolution (i.e., with the mean velocity of growth) of Ψ.

By linearizing system (16.5) in the neighborhood of the circular orbit

(Φ = π
2 , Ψ = Ψ0 + θ0 t), we obtain the solution

Φ =
π

2
+ ε sin τ , Ψ = Ψ0 +

[
2√
α+ β

+ ε
θ1

ω0

]
τ − ε 1

θ0

α− β
α+ β

sin τ ,
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where ε � 1, τ = ω0t, ω0 = 1
2

√
α+ β θ0 is the frequency of small oscilla-

tions around the equator of the sphere, and θ1 is the shift of the revolution

frequency. Thus, in the first-order approximation in ε, Φ is a 2π-periodic

function of the variable τ . The value of Ψ changes by 4π/
√
α+ β + O(ε)

over the period of Φ. Let us define the rotation number d for a bounded

trajectory as the angular distance ϕ2−ϕ1 between two subsequent apocen-

ters (points where r = rmax) divided by 2π. Since, by virtue of Eqs. (16.4),

Φ = π/2 at apocenters, the rotation number is

d =
1

4π
(Ψ(τ = 0)−Ψ(τ = 2π)) . (16.7)

The rotation number for a circular orbit is not defined. It is natural to

define it as the limit of rotation numbers of orbits that are close to the

circular one: d0 = limε→0 d(ε) = 1/
√
α+ β. Closed orbits can branch off a

circular one only for such values of (α, β) for which d0 is rational.

While studying the system (16.5), it has been shown in [159] that, when

a line α+ β = r2 (r ∈ Q) in the plane (α, β) is crossed, a closed orbit with

rotation number 1/r branches off the circular orbit. Note that the circular

orbit is unstable for α+ β < 0.

As we move away from the circular orbit, the shape of trajectories oscil-

lating on the sphere in the strip between two symmetrical “tropics” becomes

more and more saw-toothed. In the limit, (as M→ 0) they degenerate into

the circuit of the contour consisting of the trajectories on which Φ and Ψ

are linearly dependent. In the plane (Φ, Ψ), these trajectories are segments

of straight lines; each segment is passed by the image point in an infinite

time. To find such trajectories explicitly, it is convenient to write out a

differential equation for Φ treated as a function of Ψ. By virtue of (16.5),

Φ′′ =
1

4
(cot Φ)

[
1− (Φ′)

2
]
{(α+ β) + (α− β)Φ′} , (16.8)

where prime denotes differentiation with respect to Ψ. This equation has

the following integral:

sin Φ
(1− Φ′)

1
α (1 + Φ′)

1
β[

1 + α−β
α+βΦ′

]γ = const.

It is easy to see from (16.8) that, for each pair (α, β), there are three

straight-line trajectories, with the angular coefficients k = +1, k = −1,

and k = µ, where µ(α, β) = −α+β
α−β . A limit contour consists of segments

with two alternating values of k out of those three; they are “selected” by

the signs of α and β. The trajectory with k = µ exists if α < 0 or β < 0



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 279

Fractional Dynamics in Polar Coordinate System 279

and corresponds to motion along an open curve in the original system. In

particular, when α > 0, β < 0, this orbit is a generalization of a parabolic

orbit in the Kepler problem; here, r →∞ as t→ ±∞. In the “conjugate”

case of α < 0 and β > 0, the corresponding orbit has the shape of a loop

emanating from and entering into the origin; here, r → 0 as t → ±∞.

Trajectories with k = ±1, which exist in system (16.5), do not have a

physical pre-image in the original problem (for one, r = ∞, p = 0; for the

other, r = 0, p = ∞). However, introducing corresponding “motions” in

the original system is useful so that to define a formal closed contour that

is a limit contour for closed orbits (for example, in the Kepler problem, the

parabolic orbit supplemented by the “orbit” r = ∞, p = 0 forms a limit

contour for the set of elliptic orbits).

An analogue of the rotation number can be defined for such limit con-

tours by using definition (16.7). Specifically, for α > 0, β < 0, we have

d∞ = (2αγ)−1; and for α < 0, β > 0, we find that d∞ = (2βγ)−1. These

values are limit ones for the rotation numbers of bounded trajectories that

degenerate into a circuit of the contour.

The dynamic system (16.5) admits a formal solution in the form of

asymptotic expansions of the angular variables (Φ,Ψ) with respect to the

parameter ε, which is the measure of deviation from the circular orbit.

These expansions take the form

Φ = π
2 + ε F (ε;α, β; {sin(mτ)}),

Ψ = Ψ0 + C(ε;α, β) τ + εG(ε;α, β; {sin(mτ)}),
(16.9)

where F and G are polynomials of harmonics sin(mτ) and the mean fre-

quency C is specified by the expression

C(ε;α, β) =
2√
α+ β

+
∑
n=1

ε2nC2n(α, β). (16.10)

The rotation number d = d(ε;α, β) equals C/2. If all the coefficients

C2n vanish for some (α, β), then all bounded orbits in this system have

equal rotation numbers. In particular, if this number is rational, then all

these orbits are closed and have identical topology.

It was shown in [159] that C2 = 0 at the points of the plane (α, β) that

lie on the ellipsis specified by the formula

(α+ β)2 − 3(α+ β) = αβ. (16.11)

Surprisingly, it has occurred that C4 identically vanishes on this ellipsis

too, since it can be factorized as C4(α, β) = C2(α, β) · R(α, β). There-
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fore, for all the points on the ellipsis defined by (16.11), the rotation num-

ber anomalously weakly depends on the deviation from the circular orbit:

d(ell) = d0 +O(ε6).

The results of numerical simulations presented in [159] show that, in

systems corresponding to the points of the ellipsis (16.11), the relative de-

viation of the rotation number d from the rotation number d0 assigned to

the circular orbit is less than 10−5 for about a third of all possible initial

condition scenarios corresponding to finite orbits. However, asymptotic ex-

pansion coefficient C6 is nonzero for almost all systems on ellipsis (16.11)

and equals

Cell
6 =

1

2880

(α+ β − 4) (α+ β − 1)2

√
α+ β

. (16.12)

It vanishes at three points of the ellipsis in (α, β) plane: (2, 2) (it corre-

sponds to the harmonic oscillator), (2,−1) (it corresponds to the Kepler

problem), and (−1, 2) (it corresponds to the conjugate Kepler problem).

On the other hand, for these three points, the rotation number d0 of the

circular orbit coincides with the rotation number d∞ assigned to the limit

contour. This is in agreement with the fact that, in each of the three sys-

tems, all the bounded orbits are closed and have equal rotation numbers.

As is well known, bounded orbits have the shape of an ellipsis in the cases

of the harmonic oscillator (d = 1/2) and the Kepler problem (d = 1). In

the case of the conjugate Kepler problem, however, all the bounded orbits

are circles with d = 1 (their centers are not at the origin, but the origin lies

inside them). This implies that, in the Kepler case, the end of the vector

of momentum moves along a circle (in the p-plane) shifted off the origin.

16.1 Generalized 2D fractional classical mechanics

It is well known [122], that in the class of Hamiltonian systems with two

degrees of freedom the Kepler problem defined by the Hamilton function of

the form

H =
p2

2
+ U(|r|), U(|r|) =

σ

|r|
, σ < 0, r,p ∈ R2, (16.13)

is one of the two classical mechanical systems, together with the isotropic

harmonic oscillator, where the orbits of all finite motions are closed. This

is due to the hidden symmetry of the Kepler problem caused by the ex-

istence of the third integral of motion in addition to the well-known two
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integrals of motion - energy and momentum. Any structural perturba-

tions in the Hamiltonians defined by Eq. (16.13) result in a precession of

orbits and disappearance of the hidden symmetry. This behavior of the

Hamiltonian systems with two degrees of freedom changes significantly for

fractional Hamiltonian system like classical mechanical fractional oscillator

introduced by Eq. (15.41). To explore this interesting feature we intro-

duce generalized fractional classical mechanical 2D systems, the Hamilton

function of which is [160]

H = pα1rβ1 + σpα2rβ2 r = |r|, p = |p|, r,p ∈ R2, (16.14)

where α1, β1, α2, β2, and σ are real parameters. This class of fractional

dynamic models includes, in particular, the Hamiltonian of a particle in a

central field (16.13) with the potential U ∼ rβ2 , when α1 = 2, β1 = α2 = 0.

Our intent is to show that in the four-dimensional space of structural

parameters (α1, β1, α2, β2), there exists a one-dimensional manifold (con-

taining the case of the planar Kepler problem) along which the closedness

of the orbits of all finite motions and the third Kepler law are preserved.

Similarly, there exists a one-dimensional manifold (containing the case of

the two-dimensional isotropic harmonic oscillator) along which the closed-

ness of the orbits and the isochronism of oscillations are preserved. Any

deformation of orbits on these manifolds does not violate the hidden sym-

metry typically attributed to two-dimensional isotropic oscillator and the

planar Kepler problem.

We will show that for σ < 0, there exists a one-parameter family of

Hamiltonians of form (16.14) for which the trajectories of all finite orbits

are closed and the third Kepler law holds: T ∝ (−E)−3/2. If the parameter

of the family varies, the orbits are deformed. They can have the form of

Kepler ellipses, circles, or Pascal’s limacons. Orbits with self-intersection

points can appear. When orbits are closed and the third Kepler law holds all

representatives of the family have a hidden symmetry due to the existence

of an additional integral of motion. For σ > 0, there exists a one-parameter

family of Hamilton functions of form (16.14) that, along with the closedness

of orbits, inherit from the two-dimensional isotropic harmonic oscillator

the isochronism of nonlinear oscillations for all E > 0. All representatives

of this family also have a hidden symmetry due to the existence of an

additional integral of motion.

For σ > 0, there exists a one-parameter family of Hamilton func-

tions of form (16.14) that, along with the closedness of orbits, inherit the
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isochronism of oscillations (already nonlinear) for all E > 0 from the two-

dimensional isotropic harmonic oscillator. All representatives of this family

also have a hidden symmetry (an additional integral of motion).

Moreover, in each of the cases σ < 0 and σ > 0, the corresponding one-

parameter family is a particular case of a two-parameter family of Hamilton

functions for each of which all finite motions are characterized by the same

rotation number. The orbits of all finite motions are closed if this number

is rational and are open otherwise.

To study Hamiltonian systems (16.14) we apply the approach developed

in [160]. The approach is based on transforming an integrable Hamiltonian

system with two degrees of freedom defined on the plane into a dynamic

system defined on the sphere and inheriting the integrals of motion of the

original system. Besides a few advantages from the stand point of analyt-

ical and numerical analysis a dynamic system on the sphere is interesting

example of a dynamic system with one and a half degrees of freedom and

with two first integrals of motion. Moreover, the first integrals of this sys-

tem on the sphere allow one to obtain the scaling laws (with respect to one

of the angular variables) related to linear transformations of one- and two-

dimensional manifolds into themselves in the space of structural parameters

(α1, β1, α2, β2) of the original fractional classical mechanical systems with

Hamilton function introduced by Eq. (16.14).

16.2 Dynamics on 2D sphere

The canonical equations for Hamiltonians of the form H = H(p, r) are

·
r =

∂H

∂p

p

p

·
p = −∂H

∂r

r

r
, (16.15)

and have two integrals of motion (the energy E = H and the moment

M = [r,p]). Expressing the vectors p and r in polar coordinates (p, ψ) and

(r, ϕ), we obtain the noncanonical equations of motion

·
r =

∂H

∂p
cos(ψ − ϕ),

·
p = −∂H

∂r
cos(ψ − ϕ), (16.16)

and

r
·
ϕ =

∂H

∂p
sin(ψ − ϕ), p

·
ψ = −∂H

∂r
sin(ψ − ϕ). (16.17)
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Introducing new angular variables Ψ = ψ + ϕ and Φ = ψ − ϕ, we write

the equations of motion as

·
r =

∂H

∂p
cos Φ,

·
p = −∂H

∂r
cos Φ, (16.18)

and

·
Φ =

(
1

p

∂H

∂r
− 1

r

∂H

∂p

)
sin Φ,

·
Ψ =

(
1

p

∂H

∂r
+

1

r

∂H

∂p

)
sin Φ. (16.19)

Hence, it is possible to reduce the equations to a dynamic system with

one and a half degrees of freedom.

If Hamiltonian H has form (16.14), then p and r can be eliminated from

Eqs. (16.18) and (16.19). Thus, we obtain the system of equations for the

angular variables (Ψ, Φ)

··
Φ = cot Φ

{
2
·

(Φ)2 +
θ1 − θ2

4D
(ς1
·
Φ− θ1

·
Ψ)(ς2

·
Φ− θ2

·
Ψ)

}
(16.20)

and

··
Ψ = cot Φ

{
2
·
Φ
·
Ψ +

ς1 − ς2
4D

(ς1
·
Φ− θ1

·
Ψ)(ς2

·
Φ− θ2

·
Ψ)

}
, (16.21)

where

ςi = βi + αi, θi = βi − αi, i = 1, 2, (16.22)

D = β2α1 − β1α2 6= 0.

Configuration space of dynamic system described by Eqs. (16.20) and

(16.21) is identified as the surface of the unit sphere, Φ and Ψ are the

polar and azimuthal angles. The state of the system is determined by the

position of the point on the sphere and by the vector of angular velocity in

the plane tangent to the sphere at a point (Φ, Ψ). It has to be noted, that

the arbitrary real exponents αi and βi of Hamilton function given by Eq.

(16.14) are contained only in the coefficients of Eqs. (16.20) and (16.21),

which simplifies significantly an analysis of dynamic equations.

The values of the moduli of the vectors r, and p are related to the

angular variables (Φ, Ψ) by
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rD−(θ1−θ2) =

θ2

·
Ψ− ς2

·
Φ

2D sin Φ

1−α2
 θ1

·
Ψ− ς1

·
Φ

−2σD sin Φ

α1−1

, (16.23)

and

pD−(θ1−θ2) =

θ2

·
Ψ− ς2

·
Φ

2D sin Φ

β2−1 θ1

·
Ψ− ς1

·
Φ

−2σD sin Φ

1−β1

. (16.24)

On the plane of the angular velocities (
·
Ψ,
·
Φ), the conditions r > 0 and

p > 0 distinguish the admissible domains of their values

D(θ2

·
Ψ− ς2

·
Φ) > 0, Dσ(θ1

·
Ψ− ς1

·
Φ) > 0. (16.25)

The dynamic system presented by Eqs. (16.20) and (16.21) has two

integrals of motion [160]

I1 =
1

D sin2 Φ
[(θ2 − θ1)

·
Ψ− (ς2 − ς1)

·
Φ]

 θ1

·
Ψ− ς1

·
Φ

−2σD sin Φ

α1−1

(16.26)

and

I2 =
1

D(sin Φ)D−2(θ2−θ1)

θ2

·
Ψ− ς2

·
Φ

2D sin Φ

θ2  θ1

·
Ψ− ς1

·
Φ

−2σD sin Φ

−θ1 , (16.27)

where the following notations have been introduced

I1 =
2E

M
, I2 = MD−2(θ2−θ1). (16.28)

here M is the momentum, M = |M|.
Hereafter, we assume that M 6= 0, and take into account conditions

given by Eq. (16.25), which require that no base of any power be negative.

Moreover, we also assume that θ1 6= θ2. Note that in the four-dimensional

space of structural parameters, the condition θ1 = θ2 singles out a 3D

manifold, which requires a separate analysis. Systems realizing the fall to

the center correspond to this manifold. An example is dynamic system with

Hamilton function H = p2 − 1/r2.
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We eliminate the angular velocity
·
Ψ from Eq. (16.26) and then rewrite

Eqs. (16.26) and (16.27) as

1 =

(
sin Φ

sin Φ0

)D (
1− 1

ν2

Φ′

sin2 Φ

)ν2D (
1− 1

ν1

Φ′

sin2 Φ

)−ν1D

, (16.29)

and

Ψ′ =
2

D

sin2 Φ

ν2 − ν1
+
ς2 − ς1
ν2 − ν1

Φ′, (16.30)

where the following notations have been introduced

Φ′ =
dΦ

dτ
, τ =

M

ED
t, (16.31)

ν1 =
θ1

D
, ν2 =

θ2

D
, (16.32)

and for finite motion sin Φ0 < 1 is defined by the relation

1 =
E(ν2−ν1)D

MD
(sin Φ0)2

(
ν2

ν2 − ν1

)ν2D ( ν1

(−σ)(ν2 − ν1)

)−ν1D

. (16.33)

Taking into account Eqs. (16.29) and (16.33) and follow [160] we write

Φ(τ) = Φ(τ ; ν1ν2|E,M) (16.34)

and

Ψ(τ) = Ψ(τ ; ν1ν2, D, (ς2 − ς1)|E,M). (16.35)

The general motion of a representative point on the sphere is rotation

with respect to the azimuthal angle Ψ accompanied by periodic oscillations

with the period T with respect to the polar angle Φ: Φ(τ+T ) = Φ(τ), where

T = T (ν1ν2, sin Φ0). Moreover, we have Ψ(τ + T ) 6= Ψ(τ) in the general

case. Equation (16.29) can be solved for sin Φ, which can be treated as

a function of Φ′. Performing the change Φ → z = cot Φ, we obtain the

following expression for the period T (T = TE/MD) of oscillations of the

polar angle Φ(t)
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T =
1/ν1 − 1/ν2

sin Φ0

z+∫
z−

dz
(1− z/ν2)2ν2−1(1− z/ν1)−2ν1−1√

(1− z/ν2)2ν2(1− z/ν1)−2ν1 − sin2 Φ0

. (16.36)

We define the rotation number N of a trajectory on the sphere as the

increment in the azimuthal angle Ψ for the period of the polar angle Φ,

divided by 2π, and obtain

N =
sin Φ0

πν1ν2D

z+∫
z−

dz
(1− z/ν2)−1(1− z/ν1)−1√

(1− z/ν2)2ν2(1− z/ν1)−2ν1 − sin2 Φ0

, (16.37)

where z+ and z− are roots of the equation

(1− z/ν2)2ν2(1− z/ν1)−2ν1 = sin2 Φ0. (16.38)

Let us note that although the function Ψ(t) depends on the combination

ς2 − ς, the rotation number N is independent of this combination. This

means that if we fix the values of the three combinations of the structural

parameters in the four-dimensional space (α1, β1, α2, β2),

θ1 = β1 − α1, θ2 = β2 − α2, D = β2α1 − β1α2, (16.39)

then we come up with one-dimensional manifolds where the rotation num-

ber N dependency on the first integrals E and M is saved (see the next

section).

16.3 Fractional Kepler problem and fractional harmonic

oscillator problem

16.3.1 One-dimensional manifold

It follows from Eqs. (16.29), (16.31) and (16.34), (16.35) that the equa-

tions for the polar angle Φ depend only on the three combinations of the

structural parameters α0
1, β0

1, α0
2, β0

2. They are constant on the straight

lines

α1 = α0
1 + k1γ, β1 = β0

1 + k1γ, (16.40)

α2 = α0
2 + k2γ, β2 = β0

2 + k2γ,
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in the four-dimensional space of structural parameters (γ is the parameter

of the straight line and k2/k1 = (β2 − α2)/(β1 − α1) ≡ k0). On each of

these straight lines, the dependence of the angle Φ and the rotation number

N on the constant first integrals E and M is saved. Straight lines defined

by Eq. (16.40) are assigned the Hamilton functions

H = pα
0
1rβ

0
1(rp)k1γ + σpα

0
2rβ

0
2(rp)k1γ . (16.41)

We illustrate this with examples of families of dynamic systems cor-

responding to two straight lines (16.40) passing through the points cor-

responding to the planar Kepler problem and to the isotropic oscillator

problem.

16.3.2 Fractional extension of the Kepler problem

On the straight line (16.40) passing through the point (α0
1 = 2, β0

1 = α0
2 =

0, β0
2 = −1), which corresponds to the Kepler problem, we have D = −2,

ν1 = 1, and ν2 = 1/2. Hence,

α1 = 2 + γ, β1 = γ, (16.42)

α2 =
γ

2
, β2 = −1 +

γ

2
.

Equation (16.29) is solvable for Φ′ on the line defined by Eq. (16.42)

M

2E

Φ′

sin2 Φ
=

σ2

2M3

√
sin2 Φ− sin2 Φ0 (16.43)

×
[√

sin2 Φ− sin2 Φ0 ± sin Φ

]
,

where sin2 Φ0 = −4EM2/σ2. Integrating this equation yields two branches

of the function t = t(Φ)

σ2 sin3 Φ0

2M3
(t− ti) (16.44)

=

{
sin Φ0 cot Φ∓ arctan

cot Φ√
cot2 Φ0 − cot2 Φ

}
|ΦΦi .
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Integrating over the cycle Φ−0 ⇒ Φ+
0 ⇒ Φ−0 (0 < Φ−0 ≤ π/2 ≤ Φ+

0 < π),

we see that the period of oscillations of Φ(t) is subject to the dependence

T ∝ |σ|(−E)−3/2, that is the third Kepler law holds for any γ. Treating Ψ

as a function of Φ, we see that two branches of this function are determined

by the equations

dΨ

dΦ
+ γ − 1 = ± 2 sin Φ√

sin2 Φ− sin2 Φ0

. (16.45)

Integrating over the cycle Φ−0 ⇒ Φ+
0 ⇒ Φ−0 , let us conclude that the

increment in the azimuthal angle Ψ for the period T of the polar angle is

equal to 2π independently of E, M , and the parameter γ. In the case when

Eq. (16.42) holds, all finite orbits on the sphere are therefore closed for any

γ. But the form of the orbits on the sphere depends on γ

cos Φ = ±| cos Φ0| sin
[

1

2
Ψ +

1

2
(1 + γ)Φ + const

]
. (16.46)

Next, it can be shown that

r(Φ, γ) =

(
M

sin Φ

)1+γ/2

r0(Φ), (16.47)

where r0(Φ) is given by

1

r0(Φ)
=
|σ|
2M

[sin Φ±
√

sin2 Φ− sin2 Φ0]. (16.48)

The evolution of the polar angle ϕ in the original system of polar coor-

dinates on the plane (r, ϕ) is given by the expression

ϕ = (Ψ(sin Φ, γ)− Φ)/2,

where Ψ(sin Φ, γ) is a solution to Eq. (16.45). Therefore, the conditions

that the orbits are closed on the plane (r, ϕ) are,

r(t+ 2T, γ) = r(t, γ), ϕ(t+ 2T, γ) = ϕ(t, γ). (16.49)

These conditions hold for all values of γ.

Finally, we write the transformation formulas for orbits on the plane (r,

ϕ) as the parameter γ varies
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r = 2

(
M

sin Φ

)γ
r0(Φ), r′ = 2

(
M

sin Φ

)γ′
r0(Φ), (16.50)

Φ = Φ−0 − 2
ϕ′ − ϕ
γ′ − γ

, (16.51)

where (r, ϕ) and(r′, ϕ′) are points of the corresponding orbits for dynamic

systems with the Hamiltonians

H = p2(rp)γ +
σ

r
(rp)γ/2, H = p2(rp)γ

′
+
σ

r
(rp)γ

′/2. (16.52)

These formulas permit obtaining an expression for the third integral of

motion for γ 6= 0 from the known expression in the case γ = 0 (i.e., for

the Kepler problem). This means that on straight line (16.42), all dynamic

systems preserve the hidden symmetry of the Kepler problem. Figure 4

displays the numerically calculated deformation of orbits on the plane (r,

ϕ) as the parameter γ varies. Singularities appear on the orbits because

the conditions
·
r = 0 and

·
ϕ = 0 (i.e., Φ = π/2, ∂H/∂p = 0) are realized

in some intervals of the values of γ. We note that the “reverse” motion

along the orbit (the sign of
·
ϕ is changed) is not related to the change in the

direction of the vector of angular momentum: on the intervals of “inverse”

motion, the velocity vector is directed opposite to the momentum vector.

Fig. 4. Deformation of orbits on the plane (r, ϕ) as the parameter γ varies.

(a) γ = 0 (the Kepler problem); (b) γ = 0.3; (c) γ = 0.9; (d) γ = 2; (e)

γ = 4; (f) γ = −0.9; (g) γ = −2 (all orbits are circles whose centers are

displaced from the origin); (h) γ =−4 (all orbits have the form of Pascal’s

limacons); (i) γ =−8 [160].
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16.3.3 Fractional extension of the harmonic oscillator

problem

Now we consider the straight line (16.40) passing through the point (α0
1 =

2, β0
1 = α0

2 = 0, β0
2 = −1), which corresponds to the harmonic oscillator

problem. On this straight line, we have D = 4, ν1 = −1/2 and ν2 = 1/2.

Hence, we obtain

α1 = 2 + γ, β1 = γ, α2 =
γ

2
, β2 = −1 +

γ

2
. (16.53)

In this case, Eqs. (16.29) and (16.30) become

·
Φ = ±2σ1/2 sin Φ

√
sin2 Φ

sin2 Φ0

± 1,
·
Ψ =

2E
M

sin2 Φ− γ
·
Φ. (16.54)

Here sin2 Φ0 = σM2/E2, and the differentiation is performed with re-

spect to the original independent variable t. Integrating the first of the

equations (with the lower sign under the radical sign), we find two branches

of the function t = t(Φ)

2σ1/2(t− ti) = ± arctan
cot Φ√

cot2 Φ0 − cot2 Φ
|ΦΦi . (16.55)

Integrating over the cycle Φ−0 ⇒ Φ+
0 ⇒ Φ−0 (0 < Φ−0 ≤ π/2 ≤ Φ+

0 < π),

we see that the period of oscillations of Φ(t) is equal to T = σ−1/2 and

is independent of the constant first integrals E and M and the parameter

γ. The azimuthal angle Ψ treated as a function of Φ is defined by the

expression

Ψ−Ψi = ∓ arcsin
cos Φ

cos Φ0
|ΦΦi − γ(Φ− Φ0). (16.56)

The increment in Ψ for the period T of the polar angle Φ is equal to π

for all γ (the deformation of orbits does not violate their closedness). The

values of r and ϕ are reconstructed from the formulas

·

r2(t, γ) =
E

2σ

(
M

sin Φ

)γ1±

√
1− sin2 Φ0

sin2 Φ0

± 1

 , (16.57)



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 291

Fractional Dynamics in Polar Coordinate System 291

and

2ϕ = ∓ arcsin
cos Φ

| cos Φ0|
|ΦΦi − (1 + γ)(Φ− Φ−0 ). (16.58)

In this case, we have r(t+ T, γ) = r(t, γ) and ϕ(t+ T, γ) = ϕ(t, γ) + π

for all γ. All orbits of finite motions are therefore also closed in this case;

moreover, all the corresponding dynamic systems with Hamiltonians H =

p2(rp)γ + σr2(rp)−2γ are isochronous.

16.3.4 Two-dimensional manifold

We consider the set of straight lines (16.42) satisfying the conditions θ1 = D

and θ1 = D/2 or, explicitly, the conditions

β1 − α1 = β2α1 − β1α2, β2 − α2 =
1

2
(β2α1 − β1α2). (16.59)

In particular, this set contains the points (α2 = 2, β1 = α2 =

0, β2 = −1) and (α1 = β2 = 0, β1 = 2, α2 = −1) corresponding

to the Kepler problem in the r- and p-representations.

The equations for straight lines contained in this set are given by Eq.

(16.42), where α0
1, β

0
2, α0

2, and β0
2 satisfy conditions (16.59) and k2/k1

= 1/2. Solving, as an example, Eqs. (16.40) for α0
1, and β0

2 we obtain

either

α0
2 = −1+

1

2
α0

1, β0
1 = 2(1+β0

2), D0 = 2(1+β0
2)−α0

1 6= 0, (16.60)

or

α0
2 = β0

2, β0
1 = α0

1, D0 = 0. (16.61)

Setting k1 = 1, k21 = 1/2, and D0 6= 0, we see that the desired set of

straight lines is determined by the expressions

α1 = α0
1 + γ, β1 = 2(1 + β0

2) + γ, (16.62)

α2 = −1 +
1

2
α0

1 +
1

2
γ, β2 = β0

2 +
1

2
γ, (16.63)

or, in another form,
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α1 − 2α2 = 2, β1 − 2β2 = 2, (16.64)

α1 − α0
1 = 2(β2 − β

0
2), β1 − β

0
1 = 2(α2 − α0

2). (16.65)

It follows from these expressions that all straight lines contained in

this set belong to the two-dimensional manifold related to the condition

ν1/ν2 = 2, and expressions (16.62) and (16.63) determine the position of

the straight line passing through the point (α0
1, β

0
1, α

0
2, β

0
2) in the space of

structural parameters (α1, β1, α2, β2).

We note that for ν1/ν2 = 2, Eqs. (16.36) and (16.37) imply that T ∝
(−E)−3/22D−1 and N = 2/D on the manifold studied above.

The equation determining the orbit on the sphere becomes

dΨ

dΦ
+A = ±D

2

2 sin Φ√
sin2 Φ− sin2 Φ0

α1 − α0
1 = 2(β2 − β

0
2), (16.66)

β1 − β
0
1 = 2(α2 − α0

2),

where

A =
2

D
(2 + α0

2 + β0
2 − α0

1 − β
0
1 − γ). (16.67)

Comparing this equation with Eq. (16.45), we see that the orbits of all

finite motions are closed for rational values of D.

Therefore, a system with the Hamilton function

H = p−D(rp)γ − |σ|p−D/2(rp)γ/2−1, (16.68)

all of whose finite orbits are characterized by the same rotation number N =

2/|D|, corresponds to a point with arbitrary values of D0 6= 0 and γ on two-

dimensional manifold given by Eqs. (16.64) and (16.65). In Eqs. (16.64)

and (16.65), we fix the values of the parameters ensuring the condition

D = D0, and as a result obtain a straight line of form (16.40) with the

parameter γ, which lies on the above mentioned two-dimensional manifold.

On this straight line, all systems are characterized by the same rotation

number N = 2/|D0| (the same for all finite orbits). On the straight lines

corresponding to rational values of D, all finite orbits are closed, while on
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the straight lines corresponding to irrational values of D, all finite orbits

are open.

In particular, straight line (16.42) considered in Sec. 16.2 lies on the

above mentioned two-dimensional manifold (this line corresponds to D =

−2 and passes through the point (α0
1 = 2, β0

1 = α0
2 = 0, β0

2 = −1), as

well as the straight line corresponding to D = +2 and passing through the

point (α0
1 = 0, β0

1 = 2, α0
2 = −1, β0

2 = 0), which belongs to the Kepler

problem in the momentum representation.

16.4 Asymptotic analysis of nearly circular orbits

16.4.1 Circular orbits

First considering circular orbits, let us note, that for any finite orbit, the

angular variable Φ varies within the strip 0 ≤ π/2−∆Φ ≤ Φ ≤ π/2+∆Φ ≤
π, whose width is determined by the initial conditions. This strip can be

contracted to the equatorial circle. Indeed, Eqs. (16.20) and (16.21) admit

the solutions

Φ = Φ0 ≡
π

2
, Ψ = Ψ0 + Ω0t, (16.69)

which describe the uniform rotation of the representative point along the

equator of the sphere with the angular velocity Ω0; such solutions corre-

spond to circular orbits on the plane (r, ϕ) for which r = r0 > 0 and

p = p0 > 0. In the general case (θ1 6= θ2),

r0 =

(
Eθ2

∆θ

)−α2/D (
−Eθ1

σ∆θ

)α1/D

, (16.70)

p0 =

(
Eθ2

∆θ

)β2/D
(
−Eθ1

σ∆θ

)−β1/D

,

where ∆θ = θ2 − θ1.

We note that on the circular orbits, the first integrals E and M depend

on each other

MD =

∣∣∣∣ E∆θE
∣∣∣∣∆θ |σ−1θ1|−θ1 |θ2|θ2 . (16.71)

In the degenerate case θ1 = θ2, the circular orbits are assigned the levels

E = 0 and M = (−σ)θ1/D, to which the family of circular orbits such that

r0p0 = M corresponds.
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16.4.2 Asymptotic analysis

Let us note that Eqs. (16.20) and (16.21) permit constructing polynomial

asymptotic solutions in a neighborhood of circular orbits. Such a solution

can be described as rotation (i.e., a monotonic increase in the azimuthal

angle Ψ) near the equator of the sphere, accompanied by small-amplitude

oscillations with respect to the polar angle Φ.

We seek expansions of the functions Φ(t) and Υ(t) = Ψ̇(t) in the form

Φ =
π

2
+
∑
n=1

εnΦn(τ), Υ = C(ε) +
∑
n=1

εnΥn(τ). (16.72)

The constant C is also expanded in a power series in ε

C = C0 +
∑
n=1

εnCn. (16.73)

The equation for Φ1(τ) arising in the first order in ε has the form

d2

dτ2
Φ1(τ) +

1

4

C2
0 (θ1 − θ2)θ1θ2

D
Φ1(τ) = 0. (16.74)

Imposing the 2π-periodicity condition on the desired function, we obtain

C0 = 2

√
D

(θ1 − θ2)θ1θ2
. (16.75)

Then Φ1(τ) = sin τ . Similarly, solving the equation for the function

Υ1(τ), we obtain

Υ1(τ) =
ς1 − ς2
θ1 − θ2

cos τ . (16.76)

Eliminating the secular term in the equation for Φ2(τ), we find that

C1 = 0 and

Φ2(τ) =
1

6

√
D

(θ1 − θ2)θ1θ2
(θ1 + θ2) sin 2τ . (16.77)

The function Υ2(τ) is determined in a similar way.

Further, by eliminating the secular term in the equation for Φ3(τ), we

have

C2 =
1

12

√
D

[(θ1 − θ2)θ1θ2]3
[D(θ2

1 − θ1θ2 + θ2
2)− 3θ1θ2(θ1 − θ2)]. (16.78)
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For nearly circular orbits, we consider how their rotation numbers N

depend on the small parameter ε. On the plane (r, ϕ), the rotation number

is defined as the angular distance ∆ϕ between two successive apocenters

(i.e. the points where r = rmax) divided by 2π. It follows from the equations

of motion that on the sphere, the apocenter points are assigned the points

of intersection of the trajectory with the equator when passing from the

“southern” hemisphere (with the pole Φ = 0) to the “northern” hemisphere

(with the pole Φ = π). Therefore, the rotation number is given by the

formula

N =
1

4π
{Ψ(τ)|τ=2π −Ψ(τ)|τ=0}. (16.79)

Taking the above asymptotic expansion into account, we obtain N =

N(ε) ≈ C(ε)/2 for nearly circular orbits. For the circular orbit itself, the

rotation number is not defined. We define it as the limit

N0 = lim
ε→0

N(ε) =
1

2
C0

√
D

(θ1 − θ2)θ1θ2
, (16.80)

which coincides with the value of rotation number (19) obtained earlier.

We note that for all finite orbits to have the same rotation number, it is

necessary that C(ε)= C0 = const, i.e. at least, the condition C2 = 0 must

hold.

A consequence of system (7) is the second-order equation for the angular

variable Φ treated as a function of Ψ

Φ′′ = − 1

4D
cot Φ[(θ2 − θ1)− (ς2 − ς1)Φ′](ς2Φ′ − θ2)(ς1Φ′ − θ1), (16.81)

where Φ′′ = d2Φ/dΨ2 and Φ′ = dΦ/dΨ. It follows from the form of this

equation that on the sphere, there exist three families of trajectories on

which Φ and Ψ are linearly related. On the plane (Φ, Ψ), we consider the

strip 0 ≤ Φ ≤ π, which is the evolvent of the sphere under study. In this

case, the upper and lower boundaries of this strip correspond to the poles

of the sphere, and the midline corresponds to its equator. On the evolvent

of the sphere, the above three families of trajectories are then assigned

three families of segments of straight lines bounded by the upper and lower

boundaries of the strip and having the angular coefficients

k1 =
θ2 − θ1

ς2 − ς1
, k2 =

θ2

ς2
, k3 =

θ1

ς1
. (16.82)
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Such segments are respectively called segments of family 1, 2, and 3. It

has been shown in [160] that if the initial conditions are varied continuously

such that the strip around the equator, which bounds the motion of the rep-

resentative point, becomes wider, then the smooth finite orbits degenerate

in the limit into a saw-tooth broken line whose components are alternating

segments of three families, either 1 and 2, or 1 and 3, or 2 and 3, depending

on the values of the structural parameters of the system. For shortness,

such broken lines are called limit chains. Thus we have three types of limit

chains: (1,2), (1,3), and (2,3). In the space of structural parameters, three

domains related to a definite type of the limit chain are distinguished. In

particular, the point corresponding to the Kepler case lies in one of these

domains; another domain contains the point corresponding to the harmonic

oscillator; and the third domain contains the point corresponding to the Ke-

pler problem in the momentum representation. The prototype of the limit

chain on the sphere can be either closed or open, depending on the values

of structural parameters. We note that the segments composing the limit

chain are assigned trajectories on the sphere, but they are not necessarily

real trajectories on the original plane. For example, in the Kepler case, the

limit chains consist of a segment of family 1 corresponding to the parabolic

trajectory of the original problem and of a segment of family 2 that does

not correspond to any trajectory of the original problem.

We also note that segments of two types composing the same limit

chain correspond to trajectories on the sphere that lie at different integral

levels. It is convenient to introduce limit chains because these chains can be

assigned the rotation number N∞ equal to the doubled length of a “tooth”

of the chain divided by 2π, which can be easily derived from the values of

the angular coefficients km. A numerical analysis provided by authors of

work [160] confirms that this number is the limit of the rotation numbers

of finite motions orbits degenerating (on the evolvent of the sphere) into

the limit chain.

For all finite orbits to have the same rotation numbers, it is natural to

require that the rotation numbers corresponding to the circular orbit (N0)

and to the limit chain (N∞) be the same. It follows from the results of

the asymptotic analysis that there is another condition that all coefficients

except C0 in the power expansion of C(ε) are zero (in general, this condition

is not a priori independent of the first condition). A numerical analysis

leads to the conclusion that in the class of Hamiltonians (16.14), the joint
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realization of the two conditions

N0 = N∞, C2 = 0, (16.83)

is necessary and sufficient for the orbits of all finite motions in the system

to have the same rotation numbers. If this number is rational, then all

orbits are closed.

Let us list the sets of Hamiltonian systems of class (16.14) for which

conditions given by Eq. (16.83) are satisfied. In the domain corresponding

to chains of the form (1,2), conditions (16.83) are satisfied precisely on

two-dimensional manifold defined by Eqs. (16.64) and (16.65). Analysis

presented in [160] confirms that for any system with Hamilton function

(16.68), the rotation numbers of all orbits are the same and are equal to

2/|D|.
In the domain corresponding to chains of the form (2,3), conditions

defined by Eq. (16.83) are satisfied on the manifold

α1 + α2 = 2, β1 + β2 = 2, (16.84)

containing the point that corresponds to the harmonic oscillator. This two-

dimensional surface also splits into one-dimensional curves along which the

rotation number is preserved. Namely, the rotation number is equal to

2/|D| for all orbits of any system with the Hamilton function

H =
p1+D/2

r−1−D/2 (rp)γ + σ
r1+D/2

p−1+D/2
(rp)−γ , σ > 0. (16.85)

Finally, in the third domain of the space of structural parameters (with

chains of the form (1,3)), the conditions (16.83) are satisfied on the two-

dimensional surface

α2 − 2α1 = 2, β2 − 2β1 = 2. (16.86)

The corresponding Hamilton function is obtained from Eq. (16.68) by

the interchange r ↔ p.
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Afterword

Fractional quantum mechanics emerged as a field over 15 years ago, attract-

ing the attention of many researchers. The original idea behind fractional

quantum mechanics was to develop a path integral over Lévy-like quantum

paths instead of the well-known Feynman path integral over Brownian-like

paths. The basic outcome of this implementation is an alternative path inte-

gral approach, which results in a new fundamental quantum equation – the

fractional Schrödinger equation discovered by Laskin. In other words, if the

Feynman path integral allows one to reproduce the Schrödinger equation,

then the Laskin path integral over Lévy-like paths leads one to a fractional

Schrödinger equation. Fractional quantum mechanics is a manifestation of a

new non-Gaussian physical paradigm, based on deep relationships between

the structure of fundamental physics equations and the fractal dimension of

“underlying” quantum paths. The fractional Schrödinger equation includes

the space derivative of fractional order α (α is the Lévy index) instead of

the second order space derivative in the well-known Schrödinger equation.

Thus, the fractional Schrödinger equation is the fractional differential equa-

tion in accordance with modern terminology. This is the main reason to

coin the term, fractional Schrödinger equation, and the more general term

- fractional quantum mechanics.

Today, there are two alternative fundamental approaches to frac-

tional quantum mechanics - the Laskin path integral and the fractional

Schrödinger equation. This book presents the first in depth systematic

coverage of both theoretical approaches. The book pioneers quantum me-

chanical applications of the α-stable Lévy stochastic processes, the path

integral over Lévy-like paths and Fox’s H-function.

The H-function, never before used in quantum mechanics, is a well-

suited mathematical tool to solve the fractional Schrödinger equation for

299
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quantum physical problems.

The book discovers and explores new fractional quantum mechanical

equations. Remarkably, these equations are turned into the well-known

equations of quantum mechanics in the particular case when the Lévy in-

dex α = 2, and Lévy flight turns into Brownian motion. When α = 2

Laskin’s path integral becomes the well-known Feynman’s path integral,

and the fractional Schrödinger equation becomes the celebrated Schrödinger

equation.

Fractional quantum mechanics brings us a new mathematical formula-

tion of the Heisenberg Uncertainty Principle and a new fundamental phys-

ical concept of the quantum Lévy wave packet.

A new physical model - the quantum fractional oscillator has been in-

troduced and studied. The symmetries of the quantum fractional oscillator

and its non equidistant spectrum have been discovered and discussed. Ex-

actly solvable models of fractional quantum mechanics have been explored

in the book. They include a free particle solution to 1D and 3D fractional

Schrödinger equations, quantum particle in the symmetric infinite poten-

tial well, bound state in δ-potential well, linear potential field and quantum

kernel for a free particle in the box.

Time fractional quantum mechanics emerged soon after the discovery

of fractional quantum mechanics. Time fractional quantum mechanics in-

volves space fractality parameter α, which is the Lévy index, and time

fractality parameter β, which is the order of the Caputo fractional time

derivative. The manifestations of time fractional quantum mechanics are

time fractional Schrödinger equation and space-time fractional Schrödinger

equation, the invention of which was inspired by the fractional Schrödinger

equation. Space-time fractional quantum mechanics introduced in this book

involves two scale dimensional parameters, one of which can be considered

as a time fractional generalization of the famous Planck’s constant, while

the other one can be interpreted as a time fractional generalization of the

scale parameter of fractional quantum mechanics. The fractional general-

ization of Planck’s constant is a fundamental dimensional parameter of time

fractional quantum mechanics, while the time fractional generalization of

Laskin’s scale parameter plays a fundamental role in both time fractional

quantum mechanics and time fractional classical mechanics. Time frac-

tional quantum mechanical operators of coordinate, momentum and angu-

lar momentum have been introduced and their commutation relationship

has been established. The pseudo-Hamilton quantum mechanical operator

has been introduced and its Hermiticity has been proven in the frame-
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work of time fractional quantum mechanics. The general solution to the

space-time fractional Schrödinger equation was found in the case when the

pseudo-Hamilton operator does not depend on time. Energy of a quantum

system in the framework of time fractional quantum mechanics was defined

and calculated in terms of the Mittag-Leffler function. Two new functions

associated with the Mittag-Leffler function have been launched and elabo-

rated. These two new functions can be considered as a natural fractional

generalization of the well-known trigonometric functions sine and cosine.

A fractional generalization of the celebrated Euler’s formula was discov-

ered. A free particle space-time fractional quantum kernel was calculated

in terms of Fox’s H-function. It has been shown that a free particle space-

time fractional quantum kernel can be alternatively expressed with the help

of the Wright L-function.

The framework of time fractional quantum mechanics developed in this

book, depending on the choices of fractality parameters α and β, covers the

following fundamental quantum equations:

- The Schrödinger equation, α = 2 and β = 1;

- Fractional Schrödinger equation (Laskin equation), 1 < α ≤ 2 and

β = 1;

- Time fractional Schrödinger equation (Naber equation), α = 2 and

0 < β ≤ 1;

- Space-time fractional Schrödinger equation (Wang and Xu, Dong and

Xu equation), 1 < α ≤ 2 and 0 < β ≤ 1.

Fractional nonlinear quantum dynamics has been covered by the book.

Fractional nonlinear Schrödinger equation, Nonlinear Hilbert–Schrödinger

equation, fractional generalization of Zakharov system and fractional

Ginzburg–Landau equation have been discovered and explored.

Fractional statistical mechanics has been introduced based on the path

integral over Lévy fights. The path integral representations were obtained

for density matrix and partition function of a statistical system.

The book introduces fractional classical mechanics as a classical coun-

terpart of fractional quantum mechanics. The Lagrange, the Hamilton,

the Hamilton–Jacobi, and the Poisson bracket approaches were developed

and studied in the framework of fractional classical mechanics. A classical

fractional oscillator model was introduced, and its exact analytical solution

was found. A map between the energy dependence of the period of clas-

sical oscillations and the non-equidistant distribution of the energy levels

for the quantum fractional oscillator has been established and discussed.

The book presents fractional Kepler’s third law which is a generalization
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of the well-known Kepler’s third law. Fractional classical dynamics on two-

dimensional sphere has been introduced and developed. It has been dis-

covered that in the four-dimensional space of structural parameters, there

exists a one-dimensional manifold, containing the case of the planar Kepler

problem, along which the closedness of the orbits of all finite motions and

the third Kepler law are saved. Similarly, it has been found that there ex-

ists a one-dimensional manifold, containing the case of the two-dimensional

isotropic harmonic oscillator, along which the closedness of the orbits and

the isochronism of nonlinear oscillations are saved.

The book serves as the first monograph and the first handbook on the

topic, covering fundamentals and applications of fractional quantum me-

chanics, time fractional quantum mechanics, fractional statistical mechan-

ics and fractional classical mechanics.
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Appendix A

Fox H-function

A.1 Definition of the Fox H-function

Apart from the natural way in which Fox’s H-function enters into frac-

tional quantum mechanics and fractional statistical mechanics, its fractional

derivatives and integrals are easily calculated by formally manipulating the

parameters in the H-function. In other words, the fractional derivatives and

integrals of Fox’s H-function can be calculated within this general class of

functions. This is the reason why Fox’s H-function is a very important and

efficient mathematical tool for fractional quantum mechanics and fractional

statistical mechanics. Within the class of Fox’s H-function various prob-

lems of fractional quantum and statistical mechanics can be expressed in a

closed analytical way.

Some properties of the H-function in connection with Mellin-Barnes

integrals were investigated by Barnes [161], Mellin [162], Dixon and Ferrar

[163]. In an attempt to unify and extend the existing results on symmetric

Fourier kernels, Fox [103] has defined the H-function in terms of a general

Mellin-Barnes type integral. He has also investigated the most general

Fourier kernel associated with the H-functions and obtained the asymptotic

expansions of the kernel for large values of the argument. Asymptotic

expansions and analytic continuations of the Fox H-function and its special

cases were derived by Braaksma [164]. Many properties of the H-function

are reported in the book [104] along with applications in statistics.

Fox’s H-function is defined by the Mellin-Barnes integral [103], [164]

(we follow the notations of the book [104])

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (ap, Ap)(bq, Bq)

]
(A.1)

303
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= Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

]
=

1

2πi

∫
L

ds zs χ(s),

where function χ(s) is given by

χ(s) =

m∏
j=1

Γ(bj −Bjs)
n∏
j=1

Γ(1− aj +Ajs)

q∏
j=m+1

Γ(1− bj +Bjs)
p∏

j=n+1

Γ(aj −Ajs)
(A.2)

and

zs = exp{sLog|z|+ i arg z},

here m, n, p and q are non-negative integers satisfying 0 ≤ n ≤ p, 1≤ m ≤
q; and the empty products are interpreted as unity. The parameters Aj
(j = 1, ..., p) and Bj (j = 1, ..., q) are positive numbers; aj (j = 1, ..., p) and

bj (j = 1, ..., p) are complex numbers such that

Aj(bh + ν) 6= Bh(aj − λ− 1) (A.3)

for ν, λ = 0, 1, ...; h = 1, ...,m; j = 1, ..., n.

The L is a contour separating the points

s =

(
bj + ν

Bj

)
, (j = 1, ...,m; ν = 0, 1, ...),

which are the poles of Γ(bj −Bjs) (j = 1, ...,m), from the points

s =

(
aj − ν − 1

Aj

)
, (j = 1, ..., n; ν = 0, 1, ...),

which are the poles of Γ(1− aj +Ajs) (j = 1, ..., n). The contour L exists

on account of (A.3). These assumptions will be retained throughout.

In the contracted form the H-function in (A.1) will be denoted by one

of the following notations:

H(z), Hm,n
p,q (z), Hm,n

p,q

[
z

∣∣∣∣ (ap, Ap)(bq, Bq)

]
.
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The Fox H-function is an analytic function of z which makes sense (i)

for every z 6= 0 if µ > 0 and (ii) for 0 < |z| < β−1 if µ = 0, where

µ =

q∑
j=1

Bj −
p∑
j=1

Aj (A.4)

and

β =

p∏
j=1

A
Aj
j

q∏
j=1

B
−Bj
j . (A.5)

Due to the occurrence of the factor zs in (A.1), the H-function is in

general multiple-valued, but is one-valued on the Riemann surface of log z.

The H-function is a generalization of Meijer’s G-function [165], which

is also defined by a Mellin-Barnes integral. The H-function reduces to the

G-function if Aj = 1 and Bk = 1 for all j = 1, 2, ..., p and k = 1, 2, ..., q,

Gm,np,q (z) = Hm,n
p,q

[
z

∣∣∣∣ (a1, 1), ..., (ap, 1)

(b1, 1), ..., (bq, 1)

]
.

If further m = 1 and p ≤ q, then the H-function is expressible by

H1,n
p,q

[
z

∣∣∣∣ (a1, 1)...(ap, 1)

(b1, 1)...(bq, 1)

]
=

n∏
j=1

Γ(1 + b1 − aj) zb1

q∏
j=2

Γ(1 + b1 − bj)
p∏

j=n+1

Γ(aj − b1)

×pFq−1

(
1 + b1 − a1, ..., 1 + b1 − ap
1 + b1 − b2, ..., 1 + b1 − bq

; (−1)p−n−1z

)
in terms of generalized hypergeometric functions pFq [104].

Many well-known special functions, such as the error function, Bessel

functions, Whittaker functions, Jacobi polynomials, and elliptic functions

are included in the class of generalized hypergeometric functions. All of

them can be expressed in terms of Fox’s H-function. For example, the so-

called Maitland’s generalized hypergeometric function or the Wright func-

tion pψq is

pψq

(
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)
;−z

)
(A.6)
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= H1,p
p,q+1

[
z

∣∣∣∣ (1− a1, A1), ..., (1− ap, Ap)
(0, 1), (1− bq, Bq), ..., (1− bq, Bq)

]
.

A special case of the Wright function is the generalized Mittag-Leffler

Eα,β(z) function [149] given by

Eα,β(z) =1 ψ1

(
(1, 1)

(β, α)
; z

)
(A.7)

= H1,1
1,2

[
−z
∣∣∣∣ (0, 1)

(0, 1), (1− β, α)

]
=
∞∑
k=0

zk

Γ(αk + β)
.

The exponential function is expressed as

zb/B

B
exp(−z1/B) = H1,0

0,1

[
z

∣∣∣∣ −(b, B)

]
. (A.8)

To represent an H-function in computable form let us consider the case

when the poles s = (bj+ν)/Bj (j = 1, ...,m; ν = 0, 1, ...) of
m∏
j=1

′
Γ(bj−Bjs)

are simple, that is, where

Bh(bj + λ) 6= Bj(bh + ν), j 6= h,

h = 1, ...,m; ν, λ = 0, 1, 2, ...,

and the prime means the product without the factor j = h.

Then we obtain the following expansion for the H-function

Hm,n
p,q (z)

=
m∑
h=1

∞∑
k=0

n∏
j=1

Γ(1− aj +Ajshk)
m∏
j=1

′
Γ(bj −Bjshk)

q∏
j=m+1

Γ(1− bj +Bjshk)
p∏

j=n+1

Γ(aj −Ajshk)

(−1)k

k!

zshk

Bh
,

(A.9)

shk = (bh + k)/Bh
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which exists for all z 6= 0 if µ > 0 and for 0 < |z|, β−1 if µ = 0, where µ

and β are given by Eqs. (A.4) and (A.5). The prime means the product

without the factor j = h.

The formula (A.9) can be used for the calculation of special values of

the Fox function and to derive the asymptotic behavior for z → 0.

The asymptotic expansion for |z| → ∞ is treated in [164]. In particular,

for µ > 0 and n 6= 0

Hm,n
p,q (z) ∼

∑
res(χ(s) zs),

as |z| → ∞ uniformly on every closed subsector of | arg z| ≤ 1
2πλ. The

residues have to be taken at the points s = (aj − 1 − ν)/αj (j = 1, ..., n;

ν = 0, 1, ...) and λ is defined by

λ =
m∑
j=1

Bj +
n∑
j=1

Aj −
q∑

j=m+1

Bj −
p∑

j=n+1

Aj . (A.10)

Symmetries in the parameters of the H-function are detected by regard-

ing the definitions (A.1) and (A.2).

A.2 Fundamental properties of the H-function

The H-function introduced by Fox [103], possesses many interesting prop-

erties which can be used in time fractional quantum mechanics to calculate

integrals and perform transformations to study limiting cases at particular

choices of fractality parameters. We present the list of mainly used prop-

erties of the H-function. The results of this section follow readily from the

definition of the H-function (A.1) and hence no proofs are given here.

Property 12.2.1 The H-function is symmetric in the pairs

(a1, A1), ..., (an, An) likewise (an+1, An+1), ..., (ap, Ap),

and

(b1, B1), ..., (bn, Bn) likewise (bm+1, Bm+1), ..., (bq, Bq).

Property 12.2.2 If one of the (aj , Aj) (j = 1, ..., n) is equal to one of

the (bj , Bj) (j = m + 1, ..., q) or one of the (bj , Bj) (j = 1, ...,m) is equal

to one of the (aj , Aj) (j = n+ 1, ..., p)], then the H-function reduces to one

of the lower order, and p, q and n (or) m decrease by unity.



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 308

308 Fractional Quantum Mechanics

Thus, we have the following reduction formula:

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq−1, Bq−1), (a1, A1)

]
(A.11)

= Hm,n−1
p−1,q−1

[
z

∣∣∣∣ (a2, A2), ..., (ap, Ap)

(b1, B1), ..., (bq−1, Bq−1)

]
,

provided n ≥ 1 and q > m.

Property 12.2.3

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

]
(A.12)

= Hn,m
q,p

[
1

z

∣∣∣∣ (1− b1, B1), ..., (1− bq, Bq)
(1− a1, A1), ..., (1− ap, Ap)

]
.

This is an important property of the H-function because it enables us

to transform an H-function with µ =
m∑
j=1

Bj −
n∑
j=1

Aj > 0 and arg x to one

with µ < 0 and arg(1/x) and vice versa.

Property 12.2.4

1

k
Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

]
(A.13)

= Hm,n
p,q

[
zk
∣∣∣∣ (a1, kA1), ..., (ap, kAp)

(b1, kB1), ..., (bq, kBq)

]
,

where k > 0.

Property 12.2.5

zσHm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

]
(A.14)

= Hm,n
p,q

[
z

∣∣∣∣ (a1 + σA1, A1), ..., (ap + σAp, Ap)

(b1 + σB1, B1), ..., (bq + σBq, Bq)

]
.

Property 12.2.6

Hm,n+1
p+1,q+1

[
z

∣∣∣∣ (0, γ), ..., (ap, Ap)

(bq, Bq), ..., (r, γ)

]
(A.15)
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= (−1)rHm+1,n
p+1,q+1

[
z

∣∣∣∣ (ap, Ap), ..., (0, γ)

(r, γ), ..., (bq, Bq)

]
,

where p ≤ q.
Property 12.2.7

Hm+1,n
p+1,q+1

[
z

∣∣∣∣ (ap, Ap), ..., (1− r, γ)

(1, γ), ..., (bq, Bq)

]
(A.16)

= (−1)rHm+1,n
p+1,q+1

[
z

∣∣∣∣ (1− r, γ), ..., (ap, Ap)

(bq, Bq), ..., (1, γ)

]
,

where p ≤ q.
In the above properties given by Eqs. (A.11), (A.15) and (A.16) the

branches of the H-function are suitably chosen.

Property 12.2.8

∞∫
0

dxxρe−uxHm,n
p,q

[
ωx−r

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

]
(A.17)

= u−ρ−1Hm+1,n
p,q+1

[
ωur

∣∣∣∣ (a1, A1), ..., (ap, Ap)

(1 + ρ, r), (b1, B1), ..., (bq, Bq)

]
,

where m · n 6= 0; r, p ≥ 0; a, a∗ > 0; | argω| < a∗π/2; Reα + r,

min
1≤j≤m

Re(bj/Bj) > 0.

Some important identities, needed for fractional quantum and statistical

mechanics, are (see [104], page 13)

dr

dzr

{
zλHm,n

p,q

[
βzδ

∣∣∣∣ (ap, Ap)(bq, Bq)

]}
(A.18)

= zλ−rHm,n+1
p+1,q+1

[
βzδ

∣∣∣∣ (−λ, δ), (ap, Ap)
(bq, Bq), (r − λ, δ)

]
,

and

0D
ν
z

{
zαHm,n

p,q

[
(az)β

∣∣∣∣ (aj , Aj)(bj , Bj)

]}
(A.19)
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= zα−νHm,n+1
p+1,q+1

[
(az)β

∣∣∣∣ (−α, β), (aj , Aj)

(bj , Bj), (ν − α, β)

]
,

which hold for arbitrary ν, for a, b > 0 and α + βmin(bj/Bj) > −1 (1 ≤
j ≤ m). The 0D

ν
z notes fractional derivative of order ν (see for definition

[30], [37], [38]).

Further interesting and important properties of Fox’s H-function and

the expressions for elementary and special functions by the H-function are

listed in [104].

A.2.1 Cosine transform of the H-function

The cosine transform of H-function Hm,n
p,q

[
atα| (ap,Ap)

(bq,Bq)

]
is defined by [166]

∞∫
0

dttν−1 cos(xt)Hm,n
p,q

[
atα

∣∣∣∣ (ap, Ap)(bq, Bq)

]
(A.20)

=
π

xν
Hn+1,m
q+1,p+2

[
xα

a

∣∣∣∣∣ (1− bq, Bq), (ν+1
2 , α2 )

(ν, α), (1− ap, Ap), (ν+1
2 , α2 )

]
,

where Re[ν + αmin1≤j≤m(
bj
Bj

)] > 0, Re[ν + αmax1≤j≤n(
aj−1
Aj

)] < 0,

| arg a| < πλ/2, with λ defined by Eq. (A.10).

A.2.2 Some functions expressed in terms of H-function

Exponential function is

exp

{
−iDα|p|αt

~

}
= H1,0

0,1

[
i
Dαt

~
|p|α

∣∣∣∣ (0, 1)

]
. (A.21)

In the notations of [150], the Wright function φ(a, β; z) is expressed as

φ(a, β; z) =
∞∑
k=0

zk

k!Γ(ak + β))
, −1 < a < 0, β ∈ C, (A.22)

where C stands for the field of complex numbers.

In terms of Fox’s H-function the function φ(a, β; z) has the following

representation

φ(a, β; z) = H1,0
0,2

[
−z
∣∣∣∣ (0, 1), (1− β, α)

]
, (A.23)

−1 < a < 0, β ≥ 0.
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A.2.3 Lévy α-stable distribution in terms of H-function

As an example of application of the cosine transform of H-function let us

present the K(0)(x, τ) defined by Eq. (7.3) in terms of H1,1
2,2 -function. With

the help of Eq. (A.21) we have

K(0)(x, τ) =
1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
(A.24)

=
1

π~

∞∫
0

dp cos(i
px

~
)H1,0

0,1

[
i
Dαt

~
pα
∣∣∣∣ (0, 1)

]
.

Then using Eq. (A.20) gives us

K(0)(x, τ) =
1

π~

∞∫
0

dp cos(i
px

~
)H1,0

0,1

[
i
Dαt

~
pα
∣∣∣∣ (0, 1)

]
(A.25)

=
1

x
H1,1

2,2

[
1

~α

(
~

iDατ

)
xα
∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, α/2)

]
, x ≥ 0,

or, for any x

K(0)(x, τ) =
1

|x|
H1,1

2,2

[
1

~α

(
~

iDατ

)
|x|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, α/2)

]
. (A.26)

Applying Fox H-function Property 12.2.4 given by Eq. (A.13), we can

write K(0)(x, τ) as

K(0)(x, τ) =
1

α|x|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
,

which is a free particle quantum kernel representation given by Eq. (7.23).

In terms of Lévy probability distribution function Lα(z) defined by Eq.

(6.15) a free particle quantum kernel K(0)(x, τ) is expressed as (see Eq.

(6.26))

K(0)(x, τ) =
1

2π~

∞∫
−∞

dp exp

{
i
px

~
− iDα|p|ατ

~

}
(A.27)
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=
1

~
(
iDατ

~
)−1/αLα

{
1

~

(
~

iDατ

)1/α

|x|

}
.

By comparing Eqs. (A.26) and (A.27) we obtain the expression of Lévy

probability distribution function Lα in terms of Fox’s H1,1
2,2 -function

1

~
(
iDατ

~
)−1/αLα

{
1

~

(
~

iDατ

)1/α

|x|

}
(A.28)

=
1

α|x|
H1,1

2,2

[
1

~

(
~

iDατ

)1/α

|x|
∣∣∣∣ (1, 1/α), (1, 1/2)

(1, 1), (1, 1/2)

]
.
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Appendix B

Fractional Calculus

B.1 Brief introductory remarks

Most of mathematical theory applicable to the study of fractional calculus

was developed prior to the turn of the 20th century. However, in the past

100 years numerous applications and physical manifestations of fractional

calculus have been found. In some cases, the mathematics has had to

change to meet the requirements of physical reality.

The concept for fractional integrals and derivatives was a natural out-

growth of integer order integrals and derivatives in the same way as the

fractional exponent follows from the more traditional integer order expo-

nent. While one cannot imagine the multiplication of a quantity a frac-

tional number of times, there seems no practical restriction to placing a

non-integer into the exponential position. Similarly, the common formu-

lation for the fractional integral can be derived directly from a traditional

expression of the repeated integration of a function.

B.1.1 Definition of the Riemann–Liouville fractional

derivative

To introduce fractional derivative we begin with the n-fold (n is an integer)

iterated integral of a function ψ(x)

cI
n
xψ(x) =

1

(n− 1)!

x∫
c

dy(x− y)n−1ψ(y)

or

cI
n
xψ(x) =

1

Γ(n)

x∫
c

dy(x− y)n−1ψ(y), (B.1)

313



April 6, 2018 10:1 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 314

314 Fractional Quantum Mechanics

if we take into account that the Gamma function Γ(n) for integer n is

Γ(n) = (n − 1)!. We will call cI
n
x f(x) defined by Eq. (B.1) as integral of

order n.

The definition of the Riemann–Liouville fractional integral can be de-

rived as generalization of the above equations to any fractional order α > 0

cI
α
xψ(x) =

1

Γ(α)

x∫
c

dy(x− y)α−1ψ(y),

xI
α
c ψ(x) =

1

Γ(α)

c∫
x

dy(y − x)α−1ψ(y),

where the right-hand sided and left-hand sided fractional integrals have

been introduced.

A fractional derivative cD
α
x of a function f(x) of order α can be defined

as the n-th ordinary derivative of the Riemann–Liouville fractional integral

of order n− α, where n = [α] + 1 and [α] is the integer part of α. That is

cD
α
xψ(x) =

dn

dxn
(cI

α
xψ(x)) =

1

Γ(n− α)

dn

dxn

x∫
c

dy(x− y)n−α−1ψ(y), (B.2)

and

xD
α
c ψ(x) =

dn

dxn
(xI

α
c ψ(x)) =

1

Γ(n− α)

dn

dxn

c∫
x

dy(y− x)n−α−1ψ(y). (B.3)

Further, we introduce fractional derivatives −∞D
α
x and xD

α
∞ by choos-

ing c = −∞ and b =∞.

−∞D
α
xψ(x) =

1

Γ(n− α)

dn

dxn

x∫
−∞

dy(x− y)n−α−1ψ(y), (B.4)

and

xD
α
∞ψ(x) =

1

Γ(n− α)

dn

dxn

∞∫
x

dy(y − x)n−α−1ψ(y), (B.5)

with n− 1 ≤ α < n.
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B.1.2 Definition of Caputo fractional derivative

The Caputo fractional derivative ∂βt is defined by

∂βt f(t) =
1

Γ(n− β)

t∫
0

dτ
f(n)(τ)

(t− τ)β+1−n , n− 1 < β < n, (B.6)

where f(n)(τ) is defined as

f(n)(τ) =
dn

dτn
f(τ), β = n. (B.7)

It was invented by Caputo in [143], see also [39].

B.1.3 Definition of quantum Riesz fractional derivative

To understand the quantum Riesz fractional derivative given by Eq. (3.9)

let us consider the one-dimensional case. We define operator (~∇)α in

terms of introduced by Eqs. (B.4) and (B.5) operators −∞D
α
x and xD

α
∞

as [37]

(~∇)α = − ~α

2 cos(πα/2)
{−∞Dα

x +x D
α
∞}, 1 < α ≤ 2. (B.8)

Substituting Eqs. (B.4) and (B.5) with n = 2 into Eq. (B.8) yields

(~∇)αψ(x, t) = − ~α

2 cos(πα/2)

1

Γ(2− α)

{
d2

dx2

x∫
−∞

dy(x− y)1−αψ(y)

+
d2

dx2

∞∫
x

dy(y − x)1−αψ(y)

}
, 1 < α ≤ 2, (B.9)

where Γ(2− α) is the Gamma function.
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It follows from definition given by Eq. (B.9) that the quantum Riesz

operator (~∇x)α has the convenient property

∞∫
−∞

dxe−i
px
~ (~∇)αψ(x, t) = −|p|αϕ(p, t) (B.10)

or

(~∇)αψ(x, t) = − 1

2π~

∞∫
−∞

dpei
px
~ |p|αϕ(p, t), (B.11)

where wave function in coordinate space ψ(x, t) and wave function in the

momentum representation ϕ(p, t) are related to each other by the Fourier

transforms

ψ(x, t) =
1

2π~

∞∫
−∞

dpei
px
~ ϕ(p, t) (B.12)

and

ϕ(p, t) =

∞∫
−∞

dxe−i
px
~ ψ(x, t). (B.13)

In other words, the Fourier transform of quantum Riesz fractional

derivative of order α is equivalent to a multiplication of the wave func-

tion in momentum representation ϕ(p, t) by |p|α. We use Eq. (B.11) as the

definition of the quantum Riesz fractional derivative of order α.

To generalize the Riesz fractional derivative of order α to arbitrary

space dimension D we use Eqs. (B.10) and (B.11). Let ψ(r, t) be the wave

function on RD, r ∈RD and ϕ(p, t) its Fourier transform on PD, p ∈PD.

The function ϕ(p, t) is the wave function in momentum representation. The

operator (∆)α/2 is defined by

(∆)α/2 = (∂2/∂r2
1 + ∂2/∂r2

2 + · · ·+ ∂2/∂r2
D)α/2. (B.14)

Then D-dimensional quantum Riesz fractional derivative is∫
dDre−i

pr
~ (−~2∆)α/2ψ(r, t) = |p|αϕ(p, t) (B.15)
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or

(−~2∆)α/2ψ(r, t) =
1

(2π~)D

∫
dDpei

pr
~ |p|αϕ(p, t), (B.16)

where wave function in coordinate D-dimensional space ψ(r, t) and wave

function in D-dimensional momentum representation ϕ(p, t) are related to

each other by the Fourier transforms

ψ(r, t) =
1

(2π~)D

∫
dDpei

pr
~ ϕ(p, t) (B.17)

and

ϕ(p, t) =

∫
dDre−i

pr
~ ψ(r, t). (B.18)
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Appendix C

Calculation of the Integral

To calculate the integral in Eq. (10.74) we follow by [116] and write

∞∫
−∞

dp
eipx/~

|p|α + λα
= 2πλ1−αI(λx/~), λ > 0, (C.1)

where the following notation has been introduced

I(w) =
1

π

∞∫
0

dy
coswy

|y|α + 1
. (C.2)

To calculate the integral I(w) we apply the calculation techniques based

on the Mellin transform as it was first done by de Oliveira et al. [116].

The Mellin M[f(x)](z) and inverse Mellin transforms M−1[f(x)] are

defined by

M[f(x)](z) =

∞∫
0

dxxz−1f(x), (C.3)

M−1[F (x)](z) =
1

2πi

c+i∞∫
c−i∞

dzx−zF (z). (C.4)

Since the Mellin transform of I(w) takes only those positive values of

w, and since I(−w) = I(w), we only need to replace w by |w| at the end

of the calculation for the result to be valid for all w. To obtain the Mellin

transform of I(w) one can use the equation [116], [167]
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Mw[cos(wy)](z) = y−zΓ(z) cos
πz

2
. (C.5)

Then the Mellin transform of I(w) reads

Mw[I(w)](z) =
1

π
Γ(z) cos

πz

2

∞∫
0

dy
y−z

yα + 1
. (C.6)

To calculate the integral

∞∫
−∞

dyy−z/(yα+1) we use formula (see, formula

3.241.2, p. 322 in [86])

∞∫
0

xµ−1dx

1 + xν
=
π

ν
cosec

πµ

ν
=

1

ν
B(

µ

ν
,
ν − µ
ν

), [Re ν > Reµ > 0], (C.7)

where B(µ/ν, (ν − µ)/ν) is Beta function1.

Then we have

∞∫
0

dy
y−z

yα + 1
=

1

α
B(

1− z
α

, 1− 1− z
α

). (C.8)

Using this result and the identity

cos(
πz

2
) = sin(

π(1− z)
2

) =
π

Γ( 1−z
2 )Γ(1− 1−z

2 )
, (C.9)

we express Mw[I(w)](z) given by Eq. (C.6) in the form

Mw[I(w)](z) =
1

α

Γ( 1−z
α )Γ(1− 1−z

α )

Γ( 1−z
2 )Γ(1− 1−z

2 )
. (C.10)

Thus, I(w) is given by the inverse Mellin transform

I(w) =
1

2πiα

c+i∞∫
c−i∞

dzw−z
Γ( 1−z

α )Γ(1− 1−z
α )

Γ( 1−z
2 )Γ(1− 1−z

2 )
. (C.11)

1The Beta function has familiar representation in terms of the Gamma function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, Re a > 0, Re b > 0.
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By comparing this expression with Eqs. (A.1) and (A.2) we see that

I(w) is expressed in terms of Fox’s H2,1
2,3 -function in the following way,

I(w) =
1

α
H2,1

2,3

[
w

∣∣∣∣ (1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1− 1/α, 1/α), (1/2, 1/2)

]
. (C.12)

By applying the H-function Properties 12.2.4 and 12.2.5 given by Eqs.

(A.13) and (A.14) respectively, we can rewrite the above equation as

I(w) =
1

|w|
H2,1

2,3

[
|w|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, 1), (1, α/2)

]
, (C.13)

where we replaced w by |w| in order for this expression to hold also for the

negative values of w since I(−w) = I(w).

Having I(w) given by Eq. (C.13), we can present Eq. (C.1) in the form

[116]

∞∫
−∞

dp
eipx/~

|p|α + λα
=

2π~
λα|x|

H2,1
2,3

[
(
λ

~
)α|x|α

∣∣∣∣ (1, 1), (1, α/2)

(1, α), (1, 1), (1, α/2)

]
, (C.14)

with λ > 0.

Let us note that when α = 2 Eq. (C.13) becomes

I(w)|α=2 =
1

|w|
H2,1

2,3

[
|w|2

∣∣∣∣ (1, 1), (1, 1)

(1, 2), (1, 1), (1, 1)

]
(C.15)

=
1

|w|
H1,0

0,1

[
|w|2

∣∣∣∣ −(1, 2)

]
=
|w|
2

exp(−|w|),

due to the H-function Property 12.2.2 given by Eq. (A.11). Therefore, it

follows from Eqs. (C.14) and (C.15) that

∞∫
−∞

dp
eipx/~

|p|2 + λ2 =
π

λ
exp(−λ|x|/~). (C.16)
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Appendix D

Polylogarithm

D.1 Polylogarithm as a power series

The polylogarithm Lis(z) is defined by [168] - [170]

Lis(z) =

∞∑
n=1

zn

ns
=

z

Γ(s)

∞∫
0

dt
ts−1

et − z
, (D.1)

here s is real parameter and z is the complex argument. The name poly-

logarithm comes from the fact that the function Lis(z) may be introduced

as the repeated integral of itself,

Lis+1(z) =

z∫
0

dt
Lis(t)

t
. (D.2)

It is easy to see that for z = 1 the polylogarithm Lis(1) reduces to the

well-known Riemann zeta function

Lis(1) = ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1. (D.3)

The quantum statistical mechanics is the best known field where the

polylogarithm arises in natural way. Indeed, if we note that the Bose–

Einstein distribution function BE(t) is given by

BE(t) =
ts−1

et−µ − 1
, (D.4)

and the Fermi–Dirac distribution function FD(t) is given by

323



March 28, 2018 10:35 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 324

324 Fractional Quantum Mechanics

FD(t) =
ts−1

et−µ + 1
, (D.5)

then the integrals of the Bose–Einstein distribution function and the Fermi-

Dirac distribution function are respectively

∞∫
0

dtBE(t) =

∞∫
0

dt
ts−1

et−µ − 1
= Γ(s)Lis(e

µ) (D.6)

and

∞∫
0

dtFD(t) =

∞∫
0

dt
ts−1

et−µ + 1
= −Γ(s)Lis(−eµ), (D.7)

where Γ(s) is the Gamma function.

For our purposes we are looking for power series representation (about

µ = 0) of the polylogarithm Lis(e
−u)

Lis(e
−µ) =

1

Γ(s)

∞∫
0

dt
ts−1

et+µ − 1
. (D.8)

The power series representation of the polylogarithm Lis(e
−µ) can be

found by using the Mellin transform, see, [171],

Ms(r) =

∞∫
0

duur−1Lis(e
−u) =

∞∫
0

duur−1
∞∑
n=1

e−nu

ns
= Γ(r)ζ(s+ r), (D.9)

where ζ(s+ r) is the Riemann zeta function defined by Eq. (D.3).

The inverse Mellin transform then gives

Lis(e
−u) =

1

2πi

c+i∞∫
c−i∞

dru−rMs(r) (D.10)

=
1

2πi

c+i∞∫
c−i∞

dru−rΓ(r)ζ(s+ r), r > 0,



April 6, 2018 10:1 ws-book9x6 BC: 10541 - Fractional Quantum Mechanics Laskin˙FQM page 325

Polylogarithm 325

where c is a constant to the right of the poles of the integrand. The path

of integration may be converted into a closed contour, and the simple poles

of the integrand are those of of the Riemann zeta function ζ(s + r) at

r = 1 − s with residue +1 and the Gamma function Γ(r) at r = −l with

residues (−1)l/l!, here l = 0,−1,−2, ....

Summing the residues yields, for |µ| < 2π and s 6= 1, 2, 3, ...

Lis(e
−µ) = Γ(1− s)µs−1 +

∞∑
l=0

ζ(s− l)
l!

(−µ)l. (D.11)

This equation gives us the power series representation of the polyloga-

rithm Lis(e
−µ) (about µ = 0).

If the parameter s is a positive integer n, both the Gamma function

Γ(1−s) and the l = n−1 term become infinite, although their sum remains

finite [171].

For integer l > 0 we have

lim
s→l+1

[
Γ(1− s)(µ)s−1 +

ζ(s− l)
l!

(−µ)l
]

(D.12)

=
(−µ)l

l!

(
l∑

m=1

1

m
− ln(µ)

)
,

and for l = 0

lim
s→1

[
Γ(1− s)(µ)s−1 + ζ(s)

]
= − ln(µ). (D.13)

D.2 Properties of function V(k)

It is easy to see that J (k) given by Eq. (11.41) with Jn defined by Eq.

(11.7) can be expressed in terms of the polylogarithm

J (k) = 2J
∞∑
n=1

cos(kna)

ns
= 2J Re{Lis(e

−ika)}. (D.14)

Then, the function V(k) defined by Eq. (11.40) is written as

V(k) = 2J ζ(s) Re

{
1− Lis(e

−ika)

ζ(s)

}
, (D.15)
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where ζ(s) is the Riemann zeta function given by Eq. (D.3).

Taking into account power series representation given by Eq. (D.11),

we find from Eq. (D.15) that in the limit a → 0 function V(k) has the

following behavior, depending on value of the parameter s, [133]

V(k) ∼ Ds|ka|s−1, 2 ≤ s < 3, (D.16)

V(k) ∼ −J(ka)2 ln ka, s = 3, (D.17)

V(k) ∼ Jζ(s− 2)

2
(ka)2, s > 3, (D.18)

where ζ(s) is the Riemann zeta function and the coefficient Ds is defined

by

Ds =
πJ

Γ(s) sin(π(s− 1)/2)
, (D.19)

with Γ(s) being the Gamma function.
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Appendix E

Fractional Generalization of
Trigonometric Functions cos z and

sin z

Following [146] we introduce two new functions Ecβ(z) and Esβ(z) defined

by the series

Ecβ(z) =
∞∑
m=0

(−1)mβz2m

Γ(2βm+ 1)
(E.1)

and

Esβ(z) =

∞∑
m=0

(−1)mβz(2m+1)

Γ(β(2m+ 1) + 1)
. (E.2)

It is easy to see that the following two identities hold for functions

Ecβ(z) and Esβ(z)

Ecβ(z) =
iβEβ(−iβz)− (−i)βEβ(iβz)

iβ − (−i)β
, (E.3)

and

Esβ(z) =
Eβ(iβz)− Eβ(−iβz)

iβ − (−i)β
, (E.4)

where Eβ(z) is the Mittag-Leffler function given by Eq. (12.61) and i is

imaginary unit, i =
√
−1.

Hence, functions Ecβ(z) and Esβ(z) can be considered as a natural

fractional generalization of the well-known trigonometric functions cos(z),

and sin(z) respectively. Indeed, when β = 1 Ecβ(z) and Esβ(z) become

Ecβ(z)|β=1 = Ec1(z) =
∞∑
m=0

(−1)mz2m

Γ(2m+ 1)
(E.5)
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=
∞∑
m=0

(−1)mz2m

(2m)!
= cos z,

and

Esβ(z)|β=1 = Es1(z) =
∞∑
m=0

(−1)mz(2m+1)

Γ((2m+ 1) + 1)
(E.6)

=
∞∑
m=0

(−1)mz(2m+1)

(2m+ 1)!
= sin z.

The new expression for the Mittag-Leffler function Eβ(iβz) given by

Eq. (12.66) can be considered as a fractional generalization [146] of the

celebrated Euler’s formula, which is recovered from Eq. (12.66) in the limit

case β = 1,

eiz = cos z + i sin z. (E.7)

Two new expressions (E.3) and (E.4) are a fractional generalization of

the well-known equations

cos z =
1

2
(eiz + e−iz), (E.8)

and

sin z =
1

2i
(eiz − e−iz). (E.9)

Let us note that Eq. (12.66) can be further generalized to

Eβ,γ(iσz) = Ecσβ,γ(z) + iσEsσβ,γ(z), (E.10)

0 < β ≤ 1, 0 < γ ≤ 1, 0 < σ ≤ 1,

where two indices Mittag-Leffler function Eβ,γ(z) is defined by

Eβ,γ(z) =
∞∑
m=0

zm

Γ(βm+ γ)
, (E.11)
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and two new functions Ecσβ,γ(z) and Esσβ,γ(z) are introduced as

Ecσβ,γ(z) =
∞∑
m=0

(−1)mσz2m

Γ(2βm+ γ)
(E.12)

and

Esσβ,γ(z) =
∞∑
m=0

(−1)mσz(2m+1)

Γ(β(2m+ 1) + γ)
, (E.13)

respectively.

In terms of new generalized functions Ecσβ,γ(z) and Esσβ,γ(z), the func-

tions Ecβ(z) and Esβ(z) defined by Eqs. (E.1) and (E.2) are given by

Ecβ(z) = Ecσβ,γ(z)|σ=β,γ=1, Esβ(z) = Esσβ,γ(z)|σ=β,γ=1. (E.14)
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